Wissenschaftliche Artikel

Besau, F., & Werner, E. M. (2018). The floating body in real space forms. Journal of Differential Geometry, 110(2). https://doi.org/10.4310/jdg/1538791243 ( reposiTUm)
Berg, A., Parapatits, L., Schuster, F. E., & Weberndorfer, M. (2018). Log-concavity properties of Minkowski valuations. Transactions of the American Mathematical Society, 370(7), 5245–5277. https://doi.org/10.1090/tran/7434 ( reposiTUm)
Schuster, F., & Wannerer, T. (2018). Minkowski valuations and generalized valuations. Journal of the European Mathematical Society, 20(8), 1851–1884. https://doi.org/10.4171/jems/801 ( reposiTUm)
Li, J., & Leng, G. (2017). Orlicz valuations. Indiana University Mathematics Journal, 66(3), 791–819. https://doi.org/10.1512/iumj.2017.66.6027 ( reposiTUm)
Li, J., & Ma, D. (2017). Laplace transforms and valuations. Journal of Functional Analysis, 272(2), 738–758. https://doi.org/10.1016/j.jfa.2016.09.011 ( reposiTUm)
Dorrek, F., & Schuster, F. E. (2017). Projection functions, area measures and the Alesker-Fourier transform. Journal of Functional Analysis, 273(6), 2026–2069. https://doi.org/10.1016/j.jfa.2017.06.003 ( reposiTUm)
Dorrek, F. (2017). Minkowski endomorphisms. Geometric And Functional Analysis, 27(3), 466–488. https://doi.org/10.1007/s00039-017-0405-z ( reposiTUm)
Besau, F., & Werner, E. M. (2016). The spherical convex floating body. Advances in Mathematics, 301, 867–901. https://doi.org/10.1016/j.aim.2016.07.001 ( reposiTUm)
Gardner, R. J., Parapatits, L., & Schuster, F. E. (2014). A characterization of Blaschke addition. Advances in Mathematics, 254, 396–418. https://doi.org/10.1016/j.aim.2013.11.017 ( reposiTUm)

Beiträge in Büchern

Dafnis, N., & Paouris, G. (2017). An inequality for moments of log-concave functions on Gaussian random vectors. In B. Klartag & E. Milman (Eds.), Geometric Aspects of Functional Analysis (pp. 107–122). Springer Lecture Notes in Mathematics. https://doi.org/10.1007/978-3-319-45282-1_7 ( reposiTUm)
Schuster, F. (2017). A Hadwiger-type theorem for general tensor valuations. In E. Vedel Jensen & M. Kiderlen (Eds.), Tensor Valuations and Their Applications in Stochastic Geometry and Imaging (pp. 157–183). Springer Lecture Notes in Mathematics. https://doi.org/10.1007/978-3-319-51951-7_6 ( reposiTUm)

Präsentationen

Ortega Moreno, O. A. (2020). An optimal plank theorem. BIRS Workshop on Geometric Tomography (20w5037), Banff, Canada. http://hdl.handle.net/20.500.12708/123137 ( reposiTUm)
Hack, T. (2019). Randomized Urysohn-type inequalities. CDIG2019 Conference on Convex, Discrete and Integral Geometry, Friedrich-Schiller-Universität Jena, Germany. http://hdl.handle.net/20.500.12708/122875 ( reposiTUm)
Hack, T. (2019). Randomized Urysohn-type inequalities. Workshop on Geometry: Multiple Perspectives on Geometric Inequalities, Universitat Autònoma de Barcelona, Spain. http://hdl.handle.net/20.500.12708/122763 ( reposiTUm)
Hack, T. (2019). Randomized Urysohn-type inequalities. 2019 Szeged Workshop on Convexity, Bolyai Institute, University of Szeged, Hungary. http://hdl.handle.net/20.500.12708/122762 ( reposiTUm)
Hack, T. (2019). Randomized Urysohn-type inequalities. International Conference on Asymptotic Geometric Analysis IV, Euler International Mathematical Institute, St.Petersburg, Russian Federation (the). http://hdl.handle.net/20.500.12708/122764 ( reposiTUm)
Hack, T. (2018). Probabilistic centroid bodies. Probability Seminar, University of Zagreb, Croatia, Austria. http://hdl.handle.net/20.500.12708/122480 ( reposiTUm)
Hack, T. (2018). Spherical centroid bodies. Analysis-Seminar, Missouri, United States of America (the). http://hdl.handle.net/20.500.12708/122479 ( reposiTUm)
Schuster, F. (2017). Geometric optimization via an idea of Voronoi. ÖMG-DMV-Congress 2017, Salzburg, Austria. http://hdl.handle.net/20.500.12708/122260 ( reposiTUm)
Li, J. (2017). Laplace transforms and functions valued valuations. Conference on Convex, Discrete and Integral Geometry, Bedlewo, Poland. http://hdl.handle.net/20.500.12708/119738 ( reposiTUm)
Li, J. (2017). C(Rn) valued valuations. Goethe Universität, Frankfurt, Germany. http://hdl.handle.net/20.500.12708/122094 ( reposiTUm)
Schuster, F. (2017). Affine vs. Euclidean Sobolev inequalities. TU Berlin, Berlin, Germany. http://hdl.handle.net/20.500.12708/122144 ( reposiTUm)
Schuster, F. (2017). Affine vs. Euclidean isoperimetric inequalities. Conference “Convex and Integral Geometry,” Goethe-Universität Frankfurt, Germany. http://hdl.handle.net/20.500.12708/122259 ( reposiTUm)
Schuster, F. (2017). Affine vs. Euclidean Sobolev inequalities. Vortrag am Courant Institute NYC, Courant Institute, NYC, United States of America (the). http://hdl.handle.net/20.500.12708/122145 ( reposiTUm)
Schuster, F. (2017). Even SO(n) equivariant Minkowski valuations - An Update. BIRS Workshop: Recent Advances in Discrete and Analytic Aspects of Convexity, Banff International Research Station, Canada. http://hdl.handle.net/20.500.12708/122261 ( reposiTUm)
Schuster, F. (2016). Basic properties and examples of j-projection bodies. INdAM Workshop “Analytic aspects of convexity,” Rom, Italy. http://hdl.handle.net/20.500.12708/121672 ( reposiTUm)
Schuster, F. (2016). Affine vs. Euclidean isoperimetric inequalities. Friedrich-Schiller-Universität, Jena, Germany. http://hdl.handle.net/20.500.12708/121710 ( reposiTUm)
Schuster, F. (2016). Affine vs. Euclidean isoperimetric inequalities. Goethe Universität, Frankfurt, Germany. http://hdl.handle.net/20.500.12708/121712 ( reposiTUm)
Schuster, F. (2016). Invariant bivaluations. Conference on “Perspectives on integral geometry,” Athen, United States of America (the). http://hdl.handle.net/20.500.12708/121673 ( reposiTUm)
Schuster, F. (2016). Invariant bivaluations. New York University, School of Engineering, New York, United States of America (the). http://hdl.handle.net/20.500.12708/121709 ( reposiTUm)
Berg, A. (2015). The Lutwak-Petty projection inequalities for Minkowski valuations. Joint Austrian-Hungarian Conference 2015, Györ, Hungary. http://hdl.handle.net/20.500.12708/121144 ( reposiTUm)
Besau, F. (2015). The spherical convex floating body. Conference on Intuitive Geometry, László Fejes Tóth Centennial, Budapest, Hungary. http://hdl.handle.net/20.500.12708/121145 ( reposiTUm)
Dorrek, F. (2015). j-Projection bodies. Polytechnic Institute of New York University, New York, United States of America (the). http://hdl.handle.net/20.500.12708/121142 ( reposiTUm)
Dorrek, F. (2015). j-Projection bodies. Conference on Introduction to the Theory of Valuations on Convex Sets, Kent State University, Ohio, United States of America (the). http://hdl.handle.net/20.500.12708/120380 ( reposiTUm)
Berg, A. (2015). The Lutwak-Petty projection inequalities for Minkowski valuations. Conference on Introduction to the Theory of Valuations on Convex Sets, Kent State University, Ohio, United States of America (the). http://hdl.handle.net/20.500.12708/121143 ( reposiTUm)
Besau, F. (2015). The spherical convex floating body. Workshop on Integral Geometry and Valuation Theory, ETH Zürich, Switzerland. http://hdl.handle.net/20.500.12708/121146 ( reposiTUm)
Parapatits, L. (2013). Minkowski valuations and the special linear group. Oberseminar Geometrische Analysis, Goethe-Universität Frankfurt am Main, EU. http://hdl.handle.net/20.500.12708/120496 ( reposiTUm)
Parapatits, L. (2013). Orlicz affine surface areas. Conference on Convex Geometry, Centro Internacional de Encuentros Matematicos, Castro Urdiales, Spain, EU. http://hdl.handle.net/20.500.12708/120498 ( reposiTUm)