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Kurzfassung. Diese Arbeit s
ha�t einen axiomatis
hen Rahmen für den

Beweis von optimalen Konvergenzraten adaptiver Algorithmen. Das Haupt-

anwendungsfeld hierfür sind die Finite-Element-Methode sowie au
h die

Randelement-Methode. Drei Axiome für den Fehlers
hätzer und drei wei-

tere für die zugehörige Netzverfeinerung garantieren optimale Konvergenz-

raten. Der axiomatis
he Zugang erlaubt es, spezielle Fragen na
h der Not-

wendigkeit von (diskreten) unteren Fehlers
hranken, dem Einsatz von ap-

proximativen Lösern, der Einbindung von inhomogenen Randdaten oder

au
h der Verwendung von äquivalenten Fehlers
hätzern zu beantworten.

Die Weiterentwi
klungen und Verbesserungen im Verglei
h zum aktuellen

Stand der Fors
hung (ausgenommen der eigenen Arbeit [24℄, wel
he in die-

ser Dissertation teilweise erweitert wird) werden im Folgenden zusammen-

gefasst:

• Es wird ein einheitli
her und komplett abstrakter theoretis
her Rah-

men ges
ha�en, der die aktuelle Literatur zum Thema optimaler Konver-

genzraten umfasst. Die abstrakte Form erlaubt es, lineare sowie ni
htlineare

Probleme zu behandeln, und sie ist unabhängig von der zugrundeliegenden

(konformen, ni
ht-konformen, gemis
hten) Methode. Verwendet und analy-

siert wird einzig der Fehlers
hätzer, wel
her als Funktion der Triangulierung

betra
htet wird. Dieser Zugang ermögli
ht es, Axiome zu formulieren, die

unabhängig von allen Annahmen an das konkrete Modell sind.

• Die Beweise für Konvergenz und Konvergenz mit optimaler Rate kom-

men ohne E�zienz des Fehlers
hätzers aus. E�zienz wird in dieser Arbeit

nur verwendet, um die Approximationsklasse mittels Best-Approximations-

fehler und Datenfehler zu 
harakterisieren. Als Konsequenz davon und im

Unters
hied zur gegenwärtigen Literatur hängt die obere S
hranke für op-

timale Markierungsparameter ni
ht mehr von der E�zienzkonstante ab.

• Die Arbeit führt eine allgemeine Quasi-Galerkinorthogonalität ein, die

ni
ht nur hinrei
hend, sondern au
h notwendig für die R-lineare Konver-

genz des Fehlers
hätzers ist. Betra
htet man die optimale Konvergenzrate

des Fehlers
hätzers bezügli
h der Komplexität des Verfahrens (das heiÿt:

die Komplexität der Bere
hnung des aktuellen S
hritts und die Komplexi-

tät aller vorausgegangenen S
hritte), so stellt si
h die R-lineare Konvergenz
selbst als notwendig heraus. Die optimale Komplexität wird dann als Kon-

sequenz der optimalen Konvergenzraten des Fehlers
hätzers bewiesen.

• Anstatt der Overlay-Eigens
haft (eine übli
he Annahme in aktueller

Literatur) verwendet diese Arbeit eine tieferliegende Eigens
haft der Netz-

verfeinerung. Dies erlaubt es, au
h für populäre Verfeinerungsmethoden wie

die Rot-Grün-Blau-Verfeinerung, optimale Konvergenzraten zu beweisen.

• S
hlussendli
h behandelt diese Arbeit equivalente Fehlers
hätzer, ap-

proximative Löser sowie inhomogene und gemis
hte Randdaten. Zusätzli
h

wird eine neue Methode zur adaptiven Geometrie-Approximation für eine

spezielle Randelement-Methode eingeführt und deren Konvergenz bewie-

sen.

5





Abstra
t. This work aims �rst at the development of an axiomati
 frame-

work for the proof of optimal 
onvergen
e rates for adaptive algorithms,

with the main �eld of appli
ation being the �nite element method and the

boundary element method. Se
ond, the axiomati
 view allows re�nements

of parti
ular questions like the avoidan
e of (dis
rete) lower bounds, inex-

a
t solvers, inhomogeneous boundary data, or the use of equivalent error

estimators. Three axioms whi
h are related to the estimator guarantee op-

timal 
onvergen
e rates in terms of the error estimator for any re�nement

strategy whi
h satis�es additional three triangulation related axioms. Com-

pared to the state of the art in the literature (ex
ept for the re
ent own

work [24℄ whi
h is partially generalized), the improvements of this work


an be summarized as follows:

• First, a general and 
ompletely abstra
t framework is presented whi
h


overs the existing literature on rate optimality of adaptive algorithms. The

abstra
t analysis 
overs linear as well as nonlinear problems and is inde-

pendent of the underlying (
onforming, non-
onforming, or mixed) �nite

element or boundary element method. Solely, the error estimator, 
onsid-

ered as a fun
tion of the underlying triangulation, is used and analyzed.

This allows to formulate axioms whi
h are not restri
ted to any 
on
rete

model assumption.

• Se
ond, e�
ien
y of the error estimator is neither needed to prove


onvergen
e nor quasi-optimal 
onvergen
e behavior of the error estima-

tor. In this work, e�
ien
y ex
lusively 
hara
terizes the approximation


lasses involved in terms of the best-approximation error and data resolu-

tion. Therefore, the upper bound on the optimal marking parameters does

not depend on the e�
ien
y 
onstant.

• Third, some general quasi-Galerkin orthogonality is not only su�
ient,

but also ne
essary for the R-linear 
onvergen
e of the error estimator, whi
h

turns out to be ne
essary itself when it 
omes to optimal 
omplexity es-

timates. The latter means the optimality of the adaptive algorithm when


onsidering the overall 
ost of the algorithm (whi
h in
ludes the 
omputa-

tion of all previous steps) and is proved as a by-produ
t of rate optimality.

• Fourth, we 
ir
umvent the use of the overlay estimate of the re�nement

strategy, whi
h is a standard assumption in the re
ent literature, to in
lude

popular re�nement s
hemes like red-green-blue re�nement into the analysis.

• Finally, the general analysis allows for equivalent error estimators and

inexa
t solvers as well as di�erent non-homogeneous and mixed boundary


onditions and is even employed to prove 
onvergen
e of some novel adap-

tive geometry approximation for a 
ertain boundary element method.
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CHAPTER 1

Outline & Introdu
tion

1.1. Adaptivity

In this work, adaptivity is understood as the property of some numeri
al algorithm to

adapt its behavior to the given instan
e of a problem. In 
ontrast to that, a uniform algorithm

is assumed to show more or less the same behavior for any given problem in a 
ertain 
lass

for whi
h the algorithm is designed. This means, that the algorithm uses a priori knowledge

of the problem only. One example for that di�eren
e is the numeri
al integration, i.e, the

approximation of

∫ 1

0
f(x) dx for some given fun
tion f : [0, 1] → R. A uniform algorithm

evaluates the fun
tion f at a priori determined grid points and 
omputes an approximation.

An adaptive quadrature, on the other hand, tries to add grid points, where f appears to

be rough, and to remove grid points, where f appears to be smooth. This is done with the

overall goal of redu
ing the 
omputational 
ost to rea
h a 
ertain a

ura
y (see Figure 1 for

an example). The key di�eren
e of both approa
hes is that the uniform algorithm uses all

evaluations of f for the 
omputation of the approximation. The adaptive algorithm, invests

some of the evaluations in the determination of better evaluation points. This strategy makes

only sense, if the additional investment of 
omputational time pays at some point in terms

of an improved a

ura
y. Therefore, an adaptive algorithm is only useful, if the problem

at hand bene�ts from a non-uniform approa
h. In terms of the quadrature example above,

this is the 
ase if one wants to design a bla
k-box algorithm, whi
h integrates a large 
lass

of fun
tions equally well in terms of a

ura
y, sin
e for any parti
ular fun
tion, one 
ould

design an optimal grid of evaluation points a priori.

But also for very spe
i�
 problems, an adaptive approa
h 
an make sense. An illustrative

example for this situation (whi
h however is way beyond the 
urrent state of theory), is the

following: Assume one wants to predi
t how a 
ar will deform under a front impa
t. It is

obvious that the front bumpers and the hood will su�er from major deformation and thus

require high 
omputational a

ura
y. However, in low speed 
rashes, the strong 
ylinder

blo
k 
ould survive without any deformation and thus it su�
es to 
ompute how the 
ylinder

blo
k translates and rotates within the 
ar. This is, of 
ourse, mu
h 
heaper in terms of


omputational time, than 
omputing the lo
al deformations of the blo
k. For high speed


rashes, when even the 
ylinder blo
k deforms, this might not be su�
iently a

urate any

more. Therefore, a detailed 
omputation is ne
essary. The parti
ular threshold speed, whi
h

separates those two 
ases, may not be known a priori. Hen
e, it might not be possible to

design a uniform algorithm, whi
h uses only a priori knowledge of the problem, but still


omputes the solution e�
iently.

An often heard argument in favor of uniform algorithms is that 
omputing power and

memory have be
ome so 
heap that one just in
reases the size of the 
omputing fa
ility, if a

given algorithm does not produ
e the desired a

ura
y. This argument is misleading for two

reasons: First, even the upgraded 
omputers 
an bene�t from an adaptive approa
h whi
h

fo
uses the 
omputational power on where it is needed most. Se
ond, it might be not even

possible to rea
h a given a

ura
y just by ups
aling the fa
ilities. To illustrate that, assume

11
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Figure 1. Numeri
al integration of some given fun
tion with uniform grid

(left) and adaptively generated (grid).

that the approximation error (e.g., the quadrature error or the geometri
 di�eren
es of the

simulated 
rash 
ompared to an a
tual 
rash test) behaves as a fun
tion of the degrees of

freedom of the dis
retized system, i.e.,

err(N) ≃ N−s

for some s > 0 and N ∈ N denoting the degrees of freedom (e.g., the number of evalua-

tion points). This is a very realisti
 assumption for many problem 
lasses. Note that the


onvergen
e rate s does not only depend on the problem itself, but also on the method of

approa
hing this problem. A quadrature algorithm whi
h wastes 
omputational time on

smooth parts of the integrand, will a
hieve a lower rate s′ < s. Furthermore, assume that

the 
omputational time needed to 
ompute the approximate solution is related to the degrees

of freedom in the sense of

time(N) ≃ N t seconds

for some t > 0 (for the dire
t solution of a densely populated linear system of N equations

we have, e.g., t = 3). If the exa
t solution is known, one 
an design 
ustom made grids to

approximate the exa
t solution with some optimal rate sopt > 0, i.e.,

err(N) ≃ N−sopt.

Hen
e, to rea
h a desired a

ura
y of, e.g. 10−5
, it su�
es to use N ≈ 105/sopt degrees of

freedoms, when they are optimally distributed. In terms of 
omputational time, we obtain

time ≃ 105t/sopt seconds.

Under realisti
 assumptions of the involved parameters, i.e., t = 1 (linear time) and sopt = 1
(e.g., lowest order �nite element method), this results in

105 seconds ≈ 1 day.

However, it is entirely possible, that due to non-uniformities in the solution a uniform ap-

proa
h will reveal a redu
ed rate of 
onvergen
e of s = 1/2 (due to degrees of freedom wasted

12



for mostly uniform parts of the solution, whereas non-uniform parts la
k the ne
essary res-

olution). Then, we end up with

1010 seconds ≈ 316 years.

Even in
reasing the 
omputational power by an order of magnitude does not bring the

uniform approa
h anywhere near feasibility. This is the reason why the understanding of

adaptivity plays a 
ru
ial role.

The 
on
ept of adaptivity aims to provide a method whi
h automati
ally, without user

intervention, rea
hes optimal 
onvergen
e rates, i.e., s = sopt. Moreover, it aims to rigor-

ously prove that this optimal 
onvergen
e is a
hieved for a given problem. The existing

literature on adaptivity fo
uses on very spe
i�
 model problems (see the histori
al overview

in Se
tion 2.8 for referen
es), i.e., 
ertain types of (ellipti
) partial di�erential equations. In


ontrast to that, this work provides a framework, sort of a 
onstru
tion guide, for adaptive

algorithms whi
h realize optimal 
onvergen
e rates. To that end, 
ertain requirements on

the algorithm (later 
alled axioms) are derived, whi
h are su�
ient and even ne
essary to

prove the optimal 
onvergen
e behavior. This allows to apply the abstra
t theory to a large

number of model problems and parti
ularly determines what are the key properties of an

optimally 
onvergent adaptive algorithm. This might help in the design of new algorithms

for 
omplex problems and situations.

1.2. An exemplary adaptive algorithm

This introdu
tory se
tion demonstrates an adaptive re�nement algorithm for a very sim-

ple approximation problem. To that end, 
onsider some fun
tion u ∈ L2(0, 1) and a partition
T of [0, 1] into 
ompa
t intervals T ∈ T su
h that [0, 1] =

⋃
T∈T T . Let U(T ) ∈ P0(T ) denote

the L2
-orthogonal proje
tion of u onto the spa
e of T -pie
ewise 
onstant fun
tions

P0(T ) :=
{
V ∈ L2(0, 1) : V |T ∈ R, for all T ∈ T

}

de�ned by

b(U(T ) , V ) :=

∫ 1

0

U(T )V dx =

∫ 1

0

uV dx for all V ∈ P0(T ). (1.2.1)

Suppose that one is interested in the weighted error measure

err(T ) :=
(∑

T∈T

|T |2‖u− U(T )‖2L2(T )

)1/2

= ‖h(T )(u− U(T ))‖L2(0,1),

where h(T )|T := |T | for all T ∈ T and |T | denotes the length of the interval T . This 
ould
be of interest, if one wants to approximate the volume for
e of some se
ond-order ellipti


PDE (whi
h usually has to be approximated in the H−1(0, 1)-norm). Standard results show

that for u ∈ L2(0, 1) ⊂ H−1(0, 1) it holds ‖u− U(T )‖H−1(0,1) . err(T ).
Provided that u ∈ H1(0, 1), the Poin
aré inequality proves that

err(T ) ≤ Capriori‖h(T )2u′‖L2(0,1) ≤ Capriori‖u′‖L2(0,1) max
T∈T

|T |2. (1.2.2)

Thus, the naive strategy is to uniformly redu
e |T | in some sequen
e of partitions (T unif
ℓ )ℓ∈N0

su
h that maxT∈T unif
ℓ

|T | ≤ 2−ℓ
. If u ∈ H1(0, 1), this results in a 
onvergen
e rate of

‖u− U(T unif
ℓ )‖L2(0,1) . 2−2ℓ

for all ℓ ∈ N0,

whi
h one 
ould 
all exponential 
onvergen
e. The reason why we do not 
onsider this as

exponential 
onvergen
e, is be
ause the number of steps ℓ has nothing to do with the degrees

13



of freedom of the linear system (1.2.1). However, the 
omputational e�ort involved to get

U(T unif
ℓ ) is dire
tly related to the degrees of freedom, sin
e the linear system (even if it

is diagonal in this 
ase) has |T | many rows and 
olumns (here |T | denotes the 
ounting

measure, i.e., the number of elements). In terms of degrees of freedom, the 
onvergen
e rate

de
reases to

‖u− U(T unif
ℓ )‖L2(0,1) . |T unif

ℓ |−2
for all ℓ ∈ N0.

This shows algebrai
 
onvergen
e rate s = 2 if u ∈ H1(0, 1). If u has less regularity, e.g.,

u(x) := xα for some −1/2 < α < 1/2, the 
onvergen
e rate is even slower, see Figure 2

for an example. However, one 
an 
onstru
t graded partitions T grad
ℓ , su
h that the fun
tion

u(x) := xα 
an be approximated with rate s = 2. To that end, a uniform partition T unif
ℓ is

mapped via an appropriate fun
tion x 7→ xβ for β := 3/(2 + α), i.e., T grad
ℓ = (T unif

ℓ )β; see
Figure 2�3 for an example. Standard estimates prove

‖u− U(T grad
ℓ )‖L2(0,1) ≤ Cgrad|T grad

ℓ |−2
for all ℓ ∈ N0 (1.2.3)

for some uniform Cgrad > 0, even though the exa
t solution is not in H1(0, 1) for α < 1/2.
The ultimate goal of adaptivity is to automati
ally generate su
h partitions for a general 
lass

of exa
t solutions u. To that end, the following algorithm is widely used in the literature:

Algorithm 1.2.1. Input: Initial partition T0 and bulk parameter 0 < θ ≤ 1.
Loop: For ℓ = 0, 1, 2, . . . do (i)− (iii).

(i) Compute the re�nement indi
ators ηT (Tℓ) := |T |‖u− U(Tℓ)‖L2(T ) for all T ∈ Tℓ.

(ii) Determine some set Mℓ ⊆ Tℓ of minimal 
ardinality su
h that

1

2

∑

T∈Tℓ

ηT (Tℓ)
2 ≤

∑

T∈Mℓ

ηT (Tℓ)
2. (1.2.4)

(iii) De�ne the next triangulation Tℓ+1 by bise
tion of all marked elements.

Output: Sequen
e of approximations U(Tℓ) for all ℓ ∈ N0.

Figure 2 shows the performan
e of this algorithm in terms of error redu
tion and Figure 3

plots the generated partitions Tℓ.

We aim to prove the observed 
onvergen
e behavior of Algorithm 1.2.1 in Figure 2, i.e.,

the fa
t that err(Tℓ) . |Tℓ|−2
for all ℓ ∈ N0. To that end, we �rst prove a 
ontra
tion

property of the error as illustrated in Figure 2, i.e.,

‖h(Tℓ+1)(u− U(Tℓ+1))‖L2(0,1) ≤ κ‖h(Tℓ)(u− U(Tℓ))‖L2(0,1) for all ℓ ∈ N0 (1.2.5)

for some 0 < κ < 1. This follows with the fa
t that bise
tion halves the element lengths and

that U(Tℓ)|T depends only on u|T by

‖h(Tℓ+1)(u− U(Tℓ+1))‖2L2(0,1)

= ‖h(Tℓ+1)(u− U(Tℓ+1))‖2L2(∪(Tℓ+1\Tℓ))
+ ‖h(Tℓ+1)(u− U(Tℓ+1))‖2L2(∪(Tℓ+1∩Tℓ))

≤ 1/4‖h(Tℓ)(u− U(Tℓ))‖2L2(∪(Tℓ+1\Tℓ))
+ ‖h(Tℓ)(u− U(Tℓ))‖2L2(∪(Tℓ+1∩Tℓ))

≤ (1/4− 1)‖h(Tℓ)(u− U(Tℓ))‖2L2(∪(Tℓ+1\Tℓ))
+ ‖h(Tℓ)(u− U(Tℓ))‖2L2(0,1).

With the marking 
riterion (1.2.4), the fa
t that Mℓ = Tℓ \ Tℓ+1, and
⋃
(Tℓ \ Tℓ+1) =⋃

(Tℓ+1 \ Tℓ), this implies

‖h(Tℓ+1)(u− U(Tℓ+1))‖2L2(0,1) ≤ (1− (1− 1/4)/2)‖h(Tℓ)(u− U(Tℓ))‖2L2(0,1),
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the parti
ular partition.

whi
h is (1.2.5) with κ =
√
5/8 (see also Figure 2 for the 
omparison with the experimental

results). Hen
e, the error 
onverges linearly to zero. This linear 
onvergen
e is the ba
kbone

of the optimality analysis. The next step is to 
ompare the adaptively generated partitions

with some optimal partitions. As dis
ussed above (and demonstrated in Figure 2), there

exist graded partitions T grad
ℓ , whi
h realize the optimal 
onvergen
e rate s = 2 in (1.2.3).

Hen
e, the ne
essary thing to do is to look at the di�eren
e of Tℓ and T grad
ℓ . To that end,
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.


hoose the minimal k ∈ N su
h that

|T grad
k |−2 ≤ C−1

graderr(Tℓ)/4. (1.2.6)

For simpli
ity assume that k > 1 in this 
ase. Minimality of k then implies |T grad
k−1 |−2 >

C−1
graderr(Tℓ)/4, i.e., |T grad

k−1 | < 2C
1/2
graderr(Tℓ)

−1/2
. Sin
e we have by 
onstru
tion |T grad

k | =

|T unif
k | = 2|T unif

k−1 | = 2|T grad
k−1 |, the minimality of k shows

|T grad
k | = 2|T grad

k−1 | ≤ 4C
1/2
graderr(Tℓ)

−1/2. (1.2.7)

The overlay of T grad
k and Tℓ gives some measure of the distan
e of those two partitions, i.e.,

T grad
k ⊕Tℓ :=

{
T ∩T ′ : T ∈ T grad

k , T ′ ∈ Tℓ, |T ∩T ′| > 0
}
is the 
oarsest 
ommon re�nement

of Tℓ and T grad
k . Assume T0 ∈ (T grad

k ⊕ Tℓ) \ Tℓ. By de�nition, there exist T ∈ T grad
k and

T ′ ∈ Tℓ su
h that T0 = T ∩ T ′
and |T ∩ T ′| > 0. Moreover, sin
e T is not in Tℓ, there holds

T 6⊆ T ′
. This shows that there holds

(T grad
k ⊕ Tℓ) \ Tℓ =

{
T ∩ T ′ : T ∈ T grad

k , T ′ ∈ Tℓ, |T ∩ T ′| > 0, T ′ 6⊆ T
}
.

Sin
e T ∈ T grad
k is an interval, there exist at most two T ′ ∈ Tℓ with |T ∩ T ′| > 0 and T ′ 6⊆ T

(the elements T ′
must 
ontain at least one endpoint of T ). This, however, implies

|(T grad
k ⊕ Tℓ) \ Tℓ| = |

{
T ∩ T ′ : T ∈ T grad

k , T ′ ∈ Tℓ, |T ∩ T ′| > 0, T ′ 6⊆ T
}
|

≤ 2|T grad
k |.

(1.2.8)

On the other hand, ea
h T ∈ Tℓ \ (T grad
k ⊕ Tℓ) has at least two sons T ′ ⊆ T with T ′ ∈

(T grad
k ⊕ Tℓ) \ Tℓ. This implies

|Tℓ \ (T grad
k ⊕ Tℓ)| ≤ |(T grad

k ⊕ Tℓ) \ Tℓ|. (1.2.9)
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Together with (1.2.7) this shows

|Tℓ \ (T grad
k ⊕ Tℓ)|

(1.2.8)

≤ 2|T grad
k |

(1.2.7)

≤ 8C
1/2
graderr(Tℓ)

−1/2. (1.2.10)

It remains to relate |(T grad
k ⊕Tℓ) \ Tℓ| to |Mℓ|. To that end, note that the element-wise best

approximation property U(Tℓ) shows

err(T grad
k ⊕ Tℓ) ≤ err(T grad

k )
(1.2.3)

≤ Cgrad|T grad
k |−2

(1.2.6)

≤ err(Tℓ)/4.

With err(T grad
k ⊕ Tℓ) = ‖h(T grad

k ⊕ Tℓ)(u− U(T grad
k ⊕ Tℓ))‖L2(0,1), this implies

err(Tℓ)
2 = ‖h(Tℓ)(u− U(Tℓ))‖2L2(∪((T grad

k ⊕Tℓ)\Tℓ))

+ ‖h(Tℓ)(u− U(Tℓ))‖2L2(∪((T grad
k ⊕Tℓ)∩Tℓ))

≤ ‖h(Tℓ)(u− U(Tℓ))‖2L2(∪((T grad
k ⊕Tℓ)\Tℓ))

+ ‖h(T grad
k ⊕ Tℓ)(u− U(T grad

k ⊕ Tℓ))‖2L2(0,1)

≤
∑

T∈Tℓ\(T
grad
k ⊕Tℓ)

ηT (Tℓ)
2 + err(Tℓ)

2/16.

(1.2.11)

Hen
e, we derive

1

2

∑

T∈Tℓ

ηT (Tℓ)
2 ≤ 15

16
err(Tℓ)

2 ≤
∑

T∈Tℓ\(T
grad
k ⊕Tℓ)

ηT (Tℓ)
2. (1.2.12)

Sin
e Mℓ is a set of minimal 
ardinality with (1.2.4), we obtain

|Mℓ| ≤ |Tℓ \ (T grad
k ⊕ Tℓ)|

(1.2.10)

≤ 8C
1/2
graderr(Tℓ)

−1/2
for all ℓ ∈ N0.

By de�nition of the re�nement in Step (iii) of Algorithm 1.2.1, there holds

|Tℓ| − |T0| =
ℓ−1∑

k=0

(|Tk+1| − |Tk|) =
ℓ−1∑

k=0

|Mk| ≤ 8C
−1/2
grad

ℓ−1∑

k=0

err(Tk)
−1/2.

By indu
tion, the linear 
onvergen
e (1.2.5) proves

err(Tℓ) ≤ κℓ−kerr(Tk).

Hen
e, by 
onvergen
e of the geometri
 series, we obtain

ℓ−1∑

k=0

err(Tk)
−1/2 ≤ err(Tℓ)

−1/2
ℓ−1∑

k=0

κ(ℓ−k)/2 ≤ (1−√
κ)−1err(Tℓ)

−1/2.

Altogether, this yields

|Tℓ| − |T0| ≤ 8C
1/2
grad(1−

√
κ)−1err(Tℓ)

−1/2,

and we end up with 
onvergen
e rate s = 2, i.e.,

err(Tℓ) ≤ (1−√
κ)−282Cgrad(|Tℓ| − |T0|)−2

for all ℓ ∈ N.
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1.3. Dis
ussion of the example

The sket
h of the optimality proof above reveals 
ertain interesting things. First, we

extensively used the fa
t that the error estimator

∑
T∈T ηT (T )2 and the error ‖h(T )(u −

U(T ))‖2L2(0,1) 
oin
ide for this example, sin
e we approximate a known fun
tion. If one thinks

of u as the solution of some PDE, it is more likely that one 
omputes the approximations

to u without knowing u itself (i.e., by solving a �nite element system). Then, the error

estimator di�ers from the error, but 
an be related to it by reliability

err(T ) ≤ Crel

(∑

T∈T

ηT (T )2
)1/2

(1.3.1)

and/or e�
ien
y

C−1
eff

(∑

T∈T

ηT (T )2
)1/2

≤ err(T ) + data(T ) (1.3.2)

for some uniform 
onstants Crel, Ceff > 0 and some perturbation term data(T ), whi
h often

depends on the given data.

The linear 
onvergen
e (1.2.5) is an important tool for the analysis. To prove it, we used

that fa
t that U(Tℓ) satis�es the orthogonality

‖u− U(Tℓ)‖2L2(0,1) = ‖u− U(Tℓ+1)‖2L2(0,1) + ‖U(Tℓ+1)− U(Tℓ)‖2L2(0,1).

This identity holds only for the 
ase of a bilinear form b(· , ·) whi
h is a s
alar produ
t on

the given Hilbert spa
e and hen
e restri
ts the appli
ability of the analysis.

The overlay estimate (1.2.8) bounds the di�eren
e between the optimal partition T grad
k

and the adaptively generated partition Tℓ. In the 1D 
ase, the overlay estimate seems almost

trivial, however for 2D and 3D re�nement strategies, it is not straightforward to prove, and

it is even wrong for some strategies (see Se
tion 3.2.9 below for a 
ounterexample for red-

green-blue re�nement in 2D).

Finally, the identity

|Tℓ| − |T0| =
ℓ−1∑

k=0

|Mk|

is trivial in our 
ase, but poses a real issue in the 
ase of 
ertain pra
ti
al re�nement strate-

gies. The main problem here is, that usual re�nement strategies have to re�ne more elements

than only the marked ones, to keep the partition regular in a 
ertain sense (e.g., avoidan
e of

hanging nodes; see Se
tion 3.2 for details). Then, the question is how to bound the number

of re�ned elements by the number of marked elements.

Chapter 2 states exa
tly, what is ne
essary to prove optimal 
onvergen
e rates for some

given problem in a very abstra
t and general framework and will thus fo
us on the error

estimator instead of the error.

1.4. Outline

This se
tion states the main results of the following 
hapters and se
tions.

Chapter 2:

The 
hapter introdu
es an abstra
t framework for adaptive algorithms and formulates a

parti
ular algorithm (Algorithm 2.2.1). Within this framework, the adaptive approximation

problem formulated in Se
tion 2.2.3, is stated. This problem assumes a 
ertain quantity η(·)
(the error estimator) whi
h is a fun
tion of an underlying dis
retization (the triangulation).
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The goal is to drive the error estimator to zero as fast as possible, i.e., limℓ→∞ η(Tℓ) = 0
with optimal rate for a sequen
e of triangulations (Tℓ)ℓ∈N0. We state six axioms (E1)�(E3)

& (T1)�(T3) whi
h determine the behavior of the adaptive algorithm and su�
e to show

that optimal 
onvergen
e rates are obtained, i.e.,

η(Tℓ) . |Tℓ|−s
for all ℓ ∈ N0,

where |Tℓ| denotes the number of elements in the triangulation Tℓ and s > 0 denotes the

best possible 
onvergen
e rate whi
h is a
hievable for a parti
ular problem. The latter is

the main result of this 
hapter and stated formally in Theorem 2.3.3. The axioms 
an

roughly be 
ategorized into estimator related axioms (E1)�(E3) and triangulation related

axioms (T1)�(T3). The �rst 
ategory (E1)�(E3) 
an be paraphrased as follows:

(E1) Stability and redu
tion: The estimator is a Lips
hitz 
ontinuous fun
tion of the

triangulation, and it is 
ontra
tive up to a perturbation when the triangulation is

lo
ally re�ned.

(E2) General quasi-orthogonality: The perturbation from (E1) is ℓ2-summable and also

bounded by the estimator on the 
oarsest triangulation.

(E3) Dis
rete reliability: The error estimator is a lo
al upper bound of the perturbation

from (E1).

The triangulation related axioms (T1)�(T3) 
an be heuristi
ally formulated as follows:

(T1) Son estimate: The re�nement strategy in
reases the number of elements at most

linearly.

(T2) Closure estimate: The number of elements is bounded by the number of marked

elements.

(T3) Uniform approximability: The problem allows for a 
ertain 
onvergen
e rate.

Chapter 3:

This 
hapter applies the abstra
t theory from Chapter 2 to 
ertain model problems. We


onsider the 
onforming �nite element method (FEM) for the Poisson problem with bi-

se
tion based re�nement and red-green-blue re�nement. The optimality result for general

se
ond-order ellipti
 PDEs marks the main a
hievement of this 
hapter (Se
tion 3.6.1). This

in
ludes also an adaptive algorithm for problems whi
h satisfy a Gårding inequality only,

where the di�
ulty is, that the dis
rete system is not ne
essarily solvable in ea
h step (Se
-

tion 3.6.2). Therefore, we propose an algorithm whi
h guarantees unique solvability after

a �nite number of steps. Moreover, we 
onsider non-linear problems with quite general


oe�
ients. Altogether, we prove optimality results for the following problem 
lasses:

• FEM for the Poisson problem (Consequen
e 3.5.2�3.5.5),

• FEM for general se
ond-order ellipti
 PDEs with

� ellipti
ity estimate (Consequen
e 3.6.2),

� Gårding inequality (Consequen
e 3.6.15),

� non-linear 
oe�
ients (Consequen
e 3.7.5),

• boundary element method (BEM) for

� weakly-singular integral equation (Consequen
e 3.5.9),

� hyper-singular integral equation (Consequen
e 3.5.11�3.5.12).

Chapter 4:

This 
hapter extends the abstra
t theory of Chapter 2 to equivalent error estimators, where

Theorem 4.3.1 states the main result. We 
onsider error estimators whi
h satisfy the axioms

only in average, but not in every single step of the adaptive algorithm. This abstra
t setting
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overs inexa
t solve, i.e., the 
ase of iterative solvers, where instead of the error estimator

only an approximation

η̃(T ) ≈ η(T )

is 
omputed but the axioms are only satis�ed for the exa
t error estimator. Moreover, we


over estimators whi
h are equivalent to some weighted error estimator, i.e.,

η̃(T ) ≃ ‖h(T )res(T )‖,
where h(T ) is a triangulation related weight fun
tion and res(·) is some quantity whi
h mea-

sures the error in the appropriate norm, e.g., the residual in 
ase of a weighted-residual error

estimator. To that end, we exploit 
ertain properties whi
h are automati
ally satis�ed by

weighted error estimators and develop a super 
ontra
tive weight fun
tion (Proposition 4.5.4)

whi
h enables us to 
ontrol the equivalen
e 
onstants.

Chapter 5:

This 
hapter applies the extended theory of Chapter 4 to 
ertain model problems. The main

result of this se
tion is the in
orporation of inhomogeneous boundary data into the FEM

optimality analysis. This is possible by use of the super 
ontra
tive weight fun
tion from

Chapter 4 in 
ombination with the S
ott-Zhang proje
tion. Altogether, we 
onsider the

following problems:

• FEM for non-residual error estimators in the frame of the Poisson problem (Conse-

quen
e 5.2.3�5.2.11),

• FEM for the p-Lapla
ian (Consequen
e 5.3.3),

• FEM for non-trivial boundary 
onditions (Consequen
e 5.4.3).

Chapter 6:

This 
hapter steps out of the line of the other 
hapters, as we introdu
e a new adaptive

algorithm (Algorithm 6.2.2) for the solution of integral equations on pie
ewise smooth ge-

ometries. The idea is to approximate the exa
t geometry with pie
ewise a�ne line segments

and to solve a standard BEM problem on the approximate geometry. A posteriori analysis

for this kind of problem is available for FEM, but is missing entirely for BEM, where very

di�erent te
hniques are ne
essary. We introdu
e an error estimator

η(T )2 = ρ(T )2 + geo(T )2,

where ρ(T ) is a standard residual error estimator for the weakly singular integral equation

on pie
ewise a�ne geometries and geo(T ) is a geometri
 error estimator whi
h measures

the approximation quality of the approximate geometry. We prove that the error estima-

tor provides an upper error bound and use this to prove 
onvergen
e of the 
orresponding

adaptive algorithm (Consequen
e 6.4.2). The 
onvergen
e proof is done within the frame of

Chapter 2. Although we are 
onvin
ed that optimal 
onvergen
e rates are possible with the

given algorithm, the proof requires additional ideas whi
h are beyond the s
ope of this work.

Chapter 7:

The �nal 
hapter is fo
used on the general quasi-orthogonality (E2). The reason for this

is that for many problem 
lasses (e.g., for non-symmetri
 or non 
onforming approa
hes)

the general quasi-orthogonality is the most di�
ult axiom to verify. We show that the

general quasi-orthogonality holds for the non-symmetri
 and non-linear example problems

in Chapter 3.
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CHAPTER 2

Abstra
t Theory

2.1. Introdu
tion, state of the art & outline

The purpose of this 
hapter is to �nd an abstra
t framework within, e.g., the results of the

introdu
tory 
hapter 
an be reprodu
ed. The reprodu
tion of existing results is, of 
ourse,

not the main reason for developing the abstra
t framework. The abstra
t point of view

sheds new light on this terrain and enables us to prove new results for a very general 
lass of

problems (as is demonstrated in the appli
ations of Chapter 3, 5, 6). To that end, we abandon

the framework of exa
t solutions and their dis
rete approximations and fo
us 
ompletely

on the error estimator. The fun
tion η(·) 
an be seen as a fun
tion on the underlying

triangulations with some spe
i�
 properties. Then, the goal of the adaptive algorithm is to

manipulate the triangulation in su
h a way, that the error estimator 
onverges to zero as fast

as possible. An immediate 
onsequen
e of this viewpoint is that it removes the need for the

lower error bound (1.3.2). An earlier version of this abstra
t framework 
an be found in [24℄.

However, this work takes one step further into the abstra
tion of the 
on
rete problems. This,

for example, enables us to prove optimal 
onvergen
e rates of the adaptive algorithm for

re�nement strategies whi
h do not satisfy the overlay property (1.2.8) (e.g., red-green-blue

re�nement). Moreover, the 
onditions (axioms) whi
h we derive in this 
hapter turn out to

be su�
ient for optimal 
onvergen
e rates, and, under realisti
 assumptions, even ne
essary.

Therefore, we obtain expli
it 
riteria whi
h determine if a given problem or problem 
lass

will reveal optimal 
onvergen
e behavior. For the state of the art in the literature, we refer

the reader to the histori
 overview of Se
tion 2.8. The remainder of this 
hapter is organized

as follows: Se
tion 2.2 des
ribes the abstra
t framework whi
h is ne
essary to formulate

the axioms. This in
ludes a formal de�nition of the error estimator, the triangulations,

the approximation problem of driving the estimator to zero, and the adaptive algorithm to

solve the approximation problem. Se
tion 2.3 states the main theorem (Theorem 2.3.3) of

this 
hapter as well as the axioms whi
h are then used to prove optimal 
onvergen
e rates.

Se
tion 2.4�2.5 give alternative approximation problems (optimal 
onvergen
e of the error

and optimal 
omplexity in terms of 
omputational work) and state the respe
tive results.

Se
tion 2.6 proves that the axioms are not only su�
ient, but even ne
essary for proving

optimal 
onvergen
e rates. Se
tion 2.7 demonstrates 
ertain problem 
lasses, for whi
h one

or more of the axioms are a priori satis�ed. Finally, Se
tion 2.8 
on
ludes with a histori


overview and motivates the parti
ular 
hoi
e of axioms in Se
tion 2.3.1.

2.2. Abstra
t setting

This se
tion is devoted to the de�nition of the problem and the pre
ise statement of the

adaptive algorithm.

2.2.1. Triangulations. Let T∞ be a 
ountable set. Ea
h �nite subset T ⊆ T∞ with

|T | < ∞ elements is 
alled a triangulation. Let T be a set of triangulations (whi
h is


ountable sin
e the set of all triangulations is 
ountable) with the 
orresponding re�nement
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strategy T(·, ·) :
{
(T ,M) : T ∈ T, M ⊆ T

}
→ T. This is a fun
tion whi
h satis�es

T(T ,M) ∩ M = ∅ for all M ⊆ T and all T ∈ T. Here, M is 
alled the set of marked

elements. Given T ∈ T, de�ne T(T ) ⊆ T su
h that T̂ ∈ T(T ) if and only if there exists a

sequen
e of triangulations T0 = T , T1, . . . , Tℓ = T̂ as well as a sequen
e of marked elements

M0, . . . ,Mℓ−1 with Mj ⊆ Tj for all j = 0, . . . , ℓ − 1 su
h that Tj+1 = T(Tj ,Mj) for all
j = 0, . . . , ℓ− 1. We 
all T(T ) the set of re�nements of T . We assume that there exists an

initial triangulation T0 ∈ T su
h that T(T0) = T. Additionally, we assume that T ∈ T̂ ∩ T
if and only if T ∈ Tj for all j = 0, . . . , ℓ.

The subset of all re�nements whi
h have at most N ∈ N elements more than a triangu-

lation T ∈ T reads

T(T , N) :=
{
T̂ ∈ T(T ) : |T̂ \ T | ≤ N

}
,

where | · | = 
ard(·) is the 
ounting measure. Sin
e ea
h triangulation T ∈ T allows for

at most 2|T |
sets of marked elements, there holds |T(T , N)| < ∞. Moreover, we write

T(N) := T(T0, N).

2.2.2. Error estimator. The error estimator is a fun
tion η(·) : T → ⋃
T ∈T[0,∞)T

(where AB
denotes the set of fun
tions mapping B to A) with η(T ) : T → [0,∞) for all

T ∈ T. By ηT (T ) for some T ∈ T , we denote the evaluation of the fun
tion η(·)(T ) := η(T ).

For brevity of notation, we also write η(T ) :=
(∑

T∈T ηT (T )2
)1/2 ≥ 0, whi
h is the global

error estimator.

2.2.3. Adaptive approximation problem. The goal of the adaptive approximation

problem is to �nd a sequen
e of triangulations Tℓ, ℓ ∈ N0 su
h that

sup
ℓ∈N0

η(Tℓ)(|Tℓ|+ 1)s <∞

for s > 0 as large as possible. This implies that the error estimator 
onverges to zero with

rate s, i.e., there exists a 
onstant C > 0 su
h that

η(Tℓ) ≤ C|Tℓ|−s
for all ℓ ∈ N0.

2.2.4. Adaptive algorithm. The algorithm to solve the adaptive approximation prob-

lem from Se
tion 2.2.3 reads

Algorithm 2.2.1. Input: Initial triangulation T0 and bulk parameter 0 < θ ≤ 1.
Loop: For ℓ = 0, 1, 2, . . . do (i)− (iii).

(i) Compute re�nement indi
ators ηT (Tℓ) for all T ∈ Tℓ.

(ii) Determine set Mℓ ⊆ Tℓ of (up to the multipli
ative 
onstant Cmin) minimal 
ardi-

nality su
h that

θ η(Tℓ)
2 ≤

∑

T∈Mℓ

ηT (Tℓ)
2. (2.2.1)

(iii) De�ne the next triangulation Tℓ+1 := T(Tℓ,Mℓ).

Output: Error estimators η(Tℓ) for all ℓ ∈ N0.

Remark 2.2.2. Suppose that Sℓ ⊆ Tℓ is some (not ne
essarily unique) set of minimal


ardinality whi
h satis�es the Dör�er marking 
riterion (2.2.1). In step (iii) the phrase up

to the multipli
ative 
onstant minimal 
ardinality means that |Mℓ| ≤ Cmin |Sℓ| with some

ℓ-independent 
onstant Cmin ≥ 1.
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Remark 2.2.3. A greedy algorithm for (2.2.1), sorts the elements Tℓ = {T1, . . . , TN}
su
h that ηT1(Tℓ) ≥ ηT2(Tℓ) ≥ . . . ≥ ηTN

(Tℓ) and takes the minimal 1 ≤ J ≤ N su
h that

θη(Tℓ)
2 ≤ ∑J

j=1 ηTj
(Tℓ)

2
. This results in logarithmi
-linear growth of the 
omplexity. The

relaxation to almost minimal 
ardinality of Mℓ allows to employ a sorting algorithm based

on binning so that Mℓ in (2.2.1) 
an be determined in linear 
omplexity [78, Se
tion 5℄ with

Cmin = 2.

Remark 2.2.4. Small adaptivity parameters 0 < θ ≪ 1 lead to only few marked ele-

ments and so to possibly very lo
al re�nements. The other extreme, θ = 1, basi
ally leads to

uniform re�nement, where (almost) all elements are re�ned.

2.2.5. Approximability. Given T ∈ T and s > 0, de�ne

‖η,T(T )‖s := sup
N∈N0

min
T̂ ∈T(T ,N)

((N + 1)sη(T̂ )). (2.2.2)

The fa
t ‖η,T(T )‖s <∞ implies that there exists a sequen
e of triangulations (T opt
ℓ )ℓ∈N in

T(T ) whi
h satis�es 
onvergen
e

lim
ℓ→∞

η(T opt
ℓ ) = 0

and the 
onvergen
e rate

η(T opt
ℓ ) . (|T opt

ℓ \ T |)−s
for all ℓ ∈ N.

Remark 2.2.5. The quantity ‖η,T(T )‖s measures how fast the error estimator 
an be

driven to zero when starting from the triangulation T . The main interest, of 
ourse, lies in

the approximability when starting from the initial triangulation ‖η,T‖s.

2.3. The axioms

This se
tion introdu
es the set of axioms and states the main result (Theorem 2.3.3) derived

from these axioms. In the following, Tℓ denotes a triangulation generated in the ℓ-th step of

Algorithm 2.2.1.

2.3.1. Set of axioms. The following axioms (E1)�(E3), (T1)�(T3) a
t on the fun
tion

η(·) : T → ⋃
T ∈T

(
[0,∞)T

)
with η(T ) : T → [0,∞) for all T ∈ T, some perturbation fun
tion

̺(·, ·) : T× T → [0,∞), T(·) : T → 2T, and involve the set T as well as the 
onstants s > 0,
Cdrel, Cref , Cqo, Cson, Cclosure ≥ 1, 0 < κdlr ≤ ∞, and 0 ≤ ρred, εqo, εdrel < 1.

(E1) Stability and redu
tion: For all re�nements T̂ ∈ T(T ) of a triangulation T ∈ T,
there exist sets S(T , T̂ ) ⊆ T and Ŝ(T , T̂ ) ⊆ T̂ with T \ T̂ ⊆ S(T , T̂ ) su
h

that (E1a)�(E1b) hold

(a)

∣∣∣
( ∑

T∈T̂ \Ŝ(T ,T̂ )

ηT (T̂ )2
)1/2

−
( ∑

T∈T \S(T ,T̂ )

ηT (T )2
)1/2∣∣∣ ≤ ̺(T , T̂ ),

(b)

∑

T∈Ŝ(T ,T̂ )

ηT (T̂ )2 ≤ ρred
∑

T∈S(T ,T̂ )

ηT (T )2 + ̺(T , T̂ )2.

(E2) General quasi-orthogonality: There holds

0 ≤ εqo < sup
δ>0

1− (1 + δ)(1− (1− ρred)θ)

2 + δ−1
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and the sequen
e of triangulations (Tℓ)ℓ∈N0 from Algorithm 2.2.1 satis�es for all

ℓ, N ∈ N0

ℓ+N∑

k=ℓ

(
̺(Tk, Tk+1)

2 − εqoη(Tk)
2
)
≤ Cqo η(Tℓ)

2.

(E3) Dis
rete reliability: For all re�nements T̂ ∈ T(T ) of a triangulation T ∈ T with

η(T̂ ) ≤ κdlrη(T ), there exists a subset R(T , T̂ ) ⊆ T with S(T , T̂ ) ⊆ R(T , T̂ ) and

|R(T , T̂ )| ≤ Cref |T \T̂ | su
h that

̺(T , T̂ )2 ≤ εdrelη(T )2 + C2
drel

∑

T∈R(T ,T̂ )

ηT (T )2.

(T1) Son estimate: The sequen
e of triangulations (Tℓ)ℓ∈N0 from Algorithm 2.2.1 satis-

�es |Tℓ+1| ≤ Cson|Tℓ| for all ℓ ∈ N0.

(T2) Closure estimate: The sequen
e of triangulations (Tℓ)ℓ∈N0 from Algorithm 2.2.1

satis�es |Tℓ \ T0| ≤ Cclosure

∑ℓ−1
j=0 |Mj| for all ℓ ∈ N0.

(T3) Uniform approximability: The sequen
e of triangulations (Tℓ)ℓ∈N0 from Algo-

rithm 2.2.1 satis�es Capprox(s) := supℓ∈N0
‖η,T(Tℓ)‖s <∞ for all ℓ ∈ N0.

Definition 2.3.1. We say that a 
ertain subset of the axioms de�ned above A ⊆
{(E1), . . . , (E3), (T1), . . . , (T3)} is satis�ed, if the error estimator η(·) and the re�nement

strategy T(·) (whi
h are 
lear from the 
ontext if not mentioned otherwise) allow for the

ne
essary fun
tions and 
onstants from Se
tion 2.3.1, whi
h are involved in the axioms of

A, to exist.

Remark 2.3.2. Proposition 2.6.2 below shows that general quasi-orthogonality (E2)

together with (E1) implies (E2) even with εqo = 0 and 0 < Cqo <∞.

2.3.2. Optimal 
onvergen
e rates for the error estimator. The main results of

this Se
tion state 
onvergen
e and optimality of the adaptive algorithm in the sense that

the error estimator 
onverges with optimal 
onvergen
e rate. This is a generalization of

existing results as dis
ussed in Se
tion 2.4. On the other hand, Theorem 2.3.3 (iii) shows

that the adaptive algorithm 
hara
terizes the approximability of a problem in the sense of

Se
tion 2.2.5.

Theorem 2.3.3. (i) Suppose (E1) is satis�ed and assume limℓ→∞ ̺(Tℓ, Tℓ+1) = 0.
Then, for all 0 < θ ≤ 1, the estimator is 
onvergent in the sense

lim
ℓ→∞

η(Tℓ) = 0. (2.3.1)

(ii) Suppose (E1)�(E2) are satis�ed. Then, for all 0 < θ ≤ 1, the estimator is R-linear

onvergent in the sense that there exists 0 < ρconv < 1 and Cconv > 0 su
h that

η(Tℓ+j)
2 ≤ Cconvρ

j
conv η(Tℓ)

2
for all j, ℓ ∈ N0. (2.3.2)

(iii) Suppose (E1)�(E3) and (T1)�(T3) are satis�ed for some s > 0. Then 0 < θ <
θ⋆ := (1−εdrel)/(1+C2

drel) implies quasi-optimal 
onvergen
e of the estimator in the

sense of

coptCapprox(s) ≤ sup
ℓ∈N0

η(Tℓ)

(|Tℓ \ T0|+ 1)−s
≤ CoptCapprox(s), (2.3.3)

where the lower bound requires only (T1) to hold.
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The 
onstants Cconv, ρconv > 0 depend only on ρred, Cqo, εqo, and on θ. The 
onstant Copt > 0
depends additionally on Cmin, Cref , Cclosure, Cdrel, εdrel, and on s, while copt > 0 depends only

on Cson and |T0|.
Remark 2.3.4. The upper bound in (2.3.3) states that given Capprox(s) < ∞, the

estimator sequen
e η(Tℓ) of Algorithm 2.2.1 will de
ay with order s, i.e., if a de
ay with

order s is possible if the optimal triangulations are 
hosen, this de
ay will in fa
t be realized

by the adaptive algorithm. The lower bound in (2.3.3) states that the asymptoti
 
onvergen
e

rate of the estimator sequen
e 
hara
terizes the theoreti
ally optimal 
onvergen
e rate.

2.3.3. Estimator redu
tion and 
onvergen
e of η(Tℓ). We start with the obser-

vation that stability (E1a) and redu
tion (E1b) lead to a perturbed 
ontra
tion of the error

estimator in ea
h step of the adaptive loop.

Lemma 2.3.5. Let 0 < θ ≤ 1 and let T̂ ∈ T(T ) denote a re�nement of T ∈ T su
h

that

θη(T )2 ≤
∑

T∈S(T ,T̂ )

ηT (T )2. (2.3.4)

Then, the following relaxation of (E1a)

( ∑

T∈T̂ \Ŝ(T ,T̂ )

ηT (T̂ )2
)1/2

≤
( ∑

T∈T \S(T ,T̂ )

ηT (T )2
)1/2

+ ̺(T , T̂ ) (2.3.5)

and redu
tion (E1b) imply the estimator redu
tion

η(T̂ )2 ≤ ρest η(T )2 + Cest ̺(T̂ , T )2 (2.3.6)

with the 
onstants 0 < ρest < 1 and Cest > 0 whi
h relate via

ρest = (1 + δ)(1− (1− ρred)θ) and Cest = 2 + δ−1
(2.3.7)

for all su�
iently small δ > 0 su
h that ρest < 1. This parti
ularly implies

η(Tℓ+1)
2 ≤ ρest η(Tℓ)

2 + Cest ̺(Tℓ, Tℓ+1)
2

(2.3.8)

for all ℓ ∈ N0.

Proof. The Young inequality together with stability (2.3.5) and redu
tion (E1b) shows

for ea
h δ > 0 and Cest = 2 + δ−1
that

η(T̂ )2 =
∑

T∈Ŝ(T ,T̂ )

ηT (T̂ )2 +
∑

T∈T̂ \Ŝ(T ,T̂ )

ηT (T̂ )2

≤ ρred
∑

T∈S(T ,T̂ )

ηT (T )2 + (1 + δ)
∑

T∈T \S(T ,T̂ )

ηT (T )2 + Cest̺(T , T̂ )2.

Therefore, the Dör�er marking (2.3.4) leads to

η(T̂ )2 ≤ (1 + δ)
(
η(T )2 − (1− ρred)

∑

T∈S(T ,T̂ )

ηT (T )2
)
+ Cest̺(T , T̂ )2

≤ (1 + δ)
(
1− (1− ρred)θ

)
η(T )2 + Cest̺(T , T̂ )2.

The 
hoi
e of a su�
iently small δ > 0 allows for ρest = (1 + δ)
(
1 − (1 − ρred)θ

)
< 1.

This shows (2.3.6). By de�nition of the re�nement strategy T(·, ·) in Se
tion 2.2.1, there

holds Mℓ ⊆ Tℓ \ Tℓ+1 ⊆ S(Tℓ, Tℓ+1). Hen
e, Dör�er marking (2.2.1) for Mℓ implies Dör�er

marking (2.3.4) for S(Tℓ, Tℓ+1). This 
on
ludes the proof. �
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The estimator redu
tion 
on
ept used in the the following proof is studied in [5℄ and

applies to a general 
lass of problems and error estimators.

Lemma 2.3.6. Suppose that the estimator satis�es estimator redu
tion (2.3.8) and sup-

pose that

lim
ℓ→∞

̺(Tℓ, Tℓ+1) = 0.

Then, there holds estimator 
onvergen
e in the sense limℓ→∞ η(Tℓ) = 0.

Proof. Mathemati
al indu
tion on ℓ proves with (2.3.8) for all ℓ ∈ N0

η(Tℓ+1)
2 ≤ ρℓ+1

est η(T0)
2 + Cest

ℓ∑

j=0

ρℓ−j
est ̺(Tj , Tj+1)

2

≤ η(T0)
2 + Cest sup

j∈N0

̺(Tj , Tj+1)
2

ℓ∑

j=0

ρℓ−j
est

≤ η(T0)
2 + Cest sup

j∈N0

̺(Tj , Tj+1)
2(1− ρest)

−1.

(2.3.9)

The assumption ̺(Tℓ, Tℓ+1) → 0 implies supℓ∈N η(Tℓ) <∞. Moreover, (2.3.8) yields

lim sup
ℓ→∞

η(Tℓ+1)
2 ≤ lim sup

ℓ→∞

(
ρest η(Tℓ)

2 + Cest ̺(Tℓ, Tℓ+1)
2
)

= ρest lim sup
ℓ→∞

η(Tℓ+1)
2.

This shows lim supℓ→∞ η(Tℓ)
2 = 0, and hen
e elementary 
al
ulus proves 
onvergen
e η(Tℓ) →

0. �

Proof of Theorem 2.3.3 (i). Lemma 2.3.6 is appli
able and 
on
ludes the proof. �

2.3.4. Uniform R-linear 
onvergen
e of η(Tℓ) on any level. The general quasi-

orthogonality (E2) allows to improve (2.3.1) to R-linear 
onvergen
e on any level. To that

end, we prove the following auxiliary lemma.

Remark 2.3.7. The term uniform R-linear 
onvergen
e on any level needs some ex-

planation. A sequen
e (ak)k∈N0 is said to 
onverge (Q-)linearly to zero, if

lim sup
k→∞

|ak+1|
|ak|

= q < 1.

A sequen
e (bk)k∈N0 is said to 
onverge R-linearly to zero if there exists a Q-linearly 
onver-
gent sequen
e (ak)k∈N0 with

|bk| ≤ |ak| for all k ∈ N0. (2.3.10)

The R stands for root, sin
e the de�nition above is equivalent to

lim sup
k→∞

|bk|1/k = q < 1. (2.3.11)

To see that, note that (2.3.10) implies (2.3.11) sin
e |ak| ≤ qk−k0|ak0| for all k ≥ k0 and

some su�
iently large k0 ∈ N. On the other hand, (2.3.11) implies (2.3.10) with ak :=
(supj≥k |bj |1/j)k.
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Uniform R-linear 
onvergen
e on any level of a sequen
e (bk)k∈N0 (in the following denoted

by R-linear 
onvergen
e) means that there exists a 
onstant C > 0 and some 0 < q < 1 su
h

that

|bℓ+k| ≤ Cqk|bℓ| for all ℓ, k ∈ N0.

This parti
ularly implies (2.3.11) for all sequen
es (bk+ℓ)k∈N0, ℓ ∈ N0.

Lemma 2.3.8. Given a real sequen
e (aℓ)ℓ∈N0 with aℓ ≥ 0 for all ℓ ∈ N0 su
h that aℓ = 0
implies ak = 0 for all k ≥ ℓ. Then, the statements (i)�(iii) are pairwise equivalent.

(i) Uniform summability: There exists a 
onstant C1 > 0 su
h that

∞∑

k=ℓ+1

a2k ≤ C1a
2
ℓ for all ℓ ∈ N0. (2.3.12)

(ii) Inverse summability: For all s > 0, there exists a 
onstant C2 > 0 su
h that

ℓ−1∑

k=0

a
−1/s
k ≤ C2a

−1/s
ℓ for all ℓ ∈ N with aℓ > 0. (2.3.13)

(iii) Uniform R-linear 
onvergen
e on any level: There exist 
onstants 0 < ρ1 < 1 and

C3 > 0 su
h that

a2ℓ+k ≤ C3ρ
k
1 a

2
ℓ for all k, ℓ ∈ N0. (2.3.14)

The relation between the respe
tive 
onstants is given by

C2 ≤
C

1/(2s)
3

1− ρ
1/(2s)
1

, ρ1 ≤
C1

1 + C1
, C3 ≤ 1 + C1,

C1 ≤
C3ρ1
1 + ρ1

, ρ1 ≤
( C2

1 + C2

)2s
, C3 ≤ (1 + C2)

2s.

(2.3.15)

Proof. For sake of simpli
ity, we show the equivalen
e of (i)�(iii) by proving the equiv-

alen
es (iii)⇐⇒ (i) and (iii)⇐⇒ (ii).

For the proof of the impli
ation (iii) ⇒ (i), suppose (iii) and use the 
onvergen
e of the

geometri
 series to see

∞∑

k=ℓ+1

a2k ≤ C3a
2
ℓ

∞∑

k=ℓ+1

ρk−ℓ
1 = C3ρ1(1− ρ1)

−1a2ℓ .

This proves (i) with C1 = C3ρ1(1− ρ1)
−1
.

Similarly, the impli
ation (iii)⇒ (ii) follows via

ℓ−1∑

k=0

a
−1/s
k ≤ C

1/(2s)
3 a

−1/s
ℓ

ℓ−1∑

k=0

ρ
(ℓ−k)/(2s)
1

≤ C
1/(2s)
3 (1− ρ

1/(2s)
1 )−1a

−1/s
ℓ .

This shows (ii) with C2 = C
1/(2s)
3 (1− ρ

1/(2s)
1 )−1

.

For the proof of the impli
ation (i) ⇒ (iii), suppose (i) and 
on
lude

(1 + C−1
1 )

∞∑

j=ℓ+1

a2j ≤
∞∑

j=ℓ+1

a2j + a2ℓ =

∞∑

j=ℓ

a2j .
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By mathemati
al indu
tion, this implies

∞∑

j=ℓ+k

a2j ≤ (1 + C−1
1 )−1

∞∑

j=ℓ+k−1

a2j ≤ (1 + C−1
1 )−k

∞∑

j=ℓ

a2j

and hen
e

a2ℓ+k ≤
∞∑

j=ℓ+k

a2j ≤ (1 + C−1
1 )−k

∞∑

j=ℓ

a2j

≤ (1 + C1)(1 + C−1
1 )−ka2ℓ .

This proves (iii) with ρ1 = (1 + C−1
1 )−1

and C3 = (1 + C1).
The impli
ation (ii) ⇒ (iii) follows analogously. To that end, assume aℓ+k > 0. Then,

there holds

(1 + C−1
2 )

ℓ−1∑

j=0

a
−1/s
j ≤

ℓ∑

j=0

a
−1/s
j .

Mathemati
al indu
tion shows then shows

ℓ∑

j=0

a
−1/s
j ≤ (1 + C−1

2 )−1

ℓ+1∑

j=0

a
−1/s
j ≤ (1 + C−1

2 )−k

ℓ+k∑

j=0

a
−1/s
j

and hen
e

a
−1/s
ℓ ≤

ℓ∑

j=0

a
−1/s
j ≤ (1 + C−1

2 )−k

ℓ+k∑

j=0

a
−1/s
j

≤ (1 + C2)(1 + C−1
2 )−ka

−1/s
ℓ+k .

With the assumption that aℓ+k = 0 implies aℓ+k+n = 0 for all n ∈ N0, this proves a
2
ℓ+k ≤

(1 + C2)
2s(1 + C−1

2 )−2ska2ℓ for all ℓ, k ∈ N0. This is (iii) with ρ1 = (1 + C−1
2 )−2s

and

C3 = (1 + C2)
2s
. �

Proposition 2.3.9. Suppose estimator redu
tion (2.3.8). Then, general quasi-ortho-

gonality (E2) implies (2.3.12)�(2.3.14) with aℓ = η(Tℓ) for all ℓ ∈ N0. The 
onstant C1 > 0
depends only on ρest, Cest, and εqo, whereas the 
onstants C2, C3 > 0, and 0 < ρ1 < 1 are

given by (2.3.15).

Proof. In the following, the general quasi-orthogonality (E2) implies ea
h the state-

ments (2.3.12)�(2.3.14) sin
e (E2) implies (2.3.12). To that end, the estimator redu
-

tion (2.3.8) from Lemma 2.3.5 yields for any ν > 0 that

ℓ+N+1∑

k=ℓ+1

η(Tk)
2 ≤

ℓ+N+1∑

k=ℓ+1

(
ρestη(Tk−1)

2 + Cest̺(Tk−1, Tk)
2
)

=
ℓ+N+1∑

k=ℓ+1

(
(ρest + ν)η(Tk−1)

2 + Cest

(
̺(Tk−1, Tk)

2 − νC−1
est η(Tk−1)

2
))
.

(2.3.16)

With the 
onstants ρest and Cest from (2.3.7), the 
onstraint on εqo in (E2) reads

0 ≤ εqo <
1− ρest
Cest

≤ sup
δ>0

1− (1 + δ)(1− (1− ρred)θ

2 + δ−1
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for some 
hoi
e of δ > 0. Note that this 
hoi
e is valid sin
e ρest < 1. In parti
ular, it exists

ν < 1− ρest su
h that εqo ≤ νC−1
est . This allows to apply general quasi-orthogonality (E2) to

the last term of (2.3.16), i.e.,

ℓ+N+1∑

k=ℓ+1

̺(Tk−1, Tk)
2 − νC−1

est η(Tk−1)
2 ≤ Cqoη(Tℓ)

2. (2.3.17)

The 
ombination of (2.3.16)�(2.3.17) and passing to the limit N → ∞ proves

∞∑

k=ℓ+1

η(Tk)
2 ≤

∞∑

k=ℓ+1

(ρest + ν)η(Tk−1)
2 + CestCqoη(Tℓ)

2.

Some rearrangement leads to

(1− (ρest + ν))

∞∑

k=ℓ+1

η(Tk)
2 ≤ (ρest + ν + CestCqo)η(Tℓ)

2.

This shows that aℓ := η(Tℓ) satis�es that aℓ = 0 implies ak = 0 for all k ≥ ℓ. Hen
e, we

have (2.3.12) with C1 = (ρest + ν + CestCqo)/(1− (ρest + ν)) and 
on
lude the proof of (E2)

⇒ (2.3.12). Lemma 2.3.8 yields the equivalen
e (2.3.12)�(2.3.14). �

Proof of Theorem 2.3.3, (ii). Stability and redu
tion (E1) guarantee estimator re-

du
tion (2.3.8) for η(Tℓ) by Lemma 2.3.5. Together with quasi-orthogonality (E2), Proposi-

tion 2.3.9 shows (2.3.14) for aℓ = η(Tℓ). This proves Theorem 2.3.3 (ii) with Cconv = C3 and

ρconv = ρ1. �

2.3.5. Optimality of Dör�er marking. Theorem 2.3.3 (i)�(ii) state that Dör�er

marking (2.2.1) essentially guarantees limℓ→∞ η(Tℓ) = 0 or even R-linear 
onvergen
e to

zero. The next statement asserts the 
onverse.

Proposition 2.3.10. Let T̂ ∈ T(T ) denote a re�nement of T ∈ T. Stability (E1a)

and dis
rete reliability (E3) imply that for all 0 < θ0 < θ⋆ := (1 − εdrel)/(1 + C2
drel), there

exists some 0 < κ0 < min{κdlr, 1} su
h that

η(T̂ )2 ≤ κ0η(T )2 =⇒ θ η(T )2 ≤
∑

T∈R(T ,T̂ )

ηT (T )2 (2.3.18)

holds for all 0 < θ ≤ θ0, where S(T , T̂ ) ⊆ R(T , T̂ ) ⊆ T with |T \ T̂ | ≤ |R(T , T̂ )| ≤
Cref |T \ T̂ | from (E3). The 
onstant κ0 depends only on Cdrel, εdrel, and θ0.

Remark 2.3.11. Note that the proof requires (E3) to hold only for the parti
ular T
and T̂ in (2.3.18).

Proof. The Young inequality and stability (E1a) show, for any δ > 0, that

η(T )2 =
∑

T∈S(T ,T̂ )

ηT (T )2 +
∑

T∈T \S(T ,T̂ )

ηT (T )2

≤
∑

T∈S(T ,T̂ )

ηT (T )2 + (1 + δ−1)
∑

T∈T̂ \Ŝ(T ,T̂ )

ηT (T̂ )2 + (1 + δ)̺(T , T̂ )2.
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Re
all S(T , T̂ ) ⊆ R(T , T̂ ) by (E3). The appli
ation of the dis
rete reliability (E3) and the

assumption η(T̂ )2 ≤ κ0η(T )2 yield

η(T )2 ≤ (1 + δ−1)κ0η(T )2 + (1 + δ)εdrelη(T )2

+
(
1 + (1 + δ)C2

drel

) ∑

T∈R(T ,T̂ )

ηT (T )2.

Some rearrangement of those terms reads

1− (1 + δ−1)κ0 − (1 + δ)εdrel
1 + (1 + δ)C2

drel

η(T )2 ≤
∑

T∈R(T ,T̂ )

ηT (T )2.

Re
all εdrel < 1 by (E3), 
hoose δ > 0 su�
iently small, and determine 0 < κ0 < 1 su
h that

θ0 ≤
1− (1 + δ−1)κ0 − (1 + δ)εdrel

1 + (1 + δ)C2
drel

<
1− εdrel
1 + C2

drel

= θ⋆. (2.3.19)

�

The next result is a variant of Proposition 2.3.10 whi
h is not a
tually needed in the

forth
oming analysis. However, we in
lude it for 
ompleteness.

Corollary 2.3.12. Let T̂ ∈ T(T ) denote a re�nement of T ∈ T. For all 0 < κ0 <
1 with κ0 ≤ κdlr, there exists a 
onstant 0 < θ0 < 1 and some 0 < ε0 < 1 su
h that

stability (E1a), dis
rete reliability (E3) with εdrel ≤ ε0, and 0 < θ ≤ θ0 imply (2.3.18). The


onstants θ0, ε0 depend only on Cdrel and κ0.

Proof. For arbitrary 0 < κ0 < 1 with κ0 ≤ κdlr 
hoose δ, ε0 > 0 su�
iently small su
h

that (2.3.19) be
omes

θ0 :=
1− (1 + δ−1)κ0 − (1 + δ)εdrel

1 + (1 + δ)C2
drel

≥ 1− (1 + δ−1)κ0 − (1 + δ)ε0
1 + (1 + δ)C2

drel

> 0.

As in the proof of Proposition 2.3.10, this 
on
ludes (2.3.18). �

2.3.6. Quasi-optimality of adaptive algorithm. This se
tion proves optimal 
on-

vergen
e rates for the estimator and thereby renders the theoreti
al heart of the proof of

Theorem 2.3.3 (iii).

Lemma 2.3.13. Let T ∈ T su
h that η(T ) > 0. Then, for s > 0 with ‖η,T(T )‖s <∞,

there exists a re�nement T̂ ∈ T(T ) with

η(T̂ )2 ≤ κ0η(T )2, (2.3.20a)

|T̂ \ T | < ‖η,T(T )‖1/ss κ
−1/s
0 η(T )−1/s. (2.3.20b)

Assume that the impli
ation (2.3.18) is valid for one parti
ular 
hoi
e of 0 < κ0, θ0 < 1 and

the triangulations T and T̂ . Then, the set R(T , T̂ ) ⊇ T \T̂ from Proposition 2.3.10 satis�es

|R(T , T̂ )| < Crefκ
1/(−2s)
0 η(T )−1/s‖η,T(T )‖1/ss (2.3.21a)

and satis�es the Dör�er marking for all 0 < θ ≤ θ0, i.e.,

θη(T )2 ≤
∑

T∈R(T ,T̂ )

ηT (T )2. (2.3.21b)
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Proof. Choose a minimal N ∈ N0, su
h that ‖η,T(T )‖s(N + 1)−s ≤ κ
1/2
0 η(T ) (note

that N > 0 by the fa
t that η(T ) ≤ ‖η,T(T )‖s and κ0 < 1). By assumption (and the fa
t

that T(T , N) is �nite), there holds

min
T̂ ∈T(T ,N)

((N + 1)sη(T̂ )) ≤ ‖η,T(T )‖s

and hen
e, there exists a triangulation T̂ ∈ T(T , N) with (N + 1)sη(T̂ ) ≤ ‖η,T(T )‖s. This
implies

η(T̂ ) ≤ (N + 1)−s‖η,T(T )‖s ≤ κ
1/2
0 η(T ).

The minimality of N implies N−s > κ
1/2
0 η(T )‖η,T(T )‖−1

s and hen
e

N < κ
1/(−2s)
0 η(T )−1/s‖η,T(T )‖1/ss . (2.3.22)

Sin
e T̂ ∈ T(T , N), this 
on
ludes (2.3.20). The impli
ation (2.3.18) thus guarantees that

the set R(T , T̂ ) ⊆ T with |R(T , T̂ )| ≃ |(T \ T̂ )| satis�es the Dör�er marking (2.3.21b).

Estimate (2.3.21a) follows from (2.3.22), i.e.,

C−1
ref |R(T , T̂ )| ≤ |(T \T̂ )| ≤ N < κ

1/(−2s)
0 η(T )−1/s‖η,T(T )‖1/ss .

This 
on
ludes the proof. �

The following two propositions state the optimality of the adaptive algorithm.

Proposition 2.3.14. The son estimate (T1) implies

coptCapprox(s) ≤ sup
ℓ∈N0

η(Tℓ)

(|Tℓ \ T0|+ 1)−s
, (2.3.23)

where the 
onstant copt > 0 depends only on Cson and |T0|.
Proposition 2.3.15. Suppose that (2.3.20)�(2.3.21a) of Lemma 2.3.13 are valid for

one parti
ular 0 < κ0 < 1 and s > 0, as well as for all T = Tℓ, ℓ ∈ N0 with η(Tℓ) > 0.
Assume that there holds (T2)�(T3) and that (2.3.13) from Lemma 2.3.8 holds for αℓ := η(Tℓ).

Then, |Mℓ| ≤ Cmin|R(Tℓ, T̂ℓ)| for all ℓ ∈ N0 (with R(Tℓ, T̂ℓ) from Lemma 2.3.13) implies

sup
ℓ∈N0

η(Tℓ)

(|Tℓ \ T0|+ 1)−s
≤ CoptCapprox(s). (2.3.24)

There holds Copt = 2sCs
2C

s
closureC

s
minC

s
refκ

−1/2
0 and copt > 0 depends only on Cson and |T0|.

Proof of Proposition 2.3.14. Choose N ∈ N0, ℓ ∈ N0, and the largest possible

k ∈ N0 with |Tℓ+k \ Tℓ| ≤ N . Due to the maximality of k and (T1), there holds N + 1 <
|Tℓ+k+1 \ Tℓ| + 1 ≤ |Tℓ+k+1| + 1 . Cson(|Tℓ+k| + 1) . Cson(|Tℓ+k \ T0| + 1), where the hidden

onstant depends only on |T0|. This leads to

inf
T̂ ∈T(Tℓ,N)

(N + 1)sη(T̂ ) . (|Tℓ+k \ T0|+ 1)sη(Tℓ+k)

and 
on
ludes the proof. �

Proof of Proposition 2.3.15. If η(Tℓ0) = 0. Then, (2.3.13) implies η(Tℓ) = 0 for all

ℓ ≥ ℓ0. Hen
e, we may 
onsider 0 ≤ ℓ ≤ ℓ0 only. By assumption (2.3.21a), there holds

|Mℓ| ≤ Cmin|R(Tℓ, T̂ℓ)| ≤ CminCrefκ
1/(−2s)
0 η(Tℓ)

−1/s‖η,T(Tℓ)‖1/ss .
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The uniform approximability (T3) shows

|Mℓ| ≤ CminCrefCapprox(s)
1/sκ

1/(−2s)
0 η(Tℓ)

−1/s
for all ℓ ∈ N0. (2.3.25)

The inverse summability (2.3.13) together with (2.3.25) and the 
losure estimate (T2) show

for all ℓ ∈ N0

|Tℓ \ T0|+ 1 ≤ 2(|Tℓ \ T0|) ≤ 2Cclosure

ℓ−1∑

j=0

|Mj|

≤ 2CclosureCminCrefCapprox(s)
1/sκ

1/(−2s)
0

ℓ−1∑

j=0

η(Tj)
−1/s

≤ 2C2CclosureCminCrefCapprox(s)
1/sκ

1/(−2s)
0 η(Tℓ)

−1/s.

(2.3.26)

Consequently,

η(Tℓ)(|Tℓ \ T0|+ 1)s ≤ 2sCs
2C

s
closureC

s
minC

s
refκ

−1/2
0 Capprox(s) for all ℓ ∈ N.

This leads to the upper bound in (2.3.24). �

Proof of Theorem 2.3.3 (iii). Choose θ0 := θ < θ⋆. Stability (E1a) and dis
rete

reliability (E3) guarantee that (2.3.18) holds for θ0, some 0 < κ0 < 1, and in parti
ular

for all T = Tℓ, ℓ ∈ N0. This implies that (2.3.20)�(2.3.21) of Lemma 2.3.13 are valid

parti
ularly for all T = Tℓ, ℓ ∈ N0. Step (iii) of Algorithm 2.2.1 sele
ts some set Mℓ with

(almost) minimal 
ardinality whi
h satis�es the Dör�er marking (2.2.1) for θ. The Dör�er

marking (2.3.21b) for θ = θ0 implies |Mℓ| ≤ Cmin|R(Tℓ, T̂ℓ)|. Redu
tion and stability (E1)

proves the estimator redu
tion (2.3.8) from Lemma 2.3.5. This and quasi-orthogonality (E2)

allow to employ Proposition 2.3.9 whi
h ensures that (2.3.12)�(2.3.14) hold for αℓ := η(Tℓ).
Finally, Proposition 2.3.14�2.3.15 
on
lude the proof. �

Remark 2.3.16. Note that the proof of Theorem 2.3.3 (iii) requires (2.3.18) only for

T = Tℓ, ℓ ∈ N0. Hen
e, Remark 2.3.11 shows that it is su�
ient to 
laim (E3) for all

T = Tℓ, ℓ ∈ N0 to obtain Theorem 2.3.3 (iii). This relaxation is exploited in Se
tion 3.6.2,

below.

2.4. Equivalent approximation problems

Assume that there exist 
onstants Crel, Ceff > 0 as well as fun
tions err(·) : T → [0,∞)
and data(·) : T → [0,∞) su
h that there holds reliability

err(T ) ≤ Crelη(T ) for all T ∈ T. (2.4.1)

as well as e�
ien
y

C−1
eff η(T ) ≤ err(T ) + data(T ) for all T ∈ T. (2.4.2)

Suppose that the fun
tions err(·) and data(·) are quasi-monotone (see also (2.7.6) below) in

the sense that there exists a 
onstant Cmon > 0 su
h that all T̂ ∈ T(T ) and all T ∈ T satisfy

err(T̂ ) ≤ Cmonerr(T ) and data(T̂ ) ≤ Cmondata(T ). (2.4.3)
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We de�ne the 
orresponding approximability norms analogously to (2.2.5) as

‖err,T(T )‖s := sup
N∈N0

min
T̂ ∈T(T ,N)

((N + 1)serr(T̂ )),

‖data,T(T )‖s := sup
N∈N0

min
T̂ ∈T(T ,N)

((N + 1)sdata(T̂ )).

Analogously to (T3), we say that err(·) and data(·) satisfy uniform approximability if

Cerr
approx(s) := sup

T ∈T
‖err,T(T )‖s <∞, (2.4.4a)

Cdata
approx(s) := sup

T ∈T
‖data,T(T )‖s <∞. (2.4.4b)

for some s > 0.

Proposition 2.4.1. Assume that there holds reliability (2.4.1), e�
ien
y (2.4.2),

and quasi-monotoni
ity (2.4.3). Then, the uniform approximability statements in (2.4.4)

and (T3) are equivalent in the sense that

(i) 2−sC−1
eff Capprox(s) ≤ Cerr

approx(s) + CmonC
data
approx(s),

(ii) Cerr
approx(s) ≤ CrelCapprox(s).

Remark 2.4.2. The literature, e.g., [78, 35℄, usually assumes ‖err,T‖s+‖data,T‖s <
∞ and uses the equivalen
e (2.4.1)�(2.4.2) as well as the overlay estimate (2.5.1) below to

obtain rate optimality of the error estimator and the so 
alled total error err(T ) + data(T ).
Our approa
h, however, is mu
h more fundamental as we only use properties of the error

estimator itself to dedu
e the rate optimality of Theorem 2.3.3 (iii). The statements on

error 
onvergen
e are derived in this se
tion by bootstrapping the results on the estimator.

This point of view allows to in
lude a mu
h broader 
lass of appli
ations as is shown in the

examples of Chapter 3, 5, 6, below.

Proof. The upper bound (2.4.1) shows

‖err,T(T )‖s ≤ Crel‖η,T(T )‖s for all s > 0.

This proves (ii).

To see (i), suppose (2.4.4) for some s > 0. For all even N ∈ N0, this guarantees the

existen
e of a triangulation TN/2 ∈ T(T , N/2) with
err(TN/2)(N/2 + 1)s ≤ Cerr

approx(s)

and also the existen
e of a triangulation TN ∈ T(TN/2, N/2) with

data(TN)(N/2 + 1)s ≤ Cdata
approx(s). (2.4.5)

With quasi-monotoni
ity (2.4.3), there holds

err(TN) ≤ Cmonerr(TN/2) ≤ Cmon(N/2 + 1)−sCerr
approx(s).

This and the lower bound (2.4.2) yield

C−1
eff η(TN) ≤ err(TN ) + data(TN )

≤ (Cdata
approx(s) + CmonC

err
approx(s))(N/2 + 1)−s

≤ 2s(Cdata
approx(s) + CmonC

err
approx(s))(N + 1)−s.

By de�nition, there holds |TN \ T | ≤ |TN \ TN/2| + |TN/2 \ T | ≤ N . This shows TN ∈
T(T , N) and hen
e proves ‖η,T(T )‖s ≤ 2sCeff(C

data
approx(s) + CmonC

err
approx(s)). This 
on
ludes

the proof. �
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In the frame of this se
tion, we prove following analog of Theorem 2.3.3 whi
h provides


onvergen
e results for the error instead of the estimator.

Theorem 2.4.3. (i) Suppose (E1) is satis�ed and assume limℓ→∞ ̺(Tℓ, Tℓ+1) = 0
(with ̺(·, ·) from Se
tion 2.3.1). Then, for all 0 < θ ≤ 1, the error is 
onvergent in
the sense

lim
ℓ→∞

err(Tℓ) = 0. (2.4.6)

(ii) Suppose (E1)�(E2) are satis�ed. Then, for all 0 < θ ≤ 1, the error is R-linear

onvergent in the sense that there exists 0 < ρconv < 1 and Cconv > 0 su
h that

err(Tℓ+j)
2 ≤ C2

effCconvρ
j
conv (err(Tℓ) + data(Tℓ))

2
for all j, ℓ ∈ N0. (2.4.7)

(iii) Suppose (E1)�(E3) and (T1)�(T3) are satis�ed for some s > 0. Then 0 < θ < θ⋆ :=
(1− εdrel)/(1 +C2

drel) implies quasi-optimal 
onvergen
e of the error in the sense of

coptC
err
approx(s) ≤ sup

ℓ∈N0

err(Tℓ)

(|Tℓ \ T0|+ 1)−s

≤ 2sCoptCrelCeff(C
data
approx(s) + CmonC

err
approx(s)),

(2.4.8)

where the lower bound requires only (T1) to hold.

The 
onstants Cconv, ρconv, copt, Copt are de�ned in Theorem 2.3.3.

Proof. The statements (i)�(ii) follow immediately from Theorem 2.3.3 (i)�(ii) and the

equivalen
es (2.4.1)�(2.4.2). To see the upper bound in (iii), 
ombine the upper bound in

Theorem 2.3.3 (iii) with Proposition 2.4.1 and the upper bound (2.4.1). For the lower bound

in (iii), 
hoose N ∈ N0, ℓ ∈ N0, and the largest possible k ∈ N0 with |Tℓ+k \ Tℓ| ≤ N .

Due to maximality of ℓ and (T1), there holds N + 1 < |Tℓ+k+1 \ Tℓ| + 1 ≤ |Tℓ+k+1| + 1 .
Cson(|Tℓ+k|+1) . Cson(|Tℓ+k \T0|+1), where the hidden 
onstant depends only on |T0|. This
leads to

inf
T ∈T(Tℓ,N)

(N + 1)serr(T ) . (|Tℓ+k \ T0|+ 1)serr(Tℓ+k)

and 
on
ludes the proof. �

Before we 
on
lude the se
tion, we provide a 
riterion, under whi
h reliability (2.4.1)

follows from dis
rete reliability (E3).

Proposition 2.4.4. Suppose a 
onstant C > 0 su
h that the following holds. Given

T ∈ T, there exists a sequen
e of triangulations T̂ℓ ∈ T(T ) with limℓ→∞ η(T̂ℓ) = 0 su
h that

C−1err(T ) ≤ lim
ℓ→∞

̺(T , T̂ℓ)

with ̺(·, ·) from Se
tion 2.3.1. Then, dis
rete reliability (E3) (where the restri
tion εdrel <
1 is not ne
essary) and quasi-monotoni
ity (2.7.6) imply reliability (2.4.1) with C2

rel =
C2(C2

drel + εdrel).

Proof. Assume η(T ) = 0. Then, (2.7.6) implies η(T̂ℓ) = 0 for all ℓ ∈ N and hen
e

η(T̂ ) ≤ κdlrη(T ) for all ℓ ∈ N. Assume η(T ) > 0. Then, limℓ→∞ η(T̂ℓ) = 0 shows η(T̂ ) ≤
κdlrη(T ) for all ℓ ≥ ℓ0 for some su�
iently large ℓ0 ∈ N. In either 
ase, (E3) is appli
able

and shows

C−2err(T )2 ≤ lim
ℓ→∞

̺(T , T̂ℓ)
2 ≤ (εdrel + C2

drel)η(T )2.

This 
on
ludes the proof. �
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2.5. Optimal 
omplexity

This se
tion understands 
omplexity as a measure of 
omputational e�ort ne
essary to


ompute one step of Algorithm 2.2.1. We assume that the e�ort is related to

|Tℓ|γ

for some γ > 0 and 
all this quantity single-step 
omplexity. This is a reasonable assumption,

sin
e usually the solution of some linear or nonlinear systems is involved where the 
omplex-

ity is related to the degrees of freedom. To 
ompute the ℓ-th step of Algorithm 2.2.1, it

is ne
essary to 
ompute all the previous steps, too. Therefore, we de�ne the 
umulative


omplexity of the ℓ-th step of Algorithm 2.2.1 by

ℓ∑

j=0

|Tj|γ.

The following theorem shows that for the adaptive algorithm, both measures 
oin
ide. To

that end, we de�ne the overlay estimate whi
h states that there exists a 
onstant C4 > 0

su
h that any two triangulations T , T̂ ∈ T have a 
oarsest 
ommon re�nement T ⊕ T̂ ∈
T(T ) ∩ T(T̂ ) with

|(T ⊕ T̂ ) \ T | ≤ C4|T̂ \ T0|. (2.5.1)

Theorem 2.5.1. Suppose a sequen
e (T opt
ℓ )ℓ∈N0 ⊂ T with T opt

ℓ+1 ∈ T(T opt
ℓ ) and |T opt

ℓ+1 | ≤
Cson|Tℓ| for all ℓ ∈ N0 su
h that T opt

0 = T0 and that there holds the single-step 
omplexity

rate

sup
ℓ∈N0

η(T opt
ℓ )

(|T opt
ℓ |γ)−s

<∞ (2.5.2)

for some s > 0 and some γ > 0. Suppose (E1)�(E3) and (T1)�(T2) as well as the overlay es-

timate (2.5.1). Then, given 0 < θ < θ⋆ := (1−εdrel)/(1+C2
drel), the output of Algorithm 2.2.1

satis�es the same 
umulative 
omplexity rate

sup
ℓ∈N0

η(Tℓ)

(
∑ℓ

j=0 |Tj|γ)−s
<∞. (2.5.3)

Remark 2.5.2. The above result shows that Algorithm 2.2.1 realizes any possible single-

step 
omplexity rate even with respe
t to the 
umulative 
omplexity

∑ℓ
j=0 |Tj|γ. This means

that the overall investment of 
omputational time is asymptoti
ally optimal and the iter-

ative steps of Algorithm 2.2.1 do not spoil the performan
e. Parti
ularly, it shows that

under the assumptions of Theorem 2.5.1, the adaptive approa
h 
onverges faster or at least

with the same 
omplexity rate as the uniform re�nement strategy whi
h realizes T unif
ℓ+1 :=

T(T unif
ℓ , T unif

ℓ ). To see this, note that the uniform re�nement does not require to 
ompute

ea
h previous step of the algorithm. Hen
e, its 
omplexity to 
ompute the ℓ-th step is best

measured by the single-step 
omplexity |T unif
ℓ |γ. If uniform re�nement satis�es the single-step


omplexity rate s > 0, i.e.,

sup
ℓ∈N0

η(T unif
ℓ )

(|T unif
j |γ)−s

<∞,

Theorem 2.5.1 (with T unif
ℓ = T opt

ℓ ) shows that Algorithm 2.2.1 
onverges with at least the

same rate of 
umulative 
omplexity. Parti
ularly, the same e�ort in terms of 
omputational

time leads to asymptoti
ally better approximation a

ura
y.
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Proof. The assumption (2.5.2) implies ‖η,T‖sγ < ∞. To see this, we follow the proof

of Proposition 2.3.14. Choose N ∈ N0 and the largest possible ℓ ∈ N0 with |T opt
ℓ \ T0| ≤ N .

Due to the maximality of ℓ and by |T opt
ℓ+1 | ≤ Cson|T opt

ℓ |, there holds N +1 < |T opt
ℓ+1 \ T0|+1 .

Cson(|T opt
ℓ \ T0|+ 1), where the hidden 
onstant depends only on |T0|. This leads to

min
T̂ ∈T(N)

(N + 1)sγη(T̂ ) . (|T opt
ℓ \ T0|+ 1)sγη(T opt

ℓ )

and 
on
ludes

‖η,T‖sγ = sup
N∈N0

min
T̂ ∈T(N)

(N + 1)sγη(T̂ ) <∞.

Lemma 2.7.5 below shows quasi-monotoni
ity (2.7.6) of η(·). With the above, Lemma 2.7.4

implies Capprox(sγ) < ∞. This shows that (T3) holds. Therefore, Theorem 2.3.3 (i)�(iii)

apply and prove

η(Tj) ≤ CoptCapprox(sγ)(|Tj \ T0|+ 1)−sγ . CoptCapprox(sγ)|Tj|−sγ, (2.5.4)

where the hidden 
onstant depends only on |T0| and sγ. Moreover, there holds R-linear

onvergen
e (2.3.2). We assume η(Tℓ) > 0 for all ℓ ∈ N0, sin
e otherwise R-linear 
onver-
gen
e (2.3.2) implies η(Tℓ) = 0 for all ℓ ≥ ℓ0 for some ℓ0 ∈ N and hen
e (2.5.3) follows

immediately. With (2.5.4), this implies

|Tj |γ . η(Tj)
−1/s

for all j ∈ N0.

Together with R-linear 
onvergen
e (2.3.2) and the equivalent inverse summability from

Lemma 2.3.8 (ii), this shows

ℓ∑

j=0

|Tj|γ .

ℓ∑

j=0

η(Tj)
−1/s . η(Tℓ)

−1/s.

We obtain immediately (2.5.3) and 
on
lude the proof. �

2.6. Ne
essity of the axioms

The 
onvergen
e results in Theorem 2.3.3 show that the axioms (E1)�(E3), (T1)�(T3)

are su�
ient for rate optimality. By de�nition of the axioms (E1)�(E3), it is 
lear that if

there exists a fun
tion ̺(·, ·) su
h that (E1)�(E3) hold, we 
an 
hoose the point wise minimal

̺min(·, ·) ≤ ̺(·, ·) to satisfy (E1), without violating (E2)�(E3). Given a triangulation T ∈ T,
a re�nement T̂ ∈ T(T ), ρred, and sets T \ T̂ ⊆ S(T , T̂ ) ⊆ T , Ŝ(T , T̂ ) ⊆ T̂ , this reads

̺min(T , T̂ ) := max
{∣∣∣

( ∑

T∈T̂ \Ŝ(T ,T̂ )

ηT (T̂ )2
)1/2

−
( ∑

T∈T \S(T ,T̂ )

ηT (T )2
)1/2∣∣∣,

∣∣∣
∑

T∈Ŝ(T ,T̂ )

ηT (T̂ )2 − ρred
∑

T∈S(T ,T̂ )

ηT (T )2
∣∣∣
1/2}

.

This se
tion examines the ne
essity of the axioms with ̺(·, ·) = ̺min(·, ·).
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2.6.1. Convergen
e implies (E1). The stability and redu
tion (E1) leads to the 
on-

vergen
e result of Theorem 2.3.3 (i) and provides the basis for all the other 
onvergen
e

results. The following result shows that (E1) is even ne
essary.

Proposition 2.6.1. Assume 
onvergen
e (2.3.1). Then, (E1) holds for arbitrary 0 ≤
ρred < 1 and arbitrary sets Ŝ(·, ·), S(·, ·) with limℓ→∞ ̺min(Tℓ+1, Tℓ) = 0.

Proof. Stability and redu
tion (E1) is satis�ed by de�nition of ̺min(·, ·). By 
onver-

gen
e (2.3.1), we obtain limℓ→∞ ̺(Tℓ, Tℓ+1) . limℓ→∞(η(Tℓ) + η(Tℓ+1)) = 0. This 
on
ludes
the proof. �

2.6.2. R-linear 
onvergen
e implies (E2). Theorem 2.3.3 (ii) proves that (E1)�

(E2) yield linear 
onvergen
e (2.3.2). The following proposition shows that linear 
onver-

gen
e (2.3.14) implies the general quasi-orthogonality (E2). In view of Proposition 2.6.1�

2.6.2, linear 
onvergen
e (2.3.14) is equivalent (E1)�(E2).

Proposition 2.6.2. The R-linear 
onvergen
e (2.3.2) implies general quasi-orthogo-

nality (E2) with εqo = 0 and Cqo > 0.

Proof. Sin
e ̺min(T , T̂ ) . η(T ) + η(T̂ ), R-linear 
onvergen
e (2.3.2) together with

Lemma 2.3.8 (where αk = η(Tk)) show

ℓ+N∑

k=ℓ

̺(Tk, Tk+1)
2 .

ℓ+N+1∑

k=ℓ

η(Tk)
2 . η(Tℓ)

2

for all ℓ, N ∈ N0. This is (E2) with εqo = 0. �

2.6.3. R-linear 
onvergen
e implies (E3). The dis
rete reliability (E3) proves the

optimality of the Dör�er marking in Proposition 2.3.10. The following result shows that,

under some minor assumptions, also the 
onverse is true.

Proposition 2.6.3. Assume R-linear 
onvergen
e (2.3.2) and S(T , T̂ ) ≤ Cref |T \ T̂ |.
Then, dis
rete reliability (E3) holds on the sequen
e of triangulations (Tℓ)ℓ∈N0 generated by

Algorithm 2.2.1 with εdrel = 0, Cdrel = Cconvρconv/θ, and R(Tℓ, Tℓ+1) = S(Tℓ, Tℓ+1), i.e.,

̺min(Tℓ, Tℓ+1)
2 ≤ Cconvρconvθ

−1
∑

T∈S(Tℓ,Tℓ+1)

ηT (Tℓ)
2

for all ℓ ∈ N0.

Proof. The de�nition of ̺min(·, ·) implies that either (E1a) holds with equality, i.e.,

( ∑

T∈Tℓ+1\Ŝ(Tℓ,Tℓ+1)

ηT (Tℓ+1)
2
)1/2

=
( ∑

T∈Tℓ\S(Tℓ,Tℓ+1)

ηT (Tℓ)
2
)1/2

+ ̺(Tℓ, Tℓ+1) (2.6.1)

or (E1b) holds with equality, i.e.,

∑

T∈Ŝ(Tℓ,Tℓ+1)

ηT (Tℓ+1)
2 = ρred

∑

T∈S(Tℓ,Tℓ+1)

ηT (Tℓ)
2 + ̺(Tℓ, Tℓ+1)

2. (2.6.2)

In 
ase of (2.6.1), we obtain

C1/2
convρ

1/2
convη(Tℓ) ≥ η(Tℓ+1) ≥

( ∑

T∈Tℓ+1\Ŝ(Tℓ,Tℓ+1)

ηT (Tℓ+1)
2
)1/2

≥ ̺(Tℓ, Tℓ+1).
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Analogously, (2.6.2) implies

C1/2
convρ

1/2
convη(Tℓ) ≥ η(Tℓ+1) ≥

( ∑

T∈Ŝ(Tℓ,Tℓ+1)

ηT (Tℓ+1)
2
)1/2

≥ ̺(Tℓ, Tℓ+1).

Sin
e the triangulations Tℓ satisfy the Dör�er marking (2.2.1), the above implies

̺(Tℓ, Tℓ+1)
2 ≤ Cconvρconvη(Tℓ)

2 ≤ Cconvρconvθ
−1

∑

T∈Mℓ

ηT (T )2. (2.6.3)

Sin
e, by de�nition of the re�nement strategy, there holds Mℓ ⊆ Tℓ \ Tℓ+1 ⊆ S(Tℓ, Tℓ+1), we
obtain (E3) with εdrel = 0, Cdrel = Cconvρconv/θ, and R(Tℓ, Tℓ+1) = S(Tℓ, Tℓ+1). �

The following result shows that Proposition 2.3.10 is sharp in the sense that (E3) is even

equivalent to (2.3.18).

Proposition 2.6.4. Assume stability and redu
tion (E1) with ̺(·, ·) := ̺min(·, ·). As-
sume that for κ0 = κdlr exists some θ0 su
h that the impli
ation (2.3.18) holds. Then,

dis
rete reliability (E3) is satis�ed with εdrel = 0 and R(T , T̂ ) from Proposition 2.3.10 and

Cdrel = θ
−1/2
0 .

Proof. Let T̂ ∈ T(T ) su
h that η(T̂ ) ≤ κdlrη(T ). By assumption, there exists 0 < θ0 <

1, whi
h depends on κdlr, su
h that the impli
ation (2.3.18) holds and shows that R(T , T̂ )
satis�es the Dör�er marking (2.2.1). As in (2.6.3), we obtain

̺(T , T̂ )2 ≤ η(T̂ )2 < η(T )2 ≤ θ−1
0

∑

T∈R(T ,T̂ )

ηT (T )2.

This 
on
ludes the proof. �

2.6.4. Optimal 
omplexity implies R-linear 
onvergen
e. The optimal 
omplex-

ity result of Theorem 2.5.1 implies R-linear 
onvergen
e (2.3.2) in the following sense. As-

sume that the error estimator 
onverges with a 
ertain rate

|Tℓ|−s . η(Tℓ) . |Tℓ|−s
for all ℓ ∈ N0 (2.6.4)

and assume that the impli
ation of Theorem 2.5.1, i.e., (2.5.2) implies (2.5.3), is true. Un-

der (T1), we may use T opt
ℓ := Tℓ and obtain

sup
ℓ∈N0

η(Tℓ)

(
∑ℓ

j=0 |Tj |γ)−s/γ
<∞.

With this, (2.5.3) shows

η(Tℓ)
−γ/s &

ℓ∑

j=0

|Tj |γ &

ℓ∑

j=0

η(Tj)
−γ/s

for all ℓ ∈ N0. Lemma 2.3.8 with αℓ = η(Tℓ) 
on
ludes R-linear 
onvergen
e (2.3.2).

Remark 2.6.5. Although it is possible to 
onstru
t examples whi
h satisfy rate opti-

mality (2.3.3) but fail to satisfy (2.6.4), there are many pra
ti
al examples with (2.6.4). In

this sense, R-linear 
onvergen
e might not be ne
essary for any parti
ular instan
e of the

approximation problem, but is de�nitely ne
essary for the general 
ase.
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2.6.5. The re�nement axioms (T1)&(T3). The assumption (T1) is not ne
essary

from a theoreti
al point of view. However, sin
e |T | is usually related to the degrees of

freedom, a reasonable re�nement strategy will aim to produ
e a re�nement with |Tℓ+1| ≃ |Tℓ|.
The uniform approximability (T3) is ne
essary sin
e it follows immediately from (2.3.3).

2.7. Parti
ular realizations of the axioms

In many 
ases, some of the axioms (E1)�(E3), (T1)�(T3) hold due to some more spe
i�


properties of the estimator η(·) or the re�nement strategy T(·, ·).

2.7.1. A priori 
onvergen
e. Suppose a Bana
h spa
e X with norm ‖ · ‖2X as well as

a solver fun
tion U(·) : T → X . Assume that

̺(T , T̂ )2 := α‖U(T )− U(T̂ )‖2X
for some α > 0.

Lemma 2.7.1. Suppose that there exist subspa
es X (Tℓ) ⊆ X for all ℓ ∈ N0 (where Tℓ

denotes the output of Algorithm 2.2.1) and a fun
tion U∞ ∈ X∞ :=
⋃

ℓ∈N0
X (Tℓ) su
h that

the Céa lemma holds, i.e.,

‖U∞ − U(Tℓ)‖X ≤ C
Céa

min
V ∈X (Tℓ)

‖U∞ − V ‖X for all ℓ ∈ N0, (2.7.1)

where C
Céa

> 0 is some 
onstant whi
h does not depend on ℓ ∈ N0. Then, there holds

a priori 
onvergen
e

lim
ℓ→∞

‖U∞ − U(Tℓ)‖X = 0 = lim
ℓ→∞

̺(Tℓ, Tℓ+1). (2.7.2)

Proof. By de�nition of X∞, the right-hand side of (2.7.1) 
onverges towards zero as

ℓ → ∞. The 
onvergen
e limℓ→∞ ̺(Tℓ, Tℓ+1) = 0 follows immediately with the triangle

inequality. This 
on
ludes the proof. �

2.7.2. ̺(·, ·) is a Hilbert norm. If the perturbation has the stru
ture of a Hilbert

norm, the general quasi-orthogonality follows immediately.

Lemma 2.7.2. Suppose a Hilbert spa
e X with ‖ · ‖2X := 〈· , ·〉X and U(·) : T → X .

Let ̺(·, ·) be given as in Se
tion 2.7.1 and suppose that the solver U(·) satis�es Galerkin

orthogonality

〈U(Tℓ+k)− U(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉X = 0 for all k, ℓ ∈ N0. (2.7.3)

Then, dis
rete reliability (E3) with κdlr = ∞ (where the restri
tion εdrel < 1 is not ne
essary)
implies the general quasi-orthogonality (E2) with εqo = 0 and Cqo = εdrel + Cdrel. Moreover,

there holds a priori 
onvergen
e

lim
ℓ→∞

̺(Tℓ, Tℓ+1) = 0. (2.7.4)

Proof. The Galerkin orthogonality (2.7.3) implies for k,N ∈ N0

‖U(Tk)− U(Tk+1)‖2X = ‖U(Tℓ+N )− U(Tk)‖2X − ‖U(Tℓ+N )− U(Tk+1)‖2X
− 2〈U(Tℓ+N)− U(Tk+1) , U(Tk)− U(Tk+1)〉X

= ‖U(Tℓ+N )− U(Tk)‖2X − ‖U(Tℓ+N )− U(Tk+1)‖2X .
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Hen
e, there holds for ℓ ∈ N0

ℓ+N∑

k=ℓ

̺(Tk, Tk+1)
2 ≤ α lim

N→∞

ℓ+N∑

k=ℓ

‖U(Tk)− U(Tk+1)‖2X

= α lim
N→∞

ℓ+N∑

k=ℓ

(
‖U(Tℓ+N )− U(Tk)‖2X − ‖U(Tℓ+N )− U(Tk+1)‖2X

)

= α lim
N→∞

(
‖U(Tℓ+N )− U(Tℓ)‖2X − ‖U(Tℓ+N)− U(Tℓ+N+1)‖2X

)

≤ α lim
N→∞

‖U(Tℓ+N )− U(Tℓ)‖2X
= lim

N→∞
̺(Tℓ, Tℓ+N)

2 ≤ (εdrel + Cdrel)η(Tℓ)
2.

The above for ℓ = 0 
on
ludes also (2.7.4) and hen
e the proof. �

2.7.3. Quasi-orthogonality implies general quasi-orthogonality. In the litera-

ture, one often �nds the following quasi-orthogonality: Let 0 ≤ ε < 1, and Crel > 0 su
h

that all ℓ ∈ N0 satisfy

C−1
rel ̺(Tℓ, Tℓ+1)

2 ≤ (1− ε)−1α2
ℓ − α2

ℓ+1, (2.7.5a)

for some αℓ ∈ R with

α2
ℓ ≤ Crelη(Tℓ)

2. (2.7.5b)

Lemma 2.7.3. The quasi-orthogonality (2.7.5) with 0 ≤ ε < 1 and Crel > 0 implies the

general quasi-orthogonality (E2) with εqo = Crelε/(1− ε) and Cqo = Crel.

Proof. There holds with εqo = Crelε/(1− ε) and (2.7.5)

N∑

k=ℓ

(
̺(Tk, Tk+1)

2 − εqoη(Tk)
2
)
≤

N∑

k=ℓ

( α2
k

1− ε
− α2

k+1 −
Crelεη(Tk)

2

1− ε

)

≤
N∑

k=ℓ

( α2
k

1− ε
− α2

k+1 −
εα2

k

1− ε

)

≤
N∑

k=ℓ

(α2
k − α2

k+1) ≤ α2
ℓ ≤ Crelη(Tℓ)

2.

�

2.7.4. Quasi-monotoni
ity and the overlay estimate. We say that a fun
tion λ(·) :
T → [0,∞) is quasi-monotone, if there exists a 
onstant Cmon > 0 su
h that all triangulations
T ∈ T satisfy

λ(T̂ ) ≤ Cmonλ(T ) for all T̂ ∈ T(T ). (2.7.6)

Lemma 2.7.4. Assume that the re�nement strategy T(·, ·) satis�es the overlay esti-

mate (2.5.1) and that the fun
tion λ(·) : T → [0,∞) is quasi-monotone (2.7.6). Then,

‖λ,T‖s <∞ for some s > 0 implies

sup
T ∈T

‖λ,T(T )‖s ≤ Cmon(C4 + 1)s‖λ,T‖s.

Parti
ularly, for λ(·) = η(·), ‖η,T‖s <∞ implies (T3).
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Proof. Let N ∈ N0 and de�ne M := floor(N/C4). The fa
t ‖λ,T‖s < ∞ allows to


hoose some triangulation T N ∈ T(M) with

λ(T N)(M + 1)s ≤ ‖λ,T‖s.

Given any T ∈ T, the overlay estimate (2.5.1) states |(T N ⊕ T ) \ T | ≤ N and hen
e

T N ⊕ T ∈ T(T , N). The quasi-monotoni
ity (2.7.6) and N + 1 ≤ (M + 1)(C4 + 1) shows

λ(T N ⊕ T )(N + 1)s ≤ Cmon(C4 + 1)sλ(T N)(M + 1)s ≤ Cmon(C4 + 1)s‖λ,T‖s.

This implies

inf
T̂ ∈T(T ,N)

(N + 1)sλ(T̂ ) ≤ Cmon(C4 + 1)s‖λ,T‖s

and 
on
ludes the proof. �

The quasi-monotoni
ity (2.7.6) follows from the stability and redu
tion (E1) together

with dis
rete reliability (E3) or quasi-orthogonality (2.7.5).

Lemma 2.7.5. Assume (E1) (where the restri
tion ρred < 1 is not ne
essary) as well

as (E3) with κdlr = ∞. Then, there holds (2.7.6) with λ(·) = η(·) and Cmon =
(
max{ρred, 2}+

3(εdrel + C2
drel)

)1/2
.

Proof. The stability (E1a) and the redu
tion estimate (E1b) imply

η(T̂ )2 ≤ ρred
∑

T∈S(T ,T̂ )

ηT (T )2 + 2
∑

T∈T \S(T ,T̂ )

ηT (T )2 + 3̺(T , T̂ )2.

The dis
rete reliability (E3), leads to

η(T̂ )2 ≤ (max{ρred, 2}+ 3εdrel)η(T )2 + 3C2
drel

∑

T∈R(T ,T̂ )

ηT (T )2

≤
(
max{ρred, 2}+ 3(εdrel + C2

drel)
)
η(T )2.

This is (2.7.6) with Cmon :=
(
max{ρred, 2}+ 3(εdrel + C2

drel)
)1/2

. �

Lemma 2.7.6. Assume (E1) (where the restri
tion ρred < 1 is not ne
essary) as well

as the quasi-orthogonality (2.7.5) for Tℓ = T and Tℓ+1 = T̂ . Then, there holds (2.7.6) with

λ(·) = η(·) and Cmon =
(
(max{ρred, 2}+ 3C2

rel(1− ε)−1)
)1/2

.

Proof. The stability (E1a) and the redu
tion estimate (E1b) imply

η(T̂ )2 ≤ ρred
∑

T∈S(T ,T̂ )

ηT (T )2 + 2
∑

T∈T \S(T ,T̂ )

ηT (T )2 + 3̺(T , T̂ )2

(2.7.5)

≤ max{ρred, 2}η(T )2 + 3Crel((1− ε)−1α2
ℓ − α2

ℓ+1)

≤ (max{ρred, 2}+ 3C2
rel(1− ε)−1)η(T )2.

This 
on
ludes the proof. �
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2.7.5. Other versions of the overlay estimate (2.5.1) and of (T2). The following

estimate provides a lower bound for the number of newly generated elements, i.e.,

|T \ T̂ | ≤ |T̂ | − |T | for all T̂ ∈ T(T ) and all T ∈ T. (2.7.7)

This is parti
ularly satis�ed if ea
h re�ned element T ∈ T \ T̂ generates at least two sons

T1, T2 ∈ T̂ \ T .
Lemma 2.7.7. Let the re�nement strategy satisfy (2.7.7), then there holds for all re-

�nements T̂ ∈ T(T )

|T̂ | − |T | ≤ |T̂ \ T | ≤ 2(|T̂ | − |T |). (2.7.8)

Proof. The �rst inequality follows from

|T̂ \ T | = |T̂ | − |T̂ ∩ T | ≥ |T̂ | − |T |.
The se
ond inequality follows similarly by

|T̂ \ T | = |T̂ | − |T̂ ∩ T | = |T̂ | − (|T | − |T \ T̂ |) ≤ 2(|T̂ | − |T |),
where we used (2.7.7). �

Lemma 2.7.8. Under (2.7.7), the 
losure estimate (T2) is equivalent to

|Tℓ| − |T0| ≤ C̃closure

ℓ−1∑

j=0

|Mj| for all ℓ ∈ N0, (2.7.9)

where the 
losure estimate (T2) implies (2.7.9) with C̃closure = Cclosure and (2.7.9) im-

plies (T2) with Cclosure = 2C̃closure. Moreover, the overlay estimate (2.5.1) is equivalent

to

|(T ⊕ T̂ )| ≤ C̃4(|T̂ | − |T0|) + |T | for all T̂ ∈ T(T ), (2.7.10)

where (2.5.1) implies (2.7.10) with C̃4 = 2C4 and (2.7.10) implies (2.5.1) with C4 = 2C̃4.

Proof. Both statements follow dire
tly with (2.7.8). �

2.8. Histori
al remarks

This se
tion is based on and extends [24, Se
tion 3.2℄. This work provides some unifying

framework on the theory of adaptive algorithms and the related 
onvergen
e and quasi-

optimality analysis. Some histori
 remarks are in order on the development of the arguments

over the years. In one way or another, the axioms arose in various works throughout the

literature. We aim to motivate the spe
i�
 
hoi
e of axioms (whi
h turn out to be even

ne
essary in Se
tion 2.6) in terms of histori
 development of the �eld.

2.8.1. Reliability (2.4.1). Reliability basi
ally states that the unknown error tends to

zero if the 
omputable and hen
e known error bound is driven to zero by smart adaptive

algorithms. As the main result of this 
hapter (Theorem 2.3.3) fo
uses solely on the error

estimator, the reliability is not expli
itly used in the analysis. However, Se
tion 2.4 intro-

du
es reliability to prove optimal 
onvergen
e of the error. Sin
e the invention of adaptive

FEM in the 1970s, the question of reliability was thus a pressing matter and �rst results for

FEM date ba
k to the early works of Babuska & Rheinboldt [7℄ in 1D and Babuska &

Miller [6℄ in 2D. Therein, the error is estimated by means of the residual. In the 
ontext

of BEM, reliable residual-based error estimators date ba
k to the works of Carstensen &
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Stephan [34, 33, 20℄. Sin
e the a
tual adaptive algorithm only knows the estimator, reli-

ability estimates have been a 
ru
ial ingredient for 
onvergen
e proofs of adaptive s
hemes

of any kind.

2.8.2. E�
ien
y (2.4.2). Compared to reliability (2.4.1), e�
ien
y (2.4.2) provides the


onverse estimate and states that the error is not overestimated by the estimator, up to some

os
illation terms data(·) determined from the given data. An error estimator whi
h satis�es

both, reliability and e�
ien
y, is mathemati
ally guaranteed to asymptoti
ally behave like

the error, i.e., it de
ays with the same rate as the a
tual 
omputational error. Consequently,

e�
ien
y is a desirable property as soon as it 
omes to 
onvergen
e rates. For FEM with

residual error estimators, e�
ien
y has �rst been proved by Verfürth [82℄. He used

appropriate inverse estimates and lo
alization by means of bubble fun
tions. In the frame

of BEM, however, e�
ien
y (2.4.2) of the residual error estimators is widely open and only

known for parti
ular problems [3, 19℄, although observed empiri
ally, see also Se
tion 3.5.3.

In terms of 
onvergen
e proofs, e�
ien
y is often a useful tool as is mentioned in the

following se
tion. However, the main result of this 
hapter (Theorem 2.3.3) does not require

the e�
ien
y estimate (2.4.2) and thus allows appli
ations to a mu
h wider problem 
lass.

2.8.3. Dis
rete lo
al e�
ien
y and �rst 
onvergen
e analysis of [40, 65℄. Reli-

ability (2.4.1) and e�
ien
y (2.4.2) are nowadays standard topi
s in textbooks on a poste-

riori FEM error estimation [1, 82℄, in 
ontrast to the 
onvergen
e of adaptive algorithms.

Babuska & Vogelius [8℄ already observed for 
onforming dis
retizations, that the se-

quen
e of dis
rete approximations U(Tℓ) always 
onverges (see Se
tion 2.7.1 for an abstra
t

form of this a priori 
onvergen
e). The work of Dörfler [40℄ introdu
ed the marking

strategy (2.2.1) for the Poisson model problem

−∆u = f in Ω and u = 0 on Γ = ∂Ω (2.8.1)

and 
onforming �rst-order FEM to show 
onvergen
e up to any given toleran
e. Morin,

No
hetto & Siebert [65℄ re�ned this and the arguments of Verfürth [82℄ and Dör-

fler [40℄ and proved the dis
rete variant

C−2
eff η(Tℓ)

2 ≤ ‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω) + data(Tℓ)
2

(2.8.2)

of the e�
ien
y (2.4.2). See also [50℄ for the expli
it statement and proof. The proof relies

on dis
rete bubble fun
tions and thus required an interior node property of the re�nement

strategy, whi
h is ensured, e.g., by bise
tion for d = 2 from Se
tion 3.2.8 and �ve bise
tions

for ea
h re�ned element. With this, [65℄ proved error redu
tion up to data os
illation terms

in the sense of

‖∇(u− U(Tℓ+1))‖2L2(Ω) ≤ κ ‖∇(u− U(Tℓ))‖2L2(Ω) + C data(Tℓ) (2.8.3)

with some ℓ-independent 
onstants 0 < κ < 1 and C > 0. This and additional enri
hment

of the marked elements Mℓ ⊆ Tℓ to ensure data(Tℓ) → 0 as ℓ→ ∞ leads to 
onvergen
e

‖∇(u− U(Tℓ))‖L2(Ω)
ℓ→∞−−−→ 0. (2.8.4)

The reason why this work negle
ts the dis
rete lo
al e�
ien
y (2.8.2) is that it 
an only

be proven for a very narrow 
lass of model problems, and thus does not allow for some general

framework. Moreover, the over re�nement due to the interior node property is pra
ti
ally

observed to be unne
essary.
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2.8.4. Quasi-orthogonality (E2). The approa
h of [65℄ has been generalized to non-

symmetri
 operators in [64℄, to non
onforming and mixed methods in [26, 25℄, as well

as to the nonlinear obsta
le problem in Braess, Carstensen & Hoppe [17, 18℄. One

additional di�
ulty is the la
k of the Galerkin orthogonality whi
h is 
ir
umvented with

the general quasi-orthogonality axiom (2.7.5) in Se
tion 2.7.3. Stronger variants of quasi-

orthogonality have been used in [26, 25, 64℄ and imply (2.7.5) in Se
tion 2.7.3. In its 
urrent

form, however, the general quasi-orthogonality (E2) goes ba
k to [46℄ for non-symmetri
 op-

erators without arti�
ial assumptions on the initial triangulation as in [36, 64℄, see also

Se
tion 3.6.1. Proposition 2.6.2 shows that the present form (E2) of the quasi-orthogonality


annot be weakened if one aims to follow the analysis of [35, 78℄ to prove quasi-optimal


onvergen
e rates. Moreover, Se
tion 2.6.4 shows that the optimal 
omplexity result of The-

orem 2.5.1 ne
essarily impliesR-linear 
onvergen
e and thus general quasi-orthogonality (E2)
by Proposition 2.6.2.

2.8.5. Optimal 
onvergen
e rates and dis
rete reliability (E3). The seminal work

of Binev, Dahmen & DeVore [14℄ was the �rst one to prove algebrai
 
onvergen
e rates

for adaptive FEM of the Poisson model problem (2.8.1) and lowest-order FEM. They ex-

tended the adaptive algorithm of [65℄ by additional 
oarsening steps to avoid over-re�nement.

Stevenson [78℄ removed this arti�
ial 
oarsening step and introdu
ed the basi
 form of the

axiom (E3) on dis
rete reliability, i.e., with εdrel = 0 and κdlr = ∞. He impli
itly introdu
ed

the 
on
ept of separate Dör�er marking : If the data os
illations data(Tℓ) are small 
ompared

to the error estimator η(Tℓ), he used the 
ommon Dör�er marking (2.2.1) to single out the

elements for re�nement. Otherwise, he suggested the Dör�er marking (2.2.1) for the lo
al


ontributions of the data os
illation term data(Tℓ). The 
ore proof of [78℄ then uses the

observation from [64℄ that the so-
alled total error is 
ontra
ted in ea
h step of the adaptive

loop in the sense of

∆ℓ+1 ≤ κ∆ℓ for ∆ℓ := ‖∇(u− U(Tℓ))‖2L2(Ω) + γ data(Tℓ)
2

(2.8.5)

with some ℓ-independent 
onstants 0 < κ < 1 and γ > 0.
Moreover, the analysis of [78℄ shows that the Dör�er marking (2.2.1) is not only su�
ient

to guarantee 
ontra
tion (2.8.5), but somehow even ne
essary, see Se
tion 2.3.5 for the re�ned

analysis whi
h avoids the use of e�
ien
y (2.4.2).

2.8.6. Stability and redu
tion (E1). Anti
ipating the 
onvergen
e of [39℄ for the p-
Lapla
ian, the AFEM analysis of [78℄ was simpli�ed by Cas
on, Kreuzer, No
hetto

& Siebert [35℄ with the introdu
tion of the estimator redu
tion in the sense of

η(Tℓ+1)
2 ≤ κ η(Tℓ)

2 + C ‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω) (2.8.6)

with 
onstants 0 < κ < 1 and C > 0. This is an immediate 
onsequen
e of stability and

redu
tion (E1b) in Se
tion 2.3.3 and also ensures 
ontra
tion of the so-
alled quasi-error

∆ℓ+1 ≤ κ∆ℓ for ∆ℓ := ‖∇(u− U(Tℓ))‖2L2(Ω) + γ η(Tℓ)
2

(2.8.7)

with some ℓ-independent 
onstants 0 < κ < 1 and γ > 0. The analysis of [35℄ removed

the dis
rete lo
al lower bound from the set of ne
essary axioms (and hen
e the interior node

property [65℄). Impli
itly, the axiom (E1) is part of the proof of (2.8.6) in [35℄. While (E1a)

essentially follows from the triangle inequality and appropriate inverse estimates in pra
ti
e,

the redu
tion (E1b) builds on the observation that the element sizes of the sons of a re�ned

element uniformly de
reases. For instan
e, bise
tion-based re�nement strategies yield |T ′| ≤
|T |/2, if T ′ ∈ Tℓ+1\Tℓ is a son of T ∈ Tℓ\Tℓ+1.
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2.8.7. Extensions of the analysis of [35℄. The work [60℄ 
onsiders lowest-order

AFEM for the Poisson problem (2.8.1) for error estimators whi
h are lo
ally equivalent

to the residual error estimator. The works [36, 46℄ analyze optimality of AFEM for linear,

but non-symmetri
 ellipti
 operators. While [36℄ required that the 
orresponding bilinear

form indu
es a norm, su
h an assumption is dropped in [46℄, so that the latter work 
on-


luded the AFEM analysis for linear se
ond-order ellipti
 PDEs. Convergen
e with optimal

rates for adaptive boundary element methods has independently been proved in [47, 80℄.

The main additional di�
ulty was the development of appropriate lo
al inverse estimates

for the nonlo
al operators involved. The BEM analysis, however, still hinges on symmetri


and ellipti
 integral operators and ex
ludes boundary integral formulations of mixed bound-

ary value problems as well as the FEM-BEM 
oupling. AFEM with non
onforming and

mixed FEMs is 
onsidered for various problems in [71, 32, 29, 31, 12, 61℄. AFEM with

non-homogeneous Diri
hlet and mixed Diri
hlet-Neumann boundary 
onditions are analyzed

in [48℄ for 2D and in [4℄ for 3D. The latter work adapts the separate Dör�er marking from [78℄

to de
ide whether the re�nement relies on the error estimator for the dis
retization error or

the approximation error of the given 
ontinuous Diri
hlet data, see Se
tion 5.4. The results

of those works are reprodu
ed and partially even improved in the frame of the abstra
t ax-

ioms of Se
tion 2.3.1. Finally, the proofs of [4, 46℄ simpli�ed the 
ore analysis of [78, 35℄

in the sense that the optimality analysis avoids the use of the total error and solely works

with the error estimator. The work [24℄ on whi
h this work is based, derives a �rst set of

axioms to unify the theory of the mentioned works. In this work, we take one step further

and also drop the notion of exa
t solution and approximate solution, to solely fo
us on the

error estimator. Moreover, we relax some standard assumptions on the re�nement strategy

to in
lude a more general 
lass of triangulations into the optimality analysis.
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CHAPTER 3

Appli
ations I

3.1. Introdu
tion, state of the art & outline

This 
hapter applies the abstra
t ma
hinery of the previous 
hapter to 
on
rete model

problems. This means that for ea
h problem, the axioms of Se
tion 2.3.1 are 
he
ked and

the abstra
t results are interpreted. We reprodu
e well-known optimality results (e.g., for

the Poisson problem of Se
tion 3.5.1 whi
h was �rstly proved in [78℄ and then generalized

by [35℄), improve re
ent results for general ellipti
 se
ond-order operators from Se
tion 3.6

(whi
h was �rstly proved in [46℄ but is generalized in this work for operators whi
h satisfy

a Gårding inequality), and even derive 
ompletely new results as for example the optimality

result for reg-green-blue re�nement from Se
tion 3.5.2. Some of the examples are already

found in similar manner in [24℄. The remainder of this 
hapter is organized as follows:

Se
tion 3.2 introdu
es usual properties of 
on
rete re�nement strategies and gives some ex-

amples. Se
tion 3.3 proves the uniform approximability (T3) for a 
ertain 
lass of problems.

Se
tion 3.4 introdu
es the notion of weighted error estimators, for whi
h some of the ax-

ioms follow from simpler assumptions. Se
tion 3.5 validates the axioms for examples from

�nite element and boundary element methods. Se
tion 3.6 extends the problem 
lass to

general se
ond-order ellipti
 equations and Se
tion 3.7 introdu
es nonlinear model problems

for whi
h optimal 
onvergen
e rates 
an be proven.

3.2. Real world triangulations and re�nement strategies

The following Se
tions 3.2.1�3.2.7 des
ribe properties whi
h re�nement strategies from

Se
tion 2.2.1 
an additionally satisfy. Below, we provide several examples of possible re�ne-

ment strategies T(·, ·).

3.2.1. General assumptions. We 
onsider a pie
ewise smooth d-dimensional Lips
hitz

manifold Ω ⊆ RD
for some d ≤ D with surfa
e measure | · | su
h that there exists a 
onstant

Cω > 0 with

|Bδ(x)| ≤ CΩδ
d

for all x ∈ Ω and Bδ(x) :=
{
z ∈ Ω : |x− z| ≤ δ

}
. (3.2.1)

We assume that all triangulations T ∈ T 
onsist of 
ompa
t elements T ∈ T ⊆ T∞ (where T∞

is the set of all possible elements de�ned in Se
tion 2.2.1) with

⋃
T∈T T = Ω and |T ∩T ′| = 0

for all T, T ′ ∈ T with T 6= T ′
.

3.2.2. K-mesh property. The K-mesh property relates the size of neighboring ele-

ments in the sense

K(T ) := max
{
|T |/|T ′| : T, T ′ ∈ T , T ∩ T ′ 6= ∅

}
. (3.2.2)

We say that a re�nement strategy preserves the K-mesh property, if there exists a 
onstant

CK > 0 su
h that

K(T ) ≤ CKK(T0) for all T ∈ T. (3.2.3)

47



3.2.3. Shape regularity. In the following appli
ations, the shape regularity of trian-

gulations plays an important role. De�ne for d ≥ 2

γ(T ) := max
{
diam(T )/|T |1/d : T ∈ T

}
. (3.2.4)

We say that a re�nement strategy preserves shape regularity, if there exists a 
onstant

Cshp > 0 su
h that

γ(T ) ≤ Cshpγ(T0) for all T ∈ T. (3.2.5)

Lemma 3.2.1. Let T be shape regular and satisfy the K-mesh property. Then, all z ∈ Ω
and all T ∈ T satisfy

|
{
T ′ ∈ T : z ∈ T ′

}
| ≤ K(T )γ(T )dCΩ,

|
{
T ′ ∈ T : T ∩ T ′ 6= ∅

}
| ≤ K(T )2γ(T )dCΩ.

Proof. Let δ := diam(T0), z ∈ T0 denote the maximal diameter of all T ∈ T with

z ∈ T . Then,
⋃{

T ∈ T : z ∈ T
}
⊆ Bδ(z) :=

{
x ∈ Rd : |z− x| ≤ δ

}
. Shape regularity and

the K-mesh property imply |T | ≥ K(T )−1|T0| ≥ K(T )−1γ(T )−dδd. Altogether, this shows

|
{
T ∈ T : z ∈ T

}
| ≤ |Bδ(z)|δ−dK(T )γ(T )d ≤ K(T )γ(T )dCΩ.

Analogously, we obtain for T ′∩T 6= ∅ and T0∩T 6= ∅, that |T ′| ≥ K(T )−1|T | ≥ K(T )−2|T0| ≥
K(T )−2γ(T )−dδd. This and the above 
on
lude the proof. �

3.2.4. Existen
e of a referen
e element. Most of the pra
ti
ally used shape regular

triangulations allow for a referen
e element Tref ⊆ Rd
su
h that there exist bije
tive fun
tions

FT : Tref → T for all T ∈ T∞. The fun
tions are smooth and uniformly bounded, i.e., all

p ∈ N satisfy

sup
T∈T∞

(|T |−p/d‖DpFT‖L∞(Tref ) + |T |p/d‖DpF−1
T ‖L∞(T )) <∞, (3.2.6)

where Dp(·) denotes the p-th order derivative whi
h is de�ned on Rd
and on Ω (as a surfa
e

derivative) su
h that there holds (DF−1
T ) ◦ FT = (DFT )

−1
with pointwise regular matri
es

in Rd×d
. This parti
ularly implies bi-Lips
hitz 
ontinuity

C−1
5 |x− y| ≤ |T |−1/d|FT (x)− FT (y)| ≤ C5|x− y| for all x, y ∈ Tref (3.2.7)

for some 
onstant C5 > 0. Moreover, we suppose that all T, T ′ ∈ T with z ∈ T ∩ T ′ 6= ∅
satisfy

FT ◦ F−1
T ′ (z) = z. (3.2.8)

This allows to de�ne the usual spa
es of pie
ewise polynomials

Pp(T ) :=
{
V ∈ L2(Ω) : V ◦ FT is polynomial of degree ≤ p for all T ∈ T

}
(3.2.9)

and

Sp(T ) := Pp(T ) ∩ C(Ω). (3.2.10)

48



3.2.5. Father-son relation. Often, a re�nement strategy allows for a unique father son

relation, i.e., for all T̂ ∈ T(T ) and all T ∈ T \ T̂ , there exist son elements T ′
0, . . . , T

′
n ∈ T̂ \T

for some 2 ≤ n ≤ nson ∈ N su
h that

T =

n⋃

i=1

T ′
i . (3.2.11)

We 
all T the father of T ′
0, . . . , T

′
n. Note that (3.2.11) parti
ularly implies (T1). Ea
h of the

sons satis�es

q′con|T | ≤ |T ′| ≤ qcon|T |, (3.2.12)

for some 
onstants 0 < q′con ≤ qcon < 1.

3.2.6. Closure estimate. The axiom (T2) states that the output of Algorithm 2.2.1

satis�es the 
losure estimate. However, a generally de�ned re�nement strategy often satis�es

the 
losure estimate for any re�nement T̂ ∈ T(T ) and T ∈ T, i.e.,

|T̂ \ T | ≤ Cclosure

ℓ−1∑

j=0

|Mj|, (3.2.13)

where T = T̂0, . . . , T̂ℓ = T̂ for some T̂j ∈ T and M̂j ⊆ Tj with T̂j+1 = T(T̂j ,M̂j) for all
j = 0, . . . , ℓ− 1. By Lemma 2.7.8, this is also equivalent to (2.7.9) if Se
tion 3.2.5 applies.

3.2.7. Simpli
ial triangulations. Under the assumptions of Se
tion 3.2.1�3.2.5, we as-

sume that Tref is a simplex of dimension d with set of nodes K(Tref). By K(T ) := FT (K(Tref)),
we denote the nodes of the elements T ∈ T∞ and K(T ) :=

⋃
T∈T K(T ) denotes the nodes of

the triangulation. We prohibit hanging nodes, i.e., all T, T ′ ∈ T satisfy K(T ) ∩ T ′ ⊆ K(T ′).
The element mappings FT : Tref → T are a�ne fun
tions.

The following result is well-known in the literature

Lemma 3.2.2. Let T ∈ T and z ∈ K(T ) su
h that z /∈ T . Then, there holds

diam(T ) ≤ C6min
z′∈T

|z − z′|, (3.2.14)

where the 
onstant C6 > 0 depends only on γ(T ), d, and K(T ).

3.2.8. Example 1: Bise
tion. For d ≥ 1, the elements in T∞ are 
ompa
t simpli
es

T ⊆ Rd
, i.e., a�ne line segments for d = 1, triangles for d = 2, and tetrahedra for d = 3.

All triangulations T ∈ T are regular in the sense that all verti
es z ∈ K(T ) are verti
es of
all elements T ∈ T with z ∈ T (no hanging nodes).

For d = 1, bise
tion splits the elements T ∈ M ⊆ T marked for re�nement at a generi


point xT ∈ T (e.g., the bary
enter) to generate two new elements T1 and T2 whi
h both share

the endpoint xT . Additional bise
tions have to be imposed to ensure that the bise
tion

preserves the K-mesh property (3.2.3). We refer to [3℄ for some extended 1D bise
tion

algorithm.

For d ≥ 2, the bise
tion is des
ribed in [78℄ (
alled newest vertex bise
tion for d = 2)
and [79℄ (for d ≥ 3). Ea
h element T ∈ T has a distinguished edge (the referen
e edge). If

the element is re�ned, �rst the referen
e edge is split. See Figure 1 for an illustration of the

re�nement rules for d = 2.
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Figure 1. Re�nement rules for 2D bise
tion (newest vertex bise
tion). The

referen
e edge is indi
ated in blue. The leftmost triangle depi
ts the bise
3

re�nement of a marked element. The other three re�nement rules (bise
2 and

bise
1 ) are re
ursively applied to avoid hanging nodes. The dashed line outside

of the triangles indi
ates where the neighboring triangle is re�ned.

Lemma 3.2.3. The bise
tion strategies for d ≥ 1 are re�nement strategies in the sense of

Se
tion 3.2.1�3.2.7 and satisfy (T1)�(T2) as well as the overlay estimate (2.5.1) and the son

estimate (2.7.7). For d ≥ 3, an appropriate labeling of the edges of the initial triangulation

T0 is ne
essary to guarantee (T2) (see [14, 79℄ for details).

Proof. The d = 1 
ase is proved in [3℄. The estimate (2.7.7) holds sin
e ea
h of the

re�nement strategies generates at least two son elements for ea
h re�ned element. The proof

of (2.7.10) with C̃4 = 1 is found in [78, Proof of Lemma 5.2℄ for d = 2 and [35, Lemma 3.7℄

for d ≥ 2. By Lemma 2.7.8, this is equivalent to (2.5.1) with C4 = 2. However, sin
e [35,

Lemma 3.7℄ shows that the 
oarsest 
ommon re�nement T ⊕ T̂ ∈ T(T ) ∩ T(T̂ ) is given by

T ⊕ T̂ :=
{
T ∈ T : ∃T̂ ∈ T̂ , T ⊆ T̂

}
∪
{
T̂ ∈ T̂ : ∃T ∈ T , T̂ ⊆ T

}
, (3.2.15)


ounting the elements reveals

|(T ⊕ T̂ ) \ T | = |
{
T̂ ∈ T̂ : ∃T ∈ T , T̂ ( T

}
| ≤ |T̂ \ T | ≤ |T̂ \ T0|.

This, however, is (2.5.1) with C4 = 1.
For the proof of (2.7.9) and hen
e (T2) and (3.2.13) (by Lemma 2.7.8), we refer to [14℄

for d = 2 and [79℄ for d ≥ 2. The works [14, 79℄ assume an appropriate labeling of the

edges of the initial triangulation T0 to prove (T2). This poses a 
ombinatorial problem on

the initial triangulation T0 but does not 
on
ern any of the following triangulations Tℓ, ℓ ≥ 1.
For d = 2, it 
an be proven that ea
h 
onforming triangular triangulation T allows for su
h

a labeling, while no e�
ient algorithm is known to 
ompute this in linear 
omplexity. For

d ≥ 3, su
h a result is missing. However, it is known that an appropriate uniform re�nement

of an arbitrary 
onforming simpli
ial triangulation T for d ≥ 2 allows for su
h a labeling [79℄.
Moreover, for d = 2, it has re
ently been proved in [59℄ that (T2) even holds without any

further assumption on the initial triangulation T0. The axiom (T1) is proved by use of [52,

Corollary 3.5℄, whi
h shows the level di�eren
e between some T ∈ T(T ,M) for someM ⊆ T
and its father element T ′ ∈ T with T ⊆ T ′

is uniformly bounded. Sin
e the level measures

the number of bise
tions used to generate the element from T0, this implies that ea
h father

element T ′ ∈ T has uniformly bounded number of sons in T(T ,M). This 
on
ludes the

proof. �
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Figure 2. Re�nement rules for 2D red-green-blue re�nement. The leftmost

triangle is red-re�ned, i.e., all of its edges are bise
ted, the right most triangle

is blue-re�ned, i.e., only its referen
e edge is re�ned, and the other triangles

are green-re�ned. The referen
e edges of the son triangles are indi
ated with

a solid red line. Red re�nement is used for marked elements, green and blue

re�nement are used to avoid hanging nodes. There are two methods to deter-

mine the referen
e edge. The simplest one is to take the longest edge of the

triangle. The se
ond one (also known as modi�ed red-green-blue re�nement)

is to 
hoose a labeling of the initial triangulation T0 as for bise
tion from Se
-

tion 3.2.8. The referen
e edge of ea
h son triangle is then 
hosen su
h that it

is 
ongruent with its father triangle. Under 
ertain 
onditions on the interior

angles of the triangles, [70, Satz 4.17℄ (in German) shows that both methods


oin
ide as is the 
ase in the example above.

3.2.9. Example 2: Red-green-blue re�nement. For d ≥ 2, the elements are 
om-

pa
t simpli
es T ⊆ Rd
.

The red-green-blue re�nement (dis
ussed e.g., in [82℄) re�nes a given triangulation for d =
2 a

ording to Figure 2. For d = 3, the situation is more 
ompli
ated as a tetrahedron is split

into four similar tetrahedra at the parents verti
es plus an o
tahedron in the 
enter whi
h

has to be split furthermore. This is laid out in detail in [9℄. In 
ontrast to bise
tion from

Se
tion 3.2.8, red-green-blue re�nement fails to satisfy (2.5.1) as seen from a 
ounterexample

in [70, Satz 4.15℄ (in German). For illustration purposes, we provide a slightly simpli�ed

example in Figure 3

Lemma 3.2.4. The red-green-blue re�nement strategies for d = 2, 3 are re�nement

strategies in the sense of Se
tion 3.2.1�3.2.7 and satisfy (T1)�(T2) as well as the son esti-

mate (2.7.7) at least for d = 2 (if referen
e edges are inherited as for 2D bise
tion and the

initial triangulation satis�es an appropriate labeling of the edges; see [14, 79℄ for details).

Proof. For the proof of (2.7.9) and hen
e (T2) and (3.2.13) (by Lemma 2.7.8), we refer

to [53, Appendix A℄ or [70, Satz 4.14℄ for d = 2 under the assumption of an appropriate

labeling of the edges of the initial triangulation T0 as is Se
tion 3.2.8. The axiom (T1) is

obvious for d = 2, sin
e all possibilities are depi
ted in Figure 2. The estimate (2.7.7) follows

sin
e ea
h re�nement produ
es at least two sons. This 
on
ludes the proof. �

3.2.10. Example 3: Quad re�nement with one hanging node. If one admits

hanging nodes, also quad-re�nement is an option. The elements T ∈ T∞ are quadrilaterals

for d = 2 an hexahedra for d = 3. The re�nement of an element is realized by dividing the

element into 2d 
ongruent sons. This strategy is des
ribed in [16℄.

Lemma 3.2.5. The quad re�nement strategies for d = 2, 3 are re�nement strategies in

the sense of Se
tion 3.2.1�3.2.6 and satisfy (T1)�(T2) as well as the overlay estimate (2.5.1)

and the son estimate (2.7.7).
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PSfrag repla
ements

T T ′

T ⊕ T ′

Figure 3. Counter-example to (2.5.1) for red-green-blue re�nement. With

j = 4, there holds |T ⊕T ′ \T | = 4j and |T ′| = 2. Obviously, the 
onstru
tion

an be extended to any j = 2n, n ∈ N by red-re�nement of the marked triangles

in T and thus 
ontradi
ts (2.5.1) for any 
onstant.

Proof. The 
losure estimate (2.7.9) and hen
e (T2) and (3.2.13) (by Lemma 2.7.8) is

proved [16, Se
tion 6.3℄. The overlay estimate (2.5.1) follows from the fa
t that it is a binary

re�nement strategy, i.e., there holds (3.2.15). The estimate (2.7.7) follows from the fa
t that

ea
h re�nement produ
es four sons. Finally, (T1) follows by 
onsideration of all possible

element interse
tions. �

3.2.11. Example 4: Fa
et based re�nement strategies. The re�nement strategies

from Se
tion 3.2.8 and Se
tion 3.2.9 
an be formulated in a fa
et based way. In this 
ase,

T∞ is the set of fa
ets whi
h 
an be generated and T ⊆ T is a triangulation represented

by the element fa
ets. For re�nement, we mark fa
ets M ⊆ T and generate the re�nement

T(T ,M) a

ording to the rules depi
ted in Figure 1�2 for d = 2. For d ≥ 3, we refer

to [79℄ for bise
tion and [9℄ for red-green-blue re�nement. The results of Lemma 3.2.3 and

Lemma 3.2.4 hold also for fa
et based re�nement.

3.3. Uniform approximability

Apart from Lemma 2.7.4, the uniform approximability axiom (T3) is relatively una
-


essible without looking at 
on
rete problems. To that end we aim to provide a 
har-

a
terization of (T3) for a 
ertain 
lass of problems in terms of Proposition 2.4.1, where

err(·) := minV ∈Sp(·) ‖u− V ‖H1(Ω) measures the best approximation error of some given fun
-

tion u ∈ H1(Ω). The key problem is that the results on the 
hara
terization of approximabil-

ity, e.g., [55, 56℄, usually show ‖err,T(T0)‖s <∞ under 
ertain assumptions on the fun
tion

u. However, the proofs in [55, 56℄ do not give expli
it dependen
e of the 
onstants with

respe
t to T0 and work only for bise
tion from Se
tion 3.2.8. In the following, we generalize

the result from [55℄ to general re�nement strategies and with expli
it 
onstants. It might

also be possible to generalize [56℄ with similar te
hniques as shown in this se
tion, however,

this is beyond the s
ope of this work.

Theorem 3.3.1. Assume T and a 
orresponding re�nement strategy T(·, ·) in the sense

of Se
tion 3.2.1�3.2.7. Let Ω ⊆ Rd
for d = 2, 3 denote a polyhedral domain (not ne
essarily

Lips
hitz) and let T0 be an initial triangulation of Ω. Given p ∈ N, suppose u, u0 ∈ H1(Ω)
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su
h that u0|T ∈ Hp+1(T ) for all T ∈ T0 and

u = u0 +
N∑

i=1

ui with ui(ri, θi) := ci log(ri)
µirγii gi(θi)χi for all i = 1, . . . , N. (3.3.1)

Here, N ∈ N0, ci ∈ R, µi ≥ 0, 0 < γi < 1, and

(i) χi ∈ C∞(Ω) is an arbitrary fun
tion,

(ii) (ri, θi) ∈ [0,∞) × [0, 2π) × [0, π]d−2
denote the polar (spheri
al) 
oordinates with

respe
t to some origin xi ∈ Ω with xi ∈ K(T0),
(iii) gi ∈ W 1,∞(Ω) are 
onstant with respe
t to ri, i.e., gi(ri, θi) := gi(θi), and satisfy

gi|T ∈ W p+1,∞(T ) for all T ∈ T0.

Then, given p ∈ N, there exists C7 > 0 su
h that for all T ∈ T and all ε > 0, there exists

T̂ ∈ T(T ) with

err(T̂ ) := min
V ∈Sp(T̂ )

‖u− V ‖H1(Ω) ≤ ε and |T̂ \ T | ≤ C7ε
−d/p.

The 
onstant C7 depends only on u, p, and T0, but not on T ∈ T.
We postpone the proof of Theorem 3.3.1 to the end of the se
tion and 
olle
t several

intermediate results.

3.3.0.1. S
ott-Zhang proje
tion. The S
ott-Zhang proje
tion was introdu
ed in [76℄. We

give a slightly modi�ed de�nition.

Definition 3.3.2 (S
ott-Zhang proje
tion). Assume a triangulation T in the sense of

Se
tion 3.2.1�3.2.7 and let p ∈ N. For ea
h z ∈ K(T ) 
hoose Tz ∈ T with z ∈ Tz. Consider
the nodal basis

{
φz ∈ S1(T ) : z ∈ K(T )

}
with φz(z

′) = 0 for all z′ 6= z and φz(z) = 1.
Let p ≥ 1 and 
onsider the extended basis {b1, . . . , bn} ∈ Pp(Tref) for some n ∈ N with

‖bi‖L∞(Tref ) ≤ 1 su
h that

span
{{
φz : z ∈ K(T )

}
∪
{
bT,i := bi ◦ F−1

T : i = 1, . . . , n, T ∈ T
}}

= Sp(T ).

For ea
h T ∈ T let {φ⋆
T,z, b

⋆
T,1, . . . , b

⋆
T,n} ⊆ Pp(T ) denote the dual basis fun
tions with respe
t

to {φz|T , bT,1, . . . , bT,n}. De�ne for v ∈ L2(Ω)

J(T )v :=
∑

z∈K(T )

φz

∫

Tz

φ⋆
Tz ,zv dx+

∑

T∈T

n∑

i=1

bT,i

∫

T

b⋆T,iv dx.

Moreover, de�ne the pat
h ω(T, T ) :=
{
T ′ ∈ T : T ∩ T ′ 6= ∅

}
.

The stability estimates (3.3.2a)�(3.3.2b) are known sin
e the seminal work [76℄. However,

the optimality estimate (3.3.2
) was �rst derived in [4℄ for triangulations whi
h are generated

by bise
tion from Se
tion 3.2.8. Later, this result was generalized in [81℄ to shape regular

triangulations. Below, we provide a simpli�ed proof with the te
hniques of the original proof

in [4℄.

Lemma 3.3.3 (S
ott-Zhang proje
tion). Assume a triangulation T in the sense of

Se
tion 3.2.1�3.2.7 and let p ∈ N. The S
ott-Zhang proje
tion from De�nition 3.3.2 satis�es

for all T ∈ T and all v ∈ H1(Ω)

‖J(T )v‖L2(T ) ≤ Csz‖v‖L2(∪ω(T,T )), (3.3.2a)

‖∇J(T )v‖L2(T ) ≤ Csz‖∇v‖L2(∪ω(T,T )), (3.3.2b)

‖∇(1− J(T ))v‖L2(T ) ≤ Csz min
V ∈Pp−1

∇ (T )
‖∇v − V ‖L2(∪ω(T,T )), (3.3.2
)

53



where

Pp−1
∇ (T ) :=

{
V ∈ L2(Ω)d : V |T = W DF−1

T , W ∈ Pp−1(T )d, T ∈ T
}
. (3.3.2d)

The 
onstant Csz > 0 depends only on the 
onstants in Se
tion 3.2.1�3.2.7, T, and p ∈ N.
Before we prove Lemma 3.3.3, we state the following auxiliary lemma from [41℄.

Lemma 3.3.4 (Generalized Poin
aré-Friedri
hs inequality). Assume a triangulation T
in the sense of Se
tion 3.2.1�3.2.7. Let v ∈ H1(Ω), T, T ′ ∈ T with T ∩ T ′ 6= ∅. Then, there
holds with vT := |T |−1

∫
T
v dx

‖v − vT‖L2(T ) + |T |1/2|vT − vT ′ | ≤ C8|T |1/d‖∇v‖L2(∪ω(T,T )),

where C8 > 0 depends only the 
onstants in Se
tion 3.2.1�3.2.7. �

Proof of (3.3.2a)�(3.3.2b). By de�nition of the dual basis, J(T ) is a proje
tion. To

see (3.3.2b), 
onsider T ∈ T and b⋆ ∈ {φ⋆
T,z, b

⋆
T,1, . . . , b

⋆
T,n}. A s
aling argument proves

‖b⋆‖L∞(T ) . |T |−1,

where the hidden 
onstant depends only on γ(T ), p, and the referen
e element Tref from
Se
tion 3.2.4. With this, there holds

∣∣
∫

T

b⋆v dx
∣∣ ≤ ‖b⋆‖L∞(T )‖v‖L1(T ) . |T |−1/2‖v‖L2(T ).

An inverse estimate shows for any basis fun
tion b ∈
{
φz : z ∈ K(T )

}
∪
{
bT,i : i =

1, . . . , n, T ∈ T
}
with |supp(b) ∩ T | > 0

‖∇b‖L2(T ) . |T |1/2−1/d,

where the hidden 
onstant depends only on the 
onstants in Se
tion 3.2.1�3.2.7 and p.
Altogether, this implies

‖∇J(T )v‖L2(T ) ≤
∑

z∈K(T )

‖∇φz‖L2(Tz)

∣∣
∫

Tz

φ⋆
Tz ,zv dx

∣∣ +
n∑

i=1

‖∇bT,i‖L2(T )

∣∣
∫

T

b⋆T,iv dx
∣∣

. |T |−1/d‖v‖L2(∪ω(T,T )),

where the hidden 
onstant depends only on the 
onstants in Se
tion 3.2.1�3.2.7, T , and
p. De�ne vT := |T |−1

∫
T
v dx. Then, there holds with the last estimate and the proje
tion

property J(T )vT = vT

‖∇J(T )v‖L2(T ) = ‖∇J(T )(v − vT )‖L2(T ) . |T |−1/d‖v − vT‖L2(∪ω(T,T )).

Lemma 3.3.4 implies

‖v − vT‖2L2(∪ω(T,T )) ≤ 2
∑

T ′∈ω(T,T )

‖v − vT ′‖2L2(T ′) + |T ′||vT − vT ′|2

≤ 2C2
8K(T )2/d|T |2/d‖∇v‖2L2(∪ω(T,T )).

Altogether, this proves (3.3.2b). The same argument shows also (3.3.2a). �

Lemma 3.3.5. Assume a set of triangulations T in the sense of Se
tion 3.2.1�3.2.4 Let

v ∈ H1(Ω) with ∇v ∈ Pp−1
∇ (T ). Then, v ∈ Sp(T ) and ∇Sp(T ) ⊆ Pp−1

∇ (T ).
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Proof. Let v ∈ Sp(T ), then v ◦ FT ∈ Pp(Tref) and hen
e ∇v = ∇(v ◦ FT ) ◦ F−1
T DF−1

T .

Sin
e ∇(v ◦ FT ) ∈ Pp−1(Tref)
d
, this shows ∇Sp(T ) ⊆ Pp−1

∇ (T ).

By de�nition of Pp−1
∇ (T ), there holds for T ∈ T , ∇v|T = W |TDF−1

T for some W ∈
Pp−1(T )d. This shows

∇(v ◦ FT )(DFT )
−1 = (∇v) ◦ FT =W ◦ FT (DF−1

T ) ◦ FT .

By assumption in Se
tion 3.2.4, there holds (DFT )
−1 = (DF−1

T )◦FT with point wise regular

matri
es. Hen
e, we end up with ∇(v ◦ FT ) = W ◦ FT ∈ Pp−1(Tref)
d
, whi
h implies v ◦ FT ∈

Pp(Tref). Sin
e v ∈ H1(Ω), this 
on
ludes the proof. �

Lemma 3.3.6. Assume a set of triangulations T in the sense of Se
tion 3.2.1�3.2.4

su
h that there exists a set Eref := {∅, E1, . . . , EMref
} of boundary parts Ei ⊆ ∂Tref su
h that

for all T, T ′ ∈ T holds F−1
T (T ∩ T ′) ∈ Eref. Then, for all T ∈ T and all T ∈ T, there exists

a bi-Lips
hitz 
ontinuous map GT :
⋃
ωref(T ) →

⋃
ω(T, T ) with

C−1
9 |x− y| ≤ |T |−1/d|GT (x)−GT (y)| ≤ C9|x− y| for all x, y ∈ ωref(T ),

where ωref(T ) ∈ ω(T) for a �nite subset ω(T) ⊆
{
ω(T, T ) : T ∈ T, T ∈ T

}
. For T ′ ∈

ωref(T ), there holds GT |T ′ = FT ′′ ◦ F−1
T ′ for T ′′ := GT (T

′) ∈ ω(T, T ). This parti
ularly

implies that GT maps polynomials onto polynomials, i.e., V ◦ GT ∈ Pp(ωref(T )) for all

V ∈ Pp(ω(T, T )) and V ◦G−1
T ∈ Pp(ω(T, T )) for all V ∈ Pp(ωref(T )). The 
onstant C9 > 0

depends only on T, Eref , and the 
onstants in Se
tion 3.2.1�3.2.4.

Remark 3.3.7. This result is only applied in the 
ase of triangulations in the sense

of Se
tion 3.2.7 for whi
h the proof would simplify vastly. However, we in
lude the general

result as we think it might be of independent interest, as it holds for a huge 
lass of possible

triangulations in
luding non-regular ones.

Proof. The �rst step is to sort the pat
hes into 
ertain equivalen
e 
lasses. With

Lemma 3.2.1, there holds |ω(T, T )| ≤ n1 := K(T )2γ(T )dCΩ for all T ∈ T . De�ne G :=
E2
ref × {1, . . . , n1}2. Ea
h pat
h ω(T, T ) has a signature

GT :=
{
(E1, E2, T1, T2) ∈ E2

ref × T 2 : T1, T2 ∈ ω(T, T ), F−1
Ti

(T1 ∩ T2) = Ei, i = 1, 2
}
.

For G ′ ⊆ G and T ∈ T , we write G ′ ∼ GT if and only if there exist an inje
tive map

MT : ω(T, T ) → {1, . . . , n1} with

(E1, E2, T1, T2) ∈ GT ⇐⇒ (E1, E2,MT (T1),MT (T2)) ∈ G ′. (3.3.3)

De�ne Gref :=
{
G ′ ⊆ G : ∃T ∈ T, ∃T ∈ T , GT ∼ G ′

}
. The set Gref ⊆ 2G is �nite by

de�nition. For ea
h G ′ ∈ Gref , 
hoose one T
′ ∈ T ′ ∈ T with GT ′ ∼ G ′

and maximal element

measure |T | to de�ne the �nite set

ω(T) :=
{
ω(T ′, T ′) : G ′ ∈ Gref

}
.

De�ne the fun
tion GT as follows: Given T ∈ T for some T ∈ T, 
hoose some G ′ ∈ Gref with

GT ∼ G ′
as well as ω(T ′, T ′) ∈ ω(T) su
h that GT ′ ∼ G ′

. For all T1 ∈ ω(T, T ) determine

T2 :=M−1
T ′ ◦MT (T1) and let

GT |T2 := FT1 ◦ F−1
T2
.

This de�nes a fun
tion GT :
⋃
ω(T ′, T ′) → ⋃

ω(T, T ). To show that GT is 
ontinuous,


onsider T3 ∈ ω(T, T ) with T4 := M−1
T ′ ◦ MT (T3). Sin
e (E,E ′, T2, T4) ∈ GT ′

for some

E,E ′ ∈ Eref , and sin
e GT ′ ∼ G ′ ∼ GT , there holds (E,E
′, T1, T3) ∈ GT . This implies

F−1
T2

(T2 ∩ T4) = F−1
T1

(T1 ∩ T3) and T2 ∩ T4 6= ∅. (3.3.4)
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Let z ∈ T2 ∩ T4. Then, (3.3.4) implies FT1 ◦ F−1
T2

(z) ∈ T1 ∩ T3. By the 
ontinuity assump-

tion (3.2.8), this shows

FT3 ◦ F−1
T2

(z) = (FT3 ◦ F−1
T1

) ◦ FT1 ◦ F−1
T2

(z)
(3.2.8)

= FT1 ◦ F−1
T2

(z) ∈ T1 ∩ T3. (3.3.5)

Another appli
ation of the 
ontinuity (3.2.8) (with z ∈ T2 ∩ T4) then 
on
ludes

GT |T4(z) = FT3 ◦ F−1
T4

(z) = FT3 ◦ F−1
T4

◦ FT4 ◦ F−1
T2

(z) = FT3 ◦ F−1
T2

(z)

(3.3.5)

= FT1 ◦ F−1
T2

(z) = GT |T2(z).

This proves 
ontinuity of GT . The element wise bi-Lips
hitz 
ontinuity of the FT (3.2.7)

together with the K-mesh property (3.2.3) and the fa
t that Ω is Lips
hitz 
on
lude the bi-

Lips
hitz 
ontinuity of GT . The fa
t that GT is de�ned element wise with the element map-

pings FT implies V ◦GT ∈ Pp(ωref(T )) for all V ∈ Pp(ω(T, T )) and V ◦G−1
T ∈ Pp(ω(T, T ))

for all V ∈ Pp(ωref(T )). This 
on
ludes the proof. �

Proof of (3.3.2
). Lemma 3.3.6 with Eref := {∅} ∪ {fa
ets, edges, nodes of Tref} is ap-

pli
able due to the assumptions in Se
tion 3.2.7 and allows to prove the statement on the

�nitely many referen
e pat
hes ωref ∈ ω(T) and to obtain the general result (3.3.2
) by trans-
formation. Assume that (3.3.2
) holds for G−1

T (T ) and ωref ∈ ω(T). Then, w = v ◦ GT ∈
H1(

⋃
ωref) implies

|T |1/d−1/2‖∇(1− J(T ))v‖L2(T ) . ‖∇(1− J(ωref))w‖L2(G−1
T (T ))

≤ Csz min
W∈Pp−1

∇ (ωref )
‖∇w −W‖L2(∪ωref ) (3.3.6)

. |T |−1/2Csz min
W∈Pp−1

∇ (ωref )
‖(∇w) ◦G−1

T −W ◦G−1
T ‖L2(∪ω(T,T )),

where J(ωref)w|G−1
T (T ) := (J(T )v) ◦ GT . By de�nition of GT and sin
e the FT are a�ne,

J(ωref) is a S
ott-Zhang proje
tion on ωref in the sense of De�nition 3.3.2. By de�nition of

w, there holds

min
W∈Pp−1

∇ (ωref )
‖(∇w) ◦G−1

T −W ◦G−1
T ‖L2(∪ω(T,T ))

≤ ‖DGT‖L∞(∪ωref) min
W∈Pp−1

∇ (ωref)
‖∇v −W ◦G−1

T (DGT )
−1 ◦G−1

T ‖L2(∪ω(T,T )).

(3.3.7)

By de�nition of Pp−1
∇ (·) and GT , there holds W |T ′ = V DF−1

T ′ for some V ∈ Pp−1(ωref)
d
.

By Lemma 3.3.6, there holds DGT |T ′ = DFT ′′ ◦ F−1
T ′ DF

−1
T ′ for T ′′ = GT (T

′) ∈ ω(T, T ) and
hen
e

(DGT )
−1 ◦G−1

T |T ′′ = (DF−1
T ′ )

−1 ◦G−1
T |T ′′ (DFT ′′)−1 ◦ F−1

T ′ ◦G−1
T |T ′′

= (DF−1
T ′ )

−1 ◦G−1
T |T ′′(DFT ′′)−1 ◦ F−1

T ′′

= (DF−1
T ′ )

−1 ◦G−1
T |T ′′(DF−1

T ′′ )|T ′′.

This shows that

(W ◦G−1
T (DGT )

−1 ◦G−1
T )|T ′′ = (V ◦G−1

T DF−1
T ′′ )|T ′′,

56



and hen
e W ◦G−1
T (DGT )

−1 ◦G−1
T ∈ Pp−1

∇ (ω(T, T )). Sin
e this relation between the spa
es

Pp−1
∇ (ω(T, T )) and Pp−1

∇ (ωref) is bije
tive, we proved together with (3.3.7)

min
W∈Pp−1

∇ (ωref )
‖(∇w) ◦G−1

T −W ◦G−1
T ‖L2(∪ω(T,T ))

. |T |1/d min
W∈Pp−1

∇ (ω(T,T ))
‖∇v −W‖L2(∪ω(T,T )).

With (3.3.6), this shows (3.3.2
). It remains to show

‖∇(1− J(ωref))w‖L2(G−1
T (T )) ≤ Csz min

W∈Pp−1
∇ (ωref )

‖∇w −W‖L2(∪ωref ), (3.3.8)

for some 
onstant Csz > 0. We pro
eed by 
ontradi
tion. Assume (3.3.8) is false for any


onstant Csz > 0. Then, there exists a sequen
e wn ∈ H1(
⋃
ωref) with

‖∇(1− J(ωref))wn‖L2(G−1
T (T )) > n min

W∈Pp−1
∇ (ωref )

‖∇wn −W‖L2(∪ωref )

for all n ∈ N. Without loss of generality, we may assume ‖wn‖H1(∪ωref ) = 1 for all n ∈ N.
Let Q : H1(

⋃
ωref) → Sp(ωref) denote the H1

-orthogonal proje
tion. The sequen
e vn :=
(1−Q)wn satis�es

‖∇(1− J(ωref))vn‖L2(G−1
T (T )) > n min

W∈Pp−1
∇ (ωref )

‖∇vn −W‖L2(∪ωref )

for all ℓ ∈ N sin
e J(ωref) is a proje
tion and hen
e (1− J(ωref)Qwn = 0 on G−1
T (T ) as well

as ∇Qwn ∈ Pp−1
∇ (ωref). The above together with the stability of J(ωref) imply

min
W∈Pp−1

∇ (ωref)
‖∇vn −W‖L2(∪ωref ) ≤ Csz‖vn‖H1(∪ωref )/n ≤ Csz/n, (3.3.9)

and hen
e there exists a sequen
e Wn ∈ Pp−1
∇ (ωref) with

lim
n→∞

‖∇vn −Wn‖L2(∪ωref ) = 0 (3.3.10)

and ‖Wn‖L2(∪ωref ) ≤ Csz/n + 1 for all n ∈ N. Sin
e Pp−1
∇ (ωref) is a �nite dimensional spa
e,

we may extra
t a 
onvergent subsequen
e Wnk
∈ Pp−1

∇ (ωref) with limk→∞Wnk
= W0 ∈

Pp−1
∇ (ωref). By (3.3.10), there holds limk→∞ ‖∇vnk

− W0‖L2(∪ωref ) = 0. The boundedness

‖vn‖H1(∪ωref ) ≤ 1 allows to extra
t another subsequen
e (also denoted with nk) su
h that

vnk
⇀ v0 ∈ H1(∪ωref) weakly and (by Relli
h 
ompa
tness) ‖vnk

− v0‖L2(∪ωref ) → 0. This

implies ∇vnk
→ ∇v0 ∈ L2(∪ωref) weakly, and by uniqueness of limits also ∇v0 = W0.

With (3.3.10), we obtain

lim
k→∞

‖vnk
− v0‖H1(∪ωref) = 0.

This implies ‖v0‖H1(∪ωref ) = 1, and by de�nition of the vn = (1 − Q)wn, also Qv0 = 0. On

the other hand, ∇v0 = W0 ∈ Pp−1
∇ (ωref). Therefore, Lemma 3.3.5 shows v0 ∈ Sp(ωref) and

hen
e (1 −Q)v0 = 0. Altogether, we have v0 = 0, whi
h 
ontradi
ts ‖v0‖H1(∪ωref ) = 1. This

on
ludes the proof. �
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3.3.0.2. Proof of Theorem 3.3.1. For all triangulations T ∈ T and all T ∈ T , de�ne
rT := mini=1,...,N min(ri,θi)∈T ri, where ri denotes the radius as de�ned in Theorem 3.3.1.

Lemma 3.3.8. Let S ⊆ T∞ denote a set of elements whi
h is shape regular in the sense

γ(S) <∞ (where γ(·) is de�ned in Se
tion 3.2.3), satis�es |T |1/d ≤ CrT for all T ∈ T with

rT > 0 and some C > 0, and |T ∩ T ′| = 0 for all T, T ′ ∈ S. Given α > −d, there holds for

all T ∈ T
∫

∪
{
T∈S : rT>0

} rαT ≤ C10.

The 
onstant C10 > 0 depends only on C, γ(S), α, N , d, and Ω.

Proof. With Bi(a, b) :=
{
z ∈ Ω : a ≤ |xi − z| ≤ b

}
, there holds

∫

∪
{
T∈S : rT>0

} rαT ≤
N∑

i=1

∞∑

n=− log2(diam(Ω))−1

∫

Bi(2−n,2−n+1)

rαT

.

N∑

i=1

∞∑

n=− log2(diam(Ω))−1

2−nα
∑

T∈S
T∩Bi(2

−n,2−n+1) 6=∅

|T |,

where the hidden 
onstant is 1 in 
ase of α ≤ 0 and depends only on diam(Ω) and α for

α > 0. For all T ∈ S with T ∩Bi(2
−n, 2−n+1) 6= ∅ holds |T |1/d ≤ CrT ≤ C2−n+1

. The shape

regularity (3.2.5) shows diam(T ) ≤ γ(S)C2−n+1
and hen
e T ⊆ Bi(0, (1 + γ(S)C)2−n+1).

This and (3.2.1) imply

∑

T∈S
T∩Bi(2

−n,2−n+1) 6=∅

|T | ≤ |Bi(0, (1 + γ(S)C)2−n+1)| ≃ 2−dn.

Altogether, this shows

∫

∪
{
T∈S : rT>0

} rαT .

N∑

i=1

∞∑

n=− log2(diam(Ω))−1

2−n(α+d) . N
( 1

1− 2α+d
+ 2(| log2(diam(Ω))|+1)(α+d)

)
.

This 
on
ludes the proof. �

Lemma 3.3.9. Assume T and a 
orresponding re�nement strategy T(·, ·) in the sense of

Se
tion 3.2.1�3.2.4. Let u be given as in (3.3.1) and de�ne γ := mini=1,...,N γi/2 > 0. Given
i = 1, . . . , N , all triangulations T ∈ T and all T ∈ T with xi /∈ T satisfy

min
V ∈Pp−1

∇ (T )
‖∇ui − V ‖L2(T ) ≤ C11|T |p/drγ−p−1

T ‖1‖L2(T ).

The 
onstant C11 > 0 depends only on diam(Ω), p, the 
onstants in the de�nition of ui, the

onstants in Se
tion 3.2.1�3.2.4, T, as well as on ‖gi‖W∞,p+1(T ) and ‖χi‖W∞,p+1(T ).

Proof. The �rst step is to bound the derivative Dp+1ui on T ∈ T with rT > 0. To that
end, let e1, . . . , ed ∈ Rd

denote the unit ve
tors. Moreover, given a point z0 = (ri, θi) ∈ T ,
let eri , eθi,1, . . . , eθi,d−1 ∈ Rd

denote the unit ve
tors asso
iated with (ri, θi) in the sense

that z0 = xi + rieri and that the eθi,j are orthogonal onto eri and onto ea
h other. De�ne

58



us,i(ri) := log(ri)
µirγii and the operator norm ‖ · ‖L(⊗p

n=1Rd,R) in the spa
e of linear operators

from ⊗p
n=1Rd

to R. Then, there holds

‖Dp+1ui(z0)‖L(⊗p+1
n=1Rd,R)

. max
i=1,...,N

|ci|
( p+1∑

k=0

‖Dk(giχi)(z0)‖L(⊗k
n=1Rd,R)

)( p+1∑

k=0

‖Dkus,i(z0)‖L(⊗k
n=1Rd,R)

)
,

where the hidden 
onstant depends only on p. The derivatives Dk(giχi) are uniformly

bounded on T by maxi=0,...,N(‖χi‖W p+1,∞(Ω) + ‖gi‖W p+1,∞(Ω)). Let Dv1,...,vm denote the de-

rivative matrix (tensor) with respe
t to the ve
tors v1, . . . , vm ∈ Rd
and m ≤ d. Sin
e

Deθi,1,...,eθi,d−1
us,i(z0) = 0 by de�nition, 
hange of basis shows for any matrix (tensor) norm

‖ · ‖F that

‖Dkus,i(z0)‖L(⊗p
n=1Rd,R) ≃ ‖Dk

e1,...,ed
us,i(z0)‖F

≃ ‖Dk
eri ,...,eθi,d−1

us,i(z0)‖F ≃ |∂kerius,i(z0)|,

where the hidden 
onstants depend only on d and p. A straightforward 
omputation shows

∂kerius,i = rγi−k
i

k∑

j=0

αi,j,k log(ri)
µi−j

for some 
onstants αi,j,k ∈ R whi
h depend only on γi, µi, p, k. This shows

p+1∑

k=0

‖Dkus,i(z0)‖L(⊗k
n=1Rd,R) .

p+1∑

k=0

rγi−k
i

k∑

j=0

|αi,j,k log(ri)
µi−j|

.

p+1∑

k=0

rγ−k
i

k∑

j=0

|αi,j,kr
γi−γ
i log(ri)

µi−j|.

For ea
h j = 0, . . . , p+ 1, there holds

rγi−γ
i | log(ri)|µi−j ≤ max

0≤r≤diam(Ω)
rγi−γ| log(r)|µi−j <∞,

sin
e γi − γ > 0. Moreover, there holds for all k = 0, . . . , p+ 1

rγ−k
i . rγ−p−1

i ,

where the hidden 
onstant depends only on diam(Ω). The above estimates imply

p+1∑

k=0

‖Dkus,i(z0)‖L(⊗k
n=1Rd,R) . rγ−p−1

i . (3.3.11)

Altogether, for i = 1, . . . , N , we end up with

‖Dp+1ui(z0)‖L(⊗p+1
n=1Rd,R) . rγ−p−1

i ,

where the hidden 
onstant depends only on diam(Ω), p, the 
onstants in the de�nition of ui
as well as on ‖gi‖W∞,p+1(T ) and ‖χi‖W∞,p+1(T ). A s
aling argument and the Bramble-Hilbert
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lemma show

min
V ∈Pp−1

∇ (T )
‖∇ui − V ‖L2(T ) ≃ |T |1/2 min

W∈Pp−1(Tref )d
‖(∇(ui ◦ FT )−W )DF−1

T ◦ FT ‖L2(Tref )

. |T |1/2−1/d min
W∈Pp−1(Tref )d

‖∇(ui ◦ FT )−W‖L2(Tref )

. |T |1/2−1/d‖Dp+1(ui ◦ FT )‖L2(Tref )

. |T |p/d‖Dp+1ui‖L2(T ) . |T |p/drγ−p−1
T ‖1‖L2(T ).

(3.3.12)

This 
on
ludes the proof. �

Lemma 3.3.10. Assume T and a 
orresponding re�nement strategy T(·, ·) in the sense

of Se
tion 3.2.1�3.2.4. Let u be de�ned as in (3.3.1). Given i = 1, . . . , N , all triangulations

T ∈ T and all T ∈ T with xi ∈ T satisfy

min
V ∈Pp−1

∇ (T )
‖∇ui − V ‖L2(T ) ≤ C12|T |(2γ+d−2)/(2d).

The 
onstant C12 > 0 depends only on diam(Ω), the 
onstants in the de�nition of ui, the

onstants in Se
tion 3.2.1�3.2.4, T, as well as on ‖gi‖W 1,∞(T ) and ‖χi‖W 1,∞(T ).

Proof. With γ := mini=1,...,N γi/2, there holds point wise in T

|∇ui| . rγ−1
i ,

where the hidden 
onstant depends only on diam(Ω), the 
onstants in the de�nition of ui as
well as on ‖gi‖W 1,∞(T ) and ‖χi‖W 1,∞(T ). This implies

‖∇ui‖2L2(T ) .

∫ diam(T )

0

rd−1
i r2γ−2

i dri . diam(T )2γ+d−2 ≃ |T |(2γ+d−2)/d

and 
on
ludes the proof. �

Proposition 3.3.11. Assume T and a 
orresponding re�nement strategy T(·, ·) in the

sense of Se
tion 3.2.1�3.2.7. Let u be given as in (3.3.1). Then, there exists C13 > 0 su
h

that all T ∈ T and all 0 < ε < 1, p ∈ N with

C−1|T |1/d ≤
{
ε1/pr

1−γ/(2p)
T for all T ∈ T with rT > 0,

min{ε2/(2γ+d−2), ε1/p} for all T ∈ T with rT = 0,
(3.3.13)

for some 
onstant C > 0 satisfy

err(T ) ≤ C13ε.

The 
onstant C13 > 0 depends only on p, N , C, C11, C12, the 
onstants in Se
tion 3.2.1�

3.2.7, T, and on Ω.

Proof. The approximation result (3.3.2
) implies

err(T )2 . min
V ∈Pp−1

∇ (T )
‖∇u− V ‖2L2(Ω)

.
∑

T∈T

(
min

V ∈Pp−1
∇ (T )

‖∇u0 − V ‖2L2(T ) +
N∑

i=1

min
V ∈Pp−1

∇ (T )
‖∇ui − V ‖2L2(T )

)
.
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With Lemma 3.3.9�3.3.10 and (3.3.13), this shows

err(T )2 .
∑

T∈T

min
V ∈Pp−1

∇ (T )
‖∇u0 − V ‖2L2(T ) + ε

∑

T∈T
rT >0

r
γ/2−1
T ‖1‖2L2(T ) + ε

∑

T∈T
rT=0

1.

Assumption (3.2.14) implies |T |1/d . rT for all T ∈ T with rT > 0. Hen
e, Lemma 3.3.8

shows

∑

T∈T
rT>0

r
γ/2−1
T ‖1‖2L2(T ) =

∫

∪
{
T∈T : rT>0

} rγ/2−1
T dx . C10.

As in (3.3.12), one obtains

min
V ∈Sp−1(T )

‖∇u0 − V ‖2L2(T ) . |T |p/d‖Dp+1u0‖L2(T ).

Altogether, we obtain

err(T )2 . ε(C10 + |
{
T ∈ T : rT = 0

}
|+ ‖Dp+1u0‖L2(Ω)).

Lemma 3.2.1 bounds |
{
T ∈ T : rT = 0

}
| and hen
e 
on
ludes the proof. �

Proposition 3.3.12. Assume T and a 
orresponding re�nement strategy T(·, ·) in

the sense of Se
tion 3.2.1�3.2.7. Suppose u as de�ned in (3.3.1). Given ε > 0, p ∈ N
and T ∈ T, there exists a triangulation T̂ ∈ T(T , C14ε

−d/p) whi
h satis�es (3.3.13). The


onstant C14 ≥ 1 depends only on qcon, u, p, d, the 
onstants in Se
tion 3.2.1�3.2.7, T, and
Ω.

Proof. De�ne hmin := min{ε2/γ , ε1/p}. In the following, we 
onstru
t an almost minimal

re�nement of T su
h that all elements satisfy

|T |1/d ≤ max{hmin, ε
1/pr

1−γ/(2p)
T }. (3.3.14)

Generate the triangulation T̂ ∈ T(T ) with the following algorithm:

Algorithm 3.3.13. Set T̂0 = T and ℓ = 0

(i) De�ne M̂ℓ :=
{
T ∈ T̂ℓ : T does not satisfy (3.3.14)

}
.

(ii) If M̂ℓ = ∅, set T̂ = T̂ℓ and stop, else goto (iii).

(iii) De�ne T̂ℓ+1 := T(T̂ℓ,M̂ℓ), ℓ = ℓ+ 1, and goto (i).

The algorithm stops after a �nite number of steps, sin
e |T |1/d is redu
ed by q1/dcon with ea
h

re�nement and eventually is smaller than hmin. Hen
e (3.3.14) is satis�ed for all elements

T ∈ T̂ = T̂ℓ after a �nite number of steps. If for some element T ∈ T̂ holds ε1/pr
1−γ/(2p)
T ≥

hmin, then (3.3.13) follows dire
tly from (3.3.14). If there holds ε1/pr
1−γ/(2p)
T < hmin, then we

obtain

rT ≤ rmax := h
2p/(2p−γ)
min ε−2/(2p−γ)

(3.3.15)

and sin
e hmin ≤ ε2/γ, it follows

r
γ/(2p)
T ≤ h

γ/(2p−γ)
min ε−γ/(p(2p−γ)) ≤ ε2/(2p−γ)−γ/(p(2p−γ)) = ε1/p for all T ∈ T .

With (3.2.14), this implies

C−1
shpγ(T0)

−1C−1
6 |T |1/d ≤ rT ≤ ε1/pr

1−γ/(2p)
T for rT > 0,

|T |1/d ≤ hmin for rT = 0.
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Sin
e 2/γ ≥ 2/(2γ + d − 2) and 0 < ε < 1, there holds hmin ≤ min{ε2/(2γ+d−2), ε1/p}. Thus,
the above implies (3.3.13) with the 
onstant C := max{1, Cshpγ(T0)C6}.

It remains to 
ount the elements of T̂ \ T . To that end, re
all T̂ = T̂ℓ and de�ne the

fun
tion M : T∞ → [0,∞] by M(T ) := max{hmin, ε
1/pr

1−γ/(2p)
T } as well as

Sj :=
{
T ∈

ℓ⋃

k=0

M̂k : q−j
con < |T |/M(T )d ≤ q−j−1

con

}
.

Note that T ∈ M̂j implies |T | > M(T )d and hen
e

⋃∞
j=0 Sj =

⋃ℓ
j=0 M̂j. Assume T, T ′ ∈ Sj

with |T ∩ T ′| > 0. Without loss of generality assume T ′ ⊆ T , then (3.2.12) and rT ′ ≥ rT
imply the 
ontradi
tion q−j

con < |T ′|/M(T ′)d ≤ qcon|T |/M(T )d ≤ q−j
con. Hen
e |T ∩ T ′| = 0 for

all T, T ′ ∈ Sj . Given j, split Sj = Mr ∪Mh with

Mr :=
{
T ∈ Sj : ε1/pr

1−γ/(2p)
T ≥ hmin

}
and Mh := Sj \Mr.

De�ne the fun
tion A : Ω → [0,∞) by A|T := |T | for all T ∈ Mr. Then, there holds with

Lemma 3.3.8 and |T |1/d . rT for all T ∈ Mr from (3.2.14) that

|Mr| ≤
∫

∪Mr

A−1 ≤
∫

∪Mr

M(T )−dqjcon

= qjconε
−d/p

∫

∪
{
T∈Ŝj : rT>0

} rd(γ/(2p)−1)
T ≤ C10q

j
conε

−d/p.
(3.3.16)

On the other hand, T ∈ Mh implies |T | ≥ q−j
conh

d
min. Together with (3.2.14), (3.3.15), and

Bi(b) :=
{
x ∈ Ω : |x− xi| ≤ b

}
, this shows T ⊆ Bi((1 + C6)rmax) for some i ∈ {1, . . . , N}

and hen
e

|Mh| ≤ qjcon

N∑

i=1

|Bi((1 + C6)rmax)|
hdmin

. qjcon

N∑

i=1

rdmax

hdmin

. qjconh
2pd/(2p−γ)−d
min ε−2d/(2p−γ).

Sin
e hmin ≤ ε1/p, we end up with

|Mh| . qjconh
dγ

2p−γ

min ε
2d

2p−γ ≤ qjconε
dγ

p(2p−γ)
+ −2d

2p−γ = qjconε
−d(2p−γ)
p(2p−γ) = qjconε

−d/p. (3.3.17)

The 
ombination of (3.3.16) and (3.3.17) shows

|Sj | . qjconε
−d/p

for all j = 0, . . . , ℓ. (3.3.18)

The 
losure estimate (3.2.13) implies

|T̂ \ T | ≤ Cclosure

ℓ−1∑

j=0

|Mj| =
∞∑

j=0

|Sj | . ε−d/p
∞∑

j=0

qjcon.

The 
onvergen
e of the geometri
 series 
on
ludes the proof. �

Proof of Theorem 3.3.1. Given ε > 0 and p ∈ N, Proposition 3.3.12 provides a trian-
gulation T̂ ∈ T(T , floor(C14(ε/C13)

−d/p)) su
h that (3.3.13) is satis�ed for ε/C13. Therefore,

Proposition 3.3.11 
on
ludes the proof. �
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3.3.0.3. Proof of uniform approximability. Re
all the uniform approximability 
onstants

for the error Cerr
approx(s) as well as for the data C

data
approx(s) de�ned in Se
tion 2.4.

Theorem 3.3.14. With err(·) := minV ∈Sp(·) ‖u − V ‖H1(Ω) and under the assumptions

of Theorem 3.3.1, there holds Cerr
approx(p/d) <∞.

Proof. Let T ∈ T. Given N ∈ N, de�ne ε = N−p/dC
p/d
7 . Theorem 3.3.1 provides a

triangulation T̂ ∈ T(T , N) with err(T̂ ) ≤ ε. Hen
e, there holds

(N + 1)p/derr(T̂ ) ≤ (N + 1)p/dε ≤ (N + 1)p/dN−p/dC
p/d
7 ≤ 2C

p/d
7 .

This 
on
ludes the proof. �

The following result is the analog of Theorem 3.3.14 for the approximability of the data.

Theorem 3.3.15. Given f ∈ L2(Ω) and α ≥ 0, de�ne

data(T )2 := min
V ∈Pp(T )

∑

T∈T

|T |2α/d‖f − V ‖2L2(Ω).

Assume f |T ∈ Hp(T ) for all T ∈ T0. Let the re�nement strategy T(·, ·) satisfy the assump-

tions from Se
tion 3.2.1�3.2.6. Then, Cdata
approx((p+ α)/d) <∞.

Proof. Given ε > 0 and T ∈ T, generate the triangulation T̂ in T(T ) with the following
algorithm:

Algorithm 3.3.16. Set T̂0 = T and ℓ = 0

(i) De�ne M̂ℓ :=
{
T ∈ T̂ℓ : |T |(α+p)/d > ε

}
.

(ii) If M̂ℓ = ∅, set T̂ = T̂ℓ and stop, else goto (iii).

(iii) De�ne T̂ℓ+1 := T(T̂ℓ,M̂ℓ), ℓ = ℓ+ 1, and goto (i).

By de�nition of Algorithm 3.3.16 and (3.2.12), the algorithm stops after �nitely many

steps, i.e., T̂ = T̂ℓ. De�ne the sets

Sj :=
{
T ∈

ℓ⋃

k=0

M̂k : q−j
con < |T |/εd/(α+p) ≤ q−j−1

con

}
.

Assume T, T ′ ∈ Sj with |T ∩ T ′| > 0. Without loss of generality, there holds T ′ ⊆ T . The
assumption (3.2.12) implies the 
ontradi
tion

εd/(α+p)q−j
con < |T ′| ≤ qcon|T | ≤ εd/(α+p)q−j

con.

Hen
e |T ∩ T ′| = 0 for all T, T ′ ∈ Sj . This implies immediately

|Sj | ≤ |Ω|qjconε−d/(α+p).

With the 
losure estimate (3.2.13), this shows

|T̂ \ T | ≤ Cclosure

ℓ∑

j=0

|M̂j| = Cclosure

∞∑

j=0

|Sj | . Cclosureε
−d/(α+p)

∞∑

j=0

qjcon

≤ Cclosure(1− qcon)
−1ε−d/(α+p).
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A s
aling argument, (3.2.6), and the Bramble-Hilbert lemma show

data(T̂ )2 =
∑

T∈T

|T |2α/d min
V ∈Pp(T̂ )

‖f − V ‖2L2(T )

.
∑

T∈T̂

|T |2(α+p)/d‖Dpf‖2L2(T ) ≤ ε2
∑

T∈T0

‖Dpf‖2L2(T ).
(3.3.19)

Finally, given N ∈ N, de�ne ε > 0 by Cclosure(1 − qcon)
−1ε−d/(α+p) = N . Then, the above


onstru
tion provides T̂ ∈ T(T , N) su
h that data(T̂ ) . ε = C−p/dN−(α+p)/d
. This shows

Cdata
approx((p+ α)/d) <∞. �

As a straightforward but important 
onsequen
e, we obtain the following result.

Corollary 3.3.17. Suppose that η(·) satis�es reliability (2.4.1) and e�
ien
y (2.4.2)

with err(T ) := minV ∈Sp(T ) ‖u − V ‖H1(Ω) and data(T )2 := minV ∈Pp(T )

∑
T∈T |T |2α/d‖f −

V ‖2L2(Ω) for some α ≥ 0. Then, under the assumptions of Theorem 3.3.1 and with f |T ∈
Hceil(p−α)(T ) ∩ L2(T ) for all T ∈ T0, there holds Capprox(p/d) <∞ and hen
e (T3).

Proof. Theorem 3.3.14 and Theorem 3.3.15 show Cerr
approx(p/d) + Cdata

approx(p/d) < ∞.

The quasi-monotoni
ity (2.4.3) holds by de�nition of err(·) and data(·) with Cmon = 1.
Proposition 2.4.1 (i) implies Capprox(p/d) <∞ and hen
e (T3). This 
on
ludes the proof. �

3.4. Weighted error estimators

Under the general assumption in Se
tion 3.2.1, this se
tion assumes that the error es-

timator η(·) depends not only on the triangulation, but also on a 
ertain weight fun
tion

h ∈ L∞(Ω). We 
all the error estimator η(·, h) a weighted error estimator with weight

h. In the appli
ations below, we de�ne for ea
h T ∈ T a 
ertain natural weight fun
tion

h(T ) : Ω → (0,∞) for whi
h we write η(T ) := η(T , h(T )). This natural weight fun
tion

must be 
ontinuous on Ω\⋃T∈T ∂T . Suppose that η(·, ·) satis�es the following homogeneity


ondition: There exist 
onstants 0 < r+ ≤ r− < ∞ su
h that all T ∈ T ∈ T, and all

α : Ω → [0, 1] with α ∈ L∞(Ω) satisfy

min
x∈T

|α(x)|r− ηT (T , h) ≤ ηT (T , αh) ≤ max
x∈T

|α(x)|r+ ηT (T , h). (3.4.1)

Suppose stability in the following sense: All re�nements T̂ ∈ T(T ) of a triangulation T ∈ T
and all subsets S ⊆ T with Ŝ :=

{
T ∈ T̂ : T ⊆ ⋃S

}
satisfy

∣∣∣
(∑

T∈Ŝ

ηT (T̂ , h)2
)1/2

−
(∑

T∈S

ηT (T , h)2
)1/2∣∣∣ ≤ ˜̺(T , T̂ ), (3.4.2)

where h : Ω → (0,∞) is a weight fun
tion with h|T ≤ h(T̂ )|T for all T ∈ S and ˜̺(·, ·) :
T× T → [0,∞).

Proposition 3.4.1. Let the error estimator η(·) be a weighted error estimator whi
h

satis�es homogeneity (3.4.1) and stability (3.4.2) and de�ne S(T , T̂ ) :=
{
T ∈ T : h(T̂ )|T ≤

qconh(T )|T
}

for some 0 < qcon < 1. With Ŝ(T , T̂ ) :=
{
T ∈ T̂ : T ⊆ ⋃S(T , T̂ )

}
,

ρred = (1 + δ)q2r+con , and ̺(T , T̂ ) := (1 + δ−1)1/2 ˜̺(T , T̂ ) for all δ > 0, this implies (E1b). If

additionally h(T̂ )|T = h(T )|T for all T ∈ T \ S(T , T̂ ). This implies even (E1a).
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Proof. Let h be a weight fun
tion. The homogeneity (3.4.1) implies for some T ∈ T
and

h̃ :=

{
h|T on T,

0 on Ω \ T

that

ηT (T , h) = min
x∈T

|h̃(x)/h(x)|r− ηT (T , h) ≤ ηT (T , h̃)

≤ max
x∈T

|h̃(x)/h(x)|r+ ηT (T , h) = ηT (T , h).

Hen
e ηT (T , h) depends only on h|T . With this, stability (E1a) follows from (3.4.2) with

S := T \ S(T , T̂ ) and h := h(T ), sin
e ηT (T̂ , h(T )) = ηT (T , h(T̂ )) for all T ∈ S.
Redu
tion (E1b) follows with (3.4.1) and (3.4.2). For δ > 0, there holds

∑

T∈Ŝ(T ,T̂ )

ηT (T̂ )2 ≤ (1 + δ)
∑

T∈S(T ,T̂ )

ηT (T , h(T̂ ))2 + (1 + δ−1)˜̺(T , T̂ )2

≤ (1 + δ)
∑

T∈S(T ,T̂ )

max
x∈T

h(T̂ )2r+(x)

h(T )2r+(x)
ηT (T )2 + (1 + δ−1)˜̺(T , T̂ )2

≤ (1 + δ)q2r+con

∑

T∈S(T ,T̂ )

ηT (T )2 + (1 + δ−1)˜̺(T , T̂ )2.

This 
on
ludes the proof. �

3.5. Example 1: Lapla
e problem with residual error estimator

This se
tion applies the abstra
t analysis of the pre
eding se
tions to di�erent dis
retizations

of the Lapla
e problem. The examples are taken from 
onforming �nite element methods

(FEM) as well as the boundary element methods (BEM) for weakly-singular and hyper-

singular integral equations. More examples, e.g., non-
onforming or mixed methods (with

the error estimator from [21℄), are found and dis
ussed in [24℄. A general review on error

estimators for �nite element methods is found in [23℄.

3.5.1. Conforming FEM. This se
tion is based on [24, Se
tion 5℄. In the 
ontext

of 
onforming FEM for symmetri
 operators, the 
onvergen
e and quasi-optimality of the

adaptive algorithm has �nally been analyzed in the seminal works [35, 78℄. In this se
tion,

we show that their results 
an be reprodu
ed and even extended in the abstra
t framework

developed.

Let Ω ⊂ Rd
, d ≥ 2, be a bounded Lips
hitz domain with polyhedral boundary Γ := ∂Ω.

With given volume for
e f ∈ L2(Ω), we 
onsider the Poisson model problem

−∆u = f in Ω and u = 0 on Γ. (3.5.1)

For the weak formulation, let X := H1
0 (Ω) denote the usual Sobolev spa
e, with the equiva-

lent H1
-norm ‖v‖H1

0 (Ω) := ‖∇v‖L2(Ω) asso
iated with the s
alar produ
t

b(u, v) :=

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx for all v ∈ H1
0 (Ω). (3.5.2)
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Then, the weak form of (3.5.1) admits a unique solution u ∈ H1
0 (Ω). Based on a triangulation

T of Ω generated by bise
tion (Se
tion 3.2.8), we use the 
onforming �nite element spa
es

Sp
0 (T ) := Pp(T ) ∩H1

0 (Ω) of �xed polynomial order p ≥ 1. The dis
rete form

b(U(T ), V ) =

∫

Ω

fV dx for all V ∈ Sp
0 (T ) (3.5.3)

also admits a unique FE solution U(T ) ∈ Sp
0 (T ). Following [35℄, we use the lo
al weight

fun
tion

h(T ) ∈ P0(T ) with h(T )|T := |T |1/d, (3.5.4)

where |T | denotes the volume of an element T ∈ T . The standard residual error estimator


onsists of the lo
al 
ontributions for all T ∈ T
ηT (T )2 := h(T )|2T ‖f +∆U(T )‖2L2(T ) + h(T )|T ‖[∂nU(T )]‖2L2(∂T∩Ω), (3.5.5)

see, e.g., [1, 82℄ as well as [35, 78℄.

Here, [∂n(·)] denotes the jump of the normal derivative over interior fa
ets of T . Hen
e,
η(·) is a weighted error estimator in the sense of Se
tion 3.4 (the proofs of (3.4.1) and (3.4.2)

follow below).

Sin
e the admissible triangulations T ∈ T are uniformly shape regular (3.2.5), we note

that h(T )|T ≃ diam(T ) with the Eu
lidean diameter diam(T ). In parti
ular, η(·) 
oin
ides,
up to a multipli
ative 
onstant, with the usual de�nition found in textbooks, 
f., e.g., [1, 82℄.

We refer to Se
tion 5.2.2 for the proof that the 
hoi
e of the weight fun
tion does not a�e
t


onvergen
e and quasi-optimality of the adaptive algorithm.

Proposition 3.5.1. The 
onforming dis
retization of the Poisson problem (3.5.1) with

residual error estimator (3.5.5) and bise
tion as re�nement strategy T(·, ·) satis�es
(i) stability and redu
tion (E1) with ρred = 2−1/d

, S(T , T̂ ) := T \ T̂ as well as

Ŝ(T , T̂ ) := T̂ \ T , and ̺(T , T̂ ) := Cpert‖U(T )− U(T̂ )‖H1
0 (Ω),

(ii) general quasi-orthogonality (E2) with εqo = 0,

(iii) dis
rete reliability (E3) with R(T , T̂ ) = T \T̂ , κdlr = ∞, and εdrel = 0,
(iv) the re�nement axioms (T1)�(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all

s > 0 and the overlay estimate (2.5.1).

Moreover, the estimator satis�es reliability and e�
ien
y (2.4.1)�(2.4.2) with err(T ) :=
‖u− U(T )‖H1

0 (Ω) and

data(T ) := min
F∈Pp−1(T )

‖h(T ) (f − F )‖L2(Ω), (3.5.6)

where Cdata
approx(p/d) < ∞ (de�ned in Se
tion 2.4) is guaranteed if f |T ∈ Hp−1(T ) for all

T ∈ T0. The 
onstants Cdrel, Cqo, Cpert, Ceff , Crel depend only on the polynomial degree p ∈ N,
T0, and on Ω.

Proof. Stability (E1a) as well as redu
tion (E1b) are part of the proof of [35, Corol-

lary 3.4℄. The dis
rete reliability (E3) is found in [35, Lemma 3.6℄ with εdrel = 0 and

κdlr = ∞. Sin
e ̺(T , T̂ ) is a Hilbert norm and the Galerkin orthogonality (2.7.3) is satis-

�ed by de�nition, Lemma 2.7.2 implies (E2) with εqo = 0 and Cqo = Cdrel. Lemma 3.2.3

shows (T1)�(T2) & (2.5.1), (2.7.7). Lemma 2.7.5 shows quasi-monotoni
ity (2.7.6). Hen
e,

Lemma 2.7.4 proves (iv).
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The bounds (2.4.1)�(2.4.2) are well exposed in text books on a posteriori error estimation,

see, e.g., [1, 82℄. Theorem 3.3.15 implies Cdata
approx(p/d) < ∞ and hen
e 
on
ludes the proof.

�

Consequen
e 3.5.2. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads

to 
onvergen
e with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3 and

with optimal 
omplexity in the sense of Theorem 2.5.1. Moreover, the error 
onverges in the

sense of Theorem 2.4.3 for s = p/d if f |T ∈ Hp−1(T ) for all T ∈ T0. �

Numeri
al examples for the 2D Lapla
ian with mixed Diri
hlet-Neumann boundary 
on-

ditions are found in [51℄ together with a detailed dis
ussion of the implementation. Examples

for 3D are found in [35℄.

3.5.2. Conforming FEM without bise
tion. A major drawba
k of the 
urrent re-

sults on adaptive �nite element methods, is the restri
tion to bise
tion (Se
tion 3.2.8) as a

re�nement strategy. This 
omes from the fa
t that other popular re�nement strategies (i.e.,

red-green-blue re�nement from Se
tion 3.2.9) do not satisfy the overlay estimate (2.5.1),

whi
h is a key ingredient in state of the art literature. However, the present abstra
t frame-

work 
ir
umvents the use of (2.5.1) by using (T3) instead. The results from Se
tion 3.3 allow

to proof optimal 
onvergen
e for re�nement strategies in the sense of Se
tion 3.2.1�3.2.7.

We 
onsider the Poisson problem (3.5.1) on a polygonal domain Ω ⊆ R2
. The following

result from [55, Se
tion 2℄ proves that Theorem 3.3.14 is appli
able.

Proposition 3.5.3. Given p ∈ N, let f ∈ Hp−1+ε(Ω) for some ε > 0 if p > 1 and

f ∈ L2(Ω) for p = 1. Then, the solution u ∈ H1(Ω) of (3.5.1) allows for the de
omposi-

tion (3.3.1). �

We suppose that T(·, ·) is a re�nement strategy whi
h satis�es the assumptions from

Se
tion 3.2.1�3.2.7. Additionally to the bise
tion strategy whi
h was treated in Se
tion 3.5.1,

this parti
ularly in
ludes the red-green-blue re�nement from Se
tion 3.2.9.

Proposition 3.5.4. Let T(·, ·) denote an arbitrary re�nement strategy in the sense

of Se
tion 3.2.1�3.2.7. The 
onforming dis
retization of the Poisson problem (3.5.1) with

residual error estimator (3.5.5) satis�es

(i) stability and redu
tion (E1) with ρred = 2−1/d
, S(T , T̂ ) := T \ T̂ as well as

Ŝ(T , T̂ ) := T̂ \ T , and ̺(T , T̂ ) := Cpert‖U(T )− U(T̂ )‖H1
0 (Ω),

(ii) general quasi-orthogonality (E2) with εqo = 0,

(iii) dis
rete reliability (E3) with R(T , T̂ ) = T \T̂ , κdlr = ∞, and εdrel = 0,
(iv) the re�nement axioms (T1)�(T3) with Capprox(p/d) <∞ for all p ∈ N with

f ∈
{
Hp−1+ε(Ω) for some ε > 0 p > 1,

L2(Ω) p = 1.
(3.5.7)

Moreover, the estimator satis�es (2.4.1)�(2.4.2) with err(T ) := ‖u− U(T )‖H1
0 (Ω) and

data(T ) := min
F∈Pp−1(T )

‖h(T ) (f − F )‖L2(Ω), (3.5.8)

where Cdata
approx(p/d) <∞ (de�ned in Se
tion 2.4) is guaranteed if p ∈ N satis�es (3.5.7). The


onstants Cdrel, Cqo, Cpert, Ceff , Crel depend only on the polynomial degree p ∈ N, T0, and on

Ω.

Proof. The statements (i)�(iii) follow as in Proposition 3.5.1. The assumptions in

Se
tion 3.2.5�3.2.6 imply the axioms (T1)�(T2). Moreover, Proposition 3.5.3 shows that
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Theorem 3.3.1 is appli
able if (3.5.7) is satis�ed. With the Céa lemma (5.4.5) below, we

obtain even

err(T ) ≃ min
V ∈Sp(T )

‖u− V ‖H1(Ω)

(note the la
k of boundary 
onditions on the right-hand side) and hen
e Theorem 3.3.14

shows Cerr
approx(p/d) < ∞. Under the same assumptions, Theorem 3.3.15 is appli
able and

shows that Cdata
approx(p/d) < ∞. Moreover, Corollary 3.3.17 implies Capprox(p/d) < ∞. This


on
ludes the proof. �

Consequen
e 3.5.5. Let p ∈ N satisfy (3.5.7). Then, the adaptive algorithm leads

to 
onvergen
e with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3 for

s ≤ p/d. Moreover, the error 
onverges in the sense of Theorem 2.4.3 for s = p/d. �

3.5.3. Conforming BEM for weakly-singular integral equation. In this se
tion

(whi
h is based on [24, Se
tion 5℄), we 
onsider the weighted-residual error estimator in

the 
ontext of BEM for integral operators of order −1. Unlike FEM, the e�
ien
y of this

error estimator is still an open question in general and mathemati
ally guaranteed only

for parti
ular situations [3℄ while typi
ally observed throughout, see, e.g. [20, 28, 33, 34℄.

Nevertheless, the abstra
t framework of Chapter 2 provides the means to analyze 
onvergen
e

and quasi-optimality of the adaptive algorithm. Non-residual error estimators are proposed

in [30, 50℄, whi
h are numeri
ally straightforward to implement but la
k the ne
essary

properties to prove optimality.

In a spe
i�
 setting, optimal 
onvergen
e of adaptive algorithms has independently �rst

been proved by [47, 80℄ for lowest-order BEM. While the analysis of [80℄ 
overs general

operators, but is restri
ted to smooth boundaries Γ, the analysis of [47℄ fo
uses on the

Lapla
e equation only, but allows for polyhedral boundaries. In [44℄, these results are

generalized to BEM with ansatz fun
tions of arbitrary, but �xed polynomial order.

Let Ω ⊂ Rd
be a bounded Lips
hitz domain with polyhedral boundary ∂Ω and d = 2, 3.

Let Γ ⊆ ∂Ω be a relatively open subset whi
h has a Lips
hitz boundary itself. For given

f ∈ H1/2(Γ) :=
{
φ|Γ : φ ∈ H1(Ω)

}
, we 
onsider the weakly-singular �rst-kind integral

equation

Vu(x) = f(x) for x ∈ Γ. (3.5.9)

The sought solution satis�es u ∈ H̃−1/2(Γ). The negative-order Sobolev spa
e H̃−1/2(Γ) is
the dual spa
e of H1/2(Γ) with respe
t to the extended L2(Γ)-s
alar produ
t 〈· , ·〉L2(Γ). We

refer to the monographs [58, 62, 75℄ for details and proofs of this as well as of the following

fa
ts on the fun
tional analyti
 setting: With the fundamental solution of the Lapla
ian

G(z) :=

{
− 1

2π
log |z| for d = 2,

+ 1
4π

1
|z|

for d = 3,
(3.5.10)

the simple-layer potential reads

Vu(x) :=
∫

Γ

G(x− y)u(y) dΓ(y) for x ∈ Γ. (3.5.11)

We note that V : H−1/2+s(Γ) → H1/2+s(Γ) is a linear, 
ontinuous, and symmetri
 operator

for all −1/2 ≤ s ≤ 1/2. For 2D, we assume diam(Ω) < 1 whi
h 
an always be a
hieved by

s
aling. Then, V is also ellipti
 (see also Proposition 6.2.23, below) , i.e.,

b(u, v) := 〈Vu , v〉L2(Γ) (3.5.12)
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de�nes an equivalent s
alar produ
t on X := H̃−1/2(Γ). We equip H̃−1/2(Γ) with the in-

du
ed Hilbert spa
e norm ‖v‖2
H̃−1/2(Γ)

:= 〈Vv , v〉L2(Γ). A

ording to the Hahn-Bana
h theo-

rem, (3.5.9) is equivalent to the variational formulation

b(u, v) = 〈f , v〉L2(Γ) for all v ∈ H̃−1/2(Γ). (3.5.13)

It relies on the s
alar produ
t b(·, ·) and hen
e admits a unique solution u ∈ H̃−1/2(Γ)
of (3.5.13).

Let T be a regular triangulation of Γ, generated by bise
tion from Se
tion 3.2.8 from

some initial triangulation T0. We employ 
onforming boundary elements Pp(T ) ⊂ H−1/2(Γ)
of order p ≥ 0. The dis
rete formulation

b(U(T ), V ) = 〈f , V 〉L2(Γ) for all V ∈ Pp(T )

admits a unique BE solution U(T ) ∈ Pp(T ).
Under additional regularity of the data f ∈ H1(Γ), we 
onsider the weighted-residual

error estimator of [20, 28, 33, 34℄ with lo
al 
ontributions

ηT (T )2 := h(T )|T ‖∇Γ(f − VU(T ))‖2L2(T ) for all T ∈ T . (3.5.14)

Here, ∇Γ(·) denotes the surfa
e gradient and h(T ) ∈ P0(T ) denotes the weight fun
tion

de�ned by h(T )|T = |T |1/(d−1)
for all T ∈ T as Γ is a (d−1)-dimensional manifold. We note

that the analysis of [20, 28, 33, 34℄ relies on a Poin
aré-type estimate ‖R(T )‖H1/2(Γ) .

‖h(T )1/2∇ΓR(T )‖L2(Γ) for the Galerkin residual R(T ) = f − VU(T ) and requires shape-

regularity of the triangulation T for d = 3, in parti
ular, the fa
t that h(T )|T ≃ diam(T ).

Proposition 3.5.6. The 
onforming dis
retization of the Poisson problem (3.5.9) with

residual error estimator (3.5.14) satis�es

(i) stability and redu
tion (E1) with ̺(T , T̂ ) := Cpert‖U(T ) − U(T̂ )‖H̃−1/2(Γ), ρred =

2−1/(d−1)
, and S(T , T̂ ) := T \ T̂ as well as Ŝ(T , T̂ ) := T̂ \ T ,

(ii) general quasi-orthogonality (E2) with εqo = 0,
(iii) dis
rete reliability (E3) with

R(T , T̂ ) :=
{
T ∈ T : ∃T ′ ∈ T \T̂ T ∩ T ′ 6= ∅

}
, (3.5.15)

κdlr = ∞, and εdrel = 0,
(iv) the re�nement axioms (T1)�(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all

s > 0 and the overlay estimate (2.5.1).

Moreover, the estimator satis�es reliability (2.4.1) with err(T ) := ‖u − U(T )‖H̃−1/2(Γ). The


onstants Cdrel, Cqo, Cpert, Crel depend only on the polynomial degree p ∈ N, T0, and on Γ.

Proof. Reliability (2.4.1) is well-known in the literature (e.g. [28, 33, 34℄). Stabil-

ity (E1a) as well as redu
tion (E1b) are part of the proof of [47, Proposition 4.2℄ and also

found in [44℄. The proof essentially follows [35℄, but additionally relies on the novel inverse-

type estimate

‖h(T )1/2∇ΓVV ‖L2(Γ) . ‖V ‖H̃−1/2(Γ) for all V ∈ Pp(T ).

While the work [47℄ is 
on
erned with the lowest-order 
ase p = 0 only, we refer to [2,

Corollary 2℄ for general p ≥ 0 so that [47, Proposition 4.2℄ transfers to p ≥ 0. Dis
rete

reliability (E3) is proved in [47, Proposition 5.3℄ for p = 0, but the proof holds a

ord-

ingly for arbitrary p ≥ 0. Lemma 2.7.2 implies general quasi-orthogonality (E2) with
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εqo = 0. Lemma 3.2.3 shows (T1)�(T2) & (2.5.1), (2.7.7). Lemma 2.7.5 shows quasi-

monotoni
ity (2.7.6). Hen
e, Lemma 2.7.4 proves (iv). �

Consequen
e 3.5.7. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads

to 
onvergen
e with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3 and

optimal 
omplexity in the sense of Theorem 2.5.1. �

Numeri
al examples that underline the above result 
an be found in [33℄.

The lower bound (2.4.2) for the weighted-residual error estimator (3.5.14) remains an

open question. The only result available [3℄ is for d = 2, and it exploits the equivalen
e

of (3.5.9) to some Diri
hlet-Lapla
e problem: Assume Γ = ∂Ω and let

Kg(x) :=
∫

Γ

∂n(y)G(x− y) g(y) dy (3.5.16)

denote the double-layer potential K : H1/2+s(Γ) → H1/2+s(Γ), for all −1/2 ≤ s ≤ 1/2.
Then, the weakly-singular integral equation (3.5.17) for given Diri
hlet data g ∈ H1/2(Γ)
and f := (K + 1/2)g is an equivalent formulation of the Diri
hlet-Lapla
e problem

−∆φ = 0 in Ω and φ = g on Γ = ∂Ω. (3.5.17)

The density u ∈ H̃−1/2(Γ), whi
h is sought in (3.5.9), is the normal derivative u = ∂nφ to

the potential φ ∈ H1(Ω) of (3.5.17).
For this spe
ial situation and lowest-order elements p = 0, the lower bound (2.4.2) is

proved in [3, Theorem 4℄.

Proposition 3.5.8. We 
onsider lowest-order BEM p = 0 for d = 2 and Γ = ∂Ω.
Let σ > 2 and g ∈ Hσ(∂Ω) :=

{
φ|∂Ω : φ ∈ Hσ+1/2(Ω)

}
. For f := (K + 1/2)g, the

weighted-residual error estimator (3.5.14) satis�es (2.4.1)�(2.4.2) for some (in general non-


omputable) data(·) with Cdata
approx(3/2) <∞ (de�ned in Se
tion 2.4).

Proof. The statement (2.4.2) is found in [3, Theorem 4℄, where data(T ) is based on

the regular part of the exa
t solution u. The de�nition [3, De�nition 15℄ shows data(T ) .
‖h(T ))3/2+ε‖L∞(Γ) for T ∈ T and some σ-dependent ε > 0. The same argumentation as in

the proof of Theorem 3.3.15 shows Cdata
approx(3/2) <∞ and 
on
ludes the proof. �

For some smooth exa
t solution u, the generi
ally optimal order of 
onvergen
e is O(h3/2)
for lowest-order elements p = 0, where h denotes the maximal element size. For quasi-

uniform triangulations with N elements and 2D BEM, this 
orresponds to O(N−3/2) and
hen
e s = 3/2. With the foregoing proposition and a

ording to Theorem 2.4.3, the adaptive

algorithm attains any possible 
onvergen
e order 0 < s ≤ 3/2 and the generi
ally optimal

rate is thus a
hieved.

Consequen
e 3.5.9. Let 0 < s ≤ 3/2 with ‖η,T‖s < ∞. Under the assumptions of

Proposition 3.5.8, the adaptive algorithm leads to the generi
ally optimal rate for the error

in the sense of Theorem 2.4.3. �

Numeri
al examples that underline the above result 
an be found in [3, 20, 28, 33, 34,

47℄.

3.5.4. Conforming BEM for hyper-singular integral equation. In this se
tion

(whi
h is based on [24, Se
tion 5℄), we 
onsider adaptive BEM for hyper-singular integral

equations, where the hyper-singular operator is of order +1. In this frame, 
onvergen
e and

quasi-optimality of the adaptive algorithm has �rst been proved in [80℄, while the ne
essary

te
hni
al tools have independently been developed in [2℄. While the analysis of [80℄ only
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overs the lowest-order 
ase p = 1 and smooth boundaries, the re
ent work [45℄ generalizes

this to BEM with ansatz fun
tions of arbitrary, but �xed polynomial order p ≥ 1 and

polyhedral boundaries.

Throughout, we use the notation from Se
tion 3.5.3. Additionally, we assume that Γ ⊆
∂Ω is 
onne
ted. We 
onsider the hyper-singular integral equation

Wu(x) = f(x) for x ∈ Γ, (3.5.18)

where the hyper-singular integral operator formally reads

Wv(x) := ∂n(x)

∫

Γ

∂n(y)G(x− y)v(y) dΓ(y). (3.5.19)

By de�nition, there holdsWg(x) = ∂nKg(x) if the double-layer potential Kg(x) is 
onsidered
as a fun
tion on Ω by evaluating (3.5.16) for x ∈ Ω. Again, we refer to the monographs [58,

62, 75℄ for details and proofs of the following fa
ts on the fun
tional analyti
 setting: The

hyper-singular integral operator W is symmetri
 as well as positive semi-de�nite and has

a one-dimensional kernel whi
h 
onsists of the 
onstant fun
tions, i.e., W1 = 0. To deal

with this kernel and to obtain an ellipti
 formulation, we distinguish the 
ases Γ $ ∂Ω and

Γ = ∂Ω.
3.5.4.1. S
reen problem Γ $ ∂Ω. On the s
reen, the hyper-singular integral operator

W : H̃1/2+s(Γ) → H−1/2+s(Γ) is a 
ontinuous mapping for all −1/2 ≤ s ≤ 1/2. Here,

H̃1/2+s(Γ) :=
{
v|Γ : v ∈ H1/2+s(∂Ω) with supp(v) ⊆ Γ

}
denotes the spa
e of fun
tions

whi
h 
an be extended by zero to the entire boundary, and H−1/2+s(Γ) denotes the dual

spa
e of H̃1/2−s(Γ). For given f ∈ H−1/2(Γ), we seek the solution u ∈ H̃1/2(Γ) of (3.5.18).

We note that 1 /∈ H̃1/2(Γ) and W : H̃1/2(Γ) → H−1/2(Γ) is a symmetri
 and ellipti


operator. In parti
ular,

b(u, v) := 〈Wu , v〉L2(Γ) (3.5.20)

de�nes an equivalent s
alar produ
t on X := H̃1/2(Γ). We equip H̃1/2(Γ) with the indu
ed

Hilbert spa
e norm ‖v‖2
H̃1/2(Γ)

:= b(v, v). The hyper-singular integral equation is thus equiv-

alently stated as

b(u, v) = 〈f , v〉L2(Ω) for all v ∈ H̃1/2(Γ) (3.5.21)

and admits a unique solution.

Given a regular triangulation T generated by bise
tion from Se
tion 3.2.8 and a poly-

nomial degree p ≥ 1, we employ 
onforming boundary elements Sp
0 (T ) := Pp(T ) ∩ H̃1/2(Γ).

The dis
rete formulation

b(U(T ), V ) = 〈f , V 〉L2(Γ) for all V ∈ Sp
0 (T )

admits a unique BE solution U(T ) ∈ Sp
0 (T ).

Under additional regularity of the data f ∈ L2(Γ), we may de�ne the weighted-residual

error estimator from [20, 27, 33, 34℄ with lo
al 
ontributions

ηT (T )2 := h(T )|T‖f −WU(T )‖2L2(T ) for all T ∈ T . (3.5.22)

As for the weakly-singular integral equation from Se
tion 3.5.3, the lower bound (2.4.2) is

only observed empiri
ally [20, 27, 33, 34℄, but a rigorous mathemati
al proof remains as

an open question.

Proposition 3.5.10. The 
onforming BEM dis
retization of the hyper-singular inte-

gral equation (3.5.18) on the s
reen with weighted-residual error estimator (3.5.22) satis�es
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(i) stability and redu
tion (E1) with ̺(T , T̂ ) := Cpert‖U(T ) − U(T̂ )‖H̃1/2(Γ), ρred =

2−1/(d−1)
, and S(T , T̂ ) := T \ T̂ as well as Ŝ(T , T̂ ) := T̂ \ T ,

(ii) general quasi-orthogonality (E2) with εqo = 0,

(iii) dis
rete reliability (E3) with R(T , T̂ ) := T \T̂ , κdlr = ∞, and εdrel = 0,
(iv) the re�nement axioms (T1)�(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all

s > 0 and the overlay estimate (2.5.1).

Moreover, the estimator satis�es reliability (2.4.1) with err(T ) := ‖u− U(T )‖H̃(1/2)(Γ). The


onstants Cdrel, Cqo, Cpert, Crel depend only on the polynomial degree p ∈ N, T0, and on Γ.

Proof. The reliability (2.4.1) is well-known in the literature (e.g. [20, 27, 33, 34℄).

The dis
rete reliability (E3) follows with the te
hniques from [35℄ whi
h are 
ombined with

the lo
alization te
hniques for the H1/2(Γ)-norm from [27℄. We refer to [45℄ for details. For

the lowest-order 
ase p = 1, an alternate proof is found in [80, Se
tion 4℄, where R(T , T̂ ) are

the re�ned elements T \ T̂ plus one additional layer of elements, see (3.5.15). Stability (E1a)

and redu
tion (E1b) are proved in [45℄ and use the inverse estimate from [2, Corollary 2℄.

The remaining statements follow as in Proposition 3.5.6. �

Consequen
e 3.5.11. Let s > 0 with ‖η,T‖s < ∞. Then, the adaptive algorithm

leads to 
onvergen
e with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3

and optimal 
omplexity in the sense of Theorem 2.5.1. �

Numeri
al examples that underline the above result 
an be found in [33℄.

3.5.4.2. Lapla
e-Neumann problem Γ = ∂Ω. On the 
losed boundary Γ = ∂Ω, the hyper-
singular integral operator (3.5.19) is 
ontinuous for all −1/2 ≤ s ≤ 1/2

W : H1/2+s(Γ) → H−1/2+s(Γ).

Due to 1 ∈ H1/2(Γ), we have to stabilize W, e.g., with the rank-one operator Sv :=
〈v , 1〉L2(Ω) 1. Alternatively, it is possible to 
onsider W on the fa
tor spa
e H1/2(Γ)/R ≃
H

1/2
⋆ (Γ) :=

{
v ∈ H1/2(Γ) :

∫
Γ
v ds = 0

}
. The (stabilized) hyper-singular integral equation

reads

(W + S)u(x) = f(x) for x ∈ Γ. (3.5.23)

The sought solution satis�es u ∈ X := H1/2(Γ). The stabilization S allows to de�ne an

equivalent s
alar produ
t on H1/2(Γ) by

b(u, v) := 〈Wu , v〉L2(Γ) + 〈u , 1〉L2(Γ)〈v , 1〉L2(Γ).

We equip H1/2(Γ) with the indu
ed Hilbert spa
e norm ‖v‖2
H1/2(Γ)

= b(v, v). Then, the

equation (3.5.23) is equivalent to

b(u, v) = 〈f , v〉L2(Γ) for all v ∈ H1/2(Γ). (3.5.24)

In 
ase of 〈f , 1〉L2(Γ) = 0, we see that 〈u , 1〉L2(Γ) = 0 by 
hoi
e of the test fun
tion v = 1.
Then, the above formulation (3.5.23) resp. (3.5.24) is equivalent to (3.5.18).

For given g ∈ H−1/2(Γ) and the spe
ial right-hand side f = (1/2 − K′)g, it holds

〈f, 1〉L2(Γ) = 0. Moreover, (3.5.18) resp. (3.5.23) is an equivalent formulation of the Lapla
e-

Neumann problem

−∆φ = 0 in Ω and ∂nφ = g on Γ = ∂Ω. (3.5.25)
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Clearly, the solution φ ∈ H1(Ω) is only unique up to an additive 
onstant. If we �x this


onstant by 〈φ , 1〉L2(Γ) = 0, the density u ∈ H1/2(Γ) whi
h is sought in (3.5.18) for f =
(1/2−K′)g, is the tra
e u = φ|Γ of the potential φ.

For �xed p ≥ 1 and a regular triangulation T generated by bise
tion from Se
tion 3.2.8

of Γ, we employ 
onforming boundary elements Sp(T ) := Pp(T ) ∩ H1/2(Γ). The dis
rete

formulation

b(U(T ), V ) = 〈f , V 〉L2(Γ) for all V ∈ Sp(T ) (3.5.26)

admits a unique solution U(T ) ∈ Sp(T ). In 
ase of 〈f , 1〉L2(Γ) = 0, it follows as for the

ontinuous 
ase that 〈U(T ) , 1〉Γ = 0 and therefore SU(T ) = 0. Hen
e, the de�nition of the

error estimator as well as the proof of the axioms (E1)�(E3), (T1)�(T3) is verbatim to the

s
reen problem in Se
tion 3.5.4.1 and therefore omitted.

Consequen
e 3.5.12. Let s > 0 with ‖η,T‖s < ∞. Then, the adaptive algorithm

leads to 
onvergen
e with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3

and optimal 
omplexity in the sense of Theorem 2.5.1. �

Numeri
al examples that underline the above result 
an be found in [27℄.

Although one may expe
t a lower bound (2.4.2) similar to that from [3℄ for Symm's inte-

gral equation from Se
tion 3.5.3, see Consequen
e 3.5.9, the details have not been worked out

yet. In parti
ular, quasi-optimality of the adaptive algorithm in the sense of Theorem 2.4.3

remains as an open question.

3.6. Example 2: General se
ond-order ellipti
 equations

This se
tion 
olle
ts further �elds of appli
ations for the abstra
t theory developed in Chap-

ter 2 beyond the Lapla
e model problem from Se
tion 3.5. The results of Se
tion 3.6.1

appear �rst in [46℄. A �rst version of this se
tion 
an be found in the re
ent own work [24,

Se
tion 6℄.

3.6.1. Conforming FEM for non-symmetri
, ellipti
 linear problems. On the

bounded Lips
hitz domain Ω ⊂ Rd
, we 
onsider the following linear se
ond-order PDE

Lu := −divA∇u+ b · ∇u+ cu = f in Ω and u = 0 on Γ. (3.6.1)

For all x ∈ Ω, A(x) ∈ Rd×d
is a symmetri
 matrix with A ∈ W 1,∞(Ω;Rd×d

sym). Moreover,

b(x) ∈ Rd
is a ve
tor with b ∈ L∞(Ω;Rd) and c(x) ∈ R is a s
alar with c ∈ L∞(Ω). Note

that L is non-symmetri
 as

L 6= LT = −divA∇u− b · ∇u+ (c− divb)u.

We assume that the indu
ed bilinear form

b(u , v) := 〈Lu , v〉 =
∫

Ω

A∇u · ∇v + b · ∇uv + cuv dx for u, v ∈ X := H1
0 (Ω) (3.6.2)

is 
ontinuous and H1
0 (Ω)-ellipti
 and denote by ‖v‖2 := b(v , v) the indu
ed quasi-norm

on H1
0 (Ω), whi
h satis�es ‖∇(·)‖L2(Ω) ≤ Cnorm‖ · ‖ for some Cnorm > 0. A

ording to the

Lax-Milgram lemma and for given f ∈ L2(Ω), the weak formulation

b(u , v) =

∫

Ω

fv dx for all v ∈ H1
0 (Ω) (3.6.3)

admits a unique solution u ∈ H1
0 (Ω).

Histori
ally, the 
onvergen
e and quasi-optimality analysis for the adaptive algorithm has

�rst been developed for ellipti
 and symmetri
 operators, e.g., [40, 65, 14, 78, 35℄ to name
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some milestones, and the analysis strongly used the fa
t that ‖v‖ is a Hilbert norm and hen
e

Lemma 2.7.2 applies. The work [64℄ introdu
ed an appropriate quasi-orthogonality (2.7.5) in

theH1
-norm to prove linear 
onvergen
e of the so-
alled total error whi
h is the weighted sum

of error plus os
illations. Later, [36℄ used this approa
h to prove quasi-optimal 
onvergen
e

rates. However, [64, 36℄ are restri
ted to div b = 0 and su�
iently �ne initial triangulations

T0 to prove this quasi-orthogonality. The re
ent work [46℄ removes these arti�
ial assumption

by proving the general quasi-orthogonality (E2) with respe
t to the indu
ed energy quasi-

norm ‖ · ‖. Moreover, the latter analysis also provides a framework for 
onvergen
e and

quasi-optimality if b(· , ·) is not uniformly ellipti
, but only satis�es some Gårding inequality.

For details, the reader is referred to Se
tion 3.6.2

The dis
retization of (3.6.3) is done as in Se
tion 3.5.1, from where we adopt the nota-

tion: For a given regular triangulation T generated by bise
tion from Se
tion 3.2.8 and a

polynomial degree p ≥ 1, we 
onsider Sp
0 (T ) := Pp(T ) ∩ H1

0 (Ω) with Pp(T ). The dis
rete

formulation also �ts into the frame of the Lax-Milgram lemma and

b(U(T ), V ) =

∫

Ω

fV dx for all V ∈ Sp
0 (T ) (3.6.4)

hen
e admits a unique FE solution U(T ) ∈ Sp
0 (T ). Moreover, one has the Céa lemma

‖u− U(T )‖ ≤ C
Céa

min
V ∈Sp

0 (T )
‖u− V ‖ for all T ∈ T, (3.6.5)

where C
Céa

> 0 depends only on b(· , ·).
The residual error-estimator η(·) di�ers slightly from the one in Se
tion 3.5.1, namely

ηT (T )2 := h(T )|2T‖L|TU(T )− f‖2L2(T ) + h(T )|T‖[A∇U(T ) · n]‖2L2(∂T∩Ω) (3.6.6)

for all T ∈ T and L|TV := −div|TA(∇V ) + b · ∇V + cV , see e.g. [1, 82℄.

Proposition 3.6.1. The 
onforming dis
retization of problem (3.6.1) with residual

error estimator (3.6.6) satis�es

(i) stability and redu
tion (E1) with ρred = 2−1/d
, ̺(T , T̂ ) := Cpert‖U(T )−U(T̂ )‖, and

S(T , T̂ ) := T \ T̂ as well as Ŝ(T , T̂ ) := T̂ \ T ,

(ii) general quasi-orthogonality (E2),

(iii) dis
rete reliability (E3) with R(T , T̂ ) = T \T̂ , κdlr = ∞, and εdrel = 0,
(iv) the re�nement axioms (T1)�(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all

s > 0 and the overlay estimate (2.5.1).

Moreover, the estimator satis�es reliability and e�
ien
y (2.4.1)�(2.4.2) with err(T ) :=
‖u− U(T )‖ and

data(T )2 := min
F∈Pq(T )

∑

T∈T

h2T‖L|TU(T )− f − F‖2L2(T )

+ min
F∈Pq′(T )

∑

T∈T

hT‖[A∇U(T ) · n]− F‖2L2(∂T∩Ω),
(3.6.7)

where q, q′ ∈ N0 are arbitrary. If the di�erential operator L has pie
ewise polynomial 
oe�-


ients, su�
iently large q, q′ ∈ N0 even provides (2.4.2) with

data(T ) = min
F∈Pp−1(T )

‖h(T ) (f − F )‖L2(Ω). (3.6.8)

In this 
ase, there holds Cdata
approx(p/d) < ∞ (de�ned in Se
tion 2.4) if f |T ∈ Hp−1(T ) for

all T ∈ T0. The 
onstants Cdrel, Cqo, Cpert, Ceff , Crel depend only on the polynomial degrees

p, q, q′ ∈ N, T0, Ω, and on L.
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Proof. The statements (i),(iii)�(iv) follow as for the Poisson model problem from Se
-

tion 3.5.1. Standard arguments from, e.g., [1, 82℄ provide (2.4.1)�(2.4.2). The bound on

Cdata
approx(p/d) follows as in Proposition 3.5.1. The general quasi-orthogonality (E2) is proved in

Theorem 7.2.5. The solution of (3.6.4) with X∞ :=
⋃

ℓ∈N0
Sp
0 (Tℓ) instead of Sp

0 (Tℓ) satis�es the
assumptions of Lemma 2.7.1. Hen
e, (2.7.2) and Theorem 2.3.3 (i) prove limℓ→∞ η(Tℓ) = 0.
Together with reliability (2.4.1), this implies limℓ→∞ ‖u−U(Tℓ)‖ = 0. Thus, all requirements

of Theorem 7.2.5 are satis�ed. This 
on
ludes the proof. �

Consequen
e 3.6.2. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads

to 
onvergen
e with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3 and

optimal 
omplexity in the sense of Theorem 2.5.1. Moreover, the error 
onverges in the sense

of Theorem 2.4.3 at least for s = 1/d. This is the optimal rate for lowest-order elements

p = 1. For pie
ewise polynomial 
oe�
ients of L and f |T ∈ Hp−1(T ) for all T ∈ T0, one

obtains even s = p/d. �

Numeri
al examples for the symmetri
 
ase that underline the above result 
an be found

in [64℄.

3.6.2. Conforming FEM for non-symmetri
 problems whi
h satisfy a Gårding

inequality. We 
onsider the setting of Se
tion 3.6.1 with the di�eren
e that the bilinear

form b(· , ·) from (3.6.2) satis�es only the Gårding inequality

b(u, u) + Cgrd‖u‖2L2(Ω) ≥ qgrd‖∇u‖2L2(Ω) for all u ∈ H1(Ω) (3.6.9)

with 
onstants Cgrd, qgrd > 0. Suppose that T(·, ·) denotes bise
tion from Se
tion 3.2.8. We

have to assume that b(·, ·) is de�nite on the 
ontinuous level, i.e., for all v ∈ H1
0 (Ω), it holds

b(v, w) = 0 for all w ∈ H1
0 (Ω) =⇒ v = 0. (3.6.10)

This together with Fredholm's alternative guarantees the unique solvability of (3.6.3) and

implies a 
ontinuous inf-sup 
ondition, i.e.,

inf
v∈H1

0 (Ω)\{0}
sup

w∈H1
0 (Ω)\{0}

b(v, w)

‖∇v‖L2(Ω)‖∇w‖L2(Ω)

≥ δ > 0. (3.6.11)

To a

ount for the fa
t that not ea
h triangulation T ∈ T allows for a solution of (3.6.4)

and hen
e for an error estimator, we set η(T ) := 1 if (3.6.4) is not uniquely solvable. With

this, ‖η,T‖s is well-de�ned.
We propose a modi�ed adaptive algorithm to solve this parti
ular problem.

Algorithm 3.6.3. Input: Initial triangulation T0, bulk parameter 0 < θ ≤ 1, expe
ted

onvergen
e rate s > 0 with ‖η,T‖s <∞.

Loop: For ℓ = 0, 1, 2, . . . do (i)− (iii).

(i) Try to solve (3.6.4) on T = Tℓ:

(i1) If (3.6.4) is not uniquely solvable, set Tℓ+1 = T(Tℓ, Tℓ) and goto (i).

(ii) Compute ηT (Tℓ) for all T ∈ Tℓ.

(iii) Determine set Mℓ ⊆ Tℓ of (almost) minimal 
ardinality su
h that

θ η(Tℓ)
2 ≤

∑

T∈Mℓ

ηT (Tℓ)
2. (3.6.12)

(iv) De�ne the next triangulation as follows:

(i2) If

∑ℓ−1
k=0 |Mk| > (1 + log(ℓ+ 1))η(Tℓ)

−1/s
, set Tℓ+1 := T(Tℓ, Tℓ).

(i3) If not (i2), set Tℓ+1 := T(Tℓ,Mℓ).
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Output: Error estimators η(Tℓ) for all ℓ ∈ N0.

Remark 3.6.4. The algorithm requires the expe
ted optimal rate of 
onvergen
e s > 0
as an input parameter. This may be regarded as a drawba
k of the analysis. On the other

hand, we do not assume any dis
rete inf-sup 
ondition and Lemma 3.6.11 below shows that

Algorithm 3.6.3 leads to 
onvergen
e even for arbitrary s > 0.

Remark 3.6.5. Case (i1) requires the algorithm to de
ide whether the linear sys-

tem (3.6.4) is uniquely solvable. Due to �nite dimension, this is equivalent to solvability.

However, an iterative solver usually produ
es an approximation regardless of the solvability

of the system. In this 
ase, on may skip 
ase (i1) and only 
he
k for 
ase (i2)�(i3). The

analysis and all the results from this se
tion remain valid.

Lemma 3.6.6. There exists a 
onstant Crel > 0 su
h that all T ∈ T for whi
h (3.6.4)

is uniquely solvable satisfy

‖∇(u− U(T ))‖L2(Ω) ≤ Crelη(T ), (3.6.13)

where η(·) is de�ned in (3.6.6).

Proof. The reliability of η(·) is well-known and depends only on the 
ontinuous inf-sup


ondition (3.6.11), see also Proposition 3.5.1 for referen
es. �

Remark 3.6.7. Due to Lemma 3.6.6, we may assume that η(Tℓ) > 0 for all ℓ ∈ N0,

sin
e otherwise u = U(Tℓ) and the adaptive algorithm 
onverges with any rate by de�nition.

Proposition 3.6.8. The 
onforming dis
retization of problem (3.6.1) with residual

error estimator (3.6.6) satis�es under the assumptions of this se
tion

(i) stability and redu
tion (E1) with ̺(T , T̂ ) := Cpert‖∇(U(T ) − U(T̂ ))‖L2(Ω), ρred =

2−1/d
, and S(T , T̂ ) := T \ T̂ as well as Ŝ(T , T̂ ) := T̂ \ T if (3.6.4) is uniquely

solvable on T and T̂ ,

(ii) the re�nement axiom (T1) and the 
losure estimate (3.2.13).

The 
onstant Cpert > 0 depends only on the polynomial degree p ∈ N, Ω, and on L.

Proof. The proof of (i) in Proposition 3.6.1 (with ‖ · ‖ = ‖∇(·)‖L2(Ω)) is independent

of the bilinear form and thus remains valid. Moreover, (T1) and (3.2.13) are proved in

Lemma 3.2.3. �

Lemma 3.6.9. Let T′ ⊆ T denote a set of triangulations with the following property:

Any sequen
e (T ′
ℓ )ℓ∈N0 ⊆ T′

with T ′
ℓ 6= T ′

k for all ℓ 6= k satis�es limℓ→∞ ‖h(T ′
ℓ )‖L∞(Ω) = 0.

Then, there exists ε0 > 0 su
h that all but �nitely many T ∈ T′
satisfy

inf
V ∈Sp

0 (T )\{0}
sup

W∈Sp
0 (T )\{0}

b(V,W )

‖∇V ‖L2(Ω)‖∇W‖L2(Ω)

≥ ε0 (3.6.14)

as well as the Céa Lemma

‖∇(u− U(T ))‖L2(Ω) ≤ C
Céa

min
V ∈Sp

0 (T )
‖∇(u− V )‖L2(Ω) (3.6.15)

for some 
onstant C
Céa

> 0.

Proof. Assume that the statement (3.6.14) is wrong. Then, there exists a sequen
e of

triangulations T ′
ℓ and 
orresponding Vℓ ∈ Sp

0 (T ′
ℓ ) with ‖∇Vℓ‖L2(Ω) = 1 for all ℓ ∈ N0 su
h
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that

lim
ℓ→∞

sup
W∈Sp

0 (Tℓ)\{0}

|b(Vℓ,W )|
‖∇W‖L2(Ω)

= 0. (3.6.16)

The boundedness implies the existen
e of a weak 
onvergent subsequen
e Vℓk ⇀ V ∈ H1
0 (Ω)

where we assume without loss of generality that Tℓk 6= Tℓj for all k 6= j.

By assumption, there holds limℓ→∞ ‖h(T ′
ℓ )‖L∞(Ω) = 0 and hen
e

⋃
ℓ∈N0

Sp
0 (T ′

ℓ ) = H1
0 (Ω).

Let w ∈ H1
0 (Ω) and ε > 0. Then, the above guarantees some W ∈ Sp

0 (T ′
ℓ ) su
h that

|b(V, w)| ≤ |b(V,W )|+ |b(V, w −W )| ≤ |b(V,W )|+ ε = lim
ℓ→∞

|b(Vℓ,W )|+ ε.

Sin
e ε > 0 is arbitrary, and with (3.6.16), this shows b(V, w) = 0 for all w ∈ H1
0 (Ω).

De�niteness (3.6.10) then implies V = 0. On the other hand, the Gårding inequality shows

|b(Vℓk , Vℓk)|+ Cgrd‖Vℓk‖2L2(Ω) ≥ qgrd for all k ∈ N0.

The Relli
h 
ompa
tness theorem implies Vℓk → 0 in L2(Ω). Hen
e, the above together

with (3.6.16) shows the 
ontradi
tion

0 = lim
k→∞

(
|b(Vℓk , Vℓk)|+ Cgrd‖Vℓk‖2L2(Ω)

)
≥ qgrd.

This 
on
ludes the proof of (3.6.14). The Céa lemma 3.6.15 follows by standard arguments.

�

Lemma 3.6.10. There exists ℓ0 ∈ N su
h that 
ase (i1) in Algorithm 3.6.3 is not

exe
uted for any step ℓ ≥ ℓ0.

Proof. Assume that 
ase (i1) is exe
uted in in�nitely many steps ℓ ∈ N0. Sin
e 
ase (i1)

triggers a uniform re�nement, this implies that limℓ→∞ ‖h(Tℓ)‖L∞(Ω) = 0. Lemma 3.6.9 with

T′ =
{
Tℓ : ℓ ∈ N0

}
shows that for all but �nitely many Tℓ there holds (3.6.14). This implies

that (3.6.4) is uniquely solvable for all T = Tℓ and ℓ ≥ k for some k ∈ N0 and 
ontradi
ts

the assumption that 
ase (i1) is exe
uted in in�nitely many steps ℓ ∈ N0. �

Lemma 3.6.11. Algorithm 3.6.3 guarantees 
onvergen
e of estimator and error, i.e.

limℓ→∞ η(Tℓ) = 0 = limℓ→∞ ‖∇(u− U(Tℓ))‖L2(Ω).

Proof. First, we prove 
onvergen
e

‖∇(u− U(Tℓ))‖L2(Ω) → 0 as ℓ→ ∞. (3.6.17)

To that end, we distinguish two 
ases. First, assume that 
ase (i2) is exe
uted for in-

�nitely many steps ℓ ≥ ℓ0. Then, sin
e 
ase (i2) triggers uniform re�nement, it holds

limℓ→∞ ‖h(Tℓ)‖L∞(Ω) = 0. Lemma 3.6.9 with T′ =
{
Tℓ : ℓ ∈ N0

}
provides some k ∈ N0 su
h

that the Céa lemma (3.6.15) holds for all Tℓ with ℓ ≥ k. The fa
t u ∈ H1
0 (Ω) =

⋃∞
ℓ=0 Sp

0 (Tℓ)
implies minV ∈Sp

0 (Tℓ)
‖∇(u− V )‖L2(Ω) → 0 as ℓ→ ∞ and parti
ularly (3.6.17).

Se
ond, assume that 
ase (i2) is not exe
uted after some k ≥ ℓ0. Then, by de�nition,

there holds

ℓ−1∑

k=0

|Mk| ≤ (1 + log(ℓ+ 1))η(Tℓ)
−1/s

for all ℓ ≥ k. (3.6.18)

Sin
e |Mk| ≥ 1, this implies

η(Tℓ) ≤
((1 + log(ℓ+ 1))

ℓ

)s

→ 0 as ℓ→ ∞.
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With (3.6.13), this shows (3.6.17). It remains to show limℓ→∞ η(Tℓ) = 0 in the 
ase that


ase (i2) is exe
uted in�nitely many times. To that end, re
all that Proposition 3.6.8

shows (E1). Convergen
e (3.6.17) and Lemma 3.6.10 show limℓ→∞ ̺(Tℓ, Tℓ+1) = 0 and sin
e

Dör�er marking (3.6.12) is satis�ed for ea
h step, Lemma 2.3.6 implies limℓ→∞ η(Tℓ) = 0.
This 
on
ludes the proof. �

Lemma 3.6.12. Assume that there holds limℓ→∞ ‖h(Tℓ)‖L∞(Ω) = 0. Then, ‖η,T‖s <∞
for some s > 0 implies (T3).

Proof. We mimi
 the proof of Lemma 2.7.4. Let N ∈ N0 and de�ne the integer M :=
floor(N/(2C2

4)). The fa
t ‖η,T‖s <∞ allows to 
hoose some triangulation T N
0 ∈ T(M) with

η(T N
0 )(M + 1)s ≤ ‖η,T‖s.

If limN→∞ ‖h(T N
0 )‖L∞(Ω) = 0, set T N := T N

0 . Otherwise, 
onsider a sequen
e of uniformly

re�ned triangulations T unif
ℓ with T unif

0 = T0 and T unif
ℓ+1 := T(T unif

ℓ , T unif
ℓ ). Given N ∈ N0,

de�ne T N := T N
0 ⊕ T unif

ℓ , where ℓ is maximal with |T unif
ℓ \ T0| ≤ N/(2C4). The overlay

estimate (2.5.1) shows

|T N \ T0| ≤ |T N \ T unif
ℓ |+ |T unif

ℓ \ T0| ≤ C4|T N
0 \ T0|+N/(2C4) ≤ N/C4.

Moreover, there holds limN→∞ ‖h(T N )‖L∞(Ω) = 0. Given any Tℓ, ℓ ∈ N0, the overlay esti-

mate (2.5.1) states |(T N ⊕ Tℓ) \ Tℓ| ≤ N and hen
e T N ⊕ Tℓ ∈ T(Tℓ, N). Lemma 3.6.9 with

T′ :=
{
Tℓ : ℓ ∈ N0

}
∪
{
T N ⊕ Tℓ : ℓ, N ∈ N0

}
shows that (3.6.4) is uniquely solvable and

the Céa lemma (3.6.15) holds for all but �nitely many T ∈ T′
. This, together with (3.6.13)

and (E1) from Proposition 3.6.8, implies

η(T N ⊕ Tℓ) . η(T N) + ̺(T N , T N ⊕ Tℓ) . η(T N) + ‖∇(u− U(T N ))‖L2(Ω) . η(T N)

for all N, ℓ ≥ k and some k ∈ N0. Consequently, there holds

η(T N ⊕ T )(N + 1)s . η(T N )(M + 1)s ≤ ‖λ,T‖s
and we obtain

inf
T̂ ∈T(Tℓ,N)

(N + 1)sη(T̂ ) . ‖λ,T‖s.

This 
on
ludes the proof. �

Lemma 3.6.13. There exists ℓ1 ∈ N su
h that 
ase (i2) in Algorithm 3.6.3 is not

exe
uted for any step ℓ ≥ ℓ1.

Proof. Assume that 
ase (i2) is exe
uted in�nitely many times. Then, there holds⋃∞
ℓ=0 Sp

0 (Tℓ) = H1
0 (Ω) or equivalently limℓ→∞ ‖h(Tℓ)‖L∞(Ω) = 0. With this, Theorem 7.3.4

proves (E2) for all ℓ ≥ ℓ0.
Proposition 3.6.8 together with Lemma 3.6.10 and Lemma 3.6.12 prove (E1) and (T1)�

(T3) for the parameter s 
hosen in Algorithm 3.6.3. Lemma 2.3.13 then shows that for all

T = Tℓ, there exists T̂ℓ ∈ T(Tℓ) with (2.3.20). Moreover, Lemma 3.6.9 with T′ :=
{
Tℓ : ℓ ∈

N0

}
∪
{
T̂ℓ : ℓ ∈ N0

}
implies the dis
rete inf-sup 
ondition (3.6.14) for all Tℓ and T̂ℓ with

ℓ ≥ k for some k ∈ N0.
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Therefore, the proof of dis
rete reliability (E3) of Proposition 3.6.1 remains valid for all

T = Tℓ and T̂ = T̂ℓ, ℓ ≥ k sin
e (3.6.14) implies

‖∇(U(Tℓ)− U(T̂ℓ))‖L2(Ω) . sup
W∈Sp

0 (T̂ℓ)

b(U(Tℓ)− U(T̂ℓ) , W )

‖∇W‖L2(Ω)

.

The remaining proof of (E3) follows as in the referen
es given in the proof of Proposi-

tion 3.6.1. With this, Proposition 2.3.10 (and Remark 2.3.11) shows the impli
ation (4.2.2)

for T = Tℓ and T̂ = T̂ℓ for all ℓ ≥ k and therefore (2.3.21) holds, too.

Sin
e Mℓ satis�es Dör�er marking (3.6.12) for all ℓ ≥ ℓ0 with (almost) minimal 
ardi-

nality, there holds |Mℓ| . |R(Tℓ, T̂ℓ)| with the set R(Tℓ, T̂ℓ) from (2.3.21).

Theorem 2.3.3 (ii) implies R-linear 
onvergen
e (2.3.2) for all ℓ ≥ k and Lemma 2.3.8

shows

ℓ−1∑

k=ℓ0

η(Tk)
−1/s ≤ C2η(Tℓ)

−1/s.

With this and (2.3.21), we obtain

ℓ−1∑

k=ℓ0

|Mk| .
ℓ−1∑

k=ℓ0

|R(Tk, T̂k)| . Capprox(s)
ℓ−1∑

k=ℓ0

η(Tk)
−1/s . Capprox(s)η(Tℓ)

−1/s.

Sin
e Capprox(s) <∞ by (T3), the above implies for all ℓ ≥ ℓ0 for whi
h 
ase (i2) is exe
uted

(1 + log(ℓ+ 1)) . Capprox(s)
1/s.

Hen
e, the number of steps ℓ ≥ ℓ0 for whi
h 
ase (i2) is exe
uted, must be �nite. This,

however, 
ontradi
ts the assumption and thus 
on
ludes the proof. �

Theorem 3.6.14. Given θ < θ⋆ = (1 − εdrel)/(1 + C2
drel), Algorithm 3.6.3 
onverges

with almost optimal rate s− ε for all ε > 0 (where s is 
hosen in Algorithm 3.6.3 su
h that

‖η,T‖s <∞) in the sense

coptCapprox(s− ε) ≤ sup
ℓ∈N0

η(Tℓ)

(|Tℓ \ T0|+ 1)−s+ε
≤ Copt, (3.6.19)

where Copt > 0 depends only on ε, ℓ0, ℓ1, |T0|, Cclosure and copt is de�ned in Theorem 2.3.3.

Proof. Lemma 3.6.10 and Lemma 3.6.13 show that after step k := max{ℓ0, ℓ1} only


ase (i3) is exe
uted. This parti
ularly implies

ℓ−1∑

k=0

|Mk| ≤ (1 + log(ℓ+ 1))η(Tℓ)
−1/s

for all ℓ > k.

The 
losure estimate (T2) and the fa
t that 
ase (i1)�(i2) is exe
uted only �nitely many

times show

|Tℓ \ T0|+ 1 .

ℓ−1∑

k=0

|Mk|+ 1 . (1 + log(ℓ+ 1))η(Tℓ)
−1/s

for all ℓ ∈ N0.

This implies

η(Tℓ) . (1 + log(ℓ+ 1))s(|Tℓ \ T0|+ 1)−s.

Sin
e |Tℓ \T0|+1 ≥ ℓ+1, and supℓ∈N0
log(ℓ+1)s(ℓ+1)−ε <∞, this implies the upper bound

in (3.6.19). The lower bound follows as in the proof of Theorem 2.3.3 (iii). �
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Consequen
e 3.6.15. Algorithm 3.6.3 
onverges with optimal rates in the sense of

Theorem (3.6.14).

3.7. Example 3: Conforming FEM for 
ertain strongly-monotone operators

The result of this se
tion is �rst found in [46℄. A �rst version of this se
tion 
an be found

in the re
ent own work [24, Se
tion 10℄. We 
onsider the following non-linear operator

Lu(x) := −divA(x,∇u(x)) + g(x, u(x),∇u(x)),
for fun
tions A : Ω × Rd → Rd

and g : Ω × R × Rd → R. We assume that A(·,∇u),
g(·, u,∇u) ∈ L2(Ω) for all u ∈ H1

0 (Ω). On the polyhedral domain Ω ⊆ Rd
, d ≥ 2 and given

f ∈ L2(Ω), the weak formulation of

Lu = f in Ω,

u = 0 on ∂Ω,
(3.7.1)

reads: Find u ∈ H1
0 (Ω) su
h that

〈Lu , v〉 =
∫

Ω

A(x,∇u(x)) · ∇v(x) + g(x, u(x),∇u(x))v(x) dx =

∫

Ω

fv dx (3.7.2)

for all v ∈ H1
0(Ω). De�ne two auxiliary operators A, C : H1

0 (Ω) → H−1(Ω) as

Av := −divA(·,∇v) and Cv := g(·, v,∇v) for all v ∈ H1
0 (Ω).

Let T(·, ·) denote the bise
tion strategy from Se
tion 3.2.8. Given T ∈ T and p ∈ N, the
dis
rete form of (3.7.2) reads: Find U(T ) ∈ Sp

0 (T ) su
h that

〈LU(T ) , V 〉 =
∫

Ω

fV dx for all V ∈ Sp
0 (T ). (3.7.3)

We formally de�ne the residual error estimator for a triangulation T ∈ T and all T ∈ T by

ηT (T )2 := |T |2/d‖L|TUℓ − f‖2L2(T ) + |T |1/d‖[A(·,∇Uℓ) · n]‖2L2(∂T∩Ω). (3.7.4)

The solvability and uniqueness of (3.7.2) as well as the regularity assumptions needed su
h

that (3.7.4) is well-de�ned are part of the subsequent se
tions.

3.7.0.1. Regularity assumptions. We 
onsider the frame of strongly monotone operators

and require the following regularity assumptions on L:
‖A∇w −A∇v‖H−1(Ω) ≤ C15‖∇(w − v)‖L2(Ω), (3.7.5a)

‖Cw − Cv‖L2(Ω) ≤ C15‖∇(w − v)‖L2(Ω) (3.7.5b)

for all w, v ∈ H1
0 (Ω) and some 
onstant C15 > 0 as well as

〈Lw −Lv , w − v〉 ≥ C16‖∇(w − v)‖2L2(Ω) (3.7.6)

for all w, v ∈ H1
0 (Ω) and some 
onstant C16 > 0. These assumptions, in parti
ular, allow to

apply the main theorem on strongly monotone operators [86, Theorem 26.A℄ and to obtain

the unique solvability of (3.7.2) as well as of (3.7.3). Additionally, (3.7.5)�(3.7.6) guarantee

that the norms of the residual and the error are equivalent, i.e.,

‖Lu−LU(T )‖H−1(Ω) ≃ ‖∇(u− U(T ))‖L2(Ω) for all T ∈ T,

‖LU(T̂ )−LU(T )‖H−1(Ω) ≃ ‖∇(U(T̂ )− U(T ))‖L2(Ω) for all T̂ ∈ T(T ).
(3.7.7)

We also obtain the Céa lemma

‖∇(u− U(T ))‖L2(Ω) ≤ 2C15C
−1
16 min

V ∈Sp
0 (T )

‖∇(u− V )‖L2(Ω). (3.7.8)
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Moreover, we require that (3.7.4) is well-de�ned and satis�es (E1) with ̺(T , T̂ ) ≃ ‖∇(U(T )−
U(T̂ ))‖L2(Ω). For possible non-linearities A whi
h allow for (2.3.6), we refer to Lemma 3.7.2

below.

We assume that L : H1
0 (Ω) → H−1(Ω) as well as A : H1

0 (Ω) → H−1(Ω) are twi
e Fré
het
di�erentiable, i.e., there exist

DL, DA :H1
0 (Ω) → L(H1

0 (Ω), H
−1(Ω)),

D2L, D2A :H1
0 (Ω) → L

(
H1

0 (Ω), L(H
1
0 (Ω), H

−1(Ω))
)
.

(3.7.9)

The se
ond derivative should be bounded lo
ally around the solution u of (3.7.2), i.e., there

exists εℓoc > 0 with

C17 := sup
‖∇(u−v)‖L2(Ω)<εℓoc

(
‖D2L(v)‖

L
(
H1

0 (Ω),L(H1
0 (Ω),H−1(Ω))

)

+ ‖D2A(v)‖
L
(
H1

0 (Ω),L(H1
0 (Ω),H−1(Ω))

)
)
<∞.

(3.7.10)

Finally, we assume that DA(v) : H1
0 (Ω) → H−1(Ω) is symmetri
 for all v ∈ H1

0 (Ω), i.e., for
all w1, w2 ∈ H1

0 (Ω) holds

〈DA(v)(w1) , w2〉 = 〈DA(v)(w2) , w1〉. (3.7.11)

Remark 3.7.1. Note that if A : Ω × Rd → Rd
and g : Ω × R × Rd → R are twi
e

di�erentiable, and if the Ja
obian JyA(x, y) ∈ Rd×d
additionally is a symmetri
 matrix,

then L and A satisfy (3.7.9) as well as (3.7.10). Moreover, DA(v) is symmetri
 for all

v ∈ H1
0 (Ω), sin
e there holds for w ∈ H1

0 (Ω)

DA(v)(w) = divx

((
JyA(x,∇v(x))

)(
∇xw(x)

))
.

We stress that the symmetry assumption (3.7.11) posed on DA 
overs in parti
ular the

operator 
lass from [54℄, where

A(x, y) = α(x, |y|2)y
for some fun
tion α : Ω × R → R with 
ontinuous derivative t 7→ ∂tα(x, t). In 
ontrast

to [54℄ where α(x, ·) ∈ C1(R) is su�
ient, the analysis here 
overs a wider 
lass of operators,

however, for this spe
ial 
ase needs α(x, ·) ∈ C2(R) to guarantee (3.7.10).

Lemma 3.7.2. Su�
ient regularity assumptions in addition to (3.7.5b) and (3.7.6) to

guarantee that the error estimator (3.7.4) is well-de�ned and satis�es (E1) are, for instan
e,

either of the following 
onditions (i) and (ii):

(i) A(·, ·) : Ω × Rd → Rd
is Lips
hitz 
ontinuous and there exists a 
onstant C18 > 0

su
h that for all T ∈ T and all V,W ∈ Sp
0 (T ) there holds divA(·, V (·)) ∈ L2(Ω) as

well as

‖div|T
(
A(·, V (·))−A(·,W (·))

)
‖L2(T ) ≤ C18‖V −W‖H2(T ) for all T ∈ T . (3.7.12)

(ii) There holds p = 1 (lowest-order 
ase) as well as

A(x, y) = A(y) for all x ∈ Ω, y ∈ Rd,

and additionally A(·) : Rd → Rd
is Lips
hitz 
ontinuous.
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Proof. The jump terms in (3.7.4) are well-de�ned in both 
ases (i) and (ii) sin
e

A(·,∇U(·)) is a pie
ewise Lips
hitz 
ontinuous fun
tion. Moreover, this immediately shows

that divA(·,∇U(T )(·)) ∈ L∞(T ) ⊂ L2(T ) for all T ∈ T . Therefore, (3.7.4) is well-de�ned.
Given T+, T− ∈ T as well as W,V ∈ Sp

0 (Tℓ), the Lips
hitz 
ontinuity also proves the

following point wise estimate for all x ∈ T+ ∩ T−
|[(A(x,∇W (x))−A(x,∇V (x))) · n]|

≤
∣∣∣
(
A(x, (∇W )|T+(x))−A(x, (∇V )|T+(x))

)
· n|T+

∣∣∣

+
∣∣∣
(
A(x, (∇W )|T−(x))−A(x, (∇V )|T−(x))

)
· n|T−

∣∣∣

.
∣∣∣(∇W )|T+(x)− (∇V (x))|T+

∣∣∣+
∣∣∣(∇W )|T−(x)− (∇V )|T−(x)

∣∣∣.

Combining the estimate above with the tra
e inequality for polynomials, we obtain

|T+|1/d‖[(A(·,∇W )−A(·,∇V )) · n]‖2L2(T+∩T−) . ‖∇(W − V )‖2L2(T+∪T−). (3.7.13)

This hidden 
onstant depends only on the polynomial degree p ∈ N as well as the Lips
hitz


ontinuity of A(·, ·) and the shape regularity γ(T ). It remains to prove a similar estimate

for the volume residual in (3.7.4), i.e.,

∑

T∈T

|T |2/d‖L|TW −L|TV ‖2L2(T ) . ‖∇(W − V )‖2L2(Ω) for all T ∈ T . (3.7.14)

In 
ase of (i), this follows immediately from the 
ombination of (3.7.12) and (3.7.5b) together

with a standard inverse estimate. In 
ase of (ii), we observe that ∇Uℓ is pie
ewise 
onstant.

Therefore, A(∇V ) is pie
ewise 
onstant and hen
e A(∇V ) = divA(∇V (·)) = 0. Thus,

L|T = (CV )|T , and it su�
es to apply (3.7.5b) to prove (3.7.14). The estimates (3.7.13)�

(3.7.14) imply stability and redu
tion (E1) with ̺(T , T̂ ) ≃ ‖∇(U(T ) − U(T̂ ))‖L2(Ω) and

S(T , T̂ ) = T \ T̂ as well as Ŝ(T , T̂ ) = T̂ \ T . To see this, note that η(·) is a weighted

error estimator in the sense of Se
tion 3.4 and satis�es homogeneity (3.4.1) with r− = 1 and
r+ = 1/2. Moreover, stability (3.4.2) holds for some S ⊆ T and h ≤ h(T ) by

∣∣∣
(∑

T∈Ŝ

ηT (T̂ , h)2
)1/2

−
(∑

T∈S

ηT (T , h)2
)1/2∣∣∣

≤
(∑

T∈S

h(T )|2T‖L|TU(T )− L|TU(T̂ )‖2L2(T )

)1/2

+
(∑

T∈S

h(T )|T‖[(A(·,∇U(T ))−A(·,∇U(T̂ ))) · n]‖2L2(∂T∩Ω)

)1/2

. ‖∇(U(T )− U(T̂ ))‖2L2(Ω).

Therefore, Proposition 3.4.1 applies and proves (E1). �

3.7.0.2. Proof of the axioms.

Lemma 3.7.3. The residual error estimator η(·) satis�es dis
rete reliability (E3) and

reliability (2.4.1) with err(T ) := ‖∇(u− U(T ))‖L2(Ω). Moreover, there holds 
onvergen
e

‖∇(u− U(Tℓ))‖L2(Ω) → 0 as ℓ→ ∞. (3.7.15)
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Proof. The residual error estimator η(·) is well-de�ned under the assumptions in Se
-

tion 3.7.0.1. With the equivalen
e (3.7.7), the standard arguments from [35℄ apply to prove

dis
rete reliability (E3). Also the reliability (2.4.1) follows with standard arguments from

the literature. The estimator redu
tion (2.3.6) holds by assumption in Se
tion 3.7.0.1. The

assumptions for a priori 
onvergen
e of Se
tion 2.7.1 are satis�ed. The main theorem on

strongly monotone operators [86, Theorem 26.A℄ proves that there exists a solution U∞

of (3.7.3) when Sp
0 (T ) is ex
hanged with X∞ :=

⋃
ℓ∈N0

Sp
0 (Tℓ). Sin
e the U(Tℓ) are also

Galerkin approximations to U∞ ∈ X∞, the Céa lemma (3.7.8) implies (2.7.1). Hen
e the re-

quirements of Lemma 2.7.1 are satis�ed and we obtain limℓ→∞ ̺(Tℓ, Tℓ+1) = 0. Lemma 2.3.6

together with reliability (2.4.1) proves the 
onvergen
e. �

Proposition 3.7.4. The 
onforming dis
retization of (3.7.1) with residual error esti-

mator (3.7.4) satis�es

(i) stability and redu
tion (E1) with ̺(T , T̂ ) ≃ ‖∇(U(T ) − U(T̂ ))‖L2(Ω) as well as

S(T , T̂ ) = T \ T̂ and Ŝ(T , T̂ ) = T̂ \ T ,

(ii) general quasi-orthogonality (E2),

(iii) dis
rete reliability (E3) with R(T , T̂ ) = T \T̂ , κdlr = ∞, and εdrel = 0,
(iv) the re�nement axioms (T1)�(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all

s > 0 and the overlay estimate (2.5.1).

The 
onstants Cdrel, Cqo depend only on the polynomial degree p ∈ N, T0, Ω, and on L.
Proof. Stability and redu
tion (i) follows by assumption. Dis
rete reliability (iii) is

proved in Lemma 3.7.3. The re�nement axioms (iv) follow as for the Poisson model problem

from Se
tion 3.5.1. The proof of the general quasi-orthogonality (E2) follows with Theo-

rem 7.4.5. This 
on
ludes the proof. �

Consequen
e 3.7.5. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads

to 
onvergen
e with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3 and

optimal 
omplexity in the sense of Theorem 2.5.1. �
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CHAPTER 4

Abstra
t Theory: Equivalent Error Estimators

4.1. Introdu
tion, state of the art & outline

This se
tor extends the abstra
t approa
h of Chapter 2 and in
ludes equivalent error

estimators. The idea behind is that the axioms do not have to be satis�ed by the error

estimator itself, but only by an equivalent error estimator. Of 
ourse, this observation 
ould

be in
luded dire
tly into the axioms in Chapter 2. However, we think that this separate

presentation of the arguments is 
learer and is easier to understand. The overall idea is the

following: If a 
ertain estimator is used for 
omputations, this is often be
ause it is easy

to implement or it possesses some ni
e numeri
al features. This, however, is often in stark


ontrast with the analyti
 features in terms of Chapter 2 of the error estimator. For example,

an error estimator might satisfy the 
ontra
tion in (E1) on average, but fails to satisfy it

in ea
h single step (see, e.g., Se
tion 5.2 for some examples). Moreover, any 
omputation

is prone to numeri
al errors (e.g., round-o� errors). This means that any implementation

of the adaptive algorithm will, in fa
t, 
ompute an approximate error estimator (this is of

even more signi�
an
e if iterative solvers are used; see Se
tion 4.4 for details). Hen
e, the


omputed error estimator will satisfy the axioms only up to some error and only the exa
t

(theoreti
al) error estimator �ts into the abstra
t framework of Chapter 2.

The framework of this 
hapter allows to prove the axioms for some equivalent, well-

behaving, error estimator, and gives results for the error estimator in use. This idea �rstly

appeared in [60℄, where several error estimators equivalent to the residual error estimator

for the Poisson problem of Se
tion 3.5.1 are analyzed (see also the examples in Se
tion 5.2).

A similar version of this 
hapter 
an be found in the re
ent own work [24℄. However, this

work simpli�es the arguments and generalizes the results.

The remainder of the 
hapter is organized as follows: Se
tion 4.2 states the assump-

tions on the equivalent error estimator and Se
tion 4.3 given the main result on optimal


onvergen
e rates. Se
tion 4.4 treats the parti
ular 
ase of approximate 
omputations and

Se
tion 4.5 proves the assumptions of Se
tion 4.2 for the spe
ial 
ase of weighted error es-

timators. Finally, Se
tion 4.5.4 proves the existen
e of a super 
ontra
tive weight fun
tion,

whi
h might be of independent interest.

4.2. Abstra
t setting

4.2.1. Equivalent error estimator. Re
all the sets T∞ and T from Se
tion 2.2.1.

We assume that T̃ is a set of triangulations whi
h is based on a set T̃∞ (where we allow

T̃∞ = T∞ as well as T̃ = T) and a re�nement strategy T̃(·, ·) (also T̃(·, ·) = T(·, ·) is allowed).
We assume that there is a one-to-one 
orresponden
e between T ∈ T and T̃ ∈ T̃ and that

there exists a 
onstant Ceq ≥ 1 su
h that C−1
eq |T | ≤ |T̃ | ≤ Ceq|T |.

Additionally to the error estimator from Se
tion 2.2.2, we de�ne an equivalent error

estimator as a fun
tion η̃(·) : T̃ → ⋃
T̃ ∈T̃

(
[0,∞)T̃

)
(where AB

denotes the set of fun
tions
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mapping B to A) with η̃(T̃ ) : T̃ → [0,∞) for all T̃ ∈ T̃. As for the error estimator, we also

write η̃(T̃ ) :=
(∑

T∈T̃ η̃T (T )2
)1/2

, whi
h is the global equivalent error estimator.

Suppose that the error estimators are equivalent in the sense that there exists Ceq ≥ 1
su
h that

C−1
eq η̃(T̃ )2 ≤ η(T )2 ≤ Ceqη̃(T̃ )2 for all T ∈ T, (4.2.1)

and su
h that for all M̃ ⊆ T̃ ∈ T̃ and all 0 < θ̃ ≤ 1, there exists M ⊆ T (where T is

uniquely determined by T̃ ) with C−1
eq |M̃| ≤ |M| ≤ Ceq|M̃| and

θ̃ η̃(T̃ )2 ≤
∑

T∈M̃

η̃T (T̃ )2 =⇒ C−1
eq θ̃ η(T )2 ≤

∑

T∈M

ηT (T )2. (4.2.2a)

Conversely, for all M ⊆ T ∈ T and all 0 < θ ≤ 1, there exists M ⊆ T̃ (where T̃ is uniquely

determined by T ) with C−1
eq |M| ≤ |M| ≤ Ceq|M| and

θ η(T̃ )2 ≤
∑

T∈M

ηT (T )2 =⇒ C−1
eq θ η̃(T̃ )2 ≤

∑

T∈M

η̃T (T̃ )2. (4.2.2b)

4.2.2. Equivalent adaptive approximation problem. The goal of the equivalent

adaptive approximation problem is to �nd a sequen
e of triangulations T̃ℓ, ℓ ∈ N0 su
h that

sup
ℓ∈N0

η̃(T̃ℓ)(|T̃ℓ|+ 1)s <∞

for s > 0 as large as possible.

4.2.3. Adaptive algorithm. The algorithm to solve the equivalent adaptive approxi-

mation problem from Se
tion 4.2.2 reads

Algorithm 4.2.1. Input: Initial triangulation T̃0 and bulk parameter 0 < θ̃ ≤ 1.
Loop: For ℓ = 0, 1, 2, . . . do (i)− (iii).

(i) Compute re�nement indi
ators η̃T (T̃ℓ) for all T ∈ T̃ℓ.

(ii) Determine set M̃ℓ ⊆ T̃ℓ of (up to the multipli
ative 
onstant Cmin) minimal 
ardi-

nality su
h that

θ̃ η̃(T̃ℓ)
2 ≤

∑

T∈M̃ℓ

η̃T (T̃ℓ)
2. (4.2.3)

(iii) De�ne the next triangulation as T̃ℓ+1 := T̃(T̃ℓ,M̃ℓ).

Output: Error estimators η̃(T̃ℓ) for all ℓ ∈ N0.

4.3. Optimal 
onvergen
e

In the following, the notion that a 
ertain subset A ⊆ {(E1), . . . , (E3), (T1), . . . , (T3)}
is satis�ed means that the axioms in A are satis�ed for the error estimator η(·), the 
orre-
sponding re�nement strategy T(·, ·), and the respe
tive 
onstants from Se
tion 2.3.1. The

triangulations (Tℓ)ℓ∈N0 in (E2), (T1)�(T3) are determined by (T̃ℓ)ℓ∈N0 via the fun
tion (̃·).
Theorem 4.3.1. Suppose that the error estimator η(·) satis�es the estimator redu
-

tion (2.3.8). Then, (i)�(iii) holds
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(i) Assume limℓ→∞ ̺(Tℓ, Tℓ+1) = 0 (with ̺(·, ·) from Se
tion 2.3.1). Then, for all 0 <

θ̃ ≤ 1, the equivalent estimator is 
onvergent in the sense

lim
ℓ→∞

η̃(T̃ℓ) = 0. (4.3.1)

(ii) Suppose (E2) is satis�ed by η(·). Then, for all 0 < θ̃ ≤ 1, the equivalent estimator

is R-linear 
onvergent in the sense that there exists 0 < ρ̃conv < 1 and C̃conv > 0
su
h that

η̃(T̃ℓ+j)
2 ≤ C̃convρ̃

j
conv η̃(T̃ℓ)

2
for all j, ℓ ∈ N0. (4.3.2)

(iii) Suppose that R-linear 
onvergen
e (4.3.2) holds and that (E1a), (E3) and (T1)�(T3)

are satis�ed by η(·) and some s > 0. Then 0 < θ̃ < C−1
eq θ⋆ = C−1

eq (1−εdrel)/(1+C2
drel)

implies quasi-optimal 
onvergen
e of the estimator in the sense of

c̃optCapprox(s) ≤ sup
ℓ∈N0

η̃(T̃ℓ)

(|T̃ℓ \ T̃0|+ 1)−s
≤ C̃optCapprox(s), (4.3.3)

where the lower bound requires only (T1) to hold.

The 
onstants C̃conv, ρ̃conv > 0 depend only on ρred, Cqo, εqo, Ceq, and on θ̃. The 
onstant

C̃opt > 0 depends additionally on C̃conv, ρ̃conv, Cmin, Cref , Cclosure, Cdrel, εdrel, and on s, while
c̃opt > 0 depends only on Cson and |T0|.

Proof of Theorem 4.3.1 (i). Lemma 2.3.6 for η(·) shows limℓ→∞ η(Tℓ) = 0. The

global equivalen
e (4.2.1) 
on
ludes the proof. �

Proof of Theorem 4.3.1 (ii). Proposition 2.3.9 together with the global equivalen
e

estimate (4.2.1) implies

η̃(T̃ℓ+j)
2 ≤ Ceqη(Tℓ+j)

2 ≤ CeqC3ρ
j
1η(Tℓ)

2 ≤ C2
eqC3ρ

j
1η̃(T̃ℓ)

2

for all ℓ, j ∈ N0. This 
on
ludes the proof. �

Lemma 4.3.2. Re
all M̃ℓ ⊆ T̃ℓ from Algorithm 4.2.1. Let M0
ℓ ⊆ Tℓ (where Tℓ is

uniquely determined by T̃ℓ, 
f. Se
tion 4.2.1) be a set with minimal 
ardinality whi
h satis�es

Ceqθ̃η(Tℓ)
2 ≤

∑

T∈M0
ℓ

ηT (Tℓ)
2. (4.3.4)

Then, the set Mℓ from (4.2.2a) satis�es |Mℓ| ≤ CminCeq|M0
ℓ | as well as

C−1
eq θ̃η(Tℓ)

2 ≤
∑

T∈Mℓ

ηT (Tℓ)
2. (4.3.5)

Proof. With (4.3.4), the impli
ation (4.2.2b) states the existen
e of M0

ℓ ⊆ T̃ with

|M0

ℓ | ≤ Ceq|M0
ℓ | and

θ̃ η̃(T̃ℓ)
2 ≤

∑

T∈M
0
ℓ

η̃T (T̃ℓ)
2.

Sin
e M̃ℓ is a set of almost minimal 
ardinality whi
h satis�es (4.2.3), there holds C−1
eq |Mℓ| ≤

|M̃ℓ| ≤ Cmin|M0

ℓ | ≤ CminCeq|M0
ℓ |. The impli
ation (4.2.2a) shows (4.3.5). �
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Proof of Theorem 4.3.1 (iii). Stability (E1a) and dis
rete reliability (E3) guarantee

that (2.3.18) holds for all 0 < θ0 < θ⋆ and some 0 < κ0 < 1. The assumption θ̃ < C−1
eq θ

allows to 
hoose θ0 = Ceqθ̃. This implies that (2.3.20)�(2.3.21) of Lemma 2.3.13 are valid

for θ = Ceqθ̃. Sin
e R(Tℓ, T̂ℓ) from 2.3.21 satis�es (2.3.21b) for all 0 < θ ≤ θ0 = Ceqθ̃, (4.3.4)

shows that |M0
ℓ | ≤ |R(Tℓ, T̂ℓ)|. Hen
e, Lemma 4.3.2 implies |Mℓ| ≤ CminCeq|R(Tℓ, T̂ℓ)|. By

assumption (4.3.2), Lemma 2.3.8 implies that (2.3.12)�(2.3.14) hold for αℓ := η(Tℓ). The

appli
ation of Proposition 2.3.14�2.3.15 shows (2.3.3) for all θ̃ < C−1
eq θ⋆. Additionally, there

holds

|Tℓ \ T0|+ 1 ≤ |Tℓ|+ 1 ≤ Ceq(|T̃ℓ|+ 1) . |T̃ℓ \ T̃0|+ 1 . |Tℓ \ T0|+ 1,

where the hidden 
onstants depend only on Ceq and |T0|. Together with (4.2.1), this 
on
ludes
the proof. �

4.4. Inexa
t Solve

This se
tion 
overs a parti
ular 
ase of the abstra
t theory from Se
tion 4.2. To that end,

let T̃ = T and T̃ = T . We assume that there exists an approximate error estimator η̃(·),
whi
h results from an inexa
t 
omputation of the exa
t error estimator η(·) and satis�es for

all T ∈ T and all S ⊆ T
∣∣∣
(∑

T∈S

ηT (T )2
)1/2

−
(∑

T∈S

η̃T (T )2
)1/2∣∣∣ ≤ ϑη̃(T ) (4.4.1)

for some 
onstant 0 < ϑ < 1. Naturally, it is 
onvenient to 
he
k the axioms (E1)�(E3)

for the exa
t error estimator rather than in
orporating the numeri
al error bounds into the

analysis.

4.4.1. Lo
al and global equivalen
e.

Lemma 4.4.1. Under (4.4.1), there exists Ceq > 0 whi
h depends only on ϑ < 1, su
h

that the approximate error estimator η̃(·) satis�es (4.2.1) as well as (4.2.2) with M = M̃ =
M.

Proof. The global equivalen
e (4.2.1) follows dire
tly from (4.4.1) with S = T , i.e.,
(1− ϑ)η̃(T ) ≤ η(T ) ≤ (1 + ϑ)η̃(T ).

For (4.2.2a), set S = M to obtain for all δ > 0 with (1 + δ)ϑ < 1
∑

T∈M

η̃T (T )2 ≤ (1 + δ−1)
∑

T∈M

ηT (T )2 + (1 + δ)ϑ2
∑

T∈M̃

η̃T (T )2.

Moreover, there holds

θ̃η(T )2 ≤ θ̃(1 + ϑ)2η̃(T )2 ≤ (1 + ϑ)2
∑

T∈M̃

η̃T (T )2.

Together, this implies

θ̃η(T )2 ≤ (1 + ϑ)2(1− (1 + δ)ϑ2)−1(1 + δ−1)
∑

T∈M

ηT (T )2.
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Analogously, one derives (4.2.2b), i.e.,

θη̃(T )2 ≤ (1− ϑ)2(1 + 2ϑ2)−12
∑

T∈M̃

η̃T (T )2.

With Ceq := max{(1+ϑ), (1−ϑ)−1, (1+ϑ)2(1− (1+ δ)ϑ2)−1(1+ δ−1), 2(1−ϑ)2(1+2ϑ2)−1},
we 
on
lude the proof. �

4.4.2. Optimal 
onvergen
e.

Proposition 4.4.2. Let stability and redu
tion (E1) be satis�ed. Then, η(·) satis�es
estimator redu
tion (2.3.8).

Proof. Lemma 4.4.1 shows that Dör�er marking (2.2.1) holds with θ = Ceqθ̃. Hen
e,

Lemma 2.3.5 
on
ludes the proof. �

In the following, the notion that a 
ertain subset A ⊆ {(E1), . . . , (E3), (T1), . . . , (T3)}
is satis�ed means that the axioms in A are satis�ed for the error estimator η(·), the 
orre-
sponding re�nement strategy T(·, ·), and the respe
tive 
onstants from Se
tion 2.3.1. The

triangulations (Tℓ)ℓ∈N0 in (E2), (T1)�(T3) are determined by (Tℓ)ℓ∈N0 = (T̃ℓ)ℓ∈N0 from Algo-

rithm 4.2.1.

Theorem 4.4.3. Suppose that the error estimator η(·) satis�es (E1).

(i) Assume limℓ→∞ ̺(Tℓ, Tℓ+1) = 0 (with ̺(·, ·) from Se
tion 2.3.1). Then, for all 0 <

θ̃ ≤ 1, the equivalent estimator is 
onvergent in the sense

lim
ℓ→∞

η̃(T̃ℓ) = 0.

(ii) Suppose (E2) is satis�ed by η(·). Then, for all 0 < θ̃ ≤ 1, the equivalent estimator

is R-linear 
onvergent in the sense that there exists 0 < ρ̃conv < 1 and C̃conv > 0
su
h that

η̃(T̃ℓ+j)
2 ≤ C̃convρ̃

j
conv η̃(T̃ℓ)

2
for all j, ℓ ∈ N0.

(iii) Suppose that (E1a), (E2)�(E3) and (T1)�(T3) are satis�ed by η(·) for some s > 0.

Then 0 < θ̃ < C−1
eq θ⋆ = C−1

eq (1− εdrel)/(1 + C2
drel) implies quasi-optimal 
onvergen
e

of the estimator in the sense of

c̃optCapprox(s) ≤ sup
ℓ∈N0

η̃(T̃ℓ)

(|T̃ℓ \ T̃0|+ 1)−s
≤ C̃optCapprox(s),

where the lower bound requires only (T1) to hold.

The 
onstants C̃conv, ρ̃conv > 0 depend only on ρred, Cqo, εqo, and on θ, ϑ. The 
onstant

C̃opt > 0 depends additionally on Cmin, Cref , Cclosure, Cdrel, εdrel, and on s, while c̃opt > 0
depends only on Cson and |T0|.

Proof. Lemma 4.4.1 proves that the assumptions in Se
tion 4.2.1 are satis�ed and

Proposition 4.4.2 shows that the estimator redu
tion holds. Hen
e, the requirements of

Theorem 4.3.1 are ful�lled. This 
on
ludes the proof. �
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4.5. Weighted error estimators

This se
tion 
overs the parti
ular 
ase of weighted error estimators of the abstra
t theory

from Se
tion 4.2. Examples whi
h �t in the abstra
t framework are presented in Se
tion 5.2.

To that end, we assume the 
onventions and notation from Se
tion 3.4, parti
ularly, the

existen
e of a 
ertain natural weight fun
tion h(T ) : Ω → (0,∞) for all T ∈ T su
h that

‖h(T )‖L∞(Ω) < ∞ and h(T ) is 
ontinuous on Ω \ ⋃
T∈T ∂T as well as the assumptions

on the triangulations in Se
tion 3.2.1. In the following maxx∈T g := ess supx∈T g(x) and

minx∈T g := ess infx∈T g(x) denote the essential supremum resp. essential in�mum of the

fun
tion g on the element T ∈ T . In addition to Se
tion 3.4, this se
tion assumes the

following: There exist 
onstants 0 < qcon < 1 and Csum ≥ 1 su
h that

(i) The weight fun
tion h(·) satis�es for all T ∈ T ∈ T, all T̂ ∈ T(T )

h(T̂ )|T 6= h(T )|T or T /∈ T̂
=⇒

max
x∈T

h(T̂ ) = ‖h(T̂ )‖L∞(T ) ≤ qcon min
x∈T

h(T ),

(4.5.1)

where 6= is understood in the sense not equal on a set with positive measure. Note

that this assumptions implies parti
ularly h(T̂ ) ≤ h(T ) almost everywhere in Ω.

(ii) All T ∈ T ∈ T and ea
h sequen
e Ti ∈ T̂i ∈ T(T ), i = 1, . . . N for some N ∈ N with

|Ti ∩ Tj| = 0 and |T ∩ Ti| > 0 for 1 ≤ i 6= j ≤ N satisfy

N∑

i=1

max
x∈Ti

h(T̂i)
d ≤ Csum min

x∈T
h(T )d. (4.5.2)

Remark 4.5.1. Assumption (4.5.2) implies that the abstra
t area of an element h(T )|dT
derived from the weight fun
tion, is additive up to 
onstants.

4.5.1. De�nition of pat
hes. Given a 
onstant Cpatch > 0 and a weight fun
tion h(T )
for all T ∈ T, a pat
h ω(·, ·) satis�es the following properties:

(i) All T ∈ T and all S,S ′ ⊆ T satisfy S ⊆ ω(S, T ) ⊆ T and ω(S, T ) ∪ ω(S ′, T ) ⊆
ω(S ∪ S ′, T ).

(ii) All T ∈ T and all S ⊆ T satisfy

|S| ≤ |ω(S, T )| ≤ Cpatch|S|. (4.5.3)

(iii) All S ⊆ T ∈ T and all T̂ ∈ T(T ) with S ⊆ T̂ satisfy

⋃
ω(S, T̂ ) ⊆

⋃
ω2(S, T ), (4.5.4)

where ω2(S, T ) := ω(ω(S, T ), T ).
(iv) There holds for all T ∈ T ∈ T and all T ′ ∈ ω({T}, T )

C−1
patch min

x∈T ′
h(T ) ≤ h(T )|T ≤ Cpatch max

x∈T ′
h(T ). (4.5.5)

For brevity of notation, we also write ωk(T, T ) := ωk({T}, T ) for elements T ∈ T .
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4.5.2. Error estimators. Additionally to η(·) let η̃(·) denote the equivalent error es-

timator from Se
tion 4.2.1. Suppose that for all M̃ℓ from Algorithm 4.2.1, the set Mℓ

from (4.2.2a) satis�es

Mℓ ⊆ ω(Tℓ \ Tℓ+1, Tℓ). (4.5.6)

Finally, suppose that η(·) is a weighted error estimator as de�ned in Se
tion 3.4.

Remark 4.5.2. Examples of error estimators whi
h �t in the abstra
t framework of

this se
tion 
an be found in Se
tion 5.2.

4.5.3. Optimal 
onvergen
e. In the following, the notion that a 
ertain subset of the

axioms A ⊆ {(E1), . . . , (E3), (T1), . . . , (T3)} is satis�ed means that the axioms in A are

satis�ed for the error estimator η(·), the quantities from (4.5.7) below, the 
orresponding re-

�nement strategy T(·, ·), and the respe
tive 
onstants from Se
tion 2.3.1. The triangulations

(Tℓ)ℓ∈N0 in (E2), (T1)�(T3) are determined by (T̃ℓ)ℓ∈N0 via the fun
tion (̃·).
The following theorem allows to drop the assumption of estimator redu
tion in Theo-

rem 4.3.1 due to the additional assumptions in this se
tion.

Theorem 4.5.3. Under the assumptions of Se
tion 4.5 (parti
ularly (4.5.1)�(4.5.5))

and with homogeneity (3.4.1) and stability (3.4.2), η(·) satis�es (E1) with

S(T , T̂ ) :=
{
T ∈ T : h(T̂ )|T ≤ qconh(T )|T

}
,

Ŝ(T , T̂ ) :=
{
T ∈ T̂ : T ⊆

⋃
S(T , T̂ )

}
,

ρred = (1 + δ)q2r+con ,

̺(T , T̂ ) := (1 + δ−1)1/2 ˜̺(T , T̂ )

(4.5.7)

for all δ > 0 su
h that ρred < 1. Moreover, there holds the following:

(i) Assume limℓ→∞ ̺(Tℓ+1, Tℓ) = 0. Then, for all 0 < θ̃ ≤ 1, the equivalent estimator is


onvergent in the sense

lim
ℓ→∞

η̃(T̃ℓ) = 0.

(ii) Suppose (E2) is satis�ed by η(·). Then, for all 0 < θ̃ ≤ 1, the equivalent estimator

is R-linear 
onvergent in the sense that there exists 0 < ρ̃conv < 1 and C̃conv > 0
su
h that

η̃(T̃ℓ+j)
2 ≤ C̃convρ̃

j
conv η̃(T̃ℓ)

2
for all j, ℓ ∈ N0.

(iii) Suppose that (E2)�(E3) and (T1)�(T3) are satis�ed by η(·) for some s > 0. Then

0 < θ̃ < C−1
eq θ⋆ = C−1

eq (1− εdrel)/(1+C2
drel) implies quasi-optimal 
onvergen
e of the

estimator in the sense of

c̃optCapprox(s) ≤ sup
ℓ∈N0

η̃(T̃ℓ)

(|T̃ℓ \ T̃0|+ 1)−s
≤ C̃optCapprox(s),

where the lower bound requires only (T1) to hold.

The 
onstants C̃conv, ρ̃conv > 0 depend only on qcon, r+, r−, Cqo, εqo, qcon, Cpatch, Csum, and

on θ̃. The 
onstant C̃opt > 0 depends additionally on Cmin, Cref , Cclosure, Cdrel, εdrel, and on

s, while c̃opt > 0 depends only on Cson and |T0|.
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Proof. The assumption (4.5.1) implies that h(T̂ ) = h(T ) on Ω\⋃S(T , T̂ ). Therefore,
Proposition 3.4.1 proves (E1) with (4.5.7). Sin
e η(·) is a weighted error estimator, 
onsider

η(·, hω(·)), where hω(·) denotes the super 
ontra
tive weight fun
tion hω(·) from Proposi-

tion 4.5.4 below. The homogeneity (3.4.1) of η(·) and the equivalen
e (4.5.9) show for all

T ∈ T .

min
x∈T

|hω(T )/h(T )|r− ηT (T ) ≤ ηT (T , hω(T )) ≤ max
x∈T

|hω(T )/h(T )|r+ ηT (T )

and hen
e

C
−r−
19 ηT (T ) ≤ ηT (T , hω(T )) ≤ ηT (T ). (4.5.8)

Proposition 3.4.1 shows redu
tion (E1b) for the estimator η(·, hω(·)) with Sω(T , T̂ ) :={
T ∈ T : hω(T̂ )|T ≤ qschω(T )|T

}
, Ŝω(T , T̂ ) :=

{
T ∈ T̂ : T ⊆ ⋃S(T , T̂ )

}
, and ̺(·, ·)

from (4.5.7). Moreover, monotoni
ity (4.5.11), homogeneity (3.4.1), and stability of the

weighted error estimator (3.4.2) show

( ∑

T∈T̂ \Ŝω(T ,T̂ )

ηT (T̂ , hω(T̂ ))2
)1/2

≤
( ∑

T∈T̂ \Ŝω(T ,T̂ )

ηT (T̂ , hω(T ))2
)1/2

≤
( ∑

T∈T \Sω(T ,T̂ )

ηT (T , hω(T ))2
)1/2

+ ˜̺(T , T̂ ).

Sin
e ˜̺(·, ·) ≤ ̺(·, ·), this shows stability (2.3.5). By (4.5.1) and Proposition 4.5.4 (ii), one

obtains ω(T, T ) ⊆ Sω(T , T̂ ) for all T ∈ T \T̂ . By assumption (i) in Se
tion 4.5.1, this shows

ω(T \ T̂ , T ) ⊆ Sω(T , T̂ ) and the assumption (4.5.6) implies Mℓ ⊆ Sω(Tℓ, Tℓ+1). Sin
e M̃ℓ

satis�es Dör�er marking (4.2.3), (4.2.2a) shows for all ℓ ∈ N0

C−1
eq θ̃ η(Tℓ)

2 ≤
∑

T∈Sω(Tℓ,Tℓ+1)

ηT (Tℓ)
2.

This and (4.5.8) imply immediately for all ℓ ∈ N0

C−1
eq C

−r−
19 θ̃ η(Tℓ, hω(Tℓ))

2 ≤
∑

T∈Sω(Tℓ,Tℓ+1)

ηT (Tℓ, hω(Tℓ))
2.

Therefore, Lemma 2.3.5 with T̂ = Tℓ+1 and T = Tℓ shows that estimator redu
tion (2.3.6)

and hen
e (2.3.8) holds for all ℓ ∈ N0 and η(Tℓ, hω(Tℓ)). Sin
e ˜̺(·, ·) ≃ ̺(·, ·), Lemma 2.3.6

shows limℓ→∞ η(Tℓ, hω(Tℓ)) = 0 under the assumptions of (i). Equivalen
e (4.5.8) shows

limℓ→∞ η(Tℓ) = 0 and (4.2.1) implies (i).

Sin
e (2.3.8) holds for all ℓ ∈ N0 and η(Tℓ, hω(Tℓ)), Proposition 2.3.9 shows that the gen-

eral quasi-orthogonality (E2) implies R-linear 
onvergen
e (2.3.14) with αℓ = η(Tℓ, hω(Tℓ)).
Again (4.5.8) and (4.2.1) imply (ii).

The R-linear 
onvergen
e from (ii), (4.5.7) and the assumptions from (iii) imply the

assumptions of Theorem 4.3.1 (iii). This proves (iii) and 
on
ludes the proof. �

4.5.4. Super 
ontra
tive weight fun
tion. The next proposition de�nes an equiva-

lent weight fun
tion hω(·), whi
h 
ontra
ts even if h(·) 
ontra
ts only nearby (namely within

the pat
h). To that end, re
all the de�nition of maxx∈T and minx∈T from Se
tion 4.5.

Proposition 4.5.4. Suppose a weight fun
tion h(·) with h(T ) ∈ L∞(Ω) for all T ∈ T.
Moreover, we assume that (4.5.1) and (4.5.2) are satis�ed and that h(T ) is 
ontinuous on
Ω \⋃T∈T ∂T . Let ω(·, ·) denote a pat
h fun
tion whi
h satis�es (4.5.3)�(4.5.5). Then, there
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ements

T

Figure 1. Consider the standard pat
h from Remark 4.5.5. Then, the pat
h

area of the red triangle in the left �gure 
oin
ides with the pat
h area of ea
h

of its two sons after two bise
tions. The area of the large green square in the

right �gure is 1. The average of areas in its pat
h is smaller than 0.22. After
two bise
tions, the average of areas of the pat
h of T is 0.25.

exists a super 
ontra
tive weight fun
tion hω(·) su
h that hω(T ) is T -pie
ewise 
onstant for

all T ∈ T, whi
h satis�es (i)�(iii).

(i) Equivalen
e: For all T ∈ T and all T ∈ T , it holds:

C−1
eq min

x∈T
h(T ) ≤ hω(T )|T ≤ min

x∈T
h(T ). (4.5.9)

(ii) Contra
tion on the pat
h: All re�nements T̂ ∈ T(T ) and all T ∈ T satisfy

hω(T̂ )|T ≤ qschω(T )|T if h(T )|∪ω(T,T ) 6= h(T̂ )|∪ω(T,T ). (4.5.10)

(iii) Monotoni
ity: All re�nements T̂ ∈ T of a triangulation T ∈ T satisfy

hω(T̂ ) ≤ hω(T ) almost everywhere in Ω. (4.5.11)

The 
onstants C19 ≥ 1 and 0 < qsc < 1 depend only on Cpatch, Csum, d, and qcon.

Remark 4.5.5. A typi
al example would be h(T )|T := |T |1/d and the standard pat
h

fun
tion ω(S, T ) :=
{
T ∈ T : ∃T ′ ∈ S, T ∩T ′ 6= ∅

}
for some T generated by bise
tion from

Se
tion 3.2.8. Then, Proposition 4.5.4 provides a super 
ontra
tive weight fun
tion hω(T )

whi
h satis�es hω(T̂ )|T ≤ qschω(T )|T for all T ∈ ω(T \ T̂ , T ).
Even for very spe
i�
 re�nement strategies, i.e., bise
tion from Se
tion 3.2.8, the straight-

forward 
onstru
tions of hω(·) by averaging over the pat
h or by 
onsidering the area of the

pat
h fail to satisfy (i)�(iii). See Figure 1 for some 
ounterexamples.

The proof of Proposition 4.5.4 requires the next three lemmas, whi
h 
onsider an arbitrary

sequen
e of 
onse
utive triangulations

(Tℓ)ℓ∈N ⊂ T with Tℓ+1 ∈ T(Tℓ) for all ℓ ∈ N0. (4.5.12)

Note that throughout this se
tion (Tℓ) is not ne
essarily the sequen
e generated by Algo-

rithm 2.2.1.

Lemma 4.5.6. Under the assumptions of Proposition 4.5.4 and given (4.5.12) and

ℓ, N ∈ N0, suppose a stri
tly monotone sequen
e 0 ≤ m0 < m1 < . . . < mN ∈ N0 with

h(Tℓ+mN
)|T = h(Tℓ)|T for some T ∈ ⋂mN

j=ℓ Tj. Suppose there exist elements Ti ∈ ω(T, Tℓ+mi
),
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i = 0, . . . , N su
h that all i = 0, . . . , N − 1 satisfy

min
x∈Ti+1

h(Tℓ+mi+1
) ≤ max

x∈Ti

h(Tℓ+mi+1
) ≤ qcon min

x∈Ti

h(Tℓ+mi
). (4.5.13)

Then, N ≤ 2 log(Cpatch)/| log(qcon)|.
Proof. The assumptions imply maxx∈TN

h(Tℓ+mN
) ≤ qNcon minx∈T0 h(Tℓ). The assump-

tion (4.5.5) shows

h(Tℓ)|T = h(Tℓ+mN
)|T ≤ Cpatch max

x∈TN

h(Tℓ+mN
)

≤ Cpatchq
N
con min

x∈T0

h(Tℓ) ≤ C2
patchq

N
conh(Tℓ)|T .

(4.5.14)

This implies that N is bounded above by the restri
tion 1 ≤ C2
patchq

N
con. �

Lemma 4.5.7. Under the assumptions of Proposition 4.5.4 and given (4.5.12) and

ℓ, N ∈ N0, suppose a stri
tly monotone sequen
e 0 ≤ m0 < m1 < . . . < mN ∈ N0 with

h(Tℓ+mN
)|T = h(Tℓ)|T for some T ∈ ⋂mN

j=ℓ Tj. Suppose that for all i = 0, . . . , N − 1 exists

Ti ∈ ω(T, Tℓ+mi
) with

max
x∈Ti

h(Tℓ+mi+1
) ≤ qcon min

x∈Ti

h(Tℓ+mi
). (4.5.15)

Then, N ≤ 2 log(Cpatch)/| log(qcon)|CsumC
2d+2
patch.

Proof. For all T ′ ∈ ω2(T, Tℓ) de�ne

αT ′ :=
{
Ti from (4.5.15) : |Ti ∩ T ′| > 0

}
.

Sin
e

⋃
ω(T, Tℓ+mi

) ⊆ ⋃
ω2(T, Tℓ) for all i = 0, . . . , N by de�nition of the pat
h, and

|ω2(T, Tℓ)| ≤ C2
patch, there exists at least one T ′

0 ∈ ω2(T, Tℓ) with n := |αT ′
0
| ≥ N/C2

patch.

Let now αT ′
0
= {Ti1 , . . . , Tin} su
h that i1 ≤ i2 ≤ . . . ≤ in. We de�ne a dire
ted graph G

with set of verti
es αT ′
0
. Two verti
es Tij , Tik ∈ αT ′

0
are 
onne
ted by an edge Ejk ∈ G if and

only if there holds

min
x∈Tik

h(Tℓ+mik
) ≤ max

x∈Tij

h(Tℓ+mik
) ≤ qcon min

x∈Tij

h(Tℓ+mij
). (4.5.16)

With (4.5.1), the fa
t Ejk ∈ G implies immediately k > j and hen
e prohibits Ekj ∈ G.
Therefore, any path E := {Ej0j1 , Ej1,j2, . . . , Ejm−1jm} ⊆ G satis�es j1 < j2 < . . . < jm and

thus 
an't be 
losed. Moreover, the 
orresponding verti
es Tijk , k = 0, . . . , m satisfy the

requirements of Lemma 4.5.6. This shows

|E| = m ≤ mmax := 2 log(Cpatch)/| log(qcon)|. (4.5.17)

Consider the set of leafs L0 :=
{
Tij ∈ αT ′

0
: ∀Ej1j2 ∈ G, j1 6= j

}
of G. Moreover, for k ∈ N

de�ne the set of leafs Lk of the subgraph Gk on the redu
ed verti
es set αT ′
0
\⋃k−1

j=0 Lj . Sin
e

no 
losed path E 
an exist, any path E whi
h is maximal with respe
t to ⊆, must end with

a leaf.

First, we prove

mmax⋃

j=0

Lj = αT ′
0
. (4.5.18)

To that end, we show by indu
tion that any path E ⊆ Gk satis�es

|E| ≤ mmax − k. (4.5.19)
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For k = 0 and G0 := G this is (4.5.17). Assume the indu
tion hypothesis (4.5.19) holds for

k > 0. Sin
e a path E ⊆ Gk+1, whi
h is maximal with respe
t to ⊆, must end with a leaf, it


an not be maximal in Gk (otherwise the leaf is in Lk and hen
e not in αT ′
0
\⋃k

j=0Lj whi
h

is the vertex set of Gk+1). This implies the existen
e of a path E ′ ⊆ Gk with |E| < |E ′| ≤
mmax − k and hen
e proves the hypothesis (4.5.19) for k + 1. Indu
tion 
on
ludes (4.5.19)

for all 0 ≤ k ≤ mmax. Sin
e no path of positive length 
an exist in Gmmax , there holds

Lmmax = Gmmax . This implies Lmmax+1 = ∅ and hen
e (4.5.18).

By de�nition, the Lj are disjoint. Therefore (4.5.18) implies that there exists 0 ≤ j0 ≤
mmax su
h that

|Lj0| ≥ |αT ′
0
|/mmax. (4.5.20)

Assume there holds |Tij ∩ Tik | > 0 for Tij , Tik ∈ Lj0 with Tij 6= Tik . Then, by de�nition in

Se
tion 3.2.1, there holds ij 6= ik. Without loss of generality, assume ij < ik. Sin
e |Tij ∩
Tik | > 0, there holds Tij /∈ Tℓ+mik

, and hen
e by (4.5.1), there holds maxx∈Tij
h(Tℓ+mik

) ≤
qcon minTij

h(Tℓ+mij
). This and |Tij ∩ Tik | > 0 imply (4.5.16) and hen
e Ejk ∈ Gj0. This,

however, 
ontradi
ts the de�nition of Lj0 as a set of leafs. Therefore, all elements of Lj0

have pairwise interse
tions with measure zero. Hen
e, (4.5.5) and (4.5.2) imply

C−d
patch

∑

Tij
∈Lj0

min
x∈T

h(Tℓ+mij
)d ≤

∑

Tij
∈Lj0

max
x∈Tij

h(Tℓ+mij
)d

≤ Csum min
x∈T ′

0

h(Tℓ)
d ≤ CsumC

d
patch min

x∈T
h(Tℓ)

d.

This and the assumption h(Tℓ+mN
)|T = h(Tℓ)|T = h(Tℓ+mi

)|T for all i = 0, . . . , N imply

|Lj0| ≤ CsumC
2d
patch.

Together with (4.5.20), this implies

N/C2
patch ≤ |αT ′

0
| ≤ mmaxCsumC

2d
patch

and 
on
ludes the proof. �

Lemma 4.5.8. Under the assumptions of Proposition 4.5.4 and given (4.5.12), there

exists a weight fun
tion h̃ω(Tℓ) whi
h satis�es for all ℓ ∈ N0 (i)�(iii)

(i) All T ∈ Tℓ satisfy:

qNmax/(Nmax+1)
con min

x∈T
h(Tℓ) ≤ h̃ω(Tℓ)|T ≤ h(Tℓ)|T pointwise almost everywhere.

(ii) All T ∈ Tℓ and all k ≥ ℓ satisfy

max
x∈T

h̃ω(Tk) ≤ q1/(Nmax+1)
con min

x∈T
h̃ω(Tℓ)|T if h(Tℓ)|∪ω(T,Tℓ) 6= h(Tk)|∪ω(T,Tℓ).

(iii) All k ≥ ℓ satisfy

h̃ω(Tk) ≤ h̃ω(Tℓ) almost everywhere in Ω.

There holds Nmax := 2 log(Cpatch)/| log(qcon)|CsumC
2d+2
patch.
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Proof. For ℓ = 0, set h̃ω(T0) = h(T0). For ℓ ≥ 0 and for all T ∈ Tℓ set

h̃ω(Tℓ+1)|T :=





h(Tℓ+1)|T 
ase 1: h(Tℓ+1)|T 6= h(Tℓ)|T ,
q1/(Nmax+1)
con min

x∈T
h̃ω(Tℓ) 
ase 2:

h(Tℓ)|∪ω(T,Tℓ)
6=h(Tℓ+1)|∪ω(T,Tℓ)

h(Tℓ)|T=h(Tℓ+1)|T
,

h̃ω(Tℓ)|T 
ase 3: else.

The upper bound in (i) follows immediately by indu
tion on ℓ ∈ N: It holds for ℓ = 0.

Assume the upper bound holds for ℓ ∈ N. Then, the de�nition of h̃ω(Tℓ+1) implies for

T ∈ Tℓ+1 and all T ′ ∈ Tℓ with |T ′ ∩ T | > 0

h̃ω(Tℓ+1)|T∩T ′ ≤
{
h(Tℓ+1)|T∩T ′


ase 1,

h̃ω(Tℓ)|T∩T ′

ase 2 and 3.

The indu
tion hypothesis for 
ase 2�3 and the monotoni
ity from (4.5.1) for 
ase 1 prove

h̃ω(Tℓ+1)|T∩T ′ ≤ h(Tℓ)|T∩T ′
. This 
on
ludes the indu
tion. The lower bound (i) follows by


ontradi
tion. Consider an element T ∈ Tj , j ∈ N, with

min
x∈T

h̃ω(Tj) < qNmax/(Nmax+1)
con min

x∈T
h(Tj). (4.5.21)

Let ℓ ≤ j be the minimal index with T ∈ Tℓ. If ℓ = 0, there holds h̃ω(T0)|T = h(T0)|T by

de�nition. For ℓ > 0, the assumption (4.5.1) implies h(Tℓ)|T ′ 6= h(Tℓ−1)|T ′
for all T ′ ∈ Tℓ−1

with |T ′ ∩ T | > 0 and hen
e by de�nition h̃ω(Tℓ)|T ′ = h(Tℓ)|T ′
(
ase 1). Altogether, we have

an index 0 ≤ ℓ ≤ j with h̃ω(Tℓ)|T = h(Tℓ)|T . We rede�ne ℓ ≤ j to denote the largest index

smaller or equal to j with h̃ω(Tℓ)|T = h(Tℓ)|T . Therefore, 
ase 1 
annot o

ur for any index

ℓ < i < j. This implies also T ∈ ⋂j−1
i=ℓ Ti. To obtain (4.5.21), there must exist at least

Nmax+1 indi
es ℓ+mi < j with 
ase 2. This parti
ularly implies h(Tℓ+mNmax+1
)|T = h(Tℓ)|T

and T ∈ ⋂ℓ+mNmax
j=ℓ Tj . We aim to verify the remaining assumptions of Lemma 4.5.7. To

that end, note that 
ase 2 for T ∈ Tℓ+mi
and (4.5.1) imply the existen
e of Ti ∈ ω(T, Tℓ+mi

)
with maxx∈Ti

h(Tℓ+mi+1) ≤ qcon minx∈Ti
h(Tℓ+mi

). The monotoni
ity of h(Tℓ) from (4.5.1)

and ℓ + mi + 1 ≤ ℓ + mi+1 imply even (4.5.15). Hen
e, the requirements of Lemma 4.5.7

are satis�ed and the 
ontradi
tion Nmax + 1 ≤ 2 log(Cpatch)/| log(qcon)|CsumC
2d+2
patch = Nmax

follows. This proves the lower bound in (i).

To prove the 
ontra
tion estimate (ii), distinguish two 
ases. If T ∈ Tℓ satis�es 
ase 1 in

the de�nition of h̃ω(·), then, with the lower bound in (i) and (4.5.1), it holds

max
x∈T

h̃ω(Tℓ+1) = max
x∈T

h(Tℓ+1) ≤ qcon min
x∈T

h(Tℓ)

≤ qcon q
−Nmax/(Nmax+1)
con min

x∈T
h̃ω(Tℓ) = q1/(Nmax+1)

con min
x∈T

h̃ω(Tℓ).
(4.5.22)

If T ∈ Tℓ satis�es 
ase 2 in the de�nition of h̃ω(·), then, it holds
max
x∈T

h̃ω(Tℓ+1) = q1/(Nmax+1)
con min

x∈T
h̃ω(Tℓ). (4.5.23)

Ea
h 
ase leads to some 
ontra
tion with 
onstant qsc = q
1/(Nmax+1)
con ∈ (0, 1).

This also implies monotoni
ity (iii) for 
ase 1 and 
ase 2. Let T ∈ Tℓ whi
h satis�es


ase 3. The de�nition shows

h̃ω(Tℓ+1)|T = h̃ω(Tℓ)|T
and hen
e (iii). This 
on
ludes the proof. �
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Proof of Proposition 4.5.4. The weight fun
tion h̃ω(·) depends on the sequen
e (Tℓ)
from (4.5.12). Hen
e, we write

h̃ω(Tℓ) = h̃ω(T0, . . . , Tℓ).

Given T ∈ T, de�ne the set of all sequen
es whi
h lead to that parti
ular triangulation, i.e.,

T(T0, T ) :=
{
(T0, . . . , Tℓ = T ) : ℓ ∈ N, Tj+1 ∈ T(Tj) \ {Tj} for all j = 0, . . . , ℓ− 1

}
.

The de�nition of the re�nement strategy T(·, ·) in Se
tion 2.2.1 implies that T(T0, T ) is �nite.
De�ne hω(T0)|T := minx∈T h(T0) for all T ∈ T0 and for T ∈ T \ {T0} by

hω(T )|T := min
(T0,...,Tℓ)∈T(T0,T )

min
x∈T

h̃ω(T0, . . . , Tℓ) for all T ∈ T .

We denote by (T T
0 , . . . , T T

ℓ ) ∈ T(T0, T ) a sequen
e whi
h satis�es

min
x∈T

h̃ω(T T
0 , . . . , T T

ℓ ) = hω(T )|T .

To see the equivalen
e (4.5.9), Lemma 4.5.8 (i) shows

min
x∈T

h(T ) . min
x∈T

h̃ω(T T
0 , . . . , T T

ℓ ) ≤ min
x∈T

h(T ),

where the hidden 
onstants do not depend on the parti
ular sequen
e T T
0 , . . . , T T

ℓ . This

implies (4.5.9).

The 
ontra
tion property (4.5.10) follows with Lemma 4.5.8 (ii). To see that, let T ∈ T
with h(T )|∪ω(T,T ) 6= h(T̂ )|∪ω(T,T ). There holds (T T

0 , . . . , T T
ℓ , T̂ ) ∈ T(T0, T̂ ) and hen
e for all

T ′ ∈ T̂ with |T ′ ∩ T | > 0

hω(T̂ )|T ′ ≤ min
x∈T ′

h̃ω(T T
0 , . . . , T T

ℓ , T̂ )

≤ max
x∈T

h̃ω(T T
0 , . . . , T T

ℓ , T̂ )

≤ q1/(Nmax+1)
con min

x∈T
h̃ω(T T

0 , . . . , T T
ℓ ) = q1/(Nmax+1)

con hω(T )|T .

(4.5.24)

Sin
e the involved 
onstants do not depend on the parti
ular sequen
e T T
0 , . . . , T T

ℓ , this

shows (4.5.10) with qsc = q
1/(Nmax+1)
con .

Finally, we show (4.5.11). Therefore, let T ∈ T and T̂ ∈ T(T ). If T 6= T̂ , the 
ontra
-

tion (4.5.24) applies and shows monotoni
ity (4.5.11) on T . If T ∈ T̂ , Lemma 4.5.8 (iii)

implies

hω(T̂ )|T ≤ min
x∈T

h̃ω(T T
0 , . . . , T T

ℓ , T̂ )

≤ min
x∈T

h̃ω(T T
0 , . . . , T T

ℓ ) = hω(T )|T .

This 
on
ludes the proof. �
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CHAPTER 5

Appli
ations II

5.1. Introdu
tion, state of the art & outline

This 
hapter applies the abstra
t results from the previous 
hapter to 
ertain model

problems. The examples below are found in a similar manner in [24℄. Note that the super


ontra
tive weight fun
tion from Se
tion 4.5.4 allows to prove optimal 
onvergen
e rates, even

if the equivalen
e of the error estimators is only pat
h wise. This is a major improvement

over [60℄, where all the pat
hes are re�ned, too. Moreover the super 
ontra
tive pat
h

fun
tion is used in Se
tion 5.4 to prove the 
ontra
tion of data os
illations. This improves

the work [4℄, where a modi�ed marking strategy is employed to over
ome this problem.

The remainder of the 
hapter is organized as follows: Se
tion 5.2 shows rate optimality

for 
ertain estimators whi
h are equivalent to the residual estimator from Se
tion 3.5.1.

Se
tion 5.3 reprodu
es the results of [13℄ for the p-Lapla
ian and Se
tion 5.4 demonstrates

the in
orporation of inhomogeneous boundary data into the optimality analysis.

5.2. Example 1: Lo
ally equivalent error estimators for the Poisson problem

This se
tion applies the analysis Chapter 4 to a spe
i�
 model problem, where the adaptive

algorithm is steered by some lo
ally equivalent and possibly non-residual error estimator.

5.2.1. Poisson model problem. In the spirit of [60℄, 
onsider the Poisson model

problem (3.5.1) in Ω ⊆ Rd
,

−∆u = f in Ω and u = 0 on Γ,

and re
all the weak formulation (3.5.2), and the FE dis
retization (3.5.3) by means of pie
e-

wise polynomials Sp
0 (T ) = Pp(T )∩H1

0 (Ω) of degree p ≥ 1. The residual error estimator η(·)
with lo
al 
ontributions

ηT (T )2 = ηT (T , h(T ))2 := h(T )|2T ‖f +∆T V ‖2L2(T ) + h(T )|T ‖[∂nV ]‖2L2(∂T∩Ω) (5.2.1)

with h(T )|T := |T |1/d for all T ∈ T and ∆T the T -element wise Lapla
ian serves as a

theoreti
al tool. Under the assumptions of Se
tion 3.5.1 or Se
tion 3.5.2 (parti
ularly that

T(·, ·) is a re�nement strategy in the sense of Se
tion (3.2.1)�(3.2.7)), the following result

holds.

Proposition 5.2.1. In addition to the properties stated in Proposition 3.5.1, the resid-

ual error estimator (5.2.1) satis�es homogeneity (3.4.1) with r+ = 1/2 and r− = 1 and

stability (3.4.2) with ˜̺(·, ·) = ̺(·, ·).
Proof. Stability (3.4.2) is well-known and follows by use of the triangle inequality as

well as standard inverse estimates analogously to the proof of [35, Corollary 3.4℄. The

homogeneity (3.4.1) is obvious. �

The following se
tions 
on
ern di�erent error estimators η̃(·) whi
h are equivalent to η(·)
and �t into the framework of Se
tion 4.5. Se
tion 5.2.2 studies the in�uen
e of equivalent

99




hoi
es of the weight fun
tion h(T ) for the residual error estimator (This is well-known by

experts but does not appear in the literature ex
ept for the re
ent own work [24℄. Moreover, it

�ts perfe
tly into the abstra
t framework of Chapter 4). Se
tion 5.2.3 
on
erns a fa
et-based

formulation of η(·), while Se
tion 5.2.4 analyzes re
overy-based error estimators. Further

examples for the lowest-order 
ase p = 1, whi
h also �t in the frame of the analysis from

Se
tion 4.5, are found in [60℄.

5.2.2. Estimator based on equivalent weight fun
tion. This se
tion is based on

the re
ent own work [24, Se
tion 9℄. Instead of |T |1/d for weighting the lo
al 
ontributions

of η(·), one 
an also use the lo
al diameter diam(T ). This leads to

η̃T (T )2 := diam(T )2 ‖f +∆V ‖2L2(T ) + diam(T ) ‖[∂nV ]‖2L2(∂T∩Ω).

This variant of η(·) is usually found in textbooks as e.g. [1, 82℄. Under the assumptions

of Se
tion 3.5.1 or Se
tion 3.5.2 the shape regularity (3.2.5) leads to h(T )|T ≤ diam(T ) ≤
Cshpγ(T0) h(T )|T for all T ∈ T ∈ T. In parti
ular, η(·) and η̃(·) are element wise equivalent.

Proposition 5.2.2. The estimators η(·) and η̃(·) are globally equivalent in the sense

that (4.2.1) with T̃ = T, T̃(·, ·) = T(·, ·) and Ceq = C2
shpγ(T0)

2
. Moreover, (4.2.2) holds with

M = M̃ = M. The weight-fun
tion h(T ) satis�es (4.5.1) and (4.5.2). Moreover, (4.5.6) is

satis�ed with the trivial pat
h fun
tion ω(S, T ) = S for all S ⊆ T and all T ∈ T. Together
with Proposition 5.2.1, all the assumptions of Theorem 4.5.3 are satis�ed.

Proof. De�ne the weight fun
tion h : Ω → (0,∞) by h|T := diam(T ) for all T ∈ T.
Then, there holds η̃T (T ) = ηT (T , h) for all T ∈ T . The homogeneity (3.4.1) of η(·) shows

min
x∈T

|(h(T )/h)(x)|r− η̃T (T ) ≤ ηT (T , h(T )) ≤ max
x∈T

|(h(T )/h)(x)|r+ η̃T (T )

and hen
e

C−1
shpγ(T0)

−1η̃T (T ) ≤ ηT (T ) ≤ η̃T (T ) for all T ∈ T .
From this element wise equivalen
e, the statements (4.2.1) and (4.2.2) follow immediately.

The estimate (3.2.12) implies (4.5.1) and (4.5.6) follows from M̃ = M. Finally, the esti-

mate (4.5.2) follows with Csum = 1. �

Consequen
e 5.2.3. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads

to 
onvergen
e with optimal rate for the estimator η̃(·) in the sense of Theorem 4.5.3. If the

assumptions of Se
tion 3.5.2 are satis�ed, then the adaptive algorithm leads to 
onvergen
e

with optimal rate for the estimator η̃(·) in the sense of Theorem 4.5.3 for all s ≤ p/d. �

5.2.3. Fa
et-based formulation of residual error estimator. This se
tion is based

on [24, Se
tion 9℄. For a given triangulation T ∈ T generated by bise
tion from Se
tion 3.2.8,

let T̃ := E(T ) denote the 
orresponding set of fa
ets whi
h lie inside Ω, i.e., for ea
h E ∈ T̃
there are two unique elements T, T ′ ∈ T with T 6= T ′

and E = T ∩ T ′
. Let

ω(E, T ) := {T, T ′} and

⋃
ω(E, T ) = T ∪ T ′

(5.2.2)

denote the pat
h of E ∈ T̃ . Let T(·, ·) denote bise
tion (Se
tion 3.2.8) and let T̃(·, ·) denote
the 
orresponding fa
et based version from Se
tion 3.2.11. Assume that ea
h element T ∈ T
has at most one fa
et on the boundary Γ = ∂Ω whi
h is a minor additional assumption on

the initial triangulation T0 to ex
lude pathologi
al 
ases. In parti
ular, ea
h element T ∈ T
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has at least one node z ∈ K(T ) inside Ω. For ea
h fa
et E ∈ T̃ , let FE ∈ Pp−1(
⋃
ω(E, T ))

be the unique polynomial of degree p− 1 su
h that

‖∆T V − f − FE‖L2(∪ω(E,T )) = min
F∈Pp−1(∪ω(E,T ))

‖∆T V − f − F‖L2(∪ω(E,T )). (5.2.3)

With the introdu
ed notation, 
onsider the following fa
et-based variant of the residual error

estimator (5.2.1)

η̃(T̃ )2 =
∑

E∈T̃

ηE(T̃ )2, (5.2.4a)

η̃E(T̃ )2 = diam(E)2 ‖∆T V − f − FE‖2L2(∪ω(E,T )) + diam(E) ‖[∂nV ]‖2L2(E). (5.2.4b)

Convergen
e and quasi-optimality for this estimator is dire
tly proved for d = 2 and p = 1
in [48℄ via the te
hni
al and non-obvious observation that the edge os
illations are 
ontra
-

tive [69, 68℄. The novel approa
h of this paper generalizes the mentioned works to arbitrary

dimension d ≥ 2 and polynomial degree p ≥ 1.

Proposition 5.2.4. The estimators η(·) and η̃(·) are globally equivalent in the sense

of (4.2.1). Moreover, (4.2.2) holds with

M :=
⋃

E∈M̃

ω(E, T ) and M :=
{
E ∈ T̃ : ∃T ∈ M, E ∩ T 6= ∅

}
.

The weight-fun
tion h(T ) satis�es (4.5.1) as well as (4.5.2) and (4.5.6) is satis�ed with the

pat
h fun
tion

ω(S, T ) :=
{
T ∈ T : ∃T ′ ∈ S, T ∩ T ′ 6= ∅

}

for all S ⊆ T and all T ∈ T. Together with Proposition 5.2.1, all the assumptions of

Theorem 4.5.3 are satis�ed.

The proof of Proposition 5.2.4 requires some te
hni
al lemmas and some further notation:

For an interior node z ∈ K(T )∩Ω of T , de�ne the star Σ(z, T ) :=
{
E ∈ T̃ : z ∈ E

}
as well

as the pat
h ω(z, T ) :=
{
T ∈ T : z ∈ T

}
. Let Fz ∈ Pp−1(

⋃
ω(z, T )) denote the unique

polynomial of degree p− 1 su
h that

‖∆T V − f − Fz‖L2(∪ω(z,T )) = min
F∈Pp−1(∪ω(z,T ))

‖∆T V − f − F‖L2(∪ω(z,T )). (5.2.5)

To abbreviate notation, write r(T ) := ∆T U(T )− f for the residual.

Lemma 5.2.5. Any interior node z ∈ K(T ) ∩ Ω and T ∈ T with z ∈ T satis�es

C−1
20 ‖r(T )‖2L2(T ) ≤ h(T )|−1

T ‖[∂nU(T )]‖2L2(∪Σ(z,T )) + ‖r(T )− Fz‖2L2(∪ω(z,T )). (5.2.6)

The 
onstant C20 > 0 depends only on γ(T ) and hen
e on T.

Proof. Consider the nodal basis fun
tion φz ∈ S1(T ) 
hara
terized by φz(z) = 1 and

φz(z
′) = 0 for all z′ ∈ K(T ) with z 6= z′. In parti
ular, supp(φz) =

⋃
ω(z, T ). Let

Πp−1 : L2(
⋃
ω(z, T )) → Pp−1(

⋃
ω(z, T )) be the L2

-orthogonal proje
tion and note that
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Fz = Πp−1r(T ). A s
aling argument and ‖φz‖L∞(Ω) = 1 prove

‖Fz‖2L2(∪ω(z,T )) . ‖φ1/2
z Fz‖2L2(∪ω(z,T ))

=

∫

∪ω(z,T )

r(T )φzFz dx−
∫

∪ω(z,T )

(
(1− Πp−1)r(T )

)
φzFz dx

≤
∫

∪ω(z,T )

r(T )φzFz dx+ ‖(1−Πp−1)r(T )‖L2(∪ω(z,T ))‖Fz‖L2(∪ω(z,T )).

Consider the �rst term on the right-hand side and use that V := φzFz ∈ Sp
0 (T ) is a suitable

test fun
tion. With the Galerkin formulation (3.5.3) and element wise integration by parts,

it follows that ∫

∪ω(z,T )

r(T )φzFz dx =

∫

∪ω(z,T )

r(T )V dx

=

∫

∪ω(z,T )

∆T U(T ) V dx+

∫

∪ω(z,T )

∇U(T ) · ∇V dx

=

∫

∪Σ(z,T )

[∂nU(T )]φzFz dx

≤ ‖[∂nU(T )]‖L2(∪Σ(z,T ))‖Fz‖L2(∪Σ(z,T )).

Sin
e Fz ∈ Pp−1(
⋃
ω(z, T )), an inverse-type inequality with hz := diam(

⋃
ω(z, T )) shows

‖Fz‖L2(∪Σ(z,T )) . h−1/2
z ‖Fz‖L2(∪ω(z,T )).

The hidden 
onstant depends only on γ(T ). The 
ombination of the previous arguments

implies

‖Fz‖2L2(∪ω(z,T )) .
(
h−1/2
z ‖[∂nU(T )]‖L2(∪Σ(z,T )) + ‖r(T )− Fz‖L2(∪ω(z,T ))

)
‖Fz‖L2(∪ω(z,T )).

The triangle inequality together with hz ≃ h(T )|T proves

h(T )|2T‖∆T U(T ) + f‖2L2(T )

. h(T )|2T‖Fz‖2L2(∪ω(z,T )) + h(T )|2T‖r(T )− Fz‖L2(∪ω(z,T ))

. h(T )|T‖[∂nU(T )]‖2L2(∪Σ(z,T )) + h(T )|2T‖r(T )− Fz‖2L2(∪ω(z,T )).

This 
on
ludes the proof. �

The following lemma shows that edge os
illations (5.2.3) and node os
illations (5.2.5) are

equivalent on pat
hes.

Lemma 5.2.6. Any interior node z ∈ K(T ) ∩ Ω and T ∈ T with z ∈ T satis�es

C−1
21 ‖r(T )− Fz‖2L2(∪ω(z,T )) ≤

∑

E∈Σ(z,T )

‖r(T )− FE‖2L2(∪ω(E,T ))

≤ C22 ‖r(T )− Fz‖2L2(∪ω(z,T )).

(5.2.7)

The 
onstants C21, C22 > 0 depend only on T, the polynomial degree p ≥ 1, and the use of

bise
tion.

Proof. The upper bound in (5.2.7) follows from

‖r(T )− FE‖L2(∪ω(E,T )) ≤ ‖r(T )− Fz‖L2(∪ω(E,T )) ≤ ‖r(T )− Fz‖L2(∪ω(z,T ))

for all E ∈ Σ(z, T ) and the fa
t that the 
ardinality |Σ(z, T )| is uniformly bounded by

γ(T ) ≤ Cshpγ(T0).
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The lower bound in (5.2.7) is �rst proved for a pie
ewise polynomial r(T ) ∈ Pp−1(T ). We

employ equivalen
e of seminorms on �nite dimensional spa
es and s
aling arguments. Note

that both terms in (5.2.7) de�ne seminorms on the �nite dimensional spa
e Pp−1(ω(z, T ))
with the kernel Pp−1(

⋃
ω(z, T )) and hen
e are equivalent with 
onstants C21, C22 > 0. A

s
aling argument proves that these 
onstants depend only on the shape of

⋃
ω(E, T ) or⋃

Σ(z, T ). Sin
e bise
tion from Se
tion 3.2.8 only leads to �nitely many shapes of triangles

and hen
e pat
hes and fa
et stars, this proves that C21 and C22 depend only on T, p, and
the use of bise
tion.

It remains to prove the lower bound in (5.2.7) for general f ∈ L2(Ω). Let Πp−1 : L2(Ω) →
Pp−1(T ) denote the L2

-proje
tion so that F (T ) = Πp−1r(T ) is the unique solution to

‖r(T )− F (T )‖L2(T ) = min
F∈Pp−1(T )

‖r(T )− F‖L2(T ) for all T ∈ T .

Note that Pp−1(
⋃
ω(E, T )) ⊂ Pp−1(ω(E, T )) and hen
e

〈(1−Πp−1)r(T ) , F (T )− Fz〉L2(T ) = 0 = 〈(1− Πp−1)r(T ) , F (T )− FE〉L2(T ).

A

ording to the T -element wise Pythagoras theorem and the foregoing dis
ussion for T -

pie
ewise polynomial r(T ), it follows

‖r(T )−Fz‖2L2(∪ω(z,T )) = ‖r(T )− F (T )‖2L2(∪ω(z,T )) + ‖F (T )− Fz‖2L2(∪ω(z,T ))

.
∑

E∈Σ(z,T )

(
‖r(T )− F (T )‖2L2(∪ω(E,T )) + ‖F (T )− FE‖2L2(∪ω(E,T ))

)

=
∑

E∈Σ(T ;z)

‖r(T )− FE‖2L2(∪ω(E,T )).

This 
on
ludes the proof. �

Proof of Proposition 5.2.4. Shape regularity (3.2.5) yields hE = diam(E) ≃ h(T )|T
for all E ∈ T̃ and T ∈ T with E ⊆ T . Hen
e

η̃E(T̃ )2 = h2E ‖r(T )− FE‖2L2(∪ω(E,T )) + hE ‖[∂nU(T )]‖2L2(E)

≤
∑

T∈ω(E,T )

(
h2E‖r(T )‖2L2(T ) + hE ‖[∂nU(T )]‖2L2(∂T∩Ω)

)

≃
∑

T∈ω(E,T ))

ηT (T )2.

Lemma 5.2.5 and 5.2.6 imply

ηT (T )2 = h(T )|2T ‖r(T )‖2L2(T ) + h(T )|T ‖[∂nU(T )]‖2L2(∂T∩Ω)

.
∑

z∈K(T )∩Ω

(
h(T )|2T ‖r(T )− Fz‖2L2(∪ω(T,z)) + h(T )|T ‖[∂nU(T )]‖2L2(∪Σ(z,T ))

)

≃
∑

z∈K(T )∩Ω

∑

E∈Σ(z,T )

(
h2E ‖r(T )− FE‖2L2(∪ω(E,T )) + ET ‖[∂nU(T )]‖2L2(E)

)

≤
∑

z∈K(T )∩Ω

∑

E∈Σ(z,T )

η̃E(T̃ )2.
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The last two estimates imply immediately (4.2.1). The �rst impli
ation (4.2.2a) follows by

θ̃η(T )2 . θ̃η̃(T̃ )2 ≤
∑

E∈M̃

η̃E(T̃ )2 .
∑

E∈M̃

∑

T∈ω(E,T )

ηT (T ) =
∑

T∈M

ηT (T )2.

To see the se
ond impli
ation (4.2.2b), 
onsider

θη̃(T̃ )2 . θη(T )2 ≤
∑

T∈M

ηT (T )2 .
∑

T∈M

∑

z∈K(T )∩Ω

∑

E∈Σ(z,T )
z∈K(T )∩T

η̃E(T̃ )2 ≤
∑

E∈M

η̃E(T̃ )2.

The remaining statements follow as in Se
tion 5.2.2. �

Consequen
e 5.2.7. Let s > 0 with ‖η,T‖s < ∞. Then, the adaptive algorithm

leads to 
onvergen
e with optimal rate for the fa
et based estimator η̃(·) in the sense of

Theorem 4.5.3.

Numeri
al examples that underline the above result 
an be found in for 2D and lowest-

order elements in [49℄. Moreover, numeri
al examples for the obsta
le problem with the

fa
et-based estimator are found in [69, 68℄.

5.2.4. Re
overy-based error estimator. This se
tion is based on [24, Se
tion 9℄.

We 
onsider re
overy-based error estimators for FEM whi
h are o

asionally also 
alled ZZ-

estimators after Zienkiewi
z and Zhu [87℄. These estimators are popular in 
omputational

s
ien
e and engineering be
ause of their implementational ease and striking performan
e in

many appli
ations. Reliability has independently been shown by [72, 22℄ for lowest-order

elements p = 1 and later generalized to higher-order elements p ≥ 1 in [10℄. For the lowest-

order 
ase, 
onvergen
e and quasi-optimality of the related adaptive algorithm has been

analyzed in [60℄. In the following, the result of [60℄ is reprodu
ed and even generalized to

higher-order elements p ≥ 1. Moreover, the abstra
t analysis of Se
tion 4.5 removes the

arti�
ial re�nements in [60℄.

Let G(T ) : L2(Ω) → Sp
0 (T ) denote the lo
al averaging operator whi
h is de�ned as

follows:

• For lowest-order polynomials p = 1, de�ne G(T )(v) ∈ S1
0 (T ) by

G(T )(v)(z) :=
1

|ω(z, T )|

∫

∪ω(z,T )

v dx for all inner nodes z ∈ K(T ) ∩ Ω.

• For the general 
ase p ≥ 1, de�ne G(T ) = J(T ) : H1
0 (Ω) → Sp

0 (T ) as the S
ott-

Zhang proje
tion from [76℄, see also De�nition 3.3.2.

Based on G(T ), the lo
al estimator 
ontributions of the re
overy-based error estimator η̃(·)
read

η̃τ (T )2 :=

{
‖(1−G(T ))∇U(T )‖2L2(T ) for τ = T ∈ T ,
diam(E)2 ‖∆T U(T )− f − FE‖2L2(ω(E,T )) for τ = E ∈ E(T ),

(5.2.8)

where FE is de�ned in (5.2.3). Given a set of triangulations T with the bise
tion re�nement

strategy T(·, ·) from Se
tion 3.2.8, the re
overy-based error estimator a
ts on the set T̃ :={
T̃ : T ∈ T

}
and T̃ := T ∪ E(T ). The re�nement strategy T̃(·, ·) employs fa
et based

variant from Se
tion 3.2.11, where ea
h marked element T ∈ T marks the 
orresponding

fa
ets E ⊆ ∂T . Moreover, given T ∈ T and S ⊆ T de�ne the 2-pat
h

ω2(S, T ) :=
{
T ∈ T : ∃T0, T1 ∈ T , T0 ∈ S, T0 ∩ T1 6= ∅, T1 ∩ T 6= ∅

}
. (5.2.9)
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Proposition 5.2.8. For general polynomial degree p ≥ 1, the error estimators η(·)
from (5.2.1) and η̃(·) from (5.2.8) satisfy for all E ∈ E(T ) with E = T0 ∩ T1 for some

T0, T1 ∈ T
η̃E(T̃ )2 + η̃T0(T̃ )2 ≤ C23

∑

T∈ω2(T0,T )

ηT (T )2, (5.2.10a)

as well as

ηT0(T )2 ≤ C23

∑

τ∈T̃
τ∩T0 6=∅

η̃τ (T̃ )2. (5.2.10b)

The 
onstant C23 > 0 depends only on γ(T ), the use of bise
tion, and p.

The proof requires the following lemma whi
h states that the normal jumps are lo
ally

equivalent to averaging. The result is well-known for the lowest-order 
ase, and its proof is

in
luded for the 
onvenien
e of the reader.

Lemma 5.2.9. For some interior node z ∈ K(T ) ∩ Ω, it holds

C−1
24 hT ‖[∂nU(T )]‖2L2(∪Σ(z,T )) ≤ ‖(1−G(T ))∇U(T )‖2L2(∪ω(z,T ))

≤ C25

∑

z′∈Σ(z,T )∩K(T )∩Ω

hz′‖[∂nU(T )]‖2L2(∪Σ(z′,T )).
(5.2.11)

The 
onstants C24, C25 > 0 depend only on T0, the polynomial degree p ≥ 1, and the use of

bise
tion.

Proof. We use equivalen
e of seminorms on �nite dimensional spa
es and s
aling argu-

ments. To prove (5.2.11), it thus su�
es to show that the 
hain of inequalities holds true if

one term is zero.

First, assume (1 − G(T ))∇U(T ) = 0 on

⋃
ω(z, T ). This implies ∇U(T ) ∈ Sp(ω(z, T ))

and hen
e [∂nU(T )] = 0 on

⋃
Σ(z, T ).

Se
ond, assume [∂nU(T )] = 0 on

⋃
Σ(z′, T ) for all inner nodes z′ of Σ(z, T ). This

shows that the normal jumps of ∇U(T ) are zero over

⋃
Σ(z′, T ). Sin
e U(T ) ∈ H1(Ω),

the tangential jumps of ∇U(T ) also vanish over Σ(z′, T ). Altogether, this implies ∇U(T ) ∈
Sp−1(ω(z′, T )) for all z′. If the S
ott-Zhang proje
tion de�nes the averaging, G(T )∇U(T )(z′)
depends only on ∇U(T )|ω(z′,T ), this implies G(T )∇U(T ) = ∇U(T ). In the parti
ular 
ase

p = 1 and pat
h averaging, ∇U(T ) is 
onstant on ω(z′, T ). In any 
ase, we thus derive

(1−G(T ))∇U(T ) = 0 on

⋃
ω(z, T ).

The 
onstants in (5.2.11) depend on the shapes of pat
hes

⋃
ω(z′, T ) involved. Sin
e

bise
tion from Se
tion 3.2.8 leads to only �nitely many pat
h shapes, we dedu
e that the

these 
onstants depend only on the polynomial degree p ∈ N and on T0. �

Proof of Proposition 5.2.8. In order to prove the lo
al equivalen
e (5.2.10), let z ∈
K(T ) ∩ Ω be an interior node of T ∈ T . The upper estimate in (5.2.11) yields

η̃T (T̃ )2 .
∑

T ′∈ω2(T,T )

ηT ′(T )2.

For E = T0 ∩ T1 ∈ T̃ , it holds

η̃E(T̃ )2 = diam(E)2‖r(T )‖2L2(T0)
+ diam(E)2‖r(T )‖2L2(T1)

.
∑

T ′∈ω(T0,T )

ηT ′(T )2.
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The 
ombination of the last two estimates proves (5.2.10a). The proof of (5.2.10b) employs

Lemma 5.2.5 and 5.2.6 as well as the lower bound in (5.2.11). For an interior node z ∈
K(T ) ∩ Ω of T ∈ T , it follows

ηT (T )2 . h(T )|T ‖[∂nU(T )]‖2L2(∪Σ(z,T )) + h(T )|2T
∑

E∈Σ(z,T )

‖r(T )− FE‖2L2(∪ω(E,T )

.
∑

τ∈T̃
τ∩T 6=∅

η̃τ (T̃ )2.

This 
on
ludes the proof. �

Proposition 5.2.10. With the pat
h fun
tions from (5.2.2) and (5.2.9), the estimators

η(·) and η̃(·) are globally equivalent in the sense of (4.2.1). Moreover, (4.2.2) holds with

M :=
⋃

E∈M̃∩E(T )

ω2(ω(E, T ), T ) ∪
⋃

T∈M̃∩T

ω2(T, T )

and

M :=
{
τ ∈ T̃ : ∃T ∈ M, τ ∩ T 6= ∅

}
.

The weight-fun
tion h(T ) satis�es (4.5.1) and (4.5.2). Moreover, (4.5.6) is satis�ed with the

pat
h fun
tion ω2(·, ·). Together with Proposition 5.2.1, all the assumptions of Theorem 4.5.3

are satis�ed.

Proof. The global equivalen
e follows from Proposition 5.2.8. The impli
ation (4.2.2a)

follows by (5.2.10a) and

θ̃η(T )2 . θ̃η̃(T̃ )2 ≤
∑

E∈M̃∩E(T )

η̃E(T̃ )2 +
∑

T∈M̃∩T

η̃T (T̃ )2

.
∑

E∈M̃

∑

T∈ω2(ω(E,T ),T )

ηT (T )2 =
∑

T∈M

ηT (T )2.

To see the se
ond impli
ation (4.2.2b), 
onsider (5.2.10b) and

θη̃(T̃ )2 . θη(T )2 ≤
∑

T∈M

ηT (T )2 .
∑

T∈M

∑

τ∈T̃
τ∩T 6=∅

η̃τ (T̃ )2 =
∑

τ∈M

η̃τ (T̃ )2.

The remaining statements follow as in Se
tion 5.2.2. �

Consequen
e 5.2.11. Let s > 0 with ‖η,T‖s < ∞. Then, the adaptive algorithm

leads to 
onvergen
e with optimal rate for the fa
et based estimator η̃(·) in the sense of

Theorem 4.5.3.

5.3. Example 2: Conforming FEM for the p-Lapla
ian

This se
tion is based on [24, Se
tion 10℄. The p-Lapla
ian allows for a review of the

results of [13℄ in terms of the abstra
t framework of Chapter 4. Sin
e no lower error bound

is required, the present analysis provides some slight improvement over [13℄. The following

allows generalizations to N-fun
tions as in [13℄, whi
h we, however, omit in favor of a

straightforward presentation.
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Consider the energy minimization problem

J (u) = min
v∈W 1,p

0 (Ω)
J (v) with J (v) :=

1

p

∫

Ω

|∇v|p dx−
∫

Ω

fv dx (5.3.1)

for p > 1 and W 1,p
0 (Ω) equipped with the norm ‖v‖W 1,p(Ω) :=

(
‖v‖2Lp(Ω)+‖∇v‖2Lp(Ω)

)1/2
. The

dire
t method of the 
al
ulus of variations yields existen
e and stri
t 
onvexity of J (·) even
uniqueness of the solution u ∈ W 1,p

0 (Ω). With the nonlinearity

A : Rd → Rd, A(Q) = |Q|p−2Q,

the Euler-Lagrange equations asso
iated to (5.3.1) read

〈Lu , v〉 =
∫

Ω

A(∇u) · ∇v =
∫

Ω

fv dx for u, v ∈ X := W 1,p
0 (Ω). (5.3.2)

The dis
retization of (5.3.2) and the notation follows Se
tion 3.5.1. For a given regular

triangulation T ∈ T (where T is generated by bise
tion from Se
tion 3.2.8), we 
onsider

the lowest-order Courant �nite element spa
e S1
0 (T ) := P1(T ) ∩H1

0 (Ω). Arguing as in the


ontinuous 
ase, we obtain that the minimization problem

J (U(T )) = min
V ∈S1

0 (T )
J (V ) (5.3.3)

admits a unique dis
rete solution U(T ) ∈ S1
0 (T ), whi
h satis�es

〈LU(T ) , V 〉 =
∫

Ω

fV dx for all V ∈ S1
0 (T ). (5.3.4)

De�ne F (Q) := |Q|p/2−1Q for all Q ∈ Rd
. There holds the Céa Lemma [13, Lemma 3.1℄ for

all T ∈ T

‖F (|∇u|)− F (|∇U(T )|)‖L2(Ω) ≤ C
Céa

min
V ∈Sp

0 (T )
‖F (|∇u|)− F (|∇V |)‖L2(Ω). (5.3.5)

In terms of Chapter 4, we de�ne T̃ = T and T̃ = T . With 1/p+ 1/q = 1, the residual error
estimator η̃(·) reads

η̃T (T )2 := |T |2/d
∫

T

(
|∇U(T )|p−1 + |T |1/d|f |

)q−2|f |2 dx

+ |T |1/d‖[F (∇U(T )) · n]‖2L2(∂T∩Ω)

(5.3.6)

for all T ∈ T and all T ∈ T (see [13, Se
tion 3.2℄).

Sin
e the �rst term of η̃(·) depends nonlinearly on U(T ), [13, Se
tion 3.2℄ introdu
es an

equivalent error estimator η(·) with lo
al 
ontributions

ηT (T )2 := |T |2/d
∫

T

(
|∇u|p−1 + |T |1/d|f |

)q−2|f |2 dx

+ |T |1/d‖[F (∇U(T )) · n]‖2L2(∂T∩Ω)

(5.3.7)

for all T ∈ T and all T ∈ T. Note that η(·) 
an only serve as a theoreti
al tool as it employs

the unknown solution u.

Proposition 5.3.1. The residual error estimator (5.3.7) is a weighted error estimator

in the sense of Se
tion 3.4, i.e.,

ηT (T , h)2 :=
∫

T

h|2T
(
|∇u|p−1 + h|T |f |

)q−2|f |2 dx+ h|T‖[F (∇U(T )) · n]‖2L2(∂T∩Ω)
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and satis�es

(i) homogeneity (3.4.1) with r+ = 1/2 and r− = 1 and stability (3.4.2) with

˜̺(T , T̂ ) := Cpert‖F (|∇U(T )|)− F (|∇U(T̂ )|)‖L2(Ω),

(ii) general quasi-orthogonality (E2) with ̺(·, ·) given by Proposition 3.4.1,

(iii) dis
rete reliability (E3) for all εdrel > 0 with Cdrel := Cdrel(εdrel) andR(T , T̂ ) = T \T̂
as well as κdlr = ∞,

(iv) the re�nement axioms (T1)�(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all

s > 0.

Moreover, the estimator is reliable (2.4.1) with err(T ) := ‖F (|∇u|) − F (|∇U(T )|)‖L2(Ω).

The 
onstants Cdrel, Cqo, Cpert, Crel depend only on the parameter p > 1, T0, and on Ω.

Proof. To see the homogeneity (3.4.1), 
onsider the fun
tion g(t) := t2b2(a+ tb)q−2
for

some a, b ≥ 0. The fun
tion g is 
onvex and hen
e there holds for 0 ≤ α ≤ 1 that

g(αt) ≤ αg(t) + (1− α)g(0) = αg(t).

This shows g(αt) ≤ α2r+g(t) for r+ = 1/2. Moreover, we have

α2r−g(t)

g(αt)
=
α2r−t2b2(a+ tb)q−2

α2t2b2(a+ αtb)q−2
= α2r−−2 (a+ tb)q−2

(a+ αtb)q−2
≤

{
α2r−−2 q ≤ 2,

α2r−−q q > 2.

For q ≤ 2, 
hoose r− = 1 and for q > 2, 
hoose r− = q/2 to ensure α2r−g(t) ≤ g(αt). Sin
e
the �rst term of ηT (T , h) reads

∫
T
g(h|T ) dx with a = |∇u|p−1

and b = |f | pointwise, the
above 
onsiderations imply

min
x∈T

|α(x)|2r−
∫

T

h|2T
(
|∇u|p−1 + h|T |f |

)q−2|f |2 dx

≤
∫

T

(αh)|2T
(
|∇u|p−1 + (αh)|T |f |

)q−2|f |2 dx

≤ max
x∈T

|α(x)|2r+
∫

T

h|2T
(
|∇u|p−1 + h|T |f |

)q−2|f |2 dx.

Sin
e the se
ond term in the de�nition of η(·) behaves analogously, this implies homogene-

ity (3.4.1). Sin
e the �rst term of η(·, h) does not depend on T , standard inverse esti-

mates as for the linear 
ase (Proposition 5.2.1) prove stability (3.4.2) (see also [13, Propo-

sition 4.4℄). Reliability (2.4.1) is proved in [13, Lemma 3.5℄. The dis
rete reliability (E3)

with R(T , T̂ ) = T \T̂ for η̃(·) follows from [13, Lemma 3.7℄. Together with the equivalen
e

from [13, Proposition 4.2℄, there holds for all δ > 0

̺(T , T̂ ) .
∑

T∈R(T ,T̂ )

η̃T (T )2 . Cδ

∑

T∈R(T ,T̂ )

ηT (T )2 + δerr(T )2.

The 
onstant Cδ > 0 is de�ned in [13, Proposition 4.2℄. Together with reliability (E3),

this proves dis
rete reliability (E3) for all εdrel > 0, where Cdrel > 0 depends on εdrel. The

statement (iv) follows as in Proposition 3.5.1. To see general quasi-orthogonality (E2),


onsider [13, Lemma 3.2℄, whi
h implies for all re�nements T̂ ∈ T(T )

J (U(T̂ ))−J (u) ≃ ‖F (|∇u|)− F (|∇U(T )|)‖2L2(Ω),

J (U(T ))− J (U(T̂ )) ≃ ‖F (|∇U(T̂ )|)− F (|∇U(T )|)‖2L2(Ω)
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with hidden 
onstants, whi
h depend only on p > 1. This immediately implies for all

ℓ ≤ N ∈ N that

N∑

k=ℓ

̺(T , T̂ )2 .
N∑

k=ℓ

J (U(Tℓ))−J (U(Tℓ+1))

= J (U(Tℓ))− J (U(TN+1))

≤ J (U(Tℓ))− J (u) ≃ ‖F (|∇u|)− F (|∇U(Tℓ)|)‖2L2(Ω).

Together with reliability (2.4.1), this implies (E2) with εqo = 0. �

Proposition 5.3.2. The estimators η(·) and η̃(·) are globally equivalent in the sense

of (4.2.1). Moreover, (4.2.2) holds with

M = M̃ = M.

The weight-fun
tion h(T ) satis�es (4.5.1) as well as (4.5.2) and (4.5.6) is satis�ed with the

trivial pat
h fun
tion ω(S, T ) := S. Together with Proposition 5.3.1, all the assumptions of

Theorem 4.5.3 are satis�ed.

Proof. The global equivalen
e (4.2.1) is proved in [13, Corollary 4.3℄. The equivalen
e

from [13, Proposition 4.2℄ implies for all δ > 0 and all T ∈ T

ηT (T )2 ≤ Cδη̃T (T )2 + δ‖F (|∇u|)− F (|∇U(T )|)‖2L2(T ),

η̃T (T )2 ≤ CδηT (T )2 + δ‖F (|∇u|)− F (|∇U(T )|)‖2L2(T ),

where Cδ > 0 depends only on p > 1 and on δ. With this, the impli
ation (4.2.2a) follows

from reliability (2.4.1) and global equivalen
e (4.2.1) by

θ̃η(T )2 ≤ θ̃Cδ1 η̃(T )2 + θ̃δ1‖F (|∇u|)− F (|∇U(T )|)‖2L2(Ω)

≤ θ̃(Cδ1 + δ1C
2
relCeq)η̃(T )2

≤ (Cδ1 + δ1C
2
relCeq)

∑

T∈M̃

η̃T (T )2

≤ (Cδ1 + δ1C
2
relCeq)

(
Cδ2

∑

T∈M̃

ηT (T )2 + δ2‖F (|∇u|)− F (|∇U(T )|)‖2L2(Ω)

)

≤ (Cδ1 + δ1C
2
relCeq)

(
Cδ2

∑

T∈M̃

ηT (T )2 + δ2C
2
relη(T )2

)
.

For arbitrary δ1 > 0, 
hoose δ2 su�
iently small su
h that (Cδ1 + δ1C
2
relCeq)δ2 < θ̃ to


on
lude (4.2.2a). The analogous argument shows also (4.2.2b). The remaining statements

follow as in Se
tion 5.2.2. �

Consequen
e 5.3.3. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads

to 
onvergen
e with optimal rate for η̃(·) in the sense of Theorem 4.5.3. �

Numeri
al examples for 2D that underline the above result 
an be found in [13℄.
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5.4. Example 3: Non-homogeneous and mixed boundary 
onditions

The literature on adaptive �nite elements fo
uses on homogeneous Diri
hlet 
onditions

with the ex
eption of [11, 66, 48, 4℄. This se
tion extends the previous results to non-

homogeneous boundary 
onditions of mixed Diri
hlet-Neumann-Robin type, where inho-

mogeneous Diri
hlet 
onditions enfor
e some additional dis
retization error. The present

se
tion is based on [24, Se
tion 11℄ and improves [4℄ sin
e we show that standard Dör�er

marking (2.2.1) leads to 
onvergen
e with optimal rates if the S
ott-Zhang proje
tion [76℄

is used for the dis
retization of the Diri
hlet data [4, 74℄. The heart of the analysis is the

appli
ation of the super-
ontra
tive weight fun
tion hω(T ) from Proposition 4.5.4.

5.4.1. Model problem. The Lapla
e model problem in Rd
for d ≥ 2 with mixed

Diri
hlet-Neumann-Robin boundary 
onditions splits the boundary Γ of the Lips
hitz do-

main Ω ⊂ Rd
into three (relatively) open and pairwise disjoint boundary parts ∂Ω =

ΓD ∪ ΓN ∪ ΓR. Given data f ∈ L2(Ω), gD ∈ H1(ΓD), φN ∈ L2(ΓN), φR ∈ L2(ΓR), and
α ∈ L∞(ΓR) with α ≥ α0 > 0 almost everywhere on ΓR, the problem seeks u ∈ H1(Ω) with

−∆u = f in Ω, (5.4.1a)

u = gD on ΓD, (5.4.1b)

∂nu = φN on ΓN , (5.4.1
)

φR − αu = ∂nu on ΓR. (5.4.1d)

The presentation fo
uses on the 
ase that |ΓD|, |ΓR| > 0, with possibly ΓN = ∅. However,

the 
ases ΓD = ∅ and |ΓR| > 0, |ΓD| > 0 and ΓR = ∅, as well as the pure Neumann problem

ΓN = ∂Ω are also 
overed by the abstra
t analysis.

5.4.2. Weak formulation. The weak formulation of (5.4.1) seeks u ∈ X := H1(Ω)
su
h that

u = gD on ΓD in the sense of tra
es (5.4.2a)

and all v ∈ H1
D(Ω) :=

{
v ∈ H1(Ω) : v = 0 on ΓD

}
satisfy

b(u, v) :=

∫

Ω

∇u · ∇v dx+
∫

ΓR

αuv ds = RHS(v) (5.4.2b)

with

RHS(v) :=

∫

Ω

fv dx+

∫

ΓN

φNv ds+

∫

ΓR

φRv ds. (5.4.2
)

Sin
e |ΓR| > 0 and α ≥ α0 > 0, the norm ‖ · ‖ := b(·, ·)1/2 is equivalent to the H1(Ω)-norm.

Let uD ∈ H1(Ω) with uD|Γ = gD be an arbitrary lifting of the given Diri
hlet data and

set u0 := u− uD ∈ H1
D(Ω). Then, (5.4.2) is equivalent to seek u0 ∈ H1

D(Ω) with

b(u0, v) = RHS(v)− b(uD, v) for all v ∈ H1
D(Ω). (5.4.3)

A

ording to the Lax-Milgram lemma, the auxiliary problem (5.4.3) admits a unique solution

u0 ∈ H1(Ω) and thus u := u0 + uD is the unique solution of (5.4.2).

110



5.4.3. FEM dis
retization and approximation of Diri
hlet data. Assume the

initial triangulation T0, and hen
e all triangulations T ∈ T of Ω, to resolve the boundary


onditions in the sense that for all fa
ets E ⊂ ∂Ω on the boundary, there holds E ⊆ γ for

some γ ∈ {ΓD,ΓN ,ΓR} and let T(·, ·) denote bise
tion from Se
tion 3.2.8. Let Sp
D(T ) :=

Pp(T ) ∩ H1
D(Ω) with �xed polynomial order p ≥ 1. To dis
retize the given Diri
hlet data

gD, for any given triangulation T ∈ T, 
hoose an approximation

GD(T ) ∈ Sp(T |ΓD
) :=

{
V |ΓD

: V ∈ Sp(T )
}

of the Diri
hlet data gD. Here and throughout this se
tion, let T |ΓD
:=

{
T |ΓD

: T ∈ T
}
de-

note the restri
tion of the volume triangulation to the Diri
hlet boundary ΓD, and Sp(T |ΓD
)

is the dis
rete tra
e spa
e. A 
onvenient way to 
hoose this approximation independently of

the spatial dimension is the S
ott-Zhang proje
tion J(T ) : H1(Ω) → Sp(T ) from [76℄. The

formal de�nition also allows for an operator J(T |ΓD
) : L2(ΓD) → Sp(T |ΓD

) on the boundary

(see also De�nition 3.3.2 for details). The reader is referred to [4℄ for details and further

dis
ussions.

The dis
rete 
ounterpart of (5.4.2) seeks U(T ) ∈ Sp(T ) su
h that

U(T )|ΓD
= GD(T ), (5.4.4a)

b(U(T ), V ) = f(V ) for all V ∈ Sp
D(T ). (5.4.4b)

As in the 
ontinuous 
ase, (5.4.4) admits a unique solution and there holds a general Céa

lemma

‖u− U(T )‖H1(Ω) ≤ C26 min
V ∈Sp(T )

‖u− V ‖H1(Ω), (5.4.5)

where C26 > 0 depends only on the boundary parts, p, the shape regularity (3.2.5), and on

α. The Céa lemma (5.4.5) is proved in [4, Proposition 2℄ for the 
ase ΓR = ∅. The proof,

however, transfers to the present 
ase with the obvious modi�
ations.

5.4.4. Quasi-optimal 
onvergen
e. The derivation of the residual-based error esti-

mator η(T ) follows similarly to the homogeneous 
ase and di�ers only by adding an os
illation

term to 
ontrol the approximation of the Diri
hlet data [4, 11, 48, 74℄. With the weight

fun
tion h(T )|T := |T |1/d for all T ∈ T , the lo
al 
ontributions read
ηT (T ) := h(T )|2T‖f +∆T U(T )‖2L2(T ) + h(T )|T‖[∂nU(T )]‖2L2(∂T∩Ω)

+ ‖h(T )1/2(φR − αU(T )− ∂nU(T ))‖2L2(∂T∩ΓR)

+ ‖h(T )1/2(φN − ∂nU(T ))‖2L2(∂T∩ΓN ) + dirT (T )2,

where

dirT (T )2 := h(T )|T‖(1−Πp−1(T |ΓD
))∇ΓgD‖2L2(∂T∩ΓD)

and Πp−1(T |ΓD
) : L2(ΓD) → Pp−1(T |ΓD

) :=
{
V |ΓD

: V ∈ Pp−1(T )
}
is the (pie
ewise)

L2
-orthogonal proje
tion, and ∇Γ(·) denotes the surfa
e gradient.
For ea
h fa
et E ⊂ ∂Ω, there exists a unique element T ∈ T su
h that E ⊂ ∂T . In

parti
ular, h(T ) also indu
es a weight fun
tion on γ ∈ {ΓD,ΓN ,ΓR}.
The following proposition shows that inhomogeneous (and mixed) boundary data �t in

the framework of our abstra
t analysis. Emphasis is on the novel quasi-orthogonality (E2)

whi
h improves the analysis of [4℄ on separate Dör�er marking. The super-
ontra
tive weight

fun
tion hω(T ) from Proposition 4.5.4 establishes optimal 
onvergen
e of Algorithm 2.2.1

with the standard Dör�er marking (2.2.1).
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Given T ∈ T and S ⊆ T , de�ne the 5-pat
h by

ω5(S, T ) :=
{
T ∈ T :∃T0, . . . , T4 ∈ T , T0 ∈ S, T4 ∩ T 6= ∅,

Ti ∩ Ti+1 6= ∅, i = 0, . . . , 3
}
.

(5.4.6)

Proposition 5.4.1. The 
onforming dis
retization of the Poisson problem (5.4.2) with

residual error estimator η(·) satis�es
(i) stability and redu
tion (E1) with ̺(T , T̂ ) := Cpert‖U(T ) − U(T̂ )‖H1

0 (Ω) as well as

S(T , T̂ ) := T \ T̂ and Ŝ(T , T̂ ) := T̂ \ T ,

(ii) general quasi-orthogonality (E2),

(iii) dis
rete reliability (E3) with R(T , T̂ ) = ω5(T \T̂ , T ), κdlr = ∞, and εdrel = 0,
(iv) the re�nement axioms (T1)�(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all

s > 0.

Moreover, the estimator satis�es (2.4.1)�(2.4.2) with err(T ) := ‖u− U(T )‖H1(Ω) and

data(T )2 := dir(T )2 + min
F∈Pp−1(T )

‖h(T )(f − F )‖2L2(Ω)

+ min
Φ∈Pp−1(T |ΓN

)
‖h(T )1/2(φN − Φ)‖2L2(ΓN )

+ min
Φ∈Pp−1(T |ΓR

)
‖h(T )1/2(φR − Φ)‖2L2(ΓR).

(5.4.7)

The 
onstants Cdrel, Cqo, Cpert, Crel, Ceff depend only on the parameter p > 1, T0, and on Ω.

Proof. E�
ien
y (2.4.2) 
an be found in [11, 74℄ or [4, Proposition 3℄. The proof

of (5.4.7) follows similarly to that of Proposition 3.5.1 and exploits that ∆T U(T )|T is a

polynomial of degree ≤ p− 2.
The proofs of stability and redu
tion (E1) are verbatim to the 
ase with ΓR = ∅ from [4,

Proposition 11℄. The proof of dis
rete reliability (E3) is more involved, however, the di�
ul-

ties arise only due to the approximation of the Diri
hlet data and the non-lo
al H1/2(ΓD)-
norm. The proof in [4, Proposition 21℄ for ΓR = ∅ generalizes to the present 
ase. The

statement (iv) follows as for the homogeneous 
ase in Se
tion 3.5.1.

It remains to verify the quasi-orthogonality (2.7.5) whi
h implies (E2) by virtue of

Lemma 2.7.3. The 5-pat
h ω5(·, ·) is a pat
h fun
tion in the sense of Se
tion 4.5.1. Moreover,

the weight fun
tion h(T ) satis�es the assumptions of Se
tion 4.5. Hen
e, Proposition 4.5.4

provides a super 
ontra
tive weight fun
tion hω5(·). It is proved in [4, Lemma 20℄ for ΓR = ∅
that there holds for all εqo > 0 and all T̂ ∈ T(T ), T ∈ T, that

‖U(T̂ )− U(T )‖2 ≤ ‖u− U(T )‖2 − (1− εqo)‖u− U(T̂ )‖2

+ Cpythεqo
−1‖(J(T̂ |ΓD

)− J(T |ΓD
))gD‖2H1/2(ΓD),

(5.4.8)

where Cpyth > 0 depends only on T and ΓD. Although [4℄ 
onsiders ΓR = ∅ and hen
e

‖ · ‖ = ‖∇(·)‖L2(Ω), the proof transfers to the present 
ase.

The fo
us in the derivation of quasi-orthogonality (2.7.5) is on the last term on the

right-hand side. First, let ω5
D(T \T̂ , T ) ⊆ T |ΓD

denote the set of all fa
ets E of T with

E ⊆ ΓD ∩ ⋃
ω5(T \T̂ , T ). It is part of the proof of [4, Proposition 21℄ that there exists a

uniform 
onstant C27 > 0 su
h that any triangulation T ∈ T and all re�nements T̂ ∈ T(T )
of T ∈ T satisfy

‖(J(T̂ |ΓD
)− J(T |ΓD

))v‖H1/2(ΓD) ≤ C27‖h(T )1/2(1−Πp−1(T |ΓD
))∇Γv‖L2(∪ω5

D(T \T̂ ,T ))
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for all v ∈ H1(ΓD). We note that this result hinges on the use of bise
tion (Se
tion 3.2.8) in

the sense that the 
onstant C27 > 0 depends on the shape of all possible pat
hes. By means

of Lemma 3.3.3, the proof of [4, Proposition 21℄ 
an be extended to triangulations in the

sense of Se
tion 3.2.1�3.2.7.

This estimate is applied for v = gD. The de�nition of hω5(T ) in Proposition 4.5.4 implies

hω5(T̂ ) ≤ hω5(T ) pointwise on all T ∈ T ,
hω5(T̂ ) ≤ qschω5(T ) pointwise on all T ∈ T with h(T )|∪ω5(T,T̂ ) 6= h(T̂ )|∪ω5(T,T̂ ).

Re
all that h(T )|∪ω5(T,T̂ ) 6= h(T̂ )|∪ω5(T,T̂ ) is in the present 
ase equivalent to ω5(T, T ) ∩ T \
T̂ 6= ∅ or T ∈ ω5(T \ T̂ , T ). Hen
e, we obtain

hω5(T̂ ) ≤ qschω5(T ) pointwise on all T ∈ ω5(T \ T̂ , T ).

This implies

(1− qsc) hω5(T )|∪ω5(T \T̂ ,T ) ≤ hω5(T )− hω5(T̂ ) pointwise in Ω.

The 
ontra
tion above allows to write

(1− qsc)‖hω5(T )1/2(1− Πp−1(T |ΓD
))∇ΓgD‖2L2(∪ω5

D(T \T̂ ,T ))

≤ ‖hω5(T )1/2(1− Πp−1(T |ΓD
))∇ΓgD‖2L2(ΓD) − ‖hω5(T )1/2(1− Πp−1(T |ΓD

))∇ΓgD‖2L2(ΓD).

This and the element wise best-approximation property of Πp−1(T̂ |ΓD
) prove that

‖hω5(T )1/2(1− Πp−1(T̂ |ΓD
))∇ΓgD‖2L2(ΓD) ≤ ‖hω5(T )1/2(1− Πp−1(T |ΓD

))∇ΓgD‖2L2(ΓD).

With h(T ) ≤ C19hω5(T ) from Proposition 4.5.4, we obtain

(1− qsc)C
−1
19 ‖h(T )1/2(1− Πp−1(T |ΓD

))∇ΓgD‖2L2(∪ω5
D(T \T̂ ,T ))

≤ ‖hω5(T )1/2(1− Πp−1(T |ΓD
))∇ΓgD‖2L2(ΓD)

− ‖hω5(T )1/2(1− Πp−1(T |ΓD
))∇ΓgD‖2L2(ΓD).

The 
ombination of the previous arguments leads to

‖(J(T̂ |ΓD
)− J(T |ΓD

))gD‖2H1/2(ΓD) ≤ α(T )2 − α(T̂ )2,

where

α(T ) := C
1/2
27 C

1/2
19 (1− qsc)

−1/2‖hω5(T )1/2(1− Πp−1(T |ΓD
))∇ΓgD‖L2(ΓD).

By equivalen
e (4.5.9), one obtains (2.7.5b) and hen
e Lemma 2.7.3 proves general quasi-

orthogonality (E2). This 
on
ludes the proof. �

Remark 5.4.2. We brie�y 
omment on the 
ase ΓR = ∅ with

‖v‖2 := ‖∇v‖2L2(Ω) + ‖v‖2H1/2(ΓD) 6= b(v, v).

The Relli
h 
ompa
tness theorem guarantees that ‖ · ‖ is an equivalent norm in H1(Ω). The

ombination with [4, Lemma 20℄ (i.e. (5.4.8) with ‖ · ‖ = ‖∇(·)‖L2(Ω)) proves for su�
iently

small εqo ≪ 1 that

‖U(T̂ )− U(T )‖2 ≤ ‖∇(u− U(T ))‖2L2(Ω) − (1− εqo)‖∇(u− U(T̂ ))‖2L2(Ω)

+ C̃pythεqo
−1‖(J(T̂ |ΓD

)− J(T |ΓD
))gD‖2H1/2(ΓD).

(5.4.9)

With (5.4.9) instead of (5.4.8), the arguments in the proof of Proposition 5.4.1 remain valid.
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The adaptive FEM for the mixed boundary value boundary (5.4.1) satis�es all assump-

tions of the abstra
t framework.

Consequen
e 5.4.3. The adaptive algorithm leads to 
onvergen
e with optimal rate

for the estimator η(T ) in the sense of Theorem 2.3.3. For optimal rates of the dis
retization

error in the sense of Theorem 2.4.3, additional regularity of the data has to be imposed for

higher-order elements p ≥ 1, 
f. Consequen
e 3.5.2. �
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CHAPTER 6

Appli
ations III: Adaptive BEM with Geometry Approximation

6.1. Introdu
tion, state of the art & outline

This 
hapter treats the weakly-singular integral equation from Se
tion 3.5.3 for gen-

eral boundaries. Most of the literature 
on
erns pie
ewise polynomial boundary geome-

tries [20, 28, 33, 34, 27, 47℄. One way to 
ir
umvent this, is to employ the isogeometri


approa
h, where the boundary is given in terms of B-splines or NURBS whi
h stem from


omputer aided design systems. This, however, involves the drawba
k, that one has to


ompute the integral operators on nonstandard geometries, whi
h is at the moment not

supported by available BEM libraries, and moreover is expensive. The approa
h pro
eeded

here, is to approximate the boundary by pie
ewise a�ne line segments and to perform the


omputation on the approximate polygonal boundary. This allows to employ standard BEM

implementations and moreover enables to 
ompute the operator matri
es analyti
ally in 2D.

To estimate the approximation error, we develop an error estimator, whi
h reliably estimates

the dis
retization error of the approximation spa
es as well as the geometri
 approximation

error introdu
ed by the approximate boundary. While there are some results on geometry

approximation for the �nite element method [15, 63, 38, 42℄, this is the �rst a posteriori

analysis of geometry approximation for the boundary element method (several a priori results

for BEM are available in, e.g. [75, 67℄). Under some assumptions, we are able to prove plain


onvergen
e in the sense of (2.3.1) of the error estimator and the approximate solutions.

The remainder of the 
hapter is organized as follows: Se
tion 6.2 states the assumptions on

the geometry and introdu
es the geometri
 error estimator. The main result of this 
hapter

is stated in Se
tion 6.4 and the 
onvergen
e proof is given in Se
tion 6.3.

6.2. Setting

Consider the weakly-singular integral equation on the boundary Γ := ∂Ω of a 
onne
ted

Lips
hitz domain Ω ⊆ R2
with diam(Ω) < 1

Vu = f,

where the weakly-singular integral operator V : H−1/2(Γ) → H1/2(Γ) is given by (3.5.11).

6.2.0.1. Exa
t and approximate geometry. Let the exa
t boundary Γ := ∂Ω allow for a

pie
ewise smooth parametrization γ : [0, 1] → Γ su
h that both γ and γ−1
are Lips
hitz


ontinuous with 
onstant Cγ > 0 and |γ′(s)| = |Γ| for all s ∈ [0, 1] (to avoid problems

with the endpoints of [0, 1], we identify {0} and {1} and 
onsider the metri
 d(s, t) :=
min{|s − t|, |1 − s| + |0 − t|, |0 − s| + |1 − t|} on [0, 1]). Let tΓ denote the unit tangent

on Γ and let nΓ denote the unit normal. By ∂Γ, we denote the ar
-length derivative on

Γ (see De�nition 6.2.5 below). We assume that Γ has bounded 
urvature in the sense

that ‖∂ΓtΓ‖L∞(Γ) ≤ κΓ (where ∂Γ is understood pie
ewise on smooth parts of Γ) for some

κΓ > 0. Any approximate boundary Γ⋆ must be a nodal interpolation of Γ with nodes

K⋆ ⊆ Γ ∩ Γ⋆. The �nitely many non-smooth points PΓ of Γ have to satisfy PΓ ⊂ K⋆ and

the en
losed domain Ω⋆ (i.e., ∂Ω⋆ = Γ⋆) must satisfy diam(Ω⋆) ≤ 1− εscale for some uniform
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εscale > 0 (Note that this 
an always be a
hieved by s
aling of the exa
t boundary Γ). The
approximation Γ⋆ is asso
iated with the partition T⋆ whi
h 
onsists of the 
ompa
t line

segments of Γ⋆. We 
all the pair (T⋆,Γ⋆) an approximate geometry. Ea
h element T ∈ T⋆

satis�es

T ∩ Γ ⊆ K⋆ or T ∩ Γ = T,

i.e., the exa
t boundary tou
hes elements only at the nodes or 
oin
ides exa
tly with the

element. Ea
h T ∈ T⋆ de�nes a unique 
ompa
t 
urve segment T Γ ⊆ Γ with the same

endpoints as T . The 
olle
tion of all this 
urve segments de�nes a partition T Γ
⋆ of Γ. To

avoid degenerate 
ases, we 
onsider only partitions with |T Γ| < |Γ|/2 for all T ∈ T⋆.

Consider the map γ⋆ : Γ → Γ⋆ (see Figure 2 for an illustration) impli
itly de�ned by

γ⋆(T ) ⊆ T Γ
for all T ∈ T⋆,

(x− γ⋆(x)) · tΓ(x) = 0 for all x ∈ Γ \ PΓ,

γ⋆(x) = x for all x ∈ K⋆.

(6.2.1)

Note that the subs
ript ⋆ denotes the relation to the approximate geometry (T⋆,Γ⋆).

Remark 6.2.1. In Lemma 6.2.17 below, we introdu
e an extension γ⋆ : R2 → R2
.

Hen
e, after Lemma 6.2.17, γ⋆ is also used to denote its extension, where the meaning will

be 
lear from the 
ontext.

The approximate geometry (T⋆,Γ⋆) must be su�
iently 
lose to Γ su
h that (Γ2)�(Γ4)
hold for uniform 
onstants CLip, Cµ > 0

(Γ1) The orthogonal proje
tion γ⋆ : Γ → Γ⋆ from (6.2.1) is well-de�ned and uniquely

determined, pie
ewise smooth, and is a 
ontinuous one-to-one map.

(Γ2) All x, y ∈ Γ satisfy

C−1
Lip|x− y| ≤ |γ⋆(x)− γ⋆(y)| ≤ CLip|x− y|.

(Γ3) All T ∈ T⋆ with endpoints xT , yT ∈ Γ satisfy that ea
h x ∈ T de�nes a unique

y ∈ T Γ
with

(x− y) · (xT − yT ) = 0.

This de�nes a map µ⋆ : Γ → Γ⋆ by µ⋆(y) := x (see Figure 2 for an illustration).

(Γ4) There holds

C−1
µ ‖idΓ − γ⋆‖2L∞(Γ) ≤ ‖idΓ − µ⋆‖2L∞(Γ) ≤ ‖idΓ − γ⋆‖2L∞(Γ).

Note that the upper bound holds for any geometry Γ⋆, sin
e µ⋆ is the orthogonal

proje
tion onto Γ⋆.

Lemma 6.2.9 below gives some su�
ient 
onditions whi
h imply (Γ1)�(Γ4).
6.2.0.2. Approximate solution. With the T⋆-pie
ewise 
onstant fun
tions P0(T⋆), the

Galerkin approximation U(T⋆) ∈ P0(T⋆) is the solution of

∫

Γ⋆

V⋆U(T⋆) V dx =

∫

Γ⋆

f⋆V dx for all V ∈ P0(T⋆), (6.2.2)

where

V⋆w(x) := − 1

2π

∫

Γ⋆

log |x− y|w(y) dy

denotes the weakly-singular integral operator on Γ⋆ and f⋆ := f ◦ γ−1
⋆ .

116



PSfrag repla
ements

Γ

Γ⋆

tΓnΓ

T

TΓ

Figure 1. Boundary Γ with tangent ve
tor tΓ and normal ve
tor nΓ as well

as approximate geometry (T⋆,Γ⋆) with element T ∈ T⋆ and 
orresponding

T Γ ⊆ Γ.
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Figure 2. The mappings γ⋆ and µ⋆.

We propose to approximate the exa
t solution u ≈ U(T⋆)
Γ
by

U(T⋆)
Γ := U(T⋆) ◦ γ⋆|∂Γγ⋆|.

6.2.1. Error estimator. The partition T⋆ indu
es a lo
al weight fun
tion h⋆|T := |T | :=
length(T ) for all T ∈ T⋆. The error quantity of interest is

‖u− U(T⋆)
Γ‖H−1/2(Γ).

With the identity mapping idΓ : Γ → Γ and the geometri
 error

geo(T⋆) := max{‖idΓ − γ⋆‖1/2L∞(Γ), ‖tΓ − ∂Γγ⋆‖L∞(Γ)}, (6.2.3)

the error estimator reads

η(T⋆) :=
(
‖h1/2⋆ ∂Γ⋆(VU(T⋆)− f⋆)‖2L2(Γ⋆)

+ geo(T⋆)
3(1 + | log(geo(T⋆))|2)‖U(T⋆)‖2L2(Γ⋆)

)1/2

.
(6.2.4)

For brevity of notation, we write ρ(T⋆) := ‖h1/2⋆ ∂Γ⋆(VU(T⋆)−f⋆)‖L2(Γ⋆) and de�ne the element

wise 
ontributions for all T ∈ T⋆

ρT (T⋆) := h⋆|1/2T ‖∂Γ⋆(VU(T⋆)− f⋆)‖L2(T ),

geoT (T⋆) := max{‖idΓ − γ⋆‖1/2L∞(TΓ)
, ‖tΓ − ∂Γγ⋆‖L∞(TΓ)}.

(6.2.5)

6.2.2. Adaptive geometry approximation. We propose a modi�ed version of Algo-

rithm 2.2.1 whi
h in
ludes also the geometri
 error (a similar algorithm 
an also be found

in [15℄ for FEM). To that end, 
hoose an initial approximation Γ0 as well as the 
orresponding

partition T0 of Γ0 su
h that the requirements of Se
tion 6.2.0.1 are satis�ed.
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Algorithm 6.2.2. Input: Initial triangulation T0 and parameters 0 < θ ≤ 1, 0 ≤
ϑ < 1.
Loop: For ℓ = 0, 1, 2, . . . do (i)− (iv).

(i) Compute solution U(Tℓ) of (6.2.2).

(ii) Compute error estimators ρT (Tℓ) and geoT (Tℓ) for all T ∈ Tℓ.

(iii) Determine a set of marked elements Mℓ ⊆ Tℓ with minimal 
ardinality whi
h satis-

�es the Dör�er marking

θρ(Tℓ)
2 ≤

∑

T∈Mℓ

ρT (Tℓ)
2

(6.2.6a)

as well as

Mℓ ⊇
{
T ∈ Tℓ : geoT (Tℓ) > ϑgeo(Tℓ)

}
. (6.2.6b)

(iv) De�ne the next partition Tℓ+1 = T(Tℓ,Mℓ) as detailed in Se
tion 6.2.5 below.

Output: Error estimators (η(Tℓ))ℓ∈N0 and approximations (U(Tℓ)
Γ)ℓ∈N0.

6.2.3. Some de�nitions. Below, we provide some de�nitions whi
h are used through-

out this 
hapter.

Definition 6.2.3. Given x, y ∈ Γ, de�ne the 
ompa
t and 
onne
ted set Γy
x ⊆ Γ with

x, y ∈ Γy
x as

∫

Γy
x

1 dx = inf
{∫

Γ̃

1 dx : Γ̃ ⊆ Γ 
ompa
t and 
onne
ted with x, y ∈ Γ̃
}
.

The set on the right-hand side is non-empty due to the fa
t that Γ is 
onne
ted by assumption.

Let xT , yT ∈ T ∩ Γ denote the endpoints of T ∈ T⋆. Note that sin
e |T Γ| < |Γ|/2, there holds
T Γ = ΓyT

xT
. Given the approximate geometry Γ⋆ and x, y ∈ Γ⋆, de�ne the 
ompa
t and


onne
ted set Γy
⋆,x ⊆ Γ⋆ with x, y ∈ Γy

⋆,x as

∫

Γy
⋆,x

1 dx = inf
{∫

Γ̃

1 dx : Γ̃ ⊆ Γ⋆ 
ompa
t and 
onne
ted with x, y ∈ Γ̃
}
.

See also Figure 3 for an illustration.

Definition 6.2.4. For a boundary part ω ⊆ Γ∪Γ⋆ with a given approximate geometry

Γ⋆, we denote by |ω| :=
∫
ω
1 dx the length of the 
urve. Moreover, given subsets ω, ω′ ⊆ Γ∪Γ⋆,

de�ne

dist(ω, ω′) := inf
x∈ω, y∈ω′

|x− y| ≥ 0.
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Definition 6.2.5 (Ar
-length derivative). Given any approximate geometry Γ⋆ (also

the exa
t geometry Γ is allowed here), x ∈ Γ⋆, and g : Γ⋆ → Rd
, d ∈ {1, 2}, the ar
-length

derivative ∂Γ⋆g(x) (if exists) is de�ned as follows: Choose some δ > 0 and some 
ontinuous

one-to-one mapping γx : (−δ, δ) → Γ⋆ with γ⋆,x(0) = x and γ′⋆,x(s) = tΓ⋆ ◦ γ⋆,x(s) almost

everywhere in (−δ, δ). Then, de�ne
∂Γ⋆g(x) := (g ◦ γ⋆,x)′(0) ∈ Rd. (6.2.7)

The de�nition is unique sin
e γx is uniquely de�ned lo
ally around zero.

Given another approximate geometry Γ• (also the exa
t geometry Γ is allowed here) and

g : Γ⋆ → Γ•, the ar
-length derivative ∂Γ⋆g(x) 
an be de�ned as in (6.2.7), or in the s
alar

version as

∂sΓ⋆
g(x) := (γ−1

•,g(x) ◦ g ◦ γ⋆,x)′(0) ∈ R. (6.2.8)

There holds the identity

∂Γ⋆g(x) = (γ•,g(x) ◦ γ−1
•,g(x) ◦ g ◦ γ⋆,x)′(0) = γ′•,g(x)(0)∂

s
Γ⋆
g(x) = tΓ• ◦ g(x)∂sΓ⋆

g(x). (6.2.9)

Finally, for a fun
tion g : Rd → Γ⋆, d ≥ 1, and some z ∈ Rd
de�ne

∂szg(x) := ∂z(γ
−1
g(x) ◦ g)(x) ∈ R.

There holds the identity

∂zg(x) = γ′g(x)(0)∂
s
zg(x) = tΓ ◦ g(x)∂szg(x). (6.2.10)

Definition 6.2.6. Given any approximate geometry Γ⋆ (also the exa
t geometry Γ is

allowed here), 
hoose a parametrization γΓ⋆ : [0, |Γ⋆|] → Γ⋆ with γΓ⋆(0) = γΓ⋆(|Γ⋆|) and γ′Γ⋆
=

tΓ⋆ ◦ γΓ⋆. Then, there holds for smooth fun
tions g1, g2 : Γ⋆ → R that ∂Γ⋆gi = (gi ◦ γΓ⋆)
′ ◦ γ−1

Γ⋆

and integration by parts

∫

Γ⋆

∂Γ⋆g1 g2 dx =

∫ |Γ⋆|

0

(∂Γ⋆g1) ◦ γΓ⋆ g2 ◦ γΓ⋆ dx =

∫ |Γ⋆|

0

(g1 ◦ γΓ⋆)
′ g2 ◦ γΓ⋆ dx

= −
∫ |Γ⋆|

0

g1 ◦ γΓ⋆ (g2 ◦ γΓ⋆)
′ dx = −

∫

Γ⋆

g1 ∂Γ⋆g2 dx.

With this, we de�ne

H1(Γ⋆) :=
{
g ∈ L2(Γ⋆) : ∂Γ⋆g ∈ L2(Γ⋆) in the weak sense

}
.

The spa
es Hs(Γ⋆) := [L2(Γ⋆), H
1(Γ⋆)]s,2 are de�ned by real interpolation for all s ∈ (0, 1).

By H−s(Γ⋆) we denote the dual spa
e of Hs(Γ⋆) with respe
t to the extended L2(Γ⋆) s
alar
produ
t.

Lemma 6.2.7 (Chain-rule). Given the approximate geometries Γ⋆, Γ•, Γ+ (also the

exa
t geometry Γ is allowed instead of ea
h of the approximate geometries) as well as µ :
Γ⋆ → Γ•, λ : Γ• → Γ+, and g : Γ• → Rd

. Then, there holds almost everywhere in Γ⋆

∂Γ⋆(g ◦ µ) = (∂Γ•g) ◦ µ ∂sΓ⋆
µ and ∂sΓ⋆

(λ ◦ µ) = (∂sΓ•
λ) ◦ µ ∂sΓ⋆

µ (6.2.11a)

in the sense that ea
h side exists if and only if the other one does, too. Moreover, for

µ : R2 → Γ•, there holds

∂z(λ ◦ µ) = (∂Γ•λ) ◦ µ∂szµ. (6.2.11b)
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Proof. By de�nition, there holds

∂Γ⋆(g ◦ µ)(x) = (g ◦ µ ◦ γ⋆,x)′(0) = (g ◦ γ•,µ(x) ◦ γ−1
•,µ(x) ◦ µ ◦ γ⋆,x)′(0)

= (∂Γ•g) ◦ µ(x)∂sΓ⋆
µ,

as well as

∂sΓ⋆
(λ ◦ µ) = (γ−1

+,λ◦µ(x) ◦ λ ◦ µ ◦ γ⋆,x)′(0) = (γ−1
+,λ◦µ(x) ◦ λ ◦ γ•,µ(x) ◦ γ−1

•,µ(x) ◦ µ ◦ γ⋆,x)′(0)
= (∂sΓ•

λ) ◦ µ(x) ∂sΓ⋆
µ(x).

The identity (6.2.11b) follows by

∂z(λ ◦ µ)(x) = ∂z(λ ◦ γ•,µ(x) ◦ γ−1
•,µ(x) ◦ µ)(x) = (∂Γ•λ) ◦ µ∂szµ.

�

Lemma 6.2.8. Given an approximate geometry T⋆ with (Γ1)�(Γ2), there holds

(∂sΓ⋆
γ−1
⋆ ) ◦ γ⋆ = (∂sΓγ⋆)

−1
and |(∂Γ⋆γ

−1
⋆ ) ◦ γ⋆| = |∂Γγ⋆|−1. (6.2.12)

Proof. The 
hain rule (6.2.11) shows

1 = ∂sΓ(γ
−1
⋆ ◦ γ⋆) = (∂sΓ⋆

γ−1
⋆ ) ◦ γ⋆ ∂sΓγ⋆.

Sin
e (Γ2) implies ∂sΓγ⋆ 6= 0, the �rst statement follows. The identity (6.2.9) proves the

se
ond statement. �

6.2.4. Su�
ient 
onditions for approximate geometries. Below, we investigate

the 
laimed properties of the exa
t and approximate geometries.

Lemma 6.2.9. There exists a 
onstant CΓ > 0 whi
h depends only on Γ, su
h that all

x, y ∈ Γ satisfy

C−1
Γ |x− y| ≤ |Γy

x| ≤ CΓ|x− y|.
(6.2.13)

Under (Γ2) all x, y ∈ Γ⋆ satisfy

C−1
Γ C−1

Lip|x− y| ≤ |Γy
⋆,x| ≤ CLipCΓ|x− y|

(6.2.14)

and under (Γ1), there holds

(∂sΓγ⋆)
−1 = ∂sΓ⋆

(γ−1
⋆ ) ◦ γ⋆ > 0 (6.2.15)

almost everywhere on Γ. Moreover, there exist 
onstants hΓ > 0 and εΓ > 0 su
h that for

the approximate geometry T⋆ holds

(i) h⋆ ≤ C−1
Γ κ−1

Γ /2 implies (Γ3) and (Γ4) with Cµ = 2CΓ,

(ii) h⋆ ≤ C−1
Γ κ−1

Γ /2 and geo(T⋆) ≤ κ−1
Γ /2 imply (Γ1),

(iii) geo(T⋆) ≤ C−1
Γ /2 implies (Γ2).

Proof of (6.2.13). Without loss of generality, assume that {0, 1} /∈ γ−1(Γy
x). The as-

sumption that |γ′| is 
onstant and the minimality of Γy
x shows that |γ−1(Γy

x)| ≤ 1/2 and

hen
e |γ−1(x) − γ−1(y)| = d(γ−1(x), γ−1(y)) (where d(·, ·) de�nes the metri
 on [0, 1] from
Se
tion 6.2.0.1). With this, there holds

|Γy
x| =

∫

Γy
x

1 dx =

∫ γ−1(y)

γ−1(x)

|γ′(z)| dz ≤ ‖γ′‖L∞([0,1])|γ−1(x)− γ−1(y)| . |x− y|,
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as well as

|x− y| . |γ−1(x)− γ−1(y)| =
∣∣
∫ γ−1(y)

γ−1(x)

1 dz
∣∣ =

∣∣
∫

Γy
x

|∂Γγ−1|
∣∣ . |Γy

x|.

�

Proof of (ii). To see (Γ1), we apply the impli
it fun
tion theorem. Let T ∈ T⋆ with

endpoints xT , yT ∈ T , and let γT : (0, 1) → T, γT (s) := (xT − yT )s + yT be an a�ne

parametrization of the interior of T . The impli
it de�nition (6.2.1) rewrites as follows: Find

γ̃T : [0, 1] → [0, 1] su
h that

F (t, γ̃T (t)) = 0 for all t ∈ γ−1(T Γ), where F (t, s) = (γ(t)− γT (s)) · tΓ ◦ γ(t). (6.2.16)

Sin
e Γ and γ are pie
ewise smooth, there holds that F : γ−1(T Γ) × (0, 1) → R is smooth.

If ∂sF (t0, s0) 6= 0 for all (t0, s0) ∈ γ−1(T Γ) × [0, 1], the impli
it fun
tion theorem provides

a unique map γ̃T : γ−1(T Γ) → (0, 1) whi
h is smooth and satis�es (6.2.16). With this,

γ⋆(x) := γT ◦ γ̃T ◦ γ−1(x) for all x ∈ T \ {xT , yT} satis�es (Γ1) up to inje
tiveness (whi
h is

shown below).

To prove ∂sF (t0, s0) = (xT − yT ) · tΓ ◦ γ(t0) 6= 0, assume

0 = ∂sF (t0, s0) = (xT − yT ) · tΓ ◦ γ(t0) =
∫

TΓ

tΓ(z) · tΓ ◦ γ(t0) dz. (6.2.17)

The integrand r(z) := tΓ(z) · tΓ ◦ γ(t0) satis�es r(γ(t0)) = 1. Due to (6.2.17), there exists at
least one z′ ∈ T Γ

with r(z′) = 0. This implies the existen
e of z′′ ∈ T Γ
su
h that

κΓ ≥ |(∂ΓtΓ)(z′′)| ≥ |(∂Γr)(z′′)| ≥ |T Γ|−1 ≥ C−1
Γ |xT − yT |−1,

where we used T Γ = ΓyT
xT
. This shows

κ−1
Γ C−1

Γ ≤ |xT − yT | ≤ ‖h⋆‖L∞(Γ⋆).

This shows that for h⋆ ≤ κ−1
Γ C−1

Γ , ∂sF (t0, s0) 6= 0 and hen
e (Γ1) up to inje
tiveness.

To prove that γ⋆ is inje
tive, 
onsider

0 = ∂tF (t, γ̃T (t)) = (∂tF )(t, γ̃T (t)) + (∂sF )(t, γ̃T (t))γ̃
′
T (t),

whi
h implies by use of γ′(t) = |Γ|tΓ ◦ γ(t)

|γ̃′T (t)| =
∣∣∣ ∂tF (t, γ̃T (t))

(xT − yT ) · tΓ ◦ γ(t)
∣∣∣

=
∣∣∣γ

′(t) · tΓ ◦ γ(t) + (γ(t)− γT ◦ γ̃T (t)) · (tΓ ◦ γ)′(t)
(xT − yT ) · tΓ ◦ γ(t)

∣∣∣

≥ |γ′(t)| − |(γ(t)− γT ◦ γ̃T (t))||∂ΓtΓ||γ′(t)|
h⋆

.

Hen
e, for |(γ(t)−γT ◦ γ̃T (t))| ≤ geo(T⋆)
2 ≤ κ−1

Γ /2, there holds with the Lips
hitz 
ontinuity

of γ

|γ̃′T (t)| ≥ |γ′(t)|/2 ≥ C−1
γ > 0,

whi
h implies that γ̃T : [0, 1] → [0, 1] is stri
tly monotone and hen
e inje
tive. By de�nition,

γ⋆|TΓ := γT ◦ γ̃T ◦ γ−1
is also inje
tive. �
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Proof of (i) =⇒ (Γ3). The property (Γ3) 
an be seen as follows: Let y1, y2 ∈ T Γ
su
h

that (y1 − x) · (xT − yT ) = (y2 − x) · (xT − yT ) = 0 for some x ∈ T . Then, there holds

0 = (y1 − y2) · (xT − yT ) =

∫

Γ
y2
y1

tΓ(z) · (xT − yT ) dz. (6.2.18)

Rolle's theorem provides z0 ∈ T Γ
with |tΓ(z0) · (xT − yT )| = |xT − yT |. Hen
e, the integrand

r(z) := tΓ(z) · (xT − yT ) satis�es |r(z0)| = |xT − yT |. Assume y1 6= y2, then (6.2.18) shows

r(z1) = 0 for at least one z1 ∈ Γy2
y1
. This implies for some z2 ∈ T Γ

|T Γ|−1|xT − yT | ≤ |Γz1
z0
|−1|xT − yT | ≤ |∂Γr(z2)| ≤ |xT − yT |κΓ.

Hen
e, y1 = y2 for |T Γ| ≤ κ−1
Γ /2 or h⋆ ≤ κ−1

Γ C−1
Γ /2. This implies (Γ3). �

Proof of (iii). To see (Γ2) 
onsider

|γ⋆(x)− γ⋆(y)| ≤ |x− y|+ |x− γ⋆(x)− (y − γ⋆(y))|

≤ |x− y|+
∣∣
∫

Γy
x

tΓ(z)− ∂Γγ⋆(z) dz
∣∣

≤ |x− y|+ geo(T⋆)|Γy
x|

≤ (1 + CΓgeo(T⋆))|x− y|,
as well as

|γ⋆(x)− γ⋆(y)| ≥ |x− y| − |x− γ⋆(x)− (y − γ⋆(y))|
≤ (1− CΓgeo(T⋆))|x− y|.

Therefore, (Γ2) holds for geo(T⋆) ≤ C−1
Γ /2. �

Proof of (6.2.14)�(6.2.15). To see (6.2.15), apply (6.2.11) to see

1 = ∂sΓ(idΓ) = ∂sΓ(γ
−1
⋆ ◦ γ⋆) = ∂sΓ⋆

(γ−1
⋆ ) ◦ γ⋆ ∂sΓγ⋆.

This shows that ∂sΓγ⋆ 6= 0 almost everywhere on Γ. Moreover, sin
e γ⋆ is pie
ewise smooth,

∂sΓγ⋆ < 0 is only possible if ∂sΓγ⋆ < 0 in the interior of some element T Γ
for T ∈ T⋆ with

endpoints xT and yT . However, this in 
ombination with (6.2.9) and tΓ⋆ = (yT−xT )(|yT−xT |)
yields the 
ontradi
tion

yT − xT = γ⋆(yT )− γ⋆(xT ) =

∫

TΓ

∂Γγ⋆(z) dz
(6.2.9)

=

∫

TΓ

tΓ⋆ ◦ γ⋆(z)∂sΓγ⋆(z) dz

=
yT − xT
|yT − xT |

∫

TΓ

∂sΓγ⋆(z) dz.

This proves (6.2.15).

To see (6.2.14), assume (Γ2). Then there holds γ−1
⋆ (Γy

x,⋆) = Γ
γ−1
⋆ (y)

γ−1
⋆ (x)

, sin
e the bi-Lips
hitz

property (Γ2) ensures that endpoints are mapped to endpoints. This, however, implies

|Γy
x,⋆| =

∫

Γy
x,⋆

1 dx =

∫

γ−1
⋆ (Γy

x,⋆)

1|∂Γ⋆γ
−1
⋆ (x)| dx ≃ |Γγ−1

⋆ (y)

γ−1
⋆ (x)

| ≃ |x− y|,

where we used C−1
Lip ≤ |∂Γ⋆γ

−1
⋆ | ≤ CLip. �
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PSfrag repla
ements

cT

zT

T

T1 T2

TΓ

Figure 4. The bise
tion of an element T ∈ T⋆ into its sons T1, T2 a

ording
to Algorithm 6.2.10.

Proof of (i) =⇒ (Γ4). Let x ∈ T Γ
for some T ∈ T⋆ and 
onsider the right triangle

with nodes (x, γ⋆(x), µ⋆(x)) as depi
ted in Figure 2. Let α ≥ 0 denote the interior angle

at the point x. By de�nition, the right-angle is at µ⋆(x). There holds by the Pythagoras

theorem

|x− γ⋆(x)|2 = |x− µ⋆(x)|2 + |µ⋆(x)− γ⋆(x)|2 = |x− µ⋆(x)|2 + |x− γ⋆(x)|2 sin2(α)

and hen
e

cos2(α)|x− γ⋆(x)|2 = |x− µ⋆(x)|2. (6.2.19)

Obviously, α is also the angle between T and tΓ(x). Hen
e, one obtains with xT , yT ∈ Γ∩ T
denoting the endpoints of T

| cos(α)| = |tΓ(x) ·
xT − yT
|xT − yT |

| =
∣∣∣|xT − yT |−1

∫

Γ
yT
xT

tΓ(x) · tΓ(z) dz
∣∣∣.

The integrand r(z) := tΓ(x) · tΓ(z) satis�es r(x) = 1 and therefore also |r(z) − r(x)| ≤
‖∂Γr‖L∞(Γ

yT
xT

)|ΓyT
xT
| ≤ κΓ|ΓyT

xT
|. For h⋆ ≤ C−1

Γ κ−1
Γ /2, this implies r(z) ≥ 1/2 for all z ∈ ΓyT

xT

and hen
e

| cos(α)| ≥ |xT − yT |−1|ΓyT
xT
|/2 ≥ C−1

Γ /2 > 0. (6.2.20)

Together with (6.2.19), this implies

1

2CΓ
|x− γ⋆(x)|2 ≤ |x− µ⋆(x)|2 ≤ |x− γ⋆(x)|2.

�

6.2.5. Mesh re�nement. Assume an approximate geometry (T⋆,Γ⋆) and de�ne the


onvex hull of two points x, y ∈ R2
by [x, y] :=

{
λ(x− y) + y : 0 ≤ λ ≤ 1

}
⊂ R2

. To bise
t

a given element T ∈ T⋆, apply the following algorithm (see also Figure 4 for an illustration)

Algorithm 6.2.10. T +
⋆ := bisect(T⋆, T )

(i) Compute cT := (xT + yT )/2, where xT , yT ∈ K⋆ ∩ T are the endpoints of T .
(ii) Find zT ∈ T Γ ⊆ Γ with (zT − cT ) · (xT − yT ) = 0.
(iii) Set T +

⋆ = (T⋆ \ {T}) ∪ {T1, T2} with T1 := [xT , zT ] and T2 := [zT , yT ].

Lemma 6.2.11. With (Γ3), Algorithm 6.2.10 is well-de�ned and satis�es

max{|T1|2, |T2|2} ≤ |T |2
4

+ ‖idΓ − µ⋆‖L∞(T ) ≤
(1
4
+ C2

γ‖γ′′‖2L∞([0,1])|T |2
)
|T |2, (6.2.21)

as well as |T |/2 ≤ min{|T1|, |T2|}, where {T1, T2} = T +
⋆ \ T⋆ denote the sons of T and

‖γ′′‖L∞([0,1]) is understood pie
ewise.
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Proof. Sin
e yT in Step (ii) of Algorithm 6.2.10 is unique due to (Γ3), the algorithm is

well-de�ned. The Pythagoras theorem implies |Ti|2 = |T |2/4 + |zT − µ⋆(zT )|2. This implies

|Ti| ≥ |T |/2 and the �rst ≤ in (6.2.21). Sin
e Γ⋆ is a nodal interpolation of Γ, a possible

parametrization of Γ⋆ is given by I⋆γ : [0, 1] → Γ⋆, where I⋆ : C([0, 1]) → S1(T[0,1]) is the
a�ne nodal interpoland on the partition T[0,1] whi
h is indu
ed by the nodes γ

−1(K⋆) ⊆ [0, 1].
By de�nition, (I⋆γ) ◦ γ−1(x) ∈ T for all x ∈ T Γ

. There holds for y ∈ T Γ

|y − µ⋆(y)| = min
x∈T

|y − x| ≤ |x− (I⋆γ) ◦ γ−1(x)| = |(γ − I⋆γ) ◦ γ−1(x)|

≤ |γ−1(T )|2‖γ′′‖L∞([0,1]) ≤ C2
γ |T |2‖γ′′‖L∞([0,1]),

where the last norm on the right-hand side is understood pie
ewise. Thus, the above 
on-


ludes (6.2.21). �

Given a set of marked elements M⋆ := {T1, . . . , Tn} ⊆ T⋆, we de�ne the re�nement

T(T⋆,M⋆) by bise
tion from Se
tion 3.2.8, where we use bisect(·, ·) to split the elements.

Note that the assumptions of Se
tion 3.2.1�3.2.7 are satis�ed.

6.2.6. Auxiliary results. This se
tion provides several results whi
h are used for the

a posteriori analysis of this 
hapter. Some of the te
hniques used in the proofs below are

similar to the a priori analysis (with uniform partitions on smooth geometries) in [75, Chap-

ter 8℄.

Lemma 6.2.12. Let x, y ∈ Γ su
h that Γy
x ∩ PΓ = ∅. Then, there holds for an approxi-

mate geometry T⋆ ∈ T

|(x− y) · (γ⋆(x)− x)| ≤ κΓC
2
Γ|x− y|2‖idΓ − γ⋆‖L∞(Γ).

Proof. De�ne r(z) := tΓ(z) · (γ⋆(x)−x). By de�nition of γ⋆, there holds r(x) = 0. This
implies

|(x− y) · (γ⋆(x)− x)| =
∣∣∣
∫

Γy
x

r(z) dz
∣∣∣ =

∣∣∣
∫

Γy
x

∫

Γz
x

∂Γr(w) dw dz
∣∣∣

≤ |Γy
x|2‖∂Γr(w)‖L∞(Γy

x) ≤ κΓC
2
Γ|x− y|2‖idΓ − γ⋆‖L∞(Γ).

�

Lemma 6.2.13. There exists a 
onstant C28 > 0 su
h that all x, y ∈ Γ satisfy (i)�(iii).

(i) If Γy
x ∩ PΓ = ∅

C−1
28

∣∣∣ log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)∣∣∣ ≤ ‖tΓ − ∂Γγ⋆‖2L∞(Γ) + ‖idΓ − γ⋆‖L∞(Γ).

(ii) If Γy
x ∩ PΓ = {z0}

C−1
28

∣∣∣ log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)∣∣∣ ≤ ‖tΓ − ∂Γγ⋆‖2L∞(Γ)

+ ‖idΓ − γ⋆‖L∞(Γ)

(
1 +

|z0 − x| + |z0 − y|
|x− y|2

)

as well as

C−1
28

∣∣∣ log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)∣∣∣ ≤ ‖tΓ − ∂Γγ⋆‖L∞(Γ).
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(iii) If x 6= y

C−1
28

∣∣∣ log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)∣∣∣ ≤ ‖tΓ − ∂Γγ⋆‖2L∞(Γ) + ‖idΓ − γ⋆‖L∞(Γ)

(
1 +

1

|x− y|2
)
.

Proof. There holds for all a ∈ R

1− 1

a
≤ log(a) ≤ a− 1.

This implies

|x− y|2 − |γ⋆(x)− γ⋆(y)|2
|x− y|2 ≤ log

( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
≤ |x− y|2 − |γ⋆(x)− γ⋆(y)|2

|γ⋆(x)− γ⋆(y)|2

and hen
e

∣∣∣ log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)∣∣∣ ≤ C2
Lip

∣∣|γ⋆(x)− γ⋆(y)|2 − |x− y|2
∣∣

|x− y|2

= C2
Lip

|x− γ⋆(x)− (y − γ⋆(y))|2
|x− y|2

+ 2C2
Lip

|(x− γ⋆(x)− (y − γ⋆(y))) · (x− y)|
|x− y|2 .

(6.2.22)

The �rst term on the right-hand side is estimated by

|x− γ⋆(x)− (y − γ⋆(y))|2 = |
∫

Γy
x

∂Γ(idΓ − γ⋆)(s) ds|2 ≤ ‖tΓ − ∂Γγ⋆‖2L∞(Γ)|Γy
x|2

≤ C2
Γ‖tΓ − ∂Γγ⋆‖2L∞(Γ)|x− y|2. (6.2.23)

The se
ond term on the right-hand side of (6.2.22) is treated separately for ea
h 
ase.

Case (i): There holds with Lemma 6.2.12

|(x− γ⋆(x)− (y − γ⋆(y))) · (x− y)| ≤ 2κΓC
2
Γ|x− y|2‖idΓ − γ⋆‖L∞(Γ).

Case (iii): There holds

|(x− γ⋆(x)− (y − γ⋆(y))) · (x− y)| ≤ 2‖idΓ − γ⋆‖L∞(Γ)|x− y|.
Case (ii): Lemma 6.2.12 shows

|(x− γ⋆(x)− (y − γ⋆(y))) · (x− y)|
≤ |(x− γ⋆(x)− (y − γ⋆(y))) · (x− z0))|+ |(x− γ⋆(x)− (y − γ⋆(y))) · (z0 − y)|
≤ ‖idΓ − γ⋆‖L∞(Γ)

(
κΓC

2
Γ|x− z0|2 + |x− z0|+ κΓC

2
Γ|y − z0|2 + |y − z0|

)

≤ ‖idΓ − γ⋆‖L∞(Γ)

(
2κΓC

6
Γ|x− y|2 + |x− z0|+ |y − z0|

)
,

where we used |x− z0| ≤ CΓ|Γz0
x | ≤ CΓ|Γy

x| ≤ C2
Γ|x− y|. To see the se
ond estimate in (ii),

pro
eed as in (6.2.23) to obtain

|(x− γ⋆(x)− (y − γ⋆(y))) · (x− y)| ≤ |x− y||x− γ⋆(x)− (y − γ⋆(y))|
. |x− y|2‖tΓ − ∂Γγ⋆‖L∞(Γ).

This 
on
ludes the proof. �
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Lemma 6.2.14. Let ν > 0 and let the approximate geometry T⋆ ∈ T satisfy (Γ1)�(Γ2).
Then, there holds ∂sΓγ⋆ = |∂Γγ⋆| and

C−1
ν ‖1− |∂Γγ⋆|‖L∞(Γ) ≤ ‖1− |∂Γγ⋆|ν‖L∞(Γ) ≤ Cν‖1− |∂Γγ⋆|‖L∞(Γ),

as well as for all T ∈ T⋆

‖1− |∂Γγ⋆|‖L∞(TΓ) ≤ ‖1− |∂Γγ⋆|2‖L∞(TΓ) ≤ (1 + 2κΓ)geoT (T⋆)
2.

The 
onstant Cν > 0 depends only on CLip and ν.

Proof. The identity (6.2.9) and (6.2.15) show

|∂Γγ⋆| = |tΓ⋆ ◦ γ⋆|∂sΓγ⋆ = ∂sΓγ⋆.

Taylor expansion shows that for all 0 < δ ≤ a ≤ δ−1 <∞ exists za > 0 with |1−za| ≤ |1−a|
su
h that aν − 1 = νzν−1

a (a − 1). Sin
e aν − 1 and a − 1 have the same sign for all ν > 0,
this implies

C−1
δ |aν − 1| ≤ |a− 1| ≤ Cδ|aν − 1|, (6.2.24)

where Cδ > 0 depends only on δ and ν. Due to (Γ2), there holds

C−1
Lip ≤ |∂Γγ⋆| ≤ CLip almost everywhere on Γ.

This and (6.2.24) with δ = C−1
Lip and a = |∂Γγ⋆| show

‖1− |∂Γγ⋆|‖L∞(Γ) ≃ ‖1− |∂Γγ⋆|ν‖L∞(Γ).

Moreover, there holds for all a ≥ 0 that |1−a| ≤ |1−a2|. It remains to estimate 1−|∂Γγ⋆|2.
To that end, 
al
ulate

1− |∂Γγ⋆|2 = |∂Γγ⋆ − tΓ|2 − 2(∂Γγ⋆ − tΓ) · tΓ.
By de�nition of γ⋆, there holds (γ⋆ − idΓ) · tΓ = 0. This implies almost everywhere

0 = ∂Γ
(
(γ⋆ − idΓ) · tΓ

)
= (∂Γγ⋆ − tΓ) · tΓ + (γ⋆ − idΓ) · ∂ΓtΓ

and hen
e

|(∂Γγ⋆ − tΓ) · tΓ| ≤ ‖∂ΓtΓ‖L∞(Γ)‖idΓ − γ⋆‖L∞(TΓ) ≤ κΓ‖idΓ − γ⋆‖L∞(TΓ).

The 
ombination of the last estimates 
on
ludes the proof. �

Lemma 6.2.15. Any g ∈ L2(Γ) with supp(g) ⊆ Γy
x for some x, y ∈ Γ satis�es

‖|g|‖H−1/2(Γ) ≤ Cabs|Γy
x|1/2(1 + | log(|Γy

x|)|)1/2‖g‖L2(Γ).

The 
onstant Cabs > 0 depends only on Γ and Cγ.

Proof. Without loss of generality, assume g ≥ 0. Constru
t a uniform partition U of

Γ, with h(U) := |U | ≃ |Γy
x|1/2 for all U ∈ U and supp(g) ⊂ U0 for some U0 ∈ U . Let

Π0 : L2(Γ) → P0(U) denote the 
orresponding L2
-orthogonal proje
tion. There holds

‖g‖H−1/2(Γ) ≤ ‖Π0g‖H−1/2(Γ) + ‖(1−Π0)g‖H−1/2(Γ)

. ‖Π0g‖H−1/2(Γ) + h(U)1/2‖g‖L2(Γ).
(6.2.25)

By 
onstru
tion, there holds Π0g = αχU0 for some α ≥ 0, where χU0 denotes the 
hara
ter-

isti
 fun
tion with respe
t to U0. Sin
e 〈V· , ·〉1/2 is an equivalent norm on H−1/2(Γ), there
holds

‖Π0g‖H−1/2(Γ) = α‖χU0‖H−1/2(Γ) ≃ α〈VχU0 , χU0〉1/2Γ .
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Without loss of generality, assume {0, 1} /∈ γ−1(U0). With the parametrization γ and h :=
|γ−1(U0)|, there holds

2π〈VχU0 , χU0〉Γ =
∣∣∣
∫

U0

∫

U0

log |x− y| dx dy
∣∣∣

≤
∫

γ−1(U0)

∫

γ−1(U0)

∣∣ log |γ(s)− γ(t)|
∣∣|γ′(s)||γ′(t)| dt ds

≤ C2
γ

∫

γ−1(U0)

∫

γ−1(U0)

| log(Cγ)|+
∣∣ log |s− t|

∣∣ dt ds,

= C2
γ

(
h2| log(Cγ)|+

∫ h

0

∫ h

0

∣∣ log |s− t|
∣∣ dt ds

)
.

The integral term on the right-hand side is further estimated by

∫ h

0

∫ h

0

∣∣ log |s− t|
∣∣ dt ds = h2

∫ 1

0

∫ 1

0

| log(h)|+
∣∣ log |s− t|

∣∣ dt ds

. h2(1 + | log(h)|),
sin
e the remaining integral is �nite. The Lips
hitz 
ontinuity of γ shows h ≃ h(U). Alto-
gether, this proves

‖Π0g‖H−1/2(Γ) ≃ α〈VχU0 , χU0〉1/2Γ . αh(U)(1 + | log(h(U))|)1/2.
The fa
t ‖Π0g‖L2(Γ) ≃ αh(U)1/2 and h(U) ≃ |Γy

x| together with (6.2.25) 
on
lude the proof.

�

The following lemma is well-known and repeated here only for 
ompleteness.

Lemma 6.2.16. Let O1, . . . , ON denote an open 
over of some 
ompa
t set C ⊆ Rd
,

d ∈ N. Then, there exists ε > 0 su
h that for all x ∈ C, there exists i ∈ {1, . . . , N} with

Bε(x) ⊆ Oi.

Proof. Assume that the statement is wrong. Then, there exists a sequen
e xn ∈ C
with B1/n(xn) 6⊆ Oi for all i = 1, . . . , N and all n ∈ N. The 
ompa
tness of C provides a

subsequen
e xnk
→ x ∈ C. By de�nition, there exists i ∈ {1, . . . , N} with x ∈ Oi. Hen
e,

there also exists k ∈ N with B1/nk
(xnk

) ⊆ Oi, whi
h 
ontradi
ts the assumption. �

Lemma 6.2.17. Given an approximate geometry T⋆ ∈ T with (Γ1)�(Γ3), there exists a

ontinuous extension γ̂⋆ : R2 → R2

of γ⋆ su
h that

γ̂⋆|Γ = γ⋆, (6.2.26)

‖γ̂⋆ − idR2‖L∞(R2) ≤ ‖γ⋆ − idΓ‖L∞(Γ), (6.2.27)

‖∇γ̂⋆ − I‖L∞(R2) ≤ Cext‖∂Γγ⋆ − tΓ‖L∞(Γ), (6.2.28)

where I ∈ R2×2
denotes the identity matrix and Cext > 0 depends only on Γ. For geo(T⋆) ≤

C−1
ext/2, γ̂⋆ is bije
tive and bi-Lips
hitz su
h that

|x− y|/2 ≤ |γ̂⋆(x)− γ̂⋆(y)| ≤ (1 + Cext/2)|x− y|. (6.2.29)

Parti
ularly, there holds γ⋆(Ω) = Ω⋆ (with ∂Ω⋆ = Γ⋆ from Se
tion 6.2.0.1) and

‖(∇γ̂⋆)−1‖L∞(R2) ≤ 2. (6.2.30)

Definition 6.2.18. After the following proof and throughout this 
hapter, we will not

distinguish between γ⋆ and its extension γ⋆ := γ̂⋆. The meaning will be 
lear from the 
ontext.
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Proof. Without loss of generality, let the parametrization γ satisfy γ′|Γ|−1 = tΓ. Ap-

proximate γ by some smooth γε : [0, 1] → R2
, ∂ks γε(0) = ∂ks γε(1) for all k ∈ N0 su
h that

‖γ−γε‖W 1,∞([0,1]) ≤ ε. LetM ∈ R2×2
denote the orthogonal matrix whi
h satis�esMtΓ = nΓ.

Then, de�ne nε := M(γ′ε ◦ γ−1)|Γ|−1 ∈ W 1,∞(Γ,R2). With nΓ = M(γ′ ◦ γ−1)|Γ|−1
, there

holds

‖nΓ − nε‖L∞(Γ) ≤ |Γ|−1‖(γ′ε − γ′) ◦ γ‖L∞(Γ) ≤ ε|Γ|−1.

De�ne the fun
tion ζ : [0, 1]×R → R2
by ζ(s, t) := γ(s)+tnε◦γ(s). There holds with (6.2.11a)

∇ζ(s, t) =
(
∂sγ(s) + t(∂Γnε) ◦ γ(s)∂ssγ(s) , nε ◦ γ(s)

)
∈ R2×2.

By de�nition, there holds

|∂sγ(s) ·M−1(nε ◦ γ(s))| ≥ |∂sγ(s) ·M−1(nΓ ◦ γ(s))| − |∂sγ(s)|‖nΓ − nε‖L∞(Γ)

≥ |∂sγ(s) · ∂sγ(s)||Γ|−1 − |∂sγ(s)|ε|Γ|−1

= |∂sγ(s)|2|Γ|−1 − ε|Γ|−1|∂sγ(s)|.
as well as

|t(∂Γnε) ◦ γ(s)∂ssγ(s) ·M−1(nε ◦ γ(s))| ≤ |t|‖∂Γnε‖L∞(Γ)|∂ssγ(s)|‖nε‖L∞(Γ)

≤ |t|‖∂Γnε‖L∞(Γ)|∂ssγ(s)|(1 + ε|Γ|−1).

Sin
e M realizes a rotation by π/2, this shows

|det(∇ζ(s, t))| = |∂sζ(s, t) ·M−1∂tζ(s, t)|
≥ |∂sγ(s)|2|Γ|−1 − ε|Γ|−1|∂sγ(s)| − |t|‖∂Γnε‖L∞(Γ)|∂ssγ(s)|(1 + ε|Γ|−1).

Sin
e |∂sγ(s)| = |∂ssγ(s)| = |Γ|, su�
iently small ε, t0 > 0 with |t| ≤ t0 imply

|det(∇ζ(s, t))| ≥ |Γ|/2.
Analogously, we bound for the Frobenius matrix norm ‖ · ‖F by

‖∇ζ(s, t)‖2F = (|Γ|+ |t|‖∂Γnε‖L∞(Γ)|Γ|)2 + (1 + ε|Γ|−1)2

and hen
e

‖(∇ζ(s, t))−1‖F =
1

|det(∇ζ(s, t))|‖(∇ζ(s, t))‖F

≤ 2|Γ|−1
√

(|Γ|+ |t|‖∂Γnε‖L∞(Γ)|Γ|)2 + (1 + ε|Γ|−1)2 := Cζ,

(6.2.31)

where Cζ > 0 depends only on ε, t0 and Γ. The inverse mapping theorem proves that

ζ is a lo
al di�eomorphism. The 
ompa
tness of [0, 1] × [−t0, t0] implies the existen
e of

an open 
over O1, . . . , ON su
h that ζ |Oi
is a di�eomorphism onto its image. Let now

(si, ti) ∈ [0, 1]× [−t0, t0], i = 1, 2 with ζ(s1, t1) = ζ(s2, t2). Then, there holds

|γ(s1)− γ(s2)| ≤ 2max{t1, t2}‖∂Γnε‖L∞(Γ).

Lemma 6.2.16 shows that for t1, t2 ≤ t′0 and t
′
0 > 0 su�
iently small, there holds (si, ti) ∈ Oj

for some j ∈ {1, . . . , N} and i = 1, 2. Sin
e ζ |Oi
is a di�eomorphism, this shows (s1, t1) =

(s2, t2). Hen
e, ζ |[0,1]×(−t′0,t
′
0)
is inje
tive, and by the inverse mapping theorem also a di�eo-

morphism. Parti
ularly, due to (6.2.31), ζ is a bi-Lips
hitz, bije
tive fun
tion onto its image

O := ζ([0, 1] × (−t′0, t′0)) ⊆ R2
, whi
h is [0, 1]-periodi
 with respe
t to its �rst argument.

We prove that ζ is also bi-Lips
hitz with respe
t to the metri
 d(·, ·) whi
h identi�es 0 and

128



1 of [0, 1] (as de�ned in Se
tion 6.2.0.1). To that end, 
onsider s1, s2 ∈ [0, 1], su
h that

|s1 − 0|+ |s2 − 1| ≤ |s1 − s2|. There holds
|ζ(s1, t1)− ζ(s2, t2)| ≤ |ζ(s1, t1)− ζ(s2, t2)|

≤ |ζ(s1, t1)− ζ(0, t1)|+ |ζ(1, t1)− ζ(s2, t2)|
. |s1 − 0|+ |1− s2|+ |t1 − t2| = d(s1, s2) + |t1 − t2|

as well as with bi-Lips
hitz 
ontinuity on [0, 1]× [0, 1] (without identi�
ation)

|ζ(s1, t1)− ζ(s2, t2)| & |s1 − s2|+ |t1 − t2| ≥ d(s1, s2) + |t1 − t2|.
Sin
e the set [0, 1] × (−t′0, t′0) is open with respe
t to the produ
t topology generated by

d(·, ·) and the Eu
lidean topology, the set O is open by the bi-Lips
hitz 
ontinuity above.

Parti
ularly, O is a neighborhood of Γ. With π1 denoting the proje
tion onto the �rst

argument, the fun
tion

P := γ ◦ π1 ◦ ζ−1 : O → Γ

is also Lips
hitz 
ontinuous (where the periodi
ity of ζ is used) and satis�es P (x) = x for

all x ∈ Γ. Choose a smooth 
ut-o� fun
tion χ : R2 → [0, 1] with χ|Γ = 1 and supp(χ) ⊆ O.
Then, de�ne

γ̂⋆(x) := x+ χ(x)(γ⋆ ◦ P (x)− P (x)).

There holds γ̂⋆|Γ = γ⋆ as well as

|γ̂⋆(x)− x| ≤ ‖idγ − γ⋆‖L∞(Γ).

This implies (6.2.27). Moreover, with the 
hain-rule (6.2.11b), we obtain for z ∈ R2

∂z(γ̂⋆ − I) = (∂Γγ⋆ − tΓ) ◦ P (x) ∂szP (x).
The identity (6.2.10) shows |∂szP (x)| = |∂zP (x)| and hen
e proves (6.2.28) with Cext :=
‖∇P‖L∞(O). For geo(T⋆) < C−1

ext/2 and all x, z ∈ R2
, there holds

x · (∇γ̂⋆)(z)x ≥ |x|2 − |I −∇γ̂⋆(z)||x|2 ≥ |x|2/2. (6.2.32)

This implies (6.2.30). Assume that γ̂⋆(x) = γ̂⋆(y) for some x, y ∈ R2
. There holds with the


onvex hull [x, y] :=
{
λx+ (1− λ)y : 0 ≤ λ ≤ 1

}
and (6.2.32)

0 =
∣∣(x− y) · (γ̂⋆(x)− γ̂⋆(y))

∣∣ =
∣∣
∫

[x,y]

(x− y) · (∇γ̂⋆(z))
x− y

|x− y| dz
∣∣

≥ |x− y|
∫

[x,y]

1/2 dz.

This implies x = y. Hen
e γ̂⋆ is inje
tive. The inverse mapping theorem shows that γ⋆ is

a global di�eomorphism. The estimate (6.2.30) implies that γ̂⋆ is even bi-Lips
hitz. The

estimate (6.2.29) follows from (6.2.28) and(6.2.30). It remains to show that γ̂⋆(Ω) = Ω⋆.

Assume that there exist x, y ∈ Ω su
h that γ̂⋆(x) ∈ Ω⋆ and γ̂⋆(y) ∈ R2 \ Ω⋆. Then, there

exists a 
ompa
t path G ⊆ Ω whi
h 
onne
ts x and y. Sin
e γ̂⋆(G) is also a 
ontinuous and


ompa
t path, there exists z ∈ G su
h that γ̂⋆(z) ∈ Γ⋆ and hen
e z ∈ Γ by bije
tivity of γ̂⋆
and γ⋆. This, however, 
ontradi
ts G ⊆ Ω. We showed that γ̂⋆(Ω) ⊆ Ω⋆ or γ̂⋆(Ω) ⊆ R2 \Ω⋆.

The same arguments prove γ̂⋆(R2\Ω) ⊆ Ω⋆ or γ̂⋆(R2\Ω) ⊆ R2\Ω⋆. However, the bi-Lips
hitz


ontinuity prohibits γ̂⋆(R2 \ Ω) ⊆ Ω⋆, sin
e R2 \ Ω is unbounded. This shows γ̂⋆(Ω) = Ω⋆

and hen
e 
on
ludes the proof. �
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By use of the 
hain-rule, there holds under the assumptions of Lemma 6.2.17 that

I = ∇(γ−1
⋆ ◦ γ⋆) = (∇γ−1

⋆ ) ◦ γ⋆∇γ⋆
and sin
e ∇γ⋆ is a regular matrix by (6.2.30), this shows

(∇γ−1
⋆ ) ◦ γ⋆ = (∇γ⋆)−1. (6.2.33)

Lemma 6.2.19. Given an approximate geometry T⋆ ∈ T whi
h satis�es (Γ2), there
holds for all ψ ∈ H−1/2(Γ) and all v ∈ H1/2(Γ)

C
−1/2
Lip ‖ψ‖H−1/2(Γ) ≤ ‖ψ ◦ γ−1

⋆ |∂Γ⋆γ
−1
⋆ |‖H−1/2(Γ⋆) ≤ C

1/2
Lip‖ψ‖H−1/2(Γ) (6.2.34)

as well as

C
−1/2
Lip ‖v‖H1/2(Γ) ≤ ‖v ◦ γ−1

⋆ ‖H1/2(Γ⋆) ≤ C
1/2
Lip‖v‖H1/2(Γ). (6.2.35)

Proof. There holds for v ∈ H1(Γ) with (6.2.12)

‖∂Γ⋆(v ◦ γ−1
⋆ )‖L2(Γ⋆) = ‖(∂Γv) ◦ γ−1

⋆ |∂Γ⋆γ
−1
⋆ |‖L2(Γ⋆)

=
( ∫

Γ⋆

((∂Γv) ◦ γ−1
⋆ )2|∂Γ⋆γ

−1
⋆ |2 dx

)1/2

=
( ∫

Γ

(∂Γv)
2|(∂Γ⋆γ

−1
⋆ ) ◦ γ⋆|2|∂Γγ⋆| dx

)1/2
= ‖∂Γv|∂Γγ⋆|−1/2‖L2(Γ)

as well as

‖v ◦ γ−1
⋆ ‖L2(Γ⋆) = ‖v|∂Γγ⋆|1/2‖L2(Γ).

Due to (Γ2), there holds C−1
Lip ≤ |∂Γγ⋆| ≤ CLip and hen
e

C
−1/2
Lip ‖∂Γv‖L2(Γ) ≤ ‖∂Γ⋆(v ◦ γ−1

⋆ )‖L2(Γ⋆) ≤ C
1/2
Lip‖∂Γv‖L2(Γ),

C
−1/2
Lip ‖v‖L2(Γ) ≤ ‖v ◦ γ−1

⋆ ‖L2(Γ⋆) ≤ C
1/2
Lip‖v‖L2(Γ)

Interpolation theory 
on
ludes (6.2.35).

On the other hand, there holds

‖ψ ◦ γ−1
⋆ |∂Γγ⋆|−1‖H−1/2(Γ⋆) = sup

v∈H1/2(Γ⋆)

〈ψ ◦ γ−1
⋆ |∂Γγ⋆|−1 , v〉Γ⋆

‖v‖H1/2(Γ⋆)

= sup
v∈H1/2(Γ⋆)

〈ψ , v ◦ γ⋆〉Γ
‖v‖H1/2(Γ⋆)

= sup
v∈H1/2(Γ)

‖v‖H1/2(Γ)

‖v ◦ γ−1
⋆ ‖H1/2(Γ⋆)

〈ψ , v〉Γ
‖v‖H1/2(Γ)

(6.2.35)≃ sup
v∈H1/2(Γ)

〈ψ , v〉Γ
‖v‖H1/2(Γ)

= ‖ψ‖H−1/2(Γ).

This 
on
ludes the proof. �

Lemma 6.2.20. Given an approximate geometry T⋆ ∈ T with (Γ1)�(Γ3) and geo(T⋆) ≤
C−1

ext/2, there exists a lifting operator L⋆ : H
1/2(Γ⋆) → H1(R2) with

(L⋆v)|Γ⋆ = v and ‖L⋆v‖H1(R2) ≤ Clift‖v‖H1/2(Γ⋆) for all v ∈ H1/2(Γ⋆).

The 
onstant Clift > 0 depends only on Γ and Cext, CLip.
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Proof. Let L : H1/2(Γ) → H1(R2) denote a standard lifting operator. De�ne

L⋆v := (L(v ◦ γ⋆)) ◦ γ−1
⋆ .

Then, there holds (L⋆v)|Γ⋆ = (Lv ◦ γ⋆) ◦ γ−1
⋆ |Γ⋆ = v|Γ⋆ . Moreover, we obtain

‖L⋆v‖2H1(R2) = ‖L⋆v‖2L2(R2) + ‖∇(L⋆v)‖2L2(R2)

= ‖L⋆v‖2L2(R2) + ‖∇(Lv ◦ γ⋆) ◦ γ−1
⋆ ∇γ−1

⋆ ‖2L2(R2).

The identity (6.2.33) implies

‖∇(Lv ◦ γ⋆) ◦ γ−1
⋆ ∇γ−1

⋆ ‖2L2(R2) =

∫

R2

∣∣∇(Lv ◦ γ⋆) ◦ γ−1
⋆ ∇γ−1

⋆

∣∣2 dx

≤
∫

R2

∣∣∇(Lv ◦ γ⋆)
∣∣2∣∣(∇γ−1

⋆ ) ◦ γ⋆
∣∣2|∇γ⋆| dx

= ‖∇(Lv ◦ γ⋆)|∇γ⋆|−1/2‖2L2(R2)

≤ ‖|∇γ⋆|−1‖L∞(R2)‖∇(Lv ◦ γ⋆)‖2L2(R2)

as well as

‖L⋆v‖2L2(R2) = ‖L(v ◦ γ⋆)|∇γ⋆|1/2‖2L2(R2)

≤ ‖|∇γ⋆|‖L∞(R2)‖L(v ◦ γ⋆)‖2L2(R2).

With (6.2.30) and the 
ontinuity of L, the last two inequalities prove

‖L⋆v‖2H1(R2) . (1 + ‖∇γ⋆‖L∞(R2))‖Lv ◦ γ⋆‖2H1(R2)

≤ ‖v ◦ γ⋆‖H1/2(Γ).

With (6.2.35), we see

‖v ◦ γ⋆‖H1/2(Γ) ≤ C
1/2
Lip‖v‖H1/2(Γ⋆).

Moreover, (6.2.28) implies ‖∇γ⋆‖L∞(R2) ≤ 1+Cextgeo(T⋆) ≤ 3/2 and 
on
ludes the proof. �

The proofs of Lemma 6.2.21�6.2.22 and Proposition 6.2.23 are well-known in the liter-

ature. We repeat them for the sole purpose of ensuring the uniform boundedness of the


onstants appearing with respe
t to the domains Ω⋆, as this is usually not found in the

literature.

Lemma 6.2.21. Given an approximate geometry T⋆ ∈ T with (Γ1)�(Γ3) and geo(T⋆) ≤
C−1

ext/2, there holds

〈V⋆v , v〉Γ⋆ ≥ C−1

Ṽ
‖v‖H−1/2(Γ⋆) for all v ∈ H−1/2(Γ) with 〈v , 1〉Γ = 0. (6.2.36)

The 
onstant CṼ > 0 depends only on Γ and Cext.

Proof. Let v ∈ L2(Γ⋆) with 〈v , 1〉Γ⋆ = 0. De�ne the interior and exterior normal

derivatives ∂intn , ∂extn . Then, there holds by Greens-identity, the fa
t ∆V⋆v = 0 in R2 \ Γ⋆,

and |(V⋆v)(x)| ≃ |x|−1
as |x| → ∞, that

‖∇V⋆v‖2L2(R2) = 〈∂intn V⋆v − ∂extn V⋆v , V⋆v〉Γ⋆ .

The jump property of V⋆, i.e., ∂
int
n V⋆v − ∂extn V⋆v = v, shows

‖∇V⋆v‖2L2(R2) = 〈v , V⋆v〉Γ⋆ .
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On the other hand, the jump property implies

‖v‖H−1/2(Γ⋆) ≤ ‖∂intn V⋆v‖H−1/2(Γ⋆) + ‖∂extn V⋆v‖H−1/2(Γ⋆).

With the lifting L⋆ from Lemma 6.2.20 and ∆V⋆v = 0 in R2 \ Γ⋆, we get

‖∂intn V⋆v‖H−1/2(Γ⋆) = sup
w∈H1/2(Γ⋆)\{0}

〈∂intn V⋆v , w〉Γ⋆

‖w‖H1/2(Γ⋆)

≤ sup
w∈H1/2(Γ⋆)\{0}

|〈∇V⋆v , ∇L⋆w〉R2\Γ⋆
|

‖w‖H1/2(Γ⋆)

. ‖∇V⋆v‖L2(R2).

The analogous statement holds for ∂estn Vv. Altogether, this 
on
ludes (6.2.36) �

Lemma 6.2.22. There exists ueq(T⋆) ∈ H−1/2(Γ⋆) with V⋆ueq(T⋆) = λeq(T⋆) ∈ R and

〈ueq(T⋆) , 1〉Γ⋆ = 1. All approximate geometries T⋆ ∈ T satisfy

λeq(T⋆) ≥ 2π| log(diam(Ω⋆))| ≥ 2π| log(1− εscale)| > 0.

Proof. Let (v⋆, λ⋆) ∈ H−1/2(Γ⋆)× R solve the saddle-point problem

〈V⋆v⋆ , v〉Γ⋆ − 〈v , λ⋆〉Γ⋆ = 0,

−〈v⋆ , µ〉Γ⋆ = −µ

for all (v, µ) ∈ H−1/2(Γ⋆) × R. Sin
e Lemma 6.2.21 proves that V⋆ is ellipti
 on the kernel

of 〈· , µ〉Γ⋆ , standard LBB theory shows

‖v⋆‖H−1/2(Γ⋆) + |λ⋆| . 1,

where the hidden 
onstant depends only on CV but not on the parti
ular geometry T⋆. There

holds ueq(T⋆) = v⋆ and λeqT⋆ = λ⋆. De�ne Robins 
onstant of the set Γ⋆ by

VΓ⋆ := − inf
µ∈B

∫

Γ⋆

∫

Γ⋆

log |x− y| dµ(x) dµ(y),

where B denotes the set of all Borel probability measures on Γ⋆. A well-known result of

potential theory (see, e.g., [84, Se
tion 1℄ for the proof) is that the logarithmi
 
apa
ity

exp(−VΓ⋆) satis�es exp(−VΓ⋆) ≤ diam(Γ⋆) = diam(Ω⋆). The result [84, Theorem 1.2℄ shows

that

1
2π
λ⋆ = 〈v⋆ , 1〉Γ⋆VΓ⋆ = VΓ⋆ .

Altogether, this implies by de�nition of Ω⋆ in Se
tion 6.2.0.1

1
2π
λ⋆ ≥ − log(diam(Ω⋆)) ≥ − log(1− εscale) > 0.

This 
on
ludes the proof. �

Proposition 6.2.23. Given an approximate geometry T⋆ ∈ T with (Γ1)�(Γ3) with

geo(T⋆) ≤ C−1
ext/2, there holds

‖V⋆v‖H1/2(Γ⋆) ≤ CV‖v‖H−1/2(Γ⋆) for all v ∈ H−1/2(Γ⋆) (6.2.37)

as well as

〈V⋆v , v〉Γ⋆ ≥ C−1
V ‖v‖2H−1/2(Γ⋆)

for all v ∈ H−1/2(Γ⋆). (6.2.38)
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The 
onstant CV > 0 depends only on εscale, CṼ, Γ, Cext and T. This parti
ularly implies for

any 
losed subspa
e P0(T⋆) ⊆ X ⊆ H−1/2(Γ⋆) and the solution UX ∈ X of 〈V⋆UX , V 〉Γ⋆ =
〈f⋆ , V 〉Γ⋆ for all V ∈ X that

‖UX − U(Tℓ)‖H−1/2(Γ⋆) ≤ C2
V min

V ∈P0(Tℓ)
‖UX − V ‖H−1/2(Γ⋆). (6.2.39)

Proof. To see (6.2.38), we use Lemma 6.2.21 and Lemma 6.2.22. Let v ∈ H−1/2(Γ⋆)
and v0 := v − ueq(T⋆)〈v , 1〉Γ⋆. Then, 〈v0 , 1〉Γ⋆ = 0 and with (6.2.36)

〈V⋆v , v〉Γ⋆ = 〈V⋆v0 , v0〉Γ⋆ + 2〈v , 1〉Γ⋆〈V⋆ueq(T⋆) , v0〉Γ⋆

+ 〈v , 1〉2Γ⋆
〈V⋆ueq(T⋆) , ueq(T⋆)〉Γ⋆

= 〈V⋆v0 , v0〉Γ⋆ + 〈v , 1〉2Γ⋆
〈λeq(T⋆) , ueq(T⋆)〉Γ⋆

≥ C−1

Ṽ
‖v0‖2H−1/2(Γ⋆)

+ λeq(T⋆)〈v , 1〉2Γ⋆
& ‖v‖2H−1/2(Γ⋆)

,

where the hidden 
onstant depends only on εscale and on CṼ.

To see (6.2.37), let Ω⋆ ⊂ R2
denote the domain en
losed by Γ⋆, i.e., Γ⋆ = ∂Ω⋆. Let Ω̂ ⊂ R2

denote a bounded Lips
hitz domain su
h that Ω⋆ ⊆ Ω̂ for all T⋆ ∈ T with geo(T⋆) ≤ C−1
ext/2

as well as Ω ⊆ Ω̂. There holds for v ∈ H−1/2(Γ⋆) and g ∈ L2(Ω⋆)

〈V⋆v , g〉Ω⋆ =
1
2π

∫

Γ⋆

v(x)

∫

Ω⋆

log |x− y|g(y) dy dx

= 1
2π

∫

Γ⋆

v(x)

∫

Ω̂

log |x− y|g(y) dy dx = 〈v , N g〉Γ⋆,

where N : H̃−1(Ω̂) → H1(Ω̂) denotes the Newton potential (see, e.g., [75℄ for the mapping

properties). We obtain

〈v , N g〉Γ⋆ = 〈v ◦ γ⋆|∂Γγ⋆| , (N g) ◦ γ⋆〉Γ
. ‖v ◦ γ⋆|∂Γγ⋆|‖H−1/2(Γ)‖(N g) ◦ γ⋆‖H1(Ω).

Lemma 6.2.19 shows ‖v ◦ γ−1
⋆ |∂Γγ−1

⋆ |‖H−1/2(Γ) ≃ ‖v‖H−1/2(Γ⋆) and Lemma 6.2.17 implies that

γ⋆ is globally bi-Lips
hitz and γ⋆(Ω) = Ω⋆. Hen
e, we have

‖(N g) ◦ γ⋆‖2H1(Ω) . ‖N g‖2H1(γ⋆(Ω)) ≤ ‖N g‖2
H1(Ω̂)

.

Moreover, sin
e supp(g) ⊆ Ω⋆, there holds

‖N g‖H1(Ω̂) . ‖g‖H̃−1(Ω̂) = sup
v∈H1(Ω̂)\{0}

〈g , v〉Ω̂
‖v‖H1(Ω̂)

≤ ‖g‖H̃−1(Ω⋆)
sup

v∈H1(Ω̂)\{0}

‖v‖H1(Ω⋆)

‖v‖H1(Ω̂)

≤ ‖g‖H̃−1(Ω⋆)
.

Altogether, this shows

〈V⋆v , g〉Ω⋆ . ‖v‖H−1/2(Γ⋆)‖g‖H̃−1(Ω⋆)
.

Taking the supremum over all g shows ‖V⋆v‖H1(Ω⋆) . ‖v‖H−1/2(Γ⋆). Finally, there holds

with (6.2.35)

‖V⋆v‖H1/2(Γ⋆) . ‖(V⋆v) ◦ γ⋆‖H1/2(Γ) . ‖(V⋆v) ◦ γ⋆‖H1(Ω)

. ‖V⋆v‖H1(Ω⋆),
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where the hidden 
onstant depends again on the bi-Lips
hitz 
ontinuity of γ⋆ and γ⋆(Ω) = Ω⋆.

This shows (6.2.37). The Céa Lemma (6.2.39) follows by standard arguments from (6.2.38)�

(6.2.37). This 
on
ludes the proof. �

Lemma 6.2.24. Given x, y ∈ R2
and the approximate geometry T⋆ ∈ T with (Γ1)�(Γ3)

and geo(T⋆) ≤ C−1
ext/2, the kernel

κ⋆(x, y) := log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
(6.2.40)

satis�es for j = 1, 2

1
2
∂xj

κ⋆(x, y) =
x− y

|x− y|2 ·
(
ej − ∂xj

γ⋆(x)
)
+
( x− y

|x− y|2
|γ⋆(x)− γ⋆(y)|2 − |x− y|2

|γ⋆(x)− γ⋆(y)|2

+
(x− y)− (γ⋆(x)− γ⋆(y))

|γ⋆(x)− γ⋆(y)|2
)
· ∂xj

γ⋆(x). (6.2.41)

This parti
ularly implies

∣∣∇xκ⋆(x, y)
∣∣ ≤ C(1 + geo(T⋆))

1

|x− y|‖tΓ − ∂Γγ⋆‖L∞(Γ) (6.2.42)

for all x, y ∈ R2
, where C > 0 depends only on CLip, Cext, and Γ. For x, y ∈ Γ, there holds

even

∣∣∇xκ⋆(x, y)
∣∣ ≤ CCΓ(1 + geo(T⋆))

1

|x− y| max
T∈T⋆

|TΓ∩Γ
y
x|>0

‖tΓ − ∂Γγ⋆‖L∞(TΓ). (6.2.43)

as well as

C−1
∣∣∂Γ,xκ⋆(x, y)

∣∣ ≤ |(tΓ − ∂Γγ⋆)(x)|
|x− y| + (1 + geo(T⋆))geo(T⋆)

2 1

|x− y|2 . (6.2.44)

Proof. The identity (6.2.41) follows from straightforward di�erentiation. Sin
e ∇γ⋆ ∈
L∞(R2), there holds with [x, y] :=

{
λ(x− y) + y : 0 ≤ λ ≤ 1

}

∣∣|γ⋆(x)− γ⋆(y)|2 − |x− y|2
∣∣ ≤

(
|γ⋆(x)− γ⋆(y)| − |x− y|

)(
|γ⋆(x)− γ⋆(y)|+ |x− y|

)

≤ |γ⋆(x)− γ⋆(y)− (x− y)|
(
|γ⋆(x)− γ⋆(y)|+ |x− y|

)

≤ (1 + CLip)
∣∣∣
∫

[x,y]

(I −∇γ⋆(z)) ·
x− y

|x− y| dz
∣∣∣|x− y|

≤ ‖I −∇γ⋆(x)‖L∞(R2)|x− y|2.

This and (6.2.28) show

|γ⋆(x)− γ⋆(y)|2 − |x− y|2
|γ⋆(x)− γ⋆(y)|2

. ‖tΓ − ∂Γγ⋆‖L∞(Γ).

Finally, the same argument shows

γ⋆(x)− γ⋆(y)− (x− y)

|γ⋆(x)− γ⋆(y)|2
.

1

|x− y|‖tΓ − ∂Γγ⋆‖L∞(Γ).

134



The bound (6.2.28) implies |∂xj
γ⋆(x)| ≤ 1 + geo(T⋆). This shows (6.2.42). The esti-

mate (6.2.43) follows analogously by use of [x, y] := Γy
x instead, i.e.,

∣∣|γ⋆(x)− γ⋆(y)|2 − |x− y|2
∣∣ ≤

(
|γ⋆(x)− γ⋆(y)| − |x− y|

)(
|γ⋆(x)− γ⋆(y)|+ |x− y|

)

≤ |γ⋆(x)− γ⋆(y)− (x− y)|
(
|γ⋆(x)− γ⋆(y)|+ |x− y|

)

≤ (1 + CLip)
∣∣∣
∫

Γy
x

tΓ(z)− ∂Γγ⋆(z) dz
∣∣∣|x− y|

≤ ‖tΓ − ∂Γγ⋆‖L∞(Γy
x)|x− y|2.

The estimate (6.2.44) follows from (6.2.41) and

∣∣|γ⋆(x)− γ⋆(y)|2 − |x− y|2
∣∣ ≤

(
|γ⋆(x)− γ⋆(y)| − |x− y|

)(
|γ⋆(x)− γ⋆(y)|+ |x− y|

)

. geo(T⋆)
2|x− y|.

This 
on
ludes the proof. �

The following result 
an be found in [43, 77, 83℄ for real and 
omplex interpolation. We

in
lude the proof for 
ompleteness and to underline the fa
t that the 
onstant is independent

of Γ̃.

Lemma 6.2.25. Let Γ̃ = ∂Ω̃ ⊂ R2
denote a Lips
hitz boundary. Let f1, . . . , fN ∈ H1(Γ̃)

su
h that the supports supp(fi) are 
onne
ted and pairwise disjoint, i.e., supp(fi)∩supp(fj) =
∅ for all 1 ≤ i 6= j ≤ N . Then, there holds

‖
N∑

i=1

fi‖2H1/2(Γ̃)
≤ 2

N∑

i=1

‖fi‖2H1/2(supp(fi))
.

Proof. De�ne the auxiliary operators T0 :
∏N

i=1 L
2(supp(fi)) → L2(Γ̃) as well as T1 :∏N

i=1H
1(supp(fi)) → H1(Γ̃) by

Tϑ((f1, . . . , fN)) :=

N∑

i=1

fi for ϑ ∈ {0, 1}.

Obviously, there holds

‖T0(f1, . . . , fN)‖2L2(Γ̃)
≤

N∑

i=1

‖fi‖2L2(supp(fi))
= ‖(f1, . . . , fN)‖2∏N

i=1 L
2(supp(fi))

,

‖T1(f1, . . . , fN)‖2H1(Γ̃)
≤

N∑

i=1

‖fi‖2H1(supp(fi))
= ‖(f1, . . . , fN)‖2∏N

i=1 H
1(supp(fi))

for all (f1, . . . , fN) ∈ ∏N
i=1 L

2(supp(fi)) resp. all (f1, . . . , fN) ∈ ∏N
i=1H

1(supp(fi)). Real

interpolation shows for T1/2 : X → H1/2(Γ̃), T1/2(f1, . . . , fN) :=
∑N

i=1 fi that

‖T1/2(f1, . . . , fN)‖2H1/2(Γ̃)
≤ ‖(f1, . . . , fN)‖2X ,

where X := [
∏N

i=1 L
2(supp(fi)),

∏N
i=1H

1(supp(fi))]1/2 denotes the spa
e de�ned with real

interpolation. There holds X =
∏N

i=1H
1/2(supp(fi)) with equivalent norms. It remains to

bound the equivalen
e 
onstants. By de�nition of X , there holds

‖(f1, . . . , fN)‖2X :=

∫ ∞

0

t−2K2
t dt, (6.2.45)
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where

Kt := inf
{( N∑

i=1

‖f0,i‖2L2(supp(fi))

)1/2
+ t

( N∑

i=1

‖f1,i‖2H1(supp(fi))

)1/2
: fi = f0,i + f1,i,

f0,i ∈ L2(supp(fi)), f1,i ∈ H1(supp(fi))
}
.

De�ne

K̃2
t,i := inf

{
‖f0,i‖2L2(supp(fi))

+ t2‖f1,i‖2H1(supp(fi))
: fi = f0,i + f1,i,

f0,i ∈ L2(supp(fi)), f1,i ∈ H1(supp(fi))
}
.

Given ε > 0, let g0,i ∈ L2(supp(fi)) and g1,i ∈ H1(supp(fi)) su
h that fi = g0,i + g1,i and

‖g0,i‖2L2(supp(fi))
+ t2‖g1,i‖2H1(supp(fi))

≤ ε

N
+ K̃2

t,i for all i = 1, . . . , N.

Then, there holds

K2
t /2 ≤

N∑

i=1

‖g0,i‖2L2(supp(fi))
+ t2

N∑

i=1

‖g1,i‖2H1(supp(fi))
≤ ε+

N∑

i=1

K̃2
t,i.

Sin
e ε > 0 is arbitrary and a2 + b2 ≤ (a+ b)2 for all a, b ≥ 0, the above implies

K2
t /2 ≤

N∑

i=1

K̃2
t,i ≤

N∑

i=1

K2
t,i,

where

K2
t,i := inf

{(
‖f0,i‖L2(supp(fi)) + t‖f1,i‖H1(supp(fi))

)2
: fi = f0,i + f1,i,

f0,i ∈ L2(supp(fi)), f1,i ∈ H1(supp(fi))
}
.

Together with (6.2.45), this shows

‖(f1, . . . , fN)‖2X ≤ 2

N∑

i=1

∫ ∞

0

t−2K2
t,i dt = 4

N∑

i=1

‖fi‖2H1/2(supp(fi))
.

Altogether, this 
on
ludes the proof. �

Given T ∈ T⋆, de�ne the k-pat
h of T for all k ≥ 1 as

ω(T, T⋆) := ω1(T, T⋆) :=
⋃{

T ′ ∈ T⋆ : T ∩ T ′ 6= ∅
}
,

ωk(T, T⋆) := ωk−1(ω(T, T⋆), T⋆).

Note that ω(·, ·) is a pat
h fun
tion in the sense of Se
tion 4.5.1.

A similar result to the following is proved in [43℄ for 
ertain residuals.

Lemma 6.2.26. Let T denote a partition of Γ into 
onne
ted 
urve segments. De�ne

the weight-fun
tion h(T )|T := |T | for all T ∈ T . Let J(T ) : H1(Γ) → S1(T ) denote the

S
ott-Zhang proje
tion from De�nition 3.3.2. Then, there exists a 
onstant Cfaer > 0, su
h
that all v ∈ H1/2(Γ) satisfy

‖(1− J(T ))v‖2H1/2(Γ) ≤ Cfaer

∑

T∈T

‖(1− J(T ))v‖2H1/2(∪ω2(T,T )).

The 
onstant Cfaer depends only on Γ and K(T ) (where K(·) is de�ned in Se
tion 3.2.2).
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Proof. Let ξ1, . . . , ξN ∈ C(Γ) denote a T -pie
ewise smooth partition of unity on Γ su
h

that all j = 1, . . . , N satisfy

‖ξj‖L∞(Γ) ≤ 1,

supp(ξj) ⊆ Tj,1 ∪ Tj,2 for some Tj,1, Tj,2 ∈ T with Tj,1 ∩ Tj,2 6= ∅,
‖∂Γξj‖L∞(Tj,i) ≤ Ch(T )|−1

Tj,i
for i = 1, 2

for some 
onstant C > 1. There holds

‖(1− J(T ))v‖2H1/2(Γ) = ‖
N∑

j=1

ξz(1− J(T ))v‖2H1/2(Γ).

Let K1
T ∪ K2

T = {1, . . . , N} su
h that |supp(ξj) ∩ supp(ξk)| = 0 for all j 6= k, j, k ∈ K1
T and

for all j 6= k, j, k ∈ K2
T . Lemma 6.2.25 shows

‖
N∑

j=1

ξj(1− J(T ))v‖2H1/2(Γ)

≤ 2‖
∑

j∈K1
T

ξj(1− J(T ))v‖2H1/2(Γ) + 2‖
∑

j∈K2
T

ξj(1− J(T ))v‖2H1/2(Γ)

≤ 4
∑

j∈KT

‖ξj(1− J(T ))v‖2H1/2(supp(ξj))
.

(6.2.46)

With ωj := supp(ξj), by de�nition of the H1/2
-norm by real interpolation, and with w :=

(1− J(T ))v, there holds

‖ξjw‖2H1/2(ωj)
=

∫ ∞

0

t−2K2
t dt,

where

Kt := inf
{
‖w0‖L2(ωj) + t‖w1‖H1(ωj) : ξjw = w0 + w1, w0 ∈ L2(ωj), w1 ∈ H1(ωj)

}
.

Additionally, 
onsider

K̃t := inf
{
‖w0‖L2(ω2

j )
+ t‖w1‖H1(ω2

j )
: w = w0 + w1, w0 ∈ L2(ω2

j ), w1 ∈ H1(ω2
j )
}

with ω2
j :=

⋃{
T ∈ T : T ∩ ωj 6= ∅

}
. Choose w̃0, w̃1 su
h that ‖w̃0‖L2(ω2

j )
+ t‖w̃1‖H1(ω2

j )
≤

K̃t + ε for some ε > 0. Sin
e (1 − J(T ))w = w, there holds w = w̃0 + w̃1 = w0 + w1 on ωj

with wi := (1− J(T ))w̃i for i = 1, 2. With ξjw = ξjw1 + ξjw2 and |∂Γξj| ≃ diam(ωj)
−1
, this

allows to estimate

Kt ≤ ‖ξjw0‖L2(ωj) + t‖ξjw1‖H1(ωj)

. ‖w0‖L2(ωj) + t
(
‖w1‖L2(ωj) + ‖∂Γ(ξjw1)‖L2(ωj)

)

. ‖w0‖L2(ωj) + t
(
‖w1‖L2(ωj) + ‖∂Γw1‖L2(ωj) + diam(ωj)

−1‖w1‖L2(ωj)

)
.

The fa
t that wi = (1 − J(T ))w̃i for i = 1, 2 as well as the stability and approximation

properties (3.3.2) of J(T ) lead to

Kt . ‖w̃0‖L2(ω2
j )
+ t

(
‖w̃1‖L2(ω2

j )
+ ‖∂Γw̃1‖L2(ω2

j )

)

. ‖w̃0‖L2(ω2
j )
+ t‖w̃1‖H1(ω2

j )
. K̃t + ε.

137



PSfrag repla
ements

Tk,4 Tk,2
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Tk,3

Tk,5

Figure 5. Illustration of the situation in the proof of Lemma 6.2.27.

Sin
e ε > 0 is arbitrary and the hidden 
onstants depend only on K(T ) (where K(·) is

de�ned in Se
tion 3.2.2) and Γ, there holds Kt . K̃t and hen
e

‖ξj(1− J(T ))v‖2H1/2(ωj)
=

∫ ∞

0

t−2K2
t dt .

∫ ∞

0

t−2K̃2
t dt = ‖(1− J(T ))v‖2H1/2(ω2

j )
.

In 
ombination with (6.2.46), this 
on
ludes the proof. �

Lemma 6.2.27. There exists a 
onstant CΣ > 0 su
h that ea
h partition T of Γ satis�es

for α ≥ 1

max
T ′∈T

∑

T∈T
dist(T,T ′)>0

|T |α
dist(T, T ′)α

≤
{
CΣ| log

(
maxh(T )
minh(T )

)
|(log(|T |)|+ 1) for α = 1,

CΣ| log
(maxh(T )
minh(T )

)
| for α > 1,

where h(T )|T := |T | for all T ∈ T and the 
onstant CΣ depends only on K(T ) (with K(·)
from Se
tion 3.2.2) and Γ.

Proof. For T, T ′ ∈ T , de�ne ΓT ′

T = Γy
x for some x ∈ T and y ∈ T ′

with |ΓT ′

T | =
minx∈T,y∈T ′ |Γy

x|. Let T ′ ∈ T . De�ne Pk :=
{
T ∈ T : |Γ|2−k ≤ |T | < |Γ|2−k+1

}
and


hoose a numbering {Tk,1, . . . , Tk,nk
} =

{
T ∈ Pk : dist(T, T ′) > 0

}
su
h that Γ

Tk,j

Tk,1

ontains

⌊ j−2
2
⌋ elements from Pk and dist(Tk,1, T

′) is minimal (see Figure 5 for an illustration of the


on
ept). This implies

dist(T ′, Tk,j)
(6.2.13)

≥ C−1
Γ |ΓTk,j

T ′ | ≥ C−1
Γ (⌊j − 2

2
⌋ − 1)2−k.

Moreover, for 1 ≤ j < 4, the K-mesh regularity and the fa
t that dist(Tk,1, T
′) is minimal

imply

dist(T ′, Tk,j) ≥ dist(T ′, Tk,1) ≥ K(T )−1|Tk,1| ≥ K(T )−12−k ≥ K(T )−1/2|Tk,j|.
With this, 
ompute

∑

T∈T
dist(T,T ′)>0

|T |α
dist(T, T ′)α

=
∞∑

k=0

∑

T∈Pk
dist(T,T ′)>0

|T |α
dist(T, T ′)α

=
∞∑

k=0

nk∑

j=1

|Tk,j|α
dist(Tk,j, T ′)α

.

max
{
k∈N :nk>0

}
∑

k=0

(
1 +

nk∑

j=4

2α(−k+1)

(⌊ j−2
2
⌋ − 1)α2−αk

)

.

max
{
k∈N :nk>0

}
∑

k=0

(
1 +

nk∑

j=1

1

jα

)
.
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There are at most | log2(maxh(T ))− log2(min h(T ))| numbers k ∈ N0 with nk > 0. Hen
e,
an asymptoti
 estimate for the harmoni
 series shows for α = 1

∑

T∈Tℓ
dist(T,T ′)>0

|T |
dist(T, T ′)

.
∑

k∈N0
nk>0

(
| log(|Pk|))|+ 1

)

. | log
(maxh(T )

min h(T )

)
|(log(|T |)|+ 1).

For α > 1, the Diri
hlet series 
onverges and hen
e

∑

T∈Tℓ
dist(T,T ′)>0

|T |α
dist(T, T ′)α

. | log
(maxh(T )

min h(T )

)
|.

This 
on
ludes the proof. �

6.2.7. Reliable error 
ontrol. The following results prove the reliability of the error

estimator.

Theorem 6.2.28. There exists Crel > 0 su
h that all approximate geometries T⋆ ∈ T
with h⋆ ≤ C−1

Γ κ−1
Γ /2 and geo(T⋆) ≤ min{C−1

ext/2, C
−1
Γ /2, C−1

Γ κ−1
Γ /2} satisfy the reliable error

estimate

‖u− U(T⋆)
Γ‖H−1/2(Γ) ≤ Crelη(T⋆). (6.2.47)

The proof is divided into several lemmas.

Lemma 6.2.29. The approximate geometry T⋆ ∈ T de�nes the formal operator

M⋆g(x) :=

∫

Γ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
g(x) dx for all x ∈ Ω ∪ Γ. (6.2.48)

If T⋆ satis�es (Γ1)�(Γ3), there exists a 
onstant Cres > 0 su
h that all v⋆ ∈ L2(Γ⋆) with

vΓ⋆ := v⋆ ◦ γ⋆|∂Γγ⋆| satisfy

C−1
res ‖u− vΓ⋆ ‖H−1/2(Γ) ≤ sup

w∈H−1/2(Γ⋆)

〈f⋆ − V⋆v⋆ , w〉Γ⋆

‖w‖H−1/2(Γ⋆)

+ ‖M⋆v
Γ
⋆ ‖H1/2(Γ),

where we de�ne ‖M⋆v
Γ
⋆ ‖H1/2(Γ) := ∞ for M⋆v

Γ
⋆ /∈ H1/2(Γ). This holds parti
ularly for

v⋆ = U(T⋆) and hen
e vΓ⋆ = U(T⋆)
Γ
.

Proof. The error ‖u− vΓ⋆ ‖H−1/2(Γ) satis�es for w̃ := w ◦ γ−1
⋆ |∂Γ⋆γ

−1
⋆ |

‖u− vΓ⋆ ‖H−1/2(Γ) ≃ sup
w∈H−1/2(Γ)

〈V(u− vΓ⋆ ) , w〉Γ
‖w‖H−1/2(Γ)

= sup
w∈H−1/2(Γ)

〈f − VvΓ⋆ , w〉Γ
‖w‖H−1/2(Γ)

= sup
w∈H−1/2(Γ)

〈f , w〉Γ − 〈V⋆v⋆ , w̃〉Γ⋆ + 〈V⋆v⋆ , w̃〉Γ⋆ − 〈VvΓ⋆ , w〉Γ
‖w‖H−1/2(Γ)

.

The identity 〈f , w〉Γ = 〈f⋆ , w ◦ γ−1
⋆ |∂Γ⋆γ

−1
⋆ |〉Γ⋆ = 〈f⋆ , w̃〉Γ⋆ shows

‖u− vΓ⋆ ‖H−1/2(Γ) ≃ sup
w∈H−1/2(Γ)

〈f⋆ − V⋆v⋆ , w̃〉Γ⋆ + 〈V⋆v⋆ , w̃〉Γ⋆ − 〈VvΓ⋆ , w〉Γ
‖w‖H−1/2(Γ)

. sup
w̃∈H−1/2(Γ⋆)

〈f⋆ − V⋆v⋆ , w̃〉Γ⋆

‖w̃‖H−1/2(Γ⋆)

+ sup
w∈H−1/2(Γ)

〈V⋆v⋆ , w̃〉Γ⋆ − 〈VvΓ⋆ , w〉Γ
‖w‖H−1/2(Γ)

,

(6.2.49)
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where we used Lemma 6.2.19 to get ‖w‖H−1/2(Γ) ≃ ‖w̃‖H−1/2(Γ⋆). The numerator of the last

term in (6.2.49) transforms to

−4π
(
〈V⋆v⋆ , w ◦ γ−1

⋆ |∂Γγ−1
⋆ |〉Γ⋆ − 〈VvΓ⋆ , w〉Γ

)
= −4π

(
〈(V⋆v⋆) ◦ γ⋆ − VvΓ⋆ , w〉Γ

)

=

∫

Γ

(∫

Γ⋆

log
(
|γ⋆(x)− y|2

)
v⋆(y) dy −

∫

Γ

log
(
|x− y|2

)
vΓ⋆ (y) dy

)
w(x) dx

=

∫

Γ

(∫

Γ

log
(
|γ⋆(x)− γ⋆(y)|2

)
vΓ⋆ (y) dy −

∫

Γ

log
(
|x− y|2

)
vΓ⋆ (y) dy

)
w(x) dx

= −
∫

Γ

∫

Γ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
vΓ⋆ (y) dy w(x) dx = −〈M⋆v

Γ
⋆ , w〉Γ.

(6.2.50)

This 
on
ludes the proof. �

The following result 
an also be found in [34, 28℄. We re�ne the proof to ensure that

the involved 
onstants behave uniformly with respe
t to the approximate geometries Γ⋆.

Lemma 6.2.30. Given the approximate geometry T⋆ ∈ T, there holds

sup
w∈H−1/2(Γ⋆)

〈f⋆ − V⋆U(T⋆) , w〉Γ⋆

‖w‖H−1/2(Γ⋆)

≤
√
8K(T⋆)

1/2(5K(T⋆)
2 + 3)1/4 ρ(T⋆)

with K(T⋆) from Se
tion 3.2.2.

Proof. Let ξ1, . . . , ξN ∈ C(Γ) denote a T⋆-pie
ewise smooth partition of unity on Γ⋆

su
h that all j = 1, . . . , N satisfy

‖ξj‖L∞(Γ⋆) ≤ 1,

supp(ξj) ⊆ Tj,1 ∪ Tj,2 for some Tj,1, Tj,2 ∈ T⋆with Tj,1 ∩ Tj,2 6= ∅,
‖∂Γ⋆ξj‖L∞(Tj,i) ≤ 2h⋆|−1

Tj,i
for i = 1, 2.

There holds

sup
w∈H−1/2(Γ⋆)

〈f⋆ − V⋆U(T⋆) , w〉Γ⋆

‖w‖H−1/2(Γ⋆)

= ‖f⋆ − V⋆U(T⋆)‖H1/2(Γ⋆)

= ‖
N∑

j=1

ξj(f⋆ − V⋆U(T⋆))‖H1/2(Γ⋆).

Let K1 ∪K2 = {1, . . . , N} su
h that |supp(ξj)∩ supp(ξk)| = 0 for all j 6= k, j, k ∈ K1
and all

j 6= k, j, k ∈ K2
. Lemma 6.2.25 with Γ̃ = Γ⋆ shows

‖
N∑

j=1

ξj(f⋆ − V⋆U(T⋆))‖2H1/2(Γ⋆)
≤ 2‖

∑

j∈K1

ξj(f⋆ − V⋆U(T⋆))‖2H1/2(Γ⋆)

+ 2‖
∑

j∈K2

ξj(f⋆ − V⋆U(T⋆))‖2H1/2(Γ⋆)

≤ 4

N∑

j=1

‖ξj(f⋆ − V⋆U(T⋆))‖2H1/2(supp(ξj))
.
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Real interpolation theory shows

‖ξj(f⋆ − V⋆U(T⋆))‖2H1/2(supp(ξj))

. ‖ξj(f⋆ − V⋆U(T⋆))‖L2(supp(ξj))‖ξj(f⋆ − V⋆U(T⋆))‖H1(supp(ξj)),

where the hidden 
onstant depends only on the s
alar �eld of the involved Hilbert spa
es,

whi
h is, in our 
ase, R. Hen
e, with vj := ξj(f⋆ − V⋆U(T⋆)), there holds

‖f⋆ − V⋆U(T⋆)‖2H1/2(Γ) ≤ 4

N∑

j=1

‖vj‖L2(supp(ξj))

(
‖vj‖2L2(supp(ξj))

+ ‖∂Γ⋆vj‖2L2(supp(ξj))

)1/2
.

Elementary 
al
ulus and the de�nition of the ξj show

‖vj‖L2(supp(ξj)) ≤ ‖f⋆ − V⋆U(T⋆)‖L2(supp(ξj)),

‖∂Γvj‖L2(supp(ξj)) ≤ 2max
i=1,2

h⋆|−1
Tj,i

‖f⋆ − V⋆U(T⋆)‖L2(supp(ξj))

+ ‖∂Γ(f⋆ − V⋆U(T⋆))‖L2(supp(ξj)).

Sin
e U(T⋆) solves (6.2.2) and f⋆ −V⋆U(T⋆) ∈ H1(Γ⋆), there exists at least one zero zT ∈ Γ⋆

with (f⋆ − V⋆U(T⋆))(zT ) = 0 for all T ∈ T⋆. Hen
e, Friedri
h's inequality proves

‖f⋆ − V⋆U(T⋆)‖L2(supp(ξj)) ≤ max
i=1,2

h⋆|Ti,j
‖∂Γ⋆(f⋆ − V⋆U(T⋆))‖L2(supp(ξj)).

The above together with the K-mesh property show

‖f⋆ − V⋆U(T⋆)‖2H1/2(Γ)

≤ 4

N∑

j=1

‖vj‖L2(supp(ξj))

(
‖vj‖2L2(supp(ξj))

+ ‖∂Γ⋆vj‖2L2(supp(ξj))

)1/2

≤ 4

N∑

j=1

(
‖f⋆ − V⋆U(T⋆)‖L2(supp(ξj))

(
5max

i=1,2
h⋆|−2

Tj,i
‖f⋆ − V⋆U(T⋆)‖2L2(supp(ξj))

+ 3‖∂Γ⋆(f⋆ − V⋆U(T⋆))‖2L2(supp(ξj))

)1/2)

≤ 4

N∑

j=1

(
K(T⋆)‖h⋆∂Γ⋆(f⋆ − V⋆U(T⋆))‖L2(supp(ξj))

(5K(T⋆)
2 + 3)1/2‖∂Γ⋆(f⋆ − V⋆U(T⋆))‖L2(supp(ξj))

)

≤ 4K(T⋆)(5K(T⋆)
2 + 3)1/2

N∑

j=1

‖h1/2⋆ ∂Γ(f⋆ − V⋆U(T⋆))‖2L2(supp(ξj))

≤ 8K(T⋆)(5K(T⋆)
2 + 3)1/2‖h1/2⋆ ∂Γ(f⋆ − V⋆U(T⋆))‖2L2(Γ⋆)

.

This 
on
ludes the proof. �

Lemma 6.2.31. Let the approximate geometry T⋆ ∈ T satisfy (Γ1)�(Γ3). Then, there

exists CL2 > 0 su
h that all g ∈ L2(Γ) satisfy

‖M⋆g‖L2(Γ) ≤ CL2geo(T⋆)
2(1 + | log(geo(T⋆))|)‖g‖L2(Γ),

where M⋆ is de�ned in (6.2.48).
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Proof. By de�nition of M⋆, there holds

‖M⋆g‖2L2(Γ) =

∫

Γ

(∫

Γ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
g(y) dy

)2

dx

≤
∫

Γ

∫

Γ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx‖g‖2L2(Γ).

The remaining integral is split. Let Γ1, . . . ,ΓN denote the smooth and 
onne
ted parts of Γ.
There holds

∫

Γ

∫

Γ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx =

N∑

i=1

N∑

j=1

∫

Γi

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx.

Case Γi = Γj: Lemma 6.2.13 (i) implies

∫

Γi

∫

Γi

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx . |Γ|2geo(T⋆)
4.

Case Γi ∩ Γj = ∅: Lemma 6.2.13 (iii) implies

∫

Γi

∫

Γi

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx . |Γ|2min
x∈Γi
y∈Γj

|x− y|−2geo(T⋆)
4

. geo(T⋆)
4.

Case Γi ∩ Γj = {z} ⊆ PΓ: Given ε > 0, de�ne Bε :=
{
y ∈ Γ : |y − z| < ε

}
. There holds

∫

Γi

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx (6.2.51)

=

∫

Γi\Bε

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx+

∫

Bε

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx.

For the �rst term, Lemma 6.2.13 (ii) and |x− z| ≤ Γz
x ≤ Γy

x . |x− y| for all x ∈ Γi, y ∈ Γj

imply

∫

Γi\Bε

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx

. geo(T⋆)
4

∫

Γi\Bε

∫

Γj

(
1 +

|z − x|+ |z − y|
|x− y|2

)2
dx dy

. geo(T⋆)
4

∫

Γi\Bε

∫

Γj

1 + |x− y|−2 dx dy.
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Without loss of generality, there holds [a, b− δ] = γ−1(Γi \Bε) and [b, c] = γ−1(Γj) for some

a < b < c ∈ [0, 1] and 0 < δ ≃ ε. The Lips
hitz 
ontinuity of γ shows

∫

Γi\Bε

∫

Γj

|x− y|−2 dx dy =

∫

γ−1(Γi\Bε)

∫

γ−1(Γj)

|γ(s)− γ(t)|−2|γ′|2 ds dt

.

∫

γ−1(Γi\Bε)

∫

γ−1(Γj)

|s− t|−2 ds dt

=

∫ b−δ

a

∫ c

b

(s− t)−2 ds dt

=

∫ b−δ

a

(b− t)−1 − (c− t)−1 dt

. 1 + | log(δ)| ≃ 1 + | log(ε)|.
For the se
ond term of (6.2.51), Lemma 6.2.13 (ii) shows

∫

Bε

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx . geo(T⋆)
2|Bε||Γ| . εgeo(T⋆)

2.

Altogether, this proves

∫

Γ

∫

Γ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx =
N∑

i=1

N∑

j=1

∫

Γi

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx

. N2(geo(T⋆)
4 + geo(T⋆)

4| log(ε)|+ geo(T⋆)
2ε).

Sin
e N depends only on Γ, the 
hoi
e ε := geo(T⋆)
2

on
ludes the proof. �

Lemma 6.2.32. Let the approximate geometry T⋆ ∈ T satisfy (Γ1)�(Γ3) and geo(T⋆) ≤
C−1

ext/2. Given g ∈ L∞(Γ) and with M⋆ from 6.2.48, there holds M⋆g ∈ H1(Ω), whereas
g ∈ L2(Γ) implies M⋆g ∈ H1(Γ).

Proof. Given x ∈ Ω, κ⋆(x, y) is smooth and hen
e (6.2.42) shows

|∇xM⋆g(x)| := |
∫

Γ

∇xκ⋆(x, y)g(y) dy| . ‖g‖L∞(Γ)

∫

Γ

|x− y|−1 dy

. ‖g‖L∞(Γ)(1 + | log(dist(x,Γ))|),
where the hidden 
onstants depend only on Cγ and an upper bound of geo(T⋆). This proves
that ∇xM⋆g(x) ∈ L2(Ω). Lemma 6.2.31 
on
ludes M⋆g ∈ H1(Ω). There holds

M⋆g(x) = Vg(x)−
∫

Γ

log |γ⋆(x)− γ⋆(y)|g(y) dy = Vg(x)−
(
V⋆(g ◦ γ−1

⋆ |∂γ−1
⋆ |)

)
◦ γ⋆(x).

Sin
e g ∈ L2(Γ) and g ◦ γ−1
⋆ |∂γ−1

⋆ | ∈ L2(Γ⋆), the mapping properties of V and V⋆ show

Vg ∈ H1(Γ),V⋆(g ◦ γ−1
⋆ |∂γ−1

⋆ |) ∈ H1(Γ⋆). Sin
e γ⋆ is 
ontinuous and pie
ewise smooth, this


on
ludes the proof. �

Lemma 6.2.33. Let the approximate geometry T⋆ ∈ T satisfy (Γ1)�(Γ3) and geo(T⋆) ≤
C−1

ext/2. Then, there exists a 
onstant CH̃1/2 > 0, su
h that all g ∈ L2(Γ) with supp(g) ⊆ Γy
x

for some x, y ∈ Γ satisfy

‖M⋆g‖H1/2(Γ) ≤ CH̃1/2

(
geo(T⋆)|Γy

x|1/2(1 + | log(|Γy
x|)|)1/2

+ geo(T⋆)
2(1 + | log(geo(T⋆))|)

)
‖g‖L2(Γ),
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where M⋆ is de�ned in (6.2.48). The 
onstant CH̃1/2 depends only on CL2
, CLip, Cext, and

on Ω.

Proof. De�ne the volume potential

Dv(x) :=

∫

Ω

∇yκ⋆(x, y)v(y) dy.

Assume for the moment g ∈ L∞(Γ). Lemma 6.2.32 shows M⋆g ∈ H1(Ω). Given v ∈ L2(Ω),
there holds

〈∇M⋆g , v〉Ω =

∫

Ω

∫

Γ

∇yκ⋆(x, y)g(x) dx v(y) dy

=

∫

Γ

∫

Ω

∇yκ⋆(x, y)v(y) dy g(x) dx = 〈g , Dv〉Γ.
(6.2.52)

Consider the simple-layer potential VΩ : H̃−1/2(Ω) → H1/2(Ω) on the 2D manifold Ω

VΩg(x) :=
1

4π

∫

Ω

|x− y|−1g(y) dy for all x ∈ R3.

The identity (6.2.52) together with (6.2.42), shows

〈g , D(v)〉Γ .

∫

Γ

|g(x)|
∣∣∣
∫

Ω

∇yκ⋆(x, y)v(y) dy
∣∣∣dx

. ‖tΓ − ∂Γγℓ‖L∞(Γ)

∫

Γ

|g(x)|
∣∣∣
∫

Ω

1

|x− y| |v(y)| dy
∣∣∣dx

≃ ‖tΓ − ∂Γγℓ‖L∞(Γ)〈|g| , VΩ(|v|)〉Γ.

With |Γy
x| = h, Lemma 6.2.15 shows ‖|g|‖H−1/2(Γ) . h1/2(1 + | log(h)|)1/2‖g‖L2(Γ). This and

the 
ontinuity VΩ : L2(Ω) → H1(Ω) show

sup
v∈L2(Ω)

〈g , D(v)〉Γ . ‖tΓ − ∂Γγℓ‖L∞(Γ)‖|g|‖H−1/2(Γ)‖VΩ(|v|)‖H1/2(Γ)

. ‖tΓ − ∂Γγℓ‖L∞(Γ)h
1/2(1 + | log(h)|1/2)‖g‖L2(Γ)‖VΩ(|v|)‖H1(Ω)

. geo(T⋆)h
1/2(1 + | log(h)|1/2)‖g‖L2(Γ)‖v‖L2(Ω).

Altogether, this proves

‖∇M⋆g‖L2(Ω) = sup
v∈L2(Ω)

〈∇M⋆g , v〉Ω
‖v‖L2(Ω)

. geo(T⋆)h
1/2(1 + | log(h)|1/2)‖g‖L2(Γ).

Continuous extension shows that the restri
tion g ∈ L∞(Γ) is not ne
essary.
Let M := |Γ|−1

∫
Γ
M⋆g(x) dx denote the integral mean. Relli
h's 
ompa
tness theorem

proves ‖M⋆g −M‖H1(Ω) . ‖∇M⋆g‖L2(Ω). Altogether, this shows

‖Mg‖H1/2(Γ) ≤ ‖M‖H1/2(Γ) + ‖M⋆g −M‖H1/2(Γ)

. ‖M‖L2(Γ) + ‖∇M⋆g‖L2(Ω)

. ‖M⋆g‖L2(Γ) + h1/2| log(h)|1/2geo(T⋆)‖g‖L2(Γ).

(6.2.53)

Lemma 6.2.31 and (6.2.53) 
on
lude the proof. �
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Lemma 6.2.34. Let the approximate geometry T⋆ ∈ T satisfy (Γ1)�(Γ3) and geo(T⋆) ≤
C−1

ext/2. There exists a 
onstant CH1/2 > 0 su
h that all g ∈ L2(Γ) satisfy

‖M⋆g‖H1/2(Γ) ≤ CH1/2geo(T⋆)
3/2(1 + | log(geo(T⋆))|)‖g‖L2(Γ),

where M⋆ is de�ned in (6.2.48). The 
onstant CH1/2 depends only on CH̃1/2, CL2
, Cfaer, C28,

Cext, CLip, CΣ, and on Ω,

Proof. Constru
t a uniform partition U of Γ with element size h(U) ≃ geo(T⋆). With

the S
ott-Zhang proje
tion J(U) : L2(Γ) → S1(U) from De�nition 3.3.2, split

‖M⋆g‖H1/2(Γ) ≤ ‖J(U)M⋆g‖H1/2(Γ) + ‖(1− J(U))M⋆g‖H1/2(Γ)

. h(U)−1/2‖M⋆g‖L2(Γ) + ‖(1− J(U))M⋆g‖H1/2(Γ),

where we applied the inverse estimate from [57℄. The �rst term on the right-hand side is


onsidered in Lemma 6.2.31. Lemma 6.2.26 applies for the se
ond term to obtain

‖(1− J(U))M⋆g‖2H1/2(Γ) .
∑

U∈U

‖(1− J(U))M⋆g‖2H1/2(∪ω2(U,U)).

With gU,1 := g|∪ω4(U,U) and gU,2 := g−gU,1 and by use of the approximation properties (3.3.2)

of J(U), ea
h term on the right-hand side is bounded by

‖(1−J(U))M⋆g‖2H1/2(∪ω2(U,U))

. ‖M⋆gU,1‖2H1/2(∪ω3(U,U)) + ‖(1− J(U))M⋆gU,2‖2H1/2(∪ω2(U,U))

. ‖M⋆gU,1‖2H1/2(∪ω3(U,U))

+ ‖(1− J(U))M⋆gU,2‖L2(∪ω2(U,U))‖∂Γ(1− J(U))M⋆gU,2‖L2(∪ω2(U,U))

. ‖M⋆gU,1‖2H1/2(∪ω3(U,U)) + h(U)‖∂ΓM⋆gU,2‖2L2(∪ω3(U,U)),

(6.2.54)

where Lemma 6.2.32 shows that the right-hand side is well-de�ned. Sin
e |supp(gU,1)| ≃
h(U), Lemma 6.2.33 applies for the �rst term and, with h(U) ≃ geo(T⋆), leads to

∑

U∈U

‖M⋆gU,1‖2H1/2(∪ω3(U,U)) . geo(T⋆)
3(1 + | log(geo(T⋆))|)

∑

U∈U

‖gU,1‖2L2(Γ)

. geo(T⋆)
3(1 + | log(geo(T⋆))|)‖g‖2L2(Γ).

Given U ∈ U , an expli
it 
omputation together with Lemma 6.2.24 shows

∫

∪ω3(U,U)

(∫

Γ\∪ω4(U,U)

∂Γ,xκ⋆(x, y)g(y) dy
)2

dx

. geo(T⋆)
2

∫

∪ω3(U,U)

(∫

Γ\∪ω4(U,U)

|x− y|−1|g|(y) dy
)2

dx (6.2.55)

≤ geo(T⋆)
2| ∪ ω3(U,U)|

sup
x∈∪ω3(U,U)

(
‖|x− ·|−1/2‖2L2(Γ\∪ω4(U,U))‖|x− ·|−1/2g(·)‖2L2(Γ\∪ω4(U,U))

)
.

A 
omputation in the parameter domain shows for x ∈ ⋃
ω3
U

‖|x− ·|−1/2‖2L2(Γ\∪ω4(U,U)) .

∫

γ−1(Γ\∪ω4(U,U))

|γ−1(x)− t|−1 dt

. (1 + | log(h(U))|),
(6.2.56)

145



sin
e |γ−1(x) − t| & |x − γ(t)| & h(U). With (6.2.13), there holds for all U ′ ∈ U with

U ′ 6⊆ ω4(U,U)

dist(U, U ′) . dist(∪ω3(U,U), U ′) + 2h(U) ≤ 3dist(∪ω3(U,U), U ′)

and hen
e

sup
x∈∪ω3(U,U)

‖|x− ·|−1/2g(·)‖2L2(Γ\∪ω4(U,U)) = sup
x∈∪ω3(U,U)

∑

U ′∈U\ω4(U,U)

∫

U ′

|x− y|−1g(y)2 dy

.
∑

U ′∈U\ω4(U,U)

1

dist(U, U ′)
‖g‖2L2(U ′).

Plugging the last two estimates into (6.2.55), we end up with

‖∂ΓM⋆gU,2‖2L2(∪ω3(U,U)) =

∫

∪ω3(U,U)

(∫

Γ\∪ω4(U,U)

∂Γ,xκ⋆(x, y)g(y) dy
)2

dx

. geo(T⋆)
2| ∪ ω3(U,U)|(1 + | log(h(U))|)

∑

U ′∈U\ω4(U,U)

1

dist(U, U ′)
‖g‖2L2(U ′)

. geo(T⋆)
2(1 + | log(geo(T⋆))|)

∑

U ′∈U\ω4(U,U)

|U |
dist(U, U ′)

‖g‖2L2(U ′).

With the 
onvention dist(U, U ′) = 1 for U ∩ U ′ 6= ∅ and h(U) ≃ geo(T⋆), this leads to
∑

U∈U

h(U)‖∂ΓM⋆gU,2‖2L2(∪ω3(U,U))

. (1 + | log(geo(T⋆))|)geo(T⋆)
3
∑

U∈U

∑

U ′∈U\ω4(U,U)

‖g‖2L2(U ′)

|U |
dist(U, U ′)

≤ (1 + | log(geo(T⋆))|)geo(T⋆)
3
∑

U ′∈U

‖g‖2L2(U ′)

∑

U∈U

|U |
dist(U, U ′)

.

Lemma 6.2.27 provides an estimate for the last sum of the right-hand side. Altogether, this

shows

∑

U∈U

h(U)‖∂ΓM⋆gU,2‖2L2(∪ω3(U,U)) . (1 + | log(geo(T⋆))|)geo(T⋆)
3‖g‖2L2(Γ)(1 + | log(|U|)|).

Sin
e |U| ≃ |Γ|/h(U) ≃ geo(T⋆)
−1
, the 
ombination of the previous estimates 
on
ludes the

proof. �

Proof of Theorem 6.2.28. Lemma 6.2.29�6.2.30, and Lemma 6.2.34 show the state-

ment. �

6.3. Convergen
e

Throughout this se
tion, we assume that Lemma 6.2.9 (i)�(iii) and geo(T⋆) ≤ C−1
ext/2 hold

for all approximate geometries T⋆ ∈ T. Moreover, we assume that the exa
t boundary Γ
satis�es the following: All approximate geometries T⋆ ∈ T and all elements T ∈ T⋆ allow for
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a parametrization

γT : [0, 1] → T Γ,

γ′T (s) ∈ span{tΓ ◦ γT (s)} for all s ∈ [0, 1],

C−1
par|T Γ| ≤ |γ′T | ≤ Cpar|T Γ|,

‖γ′′T‖L∞([0,1]) + ‖(γ⋆ ◦ γT )′′‖L∞([0,1]) ≤ Cpar|T Γ|

(6.3.1a)

for some 
onstant Cpar > 0 whi
h depends only on Γ. Moreover, there exists some p ∈ N
su
h that for all T ∈ T⋆ exist γ̃T , γ̃T,⋆ ∈ Pp([0, 1])2 su
h that

‖γT − γ̃T‖W 1,∞([0,1]) + ‖γ⋆ ◦ γT − γ̃T,⋆‖W 1,∞([0,1]) ≤ CpargeoT (T⋆)
2. (6.3.1b)

Remark 6.3.1. The assumption (6.3.1) basi
ally states that the Taylor expansion of

the parametrization γ behaves ni
ely. Sin
e γ⋆ is uniquely determined by γ, (6.3.1b) is an as-

sumption on the Taylor expansion of γ, sin
e inf γ̃T∈Pp([0,1]) ‖γT − γ̃T‖W 1,∞([0,1]) . ‖γ′′T‖L∞([0,1])

and geoT (T⋆) & minTΓ |γ′′ ◦ γ−1|. Assumption (6.3.1) holds for example if Γ is parametrized

by pie
ewise polynomials of arbitrary order, i.e., B-splines, or by NURBS.

Lemma 6.3.2. Under assumption 6.3.1 and with Lemma 6.2.9 (i)�(iii) as well as

geo(T⋆) ≤ C−1
ext/2, there exists a 
onstant Cinv > 0 su
h that the approximate geometry

T⋆ ∈ T satis�es for all T ∈ T⋆

‖tΓ − ∂Γγ⋆‖L∞(TΓ) ≤ Cinv|T |−1geoT (T⋆)
2. (6.3.2)

Given x, y ∈ Γ with x ∈ T Γ
0 for some T0 ∈ T⋆, there holds additionally

|∂Γ,xκ⋆(x, y)| ≤ Cinv

( |T0|−1

|x− y| +
1

|x− y|2
)

max
T∈T⋆

TΓ∩Γ
y
x 6=∅

geoT (T⋆)
2

(6.3.3)

as well as for x, y ∈ ⋃
ω(T Γ

0 , T Γ
⋆ )

|∂Γ,xκ⋆(x, y)| ≤ Cinv
|T0|−1/2

|x− y| max
T∈ω(T0,T⋆)

geoT (T⋆)
3/2. (6.3.4)

The 
onstant Cinv depends only on Cpar, K(T⋆) (with K(·) from Se
tion 3.2.2), and CΓ.

Proof. Given T ∈ T⋆, there holds with (γT − γ⋆ ◦ γT )′ = (tΓ − ∂Γγ⋆) ◦ γTγ′T and (6.3.1a)

that

‖tΓ − ∂Γγ⋆‖L∞(TΓ) ≃ |T Γ|−1‖(γT − γ⋆ ◦ γT )′‖L∞([0,1]). (6.3.5)

Assumption (6.3.1b) and norm equivalen
e on Pp([0, 1]) imply

‖(γT − γ⋆ ◦ γT )′‖L∞([0,1]) ≤ ‖(γ̃T − γ̃T,⋆)
′‖L∞([0,1]) + geoT (T⋆)

2

. ‖γ̃T − γ̃T,⋆‖L∞([0,1]) + geoT (T⋆)
2

. ‖γT − γ⋆ ◦ γT‖L∞([0,1]) + geoT (T⋆)
2.

Finally, there holds

‖γT − γ⋆ ◦ γT‖L∞([0,1]) = ‖idΓ − γ⋆‖L∞(TΓ).

The 
ombination of the last three estimates 
on
ludes the proof of (6.3.2). To see (6.3.3),


ombine (6.2.44) and (6.3.2). The estimate (6.3.4) follows from (6.3.2) and

‖tΓ − ∂Γγ⋆‖L∞(TΓ) . |T |−1/2geoT (T⋆)‖tΓ − ∂Γγ⋆‖1/2L∞(TΓ)
≤ |T |−1/2geoT (T⋆)

3/2.
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Together with the K-mesh property and (6.2.43), this implies (6.3.4) and 
on
ludes the

proof. �

Lemma 6.3.3. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)�(iii) as well as

geo(T⋆) ≤ C−1
ext/2 hold for T⋆ ∈ T. Given T ∈ T⋆, de�ne

gT (s) :=

∫ 1

0

log
( |γT (s)− γT (t)|2
|γ⋆ ◦ γT (s)− γ⋆ ◦ γT (t)|2

)
|γ′T (t)||∂Γγ⋆| ◦ γT (t) dt.

There holds for all ε > 0

‖g′T‖L2([0,1]) ≤ Capx|T Γ|(ε+ (1 + | log(ε)|)‖tΓ − ∂Γγ⋆‖L∞(TΓ)). (6.3.6)

where the 
onstant Capx > 0 depends only on Cpar, Cext, and on CLip.

Proof. Let κT (s, t) denote the logarithmi
 kernel of gT . Straightforward di�erentiation

shows for γT,⋆ := γ⋆ ◦ γT
1

2
∂sκT (s, t)

=
(γT (s)− γT (t)) · γ′T (s)|γT,⋆(s)− γT,⋆(t)|2 − (γT,⋆(s)− γT,⋆(t)) · γ′T,⋆(s)|γT (s)− γT (t)|2

|γT (s)− γT (t)|2|γT,⋆(s)− γT,⋆(t)|2
.

Taylor expansion shows for some z1, z2, z3, z4 ∈ [0, 1] and s, t ∈ [0, 1] that

|∂sκT (s, t)||γT (s)− γT (t)|2|γT,⋆(s)− γT,⋆(t)|2/2
= (s− t)|γ′T (s)|2|γT,⋆(s)− γT,⋆(t)|2 + (s− t)2γ′′T (z1) · γ′T (s)|γT,⋆(s)− γT,⋆(t)|2

− (s− t)|γ′T,⋆(s)|2|γT (s)− γT (t)|2 − (s− t)2γ′′T,⋆(z2) · γ′T,⋆(s)|γT (s)− γT (t)|2

= (s− t)3|γ′T (s)|2|γ′T,⋆(s)|2 + (s− t)5|γ′′T,⋆(z3)|2|γ′T (s)|2

− (s− t)3|γ′T (s)|2|γ′T,⋆(s)|2 + (s− t)5|γ′′T (z4)|2|γ′T,⋆(s)|2

+ (s− t)2γ′′T (z1) · γ′T (s)|γT,⋆(s)− γT,⋆(t)|2

− (s− t)2γ′′T,⋆(z2) · γ′T,⋆(s)|γT (s)− γT (t)|2.
Assumption (6.3.1a) bounds the above by

|∂sκT (s, t)||γT (s)− γT (t)|2|γT,⋆(s)− γT,⋆(t)|2

. (s− t)5(‖γ′′T,⋆‖2L∞([0,1])‖γ′T‖2L∞([0,1]) + ‖γ′′T‖2L∞([0,1])‖γ′T,⋆‖2L∞([0,1]))

+ (s− t)2‖γ′′T‖L∞([0,1])‖γ′T‖L∞([0,1])|γT,⋆(s)− γT,⋆(t)|2

+ (s− t)2‖γ′′T,⋆‖L∞([0,1])‖γ′T,⋆‖L∞([0,1])|γT (s)− γT (t)|2

. (s− t)5(‖γ′′T,⋆‖2L∞([0,1])‖γ′T‖2L∞([0,1]) + ‖γ′′T‖2L∞([0,1])‖γ′T,⋆‖2L∞([0,1]))

+ (s− t)4
(
‖γ′′T‖L∞([0,1])‖γ′T‖L∞([0,1])‖γ′T,⋆‖2L∞([0,1])

+ ‖γ′′T,⋆‖L∞([0,1])‖γ′T,⋆‖L∞([0,1])‖γ′T‖2L∞([0,1])

)

. |T Γ|4((s− t)5 + (s− t)4),

where the hidden 
onstants depend only on Cpar and on CLip. Again with (6.3.1a), the above

implies

|∂sκT (s, t)| . 1 + |s− t|, (6.3.7)
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where the hidden 
onstant depends only on Cpar and on CLip. On the other hand, there

holds κT (s, t) = κ⋆(γT (s), γT (t)) and hen
e by use of (6.2.43)

|∂sκT (s, t)| ≃ |(∂1κ)(γT (s), γT (t))||T Γ| . |T Γ||γT (s)− γT (t)|−1‖tΓ − ∂Γγ⋆‖L∞(TΓ)

≃ |s− t|−1‖tΓ − ∂Γγ⋆‖L∞(TΓ). (6.3.8)

The estimates (6.3.7)�(6.3.8) and |∂Γγ⋆| ◦ γT ≤ 1 + geo(T⋆) ≤ 1 + C−1
ext/2 show for ε > 0

|g′T (s)| .
∣∣
∫

[0,s−ε)∪(s+ε,1]

∂sκT (s, t)|γ′T (t)| dt
∣∣+

∣∣
∫ s+ε

s−ε

∂sκT (s, t)|γ′T (t)| dt
∣∣

.
∣∣
∫

[0,s−ε)∪(s+ε,1]

|s− t|−1 dt
∣∣‖tΓ − ∂Γγ⋆‖L∞(TΓ)|T Γ|+ ε|T Γ|

. |T Γ|(1 + | log(ε)|)‖tΓ − ∂Γγ⋆‖L∞(TΓ) + |T Γ|ε.
This 
on
ludes the proof. �

Lemma 6.3.4. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)�(iii) as well as

geo(T⋆) ≤ C−1
ext/2 hold for T⋆ ∈ T. Given G⋆ ∈ P0(T Γ

⋆ ), there holds for all T ∈ T⋆

|T |1/2‖∂ΓM⋆((G⋆|∂Γγ⋆|)|∪ω(TΓ,T Γ
⋆ ))‖L2(TΓ)

≤ CMgeo(T⋆)
3/2(1 + | log(geo(T⋆))|)‖G⋆‖L2(∪ω(TΓ,T Γ

⋆ )),

where M⋆ is de�ned in (6.2.48) and the 
onstant CM > 0 depends only on Cinv, CLip, Cext,

CΓ, Capx, K(T⋆) (with K(·) from Se
tion 3.2.2), and on Γ.

Proof. We abbreviate G := (G⋆|∂Γγ⋆|)|∪ω(TΓ,T Γ) and get

‖∂ΓM⋆G‖2L2(TΓ) =

∫

TΓ

(∫

∪ω(TΓ,T Γ
⋆ )

∂Γ,x log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
G(y) dy

)2

dx

.

∫

TΓ

(∫

∪ω(TΓ,T Γ
⋆ )\TΓ

∂Γ,x log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
G(y) dy

)2

dx

+

∫

TΓ

(∫

TΓ

∂Γ,x log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
G(y) dy

)2

dx.

(6.3.9)

There holds with (6.3.4)

∫

TΓ

(∫

∪ω(TΓ,T Γ)\TΓ

∂Γ,x log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
G(y) dy

)2

dx

. (1 + geo(T⋆))|T |−1 max
T ′∈ω(T,T⋆)

geoT ′(T⋆)
3

∫

TΓ

(∫

∪ω(TΓ,T Γ
⋆ )\TΓ

|x− y|−1|G(y)| dy
)2

dx.

Let T1, T2 ∈ T Γ
⋆ su
h that T1 ∪ T2 =

⋃
ω(T Γ, T Γ

⋆ ) \ T Γ
. Then, there holds for i = 1, 2

∫

TΓ

( ∫

Ti

|x− y|−1|G(y)| dy
)2

dx ≤ |G⋆|Ti
|2‖∂Γγ⋆‖2L∞(Ti)

∫

TΓ

(∫

Ti

|x− y|−1 dy
)2

dx

≤ (1 + geo(T⋆)
2)|G⋆|Ti

|2
∫

TΓ

log(dist(x, Ti))
2 dx.

The Lips
hitz 
ontinuity of γ and (6.2.13) show for zi := Ti ∩ T ∈ Γ

C−1|x− zi| ≤ dist(x, Ti) ≤ C|x− zi|
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for some 
onstant C > 0. This implies

∫

TΓ

log(dist(x, Ti))
2 dx .

∫

TΓ

(log |x− zi|)2 dx+
∫

T

(log(C))2 dx . |T Γ|(log(|T Γ|)2 + 1).

Altogether, this shows

∫

TΓ

(∫

∪ω(TΓ,T Γ)\TΓ

∂Γ,x log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
G(y) dy

)2

dx

. (1 + geo(T⋆))|T |−1(log(|T |)2 + 1) max
T ′∈ω(TΓ,T Γ

⋆ )\TΓ
geoT ′(T⋆)

3‖G⋆‖2L2(∪ω(TΓ,T Γ
⋆ ))

. (1 + geo(T⋆))|T |−1(log(|T |)2 + 1)geo(T⋆)
3‖G⋆‖2L2(∪ω(TΓ,T Γ

⋆ )),

(6.3.10)

where we used the K-mesh property for the last estimate. The remaining term in (6.3.9) is

bounded by use of Lemma 6.3.3 with ε := geo(T⋆)
3/2

. Sin
e G⋆|TΓ is 
onstant, 
onsider

‖∂ΓM⋆G|TΓ‖2L2(TΓ) =

∫

TΓ

(
∂Γ,x

∫

TΓ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
G(y) dy

)2

dx

= |G⋆|TΓ|2‖∂Γ(g ◦ γ−1
T )‖2L2(TΓ) = |T Γ|−1|G⋆|TΓ |2‖g′‖2L2([0,1])

.
(
ε2 + (1 + | log(ε)|)2‖tΓ − ∂Γγ⋆‖2L∞(TΓ)

)
‖G⋆‖2L2(TΓ)

.
(
geo(T⋆)

3 + (1 + | log(geo(T⋆))|)2‖tΓ − ∂Γγ⋆‖2L∞(TΓ)

)
‖G⋆‖2L2(TΓ).

Lemma 6.3.2 then shows |T |‖tΓ − ∂Γγ⋆‖2L∞(Γ) . geo(T⋆)
3
and hen
e

|T |‖∂ΓM⋆G|TΓ‖2L2(TΓ)

. (1 + | log(geo(T⋆))|)2geo(T⋆)
3‖G‖2L2(TΓ).

(6.3.11)

Putting together the estimates (6.3.9), (6.3.10), (6.3.11), we end up with

|T |‖∂ΓM(G|∪ω(TΓ,T Γ
⋆ ))‖2L2(T ) . geo(T⋆)

3(log(|T |)2 + log(geo(T⋆))
2 + 1)‖G⋆‖2L2(∪ω(TΓ,T Γ

⋆ ).

This 
on
ludes the proof. �

Lemma 6.3.5. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)�(iii) as well as

geo(T⋆) ≤ C−1
ext/2 hold forT⋆ ∈ T. All G ∈ L2(Γ) satisfy
∑

T∈T⋆

|T Γ|‖∂ΓM⋆(G|Γ\∪ω(TΓ,T Γ
⋆ ))‖2L2(TΓ)

≤ CMgeo(T⋆)
3|1 + log(min h⋆)|2(| log(|T⋆|)|+ 1)‖G‖2L2(Γ),

where M⋆ is de�ned in (6.2.48) and the 
onstant CM > 0 depends only on Capx, Cext, CLip,

CΣ, K(T⋆) (with K(·) from Se
tion 3.2.2), and on Γ.

Proof. Let x ∈ T Γ
for some T ∈ T⋆. The estimate (6.3.3) shows

|∂Γ,xκ⋆(x, y)| .
( |T |−1

|x− y| +
1

|x− y|2
)
geo(T⋆)

2.

The estimate (6.2.42) shows also

|∂Γ,xκ⋆(x, y)| . |x− y|−1geo(T⋆).
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The 
ombination of the last two estimates implies

|∂Γ,xκ⋆(x, y)| .
geo(T⋆)

3/2

|x− y|1/2
( |T |−1

|x− y| +
1

|x− y|2
)1/2

. geo(T⋆)
3/2

( |T |−1/2

|x− y| +
1

|x− y|3/2
)
.

We abbreviate G := G|Γ\∪ω(TΓ,T Γ
⋆ ) and employ the above estimate to obtain

‖∂ΓM⋆G‖2L2(T ) =

∫

T

(∫

Γ\∪ω(TΓ,T Γ
⋆ )

∂Γ,xκ⋆(x, y)G(y) dy
)2

dx

. |T |−1geo(T⋆)
3

∫

T

(∫

Γ\∪ω(TΓ,T Γ
⋆ )

|x− y|−1|G(y)| dy
)2

dx

+ geo(T⋆)
3

∫

T

( ∫

Γ\∪ω(TΓ,T Γ
⋆ )

|x− y|−3/2|G(y)| dy
)2

dx.

For α ∈ {−1,−3/2}, there holds
∫

T

( ∫

Γ\∪ω(TΓ,T Γ
⋆ )

|x− y|α|G(y)| dy
)2

dx

≤ |T | sup
x∈T

‖|x− ·|−1/2‖2L2(Γ\∪ω(TΓ,T Γ
⋆ )‖|x− ·|α+1/2|G(y)|‖2L2(Γ\∪ω(TΓ,T Γ

⋆ )).

The �rst term is estimated as in (6.2.56) to obtain

∫

T

(∫

Γ\∪ω(TΓ,T Γ
⋆ )

|x− y|α|G(y)| dy
)2

dx

≤ |T | sup
x∈T

‖|x− ·|−1/2‖2L2(Γ\∪ω(TΓ,T Γ
⋆ ))

∑

T0∈T Γ
⋆ \ω(TΓ,T Γ

⋆ )

‖|x− ·|α+1/2|G(·)|‖2L2(T0)

. |T |(1 + | log(|T |)|)
∑

T0∈T Γ
⋆ \ω(TΓ,T Γ

⋆ )

1

dist(T, T0)−2α−1
‖G‖2L2(T0)

.

Altogether, this yields

∑

T∈T⋆

|T |‖∂ΓM⋆G‖2L2(T )

.
∑

T∈T⋆

|T |2geo(T⋆)
3(1 + | log(|T |)|)

∑

T0∈T Γ
⋆ \ω(TΓ,T Γ

⋆ )

( |T |−1

dist(T, T0)
+

1

dist(T, T0)2

)
‖G‖2L2(T0)

≤ geo(T⋆)
3(1 + | log(min h⋆)|)

∑

T0∈T Γ
⋆

‖G‖2L2(T0)

∑

T∈T Γ
⋆ \ω(T0,T Γ

⋆ )

( |T |
dist(T, T0)

+
|T |2

dist(T, T0)2

)
.

Lemma 6.2.27 implies

max
T0∈T⋆

∑

T∈T Γ
⋆ \ω(T0,T Γ

⋆ )

( |T |
dist(T, T0)

+
|T |2

dist(T, T0)2

)
. | log

(maxh⋆
min h⋆

)
|(log(|T⋆|)|+ 1)

and thus 
on
ludes the proof. �
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To formulate the next lemma, we de�ne an auxiliary error estimator on the exa
t bound-

ary. Of 
ourse, this in only a theoreti
al tool and does not have to be 
omputed. For all

T Γ ∈ T Γ
⋆ , de�ne

ρTΓ(T Γ
⋆ ) := ‖h1/2⋆ ◦ γ⋆ ∂Γ(VU(T⋆)

Γ − f)‖L2(TΓ). (6.3.12)

Lemma 6.3.6. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)�(iii) as well as

geo(T⋆) ≤ C−1
ext/2 hold for T⋆ ∈ T. Given some S⋆ ⊆ T⋆, there holds

∣∣∣
( ∑

TΓ∈SΓ
⋆

ρTΓ(T Γ
⋆ )2

)1/2

−
( ∑

T∈S⋆

ρT (T⋆)
2
)1/2∣∣∣ ≤ α⋆, (6.3.13)

where SΓ
⋆ :=

{
T Γ : T ∈ S⋆

}
and

α⋆ := geo(T⋆)
3/2

(
2κΓCνρ(T⋆)geo(T⋆)

1/2

+ CMCLip(1 + | log(geo(T⋆))|)(1 + | log(min h⋆)|)(1 + | log(|T⋆|)|)1/2‖U(T⋆)‖L2(Γ⋆)

)
.

Proof. There holds with ω⋆ :=
⋃S⋆ and ω

Γ
⋆ :=

⋃SΓ
⋆

( ∑

TΓ∈SΓ
⋆

ρTΓ(T Γ
⋆ )2

)1/2

= ‖h1/2⋆ ◦ γ⋆∂Γ(VU(T⋆)
Γ − f)‖L2(ωΓ

⋆ )

≤ ‖h1/2⋆ ◦ γ⋆
(
∂Γ⋆(V⋆U(T⋆)− f⋆)

)
◦ γ⋆|∂Γγ⋆|1/2‖L2(ωΓ

⋆ )
(6.3.14)

+ ‖h1/2⋆ ◦ γ⋆
(
∂Γ(VU(T⋆)

Γ − f)−
(
∂Γ⋆(V⋆U(T⋆)− f⋆)

)
◦ γ⋆|∂Γγ⋆|1/2

)
‖L2(ωΓ

⋆ )
.

We introdu
e the notation

A := ∂Γ(VU(T⋆)
Γ − f),

B :=
(
∂Γ⋆(V⋆U(T⋆)− f⋆)

)
◦ γ⋆|∂Γγ⋆|1/2,

C := ∂Γ((V⋆U(T⋆)− f⋆) ◦ γ⋆).
The �rst term on the right-hand side of (6.3.14) transforms to

‖h1/2⋆ ◦ γ⋆B‖2L2(ωΓ
⋆ )

=

∫

ωΓ
⋆

h⋆ ◦ γ⋆
(
∂Γ⋆(V⋆U(T⋆)− f⋆)

)2 ◦ γ⋆|∂Γγ⋆| dx

=

∫

ω⋆

h⋆
(
∂Γ⋆(V⋆U(T⋆)− f⋆)

)2
dx =

∑

T∈S⋆

ρT (T⋆)
2.

(6.3.15)

The se
ond term on the right-hand side of (6.3.14) is further split into

‖h1/2⋆ ◦ γ⋆(A−B)‖L2(ωΓ
⋆ )

≤ ‖h1/2⋆ ◦ γ⋆(A− C)‖L2(ωΓ
⋆ )
+ ‖h1/2⋆ ◦ γ⋆(C − B)‖L2(ωΓ

⋆ )
.

The 
hain rule (6.2.11) implies

C = (∂Γ⋆(V⋆U(T⋆)− f⋆)) ◦ γ⋆ ∂sΓγ⋆.
With (6.2.15) and (6.2.9), we get ∂sΓγ⋆ = |∂Γγ⋆|. This shows together with (6.3.15) and

Lemma 6.2.14

‖h1/2⋆ ◦ γ⋆(C − B)‖L2(ωΓ
⋆ )

= ‖h1/2⋆ ◦ γ⋆(1− |∂Γγ⋆|1/2)B‖L2(ωΓ
⋆ )

≤ ‖1− |∂Γγ⋆|1/2‖L∞(Γ)‖h1/2⋆ ◦ γ⋆B‖L2(ωΓ
⋆ )

≤ 2κΓCνgeo(T⋆)
2
( ∑

T∈S⋆

ρT (T⋆)
2
)1/2

.
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Moreover, sin
e f⋆ = f ◦ γ−1
⋆ , there holds

‖h1/2⋆ ◦ γ⋆(A− C)‖L2(ωΓ
⋆ )

≤ ‖h1/2⋆ ◦ γ⋆∂Γ
(
VU(T⋆)

Γ − (V⋆U(T⋆)) ◦ γ⋆
)
‖L2(ωΓ

⋆ )
.

We obtain for x ∈ Γ

−2π(V(U(T⋆)
Γ)− (V⋆U(T⋆)) ◦ γ⋆)(x)

=

∫

Γ

log |x− y|U(T⋆) ◦ γ⋆(y)|∂Γγ⋆| dy −
∫

Γ

log |γ⋆(x)− γ⋆(y)|U(T⋆) ◦ γ⋆(y)|∂Γγ⋆| dy

=
1

2
M⋆(U(T⋆)

Γ)(x).

We employ Lemma 6.3.4�6.3.5 to obtain

1

2
‖h1/2⋆ ◦ γ⋆∂ΓM⋆(U(T⋆)

Γ)‖2L2(Γ)

≤
∑

T∈T⋆

‖h1/2⋆ ◦ γ⋆∂ΓM⋆(U(T⋆)
Γ|∪ω(TΓ,T Γ

⋆ ))‖2L2(TΓ)

+
∑

T∈T⋆

‖h1/2⋆ ◦ γ⋆∂ΓM⋆(U(T⋆)
Γ|Γ\∪ω(TΓ,T Γ

⋆ ))‖2L2(TΓ)

≤ C2
Mgeo(T⋆)

3(1 + | log(geo(T⋆))|)2‖U(T⋆) ◦ γ⋆‖2L2(Γ)

+ C2
Mgeo(T⋆)

3(1 + | log(min h⋆)|)2(| log(|T⋆|)|+ 1)‖U(T⋆)
Γ‖2L2(Γ)

≤ C2
MC

2
Lipgeo(T⋆)

3(1 + | log(geo(T⋆))|)2

(1 + | log(min h⋆)|)2(| log(|T⋆|)|+ 1)‖U(T⋆)‖2L2(Γ⋆)
.

This 
on
ludes

( ∑

TΓ∈SΓ
⋆

ρTΓ(T Γ
⋆ )2

)1/2

≤
( ∑

T∈S⋆

ρT (T⋆)
2
)1/2

+ α⋆.

The 
onverse inequality follows analogously by repla
ing all triangle inequalities with reverse

triangle inequalities. This 
on
ludes the proof. �

Lemma 6.3.7. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)�(iii) as well as

geo(T⋆) ≤ C−1
ext/2 hold for T⋆ ∈ T. With G⋆ ∈ P0(T Γ

⋆ ), there holds

‖h1/2⋆ ◦ γ⋆G⋆|∂Γγ⋆|‖L2(Γ) ≤ Cinv‖G⋆|∂Γγ⋆|‖H−1/2(Γ) + geo(T⋆)
2‖G⋆‖L2(Γ).

The 
onstant Cinv > 0 depends only on K(T⋆) (with K(·) from Se
tion 3.2.2), (Γ2), and on

Γ.

Proof. There holds with (Γ2) and the inverse estimate from [57℄

‖h1/2⋆ ◦ γ⋆G⋆|∂Γγ⋆|‖L2(Γ) ≤ CLip‖h1/2⋆ ◦ γ⋆G⋆‖L2(Γ)

. ‖G⋆‖H−1/2(Γ)

≤ ‖G⋆|∂Γγ⋆|‖H−1/2(Γ) + ‖G⋆(1− |∂Γγ⋆|)‖H−1/2(Γ).

Lemma 6.2.14 proves

‖G⋆(1− |∂Γγ⋆|)‖H−1/2(Γ) ≤ ‖1− |∂Γγ⋆|‖L∞(Γ)‖G⋆‖L2(Γ) . geo(T⋆)
2‖G⋆‖L2(Γ).

This 
on
ludes the proof. �
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Theorem 6.3.8 (Stability and redu
tion (E1)). Let assumption 6.3.1 hold. Given two

approximate geometries T⋆ ∈ T and T• ∈ T(T⋆) su
h that Lemma 6.2.9 (i)�(iii) as well as

geo(T⋆), geo(T•) ≤ C−1
ext/2 hold. Let q :=

√
1/4 + C2

γ‖γ′′‖2L2([0,1])maxh2⋆ < 1. Then, there

holds (E1) for ρ(·) from (6.2.5), with

̺(T⋆, T•) := Cpert(‖U(T⋆)
Γ − U(T•)

Γ‖H−1/2(Γ) + α⋆ + α•

+ (geo(T⋆)
2 + geo(T•)

2)(‖U(T⋆)‖L2(Γ⋆) + ‖U(T•)‖L2(Γ•))),

α⋆, α• from Lemma 6.3.6, S(T⋆, T•) := T⋆ \T•, Ŝ(T⋆, T•) := T• \T⋆, and 0 < ρred < 1 depends

only on q, whereas Cpert > 0 depends additionally on Cinv, CLip, Γ, and K(T•), K(T⋆) (with
K(·) from Se
tion 3.2.2).

Proof. To see (E1a), we employ Lemma 6.3.6 two times with S⋆ := S1 := T⋆ \S(T⋆, T•)

and S⋆ := S2 := T• \ Ŝ(T⋆, T•) to obtain

∣∣∣
( ∑

T∈S1

ρT (T⋆)
2
)1/2

−
( ∑

T∈S2

ρT (T•)
2
)1/2∣∣∣

≤
∣∣∣
( ∑

T∈S1

ρT (T⋆)
2
)1/2

−
( ∑

TΓ∈SΓ
1

ρTΓ(T Γ
⋆ )2

)1/2∣∣∣

+
∣∣∣
( ∑

TΓ∈SΓ
2

ρTΓ(T Γ
• )2

)1/2

−
( ∑

T∈S2

ρT (T•)
2
)1/2∣∣∣

+
∣∣∣
( ∑

TΓ∈SΓ
2

ρTΓ(T Γ
• )2

)1/2

−
( ∑

TΓ∈SΓ
1

ρTΓ(T Γ
⋆ )2

)1/2∣∣∣

≤
∣∣∣
( ∑

TΓ∈SΓ
2

ρTΓ(T Γ
• )2

)1/2

−
( ∑

TΓ∈SΓ
1

ρTΓ(T Γ
⋆ )2

)1/2∣∣∣+ α⋆ + α•.

(6.3.16)

By de�nition of the bise
tion rule in Algorithm 6.2.10, there holds

⋃SΓ
1 =

⋃SΓ
2 . Moreover,

h⋆ ◦ γ⋆ = h• ◦ γ• on
⋃SΓ

1 . Hen
e, the remaining term in the above estimate satis�es

∣∣∣
( ∑

TΓ∈SΓ
2

ρTΓ(T Γ
• )2

)1/2

−
( ∑

TΓ∈SΓ
1

ρT (T⋆)
2
)1/2∣∣∣ ≤ ‖h1/2• ◦ γ•∂ΓV(U(T•)

Γ − U(T⋆)
Γ)‖L2(Γ).

The inverse estimate from [2℄ shows

‖h1/2• ◦ γ•∂ΓV(U(T•)
Γ − U(T⋆)

Γ)‖L2(Γ) . ‖h1/2• ◦ γ•(U(T•)
Γ − U(T⋆)

Γ)‖L2(Γ)

+ ‖U(T•)
Γ − U(T⋆)

Γ‖H−1/2(Γ),
(6.3.17)
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where the hidden 
onstant depends only on Γ as well as K(T⋆) and K(T•) (with K(·) from
Se
tion 3.2.2). Lemma 6.3.7 and Lemma 6.2.14 
on
lude

‖h1/2• ◦ γ•(U(T•)
Γ − U(T⋆)

Γ)‖L2(Γ)

. ‖h1/2• ◦ γ•(U(T•)
Γ − U(T⋆) ◦ γ⋆|∂Γγ•|)‖L2(Γ)

+ ‖1− |∂Γγ•|‖L∞(Γ)‖U(T⋆)‖L2(Γ⋆)

. ‖(U(T•)
Γ − U(T⋆) ◦ γ⋆)|∂Γγ•|)‖H−1/2(Γ)

+ geo(T•)
2‖U(T•) ◦ γ• − U(T⋆) ◦ γ⋆‖L2(Γ)

+ ‖1− |∂Γγ•|‖L∞(Γ)‖U(T⋆)‖L2(Γ⋆)

. ‖U(T•)
Γ − U(T⋆)

Γ)‖H−1/2(Γ)

+ (geo(T⋆)
2 + geo(T•)

2)(‖U(T⋆)‖L2(Γ⋆) + ‖U(T•)‖L2(Γ•)).

(6.3.18)

This 
on
ludes (E1a). To see (E1b), we use Lemma 6.3.6 two times with S⋆ := S1 :=

S(T⋆, T•) and S⋆ := S2 := \Ŝ(T⋆, T•) to obtain for δ > 0
∑

T∈S2

ρT (T•)
2 ≤ (1 + δ)

∑

TΓ∈SΓ
2

ρTΓ(T Γ
• )2 + (1 + δ)−1α2

•

≤ (1 + δ)2‖h1/2• ◦ γ•∂ΓV(U(T⋆)
Γ − f)‖2L2(∪SΓ

1 )

+ (1 + δ)−1α2
• + (1 + δ)(1 + δ−1)‖h1/2• ◦ γ•∂ΓV(U(T•)

Γ − U(T⋆)
Γ)‖L2(Γ)

≤ (1 + δ)2‖h⋆ ◦ γ⋆/h• ◦ γ•‖L∞(∪SΓ
1 )
‖h1/2⋆ ◦ γ⋆∂ΓV(U(T⋆)

Γ − f)‖2L2(∪SΓ
1 )

+ (1 + δ)−1α2
• + (1 + δ)(1 + δ−1)‖h1/2• ◦ γ•∂ΓV(U(T•)

Γ − U(T⋆)
Γ)‖L2(Γ)

≤ (1 + δ)3‖h⋆ ◦ γ⋆/h• ◦ γ•‖L∞(∪SΓ
1 )

∑

T∈S1

ρT (T⋆)
2 + (1 + δ)2(1 + δ−1)α2

⋆

+ (1 + δ)−1α2
• + (1 + δ)(1 + δ−1)‖h1/2• ◦ γ•∂ΓV(U(T•)

Γ − U(T⋆)
Γ)‖L2(Γ).

Lemma 6.2.11 implies that

‖h⋆ ◦ γ⋆/h• ◦ γ•‖L∞(∪SΓ
1 )

≤ q < 1.

Hen
e, su�
iently small δ > 0 together with (6.3.17)�(6.3.18) 
on
lude the proof. �

To prove 
onvergen
e of Algorithm 6.2.2, we require the following assumption on the

exa
t boundary Γ and the initial geometry T0: There exists 0 < qgeo < 1 su
h that all T⋆ ∈ T
satisfy

geoT ′(T•) ≤ qgeogeo(T⋆) for all T ′ ∈ T• \ T⋆. (6.3.19)

This assumption is met if, for example, the exa
t boundary Γ 
an be parametrized in terms

of pie
ewise polynomials of arbitrary degree or NURBS and h⋆ is su�
iently small.

Moreover, we need the assume that there holds

sup
ℓ∈N0

max{ϑ, qgeo}(1−ε)3ℓ/2‖U(Tℓ)‖L2(Γℓ) <∞ (6.3.20)

for some ε > 0.

Remark 6.3.9. In 
ase of quasi-uniform partitions with min hℓ ≃ maxhℓ, assump-

tion (6.3.20) is straightforward to prove even with ε = 1, i.e., supℓ∈N ‖U(Tℓ)‖L2(Γℓ) < ∞.
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However, we did not su

eed in �nding a proof for the general 
ase of lo
ally re�ned parti-

tions. We 
onje
ture that there exists ν > 0 su
h that

sup
ℓ∈N0

ℓ−ν‖U(Tℓ)‖L2(Γℓ) <∞,

whi
h would imply (6.3.20). Note that not even uniform stability of the 
ontinuous problem

V−1
⋆ : H1(Γ⋆) → L2(Γ⋆) for all T⋆ ∈ T is known in the literature. From the uniform 
ase, we

derive the (very 
onservative) worst 
ase estimate ‖U(Tℓ)‖L2(Γℓ) . 2ℓ. Assumption (6.3.20)

is easy to 
he
k numeri
ally and in this sense, one should understand the 
onvergen
e re-

sults of Lemma 6.3.10 and Theorem 6.4.1. If one numeri
ally dete
ts stability (6.3.20),

Algorithm 6.2.2 leads to 
onvergen
e towards the exa
t solution.

Lemma 6.3.10. Suppose Lemma 6.2.9 (i)�(iii) as well as geo(Tℓ) ≤ C−1
ext/2 for all

ℓ ∈ N0. Under assumption (6.3.1), (6.3.19), and (6.3.20) there exists U∞ ∈ H−1/2(Γ) su
h
that there holds a priori 
onvergen
e limℓ→∞ ‖U∞ − U(Tℓ)

Γ‖H−1/2(Γ) = 0. Moreover, there

holds limℓ→∞ ̺(Tℓ, Tℓ+1) = 0, where ̺(Tℓ, Tℓ+1) is de�ned in Theorem 6.3.8.

Proof. There holds

geoT (Tℓ)
(6.2.6b)

≤ ϑgeo(Tℓ) for T ∈ Tℓ \Mℓ

and

geoT ′(Tℓ+1)
(6.3.19)

≤ qgeogeo(Tℓ) for all T ′ ∈ Tℓ+1 \ Tℓ.

Sin
e all T ∈ Tℓ+1 satisfy either T ∈ Tℓ+1 \ Tℓ or T ∈ Tℓ+1 ∩ Tℓ ⊆ Tℓ \Mℓ, the 
ombination

implies

geo(Tℓ+1) = max
T∈Tℓ+1

geoT (Tℓ+1) ≤ max{qgeo, ϑ}geo(Tℓ). (6.3.21)

This implies geo(Tℓ) → 0 as ℓ → ∞. De�ne X∞ :=
⋃

ℓ∈N0

{
v|∂Γγℓ| : v ∈ P0(T Γ

ℓ )
}

⊆
H−1/2(Γ) and the a priori limit U∞ ∈ X∞ by

〈VU∞ , v〉Γ = 〈f , v〉Γ for all v ∈ X∞.

For all ℓ ∈ N0, de�ne X∞(Tℓ) :=
⋃

k∈N0

{
v ◦ γ−1

ℓ |∂Γℓ
(γk ◦ γ−1

ℓ )| : v ∈ P0(T Γ
k )

}
⊆ H−1/2(Γℓ)

and U∞(Tℓ) ∈ X∞(Tℓ) by

〈VℓU∞(Tℓ) , v〉Γℓ
= 〈fℓ , v〉Γℓ

for all v ∈ X∞(Tℓ).

Then, there holds for all v ∈ X∞

〈VU∞ , v〉Γ = 〈f , v〉Γ = 〈fℓ , v ◦ γ−1
ℓ |∂Γℓ

γ−1
ℓ |〉Γℓ

.

For v ∈ ⋃
ℓ∈N0

{
v|∂Γγℓ| : v ∈ P0(T Γ

ℓ )
}
(whi
h is a dense subset of X∞), there holds v =

w|∂Γγk| for some w ∈ P0(T Γ
k ) and k ∈ N0. In this 
ase, we get with (6.2.12) that

v ◦ γ−1
ℓ |∂Γℓ

γ−1
ℓ | = w ◦ γ−1

ℓ |∂Γγk| ◦ γ−1
ℓ |∂Γℓ

γ−1
ℓ |

= w ◦ γ−1
ℓ |∂Γℓ

(γk ◦ γ−1
ℓ )| ∈ X∞(Tℓ).

(6.3.22)

Together with ‖v‖H−1/2(Γ) ≃ ‖v ◦ γ−1
ℓ |∂Γℓ

γ−1
ℓ |‖H−1/2(Γℓ)

by Lemma 6.2.19, this implies

v ◦ γ−1
ℓ |∂Γℓ

γ−1
ℓ | ∈ X∞(Tℓ) for all v ∈ X∞. (6.3.23)

Analogously, we obtain

w ◦ γℓ|∂Γγℓ| ∈ X∞ for all w ∈ X∞(Tℓ). (6.3.24)
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This shows

〈VU∞ , v〉Γ = 〈fℓ , v ◦ γ−1
ℓ |∂Γγ−1

ℓ |〉Γℓ
= 〈VℓU∞(Tℓ) , v ◦ γ−1

ℓ |∂Γℓ
γ−1
ℓ |〉Γℓ

(6.3.25)

for all v ∈ X∞.

With U∞ − U∞(Tℓ)
Γ ∈ X∞ by (6.3.24), we obtain with w̃ = w ◦ γ−1

ℓ |∂Γγ−1
ℓ |

‖U∞ − U(Tℓ)
Γ‖H−1/2(Γ) ≃ sup

w∈X∞\{0}

〈V(U∞ − U(Tℓ)
Γ) , w〉Γ

‖w‖H−1/2(Γ)

= sup
w∈X∞\{0}

〈Vℓ(U∞(Tℓ)− U(Tℓ)) , w̃〉Γℓ
+ 〈VℓU(Tℓ) , w̃〉Γℓ

− 〈VU(Tℓ)
Γ , w〉Γ

‖w‖H−1/2(Γ)

.

(6.3.26)

As in (6.2.49), there holds with Lemma 6.2.19 and (6.2.37)

‖U∞ − U(Tℓ)
Γ‖H−1/2(Γ) . ‖U∞(Tℓ)− U(Tℓ)‖H−1/2(Γℓ)

+ ‖MℓU(Tℓ)
Γ‖H1/2(Γ).

The Céa Lemma 6.2.39 (sin
e P0(Tℓ) ⊆ X∞(Tℓ) and Lemma 6.2.34 
on
lude

‖U∞ − U(Tℓ)
Γ‖H−1/2(Γ) . min

Vℓ∈P0(Tℓ)
‖U∞(Tℓ)− Vℓ‖H−1/2(Γℓ)

+ geo(Tℓ)
3/2(1 + | log(geo(Tℓ))|)‖U(Tℓ)‖L2(Γℓ).

(6.3.27)

As in (6.3.26), we get for Vℓ ∈ P0(Tℓ) and V
Γ
ℓ := Vℓ ◦ γℓ|∂Γγℓ| that

‖U∞ − V Γ
ℓ ‖H−1/2(Γ) ≃ sup

w∈X∞\{0}

〈V(U∞ − V Γ
ℓ ) , w〉Γ

‖w‖H−1/2(Γ)

= sup
w∈X∞\{0}

〈Vℓ(U∞(Tℓ)− Vℓ) , w̃〉Γℓ
+ 〈VℓVℓ , w̃〉Γℓ

− 〈VV Γ
ℓ , w〉Γ

‖w‖H−1/2(Γ)

,

(6.3.28)

whi
h implies together with Lemma 6.2.34, Lemma 6.2.19, and the uniform ellipti
ity (6.2.38)

that

‖U∞(Tℓ)− Vℓ‖H−1/2(Γℓ)
. sup

w̃∈X∞(Tℓ)\{0}

〈Vℓ(U∞(Tℓ)− Vℓ) , w̃〉Γℓ

‖w̃‖H−1/2(Γℓ)

(6.3.23)≃ sup
w∈X∞\{0}

〈Vℓ(U∞(Tℓ)− Vℓ) , w̃〉Γℓ

‖w‖H−1/2(Γ)

(6.3.28)

. ‖U∞ − V Γ
ℓ ‖H−1/2(Γℓ)

+ geo(Tℓ)
3/2(1 + | log(geo(Tℓ))|))‖Vℓ‖L2(Γℓ).

This and (6.3.27) imply

‖U∞ − U(Tℓ)
Γ‖H−1/2(Γ) . min

Vℓ∈P0(Tℓ)

(
‖U∞ − V Γ

ℓ ‖H−1/2(Γ)

+ geo(Tℓ)
3/2(1 + | log(geo(Tℓ))|)(‖Vℓ‖L2(Γℓ) + ‖U(Tℓ)‖L2(Γℓ))

)
.

(6.3.29)

For all k ∈ N0, there holds with Lemma 6.2.14

‖U∞ − V Γ
ℓ ‖H−1/2(Γ) ≤ ‖U∞ − Vℓ ◦ γℓ‖H−1/2(Γ) + ‖1− |∂Γγℓ|‖L∞(Γ)‖Vℓ ◦ γℓ‖L2(Γ)

. ‖U∞ − Vℓ ◦ γℓ‖H−1/2(Γ) + geo(Tℓ)
2‖Vℓ‖L2(Γℓ).
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With (6.3.29), this shows

‖U∞−U(Tℓ)
Γ‖H−1/2(Γ) . min

Vℓ∈P0(Tℓ)

(
‖U∞ − Vℓ ◦ γℓ‖H−1/2(Γ) (6.3.30)

+ (geo(Tℓ)
2 + geo(Tℓ)

3/2(1 + | log(geo(Tℓ))|))(‖Vℓ‖L2(Γℓ) + ‖U(Tℓ)‖L2(Γℓ)

)
.

The term geo(Tℓ)
3/2(1 + | log(geo(Tℓ))|)‖U(Tℓ)‖L2(Γℓ) 
onverges to zero by use of assump-

tion (6.3.20) and (6.3.21).

It thus remains to prove that U∞ ∈ ⋃
ℓ∈N0

{
Vℓ ◦ γℓ : Vℓ ∈ P0(Tℓ)

}
=

⋃
ℓ∈N0

P0(T Γ
ℓ ) ⊆

H−1/2(Γ). To that end, we show that X∞ ∩ ⋃
ℓ∈N0

P0(T Γ
ℓ ) is dense in X∞ ∩ L2(Γ) with

respe
t to the L2
-norm. Consider Γ0 :=

{
x ∈ Γ : limℓ→∞ hℓ ◦ γℓ(x) = 0

}
. Obviously,⋃

ℓ∈N0
P0(T Γ

ℓ )|Γ0 is dense in L2(Γ0) and thus also in X∞ ∩ L2(Γ0). For all x ∈ Γ \ Γ0, there

exists ℓ0 ∈ N su
h that x ∈ Tx ∈ Tℓ0 with Tx ⊆ Γ and Tx ∈ Tℓ for all ℓ ≥ ℓ0. This implies

∂Γγℓ|Tx = tΓ|Tx and hen
e 
onstant for all ℓ ≥ ℓ0. Moreover, ∂Γγℓ|Tx = cℓ for all ℓ < ℓ0,
where cℓ ∈ R2

depends only on tΓ|Tx and the father element T ′ ∈ Tℓ of Tx. This shows that
X∞|Γ\Γ0

=
⋃

ℓ∈N0
P0(T Γ

ℓ )|Γ\Γ0
. Altogether, this implies that X∞ ∩⋃

ℓ∈N0
P0(T Γ

ℓ ) is dense in

X∞ ∩L2(Γ) with respe
t to the L2
-norm. Hen
e,

⋃
ℓ∈N0

P0(T Γ
ℓ ) is dense in X∞ with respe
t

to the H−1/2(Γ)-norm and thus U∞ ∈ ⋃
ℓ∈N0

P0(T Γ
ℓ ).

Given ε > 0, this allows to 
hoose Vℓ0 ∈ Pp(Tℓ0) su
h that ‖U∞ − Vℓ0 ◦ γℓ0‖H−1/2(Γ) ≤ ε.
Then, 
hoose k ≥ ℓ0 su
h that all ℓ ≥ k satisfy

(geo(Tℓ)
2 + geo(Tℓ)

3/2(1 + | log(geo(Tℓ))|))‖Vℓ0‖L2(Γ) ≤ ε.

Sin
e Vℓ0 ◦ γℓ0 ◦ γ−1
ℓ ∈ P0(Tℓ) and Vℓ0 ◦ γℓ0 ◦ γ−1

ℓ ◦ γℓ = Vℓ0 ◦ γℓ, (6.3.30) shows ‖U∞ −
U(Tℓ)

Γ‖H−1/2(Γ) . 2ε for all ℓ ≥ k. This 
on
ludes ‖U∞ − U(Tℓ)
Γ‖H−1/2(Γ) → 0 as ℓ→ ∞.

The above and the de�nition of ̺(Tℓ, Tℓ+1) shows limℓ→∞ ̺(Tℓ, Tℓ+1) = 0, where we use

(| log(|Tℓ|)|+ | log(min hℓ)|) . ℓ for all ℓ ∈ N0,

whi
h follows from the fa
t that ea
h step maximally doubles the number of elements and

approximately halves the size of the elements. This 
on
ludes the proof. �

6.4. Main result

Theorem 6.4.1. De�ne T as in Se
tion 6.2.5. Assume that all T⋆ ∈ T satisfy h⋆ ≤
C−1

Γ κ−1
Γ /2 and geo(T⋆) ≤ min{C−1

ext/2, C
−1
Γ /2, C−1

Γ κ−1
Γ /2} (su
h that Lemma 6.2.9 (i)�(iii)

hold). Then, the error estimator η(·) satis�es reliability (6.2.47). Under the assump-

tion (6.3.1), the error estimator ρ(·) from (6.2.5) satis�es (E1) with ̺(·, ·) as stated in

Theorem 6.3.8. Moreover, under the assumptions (6.3.19)�(6.3.20), there holds 
onvergen
e

‖u− U(Tℓ)
Γ‖H−1/2(Γ) ≤ Crelη(Tℓ) → 0 as ℓ→ ∞.

Proof. Sin
e T0 satis�es (i)�(iii) from Lemma 6.2.9, all T⋆ ∈ T satisfy (i)�(iii), too.

Therefore, Theorem 6.2.28 and Theorem 6.3.8 prove (6.2.47) and (E1). The estimator ρ(·)
satis�es Dör�er marking (6.2.6a) in ea
h step of Algorithm 6.2.2. Therefore, Lemma 2.3.5

proves estimator redu
tion 2.3.8 for ρ(·). Lemma 6.3.10 shows limℓ→∞ ̺(Tℓ, Tℓ+1) = 0. Hen
e,
Lemma 2.3.6 
on
ludes the proof. �

Consequen
e 6.4.2. Under the assumptions (6.3.1)�(6.3.20), Algorithm 6.2.2 leads

to limℓ→∞ ̺(Tℓ, Tℓ+1) = 0 and hen
e 
onvergen
e in the sense of Theorem 2.3.3 (i).
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CHAPTER 7

General Quasi-Orthogonality (E2) For Non-Symmetri
 Problems

7.1. Introdu
tion, state of the art & outline

The general quasi-orthogonality (E2) renders an important tool for the optimality proofs

of the previous 
hapters. Se
tion 2.6 shows that it is even ne
essary if the algorithm is

R-linear 
onvergent. The following investigations provide su�
ient assumptions for (E2) to

hold. Se
tion 7.2�7.4 appear in similar manner in [46℄. Figure 1 depi
ts a geometri
 view

on the general quasi-orthogonality (E2).

7.2. General quasi-orthogonality (E2) for linear se
ond-order ellipti
 equations

We stress that the quasi-orthogonality proof makes expli
it use of the fa
t that we already

have 
onvergen
e U(Tℓ) → u in H1
0 (Ω). We 
onsider the setting of Se
tion 3.6.1. The

PSfrag repla
ements

u

U(T2)

U(T1)

U(T0)

Figure 1. Geometri
 view on the general quasi-orthogonality (E2). For

̺(T , T̂ ) ≃ ‖U(T )−U(T̂ )‖, the general quasi-orthogonality bounds the ℓ2-sum
of the squared perturbations. Sin
e the adaptive algorithm performs a step-

by-step optimization of the triangulations without any foresight, it 
ontrols the

perturbations ̺(Tℓ, Tℓ+1) only. By Galerkin orthogonality, the solutions are in

some sense orthogonal to ea
h other. The general quasi-orthogonality (E2)

ensures that the overall approximation (dashed green line), whi
h is measured

by η(Tℓ), is an upper bound for the sum of the individual steps. This would

be automati
ally the 
ase if η(Tℓ) is a Hilbert norm whi
h 
orresponds to the

orthogonality between the solutions. If (E2) is not satis�ed, one has no argu-

ment that the individual steps approa
h the exa
t solution in an e�
ient way

(dotted red line).
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operator L is split as follows

Au = −divA∇u,
Cu = b · ∇u+ cu.

The following observation is the key element of the proof of (E2).

Lemma 7.2.1. The operators A, C : H1
0 (Ω) → H−1(Ω) are bounded. Moreover, A is

symmetri
, i.e., 〈Au , v〉 = 〈Av , u〉 for all u, v ∈ H1
0 (Ω), and C is 
ompa
t.

Proof. The symmetry of A is obvious as A(x) is symmetri
, and both operators A and

C are also bounded, i.e.,

‖Av‖H−1(Ω) ≤ ‖A‖L∞(Ω)‖∇v‖L2(Ω),

‖Cv‖H−1(Ω) ≤ ‖Cv‖L2(Ω) . (‖b‖L∞(Ω) + ‖c‖L∞(Ω))‖∇v‖L2(Ω),

for all v ∈ H1
0 (Ω). This implies that C̃ : H1

0 (Ω) → L2(Ω), C̃v := Cv is well-de�ned and

bounded. It remains to prove that C is 
ompa
t. The Relli
h 
ompa
tness theorem shows

that the embedding ι : H1
0(Ω) →֒ L2(Ω) is a 
ompa
t operator. Therefore, a

ording to

S
hauder's theorem, see e.g. [73, Theorem 4.19℄, the adjoint operator ι⋆ : L2(Ω) → H−1(Ω)
is also 
ompa
t. Obviously, ι⋆ : L2(Ω) → H−1(Ω) 
oin
ides with the natural embedding,

and we may write

C = ι⋆ ◦ C̃ : H1
0 (Ω) → L2(Ω) → H−1(Ω).

Therefore, C is the 
omposition of a bounded operator and a 
ompa
t operator and hen
e


ompa
t. This 
on
ludes the proof. �

Lemma 7.2.2. Let (Tℓ)ℓ∈N0 denote the output of Algorithm 2.2.1. Assume that there

holds 
onvergen
e limℓ→∞ ‖U(Tℓ) − u‖H1
0 (Ω) = 0 with u and U(Tℓ) from Se
tion 3.6.1. The

sequen
es (eℓ)ℓ∈N and (Eℓ)ℓ∈N de�ned by

eℓ :=

{
u−U(Tℓ)

‖∇(u−U(Tℓ))‖L2(Ω)
, for u 6= U(Tℓ),

0, else,

and

Eℓ :=

{
U(Tℓ+1)−U(Tℓ)

‖∇(U(Tℓ+1)−U(Tℓ))‖L2(Ω)
, for U(Tℓ+1) 6= U(Tℓ),

0, else,


onverge to zero, weakly in H1
0 (Ω), i.e.,

lim
ℓ→∞

〈w , eℓ〉 = 0 = lim
ℓ→∞

〈w , Eℓ〉 for all w ∈ H−1(Ω), (7.2.1)

where 〈· , ·〉 denotes the extended L2(Ω)-s
alar produ
t.

Proof. We prove weak 
onvergen
e of eℓ to zero. The weak 
onvergen
e of Eℓ fol-

lows with the same arguments. Let (eℓj) be a subsequen
e of (eℓ). Due to boundedness

‖∇eℓj‖L2(Ω) ≤ 1 for all j ∈ N, we may extra
t a weakly 
onvergent subsequen
e (eℓk) of (eℓj)
with

eℓk ⇀ w ∈ H1
0 (Ω).

First, note that 
onvergen
e limℓ→∞ ‖U(Tℓ) − u‖H1
0 (Ω) = 0 implies that u, U(Tℓ) ∈ X∞ :=⋃

ℓ∈N0
Sp
0 (Tℓ) ⊆ H1

0 (Ω) implies eℓ ∈ X∞ and hen
e w ∈ X∞. Se
ond, for all ℓk ≥ ℓ with

eℓk 6= 0 and all V ∈ Sp
0 (Tℓ), it holds

b(eℓk , V ) = ‖∇(u− Uℓk)‖−1
L2(Ω)b(u− Uℓk , V ) = 0.
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For all ℓ ∈ N0, V ∈ Sp
0 (Tℓ), and ε > 0, there exists k0 ∈ N su
h that all k ≥ k0 satisfy

|b(w , V )| = |〈w , L⋆V 〉| ≤ ε+ |〈eℓk , L⋆V 〉| = ε+ |b(eℓk , V )| = ε,

sin
e k0 is 
hosen large enough su
h that ℓk ≥ ℓ. Therefore

b(w , V ) = 0 for all V ∈ Sp
0 (Tℓ) and ℓ ∈ N.

Due to de�niteness of b(·, ·) and w ∈ X∞ :=
⋃

ℓ∈N Sp
0 (Tℓ), this implies w = 0. Altogether, we

have now shown that ea
h subsequen
e of eℓ has a subsequen
e whi
h 
onverges weakly to

zero. This immediately implies weak 
onvergen
e eℓ ⇀ 0 as ℓ→ ∞. �

The previous lemma shows that although (Eℓ)ℓ∈N is no orthonormal sequen
e, it shares

the property of weak 
onvergen
e to zero with orthonormal systems. Note that our proof

already used 
onvergen
e Uℓ → u as ℓ→ ∞ in the sense that we required u−Uℓ ∈ X∞. This

su�
es to prove the following quasi-Pythagoras theorem.

Proposition 7.2.3. De�ne ‖ · ‖ := b(· , ·)1/2 with b(· , ·) from Se
tion 3.6.1. Assume

that limℓ→∞ ‖U(Tℓ)− u‖H1
0 (Ω) = 0. Then, for all 0 < ε < 1, there exists ℓqo ∈ N su
h that

‖U(Tℓ+1)− U(Tℓ)‖2 ≤
1

1− ε
‖u− U(Tℓ)‖2 − ‖u− U(Tℓ+1)‖2 (7.2.2)

for all ℓ ≥ ℓqo, where u and U(Tℓ) are de�ned in Se
tion 3.6.1.

Remark 7.2.4. As in [36, Theorem 5.1℄, the quasi-orthogonality (7.2.2) is an asymp-

toti
 statement. The advantage here is that (7.2.2) is automati
ally guaranteed after ℓ0 steps
of Algorithm 2.2.1. In 
ontrast to that, [36, Assumption 4.3℄ used to prove [36, Theorem 5.1℄,

in
ludes a element-size 
ondition of the form |T |1/d ≤ hmax ≪ 1 for all T ∈ Tℓ whi
h is not

ne
essarily enfor
ed by Algorithm 2.2.1, unless the initial triangulation is already su�
iently

�ne. Moreover, hmax is unknown in general and depends on the regularity of the dual prob-

lem.

Proof. Lemma 7.2.2 shows that eℓ, Eℓ ⇀ 0 as ℓ → ∞. Due to Lemma 7.2.1, C is


ompa
t. Therefore, we have strong 
onvergen
e Ceℓ, CEℓ → 0 in H−1(Ω) as ℓ → ∞. With

〈· , ·〉 := 〈· , ·〉H−1(Ω)×H1
0 (Ω), this shows

〈C(u− U(Tℓ+1)) , U(Tℓ+1)− U(Tℓ)〉 = 〈Ceℓ+1 , U(Tℓ+1)− U(Tℓ)〉‖∇(u− U(Tℓ+1))‖L2(Ω)

≤ ‖Ceℓ+1‖H−1(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)

as well as

〈C(U(Tℓ+1)− U(Tℓ)) , u− U(Tℓ+1)〉
= 〈CEℓ , u− U(Tℓ+1)〉‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)

≤ ‖CEℓ‖H−1(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω).

For any δ > 0, this may be employed to obtain some ℓ0 ∈ N su
h that for all ℓ ≥ ℓ0, it holds

|〈C(U(Tℓ+1)− U(Tℓ)) , u−U(Tℓ+1)〉|+ |〈C(u− U(Tℓ+1)) , U(Tℓ+1)− U(Tℓ)〉|
≤ δ‖∇(u− U(Tℓ+1))‖L2(Ω)‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω).

Together with Galerkin orthogonality

0 = b(u− U(Tℓ+1), Vℓ+1) = 〈L(u− U(Tℓ+1)) , Vℓ+1〉 for all Vℓ+1 ∈ Sp
0 (Tℓ+1),
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we estimate

|〈L(U(Tℓ+1)− U(Tℓ)) , u− U(Tℓ+1)〉|
= |〈A(u− U(Tℓ+1)) , U(Tℓ+1)− U(Tℓ)〉+ 〈C(U(Tℓ+1)− U(Tℓ)) , u− U(Tℓ+1)〉|
≤ |〈L(u− U(Tℓ+1)) , U(Tℓ+1)− U(Tℓ)〉|+ |〈C(U(Tℓ+1)− U(Tℓ)) , u− U(Tℓ+1)〉|

+ |〈C(u− U(Tℓ+1)) , U(Tℓ+1)− U(Tℓ)〉|
≤ δ‖∇(u− U(Tℓ+1))‖L2(Ω)‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω).

(7.2.3)

The de�nition of ‖ · ‖ and Galerkin orthogonality (2.7.3) yield

‖u− U(Tℓ+1)‖2 + ‖U(Tℓ+1)− U(Tℓ)‖2 + 2〈L(U(Tℓ+1)− U(Tℓ)) , u− U(Tℓ+1)〉
= ‖u− U(Tℓ)‖2,

when
e

‖U(Tℓ+1)− U(Tℓ)‖2 ≤ ‖u− U(Tℓ)‖2 − ‖u− U(Tℓ+1)‖2

+ 2δC2
norm‖u− U(Tℓ+1)‖‖U(Tℓ+1)− U(Tℓ)‖,

where Cnorm > 0 is de�ned in Se
tion 3.6.1. The appli
ation of Young's inequality 2ab ≤
a2 + b2 and the 
hoi
e ε = δC2

norm 
on
lude the proof. �

Theorem 7.2.5. Assume that limℓ→∞ ‖U(Tℓ) − u‖ = 0 with u and U(Tℓ) from Se
-

tion 3.6.1. Then, for all εqo > 0, there exists Cqo > 0 su
h that (E2) holds with ̺(Tℓ, Tℓ+1) :=
‖U(Tℓ)− U(Tℓ+1)‖L2(Ω) and ea
h estimator η(·) whi
h is reliable, i.e.,

‖u− U(Tℓ)‖ ≤ Crelη(Tℓ) for all ℓ ∈ N0.

Parti
ularly, this is satis�ed by the error estimator η(·) from Se
tion 3.6.1.

Proof. Proposition 7.2.3 proves the quasi-orthogonality (2.7.5) for all ℓ ≥ ℓ0 with

̺(Tℓ, Tℓ+1) = ‖∇(U(Tℓ) − U(Tℓ+1))‖ and αℓ := ‖u − U(Tℓ)‖2. The Céa lemma 3.6.5 and

reliability (in the setting of Se
tion 3.6.1 from (2.4.1)) imply

̺(Tℓ, Tℓ+1) . ‖u− U(Tℓ)‖ . η(Tℓ) for all ℓ ∈ N0.

Therefore, Lemma 2.7.3 proves for all ℓ ≥ ℓ0.

∞∑

k=ℓ

(
‖U(Tk)− U(Tk+1)‖2 − εqoη(Tk)

2
)
≤ C ′

qoη(Tℓ)
2.

For all ℓ < ℓ0, there exists Cℓ > 0 with

ℓ0∑

k=ℓ

(
‖U(Tk)− U(Tk+1)‖2 − εqoη(Tk)

2
)
≤ Cℓη(Tℓ)

2,

sin
e both sides of the inequality are �nite and if η(Tℓ) = 0, then reliability (2.4.1) and the

Céa lemma (3.6.5) imply

‖U(Tk)− U(Tk+1)‖ . ‖u− U(Tℓ)‖ . η(Tℓ) = 0 for all k ≥ ℓ.

With Cqo := C ′
qo +maxℓ=0,...,ℓ0−1Cℓ, this 
on
ludes the proof. �
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7.3. General quasi-orthogonality (E2) for problems with Gårding inequality

Lemma 7.3.1. Let (Tℓ)ℓ∈N0 denote the output of Algorithm 3.6.3. Assume de�niteness

for all v ∈ X∞ :=
⋃∞

ℓ=0 Sp
0 (Tℓ), i.e.,

b(w , v) = 0 for all v ∈ X∞ =⇒ w = 0. (7.3.1)

Then, the sequen
es (eℓ)ℓ∈N and (Eℓ)ℓ∈N (with u and U(Tℓ) from Se
tion 3.6.2) de�ned by

eℓ :=

{
u−U(Tℓ)

‖∇(u−U(Tℓ))‖L2(Ω)
, for u 6= U(Tℓ),

0, else,

and

Eℓ :=

{
U(Tℓ+1)−U(Tℓ)

‖∇(U(Tℓ+1)−U(Tℓ))‖L2(Ω)
, for U(Tℓ+1) 6= U(Tℓ),

0, else,

for all ℓ ≥ ℓ0 (from Lemma 3.6.10) 
onverge to zero, weakly in H1
0 (Ω) in the sense (7.2.1).

Proof. We prove weak 
onvergen
e of eℓ to zero. The weak 
onvergen
e of Eℓ fol-

lows with the same arguments. Let (eℓj) be a subsequen
e of (eℓ). Due to boundedness

‖∇eℓj‖L2(Ω) ≤ 1 for all j ∈ N, we may extra
t a weakly 
onvergent subsequen
e (eℓk) of (eℓj )
with

eℓk ⇀ w ∈ H1
0 (Ω).

Lemma 3.6.11 proves limℓ→∞ ‖∇(u−U(Tℓ))‖L2(Ω) = 0 and parti
ularly u ∈ X∞. This implies

eℓ ∈ X∞ and hen
e w ∈ X∞. For all ℓk ≥ ℓ with eℓk 6= 0 and all V ∈ Sp
0 (Tℓ), it holds

b(eℓk , V ) = ‖∇(u− Uℓk)‖−1
L2(Ω)b(u− Uℓk , V ) = 0.

For all ℓ ∈ N, V ∈ Sp
0 (Tℓ), and ε > 0, there exists k0 ∈ N su
h that all k ≥ k0 satisfy

|b(w , V )| = |〈w , L⋆V 〉| ≤ ε+ |〈eℓk , L⋆V 〉| = ε+ |b(eℓk , V )| = ε,

sin
e k0 is 
hosen large enough su
h that ℓk ≥ ℓ. Therefore

b(w , V ) = 0 for all V ∈ Sp
0 (Tℓ) and ℓ ∈ N.

Due to (7.3.1) and w ∈ X∞, this implies w = 0. Altogether, we have now shown that ea
h

subsequen
e of eℓ has a subsequen
e whi
h 
onverges weakly to zero. This immediately

implies weak 
onvergen
e eℓ ⇀ 0 as ℓ→ ∞. �

Lemma 7.3.2. Assume de�niteness (7.3.1). There exists an index ℓnorm ∈ N su
h that

for all ℓ ≥ ℓnorm there holds

C−1
norm‖u− Uℓ‖ ≤ ‖∇(u− Uℓ)‖L2(Ω) ≤ Cnorm‖u− Uℓ‖ and

C−1
norm‖Uℓ+1 − Uℓ‖ ≤ ‖∇(Uℓ+1 − Uℓ)‖L2(Ω) ≤ Cnorm‖Uℓ+1 − Uℓ‖

with u and U(Tℓ) from Se
tion 3.6.2.

Proof. With (3.6.9) and |b(·, ·)| = ‖ · ‖2, we may estimate

‖∇(u− Uℓ)‖2L2(Ω) . ‖u− Uℓ‖2 + ‖u− Uℓ‖2L2(Ω)

= ‖u− Uℓ‖2 + ‖eℓ‖2L2(Ω)‖∇(u− Uℓ)‖2L2(Ω).
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Lemma 7.3.1 shows weak 
onvergen
e eℓ ⇀ 0 in H1
0 (Ω). The Relli
h 
ompa
tness theorem

thus implies strong 
onvergen
e eℓ → 0 in L2(Ω). Therefore, there exists an index ℓnorm ∈ N
su
h that there holds

‖∇(u− Uℓ)‖2L2(Ω) . ‖u− Uℓ‖2 for all ℓ ≥ ℓnorm.

The remaining statements follow analogously. �

Proposition 7.3.3. Assume de�niteness (7.3.1). Then, for all 0 < ε < 1, there exists
ℓqo ∈ N with ℓqo ≥ ℓnorm su
h that

‖U(Tℓ+1)− U(Tℓ)‖2 ≤
1

1− ε
‖u− U(Tℓ)‖2 − ‖u− U(Tℓ+1)‖2 (7.3.2)

for all ℓ ≥ ℓqo with u and U(Tℓ) from Se
tion 3.6.2.

Proof. With Lemma 7.3.2 and Lemma 7.3.1, the proof follows analogously to the proof

of Proposition 7.2.3. �

Theorem 7.3.4. Assume de�niteness (7.3.1) and the Céa lemma (3.6.15) for all ℓ ≥ ℓ1
and some ℓ1 ∈ N. Then, for all εqo > 0, there exists Cqo > 0 su
h that (E2) holds with

̺(Tℓ, Tℓ+1) := ‖∇(U(Tℓ)−U(Tℓ+1))‖L2(Ω) for all ℓ ≥ ℓ0 with ℓ0 from Lemma 3.6.10 and ea
h

estimator η(·) whi
h is reliable, i.e.,

‖∇(u− U(Tℓ))‖L2(Ω) ≤ Crelη(Tℓ) for all ℓ ∈ N0.

The solutions u and U(Tℓ) are de�ned Se
tion 3.6.2. Parti
ularly, this is satis�ed by the

error estimator η(·) from Se
tion 3.6.2.

Proof. Proposition 7.3.3 proves quasi-orthogonality (2.7.5) with ̺(Tℓ, Tℓ+1) = ‖U(Tℓ)−
U(Tℓ+1)‖ and αℓ := ‖u− U(Tℓ)‖2 for all ℓ ≥ ℓqo. With the Céa lemma 3.6.15, Lemma 7.3.2,

and reliability (in the setting of Se
tion 3.6.2, reliability is proved in Lemma 3.6.6), this

shows for all ℓ ≥ max{ℓqo, ℓ1}

̺(Tℓ, Tℓ+1) . ‖u− U(Tℓ)‖ . η(Tℓ) for all ℓ ∈ N0.

Therefore, Lemma 2.7.3 proves for all ℓ ≥ max{ℓqo, ℓ1}.
∞∑

k=ℓ

‖U(Tk)− U(Tk+1)‖2 − εqoη(Tk)
2 ≤ C ′

qoη(Tℓ)
2.

For all ℓ0 < ℓ < max{ℓqo, ℓ1}, there exists Cℓ > 0 with

ℓ0∑

k=ℓ

‖∇(U(Tk)− U(Tk+1))‖2L2(Ω) − εqoη(Tk)
2 ≤ Cℓη(Tℓ)

2,

sin
e both sides of the inequality are �nite and, by Remark 3.6.7, also η(Tℓ) > 0. The


ombination of the last estimates with the norm equivalen
e from Lemma 7.3.2 
on
ludes

the proof. �
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7.4. General quasi-orthogonality (E2) for nonlinear se
ond-order ellipti


equations

Similar to the proof in Se
tion 7.2, we derive a 
orresponding result for the nonlinear


ase. We 
onsider the setting of Se
tion 3.7.

Lemma 7.4.1. Re
all X∞ :=
⋃

ℓ∈N0
Sp
0 (Tℓ) ⊆ H1

0 (Ω). The operator (DL)|X∞u : X∞ →
X ⋆

∞ de�ned in Se
tion 3.7 is inje
tive and has 
losed range.

Proof. With (3.7.6) and the de�nition of the Fré
het derivative, there holds for all

v ∈ X∞

〈((DL)|X∞u)(v) , v〉 = lim
δ→0

δ−1〈L(u+ δv)−Lu , v〉

= lim
δ→0

δ−2〈L(u+ δv)−Lu , u+ δv − u〉

& lim
δ→0

δ−2‖∇(u+ δv − u)‖2L2(Ω) = ‖∇v‖2L2(Ω).

Hen
e, we have ((DL)|X∞u)(v) 6= 0 in X ⋆
∞ for all v ∈ X∞ \ {0}. Let wn ∈ range((DL)|X∞u)

denote a Cau
hy sequen
e. Then, the above estimate proves for ((DL)|X∞u)vn = wn

‖∇(vn − vm)‖2L2(Ω) . 〈((DL)|X∞u)(vn − vm) , vn − vm〉
≤ ‖wn − wm‖X ⋆

∞
‖∇(vn − vm)‖L2(Ω),

whi
h 
on
ludes that vn → v ∈ X∞ and hen
e wn → ((DL)|X∞u)(v) ∈ X ⋆
∞ by 
ontinuity of

DL)|X∞u. This 
on
ludes the proof. �

Lemma 7.4.2 (Taylor). For all v, w ∈ H1
0 (Ω) with ‖∇(u−v)‖L2(Ω)+‖∇(u−w)‖L2(Ω) ≤

εℓoc, there holds

‖Lw − Lv −DL(w)(w − v)‖H−1(Ω) ≤ C17‖∇(w − v)‖2L2(Ω), (7.4.1a)

‖Aw −Av −DA(w)(w − v)‖H−1(Ω) ≤ C17‖∇(w − v)‖2L2(Ω), (7.4.1b)

where L and A are de�ned in Se
tion 3.7.

Proof. The lo
al boundedness (3.7.10) together with [37, Theorem 6.5℄ applied to the

operators L and A prove the statement. �

Lemma 7.4.3. The sequen
e (eℓ)ℓ∈N (with u and U(Tℓ) from Se
tion 3.7) de�ned by

eℓ :=

{
u−U(Tℓ)

‖∇(u−U(Tℓ))‖L2(Ω)
, for u 6= U(Tℓ),

0, else


onverges to zero, weakly in H1
0 (Ω) in the sense of (7.2.1).

Proof. With Galerkin-orthogonality and the 
onvention ∞ · 0 = 0, we obtain

lim
ℓ→∞

〈Lu− LU(Tℓ) , Vk〉
‖∇(u− U(Tℓ))‖L2(Ω)

= 0 for all Vk ∈ Sp
0 (Tk) and k ∈ N.

By 
ontinuity of the duality bra
kets, this results in 
onvergen
e for all v ∈ X∞

〈Lu−LU(Tℓ) , v〉
‖∇(u− U(Tℓ))‖L2(Ω)

→ 0 as ℓ→ ∞.
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By use of (7.4.1a) and 
onvergen
e from (3.7.15), we observe for all v ∈ X∞ and all su�
iently

large ℓ ∈ N.

|〈Lu− LU(Tℓ) , v〉|
‖∇(u− U(Tℓ))‖L2(Ω)

≥ |〈(DLu)(u− U(Tℓ)) , v〉|
‖∇(u− U(Tℓ))‖L2(Ω)

− C17‖∇(u− U(Tℓ))‖L2(Ω)‖∇v‖L2(Ω).

Again, with 
onvergen
e U(Tℓ) → u in H1
0 (Ω) from (3.7.15), this implies immediately for all

v ∈ X∞

|〈u− U(Tℓ) , ((DL)|X∞u)
⋆v〉|

‖∇(u− U(Tℓ))‖L2(Ω)

=
|〈(DLu)(u− U(Tℓ)) , v〉|
‖∇(u− U(Tℓ))‖L2(Ω)

→ 0 as ℓ→ ∞. (7.4.2)

A

ording to Lemma 7.4.1, (DL)|X∞u is inje
tive and has 
losed range. Therefore, its

adjoint operator ((DL)|X∞u)
⋆
has is surje
tive onto X ⋆

∞ by the 
losed range theorem [85℄.

Convergen
e (3.7.15) implies that eℓ ∈ X∞. Hen
e, (7.4.2) is equivalent to eℓ ⇀ 0 as ℓ→ ∞.

This 
on
ludes the proof. �

To abbreviate notation, we de�ne the quasi-metri
 (whi
h is symmetri
, de�nite, and

satis�es the triangle inequality with a multipli
ative 
onstant)

dl(w, v)2 := 〈Lw − Lv , w − v〉 for all w, v ∈ H1
0 (Ω).

Note that due to (3.7.5)�(3.7.6), there holds

C−1
norm‖∇(w − v)‖L2(Ω) ≤ dl(w, v) ≤ Cnorm‖∇(w − v)‖L2(Ω) for all w, v ∈ H1

0 (Ω) (7.4.3)

with Cnorm = max{2C15, C
−1
16 } > 0.

Proposition 7.4.4. For any ε > 0, there exists ℓqo ∈ N su
h that

dl(Uℓ+1, U(Tℓ))
2 ≤ 1

1− ε
dl(u, U(Tℓ))

2 − dl(u, U(Tℓ+1))
2

(7.4.4)

for all ℓ ≥ ℓqo and with u and U(Tℓ) from Se
tion 3.7.

Proof. Due to 
onvergen
e U(Tℓ) → u in H1
0 (Ω) from (3.7.15), there exists ℓ1 ∈ N su
h

that for all ℓ ≥ ℓ1 we may apply (7.4.1b), to obtain

|〈AU(Tℓ+1)−AU(Tℓ) , u− U(Tℓ+1)〉|
≤ |〈DA(U(Tℓ+1))(U(Tℓ+1)− U(Tℓ)) , u− U(Tℓ+1)〉|

+ C17‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω).

Using the symmetry of DA(U(Tℓ+1)), we 
on
lude

|〈AU(Tℓ+1)−AU(Tℓ) , u− U(Tℓ+1)〉|
≤ |〈DA(U(Tℓ+1))(u− U(Tℓ+1)) , U(Tℓ+1)− U(Tℓ)〉|

+ C17‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

≤ |〈Au−AU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|
+ C17‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

+ C17‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖2L2(Ω).

(7.4.5)
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Analogously to the estimate above but by use of the reverse triangle inequality, we obtain

|〈AU(Tℓ+1)−AU(Tℓ) , u− U(Tℓ+1)〉|
≥ |〈Au−AU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|

− C17‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

− C17‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖2L2(Ω).

(7.4.6)

Given δ > 0, 
onvergen
e U(Tℓ) → u as ℓ → ∞ provides an index ℓ0 ∈ N su
h that

C17(‖∇(u − U(Tℓ+1))‖L2(Ω) + ‖∇(U(Tℓ+1) − U(Tℓ))‖L2(Ω)) ≤ δ. With (7.4.5)�(7.4.6) this

implies

∣∣|〈AU(Tℓ+1)−AU(Tℓ) , u− U(Tℓ+1)〉| − |〈Au−AU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|
∣∣

≤ δ‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

for all ℓ ≥ ℓ1. Sin
e eℓ 
onverges to zero weakly in H
1
0 (Ω), we have strong 
onvergen
e eℓ → 0

as ℓ→ ∞ in L2(Ω). This together with Lips
hitz 
ontinuity (3.7.5b) implies

|〈CU(Tℓ+1)− CU(Tℓ) , u− U(Tℓ+1)〉|
. ‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖eℓ+1‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

and hen
e

|〈CU(Tℓ+1)− CU(Tℓ) , u− U(Tℓ+1)〉|
≤ δ‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

for all ℓ ≥ ℓ0 with ℓ0 ≥ ℓ1 su�
iently large. The adjoint term satis�es

|〈Cu− CU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|
≤ |〈Cu− CU(Tℓ+1) , U(Tℓ+1)− u〉|+ |〈Cu− CU(Tℓ+1) , u− U(Tℓ)〉|
. ‖∇(u− U(Tℓ+1))‖2L2(Ω)‖eℓ+1‖L2(Ω)

+ ‖∇(u− U(Tℓ))‖L2(Ω)‖eℓ‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

≤ δ
(
‖∇(u− U(Tℓ+1))‖2L2(Ω)

+ ‖∇(u− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

)
.

So far, we end up with

|〈CU(Tℓ+1)− CU(Tℓ) , u− U(Tℓ+1)〉|+ |〈Cu− CU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|
≤ δ

(
‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

+ ‖∇(u− U(Tℓ+1))‖2L2(Ω)

+ ‖∇(u− U(Tℓ+1))‖L2(Ω)‖∇(u− U(Tℓ))‖L2(Ω)

)

≤ δ/2‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω) + 2δ‖∇(u− U(Tℓ+1))‖2L2(Ω)

+ δ/2‖∇(u− U(Tℓ))‖2L2(Ω)
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by use of Young's inequality. Putting everything together and by use of Galerkin orthogo-

nality 〈(A+ C)u− (A+ C)U(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉 = 0, we obtain

|〈(A+ C)U(Tℓ+1)− (A+ C)U(Tℓ) , u− U(Tℓ+1)〉|
≤ |〈Au−AU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|

+ δ‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

+ |〈CU(Tℓ+1)− CU(Tℓ) , u− U(Tℓ+1)〉|
≤ |〈(A+ C)u− (A+ C)U(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|

+ δ‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

+ |〈CU(Tℓ+1)− CU(Tℓ) , u− U(Tℓ+1)〉|+ |〈Cu− CU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|
≤ 3δ

(
‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω) + ‖∇(u− U(Tℓ+1))‖2L2(Ω) + ‖∇(u− U(Tℓ))‖2L2(Ω)

)
.

With that at hand, we obtain by de�nition of dl(·, ·)
dl(U(Tℓ+1), U(Tℓ))

2 ≤ dl(u, U(Tℓ))
2 − dl(u, U(Tℓ+1))

2

+ |〈(A+ C)U(Tℓ+1)− (A+ C)U(Tℓ) , u− U(Tℓ+1)〉|
≤ dl(u, U(Tℓ))

2 − dl(u, U(Tℓ+1))
2 + 3δ

(
‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω)

+ ‖∇(u− U(Tℓ+1))‖2L2(Ω) + ‖∇(u− U(Tℓ))‖2L2(Ω)

)
.

With the equivalen
e (7.4.3), we 
on
lude

(1− 3Cnormδ)dl(U(Tℓ+1), U(Tℓ))
2

≤ (1 + 3Cnormδ)dl(u, U(Tℓ))
2 − (1− 3Cnormδ)dl(u, U(Tℓ+1))

2

for all ℓ ≥ ℓ0. Finally, we 
hoose δ > 0 su�
iently small su
h that (1 + 3Cnormδ)/(1 −
3Cnormδ) ≤ 1/(1− ε) and 
on
lude the proof. �

Theorem 7.4.5. Suppose the Céa lemma 3.7.8. For all εqo > 0, there exists Cqo > 0
su
h that (E2) holds with ̺(Tℓ, Tℓ+1) := ‖∇(U(Tℓ)− U(Tℓ+1))‖L2(Ω) (with u and U(Tℓ) from
Se
tion 3.7), and ea
h estimator η(·) whi
h is reliable, i.e.,

‖∇(u− U(Tℓ))‖L2(Ω) ≤ Crelη(Tℓ) for all ℓ ∈ N0.

Parti
ularly, this is satis�ed by the error estimator η(·) from Se
tion 3.7.

Proof. Proposition 7.4.4 proves the quasi-orthogonality (2.7.5) for all ℓ ≥ ℓ0 with

̺(Tℓ, Tℓ+1) = dl(U(Tℓ), U(Tℓ+1)) and αℓ := dl(u, U(Tℓ)). The Céa lemma 3.7.8, (7.4.3), and

reliability (in the setting of Se
tion 3.7 from (2.4.1)) imply

̺(Tℓ, Tℓ+1) . ‖∇(u− U(Tℓ))‖L2(Ω) . η(Tℓ) for all ℓ ∈ N0.

Therefore, Lemma 2.7.3 proves for all ℓ ≥ ℓqo.

∞∑

k=ℓ

dl(U(Tk), U(Tk+1))
2 − εqoη(Tk)

2 ≤ C ′
qoη(Tℓ)

2.

For all ℓ < ℓ0, there exists Cℓ > 0 with

ℓ0∑

k=ℓ

dl(U(Tk), U(Tk+1))
2 − εqoη(Tk)

2 ≤ Cℓη(Tℓ)
2,
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sin
e both sides of the inequality are �nite and if η(Tℓ) = 0, then reliability (2.4.1) and the

Céa lemma (3.7.8) imply

dl(U(Tk), U(Tk+1)) . ‖∇(U(Tk)− U(Tk+1))‖L2(Ω) . ‖∇(u− U(Tℓ))‖L2(Ω) . η(Tℓ) = 0.

With (7.4.3), the last two estimates 
on
lude the proof. �
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