Wissenschaftliche Artikel

Csaki, E., Földes, A., & Révész, P. (2010). On the number of cutpoints of the transient nearest neighbor random walk on the line. Journal of Theoretical Probability, 23, 624–638. http://hdl.handle.net/20.500.12708/166979 ( reposiTUm)
Csaki, E., Csörgo, M., Földes, A., & Révész, P. (2010). On the supremum of iterated local time. PUBLICATIONES MATHEMATICAE DEBRECEN, 76/3, 255–270. http://hdl.handle.net/20.500.12708/166980 ( reposiTUm)
Révész, P. (2010). How short might be the longest run in a dynamical coin tossing sequence. PUBLICATIONES MATHEMATICAE DEBRECEN, 76/3, 347–358. http://hdl.handle.net/20.500.12708/166981 ( reposiTUm)
Csaki, E., Földes, A., & Révész, P. (2009). Transient Nearest Neighbor Random Walk on the Line. Journal of Theoretical Probability, 22, 100–122. http://hdl.handle.net/20.500.12708/165793 ( reposiTUm)
Csaki, E., Csörgo, M., Földes, A., & Révész, P. (2009). Random walk local time approximated by a Brownian sheet combined with an independent Brownian motion. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 45, 515–544. http://hdl.handle.net/20.500.12708/165794 ( reposiTUm)
Csaki, E., Földes, A., & Révész, P. (2008). On the local time of the asymmetric Bernoulli walk. Acta Sci.Math. (Szeged), 74, 349–379. http://hdl.handle.net/20.500.12708/170279 ( reposiTUm)
Csaki, E., Földes, A., & Révész, P. (2007). Joint asymptotic behavior of local and occupation times of random walk in higher dimension. Studia Scientiarum Mathematicarum Hungarica, 44, 535–563. http://hdl.handle.net/20.500.12708/170278 ( reposiTUm)
Csaki, E., Földes, A., & Révész, P. (2007). On the behavior of random walk around heavy points. Journal of Theoretical Probability, 20, 1041–1057. http://hdl.handle.net/20.500.12708/170277 ( reposiTUm)
Csaki, E., Földes, A., & Révész, P. (2007). On the local times of transient random walks. Acta Applicandae Mathematicae, 96, 147–158. http://hdl.handle.net/20.500.12708/170276 ( reposiTUm)
Csaki, E., Földes, A., & Révész, P. (2006). Heavy points of a d-dimensional simple random walk. Statistics and Probability Letters, 76, 45–57. http://hdl.handle.net/20.500.12708/171986 ( reposiTUm)
Csaki, E., Földes, A., & Révész, P. (2005). Maximal Local Time of a d-dimensional Simple Random Walk on Subsets. Journal of Theoretical Probability, 18(3), 687–717. http://hdl.handle.net/20.500.12708/171985 ( reposiTUm)
Csaki, E., Földes, A., Révész, P., Rosen, J., & Shi, Z. (2005). Frequently visited sets for random walks. Stochastic Processes and Their Applications, 115, 1503–1517. http://hdl.handle.net/20.500.12708/171984 ( reposiTUm)
Révész, P. (2004). Construction of random functions and path properties. Encyclopedia of Life Support Systems, UNESCO & AMP; EOLSS, WWW.EOLSS.NET. http://hdl.handle.net/20.500.12708/174478 ( reposiTUm)
Révész, P. (2004). Stochastic calculus. Encyclopedia of Life Support Systems, UNESCO & AMP; EOLSS, WWW.EOLSS.NET. http://hdl.handle.net/20.500.12708/174479 ( reposiTUm)
Révész, P. (2004). Stochastic Differential Equations. Encyclopedia of Life Support Systems, UNESCO & AMP; EOLSS, WWW.EOLSS.NET. http://hdl.handle.net/20.500.12708/174480 ( reposiTUm)
Révész, P. (2004). Tell Me the Values of a Wiener at Integers, I Tell You Its Local Time. Fields Institute Communications, 44, 89–95. http://hdl.handle.net/20.500.12708/174571 ( reposiTUm)
Révész, P. (2004). The Maximum of the Local Time of a Transient Random Walk. Studia Scientiarum Mathematicarum Hungarica, 41(4), 379–390. http://hdl.handle.net/20.500.12708/174572 ( reposiTUm)
Csaki, E., Révész, P., & Shi, Z. (2004). Large void zones and occupation times for coalescing random walks. Stochastic Processes and Their Applications, 111, 97–118. http://hdl.handle.net/20.500.12708/174573 ( reposiTUm)
Révész, P. (2004). A Prediction Problem of the Branching Random Walk. Journal of Applied Probability, 41A, 25–31. http://hdl.handle.net/20.500.12708/174574 ( reposiTUm)

Beiträge in Tagungsbänden

Révész, P. (2012). On the area of the largest square covered by a comb-random-walk. In Asymptotic Methods in Stochastics. Fields Institute International Symposium on Asymptotic Methods in Stochastics, in Honour of Miklos Csörgi’s Work on the occasion of his 80th birthday, Carleton University, Ottawa, Kanada, Non-EU. http://hdl.handle.net/20.500.12708/41307 ( reposiTUm)

Beiträge in Büchern

Révész, P. (2015). On the Area of the Largest Square Covered by a Comb-Random-Walk. In D. Dawson (Ed.), Asymptotic Laws and Methods in Stochastics (pp. 77–85). Springer New York. https://doi.org/10.1007/978-1-4939-3076-0_5 ( reposiTUm)

Bücher

Csörgő, M., & Révész, P. (Eds.). (2014). Strong Approximations in Probability and Statistics (eBook). Academic Press / Elsevier. http://hdl.handle.net/20.500.12708/24573 ( reposiTUm)
Révész, P. (2013). Random Walk in Random and Non-Random Environments (3rd Edition). World Scientific Publishing Company. http://hdl.handle.net/20.500.12708/23853 ( reposiTUm)