Wissenschaftliche Artikel

Neunteufel, M., & Schöberl, J. (2024). The Hellan–Herrmann–Johnson and TDNNS methods for linear and nonlinear shells. COMPUTERS & STRUCTURES, 305, Article 107543. https://doi.org/10.1016/j.compstruc.2024.107543 ( reposiTUm)
Gopalakrishnan, J., Neunteufel, M., Schöberl, J., & Wardetzky, M. (2024). On the improved convergence of lifted distributional Gauss curvature from Regge elements. Results in Applied Mathematics, 24, Article 100511. https://doi.org/10.1016/j.rinam.2024.100511 ( reposiTUm)
Wess, M., Kapidani, B., Codecasa, L., & Schöberl, J. (2024). Mass lumping the dual cell method to arbitrary polynomial degree for acoustic and electromagnetic waves. Journal of Computational Physics, 513, Article 113196. https://doi.org/10.1016/j.jcp.2024.113196 ( reposiTUm)
Doppler, S., Lederer, P. L., Schöberl, J., & von Wahl, H. (2024). A discontinuous Galerkin approach for atmospheric flows with implicit condensation. Journal of Computational Physics, 499, Article 112713. https://doi.org/10.1016/j.jcp.2023.112713 ( reposiTUm)
Neunteufel, M., Schöberl, J., & Sturm, K. (2023). Numerical shape optimization of the Canham-Helfrich-Evans bending energy. Journal of Computational Physics, 488, Article 112218. https://doi.org/10.1016/j.jcp.2023.112218 ( reposiTUm)
Lederer, P. L., Mooslechner, X., & Schöberl, J. (2023). High-order projection-based upwind method for implicit large eddy simulation. Journal of Computational Physics, 493, Article 112492. https://doi.org/10.1016/j.jcp.2023.112492 ( reposiTUm)
Gopalakrishnan, J., Neunteufel, M., Schöberl, J., & Wardetzky, M. (2023). Analysis of curvature approximations via covariant curl and incompatibility for Regge metrics. SMAI Journal of Computational Mathematics (SMAI-JCM), 9, 151–195. https://doi.org/10.5802/smai-jcm.98 ( reposiTUm)
Hollaus, K., & Schöberl, J. (2022). A Higher Order Multi-Scale FEM With A for 2-D Eddy Current Problems in Laminated Iron. IEEE Transactions on Magnetics, 51(3), Article 7093479. https://doi.org/10.1109/TMAG.2014.2360075 ( reposiTUm)
Kogler, L., & Schöberl, J. (2022). An algebraic multigrid method for elasticity based on an auxiliary topology with edge matrices. Numerical Linear Algebra with Applications, 29(1), Article e2408. https://doi.org/10.1002/nla.2408 ( reposiTUm)
Leumüller, M., Hollaus, K., & Schöberl, J. (2022). Domain decomposition and upscaling technique for metascreens. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 41(3), 938–953. https://doi.org/10.1108/COMPEL-03-2021-0073 ( reposiTUm)
Danczul, T., & Schöberl, J. (2022). A reduced basis method for fractional diffusion operators I. Numerische Mathematik, 151(2), 369–404. https://doi.org/10.1007/s00211-022-01287-y ( reposiTUm)
Dow, D., Gopalakrishnan, J., Schöberl, J., & Wintersteiger, C. (2022). Convergence analysis of some tent-based schemes for linear hyperbolic systems. Mathematics of Computation, 91(334), 699–733. https://doi.org/10.1090/mcom/3686 ( reposiTUm)
Sky, A., Neunteufel, M., Muench, I., Schöberl, J., & Neff, P. (2022). Primal and mixed finite element formulations for the relaxed micromorphic model. Computer Methods in Applied Mechanics and Engineering, 399, Article 115298. https://doi.org/10.1016/j.cma.2022.115298 ( reposiTUm)
Neunteufel, M., & Schöberl, J. (2021). Avoiding membrane locking with Regge interpolation. Computer Methods in Applied Mechanics and Engineering, 373, Article 113524. https://doi.org/10.1016/j.cma.2020.113524 ( reposiTUm)
Schöbinger, M., Schöberl, J., & Hollaus, K. (2021). An Equilibrated Error Estimator for the Multiscale Finite Element Method of a 2-D Eddy Current Problem. IEEE Transactions on Magnetics, 57(6), 1–4. https://doi.org/10.1109/tmag.2021.3065732 ( reposiTUm)
Kraus, J., Lederer, P. L., Lymbery, M., & Schöberl, J. (2021). Uniformly well-posed hybridized discontinuous Galerkin/hybrid mixed discretizations for Biot’s consolidation model. Computer Methods in Applied Mechanics and Engineering, 384(113991), 113991. https://doi.org/10.1016/j.cma.2021.113991 ( reposiTUm)
Danczul, T., & Schöberl, J. (2021). A reduced basis method for fractional diffusion operators II. Journal of Numerical Mathematics, 29(4), 269–287. https://doi.org/10.1515/jnma-2020-0042 ( reposiTUm)
Neunteufel, M., Pechstein, A. S., & Schöberl, J. (2021). Three-field mixed finite element methods for nonlinear elasticity. Computer Methods in Applied Mechanics and Engineering, 382, Article 113857. https://doi.org/10.1016/j.cma.2021.113857 ( reposiTUm)
Sky, A., Neunteufel, M., Münch, I., Schöberl, J., & Neff, P. (2021). A hybrid H1 x H(curl) finite element formulation for a relaxed micromorphic continuum model of antiplane shear. Computational Mechanics, 68, 1–24. https://doi.org/10.1007/s00466-021-02002-8 ( reposiTUm)
Leumüller, M., Auinger, B., Schöberl, J., & Hollaus, K. (2021). Enhanced Technique for Metascreens Using the Generalized Finite Element Method. IEEE Transactions on Magnetics, 57(6), Article 7401704. https://doi.org/10.1109/tmag.2021.3065118 ( reposiTUm)
Melching, D., Neunteufel, M., Schöberl, J., & Stefanelli, U. (2021). A finite-strain model for incomplete damage in elastoplastic materials. Computer Methods in Applied Mechanics and Engineering, 374, Article 113571. https://doi.org/10.1016/j.cma.2020.113571 ( reposiTUm)
Pfeiler, C.-M., Ruggeri, M., Stiftner, B., Exl, L., Hochsteger, M., Hrkac, G., Schöberl, J., Mauser, N. J., & Praetorius, D. (2020). Computational micromagnetics with Commics. Computer Physics Communications, 248, Article 106965. https://doi.org/10.1016/j.cpc.2019.106965 ( reposiTUm)
Neunteufel, M., & Schöberl, J. (2020). Fluid-structure interaction with H(div)-conforming finite elements. Computers and Structures, 243(106402), 106402. https://doi.org/10.1016/j.compstruc.2020.106402 ( reposiTUm)
Gangl, P., Sturm, K., Neunteufel, M., & Schöberl, J. (2020). Fully and semi-automated shape differentiation in NGSolve. Structural and Multidisciplinary Optimization, 63(3), 1579–1607. https://doi.org/10.1007/s00158-020-02742-w ( reposiTUm)
Braess, D., Pechstein, A. S., & Schöberl, J. (2020). An Equilibration Based A Posteriori Error Estimate for the Biharmonic Equation and Two Finite Element Methods. IMA Journal of Numerical Analysis, 40(2), 951–975. https://doi.org/10.1093/imanum/drz005 ( reposiTUm)
Holzinger, S., Schöberl, J., & Gerstmayr, J. (2020). The equations of motion for a rigid body using non-redundant unified local velocity coordinates. Multibody System Dynamics, 48(3), 283–309. https://doi.org/10.1007/s11044-019-09700-5 ( reposiTUm)
Perugia, I., Schöberl, J., Stocker, P., & Wintersteiger, C. (2020). Tent pitching and Trefftz-DG method for the acoustic wave equation. Computers and Mathematics with Applications, 79(10), 2987–3000. https://doi.org/10.1016/j.camwa.2020.01.006 ( reposiTUm)
Gopalakrishnan, J., Schöberl, J., & Wintersteiger, C. (2020). Structure aware Runge-Kutta time stepping for spacetime tents. Partial Differential Equations and Applications, 1(19). https://doi.org/10.1007/s42985-020-00020-4 ( reposiTUm)
Lederer, P. L., Lehrenfeld, C., & Schöberl, J. (2020). Divergence-free tangential finite element methods for incompressible flows on surfaces. International Journal for Numerical Methods in Engineering, 121(11), 2503–2533. https://doi.org/10.1002/nme.6317 ( reposiTUm)
Schöbinger, M., Steentjes, S., Schöberl, J., Hameyer, K., & Hollaus, K. (2019). MSFEM for the Eddy Current Problem in a Laminated Core Including Hysteresis. IEEE Transactions on Magnetics, 55(8), 1–9. https://doi.org/10.1109/tmag.2019.2907894 ( reposiTUm)
Schroeder, P. W., John, V., Lederer, P. L., Lehrenfeld, C., Lube, G., & Schöberl, J. (2019). On reference solutions and the sensitivity of the 2d Kelvin-Helmholtz instability problem. Computers and Mathematics with Applications, 77(4), 1010–1028. https://doi.org/10.1016/j.camwa.2018.10.030 ( reposiTUm)
Neunteufel, M., & Schöberl, J. (2019). The Hellan-Herrmann-Johnson Method for Nonlinear Shells. Computers and Structures, 225(106109), 106109. https://doi.org/10.1016/j.compstruc.2019.106109 ( reposiTUm)
Gopalakrishnan, J., Lederer, P. L., & Schöberl, J. (2019). A mass conserving mixed stress formulation for the Stokes equations. IMA Journal of Numerical Analysis, 40(3), 1838–1874. https://doi.org/10.1093/imanum/drz022 ( reposiTUm)
Hollaus, K., Schöberl, J., & Schöbinger, M. (2019). MSFEM and MOR to Minimize the Computational Costs of Nonlinear Eddy-Current Problems in Laminated Iron Cores. IEEE Transactions on Magnetics, 56(2), 1–4. https://doi.org/10.1109/tmag.2019.2954392 ( reposiTUm)
Schöbinger, M., Schöberl, J., & Hollaus, K. (2019). Multiscale FEM for the Linear 2-D/1-D Problem of Eddy Currents in Thin Iron Sheets. IEEE Transactions on Magnetics, 55(1), 1–12. https://doi.org/10.1109/tmag.2018.2879030 ( reposiTUm)
Pechstein, A. S., & Schöberl, J. (2018). An analysis of the TDNNS method using natural norms. Numerische Mathematik, 139(1), 93–120. https://doi.org/10.1007/s00211-017-0933-3 ( reposiTUm)
Lederer, P. L., & Schöberl, J. (2018). Polynomial robust stability analysis for H(div)-conforming finite elements for the Stokes equations. IMA Journal of Numerical Analysis, 38(4), 1832–1860. https://doi.org/10.1093/imanum/drx051 ( reposiTUm)
Hollaus, K., & Schöberl, J. (2018). Some Two-Dimensional Multiscale Finite Element Formulations for the Eddy Current Problem in Iron Laminates. IEEE Transactions on Magnetics, 54(4), 1–16. https://doi.org/10.1109/tmag.2017.2777395 ( reposiTUm)
Schöbinger, M., Schöberl, J., & Hollaus, K. (2018). An Error Estimator for Multiscale FEM for the Eddy-Current Problem in Laminated Materials. IEEE Transactions on Magnetics, 54(3), Article 7203204. https://doi.org/10.1109/tmag.2017.2762357 ( reposiTUm)
Schöbinger, M., Hollaus, K., & Schöberl, J. (2017). An efficient reformulation of a multiscale method for the eddy current problem. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 36(5), 1421–1429. https://doi.org/10.1108/compel-02-2017-0091 ( reposiTUm)
Pechstein, A., & Schöberl, J. (2017). The TDNNS method for Reissner-Mindlin plates. Numerische Mathematik, 137(3), 713–740. http://hdl.handle.net/20.500.12708/147031 ( reposiTUm)
Lederer, P. L., Linke, A., Merdon, C., & Schöberl, J. (2017). Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations With Continuous Pressure Finite Elements. SIAM Journal on Numerical Analysis, 55(3), 1291–1314. https://doi.org/10.1137/16m1089964 ( reposiTUm)
Halla, M., Hohage, T., Nannen, L., & Schöberl, J. (2016). Hardy space infinite elements for time harmonic wave equations with phase and group velocities of different signs. Numerische Mathematik, 133(1), 103–139. https://doi.org/10.1007/s00211-015-0739-0 ( reposiTUm)
Brennecke, C., Linke, A., Merdon, C., & Schöberl, J. (2015). Optimal and pressure-independent L2 velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM. JOURNAL OF COMPUTATIONAL MATHEMATICS, 33(2), 191–208. https://doi.org/10.4208/jcm.1411-m4499 ( reposiTUm)
Hollaus, K., & Schöberl, J. (2015). Multi-scale FEM and magnetic vector potential A for 3D eddy currents in laminated media. COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 34(5), 1598–1608. https://doi.org/10.1108/compel-02-2015-0090 ( reposiTUm)
Kitzler, G., & Schöberl, J. (2015). A high order space momentum discontinuous Galerkin method for the Boltzmann equation. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 70(7), 1539–1554. https://doi.org/10.1016/j.camwa.2015.06.011 ( reposiTUm)
Hollaus, K., Hannukainen, A., & Schöberl, J. (2014). Two-Scale Homogenization of the Nonlinear Eddy Current Problem with FEM. IEEE Transactions on Magnetics, 50(2), 413–416. https://doi.org/10.1109/tmag.2013.2282334 ( reposiTUm)
Brandstetter, M., Liertzer, M., Deutsch, C., Klang, P., Schöberl, J., Türeci, H. E., Strasser, G., Unterrainer, K., & Rotter, S. (2014). Reversing the pump-dependence of a laser at an exceptional point. Nature Communications, 5(4034). https://doi.org/10.1038/ncomms5034 ( reposiTUm)
Hauck, A., Ertl, M., Schöberl, J., & Kaltenbacher, M. (2013). Accurate magnetostatic simulation of step-lap joints in transformer cores using anisotropic higher order FEM. COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 32(5), 1581–1595. https://doi.org/10.1108/compel-04-2013-0134 ( reposiTUm)
Nannen, L., Hohage, T., Schädle, A., & Schöberl, J. (2013). Exact Sequences of High Order Hardy Space Infinite Elements for Exterior Maxwell Problems. SIAM Journal on Scientific Computing, 35(2), A1024–A1048. https://doi.org/10.1137/110860148 ( reposiTUm)
Mardal, K.-A., Schöberl, J., & Winther, R. (2012). A uniformly stable Fortin operator for the Taylor-Hood element. Numerische Mathematik, 123(3), 537–551. https://doi.org/10.1007/s00211-012-0492-6 ( reposiTUm)
Balan, A., May, G., & Schöberl, J. (2012). A Stable High-Order Spectral Difference Method for Hyperbolic Conservation Laws in Triangular Elements. Journal of Computational Physics, 231(5), 2359–2375. https://doi.org/10.1016/j.jcp.2011.11.041 ( reposiTUm)
Hannukainen, A., Huber, M., & Schöberl, J. (2011). A Mixed Hybrid Finite Element Method for the Helmholtz Equation. Journal of Modern Optics, 58(5–6), 424–437. https://doi.org/10.1080/09500340.2010.527067 ( reposiTUm)
Pechstein, A., & Schöberl, J. (2011). Anisotropic mixed finite elements for elasticity. International Journal for Numerical Methods in Engineering, VOL.87. http://hdl.handle.net/20.500.12708/162963 ( reposiTUm)
Demkowicz, L., Gopalakrishnan, J., & Schöberl, J. (2011). Polynomial Extension Operators. Part III. Mathematics of Computation, 81(279), 1289–1326. https://doi.org/10.1090/s0025-5718-2011-02536-6 ( reposiTUm)
Schöberl, J., Melenk, J. M., Pechstein, C., & Zaglmayr, S. (2007). Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements. IMA Journal of Numerical Analysis, 28(1), 1–24. https://doi.org/10.1093/imanum/drl046 ( reposiTUm)

Beiträge in Tagungsbänden

Schöberl, J. (2024). Matrix-valued Finite Elements for Solids, Structures and Fluids. In Chemnitz FE-Symposium 2024 : Programme, Collection of abstracts, List of participants (pp. 14–14). ( reposiTUm)
Codecasa, L., Kapidani, B., Schöberl, J., & Wess, M. (2024). Mass-lumped high-order cell methods for the time-dependent Maxwell’s equations. In L. Gizon (Ed.), Book of Abstracts: The 16th International Conference on Mathematical and Numerical Aspects of Wave Propagation (WAVES 2024) (pp. 353–354). http://hdl.handle.net/20.500.12708/199091 ( reposiTUm)
Neunteufel, M., & Schöberl, J. (2023). The Hellan-Herrmann-Johnson and TDNNS method for nonlinear Koiter and Naghdi shells. In 10th GACM Colloquium on Computational Mechanics from Young Scientists from Academia and Industry (pp. 90–90). ( reposiTUm)
Neunteufel, M., Gopalakrishnan, J., Schöberl, J., & Wardetzky, M. (2023). Analysis of distributional Riemann curvature tensor in any dimension. In International Workshop “Vector- and Tensor-Valued Surface PDEs” : Program and Abstract Book (pp. 17–17). http://hdl.handle.net/20.500.12708/190511 ( reposiTUm)
Neunteufel, M., Gopalakrishnan, J., Schöberl, J., & Wardetzky, M. (2023). Distributional Curvatures On Discrete Surfaces With Application To Shells. In Anaday 2023 - 17th Austrian Numerical Analysis Day (pp. 12–12). http://hdl.handle.net/20.500.12708/189670 ( reposiTUm)
Codecasa, L., Kapidani, B., Schöberl, J., & Wess, M. (2023). High-order cell methods for time-dependent Maxwell equations. In ANADAY 2023 : 17th Austrian Numerical Analysis Day : Book of Abstracts (pp. 26–26). http://hdl.handle.net/20.500.12708/190880 ( reposiTUm)
Bahr, B., Faustmann, M., Marcati, C., Melenk, J. M., & Schwab, C. (2023). Exponential Convergence of hp-FEM for the Integral Fractional Laplacian in 1D. In J. M. Melenk, I. Perugia, J. Schöberl, & C. Schwab (Eds.), Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1 : Selected Papers from the ICOSAHOM Conference, Vienna, Austria, July 12-16, 2021 (pp. 291–306). Springer. https://doi.org/10.1007/978-3-031-20432-6_18 ( reposiTUm)
Leumüller, M., Auinger, B., Hackl, H., Schöberl, J., & Hollaus, K. (2020). Imperfect EM Shielding by Thin Conducting Sheets with PEC and SIBC. In K. Hameyer & A. Benabou (Eds.), 2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG). IEEE Xplore. https://doi.org/10.1109/compumag45669.2019.9032816 ( reposiTUm)
Gopalakrishnan, J., Hochsteger, M., Schöberl, J., & Wintersteiger, C. (2020). An Explicit Mapped Tent Pitching Scheme for Maxwell Equations. In Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018 (pp. 359–369). Springer. https://doi.org/10.1007/978-3-030-39647-3_28 ( reposiTUm)
Höller, R., Aminbaghai, M., Eberhardsteiner, L., Eberhardsteiner, J., Blab, R., Pichler, B., & Hellmich, C. (2019). Rigorous Amendment of Vlasov’s Theory for Thin Elastic Plates on Elastic Winkler Foundations, Based on the Priniple of Virtual Power. In J. Eberhardsteiner & J. Schöberl (Eds.), Book of Abstracts of the 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2019) (p. 156). TU Verlag. http://hdl.handle.net/20.500.12708/62644 ( reposiTUm)
Hellmich, C. (2019). Towards Unified Hierarchical Modeling of Hard and Soft Biological Tissues. In J. Eberhardsteiner & J. Schöberl (Eds.), Book of Abstracts of the 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2019) (p. 5). TU Verlag. http://hdl.handle.net/20.500.12708/62643 ( reposiTUm)
Pichler, B., & Hellmich, C. (2019). Homogenization of Cementitious Materials: Stiffness, Creep, Strength. In J. Eberhardsteiner & J. Schöberl (Eds.), Book of Abstracts of the 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2019) (pp. 295–296). TU Verlag. http://hdl.handle.net/20.500.12708/62646 ( reposiTUm)
Pech, S., Kandler, G., Lukacevic, M., & Füssl, J. (2019). Metamodel Assisted Optimization of Glued Laminated Timber Beams by Using Metaheuristic Algorithms. In J. Eberhardsteiner & J. Schöberl (Eds.), Book of Abstracts of the 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2019) (p. 438). TU Verlag. http://hdl.handle.net/20.500.12708/62648 ( reposiTUm)
Wittner, V., Morin, C., & Hellmich, C. (2019). Hierarchical Elastoplasticity of Bone. In J. Eberhardsteiner & J. Schöberl (Eds.), Book of Abstracts of the 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2019) (pp. 112–113). TU Verlag. http://hdl.handle.net/20.500.12708/62647 ( reposiTUm)
Stembera, V., & Füssl, J. (2019). A Performance Comparison of Different Shell Elements for Upper Bound Limit Analysis. In J. Eberhardsteiner & J. Schöberl (Eds.), Book of Abstracts of the 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2019) (p. 548). TU Verlag. http://hdl.handle.net/20.500.12708/62649 ( reposiTUm)
Mang, H. A. (2019). Pseudo-Kinematic Invariants - Gems in FE Structural Analyses. In J. Eberhardsteiner & J. Schöberl (Eds.), Book of Abstracts of the 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2019) (p. 154). TU Verlag. http://hdl.handle.net/20.500.12708/62652 ( reposiTUm)
Gößnitzer, C., & Steinrück, H. (2019). A new approach to simulate confined, premixed and slow combustion. In J. Eberhardsteiner & J. Schöberl (Eds.), 90th Annual Meeting of the Association of Applied Mathematics and Mechanics (pp. 1–2). PAMM. http://hdl.handle.net/20.500.12708/68124 ( reposiTUm)
Gopalakrishnan, J., Schöberl, J., & Wintersteiger, C. (2019). An explicit Mapped Tent Pitching scheme for hyperbolic systems. In M. Kaltenbacher, J. M. Melenk, L. Nannen, & F. Toth (Eds.), Proceedings of the 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation (pp. 272–273). Proceedings of the 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation. http://hdl.handle.net/20.500.12708/41758 ( reposiTUm)
Kapidani, B., & Schöberl, J. (2019). A matrix-free Discontinuous Galerkin method for the time dependent Maxwell equations in open domians. In M. Kaltenbacher, J. M. Melenk, L. Nannen, & F. Toth (Eds.), Proceedings of the 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation (pp. 432–433). Proceedings of the 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation. http://hdl.handle.net/20.500.12708/41759 ( reposiTUm)
Hollaus, K., Schöberl, J., & Schöbinger, M. (2018). MOR for the MSFEM of the Eddy Current Problem in Linear Laminated Media. In F. Breitenecker, W. Kemmetmüller, A. Körner, A. Kugi, & I. Troch (Eds.), MATHMOD 2018 - 9th Vienna International Conference on Mathematical Modelling (pp. 121–122). MATHMOD 2018 - 9th Vienna International Conference on Mathematical Modelling. http://hdl.handle.net/20.500.12708/41665 ( reposiTUm)
Hollaus, K., Schöberl, J., & Schöbinger, M. (2018). Air Gap and Edge Effect in the 2D/1D Method with the Magnetic Vector Potential A Using MSFEM. In O. A. Mohammed & R. Zhuoxiang (Eds.), The 18th Biennial IEEE Conference on Electromagnetic Field Computation CEFC 2018 (pp. 1–27). IEEE Explore. http://hdl.handle.net/20.500.12708/41654 ( reposiTUm)
Hollaus, K., & Schöberl, J. (2016). Various two dimensional multi-scale finite element formulations for the eddy current problem in iron laminates. In R. Scorretti & L. Krähenbühl (Eds.), EMF 2016 10th International Symposium on Electric and Magnetic Fields (p. 1). Ampère Laboratory (CNRS and Université de Lyon). http://hdl.handle.net/20.500.12708/41480 ( reposiTUm)
Schöberl, J., & Hamberger, P. (2016). Two-Scale Finite Elements for Laminates in NGS-Py. In K. Hollaus (Ed.), Workshop MSHOM 2016 (pp. 15–16). http://hdl.handle.net/20.500.12708/41597 ( reposiTUm)
Schöbinger, M., Hollaus, K., & Schöberl, J. (2016). A Residual Error Estimator for MSFEM in 2 D. In K. Hollaus (Ed.), Workshop MSHOM 2016 (pp. 17–18). http://hdl.handle.net/20.500.12708/41598 ( reposiTUm)
Hollaus, K., Schöberl, J., Silm, H., & Kaltenbacher, M. (2016). Multiscale Finite Element Method for the Eddy Current Problem in Iron Laminates. In K. Hollaus (Ed.), Workshop MSHOM 2016 (pp. 7–8). http://hdl.handle.net/20.500.12708/41596 ( reposiTUm)
Gopalakrishnan, J., & Schöberl, J. (2015). Degree and wavenumber [in]dependence of a Schwarz preconditioner for the DPG method’. In R. Kirby, M. Berzins, & J. S. Hesthaven (Eds.), Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014 (p. 8). Springer International Publishing Switzerland. http://hdl.handle.net/20.500.12708/41498 ( reposiTUm)
Nannen, L., Hohage, T., Schädle, A., & Schöberl, J. (2013). Hardy space method for exterior Maxwell problems. In R. Hiptmair, R. H. W. Hoppe, U. Langer, & P. Joly (Eds.), Computational Electromagnetism and Acoustics. EMS Press. http://hdl.handle.net/20.500.12708/41250 ( reposiTUm)
Hauck, A., Ertl, M., Schöberl, J., & Kaltenbacher, M. (2012). Accurate Magnetostatic Simulation of Step-Lap Joints in Transformer Cores Using Anisotropic Higher Order FEM. In The 15 International IGTE Symposium on Numerical Field Calculation in Electrical Engineering (pp. 226–231). Verlag der Technischen Universität Graz. http://hdl.handle.net/20.500.12708/66687 ( reposiTUm)
Hollaus, K., Huber, M., Schöberl, J., & Hamberger, P. (2012). A Linear FEM Benchmark for the Homogenization of the Eddy Currents in Laminated Media in 3 D. In Proceedings of the IFAC 2013 (pp. 1190–1194). Proceedings of the IFAC 2012, International Federation of Automatic Control. http://hdl.handle.net/20.500.12708/41588 ( reposiTUm)
Hollaus, K., & Schöberl, J. (2012). Two-scale FEM for the linear Eddy Current Problem in 3D. In N. Takahashi, D. Dorrell, & Y. Guo (Eds.), 18th International Conference on the Computation of Electromagnetic Fields (pp. 968–970). Curran Associates Inc., New York, USA. http://hdl.handle.net/20.500.12708/41599 ( reposiTUm)
Hollaus, K., Feldengut, D., Schöberl, J., Wabro, M., & Omeragic, D. (2012). Domain Decomposition and Homogenization for Maxwell’s Equations of Large Scale Problems. In S. M. Tauböck & F. Breitenecker (Eds.), ARGESIM Report (pp. 1–14). Argesim / Asim. http://hdl.handle.net/20.500.12708/41600 ( reposiTUm)
Halla, M., Hohage, T., Nannen, L., & Schöberl, J. (2012). Hardy space method for waveguides. In J. M. Melenk, P. Monk, & C. Wieners (Eds.), Mini-Workshop: Efficient and Robust Approximation of the Helmholtz Equation. EMS Press. http://hdl.handle.net/20.500.12708/41235 ( reposiTUm)
Hollaus, K., & Schöberl, J. (2010). Homogenization of the Eddy Current Problem in 2D. In The 14th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering (pp. 155–159). http://hdl.handle.net/20.500.12708/41152 ( reposiTUm)
Schöberl, J., Melenk, J. M., Pechstein, C., & Zaglmayr, S. (2007). Schwarz Preconditioning for High Order Simplicial Finite Elements. In Domain Decomposition Mehods in Science and Engineering XVI (pp. 139–150). Springer. http://hdl.handle.net/20.500.12708/40628 ( reposiTUm)
Schmidt, E., Schöberl, J., & Hamberger, P. (2005). Nested Multigrid Finite Element Analyses of Eddy Current Losses in Power Transformers. In Proceedings of the 21th International Conference on Applied Computational Electromagnetics (pp. 674–677). http://hdl.handle.net/20.500.12708/68888 ( reposiTUm)

Beiträge in Büchern

Schöberl, J., & Lehrenfeld, C. (2012). Domain Decomposition Preconditioning for High Order Hybrid Discontinuous Galerkin Methods on Tetrahydral Meshes. In Advanced Finite Element Methods and Applications (pp. 27–54). Springer Verlag. http://hdl.handle.net/20.500.12708/27540 ( reposiTUm)

Bücher

Schöberl, J., & Lehrenfeld, C. (Eds.). (2012). Domain Decomposition Preconditioning for High Order Hybrid Discontinuous Galerkin Methods on Tetrahedral Meshes. Springer Verlag. https://doi.org/10.1007/978-3-642-30316-6 ( reposiTUm)

Tagungsbände

Melenk, J. M., Perugia, I., Schöberl, J., & Schwab, C. (Eds.). (2023). Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1 (Vol. 137). Springer. https://doi.org/10.1007/978-3-031-20432-6 ( reposiTUm)

Präsentationen

Bonetti, E., Schöberl, J., & Schöberl, J. (2024, September 11). Distributional finite elements for linearised Einstein-Bianchi equations [Conference Presentation]. Chemnitz Finite Element Symposium 2024, Chemnitz, Germany. ( reposiTUm)
Schöberl, J. (2024, June 18). Ongoing development in NGSolve [Conference Presentation]. NGSolve User Meeting 2024, Wien, Austria. http://hdl.handle.net/20.500.12708/210767 ( reposiTUm)
Schöberl, J. (2024, September 26). Distributional finite elements with applications for elasticity, fluids, and curvature [Keynote Presentation]. Modelling, PDE analysis and computational mathematics in materials science, Prag, Czechia. http://hdl.handle.net/20.500.12708/210763 ( reposiTUm)
Schöberl, J. (2024, June 19). Performance: threading, MPI, GPUs [Conference Presentation]. NGSolve User Meeting 2024, Wien, Austria. http://hdl.handle.net/20.500.12708/210770 ( reposiTUm)
Schöberl, J. (2024, May 22). NGSolve: Advanced Finite Elements and High Performance Computing [Keynote Presentation]. High Performance Computing in Science and Engineering (HPCSE 2024), Bzové-Soláň, Czechia. http://hdl.handle.net/20.500.12708/210773 ( reposiTUm)
Schöberl, J. (2024, July 3). NetGen/NGSolve [Keynote Presentation]. PDE software frameworks conference (PDESoft 2024), Cambridge, United Kingdom of Great Britain and Northern Ireland (the). http://hdl.handle.net/20.500.12708/210775 ( reposiTUm)
Wess, M., Codecasa, L., Kapidani, B., & Schöberl, J. (2024, April 17). Mass-Lumped High-Order Cell Methods for Time-Dependent Maxwell Equations [Conference Presentation]. 16th Annual Meeting Photonic Devices (AMPD 2024), Berlin, Germany. http://hdl.handle.net/20.500.12708/197170 ( reposiTUm)
Neunteufel, M., & Schöberl, J. (2023, June 9). The Hellan-Herrmann-Johnson And TDNNS Method For Nonlinear Koiter And Naghdi Shells [Conference Presentation]. Jena-Augsburg-Meeting (JAM) on Numerical Analysis, Augsburg, Germany. ( reposiTUm)
Neunteufel, M., Gopalakrishnan, J., Schöberl, J., & Wardetzky, M. (2023, September 4). Distributional curvature approximations with applications to shells [Conference Presentation]. European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2023), Lissabon, Portugal. http://hdl.handle.net/20.500.12708/188472 ( reposiTUm)
Wess, M., Schöberl, J., Kapidani, B., & Codecasa, L. (2023, July 5). High-order cell methods for time-dependent Maxwell equations [Conference Presentation]. SUPRENUM PDE 2023, Lausanne, Switzerland. http://hdl.handle.net/20.500.12708/191454 ( reposiTUm)
Pfeiler, C.-M., Ruggeri, M., Stiftner, B., Exl, L., Hochsteger, M., Hrkac, G., Schöberl, J., Mauser, N. J., & Praetorius, D. (2019). Computational studies of nonlinear skyrmion dynamics. HMM 2019 - 12th International Symposium on Hysteresis Modeling and Micromagnetics, Heraklion, Crete, Greece. http://hdl.handle.net/20.500.12708/122854 ( reposiTUm)
Pfeiler, C.-M., Ruggeri, M., Stiftner, B., Exl, L., Hochsteger, M., Hrkac, G., Schöberl, J., Mauser, N., & Praetorius, D. (2018). Computational micromagnetics with Commics. Micromagnetics: Analysis, Numerics, Applications (MANA 2018), Vienna, Austria. http://hdl.handle.net/20.500.12708/122615 ( reposiTUm)
Exl, L., Hochsteger, M., Hrkac, G., Mauser, N., Pfeiler, C.-M., Praetorius, D., Ruggeri, M., Schöberl, J., & Stiftner, B. (2018). Computational micromagnetics with Commics. 2nd NGSolve User Meeting, Göttingen, Germany. http://hdl.handle.net/20.500.12708/122692 ( reposiTUm)
Exl, L., Hochsteger, M., Hrkac, G., Mauser, N., Pfeiler, C.-M., Praetorius, D., Ruggeri, M., Schöberl, J., & Stiftner, B. (2018). Computational micromagnetics with commix. 2nd NGSolve User Meeting, Göttingen, Germany. http://hdl.handle.net/20.500.12708/122411 ( reposiTUm)
Hollaus, K., & Schöberl, J. (2014). Multi-Scale Finite Element Method to Simulate Eddy Currents in Laminated Iron. Scientific Computing in Electrical Engineering SCEE 2014, Wuppertal, Germany. http://hdl.handle.net/20.500.12708/121713 ( reposiTUm)
Rotter, S., Liertzer, M., Hisch, T., Brandstetter, M., Tureci, H., Deutsch, C., Klang, P., Pogany, D., Schöberl, J., Strasser, G., & Unterrainer, K. (2013). Controlling a Laser by Spatial Variation of the Pump Profile. Ferdinand Braun Institute Colloquium, Berlin, EU. http://hdl.handle.net/20.500.12708/130396 ( reposiTUm)
Nannen, L., Hohage, T., Schöberl, J., & Schädle, A. (2013). Hardy space method for exterior Maxwell problems. Modeling, Analysis and Simulation of Optical Modes in Photonic Devices, Berlin, EU. http://hdl.handle.net/20.500.12708/121120 ( reposiTUm)
Nannen, L., & Schöberl, J. (2012). Hardy space in nite elements for exterior Maxwell problems. 25th FEM Symposium Chemnitz, TU Chemnitz, EU. http://hdl.handle.net/20.500.12708/120138 ( reposiTUm)
Kitzler, G., & Schöberl, J. (2012). A high order discontinuous Galerkin method for the Boltzmann Equation. 25th FEM Symposium Chemnitz, TU Chemnitz, EU. http://hdl.handle.net/20.500.12708/120139 ( reposiTUm)
Hollaus, K., & Schöberl, J. (2012). Homogenization of the Nonlinear Eddy Current Problem with FEM in 2D. 15th International IGTE Symposium 2012, TU Graz, Austria. http://hdl.handle.net/20.500.12708/120141 ( reposiTUm)
Schöberl, J. (2012). Hybrid mixed Methods for the Helmholtz Equation. Efficient and Robust Approximation of the Helmholtz Equation, Mathematisches Forschungsinstitut Oberwolfach, EU. http://hdl.handle.net/20.500.12708/120180 ( reposiTUm)

Berichte

Pfeiler, C.-M., Ruggeri, M., Stiftner, B., Exl, L., Hochsteger, M., Hrkac, G., Schöberl, J., Mauser, N., & Praetorius, D. (2018). Computational micromagnetics with Commics (ASC Report 33/2018; pp. 1–21). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30838 ( reposiTUm)
Kitzler, G., & Schöberl, J. (2017). A polynomial spectral method for the spatially homogeneous Boltzmann equation in 3 dimensions (ASC Report 28/2017; pp. 1–32). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30798 ( reposiTUm)
Hollaus, K., & Schöberl, J. (2017). Some two-dimensional multiscale finite element formulations for the eddy current problem in iron laminates (ASC Report 21/2017; pp. 1–14). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30791 ( reposiTUm)
Lehrenfeld, C., & Schöberl, J. (2015). High order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows (ASC Report 27/2015; pp. 1–21). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28697 ( reposiTUm)
Halla, M., Hohage, T., Nannen, L., & Schöberl, J. (2014). Hardy Space Infinite Elements for Time-Harmonic Wave Equations with Phase Velocities of Different Signs (ASC Report 18/2014; pp. 1–32). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28287 ( reposiTUm)
Kitzler, G., & Schöberl, J. (2014). A High Order Space Momentum Discontinuous Galerkin Method for the Boltzmann Equation (ASC Report 28/2014; pp. 1–19). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28327 ( reposiTUm)
Schöberl, J. (2014). C++11 Implementation of Finite Elements in NGSolve (ASC Report 30/2014; pp. 1–23). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28346 ( reposiTUm)
Kitzler, G., & Schöberl, J. (2013). Efficient Spectral Methods for the spatially homogeneous Boltzmann equation (ASC Report 13/2013; pp. 1–26). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27916 ( reposiTUm)
Huber, M., Pechstein, A., & Schöberl, J. (2011). Hybrid Domain Decomposition Solvers for Scalar and Vectorial Wave Equation (Asc Report 15/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27177 ( reposiTUm)
Nannen, L., Hohage, T., Schädle, A., & Schöberl, J. (2011). High order Curl-conforming Hardy space infinite elements for exterior Maxwell problems (1103.2288v1). http://hdl.handle.net/20.500.12708/37077 ( reposiTUm)
Nannen, L., Hohage, T., Schädle, A., & Schöberl, J. (2011). Hardy space infinite elements for exterior Maxwell problems (Seite 257-260). http://hdl.handle.net/20.500.12708/37078 ( reposiTUm)
Melenk, J. M., Pechstein, C., Zaglmayr, S., & Schöberl, J. (2005). Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements. http://hdl.handle.net/20.500.12708/31705 ( reposiTUm)

Preprints

Gopalakrishnan, J., Lederer, P. L., & Schöberl, J. (2019). A mass conserving mixed stress formulation for Stokes flow with weakly imposed stress symmetry. arXiv. https://doi.org/10.48550/arXiv.1901.04648 ( reposiTUm)
Danczul, T., & Schöberl, J. (2019). A Reduced Basis Method for Fractional Diffusion Operators I. arXiv. https://doi.org/10.48550/arXiv.1904.05599 ( reposiTUm)
Neunteufel, M., & Schöberl, J. (2019). Avoiding Membrane Locking with Regge Interpolation. arXiv. https://doi.org/10.48550/arXiv.1907.06232 ( reposiTUm)
Lederer, P. L., Lehrenfeld, C., & Schöberl, J. (2018). Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows Part II. arXiv. https://doi.org/10.48550/arXiv.1805.06787 ( reposiTUm)
Gopalakrishnan, J., Lederer, P. L., & Schöberl, J. (2018). A mass conserving mixed stress formulation for the Stokes equations. arXiv. https://doi.org/10.48550/arXiv.1806.07173 ( reposiTUm)
Lederer, P. L., Lehrenfeld, C., & Schöberl, J. (2017). Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. arXiv. http://hdl.handle.net/20.500.12708/147047 ( reposiTUm)
Braess, D., Pechstein, A., & Schöberl, J. (2017). An Equilibration Based A Posteriori Error Estimate for the Biharmonic Equation and Two Finite Element Methods. arXiv. https://doi.org/10.48550/arXiv.1705.07607 ( reposiTUm)
Lederer, P. L., Schöberl, J., & Merdon, C. (2017). Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods. arXiv. https://doi.org/10.48550/arXiv.1712.01625 ( reposiTUm)
Lederer, P. L., Linke, A., Merdon, C., & Schöberl, J. (2016). Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations With Continuous Pressure Finite Elements. arXiv. https://doi.org/10.48550/arXiv.1609.03701 ( reposiTUm)
Schöberl, J., & Lederer, P. L. (2016). Polynomial robust stability analysis for H(div)-conforming finite elements for the Stokes equations. arXiv. https://doi.org/10.48550/arXiv.1612.01482 ( reposiTUm)
Pechstein, A., & Schöberl, J. (2016). An analysis of the TDNNS method using natural norms. arXiv. https://doi.org/10.48550/arXiv.1606.06853 ( reposiTUm)
Gopalakrishnan, J., Schöberl, J., & Wintersteiger, C. (2016). Mapped tent pitching schemes for hyperbolic systems. arXiv. https://doi.org/10.48550/arXiv.1604.01081 ( reposiTUm)