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Abstract

Multispectral data which have been collected by a hand-held device are classified
into two groups by employing different statistical classification methods. The data
used for the analysis are pixel images at nine wavelenghts of six objects which
have been reshaped to matrices: the columns are the wavelengths used for data
acquisition, the rows are the number of observations resulting from the dimension
of the images. The performance of the following supervised classification methods
is evaluated: Linear Discriminant Analysis (LDA), Quadratic Discriminant Ana-
lysis (QDA), robust LDA, robust QDA and Support Vector Machines (SVM) with
linear and radial basis kernels. Misclassification rates are used to evaluate the
models and Receiver Operator Characteristics help to visualise their performance.
The results show that robust LDA works best for this kind of data, which contain
outliers. Majority voting is applied to analyse the performance on parts of the
images and to assign exactly one label to the whole image instead of each pixel.
Data preprocessing and the statistical analysis are done with the software Matlab
and R, respectively.
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Preface

Data acquisition and its statistical analysis have been performed during a 6-month
employment at the CTR AG, which is is the largest non-university reasearch insti-
tute in Carinthia. The main research field of the CTR AG are intelligent sensors,
for more information see www.ctr.at.
Spectral Imaging, which is a completely new topic for a statistics student, and a
challenging problem made work interesting and instructive every day. It was an
entirely new experience to work with datasets which are generated on site, which
was sometimes difficult as the recording device was further developed during the
analysis. To choose and check the suitability of a method was often time consu-
ming, and many results and plots cannot be possibly included in this work as space
is limited. Problems due to the high dimensionality of the data futher complicated
the data evaluation.
As the author is not allowed to publish details about the treatment, the formula-
tion of the results in Chapter 3 seem a bit colourless, but that was the price to
write a work on the pulse of research.

This thesis has been written using the software package LATEX, where a good intro-
duction is provided by Oetiker et al. (2011). The main literature used for writing
Chapter 2 are the books Hastie et al. (2009) and Venables and Ripley (2002).
The graphs have all been created by the author herself using the graphic package
TikZ, see Tantau (2007). For the statistical analysis and the plots, the commer-
cial mathematical software Matlab, see Appendix A.1, and the free software R,
see Appendix A.2 and R Development Core Team (2011), have been used. For the
graphs presented in this thesis which have been made with R, the book Wickham
(2009) is a helpful reading.
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Chapter 1

Introduction

The field of Statistics is constantly
challenged by the problems that science
and industry brings to its door.

Hastie et al. (2009)

Wherever data is collected, methods are needed to analyse them. Thereby, the
way from data aquisiton to prediction results is often long and includes detours.
Image data analysis strongly depends on the system that acquires the data. Clas-
sical RGB images only use visible light, but often the electromagentic spectrum
is divided in more than the three bands red, green and blue in order to get more
information about an object.
Spectral imaging uses different wavelengths to penetrate tissue in varying depths.
While hyperspectral imaging uses a series of close wavelengths which produce a
rather “continuous” image, multispectral imaging uses less wavelengths and the
result can be described as “discrete”. The aim of this thesis is to find a method
for classifying multispectral images of objects from two classes, which will be de-
noted as “untreated” and “treated”. As the project in the course of which the
data anlysis has been performed is still running, the objects from which the data
comes and the treatment which they underwent cannot be further described. Clas-
sification should work for a hand-held device, which means the budget for data
recording is limited. This causes a reduced quality of the camera and limits the
amount of wavelenghts used for data acquisition. In order to enable the direct
use of the device by future customers, the computation time of the classification
method should be short.

Chapter 2 provides the statistical theory about the following supervised classifi-
cation methods: Linear discriminant Analysis (LDA), robust LDA, Fisher’s linear
discriminant, Quadratic Discriminant Analysis (QDA), robust QDA and Support
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Vector Machines (SVM). Additionally, misclassification rates and Receiver Opera-
tor Characteristics (ROC) are presented as methods for interpreting the classifica-
tion results. A short introduction to Cross Validation (CV) completes the second
chapter.
Although a statistician is mainly interested in analysing data, in the case of spectral
imaging the data acquisition is of some importance which should not be ignored.
For this work it is important to have some idea how the data has been collected
and how preprocessing works. Therefore the first two parts of Chapter 3 include
a short description of the data acquisition and the preprocessing methods used for
the analysis. In the third part of this chapter the results of the methods described
in Chapter 2 are visualised and discussed. Additionally, the optimal method for
our requirements is selected and further evaluated using two approaches of majo-
rity voting. The fourth part of this chapter includes some prospects for further
analyses.
Chapter 4 contains the conclusion of the statistical analysis.
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Chapter 2

Statistical Theory of Selected
Supervised Learning Techniques

For humans and animals, identifying objects is part of everyday live: we identify
another person by its voice or its appearance, a blind person will often identify
objects by touching them, a dog identifies by smelling and a bat can navigate with
the help of ultrasound waves. These examples all use biological senses, which dis-
tinguishes us from machines, as they use algorithms for identification. In statistics,
the identification of groups in data is one application of what is known as pattern
recognition.
In order to discriminate between different populations, we assign a label to each
observation of a data set. Statistical Learning is one of the modern techniques
used to analyse often big amounts of data and to implement these assignments
correctly. In general, income data (observed or independent variables, also called
features) is used to predict outcome data (unobserved or dependent variables).
The outcome variables can either be quantitative, e.g. expected age or weight, or
qualitative (also called categorical or discrete), e.g. healthy/ill. There are several
ways to learn:

• Supervised learning: We have a so-called “training” data set of objects
(e.g. patients) where income and outcome values are known. This data is
used to develop a prediction model and new, unknown income data (called
“test” data) should then lead to an acceptable outcome prediction based on
the model. The performance of the model is measured by certain evaluation
criteria.
Examples for supervised learning methods are Regression for quantitative
outcome and Classification for categorical outcome.

• Unsupervised learning: The training data does not contain outcome data
- only the unlabeled income data is used to detect patterns and structures
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in the data. As we do not have labeled training data we cannot evaluate
potential models.
Examples for unsupervised learning are Clustering and techniques for dimen-
sionality reduction like Principal Component Analysis (PCA) and Singular
Value Decomposition (SVD).

• Reinforcement learning: Learning by feedback: learn optimal behaviour,
thus how to map situations to actions, in order to achieve maximal reward.
The learner has to find out which actions are best by trying them out. Often
not only immediate, but also delayed or subsequent reward is included in
this trial-and-error learning technique.
Contrary to supervised and unsupervised learning, reinforcement learning
is defined by characterising a learning problem instead of learning methods.
Any method which is suitable to solving the problem is called a reinforcement
learning method.

For better understanding, Figure 2.1 shows a rough outline of some of the tech-
niques used in Pattern Recognition. As computing facilities and methods have
multiplied in the past, it only shows a very limited choice of methods available.

Pattern Recognition

Classification

DA

LDA QDA

SVM ...

Clustering ...

Figure 2.1: A schematic representation of the structure of pattern recognition. DA
stands for Discriminant Analysis, LDA for Linear Discriminant Analysis, QDA for
Quadratic Discriminant Analysis and SVM for Support Vector Machine.

In this thesis we focus on supervised learning, namely the classification problem,
and have a closer look on methods like Discriminant Analysis (DA) and Support
Vector Machines (SVM).

4



Classification

The aim of statistical classification is to assign new data to predefined classes
correctly. Methods to define these classes are for example Discriminant Analysis
or Support Vector Machines. Obervations within a class should have as much
common characteristics as possible, whereas observations belonging to different
classes should have few similarities.
The sample space is divided into K regions by assigning a class label to each
training observation, and new data is classified according to their location in the
sample space. The groups, in the following denoted by G, are usually represented
either by text, e.g. G = {healthy, ill, dead} or by integers, e.g. G = {1, 2, 3}. In
the case of two classes the groups are often represented by a binary digit like {0, 1}
or {−1, 1}. Data is represented by n pairs (xi, gi) with xi ∈ Rp and gi ∈ G for
i = 1, . . . , n.
The borders of the regions can be linear or nonlinear. One often-used method of
classification is discriminant analysis with the two special cases Linear Discriminat
Analysis (LDA) and Quadratic Discriminant Analysis (QDA).

2.1 Discriminant Analysis

The objective of Discriminant Analysis is to specify one or more different but si-
milar object groups through observed variables (features). This is done by finding
those variables which represent differences between the groups and give them high
weights, whereas features which do not help to separate the groups are downweigh-
ted.
The first step is to determine the differences of objects known to belong to exactly
one of K ≥ 2 similar groups graphically or algebraically in order to find a discrimi-
nant function which separates the groups by dividing the sample space into K dis-
joint regions. In the simplest case, the discriminant function is linear, which means
that the groups can be graphically separated by a hyperplane (e.g. a straight line
in the 2-dimensional case and a plane in the 3-dimensional case). A more complex
form of partitioning is done with a quadratic discriminant function.

General assumptions

Let X be a p-dimensional random vector and x its realisation. In general, a
predictor G(·) with values G(x) ∈ G for new observations x is wanted (let |G| <∞,
i.e. the set of possible values of G(·) is finite). We could establish discriminant
functions δk(x), k ∈ K, and classify new objects x to the group k with the largest
value of δk(x). Another approach is to compute class posteriors P(G = k|X = x)
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for optimal classification. If either δk(x) or P(G = k|X = x) are linear in x, then
the decision boundaries will be linear. This assumption can be softened: even
when a monotone transformation of δk(x) or P(G = k|X = x) is linear in x we
get linear decision boundaries (e.g. logit transformation).
Let us develop the theory of discriminant analysis for two groups (case K = 2) in
general (the distinction between linear and quadratic discriminant analysis comes
later).

2.1.1 The two-class case: K=2

Assume we have two groups g1 and g2 and p random variables X = (X1, . . . , Xp)
>

which are used for the classification to one of the two groups. The entity of all
objects of the first class are called x-population of g1, and those of the second class
are called x-population of g2. The two populations can then be characterised by
their probability distributions f1(x) and f2(x). Sample data is represented by a
data matrix X ∈ R(n×p) with

X =


x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
. . .

...
xn1 xn2 . . . xnp

 (2.1)

where n is the number of observations and p is the dimension in later sections of
this thesis. Note that the unobserved random vector X is written italic, whereas
the data matrix X is straight.

Let Ω denote the sample space, then each element x ∈ Ω has to belong either
to g1 or to g2. Let furthermore S1 denote the subspace of observations to which
we assign objects from g1 and S2 the subspace to which we assign the remaining
objects, namely those which we assign to g2, then Ω = S1 ∪̇ S2. The point above
the cup symbol denotes that it is a disjoint union. When classifying new objects
it can happen that an element from group g1 is wrongly assigned to g2. For known
probability functions f1(x) and f2(x), the probability of wrong assignment, in the
following denoted as P(2|1), can be computed as conditional probability:

P(2|1) = P(X ∈ S2|g1) =

∫
S2

f1(x)dx (2.2)

This integral is the volume of the density function f1(x) (in the case p = 1 it is
an area) over the region S2.
The other case is also possible: an object belonging to g2 can be wrongly assigned
to g1. The corresponding probability is

P(1|2) = P(X ∈ S1|g2) =

∫
S1

f2(x)dx. (2.3)
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The two possible probabilities of wrong assignment are displayed in Figure 2.2.

P(1|2) =
∫
S1
f2(x)dx

P(2|1) =
∫
S2
f1(x)dx

f1(x)
f2(x)

x
S1

classify as g1

S2

classify as g2

Figure 2.2: Probabilities of misclassification.

Let πi be the a-priori probability that an object belongs to group gi, i ∈ {1, 2}:

π1 = P(g1), π2 = P(g2) and π1 + π2 = 1.

In general the conditional probability of an event A given an event B is defined as

P(A|B) =
P(A ∩B)

P(B)
. (2.4)

Using equation (2.4) we can compute the probabilities of correct classification

P(classify an object correctly as g1) = P(X ∈ S1|g1)P(g1) = P(1|1)π1

P(classify an object correctly as g2) = P(X ∈ S2|g2)P(g2) = P(2|2)π2

and the probabilities of wrong classification

P(classify an object wrongly as g1) = P(X ∈ S1|g2)P(g2) = P(1|2)π2

P(classify an object wrongly as g2) = P(X ∈ S2|g1)P(g1) = P(2|1)π1.

Misclassification is often directly connected with costs c ≥ 0 (denoted by c(2|1)
when an element from group g1 is wrongly assigned to g2, and c(1|2) when an
element from group g2 is wrongly assigned to g1), correct classification results
in costs c(1|1) = c(2|2) = 0. In the case c(2|1) 6= c(1|2) we have asymmetric
error weights, which means one type of misclassification creates higher costs. The
expected costs of misclassification (ECM) can then be computed as

ECM = c(2|1)P(2|1)π1 + c(1|2)P(1|2)π2

(2.2),(2.3)
= c(2|1)

(∫
S2

f1(x)dx

)
π1 + c(1|2)

(∫
S1

f2(x)dx

)
π2.
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The aim of a classification rule is to minimize the ECM. f1(·) is a density function,
which means the integral taken over the whole sample space is one, and as Ω =
S1 ∪̇ S2 by definition, we get

1 =

∫
Ω

f1(x)dx =

∫
S1

f1(x)dx+

∫
S2

f1(x)dx.

This leads to

ECM = c(2|1)

(
1−

∫
S1

f1(x)dx

)
π1 + c(1|2)

(∫
S1

f2(x)dx

)
π2

=

∫
S1

[f2(x)π2c(1|2)− f1(x)π1c(2|1)]︸ ︷︷ ︸
=:g(x)

dx+ c(2|1)π1.

The quantities p1, p2, c(1|2) and c(2|1) have nonnegative values, f1(x), f2(x) ≥
0 ∀x. A possible classification rule which minimizes the ECM is “x belongs to S1

when g(x) ≤ 0”:

x ∈ S1 ⇐⇒ g(x) ≤ 0

⇐⇒ f2(x)π2c(1|2)− f1(x)π1c(2|1) ≤ 0

⇐⇒ f1(x)π1c(2|1) ≥ f2(x)π2c(1|2)

⇐⇒ f1(x)

f2(x)
≥
(
c(1|2)

c(2|1)

)(
π2

π1

)
(2.5)

The subspace S2 is then defined by

x ∈ S2 ⇐⇒
f1(x)

f2(x)
<

(
c(1|2)

c(2|1)

)(
π2

π1

)
. (2.6)

Three special cases can occur:

(i) π1 = π2:

x ∈ S1 ⇔
f1(x)

f2(x)
≥ c(1|2)

c(2|1)
, x ∈ S2 ⇔

f1(x)

f2(x)
<
c(1|2)

c(2|1)

(ii) c(1|2) = c(2|1):

x ∈ S1 ⇔
f1(x)

f2(x)
≥ π2

π1

, x ∈ S2 ⇔
f1(x)

f2(x)
<
π2

π1

(iii) π1 = π2 and c(1|2) = c(2|1):

x ∈ S1 ⇔
f1(x)

f2(x)
≥ 1, x ∈ S2 ⇔

f1(x)

f2(x)
< 1

8



Normality assumptions

From now on it is assumed that the populations of g1 and g2 are multivariate
normally distributed with means µ1, µ2 and covariance matrices Σ1, Σ2: X ∼
Np(µi,Σi), i = 1, 2. Therefore the density functions f1(x) and f2(x) have the
following form:

fi(x) =
1

(2π)
p
2 |Σi|

1
2

exp

[
−1

2
(x− µi)>Σ−1

i (x− µi)
]

i = 1, 2

When these assumptions do not hold, it can happen that the following classification
rules fail severely.

2.1.2 Linear Discriminant Analysis (LDA)

Assuming the classes have a common covariance matrix Σ = Σ1 = Σ2, the joint
density function of X = (X1, . . . , Xp)

> for the populations g1 and g2 is given by

fi(x) =
1

(2π)
p
2 |Σ| 12︸ ︷︷ ︸

=const

exp

[
−1

2
(x− µi)>Σ−1(x− µi)

]
i = 1, 2.

Given µ1, µ2 and Σ are known, according to (2.5) and (2.6) the region where the
ECM is maximised can be described by

x ∈ S1 ⇔
f1(x)

f2(x)
≥
(
c(1|2)

c(2|1)

)(
π2

π1

)
⇔ exp

[
−1

2
(x− µ1)>Σ−1(x− µ1) +

1

2
(x− µ2)>Σ−1(x− µ2)

]
≥

≥
(
c(1|2)

c(2|1)

)(
π2

π1

)
and

x ∈ S2 ⇔
f1(x)

f2(x)
<

(
c(1|2)

c(2|1)

)(
π2

π1

)
⇔ exp

[
−1

2
(x− µ1)>Σ−1(x− µ1) +

1

2
(x− µ2)>Σ−1(x− µ2)

]
<

<

(
c(1|2)

c(2|1)

)(
π2

π1

)
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as the constant term can be cancelled and the exponent in the denominator is sub-
tracted from the exponent in the nominator. Since all quantities are nonnegative
the logarithm does not change the result:

x ∈ S1 ⇔−
1

2
(x− µ1)>Σ−1(x− µ1)+

+
1

2
(x− µ2)>Σ−1(x− µ2) ≥ ln

(
c(1|2)

c(2|1)

π2

π1

) (2.7)

The left side of inequality (2.7) can be further simplified:

− 1

2
(x− µ1)>Σ−1(x− µ1) +

1

2
(x− µ2)>Σ−1(x− µ2) =

=−
�
���

��1

2
x>Σ−1x+

1

2
x>Σ−1µ1 +

1

2
µ>1 Σ−1x− 1

2
µ>1 Σ−1µ1+

+
��

����1

2
x>Σ−1x− 1

2
x>Σ−1µ2 −

1

2
µ>2 Σ−1x+

1

2
µ>2 Σ−1µ2

= µ>1 Σ−1x− µ>2 Σ−1x− 1

2
µ>1 Σ−1µ1 +

1

2
µ>2 Σ−1µ2

The last equation holds because all summands are scalars: we perform matrix-
vector multiplications with the dimensions (1× p) · (p× p) · (p× 1) = (1× 1). For
a scalar a ∈ R it is true that a = a>.
Expanding with the term 1

2
µ>1 Σ−1µ2 results in

(µ1 − µ2)>Σ−1x− 1

2
µ>1 Σ−1µ1 −

1

2
µ>1 Σ−1µ2 +

1

2
µ>1 Σ−1µ2 +

1

2
µ>2 Σ−1µ2 =

= (µ1 − µ2)>Σ−1x− 1

2
µ>1 Σ−1(µ1 − µ2) +

1

2
µ>2 Σ−1(µ1 + µ2) =

= (µ1 − µ2)>Σ−1x− 1

2
(µ1 − µ2)>Σ−1(µ1 + µ2)

Therefore we can rewrite (2.7) as

x ∈ S1 ⇔

(µ1 − µ2)>Σ−1x− 1

2
(µ1 − µ2)>Σ−1(µ1 + µ2) ≥ ln

(
c(1|2)

c(2|1)

π2

π1

)
. (2.8)

The left side of the classification rule (2.8) is linear in x, which implies that
the decision boundary between the two classes is a hyperplane in p dimensions.
Assuming equal costs c(1|2) = (2|1), an equivalent description of (2.8) are the
so-called linear discriminant functions

δk(x) = µ>k Σ−1x− 1

2
µ>k Σ−1µk + ln(πk) for k = 1, 2

which lead to the decision G(x) = arg maxk δk(x).
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Estimating mean and covariance

In reality µ1, µ2 and Σ are often unknown and have to be estimated. Assuming we
have a realisation of the random variable X = (X1, . . . , Xp)

> with n1 observations
from g1 and n2 obervations from g2, which means n = n1 + n2, the corresponding
data matrices are denoted by

X1 =


x>11

x>12
...

x>1n1

 ∈ R(n1×p) and X2 =


x>21

x>22
...

x>2n2

 ∈ R(n2×p)

The sample means and sample covariance matrices are given by

x̄1 =
1

n1

n1∑
j=1

x1j, S1 =
1

n1 − 1

n1∑
j=1

(x1j − x̄1)(x1j − x̄1)>

x̄2 =
1

n2

n2∑
j=1

x2j, S2 =
1

n2 − 1

n2∑
j=1

(x2j − x̄2)(x2j − x̄2)>
(2.9)

with x̄i ∈ Rp×1 and Si ∈ Rp×p for i = 1, 2. Since one assumption was that the
populations g1 and g2 have the same covariance matrix Σ, the sample covariance
matrices are combined to the pooled covariance matrix

Spooled =

(
n1 − 1

(n1 − 1) + (n2 − 1)

)
S1 +

(
n2 − 1

(n1 − 1) + (n2 − 1)

)
S2, (2.10)

which is an unbiased estimator of Σ. Rule (2.8) can now be written as

x ∈ S1 ⇔

(x̄1 − x̄2)>S−1
pooledx−

1

2
(x̄1 − x̄2)>S−1

pooled(x̄1 + x̄2) ≥ ln

(
c(1|2)

c(2|1)

π2

π1

)
. (2.11)

Additionally, the prior probabilities π1 and π2 can be estimated by the ratios n1

n

and n2

n
. An important special case occurs when the costs of misclassification and

the prior probabilities are equal:

c(1|2) = c(2|1)
π1 = π2

}
⇒ c(1|2)

c(2|1)

π2

π1

= ln(1) = 0

11



Rule (2.11) can then be simplified by defining

ŷ := (x̄1 − x̄2)>S−1
pooled︸ ︷︷ ︸

=:â>

x (2.12)

m̂ :=
1

2
(x̄1 − x̄2)>S−1

pooled(x̄1 + x̄2)

=
1

2
(ȳ1 + ȳ2)

with
ȳ1 = (x̄1 − x̄2)>S−1

pooledx1 = â>x̄1

and
ȳ2 = (x̄1 − x̄2)>S−1

pooledx2 = â>x̄2

and formulating the classification rule as

x0 ∈ S1 ⇔ ŷ0 = â>x0 ≥ m̂.

The quantity y is one-dimensional and is a linear combination of observations from
both groups, g1 and g2.

Figure 2.3 shows what happens when we use LDA although the group variances
are not equal. The dotted curves represent the class distributions under the as-
sumption Σ1 = Σ2, the solid curves represent the class distributions for unequal
variances. According to LDA, the point m̂ marks the decision boundary. We can
see that for the solid curves, the probabilities of misclassification differ significantly
for the two groups: More observations from g2 will be wrongly classified in this
setting.

m̂ȳ1 ȳ2

Figure 2.3: Probabilities of misclassification for equal and unequal variances.
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2.1.3 Quadratic Discriminant Analysis (QDA)

In the case of unequal covariance matrices Σ1 and Σ2, the ratio of the density
functions f1(x) and f2(x) in (2.5) and (2.6) is more complicated. Under the
normality assumption it is again easier to examine the logarithm of the ratio:

ln

(
f1(x)

f2(x)

)
= ln

(
|Σ2|

1
2

|Σ1|
1
2

)
− 1

2
(x− µ1)>Σ−1

1 (x− µ1) +
1

2
(x− µ2)>Σ−1

2 (x− µ2)

=
1

2
ln

(
|Σ2|
|Σ1|

)
− 1

2
x>(Σ−1

1 −Σ−1
2 )x+ (µ>1 Σ−1

1 − µ>2 Σ−1
2 )x+

− 1

2
µ>1 Σ−1

1 µ1 +
1

2
µ>2 Σ−1

2 µ2

Therefore we get the following classification rule:

x ∈ S1 ⇔

− 1

2
x>(Σ−1

1 −Σ−1
2 )x+ (µ>1 Σ−1

1 − µ>2 Σ−1
2 )x− C ≥ ln

(
c(1|2)

c(2|1)

π2

π1

)
x ∈ S2 ⇔

− 1

2
x>(Σ−1

1 −Σ−1
2 )x+ (µ>1 Σ−1

1 − µ>2 Σ−1
2 )x− C < ln

(
c(1|2)

c(2|1)

π2

π1

) (2.13)

with

C =
1

2
ln

(
|Σ2|
|Σ1|

)
+

1

2
(µ>1 Σ−1

1 µ1 + µ>2 Σ−1
2 µ2)

The constant term C only depends on mean and covariance of the distributions.
In the case Σ1 = Σ2, (2.13) can be reduced to rule (2.8). The above classificaton
rule is quadratic in x.
Assuming equal costs c(1|2) = (2|1), the quadratic discriminant functions are

δk(x) = −1

2
ln |Σk| −

1

2
(x− µk)>Σ−1

k (x− µk) + ln(πk) for k = 1, 2

and lead to the decision G(x) = arg maxk δk(x). As the quantities µ1, µ2, Σ1

and Σ2 are generally unknown they can be again estimated by the corresponding
sample means and covariances x̄1, x̄2, S1 and S2.

2.1.4 Robust Discriminant Analysis

As µ and Σ are directly used in the computation of (2.8) and (2.13), the estimation
of these two quantities is crucial.
The classical estimators (2.9) are not robust, which means they are not resistant
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to outliers. The so-called breakdown point ε∗n is the smallest amount of data
contamination which can cause an arbitrary value of an estimator. In Donoho and
Huber (1983) it is defined as follows:

Definition. Let T be an estimator and let x1, . . . , xn be a sample. Replace m data
points x11 , . . . , x1m by arbitary values y1, . . . , ym and denote the new data with
z1, . . . , zn. Then the (gross-error) breakdown point (for finite samples) of T is
defined by

ε∗n(T ;x1, . . . , xn) = min

{
m

n
; max
i1,...,im

sup
y1,...,ym

|T (z1, . . . , zn)| =∞
}

According to Hampel (1971), the asymptotic version of the definition of the break-
down point for infinite samples ε∗ is in general provided by

lim
n→∞

ε∗n = ε∗.

The arithmetic mean has the breakdown point ε∗ = 0%, which means that already
one outlier can distort the estimator arbitrarily. A more robust location estimation
is the α%-trimmed mean, which is the arithmetic mean of the central (100−2α)% of
the sorted sample, with ε∗ = α%. The median has the maximal possible breakdown
point ε∗ = 50%. The maximal value is 50% because in the case of a bigger value
the majority of outliers could be seen as “good” data points.

In the case of robust discriminant analysis we want to find robust estimators
T : R(n×p) → Rp and C : R(n×p) → R(p×p) of the multivariate location µ and scale
Σ in (2.8) and (2.13). T and C are functions of the data matrix X. Two popular
methods are the Minimum Volume Ellipsoid (MVE) and the Minimum Covariance
Determinant (MCD) estimators which both feature a maximal breakdown point.
According to Rousseeuw (1985) they are defined as follows:

• MVE: determine the ellipsoid with minimal volume which includes at least
half of the data points of X; then T (X) is the centre of that ellipsoid and
C(X) is given by the same ellipsoid, multiplied with a factor for consistency
at normal distributions

• MCD: determine the ellipsoid which includes at least h data points of X
and whose empirical covariance matrix has the smallest determinant; then
T (X) is the centre of that ellipsoid, and C(X) is given by the same ellipsoid,
multiplied with a factor for consistency at normal distributions

Besides the high breakdown point the MVE estimator offers another desirable pro-
perty: it is affine equivariant, which means that it is independent of the underlying
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measurement scale and coordinate system. We are therefore allowed to transform
the data, e.g. standardise them, and the MVE estimator also correctly transforms
the result. Let A ∈ Rp×p be a non-singular matrix and b ∈ Rp, then the following
equations should hold for T and C:

T (Ax1 + b, . . . ,Axn + b) = A · T (x1, . . . ,xn) + b

C(Ax1 + b, . . . ,Axn + b) = A ·C(x1, . . . ,xn) ·A>
(2.14)

This property is especially important for distributions with elliptic symmetry,
which means the density has the form

fµ,Σ(x) =
1√

det Σ
g
(√

(x− µ)>Σ−1(x− µ)
)
,

e.g. for the multivariate normal distribution.
For the MVE estimator the equations (2.14) hold due to the fact that

V (AX + b) = | detA| · V (X)

where V (x) denotes the volume of x.

For the breakdown point of the MVE estimator we get

ε∗n(T ,X) =

[
n
2

]
− p+ 1

n
→ 50%.

If the parameter h for the MCD estimator is set to h ≈ n
2

the maximal breakdown
point is achieved. For increasing h the breakdown point decreases to n−h

n
. A good

compromise between high breakdown point and acceptable efficiency is h = 3
4
n.

2.1.5 Fisher’s Linear Discriminant

Starting from a different idea, the British statistician Sir Ronald Aylmer Fisher
developed a linear discriminant function similar to (2.12), see Fisher (1938). He
tried to transform multivariate to univariate observations with the aim, that the
two transformed groups are separated as much as possible. The transformation
y = a>x is a fixed linear combination of the input variable x and results in uni-
variate quantities y11, y12, . . . , y1n1 for the first and y21, y22, . . . , y2n2 for the second
group. The separation of the two populations is made by maximising the distance
between the arithmetic means of the univariate values. Using units of the standard
deviation as measure for this distance, the following criterion can be fomulated:

max
a

|ȳ1 − ȳ2|
sy

(2.15)
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The vector a with ||a|| = 1 is the required direction of projection and sy stands
for the root of the pooled variance of the univariate y-values defined by

s2
y =

∑n1

i=1(y1i − ȳ1)2 +
∑n2

i=1(y2i − ȳ2)2

n1 + n2 − 2
.

By squaring the main condition in (2.15), the direction is not changed. Equivalent
formulations of the target function are

(ȳ1 − ȳ2)2

s2
y

=
(a>x̄1 − a>x̄2)2

a>Spooleda
(2.16)

with Spooled defined as (2.10). For solving (2.15) we use the following inequality:

Extended Cauchy-Schwarz inequality
Let b,d ∈ R(p×1) and B be a p-dimensional positive definite matrix, then

(b>d)2 ≤ (b>Bb)(d>B−1d) (2.17)

and equality holds if and only if there exists a constant c ∈ R such that b = cB−1d
(see e.g. Johnson and Wichern (2007)).

Setting b = â, d = (x̄1 − x̄2) and B = Spooled, (2.17) becomes[
â>(x̄1 − x̄2)

]2 ≤ (â>Spooledâ) (x̄1 − x̄2)>S−1
pooled(x̄1 − x̄2)︸ ︷︷ ︸

=:D2

which is equivalent to [
â>(x̄1 − x̄2)

]2
â>Spooledâ

≤ D2. (2.18)

We have found an upper boundary for (2.16). As stated before, the equality
in equation (2.18) holds if an only if there exists a constant c such that â =
cS−1

pooled(x̄1 − x̄2). The constant can be defined as 1 and therefore the maximal

value of (2.16), which is D2, is achieved for â = S−1
pooled(x̄1 − x̄2). The linear

combination which solves (2.15) is given by

ŷ = â>x = (x̄1 − x̄2)>S−1
pooledx. (2.19)

Finally, the following classification rule can be formulated:

x0 ∈ S1 ⇔ ŷ0 ≥ m̂

⇔ (x̄1 − x̄2)>S−1
pooledx0 ≥

1

2
(x̄1 − x̄2)>S−1

pooled(x̄1 − x̄2) (2.20)
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We can see that Fisher’s linear discriminant is a special case of rule (2.8): if the
expected costs for misclassification and the a-priori probabilities are equal, which
means that if c(2|1) = c(1|2) and π1 = π2, rule (2.8) and rule (2.20) are the same.
Using the fact that

1

2
(x̄1 − x̄2)>S−1

pooled(x̄1 − x̄2) =
1

2
(â>x̄1 + â>x̄2)

=
1

2
(ȳ1 + ȳ2),

rule (2.20) can be written as

x0 ∈ S1 ⇔ ŷ0 ≥
1

2
(ȳ1 + ȳ2).

In Figure 2.4, rule (2.20) is visualised for the case p = 2.

x1

x2

y = a>x

ȳ2

ȳ1

1
2

(ȳ1 + ȳ2)

classify
as
g
1

classify
as
g
2

g2

g1

x̄2

x̄1

Figure 2.4: Schematic visualisation of Fisher’s linear discriminant.

In contrast to rule (2.8), the normality assumption of the populations is not needed
for Fisher’s classification rule. However, the assumption that the classes have a
common covariance matrix is still implicitly made, as the pooled covariance matrix
is used in (2.15).

2.2 Support Vector Machine (SVM)

Let again be K = 2, which means there are two groups. When the data clouds
of the two groups overlap, the classes are non-separable and linear decision boun-
daries, among others, perform poorly. Support Vector Machines transform the
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feature space into a higher-dimensional space and construct linear decision boun-
daries there. This Section closely follows the first part of Chapter 12 in Hastie
et al. (2009).

2.2.1 Linear hyperplanes

Assuming that training data is available, our training data matrix X ∈ Rn×p has
the following form:

X =


x1
...
xi
...
xn

 =


x11 x12 . . . x1p
...

...
. . .

...
xi1 xi2 . . . xip
...

...
. . .

...
xn1 xn2 . . . xnp


The class membership is denoted by the vector g ∈ Rn with gi ∈ {−1, 1} for
i = 1 . . . , n. We can summarise the training information to n pairs

(x1, g1), (x2, g2), . . . , (xn, gn).

Assuming β is a unit vector (||β|| = 1), a hyperplane can be characterised by the
affine set

{x ∈ Ω : x>β + β0︸ ︷︷ ︸
=:f(x)

= 0} (2.21)

with the corresponding classification rule

G(x) = sgn [f(x)] (2.22)

(sgn stands for the signum function). The function value f(x0) denotes the signed
distance of the observation x0 to the hyperplane f(x) = 0 (in the case ||β|| 6= 0
the signed distance would be 1

||β||f(x)). If an observation xi is correctly classified,

then gi = sgn [f(xi)] and therefore gif(xi) > 0.

The separable case

In the separable case we can always find a function f : Rp → R defined in (2.21)
with gif(xi) > 0 ∀i ∈ {1, . . . , n}, which means the observations can be completely
separated by a hyperplane. The distance M is defined as the minimal distance of
a point to the hyperplane taken over all observations:

M = min
i=1,...,n

gif(xi)
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M
=

1
||
β
||

M
=

1
||
β
|| margin

x>β + β0

Figure 2.5: The separable case.

An example for the two-dimensional case is shown in Figure 2.5. The yellow band
on both sides of the hyperplane in Figure 2.5, which is exactly 2M units wide, is
called the margin. The aim is to find the biggest margin between the training data
of the two classes by solving the optimisation problem

max
β,β0
||β||=1

M

s.t. gi(x
>
i β + β0) ≥M i = 1, . . . , n.

(2.23)

This approach provides a unique solution for the problem of finding a separating
hyperplane between the classes. The side conditions ensure that the distance of
each data point to the decision boundary is at least M and the main condition
seeks the maximal value of M over the parameters β and β0, which define the
hyperplane.
We still have the requirement that β has to be normed, but we can avoid it:
assuming we drop the constraint ||β|| = 1, we replace the side conditions in (2.23)
by

1

||β||
gi(xiβ + β0) ≥M i = 1, . . . , n, (2.24)

which leads to new coefficients β̃ and β̃0 with

β̃ =
β

||β||
, β̃0 =

β0

||β||

and ||β̃|| = 1. Multiplying (2.24) with ||β|| leads to the new side conditions

gi(xiβ + β0) ≥ ||β||M i = 1, . . . , n. (2.25)

19



Let β and β0 satisfy (2.25), then any positively scaled multiple of them also sa-
tisfy (2.25). Setting ||β|| = 1

M
and using the fact that

min
a∈R+

1

a
= max

a∈R+
a

leads to a more familiar formulation of the support vector criterion for separated
data:

min
β,β0
||β||

s.t. gi(x
>
i β + β0) ≥ 1 i = 1, . . . , n

(2.26)

Problem (2.26) is a convex optimisation problem with a quadratic criterion and
linear inequality constraints. When using the Lagrange method to solve it, one
has to minimize the Lagrange primal function defined as

Lp =
1

2
||β||2 −

n∑
i=1

αi[gi(x
>
i β + β0)− 1] (2.27)

with respect to β and β0. The Lagrange multipliers αi have to be nonnegative,
αi ≥ 0. As norm functions only take values in R+ we can square the target function
and add the costant 1

2
without changing the resulting minimum. Assuming ||.||

stands for the Euclidean norm, which means ||β||2 = β>β, these modifications
make the derivation easier:

∂Lp
∂β

= β −
n∑
i=1

αigixi

∂Lp
∂β0

=
n∑
i=1

αigi

Setting these derivatives to zero and substituting them in (2.27) results in the
Lagrange dual function

Ld =
1

2
(
n∑
i=1

αigixi)
>(

n∑
j=1

αjgjxj)− (
n∑
i=1

αigixi)
>(

n∑
j=1

αjgjxj)− β0

n∑
i=1

αigi︸ ︷︷ ︸
=0

+
n∑
i=1

αi

=
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjgigjx
>
i xj, (2.28)

which gives a lower bound on the objective function (2.26). The solution of pro-
blem (2.26) is then obtained by solving the following simpler convex optimisation
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problem:

max
αi

[
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjgigjx
>
i xj

]
s.t. αi ≥ 0 for i = 1, . . . , n

(2.29)

In order to be optimal, the solution of problem (2.29) also has to satisfy the so-
called Karush-Kuhn-Tucker conditions

n∑
i=1

αigixi = β (2.30)

n∑
i=1

αigi = 0 (2.31)

αi
[
gi(x

>
i β + β0)− 1

]
= 0 i = 1, . . . , n. (2.32)

From the side condition of problem (2.29) and condition (2.32) we can see that
the following implications are true for all i = 1, . . . , n:

• αi > 0⇒ gi(x
>
i β+β0) = 1: the observation xi lies on one of the boundaries

of the margin; these points are called support vectors

• gi(x>i β + β0) > 1 ⇒ αi = 0: the observation xi does not lie on one of the
boundaries, but outside of the margin

The case that an observation lies within the margin cannot occur in the separable
case. Having a closer look at condition (2.30) we can see that the solution vector
β from problem (2.26) is a linear combination of the support vectors: if αi is equal
to zero, the ith summand in (2.30) is zero and therefore only the summands of
the support vectors do not vanish. Finally, the intercept β0 can be computed by
solving equation (2.32) for any of the support vectors. The separating hyperplane
in Figure 2.5 has three support vectors.

The non-separable case

In the non-separable case the two classes overlap and we have to take into account
that we cannot find a hyperplane where all points are on the correct side. There
exist two types of misclassification:

• an observation xi with gi = 1 is misclassified when f(xi) < 0

• an observation xj with gj = −1 is misclassified when f(xj) > 0
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In order to include unavoidable misclassified points in our optimisation problem,
a so-called slack variable ξi ≥ 0 is introduced for each side condition. The value of
ξi is the violation of the corresponding side condition: ξi > 0 means the point xi is
on the wrong side of its margin by the amount of Mξi, gi(x

>
i β+ β0) < M . Points

xj on the correct side of the margin have slack variables ξj = 0. An example is
given in Figure 2.6.

M
=

1
||
β
||

M
=

1
||
β
|| margin

x>β + β0

ξ4

ξ2

ξ5

ξ1 ξ3

Figure 2.6: The non-separable case.

The new side conditions are gi(x
>
i β + β0) ≥ M(1 − ξi), which measure the over-

lap of obervations on the wrong side of the margin in relative distance. As the
sum of violations should be as small as possible,

∑n
i=1 ξi ≤ const is added to the

optimisation problem. When ξi > 1 the observation xi is misclassified, therefore
the restriction

∑n
i=1 ξi ≤ C means the total amount of misclassified training ob-

servations has to be smaller than the constant C. Then (2.26) can be written
as

min
β,β0
||β||

s.t.


gi(x

>
i β + β0) ≥ 1− ξi for i = 1, . . . , n

ξi ≥ 0 for i = 1, . . . , n∑n
i=1 ξi ≤ const.

(2.33)

Points clearly outside the margins do not play an important role for determining
β and β0 and thus can be ignored for shaping the class boundary. In linear discri-
minant analysis, by contrast, all points have influence on the decision rule through
the mean vectors and covariance matrices. This property of the SVM can be useful
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in the presence of outliers in the data which do not lie near the decision boundary.
Problem (2.33) is also a convex optimisation problem and can be again solved by
using Lagrange multipliers. As in the separable case we replace ||β|| by 1

2
||β||2

for easier derivation. The side condition
∑n

i=1 ξi ≤ const is included in the main
condition by adding the term C

∑n
i=1 ξi, where the C is the so-called cost para-

meter. In the separable case C is set to ∞. Problem (2.33) can then be written
as

min
β,β0

[
1

2
||β||2 + C

n∑
i=1

ξi

]

s.t.

{
gi(x

>
i β + β0) ≥ 1− ξi for i = 1, . . . , n

ξi ≥ 0 for i = 1, . . . , n.

(2.34)

The corresponding Lagrange primal function, which has to be minimised with
respect to β, β0 and λi, is

Lp =
1

2
||β||2 + C

n∑
i=1

ξi −
n∑
i=1

αi[gi(x
>
i β + β0)− (1− ξi)]−

n∑
i=1

λiξi (2.35)

and the required derivatives of Lp are

∂Lp
∂β

= β −
n∑
i=1

αigixi

∂Lp
∂β0

=
n∑
i=1

αigi

∂Lp
∂ξi

= C − αi − λi ∀i = 1, . . . , n.

Additionally αi, λi and ξi have to be nonnegative. Setting these derivatives to zero
and substituting them in (2.35) we obtain the Lagrange dual function

Ld =
1

2
(
n∑
i=1

αigixi)
>(

n∑
j=1

αjgjxj) +

���
���

��n∑
i=1

(αi + λi)ξi − (
n∑
i=1

αigixi)
>(

n∑
j=1

αjgjxj)+

− β0

n∑
i=1

αigi︸ ︷︷ ︸
=0

+
n∑
i=1

αi

�
�
�

�
��

−
n∑
i=1

αiξi

�
�

�
�
��

−
n∑
i=1

λiξi

=
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjgigjx
>
i xj. (2.36)
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The solution of problem (2.33) is then obtained by solving the following simpler
convex optimisation problem:

max
αi

[
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjgigjx
>
i xj

]
s.t. 0 ≤ αi ≤ C for i = 1, . . . , n

(2.37)

In order to be optimal, the solution of problem (2.37) also has to satisfy the
Karush-Kuhn-Tucker conditions

n∑
i=1

αigixi = β (2.38)

n∑
i=1

αigi = 0 (2.39)

C = αi + λi (2.40)

λiξi = 0 (2.41)

αi
[
gi(x

>
i β + β0)− (1− ξi)

]
= 0 (2.42)

gi(x
>
i β + β0)− (1− ξi) ≥ 0. (2.43)

Conditions (2.40)–(2.43) have to hold for i = 1, . . . , n. As in the separable case
we can see from constraint (2.38) that the solution of β is a linear combination of
those xi for which αi > 0, the other summands are zero. These observations xi
with positive αi are again called support vectors as β is only constructed out of
them. According to condition (2.42), if αi > 0 then gi(x

>
i β+ β0) = (1− ξi) which

leads to two kinds of support vectors:

• ξi = 0: the observation xi lies on one of the two boundaries of the margin; due
to conditions (2.40) and (2.41) these vectors are characterised by 0 < αi < C

• ξi > 0: the observation xi does not lie on one of the two boundaries of
the margin; as condition (2.41) implies ξi > 0 ⇒ λi = 0, these vectors are
characterised by αi = C

Any of the margin points with αi > 0 and ξi = 0 can be used to determine the
intercept β0 by solving the equation gi(x

>
i β+β0) = 1. In order to obtain numerical

stability, the average over all of the solutions can be computed. By changing the
cost parameter C the amount of support vectors and the width of the margin
changes and therefore C is a so-called tuning parameter.
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2.2.2 Moving beyond linearity

Often linear hyperplanes are just a convenient approximation of a much better
separation of the classes. Moreover, linear models are easy to calculate and do
not easily overfit. A possible compromise between a linear model and a nonlinear
decision boundary can be achieved by using transformations of the original data
x = (x1, . . . , xp) as input.
Let hm(x) be the mth transformation of x with hm : Rp → R, m = 1, . . . ,M . A
linear basis expansion of x is then defined as

H(x) =
M∑
m=1

αmhm(x)

Let p < M and h : Rp → RM be the transformation in a higher-dimensional feature
space, then our new input features are h(xi) = (h1(xi), . . . , hM(xi)) instead of xi
for i = 1, . . . , n. We re-define the linear function f(·) in (2.21) to

f(x) := h(x)>β + β0, (2.44)

with β ∈ RM and β0 ∈ R. As the basis function hm are fixed, the model is linear
in the new variables h(x). This fact causes that the fitting is computed as before,
although we actually work with a larger feature space. The function (2.44) is
nonlinear in x which results in a nonlinear classifier defined by

Ĝ(x) = sgn
[
f̂(x)

]
.

with f̂(x) = h(x)>β̂ + β̂0 and β̂, β̂0 being the estimated coefficients. In the case
of Support Vector Machines typical basis expansions are polynomials and splines.

The optimisation problem (2.35) and its solution can be represented in a way that
only involves the new input features as inner products:
In the following we work with the transformed feature vectors h(xi) instead of xi.
Using the notation 〈·, ·〉 for the inner product, the Langrangian dual function (2.36)
can be written as

Ld =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjgigj〈h(xi), h(xj)〉 (2.45)
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and using constraint (2.38) the solution function f(x) can be written as

f(x) = h(x)>β + β0

= h(x)>

(
n∑
i=1

αigih(xi)

)
+ β0

=
n∑
i=1

αigi〈h(x), h(xi)〉+ β0. (2.46)

The intercept β0 is again determined by solving the equation gif(xi) = 1 for
any xi with 0 < αi < C. As we can see, (2.45) and (2.46) involve h(x) only
through inner products and therefore we do not need to specify the transformation
h(·). It is enough to know a special symmetric positive (semi-) definite function
K : Rp × Rp → R, the so-called kernel function, with

K(u,v) = 〈h(u), h(v)〉.

K computes inner products in the transformed feature space. The following three
choices for K are implemented in the R-function svm() from the package e1071:

• Linear kernel:
K(u,v) = 〈u,v〉

• (dth-degree) Polynomial kernel:

K(u,v) = (c0 + γ〈u,v〉)d for a constant c0, γ > 0

• Radial basis kernel (also called RBF (from Radial Basis Function) or
Gaussian kernel):

K(u,v) = exp(−γ||u− v||2) for γ > 0

• Sigmoid kernel (also called neural network or hyperbolic tangent kernel):

K(u,v) = tanh(γ〈u,v〉+ c0) for a constant c0, γ > 0

After selecting a kernel, choosing the right parameters is often a difficult task.
Methods like k-fold cross validation can be used to search for them in a set of
possible values. For details see Section 2.3.4.

In the nonlinear case, the cost parameter C plays an even more important role
than in the linear case: A large value of C penalises observations on the wrong
side of the margin heavily and therefore only a few ξi, if any, will be positive.
This results in a small margin and a sinuous and overfit decision boundary in the
original feature space. A small value of C causes a wider margin and a smoother
decision boundary, as observations on the wrong side are not penalised as heavily.
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2.3 Error rates

In a classification problem, normally a training and a test data set is used: the
model is fit to the training data and can be evaluated with the test data, from
which the correct classes are known. With this approach we can only obtain
information about the performance of the model for the available data. However,
an important question is how the method will perform for similar, but completely
new and unseen data only available in the future. Overfitted models will lead to
low error rates for the given test data but arbitrarily high error rates for new data.
The aim is to find a model which returns acceptable error rates for both the test
data and completely new data. Of course the term “acceptable” thereby depends,
amongst other things, heavily on the problem and given facilities. Often it is a
very subjective opinion of one or more indivduals involved in the task of finding
an adequate classification method. In the following some common error rates are
presented, and for the sake of completeness we also discuss cross validation, which
is used to improve the estimated prediction error.

2.3.1 Misclassification rate (mcr)

Let N be the total number of classified obervations. Then the misclassification
rate is the ratio of wrongly classified observations:

mcr =
1

N

N∑
i=1

I
{
gi 6= Ĝ(xi)

}
One can display the result in a contingency table (e.g. in R with the command
table()) which is also called confusion matrix :

P
re

d
ic

te
d

cl
as

se
s True classes

positive negative
POSITIVE tp

true positive
fp

false positive

NEGATIVE fn
false negative

tn
true negative

Figure 2.7: Confusion matrix

For easier differentiation the true class memberships are denoted with lower case
letters, namely positive and negative, and the estimated classes are denoted with
upper case letters, namely POSITIVE and NEGATIVE. The notation positive
and negative comes from medicine where a person is classified as “positive” when
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a test result, e.g. for cancer, is positive. For this example there exist two correct
classifications:

• true positive: a patient with cancer is correctly classified as ill

• true negative: a patient without cancer is correctly classified as healthy

There are two ways to make an error:

• false positive: a patient without cancer is wrongly classified as ill

• false negative: a patient with cancer is wrongly classified as healthy

With the notation of Figure 2.7 the misclassification rate can be computed as

mcr =
fp + fn
N

=
fp + fn

tp + tn + fp + fn
.

For comparing several misclassification rates of different methods, they can for
example be summarised and displayed with the help of boxplots.
In the case of different numbers of observations in the classes of the training set
one has to be careful as misclassification rates do not include this difference. An
example makes this clear: Suppose 90% of the observations belong to the first
and 10% to the second group. One possible classification rule is “assign each
observation to the first group”. The corresponding misclassification rate is 10%,
which is a small value, however, all observations of the second group are classified
wrongly. Therefore the interpretation of the misclassification rate in the case of
unequal group sizes has to be made carefully.

2.3.2 Receiver Operator Characteristics (ROC)

We can extract even more information from Figure 2.7: using again the example
in medicine we could be interested in how many sick patients are actually classified
as ill. The higher this so-called true positive rate or hit rate, the more reliable is a
positive test result. In other words: when a test has a high true positive rate, most
diseases are detected. The number of wrongly as ill classified patients in those who
are healthy is called false positive rate or false alarm rate. With the notation of
Figure 2.7, they are calculated as follows:

• sensitivity or true positive rate (TPR)

TPR =
tp

tp + fn
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• 1-specificity or false positive rate (FPR)

FPR =
fp

fp + tn

The ratio 1-TPR gives us the proportion of undetected cancer patients. We could
now ask ourselves: “What is worse, to be ill and the doctor does not diagnose it or
to be healthy and get a wrong diagnose?”. Both events cause negative effects or
costs: In the worst case a wrongly negative test leads to the death of the patient,
or the disease of the patient is detected later, when it has progressed and the
treatment is eventually more difficult. In the case of false alarm, the wrongly
positive test result leads to more examinations, e.g. a biopsy in the case of cancer,
and therefore higher costs.
ROC graphs are used to visualize the performance of classifiers by plotting the
FPR on the x-axis and the TPR rate on the y-axis. Additionally they are used to
set the so-called operating point, which is the threshold for classifying an object as
“positive”. Subsection 2.3.2 closely follows the first six sections of Fawcett (2006),
which is a good introduction to ROC theory.

Points in ROC space

Classifiers can either have a discrete (e.g. class label) or a continuous output (e.g.
probability of class membership). In the case of discrete output the classification
of a test set results in one confusion matrix and therefore one point in the ROC-
graph. An example:

positive negative
POSITIVE 1979 209

NEGATIVE 142 1912

Table 2.1: Confusion matrix for N = 4242 observations.

The 45◦ diagonal line in Figure 2.8 stands for random classification, which means
we do not have information about the classes: if a classifier allocates new obser-
vations randomly to one of the two classes with the probability q = 0.5, the point
of this classifier in ROC space will be (0.5, 0.5). In general, the resulting point
will be (q, q) for the probability q ∈ [0, 1]. Each point below the diagonal signifies
a classifier which performs worse than random allocation. Such a classifier has
information about the classes, but it uses it wrongly. The performance can be
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Figure 2.8: ROC point from Table 2.1

increased by negating the class assignments which results in mirroring the ROC
point along the diagonal. If a point lies above the diagonal the classifier uses the
class information correctly.

From now on we will concentrate on points in the upper triangle. We can further
distinguish between conservative and liberal classifiers: A conservative classifier
only assigns an observation to the class “positive” when strong proof is given.
Therefore it will have low false positive and false negative rates: when a doctor
declares a test on cancer as positive only when he is really sure, just a small amount
of healthy patients will be declared as ill, but at the same time a lot of ill patients
will slip through the net and do not find out that they have cancer. On the other
hand, a liberal classifier classifies an observation as “positive” only with the sligh-
test sign that it could belong to it. Therefore it will have high false positive and
false negative rates: the doctor diagnoses cancer on the slightest suspicion, and so
a lot of ill patients are wrongly classified as ill, but also the disease of a lot of sick
patients is correctly detected and lives can be saved. For better understanding
we add a conservative point in red and a liberal plot in green to Figure 2.8. The
result can be seen in Figure 2.9.
The ideal case, which means all positive cases are correctly classified as positive
and no negative case is wrongly classified as positive, results in the point (0, 1).
Two extreme points are (0, 0), which means no observation is classified as positive,
and (1, 1), which means all points are classified as positive. A point A = (a1, a2)
is said to be better than a point B = (b1, b2) when it lies north-west of it in the
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Figure 2.9: ROC graph with a conservative point in red and a liberal point in
green.

ROC graph, which means that a1 < b1 (lower FPR) and a2 > b2 (higher TPR).

Creating curves in the ROC space

Often it is more informative to create curves instead of points in ROC space. When
a classification method retuns a-posteriori probabilities for class membership, also
called scores, one can determine a threshold τ for the assignment: e.g. for τ =
0.8 those observations with a score bigger than 0.8 are classified as positive, all
other observations as negative. Changing the threshold results in a different point
in ROC space and by varying τ from −∞ to ∞ we get a curve. As we only
take values from one column of the confusion matrix to compute FPR and TPR,
respectively, the ROC curve is independent of the underlying class distributions.
That means the change of the proportion of negative to positive instancs does not
have an impact on the ROC curve. By taking advantage of the monotonicity of
threshold classifiers, which means that an instance which is classified as positive
for a threshold τo will be also classified as positive for every threshold τ < τ0, a
ROC curve can be constructed as follows:
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1. define the following variables:

L . . . the set of test data points

Np . . . the number of positive observations in L

Nn . . . the number of negative observations in L

fp . . . false positive classified objects, start value = 0

tp . . . true positive classified objects, start value = 0

f̂(x) . . . the a-posteriori probability thatx ∈ L is positive

R . . . a matrix with the false negative rate in the first and

the false positive rate in the second column

2. sort the a-posteriori probabilities returned by the classification method and
the corresponding class memberships by decreasing size

3. check whether the present observation is assigned to the same class as the
previous observation (for i = 1 it is automatically NO); if NO, add the point(
fp
Nn
, tp
Np

)
to the matrix R

4. check each pair of the vectors in 2.: when the instance i is classified as
positive, increase tp by 1, when the instance is classified as negative, increase
fp by 1,

5. repeat point 3. and 4. for all i = 1, . . . , n

6. plot fp versus tp, i.e. the first column of R versus the second column of R

Point 3. is needed in the case of equally scored instances: let (0.7, 0.7, 0.7, 0.7, 0.7)
be a sequence of scores and the corresponding classes are two positive and three
negative. As the scores are equal the order of the observations is not fixed -
the two extreme cases are (positive, positive, negative, negative, negative) and
(negative, negative, negative, positive, positive) which lead to L-shapes forming
a rectangle. Any other order leads to a path in this rectangle and as we want the
expected performance of a classifier we choose the average value of these paths,
which is the diagonal. In Figure 2.10 an example ROC curve is shown.

Setting the operating point

In general, wrong decisions create costs. The optimal operating point represents
the best trade-off between the cost of failing to detect a positive observation and
the cost of false alarm. Assuming equal costs and equal a-priori possibilities of
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Figure 2.10: An example of a ROC curve.

class membership, normally the operating point is set to 0.5 without further com-
putation. One can also choose the operating point by using the ROC curve: as
the point (0, 1) is the ideal case – high true positive rate, low false positive rate
– for example the threshold resulting in the point on the ROC curve nearest to
the upper left corner can be chosen as optimal cut-off point. One can also choose
approximately the value where the slope of the ROC curve gets flatter, as this
visualises only small gain of true positive cases and more true negative cases.

2.3.3 k-fold Cross-Validation (CV)

In order to compute the expected prediction error of a test data set we use a so-
called loss function L, which measures the error between the true class g and the
estimated class Ĝ(x). Examples are

• quadratic loss :

L
(
g, Ĝ(x)

)
=
(
g − Ĝ(x)

)2

• absolute loss :
L
(
g, Ĝ(x)

)
= |g − Ĝ(x)|

The expected prediction error is then defined as

Err = E
[
L
(
g, Ĝ(x)

)]
. (2.47)
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For a sample (x1, . . . ,xn), (2.47) can be estimated by

Êrr =
1

n

n∑
i=1

L
(
gi, Ĝ(xi)

)
.

Often there is not enough data available to use some of it as test data. When
fitting a model to a data set and testing it with the same data, the resulting
prediction error is in general too optimistic, which means it is smaller than the
true value. We also say the error estimate is biased. A popular method to obtain
a more realistic esimate of the prediction error is to randomly divide the data in
k more or less equally sized parts, use one part as test data and the remaining
k − 1 parts as training data. From the data set which is schematically illustrated
in Figure 2.11, the third part is used as test data and the rest as training data.

1 2 3 4 . . . k
train train test train . . . train

Figure 2.11: An example of dividing the data in training and test data sets.

Let Ĝ(−j)(·) stand for the classification rule based on the data minus the jth part
(in our example j = 3), then Ĝ(−j)(xi) is the predicted class membership of the
observation xi from the jth part of the dataset. As each observation is exactly
once in the test data set we get n predicted values ĝi for i = 1, . . . , n.
Let φ : {1, . . . , n} → {1, . . . , k} be an indexing functions which indicates to which
partition j ∈ {1, . . . , k} the observation xi (i ∈ {1, . . . , n}) has been assigned
randomly. The cross-validation estimate of the prediction error is then defined as

ÊrrCV =
1

n

n∑
i=1

L
(
gi, Ĝ

(−φ(i))(xi)
)
,

The choice of k is an important task. In the case k = n each partition includes
just one point - this is called leave-1-out-cross-validation. The model is fit to n−1
data points and is evaluated with the left-out observation. High computational
effort and high variance due to similar training data sets are often disadvantages
of this method. In general 5-fold and 10-fold cross-validation are common choices
which provide quite different training data sets. Big data sets are often divided
according to the ratio 2:1, which means 2

3
of the data are used for training and 1

3

for testing. Repeating this procedure for example 100 times provides estimates of
the prediction error.
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Chapter 3

Statistical Analysis of
Multispectral Data

3.1 Multispectral data collection

A pixel is the smallest controllable unit of a digital image. Often a pixel is a
square, but it can also be a dot, a line or a similar object. A picture is built up
of a certain amount of adjoining pixels, and their values can be displayed by a
matrix. The more pixels an image has, the finer grain it has. When the pixels of
an image can be seen we talk about a “pixelated” image. An example of a pixel
image is presented in Figure 3.1: on the right side the pixel image of the three-
dimensional matrix, which is displayed on the left side, can be seen. This image
has been generated in Matlab (for more information see Appendix A.1) with the
function imagesc(), which matches the values of the matrix to a colour scale.

 1 4 7
2 5 8
3 6 9

 −→

 

 

1 2 3

1

2

3 2

4

6

8

Figure 3.1: An example of a digital image.

Spectral Imaging incorporates spectroscopy, which is the analysis of the interaction
between radiated energy and an object, and digital imaging processing. In a classi-
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cal RGB picture, each pixel is represented by a three-dimensional vector: the first
entry stands for the red, the second for the green and the third for the blue colour
channel. In a multispectral image, each pixel is represented by a p-dimensional
vector: each entry stands for the reflectance value at a certain wavelength of light.
Often multispectral images are represented as a “data cube” like in Figure 3.2.
Additionally, the spectrum of each pixel can be modeled in two dimensions by
plotting the wavelength of the energy on the x-axis and its reflectance value on
the y-axis. An example of a spectrum can also be seen in Figure 3.2.
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spectrum of one pixel: wavelength

reflectance

Figure 3.2: Schematic representation of a multispectral image.

The data for the statistical analysis on which this thesis is based has been collected
using the so-called wavelength scanning principle, which means a single image has
been recorded for each wavelength. As the sample is kept fixed while taking the
images, this method is also known as staring imager. For more information see for
example Leitner et al. (2003).
In our case, the sample is illuminated with LEDs of specific wavelengths, which
have been previously selected by Principal Component Analysis (PCA). The re-
corded images are then combined in the computer to a data cube with two spatial
and one spectral dimension, see Figure 3.2. For each wavelength, the recorded
image is a data matrix with m1 lines and m2 rows. After the preprocessing, which
will be discussed later, the data can be reshaped to a (m1 ·m2)×p matrix by saving
each matrix as a m1 ·m2 long vector, reading out the data columnwise. For our
example in Figure 3.1, this would result in the column vector (1, 2, 3, 4, 5, 6, 7, 8, 9).
Later we will have nine columns, one for each wavelength. This data format is nee-
ded for the statistical analysis, especially for the supervised learning techniques:
the columns represent the features, the rows (which are nothing else than the
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spectra) represent the observations. One additional column containing the group
membership of each spectrum will be added to the training data.

3.1.1 Description of the data

The measurement equipment has been constructed by employees of the CTR AG.
It has been improved and further elaborated during the work for this thesis, from
time to time evaluated by generating a new data set and analysing it. The dataset
acquired in September 2011 has been used for the results presented in Section 3.3.
The multispectral imaging data has nine variables, which are the nine wavelengths
used in data acquisition. We are not interested in the value of the wavlengths (e.g.
520 nm), and therefore they are denoted by wavelength no. i or wli for i = 1 . . . , n,
respectively. Each time an image has been taken at a certain wavelength, not only
one but three measurements have been made and checked for differences. Analysis
has shown that there are no significant differences between the measurements, and
therefore only the first measurement is discussed in the remainder of this chapter.
Each of the nine images has the dimension 71× 401 pixels. Data originates from
six objects from the same species, to which we will refer by the capital letters A
to F (A stands for the first object, B for the second object and so on). For each
object, data has been recorded on four different positions, which we number from
1 to 4. E2 therefore stands for object E, second position. As the most significant
results were obtained from the second position, we will concentrate on it in the
following presentation and discussion of the results.

3.2 Preprocessing of multispectral image data

Data preparation is an important task when working with image data. The quality
of the data can be improved significantly, which results in more accurate statistical
models and lower error rates when predicting class memberships. In this section,
the application of several standard image processing techniques is described and
illustrated by pixelplots, again generated in Matlab. The aim of using these plots
is to make clear which format the data have and how the preprocessing improves
their quality. Therefore we do not display all wavelengths but concentrate on one
object, one position, two wavelengths and data from the class “untreated”. The
whole preprocessing was done in Matlab, the statistical analysis, which will be
discussed later, has been performed with R, see Appendix A.2.
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3.2.1 Converting a colour image to a grayscale image

The digital images used for the analysis have been taken with a colour camera,
but we only need a monochrome image. Several methods exist to convert a colour
image to a grayscale image. One way is to eliminate the hue and saturation
information but keep the luminance. That means instead of a 3-dimensional vector,
each pixel has only one intensity value. In Matlab, the function rgb2gray()

converts RGB values to grayscale values by computing the following weighted sum
of the red (R), green (G) and blue (B) components:

0.2989 ·R + 0.5870 ·G+ 0.1140 ·B

The resulting image only consists of shades of gray with the two extremes white
(strongest intensity) and black (weakest intensity). Two examples are given in
Figure 3.3.
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(a) wavelength no. 2
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Figure 3.3: Pixelplots of wavelengths no. 2 and 7 from object E at position 2,
group untreated.

The two wavelengths have been selected due to the fact that their scatterplot
(wavelength 2 on the x-axis, wavelength 7 on the y-axis) is informative, which is
not the case for all wavelength pairs. We will have a look at that scatterplot later.
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3.2.2 2D Gaussian lowpass filter

As our images include unwanted structural details, a filter is used to remove them.
Filtering removes unwanted components by suppressing some aspect of the input
signal. In our case, the input signals are the reflectance measurements made by
the camera, where the filter is applied to the data of each wavelength seperately.
A Gaussian filter transforms the input signal by convolution with the density of a
normal (or Gaussian) distribution.

The filtering procedure with a Gaussian kernel for two-dimensional data is the
following: The density function of the 2-dimensional normal distribution with the
mean vector µ and the covariance matrix Σ

µ =

(
0
0

)
, Σ =

(
σ2 0
0 σ2

)
is defined as

f(x) =
1

2π|Σ| 12
e−

1
2
x>Σ−1x

=
1

2πσ2
e−

1
2

x21+x
2
2

σ2 ∀ x = (x1, x2) ∈ R× R. (3.1)

In Figure 3.4, function (3.1) is displayed for the case σ2 = 1.
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Figure 3.4: The two-dimensional density function of the normal distribution with
µ = 0 and Σ = I2.

The contour lines of the distribution function are concentric circles with the centre
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(0, 0). As a pixel image can be visualised by a matrix and therefore consists of
discrete points, we also want to approximate the density of the bivariate normal
distribution by discrete values. Although the domain of the distribution function
is R × R, it is nearly zero outside the circle with µ as centre and 3σ as radius.
Therefore we can use discrete values on the square with side length h ≈ 6σ and
centre (0, 0) as approximation. The real side length should be an odd number
in order to include the pixels around the centre symmetrically. After choosing
the window size h and the standard deviation σ, a h × h convolution matrix is
calculated as discrete approximation of the density function. Table 3.1 shows a
convolution matrix for Figure 3.4 with h = 5 and σ = 1.


0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133
0.0219 0.0983 0.1621 0.0983 0.0219
0.0133 0.0596 0.0983 0.0596 0.0133
0.0030 0.0133 0.0219 0.0133 0.0030


Table 3.1: Convolution matrix for h = 5 and σ = 1.

The new value of the pixel is the weighted average of the old value and its h×h wide
neighbourhood. The values of the convolution matrix are the weights: the weight
of the pixel itself is in the centre of the matrix, coloured purple in Table 3.1. The
further away we get from the centre, the smaller is the weight of the corresponding
pixel. In Table 3.1, this fact is visualised by the fading blue colouring of the cells.
Figure 3.5 shows the pixelplots of our object after a Gaussian filter with h = 37 and
σ = 6 has been applied. We can clearly see that the patterns which were visible
before have been removed. The Gaussian filter is a so-called blurring technique,
which means that detailed structures are removed.

3.2.3 Two-point calibration

In order to calibrate the measuring system, a two-point calibration, which includes
dark current correction and system gain calibration, is applied. Therefore a dark
current image and a white diffuse reflectance standard are recorded. Let Xλ be
the raw image, Bλ the dark current image and W λ the white standard image at
an arbitrary but fixed wavelength λ, with Xλ, Bλ, W λ ∈ Rm1×m2 . Let us use the
notation X = (xij)

i=1,...,m1

j=1,...,m2
for each matrix. Then the final reflectance image Rλ

is computed elementwise by

rijλ =
xijλ − bijλ
wijλ − bijλ

for

{
i = 1, . . . ,m1

j = 1, . . . ,m2
.
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Figure 3.5: Pixelplots of wavelengths no. 2 and 7 from object E at position 2,
group untreated, after applying a Gaussian filter with h = 37 and σ = 6.

Analysis showed that Bλ is approximately zero (below detector limit and constant)
in our case, therefore the raw data were only divided by the refelctance standard.
Figure 3.6 shows the pixelplots of our object after the Gaussian filtering and the
division by a reflectance standard. In Figure 3.5, differences in brightness can be
seen: the lower half of the pictures is darker than the upper half. These differences
do not occur in Figure 3.6.

3.2.4 Subset selection

Having a look at Figure 3.6, one can see that still lighter and darker spots are
visible at the edges of the images. For our classification, we want to exclude these
spots so that they cannot influence the results negatively. We also want to reduce
the amount of data for a more efficient data analysis, as certain techniques have
very long computational times for big data sets. Therefore a subset is taken by
choosing a smaller rectangle out of the given images, see Figure 3.7. It seems that
there are still very light and dark spots, but when having a look at the scale at
the right we can see that the range of value of the subset is much smaller. The
dimension of one image is now 21× 101.
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Figure 3.6: Pixelplots of wavelengths no. 2 and 7 from object E at position 2,
group untreated, after applying a Gaussian filter with h = 37 and σ = 6 and
dividing by a reflectance standard.

3.2.5 Image data in long format

For data analysis we need the image data in the format Rn×p, with n = m1 ·m2

being the number of pixels per image and p the number of wavelengths used for
data acquisition, which is the same as the number of images. The following code
is an example how the data matrix dat2 of the second data set, proband E at
position 2, looks like in R:

> head(dat2[["E"]][["2"]])

wl1 wl2 wl3 wl4 wl5 wl6 wl7 wl8 wl9 truth pixel

1 1.02 1.54 1.45 1.48 1.78 1.28 1.38 1.22 1.71 untreated 1

2 1.02 1.52 1.42 1.47 1.74 1.26 1.35 1.21 1.64 untreated 2

3 1.01 1.50 1.39 1.46 1.72 1.24 1.33 1.20 1.57 untreated 3

4 1.00 1.48 1.36 1.46 1.69 1.22 1.30 1.19 1.51 untreated 4

5 0.99 1.46 1.34 1.45 1.66 1.20 1.28 1.18 1.45 untreated 5

6 0.99 1.44 1.32 1.45 1.64 1.18 1.26 1.17 1.40 untreated 6

The first nine variables (wl1-wl9) are the input variables, the column truth is
the output variable and the column pixel denotes the position where the pixel is
situated in the image: the pixels in an image are numbered columnwise from 1 to
n. The following code shows that exactly one half of the obervations belongs to
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Figure 3.7: Subset of the pixelplots of wavelengths no. 2 and 7 from object E at
position 2, group untreated, after applying a Gaussian filter with h = 37 and σ = 6
and dividing by a reflectance standard.

the class “untreated” and the other half belongs to the class “treated”:

> E2<-dat2[["E"]][["2"]]

> dim(E2)

[1] 56942 11

> dim(E2[E2$truth=="untreated",])

[1] 28471 11

> dim(E2[E2$truth=="treated",])

[1] 28471 11

> 28471*2

[1] 56942

From now on the data analysis has been performed using the statistical software
R.

3.2.6 Scatterplot of the image data

An informative representation of data are scatterplots. In the two-dimensional
case, the values of one variable are plotted on the x-axis and those of a second
variable are plotted on the y-axis. In the three-dimensional case, additionally the
values of a third variable are plotted on the z-axis. In our case we have nine
dimensions, but plotting them all at the same time is impossible. One possible
alternative is to have a look at two variables at a time, which results in 36 scat-
terplots. They can be displayed as a so-called scatterplot matrix, but including
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it in this thesis would not be very informative as space is limited. Therefore we
only have a look at one scatterplot and keep in mind that it is only one of many.
For the statistical analysis which has been carried out for this thesis, of course all
pairs have been examined thoroughly.
As we want to have a look at the data of different objects with different value
ranges, we have to find a method which makes the six data clouds more compa-
rable and, as a result, improves classification. By columnwise centering of the data,
which means that each observation is centered by the mean of the corresponding
wavelength, this effect is achieved. Let X = (xij)

i=1,...,n
j=1,...,p be the data matrix, then

the columnwise centered matrix X̃ = (x̃ij)
i=1,...,n
j=1,...,p is elementwise computed by

x̃ij = xij −
1

n

n∑
i=1

xij.

Figure 3.8 shows the scatterplot of the wavelengths number 2 and 7, which have
been already used for the pixelplots.

The red coloured points belong to the class “untreated”, the blue coloured ones to
the class “treated”. The data looks quite separable according to this wavelengths,
except for object F, which is denoted by the darkest shadings of red and green in
Figure 3.8. It seems to have “switched” classes, which means the data cloud of
object F which belongs to the class “untreated” lies within the data cloud of the
objects A-E which belong to the class “treated”, and vice versa.
Although two-dimensional plots do not allow for definite conclusions, the exami-
nation of the scatterplots suggests to try a linear classifier. A linear model is
desired, as it implies short computation time and therefore good applicability for
our hand-held device.

Creating Figure 3.8 with R

The following code shows the n × (p + 1)-dimensional data frame df which has
been used for Figure 3.8:

> head(df)

wl1 wl2 wl3 wl4 wl5 wl6 wl7 wl8 wl9 col

1 0.95 1.18 1.23 1.14 1.44 1.13 0.85 0.95 1.32 A untreated

2 0.95 1.17 1.23 1.14 1.45 1.13 0.86 0.95 1.33 A untreated

3 0.95 1.16 1.23 1.14 1.45 1.13 0.86 0.95 1.34 A untreated

4 0.95 1.16 1.23 1.14 1.46 1.13 0.86 0.94 1.34 A untreated

5 0.95 1.15 1.23 1.14 1.46 1.13 0.86 0.94 1.35 A untreated

6 0.94 1.14 1.23 1.14 1.46 1.12 0.87 0.94 1.35 A untreated
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Figure 3.8: Scatterplot of columnwise centered data, position 2, wavlength 2 vs.
wavelength 7.

The data frame has 10 columns: The first nine are numerical variables and stand
for the wavelengths, the last one is a factor variable indicating the colours of the
data clouds. In this case the combination of the object name and the class has
been used, which results in 12 colours. For creating Figure 3.8, the R package
ggplot2 has been used, see Appendix A.2. The following code shows how the plot
can be created:

> ggplot(df,aes(wl2,wl7,colour=col))+

opts(title=paste("Dataset 2 columnwise centered, position 2"))+

geom_point(aes(shape=20),alpha=.1)

The colours can be set by the option scale colour manual().
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3.3 Results

In the following subsections, the results of the classification methods described in
Chapter 2 are presented. Like already done in Subsection 3.2.6, some R code is
included after the plots in order to give an idea how they can be reproduced. For
more information about the R package ggplot2, which has been used to produce
the plots, see Wickham (2009) and A.2. The data frames for the plots are also
shown, always denoted as df, so that the reader knows which variables are needed
and which format (e.g. numeric, character) they have.
In general the classification procedure was the following: the data of five objects
has been used as training data in order to get a training data set which is more
independent of the individual objects. Therefore the data frames have been com-
bined columnwise using the R function rbind(). During the analysis, also three
or four data frames were used as training data, but the results were better for five
training objects. The test data is always one proband which is not in the training
set.

3.3.1 Linear Discriminant Analysis (LDA)

We want to begin with a simple model and try out more complex ones later. As
all images have the same size, the amount of observations from the groups ”un-
treated” and ”treated” are equal in each training data set. Therefore the prior
probabilities of the two groups are equal: π1 = π2 = 0.5. Additionally, we assume
that the expected costs for misclassification are also equal: c(2|1) = c(1|2). This
assumption is made in order to simplify the classification and could be dropped
in future analyses. In this case the classification rules of LDA and Fisher’s linear
discriminant are the same, as we have seen in Subsection 2.1.5. The method of
Fisher has a big advantage: it provides visual insight into the separability of the
data.
In order to find out whether a linear discriminant model is realistic, we have a
look at so-called Fisher plots as a result of Fisher discriminant analysis, see Fisher
(1938). That means the nine-dimensional data is projected on one dimension by
looking for the optimal separation, see Section 2.1.5. A good separation of the
groups in the Fisher plots suggests that misclassification rates will be low for this
method. Figure 3.9 shows six Fisher plots, each for five training objects and one
test object. Each plot has been made as follows: the Fisher projection direction
has been calculated for five training data objects, and afterwards the data of the
remaining object has been projected according to this direction. The results are
displayed in one figure, where the test objects are given on the right side of each
Fisher plot. One can see that the separation is good except for object F.
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Figure 3.9: Fisherplots for the setting five training objects, one test object, at
position 2.

Encouraged by these plots, we calculate a linear model using the function lda()

from the package MASS, see Appendix A.2. Again the data of five objects has been
used as training data and one object has been used for testing the model. The
function predict() delivers the predicted class memberships of the test object,
which are evaluated using misclassification rates, see Subsection 2.3.1. The result
is displayed in Table 3.2.

A B C D E F
A,B,C,D,E 0.2178
A,B,C,D,F 0.0017
A,B,C,E,F 0.0000
A,B,D,E,F 0.0087
A,C,D,E,F 0.0000
B,C,D,E,F 0.0009

Table 3.2: LDA misclassification rates for 5 training data sets and one test data
set at position 2.

The objects which are used as training data are displayed in the rows, those which
are used as test data in the columns. Those fields which are left blank stand for

47



settings which have not been computed, as the prediction error would be too opti-
mistic when an object is in the training and in the test data set. Except for object
F, which is an outlier as we have already seen in Figure 3.8, the misclassification
rates are acceptable. Some values are even zero, which implies not only that the
data is linearly separable, but also that the data of five objects include a lot of
information about the sixth object. This fact can be used in future applications
of the linear model: we do not need data of the object which has to be classified,
but can use training data of a fixed set of objects.

3.3.2 Robust LDA (Linda)

Although the results of LDA are already good, we want to find a model which
reduces the influence of outliers on the other objects. One possibility is to use
robust methods, e.g. Linda(), which is an R function from the package rrcov, see
Appendix A.2. As explained in Chapter 2, robust LDA methods use estimators
of the mean and the covariance with a high breakdown point. In the case of
Linda(), this is done by using the MCD estimator with the default value h = 0.5,
see Subsection 2.1.4. As an effect, outliers in the data are excluded when fitting the
model and therefore do not have a big effect on the result. The misclassification
rates of robust LDA can be ssen in Table 3.3.

A B C D E F
A,B,C,D,E 0.2129
A,B,C,D,F 0.0000
A,B,C,E,F 0.0620
A,B,D,E,F 0.0052
A,C,D,E,F 0.0000
B,C,D,E,F 0.0000

Table 3.3: Linda misclassification rates for 5 training data sets and one test data
set at position 2.

Linda() detects the observations from object F as outliers and exludes them when
modeling the decision boundary. While the error rates of the outliers may increase,
which does not bother us as we want a good prediction for the “non-outlier” data,
the misclassification rates of the remaining objects decrease. Another positive
aspect of discriminant methods like LDA and robust LDA is, that even when
the amount of data is increased by adding new training objects, computing time
does not significantly increase. This is due to the fact that the dimension of the
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covariance matrix only depends on the dimension of the data and therefore always
stays p × p, even when n, the amount of data, is high. As the estimation of the
covariance matrix is the most computationally intensive part, computing time will
more or less stay the same.

3.3.3 Quadratic Discriminant Analysis (QDA)

Although it seems that the data is linearly separable, we also try quadratic discri-
minant analysis. As it is difficult to detect every detail of the relationships between
nine variables simply by examining scatterplots, there may exist some unrecognised
nonlinear structures which can be better described by a quadratic model. Using
the R function qda(), again from the package MASS, we therefore calculate a qua-
dratic model with five training objects and predict the class memberships of the
remaining objects. The resulting misclassification rates are displayed in Table 3.4.

A B C D E F
A,B,C,D,E 0.1862
A,B,C,D,F 0.0014
A,B,C,E,F 0.0005
A,B,D,E,F 0.0210
A,C,D,E,F 0.0000
B,C,D,E,F 0.0005

Table 3.4: QDA misclassification rates for 5 training data sets and one test data
set at position 2.

Quadratic Discriminant Analysis does not bring a large improvement. On the first
sight it looks good: the misclassification rates are in general low, and even the
value of the setting where F is the test object has decreased. Having a closer look,
one can see that the misclassification rates of some settings, which worked good
for LDA and robust LDA, slightly increased. This may not seem important, but
for other positions, which work in general worse than position 2, the effect is more
distinctive. In general, a trade-off between the error rates of outlier objects and
non-outlier objects is not desired. We will see later, namely in Subsection 3.3.6,
that the overall performance over all four positions is worse than LDA.

3.3.4 Robust QDA

Also for QDA, the robust version is tried out. We use the function QdaCov(), again
from package rrcov, which also uses MCD estimators with h = 0.5 as default. The
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results can be seen in Figure 3.5.

A B C D E F
A,B,C,D,E 0.2214
A,B,C,D,F 0.0462
A,B,C,E,F 0.0924
A,B,D,E,F 0.0328
A,C,D,E,F 0.0000
B,C,D,E,F 0.0000

Table 3.5: QdaCov misclassification rates for 5 training data sets and one test data
set at position 2.

Robust QDA performs even worse than the classical QDA, which shows us that
the quadratic approach is not suitable for our data. This is good for us, as the
linear models are simpler and easier applicable in reality.

3.3.5 Support Vector Machine (SVM)

SVM is a powerful classification method often used in image analysis. As LDA
and QDA misclassification results were not convincing at the beginning of the sta-
tistical analysis performed for this thesis, SVM has been included. Therefor the
function svm() from the package e1071 has been used, see Appendix A.2. After
adapting the preprocessing, LDA and QDA results were better than those of SVM
and it came out that SVM is not a suitable method for our data as it cannot
handle the outlier object. Another big disadvantage of the SVM method is that
computation time is high and increases for increasing size of the training data set.
Using SVM always includes the decision which kernel should be used. In accor-
dance with the linear separability which can be seen in Figure 3.9, and in order to
keep the model simple, the linear kernel has been chosen. Additionally the radial
basis kernel has been used as it is the default kernel and we want to try out whe-
ther a more complicated nonlinear approach is useful, which was also one motive
to use QDA. Setting the parameters of the radial kernel is a very sensitive exercise
and as we have six test settings, we had to choose one and adapt the parameters
for it. In the end, object A at position 2 has been used for parameter selection.
The function svmEval() from the package chemometrics is helpful for this task.
The following procedure has been used to determine the optimal parameters: C
has been fixed at its default value 1, because analysis has shown that changing
this parameter does not lead to an error improvement. Then that value has been
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chosen from 10 possible γ-values, for which the cross-validation error is smallest.
2/3 of the data has been randomly chosen as training data and the other third has
been used as test data. This procedure has been repeated 100 times and the result
has been plotted as bar chart. In the end, the paramters C = 1 and γ = 0.01 have
been chosen as 0.01 had the highest frequency.

The misclassification errors of SVM with the linear kernel can be seen in Table 3.6.

A B C D E F
A,B,C,D,E 0.7937
A,B,C,D,F 0.0000
A,B,C,E,F 0.0085
A,B,D,E,F 0.0879
A,C,D,E,F 0.0000
B,C,D,E,F 0.0000

Table 3.6: SVM (linear kernel) misclassification rates for 5 training data sets and
one test data set at position 2.

The result of the outlier object F is very bad, as nearly 80% of its obersvations are
classified wrongly. This may be due to overfitting, which means the SVM model
does not fit to the data of object F because it adapts too much to the information
from the training data. Also the misclassification error of object C is higher than
for any other method.

The misclassification errors of SVM with the radial basis kernel can be seen in
Table 3.7.

A B C D E F
A,B,C,D,E 0.8347
A,B,C,D,F 0.0000
A,B,C,E,F 0.0120
A,B,D,E,F 0.0632
A,C,D,E,F 0.0000
B,C,D,E,F 0.0050

Table 3.7: SVM (radial basis kernel with parameters C=1 and γ = 0.01) misclas-
sification rates for 5 training data sets and one test data set at position 2.

The misclassification rate of object F is higher than 80%, which shows that the
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information provided by the training objects cannot be used to predict the class
memberships of the test object for this setting. The other results are moderate,
but we will see later that this method does not work for our data at all. Even when
the results would be better, the high computation time would make it impossible
to use SVM for a hand-held device efficiently.

3.3.6 Selection of the optimal classification method

In order to find the optimal method for the classification of our image data, we
want to compare the results of LDA, robust LDA, QDA, robust QDA and SVM,
both using the linear and the radial basis kernel, at all four positions. As plotting
is a useful way to get an overview, two graphical representations are presented in
this subsection.
At first the following list should remind the reader which properties an optimal
classifier should have for our problem:

• Moderate computing time: the method will be implemented in a hand-held
device, therefore computing time should not be too long so that the comsu-
mer does not have to wait.

• Easily adaptable for new objects : the project is still running and new data
sets will be created, therefore we are looking for a method where we can be
quite sure that it will also work for new data, both of the objects already
included in the current analysis and of new, unseen objects.

• Good results for non-outlier objects : the main attention lies on the correct
classification of non-oultier objects. Lower misclassification rates of outlier
objects should not result in a trade-off with higher rates of the non-outlier
objects.

Boxplot visualisation

The first visualisation method used is the boxplot, which is a graphical imple-
mentation of the so-called five-number summary, consisting of five quantiles: the
minimum, the first quartile, the median, the third quartile and the maximum of a
dataset. In Figure 3.10 one can see how a boxplot is structured. The scale on the
left side has been chosen as we want to display misclassification rates, which lie
between 0 and 1. Of course any other scale is possible. A boxplot is constructed
in the following way:

• The box is determined by two values: its lower line is the 1st quartile,
which is the 0.25-quantile, and its upper line is the 3rd quartile, which is the
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Figure 3.10: Schematic representation of a boxplot.

0.75-quantile. These two lines, which are also called lower and upper hinge,
can also be determined by alternative methods, which will not be covered
in this thesis. However, when using statisical software, one should always
consider which method is used in order to interpret the boxplot correctly.
The boxlength, also known as the interquartile range (IQR), is a robust
measure of variability. Using the term lower and upper hinge, the boxlength
is sometimes referred to as H-spread.

• The median is a robust estimation of the mean value. It is the 0.5-quantile
and therefore situated within the box, visualised by a straight line. The
location of the median in the box is a measure of symmetry of the underlying
distribution. The boxplot in Figure 3.10 is for example right skewed.

• The whiskers are drawn from the end of the box until the last observation
which lies within the inner fence, which is defined as 1.5*IQR. In Figure 3.10
one can see that the whiskers are shorter than 1.5*IQR, which is drawn as
dashed line.

• The outliers are alle points which lie outside the inner fence.

Figure 3.11 shows six boxplots of misclassification rates, one for each method.
Again the data of five objects has been used as training data and the remaining
object was used as test data set, which results in six models. As we have four
positions, this results in 24 misclassification rates per boxplot.
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Figure 3.11: Boxplots of all objects and positions.

As we can see, the box lengths of the robust methods are shorter than those of the
other methods. That means the variability of these methods is lower, and therefore
we can expect that future images will have similar misclassifiation rates, provided
that they are no outliers. Also the whiskers are shorter than those of the non
robust methods, although all distributions are right skewed. The robust methods
detect the outlier objects and exclude them from model fitting, which results in
high misclassification rates of the outlier objects and low misclassification rates
of the non-outlier objects. The SVM methods do not recognise any outliers and
as a result, the overall performance is bad. The median of robust LDA (Linda)
is slightly the lowest, but what is even more important is that the box length
is short, which indicates that this method will be stable with respect to new
observations, which means data from new objects. According to Figure 3.11,
robust LDA threfore seems to be the optimal classification method for our problem.
As the computation time of the function Linda() is short, our requirements are
fulfilled.

Creating Figure 3.11 with R

The following code shows the first six lines of the data frame used for this figure:

> head(df)

method mcr

1 LDA 0.0047147572
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2 LDA 0.0009429514

3 LDA 0.8719943423

4 LDA 0.6117397454

5 LDA 0.0478547855

6 LDA 0.0000000000

The column method includes the information to which classifier the misclassifica-
tion rate in the column mcr belongs. method is a factor variable with the following
levels:

> levels(df$method))

[1] "LDA" "Linda" "QDA" "QdaCov"

[5] "SVM \n (linear)" "SVM \n (radial)"

The character string “\n” ensures that the strings for SVM include line breaks.
The code to produce the figure itself is the following:

> ggplot(df,aes(method,mcr))+geom_boxplot()

ROC visualisation

The second visualisation method used are ROC curves, see Subsection 2.3.2. Let
us have a look at four ROC plots, each containing six curves, one for each object.
The method used for creating them is Linda(), since according to Figure 3.11 this
is the best method. Figure 3.12 shows the four ROC plots.

The object in the legend are the test objects, the remaining objects have been
used as training data. We can see that position 1 and 2 work quite good, whereas
position 3 and 4 seem to work worse. The images at the first two positions have
been taken at similar locations and the second two have been taken at two similar
locations, respectively. That is the reason why the results resemble each other
pairwise. When excluding object F as an outlier, the first two positions work very
good. In the case of position 3, object B and F use the information of the other
five objects wrongly. The first two positions are considered as more important as
it is unlikely that the hand-held device is used for positions 3 and 4. On the whole,
Figure 3.12 confirms that robust LDA is a suitable classification method for us.

Creating Figure 3.12 with R

The ROC curves have been created using the algorithm described in Subsec-
tion 2.3.2. The following code shows the first six lines of the data frame used
for plotting at position 2. Object F has been selected as most of the values of
the other objects are NA. This is because the matrix R in the algorithm has been
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defined as a matrix with all entries set to NA and due to point 3., only a few points
are added to the matrix.

> df<-subset(df,object=="F")

> head(df)

FPR TPR object

21216 0 0.0000000000 F

21217 0 0.0004714757 F

21218 0 0.0009429514 F

21219 0 0.0014144272 F

21220 0 0.0018859029 F

21221 0 0.0023573786 F

The row numbers are so high as object F is the last of the six objects in the data
frame. The column FPR stands for the false positive rate, the column TPR stands
for the true positive rate and the column object indicates to which object the
values belong. This information is needed to set the colour and the linetype of the
curves. The code which produces Figure 3.12(b) is the following:

> ggplot(plotdat4,aes(x=FPR,y=TPR))+

geom_line(aes(colour=object,linetype=object),size=1.5)+

geom_abline(aes(0,1),size=.8)

3.3.7 Majority voting

After choosing Linda() as optimal classification method, we want to classify the
image as a whole. Until now we classified each pixel and then checked, by using
misclassification rates, how many of them have been wrongly classified. When
using the hand-held device one should only get the information whether the image
which has been taken is “untreated” or “treated”. That means we only want to
have one classification per image instead of each pixel in the end. Additionally, we
are interested in whether certain parts of the picture are classified wrongly more
often than others. Therefore the data sets are vertically divided into five parts
according to the drawing in Figure 3.13.

Again, the data of five objects has been used as training data and the remaining
object has been used for testing, but the test procedure has been slightly modified.
Two approaches have been tried out during the analysis:

• Majority voting: All pixels of an image of one object have been classified.
Afterwards, the class is determined for each part by majority voting: the
amount of pixels classified as “untreated” and those classified as “treated”
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has been determined, respectively. When more than 50% of the pixels are
classified as “untreated”, the corresponding part is classified as “untreated”,
otherwise it is classified as “treated”. Figure 3.14 shows the result of this
approach for position 2. All parts have been correctly classified for each
object, even for the outlier F. In this plot, the length of the bars is the
percentage of pixels which determined the predicted class. Having a closer
look at 3.14, we can see that in the case of object F, the decision for the
right group was not made with the same high percentages as for the other
objects. Nevertheless this method even works for the outlier object.

Creating Figure 3.14 with R

The following code shows the first ten lines of the data frame which has been
used to create Figure 3.15:

> df[1:10,]

part object truth prediction percent

1 1 test=A untreated true 1.0000000

2 1 test=B untreated true 1.0000000

3 1 test=C untreated true 0.9694118

4 1 test=D untreated true 0.7623529

5 1 test=E untreated true 1.0000000

6 1 test=F untreated true 0.5670588

7 2 test=A untreated true 1.0000000

8 2 test=B untreated true 1.0000000

9 2 test=C untreated true 1.0000000

10 2 test=D untreated true 1.0000000

The data frame has five variables: the column part contains the number of
the part of the image to which the corresponding observation belongs, the
column object contains the corresponding test object of the classification,
truth denotes the true class of the observation, prediction denotes whether
the predicted class is true or false and percent contains the amount of pixels
of the corresponding part which have been assigned to the predicted class.
The code for creating Figure 3.14 is the following:

> ggplot(df)+

geom_bar(aes(x=factor(prediction),fill=factor(part),

weight=percent))+

coord_flip()+facet_grid(object~truth)
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• Classification of median per part: The median of the pixels is computed
for each part, which results in five values per image. These values are then
classified, resulting in five predicted values. Figure 3.15 shows the result of
this approach for position 2. In this case, the result for object F is not good.
Only three out of five median values have been classified correctly. For the
other objects, also this approach works satisfyingly.

Creating Figure 3.15 with R

The data frame has the same variables as before, except for the column
percent, which is no longer needed as only one pixel is classified per part.
The code for creating Figure 3.15 is the following:

> ggplot(plotdat)+

geom_bar(aes(x=factor(prediction),fill=factor(part))+

coord_flip()+facet_grid(object~truth)

Although the results for the two approches are good, we should not forget that
position 2 works best. In the case of the other positions, more wrongly classified
parts occur.
Having reduced the amount of predicted values to five, we can now classify the
whole picture. Therefor again majority voting is applied: when at least three parts
are classified as “untreated” the whole image is classified as “untreated”, otherwise
it is classified as “treated”. According to this rule, all images are correctly classified
at position 2. Additionally, no serious spatial variation has been found, which
means that the applied preprocessing sucessfully removes all disturbing effects
which occur during image acquisition.

3.4 Prospects

Some possible modifications could be made for future analysis:

• For the sake of simplicity, no distinction between the type of the objects
is made in this thesis, although there exist several degrees of brightness,
which could be included in future analysis. Although we have seen that
linear decision boundaries should be sufficient, more complicated methods
like alternative kernels for SVM or nonlinear decision boundaries could be
tried out. As the project is still running and new data sets of new objects
are made, it could happen that linear classifiers are not sufficient anymore.
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• The results presented in Chapter 3 are for a subset of the actual image. In
future, the camera could be improved in order to avoid unwanted incidence
of light and use the whole image. As that would imply a siginificant increase
of the amount of training data, the methods selected should not be sensitive
to the size of the data. Computationally intensive methods like SVM may
have to be excluded completely.

• The assumption c(2|1) = c(1|2) could be dropped and replaced by either
c(2|1) > c(1|2), which means not detecting an untreated position is worse
than not detecting a treated position, or c(2|1) < c(1|2), which means the
opposite.

• One could try out alternative error rates.

• During the analysis for this thesis, different kinds of normalisations, like L1

and L2, and transformations, like isometric log ratio (ilr), have been tried
out in order to improve the classifcation results. Although it was not pos-
sible to achieve a considerable improvement with any of these normalisation
approaches, they should be kept in mind for future datasets.

• Spatial information could be included.
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Figure 3.12: ROC curves of robust LDA.
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Figure 3.13: Schematic representation of dividing an image into five parts.
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Figure 3.14: Error plots of the majority voting, position 2.
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Figure 3.15: Error plots of the classification of the median per part, position 2.
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Chapter 4

Conclusion

The important criterion for a graph is
not simply how fast we can see a result;
rather it is whether through the use of
the graph we can see something that
would have been harder to see otherwise
or that could not have been seen at all.

William Cleveland
The Elements of Graphing Data

After applying the supervised learning techniques LDA, QDA and SVM to our
data, it showed that robust LDA works best. It is also suitable for a hand-held
device as computing time is low and new outlier data do not have a big influence
on the model.
Let us have a look at the performance of robust LDA for all objects and positions.
Therefore we use the results of both methods presented in Subsection 3.3.7, which
leads to four possible outcomes: a part is wrongly classified for both methods, it is
correctly classified for both methods or it is correctly classified for one and wrongly
classified for the other method (two possible scenarios). In order to display the
results for all objects in one plot, each part is filled with six colours, each standing
for one object. The data are not parted, it is only a method to visualise the results
of six objects in one plot in order to save space and and give an overview of the
results. Figure 4.1 shows where the results of the objects are positioned. Figure 4.2
shows the results of the classification per part described in Subsection 3.3.7 at all
four positions and for all probands.
It consists of four plots, one for each position, including one representation of
an image of the class “untreated” and one of the class “treated”. Each image is
divided in five parts, which are positioned with spaces between them to increase
clarity like it is shown in Figure 4.1. Each of the six rectangles of a part, which are
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Figure 4.1: Schematic plot of positioning the results for all objects in one plot.

arranged according to Figure 4.1, is filled with one out of the four colours dark red,
light red, light green and dark green, depending on the outcome of the two majority
votings. The legends on the right side of the subplots explain which colour belongs
to which outcome. “major right” thereby refers to the correct majority voting after
the classification of all pixels, “median right” refers to the correct classification of
the median of the corresponding part. The following description how the colour
of one cell is chosen should clarify the information in the plot: Having a look
at Figure 3.14 and Figure 3.15, which show the results of the majority voting at
position 2, we can combine the result of one test object at one part for one one
class, e.g. object A, part one, class “unflashed”. For the test object A at part one
group “unflashed”, the results of both majority voting scenarios are correct, and
therefore the corresponding field is dark green. This can be seen in Figure 4.2(b)
in the upper half of the plot, where the first rectangle in the upper left corner is
dark green.
We can see that for the objects B, C, D and E the majority votings work for all
positions and both groups, which means all images of these objects are correctly
classified. In general, the performance of robust LDA for the object F is bad at
all positions and for all methods. Also object A has wrong results when only
the median is classified, but when classifiying all objects at each part and then
selecting the class of this part with the help of majority voting, the result is always
right.
Results can certainly be improved in future by improving data quality. As already
mentioned in Subsection 3.4, new ideas will be tried out and data analysis will
be continued with new datasets. The analysis of this multispectral data certainly
provides a wide range of interesting approaches and would bear more material
than is included in this thesis.
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Figure 4.2: Combined errors of both methods for majority voting from Subsec-
tion 3.3.7.
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Appendix A

Software

A.1 Matlab

For data acquisition and preprocessing, the mathematical software MATLAB R© &
Simulink R© (Student Version R2009a, The MathWorks

TM
) has been used. Useful

toolboxes for the purpose of this thesis have been the Image Processing Tool-
box which includes the functions fspecial() and imfilter() for the Gaussian
filter described in Subsection 3.2.2. The Statistics Toolbox includes statistical func-
tions. Helpful functions for processing and analysing images have been squeeze(),
with which one can remove singleton dimensions of a dataset, rgb2gray(), which
converts a colour image to a grayscale image, fspecial(), which creates a filter,
imfilter(), which is used to apply a filter, and imagesc(), which is used to dis-
play an image.
http://www.mathworks.de/help/techdoc is a helpful website for new Matlab
users.

A.2 R

The statistical analysis for this thesis has been made using the open source statis-
tical software R, see R Development Core Team (2011). A general explanation of
R is given by the following quotation:

[R is] an environment within which statistical techniques are implemen-
ted. [...] The term ”environment” is intended to characterize it as a
fully planned and coherent system, rather than an incremental accre-
tion of very specific and inflexible tools, as is frequently the case with
other data analysis software.1

1http://www.r-project.org: What is R?
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Packages include extensions of the main R functions regarding special statistical
topics. In the following, an alphabetically sorted list of the favourite packages of
the author is given, where all of them have been used for this thesis:

• chemometrics: Includes functions for data analysis in chemometrics. The
function svmEval has been used to determine the SVM parameters. The vi-
gnette “Multivariate Statistical Analysis using chemometrics” contains useful
information about the application of classification methods, especially SVM.
For more information see Filzmoser and Varmuza (2011).

• e1071: SVM is implemented in several R-packages, e.g. package e1071 func-
tion svm() (based on LIBSVM). For more information see Dimitriadou et al.
(2011).

• ggplot2: The R package ggplot2 is a powerful and multifunctional tool to
produce meaningful plots. The book Wickham (2009) is a good introduction,
although the reader should already have some experience using R. All of the
R plots used in this thesis have been made using ggplot2, see the R code
included at the end of most of the subsections in Chapter 3.

• MASS: One of the standard R packages, including the two functions lda()

and qda(), which are used in this thesis. The book Venables and Ripley
(2002) is a helpful support when working with R and gives insight into the
programming of the functions implemented in the MASS package.

• plyr: This package is very useful when working with lists and dataframes,
especially when one has as many categories as our data (objects, positions,
parts etc.). Data can be quickly restructured and functions can be easily
applied to more than one data frame. A good introduction to the methods
of this package is provided by Wickham (2011).

• RColorBrewer: Colours are an important part of an expressive plot. This pa-
ckage, which provides numerous colour palettes, povides an elegant an quick
way to choose appropriate plot colours. For more information see Neuwirth
(2011).

• reshape: Provides useful functions for restructuring and aggregating data,
see Wickham (2007).

• rrcov: In R, robust discriminant analysis is for example implemented in
the package rrcov. The robust version of LDA is called Linda(), those of
QDA is called QdaCov(). The default estimation method is MCD and the
parameter h can be set by alpha. The article corresponing to the package
is Todorov and Filzmoser (2009).
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• robCompositions: Provides routines for compositional data, see Hron et al.
(2010).

• xtable: Useful for converting matrices in R to LATEX tables, see Dahl (2011).
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