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Abstract

We perform the instrumental variable estimation of the Euler equa-

tion and the system of Euler equations from the basic Consumption -

based Capital Asset Pricing Model (C-CAPM) using a large set of possible

instruments. This large set of possible instruments is due to the Ratio-

nal Expectation Hypothesis. The optimal GMM estimator, which is used

in the estimation, has a finite sample bias proportional to the number

of instruments. This means that there is a need of the efficient instru-

ment dimension reduction method. The two different methods of such

a reduction are compared: the FIV estimator and the optimal GMM es-

timator that uses preselected principal components (constructed from

the large set of possible instruments) as instruments. Originally, the

two methods were developed for linear models. We modify the latter

method to extend it to non-linear models. The Euler equation is esti-

mated in both nonlinear and linearized forms with different utility func-

tion specifications. Estimation results do not contradict earlier research

in terms of the estimated magnitude of parameters of interest but un-

ambiguously point on the dominance of the substitution effect in the

consumers’ saving decision. Moreover, we find that the optimal GMM

that uses preselected principal components as instruments (the second

method) performs better than the FIV estimator (the first method).
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1 INTRODUCTION

This paper deals with the instrumental variable estimation of the Eu-

ler equation (as well as the system of Euler equations) from the basic

Consumption-based Capital Asset Pricing Model (C-CAPM) when the

set of possible instruments is very large. The large set of possible instru-

ments arises because of the the rational expectations hypothesis which

implies that the agent when making a decision uses all the information

available. The estimation of the Euler equation is performed in both

nonlinear and linearized forms.

There are at least two reason why one may be interested in estimat-

ing the Euler equation. First of all, the result of the estimation can be

used as an inside in whether the underlying theoretical model is a good

approximation to the real world. It is true that one cannot conclude

easily that the theoretical model is wrong just because it is statistically

rejected, yet it can be thought of as a sign a possible problem. Secondly,

the estimated magnitude of the model’s parameters can provide us with

some understanding of economic processes. For instance, as this will

be discussed later in more details, depending on the magnitude of the

parameter from the CRRA type utility function one can say whether the

wealth or income effect dominates in consumers’ saving decision.

Mathematically, the Euler equation is nothing more than a conditional

expectation (on the information available at time t ) with unknown pa-

rameters and density. The fact that the expectation is conditional gives

rise to a large set of possible instruments. In theory any macroeconomic

series is a potential instrument. On the one hand, the fact that it is so

easy to find instruments is a great news. On the other hand, the problem

now is that there are too many possible instruments. It has been shown

in Bai and Ng (2010) that the optimal GMM estimator has a finite sam-

ple bias proportional to N /T , where N is the number of instruments

and T is the number of observations. Moreover, the consistency of the

optimal GMM requires N /T → 0. This means that the use of too many

instruments can lead to a large bias in a finite sample. Thus, on the

one side there is large set of possible instruments to estimate the Euler

equation, on the other side, one cannot use them all because that would

lead to aforementioned problem. Hence, there is a need for an efficient

method of instrument dimension reduction. This paper compares the

results of two such methods.
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The first method is due to Bai and Ng (2010). In this approach a cer-

tain structure is assumed for the endogenous variable and instruments:

it is assumed that the endogenous variables as well as a large set of

instrumental variables share common factors. It is shown that under

some additional assumptions (discussed in more details in the first sec-

tion of the paper) the ideal instruments are the common factors but

they are unobserved. It is proposed, instead, to use estimated common

factors in the optimal GMM, which gives rise to the Factor Instrumen-

tal Variable Estimator (FIV). It is shown that the FIV has very favorable

properties such as normality and efficiency (Theorem 1 and Proposition

1 in Bai and Ng (2010)).

The second method is due to Bai and Ng (2008). In this method no

strict assumption is made upon the structure of the data generating pro-

cesses. The method is implemented in three stages: first, the princi-

pal components are constructed from the large set of instruments, then

these are pre-ordered based on the (squared) correlation with the en-

dogenous variable, finally, using an information criterion it is decided

how many of them are to be used in the estimation (a technical expla-

nation of the method comes in later sections). This method, however,

is originally designed for linear models only. I extend it to non-linear

models.

Specifically, the first step in Bai and Ng’s (2008) method stays the same,

that is, using a large set of possible instruments I construct as many

principal components as I have instruments (given that the number of

instruments is strictly smaller than the number of observations). How-

ever, the second step, involving the ranking of principal components

as instruments is modified. I propose to do the ranking based on the

R2 obtained from the regression of the partial derivative of the function

used in the GMM estimation with respect to the parameter of interest on

each orthogonal series one at a time. The problem with this step, how-

ever, is that the partial derivative is itself a function of the parameters of

interest which values are unknown. To deal with this problem I use dif-

ferent "reasonable" parameter values to evaluate the partial derivative

and to see whether the result is robust to different parameter values. In

this particular application the ranking of the orthogonal series is com-

pletely insensitive to different parameter values (in reasonable range).

The selection of instruments based on the correlation between the

partial derivatives and instruments is motivated by the fact that the higher

2



correlation will decrease an asymptotic value of the variance of the opti-

mal GMM estimator. Finally, the third step of the method, the selection

of the number of the principal components to be used as instruments

by information criterion, stays the same.

In general, the Euler equation from the basic C-CAPM has been es-

timated with the US data numerous times both in nonlinear and lin-

earized forms. It is important to note that linearization of the Euler

equation requires an additional assumption about the joint distribution

of the consumption growth rate and the rate of asset return. Moreover,

in the process of linearization one of the parameters of the model is lost

(the discount factor). Unfortunately, this is the price that has to be paid

to be able to work in a linear framework which is much better under-

stood.

One of the earliest papers that deals with the estimation of the Eu-

ler equation from the basic C-CAPM is Hansen and Singleton (1983).

They estimate the linearized Euler equation by the MLE using the post

war data on the US economy. The estimated values of the coefficient

of relative risk aversion for different risky assets were in the range be-

tween zero and two. Another example of the estimation of linearized

Euler equation is Hall (1988). Hall uses instrumental variable estimation

procedure and his instruments are twice lagged consumption growth

rate and twice lagged asset return (for risky asset it is return on S&P

500 and for risk free asset it is return on T-Bills). To estimate the elas-

ticity of intertemporal substitution (EIS) (the inverse of coefficient of

relative risk aversion) the US economy data from as early as 1919 is

used. The results are such that the EIS is in the range between 0.06 and

0.35. Campbell (2003) uses international data to estimate the linear Eu-

ler equation by instrumental variable estimator with lagged variables

(used in estimation) as instruments. He reports 95% confidence inter-

val for the coefficient of relative risk aversion as [−0.73,2.14]. Finally,

Yogo (2004) uses both the US and international data in instrumental

variable estimation of the linearized Euler equation. For example, us-

ing the data from 1970:3 to 1998:4 for the US economy Yogo (2004) re-

ports the 2SLS estimate of the coefficient of relative risk aversion around

0.53 (0.5).Yogo (2004) uses the following variables as instruments: twice

lagged nominal interest rate, inflation, consumption growth, and the

log dividend price ratio. The estimate of the coefficient of relative risk

aversion he obtains is around 0.53 using the 2SLS.
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The first nonlinear estimation of the Euler equation from the basic

C-CAPM was done by Hansen and Singleton (1982). Using the US data

from 1959:2 to 1978:12 they estimate the Euler equation by the GMM for

a risky asset (the return on which is computed as the equally-weighted

average return on all stocks listed on the NYSE) using lagged growth rate

of consumption and lagged return on the risky asset as instruments. For

example, using 4 lags as instruments they report the estimate of the dis-

count factor around 0.993 (0.031) and the estimate of the coefficient of

relative risk aversion around 0.78 (0.253). Using different number of lags

they get similar results in terms of the magnitude of estimated parame-

ters, though quite often the J-test rejects the model. When trying to esti-

mate the system of equations for different risky assets the J-test rejects

H0 of correctly specified model. Finally, Hansen and Singleton (1982)

estimate the system of two Euler equations, one for risky asset and the

other for risk-free one. In this case they report the parameter estimate

of the coefficient of relative risk aversion to be around 0.14 (0.04). Such

a low value of the estimate demonstrates the equity premium puzzle.

More on the equity premium puzzle is in the last section.

It is important to note that despite the fact that the rational expec-

tations hypothesis suggests a large set of possible instruments (poten-

tially all the macroeconomic series) the set of instruments in the afore-

mentioned studies was restricted to either the set of lagged variables

that appear in the estimated equation or the set of lagged variables that

"intuitively must be important" instruments. Such an approach to pre-

selecting of the instruments is highly undesirable because it can lead

easily to the loss of important information for the identification of the

parameters of interest. Observing this problem Bai and Ng (2008), using

a large set of possible instruments, apply their method to replicate the

result of Yogo (2004). Using the set of selected instruments they obtain

the estimate of the coefficient of relative risk aversion of 0.769 (0.346).

In my paper, using a large set of 131 macroeconomic time series for

the US economy, I begin by applying the FIV estimator, as the first method

of efficient instrument dimension reduction, to estimating the linearized

version of the Euler equation and then apply the second method of in-

strument dimension reduction, that is, replicate the result of Bai and Ng

(2008), Section 5 Table 7a, result labeled by F IVi c . Then I go further and

apply both methods to the nonlinear estimation of the Euler equation

with two different utility specifications (the standard CRRA and a CRRA

4



with an external habit formation). Finally, I apply the second method of

instrument dimension reduction to the system of the two Euler equa-

tions (one for a risky asset and the other is for a risk-free asset) to ex-

amine the equity premium puzzle, again using the two utility specifica-

tions.

In general I find that the second method of instrument dimension re-

duction performs better than the FIV estimator in terms of the size of

the standard errors in this particular application. Precisely, the set of

the instruments picked by the second method is either a super-set of

the instruments used in the FIV (the case of a standard CRRA) or is a

completely different set (the case of an external habit). One of the pos-

sible explanations is that the strict assumption upon the structure of the

data generating processes made in FIV estimation is not met. Also it is

argued that the estimation of the Euler equation is usually associated

with the problem of weak identification (e.g., Yogo (2004) and Campbell

(2003)). I do not detect any signs of weak identification while using the

second method of instrument dimension reduction, that is, the differ-

ent methods of the optimal GMM implementation produce very similar

results.

In terms of parameter estimates when estimating the linear Euler equa-

tion for the risky asset by the FIV estimator the parameter estimate, the

coefficient of relative risk aversion, is estimated to be 0.85 (0.74), and

using the second method it is 0.82 (0.47). The non-linear estimation of

the Euler equation with the standard CRRA utility function produces the

following estimates of the coefficient of relative risk aversion 0.89 (0.74)

and 0.82 (0.47) by the FIV and the second method, respectively. The

same non-linear estimation but with external habit in the CRRA pro-

duces the following estimates of the coefficient of relative risk aversion

0.16 (1.3) and 0.74 (0.56) by the FIV and the second method, respectively.

Finally, the result of the two-equation non-linear estimation using only

the second method (the optimal GMM with selected principal compo-

nents as instruments) is such that the estimates of the coefficient of rel-

ative risk aversion are 0.04 (0.02) and 0.38 (0.09) for the standard CRRA

and the CRRA with an external habit cases, respectively.

The magnitude of the coefficient of the relative risk aversion has some

interesting implications to certain economic processes. First of all, larger

values of the coefficient would signal higher aversion towards risk. Sec-

ondly, in the basic C-CAMP with the CRRA utility function the inverse

5



of this coefficient is the intertemporal elasticity of substitution. If this

elasticity is large than unity then the wealth effect is relatively weak in

the saving decision and the substitution effect is relatively strong; if it

is smaller than unity then this is the other way around; finally, if this

elasticity is exactly one then the both effects cancel each other. As one

can see from the above literature review different researches find dif-

ferent result regarding the dominance of the income and substitution

effects. The results of my estimation unambiguously demonstrate that

the wealth effect is relatively weak in the consumers’ saving decision

and the substitution effect is relatively strong. More on these effects is

in the next section.

The rest of the paper is structured in the following way. The Section

2 presents the basic C-CAPM and the derivation of the Euler equation,

this section also discusses the GMM framework, the Large Dimensional

Factor Analysis and the two methods of instrument dimension reduc-

tion such as the FIV and the optimal GMM that uses principal compo-

nents as instruments. The Section 3 describes the dataset and the data

preparation process. The Sections 4, 5, and 6, present the econometric

models, instrument selection process, and the estimation results for the

linear, non-linear single equation, and non-linear two-equation cases,

respectively. Finally, the Section 7 concludes.
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2 THEORETICAL FRAMEWORK

In this section I present the theoretical macroeconomic model which

lies underneath the econometric model I estimate later. I also present

the main econometric techniques employed in this project. I introduce

the GMM estimator and summarize its main properties, briefly explain

the problem of weak identification, introduce the large dimensional static

factor analysis, and finally discuss the FIV estimator.

2.1 MACROECONOMIC MODEL

Consider the basic consumption-based capital asset pricing model, for

short the C-CAPM, due to Lucas (1978). The representative agent solves

the following problem:

maxc1,c2,...E1

[ ∞∑
t=1

βt−1u(ct , X t )

]
(1)

s.t.

ct +
N∑

j=1
p j t q j t ≤

N∑
j=1

(p j t +d j t )q j t−1 +wt (2)

where ct is a level of consumption at time t , X t is a variable that an agent

has no direct control over (fore example, this could be an external habit),

p j t is a price of j -th asset at t , d j t is a dividend payment on j -th asset

at time t , q j t is a quantity of asset j held at the end of t , and finally wt

is a real wage at t .

Using the dynamic programming technique one can derive the Euler

Equation, which must be satisfied in equilibrium for all assets and is

given by

p j t = Et

[
β(

u′(ct+1)

u′(ct )
)(p j t+1 +d j t+1)

]
, ∀ j (3)

where Et is a conditional expectation on the information set It consist-

ing of all information available up to time t . Rearranging some term in

(3) leads to the following expression

Et

[
β

u′(ct+1)

u′(ct )
(1+ r j t+1)−1

]
= 0∀ j (4)

where 1+r j t+1 ≡ p j t+1+d j t+1

p j t
is a gross return on the asset j . The equation

(4) can be used in the nonlinear GMM estimation of the parameters β

and σ. In one of the later sections I explain how one can get an econo-

7



metric model from (4) and perform the estimation.

I use two different utility specifications. The first one is the standard

constant relative risk aversion (CRRA) utility function of the form

u(ct ) = c1−σ
t −1

1−σ .

The coefficient σ has two interpretations. First of all, this is a so-called

Arrow-Pratt measure of relative risk-aversion (RRA) or the coefficient of

relative risk aversion which is defined as

R(ct ) = u′′(ct )ct

u′(ct )
.

For the CRRA utility function R(ct ) = σ (hence the name of the utility

function). This coefficient measures the agent’s attitude towards risk:

the large the coefficient of relative risk aversion is the more risk averse

the agent is. On the other hand, for the CRRA, the inverse of the coeffi-

cient of relative risk aversion is the coefficient of intertemporal elastic-

ity of substitution (IES), a measure of responsiveness of the growth rate

of consumption to the real interest rate which, in general, is defined as
∂log(ct+1/ct )

∂rt+1
. When σ = 1 the CRRA takes the form of logarithmic utility

log(ct ). It is also important to note that whenσ= 1 the income and sub-

stitution effects exactly offset each other, whereas when σ > 1 the sub-

stitution effect is relatively weak whereas the income effect is relatively

strong, when σ< 1 it is the other way around. In short, the substitution

effect here is the resulted decrease in saving rate due to a decrease in

the interest rate on the other hand the income effect will drive the sav-

ing rate up. This also implies that a very low sigma would imply a faster

convergence of the economy to the steady state (if one think of σ as the

inverse of the IES).

Number of researchers has recognized that that the current consump-

tion expenditure may be affected by its past values. Some of them, such

as, Dunn and Singleton (1986) and Eichenbaum, Hansen, and Single-

ton (1988). Sundaresan (1989) and Constantinides( 1990) have incorpo-

rated a habit formation into preferences such that a habit depends on

an agent’s own past consumption level (internal habit formation). Oth-

ers, such as Abel (1990) and Campbell and Cochrane (1999) introduced

habit in such a way that it is affected by other agentsâĂŹ decisions in

the economy (e.g., by aggregate consumption), rather than by an agent’s

8



own decisions (external habit formation).

The second utility specification is the CRRA with an external habit for-

mation. The utility is given by

u(ct , X t ) = (ct /X t )1−σ−1

1−σ
where X t = ct−1 is an external habit formation. The idea behind the

external habit formation is that the agent’s current consumption is af-

fected by his own consumption from the previous period (hence the

name "habit") and it is not under the control of the agent (hence "ex-

ternal"). An external habit as opposed to an internal one, is understood

in the sense of "keeping up with the Johnsons". The X t is thought of be-

ing a past-period aggregate consumption ct−1 (this is why it is not under

the control of the agent): if it raises then the agent is hurt, hence there is

a motivation to increase agent’s own consumption, to "keep up with the

Johnsons". This particular specification of the CRRA with the external

habit is taken from Jagannathan et al. (2002). Once again σ is equal to

the coefficient of relative risk aversion.

Under the standard CRRA utility function the Euler equation (4) takes

the following form

Et

[
β(

ct

ct+1
)σ(1+ r j t+1)−1

]
= 0 , ∀ j

and under the CRRA with the external habit the Euler equation (4) looks

like

Et

[
β(

ct

ct−1
)σ−1(

ct+1

ct
)−σ(1+ r j t+1)−1

]
= 0 , ∀ j

Under the assumption that the asset return r j t+1 and consumption

ct+1 are conditionally on information at time t jointly log-normally dis-

tributed, and with the standard CRRA utility, the equation (4) can be

linearized as follows (the details of the linearizion will be explained in

next section)

Et
[
ri ,t+1

]=µi ,t +σEt [∆ct+1] (5)

which then can be considered as the following regression equation

ri ,t+1 =µi +σ∆ct+1 +ηi ,t+1 (6)

where ri ,t+1 := ln(1+ ri t+1) and ∆ct+1 := ln(ct+1/ct ) and µi ,t , ηi ,t+1, and

µi are defined in the Section 4, in which more details on the lineariza-
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tion are provided.

2.2 ECONOMETRIC TECHNIQUES

2.2.1 GMM AND WEAK IDENTIFICATION PROBLEM

In this section I briefly describe main properties of the GMM estimation

procedure as well as the J-test. I also say a few words about weak iden-

tification since this type of problem is frequently encountered when es-

timating the Euler equation from the C-CAPM.

GMM Here I introduce the GMM estimator developed by Hansen (1982)

and briefly summarize its properties. Suppose we have a population

moment condition given by

g (θ0) = E
[

f (wt , zt ,θ0)
]= 0 (7)

This is the statement involving the data (wt , zt ), where wt is the struc-

tural data and zt is instruments (the reason for this distinction will be-

come clearer later), and the parameters of interest θ. If one could com-

pute this expectation then it would be easy to get θ0 (assuming that

there is a unique solution). Otherwise, one could define the analogous

sample moments as

gT (θ) = 1

T

T∑
t=1

f (wt , zt ,θ) (8)

By setting this expression equal to zero one can derive the estimator of

the parameters of interest θ. To be able to do that one needs as many

equations as one has parameters. If the number of equations is exactly

equal to the number of parameters then the system is said to be exactly

identified and one can use the method of moments (MM) to derive the

estimator of θ. If the number of equations exceeds the number of pa-

rameters then the system is said to be overidentified and one could use

the Generalized Method of Moments (GMM) to derive the estimator for

θ. When the number of equations exceeds the number of parameters

it is impossible to set the system equal to zero exactly. Therefore, one

could try to minimize the weighing sum of squares defined by the fol-

lowing quadratic form

10



JT (θ) = g ′
T (θ)WT gT (θ) (9)

where matrix W is a (symmetric and positive definite) weighting ma-

trix (that attaches weights to the individual moments). Then the GMM

estimator for the parameters of interest θ is defined as:

θ̂GM M ≡ argmin
θ

{g ′
T (θ)WT gT (θ)} (10)

Under certain conditions (such as, process (wt , zt ) being strictly sta-

tionary ergodic, zt are predetermined, etc.) this estimator is consistent

(for any weighting matrix), and asymptotically normally distributed .

The asymptotic variance-covariance matrix is given by

V ≡ (D ′W D)−1D ′WΩW D(D ′W D)−1 (11)

where D ≡ E
[
∂ f (wt ,zt ,θ)

∂θ′
]

and Ω := limT→∞E
[
T gT (θ0)g ′

T (θ0)
]
. More-

over, if the weighting matrix is such that W ∝Ω−1, where Ω is selected

to minimize (11) w.r.t. W then (10) is the most efficient estimator in the

class of all asymptotically normal estimators. In such a situation one

speaks about the optimal GMM estimator with the asymptotic property

that p
T (θ̂GM M −θ0)

d→ n(0,ΩGM M )

whereΩGM M = (D ′Ω−1D)−1.

There are various ways to implement the optimal GMM estimation. It

is important to note, although, there are different ways of implement-

ing the optimal GMM, they are all asymptotically equivalent (in finite

sample, on the other hand, different ways of the implementation may

produce substantially different results). Most common of them are:

• two-stage optima GMM;

• iterative GMM (N times or till convergence);

• Continuously Updating GMM (CUGMM, or CUE).

For example, the two stage optimal GMM is implemented in the follow-

ing way. In the first stage estimate the parameter of interest using an

identity matrix as weighting matrix (or any other PD matrix). Then get a

consistent estimate ofΩ, for example

Ω̂= T −1
T∑

t=1
f (wt , zt , θ̂1) f ′(wt , zt , θ̂1)

11



where θ̂1 is the GMM estimator of θ from the first stage and plim(Ω̂) =Ω.

Then in the second stage estimate θ one more time but using Ω̂−1 as a

weighting matrix to obtain θ̂2, this is the two-stage GMM estimator for θ.

The other way to implement the efficient GMM estimation is to repeat

the same procedure iteratively a certain number of times, say N times

(N-iterative GMM), or till convergence (iterative GMM, IT GMM).

A somewhat different way of implementing the optimal GMM estima-

tion is the CUE. The CUE was developed by Hansen et al., (1996). The

CUE is a generalization of LIML (Limited Information Maximum Likeli-

hood) to the GMM. The CUE, θ̂CU E , for θ is defined as

θ̂CU E ≡ argmin
θ

{g ′
T (θ)Ŵ (θ)gT (θ)} (12)

where Ŵ (θ) = T −1 ∑T
t=1[ f (wt , zt ,θ)− f̄ (wt , zt ,θ)][ f (wt , zt ,θ)− f̄ (wt , zt ,θ)]′

and f̄ (wt , zt ,θ) = T −1 ∑T
t=1 f (wt , zt ,θ) If If f (wt , zt ,θ) is serially corre-

lated, then Ŵ (θ) is replaced by an estimator of the spectral density of

f (wt , zt ,θ) at frequency 0. Under the null of θ = θ0 the corresponding

J-statistic of θ̂CU E is asymptotically χ2
k , where k is a number of restric-

tions, whether the identification is weak or strong (Stock and Wright

2000). Moreover, robust confidence intervals for θ can be constructed

by inverting the objective function, that is, C I (θ)95% = {θ ∈ Θ| Ĵ (θ) <
χ2

k,5%}, where Ĵ (θ) is the objective function of CUE. This is so-called S-

set, that neither has to be convex nor connected. One of the advantages

of the CUE is its relatively better performance in finite samples in com-

parison to the other optimal GMM implementations and its robustness

to weak identification (Hansen et al. (1996) and Stock et al, (2002)). The

CUE can only be implemented numerically.

Once the GMM estimation is completed one may want to perform the

test of overidentifying moment conditions. The idea behind the test is

as follows. If the number of equations (restrictions) is the same as the

number of the parameters then there is no problem in setting the ob-

jective function to zero and getting the estimates. However, with addi-

tional equations (restrictions) one cannot, in general, attain zero. So,

basically what the test checks is whether the value of the minimized ob-

jective function is not "too large" when additional equations are used.

Formally,

• H0 : g (θ0) = 0 (the null hypothesis that the model is "valid")

• H1 : g (θ) 6= 0,∀θ ∈Θ (the alternative hypothesis that model is "in-

12



valid", the data do not come close to meeting the restrictions).

Under the null the J-statistic is asymptotically X 2
k−l (k is a number of

moment conditions and l is a number of parameters estimated) and is

given by

ĴT (θ̂) = T g ′
T (θ̂)ŴT gT (θ̂) (13)

it must be true that plimŴT =Ω−1, whereΩ is the efficient weighting

matrix. Under that alternative hypothesis plim( ĴT (θ̂)) =∞. Finally, the

rejection rule is specified as follows (under α -confidence level):

• H0 is rejected at α confidence level if ĴT (θ̂) > X 2
k−l ,α

• H0 is not rejected at α confidence level if ĴT (θ̂) ≤ X 2
k−l ,α

It is important to stress that the J-test does not test the validity of the

model per se, particularly it does not test the underlying economic the-

ory on correctness. What test does is it considers whether the k − l over

identifying restrictions are valid or not (given the identification of l mo-

ments). Unfortunately, there is no way of knowing which moment con-

ditions the test rejects.

WEAK IDENTIFICATION Weak identification in GMM is basically a prob-

lem similar to the problem of weak instruments in IV. However, the prob-

lem of weak instruments is much better understood than the problem

of weak identification (Yogo, 2004). A proper discussion about the prob-

lem of weak identification is clearly beyond the scope of this subsection,

thus, I will just try to sum up main aspects of it. An interested reader can

find more of weak identification, particularly in the case of nonlinear

models, in Stock et al (2002).

A necessary condition for the identification of the parameters of in-

terest θ is that the population moment condition is not equal to zero at

any other value of θ but θ0, that is, g (θ) 6= 0∀θ 6= θ0. In the linear model,

weak instruments (weak identification) arise in the situation in which

the population moment condition is almost zero for some θ 6= θ0; that

is, when the instruments Zt are almost uncorrelated with the error term

of the model even at untrue value of θ.

To my knowledge there is no a proper test for the weak identification

problem in GMM. However, the main sings of weak identification are as

follows:

• CUE (defined below), two-step, and iterated GMM produce notice-

ably different estimates (Hansen et al., (1996));
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• In the case of two-step and iterated GMM the normalization mat-

ters (Stock et al, (2002));

The problem with weak identification is that it leads to non-normal dis-

tributions, even in large samples, so that conventional IV or GMM infer-

ences are misleading and cannot be used. Fortunately, as it is argued in

Stock et al. (2002), the CUE is fully robust to weak identification.

2.2.2 LARGE DIMENSIONAL FACTOR ANALYSIS

In this subsection I would like to discuss briefly how one can construct

static factors from a large data set. To be more precise, one "constructs"

factors by estimating the latent factors by asymptotic principal compo-

nents.

Let’s first start with defining a static factor model. Let N be the num-

ber of cross-section clusters and T the number of time points in each

cluster. Then the static factor model is defined as

xi t =λ′
i ft +ei t (14)

ei t is usually referred to as an idiosyncratic component, whereas λ′
i ft as

a common component. λ′
i is a factor loading and ft are latent factors.

Even though this factor model is static, ft is allowed to follow a dynamic

process, e.g. L(A) ft = ut . Also, ei t is allowed to be a dynamic process

and be cross-sectionally correlated.

Before explaining how the factors are estimated the following stan-

dard assumption is made:

ASSUMPTION A

1. E‖ ft‖4 ≤ M < ∞, T −1 ∑T
t=1 ft f ′

t
p→ Σ f > 0 is an r × r nonrandom

matrix.

2. λi is either deterministic such hat ‖λi‖ ≤ M <∞, or it is stochastic

such that E‖λi‖4 ≤ M < ∞. In either case, N−1Λ′Λ
p→ ΣΛ > 0, an

r × r nonrandom matrix, as N →∞.

3. • E[ei t ] = 0, E|ei t |8 ≤ M <∞;

• σi , j ,t ,s := E[ei ,t e j ,s], |σi , j ,t ,s | < σ̄i j ∀(t , s) and |σi , j ,t ,s | < τt s ∀(i , j )

such that

N−1 ∑N
i , j=1 σ̄i j ≤ M <∞, T −1 ∑T

s,t=1τt s ≤ M <∞, and

(N T )−1 ∑
i , j ,t ,s=1 |σi , j ,t ,s | ≤ M <∞;
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• For every (t , s) E|N−1/2 ∑N
i=1[ei sei t −E(ei sei t )]|4 ≤ M <∞.

4. {λi }, { ft }, and {ei t } are three mutually independent groups. Depen-

dence in each group is allowed.

Basically, A.1 and A.2 imply the existence of r factors, as the largest r

population eigenvalues of ΣX will increase with N , whereas the remain-

ing eigenvalue are bounded. The assumption that ΣΛ > 0 implies that

the r factors are identifiable (strong instruments). A.3 allows ei t to be

cross-sectionally and serially correlated, but only weakly (approximate

factor model). Finally, A.4 means that Ft can be serially correlated, λi

can be correlated over i , and ei t can be cross-sectionally and serially

correlated. In general, Assumption A, is a typical assumption that is

made in the literature on static factors, for example Bai and Ng (2003,

2010).

The question now is how one estimates the latent factors f . Given

the static framework, the factors can be estimated by the method of

asymptotic principal components (PCA) originally invented by Connor

and Korajzcyk (1986). According to this method, if one denotes f̂ to be

an estimator for f then the T × r (r is a number of factors) matrix f̂ isp
T times the r eigenvectors associated with the r largest eigenvalues of

the T ×T matrix X X ′/(N T ) in decreasing order with the following nor-

malization f̂ ′ f̂ = Ir . The need of normalization is due to the fact that

Λ, the matrix of loading coefficients, and f are not separately identifi-

able. In fact, what is identifiable is the span( f ). For example, for any

invertible matrix H one can write f Λ = f H−1HΛ = f ∗Λ∗. Once f̂ is

obtained it’s easy to get the estimates of the matrix of loading coeffi-

cients, which his given by Λ̂= X ′ f̂ /T . Bai and Ng (2002) as well as Stock

and Watson (2002a) demonstrated that span( f ) can be consistently es-

timated by span( f̂ ) when T, N →∞. Finally, the number of factors can

be estimated based on the information criteria developed by Bai and Ng

(2002).

2.2.3 METHODS OF INSTRUMENT DIMENSION REDUCTION

In this section I briefly summarize the FIV estimator developed in Bai

and Ng (2010). This paper analyzes a situation in which there is large

set of instruments that can be used in instrumental variable estima-

tion. It is shown that the optimal GMM has bias proportional to N /T ,

where N is the number of instruments and T is the length of the series.
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Thus, if N is large then the bias can be quite large in finite samples. This

confirms the findings of Meng et al. (2007). Moreover, unless N /T → 0

the optimal GMM is inconsistent. This motivates the idea of reduction

in the number of instruments by using the common factors of instru-

ments as instruments. It is important to note that there is another paper

by Kapetanios and Marcellino (2010) that also studies the use of factors

as instruments (they call their estimator F-GMM). The two analyses are

different in terms of assumed data generating processes of the variables:

in the framework of F-GMM weak instruments are allowed whereas in

FIV the standard asymptotics is adopted. Because weak instruments is

a complicated topic by itself I restrict myself to the standard case.

Let’s first analyze the main properties of FIV. Consider the following

regression equation

yt = x ′
tβ+εt = x ′

1tβ1 +x ′
2tβ2 +εt for t = 1,2, ...,T,

where xt is K × 1, x1t is K1 × 1, and x2t is K2 × 1. x2t is assumed to be

endogenous, that is E [x2tεt ] 6= 0. Assume further

x2t =Ψ′ ft +ut for t = 1,2, ...,T,

where Ψ′ is K2 × r , ft is r × 1 with E [ ftεt ] = 0 (factors are valid instru-

ments), r > K2 but is a small number, E [εt ut ] 6= 0 (endogeneity prob-

lem). Finally, assume that there is "large" set of instruments zt = [z1t , ..., zN t ]:

zi t =λ′
i ft +ei t for t = 1,2, ...,T and i = 1, ..., N ,

where ft is a vector of common factors, λi is the factor loadings, thus

λ′
i ft is the common component of zi t and ei t is an idiosyncratic com-

ponent. The two components are orthogonal. Neither the common nor

an idiosyncratic components are observed. It is assumed that E [ei t ut ] =
E [ei tεt ] = 0.

zi t is a valid but a "noisy" instrument. Given the assumed DGP, ft are

ideal instruments, but not observed. Hence, IV estimation with ft is in-

feasible. Instead it is proposed to use use the asymptotic principal com-

ponent estimates f̃t . f̃ := [ f̃1, ..., f̃T ]′ is given by a T ×r matrix of r eigen-

values (multiplied by
p

T ) associated with the r largest eigenvalues of

the matrix Z ′Z /(T N ) in decreasing order and Λ̃ := [λ̃1, ..., λ̃N ] = Z f̃ /T .

The next assumption is made to derive asymptotic properties of the
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FIV estimator:

ASSUMPTION B

1. E[εt ] = 0, E|ε|4+δ <∞ for some δ > 0. The vector process g t (β0) :=
F+

t εt satisfies E[g t (β0)] = 0 with E[g t (β)] 6= 0 ∀β 6= β0. Let ḡ 0 :=
T −1 ∑T

t=1 F+
t εt andp

T ḡ 0 = T −1/2 ∑T
t=1 F+

t εt
d→ n(0,S0) for some S0 > 0.

2. x2t =Ψ′Ft ut withΨ′Ψ> 0, E[Ft ut ] = 0, E[utεt ] 6= 0, and E[Ftεt ] = 0.

3. ∀i , t , E[ei t ut ] = 0, and E[ei tεt ] = 0.

Assume for simplicity that K1 = 0. Define g̃ (β) := f̃tεt (β). Consider

estimating β using the r moment restrictions ḡ (β) := T −1 ∑T
t=1 f̃tεt (β).

Let S f̃t x := T −1 ∑T
t=1 f̃t x ′

t and S∗ := T −1 ∑T
t=1 f̃t f̃ ′

t ε
2
t Then, the efficient

feasible FIV is given by

β̂F IV := arg min ḡ ′(β)S∗−1 ¯g (β) = (S′
f̃t x

S∗−1S f̃t x)−1S′
f̃t x

S∗−1S f̃t y .

THEOREM 1 Under Assumptions A and B, as N ,T →∞,

1.
p

T (β̂F IV −β0)
d→ n(0,ΩF IV )

2. ΩF IV := plim(S′
f̃t x

S∗−1S f̃t x) =Ωx f S0−1Ω f x ,

withΩ f x := plim(T −1 ∑T
t=1 ft x ′

t ) and S0 is as defined in Assumption

B.

Additionally, Bai and Ng (2010) show that the optimal GMM that uses

all the instruments is no more efficient than the FIV (even when the op-

timal weighting matrix is known) and requires (i) the bias correction and

(ii) an additional assumption of N /T → 0 (otherwise it is inconsistent).

For a more technical treatment of these results one can consult Bai and

Ng (2010).

Given the strict assumptions made in the FIV one can easily see how

this estimator may fail. For example, suppose that E [ei t ut ] 6= 0. In that

case one can contract an example in which the zt would be better in-

struments than the factors ft , or even an example in which the factors

will become very weak instruments. Unfortunately, there is no way of

testing the validity of the assumption E [ei t ut ] = 0.

Suppose now that the FIV is not applicable for a certain application

but theres is still a need of instrument dimension reduction. What can

be done instead is proposed in Bai and Ng (2008). It is proposed to con-

struct principal components from the large set of possible instruments.
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Assuming that T > N one can construct N principal components, oth-

erwise one can construct T of them. The next step is to select the instru-

ments from the set of principal components. For instance, Bai and Ng

propose different ways of selection: (i) boosting, (ii) ranking the predic-

tive ability of the instruments one at a time, and (iii) information crite-

ria applied to the ordered instruments. Given that all the three selection

procedures have comparable properties I choose to use the latter one.

To apply the information criteria to the ordered set of instruments re-

quires first the ordering of the set of principal components. The princi-

pal components can be ordered either based on t-statistics or R2 from

the regression of endogenous regressor on each principal component

one at a time. After the ordering has been done one can apply an infor-

mation criterion that selects how many instruments from the ordered

set will be used. The discussion about the information criterion will be

found in later section.
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3 DATA

In this section I describe the dataset used in the present analysis, which

is basically a dataset from Ludvigson and Ng (2011). I also explain the

data preparation process which must be done before the factors can be

estimated.

3.1 DATA DESCRIPTION

The dataset used in this paper is a famous macroeconomic panel used

in Stock and Watson (2002b, 2005). The data set consists of 131 macroe-

conomic time series spanning the time period of 1960:01 to 2007:12, to-

tal of 576 observations. It is important to note that the original data set

was only up to 2003:12 and had 132 series but it was later extended by

Ludvigson and Ng (2011) up to 2007:12. One series, ao048, is no longer

available on monthly basis after 2003. The data set comes together with

MatLab code used in data reparation and construction of the static fac-

tors in Ludvigson and Ng (2011).

The data set represents a broad collection of macroeconomic time se-

ries, particularly it consists of real output and income, employment and

hours, real retail, compensation and labor costs, international trade,

consumer spending, housing starts, inventories and inventory sales ra-

tios, orders and unfilled orders, manufacturing and sales data, capac-

ity utilization measures, price indexes, interest rates and interest rate

spreads, foreign exchange measures , and stock market indicators. A

precise description of each series and its codding name can be found in

the appendix of Ludvigson and Ng (2011).

The (monthly) data on a risky asset, rt+1, that is used in estimation is

constructed using S&P 500 index which is the part of the large data set

(codding name "fspcom"). Particularly, this is constructed as a growth

rate of S&P 500 index. The monthly return on a risk-free asset, r f
t+1

is constructed using the return on 3-month T-Bills. The series on per-

capita consumption growth, is constructed using the data on nondurable

consumption, which again the part of the large data set (codding name

"ips18"), The monthly data on the US population (POPTHM), which is

used to construct the per capita consumption, has been downloaded

form the website of Federal Reserve Bank of St. Louis.
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3.2 DATA PREPARATION

To construct the static factors using asymptotic principal components

from the large data set the series must firstly be stationarized, demeaned

and standardized. How the data is transformed to make sure it is sta-

tionary depends on a particular series, the important part is that it is sta-

tionary. As it is explained in Ludvigson and Ng (2011), most of the series

are expressed in the growth rates (e.g. GDP, exchange rates, stock mar-

ket indexes, etc), some series, such as nominal interest rates (or any that

are understood to have a unit root), are first-differenced, whereas oth-

ers, such as prices, are second-log-differenced. However, the detailed

information regarding the stationarization of each series can be found

in the appendix of Ludvigson and Ng (2011).

In short, all the series after being transformed must be I (0): all real

series are in growth rates and as far as nominal series are concerned

one can use either "light" transformation, which means that prices are

in growth rates and interest rates are in levels or one can use "heavy"

transformation, which means that the growth rate of prices as well as

interest rate are in first differences.
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4 ESTIMATION: LINEAR CASE

In this section I present the linear econometric model to be estimated,

explain the problems related to the estimation of the model and moti-

vate the choice of estimation methods. I further explain the process of

instruments selection. Finally, I present the results of the estimation of

the econometric model using the two methods of instrument dimen-

sion reduction and compare these results. Note that the linear estima-

tion is done only for the standard CRRA case because the linearization

of the Euler equation requires certain distributional assumptions.

4.1 ECONOMETRIC MODEL

Recall that the Euler equation from C-CAPM (4), with the standard CRRA

utility function, under the assumption that the asset return r j t+1 and

consumption Ct+1 are conditionally on information at time t jointly log-

normally distributed, the equation (4) can be linearized as follows

Et [ri ,t+1] =µi ,t +σEt [∆ct+1] (15)

following Yogo (2004) and letting

µi ,t :=µ f −0.5Vart (ri ,t+1−E[ri ,t+1])+σCovt (ri ,t+1−E[ri ,t+1],∆ct+1−E[∆ct+1])

(16)

and for risk-free asset

µ f ,t :=− log(β)−0.5σ2Vart (∆ct+1 −Et [∆ct+1]) (17)

whereµ f is defined as in (17) but the variance is not conditional on time

t.

Given (16) one can rewrite (15) as a regression equation

ri ,t+1 =µi +σ∆ct+1 +ηi ,t+1 (18)

where

ηi ,t+1 := ri ,t+1 −Et [ri ,t+1]−σ(∆ct+1 −Et [∆ct+1])− (µi ,t −µi ) (19)

where µi is defined the same way as (16) but the variance is not condi-

tional on time t , thus (µi ,t −µi ) can be thought of being innovations to
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the conditional variance of consumption.

One can already see several problems with the regression equation

(18). First of all, there is endogeneity problem. Clearly, from (19)

Covt (∆ct+1,ηi ,t+1) 6= 0.

Moreover, since asset returns and consumption return are condition-

ally heteroscedastic so is ηi ,t+1. In general, the endogenaity problem

requires an instrumental variable estimation and the conditionally het-

eroscedasticity of the error term, specifically, requires the GMM estima-

tion due to efficiency reasons.

4.2 INSTRUMENTS

Acknowledging the endogeneity problem in (18) one should decide about

the instruments which are to be used in the estimation. Recall that a

valid instrument is such a variable that is correlated with the endoge-

nous regressor and the same time is uncorrelated with the error term.

Consider the linearized version of (4) written in the form of the econo-

metric model (18). As it is discussed in Yogo (2004), under the assump-

tion of conditional heteroscedasticity, the parameter of interestσ is iden-

tified by the moment restriction E[Ztηi t+1] = 0 only if E[Zt (µi ,t −µi )] = 0.

So, it could happen that, for example, some instrument zi t is correlated

with the innovation to the conditional variance of consumption. This in

turn suggest that for any zt−1 it holds that E[zt−1(µi ,t −µi )] = 0. Hence,

I use twice lagged instruments. For more details one can consult Yogo

(2004).

Clearly, the rational expectations hypothesis suggest that all the infor-

mation that is available for an economic agent at the time he is making

a decision should be used in estimating (18). However, this implies the

use of very large set of instruments, possibly all the macroeconomic se-

ries, and as it known from the work of Marimune, (1983) and Bekker,

(1994), the IV estimators perform rather badly when the number of in-

struments tends to infinity. Moreover, as this is known from the work

of Bai and Ng (2010) the efficient GMM estimator has a finite sample

bias proportional to N /T , where N is the number of instrument and T

is the number of observations, and requires N /T → 0 for consistency.

On the other hand, restricting the number of instruments to some sub-

set of them, even to those that are intuitively seemed to be very "im-
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portant", can be very misleading and can lead the loss of information.

Therefore,there is a need of an efficient instrument dimension reduc-

tion method. The first such a method is the FIV estimator explained in

the Section 2. So, it is proposed to use static factors contracted from the

large data set of macroeconomic variables as instruments in the GMM

estimation of (18). Construction of the factors is an efficient data re-

duction technique that enables one to overcome the problem of having

too many instruments; the constructed factors are then to be used as

instruments in the GMM estimation.

Given the data set of 131 series macroeconomic series covering the

time period 1964:01-2007:12 and using the asymptotic principal com-

ponent technique I construct 8 static factors. The number of static fac-

tors is the same as in Ludvigson and Ng (2011) since I am using the same

data set as they do. This number in turn was selected by the informa-

tion criteria developed in Bai and Ng (2002). I do not use all 8 factors as

instruments in estimation of (18) because some of them have very low

correlation with the regressor. To decide which out of the 8 factors are

to be used in the estimation I look at at the R2 from regressing ∆ct+1

on f̂t−1 one at a time.The justification for the selection of instruments

based on R2 is that the factors are orthogonal by construction. In the

Figure 1 I present the squared coefficient of correlation between the fac-

tors and the regressor (from now on to simplify notation I use fi t for f̂i t ).

First of all, one can see immediately that the the correlation is rather

low which is not a surprise since it is hard to predict the growth of con-

sumption in general. Secondly, some factors are virtually uncorrelated

with the regressor. Specifically, factors 3, 4, 6 and 7 have the squared

coefficient of correlation equal to 0.000. On the other hand, factors 1, 2,

5, and 8 have nonzero squared correlation of similar magnitude larger

than 0.011. Thus, it would be natural to use only the latter four factors

as instruments in estimation of (18).

The other method of instrument dimension reduction is presented in

Bai and Ng (2008). In that paper it is argued that the common factors of

the large set of instrumental variables for a certain endogenous regres-

sor do not have to be the best instruments for that regressor. Actually

this would depend on the underlying DGP for endogenous variable and

its instruments. It can well happen that some of the series have bet-

ter instrument quality than the common factors. This means that ide-

ally one should try all the possible combinations of instruments, which

23



Figure 1: R2 from regressing ∆ct+1 on fi ,t−1 ∈ Ft−1.

means that one should try 2|Zt | possibilities, which sometimes is sim-

ply not feasible. For instance, given 131 instruments this means one

should try 2.7222589e39 combinations. What can be done in that case

is, Bai and Ng (2008) argue, one can construct as many principal compo-

nents as one has series (assuming T > N , otherwise one can construct

as many principal components as one has observations), denote this

collection of the principal components by F̃ and then search for the in-

struments in this set of orthogonalized series. After the principal com-

ponents have been constructed one orders them based on the R2 from

the regression of the endogenous regressor on a principal component

one at a time. Let F̃ord denote the ordered set of principal components.

Next it is to be decide how many of these principal components are to

be used as instruments. For that one can use some information criteria,

such as BIC, to select the optimal number of instruments. Let Q be the

first n elements of F̃ord that will be used as instruments in the estima-

tion. Then the following procedure selects the number n

Q := arg min
n

{log(σ̂2
n)+n log(T )/T } (20)

where σ̂2
n := T −1 ∑t

t=1 ê2
t ,n and ê2

t ,n denote the squared residual from re-

gressing the endogenous variable of the first n ordered principal com-

ponents.

Following this approach I construct 131 principal components from

131 series. I give a plot of R2’s from the regression of ∆ct+1 on fi ,t−1 for
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Figure 2: R2 from regressing ∆ct+1 on f̃i ,t−1 ∈ F̃t−1 for i = 1, ...,131.

i = 1, ...,131 in the Figure 2 (the ones in red are the R2 from regressing

fi ∈ F for i = 1, ...,8). Then I order the principal components based on

the R2 and perform the minimization of (20) to select the principal com-

ponents that are to be used as instruments. The value of the criterion,

as a function of n, is depicted in the Figure 3. Clearly, the number of in-

struments selected is either first 9 or 10 principal components from F̃ord.

The difference between the value of the minimized criterion at n = 9 and

n = 10 is virtually zero so I select the more parsimonious option, that is

the first 9 principal components are to be used as instruments. The first

9 elements from F̃ord are actually 2nd, 8th, 102nd, 24th, 20th, 85th, 38th,

1st and 5th elements of F̃ . This means that if one denotes the set of in-

struments in which the latter are selected from the common factors Ft

by Zt and the set of instruments in which the instruments are selected

from the set of all principal components F̃t by Qt , then it holds, in this

particular case, that Zt ⊂Qt .

A common critic of the use of factors is that it is hard to interpret them.

One of the ways to give an interpretation to a factor or a principal com-

ponent is to consider the regression in which each individual series from

which a factor was constructed is regressed on the factor and then the

R2’s from this regressions is used to give interpretation (this method of

interpreting factors is used in Bai and Ng (2008) and Ludvigson and Ng

(2011)). The interpretation of the common factors is taken from Lud-

vigson and Ng (2011). Particularly, the common factors that are used

as instruments Zt = { f1,t , f2,t , f5,t , f8,t } represent real activity factor, in-
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Figure 3: The value of the minimized criterion in (20) as a function of n.

terest rate spreads, interest rates, and stock market, respectively. The

interpretation of the instruments selected from the set of 131 princi-

pal components Qt = { f1,t , f2,t , f5,t , f8,t , f20,t , f24,t , f38,t , f85,t , f102,t } as fol-

lows: the first four are the same, then starting from the fifth one "money

stock: currency held by the public" (72nd series), "commercial and in-

dustrial loans outstanding" (77th series), "employees on nonfarm pay-

rolls - mining" (35th series), "CPI-U: all items less medical care" (123rd

series), and finally "civilian labor force: total employed" (23rd series).

To finish this subsection I would like to illustrate using a simple exam-

ple why it is wise to select instruments based on their correlation with

the endogenous variable. To illustrate how exactly a high correlation

between an instrument and the endogenous variable will lead to a more

efficient estimation let’s consider a simple example. Suppose, we have a

simple regression

yt =α+βxt +εt , for t = 1, ...,T

where xt is an endogenous regressor. Suppose also, that we have two

mutually orthogonal instruments zt = (z1t , z2t )′ and εt is conditionally

heteroskedastic. Recall, that for the linear model the asymptotic vari-

ance covariance matrix of the optima GMM is given by

var(θ̂GM M ) =:Ω := (
E[x̃t z ′

t ]E[ε2
t zt z ′

t ]−1E[zt x̃ ′
t ]

)−1
,
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where

θ̂GM M := (α̂GM M , β̂GM M )′.

Let’s also assume for the simplicity of algebraic expressions that var(xt ) =
var(zi t ) = var(ε) = 1 and E[zi t ] = 0 for i = 1,2. Then the off-diagonal

elements of Ω are all zero and var(α̂GM M ) = 1 and var(β̂GM M ) = 1
r 2

1+r 2
2

,

where r 2
i is a squared correlation between the endogenous regressor xt

and an instrument zi t for i = 1,2. From this simple example one can see

that the larger the correlation between the endogenous regressor and

the instrument is the smaller the asymptotic variance of the estimator

is and vice versa.

4.3 ESTIMATION RESULTS

In this subsection I present the result of the estimation of (18) using the

two sets of instruments. The one set of instruments Zt ⊂ Ft has been se-

lected from the common factors of the large data set of macroeconomic

series. The other set of instruments Qt ⊂ F̃t has been selected from all

principal components of the same large data set. As it was argued in the

previous subsection it happens to be for this particular situation that

Zt ⊂Qt . Additionally, in all estimations the vector of ones is included in

the set of instruments.

I use CUE as a method of implementing the optimal GMM estimation,

because it is fully robust to weak identification problem and MC studies

show that its J-statistic is more reliable in finite samples as it is shown

in Hansen et. al. (1996). Additionally, because I deal with time series I

use the HAC estimator of the weighting matrix developed by Newey and

West (1987).

The result of the estimation of (18) using Zt is presented in the Table

1. The estimate of the parameter of interest σ is not significant at even

the15% level but its magnitude is reasonable. Some studies on micro

level, using panel data, suggest that the median of the CRRA is around

1.7, for example see Chiappori and Paiella (2011), the others such as

Hartley et al. (2005) obtain an estimate of the CRRA around 1.The J-

statistic is small with associated p-value of roughly 0.15 implying that

the H0 of correctly specified model cannot be rejected at the 15% confi-

dence level. This is not a very tremendous result. The 90% confidence

interval for σ is given by [−0.381,2.085]. Which is again a more or less

satisfactory, although the fact that it includes negative values is disturb-
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Table 1: The result of the GMM estimation of (18) using Zt as instruments.

ing. Let’s now turn to the estimation result when Qt is used as instru-

ments.

The result of the estimation of (18) using Qt is presented in the Table

2. This is clearly an example of a successful estimation. The estimate

of σ has somewhat small standard errors, that results in a tighter con-

fidence interval, and has a reasonable magnitude. The 90% confidence

interval for σ is given by [0.032,1.609]. Moreover, the J-statistic is low

with the associated p-value of roughly 0.64 implying that the H0 of cor-

rectly specified model cannot be rejected at any reasonable significance

level. In fact, the result in the Table 2 is a replication of Bai and Ng’s

(2008) result presented in their Table 7a and labeled under F IVi c

It is important to note that with this careful selection of instruments

the resulted estimation is quite robust to the implementation method

of the optimal GMM. The results presented in Table 2 and 3 are very

similar when instead of CUE-GMM the iterative or 2 stage GMM is used.

This seems to suggest that the problem of weak identification may not

be present, in contrast to what is argued in Yogo (2004). In general, no

obvious signs of weak identification have been detected.

Comparing the results of the two estimations using different sets of

instruments there is little doubt that the estimation in which the set of

instruments is selected from the principal components over-performs

the one that uses factors as instruments in terms of the estimation pre-

Table 2: The result of the GMM estimation of (18) using Qt as instruments.
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cision (smaller standard errors, narrower the confidence intervals). This

result supports the reasoning of Bai and Ng (2008) that the common fac-

tors of a large set of instruments (for some endogenous variable) need

not be the best instruments (for this variable). It can well happen that

a combination of some instruments will do a better job than a subset of

common factors. To somehow justify this point consider the following

two DGP.

DGP 1: THE ENDOGENOUS VARIABLES AND THE INSTRUMENTS HAVE THE

SAME COMMON FACTORS.

yt =α+β′xt +et ,∀t = 1, ...T (21)

xt =ΛFt +νt ,∀t = 1, ...T (22)

zt =ΨFt +εt ,∀t = 1, ...T (23)

also assume that Et [etνt ] 6= 0 (endogeniety problem), Et [etεt ] = 0 (zt a

valid instrument). This is the DGP assumed in Bai and Ng (2010). In

this case it is always the case, at least asymptotically, that the factors are

better instruments (even estimated factors, as it is proved in Bain and

Ng (2010)). On the other hand, if Et [etεt ] 6= 0 then it is no longer obvious

whether the factors are better instruments than a combination of some

zi t , even asymptotically. For example, one can construct an example

in which with Et [νtεt ] 6= 0 zt would be better instruments (keeping N

fixed).

DGP 2: HIERARCHICAL STRUCTURE.

yt =α+β′xt +et ,∀t = 1, ...T (24)

xt = B zt +ψt ,∀t = 1, ...T (25)

zt =ΦFt +ξt ,∀t = 1, ...T (26)

assuming that Et [ψtξt ] = Et [etξt ] = 0.Clearly, in this case zt are better

instruments than Ft (assuming that the number of instruments, what-

ever large, stays constant). Therefore, which instruments are better,

at least asymptotically, depends crucially on the assumed DGP of ex-

plained, endogenous explanatory and instrumental variables.
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5 ESTIMATION: NONLINEAR CASE - SINGLE

EQUATION

In this section I perform the estimation of the Euler Equation (4) for the

risky asset in its nonlinear form. I use two different specifications for

the utility function one is the standard CRRA, u(ct ) = c1−σ
t −1
1−σ , the other

is the CRRA with external habit u(ct , X t ) = (ct /X t )1−σ−1
1−σ , where X t = ct−1

stands for external habit. These two different utility function specifica-

tions lead to two different Euler equations. I am not aware of any other

work that deals with the nonlinear Euler equation estimation using a

large set of possible instruments. The novelty of what I am doing is in

attempt to resolve the problem of having too many instruments in the

non-linear Euler equation estimation. This estimation is a lot trickier

because of two reasons: to my knowledge there is no proper methodol-

ogy of ranking and selecting instruments from a large set of instruments

in nonlinear GMM estimation and secondly, the FIV methodology has

been developed for linear models only. To overcome the second prob-

lem I extend Bai and Ng’s (2008) method of instrument selection to non-

linear case. I also apply the FIV to the non-linear set up, thought, it must

be mentioned that the use of the FIV estimator in the non-linear set up

is rather experimental.

5.1 ECONOMETRIC MODEL

Recall that the Euler Equation for an asset i , with the standard CRRA

utility function specification, is given by

E[β(
ct

ct+1
)σ(1+ ri t+1)|It ] = 1 (27)

and with external habit formation it is given by

E[β(
ct

ct−1
)σ−1(

ct+1

ct
)−σ(1+ ri t+1)|It ] = 1 (28)

Define

ht (β,σ) := h(ct ,ct+1,rt+1,β,σ) :=β(
ct

ct+1
)σ(1+ rt+1)−1
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and

qt (β,σ) := q(ct−1,ct ,ct+1,rt+1,β,σ) :=β(
ct

ct−1
)σ−1(

ct+1

ct
)−σ(1+ ri t+1)−1.

Given some vector of instrumental variables zt ∈ It one can write (27)

and (28) as E[ht (β,σ)zt |It ] = 0 and E[qt (β,σ)zt |It ] = 0; applying the law

of iterated expectations one gets the following unconditional popula-

tion moment restriction

g (β0,σ0) := E[ht (β0,σ0)zt ] = 0 (29)

q(β0,σ0) := E[qt (β0,σ0)zt ] = 0 (30)

Let ghT (β,σ) and gqT (β,σ) denote the sample equivalence of (29) and

(30), respectively, that is

ghT (β,σ) := T −1
T∑

t=1
ht (β,σ)zt

gqT (β,σ) := T −1
T∑

t=1
qt (β,σ)zt .

Given ghT ((β,σ)) and gqT ((β,σ)) one can now perform the optimal GMM

estimation the way it was presented earlier, that is by minimizing the

following objective function for the standard case

JhT (θ) = g ′
hT (θ)WT (θ)ghT (θ)

and for external habit formation

JqT (θ) = g ′
qT (θ)WT (θ)gqT (θ)

where θ := (β,σ)′, and WT (θ) is an estimator of the optimal weighting

matrix using HAC because I am operating in time series environment.

The implementation method of the optimal GMM which I use is CUE

due to its good performance in finite sample mentioned earlier.

5.2 INSTRUMENTS

In this subsection I discussed the process of selection instruments for

estimating (27) and (28). Again as before let’s denote the set of instru-

ments selected from the common factors by Z h
t ⊂ Ft for the standard
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case and Z q
t ⊂ Ft for the case with an external habit, further, let de-

note the set of instruments selected from the principal components by

Qh
t ⊂ F̃t for the standard case and Qq

t ⊂ F̃t for the case with an external

habit.

One cannot directly implement the Bai and Ng’s (2008) method of

instrument dimension reduction because the latter one has been de-

signed for the linear set up only. To overcome this problem I extend the

method to non-linear models.

Specifically, the first step in Bai and Ng’s (2008) method stays the same,

that is,using a large set of possible instruments I construct as many prin-

cipal components as I have instruments (given that the number of in-

struments is strictly smaller than the number of observations). How-

ever, the second step, involving the ranking of principal components as

instruments is modified. The ranking now is based on the R2 obtained

from the regression of the partial derivative of ht (β,σ) w.r.t. σ on each

orthogonal series one at a time for the standard case and the regression

of the partial derivative of qt (β,σ) w.r.t. σ on each orthogonal series

one at a time. The problem with this step, however, is that the partial is

a function of the parameters of interest which values are unknown. To

deal with this problem I set β= 0.995 this is the value one obtains nearly

always when estimating (29) or (30), also this is about the value that one

would expect to be true. At the same time I try different value of σ. The

result reported below is the result obtained with σ= 0.8. It is important

to note though, that the following analysis is absolutely robust to differ-

ent value of σ: I tried different values of σ on the interval of [0,100] and

there was virtually no difference (the reason why the value of σ had no

effect on the instrument ranking and selection will become clear later).

The motivation of looking at the correlation between the gradient and

instruments, as the criterion for instrument ranking, in nonlinear setup

is basically the same as the motivation of looking at the correlation be-

tween an instrument and the endogenous variable in the linear set up.

Specifically, recall that the asymptotic variance of the optimal GMM is

given byΩGM M = (D ′Ω−1D)−1 where D ≡ E[∂[ht (θ0)zt ]
∂θ′ ]. Therefore, by se-

lecting the instruments that are highly correlated with the gradient one

can reduce the asymptotic variance. However, I only look at the deriva-

tive with respect to parameter σ because there is little problem with es-

timating the discount factor β.

Finally, the third step of the method, the selection of the number of
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Figure 4: R2 from regressing d h
t+1(β̃, σ̃) on fi ,t−1 ∈ Ft−1

the principal components to be used as instruments by information cri-

terion, stays the same. Below I present in details the implementation of

the modified version of the method.

The partial derivative of ht (β0,σ0) w.r.t. σ is given by

d h
t+1(β,σ) := ∂ht

∂σ
(β,σ) = [

ht (β,σ)+1
]

ln(ct /ct+1),

and the partial derivative of qt (β0,σ0) w.r.t. σ is given by

d q
t+1(β,σ) := ∂qt

∂σ
(β,σ) = [

qt (β,σ)+1
]

(ln(ct /ct−1)− ln(ct+1/ct )).

The Figure 4 and 5 present the R2 from the regression of d h
t+1(β,σ) and

d q
t+1(β,σ) on each component of Ft−1, respectively. That is, the Figure 4

presents R2’s from the following regressions

d h
t+1(β̃, σ̃) =αh

0 +αh
1 fi ,t−1 +νh

t+1 , fi ,t−1 ∈ Ft−1∀i = 1, ...8

and the Figure 5 presents the R2’s from the regressions

d q
t+1(β̃, σ̃) =αq

0 +αq
1 fi ,t−1 +νq

t+1 , fi ,t−1 ∈ Ft−1∀i = 1, ...8.

Where (β̃, σ̃) = (0.8,0.995) and as it was already discussed different val-

ues for the parameters were tried as well but they did not change any

result.

One can see that the only candidates for instruments, in the standard
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case, are the factors 1,2, 5, and 8, and for the case with an external habit

are the factors 1, 2, 3, 5, 6, 8. Thus, Z h
t := { f1,t , f2,t , f5,t , f8,t } and Z q

t :=
{ f1,t , f2,t , f3,t , f5,t , f6,t , f8,t }. One can notice that the Zt from the previous

section concise with Z h
t .

In the Figure 6 and 7 I present the R2 from the regression of d h
t+1(β̃, σ̃)

and d q
t+1(β̃, σ̃) on each component of F̃t−1, respectively. That is, the Fig-

ure 6 presents the R2’s from the following regressions

d h
t+1(β,σ) = α̃h

0 + α̃h
1 f̃i ,t−1 + ν̃h

t+1 , f̃i ,t−1 ∈ F̃t−1∀i = 1, ...131

and the Figure 7 presents the R2’s from the regressions

d q
t+1(β,σ) = α̃q

0 + α̃q
1 f̃i ,t−1 + ν̃q

t+1 , f̃i ,t−1 ∈ F̃t−1∀i = 1, ...131.

In green color are the principal components that were selected as in-

struments. The selection procedure I use here is the same as the one in

explained in the linear case, however, this time instead of an endoge-

nous variable I used the partial derivative d h
t+1(β,σ) and d q

t+1(β,σ) min-

imizing (20).

One can easily see that the Figure 6 is nearly identical to the Figure 2.

Moreover, the set of instruments selected from the set of ranked (based

on the R2) principal components F̃t by minimization of (20) in the stan-

dard case is again the same as in the linear case, that is, Qh
t = Qt . On

the other hand, minimizing the criterion in (20) for the case with an ex-

Figure 5: R2 from regressing d q
t+1(β̃, σ̃) on fi ,t−1 ∈ Ft−1
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Figure 6: R2 from regressing d h
t+1(β̃, σ̃) on f̃i ,t−1 ∈ F̃t−1

ternal habit selects only three instruments, those are the principal com-

ponents 44, 85, and 102. Thus, Qq
t = { f44,t , f85,t , f102,t } The Figure 8 and

9 show the minimized value of the criterion in (20) as a function of the

first n principal components from F̃t ,or d for the standard case and the

case with an external habit, receptively.

To give some interpretation of the instruments Qq
t I use the same method

as in the previous section, that is, I regress each series on each instru-

ment and then I look at the R2 from these regressions. As a result I find

that f44,t has the highest correlation with 125th series (price deflater),

Figure 7: R2 from regressing d q
t+1(β̃, σ̃) on f̃i ,t−1 ∈ F̃t−1
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Figure 8: The value of the minimized criterion in (20), the standard case, as a func-
tion of n.

f85,t has the highest correlation with 123rd series (CPI less medical ex-

penditures), and finally f102,t has already been given the interpretation,

this one is mostly correlated with the civilian labor force.

The actual reason why Z h
t and Qh

t are equal to their counterparts in

linear case is because d h
t+1(β,σ) ≈ −∆ct+1 := −ln(ct+1/ct ). To see this,

consider the definition of d h
t+1(β,σ). It is defined as ht (β,σ)ln(ct /ct+1).

But one can see, that because β is close to 1, [ct /ct+1]σ (monthly data) is

close to one, and finally the gross return on the risky asset is close to one

Figure 9: The value of the minimized criterion in (20), in the case of an external
habit, as a function of n.
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(monthly data) ht (β,σ) itself close to one. Hence, dt+1(β,σ) ≈ −∆ct+1

and the resulted instruments are identical. Finally, since the instru-

ments are the same their interpretation stays the same as well. On the

other hand, in the case with an external habit the partial d q
t+1(β,σ) ≈

(∆ct −∆ct+1). So, there is no surprise why Qq
t 6=Qh

t .

5.3 ESTIMATION RESULTS

The result of the estimation of (27) and (28) using Z h
t and Z q

t , respec-

tively, are presented in the Table 3 and 4. The magnitude of the esti-

mated σ, using the standard utility specification, is in the reasonable

range, however the standard error associated with a parameter estimate

σ is quite large which will result in a wide confidence interval; β is esti-

mated well with an expected magnitude and a very small standard error.

The 90% confidence interval for σ is [−0.334,2.120]. The J-statistic is

small with associated p-value of nearly 0.15 implying that the H0 of cor-

rectly specified model cannot be rejected at around the 15% confidence

level.

The magnitude of the estimated σ, in the case of an external habit

formation, is somewhat low, moreover, the standard error associated

with a parameter estimate σ is very large which results in an extremely

wide confidence interval; β is estimated well with an expected magni-

tude and a very small standard error. The 90% confidence interval for

σ is [−1.939,2.257]. The J-statistic is small with associated p-value of

nearly 0.24 implying that the H0 of correctly specified model cannot be

rejected at around the 20% confidence level. In general the result of this

estimation is rather poor. Let’s now turn to the estimation result when

Qh
t and Qq

t are used as instruments.

The result of the estimation of (27) and (28) using Qh
t and Qq

t , respec-

tively, are presented in the Table 5 and 6. The results of these estima-

Table 3: The result of the GMM estimation of (27) using Z h
t as instruments.
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Table 4: The result of the GMM estimation of (28) using Z q
t as instruments.

tions are rather successful. The magnitude of the estimatedσ, using the

standard utility specification, is in the reasonable range, also the stan-

dard error associated with a parameter estimate σ is rather small. Once

again β is estimated well with a desirable magnitude. The 90% confi-

dence interval forσ is [0.031,1.606]. Moreover, the J-statistic is low with

the associated p-value of 0.64 implying that the H0 of correctly specified

model cannot be rejected at any reasonable significance level.

The magnitude of the estimated σ, in the case of an external habit

formation, is similar to most of the previous results, unfortunately, the

standard error associated with a parameter estimateσ is a little bit large;

β is estimated well with an expected magnitude and a very small stan-

dard error. The 90% confidence interval for σ is [−0.185,1.669]. The J-

statistic is small with associated p-value of more than 0.8 implying that

the H0 of correctly specified model cannot be rejected at any reasonable

confidence level. In general the result of this estimation is quite good.

Let’s now sum up the results of this subsection. First of all, it is im-

portant to note that, except the estimation results of (28) using Z q
t , the

results are quantitatively similar in terms of parameter estimates as well

as confidence intervals for the coefficient of relative risk aversion. So,

not only the results of estimating (27) are similar to the results obtained

estimating the linearized version of the same equation but also these re-

Table 5: The result of the GMM estimation of (27) using Qh
t as instruments.
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Table 6: The result of the GMM estimation of (28) using Qq
t as instruments.

sults are similar to the ones obtained using different utility specification

(external habit formation). One of the reason the coefficient of relative

risk aversion in (28) is estimated poorly using Z q
t is that the correlations

between the partial derivative d q
t+1 and the factors are very low. That

is, factors, in this situation, are very weak instruments. For example, if

instead of the CUE I use, say, the two step efficient GMM, as a way of im-

plementing the optimal GMM, then the parameter estimate of σ in (28)

using Z q
t is 1.435 (compare to 0.16 with the CUE ). This seem to indicate

that the use of Z q
t in estimating (28) leads to a severe weak identifica-

tion problem. Hence, the result of this particular estimation ought to be

disregarded.
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6 ESTIMATION: NONLINEAR CASE - TWO

EQUATIONS

In this section I turn to the multiple equation GMM estimation. Re-

call that the Euler equation must hold for all assets i . As it was shown

first by Mehra and Prescott (1985) in their seminal work, trying to rec-

oncile an observed equity premium (the difference between returns on

risky asset and risk-free asset) in the U.S. economy using the framework

of the C-CAPM one needs either an unrealistically large or very small

(virtually zero) value of the coefficient of relative risk aversion (the eq-

uity premium puzzle). On the one hand, too large coefficient of relative

risk aversion would contradict the findings on micro level, on the other

hand, the coefficient of relative risk aversion which is very close to zero

implies risk neutrality. If the latter was true then it would be puzzling

why the risky asset pays so much more than the risk-free one. Using the

GMM I estimate the system of two Euler equations: one is for risky asset

(return on S&P500) and the other is for risk free asset (3-month Treasury

bill), Once again I use two specifications for the utility function: (i) the

standard CRRA, (ii) a CRRA with an external habit.

6.1 ECONOMETRIC MODEL

Let’s first specify the econometric model for the case with standard util-

ity specification. Let

ht (β,σ) := [β(
ct

ct+1
)σ(1+ rt+1)−1,β(

ct

ct+1
)σ(1+ r f

t+1)−1]′ (31)

where rt+1 and r f
t+1 stand for the rate or return on risky and risk-free

assets, respectively. Then thy system to be estimated is given by

E[ht (β0,σ0)|It ] = 0 (32)

Using the same arguments as in the previous section and given a vec-

tor of instruments zt ∈ It one can write

E[ht (β0,σ0)⊗ zt |It ] = 0

and applying the law of iterated expectations one obtains the uncondi-
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tional expectation

g (β0.σ0) := E[ht (β0,σ0)⊗ zt ] = 0 (33)

Let gT (β,σ) denote the sample equivalence of (33), that is

gT (β,σ) := T −1
T∑

t=1
ht (β,σ)⊗ zt

Given gT (β,σ) one can now perform the optimal GMM estimation the

way it was presented earlier, that is by minimizing the following objec-

tive function

JT (θ) = g ′
T (θ)WT (θ)gT (θ) (34)

where θ := (β,σ), and WT (θ) is an estimator of the optimal weighting

matrix using HAC because I am operating in time series environment.

For the case with an external habit (31) takes a different form

kt (β,σ) := [β(
ct

ct−1
)σ−1(

ct+1

ct
)−σ(1+rt+1)−1,β(

ct

ct−1
)σ−1(

ct+1

ct
)−σ(1+r f

t+1)−1]′

(35)

then the system of equations is

E[kt (β0,σ0)|It ] = 0 (36)

Given a vector of instrument zt ∈ It and applying the law of iterated

expectations one obtains

w(β0.σ0) := E[kt (β0,σ0)⊗ zt ] = 0 (37)

defining the sample counterpart of (37) as

wT (β,σ) := T −1
T∑

t=1
ht (β,σ)⊗ zt

one can proceed with the GMM estimation of θ = (β,σ)′ by minimizing

the following quadratic form

GT (θ) = w ′
T (θ)WT (θ)wT (θ) (38)

where WT (θ) is an estimator of the optimal weighting matrix using

HAC because I am operating in time series environment. The imple-
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mentation method of the optimal GMM which I use for both cases is the

CUE due to its good performance in finite sample mentioned earlier.

6.2 INSTRUMENTS

Given a rather poor performance of the FIV estimator in both (linear and

nonlinear) cases when estimating a single equation I decide to use only

instruments selected from the set of the principal components. The set

of instruments used in two-equation estimation is identical to the set of

instruments used in a single-equation estimation. The reason is simple,

recall that the partial derivatives d h
t+1(β,σ) and d q

t+1(β,σ) were propor-

tional to ln(ct /ct+1) and (ln(ct /ct−1)− ln(ct+1/ct )), respectively. This re-

sult is partially due to the fact that (1+ rt+1) is very close to 1. However,

this is also true for the return on a risk-free asset (1+ r f
t+1). This moti-

vates the fact that the set of instruments selected from the set of prin-

cipal components in the case of a single-equation estimation stays the

same for the case of two-equation estimation. So, lets Q1
t denote the set

of instruments used to estimate (32) and Q2
t the set of instruments used

to estimate (36) then Q1
t = { f1,t , f2,t , f5,t , f8,t , f20,t , f24,t , f38,t , f85,t , f102,t }

and Q2
t = { f44,t , f85,t , f102,t }.

6.3 ESTIMATION RESULTS

Let’s firstly consider the result of the two-equation estimation with a

standard CRRA utility specification (32). The system is estimated using

the set of instruments Q1
t with a constant added. The Table 7 presents

the result of the estimation. One can immediately see that there are sev-

eral problems with this result. First of all, the estimate of the coefficient

or relative risk aversion is unrealistically low, nearly zero (this is what

Mehra and Prescott (1985) argued about). In the Figure 12 I present the

90% confidence ellipse for the coefficients of interest. Also, based on

the J-test the model is barely correctly specified at 5% confidence level.

It is important to note that in the estimation process the initial value of

σ was set to 2. If instead one sets this initial value to be 100, then the

resulted estimate of σ will be way large than 100 (I do not report this

results). To sum up, the estimation of (32) using Q1
t produces unreal-

istically low estimate of the coefficient of relative risk aversion and, in

general, there is concern about correct specification of the model.
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Table 7: The result of the GMM estimation of (32) using Q1
t as instruments.

The result of the estimation of (36) using Q2
t is presented in the Ta-

ble 8. One can see that the change in the utility specification leads to a

big improvement in terms of the estimation result. First of all, the J-test

does not reject the null of correctly specified model at any confidence

level. Secondly, the parameter estimate of σ is of possible magnitude

Table 8: The result of the GMM estimation of (36) using Q2
t as instruments.

Figure 10: The 90% confidence ellipse for (β,σ); standard case.
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Figure 11: The 90% confidence ellipse for (β,σ); external habit formation case.

even though is somewhat low. I provide the 90% confidence ellipse for

the coefficients in the Figure 11. It is important to note that this result is

independent of the initial value specified forσ in the estimation. To sum

up, the result of the estimation of (36) using Q2
t produces good result in

terms of the J-test and the magnitude of the estimates. In general,the

estimation of the system of two Euler equations, one for risky asset and

the other one for risk-free asset, obtained from the C-CAPM with exter-

nal habit formation would seem to suggest that there is no presence of

the risk-premium puzzle.

Also, one can notice a huge drop in the size of the standard error in

the two-equation estimation compare to the result of one equation esti-

mation. This drop can be explained by a small variation in the risk-free

interest rate (relative to risky asset return). Moreover, the drop in the

estimate of the coefficient of relative risk aversion is also due to the fact

that when estimating the Euler equation for a risk-free asset alone the

resulted parameter estimate is small. Thus, in some sense, the estimate

of the coefficient of relative risk aversion in the system of two equations

is a weighted average of the estimates of the same coefficient produced

in single-equation estimations.
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7 CONCLUSION

In conclusion I would like to sum up the main results of the present

paper. First of all, I find that in all estimations performed the second

method of the instrument dimension reduction, that is the method in-

volving the selection of the subset of the set of the pre-ordered principal

components, performs better than the FIV estimator. The possible ex-

planation is that the restrictive assumption upon the structure of the

data generating processes made in FIV is not met in this particular ap-

plication.

In general, the estimates of the coefficient of relative risk aversion us-

ing the linearized version of the Euler equation are in the range of 0.7-

0.9. This does not contradict the findings of the earlier research, how-

ever it unambiguously point on the dominance of the substitution ef-

fect in consumers’ saving decision. On the other hand, when using the

second method of instrument dimension reduction the p-value of the

J-statistic was much higher, the confidence intervals much tighter, and

moreover, no signs of weak identification problem were detected.

The nonlinear estimation of the Euler equation using the two differ-

ent utility function specifications also produced interesting results. For

example, with the standard CRRA utility function the estimated coeffi-

cient of relative risk aversion had very similar magnitude as in the linear

estimation. However, even when the CRRA with external habit was used

the resulted point estimate of the coefficient of relative risk aversion and

its confidence interval were very similar.

In the estimation of the system of the two Euler equations, when the

utility function was specified as the standard CRRA, the model was ba-

sically rejected by J-test. The point estimate of the coefficient of relative

risk aversion signaled the equity premium puzzle problem. On the other

hand, using the CRRA with external habit and instruments selected by

the second method produced somewhat satisfactory results: a possible

magnitude of the coefficient of relative risk aversion and no model re-

jection by the J-test.

Given that the second method of the instrument dimension reduction

has performed so well one may ask why not to go for the second method

directly avoiding the use of the first one. My position here is as follows.

If the assumptions of the FIV estimator are met then the optimal GMM

estimator that uses all instruments or only subset of them is no more
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efficient than the former estimator. Thus, in some special cases the first

method is better than the second one. However, the problem is that it

may be hard to see whether you are in that special case. For instance,

in the application considered here it is rather clear that the FIV estima-

tor assumptions are not met, but in others this may not be so obvious.

In that sense it would be great to have some testing methodology that

would allow to test the assumptions of the FIV estimator. Secondly, if

one wants to give some interpretation to instruments then it is much

easier to do with factors than with principal components.

Finally, in the future research it would be interesting to extend the the-

ory of the FIV estimator to non-linear models. It could also be interest-

ing to develop a testing procedure to test the validity of the assumptions

made in the FIV.
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