Wissenschaftliche Artikel

Innerberger, M., Miraçi, A., Praetorius, D., & Streitberger, J. (2024). hp-robust multigrid solver on locally refined meshes for FEM discretizations of symmetric elliptic PDEs. ESAIM: Mathematical Modelling and Numerical Analysis, 58(1), 247–272. https://doi.org/10.1051/m2an/2023104 ( reposiTUm)
Di Fratta, G., Jüngel, A., Praetorius, D., & Slastikov, V. (2023). Spin-diffusion model for micromagnetics in the limit of long times. Journal of Differential Equations, 343, 467–494. https://doi.org/10.1016/j.jde.2022.10.012 ( reposiTUm)
Helml, V., Innerberger, M., & Praetorius, D. (2023). Plain convergence of goal-oriented adaptive FEM. Computers and Mathematics with Applications, 147, 130–149. https://doi.org/10.1016/j.camwa.2023.07.022 ( reposiTUm)
Di Fratta, G., Monteil, A., & Slastikov, V. (2022). Symmetry Properties of Minimizers of a Perturbed Dirichlet Energy with a Boundary Penalization. SIAM Journal on Mathematical Analysis, 54(3), 3636–3653. https://doi.org/10.1137/21M143011X ( reposiTUm)
Feischl, M. (2022). Inf-sup stability implies quasi-orthogonality. Mathematics of Computation, 91(337), 2059–2094. https://doi.org/10.1090/mcom/3748 ( reposiTUm)
Gantner, G., Praetorius, D., & Schimanko, S. (2022). Stable Implementation of Adaptive IGABEM in 2D in MATLAB. Computational Methods in Applied Mathematics, 22(3), 563–590. https://doi.org/10.1515/cmam-2022-0050 ( reposiTUm)
Buffa, A., Gantner, G., Giannelli, C., Praetorius, D., & Vázquez, R. (2022). Mathematical Foundations of Adaptive Isogeometric Analysis. Archives of Computational Methods in Engineering, 29, 4479–4555. https://doi.org/10.1007/s11831-022-09752-5 ( reposiTUm)

Beiträge in Tagungsbänden

Bringmann, P., Brunner, M., Praetorius, D., & Streitberger, J. (2024). Cost-optimal goal-oriented adaptive FEM with nested iterative solvers. In Book of Abstracts: 10th International Conference on Computational Methods in Applied Mathematics (CMAM-10) (pp. 72–72). ( reposiTUm)
Freiszlinger, A., & Praetorius, D. (2024). Convergence of adaptive multilevel stochastic Galerkin FEM for parametric PDEs. In Book of Abstracts: 10th International Conference on Computational Methods in Applied Mathematics (CMAM-10) (pp. 82–82). ( reposiTUm)