Wissenschaftliche Artikel

Hackl, T., Schitter, G., & Mesquida, P. (2022). AC Kelvin Probe Force Microscopy Enables Charge Mapping in Water. ACS Nano. https://doi.org/10.1021/acsnano.2c07121 ( reposiTUm)
Ruiz‑Ortega, L. I., Mesquida, P., Schitter, G., & Tang, B. (2020). Imaging and tracking an electrostatic charge micro-domain by Kelvin force microscopy as evidence of water adsorption on mica surface. Current Applied Physics, 20(12), 1391–1395. https://doi.org/10.1016/j.cap.2020.09.008 ( reposiTUm)
Bansode, S., Bashtanova, U., Li, R., Clark, J., Müller, K. H., Puszkarska, A., Goldberga, I., Chetwood, H. H., Reid, D. G., Colwell, L. J., Skepper, J. N., Shanahan, C. M., Schitter, G., Mesquida, P., & Duer, M. J. (2020). Glycation changes molecular organization and charge distribution in type I collagen fibrils. Scientific Reports, 10, Article 3397. https://doi.org/10.1038/s41598-020-60250-9 ( reposiTUm)
Mesquida, P., Kohl, D., & Schitter, G. (2019). Signal reversal in Kelvin-probe force microscopy. Review of Scientific Instruments, 90(11), 113703. https://doi.org/10.1063/1.5118357 ( reposiTUm)
Ruiz‑Ortega, L. I., Schitter, G., & Mesquida, P. (2019). Electrostatic Read Out for Label‑Free Assays Based on Kelvin Force Principle. Sensing and Imaging, 20, Article 23. https://doi.org/10.1007/s11220-019-0244-0 ( reposiTUm)
Mesquida, P., Kohl, D., Bansode, S., Duer, M., & Schitter, G. (2018). Water desorption in Kelvin-probe force microscopy: a generic model. Nanotechnology, 29(50), 505705. https://doi.org/10.1088/1361-6528/aae413 ( reposiTUm)
Mesquida, P., Kohl, D., Andriotis, O., Thurner, P., Duer, M. J., Bansode, S., & Schitter, G. (2018). Evaluation of surface charge shift of collagen fibrils exposed to glutaraldehyde. Scientific Reports, 8, 1–7. https://doi.org/10.1038/s41598-018-28293-1 ( reposiTUm)
Kohl, D., Mesquida, P., & Schitter, G. (2017). Quantitative AC - Kelvin Probe Force Microscopy. Microelectronic Engineering, 176, 28–32. http://hdl.handle.net/20.500.12708/147196 ( reposiTUm)

Beiträge in Tagungsbänden

Hackl, T., Mesquida, P., Poik, M., & Schitter, G. (2023). Ac kelvin probe force microscopy enables nanoscale surface charge mapping in water. In Proceedings of the Microscience Microscopy Congress 2023 incorporating EMAG 2023. Microscience Microscopy Congress 2023, Manchester, United Kingdom of Great Britain and Northern Ireland (the). https://doi.org/10.22443/rms.mmc2023.166 ( reposiTUm)
Kohl, D., Kerschner, C., Mesquida, P., & Schitter, G. (2019). Increasing the SNR of Electrical AFM Methods by Active Mechanical Q-control. In IFAC-PapersOnLine (pp. 307–312). IFAC-PapersOnLine/Elsevier. https://doi.org/10.1016/j.ifacol.2019.11.692 ( reposiTUm)
Kohl, D., Mesquida, P., & Schitter, G. (2016). Quantitative DC-free Kelvin Probe Force Microscopy. In Final Program 42nd International Conference on Micro and Nano Engineering (p. 2). http://hdl.handle.net/20.500.12708/75404 ( reposiTUm)

Präsentationen

Kohl, D., Mesquida, P., & Schitter, G. (2017). Multi-frequency Kelvin Probe Force Microscopy Method for Charge Mapping Without DC-Bias. Nano and Photonics & FemtoMat, Mauterndorf, Austria. http://hdl.handle.net/20.500.12708/90936 ( reposiTUm)
Mesquida, P., Stone, A., Ruiz, L., Kohl, D., Andriotis, O. G., & Schitter, G. (2017). Using Electrostatic Force Microscopy to Map Biophysical and Biochemical Processes at High Resolution. Nano and Photonics & FemtoMat, Mauterndorf, Austria. http://hdl.handle.net/20.500.12708/90986 ( reposiTUm)
Mesquida, P., Kohl, D., Andriotis, O. G., Thurner, P. J., Duer, M. J., Bansode, S. B., & Schitter, G. (2017). Kelvin-Probe Force Microscopy to Map Glycation of Proteins. AFM BioMed, Krakau, Poland. http://hdl.handle.net/20.500.12708/90974 ( reposiTUm)
Kohl, D., Mesquida, P., & Schitter, G. (2017). Pitfalls of practical KPFM-phase-tuning leading to polarity reversal on biological samples. AFM BioMed, Krakow, Poland. http://hdl.handle.net/20.500.12708/90975 ( reposiTUm)