Full name Familienname, Vorname
STURM, Kevin
 
Main Affiliation Organisations­zuordnung
 

Results 1-14 of 14 (Search time: 0.001 seconds).

PreviewAuthor(s)TitleTypeIssue Date
1Sturm, Kevin ; Baumann, Phillip ; Mazari, Idriss ; Blauth, Sebastian ; Gangl, Peter A second order level-set algorithm and the topological state derivatvePresentation Vortrag26-Sep-2023
2Neunteufel, Michael ; Schöberl, Joachim ; Sturm, Kevin Numerical shape optimization of the Canham-Helfrich-Evans bending energyArticle Artikel 1-Sep-2023
3Baumann, Phillip ; Mazari, Idriss ; Sturm, Kevin Topology optimisation with general dilatations via the topological state derivativePresentation Vortrag24-Aug-2023
4Gangl, P. ; Sturm, K. Automated computation of topological derivatives with application to nonlinear elasticity and reaction–diffusion problemsArticle Artikel 1-Aug-2022
5Gangl, Peter ; Sturm, Kevin Topological derivative for PDEs on surfacesArtikel Article 2021
6Sturm, Kevin Lagrangian techniques in topology optimisation with the topological derivativeThesis Hochschulschrift2021
7Baumann, Phillip ; Sturm, Kevin Adjoint-based methods to compute higher-order topological derivatives with an application to elasticityArtikel Article 2021
8Edalatzadeh, M. Sajjad ; Kalise, Dante ; Morris, Kirsten A. ; Sturm, Kevin Optimal Actuator Design for the Euler-Bernoulli Vibration Model Based on LQR Performance and Shape CalculusArtikel Article 2021
9Albuquerque, Yuri Flores ; Laurain, Antoine ; Sturm, Kevin A shape optimization approach for electrical impedance tomography with pointwise measurementsArtikel Article 2020
10Gangl, Peter ; Sturm, Kevin A simplified derivation technique of topological derivatives for quasi-linear transmission problemsArtikel Article 2020
11Sturm, Kevin Topological sensitivities via a Lagrangian approach for semilinear problemsArtikel Article 2020
12Gangl, Peter ; Sturm, Kevin ; Neunteufel, Michael ; Schöberl, Joachim Fully and semi-automated shape differentiation in NGSolveArtikel Article 2020
13Gangl, Peter ; Sturm, Kevin Asymptotic analysis and topological derivative for 3D quasi-linear magnetostaticsArtikel Article 2020
14Sturm, Kevin First-order differentiability properties of a class of equality constrained optimal value functions with applications to shape optimizationArtikel Article 2020

Results 1-2 of 2 (Search time: 0.001 seconds).

PreviewAuthor(s)TitleTypeIssue Date
1Vlasak Albert - 2021 - Shape optimization for non-linear parabolic problems on...pdf.jpgVlasak, Albert Shape optimization for non-linear parabolic problems on surfacesThesis Hochschulschrift 2021
2Woerle Philipp - 2021 - Shape optimization for a variational inequality...pdf.jpgWörle, Philipp Shape optimization for a variational inequality: comparison of a regularized and a unregularized approachThesis Hochschulschrift 2021