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Kurzfassung

Die Aufnahme von Diversität in den Entwurfsprozess mit dem Ziel der erhöhten Zuverlässigkeit ist
bereits eingesetzt worden. Als Ziele der erhöhten Zuverlässigkeit eines Systems zählen quantitativ
messbare Gründe wie eine erhöhte Sicherheit, sowie qualitative Merkmale wie der erhöhte Be-
nutzerkomfort. Diversität der Hardware wird im Entwurf der in dieser Diplomarbeit entworfenen
Aufzugsteuerung durch die Verwendung von unabhängigen Mikrocontrollern und Kommunika-
tionsnetzen des jeweiligen Steuersystems berücksichtigt. Diversität der Software ist durch die
für jedes Steuersystem unabhängig voneinander entwickelten Algorithmen zur Auswertung der
Sensorwerte, Positionsberechnung und Kommunikation gegeben. Die praktische Aufgabe ist die
Entwicklung einer Aufzugsteuerung unter Verwendung von vorhandenen Sensoren und Entwick-
lungsplatinen. CAN findet Anwendung für die untersten zwei Schichten des ISO/OSI Referenz-
modells, auf die eine für den verwendeten Mikrocontroller portierte Open-Source-Realisierung
des Protokolls CANopen setzt. Es ist die praktische Implementierung einer Aufzugsteuerung
dargestellt, die auf einem Universalmikrocontroller sowie auf Open-Source-Realisierungen des
Kommunikationssystems und Betriebssystems basiert. Der Entwurf baut auf einem Top-down-
Ansatz auf, mit Hilfe dessen von den allgemeinen Systemanforderungen und dem Sicherheitsziel
erst die funktionale und die Sicherheitsanforderungen und weiter die Anforderungen an die Hard-
ware und Software abgeleitet sind. Die auf einem Schichtenmodell basierende Architektur dient
zur Darstellung und Aufteilung der Software in wiederverwendbare Module. Die in dieser Diplo-
marbeit dargestellten Konzepte können in anderen Steuersystemen zur erhöhten Zuverlässigkeit
und Fehlererkennungsfähigkeit eingesetzt werden.
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Abstract

The application of diversity in the design process has been used for some time with the aim of
increasing reliability of a system. An increase in reliability is advantageous on objective grounds
such as increased safety, as well as for subjective reasons such as improved user comfort. Diversity
is taken into account while designing an elevator control system with hardware diversity present
in the form of independent microcontrollers and communication systems used to build each of
the two control systems. Software diversity originates from independently developed algorithms
for sensor value processing, position calculation and communication within each system. The
practical task is that of developing an elevator control system using the available sensors for
input and evaluation boards as hardware platforms. CAN is used for the first two ISO layers
in this part of the complete diverse system, with an open source implementation of CANopen,
ported for the microcontroller used, as the higher layers of the communication model. A practical
implementation of an elevator control system based on general-purpose microcontrollers and open
source communication stack and operating system is shown. A top-down methodology is used to
arrive from general requirements and the safety goal, over safety and functional requirements, to
hardware and software requirements that can be mapped onto design artifacts. To enable a clear
split of software into reusable modules a layered software architecture is adopted. The pre-sented
principles can be used in any control system to ensure improved reliability and error detection
capabilities.
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1 Introduction

Various kinds of elevators and elevator control systems have been proposed and used throughout
the years. Arguably one of the first designs employing safety elements was the elevator introduced
by Elisha Graves Otis in 1854 which featured an automatic braking system that was actuated
automatically in the case of a cut rope [1]. Throughout the decades, other possibilities for and
areas of improvement have emerged. Some of the aspects that can be addressed by using the latest
advancements in the field of building automation are improving reliability and raising availability
of time-critical systems. Apart from these goals, advancements in electronic control systems
have given rise to possibilities of reaching more complex goals. Some of these goals have been
researched in [CLXC06], such as the minimization of the average wait and ride times of passengers,
the percentage of passengers waiting more than 60 seconds for an elevator car to arrive, the
overcrowding rate and the power consumption of an elevator group. The main point behind this
breakdown into separate criteria is that it enables the definition of concrete goals which, in turn,
give clues on the attainment of non-functional qualities of a system such as those of a system
having a ”high availability”. In this way, a normally abstract and hardly testable non-functional
requirement can be covered by one or several concrete criteria that provide information on a
specific non-functional requirement. The introduction of such criteria also enables possibilities of
classification and thus easier comparison of similar implementations.

The concrete goals of lowering out-of-operation times and adding of diagnostic functions are facil-
itated by use of electronic control systems as well, and they actually work hand in hand. Similar
to using the diagnostic equipment in a car repair shop or representatives office, maintenance
personnel can be provided with current information on the state and health of the elevator con-
trol system. Such additional functions would then serve to increase the reliability of an elevator
system by using diagnostics to detect whether a certain module is about to fail and being able
to replace it before it does. Even though this would not directly improve the availability since
the system, or parts of it, would still have to be put out of operation while the repair is ongoing,
there is one major advantage to using diagnostics. This advantage is to be seen in the ability
to plan maintenance sessions so as not to interfere with times of peak load and high demand, or
high criticality.

1.1 Safety analysis

Although the goals of raising reliability and availability are important, they are not the only ones
to be considered in a safety-relevant control system such as an elevator control system. In the
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Introduction

nomenclature of the ISO 13849 standard on the Safety of machinery [Eur07], it is implied that
some parts of a control system are charged with a certain safety function, while others are not.
Further, safety-relevant parts of control systems are defined as such hardware and software parts
that provide a certain safety function. The safety function is in turn defined as the function of a
machine, failure of which can lead to an immediate increase of the risk (or risks). A safety-related
part is one that reacts on safety-related inputs, and generates safety-related outputs. Figure 1.1
illustrates this relation between the three concepts.

Figure 1.1: ISO 13849 view of a safety function

On the example of an elevator control system, the condition that an elevator car must not be
allowed to move while its doors are open can be considered as a safety function. The absence,
i.e. failure, of this safety function leads to an elevated risk since the elevator car would be free
to move exposing persons and/or material goods to danger of injury or destruction of goods.
The safety function itself would be spread out over various software and hardware, with inputs
from sensors for elevator car and door positions, actuators that open the doors and lock the
elevator car in position, as well as algorithms that calculate the outputs to the actuators from the
input information from the sensors. The safety function could be distributed over various system
parts, not necessarily being encapsulated in a single hardware component with the corresponding
safety-related software running on it.

One of the approaches to guarantee the maintenance of the safety function is to replicate the
safety-related parts themselves. This approach is illustrated in Figure 1.2.

The premise of the approach of triple modular redundancy is that each of the three units produces
the same output (decision) if given the same input. The temporal behavior, such as with which
granularity the units present the outputs, is not explicitly given and is currently out of scope. The
decision of each unit is typically a binary value. The voter presents the verdict of a majority-vote
at the output and produces correct results as long as two modules provide it with correct results
[MSM99]. An implicit premise of this approach is that the units should be independent from each
other once in use, apart from sharing the same design. This premise is also a latent problem of
the approach of triple modular redundancy, since it does not cover common-mode failures, such
failures which affect more that unit at the same time. Common-mode failures can be a result of
an error in the design of a unit, e.g. an error of the logic under specific circumstances; but they
can also result from external sources, such as disturbances in a shared power supply or shifts in
a shared ADC reference voltage.

One method used against common-mode failures, also selected for this project, is that of diversity
in hardware and software. As the results of simulations in [MSM99] illustrate, diversity is a
very effective way to combat common-mode failures and design faults, and is superior to simple
multiplication of the same unit. However, the effects, or gains, seem to be dependent on the
mission time. The best results are tolerance against common-mode failures is observable when
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Figure 1.2: The traditional approach of triple modular redundancy

the mission time is in the range of under 10% of the Mean Time to Failure of one unit used in
simplex mode (without a diverse unit and a voter).

Similarly, in presence of multiple independent failures, diversity does not promise significant gain
in reliability. The approach is, thus, that of an exhaustive analysis of the reliability for each
system being designed.

1.2 System view

This master’s thesis is part of a project designed to improve reliability of an elevator control
system by using redundancy in the form of a combination of two control systems running in
parallel, featuring hardware and software diversity. The diversity is present on each level of design,
from sensors using different concepts to obtain the measurement values, over different network
structures and protocols, to different software running on different hardware platforms. The way
the two diverse control systems are to communicate over a common serial line, using a protocol
for the exchange of data between the two systems as well as the access to the communication
line.

A safety concept is defined as well, according to which the control system is developed, including
the identification of the risks, the safety goal i.e. the safe state, as well as the safety function
which serves to contain the risks. The safety function is analyzed and hardware and software
mechanisms that are to be used to provide it are outlined.

The system can be seen as a three-plane structure presented Figure 1.3 in with the bottommost
plane consists of sensors, each of which is connected to both of the buses (control systems). The
middle plane is that of the controller boards with network access hardware and software, and
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Introduction

the application running on one central controller or distributed over several controllers of that
network. Another part of the middle plane is the resolution controller, which has the task of error
resolution and marshaling of control between the two systems.

Figure 1.3: Three-layer structure of the entire elevator control system

The top, or management, plane has the task of connecting the middle - controller - plane with
higher-level functions. The management plane could consist of a program running on a single
computer, possibly supporting some more advanced features such as load balancing or wait and
ride time minimization. The functionality of XINU is, in this representation, a part of the
management plane.

The elevator control systems are to be connected via a resolution controller that is out of scope of
this thesis. Its aim would be to analyze data coming from the application boards of each control
system and reach a decision which of the two control systems should be in charge of controlling
the elevator motor, and thus its functionality.

The controller plane, originally viewed as a single controller, can be configured redundantly or
in a distributed manner. The advantages of these approaches shall be outlined and weighted;
the outcome influencing the topography to be implemented. The thesis tackles in detail the
application of the architecture and elements of Controller Area Network (CAN) in the field of
building automation through its use as one of the communication buses in the redundant control
system. Existing applications of CAN in the field of elevator control have been researched, yielding
possible improvements in the sense of interoperability and design concepts proven in use.
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1.3 eXellent Interface for Non-haptic Use

Main research goals of the XINU (eXellent Interface for Non-haptic Use) project are assesment
and selection of existing methods feasible for non-haptic control. The project task of a design
and evaluation of specific command sets is matched by a flexible architecture build around a
camera input system to provide a practical implementation of a non-haptic control that can
discern between the users’ head movements and control several devices in the field of building
automation. The prototype is subjected to a phase of testing at an inclusive polytechnic high
school in Austria [RPZH10].

The interface, open to all forms of communication as input, uses visual communication for the
initial approach. A reduced set of distinctive movements, in the practical example head move-
ments of the user which are recognized as data, is fed into systems for head pose estimation
and face tracking. The change of head pose is recorded and mapped onto a set of commands.
One of the disadvantages of using such visual communication as input is the need for previously
agreed-upon commands that the user needs to memorize and reproduce in order to control the
system [RPZH10]. The initial training phase was perceived and recognized as reasonable in the
follow-up research paper [ZRP11].

In the context of the elevator control system presented here, the functionality provided by the
XINU environment can be visualized in the management layer, as presented in Figure 1.3. XINU
would provide input to the control algorithm in the form of commands further used by the control
algorithm in acquiring the next set-point. Initially, an RS-232 connection shall be used as the
physical interface to XINU.
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2 State-of-the-art in automotive
communication systems

To aid in the knowledge necessary to develop a system for elevator control the state of the art
and current developments in the field are considered. A description of three communication
systems widely used in the automotive industry is given. The presented communication systems
are compared according to criteria that is important when choosing a bus system for elevator
control applications. Finally, one bus system is selected to be used in further development.

One of the basic goals of this thesis is the evaluation of several and selection of one communication
protocol to be used as the communication backbone in the implementation of one part of a
redundant elevator control system. This chapter shall present some of the communication buses
currently used in the automotive field, with a focus on their properties that could be useful in
designing an elevator control system with an accompanying comparison and selection description.

2.1 Overview

Several protocols with properties interesting to the area of building automation have been in use
in the automotive industry. Each of these satisfies a certain set of requirements, some of which
overlap with each other and most of which overlap with those for a communication system usable
in the area of building automation. A single communication bus shall be selected alongside the
criteria that influenced the selection process. Communication methods and protocols used in
the automotive industry are numerous, some of which are aimed toward very specific fields of
application. An analysis of a large number of such communication systems is beyond the scope
of this thesis and this is the reason why further systems, such as MOST, are not dealt with in
detail.

A major criterion for selection of a protocol used in the automotive industry is the breadth of
use and extent of tests carried out on such systems, mostly connected to the sheer number of
units produced which incorporate them. One might argue that a communication protocol used
in the aerospace industry would be even better suited to this argument and that would be true.
However, controllers, transceivers and evaluation boards supporting protocols from the aerospace
field are rare and expensive. On the other hand, communication components for automotive
protocols are typically low in cost and available on evaluation and development boards from
various manufacturers.
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2.2 Controller Area Network

With the version 2.0A of the transfer layer published in 1991 and version 2.0B in 1995 the CAN
protocol laid out by Robert Bosch GmbH has been in use in the automotive industry for a very
long time. An effect of this long and extensive use is the wide availability of dedicated transceivers
and controllers, with [RBF99] stating 11 million chips sold by the end of 1997. The large numbers
of produced components in turn motivated a sink in the prices of components which, with the
decision to offer the controller in form of VHDL code, helped broaden the availability of affordable
microcontrollers with on-chip CAN controllers.

The ISO standard 11898-2 on the Controller Area Network, High-speed medium access unit
[ISO03], stipulates the electrical parameters that a CAN transceiver is to implement. These
include nominal and absolute ratings of bus and line voltages in the active and passive state,
parameters of nodes disconnected from the CAN bus as well as the values of termination resistors
to be used. Values for the bus length, with the recommended topology of a line structure, cable
stub lengths and distances between neighboring nodes are also determined for the bit rate of 1
Mbit/s. These characteristic values are illustrated in Figure 2.1 The standard gives a hint that,
at lower bit rates, the bus length may be lengthened significantly, as well as cable stub lengths
and node distances, although without giving recommendations on appropriate values to be used
for certain bit rates.

Figure 2.1: CAN bus as a line architecture with its basic parts

The basic term of communication in CAN is a frame which can be one of the following four types:
data frame, remote frame, error frame or overload frame. Data frames are the most common
form used for exchange of data, while remote frames can be used to request data in a polling
manner. Error frames used by nodes in a CAN network to signalize whether they are in one, and
in which, error state. An overload frame is a special kind of frame that is used by a node to exert
back-pressure to senders, i.e. to request a delay of the next data or remote frame [Bos91]. Some
of the basic concepts outlined in [Bos95] and commented for clarity are:

• Prioritization of messages: through arbitration of the message field containing the message
Identifier and Remote Transmission Request bits;

• Guaranteed latency: caused by arbitration. Highest priority messages will have very low
latency, but low priority messages can in theory be delayed indefinitely;

• Configuration flexibility: use of standardized connectors and a communication matrix typ-
ically enough to provide an integration interface;

• Multicast reception: each node in a CAN network can receive all messages on the network
if desired, thus no need for point-to-point transmission that might cause higher network
load;
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• Error detection and signaling: CRC calculated and sent with each frame. Acknowledgment
bit is set by each node receiving a message with a correct CRC sequence;

• Automatic retransmission of corrupted messages as soon as the bus is idle again: no reaction
from microcontroller needed to retransmit a message thus possibly faster but potentially
raises the short-term network load.

The specification, standardized by ISO under the ISO-11898 series of standards, foresees two
modes of usage, that of standard and extended frames. The most significant difference between
the two is the introduction of an enlarged identifier field in frames, being raised from 11 bits in
the standard to 29 bits in the extended mode. Since the CAN specification versions 2.0A and
2.0B only cover to some extent the Physical and Data Link layer of the OSI Reference model
[Bos95], as illustrated in Figure 2.2, a decision by the network and application designers is needed
with regard to the potential implementation of upper layers.

Figure 2.2: CAN layered architecture compared to the OSI reference model

This approach gives flexibility in designing the application, with the ability to optimize the run-
time performance by eliminating unnecessary higher-layer functionality. However, it can cause
confusion in practice since it is effectively left to the system designer to make decisions on a very
level of abstraction, e.g. which kind of byte order to use.

The CAN specifications do not stipulate a transmission medium [Bos91] [Bos95], so as to allow
usage of different potential transfer media. The ISO standard [ISO03] however specifies electrical
properties of components used in building a high-speed CAN network with transmission rates
of up to 1 Mbit/s. Network topology parameters such as bus and cable stub lengths, or rather
their extremes, for a bit rate of 1 Mbit/s are also specified in [ISO03] with a hint that the values
may be significantly different for lower bit rates. Practically, bus length depends on the bit rate
since each node needs to be able to read an arbitration bit and possibly react on it, all in the
period of one transmitted bit. The users and manufacturers group ”CAN in Automation” outlines
recommendations of transmission rates for industrial applications in the form of a draft standard
with the designation CiA 102 [CAN10a]. From these transmission rates i.e. the related nominal
bit times and the propagation delay of a copper twisted-pair cable, the maximum bus length can
be calculated. A further factor is the length of stubs, i.e. cable distance from the main trunk of
the communication bus which should generally be kept as short as possible [CAN07].
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The CAN protocol uses an access scheme called CSMA/CD+AMP, for Carrier Sense Multiple
Access Collision Detection and Arbitration on Message Priority. The carrier sense functionality
ensures that a transceiver can only send data if the bus is idle, while the arbitration mechanism
enforces a collision-free bus in the arbitration phase.

2.3 Local Interconnect Network

The Local Interconnect Network has been conceived and published by the LIN consortium in the
form of a specification package in 1997. The main goal was to outline a low cost network for
the automotive field, not only on the physical level specifying the integration and development
process as well.

Some basic properties of LIN are outlined and commented [LIN10] :

• Single master with multiple slaves: request-response based protocol;

• Implementation reusing an existing UART/SCI unit or with dedicated hardware;

• Self synchronization in slave nodes: nodes synchronize on the sync field of messages send
by the master node;

• Deterministic signal transmission and predictable behavior: static time-triggered commu-
nication initiated and governed by the master node;

• Speed up to 20 kbit/s: low speed useful for simple devices, non time-critical devices;

• Total length of bus line of 40 m: a significant constraint for building automation;

• Transport layer and support for diagnostics: concepts of a signal and a Packet Data Unit,
as well as support for diagnostics on the transport layer.

Compared to CAN, the LIN specification defines in a single document the physical layer, the
protocol layer which is a simplified implementation of an OSI Reference Model Data Link Layer
and the Application Programming Interface comparable to the Application Layer.

The only conceptual difference of the software running on the master node to that running on
any slave node is the addition of a master task which sends out a communication request, called
a header in LIN terminology, and to which the slaves send responses. The logic of communication
is such that a master task has to broadcast a request also in the case of sending data from the
slave task of the same (master) node. Since all communication is broadcast over the same one-
wire interface, each slave listens to the communication and can act upon the data of interest it
receives. There is no way for slaves to send messages on their own, i.e. without request coming
from a communication master. This represents a single point of failure in such a network, for if
the master stops sending communication requests the communication is paralyzed.

The LIN network specification is very appealing to evaluation from the point of view of availability
of low-cost hardware and standardized interfaces. However, the limitations in form of a low
maximal transmission rate of 20 kbit/s and a total bus length of up to 40 m are too narrow for
the field of building automation.
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2.4 FlexRay

FlexRay is a time-triggered communication protocol specified by the FlexRay Consortium, an
organization that specified the use of its IP (intellectual property) to automotive purposes. Apart
from the protocol specification, the physical layer has been specified in terms of general physical
layer parameters that have to be fulfilled. Thus it is possible to have a FlexRay network using
a twisted pair copper-wire as the physical medium, or one using an optical fiber. The main
requirement is that the medium can represent a binary signal, and fulfill the timings given in
form of physical layer parameters, outlined in [Fle05].

Differently to CAN and LIN, FlexRay is time-triggered at its core. While a similar statement
could be made with regard to LIN with some constraints, in the sense that the communication
can be defined according to a fixed schedule causing the master node to send requests at fixed
periods, this is not the main idea behind the LIN protocol.

With FlexRay, however, the notion of time-triggered communication permeates all aspects of
the protocol. Indeed, three main terms used throughout the FlexRay Protocol Specification
[Fle05] are those of ”cycle time”, ”macrotick” and ”microtick”. Cycle time is the time within the
current communication cycle. A macrotick is used to denote the smallest granularity unit of the
global time, derived using a algorithm that synchronizes the time within the complete FlexRay
cluster, while a microtick is a duration derived from the nodes oscillator and is not affected by the
synchronization algorithm. Microticks are used to adjust the length of the macrotick of a node
to the macrotick duration calculated at this node by the algorithm fault-tolerant algorithm. The
protocol offers a baud rate of 10 Mbit/s which, taking into account the overhead caused by the
header and trailer segments (of 64 bits), yields a combined maximal throughput of 7.987 Mbit/s.

Each communication cycle is consists of static and dynamic segment, with the outline of the cycle
being defined using a static schedule. Thus each node that is supposed to send information has
a part of the static and/or dynamic segment reserved. This is one of the trade-offs of FlexRay,
i.e. that the practical network throughput in case not all nodes need to send data is far below
the theoretical maximum throughput.

The advantage of the compromise is the global time-base which makes response times significantly
shorter than with CAN, since it is known before-hand when data from a node should arrive. This
also means that the timeout value of a frame (the time within a specific frame has to arrive)
signifying an error can also be set to a shorter duration.

Parts of the static segment are assigned to various nodes by the network designer are part of a
cluster-wide communication schedule definition. Parts of the dynamic segment of each application
cycle can be reserved for nodes that might have additional data to send. If a node has information
to send in the dynamic cycle it sends a frame; otherwise all nodes can detect that there was no
activity within the macrotick and the new slot of the dynamic begins.

One disadvantage of using FlexRay in any application comes from one of its basic properties:
the static schedule that is the basis for communication. At the network design stage of system
design, a network designer would outline the schedule using a schedule authoring tool, assigning
slots of the static and/or dynamic segment to various nodes of the network. In the ideal case
of an omniscient network designer, the schedule would only have to be generated once for the
complete system and loaded into each node. In real world applications the issue becomes largely
one of logistics and propagating changes in network configuration. It is much more critical for
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each node in a FlexRay network to have knowledge of timing of slots assigned to itself, as well as
to the nodes it is to receive information from, than that is the case in CAN or LIN.

The solution to this problem requires use of further tools for propagating changes in the schedule
and generating appropriate code for each node. The problem tends to multiply with the question
of interoperability of nodes from various manufacturers using different platforms - thus surely
needing generator tools adapted to their platform.

The problem, and its solution, have the potential to overwhelm non-experts in the field of FlexRay
and do not seem very well suited for experimentation.

Similarly to CAN and in contrast to LIN, the FlexRay Protocol Specification does not enforce
rules on the content of frames. Frames are presented as content carriers; how the information
is structured within a frame is not within scope of the specification. There has been some
standardization in the area of segmentation, e.g. the FlexRay Transport Layer specification by
the AUTOSAR organization.

A complication that would arise from using FlexRay in the setting of a building automation system
is the insecure legal situation. The protocol specification [Fle05] itself explicitly states that the
protocol was neither developed nor tested for use in non-automotive applications. Although this
statement does not imply a ban on use of this system as the communications backbone of a
building automation system, it is unclear what the implications on the safety analysis and system
acceptance would be.

A possibly more serious issue is that of high costs due to the additional equipment necessary for
the layout of a typical network in building automation. In the case of a long copper-wire pair
an active star, a kind of kind of bidirectional repeater, would have to be used every ca. 150 m.
According to [Fle06b], the maximal number of active stars in a FlexRay network two which would
imply a maximal bus length of around 450 m. However, [Fle06a] recommends maximal distance
between two active stars of 24 m and the same value for the maximal distance between an active
star and an ECU - bringing the total length down to only 72 m.

Another issue would be the computational power required by each nodes CPU required to im-
plement the software side of the communication protocol, as well as the additional power that
would be needed to run the CPU. With the trend of deeply embedded, low-power smart sen-
sors/actuators a communications system it is not acceptable that the communication part of the
device requires constant power and attention by the CPU.

2.5 Communication bus comparison and selection

Each of the three presented communication systems in use in the automotive industry have their
advantages and disadvantages, the comparison of which is presented in Table 2.1.

The three compared protocols vary greatly with regards to the transmission speeds that can be
achieved using each of them. LIN features the slowest bit rate of the three and is limited to
20 kbit/s. A single 32-bit value, such as could be given by a position sensor, would use 16% of
the available bandwidth. Taking into account the possible need to transfer further measurement
values, both simple (few bits) to more complex (e.g. 32-bit floating point) this limitation is
prohibitive.

11



State-of-the-art in automotive communication systems

A further important criterion to use to select the bus system for an elevator control system is the
maximum achievable bus length at the operating bit rate. The bus length depends on numerous
factors, among which are the target transmission speed as well as the signaling mechanism used.
The best choice in terms of bus length at maximum speed would be FlexRay as the transmission
speed of 10 Mbit/s is feasible with a bus length of up to 72 m. CAN and LIN seem to achieve
the same result, however the bit rate of a CAN bus at the bus length of 40 m is 50 times that of
LIN using the same bus length.

Neither the CAN nor the LIN specifications make attempts to introduce the concept of timing
for upper layers of a communication stack, while FlexRay includes such functionality.

With CAN it is the message with the highest priority, i.e. the lowest ID number, that ’wins’ the
arbitration and is broadcast on the bus. As a consequence, messages with ID numbers higher
that the lowest one occurring in the system can be effectively barred from being sent on the bus
in the case when the message with the highest priority is permanently being transmitted.

In LIN the master initiates communication with the nodes by sending requests. It would be
possible to configure a LIN network in such a way that the master adheres to a schedule with a
fixed sequence and timing, thus in effect creating a time-triggered communication basis.

FlexRay features time-triggering as the very communication principle. No communication master
is present, but a number of start-nodes are required to initialize the network on start-up and to
support the fault-tolerant algorithm for clock synchronization.

CAN LIN FlexRay

Transmission
speeds

1 kbit/s - 1 MBit/s 1 kbit/s - 20 kbit/s 2.5 Mbit/s - 10
Mbit/s

Bus length at
maximum speed

30 m 40 m 72 m

Sense of global
time

No If master provides
functionality

Yes, in all nodes

Triggering Normally event trig-
gered

Normally event trig-
gered, time triggered
possible but not rea-
sonable

Time triggered

Medium access A task sends a
transmit command
to the CAN con-
troller which sends
the message upon
winning arbitration
i.e. access to the bus

The slave sends a re-
sponse to the request
by master (time trig-
gered thus possible
with protocol master
distributing its view
of time)

Data is sent to a
send buffer, the con-
troller forwards it to
the bus in the prede-
fined slots

Table 2.1: Comparison of automotive communication systems

Table 2.1 does not include any information regarding unit prices and development cost of a
system implementing the presented communication systems. However, the absence of open source
network design software for FlexRay networks, without which the complexity of developing such
a network would not be manageable, makes the development of such a FlexRay based system
prohibitive. The added absence of development boards with built-in FlexRay transceivers and
necessary circuitry would lead to further costs from the evaluation phase.
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For the purposes of the elevator control system presented here, the following points are assumed:

• Initially, a total of six floors are to be handled by the elevator system as per the available
elevator model,

• The elevator car travels at a maximum speed of 1 m/s,

• The system should be designed to allow for use in buildings up to 20 floors,

• One node is to handle each magnetic sensor,

• One node is to handle the incremental encoder sensor,

• One node is to handle the ultrasonic distance sensor,

• One node is to be used for the XINU interface and position evaluation,

• Expansion in terms of additional displays, floor and elevator car keyboards and similar units
are to account for.

An approximate calculation of the number of nodes based on the above-mentioned assumptions
leads to a total of 50 nodes connected to a network. The bus length in this case, based on an
assumed floor height of 3 m and a total of 20 floors, amounts to approximately 60 m. For routing
of the bus into the elevator car an additional 20 m would be required. The total bus length can
be assumed to approximately 100 m.

The communication system of choice for this application would be CAN. At the mid-range bit
rate of 125 kbp/s the bus length amounts to over 300 m, as shown by equation (2.1) and is equal
to 500 m according to [CAN02]. This maximal bus length at the selected bit rate fulfills the
required bus length and allows for significant additional expansions of the system.

buslengthmaximum =
1

bitrate ∗ totaldelaypropagation
(2.1)

The propagation delay, assuming twisted-pair copper wires as the transmission medium, is about
5 ns/m. The total propagation delay is approximated as five times the propagation delay, in order
to account for the protocol-specific requirement of arbitration. In order for the CAN concept of
arbitration to function properly it is necessary that each node in the network recognizes the first
arbitration bit and responds within one further arbitration bit. It has to be ensured that two
nodes at the furthest ends of the bus have sufficient time to output their own and read the state of
the other nodes, bringing another factor of two into the equation. An addition of 25% is provided
as a safety margin giving the factor of 5 for the total propagation delay.

A CAN bit rate of 125 kbp/s and a maximum length of a CAN message of 120 bits (8 bytes of data
payload and worst-case situation of 18 additional bits for bit stuffing) give a theoretical maximum
of 1041 CAN messages per second of data throughput on the bus. Three CAN messages from
sensors are required as inputs for the position calculation, giving the lowest period for position
calculation of 2.88 ms. If the assumed maximum elevator car speed of 1 m/s is taken into account,
the error of the calculated position due a communication bus amounts to 2.88 mm.
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The calculation given above does not include delays caused by the arbitration process of CAN,
delays caused by the CAN controllers and transceivers and delays caused by the software running
on the sensors and on the controller that runs the position algorithm software, as well as the
inertia of the electric motor and its coupling to the elevator car.

A comparable project based on an approach of using CAN as the communication bus for an
elevator control system is seen as a departure from the classical concept of elevator control based
on relays in favor of a system of interconnected programmable controllers [HKT09]. The change of
focus and inclusion of software-based elevator control systems has enabled optimization schemes
based on traffic prediction and traffic pattern recognition for elevator group control systems, as
presented in [CLXC06] and [KCS00].
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3 Methodology

A top-down approach illustrated in Figure 3.1 was followed as the development methodology
during the requirements and design phases, starting with general system requirements and the
recognized safety goal. Through an analysis of these requirements, a collection of safety and func-
tional requirements is compiled. Further, a decomposition of the functional and safety-relevant
requirements is carried out in order to reach the hardware and software requirements. The re-
quirements serve as a basis for the system design stage, further leading to the implementation. In
the first place they influence the selection of what functionality is assigned to hardware and what
to software. In the second stage, the functionality to be implemented in hardware is assigned
across the distributed system, as well as that which is to be implemented in software. For hard-
ware this can mean that certain nodes in a distributed system need to feature specific interfaces
and functionality. With software in mind, nodes with specific hardware features require specific
corresponding software that makes use of these features. A further aspect of a split of software
functionalities across a distributed system is the possibility of optimized use of resources. Certain
resource-intensive modules recognized during the design stage can be mapped to an appropriate
hardware node, taking into account any constraints with regard to timing, co-location with other
modules or required hardware functionality.

Figure 3.1: Top-down approach to system design
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3.1 System requirements

Little has changed in terms of general functional requirements put on elevators since the first
elevator featuring safety elements was introduced by Elisha Graves Otis in 1854. The additional
requirements put on this particular elevator control system are influenced by the additional func-
tionality that it needs to support.

Due to a large spatial distribution of the system brought about by requirements on optimal
sensor placement with regard to measurement quality and additional logic needed at each sensor
position, it can be freely assumed that a distributed system would be required.

A distributed system brings with it the need to bridge the gap between the discrete hardware
parts, to solve which a communication channel is required. Additionally, the system needs to
provide an interface to the control board that controls the movement of the elevator car. The
XINU environment, as represented in Figure 1.3, serves as the management plane of the entire
elevator control system. Therefore, an interface with the XINU environment needs to be provided
as well.

The following general system requirements are to be taken into consideration during system
design.

System Requirement 1 REQ SYS1 FUNCTION: The system shall use the current position
and movement information of the elevator car to instruct the motor control board how to reach
the requested position.

System Requirement 2 REQ SYS2 HW EVAL: The system shall use available evaluation boards
as the hardware platform.

System Requirement 3 REQ SYS3 COMMON BUS: The constituent hardware modules of
the system shall be able to communicate using a common bus.

System Requirement 4 REQ SYS4 IF MOTOR CTRL: The system shall provide an inter-
face to the motor control board.

System Requirement 5 REQ SYS5 IF XINU: The system shall provide an interface to the
XINU environment.

System Requirement 6 REQ SYS6 CMD XINU: The system shall accept call commands from
the XINU environment.

3.2 Safety goal

One of the major goals that this elevator control system has to achieve is that of safety while in
operation. It should not be possible for humans to come to harm through the functioning of the
elevator, i.e. the movement of the elevator car. This further means that the elevator car should
only then be allowed to move if its position can be accurately and unambiguously determined.
In order to keep this goal in focus while developing the system it shall be defined, and is to be in
focus of each design and development phase.
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Safety Goal 1 REQ SAFETY GOAL: The system shall cause the elevator car to move only if
its position can be unambiguously determined.

3.3 Requirements analysis and decomposition

Further design of the system is based upon the outlined system requirements and the safety goal.
The safety requirements and the functional requirements are reached through an analysis of the
system requirements and the safety goal and thus present a lower abstraction level of the system.

A decomposition of the obtained safety and functional requirements is necessary in order to
reach the individual hardware and software requirements. The requirements obtained in this way
are of sufficient detail to serve as a basis for implementation and shall be used directly in the
implementation of the system hardware and software.

3.3.1 Safety requirements

By decomposition of the Safety Goal 1, the recognized safety goal, it follows that there are at least
two states that an elevator car can be in. These two states are the safe state and the operational
state, and are defined and described as follows.

The safe state is one in which the system does not pose a threat to persons or property, and one
in which the system can stay in for indefinite periods of time. For the system presented here this
state is static, i.e. an elevator car is then in its safe state when its movement stops and the car is
not allowed to move further. Upon entering the safe state, the system has to cause the elevator
car’s movement to stop. The elevator car has to remain stationary as long as the system is in the
safe state.

Definition 1 Safe state: The safe state of this system is the one in which the elevator car is and
remains stationary.

The operational state is one in which the system can take commands from a management plane
and initiate elevator car movement. While in the operational state, the system regulates the
movement of the elevator car according to its current position and the received information on
user wishes.

Definition 2 Operational state: The operational state of this system is one in which the move-
ment of the elevator car can be initiated by the system according to user input.

Definition 3 Init state: The init state is the state which the system is in upon start-up and
during which the components go through a process of initialization.

Figure 3.2 depicts the system states and the allowed transitions within the system. In normal
operating conditions after a reset the system is in the init state where all the necessary initial-
izations of hardware and software are to take place. As each node initializes its own internals it
transits into the safe state. The master node, upon its initialization and transition to the safe

17



Methodology

Figure 3.2: State diagram on the system level

state, evaluates the current position and input from the XINU environment. Several parameters
are to be considered at this stage, such as whether all the nodes that provide the information
necessary for a position calculation are present on the bus and responsive as well as whether a
position value that is calculated is within the required limits of precision.

Based upon the outcome of the evaluation a decision is made whether a transition to the opera-
tional state can be allowed or the system should remain in the safe state. A run command from
is issued triggering the transition of the system into the operational state.

Thereupon, the system remains in the operational state as long as neither a safety violation has
occurred, necessitating a transition to the safe state, nor the master node has received a shutdown
request from the XINU environment. Upon reception of a shutdown command the master node
issues a system-wide shutdown command over the common bus, indicating that each node is to
deinitialize itself and prepare for a shutdown.

As each node completes the deinitialization process it transits from the shutdown state to the
off state automatically. The entire system is restarted by reconnecting the power supply, which
causes an entry to the state diagram at the init state. This ensures that all the nodes go through
the initialization process, are in the safe state and thus are ready to accept and act upon the run
command of the master node.

A controlled way to shut down the elevator control system is given in the shutdown state. Once
in this state, the system can be disconnected from the power supply to achieve a controlled
shutdown with no risk of harm. It is the task of the master node to notify the other nodes on
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the common bus that a deinitialization is to take place and no further communication is to be
expected. Upon reception of this message each node is to yield release any resources reserved by
it and cease communication. The execution of any communication protocol stack running up to
this point is to be stopped and the peripherals turned off if possible.

Based on the Safety Goal 1 and the system states defined in this section, the following safety
requirements can be identified.

Safety Requirement 1 REQ SAF POS PRECISION: While the system is in the operational
state, the position of the elevator car shall be calculated with a precision of ±4 mm.

For maximum passenger safety, the allowable precision of the calculated position value is defined
in this application as twice the precision of the least precise sensor used in the system. In this
system the least precise sensor, according to the information found in its datasheet is the ultrasonic
sensor. Its overall precision as given by the manufacturer’s datasheet is ± 2 mm, influencing the
position precision required by the Safety Requirement 1 to be ± 2 mm as well.

Safety Requirement 2 REQ SAF OP TO SAFE TIME: While the system is in the opera-
tional state, if the precision with which the position of the elevator car is calculated is not within
±4 mm the system shall transition into the safe state within 4 ms.

The maximum allowable reaction time in the case of a detected invalid position measurement is
calculated using the allowable position precision and the expected maximum elevator car speed
of 1 m/s.

3.3.2 Functional requirements

Several concepts and requirements can be derived from an analysis of the system and safety
requirements.

The first concept that to be developed on the basis of the safety goal is that of the method to
determine the elevator car position, or rather, to determine it unambiguously using the input
from diversified sensors. Each of the three types of sensors chosen for the elevator control project
in [Mai11], apart from requiring a different physical interface to the controller board, also features
a different resolution and measurement dynamics.

One type of sensors already in use in the system is that of a magnetic field sensor. The sensor
selected for this task offers impressive dynamic characteristics, such as very short turn-on and
turn-off delays of under 0.05 ms. The overall resolution of this sensor depends on the floor height,
but the resolution when the sensor is near the magnet is ±6 mm, as indicated by the calculation in
[Mai11]. However, this sensor is intended to be used as a digital one, indicating that the elevator
car arrived at a predefined point coinciding with a floor of the elevator shaft. Between two such
positions there is a continuous range of elevator car positions that can not be detected using the
magnetic field sensor. The discrete positions where the magnets are placed to mark a floor are
to be points at which the position algorithm evaluates the data from all three sensor types.

Another type of sensors used in the system is an ultrasonic distance sensor. Such sensors typically
have a blind area in which no measurement can be made. With the selected model this is the
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area from 0 mm to 80 mm from the tip of the sensor housing. This unusable area does poses
serious restrictions neither on the elevator model nor as any production system since the sensor
can simply be located 80 mm further away from the zero-position. The ultrasonic distance sensor
used features a resolution of ±1 mm, as given in the technical data of the sensor.

The third sensor type that finds use in the system is an incremental rotary encoder. In the
elevator model it is mounted on the spindle that translates the rotary movement of the electric
motor to the linear movement necessary to move the elevator car through the shaft. The encoder
used provides 100 pulses of each quadrature signal per one spindle turn which, together with
the linear travel of 4 mm per spindle revolution, calculates to a sensor resolution of 0.04 mm
per valid pulse. A valid pulse consists of a recognized pulse on both the A and B tracks of the
quadrature output of the rotary encoder, as illustrated in Figure 3.3. A third signal line, the Z
track, is present as an indication of a zero-point of the rotary encoder. The rotary encoder is of
a multi-turn relative position type, making the zero-point useful as a redundant way of sensing a
full turn of the spindle and re-calibrate the pulse counters for tracks A and B at each turn of the
spindle. The encoder itself does not provide an indication of an absolute position or a count of
turns. Due to the additional imprecisions introduced by the mechanical parts, such as imperfect
coupling of the electric motor and the spindle as well as slip of the elevator model car, the overall
resolution of a measurement using the rotary encoder sensor amounts to ±2 mm.

Figure 3.3: A valid quadrature pulse in the clockwise and counterclockwise turn direction

Two separate cases need to be taken into account when the position calculation is concerned.
The distinction is necessitated by the significantly differing resolution values of the magnetic field
sensor. Thus, two notions of position can be defined and are to be used in the further design and
implementation stages.

Definition 4 Discrete elevator car position: The position of the elevator car expressed as the
building floor number where one magnetic sensor is within range of the magnet mounted on the
elevator car.

Definition 4 of the discrete elevator car position is important for the safety-related function of
the system. It is in such positions of the elevator car when the safety-relevant algorithm is to
be ran in order to verify the quality of the acquired position information from the three sensor
types. The output of this algorithm is a confidence value which evaluates the deviations of the
measured position values. This information serves as the basis upon which the master node is to
decide whether the system is to be allowed to remain in the operational state or it a transition
to the safe state is required.
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Definition 5 Continuous elevator car position: The position of the elevator car expressed as the
position in meters from the zero mark of the elevator shaft.

The definition 5 of the continuous elevator car position provides the position information in the
range measurement range between two floors. This information can be obtained from only two
of the three sensors and can thus not be used to directly influence the decision on transiting to
the safe state. Nonetheless, it provides useful input for regular operation and additional error
detection with information on the current speed and direction of movement of the elevator car.

An analysis of the requirements and definitions presented in this chapter yielded the following
functional requirements.

Functional Requirement 1 REQ FUNC CARPOS VALID: The system shall provide a mech-
anism to reach a binary decision on whether the current calculated value of elevator car position
is valid.

In order to enable the transit into the safe state, the system needs to implement a mechanism
that uses position information from the diverse sensors and evaluates whether an unambiguous
position value can be calculated from them. The result has to be strictly a binary value, based
upon which a state transition can clearly be made. This necessity is stated in the Functional
Requirement 1, which was derived from the System Requirement 1 and the Safety Goal 1.

Functional Requirement 2 REQ FUNC CARPOS: The system shall use all three sensor types
to calculate the current position of the elevator car.

Functional Requirement 3 REQ FUNC CARSPEED: The system shall use all three sensor
types to calculate the current speed of the elevator car.

Functional Requirement 4 REQ FUNC CARDIR: The system shall use all three sensor types
to calculate the current direction of movement of the elevator car.

The Functional Requirements 2, 3 and 4 upon which the system design is to be based were reached
through an analysis of the System Requirement 1 using the defined elevator car positions defined
in this section.

Functional Requirement 5 REQ FUNC NET CAN: The system shall use a CAN network to
connect its hardware modules.

As per System Requirement 3, a communication bus shall be implemented on CAN. Since the
CAN specification covers aspects of the Physical and Data Link Layer described in the OSI Ref-
erence Model, as illustrated in Figure 2.2, a further analysis of software requirements is necessary.

Functional Requirement 6 REQ FUNC IF MOT CTRL: The system shall provide an inter-
face to the motor control board with the physical layer based on the serial protocol RS-232 and
a proprietary frame format.
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The motor control board that directs the electric motor build into the elevator model uses the
RS-232 standard for serial transmission of data as the physical layer. The data link layer is a thin
proprietary protocol to exchange control data. Based on this data the motor control board causes
the motor to spin in the requested direction or to be stationary. This functional requirement is
derived from the System Requirement 4.

Functional Requirement 7 REQ FUNC IF XINU: The system shall provide an interface to
the XINU environment with the physical layer based on the serial protocol RS-232 and a propri-
etary frame format.

The XINU environment as well uses the RS-232 standard for serial transmission of data to the
elevator control system. Another type of data link layer is in place to enable the exchange of
data and recognition of commands. The basis for this functional requirement is the System
Requirement 5.

Functional Requirement 8 REQ FUNC CMD XINU: The system shall react on call com-
mands from the XINU environment.

This functional requirement is directly caused by the System Requirement 6 and requires no
further analysis at this point.

Functional Requirement 9 REQ FUNC HW EVAL: The system shall use available evalua-
tion boards with at least one CAN transceiver and RS-232 interface.

As per System Requirements 3 and 2, evaluation boards featuring bus access support as the
communication bus shall be used. Functional Requirement 5 states that the bus to be used is
CAN, and it follows from Functional Requirements 6 and 7 that RS-232 as a physical layer needs
to be supported as well.

3.3.3 Hardware requirements

The previously defined safety and functional requirements are analyzed, along with any con-
straints on the system, hardware and software. From this analysis a number of requirements on
hardware and software follow, which serve as the basis for the design of the presented elevator
control system.

Most of the identified requirements up to this point have been of a general nature, not attempting
to influence the breakdown of functionality and mapping to specific hardware and/or software.
From this point in the analysis onwards, decisions are made that influence the system layout and
the mapping of the required functionality to specific parts of the system. The final mapping of
functionality to specific nodes in the distributed system, used as the basic design of this system,
is described in Chapter 4 on System design.

Hardware Requirement 1 REQ HW DIG IN: The system shall provide an interface for read-
ing the state (digital level) of an input line.
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The Hardware Requirement 1 follows from Functional Requirements 2, 3 and 4, which require
the support of reading the output state of a magnetic field sensor. The magnetic field sensor used
in the system provides an essentially digital output which needs to be interfaced to the hardware
and its status read.

Hardware Requirement 2 REQ HW PWM IN: The system shall provide an interface for mea-
suring the frequency and duty cycle of a PWM signal applied to an input line.

The Hardware Requirement 2 is also derived from Functional Requirements 2, 3 and 4, which
require the support of measuring the characteristics of the PWM signal provided by an ultrasonic
distance sensor. The length of the positive signal pulse is related to signal frequency and the
nominal sensing range of the sensor in use to arrive at the value representing the distance of the
object to the ultrasonic sensor.

Hardware Requirement 3 REQ HW QUAD IN: The system shall provide an interface for
measuring the amount of pulses of a quadrature-encoded signal applied to two input lines.

The Hardware Requirement 3 is the third hardware requirement derived from Functional Re-
quirements 2, 3 and 4. Support of measuring the three-line quadrature output signal, providing
relative rotational information of a rotary encoder, is required. Signals output on lines A and B
carry the information that the encoder has just passed on of the defined position points along a
circle, with the direction of movement given by the phase shift of the two pulses. Only movement
of the encoder shaft produces output pulses; otherwise the lines retain the last stable value. Signal
output on the Z line indicates passing of the zero-mark, indicating a full revolution of the shaft.
Thus, a minimum of three input pins are required at the target hardware.

Hardware Requirement 4 REQ HW IF CAN: The system shall use hardware elements, each
of which provides an interface compatible to the CAN specification and a compatible line driver.

In order to cover the distances within a building, parts of an elevator system need a robust
communication network. The Controller Area Network was chosen for this purpose, as described
in Chapter 2.5. Each hardware node of a distributed system thus needs to have support for
communication over CAN. Current state of the art sees a departure of discrete CAN controllers
connected through serial interfaces, in the form of CAN controllers integrated in an MCU. The
CAN specification [Bos95] does not provide fixed specifications for CAN line drivers, although it
does note that all nodes in a CAN network inherently need to be using compatible medium access
drivers in order for communication to be possible. For practical purposes medium access has been
standardized and published in the ISO standard [ISO03] and compatible CAN transceivers are
readily available from numerous manufacturers.

Hardware Requirement 5 REQ HW IF MOT: The system shall provide an interface com-
patible to the RS-232 physical layer for communication with the motor control board.

A control board, addressable by RS-232, is provided for control of the DC electric motor move-
ment. Thus, the system needs to provide an RS-232 interface and support the thin protocol to
be used for communication with the motor control board.
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Hardware Requirement 6 REQ HW IF XINU: The system shall provide an interface com-
patible to the RS-232 physical layer for communication with the XINU environment.

A computer running the XINU environment, addressable by RS-232, is provided for higher-level
functions such as elevator car call control. Thus, the system needs to provide an RS-232 interface
and support the protocol for communication with the XINU environment.

Hardware Requirement 7 REQ HW EVAL: The system shall use available evaluation boards,
each containing a CAN transceiver compatible to ISO 11898 and an RS-232 interface.

In order to avoid high costs of producing custom hardware for this elevator control system and to
be able to use as many standard off-the-shelf and open source components an evaluation board
is to be selected as basic hardware for system nodes. An important constraint for the selection
process would be the possibility to fulfill and compatibility with the other identified hardware
requirements.

3.3.4 Software requirements

Apart from being the basis from which hardware requirements are derived, the safety and func-
tional requirements defined in this chapter are the foundation for requirements on software. The
previously derived requirements on hardware influence the software as well; however this relation
is described in Chapter 4 on System design as the derived hardware requirements are of a level
with sufficient detail to be used in the design.

Software Requirement 1 REQ SW POS PRECISION: The software shall implement an al-
gorithm that reaches a binary decision on whether the elevator car position is valid. Validity is
in this application defined as sensor values that are within the precision of ±4 mm of each other.

Through combination of the Safety Requirement 1 and the Functional Requirement 1, Safety
Requirement 1 is derived. An algorithm is to be developed that uses position values obtained
from the sensors to calculate a validity of the measured position. A binary output that can be
used as input for other software modules is expected.

Software Requirement 2 REQ SW POS REACTION TIME: The software in the operational
state shall, upon detecting an invalid position, transit into the safe state within 4 ms.

Software Requirement 2 follows directly from the Safety Requirement 2 and describes the maxi-
mum amount of time that can be allowed to pass if the system is in the operational state and an
invalid elevator car position is measured. In a distributed system such as the one being developed
this requirement implies constraints on system layout. For example, it would be practical to
avoid delays induced by using a communication medium to transfer information between a node
hosting the algorithm that evaluates the position precision and a node controlling the motor
control board. This design decision would also help reduce the jitter cause by the communication
network and make verification of this software requirement more practical.
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Figure 3.4: Tracing of system requirements and the safety goal onto functional anf safety requirements

Software Requirement 3 REQ SW CMD XINU: The software shall accept instructions from
the XINU environment to instruct the movement of the elevator car.

In order to enable communication with the XINU environment, apart from hardware support for
RS-232, support on the software for the packet framing used by XINU is also required. Since
communication with XINU has not been identified as safety-relevant, decisions on mapping this
communication functionality to even a general node in the system are not made at this point to
enable flexibility in the design stage.
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3.3.5 Traceability

In order to aid traceability, Figure 3.4 illustrates the relationships between the System Require-
ments and the Safety Goal as the most general ones, the Safety and Functional Requirements
derived from them, and the Hardware and Software Requirements representing the input for the
design stage of development.

This traceability matrix is meant to help ensure that all the input requirements, as stated in
the System Requirements and the Safety Goal, have been mapped further onto the Safety and
Functional Requirements, and onward to Hardware and Software Requirements. This relation of
forward traceability is important in order to ascertain that the input requirements are properly
analyzed and taken into account in the design stage. The relation in the opposite direction,
backward traceability, helps avoid features that would appear at the design stage and influence
the design, but could not be traced to an original higher-level requirement. Such additions can
be viewed as ghost features that are not to be part of the design.
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The goal of this work is to specify and design a part of an elevator control system that uses
diversity to raise fault detection. Diversity on the system level is to be achieved through use of two
independent communication systems with different physical and protocol properties. Diversity on
the board and application level is to be achieved through use of different processors, peripherals
as well as the independently developed software and hardware. Diversity on the sensor level is
given by the choice of sensors as described in [Mai11]. The selected sensors utilize diverse physical
properties to obtain the measurement values, and have disparate resolution and accuracy values.
Further diversity is influenced by the choice of microcontroller units for processing, which pose
different requirements on interfacing with the sensors as well as influencing the way functionality
is mapped onto hardware and software. Diversity on the software level is influenced by the choice
of fundamentally different processor cores running on the boards of each system. The software
is to be designed and implemented by independent persons that should communicate strictly to
exchange interface data, e.g. data on the access of commonly used sensors and common software
interfaces, and not on design decisions.

This chapter presents the design phase of the development and the reasoning behind the choices
made for both hardware and software. Decisions regarding hardware are made concerning how
to interface sensors of various specifications and a number of RS-232 compatible devices and
systems to the development boards. With regard to software, decisions concerning the software
architecture, communication stack and development methods and tools used to design the system
are made and described.

For this purpose, hardware and software requirements are used as input documents and serve as
a basis for further system design. In the first place they influence the way that the required func-
tionality is assigned to hardware and software, and further the way the functionality is distributed
between the constituent components of hardware and those of software.

4.1 Hardware design

As with most applications in building automation, elevator control systems have restrictive spatial
constraints as well. In order to use sensors in an optimal way they might need to be placed far
away from other sensors or a centralized controller. Layout of such a system is influenced to a
large degree by considerations of retaining integrity of signals coming from sensors and bearing
important information, such as in this case the position of an elevator car.
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In order to retain signal integrity the controllers that process raw sensor data should be placed
as close to the sensors themselves as possible. In a system with elements spread far apart,
a centralized solution with one controller comprised of hardware to interface with each of the
sensors, a CPU and device driver, communications and applicative software running on this CPU
presents significant challenges.

In designing this elevator control system, the approach of designing a distributed system was
chosen. Conforming to the hardware requirements recognized presented in subsection 3.3.3, a
solution using an already available basic hardware platform in the form of an evaluation board is
to be chosen. In line with the other hardware requirements, the evaluation board has to provide
the following:

• Interface for reading a digital input,

• Interface for measuring of a PWM input signal,

• Interface for measuring a quadrature-encoded input signal,

• Interface for communication over CAN,

• Two interfaces for communication over RS-232.

The evaluation board chosen as the platform board of this distributed system is the board pro-
duced by OLIMEX Ltd with the designation ”STM32-P103”. The CPU integrated onto the board
is an STM32F103 microcontroller by STMicroelectronics, build around an ARM CORTEX-M3
core, capable of execution at up to 72 MHz, and supplemented by various peripherals such as
ADC and DAC units, timers, CAN, USB and serial communication controllers.

The evaluation board chosen as the hardware platform in the system, and the integrated micro-
controller, apart from other features and peripherals, provides support for all of the functionality
required by the hardware requirements. The following Hardware Design Artifacts have been
derived from the hardware requirements:

Hardware Design Artifact 1 DES AIM HW EVAL: Use of available ”STM32-P103” evalua-
tion boards,

Hardware Design Artifact 2 DES AIM HW DIG IN: One ”STM32-P103” evaluation board
with six header pins that are connected to the microcontroller pins with digital input functionality
shall be used to interface with six magnetic field sensors,

Hardware Design Artifact 3 DES AIM HW PWM IN: One ”STM32-P103” evaluation board
with two header pins connected to microcontroller pins with PWM input functionality and one
header pin connected to a digital input pin of the microcontroller shall be used to interface with
the ultrasonic distance sensor,

Hardware Design Artifact 4 DES AIM HW QUAD IN: One ”STM32-P103” evaluation board
with one header pin that is connected to microcontroller pins with functionality to interface with
a quadrature encoder shall be used to interface with the rotary encoder,
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Hardware Design Artifact 5 DES AIM HW IF CAN: Each of the ”STM32-P103” evaluation
boards includes a connector providing access to the ground, CAN-high and CAN-low lines of the
CAN driver, further connected to the CAN controller lines of the microcontroller,

Hardware Design Artifact 6 DES AIM HW IF RS232: One ”STM32-P103” evaluation board
that includes a connector providing access to one UART channel over a RS-232 driver and access
to the pins of a separate UART controller of the microcontroller shall be used to interface with
the XINU environment and the motor control board.

This breakdown of hardware design artifacts, apart from presenting a way of further tracing
the hardware requirements of the previous chapter, represents a foundation for low-level design
decisions such as mapping of certain required functionality onto hardware modules supported by
the ”STM32-P103” evaluation board and its microcontroller.

For the purposes of this project, where an elevator model with a total height of less than 2 meters
is used to represent a 6-floor building, one evaluation board is to be used to read the current state
of all 6 magnetic field sensors. The decision was influenced by the amount of available evaluation
boards. However, this design choice does not hinder system performance in any way since the
use of a single evaluation board for all 6 digital inputs represents a valid model of the CAN bus
load as well as presenting no penalties on the execution time of the CPU handling the reading.
Load of the CAN bus is not influenced since the events on which messages relating to magnetic
field sensor data are triggered are very sparse and far apart, both spatially as well as temporally.
Furthermore, the bit-rate of the CAN bus was selected in such a way to accommodate an even
larger amount of messages transmitted over it. The penalty on CPU load brought about by
sampling 6 digital input registers by a single microcontroller is negligible, especially taking into
consideration the absence of further processing required of this node, and is thus acceptable. As
many of its contemporaries, the microcontroller used supports read operations on complete ports
that consist of up to 16 pins each. The pins belonging to each port are mapped into adjacent bits
in memory, thus forming memory locations addressable as 16-bit unsigned integer variables.

Among other functionality, the STM32P103 provides hardware support for interfacing with
quadrature encoder signal pairs through six of its timer units. Only predefined pairs of timer
unit input lines can be used for this purpose, with each timer unit provided with one input line
pair. The encoder is in principle a clock with selectable tick direction. Several properties of the
encoder interface mode can be configured, such as the active edge and whether the functionality
is triggered of one or both input signals. Input of the zero-track signal is not supported in the
timer hardware itself. To this end the zero-track output of the rotary encoder is to be connected
to a general-purpose digital input pin. All general-purpose digital pins of the STM32P103 can
be used to generate an interrupt on an external event. Use of an external interrupt source is
acceptable in this application since the interrupt frequency in normal operation is inherently
bound by the rotational speed of the spindle. A boundary case can be identified in the form of
a quasi-stationary position of the elevator car and the internal zero-mark indicator coming to
rest exactly adjacent to its detector. In such circumstances it is conceivable that the internal
zero-mark indicator might be caused to toggle due to vibrations in the system. This would would
further influence the zero-track output and cause it to take the form a pulse train. The described
behavior has a negligible impact on the precision of the position measurement algorithm as the
imprecision caused by this jitter was already taken into consideration when estimating the overall
resolution of the rotary encoder and its corresponding mechanical parts and linkages. In order
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to counteract any negative impact that the aforementioned behavior could on the load of the
CAN bus, measurements in the software executed on the rotary encoder sensor node are needed.
Appropriate measures would be a software-based debouncing function to handle a rapidly tog-
gling zero-mark, time-triggered transmission of the position value from the rotary encoder or a
debouncing function built into the communication software that would implement a minimum
timeout between two transmissions.

Several timer units of the STM32F103 microcontroller support PWM input functionality in hard-
ware. The PWM input mode is a specific case of the input capture mode one input, carrying
the PWM input signal, is mapped to two internal input capture channels reacting on opposite
signal edges. One of the input capture channels, channel IC2, is then used to capture the length
of a signal pulse, while the other capture channel, channel IC1, captures the period of the signal
and resets the counter of the first capture channel. In this way the counter value of channel IC1
represents the signal period in timer clock ticks, while the counter value of channel IC2 represents
the duty cycle of the same signal. The counter registers are shadowed and provide the period
and duty cycle measured in the last complete signal period.

An ISO-11898 [ISO03] compatible CAN transceiver and all of the circuitry required for its opera-
tion are already included on each STM32-P103 evaluation board. The transceiver is connected to
the corresponding pins of the CAN transceiver integrated into the STM32F103 microcontroller.
The proper configuration of CAN controller and pin settings is done through software.

Each STM32-P103 evaluation board provides includes one RS-232 driver interface that is further
connected to the UART2 controller unit integrated into the microcontroller. Transmission and
reception lines of a further controller, UART1, along with a signal ground line are lead through
the extension header of the evaluation board. In order for the same evaluation to be used for
communication over both of the required RS-232 interfaces, an adapter with a driver compatible
with RS-232 would need to be used. This is the preferred solution that would help minimize
the latency caused by use of two separate evaluation boards. In a two-board solution, the first
evaluation board would be used to execute the elevator control software and to communicate
with one RS-232 device, either the XINU environment or the motor control board, and the
evaluation board communicating with the other RS-232 device. The other evaluation board
would simply present a bridge between the other RS-232 device and the main evaluation board.
Such a solution would cause delays caused by the added bridging of data from RS-232 to CAN, as
well as jitter mostly caused by the arbitration mechanism of CAN used for medium access. Since
the performance of the elevator control algorithm would significantly compromise the ability of
the control algorithm to fulfill the Safety Requirement 2. Thus, the preferred solution is to use
one evaluation board with its RS-232 interface to connect to the motor control board, and use
an UART-to-RS-232 adapter to connect the same board to the XINU environment.

The STM32 reference manual [STM10] includes a description of the provided functionality and
the settings necessary to configure the required hardware peripherals, as well as some of their
common use cases.

The Hardware Design Artifacts presented in this section and the hardware peripherals they are
mapped to do not completely fulfill the Hardware Requirements presented in subsection 3.3.3. In
order to fulfill the Hardware Requirements, following changes to the hardware and additions in
terms of adapter interfaces are necessary:

• Adapter to convert the magnetic sensor output signal voltage range to a range compatible
with the general purpose input pins of the microcontroller,
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• Adapter to convert the ultrasonic sensor output signal voltage range to a level compatible
with the timer unit input pins of the microcontroller,

• Evaluation board used to measure rotary encoder sensor data is to be adapted so both input
lines connected to the A and B tracks of the rotary encoder are connected to header pins,

• Adapter to convert the rotary encoder sensor output signal voltage range to a level com-
patible with the timer unit input pins of the microcontroller,

• Adapter to convert between the TTL voltage levels of the UART controller and the voltage
levels of the RS-232 interface.

The identified changes to the hardware are of a general nature; an analysis of the particular
changes to the evaluation board and layouts of interface adapter boards are presented in Chapter
5 on System implementation.

In order to properly interface with magnetic sensors, a voltage shifter would be required. The
magnetic sensor requires a supply voltage of between 10 V and 30 V and is supplied from a 12 V
power supply common to other sensors, with 12 V being the highest level of the output voltage.
The STM32F103 includes numerous general-purpose input/output pins that are tolerant to input
voltages as high as 9 V and such pins are used to interface to the magnetic sensors. To this
end an interface board for each of the six magnetic sensors in the elevator model is to be made,
containing a circuit that shifts the maximum voltage level of the sensor output from 12 V down
to the nominal voltage of 5 V as pictured in Figure 4.1.

Figure 4.1: Layout of the magnetic sensor interface board

Figure 4.2 illustrates in a black-box fashion a circuit necessary to interface with the rotary encoder
sensor. For optimal measurement performance, the two outputs A and B of the rotary encoder
are to be connected to two specific timer pins of the STM32F103 that can be used in encoder
interface mode, while the output Z is to be connected to a general-purpose pin and used to
generate interrupts. The timer pins are to input voltages of up to 4 V and therefore need an
interface circuit that would bring the voltage levels of the connected sensor to acceptable levels.
The general-purpose input used to connect the Z track would not actually require such a circuit.
However, the Z track will also be taken into account for the sake of uniformity and design clarity
and its input will also be brought to the maximum level of 3.3 V, as well as the inputs that react
to pulses on tracks A and B.
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Figure 4.2: Layout of the rotary encoder interface board

A black-box view of an interface needed to connect the ultrasonic sensor is presented in Figure
4.3. The meaning and proper interfacing to the parametrization and synchronization inputs is
discussed in section 5.1.1 on hardware interface adapter boards.

Figure 4.3: Layout of the ultrasonic sensor interface board

4.2 Software architecture

In line with the distributed approach chosen at the system and hardware levels, the accompanying
software needs to be designed according to such an approach as well. According to the software
requirements described in subsection 3.3.4, the following functionality needs to be provided by
the software:

• Algorithm to reach a binary decision on the validity of the elevator car position,

• Transition from the operating state into the safe state is to happen within 4ms,
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• Instructions from the XINU environment are to be used to influence the movement of the
elevator car.

The following functionality is required to enable use of the hardware specified in the Hardware
Design Artifacts of section 4.1:

• Software interface that provides the state of a digital input signal,

• Software interface that provides the measured properties of a PWM input signal,

• Software interface that provides the measured property of a quadrature-encoded input sig-
nal,

• Software interface that provides access to the CAN bus for transmission and reception of
data,

• Software interface that provides access to the RS-232 interface for transmission and recep-
tion of data.

Further, a communication stack that would operate using the CAN controller is to be selected
and integrated into the software of each evaluation board.

The software architecture used to design the master node software is shown in Figure 4.4. It
is represented as a layered architecture that has its foundations in the hardware abstraction
layer, which is in the case of the master node provided by ChibiOS/RT. ChibiOS/RT further
provides the underlying operating system that is implemented as a preemptive kernel with a
static architecture and resources allocated at compile-time [3]. Apart from the parts of the
hardware abstraction layer needed by the operating system itself, the module CAN, GPT, UART
and PORT are configured as they are required by the modules of the services layer, and ultimately
by the application modules themselves.

Figure 4.4: Software architecture - master node

The software architecture used to design the software of slave nodes is shown in Figure 4.5. Since
the complexity of the software that is to be run on slave nodes is much lower compared to the
master node, a real-time operating system is not required. Instead of a task scheduling module
a run to completion scheme is used to implement the required functionality. The STM32F10x
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Standard Peripherals Library, available as-is from ST Microelectronics [5], is used as the hard-
ware abstraction layer. Any interface adaptations between the components, e.g. the CANopen
communication stack, and the hardware abstraction are to be implemented as interface wrappers.
Such wrappers can include handling of CAN transmission and reception, access to digital I/Os
and timer units of the MCU.

Figure 4.5: Software architecture - slave nodes

4.2.1 CANopen as the communication stack

The first communication system used in the presented redundant elevator control system, de-
scribed in [Mai11], uses LonWorks as the underlying communication system. The second commu-
nication system, described in this thesis, uses CAN as the communication system. In difference to
LonWorks, CAN specifies only the two bottom-most layers of an ISO-OSI communication stack,
while the layers above and including the Network Layer are application specific, as shown in
Figure 2.2. While it would be possible to use the eight byte payload field of a CAN message to
directly transfer data, it would not be practical in this case. Such an approach is sufficient and
efficient when used in static systems that do not need to be expandable. However, an elevator
control system would benefit from a solution that would allow it to expand with the least amount
of additional effort, for example by a reconfiguration of the system instead of a new development.
Additional benefits to be sought from a communication stack used in a building automation sys-
tem, or indeed any control system, are a heartbeat functionality that would help system integrity,
as well as an implementation of controlled network startup and shutdown.

Two communication stacks that are designed to function using CAN as the bottom two ISO/OSI
layers and offer similar services and functionality were investigated for this purpose, namely
CANopen and DeviceNet. While both communication stacks are designated as ’Open’, informa-
tion on DeviceNet is significantly harder to obtain. Most information on CANopen, on the other
hand, is openly and freely available, although the information on e.g. recently specified device
and application profiles is typically not given open. There are several open source implementa-
tions of CANopen that are developed and supported by Internet communities and one of these
was selected as the communication stack for the CAN-part of the elevator control system.

CANopen is a field-level communication protocol for distributed applications in industrial au-
tomation specifying services that implement an object-oriented distributed environment for sys-
tem integration [BSCF98]. CANopen adds the notion of a node address or ID by reserving 7 bits
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Figure 4.6: CANopen architecture

of the CAN message identifier for this purpose, while the other four bits represent the function
of the message [PNH04]. The protocol is flexible enough to support use in diverse industrial
applications, from multi-tap auto-transformers [PNH04] to automatic pipeline welding systems
[WXC+08], with investigations into implementing CANopen for control of a hybrid electric ve-
hicle [LHR+09]. The examples cited here do not limit the applicability of CANopen to other
fields of use as many general and flexible device profiles exist that can, through combinations and
adaptations, cover a wide field of possible applications.

Protocols of the CANopen stack, as specified in [CAN02], are displayed in Figure 4.6. The
main concept of CANopen is the Object Dictionary, which is a data structure that serves as the
foundation for the behavior of all communication objects, the state machine and process activities
of a CANopen stack. Table 4.1 gives an overview of the areas that an object dictionary consists of.
In the first place, an object dictionary specifies the data types used, most of which can be mapped
into a PDO with the exception being data types describing strings. Scalar data types are specified
as present in many programming languages, as well as ones describing time, communication
parameters and manufacturer and profile specific values. An object dictionary further contains
entries related to communication, such as the communication cycle period, hardware and software
versions, period of the produced heartbeat and the expected periods of heartbeats to receive, as
well as information on how transmission (TDO) and reception (RDO) data objects are to be
mapped. The entry range 0x2000-0xBFFF enables support for manufacturer specific entries, as
well as entries relating to specified device profiles and interface profiles.

For example, the device profile ”CiA 401”, entitled ”Device profile for generic I/O modules”, can
be used in magnetic sensor nodes to propagate the current state of a magnetic sensor over CAN.
The object dictionary of the magnetic sensor node would thus include entries specific to ”CiA
401” devices; in this example it would present facilities of a digital input module that are to be
entered into the entry at index 0x6000. Furthermore, entry entitled ”TPDO 1”, i.e. the primary
process data object the node transmits, is to be configured in entry with the index 0x1800. This
entry contains information on the CAN ID to be used for this message, the transmission type
(cyclic, acyclic, synchronous, asynchronous or on-request), the inhibit time which is a higher-
level implementation of de-bouncing functionality, as well as the event timer which is used for
time-triggered transmission of PDOs. Specifics on the configuration of the object dictionary are
described in detail in [CAN08] and [CAN02].

Furthermore, an object dictionary contains declarations of standard and device or manufacturer
specific simple and complex data types, communication parameters of the CAN network, infor-
mation related to the class the device belongs to as well as information that describes the device
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Index Entry description

0x0000 Not used

0x0001-0x025F Data types

0x0260-0x0FFF Reserved

0x2000-0x5FFF Manufacturer specific

0x6000-0x9FFF Device profile specific

0xA000-0xBFFF Interface profile specific

0xC000-0xFFFF Reserved

Table 4.1: Structure of the Object Dictionary

and its manufacturer.

With regard to communication, CANopen recognizes these three types: master-slave, client-
server and communication based on the producer/consumer model. Each protocol uses one of
these principles, according to applicability.

Service Data Objects (SDO) provide services which are mapped to appropriate areas of the
object dictionary of the device in question. Service data objects are typically used to set device
parameters and are as such not used for transport of process-related data. This property makes
them a good example of client-server communication within CANopen. Service data objects are
typically used in combination with highly configurable nodes. An SDO client that has access to the
required parameters would connect to the appropriate SDO server and transfer the configuration
data in a connection-oriented way. Such a configuration would include setting the parameters of
the other protocols, except for network management, and it is thus more suited for use in the
network management state STOPPED or PRE-INITIALIZATION.

Process Data Objects (PDO) are an example of the producer-consumer model. The configuration
of sampled data to process data and further to CAN messages is defined either at compile-time
or is distributed at network start-up by SDO. The actual distribution of process data is based on
this configuration and follows the producer-consumer model. The producer packs the sampled
data and sends it in the form of a PDO without expecting an acknowledgment from a receiver.
A consumer, i.e. a node that includes the PDO in question in its object dictionary as a PDO
to be received, receives the CAN message and forwards it to the CANopen stack running on its
CPU. The CANopen stack handles the interpretation of data and further sets appropriate entries
of the object dictionary to corresponding values that were received. An application that uses the
data would then read the new values from the object dictionary.

The Network Management protocol (NMT) is a master-slave based service which allows the
network master node to influence the network management state of the slaves nodes in its network.
One device in the network is required to implement the NMT master functionality, and the master
changes its own state using local services as implemented in the specific stack. The NMT specified
four possible states that an NMT slave node can be in: STOPPED, PRE-OPERATIONAL,
INITIALIZING and OPERATIONAL, as visible in the state diagram 4.7. Through the definition
of NMT states, network management implements a way for network-wide synchronized start-up
of communication, as well as application functionalities. All slave nodes are required to stay in the
state STOPPED after start-up. The NMT master node would, after its own successful start-up
and initialization, broadcast a command for the nodes to enter the PRE-OPERATIONAL state
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i.e. to initialize their communication parameters and prepare for normal operation. A request
send by the NMT master to enter the OPERATIONAL state indicates to the slave nodes that their
application functionalities can be started, thus starting transmissions of Process Data Objects
and normal system operation. Further functionality that is a part of Network Management are
the two error control services, Life Guarding and Heartbeat.

Figure 4.7: Network management state diagram

The Synchronization protocol is a non-mandatory producer-consumer based confirmation-less
service which can be used to provide the notion of a common network clock. Synchronization
messages are given a very low fixed CAN identifier of 0x80 in order to reduce the latency of
distribution of common time caused by bus access. The messages themselves carry no data and
can be interpreted as ticks of a common clock that are distributed over CAN. This service is used
to coordinate synchronous behavior of devices, e.g. process control loops, with the process period
being the period between synchronization messages that needs to be configured in the object
dictionary of each affected node.

The Time-stamp protocol is another non-mandatory producer-consumer service which also does
not need a confirmation from the consumers. In contrast to the synchronization service, Time-
stamp messages using the CAN identifier of 0x100 carry the current time as a 6 Byte object and
provide the notion of a common system time. The time distributed using the time-stamp protocol
has the resolution of 1 ms and can have latencies higher than those of synchronization messages
due to the CAN identifier of a comparably lower priority.

The Emergency protocol is a producer-consumer based optional service that provide the possi-
bility to communicate an error by the producer in order to trigger a reaction by the consumers.
The errors are device specific, although the CANopen specification [CAN02] provides a number
of commonly occurring error classes.

Three of the six protocols specified by CANopen are relevant to this system and will be used;
the remaining three, namely the Synchronization, Emergency, and the Time-stamp protocols are
out of scope. However, these protocols specify functionality possibly important to other systems,
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especially the Synchronization and Time-stamp protocols with regard to more complex distributed
business logic that would require explicit time synchronization of the constituent parts.

4.2.2 Hardware abstraction layer for the sensor nodes

As CanFestival, the open source implementation of CANopen that was selected for this project,
does not strictly require an operating system to run on, if can be differentiated between the
hardware nodes on the basis of whether they host an operating system or not. Hardware nodes
that are used to interface to the sensors require software of a significantly reduced complexity
compared to that of the hardware node that hosts the control algorithm. The sensor nodes need
to fulfill these requirements: obtain the data from the respective sensor, process the sensor data
into a form that can be passed on to the CANopen stack and enable CanFestival to communicate
with the control node over CAN.

The approach of executing CanFestival on the CPU without an underlying operating system
is followed for the sensor node software since the STM32F10x Standard Peripherals Library,
provided by ST Microelectronics as-is and without licensing limitations, provides the necessary
drivers and functionality. Table 4.2 shows which modules of the Standard Peripherals Library
were used in the software of each sensor node. Modules common to all sensor node types are
CAN for the communication, Flash for the optimal configuration of flash wait states, GPIO for
the control of a heartbeat LED, RCC for clock and PLL configuration, TIM for the timebase
used by CanFestival and UART for debug messages during development. The magnetic sensor
node additionally needs to evaluate the state of six further digital input. The ultrasonic and
quadrature encoder sensor nodes use an additional timer unit; the ultrasonic sensor node uses the
timer for measurement of distance encoded as duty cycle of a PWM input, while the quadrature
encoder node profits from the hardware support for evaluation of a quadrature encoded signal,
presented in Figure 3.3. The rotary encoder sensor interface makes use of the external interrupt
(EXTI) module as well, to provide a way to reset the timer register containing the pulse counter
on each full revolution of the spindle.

Node type /
Modules used

Magnetic sensor Ultrasonic sensor Quadrature encoder
sensor

CAN X X X

EXTI X

Flash X X X

GPIO X (six inputs, one
output)

X (one output) X (one output)

RCC X X X

TIM X (one timer) X (two timers) X (two timers)

UART X X X

Table 4.2: Modules of the STM32F10x Standard Peripherals Library used by the sensor nodes
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4.2.3 Operating system for the master node

The software that is to run on the control board is significantly more complex in size and function-
ality, as well as in the fact that hard real-time deadlines influence the requirements on execution
of some software modules. On this node bidirectional communication over two UART devices,
CAN communication and execution of the elevator control algorithm need to be executed quasi-
simultaneously. For this purpose ChibiOS/RT, an open source real-time operating system released
under the GNU General Public License, was selected. A detailed description, documentation and
examples can be found at the homepage of the ChibiOS/RT project [3], and the source code of
the project is available from the project page at Sourceforge [4].

ChibiOS/RT is an operative system built around a preemptive scheduler supporting multiple
priority levels, where threads with the same priority level are scheduled using the round robin
approach. Although various extensions for dynamic objects are usable, the OS architecture is
static and statically allocatable at compile-time. A Hardware Abstraction Layer is provided for
numerous ARM-based microcontrollers and evaluation boards. One of the most important reasons
for selection of ChibiOS/RT are the support of the STM32F103 microcontroller as well as of the
evaluation board ”STM32-P103”. All of the functionality required to run CanFestival on top of
ChibiOS/RT are provided by the hardware abstraction layer and the features supported by the
OS kernel. These include an abstracted CAN driver for direct interfacing to CanFestival, as well
as the underlying low-level CAN driver. An abstracted view of serial communication is available
that can be used for the communication to XINU and the motor control board, that further use
the available low-level UART driver. A ports abstraction provides access to the on-board LED
for a status notification. The general purpose timer module is used for provide CanFestival with
a notion of time. A step function of the CanFestival stack is called with a period of 50 ms in a
separate thread and the time it is provided with has a resolution of 10 us.

4.2.4 Flowcharts of the NMT slave nodes

Sensor boards of the system are modeled as slave nodes in the sense of CANopen network man-
agement, while the control board is modeled as the master node. The master node, through
dedicated NMT CAN messages, controls the network-wide network management (NMT) state
diagram illustrated in Figure 4.7. The NMT message uses a network-wide unique CAN ID and
a two byte payload with Byte 0 being the command specifier and Byte 1 the Node-ID of the
node that is to execute the command. The node-ID 0 is a special broadcast node-ID meaning
the command specifier is to be executed by all nodes on the network.

Figure 4.8 illustrates (a) the initialization procedure that is to be executed by sensor boards in
the INIT state, and (b) the flowchart to be implemented for the sensor boards in the operational
state. Due to the simple structure of sensor nodes, their states referred to in this flowchart can
be directly mapped to NMT states of Figure 4.7. The ”INIT” state thus maps to the NMT state
”Preoperational” and the Operational state to the NMT state ”Operational”. Sensor nodes do
not require a separate safe state but are instructed by the NMT master to switch to the NMT
state ”Stopped” in which all communication by the sensor nodes ceases.
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Figure 4.8: Flowcharts of the sensor node functionality in the (a) INIT and the (b) Operational state

4.2.5 Flowcharts of the NMT master node

An abstracted view of the control board functionality in the three main states is presented in a
form of flowchart in Figure 4.9. The state INIT is entered as the control board is powered on and
finished its local initialization routines. As soon as the master receives one heartbeat message from
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each of the sensor nodes the CANopen network can be put into the global state ”Preoperational”.
The control algorithm can then be started and the initial position of the elevator car obtained.

Figure 4.9: Flowchart of the control board functionality in the (a) INIT, (b) Operational and (c) Safe
states.

As the control node switches the network into the state ”Operational” via the CANopen NMT
master, it is checked whether all the sensor nodes communicated with the control board via their
respective heartbeat messages. Only if all of the sensor nodes sent their heartbeat messages
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within the last heartbeat period the sensor values can be obtained from the Object Dictionary
and subsequently used as input for the position check algorithm. Finally, when the elevator car
position can be reliably calculated it is used as input to the motor control module.

In the case that the elevator car position can not be reliably calculated, for example due to the
failure of one of the sensors, the ”Safe” state is entered. In this state the control board instructs
the motor control board to stop the motor, ensures that the elevator car remains stationary by
disabling the UART communication channel to the control board and puts the CANopen network
in the state ”Stopped”. The control board reports an error to the XINU environment and remains
responsive on this UART interface for possible exchange of error and diagnostic information.

A mapping between application states and NMT states similar to that for NMT slave nodes
is applicable to the NMT master node and the software running on it. The application state
”INIT” maps directly to the NMT state ”Preoperational”, while the ”Operational” state of the
application maps to the NMT state ”Operational”. The application ”Safe” state can be mapped
onto the NMT state ”Stopped”, since no further communication relevant for motion control is
required in this application state.
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5 System implementation

The system implementation can be separated into parts dealing with the hardware and the
software. The focus is on the additions to the hardware due to specific interface requirements,
bring-up of the evaluation boards, common and specific software for each board type and the
configuration and initial start-up of CanFestival and ChibiOS/RT.

5.1 Hardware

Due to the electrical parameters of the microcontroller at the core of the development boards
used, interface boards were designed to allow for correct reading of the sensor outputs. Further,
the complete hardware of the system is presented along with the bus layout used to connect the
hardware parts.

5.1.1 Hardware interface adapters

The STM32F103 evaluation boards are based on the microcontroller STM32P103 produced by
STMicroelectronics. The device is to be operated with a voltage supply producing between 2.0
V and 3.6 V [STM12]. However, most of the general-purpose input/output pins are 5 V-tolerant,
i.e. they can operate with input voltages of over 5 V.

The magnetic sensors used, as well as the ultrasonic sensor, require a supply voltage of 12 V.
This supply voltage is provided using the sensor interface boards presented Figure in 4.1 and
Figure 4.3, respectively. Both of these sensors have levels up to the supply voltage as maximum
output levels. Since a general-purpose input pin can be used on the magnetic sensor nodes, the
maximal incoming signal voltage needs to be lowered from 12 V to 5 V and no further interfacing
is required to connect a magnetic sensor to the board. As the pins that are mapped to timer
input channels are not tolerant to 5 V inputs, the maximal incoming signal voltage from the
ultrasonic sensor needs to be lowered from 12 V to 3.3 V. The ultrasonic sensor provides two
additional inputs, a synchronization input and a parametrization input. In the use case where
several ultrasonic sensors are used and there exists the possibility of mutual interference between
the sensors, synchronization inputs are used to independently trigger the beginning of a measuring
cycle for each sensor. The synchronization feature is not required for this project since only one
ultrasonic sensor is used and this input is connected to ground, as per the instructions given
by the manufacturer. The STM32F103 can detect frequency values of minimally 1.1 kHz. In
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order to be able to correctly evaluate the sensor output frequency, this parametrization input
is connected to 12 V, as per the manufacturers instruction, causing the sensor to encode the
distance information within a signal with a frequency of 1.9 kHZ.

The rotary encoder requires a supply voltage of 5 V. This sensor also uses its supply as the
maximum output level and an interface board, presented in Figure 4.2, is used to lower the
maximal incoming signal voltage from 5 V to 3.3 V with no further interfacing required.

5.1.2 System hardware

The complete hardware of the elevator control system based on CAN consists of the controller
node, three sensor nodes complete with the respective sensor and interface adapter board, the
XINU environment and the motor control boards. The controller board is connected via CAN
to the sensor nodes, and via an RS-232 connection to the motor control board. An interface
for connection to the XINU environment using another RS-232 connection is provided as well.
Figure 5.1 shows the system hardware where the scope of the system developed and described
within this thesis is bounded by the dashed line.

Figure 5.1: View of the system hardware

The CAN bus can be topographically viewed as a single line. However, physically the bus was
realized as a two-line twisted pair bus with a termination at each end of the bus. In order to
further reduce reflections the bus was not realized as a trunk line with a branch connected to
each node, but rather in a hop-by-hop fashion, as shown in Figure 5.2.
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Figure 5.2: Implementation of the CAN bus

5.2 Software

This section describes the measures that were taken during the software implementation. An
overview of the development environment and the toolchain is given, as well as the process
of porting the CanFestival stack to the STM32F103 microcontroller and integrating the stack
into ChibiOS/RT. Additionally, the functionality of slave nodes and that of the master node is
described.

5.2.1 Development environment

The toolchain used for development of this project is made up of the following tools:

• Eclipse IDE with C/C++ Development Tooling [12],

• Zylin Embedded C/C++ Development Tooling plugin for Eclipse [11],

• Embedded Systems Register View plugin for Eclipse [14],

• YAGARTO (Yet Another ARM GNU Toolchain) [13],

• Open On-Chip Debugger (OpenOCD) [15].

The OpenOCD Development Suite (ODS) put together by Olimex was used as the basis for the
development environment. It includes the Open On-Chip Debugger with profiles for use with
the ARM programmer and debugger tool used with the evaluation boards. The compiler, linker
and build support tools of the YAGARTO toolchain, integrated into the Eclipse IDE by their
installer, were used for the build process. OpenOCD was used from withing Eclipse to connect to
the on-chip debugger module of the STM32F103, to program the microcontroller and to debug
the software. Separate Eclipse projects for each of the sensor nodes are available, with makefiles
tailored to the needs of the node. The controller node software was integrated into the Eclipse
project provided by the installation of ChibiOS/RT.

A unit test framework was set up for use with Eclipse to enable automated unit tests of the
developed software. An open source unit test framework for C called ’Unity’, available from [16],
was used for this purpose and the tests were executed automatically at each file save operation.
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5.2.2 Porting of CanFestival to STM32F103

The CanFestival implementation is a platform-independent implementation of the CANopen stack
with the source code available from [7]. CanFestival is grouped into a static part, implementing
the functionality of each supported service, and a configuration part that represents data upon
which the static functionality is executed. Examples of the stack ported to various platforms are
included in the repository, including Linux and Windows-based PCs with external CAN interfaces
as well as examples of several embedded targets.

As the source code is written in a platform-independent way, the process of porting of CanFestival
was a matter of recognizing and correctly implementing the wrappers that adapt the target-
specific functionality to the interface used by CanFestival. For embedded targets the porting
process requires the use of a timer that needs to be able to generate and handle an interrupt on
a certain compare value. CanFestival includes a micro-scheduler that manages an alarm table
and dispatches calls to stack functionality through callbacks at the correct time. This dispatcher
can to be called at regular intervals from a periodic task in the case that an operating system is
used, but for better resolution of triggered events it should be possible to specify the next trigger
point.

Further, CanFestival requires access to the CAN interface of the microcontroller in the form of
functions that initiate the transmission of a CAN message from, and pass an incoming message
to the CanFestival stack . As CanFestival abstracts from the CAN controller itself, indeed it
does not differentiate whether an MCU-internal or external CAN controller is used, it is the
responsibility of the system integrator to make properly configure the CAN controller.

Access to the Object Dictionary is implemented using access functions, although direct access to
the arrays storing the mapped variables is available for performance purposes.

5.2.3 Integration of CanFestival and ChibiOS/RT for the controller node

As described in section 5.2.2, the major task when porting and integrating CanFestival into a new
system is the provision of interface functions regarding the timing and access to CAN messages.
ChibiOS/RT can be used to provide CanFestival with a notion of time through use of a general
purpose timer module (GPT). An general purpose timer presents an abstracted view of a timer
unit that can be used for triggering of a callback function. Additionally, a function was provided
to enable CanFestival to set an alarm by influencing the next scheduled expiration point of the
timer.

Wrapper functions were required to adapt the calls of generic transmission and reception func-
tions of CanFestival onto the ChibiOS/RT-specific CAN transmit and receive functions. Functions
provided by ChibiOS/RT were used for configuration of the CAN controller itself and the con-
figuration values for the timing were synchronized to those used by the sensor node. Since the
software running on the controller node needs access to the data sent by all of the sensor nodes
its acceptance filter for CAN IDs needs to be set wider that those of the sensor nodes. Apart
from the process data, i.e. sensor data values, the controller node also receives and processes the
heartbeat messages sent by the sensors nodes.
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5.2.4 Functionality of slave nodes

All of the sensor nodes were designed using the same structure. Since no further functionality
was required besides the acquisition of their respective sensor values and the CanFestival stack,
the sensor node software consists of an initialization procedure and a looped portion in which the
sensor value is read and forwarded to CanFestival. The initialization procedure for each sensor
node is slightly different as each sensor node requires a unique node-ID and a sensor-specific
method of peripheral initialization. Configuration of the CAN controller is shared among sensor
nodes, as are the time-handling configuration and the corresponding interrupt service routine.

The slave node connected to magnetic sensors needs a simple configuration since it connects to
six sensors that can be abstracted as digital inputs. The software on this node reads the state
of each of the digital inputs, forwards the aggregated values to the CanFestival stack running on
the node. The stack packs the values into a transmission process data object (PDO) and sends
the PDO to the controller node according to the configuration.

Figure 5.3: Block diagram of sensor nodes software on the example of the ultrasonic sensor node

The other two slave nodes that interface with the ultrasonic sensor and the rotary encoder have
a slightly extended form shown in Figure 5.3. An additional timer unit that provides hardware-
support for the evaluation of the frequency and duty cycle of a pulse-width modulated signal
requires a separate configuration. The distance is conveyed by the sensor encoded in the duty
cycle of the signal, and relates to the physical distance of the object from the sensor as shown by
equation (5.1), where the sensing range is specific to the ultrasonic sensor used and equals 1000
mm.

distanceobject = sensing range ∗ pulse length ∗ frequency (5.1)

An additional timer unit of the microcontroller is used on the rotary encoder sensor node to
provide hardware support for the acquisition of the spindle rotation information. The pulses on
tracks A and B are output by the sensor with a phase shift of 90◦ in the case of clockwise shaft
rotation, and with a phase shift of -90◦ for anticlockwise shaft rotation. The phase is detected
and stored in a separate direction register of the peripheral. In encoder mode the timer acts as a
counter of pulses detected on the two tracks A and B, counting up for a clockwise and down for
an anticlockwise rotation direction. This is the principle of operation of a relative rotary encoder
as the sensor does not give any information regarding current position of the shaft within regard
to a certain fixed angle. Thus the controller node includes a position resolution algorithm that
initializes the internal representation of the shaft position at start-up of the controller node.
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5.3 Supporting tools

During the project need for tools arose that would make the development, configuration and test
processes simpler and more comfortable. Some freeware and tools in the public domain were
found to be very useful and fit for their purpose, while others need to be written specifically for
use in this project. This section describes the most important and non-obvious tools used to
support the development process.

5.3.1 Objdictedit

The Object Dictionary Editor is a GUI-based configuration support and code generator tool
for CanFestival written in Python. It is used to make configuration of the object dictionary of a
CANopen node as user-friendly as possible and to provide a uniform implementation of the object
dictionary concept. The tool itself is a part of the CanFestival repository and can be obtained in
a version synchronized to the source from [7].

Objdictedit provides support for profiles dealing with the application layer and communication
as outlined in [CAN02], as well as with several devices such as generic input/output modules de-
scribed in [CAN08]. Support for further device profiles can be extended through use of the profile
mapping mechanism that allows Objdictgen to function in a profile-independent way through
storage of profile-specific data in profile mapping files in a specific folder of Objdictedit. This
functionality allows simple extensibility and support for new or changes profiles.

5.3.2 CANHacker

CANHacker is a shareware monitor and tracer tool for the PC that can be used to communicate
to several types of CAN interface hardware. The tool is hosted and supported through a forum
available at [9]. The software tools can be downloaded using the link [8] which demands a
registration to the aforementioned forum.

The tool can be used to display the contents of all received CAN messages in the tracer mode,
or display the contents of the most recent CAN message with a certain CAN-ID in the monitor
mode. Further useful functionality is the support for comments with the help of which each
CAN-ID can be described in order to make analysis of bus traffic easier.

As CANHacker is fundamentally an interface and visualization tool it requires a hardware coun-
terpart that features a CAN transceiver, an interface to the PC running CANHacker and a
microcontroller that forwards the CAN traffic to this interface. A spare OLIMEX STM32F103
evaluation board was used as the hardware counterpart since it features all of the hardware re-
quired for this purpose and significant portions of the software relating to the initialization of
CAN could be shared among this software and that used for the slave boards.

CANHacker supports several communication protocols used by hardware interfaces. One of these,
described at [6], is the LAWICEL protocol for communication interfaces between a CAN-bus and
USB. The hardware implementation actually uses a virtual serial port that needs to be selected
within CANHacker. Apart from basic reception, CANHacker further supports functionalities such
as simulation of CAN messages and transmission request with standard or extended ID fields,
use of custom bit-rates and acceptance filters for incoming messages.
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Firmware for the hardware interface was written, implementing the reception and timestamp
capabilities specified in [6], to be run on a spare STM32F103 board and forward received CAN
data over a RS232-to-USB adapter to a PC running CANHacker in order to display the data.
The received data can be presented by CANHacker either using the monitor or the tracer mode.
Only the relevant portions were implemented, namely the setup of a ”Listen Only” mode on a 125
kbit/s CAN-bus for reception of messages with a timestamp resolution of 1 ms , as the protocol
functionality is quite extensive and was not required in its full breadth.
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6 Results

A prototype of an elevator control system was developed according to the design goals and
artifacts described in Chapter 4. This chapter presents an analysis of the achieved design goals
and the results obtained during operational testing.

6.1 Fulfillment of requirements

The ten recognized hardware and software requirements presented in Figure 3.4 form the basis
for an analysis on the fulfillment of requirements.

Requirements on hardware can be directly mapped to hardware design artifacts presented in
Chapter 4 on System design. Their fulfillment can be followed to the system hardware that was
shown in Figure 5.1. The design artifact regarding the use of a particular evaluation board was
trivially fulfilled, while those artifacts related to the ability to interface with the necessary sensors
are fulfilled through the use of interface adapter boards for each of the three sensor types. Support
for CAN as the communication system was also trivially solved by the use of the ”STM32-P103”
evaluation board that features an on-board CAN transceiver and a selectable termination resistor.
The design artifact on RS-232 connectivity with two peers was fulfilled by the use of the on-board
RS-232 interface for communication with the motor control board, and an additional off-the-shelf
UART-to-USB adapter cable.

The software requirement on the ability to accept instructions from the XINU command over
the RS-232 interface can be directly mapped to a task configured to start upon reception of data
through the serial connection. However, the requirements on the precision of position data and
the time to enter the safe state upon detecting an invalid position could not have been met in the
form that they were assumed at the start of the project. Due to the nature of the sensors used,
a comparison of sensor values and the subsequent calculation of validity of the position value
aggregated from the three sensor types can only be made when the elevator car is at one of the
floor positions, or is nearing one such position. This is a fundamental restriction on the system
which could only be mitigated by exchanging the magnetic sensors with another sensor type, one
which would function over a denser range.

A further issue was observed with the rotary encoder sensor. The current elevator model intro-
duces a significant amount of slip between the rotating electric motor and the spindle it drives.
The slip is highly dependent on the load related to the direction of movement of the elevator car,
as well as by the friction between the rails along which the car is being guided and the brackets
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on the car. The connection of the rotary encoder sensor to the rotating spindle is shown in Figure
6.1.

Figure 6.1: Rotary encoder sensor

Due to the low effective resolution of the rotary encoder sensor and the fundamental limitation
of continuity with the magnetic sensor inputs from these two sensors are used only in the module
that calculates the confidence in the sensor values. This calculation is triggered when values from
all three sensors can be trusted, i.e. when the elevator car is static at one of the floor positions.
The ultrasonic sensor, as the one with the best combination of accuracy and continuity is used
for movement control between two floor positions.

6.2 CAN bus load

In the implementation described in the previous chapter a number of CAN messages were sent by
each network node. Table 6.1 gives a complete view of the messages transmitted over the CAN
bus and their most important parameters.

Message ID Message length
in bytes

Period Description

0x001 2 event-triggered at
start-up and shutdown

NMT state change

0x182 1 100 ms magnetic sensor node TPDO1

0x183 3 20 ms rotary encoder sensor node TPDO1

0x184 2 50 ms ultrasonic sensor node TPDO1

0x701 1 1000 ms heartbeat - controller node

0x702 1 1000 ms heartbeat - magnetic sensor node

0x703 1 1000 ms heartbeat - rotary encoder sensor node

0x704 1 1000 ms heartbeat - ultrasonic sensor node

Table 6.1: CAN messages on the bus
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The total load of the CAN bus taking into account the messages presented in Table 6.1 is calcu-
lated employing a method analog to the one used in section 2.5. A static evaluation is appropriate
in this case although there is one event-triggered message in the system, the one that the master
network management node uses to change the global state of the network. The state change is
triggered by the master only at system start-up and shutdown, as well as upon entering the safe
state which does not significantly add to the bus load.

Within a reference period of one second, which is the longest message period on the bus, 8386
bits are transmitted on the CAN. This worst-case calculation takes into account the message ID
and control information, the payload and the CRC bits of each message. The calculated bus load
amounts to approximately 6.7088% and can be considered low and thus acceptable. Although
the approach taken in this project was different to that of using minimum bit message lengths
presented in [HKT09], the overall bus load achieved indicates that the system can be extended
to over 100 floors before reaching a bus load of 50%.
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7 Conclusion

The challenges facing current-day elevator systems are far from simple and elevator control sys-
tems can not be viewed as a completed development. Be it in aspects of passenger safety, de-
pendability, availability, comfort of use and travel or security against attacks, improvements are
continually being made. This diploma thesis covered some possibilities that could be employed
to raise the level of dependability of an elevator control system. The approach taken was that of
using diversity in hardware and software in order to mitigate common-mode failures and design
faults, instead of mere multiplication of a system or its parts.

An implementation phase was preceded by an analysis of the input requirements into such require-
ments that could be traced through design decisions onto the actual implementation artifacts.

A distributed control system was developed on the basis of the design, consisting of a hardware
platform with its parts interconnected using a common bus and a software architecture that
uses a communication system on top of the bus to enable its modules to exchange information.
Three communication systems currently in use in the automotive field were compared using
several criteria and investigated for use in an application for building automation. Controller
Area Network was chosen to provide the lower two layers as described by the ISO/OSI model.
A communication stack suitable for a CAN-based application was chosen and an open source
implementation was ported to the microcontroller used in the hardware platform. An important
goal during the implementation and integration of software modules was to enable the highest
level of reusability of modules and configuration items. To this end the software being executed
on each of the three sensor node has an equal structure, with only the parts dependent on the
sensor interface parts being variant.

The control system was integrated into an elevator model at the Institute of Computer Technology
of the Vienna University of Technology. The complete elevator model consists of two shafts, each
of which includes an elevator car, six floor positions, an electric motor to drive the car along a
rotating spindle and a series of sensors that can be used to evaluate the position of the car.

The control system is set in the context of a larger system centered around the project eXellent
Interface for Non-hapic Use, XINU for short, created with the aim to research interfaces for non-
haptic control that would promote the concept of inclusion. The interface to XINU is a serial
one, using which the XINU environment can send the next floor position for the elevator car to
move into. All preparations necessary for the use of this interface with an implementation of
XINU have been made and the interface was used during operation and testing of the system to
provide set-points for the elevator to move to.
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The developed system, as integrated into the elevator model, was put into operation and tested,
yielding input for improvements to the sensor concept and the mechanics of the elevator model.
It was shown that the system can function properly even in a state of degraded quality of sensor
input and can detect failures of each of the sensors, subsequently entering the safe state, stopping
the elevator car and disabling further control of the electric motor. A static analysis of the load
on the CAN bus shows a very low load at the specified bit-rate and demonstrates the property of
the system using the same or a similar concept for acquisition of sensor values and motor control.

Several key points of improvement were identified during this project and can be grouped into
the following categories.

• Revision of the sensor concept: Due to the sensitivity of some sensors on the mechanics
of the system a revision of the sensor concept is necessary. In particular, an extension or
replacement for the rotary encoder sensor is to be investigated that would decouple the
measurement of the car position from the rotating spindle as this is the major source of
error. The feasibility of accelerator sensors that can be placed into the elevator car should
be investigated.

• The resolution controller as shown in Figure 1.3 that would grant access to the motor
controller board to one of the two diversitary application controller boards was not within
scope of this work. A concept for the resolution controller is necessary in order to enable
the full functionality of the elevator control system based on diversity envisaged. Special
care is to be taken during the concept development since the resolution controller would
present a single-point-of-failure of the system and would thus need to be developed to be
as simple as possible, or to be itself diversitary.

• In order to support the use case of selecting the floor to move to from the elevator car
a model of the elevator car is required that would optimally include the necessary input
buttons, an indicator of the current floor position and a working or simulated car door
movement. Support in terms of an additional sensor node and the corresponding software
and configuration changes to the master node will thus be required.

• With the addition of a modeled elevator car and taking extendability of the system in mind,
the feasibility of an implementation according to the CAN in Automation specification
CiA417 [CAN10b] should be reconsidered.
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