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danken, dass sie für mich da war, wenn ich sie gebraucht habe, sei es um
einfach nur da zu sein, oder um zu telefonieren oder mich voran zu treiben.

Ein großes Danke gilt auch meiner Schwester, Magdalena Zehetgruber, BA,
für die vielen, vielen Stunden die wir während unserer gemeinsamen Studien-
zeit miteinander verbracht haben und die mich sehr gestärkt haben. Danke,
dass du mich oft aufgebaut hast und mir immer hilfreich zur Seite gestanden
bist!
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Abstract

In this diploma thesis, classical and robust multivariate regression for compo-
sitions is developed. Therefore, proper transformations from the simplex to
the usual Euclidean space have to be applied on the compositional variables
for being able to interpret the results in terms of coordinates. Consequently,
special kinds of balances are proposed to obtain reasonable results, that are
easy to interpret. The regression analysis is divided into three parts. A model
with just a compositional response is considered, as well as a model with com-
positional explanatory variables and finally a model with both, compositional
response and compositional explanatory variables is taken into account. Spe-
cial attention has to be paid to the ilr transformations of the original variables
as well as to the resulting models given in coordinates. Further, classical and
robust regression analysis can be applied and coefficients are computed. In
the robust case, the multivariate least-trimmed squares estimator is used and
a fast mlts algorithm has been used for the computations. Geochemical data
was available to present the results. Inference statistics on the one hand and
diagnostic plots on the other hand are used to display the properties of the
data and the models that have been observed.
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Chapter 1

Introduction

1.1 General remarks

The aim of the thesis is to develop classical regression and robust (multivari-
ate) regression analysis for compositional data which is a special kind of data
defined on the simplex. Moreover, these methods are applied on certain data
using the statistics software R. This introduction should imbed the work into
a context and give a short overwiev of the parts of the thesis.
Recent work on this topic has been done by Filzmoser et al. (2012) and Filz-
moser and Hron (2012), who started to work out robust regression analysis
for compositions. General information about compositional data and the
simplex, as well as the introduction of the alr and clr transformation can be
found in Aitchison (1986), which was the first attempt to treat compositions
differently. The lecture notes of Pawlowsky-Glahn et al. (2007) give an inter-
esting overview of the topic and for more details see Pawlowsky-Glahn and
Buccianti (2011). Further work about log-ratio transformations, especially
about the ilr transformation is given in Egozcue et al. (2003). To gain insight
about robust multivariate methods, Hubert et al. (2008) and Rousseeuw et al.
(2004) are proposed to read.

1.2 Overview of the contents of the Diploma

thesis

In chapter 2, the main aspects of compositional data are explained. One will
learn about the special geometry that is used for compositions. Moreover,
the chapter will give an overview of how to handle compositions and it also
gives a detailed description of the three possible transformations that can be
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applied on this kind of data. Special coordinates of the ilr transformation,
called balances, will be considered intensely, and finally the relationships
between the transformations will be stated. In the end some elements of
simplicial statistics are added.

In chapter 3, linear regression analysis will be introduced for compositional
data. First a compositional response and non-compositional explanatory
variables will be considered. The main focus lies on the transformation of
the compositions and on the estimation of the parameters in the regression
model. Moreover, some inference statistics such as the coefficient of determi-
nation, a t-test and a F-test will be described.
A model with compositional explanatory variables and a non-compositional
response is developed and, again the parameters will be estimated by means
of the least-squares estimation. Once again, a t-test as well as a F-test and
some other inference statistics will be shown in that context.
Finally, a model with both, compositional response and compositional ex-
planatory variables, is taken into account. This model is rather difficult to
handle due to transformations of the response as well as of the explanatory
variables. These transformations will be done separately. However, when one
works with coordinates inference statistics can be applied similarly to that
of the other cases mentioned before.

In chapter 4, robust multiple and multivariate linear regression will be ex-
plained. Therefore, two methods are introduced - the minimum covariance
determinant (MCD) regression based on robust estimation of location and
scatter, and the (multivariate) least trimmed squares (MLTS) regression. For
the MLTS regression a subset of h observations should be found whose co-
variance matrix of its residuals from a least squares fit is minimal. One will
find out, that the MLTS estimator is more general and therefore it is pre-
ferred to use it for further applications.

Chapter 5 will shortly discuss the three regression models when one applies
a robust method. The robust estimations are just applied on the model with
coordinates and therefore, the analysis is very similar to that in chapters 3
and 4.

Finally, in chapter 6 some examples will be presented by using a large data
set from geochemistry. For example, one is interested to find out if there is
a relationship between the parts of Iron in the soil and the magnetic char-
acteristics there. Balances will be used to apply regression analysis on these
data. Examples for all different models are given and diagnostic plots, that
should detect outliers, are performed.
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In chapter 7, the results will be discussed and the most important facts will
be pointed out.
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Chapter 2

Compositional data

In this chapter we introduce basic concepts and some properties of compo-
sitional data. The main reason that data analysis (e.g. regression analysis)
also was adapted for compositional data follows from the fact, that we often
face the situation, where we are not interested in the size of data alternatively
the amount of a certain variable, but we want to obtain information about
the ratios. For instance, this is the case if the data are given in percentages.

2.1 Some properties of compositional data

First we start with some definitions.
A row vector, x = [x1, x2, . . . , xD], is defined as a D-part composition when
all its components are strictly positive real numbers and when they carry
only relative information. Compositions can be considered as representatives
of equivalence classes of real vectors with positive components.
The sample space of compositional data is called the simplex, defined as

SD = {x = [x1, x2, . . . , xD]|xi > 0, i = 1, 2, . . . , D;
D∑
i=1

xi = κ}

The goal is now to work on the simplex (e.g. to apply regression analysis)
and therefore we have to introduce proper mathematical tools for this sample
space.
For any vector of D real positive compositions we will define a closure func-
tion, that sums all the components up to a constant value κ. This closure
function just rescales the vector. Let z = [z1, z2, . . . , zD] ∈ RD

+ where zi > 0
for all i = 1, 2, . . . , D.
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The closure of z is defined as

C(z) =

[
κ · z1∑D
i=1 zi

,
κ · z2∑D
i=1 zi

, . . . ,
κ · zD∑D
i=1 zi

]
.

That means, that closure is nothing else but a projection of any point in the
positive orthant of the D-dimensional real space onto the simplex.
Two vectors of D positive real components x,y ∈ RD

+ (xi, yi ≤ 0 ∀i =
1, 2, . . . , D) are compositionally equivalent, if there exists a positive scalar
λ ∈ R+ such that x = λ · y and, equivalently, C(x) = C(y).

There are three conditions that should be fulfilled by any statistical method
to be applied on compositions: scale invariance, permutation invariance and
subcompositional coherence (Aitchison, 1986). These conditions are neces-
sary to receive correct results.
A function f(.) is scale invariant if for any positive real value λ ∈ R+ and for
any compostion x ∈ SD, the function satisfies f(λx) = f(x), i.e. it yields the
same result for all vectors that are compositionally equivalent. This property
can only be achieved if f(.) is a function only of log-ratios of the parts in x.
A function is permutation invariant, if it yields equivalent results when we
change the ordering of our parts in the composition.
Subcompositional coherence means that subcompositions should behave as
orthogonal projections do in conventional real analysis. The size of a pro-
jected segment is less than or equal to the size of the segment itself (cf.
Pawlowsky-Glahn et al., 2007).

2.2 The Aitchison geometry

As already mentioned before, for compositional data the Euclidean geometry
does not form a proper geometry. This is the reason why we have to work
in a different geometry, called the Aitchison geometry. There are two oper-
ations that give the simplex a vector space structure. The first one is called
perturbation operation.
Perturbation of a composition x ∈ SD by a composition y ∈ SD is defined
as

x⊕ y = C[x1y1, x2y2, . . . , xDyD] .

This operation is analogous to the addition in real space. The second one
is analogous to multiplication by a scalar in real space and is called power
transformation.
Power transformation of a composition x ∈ SD by a constant α ∈ R is

7



defined as
α� x = C[xα1 , xα2 , . . . , xαD].

The simplex (SD,⊕,�) with the pertubation and power transformation is
a vector space (Pawlowsky-Glahn et al., 2007). To obtain the vector space
structure, we take the following inner product:
The Aitchison inner product of x,y ∈ SD is given by

< x,y >a=
1

2D

D∑
i=1

D∑
j=1

ln
xi
xj

ln
yi
yj
.

Hence, we can also define the associated norm:
We define the Aitchison norm of x ∈ SD as the following:

‖x‖a =

√√√√ 1

2D

D∑
i=1

D∑
j=1

(
ln
xi
xj

)2

And furthermore, the Aitchison distance between two vectors x and y ∈ SD
is defined as:

da(x,y) = ‖x	 y‖a =

√√√√ 1

2D

D∑
i=1

D∑
j=1

(
ln
xi
xj
− ln

yi
yj

)2

2.3 Important transformations

The aim now is to find suitable transformations to represent our data in coor-
dinates so that they can also be easily interpreted. Since size is irrelevant for
compositional data, Aitchison (1986) introduced two transformations based
on ratios, for the ratios being the most important information we can gain
from this kind of data. First, we need to find an appropriate basis so that
any vector x ∈ SD can be expressed in terms of this basis. Therefore, one has
to use a generating system, such as the following used by Aitchison (1986),

wi = C[exp(ei)] = C[1, 1, . . . , e, . . . , 1], i = 1, 2, . . . , D,

where ∀wi Euler’s number e is at the i-th position since ei is just the i-th
unit vector.
Thus, any vector x ∈ SD can be written as

x =
D⊕
i=1

lnxi �wi =

= lnx1 � [e, 1, . . . , 1]⊕ lnx2 � [1, e, . . . , 1]⊕ · · · ⊕ lnxD � [1, 1, . . . , e].
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2.3.1 alr transformation

The transformation alr : SD → RD−1 assigns the real (n− 1)-tuple

alr(x) = log

(
x1
xD

,
x2
xD

, . . . ,
xD−1
xD

)
to the composition x ∈ SD. (The part xD in the denominator could be
replaced by any of the other parts.)
It is used to investigate the dimension of the vector space and actually called
additive log-ratio transformation (alr) (Aitchison, 1986).
There exist coordinates that correspond to that transformation. They are
called additive log-ratio coordinates. Thus we need a basis again, where we
will choose the one described above: {w1,w2, . . . ,wD−1}. Now any vector
x ∈ SD can be written as

x =
D−1⊕
i=1

ln
xi
xD
�wi.

This is the reason why the perturbation and the power transformation of a
composition x ∈ SD have been introduced previously (see section 2.2).

There are some important properties of the alr transformation:
Firstly, the transformation alr : SD → RD−1 is one-to-one. If x∗ ∈ RD−1,
then the inverse alr transformation is

alr−1(x∗) = C[exp(x∗1, x
∗
2, . . . , x

∗
D−1, 0)].

Moreover, the alr transformation is an isomorphism of vector spaces, but
it is not symmetrical in the components. Anyway, the essential problem
with alr coordinates is the non-isometric characteristic of this transformation.
That means, there are coordinates in an oblique basis, something that affects
distances if the usual Euclidean distance is computed from the alr coordinates
(Pawlowsky-Glahn et al., 2007). For this reason, Aitchison (1986) used alr
coordinates for modeling when applying statistical analysis on compositional
data, but he could not apply techniques based on a metric. Therefore, he
proposed another transformation.

2.3.2 clr transformation

The centred log-ratio transformation (clr) gives the expression of a composi-
tion in the centred log-ratio coefficients, which are given by

clr(x) =

[
ln

x1
g(x)

, ln
x2
g(x)

, . . . , ln
xD
g(x)

]
= ξ,
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where

g(x) =

(
D∏
i=1

xi

) 1
D

= exp

(
1

D

D∑
i=1

lnxi

)
is the component-wise geometric mean of the composition. Since the denom-
inator can be replaced by any constant, the transformation is not unique and
therefore the clr transformation is consistent with the concept of composi-
tions as equivalence classes (cf. Barceló-Vidal et al., 2001).
We can also define the inverse transformation which gives us the coefficients
in the canonical basis of the real space:

clr−1(ξ) = C[exp(ξ1), exp(ξ2), . . . , exp(ξD)] = x,

where ξ = [ξ1, . . . , ξD].
The following part will describe the most important properties of the clr
transformation and its coefficients. The clr transformation, clr: SD → U ⊂
RD is an isomorphism of (D − 1)-dimensional vector spaces. Moreover, it is
symmetrical in the components. This fact implies a new constraint on the
transformed sample. The sum of the components has to be zero:

D∑
i=1

ξi = 0,

where the i-th clr coefficient is given by ξi = lnxi
g(x)

. That fact also means that
the covariance matrix of ξ is singular. Hence, some problems while analysing
data may follow. Furthermore, clr coefficients are not subcompositionally
coherent (cf. section 2.1). Hence, it may happen that the measured distance
between two full compositions is smaller than the distance between them
when considering subcompositions. That characteristic would not be reason-
able. Moreover, clr coefficients are not coordinates with respect to a basis of
the simplex. Anyway, there are also some positive important properties in
connection with the Aitchison inner product, norm and distance.

Let x,y be compositions in SD and clr(x), clr(y) their respective clr trans-
formations. Then

< x,y >a = < clr(x), clr(y) >

‖x‖a = ‖clr(x)‖
da(x,y) = d(clr(x), clr(y))

where < ., . > denotes the inner product, ‖.‖ the standard norm and d(., .)
the distance in RD.
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Furthermore, the clr transformation is an isometry between (D−1)-dimensional
Euclidean spaces.

The fact, that neither the alr- nor the clr transformation can be directly as-
sociated with an orthogonal coordinate system in the simplex lead Egozcue
et al. (2003) to define a new transformation, called isometric log-ratio trans-
formation. It is an isometry between SD and RD−1, thus avoiding the draw-
backs of both, the alr- and the clr transformation (Pawlowsky-Glahn et al.,
2007).

2.3.3 ilr transformation

The isometric log-ratio transformation (ilr) was introduced by Egozcue et al.
(2003). The aim was to find a transformation that can be directly associated
with an orthogonal coordinate system in the simplex. Thus, it should be
both isometric and an isomorphism to improve the situation that we are con-
fronted with in the situation of the alr- as well as the clr transformation. To
obtain an orthonormal basis, we omit the last element wD of the generating
system in section 2.3. The resulting system {w1,w2, . . . ,wD−1} is a basis,
but it is not orthonormal yet. Once an independent set of D−1 compositions
in SD is given, an orthonormal basis with respect to the inner product can
be found using the Gram-Schmidt procedure, since this is known to be so for
any vector space with an inner product (related to the Aitchison geometry).
Consequently, the only drawback results in the non-uniqueness of the basis.
Finally we will define the isometric log-ratio transformation as the following:
Let ei, i = 1, 2, . . . , D − 1, be an orthonormal basis in SD. The coordinate
function assigning coordinates with respect to ei, i = 1, 2, . . . , D − 1, to a
composition x ∈ SD is called isometric log-ratio transformation, if

ilr : SD → RD−1

ilr(x) = (< x, e1 >a, < x, e2 >a, . . . , < x, eD−1 >a).

Any x ∈ SD can be expressed as

x = ilr−1(x∗) =
D−1⊕
i=1

x∗i � ei , x
∗
i =< x, ei >a

where x∗ = [x∗1, x
∗
2, . . . , x

∗
D−1] is the vector of coordinates. An important

property of the ilr transformation is that it is an isometric isomorphism of
vector spaces, i.e. if δ ∈ R,x,y ∈ SD and x∗ = ilr(x),y∗ = ilr(y), then

ilr(x⊕ y) = x∗ + y∗, ilr(δ � x) = δx∗.
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Moreover, there are some more characteristics of the ilr transformation:
Consider xk ∈ SD and real constants α, β, then:

ilr(α� x1 ⊕ β � x2) = α · ilr(x1) + β · ilr(x2) = α · x∗1 + β · x∗2
< x1,x2 >a = < ilr(x1), ilr(x2) > = < x∗1,x

∗
2 >

‖x1‖a = ‖ilr(x1)‖ = ‖x∗1‖
da(x1,x2) = d(ilr(x1), ilr(x2)) = d(x∗1,x

∗
2)

Referring to Pawlowsky-Glahn et al. (2007), the main difference between the
properties of clr and ilr is that the clr refers to vectors of coefficients in RD,
whereas the latter deals with vectors of coordinates in RD−1 and is thus
matching the actual dimension of SD.
There is one matrix (given in Chapter 4.4 of Pawlowsky-Glahn et al., 2007)
that has some special properties, and it is useful when considering the rela-
tionship between the transformations. We will call it Ψ. Let {e1, e2, . . . , eD−1}
again be a generic orthonormal basis of the simplex. The (D − 1, D)-matrix
Ψ contains clr(ei) in its rows. Moreover, any orthonormal basis satisfies
< ei, ej >a= δij, where δij is the Kronecker-delta. Hence, formally it can be
written down as < ei, ej >a=< clr(ei), clr(ej) >= δij. Therefore, the matrix
Ψ satisfies ΨΨ′ = ID−1, being ID−1 the identity matrix of dimension D− 1.
To recover the compositions of the basis from Ψ it is now just necessary to
apply clr−1 in each row of the matrix. Another important fact is that these
rows of Ψ add up to 0 because they are clr coefficients. We will return to
this issue later.

2.3.4 Balances

For defining balances, we will apply a sequential binary partition that was de-
veloped by Egozcue and Pawlowsky-Glahn (2005) on compositional vectors.
At first we part our composition into two groups and mark the r components
of one with +1 and the s of the other group with -1. Then each group is again
split into two and this procedure continues until all groups have a single part.
The i-th step symbolizes the i-th order partition and all groups that are not
split in the i-th partition are signed with 0.
Then the balance is defined as the normalised log-ratio of the geometric mean
of each group of parts:

b =

√
rs

r + s
ln

(xi1xi2 · · ·xir)1/r

(xj1xj2 · · ·xjs)1/s
= ln

(xi1xi2 · · · xir)a+
(xj1xj2 · · ·xjs)a−

12



This means that, for the i-th balance, the parts receive a weight of either

a+ = +
1

r

√
rs

r + s
, a− = −1

s

√
rs

r + s
or a0 = 0.

a0 is for those parts, that are not involved in the splitting.
Then we can write the i-th balance as

bi =
D∑
j=1

aij lnxj

where aij equals a+ if the code in the i-th order partition is +1 for the j-th
part and a− if the code is −1 and a0 if the code is zero. A very interesting
fact is that this matrix with entries aij is just the matrix Ψ, that we have
defined in section 2.3.3.
Since the geometric mean is used in the nominator as well as in the denom-
inator, its ratio measures the relative weight of each group. The logarithm
is used to provide the appropriate scale. A positive balance means, that
in (geometric) mean, the group of parts in the numerator has more weight
in the composition than the group in the denominator (and conversely for
negative balances) (Pawlowsky-Glahn et al., 2007). Furthermore, balances
are useful because it is possible to obtain information within the groups, and
sometimes it is even more interesting to know something about that than
just the relation between the two groups. Summarising, we can state that
balances project compositions onto special subspaces just by retaining some
balances and making other ones null and this is a useful and important task
while doing applications with compositional data.

It is not just valid for balances, but for all orthogonal bases, that when
we are performing analysis of compositional data, results that could be ob-
tained using compositions and the Aitchison geometry are exactly the same
as those obtained using the coordinates of the compostions and the ordinary
Euclidean geometry. That fact helps to facilitate working with compositions
but it is very crucial to select the basis carefully due to interpretative reasons.

2.3.5 Relationships between transformations

Again we consider the (D−1, D)-matrix Ψ whose rows are clr(ei), associated
with an orthonormal basis of the simplex {e1, e2, . . . , eD−1}. There are some
relations between the ilr(.), alr(.) and the clr(.) transformation. First we will
define Ξ′ = [ID−1 : −1′D−1], where ID−1 is the identity matrix of dimension
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(D − 1) and 1D−1 is a (D − 1) row vector of units. Furthermore Υ is the
Moore-Penrose generalised inverse of Ξ, that is

Υ =
1

D


D − 1 −1 −1 · · · −1 −1
−1 D − 1 −1 · · · −1 −1
−1 −1 D − 1 · · · −1 −1
...

...
...

. . .
...

...
−1 −1 −1 · · · D − 1 −1

 .

The resulting relations are stated below:

x∗ = ilr(x) = clr(x) ·Ψ′ = alr(x) ·Υ ·Ψ′

clr(x) = alr(x) ·Ξ
clr(x) = ilr(x) ·Ψ
alr(x) = ilr(x) ·Ψ ·Ξ

2.4 Elements of simplicial statistics

Standard methods in descriptive statistics, e.g. the arithmetic mean, are not
very informative when applying them on compositions. Therefore, it is nec-
essary to introduce alternatives.
At first we will define the so called centre, the closed geometric mean or also
called simplex-average, that is a measure of central tendency for composi-
tional data. For a data set X = [xij] with n observations (rows) and D parts
(columns) we can write the centre g as

g = C[g1, g2, . . . , gD]

with gj = (
∏n

i=1 xij)
1
n , j = 1, 2, . . . , D. Hence, the geometric mean is consid-

ered column-wise.

There are two ways to describe dispersion in a compositional data set. Either
one uses the variation matrix, originally defined by Aitchison (1986), given
by

T =


t11 t12 · · · t1D
t21 t22 · · · t2D
...

...
. . .

...
tD1 tD2 · · · tDD

 , where tij = Var

(
ln
xi
xj

)
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Var(.) stands for the variance of the log-ratio of parts i and j.
Or, dispersion can also be described by means of the normalised variation
matrix, where the entries of the matrix T∗ are given by t∗ij = Var( 1√

2
ln xi

xj
),

so t∗ij is the variance of the normalised log-ratio of parts i and j, and hence
the log-ratio is a balance.

A measure of global dispersion is the total variance of a random composition
given by

TotVar[x] =
1

2D

D∑
i=1

D∑
j=1

Var

(
ln
xi
xj

)
=

1

2D

D∑
i=1

D∑
j=1

tij =
1

D

D∑
i=1

D∑
j=1

t∗ij.

Due to our work with ratios, all the upper measures are independent of the
constant κ, consequently rescaling has no effect. Moreover, the variation
matrix, in both versions, explains how the total variation is split among the
parts (among all log-ratios).
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Chapter 3

Regression with compositional
data

Regression analysis is one of the most important tools in statistical analy-
sis. In real space, a linear regression model can be written in terms of a
conditional expected value as

E(Y |x) = β0 + β1x1 + · · ·+ βDxD (3.1)

with unknown parameters β0, . . . , βD that need to be estimated. That regres-
sion model is just reasonable for data carrying absolute information, but in
case of compositional data, where components of the explanatory variables
xi carry only relative information, such a model is inappropriate. Note that
also the response can be compositional, but then we are in the context of
multivariate linear regression.
Since most of the standard statistical methods are designed for the usual
Euclidean geometry, but not for the Aitchison one, the family of log-ratio
transformations from the simplex with the Aitchison geometry to the Eu-
clidean real space was introduced (see Filzmoser et al., 2012).
The isometric log-ratio transformation is preferable because it expresses the
original compositions in D − 1 orthonormal coordinates with respect to the
Aitchison geometry. The proper choice of the orthonormal coordinates is
crucial since we want to find a good interpretation of the result in the real
space.

3.1 Regression with compositional response

This chapter relies mainly on three papers (Egozcue et al., 2011; Pawlowsky-
Glahn et al., 2007; Filzmoser et al., 2012). We consider a linear regression
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model with compositional response. Evidently, the response has to be mul-
tivariate then. Hence we are just able to distinguish between two cases:
univariate predictors, multivariate predictors. The goal is to estimate the
parameters while using suitable methods for analysing such special data.

3.1.1 Multivariate response, multivariate predictors

Let yi = (yi1, yi2, . . . , yiD)′, i = 1, . . . , n represent a data set in which the
i-th observation is a composition. Furthermore, let xi = (xi1, xi2, . . . , xip)

′ be
the values of p (non-compositional) covariates. A prediction in the simplex
SD consists of a deterministic function of the covariates p(x) ∈ SD and a
perturbation-additive residual e ∈ SD. B = (b′0,b

′
1, . . . ,b

′
p)
′ is the (p+1)×D

- matrix including the unknown compositional regression parameters to be
estimated. A linear predictor in the simplex is defined as

p(x) = b0 ⊕
p⊕
j=1

(xj � bj) , bj ∈ SD.

For modeling we use least squares regression. Therefore, we have to find
estimates b̂j of the compositional coefficients bj, j = 0, 1, . . . , p in our model:

yi = p(xi)⊕ ei

yi = b0 ⊕
p⊕
j=1

(xij � bj)⊕ ei , i = 1, 2, . . . , n

The estimation is performed by minimizing the sum of square-norms of the
error

SSE =
n∑
i=1

‖ei‖2a =
n∑
i=1

‖p(xi)	 yi‖2a.

Since we are still working in the Aitchison geometry, all expressions are re-
ferred to it. Thus, we cannot say anything about the result yet, and that is
the reason why we will transform the compositions and express them in or-
thonormal coordinates of the simplex (see section 2.3.3). Let the transformed
compositions be marked by asterisk (ilr(yi) = y∗i = (y∗i1, y

∗
i2, . . . , y

∗
i,D−1)

′ and
ilr(b0) = b∗0, ilr(bj) = b∗j , j = 1 . . . , D−1). Thus the model can be rewritten
in coordinates:

y∗i = b∗0 +

p∑
j=1

(xij · b∗j) + e∗i , i = 1, 2, . . . , n
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and hence

SSE =
n∑
i=1

‖e∗i ‖2

which is a consequence of the isometric character of ilr(.).
Let us use matrix notation now. B∗ = (b∗′0 ,b

∗′
1 , . . . ,b

∗′
p )′ is the (p+1)×(D−1)

matrix of regression parameters in coordinates and Y∗ = (y∗′1 ,y
∗′
2 , . . . ,y

∗′
n )′

the n × (D − 1) matrix of response compositions in coordinates and X =
((1,x′1)

′, (1,x′2)
′, . . . , (1,x′n)′)′ the n× (p+ 1) design matrix.

Thus the (usual) least-squares estimate of B∗ equals

B̂∗ = (X′X)−1X′Y∗.

One can show that the least-squares regression problem in the simplex is
equivalent to D − 1 ordinary least-squares problems for the coordinates
(Egozcue et al., 2011). Furthermore, the result of the problem in coordi-
nates is independent of the selected orthonormal basis and can be solved
independently. Finally, the estimated covariance matrix Σe∗ of the (mutu-
ally uncorrelated) errors e∗i is

Σe∗ =
1

n− p
(Y∗ −XB̂∗)′(Y∗ −XB̂∗).

Usually, the regression parameters are back-transformed after estimation and
the results are interpreted directly on the simplex. On the other hand, in-
ference concerning regression parameters (significance testing etc.) can only
be performed (and interpreted) in the orthonormal coordinates (Filzmoser
et al., 2012).

Finally, we can summarize the steps in the procedure to estimate the regres-
sion coefficients in a model with a compositional response (cf. Egozcue et al.,
2011):

� an orthonormal basis has to be selected, a good choice would be a
sequential binary partition of the compositional response vector,

� representation of the compositional response by means of its orthonor-
mal coordiantes that are possibly balance-coordinates,

� perform least-squares estimation of the regression coefficients and the
sums of squares for each coordinate of the response using the available
covariates,

� reconstruct the compositional coefficients, predictors and residuals.

These steps correspond to the principle of working on coordinates (Mateu-
Figueras et al., 2011).
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Coefficient of determination

To derive the coefficient of determination in that model, we need to define
the decomposition of the total sum of squares in the simplex:

ŜST =
n∑
i=1

‖yi 	 g(Y)‖2a

where g(Y) is the geometric mean of the sample response (for definition see
section 2.4), which is the natural estimator of the centre of the (random)
composition y: Cen[y] = ilr−1E[ilr(y)].

The decomposition of ŜST is then defined by

ŜST = ŜSR + ŜSE,

where ŜSR =
∑D

i=1 ‖p̂(xij) 	 g(Y)‖2a. Finally, we define the coefficient of
determination coefficient as:

R2 =
ŜSR

ŜST
= 1− ŜSE

ŜST

The received value R2 is the per unit of metric (or total)-variance of the
compositional response explained by the regression.

The coefficient of determination can also be expressed in terms of the sums
of squares of the regression for the coordinates:

R2 =

∑D−1
j=1 ŜSRj

ŜST
=

∑D−1
j=1 ŜSTj ·R2

j

ŜST

where R2
j = ŜSRj/ŜSTj and ŜSR =

∑D−1
j=1 ŜSRj.

Inference statistics

To obtain inference statistics or rather conclusions about certain hypotheses,
we assume the normality of the random errors ei, i = 1, . . . , n. The first
question we want to find an answer to is, if the whole matrix of estimated
coefficients B̂∗ is equal to zero. This result would lead to the conclusion,
that the set of independent explanatory variables does not describe the mul-
tivariate response coordinates at all. The hypotheses for this issue are given
by:

H0 : B̂∗ = 0

H1 : B̂∗ 6= 0
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The corresponding teststatistic

Λ =
|Y∗′Y∗ − B̂∗′X′XB̂∗|
|Y∗′Y∗ − nȳ∗ȳ∗′|

is called Wilks Λ with ȳ∗ = (ȳ1, . . . , ȳD) and under the null hypothesis it
follows: Λ ∼ Λ(D,n − p − 1, p) (cf. Fahrmeir et al., 1996). Unfortunately,
distributions of this test statistic are only asymptotic (Filzmoser and Hron,
2012) and therefore we will consider other tests.
The hypothesis of interest is given by the question: does the j-th explanatory
variable (j = 1, . . . , p) have a siginificant influence on the response variables?
Formally the null hypothesis is expressed as

H0 : h′jB̂
∗ = 0

H1 : h′jB̂
∗ 6= 0,

where hj equals a p-part column vector with zero entries with the exception

of an entry of 1 at position (j + 1). B̂∗ is the matrix of estimated regression
parameters in coordinates.
Under the null hypothesis the following test statistic holds,

Fj =
h′jB̂

∗(Y∗MXY∗)−1B̂∗′hj

hj(X′X)−1hj

n− p−D
D

∼ FD,n−p−D, (3.2)

where MX = In −X(X′X)−1X′ (In stands for the identity matrix of order
n). If the realization of the statistic (3.2) exceeds the quantile FD,n−p−D;1−α,
the null hypothesis is rejected on a significance level α (cf. Filzmoser and
Hron, 2012).
Moreover another hypothesis can be formulated: the j-th explanatory vari-
able does not have a significant influence on the k-th response variable
(k = 1, . . . , D). In that case the (j + 1, k)-th entry of the matrix B̂∗ equals
zero. Formally the null hypothesis as well as the corresponding alternative
hypothesis are expressed as:

H0 : h′jB̂
∗mk = 0

H1 : h′jB̂
∗mk 6= 0.

The vector mk defines a D-part vector with zero entries except a 1 at position
k. Under the null hypothesis the following test statistic

Fjk =
h′jB̂

∗mk(m
′
kY
∗MXY∗mk)

−1m′kB̂
∗′hj

hj(X′X)−1hj

n− p− 1

1
(3.3)

is F1,n−p−1;1−α distributed at a significance level α.
The interpretation lies in the choice of the transformation of the compositions
in the model.
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3.1.2 Multivariate response, univariate predictors

The idea will be written down just shortly, the main difference to the general
case is that the covariates are just one-dimensional. Hence, our model can
be described as follows:

yi = (yi1, yi2, . . . , yiD)′, i = 1, . . . , n

xi = (1, xi1)
′, i = 1, . . . , n and xi0 = 1

bj = (bj1, bj2, . . . , bjD)′ ∈ SD, j = 0, 1

ei = (ei1, ei2, . . . , eiD)′ ∈ SD, i = 1, . . . , n

The model to find the appropriate coefficients is then given by

yi = b0 ⊕ (xi1 � b1)⊕ ei , i = 1, 2, . . . , n,

and the resulting model in coordinates can be written as

y∗i = b∗0 + xi1 · b∗1 + e∗i , i = 1, . . . , n.

It is now possible to use all the methods which are mentioned above for this
model.

3.2 Regression analysis with compositional ex-

planatory variables

The aim of this section is to estimate parameters from a linear regression
model, when a multivariate (non-compositional) response is predicted by
compositional explanatory variables. First attempts have been done by using
the clr(.) transformation, which results for the multiple case in a model

E(Y |x) = β0 +
D∑
i=1

βiξi.

The problem is, that the resulting clr variables are singular like it was already
mentioned in section 2.3.2, and thus, regression parameters should have been
estimated using the theory of singular linear models. Moreover, the clr vari-
ables as a whole explain some ratios more than once. The subcompositional
incoherence indicates problems as well: any subset would alter each clr vari-
able because all the parts in the currently used subset are contained in the
denominator (the geometric mean).
That is the main reason why these computations are usually performed in
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orthogonal coordinates. Therefore, we will apply an ilr transformation on
the composition x, which seems to be the only method to achieve a regres-
sion model without constraints and with a meaningful interpretation of the
unknown parameters.
A good choice of an orthonormal basis is resulting in a (D − 1)-dimensional
real vector x∗ = (x∗1, x

∗
2, . . . , z

∗
D−1), where the components are defined as

x∗i =

√
D − i

D − i+ 1
ln

xi

D−i

√∏D
j=i+1 xj

, i = 1, . . . , D − 1

These coordinates are a special form of balances, which were described in
section 2.3.4, namely the partition is always one element and all the others.
The inverse transformation of x∗ to the original composition x is then given,
before closure, by

x1 = exp

(√
D − 1√
D

x∗1

)
,

xi = exp

(
−

i−1∑
j=1

1√
(D − j + 1)(D − j)

x∗j +

√
D − i√

D − i+ 1
x∗i

)
, i = 2, . . . , D − 1

xD = exp

(
−

D−1∑
j=1

1√
(D − j + 1)(D − j)

x∗j

)
.

When using this form of balances, the variable x∗1 represents all the relevant
information about the compositional part x1 and moreover, it is invariant
against permutation of the parts x2, . . . , xD. Obviously, the coordinate x∗2
does not explain all the relative information about x2, because the part x1 is
not contained therein.
From that fact follows, that we will probably construct another orthonormal
basis where the first ilr coordinate explains the compositional part x2 and
then another, until we have finally D−1 coordinates, that explain all the rel-
ative information about their compositional part xi, respectively. Explicitely,
we can write down this construction in the following way:
For l = 1, 2, . . . , D, the D-tuple (x1, x2, . . . , xD) is replaced by

(xl, x1, . . . , xl−1, xl+1, . . . , xD) := (x
(l)
1 , x

(l)
2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D ).

The corresponding ilr-transformation is

x
∗(l)
i =

√
D − i

D − i+ 1
ln

x
(l)
i

D−i

√∏D
j=i+1 x

(l)
j

, i = 1, . . . , D − 1 (3.4)

and we have x
∗(1)
i = x∗i for i = 1, 2, . . . , D − 1.
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3.2.1 Univariate response, multivariate compositional
explanatory variables

When we have a sample of n observations of the response yi ∈ R, i = 1, . . . , n
and of the compositional explanatory variables xi ∈ SD, i = 1, . . . , n we ob-
tain a standard multiple linear regression of yi on the ilr-transformed explana-
tory variables x∗i ∈ RD−1 with the regression coefficients cj, j = 0, . . . , D− 1:

E(yi|x∗i ) = c0 +
D−1∑
j=1

x∗ijcj

The regression coefficients cj, j = 1, . . . , D− 1 can be estimated by the least
squares method. The intercept term is directly related to the response yi
and therefore it is not depending to the choice of the orthonormal basis
on the simplex. Since the other coefficients are directly connected to the ilr
coordinates, their interpretation is difficult and therefore we will now consider
the l-th ilr basis, for l = 1, . . . , D (cf. equation 3.4), which will lead to the
following regression model:

E(yi|x∗i ) = c0 + c
(l)
1 x
∗(l)
1 + · · ·+ c

(l)
D−1x

∗(l)
D−1 (3.5)

Due to the orthogonality of different ilr bases, the intercept term c0 as well
as the model fit remains unchanged (Hron et al., 2012). Since x

∗(l)
1 explains

all the relative information about part x
(l)
1 , the coefficient c

(l)
1 can be assigned

to this part. Since we cannot interpret the other regression coefficients in a
reasonable way we have to consider D different regression models according
to model (3.5) by taking l ∈ {1, . . . , D} and hence interpret the coefficient

c
(l)
1 which represents part x

(l)
1 . It has to be noted that a regression model with

the ilr variables x
∗(1)
1 , . . . , x

∗(D)
1 would not be appropriate because it results

in singularity (Hron et al., 2012).

Finally, the regression model can be written down as:

yi = c0 + c1zi1 + · · ·+ cD−1zi,D−1 + ei, i = 1, . . . , n

The random variables e = (e1, . . . , en)′ are assumed to be uncorrelated and
with the same variance σ2.
Further explanation and parameter estimation will be done in the next section
for the general case of a multivariate response and multivariate covariates.
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3.2.2 Inference statistics in multiple linear regression
models with compositional explanatory variables

Now that we have developed a reasonable model, the estimated parame-
ters should be tested. One interesting aspect to test are hypotheses on the
parameters c0, c1, . . . , cD−1. Therefore, the error terms e require certain as-
sumptions, namley e should be multivariate normally distributed with mean
vector 0 and covariance matrix σ2I.

The test statistic associated with the significance of the individual regression
parameters is:

T0 =
ĉ0√

(y−X∗ĉ)′(y−X∗ĉ)
n−D {(X∗′X∗)−1}0,0

Ti =
ĉ0√

(y−X∗ĉ)′(y−X∗ĉ)
n−D {(X∗′X∗)−1}i,i

, i = 1, . . . , D − 1

The hypotheses for T0 are defined as:

H0 : c0 = 0

H1 : c0 6= 0.

and the corresponding hypotheses for T1 are defined as:

H0 : ci = 0

H1 : ci 6= 0,

for i = 1, . . . , D− 1. Assuming the validity of the null hypotheses, T0 and Ti
follow a Student t-distribution with n−D degrees of freedom.
The reason why we actually test just for the first two parameters lies in the
ilr transformation. We cannot properly interpret the other parameters. But,
more general, we can test c

(l)
1 for l = 1, . . . , D. The goal of this test is to find

out, if a subcomposition of the given compositional covariate can replace the
original composition in the regression model (cf. Hron et al., 2012). Another
important task for inference in regression analysis is whether the values of Y
at all depend on values of the ilr coordinates x∗1, . . . , x

∗
D−1. That means we

want to test whether all the parameters ci, for i = 1, . . . , D − 1 are equal to
0. Formally the hypothesis is defined as:

H0 : ci = 0 ∀i
H1 : ci = 0 for at least one i
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The following test-statistic is used:

F =
1

(D − 1)S2
ĉ′∗{(X∗′X∗)−1}(−1,−1)ĉ∗

where ĉ∗ = (ĉ1, . . . , ĉD−1)
′ and {(X∗′X∗)−1}(−1,−1) denotes that the first

row and the first column were excluded from the matrix (X∗′X∗)−1. Fur-
thermore, S2 denotes an unbiased estimator of the residual variance σ2:
S2 = (y − X∗ĉ)′(y − X∗ĉ)/(n − D). If the null hypothesis holds, this test
statistic follows the Fisher F-distribution with D − 1 and n − D degrees of
freedom. An important property of this test statistic is that F is invariant
with respect to a change of the order of x

(l)
1 , . . . , x

(l)
D in equation (3.4).

For compositional data analysis there also exists the coefficient of determi-
nation R2, given as

R2 =

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi + ȳ)2

where ȳ = 1
n

∑n
i=1 yi and (ŷ1, . . . , ŷn)′ = X∗ĉ are predicted values of the

response variable. Values close to one indicate a strong relation between the
explanatory variables to the response.

3.2.3 Multivariate response, multivariate compositional
explanatory variables

In this section we consider a model with a non-compositional multivariate
response yi = (yi1, yi2, . . . , yiq) and covariates forming a composition xi =
(xi1, xi2, . . . , xiD):

yi = c0 +
D−1∑
j=1

(x∗ij · cj) + ei, i = 1, 2, . . . , n (3.6)

with x∗i = (x∗i1, x
∗
i2, . . . , x

∗
i,D−1)

′ as the coordinates of the ilr-transformation
and errors ei. We can rewrite the model in matrix notation:

Y = X∗C + E

where Y is the (n×q)-matrix of responses, X∗ = ((1,x
′
1)
′, (1,x

′
2)
′, . . . , (1,x

′
n)′)′

is the (n × D)-matrix of ilr coefficients with an intercept vector of ones in-
cluded, and C = (c0, . . . , cD−1)

′ is the (D × q)-matrix of the regression pa-
rameters. Again, the sum of squares SSE will be minimized to obtain the
least-squares solution which is given by

Ĉ = [(X∗)′X∗]−1(X∗)′Y.
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Further, the estimated covariance matrix of the errors ei is

Σ̂e =
1

n−D
(Y −X∗Ĉ)′(Y −X∗Ĉ).

Since we want to analyse the effect of the original compositional parts on
the response, one has to think about how to do that. We cannot use all the
ilr variables x

∗(1)
1 , . . . , x

∗(D)
1 , because then the regression model would result

in singularity again (one has to remember, that these coordinates are just
multiples of the clr coordinates). So therefore, the model should be done

with that permutation of the compositions, so that the l-th coordinate x
∗(l)
1 ,

which we want to analyse in particular is on position one and after obtaining
the parameters, all the relative information about that compositional part
can be interpreted (cf. 3.2.1).

Inference statistics

Hypotheses on the model coefficients and test statistics in case of a multi-
variate regression model can be adapted from section 3.1.1. Instead of X
coordinates X∗ have to be considered. On the other side, due to our assump-
tions of the model Y and Ĉ are not coordinates.

3.3 Regression with compositional response

and compositional explanatory variables

In this case we are confronted with a situation, where yi as well as xi form
compositions. Hence, we consider a multivariate response and multivariate
predictors to define our regression model.
The situation is different compared to those mentioned in the section above,
since both yi and xi have to be ilr-transformed. So there is one important
question that turns up when thinking about applying the ilr transformation,
that is: should the variables yi and xi be transformed all together or sepa-
rately? A joint transformation would result in one big matrix Z including all
ilr-transformed variables of X and Y. Alternatively, when applying ilr trans-
formation on both X and Y separately we obtain individual coordinates Y∗

and X∗.
There are good reasons to choose a separate transformation, because other-
wise the information contained in X and Y would get mixed in Z.
Let us write down all the necessary model variables and parameters now.
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Therefore, we consider a number of observations of n:

yi = (yi1, . . . , yiD) ∈ SD, i = 1, . . . , n

xi = (xi1, . . . , xiP ) ∈ SP , i = 1, . . . , n

where Y = (y1, . . . ,yn)′ is the (n × D)-matrix of compositional responses,
X = ((1,x′1), . . . , (1,x

′
n))′ is the (n × (P + 1))-matrix of predictor variables

(including a vector 1 of ones for the intercept) and D is the ((P + 1) ×
D)-dimensional matrix of the regression coefficients and the vectors dj are
compositions.
The ilr-transformed variables are again marked by asterisk: ilr(yi) = y∗i ) and
ilr(xi) = x∗i , although it is not necessary that the same ilr transformation is
used for both, yi and xi. The model in terms of coordinates is given by:

y∗i = d∗0 +
P−1∑
j=1

(x∗ij · d∗j) + e∗i , i = 1, . . . , n

It is important to note here that the coefficients d∗j cannot be directly asso-
ciated with dj. Nevertheless, it is correct that y∗i = ilr(yi) and in the same
way for x, respectively. Defining the relationship between dj and d∗j exceeds
the range of this work and needs to be thought about intensively. Anyway,
the least squares estimations can be done, since we consider D∗ just as the
coefficients in the model in terms of coordinates, and therefore, the dimen-
sions coincide. It is a (P × (D − 1))-matrix.
To estimate the parameters the sum of squares SSE =

∑n
i=1 ‖e∗i ‖2 will be

minimized again. The least-squares estimator of the coefficients D̂∗ can be
calculated as

D̂∗ = (X∗′X∗)−1X∗′Y∗

The estimated covariance matrix Σe∗ is

Σe∗ =
1

n− P − 1
(Y∗ −X∗D̂∗)′(Y∗ −X∗D̂∗)

Coefficient of determination

The coefficient of determination is explained similar to that mentioned in the
section before (cf. section 3.1.1). But then the value of R2 is derived by means
of ŷ∗. This is to say coordinates have to be used due to our assumption, that
yi as well as xi are compositions.
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Inference statistics

For inference statistics we consider balances which we introduced in the sec-
tion before (cf. equation (3.4)). The coefficients d1k, k = 1, . . . , D explain the
influence of the relative information corresponding to the part x1 on the k-th
coordinate of the response variable. For this reason, the response composi-
tion y = (y1, . . . , yD)′ also needs to be transformed with the special choice
of orthonormal coordinates using equation (3.4), so that d11 evaluates the
strength of the described infuence on y1 (or, more precisely, to its relative
contribution in the whole composition y as expressed using the coordinate
y1. Thus, to evaluate all possible combinations of the response and explana-
tory compositional variables we need to construct D · P regression models
(Filzmoser et al., 2012).
For the proper test statistics see section 3.1.1. Obviously the parameters
have to be adapted, as the coefficients are called D∗. Furthermore, both, X∗

and Y∗ are ilr-transformed compositions and therefore coordinates.
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Chapter 4

Robust multiple and
multivariate linear regression

By applying (multivariate) regression we want to explain relations between
a multivariate response and one or more explanatory variables. In that issue
one is often confronted with the problem of outliers. Outliers can bias the re-
sults and will lead to inappropriate regression parameters. For example, the
very common least-squares method is very sensitive to outliers. That is the
reason why robust multiple and multivariate regression have been introduced.
Robust methods can deal with a certain fraction of outlying observations in
the data (concept of breakdown point) and therefore they will lead to better
results.
This chapter is mainly based on the paper by Hubert et al. (2008). General
methods for robust regression will be explained here.

4.1 Basic concepts

When using now least-squares regression to estimate the parameters of a cer-
tain model, outliers can have a big influence on the results. There are two
types of outliers that could occur. Leverage points are observations (xi, yi)
whose xi are outlying. That means that xi deviates from the majority in
x-space (Hubert et al., 2008). If such a point follows the linear trend of the
majority, we call it a good leverage point, otherwise, if it does not follow a
linear trend, it is called a bad leverage point. Regression outliers are those
observations, that deviate in the y-space. Hence, if we do not look at the
data carefully, there are mainly two things that may happen when applying
statistical methods. Firstly, the multivariate estimates differ from the “cor-
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rect” answer, which is defined as the estimate that would have been obtained
without the outliers. And secondly, the resulting fitted model does not allow
to detect the outliers by means of their residuals, Mahalanobis distances or
“leave-one-out” diagnostics (Hubert et al., 2008). Therefore, we have to find
all outliers that matter, which is equivalent to finding a robust fit.
In order to quantify the robustness of a method one usually uses the con-
cepts of breakdown point and influence function. The breakdown point of an
estimator is the smallest proportion of arbitrary observations (outliers, other
deviating points) that an estimator can handle before giving a non-sense re-
sult. The influence function gives an idea of how an estimator behaves under
small amounts of data contamination. For a robust estimator, the influence
of an infinitesimal contamination is bounded, while it is unbounded for a
common non-robust estimator (Filzmoser and Hron, 2011).
A very important property for our goal to find robust estimates for compo-
sitional data is that the estimates should be affine equivariant. That means
that they should behave properly under affine transformations of the data:
for the data X, the location estimator µ̂ and the covariance estimator Σ̂ as
well as for any nonsingular (D − 1) × (D − 1) matrix A and for any vector
b ∈ RD−1 the following two conditions should be fulfilled:

µ̂(XA + 1nb
′) = µ̂(X)A + b

Σ̂(XA + 1nb
′) = A′Σ̂(X)A

where 1n is a vector with n elements with ones.

4.2 Robust multiple linear regression

First, let us define the multiple linear regression model, where predictor vari-
ables xi and a response yi are measured: (xi, yi), i = 1, . . . , n

yi = β0 + β1xi1 + · · ·+ βpxip + ei

where the errors ei are assumed to be normally distributed with zero mean
and constant variance σ2. We call β = (β1, . . . , βp) the slope and β0 the
intercept. The rather strict model assumptions may be violated for the robust
regression case.
A very convenient method to estimate β in a robust way is to use the least-
trimmed squares firstly introduced by Rousseeuw (1984). Contrary to the
ordinary least-squares estimation, the sum consists just of h < n summands.
Let us define this idea formally:
The residuals are defined as

ri = yi − ŷi with ŷi = β̂0 + β̂1xi1 + . . .+ β̂pxip.
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They describe the error between the response and the fitted model. Ordinary
least-squares regression is then defined as:

β̂OLS = argmin
β

n∑
i=1

r2i (β)

The problem with this estimator is the big chance of being biased due to out-
liers in x- or y-space. Therefore, the LTS (least-trimmed squares) estimator
has been introduced and is given by

β̂LTS = argmin
β

h∑
i=1

r2(i)(β)

with r2(1) ≤ r2(2) ≤ . . . ≤ r2(h) ≤ . . . ≤ r2(n), which are the ordered residual

squares. h has to be fixed beforehand and is chosen the following way: bn
2
c ≤

h ≤ n. Hence, the LTS estimate is the least-squares fit to these h points. This
method has a breakdown point up to 50%, which is the maximum possible
and reasonable value. Refering to Hubert et al. (2008), a usual choice of
h is h ≈ 0.75n that yields a breakdown point about 25%, since a maximal
breakdown point does not mean maximal efficiency.
Hence, the standard deviation of the errors can be estimated by

σ̂ = ch,n

√√√√1

h

h∑
i=1

r2(i)

where ri are the residuals from the LTS fit and ch,n makes σ̂ consistent and
unbiased at Gaussian error distributions (Pison et al., 2002).

4.3 Robust multivariate regression

4.3.1 Multivariate regression based on robust covari-
ance estimation

Now we consider the multivariate regression model, where we have p-variate
predictors as well as q-variate responses. The model is then given by

yi = β0 + x′iB + ei

yi = (yi1, . . . , yiq)
′, xi = (xi1, . . . , xip)

′ and ei = (ei1, . . . , e1q)
′.

B is the p × q slope matrix and β0 is the q-dimensional intercept vector.
The errors are independently and identically distributed with zero mean and
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Cov(e) = Σe is a positive definite matrix of size q × q.
An important task for multivariate statistics is the estimation of location and
covariance. The usual way to estimate is to compute the arithmetic mean
and the sample covarince matrix for the data. Both estimators are very
sensitive to outliers, they even have a breakdown point of 0%. That means,
that just one outlier or deviating point could lead to an arbitrarly large value
for the mean, for example. One good proposal for a robust estimator is the
MCD (Minimum Covariance Determinant) estimator, which will be described
below.
First, let us write down the well known least-squares solution for our model.
The empirical mean and covariance matrix of the joint (x,y) variables are:

µ̂ =

(
µ̂x
µ̂y

)
and Σ̂ =

(
Σ̂xx Σ̂xy

Σ̂yx Σ̂yy

)
. Hence we get:

B̂ = Σ̂−1xx Σ̂xy

β̂0 = µ̂y − B̂′µ̂x

Σ̂e = Σ̂yy − B̂′Σ̂xxB̂

First we will now introduce a robust estimator for location and scatter.

Minimum covariance determinant regression

The idea of the method is to look for the h observations whose classical
covariance matrix has the lowest possible determinant. The MCD location
estimate is then defined as the average of these h points whereas the MCD
estimate of scatter is a multiple of their covariance matrix (Rousseeuw, 1985).
The property of affine equivariance is fulfilled.
The MCD estimator yields robust estimates of location and covariance with
a maximum breakdown point of 50%. However, it has been noted that the
MCD can have a low efficiency. Hence, it is sometimes better to accept a lower
breakdown point, and therefore reaching a higher statistical efficiency. Typi-
cally one chooses a breakdown point of 25%, which is still sufficiently robust
for most applications and is more efficient (Hubert et al., 2008). Moreover,
MCD estimators do have a bounded influence function and they are asymp-
totically normal.
Consider a data set Zn = {zi : i = 1, . . . , n} ∈ Rp+q. In that data set the
response yi and the covariates xi are merged. Then the MCD method looks
for the subset {zi1 , . . . , zih} of size h whose covariance matrix has the small-
est determinant , where dn

2
e ≤ h ≤ n and γ = (n− h)/n, 0 ≤ γ ≤ 0.5.
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The estimate for the center and the covariance are then defined as:

tn =
1

h

h∑
j=1

zij

Cn = cncγ
1

h

h∑
j=1

(zij − tn)(zij − tn)′,

where cγ is a consistency factor and cn is a small sample correction factor
(see Pison et al., 2002). The breakdown point of the MCD estimator is ap-
proximately γ.
Hence, observations that lie far from the center only have a small effect on
the MCD estimate and therefore both, leverage points and regression outliers
only have a small impact on the estimates. As already stated before, the effi-
cieny is rather low when gaining a breakdown point of about 50%. To improve
the situation, it is a good choice to apply a reweighting algorithm (reweight-
ing multivariate regression). For further details, see Rousseeuw et al. (2004).

4.3.2 Multivariate least-trimmed squares regression

This section is mainly based on one paper called “The multivariate least-
trimmed squares estimator” by Agulló et al. (2008).
The multivariate least-trimmed squares regression is an extension of the mul-
tiple LTS-regression mentioned above. The idea of this approach is similar
to that of the MCD estimator. A subset of h observations should be found,
where these h observations have a minimal determinant of the covariance
matrix of its residuals from a LS-fit. Hence, the correlation between the dif-
ferent components of the error term is taken into account.
The approach is equivalent to the selection of the value of B which minimizes
the determinant of the robust MCD scatter matrix of the residuals.
For the sake of simplicity, we will use another notation in the model of mul-
tivariate regression:

yi = x′iB + ei

where i = 1, . . . , n, and B already includes the intercept term b0. Moreover,
the first element of xi is 1 for the intercept extimation. The ordinary least-
squares estimator is then given by B̂LS = (X ′X)−1X ′Y . If we consider a
data set Zn = {(xi,yi) : i = 1, . . . , n}, we are able to define the residuals the
following way:

ri(B) = yi − x′iB (4.1)
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Furthermore, the set H is given by H = {H ∈ {1, . . . , n} | #H = h}. Then
B̂LS(H) is the LS- estimator based solely on the observations (xj,yj) : j ∈ H.
The covariance of the residuals depending on H and B is then given by:

Cov(H,B) :=
1

h
(rj(B)− rH(B))(rj(B)− rH(B))′

where rH(B) = 1
h

∑
j∈H rj(B). Finally, the multivariate least-trimmed squares

estimator is derived as the least-squares estimator but using just those h el-
ements of the dataset that results in the minimum determinant. Formally it
can be written as:

B̂MLTS(xi,yi) = B̂LS(Ĥ) where Ĥ ∈ argmin
H∈H

det Σ̂LS(H)

with Σ̂LS(H) = Cov(H, B̂LS(H)) for any H ∈ H.
An estimator for the covariance of the errors is then given by

Σ̂LS(Zn) = cγΣ̂LS(Ĥ)

with a consistency factor cγ.
If there is more than one solution in the minimization problem, one of them
is selected arbitrarly. If h=n we are in the situation of the classical LS-
estimator.
To deepen the knowledge about this estimator, see Agulló et al. (2008).

Finally we can conclude that the MCD-based procedure focuses on random
designs and the MLTS approach is more general, since it is based only on the
covariance matrix of the residuals, instead of on the covariance matrix of the
joint distribution. Therefore, we will prefer the MLTS estimator, although
for robust estimation of location and scatter the MCD estimator will be used
later as well.
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Chapter 5

Robust linear regression with
compostitional data

The development of robust statistical methods for compositional data is still
in the beginning. A very important step for that task was done by introducing
the ilr transformation together with the concepts of balances, since the ilr
variables of a D-part composition represent coefficients of an orthonormal
basis on the simplex. Nowadays, the clr transformation is only important for
the construction of a compositional biplot because it makes its interpretation
possible in terms of the original compositional parts (Filzmoser and Hron,
2011).
The most frequently used methods for multivariate robust regression analysis
are outlier detection (see Filzmoser and Hron 2008), principal component
analysis (see Filzmoser et al. 2009a), factor analysis (see Filzmoser et al.
2009c), discriminant analysis, or the estimation of missing values. Here we
focus on robust regression for compositional data.

5.1 Robust regression with compositional re-

sponse

Now we use the robust methods described in chapter 4 when our data includes
compositions. In this section we consider the case that just the response yi
is compositional and therefore multivariate. As it was shown in section 3.1,
an ilr transformation will be applied on the dependent variable yi and the
result is the same model that has been mentioned there:

y∗i = b∗0 +

p∑
j=1

(xij · b∗j) + e∗i , i = 1, 2, . . . , n (5.1)
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The difference is, that the regression parameters will be estimated in a robust
way (cf. chapter 4). Therefore, it is possible to consider a MCD regression
by estimating the location and scatter of the joint (x,y) and just using the
h observations that give the minimum determinant of the covariance matrix
(cf. section 4.3.1). Otherwise we can apply a MLTS regression (cf. section
4.3.2) on the model given in equation (5.1). The procedure is the same as it
has been described in section 4.3.2. The model just differs a little due to the
ilr-transformed variables y∗i ,b

∗
j and e∗i .

Hence, we use robust estimators that yield more reliable results in the re-
gression analysis of real compositional data.
To obtain inference statistics or rather conclusions about certain hypotheses,
we assume the normality of the random errors ei, i = 1, . . . , n. The associ-
ated test statistics are explained and specified in section 3.1.1. Instead of
the classical least-squares estimator for B̂∗ its robust counterpart is chosen
to perform the executions. In summary, we obtain new results for our re-
gression parameters and these coefficients can be interpreted according to
the choice of balances. It has to be noted that for the computations of the
F-statistics and the associated value R2 we assume that a modification of the
formulas would lead to results which are more accurate. The problem follows
from the usage of X and Y in the calculations because these variables still
contain leverage points, although B has been estimated in a robust way. An
idea of adaption is to multiply these variables with a vector including ones
on those positions which are in the best subset (which is evaluated for the
robust estimation of center and covariance), and zeros on those postions that
are not. Nevertheless, even in literature researchers are discordant about the
correctness of this adaption.

5.2 Robust regression with compositional ex-

planatory variables

Also here we just refer to section 3.1 and chapter 4. Model (3.6) is taken into
account and robust multivariate methods of regression analysis are applied.
For the multivariate least-trimmed squares estimations we will give some
more details:
The very common least-squares estimator for the coefficients cj, j = 0, . . . , D−
1 is given by Ĉ = [(X∗)′X∗]−1(X∗)′Y. The data set Zn = {(x∗i ,yi) : i =
1, . . . , n} is similar to that in section 4.3.2 and also the residuals ri are calcu-
lated the same way as in equation (4.1), except for the coordinates. Again we
consider the set H = {H ∈ {1, . . . , n} | #H = h}. Then B̂LS(H) is the LS-
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estimator based solely on the observations (x∗j ,yj) : j ∈ H. The multivariate
least-trimmed squares estimator is then given by

ĈMLTS(x∗i ,yi) = ĈLS(Ĥ) where Ĥ ∈ argmin
H∈H

det Σ̂LS(H)

with Σ̂LS(H) = Cov(H, ĈLS(H)) for any H ∈ H (cf. section 4.3.2). All the
formulas, above all the corresponding F-test, that have not been mentioned
in this part again can be looked up in the referred sections and have to be
adapted respectively.

5.3 Robust regression with compositional ex-

planatory variables and response

Finally, robust regression should be applied on a model with both compo-
sitional response and compositional explanatory variables. We consider the
model from section 3.3. Similar to the two other cases before we just esti-
mate the coefficients in a robust way contrary to the way we did it in chap-
ter 3. Since we are confronted with a multivariate regression model again,
the two F-statistics (3.2) and (3.3) are the proper values to make decisions
on the estimated coefficients. In particular, the statistics F11 can be used
to test whether the relative information (the ratios) on a chosen composi-
tional explanatory variable has a significant influence on the corresponding
counterpart concerning a certain part of the response composition, if both
compositions were expressed in coordinates (Filzmoser and Hron, 2012).
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Chapter 6

Examples with R

The aim of this section is to apply all the techniques described in the the-
oretical part above on compositional data. Therefore, classical and robust
linear regression will be performed as well as the resulting inference statis-
tics. Outputs will be interpreted and analysed. For the execution we used a
special data set which we will describe in detail in the next section.

6.1 The data set

For the analysis of compositional data we used a data set that has been
collected for a project called GEMAS (The EuroGeoSurveys geochemical
mapping of agricultural and grazing land soils project) in order to help in-
dustries, dealing with natural ressources, to get to know the bioavailablity of
metals and other chemical elements in soil. Moreover, they want to obtain
information about the long-term fate of metals and other chemical elements
added to soil. Another important goal is to recognize toxic concentrations
in soil that may influence plant and animal productivity as well as human
health. Therefore, samples were taken from places all over Europe to mea-
sure the soil quality at the European scale. The GEMAS project delivers
good quality and comparable exposure data of metals in agricultural and
grazing land soil. A Geochemical Atlas of Europe has been produced (for de-
tailed maps and informations see http://www.gtk.fi/publ/foregsatlas) which
demonstrates that low-sample density geochemical mapping at the European
scale is possible for a variety of sample materials, including surface water,
stream and floodplain sediments and soil (Reimann et al., 2009). Another
important part of the project is to establish an archive of samples, that would
be invaluable in case of catastrophic events. For more information about the
topic, Reimann et al. (2009) is interesting to read.
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6.1.1 Description of the variables

The data set contains a set of 142 variables, basically elements which are
components of the soil, with all in all 2108 observations. The variable names
are:

[1] "ID" "COUNTRY" "C_ID"

[4] "TYPE" "TYPE2" "XCOO"

[7] "YCOO" "XLAEA" "YLAEA"

[10] "ALT" "CIA" "sand"

[13] "silt" "clay" "sand_norm"

[16] "silt_norm" "clay_norm" "soiltype"

[19] "soilclass" "climate" "MeanTemp"

[22] "AnnPrec" "PM" "CEC"

[25] "pH_CaCl2" "TOC" "Ag"

[28] "Al" "As" "Au"

[31] "B" "Ba" "Be"

[34] "Bi" "Ca" "Cd"

[37] "Ce" "Co" "Cr"

[40] "Cs" "Cu" "Fe"

[43] "Ga" "Ge" "Hf"

[46] "Hg" "In" "K"

[49] "La" "Li" "Mg"

[52] "Mn" "Mo" "Na"

[55] "Nb" "Ni" "P"

[58] "Pb" "Pd" "Pt"

[61] "Rb" "Re" "S"

[64] "Sb" "Sc" "Se"

[67] "Sn" "Sr" "Ta"

[70] "Te" "Th" "Ti"

[73] "Tl" "U" "V"

[76] "W" "Y" "Zn"

[79] "Zr" "C_tot" "S_tot"

[82] "SiO2" "Si_XRF" "TiO2"

[85] "Ti_XRF" "Al2O3" "Al_XRF"

[88] "Fe2O3" "Fe_XRF" "MnO"

[91] "Mn_XRF" "MgO" "Mg_XRF"

[94] "CaO" "Ca_XRF" "Na2O"

[97] "Na_XRF" "K2O" "K_XRF"

[100] "P2O5" "P_XRF" "SO3"

[103] "S_XRF" "Cl_XRF" "F_XRF"

[106] "LOI" "As_XRF" "Ba_XRF"
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[109] "Bi_XRF" "Ce_XRF" "Co_XRF"

[112] "Cr_XRF" "Cs_XRF" "Cu_XRF"

[115] "Ga_XRF" "Hf_XRF" "La_XRF"

[118] "Mo_XRF" "Nb_XRF" "Ni_XRF"

[121] "Pb_XRF" "Rb_XRF" "Sb_XRF"

[124] "Sc_XRF" "Sn_XRF" "Sr_XRF"

[127] "Ta_XRF" "Th_XRF" "U_XRF"

[130] "V_XRF" "W_XRF" "Y_XRF"

[133] "Zn_XRF" "Zr_XRF" "X208_207"

[136] "X207_208" "X208_206" "X206_208"

[139] "X206_207" "X207_206" "SUSCEPTIBILITY"

[142] "SUSCEPTIBILITY.FE2O3"

As a fist setp we deleted those observations that included missing values
(NAs) which resultet in a working set with finally 2061 observations. With
the aid of Dr. Clemens Reimann, project coordinator of the GEMAS project,
we selected some groups of variables to observe during the regression analysis.
At first some non-compositional variables are chosen:

y1 . . .MeanTemp (mean temperature)

y2 . . . log(AnnPrec) (annual precipitation)

y3 . . .ALT (altitude)

y4 . . . log(SUSECPTIBILITY) (magnetic characteristics).

Due to the skewness of the variables AnnPrec and SUSCEPTIBILITY a log-
transformation has been applied on them. Y = (y1, y2) characterizes in some
sense the climate.
As next step we defined some sets of compositions. First we chose the
three parts sand_norm, silt_norm and clay_norm, which already have been
normed to sum up to 100%. In the following this data set is stored in X1.
Moreover, X2 represents the XRF(X-ray fluorescence method) variables and
another one, namely X3, the oxides. Finally all the raw elements form set
X4 of compositions. Variables that haven’t had good data quality have been
removed so that the regression performance is improved.
The four sets are given by:

X_1=(sand_norm silt_norm clay_norm)

X_2=(Si_XRF Ti_XRF Al_XRF Fe_XRF Mn_XRF Mg_XRF Ca_XRF Na_XRF K_XRF

P_XRF Ba_XRF Cr_XRF Nb_XRF Pb_XRF Rb_XRF Sr_XRF V_XRF Y_XRF Zn_XRF

Zr_XRF)
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X_3=(SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5)

X_4=(Ag Al As B Ba Be Bi Cd Ce Co Cr Cs Cu Fe Ga K La Li Mg Mn Mo

Na Nb Ni P Pb Rb S Sb Sc Se Sn Sr Th Ti Tl U V W Y Zn Zr)

6.2 Linear regression analysis and inference

statistics with compositions

6.2.1 Classical and robust linear regression with com-
positional explanatory variables

We consider the following regression model. We have a univariate non-
compositional response and (obviously) multivariate compositional explana-
tory variables (cf. model 3.1).
Functions for these analyses have already been implemented in R. We used
the function lmCoDaX, but we adapted it for our own purpose to apply classi-
cal and robust regression with compositional explanatory variables. Within
the function, the variables get ilr-transformed by means of a sequential bi-
nary partition (cf. Egozcue and Pawlowsky-Glahn, 2005).
In this context, we used the dependent variable y4 and as the independent
explanatory variables the set X3. Consequently, we want to gain information
about the relationship of the magnetic characteristics in the soil and the parts
of oxides. Since y4 is log-transformed and the variable SUSCEPTIBILITY had
one negative value, it was necessary to exclude one more data point so that
the total size of observations is 2060 in this model.
For both, the classical and the robust estimations, the coefficients are derived
in the same way (according to model 3.5). Hence, it has to be noted that
the output shows the estimates for c0, which is the same for all models and
furthermore it consists of c

(1)
1 , c

(2)
2 , etc. These coefficients can not be used to

describe one model, but D different models where all the relative information
about the first part of X is explained. For a better understanding, imagine
c
(2)
2 is the first coefficient of the model, where x2 is the first explanatory vari-

able. In Section 3.2.1 it is written as x
(2)
1 . To keep the output short, below

we stated just the first coefficients. See Appendix A for the function details
.
The R-Input is given by

> ### univarite Response, multivariate compositional explanatory variables

>
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> ### Model 1: y4~ "O"-elements

> ### classical and robust estimations

>

> ### classical estimation with lm(.) and robust estimation with lts(.)

> ### use function lmCoDaX(.) from package robCompositions

>

> model1_class<-lmCoDaX_adapted(y=y4[-446],X=X3[-446,],method="classical")

> model1_rob<-lmCoDaX_adapted(y4[-446],X3[-446,],method="robust")

>

> ### the model also prints the estimations for not-transformed compositions

In the case of a classical estimation we obtained table 6.1.

Call:

lm(formula = y ~ ., data = d)

Residuals:

Min 1Q Median 3Q Max

-3.2139 -0.6520 -0.0598 0.6001 3.4388

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.80470 0.40259 6.967 4.36e-12 ***

X.SiO2 -1.00931 0.05457 -18.497 < 2e-16 ***

X.TiO2 0.11860 0.08454 1.403 0.16081

X.Al2O3 -0.16430 0.13403 -1.226 0.22041

X.Fe2O3 1.01764 0.10732 9.482 < 2e-16 ***

X.MnO 0.33458 0.04883 6.852 9.58e-12 ***

X.MgO -0.42940 0.05200 -8.257 2.64e-16 ***

X.CaO -0.06112 0.02201 -2.777 0.00554 **

X.Na2O 0.04291 0.03052 1.406 0.15986

X.K2O 0.02705 0.07932 0.341 0.73313

X.P2O5 0.12336 0.04629 2.665 0.00776 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8999 on 2049 degrees of freedom

Multiple R-squared: 0.3581, Adjusted R-squared: 0.3553

F-statistic: 127.1 on 9 and 2050 DF, p-value: < 2.2e-16

Table 6.1: Classical regression with ilr-transformed explanatory variables
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Unfortunately, R2 is rather low with 35.81%. So the susceptibility probably
also depends on other things apart from our variables. Anyway, we got some
interesting results. There are variables that are highly significant, which are
SiO2, Fe2O3, MgO, MnO, but also CaO and P2O5 show a big influence on the
response. If we have a look on the coefficients we can see that Iron(III)-oxide
for example has a very positive effect on the response, whereas Silicon diox-
ide (quartz) has a siginificant negative effect and that was something that we
expected. If the part of Silicon dioxide increases, then we are confronted with
a so called thinning effect because then the sample is not or less magnetic
and hence, the susceptibility can not be measured any more.
By means of the F-statistic we can say that the variables describe the re-
sponse somehow, even if R2 is not that high. However, the p-value is small,
therefore we have to refuse the hypothesis that all coefficients are equal to 0.
Since it is also possible to show the results for common least-squares regres-
sion for the original data (and not for the coordinates), we will also have a
look on that output to compare the situation (see table 6.2).

Call:

lm(formula = y ~ ., data = d)

Residuals:

Min 1Q Median 3Q Max

-3.6565 -0.6792 -0.0679 0.6119 3.5850

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.526380 0.340041 -13.311 < 2e-16 ***

X.SiO2 0.016125 0.003540 4.555 5.54e-06 ***

X.TiO2 0.320401 0.109168 2.935 0.00337 **

X.Al2O3 0.045555 0.013834 3.293 0.00101 **

X.Fe2O3 0.214803 0.026135 8.219 3.60e-16 ***

X.MnO 0.733538 0.287986 2.547 0.01093 *

X.MgO -0.021428 0.020322 -1.054 0.29182

X.CaO 0.040037 0.006867 5.830 6.41e-09 ***

X.Na2O -0.014871 0.028317 -0.525 0.59953

X.K2O -0.017729 0.037159 -0.477 0.63334

X.P2O5 1.991945 0.201931 9.864 < 2e-16 ***

---

Signif.codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9023 on 2049 degrees of freedom

Multiple R-squared: 0.3549, Adjusted R-squared: 0.3518

F-statistic: 112.7 on 10 and 2049 DF, p-value: < 2.2e-16

Call:

lm(formula = y ~ ., data = d)

Residuals:

Min 1Q Median 3Q Max

-3.2139 -0.6520 -0.0598 0.6001 3.4388

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.80470 0.40259 6.967 4.36e-12 ***

X.SiO2 -1.00931 0.05457 -18.497 < 2e-16 ***

X.TiO2 0.11860 0.08454 1.403 0.16081

X.Al2O3 -0.16430 0.13403 -1.226 0.22041

X.Fe2O3 1.01764 0.10732 9.482 < 2e-16 ***

X.MnO 0.33458 0.04883 6.852 9.58e-12 ***

X.MgO -0.42940 0.05200 -8.257 2.64e-16 ***

X.CaO -0.06112 0.02201 -2.777 0.00554 **

X.Na2O 0.04291 0.03052 1.406 0.15986

X.K2O 0.02705 0.07932 0.341 0.73313

X.P2O5 0.12336 0.04629 2.665 0.00776 **

---

Signif.codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8999 on 2049 degrees of freedom

Multiple R-squared: 0.3581, Adjusted R-squared: 0.3553

F-statistic: 127.1 on 9 and 2050 DF, p-value: < 2.2e-16

Table 6.2: Comparison of common least-squares regression without trans-
formation of the compositions (left) and regression with ilr-transformed ex-
planatory variables (right)

An interesting result is that R2 is quite the same in the model with the
original variables and that with ilr-transformed variables, so the quality fit
seems to be similar. The big difference, however, is the interpretation of
the inference statistics. The results based on the original data are misleading
because the data are not represented in the usual Euclidean space. Moreover,
table 6.2 shows that significant variables are not exactly the same in the case

43



of original variables and coordinates. MgO, for example, is highly significant in
the model using coordinates, but it is not describing the response significantly
when using original data (compositions). That is the reason why one should
be careful with compositional data and their interpretation.
In table 6.3 the output of the robust estimation is shown.

Call:

ltsReg.formula(formula = y ~ ., data = d)

Residuals (from reweighted LS):

Min 1Q Median 3Q Max

-1.9887 -0.5421 0.0000 0.5892 1.9770

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Intercept 2.29681 0.37113 6.189 7.36e-10 ***

X.SiO2 -0.78620 0.05079 -15.479 < 2e-16 ***

X.TiO2 0.05779 0.07887 0.733 0.46380

X.Al2O3 -0.37420 0.12386 -3.021 0.00255 **

X.Fe2O3 0.90863 0.09888 9.189 < 2e-16 ***

X.MnO 0.44748 0.04472 10.006 < 2e-16 ***

X.MgO -0.38515 0.04831 -7.973 2.60e-15 ***

X.CaO -0.02807 0.02003 -1.401 0.16126

X.Na2O 0.04043 0.02830 1.428 0.15331

X.K2O 0.10619 0.07346 1.446 0.14847

X.P2O5 -0.01931 0.04303 -0.449 0.65363

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7985 on 1984 degrees of freedom

Multiple R-Squared: 0.3363, Adjusted R-squared: 0.3332

F-statistic: 111.1 on 9 and 1973 DF, p-value: < 2.2e-16

Table 6.3: Robust regression with ilr-transformed explanatory variables

Also here R2, with a value of about 33.63%, is quite low, but again the F-
test defines it as a reasonable and valid model. The conclusion is that a lot
of inputs are probably missing for a better description of the susceptibility.
On the other hand, we can not set all estimated coefficients equal to 0. In
this model, surprisingly, some other chemical substances than in the classical
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regression model have a significant effect when their part in the soil is bigger.
The most sigificant substances are SiO2, Fe2O3, MnO, MgO and we can also
add Al2O3, where again Fe2O3 and also MnO influence the response by means
of a positive coefficient. The other significant elements do have negative
effects.
Finally, we made a regression diagnostic plot. In that matter the robust
distance computed by a MCD estimator is plotted against the standardized
LTS residuals. The robust distance is defined as:

RD(xi,X) =
√

(xi − tn(X))′Cn(X)−1(xi − tn(X)),

which is the robustified Mahalanobis distance and uses the robust MCD esti-
mates described in section 4.3.1 for the mean and the covariance estimation.
In figure 6.1 the regression diagnostic plot for our model is shown. The cut-
off values separating outliers from regular observations are taken as ±2.5 for
the standardized residuals, and

√
χ2
d for the robust distance, where d is the

number of columns of X.
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Figure 6.1: Regression diagnostic plot for model y4 ∼ X3
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The data between the horizontal cutoffs on the left side are the regular ob-
servations and on the right side there are the so called good leverage points
because they follow the linear pattern, but they deviate in x-direction. In
the bottom and topright part of the plot we can see some bad leverage points
and to the left we see some vertical or regression-outliers.
To obtain another graph for comparison, we calculate the classical Maha-
lanobis distances and use it on the x-axis instead of the robust counterpart.
On the y-axis the standardized least-squares residuals are plotted. The cor-
responding image is given in figure 6.2.
The classical Mahalanobis distance is a measure to detect outliers by com-
puting the distance from the center of the cloud to the observations. In that
case, classical estimates for the center µ and the covariance Σ are used. It
is given by:

MD(xi,X) =

√
(xi − µ̂)′Σ̂

−1
(xi − µ̂)
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Figure 6.2: Regression diagnostic plot for model y4 ∼ X3 using the classical
Mahalanobis distance
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As a consequence of figure 6.2 we agree with the assumption that robust
estimation is reasonable as well as necessary to obtain proper results. In
figure 6.2 we see that less points are classified as outliers, but nevertheless
some points have a Mahalanobis distance that exceed the maximum robust
distance by far.

Next, we consider the same regression models but we use different explana-
tory variables to describe the response y4. Now the relationship between
susceptibility and the parts of X2 will be figured out.

> options(width=60)

> ### use now the XRF data instead of the "O" data

> model1a_class<-lmCoDaX_adapted(y=y4[-446],X=X2[-446,],method="classical")

> model1a_rob<-lmCoDaX_adapted(y=y4[-446],X=X2[-446,],method="robust")

The output table has to be interpreted the same way as before. That means
the estimated coefficients origine from D different regression models, where
D is the number of variables that describe our model. The first table 6.4
shows the output for the classical least-squares regression and the second for
the robust case (table 6.5).
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Call:

lm(formula = y ~ ., data = d)

Residuals:

Min 1Q Median 3Q Max

-3.5645 -0.6411 -0.0601 0.5649 3.7322

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.30189 1.06142 -2.169 0.0302 *

X.Si_XRF -1.01942 0.06684 -15.251 < 2e-16 ***

X.Ti_XRF 0.03977 0.13571 0.293 0.7695

X.Al_XRF 0.28251 0.15103 1.871 0.0615 .

X.Fe_XRF 1.14947 0.11226 10.239 < 2e-16 ***

X.Mn_XRF 0.39193 0.04926 7.957 2.91e-15 ***

X.Mg_XRF -0.31235 0.05782 -5.402 7.37e-08 ***

X.Ca_XRF 0.03219 0.03217 1.001 0.3172

X.Na_XRF -0.04052 0.03634 -1.115 0.2650

X.K_XRF -0.07637 0.14650 -0.521 0.6022

X.P_XRF 0.12764 0.05017 2.544 0.0110 *

X.Ba_XRF 0.11299 0.08958 1.261 0.2073

X.Cr_XRF -0.07941 0.04704 -1.688 0.0916 .

X.Nb_XRF -0.01915 0.09746 -0.197 0.8442

X.Pb_XRF 0.27468 0.05195 5.287 1.37e-07 ***

X.Rb_XRF -0.13066 0.11336 -1.153 0.2492

X.Sr_XRF -0.14416 0.05922 -2.435 0.0150 *

X.V_XRF 0.02654 0.10831 0.245 0.8064

X.Y_XRF -0.90983 0.09646 -9.432 < 2e-16 ***

X.Zn_XRF -0.17288 0.08055 -2.146 0.0320 *

X.Zr_XRF 0.46704 0.08744 5.341 1.03e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8709 on 2039 degrees of freedom

Multiple R-squared: 0.4017, Adjusted R-squared: 0.3961

F-statistic: 72.09 on 19 and 2040 DF, p-value: < 2.2e-16

Table 6.4: Classical ilr regression of y4 ∼ X2

In this model (y4 ∼ X2), R
2 is higher than in the one including the data set

X3, so these variables obviously describe the susceptibility somehow better
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(This fact could also result from the higher number of explanatory vari-
ables.) Nevertheless 40.17% are still less than 50%. The hypothesis that
all coefficients are equal to zero can again be refused. There are a lot of
highly significant variables, let us point out Iron (Fe_XRF) again. There is
a highly positive effect on the response when the part of Iron in the soil
increases whereas the part of Silicon in the sample, for example, influences
with a very negative effect. Therefore, a plausible explication has already
been stated in the last model. Other highly significant elements are Mn_XRF,

Mg_XRF, Pb_XRF, Y_XRF, Zr_XRF. It is not just the significance of the vari-
ables that is interesting but also the sign of their coefficients. Therefore we
should have a look if they have a positive or negative impact on the response.
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Call:

ltsReg.formula(formula = y ~ ., data = d)

Residuals (from reweighted LS):

Min 1Q Median 3Q Max

-1.8897 -0.4996 0.0000 0.5228 1.9166

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Intercept -3.047018 0.990807 -3.075 0.002132 **

X.Si_XRF -1.016951 0.061346 -16.577 < 2e-16 ***

X.Ti_XRF -0.111997 0.127299 -0.880 0.379078

X.Al_XRF 0.314397 0.138016 2.278 0.022836 *

X.Fe_XRF 1.219539 0.105655 11.543 < 2e-16 ***

X.Mn_XRF 0.484628 0.044891 10.796 < 2e-16 ***

X.Mg_XRF -0.341711 0.052834 -6.468 1.25e-10 ***

X.Ca_XRF 0.122427 0.028782 4.254 2.20e-05 ***

X.Na_XRF -0.097024 0.033038 -2.937 0.003356 **

X.K_XRF 0.017551 0.133630 0.131 0.895519

X.P_XRF 0.107138 0.046787 2.290 0.022132 *

X.Ba_XRF 0.336312 0.082515 4.076 4.77e-05 ***

X.Cr_XRF -0.256777 0.044729 -5.741 1.09e-08 ***

X.Nb_XRF -0.323015 0.093030 -3.472 0.000528 ***

X.Pb_XRF 0.155300 0.047557 3.266 0.001111 **

X.Rb_XRF -0.431899 0.109603 -3.941 8.41e-05 ***

X.Sr_XRF -0.345202 0.054697 -6.311 3.41e-10 ***

X.V_XRF 0.001357 0.103059 0.013 0.989499

X.Y_XRF -0.617372 0.088995 -6.937 5.41e-12 ***

X.Zn_XRF -0.043829 0.076659 -0.572 0.567558

X.Zr_XRF 0.619511 0.079303 7.812 9.11e-15 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7713 on 1972 degrees of freedom

Multiple R-Squared: 0.4322, Adjusted R-squared: 0.4267

F-statistic: 78.51 on 19 and 1960 DF, p-value: < 2.2e-16

Table 6.5: Robust ilr regression of y4 ∼ X2

There is quite a big difference between the classical and the robust model.
Other, and all above more variables show influence (either positive or nega-
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tive) when their parts in the soil increase or decrease. Here it is interesting
to point out that actually almost all variables are necessary to describe the
response in a good way. Just a few elements do not have a siginificant effect,
which are Ti_XRF, K_XRF, V_XRF, Zn_XRF. However, it is again Iron which
shows a big positive influence and Silicon which has a high negative effect on
the response.
Now it is necessary to point out that the regression coefficients of the model,
where the compositions have not been ilr-transformed, do not suit at all to
them of the correct model. Silicon, for example, has a significantly high posi-
tive effect, which is, according to Dr. Reimann, a specialist for geochemistry,
not reasonable at all. Moreover, almost all variables are significant in that
matter.

Also here we will look at diagnostic plots (see figure 6.3) for both, classical
and robust estimations.
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Figure 6.3: Regression diagnostic plot for Model y4 ∼ X2 when using robust
distances and LTS residuals (left) and classical Mahalanobis distances and
LS residuals (right)

The robust estimation associated with an LTS regression detects again much
more points that do not follow the pattern and therefore they are classified as
outliers. In addition, the classical Mahalanobis distances are more scattered.
That means, some distances are very big compared to the others. In contrast,
the robust distances are larger in average, but there are not so many points
that deviate that much.

So the final conclusion after this executions is that robust methods yield
different results, they detect more outliers and all regression analyses that
are applied on data with outliers should be done like that.
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6.2.2 Multivariate response and compositional explana-
tory variables

We consider a model where the response Y somehow represents the climate
(y1,y2) and where the explanatory variables are the different aqua regia
elements X4. The variables with bad quality have been removed. More-
over, the response variable y2 including the mean precipitation has been
log-transformed due to a strong skewness.
The algorithm is mainly taken from Joossens (2008), but it has been adapted.
It is a fast MLTS algorithm that has been introduced in Hubert et al. (2008).
Additionally, the compositions have been transformed by means of an ilr
transformation. A special kind of balances that has been described in sec-
tion 3 is used so that we gain all the information about the first variable
relatively to all the others. For the exact implementation see Appendix A,
function mlts. γ is chosen as 0.75. This value is a good trade-off between
robustness and efficiency.
In table 6.6 we see the output of the model. The first matrix contains the es-
timated regression coefficients, but just the first row of coefficients is straight-
forward to interpret. The others are just parts relatively to the rest of the
variables and therefore, due to the choice of the balances, not easy to inter-
pret. The second matrix includes the covariance matrix of the residuals Σ.
In addition the coefficient of determination R2 has been derived. It is about
46% and thus higher than for the models we have studied before. Neverthe-
less, one has to be careful with the interpretation of R2 because we suppose
it has to be modified for our robust regression model. To be specific, the
estimates B and Σ are robust, but X is unadjusted of outliers and therefore,
they still contain leverage points.

52



> model2b<-mlts(x=isomLR(X4),y=cbind(y1,y2),gamma=0.75,ns=3000,nc=20,delta=0.01)

First 6 rows of matrix B containing the estimated coefficients:

y1 y2

[1,] 1.03029642 0.07231715

[2,] -0.36543233 -0.27125751

[3,] -1.21361199 0.06356850

[4,] 0.08639065 0.03728086

[5,] -0.08608759 0.10319597

[6,] -0.16355394 0.01016086

Estimated covariance matrix of the residuals:

y1 y2

y1 1.92735975 -0.04492821

y2 -0.04492821 0.02828361

The coefficient of determination R_squared is 0.4616483

Table 6.6: Model output for Y ∼ X4

In figure 6.4 we can see a regression outlier map. On the x-axis there are
the robust distances of X3 estimated by the MCD method, and on the y-axis
there are the robust distances of residuals estimated by MLTS. The latter
robust distances are defined as

d(ri(µ̂MCD)) =

√
ri(µ̂MCD)′(Σ̂e)−1ri(µ̂MCD), (6.1)

where µ̂MCD and Σ̂e are the MCD regression estimates.
For both distances, a quantile (e.g. 0.975) of the χ2-distribution with the
corresponding dimensions as degrees of freedom can be used as cutoff values.
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Figure 6.4: Regression outlier map

The observations on the bottom left are the regular ones, those to the top
left are vertical outliers. Their residuals are outlying, but their x-values are
not. Observations on the top right can be classified as bad leverage points.
According to the plot, there are a lot of outliers, vertical outliers as well as
leverage points.
To verify the validity of a robust model, we want to show another figure
having on the x-axis the classical Mahalanobis distance and on the y-axis the
distances of the residuals coming from an LS fit. Figure 6.5 shows the results.
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Figure 6.5: Regression outlier map of the model (y1,y2) ∼ X4

The next step is to compare classical Mahalanobis distances with their robust
counterparts. Figure 6.6 shows the results. The data on the bottom left are
the regular points. On the top left there are those points that are classified
as outliers when robust methods are applied, but which are not seen as out-
liers when the estimates of center and covariance are computed by classical
methods. On the top right those points are situated which are classified as
outliers with both methods.
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Figure 6.6: Classical Mahalanobis distance vs robust distance of the data X3

To sum up, we can say that there are a lot of points which can not be iden-
tified as outliers if classical estimates are used. Therefore, it makes sense to
apply MCD regression.
Furthermore, we want to compare the results using ilr-transformed variables
and original variables. In figure 6.7 we see distance-distance plots that com-
pare outlier detection for the two cases.
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Figure 6.7: Distance-distance plots comparing outlier detection for the orig-
inal and ilr-transformed data, based on classical (left) and robust (right)
estimates

From figure 6.7 we want to get to know if the transformation (the opening)
of the data to the Euclidean space is relevant to outlier detection or whether
the same results would appear without any transformation. Classical as
well as robust (MCD) estimates were used. The horizontal axes represent
the Mahalanobis distances using the untransformed original data, and the
vertical axes are for the ilr-transformed data. The lines indicate the cut-off
values. Since there are points in all four quadrants we can conclude that
we would not have obtained the same results when using the original data.
Moreover, robust regression shows an even more different picture. There is
one extraordinary outlier that would not have been detected without robust
estimates.
In table 6.7 we can see the robust estimated coefficients of the regression
model where again the regression coefficients are the first elements of 42
models, respectively.
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coordinate: Ag F-statistic: 137.226 coefficients: 1.804756 0.0350523

coordinate: Al F-statistic: 171.0029 coefficients: -1.082672 -0.4973153

coordinate: As F-statistic: 19.15011 coefficients: -0.7073182 -0.03008587

coordinate: B F-statistic: 8.898786 coefficients: 0.203309 0.03606078

coordinate: Ba F-statistic: 71.61085 coefficients: -0.2971173 0.1705481

coordinate: Be F-statistic: 4.295982 coefficients: -0.2644376 0.03447392

coordinate: Bi F-statistic: 4.747388 coefficients: 0.1867888 -0.04461269

coordinate: Cd F-statistic: 7.761615 coefficients: -0.4673227 -0.04310271

coordinate: Ce F-statistic: 17.57624 coefficients: 0.4302734 0.3172852

coordinate: Co F-statistic: 2.12691 coefficients: -0.06903757 0.05157953

coordinate: Cr F-statistic: 5.745188 coefficients: -0.7294582 0.0273239

coordinate: Cs F-statistic: 18.21438 coefficients: -0.4975111 -0.1056292

coordinate: Cu F-statistic: 32.88867 coefficients: -0.9063549 -0.0546561

coordinate: Fe F-statistic: 95.43264 coefficients: 0.7207731 -0.3400886

coordinate: Ga F-statistic: 74.94313 coefficients: 2.129636 0.3713608

coordinate: K F-statistic: 3.53295 coefficients: -0.4874833 -0.02025005

coordinate: La F-statistic: 34.02161 coefficients: 3.005086 0.3183177

coordinate: Li F-statistic: 19.87053 coefficients: -0.9264747 -0.0789191

coordinate: Mg F-statistic: 32.26881 coefficients: 0.2520048 -0.108691

coordinate: Mn F-statistic: 10.90119 coefficients: 0.2784748 -0.06038848

coordinate: Mo F-statistic: 17.41589 coefficients: 0.6194729 0.02747035

coordinate: Na F-statistic: 4.060501 coefficients: -0.2073859 0.02438701

coordinate: Nb F-statistic: 4.186128 coefficients: 0.4094687 -0.007552187

coordinate: Ni F-statistic: 1.701966 coefficients: 0.2130337 0.04046002

coordinate: P F-statistic: 44.97306 coefficients: 1.25025 -0.07842878

coordinate: Pb F-statistic: 36.42795 coefficients: -1.603703 -0.02139326

coordinate: Rb F-statistic: 3.849817 coefficients: 0.1123132 0.07384382

coordinate: S F-statistic: 28.70643 coefficients: 0.5250282 -0.03202781

coordinate: Sb F-statistic: 27.04833 coefficients: -0.900579 -0.03989462

coordinate: Sc F-statistic: 7.595004 coefficients: 1.062606 0.02095384

coordinate: Se F-statistic: 2.566379 coefficients: -0.249249 -0.009471893

coordinate: Sn F-statistic: 35.17172 coefficients: -0.9139126 -0.08494874

coordinate: Sr F-statistic: 32.22416 coefficients: -0.6366728 0.0238663

coordinate: Th F-statistic: 4.265048 coefficients: -0.1943988 0.03889979

coordinate: Ti F-statistic: 6.91777 coefficients: 0.3672628 0.01836594

coordinate: Tl F-statistic: 9.051492 coefficients: 0.7228025 0.04108

coordinate: U F-statistic: 13.68895 coefficients: 0.3863221 -0.06502947

coordinate: V F-statistic: 3.779437 coefficients: 0.4848099 -0.03940839

coordinate: W F-statistic: 8.176248 coefficients: -0.2772011 0.02357514

coordinate: Y F-statistic: 19.2789 coefficients: -1.150997 -0.1010479

coordinate: Zn F-statistic: 10.9982 coefficients: 1.030445 0.05020505

coordinate: Zr F-statistic: 14.29625 coefficients: 0.3963563 0.02501617

The corresponding 95%-quantile of the F-distribution is 3.000184

Table 6.7: Robust coefficients and F-statistics of the model (y1,y2) ∼ X4

There are just a few elements whose coordinates do not influence the re-
sponse. But sometimes it is even interesting to know exactly these, so we
want to enumerate them: Co, Ni, Se. According to an expert of geochem-
istry, it is very surprising that Selen does not have an impact on the climate.
From that fact follows that we have to be careful with results and interpre-
tations and besides, it increases the uncertainty of the correctness of both,
the F-statistics and the coefficient of determination R2 in case of a robust
regression. All the other elements do have either a significant positive or
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negative effect on the mean temperature and annual precipitation.

Furthermore we want to obtain information about how the XRF data influence
the climate (y1,y2).

> model2c<-mlts(x=isomLR(X2),y=cbind(y1,y2),gamma=0.75,ns=3000,nc=20,delta=0.01)

estimated covariance matrix of residulas:

y1 y2

y1 2.51913661 -0.07683724

y2 -0.07683724 0.04015629

The coefficient of determination equals 0.2394992

Table 6.8: Estimated matrix Σ and coefficient of determination R2 in the
model (y1,y2) ∼ X2

The coefficient of determination is rather low and therefore, we have to sup-
pose that there are much more inputs that describe the climate (which is
somehow obvious) or that the evaluation of the F-statistics is not coherent
with the robust multivariate regression model. Nevertheless, we can conclude
that the oxides have much more influence on the climate. At least this is a
meaningful result.
In table 6.9 we see the estimated coefficients as well as the corresponding
F-statistics for the coordinates. Unfortunately, all the coordinates are signif-
icant, except for one that is Zn_XRF. According to the output, all the others
do show either a postive or a negative influence on the climate or rather on
the mean temperature and annual precipitation.
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coordinate: Si_XRF F-statistic: 64.01032 coefficients: -2.551768 -0.04536396

coordinate: Ti_XRF F-statistic: 24.80653 coefficients: -1.048606 -0.291589

coordinate: Al_XRF F-statistic: 51.13712 coefficients: -1.697115 -0.4478831

coordinate: Fe_XRF F-statistic: 9.614859 coefficients: 1.342485 0.1082234

coordinate: Mn_XRF F-statistic: 25.50529 coefficients: 0.4899351 -0.1017633

coordinate: Mg_XRF F-statistic: 40.73675 coefficients: 1.474431 0.1171863

coordinate: Ca_XRF F-statistic: 16.12205 coefficients: -0.5968735 0.01671626

coordinate: Na_XRF F-statistic: 37.60736 coefficients: -0.004207717 -0.09741506

coordinate: K_XRF F-statistic: 146.9889 coefficients: 5.571251 -0.5745473

coordinate: P_XRF F-statistic: 42.57841 coefficients: 0.3500521 -0.1460284

coordinate: Ba_XRF F-statistic: 396.2044 coefficients: 2.365908 0.7958941

coordinate: Cr_XRF F-statistic: 51.83016 coefficients: -0.8691962 0.1279036

coordinate: Nb_XRF F-statistic: 10.36878 coefficients: 0.07018358 0.1431354

coordinate: Pb_XRF F-statistic: 56.52273 coefficients: -1.927884 -0.05923645

coordinate: Rb_XRF F-statistic: 50.41385 coefficients: -1.546535 0.3099586

coordinate: Sr_XRF F-statistic: 13.86738 coefficients: 0.101475 -0.1000597

coordinate: V_XRF F-statistic: 10.57578 coefficients: 0.1582521 -0.1484785

coordinate: Y_XRF F-statistic: 37.52931 coefficients: 2.378658 0.1596321

coordinate: Zn_XRF F-statistic: 0.4736852 coefficients: 0.1922837 0.02018438

coordinate: Zr_XRF F-statistic: 13.42876 coefficients: 1.40903 0.08318843

The corresponding 95%-quantile of the F-distribution is 3.000136

Table 6.9: F statistics and estimated parameters of model (y1,y2) ∼ X2

6.2.3 Linear regression with compositional response and
non-compositional explanatory variables

Now we consider a regression model where we want to explain the parts
of sand, silt and clay by the non-compositional explanatory variables that
describe the climate. Formally we can write it down as:

X1 = Y B + E

The code to derive the coefficients by means of the robust regression with
compositional variables is given in Appendix A (function mlts). Again a fast
MLTS algorithm is used to calculate the coefficients as well as the residual
variance and the distance of the robust residuals. To describe the output, a
regression outlier map is plotted in figure 6.8. In table 6.10 the estimated
coefficients for beta and the matrix Σ are given.

> yn<-isomLR(X1)

> k<-which(is.infinite(yn)[,1])

> y<-yn[-k,]

> x<-cbind(y1,y2)[-k,]

> model3<-mlts(x=x,y=y,gamma=0.75,ns=3000,nc=20)
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> model3$beta

[,1] [,2]

y1 0.01449668 0.0425192

y2 -0.04881073 -0.1271665

> model3$sigma

[,1] [,2]

[1,] 0.36199968 -0.03620171

[2,] -0.03620171 0.08823674

Table 6.10: First estimates for B and estimator for Σ in model X1 ∼ (y1,y2)

To derive inference statistics, one has to compute D · 2 regression models
and calculate the F-statistic (see section 5.1) for each of the estimations sep-
arately. Then information about how the climate influences parts of the soil
can be given.

### calculations of the coefficients

> for (i in 1:2){

+ yn<-isomLR(X1)

+ k<-which(is.infinite(yn)[,1])

+ y<-yn[-k,]

+ x<-cbind(y1,y2)[-k,]

+ model3<-mlts(x=x,y=y,gamma=0.75,ns=500,nc=10)

+ M<-diag(model3$n)-x%*%solve(t(x)%*%x)%*%t(x)

+ h<-c(1,rep(0,model3$p-1))

+ nom<-model3$beta[1,]%*%solve(t(y)%*%M%*%y)%*%t(model3$beta)%*%h

+ den<-t(h)%*%solve(t(x)%*%x)%*%h

+ quod<-(model3$n-model3$p-model3$q) /model3$q

+ F[i]<-nom/den*quod

+ sse<-sum((model3$res)^2)

+ }

### calculation of r.squared

> for (k in 1:model3$n)

+ {

+ for (j in 1:(model3$q-1))

+ {

+ ssr=ssr+((x%*%model3$beta)[k,j]-mean(y[,j]))^2

+ }
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+ }

> R<-ssr/(ssr+sse)

coordinate: y1 F-statistic: 116.2002 coefficients: 0.01449668 0.0425192

coordinate: y2 F-statistic: 116.4164 coefficients: 0.01477982 0.04256854

The corresponding 95%-quantile of the F-distribution is 3.000102

The coefficient of determination equals 0.1727367

Table 6.11: Regression parameters of model X1 ∼ (y1,y2)

In table 6.11 we can find the estimated F-statistics as well as the coefficients
for the coordinates. Moreover the 95%-quantile of the F-distribution is de-
noted. The coefficient of determination is very low. That leads us to the
conclusion that the non-compositional explanatory variables y1 und y2 do
not contribute well to describe the coordinates of data set X1.
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Figure 6.8: Regression outlier map for model X1 ∼ Y

In figure 6.8 we see a big amount of vertival outliers, but significantly less
leverage points.
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Figure 6.9: Regression outlier map for common multivariate least-squares
regression associated with the classical Mahalanobis distance

6.2.4 Linear regression with compositional response and
compositional explanatory variables

Finally, we consider the model, where we are confronted with compositional
explanatory variables as well as a compositional response. An ilr transfor-
mation has to be applied on both separately and afterwards, the regression
analysis can be started.
Here, we like to have a look on the relationship between the variable X1 and
the variable X3. Both contain elements of the soil and sum up to about one
so that they can be considered as compositions. Again an MLTS estimator
will be used to derive the coefficients and the robust distances of the coordi-
nates.
To define proper inference statistics one has to apply D ·P estimations where
D is the dimension of X1 and P is the dimension of X3 (cf. section 3.3). In
figure 6.10 the regression outlier map is shown for robust estimates as well
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as for classical estimates.

5 10 15 20 25 30

0
5

10
15

20

Robust distance of X estimated by MCD

R
ob

us
t d

is
ta

nc
e 

of
 r

es
id

ua
ls

 e
st

im
at

ed
 b

y 
M

LT
S

5 10 15
0

1
2

3
4

Mahalanobis distance of X

D
is

ta
nc

e 
of

 r
es

id
ua

ls
 r

es
ul

tin
g 

fo
rm

 a
n 

LS
 fi

t

Figure 6.10: Regression outlier map of the model X1 ∼ X3 with robust
esimates (left) and classical estimates (right)

Figure 6.7 represents the associated plots to compare the Mahalanobis dis-
tances with the original data as well as the ilr-transformed variables in case
of a classical and a robust estimation of center and covariance. Since we use
the same explanatory variables, we do not have to repeat calculations and
plots.
Finally, we want to find out which coordinates are the significant ones to
describe the parts of X1. Therefore, first we use formula (3.2), which is the
F-statistic to get to know if some variables do not help to describe the re-
sponse at all. We calculate F1 to determine the impact of part 1 on the
response and repeat the computations for all variables.

> model4<-mlts_model4(x=x,y=y,gamma=0.75,ns=3000,nc=20,delta=0.01)
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coordinate: Ag F-statistic: 19.49802 coefficients: -0.1612934 0.03285746

coordinate: Al F-statistic: 54.21285 coefficients: -0.6341268 0.1467685

coordinate: As F-statistic: 10.90387 coefficients: -0.112539 -0.05246823

coordinate: B F-statistic: 18.88954 coefficients: -0.1103841 0.06341695

coordinate: Ba F-statistic: 2.6927 coefficients: -0.07798289 -0.01040735

coordinate: Be F-statistic: 24.17039 coefficients: 0.1986603 -0.1298603

coordinate: Bi F-statistic: 13.31353 coefficients: 0.1554583 -0.09720959

coordinate: Cd F-statistic: 17.52207 coefficients: 0.1295278 -0.1352273

coordinate: Ce F-statistic: 8.115012 coefficients: -0.4482347 0.1844639

coordinate: Co F-statistic: 6.81569 coefficients: -0.1919943 -0.07551753

coordinate: Cr F-statistic: 4.937498 coefficients: -0.1803643 0.0005673683

coordinate: Cs F-statistic: 2.278934 coefficients: -0.03587578 0.06610231

coordinate: Cu F-statistic: 0.3754524 coefficients: 0.02596895 -0.002259261

coordinate: Fe F-statistic: 15.3314 coefficients: 0.3112942 -0.09983005

coordinate: Ga F-statistic: 10.30004 coefficients: 0.3107987 0.1213082

coordinate: K F-statistic: 11.19385 coefficients: 0.02478652 -0.1652272

coordinate: La F-statistic: 6.006913 coefficients: 0.2926289 -0.2323421

coordinate: Li F-statistic: 0.004125703 coefficients: -0.003279296 -0.001582096

coordinate: Mg F-statistic: 12.07416 coefficients: 0.03308041 -0.1220261

coordinate: Mn F-statistic: 12.49982 coefficients: 0.006591762 0.1310796

coordinate: Mo F-statistic: 11.31325 coefficients: -0.05793445 0.08744876

coordinate: Na F-statistic: 2.398094 coefficients: -0.01802845 -0.04364006

coordinate: Nb F-statistic: 12.82898 coefficients: -0.1796762 -0.005182686

coordinate: Ni F-statistic: 1.336236 coefficients: -0.06490433 0.05063552

coordinate: P F-statistic: 1.905363 coefficients: -0.04239332 0.04943112

coordinate: Pb F-statistic: 6.843804 coefficients: 0.1408551 0.06457379

coordinate: Rb F-statistic: 5.693206 coefficients: 0.1862649 -0.07778464

coordinate: S F-statistic: 243.2536 coefficients: 0.4156775 0.1151362

coordinate: Sb F-statistic: 1.842761 coefficients: 0.05274823 0.01944933

coordinate: Sc F-statistic: 15.32511 coefficients: -0.293194 -0.1558724

coordinate: Se F-statistic: 7.133014 coefficients: 0.01751019 0.07677634

coordinate: Sn F-statistic: 3.855366 coefficients: 0.02440537 -0.06917625

coordinate: Sr F-statistic: 3.514989 coefficients: -0.0496704 -0.01799025

coordinate: Th F-statistic: 3.996911 coefficients: -0.09741875 -0.02228071

coordinate: Ti F-statistic: 38.16463 coefficients: 0.1382673 0.1275837

coordinate: Tl F-statistic: 5.341979 coefficients: -0.1450275 0.02358795

coordinate: U F-statistic: 0.9095538 coefficients: 0.04715913 0.00545617

coordinate: V F-statistic: 29.50146 coefficients: 0.4301445 0.04849563

coordinate: W F-statistic: 1.191041 coefficients: -0.03353508 -0.006012791

coordinate: Y F-statistic: 9.35543 coefficients: 0.04430097 0.1777767

coordinate: Zn F-statistic: 1.937728 coefficients: 0.02261359 -0.08325237

coordinate: Zr F-statistic: 6.425577 coefficients: -0.07088554 0.01223383

Table 6.12: F-statistics and regression coefficients for the model X1 ∼ X4

The output gives us the following conclusions. There are just a few coordi-
nates which do not help to describe the model. The corresponding elements
are Ba, Cs, Cu, Li, Na, Ni, P, Sb, U, W, Zn. Hence, if the part in the
soil of these elements is increasing or decreasing it does not have a big effect
on the response (on the parts of sand, silt or clay in the soil). However,
one has to be careful with interpretations since the coefficients are always
derived for the elements as a part of the rest of the others. So they describe
the effect of one part relatively to all the others. The estimated coefficients
as well as the values of the F-statistics are shown in table 6.12. Hence, we
can identify in which way each coordinate influences the coordinates of the
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response, which is either a positive or a negative effect.

The coefficient of determination equals 0.3310495

This value for the coefficient of determination is again rather low, but since
we assume that the associated calcualtions have to be modified, we should
not pay too much attention on it here.

Finally, experts are interested in how the three parts sand_norm, silt_norm
and clay_norm do describe the aqua regia compositions X4. Thus, we con-
sider the following model in coordinates:

X∗4 = X∗1D
∗ + E∗

Special attention should be paid on clay_norm which is supposed to have
the biggest impact on the response.

coordinate: sand_norm F-statistic: 51.761 coefficients: -0.1292351

0.2280944 -0.04827934 -0.04255178 -0.03812094 -0.2292504 -0.1749652

-0.02653513 0.07722091 -0.182723 -0.09893409 -0.1314296 -0.1106287

0.2565445 -0.09313518 0.0979192 0.03925649 -0.06903242 0.1306204

0.1377602 0.03849332 0.06822224 -0.04619676 -0.2354581 0.421024

0.2076411 0.07989358 0.4071942 -0.05701899 -0.1568177 -0.0790466

0.06057745 -0.06715394 -0.2236793 0.4067046 -0.06341329 0.1944305

0.09009965 0.2568383 0.1353969 0.5686421

coordinate: silt_norm F-statistic: 104.1527 coefficients: -6.328288

8.114455 -0.6969301 -1.060469 2.437355 -3.085465 -4.709611 -4.704712

1.327212 -0.3718612 0.7493356 -2.693116 0.1659322 8.326003 -1.123514

6.012682 0.9908091 0.5269292 6.939519 5.215803 -3.055548 2.451072

-2.530963 1.399134 5.553065 1.539647 1.863546 4.764256 -2.889851

-0.1077786 -2.54748 -2.027077 1.948487 0.2001244 4.135395 -3.45367

-1.872938 2.218568 -4.993134 -0.2926793 2.023815

coordinate: clay_norm F-statistic: 459.6819 coefficients: 6.362659

-8.208366 0.7616963 1.103356 -2.350418 3.288606 4.828801 4.686759

-1.391697 0.5564396 -0.6364328 2.780329 -0.04822509 -8.443961 1.205417

-6.021147 -1.02412 -0.4441121 -6.964346 -5.239063 2.96821 -2.504109

2.510506 -1.126744 -5.881061 -1.690053 -1.916853 -5.094725 2.94726

0.2728092 2.605574 1.968038 -1.850967 0.02299315 -4.528684 3.466756 1.623705

-2.271234 4.668933 0.1588271 -2.531733

The corresponding quantile of the F-distribution is 1.395007

Table 6.13: Estimated coefficients and F-statistics of model X4 ∼ X1

Table 6.13 showes the estimated coefficients and F-statistics of the model.
The computations were very difficult because during the calculations there
occured problems of singularity. So, we cannot be sure that the algorithm
has converged. Nevertheless, the hypothesis that clay_norm may have to
biggest impact on the response cannot be refused, since the F-statistic is big.
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The coefficient of determination is given by 0.4852269 and is therefore the
highest ever obtained during this research.

68



Chapter 7

Conclusions

Multivariate classical and robust analysis of compositional data is a recent
topic. In this thesis, the goal was to gain information between the difference
of classical and robust regression applied on compositions. Several methods,
like regression outlier plots, coefficients estimations or computing test statis-
tics, have been used to make proper interpretations possible.
First of all, compositions have to be transformed because otherwise they can-
not be interpreted in terms of coordinates of the Euclidean space. For the
transformations three different methods were proposed - additive log-ratio
transformation (alr), centered log-ratio transformation (clr) and isometric
log-ratio transformation (ilr). The ilr transformation is chosen to be used
for applications since it has some important properties. It is both, isometric
and an isomorphism. Moreover, it yields coordinates in RD−1 which is the
actual dimension of the simplex and therefore reasonable. Special ilr transfor-
mations, called balances, have been introduced. Balances make coordinates
easier to interpret. The most important balances describe all the information
about one coordinate relative to all the others. By means of these balances,
classical and robust regression have been introduced, so that there is also an
easy way for interpretation.
For the different models with compositions and non-compositional parts, re-
gression coefficients were derived and the related test statistics were formu-
lated.
Finally, the most important part was to implement the regression analysis in
R and to try to obtain interesting results and conclusions about the topic.
To sum up, we first had a look on a multiple regression model with composi-
tional explanatory variables. We could see that robust regression does make
a difference in the estimations. More outliers were detected by this method.
Moreover, we can conclude, that also the transformation (the opening of the
data) is necessary to receive correct results. Otherwise, the results and con-
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clusions of the estimated coefficients differed and aside from that there is no
way to interpret the coefficients in the simplex.
However, the coefficient of determination is almost the same when we com-
pare a model with original (compositional) data and one with coordinates.
That means that the adaption is similar in both models, but again, the prob-
lem occurs when we want to interpret the results. Therefore, the proper selec-
tion of the balances (ilr transformation) is crucial. Here we always chose the
balances where one element is represented as part of all the others. Nonethe-
less, if we want to obtain information about one group relative to another
group, a balance expressing this relationship can be used.
Further, one has to be careful with interpreting inference statistics, when
both, the response as well as the independent variables form compositions.
In that case, the response variables, which will be described in terms of es-
timated coefficients and coordinates, are coordinates as well and therefore,
represent also parts of variables, relative to the rest. Besides, the dimension
of the response decreases as a result from an ilr transformation.
Referring to our data set, we want to sum up the most important conclu-
sions that we got from the study. It is reasonable that Iron(III)-oxide has
a big positive impact on the response susceptibiliy. The magnetic character
is obviously depending on Iron, besides quartz was supposed to infect the
response negative. This result could also be seen in our regression. The mag-
netic character is lost if there is more quartz in the soil.
Accoring to specialist Dr. Reimann, the results of the model where the cli-
mate is described by the aqua regia data are surprising. For example, Selen
should be influenced by the climate, but in our model it is one of those few
variables which do not show any significance. Moreover, the values of R2 are
very low on average. Hence, we presume there is missing a lot of information
and probably a modification of the coefficient of determination in case of
robust multivariate regression analysis is necessary and would lead to results
that are more accurate.
To sum up, we have to admit that the theoretical problem of compositions
defined on the simplex is straight-forward to introduce, whereas the conclu-
sions of applications with compositions are rather difficult to interpret as well
as to obtain. However, a lot of new insight in the topic has been achieved and
the interesting effect of a transformation from the simplex to the Euclidean
space has been examined.
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Appendix A

R-Codes

This code is mainly taken from the R package robCompositions and just
a little bit adapted to my idea. It applies classical and robust regression
analysis on the ilr- transformed explanatory compositions and returns the
associated model parameters.

lmCoDaX_adapted<-function (y, X, method = "robust")

{

ilrregression <- function(X, y) {

d <- data.frame(y = y, X = X)

lmcla <- lm(y ~ ., data = d)

lmcla.sum <- summary(lmcla)

require(robCompositions)

ilr.sum <- lmcla.sum

for (j in 1:ncol(X)) {

Zj <- -robCompositions::isomLR(cbind(X[, j], X[, -j]))

dj <- data.frame(y = y, Z = Zj)

res <- lm(y ~ ., data = dj)

res.sum <- summary(res)

if (j == 1) {

ilr.sum$coefficients[1:2, ] <- res.sum$coefficients[1:2, ]

ilr.sum$residuals <- res.sum$residuals

ilr.sum$sigma <- res.sum$sigma

ilr.sum$r.squared <- res.sum$r.squared

ilr.sum$adj.r.squared <- res.sum$adj.r.squared

ilr.sum$fstatistic <- res.sum$fstatistic

}

else {

ilr.sum$coefficients[j + 1, ] <- res.sum$coefficients[2, ]

}
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}

list(lm = lmcla, lm1 = lmcla.sum, ilr = ilr.sum)

}

robilrregression <- function(X, y) {

require(robustbase)

d <- data.frame(y = y, X = X)

lmcla <- ltsReg(y ~ ., data = d)

lmcla.sum <- summary(lmcla)

require(robCompositions)

ilr.sum <- lmcla.sum

for (j in 1:ncol(X)) {

Zj <- -robCompositions::isomLR(cbind(X[, j], X[, -j]))

dj <- data.frame(y = y, Z = Zj)

res <- ltsReg(y ~ ., data = dj)

res.sum <- summary(res)

if (j == 1) {

plot(res,which="rdiag",id.n=10)

ilr.sum$coefficients[1:2, ] <- res.sum$coefficients[1:2, ]

ilr.sum$residuals <- res.sum$residuals

ilr.sum$sigma <- res.sum$sigma

ilr.sum$r.squared <- res.sum$r.squared

ilr.sum$adj.r.squared <- res.sum$adj.r.squared

ilr.sum$fstatistic <- res.sum$fstatistic

}

else {

ilr.sum$coefficients[j + 1, ] <- res.sum$coefficients[2, ]

}

}

list(lm = lmcla, lm1 = lmcla.sum, ilr = ilr.sum)

}

if (method == "classical") {

reg <- ilrregression(X, y)

}

else if (method == "robust") {

reg <- robilrregression(X, y)

}

return(reg)

}
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mlts <- function(x,y,gamma,ns=500,nc=10,delta=0.01)

{

d <- dim(x); n <- d[1]; p <- d[2]

q <- ncol(y)

h <- floor(n*(1-gamma))+1

obj0 <- 1e10

for (i in 1:ns)

{ set.seed(i)

sorted <- sort(runif(n),na.last = NA,index.return=TRUE)

istart <- sorted$ix[1:(p+q)]

xstart <- as.matrix(x[istart,])

ystart <- as.matrix(y[istart,])

bstart <- solve(t(xstart)%*%xstart,t(xstart)%*%ystart)

sigmastart <- (t(ystart-xstart%*%bstart))%*%(ystart-xstart%*%bstart)/q

for (j in 1:nc)

{ res <- y - x %*% bstart

tres <- t(res)

dist2 <- colMeans(solve(sigmastart,tres)*tres)

sdist2 <- sort(dist2,na.last = NA,index.return = TRUE)

idist2 <- sdist2$ix[1:h]

xstart <- as.matrix(x[idist2,])

ystart <- as.matrix(y[idist2,])

bstart <- solve(t(xstart)%*%xstart,t(xstart)%*%ystart)

sigmastart <- (t(ystart-xstart%*%bstart))%*%(ystart-xstart%*%bstart)/(h-p)

}

obj <- det(sigmastart)

if (obj < obj0)

{ result.beta <- bstart

result.sigma <- sigmastart

obj0 <- obj

}

}

cgamma <- (1-gamma)/pchisq(qchisq(1-gamma,q),q+2)

result.sigma <- cgamma * result.sigma

res <- y - x %*% result.beta

tres<-t(res)

result.dres <- colSums(solve(result.sigma,tres)*tres)

result.dres <- sqrt(result.dres)

rd_temp<-covMcd(x)

rd<-sqrt(mahalanobis(x,rd_temp$center,rd_temp$cov))

plot(rd,result.dres,xlab="Robust distance of X estimated by MCD",

ylab="Robust distance of residuals estimated by MLTS")

abline(h=sqrt(qchisq(0.975,ncol(y))))
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abline(v=sqrt(qchisq(0.975,ncol(x))))

list(beta=result.beta,sigma=result.sigma,dres=result.dres,rd=rd,p=p,q=q,n=n)

}

### fast mlts algorithm

mlts_model4<-function(x,y,gamma,ns=500,nc=10,delta=0.01)

{

d <- dim(x); n <- d[1]; p <- d[2]

q <- ncol(y); n2<-nrow(y)

h <- floor(n*(1-gamma))+1

obj0 <- 1e100

for (i in 1:ns)

{ set.seed(i)

sorted <- sort(runif(n),na.last = NA,index.return=TRUE)

istart <- sorted$ix[1:(p+q)]

xstart <- as.matrix(x[istart,])

ystart <- as.matrix(y[istart,])

bstart <- solve(t(xstart)%*%xstart,t(xstart)%*%ystart)

sigmastart <- (t(ystart-xstart%*%bstart))%*%(ystart-xstart%*%bstart)/q

for (j in 1:nc)

{ res <- y - x %*% bstart

tres <- t(res)

dist2 <- colMeans(solve(sigmastart,tres)*tres)

sdist2 <- sort(dist2,na.last = NA,index.return = TRUE)

idist2 <- sdist2$ix[1:h]

xstart <- as.matrix(x[idist2,])

ystart <- as.matrix(y[idist2,])

bstart <- solve(t(xstart)%*%xstart,t(xstart)%*%ystart)

sigmastart <- (t(ystart-xstart%*%bstart))%*%(ystart-xstart%*%bstart)/(h-p)

}

obj <- det(sigmastart)

if (obj < obj0)

{ result.beta <- bstart

result.sigma <- sigmastart

obj0 <- obj

}

}
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cgamma <- (1-gamma)/pchisq(qchisq(1-gamma,q),q+2)

result.sigma <- cgamma * result.sigma

res <- y - x %*% result.beta

tres<-t(res)

result.dres <- colSums(solve(result.sigma,tres)*tres)

result.dres <- sqrt(result.dres)

rd_temp<-covMcd(x)

rd<-sqrt(mahalanobis(x,rd_temp$center,rd_temp$cov))

plot(rd,result.dres,xlab="Robust distance of X estimated by MCD",

ylab="Robust distance of residuals estimated by MLTS")

abline(h=sqrt(qchisq(0.975,ncol(y))))

abline(v=sqrt(qchisq(0.975,ncol(x))))

M<-diag(n)-x%*%solve(t(x)%*%x)%*%t(x)

h<-c(1,rep(0,p-1))

nom<-result.beta[1,]%*%solve(t(y)%*%M%*%y)%*%t(result.beta)%*%h

den<-t(h)%*%solve(t(x)%*%x)%*%h

quod<-(n-p-q) /q

F<-nom/den*quod

list(beta=result.beta,sigma=result.sigma,dres=result.dres,F=F,q=q,p=p,n=n)

}
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