Wissenschaftliche Artikel

Csaki, E., Földes, A., & Révész, P. (2010). On the number of cutpoints of the transient nearest neighbor random walk on the line. Journal of Theoretical Probability, 23, 624–638. http://hdl.handle.net/20.500.12708/166979 ( reposiTUm)
Csaki, E., Csörgo, M., Földes, A., & Révész, P. (2010). On the supremum of iterated local time. PUBLICATIONES MATHEMATICAE DEBRECEN, 76/3, 255–270. http://hdl.handle.net/20.500.12708/166980 ( reposiTUm)
Révész, P. (2010). How short might be the longest run in a dynamical coin tossing sequence. PUBLICATIONES MATHEMATICAE DEBRECEN, 76/3, 347–358. http://hdl.handle.net/20.500.12708/166981 ( reposiTUm)
Csaki, E., Földes, A., & Révész, P. (2009). Transient Nearest Neighbor Random Walk on the Line. Journal of Theoretical Probability, 22, 100–122. http://hdl.handle.net/20.500.12708/165793 ( reposiTUm)
Csaki, E., Csörgo, M., Földes, A., & Révész, P. (2009). Random walk local time approximated by a Brownian sheet combined with an independent Brownian motion. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 45, 515–544. http://hdl.handle.net/20.500.12708/165794 ( reposiTUm)
Csaki, E., Földes, A., & Révész, P. (2008). On the local time of the asymmetric Bernoulli walk. Acta Sci.Math. (Szeged), 74, 349–379. http://hdl.handle.net/20.500.12708/170279 ( reposiTUm)
Csaki, E., Földes, A., & Révész, P. (2007). Joint asymptotic behavior of local and occupation times of random walk in higher dimension. Studia Scientiarum Mathematicarum Hungarica, 44, 535–563. http://hdl.handle.net/20.500.12708/170278 ( reposiTUm)
Csaki, E., Földes, A., & Révész, P. (2007). On the behavior of random walk around heavy points. Journal of Theoretical Probability, 20, 1041–1057. http://hdl.handle.net/20.500.12708/170277 ( reposiTUm)
Csaki, E., Földes, A., & Révész, P. (2007). On the local times of transient random walks. Acta Applicandae Mathematicae, 96, 147–158. http://hdl.handle.net/20.500.12708/170276 ( reposiTUm)
Csaki, E., Földes, A., & Révész, P. (2006). Heavy points of a d-dimensional simple random walk. Statistics and Probability Letters, 76, 45–57. http://hdl.handle.net/20.500.12708/171986 ( reposiTUm)
Csaki, E., Földes, A., & Révész, P. (2005). Maximal Local Time of a d-dimensional Simple Random Walk on Subsets. Journal of Theoretical Probability, 18(3), 687–717. http://hdl.handle.net/20.500.12708/171985 ( reposiTUm)
Csaki, E., Földes, A., Révész, P., Rosen, J., & Shi, Z. (2005). Frequently visited sets for random walks. Stochastic Processes and Their Applications, 115, 1503–1517. http://hdl.handle.net/20.500.12708/171984 ( reposiTUm)
Révész, P. (2004). Construction of random functions and path properties. Encyclopedia of Life Support Systems, UNESCO & AMP; EOLSS, WWW.EOLSS.NET. http://hdl.handle.net/20.500.12708/174478 ( reposiTUm)
Révész, P. (2004). Stochastic calculus. Encyclopedia of Life Support Systems, UNESCO & AMP; EOLSS, WWW.EOLSS.NET. http://hdl.handle.net/20.500.12708/174479 ( reposiTUm)
Révész, P. (2004). Stochastic Differential Equations. Encyclopedia of Life Support Systems, UNESCO & AMP; EOLSS, WWW.EOLSS.NET. http://hdl.handle.net/20.500.12708/174480 ( reposiTUm)
Révész, P. (2004). Tell Me the Values of a Wiener at Integers, I Tell You Its Local Time. Fields Institute Communications, 44, 89–95. http://hdl.handle.net/20.500.12708/174571 ( reposiTUm)
Révész, P. (2004). The Maximum of the Local Time of a Transient Random Walk. Studia Scientiarum Mathematicarum Hungarica, 41(4), 379–390. http://hdl.handle.net/20.500.12708/174572 ( reposiTUm)
Csaki, E., Révész, P., & Shi, Z. (2004). Large void zones and occupation times for coalescing random walks. Stochastic Processes and Their Applications, 111, 97–118. http://hdl.handle.net/20.500.12708/174573 ( reposiTUm)
Révész, P. (2004). A Prediction Problem of the Branching Random Walk. Journal of Applied Probability, 41A, 25–31. http://hdl.handle.net/20.500.12708/174574 ( reposiTUm)

Beiträge in Tagungsbänden

Révész, P. (2012). On the area of the largest square covered by a comb-random-walk. In Asymptotic Methods in Stochastics. Fields Institute International Symposium on Asymptotic Methods in Stochastics, in Honour of Miklos Csörgi’s Work on the occasion of his 80th birthday, Ottawa, Canada. http://hdl.handle.net/20.500.12708/41307 ( reposiTUm)

Beiträge in Büchern

Révész, P. (2015). On the Area of the Largest Square Covered by a Comb-Random-Walk. In D. Dawson (Ed.), Asymptotic Laws and Methods in Stochastics (pp. 77–85). Springer New York. https://doi.org/10.1007/978-1-4939-3076-0_5 ( reposiTUm)

Bücher

Csörgő, M., & Révész, P. (Eds.). (2014). Strong Approximations in Probability and Statistics (eBook). Academic Press / Elsevier. http://hdl.handle.net/20.500.12708/24573 ( reposiTUm)
Révész, P. (2013). Random Walk in Random and Non-Random Environments (3rd Edition). World Scientific Publishing Company. http://hdl.handle.net/20.500.12708/23853 ( reposiTUm)