Wissenschaftliche Artikel

Bhandary, S., Kuhn, D., Babaiee, Z., Fechter, T., Benndorf, M., Zamboglou, C., Grosu, A.-L., & Grosu, R. (2023). Investigation and benchmarking of U-Nets on prostate segmentation tasks. Computerized Medical Imaging and Graphics, 107, Article 102241. https://doi.org/10.1016/j.compmedimag.2023.102241 ( reposiTUm)
Zhang, X., Xu, X., Xu, X., Gao, D., Gao, H., Wang, G., & Grosu, R. (2020). Intelligent Sea States Identification Based on Maximum Likelihood Evidential Reasoning Rule. Sci, .(22(7)), 25. https://doi.org/10.3390/e22070770 ( reposiTUm)
Lechner, M., Hasani, R., Amini, A., Henzinger, T. A., Rus, D., & Grosu, R. (2020). Neural Circuit Policies Enabling Auditable Autonomy. Nature Machine Intelligence, 2(10), 642–652. https://doi.org/10.1038/s42256-020-00237-3 ( reposiTUm)
Abbas, H., Rodionova, A., Mamouras, K., Bartocci, E., Smolka, S. A., & Grosu, R. (2019). Quantitative Regular Expressions for Arrhythmia Detection. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16(5), 1586–1597. https://doi.org/10.1109/tcbb.2018.2885274 ( reposiTUm)
Islam, Md. A., Cleaveland, R., Fenton, F. H., Grosu, R., Jones, P. L., & Smolka, S. A. (2019). Probabilistic reachability for multi-parameter bifurcation analysis of cardiac alternans. Theoretical Computer Science, 765, 158–169. https://doi.org/10.1016/j.tcs.2018.02.005 ( reposiTUm)
Wang, G., Ledwoch, A., Hasani, R. M., Grosu, R., & Brintrup, A. (2019). A generative neural network model for the quality prediction of work in progress products. Applied Soft Computing, 85, Article 105683. https://doi.org/10.1016/j.asoc.2019.105683 ( reposiTUm)
Ratasich, D., Khalid, F., Geissler, F., Grosu, R., Shafique, M., & Bartocci, E. (2019). A Roadmap Toward the Resilient Internet of Things for Cyber-Physical Systems. IEEE Access, 7, 13260–13283. https://doi.org/10.1109/access.2019.2891969 ( reposiTUm)
Gurung, A., Ray, R., Bartocci, E., Bogomolov, S., & Grosu, R. (2019). Parallel reachability analysis of hybrid systems in XSpeed. International Journal on Software Tools for Technology Transfer, 21(4), 401–423. https://doi.org/10.1007/s10009-018-0485-6 ( reposiTUm)
Gleeson, P., Lung, D., Grosu, R., Hasani, R., & Larson, S. D. (2018). c302: a multiscale framework for modelling the nervous system of Caenorhabditis elegans. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1758), 20170379. https://doi.org/10.1098/rstb.2017.0379 ( reposiTUm)
Mahyar, H., Hasheminezhad, R., Ghalebi, E., Nazemian, A., Grosu, R., Movaghar, A., & Rabiee, H. R. (2018). Identifying central nodes for information flow in social networks using compressive sensing. Social Network Analysis and Mining, 8(33). https://doi.org/10.1007/s13278-018-0506-1 ( reposiTUm)
Jaksic, S., Bartocci, E., Grosu, R., & Nickovic, D. (2018). An algebraic framework for runtime verification. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(11), 2233–2243. https://doi.org/10.1109/tcad.2018.2858460 ( reposiTUm)
Jakšić, S., Bartocci, E., Grosu, R., Nguyen, T., & Ničković, D. (2018). Quantitative monitoring of STL with edit distance. Formal Methods in System Design, 53(1), 83–112. https://doi.org/10.1007/s10703-018-0319-x ( reposiTUm)
Murthy, A., Islam, Md. A., Smolka, S. A., & Grosu, R. (2017). Computing compositional proofs of Input-to-Output Stability using SOS optimization and δ-decidability. Nonlinear Analysis: Hybrid Systems, 23, 272–286. https://doi.org/10.1016/j.nahs.2016.03.008 ( reposiTUm)
Phan, D., Yang, J., Grosu, R., Smolka, S. A., & Stoller, S. D. (2017). Collision Avoidance for Mobile Robots with Limited Sensing and Limited Information about Moving Obstacles. Formal Methods in System Design, 51(1), 62–86. https://doi.org/10.1007/s10703-016-0265-4 ( reposiTUm)
Wang, G., Ben Sassi, M. A., & Grosu, R. (2017). ZIZO: A Novel Zoom-In-Zoom-Out Search Algorithm for the Global Parameters of Echo-State Networks. Canadian Journal of Electrical and Computer Engineering, 40(3), 210–216. https://doi.org/10.1109/cjece.2017.2703093 ( reposiTUm)
Zhu, Y., Liu, D., Grosu, R., Wang, X., Duan, H., & Wang, G. (2017). A Multi-Sensor Data Fusion Approach for Atrial Hypertrophy Disease Diagnosis Based on Characterized Support Vector Hyperspheres. Sensors, 17(9), 2049. https://doi.org/10.3390/s17092049 ( reposiTUm)
Zhu, Y., Duan, H., Wang, X., Zhou, B., Wang, G., & Grosu, R. (2017). Gaussian convex evidence theory for ordered and fuzzy evidence fusion. Journal of Intelligent & Fuzzy Systems, 33(5), 2843–2849. http://hdl.handle.net/20.500.12708/148019 ( reposiTUm)
Taheri, S. M., Mahyar, H., Firouzi, M., Ghalebi K., E., Grosu, R., & Movaghar, A. (2017). HellRank: a Hellinger-based centrality measure for bipartite social networks. Social Network Analysis and Mining. https://doi.org/10.1007/s13278-017-0440-7 ( reposiTUm)
Esterle, L., & Grosu, R. (2016). Cyber-physical systems : challenge of the 21st century. Elektrotechnik Und Informationstechnik : E & i, 133(7), 299–303. https://doi.org/10.1007/s00502-016-0426-6 ( reposiTUm)
Ariful Islam, Md., Murthy, A., Bartocci, E., Cherry, E. M., Fenton, F. H., Glimm, J., Smolka, S. A., & Grosu, R. (2015). Model-Order Reduction of Ion Channel Dynamics Using Approximate Bisimulation. Theoretical Computer Science, 599, 34–46. https://doi.org/10.1016/j.tcs.2014.03.018 ( reposiTUm)
Bartocci, E., Höftberger, O., & Grosu, R. (2014). Cyber-Physical Systems: Theoretical and Practical Challenges. ERCIM NEWS, 2014(97), 8–9. http://hdl.handle.net/20.500.12708/157429 ( reposiTUm)
Murthy, A., Bartocci, E., Fenton, F. H., Glimm, J., Gray, R. A., Cherry, E. M., Smolka, S. A., & Grosu, R. (2013). Curvature Analysis of Cardiac Excitation Wavefronts. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 10(2), 323–336. https://doi.org/10.1109/tcbb.2012.125 ( reposiTUm)
Seyster, J., Dixit, K., Huang, X., Grosu, R., Havelund, K., Smolka, S. A., Stoller, S. D., & Zadok, E. (2012). InterAspect: aspect-oriented instrumentation with GCC. Formal Methods in System Design, 41(3), 295–320. https://doi.org/10.1007/s10703-012-0171-3 ( reposiTUm)
Huang, X., Seyster, J., Callanan, S., Dixit, K., Grosu, R., Smolka, S. A., Stoller, S. D., & Zadok, E. (2012). Software monitoring with controllable overhead. International Journal on Software Tools for Technology Transfer, 14(3), 327–347. https://doi.org/10.1007/s10009-010-0184-4 ( reposiTUm)

Beiträge in Tagungsbänden

Lemmel, J., & Grosu, R. (2025). Real-Time Recurrent Reinforcement Learning. In Proceedings of the 39th Annual AAAI Conference on Artificial Intelligence (pp. 18189–18197). AAAI Press. https://doi.org/10.1609/aaai.v39i17.34001 ( reposiTUm)
Berducci, L., Yang, S., Mangharam, R., & Grosu, R. (2024). Learning Adaptive Safety for Multi-Agent Systems. In 2024 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2859–2865). https://doi.org/10.1109/ICRA57147.2024.10611037 ( reposiTUm)
Babaiee, Z., Mohseni Kiasari, P., Rus, D., & Grosu, R. (2024). Neural Echos: Depthwise Convolutional Filters Replicate Biological Receptive Fields. In 2024 IEEE Winter Conference on Applications of Computer Vision (pp. 8216–8225). https://doi.org/10.1109/WACV57701.2024.00803 ( reposiTUm)
Babaiee, Z., Mohseni Kiasari, P., Rus, D., & Grosu, R. (2024). Unveiling the Unseen: Identifiable Clusters in Trained Depthwise Convolutional Kernels. In The Twelth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. The Twelfth International Conference on Learning Representations (ICLR 2024), Austria. http://hdl.handle.net/20.500.12708/203933 ( reposiTUm)
Brandstätter, A., Smolka, S. A., Stoller, S. D., Tiwari, A., & Grosu, R. (2024). Flock-Formation Control of Multi-Agent Systems using Imperfect Relative Distance Measurements. In Proceedings 2024 IEEE International Conference on Robotics and Automation (ICRA) (pp. 12193–12200). https://doi.org/10.1109/ICRA57147.2024.10610147 ( reposiTUm)
Lygizou, E. M., Reiter, M., Maurer-Granofszky, M., Dworzak, M., & Grosu, R. (2024). Automated Immunophenotyping Assessment for Diagnosing Childhood Acute Leukemia using Set-Transformers. In 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, United States of America (the). IEEE. https://doi.org/10.1109/EMBC53108.2024.10781595 ( reposiTUm)
Qu, M., He, J., Tucakovic, Z., Bartocci, E., Nickovic, D., Isakovic, H., & Grosu, R. (2024). DeepRIoT: Continuous Integration and Deployment of Robotic-IoT Applications. In DAC ’24: Proceedings of the 61st ACM/IEEE Design Automation Conference (pp. 1–6). https://doi.org/10.1145/3649329.3658250 ( reposiTUm)
Lemmel, J., Babaiee, Z., Kleinlehner, M., Majic, I., Neubauer, P., Scholz, J., Grosu, R., & Neubauer, S. (2024). Prediction of Tourism Flow with Sparse Geolocation Data. In P. Haber, T. J. Lampoltshammer, & M. Mayr (Eds.), Data Science—Analytics and Applications : Proceedings of the 5th International Data Science Conference—iDSC2023 (pp. 45–52). Springer Cham. https://doi.org/10.1007/978-3-031-42171-6_6 ( reposiTUm)
Farsang, M., Lechner, M., Lung, D., Hasani, R., Rus, D., & Grosu, R. (2024). Learning with Chemical versus Electrical Synapses Does it Make a Difference? In 2024 IEEE International Conference on Robotics and Automation (ICRA) (pp. 15106–15112). https://doi.org/10.1109/ICRA57147.2024.10611016 ( reposiTUm)
Brandstatter, A., Smolka, S. A., Stoller, S. D., Tiwari, A., & Grosu, R. (2023). Multi-Agent Spatial Predictive Control with Application to Drone Flocking. In 2023 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1221–1227). IEEE. https://doi.org/10.1109/ICRA48891.2023.10160617 ( reposiTUm)
He, J., Nickovic, D., Bartocci, E., & Grosu, R. (2023). TD-Magic: From Pictures of Timing Diagrams To Formal Specifications. In 2023 60th ACM/IEEE Design Automation Conference (DAC) (pp. 1–6). IEEE. https://doi.org/10.1109/DAC56929.2023.10247685 ( reposiTUm)
Brandstätter, A., Smolka, S. A., Stoller, S. D., Tiwari, A., & Grosu, R. (2022). Towards Drone Flocking Using Relative Distance Measurements. In Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning (ISoLA 2022). Proceedings, Part III (pp. 97–109). Springer. https://doi.org/10.1007/978-3-031-19759-8_7 ( reposiTUm)
He, J., Bartocci, E., Ničković, D., Isakovic, H., & Grosu, R. (2022). DeepSTL. In ICSE ’22: Proceedings of the 44th International Conference on Software Engineering (pp. 610–622). Association for Computing Machinery. https://doi.org/10.1145/3510003.3510171 ( reposiTUm)
Brunnbauer, A., Berducci, L., Brandstätter, A., Lechner, M., Hasani, R., Rus, D., & Grosu, R. (2022). Latent Imagination Facilitates Zero-Shot Transfer in Autonomous Racing. In 2022 IEEE International Conference on Robotics and Automation (ICRA) (pp. 7513–7520). https://doi.org/10.1109/ICRA46639.2022.9811650 ( reposiTUm)
Berducci, L., & Grosu, R. (2022). Safe Policy Improvement in Constrained Markov Decision Processes. In T. Margaria & B. Steffen (Eds.), Leveraging Applications of Formal Methods, Verification and Validation. Verification Principles (ISoLA 2022), Proceedings, Part I (pp. 360–381). Springer. https://doi.org/10.1007/978-3-031-19849-6_21 ( reposiTUm)
Lemmel, J., Babaiee, Z., Kleinlehner, M., Majic, I., Neubauer, P., Scholz, J., Grosu, R., & Neubauer, S. (2022). Deep-Learning vs Regression: Prediction of Tourism Flow with Limited Data. In Schedule - IJCAI’22 Workshop. AI4TS: AI for Time Series Analysis. IJCAI’22 Workshop - AI4TS: AI for Time Series Analysis, Vienna, Austria. IJCAI. https://doi.org/10.34726/4262 ( reposiTUm)
Grünbacher, S., Hasani, R., Lechner, M., Cyranka, J., Smolka, S. A., & Grosu, R. (2021). On The Verification of Neural ODEs with Stochastic Guarantees. In Proceedings of the AAAI Conference on Artificial Intelligence (pp. 11525–11535). Proceedings of the AAAI Conference on Artificial Intelligence. http://hdl.handle.net/20.500.12708/58537 ( reposiTUm)
Isakovic, H., Dangl, S., Tucakovic, Z., & Grosu, R. (2021). Adaptive Signal Filtering Platform for a CPS/IoT Ecosystem. In 2021 22nd IEEE International Conference on Industrial Technology (ICIT). IEEE. https://doi.org/10.1109/icit46573.2021.9453496 ( reposiTUm)
Babaiee, Z., Hasani, R., Lechner, M., Rus, D., & Grosu, R. (2021). On-Off Center-Surround Receptive Fields for Accurate and Robust Image Classification. In International Conference on Machine Learning (pp. 478–489). Proceedings of Machine Learning Research. http://hdl.handle.net/20.500.12708/55625 ( reposiTUm)
Usama, M., Stoller, S. D., Grosu, R., Roy, S., Damare, A., & Smolka, S. A. (2021). A Distributed Simplex Architecture for Multi-agent Systems. In Dependable Software Engineering. Theories, Tools, and Applications (pp. 239–257). Springer. https://doi.org/10.1007/978-3-030-91265-9_13 ( reposiTUm)
Hasani, R., Lechner, M., Amini, A., Rus, D., & Grosu, R. (2021). Liquid Time-Constant Networks. In Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21) (pp. 7657–7666). Proceedings of the AAAI Conference on Artificial Intelligence. http://hdl.handle.net/20.500.12708/55647 ( reposiTUm)
Lechner, M., Hasani, R., Grosu, R., Rus, D., & Henzinger, T. A. (2021). Adversarial Training is Not Ready for Robot Learning. In In Proc. of ICRA’21, the International Conference on Robotics and Automation (pp. 1–8). IEEE. http://hdl.handle.net/20.500.12708/55648 ( reposiTUm)
Cardelli, L., Grosu, R., Larsen, K. G., Tribastone, M., Tschaikowski, M., & Vandin, A. (2021). Lumpability for Uncertain Continuous-Time Markov Chains. In Quantitative Evaluation of Systems (pp. 391–409). Springer, LNCS. https://doi.org/10.1007/978-3-030-85172-9_21 ( reposiTUm)
Roy, S., Usama, M., Grosu, R., Smolka, S. A., & Stoller, S. D. (2021). Distributed Control for Flocking Maneuvers via Acceleration-Weighted Neighborhooding. In 2021 American Control Conference (ACC). American Control Conference, Online, United States of America (the). IEEE. https://doi.org/10.23919/acc50511.2021.9483155 ( reposiTUm)
Isakovic, H., Ferreira, L. L., Okic, I., Dukkon, A., Tucakovic, Z., & Grosu, R. (2021). QoS for Dynamic Deployment of IoT Services. In 2021 22nd IEEE International Conference on Industrial Technology (ICIT). IEEE. https://doi.org/10.1109/icit46573.2021.9453670 ( reposiTUm)
Gruenbacher, S., Cyranka, J., Lechner, M., Islam, Md. A., Smolka, S. A., & Grosu, R. (2020). Lagrangian Reachtubes: The Next Generation. In 2020 59th IEEE Conference on Decision and Control (CDC). 59th IEEE Conference on Decision and Control (CDC), Jeju, Korea (the Republic of). IEEE. https://doi.org/10.1109/cdc42340.2020.9304042 ( reposiTUm)
Phan, D., Grosu, R., Jansen, N., Paoletti, N., Smolka, S. A., & Stoller, S. D. (2020). Neural simplex architecture. In Neural simplex architecture (pp. 97–114). Springer. http://hdl.handle.net/20.500.12708/58180 ( reposiTUm)
Hasani, R., Lechner, M., Amini, A., Rus, D., & Grosu, R. (2020). A Natural Lottery Ticket Winner: Reinforcement Learning with Ordinary Neural Circuits. In Proceedings of machine learning research, Volume 119: International Conference on Machine Learning (ICML) (pp. 4082–4093). http://hdl.handle.net/20.500.12708/58294 ( reposiTUm)
Mehmood, U., Roy, S., Grosu, R., Smolka, S. A., Stoller, S. D., & Tiwari, A. (2020). Neural Flocking: MPC-based Supervised Learning of Flocking Controllers. In Neural Flocking: MPC-based Supervised Learning of Flocking Controllers (pp. 1–16). Springer. http://hdl.handle.net/20.500.12708/55572 ( reposiTUm)
Hasani, R., Lechner, M., Amini, A., Rus, D., & Grosu, R. (2020). The Natural Lottery Ticket Winner: Reinforcement Learning with Ordinary Neural Circuits. In Proceedings of the 37th International Conference on Machine Learning (ICML 2020), Vienna, Austria, PMLR 119, 2020. https://doi.org/10.34726/241 ( reposiTUm)
Isakovic, H., Crespo, E. A., & Grosu, R. (2020). An Energy Sustainable CPS/IoT Ecosystem. In Science and Technologies for Smart Cities 6th EAI International Conference, SmartCity360° (pp. 305–322). Springer. https://doi.org/10.1007/978-3-030-76063-2_22 ( reposiTUm)
Lechner, M., Hasani, R., Rus, D., & Grosu, R. (2020). Gershgorin Loss Stabilizes the Recurrent Neural Network Compartment of an End-to-end Robot Learning Scheme. In 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE. https://doi.org/10.34726/242 ( reposiTUm)
Gruenbacher, S., Cyranka, J., Islam, M. A., Tschaikowski, M., Smolka, S., & Grosu, R. (2019). Under the Hood of a Stand-Alone Lagrangian Reachability Tool. In G. Frehse & M. Althoff (Eds.), ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems (Vol. 61, pp. 211–219). EasyChair. https://doi.org/10.29007/ns8p ( reposiTUm)
Hasani, R., Amini, A., Lechner, M., Naser, F., Grosu, R., & Rus, D. (2019). Response Characterization for Auditing Cell Dynamics in Long Short-term Memory Networks. In 2019 International Joint Conference on Neural Networks (IJCNN). IEEE International Joint Conference on Neural Networks (IJCNN), Montréal, Québec, Canada, Austria. https://doi.org/10.1109/ijcnn.2019.8851954 ( reposiTUm)
Hasani, R., Wang, G., & Grosu, R. (2019). A Machine Learning Suite for Machine Components’ Health-Monitoring. In 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019, 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 (pp. 9472–9477). http://hdl.handle.net/20.500.12708/58140 ( reposiTUm)
Lechner, M., Hasani, R., Zimmer, M., Henzinger, T. A., & Grosu, R. (2019). Designing Worm-inspired Neural Networks for Interpretable Robotic Control. In Robotics and Automation (ICRA), IEEE International Conference on (pp. 87–94). http://hdl.handle.net/20.500.12708/58142 ( reposiTUm)
Lukina, A., Tiwari, A., Smolka, S. A., & Grosu, R. (2019). Distributed adaptive-neighborhood control for stochastic reachability in multi-agent systems. In SAC ’19: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. Association for Computing Machinery. http://hdl.handle.net/20.500.12708/58143 ( reposiTUm)
Isakovic, H., Ratasich, D., Hirsch, C., Platzer, M., Wally, B., Rausch, T., Nickovic, D., Krenn, W., Kappel, G., Dustdar, S., & Grosu, R. (2019). CPS/IoT Ecosystem: A Platform for Research and Education. In R. Chamberlain, W. Taha, & M. Törngren (Eds.), Cyber Physical Systems. Model-Based Design (pp. 206–213). Springer International Publishing. https://doi.org/10.1007/978-3-030-23703-5_12 ( reposiTUm)
Hirsch, C., Bartocci, E., & Grosu, R. (2019). Capacitive Soil Moisture Sensor Node for IoT in Agriculture and Home. In 2019 IEEE 23rd International Symposium on Consumer Technologies (ISCT). 2019 IEEE 23rd International Symposium on Consumer Technologies (ISCT), Ancona, Italy. https://doi.org/10.1109/isce.2019.8901012 ( reposiTUm)
Isakovic, H., Grosu, R., Wally, B., Rausch, T., Dustdar, S., Kappel, G., Ratasich, D., & Bisanovic, V. (2019). Sensyml: Simulation Environment for large-scale IoT Applications. In IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 45th Annual Conference of the IEEE Industrial Electronics Society (IECON 2019), Lisbon, Portugal. IEEE Xplore. https://doi.org/10.1109/iecon.2019.8927756 ( reposiTUm)
Isakovic, H., Grosu, R., Fasching, A., & Punzenberger, L. (2019). CPS/IoT Ecosystem: Indoor Vertical Farming System. In 2019 IEEE 23rd International Symposium on Consumer Technologies (ISCT). 2019 IEEE 23rd International Symposium on Consumer Technologies (ISCT), Ancona, Italy. IEEE Xplore. https://doi.org/10.1109/isce.2019.8900974 ( reposiTUm)
Ratasich, D., Platzer, M., Grosu, R., & Bartocci, E. (2019). Adaptive Fault Detection Exploiting Redundancy with Uncertainties in Space and Time. In 2019 IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems (SASO). 13th IEEE International Conference on Self-Adaptive and Self-Organizing Systems, Umeå, Sweden. IEEE. https://doi.org/10.1109/saso.2019.00013 ( reposiTUm)
Hasani, R., Kulnik, B., Haerle, D., & Grosu, R. (2018). Artificial Intelligence Solutions for Verification of Analog and Mixed-Signal Smart Power Systems. In Proceedings of the 9th International Workshop on Frontiers in Analog CAD. 9th International Workshop on Frontiers in Analog CAD at ASYNC 2018, Vienna, Austria, Austria. http://hdl.handle.net/20.500.12708/57636 ( reposiTUm)
Lukina, A., Kumar, A., Schmittle, M., Singh, A., Das, J., Rees, S., Buskirk, C. P., Sztipanovits, J., Grosu, R., & Kumar, V. (2018). Formation Control and Persistent Monitoring in the OpenUAV Swarm Simulator on the NSF CPS-VO. In 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS). IEEE Computer Society. https://doi.org/10.1109/iccps.2018.00050 ( reposiTUm)
Schmittle, M., Lukina, A., Vacek, L., Das, J., Buskirk, C. P., Rees, S., Sztipanovits, J., Grosu, R., & Kumar, V. (2018). OpenUAV: A UAV Testbed for the CPS and Robotics Community. In 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS). IEEE Computer Society. https://doi.org/10.1109/iccps.2018.00021 ( reposiTUm)
Hasani, R., Amini, A., Lechner, M., Naser, F., Grosu, R., & Rus, D. (2018). Response Characterization for Auditing Cell Dynamics in Long Short-term Memory Networks. In Proceedings of the NIPS 2018 Interpretability and Robustness for Audio, Speech and Language Workshop. Workshop on Interpretability and Robustness in Audio, Speech, and Language (IRASL) at NIPS 2018, Montreal, Canada. NIPS 2018. http://hdl.handle.net/20.500.12708/57635 ( reposiTUm)
Mahyar, H., Hasheminezhad, R., Ghalebi, E., Grosu, R., & Stanley, H. E. (2018). A Compressive Sensing Framework for Distributed Detection of High Closeness Centrality Nodes in Networks. In Studies in Computational Intelligence (pp. 91–103). Springer. https://doi.org/10.1007/978-3-030-05414-4_8 ( reposiTUm)
Mehmood, U., Paoletti, N., Phan, D., Grosu, R., Lin, S., Stoller, S. D., Tiwari, A., Yang, J., & Smolka, S. A. (2018). Declarative vs rule-based control for flocking dynamics. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing. 33rd ACM Symposium On Applied Computing, Pau, France. ACM. https://doi.org/10.1145/3167132.3167222 ( reposiTUm)
Lechner, M., Hasani, R., & Grosu, R. (2018). Interpretable Neuronal Circuit Policies for Reinforcement Learning Environments. In Proceedings of the 2nd Workshop on Explainable Artificial Intelligence (pp. 79–84). IJCAI-ECAI 2018. http://hdl.handle.net/20.500.12708/57634 ( reposiTUm)
Lukina, A., Tiwari, A., Smolka, S. A., Esterle, L., Yang, J., & Grosu, R. (2018). Resilient Control and Safety for Cyber-Physical Systems. In 2018 IEEE Workshop on Monitoring and Testing of Cyber-Physical Systems (MT-CPS). 3rd Workshop on Monitoring and Testing of Cyber-Physical Systems, Porto, Portugal. IEEE. https://doi.org/10.1109/mt-cps.2018.00015 ( reposiTUm)
Manjunath, N., Haerle, D., Manthey, C., Väänänen, M., Sabanal, S., Eichinger, H., Tauber, H., Machne, A., Grosu, R., & Nickovic, D. (2018). Production Tests Coverage Analysis in the Simulation Environment. In 2018 IEEE International Test Conference (ITC). International Test Conference, Phoenix, United States of America (the). IEEE. https://doi.org/10.1109/test.2018.8624870 ( reposiTUm)
Phan, D., Paoletti, N., Zhang, T., Grosu, R., Smolka, S. A., & Stoller, S. D. (2018). Neural State Classification for Hybrid Systems. In Automated Technology for Verification and Analysis (pp. 422–440). Springer. https://doi.org/10.1007/978-3-030-01090-4_25 ( reposiTUm)
Wang, G., Ben Sassi, M. A., & Grosu, R. (2018). A multi-bias recurrent neural network for modeling milling sensory data. In 2018 IEEE Industrial Cyber-Physical Systems (ICPS). 1st IEEE International Conference on Industrial Cyber-Physical Systems (ICPS 2018), St. Petersburg, Russian Federation (the). IEEE. https://doi.org/10.1109/icphys.2018.8387640 ( reposiTUm)
Cyranka, J., Islam, Md. A., Smolka, S. A., Gao, S., & Grosu, R. (2018). Tight Continuous-Time Reachtubes for Lagrangian Reachability. In 2018 IEEE Conference on Decision and Control (CDC). 57th IEEE Conference on Decision and Control, Miami Beach, United States of America (the). IEEE. https://doi.org/10.1109/cdc.2018.8619647 ( reposiTUm)
Ghalebi, E., Mirzasoleiman, B., Grosu, R., & Leskovec, J. (2018). Dynamic Network Model from Partial Observations. In Advances in Neural Information Processing Systems 31 (NIPS 2018). Neural Information Processing Systems (NIPS 2018), Montreal, Canada. Advances in Neural Information Processing Systems 31. http://hdl.handle.net/20.500.12708/57653 ( reposiTUm)
Ratasich, D., Preindl, T., Selyunin, K., & Grosu, R. (2018). Self-healing by property-guided structural adaptation. In 2018 IEEE Industrial Cyber-Physical Systems (ICPS). 1st IEEE International Conference on Industrial Cyber-Physical Systems (ICPS 2018), St. Petersburg, Russian Federation (the). IEEE. https://doi.org/10.1109/icphys.2018.8387659 ( reposiTUm)
Tulala, P., Mahyar, H., Ghalebi, E., & Grosu, R. (2018). Unsupervised Wafermap Patterns Clustering via Variational Autoencoders. In 2018 International Joint Conference on Neural Networks (IJCNN). IEEE International Joint Conference on Neural Networks (IJCNN), Montréal, Québec, Canada, Austria. IEEE. https://doi.org/10.1109/ijcnn.2018.8489422 ( reposiTUm)
Mahyar, H., Tulala, P., Rabiee, H. R., & Grosu, R. (2018). Generative Adversarial Networks for Clustering Semiconductor Wafer Maps. In Proc. of ML for Systems Workshop. ML for Systems Workshop at NIPS 2018, Montreal, Canada. ML for Systems. http://hdl.handle.net/20.500.12708/57650 ( reposiTUm)
Hasani, R. M., Haerle, D., Baumgartner, C. F., Lomuscio, A. R., & Grosu, R. (2017). Compositional neural-network modeling of complex analog circuits. In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE International Joint Conference on Neural Networks (IJCNN), Montréal, Québec, Canada, Austria. https://doi.org/10.1109/ijcnn.2017.7966126 ( reposiTUm)
Selyunin, K., Hasani, R., Ratasich, D., Bartocci, E., & Grosu, R. (2017). Computing with Biophysical and Hardware-efficient Neural Models. In I. Rojas, G. Joya, & A. Catala (Eds.), Advances in Computational Intelligence (pp. 535–547). Springer. https://doi.org/10.1007/978-3-319-59153-7_46 ( reposiTUm)
Cyranka, J., Islam, Md. A., Byrne, G., Jones, P., Smolka, S. A., & Grosu, R. (2017). Lagrangian Reachabililty. In Computer Aided Verification (pp. 379–400). Springer. https://doi.org/10.1007/978-3-319-63387-9_19 ( reposiTUm)
Hasani, R. M., Wang, G., & Grosu, R. (2017). Towards Deterministic and Stochastic Computations with the Izhikevich Spiking-Neuron Model. In Advances in Computational Intelligence (pp. 392–402). Springer. https://doi.org/10.1007/978-3-319-59147-6_34 ( reposiTUm)
Lukina, A., Esterle, L., Hirsch, C., Bartocci, E., Yang, J., Tiwari, A., Smolka, S. A., & Grosu, R. (2017). ARES: Adaptive Receding-Horizon Synthesis of Optimal Plans. In A. Legay & T. Margaria (Eds.), Tools and Algorithms for the Construction and Analysis of Systems (pp. 286–302). Springer. https://doi.org/10.1007/978-3-662-54580-5_17 ( reposiTUm)
Isakovic, H., Grosu, R., Ratasich, D., Kadlec, J., Pohl, Z., Kerrison, S., Georgiou, K., Druml, N., Tadros, L., Christiansen, F., Wheatley, E., Farkas, B., Meyer, R., & Berekovic, M. (2017). A Survey of Hardware Technologies for Mixed-Critical Integration Explored in the Project EMC2. In Computer Safety, Reliability, and Security SAFECOMP 2017 Workshops, ASSURE, DECSoS, SASSUR, TELERISE, and TIPS, Trento, Italy, September 12, 2017, Proceedings (pp. 127–140). Lecture Notes in Computer Science / Springer. https://doi.org/10.1007/978-3-319-66284-8_12 ( reposiTUm)
Phan, D., Yang, J., Clark, M., Grosu, R., Schierman, J., Smolka, S., & Stoller, S. (2017). A Component-Based Simplex Architecture for High-Assurance Cyber-Physical Systems. In 2017 17th International Conference on Application of Concurrency to System Design (ACSD). Application of Concurrency to System Design (ACSD), 2017 17th International Conference on, Zaragoza, Spain. https://doi.org/10.1109/acsd.2017.23 ( reposiTUm)
Selyunin, K., Jaksic, S., Nguyen, T., Reidl, C., Hafner, U., Bartocci, E., Nickovic, D., & Grosu, R. (2017). Runtime Monitoring with Recovery of the SENT Communication Protocol. In Computer Aided Verification (pp. 336–355). Springer. https://doi.org/10.1007/978-3-319-63387-9_17 ( reposiTUm)
Ratasich, D., Höftberger, O., Isakovic, H., Shafique, M., & Grosu, R. (2017). A Self-Healing Framework for Building Resilient Cyber-Physical Systems. In 2017 IEEE 20th International Symposium on Real-Time Distributed Computing (ISORC). 20th IEEE International Symposium on Real-Time Computing (ISORC 2017), Toronto, Canada. IEEE. https://doi.org/10.1109/isorc.2017.7 ( reposiTUm)
Abbas, H., Rodionova, A., Bartocci, E., Smolka, S. A., & Grosu, R. (2017). Quantitative Regular Expressions for Arrhythmia Detection Algorithms. In Computational Methods in Systems Biology (pp. 23–39). Springer. https://doi.org/10.1007/978-3-319-67471-1_2 ( reposiTUm)
Tiwari, A., Smolka, S. A., Esterle, L., Lukina, A., Yang, J., & Grosu, R. (2017). Attacking the V: On the Resiliency of Adaptive-Horizon MPC. In Automated Technology for Verification and Analysis (pp. 446–462). Springer International Publishing. https://doi.org/10.1007/978-3-319-68167-2_29 ( reposiTUm)
Wang, G., Hasani, R., Yungang, Z., & Grosu, R. (2017). A novel Bayesian network-based fault prognostic method for semiconductor manufacturing process. In 2017 IEEE International Conference on Industrial Technology (ICIT). 2017 Annual IEEE Industrial Electronics Society´s 18th International Conference on Industrial Technology (ICIT 2017), Toronto, ON, Canada. IEEE. https://doi.org/10.1109/icit.2017.7915579 ( reposiTUm)
Lung, D., Larson, S., Palyanov, A., Khayrulin, S., Gleeson, P., Zimmer, M., Grosu, R., & Hasani, R. (2017). A Simplified Cell Network for the Simulation of C. elegans’ Forward Crawling. In Proceedings of the Workshop on Worm´s Neural Information Processing at the 31st Neural Information Processing Systems (NIPS) Conference, 2017 (p. 5). http://hdl.handle.net/20.500.12708/57235 ( reposiTUm)
Fuchs, M., Zimmer, M., Grosu, R., & Hasani, R. (2017). Searching for Biophysically Realistic Parameters for Dynamic Neuron Models by Genetic Algorithms from Calcium Imaging Recording. In Proceedings of the Workshop on Worm´s Neural Information Processing at the 31st Neural Information Processing Systems (NIPS) Conference, 2017 (p. 6). http://hdl.handle.net/20.500.12708/57236 ( reposiTUm)
Lechner, M., Grosu, R., & Hasani, R. (2017). Worm-level Control through Search-based Reinforcement Learning. In Proceedings of the Deep Reinforcement Learning Symposium at the 31st Neural Information Processing Systems (NIPS) Conference, 2017 (p. 5). http://hdl.handle.net/20.500.12708/57234 ( reposiTUm)
Hasani, R., Fuchs, M., Beneder, V., & Grosu, R. (2017). Modeling a Simple Non-Associative Learning Mechanism in the Brain of Caenorhabditis elegans. In Proceedings of the Workshop on Biomedical Informatics with Optimization and Machine Learning (BOOM), 2017 (p. 5). http://hdl.handle.net/20.500.12708/57238 ( reposiTUm)
Hasani, R., Beneder, V., Fuchs, M., Lung, D., & Grosu, R. (2017). SIM-CE: An Advanced Simulation Platform for Studying the brain of Caenorhabditis elegans. In Proceedings of the Workshop on Computational Biology at the 34th International Conference on Machine Learning(ICML), 2017 (p. 5). http://hdl.handle.net/20.500.12708/57237 ( reposiTUm)
Rodionova, A., Bartocci, E., Nickovic, D., & Grosu, R. (2016). Temporal Logic as Filtering. In Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control. Proceeding HSCC ’16 - the 19th International Conference on Hybrid Systems: Computation and Control, Vienna, Austria. ACM. https://doi.org/10.1145/2883817.2883839 ( reposiTUm)
Kalajdzic, K., Jegourel, C., Lukina, A., Bartocci, E., Legay, A., Smolka, S. A., & Grosu, R. (2016). Feedback Control for Statistical Model Checking of Cyber-Physical Systems. In T. Margaria & B. Steffen (Eds.), Leveraging Applications of Formal Methods, Verification and Validation: Foundational Techniques (ISoLA 2016), Proceedings, Part I (pp. 46–61). Springer. https://doi.org/10.1007/978-3-319-47166-2_4 ( reposiTUm)
Selyunin, K., Nguyen, T., Bartocci, E., & Grosu, R. (2016). Applying Runtime Monitoring for Automotive Electronic Development. In Runtime Verification (pp. 462–469). Springer International Publishing. https://doi.org/10.1007/978-3-319-46982-9_30 ( reposiTUm)
Selyunin, K., Nguyen, T., Bartocci, E., Nickovic, D., & Grosu, R. (2016). Monitoring of MTL Specifications With IBM’s Spiking-Neuron Model. In Proc. of the 2016 Design, Automation & Test in Europe Conference & Exhibition (pp. 924–929). IEEE Computer Society. http://hdl.handle.net/20.500.12708/56706 ( reposiTUm)
Jakšić, S., Bartocci, E., Grosu, R., & Ničković, D. (2016). Quantitative Monitoring of STL with Edit Distance. In Runtime Verification (pp. 201–218). Springer International Publishing. https://doi.org/10.1007/978-3-319-46982-9_13 ( reposiTUm)
Wang, G., & Grosu, R. (2016). Milling-Tool Wear-Condition Prediction with Statistic Analysis and Echo-State Networks. In Proceedings of S2M’16, the International Conference on Sustaniable Smart Manufacturing. S2M’16: the International Conference on Sustaniable Smart Manufacturing, Lisbon, Portugal. Taylor & Francis. http://hdl.handle.net/20.500.12708/56839 ( reposiTUm)
Kong, H., Bartocci, E., Bogomolov, S., Grosu, R., Henzinger, T. A., Jiang, Y., & Schilling, C. (2016). Discrete Abstraction of Multiaffine Systems. In Hybrid Systems Biology (pp. 128–144). Springer International Publishing. https://doi.org/10.1007/978-3-319-47151-8_9 ( reposiTUm)
Hasani, R. M., Haerle, D., & Grosu, R. (2016). Efficient modeling of complex Analog integrated circuits using neural networks. In 2016 12th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME). 12th Conference on PhD Research in Microelectronics and Electronics (PRIME) 2016, Lissabon, Portugal. IEEE. https://doi.org/10.1109/prime.2016.7519486 ( reposiTUm)
Wallner, W., Wasicek, A., & Grosu, R. (2016). A simulation framework for IEEE 1588. In 2016 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS). 2016 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication, Stockholm, Sweden. IEEE. https://doi.org/10.1109/ispcs.2016.7579516 ( reposiTUm)
Islam, Md. A., Byrne, G., Kong, S., Clarke, E. M., Cleaveland, R., Fenton, F. H., Grosu, R., Jones, P. L., & Smolka, S. A. (2016). Bifurcation Analysis of Cardiac Alternans Using $$\delta $$ -Decidability. In Computational Methods in Systems Biology (pp. 132–146). LNCS, Springer. https://doi.org/10.1007/978-3-319-45177-0_9 ( reposiTUm)
Selyunin, K., Nguyen, T., Basa, A.-D., Bartocci, E., Nickovic, D., & Grosu, R. (2016). Applying High-Level Synthesis for Synthesizing Hardware Runtime STL Monitors of Mission-Critical Properties. In Design and Verification Conference and Exhibition (p. 8). Online. http://hdl.handle.net/20.500.12708/56824 ( reposiTUm)
Gurung, A., Kumar, D. A., Bartocci, E., Bogomolov, S., Grosu, R., & Ray, R. (2016). Parallel reachability analysis for hybrid systems. In 2016 ACM/IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE). Proc. of MEMOCODE 2016: the 14th ACM-IEEE International Conference on Formal Methods and Models for System Design, ACM, 2016, Kanpur, India. https://doi.org/10.1109/memcod.2016.7797741 ( reposiTUm)
Isakovic, H., & Grosu, R. (2016). A heterogeneous time-triggered architecture on a hybrid system-on-a-chip platform. In 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE). 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, United States of America (the). IEEE. https://doi.org/10.1109/isie.2016.7744897 ( reposiTUm)
Islam, Md. A., Wang, Q., Hasani, R. M., Balun, O., Clarke, E. M., Grosu, R., & Smolka, S. A. (2016). Probabilistic reachability analysis of the tap withdrawal circuit in caenorhabditis elegans. In 2016 IEEE International High Level Design Validation and Test Workshop (HLDVT). 18th IEEE International High-Level Design Validation and Test Workshop (HLDVT) 2016, Santa Cruz, United States of America (the). IEEE. https://doi.org/10.1109/hldvt.2016.7748272 ( reposiTUm)
Nguyen, T., Bartocci, E., Ničković, D., Grosu, R., Jaksic, S., & Selyunin, K. (2016). The HARMONIA Project: Hardware Monitoring for Automotive Systems-of-Systems. In T. Margaria & B. Steffen (Eds.), Leveraging Applications of Formal Methods, Verification and Validation: Discussion, Dissemination, Applications. ISoLA 2016, Proceedings, Part II (pp. 371–379). Springer. https://doi.org/10.1007/978-3-319-47169-3_28 ( reposiTUm)
Phan, D., Yang, J., Ratasich, D., Grosu, R., Smolka, S. A., & Stoller, S. D. (2015). Collision Avoidance for Mobile Robots with Limited Sensing and Limited Information About the Environment. In Runtime Verification (pp. 201–215). Springer. https://doi.org/10.1007/978-3-319-23820-3_13 ( reposiTUm)
Ratasich, D., Frömel, B., Höftberger, O., & Grosu, R. (2015). Generic sensor fusion package for ROS. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany. IEEE. https://doi.org/10.1109/iros.2015.7353387 ( reposiTUm)
Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Gros, R., & Belta, C. (2015). SpaTeL. In Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control. 18th International Conference on Hybrid Systems: Computation and Control (HSCC), Seattle, United States of America (the). ACM. https://doi.org/10.1145/2728606.2728633 ( reposiTUm)
Rajarshi, R., Amit, G., Binayak, D., Bartocci, E., Bogomolov, S., & Grosu, R. (2015). XSpeed: Accelerating Reachability Analysis on Multi-core Processors. In N. Piterman (Ed.), Hardware and Software: Verification and Testing - 11th International Haifa Verification Conference, HVC 2015, Haifa, Israel, November 17-19, 2015, Proceedings (pp. 3–18). LNCS / Springer. https://doi.org/10.1007/978-3-319-26287-1_1 ( reposiTUm)
Selyunin, K., Ratasich, D., Bartocci, E., Islam, M. A., Smolka, S. A., & Grosu, R. (2015). Neural Programming: Towards adaptive control in Cyber-Physical Systems. In 2015 54th IEEE Conference on Decision and Control (CDC). 54th IEEE Conference on Decision and Control, Osaka, Japan. IEEE Computer Society. https://doi.org/10.1109/cdc.2015.7403319 ( reposiTUm)
Jaksic, S., Bartocci, E., Grosu, R., Kloibhofer, R., Nguyen, T., & Nickovic, D. (2015). From signal temporal logic to FPGA monitors. In 2015 ACM/IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE). 13th ACM-IEEE International Conference on Formal Methods and Models for System Design, Austin, United States of America (the). IEEE. https://doi.org/10.1109/memcod.2015.7340489 ( reposiTUm)
Bogomolov, S., Schilling, C., Bartocci, E., Batt, G., Kong, H., & Grosu, R. (2015). Abstraction-Based Parameter Synthesis for Multiaffine Systems. In Hardware and Software: Verification and Testing (pp. 19–35). LNCS / Springer. https://doi.org/10.1007/978-3-319-26287-1_2 ( reposiTUm)
Murthy, A., Islam, Md. A., Smolka, S. A., & Grosu, R. (2015). Computing bisimulation functions using SOS optimization and            δ            -decidability over the reals. In Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control. 18th International Conference on Hybrid Systems: Computation and Control (HSCC), Seattle, United States of America (the). ACM. https://doi.org/10.1145/2728606.2728609 ( reposiTUm)
Grosu, R., Bogomolov, S., Frehse, G., Greitschus, M., Pasareanu, C., Podelski, A., & Strump, T. (2014). Assume-Guarantee Abstraction-Refinement Meets Hybrid Systems. In Proc. of HVC’14, the Haifa Verification Conference. Haifa Verification Conference HVC 2014, Haifa, Isral, Non-EU. http://hdl.handle.net/20.500.12708/55828 ( reposiTUm)
Grosu, R., Islam, A., Murthy, A., Girard, A., & Smolka, S. A. (2014). Compositionality Results for Cardiac Cell Dynamics. In Proc. of HSCC’14, the 17th International Conference on Hybrid Systems: Computation and Control (pp. 243–252). http://hdl.handle.net/20.500.12708/55826 ( reposiTUm)
Ariful, I., Deshpande, T., Murthy, A., Bartocci, E., Smolka, S. A., Stoller, S. D., & Grosu, R. (2014). Tracking Action Potentials of Nonlinear Excitable Cells using Model Predictive Control. In Proc. of BIOTECHNO 2014: The Sixth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies (pp. 52–58). IARIA. http://hdl.handle.net/20.500.12708/55802 ( reposiTUm)
Grosu, R., Peled, D., Ramakrishnan, C. R., Smolka, S. A., Stoller, S. D., & Yang, J. (2014). Using Statistical Model Checking for Measuring Systems. In Leveraging Applications of Formal Methods, Verification and Validation. Specialized Techniques and Applications. ISoLA 2014, Proceedings, Part II (pp. 223–238). Springer. https://doi.org/10.1007/978-3-662-45231-8_16 ( reposiTUm)
Bogomolov, S., Donzé, A., Frehse, G., Grosu, R., Johnson, T. T., Ladan, H., Podelski, A., & Wehrle, M. (2013). Abstraction-Based Guided Search for Hybrid Systems. In Model Checking Software (pp. 117–134). LNCS, Springer. https://doi.org/10.1007/978-3-642-39176-7_8 ( reposiTUm)
Bartocci, E., & Grosu, R. (2013). Monitoring with uncertainty. In Electronic Proceedings in Theoretical Computer Science (pp. 1–4). Electronic Proceedings in Theoretical Computer Science. https://doi.org/10.4204/eptcs.124.1 ( reposiTUm)
Kalajdzic, K., Bartocci, E., Stoller, S. D., Smolka, S. A., & Grosu, R. (2013). Runtime Verification with Particle Filtering. In Runtime Verification (pp. 149–166). LNCS/Springer. https://doi.org/10.1007/978-3-642-40787-1_9 ( reposiTUm)
Stoller, S. D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S. A., & Zadok, E. (2012). Runtime Verification with State Estimation. In Runtime Verification (pp. 193–207). LNCS / Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-29860-8_15 ( reposiTUm)
Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S. A., Stoller, S. D., & Seyster, J. (2012). Adaptive Runtime Verification. In Runtime Verification (pp. 168–182). LNCS / Springer. https://doi.org/10.1007/978-3-642-35632-2_18 ( reposiTUm)
Bogomolov, S., Frehse, G., Grosu, R., Ladan, H., & Podelski, A. (2012). A Box-Based Distance between Regions for Guiding the Reachability Analysis of SpaceEx. In Computer Aided Verification (pp. 479–494). LNCS / Springer. https://doi.org/10.1007/978-3-642-31424-7_35 ( reposiTUm)
Murthy, A., Ariful, I., Bartocci, E., Cherry, E., Fenton, F. H., Glimm, J., Smolka, S. A., & Grosu, R. (2012). Approximate Bisimulations for Sodium Channel Dynamics. In Computational Methods in Systems Biology (pp. 267–287). LNCS / Springer. https://doi.org/10.1007/978-3-642-33636-2_16 ( reposiTUm)
Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., & Smolka, S. (2012). On Temporal Logic and Signal Processing. In Automated Technology for Verification and Analysis (pp. 92–106). LNCS/Springer. https://doi.org/10.1007/978-3-642-33386-6_9 ( reposiTUm)
Grosu, R., Batt, G., Fenton, F. H., Glimm, J., Le Guernic, C., Smolka, S. A., & Bartocci, E. (2011). From Cardiac Cells to Genetic Regulatory Networks. In Computer Aided Verification (pp. 396–411). LNCS / Springer. https://doi.org/10.1007/978-3-642-22110-1_31 ( reposiTUm)
Murthy, A., Bartocci, E., Fenton, F. H., Glimm, J., Gray, R., Smolka, S. A., & Grosu, R. (2011). Curvature analysis of cardiac excitation wavefronts. In Proceedings of the 9th International Conference on Computational Methods in Systems Biology - CMSB ’11. CMSB 2011: the 9th ACM International Conference on Computational Methods in Systems Biology, Paris, France, EU. ACM. https://doi.org/10.1145/2037509.2037532 ( reposiTUm)
Bartocci, E., Cherry, E., Glimm, J., Grosu, R., & Smolka, S. A. (2011). Toward real-time simulation of cardiac dynamics. In Proceedings of the 9th International Conference on Computational Methods in Systems Biology - CMSB ’11. CMSB 2011: the 9th ACM International Conference on Computational Methods in Systems Biology, Paris, France, EU. ACM. https://doi.org/10.1145/2037509.2037525 ( reposiTUm)
Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C. R., & Smolka, S. A. (2011). Model Repair for Probabilistic Systems. In Tools and Algorithms for the Construction and Analysis of Systems (pp. 326–340). LNCS / Springer. https://doi.org/10.1007/978-3-642-19835-9_30 ( reposiTUm)

Beiträge in Büchern

Mehmood, U., Stoller, S. D., Grosu, R., & Smolka, S. A. (2021). Collision-Free 3D Flocking Using the Distributed Simplex Architecture. In Formal Methods in Outer Space : Essays Dedicated to Klaus Havelund on the Occasion of His 65th Birthday (pp. 147–156). Springer. https://doi.org/10.1007/978-3-030-87348-6_9 ( reposiTUm)
Legay, A., Lukina, A., Traonouez, L. M., Yang, J., Smolka, S. A., & Grosu, R. (2019). Statistical model checking. In Computing and Software Science (pp. 478–504). Springer LNCS. http://hdl.handle.net/20.500.12708/30240 ( reposiTUm)
Isakovic, H., & Grosu, R. (2018). A Mixed-Criticality Integration in Cyber-Physical Systems. In Advances in Systems Analysis, Software Engineering, and High Performance Computing (pp. 169–194). IGI Global. https://doi.org/10.4018/978-1-5225-2845-6.ch007 ( reposiTUm)
Amorim, T., Ratasich, D., Macher, G., Ruiz, A., Schneider, D., Driussi, M., & Grosu, R. (2017). Runtime Safety Assurance for Adaptive Cyber-Physical Systems. In N. Druml, A. Genser, A. Krieg, M. Menghin, & A. Höller (Eds.), Advances in Systems Analysis, Software Engineering, and High Performance Computing (pp. 137–168). IGI Global. https://doi.org/10.4018/978-1-5225-2845-6.ch006 ( reposiTUm)

Bücher

From Reactive Systems to Cyber-Physical Systems. (2019). In E. Bartocci, R. Cleaveland, R. Grosu, & O. Sokolsky (Eds.), Lecture Notes in Computer Science. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-030-31514-6 ( reposiTUm)

Präsentationen

Scheuchenstuhl, D., Ulmer, S., Resch, F., Berducci, L., & Grosu, R. (2023, May 29). Enhancing Robot Learning through Learned Human-Attention Feature Maps [Poster Presentation]. ICRA 2023 Workshop on effective Representations, Abstractions, and Priors for Robot Learning (Rap4Robots), London, United Kingdom of Great Britain and Northern Ireland (the). https://doi.org/10.34726/4861 ( reposiTUm)
Hirsch, C., Redl, M., & Grosu, R. (2018). Towards an Agricultural IoT-Infrastructure for Micro-climate Measurements. Workshop on Smart Farming, Porto, Portugal. http://hdl.handle.net/20.500.12708/86817 ( reposiTUm)
M. Hasani, R., Esterle, L., & Grosu, R. (2016). Investigations on the Nervous System of Caenorhabditis elegans. Current AI Research in Austria (CAIRA) Workshop at the 39th German conference on Artificial Intelligence, Klagenfurt, Austria. http://hdl.handle.net/20.500.12708/86397 ( reposiTUm)

Preprints

Grosu, R., Lukina, A., Smolka, S. A., Tiwari, A., Varadarajan, V., & Wang, X. (2020). V-Formation via Model Predictive Control. arXiv. https://doi.org/10.48550/arXiv.2002.08955 ( reposiTUm)
Roy, S., Mehmood, U., Grosu, R., Smolka, S. A., Stoller, S. D., & Tiwari, A. (2020). Learning Distributed Controllers for V-Formation. arXiv. https://doi.org/10.48550/arXiv.2006.00680 ( reposiTUm)
Grosu, R. (2020). ResNets, NeuralODEs and CT-RNNs are Particular Neural Regulatory Networks. arXiv. https://doi.org/10.48550/arXiv.2002.12776 ( reposiTUm)
Mehmood, U., Stoller, S. D., Grosu, R., Roy, S., & Damare, A. (2020). A Distributed Simplex Architecture for Multi-Agent Systems. arXiv. http://hdl.handle.net/20.500.12708/141428 ( reposiTUm)
Grünbacher, S., Cyranka, J., Lechner, M., Islam, A., Smolka, S. A., & Grosu, R. (2020). Lagrangian Reachtubes: The Next Generation. arXiv. http://hdl.handle.net/20.500.12708/141430 ( reposiTUm)
Grünbacher, S., Hasani, R., Lechner, M., Cyranka, J., Smolka, S. A., & Grosu, R. (2020). On The Verification of Neural ODEs with Stochastic Guarantees. arXiv. http://hdl.handle.net/20.500.12708/141429 ( reposiTUm)
Roy, S., Mehmood, U., Grosu, R., Smolka, S. A., Stoller, S. D., & Tiwari, A. (2019). Neural Flocking: MPC-based Supervised Learning of Flocking Controllers. arXiv. https://doi.org/10.48550/arXiv.1908.09813 ( reposiTUm)
Phan, D., Paoletti, N., Grosu, R., Jansen, N., Smolka, S. A., & Stoller, S. D. (2019). Neural Simplex Architecture. arXiv. https://doi.org/10.48550/arXiv.1908.00528 ( reposiTUm)
Ghalebi, E., Mayhar, H., Grosu, R., Taylor, G. W., & Williamson, S. A. (2019). Sequential Edge Clustering in Temporal Multigraphs. arXiv. https://doi.org/10.48550/arXiv.1905.11724 ( reposiTUm)
Ghalebi, E., Mayhar, H., Grosu, R., Taylor, G. W., & Williamson, S. A. (2019). A Nonparametric Bayesian Model for Sparse Temporal Multigraphs. arXiv. https://doi.org/10.48550/arXiv.1910.05098 ( reposiTUm)