Wissenschaftliche Artikel

Bringmann, P., Feischl, M., Miraci, A., Praetorius, D., & Streitberger, J. (2025). On full linear convergence and optimal complexity of adaptive FEM with inexact solver. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 180, 102–129. https://doi.org/10.1016/j.camwa.2024.12.013 ( reposiTUm)
Brunner, M., Praetorius, D., & Streitberger, J. (2025). Cost-optimal adaptive FEM with linearization and algebraic solver for semilinear elliptic PDEs. Numerische Mathematik, 157, 409–445. https://doi.org/10.1007/s00211-025-01455-w ( reposiTUm)
Innerberger, M., Miraçi, A., Praetorius, D., & Streitberger, J. (2024). hp-robust multigrid solver on locally refined meshes for FEM discretizations of symmetric elliptic PDEs. ESAIM: Mathematical Modelling and Numerical Analysis, 58(1), 247–272. https://doi.org/10.1051/m2an/2023104 ( reposiTUm)
Bringmann, P., Brunner, M., Praetorius, D., & Streitberger, J. (2024). Optimal complexity of goal-oriented adaptive FEM for nonsymmetric linear elliptic PDEs. Journal of Numerical Mathematics. https://doi.org/10.1515/jnma-2023-0150 ( reposiTUm)
Bringmann, P., Miraçi, A., & Praetorius, D. (2024). Chapter Four - Iterative solvers in adaptive FEM: Adaptivity yields quasi-optimal computational runtime. ADVANCES IN APPLIED MECHANICS, 59, 147–212. https://doi.org/10.1016/bs.aams.2024.08.002 ( reposiTUm)
Brunner, M., Innerberger, M., Miraçi, A., Praetorius, D., Streitberger, J., & Heid, P. (2024). Corrigendum to: Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs. IMA Journal of Numerical Analysis, 44(3), 1903–1909. https://doi.org/10.1093/imanum/drad103 ( reposiTUm)
Di Fratta, G., Pfeiler, C.-M., Praetorius, D., & Ruggeri, M. (2023). The Mass-Lumped Midpoint Scheme for Computational Micromagnetics: Newton Linearization and Application to Magnetic Skyrmion Dynamics. Computational Methods in Applied Mathematics, 23(1), 145–175. https://doi.org/10.1515/cmam-2022-0060 ( reposiTUm)
Di Fratta, G., Jüngel, A., Praetorius, D., & Slastikov, V. (2023). Spin-diffusion model for micromagnetics in the limit of long times. Journal of Differential Equations, 343, 467–494. https://doi.org/10.1016/j.jde.2022.10.012 ( reposiTUm)
Becker, R., Brunner, M., Innerberger, M., Melenk, J. M., & Praetorius, D. (2023). Cost-optimal adaptive iterative linearized FEM for semilinear elliptic PDEs. ESAIM: Mathematical Modelling and Numerical Analysis, 57(4), 2193–2225. https://doi.org/10.1051/m2an/2023036 ( reposiTUm)
Innerberger, M., & Praetorius, D. (2023). MooAFEM: An object oriented Matlab code for higher-order adaptive FEM for (nonlinear) elliptic PDEs. Applied Mathematics and Computation, 442, Article 127731. https://doi.org/10.1016/j.amc.2022.127731 ( reposiTUm)
Becker, R., Gantner, G., Innerberger, M., & Praetorius, D. (2023). Goal-oriented adaptive finite element methods with optimal computational complexity. Numerische Mathematik, 153, 111–140. https://doi.org/10.1007/s00211-022-01334-8 ( reposiTUm)
Brunner, M., Innerberger, M., Miraçi, A., Praetorius, D., Streitberger, J., & Heid, P. (2023). Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs. IMA Journal of Numerical Analysis, 44(3), 1560–1596. https://doi.org/10.1093/imanum/drad039 ( reposiTUm)
Helml, V., Innerberger, M., & Praetorius, D. (2023). Plain convergence of goal-oriented adaptive FEM. Computers and Mathematics with Applications, 147, 130–149. https://doi.org/10.1016/j.camwa.2023.07.022 ( reposiTUm)
Gantner, G., Praetorius, D., & Schimanko, S. (2022). Stable Implementation of Adaptive IGABEM in 2D in MATLAB. Computational Methods in Applied Mathematics, 22(3), 563–590. https://doi.org/10.1515/cmam-2022-0050 ( reposiTUm)
Davoli, E., Di Fratta, G., Praetorius, D., & Ruggeri, M. (2022). Micromagnetics of thin films in the presence of Dzyaloshinskii-Moriya interaction. Mathematical Models and Methods in Applied Sciences, 32(05), 911–939. https://doi.org/10.1142/s0218202522500208 ( reposiTUm)
Gantner, G., & Praetorius, D. (2022). Adaptive BEM for elliptic PDE systems, Part II: Isogeometric analysis with hierarchical B-splines for weakly-singular integral equations. Computers & Mathematics with Applications, 117, 74–96. https://doi.org/10.1016/j.camwa.2022.04.006 ( reposiTUm)
Becker, R., Innerberger, M., & Praetorius, D. (2022). Adaptive FEM for parameter-errors in elliptic linear-quadratic parameter estimation problems. SIAM Journal on Numerical Analysis, 60(3), 1450–1471. https://doi.org/10.1137/21m1458077 ( reposiTUm)
Becker, R., Brunner, M., Innerberger, M., Melenk, J. M., & Praetorius, D. (2022). Rate-optimal goal-oriented adaptive finite element method for semilinear elliptic PDEs. Computers & Mathematics with Applications, 118, 18–35. https://doi.org/10.1016/j.camwa.2022.05.008 ( reposiTUm)
Mauser, N. J., Pfeiler, C.-M., Praetorius, D., & Ruggeri, M. (2022). Unconditional well-posedness and IMEX improvement of a family of predictor-corrector methods in micromagnetics. Applied Numerical Mathematics, 180, 33–54. https://doi.org/10.1016/j.apnum.2022.05.008 ( reposiTUm)
Gantner, G., & Praetorius, D. (2022). Plain convergence of adaptive algorithms without exploiting reliability and efficiency. IMA Journal of Numerical Analysis, 42(2), 1434–1453. https://doi.org/10.1093/imanum/drab010 ( reposiTUm)
Gantner, G., & Praetorius, D. (2022). Adaptive BEM for elliptic PDE systems, Part I: Abstract framework for weakly-singular integral equations. Applicable Analysis, 101(6), 2085–2118. https://doi.org/10.1080/00036811.2020.1800651 ( reposiTUm)
Oezelt, H., Qu, L., Kovacs, A., Fischbacher, J., Gusenbauer, M., Beigelbeck, R., Praetorius, D., Masao, Y., Shoji, T., Kato, A., Chantrell, R., Winklhofer, M., Zimanyi, G., & Schrefl, T. (2022). Full-spin-wave-scaled stochastic micromagnetism for mesh-independent simulations of ferromagnetic resonance and reversal. Npj Computational Materials, 8(35). https://doi.org/10.1038/s41524-022-00719-5 ( reposiTUm)
Kovacs, A., Exl, L., Kornell, A., Fischbacher, J., Hovorka, M., Gusenbauer, M., Breth, L., Oezelt, H., Praetorius, D., Süss, D., & Schrefl, T. (2022). Magnetostatics and micromagnetics with physics informed neural networks. Journal of Magnetism and Magnetic Materials, 548, Article 168951. https://doi.org/10.1016/j.jmmm.2021.168951 ( reposiTUm)
Amad, A. A. S., Ledger, P. D., Betcke, T., & Praetorius, D. (2022). Benchmark computations for the polarization tensor characterization of small conducting objects. Applied Mathematical Modelling, 111, 94–107. https://doi.org/10.1016/j.apm.2022.06.024 ( reposiTUm)
Buffa, A., Gantner, G., Giannelli, C., Praetorius, D., & Vázquez, R. (2022). Mathematical Foundations of Adaptive Isogeometric Analysis. Archives of Computational Methods in Engineering, 29, 4479–4555. https://doi.org/10.1007/s11831-022-09752-5 ( reposiTUm)
Gantner, G., Haberl, A., Praetorius, D., & Schimanko, S. (2021). Rate optimality of adaptive finite element methods with respect to the overall computational costs. Mathematics of Computation, 90(331), 2011–2040. https://doi.org/10.1090/mcom/3654 ( reposiTUm)
Bespalov, A., Praetorius, D., & Ruggeri, M. (2021). Two-level a posteriori error estimation for adaptive multilevel stochastic Galerkin FEM. SIAM/ASA Journal on Uncertainty Quantification, 9(3), 1184–1216. https://doi.org/10.1137/20m1342586 ( reposiTUm)
Bespalov, A., Praetorius, D., & Ruggeri, M. (2021). Convergence and rate optimality of adaptive multilevel stochastic Galerkin FEM. IMA Journal of Numerical Analysis, 42(3), 2190–2213. https://doi.org/10.1093/imanum/drab036 ( reposiTUm)
Heid, P., Praetorius, D., & Wihler, T. P. (2021). Energy contraction and optimal convergence of adaptive iterative linearized finite element methods. Computational Methods in Applied Mathematics, 21(2), 407–422. https://doi.org/10.1515/cmam-2021-0025 ( reposiTUm)
Kurz, S., Pauly, D., Praetorius, D., Repin, S., & Sebastian, D. (2021). Functional a posteriori error estimates for boundary element methods. Numerische Mathematik, 147(4), 937–966. https://doi.org/10.1007/s00211-021-01188-6 ( reposiTUm)
Haberl, A., Praetorius, D., Schimanko, S., & Vohralík, M. (2021). Convergence and quasi-optimal cost of adaptive algorithms for nonlinear operators including iterative linearization and algebraic solver. Numerische Mathematik, 147(3), 679–725. https://doi.org/10.1007/s00211-021-01176-w ( reposiTUm)
Innerberger, M., & Praetorius, D. (2021). Instance-optimal goal-oriented adaptivity. Computational Methods in Applied Mathematics, 21(1), 109–126. https://doi.org/10.1515/cmam-2019-0115 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2021). Quasi-optimal convergence rate for an adaptive method for the integral fractional Laplacian. Mathematics of Computation, 90(330), 1557–1587. https://doi.org/10.1090/mcom/3603 ( reposiTUm)
Becker, R., Innerberger, M., & Praetorius, D. (2021). Optimal convergence rates for goal-oriented FEM with quadratic goal functional. Computational Methods in Applied Mathematics, 21(2), 267–288. https://doi.org/10.1515/cmam-2020-0044 ( reposiTUm)
Kurz, S., Pauly, D., Praetorius, D., Repin, S., & Sebastian, D. (2021). Functional a posteriori error estimates for boundary element methods. Numerische Mathematik, 147, 937–966. https://doi.org/10.1007/s00211-021-01188-6 ( reposiTUm)
Haberl, A., Praetorius, D., Schimanko, S., & Vohralík, M. (2021). Convergence and quasi-optimal cost of adaptive algorithms for nonlinear operators including iterative linearization and algebraic solver. Numerische Mathematik, 147(3), 679–725. https://doi.org/10.1007/s00211-021-01176-w ( reposiTUm)
Praetorius, D., Repin, S., & Sauter, S. A. (2021). Reliable Methods of Mathematical Modeling. Computational Methods in Applied Mathematics, 21(2), 263–266. https://doi.org/10.1515/cmam-2021-0028 ( reposiTUm)
Gantner, G., Praetorius, D., & Schimanko, S. (2020). Adaptive isogeometric boundary element methods with local smoothness control. Mathematical Models and Methods in Applied Sciences, 30(02), 261–307. https://doi.org/10.1142/s0218202520500074 ( reposiTUm)
Di Fratta, G., Pfeiler, C.-M., Praetorius, D., Ruggeri, M., & Stiftner, B. (2020). Linear second-order IMEX-type integrator for the (eddy current) Landau-Lifshitz-Gilbert equation. IMA Journal of Numerical Analysis, 40(4), 2802–2838. https://doi.org/10.1093/imanum/drz046 ( reposiTUm)
Pfeiler, C.-M., Ruggeri, M., Stiftner, B., Exl, L., Hochsteger, M., Hrkac, G., Schöberl, J., Mauser, N. J., & Praetorius, D. (2020). Computational micromagnetics with Commics. Computer Physics Communications, 248, Article 106965. https://doi.org/10.1016/j.cpc.2019.106965 ( reposiTUm)
Gantner, G., & Praetorius, D. (2020). Adaptive IGAFEM with optimal convergence rates: T-splines. Computer Aided Geometric Design, 81(101906). https://doi.org/10.1016/j.cagd.2020.101906 ( reposiTUm)
Praetorius, D., Ruggeri, M., & Stephan, E. P. (2020). The saturation assumption yields optimal convergence of two-level adaptive BEM. Applied Numerical Mathematics, 152, 105–124. https://doi.org/10.1016/j.apnum.2020.01.014 ( reposiTUm)
Pfeiler, C.-M., & Praetorius, D. (2020). Dörfler marking with minimal cardinality is a linear complexity problem. Mathematics of Computation, 89(326), 2735–2752. https://doi.org/10.1090/mcom/3553 ( reposiTUm)
Di Fratta, G., Innerberger, M., & Praetorius, D. (2020). Weak-strong uniqueness for the Landau-Lifshitz-Gilbert equation in micromagnetics. Nonlinear Analysis: Real World Applications, 55, Article 103122. https://doi.org/10.1016/j.nonrwa.2020.103122 ( reposiTUm)
Erath, C., Gantner, G., & Praetorius, D. (2020). Optimal convergence behavior of adaptive FEM driven by simple (h − h/2)-type error estimators. Computers and Mathematics with Applications, 79(3), 623–642. https://doi.org/10.1016/j.camwa.2019.07.014 ( reposiTUm)
Führer, T., & Praetorius, D. (2020). A short note on plain convergence of adaptive least-squares finite element methods. Computers and Mathematics with Applications, 80(6), 1619–1632. https://doi.org/10.1016/j.camwa.2020.07.022 ( reposiTUm)
Erath, C., & Praetorius, D. (2019). Optimal adaptivity for the SUPG finite element method. Computer Methods in Applied Mechanics and Engineering, 353, 308–327. https://doi.org/10.1016/j.cma.2019.05.028 ( reposiTUm)
Betcke, T., Haberl, A., & Praetorius, D. (2019). Adaptive boundary element methods for the computation of the electrostatic capacity on complex polyhedra. Journal of Computational Physics, 397, Article 108837. https://doi.org/10.1016/j.jcp.2019.07.036 ( reposiTUm)
Kraus, J., Pfeiler, C.-M., Praetorius, D., Ruggeri, M., & Stiftner, B. (2019). Iterative solution and preconditioning for the tangent plane scheme in computational micromagnetics. Journal of Computational Physics, 398, Article 108866. https://doi.org/10.1016/j.jcp.2019.108866 ( reposiTUm)
Bespalov, A., Praetorius, D., Rocchi, L., & Ruggeri, M. (2019). Convergence of adaptive stochastic Galerkin FEM. SIAM Journal on Numerical Analysis, 57(5), 2359–2382. https://doi.org/10.1137/18m1229560 ( reposiTUm)
Führer, T., Gantner, G., Praetorius, D., & Schimanko, S. (2019). Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods. Computer Methods in Applied Mechanics and Engineering, 351, 571–598. https://doi.org/10.1016/j.cma.2019.03.038 ( reposiTUm)
Di Fratta, G., Führer, T., Gantner, G., & Praetorius, D. (2019). Adaptive Uzawa algorithm for the Stokes equation. ESAIM: Mathematical Modelling and Numerical Analysis, 53(6), 1841–1870. https://doi.org/10.1051/m2an/2019039 ( reposiTUm)
Führer, T., Haberl, A., Praetorius, D., & Schimanko, S. (2019). Adaptive BEM with inexact PCG solver yields almost optimal computational costs. Numerische Mathematik, 141(4), 967–1008. https://doi.org/10.1007/s00211-018-1011-1 ( reposiTUm)
Erath, C., & Praetorius, D. (2019). Adaptive vertex-centered finite volume methods for general second-order linear elliptic PDEs. IMA Journal of Numerical Analysis, 39(2), 983–1008. https://doi.org/10.1093/imanum/dry006 ( reposiTUm)
Bespalov, A., Praetorius, D., Rocchi, L., & Ruggeri, M. (2019). Goal-oriented error estimation and adaptivity for elliptic PDEs with parametric or uncertain inputs. Computer Methods in Applied Mechanics and Engineering, 345, 951–982. https://doi.org/10.1016/j.cma.2018.10.041 ( reposiTUm)
Bespalov, A., Betcke, T., Haberl, A., & Praetorius, D. (2019). Adaptive BEM with optimal convergence rates for the Helmholtz equation. Computer Methods in Applied Mechanics and Engineering, 346, 260–287. https://doi.org/10.1016/j.cma.2018.12.006 ( reposiTUm)
Hrkac, G., Pfeiler, C.-M., Praetorius, D., Ruggeri, M., Segatti, A., & Stiftner, B. (2019). Convergent tangent plane integrators for the simulation of chiral magnetic skyrmion dynamics. Advances in Computational Mathematics, 45(3), 1329–1368. https://doi.org/10.1007/s10444-019-09667-z ( reposiTUm)
Praetorius, D., Ruggeri, M., & Stiftner, B. (2018). Convergence of an implicit-explicit midpoint scheme for computational micromagnetics. Computers and Mathematics with Applications, 75(5), 1719–1738. https://doi.org/10.1016/j.camwa.2017.11.028 ( reposiTUm)
Führer, T., & Praetorius, D. (2018). A linear Uzawa-type FEM-BEM solver for nonlinear transmission problems. Computers and Mathematics with Applications, 75(8), 2678–2697. https://doi.org/10.1016/j.camwa.2017.12.035 ( reposiTUm)
Gantner, G., Haberl, A., Praetorius, D., & Stiftner, B. (2018). Rate optimal adaptive FEM with inexact solver for nonlinear operators. IMA Journal of Numerical Analysis, 38(4), 1797–1831. https://doi.org/10.1093/imanum/drx050 ( reposiTUm)
Gantner, G., Haberlik, D., & Praetorius, D. (2017). Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines. Mathematical Models and Methods in Applied Sciences, 27(14), 2631–2674. https://doi.org/10.1142/s0218202517500543 ( reposiTUm)
Feischl, M., Führer, T., Praetorius, D., & Stephan, E. P. (2017). Optimal additive Schwarz preconditioning for hypersingular integral equations on locally refined triangulations. Calcolo, 54(1), 367–399. https://doi.org/10.1007/s10092-016-0190-3 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2017). Local inverse estimates for non-local boundary integral operators. Mathematics of Computation, 86(308), 2651–2686. https://doi.org/10.1090/mcom/3175 ( reposiTUm)
Feischl, M., Gantner, G., Haberl, A., & Praetorius, D. (2017). Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations. Numerische Mathematik, 136(1), 147–182. https://doi.org/10.1007/s00211-016-0836-8 ( reposiTUm)
Feischl, M., Führer, T., Praetorius, D., & Stephan, E. P. (2017). Optimal preconditioning for the symmetric and non-symmetric coupling of adaptive finite elements and boundary elements. Numerical Methods for Partial Differential Equations, 33(3), 603–632. http://hdl.handle.net/20.500.12708/146167 ( reposiTUm)
Bespalov, A., Haberl, A., & Praetorius, D. (2017). Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems. Computer Methods in Applied Mechanics and Engineering, 317, 318–340. https://doi.org/10.1016/j.cma.2016.12.014 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2017). Existence of H-matrix approximants to the inverse of BEM matrices: the hyper-singular integral operator. IMA Journal of Numerical Analysis, drw024. https://doi.org/10.1093/imanum/drw024 ( reposiTUm)
Melenk, J. M., Praetorius, D., & Wohlmuth, B. (2017). Simultaneous quasi-optimal convergence rates in FEM-BEM coupling. Mathematical Methods in the Applied Sciences, 40(2), 463–485. http://hdl.handle.net/20.500.12708/146297 ( reposiTUm)
Vogler, C., Abert, C., Bruckner, F., Suess, D., & Praetorius, D. (2016). Heat-assisted magnetic recording of bit-patterned media beyond 10 Tb/in2. Applied Physics Letters, 108(10), 102406. https://doi.org/10.1063/1.4943629 ( reposiTUm)
Vogler, C., Abert, C., Bruckner, F., Suess, D., & Praetorius, D. (2016). Areal density optimization for heat-assisted magnetic recording on high-density media. Journal of Applied Physics, 119(22), 223903. https://doi.org/10.1063/1.4953390 ( reposiTUm)
Abert, C., Ruggeri, M., Bruckner, F., Vogler, C., Manchon, A., Praetorius, D., & Süss, D. (2016). A self-consistent spin-diffusion model for micromagnetics. Scientific Reports, 6(16). http://hdl.handle.net/20.500.12708/149061 ( reposiTUm)
Erath, C., & Praetorius, D. (2016). Adaptive finite volume methods with convergence rates. SIAM Journal on Numerical Analysis, 54(4), 2228–2255. https://doi.org/10.1137/15m1036701 ( reposiTUm)
Feischl, M., Praetorius, D., & van der Zee, K. G. (2016). An abstract analysis of optimal goal-oriented adaptivity. SIAM Journal on Numerical Analysis, 54(3), 1423–1448. https://doi.org/10.1137/15m1021982 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2016). Existence of H-matrix approximants to the inverses of BEM matrices: the simple-layer operator. Mathematics of Computation, 85(297), 119–152. https://doi.org/10.1090/mcom/2990 ( reposiTUm)
Feischl, M., Führer, T., Niederer, M., Strommer, S., Steinboeck, A., & Praetorius, D. (2016). Efficient numerical computation of direct exchange areas in thermal radiation analysis. Numerical Heat Transfer, Part B Fundamentals, 69(6), 511–533. https://doi.org/10.1080/10407790.2016.1173469 ( reposiTUm)
Feischl, M., Gantner, G., Haberl, A., & Praetorius, D. (2016). Adaptive 2D IGA boundary element methods. Engineering Analysis with Boundary Elements, 62, 141–153. https://doi.org/10.1016/j.enganabound.2015.10.003 ( reposiTUm)
Feischl, M., Gantner, G., Haberl, A., Praetorius, D., & Führer, T. (2016). Adaptive boundary element methods for optimal convergence of point errors. Numerische Mathematik, 132(3), 541–567. https://doi.org/10.1007/s00211-015-0727-4 ( reposiTUm)
Ruggeri, M., Abert, C., Hrkac, G., Suess, D., & Praetorius, D. (2016). Coupling of dynamical micromagnetism and a stationary spin drift-diffusion equation: A step towards a fully self-consistent spintronics framework. Physica B: Condensed Matter, 486, 88–91. https://doi.org/10.1016/j.physb.2015.09.003 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2015). Quasi-optimal convergence rates for adaptive boundary element methods with data approximation - Part II: Hyper-singular integral equation. Electron. Trans. Numer. Anal., 44, 153–176. http://hdl.handle.net/20.500.12708/150419 ( reposiTUm)
Feischl, M., Führer, T., Heuer, N., Karkulik, M., & Praetorius, D. (2015). Adaptive boundary element methods: A posteriori error estimators, adaptivity, convergence, and implementation. Archives of Computational Methods in Engineering, 22(3), 309–389. https://doi.org/10.1007/s11831-014-9114-z ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., & Praetorius, D. (2015). Energy norm based error estimators for adaptive BEM for hypersingular integral equations. Applied Numerical Mathematics, 95, 15–35. https://doi.org/10.1016/j.apnum.2013.12.004 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., & Praetorius, D. (2015). Stability of symmetric and nonsymmetric FEM-BEM couplings for nonlinear elasticity problems. Numerische Mathematik, 130(2), 199–223. https://doi.org/10.1007/s00211-014-0662-9 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2015). FEM-BEM Coupling for the large-body limit in micromagnetics. Journal of Computational and Applied Mathematics, 281, 10–31. https://doi.org/10.1016/j.cam.2014.11.042 ( reposiTUm)
Banas, L., Page, M., & Praetorius, D. (2015). A convergent linear finite element scheme for the Maxwell-Landau-Lifshitz-Gilbert equations. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 44, 250–270. https://doi.org/10.48550/arXiv.1303.4009 ( reposiTUm)
Feischl, M., Gantner, G., & Praetorius, D. (2015). Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations. Computer Methods in Applied Mechanics and Engineering, 290, 362–386. https://doi.org/10.1016/j.cma.2015.03.013 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2015). H-matrix approximability of the inverses of FEM matrices. Numerische Mathematik, 131(4), 615–642. https://doi.org/10.1007/s00211-015-0706-9 ( reposiTUm)
Abert, C., Ruggeri, M., Bruckner, F., Vogler, C., Hrkac, G., Praetorius, D., & Suess, D. (2015). A three-dimensional spin-diffusion model for micromagnetics. Scientific Reports, 5(14855). https://doi.org/10.1038/srep14855 ( reposiTUm)
Führer, T., Melenk, J. M., Praetorius, D., & Rieder, A. (2015). Optimal additive Schwarz methods for the hp-BEM: the hypersingular integral operator in 3D on locally refined meshes. Computers and Mathematics with Applications, 70(7), 1583–1605. https://doi.org/10.1016/j.camwa.2015.06.025 ( reposiTUm)
Karkulik, M., Pavlicek, D., & Praetorius, D. (2015). Erratum to: On 2D newest vertex bisection: optimality of mesh-closure and H1-stability of L2-projection. Constructive Approximation, 42(3), 349–352. https://doi.org/10.1007/s00365-015-9309-z ( reposiTUm)
Le, K.-N., Page, M., Praetorius, D., & Tran, T. (2015). On a decoupled linear FEM integrator for eddy-current-LLG. Applicable Analysis, 94(5), 1051–1067. https://doi.org/10.1080/00036811.2014.916401 ( reposiTUm)
Carstensen, C., Feischl, M., & Praetorius, D. (2014). Rate optimality of adaptive algorithms. ECCOMAS Newsletter, 07, 20–23. http://hdl.handle.net/20.500.12708/156784 ( reposiTUm)
Carstensen, C., Feischl, M., Page, M., & Praetorius, D. (2014). Axioms of adaptivity. Computers and Mathematics with Applications, 67(6), 1195–1253. https://doi.org/10.1016/j.camwa.2013.12.003 ( reposiTUm)
Bruckner, F., Süss, D., Feischl, M., Führer, T., Goldenits, P., Page, M., Praetorius, D., & Ruggeri, M. (2014). Multiscale modeling in micromagnetics: Existence of solutions and numerical integration. Mathematical Models and Methods in Applied Sciences, 24(13), 2627–2662. https://doi.org/10.1142/s0218202514500328 ( reposiTUm)
AURADA, M., MELENK, J. M., & PRAETORIUS, D. (2014). Mixed conforming elements for the large-body limit in micromagnetics. Mathematical Models and Methods in Applied Sciences, 24(01), 113–144. https://doi.org/10.1142/s0218202513500486 ( reposiTUm)
Feischl, M., Führer, T., Mitscha-Eibl, G., Praetorius, D., & Stephan, E. P. (2014). Convergence of adaptive BEM and adaptive FEM-BEM coupling for estimators without h-weighting factor. Computational Methods in Applied Mathematics, 14(4), 485–508. https://doi.org/10.1515/cmam-2014-0019 ( reposiTUm)
Aurada, M., Ebner, M., Feischl, M., Ferraz-Leite, S., Führer, T., Goldenits, P., Karkulik, M., Mayr, M., & Praetorius, D. (2014). HILBERT - A MATLAB implementation of adaptive 2D-BEM. Numerical Algorithms, 67(1), 1–32. https://doi.org/10.1007/s11075-013-9771-2 ( reposiTUm)
Baňas, Ľ., Page, M., Praetorius, D., & Rochat, J. (2014). A decoupled and unconditionally convergent linear FEM integrator for the Landau–Lifshitz–Gilbert equation with magnetostriction. IMA Journal of Numerical Analysis, 34(4), 1361–1385. https://doi.org/10.1093/imanum/drt050 ( reposiTUm)
Abert, C., Hrkac, G., Page, M., Praetorius, D., Ruggeri, M., & Suess, D. (2014). Spin-polarized transport in ferromagnetic multilayers: An unconditionally convergent FEM integrator. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 68(6), 639–654. https://doi.org/10.1016/j.camwa.2014.07.010 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2014). Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, Part I: Weakly-singular integral equation. Calcolo, 51(4), 531–562. https://doi.org/10.1007/s10092-013-0100-x ( reposiTUm)
Feischl, M., Führer, T., & Praetorius, D. (2014). Adaptive FEM with optimal convergence rates for a certain class of non-symmetric and possibly non-linear problems. SIAM Journal on Numerical Analysis, 52(2), 601–625. https://doi.org/10.1137/120897225 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., & Praetorius, D. (2014). ZZ-type a posteriori error estimators for adaptive boundary element methods on a curve. Engineering Analysis with Boundary Elements, 38, 49–60. https://doi.org/10.1016/j.enganabound.2013.10.008 ( reposiTUm)
Feischl, M., Page, M., & Praetorius, D. (2014). Convergence of adaptive FEM for some elliptic obstacle problem with inhomogeneous Dirichlet data. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 11(1), 229–253. http://hdl.handle.net/20.500.12708/154984 ( reposiTUm)
Feischl, M., Page, M., & Praetorius, D. (2014). Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data. Journal of Computational and Applied Mathematics, 255, 481–501. https://doi.org/10.1016/j.cam.2013.06.009 ( reposiTUm)
Erath, C., Funken, S., Goldenits, P., & Praetorius, D. (2013). Simple error estimators for the Galerkin BEM for some hypersingular integral equation in 2D. Applicable Analysis, 92(6), 1194–1216. https://doi.org/10.1080/00036811.2012.661045 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., & Praetorius, D. (2013). Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods. Computational Methods in Applied Mathematics, 13(3), 305–332. https://doi.org/10.1515/cmam-2013-0010 ( reposiTUm)
Karkulik, M., Of, G., & Praetorius, D. (2013). Convergence of adaptive 3D BEM for weakly singular integral equations based on isotropic mesh-refinement. Numerical Methods for Partial Differential Equations, 29(6), 2081–2106. http://hdl.handle.net/20.500.12708/154682 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2013). Quasi-optimal convergence rate for an adaptive boundary element method. SIAM Journal on Numerical Analysis, 51(2), 1327–1348. https://doi.org/10.1137/110842569 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2013). Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity. Computational Mechanics, 51(4), 399–419. https://doi.org/10.1007/s00466-012-0779-6 ( reposiTUm)
Page, M., & Praetorius, D. (2013). Convergence of adaptive FEM for some elliptic obstacle problem. Applicable Analysis, 92(3), 595–615. https://doi.org/10.1080/00036811.2011.631916 ( reposiTUm)
Aurada, M., Feischl, M., Kemetmüller, J., Page, M., & Praetorius, D. (2013). Each H1/2-stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd. ESAIM-Mathematical Modelling and Numerical Analysis (Modélisation Mathématique et Analyse Numérique), 47(4), 1207–1235. https://doi.org/10.1051/m2an/2013069 ( reposiTUm)
Bruckner, F., Vogler, C., Bergmair, B., Huber, T., Fuger, M., Suess, D., Feischl, M., Fuehrer, T., Page, M., & Praetorius, D. (2013). Combining micromagnetism and magnetostatic Maxwell equations for multiscale magnetic simulations. Journal of Magnetism and Magnetic Materials, 343, 163–168. https://doi.org/10.1016/j.jmmm.2013.04.085 ( reposiTUm)
Karkulik, M., Pavlicek, D., & Praetorius, D. (2013). On 2D newest vertex bisection: Optimality of mesh-closure and H^1-stability of L_2-projection. Constructive Approximation, 38(2), 213–234. https://doi.org/10.1007/s00365-013-9192-4 ( reposiTUm)
Melenk, J. M., Faustmann, M., & Praetorius, D. (2012). Efficient and Robust Approximation of the Helmholtz Equation. Oberwolfach Reports, 9(4), 3305–3338. https://doi.org/10.4171/owr/2012/55 ( reposiTUm)
Aurada, M., Ferraz-Leite, S., & Praetorius, D. (2012). Estimator reduction and convergence of adaptive BEM. Applied Numerical Mathematics, 62(6), 787–801. https://doi.org/10.1016/j.apnum.2011.06.014 ( reposiTUm)
Carstensen, C., & Praetorius, D. (2012). Convergence of adaptive boundary element methods. Journal of Integral Equations and Applications, 24(1). https://doi.org/10.1216/jie-2012-24-1-1 ( reposiTUm)
Aurada, M., Feischl, M., & Praetorius, D. (2012). Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems. ESAIM: Mathematical Modelling and Numerical Analysis, 46(5), 1147–1173. https://doi.org/10.1051/m2an/2011075 ( reposiTUm)
Bruckner, F., Vogler, C., Feischl, M., Praetorius, D., Bergmair, B., Huber, T., Fuger, M., & Suess, D. (2012). 3D FEM-BEM-coupling method to solve magnetostatic Maxwell equations. Journal of Magnetism and Magnetic Materials, 324(10), 1862–1866. https://doi.org/10.1016/j.jmmm.2012.01.016 ( reposiTUm)
Carstensen, C., & Praetorius, D. (2012). Stabilization yields strong convergence of macroscopic magnetization vectors for micromagnetics without exchange energy. Journal of Numerical Mathematics, 20(2). https://doi.org/10.1515/jnum-2012-0004 ( reposiTUm)
Ferraz-Leite, S., Melenk, J. M., & Praetorius, D. (2012). Numerical quadratic energy minimization bound to convex constraints in thin-film micromagnetics. Numerische Mathematik, 122(1), 101–131. https://doi.org/10.1007/s00211-012-0454-z ( reposiTUm)
Aurada, M., Feischl, M., Karkulik, M., & Praetorius, D. (2012). A posteriori error estimates for the Johnson-Nédélec FEM-BEM coupling. Engineering Analysis with Boundary Elements, 36(2), 255–266. https://doi.org/10.1016/j.enganabound.2011.07.017 ( reposiTUm)
Aurada, M., Ferraz-Leite, S., Goldenits, P., Karkulik, M., Mayr, M., & Praetorius, D. (2012). Convergence of adaptive BEM for some mixed boundary value problem. Applied Numerical Mathematics, 62(4), 226–245. https://doi.org/10.1016/j.apnum.2011.03.008 ( reposiTUm)
Funken, S., Praetorius, D., & Wissgott, P. (2011). Efficient implementation of adaptive P1-FEM in MATLAB. Computational Methods in Applied Mathematics, 11(4), 460–490. https://doi.org/10.2478/cmam-2011-0026 ( reposiTUm)
Goldenits, P., Praetorius, D., & Süss, D. (2011). Convergent Geometric Integrator for the Landau-Lifshitz-Gilbert Equation in Micromagnetics. Proceedings in Applied Mathematics and Mechanics, 11(1), 775–776. https://doi.org/10.1002/pamm.201110376 ( reposiTUm)
Aurada, M., Feischl, M., Karkulik, M., & Praetorius, D. (2011). Adaptive coupling of FEM and BEM: Simple error estimators and convergence. Proceedings in Applied Mathematics and Mechanics, 11(1), 755–756. https://doi.org/10.1002/pamm.201110367 ( reposiTUm)
Feischl, M., Page, M., & Praetorius, D. (2011). Convergence of adaptive FEM for elliptic obstacle problems. Proceedings in Applied Mathematics and Mechanics, 11(1), 767–768. https://doi.org/10.1002/pamm.201110373 ( reposiTUm)
Feischl, M., Page, M., & Praetorius, D. (2011). Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data. Proceedings in Applied Mathematics and Mechanics, 11(1), 769–772. https://doi.org/10.1002/pamm.201110374 ( reposiTUm)
Ortner, C., & Praetorius, D. (2011). On the convergence of adaptive nonconforming finite element methods for a class of convex variational problems. SIAM Journal on Numerical Analysis, 49(1), 346–367. https://doi.org/10.1137/090781073 ( reposiTUm)
Ferraz-Leite, S., Ortner, C., & Praetorius, D. (2010). Convergence of simple adaptive Galerkin schemes based on h-h/2 error estimators. Numerische Mathematik, 116(2), 291–316. https://doi.org/10.1007/s00211-010-0292-9 ( reposiTUm)
Koch, O., März, R., Praetorius, D., & Weinmüller, E. (2010). Collocation Methods for Index 1 DAEs with a Singularity of the First Kind. Mathematics of Computation, 79(269), 281–281. https://doi.org/10.1090/s0025-5718-09-02267-4 ( reposiTUm)
Erath, C., Ferraz-Leite, S., Funken, S., & Praetorius, D. (2009). Energy Norm Based A Posteriori Error Estimation for Boundary Element Methods in Two Dimensions. Applied Numerical Mathematics, 59(11), 2713–2734. https://doi.org/10.1016/j.apnum.2008.12.024 ( reposiTUm)
Erath, C., & Praetorius, D. (2008). A Posteriori Error Estimate and Adaptive Mesh-Refinement for the Cell-Centered Finite Volume Method for Elliptic Boundary Value Problems. SIAM Journal on Numerical Analysis, 47(1), 109–135. https://doi.org/10.1137/070702126 ( reposiTUm)
Ferraz-Leite, S., & Praetorius, D. (2008). Simple A Posteriori Error Estimators for the h-Version of the Boundary Element Method. Computing, 83(4), 135–162. https://doi.org/10.1007/s00607-008-0017-4 ( reposiTUm)
Popović, N., Praetorius, D., & Schlömerkemper, A. (2007). Analysis and Numerical Simulation of Magnetic Forces between Rigid Polygonal Bodies. Part II: Numerical Simulation. Continuum Mechanics and Thermodynamics, 19(1–2), 81–109. https://doi.org/10.1007/s00161-007-0047-8 ( reposiTUm)
Popović, N., Praetorius, D., & Schlömerkemper, A. (2007). Analysis and Numerical Simulation of Magnetic Forces between Rigid Polygonal Bodies. Part I: Analysis. Continuum Mechanics and Thermodynamics, 19(1–2), 67–80. https://doi.org/10.1007/s00161-007-0046-9 ( reposiTUm)
Carstensen, C., & Praetorius, D. (2007). On Stabilized Models in Micromagnetics. Computational Mechanics, 39(5), 663–672. https://doi.org/10.1007/s00466-006-0105-2 ( reposiTUm)
Carstensen, C., & Praetorius, D. (2007). Averaging Techniques for the A Posteriori BEM Error Control for a Hypersingular Integral Equation in Two Dimensions. SIAM Journal on Scientific Computing, 29(2), 782–810. https://doi.org/10.1137/050623930 ( reposiTUm)
Carstensen, C., & Praetorius, D. (2007). Averaging Techniques for A Posteriori Error Control in Finite Element and Boundary Element Analysis. Boundary Element Analysis, 29–59. https://doi.org/10.1007/978-3-540-47533-0_2 ( reposiTUm)
Carstensen, C., Praetorius, D., & Boiger, W. (2007). Strong convergence for large bodies in micromagnetics. Proceedings in Applied Mathematics and Mechanics, 7(1), 1151203–1151204. https://doi.org/10.1002/pamm.200700878 ( reposiTUm)
Popovic, N., & Praetorius, D. (2006). H-Matrix Techniques for Stray-Field Computations in Computational Micromagnetics. Lecture Notes in Computer Science, 3743, 102–110. http://hdl.handle.net/20.500.12708/171857 ( reposiTUm)
Carstensen, C., & Praetorius, D. (2006). Averaging Techniques for the Effective Numerical Solution of Symm’s Integral Equation of the First Kind. SIAM Journal on Scientific Computing, 27(4), 1226–1260. https://doi.org/10.1137/040609033 ( reposiTUm)
Popovic, N., Praetorius, D., & Schlömerkemper, A. (2005). Magnetic Force Formulae for Magnets at Small Distances. Proceedings in Applied Mathematics and Mechanics, 5, 631–632. http://hdl.handle.net/20.500.12708/171862 ( reposiTUm)
Carstensen, C., & Praetorius, D. (2005). Numerical Analysis for a Macroscopic Model in Micromagnetics. SIAM Journal on Numerical Analysis, 42(6), 2633–2651. http://hdl.handle.net/20.500.12708/171834 ( reposiTUm)
Popovic, N., & Praetorius, D. (2005). Applications of H-Matrix Techniques in Micromagnetics. Computing, 74(3), 177–204. http://hdl.handle.net/20.500.12708/171835 ( reposiTUm)
Auzinger, W., Koch, O., Praetorius, D., & Weinmüller, E. (2005). New A-Posteriori Error Estimates for Singular Boundary Value Problems. Numerical Algorithms, 40(1), 79–100. https://doi.org/10.1007/s11075-005-3791-5 ( reposiTUm)

Beiträge in Tagungsbänden

Bringmann, P., Feischl, M., Miraci, A., Praetorius, D., & Streitberger, J. (2024). On full linear convergence and optimal complexity of adaptive FEM with inexact solver. In Chemnitz FE-Symposium 2024 : Programme, Collection of abstracts, List of participants (pp. 52–52). ( reposiTUm)
Bringmann, P., Feischl, M., Miraci, A., Praetorius, D., & Streitberger, J. (2024). On full linear convergence and optimal complexity of adaptive FEM with inexact solver. In Austrian Numerical Analysis Day 2024, 16– 17 May 2024: Abstracts (pp. 9–9). http://hdl.handle.net/20.500.12708/197906 ( reposiTUm)
Praetorius, D., Bringmann, P., Gantner, G., Miraci, A., & Streitberger, J. (2024). Optimal interplay of adaptive mesh-refinement and iterative solvers for elliptic PDEs. In Book of Abstracts: 10th International Conference on Computational Methods in Applied Mathematics (CMAM-10) (pp. 13–13). http://hdl.handle.net/20.500.12708/198954 ( reposiTUm)
Bringmann, P., Brunner, M., Praetorius, D., & Streitberger, J. (2024). Cost-optimal goal-oriented adaptive FEM with nested iterative solvers. In Book of Abstracts: 10th International Conference on Computational Methods in Applied Mathematics (CMAM-10) (pp. 72–72). ( reposiTUm)
Freiszlinger, A., & Praetorius, D. (2024). Convergence of adaptive multilevel stochastic Galerkin FEM for parametric PDEs. In Book of Abstracts: 10th International Conference on Computational Methods in Applied Mathematics (CMAM-10) (pp. 82–82). ( reposiTUm)
Becker, R., Brunner, M., Innerberger, M., Melenk, J. M., & Praetorius, D. (2022). Rate-optimal goal-oriented adaptive FEM for semilinear elliptic PDEs. In Digital Book of Abstracts : Computational Methods in Applied Mathematics (CMAM 2022). Computational Methods in Applied Mathematics (CMAM 2022), Wien, Austria. https://doi.org/10.34726/5320 ( reposiTUm)
Brunner, M., Becker, R., Innerberger, M., Melenk, J. M., & Praetorius, D. (2022). Rate-optimal goal-oriented adaptive FEM for semilinear elliptic PDEs. In Austrian Numerical Analysis Day 2022 and Colloquium dedicated to Ulrich Langer and Walter Zulehner on the occasion of their retirement. Austrian Numerical Analysis Day 2022, Linz, Austria. http://hdl.handle.net/20.500.12708/190883 ( reposiTUm)
Kurz, S., Pauly, D., Praetorius, D., Repin, S., & Sebastian, D. (2020). Functional a posteriori error estimates for boundary element methods. In Boundary Element Methods (pp. 342–346). http://hdl.handle.net/20.500.12708/41722 ( reposiTUm)
Ruggeri, M., Praetorius, D., & Stiftner, B. (2016). Coupling and numerical integration of the Landau-Lifshitz-Gilbert equation. In Oberwolfach Report. Oberwolfach Mini-Workshop: Mathematics of Magnetoelastic Materials, Oberwolfach, EU. European Mathematical Society. http://hdl.handle.net/20.500.12708/41466 ( reposiTUm)
Gantner, G., Haberl, A., Praetorius, D., & Stiftner, B. (2016). Rate optimal adaptive FEM with inexact solver for strongly monotone operators. In Oberwolfach Report. Oberwolfach Workshop on Adaptive Algorithms, Oberwolfach, EU. European Mathematical Society. http://hdl.handle.net/20.500.12708/41461 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2014). A new proof for existence of H-matrix approximants to the inverse of FEM matrices: the Dirichlet problem for the Laplacian. In Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012 (pp. 249–259). Springer. https://doi.org/10.1007/978-3-319-01601-6_20 ( reposiTUm)
Feischl, M., Führer, T., Praetorius, D., & Stephan, E. P. (2014). Optimal preconditioning for the coupling of adaptive finite elements and boundary elements. In 11th World Congress on Computational Mechanics (WCCM XI) (pp. 2108–2119). http://hdl.handle.net/20.500.12708/41296 ( reposiTUm)
Carstensen, C., Feischl, M., & Praetorius, D. (2014). Rate optimality of adaptive algorithms, part II: Extensions. In 11th World Congress on Computational Mechanics (WCCM XI) (pp. 2511–2522). http://hdl.handle.net/20.500.12708/41294 ( reposiTUm)
Feischl, M., Gantner, G., & Praetorius, D. (2014). A posteriori error estimation for adaptive IGA boundary element methods. In 11th World Congress on Computational Mechanics (WCCM XI) (pp. 2421–2432). http://hdl.handle.net/20.500.12708/41295 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2013). Novel inverse estimates for non-local operators (IABEM 2013). In IABEM 2013 Proceedings (pp. 79–84). Pontificia Universidad Católica de Chile. http://hdl.handle.net/20.500.12708/41222 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2013). FEM-BEM couplings without stabilization (IABEM 2013). In IABEM 2013 Proceedings (pp. 48–53). Pontificia Universidad Católica de Chile. http://hdl.handle.net/20.500.12708/41223 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., & Praetorius, D. (2013). Quasi-optimal adaptive BEM (IABEM 2013). In IABEM 2013 Proceedings (pp. 44–47). Pontificia Universidad Católica de Chile. http://hdl.handle.net/20.500.12708/41224 ( reposiTUm)
Reichel, F., Schrefl, T., Süss, D., Hrkac, G., Praetorius, D., Gusenbauer, M., Bance, S., Oezelt, H., Fischbacher, J., & Exl, L. (2013). Mechanical Oscillations of Magnetic Strips under the Influence of External Field. In EPJ Web of Conferences (p. 13004). EPJ Web of Conferences. https://doi.org/10.1051/epjconf/20134013004 ( reposiTUm)
Goldenits, P., Hrkac, G., Praetorius, D., & Suess, D. (2012). An Effective Integrator for the Landau-Lifshitz-Gilbert Equation. In IFAC Proceedings Volumes (pp. 493–497). International Federation of Automatic Control. https://doi.org/10.3182/20120215-3-at-3016.00086 ( reposiTUm)
Aurada, M., Feischl, M., Karkulik, M., & Praetorius, D. (2011). Adaptive coupling of FEM and BEM: Simple error estimators and convergence (AfriCOMP11). In Proceedings of AfriCOMP 11 (p. 4). http://hdl.handle.net/20.500.12708/41045 ( reposiTUm)
Aurada, M., Feischl, M., Karkulik, M., & Praetorius, D. (2011). Adaptive coupling of FEM and BEM: Simple error estimators and convergence (IABEM 2011). In Proceedings of IABEM 2011 (pp. 35–40). http://hdl.handle.net/20.500.12708/41062 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2011). Residual a-posteriori error estimates in BEM: convergence of h-adaptive algorithms. In Proceedings of IABEM 2011 (pp. 135–140). http://hdl.handle.net/20.500.12708/41065 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2009). Mixed Conforming Elements for the Large-Body Limit in Micromagnetics (MATHMOD 09). In I. Troch & F. Breitenecker (Eds.), Proceedings MATHMOD 09 Vienna (pp. 2296–2303). Argesim / Asim. http://hdl.handle.net/20.500.12708/40877 ( reposiTUm)
Ferraz-Leite, S., Melenk, J. M., & Praetorius, D. (2009). Reduced Model in Thin-Film Micromagnetics. In I. Troch & F. Breitenecker (Eds.), Proceedings MATHMOD 09 Vienna (pp. 2287–2295). Argesim / Asim. http://hdl.handle.net/20.500.12708/40832 ( reposiTUm)
Aurada, M., Ferraz-Leite, S., & Praetorius, D. (2009). Convergence of Adaptive Boundary Element Methods. In Short Papers of 18th International Conference on Computer Methods in Mechanics (pp. 113–114). University of Zielona Gora Press. http://hdl.handle.net/20.500.12708/40810 ( reposiTUm)
Ferraz-Leite, S., Ortner, C., & Praetorius, D. (2008). Adaptive boundary element method: Simple error estimators and convergence. In Oberwolfach Workshop on Analysis of Boundary Element Methods. Oberwolfach Workshop on Analysis of Boundary Element Methods, Oberwolfach, Germany. EMS Publishing House. http://hdl.handle.net/20.500.12708/40758 ( reposiTUm)
Erath, C., Funken, S., & Praetorius, D. (2008). Adaptive cell-centered finite volume method. In R. Eymard & J.-M. Hérard (Eds.), Finite Volumes for Complex Applications V (pp. 359–366). John Wiley & Sons. http://hdl.handle.net/20.500.12708/40763 ( reposiTUm)
Ortner, C., & Praetorius, D. (2008). A non-conforming finite element method for convex variational problems. In Nonstandard Finite Element Methods (pp. 2027–2094). EMS Publishing House. https://doi.org/10.4171/owr/2008/36 ( reposiTUm)
Ferraz-Leite, S., & Praetorius, D. (2008). Adaptive boundary element methods based on accurate a posteriori error estimation. In Proceedings of the Junior Scientist Conference 2008 (pp. 257–258). http://hdl.handle.net/20.500.12708/40830 ( reposiTUm)
Koch, O., März, R., Praetorius, D., & Weinmüller, E. (2006). Collocation Methods for Index-1 DAEs with a critical point. In Differential-Algebraic Equations (pp. 81–84). Report. http://hdl.handle.net/20.500.12708/40647 ( reposiTUm)
Carstensen, C., Funken, S., & Praetorius, D. (2006). Averaging Techniques for BEM. In Book of Abstracts, IABEM 2006 Conference (pp. 139–142). Verlag der Technischen Universität Graz. http://hdl.handle.net/20.500.12708/40612 ( reposiTUm)

Beiträge in Büchern

Erath, C., & Praetorius, D. (2017). Céa-Type Quasi-Optimality and Convergence Rates for (Adaptive) Vertex-Centered FVM. In Springer Proceedings in Mathematics & Statistics (pp. 215–223). Springer. https://doi.org/10.1007/978-3-319-57397-7_14 ( reposiTUm)

Präsentationen

Alde, M., Feischl, M., & Praetorius, D. (2025, January 30). BDF2-type integrator for Landau-Lifshitz-Gilbert equation in micromagnetics [Conference Presentation]. 24th GAMM Seminar on Microstructures 2025, Berlin, Germany. ( reposiTUm)
Praetorius, D., Bringmann, P., Gantner, G., Miraci, A., & Streitberger, J. (2024, May 30). Optimal interplay of adaptive mesh-refinement and iterative solvers for elliptic PDEs [Presentation]. JAM Walkshop on Computational PDEs (2024), Jena, Germany. http://hdl.handle.net/20.500.12708/198767 ( reposiTUm)
Bringmann, P., Feischl, M., Miraci, A., Praetorius, D., & Streitberger, J. (2024, August 8). On full linear convergence and optimal complexity of adaptive FEM with inexact solver [Presentation]. 2CCC Workshop on Numerical Analysis 2024, Berlin, Germany. ( reposiTUm)
Praetorius, D., Kurz, S., Pauly, D., Repin, S., Sebastian, D., & Freiszlinger, A. (2024, August 8). Functional a-posteriori error estimates for BEM [Presentation]. 2CCC Workshop on Numerical Analysis 2024, Berlin, Germany. ( reposiTUm)
Praetorius, D., Gantner, G., Innerberger, M., Miraci, A., & Streitberger, J. (2024, February 28). Optimal complexity of adaptive FEM for nonlinear PDEs [Presentation]. Numerical Analysis Seminar at the University of Hongkong (2024), Hong Kong, China. ( reposiTUm)
Miraci, A., Innerberger, M., Papež, J., Praetorius, D., Streitberger, J., & Vohralik, M. (2024, May 14). Role of hp-Robust Iterative Solvers in Adaptive Finite Element Algorithms for Optimal Complexity [Conference Presentation]. SIAM Conference on Applied Linear Algebra (LA24), Paris, France. http://hdl.handle.net/20.500.12708/201161 ( reposiTUm)
Brunner, M., Praetorius, D., Becker, R., Innerberger, M., & Melenk, J. M. (2023, June 8). Goal-oriented adaptivity for semilinear elliptic PDEs [Conference Presentation]. Jena-Augsburg-Meeting (JAM) on Numerical Analysis, Augsburg, Germany. ( reposiTUm)
Brunner, M., Becker, R., Innerberger, M., Melenk, J. M., & Praetorius, D. (2023, September 4). Rate-optimal goal-oriented adaptive FEM for semilinear elliptic PDEs [Conference Presentation]. European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2023), Lissabon, Portugal. http://hdl.handle.net/20.500.12708/188566 ( reposiTUm)
Streitberger, J., Brunner, M., Heid, P., Innerberger, M., Miraci, A., & Praetorius, D. (2023, April 27). Adaptive FEM for linear elliptic PDEs: optimal complexity [Conference Presentation]. Austrian Numerical Analysis Day 2023, Wien, Austria. ( reposiTUm)
Melenk, J. M., Bahr, B., Faustmann, M., Parvizi, M., & Praetorius, D. (2023, June 12). AFEM for the fractional Laplacian [Conference Presentation]. Foundations of Computational Mathematics (FoCM 2023), Paris, France. ( reposiTUm)
Streitberger, J., Bringmann, P., Brunner, M., Miraci, A., & Praetorius, D. (2023, September 4). Cost-optimal goal-oriented adaptive FEM for linear elliptic PDEs [Conference Presentation]. European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2023), Lissabon, Portugal. http://hdl.handle.net/20.500.12708/188271 ( reposiTUm)
Praetorius, D., Brunner, M., Heid, P., Innerberger, M., Miraci, A., & Streitberger, J. (2023, June 13). Adaptive FEM for linear elliptic PDEs: Optimal complexity [Conference Presentation]. FoCM 2023, Paris, France. http://hdl.handle.net/20.500.12708/191857 ( reposiTUm)
Miraci, A., Brunner, M., Heid, P., Innerberger, M., Praetorius, D., & Streitberger, J. (2023, March 22). Adaptive FEM for linear elliptic PDEs: Optimal complexity [Presentation]. Finite Element Workshop 2023, Jena, Germany. http://hdl.handle.net/20.500.12708/189933 ( reposiTUm)
Becker, R., Gantner, G., Innerberger, M., & Praetorius, D. (2022). Goal-oriented adaptive finite element methods with optimal computational complexity. Mathematisches Kolloquium, TH Aachen, Austria. http://hdl.handle.net/20.500.12708/123525 ( reposiTUm)
Praetorius, D. (2022). On optimal computational costs of AFEM. CC2LX - Workshop on Finite Element Methods and Adaptivity, TU Wien, Austria. http://hdl.handle.net/20.500.12708/123526 ( reposiTUm)
Bahr, B. H., Faustmann, M., Melenk, J. M., & Praetorius, D. (2022). Adaptive FEM for fractional diffusion. ESI Workshop “Adaptivity, High Dimensionality and Randomness,” Wien, Austria. http://hdl.handle.net/20.500.12708/123531 ( reposiTUm)
Becker, R., Brunner, M., Innerberger, M., Melenk, J. M., & Praetorius, D. (2022). Goal-oriented adaptive finite element method for semilinear elliptic PDEs. RMMM 2022 - Reliable Methods of Mathematical Modeling, Lausanne, Switzerland. http://hdl.handle.net/20.500.12708/123536 ( reposiTUm)
Brunner, M., Gantner, G., Innerberger, M., & Praetorius, D. (2022). Adaptive FEM with quasi-optimal cost for nonlinear PDEs. GATIPOR Workshop 2022 on Interplay of discretization and algebraic solvers: a posteriori error estimates and adaptivity, Paris, France. http://hdl.handle.net/20.500.12708/123534 ( reposiTUm)
Becker, R., Innerberger, M., & Praetorius, D. (2022). Adaptive FEM for parameter-errors in elliptic linear-quadratic parameter estimation problems. RMMM 2022 - Reliable Methods of Mathematical Modeling, Lausanne, Switzerland. http://hdl.handle.net/20.500.12708/123537 ( reposiTUm)
Faustmann, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2021). Finite Element Method for Fractional Diffusion - Recent Results. DMV-ÖMG Jahrestagung 2021, virtuelle Tagung - Zoom / Passau, Germany. http://hdl.handle.net/20.500.12708/123387 ( reposiTUm)
Bespalov, A., Praetorius, D., & Ruggeri, M. (2021). Rate optimality of an adaptive multilevel stochastic Galerkin finite element method. Congress of the Italian Society of Industrial and Applied Mathematics (SIMAI 2020+2021), Parma, Italy. http://hdl.handle.net/20.500.12708/123288 ( reposiTUm)
Becker, R., Innerberger, M., & Praetorius, D. (2021). Optimal convergence rates for goal-oriented FEM with quadratic goal functional. Online Conference “14th World Congress in Computational Mechanics and ECCOMAS Congress (WCCM-ECCOMAS 2020),” Paris, online, France. http://hdl.handle.net/20.500.12708/123243 ( reposiTUm)
Becker, R., Gantner, G., Innerberger, M., & Praetorius, D. (2021). Goal-oriented adaptive finite element methods with optimal computational complexity. Recent Advances in the Numerical Approximation of Partial Differential Equations (RANAPDE 2021), Milan (online), Italy. http://hdl.handle.net/20.500.12708/123254 ( reposiTUm)
Bespalov, A., Praetorius, D., & Ruggeri, M. (2020). Error estimation and adaptive algorithms for multilevel stochastic Galerkin FEM. Chemnitz Finite Element Symposium 2020 (online edition), Chemnitz, Germany. http://hdl.handle.net/20.500.12708/123106 ( reposiTUm)
Di Fratta, G., Innerberger, M., Praetorius, D., Pfeiler, C.-M., & Ruggeri, M. (2020). Chiral magnetic skyrmions and computational micromagnetism. 19th GAMM Seminar on Microstructures, Freiburg, Germany. http://hdl.handle.net/20.500.12708/123044 ( reposiTUm)
Di Fratta, G., Innerberger, M., Praetorius, D., Pfeiler, C.-M., & Ruggeri, M. (2020). Chiral magnetic skyrmions and computational micromagnetism. Universität Würzburg, Oberseminar des Lehrstuhls für Mathematik in den Naturwissenschaften, Würzburg, Germany. http://hdl.handle.net/20.500.12708/123074 ( reposiTUm)
Bespalov, A., Praetorius, D., & Ruggeri, M. (2020). Error estimation and adaptive algorithms for multilevel stochastic Galerkin FEM. 20th Biennial Computational Techniques and Applications Conference (CTAC 2020), Sydney, Australia. http://hdl.handle.net/20.500.12708/123085 ( reposiTUm)
Faustmann, M., Karkulik, M., Melenk, J. M., Parvizi, M., & Praetorius, D. (2020). The Fractional Laplacian - Adaptive FEM, Preconditioning and Local Errors. USM Seminar, Valparaiso (online), Chile. http://hdl.handle.net/20.500.12708/123102 ( reposiTUm)
Gantner, G., & Praetorius, D. (2019). A posteriori error estimation and convergence of adaptive isogeometric methods. 7th International Conference on Isogeometric Analysis, München, Germany. http://hdl.handle.net/20.500.12708/122819 ( reposiTUm)
Pfeiler, C.-M., & Praetorius, D. (2019). Dörfler marking with minimal cardinality is a linear complexity problem. 15th Austrian Numerical Analysis Day, Graz, Austria. http://hdl.handle.net/20.500.12708/122855 ( reposiTUm)
Pfeiler, C.-M., & Praetorius, D. (2019). Dörfler marking with minimal cardinality is a linear complexity problem. WONAPDE 2019 - Sixth Chilean Workshop on Numerical Analysis of Partial Differential Equations, Concepción, Chile. http://hdl.handle.net/20.500.12708/122856 ( reposiTUm)
Führer, T., Praetorius, D., & Schimanko, S. (2019). Adaptive BEM with inexact PCG solver yields almost optimal computational costs. Universität Bayreuth, Bayreuth, Germany, Austria. http://hdl.handle.net/20.500.12708/122921 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2019). OEMG jahrestagung. OEMG Jahrestagung 2019, Dornbirn, Austria. http://hdl.handle.net/20.500.12708/123160 ( reposiTUm)
Kurz, S., Pauly, D., Praetorius, D., Repin, S., & Sebastian, D. (2019). Functional a posteriori error estimates for boundary element methods. RMMM 2019 - Reliable Methods of Mathematical Modeling, TU Wien, Austria. http://hdl.handle.net/20.500.12708/122815 ( reposiTUm)
Gantner, G., Praetorius, D., & Schimanko, S. (2019). Rate optimal adaptive FEM with inexact solver for nonlinear operators. BI.discrete - Numerical Analysis in Bielefeld, Bielefeld, Germany. http://hdl.handle.net/20.500.12708/122814 ( reposiTUm)
Pfeiler, C.-M., & Praetorius, D. (2019). Dörfler marking with minimal cardinality is a linear complexity problem. DMV-Jahrestagung 2019, KIT Karlsruhe, Germany. http://hdl.handle.net/20.500.12708/122851 ( reposiTUm)
Pfeiler, C.-M., & Praetorius, D. (2019). Dörfler marking with minimal cardinality is a linear complexity problem. RMMM 2019 - Reliable Methods of Mathematical Modeling, TU Wien, Austria. http://hdl.handle.net/20.500.12708/122816 ( reposiTUm)
Innerberger, M., & Praetorius, D. (2019). Instance-Optimal Goal-Oriented Adaptivity. RMMM 2019 - Reliable Methods of Mathematical Modeling, TU Wien, Austria. http://hdl.handle.net/20.500.12708/122818 ( reposiTUm)
Praetorius, D., Ruggeri, M., & Stephan, E. P. (2019). The saturation assumption yields optimal convergence of two-level adaptive BEM. 17th workshop on Fast boundary element methods in industrial applications, Söllerhaus, Hirschegg, Austria. http://hdl.handle.net/20.500.12708/122822 ( reposiTUm)
Bespalov, A., Praetorius, D., Rocchi, L., & Ruggeri, M. (2019). Convergence of adaptive stochastic Galerkin FEM for elliptic parametric PDEs. MAFELAP 2019 - The Mathematics of Finite Elements and Applications, Uxbridge, United Kingdom of Great Britain and Northern Ireland (the). http://hdl.handle.net/20.500.12708/122765 ( reposiTUm)
Kurz, S., Pauly, D., Praetorius, D., Repin, S., & Sebastian, D. (2019). Functional a posteriori error estimates for boundary element methods. 17th workshop on Fast boundary element methods in industrial applications, Söllerhaus, Hirschegg, Austria. http://hdl.handle.net/20.500.12708/122826 ( reposiTUm)
Pfeiler, C.-M., Ruggeri, M., Stiftner, B., Exl, L., Hochsteger, M., Hrkac, G., Schöberl, J., Mauser, N. J., & Praetorius, D. (2019). Computational studies of nonlinear skyrmion dynamics. HMM 2019 - 12th International Symposium on Hysteresis Modeling and Micromagnetics, Heraklion, Crete, Greece. http://hdl.handle.net/20.500.12708/122854 ( reposiTUm)
Faustmann, M., Melenk, J. M., Parvizi, M., & Praetorius, D. (2019). Optimal adaptivity and preconditioning for the fractional Laplacian. GAMM 2019, Wien, Austria. http://hdl.handle.net/20.500.12708/122727 ( reposiTUm)
Faustmann, M., Melenk, J. M., Parvizi, M., & Praetorius, D. (2019). Optimal adaptivity and preconditioning for the fractional Laplacian. WONAPDE 2019 - Sixth Chilean Workshop on Numerical Analysis of Partial Differential Equations, Concepción, Chile. http://hdl.handle.net/20.500.12708/122720 ( reposiTUm)
Gantner, G., Haberlik, D., & Praetorius, D. (2019). Optimal adaptivity for isogeometric finite and boundary element methods. Seminar on Numerical Analysis (Inria), Paris, France. http://hdl.handle.net/20.500.12708/122726 ( reposiTUm)
Gantner, G., Haberl, A., Praetorius, D., & Schimanko, S. (2019). Rate optimal adaptive FEM with inexact solver for nonlinear operators. WONAPDE 2019 - Sixth Chilean Workshop on Numerical Analysis of Partial Differential Equations, Concepción, Chile. http://hdl.handle.net/20.500.12708/122718 ( reposiTUm)
Gantner, G., Haberlik, D., & Praetorius, D. (2019). Axioms of adaptivity revisited: Optimal adaptive IGAFEM. WONAPDE 2019 - Sixth Chilean Workshop on Numerical Analysis of Partial Differential Equations, Concepción, Chile. http://hdl.handle.net/20.500.12708/122717 ( reposiTUm)
Faustmann, M., Melenk, J. M., Parvizi, M., & Praetorius, D. (2019). Optimal adaptivity and preconditioning for the fractional Laplacian. 15th Austrian Numerical Analysis Day, Graz, Austria. http://hdl.handle.net/20.500.12708/122740 ( reposiTUm)
Führer, T., Haberl, A., Praetorius, D., & Schimanko, S. (2019). Adaptive BEM with inexact PCG solver yields almost optimal computational costs. MAFELAP 2019 - The Mathematics of Finite Elements and Applications, Uxbridge, United Kingdom of Great Britain and Northern Ireland (the). http://hdl.handle.net/20.500.12708/122747 ( reposiTUm)
Praetorius, D., Schimanko, S., & Gantner, G. (2019). Rate optimal adaptive FEM with inexact solver for nonlinear operators. ENUMATH 2019 - European Numerical Mathematics and Advanced Applications Conference 2019, Egmond aan Zee, Netherlands (the). http://hdl.handle.net/20.500.12708/122831 ( reposiTUm)
Schimanko, S., Praetorius, D., Führer, T., & Haberl, A. (2019). Adaptive BEM with inexact PCG solver yields almost optimal computational costs. SIAM Conference on Computational Science and Engineering (CSE 2019), Spokane, Washington, United States of America (the). http://hdl.handle.net/20.500.12708/122830 ( reposiTUm)
Praetorius, D. (2018). Optimale Konvergenz adaptiver FEM: Ein axiomatischer Zugang. Open Salzburg Mathematics Colloquium, Universität Salzburg, Austria. http://hdl.handle.net/20.500.12708/122358 ( reposiTUm)
Pfeiler, C.-M., Ruggeri, M., Stiftner, B., Exl, L., Hochsteger, M., Hrkac, G., Schöberl, J., Mauser, N., & Praetorius, D. (2018). Computational micromagnetics with Commics. Micromagnetics: Analysis, Numerics, Applications (MANA 2018), Vienna, Austria. http://hdl.handle.net/20.500.12708/122615 ( reposiTUm)
Di Fratta, G., Pfeiler, C.-M., Praetorius, D., Ruggeri, M., & Stiftner, B. (2018). Recent developments in tangent plane integrators for the Landau-Lifshitz-Gilbert equation. Micromagnetics: Analysis, Numerics, Applications (MANA 2018), Vienna, Austria. http://hdl.handle.net/20.500.12708/122614 ( reposiTUm)
Praetorius, D. (2018). Mathematics undercover: Der Traum vom Computer. TUforMath, Wien, Austria. http://hdl.handle.net/20.500.12708/122719 ( reposiTUm)
Gantner, G., Haberlik, D., & Praetorius, D. (2018). Axioms of adaptivity revisited: Optimal adaptive IGAFEM. ESI Workshop on “Interplay of geometric processing, modelling, and adaptivity in Galerkin methods,” Wien, Austria. http://hdl.handle.net/20.500.12708/122396 ( reposiTUm)
Gantner, G., Haberl, A., Praetorius, D., Schimanko, S., & Stiftner, B. (2018). Rate optimal adaptive FEM with inexact solver for strongly monotone operators. Mathematical Colloquium, University of Vienna, Austria, Austria. http://hdl.handle.net/20.500.12708/122374 ( reposiTUm)
Führer, T., Haberl, A., Praetorius, D., & Schimanko, S. (2018). Adaptive BEM with inexact PCG solver yields almost optimal computational costs. 14th Austrian Numerical Analysis Day, Klagenfurt, Austria. http://hdl.handle.net/20.500.12708/122384 ( reposiTUm)
Bespalov, A., Praetorius, D., Ruggeri, M., & Rocchi, L. (2018). Adaptive stochastic Galerkin FEM for parametric PDEs. 14th Austrian Numerical Analysis Day, Klagenfurt, Austria. http://hdl.handle.net/20.500.12708/122365 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2018). Optimal adaptivity for the fractional Laplacian. Universität Bonn, Bonn, Germany. http://hdl.handle.net/20.500.12708/122519 ( reposiTUm)
Exl, L., Hochsteger, M., Hrkac, G., Mauser, N., Pfeiler, C.-M., Praetorius, D., Ruggeri, M., Schöberl, J., & Stiftner, B. (2018). Computational micromagnetics with Commics. 2nd NGSolve User Meeting, Göttingen, Germany. http://hdl.handle.net/20.500.12708/122692 ( reposiTUm)
Di Fratta, G., Praetorius, D., & Ruggeri, M. (2018). Thin film models of magnetic skyrmions. Mathematical Analysis Seminar, University of Naples Federico II, Neapel, Italy. http://hdl.handle.net/20.500.12708/122580 ( reposiTUm)
Gantner, G., Haberlik, D., & Praetorius, D. (2018). Adaptive isogeometric methods with optimal convergence rates. Seminar über Numerische Analysis, Augsburg, Germany. http://hdl.handle.net/20.500.12708/122456 ( reposiTUm)
Gantner, G., Haberlik, D., & Praetorius, D. (2018). Adaptive isogeometric methods with optimal convergence rates. Seminar in Numerischer Analysis, Garching, Germany. http://hdl.handle.net/20.500.12708/122455 ( reposiTUm)
Gantner, G., Haberlik, D., & Praetorius, D. (2018). Adaptive isogeometric methods with optimal convergence rates. 13th NFN seminar, Strobl, Austria. http://hdl.handle.net/20.500.12708/122457 ( reposiTUm)
Ruggeri, M., Pfeiler, C.-M., Stiftner, B., Mauser, N., Praetorius, D., & Hrkac, G. (2018). Nonlinear spin wave dynamics of coupled magnetic skyrmions. IEEE 6th International Conference on Microwave Magnetics (ICMM 2018), Exeter, United Kingdom of Great Britain and Northern Ireland (the). http://hdl.handle.net/20.500.12708/122377 ( reposiTUm)
Stiftner, B., Pfeiler, C.-M., Ruggeri, M., Praetorius, D., & Hrkac, G. (2018). Computational micromagnetics: A mathematical point of view. IEEE 6th International Conference on Microwave Magnetics (ICMM 2018), Exeter, United Kingdom of Great Britain and Northern Ireland (the). http://hdl.handle.net/20.500.12708/122378 ( reposiTUm)
Führer, T., Gantner, G., Haberlik, D., Praetorius, D., & Schimanko, S. (2018). Adaptive isogeometric methods with optimal convergence rates. Seminar in Numerical Analysis, Florenz, Italy. http://hdl.handle.net/20.500.12708/122454 ( reposiTUm)
Gantner, G., Haberl, A., Praetorius, D., & Schimanko, S. (2018). Adaptive boundary element methods. AANMPDE 11 - 11th Workshop on Analysis and Advanced Numerical Methods for Partial Differential Equations (not only) for Junior Scientists, Särkisaari, Finland. http://hdl.handle.net/20.500.12708/122405 ( reposiTUm)
Gantner, G., Haberlik, D., & Praetorius, D. (2018). Adaptive isogeometric methods with optimal convergence rates. ECCM-ECFD 2018, Glasgow, United Kingdom of Great Britain and Northern Ireland (the). http://hdl.handle.net/20.500.12708/122375 ( reposiTUm)
Ruggeri, M., Pfeiler, C.-M., Stiftner, B., Praetorius, D., & Hrkac, G. (2018). Nonlinear dynamics of magnetic skyrmions. 2nd IEEE Conference on Advances in Magnetics (AIM 2018), La Thuile, Italy. http://hdl.handle.net/20.500.12708/121506 ( reposiTUm)
Pfeiler, C.-M., Praetorius, D., Ruggeri, M., & Stiftner, B. (2018). Convergent finite element methods for the Landau-Lifshitz-Gilbert equation. Geometry, Analysis, and Approximation of Variational Problems, Freiburg, Germany. http://hdl.handle.net/20.500.12708/122366 ( reposiTUm)
Bespalov, A., Praetorius, D., Rocchi, L., & Ruggeri, M. (2018). Adaptive stochastic Galerkin FEM driven by two-level/hierarchical error estimators for elliptic parametric PDEs. 31st Chemnitz Finite Element Symposium, Chemnitz, Germany. http://hdl.handle.net/20.500.12708/122430 ( reposiTUm)
Exl, L., Hochsteger, M., Hrkac, G., Mauser, N., Pfeiler, C.-M., Praetorius, D., Ruggeri, M., Schöberl, J., & Stiftner, B. (2018). Computational micromagnetics with commix. 2nd NGSolve User Meeting, Göttingen, Germany. http://hdl.handle.net/20.500.12708/122411 ( reposiTUm)
Bespalov, A., Betcke, T., Haberl, A., & Praetorius, D. (2018). Adaptive BEM for the Helmholtz equation. IABEM 2018 - Symposium of the International Association for Boundary Element Methods, Paris, France. http://hdl.handle.net/20.500.12708/122381 ( reposiTUm)
Führer, T., Haberl, A., Praetorius, D., & Schimanko, S. (2018). Adaptive BEM with inexact PCG solver yields almost optimal computational costs. IABEM 2018 - Symposium of the International Association for Boundary Element Methods, Paris, France. http://hdl.handle.net/20.500.12708/122383 ( reposiTUm)
Gantner, G., Haberl, A., Praetorius, D., Schimanko, S., & Stiftner, B. (2018). Adaptive FEM with inexact solver for strongly monotone operators. Seminar on numerical analysis, Santiago de Chile, Chile. http://hdl.handle.net/20.500.12708/122616 ( reposiTUm)
Haberl, A., Pfeiler, C.-M., Praetorius, D., Rieder, A., Ruggeri, M., & Stiftner, B. (2017). SolveLLG - A simulation tool for micromagnetics. NGSolve User Meeting, TU Wien, Wien, Austria. http://hdl.handle.net/20.500.12708/121865 ( reposiTUm)
Pfeiler, C.-M., Praetorius, D., Ruggeri, M., & Stiftner, B. (2017). Linear second order implicit-explicit time integration of the (eddy-currents-) Landau-Lifschitz-Gilbert equation. 13th Austrian Numerical Analysis Day, Salzburg, Austria. http://hdl.handle.net/20.500.12708/121860 ( reposiTUm)
Gantner, G., Haberl, A., Praetorius, D., & Stiftner, B. (2017). Rate optimal adaptive FEM with inexact solver for nonlinear operators. Central Workshop on Adaptive Finite Element Methods, Wien, Austria. http://hdl.handle.net/20.500.12708/122379 ( reposiTUm)
Praetorius, D. (2017). AFEM with inhomogeneous Dirichlet data. Central Workshop on Adaptive Finite Element Methods, Wien, Austria. http://hdl.handle.net/20.500.12708/122380 ( reposiTUm)
Führer, T., & Praetorius, D. (2017). A linear Uzawa-type solver for nonlinear transmission problems. BEM on the Saar 2017, Saarbrücken, Germany. http://hdl.handle.net/20.500.12708/121864 ( reposiTUm)
Kraus, J., Pfeiler, C.-M., Praetorius, D., Ruggeri, M., & Stiftner, B. (2017). Numerical integration of the Landau-Lifshitz-Gilbert equation. Oberseminar Numerische Mathematik, Universität Duisburg-Essen, Germany. http://hdl.handle.net/20.500.12708/121868 ( reposiTUm)
Gantner, G., Haberl, A., Praetorius, D., & Stiftner, B. (2017). Rate optimal adaptive FEM with inexact solver for nonlinear operators. Workshop on “A posteriori error estimates, adaptivity, and advanced applications,” Paris, France. http://hdl.handle.net/20.500.12708/121881 ( reposiTUm)
Pfeiler, C.-M., Praetorius, D., Ruggeri, M., & Stiftner, B. (2017). A convergent second-order implicit-explicit tangent plane scheme for the Landau-Lifshitz-Gilbert equation. RMMM 8 - Reliable Methods of Mathematical Modeling, Berlin, Germany. http://hdl.handle.net/20.500.12708/121893 ( reposiTUm)
Bespalov, A., Haberl, A., & Praetorius, D. (2017). Optimal convergence rates for adaptive FEM for compactly perturbed elliptic problems. RMMM 8 - Reliable Methods of Mathematical Modeling, Berlin, Germany. http://hdl.handle.net/20.500.12708/121894 ( reposiTUm)
Gantner, G., Haberlik, D., & Praetorius, D. (2017). Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines. 5th International Conference on Isogeometric Analysis, Pavia, Italy. http://hdl.handle.net/20.500.12708/121985 ( reposiTUm)
Kraus, J., Pfeiler, C.-M., Praetorius, D., Ruggeri, M., & Stiftner, B. (2017). Numerical integration of the Landau-Lifshitz-Gilbert equation. 11th International Conference on Large-Scale Scientific Computations, Sozopol, Bulgaria. http://hdl.handle.net/20.500.12708/121861 ( reposiTUm)
Pfeiler, C.-M., Praetorius, D., Ruggeri, M., & Stiftner, B. (2017). Convergence of a second order implicit-explicit tangent plane scheme for the Landau-Lifshitz-Gilbert equation. 11th International Symposium on Hysteresis Modeling and Micromagnetics, Barcelona, Spain. http://hdl.handle.net/20.500.12708/121883 ( reposiTUm)
Führer, T., & Praetorius, D. (2017). A linear Uzawa-type solver for nonlinear transmission problems. Paris-London BEM Workshop 2017, London, United Kingdom of Great Britain and Northern Ireland (the). http://hdl.handle.net/20.500.12708/121882 ( reposiTUm)
Bespalov, A., Haberl, A., & Praetorius, D. (2017). Optimal convergence rates for adaptive FEM for compactly perturbed elliptic problems. Foundations of Computational Mathematics (FoCM 2017), Barcelona, Spain. http://hdl.handle.net/20.500.12708/121885 ( reposiTUm)
Pfeiler, C.-M., Praetorius, D., Ruggeri, M., & Stiftner, B. (2017). Recent developments in tangent plane integrators for the Landau-Lifshitz-Gilbert equation. ZiF Workshop on Stochastic Spin Systems: models, theory, simulation and real world applications, Bielefeld, Germany. http://hdl.handle.net/20.500.12708/122009 ( reposiTUm)
Kraus, J., Pfeiler, C.-M., Praetorius, D., Ruggeri, M., & Stiftner, B. (2017). Numerical integration of the Landau-Lifshitz-Gilbert equation. 10th Workshop on Analysis and Advanced Numerical Methods for Partial Differential Equations (not only) for Junior Scientists, Paleochora, Greece. http://hdl.handle.net/20.500.12708/122015 ( reposiTUm)
Bespalov, A., Haberl, A., & Praetorius, D. (2017). Adaptive FEM and adaptive BEM for the Helmholtz equation. ENUMATH 2017, Voss, Norway. http://hdl.handle.net/20.500.12708/122382 ( reposiTUm)
Praetorius, D., Ruggeri, M., & Stiftner, B. (2016). Coupling and numerical integration of the Landau-Lifshitz-Gilbert equation. Micromagnetics: Analysis, Numerics, Applications (MANA 2016), TU Wien, Vienna, Austria. http://hdl.handle.net/20.500.12708/121553 ( reposiTUm)
Abert, C., Hrkac, G., Praetorius, D., Ruggeri, M., & Süss, D. (2016). Convergent numerical methods for micromagnetic simulations of spintronic devices. 2nd Vienna Young Scientists Symposium - VSS 2016, Vienna University of Technology, Vienna, Austria. http://hdl.handle.net/20.500.12708/121554 ( reposiTUm)
Praetorius, D., & Ruggeri, M. (2016). Coupling and numerical integration of the Landau-Lifshitz-Gilbert equation. Topological Patterns and Dynamics in Magnetic Elements and in Condensed Matter (TOPMAG16), Max Planck Institute for the Physics of Complex Systems, Dresden, Germany, EU. http://hdl.handle.net/20.500.12708/121555 ( reposiTUm)
Feischl, M., Führer, T., Gantner, G., Haberl, A., & Praetorius, D. (2016). Optimal convergence rates for goal-oriented adaptivity. Workshop on Boundary Elements and Adaptivity, Basel, Non-EU. http://hdl.handle.net/20.500.12708/121465 ( reposiTUm)
Feischl, M., Gantner, G., Haberl, A., & Praetorius, D. (2016). Optimal convergence for adaptive IGA boundary element methods. Workshop on Boundary Elements and Adaptivity, Basel, Non-EU. http://hdl.handle.net/20.500.12708/121464 ( reposiTUm)
Feischl, M., Gantner, G., Haberl, A., & Praetorius, D. (2016). Optimal convergence for adaptive IGA boundary element methods. MAFELAP 2016 - The Mathematics of Finite Elements and Applications, London, EU. http://hdl.handle.net/20.500.12708/121497 ( reposiTUm)
Feischl, M., Führer, T., Gantner, G., Haberl, A., & Praetorius, D. (2016). Optimal convergence rates for goal-oriented adaptivity. WONAPDE 2016 Fifth Chilean Workshop on Numerical Analysis of Partial Differential Equations, Concepcion, Non-EU. http://hdl.handle.net/20.500.12708/121466 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2016). H-matrix approximation to the inverses of BEM matrices. Workshop on Boundary Elements and Adaptivity, Basel, Non-EU. http://hdl.handle.net/20.500.12708/121463 ( reposiTUm)
Carstensen, C., Feischl, M., & Praetorius, D. (2016). Axioms of adaptivity. Workshop on Boundary Elements and Adaptivity, Basel, Non-EU. http://hdl.handle.net/20.500.12708/121462 ( reposiTUm)
Bespalov, A., Haberl, A., & Praetorius, D. (2016). Adaptive FEM for Elliptic Problems with Garding Inequality. MAFELAP 2016 - The Mathematics of Finite Elements and Applications, London, EU. http://hdl.handle.net/20.500.12708/121483 ( reposiTUm)
Feischl, M., Gantner, G., Haberl, A., & Praetorius, D. (2016). A posteriori error estimation for adaptive IGA boundary element methods. WONAPDE 2016 Fifth Chilean Workshop on Numerical Analysis of Partial Differential Equations, Concepcion, Non-EU. http://hdl.handle.net/20.500.12708/121444 ( reposiTUm)
Feischl, M., Gantner, G., Haberl, A., & Praetorius, D. (2016). Optimal convergence for adaptive IGA boundary element methods. USACM Conference on Isogeometric Analysis and Meshfree Methods, San Diego, Non-EU. http://hdl.handle.net/20.500.12708/121528 ( reposiTUm)
Praetorius, D., Ruggeri, M., & Stiftner, B. (2016). An extended midpoint scheme for the Landau-Lifschitz-Gilbert equation in computational micromagnetics. 9th Workshop on Analysis and Advanced Numerical Methods for Partial Differential Equations (not only) for Junior Scientists, Strobl, Austria. http://hdl.handle.net/20.500.12708/121537 ( reposiTUm)
Praetorius, D., Ruggeri, M., & Stiftner, B. (2016). An extended midpoint scheme for the Landau-Lifschitz-Gilbert equation in computational micromagnetics. 12th Austrian Numerical Analysis Day, Innsbruck, Austria. http://hdl.handle.net/20.500.12708/121536 ( reposiTUm)
Praetorius, D., Ruggeri, M., & Stiftner, B. (2016). Numerical integration of the Landau-Lifshitz-Gilbert equation. Mathematisches Kolloquium, TH Aachen, Austria. http://hdl.handle.net/20.500.12708/121356 ( reposiTUm)
Carstensen, C., Feischl, M., Praetorius, D., & van der Zee, K. G. (2016). Axioms of adaptivity. Workshop on adaptive algorithms for computational PDEs, Birmingham, EU. http://hdl.handle.net/20.500.12708/121357 ( reposiTUm)
Feischl, M., Führer, T., Gantner, G., Haberl, A., & Praetorius, D. (2015). Adaptive BEM for optimal convergence of point errors. ENUMATH 2015, Ankara, Non-EU. http://hdl.handle.net/20.500.12708/121173 ( reposiTUm)
Ruggeri, M., & Praetorius, D. (2015). Coupling and numerical integration of the Landau-Lifshitz-Gilbert equation. 2nd Maxwell Institute Graduate School on Evolution Equations, Edinburgh (UK), EU. http://hdl.handle.net/20.500.12708/121174 ( reposiTUm)
Abert, C., Hrkac, G., Praetorius, D., Ruggeri, M., & Süss, D. (2015). Self-consistent computation of magnetization dynamics in the presence of spin-polarized currents. 10th International Symposium on Hysteresis Modeling and Micromagnetics, Iasi (Romania), EU. http://hdl.handle.net/20.500.12708/121177 ( reposiTUm)
Rieder, A., Führer, T., Melenk, J. M., & Praetorius, D. (2015). Optimal additive Schwarz preconditioning for the hp-BEM: the hypersingular integral operator in 3D. 11th Austrian Numerical Analysis, Linz, EU. http://hdl.handle.net/20.500.12708/121107 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2015). Existence of H-matrix approximants to the inverse of BEM matrices: the hyper-singular integral operator. 11th Austrian Numerical Analysis, Linz, EU. http://hdl.handle.net/20.500.12708/121106 ( reposiTUm)
Feischl, M., Gantner, G., Haberl, A., & Praetorius, D. (2015). A posteriori error estimation for adaptive IGA boundary element methods. 3rd International Conference on Isogeometric Analysis, Trondheim, Non-EU. http://hdl.handle.net/20.500.12708/121116 ( reposiTUm)
Feischl, M., Gantner, G., Haberl, A., & Praetorius, D. (2015). Optimal convergence of adaptive isogeometric boundary element methods. Reliable Methods of Mathematical Modeling 2015, Zürich, EU. http://hdl.handle.net/20.500.12708/121117 ( reposiTUm)
Praetorius, D. (2015). Optimale Konvergenz adaptiver FEM. Mathematisches Kolloquium der TU Darmstadt, Darmstadt, EU. http://hdl.handle.net/20.500.12708/121119 ( reposiTUm)
Praetorius, D. (2015). Adaptive boundary element methods: A posteriori error estimators, adaptivity, convergence, and implementation. 1st CENTRAL School on Analysis and Numerics for Partial Differential Equations, Wien, Austria. http://hdl.handle.net/20.500.12708/121358 ( reposiTUm)
Praetorius, D., Ruggeri, M., & Stiftner, B. (2015). Numerical integration of the Landau-Lifshitz-Gilbert equation. Workshop on Applied Problems with Partial Differential Equations, Wien, Austria. http://hdl.handle.net/20.500.12708/121355 ( reposiTUm)
Feischl, M., Führer, T., Gantner, G., Haberl, A., & Praetorius, D. (2015). Adaptive BEM for optimal convergence of point errors. 11th Austrian Numerical Analysis, Linz, EU. http://hdl.handle.net/20.500.12708/121104 ( reposiTUm)
Abert, C., Ruggeri, M., Vogler, C., Bruckner, F., Hrkac, G., Page, M., Praetorius, D., & Süss, D. (2014). Finite-Element Simulation of Magnetic Microstructures Including Spin-Diffusion Effects. SFB 668 - Kolloquium, Hamburg, Deutschland, EU. http://hdl.handle.net/20.500.12708/131619 ( reposiTUm)
Abert, C., Ruggeri, M., Vogler, C., Bruckner, F., Hrkac, G., Page, M., Praetorius, D., & Süss, D. (2014). Finite element simulation of magnetic microstructures including spin-diffusion effects. 59th Annual Magnetism and Magnetic Materials Conference, Honolulu, Hawaii, Non-EU. http://hdl.handle.net/20.500.12708/120824 ( reposiTUm)
Carstensen, C., Feischl, M., & Praetorius, D. (2014). Rate optimality of adaptive algorithms, part I: Axioms of adaptivity. 11th World Congress on Computational Mechanics (WCCM XI), Barcelona, EU. http://hdl.handle.net/20.500.12708/120793 ( reposiTUm)
Praetorius, D. (2014). Adaptive boundary element methods: Error estimation, convergence, and optimality. Zurich Summer School 2014: Advanced Numerical Methods for Non-Local Operators, Zurich, Non-EU. http://hdl.handle.net/20.500.12708/120792 ( reposiTUm)
Feischl, M., Gantner, G., & Praetorius, D. (2014). A posteriori error estimation and adaptivity IGA Boundary Element Methods. 12th Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg/Kleinwalsertal, Austria. http://hdl.handle.net/20.500.12708/120806 ( reposiTUm)
Praetorius, D., & Ruggeri, M. (2014). Numerical integration of the Landau-Lifshitz-Gilbert equation. Workshop on Recent advances in discontinuous Galerkin methods, Reading, EU. http://hdl.handle.net/20.500.12708/120797 ( reposiTUm)
Feischl, M., Gantner, G., & Praetorius, D. (2014). A posteriori error estimation for adaptive IGA boundary element methods. CMAM 6 - International Conference on Computational Methods in Applied Mathematics, St. Wolfgang, Austria. http://hdl.handle.net/20.500.12708/120805 ( reposiTUm)
Carstensen, C., Feischl, M., & Praetorius, D. (2014). Rate optimality of adaptive algorithms: An axiomatic approach. CMAM 6 - International Conference on Computational Methods in Applied Mathematics, St. Wolfgang, Austria. http://hdl.handle.net/20.500.12708/120803 ( reposiTUm)
Feischl, M., Führer, T., Praetorius, D., & Stephan, E. P. (2014). Optimal preconditioning for the coupling of adaptive FEM and BEM. 12th Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg/Kleinwalsertal, Austria. http://hdl.handle.net/20.500.12708/120802 ( reposiTUm)
Feischl, M., Führer, T., & Praetorius, D. (2014). Quasi-optimal AFEM for non-symmetric operators. The 12th European Finite Element Fair, Wien, Austria. http://hdl.handle.net/20.500.12708/120772 ( reposiTUm)
Page, M., Praetorius, D., & Ruggeri, M. (2014). Coupling and numerical integration of the Landau-Lifshitz-Gilbert equation. DK Winter Workshop on Dissipation and Dispersion in Nonlinear PDEs, Schloss Hernstein, Austria. http://hdl.handle.net/20.500.12708/120750 ( reposiTUm)
Praetorius, D., & Ruggeri, M. (2014). Numerical integration of the Landau-Lifshitz-Gilbert equation. Workshop on Advances in nonlinear PDEs: Analysis, numerics, stochastics, applications, Wien, Austria. http://hdl.handle.net/20.500.12708/120770 ( reposiTUm)
Praetorius, D., & Ruggeri, M. (2014). Projection vs projection-free methods for the Landau-Lifshitz-Gilbert equation. 10th Austrian Numerical Analysis Day, Wien, Austria. http://hdl.handle.net/20.500.12708/120769 ( reposiTUm)
Feischl, M., Führer, T., Mitscha-Eibl, G., Praetorius, D., & Stephan, E. P. (2014). Convergence of adaptive BEM for the Faermann error estimator. 10th Austrian Numerical Analysis Day, Wien, Austria. http://hdl.handle.net/20.500.12708/120768 ( reposiTUm)
Feischl, M., Karkulik, M., Praetorius, D., & Melenk, J. M. (2014). Adaptive BEM. High-Order Finite Element and Isogeometric Methods, Chiemsee, EU. http://hdl.handle.net/20.500.12708/121066 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2013). Black-box preconditioning of BEM matrices by H-matrix techniques. IABEM 2013 Symposium of the International Association for Boundary Element Methods, Santiago, Non-EU. http://hdl.handle.net/20.500.12708/120244 ( reposiTUm)
Feischl, M., & Praetorius, D. (2013). An axiomatic approach to optimality of adaptive algorithms with applications to BEM. MAFELAP 2013 - The Mathematics of Finite Elements and Applications, Uxbridge, EU. http://hdl.handle.net/20.500.12708/120340 ( reposiTUm)
Page, M., & Praetorius, D. (2013). Coupling and numerical integration of LLG. MAFELAP 2013 - The Mathematics of Finite Elements and Applications, Uxbridge, EU. http://hdl.handle.net/20.500.12708/120338 ( reposiTUm)
Feischl, M., Führer, T., & Praetorius, D. (2013). Quasi-optimal adaptive FEM for non-symmetric operators. Reliable Methods of Mathematical Modeling 2013, Jyväskylä, EU. http://hdl.handle.net/20.500.12708/120349 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2013). Black-Box Preconditioning of FEM/BEM Matrices by H-Matrix Techniques. MAFELAP 2013 - The Mathematics of Finite Elements and Applications, Uxbridge, EU. http://hdl.handle.net/20.500.12708/120341 ( reposiTUm)
Feischl, M., Führer, T., & Praetorius, D. (2013). Quasi-optimal AFEM for non-symmetric operators. MAFELAP 2013 - The Mathematics of Finite Elements and Applications, Uxbridge, EU. http://hdl.handle.net/20.500.12708/120339 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2013). Convergence and quasi-optimality of adaptive BEM - state of the art. ENSTA Workshop on Error Estimates and Adaptive Mesh Refinement Strategies for Boundary Element Methods, Paris, EU. http://hdl.handle.net/20.500.12708/120329 ( reposiTUm)
Feischl, M., Page, M., & Praetorius, D. (2013). Axioms of optimal adaptivity for FEM and BEM. Mathematisches Kolloquium des Instituts für Angewandte Mathematik der Humboldt-Universität zu Berlin, Berlin, EU. http://hdl.handle.net/20.500.12708/120332 ( reposiTUm)
Carstensen, C., Feischl, M., Page, M., & Praetorius, D. (2013). Remarks on the axioms of adaptivity. ENSTA Workshop on Error Estimates and Adaptive Mesh Refinement Strategies for Boundary Element Methods, Paris, EU. http://hdl.handle.net/20.500.12708/120330 ( reposiTUm)
Feischl, M., Führer, T., & Praetorius, D. (2013). Adaptive FEM with optimal convergence rates for a certain class of non-symmetric problems. 9th Austrian Numerical Analysis Day, Graz, Austria. http://hdl.handle.net/20.500.12708/120333 ( reposiTUm)
Banas, L., Page, M., & Praetorius, D. (2013). A general integrator for the Landau-Lifshitz-Gilbert equation. 12th Joint MMM/Intermag Conference, Chicago, Non-EU. http://hdl.handle.net/20.500.12708/120313 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., & Praetorius, D. (2013). FEM-BEM couplings in nonlinear elasticity. MAFELAP 2013 - The Mathematics of Finite Elements and Applications, Uxbridge, EU. http://hdl.handle.net/20.500.12708/120327 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2013). Convergence of adaptive FEM-BEM coupling. WONAPDE 2013 Fourth Chilean Workshop on Numerical Analysis of Partial Differential Equations, Conception, Non-EU. http://hdl.handle.net/20.500.12708/120311 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., & Praetorius, D. (2013). Novel inverse estimates for non-local operators. WONAPDE 2013 Fourth Chilean Workshop on Numerical Analysis of Partial Differential Equations, Conception, Non-EU. http://hdl.handle.net/20.500.12708/120310 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., & Praetorius, D. (2013). Quasi-optimal adaptive BEM. WONAPDE 2013 Fourth Chilean Workshop on Numerical Analysis of Partial Differential Equations, Conception, Non-EU. http://hdl.handle.net/20.500.12708/120312 ( reposiTUm)
Banas, L., Page, M., & Praetorius, D. (2013). A general integrator for the LLG equation. 9th Austrian Numerical Analysis Day, Graz, Austria. http://hdl.handle.net/20.500.12708/120321 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2013). H-Matrix approximability of inverse FEM matrices for various boundary conditions. 9th Austrian Numerical Analysis Day, Graz, Austria. http://hdl.handle.net/20.500.12708/120320 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., & Praetorius, D. (2013). Stability of FEM-BEM couplings for nonlinear elasticity problems. 9th Austrian Numerical Analysis Day, Graz, Austria. http://hdl.handle.net/20.500.12708/120318 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Mitscha-Eibl, G., & Praetorius, D. (2013). Stability of FEM-BEM couplings for nonlinear elasticity problems. 11th Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg/Kleinwalsertal, Austria. http://hdl.handle.net/20.500.12708/120391 ( reposiTUm)
Feischl, M., Führer, T., Praetorius, D., & Stephan, E. P. (2013). Efficient additive Schwarz preconditioning of the hypersingular integral equation on locally refined triangulations. 11th Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg/Kleinwalsertal, Austria. http://hdl.handle.net/20.500.12708/120390 ( reposiTUm)
Carstensen, C., Feischl, M., & Praetorius, D. (2013). Rate optimality of adaptive algorithms: An axiomatic approach. Valparaiso Numerico IV, Valparaiso, Non-EU. http://hdl.handle.net/20.500.12708/120545 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Convergence of adaptive FEM-BEM coupling driven by residual-based error estimators. TCSE Vienna Workshop 2012, Trends in Computational Science and Engineering, Wien, Austria. http://hdl.handle.net/20.500.12708/119872 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Quasi-optimal convergence rate for an adaptive boundary element method. BEM on the Saar 2012, Universität des Saarlandes, EU. http://hdl.handle.net/20.500.12708/120026 ( reposiTUm)
Karkulik, M., Pavlicek, D., & Praetorius, D. (2012). On 2D Newest Vertex Bisection: Optimality of Mesh- Closure and H1 Stability of L2-Projection. 8th Austrian Numerical Analysis Day, Wien, Austria. http://hdl.handle.net/20.500.12708/120025 ( reposiTUm)
Aurada, M., Feischl, M., Ferraz-Leite, S., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Convergence of adaptive BEM: State of the art. Workshop FEM/BEM, Cappel Neufeld, EU. http://hdl.handle.net/20.500.12708/120028 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Classical FEM-BEM couplings: well-posedness, nonlinearities, and adaptivity. 8th Austrian Numerical Analysis Day, Wien, Austria. http://hdl.handle.net/20.500.12708/120029 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Classical FEM-BEM couplings: well-posedness, nonlinearities, and adaptivity. BEM on the Saar 2012, Universität des Saarlandes, EU. http://hdl.handle.net/20.500.12708/120030 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., Of, G., & Praetorius, D. (2012). A survey on adaptive boundary element methods. Fast BEM and BETI, Ostrava (Tschechien), EU. http://hdl.handle.net/20.500.12708/120041 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Page, M., & Praetorius, D. (2012). What is quasi-optimality of adaptive FEM? TCSE Vienna Workshop 2012, Trends in Computational Science and Engineering, Wien, Austria. http://hdl.handle.net/20.500.12708/119999 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Convergence and quasi-optimality of adaptive boundary element methods. Algoritmy 2012, Vysoke Tatry, Podbanske, EU. http://hdl.handle.net/20.500.12708/120053 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., Of, G., & Praetorius, D. (2012). On the convergence and quasi-optimality of adaptive boundary element methods. Seminar of the Institute for Numerical Mathematics, Graz University of Technology, Austria. http://hdl.handle.net/20.500.12708/120119 ( reposiTUm)
Goldenits, P., Hrkac, G., Page, M., Praetorius, D., & Süss, D. (2012). Convergent geometric integrator for the LLG equation with magnetostriction. TCSE Vienna Workshop 2012, Trends in Computational Science and Engineering, Wien, Austria. http://hdl.handle.net/20.500.12708/119995 ( reposiTUm)
Aurada, M., Feischl, M., Ferraz-Leite, S., Karkulik, M., Ortner, C., & Praetorius, D. (2012). Adaptive mesh-refinement for Galerkin schemes: Simple h-h/2 error estimators and convergence. Mathematisches Kolloquium des Instituts für Angewandte Mathematik der Humboldt-Universität zu Berlin, Berlin, EU. http://hdl.handle.net/20.500.12708/120012 ( reposiTUm)
Feischl, M., Karkulik, M., Führer, T., & Praetorius, D. (2012). Quasi-optimal adaptive BEM. 10th Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg/Kleinwalsertal, Austria. http://hdl.handle.net/20.500.12708/120069 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2012). Existence of H-matrix approximants to inverse BEM matrices. 10th Söllerhaus Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg, Austria. http://hdl.handle.net/20.500.12708/120070 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2012). Existence of H-Matrix Approximants to the Inverse of BEM Matrices. ICOSAHOM 2012, Gammarth, Tunesien, Non-EU. http://hdl.handle.net/20.500.12708/120047 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Quasi-optimal convergence rate for an adaptive boundary element method. Computational Methods in Applied Mathematics CMAM-5, Berlin, EU. http://hdl.handle.net/20.500.12708/120056 ( reposiTUm)
Goldenits, P., Hrkac, G., Page, M., Praetorius, D., & Süss, D. (2012). Convergent geometric integrator for the LLG equation with magnetostriction. Analytical and Numerical Aspects of Evolution Equations, Bielefeld, EU. http://hdl.handle.net/20.500.12708/120054 ( reposiTUm)
Aurada, M., Feischl, M., Kemetmüller, J., Page, M., & Praetorius, D. (2012). Each H^(1/2)-stable projection yields optimal convergence for AFEM with inhomogeneous Dirichlet data in R^d. Computational Methods in Applied Mathematics CMAM-5, Berlin, EU. http://hdl.handle.net/20.500.12708/120055 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Convergence of adaptive FEM-BEM coupling driven by residual-based error estimators. 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Wien, Austria. http://hdl.handle.net/20.500.12708/120062 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2012). Existence of H-matrix approximants to the inverse of BEM matrices. 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Wien, Austria. http://hdl.handle.net/20.500.12708/120060 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Quasi-Optimal Convergence Rates for Some Adaptive Boundary Element Method in 2D and 3D. 7th Zürich Summerschool on A Posteriori Error Control and Adaptivity, Zürich, Non-EU. http://hdl.handle.net/20.500.12708/120063 ( reposiTUm)
Hrkac, G., Page, M., Praetorius, D., & Süss, D. (2012). Numerical Integrator for the LLG equation with Magnetostriction. MATHMOD 2012 - 7th Vienna Conference on Mathematical Modelling, Wien, Austria. http://hdl.handle.net/20.500.12708/120001 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). FEM-BEM coupling without stabilization. 10th Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg/Kleinwalsertal, Austria. http://hdl.handle.net/20.500.12708/120068 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Novel inverse estimates for non-local operators. 10th Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg/Kleinwalsertal, Austria. http://hdl.handle.net/20.500.12708/120067 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Quasi-optimal convergence rates for some adaptive boundary element method in 2D and 3D. 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Wien, Austria. http://hdl.handle.net/20.500.12708/119115 ( reposiTUm)
Page, M., & Praetorius, D. (2011). Convergence of adaptive FEM - and application to elliptic obstacle problems. Dissertantenkolloquium Universität Wien, Universität Wien, Austria. http://hdl.handle.net/20.500.12708/119689 ( reposiTUm)
Feischl, M., Page, M., & Praetorius, D. (2011). Convergence of Adaptive FEM for Elliptic Obstacle Problems. SimTech 2011 Conference, Stuttgart, EU. http://hdl.handle.net/20.500.12708/119715 ( reposiTUm)
Aurada, M., Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2011). Konvergenz und Optimalität adaptiver Randelementmethode. Mathematisches Kolloquium des Instituts für Angewandte Mathematik der Leibniz Universität Hannover, Hannover, EU. http://hdl.handle.net/20.500.12708/119763 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2011). Mixed conforming elements for the large-body limit in micromagnetics: FEM-BEM approach. 9th Söllerhaus Workshop on Fast BEM in Industrial Applications, Hirschegg/Kleinwalsertal, Austria. http://hdl.handle.net/20.500.12708/119753 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2011). Convergence of adaptive FEM-BEM coupling driven by residual-based error estimators. 9th Söllerhaus Workshop on Fast BEM in Industrial Applications, Hirschegg/Kleinwalsertal, Austria. http://hdl.handle.net/20.500.12708/119752 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2011). Quasi-optimal convergence rate for an adaptive boundary element method. 9th Söllerhaus Workshop on Fast BEM in Industrial Applications, Hirschegg/Kleinwalsertal, Austria. http://hdl.handle.net/20.500.12708/119751 ( reposiTUm)
Goldenits, P., Praetorius, D., & Süss, D. (2011). Convergent Geometric Integrator for the Landau-Lifshitz-Gilbert Equation. SimTech 2011 Conference, Stuttgart, EU. http://hdl.handle.net/20.500.12708/119716 ( reposiTUm)
Feischl, M., Page, M., & Praetorius, D. (2011). Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data. 7th Austrian Numerical Analysis Day, Klagenfurt, Austria. http://hdl.handle.net/20.500.12708/119700 ( reposiTUm)
Page, M., Praetorius, D., & Feischl, M. (2011). Convergence of adaptive FEM for elliptic obstacle problems. 7th Austrian Numerical Analysis Day, Klagenfurt, Austria. http://hdl.handle.net/20.500.12708/119701 ( reposiTUm)
Goldenits, P., Praetorius, D., & Süss, D. (2011). Convergent Geometric Integrator for the Landau-Lifshitz-Gilbert equation in Micromagnetics. 7th Austrian Numerical Analysis Day, Klagenfurt, Austria. http://hdl.handle.net/20.500.12708/119708 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2011). Convergence and quasi-optimality of adaptive boundary element methods. Efficient mesh adaptation methods for evolution problems: theory and applications, Wolfgang-Pauli-Institut Wien, Austria. http://hdl.handle.net/20.500.12708/119966 ( reposiTUm)
Aurada, M., Goldenits, P., Karkulik, M., & Praetorius, D. (2010). Convergence of Data-Perturbed Adaptive Boundary Element Methods. WONAPDE 2010, Concepcion (Chile), Non-EU. http://hdl.handle.net/20.500.12708/119324 ( reposiTUm)
Aurada, M., Ebner, M., Feischl, M., Ferraz-Leite, S., Goldenits, P., Mayr, M., Praetorius, D., & Karkulik, M. (2010). HILBERT - A Matlab Library for Adaptive 2D BEM. 6th Austrian Numerical Analysis Day, Salzburg, Austria. http://hdl.handle.net/20.500.12708/119354 ( reposiTUm)
Aurada, M., Feischl, M., & Praetorius, D. (2010). Convergence of Some Adaptive FEM-BEM Coupling. 6th Austrian Numerical Analysis Day, Salzburg, Austria. http://hdl.handle.net/20.500.12708/119353 ( reposiTUm)
Karkulik, M., & Praetorius, D. (2010). Application of Interpolation theory to adaptive 3D-BEM. 8th Söllerhaus Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg/Kleinwalsertal, Austria. http://hdl.handle.net/20.500.12708/119457 ( reposiTUm)
Aurada, M., Ferraz-Leite, S., Ortner, C., & Praetorius, D. (2010). Recent developments in adaptive BEM. Oberseminar ANALYSIS, Max-Planck-Institut für Mathematik in den Naturwissenschaften (Leipzig), EU. http://hdl.handle.net/20.500.12708/119424 ( reposiTUm)
Ferraz-Leite, S., Melenk, J. M., & Praetorius, D. (2010). Finite element discretization of a reduced model in thin-film micromagnetics. 6th Austrian Numerical Analysis Day, Salzburg, Austria. http://hdl.handle.net/20.500.12708/119373 ( reposiTUm)
Goldenits, P., & Praetorius, D. (2010). A Finite Element Scheme for LLG. PDETech Seminar Talk, TU Wien, Austria. http://hdl.handle.net/20.500.12708/119363 ( reposiTUm)
Goldenits, P., Hrkac, G., Praetorius, D., Schrefl, T., & Süss, D. (2010). Convergence of a Geometric Integrator for LLG. SIAM Conference on Mathematical Aspects of Materials Science (MS10), Philadelphia, Non-EU. http://hdl.handle.net/20.500.12708/119364 ( reposiTUm)
Goldenits, P., & Praetorius, D. (2010). On Global Weak Solutions to LLG. PDETech Seminar Talk, TU Wien, Austria. http://hdl.handle.net/20.500.12708/119480 ( reposiTUm)
Praetorius, D. (2010). Quasi-Optimality of Adaptive FEM. Kleinarl 2010 - Numerik-Statusseminar Ulm und Wien, Kleinarl, Austria. http://hdl.handle.net/20.500.12708/119415 ( reposiTUm)
Aurada, M., Ferraz-Leite, S., Ortner, C., & Praetorius, D. (2010). Estimator reduction and convergence of adaptive BEM. Kleinarl 2010 - Numerik-Statusseminar Ulm und Wien, Kleinarl, Austria. http://hdl.handle.net/20.500.12708/119414 ( reposiTUm)
Führer, T., & Praetorius, D. (2010). Computing the Magenetostatic Potential. Kleinarl 2010 - Numerik-Statusseminar Ulm und Wien, Kleinarl, Austria. http://hdl.handle.net/20.500.12708/119416 ( reposiTUm)
Pavlicek, D., & Praetorius, D. (2010). Newest Vertex Bisection in 2D. Kleinarl 2010 - Numerik-Statusseminar Ulm und Wien, Kleinarl, Austria. http://hdl.handle.net/20.500.12708/119418 ( reposiTUm)
Aurada, M., Feischl, M., Karkulik, M., & Praetorius, D. (2010). FEM-BEM Coupling and A Posteriori Error Estimates. Kleinarl 2010 - Numerik-Statusseminar Ulm und Wien, Kleinarl, Austria. http://hdl.handle.net/20.500.12708/119417 ( reposiTUm)
Page, M., & Praetorius, D. (2010). Estimator Reduction and Convergence of Adaptive FEM for Obstacle Problems. Kleinarl 2010 - Numerik-Statusseminar Ulm und Wien, Kleinarl, Austria. http://hdl.handle.net/20.500.12708/119423 ( reposiTUm)
Karkulik, M., & Praetorius, D. (2010). Interpolation Spaces and Application in 3D-BEM. Kleinarl 2010 - Numerik-Statusseminar Ulm und Wien, Kleinarl, Austria. http://hdl.handle.net/20.500.12708/119419 ( reposiTUm)
Aurada, M., Feischl, M., Karkulik, M., & Praetorius, D. (2010). Convergence of some adaptive FEM-BEM coupling. 8th Söllerhaus Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg/Kleinwalsertal, Austria. http://hdl.handle.net/20.500.12708/119456 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2009). Mixed Conforming Elements in the Large-Body Limit of Micromagnetics. Cortona 2009 - Numerik-Statusseminar Ulm und Wien, Cortona, EU. http://hdl.handle.net/20.500.12708/118608 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2009). Mixed Conforming Elements in the Large-Body Limit of Micromagnetics - FEMBEM Coupling. 5th Austrian Numerical Analysis Day, Innsbruck, Austria. http://hdl.handle.net/20.500.12708/119300 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2009). Mixed Conforming Elements in the Large-Body Limit of Micromagnetics. MAFELAP 2009 - The Mathematics of Finite Elements and Applications, Uxbridge, EU. http://hdl.handle.net/20.500.12708/119301 ( reposiTUm)
Aurada, M., Ferraz-Leite, S., & Praetorius, D. (2009). Convergence of Adaptive BEM. 17th ÖMG Congress / Annual DMV Conference, Graz, Austria. http://hdl.handle.net/20.500.12708/119298 ( reposiTUm)
Aurada, M., Ebner, M., Ferraz-Leite, S., Goldenits, P., Karkulik, M., Mayr, M., & Praetorius, D. (2009). Adaptive BEM 2D - Symmsche Integralgleichung. Cortona 2009 - Numerik-Statusseminar Ulm und Wien, Cortona, EU. http://hdl.handle.net/20.500.12708/119034 ( reposiTUm)
Aurada, M., Feischl, M., & Praetorius, D. (2009). Verschiedene Methoden zur FEM-BEM Kopplung. Cortona 2009 - Numerik-Statusseminar Ulm und Wien, Cortona, EU. http://hdl.handle.net/20.500.12708/119035 ( reposiTUm)
Führer, T., & Praetorius, D. (2009). Computing the Magnetostatic Potential. Cortona 2009 - Numerik-Statusseminar Ulm und Wien, Cortona, EU. http://hdl.handle.net/20.500.12708/119036 ( reposiTUm)
Aurada, M., Ferraz-Leite, S., & Praetorius, D. (2009). Estimator Reduction and Convergence of Adaptive FEM and BEM. Cortona 2009 - Numerik-Statusseminar Ulm und Wien, Cortona, EU. http://hdl.handle.net/20.500.12708/119037 ( reposiTUm)
Aurada, M., Ferraz-Leite, S., & Praetorius, D. (2009). Convergence of Adaptive BEM. MAFELAP 2009 - The Mathematics of Finite Elements and Applications, Uxbridge, EU. http://hdl.handle.net/20.500.12708/118994 ( reposiTUm)
Ferraz-Leite, S., Melenk, J. M., & Praetorius, D. (2009). Finite element discretization of a reduced model in thin- lm micromagnetics. MAFELAP 2009 - The Mathematics of Finite Elements and Applications, Uxbridge, EU. http://hdl.handle.net/20.500.12708/118995 ( reposiTUm)
Ferraz-Leite, S., Ortner, C., & Praetorius, D. (2009). Convergence of simple adaptive Galerkin schemes based on h-h/2 error estimators. RMMM 2009 - International Workshop on Reliable Methods of Mathematical Modeling, Berlin, EU. http://hdl.handle.net/20.500.12708/119004 ( reposiTUm)
Aurada, M., Ebner, M., Ferraz-Leite, S., Goldenits, P., Karkulik, M., Mayr, M., & Praetorius, D. (2009). HILBERT - Matlab Implementation of Adaptive 2D BEM. 7th Söllerhaus Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg, Austria. http://hdl.handle.net/20.500.12708/119056 ( reposiTUm)
Weinmüller, E., Koch, O., März, R., & Praetorius, D. (2009). Solving Differential-Algebraic Equations with Singularities. ENUMATH 2009, Uppsala, EU. http://hdl.handle.net/20.500.12708/119241 ( reposiTUm)
Aurada, M., Goldenits, P., Karkulik, M., & Praetorius, D. (2009). Adaptive BEM for some Mixed Boundary Value Problem. 7th Söllerhaus Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg, Austria. http://hdl.handle.net/20.500.12708/119057 ( reposiTUm)
Aurada, M., Ferraz-Leite, S., & Praetorius, D. (2009). Convergence of adaptive BEM. 7th Söllerhaus Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg, Austria. http://hdl.handle.net/20.500.12708/119058 ( reposiTUm)
Aurada, M., Goldenits, P., Karkulik, M., & Praetorius, D. (2009). Adaptive BEM for some Mixed Boundary Value Problem. Cortona 2009 - Numerik-Statusseminar Ulm und Wien, Cortona, EU. http://hdl.handle.net/20.500.12708/119049 ( reposiTUm)
Aurada, M., Goldenits, P., Karkulik, M., & Praetorius, D. (2009). Adaptive BEM for some Mixed Boundary Value Problem. 17th ÖMG Congress / Annual DMV Conference, Graz, Austria. http://hdl.handle.net/20.500.12708/119048 ( reposiTUm)
Ferraz-Leite, S., Melenk, J. M., & Praetorius, D. (2009). A thin-film model for micromagnetics. Cortona 2009 - Numerik-Statusseminar Ulm und Wien, Cortona, EU. http://hdl.handle.net/20.500.12708/119050 ( reposiTUm)
Ferraz-Leite, S., Melenk, J. M., & Praetorius, D. (2009). Energy minimization in thin-film micromagnetics. 17th ÖMG Congress / Annual DMV Conference, Graz, Austria. http://hdl.handle.net/20.500.12708/119051 ( reposiTUm)
Ferraz-Leite, S., Ortner, C., & Praetorius, D. (2009). Convergence of h-h/2 based adaptive Galerkin schemes. 5th Austrian Numerical Analysis Day, Innsbruck, Austria. http://hdl.handle.net/20.500.12708/118982 ( reposiTUm)
Ferraz-Leite, S., Ortner, C., & Praetorius, D. (2008). Convergence of adaptive Galerkin schemes steered by h-h/2-based error estimators. SDIDE - Stability and Discretization Issues in Differential Equations, Wien, Austria. http://hdl.handle.net/20.500.12708/118620 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2008). Mixed Conforming Elements for the Large-Body Limit in Micromagnetics. SDIDE - Stability and Discretization Issues in Differential Equations, Wien, Austria. http://hdl.handle.net/20.500.12708/118621 ( reposiTUm)
Praetorius, D. (2008). Averaging Techniques and Adaptive BEM. 6th Söllerhaus Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg, Austria. http://hdl.handle.net/20.500.12708/118634 ( reposiTUm)
Ferraz-Leite, S., Ortner, C., & Praetorius, D. (2008). Simple a posteriori error estimators for boundary element methods in 3D. 6th Söllerhaus Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg, Austria. http://hdl.handle.net/20.500.12708/118635 ( reposiTUm)
Ferraz-Leite, S., & Praetorius, D. (2008). Simple a Posteriori Error Estimators for the h-Version of the Boundary Element Method. 8th. World Congress on Computational Mechanics and 5th. European Congress on Computational Methods in Applied Sciences and Engineering, Venice, Italy, EU. http://hdl.handle.net/20.500.12708/118611 ( reposiTUm)
Praetorius, D., & Roth, I. (2008). Fehlerschätzer für datengestörte Randelementmethoden. Söllerhaus 2008 - Numerik-Statusseminar Ulm und Wien, Hirschegg, Austria. http://hdl.handle.net/20.500.12708/118629 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2008). Mixed Conforming Elements for the Large-Body Limit in Micromagnetics. Söllerhaus 2008 - Numerik-Statusseminar Ulm und Wien, Hirschegg, Austria. http://hdl.handle.net/20.500.12708/118630 ( reposiTUm)
Ferraz-Leite, S., Ortner, C., & Praetorius, D. (2008). Convergence of adaptive Galerkin schemes steered by h-h/2-based error estimators. Söllerhaus 2008 - Numerik-Statusseminar Ulm und Wien, Hirschegg, Austria. http://hdl.handle.net/20.500.12708/118628 ( reposiTUm)
Ferraz-Leite, S., & Praetorius, D. (2008). Simple A Posteriori Error Estimators for the h-Version of the Boundary Element Method in 3D. 4th Austrian Numerical Analysis Day, Linz, Austria. http://hdl.handle.net/20.500.12708/118558 ( reposiTUm)
Praetorius, D. (2008). Adaptive Boundary Element Methods. Hausdorff-Institute for Mathematics, Junior Research Project on Non-Standard Adaptive FEM, Bonn, EU. http://hdl.handle.net/20.500.12708/118547 ( reposiTUm)
Praetorius, D. (2008). Adaptive FEM: Overview on Error Reduction, Convergence, and Optimality. Hausdorff-Institute for Mathematics, Junior Research Project on Non-Standard Adaptive FEM, Bonn, EU. http://hdl.handle.net/20.500.12708/118548 ( reposiTUm)
Praetorius, D. (2007). Einführung in die Randelementmethode. Humboldt-Universität zu Berlin, Berlin, Germany, EU. http://hdl.handle.net/20.500.12708/118213 ( reposiTUm)
Erath, C., Ferraz-Leite, S., Funken, S., & Praetorius, D. (2007). Energy Norm Based A Posteriori Error Estimation for BEM. 5th Söllerhaus Workshop “Fast Boundary Element Methods in Industrial Applications,” Hirschegg (Kleinwalsertal), Austria. http://hdl.handle.net/20.500.12708/118214 ( reposiTUm)
Boiger, W., Carstensen, C., & Praetorius, D. (2007). Strong Convergence of an Approximation Scheme for the Macroscopic Model in Micromagnetism. 4th Workshop on Advanced Computational Electromagnetics (ACE ’07), Aachen, EU. http://hdl.handle.net/20.500.12708/118192 ( reposiTUm)
Praetorius, D. (2007). Simulation von Mikromagnetismus - Numerische Analysis für den Grenzfall großer Körper. Mathematisches Kolloquium, Universität Mainz, Mainz, EU. http://hdl.handle.net/20.500.12708/118193 ( reposiTUm)
Carstensen, C., & Praetorius, D. (2007). Averaging Techniques for BEM. WONAPDE 2007, Concepcion (Chile), Non-EU. http://hdl.handle.net/20.500.12708/118176 ( reposiTUm)
Praetorius, D. (2007). Simulation von Mikromagnetismus - Numerische Analysis für den Grenzfall großer Körper. Mathematisches Kolloquium, Universität Stuttgart, Stuttgart, Austria. http://hdl.handle.net/20.500.12708/118175 ( reposiTUm)
Ferraz-Leite, S., & Praetorius, D. (2007). Simple A Posteriori Error Estimators for the h-Version of the Boundary Element Method. Boundary Elements - Theory and Applications - Beta 2007, Hannover, EU. http://hdl.handle.net/20.500.12708/118178 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2007). Mixed Conforming Elements for the Large-Body Limit in Micromagnetics. Enumath 2007, Graz, Austria. http://hdl.handle.net/20.500.12708/118491 ( reposiTUm)
Praetorius, D. (2007). Ein kurzer Überblick über adaptive Randelementmethoden. Mathematisches Kolloquium, Universität Ulm, Ulm, EU. http://hdl.handle.net/20.500.12708/118472 ( reposiTUm)
Praetorius, D., & Wissgott, P. (2007). A Space-Time Adaptive Algorithm for Linear Parabolic Problems. Einsteins in the City 2 International Student Research Conference, New York, Non-EU. http://hdl.handle.net/20.500.12708/118549 ( reposiTUm)
März, R., Praetorius, D., & Weinmüller, E. (2007). Collocation for Index 1 DAEs with a singularity of the first kind. SciCADE 07, St. Malo, EU. http://hdl.handle.net/20.500.12708/118799 ( reposiTUm)
Carstensen, C., Funken, S., & Praetorius, D. (2006). Averaging Techniques for BEM. IABEM 2006 Conference, Graz, Austria. http://hdl.handle.net/20.500.12708/117828 ( reposiTUm)
Praetorius, D. (2006). Numerical Analysis for the Landau-Lifshitz Minimization Problem in Micromagnetics. 2nd Austrian Numerical Analysis Day, Graz, Austria. http://hdl.handle.net/20.500.12708/117827 ( reposiTUm)
Praetorius, D. (2006). Numerical Analysis for the Large-Body Limit in Micromagnetics. Micromagnetics: Experiments, Modeling, and Mathematical Theory, Bonn, EU. http://hdl.handle.net/20.500.12708/117849 ( reposiTUm)
Popovic, N., & Praetorius, D. (2006). H-Matrix Techniques for Stray-Field Computations in Computational Micromagnetics. MAFELAP 2006 - The Mathematics of Finite Elements and Applications, Uxbridge, EU. http://hdl.handle.net/20.500.12708/117826 ( reposiTUm)
Carstensen, C., Funken, S., & Praetorius, D. (2006). Averaging Techniques for BEM. MAFELAP 2006 - The Mathematics of Finite Elements and Applications, Uxbridge, EU. http://hdl.handle.net/20.500.12708/117825 ( reposiTUm)
Koch, O., März, R., Praetorius, D., & Weinmüller, E. (2006). Collocation for Index-1 DAES with a critical point. International Conference on Operation Research, Reykjavik, EU. http://hdl.handle.net/20.500.12708/117946 ( reposiTUm)
Auzinger, W., Karner, E., Koch, O., Praetorius, D., & Weinmüller, E. (2005). Präzise und effiziente a-posteriori Fehlerschätzung bei impliziten und singulären Randwertproblemen. 16th International Congress of the Austrian Mathematical Society (ÖMG), Klagenfurt, Austria, Austria. http://hdl.handle.net/20.500.12708/117489 ( reposiTUm)
Praetorius, D. (2005). Numerical Analysis for the Landau-Lifshitz Minimization Problem in Stationary Micromagnetics. Jour fixe des DFG Graduiertenkollegs Multiphase Problems, Humboldt-Universität zu Berlin, Berlin, EU. http://hdl.handle.net/20.500.12708/117623 ( reposiTUm)
Carstensen, C., & Praetorius, D. (2005). Averaging Techniques for BEM. Söllerhaus Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg (Kleinwalsertal), Austria. http://hdl.handle.net/20.500.12708/117622 ( reposiTUm)
Praetorius, D. (2005). Datenkompression mittels Hierarchischer Matrizen. Lecture Series “Wissenswertes aus der Mathematik,” TU Vienna, Austria, Austria. http://hdl.handle.net/20.500.12708/117617 ( reposiTUm)
Popovic, N., & Praetorius, D. (2005). H-Matrix Techniques for Stray-Field Computations in Computational Micromagnetics. 5th International Conference on Large-Scale Scientific Computations, Sozopol, Bulgarien, Non-EU. http://hdl.handle.net/20.500.12708/117619 ( reposiTUm)
Popovic, N., & Praetorius, D. (2005). H-Matrix Techniques for Stray-Field Computations in Computational Micromagnetics. MATHEON-Workshop on Micromagnetics: Analysis and Computation, Humboldt-Universität zu Berlin, Berlin, EU. http://hdl.handle.net/20.500.12708/117618 ( reposiTUm)
Carstensen, C., & Praetorius, D. (2005). Averaging Techniques for BEM. BICOM Workshop on Boundary Elements, Brunel University, Uxbridge, EU. http://hdl.handle.net/20.500.12708/117620 ( reposiTUm)
Carstensen, C., Popovic, N., & Praetorius, D. (2005). Computational Micromagnetism for Large-Soft Magnets. 16.Int.Kongress ÖMG-DMV, Klagenfurt, Klagenfurt, Austria. http://hdl.handle.net/20.500.12708/117621 ( reposiTUm)
Auzinger, W., Koch, O., Praetorius, D., & Weinmüller, E. (2004). Software Development for Singular Boundary Value Problems. Workshop on Advanced Scientific Computing and Applications, Györ, Hungary, Austria. http://hdl.handle.net/20.500.12708/117231 ( reposiTUm)
Popovic, N., Praetorius, D., & Carstensen, C. (2004). Applications of H-Matrix Techniques in Micromagnetics. Mathematisches Kolloquium, Universität Stuttgart, Stuttgart, Austria. http://hdl.handle.net/20.500.12708/116802 ( reposiTUm)
Carstensen, C., & Praetorius, D. (2004). Computational Micromagnetism for Large-Soft Magnets. International Conference of Numerical Analysis and Applied Mathematics 2004 (ICNAAM), Rhodos, EU. http://hdl.handle.net/20.500.12708/116804 ( reposiTUm)
Carstensen, C., & Praetorius, D. (2004). Numerical Analysis of an Integral Equation for Macroscopic Simulations of Micromagnetics for the Large-Soft Limit. Third International Conference on Boundary Integral Methods:Theory and Applications, University of Reading, UK, Austria. http://hdl.handle.net/20.500.12708/116803 ( reposiTUm)
Praetorius, D. (2004). Introduction to H-Matrices. Johann-von-Neumann-Lectures, Humboldt-Universität zu Berlin, Berlin, Austria. http://hdl.handle.net/20.500.12708/116860 ( reposiTUm)
Carstensen, C., & Praetorius, D. (2004). Averaging Techniques for the Effective Numerical Solution of Integral Equations of the First Kind. Workshop on Advanced Scientific Computing and Applications, Györ, Hungary, Austria. http://hdl.handle.net/20.500.12708/116840 ( reposiTUm)
Carstensen, C., & Praetorius, D. (2004). On Stabilized Models in Micromagnetics. CBC-Workshop, Vienna University of Technology, 13.Jul.2004, Vienna University of Technology, Austria. http://hdl.handle.net/20.500.12708/116839 ( reposiTUm)
Carstensen, C., & Praetorius, D. (2004). Effective Simulation of a Macroscopic Model in Micromagnetics. 20th GAMM-Seminar Leipzig on Numerical Methods for Non-Local Operators, Leipzig, Austria. http://hdl.handle.net/20.500.12708/116726 ( reposiTUm)
Popovic, N., & Praetorius, D. (2004). Introduction to H-Matrices and Applications in Micromagnetics. Humboldt Universität Berlin, Berlin, Austria. http://hdl.handle.net/20.500.12708/116727 ( reposiTUm)
Carstensen, C., & Praetorius, D. (2003). Effective Simulation of a Macroscopic Model in Micromagnetics. MAFELAP 2003 Mathematics of Finite Elements and Applications, Brunel, UK, Austria. http://hdl.handle.net/20.500.12708/116440 ( reposiTUm)

Berichte

Bespalov, A., Praetorius, D., & Ruggeri, M. (2020). Two-level a posteriori error estimation for adaptive multilevel stochastic Galerkin FEM (ASC Report 18/2020; pp. 1–28). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30886 ( reposiTUm)
Führer, T., & Praetorius, D. (2020). A short note on plain convergence of adaptive least-squares finite element methods (ASC Report 16/2020; pp. 1–18). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30884 ( reposiTUm)
Di Fratta, G., Jüngel, A., Praetorius, D., & Slastikov, V. (2020). Spin-diffusion model for micromagnetics in the limit of long times (ASC Report 26/2020; pp. 1–22). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30895 ( reposiTUm)
Gantner, G., & Praetorius, D. (2020). Plain convergence of adaptive algorithms without exploiting reliability and efficiency (ASC Report 25/2020; pp. 1–17). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30894 ( reposiTUm)
Gantner, G., & Praetorius, D. (2020). Adaptive BEM for elliptic PDE systems, Part I: Abstract framework for weakly-singular integral equations (ASC Report 10/2020; pp. 1–36). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30879 ( reposiTUm)
Haberl, A., Praetorius, D., Schimanko, S., & Vohralik, M. (2020). Convergence and quasi-optimal cost of adaptive algorithms for nonlinear operators including iterative linearization and algebraic solver (ASC Report 12/2020; pp. 1–40). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30881 ( reposiTUm)
Gantner, G., Haberl, A., Praetorius, D., & Schimanko, S. (2020). Rate optimality of adaptive finite element methods with respect to the overall computational costs (ASC Report 4/2020; pp. 1–30). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30873 ( reposiTUm)
Becker, R., Innerberger, M., & Praetorius, D. (2020). Optimal convergence rates for goal-oriented FEM with quadratic goal functional (ASC Report 7/2020; pp. 1–24). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30876 ( reposiTUm)
Heid, P., Praetorius, D., & Wihler, T. (2020). Energy contraction and optimal convergence of adaptive iterative linearized finite element methods (ASC Report 21/2020; pp. 1–12). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30889 ( reposiTUm)
Davoli, E., Di Fratta, G., Praetorius, D., & Ruggeri, M. (2020). Micromagnetics of thin films in the presence of Dzyaloshinskii-Moriya interaction (ASC Report 28/2020; pp. 1–24). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30897 ( reposiTUm)
Betcke, T., Haberl, A., & Praetorius, D. (2019). Adaptive boundary element methods for the computation of the electrostatic capacity on complex polyhedra (ASC Report 03/2019; pp. 1–24). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30842 ( reposiTUm)
Gantner, G., Praetorius, D., & Schimanko, S. (2019). Adaptive isogeometric boundary element methods with local smoothness control (ASC Report 06/2019; pp. 1–39). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30845 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2019). Quasi-optimal convergence rate for an adaptive method for the integral fractional Laplacian (ASC Report 07/2019; pp. 1–23). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30846 ( reposiTUm)
Di Fratta, G., Innerberger, M., & Praetorius, D. (2019). Weak-strong uniqueness for the Landau-Lifshitz-Gilbert equation in micromagnetics (ASC Report 26/2019; pp. 1–14). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30864 ( reposiTUm)
Praetorius, D., Ruggeri, M., & Stephan, E. P. (2019). The saturation assumption yields optimal convergence of two-level adaptive BEM (ASC Report 18/2019; pp. 1–26). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30857 ( reposiTUm)
Innerberger, M., & Praetorius, D. (2019). Instance-optimal goal-oriented adaptivity (ASC Report 21/2019; pp. 1–20). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30860 ( reposiTUm)
Pfeiler, C.-M., & Praetorius, D. (2019). Dörfler marking with minimal cardinality is a linear complexity problem (ASC Report 20/2019; pp. 1–18). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30859 ( reposiTUm)
Gantner, G., & Praetorius, D. (2019). Adaptive IGAFEM with optimal convergence rates: T-splines (ASC Report 25/2019; pp. 1–25). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30863 ( reposiTUm)
Kurz, S., Pauly, D., Praetorius, D., Repin, S., & Sebastian, D. (2019). Functional a posteriori error estimates for boundary element methods (ASC Report 29/2019; pp. 1–29). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30867 ( reposiTUm)
Bespalov, A., Praetorius, D., Rocchi, L., & Ruggeri, M. (2018). Goal-oriented error estimation and adaptivity for elliptic PDEs with parametric or uncertain inputs (ASC Report 15/2018; pp. 1–38). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30819 ( reposiTUm)
Bespalov, A., Betcke, T., Haberl, A., & Praetorius, D. (2018). Adaptive BEM with optimal convergence rates for the Helmholtz equation (ASC Report 18/2018; pp. 1–30). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30822 ( reposiTUm)
Erath, C., & Praetorius, D. (2018). Optimal adaptivity for the SUPG finite element method (ASC Report 17/2018; pp. 1–20). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30821 ( reposiTUm)
Führer, T., Gantner, G., Praetorius, D., & Schimanko, S. (2018). Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods (ASC Report 20/2018; pp. 1–33). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30824 ( reposiTUm)
Kraus, J., Pfeiler, C.-M., Praetorius, D., Ruggeri, M., & Stiftner, B. (2018). Iterative solution and preconditioning for the tangent plane scheme in computational micromagnetics (ASC Report 21/2018; pp. 1–35). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30825 ( reposiTUm)
Erath, C., Gantner, G., & Praetorius, D. (2018). Optimal convergence behavior of adaptive FEM driven by simple (h-h/2)-type error estimators (ASC Report 10/2018; pp. 1–26). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30814 ( reposiTUm)
Führer, T., Haberl, A., Praetorius, D., & Schimanko, S. (2018). Adaptive BEM with inexact PCG solver yields almost optimal computational costs (ASC Report 12/2018; pp. 1–35). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30816 ( reposiTUm)
Pfeiler, C.-M., Ruggeri, M., Stiftner, B., Exl, L., Hochsteger, M., Hrkac, G., Schöberl, J., Mauser, N., & Praetorius, D. (2018). Computational micromagnetics with Commics (ASC Report 33/2018; pp. 1–21). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30838 ( reposiTUm)
Bespalov, A., Praetorius, D., Rocchi, L., & Ruggeri, M. (2018). Convergence of adaptive stochastic Galerkin FEM (ASC Report 31/2018; pp. 1–28). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30836 ( reposiTUm)
Di Fratta, G., Führer, T., Gantner, G., & Praetorius, D. (2018). Adaptive Uzawa algorithm for the Stokes equation (ASC Report 34/2018; pp. 1–29). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30839 ( reposiTUm)
Erath, C., & Praetorius, D. (2017). Adaptive vertex-centered finite volume methods for general second-order linear elliptic PDEs (ASC Report 17/2017; pp. 1–20). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29449 ( reposiTUm)
Führer, T., & Praetorius, D. (2017). A linear Uzawa-type FEM-BEM solver for nonlinear transmission problems (ASC Report 06/2017; pp. 1–28). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29377 ( reposiTUm)
Gantner, G., Haberlik, D., & Praetorius, D. (2017). Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines (ASC Report 02/2017; pp. 1–37). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29362 ( reposiTUm)
Erath, C., & Praetorius, D. (2017). Céa-type quasi-optimality and convergence rates for (adaptive) vertex-centered FVM (ASC Report 01/2017; pp. 1–8). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29361 ( reposiTUm)
Hrkac, G., Pfeiler, C.-M., Praetorius, D., Ruggeri, M., Segatti, A., & Stiftner, B. (2017). Convergent tangent plane integrators for the simulation of chiral magnetic skyrmion dynamics (ASC Report 29/2017; pp. 1–32). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30799 ( reposiTUm)
Di Fratta, G., Pfeiler, C.-M., Praetorius, D., Ruggeri, M., & Stiftner, B. (2017). Linear second-order IMEX-type integrator for the (eddy current) Landau-Lifshitz-Gilbert equation (ASC Report 27/2017; pp. 1–40). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30797 ( reposiTUm)
Gantner, G., Haberl, A., Praetorius, D., & Stiftner, B. (2016). Rate optimal adaptive FEM with inexact solver for nonlinear operators (ASC Report 28/2016; pp. 1–29). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29223 ( reposiTUm)
Praetorius, D., Ruggeri, M., & Stiftner, B. (2016). Convergence of an implicit-explicit midpoint scheme for computational micromagnetics (ASC Report 23/2016; pp. 1–27). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29170 ( reposiTUm)
Abert, C., Ruggeri, M., Bruckner, F., Vogler, C., Manchon, A., Praetorius, D., & Süss, D. (2016). A self-consistent spin-diffusion model for micromagnetics (ASC Report 8/2016; pp. 1–8). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29044 ( reposiTUm)
Bespalov, A., Haberl, A., & Praetorius, D. (2016). Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems (ASC Report 14/2016; pp. 1–26). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29082 ( reposiTUm)
Gantner, G., Haberl, A., Praetorius, D., & Stiftner, B. (2016). Rate optimal adaptive FEM with inexact solver for strongly monotone operators (ASC Report 20/2016; pp. 1–3). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28907 ( reposiTUm)
Erath, C., & Praetorius, D. (2015). Adaptive finite volume methods with convergence rates (ASC Report 29/2015; pp. 1–30). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28701 ( reposiTUm)
Feischl, M., Führer, T., Niederer, M., Strommer, S., Steinböck, A., & Praetorius, D. (2015). Efficient numerical computation of direct exchange areas in thermal radiation analysis (ASC Report 31/2015; pp. 1–26). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28709 ( reposiTUm)
Karkulik, M., Praetorius, D., & Pfeiler, C.-M. (2015). Stabilität der L2-Orthogonalprojektion im Sobolev-Raum H1 und in lokal gewichteten L2-Räumen (Supervisor: M. Karkulik, D. Praetorius). http://hdl.handle.net/20.500.12708/38477 ( reposiTUm)
Ruggeri, M., Abert, C., Hrkac, G., Süss, D., & Praetorius, D. (2015). Coupling of dynamical micromagnetism and a stationary spin drift-diffusion equation: A step towards a fully self-consistent spintronics framework (ASC Report 23/2015; pp. 1–5). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28677 ( reposiTUm)
Feischl, M., Gantner, G., Haberl, A., & Praetorius, D. (2015). Adaptive 2D IGA boundary element methods (ASC Report 11/2015; pp. 1–14). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28621 ( reposiTUm)
Feischl, M., Praetorius, D., & van der Zee, K. G. (2015). An abstract analysis of optimal goal-oriented adaptivity (ASC Report 15/2015; pp. 1–36). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28639 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2015). Existence of $\cal H$-matrix approximants to the inverse of BEM matrices: the hyper-singular integral operator (ASC Report 08/2015; pp. 1–30). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28605 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2015). Local inverse estimates for non-local boundary integral operators (ASC Report 12/2015; pp. 1–28). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28623 ( reposiTUm)
Feischl, M., Gantner, G., Haberl, A., & Praetorius, D. (2015). Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations (ASC Report 16/2015; pp. 1–26). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28644 ( reposiTUm)
Abert, C., Hrkac, G., Page, M., Praetorius, D., Ruggeri, M., & Süss, D. (2014). Spin-polarized transport in ferromagnetic multilayers: An unconditionally convergent FEM integrator (ASC Report 08/2014; pp. 1–20). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28235 ( reposiTUm)
Carstensen, C., Feischl, M., & Praetorius, D. (2014). Rate optimality of adaptive algorithms: An axiomatic approach (ASC Report 11/2014; pp. 1–12). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28245 ( reposiTUm)
Feischl, M., Führer, T., Heuer, N., Karkulik, M., & Praetorius, D. (2014). Adaptive boundary element methods: A posteriori error estimators, adaptivity, convergence, and implementation (ASC Report 09/2014; pp. 1–77). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28236 ( reposiTUm)
Feischl, M., Führer, T., Praetorius, D., & Stephan, E. P. (2014). Optimal preconditioning for the coupling of adaptive finite and boundary elements (ASC Report 12/2014; pp. 1–12). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28248 ( reposiTUm)
Melenk, J. M., Praetorius, D., & Wohlmuth, B. (2014). Simultaneous quasi-optimal convergence in FEM-BEM coupling (ASC Report 13/2014; pp. 1–21). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28262 ( reposiTUm)
Feischl, M., Führer, T., Mitscha-Eibl, G., Praetorius, D., & Stephan, E. P. (2014). Convergence of adaptive BEM and adaptive FEM-BEM coupling for estimators without h-weighting factor (ASC Report 16/2014; pp. 1–28). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28275 ( reposiTUm)
Feischl, M., Gantner, G., & Praetorius, D. (2014). A posteriori error estimation for adaptive IGA boundary element methods (ASC Report 17/2014; pp. 1–12). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28276 ( reposiTUm)
Feischl, M., Gantner, G., & Praetorius, D. (2014). Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations (ASC Report 23/2014; pp. 1–26). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28314 ( reposiTUm)
Feischl, M., Führer, T., Gantner, G., Haberl, A., & Praetorius, D. (2014). Adaptive boundary element methods for optimal convergence of point errors (ASC Report 34/2014; pp. 1–22). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28379 ( reposiTUm)
Führer, T., Melenk, J. M., Praetorius, D., & Rieder, A. (2014). Optimal additive Schwarz methods for the hp-BEM: the hypersingular integral operator in 3D on locally refined meshes (ASC Report 41/2014; pp. 1–34). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28447 ( reposiTUm)
Abert, C., Ruggeri, M., Bruckner, F., Vogler, C., Hrkac, G., Praetorius, D., & Süss, D. (2014). A three-dimensional spin-diffusion model for micromagnetics (ASC Report 31/2014; pp. 1–13). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28366 ( reposiTUm)
Feischl, M., Karkulik, M., Praetorius, D., & Schaefer, P. (2013). Stabile Implementierung der Randelementmethode auf anisotrop verfeinerten Gittern (Supervisor: M. Feischl, M. Karkulik, D. Praetorius). http://hdl.handle.net/20.500.12708/37714 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2013). FEM-BEM Coupling for the large-body limit in micromagnetics (ASC Report 04/2013; pp. 1–27). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27936 ( reposiTUm)
Aurada, M., Ebner, M., Feischl, M., Ferraz-Leite, S., Führer, T., Goldenits, P., Karkulik, M., & Praetorius, D. (2013). HILBERT, a MATLAB implementation of adaptive BEM (Release 3) (ASC Report 26/2013; pp. 1–111). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27985 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2013). Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, Part I: Weakly-singular integral equation (ASC Report 24/2013; pp. 1–26). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27979 ( reposiTUm)
Feischl, M., Führer, T., Praetorius, D., & Stephan, E. P. (2013). Optimal additive Schwarz preconditioning for hypersingular integral equations on locally refined triangulations (ASC Report 25/2013; pp. 1–28). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27984 ( reposiTUm)
Carstensen, C., Feischl, M., Page, M., & Praetorius, D. (2013). Axioms of adaptivity (ASC Report 38/2013; pp. 1–77). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28040 ( reposiTUm)
Feischl, M., Führer, T., Praetorius, D., & Stephan, E. P. (2013). Optimal preconditioning for the symmetric and non-symmetric coupling of adaptive finite elements and boundary elements (ASC Report 36/2013; pp. 1–36). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28037 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2013). Existence of H-matrix approximants to the inverses of BEM matrices: the simple-layer operator (ASC Report 37/2013; pp. 1–33). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28038 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., & Praetorius, D. (2013). ZZ-type a posteriori error estimators for adaptive boundary element methods on a curve (ASC Report 16/2013; pp. 1–14). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27949 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2013). Quasi-optimal convergence rates for adaptive boundary element methods with data approximation - Part II: Hyper-singular integral equation (ASC Report 30/2013; pp. 1–22). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27995 ( reposiTUm)
Banas, L., Page, M., & Praetorius, D. (2013). A convergent linear finite element scheme for the Maxwell-Landau-Lifshitz-Gilbert equations (ASC Report 09/2013; pp. 1–25). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27890 ( reposiTUm)
Banas, L., Page, M., Praetorius, D., & Rochat, J. (2013). On the Landau-Lifshitz-Gilbert equations with magnetostriction (ASC Report 08/2013; pp. 1–22). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27889 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., & Praetorius, D. (2013). Energy norm based error estimators for adaptive BEM for hypersingular integral equations (ASC Report 22/2013; pp. 1–27). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27973 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2013). H-matrix approximability of the inverses of FEM matrices (ASC Report 20/2013; pp. 1–23). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27971 ( reposiTUm)
Le, K.-N., Page, M., Praetorius, D., & Tran, T. (2013). On a decoupled linear FEM integrator for Eddy-Current-LLG (ASC Report 15/2013; pp. 1–13). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27948 ( reposiTUm)
Page, M., Praetorius, D., & Kemetmüller, J. (2012). Vektorisierte Implementierung von P1-FEM in 3D (Supervisor: M. Page, D. Praetorius). http://hdl.handle.net/20.500.12708/37349 ( reposiTUm)
Aurada, M., Praetorius, D., & Ebner, M. (2012). A-posteriori Fehlerschätzung für die Symm’sche Integralgleichung (Supervisor: M. Aurada, D. Praetorius). http://hdl.handle.net/20.500.12708/37356 ( reposiTUm)
Bruckner, F., Vogler, C., Bergmair, B., Huber, T., Fuger, M., Süss, D., Feischl, M., Führer, T., Page, M., & Praetorius, D. (2012). Combining micromagnetism and magnetostatic Maxwell equations for multiscale magnetic simulations (ASC Report 37/2012; pp. 3–11). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27663 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2012). A new proof for existence of $\mathcal{H}$-matrix approximants to the inverse of FEM matrices: the Dirichlet problem for the Laplacian (ASC Report 51/2012; pp. 1–10). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27728 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., & Praetorius, D. (2012). Stability of symmetric and nonsymmetric FEM-BEM couplings for nonlinear elasticity problems (ASC Report 52/2012; pp. 1–23). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27734 ( reposiTUm)
Karkulik, M., Pavlicek, D., & Praetorius, D. (2012). On 2D newest vertex bisection: Optimality of mesh-closure and H^1-stability of L_2-projection (ASC Report 10/2012; pp. 1–28). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27560 ( reposiTUm)
Goldenits, P., Hrkac, G., Praetorius, D., & Süss, D. (2012). An Effective Integrator for the Landau-Lifshitz-Gilbert Equation (ASC Report 02/2012). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27517 ( reposiTUm)
Aurada, M., Feischl, M., Kemetmüller, J., Page, M., & Praetorius, D. (2012). Each H1/2-stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd (ASC Report 03/2012; pp. 1–35). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27518 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., & Praetorius, D. (2012). Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods (ASC Report 15/2012; pp. 1–27). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27580 ( reposiTUm)
Karkulik, M., Of, G., & Praetorius, D. (2012). Convergence of adaptive 3D BEM for weakly singular integral equations based on isotropic mesh-refinement (ASC Report 20/2012; pp. 1–25). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27621 ( reposiTUm)
Feischl, M., Führer, T., & Praetorius, D. (2012). Adaptive FEM with optimal convergence rates for a certain class of non-symmetric and possibly non-linear problems (ASC Report 43/2012; pp. 1–21). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27687 ( reposiTUm)
Banas, L., Page, M., & Praetorius, D. (2012). A general integrator for the Landau-Lifshitz-Gilbert equation (ASC Report 42/2012; pp. 1–4). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27686 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity (ASC Report 08/2012; pp. 1–20). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27537 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Inverse estimates for elliptic boundary integral operators and their application to the adaptive coupling of FEM and BEM (ASC Report 07/2012; pp. 1–32). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27536 ( reposiTUm)
Bruckner, F., Feischl, M., Führer, T., Goldenits, P., Page, M., Praetorius, D., Ruggeri, M., & Süss, D. (2012). Multiscale modeling in micromagnetics: Existence of solutions and numerical integration (ASC Report 34/2012; pp. 1–28). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27655 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Novel inverse estimates for non-local operators (IABEM 2013) (ASC Report 49/2012; pp. 1–6). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27704 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). FEM-BEM couplings without stabilization (IABEM 2013) (ASC Report 47/2012; pp. 1–6). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27702 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., & Praetorius, D. (2012). Quasi-optimal adaptive BEM (IABEM 2013) (ASC Report 48/2012; pp. 1–6). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27703 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2011). Mixed conforming elements for the large-body limit in micromagnetics (ASC Report 42/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27312 ( reposiTUm)
Aurada, M., Praetorius, D., & Pavlicek, D. (2011). Optimalität adaptiver FEM (Supervisor: M. Aurada, D. Praetorius). http://hdl.handle.net/20.500.12708/36906 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2011). Residual a-posteriori error estimates in BEM: Convergence of h-adaptive algorithms (ASC Report 21/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27183 ( reposiTUm)
Aurada, M., Feischl, M., Karkulik, M., & Praetorius, D. (2011). Adaptive coupling of FEM and BEM: Simple error estimators and convergence (IABEM 2011) (ASC Report 20/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27182 ( reposiTUm)
Aurada, M., Feischl, M., Karkulik, M., & Praetorius, D. (2011). A Posteriori Error Estimates for the Johnson-Nédélec FEM-BEM Coupling (ASC Report 18/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27180 ( reposiTUm)
Goldenits, P., Praetorius, D., & Süss, D. (2011). Convergent geometric integrator for the Landau-Lifshitz-Gilbert equation in micromagnetics (ASC Report 19/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27181 ( reposiTUm)
Feischl, M., Page, M., & Praetorius, D. (2011). Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data (GAMM 2011) (ASC Report 16/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27178 ( reposiTUm)
Feischl, M., Page, M., & Praetorius, D. (2011). Convergence of adaptive FEM for elliptic obstacle problems (ASC Report 17/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27179 ( reposiTUm)
Bruckner, F., Vogler, C., Feischl, M., Praetorius, D., Bergmair, B., Huber, T., Fuger, M., & Süss, D. (2011). 3D FEM-BEM-coupling method to solve magnetostatic Maxwell equations (ASC Report 07/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27135 ( reposiTUm)
Aurada, M., Ebner, M., Feischl, M., Ferraz-Leite, S., Führer, T., Goldenits, P., Karkulik, M., Mayr, M., & Praetorius, D. (2011). HILBERT - A MATLAB implementation of adaptive 2D-BEM (ASC Report 24/2011; pp. 1–30). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27188 ( reposiTUm)
Aurada, M., Feischl, M., Karkulik, M., & Praetorius, D. (2011). Adaptive coupling of FEM and BEM: Simple error estimators and convergence (GAMM 2011) (ASC Report 22/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27184 ( reposiTUm)
Ferraz-Leite, S., Melenk, J. M., & Praetorius, D. (2011). Numerical quadratic energy minimization bound to convex constraints in thin-film micromagnetics (ASC Report 32/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27239 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2011). Quasi-optimal convergence rate for an adaptive boundary element method (ASC Report 28/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27227 ( reposiTUm)
Aurada, M., Ferraz-Leite, S., Goldenits, P., Karkulik, M., Mayr, M., & Praetorius, D. (2010). Convergence of adaptive BEM for some mixed boundary value problem (ASC Report 12/2010). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26801 ( reposiTUm)
Aurada, M., Ferraz-Leite, S., & Praetorius, D. (2010). Estimator reduction and convergence of adaptive BEM (ASC Report 09/2010). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26777 ( reposiTUm)
Page, M., & Praetorius, D. (2010). Convergence of adaptive FEM for some elliptic obstacle problem (ASC Report 05/2010). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26747 ( reposiTUm)
Aurada, M., Feischl, M., & Praetorius, D. (2010). Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems (ASC Report 06/2010). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26751 ( reposiTUm)
Aurada, M., Ebner, M., Feischl, M., Ferraz-Leite, S., Goldenits, P., Karkulik, M., Mayr, M., & Praetorius, D. (2010). Hilbert (Release 2): A MATLAB implementation of adaptive BEM (ASC Report 14/2010). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26832 ( reposiTUm)
Ferraz-Leite, S., Praetorius, D., & Mayr, M. (2010). Stabile Implementierung der Randelementmethode auf stark adaptierten Netzen (Supervisor: S. Ferraz-Leite, D. Praetorius). http://hdl.handle.net/20.500.12708/37350 ( reposiTUm)
Aurada, M., Praetorius, D., & Feischl, M. (2010). Different Strategies for the Adaptive FEM-BEM Coupling (Supervisor: M. Aurada, D. Praetorius). http://hdl.handle.net/20.500.12708/36243 ( reposiTUm)
Feischl, M., Page, M., & Praetorius, D. (2010). Convergence of adaptive FEM for some elliptic obstacle problem with inhomogeneous Dirichlet data (ASC Report 33/2010). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27060 ( reposiTUm)
Feischl, M., Page, M., & Praetorius, D. (2010). Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data (ASC Report 34/2010). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27059 ( reposiTUm)
Aurada, M., Feischl, M., Karkulik, M., & Praetorius, D. (2010). Adaptive coupling of FEM and BEM: Simple error estimators and convergence (AfriCOMP11) (ASC Report 35/2010). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27096 ( reposiTUm)
Aurada, M., Ferraz-Leite, S., & Praetorius, D. (2009). Estimator reduction and convergence of adaptive FEM and BEM (ASC Report 27/2009). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26442 ( reposiTUm)
Carstensen, C., & Praetorius, D. (2009). Convergence of adaptive boundary element methods (ASC Report 15/2009). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26386 ( reposiTUm)
Erath, C., Funken, S., Goldenits, P., & Praetorius, D. (2009). Simple error estimators for the Galerkin BEM for some hypersingular integral equation in 2D (ASC Report 20/2009). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26413 ( reposiTUm)
Ferraz-Leite, S., Ortner, C., & Praetorius, D. (2009). Convergence of simple adaptive Galerkin schemes based on h-h/2 error estimators (ASC Report 06/2009). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26358 ( reposiTUm)
Aurada, M., Ferraz-Leite, S., & Praetorius, D. (2009). Convergence of adaptive boundary element methods (ASC Report 01/2009). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26332 ( reposiTUm)
Ferraz-Leite, S., Melenk, J. M., & Praetorius, D. (2009). Reduced model in thin-film micromagnetics (ASC Report 02/2009). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26343 ( reposiTUm)
Aurada, M., Ebner, M., Ferraz-Leite, S., Goldenits, P., Karkulik, M., Mayr, M., & Praetorius, D. (2009). HILBERT - a MATLAB implementation of adaptive BEM (ASC Report 44/2009). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26508 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2009). Mixed conforming elements for the large-body limit in micromagnetics (MATHMOD 09) (ASC Report 49/2009). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26604 ( reposiTUm)
Aurada, M., Goldenits, P., & Praetorius, D. (2009). Convergence of data perturbed adaptive boundary element methods (ASC Report 40/2009). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26483 ( reposiTUm)
Ferraz-Leite, S., & Praetorius, D. (2008). A posteriori Fehlerschätzer für die Symmsche Integralgleichung in 3D (ASC Report 21/2008). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26094 ( reposiTUm)
Ferraz-Leite, S., & Praetorius, D. (2008). Adaptive boundary element methods based on accurate a posteriori error estimation (ASC Report 23/2008). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26103 ( reposiTUm)
Ortner, C., & Praetorius, D. (2008). A non-conforming finite element method for convex variational problems (ASC Report 24/2008). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26102 ( reposiTUm)
Ortner, C., & Praetorius, D. (2008). On the convergence of adaptive nonconforming finite element methods for a class of convex variational problems (ASC Report 25/2008). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26117 ( reposiTUm)
Funken, S., Praetorius, D., & Wissgott, P. (2008). Efficient implementation of adaptive P1-FEM in MATLAB (ASC Report 19/2008). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26086 ( reposiTUm)
Erath, C., Funken, S., & Praetorius, D. (2008). Adaptive cell-centered finite volume method (ASC Report 01/2008). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/25147 ( reposiTUm)
Koch, O., März, R., Praetorius, D., & Weinmüller, E. (2008). Collocation methods for index 1 DAEs with a singularity of the first kind (ASC Report 10/2008). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/25162 ( reposiTUm)
Praetorius, D., Weinmüller, E., & Wissgott, P. (2008). A space-time adaptive algorithm for linear parabolic problems (ASC Report 07/2008). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/25160 ( reposiTUm)
Ferraz-Leite, S., Ortner, C., & Praetorius, D. (2008). Adaptive boundary element method: Simple error estimators and convergence (ASC Report 12/2008). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/25165 ( reposiTUm)
Ferraz-Leite, S., & Praetorius, D. (2007). Simple A Posteriori Error Estimators for the h-Version of the Boundary Element Method (ASC Report 01/2007). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/25113 ( reposiTUm)
Erath, C., & Praetorius, D. (2007). A Posteriori Error Estimate and Adaptive Mesh-Refinement for the Cell-Centered Finite Volume Method for Elliptic Boundary Value Problems (ASC Report 02/2007). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/25114 ( reposiTUm)
Erath, C., Ferraz-Leite, S., Funken, S., & Praetorius, D. (2007). Energy Norm Based A Posteriori Error Estimation for Boundary Element Methods in Two Dimensions (ASC Report 07/2007). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/25119 ( reposiTUm)
Koch, O., März, R., Praetorius, D., & Weinmüller, E. (2007). Collocation for Solving DAEs with Singularities (ASC Report 32/2007). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/25144 ( reposiTUm)
Praetorius, D. (2006). Numerische Mathematik (Lecture Notes). http://hdl.handle.net/20.500.12708/31738 ( reposiTUm)
Carstensen, C., & Praetorius, D. (2004). Stabilization yields strong convergence of macroscopic magnetization vectors for micromagnetics without exchange energy. http://hdl.handle.net/20.500.12708/31676 ( reposiTUm)
Praetorius, D. (2004). Introduction to H-Matrices (Short Lecture Notes). http://hdl.handle.net/20.500.12708/31699 ( reposiTUm)
Auzinger, W., Koch, O., Praetorius, D., Pulverer, G., & Weinmüller, E. (2004). Performance of Collocation Software for Singular BVPs. http://hdl.handle.net/20.500.12708/31634 ( reposiTUm)
Auzinger, W., Karner, E., Koch, O., Praetorius, D., & Weinmüller, E. (2003). Globale Fehlerschätzer für Randwertprobleme mit einer Singularität zweiter Art. http://hdl.handle.net/20.500.12708/31601 ( reposiTUm)

Preprints

Brunner, M., Praetorius, D., & Streitberger, J. (2024). Cost-optimal adaptive FEM with linearization and algebraic solver for semilinear elliptic PDEs. arXiv. https://doi.org/10.48550/arXiv.2401.06486 ( reposiTUm)
Bringmann, P., Miraci, A., & Praetorius, D. (2024). Iterative Solvers in Adaptive FEM: Adaptivity Yields Quasi-Optimal Computational Runtime. arXiv. https://doi.org/10.48550/arXiv.2404.07126 ( reposiTUm)
Bringmann, P., Feischl, M., Miraci, A., Praetorius, D., & Streitberger, J. (2024). On full linear convergence and optimal complexity of adaptive FEM with inexact solver. arXiv. https://doi.org/10.48550/arXiv.2311.15738 ( reposiTUm)
Miraci, A., Praetorius, D., & Streitberger, J. (2024). Parameter-robust full linear convergence and optimal complexity of adaptive iteratively linearized FEM for nonlinear PDEs. arXiv. https://doi.org/10.48550/arXiv.2401.17778 ( reposiTUm)
Bespalov, A., Praetorius, D., & Ruggeri, M. (2023). Goal-oriented adaptivity for multilevel stochastic Galerkin FEM with nonlinear goal functionals. arXiv. https://doi.org/10.48550/arXiv.2208.09388 ( reposiTUm)
Bringmann, P., Brunner, M., Praetorius, D., & Streitberger, J. (2023). Optimal complexity of goal-oriented adaptive FEM for nonsymmetric linear elliptic PDEs. arXiv. https://doi.org/10.48550/arXiv.2312.00489 ( reposiTUm)

Hochschulschriften

Praetorius, D. (2004). Effective numerical treatment of the Landau-Lifshitz equation in relaxed micromagnetics [Professorial Dissertation, Technische Universität Wien]. reposiTUm. http://hdl.handle.net/20.500.12708/185867 ( reposiTUm)