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KURZFASSUNG. Diese Arbeit schafft einen axiomatischen Rahmen fiir den
Beweis von optimalen Konvergenzraten adaptiver Algorithmen. Das Haupt-
anwendungsfeld hierfiir sind die Finite-Element-Methode sowie auch die
Randelement-Methode. Drei Axiome fiir den Fehlerschétzer und drei wei-
tere fiir die zugehorige Netzverfeinerung garantieren optimale Konvergenz-
raten. Der axiomatische Zugang erlaubt es, spezielle Fragen nach der Not-
wendigkeit von (diskreten) unteren Fehlerschranken, dem Einsatz von ap-
proximativen Losern, der Einbindung von inhomogenen Randdaten oder
auch der Verwendung von dquivalenten Fehlerschitzern zu beantworten.
Die Weiterentwicklungen und Verbesserungen im Vergleich zum aktuellen
Stand der Forschung (ausgenommen der eigenen Arbeit [24], welche in die-
ser Dissertation teilweise erweitert wird) werden im Folgenden zusammen-
gefasst:

e Es wird ein einheitlicher und komplett abstrakter theoretischer Rah-
men geschaffen, der die aktuelle Literatur zum Thema optimaler Konver-
genzraten umfasst. Die abstrakte Form erlaubt es, lineare sowie nichtlineare
Probleme zu behandeln, und sie ist unabhéngig von der zugrundeliegenden
(konformen, nicht-konformen, gemischten) Methode. Verwendet und analy-
siert wird einzig der Fehlerschitzer, welcher als Funktion der Triangulierung
betrachtet wird. Dieser Zugang ermdoglicht es, Axiome zu formulieren, die
unabhéngig von allen Annahmen an das konkrete Modell sind.

e Die Beweise fiir Konvergenz und Konvergenz mit optimaler Rate kom-
men ohne Effizienz des Fehlerschitzers aus. Effizienz wird in dieser Arbeit
nur verwendet, um die Approximationsklasse mittels Best- Approximations-
fehler und Datenfehler zu charakterisieren. Als Konsequenz davon und im
Unterschied zur gegenwirtigen Literatur hingt die obere Schranke fiir op-
timale Markierungsparameter nicht mehr von der Effizienzkonstante ab.

e Die Arbeit fiihrt eine allgemeine Quasi-Galerkinorthogonalitét ein, die
nicht nur hinreichend, sondern auch notwendig fiir die R-lineare Konver-
genz des Fehlerschitzers ist. Betrachtet man die optimale Konvergenzrate
des Fehlerschitzers beziiglich der Komplexitit des Verfahrens (das heift:
die Komplexitit der Berechnung des aktuellen Schritts und die Komplexi-
tat aller vorausgegangenen Schritte), so stellt sich die R-lineare Konvergenz
selbst als notwendig heraus. Die optimale Komplexitdt wird dann als Kon-
sequenz der optimalen Konvergenzraten des Fehlerschitzers bewiesen.

e Anstatt der Overlay-Eigenschaft (eine iibliche Annahme in aktueller
Literatur) verwendet diese Arbeit eine tieferliegende Eigenschaft der Netz-
verfeinerung. Dies erlaubt es, auch fiir populire Verfeinerungsmethoden wie
die Rot-Griin-Blau-Verfeinerung, optimale Konvergenzraten zu beweisen.

e Schlussendlich behandelt diese Arbeit equivalente Fehlerschitzer, ap-
proximative Loser sowie inhomogene und gemischte Randdaten. Zuséatzlich
wird eine neue Methode zur adaptiven Geometrie-Approximation fiir eine
spezielle Randelement-Methode eingefiihrt und deren Konvergenz bewie-
sen.






ABSTRACT. This work aims first at the development of an axiomatic frame-
work for the proof of optimal convergence rates for adaptive algorithms,
with the main field of application being the finite element method and the
boundary element method. Second, the axiomatic view allows refinements
of particular questions like the avoidance of (discrete) lower bounds, inex-
act solvers, inhomogeneous boundary data, or the use of equivalent error
estimators. Three axioms which are related to the estimator guarantee op-
timal convergence rates in terms of the error estimator for any refinement
strategy which satisfies additional three triangulation related axioms. Com-
pared to the state of the art in the literature (except for the recent own
work [24] which is partially generalized), the improvements of this work
can be summarized as follows:

e First, a general and completely abstract framework is presented which
covers the existing literature on rate optimality of adaptive algorithms. The
abstract analysis covers linear as well as nonlinear problems and is inde-
pendent of the underlying (conforming, non-conforming, or mixed) finite
element or boundary element method. Solely, the error estimator, consid-
ered as a function of the underlying triangulation, is used and analyzed.
This allows to formulate axioms which are not restricted to any concrete
model assumption.

e Second, efficiency of the error estimator is neither needed to prove
convergence nor quasi-optimal convergence behavior of the error estima-
tor. In this work, efficiency exclusively characterizes the approximation
classes involved in terms of the best-approximation error and data resolu-
tion. Therefore, the upper bound on the optimal marking parameters does
not depend on the efficiency constant.

e Third, some general quasi-Galerkin orthogonality is not only sufficient,
but also necessary for the R-linear convergence of the error estimator, which
turns out to be necessary itself when it comes to optimal complexity es-
timates. The latter means the optimality of the adaptive algorithm when
considering the overall cost of the algorithm (which includes the computa-
tion of all previous steps) and is proved as a by-product of rate optimality.

e Fourth, we circumvent the use of the overlay estimate of the refinement
strategy, which is a standard assumption in the recent literature, to include
popular refinement schemes like red-green-blue refinement into the analysis.

e Finally, the general analysis allows for equivalent error estimators and
inexact solvers as well as different non-homogeneous and mixed boundary
conditions and is even employed to prove convergence of some novel adap-
tive geometry approximation for a certain boundary element method.
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CHAPTER 1

Outline & Introduction

1.1. Adaptivity

In this work, adaptivity is understood as the property of some numerical algorithm to
adapt its behavior to the given instance of a problem. In contrast to that, a uniform algorithm
is assumed to show more or less the same behavior for any given problem in a certain class
for which the algorithm is designed. This means, that the algorithm uses a priori knowledge
of the problem only. One example for that difference is the numerical integration, i.e, the
approximation of fol f(z) dx for some given function f: [0,1] — R. A uniform algorithm
evaluates the function f at a priori determined grid points and computes an approximation.
An adaptive quadrature, on the other hand, tries to add grid points, where f appears to
be rough, and to remove grid points, where f appears to be smooth. This is done with the
overall goal of reducing the computational cost to reach a certain accuracy (see Figure 1 for
an example). The key difference of both approaches is that the uniform algorithm uses all
evaluations of f for the computation of the approximation. The adaptive algorithm, invests
some of the evaluations in the determination of better evaluation points. This strategy makes
only sense, if the additional investment of computational time pays at some point in terms
of an improved accuracy. Therefore, an adaptive algorithm is only useful, if the problem
at hand benefits from a non-uniform approach. In terms of the quadrature example above,
this is the case if one wants to design a black-box algorithm, which integrates a large class
of functions equally well in terms of accuracy, since for any particular function, one could
design an optimal grid of evaluation points a priori.

But also for very specific problems, an adaptive approach can make sense. An illustrative
example for this situation (which however is way beyond the current state of theory), is the
following: Assume one wants to predict how a car will deform under a front impact. It is
obvious that the front bumpers and the hood will suffer from major deformation and thus
require high computational accuracy. However, in low speed crashes, the strong cylinder
block could survive without any deformation and thus it suffices to compute how the cylinder
block translates and rotates within the car. This is, of course, much cheaper in terms of
computational time, than computing the local deformations of the block. For high speed
crashes, when even the cylinder block deforms, this might not be sufficiently accurate any
more. Therefore, a detailed computation is necessary. The particular threshold speed, which
separates those two cases, may not be known a priori. Hence, it might not be possible to
design a uniform algorithm, which uses only a priori knowledge of the problem, but still
computes the solution efficiently.

An often heard argument in favor of uniform algorithms is that computing power and
memory have become so cheap that one just increases the size of the computing facility, if a
given algorithm does not produce the desired accuracy. This argument is misleading for two
reasons: First, even the upgraded computers can benefit from an adaptive approach which
focuses the computational power on where it is needed most. Second, it might be not even
possible to reach a given accuracy just by upscaling the facilities. To illustrate that, assume
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FIGURE 1. Numerical integration of some given function with uniform grid
(left) and adaptively generated (grid).

that the approximation error (e.g., the quadrature error or the geometric differences of the
simulated crash compared to an actual crash test) behaves as a function of the degrees of
freedom of the discretized system, i.e.,

err(N) ~ N~°

for some s > 0 and N € N denoting the degrees of freedom (e.g., the number of evalua-
tion points). This is a very realistic assumption for many problem classes. Note that the
convergence rate s does not only depend on the problem itself, but also on the method of
approaching this problem. A quadrature algorithm which wastes computational time on
smooth parts of the integrand, will achieve a lower rate s’ < s. Furthermore, assume that
the computational time needed to compute the approximate solution is related to the degrees
of freedom in the sense of

time(N) ~ N*seconds

for some ¢ > 0 (for the direct solution of a densely populated linear system of N equations
we have, e.g., t = 3). If the exact solution is known, one can design custom made grids to
approximate the exact solution with some optimal rate s > 0, i.e.,

err(N) ~ Nt

Hence, to reach a desired accuracy of, e.g. 107°, it suffices to use N a 10%/%t degrees of
freedoms, when they are optimally distributed. In terms of computational time, we obtain

time ~ 10°"/%Pt seconds.

Under realistic assumptions of the involved parameters, i.e., t = 1 (linear time) and sqp = 1
(e.g., lowest order finite element method), this results in

10° seconds = 1 day.

However, it is entirely possible, that due to non-uniformities in the solution a uniform ap-
proach will reveal a reduced rate of convergence of s = 1/2 (due to degrees of freedom wasted
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for mostly uniform parts of the solution, whereas non-uniform parts lack the necessary res-
olution). Then, we end up with

10 seconds ~ 316 years.

Even increasing the computational power by an order of magnitude does not bring the
uniform approach anywhere near feasibility. This is the reason why the understanding of
adaptivity plays a crucial role.

The concept of adaptivity aims to provide a method which automatically, without user
intervention, reaches optimal convergence rates, i.e., s = so,,. Moreover, it aims to rigor-
ously prove that this optimal convergence is achieved for a given problem. The existing
literature on adaptivity focuses on very specific model problems (see the historical overview
in Section 2.8 for references), i.e., certain types of (elliptic) partial differential equations. In
contrast to that, this work provides a framework, sort of a construction guide, for adaptive
algorithms which realize optimal convergence rates. To that end, certain requirements on
the algorithm (later called axioms) are derived, which are sufficient and even necessary to
prove the optimal convergence behavior. This allows to apply the abstract theory to a large
number of model problems and particularly determines what are the key properties of an
optimally convergent adaptive algorithm. This might help in the design of new algorithms
for complex problems and situations.

1.2. An exemplary adaptive algorithm

This introductory section demonstrates an adaptive refinement algorithm for a very sim-
ple approximation problem. To that end, consider some function v € L?*(0,1) and a partition
T of [0, 1] into compact intervals T € T such that [0,1] = Uy T Let U(T) € P°(T) denote
the L2-orthogonal projection of u onto the space of T-piecewise constant functions

PUT)={VeL*0,1) : VleR, forall T € T}

defined by
1 1
bU(T), V) ::/ U(T)de:/ uVdx for all V € P°(T). (1.2.1)
0 0
Suppose that one is interested in the weighted error measure

er(T) = ( S (TPl = UT)aqry) = IR(T) = UCT)) 10

TeT

where h(T)|r := |T| for all T € T and |T'| denotes the length of the interval 7". This could
be of interest, if one wants to approximate the volume force of some second-order elliptic
PDE (which usually has to be approximated in the H~1(0,1)-norm). Standard results show
that for uw € L?(0,1) € H~'(0,1) it holds |lu — U(T)||g-1(0,1) S err(T).

Provided that v € H'(0,1), the Poincaré inequality proves that

err(T) S Capriori||h(T)2u/||L2(0,1) S CaprioriHu,HLQ(OJ) rjl_‘leaj;,( |,-Z—‘|2 (122)

Thus, the naive strategy is to uniformly reduce |T'| in some sequence of partitions (7,2%),cx,
such that maxpermir [T] < 27° If uw € H'(0,1), this results in a convergence rate of

||U — U(7zunif)||L2(0’1) S 2_2£ for all ¢ € NQ,

which one could call exponential convergence. The reason why we do not consider this as
exponential convergence, is because the number of steps ¢ has nothing to do with the degrees
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of freedom of the linear system (1.2.1). However, the computational effort involved to get
U(T, ™) is directly related to the degrees of freedom, since the linear system (even if it
is diagonal in this case) has |7| many rows and columns (here |7| denotes the counting
measure, i.e., the number of elements). In terms of degrees of freedom, the convergence rate
decreases to

|lu — U(E“nif)HLz(oJ) < T2 for all £ € Ny,

This shows algebraic convergence rate s = 2 if u € H'(0,1). If u has less regularity, e.g.,
u(z) := z* for some —1/2 < a < 1/2, the convergence rate is even slower, see Figure 2
for an example. However, one can construct graded partitions Egrad, such that the function
u(r) := 2 can be approximated with rate s = 2. To that end, a uniform partition 7,2 is
mapped via an appropriate function x +— 2 for 8 := 3/(2 + a), i.e., Egrad = (7,05 see
Figure 2-3 for an example. Standard estimates prove

||u — U(ngrad)”LQ(O’l) S Cgrad|7zgrad|—2 for all ¢ € NO (123)

for some uniform Cy,q > 0, even though the exact solution is not in H'(0,1) for a < 1/2.
The ultimate goal of adaptivity is to automatically generate such partitions for a general class
of exact solutions u. To that end, the following algorithm is widely used in the literature:

ALGORITHM 1.2.1. INPUT: Initial partition Ty and bulk parameter 0 < 6 < 1.
Loop: For ¢ =0,1,2,... do (i) — (iii).

(i) Compute the refinement indicators np(Te) == |T||ju — U(Teo)|| r2¢ry for all T € To.
(ii) Determine some set M, C T; of minimal cardinality such that

1
5 2 m(T)* < ) nr(To)*. (1.2.4)
TET, TeM,
(iii) Define the next triangulation Ty by bisection of all marked elements.

OUTPUT: Sequence of approximations U(T;) for all £ € Ny.

Figure 2 shows the performance of this algorithm in terms of error reduction and Figure 3
plots the generated partitions 7.

We aim to prove the observed convergence behavior of Algorithm 1.2.1 in Figure 2, i.e.,
the fact that err(7;) < |T,|72 for all £ € Ny. To that end, we first prove a contraction
property of the error as illustrated in Figure 2, i.e.,

1P(Te1) (w = U(Tes ) 20,0 < KlIR(Te) (u = U(Te)) |l 20,1y for all £ € No (1.2.5)

for some 0 < k < 1. This follows with the fact that bisection halves the element lengths and
that U(7;)|r depends only on u|r by

1(Te1)(w = U(Tera)) 720,
= [1(Ter2) (v = U(Ter)) 72, oy + 10 (Tera) (v = U(Tex)) 72075, 07
< /AT (u = U(T) 2200, vy + 1(T0) (@ = U(TO 720720072
< (1/4 = DT (w = U(T) 2200 0vmy) + 10(T2) (@ = U(T) 20,1y

With the marking criterion (1.2.4), the fact that M, = T, \ Toy1, and J(T¢ \ To1) =
UJ(Tes1 \ Te), this implies

1A(Tera)(w = U(Tec) 200y < (1= (1= 1/4)/2)l|A(Te)(w — U(Te)) I,

14
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which is (1.2.5) with k = 1/5/8 (see also Figure 2 for the comparison with the experimental
results). Hence, the error converges linearly to zero. This linear convergence is the backbone
of the optimality analysis. The next step is to compare the adaptively generated partitions
with some optimal partitions. As discussed above (and demonstrated in Figure 2), there
exist graded partitions 72!, which realize the optimal convergence rate s = 2 in (1.2.3).
Hence, the necessary thing to do is to look at the difference of 7, and ’Egrad. To that end,
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choose the minimal k£ € N such that
| TE 2 < Cphqerr(Te) /4. (1.2.6)

For simplicity assume that £ > 1 in this case. Minimality of k then implies |77€g_r?d|—2 >
C'g;;derr(ﬁ)/él, fe, [T < QC’glr/jderr(ﬁ)_l/z. Since we have by construction |72 =
| Tmif | = 2| Tunif| = 2|77€g_r?d|, the minimality of k shows

|77cgrad| _ 2|77€g_ra1d| < 401/2(161'1'(72)71/2- (127)

gra

The overlay of Egrad and 7, gives some measure of the distance of those two partitions, i.e.,
TEY DT, = {TnT" : T ¢ TE T e Ty, ITNT) > 0} is the coarsest common refinement

of T; and T2, Assume Tp € (T2 @ T;) \ T;. By definition, there exist 7' € T2 and
T" € Ty such that Ty =T NT" and [T NT’| > 0. Moreover, since T" is not in 7, there holds
T & T'. This shows that there holds

(TFoT)\ T ={TnT : TeTF" T'e T, |TNT|>0,T ¢ T}

Since T € T,#*" is an interval, there exist at most two 7 € T; with [TNT’'| > 0and T € T
(the elements 7" must contain at least one endpoint of T'). This, however, implies

(™ & TO\T = {TAT : T ™ T e, T >0.7'¢ 7Y
< 2|7 )

On the other hand, each T € T; \ (72! @ 7T;) has at least two sons T/ C T with T €
(T & 7;) \ To. This implies

TN (T 0 T < (T @ T\ Tl (1.29)
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Together with (1.2.7) this shows

(1.2
TATE e < 2T < SO en(T)

(1.2.10)

It remains to relate |(T2° @ T;) \ T¢| to |M,|. To that end, note that the element-wise best

approximation property U(7;) shows

2.6)

(1.2 ,
err(TE™ @ T;) < err(TE™) < Cgrad|7‘grad| < err(Ty) /4.
With err(T2 © 7o) = |W(TE™ @ To)(u — U(TE @ T2)) || 1201, this implies

err(Te)? = [[(Te)(u — U(Te ))||L2(U( TEH TV
+ [[7(Te) (w = U(Te ))HLQ(U( e TN
< W(T2) (u = U(TO)I3, S(TERSTNT))
+[|h(TE @ 775)(“ —U(TE™ & )32
< Z nr(Te)? + err(T;)?/16.

TeT\(TE* &T,)
Hence, we derive
5 Z nr(Te)* < —81“1“(72)2 < > m(T)
Ten TeT\TE eT)

Since M, is a set of minimal cardinality with (1.2.4), we obtain

M| < |To\ (TF™ & 7;,)\ P e, W2 err(T;)™Y? for all £ € Ny,
By definition of the refinement in Step (iii) of Algorithm 1.2.1, there holds

-1

/-1 -1
ITel = 175l = Y (1 Tosal = ITil) = D [ M| < 8Cpa1 Zerr(ﬁ)_m-

k=0
By induction, the linear convergence (1.2.5) proves
err(7;) < & Ferr(Ty).

Hence, by convergence of the geometric series, we obtain

-1 -1
Zerr(ﬁ)_l/2 < err(T;) Y2 Z rUER2 < (1 — k) terr(Ty) V2
k=0 k=0
Altogether, this yields
Tl = ITol < 8Ciaa(1 = Vi) tere(T) ™2,
and we end up with convergence rate s = 2, i.e.,
ert(T;) < (1 — Vk) 7?8 Cyraa(|Te|l — | To|)™* for all £ € N.
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1.3. Discussion of the example

The sketch of the optimality proof above reveals certain interesting things. First, we
extensively used the fact that the error estimator Y .- n7(7)? and the error ||h(T)(u —
U(T)) ||%2(0’1) coincide for this example, since we approximate a known function. If one thinks
of u as the solution of some PDE, it is more likely that one computes the approximations
to u without knowing w itself (i.e., by solving a finite element system). Then, the error
estimator differs from the error, but can be related to it by reliability

err(T) < Crd( > nT(T)2> v (1.3.1)

TeT
and/or efficiency

1/2
Ce_ﬁ1< Z 'r]T(T)Z) < err(T) + data(T) (1.3.2)
TeT
for some uniform constants Ciej, Ceg > 0 and some perturbation term data(7), which often
depends on the given data.
The linear convergence (1.2.5) is an important tool for the analysis. To prove it, we used
that fact that U(7,) satisfies the orthogonality

Ju— U(E)H%%o,n = [Ju— U(77Z+1)H%2(o,1) + |U(Te41) — U<7Z)”%2(0,1)-

This identity holds only for the case of a bilinear form b(-, -) which is a scalar product on
the given Hilbert space and hence restricts the applicability of the analysis.

The overlay estimate (1.2.8) bounds the difference between the optimal partition ﬁgrad
and the adaptively generated partition 7,. In the 1D case, the overlay estimate seems almost
trivial, however for 2D and 3D refinement strategies, it is not straightforward to prove, and
it is even wrong for some strategies (see Section 3.2.9 below for a counterexample for red-
green-blue refinement in 2D).

Finally, the identity

/—1
T2l = 1Tl = D Ml
k=0

is trivial in our case, but poses a real issue in the case of certain practical refinement strate-
gies. The main problem here is, that usual refinement strategies have to refine more elements
than only the marked ones, to keep the partition regular in a certain sense (e.g., avoidance of
hanging nodes; see Section 3.2 for details). Then, the question is how to bound the number
of refined elements by the number of marked elements.

Chapter 2 states exactly, what is necessary to prove optimal convergence rates for some
given problem in a very abstract and general framework and will thus focus on the error
estimator instead of the error.

1.4. Outline

This section states the main results of the following chapters and sections.

Chapter 2:
The chapter introduces an abstract framework for adaptive algorithms and formulates a
particular algorithm (Algorithm 2.2.1). Within this framework, the adaptive approximation
problem formulated in Section 2.2.3, is stated. This problem assumes a certain quantity 7(-)
(the error estimator) which is a function of an underlying discretization (the triangulation).
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The goal is to drive the error estimator to zero as fast as possible, i.e., limy_,., n(7;) = 0
with optimal rate for a sequence of triangulations (7;)een,. We state six axioms (E1)—(E3)
& (T1)—(T3) which determine the behavior of the adaptive algorithm and suffice to show
that optimal convergence rates are obtained, i.e.,

n(Te) S |Te| ™ for all £ € Ny,

where |7;| denotes the number of elements in the triangulation 7, and s > 0 denotes the
best possible convergence rate which is achievable for a particular problem. The latter is
the main result of this chapter and stated formally in Theorem 2.3.3. The axioms can
roughly be categorized into estimator related axioms (E1)—(E3) and triangulation related
axioms (T1)—(T3). The first category (E1)—(E3) can be paraphrased as follows:

(E1) Stability and reduction: The estimator is a Lipschitz continuous function of the
triangulation, and it is contractive up to a perturbation when the triangulation is
locally refined.

(E2) General quasi-orthogonality: The perturbation from (E1) is ¢;-summable and also
bounded by the estimator on the coarsest triangulation.

(E3) Discrete reliability: The error estimator is a local upper bound of the perturbation
from (E1).

The triangulation related axioms (T1)—(T3) can be heuristically formulated as follows:

(T1) Son estimate: The refinement strategy increases the number of elements at most
linearly.

(T2) Closure estimate: The number of elements is bounded by the number of marked
elements.

(T3) Uniform approximability: The problem allows for a certain convergence rate.

Chapter 3:

This chapter applies the abstract theory from Chapter 2 to certain model problems. We
consider the conforming finite element method (FEM) for the Poisson problem with bi-
section based refinement and red-green-blue refinement. The optimality result for general
second-order elliptic PDEs marks the main achievement of this chapter (Section 3.6.1). This
includes also an adaptive algorithm for problems which satisfy a Garding inequality only,
where the difficulty is, that the discrete system is not necessarily solvable in each step (Sec-
tion 3.6.2). Therefore, we propose an algorithm which guarantees unique solvability after
a finite number of steps. Moreover, we consider non-linear problems with quite general
coefficients. Altogether, we prove optimality results for the following problem classes:

e FEM for the Poisson problem (Consequence 3.5.2-3.5.5),
e FEM for general second-order elliptic PDEs with
— ellipticity estimate (Consequence 3.6.2),
— Garding inequality (Consequence 3.6.15),
— non-linear coefficients (Consequence 3.7.5),
e boundary element method (BEM) for
— weakly-singular integral equation (Consequence 3.5.9),
— hyper-singular integral equation (Consequence 3.5.11-3.5.12).

Chapter 4:
This chapter extends the abstract theory of Chapter 2 to equivalent error estimators, where
Theorem 4.3.1 states the main result. We consider error estimators which satisfy the axioms
only in average, but not in every single step of the adaptive algorithm. This abstract setting
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covers inexact solve, i.e., the case of iterative solvers, where instead of the error estimator
only an approximation

n(T) ~n(T)

is computed but the axioms are only satisfied for the exact error estimator. Moreover, we
cover estimators which are equivalent to some weighted error estimator, i.e.,

1(T) = [|[M(T)res(T);

where h(7) is a triangulation related weight function and res(+) is some quantity which mea-
sures the error in the appropriate norm, e.g., the residual in case of a weighted-residual error
estimator. To that end, we exploit certain properties which are automatically satisfied by
weighted error estimators and develop a super contractive weight function (Proposition 4.5.4)
which enables us to control the equivalence constants.
Chapter 5:

This chapter applies the extended theory of Chapter 4 to certain model problems. The main
result of this section is the incorporation of inhomogeneous boundary data into the FEM
optimality analysis. This is possible by use of the super contractive weight function from
Chapter 4 in combination with the Scott-Zhang projection. Altogether, we consider the
following problems:

e FEM for non-residual error estimators in the frame of the Poisson problem (Conse-
quence 5.2.3-5.2.11),

e FEM for the p-Laplacian (Consequence 5.3.3),

e FEM for non-trivial boundary conditions (Consequence 5.4.3).

Chapter 6:
This chapter steps out of the line of the other chapters, as we introduce a new adaptive
algorithm (Algorithm 6.2.2) for the solution of integral equations on piecewise smooth ge-
ometries. The idea is to approximate the exact geometry with piecewise affine line segments
and to solve a standard BEM problem on the approximate geometry. A posteriori analysis
for this kind of problem is available for FEM, but is missing entirely for BEM, where very
different techniques are necessary. We introduce an error estimator

n(T)? = p(T)? + geo(T)?,

where p(7) is a standard residual error estimator for the weakly singular integral equation
on piecewise affine geometries and geo(7) is a geometric error estimator which measures
the approximation quality of the approximate geometry. We prove that the error estima-
tor provides an upper error bound and use this to prove convergence of the corresponding
adaptive algorithm (Consequence 6.4.2). The convergence proof is done within the frame of
Chapter 2. Although we are convinced that optimal convergence rates are possible with the
given algorithm, the proof requires additional ideas which are beyond the scope of this work.
Chapter 7:

The final chapter is focused on the general quasi-orthogonality (E2). The reason for this
is that for many problem classes (e.g., for non-symmetric or non conforming approaches)
the general quasi-orthogonality is the most difficult axiom to verify. We show that the
general quasi-orthogonality holds for the non-symmetric and non-linear example problems
in Chapter 3.
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CHAPTER 2

Abstract Theory

2.1. Introduction, state of the art & outline

The purpose of this chapter is to find an abstract framework within, e.g., the results of the
introductory chapter can be reproduced. The reproduction of existing results is, of course,
not the main reason for developing the abstract framework. The abstract point of view
sheds new light on this terrain and enables us to prove new results for a very general class of
problems (as is demonstrated in the applications of Chapter 3, 5, 6). To that end, we abandon
the framework of exact solutions and their discrete approximations and focus completely
on the error estimator. The function 7n(-) can be seen as a function on the underlying
triangulations with some specific properties. Then, the goal of the adaptive algorithm is to
manipulate the triangulation in such a way, that the error estimator converges to zero as fast
as possible. An immediate consequence of this viewpoint is that it removes the need for the
lower error bound (1.3.2). An earlier version of this abstract framework can be found in [24].
However, this work takes one step further into the abstraction of the concrete problems. This,
for example, enables us to prove optimal convergence rates of the adaptive algorithm for
refinement strategies which do not satisfy the overlay property (1.2.8) (e.g., red-green-blue
refinement). Moreover, the conditions (axioms) which we derive in this chapter turn out to
be sufficient for optimal convergence rates, and, under realistic assumptions, even necessary.
Therefore, we obtain explicit criteria which determine if a given problem or problem class
will reveal optimal convergence behavior. For the state of the art in the literature, we refer
the reader to the historic overview of Section 2.8. The remainder of this chapter is organized
as follows: Section 2.2 describes the abstract framework which is necessary to formulate
the axioms. This includes a formal definition of the error estimator, the triangulations,
the approximation problem of driving the estimator to zero, and the adaptive algorithm to
solve the approximation problem. Section 2.3 states the main theorem (Theorem 2.3.3) of
this chapter as well as the axioms which are then used to prove optimal convergence rates.
Section 2.4-2.5 give alternative approximation problems (optimal convergence of the error
and optimal complexity in terms of computational work) and state the respective results.
Section 2.6 proves that the axioms are not only sufficient, but even necessary for proving
optimal convergence rates. Section 2.7 demonstrates certain problem classes, for which one
or more of the axioms are a priori satisfied. Finally, Section 2.8 concludes with a historic
overview and motivates the particular choice of axioms in Section 2.3.1.

2.2. Abstract setting

This section is devoted to the definition of the problem and the precise statement of the
adaptive algorithm.

2.2.1. Triangulations. Let 7., be a countable set. Each finite subset 7 C 7., with
|7| < oo elements is called a triangulation. Let T be a set of triangulations (which is
countable since the set of all triangulations is countable) with the corresponding refinement
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strategy T(-,-) : {(T,M) : T € T, M C T} — T. This is a function which satisfies
T(T,M)NM =0 for all M C T and all T € T. Here, M is called the set of marked
elements. Given 7 € T, define T(7) C T such that 7 € T(T) if and only if there exists a
sequence of triangulations 7o =7,7T1,..., T, = T as well as a sequence of marked elements
Mo, ...,My_y with M; C T, for all j =0,...,¢ — 1 such that 7,1 = T(7;, M;) for all
j=0,...,0—1. We call T(T) the set of refinements of 7. We assume that there exists an
initial triangulation 7y € T such that T(7;) = T. Additionally, we assume that 7' € TnT
if and only if '€ 7, for all j =0,..., (.

The subset of all refinements which have at most N € N elements more than a triangu-
lation 7 € T reads

T(T,N):={T €T(T) : [T\T| <N},

where | - | = card(:) is the counting measure. Since each triangulation 7 € T allows for
at most 2/7! sets of marked elements, there holds |T(7, N)| < oo. Moreover, we write
T(N) := T(7o, N).

2.2.2. Error estimator. The error estimator is a function 5(-) : T — [Jycp[0,00)7
(where AP denotes the set of functions mapping B to A) with n(7) : T — [0,00) for all
T € T. By nr(T) for some T' € T, we denote the evaluation of the function n.)(7) := n(T).

For brevity of notation, we also write n(T) := (Y r;cr 77T(’T)2)1/2 > 0, which is the global

error estimator.

2.2.3. Adaptive approximation problem. The goal of the adaptive approximation
problem is to find a sequence of triangulations 7;, ¢ € Ny such that

sup 7(Te)(|Te| +1)° < o0
LeNg

for s > 0 as large as possible. This implies that the error estimator converges to zero with
rate s, i.e., there exists a constant C' > 0 such that

n(Te) < C|Te|~* for all £ € Ny.

2.2.4. Adaptive algorithm. The algorithm to solve the adaptive approximation prob-
lem from Section 2.2.3 reads

ALGORITHM 2.2.1. INPUT: Initial triangulation To and bulk parameter 0 < 0 < 1.
Loop: For(=0,1,2,... do (i) — (iii).
(i) Compute refinement indicators np(T;) for all T € Ty.

(ii) Determine set My, C Ty of (up to the multiplicative constant Cyy,) minimal cardi-
nality such that

On(Te)* < > nr(To)*. (2.2.1)
TeM,
(iii) Define the next triangulation Toyq == T(Ts, My).
OuTPUT: Error estimators n(7T;) for all ¢ € Ny.

REMARK 2.2.2. Suppose that S, C Ty is some (not necessarily unique) set of minimal
cardinality which satisfies the Dorfler marking criterion (2.2.1). In step (iii) the phrase up
to the multiplicative constant minimal cardinality means that |M;| < Chn |Se| with some
{-independent constant Crn > 1.
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REMARK 2.2.3. A greedy algorithm for (2.2.1), sorts the elements T, = {11,...,Tn}
such that nr,(Te) > nr,(Te) > ... > nry(Te) and takes the minimal 1 < J < N such that
On(Te)* < Z;.]:lnTj(%)Q. This results in logarithmic-linear growth of the complexity. The
relaxation to almost minimal cardinality of M, allows to employ a sorting algorithm based
on binning so that M, in (2.2.1) can be determined in linear complexity |78, Section 5| with
Cmin - 2

REMARK 2.2.4. Small adaptivity parameters 0 < 8 < 1 lead to only few marked ele-
ments and so to possibly very local refinements. The other extreme, 0 = 1, basically leads to
uniform refinement, where (almost) all elements are refined.

2.2.5. Approximability. Given 7 € T and s > 0, define

I, Tl == sup _min (N +1)"n(7). (2.2.2)
NeNo TeT(T,N)

The fact ||n, T(T)||s < oo implies that there exists a sequence of triangulations (7,”°")sey in
T(7) which satisfies convergence

Jim (77 =0
and the convergence rate
n(T7) S TP\ T))™ forall L€ N.

REMARK 2.2.5. The quantity ||n, T(T)||s measures how fast the error estimator can be
driven to zero when starting from the triangulation T . The main interest, of course, lies in
the approzimability when starting from the initial triangulation ||n, T||s.

2.3. The axioms

This section introduces the set of axioms and states the main result (Theorem 2.3.3) derived
from these axioms. In the following, 7, denotes a triangulation generated in the /-th step of
Algorithm 2.2.1.

2.3.1. Set of axioms. The following axioms (E1)—(E3), (T1)—(T3) act on the function
n(-) : T = User ((0,00)7) with n(7) : T — [0, 00) for all T € T, some perturbation function
o(+,) : Tx T —[0,00), T(-) : T — 2T, and involve the set T as well as the constants s > 0,
C(drela C(1"ef7 Cqm C(som C(closure Z 1; 0< Rdlr S o0, and 0 S Preds €qos Edrel <1

(E1) Stability and reduction: For all refinements 7 € T(7) of a triangulation 7 € T,

there exist sets S(T,7) € T and S(T,T) € T with T\ T C S(T,T) such
that (Ela)—(E1b) hold

WX w®) (X mry)

TeT\S(T,7) TeT\S(T,T)

1/2

< o(T, T),

) > (T <pea Yo m(T) + 0T T)
TeS(T,T) TeS(T,T)
(E2) General quasi-orthogonality: There holds

- (1 +0)(1 = (1 = prea)d)
<
R
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and the sequence of triangulations (7;)sen, from Algorithm 2.2.1 satisfies for all
{,N € Ny
04N

> (o(Trs Ter1)* = £qon(Ti)?) < Caon(To)*.

k=¢

(E3) Discrete reliability: For all refinements 7 € T(T) of a triangulation 7" € T with
n(T) < kawn(T), there exists a subset R(7T,7T) C T with S(7,7) C R(T,T) and
|R(T,T)| < Cret|T\T| such that

o(T. T2 < eare(T) +Cha > nr(T)2
TeR(T,T)

(T1) Son estimate: The sequence of triangulations (7;)sen, from Algorithm 2.2.1 satis-
fies [Toy1] < Cson|Te| for all £ € Ny.

(T2) Closure estimate: The sequence of triangulations (7;)scn, from Algorithm 2.2.1
satisfies |7, \ To| < Celosure Zﬁ;é |M;| for all £ € Ny.

(T3) Uniform approximability: The sequence of triangulations (7;)sen, from Algo-
rithm 2.2.1 satisfies Capprox(5) := supgen, |17, T(7¢)||s < oo for all £ € Ny.

DEFINITION 2.3.1. We say that a certain subset of the axioms defined above A C
{(E1),...,(E3),(T1),...,(T3)} is satisfied, if the error estimator n(-) and the refinement
strategy T(-) (which are clear from the context if not mentioned otherwise) allow for the
necessary functions and constants from Section 2.3.1, which are involved in the axioms of
A, to exist.

REMARK 2.3.2. Proposition 2.6.2 below shows that general quasi-orthogonality (E2)
together with (E1) implies (E2) even with eqo =0 and 0 < C¢p < 00.

2.3.2. Optimal convergence rates for the error estimator. The main results of
this Section state convergence and optimality of the adaptive algorithm in the sense that
the error estimator converges with optimal convergence rate. This is a generalization of
existing results as discussed in Section 2.4. On the other hand, Theorem 2.3.3 (iii) shows
that the adaptive algorithm characterizes the approximability of a problem in the sense of
Section 2.2.5.

THEOREM 2.3.3. (i) Suppose (E1) is satisfied and assume limy_, o o(Ty, Tor1) = 0.
Then, for all 0 < 0 <1, the estimator is convergent in the sense
lim n(7;) = 0. (2.3.1)
{—00

(ii) Suppose (E1)—(E2) are satisfied. Then, for all 0 < 0 < 1, the estimator is R-linear
convergent in the sense that there exists 0 < peony < 1 and Ceony > 0 such that

77(72+])2 < Cconvpgonv 77(72)2 fO’/’ all jue € NO' (232)

(iii) Suppose (E1)—~(E3) and (T1)—(T3) are satisfied for some s > 0. Then 0 < 6 <
0, := (1—cara1)/(1+ C3,,) implies quasi-optimal convergence of the estimator in the
sense of

n(7e)
(0) Ca TrOX S S Co Ca TOX 9 233
Copt“app (8) ZSGUI\II()) (|72 \ 76| + 1)_5 pt~app (S) ( )

where the lower bound requires only (T1) to hold.
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The constants Ceony, Peonvy > 0 depend only on prea, Cqos €qo, and on 0. The constant Cypy > 0
depends additionally on Crin, Cret, Celosure, Cdrels Edrel, and on s, while cope > 0 depends only
on Cson and |Tol.

REMARK 2.3.4. The upper bound in (2.3.3) states that given Capprox(s) < 00, the
estimator sequence 1(Ty) of Algorithm 2.2.1 will decay with order s, i.e., if a decay with
order s is possible if the optimal triangulations are chosen, this decay will in fact be realized
by the adaptive algorithm. The lower bound in (2.3.3) states that the asymptotic convergence
rate of the estimator sequence characterizes the theoretically optimal convergence rate.

2.3.3. Estimator reduction and convergence of 1n(7;). We start with the obser-
vation that stability (Ela) and reduction (E1b) lead to a perturbed contraction of the error
estimator in each step of the adaptive loop.

LEMMA 2.3.5. Let 0 < 0 < 1 and let T € T(T) denote a refinement of T € T such
that

(T < > nr(T) (2.3.4)
TeS(T,T)
Then, the following relazation of (Ela)

< > nT(’?)2>1/2 < ( > 7]T<T)2)1/2 +o(T,T) (2.3.5)
TeT\S(T,T) TeT\S(T,T)
and reduction (E1b) imply the estimator reduction
TV < pest(T)° + Cest oT. T (2.3.6)
with the constants 0 < pesy < 1 and Cesy > 0 which relate via
Pest = (1 +6)(1 — (1 = preq)d) and Coy=2+0"" (2.3.7)
for all sufficiently small § > 0 such that pesy < 1. This particularly implies
1(Te1)? < pest 1(Te)* + Cost 0(Te, Ter)? (2.3.8)
for all ¢ € Ny.

PROOF. The Young inequality together with stability (2.3.5) and reduction (E1b) shows
for each § > 0 and C.yy = 2+ 67! that

nTP= Y oM+ Y. (T

Te8(T,T) TeT\S(T.T)
<pea D, (TP +A+0) D> nr(T)+ Ceuo(T, T).
TeS(T,T) TeT\S(T,T)

Therefore, the Dorfler marking (2.3.4) leads to
n(T <@+ (0T = (1= pet) D #(T)) + CorolT, T
TeS(T,T)
<(1+0)(1— (1= prea)l)n(T)? + Cesto(T. T)™.
The choice of a sufficiently small 6 > 0 allows for poy = (1 + 5)(1 - (1- pred)Q) < 1.
This shows (2.3.6). By definition of the refinement strategy T(:,-) in Section 2.2.1, there

holds My C Ty \ Tex1 € S(To, Tev1)- Hence, Dorfler marking (2.2.1) for M, implies Dorfler
marking (2.3.4) for S(7;, T+1). This concludes the proof. O
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The estimator reduction concept used in the the following proof is studied in [5] and
applies to a general class of problems and error estimators.

LEMMA 2.3.6. Suppose that the estimator satisfies estimator reduction (2.3.8) and sup-
pose that
lim o(7¢, Tey1) =0
{—00

Then, there holds estimator convergence in the sense limy_, ., n(7T;) = 0.

PROOF. Mathematical induction on ¢ proves with (2.3.8) for all £ € Ny
7]<7Z+1> ﬁ:tln(% + Clst Z pest Q 7;7 7}+1)2

2.3.9
(76) + C1est sup 9(7;7 7;4-1 Z pest ( )

J€Np

77<76) + C(est sup Q<7;77}+1) ( - pest) 1-

Jj€No
The assumption o(7¢, Tr+1) — 0 implies sup,en 77(7¢) < 0o. Moreover, (2.3.8) yields
lim sup 7(Tp41)* < lim Sup (pest 1(T2)* + Cest 0(Te, Tex1)?)
—00

L—00

= Pest lim sSup 7)(7Z+1)2-
{—00

This shows lim sup,_,. 7(7¢)? = 0, and hence elementary calculus proves convergence 1(7;) —
0. U

PROOF OF THEOREM 2.3.3 (I). Lemma 2.3.6 is applicable and concludes the proof. [J

2.3.4. Uniform R-linear convergence of 7(7;) on any level. The general quasi-
orthogonality (E2) allows to improve (2.3.1) to R-linear convergence on any level. To that
end, we prove the following auxiliary lemma.

REMARK 2.3.7. The term uniform R-linear convergence on any level needs some ex-
planation. A sequence (ag)ken, 1S said to converge (Q-)linearly to zero, if

li ‘a’kJrl‘
im sup

=q<1
k—00 |ak|

A sequence (by)ren, is said to converge R-linearly to zero if there exists a Q-linearly conver-
gent sequence (ay)gen, with

|br| < |ak| for all k € Ny. (2.3.10)
The R stands for root, since the definition above is equivalent to
lim sup |by|"* = ¢ < 1. (2.3.11)
k—o0

To see that, note that (2.3.10) implies (2.3.11) since |ax] < ¢**|ay,| for all k > ko and
some sufficiently large kg € N. On the other hand, (2.3.11) implies (2.3.10) with ay :=

(sup;s [bs]9)*
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Uniform R-linear convergence on any level of a sequence (bg)ken, (in the following denoted
by R-linear convergence) means that there exists a constant C' > 0 and some 0 < q¢ < 1 such

that
|besi| < CqFlbg|  for all £,k € Ng.

This particularly implies (2.3.11) for all sequences (byy¢)ren,, ¢ € No.

LEMMA 2.3.8. Given a real sequence (ay)een, with a; > 0 for all ¢ € Ny such that a; = 0
implies a, = 0 for all k > (. Then, the statements (i)—(iii) are pairwise equivalent.

(i) Uniform summability: There exists a constant Cy > 0 such that

Z a; < Cyaj  for all £ € Ny. (2.3.12)
k=0+1

(ii) Inverse summability: For all s > 0, there exists a constant Cy > 0 such that

l—
Z Yo < Cha, M for all € € N with a > 0. (2.3.13)

k=0
(iii) Uniform R-linear convergence on any level: There exist constants 0 < p; < 1 and
C3 > 0 such that

aj,, < Cspha;  for all k, 0 € Ny. (2.3.14)
The relation between the respective constants is given by
Cl/(23) C
CQS%, plSHilga C3§1+Cla
1—p; 1 (2.3.15)
Cspy Cy |25 9
C; < , < , O3 < (1+Cy)™
"= 14 pl—(1+02) 3 < 2)

PROOF. For sake of simplicity, we show the equivalence of (i)—(iii) by proving the equiv-

alences (iii) <= (i) and (iii) <= (ii).
For the proof of the implication (iii) = (i), suppose (iii) and use the convergence of the

geometric series to see
1.2
Z a; < Czap Z Pt = Cspy(1 — py)ta2.
k=t+1 k=t+1

This proves (i) with C; = C3py(1 — p1) "
Similarly, the implication (iii) = (ii) follows via

l— -1
l/s 1/(2s l/s (t—k)/(2s)
E < (s E P1
= k=0

< Q@) (1 _ -1

This shows (i) with Cy = C3/%) (1 — p}/ )1,
For the proof of the implication (i) = (iii), suppose (i) and conclude

o o o
A+C) Yo ai< D airat=3"a
j=t+1 j=t+1 j=¢
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By mathematical induction, this implies

ia§§(1+01‘1)‘1 i a? < (1+Cp! Z

and hence

s 3 00 S
=

j=t+k
< (140N + Y .

This proves (iii) with p; = (1+C; )™t and Cs = (1 + C)).
The implication (ii) = (iii) follows analogously. To that end, assume ay; > 0. Then,
there holds

Mathematical induction shows then shows
41 t+k
ZCL l/s 1_'_0 ZCL l/s 1+02 ) Zajl/s
§=0
and hence
04k

l
TR S R (R e Za
§=0

<1+ C)1+C3Y” agj,f.

With the assumption that aprr = 0 implies apypy, = 0 for all n € Ny, this proves a§+k <
(1 + Cy)®(1 4+ Cy 1) %ka? for all £,k € Ny. This is (iii) with p; = (1 + C;")7% and
C3 = (1 + 02)28. |:|

PROPOSITION 2.3.9. Suppose estimator reduction (2.3.8). Then, general quasi-ortho-
gonality (E2) implies (2.3.12)—(2.3.14) with a; = n(T;) for all ¢ € Ny. The constant Cy > 0
depends only on pes;, Cest, and 4o, whereas the constants Cy, C3 > 0, and 0 < p; < 1 are
given by (2.3.15).

PROOF. In the following, the general quasi-orthogonality (E2) implies each the state-
ments (2.3.12)—(2.3.14) since (E2) implies (2.3.12). To that end, the estimator reduc-
tion (2.3.8) from Lemma 2.3.5 yields for any v > 0 that

{+N+1 {+N+1
Z 77(776)2 S Z (pestn(ﬁ—l)Q + Cestg(ﬁ—la 779)2)
k=(+1 k=(+1 (2316)
{+N+1
= Z ((pest + V)n(ﬁ—l)Q + C1est (9(7;—17 7;)2 - VCe_stln(E—l)Q)> .
k=/+1

With the constants pes; and Cey from (2.3.7), the constraint on €4, in (E2) reads

— Pest _ sup 1—(1460)(1—=(1— prea)d

0<ep <
- C1est T 6>0 2+5_1
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for some choice of § > 0. Note that this choice is valid since pes; < 1. In particular, it exists
v < 1 — pess such that e, < vCoyi. This allows to apply general quasi-orthogonality (E2) to
the last term of (2.3.16), i.e.,

{+N+1

> o(Tia, Te)® = vCiin(Tiar)? < Coon(To)*. (2.3.17)

k=/+1

The combination of (2.3.16)—(2.3.17) and passing to the limit N — oo proves

DT <Y (pest + )(Ti1)* + CestCoon(Te)*.
k=0+1 k=0+1

Some rearrangement leads to

[e o]

(1 - (pest + V)) Z n(ﬁ)z S (pest + v+ Cest qo)ﬁ(ﬁ)z'

k=0+1

This shows that a, := n(7;) satisfies that a; = 0 implies a; = 0 for all & > ¢. Hence, we
have (2.3.12) with C} = (pest + v + CestCqo) /(1 — (pest + v)) and conclude the proof of (E2)
= (2.3.12). Lemma 2.3.8 yields the equivalence (2.3.12)-(2.3.14). O

PROOF OF THEOREM 2.3.3, (11). Stability and reduction (E1) guarantee estimator re-
duction (2.3.8) for n(7;) by Lemma 2.3.5. Together with quasi-orthogonality (E2), Proposi-
tion 2.3.9 shows (2.3.14) for a, = n(7;). This proves Theorem 2.3.3 (ii) with Ceopny = C3 and

Pconv = P1- ]

2.3.5. Optimality of Dorfler marking. Theorem 2.3.3 (i)-(ii) state that Dorfler
marking (2.2.1) essentially guarantees limy_,.,7(7;) = 0 or even R-linear convergence to
zero. The next statement asserts the converse.

PROPOSITION 2.3.10. Let 7 € T(T) denote a refinement of T € T. Stability (Ela)

and discrete reliability (E3) imply that for all 0 < 6y < 6, := (1 — eqa1)/(1 + C3 ), there
exists some 0 < kg < min{kaqy, 1} such that
(TP <kn(T? = OnTP< > 0T (2.3.18)

TeR(T,T)

holds for all 0 < 0 < 6y, where S(T,T) C R(T,T) C T with [T\ T| < |R(T,T)| <
Cret| T\ 7:| from (E3). The constant ko depends only on Cerel, Edrel, and 6.

REMARK 2.3.11. Note that the proof requires (E3) to hold only for the particular T
and T in (2.3.18).

PROOF. The Young inequality and stability (Ela) show, for any § > 0, that
TP = > T+ Y m(T)
TeS(TT) TeT\S(T,T)

< (TP +0+67) Y TP+ (1 +0)e(T.T)
TeS(T,T) TeT\S(T,T)
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Recall S(T,T) C R(T,T) by (E3). The application of the discrete reliability (E3) and the
< kon(T)? yield

n(T)> < 1+ 6 ron(T)* + (1 + 6)earan(T)?
+(1+Q+0)Cha) > mr(T)

TeR(T,T)

assumption (7 )2

Some rearrangement of those terms reads
1— (1 + 5_1)50 — (1 + 5)€drel
1+ (146)C5

nTP< Y (T

TER(T,T)
Recall e4,01 < 1 by (E3), choose 6 > 0 sufficiently small, and determine 0 < kg < 1 such that

1—(1+0 ko — (1+)eae 1 —caral
O < 2 < 2
1 + (1 + 5)Cdrel 1 + Cd

= 0,. (2.3.19)

rel

t

The next result is a variant of Proposition 2.3.10 which is not actually needed in the
forthcoming analysis. However, we include it for completeness.

COROLLARY 2.3.12. Let T € T(T) denote a refinement of T € T. For all 0 < ko <
1 with kg < Kqu, there exists a constant 0 < 0y < 1 and some 0 < ey < 1 such that
stability (Ela), discrete reliability (E3) with eqa < €0, and 0 < 0 < 6y imply (2.3.18). The
constants 6y, o depend only on Cqel and kKg.

PROOF. For arbitrary 0 < kg < 1 with kg < kqr choose §,e9 > 0 sufficiently small such
that (2.3.19) becomes

1— (1 + 571)1‘{0 — (1 + 5)5drel > 1-— (1 + 571)1‘{0 — (1 + 5)50
1+ (1+6)CRa N L+ (1+0)CRa
As in the proof of Proposition 2.3.10, this concludes (2.3.18). O

Oy = > 0.

2.3.6. Quasi-optimality of adaptive algorithm. This section proves optimal con-

vergence rates for the estimator and thereby renders the theoretical heart of the proof of
Theorem 2.3.3 (iii).

LEMMA 2.3.13. Let T € T such that n(T) > 0. Then, for s > 0 with ||n, T(T)||s < oo,
there exists a refinement T € T(T) with

n(T)? < won(T)?, (2.3.20a)
AT <l T(T)|Y kg Von(T) Ve, (2.3.20D)

Assume that the implication (2.3.18) is valid for one particular choice of 0 < ko, 0y < 1 and
the triangulations T and T. Then, the set R(T,T) 2 T\T from Proposition 2.5.10 satisfies

IR(T, T)| < Crettig/ > n(T) %I, T(T) ||V (2.3.21a)
and satisfies the Dérfler marking for all 0 < 6 < 8y, i.e.,
(T’ < > (T (2.3.21b)
TeR(T,T)
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PROOF. Choose a minimal N € Ny, such that ||, T(T)||«(N + 1)~ < &t/*n(T) (note
that N > 0 by the fact that n(7) < ||n, T(T)||s and ko < 1). By assumption (and the fact
that T(7, N) is finite), there holds

_min (N +1)*p(7)) < |ln, T(T)|
TET(T,N)

and hence, there exists a triangulation 7 € T(T, N) with (N + 1)*n(T) < ||, T(T)||s. This
implies
n(T) < (N + 17 T(TIls < g *n(T).
The minimality of N implies N=* > x¢/*n(T)||n, T(T)||;" and hence
N < g (Tl T(T) (2.3.22)

Since 7 € T(T, N), this concludes (2.3.20). The implication (2.3.18) thus guarantees that

the set R(7,7T) C T with |R(T,T)| ~ |(T \ T)| satisfies the Dorfler marking (2.3.21b).
Estimate (2.3.21a) follows from (2.3.22), i.e.,

Cod [RIT, D < (TN < N < i/ TIn(T) %[, T(T)[
This concludes the proof. O

The following two propositions state the optimality of the adaptive algorithm.
PROPOSITION 2.3.14. The son estimate (T1) implies

1n(7Te)
Copt Capprox(s) < sup ,
el S) < S8 TN ol -+ 17
where the constant cqp > 0 depends only on Cson and |To).

PROPOSITION 2.3.15. Suppose that (2.3.20)—(2.3.21a) of Lemma 2.3.13 are valid for
one particular 0 < kg < 1 and s > 0, as well as for all T = Ty, £ € Ny with n(T;) > 0.
Assume that there holds (T2)—(T3) and that (2.3.13) from Lemma 2.3.8 holds for oy := n(Ty).

Then, |My| < Coin| R(T2, To)| for all € € Ny (with R(Tz, Ty) from Lemma 2.8.13) implies

sup n(7e)
teny (ITe\ Tol + 1)‘5

(2.3.23)

< Clopt Cappro (). (2.3.24)

closure =" min

There holds Cypy = 2°C5CY (ON Crefﬁo % and Copt > 0 depends only on Cyon and |To.

PROOF OF PROPOSITION 2.3.14. Choose N € Ny, ¢ € Ny, and the largest possible
k € Ny with |Tox \ 77| < N. Due to the maximality of k& and (T1), there holds N + 1 <
ikt \Tol + 1 < [Tiskoa] + 1 S Coon[Tevil + 1) S Coon|Tis \ 5| + 1), where the hidden
constant depends only on |7g|. This leads to

inf (N +1°0(T) < (|Tesx \ To| + 1)°0(Texs)

TET(Te,N)

and concludes the proof. O

PROOF OF PROPOSITION 2.3.15. If n(7;,) = 0. Then, (2.3.13) implies n(7;) = 0 for all
¢ > {y. Hence, we may consider 0 < ¢ < {; only. By assumption (2.3.21a), there holds

IMy| < Coinl R(T2, 7o) < CruinCrertid! ™2 ()~ 1, T(To) || .
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The uniform approximability (T3) shows
|M| < ConinCretCapprox () kg T2 n(T) ™/ for all £ € Ny, (2.3.25)

The inverse summability (2.3.13) together with (2.3.25) and the closure estimate (T2) show
for all £ € Ny

-1

7o\ Tol +1 <2172\ Tol) < 2Cetosure D _ 1M
§=0

< 2o ConCrtConpro(s) Vo5 S (T 1 (2.3.26)
=0
< 2C;Catosure CrminCrerCapprox (8)/ g T2 (T0) 77,
Consequently,
NTT\Tol +1)° < 2°C5CliguueeCinCreetio | Coppron(s)  for all £ € N.
This leads to the upper bound in (2.3.24). O

PROOF OF THEOREM 2.3.3 (111). Choose 6, := 6 < 6,. Stability (Ela) and discrete
reliability (E3) guarantee that (2.3.18) holds for 6,, some 0 < ko < 1, and in particular
for all T = T, ¢ € Ny. This implies that (2.3.20)—(2.3.21) of Lemma 2.3.13 are valid
particularly for all T = T,, ¢ € Ny. Step (iii) of Algorithm 2.2.1 selects some set M, with
(almost) minimal cardinality which satisfies the Dorfler marking (2.2.1) for . The Dorfler
marking (2.3.21b) for 6 = 6, implies | M| < Cuin|R(T7, 7¢)|. Reduction and stability (E1)
proves the estimator reduction (2.3.8) from Lemma 2.3.5. This and quasi-orthogonality (E2)
allow to employ Proposition 2.3.9 which ensures that (2.3.12)—(2.3.14) hold for a, := n(7s).
Finally, Proposition 2.3.14-2.3.15 conclude the proof. U

REMARK 2.3.16. Note that the proof of Theorem 2.3.3 (iii) requires (2.3.18) only for
T = Ty, L € Ng. Hence, Remark 2.3.11 shows that it is sufficient to claim (E3) for all
T =T, L € Ny to obtain Theorem 2.3.3 (iii). This relazation is exploited in Section 3.6.2,
below.

2.4. Equivalent approximation problems

Assume that there exist constants Cie, Cop > 0 as well as functions err(-) : T — [0, 00)
and data(-) : T — [0, 00) such that there holds reliability

err(7) < Cran(T) forall T eT. (2.4.1)
as well as efficiency
Can(T) < err(T) + data(T) forall T € T. (2.4.2)

Suppose that the functions err(-) and data(-) are quasi-monotone (see also (2.7.6) below) in
the sense that there exists a constant Cp,o, > 0 such that all 7 € T(7) and all T € T satisfy

~ ~

err(T) < Cponerr(T) and  data(7) < Cpendata(T). (2.4.3)
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We define the corresponding approximability norms analogously to (2.2.5) as

~

llerr, T(T)||s :== sup min ((N + 1)%err(7)),

NeNg TeT(T,N)

|data, T(T)|l := sup _min ((N + 1)°data(T)).
NeNyo TET(T,N)

Analogously to (T3), we say that err(-) and data(-) satisfy uniform approximability if

Cipprox(s) = sup [lerr, T(T)|ls < oo, (2.4.4a)
TeT
Cipprox () 1= sup [|data, T(T)||, < oo. (2.4.4b)
TeT

for some s > 0.

PROPOSITION 2.4.1. Assume that there holds reliability (2.4.1), efficiency (2.4.2),
and quasi-monotonicity (2.4.3). Then, the uniform approximability statements in (2.4.4)
and (T3) are equivalent in the sense that

(1) 27°Cof Capprox(s) < Cipiron(5) + CnonCrppron(5),

approx approx

(i) Copprox(8) < CretCapprox(s)-

REMARK 2.4.2. The literature, e.g., |78, 35|, usually assumes |lerr, T||;+ ||data, T||s <
oo and uses the equivalence (2.4.1)—(2.4.2) as well as the overlay estimate (2.5.1) below to
obtain rate optimality of the error estimator and the so called total error err(T) + data(T).
Our approach, however, is much more fundamental as we only use properties of the error
estimator itself to deduce the rate optimality of Theorem 2.5.3 (iii). The statements on
error convergence are derived in this section by bootstrapping the results on the estimator.
This point of view allows to include a much broader class of applications as is shown in the
examples of Chapter 3, 5, 6, below.

PROOF. The upper bound (2.4.1) shows
llerr, T(T)||s < Crallln, T(T)||s for all s > 0.

This proves (ii).
To see (i), suppose (2.4.4) for some s > 0. For all even N € Ny, this guarantees the
existence of a triangulation Ty/, € T(T, N/2) with

err(Twy2) (N/2 4+ 1)° < Cfo()
and also the existence of a triangulation Ty € T(Ty/2, N/2) with
data(Ty)(N/2 +1)° < Clta (s). (2.4.5)
With quasi-monotonicity (2.4.3), there holds
err(Ty) < Cron€IT(Tn/2) < Crion(N/2 + 1)_502;;0)((5).
This and the lower bound (2.4.2) yield
Can(Tn) < err(Ty) + data(Ty)
< (Copprox(5) + Cron Crpnen(5)) (N/2 + 1)

approx
s data err —s
S 2 (Capprox<8) + CmOHCapprox(S)>(N + 1) :

By definition, there holds [Ty \ 7| < |Tn \ Tny2| + [Tnj2 \ 7| < N. This shows Ty €
T(7,N) and hence proves |1, T(T)|s < 2°Ceg(C22 () + CrnonComrox(s)). This concludes

the proof. O
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In the frame of this section, we prove following analog of Theorem 2.3.3 which provides
convergence results for the error instead of the estimator.

THEOREM 2.4.3. (i) Suppose (E1) is satisfied and assume limy_,o 0(Ts, Ter1) =0
(with o(-,-) from Section 2.3.1). Then, for all 0 < 6 < 1, the error is convergent in
the sense

lim err(7;) = 0. (2.4.6)
{—00

(ii) Suppose (E1)—(E2) are satisfied. Then, for all 0 < 6 < 1, the error is R-linear
convergent in the sense that there exists 0 < peony < 1 and Ceony > 0 such that

ert(Tryj)? < C%Coonepl,, (er1(Ty) + data(Ty))?  for all j,¢ € Ny. (2.4.7)

(iii) Suppose (E1)—~(E3) and (T1)—~(T3) are satisfied for some s > 0. Then 0 < 0 < 0, :=
(1 — eqra) /(1 + C2.)) implies quasi-optimal convergence of the error in the sense of

err(7y)
Copt O oxc(8) < su
ot Capprox() ety (Te\ 7o + 1) (2.4.8)
< 2°Copt CrarCott (Coies (5) + CrnonComoros (5)),

where the lower bound requires only (T1) to hold.
The constants Ceony, Peonvs Copt; Copt are defined in Theorem 2.5.3.

PROOF. The statements (i)—(ii) follow immediately from Theorem 2.3.3 (i)—(ii) and the
equivalences (2.4.1)—(2.4.2). To see the upper bound in (iii), combine the upper bound in
Theorem 2.3.3 (iii) with Proposition 2.4.1 and the upper bound (2.4.1). For the lower bound
in (iii), choose N € Ny, ¢ € Ny, and the largest possible & € Ny with |Tox \ To| < N.
Due to maximality of ¢ and (T1), there holds N + 1 < |Tosps1 \ Tel + 1 < |Towps1| + 1 <
Cson(|To4k] +1) S Coon(| T4k \ To| +1), where the hidden constant depends only on |75|. This
leads to

Lnt (N +1%e(T) S ([Toa \ Tol + 1)%ern(Tra)

and concludes the proof. O
Before we conclude the section, we provide a criterion, under which reliability (2.4.1)
follows from discrete reliability (E3).

PROPOSITION 2.4.4. Suppose a constant C > 0 such that the following holds. Given
T €T, there exists a sequence of triangulations T, € T(T) with limy_,o n(7;) = 0 such that

C~err(T) < lim o(T.7;)

with o(-,-) from Section 2.3.1. Then, discrete reliability (E3) (where the restriction eqre <
1 is not necessary) and quasi-monotonicity (2.7.6) imply reliability (2.4.1) with C?; =
02(031"61 + Edrel)-

PROOF. Assume 7(7) = 0. Then, (2.7.6) implies n(7;) = 0 for all £ € N and hence

~ ~ ~

n(T) < kqun(T) for all £ € N. Assume n(7) > 0. Then, lim, ., n(7;) = 0 shows n(7T) <
karen)(T) for all £ > £, for some sufficiently large ¢y € N. In either case, (E3) is applicable
and shows

C %erx(T)* < lim o(T, T2)* < (eare + Clra)n(T).
—00
This concludes the proof. O
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2.5. Optimal complexity

This section understands complexity as a measure of computational effort necessary to
compute one step of Algorithm 2.2.1. We assume that the effort is related to

7

for some v > 0 and call this quantity single-step complexity. This is a reasonable assumption,
since usually the solution of some linear or nonlinear systems is involved where the complex-
ity is related to the degrees of freedom. To compute the ¢-th step of Algorithm 2.2.1, it
is necessary to compute all the previous steps, too. Therefore, we define the cumulative
complexity of the ¢-th step of Algorithm 2.2.1 by

¢
> Il
j=0

The following theorem shows that for the adaptive algorithm, both measures coincide. To
that end, we define the overlay estimate which states that there exists a constant C; > 0
such that any two triangulations 7,7 € T have a coarsest common refinement 7 @& T €

~

T(7)NT(T) with

(TeT)\TI < CiT\ T (2.5.1)
THEOREM 2.5.1. Suppose a sequence (T, )een, C T with T, € T(T,™) and [T | <

Cson|Te| for all ¢ € Ny such that 76°pt = To and that there holds the single-step complexity
rate
n(7™)
gseul\%) (T )= < 00 (2.5.2)
for some s > 0 and some vy > 0. Suppose (E1)—(E3) and (T1)—~(T2) as well as the overlay es-
timate (2.5.1). Then, given 0 < 0 < 0, := (1—¢eqra)/(1+C3 ), the output of Algorithm 2.2.1
satisfies the same cumulative complexity rate
n(Te)
sup —;
teNo (325 [T317) 7
REMARK 2.5.2. The above result shows that Algorithm 2.2.1 realizes any possible single-
step complexity rate even with respect to the cumulative complexity 25:0 |7;|7. This means
that the overall investment of computational time is asymptotically optimal and the iter-
ative steps of Algorithm 2.2.1 do not spoil the performance. Particularly, it shows that
under the assumptions of Theorem 2.5.1, the adaptive approach converges faster or at least
with the same complexity rate as the uniform refinement strategy which realizes ﬂinllf =
T(7,2i, 7,00). To see this, note that the uniform refinement does not require to compute
each previous step of the algorithm. Hence, its complexity to compute the (-th step is best
measured by the single-step complezity | T,"|7. If uniform refinement satisfies the single-step
complexity rate s > 0, i.e.,

(2.5.3)

unif
sup n(l?;f )
eeno (IT;™0)
Theorem 2.5.1 (with T}™ = TP) shows that Algorithm 2.2.1 converges with at least the

same rate of cumulative complexity. Particularly, the same effort in terms of computational
time leads to asymptotically better approrimation accuracy.

< 00,
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PROOF. The assumption (2.5.2) implies ||n, T||s, < co. To see this, we follow the proof

of Proposition 2.3.14. Choose N € Ny and the largest possible ¢ € Ny with |7’0pt \ To] < N.

Due to the maximality of £ and by || < Ceon| T, there holds N+ 1 < [T\ To +1 <
Coon(| T\ To| + 1), where the hidden constant depends only on |75|. This leads to

min (N +1)"9(T) S (1T \ Tol + 1)"n(T;™)

TET(N)
and concludes

19, Tl = sup _min (N +1)"5(T) < o0
NeNg TET(N)

Lemma 2.7.5 below shows quasi-monotonicity (2.7.6) of 7(-). With the above, Lemma 2.7.4
implies Copprox(s7) < oo. This shows that (T3) holds. Therefore, Theorem 2.3.3 (i)—(iii)
apply and prove

1(75) < CoptCapprox (57)(|T5 \ Tol + 1) 77 S Copt Capprox(s7)[ T3], (2.5.4)

where the hidden constant depends only on |7;| and svy. Moreover, there holds R-linear
convergence (2.3.2). We assume 7(7;) > 0 for all £ € Ny, since otherwise R-linear conver-
gence (2.3.2) implies n(7;) = 0 for all £ > ¢, for some ¢, € N and hence (2.5.3) follows
immediately. With (2.5.4), this implies

IT31" Sn(T;)~Y* for all j € N,.

Together with R-linear convergence (2.3.2) and the equivalent inverse summability from
Lemma 2.3.8 (ii), this shows

1

¢
DTS (T ()Y

=0 =0

We obtain immediately (2.5.3) and conclude the proof. O

2.6. Necessity of the axioms

The convergence results in Theorem 2.3.3 show that the axioms (E1)—(E3), (T1)—(T3)
are sufficient for rate optimality. By definition of the axioms (E1)-(E3), it is clear that if
there exists a function g(+, -) such that (E1)—(E3) hold, we can choose the point wise minimal
Omin(+, +) < o(+,-) to satisfy (E1), without violating (E2)—(E3). Given a triangulation 7 € T,
a refinement 7 € T(T), prea, and sets T\ T C S(T,T) C T, S(T,T) C T, this reads

~ . \N1/2 1/2
omin(T,T) == maX{’( > 77T<T)2> - ( > TIT(T)2) :
TeT\S(T,T) TeT\S(T.T)
~ 5| 1/2
’ Z nr(T)? — pred Z nr(T }
TeS(T,T) TeS(T,T)

This section examines the necessity of the axioms with o(+, ) = omin(-, ).
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2.6.1. Convergence implies (E1). The stability and reduction (E1) leads to the con-
vergence result of Theorem 2.3.3 (i) and provides the basis for all the other convergence
results. The following result shows that (E1) is even necessary.

PROPOSITION 2.6.1. Assume convergence (2.3.1). Then, (E1) holds for arbitrary 0 <
Prea < 1 and arbitrary sets S(-,-), S(-,-) with limy_,o0 Omin(Tes1, Te) = 0.

PROOF. Stability and reduction (E1) is satisfied by definition of gpi,(+,-). By conver-
gence (2.3.1), we obtain limy_, o(77, Tev1) S limysoo(7(T¢) + 7(Te51)) = 0. This concludes
the proof. O

2.6.2. R-linear convergence implies (E2). Theorem 2.3.3 (ii) proves that (E1)-
(E2) yield linear convergence (2.3.2). The following proposition shows that linear conver-
gence (2.3.14) implies the general quasi-orthogonality (E2). In view of Proposition 2.6.1-
2.6.2, linear convergence (2.3.14) is equivalent (E1)—(E2).

PROPOSITION 2.6.2. The R-linear convergence (2.3.2) implies general quasi-orthogo-
nality (E2) with eqo =0 and Cy, > 0.

PROOF. Since min(T,T) < 0(T) + n(T), R-linear convergence (2.3.2) together with
Lemma 2.3.8 (where ay, = 1(7x)) show

{+N {+N+1

Y 0T Tes)’ S D n(T)* Sn(Te)?
k=t k=t
for all ¢, N € Ny. This is (E2) with 4, = 0. O

2.6.3. R-linear convergence implies (E3). The discrete reliability (E3) proves the
optimality of the Dorfler marking in Proposition 2.3.10. The following result shows that,
under some minor assumptions, also the converse is true.

PROPOSITION 2.6.3. Assume R-linear convergence (2.3.2) and S(T,T) < Cuet| T\ T].
Then, discrete reliability (E3) holds on the sequence of triangulations (Ty)een, generated by
Algorithm 2.2.1 with eqre1 = 0, Carel = CeonvPeonv /0, and R(Ty, Tex1) = S(Te, Teva), i-e€.,

Qmin(ﬁa 72+1)2 S Cyconvpconvei1 Z 77T<7Z)2
TeS(Te,Tes1)

for all ¢ € Nj.
PROOF. The definition of gun(+,-) implies that either (Ela) holds with equality, i.e.,

(Y w@?) = Y w@) vamT (@6

TETe+\S(Te, Te41) TETNS(Te, Ter1)
or (E1b) holds with equality, i.e.,
> (Te) =pea Y, (T + o(Te, Tern)™. (2.6.2)
TS (T, Tes1) Te€S(Te,Tet1)

In case of (2.6.1), we obtain
1/2
CplEnmznT) = (Y mT)?) 2 olT Ten),
TE€Te41\S(Te,Tis1)
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Analogously, (2.6.2) implies

1/2
Cgo/r?vp(lzéﬁvn(T) 2 0(Te1) 2 ( Z 77T(7Z+1)2) > o(Te, Teva)-

T€S(Te,Tot1)

Since the triangulations 7, satisfy the Dorfler marking (2.2.1), the above implies

(T2, Tex1)* < CoonvPeon(Te)* < CoonvPeons ™ Y (T, (2.6.3)

TeM,
Since, by definition of the refinement strategy, there holds M, C T, \ Tor1 € S(Te, Tev1), we
obtain (ES) Wlth Edrel = 0, Cdrel = Ccom,pconv/e, and R(%, 724_1) = 5(72, 72_,_1). D

The following result shows that Proposition 2.3.10 is sharp in the sense that (E3) is even
equivalent to (2.3.18).

PROPOSITION 2.6.4. Assume stability and reduction (E1) with o(-,-) := omin(-, ). As-
sume that for kg = Kqu exists some 0y such that the implication (2.3.18) holds. Then,

discrete reliability (E3) is satisfied with cqes = 0 and R(T,T) from Proposition 2.3.10 and
Cara = 6.

PROOF. Let 7 € T(T) such that 7(7) < kaen(T). By assumption, there exists 0 < 6y <

1, which depends on kgqy, such that the implication (2.3.18) holds and shows that R(T, ?)
satisfies the Dorfler marking (2.2.1). As in (2.6.3), we obtain

oT, TP <n(T)P?<n(T) <6 > (T
TER(T,T)
This concludes the proof. O
2.6.4. Optimal complexity implies R-linear convergence. The optimal complex-

ity result of Theorem 2.5.1 implies R-linear convergence (2.3.2) in the following sense. As-
sume that the error estimator converges with a certain rate

|Te| ™ S 0(Te) S| Te| ™ forall £ € Ny (2.6.4)

and assume that the implication of Theorem 2.5.1, i.e., (2.5.2) implies (2.5.3), is true. Un-
der (T1), we may use 7, := T; and obtain

n(Te)

With this, (2.5.3) shows

¢
)"/ > Z T > Zn )/
7=0 7=0
for all £ € Ny. Lemma 2.3.8 with oy = 1(7;) concludes R-linear convergence (2.3.2).

REMARK 2.6.5. Although it is possible to construct examples which satisfy rate opti-
mality (2.3.3) but fail to satisfy (2.6.4), there are many practical examples with (2.6.4). In
this sense, R-linear convergence might not be necessary for any particular instance of the
approximation problem, but is definitely necessary for the general case.
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2.6.5. The refinement axioms (T1)&(T3). The assumption (T1) is not necessary
from a theoretical point of view. However, since |7 is usually related to the degrees of
freedom, a reasonable refinement strategy will aim to produce a refinement with |7,,1| =~ |7;|.
The uniform approximability (T3) is necessary since it follows immediately from (2.3.3).

2.7. Particular realizations of the axioms

In many cases, some of the axioms (E1)-(E3), (T1)-(T3) hold due to some more specific
properties of the estimator 7n(-) or the refinement strategy T(-,-).

2.7.1. A priori convergence. Suppose a Banach space X with norm || - ||3 as well as
a solver function U(-) : T — X. Assume that

ol T, T)? = a|U(T) - UT)|%

for some a > 0.
LEMMA 2.7.1. Suppose that there exist subspaces X(T;) C X for all ¢ € Ny (where Ty

denotes the output of Algorithm 2.2.1) and a function Uy, € Xoo := Uyen, X (Te) such that
the Céa lemma holds, i.e.,

- < Cen mi - 1.
1Uso U(E)HX_CceavénXl(anUoo Vlix for all £ € Ny, (2.7.1)

where Cgoea > 0 is some constant which does not depend on ¢ € Ny. Then, there holds
a priori convergence

lim Vs — U(T5) | = 0 = lim o(T;, Too). (2.7.2)
L—00 l—00

PROOF. By definition of X, the right-hand side of (2.7.1) converges towards zero as
¢ — oo. The convergence limy o 0(7¢, Tor1) = 0 follows immediately with the triangle
inequality. This concludes the proof. O

2.7.2. o(+,-) is a Hilbert norm. If the perturbation has the structure of a Hilbert
norm, the general quasi-orthogonality follows immediately.

LEMMA 2.7.2. Suppose a Hilbert space X with || - |3 = (-, )x and U(:) : T — X.
Let o(-,-) be given as in Section 2.7.1 and suppose that the solver U(-) satisfies Galerkin
orthogonality

(U(Tiss) — U(Tir), U(Tosr) — U(Te)) e = 0 for all k, ¢ € No. (2.7.3)

Then, discrete reliability (E3) with kq, = oo (where the restriction eqe < 1 is not necessary)
implies the general quasi-orthogonality (E2) with e = 0 and Cqo = €arel + Care- Moreover,
there holds a priori convergence

Zlirglo o(Te, Tex1) = 0. (2.7.4)

PROOF. The Galerkin orthogonality (2.7.3) implies for k£, N € Ny
1U(Te) = U(Ter)[l3 = 1U(Tern) = U(T)llZ = U (Tern) = U(Tesn) |13
= 2(U(Texnw) = U(Trr) s U(Tk) = U(Thsa))x
= U(Tesn) = UT)% = U (Tesn) = U(Tiin) [ -
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Hence, there holds for ¢ € Ny

0+N +N
> 0T, Ten)” < a lim S U(T:) = U(Trsn) 1%
=t =
0+N
—a Jin 3 (1U(Tesw) — U — [U(Ten) ~ UT)[2)
ot

= a lim (|U(Ten) = UTDI = 1U(Tew) = U(Teen)l%)
<a lim [|U(Tesn) — U(To) |5
N—o00
= Jim (75, Tesn)” < (Eare + Cara)0(T2)’,
The above for £ = 0 concludes also (2.7.4) and hence the proof. O

2.7.3. Quasi-orthogonality implies general quasi-orthogonality. In the litera-
ture, one often finds the following quasi-orthogonality: Let 0 < ¢ < 1, and Cyq > 0 such
that all ¢ € Ny satisfy

Codo(Te, Tex1)? < (L —e) o} — af,, (2.7.5a)
for some o, € R with
aj < Cran(Te)*. (2.7.5b)

LEMMA 2.7.3. The quasi-orthogonality (2.7.5) with 0 < e < 1 and Cieq > 0 implies the
general quasi-orthogonality (E2) with eqo = Crac/(1 —€) and Cyo = Cha.

PROOF. There holds with £, = Ciqe/(1 — ¢) and (2.7.5)

N N 2 2
8] C11"e 577(7)
k=¢ (o(Tk Ter1)? = eqon(Ti)?) < ; (1 —kE ~ O 11 - €k )
< ﬁ: ( G, ﬂ)
_k:g 1_¢ Okt 1_¢

(af — apyy) < of < Coan(Te)?.

WE

Eonl
1
~

g

2.7.4. Quasi-monotonicity and the overlay estimate. We say that a function A(-) :
T — [0, 00) is quasi-monotone, if there exists a constant Cy,,, > 0 such that all triangulations
T € T satisfy

AMT) < Coauon\(T)  for all T € T(T). (2.7.6)

LEMMA 2.7.4. Assume that the refinement strategy T(-,-) satisfies the overlay esti-
mate (2.5.1) and that the function \(-) : T — [0,00) is quasi-monotone (2.7.6). Then,
A, T||s < oo for some s > 0 implies

sup ”)\, T(T>Hs < C’rnon(c(él + 1)8”)\7 THS
TeT

Particularly, for A(-) = n(-), ||n,T||s < oo implies (T3).
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PROOF. Let N € Ny and define M := floor(N/Cy). The fact ||\, T||s < oo allows to
choose some triangulation 7% € T(M) with

MTY)M +1)* < |\, Tl

Given any 7 € T, the overlay estimate (2.5.1) states |(TY @ T) \ 7| < N and hence
TN @ T € T(T, N). The quasi-monotonicity (2.7.6) and N + 1 < (M + 1)(Cy + 1) shows

MTY @ TN +1)° < Cuaon(Ca + 1)°ATV)(M +1)" < Cuaon(Cy + 1)°[IX, T
This implies

_inf (N 4+ 1)°A(T) < Cuuon(Ca + 1[N, T
TET(T,N)

and concludes the proof. O

The quasi-monotonicity (2.7.6) follows from the stability and reduction (E1) together
with discrete reliability (E3) or quasi-orthogonality (2.7.5).

LEMMA 2.7.5. Assume (E1) (where the restriction peq < 1 is not necessary) as well
as (E3) with kq, = co. Then, there holds (2.7.6) with A(-) = 1(-) and Con = (max{pred, 2} +

1/2
3<€drel + Cgrel)) / :

PROOF. The stability (Ela) and the reduction estimate (E1b) imply

TP <pea D me(MP+2 > ap(T)?+30(T. 7).

TeS(T,T) TeT\S(T.,T)

The discrete reliability (E3), leads to

N(T)? < (max{prea, 2} + 3ara)n(T)? +3Cha > nr(T)?
TeR(T,T)

< (max{preda 2} + 3(5dr61 + Cgrel))n(T)Q'

1/2

This is (2.7.6) with Chyon := (max{pred, 2} + 3(Earel + Corer)) O

LEMMA 2.7.6. Assume (E1) (where the restriction peq < 1 is not necessary) as well
as the quasi-orthogonality (2.7.5) for T, =T and Tgw1 = T. Then, there holds (2.7.6) with

AC) = () and Cuon = ((max{prea, 2} + 302, (1 —£)~1)) 2.

PROOF. The stability (Ela) and the reduction estimate (E1b) imply

T2 <pea Y me(TP+2 S (T +30(T.T)?
TeS(T,T) TeT\S(T,T)

(2.7.5)
< max{prea, 2}7(T)? + 3Ca((1 — &) Lo — a?,))

< (max{pred, 2} + 3CH(1 — &)~ n(T)*.
This concludes the proof. O
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2.7.5. Other versions of the overlay estimate (2.5.1) and of (T2). The following
estimate provides a lower bound for the number of newly generated elements, i.e.,

IT\T|<|T|=|T| forall7T € T(T) and all T € T. (2.7.7)

This is particularly satisfied if each refined element 7" € T \ T generates at least two sons
T, T, e T\T.

LEMMA 2.7.7. Let the refinement strateqy satisfy (2.7.7), then there holds for all re-
finements T € T(T)

T =171 < [T\ 7] <2(71—=17). (2.7.8)
PROOF. The first inequality follows from
T\T| =T |TnT|>|T]—|7].
The second inequality follows similarly by
T\T| =TI = TnT|=[T|- (T = T\T]) < 2(7| 7)),
where we used (2.7.7). O

LEMMA 2.7.8. Under (2.7.7), the closure estimate (T2) is equivalent to
-1

[Tl = 175] < Cotommre 3 IM;|  for all € € N, (2.7.9)
=0
where the closure estimate (T2) implies (2.7.9) with CZ;; = Ceosure and (2.7.9) im-

P

plies (T2) with Cuosuwre = 2C0sure- Moreover, the overlay estimate (2.5.1) is equivalent
to

(T eT)| <Ci(T|=|Tl) +|T| for all T € T(T), (2.7.10)
where (2.5.1) implies (2.7.10) with Cy = 2Cy and (2.7.10) implies (2.5.1) with Cy = 2C.
PROOF. Both statements follow directly with (2.7.8). O

2.8. Historical remarks

This section is based on and extends [24, Section 3.2]. This work provides some unifying
framework on the theory of adaptive algorithms and the related convergence and quasi-
optimality analysis. Some historic remarks are in order on the development of the arguments
over the years. In one way or another, the axioms arose in various works throughout the
literature. We aim to motivate the specific choice of axioms (which turn out to be even
necessary in Section 2.6) in terms of historic development of the field.

2.8.1. Reliability (2.4.1). Reliability basically states that the unknown error tends to
zero if the computable and hence known error bound is driven to zero by smart adaptive
algorithms. As the main result of this chapter (Theorem 2.3.3) focuses solely on the error
estimator, the reliability is not explicitly used in the analysis. However, Section 2.4 intro-
duces reliability to prove optimal convergence of the error. Since the invention of adaptive
FEM in the 1970s, the question of reliability was thus a pressing matter and first results for
FEM date back to the early works of BABUSKA & RHEINBOLDT [7] in 1D and BABUSKA &
MILLER [6] in 2D. Therein, the error is estimated by means of the residual. In the context
of BEM, reliable residual-based error estimators date back to the works of CARSTENSEN &
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STEPHAN [34, 33, 20|. Since the actual adaptive algorithm only knows the estimator, reli-
ability estimates have been a crucial ingredient for convergence proofs of adaptive schemes
of any kind.

2.8.2. Efficiency (2.4.2). Compared to reliability (2.4.1), efficiency (2.4.2) provides the
converse estimate and states that the error is not overestimated by the estimator, up to some
oscillation terms data(-) determined from the given data. An error estimator which satisfies
both, reliability and efficiency, is mathematically guaranteed to asymptotically behave like
the error, i.e., it decays with the same rate as the actual computational error. Consequently,
efficiency is a desirable property as soon as it comes to convergence rates. For FEM with
residual error estimators, efficiency has first been proved by VERFURTH [82|. He used
appropriate inverse estimates and localization by means of bubble functions. In the frame
of BEM, however, efficiency (2.4.2) of the residual error estimators is widely open and only
known for particular problems [3, 19|, although observed empirically, see also Section 3.5.3.

In terms of convergence proofs, efficiency is often a useful tool as is mentioned in the
following section. However, the main result of this chapter (Theorem 2.3.3) does not require
the efficiency estimate (2.4.2) and thus allows applications to a much wider problem class.

2.8.3. Discrete local efficiency and first convergence analysis of [40, 65|. Reli-
ability (2.4.1) and efficiency (2.4.2) are nowadays standard topics in textbooks on a poste-
riori FEM error estimation |1, 82|, in contrast to the convergence of adaptive algorithms.
BABUSKA & VOGELIUS [8] already observed for conforming discretizations, that the se-
quence of discrete approximations U(7;) always converges (see Section 2.7.1 for an abstract
form of this a priori convergence). The work of DORFLER [40| introduced the marking
strategy (2.2.1) for the Poisson model problem

—Au=finQ and u=0onI =00 (2.8.1)

and conforming first-order FEM to show convergence up to any given tolerance. MORIN,
NOCHETTO & SIEBERT [65] refined this and the arguments of VERFURTH [82] and DOR-
FLER [40] and proved the discrete variant

Con(Te)? < IV(U(Tir) — U(T0)) |32y + data(Te)? (2.8.2)

of the efficiency (2.4.2). See also [50] for the explicit statement and proof. The proof relies
on discrete bubble functions and thus required an interior node property of the refinement
strategy, which is ensured, e.g., by bisection for d = 2 from Section 3.2.8 and five bisections
for each refined element. With this, [65] proved error reduction up to data oscillation terms
in the sense of

1900~ U(Te) ey < w190~ UTEaey + Cdata(T) (283
with some /-independent constants 0 < x < 1 and C' > 0. This and additional enrichment
of the marked elements M, C T, to ensure data(7;) — 0 as £ — oo leads to convergence

£—00
IV (w = U(To)) | 12@) — 0. (2.8.4)
The reason why this work neglects the discrete local efficiency (2.8.2) is that it can only
be proven for a very narrow class of model problems, and thus does not allow for some general
framework. Moreover, the over refinement due to the interior node property is practically
observed to be unnecessary.
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2.8.4. Quasi-orthogonality (E2). The approach of [65] has been generalized to non-
symmetric operators in [64], to nonconforming and mixed methods in [26, 25|, as well
as to the nonlinear obstacle problem in BRAESS, CARSTENSEN & HOPPE [17, 18]. One
additional difficulty is the lack of the Galerkin orthogonality which is circumvented with
the general quasi-orthogonality axiom (2.7.5) in Section 2.7.3. Stronger variants of quasi-
orthogonality have been used in [26, 25, 64| and imply (2.7.5) in Section 2.7.3. In its current
form, however, the general quasi-orthogonality (E2) goes back to [46] for non-symmetric op-
erators without artificial assumptions on the initial triangulation as in [36, 64|, see also
Section 3.6.1. Proposition 2.6.2 shows that the present form (E2) of the quasi-orthogonality
cannot be weakened if one aims to follow the analysis of [35, 78] to prove quasi-optimal
convergence rates. Moreover, Section 2.6.4 shows that the optimal complexity result of The-
orem 2.5.1 necessarily implies R-linear convergence and thus general quasi-orthogonality (E2)
by Proposition 2.6.2.

2.8.5. Optimal convergence rates and discrete reliability (E3). The seminal work
of BINEV, DAHMEN & DEVORE [14] was the first one to prove algebraic convergence rates
for adaptive FEM of the Poisson model problem (2.8.1) and lowest-order FEM. They ex-
tended the adaptive algorithm of [65] by additional coarsening steps to avoid over-refinement.
STEVENSON |78] removed this artificial coarsening step and introduced the basic form of the
axiom (E3) on discrete reliability, i.e., with €4, = 0 and kq, = 0o. He implicitly introduced
the concept of separate Dorfler marking: If the data oscillations data(7,) are small compared
to the error estimator n(7;), he used the common Dorfler marking (2.2.1) to single out the
elements for refinement. Otherwise, he suggested the Dorfler marking (2.2.1) for the local
contributions of the data oscillation term data(7;). The core proof of [78] then uses the
observation from [64] that the so-called total error is contracted in each step of the adaptive
loop in the sense of

Ap1 <kAp for Ap:=|V(u— U(ﬁ))”%g(m + 7 data(T;)? (2.8.5)

with some (-independent constants 0 < k < 1 and v > 0.

Moreover, the analysis of [78| shows that the Dorfler marking (2.2.1) is not only sufficient
to guarantee contraction (2.8.5), but somehow even necessary, see Section 2.3.5 for the refined
analysis which avoids the use of efficiency (2.4.2).

2.8.6. Stability and reduction (E1). Anticipating the convergence of [39] for the p-
Laplacian, the AFEM analysis of [78] was simplified by CASCON, KREUZER, NOCHETTO
& SIEBERT [35] with the introduction of the estimator reduction in the sense of

N(Ter1)” < 60(Te)* + CIIVU(Tern) = VT 220 (2.8.6)

with constants 0 < k < 1 and C' > 0. This is an immediate consequence of stability and
reduction (E1b) in Section 2.3.3 and also ensures contraction of the so-called quasi-error

Ag.,_l < /{Ag for Ag = ||V(u — U(%))||%2(Q) + ’77](72)2 (287)

with some f-independent constants 0 < £ < 1 and v > 0. The analysis of [35| removed
the discrete local lower bound from the set of necessary axioms (and hence the interior node
property [65]). Implicitly, the axiom (E1) is part of the proof of (2.8.6) in [35]. While (Ela)
essentially follows from the triangle inequality and appropriate inverse estimates in practice,
the reduction (E1b) builds on the observation that the element sizes of the sons of a refined
element uniformly decreases. For instance, bisection-based refinement strategies yield |7"| <

|T|/2, it T € T\ Te is a son of T' € T\ Tp41.
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2.8.7. Extensions of the analysis of [35|. The work [60] considers lowest-order
AFEM for the Poisson problem (2.8.1) for error estimators which are locally equivalent
to the residual error estimator. The works [36, 46| analyze optimality of AFEM for linear,
but non-symmetric elliptic operators. While [36] required that the corresponding bilinear
form induces a norm, such an assumption is dropped in [46], so that the latter work con-
cluded the AFEM analysis for linear second-order elliptic PDEs. Convergence with optimal
rates for adaptive boundary element methods has independently been proved in [47, 80|.
The main additional difficulty was the development of appropriate local inverse estimates
for the nonlocal operators involved. The BEM analysis, however, still hinges on symmetric
and elliptic integral operators and excludes boundary integral formulations of mixed bound-
ary value problems as well as the FEM-BEM coupling. AFEM with nonconforming and
mixed FEMs is considered for various problems in |71, 32, 29, 31, 12, 61]. AFEM with
non-homogeneous Dirichlet and mixed Dirichlet-Neumann boundary conditions are analyzed
in [48] for 2D and in [4] for 3D. The latter work adapts the separate Dorfler marking from [78]
to decide whether the refinement relies on the error estimator for the discretization error or
the approximation error of the given continuous Dirichlet data, see Section 5.4. The results
of those works are reproduced and partially even improved in the frame of the abstract ax-
ioms of Section 2.3.1. Finally, the proofs of [4, 46] simplified the core analysis of [78, 35|
in the sense that the optimality analysis avoids the use of the total error and solely works
with the error estimator. The work [24| on which this work is based, derives a first set of
axioms to unify the theory of the mentioned works. In this work, we take one step further
and also drop the notion of exact solution and approximate solution, to solely focus on the
error estimator. Moreover, we relax some standard assumptions on the refinement strategy
to include a more general class of triangulations into the optimality analysis.
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CHAPTER 3

Applications 1

3.1. Introduction, state of the art & outline

This chapter applies the abstract machinery of the previous chapter to concrete model
problems. This means that for each problem, the axioms of Section 2.3.1 are checked and
the abstract results are interpreted. We reproduce well-known optimality results (e.g., for
the Poisson problem of Section 3.5.1 which was firstly proved in [78] and then generalized
by [35]), improve recent results for general elliptic second-order operators from Section 3.6
(which was firstly proved in [46] but is generalized in this work for operators which satisfy
a Garding inequality), and even derive completely new results as for example the optimality
result for reg-green-blue refinement from Section 3.5.2. Some of the examples are already
found in similar manner in [24]. The remainder of this chapter is organized as follows:
Section 3.2 introduces usual properties of concrete refinement strategies and gives some ex-
amples. Section 3.3 proves the uniform approximability (T3) for a certain class of problems.
Section 3.4 introduces the notion of weighted error estimators, for which some of the ax-
ioms follow from simpler assumptions. Section 3.5 validates the axioms for examples from
finite element and boundary element methods. Section 3.6 extends the problem class to
general second-order elliptic equations and Section 3.7 introduces nonlinear model problems
for which optimal convergence rates can be proven.

3.2. Real world triangulations and refinement strategies

The following Sections 3.2.1-3.2.7 describe properties which refinement strategies from
Section 2.2.1 can additionally satisfy. Below, we provide several examples of possible refine-
ment strategies T(-, ).

3.2.1. General assumptions. We consider a piecewise smooth d-dimensional Lipschitz
manifold Q C R? for some d < D with surface measure |- | such that there exists a constant
C, > 0 with

|Bs(2)| < Cod? forallz € Q and Bj(z) :={z€Q: |z — 2| <4} (3.2.1)

We assume that all triangulations 7~ € T consist of compact elements 7" € T C 7o, (where 7o,
is the set, of all possible elements defined in Section 2.2.1) with (J;.+T = Q and [TNT"| =0
for all T, 7" € T with T"# T".

3.2.2. K-mesh property. The K-mesh property relates the size of neighboring ele-
ments in the sense

K(T) =max{|T|/|T'| : T,T' € T, TNT #0}. (3.2.2)

We say that a refinement strategy preserves the K-mesh property, if there exists a constant
Cx > 0 such that

K(T) < CkK(Ty) forall T e€T. (3.2.3)
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3.2.3. Shape regularity. In the following applications, the shape regularity of trian-
gulations plays an important role. Define for d > 2

Y(T) := max {diam(T)/|T|"/* : T € T}. (3.2.4)

We say that a refinement strategy preserves shape regularity, if there exists a constant
Cshp > 0 such that

YT) < Canpy(To) for all T € T. (3.2.5)

LEMMA 3.2.1. Let T be shape reqular and satisfy the K -mesh property. Then, all z € Q
and all T € T satisfy

T eT : zeT'} < K(T)y(T)Co,
HT' e T : TNT # 0} < K(T)*y(T)*Co.
PROOF. Let ¢ := diam(7p), z € Ty denote the maximal diameter of all T € T with

z€T. Then, J{T €T : z€T} C Bs(2) := {& € R? : |z — x| < §}. Shape regularity and
the K-mesh property imply |T| > K(T)7}|Ty| > K(T) 'y(T)~%<. Altogether, this shows

(T eT : 2T} < [By)5 K(T)(T) < K(T)(T)Ca.
Analogously, we obtain for T'NT # () and ToNT # 0, that |T"| > K(T)7'|T| > K(T)2|Ty| >
K(T) 2~(T)~%¢. This and the above conclude the proof. O

3.2.4. Existence of a reference element. Most of the practically used shape regular
triangulations allow for a reference element T,; C R? such that there exist bijective functions
Fr: T, — T for all T € T,,. The functions are smooth and uniformly bounded, i.e., all
p € N satisfy

Sup (TN D7 P o () + TP/ DPFr | pooy) < 00, (3.2.6)
SRS
where DP(-) denotes the p-th order derivative which is defined on R? and on ) (as a surface

derivative) such that there holds (DF') o Fr = (DFy)~! with pointwise regular matrices
in R¥9. This particularly implies bi-Lipschitz continuity

Cille —y| < |T|"V Fr(z) — Fp(y)| < Cslz —y| for all 2,y € T (3.2.7)

for some constant Cs > 0. Moreover, we suppose that all 7,7 € T with z € TNT" # ()
satisfy

FroF M (z) =z (3.2.8)
This allows to define the usual spaces of piecewise polynomials
PP(T) :={V € L*(Q) : V o Fr is polynomial of degree <p forall T € T} (3.2.9)
and
SP(T) :==PP(T)NC(Q). (3.2.10)
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3.2.5. Father-son relation. Often, a refinement strategy allows for a unique father son

relation, i.e., for all T € T(7)and all T € ’T\’?, there exist son elements T3, ..., T, € ?\T
for some 2 <n < ng, € N such that

=7 (3.2.11)

We call T the father of T(,...,T!. Note that (3.2.11) particularly implies (T1). Each of the
sons satisfies

Qeon| T < 1T'| < Geon|T|, (3.2.12)

for some constants 0 < ¢.,,, < ¢eon < 1.

3.2.6. Closure estimate. The axiom (T2) states that the output of Algorithm 2.2.1
satisfies the closure estimate. However, a generally defined refinement strategy often satisfies
the closure estimate for any refinement 7 € T(7) and 7 € T, i.e.,

-1
|T\ 7d| < Cclosure Z |Mj|7 (3213)

J=0

where 7 = 7%,...,’72 — T for some 7A; € T and M\j C 7; with 7A}+1 = ’]I‘(7A},/\//Yj) for all
j=0,...,0—1. By Lemma 2.7.8, this is also equivalent to (2.7.9) if Section 3.2.5 applies.

3.2.7. Simplicial triangulations. Under the assumptions of Section 3.2.1-3.2.5, we as-
sume that Ty is a simplex of dimension d with set of nodes K(Tyet). By K(T) := Fr(K(Tet)),
we denote the nodes of the elements T € T, and K(T) := (J;o7 (1) denotes the nodes of
the triangulation. We prohibit hanging nodes, i.e., all T, 7" € T satisfy K(T)NT" C K(T").
The element mappings Fr: Tt — 1T are affine functions.

The following result is well-known in the literature

LEMMA 3.2.2. Let T € T and z € K(T) such that = ¢ T. Then, there holds
diam(T") < Cg mig |z — 2|, (3.2.14)
z'e

where the constant Cs > 0 depends only on ~(T), d, and K(T).

3.2.8. Example 1: Bisection. For d > 1, the elements in 7., are compact simplices
T C RY i.e., affine line segments for d = 1, triangles for d = 2, and tetrahedra for d = 3.
All triangulations 7 € T are regular in the sense that all vertices z € IC(T) are vertices of
all elements T' € T with z € T' (no hanging nodes).

For d = 1, bisection splits the elements T' € M C T marked for refinement at a generic
point zr € T (e.g., the barycenter) to generate two new elements T; and T3 which both share
the endpoint z7. Additional bisections have to be imposed to ensure that the bisection
preserves the K-mesh property (3.2.3). We refer to [3] for some extended 1D bisection
algorithm.

For d > 2, the bisection is described in [78] (called newest vertex bisection for d = 2)
and [79] (for d > 3). Each element T € T has a distinguished edge (the reference edge). If
the element is refined, first the reference edge is split. See Figure 1 for an illustration of the
refinement rules for d = 2.
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FIGURE 1. Refinement rules for 2D bisection (newest vertex bisection). The
reference edge is indicated in blue. The leftmost triangle depicts the bisec3
refinement of a marked element. The other three refinement rules (bisec2 and
bisecl) are recursively applied to avoid hanging nodes. The dashed line outside
of the triangles indicates where the neighboring triangle is refined.

LEMMA 3.2.3. The bisection strategies for d > 1 are refinement strategies in the sense of
Section 3.2.1-3.2.7 and satisfy (T1)—(T2) as well as the overlay estimate (2.5.1) and the son
estimate (2.7.7). For d > 3, an appropriate labeling of the edges of the initial triangulation
To is necessary to guarantee (T2) (see [14, 79| for details).

PROOF. The d = 1 case is proved in [3|. The estimate (2.7.7) holds since each of the
refinement strategies generates at least two son elements for each refined element. The proof
of (2.7.10) with C; = 1 is found in [78, Proof of Lemma 5.2] for d = 2 and [35, Lemma 3.7]
for d > 2. By Lemma 2.7.8, this is equivalent to (2.5.1) with C, = 2. However, since |35,
Lemma 3.7] shows that the coarsest common refinement 7 & 7 € T(T) NT(T) is given by

TeT:={TeT:3TeT, TCT)uU{TeT :3TreT,TCT}, (3.2.15)
counting the elements reveals
(TeTI\TI={TeT : ITeT.T<TH<IT\TI<IT\Tl

This, however, is (2.5.1) with Cy = 1.

For the proof of (2.7.9) and hence (T2) and (3.2.13) (by Lemma 2.7.8), we refer to [14]
for d = 2 and [79] for d > 2. The works [14, 79| assume an appropriate labeling of the
edges of the initial triangulation 7y to prove (T2). This poses a combinatorial problem on
the initial triangulation 7y but does not concern any of the following triangulations 7, £ > 1.
For d = 2, it can be proven that each conforming triangular triangulation 7 allows for such
a labeling, while no efficient algorithm is known to compute this in linear complexity. For
d > 3, such a result is missing. However, it is known that an appropriate uniform refinement
of an arbitrary conforming simplicial triangulation 7 for d > 2 allows for such a labeling [79].
Moreover, for d = 2, it has recently been proved in [59] that (T2) even holds without any
further assumption on the initial triangulation 7. The axiom (T1) is proved by use of |52,
Corollary 3.5|, which shows the level difference between some T' € T (7, M) for some M C T
and its father element 7" € T with 7" C T" is uniformly bounded. Since the level measures
the number of bisections used to generate the element from 7y, this implies that each father
element 7" € T has uniformly bounded number of sons in T(7, M). This concludes the
proof. O
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FIGURE 2. Refinement rules for 2D red-green-blue refinement. The leftmost
triangle is red-refined, i.e., all of its edges are bisected, the right most triangle
is blue-refined, i.e., only its reference edge is refined, and the other triangles
are green-refined. The reference edges of the son triangles are indicated with
a solid red line. Red refinement is used for marked elements, green and blue
refinement are used to avoid hanging nodes. There are two methods to deter-
mine the reference edge. The simplest one is to take the longest edge of the
triangle. The second one (also known as modified red-green-blue refinement)
is to choose a labeling of the initial triangulation 7, as for bisection from Sec-
tion 3.2.8. The reference edge of each son triangle is then chosen such that it
is congruent with its father triangle. Under certain conditions on the interior
angles of the triangles, [70, Satz 4.17| (in German) shows that both methods
coincide as is the case in the example above.

3.2.9. Example 2: Red-green-blue refinement. For d > 2, the elements are com-
pact simplices T' C R%.

The red-green-blue refinement (discussed e.g., in [82]) refines a given triangulation for d =
2 according to Figure 2. For d = 3, the situation is more complicated as a tetrahedron is split
into four similar tetrahedra at the parents vertices plus an octahedron in the center which
has to be split furthermore. This is laid out in detail in [9]. In contrast to bisection from
Section 3.2.8, red-green-blue refinement fails to satisfy (2.5.1) as seen from a counterexample
in [70, Satz 4.15] (in German). For illustration purposes, we provide a slightly simplified
example in Figure 3

LEMMA 3.2.4. The red-green-blue refinement strategies for d = 2,3 are refinement
strategies in the sense of Section 8.2.1-3.2.7 and satisfy (T1)—(T2) as well as the son esti-
mate (2.7.7) at least for d = 2 (if reference edges are inherited as for 2D bisection and the
initial triangulation satisfies an appropriate labeling of the edges; see [14, 79| for details).

PROOF. For the proof of (2.7.9) and hence (T2) and (3.2.13) (by Lemma 2.7.8), we refer
to |53, Appendix A] or [70, Satz 4.14| for d = 2 under the assumption of an appropriate
labeling of the edges of the initial triangulation 7, as is Section 3.2.8. The axiom (T1) is
obvious for d = 2, since all possibilities are depicted in Figure 2. The estimate (2.7.7) follows
since each refinement produces at least two sons. This concludes the proof. O

3.2.10. Example 3: Quad refinement with one hanging node. If one admits
hanging nodes, also quad-refinement is an option. The elements T' € T, are quadrilaterals
for d = 2 an hexahedra for d = 3. The refinement of an element is realized by dividing the
element into 2¢ congruent sons. This strategy is described in [16].

LEMMA 3.2.5. The quad refinement strategies for d = 2,3 are refinement strategies in
the sense of Section 3.2.1-3.2.6 and satisfy (T1)~(T2) as well as the overlay estimate (2.5.1)
and the son estimate (2.7.7).
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TeT

FIGURE 3. Counter-example to (2.5.1) for red-green-blue refinement. With
j =4, there holds |T & 7'\ T| =45 and |T'| = 2. Obviously, the construction
can be extended to any 7 = 2", n € N by red-refinement of the marked triangles
in 7 and thus contradicts (2.5.1) for any constant.

PROOF. The closure estimate (2.7.9) and hence (T2) and (3.2.13) (by Lemma 2.7.8) is
proved [16, Section 6.3]. The overlay estimate (2.5.1) follows from the fact that it is a binary
refinement strategy, i.e., there holds (3.2.15). The estimate (2.7.7) follows from the fact that
each refinement produces four sons. Finally, (T1) follows by consideration of all possible
element intersections. U

3.2.11. Example 4: Facet based refinement strategies. The refinement strategies
from Section 3.2.8 and Section 3.2.9 can be formulated in a facet based way. In this case,
T is the set of facets which can be generated and 7 C T is a triangulation represented
by the element facets. For refinement, we mark facets M C T and generate the refinement
T(7, M) according to the rules depicted in Figure 1-2 for d = 2. For d > 3, we refer
to [79] for bisection and [9] for red-green-blue refinement. The results of Lemma 3.2.3 and
Lemma 3.2.4 hold also for facet based refinement.

3.3. Uniform approximability

Apart from Lemma 2.7.4, the uniform approximability axiom (T3) is relatively unac-
cessible without looking at concrete problems. To that end we aim to provide a char-
acterization of (T3) for a certain class of problems in terms of Proposition 2.4.1, where
err(-) := minyegr(.) ||u — V|| g1 (o) measures the best approximation error of some given func-
tion u € H'(S2). The key problem is that the results on the characterization of approximabil-
ity, e.g., [65, 56|, usually show ||err, T(7p)||s < oo under certain assumptions on the function
u. However, the proofs in [55, 56| do not give explicit dependence of the constants with
respect to Ty and work only for bisection from Section 3.2.8. In the following, we generalize
the result from [55| to general refinement strategies and with explicit constants. It might
also be possible to generalize [56] with similar techniques as shown in this section, however,
this is beyond the scope of this work.

THEOREM 3.3.1. Assume T and a corresponding refinement strategy T(-,-) in the sense
of Section 3.2.1-8.2.7. Let Q C R? for d = 2,3 denote a polyhedral domain (not necessarily
Lipschitz) and let Ty be an initial triangulation of Q. Given p € N, suppose u,uy € H(Q)
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such that ug|r € HPYY(T) for all T € Ty and
N
U= uy+ Zu, with — u;(ry, 0;) == ¢;log(r)"ir’g:(0;)x; foralli=1,...,N. (3.3.1)
i=1
Here, N € No, ¢; €R, p; >0, 0 <; <1, and
(i) xi € C*>(Q) is an arbitrary function,
(ii) (r4,6;) € [0,00) x [0,27) x [0,7]"2 denote the polar (spherical) coordinates with
respect to some origin x; € Q with x; € K(To),
(iii) g; € WI°(Q) are constant with respect to r;, i.e., g;(ri,0;) = g:(0;), and satisfy
gilr € WPTLR(T) for all T € Ty.
Then, given p € N, there exists C; > 0 such that for all T € T and all € > 0, there exists
T € T(T) with

err(7/:) = min_|ju— Vg <e and |7\’\T| < Che™ P,
vesr(T)

The constant C; depends only on u, p, and Ty, but not on T € T.

We postpone the proof of Theorem 3.3.1 to the end of the section and collect several
intermediate results.

3.3.0.1. Scott-Zhang projection. The Scott-Zhang projection was introduced in [76]. We
give a slightly modified definition.

DEFINITION 3.3.2 (Scott-Zhang projection). Assume a triangulation T in the sense of
Section 8.2.1-3.2.7 and let p € N. For each z € K(T) choose T, € T with z € T,. Consider
the nodal basis {¢, € S (T) : z € K(T)} with ¢.(2') = 0 for all 2’ # z and ¢.(z) = 1.
Let p > 1 and consider the extended basis {by,...,b,} € PP(Tret) for some n € N with
3] oo () < 1 such that

span{{¢. : z € K(T)}U{br; :=bioF;' :i=1,....n,T€T}}=38"T).

For each T € T let {¢7 ,, 07, ..., b}, } € PP(T) denote the dual basis functions with respect
to {¢.|7,br1,...,brn}. Define for v € L*(Q)

= 2 ¢z/ o1, zvdl’ﬂLZme/b}lvda:

ze(T TeT i=1

Moreover, define the patch w(T,T = {T’ eT . TNT # @}.

The stability estimates (3.3.2a)—(3.3.2b) are known since the seminal work [76]. However,
the optimality estimate (3.3.2c) was first derived in [4] for triangulations which are generated
by bisection from Section 3.2.8. Later, this result was generalized in [81] to shape regular
triangulations. Below, we provide a simplified proof with the techniques of the original proof
in [4].

LEMMA 3.3.3 (Scott-Zhang projection). Assume a triangulation T in the sense of
Section 3.2.1-3.2.7 and let p € N. The Scott-Zhang projection from Definition 3.3.2 satisfies
for all T € T and allv € H'(Q)

[J(T)oll2ry < Caallvll 2oy, (3.3.2a)

IVI(T)v HL?(T) < CszHVUHm(uUJ(Tm), (3.3.2b)

||v(1 - ( )) ||L2(T) < Csz ml_rll ||VU - V||L2(Uw(T,’T))7 (332C)
Vepy (T)
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where
PENT) = {V e LX) : Vg = WDF', W e PP-Y(T), T € T}. (3.3.2d)

The constant Cy, > 0 depends only on the constants in Section 3.2.1-3.2.7, T, and p € N.
Before we prove Lemma 3.3.3, we state the following auxiliary lemma from [41].

LEMMA 3.3.4 (Generalized Poincaré-Friedrichs inequality). Assume a triangulation T
in the sense of Section 8.2.1-83.2.7. Let v e H*(Q), T,T" € T with TNT" # (. Then, there
holds with vy == |T|™" [, vdx

[v = vrll 2y + [T or — o] < G| TV V0| L2 ey,
where Cg > 0 depends only the constants in Section 3.2.1-3.2.7. O

PROOF OF (3.3.2a)—(3.3.2b). By definition of the dual basis, J(T) is a projection. To
see (3.3.2b), consider T' € T and b* € {¢7.,,07.,...,b7,,}. A scaling argument proves

164 | ooy S |T| 7,

where the hidden constant depends only on ~(7), p, and the reference element T from
Section 3.2.4. With this, there holds

’/Tb*v dz| < 0" Leoerylloll iy S IT172 )0 aery.-

An inverse estimate shows for any basis function b € {¢, : z € K(T)} U {br; : i =
1,...,n, T € T} with [supp(b) N T| > 0

V0l 2y S T34,
where the hidden constant depends only on the constants in Section 3.2.1-3.2.7 and p.
Altogether, this implies

IVI(T)ollzey < Y IVl

zeK(T)

[ r el + 10| [ b0
T i=1 T

ST 0| z2wer )

where the hidden constant depends only on the constants in Section 3.2.1-3.2.7, T', and
p. Define vy := |T|™"' [, vdz. Then, there holds with the last estimate and the projection
property J(T)vr = vp

IVJ(T)ollrzery = IVI(T) (0 = vr) ey ST 0 — vrl| 2w -

Lemma 3.3.4 implies

lo = vrlliaquary <2 >, v —vrlliag + Tllor — o
T ew(T,T)

< 2C3K (T TPV ol 2 )
Altogether, this proves (3.3.2b). The same argument shows also (3.3.2a). O

LEMMA 3.3.5. Assume a set of triangulations T in the sense of Section 3.2.1-3.2./ Let
v e HY(Q) with Vv € PE(T). Then, v € S*(T) and VS*(T) C PL (T).
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PROOF. Let v € SP(T), then v o Fr € PP(T,) and hence Vv = V(vo Fr) o Fp' DESL.
Since V(v o Fp) € PP (Tye)%, this shows VSP(T) € PL(T).
By definition of PZ ' (7)), there holds for T € T, Vu|p = W|rDF; " for some W €
PP=Y(T)4. This shows
V(vo Fr)(DFp) ™' = (Vv) o Fr = W o Fr (DF;') o Fr.

By assumption in Section 3.2.4, there holds (DFr)~! = (DF;') o Fr with point wise regular
matrices. Hence, we end up with V(vo Fr) = W o Fr € PP71(T,)¢, which implies v o Fr €
PP(Tret). Since v € H (), this concludes the proof. O

LEMMA 3.3.6. Assume a set of triangulations T in the sense of Section 3.2.1-5.2.4
such that there ezists a set Ever := {0, E1, ..., Er .} of boundary parts E; C OT,e¢ such that
for all T,T" € T holds F; (T NT") € Et. Then, for all T € T and all T € T, there ewists
a bi-Lipschitz continuous map Gr: |Jwret(T) — Jw (T, T) with

C§1|:E —yl < |T|71/d|GT(x) —Gr(y)| < Colx —y|  for all z,y € wpet(T),

where wyer(T) € w(T) for a finite subset w(T) C {w(T,T) : T €T, T € T}. ForT €
wiet(T), there holds Grlrr = Frn o Fp' for T" = Gp(T') € w(T,T). This particularly
implies that Gp maps polynomials onto polynomials, i.e., V o Gr € PP(wwet(T)) for all
V e PP(w(T,T)) and V o G7* € PP(w(T,T)) for all V € PP(wet(T)). The constant Cy > 0
depends only on T, E.¢, and the constants in Section 3.2.1-3.2.4.

REMARK 3.3.7. This result is only applied in the case of triangulations in the sense
of Section 3.2.7 for which the proof would simplify vastly. However, we include the general
result as we think it might be of independent interest, as it holds for a huge class of possible
triangulations including non-reqular ones.

PRrROOF. The first step is to sort the patches into certain equivalence classes. With
Lemma 3.2.1, there holds |w(T,T)| < ny := K(T)?*y(T)¢Cq, for all T € T. Define G :=
&2, x {1,...,n;}*. Each patch w(T,T) has a signature

QT = {(El, EQ,Tl,TQ) c 5rzef X 7-2 . Tl,TQ c W(T, T), Fil(Tl N Tg) = Ei7 = ]_,2}

For G C G and T € T, we write G ~ Gp if and only if there exist an injective map
Mrp:w(T,T)—{1,...,n1} with

(El,EQ,Tl,TQ) €Egr — (El,EQ,MT(Tl),MT(TQ)) € g,. (333)
Define Goor :== {G' C G : 3T € T,3T € T,Gr ~ G'}. The set Gur C 29 is finite by
definition. For each G’ € G,.t, choose one 7" € T’ € T with G ~ G’ and maximal element
measure |T'| to define the finite set

w(T) == {w(T",T') : G' € Grer }

Define the function G as follows: Given T' € T for some 7 € T, choose some G’ € G, with
Gr ~ G" as well as w(T",T") € w(T) such that G ~ G'. For all T} € w(T,T) determine
Ty := My' o My(T}) and let

GT‘TQ = FTl o Ff;
This defines a function Gr: Jw(T",7") — Jw(T,T). To show that G is continuous,

consider T3 € w(T,T) with Ty := My' o My(T3). Since (E, E',Ty,T)) € Gy for some
E,E" € &, and since Gp» ~ G' ~ Gy, there holds (F, E', T}, T3) € Gr. This implies
F N (TNTy) = Fr (IhNTs) and ToNTy # 0. (3.3.4)
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Let z € T, N Ty. Then, (3.3.4) implies Fr, o Fy'(z) € Ty NT3. By the continuity assump-
tion (3.2.8), this shows

(3.2.8)

Fr,o Fp'(z) = (Fry o Fy,') o Fry o Fi'(2) FroFp'(z) e N T3 (3.3.5)

Another application of the continuity (3.2.8) (with z € T, N T}) then concludes

Grlr,(z) = Fry 0 Fi,)(z) = Fry 0 Fy,' o Fr, o F'(2) = Fry 0 Fi,'(2)
3.3.5 _
U2 B0 FRl(2) = Grln(2).

This proves continuity of G7. The element wise bi-Lipschitz continuity of the Fr (3.2.7)
together with the K-mesh property (3.2.3) and the fact that € is Lipschitz conclude the bi-
Lipschitz continuity of G7. The fact that Gr is defined element wise with the element map-
pings Fr implies V o G € PP(wier(T)) for all V € PP(w(T,T)) and V o G+ € PP(w(T, T))
for all V' € PP(wyet(T")). This concludes the proof. O

PROOF OF (3.3.2¢c). Lemma 3.3.6 with & := {0} U {facets, edges, nodes of Ty} is ap-
plicable due to the assumptions in Section 3.2.7 and allows to prove the statement on the
finitely many reference patches wer € w(T) and to obtain the general result (3.3.2c) by trans-
formation. Assume that (3.3.2c) holds for G*(T) and wyet € w(T). Then, w = v o G €
H'(|J wret) implies

TPV = Il SNV = Twrer)wll e oy

S CSZ ITEIP HVw — WHLQ(Uwref) (336)
WGP% (wref)

SITITV?C,  min [[(Vw) o G5t = W o G| 2wy,
WEePL ™ (wyet)

where J(wret)w|g=1(py = (J(T)v) 0 Gr. By definition of Gy and since the Fr are affine,
J(wret) 18 & Scott-Zhang projection on wier in the sense of Definition 3.3.2. By definition of
w, there holds

min |[(Vw) o Gz' = W o G| 2w
WePEL™ (wret)

< |DGrllw(uuny ~ min Vo =W oG (DGr) ™" o Gp'll 2,
WePY™ (wref)

(3.3.7)

By definition of PZ'(-) and Gy, there holds Wy = VDEL! for some V € PP~ (wyer)?
By Lemma 3.3.6, there holds DGr|p = DFrv o Fp' DF; for T" = Gp(T') € w(T,T) and
hence

(DG1)~" o Gyl|lr = (DERY) ™ o Gllpw (DFpn) ™ o Bt o Gilt|pw
= (DF/ZTl)il (o] G;1|T//(DF //)71 @) lei//l
— (DF/Ijl)il (@] G%1|T”(DF’]?//1>|T”
This shows that
(W o GrH(DGr)™ o Gl |n = (V o GZ' DFps ) |pn,
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and hence W o G71(DGr)~' o G3! € PL 1 (w(T,T)). Since this relation between the spaces
PN w(T, T)) and PL " (wyer) is bijective, we proved together with (3.3.7)

min  |[(Vw) o Gr' =W o Gil | 2w )
WGP@ (Wref)

S |T|1/d {l}in ||V1) — W||L2(Uw(T,T))-
WePY (w(T,T))

With (3.3.6), this shows (3.3.2¢). It remains to show

IV0 = @0l iy < Co min [V = Wiy (338
WGPV (wref)

for some constant Cy, > 0. We proceed by contradiction. Assume (3.3.8) is false for any
constant Cy, > 0. Then, there exists a sequence w, € H'(|Jwref) with

V(1 — J(wref))wn”[ﬁ(g;l(T)) > nWePrg’lP(wref) |Vw, — WHL2(Uwref)

for all n € N. Without loss of generality, we may assume ||wy || g1(uw,) = 1 for all n € N.

Let Q: HY({Jwret) — SP(wret) denote the H'-orthogonal projection. The sequence v, :=
(1 — Q)w, satisfies

V(1 - J(Wref))vn”m((;;l(T)) >mn  min VU = W 12(Uerer)

W€P€71 (wref)

for all £ € N since J(wyf) is a projection and hence (1 — J(wref)Qw, = 0 on G*(T) as well
as VQu,, € P@fl(wref). The above together with the stability of J(wyef) imply

rrl}{l ”vvn - W”LQ(Uwref) S CSZ”vnHHI(Uwref)/n S C(SZ/,n” (339)
WGPQ (wref)

and hence there exists a sequence W,, € Pg_l(wref) with

lim [V, — Wl 2wy = 0 (3.3.10)
n—o0

and ||Wo || 2(uuw) < Csz/n 41 for all n € N. Since P2 (wret) is a finite dimensional space,
we may extract a convergent subsequence W,, € Pg_l(wref) with limy W, = W, €
P@fl(wref). By (3.3.10), there holds limy_,o ||V, — WollL2(Uw,) = 0. The boundedness
1Vl E1 (L) < 1 allows to extract another subsequence (also denoted with ny) such that
Up, — Vg € H'(Uwyer) weakly and (by Rellich compactness) [[vn, — vo|| 22w,y — 0. This
implies Vv,, — Vvg € L?*(Uw.s) weakly, and by uniqueness of limits also Vv, = W.
With (3.3.10), we obtain

klggo [[0n, = voll 1 () = 0-

This implies |[vo|| g1 (uw,e) = 1, and by definition of the v, = (1 — Q)w,, also Quy = 0. On
the other hand, Vuvyg = W, € Pg_l(wref). Therefore, Lemma 3.3.5 shows vy € SP(wye) and
hence (1 — Q)vy = 0. Altogether, we have vy = 0, which contradicts ||vg|| g1 (uw,.,) = 1. This
concludes the proof. O
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3.3.0.2. Proof of Theorem 8.3.1. For all triangulations 7 € T and all T" € T, define
T = Mili—y, N Ming, g,)er 75, Where 7; denotes the radius as defined in Theorem 3.3.1.
LEMMA 3.3.8. Let S C T, denote a set of elements which is shape regqular in the sense
7(S) < oo (where y(-) is defined in Section 3.2.3), satisfies |T|*/¢ < Cry for all T € T with
rp > 0 and some C >0, and [TNT'| =0 for all T,T" € S. Given o > —d, there holds for

all T €T

7 < Chp.
[J{TGS:TT>O} =

The constant Co > 0 depends only on C, v(S), o, N, d, and Q.
PROOF. With B;(a,b) := {2 € Q : a < |z; — 2| < b}, there holds

o
§ (0%
Bi(2-n,2-n+1)

n=— logy(diam(Q2))—1

Z g—na Z ‘T|,

1 — i — TeS
n=—logy(diam(£2))—1 TAB, (2— a—n+1)%0

IN

a
/{TGS rT>O} T

1+ 115

AN

.
I

where the hidden constant is 1 in case of @ < 0 and depends only on diam({2) and « for
a>0. Forall T € S with TN B;(27",27"*1) # () holds |T|Y/¢ < Cry < C27"*L. The shape
regularity (3.2.5) shows diam(7T") < (S)C27"*! and hence T' C B;(0, (1 + y(S)C)27"1).
This and (3.2.1) imply

S TS B0, 1+ AS)C)2 ) = 2

TeS
TNB;(2—n,2—n+1)=g

Altogether, this shows

N %)
1 .
« —n(a+d logy (diam(Q2))|+1)(a+d
/ <y 2 € N (o o @)
{TGS TT>0} =1 n=—log,(diam(Q2))—1
This concludes the proof. O

LEMMA 3.3.9. Assume T and a corresponding refinement strategy T(-,+) in the sense of
Section 3.2.1-3.2.4. Let u be given as in (3.3.1) and define v := min;—y __n7;/2 > 0. Given
i=1,...,N, all triangulations T € T and all T € T with x; ¢ T satisfy

min [|Vu; = Vl|z2ry < Cu| TP 37771 2y
VepPy (T)

The constant Cy3 > 0 depends only on diam(S2), p, the constants in the definition of u;, the
constants in Section 3.2.1-8.2.4, T, as well as on ||g;||weert1(ry and ||X;|lweer+i(r).

PROOF. The first step is to bound the derivative DP*'u; on T € T with r; > 0. To that
end, let ey, ...,e; € R? denote the unit vectors. Moreover, given a point zg = (1, 6;) € T,
let e, €g,1,---,€0,a-1 € R? denote the unit vectors associated with (r;,6;) in the sense
that 2o = x; + r;e,, and that the ey, ; are orthogonal onto e,, and onto each other. Define
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us;(r;) := log(r;)*r]* and the operator norm || - |(27_ ra ) in the space of linear operators
from ®F_ R to R. Then, there holds

107 () HL(@P“RCI R)

< max m(ZHDk (9::)(20) o RdR)(ZHD (20 e ) )

k=0

where the hidden constant depends only on p. The derivatives D*(g;x;) are uniformly
bounded on T by max;—o_. ~(|[Xillwr+reo@) + ||gillwrire)). Let Dy, . ., denote the de-
rivative matrix (tensor) with respect to the vectors vy,...,v,, € R? and m < d. Since
Deei,l7---750i,d—1u57i(zo) = 0 by definition, change of basis shows for any matrix (tensor) norm
Il - ||~ that

1D g i(20) | Ler_ memy = 1D, o us.i(20)

~ || f;l, oy g Usi(Z0)llp 2 108, usi(20)],

where the hidden constants depend only on d and p. A straightforward computation shows

for some constants «; ;; € R which depend only on ~;, p;, p, k. This shows

p+1 p+1
k . <: vi—k m 7
Sy
DI ui(20) et _yme my Z'f’ Zm]klog ri)
k=0
p+1

S Z ” kzmww "log(ri)" |,

For each 7 =0,...,p+ 1, there holds

’Yl log(7;) Hi=J ~ 00,

mi= < i ]
o< By 1108 ()

since v; — v > 0. Moreover, there holds for all k =0,...,p+1

y—k y—p—1
ST

where the hidden constant depends only on diam(€2). The above estimates imply

p+1

Z ||Dkus,i(2’0)||L(®§:1Rd,R) S Tz_p_l- (3.3.11)
k=0

Altogether, for i = 1,..., N, we end up with

—p—1
| D7 (o)l gt gy S 777

where the hidden constant depends only on diam(2), p, the constants in the definition of u;
as well as on ||g;|lwee.rt1(r) and ||xi|[woer+1(r). A scaling argument, and the Bramble-Hilbert
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lemma show

i Vu; =V ~ |T|'/? i V(u;0 Fr) —W)DF;' o F
vemhin IV~ Vil = ITTE, mipy, NV s Fr) = W)DFgEe Frllisy

ST Y4 min V(w0 Fr) — W 2
~ Weppfl(Tref)d "

STV DP (w0 Fr)|| e,

SATPED il 2y S TP 4371 2y
(3.3.12)

This concludes the proof. O

LEMMA 3.3.10. Assume T and a corresponding refinement strategy T(-,-) in the sense
of Section 8.2.1-8.2.4. Let u be defined as in (3.3.1). Giveni=1,..., N, all triangulations
T eTandalT e T with x; €T satisfy

min ||V’LLZ — V||L2(T) S 012|T|(27+d_2)/(2d).
vePLH(T)

The constant Ciy > 0 depends only on diam(SY), the constants in the definition of u;, the
constants in Section 3.2.1-3.2.4, T, as well as on ||g;||wr.eory and || x:||wr.ee .-

PROOF. With ~ :=min;—y __n 7;/2, there holds point wise in T’
V| Sl

where the hidden constant depends only on diam(2), the constants in the definition of u; as
well as on ||g;||w1.ec(ry and || x;||w1.eo(r). This implies

~Y (2 (2

diam(T")
||Vuz||%2(T) < / fr'd_lr'z'Y—Q dTZ‘ S diam(T)Z’y-i—d—Q ~ |T|(2'y+d_2)/d
0
and concludes the proof. O

PROPOSITION 3.3.11. Assume T and a corresponding refinement strategy T(-,-) in the
sense of Section 8.2.1-3.2.77. Let u be given as in (3.3.1). Then, there exists Ci3 > 0 such
that oll T € T and all 0 < e <1, p € N with

1—y/(2 .
C1|TY < {61/pTT 7/ ) for all T € T with rp > 0, (3.3.13)

min{e? 1 +d=2) Py for all T € T with ry = 0,
for some constant C > 0 satisfy
GI'I'(T) S 0135.

The constant C13 > 0 depends only on p, N, C, Cyq, Cia, the constants in Section 3.2.1—
3.2.7, T, and on €.

PROOF. The approximation result (3.3.2c) implies
err(7T)? < min _[|Vu — V||%2(Q)

VePZ (T)
N
S ( min [ Vuo = VI3 + >0 min [Vui— V).
ey \VePyi(T) — vePy (1)
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With Lemma 3.3.9-3.3.10 and (3.3.13), this shows
err(T2 <S> min [[Vug— Vo +e Y 2 1R+ > 1

p—1
Te’]’v PV (T TeT TeT
r >0 rp=0

Assumption (3.2.14) implies |T|"/? < r¢ for all T € T with rr > 0. Hence, Lemma 3.3.8

shows
Z 7,7/2 1”1”%2(71) :/ 7/2 1d.fl' < Clo
U{TET:T’T>O

TeT
rp>0

As in (3.3.12), one obtains

. _vI2 /d|| pp+1
vemin | IVito = Viizay S TPEID™ uoll 2y

Altogether, we obtain
err(T)? < e(Cyp + |{T eT :rp= 0}| + ||Dp+1u0||L2(Q)).
Lemma 3.2.1 bounds |[{T € T : ry = 0}| and hence concludes the proof. O

ProOPOSITION 3.3.12. Assume T and a corresponding refinement strategy T(-,-) in
the sense of Section 3.2.1-3.2.7. Suppose u as defined in (3.3.1). Given e > 0, p € N

and T € T, there exists a triangulation T € T(T, Crae~%P) which satisfies (3.3.13). The
constant 6’14 > 1 depends only on qeon, u, p, d, the constants in Section 3.2.1-3.2.7, T, and
Q.

PROOF. Define hy,, := min{e?7,'/?}. In the following, we construct an almost minimal
refinement of 7 such that all elements satisfy

1TV < max{hmn, el/prilp_“//wp)}. (3.3.14)

Generate the triangulation T e T(7) with the following algorithm:
ALGORITHM 3.3.13. Set 7A5 =T and (=0
(i) Define M, = {T € T; « T does not satisfy (3.3.14)}.
(ii) If M, =0, set T =T, and stop, else goto (iii).
(i) Define Toi1 = T(ﬁ,ﬂg), ¢=10+1, and goto (i).

The algorithm stops after a finite number of steps, since |T|'/? is reduced by q%g with each

refinement and eventually is smaller than h.,;,. Hence (3.3.14) is satisfied for all elements
T € T =T, after a finite number of steps. If for some element 7" € T holds 51/1’7“;”(2”) >

Pmin, then (3.3.13) follows directly from (3.3.14). If there holds 51/1’7’;7/(2@ < hpmin, then we
obtain

1T < Tmax 1= ol PP g2/ @) (3.3.15)

and since hyn < €2/7, it follows
r%/@p) < h;/ifp—w)g—v/(p(?p—ﬂ/)) < g2/ Cr=N=/wCr=7) = VP for all T € T.
With (3.2.14), this implies
Shpv(’ﬁ)) leaHT M < rp < 51/pr1 WE) for pp > 0,
|T\1/d < Amin for rp = 0.
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Since 2/y > 2/(2y +d —2) and 0 < € < 1, there holds hy, < min{e?®+4=2) ¢1/P} Thus,
the above implies (3.3.13) with the constant C' := max{1, Cshpfy(%)Cﬁ}

It remains to count the elements of 7\ 7. To that end, recall 7 = 7, and define the
function M: Too — [0, 00] by M(T) := max{lmn, e/Pry "/ p)} as well as

¢
S;:={Te UMk H eon < |TI/M(T)" < o'}

Note that T € M\j implies |T| > M(T)* and hence (J}2,S; = Uf‘:o M\j. Assume T, 7" € §;
with |T'NT’| > 0. Without loss of generality assume 7" C T, then (3.2.12) and rp > rp
imply the contradiction ¢ < |T"|/M(T")* < qeon|T|/M(T)? < q-J.. Hence |T NT'| = 0 for
all T, 17" € §;. Given j, split S; = M, U M, with

Mr = {T € Sj : gl/p,r;:’Y/(Qp) Z hmin} and Mh = Sj \ M’"

Define the function A : Q — [0,00) by Al := |T| for all T € M,. Then, there holds with
Lemma 3.3.8 and |T|"/? < rp for all T € M, from (3.2.14) that

|M7’| S/ A </ M qcon

(3.3.16)
- qgong / TT(W/(2p) < C(loqcon 4/p .
{TES LT >0}

On the other hand, T' € M,, implies |T| > ¢ hl, . Together with (3.2.14), (3.3.15), and

Bi(b) == {z € Q : |z — x| < b}, this shows T" C B;((1 4 Cg)rmax) for some i € {1,...,N}
and hence

N N
; |Bi((1+ Cp)Tmax)| ; T s 2pd (2p—)~d_~24/(2
|Mh| < qgon Z : hd . S qgon Z hda 5 gonhn{)ln/( - /(2= ’Y)
Since hmin < €2, we end up with
|Mh| < qconh;”m'yg?p 7 < qj en( 2(; w)+2;2(iw = qj g_p?éip 73/) = qj gid/p (3317)

The combination of (3.3.16) and (3.3.17) shows
|S | < qCOn d/p for al]‘ j = 0’ A 7£' (3-3.18)

The closure estimate (3.2.13) implies

-1 [e9) 00
|T\ T‘ < C(closu]re Z ‘MJ‘ = Z |SJ‘ rS Eid/p Z qgon'
7=0 j=0 j=0

The convergence of the geometric series concludes the proof. U

PROOF OF THEOREM 3.3.1. Given € > 0 and p € N, Proposition 3.3.12 provides a trian-
gulation 7 € T(T, floor(C14(/C13)~%?)) such that (3.3.13) is satisfied for £/C}3. Therefore,
Proposition 3.3.11 concludes the proof. U
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3.3.0.3. Proof of uniform approximability. Recall the uniform approximability constants
for the error C%  (s) as well as for the data C&% (s) defined in Section 2.4.

approx approx
THEOREM 3.3.14. With err(-) := minycgse(y ||u — V| g1y and under the assumptions
of Theorem 3.3.1, there holds C&  (p/d) < co.

approx

PROOF. Let 7 € T. Given N € N, define ¢ = N‘p/dCé’/d. Theorem 3.3.1 provides a
triangulation 7 € T(T, N) with err(7) < e. Hence, there holds

(N 4+ 1)"err(T) < (N 4+ 1)P/% < (N + 1)P/AN-—P/ACP/T < ocP/4,
This concludes the proof. O

The following result is the analog of Theorem 3.3.14 for the approximability of the data.
THEOREM 3.3.15. Given f € L*(Q) and o > 0, define
data(7)? := min Z T2/ f — V20

VepPr(T

Assume f|p € HP(T) for oll T € To. Let the refinement strategy T(-,-) satisfy the assump-
tions from Section 3.2.1-8.2.6. Then, C4% ((p+ «a)/d) < oo.

approx

PROOF. Given e > 0and 7 € T, generate the triangulation 7 in T(7) with the following
algorithm:

ALGORITHM 3.3.16. Set 7A6 =T and (=0
(i) Define M, = {T € Ty« |T|etp)/d > e}
(i) If M\g =0, set T =T, and stop, else goto (iii).
(i) Define Toi1 = T(ﬁ,ﬂg) ¢=10+1, and goto (i).
By definition of Algorithm 3.3.16 and (3.2.12), the algorithm stops after finitely many
steps, i.e. T T Define the sets

l
Sj = {T € U M\k : q;fn < ‘T|/gd/(a+p) < qci){;l}-

Assume T, 7" € §; with |[T'NT"| > 0. Without loss of generality, there holds 7" C T". The
assumption (3.2.12) implies the contradiction

gd/(a+p) <|T'| < Geon|T| < Ed/(a—f—p)q—]

qCOn

Hence [T'NT'| =0 for all T, 7" € S;. This implies immediately
S;| < Q¢ g—d/(atp)

With the closure estimate (3.2.13), this shows

0
|T\ T‘ < C’closure Z |M | closure Z |8 ‘ Closureg ~d/(etp) Z qgon
Jj=0

7=0
S Cclosure<1 - QCon)i18 d/(a+p).
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A scaling argument, (3.2.6), and the Bramble-Hilbert lemma show

data(T)? = Z ||/ Vé?:il(l%) If = V”%Q(T)

<T€T 2atp)/d|[ Typ £ 12 5 2 (3.3.19)
S TP D | <2 3 IDP .
TeT TeTs

Finally, given N € N, define ¢ > 0 by Ceosure(1 — eon) 'e~¥@P) = N. Then, the above
construction provides 7 € T(T, N) such that data(7T) < e = CP/AN—(@+P)/d This shows
Cdata (4 ) /d) < cc. O

approx

As a straightforward but important consequence, we obtain the following result.

COROLLARY 3.3.17. Suppose that n(-) satisfies reliability (2.4.1) and efficiency (2.4.2)
with err(T) = minyesor |t — V|m and data(T)? = minyepsr) Yoper |12 f —
VH%Q(Q) for some a > 0. Then, under the assumptions of Theorem 3.53.1 and with f|r €
Heele=e)(TY N LA(T) for all T € Ty, there holds Capprox(p/d) < o0 and hence (T3).

PROOF. Theorem 3.3.14 and Theorem 3.3.15 show C&r  (p/d) + C&ta (p/d) < oo.

The quasi-monotonicity (2.4.3) holds by definition of err(-) and data(-) with Cpen = 1.
Proposition 2.4.1 (i) implies Capprox(p/d) < oo and hence (T3). This concludes the proof. [

3.4. Weighted error estimators

Under the general assumption in Section 3.2.1, this section assumes that the error es-
timator 7(-) depends not only on the triangulation, but also on a certain weight function
h € L>*(Q). We call the error estimator n(-,h) a weighted error estimator with weight
h. In the applications below, we define for each 7 € T a certain natural weight function
h(T) : Q@ — (0,00) for which we write n(7) := n(7,h(T)). This natural weight function
must be continuous on Q\ (J;.-9T. Suppose that 7(-,-) satisfies the following homogeneity
condition: There exist constants 0 < r, < r_ < oo such that all T € 7 € T, and all
a:Q —[0,1] with a € L>®(Q) satisfy

i o (2)]" 0 (T h) < (T ) < mae ()| (T b). (3.4.)

Suppose stability in the following sense: All refinements 7 € T(T) of a triangulation 7 € T
and all subsets S C 7 with S := {T eT :TC US} satisfy

(S mTn?) " = (ST 0?)

TeS Tes

1/2

~

<o(T,T), (3.4.2)

where h :  — (0,00) is a weight function with h|p < h(7A')\T for all T € S and o(-,-) :
T x T — [0,00).

PROPOSITION 3.4.1. Let the error estimator n(-) be a weighted error estimator which
satisfies homogeneity (3.4.1) and stability (3.4.2) and define S(T,T) = {TeT: WT)|r <
Geon(T)|7} for some 0 < geon < 1. With S(T,T) = {T € T :TC US(T,?)},
prea = (14 0)¢2t, and o(T, T) := (146 YY2G(T,T) for all § > 0, this implies (E1b). If
additionally h(T)|r = h(T)|r for all T € T\ S(T,T). This implies even (Ela).
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PROOF. Let h be a weight function. The homogeneity (3.4.1) implies for some 7" € T

and
% L h|T on T,
10 om Q\T

that
nr(T h) = min [(z) /()™ ne(T,h) < ne(T )
< max [(z) /(@) " (T, ) = e (T ).

Hence nr (T, h) depends only on h|lr. With this, stability (Ela) follows from (3.4.2) with

S:=T\S(T,T) and h := h(T), since ny(T,h(T)) = nr(T,h(T)) for all T € S.
Reduction (E1b) follows with (3.4.1) and (3.4.2). For ¢ > 0, there holds

STomTMP<+8) Y (T AT + (1 + 63T, T)?

TeS(T,T) TeS(T,T)
M) () iy A2
< I S S
<Utd) Y, max g (T + (14 8)aT.T)
TeS(T,T)
<A+d)an Y, m(T)+ 1+ 3T, T)
TeS(T,T)
This concludes the proof. O

3.5. Example 1: Laplace problem with residual error estimator

This section applies the abstract analysis of the preceding sections to different discretizations
of the Laplace problem. The examples are taken from conforming finite element methods
(FEM) as well as the boundary element methods (BEM) for weakly-singular and hyper-
singular integral equations. More examples, e.g., non-conforming or mixed methods (with
the error estimator from [21]), are found and discussed in [24]. A general review on error
estimators for finite element methods is found in [23].

3.5.1. Conforming FEM. This section is based on [24, Section 5|. In the context
of conforming FEM for symmetric operators, the convergence and quasi-optimality of the
adaptive algorithm has finally been analyzed in the seminal works [35, 78]. In this section,
we show that their results can be reproduced and even extended in the abstract framework
developed.

Let  C R% d > 2, be a bounded Lipschitz domain with polyhedral boundary I" := 9.
With given volume force f € L?(£2), we consider the Poisson model problem

—Au=f inQ and u=0 onT. (3.5.1)
For the weak formulation, let X' := H}(€2) denote the usual Sobolev space, with the equiva-
lent H'-norm [|v|| 1) := Vvl 12(q) associated with the scalar product
b(u,v) := / Vu-Vvdr = / fvdr for allv € Hy(S). (3.5.2)
Q Q
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Then, the weak form of (3.5.1) admits a unique solution u € H} (). Based on a triangulation
T of Q generated by bisection (Section 3.2.8), we use the conforming finite element spaces
SH(T) :=Pr(T)N HY(Q) of fixed polynomial order p > 1. The discrete form

bwwmoz/ﬂmxﬁanE%U) (3.5.3)
Q

also admits a unique FE solution U(T) € S{(T). Following [35], we use the local weight
function

WMT) e PUT) with A(T)|r = |TY4, (3.5.4)

where |T'| denotes the volume of an element 7" € 7. The standard residual error estimator
consists of the local contributions for all 7" € T

nr(T)* = (D7 I1f + AU(T) 720y + ATz 0.V (Tl 2000y (3.5.5)

see, e.g., [1, 82] as well as |35, 78].

Here, [0,(+)] denotes the jump of the normal derivative over interior facets of 7. Hence,
n(-) is a weighted error estimator in the sense of Section 3.4 (the proofs of (3.4.1) and (3.4.2)
follow below).

Since the admissible triangulations 7 € T are uniformly shape regular (3.2.5), we note
that h(7)|r ~ diam(T") with the Euclidean diameter diam(7"). In particular, n(-) coincides,
up to a multiplicative constant, with the usual definition found in textbooks, cf., e.g., [1, 82].
We refer to Section 5.2.2 for the proof that the choice of the weight function does not affect
convergence and quasi-optimality of the adaptive algorithm.

PROPOSITION 3.5.1. The conforming discretization of the Poisson problem (3.5.1) with
residual error estimator (3.5.5) and bisection as refinement strategy T(-,-) satisfies
(i) stability and reduction (E1) with peq = 2794, S(T,T) == T\ T as well as
S(T,T):=TN\T, and o(T, T) := Coex|U(T) = U(T)ll (0,
(ii) general quasi-orthogonality (E2) with €4, = 0,
(iii) discrete reliability (E3) with R(T,T) =T\T, Kar = 00, and egqre = 0,
(iv) the refinement azioms (T1)—~(T3) with Capprox(s) < Cmon(Cs + 1)%||n, T||s for all
s > 0 and the overlay estimate (2.5.1).

Moreover, the estimator satisfies reliability and efficiency (2.4.1)—(2.4.2) with err(T) =
lu— U(T)HH(}(Q) and

data(T) := | min _[IA(T) (f = F)l iz (3.5.6)

where C% (p/d) < oo (defined in Section 2.4) is guaranteed if f|lp € HPY(T) for all

T € Ty. The constants Carel, Cqo, Cpert, Ceis Crel depend only on the polynomial degree p € N,
To, and on ).

PROOF. Stability (Ela) as well as reduction (E1b) are part of the proof of [35, Corol-
lary 3.4]. The discrete reliability (E3) is found in [35, Lemma 3.6] with 4,y = 0 and
Kar = 00. Since o(7,T) is a Hilbert norm and the Galerkin orthogonality (2.7.3) is satis-
fied by definition, Lemma 2.7.2 implies (E2) with €, = 0 and Cy, = Cgre;. Lemma 3.2.3
shows (T1)—(T2) & (2.5.1), (2.7.7). Lemma 2.7.5 shows quasi-monotonicity (2.7.6). Hence,
Lemma 2.7.4 proves (iv).
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The bounds (2.4.1)—(2.4.2) are well exposed in text books on a posteriori error estimation,

see, e.g., [1, 82]. Theorem 3.3.15 implies Cg3%2  (p/d) < oo and hence concludes the proof.
U

CONSEQUENCE 3.5.2. Let s > 0 with ||n, T||s < co. Then, the adaptive algorithm leads
to convergence with optimal rate for the estimator n(-) in the sense of Theorem 2.3.8 and
with optimal complexity in the sense of Theorem 2.5.1. Moreover, the error converges in the

sense of Theorem 2.4.3 for s = p/d if flp € HPX(T) for all T € 7. O

Numerical examples for the 2D Laplacian with mixed Dirichlet-Neumann boundary con-
ditions are found in [51] together with a detailed discussion of the implementation. Examples
for 3D are found in [35].

3.5.2. Conforming FEM without bisection. A major drawback of the current re-
sults on adaptive finite element methods, is the restriction to bisection (Section 3.2.8) as a
refinement strategy. This comes from the fact that other popular refinement strategies (i.e.,
red-green-blue refinement from Section 3.2.9) do not satisfy the overlay estimate (2.5.1),
which is a key ingredient in state of the art literature. However, the present abstract frame-
work circumvents the use of (2.5.1) by using (T3) instead. The results from Section 3.3 allow
to proof optimal convergence for refinement strategies in the sense of Section 3.2.1-3.2.7.

We consider the Poisson problem (3.5.1) on a polygonal domain  C R2. The following
result from [55, Section 2| proves that Theorem 3.3.14 is applicable.

PROPOSITION 3.5.3. Given p € N, let f € HP71(Q) for somee > 0 if p > 1 and
f € L*(Q) for p = 1. Then, the solution u € H'(Q) of (3.5.1) allows for the decomposi-
tion (3.3.1). O

We suppose that T(-,-) is a refinement strategy which satisfies the assumptions from

Section 3.2.1-3.2.7. Additionally to the bisection strategy which was treated in Section 3.5.1,
this particularly includes the red-green-blue refinement from Section 3.2.9.

PROPOSITION 3.5.4. Let T(-,-) denote an arbitrary refinement strategy in the sense
of Section 3.2.1-3.2.7. The conforming discretization of the Poisson problem (3.5.1) with
residual error estimator (3.5.5) satisfies

(i) stability and reduction (E1) with preq = 2°Y¢, S(T,T) := T\ T as well as
S(T,T):=TN\T, and o(T, T) := Coex|U(T) = U(T)ll 302,
(ii) general quasi-orthogonality (E2) with €4, = 0,
(iii) discrete reliability (E3) with R(T,T) =T\T, Kar = 00, and egre = 0,
(iv) the refinement azioms (T1)—~(T3) with Copprox(p/d) < 00 for all p € N with

HPT(Q) for somee >0 p>1
€ ’ 3.5.7
! {Lm) p=1. (3.5.7)
Moreover, the estimator satisfies (2.4.1)—(2.4.2) with err(T) := ||u — U(T)||H&(Q) and
dat = ] h - F 3.5.8
ata(T) == | _min AT (F = F)llzz(e), (3.5.8)

where C3%  (p/d) < oo (defined in Section 2.4) is guaranteed if p € N satisfies (3.5.7). The

constants Carel, Cqos Cpert; Cest, Crel depend only on the polynomial degree p € N, Ty, and on
Q.

PROOF. The statements (i)—(iii) follow as in Proposition 3.5.1. The assumptions in
Section 3.2.5-3.2.6 imply the axioms (T1)—(T2). Moreover, Proposition 3.5.3 shows that
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Theorem 3.3.1 is applicable if (3.5.7) is satisfied. With the Céa lemma (5.4.5) below, we
obtain even
>~ i -V 1
er(T) = min_lu =Vl
(note the lack of boundary conditions on the right-hand side) and hence Theorem 3.3.14
shows C*  (p/d) < oco. Under the same assumptions, Theorem 3.3.15 is applicable and

approx

shows that Cda%  (p/d) < oco. Moreover, Corollary 3.3.17 implies Copprox(p/d) < 0o. This

approx
concludes the proof. O

CONSEQUENCE 3.5.5. Let p € N satisfy (3.5.7). Then, the adaptive algorithm leads
to convergence with optimal rate for the estimator n(-) in the sense of Theorem 2.3.3 for
s < p/d. Moreover, the error converges in the sense of Theorem 2.4.3 for s = p/d. U

3.5.3. Conforming BEM for weakly-singular integral equation. In this section
(which is based on [24, Section 5|), we consider the weighted-residual error estimator in
the context of BEM for integral operators of order —1. Unlike FEM, the efficiency of this
error estimator is still an open question in general and mathematically guaranteed only
for particular situations [3] while typically observed throughout, see, e.g. [20, 28, 33, 34|.
Nevertheless, the abstract framework of Chapter 2 provides the means to analyze convergence
and quasi-optimality of the adaptive algorithm. Non-residual error estimators are proposed
in [30, 50|, which are numerically straightforward to implement but lack the necessary
properties to prove optimality.

In a specific setting, optimal convergence of adaptive algorithms has independently first
been proved by [47, 80| for lowest-order BEM. While the analysis of [80] covers general
operators, but is restricted to smooth boundaries I', the analysis of [47| focuses on the
Laplace equation only, but allows for polyhedral boundaries. In [44|, these results are
generalized to BEM with ansatz functions of arbitrary, but fixed polynomial order.

Let 2 C R? be a bounded Lipschitz domain with polyhedral boundary 0 and d = 2, 3.
Let I' C 09 be a relatively open subset which has a Lipschitz boundary itself. For given
f € HAT) := {¢|r : ¢ € H(Q)}, we consider the weakly-singular first-kind integral
equation

Vu(z) = f(x) forxz eT. (3.5.9)

The sought solution satisfies u € ﬁ_l/z(l“). The negative-order Sobolev space f[‘l/Q(F) is
the dual space of H'/?(T') with respect to the extended L?(T')-scalar product (-, -)r2(r). We
refer to the monographs [58, 62, 75| for details and proofs of this as well as of the following
facts on the functional analytic setting: With the fundamental solution of the Laplacian

—Llog|z| ford=2
= 2m ’ 5.1
) {+ﬁ% for d = 3, (3:5.10)

the simple-layer potential reads
Vu(zx) = / Gz —y)u(y)dl'(y) for xz €T. (3.5.11)
r

We note that V: H~/275(T") — HY2*%(T") is a linear, continuous, and symmetric operator
for all —1/2 < s < 1/2. For 2D, we assume diam({2) < 1 which can always be achieved by
scaling. Then, V is also elliptic (see also Proposition 6.2.23, below) , i.e.,

b(u,v) :== Vu, v)r2m) (3.5.12)
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defines an equivalent scalar product on X := H~Y/2(T"). We equip HY/2(T") with the in-
duced Hilbert space norm ||v||%_1/2(r) = (Vv, v)2ry. According to the Hahn-Banach theo-

rem, (3.5.9) is equivalent to the variational formulation
b(u,v) = (f, v)r2r) forallve HY2(D). (3.5.13)

It relies on the scalar product b(-,-) and hence admits a unique solution v € H~Y/2(T)
of (3.5.13).

Let 7 be a regular triangulation of I', generated by bisection from Section 3.2.8 from
some initial triangulation 75. We employ conforming boundary elements P?(7) C H~/?(T)
of order p > 0. The discrete formulation

b(U(T),V)=(f,V)rery forall Ve PP(T)

admits a unique BE solution U(T) € P?(T).
Under additional regularity of the data f € HY(T'), we consider the weighted-residual
error estimator of |20, 28, 33, 34| with local contributions

nr(T)? := W(T)|r IVe(f = VU(T))|[[2¢ry forall T eT. (3.5.14)

Here, Vr(-) denotes the surface gradient and h(7) € PY(T) denotes the weight function
defined by h(T)|z = [T/ for all T € T as I is a (d — 1)-dimensional manifold. We note
that the analysis of [20, 28, 33, 34| relies on a Poincaré-type estimate ||R(T)| 2y S

IR(T)Y2VrR(T)||r2r) for the Galerkin residual R(T) = f — VU(T) and requires shape-
regularity of the triangulation 7 for d = 3, in particular, the fact that h(7T)|r ~ diam(7).

PROPOSITION 3.5.6. The conforming discretization of the Poisson problem (3.5.9) with
residual error estimator (3.5.14) satisfies

(i) stability and reduction (E1) with o(T,T) := et [|[U(T) — U(7A’)||ﬁ_1/2(r), Pred =
2N and S(T,T):=T\T as well as S(T,T) =T\ T,
(ii) general quasi-orthogonality (E2) with 4, = 0,
(iil) discrete reliability (E3) with
R(T,T):={TeT:37eT\T TnT +#0}, (3.5.15)
Rdir = 00, and €qrel = 0,
(iv) the refinement azioms (T1)—(T3) with Capprox(s) < Cmon(Cs + 1)%||n, T||s for all
s > 0 and the overlay estimate (2.5.1).

Moreover, the estimator satisfies reliability (2.4.1) with erx(T) = [lu — U(T)||g-1/2ry- The
constants Carel, Cqo, Cpert, Crel depend only on the polynomial degree p € N, Ty, and on T'.

PROOF. Reliability (2.4.1) is well-known in the literature (e.g. |28, 33, 34|). Stabil-
ity (Ela) as well as reduction (E1b) are part of the proof of [47, Proposition 4.2] and also
found in [44]. The proof essentially follows [35], but additionally relies on the novel inverse-
type estimate

IR(T) eV 2@y S WVl g1y for all Ve PP(T).

While the work [47] is concerned with the lowest-order case p = 0 only, we refer to [2,
Corollary 2| for general p > 0 so that [47, Proposition 4.2| transfers to p > 0. Discrete
reliability (E3) is proved in [47, Proposition 5.3| for p = 0, but the proof holds accord-
ingly for arbitrary p > 0. Lemma 2.7.2 implies general quasi-orthogonality (E2) with
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£ = 0. Lemma 3.2.3 shows (T1)—(T2) & (2.5.1), (2.7.7). Lemma 2.7.5 shows quasi-
monotonicity (2.7.6). Hence, Lemma 2.7.4 proves (iv). O

CONSEQUENCE 3.5.7. Let s > 0 with ||n, T||s < co. Then, the adaptive algorithm leads
to convergence with optimal rate for the estimator n(-) in the sense of Theorem 2.3.8 and
optimal complexity in the sense of Theorem 2.5.1. U

Numerical examples that underline the above result can be found in [33].

The lower bound (2.4.2) for the weighted-residual error estimator (3.5.14) remains an
open question. The only result available [3] is for d = 2, and it exploits the equivalence
of (3.5.9) to some Dirichlet-Laplace problem: Assume I' = 9Q and let

Kg(x) := /F@n@G(x —y) 9(y) dy (3.5.16)

denote the double-layer potential K: HY2+3(T') — HY?*$(T), for all —1/2 < s < 1/2.
Then, the weakly-singular integral equation (3.5.17) for given Dirichlet data g € H'/?(T)
and f := (L + 1/2)g is an equivalent formulation of the Dirichlet-Laplace problem

—A¢p=0 inQ2 and ¢=g onl =090. (3.5.17)

The density u € H-*2(T), which is sought in (3.5.9), is the normal derivative u = 8,6 to
the potential ¢ € H'(Q) of (3.5.17).

For this special situation and lowest-order elements p = 0, the lower bound (2.4.2) is
proved in [3, Theorem 4].

PROPOSITION 3.5.8. We consider lowest-order BEM p = 0 for d = 2 and I' = 0S).
Let 0 > 2 and g € HO(0Q) = {¢lon : ¢ € H*TVXQ)}. For f = (K +1/2)g, the
weighted-residual error estimator (3.5.14) satisfies (2.4.1)~(2.4.2) for some (in general non-
computable) data(-) with Cd%2 (3/2) < oo (defined in Section 2.4).

approx

PROOF. The statement (2.4.2) is found in [3, Theorem 4|, where data(7) is based on
the regular part of the exact solution u. The definition [3, Definition 15| shows data(7) <
|A(T))?/?*¢|| oy for T € T and some o-dependent £ > 0. The same argumentation as in
the proof of Theorem 3.3.15 shows Cd22 (3/2) < 0o and concludes the proof. O

approx

For some smooth exact solution u, the generically optimal order of convergence is O(h3/?)
for lowest-order elements p = 0, where h denotes the maximal element size. For quasi-
uniform triangulations with N elements and 2D BEM, this corresponds to O(N~%/2) and
hence s = 3/2. With the foregoing proposition and according to Theorem 2.4.3, the adaptive
algorithm attains any possible convergence order 0 < s < 3/2 and the generically optimal
rate is thus achieved.

CONSEQUENCE 3.5.9. Let 0 < s < 3/2 with ||n,T||s < co. Under the assumptions of

Proposition 3.5.8, the adaptive algorithm leads to the generically optimal rate for the error
in the sense of Theorem 2.4.3. U

Numerical examples that underline the above result can be found in |3, 20, 28, 33, 34,
47].

3.5.4. Conforming BEM for hyper-singular integral equation. In this section
(which is based on [24, Section 5]), we consider adaptive BEM for hyper-singular integral
equations, where the hyper-singular operator is of order +1. In this frame, convergence and
quasi-optimality of the adaptive algorithm has first been proved in [80], while the necessary
technical tools have independently been developed in [2]. While the analysis of [80] only
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covers the lowest-order case p = 1 and smooth boundaries, the recent work [45] generalizes
this to BEM with ansatz functions of arbitrary, but fixed polynomial order p > 1 and
polyhedral boundaries.

Throughout, we use the notation from Section 3.5.3. Additionally, we assume that I' C
0L is connected. We consider the hyper-singular integral equation

Wu(z) = f(x) forxeT, (3.5.18)

where the hyper-singular integral operator formally reads

=00 [ Qu Gl — 4)0la) 0w, (35.19)

By definition, there holds Wq(z) = 9,Kg(x) if the double-layer potential Kg(z) is considered
as a function on ) by evaluating (3.5.16) for x € Q. Again, we refer to the monographs |58,
62, 75| for details and proofs of the following facts on the functional analytic setting: The
hyper-singular integral operator W is symmetric as well as positive semi-definite and has
a one-dimensional kernel which consists of the constant functions, i.e., W1 = 0. To deal
with this kernel and to obtain an elliptic formulation, we distinguish the cases I' ;Cé 09 and

I'=00Q.

3.5;4.1. Screen problem T’ ; 0€). On the screen, the hyper-singular integral operator
W : HY?*3(I') — H~Y?+3(T') is a continuous mapping for all —1/2 < s < 1/2. Here,
HY%(T) = {vfp : v € HY**(dQ) with supp(v) C T} denotes the space of functions
which can be extended by zero to the entire boundary, and H~'/?**(I") denotes the dual
space of HY/2=¢(T"). For given f € H Y/2(I), we seck the solution u € HY2(T") of (3.5.18).

We note that 1 ¢ HY2(T) and W : HY%(T') — H~Y2(T) is a symmetric and elliptic
operator. In particular,

b(u,v) := Wu, v) 2 (3.5.20)

defines an equivalent scalar product on X := HY2(T"). We equip H/2(I') with the induced
Hilbert space norm ||v||%1/2(r) := b(v,v). The hyper-singular integral equation is thus equiv-
alently stated as

b(u,v) = (f, v)r2q forallve HY(T) (3.5.21)
and admits a unique solution.

Given a regular triangulation 7" generated by bisection from Section 3.2.8 and a poly-
nomial degree p > 1, we employ conforming boundary elements S5 (7) := PP(T) N HY2(T).
The discrete formulation

bU(T),V)={(f,V)er forallV e S{(T)

admits a unique BE solution U(T) € S{(T).
Under additional regularity of the data f € L*(T"), we may define the weighted-residual
error estimator from [20, 27, 33, 34| with local contributions

nr(T)? == M(TDlrllf = WU(T) |72y forall TeT. (3.5.22)

As for the weakly-singular integral equation from Section 3.5.3, the lower bound (2.4.2) is
only observed empirically [20, 27, 33, 34|, but a rigorous mathematical proof remains as
an open question.

PROPOSITION 3.5.10. The conforming BEM discretization of the hyper-singular inte-
gral equation (3.5.18) on the screen with weighted-residual error estimator (3.5.22) satisfies
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(i) stability and reduction (E1) with o(T,T) := Cpext||U(T) — U(%)”ﬁl/g(r), Pred =
2D and S(T,T):=T\T as well as S(T,T) =T\ T,
(ii) general quasi-orthogonality (E2) with 4, =0,
(iii) discrete reliability (E3) with R(T,T) := T\T, kaxr = 00, and egrel = 0,
(iv) the refinement azioms (T1)~(T3) with Capprox(s) < Cmon(Cs + 1)*|In, T||s for all
s > 0 and the overlay estimate (2.5.1).
Moreover, the estimator satisfies reliability (2.4.1) with erx(T) := |lu — U(T)|| gy gy The
constants Carel, Cqo, Cpert, Crel depend only on the polynomial degree p € N, Ty, and on T'.

PROOF. The reliability (2.4.1) is well-known in the literature (e.g. [20, 27, 33, 34]).
The discrete reliability (E3) follows with the techniques from [35] which are combined with
the localization techniques for the H'/?(I')-norm from [27]. We refer to [45] for details. For

the lowest-order case p = 1, an alternate proof is found in [80, Section 4|, where R(T, 7A‘) are

the refined elements 7\ 7 plus one additional layer of elements, see (3.5.15). Stability (Ela)
and reduction (E1b) are proved in [45] and use the inverse estimate from |2, Corollary 2|.
The remaining statements follow as in Proposition 3.5.6. U

CONSEQUENCE 3.5.11. Let s > 0 with ||n,T||s < oo. Then, the adaptive algorithm
leads to convergence with optimal rate for the estimator n(-) in the sense of Theorem 2.3.3
and optimal complezity in the sense of Theorem 2.5.1. U

Numerical examples that underline the above result can be found in [33].
3.5.4.2. Laplace-Neumann problem I' = 0. On the closed boundary I' = 052, the hyper-
singular integral operator (3.5.19) is continuous for all —1/2 < s <1/2

W HY?(T) — HV*(D),

Due to 1 € HY?(T'), we have to stabilize W, e.g., with the rank-one operator Sv :=
(v, 1)2@) 1. Alternatively, it is possible to consider W on the factor space H'/*(I')/R ~

H?(T) = {ve HY*) : [Lvds=0}. The (stabilized) hyper-singular integral equation
reads

W+ S)u(x) = f(x) forxzel. (3.5.23)
The sought solution satisfies u € X := HY2(I'). The stabilization S allows to define an
equivalent scalar product on H'/?(T") by
b(u, U) = <WU, U)LQ(F) —+ <U, 1>L2(F) <U, 1>L2(F)-
We equip H'Y?(T") with the induced Hilbert space norm [0]31/2r) = b(v,v). Then, the
equation (3.5.23) is equivalent to
b(u,v) = (f, V)2 for all v € HY*(D). (3.5.24)

In case of (f, 1)2@y = 0, we see that (u, 1)2ry = 0 by choice of the test function v = 1.
Then, the above formulation (3.5.23) resp. (3.5.24) is equivalent to (3.5.18).

For given ¢ € H~Y?(I') and the special right-hand side f = (1/2 — K')g, it holds
(f,1)2(ry = 0. Moreover, (3.5.18) resp. (3.5.23) is an equivalent formulation of the Laplace-
Neumann problem

—Ap=0 inQ and 0Jp=g onl =KL (3.5.25)
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Clearly, the solution ¢ € H'(Q) is only unique up to an additive constant. If we fix this
constant by (¢, 1)z2qry = 0, the density u € H'?(I') which is sought in (3.5.18) for f =
(1/2 —K')g, is the trace u = ¢|r of the potential ¢.

For fixed p > 1 and a regular triangulation 7 generated by bisection from Section 3.2.8
of ', we employ conforming boundary elements SP(7) := PP(T) N HY?(T'). The discrete
formulation

bU(T),V)={(f,V)req) forallV e S(T) (3.5.26)

admits a unique solution U(7) € SP(T). In case of (f, 1)r2ry = 0, it follows as for the
continuous case that (U(7), 1)r = 0 and therefore SU(T) = 0. Hence, the definition of the
error estimator as well as the proof of the axioms (E1)—(E3), (T1)—(T3) is verbatim to the
screen problem in Section 3.5.4.1 and therefore omitted.

CONSEQUENCE 3.5.12. Let s > 0 with ||n,T||s < oo. Then, the adaptive algorithm
leads to convergence with optimal rate for the estimator n(-) in the sense of Theorem 2.3.3
and optimal complexity in the sense of Theorem 2.5.1. U

Numerical examples that underline the above result can be found in [27].

Although one may expect a lower bound (2.4.2) similar to that from [3] for Symm’s inte-
gral equation from Section 3.5.3, see Consequence 3.5.9, the details have not been worked out
yet. In particular, quasi-optimality of the adaptive algorithm in the sense of Theorem 2.4.3
remains as an open question.

3.6. Example 2: General second-order elliptic equations

This section collects further fields of applications for the abstract theory developed in Chap-
ter 2 beyond the Laplace model problem from Section 3.5. The results of Section 3.6.1
appear first in [46]. A first version of this section can be found in the recent own work |24,
Section 6].

3.6.1. Conforming FEM for non-symmetric, elliptic linear problems. On the
bounded Lipschitz domain 2 C R?, we consider the following linear second-order PDE

Lu:=—divAVu+b-Vu+cu=f inQ2 and u=0 onl. (3.6.1)
For all 2 € Q, A(z) € R™? is a symmetric matrix with A € W=(Q;RE:Y). Moreover,

b(x) € R? is a vector with b € L>*({2;R?) and c(z) € R is a scalar with ¢ € L>(Q). Note
that £ is non-symmetric as

L# LT = —divAVu — b - Vu + (c — divb)u.
We assume that the induced bilinear form

b(u, v):=(Lu,v) = / AVu-Vo+b-Vuv +cuvdr foru,v € X := Hy(Q) (3.6.2)
0

is continuous and H}(Q)-elliptic and denote by [|v||* := b(v, v) the induced quasi-norm
on Hg (), which satisfies | V(-)|[12(0) < Choml|| - || for some Cho > 0. According to the
Lax-Milgram lemma and for given f € L*(2), the weak formulation

b(u, v) = /va dx for all v € Hy(Q) (3.6.3)

admits a unique solution u € H}(Q).
Historically, the convergence and quasi-optimality analysis for the adaptive algorithm has
first been developed for elliptic and symmetric operators, e.g., [40, 65, 14, 78, 35| to name
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some milestones, and the analysis strongly used the fact that ||v|| is a Hilbert norm and hence
Lemma 2.7.2 applies. The work [64] introduced an appropriate quasi-orthogonality (2.7.5) in
the H'-norm to prove linear convergence of the so-called total error which is the weighted sum
of error plus oscillations. Later, [36] used this approach to prove quasi-optimal convergence
rates. However, [64, 36| are restricted to div b = 0 and sufficiently fine initial triangulations
To to prove this quasi-orthogonality. The recent work [46] removes these artificial assumption
by proving the general quasi-orthogonality (E2) with respect to the induced energy quasi-
norm || - ||. Moreover, the latter analysis also provides a framework for convergence and
quasi-optimality if b(-, -) is not uniformly elliptic, but only satisfies some Garding inequality.
For details, the reader is referred to Section 3.6.2

The discretization of (3.6.3) is done as in Section 3.5.1, from where we adopt the nota-
tion: For a given regular triangulation 7 generated by bisection from Section 3.2.8 and a
polynomial degree p > 1, we consider S§(7) := PP(T) N Hy(Q) with P?(T). The discrete
formulation also fits into the frame of the Lax-Milgram lemma and

bU(T), V) = /Q fVdr forall Ve SU(T) (3.6.4)

hence admits a unique FE solution U(T) € S{(T). Moreover, one has the Céa lemma
lu—=U(T)|| £ Ccea min JJu—V] forall T €T, (3.6.5)
VesSh(T)

where Ccga > 0 depends only on b(-, -).
The residual error-estimator 7(-) differs slightly from the one in Section 3.5.1, namely

ne(T)* = W(DZILIrU(T) = [l + M I[AVU(T) - 0120700 (3.6.6)
for all T € T and L|pV = —div|pA(VV) +b-VV + ¢V, see e.g. [1, 82].
PROPOSITION 3.6.1. The conforming discretization of problem (3.6.1) with residual
error estimator (3.6.6) satisfies
(i) stability and reduction (E1) with preq = 2~ Y o(T,T) = Coet |U(T) = U(T)||, and
S(T,T):=T\T as well as S(T,T) := 'T\'T,
(i) general quasi-orthogonality (E2),
(ii) discrete reliability (E3) with R(T,T) = T\T, kanx = 00, and gl = 0,
(iv) the refinement azioms (T1)—~(T3) with Capprox(s) < Cmon(Cys + 1)%||n, T||s for all
s > 0 and the overlay estimate (2.5.1).

Moreover, the estimator satisfies reliability and efficiency (2.4.1)—(2.4.2) with err(T) =
|lu—U(T)| and

data(7T)" := Fer%zn Z RE|LI7U(T) — f — F”L2
. (3.6.7)
+ min_ > hr|[[AVU(T) - n] = Fl720rm0),
FePd (T) TeT

where q,q" € Ny are arbitrary. If the differential operator L has piecewise polynomial coeffi-
cients, sufficiently large q,q € Ny even provides (2.4.2) with

dat = i h - F . 3.6.8
talT) = min [T (7~ Pl (3.65)
In this case, there holds C32 (p/d) < oo (defined in Section 2.4) if flr € H*"(T) for

all T € To. The constants Ceyel, Cqos Cpert, Cett, Crel depend only on the polynomial degrees
p,¢,¢ €N, Ty, Q, and on L.
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PROOF. The statements (i),(iii)—(iv) follow as for the Poisson model problem from Sec-
tion 3.5.1. Standard arguments from, e.g., [1, 82| provide (2.4.1)—(2.4.2). The bound on
Cdata  (p/d) follows as in Proposition 3.5.1. The general quasi-orthogonality (E2) is proved in

approx
Theorem 7.2.5. The solution of (3.6.4) with X := J,ey, St (7r) instead of S§(7y) satisfies the
assumptions of Lemma 2.7.1. Hence, (2.7.2) and Theorem 2.3.3 (i) prove lim, . n(7;) = 0.
Together with reliability (2.4.1), this implies limy_, ||u—U(7;)|| = 0. Thus, all requirements
of Theorem 7.2.5 are satisfied. This concludes the proof. O

CONSEQUENCE 3.6.2. Let s > 0 with ||n, T||s < co. Then, the adaptive algorithm leads
to convergence with optimal rate for the estimator n(-) in the sense of Theorem 2.3.3 and
optimal complexity in the sense of Theorem 2.5.1. Moreover, the error converges in the sense
of Theorem 2.4.3 at least for s = 1/d. This is the optimal rate for lowest-order elements
p = 1. For piecewise polynomial coefficients of L and flp € HP~X(T) for all T € Ty, one
obtains even s = p/d. O

Numerical examples for the symmetric case that underline the above result can be found
in [64].

3.6.2. Conforming FEM for non-symmetric problems which satisfy a Garding
inequality. We consider the setting of Section 3.6.1 with the difference that the bilinear
form b(-, -) from (3.6.2) satisfies only the Garding inequality

b(u,u) + CgrdHuH%g(Q) > qgrdHVuH%Q(Q) for all u € H'(Q) (3.6.9)

with constants Cyd, ¢eea > 0. Suppose that T(-,-) denotes bisection from Section 3.2.8. We
have to assume that b(-,-) is definite on the continuous level, i.e., for all v € H}(£2), it holds

blv,w)=0 forallwe H)(Q) = v=0. (3.6.10)
This together with Fredholm’s alternative guarantees the unique solvability of (3.6.3) and
implies a continuous inf-sup condition, i.e.,
b(v, w)

inf sup >0 >0. (3.6.11)
veH (0} weri@\(o} || VU2 Vwllrz )

To account for the fact that not each triangulation 7" € T allows for a solution of (3.6.4)
and hence for an error estimator, we set n(7) := 1 if (3.6.4) is not uniquely solvable. With

this, ||n, T||s is well-defined.
We propose a modified adaptive algorithm to solve this particular problem.

ALGORITHM 3.6.3. INPUT: Initial triangulation Ty, bulk parameter 0 < 0 < 1, expected
convergence rate s > 0 with [|n, T||s < oo.
Loop: For(=0,1,2,... do (i) — (iii).
(i) Try to solve (3.6.4) on T = Ty:
(1) If (3.6.4) is not uniquely solvable, set Toy1 = T(Ty, Te) and goto (i).
(ii) Compute nr(Ty) for all T € Ty.
(iii) Determine set My C Ty of (almost) minimal cardinality such that

On(Te)* < Y me(To)™ (3.6.12)
TeM,

(iv) Define the next triangulation as follows:
(12) If Yo4mg M| > (1+log (€ + 1))n(Te) ™/, set Toyr == T(Te, To).
(i3) If not (i2), set Tor1 = T(Ts, My).
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OuTPUT: Error estimators n(7T;) for all ¢ € Ny.

REMARK 3.6.4. The algorithm requires the expected optimal rate of convergence s > 0
as an input parameter. This may be regarded as a drawback of the analysis. On the other
hand, we do not assume any discrete inf-sup condition and Lemma 3.6.11 below shows that
Algorithm 3.6.3 leads to convergence even for arbitrary s > 0.

REMARK 3.6.5. Case (il) requires the algorithm to decide whether the linear sys-
tem (3.6.4) is uniquely solvable. Due to finite dimension, this is equivalent to solvability.
However, an iterative solver usually produces an approximation regardless of the solvability
of the system. In this case, on may skip case (il) and only check for case (12)-(i3). The
analysis and all the results from this section remain valid.

LEMMA 3.6.6. There exists a constant Cye > 0 such that all T € T for which (3.6.4)
s uniquely solvable satisfy

IV (u—UT)2@) < Cran(T), (3.6.13)
where n(-) is defined in (3.6.6).

PROOF. The reliability of 7(-) is well-known and depends only on the continuous inf-sup
condition (3.6.11), see also Proposition 3.5.1 for references. O

REMARK 3.6.7. Due to Lemma 3.6.6, we may assume that n(T;) > 0 for all £ € Ny,
since otherwise u = U(Ty) and the adaptive algorithm converges with any rate by definition.
PROPOSITION 3.6.8. The conforming discretization of problem (3.6.1) with residual

error estimator (3.6.6) satisfies under the assumptions of this section
(i) stability and reduction (E1) with o(T,T) := ert || V(U(T) — U(?))HL?(Q), Pred =
27V and S(T,T) = T\ T as well as S(T,T) := T\ T if (3.6.4) is uniquely

~

solvable on T and T,
(ii) the refinement aziom (T1) and the closure estimate (3.2.13).

The constant Cper, > 0 depends only on the polynomial degree p € N, Q, and on L.

PROOF. The proof of (i) in Proposition 3.6.1 (with || - || = |V ()| z2()) is independent
of the bilinear form and thus remains valid. Moreover, (T1) and (3.2.13) are proved in
Lemma 3.2.3. l

LEMMA 3.6.9. Let T' C T denote a set of triangulations with the following property:
Any sequence (T/)een, C T' with T, # T, for all  # k satisfies limy_,o0 || (7)) | Lo () = O.
Then, there exists eg > 0 such that all but finitely many T € T satisfy

b(V, W)

inf sup > €9 (3.6.14)
vest M\t wese oy I VV 2@ I VW[ 20

as well as the Céa Lemma

IV(u—=U(T)) |20 < Ccea Vg(‘}){lﬂ IV(u = V)2 (3.6.15)

for some constant Ccey > 0.

PROOF. Assume that the statement (3.6.14) is wrong. Then, there exists a sequence of
triangulations 7, and corresponding V, € S{(7/) with [|[VV)|[2(q) = 1 for all £ € Ny such
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that

lim sup 1b(Ve, W) = 0. (3.6.16)
=00 eserngoy VW]l rz@)

The boundedness implies the existence of a weak convergent subsequence V,, — V € H}(Q)
where we assume without loss of generality that 7, # 7, for all k # j.

By assumption, there holds limy_ [|2(7;) ||z (@) = 0 and hence J,cy, S (7)) = Hg(€2).
Let w € H}(Q) and € > 0. Then, the above guarantees some W € S§(7/) such that

BV, w)] < BV, W)+ [0V, w0 = W] < oV, V)] +€ = Tim [b(Ve, W) + <.

Since ¢ > 0 is arbitrary, and with (3.6.16), this shows b(V,w) = 0 for all w € HJ(Q).
Definiteness (3.6.10) then implies V' = 0. On the other hand, the Garding inequality shows

b(Viy, Vi)l + CirallVi [0y = dra for all k € Ny,

The Rellich compactness theorem implies V5, — 0 in L?*(©2). Hence, the above together
with (3.6.16) shows the contradiction

0= kh—>nolo (|b(wk’ Wk” + CgrdHWkH%Q(Q)) 2 Qgrd-

This concludes the proof of (3.6.14). The Céa lemma 3.6.15 follows by standard arguments.
U

LEMMA 3.6.10. There exists {y € N such that case (i1) in Algorithm 3.6.3 is not
executed for any step £ > (.

PROOF. Assume that case (il) is executed in infinitely many steps ¢ € Ny. Since case (il)
triggers a uniform refinement, this implies that lim,_, [|A(7¢)| (@) = 0. Lemma 3.6.9 with
T = {7} le No} shows that for all but finitely many 7, there holds (3.6.14). This implies
that (3.6.4) is uniquely solvable for all 7 = T, and ¢ > k for some k € Ny and contradicts
the assumption that case (il1) is executed in infinitely many steps ¢ € Ny. O

LEMMA 3.6.11. Algorithm 3.6.3 guarantees convergence of estimator and error, i.e.

liIHg_mo 7](72) =0= 1img_>oo ||V(’LL - U(n))HLQ(Q)
PRrROOF. First, we prove convergence
|V (u—U(To)|l 1200 = 0 as € — oo. (3.6.17)

To that end, we distinguish two cases. First, assume that case (i2) is executed for in-
finitely many steps ¢ > ¢;. Then, since case (i2) triggers uniform refinement, it holds
limy,o0 ||A(T¢)|| Lo (@) = 0. Lemma 3.6.9 with T’ = {7} S No} provides some k € Ny such
that the Céa lemma (3.6.15) holds for all 7, with £ > k. The fact u € Hg(Q) = Upe, SE(T2)
implies miny csr (7 [|[V(u = V)| z2@@) — 0 as £ — oo and particularly (3.6.17).

Second, assume that case (i2) is not executed after some k > f5. Then, by definition,
there holds

-1
M| < (1+Tlog(f+ 1))n(Te)~ Y forall £ > k. (3.6.18)
k=0
Since |Mg| > 1, this implies
1+1 1))\
n(Te) < <( il Ogg(er ))> —0 asl— oo.
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With (3.6.13), this shows (3.6.17). It remains to show lim, . 7(7;) = 0 in the case that
case (i2) is executed infinitely many times. To that end, recall that Proposition 3.6.8
shows (E1). Convergence (3.6.17) and Lemma 3.6.10 show lim,_,, o(7¢, Tr+1) = 0 and since
Dorfler marking (3.6.12) is satisfied for each step, Lemma 2.3.6 implies lim,_,, n(7;) = 0.
This concludes the proof. O

LEMMA 3.6.12. Assume that there holds limy_,o ||h(T¢)| o) = 0. Then, ||n, T||s < oo
for some s > 0 implies (T3).

PROOF. We mimic the proof of Lemma 2.7.4. Let N € Ny and define the integer M :=
floor(N/(2C%)). The fact ||n, T||s < oo allows to choose some triangulation 7,Y € T(M) with

(T ) (M +1)° < [|n, T.

If imy o0 [|2(TGN)| o) = 0, set TV := T¥. Otherwise, consider a sequence of uniformly
refined triangulations 7, with 7™ = 75 and 745" := T(7,™¥, 7,"). Given N € Ny,
define TV := TN @ T, where ¢ is maximal with |7, \ 73] < N/(2C,). The overlay
estimate (2.5.1) shows

TN Tl < ITYNTE + 1T\ Tol < CAlTeY \ Tol + N/(2C4) < N/Cy.

Moreover, there holds limy_o [|A(T)| (@) = 0. Given any T;, £ € Ny, the overlay esti-
mate (2.5.1) states [(T™ @ T;) \ T¢| < N and hence TV @& T, € T(T;, N). Lemma 3.6.9 with
T = {72; S No} U {TN ST, : {,N € NO} shows that (3.6.4) is uniquely solvable and
the Céa lemma (3.6.15) holds for all but finitely many 7 € T’. This, together with (3.6.13)
and (E1) from Proposition 3.6.8, implies

n(TY @ Te) Sn(T) +o(TY TV @ T)) So(TY) + IV (w = UT N2y < 0(T)
for all N,¢ > k and some k € Ny. Consequently, there holds
n(T @ TN +1)° (T (M +1)° < AT
and we obtain

Cinf (N +1)(T) S AT,
TET(D,N)

This concludes the proof. O

LEMMA 3.6.13. There exists {1 € N such that case (i2) in Algorithm 3.6.3 is not
executed for any step £ > (.

PROOF. Assume that case (i2) is executed infinitely many times. Then, there holds
Uiso S6(Te) = H{(Q) or equivalently limy o [|2(77)|| 1) = 0. With this, Theorem 7.3.4
proves (E2) for all £ > /.

Proposition 3.6.8 together with Lemma 3.6.10 and Lemma 3.6.12 prove (E1) and (T1)-
(T3) for the parameter s chosen in Algorithm 3.6.3. Lemma 2.3.13 then shows that for all
T = T,, there exists 7, € T(7;) with (2.3.20). Moreover, Lemma 3.6.9 with T’ := {T.: te
No} U {’7} NS NO} implies the discrete inf-sup condition (3.6.14) for all 7, and ’YAZ with
¢ >k for some k € Nj.
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Therefore, the proof of discrete reliability (E3) of Proposition 3.6.1 remains valid for all
T ="Tiand T =T, £ > k since (3.6.14) implies
bU(Te) = U(Te), W)
VW 120

IVU(T) = UT)) 2@ S sup
WeSP(Ty)

The remaining proof of (E3) follows as in the references given in the proof of Proposi-
tion 3.6.1. With this, Proposition 2.3.10 (and Remark 2.3.11) shows the implication (4.2.2)
for T =T, and T = 7T, for all £ > k and therefore (2.3.21) holds, too.

Since M, satisfies Dorfler marking (3.6.12) for all ¢ > ¢, with (almost) minimal cardi-
nality, there holds |M,| < |R(Ts, T;)| with the set R(7Tz, 7;) from (2.3.21).

Theorem 2.3.3 (ii) implies R-linear convergence (2.3.2) for all £ > k and Lemma 2.3.8
shows

-1
DT < Con(To) ™.
k=to
With this and (2.3.21), we obtain
-1 -1 -1
DM S Y IR(Ti Tl S Capproxs) D 0(T) ™ S Coppron(s)n(Te) .
k=to k=to k=0

Since Cupprox(s) < 0o by (T3), the above implies for all £ > ¢, for which case (i2) is executed
(14 1og(£ + 1)) < Capprox ().

Hence, the number of steps ¢ > ¢, for which case (i2) is executed, must be finite. This,
however, contradicts the assumption and thus concludes the proof. O

THEOREM 3.6.14. Given 0 < 0, = (1 — equa)/(1 + C3.,), Algorithm 3.6.3 converges
with almost optimal rate s — € for all € > 0 (where s is chosen in Algorithm 3.6.3 such that
In, T||s < o0 in the sense

n(7e)
—e) < < .0.
Copt Capprox (s — €) < Kseué()) T T ) = Copt (3.6.19)

where Cope > 0 depends only on €, by, 1, |To|, Cerosure and copt is defined in Theorem 2.3.3.

PROOF. Lemma 3.6.10 and Lemma 3.6.13 show that after step k := max{/y, ¢,} only
case (i3) is executed. This particularly implies
-1
> Myl < (1+log(¢+ 1))p(Te) ™/ for all € > k.
k=0
The closure estimate (T2) and the fact that case (i1)—(i2) is executed only finitely many
times show

-1
[Te\ Tol +1 S Z M| +1 < (1 +1log(0+ 1)n(Ty) "V for all £ € N.
k=0

This implies
n(Te) S (L +1og(C 4+ 1))°(|Te \ Tol +1)7°

Since [T, \ To| +1 > £+1, and sup,cy, log(¢+1)*(£+1)~° < oo, this implies the upper bound
n (3.6.19). The lower bound follows as in the proof of Theorem 2.3.3 (iii). O
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CONSEQUENCE 3.6.15. Algorithm 3.6.3 converges with optimal rates in the sense of
Theorem (3.6.14).

3.7. Example 3: Conforming FEM for certain strongly-monotone operators

The result of this section is first found in [46]. A first version of this section can be found
in the recent own work [24, Section 10]. We consider the following non-linear operator

Lu(z) := =divA(z, Vu(x)) + g(x, u(x), Vu(z)),
for functions A : Q@ x R? — R? and g : @ x R x RY — R. We assume that A(-, Vu),

g(-,u, Vu) € L*(Q) for all u € HE (). On the polyhedral domain Q C R d > 2 and given
f € L*(Q), the weak formulation of
Lu=f 1in €,
u=0 on 0, (3.7.1)
reads: Find u € H}(Q) such that
(Lu,v) = / A(z,Vu(x)) - Vo(x) + g(z,u(x), Vu(z))v(z) de = / fodx (3.7.2)

for all v € HL(Q). Define two auxiliary operators A,C : H}(Q2) — H™*
Av = —divA(-,Vv) and Cv:=g(-,v,Vv) forallve HO(Q).

Let T(-,-) denote the bisection strategy from Section 3.2.8. Given 7 € T and p € N, the
discrete form of (3.7.2) reads: Find U(T) € S§(T) such that

(LU(T), / fVdx forall Ve SHT). (3.7.3)

We formally define the residual error estimator for a triangulation 7 € T and all T' € T by
nr(T)? = (TP LU — fllZae) + ITINAC, VU - 0] 220700 - (3.7.4)

The solvability and uniqueness of (3.7.2) as well as the regularity assumptions needed such
that (3.7.4) is well-defined are part of the subsequent sections.

3.7.0.1. Regularity assumptions. We consider the frame of strongly monotone operators
and require the following regularity assumptions on L:

|AVw — AVv| g-10) < Ci5||V(w — v)| 20, (3.7.5a)
[Cw — Cvl|2(0) < C15|V(w — )|l 120 (3.7.5b)

for all w,v € H}() and some constant Cy5 > 0 as well as
(Lw — Ly, w—wv) > Cyl|V(w— v)H%Q(Q) (3.7.6)

for all w,v € H}(Q) and some constant Cjg > 0. These assumptions, in particular, allow to
apply the main theorem on strongly monotone operators [86, Theorem 26.A] and to obtain
the unique solvability of (3.7.2) as well as of (3.7.3). Additionally, (3.7.5)—(3.7.6) guarantee
that the norms of the residual and the error are equivalent, i.e.,

HEu — £U(T>HH—1(Q) >~ HV(U — U(T))”LQ(Q) for all T € T,

~ - ~ 3.7.7
ICUT) — LUy ~ [VOF) ~ UMy fora Tenery. 77

We also obtain the Céa lemma
||V(’LL — U(T))||L2(Q) S 201501_61 Véﬂln ||V(’LL — )||L2(Q) (378)
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Moreover, we require that (3.7.4) is well-defined and satisfies (E1) with o(T,T) ~ ||V(U(T)—

U(?))H[ﬁ(ﬂ). For possible non-linearities A which allow for (2.3.6), we refer to Lemma 3.7.2
below.

We assume that £: H}(Q) — H1(Q) as well as A : H}(Q) — H1(Q) are twice Fréchet
differentiable, i.e., there exist

DL, DA : H:(Q) — L(HNQ), H (),

B (3.7.9)
D’L,D*A: Hy(Q) — L(Hg(Q), L(Hy (), H ().

The second derivative should be bounded locally around the solution w of (3.7.2), i.e., there
exists 4. > 0 with

Ciri= s |D*L(v)

19 (=)l 2 gy <eeoc s (myconaimyonao)

(3.7.10)
+HID2AW)I

H&(ﬂ»L(H&(ﬂ»H%(Q)))) = oo

Finally, we assume that DA(v) : H}(2) — H'(Q) is symmetric for all v € H(Q), i.e., for
all wy, wy € HL(Q) holds

(DA(v)(w1) , we) = (DA(v)(ws) , wy). (3.7.11)

REMARK 3.7.1. Note that if A : Q@ xR? = R and g : QO x R x R = R are twice
differentiable, and if the Jacobian J,A(x,y) € R additionally is a symmetric matriz,
then L and A satisfy (3.7.9) as well as (3.7.10). Moreover, DA(v) is symmetric for all
v € H}(Q), since there holds for w € H}(Q)

DA®)(w) = div, ((JyA(x, Vo(z))) (wa(:p))> .

We stress that the symmetry assumption (3.7.11) posed on DA covers in particular the
operator class from 54|, where

A(z,y) = afz, |y[*)y

for some function a :  x R — R with continuous derivative ¢t — O,a(x,t). In contrast
to [54] where a(z,-) € C*(R) is sufficient, the analysis here covers a wider class of operators,
however, for this special case needs a(z,-) € C*(R) to guarantee (3.7.10).

LEMMA 3.7.2. Sufficient reqularity assumptions in addition to (3.7.5b) and (3.7.6) to
guarantee that the error estimator (3.7.4) is well-defined and satisfies (E1) are, for instance,
either of the following conditions (i) and (it):

(i) A(-,-): Q x R? — R? is Lipschitz continuous and there exists a constant Cig > 0
such that for all T € T and all V,W € SY(T) there holds divA(-,V(-)) € L*(Q) as
well as

[div|r (A, V() = AC W) 2y < Cisl|lV = Wy for all T € T. (3.7.12)
(ii) There holds p =1 (lowest-order case) as well as

A(z,y) = A(y) forallz € Q, y € RY,

and additionally A(-) : R? — R is Lipschitz continuous.
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PROOF. The jump terms in (3.7.4) are well-defined in both cases (i) and (i) since

A(-,VU(-)) is a piecewise Lipschitz continuous function. Moreover, this immediately shows

that divA(-, VU(T)(:)) € L>(T) C L*(T) for all T € T. Therefore, (3.7.4) is well-defined.
Given T, T_ € T as well as W,V € S§(T,), the Lipschitz continuity also proves the
following point wise estimate for all z € T, NT_

(A, VW (2)) = Alw, TV (@) - ]
<|(A@. (TW)lr. @) = Ale, (VV)z, (@))) -l
+| (A, (YWl (2)) = Az, (TV)lg (2))) -l |
S [(FW)le (@) = (VV @)l | + | (T 1 () = (TV)l ()]
Combining the estimate above with the trace inequality for polynomials, we obtain

T YAN(AC VW) = ACYV)) -l ey S VOV = V)2, or - (3.7.13)

This hidden constant depends only on the polynomial degree p € N as well as the Lipschitz
continuity of A(-,-) and the shape regularity (7). It remains to prove a similar estimate
for the volume residual in (3.7.4), i.e

Z T4 L| W — LoV SIVW = V)|[Z2q) forall TeT. (3.7.14)
TeT

In case of (i), this follows immediately from the combination of (3.7.12) and (3.7.5b) together
with a standard inverse estimate. In case of (ii), we observe that VU is piecewise constant.
Therefore, A(VV) is piecewise constant and hence A(VV) = divA(VV(:)) = 0. Thus,
Llr = (CV)|r, and it suffices to apply (3.7.5b) to prove (3.7.14). The estimates (3.7.13)—

(3.7.14) imply stability and reduction (E1) with o(7,7) ~ [|[V(U(T) — U(7A‘))||Lz(9) and
S(T,T) =T\ T as well as S(T,7) = T \ T. To see this, note that () is a weighted
error estimator in the sense of Section 3.4 and satisfies homogeneity (3.4.1) with r_ = 1 and
ry = 1/2. Moreover, stability (3.4.2) holds for some S C T and h < h(T) by

(@) = (meT.m?)"

= TeS
~ o 1/2
< (X WDBILEU(T) = LhU(T) xcr))
TeS
~ ) 1/2
+ (3 M)A, YUT) = ACVUT)) - ) orne))
TeS

SIVUT) = UT)Iz20)-
Therefore, Proposition 3.4.1 applies and proves (E1). O

3.7.0.2. Proof of the axioms.

LEMMA 3.7.3. The residual error estimator n(-) satisfies discrete reliability (E3) and
reliability (2.4.1) with exx(T) := ||V (u — U(T))||12(2)- Moreover, there holds convergence

|V(u—U(To))||r2¢0) = 0 as { — oc. (3.7.15)
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PROOF. The residual error estimator 7(-) is well-defined under the assumptions in Sec-
tion 3.7.0.1. With the equivalence (3.7.7), the standard arguments from [35] apply to prove
discrete reliability (E3). Also the reliability (2.4.1) follows with standard arguments from
the literature. The estimator reduction (2.3.6) holds by assumption in Section 3.7.0.1. The
assumptions for a priori convergence of Section 2.7.1 are satisfied. The main theorem on
strongly monotone operators [86, Theorem 26.A| proves that there exists a solution U,

of (3.7.3) when S§(T) is exchanged with Xy := J,ey, S5 (7¢)- Since the U(T;) are also
Galerkin approximations to U, € X, the Céa lemma (3.7.8) implies (2.7.1). Hence the re-
quirements of Lemma 2.7.1 are satisfied and we obtain limy_,.. 0(7¢, Tr+1) = 0. Lemma 2.3.6
together with reliability (2.4.1) proves the convergence. O

PROPOSITION 3.7.4. The conforming discretization of (3.7.1) with residual error esti-
mator (3.7.4) satisfies

(i) stability and reduction (E1) with o(T,T) ~ |V(U(T) — U('?))HLz(Q) as well as
S(T.T)=T\T and S(T,T) =T\ T,
(i) general quasi-orthogonality (E2),
(ili) discrete reliability (E3) with R(T,T) = T\T, kax = 00, and g1 = 0,
(iv) the refinement azioms (T1)~(T3) with Capprox(s) < Cmon(Cs + 1)°|In, T||s for all
s > 0 and the overlay estimate (2.5.1).
The constants Carel, Cqo depend only on the polynomial degree p € N, Ty, 2, and on L.

PROOF. Stability and reduction (i) follows by assumption. Discrete reliability (iii) is
proved in Lemma 3.7.3. The refinement axioms (iv) follow as for the Poisson model problem
from Section 3.5.1. The proof of the general quasi-orthogonality (E2) follows with Theo-
rem 7.4.5. This concludes the proof. U

CONSEQUENCE 3.7.5. Let s > 0 with ||n, T||s < co. Then, the adaptive algorithm leads
to convergence with optimal rate for the estimator n(-) in the sense of Theorem 2.3.8 and
optimal complexity in the sense of Theorem 2.5.1. U
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CHAPTER 4

Abstract Theory: Equivalent Error Estimators

4.1. Introduction, state of the art & outline

This sector extends the abstract approach of Chapter 2 and includes equivalent error
estimators. The idea behind is that the axioms do not have to be satisfied by the error
estimator itself, but only by an equivalent error estimator. Of course, this observation could
be included directly into the axioms in Chapter 2. However, we think that this separate
presentation of the arguments is clearer and is easier to understand. The overall idea is the
following: If a certain estimator is used for computations, this is often because it is easy
to implement or it possesses some nice numerical features. This, however, is often in stark
contrast with the analytic features in terms of Chapter 2 of the error estimator. For example,
an error estimator might satisfy the contraction in (E1) on average, but fails to satisfy it
in each single step (see, e.g., Section 5.2 for some examples). Moreover, any computation
is prone to numerical errors (e.g., round-off errors). This means that any implementation
of the adaptive algorithm will, in fact, compute an approximate error estimator (this is of
even more significance if iterative solvers are used; see Section 4.4 for details). Hence, the
computed error estimator will satisfy the axioms only up to some error and only the exact
(theoretical) error estimator fits into the abstract framework of Chapter 2.

The framework of this chapter allows to prove the axioms for some equivalent, well-
behaving, error estimator, and gives results for the error estimator in use. This idea firstly
appeared in [60], where several error estimators equivalent to the residual error estimator
for the Poisson problem of Section 3.5.1 are analyzed (see also the examples in Section 5.2).
A similar version of this chapter can be found in the recent own work [24|. However, this
work simplifies the arguments and generalizes the results.

The remainder of the chapter is organized as follows: Section 4.2 states the assump-
tions on the equivalent error estimator and Section 4.3 given the main result on optimal
convergence rates. Section 4.4 treats the particular case of approximate computations and
Section 4.5 proves the assumptions of Section 4.2 for the special case of weighted error es-
timators. Finally, Section 4.5.4 proves the existence of a super contractive weight function,
which might be of independent interest.

4.2. Abstract setting

4.2.1. Equivalent error estimator. Recall the sets 7, and T from Section 2.2.1.
We assume that T is a set of triangulations which is based on a set 7o (where we allow
Too = T as well as T = T) and a refinement strategy T(-, -) (also T(-,-) = T(:,-) is allowed).
We assume that there is a one-to-one correspondence between 7" € T and 7 € T and that

there exists a constant Ceq > 1 such that C'|T] < 1T < Ceo| T
Additionally to the error estimator from Section 2.2.2, we define an equivalent error

estimator as a function 7j(-) : T — Uzcs (10, 00) ) (where AB denotes the set of functions
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mapping B to A) with 7(T) : T — [0,00) for all T € T. As for the error estimator, we also

write 7j(7) := (> e 'r]T(T)Q)l/Z, which is the global equivalent error estimator.
Suppose that the error estimators are equivalent in the sense that there exists Coq > 1
such that

CI(T)? <n(T)? < Coif(T)? forall T €T, (4.2.1)

and such that for all M C T € T and all 0 < 6 < 1, there exists M C T (where T is
uniquely determined by 7) with C. 1|./\/l| < M| < Ce| M| and

7)< Z (T} = 063197)(7)2 < Z nr(T)?. (4.2.2a)
TeM TeM

Conversely, for all M C T € T and all 0 < 6 < 1, there exists MCT (where T is uniquely
determined by 7) with Co'|M| < [M] < Ceg| M| and

T2< Y (TP = ClomT)?< > imn(T) (4.2.2h)
TeM TeM

4.2.2. Equivalent adaptive approximation problem. The goal of the equivalent
adaptive approximation problem is to find a sequence of triangulations 7,, ¢ € Ny such that

sup 77(7)(|7] +1)° <

VIS

for s > 0 as large as possible.

4.2.3. Adaptive algorithm. The algorithm to solve the equivalent adaptive approxi-
mation problem from Section 4.2.2 reads

ALGORITHM 4.2.1. INPUT: Initial triangulation 76 and bulk parameter 0 < 5§ 1.
Loop: For ¢ =0,1,2,... do (i) — (iii).
(i) Compute refinement indicators W (Tp) for all T € T,

(ii) Determine set M, C T; of (up to the multiplicative constant Cyn) minimal cardi-
nality such that

Oii(T)* < Y (T (4.2.3)
TE./{Z@
(ili) Define the next triangulation as Tosq := T(Ty, My).
OUTPUT: Error estimators 7i(T;) for all ¢ € Ny.

4.3. Optimal convergence

In the following, the notion that a certain subset A C {(E1),...,(E3),(T1),...,(T3)}
is satisfied means that the axioms in A are satisfied for the error estimator 7(-), the corre-
sponding refinement strategy T(:,-), and the respective constants from Section 2.3.1. The

triangulations (77)sen, in (E2), (T1)-(T3) are determined by (7;)sen, via the function ( ).
THEOREM 4.3.1. Suppose that the error estimator n(-) satisfies the estimator reduc-
tion (2.3.8). Then, (i)—(iii) holds
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(i) Assume limp_,oo 0(Te, Tow1) = 0 (with o(-,-) from Section 2.3.1). Then, for all 0 <
0 < 1, the equivalent estimator is convergent in the sense

Jim 77(7;) = 0. (4.3.1)

(i) Suppose (E2) is satisfied by n(-). Then, for all 0 < § < 1, the equivalent estimator

is R-linear convergent in the sense that there exists 0 < peony < 1 and é’conv >0
such that

1(Teii)? < CoonyPlo T1(T)? for all j,0 € Ny. (4.3.2)

(iii) Suppose that R-linear convergence (4.3.2) holds and that (Ela), (E3) and (T1)-(T3)

are satisfied by 1(-) and some s > 0. Then 0 < 0 < Coibs = Co (1 —caret) /(14 CFLey)
implies quasi-optimal convergence of the estimator in the sense of

_ (7o)
Copt Capprox(8) < sUp —=—=
pt Capprox () ZGI\II()) (T\T|+ 1)

where the lower bound requires only (T1) to hold.

= éoptcapprox(s)a (433)

The constants éconv, Peonv > 0 depend only on prea, Cqo, €qo, Ceq, and on 0. The constant

Copt > 0 depends additionally on Ceony, Peonvs Cmins Crets Celosures Carel, Edrel; and on s, while
Copt > 0 depends only on Cson and |To|.

PROOF OF THEOREM 4.3.1 (1). Lemma 2.3.6 for n(-) shows lim, . n(7;) = 0. The
global equivalence (4.2.1) concludes the proof. O

PROOF OF THEOREM 4.3.1 (11). Proposition 2.3.9 together with the global equivalence
estimate (4.2.1) implies

M(Tess)* < Cean(Tess)* < CeaCapin(Te)* < CLCaplif(Te)*
for all £, 5 € Ny. This concludes the proof. O

LEMMA 4.3.2. Recall Mvg - ﬁ; from Algorithm 4.2.1. Let M? C Ty (where Ty is
uniquely determined by Ty, cf. Section 4.2.1) be a set with minimal cardinality which satisfies

Ceafn(Te)* < D mr(To)*. (4.3.4)
TeM)
Then, the set My from (4.2.2a) satisfies | M| < CipinCoq| MY| as well as
CoOn(T* < > nr(To)?. (4.3.5)
TeM,

PROOF. With (4.3.4), the implication (4.2.2b) states the existence of ﬂ? C 7T with
M| < Cool M) and
07(Te)* < Z i (Te)*.
TeM)
Since M is a set of almost minimal cardinality which satisfies (4.2.3), there holds Co IMy| <
IMy| < Coain| M| < CrainCeqlM?]. The implication (4.2.2a) shows (4.3.5). 0
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PROOF OF THEOREM 4.3.1 (111). Stability (Ela) and discrete reliability (E3) guarantee
that (2.3.18) holds for all 0 < 6, < 6, and some 0 < kg < 1. The assumption § < Coi0
allows to choose 6, = Cqu. This implies that (2.3.20)-(2.3.21) of Lemma 2.3.13 are valid
for 6 = Cofl. Since R(T, T;) from 2.3.21 satisfies (2.3.21b) for all 0 < 6 < 6y = C.i0, (4.3.4)
shows that [M?| < |R(7z,7;)|. Hence, Lemma 4.3.2 implies |M,| < CmmCeq\R(ﬁ,ﬁ)L By
assumption (4.3.2), Lemma 2.3.8 implies that (2.3.12)-(2.3.14) hold for ay := (7). The

application of Proposition 2.3.14-2.3.15 shows (2.3.3) for all § < C’;qlﬁ*. Additionally, there
holds

ITANTol + 1< Tl + 1< Coq(ITel +1) ST\ Tol + 1 S|\ Tol + 1,

where the hidden constants depend only on C,, and |Tg|. Together with (4.2.1), this concludes
the proof. 0

4.4. Inexact Solve

This section covers a particular case of the abstract theory from Section 4.2. To that end,
let T=T and 7 = 7. We assume that there exists an approzimate error estimator 7(-),

which results from an inexact computation of the ezact error estimator 7(-) and satisfies for
all7 €eTandallS C T

(Smer?) " — (i)
TeS TeS

for some constant 0 < ¢ < 1. Naturally, it is convenient to check the axioms (E1)-(E3)
for the exact error estimator rather than incorporating the numerical error bounds into the
analysis.

1/2

< 97(T) (4.4.1)

4.4.1. Local and global equivalence.
LEMMA 4.4.1. Under (4.4.1), there ezists Coq > 0 which depends only on ¥ < 1, such

that the approzimate error estimator 7j(-) satisfies (4.2.1) as well as (4.2.2) with M = M =
M.
PROOF. The global equivalence (4.2.1) follows directly from (4.4.1) with S =T, i.e.,
(1 =)(T) < n(T) < (1 +9)i(T).
For (4.2.2a), set S = M to obtain for all § > 0 with (1 +0)0 <1
ST <+ Y (T + 1 +6)9* > iir(T)?
TeM TeM TeM
Moreover, there holds
On(T)? <01+ 0T < (L+0)° 3 (T
TeM
Together, this implies
On(T)? < (L+9)2(1— (L+09) 7 A+ np(T
TeM
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Analogously, one derives (4.2.2b), i.e.,

On(T)” < (1—0)*(1+20°)7"2 > 7ir(T)*.
TeM

With Ceq := max{(1+9),(1—9)7', (14+9)2(1—(1406)9*) " (14071),2(1 —9)*(1 +29%)" '},
we conclude the proof. O

4.4.2. Optimal convergence.

PROPOSITION 4.4.2. Let stability and reduction (E1) be satisfied. Then, n(-) satisfies
estimator reduction (2.3.8).

PROOF. Lemma 4.4.1 shows that Dorfler marking (2.2.1) holds with 6 = C’qu. Hence,
Lemma 2.3.5 concludes the proof. l

In the following, the notion that a certain subset A C {(E1),...,(E3),(T1),...,(T3)}
is satisfied means that the axioms in A are satisfied for the error estimator 7(-), the corre-
sponding refinement strategy T(-,-), and the respective constants from Section 2.3.1. The

triangulations (7)sen, in (E2), (T1)—(T3) are determined by (7¢)een, = (T¢)sen, from Algo-
rithm 4.2.1.

THEOREM 4.4.3. Suppose that the error estimator n(-) satisfies (E1).
(i) Assume limy_,oo (T, Tox1) = 0 (with o(-,+) from Section 2.3.1). Then, for all 0 <

0 < 1, the equivalent estimator is convergent in the sense

lim 7(7;) = 0.

L—00

(i) Suppose (E2) is satisfied by n(-). Then, for all 0 < < 1, the equivalent estimator

is R-linear convergent in the sense that there exists 0 < peony < 1 and é’conv >0
such that

ﬁ(ﬁJr])Q S éconvﬁgonv ﬁ(ﬁ)Q fO'r all j’ € e NO'

(iii) Suppose that (Ela), (E2)—(E3) and (T1)—(T3) are satisfied by n(-) for some s > 0.
Then 0 < 0 < Cl0, = Col(1 — earer) /(1 + C,q) tmplies quasi-optimal convergence
of the estimator in the sense of

] (72) S 6/1opt Capprox (S) )

gopt Capprox (5) < sup

e (1T \ Tol + 1)
where the lower bound requires only (T1) to hold.

The constants 5conv, Peonv > 0 depend only on preda, Cqo, €qos and on 0,9. The constant

Copt > 0 depends additionally on Ciin, Cret, Celosure, Cdrels Edrel, @nd on s, while Copy > 0
depends only on Cyn and |Tol.

PROOF. Lemma 4.4.1 proves that the assumptions in Section 4.2.1 are satisfied and
Proposition 4.4.2 shows that the estimator reduction holds. Hence, the requirements of
Theorem 4.3.1 are fulfilled. This concludes the proof. U
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4.5. Weighted error estimators

This section covers the particular case of weighted error estimators of the abstract theory
from Section 4.2. Examples which fit in the abstract framework are presented in Section 5.2.
To that end, we assume the conventions and notation from Section 3.4, particularly, the
existence of a certain natural weight function A(7) : Q2 — (0,00) for all 7 € T such that
|A(T) ||y < oo and h(T) is continuous on Q \ Uy 0T as well as the assumptions
on the triangulations in Section 3.2.1. In the following max,cr g = esssup,cr g(z) and
minger g = essinf,er g(x) denote the essential supremum resp. essential infimum of the
function g on the element 7" € 7. In addition to Section 3.4, this section assumes the
following: There exist constants 0 < geon < 1 and Cyyy > 1 such that

(i) The weight function h(-) satisfies for all T € T € T, all T e T(T)

WT)r #W(T)lror T ¢ T
— (4.5.1)
max h(T) = ||h(T)||L<><>(T) S Gcon Iglel%l h(T)a

zeT

where # is understood in the sense not equal on a set with positive measure. Note

~

that this assumptions implies particularly h(7) < h(7) almost everywhere in €.
(ii) Al T € T € T and each sequence T; € 7, € T(T),i=1,... N for some N € N with

|T;NT;| =0and |[TNT;| >0 for 1 <i#j <N satisfy

N

~

\d . d
2 max A(7;)" < Coum min h(T)". (4.5.2)

REMARK 4.5.1. Assumption (4.5.2) implies that the abstract area of an element h(T)|%
derived from the weight function, is additive up to constants.

4.5.1. Definition of patches. Given a constant Cpaen > 0 and a weight function h(7)
for all T € T, a patch w(+, ) satisfies the following properties:

(i) Al T € T and all §,8" C T satisfy S C w(S,7) C T and w(S,T)Uw(S,T) C
w(SUSs,T).
(ii)) All 7 € T and all S C 7T satisfy

S < w(S, T)| < CratenlS]. (4.5.3)
(i) Al S C T €T andall T € T(T) with S C T satisfy
Jw(s,T) €| (S, 7). (4.5.4)

where w?(S, T) = w(w(S,T),T).
(iv) There holds for all 7 € T € T and all 7" € w({T'}, T)
C—l

patc

Lmin A(7T) < A(T)|r < Coaten max h(T). (4.5.5)

zeT’

For brevity of notation, we also write wy (7, T) := wi({T'},T) for elements 7" € T.
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4.5.2. Error estimators. Additionally to n(-) let 7j(-) denote the equivalent error es-

timator from Section 4.2.1. Suppose that for all M, from Algorithm 4.2.1, the set M,
from (4.2.2a) satisfies

M, Cw(Ti\ Tirn, To).- (4.5.6)

Finally, suppose that 7(-) is a weighted error estimator as defined in Section 3.4.

REMARK 4.5.2. Examples of error estimators which fit in the abstract framework of
this section can be found in Section 5.2.

4.5.3. Optimal convergence. In the following, the notion that a certain subset of the
axioms A C {(E1),...,(E3),(T1),...,(T3)} is satisfied means that the axioms in A are
satisfied for the error estimator 7(-), the quantities from (4.5.7) below, the corresponding re-
finement strategy T(-,-), and the respective constants from Section 2.3.1. The triangulations

(T2)een, in (E2), (T1)—(T3) are determined by (7;)en, via the function ()
The following theorem allows to drop the assumption of estimator reduction in Theo-
rem 4.3.1 due to the additional assumptions in this section.

THEOREM 4.5.3. Under the assumptions of Section 4.5 (particularly (4.5.1)—(4.5.5))
and with homogeneity (3.4.1) and stability (3.4.2), n(-) satisfies (E1) with

ST, T)={TeT : MT)lr < qeonl(T)|7}
S(T.T)={TeT T JS(T. T}
prea = (14 0)q0t,
ofT. T) = (1+ 0 YT, T)
for all 6 > 0 such that peq < 1. Moreover, there holds the following:

(4.5.7)

(i) Assume limy o 0(Tos1,Te) = 0. Then, for all 0 < g < 1, the equivalent estimator is
convergent in the sense

lim (T = 0.

(i) Suppose (E2) is satisfied by n(-). Then, for all 0 < < 1, the equivalent estimator

is R-linear convergent in the sense that there exists 0 < peony < 1 and éconv >0
such that

ﬁ(ﬁ+])2 S éconvﬁgonv ﬁ(ﬁ)2 fO'r all j’ € e NO'

(iii) Suppose that (E2)-(E3) and (T1)~«(T3) are satisfied by n(-) for some s > 0. Then
0<0<Cy 0 = O (1 = €qrer) /(14 C3,y) implies quasi-optimal convergence of the
estimator in the sense of

sup ——= T’A(,%) S 5optcapprox(8)a

eeNo (|Te\ Tol + 1)

where the lower bound requires only (T1) to hold.

gopt Capprox (5 ) S

The constants C’COHV, Peony > 0 depend only on geon, 7+, 7=, Cqo; €qos Geons Cpatch; Csum, and

on 0. The constant C’Opt > 0 depends additionally on Cupin, Crety Celosures Cdrel; Edrel, and on
s, while ¢y > 0 depends only on Cson and |To).
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PROOF. The assumption (4.5.1) implies that h(T) = h(T) on Q\JS(T, T). Therefore,
Proposition 3.4.1 proves (E1) with (4.5.7). Since n(-) is a weighted error estimator, consider
n(-, ho(+)), where h,(-) denotes the super contractive weight function h,(-) from Proposi-
tion 4.5.4 below. The homogeneity (3.4.1) of n(-) and the equivalence (4.5.9) show for all
TeT.

min f, (7)/R(T"™ 0 (T) < 0 (T heo(T) < maxc [ (T) /AT 70 (T)
and hence
Cro~ nr(T) < (T, ho(T)) < nr(T). (4.5.8)

Proposition 3.4.1 shows reduction (E1b) for the estimator n(-, ho(-)) with S, (T, T) =
(T eT : hDlr < gehoMlr}, Su(T,T) ={T €T : T CUJST,T)}, and o(-, )
from (4.5.7). Moreover, monotonicity (4.5.11), homogeneity (3.4.1), and stability of the
weighted error estimator (3.4.2) show

~ ~ / ~ /
(X m@n@®) (X w@hm?)”
TeT\Su(T.T) TeT\Sw(T,T)

1/2 ~
<( % mmnm)) " rur .
TeT\Su(T.T)
Since o(+,-) < o(-,-), this shows stability (2.3.5). By (4.5.1) and Proposition 4.5.4 (ii), one
obtains w(T T) C 8,(T,T) forall T € T\ T. By assumption (i) in Section 4.5.1, this shows

w(T\T,T) C Su(T,T) and the assumption (4.5.6) implies My C Su.(T7, Tey1). Since M,
satisfies Dorfler marking (4.2.3), (4.2.2a) shows for all £ € N,

Clon(T) < Y m(To)™

TGSW(7Z,7Z+1)
This and (4.5.8) imply immediately for all ¢ € N,

Col O On(Te ho(TDRP < > (T, h(T2)2.

TeSw(Te,Te+1)

Therefore, Lemma 2.3.5 with 7 = 7541 and T = T; shows that estimator reduction (2.3.6)
and hence (2.3.8) holds for all ¢ € Ny and 7(7y, h,(7¢)). Since o(-,-) =~ o(+, ), Lemma 2.3.6
shows limy_,o. (77, ho(77)) = 0 under the assumptions of (i). Equivalence (4.5.8) shows
limg o n(7¢) = 0 and (4.2.1) implies (i).

Since (2.3.8) holds for all ¢ € Ny and n(7y, h,(7¢)), Proposition 2.3.9 shows that the gen-
eral quasi-orthogonality (E2) implies R-linear convergence (2.3.14) with ay, = 1(7z, ho(T2))-
Again (4.5.8) and (4.2.1) imply (ii).

The R-linear convergence from (ii), (4.5.7) and the assumptions from (iii) imply the
assumptions of Theorem 4.3.1 (iii). This proves (iii) and concludes the proof. O

4.5.4. Super contractive weight function. The next proposition defines an equiva-
lent weight function h(-), which contracts even if h(-) contracts only nearby (namely within
the patch). To that end, recall the definition of max,c7 and minger from Section 4.5.

PROPOSITION 4.5.4. Suppose a weight function h(-) with h(T) € L>(Q) for all T € T.
Moreover, we assume that (4.5.1) and (4.5.2) are satisfied and that h(T) is continuous on
Q\Urer OT. Let w(-,-) denote a patch function which satisfies (4.5.3)—(4.5.5). Then, there
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FIGURE 1. Consider the standard patch from Remark 4.5.5. Then, the patch
area of the red triangle in the left figure coincides with the patch area of each
of its two sons after two bisections. The area of the large green square in the
right figure is 1. The average of areas in its patch is smaller than 0.22. After
two bisections, the average of areas of the patch of T is 0.25.

erists a super contractive weight function h,(-) such that h,(T) is T -piecewise constant for

all T € T, which satisfies (i)—(iii).
(i) Equivalence: For all T € T and all T € T, it holds:

Co! min 2(7) < ho(T)|r < min A(T). (4.5.9)

(ii) Contraction on the patch: All refinements T € T(T) and all T € T satisfy
ho(Tlr < geho( Dl if WT) o) # ATDluwrn, (4.5.10)

(iii) Monotonicity: All refinements T €T of a triangulation T € T satisfy

~

ho(T) < ho(T) almost everywhere in 2. (4.5.11)

The constants Cig > 1 and 0 < gsc < 1 depend only on Cpatch, Csum, d, and geon.

REMARK 4.5.5. A typical example would be h(T)|p := |T|"? and the standard patch
function w(S,T):={T €T : 37" €S, TNT' # 0} for some T generated by bisection from
Section 3.2.8. Then, Proposition 4.5.4 provides a super contractive weight function hg,(T)
which satisfies ho(T)|r < qseho(T)|z for all T € w(T\T,T).

Even for very specific refinement strategies, i.e., bisection from Section 3.2.8, the straight-
forward constructions of h,(-) by averaging over the patch or by considering the area of the
patch fail to satisfy (i)-(iii). See Figure 1 for some counterezamples.

The proof of Proposition 4.5.4 requires the next three lemmas, which consider an arbitrary
sequence of consecutive triangulations
(Te)eeny C T with Ty q € T(7,) forall £ € Ny. (4.5.12)
Note that throughout this section (7;) is not necessarily the sequence generated by Algo-
rithm 2.2.1.

LEMMA 4.5.6. Under the assumptions of Proposition 4.5.4 and given (4.5.12) and
(,N € Ny, suppose a strictly monotone sequence 0 < my < my < ... < my € Ny with
M Termy )l = W(To)|r for some T € (;2, T;. Suppose there exist elements T; € W(T, Teym,),
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1=0,...,N such that all 1 =0,..., N — 1 satisfy

xIeniI},El h(ﬁ+mi+l) < gg%ih<7z+mz+1) < Gcon gél%ll h<7z+mz> (4'5'13)

Then, N < 2log(Cpaten)/| 10g(geon)|-

PROOF. The assumptions imply max,ery, A(Trimy) < ¢, minger, A(7¢). The assump-
tion (4.5.5) shows

W(To)lr = h(Texmy )7 < Chatcn max h(Tesmy )
4.5.14
S Cpatchqé\gn Ixrélj% h’(ﬁ) S Cgatchqégnh<7z)‘T' ( )

This implies that N is bounded above by the restriction 1 < C?, g%, O

LEMMA 4.5.7. Under the assumptions of Proposition 4.5.4 and given (4.5.12) and
{,N € Ny, suppose a strictly monotone sequence 0 < my < my < ... < my € Ny with
M Tesmp )l = W(To)lr for some T € (5, T;. Suppose that for all i = 0,...,N — 1 ezists
T; € w(T, Toym,) with

mAX (Tesmiys) < Goon U (Tesm,)- (4.5.15)

Then, N < 2log(Cpaten)/| log(qwn)|CsumC2dJr2

patch -
PROOF. For all T" € w?(T,T;) define
ag = {T; from (4.5.15) : [T;NT'] > 0}.

Since Jw(T, Torm;) € Jw?(T,T;) for all i@ = 0,..., N by definition of the patch, and
|WH(T, Te)| < CZyen» there exists at least one Ty € w*(T,T;) with n = |ag| > N/C3, 4.
Let now aqy = {T;,,...,T;,} such that iy < iy < ... <14, We define a directed graph G
with set of vertices ary. Two vertices T;,, T;, € agy are connected by an edge I}, € G if and
only if there holds

znel%’i h(%-ﬁ-m,k) < irel%}]( (7Z+mzk) < Gcon :?El%: h(n-f-mzj) (4516)

With (4.5.1), the fact Ej; € G implies immediately & > j and hence prohibits Ej; € G.

Therefore, any path € := {Ej.;,, Ej, jos - - -» Ej_1jm} C G satisfies j; < jo < ... < j,, and
thus can’t be closed. Moreover, the corresponding vertices Tia'k’ k = 0,...,m satisfy the
requirements of Lemma 4.5.6. This shows

I€] = m < Mupax := 2108(Cpaten) /] 108(Geon ) |- (4.5.17)

Consider the set of leafs £q := {Tij €ar : VEj;, €G, 51 # j} of G. Moreover, for £k € N

define the set of leafs £ of the subgraph G, on the reduced vertices set ary \Uf;é L;. Since
no closed path £ can exist, any path £ which is maximal with respect to C, must end with
a leaf.

First, we prove

TMmax

U £ = o (4.5.18)

j=0
To that end, we show by induction that any path £ C G, satisfies
I€] < Mimax — k. (4.5.19)
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For k = 0 and Gy := G this is (4.5.17). Assume the induction hypothesis (4.5.19) holds for
k > 0. Since a path & C Gy 1, which is maximal with respect to C, must end with a leaf, it
can not be maximal in G (otherwise the leaf is in £, and hence not in agy \ U?:o L; which
is the vertex set of Gy, 1). This implies the existence of a path & C G, with |E| < |&'] <
Mmax — k and hence proves the hypothesis (4.5.19) for k& + 1. Induction concludes (4.5.19)
for all 0 < k < Mmpyax. Since no path of positive length can exist in G, . , there holds
Loi = Gmua- This implies £, 1 = () and hence (4.5.18).

By definition, the £; are disjoint. Therefore (4.5.18) implies that there exists 0 < jy <
Mmax Such that

Lol = lazy| /Mmax. (4.5.20)

Assume there holds |T;, N T;, | > 0 for T}, T;, € L;, with T;, # T; . Then, by definition in
Section 3.2.1, there holds 4; # 7. Without loss of generality, assume i; < i;. Since |T;, N
T;,| > 0, there holds T;, ¢ Te4m,, » and hence by (4.5.1), there holds maXger; h<7z+m¢k) <
Jeon minTij h(ﬁerij)- This and |T;, N T;,| > 0 imply (4.5.16) and hence Ej; € G;,. This,
however, contradicts the definition of £;, as a set of leafs. Therefore, all elements of £;,
have pairwise intersections with measure zero. Hence, (4.5.5) and (4.5.2) imply

Comen > Wipth(Tem, )< 3 maxh(Torm, )"

(3

Tij E,Cjo Tij E,Cjo
. d d . d
< Coum Min (T < CoumCpaen, i A(7e) .
0

This and the assumption A(Trimy )T = h(Te)|r = h(Tosm,;)

rforalli=0,..., N imply
‘Ljo‘ < C(sumcad

patch*

Together with (4.5.20), this implies
N/ Cﬁamh < |O‘T(§| < mmaszumCigtch
and concludes the proof. O

LEMMA 4.5.8. Under the assumptions of Proposition 4.5.4 and given (4.5.12), there
exists a weight function hy,(T;) which satisfies for all £ € Ny (1)—(iii)

(i) AllT € Ty satisfy:

g Nmasx/ (Nmax +1) mi%l WTY) < ho(T) | < MTo)|r  pointwise almost everywhere.
re

(ii) AT €Ty and all k > 0 satisfy

manc i, (Te) < g™ min b (T)lr if W(To)luwry # T |wcrr-

(iii) All k > ¢ satisfy
%w(ﬁ) < Ew(ﬁ) almost everywhere in €.

There holds Nyax == 210g(Cpaten)/| 10(qGeon )| Coum C24 2

patch*
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PROOF. For £ =0, set hy,(75) = h(Tg). For £ > 0 and for all T € T; set

MTes1)lr case 1: h(Tey1)|r # W(To)lr,
7 1 Nmax“l‘l 3 7 . h(T)|Uw N #h(T )|Uw N
ho(Tera)|r = gedy ) mi ho(Te) case 20 77 h(%)@:h@éi)h e,
heo(Te)| T case 3: else.

The upper bound in (i) follows immediately by induction on ¢ € N: It holds for £ = 0.
Assume the upper bound holds for ¢ € N. Then, the definition of h,(7;1) implies for

T € Topr and all 77 € T, with |[T"NT| > 0

W(Tes1)|rar  case 1,

ﬁu r <~
(Tex1)lrnr < {hw(ﬁﬂTmT’ case 2 and 3.

The induction hypothesis for case 2-3 and the monotonicity from (4.5.1) for case 1 prove

77/N<7Z+1>|TQT/ < h(T¢)|rar- This concludes the induction. The lower bound (i) follows by
contradiction. Consider an element T' € 7;, j € N, with

glei%lﬁw(ﬁ) < qlNmax/(Nmax-+1) min h(T;). (4.5.21)
Let ¢ < j be the minimal index with T € T;. If £ = 0, there holds hy,(Tg)|7 = h(Tg)|r by
definition. For ¢ > 0, the assumption (4.5.1) implies A(T;)|7 # h(To—1)|r for all 7" € T;—4
with [T7" N T| > 0 and hence by definition f,(77)|7 = h(T;)|z (case 1). Altogether, we have
an index 0 < ¢ < j with hy,(T7)|r = h(T7)|r. We redefine ¢ < j to denote the largest index
smaller or equal to j with h,(7;)|7 = h(7;)|r. Therefore, case 1 cannot occur for any index
¢ < i < j. This implies also 7" € (Z, ;- To obtain (4.5.21), there must exist at least
Niax + 1 indices £ +m; < j with case 2. This particularly implies h(Teymy, .. )|lr = h(To)|r
and T € ﬂﬁiZnN"‘ax 7T;. We aim to verify the remaining assumptions of Lemma 4.5.7. To
that end, note that case 2 for T' € Ty, and (4.5.1) imply the existence of T; € w(T, Toym,)
with max,er, M(Totm,+1) < Geon Milger, A(Tprm,). The monotonicity of h(7,) from (4.5.1)
and ¢ +m; +1 < £+ m;;; imply even (4.5.15). Hence, the requirements of Lemma 4.5.7
are satisfied and the contradiction Nyax + 1 < 210g(Chaten)/| 1og(qcon)|C’SumC'§jtt}21 = Npax
follows. This proves the lower bound in (i).

To prove the contraction estimate (ii), distinguish two cases. If T' € T, satisfies case 1 in

the definition of A (), then, with the lower bound in (i) and (4.5.1), it holds

Iggjzcﬁw(ﬁﬂ) = max h(Te41) < Geon min h(T¢)

< _Nmax/(Nmax“l‘l) 3 ﬁ (T) J— 1/(Nmax+1) 3 ﬁ (T) (4522)
= Gcon Geon IIHGIII} wl/t) = deon I:?EIII} w\/2l)-
If T € T; satisfies case 2 in the definition of h,,(-), then, it holds
T — 1/(Nmax+1) .
max he, (Te+1) = debn min A, (7¢)- (4.5.23)
Each case leads to some contraction with constant gy = qcl({r(lea"H) € (0,1).

This also implies monotonicity (iii) for case I and case 2. Let T € 7T, which satisfies
case 3. The definition shows

ho(Tesn)lr = ho(To)lr
and hence (iii). This concludes the proof. O
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PROOF OF PROPOSITION 4.5.4. The weight function h,,(-) depends on the sequence (7)
from (4.5.12). Hence, we write

ha(T0) = ho(To, ., To).

Given 7 € T, define the set of all sequences which lead to that particular triangulation, i.e.,
T(70,T) = {(To,.... Te=T) : LN, Tjz1 € T(T;) \ {T;} forall j =0,...,0—1}.
The definition of the refinement strategy T(-,-) in Section 2.2.1 implies that T (7o, 7) is finite.

Define hy,(7o)|r := minger h(7o) for all T' € Ty and for 7 € T\ {70} by

ho(T)|r = min minﬁw(%, T forallTeT.
(70, Te)ET(To,T) z€T

We denote by (75, ..., 7)) € T(To, T) a sequence which satisfies
melnh (T T) = heo(T)|r.

To see the equivalence (4.5.9), Lemma 4.5.8 (i) shows
min h(7T) $ minho (75, ..., 7,") < minh(T),

zeT zeT zeT

where the hidden constants do not depend on the particular sequence 7;,...,7,”. This
implies (4.5.9).

The contraction property (4.5.10) follows with Lemma 4.5.8 (ii). To see that, let T € T
with A(T) vy # h(T)|uwr ). There holds (77,..., T, T) € T(75, T) and hence for all

T € T with |[T'NT| >0
ho(Dlrr < min b (T TS T)

< maxﬁw(ﬁ, L TET (4.5.24)
< g min (757 TT) = g™ Dby (T) |

con

Since the involved constants do not depend on the particular sequence 7;',...,T,”, this
shows (4.5.10) with ge = g™V

Finally, we show (4.5.11). Therefore, let T € T and 7 € T(T). If T # T, the contrac-
tion (4.5.24) applies and shows monotonicity (4.5.11) on 7. If T € T, Lemma 4.5.8 (iii)
implies

h’w<‘7\'>|T S min%w(ﬂ7 e 77—ZT7 7\')
< min hy (75", TF) = ho(T)lr.

This concludes the proof. U
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CHAPTER 5

Applications II

5.1. Introduction, state of the art & outline

This chapter applies the abstract results from the previous chapter to certain model
problems. The examples below are found in a similar manner in [24]. Note that the super
contractive weight function from Section 4.5.4 allows to prove optimal convergence rates, even
if the equivalence of the error estimators is only patch wise. This is a major improvement
over [60|, where all the patches are refined, too. Moreover the super contractive patch
function is used in Section 5.4 to prove the contraction of data oscillations. This improves
the work [4]|, where a modified marking strategy is employed to overcome this problem.
The remainder of the chapter is organized as follows: Section 5.2 shows rate optimality
for certain estimators which are equivalent to the residual estimator from Section 3.5.1.
Section 5.3 reproduces the results of [13] for the p-Laplacian and Section 5.4 demonstrates
the incorporation of inhomogeneous boundary data into the optimality analysis.

5.2. Example 1: Locally equivalent error estimators for the Poisson problem

This section applies the analysis Chapter 4 to a specific model problem, where the adaptive
algorithm is steered by some locally equivalent and possibly non-residual error estimator.

5.2.1. Poisson model problem. In the spirit of [60], consider the Poisson model
problem (3.5.1) in Q C R,

—Au=f inQ and u=0 onlT,

and recall the weak formulation (3.5.2), and the FE discretization (3.5.3) by means of piece-
wise polynomials S5(7) = PP(T) N H () of degree p > 1. The residual error estimator 7(-)
with local contributions

nr(T)? = ne(T, h(T))? = MT7 I + ArVILaa) + MTDle 10.VT20rn0)  (5-2.1)

with h(T)|r = |T|Y? for all T € T and Ar the T-element wise Laplacian serves as a
theoretical tool. Under the assumptions of Section 3.5.1 or Section 3.5.2 (particularly that

T(-,-) is a refinement strategy in the sense of Section (3.2.1)-(3.2.7)), the following result
holds.

PROPOSITION 5.2.1. In addition to the properties stated in Proposition 3.5.1, the resid-

ual error estimator (5.2.1) satisfies homogeneity (3.4.1) with r. = 1/2 and r— = 1 and
stability (3.4.2) with o(-,-) = o(-, ).

PROOF. Stability (3.4.2) is well-known and follows by use of the triangle inequality as
well as standard inverse estimates analogously to the proof of [35, Corollary 3.4]. The
homogeneity (3.4.1) is obvious. O

The following sections concern different error estimators 77(+) which are equivalent to 7(-)
and fit into the framework of Section 4.5. Section 5.2.2 studies the influence of equivalent
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choices of the weight function h(7T) for the residual error estimator (This is well-known by
experts but does not appear in the literature except for the recent own work [24|. Moreover, it
fits perfectly into the abstract framework of Chapter 4). Section 5.2.3 concerns a facet-based
formulation of 7(-), while Section 5.2.4 analyzes recovery-based error estimators. Further
examples for the lowest-order case p = 1, which also fit in the frame of the analysis from
Section 4.5, are found in [60].

5.2.2. Estimator based on equivalent weight function. This section is based on
the recent own work [24, Section 9]. Instead of |T'|'/¢ for weighting the local contributions
of n(-), one can also use the local diameter diam(7"). This leads to

mr(T)* = diam(T)* || f + AV |72 + diam(T) [0, V]I 72070 -

This variant of 7(-) is usually found in textbooks as e.g. [1, 82|. Under the assumptions
of Section 3.5.1 or Section 3.5.2 the shape regularity (3.2.5) leads to A(T)|r < diam(7) <
CanpY(To) R(T)|r for all T € T € T. In particular, n(-) and 7(-) are element wise equivalent.

PROPOSITION 5.2.2. The estimators n(-) and 1(-) are globally equivalent in the sense
that (4.2.1) with T =T, T(-,-) = T(-,-) and Ceq = C3,7(T0)*. Moreover, (4.2.2) holds with
M = M = M. The weight-function h(T) satisfies (4.5.1) and (4.5.2). Moreover, (4.5.6) is
satisfied with the trivial patch function w(S,T) =S8 for all S C T and all T € T. Together
with Proposition 5.2.1, all the assumptions of Theorem 4.5.3 are satisfied.

PROOF. Define the weight function h : Q@ — (0,00) by h|r := diam(7T) for all 7 € T.
Then, there holds 77(7T) = nr(T,h) for all T € T. The homogeneity (3.4.1) of n(-) shows

min |(2(7)/P) (@) 7 (T) < ne(T, (T) < max |(A(T)/h) ()™ 7r(T)
and hence
Coty(To) 70 (T) < () < (T) for all T € T

From this element wise equivalence, the statements (4.2.1) and (4.2.2) follow immediately.

The estimate (3.2.12) implies (4.5.1) and (4.5.6) follows from M = M. Finally, the esti-
mate (4.5.2) follows with Cyyp = 1. O

CONSEQUENCE 5.2.3. Let s > 0 with ||n, T||s < co. Then, the adaptive algorithm leads
to convergence with optimal rate for the estimator 1(-) in the sense of Theorem 4.5.3. If the
assumptions of Section 3.5.2 are satisfied, then the adaptive algorithm leads to convergence
with optimal rate for the estimator 1(-) in the sense of Theorem 4.5.83 for all s <p/d. O

5.2.3. Facet-based formulation of residual error estimator. This section is based
on |24, Section 9]. For a given triangulation 7" € T generated by bisection from Section 3.2.8,
let T := & (7)) denote the corresponding set of facets which lie inside €2, i.e., for each E € T
there are two unique elements T, 7" € T with T # T and E =T NT". Let

WE,T)={T.T"} and |Jw(E T)=TUT (5.2.2)

denote the patch of E € T. Let T(-,-) denote bisection (Section 3.2.8) and let T(-,-) denote
the corresponding facet based version from Section 3.2.11. Assume that each element 7' € T
has at most one facet on the boundary I' = 92 which is a minor additional assumption on
the initial triangulation 7, to exclude pathological cases. In particular, each element T € T
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has at least one node z € K(7) inside Q. For each facet E € T, let Fg € PP~ H({Jw(E,T))
be the unique polynomial of degree p — 1 such that

AV —f—F . = i ATV — = Flli2ium1)- 5.2.3
ATV = f = Fell 2 wEn) Fem}}g&gwmll 7V = f = Flle2uuEm) (5.2.3)

With the introduced notation, consider the following facet-based variant of the residual error
estimator (5.2.1)

T2 =Y np(T)? (5.2.4a)
EeT
Me(T)? = diam(E)? [A7V — f — Fell72usn) + diam(E) [[0.V] 72 (5.2.4b)

Convergence and quasi-optimality for this estimator is directly proved for d = 2 and p = 1
in [48] via the technical and non-obvious observation that the edge oscillations are contrac-
tive [69, 68]. The novel approach of this paper generalizes the mentioned works to arbitrary
dimension d > 2 and polynomial degree p > 1.

PROPOSITION 5.2.4. The estimators n(-) and 1(-) are globally equivalent in the sense
of (4.2.1). Moreover, (4.2.2) holds with

M= JwET) and M:={E€T :3T € M, ENT #0}.
EeM

The weight-function h(T) satisfies (4.5.1) as well as (4.5.2) and (4.5.6) is satisfied with the
patch function

wST)={TeT :3TeS, TNT £}

for all S C T and all T € T. Together with Proposition 5.2.1, all the assumptions of
Theorem 4.5.3 are satisfied.

The proof of Proposition 5.2.4 requires some technical lemmas and some further notation:
For an interior node z € K(T)NQ of T, define the star (z,7) := {E € T:ze€ E} as well
as the patch w(z,7) == {T'€ T : z € T}. Let F, € PP (Jw(z, 7)) denote the unique
polynomial of degree p — 1 such that

ATV — f = Fullio(iniegy = i AV = = Fllioimirn. 5.2.5
ATV = f = Eiflr2uem) Fepp_fp(golj(zﬂ)|’ 7V = f = Fll2e=m) (5.2.5)

To abbreviate notation, write r(7") := A;U(T) — f for the residual.
LEMMA 5.2.5. Any interior node z € K(T)NQ and T € T with z € T satisfies

Coo Ir(Mz2ery < Mz MOV (T2 0y + IM(T) = Eellizoe - (5:26)
The constant Cyy > 0 depends only on v(T) and hence on T.

PROOF. Consider the nodal basis function ¢, € S'(T) characterized by ¢.(z) = 1 and
¢.(2)) = 0 for all 2/ € K(T) with z # Z/. In particular, supp(¢,) = Jw(z, 7). Let
=t L2(Jw(z,T)) — PP (Jw(z,T)) be the L:-orthogonal projection and note that
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F, =TI""'7(T). A scaling argument and ||¢,|| ) = 1 prove
IEN 72 ey S NP Falle iy

:/ r(T)¢.F, dx —/ (1 =1 (T))¢.F. dx
Uw(z,T)

Uw(z,T)
= / ( )T<T>¢2FZ dz +1|(1 = TP (Tl 2ot 1 Nl 2wy -
Uw(z, T

Consider the first term on the right-hand side and use that V := ¢, F, € S§(T) is a suitable
test function. With the Galerkin formulation (3.5.3) and element wise integration by parts,
it follows that

/ r(T)6.F. dz — / H(T)V da
Uw(2,T)

Uw(z,T)

/ AFU(T)Vdx + / VU(T) -VVdzx
Uw(z,T) Uw(z,T)

/ 0.U(T)) 6.F. du
Us(z,T)

< 0uU (T2 szl Fell L2us 1))
Since F, € PP~ ({Jw(z,T)), an inverse-type inequality with h, := diam(|Jw(z, 7)) shows
IF:N 2 usery S B2 2 I Fell 2ot
The hidden constant depends only on (7). The combination of the previous arguments
implies
172y S (210U (T2 wseemy + 17T = Fell 2o mn) 1l 2o ) -
The triangle inequality together with h, ~ h(T)|r proves
WFIATU(T) + 2w

S MU 2oty + DI = Follz2oem)

S WDz ll0:U (T2 sy + R (T) = Follie e
This concludes the proof. O

The following lemma shows that edge oscillations (5.2.3) and node oscillations (5.2.5) are
equivalent on patches.

LEMMA 5.2.6. Any interior node z € KC(T)NQ and T € T with z € T satisfies
Co IM(T) = Eleuery < D In(T) = Felfauuen)
EeX(2,T) (5.2.7)
< Oy |I1(T) = FullZ2 o)

The constants Coy, Cos > 0 depend only on T, the polynomial degree p > 1, and the use of
bisection.

PROOF. The upper bound in (5.2.7) follows from
17(T) = Fell2wuery) < Ir(T) = Fxllezoery) < 7(T) = Fall2oem)

for all E € X(z,7T) and the fact that the cardinality |X(z,7)| is uniformly bounded by
YT) < Canpy(To).-
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The lower bound in (5.2.7) is first proved for a piecewise polynomial 7(7) € PP~1(T). We
employ equivalence of seminorms on finite dimensional spaces and scaling arguments. Note
that both terms in (5.2.7) define seminorms on the finite dimensional space PP~ (w(z,T))
with the kernel PP~1({Jw(z, 7)) and hence are equivalent with constants Cyy, Cyo > 0. A
scaling argument proves that these constants depend only on the shape of (Jw(E,T) or
U X(z, 7). Since bisection from Section 3.2.8 only leads to finitely many shapes of triangles
and hence patches and facet stars, this proves that Cs; and Cyy depend only on T, p, and
the use of bisection.

It remains to prove the lower bound in (5.2.7) for general f € L*(Q). Let ITP~! : L*(Q) —
PP=L(T) denote the L%-projection so that F'(7) = IIP~'r(T) is the unique solution to

||T(T) — F(T)||L2(T) = Fe,}f)ﬂpi_f%(T) ||T(T) — F||L2(T) for all T € T

Note that PP~ (Jw(E, T)) C PP~} (w(E,T)) and hence
(1= TP YH(T), FT) = Fa)yery = 0 = (1= TP"Y(T), F(T) = Fi) e,

According to the T-element wise Pythagoras theorem and the foregoing discussion for 7 -
piecewise polynomial r(7), it follows

”T(T)_FZ”%Q(Uw(z,T)) = [|r(T) - F(T)”%Q(Uw(zﬂ')) + | F(T) - FZH%Q(Uw(z,’T))
N Z (Ilr(T) - F(T)”%Q(Uw(E,’T)) + |1F(T) — FEH%Q(Uw(E,T)))

BE(z,T)

= > In(T) = Felliaquer-

EcX(T;z)

This concludes the proof. O

PROOF OF PROPOSITION 5.2.4. Shape regularity (3.2.5) yields hp = diam(E) ~ h(T)|r
forall E € T and T € T with £ C T. Hence
Me(T)* = hip Ir(T) = FellLauue.r) + he 10U (T L2
< Y (BB + he 110U (T2 orae)

Tew(E,T)

~ > (T

Tew(E,T))

Lemma 5.2.5 and 5.2.6 imply

nr(T)* = W2 Ir (T L2y + Pz 10U (T 2200y
S D (MDIEIT) = Ellfaursy + D 110.U(T)z s my)

2eK(T)NQ

Yoo > (MBIrT) = Feliequery + Er 0.U(T)zzm))

2eK(T)NQ E€X(2,T)

> D ()

2eK(T)NQ E€X(2,T)

12

IN
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The last two estimates imply immediately (4.2.1). The first implication (4.2.2a) follows by

TP SORT2< Y (TS > > m(M) =Y (T

EeM EeMTew(E,T) TeM

To see the second implication (4.2.2b), consider

0T Son(T) < Y me(TPS Y, > > de(T)P <y inl(T)

TeM TEM zeK(T)NQ Eem .T) M
zeK(T) ks EeM

The remaining statements follow as in Section 5.2.2. U

CONSEQUENCE 5.2.7. Let s > 0 with ||n,T||s < oo. Then, the adaptive algorithm
leads to convergence with optimal rate for the facet based estimator 1(-) in the sense of
Theorem 4.5.3.

Numerical examples that underline the above result can be found in for 2D and lowest-
order elements in [49]. Moreover, numerical examples for the obstacle problem with the
facet-based estimator are found in [69, 68|.

5.2.4. Recovery-based error estimator. This section is based on [24, Section 9|.
We consider recovery-based error estimators for FEM which are occasionally also called ZZ-
estimators after Zienkiewicz and Zhu [87]. These estimators are popular in computational
science and engineering because of their implementational ease and striking performance in
many applications. Reliability has independently been shown by [72, 22| for lowest-order
elements p = 1 and later generalized to higher-order elements p > 1 in [10]. For the lowest-
order case, convergence and quasi-optimality of the related adaptive algorithm has been
analyzed in [60]. In the following, the result of [60] is reproduced and even generalized to
higher-order elements p > 1. Moreover, the abstract analysis of Section 4.5 removes the
artificial refinements in [60).

Let G(T) : L*(Q2) — S5(T) denote the local averaging operator which is defined as
follows:

e For lowest-order polynomials p = 1, define G(7)(v) € S3(T) by
1
|CU(Z T)| Uw(z,T)

e For the general case p > 1, define G(T) = J(T) : Hj(2) — SY(T) as the Scott-
Zhang projection from [76], see also Definition 3.3.2.

G(T)(v)(2) == vdx for all inner nodes z € K(T) N .

Based on G(T), the local estimator contributions of the recovery-based error estimator 7(-)
read

(T e {H(l = GT)VU(DIl2qa) forr =T €T, (525)

! diam(E)? [|[A7U(T) — f = Fellizmrm form=E¢€&(T),
where Fpg is defined in (5.2.3). Given a set of triangulations T with the bisection refinement

strategy T(-,-) from Section 3.2.8, the recovery-based error estimator acts on the set T :=

{'T T € T} and T := T UE(T). The refinement strategy T(-,-) employs facet based
variant from Section 3.2.11, where each marked element 7" € 7 marks the corresponding
facets £ C OT. Moreover, given T e€Tand S C T define the 2-patch

W(S,T):={TeT:3IhTheT, TheS TonTi#0, TNT #0}. (5.2.9)
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PROPOSITION 5.2.8. For general polynomial degree p > 1, the error estimators n(-)
from (5.2.1) and 7(:) from (5.2.8) satisfy for oll E € E(T) with E = Ty N1y for some
To, T\ €T

7A7/E(7~d)2 +ﬁTo(%)2 < Cys Z nr(T)?, (5.2.10a)
Tew?(Ty,T)
as well as
nn(T)? < Cos > (T2 (5.2.10b)
7'6'7'
TNTH#0

The constant Co3 > 0 depends only on ~v(T), the use of bisection, and p.

The proof requires the following lemma which states that the normal jumps are locally
equivalent to averaging. The result is well-known for the lowest-order case, and its proof is
included for the convenience of the reader.

LEMMA 5.2.9. For some interior node z € K(T) NS, it holds
Cor hr (10U (T2 sy < 11 = GT)VU (T L2 (e

<Cy Y Ty 02
2'eX(z, T)NK(T)NQ

The constants Coy, Co5 > 0 depend only on Ty, the polynomial degree p > 1, and the use of
bisection.

PROOF. We use equivalence of seminorms on finite dimensional spaces and scaling argu-
ments. To prove (5.2.11), it thus suffices to show that the chain of inequalities holds true if
one term is zero.

First, assume (1 — G(7))VU(T) = 0 on |Jw(z,T). This implies VU(T) € SP(w(z,T))
and hence [0,U(T)] =0on JX(z,T).

Second, assume [0,U(7)] = 0 on |JX(2/,7) for all inner nodes 2’ of ¥(z,7). This
shows that the normal jumps of VU(T) are zero over |JX(2/,T). Since U(T) € H'(Q),
the tangential jumps of VU(T) also vanish over ¥(2’, 7). Altogether, this implies VU (T) €
SPY(w(2',T)) for all 2’. If the Scott-Zhang projection defines the averaging, G(T)VU(T)(Z')
depends only on VU(T)|u(,7), this implies G(T)VU(T) = VU(T). In the particular case
p = 1 and patch averaging, VU(T) is constant on w(z’,7). In any case, we thus derive
(1-G(T))VU(T)=0o0n Jw(z,T).

The constants in (5.2.11) depend on the shapes of patches | Jw(z’,T) involved. Since
bisection from Section 3.2.8 leads to only finitely many patch shapes, we deduce that the
these constants depend only on the polynomial degree p € N and on 7. O

PROOF OF PROPOSITION 5.2.8. In order to prove the local equivalence (5.2.10), let z €
K(T) N Q be an interior node of T' € T. The upper estimate in (5.2.11) yields

TP > (T
T'ew?(T,T)

For E=Ty,NT, €T, it holds

p(T)? = diam(E)[r(T) 72z + diam(E)|r(T) 72y S D> ne(T)*
T ew(Ty,T)
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The combination of the last two estimates proves (5.2.10a). The proof of (5.2.10b) employs
Lemma 5.2.5 and 5.2.6 as well as the lower bound in (5.2.11). For an interior node z €
K(T)NQof T € T, it follows

(T S Mz 10U (T Zasemy +MIE D (T = Felliauuen

EeX(z,T)
DA

‘r€7~’
TONT#)

This concludes the proof. O

PROPOSITION 5.2.10. With the patch functions from (5.2.2) and (5.2.9), the estimators
n(-) and 7(-) are globally equivalent in the sense of (4.2.1). Moreover, (4.2.2) holds with

M = U W (w(E,T), T)U U Wwi(T, T)
EEMNE(T) TeMNT
and
M = {7‘6% AT e M, 7NT #0}.

The weight-function h(T) satisfies (4.5.1) and (4.5.2). Moreover, (4.5.6) is satisfied with the
patch function w?(-,-). Together with Proposition 5.2.1, all the assumptions of Theorem 4.5.3
are satisfied.

PROOF. The global equivalence follows from Proposition 5.2.8. The implication (4.2.2a)
follows by (5.2.10a) and

T SORT2< > ae(T)P+ > ir(T)

EeMNE(T) TeMNT
S22 m(@ =) m(T)
EemM Tew?(w(E,T),T) TeM

To see the second implication (4.2.2b), consider (5.2.10b) and

0T ST <> (TP <S>0 D m(T)P =Y (T2

TeM TeM reT reM
TNT#Q

The remaining statements follow as in Section 5.2.2. U

CONSEQUENCE 5.2.11. Let s > 0 with ||n,T||s < oo. Then, the adaptive algorithm

leads to convergence with optimal rate for the facet based estimator 1(-) in the sense of
Theorem 4.5.3.

5.3. Example 2: Conforming FEM for the p-Laplacian

This section is based on [24, Section 10|. The p-Laplacian allows for a review of the
results of [13] in terms of the abstract framework of Chapter 4. Since no lower error bound
is required, the present analysis provides some slight improvement over [13]. The following
allows generalizations to N-functions as in [13], which we, however, omit in favor of a
straightforward presentation.
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Consider the energy minimization problem

J(w)= min J(v) with J(v) ::1/Q|Vv|pda:—/ﬂfvd:c (5.3.1)

veEW, P () p

for p > 1 and Wy (Q2) equipped with the norm ||v||yirq) = (vll7s) + ||Vv||%,,(m)1/2. The
direct method of the calculus of variations yields existence and strict convexity of J(-) even
uniqueness of the solution u € W,”(Q). With the nonlinearity

AR R AQ) = 1QFQ,

the Euler-Lagrange equations associated to (5.3.1) read
(Lu,v) = / A(Vu) - Vv = / fodz  for u,v e X = W,P(Q). (5.3.2)
Q Q

The discretization of (5.3.2) and the notation follows Section 3.5.1. For a given regular
triangulation 7 € T (where T is generated by bisection from Section 3.2.8), we consider
the lowest-order Courant finite element space S} (7)) := PY(T) N H}(Q). Arguing as in the
continuous case, we obtain that the minimization problem

JUT) = min J(V) (5.3.3)

VesSH(T)

admits a unique discrete solution U(T) € S}(T), which satisfies
(LU(T), V) = /Q fVdx forall Ve S)(T). (5.3.4)
Define F(Q) := |Q|?*7'Q for all Q € R%. There holds the Céa Lemma [13, Lemma 3.1] for
all T eT
[E(Vul) = F(IVU(T)DI 2@) < Coea puin IE(Vul) = F(VV D z20)- (5.3.5)

In terms of Chapter 4, we define T=Tand T = 7. With 1/p+1/q =1, the residual error
estimator 7(+) reads

Fr(T)? o= | TP/ / (VU + (T )2 P de
T

+|TVYEFVUT)) - nlllZ20rn)

forall T € T and all T € T (see [13, Section 3.2]).
Since the first term of 77(+) depends nonlinearly on U(7), [13, Section 3.2| introduces an
equivalent error estimator 7(-) with local contributions

ne(T)? = [T / (VP + [TV £1) 2 12 de

+ TN F(VU(T)) - nlllz20r0a)

for all T € T and all T € T. Note that 7(-) can only serve as a theoretical tool as it employs
the unknown solution w.

PROPOSITION 5.3.1. The residual error estimator (5.3.7) is a weighted error estimator
in the sense of Section 3.4, i.e.,

(T, h)* :=/Thl2T(|VUIp_1+hIT|fI)q2|f|2d93+th||[F(VU(T))-n]lliz(am)

(5.3.6)

(5.3.7)
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and satisfies
(i) homogeneity (3.4.1) with r.. = 1/2 and r_ =1 and stability (3.4.2) with

AT, T) = Cout |F(IVU(T)|) — (VU 200,

(i) general quasi-orthogonality (E2) with o(-,-) given by Proposition 3.4.1,
(iii) discrete reliability (E3) for all eqre1 > 0 with Cyrel *= Carel(€arel) and R(T, 7\') = 7'\7\'
as well as kKq, = 00,
(iv) the refinement azioms (T1)~(T3) with Capprox(s) < Cmon(Cs + 1)*|In, T||s for all
s> 0.
Moreover, the estimator is reliable (2.4.1) with err(T) := ||F(|Vu|) — F(|IVU(T)|)|l2)-
The constants Carel, Cqo, Cperts Crel depend only on the parameter p > 1, Ty, and on €.

PROOF. To see the homogeneity (3.4.1), consider the function g(t) := t?b*(a + tb)?2 for
some a,b > 0. The function ¢ is convex and hence there holds for 0 < o <1 that

glat) < ag(t) + (1 = a)g(0) = ag(t).
This shows g(at) < a*+g(t) for r, = 1/2. Moreover, we have

a®=g(t)  a*-t2*(a + th)? 2 oo (a+ tb)i—2 < {az”_Q q <2,

glat) - Q222 (a + atb)—2 (a+ ath)1=2 = |a®-"1 ¢>2.

For ¢ < 2, choose r_ = 1 and for ¢ > 2, choose r_ = ¢/2 to ensure a*-¢g(t) < g(at). Since
the first term of 9y (7, h) reads [, g(h|r)dz with a = |[Vu[P~! and b = |f| pointwise, the
above considerations imply

min a(z)[*" / B2 (VaP ™ + o f) 2P de
T

zeT

< [ @hB(TaP "+ @)l )P o
T

< il [ MV blrl)
T

xe

Since the second term in the definition of 7(-) behaves analogously, this implies homogene-
ity (3.4.1). Since the first term of n(-,h) does not depend on T, standard inverse esti-
mates as for the linear case (Proposition 5.2.1) prove stability (3.4.2) (see also [13, Propo-
sition 4.4]). Reliability (2.4.1) is proved in [13, Lemma 3.5]. The discrete reliability (E3)

with R(T,T) = T\7A' for 7(+) follows from [13, Lemma 3.7|. Together with the equivalence
from [13, Proposition 4.2|, there holds for all 6 > 0

oAT.TVS D w(MP<Cs Y. ne(T)? + derr(T)2
TER(T,T) TeR(T,T)

The constant Cs > 0 is defined in [13, Proposition 4.2]. Together with reliability (E3),
this proves discrete reliability (E3) for all eqe1 > 0, where Cgep > 0 depends on eq,1. The
statement (iv) follows as in Proposition 3.5.1. To see general quasi-orthogonality (E2),

consider [13, Lemma 3.2], which implies for all refinements 7 € T(T)
TJWU(T)) = T (w) = |F(IVul) = F(VU(T)]I32(0)-
JU(T) = TJWU(T)) = [IF(IVU(T)]) = F(IVU(T)DI 20
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with hidden constants, which depend only on p > 1. This immediately implies for all
¢ < N € N that

S T TS TWU(T)) = T(U(Tew))
- j(U(ﬁ)) - j(U(TN-H))
< JWU(TD) = T (w) ~ [|[F(|Vul) = F(VU(T)) 720

Together with reliability (2.4.1), this implies (E2) with ¢, = 0. O

PROPOSITION 5.3.2. The estimators n(-) and 1(-) are globally equivalent in the sense
of (4.2.1). Moreover, (4.2.2) holds with

M=M= M.

The weight-function h(T) satisfies (4.5.1) as well as (4.5.2) and (4.5.6) is satisfied with the
trivial patch function w(S,T) :=S. Together with Proposition 5.3.1, all the assumptions of
Theorem 4.5.3 are satisfied.

PROOF. The global equivalence (4.2.1) is proved in [13, Corollary 4.3]. The equivalence
from [13, Proposition 4.2| implies for all § > 0 and all T € T

nr(T)* < Ciir (T)? + 0| F(IVul) = FIVU(T)DI L.
1r(T)* < Conr(T)? + 0| F(IVul) = F(IVU(T)DI L2y

where Cs > 0 depends only on p > 1 and on 6. With this, the implication (4.2.2a) follows
from reliability (2.4.1) and global equivalence (4.2.1) by

On(T)” < 0Cs,7i(T)* + 06, F(|Vul) = F(VU(T)) 720y

< 0(Cs, + 5101«2610eq)77<T)2
< (051 + 51036106(1) Z ﬁT(T)Q

TeM
< (Co +01C2Ce) (Co Y me(T)? + BIF(Vul) = FIVU(T) ey
TeM
< (G +01C2Ce) (Co Y me(T)? + 82C2m(T)?).

TeM

For arbitrary §; > 0, choose dy sufficiently small such that (Cs, + 0102, Ceq)da < 0 to

rel
conclude (4.2.2a). The analogous argument shows also (4.2.2b). The remaining statements

follow as in Section 5.2.2. O

CONSEQUENCE 5.3.3. Let s > 0 with ||n, T||s < co. Then, the adaptive algorithm leads
to convergence with optimal rate for 1(-) in the sense of Theorem 4.5.3. 0

Numerical examples for 2D that underline the above result can be found in [13].
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5.4. Example 3: Non-homogeneous and mixed boundary conditions

The literature on adaptive finite elements focuses on homogeneous Dirichlet conditions
with the exception of [11, 66, 48, 4]. This section extends the previous results to non-
homogeneous boundary conditions of mixed Dirichlet-Neumann-Robin type, where inho-
mogeneous Dirichlet conditions enforce some additional discretization error. The present
section is based on [24, Section 11] and improves [4| since we show that standard Dorfler
marking (2.2.1) leads to convergence with optimal rates if the Scott-Zhang projection 76|
is used for the discretization of the Dirichlet data [4, 74]. The heart of the analysis is the
application of the super-contractive weight function h,(7) from Proposition 4.5.4.

5.4.1. Model problem. The Laplace model problem in R? for d > 2 with mixed
Dirichlet-Neumann-Robin boundary conditions splits the boundary I' of the Lipschitz do-
main Q C R? into three (relatively) open and pairwise disjoint boundary parts 992 =
PDUFNUPR. Given data f € L2(Q); dp € Hl(PD), ¢N € L2(PN), ¢R € L2(FR), and
a € L>(Tg) with @ > ap > 0 almost everywhere on I'g, the problem seeks u € H'(Q2) with

—Au=f in €, (5.4.1a)
u=g¢gp onlp, (5.4.1b)
Ou=o¢n on 'y, (5.4.1¢)

¢or —au = 0,u on I'g. (5.4.1d)

The presentation focuses on the case that |I'pl,|Tg| > 0, with possibly I'y = 0. However,
the cases I'p = 0 and [T'g| > 0, |I'p| > 0 and 'y = (), as well as the pure Neumann problem
'y = 0f) are also covered by the abstract analysis.

5.4.2. Weak formulation. The weak formulation of (5.4.1) seeks u € X := H'(Q)
such that

u = gp on ['p in the sense of traces (5.4.2a)

and all v € HH(Q) := {v e H'(Q) : v=0o0nTIp} satisfy

b(u,v) := / Vu-Vudz +/ auvds = RHS(v) (5.4.2b)
Q Tr
with
RHS(v) := / fodx + onvds + GRv ds. (5.4.2¢)
Q I'n I'r
Since [I'z| > 0 and a > o > 0, the norm || - || := b(-,-)*/? is equivalent to the H'(Q)-norm.

Let up € H'(Q) with up|r = gp be an arbitrary lifting of the given Dirichlet data and
set ug :=u —up € H5(Q2). Then, (5.4.2) is equivalent to seek uy € Hp(Q) with

b(ug,v) = RHS(v) — b(up,v) for allv € H,H(Q). (5.4.3)

According to the Lax-Milgram lemma, the auxiliary problem (5.4.3) admits a unique solution
ug € H'(Q) and thus u := ug + up is the unique solution of (5.4.2).
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5.4.3. FEM discretization and approximation of Dirichlet data. Assume the
initial triangulation 7y, and hence all triangulations 7 € T of €2, to resolve the boundary
conditions in the sense that for all facets £ C 02 on the boundary, there holds £ C 7 for
some v € {I'p,I'n, g} and let T(-,-) denote bisection from Section 3.2.8. Let SP(T) :=
PP(T) N HH(Q) with fixed polynomial order p > 1. To discretize the given Dirichlet data
gp, for any given triangulation 7 € T, choose an approximation

GD(T) c Sp<T|pD) = {V‘[‘D Ve SP(T)}

of the Dirichlet data gp. Here and throughout this section, let T|r, := {T|r, : T € T} de-
note the restriction of the volume triangulation to the Dirichlet boundary I'p, and SP(7T |r,,)
is the discrete trace space. A convenient way to choose this approximation independently of
the spatial dimension is the Scott-Zhang projection J(7) : HY(Q) — SP(T) from [76]. The
formal definition also allows for an operator J(7|r,) : L*(Tp) — SP(T|r,,) on the boundary
(see also Definition 3.3.2 for details). The reader is referred to [4] for details and further
discussions.
The discrete counterpart of (5.4.2) seeks U(T) € SP(T) such that

U(T)lrp, = Gp(T), (5.4.4a)
b(U(T),V)=f(V) foralVeSh(T). (5.4.4b)

As in the continuous case, (5.4.4) admits a unique solution and there holds a general Céa
lemma

-U 1 < C 1 — Vg 5.4.5
|u = U(T)|lm ) < Co poain v = V@), (5.4.5)

where Cys > 0 depends only on the boundary parts, p, the shape regularity (3.2.5), and on
a. The Céa lemma (5.4.5) is proved in [4, Proposition 2| for the case I'r = (). The proof,
however, transfers to the present case with the obvious modifications.

5.4.4. Quasi-optimal convergence. The derivation of the residual-based error esti-
mator 7)(7") follows similarly to the homogeneous case and differs only by adding an oscillation
term to control the approximation of the Dirichlet data [4, 11, 48, 74]. With the weight
function h(7)|r := |T'|*/¢ for all T € T, the local contributions read

nr(T) = M) + ArUTI22iy + AT l0.U (T 20700
+ (T2 (6r — aU(T) = 0.U (T Z20r0r )
+ |(T) 2 (én = 0U(T) 1 Z2orery) + divr(T)?,
where
dirp(7)* = W(T)|zll(1 = Tp-1(T |r,)) Vegnli2orar.,)

and I1,_1(T|r,) : L*(Tp) = PP (Tlr,) == {VIr, : V € PPYT)} is the (piecewise)
L?-orthogonal projection, and Vr(-) denotes the surface gradient.

For each facet E C 0f), there exists a unique element T € 7 such that £ C 07. In
particular, h(7) also induces a weight function on v € {I'p, 'y, 'g}.

The following proposition shows that inhomogeneous (and mixed) boundary data fit in
the framework of our abstract analysis. Emphasis is on the novel quasi-orthogonality (E2)
which improves the analysis of [4] on separate Dorfler marking. The super-contractive weight
function h,(7T) from Proposition 4.5.4 establishes optimal convergence of Algorithm 2.2.1
with the standard Dorfler marking (2.2.1).
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Given 7 € T and S C T, define the 5-patch by
WS(S,T) = {TGT ATy, ..., Ty €T, Ty €S, T4ﬂT7£®,
TiNT #0,i=0,...,3}.

PROPOSITION 5.4.1. The conforming discretization of the Poisson problem (5.4.2) with
residual error estimator n(-) satisfies

(i) stability and reduction (BE1) with o(T,T) := Cpert||U(T) — U(7A')HH3(Q) as well as
S(T.T)=T\T and S(T,T) =T\T,
(i) general quasi-orthogonality (E2),
(iii) discrete reliability (E3) with R(T,T) = w*(T\T,T), kax = 00, and qre = 0,
(iv) the refinement azioms (T1)—~(T3) with Capprox(s) < Cmon(Cys + 1)%||n, T||s for all
s> 0.
Moreover, the estimator satisfies (2.4.1)(2.4.2) with erx(T) := ||u — U(T)||ur () and

data(7)* := dir(7)* + min )Hh(T)(f — P20

(5.4.6)

Fepr—1(T
@ePprPll(rflr‘FN) [R(T) " (on Mz2n (5.4.7)

i R(T)Y2(dg — @) 220 1.
@epggg‘rR)I| (T) " (or — ®)I72(rp)

The constants Carel, Cqo, Cperts Crel; Cest depend only on the parameter p > 1, Ty, and on Q.

PRrROOF. Efficiency (2.4.2) can be found in [11, 74| or [4, Proposition 3|. The proof
of (5.4.7) follows similarly to that of Proposition 3.5.1 and exploits that A7U(T)|r is a
polynomial of degree < p — 2.

The proofs of stability and reduction (E1) are verbatim to the case with ' = () from [4,
Proposition 11]. The proof of discrete reliability (E3) is more involved, however, the difficul-
ties arise only due to the approximation of the Dirichlet data and the non-local H'/2(Tp)-
norm. The proof in [4, Proposition 21| for 'y = () generalizes to the present case. The
statement (iv) follows as for the homogeneous case in Section 3.5.1.

It remains to verify the quasi-orthogonality (2.7.5) which implies (E2) by virtue of
Lemma 2.7.3. The 5-patch w®(-, -) is a patch function in the sense of Section 4.5.1. Moreover,
the weight function h(7) satisfies the assumptions of Section 4.5. Hence, Proposition 4.5.4
provides a super contractive weight function h,s(-). It is proved in [4, Lemma 20] for ' = ()

that there holds for all g, > 0 and all T € T(T), T € T, that
IU(T) = U< llu = UTI? = (1 = eqo)llu — UT)]?
+ Coyingao 1T (Tlrn) = J(TIep))gnllire)s

where Cpyn > 0 depends only on T and I'p. Although [4] considers I'r = ) and hence
|- | = [IV(-)|lr2(), the proof transfers to the present case.
The focus in the derivation of quasi-orthogonality (2.7.5) is on the last term on the

right-hand side. First, let w3 (T\T,T) C Tlr, denote the set of all facets £ of T with
E CTpnUw?(T\T,T). It is part of the proof of [4, Proposition 21] that there exists a
uniform constant Cy; > 0 such that any triangulation 7 € T and all refinements 7 € T(T)
of T € T satisfy

1 (Tlew) = T(T )0l rsaey) < Corll (T (1 =T (T e ) Veoll 2 o)
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for all v € H'(T'p). We note that this result hinges on the use of bisection (Section 3.2.8) in
the sense that the constant Cy; > 0 depends on the shape of all possible patches. By means
of Lemma 3.3.3, the proof of [4, Proposition 21| can be extended to triangulations in the
sense of Section 3.2.1-3.2.7.

This estimate is applied for v = gp. The definition of k. s(7) in Proposition 4.5.4 implies

hes(T) < hos(T)  pointwise on all T € T,
hes(T) < qschos(T)  pointwise on all T € T with MT) w7y # h(’?ﬂuw(T,’?)-
Piecall that h( )|Uw5(TT # h(T )|Uw5(T 7 1s in the present case equivalent to (T, T)NT\
T#0or T €w’(T\T,T). Hence, we obtain
hos (T) < gschos (T)  pointwise on all T € (T \ T, 7).
This implies
(1= se) hor(T)| 7y < hus (T) = hoa(T)  pointwise in Q.
The contraction above allows to write
(1= gl (T) 20— (T 1) ) Veg0 s s i)
< s (T) 21 = TP (T e ) Vrgnllzaey,) — s (T)V2(1 = TP (T 1r,)) Vegnl 2o ) -
This and the element wise best-approximation property of Hp’l(ﬂpD) prove that
s (T2 (1 = TP (T Iep)) Vool Fawp) < s ()21 =TT 10,) Vegn iz,
With h(7T) < Ci9hys(T) from Proposition 4.5.4, we obtain
(1= O 1T T (Tle,) Vel 2 s (i)
< lhes ()21 = TP (T r,)) Vgl zae )
— [lhus ()21 = 7Y (T|r,)) Vegnl 2o ) -
The combination of the previous arguments leads to
1T (TIry) = J(Tle))gnl3paw,, < a(T)? —a(T)?,
where
o(T) = Co"C1g” (1= gee) ™2l (T) 21 = TP X (T |r)) Vgl -

By equivalence (4.5.9), one obtains (2.7.5b) and hence Lemma 2.7.3 proves general quasi-
orthogonality (E2). This concludes the proof. O

REMARK 5.4.2. We briefly comment on the case I'r = () with
[0l = 1V oll7e@) + Va2, # b0, 0).

The Rellich compactness theorem gquarantees that || - || is an equivalent norm in H*(S). The
combination with |4, Lemma 20| (i.e. (5.4.8) with || - || = ||V ()||12(2)) proves for sufficiently
small 4o < 1 that

1U(T) = UM < IV = UT)2ai0) — (1= ) IV = UT)) 220
+ Coymnao (T (TTrp) = T(Tlep)) g0l 3

With (5.4.9) instead of (5.4.8), the arguments in the proof of Proposition 5.4.1 remain valid.
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The adaptive FEM for the mixed boundary value boundary (5.4.1) satisfies all assump-
tions of the abstract framework.

CONSEQUENCE 5.4.3. The adaptive algorithm leads to convergence with optimal rate
for the estimator n(T) in the sense of Theorem 2.5.3. For optimal rates of the discretization

error in the sense of Theorem 2.4.3, additional reqularity of the data has to be imposed for
higher-order elements p > 1, cf. Consequence 3.5.2. O
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CHAPTER 6

Applications III: Adaptive BEM with Geometry Approximation

6.1. Introduction, state of the art & outline

This chapter treats the weakly-singular integral equation from Section 3.5.3 for gen-
eral boundaries. Most of the literature concerns piecewise polynomial boundary geome-
tries [20, 28, 33, 34, 27, 47|. One way to circumvent this, is to employ the isogeometric
approach, where the boundary is given in terms of B-splines or NURBS which stem from
computer aided design systems. This, however, involves the drawback, that one has to
compute the integral operators on nonstandard geometries, which is at the moment not
supported by available BEM libraries, and moreover is expensive. The approach proceeded
here, is to approximate the boundary by piecewise affine line segments and to perform the
computation on the approximate polygonal boundary. This allows to employ standard BEM
implementations and moreover enables to compute the operator matrices analytically in 2D.
To estimate the approximation error, we develop an error estimator, which reliably estimates
the discretization error of the approximation spaces as well as the geometric approximation
error introduced by the approximate boundary. While there are some results on geometry
approximation for the finite element method [15, 63, 38, 42|, this is the first a posteriori
analysis of geometry approximation for the boundary element method (several a priori results
for BEM are available in, e.g. [75, 67]). Under some assumptions, we are able to prove plain
convergence in the sense of (2.3.1) of the error estimator and the approximate solutions.
The remainder of the chapter is organized as follows: Section 6.2 states the assumptions on
the geometry and introduces the geometric error estimator. The main result of this chapter
is stated in Section 6.4 and the convergence proof is given in Section 6.3.

6.2. Setting

Consider the weakly-singular integral equation on the boundary I' := 0f) of a connected
Lipschitz domain 2 C R? with diam(Q) < 1

Vu = f,

where the weakly-singular integral operator V : H—V/2(I') — H'/2(T') is given by (3.5.11).
6.2.0.1. Ezact and approrimate geometry. Let the exact boundary I' := 9% allow for a
piecewise smooth parametrization v : [0,1] — T such that both v and y~! are Lipschitz
continuous with constant C, > 0 and |y/(s)| = |I'| for all s € [0,1] (to avoid problems
with the endpoints of [0,1], we identify {0} and {1} and consider the metric d(s,t) :=
min{|s — ¢|,|1 — s| + 0 — ¢,|0 — s| + |1 — ¢|} on [0,1]). Let tr denote the unit tangent
on I' and let nr denote the unit normal. By Or, we denote the arc-length derivative on
I' (see Definition 6.2.5 below). We assume that I" has bounded curvature in the sense
that ||Oprtr||ze@) < kr (where O is understood piecewise on smooth parts of I') for some
kr > 0. Any approximate boundary I', must be a nodal interpolation of I' with nodes
K, C I'NT,. The finitely many non-smooth points Pr of I" have to satisfy Pr C K, and
the enclosed domain €, (i.e., 9, = T',) must satisfy diam(€2,) < 1 — gcate for some uniform
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Escale > 0 (Note that this can always be achieved by scaling of the exact boundary I'). The
approximation I', is associated with the partition 7, which consists of the compact line
segments of I',. We call the pair (7;,T",) an approximate geometry. Each element 7" € T,
satisfies

TATCK, oo TNT =T,

i.e., the exact boundary touches elements only at the nodes or coincides exactly with the
element. Each T € 7, defines a unique compact curve segment 7% C T' with the same
endpoints as T'. The collection of all this curve segments defines a partition 7.l of I'. To
avoid degenerate cases, we consider only partitions with |T"| < |T'|/2 for all T € T,.
Consider the map v, : I' = I', (see Figure 2 for an illustration) implicitly defined by
7(T) C ' forall T € T,
(x — Y (x)) - tr(z) =0 forallz €I\ Pr, (6.2.1)

Y(x) =2z forall x € K,.

Note that the subscript * denotes the relation to the approximate geometry (7, ).

REMARK 6.2.1. In Lemma 6.2.17 below, we introduce an extension v,: R? — R2,
Hence, after Lemma 6.2.17, v, s also used to denote its extension, where the meaning will
be clear from the context.

The approximate geometry (7, T,) must be sufficiently close to " such that (I'2)—(T'4)
hold for uniform constants Cr;,, C), > 0

(I'1) The orthogonal projection v, : I' — TI', from (6.2.1) is well-defined and uniquely
determined, piecewise smooth, and is a continuous one-to-one map.
(I'2) All z,y € T satisfy
Criplz =yl < Jrul(@) = % ()| < Criple —yl.
(T'3) All T € T, with endpoints x7,yr € T satisfy that each x € T defines a unique
y € TV with
(—y)- (xzr —yr) =0.
This defines a map p, : T' — T, by p.(y) := x (see Figure 2 for an illustration).
(T'4) There holds
CH lidr — vl Zoo oy < lidp = pallfoery < llide = 2l 7 ry-
Note that the upper bound holds for any geometry I',, since pu, is the orthogonal
projection onto I',.

Lemma 6.2.9 below gives some sufficient conditions which imply (I'1)—(I'4).
6.2.0.2. Approzimate solution. With the T,-piecewise constant functions P°(T,), the
Galerkin approximation U(T;) € P°(T;) is the solution of

/ VU(T)Vdr= [ fVdx forall Ve P (T), (6.2.2)

I

where
1
Vaw(r) = —2—/ log |z — ylw(y) dy
v I

denotes the weakly-singular integral operator on T, and f, := f o~ L.
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TF
I

FIGURE 1. Boundary I with tangent vector ¢ and normal vector nr as well
as approximate geometry (7,,T) with element 7" € 7, and corresponding
" CT.

Vi () px ()

FIGURE 2. The mappings v, and p.

We propose to approximate the exact solution u ~ U(T;)l' by
U(T%)F = U(Ts) © 74|97l

6.2.1. Error estimator. The partition 7, induces a local weight function h,|r := |T'] :=
length(7") for all T' € T,. The error quantity of interest is
lu = U(T) =129
With the identity mapping idp : I' — I' and the geometric error

geo(7,) := max{||idr — %Hi{i(r)a [t = OrvellLo () 3 (6.2.3)

the error estimator reads

n(T:) = (1200, (VU (T) = £ 2aqr,)

N (6.2.4)

+geo(T,)* (1 + | log(geo(T2))[*) | U( *)||L2(I‘*)> :
For brevity of notation, we write p(7;) := Hh1/2 or, VU(T.)— fo)ll2(r,) and define the element
wise contributions for all TeT,

pr(T2) = bl 1|0r, VU(TL) = f)llraery

geor(Ts) := max{[lidr — Y| /2 ey, 110 - amumr)}.

(6.2.5)

6.2.2. Adaptive geometry approximation. We propose a modified version of Algo-
rithm 2.2.1 which includes also the geometric error (a similar algorithm can also be found
in [15] for FEM). To that end, choose an initial approximation I'g as well as the corresponding
partition 7Ty of I'g such that the requirements of Section 6.2.0.1 are satisfied.
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FIGURE 3. The curve segments I'} and T'Y .

ALGORITHM 6.2.2. INPUT: Initial triangulation To and parameters 0 < 6 < 1, 0 <
U <1
Loop: For(=0,1,2,... do (i) — (iv).
(i) Compute solution U(T;) of (6.2.2).
(ii) Compute error estimators pr(Te) and geop(Ty) for all T € Ty.
(iii) Determine a set of marked elements M, C T, with minimal cardinality which satis-
fies the Dorfler marking

0p(Te)* < Y pr(Te)” (6.2.6a)
TeM,
as well as
M2 A{T € T; : geor(Ty) > dgeo(Tr) } (6.2.6b)

(iv) Define the next partition Tory = T(Ty, My) as detailed in Section 6.2.5 below.
OUTPUT: Error estimators (1(T;))een, and approvimations (U(Ty)')sen, -

6.2.3. Some definitions. Below, we provide some definitions which are used through-
out this chapter.

DEFINITION 6.2.3. Given x,y € I', define the compact and connected set I'Y C I' with
z,y €'Y as

/ 1dz = inf { / ldz : T CT compact and connected with x,y € f}
ry r

x

The set on the right-hand side is non-empty due to the fact that I' is connected by assumption.
Let x7,yr € TNT denote the endpoints of T € T,. Note that since |T"| < |T'|/2, there holds
" = Iyr.  Given the approrimate geometry Ty and x,y € T, define the compact and
connected set T'Y  C Ty with x,y € T'Y , as

/ 1dx = inf { / ldr : T C I'y compact and connected with x,y € f}
Ty, r

See also Figure 3 for an illustration.

DEFINITION 6.2.4. For a boundary part w C I'UT, with a given approximate geometry
I, we denote by |w| := fw 1 dx the length of the curve. Moreover, given subsets w,w’ C I'UL,,
define

dist(w,w’) := $eciunyf€w, |z —y| > 0.
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DEFINITION 6.2.5 (Arc-length derivative). Given any approzimate geometry I, (also
the exact geometry T is allowed here), v € Ty, and g : T, — R%, d € {1,2}, the arc-length
derivative Op, g(x) (if exists) is defined as follows: Choose some 6 > 0 and some continuous
one-to-one mapping ¥, : (=06,0) — Ty with v,..(0) = x and v, ,(s) = tr, © Y .(s) almost
everywhere in (—9,06). Then, define

Or,9(x) == (g 0 70)'(0) € RY. (6.2.7)

The definition is unique since v, is uniquely defined locally around zero.

Given another approzimate geometry Uy (also the exact geometry U is allowed here) and
g: Ty — T, the arc-length derivative Or,g(z) can be defined as in (6.2.7), or in the scalar
version as

0, 9(2) = (Ve ga) © 9 © Vx)'(0) € R (6.2.8)
There holds the identity
I, 9(7) = (Yog@) © Vag(a) © 9 © W2) (0) = Ve () (0)05, g() = tr, © g(2)3} g(z).  (6.2.9)
Finally, for a function g: RY = T,, d > 1, and some z € R? define
02g(x) == 07, © 9)(2) € R.
There holds the identity
0:9() = Y92y (0)02g(x) = tr 0 g(x)0Zg(x). (6.2.10)

DEFINITION 6.2.6. Given any approzimate geometry Iy (also the exact geometry ' is
allowed here), choose a parametrization yp, : [0, |I',|] = I'sx with vp,(0) = yr, (|[Ik]) and yp, =
tr, or,. Then, there holds for smooth functions g1, g2: I'x — R that Or,g; = (g;or,) Ofyil
and integration by parts

.| .|
/ Or, 01 g2 dz = / (Or,91) ©r, g2 01, do = / (gro7r,) g2 0, da
Iy 0 0

.|
= —/ gror, (g2or,) de = —/ g1 0r, g2 da.
0 T,

With this, we define
HYT,) :={g € L*(T\) : dr.g € L*(T,) in the weak sense}.

The spaces H*(T',) := [LQ(F*), HY(T,)]s2 are defined by real interpolation for all s € (0,1).
By H=5(T',) we denote the dual space of H*(T,) with respect to the extended L*(T,) scalar
product.

LEMMA 6.2.7 (Chain-rule). Given the approximate geometries Ty, Ty, T'y (also the
exact geometry T is allowed instead of each of the approrimate geometries) as well as p :
I, = Te, \: Ty =T, and g : I'y — R Then, there holds almost everywhere in T,

Ir.(gop) = (0r.g)opndi p and Op (Ao p)=(9p,A)opdi (6.2.11a)

in the sense that each side exists if and only if the other one does, too. Moreover, for
w: R? — T, there holds

0.(Aop) = (O, \) o po;p. (6.2.11b)
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PROOF. By definition, there holds
O, (g0 p)(@) = (g0 10 %uw) (0) = (9 ° Vo utx) © Vapa) © 1° V2) (0)
= (Or.9) © ()0, p,

as well as

35, (Ao 1) = (V; hoptey © A 0110 %) (0) = (Y hopa) © A © Vou(a) © V(e © 1.0 Ywoz)'(0)

= (0p, ) o p(x) O, pu(x).
The identity (6.2.11b) follows by
02 (A o 1)(2) = 02(A © Ve ) © Vo) © 1)(@) = (B0 ) 0 ppa.

LEMMA 6.2.8. Given an approzimate geometry T, with (I'1)—(T'2), there holds
(Or, %) o = (087) ™" and [(Or,") ol = [or (6.2.12)
PROOF. The chain rule (6.2.11) shows
L=0p(r " o v) = (07,951 0 7 O
Since (I'2) implies 9fv, # 0, the first statement follows. The identity (6.2.9) proves the

second statement. O

6.2.4. Sufficient conditions for approximate geometries. Below, we investigate
the claimed properties of the exact and approximate geometries.

LEMMA 6.2.9. There exists a constant Cr > 0 which depends only on ', such that all
x,y € I' satisfy

Crllz —y| < 1Y < Crlz —yl. (6.2.13)
Under (I'2) all x,y € T, satisfy
Cr'Crplr —yl < T, | < CripCrle — y| (6.2.14)
and under (T'1), there holds
Opr) ™t =35, () o >0 (6.2.15)

almost everywhere on I'. Moreover, there exist constants hyr > 0 and er > 0 such that for
the approrimate geometry T, holds
(i) hy < Crlip'/2 implies (T'3) and (T'4) with C, = 2Cr,
(ii) hy < Cplrpt/2 and geo(Ty) < kp'/2 imply (T'1),
(iii) geo(Ty) < Cp'/2 implies (T'2).
PROOF OF (6.2.13). Without loss of generality, assume that {0,1} ¢ v~ '(I'¥). The as-
sumption that || is constant and the minimality of T'Y shows that |y~ }(T'%)] < 1/2 and

hence |y~ 1(x) — v Hy)| = d(v " (z),v *(y)) (where d(-,-) defines the metric on [0, 1] from
Section 6.2.0.1). With this, there holds

7 Hy)
r= [ 1de= [ e < sl ) <701 S o - ol
ry !

~Ha)
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as well as

7 Hy)
|x—yhsw4@»—v*@n=}/" 1m4=\/|&w*usnﬂy
vy~ (z) ry
]

PROOF OF (11). To see (I'1), we apply the implicit function theorem. Let T' € T, with
endpoints zr,yr € T, and let vp : (0,1) — T,vr(s) := (xr — yr)s + yr be an affine
parametrization of the interior of 7. The implicit definition (6.2.1) rewrites as follows: Find
3r ¢ [0,1] — [0, 1] such that

F(t,3p(t)) =0 forallt € v (T"), where F(t,s) = (y(t) —y7(s)) - tr o y(t). (6.2.16)

Since I' and ~ are piecewise smooth, there holds that F': v~1(T7) x (0,1) — R is smooth.
If O,F (tg,s0) # 0 for all (tg,s0) € v 1(T") x [0,1], the implicit function theorem provides
a unique map 7 : 7 HT') — (0,1) which is smooth and satisfies (6.2.16). With this,
Y(x) =7 0o Jr oy~ 1(z) for all z € T'\ {zr,yr} satisfies (I'1) up to injectiveness (which is
shown below).

To prove OsF (to, s0) = (v — yr) - tr o y(to) # 0, assume

0= 85F(t0, 80) = (ZL‘T - yT) . tr‘ o} ’)/(to) = /TF tF(Z) . tr‘ o) ’y(to) dz. (6217)

The integrand r(z) := tr(z) - tr o y(to) satisfies r(y(to)) = 1. Due to (6.2.17), there exists at
least one 2’ € TT with r(z’) = 0. This implies the existence of 2” € T" such that

ke > [(rte)(2")] 2 [(Orr) (")) 2 TV = CFfar — yr| ™
where we used 7" = T'Y”. This shows
kp Cr' < lor = yr| < [lhallz=cr.)-

This shows that for h, < kp'Crt, O,F (to, s0) # 0 and hence (I'1) up to injectiveness.
To prove that 7, is injective, consider

0=0,F(t,7r(t)) = (QF)(t,3r(t)) + (O F) (¢, 7r(t)) 37 (1),
which implies by use of 7/(t) = ||t o v(¢)

- F(t,9r(t))

R0l = [ i e o

'(t) - tro(t) + (v(t) =y 0 Ar(t)) - (tr 07)'(t)
(z7 —yr) - tr o (1)
> OI =16 = v 0 e @)10rte ]l (O]
> I
Hence, for |(v(t) —yro3r(t))| < geo(T,)? < kp'/2, there holds with the Lipschitz continuity
of v

el = W (1)1/2= ;1 >0,

which implies that ¥7: [0, 1] — [0, 1] is strictly monotone and hence injective. By definition,
Ye|rr = yr 0 Yr 0y~ ! is also injective. O
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PROOF OF (1) = (I'3). The property (I'3) can be seen as follows: Let 4,3, € T such
that (y1 —x) - (zr —yr) = (Y2 — =) - (x7 — yr) = 0 for some x € T'. Then, there holds

0= (1 —y2) (2r —yr) = /ry? tr(2) - (xp — yr) dz. (6.2.18)

Rolle’s theorem provides zy € T with |tr(29) - (z7 — yr)| = |rr — yr|. Hence, the integrand
r(z) == tr(2) - (xr — yr) satisfies |r(z)| = |7 — yr|. Assume y; # yo, then (6.2.18) shows
r(z1) = 0 for at least one z; € ['¥2. This implies for some 2, € "

T Hor — yr| < T2 ar — yr| < |0rr(22)] < lor — yrlsr.
Hence, y; = y for |T7| < kp'/2 or h, < kp'Cp'/2. This implies (I'3). O
PROOF OF (111). To see (I'2) consider
(@) = %) < o =yl + |z = 2(z) = (¥ = 2%(y))]
<lz—y|+ ’/ tr(z) — Orv.(2) dz}

< |z — y| + geo(TH)|TY|
< (14 Crgeo(Ty))|r — y,

as well as
(@) = %) = |z —y| — |2 — (@) = (v — %))
< (1 = Crgeo(Ty))|z — yl.
Therefore, (I'2) holds for geo(T;) < Cpt/2. O

PROOF OF (6.2.14)—(6.2.15). To see (6.2.15), apply (6.2.11) to see

1=03(idr) = O3(v, " o) = 05, (7 ) © 1 O

This shows that dpvy, # 0 almost everywhere on I'. Moreover, since -, is piecewise smooth,
%7, < 0 is only possible if 9%v, < 0 in the interior of some element 7' for T' € T, with
endpoints x7 and y7. However, this in combination with (6.2.9) and tr, = (yr—a71)(|lyr—x7|)
yields the contradiction

2.9
yr — o1 = Y (yr) — (o) / I )dZ = )/ tr, © Yu(2)0pVi(2) dz
/ Ofvx(2) dz.
|?/T - $T| T
This proves (6.2.15).

To see (6.2.14), assume (I'2). Then there holds v, ('Y ,) = Fz*jg)), since the bi-Lipschitz
property (I'2) ensures that endpoints are mapped to endpoints. This, however, implies

Ty *|—/ mx:/ 10017 (@) de = [IT5 )] = [ — g,
F%* ’YII(F%*)

where we used C—}

Lip = < |8F*7* | < CLlp U
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FIGURE 4. The bisection of an element 7' € 7, into its sons 1,15 according
to Algorithm 6.2.10.

PROOF OF (1) = (T'4). Let € T for some T € 7, and consider the right triangle
with nodes (x,7.(z), u«(z)) as depicted in Figure 2. Let a > 0 denote the interior angle
at the point x. By definition, the right-angle is at p.(x). There holds by the Pythagoras
theorem

2 =@ = [¢ = (@) + 1) = (@) = | = (@) + 2 — 7()] sin(a)
and hence
> = |z — pa() . (6.2.19)

Obviously, « is also the angle between 7" and tr(x). Hence, one obtains with zp,yr € I'NT
denoting the endpoints of T’

l‘ —
| cos(a)| = [tr(z) - 2| = ’\SUT - yT\I/ tr(z) - tr(2) dz|.
|z = yr| riT

The integrand r(z) := tr(x) - tr(z) satisfies r(x) = 1 and therefore also |r(z) — r(z)| <
|07 || oo rory [TYE| < kp|TZ]. For h, < Cr'kr'/2, this implies 7(z) > 1/2 for all z € TYT
and hence

cos?(a)|z — 7. ()

| cos(@)| > |zr — yr|HT¥E]/2 > CR1/2 > 0. (6.2.20)
Together with (6.2.19), this implies

1
DTomian W@ < |z — (@) <z — (@)

n

6.2.5. Mesh refinement. Assume an approximate geometry (7;,T) and define the
convex hull of two points z,y € R? by [z,y] := {AMz —y)+y : 0 <A <1} C R% To bisect
a given element T € T, apply the following algorithm (see also Figure 4 for an illustration)

ALGORITHM 6.2.10. 7.7 := bisect(7,,T)

(i) Compute cr := (xr + yr)/2, where xp,yr € K, NT are the endpoints of T'.
(ii) Find 20 € T" C T with (27 — cr) - (xr — yr) = 0.
(iii) Set T, = (T, \ {T}) U{T1, Tz} with Ty := [x7, 27| and Ty := |21, yr].
LEMMA 6.2.11. With (T'3), Algorithm 6.2.10 is well-defined and satisfies
T 1
max{| T3, [T} < == + lidre = pulloecr) < (5 + O oo T ITP, - (6:2:21)

as well as |T|/2 < min{|Ty|,|Tz|}, where {T1,To} = T.m \ T. denote the sons of T and
17| oo ([0,1]) @5 understood piecewise.
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PROOF. Since yr in Step (ii) of Algorithm 6.2.10 is unique due to (I'3), the algorithm is
well-defined. The Pythagoras theorem implies |T;|* = |T|?/4 + |27 — ps(27)|?. This implies
|T;| > |T|/2 and the first < in (6.2.21). Since T, is a nodal interpolation of T', a possible
parametrization of I, is given by L~y : [0,1] — Iy, where I : C([0,1]) — S'(Tjp,1)) is the
affine nodal interpoland on the partition 7} ;; which is induced by the nodes v~*(K,) C [0, 1].
By definition, (I,y) oy !(x) € T for all z € T". There holds for y € T

|y = m(y)l = min |y — 2| < |z = (Ly) oy~ (@) = |(v = Ly) o v (=)
< TPz oy < CTPIY |z o,

where the last norm on the right-hand side is understood piecewise. Thus, the above con-
cludes (6.2.21). O

Given a set of marked elements M, = {T},...,T,} C 7T, we define the refinement
T(7., M,) by bisection from Section 3.2.8, where we use bisect(-,-) to split the elements.
Note that the assumptions of Section 3.2.1-3.2.7 are satisfied.

6.2.6. Auxiliary results. This section provides several results which are used for the
a posteriori analysis of this chapter. Some of the techniques used in the proofs below are
similar to the a priori analysis (with uniform partitions on smooth geometries) in [75, Chap-
ter 8|.

LEMMA 6.2.12. Let x,y € T such that TY N'Pr = (). Then, there holds for an approzi-
mate geometry T, € T

(@ —y) - (@) = 2)| < wrCrle — yPllidr — ellz=r).
PROOF. Define r(2) := tr(2) - (7«(z) — x). By definition of 7,, there holds r(x) = 0. This
implies
= 9)-Oute) =)l =| [ @ =| [ [ ovr(wduwds
rY ry Jrz

< L2007 (w)l| ey < wrCElz — yl*lidr — Y| oo o).
0
LEMMA 6.2.13. There exists a constant Cos > 0 such that all x,y € T satisfy (i)—(iii).
Q) IfrynPr=0

lz —y|

i 10g ( )] < e = 00 ey + e = el
= |8\ ) — ()] L=(0) v

(ii) If 'Y NPr = {20}
|z —y|?
198 (o =,

-1
Cog

)| < e = el

+ [lidr — Yl [ ooy (1 + 2 —|i|iry||220 - yI)
as well as

bg< |z —y[?
() — 1(y)
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(i) If 2 #
1

|z —y|?

|z —yl|?
o8 (o~ P

PROOF. There holds for all ¢ € R

—1
Cog

).

)) < ltr — Oryallfeery + [lidr — Yl ooy (1 +

1
1——<log(a) <a-—1.
a

This implies

[z — y? = [7() — % (y)? |z —y|? [z —y? = [7(z) — 7% (y)?
@ — P <108 (L =) S T
and hence
. |z — y? o (@) = %@ = |z — y)?|
’1 g(I%(af) —w(y)P)’ = Cip |z —yl?
_ Cﬁip |.T - 7*<x‘> - (y|2_ 7*(34))‘2 (6.2.22)
T—y
Loce, [(z — Yu(z) — |(§:/ - Z‘*Q(y))) (z =yl

The first term on the right-hand side is estimated by

|z — () — (y — () ]> = | . O (idr — ) (s) ds|* < [[tr — Oyl Loo(ry ITEI
< CRlltr — Oyl Zoe (|2 — wl*. (6.2.23)

The second term on the right-hand side of (6.2.22) is treated separately for each case.
Case (i): There holds with Lemma 6.2.12

(2 = 7u(z) = (y = %)) - (x = y)| < 26rCElz — yP[lidr — 7| oo ().
Case (iii): There holds
(2 —7%(®) = (¥ — %)) - (@ — )| <2/[idr — %l|zo )|z — ¥l
Case (ii): Lemma 6.2.12 shows
(= 7(z) = (¥ — %(w))) - (z — )]
< |(r = 7l2) = (y = %)) - (. — 20)| + [(x = () = (y — %(¥))) - (20 — ¥)|
< lidr = el zoo(ry (krCEl@ — 20)* 4 |2 — 20| + krCEly — 20|* + [y — 20])
< |lidr = el zoo(ry (260 CRlz — yI* + |2 — 20| + |y — 20]),

where we used |7 — 2| < Cp|T?| < Cp|TY| < CE|lx — y|. To see the second estimate in (ii),
proceed as in (6.2.23) to obtain

(@ = 2(@) = (= %)) - (@ = y)| < |z —yllz —7(x) = (Y = 2(y))]
Sz - y|2||tF - 8F%||L<>°(F)-
This concludes the proof. O
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LEMMA 6.2.14. Let v > 0 and let the approzimate geometry T, € T satisfy (I'1)—(I'2).
Then, there holds 037y, = |Orvs| and

Cy L = 10ryelllzeqry < 11 = 1007l 2y < Culll = [0yl ),
as well as for all T € T,
11— Ol oo rry < |1 = ‘6F7*|2HL°°(TF) < (1 + 2#r)geor(T,)*.
The constant C, > 0 depends only on Cr;, and v.
PROOF. The identity (6.2.9) and (6.2.15) show
00| = ltr, o %lOpvs = Ops

Taylor expansion shows that for all 0 < 6 < a < §~! < oo exists z, > 0 with |[1—z,| < |1—aq]
such that a” —1 = vz¥"!(a — 1). Since @ — 1 and @ — 1 have the same sign for all v > 0,
this implies

Cstla” =1 < |la— 1| < Csla” — 1], (6.2.24)
where Cs > 0 depends only on ¢ and v. Due to (I'2), there holds

Crip < 10| < CLip  almost everywhere on T,

This and (6.2.24) with § = C;}

Lip and a = |Or~,| show
11 =10 velll oo ry 22 ([T = [Tl [ oo ().

Moreover, there holds for all @ > 0 that |1 —a| < |1 —a?|. It remains to estimate 1 — |Op7,|?.
To that end, calculate

1— |07, )* = 1007 = tol” = 2(0ye — tr) - tr.
By definition of ~,, there holds (v, — idr) - tr = 0. This implies almost everywhere
0= 0r((v —idr) - tr) = (Orvs — tr) - tr + (7, — idr) - Optr
and hence
[(Orys = tr) - tr| < [|Ortr|| oo lidr — el oo ry < Krllidr = Yil[poo(rr).-

The combination of the last estimates concludes the proof. O

LEMMA 6.2.15. Any g € L*(T") with supp(g) C T'Y for some z,y € T satisfies

Hglllzz-172(r) < Cans|TYM2(1 + [og(ITUDD 2 (19l p2(ry -

The constant Cyps > 0 depends only on I' and C.,.

PrOOF. Without loss of generality, assume g > 0. Construct a uniform partition I of
[, with h(U) = |U| =~ |T¥|2 for all U € U and supp(g) C Uy, for some Uy € U. Let
% : L2(T') — P°(U) denote the corresponding L*-orthogonal projection. There holds

19/l zr-1720ry < ||H09||H—1/2(F) + (1 - HO)QHH—U?(F)
S gl -2y + U llgl 2wy

By construction, there holds T1°g = axy, for some a > 0, where yp, denotes the character-
istic function with respect to Up. Since (V-, -)1/2 is an equivalent norm on H~/2(T), there
holds

(6.2.25)

1/2
]| r-1/20) = llxvsll-120) = AVX00 s Xt -

126



Without loss of generality, assume {0,1} ¢ v~1(Uy). With the parametrization v and h :=
|v~1(Uy)|, there holds

2m(Vxuy » Xuo)r = )/ / 10g|x—y\dxdy)
Uy J Uy
<[ Joghts) @Il @)
v~ 1(Uo) Jy~1(Uo)
<o [ gl + gl i de s,
=1 (Uo) J~~1(Uo)
h h
:03(h2|10g(07)|+/ / }log|s—t|’dtds>.
0 0

The integral term on the right-hand side is further estimated by

//}1og|s—t|ydtds_h2//|1og )| + |log|s — t|| dt ds

< h*(1+ [log(h)]),

since the remaining integral is finite. The Lipschitz continuity of v shows h ~ h(U). Alto-
gether, this proves

TGl =120y = @Vxuiy» Xvo)t'* S @b U)(1+ [og(h@U))])'>.

The fact ||TI%|| z2(r) =~ ah(U)Y/? and h(U) ~ |TY| together with (6.2.25) conclude the proof.
) T -

The following lemma is well-known and repeated here only for completeness.

LEMMA 6.2.16. Let O,,...,On denote an open cover of some compact set C C RY,
d € N. Then, there ezists € > 0 such that for all x € C, there exists i € {1,..., N} with

PROOF. Assume that the statement is wrong. Then, there exists a sequence x, € C
with Byn(x,) € O; for all i = 1,..., N and all n € N. The compactness of C' provides a
subsequence x,, — = € C. By definition, there exists i € {1,..., N} with x € O,. Hence,
there also exists k € N with By, (z,,) € O;, which contradicts the assumption. O

LEMMA 6.2.17. Given an approzimate geometry T, € T with (I'1)~(I'3), there exists a
continuous extension v, : R> — R? of v, such that

Yelr = Y (6.2.26)
7% — idge || oo g2) < [|7% — idr|Loe(ry, (6.2.27)
VA% = | Lo ®2) < Cextl|Oryx — trl e, (6.2.28)

where I € R?*2 denotes the identity matriz and Cey > 0 depends only on I'. For geo(T,) <
C1/2, A, is bijective and bi-Lipschitz such that

[z —yl/2 < (@) = @) < (1 + Coxe/2)|z — yl. (6.2.29)
Particularly, there holds ~,(Q2) = Q. (with 0Q, =T, from Section 6.2.0.1) and
1(V3) ey < 2. (6.2.30)

DEFINITION 6.2.18. After the following proof and throughout this chapter, we will not
distinguish between v, and its extension 7y, := 7,. The meaning will be clear from the contezt.
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PROOF. Without loss of generality, let the parametrization « satisfy v'|'|7! = tp. Ap-
proximate v by some smooth ~.: [0,1] — R?, 9%.(0) = 9%v.(1) for all k¥ € Ny such that
|7 —=ellwieo o) < €. Let M € R**? denote the orthogonal matrix which satisfies Mtr = nr.
Then, define n. := M(vy. oy )|T|7! € WHe(T,R?). With np = M (7' oy 1|7}, there
holds

Inr = nellzey < ITITHOL =) 0 Ylpeqry < €07
Define the function ¢: [0, 1]xR — R? by ((s, t) := y(s)+tn.ov(s). There holds with (6.2.11a)
VC(s5,8) = (041(5) + HOne) 04 (5)029(5) , ma 0 4(s)) € R,
By definition, there holds
195(s) - M~ (ne 0 7(s))] = [057(s) - M~ (nr 0 (s))] = [0sy(s)| [l — nelzo<r)
> 10:y(s) - 0y (9)|IT] " = 05y (s) e[
=10:9(s)*|T 7" = L0y (s)]-
as well as
[t(0rn:) 0 7(5)92(s) - M~ (e 0 7(s))] < [tll100ne | Lo )| 037 (8) 17l Loy
< [tll1rne [ 2oy 077 ()11 + e [T| 7).
Since M realizes a rotation by 7/2, this shows
|det(VC(s. 1) = [0:C(s.t) - M9, (s, )]
> |05y ()P0 = e[ 1705y ()] = [tll|Orne | oo ry [037()I (1 + [T H).
Since |0sv(s)| = |0%v(s)| = |I'|, sufficiently small €, ¢y > 0 with |¢| <t imply
|det(V((s, 1))| = |T']/2.
Analogously, we bound for the Frobenius matrix norm || - ||¢ by
IV¢(s, Ol = (T + [#l1|Frne || 2o IT])* + (1 + &[T

and hence

1V¢(5,8) i = e

|det(V{(s, 1))
< 2|F‘71\/(|F‘ + |t‘”aFneHL°°(r)\F|)2 + (14|72 = C,

1(VE (s, 1))l v
(6.2.31)

where C¢ > 0 depends only on ¢, ¢y and I'.  The inverse mapping theorem proves that
¢ is a local diffeomorphism. The compactness of [0, 1] x [—tg, to] implies the existence of
an open cover Op,...,Oy such that (|p, is a diffefomorphism onto its image. Let now
(Si,tz‘) S [0, ]_] X [—to,to], 1= ]_,2 with Q(sl,tl) = C(Sg,tg). Then, there holds

[7(s1) —v(s2)| < 2maX{t1,t2}||aFne||Loo(F)-

Lemma 6.2.16 shows that for ¢1,t, < ¢, and ¢, > 0 sufficiently small, there holds (s;, ;) € O;
for some j € {1,..., N} and ¢ = 1,2. Since (|p, is a diffeomorphism, this shows (s1,%;) =
(s2,t2). Hence, (ljo,1x(—#1) is injective, and by the inverse mapping theorem also a diffeo-
morphism. Particularly, due to (6.2.31), € is a bi-Lipschitz, bijective function onto its image
O := (([0,1] x (—ty,ty)) € R?, which is [0, 1]-periodic with respect to its first argument.
We prove that ¢ is also bi-Lipschitz with respect to the metric d(-, -) which identifies 0 and

128



1 of [0,1] (as defined in Section 6.2.0.1). To that end, consider s1,s2 € [0, 1], such that
|s1 — 0] +|s2 — 1| < |s; — s2|. There holds

(51, 81) = C(s2,t2)| < [C(s1,81) — C(s2,12)]
< [C(s1,t1) = €0, 80)[ + [C(L, 81) — C(s2, 2)]
Ssp = 0] + |1 = so| + |[t1 — to| = d(s1, 82) + [t1 — o]
as well as with bi-Lipschitz continuity on [0, 1] x [0, 1] (without identification)
[C(s1,t1) = C(s2,82)| Z |51 = s2f + [t — ta| = d(s1,82) + [t — 2.

Since the set [0,1] x (—tg,t,) is open with respect to the product topology generated by
d(,-) and the Euclidean topology, the set O is open by the bi-Lipschitz continuity above.
Particularly, O is a neighborhood of I'. " With 7 denoting the projection onto the first
argument, the function

P:=~yomo(t':0—=T

is also Lipschitz continuous (where the periodicity of  is used) and satisfies P(z) = z for
all z € T. Choose a smooth cut-off function x : R? — [0,1] with x|r = 1 and supp(x) C O.
Then, define

() = 2+ x(2) (s 0 Px) = P(x)).
There holds 7,|r = 7, as well as
[Ve(2) = 2| < lidy = 2| oo ().
This implies (6.2.27). Moreover, with the chain-rule (6.2.11b), we obtain for z € R?
0:(Ve = I) = (Orys — tr) o P(x) 92 P(x).

The identity (6.2.10) shows |0°P(z)| = |0.P(x)| and hence proves (6.2.28) with Cuy :=
|V Pl 0y For geo(T,) < Ciit/2 and all z, z € R?, there holds

v+ (VA)(2)r 2 [2* = |1 = VA(2) ||z ]* > |z[*/2. (6.2.32)
This implies (6.2.30). Assume that 7,(z) = 7,(y) for some z,y € R?. There holds with the
convex hull [z,y] := {Az + (1 = Ay : 0 < A< 1} and (6.2.32)

0=l =9 G =T =| | =0 (TR

dz’

> |z —y| 1/2dz.
[z,y]
This implies = y. Hence 7, is injective. The inverse mapping theorem shows that ~, is
a global diffeomorphism. The estimate (6.2.30) implies that 7, is even bi-Lipschitz. The
estimate (6.2.29) follows from (6.2.28) and(6.2.30). It remains to show that 7,(Q) = Q..
Assume that there exist x,y € € such that 7,(z) € €, and 7,(y) € R?\ Q. Then, there
exists a compact path G C Q which connects z and y. Since 7,(G) is also a continuous and
compact path, there exists z € G such that 7,(z) € ', and hence z € I by bijectivity of 7,
and ,. This, however, contradicts G C Q. We showed that 7,(Q) C Q, or 7,(2) C R?\ Q,.
The same arguments prove 7, (R?\ Q) C Q, or 7,(R?\Q) C R?\(,. However, the bi-Lipschitz
continuity prohibits 7, (R?\ Q) C Q,, since R? \ Q is unbounded. This shows 7,(Q) = Q,
and hence concludes the proof. O
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By use of the chain-rule, there holds under the assumptions of Lemma 6.2.17 that
=V, or) = (V) onVy
and since V~, is a regular matrix by (6.2.30), this shows
(VAo = (V)™ (6.2.33)

LEMMA 6.2.19. Given an approzimate geometry T, € T which satisfies (T'2), there
holds for all v € H~Y*(T) and all v € HY*(T')

Cr 1l -v2ey < 1 0 710072 lar-172e,) < Clp 8l =172y (6.2.34)
as well as
Criy N0y < o o5 vz, < Colp lollmragry. (6.2.35)
PROOF. There holds for v € H'(T') with (6.2.12)
18r, (v oIz, = [1(0rv) 0 M 0r AL 22

_y / (0r0) 077 V200, 2 dir) 2

_ 1/2 _
= (/(8rv)2|(8rﬂ*1) 0 Y| *|O0r| dz) 2 — 1600l 00y 2 oy
T
as well as
v oy, zzw,y = 01007 | 2@y

Due to (I'2), there holds C};} < |0r,] < CLip and hence

Lip —
—1/2 -1

Cr 2 N0rvll 2y < [10r, (v 0 v Iz, < Crlp0rv ]2,
C—l

o Mollze@y < llvey, i, < CL1p||U||L2(F)

Interpolation theory concludes (6.2.35).
On the other hand, there holds

<¢ © ’7:1|8F’7/*|71 ) 'U>F*

19 0 v oYl Tl pg-rr20,y = sup

veH1/2(T,) ||U||H1/2(r*)
_ <,l/} , VO fY»\f)I1
= sup -———
vEHL/2(T,) ”UHH1/2(F*)
vl gz gy (Y, v)r
sup —
veH/2(T) v o HHl/Q(I‘* ||U||H1/2 T
(6.2.35) Y, v
2 G gl
veH/2(T HU”Hl
This concludes the proof. O
LEMMA 6.2.20. Given an approzimate geometry T, € T with (I'l)~(I'3) and geo(T,) <

Cob/2, there exists a lifting operator L,: HY?(T',) — H'(R?) with
(L), =v  and  [|[Lv|m@e) < Cusl|vll gz, forallv e HY(T,).
The constant Cyg, > 0 depends only on I' and Cey, Crip.
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PROOF. Let £: H'/2(I') — H'(R?) denote a standard lifting operator. Define
Lov:=(Lvon,)) oyt
Then, there holds (£,v)|r, = (Lv o 7,) o vy, = v|r,. Moreover, we obtain
H‘C*U”%Tl(ﬂ%?) = ”E*UH%Q(RQ) + HV<E*U>H%Q(R2)
= |LwllTa@e) + IV (Lvo ) 07 VL o)
The identity (6.2.33) implies

IV(Lv o) o 'V e mey = / IV(Lvor,) o, VY de
]R2

< [ 190 P92t oIV da

= IV (Lo 0 %)Vl ™[ 72 2y
< VAl oo IV (L0 0 ) 12 g2y

as well as

2| Za ey

< IVl @) 1£(v 0 1) 122 p2)-

1£.0 1122y = I1£(v 0 1)V

With (6.2.30) and the continuity of £, the last two inequalities prove
L0l g2y S (14 [Vl @) [1£0 © %l 2 ey
<|vo ’Y*HH1/2(F)-
With (6.2.35), we see

1/2
v o wlliamy < CLzllollme.)-

Moreover, (6.2.28) implies ||V, || Lo r2) < 14 Cexegeo(7T,) < 3/2 and concludes the proof. [
The proofs of Lemma, 6.2.21-6.2.22 and Proposition 6.2.23 are well-known in the liter-
ature. We repeat them for the sole purpose of ensuring the uniform boundedness of the

constants appearing with respect to the domains (2, as this is usually not found in the
literature.

LEMMA 6.2.21. Given an approzimate geometry T, € T with (I'l)~(I'3) and geo(T,) <
Co1/2, there holds

Vv, v)pr, > C’\~;1||v||H_1/2(F*) for all v e H-Y*(T) with (v, 1) = 0. (6.2.36)
The constant Cy > 0 depends only on I' and Cey.

PROOF. Let v € L*(T,) with (v, 1)r, = 0. Define the interior and exterior normal
derivatives 9, 9. Then, there holds by Greens-identity, the fact AV,v = 0 in R? \ T,

n J’-n

and |(V,v)(x)| ~ |z|~t as |z] — oo, that
HVV*UH%Q(W) = (0™V,v — 0™V, V,u)r,.
The jump property of V,, i.e., 0™V, v — 9™V, v = v, shows
IVVavllf2e) = (v, Veo)r..
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On the other hand, the jump property implies
Wllg-2w,y < 107 Vavllg-12w,) + 107 Vel g,

With the lifting £, from Lemma 6.2.20 and AV,v = 0 in R? \ T,, we get

- oMY v w)r,
IVl = sup )
weH/2(T',)\{0} Hw”Hlﬂ(F*)

| (VV*U ) V»C*QU)R?\F* |

< sup S IVV| 2 (me2)-
weH/2(T)\{0} ”wHH1/2(F*)
The analogous statement holds for 9% Vv. Altogether, this concludes (6.2.36) O

LEMMA 6.2.22. There ezists ueq(T,) € HY2(T,) with Ve (T,) = Aeo(T2) € R and
(ueq(Ty), Dyr, = 1. All approzimate geometries T, € T satisfy

Aeq(Tx) > 2m|log(diam(€2,))| > 27| log(1l — escate)| > 0.

PROOF. Let (v, \,) € HY2(T,) x R solve the saddle-point problem
<V*U*7 U)F - <U7 )\*>I‘* =0,
— (v, phr, = —p

for all (v, u) € H-Y%(T',) x R. Since Lemma 6.2.21 proves that V), is elliptic on the kernel
of (-, w)r,, standard LBB theory shows

*

il gr-1/2 () + A S

where the hidden constant depends only on Cy but not on the particular geometry 7,. There
holds ueq(7x) = v, and Aeq7x = A,. Define Robins constant of the set I', by

irellfg/*/*loglx—y\du( ) du(y),

where B denotes the set of all Borel probability measures on I'y,. A well-known result of
potential theory (see, e.g., [84, Section 1] for the proof) is that the logarithmic capacity
exp(—Vr, ) satisfies exp(—Vr,) < diam(T',) = diam(2,). The result [84, Theorem 1.2] shows
that

%)\* = <U*, 1>[‘*Vp* = Vp*.
Altogether, this implies by definition of €2, in Section 6.2.0.1
2 A > —log(diam(€2.)) > —log(1 — excare) > 0.
This concludes the proof. O

PROPOSITION 6.2.23. Given an approrimate geometry T, € T with (I'l)~(I'3) with
geo(Ty) < C.1/2, there holds

||V*v||H1/2(F*) S CV||U||H—1/2(F*) fO’f‘ all v < H_l/Q(P*) (6237)
as well as
Vv, v)r, > C\71||v||§{,1/2(r*) for allv e H-Y(T,). (6.2.38)
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The constant Cy > 0 depends only on egcale, Cy, Iy, Cexe and T. This particularly implies for
any closed subspace P°(T,) C X C HY2(T,) and the solution Uy € X of V. Ux, V)p, =
(fe, Vr, forallV € X that

2 .
Uz = UCT)l-svawy < G5 main 1V = Vv (62.39)

PROOF. To see (6.2.38), we use Lemma 6.2.21 and Lemma 6.2.22. Let v € H~Y/2(T,)
and vy := v — Ueq(7T:)(v, 1)r,. Then, (vo, 1)r, = 0 and with (6.2.36)
Vv, v)r, = Vavo, vo)r, + 2(v, D)1, (Vatieq(T5) , vo)r,
+ (v, D, (Vatteg(T) , teq(T2))r.
= <V*v0a U0>F* + <va 1)12“*<)‘eq(71)7 ueq(,ﬁ»ﬂ

> CM ol aagey + AealT) (0, D2, 2 013 1saqr

where the hidden constant depends only on ¢ and on C5.

To see (6.2.37), let ), C R? denote the domain enclosed by Ty, i.e., T, = 9. Let Q C R
denote a bounded Lipschitz domain such that Q, C Q for all T, € T with geo(T,) < Cot/2
as well as Q C Q. There holds for v € H™V/2(T',) and g € L2(9,)

Vv, g)a, = %/ v(fﬁ)/Q log |z — y|g(y) dy dx
F* *

L[ / log | — ylg(y) dydz = (v, Ng)r.

" Q

where N/ : H=1(Q)) — H'(Q) denotes the Newton potential (see, e.g., [75] for the mapping
properties). We obtain

(v, Ng)r, = (v o 7|0y, Ng) ov)r
S v o vl oyl | =172y N g) © Yl 11 ) -

Lemma, 6.2.19 shows [|v o vy, | g-12y = V]| g-1/2(r,) and Lemma 6.2.17 implies that
7« is globally bi-Lipschitz and ~,(€2) = €),. Hence, we have

1N g) 0%l S INgllinen < INallG g

Moreover, since supp(g) C €2, there holds

{9, v)g V]| 2.
”Ngﬂﬂl(ﬁ) S HgHﬁ—l(ﬁ) = Sup W < Hg”ﬁ—l(g*) sup W(A)
veH @)\ {0} V11 H1(©) veH(2)\{0} HY(S)

< Hg”ﬁfl(n*)-

Altogether, this shows

Vevs g)a. S ollg-r2@n 9l g1,

Taking the supremum over all g shows [[V,v[lgi,) S [[v[lg-12(r,). Finally, there holds
with (6.2.35)

Vevllmree,) S TOV) o vidlmee S ITVw) o vllmio)
S Vvl .,
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where the hidden constant depends again on the bi-Lipschitz continuity of v, and 7,(Q) = €Q,.
This shows (6.2.37). The Céa Lemma (6.2.39) follows by standard arguments from (6.2.38)—
(6.2.37). This concludes the proof. O

LEMMA 6.2.24. Given x,y € R? and the approzimate geometry T, € T with (I'1)~(I'3)
and geo(T,) < Co1/2, the kernel

|z —y/?
«(z,y) =1 6.2.40
) = os (s ) (0240
satisfies for 7 = 1,2
2 2
19, ki(zy) = ——Y (e — 8, v (x)) + (——Y () — % (y)* = |z — gy
o) =g 6=+ (T S
( —y) = (@) — %)
+ - 074 (). 6.2.41
e R R (6241)
This particularly implies
|Varia(z, )| < C(1+ geo(T5)) [tr = OrYal[ oo (r) (6.2.42)

[z — y|

for all x,y € R?, where C > 0 depends only on Cri,, Ceyx, and T'. For x,y € T, there holds
even

1
|Vakiu(z,y)| < CCOr(1+ geo(ﬁ))m max ltr — Or sl oo (rr)- (6.2.43)
[T nr¥|>0
as well as
tr — " 1
C™H O ahu(z,y)| < [(r ‘xajz|)($)| + (1 +geo(7§))geo(7})2m. (6.2.44)

PROOF. The identity (6.2.41) follows from straightforward differentiation. Since V~, €
L>(R?), there holds with [z,y] :== {A(z —y)+y : 0< A <1}

|7(@) — % @) — |z — y*| < ([7l@) = %) — |z — y]) (|[7(@) — %@)] + |z — y|)
< (@) = 1(y) = (@ = ] (1(@) — 3] + |z —yl)

< (1+ Cuip) /[ (4= VE)

J dZ)\w —
|z —yl
<N = V(@) || Lo re) | — ).
This and (6.2.28) show
V(@) = () ? — |2 — y]?
17 (z) — 7 (y)[?

Finally, the same argument shows

< it = Oyl o (ry.-

V() = %ly) — (x —y) o 1
Ir — a % || Loe .
@) )~ ey O
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The bound (6.2.28) implies |0,,7.(z)] < 1+ geo(7s). This shows (6.2.42). The esti-
mate (6.2.43) follows analogously by use of [z,y] := I'Y instead, i.e.,

(@) = %) = |z =y < (|n(@) = %) = [z = y]) (|(2) = %ly)| + |z — y])
< (@) = 7%@) = (@ = )| (|7e(2) = % (W)] + 2 — yl)

< (14 CLyp) /ry tr(z) — Orye(z) dz

< ||tF - 8F%||Loo(rz)|$ - ?/|2-
The estimate (6.2.44) follows from (6.2.41) and
(@) = %) = 2 = y?| < (@) = %@)] = |z = y]) (@) = %@)| + 2 = y])
< geo(To)%[x — .
This concludes the proof. O

|z —y

The following result can be found in [43, 77, 83| for real and complex interpolation. We
include the proof for completeness and to underline the fact that the constant is independent
of T'.

LEMMA 6.2.25. Let I = 0Q C R? denote a Lipschitz boundary. Let fi,..., fn € Hl(f)
such that the supports supp(f;) are connected and pairwise disjoint, i.e., supp(f;)Nsupp(f;) =
0 for all1 <i# j < N. Then, there holds

I Z Fillia <2 Z il 2 supp -

PROOF. Define the auxiliary operators Tp : [T, L2(supp(fi)) — L2(T) as well as T} :
IT:, H' (supp(fi)) — H'(T) by

N
Ty((fi,--. fn) =Y _ fi ford € {0,1}.
i=1
Obviously, there holds
||T0(f17"'a L2(F Z||fl||L2 (supp(fi)) ||(f1""’fN)Hf_[éV:lLQ(supp(fi))’
||T1(f1a"'7 HI(F ZHfZHHl(supp (fi)) ||(f1’""fN)HQHfV:lHl(supp(fi))

for all (fi,..., fx) € T[], L*(supp(f:)) resp. all (fi,..., fn) € [T, H'(supp(fi)). Real
interpolation shows for 7' /5 : X — HY2(T), Tijo(fis.--s fn) = Zf\il f; that

1712 (1 fN)||H1/2 <N(fr- - )l

where X := [[[, L*(supp(f;)), [T, H'(supp(f:))]1/2 denotes the space defined with real

interpolation. There holds X = [[X, H"/?(supp(f;)) with equivalent norms. It remains to
bound the equivalence constants. By definition of X', there holds

O A (6.2.45)
0
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where

N N
Ky = inf {7 1 oilBaumptrn)  + O 1 ril3uppirn) © fi = foi+ fu
i=1 i=1

foi € L*(supp(fy)), f1,; € H'(supp(fi))}-
Define

K25 = inf {[|fosl Zauppry + il iy i = Jos + fui
foi € L*(supp(fi)), f1i € H' (supp(f:))}-
Given € > 0, let go; € L*(supp(/f;)) and g1; € H'(supp(f;)) such that f; = go; + g1, and
1904122 eupcry) + 19130 uniry S 3 + K2 foralli=1,..., N,
Then, there holds
N N N
K2/2 < Z 190,112 eupp( i) + 1 Z 190,117 upp () < € + Z Kszz
i=1

i=1 i=1

Since € > 0 is arbitrary and a? + b* < (a + b)? for all a,b > 0, the above implies

N N
Kp/2 <Y Ki <) K
i=1 i=1
where

. 2
K = inf { (|| foill2upcr)) + trill meuwsiry) © fi = foq + fi
foi € L*(supp(f3)), f1. € H' (supp(fi))}.
Together with (6.2.45), this shows

N e N
||(.f1’7fN)||g( §2Z/ t_thQ,zdt:4Z||fl||§{1/2(supp(fl))
i=1 70 i=1

Altogether, this concludes the proof.
Given T' € T, define the k-patch of T" for all £ > 1 as
W(T,T) =W (T,T) = J{T € T. : TNT" #0},
wk(T, T.) = wk’l(w(T, T, Ts).

Note that w(-,-) is a patch function in the sense of Section 4.5.1.
A similar result to the following is proved in [43| for certain residuals.

LEMMA 6.2.26. Let T denote a partition of I' into connected curve segments. Define

the weight-function h(T)|r := |T| for all T € T. Let J(T): HYT) — SY(T) denote the

Scott-Zhang projection from Definition 3.3.2. Then, there exists a constant Cher > 0, such

that all v € HY*(T') satisfy

||(1 — J(T))v||§{1/2(r) < Chaer Z ||(1 - ‘](T))vH%{l/?(UwQ(T,’T))'

TeT
The constant Cuer depends only on T and K(T) (where K(-) is defined in Section 3.2.2).
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PROOF. Let &,...,&n € C(I') denote a T-piecewise smooth partition of unity on I' such
that all j =1,..., N satisfy

1€ ooy <1
supp(&;) C 11 UT;o  for some T, Tj0 € Twith T, N'Tj0 # 0,

100 Lo (1,0 < CH(T)|7,,  fori=1,2

for some constant C' > 1. There holds

11 =TTl ey = HZEZ (1= J(T))vll /2y

Let K3 UK3 ={1,..., N} such that |supp(§j) Nsupp(&)| = 0 for all j # k, j, k € Ki and
for all j # k, j, k € K%. Lemma 6.2.25 shows

H Zfﬂ 1 B ”H1/2(F)

<2 ST 60— Il + 2 Y G0 =TTy (6.246)
jexk jekz
<4 Z 1€;(1 = J(T))v HHl/2 (supp(&;))
JjeKT

With w; := supp(¢;), by definition of the H'/2-norm by real interpolation, and with w :=
(1 —J(T))v, there holds

el = | R
where
o= in ([l 2oy + ol + &0 = wo + w, wn € L), wy € H'(wy)}.
Additionally, consider
Ky = inf {woll 22y + tlwnllmes) © w = wo+wi, wo € L*(w)), wy € H' (w))}
with w? == J{T € T : TNw; # 0}. Choose wy, w; such that ”wo”lﬁ(w?) + tH@lHHl(w]z) <

K, + ¢ for some & > 0. Since (1 —.J(T))w = w, there holds w = @y + @; = wy + w; on wj
with w; := (1= J(T))w; for i = 1,2. With {w = wy + ws and |0rE;| ~ diam(w;) ™", this
allows to estimate

K < |I§woll 22wy + 5wl w;)
S ||w0||L2(wj) + t(||w1||L2(wJ-) + ||8F(fjw1)||L2(wj))

S Nwoll 2wy + t([lwrll 22w;) + 100w L2y + diam(w;) ™ Jws [l 2wy ) -

The fact that w; = (1 — J(T))w; for i = 1,2 as well as the stability and approximation
properties (3.3.2) of J(T) lead to

K < H{EO”LQ(UJ?) + t(H{El”LQ(wf) + H8F@1HL2(UJ§))
S ||'&70||L2(w12.) + t||@1||H1(wJ2) S K +e.
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FiGURE 5. Illustration of the situation in the proof of Lemma 6.2.27.

Since ¢ > 0 is arbitrary and the hidden constants depend only on K(7) (where K(-) is
defined in Section 3.2.2) and T, there holds K; < K; and hence

61 = HT el = [ 12K S [ REa = 10 = D)l

0
In combination with (6.2.46), this concludes the proof. O

LEMMA 6.2.27. There exists a constant Cx, > 0 such that each partition T of I' satisfies
fora>1

« max h(7T o
max 3 e [ Cslog (R 10es(ITDI +1) fora =1,
e 4= dist(T,T")* ~ | Cx|log (f;ﬁggg;f;ﬂ for a > 1,

dist(T,T7)>0
where h(T)|r :=|T| for all T € T and the constant Cyx, depends only on K(T) (with K(-)
from Section 3.2.2) and T.

PROOF. For T,T" € T, define TY = TY for some 2 € T and y € T’ with |[T%| =
mingeryer LY. Let TV € T. Deﬁne P :={T €T : [[)27F < |T| < [P|27%} and
choose a numbering {T;1,..., Tk, } = {T € P, : dist(T,T") > ()} such that Fg’;’l contains
|552] elements from Py and dist(Z}1,7”) is minimal (see Figure 5 for an illustration of the
concept). This implies

(6.2 9
dist(T", Ty ;) > C Hrokd| > C;l(LjTJ —1)27",
Moreover, for 1 < j < 4, the K-mesh regularity and the fact that dist(7} ;,7") is minimal
imply
dist(T", Ty, ;) > dist(T", Tj,,1) > K(T) 1| = K(T)7'27% > K(T) ™" /2|T} ]
With this, compute
T " Tl
; dist(7,T") Z EZ dist (7, T") ZZ dist (T ;, 1)~
dist(T,77)>0 dlst(T T’)>0
max{kEN:nk>0}

5 Z ( +Z LJ 2 _RIZQ ak)

k=0

max {kEN:nk>0}

< > (1+]§;%&)

k=0
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There are at most |log,(maxh(7)) — log,(min ~A(7))| numbers k € Ny with n, > 0. Hence,
an asymptotic estimate for the harmonic series shows for a = 1

Z % <D (Iog(|A))I +1)

dist(T,77)>0 ng>0

X M) Jaos(1TDI + 1)

For a > 1, the Dirichlet series converges and hence

7|~ < max h(7T)
TEZTZ .~ 8 Gy

dist(T,77)>0

This concludes the proof. O

6.2.7. Reliable error control. The following results prove the reliability of the error
estimator.

THEOREM 6.2.28. There exists Crq > 0 such that all approximate geometries T, € T

with h, < Crlkpt/2 and geo(T,) < min{C.1/2,Crt/2,Crlkpt /2} satisfy the reliable error
estimate

lu = U(TO  |g-120) < Cran(T2). (6.2.47)
The proof is divided into several lemmas.
LEMMA 6.2.29. The approzimate geometry T, € T defines the formal operator

|z —yf*
M,g(z) = /lo (|7*( = (y)|2)g(x) dx  forallz € QUT. (6.2.48)

If T, satisfies (T'1)~(T'3), there exists a constant Cres > 0 such that all v, € L*(T,) with

vy 1= 0, 0 1|00 satisfy

(fx = Viu,, w)r,
res”u *||H_1/2(F) < sSup - Lz
weH—1/2(T,) ||w||H—1/2(F*)

where we define ||M, 'U*”Hl/2 ) = oo for M ¢ HY*(T). This holds particularly for
v, = U(T,) and hence vL = U(T,)".

+ ||M*U*F||H1/2(F)

PROOF. The error |[u — v || y-1/2(ry satisfies for @ := w o v, !|dp, ;]

V(u—ol), w Vol w
li— Mgy > sup ke g, )r
weH~1/2(T) Hw”H*1/2(F) weH~1/2(T) Hw”H*1/2(F)
L gy Hwde s W @+ Y, @) = ] whe
weH~1/2(T) ||w||H*1/2(F)

The identity (£, w)r = (£, , w017 0r 25 r, = (fs, Tr. shows
<f* - V*U*7 > <V Uy, W > Ty <VU£, w>F

Ju — UEHH*/?(I‘) &~  sup

weH=1/2(T 1wl =172
v ) W e, — ol gy O
< sup * — *Uxy W), + sup *Ux, W)r, U, , W I"
@EH-1/2(T) HwHHfW(F*) weH=1/2(T) HwHHﬂﬂ(r)
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where we used Lemma 6.2.19 to get |[w|| y-1/2y = ||0]|g-1/2(r,)- The numerator of the last
term in (6.2.49) transforms to

—r (Vs , wo 0y P, — Vol wir) = —4r ((Viv) 07 = Vo, w)r)
= [ (] 10 (1) =yt dy = [ 108 (12 =)ol ) ) wio) do

*

= [ (108 (@) = 2Pyt ) dy = [ 108 (1o = Yol ) dy) o) o

_ —/F/Flog (Iw(a‘j - Ziy)P)vf(y) dyw(z) de = —(MoL, w)r.

(6.2.50)
This concludes the proof. O

The following result can also be found in [34, 28]. We refine the proof to ensure that
the involved constants behave uniformly with respect to the approximate geometries I',.

LEMMA 6.2.30. Given the approrimate geometry T, € T, there holds

sup <f* - V*U('H), w>F* < \/§K(71)1/2(5K(7;)2 + 3)1/4 p('ﬁ)

weH—1/2(T,) ”wHH—l/Q(F*)
with K(T,) from Section 3.2.2.

PROOF. Let &1,...,&y € C(I') denote a T,-piecewise smooth partition of unity on I',
such that all j =1,..., N satisfy

16l ooy < 1,
supp(§;) C Tj1 U Ty for some T}, T € Towith T; 3 N7 0 # 0,
180, &ll ez < 2haly),  fori=1,2.
There holds

weH—1/2(T) ||w||H—1/2(I‘*)

= = | f = VU (T gy

N
=13 & = VUT)) .-
j=1

Let K'UK? = {1,..., N} such that [supp(;) Nsupp(&)| = 0 for all j # k, j, k € K' and all
j#k,j, k€ K2 Lemma 6.2.25 with ' = I, shows

N
136U = VOTD ey < 21 S 60 = VUT) Ree
j=1

jext
+20 > &(f = VU T 2,y
jeEK?

N
< 42 1€;(fx = V*U(ﬁ))”ém(supp(&j))'
j=1
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Real interpolation theory shows

165 (fx = VAU T F1/2 suppie, )
S & (e = VAU(T) 2 suppien 165 (fe = VU (T) [ suppies )

where the hidden constant depends only on the scalar field of the involved Hilbert spaces,
which is, in our case, R. Hence, with v; := &;(f. — V.U(7,)), there holds

N

”f* - V*U<7;)”§{1/2 < 42 ”U]HL2(SUPP (&) (”U]”L2 (supp(&;)) + H&[‘ UJ”LQ(supp(fj))
7j=1

)1/2

Elementary calculus and the definition of the £; show

1051l 2wty ) < Ifx = VU (Tl 2 suppie )
1900l 2 suppie; ) < 2mas bl [ = VU (T llr2suppie)

+ 1|00 (f« = VRU(T)) || L2 suppe; ))-

Since U(T;) solves (6.2.2) and f, —V,U(T,) € H*(T',), there exists at least one zero zr € T,
with (f, —V.U(T,))(2r) =0 for all T € 7,. Hence, Friedrich’s inequality proves

Hf* - V*U(ﬁ>HL2(Supp(fj)) < E%{ h’*|Ti,j Har*(f* - V*U(ﬁ>>HL2(SUPP(§j))'
The above together with the K-mesh property show

1fe = VU T2y
N

1/2
<4 Z ||'Uj ||L2(SUPP(§J')) (ij ||%2(supp(§j)) + ||8F*vj ||%2(supp(§j)))
j=1
N
<43 (Il = VUl zeumniey)
j=1
2 1/2
(5 {2? X hy ‘T ”f* ( )HL2 (supp(&;)) + 3”61‘*( — Vi U( ))HL2(supp(§J))) )
N
<4y (K(71)||h*0r*(f* — VU(T))l22umwiey
j=1
(5K (T2 +3) (0, (. = VU(T)) 12 supp@»)
< AK(T)(GK(T,) +3)2 Z 122200 (f = ViU (T) 2 eupnic
< KT K (T + 32150, ~ .01 Tl
This concludes the proof. O

LEMMA 6.2.31. Let the approximate geometry T, € T satisfy (I'1)—(I'3). Then, there
exists Crz > 0 such that all g € L*(T') satisfy

IMogll 22y < Crageo(To)*(1 + [ log(geo(T)))llgl 2y
where M, is defined in (6.2.48).
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PROOF. By definition of M,, there holds

M, g7y = /(/bg(m(‘x)_ziy)P)g(y)dy)Qda;
< [ Jos (5= ) sl

The remaining integral is split. Let I'y,..., 'y denote the smooth and connected parts of T'.
There holds

/F/Plog<w*<:‘;§_y|2( |2) dydx—ZZ/ / g (1=, —yP( )‘2>2dydx_

=1 j=1

Case I'; = I';: Lemma 6.2.13 (i) implies

|5E —yl? 2 2 4
log dydz < |T'|*geo(T,)".
// () — ly )IZ)

Case I NT'; = (): Lemma 6.2.13 (iii) implies

—yl? 2
/ / log ( ] 2) dydr < |T* min |2 — y| %geo(T;)*
r, Jr; 7 (@) — 1) =
< geo(To)*

Case I;NT; = {z} C Pr: Given € > 0, define B. := {y €T : |y — z| < e}. There holds

//log e —y|2( )|2)2dydx (6.2.51)

|z —y|” 2 / / \:c —yl* 2
= log dy dx + log dy dzx.
/I‘i\Bg /rj <\%(56) Yely \2 : () = 2uly )|2)

For the first term, Lemma 6.2.13 (ii) and |z — 2| <TZ <TY < |z —y|forallz € [;, y € T

imply
=yl \?
log dy dx
/I‘i\BE /pj <\%(:€) - %(y)P)

z—x|+ |z —
Sgeo('ﬁ)A‘/ (1+ | | | . y|)2d:pdy
i\B. JT |z —y

J

SgeoT) [ [ 1 feyl dedy
\B: JT

J
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Without loss of generality, there holds [a,b— ] =+ *(I; \ B:) and [b,¢] = v~ }(T;) for some
a<b<cel0,1] and 0 < § ~ e. The Lipschitz continuity of « shows

/ / o= y| 2dudy = / / () — 7 (B)] 2|2 ds dt
I\B: JT; Y~ HT\Be) Sy~ (L)
5/ / s — ¢~ ds dt
HT3\Be) Hry)
b—d
/ / S —t 2dsdt

:/ b—t)" —(c—t)tdt
<1+ |log(d)| ~ 1+ |log(e)l.

For the second term of (6.2.51), Lemma 6.2.13 (ii) shows

|.T - y‘2 2 2 2
[ 1og Iv T )I2> dy dz < geo(T)?| Bo||T| < egeo(T7)?.

Altogether, this proves
y| - yP 2
log ) dy dx = / / log ) dy dx
// I% YY) ? Z]z: I% Ye(y)?
< N?(geo(T5)" + geo(T)* |10g(€)| + geo(T5)%).
Since N depends only on T', the choice € := geo(7T,)? concludes the proof. O

LEMMA 6.2.32. Let the approzimate geometry T, € T satisfy (I'l)~(I'3) and geo(T,) <
C1/2. Given g € L™(I') and with M, from 6.2.48, there holds M,g € H'(Q), whereas
g € L*(T") implies M,g € H*(T).

PROOF. Given z € 2, k,(x,y) is smooth and hence (6.2.42) shows

Vo M,g(a |/v (2, 9)9(y) dyl < gl o) /|a:—y| dy
< lglzoeqr (1 + | og(dist (z, T))]),

where the hidden constants depend only on C., and an upper bound of geo(7,). This proves
that V,M,g(x) € L*(Q). Lemma 6.2.31 concludes M,g € H*(2). There holds

M,g(x) = Vg(x) — /Flog 7 (2) = % (W)g(y) dy = Vg(x) = (Vulg 0 7071 1) © ().

Since g € L*(T) and g o 7.0 ! € L*(T,), the mapping properties of V and V, show
Vg € HY(T), V(g o0y, Y) € HY(T,). Since 7, is continuous and piecewise smooth, this
concludes the proof. O

<

LEMMA 6.2.33. Let the approzimate geometry T, € T satisfy (I'1)~(T'3) and geo(Ty)
Cit/2. Then, there exists a constant Cgij» > 0, such that all g € L*(T') with supp(g) C
for some x,y € I' satisfy

Mgl 112y < Cringe (geo(TO)ITEY? (1 + [Log(IT%])]) 2
+geo(T2)*(1 + [ log(geo(T)) gl 2.

143

3



where M, is defined in (6.2.48). The constant Cg./» depends only on Crz, Crip, Cext, and
on €.

PROOF. Define the volume potential
Do(z) = / Vb, y)v(y) dy.
Q

Assume for the moment g € L>(T'). Lemma 6.2.32 shows M,g € H'(Q2). Given v € L*(2),
there holds

(VM.g. o= [ [ Vyelegle) dooty)dy
@/ (6.2.52)
~ [ [ ure e dygta) dz = (g, Do
r
Consider the simple-layer potential Vo : H=Y2(Q) — HY2(Q) on the 2D manifold Q

Vag(x) /\:c—y| Y9(y)dy for all z € R,

The identity (6.2.52) together with (6.2.42), shows

(9, D(v FN/|g |‘/Vﬁ*xy dy)dx

S Htr—arWHLoo(r)/\g \’/| y)| dy| da

=~ [ltr = Orvell =y (lgl s Va(lvl))r

With [TY| = h, Lemma 6.2.15 shows |||g||| g-1/2¢y < h2(1 + [log(h)])*?||lg|l L2r). This and
the continuity Vo, : L*(Q) — H'(Q) show

S;I()Q)@, D())r S lltr = Orvell oo 1|9l | =120y Vel )l /2y
ve

< lte = Oevell ey 72 (1 + [Log(B)[Y2)]| gl gy Vel [l 1 @)
< geo(To)h! 2 (L + [Log(h)["/?) |19l 2y | v]| 2o

Altogether, this proves

VMg, v)g

2@ vl 7 geo(ﬁ)h1/2(1 + 10g<h)‘1/2)”9HL2(r)
ve

Continuous extension shows that the restriction g € L>(T") is not necessary.
Let M := |I'|! [, M.g(z) dz denote the integral mean. Rellich’s compactness theorem
proves ||[M,g — M| g1 ) S < HVM*gHLQ(Q Altogether, this shows

IMgll 72y < Ml mreey + | Meg = M| g2y

S M|l 2wy + VMgl 20 (6.2.53)
S IM.gll 2y + b log(h) [ geo(To) gl 2(ry
Lemma 6.2.31 and (6.2.53) conclude the proof. O
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LEMMA 6.2.34. Let the approzimate geometry T, € T satisfy (I'l)~(I'3) and geo(T,) <
Ct/2. There ezists a constant Cyij2 > 0 such that all g € L*(T') satisfy

IM.gllrary < Criegeo(T)*?(1 + [log(geo(T) gl z2),

where M, is defined in (6.2.48). The constant Cyn/z depends only on Cgijs, Crz, Craer, Cos,
Cext; CLip, CE, and on Q,

PROOF. Construct a uniform partition & of I' with element size h(U) ~ geo(7;). With
the Scott-Zhang projection J(U) : L*(T') — S'(U) from Definition 3.3.2, split

||M*g||H1/2(F) < ||J(U)M*9||Hl/2(r) + [](1 = J(u))M*QHHl/?(F)
S h@U) Mgl 2y + (1= T@U) Mg oy,

where we applied the inverse estimate from [57|. The first term on the right-hand side is
considered in Lemma 6.2.31. Lemma 6.2.26 applies for the second term to obtain

I(1 = J@O) Mgl a2y S Z (1 = J@)) Mgl 2 2 wany)
veu

With g1 := gluwtwuy and gu := g—gu, and by use of the approximation properties (3.3.2)
of J(U), each term on the right-hand side is bounded by

1= T @) Mg 2 rany
S HM*QU,IH?{W(UWS(U,L{)) + ”(1 - J(u))M*QUQHip/z(Uwz(UM))
S N Megualln e Guswa) (6.2.54)
+ (1 = J(U)) Myguz|| 2w w100 (1 = JU)) Maguall 2 (w2 wu))
S HM*gU,1|‘§-Il/2(Uw3(U,Z/{)) + h(“)”aFM*gU,Q”%Q(Uw3(U,Z/{))7

where Lemma 6.2.32 shows that the right-hand side is well-defined. Since |supp(gu1)| =~
h(U), Lemma 6.2.33 applies for the first term and, with h(U) ~ geo(T) leads to

D IMaguallf s wan S geo(T)*(1+ |log(geo(T))) D lguallzeqy
Uveu Ueu

< geo(T.)°(1 + | log(geo(T)) D9l 22wy
Given U € U, an explicit computation together with Lemma 6.2.24 shows

2
[ (] oraroat)dy) ds
Uw3(UU) MN\uw*(UU)

2
< geO(ﬁf/ (/ v =yl gl(y) dy) " da (6.2.55)
Uw3(UU) D\Uw?(UU)
< geo(T2)*| U (U, U)|

—1/2/12 -1/2 2
sup < xr— - w xr— - g\ w )
o Nz =17l o wany =179 ()22 \uet @)y

A computation in the parameter domain shows for z € |Jw},

lle = an S ) o]
Y HI\Uwt (UU)

S (1+ [log(hth)))),
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since [y H(z) —t] = |z — ()] = h(U). With (6.2.13), there holds for all U’ € U with
U ¢ MU U)

dist (U, U’) < dist(Uw®(U,U), U’) + 2h(U) < 3dist(Uw®(U,U), U")

and hence
sup e =g i = s S [ o=y ey
zeUw?3 (UU) TEUw3 (UU) U e\ (UU) g

1
< E — 2 .
U'el\w* (UU)

Plugging the last two estimates into (6.2.55), we end up with

2
orMgualowiy = [ ([ drente e dy) o
Uw3 (UU) T\Uw*(UU)

1
< geo(T,)? Uw? (U U)|(1 + |log(h(U))]) Z WHQH%Q(U/)
U'eU\w*(UU) ’

U]
< geo(T5)?(1 + | log(geo(T))|) Z WHQH%Q(U’)'

U'el\w* (UU)

With the convention dist(U,U’) = 1 for UN U’ # () and h(U) ~ geo(T), this leads to

Zh )||Or *gU2|’L2(Uw3(UU))
Ueu

2 U]
< (14 [log(geo(To))Ngeo(T)* Y~ Y- HgHm(U/)m

UeU U’ elt\w* (UU)

I %
< (1 + [log(geo(T))])geo(Ts UXE% ||9||L2<U/ < dist(U, U")’

Lemma 6.2.27 provides an estimate for the last sum of the right-hand side. Altogether, this
shows

D U0 Moguz | s wany S (1+ [og(geo(T2))geo(To) gl 72y (1 + [log(U)]).
veu

Since |[U| ~ |T'|/h(U) ~ geo(T;) ™!, the combination of the previous estimates concludes the
proof. O

PROOF OF THEOREM 6.2.28. Lemma 6.2.29-6.2.30, and Lemma 6.2.34 show the state-
ment. U

6.3. Convergence

Throughout this section, we assume that Lemma 6.2.9 (i)—(iii) and geo(7;) < Ci.t/2 hold
for all approximate geometries 7, € T. Moreover, we assume that the exact boundary I"
satisfies the following: All approximate geometries 7, € T and all elements T" € T, allow for
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a parametrization
- [07 1] - TF7
75 (s) € span{tr o yp(s)} for all s € [0,1],

(6.3.1a)
|TF| < |/YT| < C1pa1f|,-z—‘r|

par
VN o o1y + 11V 0 7)o (0,1)) < Crae| T

for some constant Cp,, > 0 which depends only on I'. Moreover, there exists some p € N
such that for all T € T, exist 7, Y. € PP(]0, 1])? such that

vr = Frllwre o)) + e © Y0 — Azl lwreo,1) < Cpargeor(T5)?. (6.3.1b)

REMARK 6.3.1. The assumption (6.3.1) basically states that the Taylor expansion of
the parametrization ~ behaves nicely. Since v, is uniquely determined by v, (6.3.1b) is an as-
sumption on the Taylor expansion of v, since inf5, cpr (o)) [[vr —Trllwree o)) S V7 Lo 0,1))
and geop(T,) 2 mingr |y o y7|. Assumption (6.3.1) holds for example if T is parametrized
by piecewise polynomials of arbitrary order, i.e., B-splines, or by NURBS.

LEMMA 6.3.2. Under assumption 6.3.1 and with Lemma 6.2.9 (i)-(iii) as well as
geo(Ty) < CO,1/2, there emists a constant Ci,, > 0 such that the approzimate geometry
T. € T satisfies for all T € T,

”tF - 8I“’V*HLOO(TF) < CinV|T|_1geOT(71)2- (6'3'2)

Given z,y € T with x € T} for some Ty € Ty, there holds additionally

|To| 1
|0r zkx (2, y)] < Cinv<|a: i yP) max g geop(T7)? (6.3.3)
TNy #£0
as well as for z,y € Jw(Ty, T))

|To| /2 3/2

|Orwhis(@,y)| < Cioy——  max_ geop(T,)"*. (6.3.4)

|z — y| Tew(To,T7)

The constant Ciyy depends only on Char, K(Ty) (with K(-) from Section 3.2.2), and Cr.

PROOF. Given T € T,, there holds with (v — 7, 0v7)" = (tr — Or7x) oy and (6.3.1a)
that

ltr = Ovvell oo qrry = I TT[HI (v = Yo 0 97) || 2 0.1 (6.3.5)
Assumption (6.3.1b) and norm equivalence on P?([0, 1]) imply
(v = 3 0 7)oy < N = A1) [l (10,1 + geor(T)?
S e = Al o, + geor(72)?
S vr = 2w 0 yrlle=qo,)) + geor(To)*.
Finally, there holds
lvr = o7l = llide = Yullporr).-

The combination of the last three estimates concludes the proof of (6.3.2). To see (6.3.3),
combine (6.2.44) and (6.3.2). The estimate (6.3.4) follows from (6.3.2) and

ltr — Bellieery S 171 2ge0p (T — B2 e, < 171725007 (T2)2
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Together with the K-mesh property and (6.2.43), this implies (6.3.4) and concludes the
proof. O

LEMMA 6.3.3. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)-(iii) as well as
geo(Ty) < C.1/2 hold for T, € T. Given T € T,, define

[ yr(s) = ()P / .
or(s) = [ tom (=D ) 01 o et .

There holds for all € > 0
197122 (0,17 < Caps T [(€ + (1 + [ og(e) N Itr — Orvall ooy )- (6.3.6)

where the constant Cypx > 0 depends only on Cpay, Cext, and on Crp.

PROOF. Let kp(s,t) denote the logarithmic kernel of gr. Straightforward differentiation
shows for yr, := v, o yr

1
éﬁsmT(s, t)

_ (r(s) =0 (®) - 2 (8)1r4(5) = 10D = (914 (8) = 104(8)) - Vu(8) 7 (8) = 37 ()
1vr(s) = yr (@)1 77..(5) = Yo ()| '

Taylor expansion shows for some z1, 29, 23, 24 € [0,1] and s,t € [0, 1] that

[Ostir (5, 1) [7r(5) = Y7 () *[y7a(s) — y7a(B)]*/2
= (5 = OIV(8)*I1ra(s) = 1ra O + (s = )77 (21) - Yo () vra(s) — y7a(B)
— (s = )1 () lvr(s) — 9] = (s = )77k (22) - V() (s) — 2 (1)
= (5 = 1)’ (8) "I (8)1* + (5 — )7 |77 (23) P17 ()|
= (s =’ Iyr() P ()F + (s = ) [yr(20) Pl ()
+ (s = )"77(21) - v (8)mals) — ()
— (s =197 (22) - Yr. () vz (s) — (D).

Assumption (6.3.1a) bounds the above by

|0st (s, 1) [72(5) — () *[71.8(5) — Y70 ()]
S(s— t) (v *”L‘X’(Ol H"YTHLOO(Ol + I HL°° ([0,1]) H"YT*HLOO (o, 1]))
+ (s = t)2[lvgll oo o 1V oo o,y [V (8) — Yo ()2
+ (s = 2197l o IVl oo o, Iy (8) = 42 (8]
S(s— t) (”’VT*”LDO(Ol)H’YTHLOO(Ol) + I HLOO ([0,1]) H’YT*HLOO (o, 1]))
+ (s — ) (Nl zoecto, 17 o to, ) 1V e o,

+ H“YT,*HLOO([OJ])H’VT,*HLOO([OJ])H’VTHLoo([o,u))
ST (s = )° + (s = 1)),

where the hidden constants depend only on C,, and on C;,. Again with (6.3.1a), the above
implies

Duror(s, )] <1+ s — ¢, (6.3.7)
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where the hidden constant depends only on Cp, and on Cpi,. On the other hand, there
holds kr(s,t) = k«(yr(s),yr(t)) and hence by use of (6.2.43)

[Ostir (s, )] = [(015) (v (8), Y (OITT] S THIvr(8) — 42 ()] ltr — Fevell oo )
~ [s — t| 7 ltr — Oyl ooy (6.3.8)

The estimates (6.3.7)-(6.3.8) and |0p,| o vp < 1+ geo(T;) < 1+ C.L/2 show for € > 0

95(5)| < | Oumrls 01t + | [ Our(s, 0 0]

[0,s—)U(s+¢,1]

S| |s — t] 7" dt|[tr — Ovvull o) [T | + €| T
[0,s—&)U(s+¢,1]

SITH (1 + [log(e) It — Ol oo ary + [T e
This concludes the proof. O

LEMMA 6.3.4. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)-(iii) as well as
geo(Ty) < Cot/2 hold for T, € T. Given G, € PY(TF), there holds for all T € T,

T[]0 My (G| 00yl owre 7o) | 22y
< Cuigeo(To)*? (1 + |log(geo( o)) I Gull 2 a7y

where M, is defined in (6.2.48) and the constant Cyy > 0 depends only on Ciny, CrLip, Cext,
Cr, Capx, K(Ty) (with K(-) from Section 3.2.2), and on T.

PROOF. We abbreviate G := (G.|0rV4)|uw(rr,7r) and get

_ 2 )
M*G 22 r :/ / O xl |ZL‘ y| G d d
|Or IZ2 () ( (T 7T r, og<|%(x)_%(y)|2> (y) y) x
|z —y[? 2

ol G(y)dy) d 6.3.9

/TF (/Uw(TF TINTT O 1o (|’Y*(ZL‘) — ’7*(y)|2) (y) ?/) T ( )

| —yl? 2
+ Orzl G(y)dy| dx.
fu (e (= ) e )
There holds with (6.3.4)

/TF ( /UW(TF,TF)\TF Oz log <\fy*(:|;; - Yy )|2)G(y) dy>2 dx

2
S (oM max seor (7 [ ([ o= ol Gl dy) do.
7 N J (T TENTT

AN

cw(T\T+)

Let T1, Ty € T} such that Ty UT, = Jw(T", T,Y) \ T". Then, there holds for i = 1,2

[ ([ e=sricwla) e [ ([ 1o )
< (14 geo(TP)Guln [ Tog(dist(a, 7)) .

The Lipschitz continuity of v and (6.2.13) show for z; :=T;,NT €T
C o — z| <dist(z, T;) < Ola — 2|
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for some constant C' > 0. This implies

/TF log(dist(z, T}))* do < /Tr(log |z — 2|)* dx + /T(log(C’))2 dr < |TF|(log(|TF|)2 +1).

Altogether, this shows

[z —y? 2
2 G(y)dy) d
A;<Z;@Wﬂxﬂf%’Og(hﬂx)—yxwa (v) y) *

< ~1 2 3 2 6.3.10
< O+ geo(TIT (log(T)? +1) | max  geor (TP lIG e rmy (O310)

< (1+ geo(T))IT|™ (log(IT1)* + 1)geo(T)* | Gl L2 (e 7).

where we used the K-mesh property for the last estimate. The remaining term in (6.3.9) is
bounded by use of Lemma 6.3.3 with ¢ := geo(7,)*2. Since G,|;r is constant, consider

—yl? 2
O M,Glrr |2 ::/ G?x/ log ( ] )Gy)dy) d
e Clrrllisan = fp (e J o8\t =) )
= |Gl Plor (g 0 72 ) z2(ry = 1T TG re Pllg 172 0.1
S (e* + (1 + [log(e))*lltr — Orvall Lo crry I Gl L2y
< (geo(T2)” + (1 + [log(geo(To))lltr = Orvellzoo o) I GullZ2rr)-
Lemma 6.3.2 then shows |T'[|[tr — 0|7y S geo(75)” and hence
IT11|00 MG e [ 2y
S (1+ [log(geo(T.)) 1) *geo(T2) | Gll72zry.
Putting together the estimates (6.3.9), (6.3.10), (6.3.11), we end up with
I T/100 M (Gluwrr 7o) 72y S geo(To) (log(IT1)? + log(geo(T))? + DI Gl Zauwirr 7r)

This concludes the proof. O

(6.3.11)

LEMMA 6.3.5. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)-(iii) as well as
geo(Ty) < C.1/2 hold forT, € T. All G € L*(T") satisfy

> AT 100 Mu(Glevore 7)) 320y
TeTx

< Chigeo(To) |1 + log (min h,)*(| log(| 7o) + 1) |G 22(r,

where M, is defined in (6.2.48) and the constant Cy; > 0 depends only on Cupx, Cext, ClLip,
Cys, K(T,) (with K(-) from Section 3.2.2), and on T.

PROOF. Let z € T" for some T € T,. The estimate (6.3.3) shows
T
[z =yl |z —yP?

Oraricle ) 5 ( Jeco(To)?.

The estimate (6.2.42) shows also

|0r,2k(, )| < |z — y|geo(Ts).
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The combination of the last two estimates implies
geo('];)3/2( 7! i 1 )1/2
= y['2 e -yl o —yl?
|T‘71/2 1

+ ).
lz—yl |z —y[¥?

| k(2 9)| S

< geo(T2)*?(

We abbreviate G := G|p\uy(zr,7ry and employ the above estimate to obtain

2
oGl = [ (] O, 9)Gy) dy ) dr
T *JT\U(TT,TF)
-1 3 -1 2
STl o [ ([ o~y 1G] dy) da
T N JI\U(TV,TF)

2
(T [ (| o~ o |G ()| dy) de.
7 N JT\Ue(TT,7T)
For a € {—1,—-3/2}, there holds

2
[(f [z~ 3l |C ()| dy) da
T N JT\Uw(TT,7T)

< [Tlsup|llz =~ Ly oyl =12 GW ey 7))-

The first term is estimated as in (6.2.56) to obtain

2
L e=uliGwld) d
T M\Uw (T, TT)

< [T'|sup |||z — "71/2”%2(F\Uw(TF7’T*F)) Z [z — "QH/Q‘G(')H‘%%TO)
ot To €T \w(TT,TF)

1
STI(1 + [log(|T)]) > Tt (T, Tp) 21 G 2(z)-
ToeTI\w(TT,TF) 70

Altogether, this yields

> Tl MGy

TeTx
S Y TR0l T 1+ [log(TN) Y (o + —— )G
dist(T, Tp)  dist(T, Tp)? L2 (To)
TeTx ToeT \w(TT,T)
< geo(T.)3(1 + | log(min h,) Z 1G22 (To) Z ( . 7 + = ol )
dist(7T,Ty)  dist(T, Tp)?

ToeTr TeTN\w(To,T)

Lemma 6.2.27 implies

T IT|? ) max A,
< log(|7; )] + 1
m Y (G T ammme) S 1o G, 00s(TDI D
TeT \w(To,Ty)

and thus concludes the proof.
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To formulate the next lemma, we define an auxiliary error estimator on the exact bound-
ary. Of course, this in only a theoretical tool and does not have to be computed. For all
T € TY, define

pre(T) = 102 07 O (VU(T)" = f)ll 2y, (6.3.12)

LEMMA 6.3.6. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)-(iii) as well as
geo(Ty) < Cot/2 hold for T, € T. Given some S, C T,, there holds

S o) (X o)
TeS

Tresr

where ST == {T" : T € 8.} and
o, = geo(T;)>? <2/{FC’V,0(T*)geo(7;)1/2
+ CuClip(1 + [log(geo(T.))[) (1 + |log(min A ) [)(1 + | log(lﬁ\)\)mHU(71)HL2(F*>)-

PROOF. There holds with w, := |JS8, and w! =S¥
(X2 o) = I 0 VUCTY = Pl
Tresr
< 1122 07 (O, VU(TL) = £2)) © 3007l 2| 2y (6.3.14)
020 7, (e VU T = ) = (00, (RU(TS) = £)) 0 l007 ) 2.
We introduce the notation
A=0or(VU(T)" = f),
= (0r, VLU(T2) = £.)) © Yul Or7a V2,
C =0 (VU(T.) = f2) © 1)-
The first term on the right-hand side of (6.3.14) transforms to

2
||ha1</2 © 'Y*BH%?(d) = /F By © s (8& WVU(T,) — f*)) 0 Vs |Or | d
o (6.3.15)

:/h(ap(VU( D= f)) de =" pr(T

TeSx
The second term on the right-hand side of (6.3.14) is further split into

1722 0 7 (A = B)[ 2ty < 1% 0 9u(A = Ol gar) + 12/ 0 9:(C = B) |l z2ury-
The chain rule (6.2.11) implies
C'= (Or, VLU(T,) = fi)) © % Or s

With (6.2.15) and (6.2.9), we get 987, = |Or7x|. This shows together with (6.3.15) and
Lemma 6.2.14

17?0 7.(C = B)|l2@ry = I1hi/? 0 %1 = [00v]V) Bl p2ory
<1 = 009l 2l oy 1B2"? © 7Bl 2
1/2
< 2krCygeo(T, ( Z pr (T, ) )
TES,
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Moreover, since f, = f o1, there holds

17Y2 0 7 (A — C)| p2ry < [[hY? 0 7,00 (VU(T)Y = VL U(T2)) © %) |l 22 (r)-
We obtain for x € T

—2r(V(U(T)") — WU(T)) 0 7.)(x)

- / log [ — y|U(T5) 0 7% ()| ] dy — / log [14(2) — 1 (@)U (T2) 7 () |00 dy

_ %M*(U(ﬁ)F)(:c).

We employ Lemma 6.3.4-6.3.5 to obtain
1
Sl 0 20 M (U (T)") 2y

< D IR 0300 MU (T2 |uwre 7o) 72y
TeTx

+ Z ||hi/2 © V*arM*(U(T*)F|F\Uw(TF,T*F))||%2(TF)
TeTx

< Cyigeo(T.)* (1 + [log(geo(T) ) IU(T2) 0 llzary

+ Chygeo(T2)* (1 + [log(min hu) ) ([log(IT))] + DIIU(T)" 122
< CriCripgeo(T2) (1 + [log(geo(To)))”

(1 + [log(min ) )*([og (I T.)| + DIU(T) I Z2r,)-

This concludes
1/2

S o) < (32 prm?) "
TES,

Tresr

The converse inequality follows analogously by replacing all triangle inequalities with reverse
triangle inequalities. This concludes the proof.

LEMMA 6.3.7. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)-(iii) as well as
geo(Ty) < Cot/2 hold for T, € T. With G, € P°(T)), there holds

17" 0 %Gl Oyl ll 2y < Cinel|GulOrrval |12y + geo( TGl zary.

The constant Ciyy > 0 depends only on K(T,) (with K(-) from Section 3.2.2), (I'2), and on
I.

PROOF. There holds with (I'2) and the inverse estimate from [57]
1h/? 0 %GBl 2y < Cripllhy® © %Gl ey
5 ||G*||H—1/2(F)
< GulOrvsl -2y + I1G(L = 100yl =172y
Lemma 6.2.14 proves
G (1 = [0euD) a2y < 1L = [0l 1Gull 2y S geo(T)? |Gl ey
This concludes the proof.
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THEOREM 6.3.8 (Stability and reduction (E1)). Let assumption 6.3.1 hold. Given two
approzimate geometries T, € T and Ty € T(T,) such that Lemma 6.2.9 (i)-(iii) as well as

geo(T),geo(Ty) < Cot/2 hold. Let q = \/1/4+C’2ny”HL2(O1 max h? < 1. Then, there
holds (E1) for p(-) from (6.2.5), with

o(Te. 7o) 2= Coan (|U(T)" = UCT) |l rasaqry + e+
T (geo(T2)” + £eo(T)) (10T iz + (U (T 2e.)):

O, Qo from Lemma 6.53.6, S(T,, Ts) := T\ T, 3’(7'*,7'.) =T\ Tx, and 0 < preqa < 1 depends
only on q, whereas Cpery > 0 depends additionally on Ciyy, CLip, ', and K(T,), K(T,.) (with
K(-) from Section 3.2.2).

PROOF. To see (Ela), we employ Lemma 6.3.6 two times with S, := S; := T, \ S(7,, T)
and S, =8y := T, \ S(7%,7T,) to obtain

(o) = (X orrer)

TeS TeS,

(6.3.16)

TTesy TresT

By definition of the bisection rule in Algorithm 6.2.10, there holds |JS] = |JS). Moreover,
h, o7, = he o, on | JSI. Hence, the remaining term in the above estimate satisfies

(3 o) = (3 pr(mp) | < I o VU = V(T e

Tresy TresT

The inverse estimate from [2] shows

2 0 5B V(U (Te)" = UT) ey £ 022 2 0 UT) = UT) D llay oo
| 3

+|U(T)" = U(T)"
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where the hidden constant depends only on I' as well as K(7,) and K(7,) (with K(-) from
Section 3.2.2). Lemma 6.3.7 and Lemma 6.2.14 conclude

1h'? 0 7e(U(Te)" = U(T))lz2ry

S 1A 0 4o (U(T)" = U(T2) © 7l 0rve ) 22y
11 =100 ve |l e ) U (T | 22

S IUT)" = U(T2) 0 v)|0rve) -1y
+ 2eo(To)? NI U(Ts) © e — U(T2) 0 Yl L2y
+ 11 = 100 velll oo ) U (T | 22,

SNUT)T = U(T)) =12y
+ (geo(T2)? + geo(TOY)NU (T 2y + 1U(To)lz2ra))-

This concludes (Ela). To see (Elb), we use Lemma 6.3.6 two times with S, = & =
S(7,7T,) and S, := Sy :=\S(T,,7T.) to obtain for § > 0

ZpT( (149) ZpTr +(146)7"

TES, TreSt
< (14 6)[|hy/? 0 v 0r V(U(T)" = )l (UST)
+ (14 0) ol + (1+8)(1+6 7?0 % V(U(T) = U(T)") | 2y
< (140)*[[hs 07/ ha © Yol oo usty | 13/? 0 1BV (U(T5)" — f)”i?(us{)
+(1+0) " a2+ (14 0)(1+ 07/ 0 %o VU(TS)" = U(T)") |2y

< (14 0)||he 0 Ye/Pa 0 Yall oo usty >, pr(T)? + (14 6)°(1+ 67 ")a?
TS

+ (140l + 1+ + YA 0y VU(T)" — UT)) 2wy
Lemma 6.2.11 implies that

(6.3.18)

1P © 7i/ he 0 ’Y-"Loo(us{) <g<lLl
Hence, sufficiently small § > 0 together with (6.3.17)—(6.3.18) conclude the proof. O

To prove convergence of Algorithm 6.2.2, we require the following assumption on the
exact boundary I' and the initial geometry 7y: There exists 0 < ggeo < 1 such that all 7, € T
satisfy

geor (Te) < Ggeogeo(T,) for all T" € T\ T.. (6.3.19)

This assumption is met if, for example, the exact boundary I' can be parametrized in terms
of piecewise polynomials of arbitrary degree or NURBS and h, is sufficiently small.
Moreover, we need the assume that there holds

Zsul\? max{, qgeo}(l_a)?’g/QHU(%)||Lz(pe) < 00 (6.3.20)
€No

for some ¢ > 0.

REMARK 6.3.9. In case of quasi-uniform partitions with min h, ~ max hy, assump-
tion (6.3.20) is straightforward to prove even with ¢ = 1, i.e., sup,ey [|U(To)| 22,y < o0.
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However, we did not succeed in finding a proof for the general case of locally refined parti-
tions. We conjecture that there exists v > 0 such that

sup £V [|[U(To)| z2r,) < 00,

£eNy
which would imply (6.3.20). Note that not even uniform stability of the continuous problem
Vot HY(T,) — L*(T,) for all T, € T is known in the literature. From the uniform case, we
derive the (very conservative) worst case estimate ||U(Te)||r2r,) S 2°. Assumption (6.3.20)
1s easy to check numerically and in this sense, one should understand the convergence re-
sults of Lemma 6.3.10 and Theorem 6.4.1. If one numerically detects stability (6.3.20),
Algorithm 6.2.2 leads to convergence towards the exact solution.

LEMMA 6.3.10. Suppose Lemma 6.2.9 (i)-(iii) as well as geo(T;) < Cut/2 for all
¢ € Ny. Under assumption (6.3.1), (6.3.19), and (6.3.20) there ewists Uy, € H~'/*(T") such
that there holds a priori convergence limy_,o ||[Use — U(Te) || g-1/2¢r) = 0. Moreover, there

holds limy_,o 0(Ts, To1) = 0, where o(T¢, Tex1) is defined in Theorem 6.3.8.

PRrROOF. There holds
(6.2.6b)
geor(Ty) < 9dgeo(Ty) for T € T\ M,

and

(6.3.19)
geor (Trr1) < qgeogeo(Ty) for all T € Tpiq \ To.

Since all T' € Ty,q satisfy either T € Tpyq \ Toor T € T N Ty € Ty \ My, the combination
implies

geo(Tpi1) = Trg%ix geor(Te+1) < max{qgeo, V}geo(T). (6.3.21)

041

This implies geo(T;) — 0 as { — oo. Define Xoo 1= Upen, {v0r] : v e PUTS)} C
H~'2(T) and the a priori limit U, € X, by

(VU , v)r = (f, v)r forallv e X.
For all £ € Ny, define Xoo(7z) := Upen, {v 07, A, (v oy )] s v e PUTE)} € H-VA(T)
and Uy (Ty) € Xso(Te) by
<V5UOO<7Z), U>[‘l = <fg, U>Fz for all v € Xoo(ﬁ)
Then, there holds for all v € X
<VU007 U>F - <.f7 ’U>F - <.ffa v O’Yg_1|al“g%_1|>re-

For v € Uye, {v10re] : v € PU(TF)} (which is a dense subset of X)), there holds v =
w| 0| for some w € PY(TF) and k € Ny. In this case, we get with (6.2.12) that

1

|

vo oy | = wo g Ml 0 v 10r, v
= wo |0, (v 07 V)| € Xoo(T0).-

Together with |[v]|g-1/2r) = [Jv o W’l|6pﬂ[1|||H_1/z(Fl) by Lemma 6.2.19, this implies
v oy, or, ;€ Xoo(Ty) forallv € X, (6.3.23)

(6.3.22)

Analogously, we obtain
w o Y|Orvye| € Ao for all w € X (Ty). (6.3.24)
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This shows

(VUs, vr = (fe, v oy 007, e, = VelUoo(Te) , v o v 00,7 s (6.3.25)

for all v € X.
With Uy, — Uso(To)' € X by (6.3.24), we obtain with @ = w o, |,

. r
U = UCT vy = sup P2 OO, wir
weXo\ {0} [wll =172y
oy WU = U(TR). @), + GAU(TD), e, = VU whr

WEX\{0} ||w||H—1/2(F)
As in (6.2.49), there holds with Lemma 6.2.19 and (6.2.37)
1Use = U(T) N2y S WUl Te) = U(Te)l =120y + MU (Te) 2y
The Céa Lemma 6.2.39 (since 730(72) C X (7T¢) and Lemma 6.2.34 conclude

1Use = U(T) N ir-1/20) S mgn 1Use(Te) = Vellr-12(r,)
VeeP (6.3.27)
+ geO(%)?’/Q(l + [1og(geo(Te) ) DIIU (Te) | L2y -

As in (6.3.26), we get for V, € P°(T;) and V,}' := V; 0 v,|Orv,| that
V(Us =V}, w
Vs = Vi llgovay = sup e =V )o i
WEXoo\{0} ||w||H—1/2(F)
_ Sup <VZ(UOO<7Z) — Vf) ) w)W + <V€‘/€7 7:5>Fz - <V‘/£F7 w>F

WEXoo\{0} Hw|’H*1/2(F)

(6.3.26)

(6.3.28)

)

which implies together with Lemma 6.2.34, Lemma 6.2.19, and the uniform ellipticity (6.2.38)
that

[Un(T) = Villoriey S sup Ve(Usxs(Te) = Vi) , w)r,

WEXoo (T¢)\{0} ||'&7||H—1/2(F4)

6.3.23 V(Uso V), w
6329 o ViU (Te) = Vi) , w)r,
weXoo\ {0} 1wl gr-172ry

(6.3.28)

S MU = Vi lg-12r,)
+ geo(T2)** (1 + |log(geo(To)) D) I Vell L2y
This and (6.3.27) imply
Up —U va < (Um—vF s
I (Te ) | - /2(0) ~ Vé%}}(l,r | v e /2(T) (6.3.20)
+ geo(T2)*?(1 + [og(geo(To)) ) (I Vel z2ryy + 1U( 5)HL2(W))>'

For all k£ € Ny, there holds with Lemma 6.2.14

1Uso = Vi llg-120) < U0 = Ve o Yell =120y + 11 = 18002l l| ooy 1 Ve © el 2y
S WU = Ve o yiell g-12ry + ge0(To)? [Vl 2ry)-
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With (6.3.29), this shows

Us—U(T) |l g1y < mi ( U, —V, s 6.3.30
| (Te)" N -1/ T) nglj}}(lm | 20 Yell -1/ (1) ( )

+ (geo(Tz)” + geo(T0) (1 + [ log(geo (T ) D) (IVell z2r,) + IIU(7Z)||L2<W>>-

The term geo(7;)**(1 + |log(geo(7)))||U(Te)|| r2r,) converges to zero by use of assump-
tion (6.3.20) and (6.3.21).

It thus remains to prove that Us € Ugen, {Veo e : Ve € PUT0)} = Uen, PUTS) C
H='2(T). To that end, we show that Xy N Jyey, P°(7F) is dense in Xy N LA(T) with
respect to the L?-norm. Consider Iy := {x e @ limy o hyoy(zr) = O}. Obviously,
Ureny P°(7)Ir, is dense in L*(I'g) and thus also in X N L*(T'). For all z € I'\ Ty, there
exists ¢y € N such that « € T, € Ty, with T, C I" and T, € T, for all £ > ¢;. This implies
Orelr, = tr|r, and hence constant for all £ > ¢,. Moreover, drv|r, = ¢, for all £ < {,
where ¢, € R? depends only on tr|p, and the father element 7" € T, of T,. This shows that
Xaolrvre = User, PY(TH)Irvr,- Altogether, this implies that Xao N ey, P°(7") is dense in
Xy N L*(T') with respect to the L?-norm. Hence, [J,n, P°(7;") is dense in X, with respect
to the H~'/?(T")-norm and thus Us € ey, PO(T).

Given € > 0, this allows to choose V;, € PP(7Ty,) such that ||Usx — Vi, © Vel g-1/2(r) < €.
Then, choose k > ¢, such that all ¢ > k satisfy

(geo(7e)? + geo(Te)** (1 + | log(geo(Te)) ) |Vio | 2y < e

Since Vi, 0 v 07,0 € PUTy) and Vi 0y, 09, - © e = Vi © e, (6.3.30) shows ||Us, —
U(T)) N gr-1/2ry S 2€ for all £ > k. This concludes ||Us, — U(Te)" || g-1/2ry) — 0 as £ — oo.
The above and the definition of o(7, Try1) shows limy_,o 0(7¢, Tey1) = 0, where we use

(|log(|7e])| + | log(min he)|) S ¢ for all £ € Ny,

which follows from the fact that each step maximally doubles the number of elements and
approximately halves the size of the elements. This concludes the proof. O

6.4. Main result

THEOREM 6.4.1. Define T as in Section 6.2.5. Assume that all T, € T satisfy h, <
Crlipt/2 and geo(T,) < min{C.1/2,Cr'/2,Crlkpt/2} (such that Lemma 6.2.9 (i)-(iii)
hold). Then, the error estimator n(-) satisfies reliability (6.2.47). Under the assump-
tion (6.3.1), the error estimator p(-) from (6.2.5) satisfies (E1) with o(-,-) as stated in
Theorem 6.3.8. Moreover, under the assumptions (6.3.19)—(6.3.20), there holds convergence

lu = U(T) -2y < Coar(T)) =0 as £ — oo

PROOF. Since 7, satisfies (i)—(iii) from Lemma 6.2.9, all 7, € T satisfy (i)—(iii), too.
Therefore, Theorem 6.2.28 and Theorem 6.3.8 prove (6.2.47) and (E1). The estimator p(-)
satisfies Dorfler marking (6.2.6a) in each step of Algorithm 6.2.2. Therefore, Lemma 2.3.5
proves estimator reduction 2.3.8 for p(-). Lemma 6.3.10 shows lim,_,, o(7y, Tr+1) = 0. Hence,
Lemma 2.3.6 concludes the proof. U

CONSEQUENCE 6.4.2. Under the assumptions (6.3.1)(6.3.20), Algorithm 6.2.2 leads
to limy_,o 0(Ts, Tex1) = 0 and hence convergence in the sense of Theorem 2.3.3 (i).
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CHAPTER 7

General Quasi-Orthogonality (E2) For Non-Symmetric Problems

7.1. Introduction, state of the art & outline

The general quasi-orthogonality (E2) renders an important tool for the optimality proofs
of the previous chapters. Section 2.6 shows that it is even necessary if the algorithm is
R-linear convergent. The following investigations provide sufficient assumptions for (E2) to
hold. Section 7.2-7.4 appear in similar manner in [46]. Figure 1 depicts a geometric view
on the general quasi-orthogonality (E2).

7.2. General quasi-orthogonality (E2) for linear second-order elliptic equations

We stress that the quasi-orthogonality proof makes explicit use of the fact that we already
have convergence U(7;) — u in H}(2). We consider the setting of Section 3.6.1. The

U

FIGURE 1. Geometric view on the general quasi-orthogonality (E2). For
o(T,T) ~ ||[U(T)=U(T)||, the general quasi-orthogonality bounds the {5-sum
of the squared perturbations. Since the adaptive algorithm performs a step-
by-step optimization of the triangulations without any foresight, it controls the
perturbations o(7y, Tp41) only. By Galerkin orthogonality, the solutions are in
some sense orthogonal to each other. The general quasi-orthogonality (E2)
ensures that the overall approximation (dashed green line), which is measured
by 1(7;), is an upper bound for the sum of the individual steps. This would
be automatically the case if 1(7;) is a Hilbert norm which corresponds to the
orthogonality between the solutions. If (E2) is not satisfied, one has no argu-
ment that the individual steps approach the exact solution in an efficient way
(dotted red line).

159



operator L is split as follows
Au = —divAVu,
Cu=0b-Vu+ cu.
The following observation is the key element of the proof of (E2).
LEMMA 7.2.1. The operators A,C : H}(Q) — H Q) are bounded. Moreover, A is
symmetric, i.e., (Au, v) = (Av, u) for all u,v € HY(Q), and C is compact.

PROOF. The symmetry of A is obvious as A(z) is symmetric, and both operators A and

C are also bounded, i.e.,

[Av]|-1(0) < Al L@ [V L2(9),

IColl 1) < ICvll2i) S (IBllre() + llellLe@) V] L2(0),
for all v € HL(Q). This implies that C : HL(Q) — L2(Q), Cv := Cv is well-defined and
bounded. It remains to prove that C is compact. The Rellich compactness theorem shows
that the embedding ¢ : H}(Q) < L*(Q) is a compact operator. Therefore, according to
Schauder’s theorem, see e.g. [73, Theorem 4.19], the adjoint operator /* : L*(Q2) — H~(Q)
is also compact. Obviously, /* : L?(2) — H~'(Q) coincides with the natural embedding,
and we may write

C=10oC:HNQ) — L*Q) - H ().

Therefore, C is the composition of a bounded operator and a compact operator and hence
compact. This concludes the proof. O

LEMMA 7.2.2. Let (T;)ien, denote the output of Algorithm 2.2.1. Assume that there
holds convergence im0 [|U(Te) — ull gy () = 0 with u and U(T;) from Section 5.6.1. The

sequences (ep)gen and (Eyp)een defined by
u—U(T;)
{ N 0T 107 w7 U(To),

0, else,

ey = and

||V(U(72+1)—U(72))||L2(Q) !
0, else,

5 { UTAUT0 . for U(T;n) # U(T),
0=

converge to zero, weakly in H} (), i.e.,
lim (w, ef) =0 = lim (w, E) for allw e H(Q), (7.2.1)
{—00 {—00

where (-, -) denotes the extended L*(S))-scalar product.

PROOF. We prove weak convergence of e; to zero. The weak convergence of F, fol-
lows with the same arguments. Let (e,;) be a subsequence of (e;). Due to boundedness
Veg, |12y < 1 forall j € N, we may extract a weakly convergent subsequence (e, ) of (ey;)
with

er, — w € Hy(Q).
First, note that convergence limy o [[U(T) — ullgiq) = 0 implies that v, U(7,) € X :=
Uren, S0(Te) € Hy(Q) implies ¢, € Xy and hence w € X,. Second, for all £, > ¢ with
e, # 0 and all V € S{(Ty), it holds

bleg, , V) = IV (u = Up)ll 2o blu = Us,, V) = 0.
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For all ¢ € Ny, V € 8(T;), and € > 0, there exists ky € N such that all k& > kg satisfy
b(w, V)| = [w, LV)| <e+ (e, LV)] = e+ [bleg,, V)| =&,
since kg is chosen large enough such that ¢, > ¢. Therefore

b(w,V)=0 foralVeS(T,) and ¢ € N.

Due to definiteness of b(-,-) and w € Xy := {J ey Sh(72), this implies w = 0. Altogether, we
have now shown that each subsequence of e, has a subsequence which converges weakly to
zero. This immediately implies weak convergence e, — 0 as { — oc. U

The previous lemma shows that although (E;)sen is no orthonormal sequence, it shares
the property of weak convergence to zero with orthonormal systems. Note that our proof
already used convergence U, — u as £ — oo in the sense that we required u— U, € X,. This
suffices to prove the following quasi-Pythagoras theorem.

PROPOSITION 7.2.3. Define || - || := b(-, -)"/2 with b(-, -) from Section 3.6.1. Assume
that limy o0 |U(Te) — ullgr) = 0. Then, for all 0 < e <1, there exists lq, € N such that

1U(Tewa) = U(TOI* < lu = U(TI* = llu = U(Ter)|1® (7.2.2)

1—e¢
for all £ > {y,, where w and U(Ty) are defined in Section 3.6.1.

REMARK 7.2.4. As in [36, Theorem 5.1|, the quasi-orthogonality (7.2.2) is an asymp-
totic statement. The advantage here is that (7.2.2) is automatically quaranteed after {y steps
of Algorithm 2.2.1. In contrast to that, [36, Assumption 4.3| used to prove [36, Theorem 5.1],
includes a element-size condition of the form |T\1/d < hmax K 1 for all T € T, which is not
necessarily enforced by Algorithm 2.2.1, unless the initial triangulation is already sufficiently
fine. Moreover, hyax 1S unknown in general and depends on the regqularity of the dual prob-
lem.

PrROOF. Lemma 7.2.2 shows that e;, By, — 0 as { — oo. Due to Lemma 7.2.1, C is
compact. Therefore, we have strong convergence Cey, CEy — 0 in H™ () as £ — co. With

(-5 ) = (", Yr1@xmi (), this shows
(Clu—U(Tos1)), UTosa) = U(TD) = (Cersr, UTora) = UTNIV (= U(Top )l
< ICeealla—1 @IV (u = U(Tex ) 2@ IV (U (Tera) = U(Te)) [l 2
as well as
(CWU(Ter) =U(T0)  u—=U(Tenr))
= (CEy, u = U(Tera NIV (U(Tewr) = U(To))l 22
<ICE 1@ IV (w = U(Tes )N L2y IV U (Tera) = U(To)) | 2 (@)
For any 6 > 0, this may be employed to obtain some ¢, € N such that for all £ > £y, it holds
[(C(U(Tex1) = U(Te) , u=U(Tega )| + [(C(u = U(Te41)) , U(Teqa) = U(T))
<OV (u = U(Ter) 2@ IV (U (Tex1) = U(Te) |2y -
Together with Galerkin orthogonality
0="0(u—U(Tes1), Verr) = (L(uw = U(Te1)), Veya) forall Vg, € 3(1))(72+1)7
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we estimate
(LU (Terr) = U(Te)) , w—U(Tex1))]

)
= [{(A(u = U(Tex1)), U(Tea) = U(T0)) +
)

(CU(Tesr) — U(ﬁ)),u— U(Te41))
< [(L(u—=U(Tex1)) , U(Tea) = U(To))| + |

|
CWU(Te1) =U(Te)) s uw = U(Teyr))|
+[(Clu = U(Te11), U(Tewa) = U(Te))|
< 0|V(u = U(Ter)) 2@ V(U (Terr) = U(Te)) | 22(0-
(7.2.3)
The definition of || - || and Galerkin orthogonality (2.7.3) yield

lw = U(Tex )P + 1U(Tesr) = UTOIP + 2(L(U(Tesr) = U(T2)) , w — U(Texa))
= [lu—U(T)|%,
whence
1U(Ter1) = U(TOIP < llu = U(To)|1? = llu — U(Tesr) ||
+26C2 o lu = U(Tes)INU(Tesr) — U(TD)],

Where Chorm > 0 is defined in Section 3.6.1. The application of Young’s inequality 2ab <
a® + b* and the choice ¢ = §C? _ conclude the proof. O

norm

THEOREM 7.2.5. Assume that limy_,o ||U(T¢) — ul| = 0 with u and U(Ty) from Sec-
tion 3.6.1. Then, for alle,, > 0, there exists Cqo > 0 such that (E2) holds with o(T;, Tey1) =
NU(Te) — U(Tes1)||L3(2) and each estimator n(-) which is reliable, i.e.,

lu—U(To)|| € Cean(Te)  for all £ € Ny.
Particularly, this is satisfied by the error estimator n(-) from Section 3.6.1.

PROOF. Proposition 7.2.3 proves the quasi-orthogonality (2.7.5) for all ¢ > ¢, with
o(Te, Tewr) = IV(U(Ty) — U(Ter))|| and oy := |ju — U(Ty)||*>. The Céa lemma 3.6.5 and
reliability (in the setting of Section 3.6.1 from (2.4.1)) imply

o(Te, Texr) S llu = U(To)|| S 0(Te)  for all £ € No.
Therefore, Lemma 2.7.3 proves for all £ > /.

[e.e]

> (IU(T) = UTas) |2 = 2qon(Te)?) < Clon(To)*

k=t
For all ¢ < /y, there exists Cy, > 0 with

Lo

> (IU(T) = U(Ten)|? = eqon(Te)?) < Con(To)?,

k=t
since both sides of the inequality are finite and if n(7;) = 0, then reliability (2.4.1) and the
Céa lemma (3.6.5) imply
1U(Te) = U(Tea )l S llu = U(Te) | S 0(Te) = 0 for all k= £.

With Cy = Céo + maxy—o,.. ¢,—1 Cr, this concludes the proof. O

.....
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7.3. General quasi-orthogonality (E2) for problems with Garding inequality

LEMMA 7.3.1. Let (T¢)een, denote the output of Algorithm 3.6.53. Assume definiteness
for allv e Xy := 2y S5 (To), i.e.,

bw,v)=0 forallve Xy, = w=0. (7.3.1)
Then, the sequences (ep)een and (Ep)oen (with w and U(Ty) from Section 3.6.2) defined by

u-U(T)
N 0Tam o7 w7 UTo),
07 6[86,

ep = an

U(Ter1)-U(Te)
Eﬁ:{wwmﬁhmﬁh%, for U(Tesr) # U(T:),

0, else,
for all ¢ > ly (from Lemma 3.6.10) converge to zero, weakly in H(Q) in the sense (7.2.1).

PrROOF. We prove weak convergence of e, to zero. The weak convergence of £, fol-
lows with the same arguments. Let (e;;) be a subsequence of (e;). Due to boundedness
|Veg, |22 < 1 forall j € N, we may extract a weakly convergent subsequence (e, ) of (e;)
with

€r, — W E HS(Q)

Lemma 3.6.11 proves limy_, | V(u—U(T))||12(0) = 0 and particularly u € X. This implies
ep € X, and hence w € X,,. For all ¢, > ¢ with e, # 0 and all V' € S8}(7;), it holds

beg, , V) = IV (u = Ug)ll 200w — Ug, V) = 0.
For all £ € N, V € §{(T;), and € > 0, there exists kg € N such that all k& > kq satisfy
bw, V)| = l{w, £V)] < & + [{eq, LV =+ |blen, V)| =,
since kg is chosen large enough such that ¢, > ¢. Therefore
b(w,V)=0 forall Ve SH(T,) and ¢ € N.

Due to (7.3.1) and w € X, this implies w = 0. Altogether, we have now shown that each
subsequence of e, has a subsequence which converges weakly to zero. This immediately
implies weak convergence e, — 0 as £ — o0. O

LEMMA 7.3.2. Assume definiteness (7.3.1). There exists an index lyorm € N such that
for all £ > {,orm there holds

Cromllu = Uell < IV (u = Up)ll12(@) < Coommllu = Uil and
Crorml|Uer1 = Ue|l < IV (Uesr = Uo)llz2(@) < Cuoml|Ues1 — Ui

with w and U(T;) from Section 3.6.2.
PROOF. With (3.6.9) and |b(-,-)| = || - ||?, we may estimate
IV (w = U720y < = Uel® + llu = Ul
= llw = Uel® + llecll 7o) IV (w = Up)ll720y-
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Lemma 7.3.1 shows weak convergence e, — 0 in H}(£2). The Rellich compactness theorem
thus implies strong convergence e, — 0 in L?(2). Therefore, there exists an index o € N
such that there holds

IV (u = Ue)1 220y S llu— Ul for all £ > lromm.
The remaining statements follow analogously. U

PROPOSITION 7.3.3. Assume definiteness (7.3.1). Then, for all 0 < & < 1, there exists
lyo € N with lyo > lhorm Such that

i&_ lu = U(TO)|I? = llu = U(Tesn)|I? (7.3.2)

1U(Te) = U(T)|1* < 1
for all £ > o with uw and U(T;) from Section 3.6.2.

PrOOF. With Lemma 7.3.2 and Lemma 7.3.1, the proof follows analogously to the proof
of Proposition 7.2.3. U

THEOREM 7.3.4. Assume definiteness (7.3.1) and the Céa lemma (3.6.15) for all ¢ > ¢,
and some {, € N. Then, for all e,c > 0, there exists Cqo > 0 such that (E2) holds with
o(Te, Towr) = [|V(U(Te) = U(Tex1)) |2y for all £ > £y with £y from Lemma 8.6.10 and each

estimator n(-) which is reliable, i.e.,
IV(u—U(To) || L2) < Cran(Te)  for all £ € No.

The solutions u and U(T;) are defined Section 3.6.2. Particularly, this is satisfied by the
error estimator n(-) from Section 3.6.2.

PROOF. Proposition 7.3.3 proves quasi-orthogonality (2.7.5) with o(7;, Tev1) = ||[U(Te) —
U(Tes1)|| and o := ||u — U(Ty)||* for all £ > £.,. With the Céa lemma 3.6.15, Lemma 7.3.2,

and reliability (in the setting of Section 3.6.2, reliability is proved in Lemma 3.6.6), this
shows for all £ > max{{y, (1}

o(Te; Tera) S llu = U(To)[| S 0(Te) ~ for all £ € Ny.

Therefore, Lemma 2.7.3 proves for all £ > max{/,,, (1 }.
Y NU(TR) = U(Ter)I? = qon(Te)* < Coon(Te).
k=t
For all ¢y < ¢ < max{ly, (1}, there exists C; > 0 with
Lo
Y IVUTR) = UTei))l72) — €aon(Te)* < Con(To)?,
k=t

since both sides of the inequality are finite and, by Remark 3.6.7, also n(7;) > 0. The
combination of the last estimates with the norm equivalence from Lemma 7.3.2 concludes
the proof. 0
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7.4. General quasi-orthogonality (E2) for nonlinear second-order elliptic
equations

Similar to the proof in Section 7.2, we derive a corresponding result for the nonlinear
case. We consider the setting of Section 3.7.

LEMMA 7.4.1. Recall Xy := e, S6(Te) € Hg(Q). The operator (DL)|x u: Xoo —
X defined in Section 3.7 is injective and has closed range.

PROOF. With (3.7.6) and the definition of the Fréchet derivative, there holds for all
v E Xy

(DL)|x u)(v), v) = (lsir% 5_1<£(u + 0v) — Lu, v)
_>
= lim 6 2(L(u + 0v) — Lu, u+ dv — u)
0—0
2 1im 872V (u+ 60 — )3y = Vo320

Hence, we have ((DL)|x u)(v) # 0 in XL for all v € X, \ {0}. Let w, € range((DL)|x, u)
denote a Cauchy sequence. Then, the above estimate proves for ((DL)|x, u)v, = w,

IV (v = vm) 12200y S {((DL) ) (V0 = V) 5 Vn = V)
< |Jwn — wm”«'\f;o”v(vn - Um)”LQ(Q)a

which concludes that v, — v € X, and hence w,, — ((DL)|x_u)(v) € XL by continuity of
DL)|x, u. This concludes the proof. O

LEMMA 7.4.2 (Taylor). For allv,w € H}(Q) with [|[V(u—2)| 120 + ||V (u—w)]| 12(02) <
Eroc, there holds

|Lw — Ly — DL(w)(w — v)||g-10) < Ci7||V(w — v)H%z(Q), (7.4.1a)
lAw — Av — DA(w)(w — v)[|-10) < Curl|V(w = v) 120 (7.4.1b)
where L and A are defined in Section 3.7.

PROOF. The local boundedness (3.7.10) together with [37, Theorem 6.5] applied to the
operators £ and A prove the statement. d

LEMMA 7.4.3. The sequence (ep)sen (with uw and U(Ty) from Section 3.7) defined by

w=U(T7)
ep 1= {IIV(u—U(ﬁ))HLQ(Q)v for w# U(T),

else

Y

converges to zero, weakly in Hy(S)) in the sense of (7.2.1).

Proor. With Galerkin-orthogonality and the convention co - 0 = 0, we obtain

o (Lu— LU(T)) , Vi)
=00 |V (u = U(Te)) |2

By continuity of the duality brackets, this results in convergence for all v € X,

(Lu— LU(Ty), v)
IV (u—U(Te))| 220
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=0 forall V, € S§(Tx) and k € N.
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By use of (7.4.1a) and convergence from (3.7.15), we observe for all v € X, and all sufficiently
large ¢ € N.
[{(Lu = LU(T), v)| o [(DLu)(u = U(T2)), v)|
IV(u = UT)lz@) — IV =U(T)l2

— Ci7||V(u = U(To) | L2l Vo | 22 () -

Again, with convergence U(T;) — u in HJ () from (3.7.15), this implies immediately for all
v E X
[(u=U(Te), (DL)|xou)v)| _ {(DLu)(u—U(Ty)), v)|

= —0 asfl— . 7.4.2
V=0T e V=07 e (7:42)

According to Lemma 7.4.1, (DL)|x u is injective and has closed range. Therefore, its
adjoint operator ((DL)|xu)* has is surjective onto X% by the closed range theorem [85].
Convergence (3.7.15) implies that e, € X. Hence, (7.4.2) is equivalent to e, — 0 as { — oo.
This concludes the proof. O

To abbreviate notation, we define the quasi-metric (which is symmetric, definite, and
satisfies the triangle inequality with a multiplicative constant)

d(w,v)? := (Lw — Lv, w—v) forallw,v € Hy(S).
Note that due to (3.7.5)—(3.7.6), there holds
CrommlIV(w = 0) |12y < d(w,v) < Crorm||[V(w —0) |12y for all w,v € Hy(Q) (7.4.3)

with Chorm = max{2Ci5, Cj5'} > 0.
PROPOSITION 7.4.4. For any ¢ > 0, there exists {y, € N such that

1
AU, U(T)P? < 5

— &

d(u, U(T))? — d(u, U(Tey1))? (7.4.4)
for all £ > {y, and with w and U(Ty) from Section 3.7.

PROOF. Due to convergence U(7T;) — u in H;(2) from (3.7.15), there exists ¢; € N such
that for all £ > ¢; we may apply (7.4.1b), to obtain

(AU (Tex1) — AU(Te) s w = U(Tes)) |
< (DAU(Te3)) (U (Terr) = U(Te)) 5 w = U(Tera))
+CrlV(U(Ten) = UTON 21V (@ = U(Te1))ll220)-
Using the symmetry of DA(U(7y+1)), we conclude
(AU (Tex1) — AU(Te) , w = U(Tes)) |
< UDAU(Ter))(w = U(Texr)) , UTerr) — U(Te))
+ Coal| V(U (Terr) = UT 2@ IV (u = U(Tern)) 220

< [{(Au— AU(Tex1) s U(Tera) = U(T2))|
+ Col| V(U (Texr) = UTON 72 IV (u = U(Ter1)) 220
+CirlV(U(Ten) = UTON 2@ IV (@ = U(Te1)) 720

(7.4.5)
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Analogously to the estimate above but by use of the reverse triangle inequality, we obtain

(AU (Tesr) — AU(Te) , w = U(Tira))]
2 I(AU—AU( Ter1), UTea) = U(Th))]
— CotllV(U(Texr) = UTON 2@ IV (u = U(Ten)) 220
— CollV(U(Ter) = UT) 2@ IV (u = U(Ter1)) 720

(7.4.6)

Given § > 0, convergence U(7;) — u as { — oo provides an index ¢y € N such that
017<HV(U — U<7Z+1))”L2 + ”V( ( g+1) — U(n))”LQ(Q)) < . With (7.4.5)*(7.4.6) this
implies
(AU (Te1) = AU(Te) s u = U(Tee))| = [(Au — AU(Terr) . U(Terr) = U(T2))|
<OIVU(Terr) = UT) 2@V (u = U(7Z+1))HL2

for all £ > ¢;. Since e, converges to zero weakly in Hj(£2), we have strong convergence e, — 0
as £ — oo in L?(Q). This together with Lipschitz continuity (3.7.5b) implies

(CU(Tes1) = CU(Te) , u = U(Tern))|
SIVU(Terr) = UT) 2@ llecnllz@lIV (e = U(Tern)) 2@

and hence

[(CU(Tes1) = CU(Te) , u = U(Tera))|
<OVU(Tesr) = UM 2@ IV (w = U(Ter1)) |22

for all ¢ > ¢y with ¢4 > ¢, sufficiently large. The adjoint term satisfies

[(Cu—CU(Tex1) » U(Ter) — U(T0))|
< [{Cu=CU(Ter1), UTera) — w)| + [{Cu = CU(Tera) , u = U(Te))|
S IV (u = U(Texa)) 2o leesllzae)
H IV = UT)2@lled 2@V (w = U(Te)l 22
S(IV (w = U(Tex1)) 720
+[IV(u = UT) 2@V (u = U(Ter1)  r2@) -

So far, we end up with

(CU(Te+1) = CU(Te) , w—U(Tea))| + [{Cu = CU(Te1) s U(Ter1) — U(To))|
< (IVU(Ter1) = UT) ez |V (w = U(Texn) |20
+ IV (u — U(77Z+1))H%2(Q)
+[[V(u = U(Tes) 2@V (u = U(To) | 220)
< 6/2(IV(U(Ter) = U(To) 720y + 2011V (w = U(Tes)ll 720y
+6/2||V(u— U(%))Hm(g)
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by use of Young’s inequality. Putting everything together and by use of Galerkin orthogo-
nality (A+C)u — (A+C)U(Tex1), U(Tex1) — U(Ty)) = 0, we obtain

(
((A+C)U(Ter) = (A+CO)U(Te) s u— U(Te11))]
< [{(Au — AU(Te11) s U(Tera) — U(T2))|
+0[VU (Terr) = U(To) 2 IV (w = U(Texn))l 220)
+ [{CU(Ter1) = CU(Te) , u = U(Tenr))|
< [((A+Cu— (A+C)U(Te11), U(Ter1) — U(Te))]
+ 0IV(U(Tewr) = U(T) 2@ IV (= U(Tes)) |l 2y
+ (CU(Tex1) = CU(Te) , w = U(Tex1))| + [{Cu — CU(Tex1) , U(Texa) — U(Te))|
< 30(IV(U(Terr) = UT) 2@ + IV (w = U(Ter) 72 + 1V (w = U(T0)[72(q)) -
With that at hand, we obtain by definition of di(-,-)
AU (Te+1), U(T0)* < d(w, U(T2))* = dl(u, U(Te1))?
+ [{(A+CO)U(Ter1) = (A+C)U(Te) , u = U(Te))|
< d(u, U(Te))* = d(u, U(Te1))* + 30 (| V(U (Tesr) = U(T) 220
+ IV (u = U(Ter) 72 + IV (w = U(T0)I72(0)) -
With the equivalence (7.4.3), we conclude
(1 = 3Chom)A(U(Tex1), U(Te))?
< (14 3Chorm®)A(1t, U(TD)? — (1 = 3Coormd)A(1r, U(Tis1))?

for all £ > {¢y. Finally, we choose 6 > 0 sufficiently small such that (1 + 3Cyormd)/(1 —
3Chormd) < 1/(1 — ¢) and conclude the proof. O

THEOREM 7.4.5. Suppose the Céa lemma 3.7.8. For all 4o > 0, there exists Cqo > 0
such that (E2) holds with o(T;, Tey1) := [|V(U(Te) — U(Tex1)ll 22 (with w and U(T;) from

Section 3.7), and each estimator n(-) which is reliable, i.e.,
IV(u—=U(Te)) || L2) £ Cran(Te)  for all £ € No.
Particularly, this is satisfied by the error estimator n(-) from Section 3.7.

PROOF. Proposition 7.4.4 proves the quasi-orthogonality (2.7.5) for all ¢ > ¢, with
o(Te, Tow1) = A(U(Ty),U(Tes1)) and oy := d(u, U(T;)). The Céa lemma 3.7.8, (7.4.3), and
reliability (in the setting of Section 3.7 from (2.4.1)) imply

o(Te, Texr) S IV (u = U(Te)) 2@ S 0(Te)  for all £ € No.
Therefore, Lemma 2.7.3 proves for all £ > £,.

Z dl 77c+1>> - 5qon<77€>2 S Céo'f?(ﬁ)Q-

For all ¢ < /4, there exists C, > 0 with

Lo

D AWU(TR), U(Tesn))* = eaon(Tr)* < Con(Te)?,

k={
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since both sides of the inequality are finite and if n(7;) = 0, then reliability (2.4.1) and the
Céa lemma (3.7.8) imply

AU(Te), U(Ter1)) SIVU(TR) = U(Tesa)llz2e) S V(e = U(To) 2@ S 0(Te) = 0.
With (7.4.3), the last two estimates conclude the proof. O

169






1]
2]
3]

[4]

[5]
[6]

7]
8]
9]
[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]
[18]
[19]
[20]

[21]

Bibliography

Mark Ainsworth and J. Tinsley Oden. A posteriori error estimation in finite element analysis. Pure and
Applied Mathematics (New York). Wiley-Interscience, New York, 2000.

Markus Aurada, Michael Feischl, Thomas Fiihrer, Michael Karkulik, Markus Melenk, and Dirk Praeto-
rius. Local inverse estimates for non-local boundary integral operators. work in progress, 2015.
Markus Aurada, Michael Feischl, Thomas Fiihrer, Michael Karkulik, and Dirk Praetorius. Efficiency
and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods.
J. Comput. Appl. Math., 255:481-501, 2014.

Markus Aurada, Michael Feischl, Josef Kemetmiiller, Marcus Page, and Dirk Praetorius. Each H'/2-
stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirich-
let data in RY. ESAIM Math. Model. Numer. Anal., 47:1207-1235, 2013.

Markus Aurada, Samuel Ferraz-Leite, and Dirk Praetorius. Estimator reduction and convergence of
adaptive BEM. Appl. Numer. Math., 62(6):787-801, 2012.

Ivo Babuska and Anthony Miller. A feedback finite element method with a posteriori error estimation.
I. The finite element method and some basic properties of the a posteriori error estimator. Comput.
Methods Appl. Mech. Engrg., 61(1):1-40, 1987.

Ivo Babuska and Werner C. Rheinboldt. Analysis of optimal finite-element meshes in R'. Math. Comp.,
33(146):435-463, 1979.

Ivo Babuska and Michael Vogelius. Feedback and adaptive finite element solution of one-dimensional
boundary value problems. Numer. Math., 44(1):75-102, 1984.

Eberhard Béansch. Local mesh refinement in 2 and 3 dimensions. Impact Comput. Sci. Engrg., 3(3):181—
191, 1991.

Soren Bartels and Carsten Carstensen. Each averaging technique yields reliable a posteriori error control
in FEM on unstructured grids. II. Higher order FEM. Math. Comp., 71(239):971-994, 2002.

Soren Bartels, Carsten Carstensen, and Georg Dolzmann. Inhomogeneous Dirichlet conditions in a priori
and a posteriori finite element error analysis. Numer. Math., 99(1):1-24, 2004.

Roland Becker, Shipeng Mao, and Zhongci Shi. A convergent nonconforming adaptive finite element
method with quasi-optimal complexity. STAM J. Numer. Anal., 47(6):4639-4659, 2010.

Liudmila Belenki, Lars Diening, and Christian Kreuzer. Optimality of an adaptive finite element method
for the p-Laplacian equation. IMA J. Numer. Anal., 32(2):484-510, 2012.

Peter Binev, Wolfgang Dahmen, and Ronald DeVore. Adaptive finite element methods with convergence
rates. Numer. Math., 97(2):219-268, 2004.

Andrea Bonito, J. Manuel Cascon, Pedro Morin, and Ricardo H. Nochetto. AFEM for geometric PDE:
the Laplace-Beltrami operator. In Analysis and numerics of partial differential equations, volume 4 of
Springer INdAAM Ser., pages 257-306. Springer, Milan, 2013.

Andrea Bonito and Ricardo H. Nochetto. Quasi-optimal convergence rate of an adaptive discontinuous
Galerkin method. SIAM J. Numer. Anal., 48(2):734-771, 2010.

Dietrich Braess, Carsten Carstensen, and Ronald H. W. Hoppe. Convergence analysis of a conforming
adaptive finite element method for an obstacle problem. Numer. Math., 107(3):455-471, 2007.

Dietrich Braess, Carsten Carstensen, and Ronald H. W. Hoppe. Error reduction in adaptive finite
element approximations of elliptic obstacle problems. J. Comput. Math., 27(2-3):148-169, 2009.
Carsten Carstensen. Efficiency of a posteriori BEM-error estimates for first-kind integral equations on
quasi-uniform meshes. Math. Comp., 65(213):69-84, 1996.

Carsten Carstensen. An a posteriori error estimate for a first-kind integral equation. Math. Comp.,
66(217):139-155, 1997.

Carsten Carstensen. A posteriori error estimate for the mixed finite element method. Math. Comp.,
66(218):465-476, 1997.

171



[22] Carsten Carstensen and Soren Bartels. Each averaging technique yields reliable a posteriori error control
in FEM on unstructured grids. I. Low order conforming, nonconforming, and mixed FEM. Math. Comp.,
71(239):945-969, 2002.

[23] Carsten Carstensen, Martin Eigel, Ronald H. W. Hoppe, and Caroline Lobhard. A review of unified a
posteriori finite element error control. Numer. Math. Theory Methods Appl, 5(4):509-558, 2012.

[24] Carsten Carstensen, Michael Feischl, Marcus Page, and Dirk Praetorius. Axioms of adaptivity. Comput.
Math. Appl., 67(6):1195-1253, 2014.

[25] Carsten Carstensen and Ronald H. W. Hoppe. Convergence analysis of an adaptive nonconforming finite
element method. Numer. Math., 103(2):251-266, 2006.

[26] Carsten Carstensen and Ronald H. W. Hoppe. Error reduction and convergence for an adaptive mixed
finite element method. Math. Comp., 75(255):1033-1042, 2006.

[27] Carsten Carstensen, Matthias Maischak, Dirk Praetorius, and Ernst P. Stephan. Residual-based a
posteriori error estimate for hypersingular equation on surfaces. Numer. Math., 97(3):397-425, 2004.

[28] Carsten Carstensen, Matthias Maischak, and Ernst P. Stephan. A posteriori error estimate and h-
adaptive algorithm on surfaces for Symm’s integral equation. Numer. Math., 90(2):197-213, 2001.

[29] Carsten Carstensen, Daniel Peterseim, and Hella Rabus. Optimal adaptive nonconforming FEM for the
Stokes problem. Numer. Math., 123(2):291-308, 2013.

[30] Carsten Carstensen and Dirk Praetorius. Averaging techniques for the effective numerical solution of
symm’s integral equation of the first kind. SIAM Journal on Scientific Computing, 27(4):1226-1260,
2006.

[31] Carsten Carstensen and Hella Rabus. An optimal adaptive mixed finite element method. Math. Comp.,
80(274):649-667, 2011.

[32] Carsten Carstensen and Hella Rabus. The adaptive nonconforming FEM for the pure displacement
problem in linear elasticity is optimal and robust. SIAM J. Numer. Anal., 50(3):1264-1283, 2012.

[33] Carsten Carstensen and Ernst P. Stephan. A posteriori error estimates for boundary element methods.
Math. Comp., 64(210):483-500, 1995.

[34] Carsten Carstensen and Ernst P. Stephan. Adaptive boundary element methods for some first kind
integral equations. SIAM J. Numer. Anal., 33(6):2166-2183, 1996.

[35] J. Manuel Cascon, Christian Kreuzer, Ricardo H. Nochetto, and Kunibert G. Siebert. Quasi-optimal
convergence rate for an adaptive finite element method. STAM J. Numer. Anal., 46(5):2524-2550, 2008.

[36] J. Manuel Cascon and Ricardo H. Nochetto. Quasioptimal cardinality of AFEM driven by nonresidual
estimators. IMA J. Numer. Anal., 32(1):1-29, 2012.

[37] Ruth F. Curtain and Anthony J. Pritchard. Functional analysis in modern applied mathematics. Aca-
demic Press [Harcourt Brace Jovanovich Publishers], London, 1977. Mathematics in Science and Engi-
neering, Vol. 132.

[38] Alan Demlow and Gerhard Dziuk. An adaptive finite element method for the Laplace-Beltrami operator
on implicitly defined surfaces. STAM J. Numer. Anal., 45(1):421-442 (electronic), 2007.

[39] Lars Diening and Christian Kreuzer. Linear convergence of an adaptive finite element method for the
p-Laplacian equation. STAM J. Numer. Anal., 46(2):614-638, 2008.

[40] Willy Dorfler. A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal.,
33(3):1106-1124, 1996.

[41] Todd Dupont and Ridgway Scott. Polynomial approximation of functions in Sobolev spaces. Math.
Comp., 34(150):441-463, 1980.

[42] Gerhard Dziuk. Finite elements for the Beltrami operator on arbitrary surfaces. In Partial differential
equations and calculus of variations, volume 1357 of Lecture Notes in Math., pages 142-155. Springer,
Berlin, 1988.

[43] Birgit Faermann. Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary
element methods. I. The two-dimensional case. IMA J. Numer. Anal., 20(2):203-234, 2000.

[44] Michael Feischl, Thomas Fiihrer, Michael Karkulik, Jens Markus Melenk, and Dirk Praetorius. Quasi-
optimal convergence rates for adaptive boundary element methods with data approximation, part I:
weakly-singular integral equation. Calcolo, 51(4):531-562, 2014.

[45] Michael Feischl, Thomas Fiihrer, Michael Karkulik, Jens Markus Melenk, and Dirk Praetorius. Quasi-
optimal convergence rates for adaptive boundary element methods with data approximation, part II:
Hypersingular integral equation. Electron. Trans. Numer. Anal., 44:153-176, 2015.

172



[46] Michael Feischl, Thomas Fiihrer, and Dirk Praetorius. Adaptive FEM with optimal convergence rates for
a certain class of nonsymmetric and possibly nonlinear problems. STAM J. Numer. Anal., 52(2):601-625,
2014.

[47] Michael Feischl, Michael Karkulik, J. Markus Melenk, and Dirk Praetorius. Quasi-optimal convergence
rate for an adaptive boundary element method. SIAM J. Numer. Anal., 51:1327-1348, 2013.

[48] Michael Feischl, Marcus Page, and Dirk Praetorius. Convergence and quasi-optimality of adaptive FEM
with inhomogeneous Dirichlet data. J. Comput. Appl. Math., 255:481-501, 2014.

[49] Michael Feischl, Marcus Page, and Dirk Praetorius. Convergence of adaptive FEM for elliptic obstacle
problems with inhomogeneous Dirichlet data. Int. J. Numer. Anal. Model., 11:229-253, 2014.

[50] Samuel Ferraz-Leite, Christof Ortner, and Dirk Praetorius. Convergence of simple adaptive Galerkin
schemes based on h — h/2 error estimators. Numer. Math., 116:291-316, 2010.

[51] Stefan Funken, Dirk Praetorius, and Philipp Wissgott. Efficient implementation of adaptive P1-FEM
in Matlab. Comput. Methods Appl. Math., 11(4):460-490, 2011.

[52] Dietmar Gallistl, Mira Schedensack, and Rob P. Stevenson. A remark on newest vertex bisection in any
space dimension. Comput. Methods Appl. Math., 14(3):317-320, 2014.

[53] Tsogtgerel Gantumur. Convergence rates of adaptive methods, Besov spaces, and multilevel approxima-
tion. arXiv:1408.3889, 2015.

[54] Eduardo M. Garau, Pedro Morin, and Carlos Zuppa. Quasi-optimal convergence rate of an AFEM for
quasi-linear problems of monotone type. Numer. Math. Theory Methods Appl., 5(2):131-156, 2012.

[55] Fernando D. Gaspoz and Pedro Morin. Convergence rates for adaptive finite elements. IMA J. Numer.
Anal., 29(4):917-936, 20009.

[56] Fernando D. Gaspoz and Pedro Morin. Approximation classes for adaptive higher order finite element
approximation. Math. Comp., 83(289):2127-2160, 2014.

[57] Ivan G. Graham, Wolfgang Hackbusch, and Stefan A. Sauter. Finite elements on degenerate meshes:
inverse-type inequalities and applications. IMA J. Numer. Anal., 25(2):379-407, 2005.

[58] George C. Hsiao and Wolfgang L. Wendland. Boundary integral equations, volume 164 of Applied Math-
ematical Sciences. Springer-Verlag, Berlin, 2008.

[59] Michael Karkulik, David Pavlicek, and Dirk Praetorius. On 2D newest vertex bisection: optimality of
mesh-closure and H'-stability of Ly-projection. Constr. Approz., 38(2):213-234, 2013.

[60] Christian Kreuzer and Kunibert G. Siebert. Decay rates of adaptive finite elements with Dorfler marking.
Numer. Math., 117(4):679-716, 2011.

[61] Shipeng Mao, Xuying Zhao, and Zhongci Shi. Convergence of a standard adaptive nonconforming finite
element method with optimal complexity. Appl. Numer. Math., 60:673-688, July 2010.

[62] William McLean. Strongly elliptic systems and boundary integral equations. Cambridge University Press,
Cambridge, 2000.

[63] Khamron Mekchay, Pedro Morin, and Ricardo H. Nochetto. AFEM for the Laplace-Beltrami operator
on graphs: design and conditional contraction property. Math. Comp., 80(274):625-648, 2011.

[64] Khamron Mekchay and Ricardo H. Nochetto. Convergence of adaptive finite element methods for general
second order linear elliptic PDEs. STAM J. Numer. Anal., 43(5):1803-1827, 2005.

[65] Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert. Data oscillation and convergence of
adaptive FEM. SIAM J. Numer. Anal., 38(2):466—488, 2000.

[66] Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert. Local problems on stars: a posteriori error
estimators, convergence, and performance. Math. Comp., 72(243):1067-1097, 2003.

[67] Jean-Claude Nédélec. Curved finite element methods for the solution of singular integral equations on
surfaces in R®. Comput. Methods Appl. Mech. Engrg., 8(1):61-80, 1976.

[68] Marcus Page. Schitzerreduktion und Konvergenz adaptiver FEM fiir Hindernisprobleme, Master thesis
(in German). Institute for Analysis and Scientific Computing, Vienna University of Technology, 2010.

[69] Marcus Page and Dirk Praetorius. Convergence of adaptive FEM for some elliptic obstacle problem.
Appl. Anal., 92(3):595-615, 2013.

[70] David Pavlicek. Optimalitéit adaptiver FEM, Bachelor thesis (in German). Institute for Analysis and
Scientific Computing, Vienna University of Technology, 2010.

[71] Hella Rabus. A natural adaptive nonconforming FEM of quasi-optimal complexity. Comput. Methods
Appl. Math., 10(3):315-325, 2010.

[72] Rodolfo Rodriguez. Some remarks on Zienkiewicz-Zhu estimator. Numer. Methods Partial Differential
Equations, 10(5):625-635, 1994.

173



[73] Walter Rudin. Functional analysis. International Series in Pure and Applied Mathematics. McGraw-Hill
Inc., New York, second edition, 1991.

[74] Roberta Sacchi and Andreas Veeser. Locally efficient and reliable a posteriori error estimators for Dirich-
let problems. Math. Models Methods Appl. Sci., 16(3):319-346, 2006.

[75] Stefan A. Sauter and Christoph Schwab. Boundary element methods, volume 39 of Springer Series in
Computational Mathematics. Springer-Verlag, Berlin, 2011.

[76] L. Ridgway Scott and Shangyou Zhang. Finite element interpolation of nonsmooth functions satisfying
boundary conditions. Math. Comp., 54(190):483-493, 1990.

[77] Ernst P. Stephan and Manil Suri. The h-p version of the boundary element method on polygonal domains
with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér., 25(6):783-807, 1991.

[78] Rob Stevenson. Optimality of a standard adaptive finite element method. Found. Comput. Math.,
7(2):245-269, 2007.

[79] Rob Stevenson. The completion of locally refined simplicial partitions created by bisection. Math. Comp.,
77(261):227-241, 2008.

[80] Gantumur Tsogtgerel. Adaptive boundary element methods with convergence rates. Numerische Math-
ematik, 124(3):471-516, 2013.

[81] Andreas Veeser. Approximating gradients with continuous piecewise polynomial functions.
arXiv:1402.3945, 2014.

[82] Riidiger Verfiirth. A posteriori error estimation techniques for finite element methods. Numerical Math-
ematics and Scientific Computation. Oxford University Press, Oxford, 2013.

[83] Tobias von Petersdorff. Randwertprobleme der Elastizitatstheorie fiir Polyeder - Singularitaten und Ap-
prozimation mit Randelementmethoden (in German). PhD thesis, Darmstadt, 1989.

[84] Yushan Yan and Tan. H. Sloan. On integral equations of the first kind with logarithmic kernels. J.
Integral Equations Appl., 1(4):549-579, 1988.

[85] Kosaku Yosida. Functional analysis. Springer-Verlag Berlin Heidelberg, 1980.

[86] Eberhard Zeidler. Nonlinear functional analysis and its applications. II/B. Springer-Verlag, New York,
1990.

[87] Olgierd C. Zienkiewicz and Jian Z. Zhu. A simple error estimator and adaptive procedure for practical
engineering analysis. Internat. J. Numer. Methods Engrg., 24(2):337-357, 1987.

174



Michael Feischl

Age 26 years

Date of Birth April 19th, 1988

Place of Birth Ried im Innkreis, Austria

Institution Vienna University of Technology, Institute for
Analysis and Scientific Computing

E-mail michael.feischl@tuwien.ac.at

Webpage http://www.asc.tuwien.ac.at/~mfeischl

o Education

April 2012-April 2015 Doctoral program Dissipation and Dispersion in Nonlinear PDEs, Vienna
University of Technology

March 2012 Master’s degree (with distinction), Vienna University of Technology
Summer 2011 Student internship at CERN, Switzerland

April 2010 Bachelor’s degree (with distinction), Vienna University of Technology
2006-2007 Military service in Austria

June 2006 Matura (A-level) at BORG Ried im Innkreis

2002-2004 BORG Ried im Innkreis

1994-2002 Primary & Secondary school in Eberschwang

o Top 3 publications

M. Feischl, T. Fiihrer, D. Praetorius: Adaptive FEM with optimal convergence rates for a certain class of
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e Co-authors

Carsten Carstensen (Humboldt Universitéit zu Berlin), Jens Markus Melenk (Vienna University of Technol-
ogy), Ernst Peter Stephan (Leibniz University of Hannover), Dirk Praetorius (Vienna University of Technol-

ogy).

e Other publications

Altogether, 21 peer-reviewed journal publications since 2012, e.g., in Appl. Numer. Math. (to appear 2015),
Numer. Math. (to appear 2015), Arch. Comput. Methods Engrg. (to appear 2015), Electron. Trans. Numer. Anal.
(to appear 2015), Math. Models Methods Appl. Seci. (2014) Calcolo (2014), Numer. Algorithms (2014), Comput.
Math. Appl. (2014), Int. J. Numer. Anal. Model. (2014), J. Comput. Appl. Math. (2014), Comput. Methods Appl.
Math. (2013, 2014), SIAM J. Numer. Anal. (2013, 2014), Eng. Anal. Bound. Elem. (2012, 2014), Comput. Mech.
(2013), J. Magn. Magn. Mater. (2012, 2013), M2AN Math. Model. Numer. Anal. (2012, 2013).

Currently, 15 publications are listed in MathSciNet and 19 in Scopus (state March 2015).

e Scientific talks

Workshop for Adaptive Wavelets and Frames for BEM in Acoustics (invited, 2014), 11th. World Congress
on Computational Mechanics (2014), IABEM Symposium (2013), WONAPDE (2013), MAFELAP (2013),
ECCOMAS (2012), Austrian Numerical Analysis Day (2010-2013), Workshop on Fast BEM in Industrial
Applications (2010-2013), Colloquium of Institute for Applied Mathematics at Humboldt-University of Berlin
(invited, 2012-2013), 7th Zirich Summerschool (2012).



