Wissenschaftliche Artikel

Arnold, A., Klein, C., Körner, J., & Melenk, J. M. (2025). Optimally truncated WKB approximation for the 1D stationary Schrödinger equation in the highly oscillatory regime. Journal of Computational and Applied Mathematics, Article 116240. https://doi.org/10.1016/j.cam.2024.116240 ( reposiTUm)
Arnold, A., & Toshpulatov, G. (2024). Exponential stability and hypoelliptic regularization for the kinetic Fokker-Planck equation with confining potential. Journal of Statistical Physics, 191, Article 51. https://doi.org/10.1007/s10955-024-03263-2 ( reposiTUm)
Achleitner, F., Arnold, A., Mehrmann, V., & Nigsch, E. (2024). Hypocoercivity in Hilbert spaces. Journal of Functional Analysis, 228(2), Article 110691. https://doi.org/10.1016/j.jfa.2024.110691 ( reposiTUm)
Arnold, A., Geevers, S., Perugia, I., & Ponomarev, D. (2024). On the limiting amplitude principle for the wave equation with variable coefficients. Communications in Partial Differential Equations. https://doi.org/10.1080/03605302.2024.2341070 ( reposiTUm)
Achleitner, F., Arnold, A., & Mehrmann, V. (2023). Hypocoercivity and hypocontractivity concepts for linear dynamical systems. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 39, 33–61. https://doi.org/10.13001/ela.2023.7531 ( reposiTUm)
Achleitner, F., Arnold, A., & Mehrmann, V. (2023). Hypocoercivity in Algebraically Constrained Partial Differential Equations with Application to Oseen Equations. Journal of Dynamics and Differential Equations. https://doi.org/10.1007/s10884-023-10327-6 ( reposiTUm)
Achleitner, F., Arnold, A., & Mehrmann, V. (2023). Hypocoercivity and controllability in linear semi-dissipative Hamiltonian ordinary differential equations and differential-algebraic equations. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 103(7), Article e202100171. https://doi.org/10.1002/zamm.202100171 ( reposiTUm)
Achleitner, F., Arnold, A., & Carlen, E. (2023). The hypocoercivity index for the short time behavior of linear time-invariant ODE systems. Journal of Differential Equations, 371, 83–115. https://doi.org/10.1016/j.jde.2023.06.027 ( reposiTUm)
Arnold, A., Klein, C., & Ujvari, B. (2022). WKB-method for the 1D Schrödinger equation in the semi-classical limit: enhanced phase treatment. BIT Numerical Mathematics, 62(1), 1–22. https://doi.org/10.1007/s10543-021-00868-x ( reposiTUm)
Arnold, A., & Signorello, B. (2022). Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium. Kinetic and Related Models, 15(5), 753–773. https://doi.org/10.3934/krm.2022009 ( reposiTUm)
Arnold, A., Schmeiser, C., & Signorello, B. (2022). Propagator norm and sharp decay estimates for Fokker-Planck equations with linear drift. Communications in Mathematical Sciences, 20(4), 1047–1080. https://doi.org/10.4310/cms.2022.v20.n4.a5 ( reposiTUm)
Körner, J., Arnold, A., & Döpfner, K. (2022). WKB-based scheme with adaptive step size control for the Schr ̈odinger equation in the highly oscillatory regime. Journal of Computational and Applied Mathematics, 404(113905), 113905. https://doi.org/10.1016/j.cam.2021.113905 ( reposiTUm)
Hammer René, Pötz, W., & Arnold, A. (2022). Corrigendum to “Single-cone real-space finite difference scheme for the time-dependent Dirac equation” [J. Comput. Phys. 265 (2014) 50–70]. Journal of Computational Physics, 457, Article 111118. https://doi.org/10.1016/j.jcp.2022.111118 ( reposiTUm)
Arnold, A., Geevers, S., Perugia, I., & Ponomarev, D. (2022). On the exponential time-decay for the one-dimensional wave equation with variable coefficients. Communications on Pure and Applied Analysis, 21(10), 3389–3405. https://doi.org/10.3934/cpaa.2022105 ( reposiTUm)
Arnold, A., Geevers, S., Perugia, I., & Ponomarev, D. (2022). An adaptive finite element method for high-frequency scattering problems with smoothly varying coefficients. Computers and Mathematics with Applications, 109, 1–14. https://doi.org/10.1016/j.camwa.2022.01.010 ( reposiTUm)
Amodio, P., Arnold, A., Levitina, T., Settanni, G., & Weinmüller, E. B. (2021). On the Abramov approach for the approximation of whispering gallery modes in prolate spheroids. Applied Mathematics and Computation, 409(125599), 125599. https://doi.org/10.1016/j.amc.2020.125599 ( reposiTUm)
Arnold, A., Einav, A., Signorello, B., & Wöhrer, T. (2021). Large-time convergence of the non-homogeneous Goldstein-Taylor equation. Journal of Statistical Physics, 182, Article 41. https://doi.org/10.1007/s10955-021-02702-8 ( reposiTUm)
Arnold, A., Jin, S., & Wöhrer, T. (2020). Sharp decay estimates in local sensitivity analysis for evolution equations with uncertainties: From ODEs to linear kinetic equations. Journal of Differential Equations, 268(3), 1156–1204. https://doi.org/10.1016/j.jde.2019.08.047 ( reposiTUm)
Arnold, A., & Döpfner, K. (2020). Stationary Schrödinger equation in the semi-classical limit: WKB-based scheme coupled to a turning point. Calcolo, 57(3). https://doi.org/10.1007/s10092-019-0349-9 ( reposiTUm)
Döpfner, K., & Arnold, A. (2019). On the stationary Schrödinger equation in the semi-classical limit: Asymptotic blow-up at a turning point. Proceedings in Applied Mathematics and Mechanics, 19(1). https://doi.org/10.1002/pamm.201900004 ( reposiTUm)
Arnold, A., Einav, A., & Wöhrer, T. (2018). On the rates of decay to equilibrium in degenerate and defective Fokker-Planck equations. Journal of Differential Equations, 264(11), 6843–6872. https://doi.org/10.1016/j.jde.2018.01.052 ( reposiTUm)
Arnold, A., & Negulescu, C. (2018). Stationary Schrödinger equation in the semi-classical limit: numerical coupling of oscillatory and evanescent regions. Numerische Mathematik. https://doi.org/10.1007/s00211-017-0913-7 ( reposiTUm)
Achleitner, F., Arnold, A., & A. Carlen, E. (2018). On multi-dimensional hypocoercive BGK models. Kinetic and Related Models, 11(4), 953–1009. https://doi.org/10.3934/krm.2018038 ( reposiTUm)
Stürzer, D., Arnold, A., & Kugi, A. (2017). Closed-loop stability analysis of a gantry crane with heavy chain. International Journal of Control, 91(8), 1931–1943. https://doi.org/10.1080/00207179.2017.1335439 ( reposiTUm)
Bian, L., Pang, G., Tang, S., & Arnold, A. (2016). ALmost EXact boundary conditions for transient Schrödinger-Poisson system. Journal of Computational Physics, 313, 233–246. https://doi.org/10.1016/j.jcp.2016.02.025 ( reposiTUm)
Miletic, M., Stürzer, D., Arnold, A., & Kugi, A. (2016). Stability of an Euler-Bernouilli beam with a nonlinear dynamic feedback system. IEEE Transactions on Automatic Control, 61(10), 2782–2795. https://doi.org/10.1109/tac.2015.2499604 ( reposiTUm)
Stürzer, D., & Arnold, A. (2016). Erratum on “Spectral analysis and long-time behaviour of a Fokker-Planck equation with a non-local perturbation.” Rendiconti Lincei - Matematica e Applicazioni, 27(1), 147–149. https://doi.org/10.4171/rlm/728 ( reposiTUm)
Miletic, M., Stürzer, D., & Arnold, A. (2015). An Euler-Bernoulli beam with nonlinear damping and a nonlinear spring at the tip. Discrete and Continuous Dynamical Systems - Series B, 20(9), 3029–3055. http://hdl.handle.net/20.500.12708/151600 ( reposiTUm)
Hammer, R., Pötz, W., & Arnold, A. (2014). A dispersion and norm preserving finite difference scheme with transparent boundary conditions for the Dirac equation in (1 + 1)D. Journal of Computational Physics, 256, 728–747. https://doi.org/10.1016/j.jcp.2013.09.022 ( reposiTUm)
Stürzer, D., & Arnold, A. (2014). Spectral analysis and long-time behaviour of a Fokker- Planck equation with a non-local perturbation. Rendiconti Lincei - Matematica e Applicazioni, 25(1), 53–89. https://doi.org/10.4171/rlm/668 ( reposiTUm)
Miletić, M., & Arnold, A. (2014). A Piezoelectric Euler-Bernoulli Beam with Dynamic Boundary Control: Stability and Dissipative FEM. Acta Applicandae Mathematicae, 138(1), 241–277. https://doi.org/10.1007/s10440-014-9965-1 ( reposiTUm)
Hammer, R., Pötz, W., & Arnold, A. (2014). Single-cone real-space finite difference scheme for the time-dependent Dirac equation. Journal of Computational Physics, 265, 50–70. https://doi.org/10.1016/j.jcp.2014.01.028 ( reposiTUm)
Neumann, L., Arnold, A., & Hochhauser, W. (2013). Zur Stabilität von geklebten und geklotzten Glasscheiben: Beurteilung der Dunkerley’schen Geraden zur Beulwertbestimmung. Bauingenieur, 1, 14–21. http://hdl.handle.net/20.500.12708/154742 ( reposiTUm)
Arnold, A., Kim, J., & Yao, X. (2012). Estimates for a class of oscillatory integrals and decay rates for wave-type equations. Journal of Mathematical Analysis and Applications, 394(1), 139–151. https://doi.org/10.1016/j.jmaa.2012.04.070 ( reposiTUm)
Arnold, A., Desvillettes, L., & Prevost, C. (2012). Existence of nontrivial steady states for populations structured with respect to space and a continuous trait. Communications on Pure and Applied Analysis, 11(1), 13. http://hdl.handle.net/20.500.12708/162398 ( reposiTUm)
Arnold, A., Ehrhardt, M., Schulte, M., & Sofronov, I. (2012). Discrete transparent boundary conditions for the Schrödinger equation on circular domains. Communications in Mathematical Sciences, 10(3), 889–916. https://doi.org/10.4310/cms.2012.v10.n3.a9 ( reposiTUm)
Kim, J., Arnold, A., & Yao, X. (2012). Global estimates of fundamental solutions for higher-order Schrödinger equations. MONATSHEFTE FUR MATHEMATIK, 168(2), 253–266. https://doi.org/10.1007/s00605-011-0350-0 ( reposiTUm)
Arnold, A., Gamba, I., Gualdani, M. P., Mischler, S., Mouhot, C., & Sparber, C. (2012). THE WIGNER–FOKKER–PLANCK EQUATION: STATIONARY STATES AND LARGE TIME BEHAVIOR. Mathematical Models and Methods in Applied Sciences, 22(11), Article 1250034. https://doi.org/10.1142/s0218202512500340 ( reposiTUm)
Arnold, A., Drmota, M., Schmock, U., & Viertl, R. (2011). Mathematik in Wien: Technische Universität Wien. Internationale Mathematische Nachrichten, 216, 31–52. http://hdl.handle.net/20.500.12708/161907 ( reposiTUm)
Geier, J., & Arnold, A. (2011). WKB-based schemes for two-band Schrödinger equations in the highly oscillatory regime. Nanosystems: Physics, Chemistry, Mathematics, 2(3), 7–28. http://hdl.handle.net/20.500.12708/162394 ( reposiTUm)
Arnold, A. (2011). Laudatio auf Christof Sparber, Förderungspreisträger der Österreichischen Mathematischen Gesellschaft 2011. Internationale Mathematische Nachrichten, 218, 62–64. http://hdl.handle.net/20.500.12708/163004 ( reposiTUm)
Arnold, A., Abdallah, N. B., & Negulescu, C. (2011). WKB-Based Schemes for the Osciallatory 1D Schrödinger Equation in the Semiclassical Limit. SIAM Journal on Numerical Analysis, 49(4), 1436–1460. https://doi.org/10.1137/100800373 ( reposiTUm)
Arnold, A. (2010). Refined long-time asymptotics for some polymeric fluid flow models. Communications in Mathematical Sciences, 8(3), 763–782. http://hdl.handle.net/20.500.12708/167141 ( reposiTUm)
Arnold, A., & Schulte, M. (2008). Transparent boundary contion for quantum-waveguide simulation. Mathematics and Computers in Simulation, 79, 898–905. http://hdl.handle.net/20.500.12708/170635 ( reposiTUm)
Arnold, A., & Schulte, M. (2008). Transparent boundary conditions for the 2D Schrödinger equation: efficient implementation. PAMM, 7(1), 1023203–1023204. https://doi.org/10.1002/pamm.200700142 ( reposiTUm)
Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., & Schädle, A. (2008). A review of Transparent and Artificial Boundary Conditions Techniques for Linear and Nonlinear Schrödinger Equations. Commun. Comput. Phys., 4(4), 729–796. http://hdl.handle.net/20.500.12708/168667 ( reposiTUm)
Schulte, M., & Arnold, A. (2008). Discrete transparent boundary conditions for the Schrodinger equation -- a compact higher order scheme. Kinetic and Related Models, 1(1), 101–125. http://hdl.handle.net/20.500.12708/168812 ( reposiTUm)
Arnold, A., Carrillo, J. A., & Klapproth, C. (2008). Improved entropy decay estimates for the heat equation. Journal of Mathematical Analysis and Applications, 343(1), 190–206. http://hdl.handle.net/20.500.12708/168815 ( reposiTUm)
Arnold, A., Carlen, E., & Ju, Q. (2008). Large-time behavior of non-symmetric Fokker-Planck type equations. Communications in Stochastic Analysis, 2(1), 153–175. http://hdl.handle.net/20.500.12708/170181 ( reposiTUm)
Arnold, A., Dhamo, E., & Manzini, C. (2007). The Wigner-Poisson -Fokker-Planck system: global-in-time solution and dispersive effects. Annales de l’Institut Henri Poincaré C, 24(4), 645–676. https://doi.org/10.1016/j.anihpc.2006.07.001 ( reposiTUm)
Arnold, A., Dhamo, E., & Manzini, C. (2007). Dispersive effects in quantum kinetic eqations. Indiana University Mathematics Journal, 56, 1299–1332. http://hdl.handle.net/20.500.12708/168697 ( reposiTUm)
Arnold, A., Bartier, J.-P., & Dolbeaut, J. (2007). Interpolation between logarithmic Sobolev and Poincaré inequalities. Communications in Mathematical Sciences, 5(4), 971–979. http://hdl.handle.net/20.500.12708/168799 ( reposiTUm)
Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., & Schädle, A. (2007). A review of artificial boundary conditions for the Schrödinger equation. Proceedings in Applied Mathematics and Mechanics, 7(1), 1023201–1023202. https://doi.org/10.1002/pamm.200700012 ( reposiTUm)
Zisowsky, A., Arnold, A., Ehrhardt, M., & Koprucki, T. (2005). Discrete Transparent Bouundary Conditions for transient kp-Schrödinger Equations with Applications to Quantum-Heteostructures. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 85(11), 793–805. http://hdl.handle.net/20.500.12708/171876 ( reposiTUm)
Arnold, A., & Dolbeaut, J. (2005). Refined Convex Sobolev Inequalities. Journal of Functional Analysis, 225, 337–351. http://hdl.handle.net/20.500.12708/171877 ( reposiTUm)
Arnold, A., Lopez, J. L., Markowich, P., & Soler, J. (2004). An Analysis of Quantum Fokker-Planck Models: A Wigner Function Approach. Rev. Mat. Iberoam., 20(3), 771–814. http://hdl.handle.net/20.500.12708/174549 ( reposiTUm)
Arnold, A., & Sparber, C. (2004). Quantum dynamical semigroups for diffusion models with Hartree interaction. Communications in Mathematical Physics, 251, NO.1, 179–207. http://hdl.handle.net/20.500.12708/174550 ( reposiTUm)
Arnold, A., Carrillo, J. A., & Dhamo, E. (2002). On the periodic Wigner-Poisson-Fokker-Planck system. Journal of Mathematical Analysis and Applications, 275, 263–276. http://hdl.handle.net/20.500.12708/174551 ( reposiTUm)
Arnold, A., Carrillo, J. A., & Tidriri, M. (2002). Large time behavior of discrete kinetic equations with non-symmetric interactions. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, VOL. 12, NO. 11, 1555–1564. http://hdl.handle.net/20.500.12708/174552 ( reposiTUm)
Arnold, A., Markowich, P., Toscani, G., & Unterreiter, A. (2001). Con convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm. PDE, 26/1-2, 43–100. http://hdl.handle.net/20.500.12708/174556 ( reposiTUm)
Arnold, A., Carrillo, J. A., Gamba, I., & Shu, S.-W. (2001). Low and High Field Scaling Limits for the Vlasov- and Wigner-Poisson-Fokker-Planck Systems. Transport Theory and Statistical Physics, 30/2-3, 121–153. http://hdl.handle.net/20.500.12708/174555 ( reposiTUm)
Ehrhardt, M., & Arnold, A. (2001). Discrete Transparent Boundary Conditions for the Schrödinger Equations. Revista Di Matematica Della Universita Di Parma, 6/4, 57–108. http://hdl.handle.net/20.500.12708/174553 ( reposiTUm)
Arnold, A. (2001). Mathematical concepts of open quantum boundary conditions. Transport Theory and Statistical Physics, 30/4-6, 561–584. http://hdl.handle.net/20.500.12708/174554 ( reposiTUm)
Arnold, A., Markowich, P., & Toscani, G. (2000). On large time asymptotics for drift-diffusion-Poisson systems. Transport Theory and Statistical Physics, VOL .29/3-5, 571–581. http://hdl.handle.net/20.500.12708/174558 ( reposiTUm)
Unterreiter, A., Arnold, A., Markowich, P., & Toscani, G. (2000). On generalized Csiszar-Kullback inequalities. MONATSHEFTE FUR MATHEMATIK, VOL. 131, 235–253. http://hdl.handle.net/20.500.12708/174557 ( reposiTUm)
Arnold, A., & Giering, U. (1997). An Analysis of the Marshak Conditions for matching Boltzmann and Euler Equations. Math. Models and Meth. in the Appl. Sc., VOL. 7-4, 557–577. http://hdl.handle.net/20.500.12708/174559 ( reposiTUm)
Arnold, A., Bonilla, L. L., & Markowich, P. (1996). Liapunov functionals and large-time asymptotics of mean-field Fokker-Planck equations. Transport Theory and Statistical Physics, VOL. 25-7, 733–751. http://hdl.handle.net/20.500.12708/174560 ( reposiTUm)
Arnold, A., & Ringhofer, C. (1996). An operator splitting method for the Wigner-Poisson problem. SIAM J. of Num. Anal., VOL. 33-4, 1622–1643. http://hdl.handle.net/20.500.12708/174562 ( reposiTUm)
Arnold, A. (1996). Self-consistent relaxation-time models in quantum mechanics. Comm. PDE, VOL. 21-3 & AMP;4, 473–506. http://hdl.handle.net/20.500.12708/174561 ( reposiTUm)
Arnold, A., & Ringhofer, C. (1995). Operator splitting methods applied to spectral discretizations of quantum transport equations. SIAM J. of Num. Anal., VOL. 32-6, 1876–1894. http://hdl.handle.net/20.500.12708/174563 ( reposiTUm)

Beiträge in Tagungsbänden

Arnold, A. (2024). All relative entropies for general nonlinear Fokker-Planck equations. In Aggregation-Diffusion Equations & Collective Behavior: Analysis, Numerics and Applications. Conference Aggregation-Diffusion Equations & Collective Behavior: Analysis, Numerics and Applications 2024, Marseille, France. ( reposiTUm)
Arnold, A. (2024). Short- and long-time behavior in evolution equations: the role of the hypocoercivity index. In Digital Book of Abstracts: 35th International Workshop on Operator Theory and its Applications (IWOTA24) (pp. 107–107). ( reposiTUm)
Arnold, A., & Körner, J. (2024). High-order WKB-based method for the 1D stationary Schrödinger equation in the semi-classical limit. In AIP Conference Proceedings (pp. 220002-1-220002–220004). AIP Publishing. https://doi.org/10.1063/5.0213306 ( reposiTUm)
Achleitner, F., Arnold, A., & Jüngel, A. (2024). Necessary and Sufficient Conditions for Strong Stability of Explicit Runge–Kutta Methods. In E. A. Carlen, P. Gonçalves, & A. J. Soares (Eds.), From Particle Systems to Partial Differential Equations. PSPDE 2022 (pp. 1–21). Springer. https://doi.org/10.1007/978-3-031-65195-3_1 ( reposiTUm)
Achleitner, F., Arnold, A., Nigsch, E., & Mehrmann, V. (2024). Hypocoercivity in Hilbert spaces. In 94th Annual Meeting of the Association of Applied Mathematics and Mechanics : Book of Abstracts (pp. 248–248). http://hdl.handle.net/20.500.12708/196828 ( reposiTUm)
Arnold, A., Achleitner, F., Carlen, E., Nigsch, E., & Mehrmann, V. (2024). Short- and long-time behavior in evolution equations: the role of the hypocoercivity index. In 14th AIMS Conference: Abstracts (pp. 575–575). http://hdl.handle.net/20.500.12708/210191 ( reposiTUm)
Arnold, A., Carrillo, J. A., & Matthes, D. (2023). All relative entropies for general nonlinear Fokker-Planck equations. In Classical and Quantum Mechanical Models of Many-Particle Systems (pp. 57–60). Mathematisches Forschungsinstitut Oberwolfach. https://doi.org/10.14760/OWR-2023-38 ( reposiTUm)
Nigsch, E., Achleitner, F., Arnold, A., & Mehrmann, V. (2023). Hypocoercivity in Hilbert Spaces. In ÖMG-Tagung 2023 : Book of Abstracts (pp. 75–75). ( reposiTUm)
Achleitner, F., Arnold, A., & Carlen, E. (2016). On linear hypocoercive BGK models. In P. Goncalves & A. J. Soares (Eds.), From Particle Systems to Partial Differential Equations III  Particle Systems and PDEs III, Braga, Portugal, December 2014 (pp. 1–37). Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-32144-8_1 ( reposiTUm)
Arnold, A., & Ehrhardt, M. (2015). A Transparent Boundary Condition for an Elastic Bottom in Underwater Acoustics. In I. Dimov, I. Faragó, & L. Vulkov (Eds.), Finite Difference Methods,Theory and Applications  6th International Conference, FDM 2014, Lozenetz, Bulgaria, June 18-23, 2014, Revised Selected Papers (pp. 15–24). Springer. https://doi.org/10.1007/978-3-319-20239-6_2 ( reposiTUm)
Achleitner, F., Arnold, A., & Stürzer, D. (2015). Large-time behavior in non-symmetric Fokker-Planck equations. In Rivista di Matematica della Università di Parme (pp. 1–68). http://hdl.handle.net/20.500.12708/41419 ( reposiTUm)
Miletic, M., & Arnold, A. (2011). Euler-Bernoulli Beam with Boundary Control: Stability and FEM. In 82nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (p. 681). PAMM. http://hdl.handle.net/20.500.12708/41093 ( reposiTUm)
Arnold, A., & Geier, J. (2010). Asymptotically Correct Finite Difference Schemes for Highly Oscillatory ODEs. In AIP Conference Proceedings. International Conference of Numerical Analysis and Applied Mathematics 2004 (ICNAAM), Rhodos, EU. AIP Conference Proceedings. https://doi.org/10.1063/1.3498358 ( reposiTUm)
Geier, J., & Arnold, A. (2010). Efficient finite difference schemes for highly oscillatory linear ODEs. In Junior Scientist Conference 2010 (pp. 37–38). http://hdl.handle.net/20.500.12708/40976 ( reposiTUm)
Arnold, A., Fagnola, F., & Neumann, L. (2009). Quantum Fokker-Planck models: the Lindblad and Wigner approaches. In J. Garcia, R. Quezada, & S. Sontz (Eds.), Quantum Probability and related Topics - Proceedings of the 28th Conference (pp. 23–48). World Scientific. http://hdl.handle.net/20.500.12708/176165 ( reposiTUm)

Beiträge in Büchern

Arnold, A., Dolbeault, J., Schmeiser, C., & Wöhrer, T. (2021). Sharpening of Decay Rates in Fourier Based Hypocoercivity Methods. In F. Salvarani (Ed.), Recent Advances in Kinetic Equations and Applications (pp. 1–50). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-82946-9_1 ( reposiTUm)
Arnold, A., Ehrhardt, M., & Schulte, M. (2009). Numerical Simulation of Quantum wave guides. In VLSI and Computer Architecture (pp. 115–138). Nova Science Publishers. http://hdl.handle.net/20.500.12708/26145 ( reposiTUm)
Arnold, A. (2008). Mathematical Properties of Quantum Evolution Equations. In G. Allaire, A. Arnold, P. Degond, & T. Y. Hou (Eds.), Quantum Transport (pp. 45–109). Springer. https://doi.org/10.1007/978-3-540-79574-2_2 ( reposiTUm)
Arnold, A., & Jüngel, A. (2006). Multi-scale modeling of quantum semiconductor devices. In Modeling and Simulation of Multiscale Problems (pp. 331–363). Springer. http://hdl.handle.net/20.500.12708/25094 ( reposiTUm)

Bücher

Classical and Quantum Mechanical Models of Many-Particle Systems. (2010). In A. Arnold, E. Carlen, & L. Desvillettes (Eds.), Oberwolfach Reports (p. 3236). EMS. https://doi.org/10.4171/owr/2010/54 ( reposiTUm)
Arnold, A., Cercignani, C., & Desvillettes, L. (Eds.). (2006). Classical and Quantum Mechanical Models of Many-Particle Systems. EMS. http://hdl.handle.net/20.500.12708/23322 ( reposiTUm)
Allaire, G., Arnold, A., Degond, P., & Hou, T. (Eds.). (2006). Quantum Transport - Modelling, Analysis and Asymptotics. Springer. https://doi.org/10.1007/978-3-540-79574-2 ( reposiTUm)
Ben Abdallah, N., Arnold, A., Degond, P., Gamba, I., Glassey, R., & Ringhofer, C. (Eds.). (2003). Dispersive Transport Equations and Multiscale Models. Springer. http://hdl.handle.net/20.500.12708/22154 ( reposiTUm)
Ben Abdallah, N., Arnold, A., Degond, P., Gamba, I., Glassey, R., Levermore, C. D., & Ringhofer, C. (Eds.). (2003). Transport in Transition Regimes. Springer. http://hdl.handle.net/20.500.12708/22153 ( reposiTUm)

Präsentationen

Arnold, A. (2024, September 9). All relative entropies for general nonlinear Fokker-Planck equations [Conference Presentation]. 12th Edition of Particle Systems and PDE’s (PSPDE XII), Triest, Italy. ( reposiTUm)
Toshpulatov, G., & Arnold, A. (2024, April 9). Long Time Behavior of Fokker-Planck Equations [Poster Presentation]. Equations d’agrégation-diffusion et comportement collectif: Analyse, schémas numériques et applications, Marseille, France. https://doi.org/10.34726/6319 ( reposiTUm)
Arnold, A. (2024, May 30). All relative entropies for general nonlinear Fokker-Planck equations [Presentation]. Workshop on Partial Differential Equations in Physics and Materials Science 2024, Heraklion, Greece. ( reposiTUm)
Arnold, A. (2024, December 9). Short- and long-time behavior in evolution equations: the role of the hypocoercivity index [Presentation]. Conference on Numerical and analytical approaches for nonlinear dispersive PDEs (2024), Dijon, France. ( reposiTUm)
Achleitner, F., Arnold, A., Carlen, E., Jüngel, A., & Mehrmann, V. (2024, June 12). The Hypocoercivity Index for the short time behavior of linear time-invariant ODE systems [Conference Presentation]. EQUADIFF Conference 2024, Karlstad, Sweden. http://hdl.handle.net/20.500.12708/198613 ( reposiTUm)
Arnold, A., Achleitner, F., Carlen, E., Nigsch, E., & Mehrmann, V. (2024, November 18). Short- and long-time behavior in evolution equations: the role of the hypocoercivity index [Presentation]. Partial Differential Equations Seminar 2024, Oxford, United Kingdom of Great Britain and Northern Ireland (the). http://hdl.handle.net/20.500.12708/206185 ( reposiTUm)
Arnold, A. (2023, January 17). A hybrid WKB-based method for the stationary Schrödinger equation in the semi-classical limit [Conference Presentation]. Numerical & theoretical advances in quantum mechanics, Toulouse, France. ( reposiTUm)
Achleitner, F., Arnold, A., Carlen, E., Jüngel, A., & Mehrmann, V. (2023, September 18). The Hypocoercivity Index for the short time behavior of linear time-invariant ODE systems [Conference Presentation]. ÖMG Tagung 2023 Meeting of the Austrian Mathematical Society, Karl-Franzens-University (KFU), Graz, Austria. ( reposiTUm)
Arnold, A. (2023, August 10). Hypocoercivity for linear ODEs and strong stability for Runge-Kutta methods [Conference Presentation]. Scientific Computing Seminar 2023, New York, United States of America (the). ( reposiTUm)
Arnold, A. (2023, November 12). Hypocoercivity for linear ODEs and strong stability for Runge-Kutta methods [Conference Presentation]. 21st International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2023), Heraklion, Greece. ( reposiTUm)
Arnold, A. (2023, November 9). Short- and long-time behavior in evolution equations: the role of the hypocoercivity index [Presentation]. Particle Systems and PDEs XI, Lisbon, Portugal. http://hdl.handle.net/20.500.12708/189585 ( reposiTUm)
Arnold, A. (2022). Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium. Frontiers in analysis of kinetic equations", Cambridge, United Kingdom of Great Britain and Northern Ireland (the). http://hdl.handle.net/20.500.12708/123472 ( reposiTUm)
Arnold, A. (2022). Hypocoercivity and hypocontractivity concepts for linear dynamical systems. 10. Workshop “Particle Systems and PDE’s,” Braga, Portugal. http://hdl.handle.net/20.500.12708/123538 ( reposiTUm)
Arnold, A. (2022, July 11). Hypocoercivity and hypocontractivity concepts for linear dynamical systems [Conference Presentation]. Workshop “Contemporary Trends in Kinetic Theory & PDEs,” Pavia, Italy. ( reposiTUm)
Arnold, A. (2022, September 20). A Hybrid WKB-based method for Schrödinger scattering problems in the semi-classical limit [Conference Presentation]. Konferenz “ICNAAM 2022,” Heraklion, Greece. ( reposiTUm)
Arnold, A. (2022, March 9). Optimal decay in Fokker-Planck equations]{Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium [Conference Presentation]. Quantitative Analysis of Metastable Processes, INRIA, Paris, France. ( reposiTUm)
Arnold, A. (2022, February 4). Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium [Presentation]. Seminar at Durham University, Durham, United Kingdom of Great Britain and Northern Ireland (the). ( reposiTUm)
Arnold, A. (2022, July 6). All relative entropies for general nonlinear Fokker-Planck equations [Conference Presentation]. Workshop on “Frontiers in Nonlocal Nonlinear PDEs,” Anacapri, Italy. ( reposiTUm)
Arnold, A. (2022, May 16). Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium [Conference Presentation]. Workshop “The Boltzmann Equation: In the Trail of Torsten Carleman,” Mittag-Lefler Institute, Stockholm, Sweden. ( reposiTUm)
Arnold, A. (2022, October 19). All relative entropies for general nonlinear Fokker-Planck equations [Conference Presentation]. Workshop “Nonlinear dispersive equations – Inverse scattering and PDE methods,” Uni Wien, Austria. ( reposiTUm)
Arnold, A. (2021). Modal based hypocoercivity methods on the torus and the real line with application to Goldstein-Taylor models. Kinetic Equations: from Modeling, Computation to Analysis, Luminy, France. http://hdl.handle.net/20.500.12708/123247 ( reposiTUm)
Arnold, A. (2021). “Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium.” Online - New Trends in Nonlinear Diffusion: a Bridge between PDEs, Analysis and Geometry, BIRS-Oaxaca, Mexico. http://hdl.handle.net/20.500.12708/123280 ( reposiTUm)
Arnold, A. (2020). Short- and long-time behavior in (hypo)coercive ODE-systems and Fokker-Planck equations". Hypocoercivity Workshop, Universität Bristol, United Kingdom of Great Britain and Northern Ireland (the). http://hdl.handle.net/20.500.12708/123149 ( reposiTUm)
Arnold, A. (2020). Short- and long-time behavior in (hypo)coercive ODE-systems and Fokker-Planck equations. Kick-off conference of the Thematic Einstein Semester, Berlin, Germany. http://hdl.handle.net/20.500.12708/123098 ( reposiTUm)
Arnold, A. (2020, December 3). Short- and long-time behavior in (hypo)coercive ODE-systems and Fokker-Planck equations [Conference Presentation]. Workshop “Classical and Quantum Mechanical Models of Many-Particle Systems,” Oberwolfach, Germany. ( reposiTUm)
Arnold, A. (2019, September 3). A hybrid WKB-based method for the stationary Schrödinger equation in the semi-classical limit [Conference Presentation]. Workshop “Classical and quantum integrability,” Uni Dijon, France. ( reposiTUm)
Arnold, A. (2019, November 27). Short- and long-time behavior in (hypo)coercive ODE-systems and Fokker-Planck equations [Presentation]. Seminar an der École nationale des ponts et chaussées, École nationale des ponts et chaussées, Paris, France. ( reposiTUm)
Arnold, A. (2019). Short- and long-time behavior in (hypo)coercive ODE-systems and Fokker-Planck equations. Seminarvortrag, Regensburg, Germany. http://hdl.handle.net/20.500.12708/122956 ( reposiTUm)
Arnold, A. (2019). Short- and long-time behavior in (hypo)coercive ODE-systems and Fokker-Planck equations". INDAM, Univ. La Sapienza, Rom, Italy. http://hdl.handle.net/20.500.12708/122857 ( reposiTUm)
Arnold, A. (2019). Short- and long-time behavior in (hypo)coercive ODE-systems and Fokker-Planck equations. Workshop on “Some news on Dispersive PDEs: Modeling, Theory and Numerics,” Wolfgang Pauli Institut, Wien, Austria. http://hdl.handle.net/20.500.12708/122817 ( reposiTUm)
Arnold, A. (2019). A hybrid WKB-based method for the stationary Schrödinger equation in the semi-classical limit. ICIAM 2019, Valencia, Spain. http://hdl.handle.net/20.500.12708/122728 ( reposiTUm)
Arnold, A. (2019). Short- and long-time behavior in (hypo)coercive ODE-systems and Fokker-Planck equations. TIANFU International conference on PDEs, Chengdu, China. http://hdl.handle.net/20.500.12708/122729 ( reposiTUm)
Arnold, A. (2019). A hybrid WKB-based method for the stationary Schrödinger equation in the semi-classical limit. GAMM 2019, Wien, Austria. http://hdl.handle.net/20.500.12708/122724 ( reposiTUm)
Arnold, A. (2019). A hybrid WKB-based method for the stationary Schrödinger equation in the semi-classical limit. Talk am Imperial College, Imperial College, London, United Kingdom of Great Britain and Northern Ireland (the). http://hdl.handle.net/20.500.12708/122723 ( reposiTUm)
Arnold, A. (2019). Short- and long-time behavior in (hypo)coercive ODE-systems and Fokker-Planck equations. Workshop: Probabilistic and variational methods in kinetic theory, Bonn, Hausdorff Center for Mathematics, Germany. http://hdl.handle.net/20.500.12708/122744 ( reposiTUm)
Arnold, A. (2019, October 18). Mechanical systems with boundary control: asymptotic stability and dissipative discretizations [Conference Presentation]. Mini-Workshop Mathematics in Industry, Uni Graz, Austria. ( reposiTUm)
Arnold, A. (2018). Workshop “Applied Mathematics and Simulation for Semiconductors.” Workshop “Dispersion and Integrability,” Universität Wien, Austria. http://hdl.handle.net/20.500.12708/122437 ( reposiTUm)
Arnold, A., Achleitner, F., & Carlen, E. (2018). Large-time behavior in hypocoercive BGK-models. Entropies, the Geometry of Nonlinear Flows, and their Applications, Banff, Canada. http://hdl.handle.net/20.500.12708/122357 ( reposiTUm)
Arnold, A. (2018). Large-time behavior in hypocoercive BGK-models. International workshop for kinetic equations, Sanya, China. http://hdl.handle.net/20.500.12708/122412 ( reposiTUm)
Arnold, A. (2018). Large-time behavior in hypocoercive BGK-models. Vortrag an Chinese University of Hong Kong, Hong Kong. http://hdl.handle.net/20.500.12708/122413 ( reposiTUm)
Arnold, A. (2018). A hybrid WKB-based method for Schrödinger scattering problems in the semiclassical limit. Workshop “Applied Mathematics and Simulation for Semiconductors,” Berlin, Germany. http://hdl.handle.net/20.500.12708/122436 ( reposiTUm)
Arnold, A. (2018). Large-time behavior in (hypo)coercive ODE-systems and kinetic models. Advances in Computational Statistical Physics, Luminy, France. http://hdl.handle.net/20.500.12708/122426 ( reposiTUm)
Arnold, A. (2017). Large-time behavior in hypocoercive BGK-models. Aggregation-Diffusion PDEs: Variational Principles, Nonlocality and Systems, Anacapri, Italy. http://hdl.handle.net/20.500.12708/122143 ( reposiTUm)
Arnold, A. (2017). Entropy method for hypocoercive & non-symmetric Fokker-Planck equations. Seminarvortrag, Regensburg, Germany. http://hdl.handle.net/20.500.12708/122141 ( reposiTUm)
Arnold, A. (2017). A hybrid WKB-based method for the stationary Schrödinger equation in the semi-classical limit. Mathematical and computational methods for quantum and kinetic problems, Beijing, China. http://hdl.handle.net/20.500.12708/122140 ( reposiTUm)
Arnold, A. (2017). Entropy method for hypocoercive & non-symmetric Fokker-Planck equations with linear drift. TIANFU Conference on PDEs, Chengdu, China. http://hdl.handle.net/20.500.12708/122142 ( reposiTUm)
Arnold, A. (2016). Mechanical systems with boundary control: asymptotic stability. DK Winter Workshop on Dissipation and Dispersion in Nonlinear PDEs, Schloss Hernstein, Austria. http://hdl.handle.net/20.500.12708/121446 ( reposiTUm)
Arnold, A. (2016). Entropy method for hypocoercive & non-symmetric Fokker-Planck equations with linear drift. Vortrag, University of West Bohemia, Pilsen, Czech Republic, Austria. http://hdl.handle.net/20.500.12708/121467 ( reposiTUm)
Arnold, A. (2016). A hybrid WKB-based method for the stationary Schrödinger equation in the semi-classical limit. 11th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Orlando, Non-EU. http://hdl.handle.net/20.500.12708/121498 ( reposiTUm)
Arnold, A. (2016). Mechanical systems with boundary control: asymptotic stability. International workshop on applied mathematics, Dalian, China, Non-EU. http://hdl.handle.net/20.500.12708/121489 ( reposiTUm)
Arnold, A. (2016). Entropy method for hypocoercive BGK and Fokker-Planck equations. International Conference on nonlinear PDEs, Hongkong, China, EU. http://hdl.handle.net/20.500.12708/121490 ( reposiTUm)
Arnold, A. (2016). Open boundary conditions for wave propagation problems on unbounded domains - Dirac equation, 2.Teil. Waves, boundaries and oscillations in numerical schemes, Rennes, EU. http://hdl.handle.net/20.500.12708/121562 ( reposiTUm)
Arnold, A. (2016). Open boundary conditions for wave propagation problems on unbounded domain. Waves, boundaries and oscillations in numerical schemes, Rennes, EU. http://hdl.handle.net/20.500.12708/121561 ( reposiTUm)
Arnold, A. (2016). A hybrid WKB-based method for highly oscillatory ODEs in the semi-classical limit, 1.Teil. Waves, boundaries and oscillations in numerical schemes, Rennes, EU. http://hdl.handle.net/20.500.12708/121563 ( reposiTUm)
Arnold, A. (2015). Mechanical systems with boundary control: asymptotic stability. 4th Workshop Particle Systems and PDE’s, Braga, EU. http://hdl.handle.net/20.500.12708/121258 ( reposiTUm)
Arnold, A. (2015). Entropy method for hypocoercive & non-symmetric Fokker-Planck equations with linear drift. 6th workshop “Theory and Numerics of kinetic equations,” Saarbrücken, EU. http://hdl.handle.net/20.500.12708/121111 ( reposiTUm)
Arnold, A. (2015). WKB-based finite difference schemes for highly oscillatory ODEs (with turning points). Vortrag, University of West Bohemia, Pilsen, Czech Republic, Austria. http://hdl.handle.net/20.500.12708/121132 ( reposiTUm)
Arnold, A. (2015). Entropy method for hypocoercive & non-symmetric Fokker-Planck equations with linear drift. Vortrag, University of West Bohemia, Pilsen, Czech Republic, Austria. http://hdl.handle.net/20.500.12708/121133 ( reposiTUm)
Arnold, A. (2015). Entropy method for hypocoercive & non-symmetric Fokker-Planck equations with linear drift. Vortrag, University of West Bohemia, Pilsen, Czech Republic, Austria. http://hdl.handle.net/20.500.12708/121080 ( reposiTUm)
Arnold, A. (2015). Entropy method for hypocoercive & non-symmetric Fokker-Planck equations with linear drift. Workshop and Summer school on kinetic theory and gas dynamics, Jiao Tong University, Shanghai, Non-EU. http://hdl.handle.net/20.500.12708/121130 ( reposiTUm)
Arnold, A. (2015). Some polymeric fluid flows models: steady states & large-time-convergence. ICIAM 2015, Peking, Non-EU. http://hdl.handle.net/20.500.12708/121131 ( reposiTUm)
Arnold, A. (2015). WKB-based finite difference schemes for highly oscillatory ODEs (with turning points). Vortrag, University of West Bohemia, Pilsen, Czech Republic, Austria. http://hdl.handle.net/20.500.12708/121134 ( reposiTUm)
Arnold, A. (2015). Entropy method for hypocoercive & non-symmetric Fokker-Planck equations with linear drift. WIAS Berlin, Berlin, EU. http://hdl.handle.net/20.500.12708/121186 ( reposiTUm)
Arnold, A. (2015). Entropy method for. Workshop “CENTRAL Trends in PDEs,” Wien, Austria. http://hdl.handle.net/20.500.12708/121351 ( reposiTUm)
Arnold, A. (2015). Some polymeric fluid flows models: steady states & large-time-convergence. Hong Kong, City University Hong Kong, Non-EU. http://hdl.handle.net/20.500.12708/121059 ( reposiTUm)
Arnold, A. (2015). WKB-based finite difference schemes for highly oscillatory ODEs with turning points. 9th International Conference on Computational Physics, Singapur, Non-EU. http://hdl.handle.net/20.500.12708/121060 ( reposiTUm)
Arnold, A. (2015). Entropy method for hypocoercive & non-symmetric Fokker-Planck equations with linear drift. Hong Kong, City University Hong Kong, Non-EU. http://hdl.handle.net/20.500.12708/121058 ( reposiTUm)
Arnold, A. (2014). Entropy method for hypercoercive & non-symmetric Fokker-Planck equations with linear drift. Workshop on “Kinetic Equations” des CIRM, Marseille, EU. http://hdl.handle.net/20.500.12708/120826 ( reposiTUm)
Arnold, A. (2014). Entropy method for hypocoercive & non-symmetric Fokker-Planck equations with linear drift. 2.GAMM-Workshop on Analysis of PDEs, Stuttgart, EU. http://hdl.handle.net/20.500.12708/120825 ( reposiTUm)
Erb, J., & Arnold, A. (2014). Sharp Entropy Decay for hypocoercive Fokker-Planck equations with linear drift coefficients. Workshop on Advances in nonlinear PDEs: Analysis, numerics, stochastics, applications, Wien, Austria. http://hdl.handle.net/20.500.12708/120790 ( reposiTUm)
Arnold, A. (2014). Large-time behavior in Fokker-Planck equations. Summer School “Methods and Models of Kinetic Theory,” Porto Ercole, EU. http://hdl.handle.net/20.500.12708/120789 ( reposiTUm)
Arnold, A. (2014). Entropy methods for hypercoercive Fokker-Planck equation with linear drift. Entropy Methods, PDEs, Functional Inequalities, and Applications, Banff, Non-EU. http://hdl.handle.net/20.500.12708/120776 ( reposiTUm)
Arnold, A. (2014). Entropy method for hypocoercive Fokker-Planck equations with linear drift. PSPDE III - Particle systems and partial differential equations, Braga, EU. http://hdl.handle.net/20.500.12708/121061 ( reposiTUm)
Arnold, A. (2013). Some polymeric fluid flow models: steady states & large-time convergence. 5th Workshop “Theory and Numerics of kinetic equations,” Saarbrücken, EU. http://hdl.handle.net/20.500.12708/120337 ( reposiTUm)
Arnold, A. (2013). Quantum Fokker-Planck models: kinetic vs. operator theory approaches. Qmath 12, Berlin, EU. http://hdl.handle.net/20.500.12708/120357 ( reposiTUm)
Arnold, A. (2013). Some polymeric fluid flow models: steady states & large-time convergence. 18th ÖMG Congress and Annual DMV Meeting, Universität Innsbruck, Austria. http://hdl.handle.net/20.500.12708/120389 ( reposiTUm)
Arnold, A. (2012). Quantum Fokker-Planck models: kinetic vs. operator theory approaches. Institutsvortrag, TU München, EU. http://hdl.handle.net/20.500.12708/120248 ( reposiTUm)
Arnold, A. (2012). Asymptotically correct finite difference schemes for highly oscillatory ODEs. Workshop “Semiclassical & multiscale aspects of wave propagation,” Heraklion, EU. http://hdl.handle.net/20.500.12708/120031 ( reposiTUm)
Arnold, A. (2012). WKB-Schemes for Schrödinger-type equations. Workshop am WIAS, Berlin, EU. http://hdl.handle.net/20.500.12708/120035 ( reposiTUm)
Arnold, A. (2012). Critical buckling load of glass panes: nonlinear superposition of two boundary forces. MATHMOD 2012 - 7th Vienna Conference on Mathematical Modelling, Wien, Austria. http://hdl.handle.net/20.500.12708/120000 ( reposiTUm)
Arnold, A. (2012). Der Traum von der Beherrschung der Wert von Archmides bis Schrödinger. Mathematik zwischen Traum und Wirklichkeit, math.space, Wien, Austria. http://hdl.handle.net/20.500.12708/120010 ( reposiTUm)
Arnold, A. (2012). Some polymeric fluid flow models: steady states & large-time-convergence. Seminarvortrag, Regensburg, Germany, EU. http://hdl.handle.net/20.500.12708/120057 ( reposiTUm)
Arnold, A. (2012). Some polymeric fluid flow models: steady states & large-time-convergence. ESF Conference - Applied Partial Differential Equations in Physics, Biology and Social Sciences: Classical and Modern Perspectives, Barcelona, EU. http://hdl.handle.net/20.500.12708/120059 ( reposiTUm)
Arnold, A. (2011). Quantum Fokker-Planck models: kinetic and operator theory approaches. 32nd International Conference on Quantum Probability and Related Topics, Levico, EU. http://hdl.handle.net/20.500.12708/119733 ( reposiTUm)
Hammer, R., Ertler, C., Pötz, W., & Arnold, A. (2011). Dynamics of Dirac fermions in Topological Insulators. International Symposium on Advanced Nanodevices and Nanotechnology 2011, Kaanapali, United States of America (the). http://hdl.handle.net/20.500.12708/119824 ( reposiTUm)
Arnold, A. (2011). Some polymeric fluid flow models: steady states & large-time-convergence. Workshop “Vlasov Models in Kisnetic Theory,” Brown University, Providence, Non-EU. http://hdl.handle.net/20.500.12708/119755 ( reposiTUm)
Arnold, A. (2011). Asymptotically finite difference schemes for highly oscillatory ODEs. 2nd joint conference of Austrian & Mongolian Mathematics, Ulan Bator, Non-EU. http://hdl.handle.net/20.500.12708/119754 ( reposiTUm)
Arnold, A. (2011). Asymptotically correct finite difference schemes for highly oscillatory ODEs. Workshop "OPTPDE ESF-Waves, Universität Würzburg, EU. http://hdl.handle.net/20.500.12708/119756 ( reposiTUm)
Arnold, A. (2011). Some polymeric fluid flow modes: steady states & large-time-convergence. Workshop "EVOL: Dissipative EVOLutions and convergence to equilibrium, Universität Toulouse, EU. http://hdl.handle.net/20.500.12708/119757 ( reposiTUm)
Arnold, A. (2011). Quantum Fokker-Planck models: kinetic and operator theory approaches. Workshop “Hypercontractivity and Logarithmic Sobolev Inequalities for Quantum Markov Semigroups,” Genua, EU. http://hdl.handle.net/20.500.12708/119761 ( reposiTUm)
Arnold, A. (2011). Asymptotically correct finite difference schemes for highly oscillatory ODEs. Basque Center for Applied Mathematics, Toulouse, EU. http://hdl.handle.net/20.500.12708/119692 ( reposiTUm)
Arnold, A. (2011). Asymptotically correcct finite difference schemes for highly oscillatory ODEs. Workshop “Mathematical Challenges of Quantum Transport in Nano-Optolectronic Systems,” Berlin, EU. http://hdl.handle.net/20.500.12708/119685 ( reposiTUm)
Arnold, A. (2010). Das Langzeitverhalten von parabolischen Differentialgleichungen - mit Anwendungen auf Polymerströmungen. The Vienna PDE-Day, ESI-Wien, Austria. http://hdl.handle.net/20.500.12708/119328 ( reposiTUm)
Arnold, A. (2010). Some polymeric fluid flow models: steady states and large-time convergence. Fluid-kinetic modelling in biologyy, physics & engineering, Newton Institute, Cambridge, EU. http://hdl.handle.net/20.500.12708/119425 ( reposiTUm)
Arnold, A. (2010). Some polymeric fluid flow models: steady states & large-time convergence. DSPDEs’10, Barcelona, EU. http://hdl.handle.net/20.500.12708/119372 ( reposiTUm)
Arnold, A. (2010). Some polymeric fluid flows models: steady states & large-time-convergence. SIMAI 2010, Cagliari, EU. http://hdl.handle.net/20.500.12708/119381 ( reposiTUm)
Arnold, A. (2009). Open boundary conditions for wave propagation problems on unbounded domains. CompMat Kickoff, TU Wien, Austria. http://hdl.handle.net/20.500.12708/119008 ( reposiTUm)
Arnold, A. (2009). Asymptotically correct finite difference schems for highly oscillatory ODEs. Workshop: Theory and Applications of Classical and Quantum Kinetic Theory, Banff, Non-EU. http://hdl.handle.net/20.500.12708/119007 ( reposiTUm)
Arnold, A. (2009). Quantum Fokker-Planck modesl: kinetic & operator theory approaches. Topics in Kinetic Theory, Victoria, Non-EU. http://hdl.handle.net/20.500.12708/119006 ( reposiTUm)
Arnold, A. (2009). Asymptotically correct finite difference schemes for highly oscillatory ODEs. 5th Austrian Numerical Analysis Day, Innsbruck, Austria. http://hdl.handle.net/20.500.12708/118974 ( reposiTUm)
Arnold, A. (2009). Some polymeric fluid flow models: Steady states and large-time convergence. Workshop: Theory and Numerics for Kinetic Equations, Saarbrücken, EU. http://hdl.handle.net/20.500.12708/119080 ( reposiTUm)
Neumann, L., Fagnola, F., & Arnold, A. (2009). Long time asymptotics for quantum Fokker-Planck models. Theory and Numerics for Kinetic Equations, Saarbrücken, EU. http://hdl.handle.net/20.500.12708/119090 ( reposiTUm)
Arnold, A., Fagnola, F., & Neumann, L. (2009). Long time asymptotics for quantum Fokker-Planck models. 17th ÖMG Congress / Annual DMV Conference, Graz, Austria. http://hdl.handle.net/20.500.12708/119091 ( reposiTUm)
Arnold, A., Fagnola, F., & Neumann, L. (2009). Quantum Fokker-Planck Models: Kinetic an Operator Theory Approaches. Workshop "Quantum Systems and Semiconductor Devices: Analysis, Simulations, Applications, Beijing, Tsinghua University, Non-EU. http://hdl.handle.net/20.500.12708/119089 ( reposiTUm)
Arnold, A. (2009). Asymptotically correct finite difference schemes for highly oscillatory ODEs. Workshop on Mathematical Theory and Computational Methods in Materials Sciences, Singapur, Non-EU. http://hdl.handle.net/20.500.12708/119013 ( reposiTUm)
Arnold, A. (2009). Asymptotically correct finite difference schemes for highly oscillatory ODEs. Workshop "Quantum Systems and Semiconductor Devices: Analysis, Simulations, Applications, Beijing, Tsinghua University, Non-EU. http://hdl.handle.net/20.500.12708/118966 ( reposiTUm)
Arnold, A. (2008). Quantum Fokker-Planck models: global solutions, steady states & large-time behavior. IPAM 2008, Los Angeles, Non-EU. http://hdl.handle.net/20.500.12708/118593 ( reposiTUm)
Arnold, A. (2008). Open boundary conditions for wave propation problems on unbounded domains. Université de Provence, Marseille, EU. http://hdl.handle.net/20.500.12708/118592 ( reposiTUm)
Arnold, A. (2008). WKB-scheme for highly osciallartory Schrödinger equations. WIAS-Kolloqium, Berlin, EU. http://hdl.handle.net/20.500.12708/118594 ( reposiTUm)
Arnold, A. (2008). Some polymeric fluid flow modes: steady states and large-time behavior. Seminarvortrag, Regensburg, Germany, EU. http://hdl.handle.net/20.500.12708/118712 ( reposiTUm)
Arnold, A. (2008). Asymptotically correct finite difference scheme for highly oscillatory ODEs. SDIDE08, Wien, Austria. http://hdl.handle.net/20.500.12708/118647 ( reposiTUm)
Arnold, A., Fagnola, F., & Neumann, L. (2008). Quantum Fokker-Planck models - Lindblad and Wigner approaches. 29-Th Conference On Quantum Probability And Related Topics, Hammamet, Tunesien, Non-EU. http://hdl.handle.net/20.500.12708/118941 ( reposiTUm)
Arnold, A. (2007). Improved decay estimates for the heat equation. Workshop: Optimal transportation structures, gradient flows and entropy methods for applied PDEs, Universität Wien, Austria. http://hdl.handle.net/20.500.12708/118223 ( reposiTUm)
Arnold, A. (2007). Open boundary conditions for wave propagation problems on unbounded domains. Kolloquium, Leopold-Franzens Universität Innsbruck, Austria. http://hdl.handle.net/20.500.12708/118222 ( reposiTUm)
Arnold, A. (2007). Quantum kinetic Fokker-Planck equation: global-in-time solution and dispersive effects. Winter School “Mathematical Methods in Quantum Mechanics,” Brixen, EU. http://hdl.handle.net/20.500.12708/118267 ( reposiTUm)
Arnold, A. (2007). Quantum Fokker-Planck modes: global solution, steady states, and large-time behavior. Analysis Kolloquium, Universität Austin, Texas, Non-EU. http://hdl.handle.net/20.500.12708/118534 ( reposiTUm)
Arnold, A. (2007). Quantum Fokker-Planck models: global solution, steady states, and large-time behavior. SIAM PDE Conference, Phoenix , Arizona, EU. http://hdl.handle.net/20.500.12708/118535 ( reposiTUm)
Arnold, A. (2007). Offene Randbedingungen für Wellenausbreitungsprobleme. Numerik-Kolloqium, Universität Bielefeld, EU. http://hdl.handle.net/20.500.12708/118533 ( reposiTUm)
Arnold, A. (2007). Quantum Fokker-Planck models: global solution, steady states, and large-time behavior. Workshop on Mathematical Issues in complex flows, Beijing, Non-EU. http://hdl.handle.net/20.500.12708/118540 ( reposiTUm)
Arnold, A., & Taschner, R. (2007). Euler und die Angewandte Mathematik. math.space, Wien, Austria. http://hdl.handle.net/20.500.12708/118466 ( reposiTUm)
Arnold, A. (2007). Quantum Fokker-Planck models: global solution, steady states, and large-time behavior. Tagung “Quantum Probability and related topics,” Guanajuato, Mexiko, Non-EU. http://hdl.handle.net/20.500.12708/118539 ( reposiTUm)
Arnold, A. (2007). Open boundary condtions for wave propogation problems on unbounded domains. Enumath 2007, Graz, Austria. http://hdl.handle.net/20.500.12708/118538 ( reposiTUm)
Arnold, A. (2006). Mathematical properties of quantum evolution eqations. Sommer School “Quantum Transport: modelling, analysis and asymptotics,” Cetraro, EU. http://hdl.handle.net/20.500.12708/118268 ( reposiTUm)
Arnold, A. (2006). Improved entropy decay for parabolic equations. Nonlinear diffusions: Entropies, asymptotic behavior and applications, Banff, Kanada, Non-EU. http://hdl.handle.net/20.500.12708/118542 ( reposiTUm)
Arnold, A. (2005). The entropy method for refined convex Sobolev inequalities. Self-similar solutions in nonlinear PDEs, Bedlewo, EU. http://hdl.handle.net/20.500.12708/118541 ( reposiTUm)
Arnold, A. (2002). Entropy method and the large-time behavior of parabolic equations. Summer School, Ghent, EU. http://hdl.handle.net/20.500.12708/117502 ( reposiTUm)

Berichte

Arnold, A., Einav, A., Signorello, B., & Wöhrer, T. (2020). Large time convergence of the non-homogeneous Goldstein-Taylor equation (ASC Report 22/2020; pp. 1–36). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30890 ( reposiTUm)
Amodio, P., Arnold, A., Levitina, T., & Weinmüller, E. (2020). On the Abramov approach for the approximation of whispering gallery modes in prolate spheroids (ASC Report 31/2020; pp. 1–20). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30900 ( reposiTUm)
Arnold, A., Schmeiser, C., & Signorello, B. (2020). Propagator norm and sharp decay estimates for Fokker-Planck equations with linear drift (ASC Report 5/2020; pp. 1–37). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30874 ( reposiTUm)
Döpfner, K., & Arnold, A. (2020). On the stationary Schrödinger equation in the semi-classical limit: Asymptotic blow-up at a turning point (ASC Report 32/2020; pp. 1–2). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30901 ( reposiTUm)
Arnold, A., Jin, S., & Wöhrer, T. (2019). Sharp Decay Estimates in Local Sensitivity Analysis for Evolution Equations with Uncertainties: from ODEs to Linear Kinetic Equations (ASC Report 08/2019; pp. 1–50). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30847 ( reposiTUm)
Achleitner, F., Arnold, A., & Signorello, B. (2018). On optimal decay estimates for ODEs and PDEs with modal decomposition (ASC Report 4/2018; pp. 1–14). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30808 ( reposiTUm)
Arnold, A., Klein, C., & Ujvari, B. (2018). WKB-method for the 1D Schrödinger equation in the semi-classical limit: enhanced phase treatment (ASC Report 19/2018; pp. 1–17). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30823 ( reposiTUm)
Arnold, A., Einav, A., & Wöhrer, T. (2017). On the rates of decay to equilibrium in degenerate and defective Fokker-Plnack equations (ASC Report 18/2017; pp. 1–27). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29456 ( reposiTUm)
Achleitner, F., Arnold, A., & Carlen, E. (2017). On multi-dimensional hypocoercive BGK models (ASC Report 26/2017; pp. 1–55). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30795 ( reposiTUm)
Bian, L., Pang, G., Tang, S., & Arnold, A. (2016). ALmost EXact boundary conditions for transient Schrödinger-Poisson system (ASC Report 3/2016; pp. 1–21). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29022 ( reposiTUm)
Arnold, A., & Negulescu, C. (2016). Stationary Schrödinger equation in the semiclassical limit: Numerical coupling of oscillatory and evanscent regions (ASC Report 12/2016; pp. 1–32). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29065 ( reposiTUm)
Stürzer, D., Arnold, A., & Kugi, A. (2016). Closed-loop stability analysis of a gantry crane with heavy chain (ASC Report 16/2016; pp. 1–17). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29108 ( reposiTUm)
Achleitner, F., Arnold, A., & Stürzer, D. (2015). Large-time behaviour in non-symmetric Fokker-Planck equations (ASC Report 22/2015; pp. 1–64). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28676 ( reposiTUm)
Achleitner, F., Arnold, A., & Carlen, E. (2015). On hypocoercive BGK models (ASC Report 32/2015; pp. 1–27). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28720 ( reposiTUm)
Miletic, M., Stürzer, D., Arnold, A., & Kugi, A. (2015). Stability of an Euler-Bernouilli beam with a nonlinear dynamic feedback system (ASC Report 19/2015; pp. 1–21). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28651 ( reposiTUm)
Arnold, A., & Erb, J. (2014). Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift (ASC Report 29/2014; pp. 1–45). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28336 ( reposiTUm)
Miletic, M., Stürzer, D., & Arnold, A. (2014). An Euler-Bernoulli beam with nonlinear damping and a nonlinear spring at the tip (ASC Report 40/2014; pp. 1–25). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28401 ( reposiTUm)
Hammer, R., Pötz, W., & Arnold, A. (2013). A dispersion and norm preserving finite difference scheme with transparent boundary conditions for the Dirac equation in (1+1)d (ASC Report 06/2013; pp. 1–22). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27882 ( reposiTUm)
Hammer, R., Pötz, W., & Arnold, A. (2013). Single-cone real-space nite di erence scheme for the time-dependent Dirac equation (ASC Report 27/2013; pp. 1–21). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27986 ( reposiTUm)
Miletic, M., & Arnold, A. (2013). An Euler-Bernoulli beam equation with boundary control: Stability and dissipative FEM (ASC Report 12/2013; pp. 1–33). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27911 ( reposiTUm)
Stürzer, D., & Arnold, A. (2012). Spectral analysis and long-time behaviour of a Fokker-Planck equation with a nonlocal perturbation (ASC Report 23/2012; pp. 1–24). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27626 ( reposiTUm)
Arnold, A., Neumann, L., & Hochhauser, W. (2012). Stability of glued and embedded Glass Panes: Dunkerley straight Line as a conservative Estimate of superimposed buckling Coefficients (ASC Report 01/2012; pp. 1–6). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27515 ( reposiTUm)
Arnold, A., Kim, J., & Yao, X. (2011). Estimates for a class of oscillatory integrals and decay rates for wave-type equations (ASC Report 23/2011; pp. 1–22). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27185 ( reposiTUm)
Kim, J., Arnold, A., & Yao, X. (2011). Global estimates of fundamental solutions for higher-order Schrödinger equations (ASC Report 10/2011; pp. 1–15). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27152 ( reposiTUm)
Geier, J., & Arnold, A. (2011). WKB-based schemes for two-band Schrödinger equations in the highly oscillatory regime (ASC Report 25/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27193 ( reposiTUm)
Arnold, A., Gamba, I., Gualdani, M. P., Mischler, S., Mouhot, C., & Sparber, C. (2010). The Wigner-Fokker-Planck equation: stationary states and large time behavior (ASC Report 25/2010). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26889 ( reposiTUm)
Arnold, A., Desvillettes, L., & Prevost, C. (2009). Existence of nontrivial steady states for populations structured with respect to space and a continuous trait (ASC Report 26/2009). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26441 ( reposiTUm)
Arnold, A., Ben Abdallah, N., & Negulescu, C. (2009). WKB-based schemes for the Schr\"odinger equation in the semi-classical limit (ASC Report 04/2009). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26354 ( reposiTUm)
Arnold, A., Carrillo, J. A., & Manzini, C. (2009). Refined long-time asymptotics for some polymeric fluid flow models (ASC Report 07/2009). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26365 ( reposiTUm)
Arnold, A., Ehrhardt, M., Schulte, M., & Sofronov, I. (2008). Discrete transparent boundary conditions for the Schrödinger equation on circular domains (ASC Report 31/2008). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26142 ( reposiTUm)
Arnold, A., Carlen, E., & Ju, Q. (2008). Large-time behavior of non-symmetric Fokker-Planck type equations (ASC Report 09/2008). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/25163 ( reposiTUm)
Arnold, A., Fagnola, F., & Neumann, L. (2008). Quantum Fokker-Planck models: the Lindblad and Wigner approaches (ASC Report 14/2008). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/25167 ( reposiTUm)
Arnold, A., Bartier, J.-P., & Dolbeaut, J. (2007). Interpolation between logarithmic Sobolev and Poincaré inequalities (ASC Report 04/2007). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/25116 ( reposiTUm)
Arnold, A., & Schulte, M. (2007). Transparent boundary conditions for Quantum-Waveguide Simulations (ASC Report 05/2007). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/25117 ( reposiTUm)
Arnold, A., Gamba, I., Gualdani, M. P., & Sparber, C. (2007). The Wigner-Fokker-Planck equation: stationary states and large time behavior (ASC Report 06/2007). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/25118 ( reposiTUm)
Arnold, A., Carrillo, J. A., & Klapproth, C. (2007). Improved entropy decay estimates for the heat equation (ASC Report 08/2007). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/25120 ( reposiTUm)
Schulte, M., & Arnold, A. (2007). Discrete transparent boundary conditions for the Schrödinger equation - a compact higher order scheme (ASC Report 09/2007). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/25121 ( reposiTUm)
Arnold, A. (2007). Mathematical Properties of Quantum Evolution Equations (ASC Report 21/2007). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/25132 ( reposiTUm)
Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., & Schädle, A. (2007). A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations (ASC Report 24/2007). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/25138 ( reposiTUm)