Wissenschaftliche Artikel

Nannen, L., & Wess, M. (2022). Complex-scaled infinite elements for resonance problems in heterogeneous open systems. Advances in Computational Mathematics, 48(2), Article 8. https://doi.org/10.1007/s10444-021-09923-1 ( reposiTUm)
Nannen, L., & Wess, M. (2018). Computing scattering resonances using perfectly matched layers with frequency dependent scaling functions. BIT Numerical Mathematics, 58(2), 373–395. https://doi.org/10.1007/s10543-018-0694-0 ( reposiTUm)
Halla, M., & Nannen, L. (2017). Two scale Hardy space infinite elements for scalar waveguide problems. Advances in Computational Mathematics, 44(3), 611–643. https://doi.org/10.1007/s10444-017-9549-5 ( reposiTUm)
Halla, M., Hohage, T., Nannen, L., & Schöberl, J. (2016). Hardy space infinite elements for time harmonic wave equations with phase and group velocities of different signs. Numerische Mathematik, 133(1), 103–139. https://doi.org/10.1007/s00211-015-0739-0 ( reposiTUm)
Hohage, T., & Nannen, L. (2015). Convergence of infinite element methods for scalar waveguide problems. BIT Numerical Mathematics, 55(1), 215–254. https://doi.org/10.1007/s10543-014-0525-x ( reposiTUm)
Halla, M., & Nannen, L. (2015). Hardy space infinite elements for time-harmonic two-dimensional elastic waveguide problems. Wave Motion, 59, 94–110. https://doi.org/10.1016/j.wavemoti.2015.08.002 ( reposiTUm)
Halla, M., Hohage, T., Nannen, L., & Schöberl, J. (2015). Hardy space infinite elements for time harmonic wave equations with phase and group velocities of different signs. Numerische Mathematik, 133(1), 103–139. https://doi.org/10.1007/s00211-015-0739-0 ( reposiTUm)
Nannen, L., Hohage, T., Schädle, A., & Schöberl, J. (2013). Exact Sequences of High Order Hardy Space Infinite Elements for Exterior Maxwell Problems. SIAM Journal on Scientific Computing, 35(2), A1024–A1048. https://doi.org/10.1137/110860148 ( reposiTUm)
Hein, S., Koch, W., & Nannen, L. (2012). Trapped modes and Fano resonances in two-dimensional acoustical duct-cavity systems. Journal of Fluid Mechanics, 692, 257–287. https://doi.org/10.1017/jfm.2011.509 ( reposiTUm)
Nannen, L., & Schädle, A. (2011). Hardy space infinite elements for Helmholtz-type problems with unbounded inhomogeneities. Wave Motion, 48(2), 116–129. https://doi.org/10.1016/j.wavemoti.2010.09.004 ( reposiTUm)
HEIN, S., KOCH, W., & NANNEN, L. (2010). Fano resonances in acoustics. Journal of Fluid Mechanics, 664, 238–264. https://doi.org/10.1017/s0022112010003757 ( reposiTUm)

Beiträge in Tagungsbänden

Auinger, B., Hollaus, K., Leumüller, M., Nannen, L., & Wess, M. (2019). Complex Scaled Infinite Elements for Electromagnetic Problems in Open Domains. In M. Kaltenbacher, J. M. Melenk, L. Nannen, & F. Toth (Eds.), Proceedings of the 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation (pp. 518–519). Proceedings of the 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation. https://doi.org/10.34726/waves2019 ( reposiTUm)
Nannen, L., Tichy, K., & Wess, M. (2019). Complex Scaled Infinite Elements for Wave Equations in Heterogeneous Open Systems. In M. Kaltenbacher, J. M. Melenk, L. Nannen, & F. Toth (Eds.), Proceedings of the 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation (pp. 520–521). Proceedings of the 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation. https://doi.org/10.34726/waves2019 ( reposiTUm)
Wess, M., & Nannen, L. (2018). Exact complex scalings based on Hardy space infinite elements. In T. Arens (Ed.), Conference on Mathematics of Wave Phenomena (pp. 92–93). http://hdl.handle.net/20.500.12708/41660 ( reposiTUm)
Nannen, L., Hohage, T., Schädle, A., & Schöberl, J. (2013). Hardy space method for exterior Maxwell problems. In R. Hiptmair, R. H. W. Hoppe, U. Langer, & P. Joly (Eds.), Computational Electromagnetism and Acoustics. EMS Press. http://hdl.handle.net/20.500.12708/41250 ( reposiTUm)
Halla, M., Hohage, T., Nannen, L., & Schöberl, J. (2012). Hardy space method for waveguides. In J. M. Melenk, P. Monk, & C. Wieners (Eds.), Mini-Workshop: Efficient and Robust Approximation of the Helmholtz Equation. EMS Press. http://hdl.handle.net/20.500.12708/41235 ( reposiTUm)

Beiträge in Büchern

Nannen, L. (2017). High Order Transparent Boundary Conditions for the Helmholtz Equation. In D. Lahaye, J. Tang, & K. Vuik (Eds.), Modern Solvers for Helmholtz Problems (pp. 27–52). Birkhäuser. https://doi.org/10.1007/978-3-319-28832-1_2 ( reposiTUm)

Präsentationen

Nannen, L. (2020). Tranparent boundary conditions. Summer School 2020 »Computational Photonics«, Karlsruhe, EU. http://hdl.handle.net/20.500.12708/123145 ( reposiTUm)
Nannen, L., & Halla, M. (2014). Scattering problems in elastic waveguides. Mathematisches Kolloquium der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, EU. http://hdl.handle.net/20.500.12708/121121 ( reposiTUm)
Nannen, L., Hohage, T., Schöberl, J., & Schädle, A. (2013). Hardy space method for exterior Maxwell problems. Modeling, Analysis and Simulation of Optical Modes in Photonic Devices, Berlin, EU. http://hdl.handle.net/20.500.12708/121120 ( reposiTUm)
Nannen, L., & Schöberl, J. (2012). Hardy space in nite elements for exterior Maxwell problems. 25th FEM Symposium Chemnitz, TU Chemnitz, EU. http://hdl.handle.net/20.500.12708/120138 ( reposiTUm)
Nannen, L. (2009). A domain decomposition preconditioner for mixed hybrid infinite elements. MAFELAP 13, Brunel University, EU. http://hdl.handle.net/20.500.12708/120518 ( reposiTUm)

Berichte

Nannen, L., & Wess, M. (2016). Spurious modes of the complex scaled Helmholtz Equation (ASC Report 15/2016; pp. 1–32). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29107 ( reposiTUm)
Halla, M., & Nannen, L. (2016). Two scale Hardy space infinite elements for scalar waveguide problems (ASC Report 17/2016; pp. 1–23). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29120 ( reposiTUm)
Halla, M., Hohage, T., Nannen, L., & Schöberl, J. (2014). Hardy Space Infinite Elements for Time-Harmonic Wave Equations with Phase Velocities of Different Signs (ASC Report 18/2014; pp. 1–32). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28287 ( reposiTUm)
Halla, M., & Nannen, L. (2014). Hardy space infinite elements for time-harmonic two-dimensional elastic waveguide problems (ASC Report 33/2014; pp. 1–27). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28376 ( reposiTUm)
Hohage, T., & Nannen, L. (2013). Convergence of infinite element methods for scalar waveguide problems (ASC Report 31/2013; pp. 1–36). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28004 ( reposiTUm)
Nannen, L., Hohage, T., Schädle, A., & Schöberl, J. (2011). High order Curl-conforming Hardy space infinite elements for exterior Maxwell problems (1103.2288v1). http://hdl.handle.net/20.500.12708/37077 ( reposiTUm)
Nannen, L., Hohage, T., Schädle, A., & Schöberl, J. (2011). Hardy space infinite elements for exterior Maxwell problems (Seite 257-260). http://hdl.handle.net/20.500.12708/37078 ( reposiTUm)

Preprints

Nannen, L., & Wess, M. (2019). Complex scaled infinite elements for exterior Helmholtz problems. arXiv. https://doi.org/10.48550/arXiv.1907.09746 ( reposiTUm)

Hochschulschriften

Nannen, L. (2016). Hardy space infinite elements for time-harmonic wave equations [Professorial Dissertation, Technische Universität Wien]. reposiTUm. http://hdl.handle.net/20.500.12708/158879 ( reposiTUm)