Wissenschaftliche Artikel

Becker, R., Brunner, M., Innerberger, M., Melenk, J. M., & Praetorius, D. (2023). Cost-optimal adaptive iterative linearized FEM for semilinear elliptic PDEs. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 57(4), 2193–2225. https://doi.org/10.1051/m2an/2023036 ( reposiTUm)
Angleitner, N., Faustmann, M., & Melenk, J. M. (2023). Exponential meshes and H-matrices. Computers and Mathematics with Applications, 130, 21–40. https://doi.org/10.1016/j.camwa.2022.11.011 ( reposiTUm)
Faustmann, M., Marcati, C., Melenk, J. M., & Schwab, C. (2023). Exponential Convergence of hp-FEM for the Integral Fractional Laplacian in Polygons. SIAM Journal on Numerical Analysis, 61(6), 2601–2622. https://doi.org/10.1137/22M152493X ( reposiTUm)
Angleitner, N., Faustmann, M., & Melenk, J. M. (2023). H-inverses for RBF interpolation. Advances in Computational Mathematics, 49(6), Article 85. https://doi.org/10.1007/s10444-023-10069-5 ( reposiTUm)
Banjai, L., Melenk, J. M., & Schwab, C. (2023). hp-FEM for reaction–diffusion equations. II: robust exponential convergence for multiple length scales in corner domains. IMA Journal of Numerical Analysis, 43(6), 3282–3325. https://doi.org/10.1093/imanum/drac070 ( reposiTUm)
Banjai, L., Melenk, J. M., & Schwab, C. (2023). Exponential convergence of hp FEM for spectral fractional diffusion in polygons. Numerische Mathematik, 153. https://doi.org/10.1007/s00211-022-01329-5 ( reposiTUm)
Melenk, J. M., & Wörgötter, D. (2023). Wavenumber-explicit regularity theory for the time-harmonic Maxwell equations in piecewise smooth media. Oberwolfach Reports, 43, 12–15. ( reposiTUm)
Bernkopf, M., & Melenk, J. M. (2023). Optimal convergence rates in L2 for a first order system least squares finite element method. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 57(1), 107–141. https://doi.org/10.1051/m2an/2022026 ( reposiTUm)
Becker, R., Brunner, M., Innerberger, M., Melenk, J. M., & Praetorius, D. (2022). Rate-optimal goal-oriented adaptive finite element method for semilinear elliptic PDEs. Computers & Mathematics with Applications, 118, 18–35. https://doi.org/10.1016/j.camwa.2022.05.008 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Parvizi, M. (2022). 𝘏-matrix approximability of inverses of FEM matrices for the time-harmonic Maxwell equations. Advances in Computational Mathematics, 48(5), Article 59. https://doi.org/10.1007/s10444-022-09965-z ( reposiTUm)
Erath, C., Mascotto, L., Melenk, J. M., Perugia, I., & Rieder, A. (2022). Mortar Coupling of 𝘩𝘱-Discontinuous Galerkin and Boundary Element Methods for the Helmholtz Equation. Journal of Scientific Computing, 92(1), Article 2. https://doi.org/10.1007/s10915-022-01849-0 ( reposiTUm)
Kaltenbacher, M., & Melenk, J. M. (2022). Editorial. Partial Differential Equations and Applications, 3, Article 58. https://doi.org/10.1007/s42985-022-00196-x ( reposiTUm)
Melenk, J. M., & Rieder, A. (2022). An exponentially convergent discretization for space–time fractional parabolic equations using 𝘩𝘱-FEM. IMA Journal of Numerical Analysis. https://doi.org/10.1093/imanum/drac045 ( reposiTUm)
Rieder, A., Sayas, F.-J., & Melenk, J. M. (2022). Time domain boundary integral equations and convolution quadrature for scattering by composite media. Mathematics of Computation, 91(337), 2165–2195. https://doi.org/10.1090/mcom/3730 ( reposiTUm)
Faustmann, M., Marcati, C., Melenk, J. M., & Schwab, C. (2022). Weighted Analytic Regularity for the Integral Fractional Laplacian in Polygons. SIAM Journal on Mathematical Analysis, 54(6), 6323–6357. https://doi.org/10.1137/21M146569X ( reposiTUm)
Faustmann, M., Melenk, J. M., & Parvizi, M. (2022). Caccioppoli-type estimates and H-matrix approximations to inverses for FEM-BEM couplings. Numerische Mathematik, 150, 849–892. https://doi.org/10.1007/s00211-021-01261-0 ( reposiTUm)
Faustmann, M., Karkulik, M., & Melenk, J. M. (2022). Local Convergence of the FEM for the Integral Fractional Laplacian. SIAM Journal on Numerical Analysis, 60(3), 1055–1082. https://doi.org/10.1137/20M1343853 ( reposiTUm)
Achleitner, F., Kuehn, C., Melenk, J. M., & Rieder, A. (2021). Metastable Speeds in the Fractional Allen-Cahn Equation. Applied Mathematics and Computation, 408(126329), 126329. https://doi.org/10.1016/j.amc.2021.126329 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2021). Quasi-optimal convergence rate for an adaptive method for the integral fractional Laplacian. Mathematics of Computation, 90(330), 1557–1587. https://doi.org/10.1090/mcom/3603 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Parvizi, M. (2021). On the stability of Scott-Zhang type operators and application to multilevel preconditioning in fractional diffusion. ESAIM: Mathematical Modelling and Numerical Analysis, 55(2), 595–625. https://doi.org/10.1051/m2an/2020079 ( reposiTUm)
Angleitner, N., Faustmann, M., & Melenk, J. M. (2021). Approximating inverse FEM matrices on non-uniform meshes with H-matrices. Calcolo, 58(31). https://doi.org/10.1007/s10092-021-00413-w ( reposiTUm)
Rieder, A., Sayas, F.-J., & Melenk, J. M. (2021). Runge-Kutta approximation for C₀-semigroups in the graph norm with applications to time domain boundary integral equations. Partial Differential Equations and Applications, 1(6), Article 49. https://doi.org/10.1007/s42985-020-00051-x ( reposiTUm)
Melenk, J. M., & Sauter, S. A. (2021). wavenumber-explicit hp-FEM analysis for Maxwell’s equations with transparent boundary conditions. Foundations of Computational Mathematics, 21(1), 125–241. https://doi.org/10.1007/s10208-020-09452-1 ( reposiTUm)
Markus Melenk, J., & Rieder, A. (2021). hp-FEM for the fractional heat equation. IMA Journal of Numerical Analysis, 41(1), 412–454. https://doi.org/10.1093/imanum/drz054 ( reposiTUm)
Melenk, J. M., & Rieder, A. (2021). On superconvergence of Runge-Kutta convolution quadrature for the wave equation. Numerische Mathematik, 147(1), 157–188. https://doi.org/10.1007/s00211-020-01161-9 ( reposiTUm)
Melenk, J. M., & Rojik, C. (2020). On commuting p-version projection-based interpolation on tretrahedra. Mathematics of Computation, 89(321), 45–87. https://doi.org/10.1090/mcom/3454 ( reposiTUm)
Melenk, J. M., Sauter, S. A., & Torres, C. (2020). Wave number-Explicit Analysis for Galerkin Discretizations of Lossy Helmholtz Problems. SIAM Journal on Numerical Analysis, 58(4), 2119–2143. https://doi.org/10.1137/19m1253952 ( reposiTUm)
Mascotto, L., Melenk, J. M., Perugia, I., & Rieder, A. (2020). FEM-BEM mortar coupling for the Helmholtz equation in three dimensions. Computers and Mathematics with Applications, 80(11), 2351–2378. https://doi.org/10.1016/j.camwa.2020.04.014 ( reposiTUm)
Karkulik, M., Melenk, J. M., & Rieder, A. (2020). Stable decompositions of hp-BEM spaces and an optimal Schwarz preconditioner for the hypersingular integral operator in 3D. ESAIM: Mathematical Modelling and Numerical Analysis, 54(1), 145–180. https://doi.org/10.1051/m2an/2019041 ( reposiTUm)
Banjai, L., Melenk, J. M., Nochetto, R. H., Otárola, E., Salgado, A. J., & Schwab, C. (2019). Tensor FEM for spectral fractional diffusion. Foundations of Computational Mathematics, 19(4), 901–962. https://doi.org/10.1007/s10208-018-9402-3 ( reposiTUm)
Karkulik, M., & Melenk, J. M. (2019). H-matrix approximability of inverses of discretizations of the fractional Laplacian. Advances in Computational Mathematics, 45(5–6), 2893–2919. https://doi.org/10.1007/s10444-019-09718-5 ( reposiTUm)
Faustmann, M., & Melenk, J. M. (2018). Local convergence of the boundary element method on polyhedral domains. Numerische Mathematik, 140, 593–637. https://doi.org/10.1007/s00211-018-0975-1 ( reposiTUm)
Börm, S., Börst, C., & Melenk, J. M. (2017). An analysis of a butterfly algorithm. Computers and Mathematics with Applications, 74(9), 2125–2143. https://doi.org/10.1016/j.camwa.2017.05.019 ( reposiTUm)
Börm, S., & Melenk, J. M. (2017). Approximation of the high-frequency Helmhotz kernel by nested directional interpolationn. Numerische Mathematik, 137(1), 1–34. https://doi.org/10.1007/s00211-017-0873-y ( reposiTUm)
Melenk, J. M., & Rieder, A. (2017). Runge-Kutta convolution quadrature and FEM-BEM coupling for the time-dependent linear Schrödinger equation. Journal of Integral Equations and Applications, 29(1). https://doi.org/10.1216/jie-2017-29-1-189 ( reposiTUm)
Amrein, M., Melenk, J. M., & Wihler, T. (2017). An hp-Adaptive Newton-Galerkin Finite Element Procedure for Semilinear Boundary Value Problems. Mathematical Methods in the Applied Sciences, 40(6), 1973–1985. http://hdl.handle.net/20.500.12708/146298 ( reposiTUm)
Melenk, J. M., Praetorius, D., & Wohlmuth, B. (2017). Simultaneous quasi-optimal convergence rates in FEM-BEM coupling. Mathematical Methods in the Applied Sciences, 40(2), 463–485. http://hdl.handle.net/20.500.12708/146297 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2017). Existence of H-matrix approximants to the inverse of BEM matrices: the hyper-singular integral operator. IMA Journal of Numerical Analysis, drw024. https://doi.org/10.1093/imanum/drw024 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2017). Local inverse estimates for non-local boundary integral operators. Mathematics of Computation, 86(308), 2651–2686. https://doi.org/10.1090/mcom/3175 ( reposiTUm)
Faustmann, M., & Melenk, J. M. (2017). Robust exponential convergence of 𝒉𝒑-FEM in balanced norms for singularly perturbed reaction-diffusion problems: corner domains. Computers and Mathematics with Applications, 74(7), 1576–1589. https://doi.org/10.1016/j.camwa.2017.03.015 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2016). Existence of H-matrix approximants to the inverses of BEM matrices: the simple-layer operator. Mathematics of Computation, 85(297), 119–152. https://doi.org/10.1090/mcom/2990 ( reposiTUm)
Melenk, J. M., & Xenophontos, C. (2016). Existence of H-matrix approximants to the inverse of BEM matrices: the hyper-singular integral operator. Calcolo, 53(1), 105–132. https://doi.org/10.1007/s10092-015-0139-y ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2015). H-matrix approximability of the inverses of FEM matrices. Numerische Mathematik, 131(4), 615–642. https://doi.org/10.1007/s00211-015-0706-9 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2015). Quasi-optimal convergence rates for adaptive boundary element methods with data approximation - Part II: Hyper-singular integral equation. Electron. Trans. Numer. Anal., 44, 153–176. http://hdl.handle.net/20.500.12708/150419 ( reposiTUm)
Graham, I. G., Löhndorf, M., Melenk, J. M., & Spence, E. A. (2015). When is the error in the h-BEM for solving the Helmholtz equation bounded independently of k? BIT Numerical Mathematics, 55(1), 171–214. https://doi.org/10.1007/s10543-014-0501-5 ( reposiTUm)
Karkulik, M., & Melenk, J. M. (2015). Local high-order regularization and applications to hp-methods. Computers and Mathematics with Applications, 70(7), 1606–1639. https://doi.org/10.1016/j.camwa.2015.06.026 ( reposiTUm)
Führer, T., Melenk, J. M., Praetorius, D., & Rieder, A. (2015). Optimal additive Schwarz methods for the hp-BEM: the hypersingular integral operator in 3D on locally refined meshes. Computers and Mathematics with Applications, 70(7), 1583–1605. https://doi.org/10.1016/j.camwa.2015.06.025 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2015). FEM-BEM Coupling for the large-body limit in micromagnetics. Journal of Computational and Applied Mathematics, 281, 10–31. https://doi.org/10.1016/j.cam.2014.11.042 ( reposiTUm)
Esterhazy, S., Liu, D., Liertzer, M., Cerjan, A., Ge, L., Makris, K. G., Stone, A. D., Melenk, J. M., Johnson, S. G., & Rotter, S. (2014). Scalable numerical approach for the Steady-State Ab-Initio Laser Theory. Physical Review A, 90(023816). https://doi.org/10.1103/physreva.90.023816 ( reposiTUm)
Melenk, J. M., Rezaijafari, H., & Wohlmuth, B. (2014). Quasi-optimal a priori estimates for fluxes in mixed finite element methods and applications to the Stokes--Darcy coupling. IMA Journal of Numerical Analysis, 34(1), 1–27. https://doi.org/10.1093/imanum/drs048 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2014). Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, Part I: Weakly-singular integral equation. Calcolo, 51(4), 531–562. https://doi.org/10.1007/s10092-013-0100-x ( reposiTUm)
AURADA, M., MELENK, J. M., & PRAETORIUS, D. (2014). Mixed conforming elements for the large-body limit in micromagnetics. Mathematical Models and Methods in Applied Sciences, 24(01), 113–144. https://doi.org/10.1142/s0218202513500486 ( reposiTUm)
Esterhazy, S., & Melenk, J. M. (2014). An analysis of discretizations of the Helmholtz equation in L2 and in negative norms. Computers and Mathematics with Applications, 67(4), 830–853. https://doi.org/10.1016/j.camwa.2013.10.005 ( reposiTUm)
Melenk, J. M., & Wurzer, T. (2014). On the stability of the boundary trace of the polynomial L2-projection on triangles and tetrahedra. Computers and Mathematics with Applications, 67(4), 944–965. https://doi.org/10.1016/j.camwa.2013.12.016 ( reposiTUm)
Hewett, D. P., Langdon, S., & Melenk, J. M. (2013). A high frequency hp-boundary element method for scattering by convex polygons. SIAM Journal on Numerical Analysis, 51(1), 629–653. https://doi.org/10.1137/110856812 ( reposiTUm)
Melenk, J. M., Xenophontos, C., & Oberbroeckling, L. (2013). Robust exponential convergence of hp-FEM for singularly perturbed reaction-diffusion systems with multiple scales. IMA Journal of Numerical Analysis, 33(2), 609–628. https://doi.org/10.1093/imanum/drs013 ( reposiTUm)
Melenk, J. M., Xenophontos, C., & Oberbroeckling, L. (2013). Analytic regularity for a singularly perturbed system of reaction-diffusion equations with multiple scales: a roadmap. Advances in Computational Mathematics, 39(2), 367–394. https://doi.org/10.1007/s10444-012-9284-x ( reposiTUm)
Melenk, J. M., Esterhazy, S., Parsania, A., & Sauter, S. (2013). Computational Electromagnetism and Acoustics. Oberwolfach Reports, 10(1), 129–237. https://doi.org/10.4171/owr/2013/03 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2013). Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity. Computational Mechanics, 51(4), 399–419. https://doi.org/10.1007/s00466-012-0779-6 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2013). Quasi-optimal convergence rate for an adaptive boundary element method. SIAM Journal on Numerical Analysis, 51(2), 1327–1348. https://doi.org/10.1137/110842569 ( reposiTUm)
Dörsek, P., & Melenk, J. M. (2013). Symmetry-free, p-robust equilibrated error indication for the hp-version of the FEM in almost incompressible linear elasticity. Computational Methods in Applied Mathematics, 13(3), 291–304. https://doi.org/10.1515/cmam-2013-0007 ( reposiTUm)
Ferraz-Leite, S., Melenk, J. M., & Praetorius, D. (2012). Numerical quadratic energy minimization bound to convex constraints in thin-film micromagnetics. Numerische Mathematik, 122(1), 101–131. https://doi.org/10.1007/s00211-012-0454-z ( reposiTUm)
Melenk, J. M. (2012). Mapping properties of combined field Helmholtz boundary integral operators. SIAM Journal on Numerical Analysis, 44(4), 2599–2636. https://doi.org/10.1137/100784072 ( reposiTUm)
Melenk, J. M., & Wohlmuth, B. (2012). Quasi-optimal approximation of surface based Lagrange multipliers in finite element methods. SIAM Journal on Numerical Analysis, 50(4), 2064–2087. https://doi.org/10.1137/110832999 ( reposiTUm)
Melenk, J. M., Faustmann, M., & Praetorius, D. (2012). Efficient and Robust Approximation of the Helmholtz Equation. Oberwolfach Reports, 9(4), 3305–3338. https://doi.org/10.4171/owr/2012/55 ( reposiTUm)
Banjai, L., Lubich, C., & Melenk, J. M. (2011). Runge-Kutta convolution quadrature for operators arising in wave propagation. Numerische Mathematik, 119. http://hdl.handle.net/20.500.12708/162609 ( reposiTUm)
Löhndorf, M., & Melenk, J. M. (2011). Wavenumber-explicit hp-BEM for high frequency scattering. SIAM Journal on Numerical Analysis, 49(6), 2340–2363. https://doi.org/10.1137/100786034 ( reposiTUm)
Melenk, J. M., & Sauter, S. (2011). Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM Journal on Numerical Analysis, 49(3), 1210–1243. https://doi.org/10.1137/090776202 ( reposiTUm)
Melenk, J. M. (2010). On the convergence of Filon quadrature. Journal of Computational and Applied Mathematics, 234(6), 1692–1701. https://doi.org/10.1016/j.cam.2009.08.017 ( reposiTUm)
Georgoulis, E. H., Hall, E., & Melenk, J. M. (2010). On the Suboptimality of the p-Version Interior Penalty Discontinuous Galerkin Method. Journal of Scientific Computing, 42(1), 54–67. https://doi.org/10.1007/s10915-009-9315-z ( reposiTUm)
Li, J., Melenk, J. M., Wohlmuth, B., & Zou, J. (2010). Optimal Convergence of Higher Order Finite Element Methods for Elliptic Interface Problems. Applied Numerical Mathematics, 60(1–2), 19–37. https://doi.org/10.1016/j.apnum.2009.08.005 ( reposiTUm)
Dörsek, P., & Melenk, J. M. (2010). Adaptive hp-FEM for the contact problem with Tresca friction in linear elasticity: The primal-du al formulation and a posteriori error estimation. Applied Numerical Mathematics, 60(7), 689–704. https://doi.org/10.1016/j.apnum.2010.03.011 ( reposiTUm)
Melenk, J., & Sauter, S. (2010). Convergence Analysis for Finite Element Discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions. Mathematics of Computation, 79(272), 1871–1914. https://doi.org/10.1090/s0025-5718-10-02362-8 ( reposiTUm)
Melenk, J. M., & Eibner, T. (2007). An adaptive strategy for hp-FEM based on testing for analyticity. Computational Mechanics, 39(5), 575–595. http://hdl.handle.net/20.500.12708/168674 ( reposiTUm)
Eibner, T., & Melenk, J. M. (2007). Multilevel preconditioning for the boundary concentrated hp-FEM. Computer Methods in Applied Mechanics and Engineering, 196(37–40), 3713–3725. https://doi.org/10.1016/j.cma.2006.10.034 ( reposiTUm)
Schöberl, J., Melenk, J. M., Pechstein, C., & Zaglmayr, S. (2007). Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements. IMA Journal of Numerical Analysis, 28(1), 1–24. https://doi.org/10.1093/imanum/drl046 ( reposiTUm)
Melenk, J. M., & Eibner, T. (2006). A local error analysis of the boundary concentrated FEM. IMA Journal of Numerical Analysis, 26(4), 752–778. http://hdl.handle.net/20.500.12708/171932 ( reposiTUm)
Eibner, T., & Melenk, J. M. (2005). fast algorithms for setting up the stiffness matrix in hp-FEM: a comparison. Hermis Journal, 6, 49–70. http://hdl.handle.net/20.500.12708/172148 ( reposiTUm)
Flemisch, B., Wohlmuth, B., & Melenk, J. M. (2005). Mortar Methods with Curved Interfaces. Applied Numerical Mathematics, 54, 339–361. http://hdl.handle.net/20.500.12708/171888 ( reposiTUm)
Melenk, J. M. (2005). hp-finite element interpolation of non-smooth functions and an application to hp-a posteriori error estimation. SIAM Journal on Numerical Analysis, 43, 127–155. http://hdl.handle.net/20.500.12708/171890 ( reposiTUm)
Börm, S., Löhndorf, M., & Melenk, J. M. (2005). Approximation of integral operators by variable-order interpolation. Numerische Mathematik, 99, 605–643. http://hdl.handle.net/20.500.12708/171889 ( reposiTUm)

Beiträge in Tagungsbänden

Bahr, B., Faustmann, M., Marcati, C., Melenk, J. M., & Schwab, C. (2023). Exponential Convergence of hp-FEM for the Integral Fractional Laplacian in 1D. In J. M. Melenk, I. Perugia, J. Schöberl, & C. Schwab (Eds.), Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1 : Selected Papers from the ICOSAHOM Conference, Vienna, Austria, July 12-16, 2021 (pp. 291–306). Springer. https://doi.org/10.1007/978-3-031-20432-6_18 ( reposiTUm)
Faustmann, M., Marcati, C., Melenk, J. M., & Schwab, C. (2023). Exponential convergence of hp-FEM for the integral fractional Laplacian. In Book of Abstract: 9th International Conference on High Order Finite Element and Isogeometric Methods (pp. 47–47). ( reposiTUm)
Brunner, M., Becker, R., Innerberger, M., Melenk, J. M., & Praetorius, D. (2022). Rate-optimal goal-oriented adaptive FEM for semilinear elliptic PDEs. In Austrian Numerical Analysis Day 2022 and Colloquium dedicated to Ulrich Langer and Walter Zulehner on the occasion of their retirement. Austrian Numerical Analysis Day 2022, Linz, Austria. ( reposiTUm)
Becker, R., Brunner, M., Innerberger, M., Melenk, J. M., & Praetorius, D. (2022). Rate-optimal goal-oriented adaptive FEM for semilinear elliptic PDEs. In Digital Book of Abstracts : Computational Methods in Applied Mathematics (CMAM 2022). Computational Methods in Applied Mathematics (CMAM 2022), Wien, Austria. https://doi.org/10.34726/5320 ( reposiTUm)
Bernkopf, M., & Melenk, J. M. (2019). Analysis of the hp-version of a first order system least squares method for the Helmholtz equations. In T. Apel, U. Langer, A. Meyer, & O. Steinbach (Eds.), Advanced Finite Element Methods with Applications  Selected Papers from the 30th Chemnitz Finite Element Symposium (pp. 57–84). Springer LNCSE. https://doi.org/10.1007/978-3-030-14244-5_4 ( reposiTUm)
Löhndorf, M., & Melenk, J. M. (2016). On Thin Plate Spline Interpolation. In Lecture Notes in Computational Science and Engineering (pp. 451–466). Springer. https://doi.org/10.1007/978-3-319-65870-4_32 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2014). A new proof for existence of H-matrix approximants to the inverse of FEM matrices: the Dirichlet problem for the Laplacian. In Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012 (pp. 249–259). Springer. https://doi.org/10.1007/978-3-319-01601-6_20 ( reposiTUm)
Dörsek, P., & Melenk, J. M. (2014). A Numerical Study of Averaging Error Indicators in p-FEM. In M. Azaiez, H. El Fekih, & J. S. Hesthaven (Eds.), Lecture Notes in Computational Science and Engineering (pp. 227–236). Springer Verlag. https://doi.org/10.1007/978-3-319-01601-6_18 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2013). FEM-BEM couplings without stabilization (IABEM 2013). In IABEM 2013 Proceedings (pp. 48–53). Pontificia Universidad Católica de Chile. http://hdl.handle.net/20.500.12708/41223 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2013). Novel inverse estimates for non-local operators (IABEM 2013). In IABEM 2013 Proceedings (pp. 79–84). Pontificia Universidad Católica de Chile. http://hdl.handle.net/20.500.12708/41222 ( reposiTUm)
Melenk, J. M., Xenophontos, C., & Madden, N. (2013). hp-FEMs for fourth order singularly perturbed boundary value problems. In Lecture Notes in Computer Science. University of Ruse, Bulgarien, Austria. Springer Verlag. https://doi.org/10.1007/978-3-642-41515-9 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2011). Residual a-posteriori error estimates in BEM: convergence of h-adaptive algorithms. In Proceedings of IABEM 2011 (pp. 135–140). http://hdl.handle.net/20.500.12708/41065 ( reposiTUm)
Dörsek, P., & Melenk, J. M. (2011). 𝘩𝘱-FEM for the Contact Problem with Tresca Friciton in Linear Elasticity: The Primal Formulation. In J. S. Hesthaven & E. M. Rønquist (Eds.), Spectral and High Order Methods for Partial Differential Equations : Selected papers from the ICOSAHOM ’09 conference, June 22-26, Trondheim, Norway (pp. 1–17). Springer Verlag. https://doi.org/10.1007/978-3-642-15337-2_1 ( reposiTUm)
Ferraz-Leite, S., Melenk, J. M., & Praetorius, D. (2009). Reduced Model in Thin-Film Micromagnetics. In I. Troch & F. Breitenecker (Eds.), Proceedings MATHMOD 09 Vienna (pp. 2287–2295). Argesim / Asim. http://hdl.handle.net/20.500.12708/40832 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2009). Mixed Conforming Elements for the Large-Body Limit in Micromagnetics (MATHMOD 09). In I. Troch & F. Breitenecker (Eds.), Proceedings MATHMOD 09 Vienna (pp. 2296–2303). Argesim / Asim. http://hdl.handle.net/20.500.12708/40877 ( reposiTUm)
Melenk, J. M., & Langdon, S. (2007). an hp-BEM for scattering by convex polygons. In Proceedings of Waves 2007, the 8th international conference on mathematical and numerical aspects of waves (pp. 93–95). Department of mathematics, University of Reading, Reading RG6 6AX. http://hdl.handle.net/20.500.12708/40690 ( reposiTUm)
Schöberl, J., Melenk, J. M., Pechstein, C., & Zaglmayr, S. (2007). Schwarz Preconditioning for High Order Simplicial Finite Elements. In Domain Decomposition Mehods in Science and Engineering XVI (pp. 139–150). Springer. http://hdl.handle.net/20.500.12708/40628 ( reposiTUm)

Beiträge in Büchern

Melenk, J. M. (2015). hp-Version of Finite Element Methods. In B. Enquist (Ed.), Encyclopedia of Applied and Computational Mathematics (pp. 656–659). Springer. https://doi.org/10.1007/978-3-540-70529-1_350 ( reposiTUm)
Esterhazy, S., & Melenk, J. M. (2011). On Stability of Discretizations of the Helmholtz Equation. In Numerical Analysis of Multiscale Problems: Vol. LNCSE 83 (pp. 285–324). Vienna University of Technology. https://doi.org/10.1007/978-3-642-22061-6_9 ( reposiTUm)
Eibner, T., & Melenk, J. M. (2006). fast algorithms for setting up the stiffness matrix in hp-FEM: a comparison. In E. Lipitakis (Ed.), Computer Mathematics and its applications: advances and Developments (1994-2005) (pp. 575–597). LEA publishers. http://hdl.handle.net/20.500.12708/25089 ( reposiTUm)
Melenk, J. M. (2005). On approximation in meshless methods. In Frontiers of Numerical Analysis, Durham 2004 (pp. 65–141). Springer. http://hdl.handle.net/20.500.12708/25087 ( reposiTUm)

Tagungsbände

Melenk, J. M., Perugia, I., Schöberl, J., & Schwab, C. (Eds.). (2023). Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1 (Vol. 137). Springer. https://doi.org/10.1007/978-3-031-20432-6 ( reposiTUm)

Präsentationen

Melenk, J. M., Bahr, B., Faustmann, M., Marcati, C., & Schwab, C. (2024, January 10). hp-FEM for the integral fractional Laplacian in polygons [Conference Presentation]. Conference on Advanced Numerical Methods for Non-local Problems 2024, Istanbul, Turkey. ( reposiTUm)
Faustmann, M., Marcati, C., Melenk, J. M., & Schwab, C. (2023, June 29). Exponential convergence of hp-FEM for the integral fractional Laplacian [Conference Presentation]. 29th Biennial Conference on Numerical Analysis, Glasgow, United Kingdom of Great Britain and Northern Ireland (the). http://hdl.handle.net/20.500.12708/187176 ( reposiTUm)
Brunner, M., Becker, R., Innerberger, M., Melenk, J. M., & Praetorius, D. (2023, September 4). Rate-optimal goal-oriented adaptive FEM for semilinear elliptic PDEs [Conference Presentation]. European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2023), Lissabon, Portugal. http://hdl.handle.net/20.500.12708/188566 ( reposiTUm)
Melenk, J. M. (2023, October 17). hp-FEM for the integral fractional Laplacian in polygons [Presentation]. International Workshop on Computational Mathematics (IWCM 2023), Hangzhou, China. ( reposiTUm)
Brunner, M., Praetorius, D., Becker, R., Innerberger, M., & Melenk, J. M. (2023, June 8). Goal-oriented adaptivity for semilinear elliptic PDEs [Conference Presentation]. Jena-Augsburg-Meeting (JAM) on Numerical Analysis, Augsburg, Germany. ( reposiTUm)
Melenk, J. M., Rojik, C., Sauter, S., & Wörgötter, D. (2023, August 15). p-version projection-based interpolation and time-harmonic Maxwell’s equations in piecewise smooth media [Conference Presentation]. International Conference on Spectral and High Order Methods (ICOSAHOM 2023), Seoul, Korea (the Democratic People’s Republic of). ( reposiTUm)
Melenk, J. M., Bernkopf, M., Bertrand, F., Chaumont-Frelet, T., & Nicaise, S. (2023, August 17). Wavenumber-explicit convergence analysis for the time-harmonic elastic wave equation [Conference Presentation]. International Conference on Spectral and High Order Methods (ICOSAHOM 2023), Seoul, Korea (the Democratic People’s Republic of). ( reposiTUm)
Melenk, J. M., Banjai, L., Rieder, A., & Schwab, Ch. (2023, March 9). hp-FEM for the spectral fractional Laplacian in polygons [Presentation]. Nonlocal Equations: Analysis and Numerics 2023, Bielefeld, Germany. ( reposiTUm)
Melenk, J. M., Bahr, B., Faustmann, M., Parvizi, M., & Praetorius, D. (2023, June 12). AFEM for the fractional Laplacian [Conference Presentation]. Foundations of Computational Mathematics (FoCM 2023), Paris, France. ( reposiTUm)
Melenk, J. M., Bernkopf, M., Bertrand, F., Chaumont-Frelet, T., Nicaise, S., Sauter, S., & Wörgötter, D. (2023, July 27). Wavenumber-explicit hp-FEM analysis for vector-valued wave propagation problems [Conference Presentation]. PoWER2023: Propagation of Waves, European Researchers, Turin, Italy. ( reposiTUm)
Melenk, J. M., Bernkopf, M., & Chaumont-Frelet, T. (2023, February 17). Wavenumber-explicit hp-FEM analysis for the Helmholtz equation in heterogeneous media [Presentation]. Numerikkolloquium der Universität Tübingen 2023, Tübingen, Germany. ( reposiTUm)
Melenk, J. M., & Wörgötter, D. (2023, September 25). Wavenumber-explicit regularity theory for the time-harmonic Maxwell equations in piecewise smooth media [Conference Presentation]. Mini-Workshop: Multivariate Orthogonal Polynomials: New synergies with Numerical Analysis, Oberwolfach, Germany. http://hdl.handle.net/20.500.12708/190986 ( reposiTUm)
Melenk, J. M., Sauter, S., & Wörgötter, D. (2023, August 25). Wavenumber-explicit hp-FEM analysis for Maxwell’s equations in piecewise smooth media [Presentation]. Christoph Schwab @60 - Seminar for Applied Mathematics 2023, Zürich, Switzerland. ( reposiTUm)
Faustmann, M., Marcati, C., Melenk, J. M., & Schwab, C. (2022). Analytic Regularity and hp-FEM for the Integral Fractional Laplacian. 19th European Finite Element Fair, Espoo, Finland, EU. http://hdl.handle.net/20.500.12708/123532 ( reposiTUm)
Bahr, B. H., Faustmann, M., Melenk, J. M., & Praetorius, D. (2022). Adaptive FEM for fractional diffusion. ESI Workshop “Adaptivity, High Dimensionality and Randomness,” Wien, Austria. http://hdl.handle.net/20.500.12708/123531 ( reposiTUm)
Becker, R., Brunner, M., Innerberger, M., Melenk, J. M., & Praetorius, D. (2022). Goal-oriented adaptive finite element method for semilinear elliptic PDEs. RMMM 2022 - Reliable Methods of Mathematical Modeling, Lausanne, Schweiz, EU. http://hdl.handle.net/20.500.12708/123536 ( reposiTUm)
Melenk, J. M., Sauter, S. A., chaumont-frelet, & Bernkopf, M. (2022, September). wavenumber-explicit analysis of heterogeneous Helmholtz problems [Keynote Presentation]. Oberwolfach meeting semiclassical analysis meets numerical analysis, Germany. ( reposiTUm)
Melenk, J. M., Schwab, Ch., & Banjai, L. (2022, November). hp-FEM for the spectral fracational Laplacian [Conference Presentation]. BAIL 2022, Argentina. ( reposiTUm)
Melenk, J. M., Faustmann, M., Schwab, Ch., & Marcati, C. (2022, November). weighted analytic regularity for the integral fractional Laplacian [Presentation]. one world numerical analysis seminar, Germany. ( reposiTUm)
Melenk, J. M., Faustmann, M., Schwab, Ch., & Marcati, C. (2022, February). weighted analytic regularity for the integral fractional Laplacian [Keynote Presentation]. BI-discrete 2022, Bielefeld, Germany. ( reposiTUm)
Melenk, J. M., Sauter, S. A., chaumont-frelet, & Bernkopf, M. (2022, May). wavenumber-explicit analysis of heterogeneous Helmholtz problems [Presentation]. Colloquium of the mathematics department of Texas A&M University, College Station, TX, United States of America (the). ( reposiTUm)
Melenk, J. M., Sauter, S. A., Chaumont-Frelet, & Bernkopf, M. (2022, August). wavenumber-explicit analysis of heterogeneous Helmholtz problems [Keynote Presentation]. WAVES 2022, Paris, France. ( reposiTUm)
Melenk, J. M., Banjai, L., Schwab, Ch., & Rieder, A. (2022, September). hp-FEM for the spectral fractional Laplacian [Keynote Presentation]. CMAM-9 (TU Wien), Austria. ( reposiTUm)
Melenk, J. M., Sauter, S. A., chaumont-frelet, & Bernkopf, M. (2022, March). wavenumber-explicit analysis of heterogeneous Helmholtz problems [Presentation]. CSRC Colloquium, Peking, China. ( reposiTUm)
Melenk, J. M., Sauter, S. A., & chaumont-frelet. (2022, February). wavenumber-explicit analysis of heterogeneous Helmholtz problems [Conference Presentation]. Conference on Mathematics of Wave Phenomena (2022), Karlsruhe, Germany. ( reposiTUm)
Faustmann, M., Marcati, C., Melenk, J. M., & Schwab, Ch. (2022, August 31). Weighted analytic regularity for the integral fractional Laplacian in polygons [Conference Presentation]. Computational Methods in Applied Mathematics 2022, Wien, Austria. ( reposiTUm)
Melenk, J. M., Faustmann, M., Schwab, Ch., & Marcati, C. (2022, February). weighted analytic regularity for the integral fractional Laplacian [Keynote Presentation]. nonlocal operators at NUS, Singapore, Singapore. ( reposiTUm)
Faustmann, M., Marcati, C., Melenk, J. M., & Schwab, Ch. (2022, September 15). Weighted analytic regularity and hp-FEM for the integral fractional Laplacian [Conference Presentation]. Chemnitz FE Symposium 2022, Herrsching, Germany. ( reposiTUm)
Melenk, J. M., Faustmann, M., Schwab, Ch., & Marcati, C. (2022, November). weighted analytic regularity for the integral fractional Laplacian [Keynote Presentation]. Journees singulieres, France. ( reposiTUm)
Melenk, J. M., Faustmann, M., Schwab, Ch., & Marcati, C. (2022, November). weighted analytic regularity for the integral fractional Laplacian [Keynote Presentation]. BAIL 2022, Argentina. ( reposiTUm)
Melenk, J. M., Sauter, S. A., chaumont-frelet, & Bernkopf, M. (2022, May). wavenumber-explicit analysis of heterogeneous Helmholtz problems [Presentation]. Colloquium of the Oden Institute, Austin, TX, United States of America (the). ( reposiTUm)
Melenk, J. M., Faustmann, M., & Karkulik, M. (2022, September). local error analysis for nonlocal operators [Conference Presentation]. Chemnitz FEM Symposium 2022 (Herrsching), Germany. http://hdl.handle.net/20.500.12708/154013 ( reposiTUm)
Melenk, J. M., Faustmann, M., & Karkulik, M. (2022, August). local error analysis for nonlocal operators [Keynote Presentation]. Boundary Elements and Friends, Innsbruck, Austria. http://hdl.handle.net/20.500.12708/154011 ( reposiTUm)
Banjai, L., Melenk, J. M., & Schwab, C. (2021). hp-FEM for the spectral fractional Laplacian in polygons. world congress of computational mechanics 2020, Paris, EU. http://hdl.handle.net/20.500.12708/123162 ( reposiTUm)
Faustmann, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2021). Finite Element Method for Fractional Diffusion - Recent Results. DMV-ÖMG Jahrestagung 2021, virtuelle Tagung - Zoom / Passau, EU. http://hdl.handle.net/20.500.12708/123387 ( reposiTUm)
Banjai, L., Melenk, J. M., & Schwab, C. (2020). hp-FEM for the spectral fractional Laplacian. recent proress in nonlocal modelling, analysis, and computation, Bejing, Non-EU. http://hdl.handle.net/20.500.12708/123161 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Karkulik, M. (2020). Local convergence of the FEM for the integral fractional Laplacian. 4th Conference on Numerical Methods for Fractional-Derivative Problems, Peking (online), Non-EU. http://hdl.handle.net/20.500.12708/123101 ( reposiTUm)
Faustmann, M., Karkulik, M., Melenk, J. M., Parvizi, M., & Praetorius, D. (2020). The Fractional Laplacian - Adaptive FEM, Preconditioning and Local Errors. USM Seminar, Valparaiso (online), Non-EU. http://hdl.handle.net/20.500.12708/123102 ( reposiTUm)
Faustmann, M., Melenk, J. M., Parvizi, M., & Praetorius, D. (2019). Optimal adaptivity and preconditioning for the fractional Laplacian. 15th Austrian Numerical Analysis Day, Graz, Austria. http://hdl.handle.net/20.500.12708/122740 ( reposiTUm)
Faustmann, M., Melenk, J. M., Parvizi, M., & Praetorius, D. (2019). Optimal adaptivity and preconditioning for the fractional Laplacian. WONAPDE 2019 - Sixth Chilean Workshop on Numerical Analysis of Partial Differential Equations, Concepción, Non-EU. http://hdl.handle.net/20.500.12708/122720 ( reposiTUm)
Banjai, L., Melenk, J. M., & Schwab, C. (2019). hp-FEM for the spectral fractional Laplacian in polygons. oberwolfach conference on innovative discretization techniques, oberwolfach, EU. http://hdl.handle.net/20.500.12708/123159 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2019). OEMG jahrestagung. OEMG Jahrestagung 2019, Dornbirn, Austria. http://hdl.handle.net/20.500.12708/123160 ( reposiTUm)
Melenk, J. M. (2019). High order least squares for Helmholtz equation. WONAPEDE, Concepcion, Non-EU. http://hdl.handle.net/20.500.12708/122962 ( reposiTUm)
Melenk, J. M. (2019). hp-FEM for fractional diffusion. MAFELAP 2019 - The Mathematics of Finite Elements and Applications, Uxbridge, EU. http://hdl.handle.net/20.500.12708/122958 ( reposiTUm)
Melenk, J. M. (2019). AFEM for fractional Laplacian. MAFELAP 2019 - The Mathematics of Finite Elements and Applications, Uxbridge, EU. http://hdl.handle.net/20.500.12708/122957 ( reposiTUm)
Melenk, J. M. (2019). hp-FEM for Maxwell’s equation. HOFEIM, Jerusalem, Non-EU. http://hdl.handle.net/20.500.12708/122960 ( reposiTUm)
Melenk, J. M. (2019). AFEM for fractional Laplacian. Nonlocal Operators, Edinburgh, EU. http://hdl.handle.net/20.500.12708/122959 ( reposiTUm)
Melenk, J. M. (2019). hp-FEM for fractional Laplacian. GAMM 2019, Wien, Austria. http://hdl.handle.net/20.500.12708/122961 ( reposiTUm)
Faustmann, M., Melenk, J. M., Parvizi, M., & Praetorius, D. (2019). Optimal adaptivity and preconditioning for the fractional Laplacian. GAMM 2019, Wien, Austria. http://hdl.handle.net/20.500.12708/122727 ( reposiTUm)
Melenk, J. M. (2018). FEMs for fractional Laplacian. TU München, München, EU. http://hdl.handle.net/20.500.12708/122231 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2018). Optimal adaptivity for the fractional Laplacian. Universität Bonn, Bonn, Germany, EU. http://hdl.handle.net/20.500.12708/122519 ( reposiTUm)
Faustmann, M., & Melenk, J. M. (2017). Discrete interior regularity and applications. RMMM 8 - Reliable Methods of Mathematical Modeling, Berlin, EU. http://hdl.handle.net/20.500.12708/121891 ( reposiTUm)
Faustmann, M., & Melenk, J. M. (2017). Local convergence of the boundary element method on polyhedral domains. 13th Austrian Numerical Analysis Day, Salzburg, Austria. http://hdl.handle.net/20.500.12708/121853 ( reposiTUm)
Faustmann, M., & Melenk, J. M. (2017). Local convergence of the boundary element method on polyhedral domains. BEM on the Saar 2017, Saarbrücken, EU. http://hdl.handle.net/20.500.12708/121863 ( reposiTUm)
Melenk, J. M. (2017). H^2-matrices for high-frequency Helmholtz problems. Recent Advances in the Numerical Analysis of PDEs - A conference to celebrate the 65th birthday of Ivan Graham, Bath, Non-EU. http://hdl.handle.net/20.500.12708/121361 ( reposiTUm)
Melenk, J. M. (2017). DH^2-matrices for high-frequency Helmholtz problems. DK Winterschool 2017, Reichenau, Austria. http://hdl.handle.net/20.500.12708/122223 ( reposiTUm)
Melenk, J. M. (2017). DH^2-matrices for high-frequency Helmholtz problems. Santiago Numerico III, Santiago de Chile, Non-EU. http://hdl.handle.net/20.500.12708/122225 ( reposiTUm)
Melenk, J. M. (2017). FEMs for fractional Laplacian. Chemnitz FEM Symposium, Strobl, Austria. http://hdl.handle.net/20.500.12708/122233 ( reposiTUm)
Melenk, J. M. (2017). Approximation with thin plane splines. International Conference On Preconditioning Techniques For Scientific And Industrial Applications, Vancouver, Non-EU. http://hdl.handle.net/20.500.12708/122234 ( reposiTUm)
Melenk, J. M. (2017). Convergence and stability of hp-FEM for the Helmholtz equations. Numerics colloquium, University of Valparaiso, Non-EU. http://hdl.handle.net/20.500.12708/122236 ( reposiTUm)
Melenk, J. M. (2017). DH^2-matrices for high-frequency Helmholtz problems. Equadiff 2017, Bratislava, EU. http://hdl.handle.net/20.500.12708/122235 ( reposiTUm)
Melenk, J. M. (2017). Stability and convergence of discretizations of the Helmholtz equation. TU Aachen, TU Aachen, EU. http://hdl.handle.net/20.500.12708/122239 ( reposiTUm)
Melenk, J. M. (2017). Inverse estimates in BEM and application to adaptivity. Workshop on “A posteriori error estimates, adaptivity, and advanced applications,” Paris, EU. http://hdl.handle.net/20.500.12708/122241 ( reposiTUm)
Melenk, J. M. (2017). Stability and convergence of hp-FEM for the Helmholtz equation. Vortrag an Universität Oldenburg, Oldenburg, EU. http://hdl.handle.net/20.500.12708/122244 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2016). H-matrix approximation to the inverses of BEM matrices. Workshop on Boundary Elements and Adaptivity, Basel, Non-EU. http://hdl.handle.net/20.500.12708/121463 ( reposiTUm)
Melenk, J. M. (2016). Helmholtz BEM: matrix compression with DH^2-matrices and stability. Workshop on Advances in Mathematics of Finite Elements - A Celebration of Ivo Babuska´s 90th Birthday, Austin, Texas, Non-EU. http://hdl.handle.net/20.500.12708/121612 ( reposiTUm)
Melenk, J. M. (2016). Stability and convergence of hp-FEM for the Helmholtz equations. Universität Kiel, Kiel, BRD, Austria. http://hdl.handle.net/20.500.12708/121613 ( reposiTUm)
Melenk, J. M. (2016). Helmholtz BEM: Matrix compression with DH^2-matrices. ETH Zurich, Switzerland, Austria. http://hdl.handle.net/20.500.12708/121623 ( reposiTUm)
Melenk, J. M. (2016). hp-FEM for singular perturbations: balanced norms. ICOSAHOM 2016, Rio de Janeiro, Non-EU. http://hdl.handle.net/20.500.12708/121585 ( reposiTUm)
Melenk, J. M. (2016). hp-FEM for singular perturbations: balanced norms. HOFEIM, Jerusalem, Non-EU. http://hdl.handle.net/20.500.12708/121600 ( reposiTUm)
Melenk, J. M. (2016). Sstability and convergence of discretizations of Helmholtz problems. Vortrag an Jiao Tong University, Shanghai, Non-EU. http://hdl.handle.net/20.500.12708/121630 ( reposiTUm)
Melenk, J. M. (2016). Helmholtz BEM: matrix compression with DH^2-matrices and stability. CMAM 7, Jyväskylä, Non-EU. http://hdl.handle.net/20.500.12708/121629 ( reposiTUm)
Melenk, J. M. (2016). Inverse estimates in BEM and adaptivity. Mathematisches Forschungsinstitut Oberwolfach, Austria. http://hdl.handle.net/20.500.12708/121628 ( reposiTUm)
Melenk, J. M. (2016). Additive Schwarz precondition for hypersingular integral equations. WONAPEDE, Concepcion, Non-EU. http://hdl.handle.net/20.500.12708/121631 ( reposiTUm)
Melenk, J. M. (2016). Stabnility and convergence for Helmholtz DH^2-matrices. TU Berlin, Berlin, Germany, EU. http://hdl.handle.net/20.500.12708/121626 ( reposiTUm)
Melenk, J. M. (2016). Stability and convergence for Helmholtz DH^2-matrices. Mathematisches Forschungsinstitut Oberwolfach, Austria. http://hdl.handle.net/20.500.12708/121627 ( reposiTUm)
Faustmann, M., & Melenk, J. M. (2016). Local error estimates and convergence of the Galerkin boundary element method on polygonal domains. MAFELAP 2016 - The Mathematics of Finite Elements and Applications, London, EU. http://hdl.handle.net/20.500.12708/121549 ( reposiTUm)
Melenk, J. M. (2016). Robust exponential convergence in balance norms. WONAPEDE, Concepcion, Non-EU. http://hdl.handle.net/20.500.12708/121534 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2015). Existence of H-matrix approximants to the inverse of BEM matrices: the hyper-singular integral operator. 11th Austrian Numerical Analysis, Linz, EU. http://hdl.handle.net/20.500.12708/121106 ( reposiTUm)
Rieder, A., Führer, T., Melenk, J. M., & Praetorius, D. (2015). Optimal additive Schwarz preconditioning for the hp-BEM: the hypersingular integral operator in 3D. 11th Austrian Numerical Analysis, Linz, EU. http://hdl.handle.net/20.500.12708/121107 ( reposiTUm)
Melenk, J. M. (2015). hp-FEM for singular perturbations: balanced norms and multiple scales. Vortrag, University of West Bohemia, Pilsen, Czech Republic, Austria. http://hdl.handle.net/20.500.12708/121344 ( reposiTUm)
Melenk, J. M. (2015). Robust exponential convergence in balance norms. Vortrag, University of West Bohemia, Pilsen, Czech Republic, Austria. http://hdl.handle.net/20.500.12708/121345 ( reposiTUm)
Melenk, J. M. (2015). Stability and convergence of hp-FEM for the Helmholtz equation. Vortrag, University of West Bohemia, Pilsen, Czech Republic, Austria. http://hdl.handle.net/20.500.12708/121347 ( reposiTUm)
Melenk, J. M. (2015). hp-FEM for wave propagation. The Vienna PDE-Day, ESI-Wien, Austria. http://hdl.handle.net/20.500.12708/121348 ( reposiTUm)
Melenk, J. M. (2015). Additive Schwarz preconditioning for hypersingular integral equations. 13th European Finite Element Fair, Karls Universität Prag, EU. http://hdl.handle.net/20.500.12708/121349 ( reposiTUm)
Feischl, M., Karkulik, M., Praetorius, D., & Melenk, J. M. (2014). Adaptive BEM. High-Order Finite Element and Isogeometric Methods, Chiemsee, EU. http://hdl.handle.net/20.500.12708/121066 ( reposiTUm)
Sauter, S., Esterhazy, S., Parsania, A., & Melenk, J. M. (2014). hp-FEM for wave propagation. 11th World Congress on Computational Mechanics (WCCM XI), Barcelona, EU. http://hdl.handle.net/20.500.12708/121065 ( reposiTUm)
Melenk, J. M., Rieder, A., & Karkulik, M. (2014). Optimal additive Schwarz methods for the hp-BEM: the hypersingular integral operator in 3D on locally refined meshes. “High-Order Finite Element and Isogeometric Methods” Workshop, Chiemsee, EU. http://hdl.handle.net/20.500.12708/121067 ( reposiTUm)
Melenk, J. M., & Rieder, A. (2014). Convolution quadrature for Schrödinger equation. Tagung “Boundary equations analysis and computation,” Edinborough, EU. http://hdl.handle.net/20.500.12708/121068 ( reposiTUm)
Melenk, J. M., & Rieder, A. (2014). Convolution quadrature for Schrödinger equation. 6th International Conference on Computational Methods in Applied Mathematics, Strobl, Austria. http://hdl.handle.net/20.500.12708/121062 ( reposiTUm)
Sauter, S., Löhndorf, M., & Melenk, J. M. (2014). hp-BEM for wave propagation. Adaptive Wavelet a. Frame Techniques, Traunkirchen, Austria. http://hdl.handle.net/20.500.12708/121064 ( reposiTUm)
Melenk, J. M. (2014). ABEM. Foundations of Comp. Mathematics, FoCM 2014, Montevideo, Uruguay, EU. http://hdl.handle.net/20.500.12708/121350 ( reposiTUm)
Melenk, J. M. (2013). Adaptive BEM. Journées Singulierès Augmentées, Rennes, EU. http://hdl.handle.net/20.500.12708/120528 ( reposiTUm)
Melenk, J. M. (2013). On stability of discretizations of the Helmholtz equation. Computational Electromagnetism and acoustics, Oberwolfach, EU. http://hdl.handle.net/20.500.12708/120530 ( reposiTUm)
Melenk, J. M. (2013). Simultaneous optimal convergence in FEM-BEM coupling. Braess-Hackbusch-Symposium, Frankfurt, EU. http://hdl.handle.net/20.500.12708/120527 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2013). Black-box preconditioning of BEM matrices by H-matrix techniques. IABEM 2013 Symposium of the International Association for Boundary Element Methods, Santiago, Non-EU. http://hdl.handle.net/20.500.12708/120244 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2013). Black-Box Preconditioning of FEM/BEM Matrices by H-Matrix Techniques. MAFELAP 2013 - The Mathematics of Finite Elements and Applications, Uxbridge, EU. http://hdl.handle.net/20.500.12708/120341 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2013). Convergence and quasi-optimality of adaptive BEM - state of the art. ENSTA Workshop on Error Estimates and Adaptive Mesh Refinement Strategies for Boundary Element Methods, Paris, EU. http://hdl.handle.net/20.500.12708/120329 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2013). Convergence of adaptive FEM-BEM coupling. WONAPDE 2013 Fourth Chilean Workshop on Numerical Analysis of Partial Differential Equations, Conception, Non-EU. http://hdl.handle.net/20.500.12708/120311 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2013). H-Matrix approximability of inverse FEM matrices for various boundary conditions. 9th Austrian Numerical Analysis Day, Graz, Austria. http://hdl.handle.net/20.500.12708/120320 ( reposiTUm)
Liertzer, M., Hisch, T., Esterhazy, S., Mintert, F., Pogany, D., Melenk, J. M., & Rotter, S. (2013). New solution strategies for the steady-state ab-initio laser theory and applications to random lasers. MASOMO 2013, Berlin, EU. http://hdl.handle.net/20.500.12708/130278 ( reposiTUm)
Esterhazy, S., Liertzer, M., Melenk, J. M., & Rotter, S. (2013). Solving the steady-state ab-initio laser theory with FEM. Mafelap 2013, Brunel University London, EU. http://hdl.handle.net/20.500.12708/130317 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., Of, G., & Praetorius, D. (2012). A survey on adaptive boundary element methods. Fast BEM and BETI, Ostrava (Tschechien), EU. http://hdl.handle.net/20.500.12708/120041 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Novel inverse estimates for non-local operators. 10th Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg/Kleinwalsertal, Austria. http://hdl.handle.net/20.500.12708/120067 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Classical FEM-BEM couplings: well-posedness, nonlinearities, and adaptivity. 8th Austrian Numerical Analysis Day, Wien, Austria. http://hdl.handle.net/20.500.12708/120029 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Classical FEM-BEM couplings: well-posedness, nonlinearities, and adaptivity. BEM on the Saar 2012, Universität des Saarlandes, EU. http://hdl.handle.net/20.500.12708/120030 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Convergence of adaptive FEM-BEM coupling driven by residual-based error estimators. 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Wien, Austria. http://hdl.handle.net/20.500.12708/120062 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2012). Existence of H-matrix approximants to the inverse of BEM matrices. 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Wien, Austria. http://hdl.handle.net/20.500.12708/120060 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Quasi-optimal convergence rate for an adaptive boundary element method. BEM on the Saar 2012, Universität des Saarlandes, EU. http://hdl.handle.net/20.500.12708/120026 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Convergence and quasi-optimality of adaptive boundary element methods. Algoritmy 2012, Vysoke Tatry, Podbanske, EU. http://hdl.handle.net/20.500.12708/120053 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2012). Existence of H-Matrix Approximants to the Inverse of BEM Matrices. ICOSAHOM 2012, Gammarth, Tunesien, Non-EU. http://hdl.handle.net/20.500.12708/120047 ( reposiTUm)
Melenk, J. M. (2012). Stability and convergence of Galerkin discretizations of the Helmholtz equation. International Conference on Computational Science, Shanghai, Non-EU. http://hdl.handle.net/20.500.12708/120039 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Quasi-Optimal Convergence Rates for Some Adaptive Boundary Element Method in 2D and 3D. 7th Zürich Summerschool on A Posteriori Error Control and Adaptivity, Zürich, Non-EU. http://hdl.handle.net/20.500.12708/120063 ( reposiTUm)
Aurada, M., Feischl, M., Ferraz-Leite, S., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Convergence of adaptive BEM: State of the art. Workshop FEM/BEM, Cappel Neufeld, EU. http://hdl.handle.net/20.500.12708/120028 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). FEM-BEM coupling without stabilization. 10th Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg/Kleinwalsertal, Austria. http://hdl.handle.net/20.500.12708/120068 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2012). Existence of H-matrix approximants to inverse BEM matrices. 10th Söllerhaus Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg, Austria. http://hdl.handle.net/20.500.12708/120070 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Quasi-optimal convergence rate for an adaptive boundary element method. Computational Methods in Applied Mathematics CMAM-5, Berlin, EU. http://hdl.handle.net/20.500.12708/120056 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., Of, G., & Praetorius, D. (2012). On the convergence and quasi-optimality of adaptive boundary element methods. Seminar of the Institute for Numerical Mathematics, Graz University of Technology, Austria. http://hdl.handle.net/20.500.12708/120119 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Quasi-optimal convergence rates for some adaptive boundary element method in 2D and 3D. 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Wien, Austria. http://hdl.handle.net/20.500.12708/119115 ( reposiTUm)
Melenk, J. M. (2012). Inverse Estimates and Applications to Boundary Element Methods. Mathematisches Forschungsinstitut Oberwolfach, Austria. http://hdl.handle.net/20.500.12708/120181 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Convergence of adaptive FEM-BEM coupling driven by residual-based error estimators. TCSE Vienna Workshop 2012, Trends in Computational Science and Engineering, Wien, Austria. http://hdl.handle.net/20.500.12708/119872 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2011). Convergence and quasi-optimality of adaptive boundary element methods. Efficient mesh adaptation methods for evolution problems: theory and applications, Wolfgang-Pauli-Institut Wien, Austria. http://hdl.handle.net/20.500.12708/119966 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2011). Convergence of adaptive FEM-BEM coupling driven by residual-based error estimators. 9th Söllerhaus Workshop on Fast BEM in Industrial Applications, Hirschegg/Kleinwalsertal, Austria. http://hdl.handle.net/20.500.12708/119752 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2011). Quasi-optimal convergence rate for an adaptive boundary element method. 9th Söllerhaus Workshop on Fast BEM in Industrial Applications, Hirschegg/Kleinwalsertal, Austria. http://hdl.handle.net/20.500.12708/119751 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2011). Mixed conforming elements for the large-body limit in micromagnetics: FEM-BEM approach. 9th Söllerhaus Workshop on Fast BEM in Industrial Applications, Hirschegg/Kleinwalsertal, Austria. http://hdl.handle.net/20.500.12708/119753 ( reposiTUm)
Aurada, M., Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2011). Konvergenz und Optimalität adaptiver Randelementmethode. Mathematisches Kolloquium des Instituts für Angewandte Mathematik der Leibniz Universität Hannover, Hannover, EU. http://hdl.handle.net/20.500.12708/119763 ( reposiTUm)
Melenk, J. M., & Karkulik, M. (2011). hp-Quasi-Interpolation. Junior Scientist Conference, Wien, Austria. http://hdl.handle.net/20.500.12708/119695 ( reposiTUm)
Ferraz-Leite, S., Melenk, J. M., & Praetorius, D. (2010). Finite element discretization of a reduced model in thin-film micromagnetics. 6th Austrian Numerical Analysis Day, Salzburg, Austria. http://hdl.handle.net/20.500.12708/119373 ( reposiTUm)
Melenk, J. M., Sauter, S., & Löhndorf, M. (2010). stability and convergence of discretizations of the Helmholtz equation. Kolloquium des Doktoratskollegs Numerical Simulations in Technical Sciences, TU Graz, Austria. http://hdl.handle.net/20.500.12708/119331 ( reposiTUm)
Melenk, J. M. (2010). High order methods for high frequency Helmholtz equations. Institutskolloquium, Instiut für Mathematik, Universität Stuttgart, Stuttgart, EU. http://hdl.handle.net/20.500.12708/119349 ( reposiTUm)
Melenk, J. M. (2010). Optimal convergence of higher order FEM for interface problems. 6th Austrian Numerical Analysis Day, Salzburg, Austria. http://hdl.handle.net/20.500.12708/119348 ( reposiTUm)
Melenk, J. M. (2010). Convergence Analysis of Galerkin Discretizations of the Helmholtz Equation. Sonstiges, Chalmers University of Technology, Schweden, EU. http://hdl.handle.net/20.500.12708/119413 ( reposiTUm)
Melenk, J. M., Eibner, T., & Khoromskij, B. (2009). BEM meets FEM: the boundary concentrated FEM. ICOSAHOM 09, Trondheim, Non-EU. http://hdl.handle.net/20.500.12708/118993 ( reposiTUm)
Ferraz-Leite, S., Melenk, J. M., & Praetorius, D. (2009). Finite element discretization of a reduced model in thin- lm micromagnetics. MAFELAP 2009 - The Mathematics of Finite Elements and Applications, Uxbridge, EU. http://hdl.handle.net/20.500.12708/118995 ( reposiTUm)
Melenk, J. M., Löhndorf, M., & Sauter, S. (2009). convergence and stability of discretizations of the Helmholtz equation. Kolloqium des SFB 611, Bonn, EU. http://hdl.handle.net/20.500.12708/118991 ( reposiTUm)
Melenk, J. M., & Löhndorf, M. (2009). mapping properties of Helmholtz operators and their application to the hp-BEM. MAFELAP 13, Brunel University, EU. http://hdl.handle.net/20.500.12708/118992 ( reposiTUm)
Melenk, J. M. (2009). Simultaneous optimal convergence in FEM-BEM coupling. MAFELAP 13, Brunel University, EU. http://hdl.handle.net/20.500.12708/120529 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2009). Mixed Conforming Elements in the Large-Body Limit of Micromagnetics - FEMBEM Coupling. 5th Austrian Numerical Analysis Day, Innsbruck, Austria. http://hdl.handle.net/20.500.12708/119300 ( reposiTUm)
Melenk, J. M. (2009). adaptive FEM. CompMat09, Schlaining, Austria. http://hdl.handle.net/20.500.12708/119071 ( reposiTUm)
Melenk, J. M. (2009). a survey of hp-adaptivity. workshop on Adaptive Finite Elements: Analysis and Application, Kirchzarten, EU. http://hdl.handle.net/20.500.12708/119028 ( reposiTUm)
Melenk, J. M. (2009). going to high order methods: benefits and challenges. Kolloqium des SFB 611, Bonn, EU. http://hdl.handle.net/20.500.12708/119122 ( reposiTUm)
Melenk, J. M., & Sauter, S. (2009). Convergence analysis for finite element discretizations of the Helmholtz equation on bounded and unbounded domains. MAFELAP 13, Brunel University, EU. http://hdl.handle.net/20.500.12708/119030 ( reposiTUm)
Langdon, S., & Melenk, J. M. (2009). Fully discrete hp-BEM for high frequency scattering. MAFELAP 13, Brunel University, EU. http://hdl.handle.net/20.500.12708/119029 ( reposiTUm)
Ferraz-Leite, S., Melenk, J. M., & Praetorius, D. (2009). Energy minimization in thin-film micromagnetics. 17th ÖMG Congress / Annual DMV Conference, Graz, Austria. http://hdl.handle.net/20.500.12708/119051 ( reposiTUm)
Ferraz-Leite, S., Melenk, J. M., & Praetorius, D. (2009). A thin-film model for micromagnetics. Cortona 2009 - Numerik-Statusseminar Ulm und Wien, Cortona, EU. http://hdl.handle.net/20.500.12708/119050 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2009). Mixed Conforming Elements in the Large-Body Limit of Micromagnetics. MAFELAP 2009 - The Mathematics of Finite Elements and Applications, Uxbridge, EU. http://hdl.handle.net/20.500.12708/119301 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2009). Mixed Conforming Elements in the Large-Body Limit of Micromagnetics. Cortona 2009 - Numerik-Statusseminar Ulm und Wien, Cortona, EU. http://hdl.handle.net/20.500.12708/118608 ( reposiTUm)
Melenk, J. M., & Sauter, S. (2008). on the convergence of Galerkin FEM for the Helmholtz equation. MIMS workshop: new directions in analytical and numerical methods for forward and inverse wave scattering, Manchester, EU. http://hdl.handle.net/20.500.12708/118595 ( reposiTUm)
Dörsek, P., & Melenk, J. M. (2008). adaptive hp-FEM for 2D elasticity with Tresca Friction. Junior Scientist Conference, Wien, Austria. http://hdl.handle.net/20.500.12708/118771 ( reposiTUm)
Melenk, J. M. (2008). Fast BEM for Acoustic Scattering. 6th Söllerhaus Workshop on Fast Boundary Element Methods in Industrial Applications, Hirschegg, Austria. http://hdl.handle.net/20.500.12708/118636 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2008). Mixed Conforming Elements for the Large-Body Limit in Micromagnetics. SDIDE - Stability and Discretization Issues in Differential Equations, Wien, Austria. http://hdl.handle.net/20.500.12708/118621 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2008). Mixed Conforming Elements for the Large-Body Limit in Micromagnetics. Söllerhaus 2008 - Numerik-Statusseminar Ulm und Wien, Hirschegg, Austria. http://hdl.handle.net/20.500.12708/118630 ( reposiTUm)
Melenk, J. M., & Eibner, T. (2007). an hp-BEM for scattering by convex polygons. international conference on spectral and high order methods, Peking, Non-EU. http://hdl.handle.net/20.500.12708/118190 ( reposiTUm)
Melenk, J. M., & Langdon, S. (2007). an hp-BEM for scattering by convex polygons. ICIAM 2007, Zürich, Non-EU. http://hdl.handle.net/20.500.12708/118196 ( reposiTUm)
Melenk, J. M., & Langdon, S. (2007). an hp-BEM for scattering by convex polygons. 23th GAMM-Seminar Leipzig on integral equation methods for high frequency scattering problems, Leipzig, EU. http://hdl.handle.net/20.500.12708/118168 ( reposiTUm)
Eibner, T., & Melenk, J. M. (2007). an hp-BEM for scattering by convex polygons. workshop on high order methods, Herrsching am Ammersee, EU. http://hdl.handle.net/20.500.12708/118177 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2007). Mixed Conforming Elements for the Large-Body Limit in Micromagnetics. Enumath 2007, Graz, Austria. http://hdl.handle.net/20.500.12708/118491 ( reposiTUm)
Melenk, J. M., Iske, A., & Löhndorf, M. (2006). thin-plate spline interpolation on Lipschitz domains. International Conference on Multifield problems, Stuttgart, EU. http://hdl.handle.net/20.500.12708/117870 ( reposiTUm)
Melenk, J. M. (2006). hp-FEM for problems with boundary layers. Veranstaltung, Wien, Austria. http://hdl.handle.net/20.500.12708/117861 ( reposiTUm)
Melenk, J. M. (2006). thin-plate spline interpolation on Lipschitz domains. Kolloquiumsvortrag, University of Michigan, USA, Austria. http://hdl.handle.net/20.500.12708/117862 ( reposiTUm)
Melenk, J. M. (2006). hp-FEM for problems with boundary layers. Kolloquium, Leopold-Franzens Universität Innsbruck, Austria. http://hdl.handle.net/20.500.12708/117864 ( reposiTUm)
Melenk, J. M. (2006). on hp-adaptivity. Austrian numerical analysis day, TU Graz, Austria. http://hdl.handle.net/20.500.12708/117865 ( reposiTUm)
Melenk, J. M., & Eibner, T. (2006). hp-adaptivity based on testing locally for analyticity. MAFELAP 2006 - The Mathematics of Finite Elements and Applications, Uxbridge, EU. http://hdl.handle.net/20.500.12708/117866 ( reposiTUm)
Melenk, J. M. (2006). H-matrix techniques for the boundary concentrated FEM. 17th international conference on domain decomposition methods, Strobl, Austria. http://hdl.handle.net/20.500.12708/117867 ( reposiTUm)
Melenk, J. M. (2006). thin-plate spline interpolation on Lipschitz domains. Kolloquium, Leopold-Franzens Universität Innsbruck, Austria. http://hdl.handle.net/20.500.12708/117863 ( reposiTUm)
Melenk, J. M., & Langdon, S. (2006). hp-BEM for high frequency scattering by convex polygons. international association for boundary element methods (IABEM), TU Graz, Austria. http://hdl.handle.net/20.500.12708/117868 ( reposiTUm)
Melenk, J. M., Iske, A., & Löhndorf, M. (2006). thin-plate spline interpolation on Lipschitz domains. NUMDIFF 11, Halle, EU. http://hdl.handle.net/20.500.12708/117869 ( reposiTUm)
Melenk, J. M. (2005). “hp-FEM for problems with boundary layers.” Workshop über “High order methods in computational mechanics,” Linz, Österreich, Austria. http://hdl.handle.net/20.500.12708/117529 ( reposiTUm)
Eibner, T., & Melenk, J. M. (2005). “A multilevel solver for the boundary concentrated FEM.” Radon Institute der österr. Akademie der Wissenschaften, Linz, Linz, Österreich, Austria. http://hdl.handle.net/20.500.12708/117530 ( reposiTUm)
Iske, A., Löhndorf, M., & Melenk, J. M. (2005). On approximation in meshless methods and thin-plate spline interpolation. 3rd international workshop on meshless methods and thin-plate spline interpolation, Bonn, Deutschland, Austria. http://hdl.handle.net/20.500.12708/117557 ( reposiTUm)
Melenk, J. M. (2005). A fully adaptive algorithm for hp-FEM. US National Congress of Computational Mechanics VIII, Austin, Texas, USA, Austria. http://hdl.handle.net/20.500.12708/117586 ( reposiTUm)
Iske, A., Löhndorf, M., & Melenk, J. M. (2005). Approximation properties of the thin-plate splines on Lipschitz domains. Seminar für Angewandte Mathematik, ETH Zürich, ETH Zürich, Austria. http://hdl.handle.net/20.500.12708/117614 ( reposiTUm)
Melenk, J. M. (2005). Boundary concentrated FEM. Foundations of Computational Mathematics, Minisymposium numerical methods for PDEs, Santander, Spanien, Austria. http://hdl.handle.net/20.500.12708/117584 ( reposiTUm)
Melenk, J. M. (2005). A fully adaptive algorithm for hp-FEM. Oberwolfach Reports, Oberwolfach, EU. http://hdl.handle.net/20.500.12708/117585 ( reposiTUm)
Melenk, J. M. (2005). The boundary concentrated FEM. University of Strathclyde, Glasgow, EU. http://hdl.handle.net/20.500.12708/117616 ( reposiTUm)
Melenk, J. M. (2005). The boundary concentrated FEM. University of Sussex, Brighton, UK, Austria. http://hdl.handle.net/20.500.12708/117615 ( reposiTUm)
Iske, A., & Melenk, J. M. (2004). On approximation porperties of the thin-plate splines. 1st Austrian numerical Analysis Day, Obergurgl, Österreich, Austria. http://hdl.handle.net/20.500.12708/117613 ( reposiTUm)

Berichte

Faustmann, M., Melenk, J. M., & Parvizi, M. (2020). On the stability of Scott-Zhang type operators and application to multilevel preconditioning in fractal diffusion (ASC Report 3/2020; pp. 1–31). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30872 ( reposiTUm)
Mascotto, L., Melenk, J. M., Perugia, I., & Rieder, A. (2020). FEM-BEM mortar coupling for the Helmholtz problem in three dimensions (ASC Report 8/2020; pp. 1–33). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30877 ( reposiTUm)
Rieder, A., Sayas, F.-J., & Melenk, J. M. (2020). Runge-Kutta approximation for C_0-semigroups in the graph norm with applications to time domain boundary integral equations (ASC Report 6/2020; pp. 1–37). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30875 ( reposiTUm)
Banjai, L., Melenk, J. M., & Schwab, C. (2020). hp-FEM reaction-diffusion equations II. Robust exponential convergence for multiple length scales in corner domains (ASC Report 11/2020; pp. 1–34). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30880 ( reposiTUm)
Achleitner, F., Kuehn, C., Melenk, J. M., & Rieder, A. (2020). Metastable Speeds in the Fractional Allen-Cahn Equation (ASC Report 13/2020; pp. 1–24). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30887 ( reposiTUm)
Angleitner, N., Faustmann, M., & Melenk, J. M. (2020). Approximating inverse FEM matrices on non-uniform meshes with H-matrices (ASC Report 14/2020; pp. 1–21). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30882 ( reposiTUm)
Banjai, L., Melenk, J. M., & Schwab, C. (2020). Exponential Convergence of hp FEM for Spectral Fractional Diffusion in Polygons (ASC Report 30/2020; pp. 1–37). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30899 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Parvizi, M. (2020). Caccioppoli-type estimates and H-Matrix approximations to inverses for FEM-BEM coupling (ASC Report 20/2020; pp. 1–31). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30892 ( reposiTUm)
Rieder, A., Sayas, F.-J., & Melenk, J. M. (2020). Time domain boundary integral equations and convolution quadrature for scattering by composite media (ASC Report 29/2020; pp. 1–35). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30898 ( reposiTUm)
Bernkopf, M., & Melenk, J. M. (2020). Optimal convergence rates in L^2 for a first order system least squares finite element method. Part 1: homogeneous boundary conditions (ASC Report 45/2020; pp. 1–34). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30912 ( reposiTUm)
Bernkopf, M., & Melenk, J. M. (2020). optimal convergence rates for a first order system least squares method. Part I: homogeneous boundary conditions (ASC Report 45/2020; pp. 1–34). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30915 ( reposiTUm)
Faustmann, M., Karkulik, M., & Melenk, J. M. (2020). Local convergence of the FEM for the integral fractional Laplacian (ASC Report 24/2020; pp. 1–20). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30893 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2019). Quasi-optimal convergence rate for an adaptive method for the integral fractional Laplacian (ASC Report 07/2019; pp. 1–23). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30846 ( reposiTUm)
Melenk, J. M., & Rieder, A. (2019). On superconvergence of Runge-Kutta convolution quadrature for the wave equation (ASC Report 13/2019; pp. 1–18). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30852 ( reposiTUm)
Melenk, J. M., Sauter, S., & Torres, C. (2019). Wave number-explicit analysis for Galerkin discretizations of lossy Helmholtz problems (ASC Report 11/2019; pp. 1–25). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30850 ( reposiTUm)
Melenk, J. M., & Rieder, A. (2019). hp-FEM for the fractional heat equation (ASC Report 12/2019; pp. 1–39). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30851 ( reposiTUm)
Melenk, J. M., & Sauter, S. (2018). Wavenumber-explicit hp-FEM analysis for Maxwell’s equations with transparent boundary conditions (ASC Report 9/2018; pp. 1–79). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30813 ( reposiTUm)
Melenk, J. M., & Rojik, C. (2018). On commuting $p$-version projection-based interpolation on tetrahedra (extended version) (ASC Report 5/2018; pp. 1–35). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30809 ( reposiTUm)
Bernkopf, M., & Melenk, J. M. (2018). Analysis of the hp-version of a first order system least squares method for the Helmholtz equation (ASC Report 24/2018; pp. 1–26). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30828 ( reposiTUm)
Karkulik, M., & Melenk, J. M. (2018). H-matrix approximability of inverses of discretizations of the fractional Laplacian (ASC Report 25/2018; pp. 1–30). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/30829 ( reposiTUm)
Löhndorf, M., & Melenk, J. M. (2017). On thin plate spline interpolation (ASC Report 09/2017; pp. 1–12). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29408 ( reposiTUm)
Faustmann, M., & Melenk, J. M. (2017). Local convergence of the boundary element method on polyhedral domains (ASC Report 03/2017; pp. 1–38). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29363 ( reposiTUm)
Banjai, L., Melenk, J. M., Nochetto, R., Otarola, E., Salgado, A., & Schwab, C. (2017). Tensor FEM for spectral fractional diffusion (ASC Report 13/2017; pp. 1–44). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29430 ( reposiTUm)
Amrein, M., Melenk, J. M., & Wihler, T. (2016). An hp-adaptive Newton-Galerkin finite element procedure for semilinear boundary value problems (ASC Report 6/2016; pp. 1–15). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29039 ( reposiTUm)
Faustmann, M., & Melenk, J. M. (2016). Robust exponential convergence of $hp$-FEM in balanced norms for singularly perturbed reaction-diffusion problems: corner domains (ASC Report 25/2016; pp. 1–17). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29176 ( reposiTUm)
Melenk, J. M., & Rieder, A. (2016). Runge-Kutta convolution quadrature and FEM-BEM coupling for the time dependent linear Schrödinger equation (ASC Report 13/2016; pp. 1–35). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29067 ( reposiTUm)
Apel, T., & Melenk, J. M. (2015). Interpolation and quasi-interpolation in h- and hp-version finite element spaces (extended version) (ASC Report 39/2015; pp. 1–60). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/29033 ( reposiTUm)
Börm, S., & Melenk, J. M. (2015). Approximation of the high-frequency Helmholtz kernel by nested directional interpolation (ASC Report 33/2015; pp. 1–41). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28735 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2015). Local inverse estimates for non-local boundary integral operators (ASC Report 12/2015; pp. 1–28). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28623 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2015). Existence of $\cal H$-matrix approximants to the inverse of BEM matrices: the hyper-singular integral operator (ASC Report 08/2015; pp. 1–30). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28605 ( reposiTUm)
Horger, T., Melenk, J. M., & Wohlmuth, B. (2015). On optimal L2- and surface flux onvergence in FEM (extended version) (ASC Report 02/2015; pp. 1–48). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28526 ( reposiTUm)
Melenk, J. M., & Xenophontos, C. (2014). Robust exponential convergence of hp-FEM in balanced norms for singularly perturbed reaction-diffusion equations (ASC Report 24/2014; pp. 1–24). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28322 ( reposiTUm)
Melenk, J. M., & Wihler, T. (2014). A posteriori error analysis of hp-FEM for singularly perturbed problems (ASC Report 25/2014; pp. 1–11). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28323 ( reposiTUm)
Melenk, J. M., Praetorius, D., & Wohlmuth, B. (2014). Simultaneous quasi-optimal convergence in FEM-BEM coupling (ASC Report 13/2014; pp. 1–21). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28262 ( reposiTUm)
Karkulik, M., & Melenk, J. M. (2014). Local high-order regularization and applications to hp-methods (extended version) (ASC Report 38/2014; pp. 1–38). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28395 ( reposiTUm)
Horger, T., Melenk, J. M., & Wohlmuth, B. (2014). On optimal L2- and surface flux convergence in FEM (ASC Report 39/2014; pp. 1–26). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28399 ( reposiTUm)
Führer, T., Melenk, J. M., Praetorius, D., & Rieder, A. (2014). Optimal additive Schwarz methods for the hp-BEM: the hypersingular integral operator in 3D on locally refined meshes (ASC Report 41/2014; pp. 1–34). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28447 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2013). Existence of H-matrix approximants to the inverses of BEM matrices: the simple-layer operator (ASC Report 37/2013; pp. 1–33). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28038 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2013). Quasi-optimal convergence rates for adaptive boundary element methods with data approximation - Part II: Hyper-singular integral equation (ASC Report 30/2013; pp. 1–22). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27995 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2013). H-matrix approximability of the inverses of FEM matrices (ASC Report 20/2013; pp. 1–23). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27971 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2013). Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, Part I: Weakly-singular integral equation (ASC Report 24/2013; pp. 1–26). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27979 ( reposiTUm)
Esterhazy, S., Liu, D., Liertzer, M., Cerjan, A., Ge, L., Makris, K., Stone, A. D., Melenk, J. M., Johnson, S. G., & Rotter, S. (2013). A scalable numerical approach for the Steady-State Ab-Initio Laser Theory (ASC Report 40/2013; pp. 1–16). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/28055 ( reposiTUm)
Graham, I., Löhndorf, M., Melenk, J. M., & Spence, E. (2013). When is the error in the h-BEM for solving the Helmholtz equation bounded independently of k? (ASC Report 28/2013; pp. 1–31). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26833 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2013). FEM-BEM Coupling for the large-body limit in micromagnetics (ASC Report 04/2013; pp. 1–27). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27936 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity (ASC Report 08/2012; pp. 1–20). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27537 ( reposiTUm)
Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Inverse estimates for elliptic boundary integral operators and their application to the adaptive coupling of FEM and BEM (ASC Report 07/2012; pp. 1–32). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27536 ( reposiTUm)
Melenk, J. M., Rezaijafari, H., & Wohlmuth, B. (2012). Quasi-optimal a priori estimates for fluxes in mixed finite element methods and applications to the Stokes-Darcy coupling (ASC Report 05/2012; pp. 1–23). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27534 ( reposiTUm)
Melenk, J. M., Parsania, A., & Sauter, S. (2012). Generalized DG-Methods for Highly Indefinite Helmholtz Problems based on the Ultra-Weak Variational Formulation (ASC Report 06/2012; pp. 1–28). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27535 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). FEM-BEM couplings without stabilization (IABEM 2013) (ASC Report 47/2012; pp. 1–6). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27702 ( reposiTUm)
Dörsek, P., & Melenk, J. M. (2012). A Numerical Study of Averaging Error Indicators in p-FEM (ASC Report 45/2012; pp. 1–10). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27696 ( reposiTUm)
Dörsek, P., & Melenk, J. M. (2012). Symmetry-free, p-robust equilibrated error indication for the hp-version of the FEM in almost incompressible linear elasticity (ASC Report 46/2012; pp. 1–14). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27697 ( reposiTUm)
Feischl, M., Führer, T., Karkulik, M., Melenk, J. M., & Praetorius, D. (2012). Novel inverse estimates for non-local operators (IABEM 2013) (ASC Report 49/2012; pp. 1–6). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27704 ( reposiTUm)
Faustmann, M., Melenk, J. M., & Praetorius, D. (2012). A new proof for existence of $\mathcal{H}$-matrix approximants to the inverse of FEM matrices: the Dirichlet problem for the Laplacian (ASC Report 51/2012; pp. 1–10). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27728 ( reposiTUm)
Esterhazy, S., & Melenk, J. M. (2012). An analysis of discretizations of the Helmholtz equation in L^2 and in negative norms (extended version) (ASC Report 31/2012; pp. 1–50). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27642 ( reposiTUm)
Melenk, J. M., & Wurzer, T. (2012). On the stability of the polynomial $L^2$-projection on triangles and tetrahedra (ASC Report 25/2012; pp. 1–37). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27632 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2011). Quasi-optimal convergence rate for an adaptive boundary element method (ASC Report 28/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27227 ( reposiTUm)
Melenk, J. M., Xenophontos, C., & Oberbroeckling, L. (2011). Analytic regularity for a singularly perturbed system of reaction-diffusion equtions with multiple scales: proofs (ASC Report 29/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27228 ( reposiTUm)
Ferraz-Leite, S., Melenk, J. M., & Praetorius, D. (2011). Numerical quadratic energy minimization bound to convex constraints in thin-film micromagnetics (ASC Report 32/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27239 ( reposiTUm)
Melenk, J. M., Xenophontos, C., & Oberbroeckling, L. (2011). Analytic regularity for a singularly perturbed system of reaction-diffusion equations with multiple scales: a road map (ASC Report 30/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27230 ( reposiTUm)
Melenk, J. M., Xenophontos, C., & Oberbroeckling, L. (2011). Robust exponential convergence of hp-FEM for singularly perturbed reaction diffusion systems with multiple scales (ASC Report 31/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27235 ( reposiTUm)
Melenk, J. M., & Wohlmuth, B. (2011). Quasi-optimal approximation of surface based Lagrange multipliers in finite element methods (ASC Report 13/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27173 ( reposiTUm)
Feischl, M., Karkulik, M., Melenk, J. M., & Praetorius, D. (2011). Residual a-posteriori error estimates in BEM: Convergence of h-adaptive algorithms (ASC Report 21/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27183 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2011). Mixed conforming elements for the large-body limit in micromagnetics (ASC Report 42/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27312 ( reposiTUm)
Hewett, D. P., Langdon, S., & Melenk, J. M. (2011). A high frequency hp boundary element method for scattering by convex polygons (ASC Report 40/2011). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27300 ( reposiTUm)
Wurzer, T., & Melenk, J. M. (2010). Stability of the trace of the polynomial $L^2$-projection on triangles (ASC Report 36/2010). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/27130 ( reposiTUm)
Banjai, L., Lubich, C., & Melenk, J. M. (2010). Runge-Kutta convolution quadrature for operators arising in wave propagation (ASC Report 24/2010). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26888 ( reposiTUm)
Löhndorf, M., & Melenk, J. M. (2010). Wavenumber-explicit HP-BEM for high frequency scattering (ASC Report 02/2010). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26750 ( reposiTUm)
Melenk, J. M. (2010). Mapping properties of combined field Helmholtz boundary integral operators (ASC Report 01/2010). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26749 ( reposiTUm)
Melenk, J. M., & Sauter, S. (2009). Wave-number explicit convergence analysis for Galerkin discretizations of the Helmholtz equation (extended version) (ASC Report 31/2009). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26451 ( reposiTUm)
Dörsek, P., & Melenk, J. M. (2009). Adaptive hp-FEM for the contact problem with Tresca friction in linear elasticity: The primal-dual formulation and a posteriori error estimation (ASC Report 37/2009). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26460 ( reposiTUm)
Dörsek, P., & Melenk, J. M. (2009). Adaptive $hp$-FEM for the contact problem with Tresca friction in linear elasticity: The primal formulation (ASC Report 36/2009). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26459 ( reposiTUm)
Löhndorf, M., & Melenk, J. M. (2009). Mapping properties of Helmholtz boundary integral operators and their application to the HP-BEM (ASC Report 34/2009). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26613 ( reposiTUm)
Ferraz-Leite, S., Melenk, J. M., & Praetorius, D. (2009). Reduced model in thin-film micromagnetics (ASC Report 02/2009). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26343 ( reposiTUm)
Aurada, M., Melenk, J. M., & Praetorius, D. (2009). Mixed conforming elements for the large-body limit in micromagnetics (MATHMOD 09) (ASC Report 49/2009). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26604 ( reposiTUm)
Melenk, J. M., & Sauter, S. (2008). Convergence analysis for finite element discretizations of the Helmholtz equation. Part I: the full space problem (ASC Report 15/2008). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/26074 ( reposiTUm)
Li, J., Melenk, J. M., Wohlmuth, B., & Zou, J. (2008). Optimal convergence of higher order finite element methods for elliptic interface problems (ASC Report 13/2008). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/25166 ( reposiTUm)
Melenk, J. M. (2008). On the convergence of filon quadrature (ASC Report 08/2008). Institute of Analysis and Scientific Computing, TU Wien. http://hdl.handle.net/20.500.12708/25161 ( reposiTUm)
Eibner, T., & Melenk, J. M. (2007). p-FEM quadrature error analysis on tetrahedra (ASC Report No. 23/2007). Institute for Analysis and Scientific Computing, Vienna University of Technology. http://hdl.handle.net/20.500.12708/25134 ( reposiTUm)
Melenk, J. M., & Eibner, T. (2006). p-FEM quadrature error analysis on tetrahedra. http://hdl.handle.net/20.500.12708/31743 ( reposiTUm)
Melenk, J. M., & Eibner, T. (2006). Multilevel preconditioning for the boundary concentrated hp-FEM. http://hdl.handle.net/20.500.12708/31740 ( reposiTUm)
Melenk, J. M., Pechstein, C., Zaglmayr, S., & Schöberl, J. (2005). Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements. http://hdl.handle.net/20.500.12708/31705 ( reposiTUm)