Wissenschaftliche Artikel

Kowarsch, F., Maurer-Granofszky, M., Weijler, L., Wödlinger, M., Reiter, M., Schumich, A., Feuerstein, T., Sala, S., Nováková, M., Faggin, G., Gaipa, G., Hrusak, O., Buldini, B., & Dworzak, M. (2023). FCM marker importance for MRD assessment in T-cell acute lymphoblastic leukemia: An AIEOP-BFM-ALL-FLOW study group report. Cytometry Part A. https://doi.org/10.1002/cyto.a.24805 ( reposiTUm)
Weijler, L., Kowarsch, F., Wödlinger, M., Reiter, M., Maurer-Granofszky, M., Schumich, A., & Dworzak, M. N. (2022). UMAP Based Anomaly Detection for Minimal Residual Disease Quantification within Acute Myeloid Leukemia. Cancers, 14(4), Article 898. https://doi.org/10.3390/cancers14040898 ( reposiTUm)
Wödlinger, M., Reiter, M., Weijler, L., Maurer-Granofszky, M., Schumich, A., Sajaroff, E., Groeneveld-Krentz, S., Rossi Jorge, Karawajew, L., Ratei, R., & Dworzak, M. (2022). Automated identification of cell populations in flow cytometry data with transformers. Computers in Biology and Medicine, 144, Article 105314. https://doi.org/10.1016/j.compbiomed.2022.105314 ( reposiTUm)

Beiträge in Tagungsbänden

Weijler, L., Reiter, M., Hermosilla, P., Maurer-Granofszky, M., & Dworzak, M. (2025). On the Importance of Local and Global Feature Learning for Automated Measurable Residual Disease Detection in Flow Cytometry Data. In A. Antonacopoulos, S. Chaudhuri, R. Chellappa, Cl. Liu, S. Bhattacharya, & U. Pal (Eds.), Pattern Recognition (pp. 316–331). https://doi.org/10.1007/978-3-031-78198-8_21 ( reposiTUm)
Weijler, L., Kowarsch, F., Reiter, M., Hermosilla, P., Maurer-Granofszky, M., & Dworzak, M. (2024). FATE: Feature-Agnostic Transformer-based Encoder for learning generalized embedding spaces in flow cytometry data. In 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (pp. 7941–7949). https://doi.org/10.1109/WACV57701.2024.00777 ( reposiTUm)
Kowarsch, F., Weijler, L., Wödlinger, M., Reiter, M., Maurer-Granofszky, M., Schumich, A., Sajaroff, E., Groeneveld-Krentz, S., Rossi, J., Karawajew, L., Ratei, R., & Dworzak, M. (2022). Towards Self-explainable Transformers for Cell Classification in Flow Cytometry Data. In Interpretability of Machine Intelligence in Medical Image Computing (pp. 22–32). https://doi.org/10.1007/978-3-031-17976-1_3 ( reposiTUm)

Präsentationen

Weijler, L. M. (2022, February 20). UMAP based Anomaly Detection for Leukemic Cell Quantification within Acute Myeloid Leukemia [Conference Presentation]. ICMVA 2022: 2022 the 5th International Conference on Machine Vision and Applications (ICMVA), Singapur, Singapore. ( reposiTUm)