Wissenschaftliche Artikel

Ganian, R., Schidler, A., Sorge, M., & Szeider, S. (2022). Threshold Treewidth and Hypertree Width. Journal of Artificial Intelligence Research, 74, 1687–1713. https://doi.org/10.1613/JAIR.1.13661 ( reposiTUm)
Ganian, R., Kim, E. J., & Szeider, S. (2022). Algorithmic applications of tree-cut width. SIAM Journal on Discrete Mathematics, 36(4), 2635–2666. https://doi.org/10.1137/20M137478X ( reposiTUm)
Ganian, R., Kim, E. J., Slivovsky, F., & Szeider, S. (2022). Sum-of-Products with Default Values: Algorithms and Complexity Results. Journal of Artificial Intelligence Research, 73, 535–552. https://doi.org/10.1613/JAIR.1.12370 ( reposiTUm)
Bergren, D., Eiben, E., Ganian, R., & Kanj, I. (2022). On Covering Segments with Unit Intervals. SIAM Journal on Discrete Mathematics, 36(2), 1200–1230. https://doi.org/10.1137/20M1336412 ( reposiTUm)

Beiträge in Tagungsbänden

Ganian, R., Hamm, T., Knop, D., Schierreich, Š., & Suchý, O. (2022). Hedonic Diversity Games: A Complexity Picture with More than Two Colors. In Proceedings of the 36th AAAI Conference on Artificial Intelligence (pp. 5034–5042). AAAI Press. https://doi.org/10.1609/aaai.v36i5.20435 ( reposiTUm)
Deligkas, A., Eiben, E., Ganian, R., Hamm, T., & Ordyniak, S. (2022). The Complexity of Envy-Free Graph Cutting. In L. De Raedt (Ed.), Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (pp. 237–243). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2022/34 ( reposiTUm)
Ganian, R., Hamm, T., Korchemna, V., Okrasa, K., & Simonov, K. (2022). The Fine-Grained Complexity of Graph Homomorphism Parameterized by Clique-Width. In 49th EATCS International Conference on Automata, Languages, and Programming (pp. 66:1-66:20). Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH. https://doi.org/10.4230/LIPIcs.ICALP.2022.66 ( reposiTUm)
Ganian, R., Pokrývka, F., Schidler, A., Simonov, K., & Szeider, S. (2022). Weighted Model Counting with Twin-Width. In K. S. Meel & O. Strichman (Eds.), 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022) (pp. 1–17). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SAT.2022.15 ( reposiTUm)
Chaplick, S., Di Giacomo, E., Frati, F., Ganian, R., Raftopoulou, C., & Simonov, K. (2022). Parameterized Algorithms for Upward Planarity. In X. Goaoc & M. Kerber (Eds.), 38th International Symposium on Computational Geometry (SoCG 2022) (pp. 1–16). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2022.26 ( reposiTUm)
Hamm, T., & Hliněný, P. (2022). Parameterised Partially-Predrawn Crossing Number. In X. Goaoc & M. Kerber (Eds.), 38th International Symposium on Computational Geometry (SoCG 2022) (pp. 46:1-46:15). Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.SoCG.2022.46 ( reposiTUm)
Ganian, R., Hamm, T., Korchemna, V., Okrasa, K., & Simonov, K. (2022). The Complexity of k-Means Clustering when Little is Known. In Proceedings of the 39th International Conference on Machine Learning (pp. 6960–6987). https://doi.org/10.34726/3070 ( reposiTUm)
Ganian, R., & Korchemna, V. (2021). The Complexity of Bayesian Network Learning: Revisiting the Superstructure. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. Wortman Vaughan (Eds.), Advances in Neural Information Processing Systems 34 (NeurIPS 2021) (pp. 430–442). Curran Associates, Inc. https://doi.org/10.34726/3905 ( reposiTUm)