
Bootkits Revisited - Detecting,
Analysing and Mitigating Bootkit

Threats

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Bernhard Grill

Matrikelnummer 1028282

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao. Univ. Prof. Dr. Wolfgang Kastner

Mitwirkung: Dr. Christian Platzer

Wien, 26.09.2016

(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Acknowledgements

I would like to thank Ikarus Security Software GmbH, for helping me finding the initial topic
and letting me perform the first evaluations for the thesis. Furthermore, I would like to express
my gratitude for the Researcher Mobility Program for Systems Security from the SysSec project,
which enabled me to perform a student exchange to VU University Amsterdam. Thereby, I
would like to thank Prof. Herbert Bos and his amazing group at VU University for hosting,
providing me great input & support, their sincere inclusion in their group and the fun moments.
I would also like to thank all the reviewers for their feedback, including the great input we re-
ceived from anonymous conference reviewers. In addition, I would like to thank Prof. Wolfgang
Kastner and Dr. Christian Platzer for their supervision, feedback and patience. Last but not
least, I would like to thank Andrei Bacs, Jürgen Eckel and Christian Ondracek for the awesome
collaboration and their help.

iii

Abstract

Bootkits (short for boot + rootkit) are one of the most advanced, powerful and persistent threats
exploited in sophisticated malware attacks. In order to investigate this attack vector in greater
detail, we performed a large-scale bootkit malware analysis utilizing Windows XP and Windows
7. The data set consists of samples spanning a timer period over 8 years to gain detailed insights
into the bootkit malware economy. Grounded on the analysis results of 26,378 malware sam-
ples, novel techniques to detect and stop bootkit attacks have been developed. The proposed
detection techniques are based on anomaly identification utilizing dynamic analysis during the
system’s boot phase. Furthermore, two novel techniques to prevent bootkit infections have been
developed. The first one, is grounded on strictly blocking the malware’s initial persistence and
infection vector, while the second approach relies on emulation and monitoring the impact of
disk modifications targeting the system’s boot process. Furthermore, this work showcases the
historic evolution of bootkit techniques starting in 2006 and presents an outlook on their poten-
tial future evolution.

v

Kurzfassung

Bootkits (kurz für boot + rootkit) sind eine der fortschritlichsten, mächtigsten und langlebigsten
Techniken, die in moderner Schadsoftware angewendet werden. Um dieses Bedrohungsszenario
im Detail zu analysieren, wurde eine großangelegte Bootkit-Schadsoftware-Analyse basierend
auf Windows XP und Win7 durchgeführt. Der Versuchsdatensatz besteht aus Schadsoftware,
die eine Periode von über 8 Jahren umfasst, um eine detaillierte Einsicht in die Bootkit-Szene
zu erhalten. Basierend auf der Analyse von 26.378 Schadsoftware-Proben, wurden neuartige
Techniken zur Erkennung und Prävention von Bootkitangriffen entwickelt. Die vorgeschlage-
nen Erkennungstechniken basieren auf Anomalieerkennung und dynamischer Analyse während
des Bootprozesses. Weiters wurden zwei neue Mechanismen zur Verhinderung von Bootkit-
Infektionen entwickelt. Erstere basiert darauf, die Infektion durch Blockierung von Schreib-
zugriffen auf Festplatten-Bereiche, welche für den Bootvorgang relevant sind, zu verhindern,
während der Zweite auf der Emulation und Überwachung der Auswirkungen von Festplatten-
änderungen, welche für den Bootvorgang wichtig sind, beruht. Weiters gibt diese Arbeit einen
Einblick in die historische Entwicklung von Bootkit-Technolgie und bietet einen Ausblick auf
mögliche zukünftige Entwicklungen.

vii

Contents

1 Introduction 1

1.1 Goals and Objectives . 2
1.2 Scientific Outcome . 2
1.3 Structure of this Thesis . 3

2 Background 5

2.1 Real and Protected Mode of x86 processors 5
2.2 Hooking the Interrupt Vector Table . 6
2.3 The Boot Process . 7
2.4 Slack Space and Dark Regions . 10
2.5 Introduction to Bootkit Techniques . 10
2.6 QEMU . 12

3 Detecting Bootkit Infections 15

3.1 Dark Region Modification . 15
3.2 Dark Region Read Access . 16
3.3 Interrupt Hooking . 17
3.4 Executing Address 0000h:7C00h . 18
3.5 Early Boot Phase Network Traffic . 18
3.6 Decryption Loop Detection . 19

4 Preventing Bootkit Attacks 23

4.1 Bootkit Infection Prevention on the Hardware Level 23
4.2 Bootkit Attack Prevention on the OS Level . 24
4.3 Discussion . 26

5 Bootcamp 29

5.1 Dynamic Bootkit Malware Analysis . 29
5.2 System Architecture & Sofware Design . 30
5.3 Utilized Technologies . 32
5.4 Database Model . 33
5.5 User Interface . 34
5.6 Application Scenarios . 35

ix

6 Case Study for the TDL4 Bootkit 39

7 Evaluation 45

7.1 Utilized Bootkit Dataset . 45
7.2 Experimental Setup for the Evaluation . 46
7.3 Containment Measures taken during the Malware Experiment 48

8 Results 51

8.1 Large-Scale Bootkit Analysis . 51
8.2 Evolution of Bootkits . 55
8.3 Performance of Proposed Bootkit Detection Techniques 58
8.4 Performance for the Bootkit Prevention Mechanism 60

9 Discussion 61

9.1 General Limitations . 61
9.2 Evasion Techniques for Dynamic Analysis . 61
9.3 Misdetection and Evading the Detection Heuristics 62
9.4 Evasion Techniques for Attack Prevention on the OS Level 63
9.5 Potential Future Bootkit Evolution . 64

10 Related Work 67

10.1 Dynamic Malware Analysis . 67
10.2 Bootkits . 67
10.3 Large-Scale Malware Analysis . 68
10.4 Preventing Malware Infections . 68

11 Future Work & Conclusion 71

11.1 Future Work . 71
11.2 Conclusion . 72

Bibliography 75

x

CHAPTER 1
Introduction

Bootkits are a special type of malware constructed to attack an operating system’s (OS) boot
process. They are able to execute malicious code very early during the boot process enabling
it to keep control throughout the execution of the infected system’s boot phase. In most cases,
the boot sequence is diverted before the bootloader is even executed, rendering any anti-virus-
related (AV) protection virtually useless. Combined with the fact that the startup code is rarely
modified on a typical system, this allows bootkits to survive for a significant time once the target
system is infected and furthermore, makes it significantly more difficult to detect those kinds
of malware infections. They were highly popular in the 80s and 90s [87]. In the following
years, they faded into oblivion but returned with a vengeance starting in 2006. Some of the most
sophisticated and hard to remove malware families nowadays exploit bootkit technology.

Recently introduced Windows security mechanisms such as driver signing policy [63] or
kernel patch protection [60] forced malware writers to develop new techniques in order to gain
kernel level privileges again. An increasing number of attacks are using bootkits to go unde-
tected by deployed countermeasures such as anti-virus (AV) software and protection techniques
provided by the operating system itself, e.g. the Windows PatchGuard. Those techniques can
be circumvented utilizing bootkit technology as shown by malware families such as TDL4 and
XPAJ [15], [19]. A well known and nowadays highly popular mass malware bootkit family is
TDSS [81]. Additionally, federal ’Remote Surveillance and Forensic Solutions’ offered by e.g.
Hacking Team [9] or FinFisher [6] utilize bootkits in their surveillance software [7]. Further-
more, GrayFish, a highly sophisticated malware recently used by the infamous Equation group,
was discovered by Kaspersky Labs [47]. The Equation group is suspected to be directly oper-
ated or highly connected to the NSA (American National Security Agency). Hence, also state
sponsored or federal secret services are utilizing bootkit technology.

Currently, almost all protection techniques share a weakness in common. Those tools are
either implemented in the operating system itself or rely on the underlying OS, as it is the case
with anti-virus solutions. Therefore, malware managing to subvert the kernel e.g. by infect-
ing the OS’s boot process is capable to run undetected. Most protection mechanisms become
active too late during the startup process to catch active bootkits, e.g. AV solutions or even Mi-

1

crosoft’s ELAM module (Early Launch Anti-Malware) [59], a circumstance which is partially
owed to the increasing complexity of today’s operating systems. This circumstance ultimately
enhances the window for an attacker to execute malicious code undetected during boot time. As
a consequence, malware authors show renewed interest in bootkits and their techniques.

1.1 Goals and Objectives

The following objectives have been defined for the master thesis:

• Techniques should be developed in order to (i) detect, (ii) analyse and (iii) prevent bootkit
attacks.

• Two different scenarios must be supported. To detect if (i) a given binary installs a bootkit
during execution and (ii) a given hard disk image is infected by a bootkit. Furthermore, it
must be possible to analyse the attack in further details in both cases.

• Tools should be developed which help a human to detect and analyse bootkit malware and
quickly get a basic understanding of its behaviour. It should be able to deal with both
previously described scenarios.

• The approach must be able to detect unknown (0-day) threats, while the prevention tech-
nique should not interfere with widely used security measures as ASLR, DEP or anti-virus
systems.

• The thesis targets Windows binaries as Windows is the dominating OS for both x86 sys-
tems and malware.

• The work focuses on BIOS based computer systems as virtually all bootkit malware sam-
ples in the wild target this configuration. [40]

• Utilizing the previously mentioned detection & analysis system, we want to perform a
large-scale and long-term bootkit malware analysis to get a detailed insight into the current
state of bootkit technology.

1.2 Scientific Outcome

Parts of this work have already been published while writing the master thesis to get feedback
from reviewers and additional input during scientific conferences. The publications are avail-
able under [41], [40] and [21]. Those publications contain sub-elements of this work which are
extended, connected and presented in more detail in this master thesis.

2

1.3 Structure of this Thesis

This thesis is structured as follows: Chapter 2 provides necessary background information such
as: x86 real and protected mode, interrupts and their processing, the boot process for an OS,
an introduction into bootkit techniques, slack space and QEMU. Chapter 3 describes our ap-
proach and heuristics to detect bootkit infections with dynamic analysis, introduces into dynamic
bootkit malware analysis and shows a preventive approach for bootkit attacks. Chapter 4 pictures
two techniques to prevent bootkit infections. One is grounded on strictly blocking the malware’s
initial persistence and infection vector, while the second approach relies on emulation and mon-
itoring the impact of disk modifications targeting the system’s boot process. Chapter 5 outlines
the system overview, its architecture and gives insights into the system’s implementation, e.g.
the utilized technologies, database model and user interface, while Chapter 6 outlines a case
study by analysing a TDL4 malware sample utilizing the proposed system. Chapter 7 presents
the experimental setup for the evaluation such as the utilized data set and containment policies.
Chapter 8 summarizes the results for the large-scale bootkit malware analysis, the historic evo-
lution of bootkits, and the performance of the proposed detection and prevention techniques.
Chapter 10 provides the related work, Chapter 9 discusses limitations, evasion techniques and
misdetections of our approach and provides an outlook into potential future bootkit evolutions,
while finally Chapter 11 outlines the future work and concludes the thesis.

3

CHAPTER 2
Background

This chapter provides necessary background information on x86’s real and protected mode, in-
terrupt processing, the Interrupt Vector Table (IVT), hooking this table and interrupt 13 which
is elementary for booting and also highly relevant for bootkits. Furthermore, it explains the
system’s boot process, and slack space, and introduces the concept of dark regions which are
a particular type of slack space. Finally, the chapter provides an introduction into bootkit tech-
niques and gives an overview on QEMU.

2.1 Real and Protected Mode of x86 processors

In the following, we discuss the two modes of operation for x86, the real and the protected mode.

Real Mode

Real mode is an operation mode of the x86 processor family. When an x86 processor is powered
on, it starts in real mode. In this mode, the processor behaves like a very fast 8086 processor. It
does only support a basic set of instructions and the memory space is restricted to 1 MiB as the
address bus is limited to 20 bit. Furthermore, it provides unlimited direct access to all memory,
I/O addresses and peripheral hardware. Real mode does not provide any memory protection,
virtual memory, multitasking or code privilege levels, i.e. differentiation between kernel- and
user-land. In real mode, the processor offers 16 bit registers. This mode basically provides
backwards-compatibility for the old 8086 processor family. [17], [18]

Protected Mode

In protected mode, the processor can address 4 GB of memory as it is using a 32 bit address
bus. In this mode, memory protection for pages and segments, virtual memory, multitasking and
privilege levels (ring 0 to ring 3), i.e. differentiation between kernel- and user-land, are available.
The processor offers 32 bit registers, hence this modes is sometimes referred as “32 bit mode”.

5

The protected mode and its features are controlled by the control registers (CR0, CR2, CR3,
CR4).

Almost all modern x86 processors support long mode in addition. This mode is also known
as “64 bit mode” or x86_64. It allows the CPU to access 64 bit registers and 64 bit memory
space. In general, long mode is rather similar to protected mode except for 64 bit support and
some additional instructions. An x86_64 processor behaves in real mode exactly like a 16 bit
x86 CPU, and in protected mode exactly like a 32 bit x86 processor. In the following, we will
mainly deal with real and protected mode, hence we will not go into further details for long
mode. [17], [16]

2.2 Hooking the Interrupt Vector Table

This section discusses interrupts, the Interrupt Vector Table (IVT), hooking and how to exploit
this knowledge in order to hook the IVT.

Interrupts and the Interrupt Vector Table

An interrupt is an event triggering the execution of a particular type of function named the
interrupt service routine (ISR) or interrupt handler. Each interrupt is associated with a certain
number and a corresponding ISR. The details how interrupts are processed depend whether the
processor is in real or protected mode but in general they follow the same procedure. We will
have a closer look on interrupt handling in real mode now. [30]

In real mode, the first 1024 byte of memory (0x00000 - 0x003FF) are reserved for the so
called Interrupt Vector Table (IVT). In protected mode, the IVT is named Interrupt Descriptor
Table (IDT) which has a slightly different layout but having the same basic purpose. Both map
interrupts and their corresponding interrupt numbers to ISRs, which finally handle them.
Basically, the IVT stores the start addresses of the ISRs’ locations in memory. Every IVT entry
(the ISR’s start address) consists of a 4 byte address. Hence, the data structure can contain
256 interrupts as its overall size is 1024 bytes. The target address for interrupt 0 is stored at
address 0x00000 - 0x00003, for interrupt 1 from 0x00004 - 0x00007, and so on. If an
interrupt is raised, the CPU utilizes the address at the corresponding position in the IVT to locate
the fitting ISR and finally executes the routine. Interrupts are called using the int assembler
instruction, e.g. int 4 calls interrupt number 4, i.e. the fourth entry in the IVT. Figure 2.1
outlines the previously described interrupt handling process with the main program, the IVT and
the ISR. [30]

Int 13h is an x86 assembler instruction calling interrupt 13. This interrupt is responsible
for hard disk control in real mode for BIOS based systems. Depending on memory content and
registers, the interrupt handles hard disk operations (e.g. read and write requests to the disk or
getting information on the installed drives). Int 15h provides an interface to miscellaneous
system services such as getting the memory size or switching to protected mode. Both interrupts
are highly interesting for bootkit authors, as discussed in Section 2.5. [41]

6

Figure 2.1: The interrupt handling process utilizing IVT and ISR [85]

Hooking the Interrupt Vector Table

Hooking is a very powerful technique to modify the behaviour of a program by intercepting
function calls. Code artefacts handling those intercepted function calls are named “hooks”.
Figure 2.2 provides an introduction into the hooking technique which we will examine in further
detail now.

Let’s consider a table with function addresses (call table), e.g. the third entry in the figure
points to the start of the function “LegitimateRoutine” at address 0x7c820011. Furthermore,
let’s assume there is a second function called “ImposterRoutine” at address 0xc01dbeef. Now,
one could replace the original address with the address of the second function in the call table.
So whenever the first function should be called, the second (the so called hook or hooking
function) is actually executed. The hook function will process the function call and may or may
not forward execution to the original procedure. Hooking can be used for benign purpose, e.g.
to perform additional security checks prior to a function call, or for malicious reasons, e.g. by
rootkits to hide certain files from the user.

Of course, the IVT is also hookable by overwriting the target address in the IVT with the
address of a different function. Hence, whenever the interrupt is triggered, the hooking ISR is
invoked instead of the original one. In the IVT case, the hooking function typically calls the
original ISR in order to perform the intended functionality, e.g. load content from the hard disk
into main memory. Interrupt 13 is a very popular hooking target for bootkits, as it is used
to load further code into memory, e.g. by the bootloader or the OS kernel. Furthermore, it is an
easy technique to transfer control flow back and forth between malicious code and the original
OS (we will examine this feature in further detail in Section 2.5).

2.3 The Boot Process

In this section, we will discuss how the boot process for BIOS based x86 system works, which
is outlined in Figure 2.3. After a power-on self-test (POST), the processor starts in real mode
and runs the BIOS (Basic Input/Output System). The BIOS locates and loads the Master Boot
Record (MBR) at address 0000h:7C00h and hands over execution to the MBR. Be aware
of the address 0000h:7C00h, as it will get important again for bootkit detection in Section

7

Figure 2.2: Normal vs. hooking scenario [30]

3.4. The MBR are the first 512 bytes of the system’s first hard disk. It consists of two parts: a
partition table and code. The code parses the partition table (PT), locates the partition marked
as “bootable”, i.e. the partition containing the OS, and redirects execution to the Volume Boot
Record (VBR).
The VBR are the first 512 bytes of the bootable partition and is loaded by the MBR again at the
address 0000h:7C00h. The VBR also consists of code and parameters relevant for the further
boot process, e.g. the first stage bootloader’s location, the partition’s file system, the amount of
hard disk blocks (smallest managed section of a hard drive) forming a cluster. The VBR code
parses the relevant information, locates the bootloader’s (BL) first stage on disk and loads the
BL into memory.
Typically, the bootloader consists of several stages, whereas every stage is loaded by the previous
stage and gets more powerful (e.g. the first stage does not understand, the second partially
and the third fully understand the file system’s structure). Finally, the bootloader prepares the
environment, switches to protected mode, loads the kernel and the first low level drivers, and
hands over control to the OS kernel. [41], [40], [14], [17]

Figure 2.3: Boot sequence for BIOS based systems [40]

8

MBR partition tables do only support up to 4 partitions, whereas each partition’s size field is
limited to 32 bits. Considering hard disk block sizes of 512 bytes, this results in the well known
2 TiB maximum hard disk size for BIOS based MBR systems. Figure 2.4 shows the structure
of the MBR. The executable code (the first 446 bytes are colored in green), the error messages
are blue. The partition table is marked in red, whereas one can recognize the four partition table
entries, each consisting of 16 bytes. Both the MBR and the VBR conclude with magic number
signature 0x55aa, outlined in yellow. [41], [40]

Figure 2.4: MBR structure overview (code in green, configuration in blue, partition table in red,
magic boot number in yellow) [2]

In addition to the MBR partition table schema, there is also the GUID Partition Table (GPT)
style. The difference between GPT and MBR partition table is the size and quantity of supported
partitions. GPT uses 64 bit partition size fields increasing the maximum addressable size to 2
ZiB and supports an arbitrary number of partitions. The GPT partition table is located in the disk
blocks succeeding the MBR, starting with byte 513 of the system’s first hard disk. However, an
MBR is still present, it is simply followed by the GPT and features a slightly different MBR code.
We will not deal with the GPT partition scheme as they are rather uncommon for BIOS based

9

systems and bootkits in the wild are not applicable to GPT disks, yet [12]. Anyhow, the proposed
techniques would also work for GPT with slightly increased implementation effort. [8], [41]

2.4 Slack Space and Dark Regions

Operating systems store files on the hard drive in blocks (the smallest managed section on a hard
drive). If the file size is not a multiple of the block size, then some space is unused. This unused
space is referred to as slack space, i.e. slack space is the storage area between the end of the
file and the end of the last used block. From the OS’s point of view, slack space is occupied,
although it is practically not used.

In the following, we will introduce dark regions (DR) which are related to slack space. We
define a dark region as a contiguous physical hard disk area which is not part of the file system.
As dark regions are not part of a file system, they are not accessible during normal system
operation by the user. Examples for DRs are: the MBR, the area between the MBR and VBR,
the bootloader, the inter-partition gaps and the sectors after the last partition (these gaps size
up to several MB on typical systems). Figure 2.5 shows a common hard disk structure and its
corresponding DRs. The DRs are colored in gray. [40]

The OS’s initialization may use certain DRs, e.g. the MBR, VBR and bootloader are used
during the boot phase while inter-partition gaps are not. According to our definition of a DR, all
boot code up to the bootloader is located within dark regions. Only very rare events like major
OS updates or re-installs could ever modify dark regions, which makes them very interesting for
persistence reasons. We do not refer to DRs for any hidden areas within file system.

Figure 2.5: Common dark region (DR) structure - DRs in gray, file system in green [40]

2.5 Introduction to Bootkit Techniques

The name bootkit refers to “boot” and “rootkit”. As already discussed, bootkits are hijacking
an operating system’s boot process before the OS kernel is executed. Therefore, malware has to
execute code in any stage prior kernel execution to gain control over the system.
Simple attack scenarios result in passing additional kernel parameters during the boot process
in order to disable OS security mechanisms, such as Windows PatchGuard and kernel patch
protection [60]. Advanced attack vectors include injecting code into the kernel or patching
it directly in memory, e.g. to disable security features or provide kernel rootkit capabilities.

10

Furthermore, sophisticated bootkits deploy advanced self protection features which make them
especially difficult to detect in post-infection scenarios. For example, Carberp installs a self
protection driver filtering hard disk reads which target the infected MBR respectively the hidden
bootkit data storage outside of the partition by returning the original (not infected) MBR or
empty data when trying to read those sections. In addition, Carberp also prevents those disk
sectors against being overwritten by malware removal tools [84]. Modern BKs often utilize
encryption and self-modifying code to hide the secret storage’s content. The original (benign)
boot code provided by the OS is normally not modify during execution and is not encrypted.
This property is exploited by one of the proposed BK detection techniques discussed in Section
3.6. [57], [29]

Windows PatchGuard and Kernel Patch Protection

In 2006, bootkits were rediscovered as Microsoft introduced Windows PatchGuard and kernel
patch protection (KPP) in their x64 operating systems [82]. Prior to that, malware writers could
enter kernel level, which is mandatory for sophisticated and powerful malware, by simply load-
ing a malicious kernel driver at runtime. But PatchGuard not only prevents loading drivers
which were not signed my Microsoft, the kernel patch protection also prohibits unauthorized
modification (e.g. hooking) of certain kernel data structures, such as the IDT (Interrupt Vec-
tor Table), GDT (Global Descriptor Table), SSDT (System Service Descriptor Table). Hence,
bootkits became very popular again for advanced malware. [60], [63]

Bootkit Types

According to Li et al. [54], there are 4 different types of bootkits:

• BIOS-based: They write their malicious payload directly into the BIOS, such as the
research prototype IceLord does. [1] Those bootkits are very rare and most of them are
proof-of-concepts as they typically have to target particular BIOS and hardware versions
and must be customized therefore. Only a few such BK type samples have been spotted
in the wild. [39] [86]

• MBR-based: Those bootkits infect the MBR or VBR such as the malware families
TDL4/TDSS, Rovnix, Sinowal, Gapz or Pihar do. [4] [3]

• NTLDR-based: NTLDR-based BKs infect the bootloader stage, e.g. Cidox/Carberp ex-
ploit this infection vector. [5]

• Other Technologies: There are also some other techniques as boot.ini-based or hive-
based bootkits. This type is also hardly seen in the wild.

As MBR and NTLDR-based BKs are the dominant types (and others are hardly spotted in the
wild), we will focus on those two types for this work.

11

Figure 2.6: Execution flow for a bootkit utilizing the bootloader as initial infection vector (be-
nign areas in green, infected in red) [41]

Bootkit Infections

Figure 2.6 outlines an example boot process for a bootkit exploiting an infected bootloader stage.
The BIOS starts the system and hands over execution to the MBR which loads and redirects
execution to the VBR. The code in the VBR loads the bootloader (BL) infected by the bootkit.
In this example, the BL represents the initial infection vector. The malicious BL loads and
executes further code from the system’s disk (the dark region at the end of the drive). This code
performs additional malicious activity and setup tasks, such as hooking particular interrupts in
order to regain control before the kernel is executed. Afterwards, the original BL is executed to
load the kernel into memory. Then the BK regains control by utilizing a hooked interrupt and
finally infects the kernel in memory. In the end, the system proceeds initializing and executing
the (now infected) system. Figure 2.7 outlines an MBR infected by TDL4 and compares it to a
benign Windows XP SP2 MBR.

If bootkits target to modify the kernel in memory but do not want to implement the boot-
loader on their own, they have to regain control after the kernel is loaded into memory but before

it is executed. During this time frame they can infect the kernel as it is already in memory but
no protection techniques are in place, yet. Therefore, BKs typically hook the system’s Interrupt
Vector Table (IVT) (cf. Section 2.2). Using interrupt hooking, the malware first has to setup the
hooks, rerun benign code, and regain control via the interrupt hook at the desired stage during
the boot process to perform further malicious activity. Interrupt 13 and 15 are often ex-
ploited for this purpose. Interrupt 13 is a great fit, as by hooking this interrupt the malware
can exactly determine when the bootloader loads the kernel into memory and therefore infecting
it the very same time. On the other hand interrupt 15, is executed several times during the
Windows boot process after the kernel is loaded into memory but before it is executed, making
the interrupt also a highly fitting target.

2.6 QEMU

QEMU is an open source machine emulator and virtualizer. It can emulate a full computer
system, including a CPU, motherboard, hard disk and various peripherals. QEMU can also
emulate several different processors. It is capable of emulating processors (target processor)
different than the actual physical processor (host processor). It is using so-called translation

12

Figure 2.7: Benign MBR of a Windows XP SP2 (left), MBR infected by TDL4 (right)

engines to convert target processor instructions to instructions of the host processor. Therefore,
it is able to run OSs and programs dedicated for a particular CPU (e.g. ARM) on a different
machine (e.g. x86). The presented solution is based upon QEMU, and will be described in
further detail in the following chapters.

13

CHAPTER 3
Detecting Bootkit Infections

The section describes the following bootkit detection heuristics: dark region modification, dark

region access, interrupt hooking, executing address 0000h:7C00h, early boot network traffic

and decryption loop detection. The first three heuristics have already been described in my pa-
per [40]. The executing address 0000h:7C00h heuristic was used by Haukli [42] to detect startup
anomalies. The decryption loop detection heuristic was shortly outlined in my second paper [41].

Bootkits need to be installed on the target system before they become active. This can be
achieved (a) when the target system is off and the physical disk is modified via an evil maid
like attack [83], or (b) during system operation by a malware dropper. While the latter one is the
common case for mass-malware infections, the first mode is preferred by targeted attacks, e.g.
by secret services. This work is not interested in detecting how the dropper reaches the target
system or how it starts to execute, but focuses on its actions to install the bootkit payload.
Given the characteristics described in Chapter 2, this work proposes techniques in order to detect
bootkit attacks either during installation but also after the system is already infected. The dark
region modification heuristic is the only exception, as it only detects bootkits during installa-
tion. All the other methods detect them both during, but also after infection (in a so called post
infection scenario).

3.1 Dark Region Modification

Bootkits have to modify the target system’s hard disk in order to survive system restarts and
get active before any OS defensive technique. They write their code into dark regions as those
areas are typically not used under normal system operation. As a result, the malicious code is
not detected by file system based protection systems or in danger of being overwritten by the
OS coincidentally. Furthermore, the code to access dark regions can be simpler and smaller. As
previously discussed, the bootstrap code is located in dark regions (MBR, VBR, bootloader) at
well known locations. Infections for MBR, VBR and BL-based BKs cannot avoid modifying at

15

least one of those DRs. Therefore, a dark region modification (i.e. a disk write targeting a dark
region) is a great indicator for compromise.

MBR VBR Bootloader
Filesystem

data

Filesystem

data
Gap Gap

Partition 1 Partition 2

DR 1 DR 3 DR 4 DR 5 DR 6

Gap

DR 2

Figure 3.1: Typical hard disk layout of an infected system (indicating the utilized space by the
bootkit in red)

Figure 3.1 outlines a hard disk layout of an infected system with two partitions. In this case, the
bootkit modified the MBR, the VBR, the gap between the MBR and the VBR, the gap between
the two partitions and the gap beyond the last partition.

As long as the startup code is located on the system’s disk, bootkits have to modify those
areas and, hence, there is neither a way for them to escape nor to leave traces, when monitor-
ing dark region modifications. In this scenario, false positives occur in case of legitimate DR
updates, for instance during a complete system re-installation, a major system upgrade or parti-
tioning. Modern, sophisticated bootkits need more space for their code. Therefore, they utilize
further and bigger DRs. For example, they use the inter-partition gaps and the gap at the end
of the disk to store additional content, e.g. the malware’s config, DLLs to inject. The dark re-
gions can also be written by a keylogger that runs within the target system and uses it as hidden
storage; this is another example of a false positive induced by this heuristic (although the false
positive would still point to a real infection). However, this behaviour also triggers the dark
region modification heuristics.

3.2 Dark Region Read Access

The bootkit code is executed during the boot process of an infected system. During its execution,
it loads additional code from its hidden storage typically located in DRs, e.g. at the end of the
disk and / or between partitions. Hence, a read operation targeting a DR, excluding the dark
regions containing the MBR, VBR, and bootloader (which are benign reads during startup) is
an indicator for suspicious behaviour. Figure 3.2 outlines the output for a suspicious disk read
during the boot process since disk sector 31430339 is located inside a dark region.

False positives for this heuristic can, for example, be caused by bugs in the OS file system
driver reading beyond the limits of the file system or by a forensic application inspecting parts
of the drive outside the file system. In our solution both, the dark region modification and dark
region read access technique have been implemented in QEMU’s disk access system.

16

Figure 3.2: Sample output for the dark region read access heuristics

3.3 Interrupt Hooking

Bootkits need to be executed at least once but normally several times and at different boot pro-
cess phases. As already discussed in Section 2.2, interrupt hooking is a great technique in order
to achieve this goal. Although for protected mode, interrupt hooking was allowed in the past,
this is no longer the case since kernel patch protection was introduced in Windows [82]. Further-
more, a benign system does not perform interrupt hooking during real mode. Hence, hooking
interrupts in real mode is another indicator of compromise by bootkits. Typical interrupts hooked
in practice are 0x13 (triggered by reads or writes to disk via a BIOS function) and 0x15 (trig-
gered by calling the BIOS function to get the memory size).
After powering on a computer, the BIOS initializes the system, e.g. prepares the IVT (Interrupt
Vector Table, cf. Section 2.2) and hands over control to the MBR code. Before executing the
first MBR instruction, our solution stores the IVT initialized by the BIOS. After a certain amount
of executed instructions (in the utilized configuration: 10), our solution dumps the current IVT
and compares it to the original one in order to detect interrupt hooking. For every detected hook,
it logs the interrupt number, the original and the altered ISR (Interrupt Service Routine) target
address. The current implementation does not dump the malicious ISR, as function boundary
recognition is highly challenging and still a partially open research topic, as shown by Bao et
al. [23].
The interrupt hooking technique does not detect interrupt detouring attacks (cf. Section 2.2). An
interrupt detouring attack does not modify the ISR’s address in the IVT, but the ISR’s code itself,
e.g. it overwrites the first instruction of the ISR with an unconditional jump to the malicious one.
To detect interrupt detouring attacks, the same approach as for interrupt hooking detection can
be applied, i.e. dumping either the whole memory area of the ISR code or just dumping the
first e.g. 20 bytes of every ISR. Dumping the first couple of bytes for every ISR is sufficient,
since detours are typically installed within the first few instructions, as developing malicious
ISR functions which are executed in the middle of another ISR are highly complex. Finally, the
system could periodically check whether the ISR code has been modified by comparing it to the
original one. Currently, detouring attack detection is not implemented in Bootcamp, but could
be done without problems investing additional effort.

17

3.4 Executing Address 0000h:7C00h

Benign BIOS based systems load the MBR to address 0000h:7C00h and execute it. The MBR
code locates the boot partition by parsing the partition table, loads the VBR from the boot par-
tition again at 0000h:7C00h and executes the code. Therefore, a benign system executes this
fixed address exactly twice while booting.
Bootkits exploiting the MBR or VBR normally backup the original code in another dark region,
in order to load and then run parts or the entire original code again. As the original MBR and
VBR are implemented using the fixed address 0000h:7C00h (e.g. using absolute jump target
addresses), they have to be loaded to this specific address. As a consequence, the number of
jumps to this fixed address is increased to at least three, which is a good indication that foreign
code is intermixed with the original code. This technique was also used by Haukli [42] to detect
system startup anomalies.
False positives may be triggered by major operating system upgrades which change the way
bootstrapping is done, e.g. by adding more functionality to the boot phase and thus using the
same techniques as bootkits but for benign purposes. Additionally, the bootkit could patch the
original MBR or VBR in memory or on disk to utilize a different base address than 0000h:7C00h.
Thereby, also infected systems would execute this specific address only twice.
A user pressing the key combination CTRL+ALT+DEL generates interrupt 19, which triggers a
jump to 0000h:7C00h. Therefore, a detector utilizing this heuristic should filter out this sce-
nario and only monitor an increased number of jumps during the short time frame of the startup.
A dropper can also generate interrupt 19 on its own in order to force an activation of the freshly
installed bootkit. Combined with the previously described heuristic of dark region modification,
it can give a good indication that a dropper wants to activate its payload immediately. [40]

3.5 Early Boot Phase Network Traffic

Some sophisticated bootkits use their own network driver and stack to contact Internet hosts very
early during the boot phase (e.g. for updates or new configurations) even before the operating
system has initialized its own networking stack. They utilize their own network stack to bypass
host-based network security systems, such as firewalls or IDS. Hence, network traffic during
early system startup can be an indicator for injected malicious code. A more general approach
utilizing this knowledge is to perform anomaly detection on the network level in order to identify
anomalies in the network traffic caused by the second network stack, e.g. specific network packet
flags which are not used by the Windows network stack.

False positives may be caused by the BIOS settings to boot from the network or other BIOS
level management protocols such as IPMI [46] which may generate traffic during startup. Fur-
thermore, major OS updates introducing early or unusual network traffic can interfere with this
technique.

Bootcamp does not apply this heuristic, since it takes a rather high effort to implement this
technique. For example, to get a serious network traffic anomaly detection heuristics, one would
have to apply machine learning (ML) to a large amount of benign and malicious network traffic
to train a ML model. This effort goes beyond the scope of this work, as it is a complete topic on

18

its own, and is considered as future work.

3.6 Decryption Loop Detection

Modern bootkits typically utilize self-decrypting code to circumvent pattern based security so-
lutions, e.g. such as simple anti-virus solutions. As both disk and memory space is highly lim-
ited during the boot process, bootkits often utilize simple decryption operations, such as XOR
based (e.g. Carberp, Rovnix [57]) or ROR (Rotate Right) based encryption techniques (e.g.
TDL4 [29]). Those initial decryption routines are typically looped several hundred to thousand
times. Therefore, certain instructions executed in loops with high iteration counts are another
indicator of compromise. [41]

Figure 3.3: Carberp’s isomorphic self-decryption routine shown in IDA; the decryption key is
0x69d1, while the loop counter is set to 0x4c5

Figure 3.3 outlines Carberp’s isomorphic self-decryption routine shown in IDA (Interactive Dis-
assembler). Isomorphic code are instructions achieving the same semantic purpose using differ-
ent instructions, e.g. add eax, 1 and inc eax are isomorphic as both increment the register
eax by one, but using different instructions. First, the decryption key 0x69d1 is loaded into the
dx register. The decryption key is generated randomly at compile time. Afterwards, the size of
the encrypted memory is loaded into the cx register (0x4c5). As the code is an isomorphic one,
the size varies whenever compiled newly. Then, two bytes from memory are loaded into the ax
register, XORed with dx which is the encryption key and stored in memory again (es:[di]).
Finally, the source and destination pointers (si and di registers) are incremented by two bytes.
Altogether, the loop is iterated 1221 (0x4c5) times, until the whole memory area is decrypted.

19

Sophisticated bootkits also utilize modern encryption techniques, such as AES or DES. But
those encryption schemes are typically used much later by the bootkit, e.g. to decrypt the ma-
licious DLLs or drivers which are later on injected into the kernel. As memory space is highly
limited during the early boot phase, the initial infection vector (the MBR, VBR or the boot-
loader) can only be encrypted by basic encryption techniques, as previously described.
For evaluation purpose, a proof-of-concept (PoC) decryption loop detector was built. The PoC
consisted of about 1,000 lines of C code. The loop detection algorithm was based on Loop-
Prof [61] which describes a technique for dynamic loop detection. The prototype loop detector
seeks for loops with more than 300 iterations and instructions which are often utilized for basic
encryption such as XOR, ROR (rotate right) and ROL (rotate left).

Figure 3.4: Utilized dynamic loop detection algorithm, based on LoopProf [61]

The PoC was evaluated both on Win XP SP2 and Win7. Unfortunately, during the evaluation
of the prototype it turned out that the OS itself uses a lot of such loops, which we defined as

20

suspicious, but for a benign purpose. For example, the OS typically uses such loops to load disk
content into memory or relocate memory regions during early boot phase which resulted in a lot
of false positives. Whitelisting of certain loops (based on their entry and exit address) would be
an option to solve this issue.

Figure 3.5: Output of the decryption loop detection proof-of-concept evaluated on Carberp’s
self-decryption routine [41]

Figure 3.5 outlines the output for a detected decryption loop utilized by the Carberp/Cidox
[52] bootkit. This is the same bootkit as shown in Figure 3.3. In this case, the decryption loop’s
entry is located at 0xd000:08c9 and the corresponding exit is at 0xd000:008ea. The loop is
iterated 1217 times and executes 7 instructions on every iteration. The first instruction (XOR) is
used to decrypt the content in memory.

Due to the significant amount of false positives with the proof-of-concept decryption loop
detector, the technique is not implemented in Bootcamp. Further research in this area is neces-
sary to reach production system readiness, which is considered as future work.

To improve the techniques’ performance, one could search for self-modifying code in gen-
eral by looking for memory areas which are read, modified and later on executed. To do so,
taint analysis [66] could be applied. Another approach is to detect loops and entropy changes,
i.e. loops and their corresponding buffers having high entropy (encrypted content) on loop entry
and low entropy on loop exit (decrypted memory). This approach is also applied by Lutz et
al. [56] to automatically decrypt network traffic. However, both approaches are rather complex
to implement and would go beyond the scope of this work.

21

CHAPTER 4
Preventing Bootkit Attacks

This section presents new ways how to prevent bootkit threats. Those prevention techniques can
either be implemented on the hardware level (Section 4.1) or in the OS itself, as anti-virus like
solution (Section 4.2).

4.1 Bootkit Infection Prevention on the Hardware Level

This subsection discusses a bootkit prevention technique residing on the hardware level, i.e. it
is especially suitable for implementation in virtualized environments. The widespread usage of
virtualization makes these systems attractive targets for bootkits. Full system emulators such as
QEMU [28], Bochs [31] or VMware allow the implementation of preventive measures at a very
low level, inside the emulated hardware.

Based on the information of bootkits’ behaviour, provided in Section 2.5, a very effective
prevention measure is to restrict the modification of dark region content (be it MBR, VBR,
bootloader, or inter-partition gaps) in order to defeat the persistence requirement of BKs. This
prevention measure ensures that the essential infection vector is blocked. In the worst case, the
malware resets the system or crashes it, but the bootstrap code and information can not be mod-
ified and therefore the system remains clean.
The prevention measure can be implemented in several ways in a full system emulator: write
operations to the dark region can be diverted to another specially created shadow area, or simply
replaced with a write operation of zero length. The goal is that the prevention does not crash the
operating system running inside the virtual environment by generating low level disk operation
errors. The second option is simpler because the management of the shadow storage space needs
to be efficient if the written data is also served back to specific applications requesting it. Some
droppers or bootkits may include verification steps to check whether the write operations to dark
regions were successful by re-reading the disk sectors. Another more radical technique is to kill
/ crash the machine upon detection of a bootkit like behaviour.
Our implementation features the second option which replaces write operations to DRs with a

23

write operation of zero length which does not modify the disk, returns success to the initiator of
the write request and as a result prevents the infection attempt.
This preventive technique is also effective against any other kind of malware utilizing dark re-
gions, e.g. keyloggers, not exploiting bootkit technology, but using DRs to store keystrokes for
data exfiltration. While it would not stop the keylogging activity itself it would stop the storage
of persistent data.
This solution does not only work in virtual machines, but can be also implemented in the hard
disk firmware or the disk controller of physical systems. This would require a switch (e.g. a
hardware switch on the computer or a software one, for example in the BIOS) to block / allow
dark region modifications in order to allow re-formatting of the disk, OS installations or major
system upgrades. [40]

Another approach would be to white-list every possible MBR, VBR and bootloader and only
allow the installation or startup of known benign ones. The drawback of this approach is that
every single MBR, VBR and bootloader must be collected or reported in order to avoid blocking
them and making the system stop working. Furthermore, such a system would induce the same
problems as a DRM (digital rights management) system, as the manufacturer could determine
which bootstrap code is allowed to run and which one is not [36]. For example, Microsoft
locked out some Linux bootloaders with their TPM (Trusted Platform Module) and SecureBoot
technique [43].

4.2 Bootkit Attack Prevention on the OS Level

Another approach is to implement the technique in an anti-virus system like solution, so inside
the OS. Figure 4.1 outlines this approach. The system consists of two major components, a

Figure 4.1: Overview on the detection and prevention system residing inside the OS

24

hard disk write access driver and a detection & prevention engine. The driver monitors every
single write request to the hard disk, both malicious and benign ones. It is aware of the dark
regions in the system, e.g. by scanning the partition table on startup. Whenever the driver
detects a write request to a dark region, it notifies the detection & prevention engine. The engine
implements the detection techniques described in Section 3. Whenever the engine is notified by
the driver, the engine emulates the boot process, considering the effects on the disk by the new
write request. The engine checks for bootkit like behaviour by emulating and monitoring the
boot process for suspicious behaviour. Depending whether bootkit like behaviour is detected, it
rejects or forwards the disk modification request to the physical disk.

Hard Disk Write Access Driver

The hard disk write access driver scans the partition table on driver startup in order to detect the
system’s dark regions. The driver monitors write attempts to DRs and notifies the detection &
prevention engine in such cases. If the write request does not target a DR, the request is for-
warded to the next handler in the driver stack.
Performance is a critical issue for this component, since every single write request (both, mali-
cious and benign ones) is intercepted by the driver. Since the query to detect whether the write
request targets a DR or not is trivial and consists only of a few ’and’, ’greater than’ and ’lower
than’ operations, the performance impact is minimal. As dark region modifications are very
rare events, this solutions introduces hardly any performance overhead during normal system
operation, as evaluated below.

Detection & Prevention Engine

The detection & prevention engine implements the detection techniques described in Chapter 3.
Whenever the engine is notified by the driver, the engine takes the requested disk modification
and the hard disk’s current state as input and emulates the boot process, considering the effects
on the disk by the new write request. The engine checks for bootkit like behaviour by emulating
and monitoring the boot process for suspicious behaviour. During the boot process, the emulated
code will execute several interrupt 13 calls, i.e. BIOS way to access the hard disk, cf. Section
2.2. These interrupts are intercepted by the engine. Write requests are redirected to an emulated
shadow disk, as the physical disk must not be altered during emulation. Read attempts are
analysed and if they do not target a dark region area which is currently under modification,
the system fetches the content stored on the physical disk. If the read request targets a region
currently under modification, then the engine has to fetch the new content which is not on the
physical disk, yet. If the engine detects a bootkit infection, it will reject the disk write attempt.
Otherwise, the request is forwarded and persisted on the hard disk.
Boot process emulation induces a severe performance overhead, as it takes up to several seconds.
On the other hand, this event happens only in very rare cases which should make the delay
acceptable for the user. To improve the performance of several write requests triggering in
a very short time, the driver could buffer the requests and instead of evaluating every single
attempt on its own, pack them together and evaluate them all at once. Hence, the engine would

25

not fire several boot process emulations, i.e. one on every single request but collect them and
perform a single one consisting of several disk modification requests at once.

Evaluation of the Disk Write Access Driver’s Performance

To evaluate the approach, the driver component was implemented to evaluate and measure its
performance impact on the system during normal operation. The Windows driver intercepts all
disk access requests, both read and write attempts. The kernel-level driver was implemented in
C and consists of about 400 lines of code. The driver checks for every request, whether it is a
write attempt and its target is located within a dark region, i.e. checking if its target block is
between several start and end blocks.

For evaluation, a Windows XP SP3 VM having 512 MiB RAM running on a Intel Core2
Duo E6550 @ 2.30 GHz using VMware Workstation 10 was utilized. The driver was installed
in order to quantify its performance impact during normal system operation.

The performance overhead for the driver was measured by copying 5.06 GiB consisting
of 31,508 files in 4,802 directories. The evaluation was performed five times each, both with
and without the driver being installed. Furthermore, the VM was restarted after every evalua-
tion to prevent caching effects. Table 4.1 shows the evaluation results. The averaged time for
copying the data was 20:09 while the driver was installed and 19:57 without, resulting in an
average overhead of 1.0%. The experiment invoked 128,724 handled disk write requests and
140,511 read attempts by the driver on average. An idle operating system (OS without any user
interaction) generated 409 disk write attempts and 59 read requests on average in 20 minutes.
Hence, the amount of processed disk accesses by the driver not triggered by our experiment is
negligible. [41]

5.06 GiB copy time without driver 19:57
5.06 GiB copy time with driver 20:09
Performance overhead 1.0%

Handled read requests (copying 5.06 GiB) 140,511
Handled write requests (copying 5.06 GiB) 128,724
Handled read requests (idle system for 20 mins) 59
Handled write requests (idle system for 20 mins) 409

Table 4.1: Overview on the disk write access driver’s performance [41]

The performance overhead during normal system operation, i.e. when no dark region modi-
fication is triggered, is about 1.0%, which is considered an acceptable supplement.

4.3 Discussion

Of course, using components inside the OS (such as the driver and the engine) in order to protect
the system, also features some drawbacks. The biggest issue is that the malware can interfere
with the system. For example, the malware could unload or crash the driver respectively the

26

engine in order to prevent detection and install the bootkit undiscovered. Furthermore, the mal-
ware could probe the system’s presence and stop infecting the machine, which is undoubtedly
preferable since it results in an protected and uninfected machine, but malware could still do
non-bootkit-related damage to the system. Due to performance reasons the engine has to limit
the number of executed instructions in the emulator. Hence, the malware can try exhausting the
instructions counter which could lead to a system infection or a DOS (denial of service) like
attack.

Instead of fully emulating the boot process on every dark region modification, another idea
is to white-list every possible MBR, VBR and bootloader and only allow the installation or
startup of known benign ones, as already discussed earlier in this section. The drawback of this
approach is that every single MBR, VBR and bootloader must be collected or reported in order
to avoid blocking them and making the system stop working. But it would again suffer from the
DRM problem, as the manufacturer could determine which bootstrap code is allowed to run and
which one is not [36].

Anti-virus systems often utilize emulation and hence provide a contained environment for
such scanning techniques out of the box. Therefore, the technique described above (having
protection inside the OS) can be integrated quite easily in such existing host-based protection
solutions.

27

CHAPTER 5
Bootcamp

This chapter provides an overview on our detection, analysis and prevention system, called
Bootcamp, and will especially focus on dynamic bootkit analysis, Bootcamp’s architecture and
its software design, the software, technologies and programming languages used for implemen-
tation, the database model, and its user interface. Bootcamp fully automates bootkit malware
analysis and no further user interaction is required during evaluation.

5.1 Dynamic Bootkit Malware Analysis

For dynamic bootkit analysis, we define two phases: a bootkit infection phase and a bootkit

execution phase.
During bootkit infection phase, the malware sample installs the bootkit. Here, the bootkit

might even modify the original partition table to create enough space to accommodate its hid-
den storage, hence creating another dark region. Some malware samples restart the system
autonomously after infection in order to activate the bootkit. Such a behaviour might alert the
user since the system restarts without any obvious cause. Other samples wait for a manual restart
initiated by the user. In case the dropper can not carry the full payload or needs an update, it
may require Internet connectivity to successfully install the BK. After infection, the dropper of-
ten deletes itself. During infection phase, Bootcamp monitors the modified dark regions, i.e. the
installation of the initial infection vector and its hidden data and additional code. The monitoring
is implemented in QEMU on hard disk block level, i.e. every disk read and modification request
is monitored on disk block layer, e.g. a hard disk write request to block 153. The preventive
measures will also become active during the infection phase in order to prevent bootkit attacks.

After some time, the system restarts the machine to enter the bootkit execution phase. Now,
Bootcamp monitors the bootkit’s behaviour during the startup process in detail. While system
initialization, the bootkit is activated by the infected MBR, VBR or bootloader code and its ma-
licious behaviour can be observed. Also during this phase, every hard disk read and modification
request is monitored. After a certain time, Bootcamp kills the virtual machine and thereby the

29

analysis for the sample ends. The approach does not rely on any information from the OS or
other parts inside of the VM, e.g. kernel drivers. Hence, the dropper can not hide malicious
activity, such as dark region modifications inside the environment, as all surveillance takes place
in the emulated hardware itself. [40]

5.2 System Architecture & Sofware Design

System Architecture

Figure 5.1: Bootcamp architecture [40]

Figure 5.1 provides an overview on the major components of Bootcamp. Binaries are stored in
a database using either a command-line (CLI) or web-based submission system. The Bootcamp
server consists of two components, the scheduler and a watchdog. The scheduler assigns new
jobs (new submitted malware samples) to idle Bootcamp workers, while the watchdog monitors
the workers whether they have crashed. The workers start an individual virtual machine (VM)
per malware sample in order to dynamically analyse the file. For every analysis, the workers
first enter the infection phase and observe the malware’s infection techniques. The malware
sample is copied via a Ruby script running inside the VM into the virtual machine utilizing a
plain TCP socket connection. Furthermore, this script communicates with the worker in order
to confirm that the sample has been copied and executed successfully. If preventive measures
are applied, this phase also executes the prevention module. Following the system’s restart,
the now (potentially) infected VM performs the bootkit execution phase. During this phase, the
techniques to detect and analyse bootkits are executed and the corresponding results are reported
back. [40]
It is possible to host the database, server and workers on different physical machines, they just
need a communication channel, e.g. ssh. This is especially relevant for workers, as they are
by far the most resource intensive component. Hence, one can distribute workers to several

30

different physical machines. For example, it would be possible to host some parts of the system
in the cloud, e.g. utilizing Amazon’s EC2, Google Compute Engine, Microsoft Azure or any
other private cloud.

Software Design

Figure 5.2: Bootcamp software components overview; core library (orange), business logic
modules (red), user interfaces (green)

Figure 5.2 provides an overview on Bootcamp’s software design. The core service (orange)
exports basic functionality relevant for most parts of the system, e.g. get / save files from / into
the database, load or persist scan results. The business logic components (red) implement the
actual logic by combining the core library’s exposed functionality, e.g. to submit a new file,
start an analysis, store results in the database. The user interface (green) provides UI capabilities
either as command-line interface (CLI) or web-based UI.

31

Bootcamp consists of five parts: database, submission system, server, worker and adminis-
tration system. Every system follows a 3-tier architecture, structured into presentation, business
logic and persistency layer using an MVC pattern. In the following, we will have a closer look
on each of the components.
The database is the system’s central datastore. It contains both the binaries, metadata, results
and all necessary further information, e.g. scans, submissions, status information about workers.
The database model is discussed in more detail in Section 5.4.
The submission system provides upload functionality, so users can submit their files for analysis.
After submitting the sample, the system will create a new analysis job, wait for the scheduler
to assign the job and the worker to analyse the file. Currently, there is a CLI and web-based
submission system available. The web-based submission system is also capable of displaying
the analysis result to the user. Further details are presented in Section 5.5.
The server consists of the scheduler and a watchdog. The scheduler assigns new files to idle
workers, based on the job’s priority. The watchdog monitors the workers, detects crashed ones
and reschedules their incomplete scans to different workers.
The workers are responsible for analysing the submitted files. This is by far the most resource
intensive job, as they start an individual virtual machine (VM) for every malware sample in order
to dynamically analyse it. Upon completion, the worker stores the result in the database.
The administration system is responsible for managing Bootcamp. For example, it provides ca-
pabilities to query the submitted files, manage (start/stop) workers or observer their state, and
provides a statistical overview on the system (files processed per hour, errors during processing,
jobs in the scanning queue). Currently, the web-based administration system provides slightly
more capabilities, therefore a direct database access and domain model knowledge is required
for certain administration tasks via command line.

5.3 Utilized Technologies

Major parts of Bootcamp (server, worker, submission and administration system) are imple-
mented in Java 1.7. Furthermore, the Java projects utilize Maven 3.3, Spring 4.0, Hibernate 4.3
and JSF (Java Server Faces) 2.2. The virtual analysis environment is a modified QEMU 2.0
including heuristics to detect, analyse and prevent bootkit attacks which are implemented in C.
Additionally, MySQL 5.6 is used as data storage. Altogether, Bootcamp is built upon roughly
21,600 lines of code in about 300 files, utilizing 5 different programming languages.

Table 5.1 provides on overview on the used programming languages and the corresponding
lines of code. The 16,200 lines of Java code include 4,420 lines of test cases which utilize the
JUnit testing framework. The test cases are structured in 30 files and are divided into 206 indi-
vidual test cases. 90% of the test cases are unit tests, while the remaining 10% are integration
tests.
About 1,000 lines of the C code in QEMU was implemented by Andrei Bacs, a PhD candidate
at VU University Amsterdam. He implemented the disk tracking module in QEMU which is
responsible for logging every single hard disk read and modification request. This module is
used by Bootcamp to track modified dark regions and is furthermore utilized by some detection
heuristics. Further details on the disk tracking module are available in Bacs et al. [21], [22].

32

Language Lines of code Files Comment
Java 16,200 227 core, server, worker, web-app for submission and

administration system; including test cases
JSF 2,600 31 web UI for submission and administration
C 1,200 14 added / modified code in QEMU
Maven 650 6 config for testing, building and deployment of 5

Java projects
SQL 400 4 setup for DB
C Kernel driver 200 2 On-write-access kernel driver
Ruby 120 2 script executed in VM to copy binary into VM
Shell script 100 12 div. shell scripts for automation and administration
Config 130 7 text-based runtime configs for server, submission

system and workers

Sum 21,600 302

Table 5.1: Overview on used programming languages

The web-based UI has been implemented as a project in the ASE (”Advanced Software Engi-
neering”) lecture at TU Wien. About 4,000 lines of Java code and 2,200 lines of JSF for the
web-UI have been implemented by other ASE project members.

5.4 Database Model

Figure 5.3 provides an overview on the relevant database tables. Altogether there are 16 tables
but the figure focuses only on the most important ones. Furthermore, all columns have been
removed due to a clear view.

Submission contains data for every single submission, independent whether the submitted
file was malicious or benign. Sample represents the submitted files. When the same file is
submitted multiple times, the Submission table will contain multiple entries, though the Sample

table will contain only one, hence a de-duplication is performed. Malware Family contains the
names of known bootkit families. The scheduler component (cf. Section 5.2) regularly scans
the Submission table for new entries and creates Scan entries based on a configuration. The
configuration contains the operating systems which should be used for scanning, (i.e. Windows
XP and Win7) but can be easily extended. Hence, in our scenario the scheduler creates two Scan

entries (one for XP and one for Win7) for each new submission. Every Scan is processed by one
Worker. Each worker can only process suitable scans with a fitting OS, i.e. Win7 x86 workers
can only process Win7 x86 scans. After performing the scan, the worker will store the output
in the Result table. Furthermore, Interrupt Hook contains all hooked interrupts by the malware
during analysis. As every malware can hook multiple interrupts, those results are stored in a
separate table. Furthermore, there are also tables to store BLOB (binary large objects) results,
such as the captured network traffic or (in the future) the dumped malicious ISRs.

33

Figure 5.3: Overview on most important database tables (due to clarity only 7 out of 16 tables
are displayed; columns are suppressed)

5.5 User Interface

The systems provides a command-line interface (CLI) and a web-based UI. Both provide similar
capabilities, but this section will focus on the web-based one. The web UI is implemented
with JSF 2.2 and PrimeFaces 5.1. PrimeFaces is a tag library for JSF and provides further UI
components. As already mentioned, the web UI was implemented as a project in the ASE lecture
at the university, featuring myself as head of the project team. The following will provide an
overview on the public submission area to upload binaries, the corresponding scan result display
and the admin section.

Public Submission and Result Area

The system provides a public upload area where users can submit suspicious binaries to be
analysed. As currently the system is only able to examine Windows PE binaries, the submission
system verifies the file format before initiating the analysis process. Furthermore, it also checks
whether the file has already been analysed. If so, it asks the users whether they want to re-
analyse the file and wait for the results or display the results of the old analysis immediately.
The de-duplication feature also saves computing resources and time. After submission, the user
is redirected to an overview page (cf. Figure 5.4) displaying information such as the current

34

position in the scan queue, the time when the analysis will be finished and how long the analysis
will take. The analysis results are presented in form of an analysis report (cf. Section 5.5) which

Figure 5.4: Overview page after submission, including information on the current position in
the scan queue

includes, e.g. general information about the executable, a classification whether the system
proposes the binary to be malicious, the infection vector exploited, a network traffic dump and
results of the detection heuristics. The report can be downloaded as PDF or XML document.
Furthermore, it is possible to download the network traffic captured during both the infection
and the boot phase. In the future, it will be also possible to download the malicious ISRs and the
modified dark regions.

Admin Interface

The admin component provides means for managing and monitoring the whole system. It holds
functionality to administrate workers, samples, submissions, scans or results (cf. Section 5.6).
Furthermore, it offers an error log and a dashboard to get a rough overview on the system’s state.
The dashboard outlines information such as running and dead workers, unconfirmed errors, sub-
mission statistics (per month, week and day), an overview on the scan queue’s current state or
the average processing time per queue.

5.6 Application Scenarios

Application Scenarios for Bootcamp. The proposed detection heuristics can be divided into 2
different sub-types:

35

Figure 5.5: A section of the analysis report for a malware sample

Figure 5.6: Admin area for submissions

• Install-time heuristics (type 1): Those heuristics are able to detect BKs attacks at instal-

36

lation time on a running system.

• Boot-time heuristics (type 2): This kind of heuristics can detect infections during the
boot phase of a system. Hence, they are able to detect bootkits on an already infected
system.

In comparison, type 1 heuristics can only detect bootkit attacks during installation (and
on a running system), while heuristics of category 2 can also detect bootkits after infection.
Detecting bootkits is not restricted to VMs, one can also detect BKs on a physical system.
Bootcamp can take any disk as input, e.g. another VM’s disk or a physical hard disk (one wants
to investigate). For example, if one wants to determine whether computer A is infected one
could do the following: Plug A’s disk to another computer B, mount A’s disk on B and execute
the detection system on B but using A’s disk as input. Therefore one can detect whether A’s disk
is infected or not. On the other hand one can also boot a live system B on computer A. Then
mount A’s disk on B and do detection on hard disk A. Those use cases are especially interesting
in post-infection cases, forensics or in scenarios where one wants to determine whether a system
is infected. The dark region modification heuristic is a type 1 heuristic. However, all the other
heuristics (dark region access, interrupt hooking, executing address 0000h:7C00h, early boot

network traffic and decryption loop detection) are type 2 ones, hence those can be utilized to
detect an infected disk even after infection.

37

CHAPTER 6
Case Study for the TDL4 Bootkit

This section presents a sample use case including an analysis report generated by Bootcamp.
The utilized malware sample is from the infamous TDL4 malware family camouflaging as

a Java update, as indicated by the sample’s name. The sample works on both XP and Win7.
Network access was declined during the analysis. The system booted successfully after the in-
fection, i.e. the malware did not crash the system. This bootkit behaves very similar on both
operating systems, however this is not necessarily the normal case. Some samples only infect
respectively work on one OS, while others behave differently across multiple OSs.
The following part discusses the analysis report in detail. The bootkit attacks the MBR and
exploits the dark region beyond the last partition for its persistence mechanism. The execut-

ing address 0x7c00 heuristics (cf. Section 3.4) also triggers as the address 0000h:7C00h is
executed 3 times during the boot phase. Furthermore, it hooks the interrupt 0x13. While the
original ISR is located at address F000h:E3FEh, however the malicious ISR injected by the
bootkit is stored at 9BC0h:0050h. Altogether the malicious ISR is executed 3,122 times dur-
ing the boot phase.
The section Reads / Writes during Infection / Boot phase in the analysis report outlines the DRs.
White indicates the absence of reads / writes during the corresponding phase. Red sections in-
dicate disk read attempts respectively modification events during the corresponding phase. The
darker the red color, the higher is the share of DR reads / modifications during this phase, e.g.
in this analysis the DR at the disk’s end concentrates a lot of modifications during the infection
phase respectively read events during the boot phase, as this part of the disk is utilized as hidden
persistence space and is hence read and written frequently. The first light red area in the section
writes during infection phase illustrates the infection of the MBR during the bootkit attack.

The following illustration outlines the PDF version of the report. In the web UI, it is further-
more possible to download the report as XML as well as the network traffic dump during both
the infection and the boot phase.

39

Analysis report for java_update.exe

Submission details

File name java_update.exe

File size 610.8 kB (625468 bytes)

MD5 checksum a53b5100a911830130826195ebb45193

Submission date 14.09.2016 22:07:445

Overview

Machine Bootkit detected?

Windows XP Service Pack 3 (32 Bit) yes

Windows 7 Service Pack 1 (32 Bit) yes

Detailed analysis results

Windows XP

Scan information

Analysis start date 14.09.2016 22:07:512

Analysis end date 14.09.2016 22:09:512

OS name Windows XP

OS version Service Pack 3

OS hardware architecture (32 Bit)

Internet access during analysis no

Bootkit infection detected yes

Infection phase failed no

Number of attempts for infection phase 1

Timeout on VM shutdown occurred yes

Sytem boots after infection yes

Boot phase failed no

Number of attempts for boot phase 1

Results of detected heuristics

Boot phase modifications

MBR (Master Boot Record) modified yes

VBR (Volume Boot Record) modified no

Bootloader modified no

Suspicious disc accesses

Hard disk end modified yes

Sectors between partitions modified no

Time-based sequence of HDD modification during infection phase

no modifications

Time-based sequence of HDD modification during boot phase

no modifications

Reads during infection phase

Writes during infection phase

Reads during boot phase

Writes during boot phase

Execute counts for 7c00

Infection phase: 2

Boot phase: 3

Detected BIOS interrupt hooks during boot phase

Interrupt

no.

Original ISR

address

Malicous ISR

address

Execution

count

0x13 0xf000e3fe 0x9bc00050 3122

Windows 7

Scan information

Analysis start date 14.09.2016 22:07:512

Analysis end date 14.09.2016 22:10:512

OS name Windows 7

OS version Service Pack 1

OS hardware architecture (32 Bit)

Internet access during analysis no

Bootkit infection detected yes

Infection phase failed no

Number of attempts for infection phase 1

Timeout on VM shutdown occurred yes

Sytem boots after infection yes

Boot phase failed no

Number of attempts for boot phase 1

Results of detected heuristics

Boot phase modifications

MBR (Master Boot Record) modified yes

VBR (Volume Boot Record) modified no

Bootloader modified no

Suspicious disc accesses

Hard disk end modified yes

Sectors between partitions modified no

Time-based sequence of HDD modification during infection phase

no modifications

Time-based sequence of HDD modification during boot phase

no modifications

Reads during infection phase

Writes during infection phase

Reads during boot phase

Writes during boot phase

Execute counts for 7c00

Infection phase: 2

Boot phase: 3

Detected BIOS interrupt hooks during boot phase

Interrupt

no.

Original ISR

address

Malicous ISR

address

Execution

count

0x13 0xf000e3fe 0x9bc00050 3122

2016 © Bootcamp.

CHAPTER 7
Evaluation

To evaluate Bootcamp, a large-scale malware analysis has been performed. This chapter dis-
cusses the utilized malware dataset, the setup for the evaluation, and the containment measures
applied during the experiment.

This section is an extended version of my paper presented at DIMVA 2015 [40]. However, this
work contains more details and further insights gained by analysing 2.564 additional samples,
performed between February and May 2015.

7.1 Utilized Bootkit Dataset

26,378 malware samples from 29 different families were utilized to evaluate Bootcamp and gain
deeper insights into bootkits’ behaviour and their historic evolution. The malware families for
the evaluation were selected due to their increased probability installing a bootkit according
to a Kaspersky report [77] and are listed in Table 7.2. The malware samples were provided
by malware collectors, samples freely available on the Internet and an anti-virus provider. The
individual samples were selected based on the malware’s label matching one of the 29 previously
selected families. In general, all samples of a family in our dataset were analysed. If the sample
count of a malware family exceeded the analysis capacity, the samples were chosen randomly
within the set. Table 7.1 outlines the annual distribution of the malware dataset spanning a
time period of eight years. A more exhaustive overview on the analysed malware families, their
corresponding sample count and the share per family is provided in Table 7.2. [40]

Furthermore, 100 non-malicious executables were analysed in order to examine Bootcamp’s
behaviour for benign binaries. The non-malicious executables consisted of programs such as
mathematical tools, system updates, hash sum calculators and the Sysinternals tool suite [78].
The benign samples were removed from the dataset for the final malware experiment.

45

First appeared in Sample count Share per year
2006 30 0.1%
2007 26 0.1%
2008 622 2.4%
2009 1,855 7.0%
2010 3,018 11.4%
2011 6,531 24.8%
2012 7,904 30.0%
2013 2,830 10.7%
2014 3,562 13.5%

26,378 100.0%

Table 7.1: Distribution of the malware dataset per year [40]

7.2 Experimental Setup for the Evaluation

To achieve clean results for the evaluation, the guidelines for malware experiments described by
Rossow et al. in [76] were followed. Table 7.3 outlines the checklist for malware experiments
and to what extent the suggested guidelines were applied. The terms FPs, FNs, TPs stand
for false-positives, false-negatives and true-positives. Criteria which are not applicable for this
evaluation, are marked with NA.

The system was evaluated using Windows XP SP3 and Windows 7 SP1, both x86, running
inside the analysis VMs. During the evaluation, the Windows firewall and Windows UAC (User
Account Control) were disabled, since the deactivated security techniques allowed us to moni-
tor more detailed malicious behaviour as discussed in Rossow’s setup for malware experiments
in [76].
The experiment itself was conducted between September 2014 and May 2015. Therefore, two
physical systems, each running 3 analysis workers in parallel to speed up the experiments were
used. Every worker consists of a virtual machine performing the evaluation composed of the
bootkit infection phase and bootkit execution phase, as described in Section 5.1, for each sam-
ple. Internet access for every machine (and therefore the executed sample inside) is configurable.
Experiments, both allowing and prohibiting the samples to access the Internet, were performed.
In general, Internet connectivity for the samples was declined, whenever it was allowed, details
on the availability are stated next to corresponding experiment. Every XP worker was pro-
vided with 1024 MB and each Win7 worker 2048 MB of main memory. Every worker needs a
dedicated CPU, as sharing a CPU core among different workers slows the entire system tremen-
dously down.
Each sample had about 90 seconds to perform the infection. After rebooting, the systems had
65 seconds on XP respectively 110 seconds on Win7 to boot successfully. However, if the OS
did not boot within this period the system was marked as broken.
The Windows XP worker used a disk layout with MBR partitioning and a single partition. In this
case, the dark regions are located at the beginning and the end of the drive. The Win7 worker

46

Malware family Sample count Share per family
Backboot 1 0.0%

Careto 5 0.0%
Cidox 2,913 11.0%
CPD 40 0.1%

Finfish 29 0.1%
Fisp 255 1.0%
Geth 6 0.0%

GoodKit 1 0.0%
Infinaeon 1 0.0%
Korablin 30 0.1%

Lapka 106 0.4%
Mybios 51 0.2%
Nimnul 2,602 9.9%
Niwa 42 0.2%

Phanta 1012 3.8%
Pihar 452 1.7%
Plite 4,002 15.2%
Qvod 2,906 11.0%

Sinowal 3,014 11.4%
Smitnyl 302 1.1%

SST 75 0.3%
Stoned 26 0.1%
TDSS 3,025 11.5%
Trup 1,883 7.1%

Wistler 902 3.4%
Xpaj 622 2.4%
Yurn 46 0.2%

ZAccess 2,024 7.7%
Zhaba 5 0.0%

26,378 100.0%

Table 7.2: Overview of the utilized malware families, their corresponding sample count and
share per family; vertical lines are inserted for increased readability only

used a similar layout but with the additional Win7 hidden system partition. As a consequence,
there is an extra dark region in-between the two partitions. [40]

47

Criterion Satisfied Comment
Correct Datasets

Removed goodware Y performed extra experiment for goodware
Avoided overlays Y discussed in Chapter 10
Balanced families Y samples selected based on malware family label
Separated dataset NA no separated datasets utilized
Mitigated artifacts/biases Y see Section 9
Higher privileges Y techniques implemented on emulator level (QEMU)
Transparency

Interpreted FPs Y non observed during eval; cf. Chapter 3 and 9
Interpreted FNs Y may be caused by evasion techniques; cf. Chapter 3 and 9
Interpreted TPs Y discussed in Chapter 8
Listed malware families Y outlined in Table 7.2
Identified environment Y see Section 7.2
Mentioned OS Y XP SP3 and Win7 (both 32 bit); cf. Section 7.2
Described naming Y according to [77]
Described sampling Y all samples of family or randomly chosen; cf. Section 7.1;
Listed malware Y Sept. 2014 - May 2015; cf. Section 7.1
Described NAT Y using NAT and rate limited; cf. Section 7.3
Mentioned trace duration Y 90 seconds for infection, 2 minutes for reboot
Realism

Removed moot samples N older samples were explicitly focus of evaluation
Real-world FP exp. NA no real-world experiments on physical user machines
Real-world TP exp. NA no real-world experiments on physical user machines
Used many families Y utilized 29 malware families; cf. Table 7.2
Allowed Internet Y experiments with and without Internet access; cf. 7.3
Added user interaction Part. short experiment time since focus on infection
Used multiple OSs Y Win XP SP3 and Win7 (both 32 bit); cf. Section 7.2
Safety

Deployed containment Y discussed in Section 7.3

Table 7.3: Rossow’s guideline checklist for malware experiments [76]

7.3 Containment Measures taken during the Malware Experiment

The analysis was performed with and without Internet connectivity for the analysis environment
and the corresponding samples. The main experiment was conducted without Internet access,
since gaining a historic view on bootkit evolution was one of the goals and Internet access would
have allowed the samples to fetch new payloads instead of the embedded and historic one. As
outlined in Table 7.4, there is not so much difference between denying and allowing network
connectivity utilizing our sample set. During the experiments with active Internet connection, the
samples were limited in network bandwidth and behind a NAT. Table 7.4 outlines the evaluation

48

outcome for XP when denying or allowing the samples’ Internet connectivity.

XP
without
Internet

XP with
Internet

Difference
(in %)

BK like behaviour 2,464 2,945 16.3%
Bootkit detected 2,103 2,131 1.3%
Working infections 1,172 1,187 1.3%
Succ. infection rate 47.6% 40.3% 7.3%

Table 7.4: Comparing analysis results without and with Internet connectivity [40]

The term “bootkit like behaviour” is defined as samples writing to any DR, “bootkit de-

tected” are samples modifying the MBR, VBR or bootloader during infection phase (so bootkit

detected implies bootkit like behaviour but does not imply the inference), “working infections”
are bootkits satisfying bootkit detected and the OS successfully reboots after the sample’s exe-
cution, and “successful infection rate” is the share between the number of samples with bootkit

like behaviour and working infections.
On Windows XP, granting the samples to access the Internet introduces a 16.3% increase of
samples with bootkit like behaviour (writing somewhere outside of partitions). But both, the
working infections and the detected bootkits raise only by roughly 1%. Table 7.4 indicates,
there is hardly any difference in the amount of working infections allowing or prohibiting In-
ternet connectivity. As previously discussed, the rest of the evaluation focuses on the results
without Internet access as network connectivity would distort the results on the historic evolu-
tion of bootkit technology. [40]

49

CHAPTER 8
Results

This chapters presents the results for the conducted large-scale bootkit malware analysis uti-
lizing Bootcamp. Based on the large-scale analysis, it illustrates a historic perspective on the
evolution of bootkit technology and shows the performance of the proposed detection and pre-
vention techniques.

This section is an extended version of my paper presented at DIMVA 2015 [40]. However, this
work contains more details and further insights gained by analysing 2.564 additional samples,
performed between February and May 2015.

8.1 Large-Scale Bootkit Analysis

Out of 26,378 examined samples, 2,464 binaries (on XP) respectively 2,206 samples (on Win7)
indicated BK like behaviour. Table 8.1 provides an overview on the results of the samples with
BK like behaviour grouped by the operating system. XP && Win7 are the amount of binaries
working on XP and Win7. XP || Win7 defines the number of samples working on at least one
OS. The other terms such as BK like behaviour, bootkits detected, working infections, and succ.

infection rate are defined as in Section 7.3.
Overall, 2,501 binaries out of 26,378 malware samples uncovered bootkit like behaviour on

at least one operating system. Altogether, more bootkits or samples with bootkit like behaviour

are detected on Windows XP than Windows 7 (2,103 / 2,464 on XP compared to 1,852 / 2,206
on Win7). On the other, hand we detected more working bootkit infections on Win7 than on XP
(1,694 compared to 1,172). Roughly 44% of the bootkits are operating successfully on both OSs.
258 bootkits can only install themselves on Windows XP, while 15 samples work on Windows 7
exclusively. Therefore, nearly all samples working on Win7 operate on Windows XP, too. This
observation does not hold for the other direction.

Table 8.2 provides a survey on the results for each malware family utilized in the evaluation.
It includes the number of samples analysed per family (sample count), the first and last ap-

pearance of a sample within the family, the number of working infections (i.e. machines which

51

XP Win7 XP
&&

Win7

XP
||

Win7
BK like behaviour 2,464 2,206 2,192 2,501
Bootkit detected 2,103 1,852 1,831 2,104
Working infections 1,172 1,694 954 1,908
System boot fails 1,292 512 1,238 593
Succ. infection rate (in %) 47.6 76.8 43.5 76.3

Table 8.1: Overview on samples with bootkit like behaviour on different OSs

rebooted successfully after bootkit infection) and succ. infection rate (i.e. the share of successful
infections compared to all analysed samples). The survey is separated for XP and Win7.

The succ. infection rate depends on the OS and family. While some malware families ex-
clusively target Win7, such as the infamous TDSS family or Pihar, Lapka and MyBios target
Win XP only. However, the majority target both operating systems, e.g. Sinowal and Cidox.
Some malware families have quite high succ. infection rates, e.g. Pihar and TDSS for Win7
respectively Sinowal and Stoned for Windows XP. Certain families feature a very high number
of samples (e.g. Plite, Qvod and Nimnul), nevertheless resulting in a very low succ. infection

rate. This fact might be caused by several reasons. Our system might not provide the proper
environment for the bootkit’s installation (e.g. service pack, installed software). Those mal-
ware families could employ cloaking techniques as outlined in Chapter 9. On the other hand,
the bootkits may focus on certain environments only, for example targeting users of a specific
language exclusively.

Typically, bootkits have to utilize further disk space as the initial infection vector is too
small for their entire data and code and hence, they have to persist it somewhere else. Table 8.3
provides an overview on the dark region utilization used by the malware samples. End of disk

refers to disk utilization beyond the last partition, while between partitions indicates exploitation
of any space between partitions, e.g. the space between MBR and VBR. Both refers to bootkits
utilizing both locations to store data, while just inside partitions describes samples using just
disk space inside partitions to store their data. Finally, writes to DR describes samples writing to
any dark region. The hard disk sectors responsible for the boot process (MBR, VBR, BL) were
excluded in this table as every bootkit has to write there anyway. Table 8.3 outlines the data and
code storage locations for bootkits.

The majority (80.8% on average) utilizes the end of the disk as persistent data storage lo-
cation. Only a few samples split the data storage and use both locations. The rest (18.4% on
average) uses the space between partitions. We observed a trend moving away from utilizing the
dark region at the end of the disk towards exploiting the space between partitions. The utilized
dark region layout for Win7 is presented in Figure 2.5. The dark region layout for XP is very
similar, with the absence of a hidden OS partition at the disk’s end and therefore dark region 5
on XP is equivalent to dark region 6 on Win7. During our analysis, all samples wrote to dark
region 2 or 5 (beyond the last partition) on XP or to dark region 2, 5 or 6 on Win7. We exploited

52

XP Win7
Malware
fam-
ily

First ap-
pearance

Last ap-
pearance

Sample
count

Working
infec-
tions

Succ.
infec-
tion
rate

Working
infec-
tions

Succ.
infec-
tion
rate

Yurn 2006-05 2013-06 45 1 2.2% 1 2.2%
SST 2006-05 2012-10 64 0 0.0% 0 0.0%

Sinowal 2006-05 2014-12 3,023 689 22.8% 601 19.9%
Plite 2006-10 2014-12 4,024 1 0.0% 1 0.0%

Infinaeon 2007-10 2007-10 1 0 0.0% 0 0.0%
Trup 2007-12 2014-12 2,078 76 3.7% 52 2.5%

TDSS 2008-07 2014-12 3,025 0 0.0% 505 16.7%
Zhaba 2008-10 2010-05 5 0 0.0% 0 0.0%
Qvod 2009-03 2014-12 2,901 0 0.0% 0 0.0%

Stoned 2009-07 2014-02 23 4 17.4% 2 8.7%
Smitnyl 2009-08 2014-03 303 58 19.1% 68 22.4%

Xpaj 2009-10 2014-01 565 17 3.0% 18 3.2%
Niwa 2009-10 2014-12 39 8 20.5% 1 2.6%

Phanta 2010-03 2014-05 980 81 8.3% 29 3.0%
Wistler 2010-05 2014-12 814 1 0.1% 0 0.0%
Nimnul 2010-07 2014-12 2,578 0 0.0% 2 0.1%
Finfish 2010-10 2014-06 30 1 3.3% 0 0.0%

Fisp 2011-03 2014-04 251 0 0.0% 0 0.0%
ZAccess 2011-05 2014-12 2038 0 0.0% 0 0.0%
Lapka 2011-06 2014-12 102 17 16.7% 0 0.0%
Cidox 2011-07 2014-12 2,902 201 6.9% 201 6.9%

Mybios 2011-07 2014-03 48 13 27.1% 0 0.0%
Pihar 2011-08 2013-03 459 0 0.0% 211 46.0%

GoodKit 2011-11 2011-11 1 0 0.0% 0 0.0%
CPD 2012-05 2014-12 39 3 7.7% 1 2.6%
Geth 2012-06 2012-10 6 0 0.0% 0 0.0%

Korablin 2012-08 2014-12 28 0 0.0% 0 0.0%
Backboot 2013-03 2013-03 1 1 100.0% 1 100.0%

Careto 2014-02 2014-02 5 0 0.0% 0 0.0%

26,378 1,172 4.4% 1,694 6.4%

Table 8.2: Survey on results separated by malware family

this highly interesting observation for the detection and prevention techniques.
Table 8.4 provides an overview on the exploited infection vectors to obtain initial control

during the startup phase. The Master Boot Record (MBR) is, with 82.7% exploitation on aver-
age, the dominating initial infection vector, succeeded by the bootloader (BL) utilized by 17.2%

53

XP Win7
Data storage

location
Count Share Count Share Avg on

both
End of disk 979 83.5% 1,338 79.0% 80.8%
Between partitions 170 15.0% 352 20.8% 18.4%
Both 16 1.5% 4 0.2% 0.7%
Writes to DR 1,172 100.0% 1,694 100.0% 100.0%

1,172 100.0% 1,694 100.0% 100.0%

Table 8.3: Dark regions utilized as data storage (for successful infections only)

XP Win7
Infection

vector
Count Share Count Share Avg on

both
MBR 969 82.7% 1,492 88.1% 85.9%
VBR 2 0.2% 1 0.1% 0.1%
BL 201 17.2% 201 11.9% 14.0%

1,172 100.0% 1,694 100.0% 100.0%

Table 8.4: Overview on exploited infection vectors (for successful infections only)

samples averagely. In the contrary, the Volume Boot Record (VBR) is exploited by hardly any
bootkit as infection vector. There is a severe trend on the used infection vectors, moving away
from the MBR and shifting towards BL exploitation. Further details on this shift are provided in
Section 8.2.

XP Win7
Hooked
interrupt

Count Share Count Share Avg on
both

0x13 975 80.7% 1,506 88.1% 85.0%
0x15 211 17.5% 202 11.8% 14.2%
0x83 & 0x85 8 0.7% 1 0.1% 0.3%
None 14 1.2% 1 0.1% 0.5%

1,208 100.0% 1,710 100.0% 100.0%

Table 8.5: Outline of utilized targets for interrupt hooking (for successful infections only)

The exploited interrupts for hooking are endorsed in Table 8.5. As described in Section 2.2
interrupt hooking is used by bootkits to regain control of the system after executing benign code
e.g. the original MBR. Some samples hook multiple interrupts, hence the sum increased from
1,172 on XP and 1,694 on Win7 to 1,208 (XP) and 1,710 (Win7), respectively. The dominating

54

hooking target is interrupt 0x13 used by 85.0% on average followed by 0x15 exploited by
14.2% on average (for both operating systems). As discussed in Section 2.2, interrupt 0x13 is
normally used to load hard disk content into memory. Hence, it is highly convenient to determine
whether the BL loads the kernel into memory. As bootkits typically patch or inject code into the
kernel, interrupt 0x13 is the most obvious option to observe whether the kernel is loaded. On
the other hand, utilizing interrupt 0x13 results in a vast number of invocations during the boot
process, as this interrupt is normally raised several thousand times. Interrupt 0x15 is called
typically only once during the bootkit execution phase and executed before passing control to
the kernel. This fact makes it an excellent interrupt hooking target for bootkits.

Interrupt 0x83 and 0x85 were utilized by only 8 samples (Niwa) on XP and 1 on Win7,
in the time frame between 2009 and 2012. Those two interrupts are just re-directions to the
original int 0x13 respectively int 0x15 interrupt service routines. 1 Plite sample on both
operating systems and 13 Mybios samples on XP do not perform interrupt hooking at all. Those
malware families employ a slightly different infection technique. Instead of in-memory kernel
patching, those samples place a malicious explorer.exe on the system’s disk [13]. But clearly
this exploitation technique leaves infection traces on the file system. We observed this behaviour
starting in 2011 until 2014. This technique is discussed in more detail in Section 8.2.

8.2 Evolution of Bootkits

This section discusses the evolution of bootkit technology. The evolution on successful bootkit
infections rates is outlined in Table 8.6.

XP Win7
Year BK

like be-
haviour

Working
infec-
tions

Succ.
infec-
tions

BK
like be-
haviour

Working
infec-
tions

Succ.
infec-
tions

2008 7 7 100.0% 0 0 -
2009 473 461 97.5% 465 391 84.1%
2010 430 194 45.1% 388 222 57.2%
2011 932 131 14.1% 815 593 72.8%
2012 326 131 40.2% 283 246 86.9%
2013 50 38 76.0% 38 28 73.7%
2014 246 210 85.4% 217 214 98.6%

2,464 1,172 2,206 1,647

Table 8.6: Evolution on successful infection rates

While the successful infection rate started quite high in 2008 and 2009 (between 100.0% and
84.1%) it decreased tremendously within the next years and hit the absolute low-point with a rate
of 14.1% (XP) and 57.2% (Win7). The successful infection rate started to raise again in 2012
in order to peak 2 years later in a local maximum, resulting in rates of 85.4% on XP and 98.6%

55

on Win7. As Windows 7 was released at the end 2009, there was not working bootkit infection
monitored before that year. The successful infection rate for XP was quite low between 2010 to
2012, which might point out a strong focus on Win7 and Win8 (which has not been evaluated
in this work) prior to maintain operability on the older XP. Though we can not explain the
high infection rates in the early days the remaining trend indicates an obvious improvement and
increase in professionalism in the underground malware industry for bootkits.

Figure 8.1 provides an overview on the evolution of exploited initial infection vectors.

Figure 8.1: Outline on the evolution of infection vectors

The MBR was the only infection vector utilized between 2008 and 2011. Some samples
exploited the VBR as infection vector (0.4% / 2.6%) in 2012. Starting with the following year,
the BL infections became more and more popular (0.4% / 5.3%). More than 90% of the BKs
utilized the BL in 2014, while only less than 10% exploited the MBR. In 2013, the source
code of the Carberp botnet was leaked which is likely the explanation on the explosion of BL
infections [52]. Additionally, the leak contained the source code of the Cidox bootkit which is
utilized by Carberp [77]. Regrettably, the Cidox bootkit has become the standard template for
bootkits, similar to Zeus after its infamous leak in 2011 [34]. After the Zeus leak in 2011, a
massive amount of mutations spread across the Internet resulting in several highly sophisticated,
and still state-of-the-art, banking trojans such as SpyEye [79], Ice IX [32], Citadel [20] or Zeus

56

P2P variants like ZeroAccess and Kelihos [74]. Similar things are happening with Cidox. The
evolution peaked in Zberp - a mutation between Zeus and Carberp especially applying the Cidox

bootkit component to Zeus which was discovered in June 2014 [11].

 0

 20

 40

 60

 80

 100

2008 2009 2010 2011 2012 2013 2014

p
e
rc

e
n
t

MBR
VBR

Bootloader

end of disk
between partitions

end of disk and between partitions

Figure 8.2: Outline on the evolution of dark region exploitation [40]

The utilization of dark regions (DRs) throughout the years is outlined in Figure 8.2. In
2008, bootkits mostly used the MBR and end of disk regions to store their code / data. Initially,
bootkits focused on utilizing the space beyond the last partition. However, starting with 2010,
more and more bootkits shifted towards utilizing the space between partitions. Which resulted
in similar DR exploitation behaviour between space at the end of the disk and between partitions
in 2014.

 0

 20

 40

 60

 80

 100

2008 2009 2010 2011 2012 2013 2014

p
e

rc
e

n
t

int 0x13 int 0x15 int 0x83 int 0x85 none

Figure 8.3: Historical transformation of interrupt hooking [40]

Figure 8.3 provides an overview on the historical transformation of interrupt hooking. The
first observed working samples exploit interrupt 0x13 in 2008, while in 2009 hooking the inter-
rupts 0x13, 0x15, 0x83 and 0x85 has been started by Niwa . The interrupts 0x83 and 0x85
are a redirection to the interrupt service routines for int 0x13 and int 0x15, and hence
calling them is just an obfuscation technique. During the experiment, the Niwa family were the
only samples exploiting interrupt 0x83 and 0x85. After 2012, no Niwa sample was detected
anymore. In general, our analysis shows a clear shift towards exploiting interrupt int 0x15

instead of int int 0x13. The previously discussed Carberp and Cidox source code leak [52]

57

might be a very good reason for this observation, as this bootkit utilizes interrupt 0x15. Hence,
interrupt 0x15 will keep the dominant utilized hook.

In 2011, the Mybios family introduced an interesting attack strategy. They did not use in-
terrupt hooking to regain control after the kernel resides in memory to patch it. Furthermore,
Mybios did not perform any in-memory kernel patching either, but instead they replaced the
original explorer.exe with a malicious one on disk during the startup phase. In 2014, this strat-
egy was also utilized by Plite. Although this is a very interesting technique, it did not establish
itself in the underground bootkit economy. This might be caused by the fact that this technique
leaves potential suspicious traces within the file system.

The detailed results for the evolution (corresponding to Figures 8.1, 8.2 and 8.3) are outlined
in the Tables 8.7, 8.8, 8.9.

Year MBR VBR BL
2008 100.0% 0.0% 0.0%
2009 100.0% 0.0% 0.0%
2010 100.0% 0.0% 0.0%
2011 100.0% 0.0% 0.0%
2012 98.9% 0.4% 0.4%
2013 92.1% 2.6% 5.3%
2014 9.5% 0.0% 90.5%

Table 8.7: Overview on detailed historic evolution of the initial infection vectors

Year End
of

disk

Between
parti-
tions

Both

2008 0.0% 0.0% 100.0%
2009 97.8% 1.1% 1.1%
2010 93.1% 6.4% 0.4%
2011 89.9% 9.9% 0.2%
2012 70.5% 28.8% 0.3%
2013 70.0% 30.0% 0.0%
2014 50.8% 49.0% 0.3%

Table 8.8: Historic perspective on the data storage utilization

8.3 Performance of Proposed Bootkit Detection Techniques

This subsection discusses the results for the bootkit detection techniques. The performance of
those is presented in Table 8.10. As a short reminder, the dark region read heuristic triggers

58

Year 0x13 0x15 0x83 0x85 None
2008 100.0% 0.0% 0.0% 0.0% 0.0%
2009 99.3% 0.2% 0.2% 0.2% 0.0%
2010 99.1% 0.9% 0.0% 0.0% 0.0%
2011 97.7% 0.5% 0.5% 0.5% 0.9%
2012 94.8% 1.7% 1.4% 1.4% 0.7%
2013 87.5% 5.0% 0.0% 0.0% 7.5%
2014 11.9% 86.8% 0.0% 0.0% 1.4%

Table 8.9: Evolution of interrupt hook exploitation

whenever a disk sector outside a partition (except the MBR as this one has to be read during a
benign boot process, too) is read. This detection heuristics caught all 1,175 respectively 1,694
bootkit samples on both operating systems. This behaviour also correlates with the observa-
tion highlighted in Table 8.3, indicating that every bootkit utilizes some space in dark regions.
The interrupt hook technique performed also very well as it triggered for 99.8% of the samples
on Win7 (1,691) and 98.7% on XP (1,157). This heuristic didn’t catch samples which do not
perform interrupt hooking but infected files inside the file system instead (cf. Niwa malware
family description in Section 8.2). The reuse existing code technique caught 978 samples on
XP (83.4%) and 1,501 on Win7 (88.6%), resulting in an overall average success rate of 86.0%.
This technique missed the samples infecting the BL stage as those do not execute the malicious
MBR / VBR followed by the benign one and therefore executing the address 0000h:7C00h
just twice (like benign boot processes also do), instead of three times. In addition, 100 be-
nign samples (hashing programs, mathematical calculators and Windows utility programs) were
analysed. Furthermore, the system was monitored while one hour of typical office usage (web
browsing, text processing,...) for both OSs in order to evaluate the detection heuristics during
normal operation. During those experiments, no false-positives were monitored, also owed to
the fact that dark region modifications are a highly unlikely event for benign samples. Only
some programs may write outside partitions, for example tools to correct errors within the MBR
/ VBR / BL, e.g. fixmbr.exe or re-partitioning a file system with gparted. [40]

Detection heuristic XP XP (%) Win7 Win7 (%) Avg
Dark region reads 1,172 100.0% 1,694 100.0% 100.0%

Interrupt hooks 1,157 98.7% 1,691 99.8% 99.3%

Executing address 0000h:7C00h 978 83.4% 1,501 88.6% 86.0%
Dark region writes 1,175 100.0% 1,694 100.0% 100.0%

(during bootkit infection phase)

Table 8.10: Overview on performance of proposed detection techniques

59

8.4 Performance for the Bootkit Prevention Mechanism

Finally, Bootcamp’s preventive technique, as described in Section 4, were applied and evaluated.
For this evaluation, all 2,501 samples having BK like behaviour (writes outside partitions) dur-
ing analysis on either XP or Win7 were utilized. The BK infection prevention technique was
activated and the whole sample set was re-scanned. While bootkit infection phase the prevention
system prohibited samples from modifying any space outside partitions and hence interrupting
the bootkit’s initial infection and storing their data. After reboot, the OS entered the bootkit

execution phase. During this phase the system monitored the OS’s boot behaviour by applying
the detection heuristics in order to determine whether a successful infection occurred despite the
prevention measures being active.

In 3.0% of the cases on XP and 7.2% on Win7 the system did not boot after executing the
malware anymore. This might be caused by destroying essential parts located inside the OS’s
file system by the malware. For the successful booting systems, the detection heuristics were
applied during the operating system’s boot phase. Thereby no signs of infection were detected
anymore, i.e. for all successful booting systems (on both OSs) none of the detection heuristics
triggered. Hence, according to the proposed detection heuristics, the preventive mechanism
stopped all 2,501 bootkit infection attempts on XP and Win7. [40]

60

CHAPTER 9
Discussion

Naturally, the presented approach comes with some general limitations and evasion techniques
for particular components which are presented in this chapter.

9.1 General Limitations

As already discussed, the presented approach does not fully support UEFI (Unified Extensible
Firmware Interface). It is applicable for systems utilizing UEFI for the bootkit infection phase,
using the heuristic for dark region tracking. In general, UEFI severely differs from BIOS/MBR
based startup process. Hence, the bootkit execution phase heuristics may not be effective and
this scenario was not evaluated. As discussed in Chapter 7, the presented approach was only
evaluated with MBR/VBR and BL-based bootkits, which are, however, the most widely spread
bootkit types in the wild. Bootkits could try to evade the presented system by attacking the BIOS
and trying to flash a malicious one into the system and thereby not attacking any boot process
relevant sectors.

The current implementation does not support GPT (GUID Partition Table) yet, as discussed
in Section 2.3. However, the concept of GPT is very similar to MBR partition tables, hence it
can be implemented but takes additional effort and is therefore considered as future work.

The malware could also refrain from attacking disk sectors relevant for the startup process
and thereby only stay inside of the file system. For example, malware could replace relevant
system components by malicious ones directly on the file system, as discussed in Section 8.2.
However, exploiting this approach leaves suspicious tracks inside the file system.

9.2 Evasion Techniques for Dynamic Analysis

Dynamic analysis suffers from several major limitations inherent to all dynamic analysis sys-
tems. For example, malware could utilize approaches to detect system emulators, e.g. QEMU

61

which is used in Bootcamp, and could decline malicious behaviour [70].
Malware could exploit vulnerabilities in QEMU to gain crucial information or even take

over the host system [10]. Attackers could also try to fingerprint the analysis environment, for
example MAC / IP addresses, deployed hard-/software combinations, user names, or Windows
serial keys. So far, Bootcamp does not implement any cloaking techniques.

Furthermore, malware can execute stalling code and wait before calling malicious function-
ality. Kolbitsch et al. [51] introduced techniques to detect stalling code and mitigation tech-
niques, however it can not handle all types of this awkward behaviour. For example, some
encrypted malware samples do not contain decryption keys but brute force themselves before
execution. So far, it is an open research problem to reliably detect those kinds of techniques
having limited resource and time constraints. Our implementation does not include any tech-
niques to circumvent or detect those kinds of functionality and hence such malware can trick the
presented approach.

9.3 Misdetection and Evading the Detection Heuristics

The following discusses the limitations of the presented detection heuristics.

Dark region modification heuristic

False positives occur in case of legitimate DR updates, for instance during a complete system re-
installation, a major system upgrade or partitioning. Modern, sophisticated bootkits need more
space for their code. Therefore, they utilize further and bigger DRs. For example, they use the
inter-partition gaps and the gap at the end of the disk to store additional content, e.g. malware
config, DLLs to inject. These dark regions can also be utilized by other kind of malware running
within the target system and using it as hidden storage. This might trigger a false positive for
this heuristic (although the false positive would still point to a real infection), as this behaviour
also triggers the dark region modification heuristic.

Dark region read heuristic

False positives can for example be caused by bugs in the OS file system driver reading beyond
the limits of the file system or by a forensic application inspecting parts of the drive outside
the file system. In our solution both, the dark region modification and dark region read access
technique have been implemented in QEMU’s disk access system.

Bootkits could also store their data in unsuspicious hard disk areas inside a partition. How-
ever, this would inducing increased risk, as the BK could get accidentally overwritten by the OS,
as is is not aware of the disk sectors utilized by the bootkit.

Interrupt hook heuristic

The interrupt hooking technique does not detect interrupt detouring attacks (cf. Section 2.2). An
interrupt detouring attack does not modify the ISR’s address in the IVT, but the ISR’s code itself,
e.g. it overwrites the first instruction of the ISR with an unconditional jump to the malicious one.

62

To detect interrupt detouring attacks, the same approach as for interrupt hooking detection can
be applied, i.e. dumping either the whole memory area of the ISR code or just dumping the
first e.g. 20 bytes of every ISR. Dumping the first couple of bytes for every ISR is sufficient,
since detours are typically installed within the first few instructions, as developing malicious
ISR functions which are executed in the middle of another ISR are highly complex. Finally, the
system could periodically check whether the ISR code has been modified by comparing it to the
original one. Currently, detouring attack detection is not implemented in Bootcamp, but could
be done without problems investing additional effort.

Furthermore, bootkits may not exploit interrupt hooking at all, as discussed in Section 8.2.
Those infections lack the capability to regain control after calling benign bootstrap code and
therefore rely on a different attacker model. Hence, they rely on modifying files within the file
system instead of injecting code in-memory / patching. However, replacing files inside the file
system leaves suspicious traces.

Executing address 0000h:7C00h heuristic

False positives may be triggered by major operating system upgrades which change the way
bootstrapping is done, e.g. by adding more functionality to the boot phase and thus using the
same techniques as bootkits but for benign purposes. Additionally, the bootkit could patch the
original MBR or VBR in memory or on disk to utilize a different base address than 0000h:7C00h.
Thereby, also infected systems would execute this specific address only twice.

Bootkits infecting the BL stage can circumvent this heuristic, as already discussed in Section
8.2 . Those samples do not execute a malicious MBR / VBR, followed by the benign one and
therefore execute the address 0000h:7C00h just twice. Moreover an attacker might patch the
original MBR / VBR to be loaded and executed to a different memory address or refrain from
reusing existing code.

9.4 Evasion Techniques for Attack Prevention on the OS Level

Raffetseder et al. [70] present several techniques in order to detect system emulators as utilized
by the bootkit prevention technique on the OS level. Either the emulator is detected by the
malware before it infects the target host, or a bootkit detects the emulator during the boot phase
while being emulated. The following enumeration discusses techniques on how to achieve the
evasion:

• Engine / driver probing: Before installing the bootkit, the sample could probe whether
the proposed system components are present e.g. by detecting relevant files using a full
disk search or by detecting the presence of the on-write-access driver.

• Remove on-write-access driver: Bootkits have to infect the start-up relevant disk sectors
in order to interfere with the boot process. Assuming sufficient permissions, the malware
could try to remove the on-write-access driver in order to circumvent the triggering con-
dition for the detection engine. Furthermore, the attacker has to reboot the system which
might potentially alert the user.

63

Furthermore, the bootloader could try to detect whether it is running in an emulated environ-
ment. However, it is important to note that the system’s capabilities during the startup phase are
restricted, e.g. in the x86 real mode. Hence, this would significantly raise the bar for implement-
ing the following techniques.

• System probing: The bootkit could detect the emulator’s presence by probing the envi-
ronment, for example using the system’s CPU, motherboard, network card.

• Stalling code: The emulator has to restrict the amount of spent time and resources to
detect an infection. Hence, bootkits could utilize stalling code or exceed the number of
instructions executed in the emulator.

• Evade detection heuristics: The bootkit could try to circumvent the detection heuristics
to stay beyond the radar, as discussed in Section 9.3.

9.5 Potential Future Bootkit Evolution

In the future, bootkits might utilize the following trends:

• Shift towards BL as initial infection vector: Following the results presented in Section
8.2, the bootloader will likely become the major initial infection vector in the future. This
is due to the fact that BL infections offer more space and furthermore is also more stealthy
compared to the MBR and VBR. This trend is furthermore amplified by the Carberp /
Cidox bootkit source code leak in 2013 [52].

• Diversification of DR exploitation: Figure 8.2 shows a trend towards diversifying the
utilization of DRs within the last years. This behaviour might expand into more stable
sections within the file system (e.g. Windows alternate data streams, file metadata or
slack space). Thus bootkits could create a hybrid (in and outside of file system) storage.
This is exemplified by Mybios which avoids using interrupt hooking and instead replaces
a core OS file located in the file system. However, utilizing those techniques introduces
more complexity and increases the bootkits risk of being accidentally overwritten by the
OS, as it is not aware of the disk areas utilized by the bootkit. In addition, the BK must
be able to understand the file system, be aware of the location of every exploited file and
its slack space. Furthermore, it would have to observer update, copy, delete and move
operations on those files to keep the data consistent.

• BIOS/UEFI based Bootkits: In 2011, the first BIOS based bootkit was detected in the
wild [39], but hardly spotted since then because they are highly complex to implement
and have to consider BIOS vendor and version specific details for their attack to succeed.
Though a few UEFI PoC bootkits exist, to the best of our knowledge none has been spotted
in the wild ever. Nevertheless, this does not mean BIOS/UEFI bootkits will not become
popular one day.

64

• VM based Bootkits: Future bootkits may be able to utilize advanced CPU features, such
as recent virtualization instructions. Exploiting those features would enable them aim-
ing towards VM based BKs, as e.g. SubVirt proposed [48]. Modern BKs already inject
kernel-level drivers to prevent the hidden DRs from being detected by AVs or other detec-
tion systems hosted inside the infected system. VM based BKs would be the next conse-
quent step, by moving the infected system into a separate VM and thereby leveraging the
concealment to a new level, e.g. the bootkit would run in x86 level 0 (i.e. kernel-level),
while the actual victim OS kernel is moved to ring 1 and thereby having by design less
privileges than the malware. Such techniques would not rely on injecting code into the
victim’s system any more, hence leaving the attacked system un-tampered and making
detection from inside the infected system impossible by design.

65

CHAPTER 10
Related Work

The related work section is divided into dynamic malware analysis, bootkits, large-scale mal-
ware analysis and preventing malware infections.

10.1 Dynamic Malware Analysis

There are several contributions dealing with automatic malware analysis like [89] and [67], their
detection [50] or their distribution [62], [58], but only a few deal with bootkit techniques, such
as [54]. Sandboxes are instrumented virtual execution environments which execute malware
samples in a contained environment. Typical malware analysis sandboxes such as e.g. Anubis
[27] or CWSandbox [89] do not deploy any bootkit detection technology. Idika et al. [45] show
a survey on malware detection techniques, while [35] gives an overview on automated dynamic
malware analysis. However, both papers don’t deal with bootkits in particular. Virtual machine
introspection (VMI) is a widely deployed technology nowadays [64]. VMI is not only used in
security research but also in other research and industry areas [64].

Most dynamic malware analysis contributions focus on capturing user-mode Windows API
as Anubis [27] or CWSandbox [89] do. Some approaches like K-Tracer [53], dAnubis [65]
or [88] target kernel level infections, whereas Kirat et al. [49] and Lindorfer et al. [55] target
cloaking malware trying to evade analysis systems.

Other papers address on analysing network traffic produced by malware as e.g. Sandnet [75]
does. None of them target bootkits or analyse them in detail.

10.2 Bootkits

In [54], the authors provide an overview on offensive techniques used by bootkits and perform a
classification on BKs according to the infected boot process stage.

67

Rodionov et al. [37] outline an overview on bootkit evolution and classify them based upon
their infection vector (MBR / VBR / BL). This overview focuses on the first occurrence of certain
characteristics, e.g. first MBR / BL infection, and is not build upon essential bootkit techniques
as our evolutionary survey is. [38] and [54] provide insights into bootkit attack techniques such
as BIOS-, MBR-, NTLDR- or other technology based bootkit infection vectors. Grill et al. [41]
proposed bootkit detection heuristics, but their work considers interrupt 0x13 hooks only and
monitors just loading content from the hard disk’s end during boot phase. Both heuristics are
bypassed by more and more recent bootkits as shown in Section 8.1. On the contrary, both newly
proposed hook detection and dark region access approaches are more general and feature better
detection characteristics. Furthermore, they performed just a minor proof of concept evaluation
compared to the large scale evaluation. [42] utilized a jump counter to address 0000h:7C00h
during the system startup phase as a heuristic in order to detect suspicious behaviour but did not
evaluate his approach.

Icelord, the first BIOS-based proof-of-concept bootkit, was published in 2007 [1]. Such
bootkits try to flash a malicious BIOS into the system and gain control even before the MBR
is executed. In 2009 and 2013, further work has been presented by Wojtczuk et al. [69] and
Schlaikjer et al. [73] in this area. In 2011, such a BIOS based bootkit has been first detected in
the wild [39], but since then such kinds are hardly spotted in the wild as they are very complex
to implement. For example, they have to respect BIOS vendor and version specific details for
their attack.

GrayFish, a highly sophisticated malware recently used by the infamous Equation group,
was analysed by Kaspersky Labs [47]. It utilizes VBR bootkit infection in order to hijack the
first kernel driver’s loading. Afterward it loads further components from the registry.

However, none of them presented a historic, large-scale and detailed bootkit analysis or
large-scale evaluation on their approaches, as this work does.

10.3 Large-Scale Malware Analysis

Large-scale malware analysis have been conducted by various papers for varying objectives so
far. The majority target scanning and analysing large malware sample sets, such as [89], [71],
[33], [24], or [68] do. Others focus on the issues of scaling large malware analysis respectively
improving the efficiency of dynamic malware analysis, e.g. [25], [44], [26]. However, none of
them target bootkit technology related problems.

10.4 Preventing Malware Infections

Several papers have been published in the area of infection prevention respectively recovery.

Zhu et al. proposed an approach to analyse hard disk images after malware attacks [90]. [41]
outlined a system to prevent bootkit infections utilizing an anti-virus system which is based on
components inside the system to protect. Therefore, malware may disable the bootkit protection
prior performing the attack. This drawbacks does not apply to the infection prevention approach
proposed in this work.

68

Bacs et al. [22] utilized low-level hard disk inspection in order to recover from intrusions
which also includes bootkit attacks.

Riley et al. exploit shadow memory and light-weight virtual machine monitor (VMM) in
order to stop unauthorized kernel level code execution. This approach could stop kernel level
code injected by bootkits, but not their attacks in general [72].

Weiqing et al. proposed an isolated and secure process execution environment for Linux.
Hard disk I/O is redirected through a kernel module proxy which is creating a shadow drive to
store the disk I/O separated by process. Later, the user can commit the shadowed data to the real
disk. Though, this approach can prevent bootkit infections it targets experts and would be hard
to utilize for less IT affine users [80].

69

CHAPTER 11
Future Work & Conclusion

This section outlines the future development directions and finally concludes the work.

11.1 Future Work

The following future improvements are planned:

• Implement early boot phase network traffic detection:

One future development strategy is implementing the early boot phase network traffic
detection, as described in Section 3.5. Implementing this heuristic takes a rather high
effort. For example, to get a serious network traffic anomaly detection heuristics, one
would have to apply machine learning (ML) to a large amount of benign and malicious
network traffic to train a ML model.

• Implement loop decryption detection heuristic:

As described in Section 3.6, implementing and fine-tuning the loop decryption detection
is another future task. To improve the techniques’ performance, one could search for self-
modifying code in general by looking for memory areas which are read, modified and
later on executed. To do so, taint analysis [66] could be applied. Another approach is to
detect loops and entropy changes, i.e. loops and their corresponding buffers having high
entropy (encrypted content) on loop entry and low entropy on loop exit (decrypted mem-
ory). This approach is also applied by Lutz et al. [56] to automatically decrypt network
traffic. However, both approaches are rather complex to implement and would go beyond
the scope of this work.

• Implement interrupt detouring detection technique:

The interrupt hooking technique does not detect interrupt detouring attacks (cf. Section
2.2). An interrupt detouring attack does not modify the ISR’s address in the IVT, but the
ISR’s code itself, e.g. it overwrites the first instruction of the ISR with an unconditional

71

jump to the malicious one. To detect interrupt detouring attacks, the same approach as for
interrupt hooking detection can be applied, i.e. dumping either the whole memory area of
the ISR code or just dumping the first e.g. 20 bytes of every ISR. Dumping the first couple
of bytes for every ISR is sufficient, since detours are typically installed within the first
few instructions, as developing malicious ISR functions which are executed in the middle
of another ISR are highly complex. Finally, the system could periodically check whether
the ISR code has been modified by comparing it to the original one. Currently, detouring
attack detection is not implemented in Bootcamp, but could be done without problems
investing additional effort.

• GPT support:

So far GPT (GUID Partition Table) are not supported, as discussed in Section 2.3. How-
ever, the concept of GPT is very similar to MBR partition tables, hence the additional
implementation effort is fungible.

• Dumping malicious injected ISR code:

The current implementation does not dump the malicious ISR, as function boundary
recognition is highly challenging and still a partially open research topic, as shown by
Bao et al. [23]. However, it would be still possible to dump the first several hundred bytes
of every malicious ISR, which would still result in providing highly relevant information,
e.g. for clustering based on the injected ISR.

• Dumping the modified dark regions:

At the moment, the modified dark regions are not extracted, although this feature would
be very helpful. The modified DRs would not only contain the code for the malicious
infection vector (MBR, VBR, BL) but also the (perhaps even un-encrypted) hidden data
storage. All relevant information are available anyway, as all the writes to dark regions
are logged. Therefore, this feature could be implemented with arguable effort and time.
This information would be very helpful for both a human analyst but also for automated
clustering of the bootkits.

11.2 Conclusion

This work presents a large-scale bootkit analysis and proposes detection and prevention tech-
niques based on this analysis.

The large scale malware analysis is based on a dataset composed of more than 26k different
malware samples on XP and Win7, spanning a timer period over 8 years. The presented results
outline the evolution of bootkit technology since 2006 and show a major shift from exploiting
the MBR as initial infection vector to utilizing the bootloader instead. Furthermore, modern
bootkits are hiding their presence by exploiting the space between partitions, instead of only
utilizing the area beyond the last partition.

The presented detection approach relies on behaviour anomaly identification during the sys-
tem’s boot process. Therefore, hard disk write attempts during the infection phase and disk ac-
cesses to dark regions, interrupt hooks and the execution count for the memory address 0000h:

72

7C00h during the boot process are monitored in order to determine whether a bootkit infection
occurred. The two proposed prevention approaches stop the samples by (i) preventing them from
writing outside of partitions and therefore hindering the bootkit infecting the system and storing
its data there or (ii) by observing dark region disk modifications and emulating their impact on
the system’s boot process.

The works shows that the proposed heuristics detected all bootkit infections. In addition,
the infection prevention techniques was evaluated by executing malware samples with applied
protection system. Afterwards we evaluated whether one of the proposed detection techniques
identified a bootkit attack. As a result, it was shown that the prevention solution was successful
stopping all bootkit infections.

73

Bibliography

[1] BIOS Rootkit: Welcome home, my Lord! http://blog.csdn.net/icelord/

article/details/1604884, 2007, last accessed: 2016/08/30.

[2] Win2k Master Boot Record (MBR) revealed! http://thestarman.narod.ru/

asm/mbr/Win2kmbr.htm, 2010, last accessed: 2016/08/30.

[3] Backdoor.pihar, 2011, last accessed: 2016/08/30. http://www.

symantec.com/security_response/writeup.jsp?docid=

2011-120817-1417-99&tabid=2.

[4] Advanced Evasion Techniques by Win32/Gapz. http://www.welivesecurity.

com/wp-content/uploads/2013/05/CARO_2013.pdf, 2013, last accessed:
2016/08/30.

[5] krab.rar - leaked Carberp malware source code. https://mega.co.nz/#!

0YsXWBRD!CMqd9nrm1d0XABKlifI9vmxprpQ6RnfsdhBHeKrDXao, 2013, last
accessed: 2016/08/30.

[6] Finfisher, 2014, last accessed: 2016/08/30. http://www.finfisher.com/

FinFisher/products_and_services.html.

[7] Finfisher malware dropper analysis, 2014, last accessed: 2016/08/30. https://www.

codeandsec.com/FinFisher-Malware-Dropper-Analysis.

[8] GUID Partition Table. https://wiki.archlinux.org/index.php/GUID_

Partition_Table, 2014, last accessed: 2016/08/30.

[9] Hacking team - remote control system, 2014, last accessed: 2016/08/30. http://www.
hackingteam.it.

[10] Qemu vga emulator bug. http://www.securitytracker.com/id/1030817,
2014, last accessed: 2016/08/30.

[11] Zberp – the baby super-trojan. http://www.cyactive.com/

zberp-baby-super-trojan/, 2014, last accessed: 2016/08/30.

75

http://blog.csdn.net/icelord/article/details/1604884
http://blog.csdn.net/icelord/article/details/1604884
http://thestarman.narod.ru/asm/mbr/Win2kmbr.htm
http://thestarman.narod.ru/asm/mbr/Win2kmbr.htm
http://www.symantec.com/security_response/writeup.jsp?docid=2011-120817-1417-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-120817-1417-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-120817-1417-99&tabid=2
http://www.welivesecurity.com/wp-content/uploads/2013/05/CARO_2013.pdf
http://www.welivesecurity.com/wp-content/uploads/2013/05/CARO_2013.pdf
https://mega.co.nz/#!0YsXWBRD!CMqd9nrm1d0XABKlifI9vmxprpQ6RnfsdhBHeKrDXao
https://mega.co.nz/#!0YsXWBRD!CMqd9nrm1d0XABKlifI9vmxprpQ6RnfsdhBHeKrDXao
http://www.finfisher.com/FinFisher/products_and_services.html
http://www.finfisher.com/FinFisher/products_and_services.html
https://www.codeandsec.com/FinFisher-Malware-Dropper-Analysis
https://www.codeandsec.com/FinFisher-Malware-Dropper-Analysis
https://wiki.archlinux.org/index.php/GUID_Partition_Table
https://wiki.archlinux.org/index.php/GUID_Partition_Table
http://www.hackingteam.it
http://www.hackingteam.it
http://www.securitytracker.com/id/1030817
http://www.cyactive.com/zberp-baby-super-trojan/
http://www.cyactive.com/zberp-baby-super-trojan/

[12] Bootkit Threats: In Depth Reverse Engineering & Defense. http://www.

welivesecurity.com/wp-content/media_files/REcon2012.pdf,
last accessed: 2016/08/30.

[13] Plite bootkit. http://labs.bitdefender.com/2012/05/

plite-rootkit-spies-on-gamers/, last accessed: 2016/08/30.

[14] System Initialization (x86). http://wiki.osdev.org/System_

Initialization_%28x86%29, last accessed: 2016/08/30.

[15] TDSS. TDL-4. https://securelist.com/analysis/publications/

36563/xpaj-reversing-a-windows-x64-bootkit, last accessed:
2016/08/30.

[16] x86 protected mode. https://en.wikibooks.org/wiki/X86_Assembly/

Protected_Mode, last accessed: 2016/08/30.

[17] x86 real mode. https://www.princeton.edu/~achaney/tmve/wiki100k/
docs/Real_mode.html, last accessed: 2016/08/30.

[18] x86 real mode basics. http://www.rcollins.org/articles/pmbasics/

tspec_a1_doc.html, last accessed: 2016/08/30.

[19] XPAJ: Reversing a Windows x64 Bootkit. https://securelist.com/analysis/
publications/36563/xpaj-reversing-a-windows-x64-bootkit, last
accessed: 2016/08/30.

[20] Sood Aditya and Bansal Rohit. Prosecting the citadel botnet – revealing the dominance of
the zeus descendent. Virus Bulletin, 2014.

[21] Andrei Bacs, Cristiano Giuffrida, Bernhard Grill, and Herbert Bos. Slick: an intrusion
detection system for virtualized storage devices. In Proceedings of the 31st Annual ACM

Symposium on Applied Computing, 2016.

[22] Andrei Bacs, Remco Vermeulen, Asia Slowinska, and Herbert Bos. System-level support
for intrusion recovery. In Detection of Intrusions and Malware, and Vulnerability Assess-

ment (DIMVA), 2012.

[23] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley.
Byteweight: Learning to recognize functions in binary code. In 23rd USENIX Security

Symposium, 2014.

[24] Ulrich Bayer, Imam Habibi, Davide Balzarotti, Engin Kirda, and Christopher Kruegel. A
view on current malware behaviors. In USENIX workshop on large-scale exploits and

emergent threats (LEET), 2009.

[25] Ulrich Bayer, Engin Kirda, and Christopher Kruegel. Improving the efficiency of dynamic
malware analysis. In Proceedings of the 2010 ACM Symposium on Applied Computing,
2010.

76

http://www.welivesecurity.com/wp-content/media_files/REcon2012.pdf
http://www.welivesecurity.com/wp-content/media_files/REcon2012.pdf
http://labs.bitdefender.com/2012/05/plite-rootkit-spies-on-gamers/
http://labs.bitdefender.com/2012/05/plite-rootkit-spies-on-gamers/
http://wiki.osdev.org/System_Initialization_%28x86%29
http://wiki.osdev.org/System_Initialization_%28x86%29
https://securelist.com/analysis/publications/36563/xpaj-reversing-a-windows-x64-bootkit
https://securelist.com/analysis/publications/36563/xpaj-reversing-a-windows-x64-bootkit
https://en.wikibooks.org/wiki/X86_Assembly/Protected_Mode
https://en.wikibooks.org/wiki/X86_Assembly/Protected_Mode
https://www.princeton.edu/~achaney/tmve/wiki100k/docs/Real_mode.html
https://www.princeton.edu/~achaney/tmve/wiki100k/docs/Real_mode.html
http://www.rcollins.org/articles/pmbasics/tspec_a1_doc.html
http://www.rcollins.org/articles/pmbasics/tspec_a1_doc.html
https://securelist.com/analysis/publications/36563/xpaj-reversing-a-windows-x64-bootkit
https://securelist.com/analysis/publications/36563/xpaj-reversing-a-windows-x64-bootkit

[26] Ulrich Bayer, Engin Kirda, and Christopher Kruegel. Improving the efficiency of dynamic
malware analysis. In Proceedings of the 2010 ACM Symposium on Applied Computing,
2010.

[27] Ulrich Bayer, Christopher Kruegel, and Engin Kirda. Ttanalyze: A tool for analyzing mal-
ware. In 15th European Institute for Computer Antivirus Research (EICAR 2006) Annual

Conference, 2006.

[28] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In ATEC ’05: Proceedings

of the annual conference on USENIX Annual Technical Conference, 2005.

[29] Hynek Blinka. AVG - An Int 13 trick from the new Wapomi sample. http:

//blogs.avg.com/news-threats/int-13-trick-wapomi-sample, 2012,
last accessed: 2016/08/30.

[30] Bill Blunden. The Rootkit arsenal: Escape and evasion in the dark corners of the system.
Jones & Bartlett Publishers, 2012.

[31] Bochs IA-32 Emulator Project. Bochs. http://bochs.sourceforge.net/.

[32] Lucian Constantin. Citadel banking malware is evolving and spreading rapidly, researchers
warn. http://www.pcworld.com/article/249631/citadel_banking_

malware_is_evolving_and_spreading_rapidly_researchers_warn.

html, 2012, last accessed: 2016/08/30.

[33] Marco Cova, Christopher Kruegel, and Giovanni Vigna. Detection and analysis of drive-
by-download attacks and malicious javascript code. In Proceedings of the 19th Interna-

tional Conference on World Wide Web, 2010.

[34] Roland Dela Paz. ZeuS Source Code Leaked, Now What? http:

//blog.trendmicro.com/trendlabs-security-intelligence/

the-zeus-source-code-leaked-now-what/, 2013, last accessed: 2016/08/30.

[35] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A survey on auto-
mated dynamic malware-analysis techniques and tools. ACM Computing Surveys (CSUR),
2012.

[36] Paul England, John D DeTreville, and Butler W Lampson. Loading and identifying a
digital rights management operating system, December 4 2001. US Patent 6,327,652.

[37] David Harley Eugene Rodionov, Aleksandr Matrosov. Bootkits: Past, Present and Future.
In Virus Bulletin Conference, 2014.

[38] Hongbo Gao, Qingbao Li, Yu Zhu, Wei Wang, and Li Zhou. Research on the working
mechanism of bootkit. In 8th International Conference on Information Science and Digital

Content Technology (ICIDT), 2012, 2012.

77

http://blogs.avg.com/news-threats/int-13-trick-wapomi-sample
http://blogs.avg.com/news-threats/int-13-trick-wapomi-sample
http://bochs.sourceforge.net/
http://www.pcworld.com/article/249631/citadel_banking_malware_is_evolving_and_spreading_rapidly_researchers_warn.html
http://www.pcworld.com/article/249631/citadel_banking_malware_is_evolving_and_spreading_rapidly_researchers_warn.html
http://www.pcworld.com/article/249631/citadel_banking_malware_is_evolving_and_spreading_rapidly_researchers_warn.html
http://blog.trendmicro.com/trendlabs-security-intelligence/the-zeus-source-code-leaked-now-what/
http://blog.trendmicro.com/trendlabs-security-intelligence/the-zeus-source-code-leaked-now-what/
http://blog.trendmicro.com/trendlabs-security-intelligence/the-zeus-source-code-leaked-now-what/

[39] Marco Giuliani. Mebromi: the first bios rootkit in the
wild. http://www.webroot.com/blog/2011/09/13/

mebromi-the-first-bios-rootkit-in-the-wild/, 2011, last accessed:
2016/08/30.

[40] Bernhard Grill, Andrei Bacs, Christian Platzer, and Herbert Bos. “nice boots!”- a large-
scale analysis of bootkits and new ways to stop them. In Detection of Intrusions and

Malware, and Vulnerability Assessment (DIMVA). 2015.

[41] Bernhard Grill, Christian Platzer, and Jürgen Eckel. A practical approach for generic
bootkit detection and prevention. In Proceedings of the Seventh European Workshop on

System Security, 2014.

[42] Lars Haukli. Exposing bootkits with bios emulation. Black Hat US, 2014, last ac-
cessed: 2016/08/30. https://www.blackhat.com/docs/us-14/materials/
us-14-Haukli-Exposing-Bootkits-With-BIOS-Emulation-WP.pdf.

[43] Joel Hruska. Linux’s worst-case scenario: Windows 10 makes secure boot mandatory,
locks out other operating systems, 2015, last accessed: 2016/08/30. http://www.

extremetech.com/extreme/201722.

[44] Xin Hu, Tzi-cker Chiueh, and Kang G. Shin. Large-scale malware indexing using function-
call graphs. In Proceedings of the 16th ACM Conference on Computer and Communica-

tions Security, 2009.

[45] Nwokedi Idika and Aditya P Mathur. A survey of malware detection techniques. Purdue

University, 2007.

[46] Intel. Intelligent Platform Management Interface. http://www.intel.com/

content/www/us/en/servers/ipmi/ipmi-specifications.html.

[47] Kaspersky Lab. Equation group: Questions and answers, 2015. https:

//securelist.com/files/2015/02/Equation_group_questions_

and_answers.pdf.

[48] Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen J. Wang, and
Jacob R. Lorch. Subvirt: Implementing malware with virtual machines. In IEEE S&P,
2006.

[49] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. Barecloud: bare-metal analysis-
based evasive malware detection. In 23rd USENIX Security Symposium, 2014.

[50] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda, Xiao-
yong Zhou, and XiaoFeng Wang. Effective and efficient malware detection at the end host.
In USENIX Security Symposium, 2009.

78

http://www.webroot.com/blog/2011/09/13/mebromi-the-first-bios-rootkit-in-the-wild/
http://www.webroot.com/blog/2011/09/13/mebromi-the-first-bios-rootkit-in-the-wild/
https://www.blackhat.com/docs/us-14/materials/us-14-Haukli-Exposing-Bootkits-With-BIOS-Emulation-WP.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Haukli-Exposing-Bootkits-With-BIOS-Emulation-WP.pdf
http://www.extremetech.com/extreme/201722
http://www.extremetech.com/extreme/201722
http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-specifications.html
http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-specifications.html
https://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf
https://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf
https://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf

[51] Clemens Kolbitsch, Engin Kirda, and Christopher Kruegel. The power of procrastination:
detection and mitigation of execution-stalling malicious code. In Proceedings of the 18th

ACM conference on computer and communications security (CCS), 2011.

[52] Brian Krebs. Carberp source code leak. https://krebsonsecurity.com/tag/
carberp-source-code-leak/, 2013, last accessed: 2016/08/30.

[53] Andrea Lanzi, Monirul I Sharif, and Wenke Lee. K-tracer: A system for extracting kernel
malware behavior. In Network and Distributed System Security Symposium (NDSS), 2009.

[54] Xiang Li, Yan Wen, Minhuan Huang, and Qiang Liu. An overview of bootkit attacking ap-
proaches. In 7th International Conference on Mobile Ad-hoc and Sensor Networks (MSN),
2011.

[55] Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti. Detecting
environment-sensitive malware. In Recent Advances in Intrusion Detection (RAID), 2011.

[56] Noé Lutz. Towards revealing attacker’s intent by automatically decrypting network traffic.
Mémoire de maıtrise, ETH Zürich, Switzerland, 2008.

[57] Aleksandr Matrosov. ESET - Rovnix bootkit framework up-
dated. http://www.welivesecurity.com/2012/07/13/

rovnix-bootkit-framework-updated, 2012, last accessed: 2016/08/30.

[58] Niels Provos Panayiotis Mavrommatis and Moheeb Abu Monrose. All your iframes point
to us. USENIX Security Symposium, 2008.

[59] Microsoft. Early launch antimalware, 2014, last accessed: 2016/08/30.
https://msdn.microsoft.com/en-us/library/windows/desktop/

hh848061%28v=vs.85%29.aspx.

[60] Microsoft. Kernel Patch Protection, 2014, last accessed: 2016/08/30.
http://msdn.microsoft.com/en-us/library/windows/hardware/

Dn613955%28v=vs.85%29.aspx.

[61] Tipp Moseley, Dirk Grunwald, Daniel A Connors, Ram Ramanujam, Vasanth Tovinkere,
and Ramesh Peri. Loopprof: Dynamic techniques for loop detection and profiling. In
Proceedings of the 2006 Workshop on Binary Instrumentation and Applications (WBIA),
2006.

[62] Alexander Moshchuk, Tanya Bragin, Steven D Gribble, and Henry M Levy. A crawler-
based study of spyware in the web. In Network and Distributed System Security Symposium

(NDSS), 2006.

[63] MSDN. Driver Signing. http://msdn.microsoft.com/en-us/library/

windows/hardware/ff544865(v=vs.85).aspx.

79

https://krebsonsecurity.com/tag/carberp-source-code-leak/
https://krebsonsecurity.com/tag/carberp-source-code-leak/
http://www.welivesecurity.com/2012/07/13/rovnix-bootkit-framework-updated
http://www.welivesecurity.com/2012/07/13/rovnix-bootkit-framework-updated
https://msdn.microsoft.com/en-us/library/windows/desktop/hh848061%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh848061%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/Dn613955%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/Dn613955%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff544865(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff544865(v=vs.85).aspx

[64] Kara Nance, Brian Hay, and Matt Bishop. Virtual machine introspection. IEEE Computer

Society, 2008.

[65] Matthias Neugschwandtner, Christian Platzer, Paolo Milani Comparetti, and Ulrich Bayer.
Danubis–dynamic device driver analysis based on virtual machine introspection. In Detec-

tion of Intrusions and Malware, and Vulnerability Assessment (DIMVA). 2010.

[66] James Newsome and Dawn Song. Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. 12th Network and Distributed

Systems Security Symposium (NDSS), 2005.

[67] Michalis Polychronakis and Niels Provos. Ghost turns zombie: Exploring the life cycle
of web-based malware. USENIX workshop on large-scale exploits and emergent threats

(LEET), 8, 2008.

[68] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emulator for fingerprinting zero-day
attacks. In ACM SIGOPS EuroSys ’06, 2006.

[69] Wojtczuk Rafal and Tereshkin Alexander. Attacking intel bios, 2009, last accessed:
2016/08/30. https://www.blackhat.com/presentations/bh-usa-09/

WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf.

[70] Thomas Raffetseder, Christopher Kruegel, and Engin Kirda. Detecting system emulators.
In International Conference on Information Security. 2007.

[71] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. Automatic analysis
of malware behavior using machine learning. Journal of Computer Security, 2011.

[72] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-transparent prevention of kernel
rootkits with vmm-based memory shadowing. In Recent Advances in Intrusion Detection

(RAID), 2008.

[73] Schlaikjer Ross. Overview of bios rootkits, 2013, last accessed: 2016/08/30.
https://tuftsdev.github.io/DefenseOfTheDarkArts/students_

works/final_project/rschlaikjer.pdf.

[74] Christian Rossow, Dennis Andriesse, Tillmann Werner, Brett Stone-Gross, Daniel
Plohmann, Christian J Dietrich, and Herbert Bos. Sok: P2pwned-modeling and evalu-
ating the resilience of peer-to-peer botnets. In Proceedings of the 34th IEEE Symposium

on Security and Privacy (S&P), 2013.

[75] Christian Rossow, Christian J Dietrich, Herbert Bos, Lorenzo Cavallaro, Maarten
Van Steen, Felix C Freiling, and Norbert Pohlmann. Sandnet: Network traffic analysis of
malicious software. In Proceedings of the First Workshop on Building Analysis Datasets

and Gathering Experience Returns for Security, 2011.

80

https://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf
https://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf
https://tuftsdev.github.io/DefenseOfTheDarkArts/students_works/final_project/rschlaikjer.pdf
https://tuftsdev.github.io/DefenseOfTheDarkArts/students_works/final_project/rschlaikjer.pdf

[76] Christian Rossow, Christian J. Dietrich, Christian Kreibich, Chris Grier, Vern Paxson, Nor-
bert Pohlmann, Herbert Bos, and Maarten van Steen. Prudent Practices for Designing Mal-
ware Experiments: Status Quo and Outlook . In Proceedings of the 33rd IEEE Symposium

on Security and Privacy (S&P) , 2012.

[77] Vyacheslav Rusakov and Sergey Golovanov. Attacks before sys-
tem startup. http://securelist.com/blog/research/63725/

attacks-before-system-startup/, 2014, last accessed: 2016/08/30.

[78] Mark Russinovich. Sysinternals suite, 2014, last accessed: 2016/08/30. https:

//technet.microsoft.com/en-us/sysinternals/bb842062.aspx.

[79] Bodmer Sean. First zeus, now spyeye. https://www.damballa.com/

first-zeus-now-spyeye-look-the-source-code-now/, last accessed:
2016/08/30.

[80] Weiqing Sun, Zhenkai Liang, R. Sekar, and V. N. Venkatakrishnan. One-way isolation: An
effective approach for realizing safe execution environments. In Network and Distributed

System Security Symposium (NDSS), 2005.

[81] Symantec. More information on Alureon, 2014, last accessed: 2016/08/30.
http://www.symantec.com/security_response/writeup.jsp?docid=

2008-091809-0911-99&tabid=2.

[82] Technet. Kernel patch protection for x64-based operating systems. http://technet.
microsoft.com/en-us/library/cc759759%28v=ws.10%29.aspx.

[83] Alex Tereshkin and Joanna Rutkowska. Evil Maid Attack.
http://theinvisiblethings.blogspot.com/2009/10/

evil-maid-goes-after-truecrypt.html.

[84] tigzy. Carberp bootkit : How self-protection is effective,
2009, last accessed: 2016/08/30. http://www.adlice.com/

carberp-bootkit-how-self-protection-is-effective.

[85] AVR Tutorial. Basic understanding of microcon-
troller interrupts. http://www.embedds.com/

basic-understanding-of-microcontroller-interrupts, last accessed:
2016/08/30.

[86] Rusakov Vyacheslav. Mybios. is bios infection a reality?
https://securelist.com/analysis/publications/36421/

mybios-is-bios-infection-a-reality/, 2011, last accessed: 2016/08/30.

[87] Steve R. White, Jeffrey O. Kephart, and David M. Chess. Computer viruses: A global
perspective. In Virus Bulletin International Conference, 1995.

81

http://securelist.com/blog/research/63725/attacks-before-system-startup/
http://securelist.com/blog/research/63725/attacks-before-system-startup/
https://technet.microsoft.com/en-us/sysinternals/bb842062.aspx
https://technet.microsoft.com/en-us/sysinternals/bb842062.aspx
https://www.damballa.com/first-zeus-now-spyeye-look-the-source-code-now/
https://www.damballa.com/first-zeus-now-spyeye-look-the-source-code-now/
http://www.symantec.com/security_response/writeup.jsp?docid=2008-091809-0911-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2008-091809-0911-99&tabid=2
http://technet.microsoft.com/en-us/library/cc759759%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/cc759759%28v=ws.10%29.aspx
http://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html
http://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html
http://www.adlice.com/carberp-bootkit-how-self-protection-is-effective
http://www.adlice.com/carberp-bootkit-how-self-protection-is-effective
http://www.embedds.com/basic-understanding-of-microcontroller-interrupts
http://www.embedds.com/basic-understanding-of-microcontroller-interrupts
https://securelist.com/analysis/publications/36421/mybios-is-bios-infection-a-reality/
https://securelist.com/analysis/publications/36421/mybios-is-bios-infection-a-reality/

[88] Jeffrey Wilhelm and Tzi-cker Chiueh. A forced sampled execution approach to kernel
rootkit identification. In Recent Advances in Intrusion Detection (RAID), 2007.

[89] Carsten Willems, Thorsten Holz, and Felix Freiling. Toward automated dynamic malware
analysis using cwsandbox. Proceedings of the IEEE Symposium on Security and Privacy

(S&P), 2007.

[90] Yu Zhu, Sheng Liu Liu, Honghu Lu, and Wenbin Tang. Research on the detection technique
of bootkit. In International Conference on Graphic and Image Processing 2012, 2013.

82

	Introduction
	Goals and Objectives
	Scientific Outcome
	Structure of this Thesis

	Background
	Real and Protected Mode of x86 processors
	Hooking the Interrupt Vector Table
	The Boot Process
	Slack Space and Dark Regions
	Introduction to Bootkit Techniques
	QEMU

	Detecting Bootkit Infections
	Dark Region Modification
	Dark Region Read Access
	Interrupt Hooking
	Executing Address 0000h:7C00h
	Early Boot Phase Network Traffic
	Decryption Loop Detection

	Preventing Bootkit Attacks
	Bootkit Infection Prevention on the Hardware Level
	Bootkit Attack Prevention on the OS Level
	Discussion

	Bootcamp
	Dynamic Bootkit Malware Analysis
	System Architecture & Sofware Design
	Utilized Technologies
	Database Model
	User Interface
	Application Scenarios

	Case Study for the TDL4 Bootkit
	Evaluation
	Utilized Bootkit Dataset
	Experimental Setup for the Evaluation
	Containment Measures taken during the Malware Experiment

	Results
	Large-Scale Bootkit Analysis
	Evolution of Bootkits
	Performance of Proposed Bootkit Detection Techniques
	Performance for the Bootkit Prevention Mechanism

	Discussion
	General Limitations
	Evasion Techniques for Dynamic Analysis
	Misdetection and Evading the Detection Heuristics
	Evasion Techniques for Attack Prevention on the OS Level
	Potential Future Bootkit Evolution

	Related Work
	Dynamic Malware Analysis
	Bootkits
	Large-Scale Malware Analysis
	Preventing Malware Infections

	Future Work & Conclusion
	Future Work
	Conclusion

	Bibliography

