Wissenschaftliche Artikel

Bhyravarapu, S., Hartmann, T. A., Hoang, P. H., Kalyanasundaram, S., & Vinod Reddy, I. (2024). Conflict-Free Coloring: Graphs of Bounded Clique-Width and Intersection Graphs. Algorithmica, 86(7), 2250–2288. https://doi.org/10.1007/s00453-024-01227-2 ( reposiTUm)
Brand, C., Ganian, R., Röder, S., & Schager, F. (2024). Fixed-Parameter Algorithms for Computing Bend-Restricted RAC Drawings of Graphs. Journal of Graph Algorithms and Applications, 28(2), 131–150. https://doi.org/10.7155/jgaa.v28i2.2995 ( reposiTUm)
Bhore, S., Ganian, R., Li, G., Nöllenburg, M., & Wulms, J. (2023). Worbel: aggregating point labels into word clouds. ACM Transactions on Spatial Algorithms and Systems, 9(3), Article 19. https://doi.org/10.1145/3603376 ( reposiTUm)
Ganian, R., Schidler, A., Sorge, M., & Szeider, S. (2022). Threshold Treewidth and Hypertree Width. Journal of Artificial Intelligence Research, 74, 1687–1713. https://doi.org/10.1613/JAIR.1.13661 ( reposiTUm)
Ganian, R., Kim, E. J., & Szeider, S. (2022). Algorithmic applications of tree-cut width. SIAM Journal on Discrete Mathematics, 36(4), 2635–2666. https://doi.org/10.1137/20M137478X ( reposiTUm)
Bergren, D., Eiben, E., Ganian, R., & Kanj, I. (2022). On Covering Segments with Unit Intervals. SIAM Journal on Discrete Mathematics, 36(2), 1200–1230. https://doi.org/10.1137/20M1336412 ( reposiTUm)
Bhore, S., Ganian, R., Montecchiani, F., & Nöllenburg, M. (2022). Parameterized Algorithms for Queue Layouts. Journal of Graph Algorithms and Applications, 26(3), 335–352. https://doi.org/10.7155/jgaa.00597 ( reposiTUm)

Beiträge in Tagungsbänden

Balabán, J., Ganian, R., & Rocton, M. (2024). Computing Twin-Width Parameterized by the Feedback Edge Number. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024) (pp. 7:1-7:19). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.STACS.2024.7 ( reposiTUm)
Wietheger, S., & Doerr, B. (2024). Near-Tight Runtime Guarantees for Many-Objective Evolutionary Algorithms. In Parallel Problem Solving from Nature – PPSN XVIII : 18th International Conference, PPSN 2024, Hagenberg, Austria, September 14–18, 2024, Proceedings, Part IV (pp. 153–168). Springer. https://doi.org/10.1007/978-3-031-70085-9_10 ( reposiTUm)
Ganian, R., Müller, H., Ordyniak, S., Paesani, G., & Rychlicki, M. (2024). A Tight Subexponential-Time Algorithm for Two-Page Book Embedding. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024) (pp. 68:1-68:18). https://doi.org/10.4230/LIPIcs.ICALP.2024.68 ( reposiTUm)
Deligkas, A., Eiben, E., Ganian, R., Kanj, I., & Ramanujan, M. S. (2024). Parameterized Algorithms for Coordinated Motion Planning: Minimizing Energy. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024) (pp. 53:1-53:18). https://doi.org/10.4230/LIPIcs.ICALP.2024.53 ( reposiTUm)
Da Lozzo, G., Ganian, R., Gupta, S., Mohar, B., Ordyniak, S., & Zehavi, M. (2024). Exact Algorithms for Clustered Planarity with Linear Saturators. In 35th International Symposium on Algorithms and Computation (ISAAC 2024) (pp. 1–16). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ISAAC.2024.24 ( reposiTUm)
Balabán, J., Ganian, R., & Rocton, M. T. (2024). Twin-Width Meets Feedback Edges and Vertex Integrity. In 19th International Symposium on Parameterized and Exact Computation (IPEC 2024). International Symposium on Parameterized and Exact Computation (IPEC 2024), Egham, United Kingdom of Great Britain and Northern Ireland (the). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.IPEC.2024.3 ( reposiTUm)
Gregor, P., Hoang, P. H., Merino, A., & Mička, O. (2024). Generating All Invertible Matrices by Row Operations. In 35th International Symposium on Algorithms and Computation (ISAAC 2024) (pp. 1–14). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ISAAC.2024.35 ( reposiTUm)
Heimann, S., Hoang, H. P., & Hougardy, S. (2024). The k-Opt Algorithm for the Traveling Salesman Problem Has Exponential Running Time for k ≥ 5. In K. Bringmann, M. Grohe, G. Puppis, & O. Svensson (Eds.), 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ICALP.2024.84 ( reposiTUm)
Brand, C., Korchemna, V., & Skotnica, M. (2023). Deterministic Constrained Multilinear Detection. In J. Leroux, S. Lombardy, & D. Peleg (Eds.), 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023) (pp. 1–14). Schloss-Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.MFCS.2023.25 ( reposiTUm)
Ganian, R., Hamm, T., Knop, D., Schierreich, Š., & Suchý, O. (2022). Hedonic Diversity Games: A Complexity Picture with More than Two Colors. In Proceedings of the 36th AAAI Conference on Artificial Intelligence (pp. 5034–5042). AAAI Press. https://doi.org/10.1609/aaai.v36i5.20435 ( reposiTUm)
Deligkas, A., Eiben, E., Ganian, R., Hamm, T., & Ordyniak, S. (2022). The Complexity of Envy-Free Graph Cutting. In L. De Raedt (Ed.), Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (pp. 237–243). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2022/34 ( reposiTUm)
Eiben, E., Ganian, R., Kanj, I., Ordyniak, S., & Szeider, S. (2022). Finding a Cluster in Incomplete Data. In 30th Annual European Symposium on Algorithms (ESA 2022) (pp. 1–14). Schloss Dagstuhl -- Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ESA.2022.47 ( reposiTUm)
Ganian, R., Hamm, T., Korchemna, V., Okrasa, K., & Simonov, K. (2022). The Fine-Grained Complexity of Graph Homomorphism Parameterized by Clique-Width. In 49th EATCS International Conference on Automata, Languages, and Programming (pp. 66:1-66:20). Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH. https://doi.org/10.4230/LIPIcs.ICALP.2022.66 ( reposiTUm)
Balko, M., Chaplick, S., Ganian, R., Gupta, S., Hoffmann, M., Valtr, P., & Wolff, A. (2022). Bounding and Computing Obstacle Numbers of Graphs. In S. Chechik, G. Navarro, E. Rotenberg, & G. Herman (Eds.), 30th Annual European Symposium on Algorithms (ESA 2022) (pp. 1–13). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ESA.2022.11 ( reposiTUm)
Ganian, R., Pokrývka, F., Schidler, A., Simonov, K., & Szeider, S. (2022). Weighted Model Counting with Twin-Width. In K. S. Meel & O. Strichman (Eds.), 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022) (pp. 1–17). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SAT.2022.15 ( reposiTUm)
Chaplick, S., Di Giacomo, E., Frati, F., Ganian, R., Raftopoulou, C., & Simonov, K. (2022). Parameterized Algorithms for Upward Planarity. In X. Goaoc & M. Kerber (Eds.), 38th International Symposium on Computational Geometry (SoCG 2022) (pp. 1–16). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2022.26 ( reposiTUm)
Hamm, T., & Hliněný, P. (2022). Parameterised Partially-Predrawn Crossing Number. In X. Goaoc & M. Kerber (Eds.), 38th International Symposium on Computational Geometry (SoCG 2022) (pp. 46:1-46:15). Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.SoCG.2022.46 ( reposiTUm)
Eiben, E., Ganian, R., Hamm, T., Jaffke, L., & Kwon, O.-J. (2022). A Unifying Framework for Characterizing and Computing Width Measures. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022) (pp. 1–23). Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH. https://doi.org/10.4230/LIPIcs.ITCS.2022.63 ( reposiTUm)
Ganian, R., Hamm, T., Korchemna, V., Okrasa, K., & Simonov, K. (2022). The Complexity of k-Means Clustering when Little is Known. In Proceedings of the 39th International Conference on Machine Learning (pp. 6960–6987). https://doi.org/10.34726/3070 ( reposiTUm)
Ganian, R., & Korchemna, V. (2021). The Complexity of Bayesian Network Learning: Revisiting the Superstructure. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. Wortman Vaughan (Eds.), Advances in Neural Information Processing Systems 34 (NeurIPS 2021) (pp. 430–442). Curran Associates, Inc. https://doi.org/10.34726/3905 ( reposiTUm)
Dallard, C., Ganian, R., Hatzel, M., Krnc, M., & Milanič, M. (2021). Graphs with Two Moplexes. In Proceedings of the XI Latin and American Algorithms, Graphs and Optimization Symposium (pp. 248–256). Elsevier. https://doi.org/10.1016/j.procs.2021.11.031 ( reposiTUm)