Wissenschaftliche Artikel

Fellner, M., & Jüngel, A. (2024). A coupled stochastic differential reaction–diffusion system for angiogenesis. Journal of Computational and Applied Mathematics, 438, Article 115570. https://doi.org/10.1016/j.cam.2023.115570 ( reposiTUm)
Di Fratta, G., Pfeiler, C.-M., Praetorius, D., & Ruggeri, M. (2023). The Mass-Lumped Midpoint Scheme for Computational Micromagnetics: Newton Linearization and Application to Magnetic Skyrmion Dynamics. Computational Methods in Applied Mathematics, 23(1), 145–175. https://doi.org/10.1515/cmam-2022-0060 ( reposiTUm)
Di Fratta, G., Jüngel, A., Praetorius, D., & Slastikov, V. (2023). Spin-diffusion model for micromagnetics in the limit of long times. Journal of Differential Equations, 343, 467–494. https://doi.org/10.1016/j.jde.2022.10.012 ( reposiTUm)
Becker, R., Brunner, M., Innerberger, M., Melenk, J. M., & Praetorius, D. (2023). Cost-optimal adaptive iterative linearized FEM for semilinear elliptic PDEs. ESAIM: Mathematical Modelling and Numerical Analysis, 57(4), 2193–2225. https://doi.org/10.1051/m2an/2023036 ( reposiTUm)
Innerberger, M., & Praetorius, D. (2023). MooAFEM: An object oriented Matlab code for higher-order adaptive FEM for (nonlinear) elliptic PDEs. Applied Mathematics and Computation, 442, Article 127731. https://doi.org/10.1016/j.amc.2022.127731 ( reposiTUm)
Becker, R., Gantner, G., Innerberger, M., & Praetorius, D. (2023). Goal-oriented adaptive finite element methods with optimal computational complexity. Numerische Mathematik, 153, 111–140. https://doi.org/10.1007/s00211-022-01334-8 ( reposiTUm)
Braukhoff, M., Huber, F., & Jüngel, A. (2023). Global martingale solutions for stochastic Shigesada–Kawasaki–Teramoto population models. Stochastics and  Partial Differential Equations: Analysis and Computations. https://doi.org/10.1007/s40072-023-00289-7 ( reposiTUm)
Bernkopf, M., & Melenk, J. M. (2023). Optimal convergence rates in L2 for a first order system least squares finite element method. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 57(1), 107–141. https://doi.org/10.1051/m2an/2022026 ( reposiTUm)
Charles, F., Massimini, A., & Salvarani, F. (2023). Mathematical and numerical study of a kinetic model describing the evolution of planetary rings. Computers and Mathematics with Applications, 143, 48–56. https://doi.org/10.1016/j.camwa.2023.04.029 ( reposiTUm)
Helml, V., Innerberger, M., & Praetorius, D. (2023). Plain convergence of goal-oriented adaptive FEM. Computers and Mathematics with Applications, 147, 130–149. https://doi.org/10.1016/j.camwa.2023.07.022 ( reposiTUm)
Barletti, L., Holzinger, P., & Jüngel, A. (2022). Formal derivation of quantum drift-diffusion equations with spin-orbit interaction. Kinetic and Related Models, 15(2), 257–282. https://doi.org/10.3934/krm.2022007 ( reposiTUm)
Gantner, G., Praetorius, D., & Schimanko, S. (2022). Stable Implementation of Adaptive IGABEM in 2D in MATLAB. Computational Methods in Applied Mathematics, 22(3), 563–590. https://doi.org/10.1515/cmam-2022-0050 ( reposiTUm)
Rieder, A., Sayas, F.-J., & Melenk, J. M. (2022). Time domain boundary integral equations and convolution quadrature for scattering by composite media. Mathematics of Computation, 91(337), 2165–2195. https://doi.org/10.1090/mcom/3730 ( reposiTUm)
Daus, E., Ptashnyk, M., & Raithel, C. (2022). Derivation of a fractional cross-diffusion system as the limit of a stochastic many-particle system driven by Lévy noise. Journal of Differential Equations, 309, 386–426. https://doi.org/10.1016/j.jde.2021.11.027 ( reposiTUm)
Braukhoff, M., Raithel, C., & Zamponi, N. (2022). Partial Hölder regularity for solutions of a class of cross-diffusion systems with entropy structure. Journal de Mathématiques Pures et Appliquées, 166, 30–69. https://doi.org/10.1016/j.matpur.2022.07.006 ( reposiTUm)
Leumüller, M., Hollaus, K., & Schöberl, J. (2022). Domain decomposition and upscaling technique for metascreens. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 41(3), 938–953. https://doi.org/10.1108/COMPEL-03-2021-0073 ( reposiTUm)
Danczul, T., & Schöberl, J. (2022). A reduced basis method for fractional diffusion operators I. Numerische Mathematik, 151(2), 369–404. https://doi.org/10.1007/s00211-022-01287-y ( reposiTUm)
Daus, E., Fellner, M., & Jüngel, A. (2022). Random-batch method for multi-species stochastic interacting particle systems. Journal of Computational Physics, 463, Article 111220. https://doi.org/10.1016/j.jcp.2022.111220 ( reposiTUm)
Arnold, A., & Signorello, B. (2022). Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium. Kinetic and Related Models, 15(5), 753–773. https://doi.org/10.3934/krm.2022009 ( reposiTUm)
Huo, X., Jüngel, A., & Tzavaras, A. E. (2022). Weak-Strong Uniqueness for Maxwell-Stefan Systems. SIAM Journal on Mathematical Analysis, 54(3), 3215–3252. https://doi.org/10.1137/21M145210X ( reposiTUm)
Buffa, A., Gantner, G., Giannelli, C., Praetorius, D., & Vázquez, R. (2022). Mathematical Foundations of Adaptive Isogeometric Analysis. Archives of Computational Methods in Engineering, 29, 4479–4555. https://doi.org/10.1007/s11831-022-09752-5 ( reposiTUm)
Sky, A., Neunteufel, M., Münch, I., Schöberl, J., & Neff, P. (2021). A hybrid H1 x H(curl) finite element formulation for a relaxed micromorphic continuum model of antiplane shear. Computational Mechanics, 68, 1–24. https://doi.org/10.1007/s00466-021-02002-8 ( reposiTUm)

Präsentationen

Brunner, M., Becker, R., Innerberger, M., Melenk, J. M., & Praetorius, D. (2023, September 4). Rate-optimal goal-oriented adaptive FEM for semilinear elliptic PDEs [Conference Presentation]. European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2023), Lissabon, Portugal. http://hdl.handle.net/20.500.12708/188566 ( reposiTUm)