Wissenschaftliche Artikel

Fellner, M., & Jüngel, A. (2024). A coupled stochastic differential reaction–diffusion system for angiogenesis. Journal of Computational and Applied Mathematics, 438, Article 115570. https://doi.org/10.1016/j.cam.2023.115570 ( reposiTUm)
Fellner, M., & Jüngel, A. (2024). Existence analysis of a cross-diffusion system with nonlinear Robin boundary conditions for vesicle transport in neurites. Nonlinear Analysis, 241, Article 113494. https://doi.org/10.1016/j.na.2024.113494 ( reposiTUm)
Jüngel, A., & Wang, B. (2024). Structure-preserving semi-convex-splitting numerical scheme for a Cahn-Hilliard cross-diffusion system in lymphangiogenesis. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 34(10), 1905–1932. https://doi.org/10.1142/S0218202524500398 ( reposiTUm)
Hu, J., Jüngel, A., & Zamponi, N. (2024). Global weak solutions for a nonlocal multispecies Fokker–Planck–Landau system. Kinetic and Related Models. https://doi.org/10.3934/krm.2024007 ( reposiTUm)
Huber, F., & Jüngel, A. (2024). Corrigendum: Global martingale solutions for quasilinear SPDEs via the boundedness-by-entropy method. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 60(4), 3009–3012. https://doi.org/10.1214/23-AIHP1422 ( reposiTUm)
Huo, X., & Jüngel, A. (2024). Global Existence and Weak-Strong Uniqueness for Chemotaxis Compressible Navier-Stokes Equations Modeling Vascular Network Formation. Journal of Mathematical Fluid Mechanics, 26(1), Article 11. https://doi.org/10.1007/s00021-023-00840-5 ( reposiTUm)
Braukhoff, M., Huber, F., & Jüngel, A. (2023). Global martingale solutions for stochastic Shigesada–Kawasaki–Teramoto population models. Stochastics and  Partial Differential Equations: Analysis and Computations. https://doi.org/10.1007/s40072-023-00289-7 ( reposiTUm)
Charles, F., Massimini, A., & Salvarani, F. (2023). Mathematical and numerical study of a kinetic model describing the evolution of planetary rings. Computers and Mathematics with Applications, 143, 48–56. https://doi.org/10.1016/j.camwa.2023.04.029 ( reposiTUm)
Barletti, L., Holzinger, P., & Jüngel, A. (2022). Formal derivation of quantum drift-diffusion equations with spin-orbit interaction. Kinetic and Related Models, 15(2), 257–282. https://doi.org/10.3934/krm.2022007 ( reposiTUm)
Bulíček, M., Jüngel, A., Pokorný, M., & Zamponi, N. (2022). Existence analysis of a stationary compressible fluid model for heat-conducting and chemically reacting mixtures. Journal of Mathematical Physics, 63(5), Article 051501. https://doi.org/10.1063/5.0041053 ( reposiTUm)
Braukhoff, M., Raithel, C., & Zamponi, N. (2022). Partial Hölder regularity for solutions of a class of cross-diffusion systems with entropy structure. Journal de Mathématiques Pures et Appliquées, 166, 30–69. https://doi.org/10.1016/j.matpur.2022.07.006 ( reposiTUm)
Daus, E., Fellner, M., & Jüngel, A. (2022). Random-batch method for multi-species stochastic interacting particle systems. Journal of Computational Physics, 463, Article 111220. https://doi.org/10.1016/j.jcp.2022.111220 ( reposiTUm)
Huo, X., Jüngel, A., & Tzavaras, A. E. (2022). Weak-Strong Uniqueness for Maxwell-Stefan Systems. SIAM Journal on Mathematical Analysis, 54(3), 3215–3252. https://doi.org/10.1137/21M145210X ( reposiTUm)

Präsentationen

Wang, B. (2024, June 24). Structure-preserving semi-convex-splitting numerical scheme for a Cahn-Hilliard cross-diffusion system in lymphangiogenesis [Poster Presentation]. Frontiers in Interacting Particle Systems, Aggregation-Diffusion Equations and Collective Behavior, Marseille, France. ( reposiTUm)