Wissenschaftliche Artikel

Charles, F., Massimini, A., & Salvarani, F. (2023). Mathematical and numerical study of a kinetic model describing the evolution of planetary rings. Computers and Mathematics with Applications, 143, 48–56. https://doi.org/10.1016/j.camwa.2023.04.029 ( reposiTUm)
Barletti, L., Holzinger, P., & Jüngel, A. (2022). Formal derivation of quantum drift-diffusion equations with spin-orbit interaction. Kinetic and Related Models, 15(2), 257–282. https://doi.org/10.3934/krm.2022007 ( reposiTUm)
Daus, E., Ptashnyk, M., & Raithel, C. (2022). Derivation of a fractional cross-diffusion system as the limit of a stochastic many-particle system driven by Lévy noise. Journal of Differential Equations, 309, 386–426. https://doi.org/10.1016/j.jde.2021.11.027 ( reposiTUm)
Daus, E., Fellner, M., & Jüngel, A. (2022). Random-batch method for multi-species stochastic interacting particle systems. Journal of Computational Physics, 463, Article 111220. https://doi.org/10.1016/j.jcp.2022.111220 ( reposiTUm)
Huo, X., Jüngel, A., & Tzavaras, A. E. (2022). Weak-Strong Uniqueness for Maxwell-Stefan Systems. SIAM Journal on Mathematical Analysis, 54(3), 3215–3252. https://doi.org/10.1137/21M145210X ( reposiTUm)

Präsentationen

Moatti, J. (2024, March 19). An arbitrary-order entropic method for structure-preserving approximations of advection-diffusion [Conference Presentation]. Algoritmy 2024 Central-European Conference on Scientific Computing, Podbanské, High Tatra Mountains, Slovakia. ( reposiTUm)