Wissenschaftliche Artikel

Da Ros, F., Di Gaspero, L., Lackner, M.-L., Musliu, N., & Winter, F. (2025). Multi-neighborhood simulated annealing for the oven scheduling problem. COMPUTERS & OPERATIONS RESEARCH, 177, Article 106999. https://doi.org/10.1016/j.cor.2025.106999 ( reposiTUm)
Ahmeti, A., & Musliu, N. (2025). Hybridizing constraint programming and meta-heuristics for multi-mode resource-constrained multiple projects scheduling Problem. Journal of Heuristics, 31(1), 1–37. https://doi.org/10.1007/s10732-024-09540-3 ( reposiTUm)
Geibinger, T., Mischek, F., & Musliu, N. (2024). Investigating constraint programming and hybrid methods for real world industrial test laboratory scheduling. Journal of Scheduling. https://doi.org/10.1007/s10951-024-00821-0 ( reposiTUm)
Kletzander, L., & Musliu, N. (2024). Hyper-heuristics for personnel scheduling domains. Artificial Intelligence, 334, Article 104172. https://doi.org/10.1016/j.artint.2024.104172 ( reposiTUm)
Lackner, M.-L., Mrkvicka, C., Musliu, N., Walkiewicz, D., & Winter, F. (2023). Exact methods for the Oven Scheduling Problem. Constraints, 28(2), 320–361. https://doi.org/10.1007/s10601-023-09347-2 ( reposiTUm)
Vass, J., Lackner, M.-L., Mrkvicka, C., Musliu, N., & Winter, F. (2022). Exact and meta-heuristic approaches for the production leveling problem. Journal of Scheduling, 25(3), 339–370. https://doi.org/10.1007/s10951-022-00721-1 ( reposiTUm)
Winter, F., & Musliu, N. (2021). Constraint-based Scheduling for Paint Shops in the Automotive Supply Industry. ACM Transactions on Intelligent Systems and Technology, 12(2), 1–25. https://doi.org/10.1145/3430710 ( reposiTUm)
Winter, F., & Musliu, N. (2021). A large neighborhood search approach for the paint shop scheduling problem. Journal of Scheduling, 25(4), 453–475. https://doi.org/10.1007/s10951-021-00713-7 ( reposiTUm)
Moser, M., Musliu, N., Schaerf, A., & Winter, F. (2021). Exact and metaheuristic approaches for unrelated parallel machine scheduling. Journal of Scheduling, 25(5), 507–534. https://doi.org/10.1007/s10951-021-00714-6 ( reposiTUm)
Mischek, F., & Musliu, N. (2021). A local search framework for industrial test laboratory scheduling. Annals of Operations Research, 302(2), 533–562. https://doi.org/10.1007/s10479-021-04007-1 ( reposiTUm)
Kletzander, L., Musliu, N., & Smith-Miles, K. (2021). Instance space analysis for a personnel scheduling problem. Annals of Mathematics and Artificial Intelligence, 89(7), 617–637. https://doi.org/10.1007/s10472-020-09695-2 ( reposiTUm)
Kletzander, L., Musliu, N., & Smith-Miles, K. (2020). Instance space analysis for a personnel scheduling problem. Annals of Mathematics and Artificial Intelligence, 89(7), 617–637. https://doi.org/10.1007/s10472-020-09695-2 ( reposiTUm)
Kletzander, L., & Musliu, N. (2020). Solving the general employee scheduling problem. Computers and Operations Research, 113(104794), 104794. https://doi.org/10.1016/j.cor.2019.104794 ( reposiTUm)
Geiger, M. J., Kletzander, L., & Musliu, N. (2019). Solving the Torpedo Scheduling Problem. Journal of Artificial Intelligence Research, 66, 1–32. https://doi.org/10.1613/jair.1.11303 ( reposiTUm)
Mischek, F., & Musliu, N. (2019). Integer programming model extensions for a multi-stage nurse rostering problem. Annals of Operations Research. https://doi.org/10.1007/s10479-017-2623-z ( reposiTUm)

Beiträge in Tagungsbänden

Da Ros, F., Di Gaspero, L., Lackner, M.-L., Musliu, N., & Winter, F. (2024). Local Search Algorithms for the Oven Scheduling Problem. In GECCO ’24 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion (pp. 191–194). https://doi.org/10.1145/3638530.3654158 ( reposiTUm)
Da Ros, F., Di Gaspero, L., Lackner, M.-L., & Musliu, N. (2024). Reducing Energy Consumption in Electronic Component Manufacturing through Large Neighborhood Search. In GECCO ’24 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion (pp. 1706–1714). https://doi.org/10.1145/3638530.3664132 ( reposiTUm)
Da Ros, F., Lackner, M.-L., & Musliu, N. (2024). Theoretical Lower Bounds for the Oven Scheduling Problem. In Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling, PATAT 2024 (pp. 164–186). ( reposiTUm)
Winter, F., & Musliu, N. (2024). A Hybrid Approach for the Artificial Teeth Scheduling Problem. In Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling, PATAT 2024 (pp. 255–258). ( reposiTUm)
Horn, M., Lackner, M.-L., Mrkvicka, C., Musliu, N., Preininger, J., & Winter, F. (2024). Solving the Employee Task Distribution Problem with Multiple Objectives. In Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling, PATAT 2024 (pp. 36–51). ( reposiTUm)
Frohner, N., Mugdan, E., Kletzander, L., & Musliu, N. (2024). A Decision Support System Prototype for Automated Bus Driver Scheduling. In Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling, PATAT 2024 (pp. 259–262). ( reposiTUm)
Mischek, F., & Musliu, N. (2024). Preference Explanation and Decision Support for Multi-Objective Real-World Test Laboratory Scheduling. In Proceedings of the Thirty-Fourth International Conference on Automated Planning and Scheduling (pp. 378–386). AAAI Press. https://doi.org/10.1609/icaps.v34i1.31497 ( reposiTUm)
Kletzander, L., Gjergji, I., & Musliu, N. (2024). Combining Aircraft Maintenance Routing with a Distribution Objective. In Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling, PATAT 2024 (pp. 325–328). ( reposiTUm)
Musliu, N. (2024). AI Techniques for Timetabling and Scheduling Problems. In Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling, PATAT 2024 (pp. 5–5). ( reposiTUm)
Mischek, F., & Musliu, N. (2023). Leveraging problem-independent hyper-heuristics for real-world test laboratory scheduling. In GECCO ’23: Proceedings of the Genetic and Evolutionary Computation Conference (pp. 321–329). Association for Computing Machinery (ACM). https://doi.org/10.1145/3583131.3590354 ( reposiTUm)
Kletzander, L., & Musliu, N. (2023). Large-State Reinforcement Learning for Hyper-Heuristics. In Proceedings of the 37th AAAI Conference on Artificial Intelligence (pp. 12444–12452). AAAI Press. https://doi.org/10.1609/aaai.v37i10.26466 ( reposiTUm)
Kletzander, L., & Musliu, N. (2023). Dynamic Weight Setting for Personnel Scheduling with Many Objectives. In S. Koenig, R. Stern, & M. Vallati (Eds.), Proceedings of the Thirty-Third International Conference on Automated  Planning and Scheduling (pp. 509–517). AAAI Press. https://doi.org/10.1609/icaps.v33i1.27231 ( reposiTUm)
Preininger, J., Winter, F., & Musliu, N. (2022). Modeling and Solving the K-track Assignment Problem. In 14th Metaheuristics International Conference. MIC 2022 - 14th Metaheuristics International Conference, Ortigia-Syracuse, Italy. Springer. http://hdl.handle.net/20.500.12708/142199 ( reposiTUm)
Winter, F., & Musliu, N. (2022). An Investigation of Hyper-Heuristic Approaches for Teeth Scheduling. In MIC 2022: 14th Metaheuristics International Conference. 14th Metaheuristics International Conference (MIC 2022), Ortigia-Syracuse, Italy. Springer. ( reposiTUm)
Winter, F., & Musliu, N. (2022). A Hybrid Approach for Paint Shop Scheduling in the Automotive Supply Industry. In Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling (pp. 317–320). http://hdl.handle.net/20.500.12708/142193 ( reposiTUm)
Winter, F., Meiswinkel, S., Musliu, N., & Walkiewicz, D. (2022). Modeling and Solving Parallel Machine Scheduling with Contamination Constraints in the Agricultural Industry. In 28th International Conference on Principles and Practice of Constraint Programming, CP 2022, July 31 to August 8, 2022, Haifa, Israel (pp. 1–18). https://doi.org/10.4230/LIPIcs.CP.2022.41 ( reposiTUm)
Kletzander, L., & Musliu, N. (2022). Hyper-Heuristics for Personnel Scheduling Domains. In Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (pp. 462–470). AAAI Press. https://doi.org/10.1609/icaps.v32i1.19832 ( reposiTUm)
Vass, J., Musliu, N., & Winter, F. (2022). Solving the Production Leveling Problem with Order-Splitting and Resource Constraints. In Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling (pp. 261–284). http://hdl.handle.net/20.500.12708/142211 ( reposiTUm)
Lackner, M.-L., Musliu, N., & Winter, F. (2022). Solving an Industrial Oven Scheduling Problem with a Simulated Annealing Approach. In Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling (pp. 115–120). http://hdl.handle.net/20.500.12708/142210 ( reposiTUm)
Mrkvicka, C., Musliu, N., Preininger, J., & Winter, F. (2021). Automated Production Scheduling for Artificial Teeth Manufacturing. In Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling, {ICAPS} 2021, Guangzhou, China (virtual), August 2-13, 2021}, (pp. 500–508). http://hdl.handle.net/20.500.12708/58583 ( reposiTUm)
Geibinger, T., Kletzander, L., Krainz, M., Mischek, F., Musliu, N., & Winter, F. (2021). Physician Scheduling During a Pandemic. In Integration of Constraint Programming, Artificial Intelligence, and Operations Research (pp. 456–465). https://doi.org/10.1007/978-3-030-78230-6_29 ( reposiTUm)
Faustmann, G., Mrkvicka, C., Musliu, N., & Winter, F. (2021). Automated configuration of parallel machine dispatching rules by machine learning. In Proceedings of the Genetic and Evolutionary Computation Conference Companion. GECCO 2021 - Genetic and Evolutionary Computation Conference, Companion Volume, Lille, France. https://doi.org/10.1145/3449726.3459541 ( reposiTUm)
Musliu, N., Weintritt, W., & Winter, F. (2021). Solving the paintshop scheduling problem with memetic algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference. GECCO 2021 - Genetic and Evolutionary Computation Conference, Companion Volume, Lille, France. https://doi.org/10.1145/3449639.3459375 ( reposiTUm)
Lackner, M.-L., Mrkvicka, C., Musliu, N., Walkiewicz, D., & Winter, F. (2021). Minimizing Cumulative Batch Processing Time for an Industrial Oven Scheduling Problem. In 27th International Conference on Principles and Practice of Constraint Programming, {CP} 2021, Montpellier, France (Virtual Conference), October 25-29, 2021} (pp. 37:1-37:18). https://doi.org/10.4230/LIPIcs.CP.2021.37 ( reposiTUm)
Kletzander, L., Musliu, N., & Van Hentenryck, P. (2021). Branch and Price for Bus Driver Scheduling with Complex Break Constraints. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, {IAAI} 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, {EAAI} 2021, Virtual Event, February 2-9, 2021 (pp. 11853–11861). http://hdl.handle.net/20.500.12708/58590 ( reposiTUm)
Geibinger, T., Mischek, F., & Musliu, N. (2021). Constraint Logic Programming for Real-World Test Laboratory Scheduling. In 35th AAAI Conference on Artificial Intelligence (pp. 6358–6366). http://hdl.handle.net/20.500.12708/58591 ( reposiTUm)
Danzinger, P., Geibinger, T., Mischek, F., & Musliu, N. (2020). Solving the Test Laboratory Scheduling Problem with Variable Task Grouping. In Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (pp. 357–365). http://hdl.handle.net/20.500.12708/58340 ( reposiTUm)
Musliu, N., Winter, F., & Stuckey, P. J. (2020). Explaining Propagators for String Edit Distance Constraints. In Proceedings of the AAAI Conference on Artificial Intelligence (pp. 1676–1683). https://doi.org/10.1609/aaai.v34i02.5530 ( reposiTUm)
Kletzander, L., & Musliu, N. (2020). Solving Large Real-Life Bus Driver Scheduling Problems with Complex Break Constraints. In Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling, Nancy, France, October 26-30, 2020 (pp. 421–430). http://hdl.handle.net/20.500.12708/55565 ( reposiTUm)
Kletzander, L., & Musliu, N. (2019). Modelling and Solving the Minimum Shift Design Problem. In Integration of Constraint Programming, Artificial Intelligence, and Operations Research 16th International Conference, CPAIOR 2019, Thessaloniki, Greece, June 4–7, 2019, Proceedings. CPAIOR 2019 - 16th International Conference on the Integration of Constraint Programming, Artificial Intelligence and Operations Research, Thessaloniki, Greece. Springer. https://doi.org/10.1007/978-3-030-19212-9_26 ( reposiTUm)
Kletzander, L., Musliu, N., & Smith-Miles, K. (2019). Instance Space Analysis for a Personnel Scheduling Problem. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, {IJCAI} 2019 (pp. 1–8). http://hdl.handle.net/20.500.12708/57880 ( reposiTUm)
Geibinger, T., & Tompits, H. (2019). Characterising Relativised Strong Equivalence with Projection for Non-ground Answer-Set Programs. In F. Calimeri, N. Leone, & M. Manna (Eds.), Logics in Artificial Intelligence: 16th European Conference, JELIA 2019 (pp. 542–558). Springer. https://doi.org/10.1007/978-3-030-19570-0_36 ( reposiTUm)
Geibinger, T., Mischek, F., & Musliu, N. (2019). Investigating Constraint Programming for Real World Industrial Test Laboratory Scheduling. In Integration of Constraint Programming, Artificial Intelligence, and Operations Research (pp. 304–319). Springer. https://doi.org/10.1007/978-3-030-19212-9_20 ( reposiTUm)
Winter, F., Musliu, N., Mrkvicka, C., & Demirovic, E. (2019). Solution Approaches for an Automotive Paint Shop Scheduling Problem. In Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling, {ICAPS} 2019 (pp. 573–581). AAAI Press. http://hdl.handle.net/20.500.12708/57874 ( reposiTUm)
Kletzander, L., Musliu, N., Gärtner, J., Krennwallner, J., & Schafhauser, W. (2019). Exact Methods for Extended Rotating Workforce Scheduling Problems. In Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling, {ICAPS} 2018, Berkeley, CA, USA, July 11-15, 2019 (pp. 519–527). AAAI Press. http://hdl.handle.net/20.500.12708/57873 ( reposiTUm)
Kletzander, L., & Musliu, N. (2018). Solving the General Employee Scheduling Problem. In 12th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2018 (pp. 1–36). http://hdl.handle.net/20.500.12708/57573 ( reposiTUm)
Mischek, F., & Musliu, N. (2018). A Local Search Framework for Industrial Test Laboratory Scheduling. In Proceedings of the 12th International Conference on the Practice and Theory of Auto­mated Timetabling (PATAT-2018) (pp. 465–467). http://hdl.handle.net/20.500.12708/57572 ( reposiTUm)
Winter, F., Musliu, N., Demirovic, E., & Stuckey, P. J. (2018). Solution-Based Phase Saving and MaxSAT for Employee Scheduling: A Computational Study. In 12th International Conference on the Practice and Theory of Automated Timetabling (pp. 453–457). http://hdl.handle.net/20.500.12708/57475 ( reposiTUm)
Winter, F., Musliu, N., Demirovic, E., & Mrkvicka, C. (2018). Modeling and Solving an Automotive Paint Shop Scheduling Problem. In 12th International Conference on the Practice and Theory of Automated Timetabling (pp. 477–480). http://hdl.handle.net/20.500.12708/57476 ( reposiTUm)
Winter, F., Musliu, N., Demirovic, E., & Mrkvicka, C. (2018). Paint Shop Scheduling in the Automotive Supply Industry. In 29th European Conference on Operational Research (p. 161). http://hdl.handle.net/20.500.12708/57470 ( reposiTUm)
Musliu, N., & Ahmeti, A. (2018). Min-conflicts heuristic for multi-mode resource-constrained projects scheduling. In Proceedings of the Genetic and Evolutionary Computation Conference. GECCO: Genetic and Evolutionary Computation Conference, Seattle, United States of America (the). ACM. https://doi.org/10.1145/3205455.3205620 ( reposiTUm)

Tagungsbände

Hebrard, E., & Musliu, N. (Eds.). (2020). Integration of Constraint Programming, Artificial Intelligence, and Operations Research. Springer. https://doi.org/10.1007/978-3-030-58942-4 ( reposiTUm)

Präsentationen

Mugdan, E., Frohner, N., Kletzander, L., & Musliu, N. (2024, October 20). Towards Multi-Objective Optimization for Rotating Workforce Scheduling [Conference Presentation]. Multi-Objective Decision Making Workshop at ECAI 2024, Santiago de compostela, Spain. http://hdl.handle.net/20.500.12708/208780 ( reposiTUm)
Frohner, N., Mugdan, E., Kletzander, L., & Musliu, N. (2024, October 20). Pareto Front Approximation Results for Bus Driver Scheduling with Complex Constraints [Conference Presentation]. Multi-Objective Decision Making Workshop at ECAI 2024, Santiago de Compostela, Spain. http://hdl.handle.net/20.500.12708/210368 ( reposiTUm)
Musliu, N., Kletzander, L., & Mischek, F. (2024, June 3). AI Techniques for Solving Scheduling Problems [Presentation]. 34th International Conference on Automated Planning and Scheduling (ICAPS 2024), Banaff, Alberta, Canada. http://hdl.handle.net/20.500.12708/210992 ( reposiTUm)
Mischek, F. (2020). Project Scheduling in Industrial Test Laboratories. ICAPS 2020 - International Conference on Automated Planning and Scheduling, Nancy, France. http://hdl.handle.net/20.500.12708/87083 ( reposiTUm)
Winter, F., & Musliu, N. (2019). Exact Methods for a Paint Shop Scheduling Problem from the Automotive Supply Industry. CPAIOR 2019 - 16th International Conference on the Integration of Constraint Programming, Artificial Intelligence and Operations Research, Thessaloniki, Greece. http://hdl.handle.net/20.500.12708/86907 ( reposiTUm)