Wissenschaftliche Artikel

Bringmann, P., Feischl, M., Miraci, A., Praetorius, D., & Streitberger, J. (2025). On full linear convergence and optimal complexity of adaptive FEM with inexact solver. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 180, 102–129. https://doi.org/10.1016/j.camwa.2024.12.013 ( reposiTUm)
Brunner, M., Praetorius, D., & Streitberger, J. (2025). Cost-optimal adaptive FEM with linearization and algebraic solver for semilinear elliptic PDEs. Numerische Mathematik, 157, 409–445. https://doi.org/10.1007/s00211-025-01455-w ( reposiTUm)
Bringmann, P., Brunner, M., Praetorius, D., & Streitberger, J. (2024). Optimal complexity of goal-oriented adaptive FEM for nonsymmetric linear elliptic PDEs. Journal of Numerical Mathematics. https://doi.org/10.1515/jnma-2023-0150 ( reposiTUm)
Brunner, M., Innerberger, M., Miraçi, A., Praetorius, D., Streitberger, J., & Heid, P. (2024). Corrigendum to: Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs. IMA Journal of Numerical Analysis, 44(3), 1903–1909. https://doi.org/10.1093/imanum/drad103 ( reposiTUm)

Preprints

Bringmann, P., Miraci, A., & Praetorius, D. (2024). Iterative Solvers in Adaptive FEM: Adaptivity Yields Quasi-Optimal Computational Runtime. arXiv. https://doi.org/10.48550/arXiv.2404.07126 ( reposiTUm)
Bringmann, P., Feischl, M., Miraci, A., Praetorius, D., & Streitberger, J. (2024). On full linear convergence and optimal complexity of adaptive FEM with inexact solver. arXiv. https://doi.org/10.48550/arXiv.2311.15738 ( reposiTUm)
Miraci, A., Praetorius, D., & Streitberger, J. (2024). Parameter-robust full linear convergence and optimal complexity of adaptive iteratively linearized FEM for nonlinear PDEs. arXiv. https://doi.org/10.48550/arXiv.2401.17778 ( reposiTUm)
Bringmann, P., Brunner, M., Praetorius, D., & Streitberger, J. (2023). Optimal complexity of goal-oriented adaptive FEM for nonsymmetric linear elliptic PDEs. arXiv. https://doi.org/10.48550/arXiv.2312.00489 ( reposiTUm)