Wissenschaftliche Artikel

Recski, G., Iklodi, E., Lellmann, B., Kovács, Á., & Hanbury, A. (2024). BRISE-plandok: a German legal corpus of building regulations. Language Resources and Evaluation. https://doi.org/10.1007/s10579-024-09747-7 ( reposiTUm)
Rybinski, M., Kusa, W., Karimi, S., & Hanbury, A. (2024). Learning to match patients to clinical trials using large language models. Journal of Biomedical Informatics, 159, Article 104734. https://doi.org/10.1016/j.jbi.2024.104734 ( reposiTUm)
Heiler, G., Hanbury, A., & Filzmoser, P. (2023). The Impact of COVID-19 on Relative Changes in Aggregated Mobility Using Mobile-phone Data. Austrian Journal of Statistics, 52(4), 163–179. https://doi.org/10.17713/ajs.v52i4.1510 ( reposiTUm)
Kusa, W., Mendoza, Ó. E., Knoth, P., Pasi, G., & Hanbury, A. (2023). Effective matching of patients to clinical trials using entity extraction and neural re-ranking. Journal of Biomedical Informatics, 144, Article 104444. https://doi.org/10.1016/j.jbi.2023.104444 ( reposiTUm)
Kusa, W., Lipani, A., Knoth, P., & Hanbury, A. (2023). An analysis of work saved over sampling in the evaluation of automated citation screening in systematic literature reviews. Intelligent Systems with Applications, 18, Article 200193. https://doi.org/10.1016/j.iswa.2023.200193 ( reposiTUm)
Kovacs, P., Tran, F., Hanbury, A., & Madsen, G. K. H. (2022). Similarity Clustering for Representative Sets of Inorganic Solids for Density Functional Testing. Journal of Chemical Theory and Computation, 18(1), 441–447. https://doi.org/10.1021/acs.jctc.1c00536 ( reposiTUm)
Brassey, J., Price, C., Edwards, J., Zlabinger, M., Bampoulidis, A., & Hanbury, A. (2021). Developing a fully automated evidence synthesis tool for identifying, assessing and collating the evidence. BMJ Evidence-Based Medicine, 26(1), 24–27. https://doi.org/10.1136/bmjebm-2018-111126 ( reposiTUm)
Kromp, F., Fischer, L., Bozsaky, E., Ambros, I., Dörr, W., Beiske, K., Ambros, P., Hanbury, A., & Taschner-Mandl, S. (2021). Evaluation of Deep Learning architectures for complex immunofluorescence nuclear image segmentation. IEEE Transactions on Medical Imaging, 40(7), 1934–1949. https://doi.org/10.1109/tmi.2021.3069558 ( reposiTUm)
Reisch, T., Heiler, G., Hurt, J., Klimek, P., Hanbury, A., & Thurner, S. (2021). Behavioral gender differences are reinforced during the COVID-19 crisis. Scientific Reports, 11(19241). https://doi.org/10.1038/s41598-021-97394-1 ( reposiTUm)
Fink, T., Andersson, L., & Hanbury, A. (2021). Detecting Multi Word Terms in patents the same way as entities. World Patent Information, 67, Article 102078. https://doi.org/10.1016/j.wpi.2021.102078 ( reposiTUm)
Kromp, F., Bozsaky, E., Rifatbegovic, F., Fischer, L., Ambros, M., Berneder, M., Weiss, T., Lazic, D., Dörr, W., Hanbury, A., Beiske, K., Ambros, P. F., Ambros, I. M., & Tashner-Mandl, S. (2020). An annotated fluorescence image dataset for training nuclear image segmentation methods. Scientific Data, 7(262). https://doi.org/10.1038/s41597-020-00608-w ( reposiTUm)
Maier-Hein, L., Reinke, A., Kozubek, M., Martel, A. L., Arbel, T., Eisenmann, M., Hanbury, A., Jannin, P., Müller, H., Onogur, S., Saez-Rodriguez, J., van Ginneken, B., Kopp-Schneider, A., & Landman, B. A. (2020). BIAS: Transparent reporting of biomedical image analysis challenges. Medical Image Analysis, 66(101796), 101796. https://doi.org/10.1016/j.media.2020.101796 ( reposiTUm)
Palotti, J., Zuccon, G., & Hanbury, A. (2019). Consumer Health Search on the Web: Study of Web Page Understandability and Its Integration in Ranking Algorithms. Journal of Medical Internet Research, 21(1), Article e10986. https://doi.org/10.2196/10986 ( reposiTUm)
Palotti, J., Zuccon, G., & Hanbury, A. (2019). Consumer Health Search on the Web: Study of Web Page Understandability and Its Integration in Ranking Algorithms. Journal of Medical Internet Research, 21(1), 1–28. https://doi.org/10.2196/10986 ( reposiTUm)
Bhatti, N., Hanbury, A., & Stottinger, J. (2018). Contextual local primitives for binary patent image retrieval. Multimedia Tools and Applications, 77(7), 9111–9151. https://doi.org/10.1007/s11042-017-4808-5 ( reposiTUm)
Maier-Hein, L., Eisenmann, M., Reinke, A., Onogur, S., Stankovic, M., Scholz, P., Arbel, T., Bogunovic, H., Carass, A., Feldmann, C., F. Frangi, A., Full, P. M., van Ginneken, B., Hanbury, A., Honauer, K., Kozubek, M., Landman, B. A., März, K., & Kopp-Schneider, A. (2018). Why rankings of biomedical image analysis competitions should be interpreted with care. Nature Communications, 9(5217). https://doi.org/10.1038/s41467-018-07619-7 ( reposiTUm)
Lipani, A., Roelleke, T., Lupu, M., & Hanbury, A. (2018). A systematic approach to normalization in probabilistic models. Information Retrieval, 21(6), 565–596. https://doi.org/10.1007/s10791-018-9334-1 ( reposiTUm)
Hopfgartner, F., Hanbury, A., & Müller, H. (2018). Evaluation-as-a-Service for the Computational Sciences: Overview and Outlook. ACM Journal of Data and Information Quality, 10(4), 1–32. https://doi.org/10.1145/3239570 ( reposiTUm)
Auffray, C., Balling, R., Barroso, I., Bencze, L., Benson, M., Bergeron, J., Bernal-Delgado, E., Blomberg, N., Bock, C., Conesa, A., Del Signore, S., DELOGNE, C., Devilee, P., Di Meglio, A., Eijkemans, M., Flicek, P., Graf, N., Grimm, V., Hanbury, A., & Zanetti, G. (2016). Making sense of big data in health research: Towards an EU action plan. Genome Medicine, 8, Article 71. https://doi.org/10.1186/s13073-016-0323-y ( reposiTUm)
Jimenez del Toro, O. A., Müller, H., Krenn, M., Grünberg, K., Taha, A. A., Winterstein, M., Eggel, I., Foncubierta-Rodríguez, A., Goksel, O., Jakab, A., Kontokotsios, G., Langs, G., Menze, B. H., Fernandez, T. S., Schaer, R., Walleyo, A., Weber, M.-A., Dicente Cid, Y., Gass, T., & Hanbury, A. (2016). Cloud-Based Evaluation of Anatomical Structure Segmentation and Landmark Detection Algorithms: VISCERAL Anatomy Benchmarks. IEEE Transactions on Medical Imaging, 35(11), 2459–2475. https://doi.org/10.1109/tmi.2016.2578680 ( reposiTUm)
Taha, A. A., & Hanbury, A. (2015). Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Medical Imaging. https://doi.org/10.1186/s12880-015-0068-x ( reposiTUm)
Taha, A. A., & Hanbury, A. (2015). An Efficient Algorithm for Calculating the Exact Hausdorff Distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(11), 2153–2163. https://doi.org/10.1109/tpami.2015.2408351 ( reposiTUm)
Alsallakh, B., Hanbury, A., Hauser, H., Miksch, S., & Rauber, A. (2014). Visual Methods for Analyzing Probabilistic Classification Data. IEEE Transactions on Visualization and Computer Graphics, 20(12), 1703–1712. https://doi.org/10.1109/tvcg.2014.2346660 ( reposiTUm)
Khan, R., Hanbury, A., Sablatnig, R., Stöttinger, J., Khan, F. A., & Khan, F. A. (2014). Systematic skin segmentation: merging spatial and non-spatial data. Multimedia Tools and Applications, 69(3), 717–741. https://doi.org/10.1007/s11042-012-1124-y ( reposiTUm)
Stöttinger, J., Hanbury, A., Sebe, N., & Gevers, T. (2012). Sparse Color Interest Points for Image Retrieval and Object Categorization. IEEE Transactions on Image Processing, 21(5), 2681–2692. https://doi.org/10.1109/tip.2012.2186143 ( reposiTUm)
Ferro, N., Berendsen, R., Hanbury, A., Lupu, M., Petras, V., de Rijke, M., & Silvello, G. (2012). PROMISE retreat report prospects and opportunities for information access evaluation. ACM SIGIR Forum, 46(2), 60–84. https://doi.org/10.1145/2422256.2422265 ( reposiTUm)
Khan, R., Hanbury, A., Sablatnig, R., Stöttinger, J., Khan, F. A., & Khan, F. A. (2012). Systematic skin segmentation: merging spatial and non-spatial data. Multimedia Tools and Applications, 69(3), 717–741. https://doi.org/10.1007/s11042-012-1124-y ( reposiTUm)
Khan, R., Hanbury, A., Stöttinger, J., & Bais, A. (2012). Color based skin classification. Pattern Recognition Letters, 33(2), 157–163. https://doi.org/10.1016/j.patrec.2011.09.032 ( reposiTUm)
Ferro, N., Hanbury, A., Müller, H., & Santucci, G. (2011). Harnessing the Scientific Data Produced by the Experimental Evaluation Search Engines and Information Access Systems. Procedia Computer Science, 4, 740–749. https://doi.org/10.1016/j.procs.2011.04.078 ( reposiTUm)
Hanbury, A., & Marcotegui, B. (2009). Morphological segmentation on learned boundaries. Image and Vision Computing, 27(4), 480–488. http://hdl.handle.net/20.500.12708/166247 ( reposiTUm)
Hanbury, A. (2008). Constructing cylindrical coordinate colour spaces. Pattern Recognition Letters, 29, 494–500. http://hdl.handle.net/20.500.12708/170817 ( reposiTUm)
Hanbury, A. (2008). A survey of methods for image annotation. Journal of Visual Languages and Computing, 19, 617–627. http://hdl.handle.net/20.500.12708/170818 ( reposiTUm)
Kampel, M., Wildenauer, H., Blauensteiner, P., & Hanbury, A. (2007). Improved motion segmentation based on shadow detection. Electronic Letters on Computer Vision and Image Analysis, 6(3), 12. http://hdl.handle.net/20.500.12708/169685 ( reposiTUm)

Beiträge in Tagungsbänden

Ningtyas, A. M., El-Ebshihy, A., Piroi, F., & Hanbury, A. (2024). Improving Laypeople Familiarity with Medical Terms by Informal Medical Entity Linking. In Experimental IR Meets Multilinguality, Multimodality, and Interaction : 15th International Conference of the CLEF Association, CLEF 2024, Grenoble, France, September 9–12, 2024, Proceedings, Part I (pp. 113–126). https://doi.org/10.1007/978-3-031-71736-9_6 ( reposiTUm)
Staudinger, M., Kusa, W., Piroi, F., & Hanbury, A. (2024). An Analysis of Tasks and Datasets in Peer Reviewing. In Proceedings of the Fourth Workshop on Scholarly Document Processing (SDP 2024) (pp. 257–268). Association for Computational Linguistics. ( reposiTUm)
Staudinger, M., Kern, B. M. J., Miksa, T., Arnhold, L., Knees, P., Rauber, A., & Hanbury, A. (2024). Mission Reproducibility: An Investigation on Reproducibility Issues in Machine Learning and Information Retrieval Research. In Proceedings 2024 IEEE 20th International Conference on e-Science (e-Science). IEEE eScience 2024, Osaka, Japan. IEEE. https://doi.org/10.1109/e-Science62913.2024.10678657 ( reposiTUm)
Staudinger, M., El-Ebshihy, A., Ningtyas, A. M., Piroi, F., & Hanbury, A. (2024). AMATU@Simpletext2024: Are LLMs Any Good for Scientific Leaderboard Extraction? : Notebook for the SimpleText Lab at CLEF 2024. In G. Faggioli, N. Ferro, P. Galuščáková, & A. Garcia Seco de Herrera (Eds.), CLEF 2024 Working Notes: Working Notes of the Conference and Labs of the Evaluation Forum (CLEF 2024) (pp. 3300–3316). ( reposiTUm)
Krestel, R., Aras, H., Andersson, L., Piroi, F., Hanbury, A., & Alderucci, D. (2024). 5th Workshop on Patent Text Mining and Semantic Technologies (PatentSemTech2024). In SIGIR ’24: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 3021–3024). Association for Computing Machinery. https://doi.org/10.1145/3626772.3657986 ( reposiTUm)
Pachinger, P., Goldzycher, J., Planitzer, A. M., Kusa, W., Hanbury, A., & Neidhardt, J. (2024). AustroTox: A Dataset for Target-Based Austrian German Offensive Language Detection. In The 62nd Annual Meeting of the Association for Computational Linguistics : Findings of the Association for Computational Linguistics: ACL 2024 (pp. 11990–12001). Association for Computational Linguistics. https://doi.org/10.18653/v1/2024.findings-acl.713 ( reposiTUm)
Arzt, V., & Hanbury, A. (2024). Beyond the Numbers: Transparency in Relation Extraction Benchmark Creation and Leaderboards. In D. Hupkes, V. Dankers, K. Batsuren, A. Kazemnejad, C. Christodoulopoulos, M. Giulianelli, & R. Cotterel (Eds.), Proceedings of the 2nd GenBench Workshop on Generalisation (Benchmarking) in NLP (pp. 120–130). Association for Computational Linguistics. https://doi.org/10.18653/v1/2024.genbench-1.8 ( reposiTUm)
Staudinger, M., Kusa, W., Piroi, F., Lipani, A., & Hanbury, A. (2024). A Reproducibility and Generalizability Study of Large Language Models for Query Generation. In SIGIR-AP 2024: Proceedings of the 2024 Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region (pp. 186–196). The Association for Computing Machinery. https://doi.org/10.1145/3673791.3698432 ( reposiTUm)
Kusa, W., Peikos, G., Staudinger, M., Lipani, A., & Hanbury, A. (2024). Normalised Precision at Fixed Recall for Evaluating TAR. In ICTIR ’24: Proceedings of the 2024 ACM SIGIR International Conference on Theory of Information Retrieval (pp. 43–49). Association for Computing Machinery. https://doi.org/10.1145/3664190.3672532 ( reposiTUm)
Styll, P., Kusa, W., & Hanbury, A. (2024). Enhancing Clinical Data Capture: Developing a Natural Language Processing Pipeline for Converting Free Text Admission Notes to Structured EHR Data. In NL4AI 2024: Eight Workshop on Natural Language for Artificial Intelligence. NL4AI 2024: Eight Workshop on Natural Language for Artificial Intelligence, Bolzano, Italy. http://hdl.handle.net/20.500.12708/210208 ( reposiTUm)
Styll, P., Campillos-Llanos, L., Kusa, W., & Hanbury, A. (2024). Cross-Linguistic Disease and Drug Detection in Cardiology Clinical Texts: Methods and Outcomes. In Working Notes of the Conference and Labs of the Evaluation Forum (CLEF 2024) (pp. 223–244). http://hdl.handle.net/20.500.12708/210253 ( reposiTUm)
Banyasz, D., Hofstätter, S., & Hanbury, A. (2023). Search in Archival Facsimile Documents for Digital History. In 2023 IEEE 19th International Conference on e-Science (e-Science). IEEE 19th International Conference on eScience 2023, Limassol, Cyprus. IEEE. https://doi.org/10.1109/e-Science58273.2023.10254826 ( reposiTUm)
Dhrangadhariya, A., Kusa, W., Müller, H., & Hanbury, A. (2023). HEVS-TUW at SemEval-2023 Task 8: Ensemble of Language Models and Rule-based Classifiers for Claims Identification and PICO Extraction. In The 17th International Workshop on Semantic Evaluation (SemEval-2023). Proceedings of the Workshop (pp. 1776–1782). Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.semeval-1.246 ( reposiTUm)
Kusa, W., Zuccon, G., Knoth, P., & Hanbury, A. (2023). Outcome-based evaluation of systematic review automation. In ICTIR ’23: Proceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval (pp. 125–133). Association for Computing Machinery. https://doi.org/10.1145/3578337.3605135 ( reposiTUm)
Kusa, W., Knoth, P., & Hanbury, A. (2023). CRUISE-Screening: Living Literature Reviews Toolbox. In CIKM ’23: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (pp. 5071–5075). Association for Computing Machinery. https://doi.org/10.1145/3583780.3614736 ( reposiTUm)
Darmanovic, F., Hanbury, A., & Zlabinger, M. (2023). SCI-3000: A Dataset for Figure, Table and Caption Extraction from Scientific PDFs. In G. Fink, R. Jain, K. Kise, & R. Zanibbi (Eds.), Document Analysis and Recognition - ICDAR 2023 : 17th International Conference, San José, CA, USA, August 21–26, 2023, Proceedings, Part I (pp. 234–251). Springer Cham. https://doi.org/10.1007/978-3-031-41676-7_14 ( reposiTUm)
Althammer, S., Zuccon, G., Hofstätter, S., Verberne, S., & Hanbury, A. (2023). Annotating Data for Fine-Tuning a Neural Ranker? Current Active Learning Strategies are not Better than Random Selection. In Q. Ai, L. Liu, & A. Moffat (Eds.), SIGIR-AP ’23: Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region (pp. 139–149). Association for Computing Machinery. https://doi.org/10.1145/3624918.3625333 ( reposiTUm)
Ghafourian, Y., Hanbury, A., & Knoth, P. (2023). Readability Measures as Predictors of Understandability and Engagement in Searching to Learn. In O. Alonso, H. Cousijn, G. Silvello, M. Marrero, C. T. Lopes, & S. MARCHESIN (Eds.), Linking Theory and Practice of Digital Libraries: 27th International Conference on Theory and Practice of Digital Libraries, TPDL 2023, Zadar, Croatia, September 26–29, 2023, Proceedings (pp. 173–181). Springer. https://doi.org/10.1007/978-3-031-43849-3_15 ( reposiTUm)
Pachinger, P., Hanbury, A., Neidhardt, J., & Planitzer, A. M. (2023). Toward Disambiguating the Definitions of Abusive, Offensive, Toxic, and Uncivil Comments. In Proceedings of the First Workshop on Cross-Cultural Considerations in NLP (C3NLP) (pp. 107–113). https://doi.org/10.18653/v1/2023.c3nlp-1.11 ( reposiTUm)
Kusa, W., Lipani, A., Knoth, P., & Hanbury, A. (2023). VoMBaT: a tool for visualising evaluation measure behaviour in high-recall search tasks. In SIGIR ’23: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 3105–3109). Association for Computing Machinery. https://doi.org/10.1145/3539618.3591802 ( reposiTUm)
Kusa, W., Styll, P., Seeliger, M., Espitia Mendoza, Ó., & Hanbury, A. (2023). DoSSIER at TREC 2023 Clinical Trials Track. In I. Soboroff (Ed.), The Thirty-Second Text REtrieval Conference (TREC 2023) Conference Proceedings. NIST. https://doi.org/10.34726/7159 ( reposiTUm)
Kusa, W., Mendoza, Ó. E., Samwald, M., Knoth, P., & Hanbury, A. (2023). CSMeD: Bridging the Dataset Gap in Automated Citation Screening for Systematic Literature Reviews. In 37th Conference on Neural Information Processing Systems (NeurIPS 2023), Datasets and Benchmarks Track (pp. 1–17). http://hdl.handle.net/20.500.12708/192629 ( reposiTUm)
Ghafourian, Y., Hanbury, A., & Knoth, P. (2023). Ranking for Learning: Studying Users’ Perceptions of Relevance, Understandability, and Engagement. In O. Alonso, H. Cousijn, G. Silvello, M. Marrero, C. T. Lopes, & S. Marchesin (Eds.), Linking Theory and Practice of Digital Libraries: 27th International Conference on Theory and Practice of Digital Libraries, TPDL 2023, Zadar, Croatia, September 26–29, 2023, Proceedings (pp. 284–291). Springer. https://doi.org/10.1007/978-3-031-43849-3_25 ( reposiTUm)
Althammer, S., Hofstätter, S., Verberne, S., & Hanbury, A. (2022). TripJudge: A Relevance Judgement Test Collection for TripClick Health Retrieval. In CIKM ’22: Proceedings of the 31st ACM International Conference on Information & Knowledge Management (pp. 3801–3805). https://doi.org/10.1145/3511808.3557714 ( reposiTUm)
Althammer, S., Hofstätter, S., Sertkan, M., Verberne, S., & Hanbury, A. (2022). PARM: A Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval. In Advances in Information Retrieval (pp. 19–34). Springer. https://doi.org/10.1007/978-3-030-99736-6_2 ( reposiTUm)
Hofstätter, S., Althammer, S., Sertkan, M., & Hanbury, A. (2022). A Time-Optimized Content Creation Workflow for Remote Teaching. In SIGCSE 2022: Proceedings of the 53rd ACM Technical Symposium on Computer Science Education (pp. 731–737). Association for Computing Machinery. https://doi.org/10.1145/3478431.3499421 ( reposiTUm)
Kusa, W., Hanbury, A., & Knoth, P. (2022). Automation of Citation Screening for Systematic Literature Reviews Using Neural Networks: A Replicability Study. In M. Hagen, S. Verberne, C. Macdonald, C. Seifert, K. Balog, K. Norvag, & V. Setty (Eds.), Advances in Information Retrieval. 44th European Conference on IR Research, ECIR 2022, Stavanger, Norway, April 10–14, 2022, Proceedings, Part I (pp. 584–598). Springer. https://doi.org/10.34726/4261 ( reposiTUm)
Ningtyas, A. M., El-Ebshihy, A., Herwanto, G. B., Piroi, F., & Hanbury, A. (2022). Leveraging Wikipedia Knowledge for Distant Supervision in Medical Concept Normalization. In Experimental IR Meets Multilinguality, Multimodality, and Interaction (pp. 33–47). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-13643-6_3 ( reposiTUm)
Mendoza, O., Kusa, W., El-Ebshihy, A. M., Wu, R., Pride, D., Knoth, P., Herrmannova, D., Piroi, F., Pasi, G., & Hanbury, A. (2022). Benchmark for Research Theme Classification of Scholarly Documents. In Proceedings of the Workshop. Third Workshop on Scholarly Document Processing (pp. 253–262). Association for Computational Linguistics. https://doi.org/10.34726/4521 ( reposiTUm)
Kusa, W., Peikos, G., Espitia Mendoza, Ó., Hanbury, A., & Pasi, G. (2022). DoSSIER at MedVidQA 2022: Text-based Approaches to Medical Video Answer Localization Problem. In Proceedings of the 21st Workshop on Biomedical Language Processing (pp. 432–440). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.bionlp-1.43 ( reposiTUm)
Hofstätter, S., Khattab, O., Althammer, S., Sertkan, M., & Hanbury, A. (2022). Introducing Neural Bag of Whole-Words with ColBERTer: Contextualized Late Interactions using Enhanced Reduction. In CIKM ’22: Proceedings of the 31st ACM International Conference on Information & Knowledge Management (pp. 737–747). Association for Computing Machinery (ACM). https://doi.org/10.1145/3511808.3557367 ( reposiTUm)
Krestel, R., Aras, H., Andersson, L., Piroi, F., Hanbury, A., & Alderucci, D. (2022). 3rd Workshop on Patent Text Mining and Semantic Technologies (PatentSemTech2022). In SIGIR ’22: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 3474–3477). Association for Computing Machinery. https://doi.org/10.1145/3477495.3531702 ( reposiTUm)
Rekabsaz, N., West, R., Henderson, J., & Hanbury, A. (2021). Measuring Societal Biases from Text Corpora with Smoothed First-Order Co-occurrence. In Proceedings of the International AAAI Conference on Web and Social Media (pp. 549–560). AAAI Press. http://hdl.handle.net/20.500.12708/55690 ( reposiTUm)
Bogensperger, J., Schlarb, S., Hanbury, A., & Recski, G. (2021). DreamDrug - A crowdsourced NER dataset for detecting drugs in darknet markets. In Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021). The Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.wnut-1.17 ( reposiTUm)
Recski, G., Lellmann, B., Kovacs, A., & Hanbury, A. (2021). Explainable Rule Extraction via Semantic Graphs. In Proceedings of the Fifth Workshop on Automated Semantic Analysis of Information in Legal Text (ASAIL 2021) (pp. 24–35). CEUR-WS.org. http://hdl.handle.net/20.500.12708/58465 ( reposiTUm)
Althammer, S., Askari, A., Verberne, S., & Hanbury, A. (2021). DoSSIER@COLIEE 2021: Leveraging dense retrieval and summarization-based re-ranking for case law retrieval. In Proceedings of the Eighth International Competition on Legal Information Extraction/Entailment (COLIEE) (pp. 8–14). http://hdl.handle.net/20.500.12708/58761 ( reposiTUm)
Ningtyas, A. M., El-Ebshihy, A., Piroi, F., Andersson, L., & Hanbury, A. (2021). TUW-IFS at TREC NEWS 2020 Wikification Task. In The Twenty-Ninth Text REtrieval Conference (TREC 2020) Proceedings (pp. 1–10). NIST. http://hdl.handle.net/20.500.12708/58735 ( reposiTUm)
Hofstätter, S., Lipani, A., Althammer, S., Zlabinger, M., & Hanbury, A. (2021). Mitigating the Position Bias of Transformer Models in Passage Re-ranking. In Advances in Information Retrieval (pp. 238–253). springer. https://doi.org/10.1007/978-3-030-72113-8_16 ( reposiTUm)
Althammer, S., Hofstätter, S., & Hanbury, A. (2021). Cross-Domain Retrieval in the Legal and Patent Domains: A Reproducibility Study. In Advances in Information Retrieval (pp. 3–17). springer. https://doi.org/10.1007/978-3-030-72240-1_1 ( reposiTUm)
Hofstätter, S., Mitra, B., Zamani, H., Craswell, N., & Hanbury, A. (2021). Intra-Document Cascading : Learning to Select Passages for Neural Document Ranking. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR 2021 - The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, online, Unknown. ACM. https://doi.org/10.1145/3404835.3462889 ( reposiTUm)
Hofstätter, S., Lin, S.-C., Yang, J.-H., Lin, J., & Hanbury, A. (2021). Efficiently Teaching an Effective Dense Retriever with Balanced Topic Aware Sampling. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR 2021 - The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, online, Unknown. ACM. https://doi.org/10.1145/3404835.3462891 ( reposiTUm)
Ningtyas, A. M., Piroi, F., Andersson, L., & Hanbury, A. (2021). Data Augmentation for Layperson’s Medical Entity Linking Task. In FIRE ’21: Proceedings of the 13th Annual Meeting of the Forum for Information Retrieval Evaluation (pp. 99–106). https://doi.org/10.1145/3503162.3503172 ( reposiTUm)
Krestel, R., Aras, H., Andersson, L., Piroi, F., Hanbury, A., & Alderucci, D. (2021). 2nd Workshop on Patent Text Mining and Semantic Technologies (PatentSemTech2021). In F. Diaz, C. Shah, & T. Suel (Eds.), Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 2693–2696). https://doi.org/10.1145/3404835.3462816 ( reposiTUm)
Zlabinger, M., Sabou, M., Hofstätter, S., & Hanbury, A. (2020). Effective Crowd-Annotation of Participants, Interventions, and Outcomes in the Text of Clinical Trial Reports. In T. Cohn, Y. He, & Y. Liu (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2020. The Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.findings-emnlp.274 ( reposiTUm)
Zlabinger, M., Hofstätter, S., Rekabsaz, N., & Hanbury, A. (2020). DSR: A Collection for the Evaluation of Graded Disease-Symptom Relations. In Advances in Information Retrieval 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part II (pp. 433–440). Springer Nature Switzerland AG 2021. https://doi.org/10.1007/978-3-030-45442-5_54 ( reposiTUm)
Hofstätter, S., Zlabinger, M., & Hanbury, A. (2020). Neural-IR-Explorer: A Content-Focused Tool to Explore Neural Re-ranking Results. In Advances in Information Retrieval 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part II (pp. 459–464). Springer. https://doi.org/10.1007/978-3-030-45442-5_58 ( reposiTUm)
Heiler, G., & Hanbury, A. (2020). Comparing Implementation Variants Of Distributed Spatial Join on Spark. In 2019 IEEE International Conference on Big Data (Big Data) (pp. 6071–6073). http://hdl.handle.net/20.500.12708/58397 ( reposiTUm)
Zlabinger, M., Sabou, M., Hofstätter, S., Sertkan, M., & Hanbury, A. (2020). DEXA: Supporting Non-Expert Annotators with Dynamic Examples from Experts. In J. Huang & Y. Chang (Eds.), Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Association for Computing Machinery, New York, NY, United States. https://doi.org/10.1145/3397271.3401334 ( reposiTUm)
Hofstätter, S., Lipani, A., Zlabinger, M., & Hanbury, A. (2020). Learning to Re-Rank with Contextualized Stopwords. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management. CIKM 2020: International Conference on Information & Knowledge Management 2020, Virtual Event, Ireland. https://doi.org/10.1145/3340531.3412079 ( reposiTUm)
Hofstätter, S., Zamani, H., Mitra, B., Craswell, N., & Hanbury, A. (2020). Local Self-Attention over Long Text for Efficient Document Retrieval. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR 2020 - 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi’an, China. Association for Computing Machinery, New York, NY, United States. https://doi.org/10.1145/3397271.3401224 ( reposiTUm)
Hofstätter, S., Zlabinger, M., Sertkan, M., Schröder, M., & Hanbury, A. (2020). Fine-Grained Relevance Annotations for Multi-Task Document Ranking and Question Answering. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management. CIKM 2020: International Conference on Information & Knowledge Management 2020, Virtual Event, Ireland. Association for Computing Machinery. https://doi.org/10.1145/3340531.3412878 ( reposiTUm)
Hofstätter, S., Zlabinger, M., & Hanbury, A. (2020). Interpretable & time-budget-constrained contextualization for re-ranking. In ECAI 2020 24th European Conference on Artificial Intelligence, 29 August-8 September 2020, Santiago de Compostela, Spain - Including 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020) (pp. 1–8). IOS Press. http://hdl.handle.net/20.500.12708/55598 ( reposiTUm)
Fink, T., Andersson, L., & Hanbury, A. (2019). Detecting MultiWord Terms in Patents the same way as Named Entities. In Proceedings of The 1st Workshop on Patent Text Mining and Semantic Technologies (PatentSemTech 2019). 1st Workshop on Patent Text Mining and Semantic Technologies (PatentSemTech 2019), Karlsruhe, Germany. https://doi.org/10.34726/pst2019.3 ( reposiTUm)
Zlabinger, M., Rekabsaz, N., Zlabinger, S., & Hanbury, A. (2019). Efficient Answer-Annotation for Frequent Questions. In Experimental IR Meets Multilinguality, Multimodality, and Interaction 10th International Conference of the CLEF Association, CLEF 2019, Lugano, Switzerland, September 9–12, 2019, Proceedings (pp. 126–137). Springer. https://doi.org/10.1007/978-3-030-28577-7_8 ( reposiTUm)
Hofstätter, S., Rekabsaz, N., Lupu, M., Eickhoff, C., & Hanbury, A. (2019). Enriching Word Embeddings for Patent Retrieval with Global Context. In Advances in Information Retrieval 41st European Conference on IR Research, ECIR 2019, Cologne, Germany, April 14–18, 2019, Proceedings, Part I (pp. 810–818). Springer, Cham. https://doi.org/10.1007/978-3-030-15712-8_57 ( reposiTUm)
Hofstätter, S., & Hanbury, A. (2019). Let’s measure run time! Extending the IR replicability infrastructure to include performance aspects. In Proceedings of the Open-Source IR Replicability Challenge (OSIRRC 2019) co-located with 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2019) (pp. 12–16). http://hdl.handle.net/20.500.12708/57413 ( reposiTUm)
Hofstätter, S., Rekabsaz, N., Eickhoff, C., & Hanbury, A. (2019). On the Effect of Low-Frequency Terms on Neural-IR Models. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’19: The 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France. Association for Computing Machinery. https://doi.org/10.1145/3331184.3331344 ( reposiTUm)
Zlabinger, M., Andersson, L., Hanbury, A., Andersson, M., Quasnik, V., & Brassey, J. (2018). Medical Entity Corpus with PICO elements and Sentiment Analysis. In LREC 2018, Eleventh International Conference on Language Resources and Evaluation (pp. 292–296). International Conference on Language Resources and Evaluation. http://hdl.handle.net/20.500.12708/57568 ( reposiTUm)
Palotti, J., Zuccon, G., & Hanbury, A. (2018). A New Framework for Multidimensional Evaluation of Search Engines. In Proc. 27th ACM International Conference on Information and Knowledge Management (CIKM 2018) (pp. 1699–1702). ACM Digital Library. http://hdl.handle.net/20.500.12708/57730 ( reposiTUm)
Lipani, A., Lupu, M., & Hanbury, A. (2017). Visual Pool. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM. https://doi.org/10.1145/3077136.3084146 ( reposiTUm)
Taha, A. A., Piroi, F., Hanbury, A., Tropper, T., Mutzl, T., & Shehata, H. (2017). Message ranking in a factory setting using context and user preference. In 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE. https://doi.org/10.1109/etfa.2017.8247708 ( reposiTUm)
Lipani, A., Palotti, J., Lupu, M., Piroi, F., Zuccon, G., & Hanbury, A. (2017). Fixed-Cost Pooling Strategies Based on IR Evaluation Measures. In Advances in Information Retrieval 39th European Conference on IR Research, ECIR 2017, Aberdeen, UK, April 8-13, 2017, Proceedings (pp. 357–368). Springer Nature Switzerland AG 2021. https://doi.org/10.1007/978-3-319-56608-5_28 ( reposiTUm)
Lipani, A., Lupu, M., Palotti, J., Zuccon, G., & Hanbury, A. (2017). Fixed budget pooling strategies based on fusion methods. In Proceedings of the Symposium on Applied Computing. ACM. https://doi.org/10.1145/3019612.3019692 ( reposiTUm)
Rekabsaz, N., Lupu, M., Hanbury, A., & Zuccon, G. (2017). Exploration of a Threshold for Similarity Based on Uncertainty in Word Embedding. In Advances in Information Retrieval 39th European Conference on IR Research, ECIR 2017, Aberdeen, UK, April 8-13, 2017, Proceedings (pp. 396–409). Springer, Cham. https://doi.org/10.1007/978-3-319-56608-5_31 ( reposiTUm)
Bampoulidis, A., Palotti, J., Lupu, M., Brassey, J., & Hanbury, A. (2017). Does Online Evaluation Correspond to Offline Evaluation in Query Auto Completion? In Advances in Information Retrieval (pp. 713–719). Springer. http://hdl.handle.net/20.500.12708/56925 ( reposiTUm)
Andersson, L., Rekabsaz, N., & Hanbury, A. (2017). Automatic query expansion for patent passage retrieval using paradigmatic and syntagmatic information. In The first WiNLP Workshop co-located with with the Annual Meeting of the Association for Computational Linguistics (ACL 2017), Vancouver (p. 4). http://hdl.handle.net/20.500.12708/57020 ( reposiTUm)
Rekabsaz, N., Lupu, M., Baklanov, A., Dür, A., Andersson, L., & Hanbury, A. (2017). Volatility Prediction using Financial Disclosures Sentiments with            Word Embedding-based IR Models. In Proceedings of the 55th Annual Meeting of the Association for          Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Vancouver, Canada. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. https://doi.org/10.18653/v1/p17-1157 ( reposiTUm)
Rekabsaz, N., Lupu, M., Hanbury, A., & Zamani, H. (2017). Word Embedding Causes Topic Shifting; Exploit Global Context! In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku , Tokyo, Japan. ACM. https://doi.org/10.1145/3077136.3080733 ( reposiTUm)
Zlabinger, M., & Hanbury, A. (2017). Finding duplicate images in biology papers. In Proceedings of the Symposium on Applied Computing. Symposium on Applied Computing (SAC), Marrakech, Morocco. SAC ’17 Proceedings of the Symposium on Applied Computing. https://doi.org/10.1145/3019612.3019875 ( reposiTUm)
Zuccon, G., Palotti, J., & Hanbury, A. (2016). Query Variations and their Effect on Comparing Information Retrieval Systems. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. ACM. https://doi.org/10.1145/2983323.2983723 ( reposiTUm)
Palotti, J., Zuccon, G., Bernhardt, J., Hanbury, A., & Goeuriot, L. (2016). Assessors Agreement: A Case Study Across Assessor Type, Payment Levels, Query Variations and Relevance Dimensions. In Experimental IR Meets Multilinguality, Multimodality, and Interaction 7th International Conference of the CLEF Association, CLEF 2016, Évora, Portugal, September 5-8, 2016, Proceedings (pp. 40–53). Springer. https://doi.org/10.1007/978-3-319-44564-9_4 ( reposiTUm)
Palotti, J., Goeuriot, L., Zuccon, G., & Hanbury, A. (2016). Ranking Health Web Pages with Relevance and Understandability. In Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. ACM, Austria. ACM. https://doi.org/10.1145/2911451.2914741 ( reposiTUm)
Kromp, F., Ambros, P., Ambros, I., Weiss, T., & Hanbury, A. (2016). Machine Learning Framework incorporating Expert Knowledge in Tissue Image Annotation. In Proceedings of the ICPR 2016 (p. 5). IEEE. http://hdl.handle.net/20.500.12708/56894 ( reposiTUm)
Andersson, L., Lupu, M., Palotti, J., Hanbury, A., & Rauber, A. (2016). When is the Time Ripe for Natural Language Processing for Patent Passage Retrieval? In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. Acm Dl. https://doi.org/10.1145/2983323.2983858 ( reposiTUm)
Lipani, A., Zuccon, G., Lupu, M., Koopman, B., & Hanbury, A. (2016). The Impact of Fixed-Cost Pooling Strategies on Test Collection Bias. In Proceedings of the 2016 ACM on International Conference on the Theory of Information Retrieval (pp. 105–108). ACM. http://hdl.handle.net/20.500.12708/56639 ( reposiTUm)
Lipani, A., Lupu, M., Kanoulas, E., & Hanbury, A. (2016). The Solitude of Relevant Documents in the Pool. In Proceedings of the 2016 ACM on International Conference on the Theory of Information Retrieval (pp. 1989–1992). ACM. http://hdl.handle.net/20.500.12708/56640 ( reposiTUm)
Rekabsaz, N., Sabetghadam, S., Andersson, L., Lupu, M., & Hanbury, A. (2016). Standard Test Collection for English-Persian Cross-Lingual Word Sense Disambiguation. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016). Tenth International Conference on Language Resources and Evaluation (LREC 2016), Portoroz, Slovenia. European Language Resources Association (ELRA). http://hdl.handle.net/20.500.12708/56635 ( reposiTUm)
Bampoulidis, A., Palotti, J., Brassey, J., Lupu, M., Metallidis, S., & Hanbury, A. (2016). Interactive exploration of healthcare queries. In 2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI). 14th International Workshop on Content-based Multimedia Indexing, Bukarest, Romania. IEEE. https://doi.org/10.1109/cbmi.2016.7500275 ( reposiTUm)
Rekabsaz, N., Lupu, M., Hanbury, A., & Bhaskar, M. (2016). Toward Incorporation of Relevant Documents in word2vec. In Neu-IR Workshop at the ACM Conference on Research and Development in Information Retrieval. Neu-IR Workshop, Pisa, Italy. http://hdl.handle.net/20.500.12708/57150 ( reposiTUm)
Rekabsaz, N., Lupu, M., Hanbury, A., & Zuccon, G. (2016). Generalizing Translation Models in the Probabilistic Relevance Framework. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. 25th ACM International on Conference on Information and Knowledge Management (CIKM), Indianapolis, United States of America (the). ACM. https://doi.org/10.1145/2983323.2983833 ( reposiTUm)
Lipani, A., Lupu, M., & Hanbury, A. (2016). The Curious Incidence of Bias Corrections in the Pool. In Advances in Information Retrieval 38th European Conference on IR Research, ECIR 2016, Padua, Italy, March 20-23, 2016. Proceedings (pp. 267–279). Springer. https://doi.org/10.1007/978-3-319-30671-1_20 ( reposiTUm)
Bierig, R., Hanbury, A., Piroi, F., Haas, M., Berger, H., Lupu, M., & Dittenbach, M. (2015). A Researcher’s View on (Big) Data Analytics in Austria Results from an Online Survey. In M. Helfert, A. Holzinger, O. Belo, & C. Francalanci (Eds.), Communications in Computer and Information Science (pp. 45–61). Springer International Publishing. https://doi.org/10.1007/978-3-319-25936-9_4 ( reposiTUm)
Sierek, T., & Hanbury, A. (2015). Using Health Statistics to Improve Medical and Health Search. In Experimental IR Meets Multilinguality, Multimodality, and Interaction (pp. 287–292). Springer. http://hdl.handle.net/20.500.12708/55929 ( reposiTUm)
Lipani, A., Lupu, M., & Hanbury, A. (2015). Splitting Water. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM. https://doi.org/10.1145/2766462.2767749 ( reposiTUm)
Lipani, A., Lupu, M., Hanbury, A., & Aizawa, A. (2015). Verboseness Fission for BM25 Document Length Normalization. In Proceedings of the 2015 International Conference on The Theory of Information Retrieval. ACM. https://doi.org/10.1145/2808194.2809486 ( reposiTUm)
Lipani, A., Lupu, M., Aizawa, A., & Hanbury, A. (2015). An Initial Analytical Exploration of Retrievability. In Proceedings of the 2015 International Conference on The Theory of Information Retrieval. ACM, Austria. ACM. https://doi.org/10.1145/2808194.2809495 ( reposiTUm)
Nopp, C., & Hanbury, A. (2015). Detecting Risks in the Banking System by Sentiment Analysis. In Proceedings of the EMNLP 2015 (pp. 591–600). The Association for Computational Linguistics. http://hdl.handle.net/20.500.12708/56271 ( reposiTUm)
Rekabsaz, N., Bierig, R., Lupu, M., & Hanbury, A. (2015). Toward Optimized Multimodal Concept Indexing. In J. Cardoso, F. Guerra, G.-J. Houben, A. M. Pinto, & Y. Velegrakis (Eds.), Semantic Keyword-based Search on Structured Data Sources: First COST Action IC1302 International KEYSTONE Conference, IKC 2015, Coimbra, Portugal, September 8-9, 2015. Revised Selected Papers (pp. 141–152). Springer. https://doi.org/10.1007/978-3-319-27932-9_13 ( reposiTUm)
Rekabsaz, N., Bierig, R., Ionescu, B., Hanbury, A., & Lupu, M. (2015). On the use of statistical semantics for metadata-based social image retrieval. In 2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI). 13th International Workshop on Content-Based Multimedia Indexing (CBMI 2015), Prag, Czechia. IEEE. https://doi.org/10.1109/cbmi.2015.7153634 ( reposiTUm)
Piroi, F., Lipani, A., Lupu, M., & Hanbury, A. (2015). DASyR(IR) - Document Analysis System for Systematic Reviews (in Information Retrieval). In 13th International Conference on Document Analysis and Recognition (ICDAR), 2015 (pp. 591–595). IEEE Xplore. http://hdl.handle.net/20.500.12708/56327 ( reposiTUm)
Hanbury, A., Lupu, M., Kando, N., Diallo, B., & Adams, S. (2014). Guest editorial: Special issue on information retrieval in the intellectual property domain. In Information Retrieval (pp. 407–411). Springer. https://doi.org/10.1007/s10791-014-9245-8 ( reposiTUm)
Bierig, R., Hanbury, A., Haas, M., Piroi, F., Berger, H., Lupu, M., & Dittenbach, M. (2014). A Glimpse into the State and Future of (Big) Data Analytics in Austria. In M. Helfert, A. Holzinger, O. Belo, & C. Francalanci (Eds.), Proceedings of 3rd International Conference on Data Management Technologies and Applications (pp. 178–188). ScitePress. https://doi.org/10.5220/0004999101780188 ( reposiTUm)
Taha, A. A., Hanbury, A., & del Toro, O. A. J. (2014). A formal method for selecting evaluation metrics for image segmentation. In 2014 IEEE International Conference on Image Processing (ICIP). IEEE ICIP Proceedings, Austria. IEEE. https://doi.org/10.1109/icip.2014.7025187 ( reposiTUm)
Lipani, A., Piroi, F., Andersson, L., & Hanbury, A. (2014). An Information Retrieval Ontology for Information Retrieval Nanopublications. In Information Access Evaluation -- Multilinguality, Multimodality, and Interaction 5th International Conference of the CLEF Initiative, CLEF 2014, Sheffield, UK, September 15-18, 2014, Proceedings (pp. 44–49). Springer Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-319-11382-1_5 ( reposiTUm)
Lipani, A., Piroi, F., Andersson, L., & Hanbury, A. (2014). Extracting Nanopublications from IR Papers. In Multidisciplinary Information Retrieval 7th Information Retrieval Facility Conference, IRFC 2014, Copenhagen, Denmark, November 10-12, 2014, Proceedings (pp. 53–62). Springer. https://doi.org/10.1007/978-3-319-12979-2_5 ( reposiTUm)
Bierig, R., Serban, C., Siriteanu, A., Lupu, M., & Hanbury, A. (2014). A System Framework for Concept- and Credibility-Based Multimedia Retrieval. In Proceedings of International Conference on Multimedia Retrieval. International Conference on Multimedia Retrieval (ICMR 2014), Glasgow, United Kingdom of Great Britain and Northern Ireland (the). ACM Press. https://doi.org/10.1145/2578726.2582624 ( reposiTUm)
Palotti, J., Rekabsaz, N., Lupu, M., & Hanbury, A. (2014). TUW @ Retrieving Diverse Social Images Task 2014. In Working Notes Proceedings of the MediaEval 2014 Workshop. MediaEval Benchmarking Initiative for Multimedia Evaluation, Barcelona, Spain. CEUR-WS. http://hdl.handle.net/20.500.12708/55380 ( reposiTUm)
Palotti, J. R. M., Stefanov, V., & Hanbury, A. (2014). User intent behind medical queries. In Proceedings of the 5th Information Interaction in Context Symposium. Information Interaction in Context conference, Regensburg, Germany. ACM. https://doi.org/10.1145/2637002.2637043 ( reposiTUm)
Andersson, L., Lupu, M., Palotti, J., Piroi, F., Hanbury, A., & Rauber, A. (2014). Insight to Hyponymy Lexical Relation Extraction in the Patent Genre Versus Other Text Genres. In Patent Mining and Its Applications. First International Workshop on Patent Mining and Its Applications (IPaMin 2014), Hildesheim, Germany. CEUR Workshop Proceedings. http://hdl.handle.net/20.500.12708/55377 ( reposiTUm)
Piroi, F., Lupu, M., & Hanbury, A. (2013). Overview of CLEF-IP 2013 Lab - Information Retrieval in the Patent Domain. In Information Access Evaluation. Multilinguality, Multimodality, and Visualization 4th International Conference of the CLEF Initiative, CLEF 2013, Valencia, Spain, September 23-26, 2013. Proceedings (pp. 232–249). Springer. https://doi.org/10.1007/978-3-642-40802-1_25 ( reposiTUm)
Salampasis, M., Fuhr, N., Hanbury, A., Lupu, M., Larsen, B., & Strindberg, H. (2013). Integrating IR Technologies for Professional Search. In Advances in Information Retrieval 35th European Conference on IR Research, ECIR 2013, Moscow, Russia, March 24-27, 2013, Proceedings (pp. 882–885). Springer LNCS. https://doi.org/10.1007/978-3-642-36973-5_108 ( reposiTUm)
Lupu, M., Piroi, F., & Hanbury, A. (2013). Evaluating Flowchart Recognition for Patent Retrieval. In The Fifth International Workshop on Evaluating Information Access. The Fifth International Workshop on Evaluating Information Access, Tokyo, Japan. http://hdl.handle.net/20.500.12708/54624 ( reposiTUm)
Hanbury, A., & Lupu, M. (2013). Toward a Model of Domain-Specific Search. In Open Research Areas In Information Retrieval. Open Research Areas In Information Retrieval, Lissabon, Portugal. http://hdl.handle.net/20.500.12708/54625 ( reposiTUm)
Stefanov, V., Sachs, A., Kritz, M., Samwald, M., Gschwandtner, M., & Hanbury, A. (2013). A Formative Evaluation of a Comprehensive Search System for Medical Professionals. In P. Forner, H. Müller, R. Paredes, P. Rosso, & B. Stein (Eds.), Information Access Evaluation. Multilinguality, Multimodality, and Visualization (pp. 81–92). Springer Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-642-40802-1_10 ( reposiTUm)
Hanbury, A., Müller, H., Langs, G., Weber, M.-A., Menze, B., & Salas, T. (2012). Bringing the Algorithms to the Data: Cloud-based Benchmarking for Medical Image Analysis. In Information Access Evaluation. Multilinguality, Multimodality, and Visual Analytics (pp. 24–29). http://hdl.handle.net/20.500.12708/54442 ( reposiTUm)
Piroi, F., Lupu, M., & Hanbury, A. (2012). Effects of Language and Topic Size in Patent IR: An Empirical Study. In Information Access Evaluation. Multilinguality, Multimodality, and Visual Analytics (pp. 54–66). Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-642-33247-0_7 ( reposiTUm)
Lupu, M., Mörzinger, R., Schleser, T., Schuster, R., Piroi, F., & Hanbury, A. (2012). Patent images - a glass-encased tool. In Proceedings of the 12th International Conference on Knowledge Management and Knowledge Technologies - i-KNOW ’12. ACM. https://doi.org/10.1145/2362456.2362477 ( reposiTUm)
Wildenauer, H., & Hanbury, A. (2012). Robust camera self-calibration from monocular images of Manhattan worlds. In 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, United States of America (the). https://doi.org/10.1109/cvpr.2012.6248008 ( reposiTUm)
Machajdik, J., Stöttinger, J., Danelova, E., Pongratz, M., Kavicky, L., Valenti, R., & Hanbury, A. (2011). Providing feedback on emotional experiences and decision making. In IEEE Africon ’11. AFRICON 2011, Livingstone, Sambia, Non-EU. IEEE. https://doi.org/10.1109/afrcon.2011.6072130 ( reposiTUm)
Machajdik, J., Hanbury, A., Garz, A., & Sablatnig, R. (2011). Affective Computing for Wearable Diary and Lifelogging Systems: An Overview. In Machine Vision - Research for High Quality Processes and Products - 35th Workshop of the Austrian Association for Pattern Recognition. 35th Workshop of the Austrian Association for Pattern Recognition, Graz, Austria. http://hdl.handle.net/20.500.12708/54003 ( reposiTUm)
Samwald, M., Kritz, M., Gschwandtner, M., Stefanov, V., & Hanbury, A. (2011). Towards an open, trustworthy and multilingual search engine for medical practitioners: News from the European Khresmoi project. In G. Schreier, D. Hayn, & E. Ammenwerth (Eds.), eHealth2011: Health Informatics meets eHealth - von der Wissenschaft zur Anwendung und zurück Grenzen überwinden - Continuity of Care. OCG. http://hdl.handle.net/20.500.12708/54575 ( reposiTUm)
Bhatti, N. A., & Hanbury, A. (2011). Morphology Based Spatial Relationships between Local Primitives in Line Drawings. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (pp. 165–172). Lecture Notes on Computer Science. https://doi.org/10.1007/978-3-642-25085-9_19 ( reposiTUm)
Bhatti, N., & Hanbury, A. (2011). Granulometry based Detection of Junction and End Points in Patent Drawings. In Proceedings of the 7th International Symposium on Image and Signal Processing and Analysis (ISPA 2011) (pp. 307–312). IEEE. http://hdl.handle.net/20.500.12708/53879 ( reposiTUm)
Bhatti, N., & Hanbury, A. (2011). Detection and Classification of Local Primitives in Line Drawings. In Machine Vision - Research for High Quality Processes and Products - 35th Workshop of the Austrian Association for Pattern Recognition. 35th Workshop of the Austrian Association for Pattern Recognition, Graz, Austria. http://hdl.handle.net/20.500.12708/53896 ( reposiTUm)
Bhatti, N., & Hanbury, A. (2011). Local Primitive Histograms for Patent Binary Image Retrieval. In 9th IAPR International Workshop on Graphics RECognition (GREC). 9th IAPR International Workshop on Graphics RECognition (GREC), Seoul, Südkorea, Non-EU. http://hdl.handle.net/20.500.12708/53899 ( reposiTUm)
Hanbury, A., Bhatti, N., Lupu, M., & Mörzinger, R. (2011). Patent image retrieval. In Proceedings of the 4th workshop on Patent information retrieval - PaIR ’11. ACM. https://doi.org/10.1145/2064975.2064979 ( reposiTUm)
Lupu, M., Hanbury, A., & Rauber, A. (2011). 4th international workshop on patent information retrieval (PaIR’11). In Proceedings of the 20th ACM international conference on Information and knowledge management - CIKM ’11. ACM. https://doi.org/10.1145/2063576.2064044 ( reposiTUm)
Stöttinger, J., Goras, B. T., Pönitz, T., Sebe, N., Hanbury, A., & Gevers, T. (2011). Systematic Evaluation of Spatio-Temporal Features on Comparative Video Challenges. In R. Koch & F. Huang (Eds.), Computer Vision – ACCV 2010 Workshops (pp. 349–358). Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-642-22822-3_35 ( reposiTUm)
Mörzinger, R., Horti, A., Thallinger, G., Bhatti, N., & Hanbury, A. (2011). Classifying Patent Images. In CLEF (Notebook Papers/Labs/Workshop). Conference on Multilingual and Multimodal Information Access Evaluation (CLEF 2011), Amsterdam, Niederlande, EU. http://hdl.handle.net/20.500.12708/53721 ( reposiTUm)
Khan, R., Hanbury, A., & Stöttinger, J. (2010). Weighted Skin Color Segmentation and Detection Using Graph Cuts. In L. Spaček & V. Franc (Eds.), Proceedings of the Computer Vision Winter Workshop 2010 (pp. 107–114). Czech Society for Cybernetics and Informatics. http://hdl.handle.net/20.500.12708/53489 ( reposiTUm)
Stöttinger, J., Goras, B. T., Sebe, N., & Hanbury, A. (2010). Behavior and properties of spatio-temporal local features under visual transformations. In Proceedings of the international conference on Multimedia - MM ’10. ACM Multimedia 2010 International Conference, Florenz, Italien, EU. Association for Computing Machinery (ACM). https://doi.org/10.1145/1873951.1874174 ( reposiTUm)
Stöttinger, J., Zambanini, S., Khan, R., & Hanbury, A. (2010). FeEval A Dataset for Evaluation of Spatio-temporal Local Features. In M. Cetin, K. Boyer, & S.-W. Lee (Eds.), 2010 20th International Conference on Pattern Recognition. IEEE. https://doi.org/10.1109/icpr.2010.128 ( reposiTUm)
Bhatti, N., & Hanbury, A. (2010). Co-occurrence Bag of Words for Object Recognition. In L. Spaček & V. Franc (Eds.), Proceedings of the Computer Vision Winter Workshop 2010 (pp. 21–28). Czech Society for Cybernetics and Informatics. http://hdl.handle.net/20.500.12708/53488 ( reposiTUm)
Khan, R., Hanbury, A., & Stöttinger, J. (2010). Universal Seed Skin Segmentation. In G. Bebis, R. Boyle, B. Parvin, D. Koracin, R. Chung, R. Hammound, M. Hussain, T. Kar-Han, R. Crawfis, D. Thalmann, D. Kao, & L. Avila (Eds.), Advances in Visual Computing (pp. 75–84). Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-642-17274-8_8 ( reposiTUm)
Khan, R., Hanbury, A., & Stöttinger, J. (2010). Augmentation of Skin Segmentation. In H. Arabnia, L. Deligiannidis, G. Schaefer, & A. Solo (Eds.), Proceedings of the 2010 International Conference on Image Processing, Computer Vision, & Pattern Recognition, IPCV 2010, July 12-15, 2010, Las Vegas, Nevada, USA, 2 Volumes (pp. 473–479). CSREA Press. http://hdl.handle.net/20.500.12708/53501 ( reposiTUm)
Pönitz, T., Stöttinger, J., Donner, R., & Hanbury, A. (2010). Efficient and Distinct Large Scale Bags of Words. In P. Blauensteiner, M. Lettner, & J. Stöttinger (Eds.), Computer Vision in a Global Society - 34th Annual Workshop of the Austrian Association for Pattern Recognition (AAPR) and the WG Visual Computing of the Austrian Computer Society (pp. 139–146). Österreichische Computer Gesellschaft. http://hdl.handle.net/20.500.12708/53480 ( reposiTUm)
Machajdik, J., & Hanbury, A. (2010). Affective image classification using features inspired by psychology and art theory. In Proceedings of the international conference on Multimedia - MM ’10. ACM Multimedia 2010 International Conference, Florenz, Italien, EU. Association for Computing Machinery (ACM). https://doi.org/10.1145/1873951.1873965 ( reposiTUm)
Khan, R., Hanbury, A., & Stoettinger, J. (2010). Skin detection: A random forest approach. In 2010 IEEE International Conference on Image Processing. International Conference on Image Processing 2010, Hong Kong, Non-EU. IEEE. https://doi.org/10.1109/icip.2010.5651638 ( reposiTUm)
Stöttinger, J., Banova, J., Ponitz, T., Sebe, N., & Hanbury, A. (2009). Translating Journalists’ Requirements into Features for Image Search. In 2009 15th International Conference on Virtual Systems and Multimedia. 15th International Conference on Virtual Systems and Multimedia ({VSMM} 2009), Wien, Austria. IEEE. https://doi.org/10.1109/vsmm.2009.28 ( reposiTUm)
Stöttinger, J., Hanbury, A., Liensberger, C., & Khan, R. (2009). Skin Paths for Contextual Flagging Adult Videos. In Advances in Visual Computing (pp. 303–314). Springer. http://hdl.handle.net/20.500.12708/52945 ( reposiTUm)
Stöttinger, J., Hanbury, A., Gevers, T., & Sebe, N. (2009). Lonely but Attractive: Sparse Color Salient Points for Object Retrieval and Categorization. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Workshop on Feature Detectors and Descriptors: The State Of The Art and Beyond (pp. 1–8). http://hdl.handle.net/20.500.12708/52943 ( reposiTUm)
Hanbury, A. (2008). How Do Superpixels Affect Image Segmentation? In Progress in Pattern Recognition, Image Anlysis and Applications (pp. 178–186). Springer. http://hdl.handle.net/20.500.12708/52472 ( reposiTUm)
Deselaers, T., Hanbury, A., Viitaniemi, V., Benczur, A., Brendel, M., Daroczy, B., Escalante Balderas, H. J., Gevers, T., Hernandez Gracidas, C. A., Laaksonen, J., Li, M., Marın Castro, H. M., Ney, H., Rui, X., Sebe, N., & Stöttinger, J. (2008). Overview of the ImageCLEF 2007 Object Retrieval Task. In Advances in Multilingual and Multimodal Information Retrieval (pp. 445–471). Springer. http://hdl.handle.net/20.500.12708/52470 ( reposiTUm)
Grubinger, M., Clough, P., Hanbury, A., & Müller, H. (2008). Overview of the ImageCLEFphoto 2007 Photographic Retrieval Task. In Advances in Multilingual and Multimodal Information Retrieval (pp. 433–444). Springer. http://hdl.handle.net/20.500.12708/52471 ( reposiTUm)
Hanbury, A., & Stöttinger, J. (2008). On Segmentation Evaluation Metrics and Region Counts. In Proceedings of the the 19th International Conference on Image Processing (ICPR09). The 19th International Conference on Image Processing (ICPR08), Tampa, Florida, Non-EU. IEEE Computer Society. http://hdl.handle.net/20.500.12708/52629 ( reposiTUm)
Stöttinger, J., Donner, R., Szumilas, L., & Hanbury, A. (2008). Evaluation of Gradient Vector Flow for Interest Point Detection. In Advances in Visual Computing, Part I (pp. 338–348). Springer, LNCS. http://hdl.handle.net/20.500.12708/52626 ( reposiTUm)
Hanbury, A. (2007). Morphological Distinguished Regions. In Proc. 12th Iberoamerican Congress on Pattern Recognition (CIARP). 12th Iboamerican Congress on Pattern Recognition, CIAPR2007, Vina del Mar-Valparaiso, Chile, Non-EU. Springer Lecture Notes in Computer Science. http://hdl.handle.net/20.500.12708/51983 ( reposiTUm)
Hanbury, A., & Marcotegui, B. (2007). Colour Adjacency Histograms for Image Matching. In Proceedings of the Computer Analysis of Images and Patterns Conference (CAIP). 12th International Conference CAIP 2007, Wien, Austria. Springer Lecture Notes in Computer Science. http://hdl.handle.net/20.500.12708/51982 ( reposiTUm)
Szumilas, L., Wildenauer, H., Hanbury, A., & Donner, R. (2007). Radial Edge Configuration for Semi-local Image Structure Description. In Advances in Visual Computing (pp. 633–643). Springer Lecture Notes in Computer Science. http://hdl.handle.net/20.500.12708/52045 ( reposiTUm)
Stöttinger, J., Hanbury, A., Sebe, N., & Gevers, T. (2007). Do Colour Interest Points Improve Image Retrieval? In Proc. International Conference on Image Processing (ICIP) (pp. 169–172). http://hdl.handle.net/20.500.12708/51981 ( reposiTUm)
Hanbury, A. (2007). A Study of Vocabularies for Image Annotation. In Proceedings of the second international conference on Semantics And digital Media Technologies (SAMT) (pp. 284–287). Springer Lecture Notes in Computer Science. http://hdl.handle.net/20.500.12708/51985 ( reposiTUm)
Szumilas, L., Donner, R., Langs, G., & Hanbury, A. (2007). Local Structure Detection with Orientation-invariant Radial Configuration. In Computer Vision and Pattern Recognition (p. 7). http://hdl.handle.net/20.500.12708/52043 ( reposiTUm)
Zaharieva, M., Kampel, M., & Zambanini, S. (2007). Image based recognition of ancient coins. In W. Kropatsch, M. Kampel, & A. Hanbury (Eds.), Computer Analysis of Images and Patterns (pp. 547–554). Springer Lecture Notes in Computer Science. http://hdl.handle.net/20.500.12708/51975 ( reposiTUm)
Stöttinger, J., Sebe, N., Gevers, T., & Hanbury, A. (2007). Colour Interest Points for Image Retrieval. In Proceedings of the 12th Computer Vision Winter Workshop (pp. 83–90). http://hdl.handle.net/20.500.12708/51841 ( reposiTUm)
Szumilas, L., & Hanbury, A. (2006). Color Pair Clustering for Texture Detection. In Advances in Visual Computing (pp. 255–264). Springer. http://hdl.handle.net/20.500.12708/51583 ( reposiTUm)
Wildenauer, H., Blauensteiner, P., Hanbury, A., & Kampel, M. (2006). Motion Detection Using an Improved Colour model. In Advances in Visual Computing (pp. 607–616). Springer Berlin-Heidelberg. http://hdl.handle.net/20.500.12708/51626 ( reposiTUm)
Micusik, B., & Hanbury, A. (2006). Automatic Image Segmentation by Positioning a Seed. In Computer Vision - ECCV2006 (pp. 468–480). Springer. http://hdl.handle.net/20.500.12708/51511 ( reposiTUm)
Micusik, B., & Hanbury, A. (2006). Template patch driven image segmentation. In British Machine Vision Conference 2006, Volume Two (pp. 819–829). http://hdl.handle.net/20.500.12708/51510 ( reposiTUm)
Seitner, F., & Hanbury, A. (2006). Fast pedestrian tracking based on spatial features and colour. In Proceedings of the 11th Computer Vision Winter Workshop (pp. 105–110). http://hdl.handle.net/20.500.12708/51540 ( reposiTUm)
Szumilas, L., Micusik, B., & Hanbury, A. (2006). Texture segmentation through salient texture patches. In Proceedings of the 11th Computer Vision Winter Workshop (pp. 111–116). http://hdl.handle.net/20.500.12708/51542 ( reposiTUm)
Kuthan, S., & Hanbury, A. (2006). Extraction of Attributes, Nature and Context of Images. In Proceedings of the 11th Computer Vision Winter Workshop (pp. 28–33). http://hdl.handle.net/20.500.12708/51541 ( reposiTUm)
Blauensteiner, P., Wildenauer, H., & Hanbury, A. (2006). On Colour Spaces for Change Detection and Shadow Suppression. In Proceedings of the 11th Computer Vision Winter Workshop (pp. 117–122). http://hdl.handle.net/20.500.12708/51543 ( reposiTUm)
Hanbury, A., & Marcotegui, B. (2006). Waterfall Segmentation of Complex Scenes. In Computer Vision - ACCV 2006 (pp. 888–897). Springer. http://hdl.handle.net/20.500.12708/51544 ( reposiTUm)
Clough, P., Grubinger, M., Deselaers, T., Hanbury, A., & Müller, H. (2006). Overview of the ImageCLEF 2006 Photographic Retrieval and Object Annotation Tasks. In Proceedings of the CLEF 2006 Workshop (pp. 579–594). Springer Lecture Notes in Computer Science. http://hdl.handle.net/20.500.12708/51984 ( reposiTUm)
Blauensteiner, P., Wildenauer, H., Hanbury, A., & Kampel, M. (2006). Motion and Shadow Detection with an Improved Colour Model. In First International Conference on Signal and Image Processing (pp. 627–632). IEEE. http://hdl.handle.net/20.500.12708/51653 ( reposiTUm)
Lettner, M., & Sablatnig, R. (2005). Texture Based Drawing Tool Classification in Infrared Reflectograms. In A. Hanbury & H. Bischof (Eds.), Proc. of the 10th Computer Vision Winter Workshop (pp. 63–72). Eigenverlag. http://hdl.handle.net/20.500.12708/51288 ( reposiTUm)
Aguilera Antequera, J., Kampel, M., & Blauensteiner, P. (2005). Robust Detection and Performance Evaluation of Individuals and Vehicles on an Airport’s Apron. In A. Hanbury & H. Bischof (Eds.), In Proc. of the Computer Vision Winter Workshop (pp. 145–154). Eigenverlag. http://hdl.handle.net/20.500.12708/51298 ( reposiTUm)
Zambanini, S., Langs, G., & Bischof, H. (2005). Segmentation and Surveying of Cutaneous Hemangiomas. In A. Hanbury & H. Bischof (Eds.), Proceedings of Computer Vision Winter Workshop CVWW (pp. 103–112). Eigenverlag. http://hdl.handle.net/20.500.12708/51297 ( reposiTUm)
Micusik, B., & Hanbury, A. (2005). Supervised Texture Detection in Images. In A. Gagalowicz & W. Philips (Eds.), Computer Analysis of Images and Patterns (CAI (pp. 441–448). Springer, LNCS. http://hdl.handle.net/20.500.12708/51314 ( reposiTUm)
Micusik, B., & Hanbury, A. (2005). Semi-automatic Segmentation of Textured Images. In A. Hanbury & H. Bischof (Eds.), Proceedings of the 10th Computer Vision Winter Workshop (CVWW 2005) (pp. 53–62). Eigenverlag. http://hdl.handle.net/20.500.12708/51315 ( reposiTUm)
Belbachir, A. N., & Göbel, P. (2005). A Sparse Image Representation Using Contourlets. In A. Hanbury & H. Bischof (Eds.), Proc. of 10th Computer Vision Winter Workshop (pp. 165–174). Eigenverlag. http://hdl.handle.net/20.500.12708/51318 ( reposiTUm)
Micusik, B., & Hanbury, A. (2005). Steerable Semi-automatic Segmentation of Textured Images. In H. Kalviainen, J. Parkkinen, & A. Kaarna (Eds.), 14th Scandinavian Conference on Image Analysis (SCIA) (pp. 35–44). Springer, LNCS. http://hdl.handle.net/20.500.12708/51316 ( reposiTUm)
Asinger, C., Kammerer, P., & Zolda, E. (2005). Classification of Color Pigments in Hyperspectral Images. In A. Hanbury & H. Bischof (Eds.), Proc. of the 10th Computer Vision Winter Workshop (pp. 205–214). Eigenverlag. http://hdl.handle.net/20.500.12708/51332 ( reposiTUm)
Langs, G., Peloschek, P. L., & Bischof, H. (2005). MDL-based Splitting of PCA Models. In A. Hanbury & H. Bischof (Eds.), Proceedings of Computer Vision Winter Workshop CVWW (pp. 13–22). Eigenverlag. http://hdl.handle.net/20.500.12708/51296 ( reposiTUm)
Göbel, P., & Belbachir, A. N. (2005). Blind Background Substraction in Dental Panoramic X-ray Images: An Application Approach. In W. Kropatsch, R. Sablatnig, & A. Hanbury (Eds.), Proc. of the 27th DAGM Symposium (pp. 434–441). Springer, LNCS. http://hdl.handle.net/20.500.12708/51320 ( reposiTUm)
Belbachir, A. N., & Göbel, P. (2005). Color Image Compression: Early Vision and the Multiresolution Representations. In W. Kropatsch, R. Sablatnig, & A. Hanbury (Eds.), Proc. of the 27th DAGM Symposium (pp. 25–32). Springer, LNCS. http://hdl.handle.net/20.500.12708/51319 ( reposiTUm)
Zollner, H., & Sablatnig, R. (2005). A Method for Determining Geometrical Distortion of Off-The-Shelf Wide-Angle Cameras. In W. Kropatsch, R. Sablatnig, & A. Hanbury (Eds.), Proc. of the 27th DAGM Symposium (pp. 224–229). Springer, LNCS. http://hdl.handle.net/20.500.12708/51328 ( reposiTUm)
Donner, R., Langs, G., Reiter, M., & Bischof, H. (2005). CCA-based Active Appearance Model Search. In A. Hanbury & H. Bischof (Eds.), Computer Vision Winter Workshop 2005 (pp. 73–82). Eigenverlag. http://hdl.handle.net/20.500.12708/51329 ( reposiTUm)
Ion, A., Haxhimusa, Y., Kropatsch, W., & Brun, L. (2005). Hierarchical Image Partitioning using Combinatorial Maps. In A. Hanbury & H. Bischof (Eds.), 10th Computer Vision Winter Workshop - CVWW 2005 (pp. 43–52). Eigenverlag. http://hdl.handle.net/20.500.12708/51281 ( reposiTUm)
Hanbury, A., Kandaswamy, U., & Adjeroh, D. (2005). Illumination-invariant morphological texture classification. In C. Ronse, L. Najman, & E. Decenciere (Eds.), Proceedings of the International Symposium on Mathematical Morphology (pp. 377–386). Springer. http://hdl.handle.net/20.500.12708/51313 ( reposiTUm)

Beiträge in Büchern

Müller, H., & Hanbury, A. (2019). EaaS: Evaluation-as-a-Service and Experiences from the VISCERAL Project. In Information Retrieval Evaluation in a Changing World (pp. 161–173). Springer. https://doi.org/10.1007/978-3-030-22948-1_6 ( reposiTUm)
Piroi, F., & Hanbury, A. (2019). Multilingual Patent Text Retrieval Evaluation: CLEF–IP. In N. Ferro & C. Peters (Eds.), Information Retrieval Evaluation in a Changing World (Vol. 41, pp. 365–387). https://doi.org/10.1007/978-3-030-22948-1_15 ( reposiTUm)
Andersson, L., Hanbury, A., & Rauber, A. (2017). The Portability of Three Types of Text Mining Techniques into the Patent Text Genre. In M. Lupu, K. Mayer, N. Kando, & A. Trippe (Eds.), Current Challenges in Patent Information Retrieval (pp. 241–280). Springer. http://hdl.handle.net/20.500.12708/24332 ( reposiTUm)
Zlabinger, M., Andersson, L., Brassey, J., & Hanbury, A. (2017). Extracting the Population, Intervention, Comparison and Sentiment from Randomized Controlled Trials. In A. Ugon, D. Karlsson, G. O. Klein, & A. Moen (Eds.), Building Continents of Knowledge in Oceans of Data: The Future of Co-Created eHealth – Proceedings of MIE2018 (Vol. 247, pp. 146–150). IOS Press. https://doi.org/10.3233/978-1-61499-852-5-146 ( reposiTUm)
Rekabsaz, N., Bierig, R., Lupu, M., & Hanbury, A. (2017). Toward Optimized Multimodal Concept Indexing. In A. M. Pinto & J. Cardoso (Eds.), Transactions on Computational Collective Intelligence XXVI (Vol. 10190, pp. 144–161). Springer. https://doi.org/10.1007/978-3-319-59268-8_7 ( reposiTUm)
Lupu, M., Hanbury, A., & Salampasis, M. (2014). Domain Specific Search. In G. Paltoglou, F. Loizides, & P. Hansen (Eds.), Professional Search in the Modern World (pp. 96–117). Springer LNCS. https://doi.org/10.1007/978-3-319-12511-4_6 ( reposiTUm)
Hanbury, A. (2003). Mathematical Morphology Applied to Circular Data. In Advances in Imaging and Electron Physics (pp. 123–204). ACM Press. http://hdl.handle.net/20.500.12708/25343 ( reposiTUm)

Bücher

Hanbury, A., Müller, H., & Langs, G. (Eds.). (2017). Cloud-Based Benchmarking of Medical Image Analysis. Springer International Publishing. http://hdl.handle.net/20.500.12708/24397 ( reposiTUm)
Information Access Evaluation. Multilinguality, Multimodality, and Interaction. (2014). In E. Kanoulas, M. Lupu, P. Clough, M. Sanderson, M. Hall, A. Hanbury, & E. Toms (Eds.), Lecture Notes in Computer Science. Springer. https://doi.org/10.1007/978-3-319-11382-1 ( reposiTUm)
Patent Retrieval. (2013). In M. Lupu & A. Hanbury (Eds.), Foundations and Trends® in Information Retrieval (p. 97). Now Publishers. https://doi.org/10.1561/1500000027 ( reposiTUm)

Tagungsbände

Krestel, R., Aras, H., Andersson, L., Piroi, F., Hanbury, A., & Alderucci, D. (Eds.). (2022). Proceedings of the 3rd Workshop on Patent Text Mining and Semantic Technologies. https://doi.org/10.34726/3550 ( reposiTUm)
Andersson, L., Aras, H., Piroi, F., & Hanbury, A. (Eds.). (2019). Proceedings of the 1st Workshop on on Patent Text Mining and Semantic Technologies : PatentSemTech2019. https://doi.org/10.34726/pst2019 ( reposiTUm)
Kropatsch, W., Kampel, M., & Hanbury, A. (Eds.). (2007). Computer Analysis of Images and Patterns, 12th International Conference, CAIP 2007. Springer LNCS. http://hdl.handle.net/20.500.12708/22351 ( reposiTUm)
Hanbury, A., & Bischof, H. (Eds.). (2005). Proceedings of the 10th Computer Vision Winter Workshop CVWW 2005. Eigenverlag. http://hdl.handle.net/20.500.12708/22302 ( reposiTUm)
Kropatsch, W., Sablatnig, R., & Hanbury, A. (Eds.). (2005). Pattern Recognition: 27th DAGM Symposium. Springer, LNCS. http://hdl.handle.net/20.500.12708/22301 ( reposiTUm)

Präsentationen

Staudinger, M., Kusa, W., Piroi, F., Lipani, A., & Hanbury, A. (2024, November 9). Beyond ChatGPT: A Reproducibility and Generalizability Study of Large Language Models for Query Generation [Poster Presentation]. ML in PL Conference 2024, Warsaw, Poland. ( reposiTUm)
Hanbury, A. (2024, December 13). Evaluating Search for Systematic Review Creation [Keynote Presentation]. Forum for Information Retrieval Evaluation, Gandhinagar, India. ( reposiTUm)
Kusa, W., Scells, H., Staudinger, M., & Hanbury, A. (2024, March 28). Leveraging Cochrane Systematic Literature Reviews for Prospective Evaluation of Large Language Models [Conference Presentation]. ALTARS 2024: 3rd Workshop on Augmented Intelligence for Technology-Assisted Reviews Systems: Evaluation Metrics and Protocols for eDiscovery and Systematic Review Systems, United Kingdom of Great Britain and Northern Ireland (the). http://hdl.handle.net/20.500.12708/200670 ( reposiTUm)
Kusa, W., Staudinger, M., Harry Scells, & Hanbury, A. (2024, August 16). Using Cochrane Systematic Literature Reviews to Reduce Contamination in the Evaluation of Large Language Models [Poster Presentation]. The 1st Workshop on Data Contamination (CONDA), Bangkok, Thailand. http://hdl.handle.net/20.500.12708/208243 ( reposiTUm)
Pachinger, P., Goldzycher, J., Planitzer, A. M., Kusa, W., Hanbury, A., & Neidhardt, J. (2024, June 20). A Dataset for Span-Based Austrian German and English Offensive Language Detection [Poster Presentation]. Workshop on Online Abuse and Harms 2024, Mexico City, Mexico. http://hdl.handle.net/20.500.12708/210352 ( reposiTUm)
Hanbury, A. (2022, April 21). Automated analysis of legal text for building regulation: the BRISE project [Presentation]. HPC for digital history and public administration, Luxembourg. http://hdl.handle.net/20.500.12708/153859 ( reposiTUm)
Hanbury, A. (2022, July 11). AI and Data Landscape in Austria [Presentation]. Horizon Europe – AI, Data & Robotics Consortia Building Event, United Kingdom of Great Britain and Northern Ireland (the). http://hdl.handle.net/20.500.12708/153256 ( reposiTUm)
Hanbury, A. (2022, November 2). Professional Search in Context [Presentation]. University of Queensland, Brisbane, Australia. http://hdl.handle.net/20.500.12708/153988 ( reposiTUm)
Hanbury, A. (2022, April 10). The DoSSIER project: Domain Specific Systems for Information Extraction and Retrieval [Keynote Presentation]. 1st Workshop on Augmented Intelligence for Technology-Assisted Reviews Systems: Evaluation Metrics and Protocols for eDiscovery and Systematic Review Systems (with the ECIR), Stavanger, Norway. http://hdl.handle.net/20.500.12708/153992 ( reposiTUm)
Hanbury, A., & Langs, G. (2021). Daten für neue Technologien und Forschung in der Gesundheit - eine Arbeitsgruppe der DIO. Imagine 21 - Create your Future - Mission Impossible?, Wien, Austria. http://hdl.handle.net/20.500.12708/87307 ( reposiTUm)
Hanbury, A. (2021). Open Science with Closed Data: Data Spaces and Data Circles. D4Dairy project meeting, Linz, Austria. http://hdl.handle.net/20.500.12708/87308 ( reposiTUm)
Hanbury, A. (2021). Durch Daten zu neuen Erkenntnissen. Forum Digitalisierung, an internal event of the Administration of the Province of Lower Austria, St. Pölten, Austria, Austria. http://hdl.handle.net/20.500.12708/87309 ( reposiTUm)
Hanbury, A. (2021). Open Science with Closed Data. FIRE 2021 - Forum for Information Retrieval Evaluation, Virtual Event, Information Retrieval Society of India, India. http://hdl.handle.net/20.500.12708/87310 ( reposiTUm)
Hanbury, A., & Heiler, G. (2021). Wie die Partnerschaft von T-Labs und TU Wien Big Data Insights nutzt, um zum Kampf gegen COVID-19 beizutragen. Internal Deutsche Telekom LEX webinar, Online, Germany. http://hdl.handle.net/20.500.12708/87302 ( reposiTUm)
Hanbury, A., & Heiler, G. (2021). How the T-Labs and TU Wien Partnership uses Big Data insights to contribute to the fight against COVID-19. Internal Deutsche Telekom LEX webinar, Online, Germany. http://hdl.handle.net/20.500.12708/87301 ( reposiTUm)
Hanbury, A. (2021). Effective and Efficient Neural Re-Ranking. Huawei Amsterdam Research Centre “Professors @ Huawei” lecture series, Amsterdam, Netherlands (the). http://hdl.handle.net/20.500.12708/87303 ( reposiTUm)
Hanbury, A., & Popper, N. (2021). Synthese von Krankheitsausbreitungs- und Netzwerksdaten für die Covid-19-Simulation. WWTF (Vienna Science and Technology Fund) Online Lecture Series “Vienna Researches Corona,” Wien, Austria. http://hdl.handle.net/20.500.12708/87304 ( reposiTUm)
Hanbury, A. (2021). Was ist KI und welchen Einfluss hat sie auf die Bauwirtschaft? Kolloquium: Zukunftsfragen des Baubetriebs: Komplexe Baubetriebssysteme, Institut für Interdisziplinäres Bauprozessmanagement der TU Wien, Austria. http://hdl.handle.net/20.500.12708/87306 ( reposiTUm)
Hanbury, A. (2021). Effective and Efficient Neural Re-Ranking in Information Retrieval. The USM (University of Southern Maine) Data Science Ensemble seminar series, United States of America (the). http://hdl.handle.net/20.500.12708/87305 ( reposiTUm)
Hanbury, A. (2020). Medizinische Daten und künstliche Intelligenz. Webinar “Medizinische Datenintelligenz”, organised by the Research and Transfer Support office of the TU Wien, Wien (online), Austria. http://hdl.handle.net/20.500.12708/87134 ( reposiTUm)
Hanbury, A. (2020). Supporting Systematic Reviews in Medicine. WOSP 2020 - 8th International Workshop on Mining Scientific Publications, Wuhan, China. http://hdl.handle.net/20.500.12708/87135 ( reposiTUm)
Hanbury, A. (2020). Von der KI Forschung zum Produkt - Herausforderungen und Erfolge. Workshop: Künstliche Intelligenz in der Gesundheit, Regensburg (online), Germany. http://hdl.handle.net/20.500.12708/87136 ( reposiTUm)
Hanbury, A. (2020). Die Datenwirtschaft und die Data Intelligence Offensive. ADV Tagung 2020: Trends in der Digitalisierung, Wien, Austria. http://hdl.handle.net/20.500.12708/87137 ( reposiTUm)
Hanbury, A. (2020). Corona und die Wissenschaft. Panel Diskussion. 27. TU Forum: Corona und die Wissenschaft, Wien (online), Austria. http://hdl.handle.net/20.500.12708/87138 ( reposiTUm)
Hanbury, A. (2020). Explainable AI in the medical and legal domains. International Digital Security Forum Vienna, Wien (online), Austria. http://hdl.handle.net/20.500.12708/87139 ( reposiTUm)
Hanbury, A. (2020). Open Science with Closed Data. Online conference “Openness and Commercialisation: How the two can go together”, TU Delft, Delft (online), Netherlands (the). http://hdl.handle.net/20.500.12708/87140 ( reposiTUm)
Hanbury, A. (2019). Datengetriebene Innovation zwischen Forschung & Wirtschaft: Kooperative Projekte, Spin-offs, Crowd-Solving. Second Austrian Data Governance Conference, Vienna, Austria. http://hdl.handle.net/20.500.12708/87142 ( reposiTUm)
Hanbury, A. (2019). Alexa, wir müssen reden! Panel Diskussion: Alexa, wir müssen reden! International Forum for Business Communication., Wien, Austria. http://hdl.handle.net/20.500.12708/87141 ( reposiTUm)
Hanbury, A. (2019). Challenges in developing a search system to support radiologists. Advances in Information Retrieval. 41st European Conference on IR Research, ECIR 2019, Cologne, Germany, April 14-18, 2019, Cologne, Germany. http://hdl.handle.net/20.500.12708/87143 ( reposiTUm)
Hanbury, A. (2019). Some Biases in Data Science. Austrian Computer Science Day, Wien, Austria. http://hdl.handle.net/20.500.12708/87144 ( reposiTUm)
Hanbury, A. (2019). Searching and Mining Medical Documents. First Vienna Symposium Meeting on Machine Learning in Medicine & Biology, Wien, Austria. http://hdl.handle.net/20.500.12708/87145 ( reposiTUm)
Hanbury, A. (2019). Data Market Austria: Anforderungsanalyse und Entwicklungsherausforderungen. Data Market Austria Closing Conference, Wien, Austria. http://hdl.handle.net/20.500.12708/87146 ( reposiTUm)
Hanbury, A. (2019). AI Strategy in Austria. European Big Data Value Forum. Session: “Challenges & Strategies of Member States as Foundations for a European AI Strategy,” Helsinki, Finland. http://hdl.handle.net/20.500.12708/87147 ( reposiTUm)
Hanbury, A. (2019). Data Market Austria / Data Intelligence Offensive. German Ministry of Economics and Energy (Member of the Austrian Delegation), Berlin, Germany. http://hdl.handle.net/20.500.12708/87149 ( reposiTUm)
Hanbury, A. (2019). Supporting Manual Annotation of Chatbot Information. Eötvös Loránd University (ELTE), Budapest, Hungary. http://hdl.handle.net/20.500.12708/87148 ( reposiTUm)
Hanbury, A. (2019). Search to Support Radiologists: from a research prototype to a product. Search Solutions (BCS IRSG), London, United Kingdom of Great Britain and Northern Ireland (the). http://hdl.handle.net/20.500.12708/87150 ( reposiTUm)
Hanbury, A. (2018). Maschinen als Begleiter: Wie digitale Assistenten zum Alltag werden. Austrian Press Agency Digital Business Trends event, Wien, Austria. http://hdl.handle.net/20.500.12708/87156 ( reposiTUm)
Hanbury, A. (2018). Data Intelligence und Recht. Working group “Perspektiven der Rechtsetzung” of the Directorate of the Austrian Parliament, Wien, Austria. http://hdl.handle.net/20.500.12708/87157 ( reposiTUm)
Hanbury, A. (2018). Lexical and Statistical Semantics in Professional Search. Semantics 2018 conference, Wien, Austria. http://hdl.handle.net/20.500.12708/87155 ( reposiTUm)
Hanbury, A. (2018). Credibility of sources, content, and algorithms. Fake News and other AI Challenges for the News Media in the 21st Century, panel member for the discussion on “Solving Ethical & Technical Challenges of Fake News,” Wien, Austria. http://hdl.handle.net/20.500.12708/87158 ( reposiTUm)
Hanbury, A. (2018). Word Relatedness from Word Embedding in Information Retrieval. Forum for Information Retrieval Evaluation (FIRE), Virtual Conference, Unknown. http://hdl.handle.net/20.500.12708/87159 ( reposiTUm)
Hanbury, A. (2018). Unstructured Information in Data Science: Word Relatedness from Word Embedding. Data Science Society Meet-Up, Vienna, Austria. http://hdl.handle.net/20.500.12708/87152 ( reposiTUm)
Hanbury, A. (2018). Word Embedding and Applications. U Wien Inter-Faculty Research Centre on Computational Complex Systems Meeting: Drawing Insights from Complex Data, Wien, Austria. http://hdl.handle.net/20.500.12708/87153 ( reposiTUm)
Hanbury, A. (2018). Sentiment Analysis in Finance. VISS 2018 - Vienna International Summer School on Machine Learning Methods and Data Analytics in Risk and Insurance, Wien, Austria. http://hdl.handle.net/20.500.12708/87154 ( reposiTUm)
Hanbury, A. (2018). Word relatedness from Word Embedding in text analysis and information retrieval. TU Berlin, Berlin, Germany. http://hdl.handle.net/20.500.12708/87151 ( reposiTUm)
Rekabsaz, N., Lupu, M., & Hanbury, A. (2016). Uncertainty in Neural Network Word Embedding Exploration of Threshold for Similarity. Neu-IR: The SIGIR 2016 Workshop on Neural Information Retrieval, Pisa, Italy. http://hdl.handle.net/20.500.12708/86458 ( reposiTUm)
Andersson, L., Lupu, M., & Hanbury, A. (2013). Domain Adaptation of General Natural Language Processing Tools for a Patent Claim Visualization System. In Proceedings of Multidisciplinary Information Retrieval, Berlin, Germany. http://hdl.handle.net/20.500.12708/86542 ( reposiTUm)
Andersson, L., Mahdabi, P., Hanbury, A., & Rauber, A. (2013). Exploring patent passage retrieval using nouns phrases. Proceeding of the 35th European conference on Advances in Information Retrieval (ECIR’13), Berlin, Germany. http://hdl.handle.net/20.500.12708/86543 ( reposiTUm)
Andersson, L., Mahdabi, P., Rauber, A., & Hanbury, A. (2012). Report on the CLEF-IP 2012 Experiments: Exploring Passage Retrieval with the PIPExtractor. In Proceeding of the of the Conference and Labs of the Evaluation Forum (CLEF2012), Pisa, EU. http://hdl.handle.net/20.500.12708/86544 ( reposiTUm)
Mahdabi, P., Andersson, L., Hanbury, A., & Crestani, F. (2011). Report on the CLEF-IP 2011 Experiments: Exploring Patent Summarisation. In Proceeding of the of the Conference and Labs of the Evaluation Forum (CLEF2011), Pisa, EU. http://hdl.handle.net/20.500.12708/86545 ( reposiTUm)
Samwald, M., Kritz, M., Gschwandtner, M., Stefanov, V., & Hanbury, A. (2011). An open, trustworthy and multilingual search engine for medical practitioners. 23rd International Conference of the European Federation for Medical Informatics (MIE2011), Oslo, Norwegen, Non-EU. http://hdl.handle.net/20.500.12708/85232 ( reposiTUm)
Machajdik, J., & Hanbury, A. (2010). Affective Image Classification. Computer Vision Winter Workshop 2010, Nove Hrady, EU. http://hdl.handle.net/20.500.12708/85619 ( reposiTUm)
Hanbury, A. (2006). The MUSCLE / ImageCLEF Image Retrieval Evaluation Campaigns. PASCAL Visual Object Classes Challenge Workshop, Graz, Austria. http://hdl.handle.net/20.500.12708/84670 ( reposiTUm)
Hanbury, A. (2006). Results of the MUSCLE CIS Coin Competition 2006. MUSCLE CIS Coin Competition Workshop, Berlin, EU. http://hdl.handle.net/20.500.12708/84672 ( reposiTUm)
Hanbury, A. (2006). Analysis of Keywords used in Image Understanding Tasks. OntoImage International Workshop, Genova, Italy, EU. http://hdl.handle.net/20.500.12708/84671 ( reposiTUm)
Hanbury, A. (2006). A Dataset of Annotated Animals. Second MUSCLE/ImageCLEF Workshop on Image and Video Retrieval Evaluation, Alicante, Spain, EU. http://hdl.handle.net/20.500.12708/84673 ( reposiTUm)

Berichte

Taha Abdel, A., Hanbury, A., & Jimenez del Toro, O. A. (2014). Test Data and Results of the Automatic Metric Selection Method. http://hdl.handle.net/20.500.12708/38055 ( reposiTUm)
Pottmann, H., Steiner, T., Hofer, M., Haider, C., & Hanbury, A. (2003). The isophotic metric and its application to feature sensitive morphology on surfaces. http://hdl.handle.net/20.500.12708/31621 ( reposiTUm)

Preprints

Hofstätter, S., Althammer, S., Schröder, M., Sertkan, M., & Hanbury, A. (2020). Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation (p. 8). arXiv. http://hdl.handle.net/20.500.12708/141680 ( reposiTUm)
Heiler, G., Reisch, T., Hurt, J., Forghani, M., Omani, A., Hanbury, A., & Karimipour, F. (2020). Country-wide mobility changes observed using mobile phone data during COVID-19 pandemic (p. 9). arXiv. https://doi.org/10.48550/arXiv.2008.10064 ( reposiTUm)
Heiler, G., Hanbury, A., & Filzmoser, P. (2020). The impact of COVID-19 on relative changes in aggregated mobility using mobile-phone data (p. 14). arXiv. https://doi.org/10.48550/arXiv.2009.03798 ( reposiTUm)
Reisch, T., Heiler, G., Hurt, J., Klimek, P., Hanbury, A., & Thurner, S. (2020). Behavioural gender differences are increased by lock-down measures. (p. 26). arXiv. http://hdl.handle.net/20.500.12708/141682 ( reposiTUm)

Hochschulschriften

Hanbury, A. (2007). Morphological processing and segmentation of colour images [Professorial Dissertation, Technische Universität Wien]. reposiTUm. http://hdl.handle.net/20.500.12708/183592 ( reposiTUm)