
Ermöglichung von Mobilität und
Nachrichtenübermittlungs-

garantien in verteilten
MQTT-Netzwerken

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Manuel Geier, BSc
Matrikelnummer 01126137

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Schahram Dustdar
Mitwirkung: Univ.Ass. Dipl.-Ing. Thomas Rausch, BSc

Wien, 6. März 2019
Manuel Geier Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Enabling Mobility and Message
Delivery Guarantees in

Distributed MQTT Networks

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Manuel Geier, BSc
Registration Number 01126137

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Schahram Dustdar
Assistance: Univ.Ass. Dipl.-Ing. Thomas Rausch, BSc

Vienna, 6th March, 2019
Manuel Geier Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Manuel Geier, BSc
Meidlinger Hauptstraße 32/32, 1120 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 6. März 2019
Manuel Geier

v

Acknowledgements

There are many people I want to thank, but first of all, I want to thank myself. This
work would not have been possible without my past-self that put a lot of effort, time,
thoughts and energy into it. Thank you very much! I am very proud you and your work!
The journey of self-mastery is a never ending process and during this work I learned a
lot, not only about the subject of this work, but also about myself and how to improve
in many areas. Finishing this “master” piece (pun intended) left me with many great
experiences and learnings that are useful for the rest of my life.

Very special thanks to my advisor Univ.Prof. Dr. Schahram Dustdar and his assistance
Univ.Ass. Dipl.-Ing. Thomas Rausch, BSc who gave me the opportunity to write my
diploma thesis with them in the Distributed Systems Group in the Faculty of Informatics
at the Technical University of Vienna. It was a great pleasure to work with them and I
really valued their input, thoughts and suggestions on my work. I also thank them for
giving me the freedom and time to learn and work on my own pace and for providing me
with all the resources to create this work.

It is hard to put in words how much I appreciate my dear friends and colleagues
that I met at the university. I thank all of you and I especially give a big thanks
to Dipl.-Ing. Thomas Rieder, Dipl.-Ing. Markus Zisser, Dipl.-Ing. Patrick Säuerl and
Dipl.-Ing. Lisa Leonhartsberger. We successfully tackled various challenges through our
common journey and we always supported and motivated each other to give our best. It
was a lot of fun to be on this journey with you. This final work is especially for you.

Furthermore, I give many big thanks to my family and all my friends for their great
support. This work is also for you, even though you might never clearly understand what
I actually was working on. ;) You gave me the strength and vision that lead to this final
work.

Finally, I thank all of my colleagues and leaders at Catalysts that supported me during
this time and that gave me the time and the space that I needed to grow and to finish
my career at the Technical University of Vienna.

THANK YOU VERY MUCH! :)

Manuel

vii

Kurzfassung

Publish/Subscribe ist ein weit verbreitetes Kommunikationsmuster für Maschine-zu-
Maschine-Kommunikation im Internet der Dinge (Internet of Things, IoT) und das
MQTT Protokoll hat sich aufgrund seines leichtgewichtigen Designs zum De-facto-
Standard etabliert. Zentralisierte Nachrichtenverteiler sind jedoch nur begrenzt in der
Lage, die strengen Servicequalitätsanforderungen moderner IoT-Szenarien zu erfüllen,
welche eine dezentrale und zuverlässige Kommunikation am Rand des Netzwerks erfor-
dern. In vielen dieser Szenarien sind Endgeräte nicht mehr nur statisch an einem Ort,
sondern bewegen sich in einer Umgebung. Dadurch werden zusätzliche Herausforderun-
gen und Möglichkeiten für eine zuverlässige Kommunikation kreiert. In dieser Arbeit
präsentieren wir einen Lösungsansatz für ein skalierbares, verteiltes MQTT-Netzwerk und
einen Migrationsprozess, um eine zuverlässige und transaktionale Teilnehmermobilität zu
ermöglichen. Wir erweitern MQTT v3 und führen ein transaktionales Migrationsprotokoll
ein, das die Nachrichtenübermittlungsgarantien von MQTTs für einzelne Abonnements
(höchstens einmal, mindestens einmal, genau einmal) verwendet und gewährleistet, um
einen Teilnehmer zwischen (verteilten) Verteilersystemen zu migrieren. Mit Softwaretests,
empirischen Experimenten und einer theoretischen Analyse evaluieren wir die Korrektheit,
die Reaktionsfähigkeit und die Systembelastung unseres Lösungsansatzes. Die Evaluierung
zeigt, dass unser Migrationsansatz es Teilnehmern ermöglicht, von einem Verteiler zu
einem anderen zu migrieren, während die Nachrichtenübermittlungsgarantien gewährleis-
tet werden, wobei jedoch zusätzlicher Aufwand verursacht wird. In typischen Szenarien,
in denen Verteiler synchronisiert sind, beträgt die Migrationszeit etwa das Achtfache der
Verbindungslatenz zwischen den Verteilern. In interregionalen Cloudszenarien, in denen
die Verbindungslatenz zwischen den Verteilern etwa 80 bis 100 ms beträgt, dauert die
Migration etwa 600 bis 800 ms. Wenn sich die Broker in unmittelbarer Nähe befinden,
geht die Anzahl der verworfenen, duplizierten und gespeicherten Nachrichten gegen Null.
Mit unserem Migrationprozess nimmt der Netzwerkverkehr mit höchstens einmal ab,
nimmt mit mindestens einmal zu und bleibt bei genau einmal Abonnements, mit jedoch
einem zusätzlichen Aufwand zur Speicherung von Nachrichten, gleich.

ix

Abstract

Publish/subscribe is a commonly used pattern for machine-to-machine communication in
the Internet of Things (IoT) and the MQTT protocol has emerged as the de-facto standard
due to its lightweight design. However, centralized messages brokers are limited in their
ability to satisfy the stringent quality of service requirements of modern IoT scenarios
which require decentralized and reliable communication at the edge of the network. In
many of these scenarios, end devices are not static at one place anymore, but rather
move around in an environment which creates additional challenges and opportunities for
reliable communications. In this work we present an approach for a scalable, distributed
MQTT network and a migration process to enable reliable and transactional client
mobility. We extend MQTT v3 and introduce a transactional migration protocol which
makes use of and ensures MQTTs message delivery guarantees for individual subscriptions
(at most once; at least once; exactly once) to migrate a client between (distributed)
broker systems. With software testing, empirical experiments and a theoretical analysis
we evaluate the correctness, the responsiveness and the system strains of our solution
approach. The evaluation shows that our migration approach enables clients to migrate
from one broker to another while ensuring message delivery guarantees, but incurs
additional overhead. In typical scenarios, where brokers are synchronized, the migration
time is roughly eight times the link latency between brokers. In interregional cloud
scenarios where the link latency between brokers is roughly 80-100 ms, the migration
takes around 600-800 ms. When brokers are in close proximity, the number of discarded,
duplicated and stored messages are close to zero. With our migration process, the network
traffic decreases with at most once, it increases with at least once and it stays the same
with exactly once subscriptions, but comes with an overhead in storing message.

Keywords: publish/subscribe, MQTT, distributed network, internet of things, client
mobility, message delivery guarantee, migration process

xi

Contents

Kurzfassung ix

Abstract xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim of the Work & Expected Results 3
1.4 Methodological Approach . 4
1.5 Terminology . 5
1.6 Outline . 5

2 Background 7
2.1 Publish/Subscribe Paradigm . 7

2.1.1 Subscription Languages . 8
2.1.2 Subscription Types . 8

2.2 Broker Networks . 9
2.3 Protocols . 11
2.4 Broker Systems . 13
2.5 Quality-of-Service . 14
2.6 Message Delivery Guarantees . 15

2.6.1 Actual Subscriber QoS . 16
2.7 Client Migration Types . 17
2.8 Migration Communication Patterns . 18

3 Related Work 21

4 Solution Approach 27
4.1 Foundation . 27
4.2 Assumptions . 29
4.3 Migration Phases . 29
4.4 Identifiers . 31

4.4.1 Client Id . 31
4.4.2 Message Id . 31

xiii

4.4.3 Global Message Id . 31
4.4.4 Migration Id . 33

4.5 Enhanced MQTT PUBLISH Packet 33
4.5.1 Payload Header . 34
4.5.2 Payload Body . 34

4.6 Migration Protocol . 35
4.7 Migration Sequence . 36
4.8 Synchronization State . 37
4.9 Synchronization Process . 38

4.9.1 Target Broker is ahead of the Source Broker 40
4.9.2 Target Broker is synced with the Source Broker 46
4.9.3 Target Broker is behind of the Source Broker 52

5 Implementation 59
5.1 Migration Framework . 59
5.2 MQTT Broker . 61

5.2.1 Broker Migration Manager . 61
5.2.2 Migration Broker Bridge . 61
5.2.3 Broker Migration Integrator . 63
5.2.4 Migration Store . 63
5.2.5 Migration Message Store . 63
5.2.6 Message Barrier . 63
5.2.7 Broker Command Line Interface (Broker CLI) 63
5.2.8 Source Broker Process . 64
5.2.9 Target Broker Process . 70

5.3 MQTT Client . 77
5.3.1 Client Migration Manager . 77
5.3.2 Client Migration Bridge . 78
5.3.3 Command Line Interface (Client CLI) 78
5.3.4 Client Process . 78

5.4 Communication . 79
5.4.1 Migration Packet Server . 79
5.4.2 Migration Packet Client . 79

5.5 Migration Protocol Packets . 80
5.5.1 MIGRATE packet . 80
5.5.2 MIGACK packet . 81
5.5.3 MIGSYNC packet . 81
5.5.4 MIGSYNCACK packet . 82
5.5.5 MIGTO packet . 82
5.5.6 MIGTOACK packet . 82

6 Evaluation 83
6.1 Methodology . 83

6.1.1 Evaluation Scenario . 84

6.2 Software Testing . 86
6.3 Empirical Experiments . 87

6.3.1 Experiments Setup . 87
6.3.2 Experiments Configuration Overview 91
6.3.3 Experimental Result . 91
6.3.4 Experiments Summary . 114

6.4 Theoretical Analysis . 117
6.4.1 Mathematical Model . 117
6.4.2 Synchronization Process Time 119
6.4.3 Migration Process Time . 122
6.4.4 Loss, Duplication and Storage Time 123
6.4.5 Message Arrival Shift . 126
6.4.6 First Message from Target Broker 126
6.4.7 Message Load . 127
6.4.8 Network Load . 127

6.5 Summary & Discussion . 129
6.5.1 Benefits . 130
6.5.2 Limitations . 130

7 Conclusion 133
7.1 Future Work . 134

8 Appendix 137
8.1 Communication Implementation - Netty Channel 137
8.2 System Test Example . 138
8.3 Migration Process Analysis Script . 138
8.4 Migration Packets JSON . 141

List of Figures 143

List of Tables 145

List of Listings 146

Bibliography 147

CHAPTER 1
Introduction

1.1 Motivation

The Internet-of-Things (IoT) is “Anytime, Anything, Anywhere” [GBMP13]. In many
areas from transportation and logistics, to healthcare, in smart home environments and in
our personal and social life, IoT is all around us [AIM10]. End devices like smartphones,
smartwatches and smart-sensors are getting more powerful and feature-rich every year
and therefore getting more and more attention, since their wide variety of applications
and possibilities. These devices are mostly connected in a network through wireless
connections like Wi-Fi, Bluetooth or RFID (radio frequency identification) to exchange
data and therefore are flexible in its usage. Communication between such devices, with
or without direct human intervention (Machine-to-Machine, M2M), is part of the IoT
paradigm [GBMP13].

To facilitate communication in a (wireless) network between loosely coupled services on
such devices, one common strategy is the use of the publish-subscribe message pattern.
In this pattern, message producers (publishers) publish messages of interest and message
consumers (subscribers) subscribe to interests to receive published messages. Message-
oriented middlewares (MoM) like JoramMQ1, Redis2 or Mosquitto3 are used as message
brokers, to deliver messages from publishers to its subscribers in a network. One popular
message protocol for publish-subscribe systems is Message Queue Telemetry Transport4

(MQTT), since it is designed to be extremely lightweight and can be used in environments
where bandwidth is precious. It has become the de-facto standard for IoT and is
highly used, as shown in [Nai17]. MQTT especially provides three Quality-of-Service

1http://www.scalagent.com/en/jorammq-33/products/overview
2https://redis.io/
3https://mosquitto.org/
4http://mqtt.org/

1

1. Introduction

configurations (QoS 0-2), for publications (messages to a broker) and for subscriptions
(messages from a broker): QoS 0: at most once; QoS 1: at least once; QoS 2: exactly
once. MQTTs QoS are the message delivery guarantees for messages, in comparison to
more general QoS like message throughput, latency or loss. Application can make use of
MQTTs QoS for message delivery to optimize their systems.

The dynamic aspect in IoT scenarios is a challenge, in particular for guaranteed message
delivery [RD18]. Many smart devices like tv, radio, fridges are at fixed locations in space.
Conversely, devices like mobile smartwatches or mobile sensors, are not location-fixed
and can move through space. Hence, there is a dynamic property of the network topology
within a (wireless) infrastructure, as described in [SCZ+16] and [JS15]. In such a dynamic
network, interrupted connections, varying bandwidths and changing as well as moving
participants in the environment have to be handled. This dynamic property of devices
needs to be addressed by the MoM in order to guarantee Quality-of-Service agreements,
e.g., for message delivery, and to provide performing services, e.g., minimize message
round trip time between clients in close proximity, as in PEER-WD [TP13], in osmotic
computing [VRF+16], in edge computing [SDC16], [SCZ+16], [Sat15], or in edge-centric
computing [LME+15]. Kim and Noble state in [KN01], that the “adaptation to changing
network conditions is critical to the success of mobile systems”.

Many MOMs also perform load-balancing, (overlay) network reconfigurations and other
optimizations to improve the performance and quality of the service [Cug02]. One
particular task is to migrate (mobile) clients in a distributed network from one node to
another node. Most MOMs are aware of message loss or duplication and try to prevent
or ignore this [HGM04]. Rausch et al. show in [RND18], that message loss is real when
mobility is involved. Nevertheless, many MOMs do not consider MQTTs QoS for message
delivery for further optimizations. However, such considerations provide opportunities to
improve the overall QoS of a system, when a client migration from one broker to another
has to be performed, since not all messages have to be threaded the same, but within
the boundaries of MQTTs defined QoS guarantees. This opportunity is what we are
addressing in this work.

1.2 Problem Statement

As MQTT has by default a centralized design, considering mobility and a distributed
network design creates different challenges and opportunities for MQTT. This work
addresses the following challenges in particular:

Given a distributed MQTT broker network, the challenge is to migrate a mobile subscriber
from one broker to another broker while ensuring and being aware of the MQTT QoS
message delivery guarantees for its subscriptions. A subscriber might have multiple
subscriptions with different QoS configurations that have to be migrated. Figure 1.1
gives a brief graphical representation of the problem statement.

2

1.3. Aim of the Work & Expected Results

In this work we particularly target subscriber mobility, since publisher mobility provides
different challenges as shown in [MPJ05], [MPDJ05] and also in our work and therefore
left for future work.

Figure 1.1: Migration of a mobile MQTT Client in a distributed MQTT broker network
from the Source Broker to the Target Broker.

1.3 Aim of the Work & Expected Results

The aim of this work is to enable mobility in a distributed MQTT broker network and
to design and develop a migration process and a migration protocol to perform a client
migration that considers MQTTs message delivery guarantees. As made apparent by the
problem statement, current approaches do consider other QoS, like message throughput,
latency or loss, but do not consider the more specific QoS of the MQTT protocol for
message delivery, that applies for publications and subscriptions. Compared to current
approaches, we see potential to improve the other QoS by taking the message delivery
guarantees of MQTT into account.

We design, model and implement a migration process and a migration protocol, that can
perform a message delivery guarantee aware client migration from a broker to another
broker. To that end, suitable algorithms, methods and standards are researched, chosen
and combined to create our migration solution. Design concepts from the formalized
transactional protocol for mobile publish/subscribe clients by [SMGJ09] are used to gain
transactional properties, even though a formalization of our migration protocol is not be
part of our work and left for future work.

3

1. Introduction

Existing publish-subscribe solutions, e.g., JoramMQ5, Mosquitto6, Moquette7, are ana-
lyzed and one of the systems is chosen to integrate the migration process implementation8.
With the integration into chosen publish-subscribe system, we evaluate our migration
solution.

We use software testing methods to verify the correctness of our solution approach, our
implementation and the integration into existing systems. With empirical experiments
with the actual systems running in a dockerized environment, we further verify the
correctness and measure the responsiveness of our solution. Finally, in a theoretical
analysis with a simplified mathematical model of our migration process we further
evaluate the responsiveness and system strains.

Our results verify the correctness of our solution approach and our implementations.
The responsiveness and the system strains highly depend on the network latencies,
the synchronisation state of the brokers that perform the migration, the number of
subscriptions and the chosen QoS of the Client’s subscriptions. With QoS 0 subscriptions
we decrease the network traffic, with QoS 1 subscriptions we increase network traffic
and with QoS 2 subscriptions it stays the same. Even through our solution approach
aims MQTT and its message delivery guarantees, the concepts we present might also be
applied to other protocols like AMQP that provide message delivery guarantees as well.

1.4 Methodological Approach

To achieve the expected results the following methodological approach is used:

• Systematic review of existing publish-subscribe message broker systems and message
protocols (e.g., MQTT, AMQP, CoAP), client mobility approaches and client
migration strategies.

• Enhance MQTT to create a distributed broker network and design and model a
migration process and a migration protocol for a client migration that is aware of
message delivery guarantees.

• Implementation and integration of the migration solution into a MQTT broker and
MQTT client system, by using iterative software engineering methods and software
testing.

• Evaluation of correctness, responsiveness and system strains with software testing,
empirical experiments and a theoretical analysis of the solution approach.

5http://www.scalagent.com/en/jorammq-33/products/overview
6https://mosquitto.org/
7http://moquette.io/
8We chose Moquette.

4

1.5. Terminology

1.5 Terminology

Throughout this work we are consistently referring to specific subjects using the following
terms:

• QoS: Describes the message delivery guarantee (QoS 0-2) of the MQTT protocol.

• Client: Describes the MQTT client, that migrates from a MQTT broker to another.

• Source Broker: Describes the MQTT broker system that a Client migrates from.

• Target Broker: Describes the MQTT broker system that a Client migrates to.

• Coordinator: Describes the entity that triggers the migration process.

• Packet: Describes a packet of our Migration Protocol or the MQTT protocol.

• Message: Describes a concrete message that should be delivered.

1.6 Outline

The remainder of the work is structured as follows. In Chapter 2, we provide background
knowledge that lays the foundation for our work. Chapter 4 presents and describes our
solution approach to enable mobility and our QoS-aware migration process. In Chapter 5,
we detail about the implementation of our solution and describe the different components
it involves. Our evaluation and the deriving results are presented in Chapter 6. Chapter 7
concludes this work and gives suggestions for future work. (Further details about our
work can be found in the Appendix in Chapter 8.)

5

CHAPTER 2
Background

In this chapter, we give background information to have a common knowledge base for
the remainder of this work. We start by introducing the publish/subscribe paradigm
with its actors and describe different subscription languages and subscription types
(Section 2.1). We discuss architectural styles for broker networks (Section 2.2) and
present some publish/subscribe protocols (Section 2.3) and some broker implementations
(Section 2.4). Furthermore, we discuss the message delivery guarantees for MQTT in detail
(Section 2.6), since we build the foundation of our solution approach on characteristics
of these guarantees in Chapter 4. Finally, we present two different migration types
(Section 2.7) and communication patterns (Section 2.8) to perform migration processes.

2.1 Publish/Subscribe Paradigm

The publish/subscribe paradigm is a well-known and -used communication pattern in
messaging systems. It is an example of a data-centric communication model and widely
spread in enterprise networks, mainly because of its scalability and support for dynamic
application topologies, as stated by Hunkeler et al. [HTSC07]. The loose coupling
between publishers and subscribers is one advantage of this paradigm that provides a
lot of flexibility to systems. Especially in the field of IoT and in sensory networks, this
paradigm provides many advantages as described in [Bet99] and [EFGK03]. Also in
mobile environments, the publish/subscribe paradigm is applied, as shown by Huang and
Garcia-molina in [HGM04].

We briefly introduce the important concepts of the publish/subscribe paradigm in the
following sections starting with the main three actors in a publish/subscribe system:

• Publisher: The publisher takes collected or generated data and publishes it, e.g.
to topics, to a broker in order to provide information to interested parties.

7

2. Background

• Subscriber: The subscriber registers its interests, e.g. via topics subscriptions, on
a broker in order to receive information it is interested in.

• Broker: The broker is the middleware between publishers and subscribers and for-
wards messages that were published to the broker to subscribers that are interested
in this information.

An individual client can be a publisher and a subscriber at the same time.

2.1.1 Subscription Languages

Publish/Subscribe systems support different subscription languages for subscribers in
order to show their interest for specific messages. Common subscription languages are
classified as follows:

• topic/subject: Topic-based or subject-based subscription languages subscribe to
an exact string or keyword.
Example: fish, bird, mammal
More expressive language allow strings to be paths to generate hierarchies of topics.
Example: /animal/water, /animal/water/sweet, /animal/water/salty
These topic paths usually allow wildcards to subscribe to multiple topics or whole
subhierarchies at once.
Example: /animal/water/*

• content: Content-based subscription languages typically use a query language on
attributes of messages to match interests in published messages.
Example: [environment == WATER && weightKg > 100]

• type: Type-based subscription languages allow to subscribe to specific messages
types or even subtypes [Eug07].
Example: type Animal, type WaterAnimal, type SweetWaterAnimal

2.1.2 Subscription Types

Some publish/subscribe systems support different subscription types to tackle certain
application needs:

• Local subscription: A local subscription refers to a subscription that was regis-
tered by a specific client. This client will receive all messages of its subscriptions. If
multiple clients register for the same interest, every client will receive all matched
messages.

8

2.2. Broker Networks

• Shared subscription: A shared subscription is a subscription that is shared upon
its subscribers. A messages just gets published to one of its subscribers. This type
can be useful for messages that act like tasks that have to be processed just once
by an arbitrary client that can process the message.

If a client is offline for some time and reconnects again, the broker will handle the client
subscriptions while the client is offline based on its durability:

• Durable subscriptions: A durable subscription makes sure, that when the client
reconnects to the broker system, that it will receive all messages that have been
published while the client was offline. Therefore, the client does not miss any
messages even if the connection gets interrupted.

• Non-durable subscriptions: A non-durable subscriptions does only deliver mes-
sages to client while they have an active connection, i.e. are online. If the client is
offline, messages that are published in the meanwhile, are lost for the client.

This work focuses on topic-based subscriptions with exact strings and local subscriptions.
We assume that the Client is online for the whole migration process. Hierarchy-support
or further subscription language expressiveness are left for future work.

2.2 Broker Networks

The first publish/subscribe architectures consisted of a centralized broker that handled
all requests [HGM04]. Nowadays, broker systems can consist of multiple brokers that
work together to fulfill their applications need and are optimized, e.g., to increase the
packet through-put or to decrease the total network traffic.

To distribute a published message to multiple subscribers, messages can be unicasted or
multicasted (or have a mixed setup). A lot of research was done on multicasting in order
to disseminate publications to interested subscribers such that the total network traffic is
minimized as stated in [MJ10].

• Unicast: Sending a message from a sender to a single receiver.

• Multicast: Sending a message from a sender to a group of multiple receivers.

Since client mobility within broker network with multiple brokers is a challenge, i.e. clients
move between brokers, and the MQTT protocol by itself does not support networks or
client mobility, this features have to be extended by the specific broker implementations.

There are certain architecture styles that are common to connect multiple brokers in
order to scale the whole system: bridging, clustering and distributed networks. For each

9

2. Background

architectural style, we are mentioning some examples of broker system, that support (at
least) this style. These broker systems are also introduced in the upcoming Section 2.4.

• Bridging: Bridging refers to a method where two or more brokers are connected to
exchange certain messages with each other. Brokers are linked together and define
a pattern for messages that get forwarded to another broker. Within this process,
message filtering, remapping of topics or other transformations can be done. A
common usage is to connect edge brokers to a central or remote network [Mos18].
Bridging can be achieved, by putting the broker into the role of a publisher or a
subscriber of another broker system.

Examples: Mosquitto, VinveMQ

• Clustering: Clustering refers to a method to group multiple system together to
form a uniform unit in order to improve the systems performance. Systems might
be connected in a hierarchy form and serve in a master-slave approach. Individ-
ual systems might access shared resources like databases and use transactional
approaches to create a consistent system.

Examples: HiveMQ, EMQ

• Distributed Networks: Distributed networks are individual nodes that are
connected via a network setup and all nodes together form the whole system. A
single node itself can be a single broker system or even a cluster of broker systems.
In terms of edge-computing, a single node might just serve some local space. Caused
by the nature of the distributed style, the challenges and coordination of such
broker networks are different compared to clustered setups, where individual broker
systems are close to each other.

Examples: WSO2 Message Broker, JoramMQ

It is important to note that certain broker systems might support multiple architectural
styles depending on the configuration of the system.

Each of the presented architectural styles describes multiple broker systems connected
together to form the overall broker network. Within all of these styles, clients can be
connected to individual broker systems and might need to be migrated from a broker
to another for various reasons. Therefore, client migrations are necessary which is a
motivation of our work.

Our solution approach aims client migrations between broker systems in distributed
networks. Nevertheless, it might also be applied in a clustered setup, since broker systems
do not necessarily have to be distributed with our solution.

10

2.3. Protocols

2.3 Protocols

To provide data transport for publish/subscribe broker systems different communication
protocols with different characteristics exist. Most widely adopted protocols in the IoT
field are MQTT and CoAP, as stated in [LCC+15]. Other protocols that support the
publish-subscribe paradigm include AMQP XMPP, STOMP and ZMTP.

Some of these protocols are briefly described as follows:

• AMQP: The Advanced Message Queuing Protocol1 (AMQP) delivers messages
through exchanges and message queues. Exchanges retrieve published messages
from clients and route them into message queues, where they are provided for
clients [VT06]. It is based on reliable transport layer protocols like TCP and
provides a point-to-point communication pattern as well as publish/subscribe on
messages queues for clients. Furthermore, it provides message delivery guarantees
for message transfer, i.e. at-most-once, at-least-once and exactly-once, that are
similar to MQTTs QoS as described in Section 2.6.

• CoAP: The Constrained Application Protocol2 (CoAP) is a lightweight data
transfer protocol that is designed to operate in constrained network environments
or embedded systems, where code space is limited, processing is crucial or power
consumption limited by battery life [SHB14]. It was presented by Bromann et al.
in [BCS12] and has similarities to a lightweight version of HTTP. It is based on the
REST (Representational State Transfer) architectural style and URIs are used to
identify resources. Compared to HTTP, it uses UDP instead of TCP to reduce its
complexity and defines a very simple message layer for retransmitting lost packets.
Through proxies, CoAP can interact with HTTP, based on the REST architectural
style. It provides some publish/subscribe functionality on top of the REST model
by specifying an Observe option within a GET request. If the server accepts this
option, the client will get the requested resource and it will be asynchronously
notified with further updates, when the resource changes.
A comparison and performance evaluation of MQTT and CoAP was done by
Thangavel et al. in [TMV+14].

• MQTT: The Message Queuing Telemetry Transport protocol3 (MQTT) is a
lightweight publish-subscribe messaging protocol, developed by OASIS [MQT15].
It gained high poularity in IoT, since it is very light and easy to use. The current
version is 5.0 [MQT19]. Projects like the Facebook Messenger [Zha11] as well
as many open source projects are based on it, as stated in [LKHJ13]. The data
transfer is based on TCP and it uses a topic-based subscription language with

1http://www.amqp.org
2http://coap.technology/
3http://mqtt.org

11

http://www.amqp.org
http://coap.technology/
http://mqtt.org

2. Background

wildcards filters. Furthermore, it defines three QoS for subscriptions (message
delivery guarantees). More details on message delivery guarantees are discussed in
Section 2.6. The MQTT protocol by itself does not support distributed networks
or client mobility features.

– MQTT-SN: MQTT-SN (formerly known as MQTT-S) is an extension of
MQTT to provide functionalities that are more specific for Wireless Sensor
Networks (WSNs) as described in [HTSC07]. It consists of clients that work
within the wireless network and (transparent or aggregating) gateways that
translates between MQTT and MQTT-SN.

• STOMP: The Simple (or Streaming) Text Oriented Message Protocol4 (STOMP)
is a simple publish-subscribe protocol that defines a text based wire-format for
messages. The encoding for message bodies in STOMP is by default UTF-8, but
it also supports the specification of alternative encodings. It does not support
message delivery guarantees by default, but as stated in the specification [STO],
STOMP servers may support additional server specific headers to customize the
delivery semantics of a subscription.

• XMPP: The Extensible Messaging and Presence Protocol5 (XMPP) is a set of
open technologies upon XML data. The protocol messages between entities are
defined in XML format and its applications include instant messaging, voice and
audio calls and collaboration. Furthermore, it supports content syndication and
generalized routing. A PubSub6 extension of the protocol provides support for
generic publish-subscribe functionality, adhered from the classic Observer design
pattern.

• ZMTP: The ZeroMQ Message Transport Protocol7 (ZMTP) is a transport layer
protocol for exchanging messages between two peers over a connected transport
layer such as TCP. It supports different communication patterns like Request-Reply,
Publish-Subscribe, Pipeline (Push–pull) and the Exclusive Pair Pattern. It targets
distributed and concurrent applications [Zer].

Since we focus on the IoT field and want to discuss message delivery guarantees, we use
MQTT as our primary communication protocol and as a base for our remaining work.
Many concepts are not exclusive to MQTT, but rather can be generalized and used in
other protocols as well. We use MQTT version 3.1.1, since this was the standard at the
time, we started working and refer it as MQTT v3. Nevertheless, we are discuss relevant
new features of the current version 5.0 in this work for future work as well.

4http://stomp.github.io
5https://xmpp.org/
6https://xmpp.org/extensions/xep-0060.html
7http://zeromq.org

12

http://stomp.github.io
https://xmpp.org/
https://xmpp.org/extensions/xep-0060.html
http://zeromq.org

2.4. Broker Systems

2.4 Broker Systems

The MQTT protocol is implemented by various broker implementations. Since the MQTT
protocol itself does not support client mobility between brokers, this feature has to be
provided by the specific broker implementations itself.

Some broker systems that support the MQTT protocol are briefly describe as follows:

• EMQ8 (Erlang MQTT Broker) is a distributed, massively scalable, highly extensible
MQTT message broker written in Erlang/OTP. It implements MQTT v3.1 and
v3.1.1 and and supports MQTT-SN, CoAP, WebSocket, STOMP and SockJS. It
also supports Local Subscription (every subscriber gets the a message) and shared
subscription (just one of multiple subscribers gets the message). It can be deployed
in a clustered setting or as a distributed node setup. In order to support client
mobility, nodes can transfer the client state from one node to another, assuring all
QoS 1 and QoS 2 messages are always sent to the client [EMQ17].

• HiveMQ9 is a cloud-based messaging system with MQTT for the fast, efficient
and reliable movement of data to and from connected IoT devices. It supports v3.x
and v5 and provides a distributed and clusted architecture, as well as the concept
of shared subscriptions along multiple clients with load balancing approaches10.

• JoramMQ11 is a open source messaging provider that provides an MQTT server
supporting v3.1 and v3.1.1 as a plugin12. It has an agent-based distributed archi-
tecture and supports clustered and distributed architectures as well as message
bridging to other brokers in centralized and decentralized architectures [Jor14].

• Moquette13 is a lightweight MQTT broker in the JVM that it designed for IoT.
It uses Netty as the NIO framework which handles TCP connections and message
exchange and supports MQTTs QoS 0-2. It is written in Java and open source14.
It is supposed as a centred broker system and does not support a broker network
setup by default.

• Mosca15 is a very minimal MQTT broker system as a Node.js module that supports
v3.1 and 3.1.1. It is limited to QoS 0 and QoS 1 and does not support QoS 2. It
further does not support broker network setup, but has an event system that gets
triggered, when clients disconnect or reconnect in order to forward missed messages
[Col14].

8http://emqtt.io/
9https://www.hivemq.com

10https://www.hivemq.com/features/
11http://www.scalagent.com/en/jorammq-33/products/overview
12http://www.scalagent.com/en/jorammq-33/technology-36/mqtt-protocol
13http://moquette.io/
14https://github.com/andsel/moquette
15http://www.mosca.io/

13

http://emqtt.io/
https://www.hivemq.com
https://www.hivemq.com/features/
http://www.scalagent.com/en/jorammq-33/products/overview
http://www.scalagent.com/en/jorammq-33/technology-36/mqtt-protocol
http://moquette.io/
https://github.com/andsel/moquette
http://www.mosca.io/

2. Background

• Mosquitto16 is a lightweight MQTT broker system that is suitable for usage on all
devices from low power single board computers to full servers. It is open source and
supports MQTT protocol v3.1 and v3.1.1 and broker bridging to connect multiple
brokers. Client mobility support is not available.

• VerneMQ17 is a Erlang based broker system that was build up to tolerate network
failures and provides fine-grained control over the availability and consistency
behaviour. It provides a dynamic cluster architecture [Ver18] and supports migrating
clients on leaving nodes, by reconnecting its active clients and transferring its queues
to another node.

• WSO2 Message Broker18 is a lightweight, open source, distributed message-
brokering server that supports AMQP and MQTT protocols. It also provides
clustering of multiple broker systems with cluster coordination through a RDBMS
(Rational Database Management System) or a hazelcast engine and to persist
messages along multiple brokers. To do this, it is using distributed transactions
that are based on Java Transaction API and organized by a transaction manager.

We could not determine that any of these brokers provides special features that enables
client mobility under the concern to make use of the message delivery guarantees that
the subscriber stated for its subscriptions. Therefore, our work provides new scientific
research in order to enhance the client mobility process.

2.5 Quality-of-Service

The Quality-of-Service describes the overall performance of a system. This can be low
latency, high throughput, memory efficiency, persistence, high concurrency, scalability,
reliability, durability, etc. The actual costs to run the system can also be considered
for QoS, as presented with MultiPub by Gascon-Samson et al. in [GSKK17]. Usually,
a system can not just have benefits in all aspects, but has its trade-offs. If one quality
property of a system gets increased, (i.e. low latency), another might suffer (i.e. high
concurrency). In publish/subscribe message systems qualities might be message latency
or message throughput and is an important aspects for scalability ([SCA+05], [AR02],
[KKY+10], [YKK+09]). Behnel, Ludger and Gero provide in [SGGK14] a broad overview
of relevant Quality-of-Service metrics on publish/subscribe systems. Quality-of-Service
in wide scale publish–subscribe systems are discussed by Bellavista, Corradi and Reale
in [BMCR14].

We want to point out, that “QoS” in our work specifically refers to the message delivery
guarantees of MQTT subscriptions (Section 2.6) and does not refer to other Quality-of-
Service criteria.

16https://mosquitto.org/
17https://vernemq.com/
18https://wso2.com/products/message-broker/

14

https://mosquitto.org/
https://vernemq.com/
https://wso2.com/products/message-broker/

2.6. Message Delivery Guarantees

2.6 Message Delivery Guarantees

Protocols like MQTT or AMQP define message delivery guarantees for messages that
get sent between systems. These message delivery guarantees define the communication
pattern between two parties, i.e. acknowledging messages upon arrival.

MQTT defines three quality levels of delivery guarantees for its protocol (QoS 0, QoS 1
and QoS 2) and uses different processes and packets in its delivery process to guarantee
them [MQT15]:

• QoS 0 - At most once:
Messages arrive at most once at the target.
MQTT packets: PUBLISH

• QoS 1 - At least once:
Messages arrive at least once at the target.
MQTT packets: PUBLISH, PUBACK

• QoS 2 - Exactly once:
Messages arrive exactly once at the target.
MQTT packets: PUBLISH, PUBREC, PUBREL, PUBCOMP

Based on the QoS level, message loss or message duplicates are valid (see Table 2.1).

Table 2.1: Message loss and duplication validity for each QoS

QoS 0 QoS 1 QoS 2
Message Loss Valid Invalid Invalid
Message Duplication Invalid Valid Invalid

The applications themselves have to choose the right QoS for their services for publications
and subscriptions. A publisher pub or subscriber sub can individually decide which delivery
guarantee they want to have for their deliveries. There are two deliveries where MQTT
QoS are applied:

• publish: The publisher can publish a message and the QoS contract to the broker
qospub describes how the message delivery will be guaranteed.

• forward: The QoS contract qossub describes the requested QoS by the subscriber
from a broker. The broker will try to accomplish this QoS and calculate the actual
QoS qosfor to forward messages for its delivery (see Section 2.6.1).

15

2. Background

Figure 2.1 shows the delivery of a published message from the publisher to a subscriber
through the broker network and the different delivery guarantees for each connection.

Broker

Broker network

SubscriberPublisher
forward

[qos_for]
publish

[qos_pub]

Figure 2.1: Message delivery guarantees through the broker network.

2.6.1 Actual Subscriber QoS

As mentioned, the broker will try to accomplish the requested QoS by the subscriber
qossub, but it may is not possible to do so.

qospub and qossub correlate in the way, that the resulting QoS qosfor of the subscriber
can never higher than the QoS of the publisher qospub.

qosfor ≤ qospub

Hence, the QoS of the subscriber is just the favored (requested) QoS, but not necessarily
the actual QoS for the subscriber. If the QoS of the subscriber is higher, it gets reduced
to the QoS of the published message.

qosfor := min(qospub, qossub)

It is the broker’s task to forward the published message from the publisher with the
correct(ed) QoS to the subscriber. Listing 2.1 shows the actual source code of Moquette
broker. Table 2.2 shows all combinations of QoS for one delivery and its actual QoS for
the subscriber.

1 // Source: io.moquette.spi.impl.ProtocolProcessor
2 static MqttQoS lowerQosToTheSubscriptionDesired(Subscription sub, MqttQoS qos

) {
3 if (qos.value() > sub.getRequestedQos().value()) {
4 qos = sub.getRequestedQos();
5 }
6 return qos;
7 }

Listing 2.1: Moquette broker - Subscriber QoS calculation

16

2.7. Client Migration Types

Table 2.2: Publish-Subscribe QoS combinations

qo
s p

u
b

qo
s s

u
b

qosfor

0 0 0
0 1 0
0 2 0
1 0 0
1 1 1
1 2 1
2 0 0
2 1 1
2 2 2

This has to be taken into account during the for the migration process, even if we just
focus on the subscriber migration. To simplify the migration process for our work, all
messages from the publisher are sent with QoS 2.

qospub := 2

Hence, the forwarding QoS for the subscriber is the same as the QoS of the requested
QoS of the subscription.

qosfor = qossub

Considering QoS 0 and QoS 1 from the publisher is left for future work.

2.7 Client Migration Types

To migrate clients from one broker to another broker in a broker network, we can
distinguish between planned and unplanned migrations:

• planned: We define planned migrations, such that the migration of a client is
performed in order to improve the systems performance while the client is active
and online during the whole migration process.

• unplanned: We define unplanned migrations, such that a client disconnected from
the broker in the network and reconnects to a different broker, such that a migration
process has to be performed in order to continue a valid message exchange.

In our work, we focus on planned migrations and assume that the client is online during
the migration process.

17

2. Background

2.8 Migration Communication Patterns

To initialize the migration process, different options are possible on how the parties
interconnect. The Coordinator can trigger Source Broker, the Target Broker or the Client
at first and these parties themselves can connect to one of the other parties to create a
fully interconnected state for our solution approach. Different communication patterns
to establish the connection between all systems are shown in Figure 2.2.

For our work, we wanted to have a very minimal impact on the Client and have the main
coordination effort for the migration process on the brokers side. Therefore, we chose
to implement the option in which the Coordinator tells the Source Broker to start the
migration and the Target Broker connects to the Clients19 (Figure 2.2a). In this case, the
broker network itself is in control of all migration processes and therefore can coordinate
the migrations.

19By default, MQTT only allows the initiation of a connection from a client to the broker with a
CONNECT packet. To initiate a connection from the broker to the client, we extended the communication
process and give the broker the possibility to send a MIGTO packet to a client such that the client
establishes a connection with the broker.

18

2.8. Migration Communication Patterns

distributed broker network

Coordinator

Client

Source Broker Target Broker

4. establish connection

3. migrate to me

2. migrate init

1. trigger migration

(a) Source Broker → Target Broker → Client

distributed broker network

Coordinator

Client

Source Broker Target Broker

3. establish connection
2. migrate to
 Target Broker

4. migrate init

1. trigger migration

(b) Source Broker → Client → Target Broker

distributed broker network

Coordinator

Client

Source Broker Target Broker

4. establish connection
3. migrate to
 Target Broker

2. migrate init

1. trigger migration

(c) Target Broker → Source Broker → Client

distributed broker network

Coordinator

Client

Source Broker Target Broker

3. establish connection

2. migrate to me

4. migrate init

1. trigger migration

(d) Target Broker → Client → Source Broker

distributed broker network

Coordinator

Client

Source Broker Target Broker

1. trigger migration

2. establish connection
3. migrate to
 Target Broker

4. migrate init

(e) Client → Source Broker → Target Broker

distributed broker network

Coordinator

Client

Source Broker Target Broker

2. establish connection

3. migrate to you

4. migrate init

1. trigger migration

(f) Client → Target Broker → Source Broker

Figure 2.2: Migration Communication Patterns

19

CHAPTER 3
Related Work

Muthusamy et al. describe in [MJ10] some strategies for subscriber mobility that are
briefly summarized in the following. Even tough these strategies assume the Client will
be disconnected for some time, as in unplanned migrations, they still can be applied to
planned migrations as well. Furthermore, these strategies assume, that when a client
disconnects from the Source Broker, that the Source Broker starts to store messages that
the client should have received locally. In the simple case where the client reconnects to
the Source Broker again, these messages are simply replayed. In cases where the client
reconnects to some other broker (referred to as Target Broker) more advanced steps are
necessary.

• Standard Algorithm: This algorithm was proposed by Cugola et a. in Cugola
et al. [CDF01]. On reconnect, the Client informs the Target Broker that it was
previously connected to a specific Source Broker. The Target Broker communicates
with Source Broker to get the associated subscriptions of the Client. The Target
Broker subscribes the Client to these subscriptions and tells the Source Broker to
unsubscribe from the Client. New messages on the Target Broker are stored in a
local queue in the meanwhile. The Source Broker forwards its stored messages to
the Target Broker and together with the locally stored messages, the Target Broker
forwards the messages to the Client while removing duplicates.

• Prefetching Algorithm: With prefetching, the Source Broker tries to predict the
Target Broker while the client is disconnected and transfers the Clients’ subscriptions
and stored messages to a potential Target Broker. On reconnection of the Client
to a successful predicted Target Broker, the Standard algorithm is used. Since
subscriptions and messages already have been exchanged, only updates to it have
to be transferred from the Source Broker to the Target Broker.

21

3. Related Work

• Logging Algorithm: Every broker keeps a local store of recently processed
messages. On reconnection of a Client, the Source Broker tells the Target Broker
its stored message ids, the Target Broker matches these sets and just requests
missing messages from the Source Broker. This algorithm requires that messages
system-wide unique message ids.

• Home-Broker Algorithm: Every client has a Home Broker assigned. Upon
reconnection the Client physically connects to some Target Broker, but logically
to its Home Broker, who know the subscriptions of the Client. The Home Broker
receives messages through the regular multicast mechanism and forwards messages
to the Client using the unicast mechanism.

• Subscriptions-On-Device: The subscriptions are stored on the Client and it can
transfer these information upon reconnected to the Target Broker. Therefore, it
does not need to be requested from the Source Broker. Besides this, the process
from the Standard Algorithm is performed.

Our solution approach is similar to the Standard Algorithm with the following distinctions.
Instead of unplanned migrations, we aim for planned migrations. We put our focus
on the message delivery process for the Client and try to minimize the involvement
and side-effects, like message delay through the migration process, of the Client. The
associated subscriptions are sent from the Source Broker to the Target Broker and the
Client is only involved to establish a connection with the Target Broker. Instead of just
one broker sending messages to the Client, our solution approach involves both brokers
sending messages at the same time to minimize the message delay for the Client while
still ensuring the message delivery guarantees. Therefore, no message exchange between
brokers is necessary. In contrast to the Standard Algorithm, not all messages are stored
on the Source Broker. Just messages that are part of a QoS 2 subscription are stored and
other messages are either sent (QoS 1) or get discarded (QoS 0) immediately. Methods
like Prefetching and Logging as shown for the Standard Algorithm might also be applied
to our solution approach to improve the migration process. However, this is not part of
this work and left for future work.

Caporuscio, Carzaniga and Wolf describe in [CCW03] the basic design of mobility services
and present their evaluation for multiple publish-subscribe systems that support mobility
features.

An important application, where client migrations are relevant, is load balancing. This
describes the process to balance the amount of clients between brokers within a broker
network in order increase the systems performance, like in Dynamoth [GsGKK15]. Most
of the time, we are interested to have a load balancing process in place, that allow clients
to be migrated during runtime, in comparison to systems like Meghdoot in [TSZ11],
where the load balancing process is only invoked when a new client enters the system.

King, Cheung and Jacobsen present in [KCJ06] such a load balancing process for pub-
lish/subscribe systems with content-based subscriptions. Their approach is build on

22

Padres Efficient Event Routing (PEER) architecture and one part of their work includes
a load balancing framework that lets subscribers migrate from a offloading broker (Source
Broker) to the onloading broker (Target Broker). Therefore, they introduce a mediator
to coordinate the migration. They also strictly focus on subscriber migration. For their
migration process they use a Mediation Protocol, that has a similar function to our
Migration Protocol. Multiple load balancing sessions (migration processes) can occur
at the same time, but a broker can at most be involved in one. This is different to our
approach, where multiple migrations can happen at the same time on a broker. The
only restriction our solution has, is that a client can only be involved in one migration
process at a time. Their approach lets a batch of subscribers be migrated at once, as
compared to our process, where each client is migrated individually. Their goal is to
migrate a subscriber to a new broker “in the most efficient and timely manner with
minimal delivery loss” and focus on a “end-user transparency and best-effort delivery”.
Therefore, it tries to minimize the message loss, but does not guarantee that there is
not any. In fact, it only checks for message duplications and ignores possible message
loss. It is further not aware of any QoS for subscriptions and treats all messages and
subscriptions the same. The migration initialization and control design (see Section 2.8)
also differs from ours, since the Source Broker contacts the Client that contacts the
Target Broker and the control and message check is on “a thin software layer on the client
side that hides the intricate details of load balancing from the end-user application”, as
where our work proposes it on the brokers side. Similarly to our work, the client also
has to handle multiple connections to brokers. The migration process completes in their
work, when the Client disconnects from the Source Broker, as it completes in our work,
when the Source Broker disconnects from the Client.

Mobility of clients influences also the QoS criteria, like latency or through-put, of the
whole system and therefore registered clients also have to move from one broker to
another in order to increase the systems performance again.

The work of Rausch in [RND18] describes a whole system with a QoS (i.e. latency) aware
mechanism to migrate clients at the broker-network-edge to increase systems performance
and its QoS1. As in our work, it uses MQTT as a publish-subscribe communication
protocol and assumes client mobility withing a broker network. It supplies clients with
gateways to perform and hide the client migration. Similar to our solution, a client
can hold multiple connections to brokers. For each client-broker connection, it holds
two buffers for incoming and outgoing messages. If a client is requested to migrate to
another broker, it creates a second connection to the new broker and disconnects from
the old one. In contrast to our work, the migration process is on the client side within
the gateway. Since messages are not checked, even though, multiple connections are
supported, duplicates or losses of messages are possible during the migration process. As
with our work, it would need a synchronization process to check for losses and duplicates
on the client side in order to fulfill the QoS requirements for MQTT subscriptions.

1QoS of the system, e.g. latency or through-put, is different from the QoS of a MQTT subscription
(QoS 0-2)

23

3. Related Work

Similarly, QoS measurements and optimizations, as shown in the previous example, are
the focus of research in [DDM+09] and [CS05], by dynamically reconfiguring the overlay
network for the brokers to improve the QoS for participants. Hermes in [PB02] also focuses
on QoS-aware systems, by creating an event-based middleware that addresses scalability,
interoperability, reliability, expressiveness and usability of distributed publish/subscribe
systems.

The work of Songlin et al. in [SMGJ09] discusses transactional mobility in distributed
content-based publish/subscribe systems and describes ideas that are similar to our
work. Beside formalizing transactional properties (e.g. atomicity property: “After the
transaction completes, a moving client must be either at its source or target broker, but
not both.”), they also developed a client movement protocol for publish/subscribe client
mobility, formalized and proofed correctness of it. This formalization provides a more
stable system solution and can also be applied to our migration process which is left for
future work. The client movement protocol is based on the three-phase commit (3PC)
distributed transaction protocol in [SS83]. Since it stated that “clients should not miss
any notification while moving”, the transactional and formal properties can not directly
be transferred, since we allow, depending on the QoS of the subscription, losses and
duplicates of messages. In this work, the initialization of the movement protocol starts
with a negotiation-packet to request the migration. Upon this, the Target Broker can
approve or reject the movement. If it approves, the Source Broker stops the Client and
sends queued publications in a state-packet to the Target Broker. The Target Broker then
dispatches them to the Client and merges it with its own state. Finally the Target Broker
sends an ack-packet to the Source Broker, such that it can clean its state. Compared
to our solution, the brokers perform an additional negotiation exchange, as where we
have an optimistic approach and assume that the migration will be accepted by default.
In our solution, when the Target Broker send the migration with a MIGACK packet
and the status code of error, the movement is rejected. Additionally, we also do not
send the publications from one broker to another, but let each broker send messages to a
defined synchronization point in the synchronization process. Other work that includes
transactional approaches are by Vargas et al. in [VPGB] or by Michlmayr and Fenham
in [MF05].

Burcea et al. summarized and analyzed in [BJD+04] different methods (Standard
Algorithm (as in [CDF01]), Prefetching, Logging and Home-Broker) for message synchro-
nization between brokers for mobile clients that disconnect from and reconnect to brokers
in a broker network. In other words, went offline for a period of time and probably
reconnected to another broker. Even though we assume no disconnection of a client
throughout our migration process, the synchronization methods are still useful and have
been considered within our work. Even through, none of these methods directly makes
use of the QoS characteristics as we do in our work, these methods can still be applied
to extend our solution approach.

Cugola et al. present in [CDF01] the JEDI event- based infrastructure. It supports some
offline-features to disconnect a client with moveOut and to reconnect a client again with

24

moveIn at a later point in time. In the meanwhile, messages get stored, such that the
Client will get all messages on reconnection again. This features allow mobility for clients
by using moveOut on the Source Broker, passing the active objects that represent a Client
from Source Broker to the Target Broker and using moveIn on the Target Broker to
reconnect the Client. Nevertheless, this was not fully examined in this work and QoS for
subscriptions have not been mentioned.

25

CHAPTER 4
Solution Approach

In this chapter, we present our solution approach to enable mobility and message
delivery guarantees in distributed MQTT networks and describes the migration process.
First, we preset the fundamental idea of our solution approach (Section 4.1) and state
our assumption and what impact they have (Section 4.2). We define three migration
phases and describe the tasks that need to be performed during each phase on the
systems (Section 4.3). In order to coordinate the migration process, we introduce
different identifiers for messages and systems (Section 4.4), present the migration protocol
(Section 4.6), that is used to communicate between individual systems and visualize the
migration sequence in (Section 4.7). Finally, we discuss the different synchronization
states (Section 4.8) and describe in and visualize in detail the synchronization process
between the Source Broker and the Target Broker (Section 4.9).

4.1 Foundation

When considering the message stream for a Client through the migration phases, there
are three possible scenarios the resulting message stream might look like1:

• Scenario 1: The Client receives every message exactly once (Figure 4.1a).

• Scenario 2: The Client does not receive some messages (Figure 4.1b).

• Scenario 3: The Client receives some messages multiple times (Figure 4.1c).

1The figures visualize the streams of messages of a Source Broker and a Target Broker to a Client.
The numbers in the scenario represent the unique message ids of the messages that are received by the
Client.

27

4. Solution Approach

(a) Scenario 1: every message exactly once

(b) Scenario 2: missing messages

(c) Scenario 3: duplicate messages

Figure 4.1: Message Scenarios

The combined message stream of the Source Broker and the Target Broker represent
the message stream that a mobile client receives during the migration process from the
Source Broker to the Target Broker. This message stream must fulfill the defined message
delivery guarantee (QoS 0-2) before, during and after the migration in order to be valid.
Table 4.1 shows the validity of the three message scenarios regarding to the different QoS.

Table 4.1: Scenario validity for different QoS

Scenario QoS 0 QoS 1 QoS 2
Scenario 1 Valid 3 Valid 3 Valid 3

Scenario 2 Valid 3 Invalid 7 Invalid 7
(no losses expected) (no losses expected)

Scenario 3 Invalid 7 Valid 3 Invalid 7
(no duplicates expected) (no duplicates expected)

We can see, that Scenario 1 is valid with all QoS, Scenario 2 is invalid for QoS 1 and
QoS 2, but valid for QoS 0 and therefore messages in QoS 0 can be lost during the
migration process. Scenario 3 is invalid for QoS 02 and QoS 2, but valid for QoS 1 and
therefore messages in QoS 1 can arrive multiple times during the migration process.

These specific characteristics in the message delivery guarantees for subscriptions are the
foundation of our work.

2In a MQTT setup with a single broker no duplicates can happen, since the broker will just fire-
and-forget. Nevertheless, in a broker network with multiple brokers, these is is not true anymore, since
multiple brokers could send the same message. The MQTTs v3 specification is not specific enough if we
consider a MQTT broker network and leaves room for interpretation if duplicates are allowed for QoS 0.
In our work, we expect no duplicates even with multiple brokers. Nevertheless, our solution approach can
easily be relaxed to allow duplicates for QoS 0 as well.

28

4.2. Assumptions

4.2 Assumptions

We made the following assumptions for our solution:

• The Client is online during the whole migration process, so that we are able
to perform a planned migration and to sent messages from both brokers at the
same time. As planned migrations can be extended with methods for unplanned
migrations when the Client disconnects, this assumption has as a minor impact.

• Messages have a total ordering for a single topic, so that we can compare messages
with each other and ensure the message delivery guarantees for subscriptions. In our
approach, we achieve this by serving a topic by just one publisher, so that we get a
message sequence ordering for each subscription of the Client (see Section 4.4.3).
Usually, multiple publishers can publish messages to the same topic. Therefore, this
assumption has a decent impact and solving this limitation is left for future work.
Nevertheless, a publisher can publish to multiple topics, since the synchronization
process can handle gaps in the message stream.

• Messages arrive at the brokers in order, so that we can ensure the message delivery
guarantees during the migration process. This has a minor impact, since we can
use methods like windowing to achieve this (see Section 4.4.3).

• Publishers publishes all messages with QoS 2, so that the requested QoS from the
Client is actually used. This assumption has a minor impact, but needs further
investigations as stated in the referred section (see Section 2.6.1).

4.3 Migration Phases

We split the whole migration process into three phases: pre-migration phase, migration
phase and post-migration phase. In the pre- and post-migration phase, only one connection
between the Client and the broker in the network is established and the publish-subscribe
systems works normally. During the migration process, in the migration phase, the Client
has multiple connections to brokers in the network. One connection to the Source Broker
and one connection to the Target Broker. Illustrations of the three phases for the parties
are shown in Figure 4.2.

Within the different phases, the broker systems are performing different tasks.

The Source Broker has to perform the following tasks in the pre-migration phase:

• Check if a Client with the specified client id exists

• Collect the subscriptions of the Client

29

4. Solution Approach

• Retrieve current state of the broker

The Target Broker has to perform the following tasks in the migration phase:

• Register Client internally repository

• Connect to the Client

• Subscribe the Client to its subscriptions

• Synchronize with Source Broker

The Source Broker has to perform the following tasks in the post-migration phase:

• Release stored messages for the migration

• Disconnect from the Client

• Remove the Client from internal repository

distributed broker network

Client

Source Broker Target Broker

 established
 connection

(a) Pre-migration phase

distributed broker network

Client

Source Broker Target Broker

 established
 connection

migration

 established
 connection

(b) Migration phase

distributed broker network

Client

Source Broker Target Broker

 established
 connection

(c) Post-migration phase

Figure 4.2: Migration Phases

30

4.4. Identifiers

4.4 Identifiers

In order to coordinate the migration process, we reuse or introduce different identifiers
for messages and systems.

4.4.1 Client Id

This id identifies a client (subscriber and/or publisher) in the network. The id of a
client must be unique in the whole network to identify clients. This id is used by the
Coordinator to trigger a migration for a specific Client and brokers use this id to check if
they already serve a specific Client.

4.4.2 Message Id

To guarantee that messages are only delivered or received once, a message must be
identifiable. For MQTT QoS 1 and QoS 2, the sender of a PUBLISH packet generates
a unique identify for each packet to coordinate the delivery, called Packet Identifier or
Message Id. MQTT v3 uses a 16-bit long numeric value. If the delivery is complete, the
message id can be reused. Therefore, only limited amount of available message ids is
necessary.

As described in Section 2.6, a broker system serves two roles: receiver and forwarder.
It receives published messages from publishers and forwards/publishes messages to
subscribers again. It is important to note that the message is always generated by the
sender, hence, the message id between the publisher to the broker and between the broker
and the subscriber is usually different (by chance, it could occur that they are the same,
but they are not related). Figure 4.3 shows the individual message id ranges colored in
red.

Therefore, two different publishers could publish a message with the same message
id. If the broker or the broker network would use the message id to forward them to
subscribers, subscribers could get two messages with the same message id, and therefore
not distinguish two different deliveries anymore. For QoS 0 and QoS 2, this would violate
the QoS guarantee, since a message would appear as a duplicate. Therefore, the broker
generates its own message id to forward messages to the subscriber.

4.4.3 Global Message Id

As stated the previous section, the message id provided by MQTT protocol is only unique
per client per delivery and therefore, the message id from a received message can not be
used to identify a message in a broker network. Therefore we define a Global Message Id.
The global message id must be unique for every message in the whole broker network.

31

4. Solution Approach

Global Message Id rangeMessage Id range

Subscriber C

Broker B

Broker A

Broker network

Subscriber B

Publisher B

Subscriber A

Publisher A

Figure 4.3: Message Id (red) and Global Message Id (orange) ranges.

If the message is routed through broker network, the message id might change, but the
global message id is the same. Figure 4.3 shows the global message id range colored in
orange.

Since we assume that messages are ordered, the global message id of messages must
be comparable. We achieve this, by using an increasing sequence number, that can be
compared. Since every client has a unique client id, all published messages on a publisher
just need to concatenate a local unique sequence number to get a global unique message
identifier. This approach is also used for Logging as mentioned in [MJ10].

The global message id is generated by:

globalMessageId = clientId + sequenceNumber

The global message id will be sent as part of the header information of the published
message. As a separator to distinguish the client id from the comparable sequence, we use
a dash “-”. For further details, how additional meta information is sent, see Section 4.5.

If we want consider client failures and restarts or that the sequence number cannot
be stored, we might prefix, e.g., the startup time of the client as well to get a unique
number.3

In order to get an ordered message stream, windowing techniques, as presented in [GÖ05],
can be used, such that, within a specified time span, messages are checked, compared and
reordered. All messages that arrived too late and do not fit into the ordered stream will

3This is not considered in our work.

32

4.5. Enhanced MQTT PUBLISH Packet

automatically be discarded, such that the final outcome is always an ordered message
stream. Nevertheless, windowing techniques are not part of our work. We assume that
messages that arrive at the broker are already in order and that messages will get ordered
on the subscriber.

4.4.4 Migration Id

Every migration process is identified by a unique identifier, the Migration Id. Brokers use
the migration id to assign individual packets from the migration protocol to a migration
process for a specific client. The migration id is part of every migration protocol packet.

In our work we use an UUID for the migration id as a unique identifier. The migration
id is generated during the migration initialization on the Source Broker.

4.5 Enhanced MQTT PUBLISH Packet

To uniquely identify a message, we need to send additional header information like the
Global Message Id with every MQTT PUBLISH message. Since it is not possible to
send additional meta information in a “header section” of the Publish Message with
MQTT v3 per se [MQT15], we split the payload into a header and body part to send
additional information within the payload, as shown in Figure 4.4. Hence, we reuse
MQTTs processes and its message delivery guarantees that apply to MQTT messages
and can add additional meta information to it. Contrary, if we would wrap the MQTT
PUBLISH packets into another packet that contains additional meta information, we
would lose MQTTs message delivery guarantees and would have to implement a new
communication process. With this approach, MQTT v3 can be used as it is to scale
systems.

[Global Message Id]

Payload Body

Payload

Header

MQTT PUBLISH packet

Payload Header

Figure 4.4: Enhanced MQTT PUBLISH packet.

33

4. Solution Approach

MQTT v5 has enhancements for scalability and large scale systems and an extensibility
mechanisms to include user properties in messages [MQT19]. The Global Message Id
could be such a user property and therefore, the message payload of a MQTT PUBLISH
message could just consist of the body part. Hence, an additional header part would not
be necessary anymore.

With MQTT v3 we define the payload for the MQTT PUBLISH packet as follows:

MqttPayload class

Property name Type Description
header MqttPayloadHeader Header part of the published message.
body MqttPayloadBody Body part of the published message.

4.5.1 Payload Header

The header contains additional information for the message. We use it to store the unique
global message id of the message.

MqttPayloadHeader class

Property name Type Description
globalMessageId GlobalMessageId Globally unique message id of the published

message.

4.5.2 Payload Body

The body will contain the actual payload of the MQTT Publish Message.

MqttPayloadBody class

Property name Type Description
payload String Actual payload of the published message.

34

4.6. Migration Protocol

4.6 Migration Protocol

To perform the migration process communication between systems, we introduce the
following migration protocol packets:

Packet name Description
MIGRATE Packet sent from the Source Broker to the Target Broker to initiate

a new migration of a Client.
MIGACK Packet sent from the Target Broker to the Source Broker to ac-

knowledge a migration of a Client.
MIGTO Packet sent from the Target Broker to the Client to indicate that

it should connect to a new broker (Target Broker) in order to get
migrated.

MIGTOACK Packet sent from the Client to the new broker (Target Broker) to
acknowledge a successful connection to the new broker and that it
is ready to be migrated.

MIGSYNC Packet sent from the Target Broker to the Source Broker to in-
dicate that the Target Broker can not fully serve the Client with
all messages and that the Source Broker needs to serve missing
messages.

MIGSYNCACK Packet sent from the Source Broker to the Target Broker to ac-
knowledge that all missing messages were successfully send to the
Client.

35

4. Solution Approach

4.7 Migration Sequence

The sequence of the migration process between the Source Broker, the Target Broker
and the Client to migrate the Client from the Source Broker to the Target Broker is
illustrated in Figure 4.5. The following sections describe the migration process in more
detail.

Migration Process

Initialize
migration

MIGRATE

Initialize
migration

MIGTO

CONNECT

CONACK

MIGTOACK

MIGSYNC

send
missing
messages

MIGSYNCACK

alt

MIGACK [OK]

CleanupDISCONNECT

Cleanup Cleanup

Source Broker, B1

migrate
C to B2

Target Broker, B2

[missing messages]

[no missing messages]

Client, C

Figure 4.5: Sequence diagram of the migration process of Client C from Source Broker
B1 to Target Broker B2

36

4.8. Synchronization State

4.8 Synchronization State

To assure the message delivery guarantees for the Client during the migration process,
the brokers have to synchronize the delivery of their messages for each subscription to
the Client. Depending on the QoS level of a subscription, the Source Broker and the
Target Broker have to exchange state information between each other. Details about the
synchronization process for each state and QoS are described in Section 4.9.

The synchronization state of the received messages of the Target Broker compared to
the Source Broker can be in one of three different states as shown in Figure 4.6 and
Figure 4.7:

• ahead: The Target Broker is ahead of the Source Broker and already got messages,
that the Source Broker did not receive yet. Since the Target Broker is ahead,
some messages have already been processed by the Target Broker. Therefore,
synchronization might be necessary, to request missed messages from the Source
Broker, in order to fulfill the QoS for subscriptions.

• synced: The Target Broker received the same messages as the Source Broker
and therefore is synced with the Source Broker. Therefore, no synchronization is
necessary, since the Target Broker can just continue delivering messages to the
Client where the Source Broker left off.

• behind: The Target Broker is behind the Source Broker and did not yet receive all
messages. No additional synchronization between the brokers is necessary, since the
Target Broker will (soon) get missing messages, that have already been processed
by the Source Broker. The Target Broker might has to skip some message to fulfill
the QoS for a subscription.

t t

ahead

synced

behind

Target BrokerSource Broker

Figure 4.6: Synchronization states between brokers.

37

4. Solution Approach

tt

#18

#17

#16

#15

#14

#13

#12

#16

#15

#14

...

Target Broker

...

Source Broker

tt

#16 #16

#15

#14

#13

#12

#15

#14

#13

#12

...

Target Broker

...

Source Broker

tt

#18

#17

#16

#15

#14

#16

#15

#14

#13

#12

...

Target Broker

...

Source Broker

Figure 4.7: Synchronization state of Target Broker is ’ahead’, ’synced’ or ’behind’.

4.9 Synchronization Process

The actual synchronization process depends on the synchronization state of the broker
and the QoS of the client’s subscription.

{ahead, synced, behind} × {QoS 0, QoS 1, QoS 2}

In the following sections describe the synchronization process for each synchronization
state with each QoS and the interaction for the Source Broker and the Target Broker:

• Target Broker is ahead of the Source Broker with QoS 0, Qos 1 and QoS 2

• Target Broker is synced with the Source Broker with QoS 0, Qos 1 and QoS 2

• Target Broker is behind of the Source Broker with QoS 0, Qos 1 and QoS 2

The legend of the illustrations is shown in Figure 4.8. Each box defines a message. The
gray “sent” box defines a message that was sent to the Client. The dashed “not sent”
box defines a message that is not sent to the Client. The blue “skipped” box defines a
message that was skipped, not stored and not send to the Client. The green “skipped
+ stored” box defines a message that was skipped, stored and not directly send to the
Client. If the background is gray, it was send later within the synchronization process.
The red “last processed” box defines the message that was chosen for the synchronization
process, that will be used to to define the synchronization state. The number in the
boxes describe the sequence number of the global message id.

The current message is referred by msg, with msgid referring to the specific global
message id of the message. A single migration process is referred by mig. The current
state of a migration mig is defined by migstate.

38

4.9. Synchronization Process

skipped skipped + storednot sentsent last processed

Figure 4.8: Legend for synchronization figures

Table 4.2: Migration states.

Migration state Description
INITIALIZED Migration is created.
SYNCING Migration synchronization is in progress.
SYNCED Migration is synchronized.
FINISHED Migration is finished.
ERROR Migration error occurred.

The migration state of the Source Broker is referred by migsource and the migration state
of the Target Broker is referred by migtarget

state . All possible states of a migration migstate

during the migration process are listed in Table 4.2.

A migration mig may consists of multiple subscriptions. A single subscription of a
migration is referred by sub. The last processed message that was send to the Client for
a subscription on the Source Target is defined by subsource

lastP rocId. It is sent to the Target
Broker within the MIGRATE packet. The last processed message for a subscription on
the Target Broker is defined by subtarget

lastP rocId. It is sent to the Source Broker within the
MIGSYNC packet, if synchronization is necessary.

A subscription with a specific QoS q, q = {0, 1, 2}, is referred by subq, e.g. sub0 refers to
a subscriptions with QoS 0. The current state of a subscription sub is defined by substate.

migstate = {INITIALIZED,

SY NCING,

SY NCED,

FINISHED,

ERROR}

substate = {INITIALIZED,

SY NCING,

SY NCING_THIS,

SY NCING_OPPONENT,

SY NCED,

FINISHED,

ERROR}

39

4. Solution Approach

4.9.1 Target Broker is ahead of the Source Broker

In this case, for a specific subscription, the last processed message id on the Source
Broker is smaller than the last processed message id on the Target Broker and therefore
the Target Broker is ahead of the Source Broker:

subsource
lastP rocId < subtarget

lastP rocId

QoS 0

Source Broker: The migration process is initialized, migsource
state := INITIALIZED, and

it sets its migration state immediately to SYNCED, migsource
state := SY NCED, since no

further synchronization will be necessary for QoS 0 on the Source Broker. Messages that
arrive in the meanwhile can be skipped and do not have to be stored, since lost messages
are valid for QoS 0. It sends a MIGRATE packet to the Target Broker.

Target Broker: On receive of the MIGRATE packet, it initializes the migration, migtarget
state :=

INITIALIZED, connects to the Client. It starts sending messages immediately and
set its migration state to SYNCED, migtarget

state := SY NCED. It finishes its migration
since no further actions are necessary, migtarget

state := FINISHED, and sends a MIGACK
packet to the Source Broker. Messages that are missed will not been synchronized, since
lost messages are valid for QoS 0.

Source Broker: On receive of the MIGACK packet, the migration gets finished as well,
migsource

state := FINISHED.

The interaction is visualized in Figure 4.9.

40

4.9. Synchronization Process

#22#19

#18

#17

#16

#15

#14

... ...

#21

#20

#19

#18

#17

...

Target Broker

#16

#15

...

Source Broker

#13

#12

FINISHED
MIGACK

INITIALIZED
SYNCING
SYNCED

FINISHED

INITIALIZED
SYNCED MIGRATE(#13)

(a) Sequence

Target Broker:

Source Broker:

#20

#20#19

#16#15#14#13 ...

...

...

...

#19

#11

#18#11 #17#12

#18#17#16#15#14#13#12

(b) Stream

Figure 4.9: Target Broker is ahead of the Source Broker - QoS 0

41

4. Solution Approach

QoS 1

Source Broker: The migration process is initialized, migsource
state := INITIALIZED, and

since it is valid with QoS 1 to have duplicate messages, it will continue sending messages
and sends a MIGRATE packet to the Target Broker.

Target Broker: On receive of the MIGRATE packet, it initializes the migration, migtarget
state :=

INITIALIZED, connects to the Client and starts syncing, migtarget
state := SY NCING.

Since it is ahead, it sends a MIGSYNC packet with its last processed message id to
the Source Broker to request the missing messages. Furthermore, it starts sending new
messages immediately.

Source Broker: On receive of the MIGSYNC packet, it sets its migration state to SYNC-
ING, migsource

state := SY NCING, and it waits until the last processed message id of from
the Target Broker is processed. When it is synced it sets its migration state to SYNCED,
migsource

state := SY NCED, and sends a MIGSYNCACK packet to the Target Broker, to
acknowledge that messages up to its requested id are sent to the Client.

Target Broker: On receive of the MIGSYNCACK packet, it sets its migration state to
SYNCED, migtarget

state := SY NCED, finishes its migration, migtarget
state := FINISHED,

and the MIGACK packet is send.

Source Broker: On receive of the MIGACK packet, the migration gets finished as well,
migsource

state := FINISHED, and it stops sending messages to the Client.

The interaction is visualized in Figure 4.10.

42

4.9. Synchronization Process

...

#26

#25

#24

#23

#22

#21

#20

#19

#18

#17

#16

#15

#14

...

#21

#20

#19

#22

#18

...

Target Broker

#17

...

Source Broker

#13

#12

INITIALIZED
SYNCING

SYNCED
FINISHED

FINISHED

SYNCED

SYNCING

MIGSYNCACK

MIGSYNC (#18)

MIGACK

INITIALIZED MIGRATE(#13)

(a) Sequence

Target Broker:

Source Broker:

#24 #25

#24 #25

...

...

#21 #22 #23

#21 #22 #23

#20

#20#19

#16#15#14#13...

...

#19#18#17#12

#18#17#16#15#14#13#12

(b) Stream

Figure 4.10: Target Broker is ahead of the Source Broker - QoS 1

43

4. Solution Approach

QoS 2

Source Broker: The migration process is initialized, migsource
state := INITIALIZED, and

it will stop sending further messages to the Client. The unsent messages are stored in
the migration message store, if a rollback is necessary. A MIGRATE packet is sent to
the Target Broker.

Target Broker: On receive of the MIGRATE packet, it initializes the migration, migtarget
state :=

INITIALIZED, connects to the Client and starts syncing, migtarget
state := SY NCING.

Since it is ahead, it sends a MIGSYNC packet with its last processed message id to
the Source Broker, to request the missing messages. Furthermore, it starts sending new
messages immediately.

Source Broker: On receive of the MIGSYNC packet, it sets its migration state to SYNC-
ING, migsource

state := SY NCING, it sends missed messages from the store and if the id is
still ahead, it waits until the last processed message id of from the Target Broker is pro-
cessed. When it is synced it sets its migration state to SYNCED, migsource

state := SY NCED,
and sends a MIGSYNCACK packet to the Target Broker, to acknowledge that messages
up to its requested id are sent to the Client.

Target Broker: On receive of the MIGSYNCACK packet, it sets its migration state to
SYNCED, migtarget

state := SY NCED. It finishes its migration, migtarget
state := FINISHED,

and the MIGACK packet is send.

Source Broker: On receive of the MIGACK packet, the migration gets finished as well,
migsource

state := FINISHED, the migration message store gets cleared and no further
messages are stored.

The interaction is visualized in Figure 4.11.

44

4.9. Synchronization Process

...

#26

#25

#24

#23

#22

#21

#20

#19

#18

#17

#16

#15

#14

...

#21

#20

#19

#22

#18

...

Target Broker

#17

...

Source Broker

#13

#12

INITIALIZED
SYNCING

SYNCED
FINISHED

FINISHED

SYNCED

SYNCING

MIGSYNCACK

MIGSYNC (#18)

MIGACK

INITIALIZED MIGRATE(#13)

(a) Sequence

Target Broker:

Source Broker:

#24 #25

#24 #25

...

...

#21 #22 #23

#21 #22 #23

#20

#20#19

#16#15#14#13...

...

#19#18#17#12

#18#17#16#15#14#13#12

(b) Stream

Figure 4.11: Target Broker is ahead of the Source Broker - QoS 2

45

4. Solution Approach

4.9.2 Target Broker is synced with the Source Broker

In this case, for a specific subscription, the last processed message id on the Source
Broker is equal to the last processed message id on the Target Broker and therefore the
Target Broker is synced with the Source Broker:

subsource
lastP rocId = subtarget

lastP rocId

QoS 0

Source Broker: The migration process is initialized, migsource
state := INITIALIZED, and

it sets its migration state immediately to SYNCED, migsource
state := SY NCED, since no

further synchronization will be necessary for QoS 0 on the Source Broker. Messages that
arrive in the meanwhile can be skipped and do not have to be stored, since lost messages
are valid for QoS 0. A MIGRATE packet is sent to the Target Broker.

Target Broker: On receive of the MIGRATE packet, it initializes the migration, migtarget
state :=

INITIALIZED, connects to the Client and starts syncing, migtarget
state := SY NCING.

It immediately sets its migration state to SYNCED, migtarget
state := SY NCED, and starts

sending messages immediately. It finishes its migration since no further actions are
necessary, migtarget

state := FINISHED, and sends the MIGACK packet to the Source
Broker.

Source Broker: On receive of the MIGACK packet, the migration gets finished as well,
migsource

state := FINISHED.

The interaction is visualized in Figure 4.12.

46

4.9. Synchronization Process

#18

#11

#19

#18

#17

#16

#15

#14

...

#17

#16

#15

#14

...

Target Broker

#13

#12

...

...

Source Broker

#13

#12

FINISHED
MIGACK

INITIALIZED
SYNCING
SYNCED

FINISHED

MIGRATE(#13)
INITIALIZED
SYNCED

(a) Sequence

Target Broker:

Source Broker:

...

...

...

...

#19

#11

#18#11 #17#16#15#14#13#12

#19#18#17#16#15#14#13#12

(b) Stream

Figure 4.12: Target Broker is synced with the Source Broker - QoS 0

47

4. Solution Approach

QoS 1

Source Broker: The migration process is initialized, migsource
state := INITIALIZED, and

since it is valid with QoS 1 to have duplicate messages, it will continue sending messages.
A MIGRATE packet is sent to the Target Broker.

Target Broker: On receive of the MIGRATE packet, it initializes the migration, migtarget
state :=

INITIALIZED, connects to the Client and starts syncing, migtarget
state := SY NCING.

It immediately sets its migration state to SYNCED, migtarget
state := SY NCED, and starts

sending messages immediately. It finishes its migration since no further actions are
necessary, migtarget

state := FINISHED, and sends the MIGACK packet to the Source
Broker.

Source Broker: On receive of the MIGACK packet, the migration state is set to SYNCED,
migsource

state := SY NCED. It gets finished as well, migsource
state := FINISHED, and it stops

sending messages to the Client.

The interaction is visualized in Figure 4.13.

48

4.9. Synchronization Process

#18

#17

#16

#15

#14

...

#16

#15

#14

...

Target Broker

#13

#12

#11

...

...

Source Broker

#13

#12

INITIALIZED
SYNCING
SYNCED

FINISHED

SYNCED
FINISHED

MIGACK

INITIALIZED MIGRATE(#13)

(a) Sequence

Target Broker:

Source Broker:

...

...

...

...

#19

#11

#18#11 #17#16#15#14#13#12

#19#18#17#16#15#14#13#12

(b) Stream

Figure 4.13: Target Broker is synced with the Source Broker - QoS 1

49

4. Solution Approach

QoS 2

Source Broker: The migration process is initialized, migsource
state := INITIALIZED, and

it will stop sending further messages to the Client. The unsent messages are stored in
the migration message store, if a rollback is necessary. A MIGRATE packet is sent to
the Target Broker.

Target Broker: On receive of the MIGRATE packet, it initializes the migration, migtarget
state :=

INITIALIZED, connects to the Client and starts syncing, migtarget
state := SY NCING.

It immediately sets its migration state to SYNCED, migtarget
state := SY NCED, and starts

sending messages immediately. It finishes its migration since no further actions are
necessary, migtarget

state := FINISHED, and sends the MIGACK packet to the Source
Broker.

Source Broker: On receive of the MIGACK packet, the migration is set to SYNCED,
migsource

state := SY NCED. It gets finished as well, migsource
state := FINISHED, the migra-

tion message store gets cleared and no further messages are stored.

The interaction is visualized in Figure 4.14.

50

4.9. Synchronization Process

#18

#17

#16

#15

#14

...

#16

#15

#14

...

Target Broker

#13

#12

#11

...

...

Source Broker

#13

#12

INITIALIZED
SYNCING
SYNCED

FINISHED

SYNCED
FINISHED

MIGACK

INITIALIZED MIGRATE(#13)

(a) Sequence

Target Broker:

Source Broker:

...

...

...

...

#19

#11

#18#11 #17#16#15#14#13#12

#19#18#17#16#15#14#13#12

(b) Stream

Figure 4.14: Target Broker is synced with the Source Broker - QoS 2

51

4. Solution Approach

4.9.3 Target Broker is behind of the Source Broker

In this case, for a specific subscription, the last processed message id on the Source
Broker is greater than the last processed message id on the Target Broker and therefore
the Target Broker is behind of the Source Broker:

subsource
lastP rocId > subtarget

lastP rocId

QoS 0

Source Broker: The migration process is initialized, migsource
state := INITIALIZED. It

sets its migration state immediately to SYNCED, migsource
state := SY NCED, since no

further synchronization will be necessary for QoS 0 on the Source Broker. Messages that
arrive in the meanwhile can be skipped and do not have to be stored, since lost messages
are valid for QoS 0. A MIGRATE packet is sent to the Target Broker.

Target Broker: On receive of the MIGRATE packet, it initializes the migration, migtarget
state :=

INITIALIZED, connects to the Client and starts syncing, migtarget
state := SY NCING.

It waits until the last processed message id from the Source Broker has passed and skips
all messages until then. After that, it starts sending messages, set its migration state to
SYNCED, migtarget

state := SY NCED. It finishes its migration, migtarget
state := FINISHED,

and sends the MIGACK packet to the Source Broker.

Source Broker: On receive of the MIGACK packet, the migration gets finished as well,
migsource

state := FINISHED.

The interaction is visualized in Figure 4.15.

52

4.9. Synchronization Process

#16

#15

#14

...

...

#13

#12

#11

#10

...

Target Broker

#9

#8

...

Source Broker

#21

#20

#19

#18

#17

#16

#15

#14

#13

#12

FINISHED

SYNCED
FINISHED

INITIALIZED
SYNCING

MIGRATE(#13)

MIGACK

INITIALIZED
SYNCED

(a) Sequence

#21 ...

...#21

#18#17

#18#17

#20#19

#20#19

Target Broker:

Source Broker:

#9

#9 #10

#10

#14 #16#15#13...

... #11

#11 #12

#16#15#14#13#12

(b) Stream

Figure 4.15: Target Broker is behind of the Source Broker - QoS 0

53

4. Solution Approach

QoS 1

Source Broker: The migration process is initialized, migsource
state := INITIALIZED, and

since it is valid with QoS 1 to have duplicate messages, it will continue sending messages.
A MIGRATE packet is sent to the Target Broker.

Target Broker: On receive of the MIGRATE packet, it initializes the migration, migtarget
state :=

INITIALIZED, connects to the Client and starts syncing, migtarget
state := SY NCING.

It starts sending new messages immediately and waits until the last processed message
id from the Source Broker has passed. After that, it sets its migration state to SYNCED,
migtarget

state := SY NCED. It finishes its migration, migtarget
state := FINISHED, and sends

the MIGACK packet to the Source Broker.

Source Broker: On receive of the MIGACK packet, the migration state is set to SYNCED,
migsource

state := SY NCED. It gets finished as well, migsource
state := FINISHED, and it stops

sending messages to the Client.

The interaction is visualized in Figure 4.16.

54

4.9. Synchronization Process

#20

#19

#18

#17

#16

#15

#14

#16

#15

#14

...
...

#13

#12

#11

#10

...

Target Broker

#9

...

Source Broker

#13

#12

SYNCED
FINISHED

SYNCED
FINISHED

MIGACK

MIGRATE(#13)
INITIALIZED

SYNCING

INITIALIZED

(a) Sequence

...

...

Target Broker:

Source Broker:

#20

#20#19

#19#18#17

#18#17#9

#9 #10

#10

#14 #16#15#13...

... #11

#11 #12

#16#15#14#13#12

(b) Stream

Figure 4.16: Target Broker is behind of the Source Broker - QoS 1

55

4. Solution Approach

QoS 2

Source Broker: The migration process is initialized, migsource
state := INITIALIZED, and

it will stop sending further messages to the Client. The unsent messages are stored in
the migration message store, if a rollback is necessary. A MIGRATE packet is sent to
the Target Broker.

Target Broker: On receive of the MIGRATE packet, it initializes the migration, migtarget
state :=

INITIALIZED, connects to the Client and starts syncing, migtarget
state := SY NCING.

It waits until the last processed message id from the Source Broker has passed, sets its
migration state to SYNCED, migtarget

state := SY NCED, and starts sending messages. It
finishes its migration since no further actions are necessary, migtarget

state := FINISHED,
and sends the MIGACK packet to the Source Broker.

Source Broker: On receive of the MIGACK packet, the migration state is set to SYNCED,
migsource

state := SY NCED. It gets finished as well, migsource
state := FINISHED, the migra-

tion message store gets cleared and no further messages are stored.

The interaction is visualized in Figure 4.17.

56

4.9. Synchronization Process

#20

#19

#18

#17

#16

#15

#14

#16

#15

#14

...
...

#13

#12

#11

#10

...

Target Broker

#9

...

Source Broker

#13

#12

SYNCED
FINISHED

SYNCED
FINISHED

MIGACK

MIGRATE(#13)
INITIALIZED

SYNCING

INITIALIZED

(a) Sequence

Target Broker:

Source Broker:

#20

#20#19

#19#18#17

#18#17#9

#9 #10

#10

#14 #16#15#13 ...

...

...

... #11

#11 #12

#16#15#14#13#12

(b) Stream

Figure 4.17: Target Broker is behind of the Source Broker - QoS 2

57

CHAPTER 5
Implementation

In this chapter, we present the concrete implementation of our solution approach that
was introduced in Chapter 4. We give an overview of the migration framework and all its
components (Section 5.1) and describe the integration of it into a concrete MQTT broker
(Section 5.2) and MQTT client implementation (Section 5.3) with implementation details
of individual components and details about the migration process on the specific systems.
Finally, we introduce the communication implementation between systems (Section 5.4)
and describe the migration protocol packets that are used (Section 5.5).

5.1 Migration Framework

We create a migration framework for the solution approach that was introduced in
Chapter 4, which can be integrated into MQTT broker and MQTT client implementations
to enable mobility and message delivery guarantees while migrating clients. The migration
framework was written in the Java programming language and comprises 58 classes with
3.8k lines of code. The source code is published and available in our project repository1.

A brief overview of all components and its functionalities as shown in Figure 5.1 and
Figure 5.8 as follows:

• MQTT Broker
The broker system processes MQTT messages from publishers to subscribers. It
is extended with the following migration framework components, that allows a
reliable migration of clients from one broker to another. The broker system and its
components are shown in Figure 5.1. See Section 5.2 for further details.

1https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration

59

https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration

5. Implementation

– Broker Migration Manager
Processes migration requests and handles the migration process for the broker.

– Broker Migration Bridge
Communication bridge between the migration framework and a specific broker
implementation.

– Broker Migration Integrator
Provides an interface to integrate the migration framework for a specific broker
implementation.

– Migration Store
Stores information about migrations, such as the client id, the migration state
and the subscriptions to migrate.

– Migration Message Store
Stores MQTT messages that may be needed for synchronization or rollback
scenarios.

– Message Barrier
Checks if an outgoing MQTT message for a MQTT client should be sent.

– Broker Command Line Interface (Broker CLI)
Interface to send commands to the broker, e.g. to migrate a client to another
broker.

• MQTT Client
The client system publishes MQTT messages to a MQTT broker or subscribes its
interests to receive MQTT messages from a MQTT broker. It is extended with
the following migration framework components, that allows a reliable migration
of clients from one broker to another. The client system and its components are
shown in Figure 5.8. See Section 5.3 for further details.

– Client Migration Manager
Processes migration requests and handles the migration process for the client.

– Client Migration Bridge
Communication bridge between the migration framework and a specific client
implementation.

– Client Command Line Interface (Client CLI)
Interface to send commands to the client, e.g. list all connected brokers.

• Communication
The communication components are used to exchange migration protocol packets
across systems. See Section 5.4 for further details.

– Migration Packet Server
Receiving and handling migration protocol packets from a Migration Packet
Client component.

60

5.2. MQTT Broker

– Migration Packet Client
Sending migration protocol packets to a Migration Packet Server component.

5.2 MQTT Broker

To enable mobility and message delivery guarantees to migrate MQTT clients we introduce
the following components in our migration framework. A component overview for the
broker components is shown in Figure 5.1.

Some of the features include:

• analyze incoming messages

• register/unregister clients

• subscribe/unsubscribe topics for clients

• message barrier for clients

• store messages for clients

• publish stored messages to clients

• perform the migration process

As our base MQTT broker we chose the JVM lightweight Moquette MQTT broker2 and
integrated our migration framework. The source code of our fork is available in our
project repository3.

5.2.1 Broker Migration Manager

The Broker Migration Manager is the central component on the broker for the migration
process. It handles incoming requests and interacts with other components. Together
with the Message Barrier it sets the correct migration state and subscription states for
every migration. In case of an error, it also performs the rollback process.

5.2.2 Migration Broker Bridge

The Broker Migration Broker Bridge is a communication interface between a broker
implementation and the migration framework. It is an interface that has to be imple-
mented by the specific broker implementation, e.g. Moquette Migration Broker Bridge,
to perform common functions, such that the migration framework does not need to know
the details of a specific broker implementation.

2Moquette MQTT broker: https://moquette-io.github.io/moquette/
3https://gitlab.com/manuelgeier-masterthesis/moquette/tree/migration

61

https://moquette-io.github.io/moquette/
https://gitlab.com/manuelgeier-masterthesis/moquette/tree/migration

5. Implementation

Migration Framework

Message Barrier

MQTT Broker

Broker
CLI

Migration
Packet Client

Implementation

Migration Bridge
Broker Implementation

«interface»
Broker Migration Bridge

Broker Migration Manager

Migration Message Store

Migration Store

Migration
Packet Server

Broker Migration Integrator

MQTT Protocol Processor MQTT Message Publisher

Legend: FrameworkHost

«uses»

«uses»
«uses»

«uses»

«uses»

«uses»
«uses»

«uses»

«uses»

Figure 5.1: Broker components

Some functions include:

• check if a specific client exists

• retrieve client information

• subscribe/unsubscribe a client from a topic

• get current subscriptions of a client

• disconnect a client

• publish messages to a client

62

5.2. MQTT Broker

5.2.3 Broker Migration Integrator

The Broker Migration Integrator provides an interface to integrate the migration frame-
work into a specific broker implementation, to analyze incoming messages or to integrate
the Message Barrier.

5.2.4 Migration Store

The Migration Store holds information of all migration processes that are active. It
further puts finished migration processes in an archive to retrieve information of finished
migrations.

5.2.5 Migration Message Store

The Migration Message Store stores messages during the migration process to synchronize
missing messages with its opponent broker or to send unsent messages in case of a rollback.
When a migration process finishes, the messages related to the migration process will be
cleared from the store to free up space.

5.2.6 Message Barrier

To assure the message delivery guarantees during the migration process, messages are
processed through the Message Barrier. The Message Barrier will decide based on the
current migration state, if the current message should be sent or discarded. If a message
will be discarded it will further check if the message should to be stored in case of a
synchronization or rollback process. If it should be stored, it will place the message in the
Migration Message Store for further processing. Furthermore, it updates the subscription
states when certain messages passed the Message Barrier.

5.2.7 Broker Command Line Interface (Broker CLI)

Command line interface to perform actions on the broker, e.g. to migrate a client from
this broker to another broker. All commands, except migrate, are not mandatory for the
migration process, but can be used, e.g. for debugging or testing.

The following commands are available for the Broker CLI:

• clients

Lists all clients with its subscriptions that are currently connected to the broker.

63

5. Implementation

• migrate TARGET_BROKER_PORT CLIENT_ID [CLIENT_HOST:localhost [CLIENT_PORT

:1702]]

Migrates a client from this broker to another broker (Target Broker).

• migrations

Lists all migrations that are currently on the broker.

• subadd CLIENT_ID [TOPIC:topic1 [QOS:0]]

Subscribes a client to a topic with a specific QoS.

• subrem CLIENT_ID [TOPIC:topic1]

Unsubscribes a client from a topic.

The Broker CLI acts as an API for external components and allows the Coordinator,
like the Controller in EMMA [RND18], to trigger migration processes for clients in an
orchestrated components composition.

5.2.8 Source Broker Process

The following section describes and visualizes the implementation of the whole migration
process on the Source Broker.

Process Description

• On migration trigger, the Source Broker performs some validation (e.g., does the
client with the requested id exist) and then connects to the Target Broker to send
migration protocol packets. All active subscriptions for the client are collected
and a new migration object with state INITIALIZED is created, migstate :=
INITIALIZED, and stored in the Migration Store. For each subscription a
subscription object with the state INITIALIZED, substate := INITIALIZED, is
created (implicitly the barrier will be active) and the last processed message id
(synchronization state) is retrieved and stored. A subscriptions-finished callback
is registered, that will be called by the time the state of all subscriptions is
FINISHED, substate = FINISHED, that sets the migration state to FINISHED
as well, migstate := FINISHED (if there are no subscriptions, it will never get
triggered). For each subscription the initialization event is processed differently
depending on the subscription QoS, namely:

– QoS 0: Through the message barrier, the broker stops sending messages.
The subscription migration state is immediately set to SYNCED, sub0

state :=
SY NCED, since no synchronization is necessary.

– QoS 1: Through the message barrier, the broker still send all messages to the
Client.

64

5.2. MQTT Broker

– QoS 2: Through the message barrier, the broker stops sending messages. The
unsent messages are stored, to be able to send them in case of a message
synchronization or a migration error.

After initialization, a MIGRATE packet is sent to the Target broker.

• On receive of a MIGSYNC packet, the migration state is set to SYNCING,
migstate := SY NCING. Each subscription that was passed within the MIGSYNC
is processed (see Section 4.8 for details about the synchronization). If all requested
subscriptions are synced, substate = SY NCED, the migration state is set to
SYNCED, migstate := SY NCED.

• On migration state is SYNCED, migstate = SY NCED, the Source Broker sends a
MIGSYNCACK packet to the Target broker, to acknowledge that the synchroniza-
tion is complete.

• On receive of a MIGACK [OK] packet, no messages are stored anymore. The
subscriptions are processed:

– QoS 0: The subscriptions state is set to FINISHED.

– QoS 1: The subscriptions state is set to FINISHED, regardless whether it
was synced or not. The barrier will make sure, that no messages are sent
anymore.

– QoS 2: The subscriptions state is set to FINISHED, regardless whether it
was synced or not.

sub
{1,2,3}
state := FINISHED

If there are subscriptions, the subscriptions-finished callback is called automatically
and sets the migration state to FINISHED.

migstate := FINISHED

If there are no subscriptions, the subscriptions-finished callback will never be fired
and therefore it sets the migration state to FINISHED manually.

migstate := FINISHED

• On migration state is FINISHED, migstate = FINISHED, the Source Broker
makes sure, that all messages that must be sent are sent, it unsubscribes from
all subscriptions, it disconnects from the Client and the migration is cleaned up
(releasing stored messages, remove migration object from the Migration Store). The
migration process is finished.

65

5. Implementation

Error Handling

There are many cases in which an error could occur. On any error, a rollback is performed,
to restore the state before the migration process (as if there was no migration process
started at all4).

The following describes some error scenarios on the Source Broker:

• The client does not exist in this broker. For example when the client exists while
the Coordinator triggers the migration.

• There is an active migration process of the client.

• Timeout occurs for sending packets like MIGRATE or MIGSYNCACK, e.g. due to
network errors.

• In case the Target Broker is not able to migrate a Client, it can respond with
MIGACK including an error status code (MIGACK [ERROR] packet).

• The migration process takes too long, idles or times out.
Solutions for this might be (but are not part of the migration process yet):

– Sending or requesting heartbeat packages between the brokers.

On error, the Source Broker triggers the following rollback process:

• Depending on the QoS of a subscription the following process is performed:

– QoS 0: The subscriptions state is set to ERROR. It continues sending
messages. Lost messages since the beginning of the migration are valid for
this QoS.

– QoS 1: The subscriptions state is just set to ERROR. Since it did not
stop sending messages, no messages are lost. No further rollback actions are
necessary.

– QoS 2: The subscriptions state is set to ERROR. It stops storing message in
the Message Store and it continues sending messages. Messages that have not
been sent to the client since the beginning of the migration, were stored in
the Message Store. These messages are sent as well.

sub
{1,2,3}
state := ERROR

Finally, the migration state is set to ERROR.

migstate := ERROR

The migration is cleaned up (releasing stored messages, remove migration object
from the Migration Store). The migration is finished.

4Depending on the error, the Source Broker might repeat the request some time later

66

5.2. MQTT Broker

Migration State

The internal state flow of a migration on the Source Broker is shown in Figure 5.2.

Subscription States

The internal synchronization state flow of the subscriptions regarding to its QoS are
shown in Figure 5.3 and Figure 5.4. Al possible synchronization states of a subscription
object during the migration process on the Source Broker are listed in Table 5.1. Note:
Depending on the QoS of the subscription, not all subscription states are in use.

Message Barriers

The Message Barriers for the corresponding QoS of a subscriptions on the Source Broker
are described in Table 5.2, Table 5.3 and Table 5.4. Note that messages with a lower or
equal id as the last processed message, always have to be sent, since messages before the
synchronization point should not be effected by the barrier:

send(msg) | msgid ≤ subsource
lastP rocId

Subscription state Description QoS 0 QoS 1 QoS 2
INITIALIZED The subscription synchronization

is initialized.
X X X

SYNCING The subscription is currently syn-
chronizing.

X X

SYNCED The subscription got synchro-
nized.

X X X

FINISHED The subscription synchronization
finished successfully.

X X X

ERROR The subscription synchronization
got aborted due an error.

X X X

Table 5.1: Subscription synchronization states on the Source Broker.

67

5. Implementation

FINISHED

ERROR

SYNCED

Source Broker - Subscription State - QoS 0

INITIALIZED

on error

on MIGACK [OK] received

on initialization

Figure 5.3: State diagram of a QoS 0
subscription on the Source Broker

FINISHED

ERROR

Sender Broker - Subscription State - QoS 1, QoS 2

SYNCED

SYNCING

INITIALIZED

on MIGACK [OK] received

on error

on MIGACK [OK] received

messages synced

on MIGSYNC received

Figure 5.4: State diagram of a QoS 1 and a
QoS 2 subscription on the Source Broker

ERROR

SYNCED

SYNCING

FINISHED

Source Broker - Migration State

INITIALIZED

on error

on MIGACK [OK] received

on all subscriptions FINISHED

on all syncing
subscriptions SYNCED

cleanup

on MIGSYNC received

Figure 5.2: State diagram of a migration on the Source Broker

68

5.2. MQTT Broker

Table 5.2: Barrier actions on the Source Broker for a QoS 0 subscription

Subscription state Action
INITIALIZED Discard message. discard(msg)
SYNCED Discard message. discard(msg)
FINISHED Discard message. discard(msg)
ERROR Send message. send(msg)

Table 5.3: Barrier actions on the Source Broker for a QoS 1 subscription

Subscription state Action
INITIALIZED Send message. send(msg)
SYNCING Send message. send(msg)

If the message id is greater or equal to the last processed message id
from the Target Broker, the subscription state is set to SYNCED.

substate := SY NCED | msgid ≥ subtarget
lastP rocId

SYNCED Send message. send(msg)
FINISHED Discard message. discard(msg)
ERROR Send message. send(msg)

Table 5.4: Barrier actions on the Source Broker for a QoS 2 subscription

Subscription state Action
INITIALIZED Discard Message discard(msg)
SYNCING If the global message id is greater to the last processed message id

from the Source Broker and less or equal to the last processed message
id from the Target Broker, the message will be sent.

send(msg) | subsource
lastP rocId < msgid ≤ subtarget

lastP rocId

If the message id is equal to the last processed message id from the
Target Broker, the subscription state is set to SYNCED.
If the message id is greater than the last processed message id from
the Target Broker, the message will be discarded and the state will be
set to SYNCED as well.

discard(msg) | msgid > subtarget
lastP rocId

substate := SY NCED | msgid ≥ subtarget
lastP rocId

SYNCED Discard message. discard(msg)
FINISHED Discard message. discard(msg)
ERROR Send message. send(msg)

69

5. Implementation

5.2.9 Target Broker Process

The following section describes and visualizes the implementation of the whole migration
process on the Target Broker.

Process Description

• On receive of a MIGRATE packet from another broker with information about
the Client and its subscriptions, the migration process will be initialized. A new
migration object with state INITIALIZED is created, migstate := INITIALIZED,
and stored in the Migration Store. For each subscription a subscription object with
the state INITIALIZED, substate := INITIALIZED, is created (implicitly the
barrier will be active). It connects to Client to be able to send Migration packets. A
subscriptions-synced callback is registered, that will be called by the time the state of
all subscriptions is SYNCED, substate = SY NCED, that sets the migration state to
SYNCED as well, migstate := SY NCED (if there are no subscriptions, it will never
get triggered). A subscriptions-finished callback is registered, that will be called
by the time the state of all subscriptions is FINISHED, substate = FINISHED,
that sets the migration state to FINISHED as well, migstate := FINISHED
(if there are no subscriptions, it will never get triggered). After initialization, a
MIGTO packet is sent to the Client, with host information (host, port) of the
Target Broker and the migration id. On successful connect, the Client will respond
with MIGTOACK packet including the same migration id.

• On receive of a MIGTOACK packet, the Client successfully connected to this broker
(Target Broker). The Client is subscribed to its subscriptions that were received
within the MIGRATE packet from the Source Broker. For each subscription, the
last processed message id (synchronization state) is retrieved and stored and the
subscription state is set to SYNCING, substate := SY NCING. The migration
state is set to SYNCING as well, migstate := SY NCING. For each subscription,
the synchronization process as described in Section 4.9 is started. If there are any
subscriptions that need to by synchronized with the Source Broker, a MIGSYNC
packet is sent to the Source Broker, containing the subscriptions that need to be
synchronized. If there are no subscriptions, the migration state is set to SYNCED,
migstate := SY NCED.

It is important to note that after setting the subscription state for QoS 1 and
QoS 2 subscriptions to SYNCING, sub

{1,2}
state = SY NCING, depending on the

synchronization state the subscription states can have intermediate states:

– ahead: Synchronization with the Source Broker is necessary. Therefore, the
subscription state is set to SYNCING_OPPONENT,
sub

{1,2}
state := SY NCING_OPPONENT , meaning that the broker will wait for

70

5.2. MQTT Broker

a MIGSYNCACK packet to set the subscription state to SYNCED, sub
{1,2}
state :=

SY NCED.
– synced: No synchronization with the Source Broker is necessary and no

messages have to be skipped. Therefore, the subscription state can immediately
be set to SYNCED, sub

{1,2}
state := SY NCED.

– behind: No synchronization with the Source Broker is necessary, but the
broker has to skip some messages. Therefore, the subscription state is set to
SYNCING_THIS, sub

{1,2}
state := SY NCING_THIS, meaning that the broker

will wait, until it received the right messages to be synchronized, sub
{1,2}
state :=

SY NCED.

• On receive of a MIGSYNCACK packet, all QoS 1 and QoS 2 subscriptions that
had to be synced, are set to SYNCED, sub

{1,2}
state = SY NCED.

• On migration state is SYNCED, migstate = SY NCED, the Target Broker sends a
MIGACK packet to the Source Broker to acknowledge a successful migration.

• After the MIGACK packet got sent, it finalizes the migration process and sets the
subscription states to FINISHED, sub

{1,2,3}
state := FINISHED. The subscriptions-

finished callback will be triggered and the migration state is set to FINISHED
as well, migstate := FINISHED. If there are no subscriptions, the callback will
not be triggered and therefore we manually set the migration state to FINISHED,
migstate := FINISHED.

• On migration state is FINISHED, migstate = FINISHED, the migration process
gets finished by closing the connection to the Source Broker and removing the
migration from the migration store. The migration process is finished.

Error Handling

There are many cases in which an error could occur. On any error, the migration process
is aborted and a MIGACK packet with the status code of ERROR is sent to the Source
Broker.

The following describes some error scenarios on the Target Broker:

• The requested subscriptions are not available on the Target Broker, therefore it
can not start the synchronization process.
Solutions for this might be (but are not part of the migration process yet):

– The Target Broker can also try to request the missing subscriptions during
the initialization phase. Nevertheless, this will postpone the migration process
until all subscriptions are available.

71

5. Implementation

– The Target Broker also might ask the Source Broker to try some time later,
while it builds up the missing subscriptions.

• There is an active migration process of the client.

• The client is not authorized to connect to this broker.

• The internal load might be too high already.

• The connection with the Client cannot be established.

• It does not receive MIGTOACK or MIGSYNCACK packet after some period of
time.

• Timeouts for sending packets like MIGTO or MIGSYNC occur.

On error, the Target Broker triggers the following rollback process:

• On error, the subscriptions states are set to ERROR and no messages are sent
anymore.

sub
{1,2,3}
state := ERROR

Finally, the migration state is set to ERROR.

migstate := ERROR

• The Client will be unsubscribed from all subscriptions and unregistered from the
Target Broker.

• It closes the connection to the Client, if there is an active connection.

• A MIGACK [ERROR] packet is sent to the Source Broker.

• The migration is cleaned up (remove migration object from the Migration Store)
and the migration is finished.

72

5.2. MQTT Broker

Migration State

The internal state flow of a migration on the Target Broker is shown in Figure 5.5.

Subscription States

The internal synchronization state flow of the subscriptions regarding to its QoS are
shown in Figure 5.6 and Figure 5.7. Al possible synchronization states of a subscription
object during the migration process on the Source Broker are listed in Table 5.5. Note:
Depending on the QoS of the subscription, not all subscription states are in use.

Message Barriers

The Message Barriers for the corresponding QoS of a subscriptions on the Target Broker
are described in Table 5.6, Table 5.7 and Table 5.8. Note that messages with a lower
or equal id as the last processed message, always have to be discarded, since messages
before the synchronization point should not be effected by the barrier:

discard(msg) | msgid ≤ subtarget
lastP rocId

Subscription state Description QoS 0 QoS 1 QoS 2
INITIALIZED The subscription synchro-

nization is initialized.
X X X

SYNCING The subscription is currently
synchronizing.

X X X

SYNCING_THIS The Target Broker waits un-
til itself is synced.

X X

SYNCING_OPPONENT The Target Broker waits
until the Source Broker is
synced missing messages.

X X

SYNCED The subscription got synchro-
nized.

X X X

FINISHED The subscription synchro-
nization finished successfully.

X X X

ERROR The subscription synchro-
nization got aborted due an
error.

X X X

Table 5.5: Subscription synchronization states on the Target Broker.

73

5. Implementation

SYNCING

ERROR

FINISHED

Target Broker - Subscription State - QoS 0

SYNCED

INITIALIZED

on error

MIGACK sent

messages skipped
[behind]

[synced | ahead]

sync check

on MIGTOACK received

Figure 5.6: State diagram of a QoS 0 sub-
scription on the Target Broker

(QoS 1)
(QoS 2)

messages sent
messages skipped

ERROR

FINISHED

SYNCING_OPPONENTSYNCING_THIS

Target Broker - Subscription State - QoS 1, QoS 2

SYNCED

SYNCING

INITIALIZED

on error

[synced]

sync check

[ahead][behind]

on MIGSYNCACK received

MIGACK sent

on MIGTOACK received

Figure 5.7: State diagram of a QoS 1 and
a QoS 2 subscription on the Target Broker

ERROR

FINISHED

SYNCED

SYNCING

Target Broker - Migration State

INITIALIZED

on error

MIGACK sent

all subscriptions SYNCED

on MIGTOACK received

Figure 5.5: State diagram of a migration on the Target Broker

74

5.2. MQTT Broker

Table 5.6: Barrier actions on the Target Broker for a QoS 0 subscription

Subscription state Action
INITIALIZED Discard message. discard(msg)
SYNCING If the message id is less or equal to the last processed message id from the

Source Broker, the message is discarded.

discard(msg) | msgid ≤ subsource
lastP rocId

If the message id is equal to the last processed message id from the Source
Broker, the subscription state is set to SYNCED. If the message id is beyond
the the last processed message id from the Source Broker, the message is sent
and the state is set to SYNCED as well.

send(msg) | msgid > subsource
lastP rocId

substate := SY NCED | msgid ≥ subsource
lastP rocId

SYNCED Send message. send(msg)
FINISHED Send message. send(msg)
ERROR Discard message. discard(msg)

Table 5.7: Barrier actions on the Target Broker for a QoS 1 subscription

Subscription state Action
INITIALIZED Discard message. discard(msg)
SYNCING Send message. send(msg)

If the message id is the last processed message id from the Source Broker, the
subscription state is set to SYNCED. If the message id is greater than the
last processed message id from the Source Broker (in case of a missing last
message, caused by a gap), then the state will be set to SYNCED as well.

substate := SY NCED | msgid ≥ subsource
lastP rocId

SYNCED Send message. send(msg)
FINALIZED Send message. send(msg)
FINISHED Send message. send(msg)
ERROR Discard message. discard(msg)

75

5. Implementation

Table 5.8: Barrier actions on the Target Broker for a QoS 2 subscription

Subscription state Action
INITIALIZED Discard message. discard(msg)
SYNCING,
SYNCING_THIS

Discard the message if the message id is less or equal to the last
processed message id from the Source Broker.

discard(msg) | msgid ≤ subsource
lastP rocId

Otherwise, we send it.

send(msg) | msgid > subsource
lastP rocId

If the message id is equal or greater to the last processed message
id of the Source Broker, we update the state. If the state is
SYNCING_THIS, the state is set to SYNCED, otherwise set
the state to SYNCING_OPPONENT.

substate := SY NCED |msgid ≥ subsource
lastP rocId and

substate = SY NCING_T HIS

substate := SY NCING_OP P ONENT |msgid ≥ subsource
lastP rocId and

substate = SY NCING

SYNCING_OPPONENT Send message. send(msg)
SYNCED Send message. send(msg)
FINISHED Send message. send(msg)
ERROR Discard message. discard(msg)

76

5.3. MQTT Client

5.3 MQTT Client

To enable mobility and message delivery guarantees to migrate MQTT clients we introduce
the following components in our migration framework. A component overview for the
client components is shown in Figure 5.8. To perform the migration process, the client
has to be able to communicate with multiple brokers and has to integrate the migration
framework.

We implemented a MqttMultiBrokerClient that uses multiple individual MQTT Clients
and combines them into one. As the specific, individual MQTT Client we used the Java
MQTT Client of Fusesource5. The project and its source code is available in our project
repository6.

Migration Framework

MQTT Client

ImplementationLegend: FrameworkHost

MQTT Protocol Processor

Migration
Packet Client

Migration
Packet Server

Client
CLI

Migration Bridge
Client Implementation

«interface»
Client Migration Bridge

Client Migration
Manager

«uses»

«uses»

«uses»

Figure 5.8: Client components

5.3.1 Client Migration Manager

The Client Migration Manager is the central component on the client for the migration
process. It handles incoming requests and interacts with other components in order to
perform the migration process.

5https://github.com/fusesource/mqtt-client
6https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration-clients/

blob/master/src/main/java/io/geier/diplomathesis/experiment/client/
MqttMultiBrokerClient.java

77

https://github.com/fusesource/mqtt-client
https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration-clients/blob/master/src/main/java/io/geier/diplomathesis/experiment/client/MqttMultiBrokerClient.java
https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration-clients/blob/master/src/main/java/io/geier/diplomathesis/experiment/client/MqttMultiBrokerClient.java
https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration-clients/blob/master/src/main/java/io/geier/diplomathesis/experiment/client/MqttMultiBrokerClient.java

5. Implementation

5.3.2 Client Migration Bridge

The Client Migration Broker Bridge is a communication interface between a client imple-
mentation and the migration framework. It is an interface that has to be implemented by
the specific client implementation, to perform common functions, such that the migration
framework does not need to know the details of a specific client implementation.

Some functions include:

• establish a connection with a broker (Target Broker)

• retrieve information about established broker connections

5.3.3 Command Line Interface (Client CLI)

The Client CLI provides an interface to perform commands on the client. All commands
are not mandatory for the migration process, but can be used, e.g. for debugging or
testing.

The following commands are available for the Client CLI:

• brokers

Lists all brokers with its host information that the client is currently connected to.

5.3.4 Client Process

The following section describes the migration process on the Client. Since we aimed to
create a very thin interaction layer on the client side, the client process is very short
compared to the brokers processes.

Process Description

• On receive of a MIGTO packet, the Client’s migration manager takes the host and
port information of the new broker (Target Broker) it should connect to and it tries
to establish a connection with the new broker by sending a MQTT CONNECT
packet to it.

• On receive of a MQTT CONACK packet from the new broker, after a successful
connection it confirms the connection by sending a MIGTOACK packet with the
corresponding migration id from the MIGTO packet to the new broker. It does not
forward any current subscriptions to the new broker, since these will be exchanged
by the brokers itself. From this point on, it has (at least) two active connections
to brokers and it might receive messages from the Source Broker and the Target
Broker until the migration process is finished.

78

5.4. Communication

• On receive of a MQTT DISCONNECT packet from the Source Broker, the migration
process is finished. From this point on, it will only receive messages from the Target
Broker onwards. It cleans up its connection and broker information and continues
normally. The Client must not reconnect to the disconnected broker, as long as
there is another active connection to a broker, i.e. the Target Broker. Otherwise, if
there would be two uncoordinated active connections, the Client would get messages
from both brokers.

5.4 Communication

The communication for the migration process between the broker and client migration
framework instances throughout the network is based on the Migration Protocol described
in Section 4.6. Every migration framework instance has a running Migration Server (see
Section 5.4.1) and can communicate with others migration framework instances by using
a Migration Client (see Section 5.4.2) that connects to the Migration Server.

The packet format of the migration protocol is for the sake of simplicity a simple string
and further protocol optimizations are left for future work. Within this string, the
migration packet object is encoded in JSON format7. The Jackson model mapper8 is
used to convert migration packets from Java objects to JSON and back.

5.4.1 Migration Packet Server

The Migration Message Server handles incoming Migration Packets and communicates
with Migration Clients. Incoming requests are forwarded to the Migration Manager to
be processed.

It is implemented with the Netty9 framework. Netty, as stated on the official website,
is a “NIO client server framework, an asynchronous event-driven network application
framework for rapid development of maintainable high performance protocol servers
and clients”. The channel setup of Netty on the migration server to decode and encode
messages is shown in Listing 8.1.

5.4.2 Migration Packet Client

The Migration Client connects to a Migration Packet Server and communicates by sending
Migration Packets. Together with the Migration Server it is the communication channel
between the Source Broker, Target Broker and the Client throughout the network.

7https://www.json.org/
8http://modelmapper.org/user-manual/jackson-integration/
9https://netty.io/

79

https://www.json.org/
http://modelmapper.org/user-manual/jackson-integration/
https://netty.io/

5. Implementation

5.5 Migration Protocol Packets

The following describes the Migration Protocol with its implementation details.

Property Name of the property.
Type Java Type of the property. Primitive types like String, int, etc. or

custom Classes, Enumeration, etc. that are be described in more detail
in this section.

Description Description and further details of the property.

5.5.1 MIGRATE packet

Packet send from Source Broker to Target Broker to initiate a new migration of a Client.

MigratePacket class

Property name Type Description
migrationId String Unique Migration Id that is used to coordinate a

client migration.
clientId String Unique id of the Client that should be migrated.
clientHost String Host address of the Client that should be migrated.
clientPort int Port of the Packet Client for the migration of the

Client that should be migrated.
subscriptions Set<MigrateSubscription> Set of subscriptions that the Client is subscribed

to and that will be migrated, with additional infor-
mation for the migration process.

MigrateSubscription class

Property name Type Description
requestedQos MqttQoS Requested QoS for the subscription.
topoicName String Topic the Client has subscribed to.
lastProcessedGlobalMessageId GlobalMessageId Global message id of the last message that was

processed by the Source Broker.

GlobalMessageId class

Property name Type Description
globalMessageId String Unique global id of a message.

80

5.5. Migration Protocol Packets

MqttQoS enumeration

Property name int Value Description
AT_MOST_ONCE 0 QoS 0 - At most once.
AT_LEAST_ONCE 1 QoS 1 - At least once.
EXACTLY_ONCE 2 QoS 2 - Exactly once.
FAILURE 128 In case of error.

5.5.2 MIGACK packet

Packet send from Target Broker to Source Broker to acknowledge a migration of a Client.

MigAckPacket class

Property name Type Description
migrationId String Unique Migration Id that is used to acknowledge a migration.
statusCode MigStatus Status code of the migration. It indicates, if it was successful or

failed.

MigStatus enumeration

Property name int Value Description
OK 0 Successful migration.
ERROR 1 Migration error occurred.

5.5.3 MIGSYNC packet

Packet send from Target Broker to Source Broker to indicate that the Target Broker can
not fully serve the Client with all messages and that the Source Broker needs to serve
missing messages.

MigSyncPacket class

Property name Type Description
migration id String Unique Migration Id that is used to coordinate a

client migration.
subscriptions List<MigSyncSubscription> List of subscriptions that the Source Broker needs

to synchronize.

81

5. Implementation

MigSyncSubscription class

Property name Type Description
topicName String Name of the topic that the Source Broker needs

to send some messages that were missed by the
Target Broker.

lastProcessedGlobalMessageId GlobalMessageId Global message id of the last message that was
processed by the Target Broker.

5.5.4 MIGSYNCACK packet

Packet send from Source Broker to Target Broker to acknowledge that all missing messages
were successfully send to the Client.

MigSyncPacket class

Property name Type Description
migrationId String Unique Migration Id that is used to acknowledge a message synchroniza-

tion.

5.5.5 MIGTO packet

Packet send from Target Broker to a Client to indicate that it should connect to a new
broker (Target Broker) in order to get migrated.

MigToPacket class

Property name Type Description
migrationId String Unique Migration Id that is used to coordinate the migration.
host String Host address of the new broker.
port int MQTT port of the new broker.

5.5.6 MIGTOACK packet

Packet send from Client to Target Broker to acknowledge a successful connection to the
new broker (Target Broker) and that it is ready to be migrated.

MigToAck class

Property name Type Description
migrationId String Unique Migration Id that is used to acknowledge a successful connect to

the new broker.

82

CHAPTER 6
Evaluation

To evaluate the feasibility of our solution approach, we study for our evaluation the three
aspects, correctness, responsiveness and system strains, with the methods for software
testing, empirical experiments and a theoretical analysis. In the following section we give
an introduction to our evaluation methodology and lay out the structure of this chapter.
In Section 6.5, we summarize and discuss our results and findings and point out gains
and limitations of our solution approach.

6.1 Methodology

The following describes our methodology for our evaluation. It describes the aspects that
we chose to evaluate our solution approach and the methods that we are using to give
answers to all aspects.

We chose the following aspects to evaluate our solution approach:

• Correctness: It describes the validity of our solution approach and tests if our
migration process works as expected.

• Responsiveness: It describes the time and load dimensions of our solution ap-
proach. The time it takes for the migration do complete, how long a synchronization
process for each QoS last and how much the Client and network is affected.

• System Strains: They describe the side-effects our solution approach has on the
systems and the network.

83

6. Evaluation

To analyse and provide answers to our evaluation aspects we use the following methods:

• Software Testing: To show the correctness and feasibility of our solution approach
and to verify our implementation , we are using traditional testing methods (see
Section 6.2). With unit tests we are verifying individual components and with
integration tests we are checking the integration and interaction between different
components. Finally, with system tests, we are checking the whole solution approach
and implementation to be valid. The system tests are based on the migration
process definitions from Section 4.9 and therefore also check the feasibility of our
solution approach.

• Empirical Experiments: To further check the correctness and get insights of
the responsiveness and the system strains, we set up a experiment environment to
our solution approach as an integration into real broker and client systems (see
Section 6.3). These systems run in a dockerized environment and perform a common
interaction scenario (see Section 6.1.1), with different experiment configurations.

• Theoretical Analysis: To get additional insights of the responsiveness and the
system strains, we create simplified mathematical model of our solution approach
(Section 6.4). With this model we approximate the migration process duration
(Section 6.4.3), how many message are lost during the migration process for QoS 0
(Section 6.4.4), how many message are duplicated for QoS 1 (Section 6.4.4) and
how many messages need to be stored for QoS 2 (Section 6.4.4). Furthermore, we
derive the impact on the Client for message arrival (Section 6.4.5) and the impact
on the network traffic with our solution approach (Section 6.4.7, Section 6.4.8).

6.1.1 Evaluation Scenario

For our evaluation we use a common scenario where a client gets migrated from one
broker to another broker. In the following we describe this evaluation scenario, its design
and its steps.

The system composition of the scenario consists of two brokers, the Source Broker and the
Target Broker, two Publishers, each for every broker, and a Subscriber, that represents
the Client that will be migrated from one broker to another. All systems are within a
shared network environment without external traffic. The evaluation scenario is visualized
in Figure 6.1. Solid links define active communication links and dashed lines define
potential communication links that are not active. The label on the links states the
latency for one direction for a specific link in milliseconds. Links between publishers
and brokers (not shown in the figures) have no delay. As in [LCC+15], we also consider
a message producer that continuously generates messages with a given interval on the
publishers. We chose the latencies for the links similarly but with half of the proximity
to [RND18], with a link latency of 40 ms between brokers and a link latency with the
client in close proximity of 10 ms and with far proximity of 40 ms.

84

6.1. Methodology

Client

Target Broker

distributed broker network

Source Broker

40 ms

10 ms

40 ms

(a) Before Client movement

Client

Target Broker

distributed broker network

Source Broker

10 ms

40 ms

40 ms

(b) After Client movement/Before migration

Client

Target Broker

distributed broker network

Source Broker

10 ms

40 ms

40 ms

(c) After migration

Figure 6.1: Evaluation Scenario

The sequence of the scenario is as follows:

1. The initial situation is illustrated in Figure 6.1a with the basic setup of the network
and the individual systems.

2. Caused by the mobility of the client, the client moves away from the Source Broker
and closer to the Target Broker. Therefore the network conditions (links latencies)
changes. The network conditions after the movement is illustrated in Figure 6.1b.
This is the base of our network setup, on which the migration will be applied.

3. We wait some time and keep measurements of the current traffic of the network
between all systems.

4. At some point, we assume that the network change is recognized and that the
Coordinator decides, to migrate the Client from the Source Broker to the Target
Broker, since the link latency is smaller. The migration process is triggered at the
Source Broker and starts.

5. After a while the migration process will be completed and the Target Broker will
have an established communication link with the Client. The network scenario
after the migration is illustrated in Figure 6.1c. The scenario is finished.

85

6. Evaluation

6.2 Software Testing

To verify the correctness of our implementation and moreover of our solution approach,
we use softwared testing methods.

Testing of software implementations is usually approached with unit and integration tests.
We used these approaches to verify that our components work as expected. 139 tests
unit and integration tests were written with support of the testing framework JUnit 4 1

and the mocking framework Mockito 2 2. These tests are separated into 40 Java classes,
sum up to 7k lines of code and are available in our project repository3.

We further created system tests with different scenarios4, that run as either the Source
Broker or the Target Broker. These tests expect the systems to handle different events
from outside and to change its internal state correctly. Therefore, a system test framework
was written, to challenge the migration process with different events. Our system test
framework is capable to trigger the following events:

• start the migration process to move a client

• retrieve different migration packets from other simulated brokers

• retrieve different MQTT PUBLISH packets from simulated publishers

While performing the system tests the internal state was asserted and verified. Any
aberrance would have lead to an unsuccessful test run. The system test framework is also
based on the testing framework JUnit and the mocking framework Mockito. A simple
example of a system test scenario for the Source Broker with a QoS 0 subscription, where
the Source Broker and Target Broker are synchronized, is shown in Listing 8.2.

As a base for our system test scenarios, the synchronization scenarios from Section 4.8
are used, such that our solution approach is validated to be correct. Additionally, more
system test scenarios, like missing messages (gaps), were performed to verify the correct
behavior in abnormal cases. Altogether, 94 system test scenarios were written and
successfully performed.

In total, 233 unit, integration and system tests are written and successfully performed
to validate the correctness of our implementation and the feasibility of our solution
approach.

1https://junit.org/
2https://site.mockito.org/
3https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration/

tree/master/src/test/java/io/geier/diplomathesis/migration
4https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration/

tree/master/src/test/java/io/geier/diplomathesis/migration/simulation

86

https://junit.org/
https://site.mockito.org/
https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration/tree/master/src/test/java/io/geier/diplomathesis/migration
https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration/tree/master/src/test/java/io/geier/diplomathesis/migration
https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration/tree/master/src/test/java/io/geier/diplomathesis/migration/simulation
https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration/tree/master/src/test/java/io/geier/diplomathesis/migration/simulation

6.3. Empirical Experiments

6.3 Empirical Experiments

To further test and empirically evaluate our implementation and the integration into
the Moquette broker system, we created an experiment environment. The experiment
environment consists of different experiment configurations with real broker, publisher and
subscriber systems that were put into Docker containers, deployed on a virtual machine
and orchestrated with Docker Compose. As stated in [IMA+16], “Docker provides fast
deployment, elasticity and good performance over VM based EC platform” and was
therefore also our choice for the empirical experiments. In the following sections we
are explain our experiment setup (Section 6.3.1), give an overview of our experiment
configurations (Section 6.3.2), showcase some of our results in detail (Section 6.3.3) and
summarize our results (Section 6.3.4). The whole empirical experiment with our results
is available in our project repository5.

6.3.1 Experiments Setup

All of our empirical experiments run in a virtual environment setup in a virtual machine.
The virtual machine for our experiments uses 4 cores and 8 GB RAM and runs on a
physical machine with Windows 10 Pro system, an Intel Core i7-4700MQ CPU @ 2.40GHz
2.39 GHz processor and 16 GB RAM. On the Windows machine, a Docker Machine6 is
installed, that provides the Docker environment to run our systems (two brokers, two
publishers and a subscriber). We specifically use Boot2Docker7 which provides a fully,
easy-to-use, unix-based and dockerized environment on a Windows machine.

We use Docker8 technology to manage the systems in the virtual environment. We created
a docker image that contains all executables of our systems (MQTT Broker, MQTT
Client, Publisher) and is reused through out our setup. During experiment runtime, each
individual system runs in its own Docker container and is identified with a unique name,
e.g. Broker_001, Broker_002, Publisher_001, Publisher_002, or Subscriber_001.

To setup the network conditions for our experiment within our virtual environment, we
use a tool called pumba 9. It is a “chaos testing and network emulation tool for Docker”
and allows us to work with the containers (pause, stop and kill) and to emulate different
network settings. We use it to delay egress traffic between our containers in order to
simulate the evaluation scenario conditions (Section 6.1.1). We were not able to fully
setup the link latencies as described in the evaluation scenario, because pumba is limited
to just set one delay for all outgoing connections per container. Even the direct use of
tc10 was not successful, for the same reason. Therefore, we came up with the following

5https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration-experiment
6https://docs.docker.com/machine/overview/
7https://github.com/boot2docker/boot2docker
8https://www.docker.com/
9https://github.com/alexei-led/pumba

10https://wiki.linuxfoundation.org/networking/netem

87

https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration-experiment
https://docs.docker.com/machine/overview/
https://github.com/boot2docker/boot2docker
https://www.docker.com/
https://github.com/alexei-led/pumba

6. Evaluation

latency setup for outgoing connections: Source Broker: 40 ms; Target Broker: 10 ms;
Client: 10 ms. To get some variance into the network latencies, we use a jitter value of
±5 ms for each network transaction. All services are composed with Docker Compose11

to start and stop them at once. Furthermore, all running services are within a common
network environment and are able to communicate with each other.

Every experiment, strictly speaking, each experiment configuration, is located in its
own folder within the experiment/ folder. Each experiment is uniquely identified by the
name of the folder ([EXPERIMENT]). It contains the configuration for publishers and the
subscriber. After the experiment has finished, a folder named [EXPERIMENT]-[RUNNR]-

result is created for each run, containing the initial configuration, logs from brokers,
publishers and subscribers and additional measurement files. We run every experiment
10 times to verify the experiment results

To analyze the measurements and data we use R12, a free software environment for
statistical computing and graphics. Various scripts analyze different aspects, like message
latency and message trips, of the migration process and visualize with plots (we present
these plots in Section 6.3.3).

All experiments also measure information about lost and duplicated messages during the
migration process. This gives us proof, if the process was successful or failed. Furthermore,
with the support of our Data Integrity Validator (Section 6.3.1), we verify the validity
for each subscription on the Client regarding its requested QoS.

Depending on the experiment configuration, a full run of an experiment takes around
2 minutes.

Mocked Distributed Broker Network

Moquette does not work in a distributed broker network setup per se. Since we want to
be able to test and evaluate our migration process in a normal functional distributed
broker network like it is illustrated in Figure 6.2, where a single message is automatically
distributed across the broker network and to get a total ordering of messages, we took a
mock approach to generate and send a message multiple times from individual publishers
and distribute the generated messages to its corresponding broker, as visualized in
Figure 6.3. Therefore, we get a similar functioning distributed broker network to validate
our migration process.

Message Publisher

To receive messages on the client side and test our migration process, the Message
Publisher generates messages for various registered topics and publishes them into the

11https://docs.docker.com/compose/
12https://www.r-project.org/

88

https://docs.docker.com/compose/
https://www.r-project.org/

6.3. Empirical Experiments

Subscriber

Publisher

Message
distribuation

MQTT Client

Message Generator

Message Publisher

MQTT Broker 3

Broker network

MQTT Client CMQTT Client A MQTT Client B

MQTT Broker 2

MQTT Broker 1 MQTT Broker 4

message exchange

publish
message

publish
message

publish
message

publish
message

Figure 6.2: Normal distributed broker network

MQTT Client 4

Message Generator

Message Publisher

MQTT Client 3

Message Generator

Message Publisher

MQTT Client 2

Message Generator

Message Publisher

MQTT Client 1

Message Generator

Message Publisher

Subscriber

Publisher

Message
distribuation

MQTT Broker 3

Simulated Broker network

MQTT Client CMQTT Client A MQTT Client B

MQTT Broker 2

MQTT Broker 1 MQTT Broker 4

publish
message

publish
message

publish
message

publish
message

publish
message

publish
message

publish
message

Figure 6.3: Mocked distributed broker network

89

6. Evaluation

mocked broker network. The component is available in our project repository13.

Since the broker network is just mocked and no message distribution between brokers
happens per se, we create one publisher for each broker, as shown in Figure 6.3, generate
each message on every publisher and publish them individually to each broker. Hence,
every broker gets all messages and it seems like all brokers share the same messages.

For our experiments, we configure the generation interval of messages as well as a message
delay for each publisher. We use the message delay to simulate different synchronization
states between broker systems. Since we assume that messages arrive in order at the
brokers, the publisher makes sure that this criteria is met. Furthermore, each message
will be published with QoS 2 as assumed by our work.

Data Integrity Verifier

To verify the delivery guarantees agreements, QoS 0, QoS 1 and QoS 2, on the clients
for each subscription, we created a Data Integrity Verifier component. It processes all
messages a client receives and based on the global message id of the message, it verifies
that the integrity of the QoS for each subscription is correct. The component is available
in our project repository14.

The Data Integrity Verifier checks, if there are a) any missing messages, b) any duplicate
messages, or c) both, depending on the QoS of the subscription. In case of a data
integrity error, e.g. missing messages or duplicate messages, it logs error messages and
our experiments report a failure. Table 6.1 shows which checks are performed for each
QoS level.

Table 6.1: Data integrity checks for different QoS

QoS missing message check duplicate message check
QoS 0: At most once No Yes
QoS 1: At least once Yes No
QoS 2: Exactly once Yes Yes

For each subscribed topic, a map of all received messages is stored internally, as well as
a sorted list of all received global message ids. To check missing messages, the sorted
list of all received global message ids is validated and if there is a gap between ids, the
missing ids will be logged. To check duplicate messages, every received message has a
count how often it was received.

13https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration-clients/
blob/master/src/main/java/io/geier/diplomathesis/experiment/client/
ClientPublisher.java

14https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration-clients/
blob/master/src/main/java/io/geier/diplomathesis/experiment/verifier/
DataIntegrityVerifier.java

90

https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration-clients/blob/master/src/main/java/io/geier/diplomathesis/experiment/client/ClientPublisher.java
https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration-clients/blob/master/src/main/java/io/geier/diplomathesis/experiment/client/ClientPublisher.java
https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration-clients/blob/master/src/main/java/io/geier/diplomathesis/experiment/client/ClientPublisher.java
https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration-clients/blob/master/src/main/java/io/geier/diplomathesis/experiment/verifier/DataIntegrityVerifier.java
https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration-clients/blob/master/src/main/java/io/geier/diplomathesis/experiment/verifier/DataIntegrityVerifier.java
https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration-clients/blob/master/src/main/java/io/geier/diplomathesis/experiment/verifier/DataIntegrityVerifier.java

6.3. Empirical Experiments

6.3.2 Experiments Configuration Overview

To evaluate the basic scenarios as described in Section 4.8 (behind, synced and ahead
with QoS 0, QoS 1 and QoS 2), we created an experiment configuration for each of it.
Furthermore, we created more complex scenarios with multiple topics and mixed message
generation delays for publishers.

An overview of the configuration of the experiments is given in Table 6.2. Each experiment
configuration consists of one or more subscriptions to a topic with a specific QoS for
the Client. Each topic is served by the Source Publisher and Target Publisher via the
corresponding brokers. The publishers generate and publish all messages with a defined
rate interval and a defined message delay to simulate different synchronization states
between the broker systems.

6.3.3 Experimental Result

After each experiment run, logs and measurements are processed and data analysis scripts
are executed to generate different plots and statistics. We showcase, describe and analyse
nine different scenarios to demonstrate and compare the migration process in different
scenarios. These scenarios include the case where the Target Broker is behind and where
the Target Broker is ahead of the Source Broker for each QoS. Table 6.3 gives an overview
of the chosen experiment settings15. From each experiment, we present the first of ten
runs. All detailed results of the following and other experiments are published in the
repository of the experiments16.

Table 6.3: Experiments Showcase Overview - Topics and characteristics

Experiment QoS Synchronization state
ahead-A0 QoS 0 - at most once Target Broker ahead of the Source Broker
ahead-A1 QoS 1 - at least once Target Broker ahead of the Source Broker
ahead-A2 QoS 2 - exactly once Target Broker ahead of the Source Broker
synced-A0 QoS 0 - at most once Target Broker is synced with the Source Broker
synced-A1 QoS 1 - at least once Target Broker is synced with the Source Broker
synced-A2 QoS 2 - exactly once Target Broker is synced with the Source Broker
behind-A0 QoS 0 - at most once Target Broker behind of the Source Broker
behind-A1 QoS 1 - at least once Target Broker behind of the Source Broker
behind-A2 QoS 2 - exactly once Target Broker behind of the Source Broker

15synced scenarios: since network and process variances made it hard to get both brokers exactly
synced all the time, we tried to come up with a configuration that is as close to the synced state as
possible.

16https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration-experiment/
tree/master/experiment

91

https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration-experiment/tree/master/experiment
https://gitlab.com/manuelgeier-masterthesis/pubsub-message-qos-migration-experiment/tree/master/experiment

6. Evaluation

Experiment name Source Publisher Target Publisher
Topic name QoS Interval (ms) Delay (ms) Interval (ms) Delay (ms)
ahead-A0
topicA QoS 0 100 2000 100 0
ahead-A1
topicA QoS 1 100 2000 100 0
ahead-A2
topicA QoS 2 100 2000 100 0
ahead-A0_B1_C2
topicA QoS 0 100 2000 100 0
topicB QoS 1 100 2000 100 0
topicC QoS 2 100 2000 100 0
synced-A0
topicA QoS 0 100 0 100 750
synced-A1
topicA QoS 1 100 0 100 750
synced-A2
topicA QoS 2 100 0 100 750
synced-A0_B1_C2
topicA QoS 0 100 0 100 750
topicB QoS 1 100 0 100 750
topicC QoS 2 100 0 100 750
behind-A0
topicA QoS 0 100 0 100 2000
behind-A1
topicA QoS 1 100 0 100 2000
behind-A2
topicA QoS 2 100 0 100 2000
behind-A0_B1_C2
topicA QoS 0 100 0 100 2000
topicB QoS 1 100 0 100 2000
topicC QoS 2 100 0 100 2000
mixed-A0_B1_C2_D0_E1_F2
topicA QoS 0 100 2000 100 0
topicB QoS 1 100 2000 100 0
topicC QoS 2 100 2000 100 0
topicD QoS 0 100 0 100 2000
topicE QoS 1 100 0 100 2000
topicF QoS 2 100 0 100 2000

Table 6.2: Experiments Configuration Overview

92

6.3. Empirical Experiments

For the following experiment results, publishers generate messages in a 100 ms interval
(10 messages/s) and publish them in an ordered message sequence to the corresponding
brokers with QoS 2. The synchronization delta for a Target Broker that is ahead or
behind the Source Broker is achieved with a delay on the respective publisher.

For each experiment we show the following seven plots on two pages each. Generally,
red (squares) are messages from the Source Broker and blue (diamonds) are messages
from the Target Broker, or the brokers publisher respectively. All plots are clipped to
±2 seconds around the migration process.

The first two plots on the first page give a visual representation and verification of the
migration process. The top two plots on the second page show the correlation between
the arrival time, departure time and sequence number. The middle two plots show the
latency in by arrival time and sequence number. The bottom plot shows the empirical
cumulative distribution of message latencies.

1. Migration verification plot: This plot visualizes all messages by its sequence
number. Each symbol represents a produced message (first and fifth row) or a
received message (second to fourth row). It is easy to see, if the publication process
on the publishers worked well and if all necessary messages generated and sent.
The second and fourth row show all messages that were received by the Client from
the respective publisher through the broker. The third row combines the second
and fourth row to give a complete image of all messages that were received by the
Client. It is easy to see, if the QoS criteria for QoS 0, QoS 1 and QoS 2 are fulfilled,
by checking duplicates (overlapping symbols) or missing messages (gaps).

2. Migration process plot This plot gives a visual representation and provides a
good insight on the details of the migration process. It shows all messages by the
time they were generated on the publisher (first and last row) to the time they
were received at the Client (second and fourth row). The middle row combines all
received messages from the second and fourth row and shows the actual load on
the Client. The orange arrows connect the corresponding messages from start to
finish. The wider the angle of the arrow, the higher is the latency of the message.
The green lines indicate a migration state changes. The first and the last green line
are the INITIALIZED and FINISHED states. If there are two lines in between,
then the synchronization process was triggered and the SYNCING and SYNCED
states of the particular migration process on the broker are shown as well.

3. Departure time to arrival time correlation plot: The top-left plot shows the
correlation between the departure time and the arrival time for each message. This
type of plot was also used in [CCWS03] to show the effects of a migration process.

93

6. Evaluation

The green lines mark the migration start (INITIALIZED) and finish (FINISHED)
on the Source Broker. The violet line indicated the point in time, when the Client
connection on the Target Broker got acknowledged and message synchronization
starts (MIGTOACK)17.

4. Message sequence number to arrival time correlation plot: The top-right
plot shows the correlation between the message sequence number to the arrival
time for each message.

5. Latency by arrival time plot: The bottom-left plot shows the latency of each
message by the arrival time.

6. Latency by sequence number plot: The bottom-right plot shows the latency
of each message by its sequence number.

7. Empirical CDF plot: This plot visualizes the empirical cumulative distribution
of the message latency for the Source Broker (red) and the Target Broker (blue).
Caused by the experiment design and network setup, the messages from the Target
Broker have a lower latency compared to messages from the Source Broker.

17Messages that appear slightly after (right to) the green line, are due the fact, that these messages
arrived at the Client through the network latency a bit later.

94

6.3. Empirical Experiments

(This page is empty to show the experiment result pages next to each other.)

95

6. Evaluation

Target Broker is ahead of the Source Broker - QoS 0

This experiment shows a subscription with QoS 0 with the Target Broker ahead of the
Source Broker. The plots show that there is a message gap and 35 messages got lost,
since missed messages are not requested during the migration process, and no message
duplicates were detected. It is also visible that there was no synchronization necessary
on the Target Broker, as the SYNCING and SYNCED marks are right after each other.

Experiment summary:

Experiment Topic QoS n losses n duplicates Validity
ahead-A0 topicA QoS 0 25 0 X

210 220 230 240 250

Message by sequence number − topicA − QoS 0

message sequence number

Target
Publisher

Received

Combined

Received

Source
Publisher

23000 24000 25000 26000 27000

Messages by time − topicA − QoS 0

time (ms)

Target
Publisher

Received

Combined

Received

Source
Publisher

● ●

● ●

● ●

● ●

● ●

96

6.3. Empirical Experiments

23000 24000 25000 26000 27000

23
00

0
24

00
0

25
00

0
26

00
0

27
00

0

Departure/Arrival Trace − topicA − QoS 0

arrival time (ms)

de
pa

rt
ur

e
tim

e
(m

s)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

23000 24000 25000 26000 27000

21
0

22
0

23
0

24
0

25
0

26
0

27
0

Time correlation − topicA − QoS 0

time (ms)
m

es
sa

ge
 s

eq
ue

nc
e

nu
m

be
r

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

23000 24000 25000 26000 27000

0
10

20
30

40
50

60

Message latency by arrival time − topicA − QoS 0

arrival time (ms)

la
te

nc
y

(m
s)

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

210 220 230 240 250

0
10

20
30

40
50

60
Message latency by sequence number − topicA − QoS 0

message sequence number

la
te

nc
y

(m
s)

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical CDF − topicA − QoS 0

latency (ms)

pr
ob

ab
ili

ty

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

97

6. Evaluation

Target Broker is ahead of the Source Broker - QoS 1

This experiment shows a subscription with QoS 1 with the Target Broker ahead of
the Source Broker. Missed messages are requested from the Source Broker, resulting
in not lost messages. No message got received twice. Neverthelesse, since after the
synchronization process on the Source Broker, a MIGSYNCACK and then a MIGACK
packet have to be sent, in which the Source Broker still sends messages, duplicate messages
could occur, even if the Target Broker is ahead of the Source Broker, but this was not
the case during this run. Therefore, both brokers send the same messages after the
synchronization point until the migration process finishes and the Source Broker stops
sending messages.

Experiment summary:

Experiment Topic QoS n losses n duplicates Validity
ahead-A1 topicA QoS 1 0 0 X

210 220 230 240 250 260 270

Message by sequence number − topicA − QoS 1

message sequence number

Target
Publisher

Received

Combined

Received

Source
Publisher

23000 24000 25000 26000 27000 28000 29000

Messages by time − topicA − QoS 1

time (ms)

Target
Publisher

Received

Combined

Received

Source
Publisher

● ●

● ●

● ●

● ●

● ●● ●

98

6.3. Empirical Experiments

23000 24000 25000 26000 27000 28000 29000

23
00

0
24

00
0

25
00

0
26

00
0

27
00

0
28

00
0

29
00

0

Departure/Arrival Trace − topicA − QoS 1

arrival time (ms)

de
pa

rt
ur

e
tim

e
(m

s)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

23000 24000 25000 26000 27000 28000 29000

22
0

24
0

26
0

28
0

Time correlation − topicA − QoS 1

time (ms)
m

es
sa

ge
 s

eq
ue

nc
e

nu
m

be
r

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

23000 24000 25000 26000 27000 28000 29000

0
10

20
30

40
50

60
70

Message latency by arrival time − topicA − QoS 1

arrival time (ms)

la
te

nc
y

(m
s)

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●
●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

210 220 230 240 250 260 270

0
10

20
30

40
50

60
70

Message latency by sequence number − topicA − QoS 1

message sequence number

la
te

nc
y

(m
s)

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical CDF − topicA − QoS 1

latency (ms)

pr
ob

ab
ili

ty

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

99

6. Evaluation

Target Broker is ahead of the Source Broker - QoS 2

This experiment shows a subscription with QoS 2 with the Target Broker ahead of the
Source Broker. Latency outliners are due the migration process, when the Target Broker
has to request missing messages from the Source Broker. These messages are then send
from the store of the Source Broker and therefore have a higher latency. Some messages
were even ahead of the Source Broker and send on arrival, resulting in no lost messages.
No message got send and received multiple times within the migration process.

Experiment summary:

Experiment Topic QoS n losses n duplicates Validity
ahead-A2 topicA QoS 2 0 0 X

210 220 230 240 250 260 270

Message by sequence number − topicA − QoS 2

message sequence number

Target
Publisher

Received

Combined

Received

Source
Publisher

23000 24000 25000 26000 27000 28000 29000

Messages by time − topicA − QoS 2

time (ms)

Target
Publisher

Received

Combined

Received

Source
Publisher

● ●

● ●

● ●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●

100

6.3. Empirical Experiments

23000 24000 25000 26000 27000 28000 29000

23
00

0
24

00
0

25
00

0
26

00
0

27
00

0
28

00
0

29
00

0

Departure/Arrival Trace − topicA − QoS 2

arrival time (ms)

de
pa

rt
ur

e
tim

e
(m

s)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

23000 24000 25000 26000 27000 28000 29000

22
0

24
0

26
0

28
0

Time correlation − topicA − QoS 2

time (ms)
m

es
sa

ge
 s

eq
ue

nc
e

nu
m

be
r

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

23000 24000 25000 26000 27000 28000 29000

0
10

0
20

0
30

0
40

0
50

0

Message latency by arrival time − topicA − QoS 2

arrival time (ms)

la
te

nc
y

(m
s)

● ● ● ●
●

●

● ●
●

●
● ●

●
●

● ●

●

●
● ● ●

●
● ●

●
● ● ●

●

●

●
● ● ●

●

●

●

●

●

●
●

● ● ● ●
●

● ●
● ● ● ●

●
●

●

● ●

●

●

● ●
●

●
● ● ● ● ●

●

●

●

● ●
● ●

●

● ●

●
●

●
●

● ●
●

●
● ●

● ●
● ●

● ●
●

● ● ● ●
● ● ●

● ●
● ● ● ●

210 220 230 240 250 260 270

0
10

0
20

0
30

0
40

0
50

0
Message latency by sequence number − topicA − QoS 2

message sequence number

la
te

nc
y

(m
s)

● ●
●

●

● ●
●

●
● ●

●
●

● ●

●

●
● ● ●

●
● ●

●
● ● ●

●

●

●
● ● ●

●

●

●

●

●

●
●

● ● ● ●
●

● ●
● ● ● ●

●
●

●

● ●

●

●

● ●
●

●
● ● ● ● ●

●

●

●

● ●
● ●

●

● ●

●
●

●
●

● ●
●

●
● ●

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical CDF − topicA − QoS 2

latency (ms)

pr
ob

ab
ili

ty

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●
●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

101

6. Evaluation

Target Broker is synced with the Source Broker - QoS 0

This experiment shows a subscription with QoS 0 with the Target Broker synced with
the Source Broker. The Target Broker can immediately finish the migration process18.
No messages got lost or arrived multiple times within the migration process.

Experiment summary:

Experiment Topic QoS n losses n duplicates Validity
synced-A0 topicA QoS 0 0 0 X

230 240 250 260 270

Message by sequence number − topicA − QoS 0

message sequence number

Target
Publisher

Received

Combined

Received

Source
Publisher

23000 24000 25000 26000 27000

Messages by time − topicA − QoS 0

time (ms)

Target
Publisher

Received

Combined

Received

Source
Publisher

● ●

● ●

● ●

● ●

● ●

18Since our synced scenarios are not 100 % accurate, the Target Broker has to wait to pass three
messages, since it was slightly behind.

102

6.3. Empirical Experiments

23000 24000 25000 26000 27000

23
00

0
24

00
0

25
00

0
26

00
0

27
00

0

Departure/Arrival Trace − topicA − QoS 0

arrival time (ms)

de
pa

rt
ur

e
tim

e
(m

s)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

23000 24000 25000 26000 27000

23
0

24
0

25
0

26
0

27
0

Time correlation − topicA − QoS 0

time (ms)
m

es
sa

ge
 s

eq
ue

nc
e

nu
m

be
r

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

23000 24000 25000 26000 27000

0
10

20
30

40
50

60

Message latency by arrival time − topicA − QoS 0

arrival time (ms)

la
te

nc
y

(m
s)

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

● ●

●

●

●

● ●

●

●

● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

230 240 250 260 270

0
10

20
30

40
50

60
Message latency by sequence number − topicA − QoS 0

message sequence number

la
te

nc
y

(m
s)

●

●

●
●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

● ●

●

●

●

● ●

●

●

● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical CDF − topicA − QoS 0

latency (ms)

pr
ob

ab
ili

ty

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

103

6. Evaluation

Target Broker is synced with the Source Broker - QoS 1

This experiment shows a subscription with QoS 1 with the Target Broker synced with
the Source Broker. The Target Broker can immediately finish the migration process19.
Since the Source Broker does not stop sending and the Target Broker immediately starts
sending messages, both brokers are sending messages to the Client until the Target Broker
is synchronized. Since the Source Broker send messages the whole time, some messages
get duplicated by the Target Broker as well and sent to the Client. Nevertheless, no
message got lost within the migration process.

Experiment summary:

Experiment Topic QoS n losses n duplicates Validity
synced-A1 topicA QoS 1 0 9 X

230 240 250 260 270

Message by sequence number − topicA − QoS 1

message sequence number

Target
Publisher

Received

Combined

Received

Source
Publisher

23000 24000 25000 26000 27000

Messages by time − topicA − QoS 1

time (ms)

Target
Publisher

Received

Combined

Received

Source
Publisher

● ●

● ●

● ●

● ●

● ●● ●

19Since our synced scenarios are not 100 % accurate, the Target Broker has to wait to pass two
messages, since it was slightly behind.

104

6.3. Empirical Experiments

23000 24000 25000 26000 27000

23
00

0
24

00
0

25
00

0
26

00
0

27
00

0

Departure/Arrival Trace − topicA − QoS 1

arrival time (ms)

de
pa

rt
ur

e
tim

e
(m

s)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

23000 24000 25000 26000 27000

23
0

24
0

25
0

26
0

27
0

Time correlation − topicA − QoS 1

time (ms)
m

es
sa

ge
 s

eq
ue

nc
e

nu
m

be
r

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

23000 24000 25000 26000 27000

0
10

20
30

40
50

60

Message latency by arrival time − topicA − QoS 1

arrival time (ms)

la
te

nc
y

(m
s)

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●
● ●

●

●
●

●
●

●

●
●

● ●

●

●

●

230 240 250 260 270

0
10

20
30

40
50

60
Message latency by sequence number − topicA − QoS 1

message sequence number

la
te

nc
y

(m
s)

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●
● ●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical CDF − topicA − QoS 1

latency (ms)

pr
ob

ab
ili

ty

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

105

6. Evaluation

Target Broker is synced with the Source Broker - QoS 2

This experiment shows a subscription with QoS 2 with the Target Broker synced with
the Source Broker. The Target Broker can immediately finish the migration process20.
No message got send and received multiple times within the migration process.

Experiment summary:

Experiment Topic QoS n losses n duplicates Validity
synced-A2 topicA QoS 2 0 0 X

230 240 250 260 270

Message by sequence number − topicA − QoS 2

message sequence number

Target
Publisher

Received

Combined

Received

Source
Publisher

23000 24000 25000 26000 27000

Messages by time − topicA − QoS 2

time (ms)

Target
Publisher

Received

Combined

Received

Source
Publisher

● ●

● ●

● ●

● ●

● ●

20Since our synced scenarios are not 100 % accurate, the Target Broker has to wait to pass three
messages, since it was slightly behind.

106

6.3. Empirical Experiments

23000 24000 25000 26000 27000

23
00

0
24

00
0

25
00

0
26

00
0

27
00

0

Departure/Arrival Trace − topicA − QoS 2

arrival time (ms)

de
pa

rt
ur

e
tim

e
(m

s)

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

23000 24000 25000 26000 27000

23
0

24
0

25
0

26
0

27
0

Time correlation − topicA − QoS 2

time (ms)
m

es
sa

ge
 s

eq
ue

nc
e

nu
m

be
r

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

23000 24000 25000 26000 27000

0
10

20
30

40
50

60

Message latency by arrival time − topicA − QoS 2

arrival time (ms)

la
te

nc
y

(m
s)

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

230 240 250 260 270

0
10

20
30

40
50

60
Message latency by sequence number − topicA − QoS 2

message sequence number

la
te

nc
y

(m
s)

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical CDF − topicA − QoS 2

latency (ms)

pr
ob

ab
ili

ty

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

107

6. Evaluation

Target Broker is behind of the Source Broker - QoS 0

This experiment shows a subscription with QoS 0 with the Target Broker behind of the
Source Broker. Since the Target Broker was behind, no messages were missed. The
Target Broker had to wait sending messages during its synchronization process, resulting
in a message gap for the Client. No messages arrived multiple times within the migration
process.

Experiment summary:

Experiment Topic QoS n losses n duplicates Validity
behind-A0 topicA QoS 0 0 0 X

230 240 250 260 270 280 290

Message by sequence number − topicA − QoS 0

message sequence number

Target
Publisher

Received

Combined

Received

Source
Publisher

23000 24000 25000 26000 27000 28000 29000

Messages by time − topicA − QoS 0

time (ms)

Target
Publisher

Received

Combined

Received

Source
Publisher

● ●

● ●

● ●

● ●

● ●

108

6.3. Empirical Experiments

23000 24000 25000 26000 27000 28000 29000

23
00

0
24

00
0

25
00

0
26

00
0

27
00

0
28

00
0

Departure/Arrival Trace − topicA − QoS 0

arrival time (ms)

de
pa

rt
ur

e
tim

e
(m

s)

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

23000 24000 25000 26000 27000 28000 29000

23
0

24
0

25
0

26
0

27
0

Time correlation − topicA − QoS 0

time (ms)
m

es
sa

ge
 s

eq
ue

nc
e

nu
m

be
r

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

23000 24000 25000 26000 27000 28000 29000

0
10

20
30

40
50

60
70

Message latency by arrival time − topicA − QoS 0

arrival time (ms)

la
te

nc
y

(m
s)

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

230 240 250 260 270 280 290

0
10

20
30

40
50

60
Message latency by sequence number − topicA − QoS 0

message sequence number

la
te

nc
y

(m
s)

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical CDF − topicA − QoS 0

latency (ms)

pr
ob

ab
ili

ty

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

109

6. Evaluation

Target Broker is behind of the Source Broker - QoS 1

This experiment shows a subscription with QoS 1 with the Target Broker behind of the
Source Broker. Since the Target Broker is behind, it has to wait until it is synchronized.
Since the Source Broker does not stop sending and the Target Broker immediately starts
sending messages, both brokers are sending messages to the Client until the Target Broker
is synchronized. Since the Source Broker send messages the whole time, many messages
get duplicated by the Target Broker as well and sent to the Client. Nevertheless, no
message got lost within the migration process.

Experiment summary:

Experiment Topic QoS n losses n duplicates Validity
behind-A1 topicA QoS 1 0 37 X

230 240 250 260 270 280 290

Message by sequence number − topicA − QoS 1

message sequence number

Target
Publisher

Received

Combined

Received

Source
Publisher

23000 24000 25000 26000 27000 28000

Messages by time − topicA − QoS 1

time (ms)

Target
Publisher

Received

Combined

Received

Source
Publisher

● ●

● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●

● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●

110

6.3. Empirical Experiments

23000 24000 25000 26000 27000 28000

23
00

0
24

00
0

25
00

0
26

00
0

27
00

0
28

00
0

Departure/Arrival Trace − topicA − QoS 1

arrival time (ms)

de
pa

rt
ur

e
tim

e
(m

s)

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

23000 24000 25000 26000 27000 28000

23
0

24
0

25
0

26
0

27
0

Time correlation − topicA − QoS 1

time (ms)
m

es
sa

ge
 s

eq
ue

nc
e

nu
m

be
r

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

23000 24000 25000 26000 27000 28000

0
10

20
30

40
50

60
70

Message latency by arrival time − topicA − QoS 1

arrival time (ms)

la
te

nc
y

(m
s)●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●
●

● ● ●

230 240 250 260 270 280 290

0
10

20
30

40
50

60
70

Message latency by sequence number − topicA − QoS 1

message sequence number

la
te

nc
y

(m
s)

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●
●

● ● ●

●

● ●

●

● ●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical CDF − topicA − QoS 1

latency (ms)

pr
ob

ab
ili

ty

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

111

6. Evaluation

Target Broker is behind of the Source Broker - QoS 2

This experiment shows a subscription with QoS 2 with the Target Broker behind of the
Source Broker. Similar to QoS 1, since the Target Broker is behind, it just has to wait to
continue sending messages. Caused by the synchronization delta of the brokers, a gap for
the Client arises, in which he does not receive any message. Nevertheless not duplicates
and no losses are the result of the migration process.

Experiment summary:

Experiment Topic QoS n losses n duplicates Validity
behind-A2 topicA QoS 2 0 0 X

230 240 250 260 270 280 290

Message by sequence number − topicA − QoS 2

message sequence number

Target
Publisher

Received

Combined

Received

Source
Publisher

23000 24000 25000 26000 27000 28000

Messages by time − topicA − QoS 2

time (ms)

Target
Publisher

Received

Combined

Received

Source
Publisher

● ●

● ●

● ●

● ●

● ●

112

6.3. Empirical Experiments

23000 24000 25000 26000 27000 28000

23
00

0
24

00
0

25
00

0
26

00
0

27
00

0
28

00
0

Departure/Arrival Trace − topicA − QoS 2

arrival time (ms)

de
pa

rt
ur

e
tim

e
(m

s)

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

23000 24000 25000 26000 27000 28000

23
0

24
0

25
0

26
0

27
0

Time correlation − topicA − QoS 2

time (ms)
m

es
sa

ge
 s

eq
ue

nc
e

nu
m

be
r

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

23000 24000 25000 26000 27000 28000

0
10

20
30

40
50

60
70

Message latency by arrival time − topicA − QoS 2

arrival time (ms)

la
te

nc
y

(m
s)

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

230 240 250 260 270 280 290

0
10

20
30

40
50

60
70

Message latency by sequence number − topicA − QoS 2

message sequence number

la
te

nc
y

(m
s)

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical CDF − topicA − QoS 2

latency (ms)

pr
ob

ab
ili

ty

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

113

6. Evaluation

6.3.4 Experiments Summary

From the plots and the results we derive that the migration process was successfully
performed and that after the Client migration, messages are delivered faster with a lower
latency from the Target Broker to the Client compared to deliveries from the Source
Broker, as expected by the experiment setup.

A summarized overview of our system strains of lost and duplicated messages during the
migration process for all experiments runs is shown in Table 6.4. Furthermore, regarding
to the correctness of our solution approach, the delivery guarantees for each subscription
in every experiment through the migration process are valid.

Table 6.4: Experiment result - Total message losses and duplicates

Experiment Topic QoS losses duplicates Validity
ahead-A0 topicA QoS 0 247 0 X
ahead-A1 topicA QoS 1 0 1 X
ahead-A2 topicA QoS 2 0 0 X
ahead-A0_B1_C2 topicA QoS 0 254 0 X

topicB QoS 1 0 7 X
topicC QoS 2 0 0 X

synced-A0 topicA QoS 0 0 0 X
synced-A1 topicA QoS 1 0 101 X
synced-A2 topicA QoS 2 0 0 X
synced-A0_B1_C2 topicA QoS 0 0 0 X

topicB QoS 1 0 98 X
topicC QoS 2 0 0 X

behind-A0 topicA QoS 0 0 0 X
behind-A1 topicA QoS 1 0 358 X
behind-A2 topicA QoS 2 0 0 X
behind-A0_B1_C2 topicA QoS 0 0 0 X

topicB QoS 1 0 353 X
topicC QoS 2 0 0 X

mixed-A0_B1_C2_D0_E1_F2 topicA QoS 0 261 0 X
topicB QoS 1 0 2 X
topicC QoS 2 0 0 X
topicD QoS 0 1 0 X
topicE QoS 1 0 402 X
topicF QoS 2 0 0 X

114

6.3. Empirical Experiments

The responsiveness of our solution approach, especially the duration of the whole migration
depends on multiple parameters like:

• network delays

• amount of subscriptions of a client

• the QoS for each subscription

• the synchronization state of a subscriptions between the two brokers

The migration process durations of our experiments are visualized in Figure 6.4. The
visualization shows, that the migration process time is at its minimum, when the brokers
are synchronized21, or when the Target Broker is ahead and QoS 0 is configured, since
missed messages do not get synchronized and the Target Broker just continues sending
messages. The minimum migration time for our scenario is around 500-800 ms.

The visualization also shows, the migration duration, when the Target Broker is behind,
is roughly the same for all QoS, since the synchronization process for all QoS is the same
(the Target Broker has to wait to be synced). For the cases where the Target Broker
is ahead, QoS 1 and QoS 2 are roughly the same and higher compared to QoS 0, since
the Target Broker has to synchronize with the Source Broker; with QoS 0, this is not
necessary and therefore the migration duration is lower.

In the visualization, we can also see, that the migration time increases, if the brokers are
not synced, i.e. the Target Broker is behind or ahead of the Source Broker, as expected.

●●

●

●●

●

ahead−A0

ahead−A0_B1_C2

ahead−A1

ahead−A2

behind−A0

behind−A0_B1_C2

behind−A1

behind−A2

mixed−A0_B1_C2_D0_E1_F2

synced−A0

synced−A0_B1_C2

synced−A1

synced−A2

0

50
0

10
00

15
00

20
00

25
00

30
00

Migration Duration (ms)

Figure 6.4: Experiment Result: Migration process durations
21Since our synced scenarios are not 100 % accurate, the Target Broker is slightly behind and therefore

the migration time increases a little bit.

115

6. Evaluation

When a Client has multiple subscriptions, as with ahead-A0_B1_C2, behind-A0_B1\
_C2 and mixed-A0_B1_C2_D0_E1_F2, the migration process duration is always the
duration of the longest subscription synchronization process time. For example, if there
are three subscriptions and two SYNCED immediately on the Target Broker, but the
third one needs to request missing messages from the Source Broker, only if these are
processed, the last subscription is set to SYNCED as well, and therefore only then the
whole migration is set to SYNCED and afterwards FINISHED. This leads to an increase
of message duplicates or storage, since the final sending of MIGACK will be postponed.

These conclusions also are visible in the following figures by representing the synchroniza-
tion states over time on the Source Broker and on the Target Broker for the experiment
mixed-A0_B1_C2_D0_E1_F2. The top part shows see all topics with its subscription
states22 on their time axis and the bottom part shows the same for the migration state
on a particular broker system. In orange circle highlights the SYNCED state of each
topic and the migration. The visualization shows, that the migration state on the Target
Broker is set to SYNCED (indicated with the orange line), only if all subscriptions are
SYNCED. In this example, topicB or topicC were the last subscriptions on the Target
Broker that finished the synchronization and blocked sending the MIGACK packet.

0 500 1000 1500 2000 2500

States in time − Source Broker

migration process time (ms)

Migration

topicA − QoS 0

topicB − QoS 1

topicC − QoS 2

topicD − QoS 0

topicE − QoS 1

topicF − QoS 2

●
●

●
●

●

INITIALIZED
SYNCING
SYNCED
FINISHED

0 500 1000 1500 2000 2500

States in time − Target Broker

migration process time (ms)

Migration

topicA − QoS 0

topicB − QoS 1

topicC − QoS 2

topicD − QoS 0

topicE − QoS 1

topicF − QoS 2

●
●

●
●

●
●
● INITIALIZED

SYNCING
SYNCED
FINISHED

In the next section, we analyse the migration time and other aspects theoretically.

22The subscription states SYNCING_THIS and SYNCING_OPPONENT are not shown, since they
are just substates of the SYNCING state and therefore not relevant for our point.

116

6.4. Theoretical Analysis

6.4 Theoretical Analysis

In the following sections, we analyze our solution approach theoretically. We define a
mathematical model of it and describe relations and outcomes in time and load to give
answers to responsiveness and to the systems strains of our solution approach. We further
divide our results into three buckets depending on the synchronization state and present
our findings.

6.4.1 Mathematical Model

We define a simplified mathematically model to analyze responsiveness and systems
strains of our solution approach. The simplification does not include the processing time
of the individual systems or any variances, like network latencies. We implemented these
formulas with R (Listing 8.3 shows the calculation function) to verify and plot values
and to see correlations between different properties23.

We use the following values to for visualization: ∆tNSB,T B
= 40, ∆tNSB,C

= 40, ∆tNT B,C
=

10, tv = 10, ∆tPSB
= 500, ∆tPT B

= −800, ..., 800.

Figure 6.5 shows the mathematical model of the migration process with annotated
variables that we use in the following.

MIGACK

MIGTOACK

CONACK
CONNECT

Migration Process, Mathematical Model

MIGRATE

MIGTO

MIGSYNC

MIGSYNCACK

Source Broker

migrate

Target Broker Client

tSSB

tST B

∆tNSB,T B

∆tNT B,C

∆tCcon

∆tS

∆tmig

∆tsyncSB ∆tsyncT B

Figure 6.5: Mathematical model of the migration process with annotated variables.

23The following formulas analyze the migration process of a single subscription. An extensions of our
mathematical model for multiple subscriptions is left for future work.

117

6. Evaluation

The latencies between individual systems in the network are defined as follows:
∆tNSB,C

is the link latency between the Source Broker and the Client.
∆tNT B,C

is the link latency between the Target Broker and the Client.
∆tNSB,T B

is link latency between the Source Broker and the Target Broker.
The link latencies are commutative, ∆tNx,y = ∆tNy,x .

The duration for a Target Broker to initialize a connection to the Client ∆tCcon is four
times the link latency between the Target Broker and the Client for sending the MIGTO,
CONNECT, CONACK and MIGTOACK packets.

∆tCcon = 4 ∗∆tNT B,C

The network link latency difference from the brokers to the Client is defined by ∆tN .

The synchronization state of the brokers for a subscription is defined by ∆tS .

To determine the synchronization state ∆tS , we have to derive ∆tP , that defines the
difference between the arrival time of the same message at a Source Broker, ∆tPSB

, and
at the Target Broker, ∆tPT B

.

∆tP = ∆tPSB
−∆tPT B

The point in time where the Source Broker defines its synchronization point is referred
by tSSB

and is defined with 0 since this is the point of the initialization of the migration
process. The synchronization point of the Target Broker tST B

is ahead of the synchro-
nization point from the Source Broker adding the time for the MIGRATE packet and
the establishment of the Client connection.

tSSB
= 0

tST B
= tSSB

+ ∆tNSB,T B
+ ∆tCcon

The synchronization state ∆tS is the difference between the current state of the Source
Broker tSSB

and the Target Broker tST B
and the delta of the time the message arrive at

the brokers, ∆tP .

∆tS = tSSB
− tST B

+ ∆tP

If ∆tS > 0, the Target Broker is ahead of the Source Broker.
If ∆tS = 0, the Target Broker is synced with the Source Broker.
If ∆tS < 0, the Target Broker is behind of the Source Broker.

118

6.4. Theoretical Analysis

6.4.2 Synchronization Process Time

Depending on the QoS and the synchronization state ∆tS , the time it takes to synchronize
the Source Broker and Target broker is different.

We visualized the different synchronization processes in Figure 6.6, Figure 6.7 and Fig-
ure 6.8. The circles represent the message stream for each broker. The msg

{source,target}
lastP rocId

of the Source Broker and Target Broker are marked in red and are respectively tS{SB,T B} .
The synchronization starts when the Target Broker calculated the synchronization state,
starts syncing (SYNCING) and ends when both message streams are synchronized
(SYNCED), marked with the yellow circle. The whole synchronization process path is
marked bold.

The synchronization duration ∆tsyncSB on the Source Broker depends on the value
of the synchronization delta, ∆tS . If synchronization is necessary (∆tS > 0), and if
the synchronization delta is lower than the messages that have already passed in the
meanwhile (∆tS < (tST B

+ ∆tNT B,SB
)), then the synchronization duration is 0, since all

messages can be served from the message store. Otherwise, if synchronization is necessary
and if there are still some messages ahead, we have to wait for these messages to be sent
(∆tS − (tST B

+ ∆tNT B,SB
)).

If no synchronization between the brokers is necessary, the synchronization duration on
the Source Broker is 0.

∆tsyncSB =
{

max(∆tS − (tST B
+ ∆tNT B,SB

), 0), ∆tS > 0 (ahead)
0, otherwise (synced, behind)

The synchronization duration time on the Target Broker ∆tsyncT B in case of requesting
missing message from the Source Broker is determined by sending a MIGSYNC packet
to the Source Broker, ∆tNT B,SB

, the synchronization duration of the Source Broker,
∆tsyncSB , and finally with a MIGSYNCACK packet that is sent back to the Target
Broker, ∆tNSB,T B

.
Otherwise, the synchronization duration ∆tsyncT B on the Target Broker is the absolute
value of the synchronization difference ∆tS ; the time it takes to synchronize locally.

∆tsyncT B =


∆tNT B,SB

+ ∆tsyncSB + ∆tNSB,T B
, ∆tS > 0 (ahead)

0, ∆tS = 0 (synced)
−∆tS , ∆tS < 0 (behind)

119

6. Evaluation

SYNCED
SYNCING

Target BrokerSource Broker

(a) ahead, ∆tS > 0

SYNCING
SYNCED

Target BrokerSource Broker

(b) synced, ∆tS = 0

SYNCING

SYNCED

Target BrokerSource Broker

(c) behind, ∆tS < 0

Figure 6.6: Synchronization process for QoS 0

SYNCING
SYNCED

Target BrokerSource Broker

(a) ahead, ∆tS > 0

!

SYNCING
SYNCED

Target BrokerSource Broker

(b) synced, ∆tS = 0

!

SYNCED

SYNCING

Target BrokerSource Broker

(c) behind, ∆tS < 0

Figure 6.7: Synchronization process for QoS 1

SYNCING
SYNCED

Target BrokerSource Broker

(a) ahead, ∆tS > 0

SYNCING
SYNCED

Target BrokerSource Broker

(b) synced, ∆tS = 0

SYNCING

SYNCED

Target BrokerSource Broker

(c) behind, ∆tS < 0

Figure 6.8: Synchronization process for QoS 2

120

6.4. Theoretical Analysis

∆tS (ms)

S
yn

ch
ro

ni
za

tio
n

du
ra

tio
n

(m
s)

−200 −100 0 100 200

0

100

200

300

400

500

600

●●●

● QoS 0
QoS 1
QoS 2

Figure 6.9: Synchronization process time for each QoS based on the synchronization
delta ∆tS

From these formulas, we derive the synchronization process durations ∆t
{qos0,qos1,qos2}
sync

for each QoS as follows:

∆tqos0
sync =


0, ∆tS > 0 (ahead)
0, ∆tS = 0 (synced)
∆tsyncT B , ∆tS < 0 (behind)

∆tqos1
sync =


∆tNT B,SB

+ ∆tsyncSB , ∆tS > 0 (ahead)
0, ∆tS = 0 (synced)
∆tsyncT B , ∆tS < 0 (behind)

∆tqos1
sync =


∆tNT B,SB

+ ∆tsyncSB , ∆tS > 0 (ahead)
0, ∆tS = 0 (synced)
∆tsyncT B , ∆tS < 0 (behind)

These time spans define the minimum time it takes to complete the migration process as
we defined it in our work. Figure 6.9 visualizes our formulas.

Our bucket analysis shows the following results for the synchronization process time:

• behind bucket: ∆tS < −120

– QoS 0, QoS 1, QoS 2: The synchronization process time lower bound is
120 ms and continuously increases.

121

6. Evaluation

• synced bucket: −120 ≤ ∆tS ≤ 120

– QoS 0, QoS 1, QoS 2: The synchronization process time bound is between
0 and 120 ms.

• ahead bucket: 120 < ∆tS

– QoS 0: The synchronization process time is 0 ms.

– QoS 1, QoS 2: The synchronization process time lower bound is 100 ms and
continuously increases.

6.4.3 Migration Process Time

The duration of the complete migration process ∆tmig is defined as follows. It consists
of the time to send a MIGRATE packet, to establish a connection with the Client, to
perform the synchronization process and to send a MIGACK packet.

∆tmig = ∆tNSB,T B
+ ∆tCcon + ∆tsyncT B + ∆tNT B,SB

The minimum migration duration is reached, when no synchronization is necessary,
∆tsyncT B = 0.

∆tmigmin = ∆tNSB,T B
+ ∆tCcon + ∆tNT B,SB

Figure 6.10 visualizes the migration duration depending on the synchronization state ∆tS

for each QoS. The migration process duration is the lowest for all QoS when the brokers
are synced (∆tS = 0) with ∆tmigmin = 40 + (4 ∗ 10) + 40 = 120 ms. Otherwise, depending
on the QoS, some time for the synchronization process is necessary. The farther the
Target Broker is behind the Source Broker (∆tS < 0), the longer the migration process
will take for all QoS, since the Target Broker has to wait to be synced. If the Target
Broker is ahead of the Source Broker (∆tS > 0), the duration differentiates. For QoS 0
the migration process is at the minimum time, since lost messages are valid. For QoS 1
and QoS 2, the duration raises, since the Target Broker has to send MIGSYNC packet to
the Source Broker in order to trigger sending missed messages. As long as messages can
be served from the store on the Source Broker, the migration duration stays constant (0
< ∆tS ≤ 120). If the Source Broker also has to wait for further messages, the migration
duration raises (∆tS > 120) for QoS 1 and QoS 2.

The migration process time bucket analysis similar to the buckets (see previous section)
of the synchronization process, with a positive shift (+120 ms), since the calculation also
includes the MIGRATE packet and the client connection time.

122

6.4. Theoretical Analysis

∆tS (ms)

M
ig

ra
tio

n
du

ra
tio

n
(m

s)

−200 −100 0 100 200

0

100

200

300

400

500

600

●●●

● QoS 0
QoS 1
QoS 2

Figure 6.10: Complete migration process time for each QoS based on the synchronization
delta ∆tS

Our bucket analysis shows the following results for the migration process time:

• behind bucket: ∆tS < −120

– QoS 0, QoS 1, QoS 2: The migration process time lower bound is 240 ms
and continuously increases.

• synced bucket: −120 ≤ ∆tS ≤ 120

– QoS 0, QoS 1, QoS 2: The migration process time bound is between 120
and 240 ms.

• ahead bucket: 120 < ∆tS

– QoS 0: The migration process time is 120 ms.

– QoS 1, QoS 2: The migration process time lower bound is 200 ms and
continuously increases.

6.4.4 Loss, Duplication and Storage Time

By design, message loss is part of QoS 0, duplication of QoS 1 and storing messages
is needed for QoS 2. In the following we are describing the time spans for each design
characteristic. Figure 6.11 visualizes the durations for lost, duplicated and stored messages
depending on the synchronization delta.

123

6. Evaluation

Message Loss for QoS 0

Message loss happens for QoS 0 if the Target Broker is ahead of the Source Broker
(∆tS < 0), since missed messages are not synchronized. In this case the time span of the
synchronization delta related to the time span of lost messages. Otherwise, the Target
Broker will continue sending, where the Source Broker left of and no messages get lost.

∆tqos0loss =
{

∆tS , ∆tS > 0
0, otherwise

Our bucket analysis shows the following results for the message loss time:

• behind bucket: ∆tS < −120
The message loss time is 0 ms.

• synced bucket: −120 ≤ ∆tS ≤ 120
The message loss time bound is between 0 and 100 ms.

• ahead bucket: 120 < ∆tS

The message loss time is lower bound is 120 ms and continuously increases.

Message Duplication for QoS 1

Message duplicates happen for QoS 1, since the Source Broker and the Target Broker are
sending messages.

∆tS (ms)

t (
m

s)

−200 −100 0 100 200

0

100

200

300

400

500

600

0

10

20

30

40

50

60
n

m
es

sa
ge

s

●●●

● QoS 0, Loss
QoS 1, Dupl
QoS 2, Store

Figure 6.11: Time duration of lost, duplicate or stored messages for each QoS based on
the synchronization delta ∆tS

124

6.4. Theoretical Analysis

Since the Source Broker is always sending messages until it receives the final migration
acknowledgment (MIGACK), the duplication time span is at least the whole duration of
the migration process ∆tmig if the brokers are synced. If the Target Broker is behind, it
has to wait ∆tS until it reaches the synchronization point of the Source Broker. During
this time span the Source Broker continues sending messages and therefore the duplication
time span increases. In case the Target Broker is ahead of the Source Broker (∆tS > 0), a
MIGSYNC gets send and depending if the synchronization state is already passed or the
still ahead on the Source Broker, at least in the time span for sending the MIGSYNCACK
and MIGACK packets (∆tNSB,T B

+ ∆tNT B,SB
), duplicate messages will be sent.

∆tqos1dupl =
{

max((tST B
+ ∆tNT B,SB

)−∆tS , 0) + ∆tNSB,T B
+ ∆tNT B,SB

, ∆tS > 0
∆tmig + abs(∆tS) otherwise

Our bucket analysis shows the following results for the message duplication time:

• behind bucket: ∆tS < −120
The message duplication time lower bound is 360 ms and continuously increases.

• synced bucket: −120 ≤ ∆tS ≤ 120
The message duplication time bound is between 80 and 360 ms.

• ahead bucket: 120 < ∆tS

The message duplication time is 80 ms.

Message Storage for QoS 2

Messages get stored for QoS 2 on the Source Broker for the whole migration process
duration, ∆tmig. Nevertheless, if missed messages from the Target Broker need to be
synced by the Source Broker in case the Target Broker is ahead of the Source Broker
(∆tS > 0), the requested messages get released or do not have to be stored, since they
get send immediately. Only messages that do not have been delivered to the Client are
stored. Therefore, the time span where messages actually are stored (and not released) is
the migration process duration, ∆tmig, minus the synchronization delta ∆tS .

∆tqos2store =
{

∆tmig −∆tS , ∆tS > 0
∆tmig, otherwise

Our bucket analysis shows the following results for the message storage time:

• behind bucket: ∆tS < −120
The message storage time lower bound is 240 ms and continuously increases.

125

6. Evaluation

• synced bucket: −120 ≤ ∆tS ≤ 120
The message storage time bound is between 80 and 240 ms.

• ahead bucket: 120 < ∆tS

The message storage time is 80 ms.

6.4.5 Message Arrival Shift

∆td is the trip time of a message from the publisher the subscriber. ∆tdSB
is the trip time

of a message through the Source Broker. ∆tdT B
is the trip time of a message through

the Target Broker.

In order to see when a specific message would arrive at the Client from a Source Broker
or a Target Broker, we have to consider the arrival time of a message at the broker,
∆tP{SB,T B} , and the time it takes to deliver it to the Client from each broker respectively,
∆tN{SB,T B},C

.

∆tdSB
= ∆tPSB

+ ∆tNSB,C

∆tdT B
= ∆tPT B

+ ∆tNT B,C

The delta between these durations defines the arrival delta, ∆tD, of a message for the
migration, i.e. the message arrival shift in the movement from one broker to another:

∆tD = ∆tdT B
−∆tdSB

If ∆tD = 0, messages arrive just-in-time. The client will not notice any delay.
If ∆tD > 0, messages arrive later.
If ∆tD < 0, messages arrive earlier.

6.4.6 First Message from Target Broker

The first message from the Target Broker tfirstMsgT B
will be send immediately if the

brokers are synced or the Target Broker is ahead of the Source Broker. If the Target
Broker is behind the Source Broker, it will wait until it is synced for QoS 0 and QoS 2
and then send the first message to the Client, to avoid duplicate messages. The message
will be received with ∆tNT B,S

later at the Client.

tfirstMsgT B
=

{
tST B

+ ∆tsyncT B , ∆tS < 0 (behind) and qos = 0, 2
tST B

, otherwise

126

6.4. Theoretical Analysis

6.4.7 Message Load

Based on the timing analysis from the previous section we approximately can derive the
amount of messages that are send, lost, duplicated or stored.

The constant production interval for messages on the producer(s), i.e. the time difference
between two successive messages, is defined with tv. The number of messages n that
are processed during a time span t is calculated by dividing it through the production
interval tv:

n = t

tv

With this formula we can calculate the number of lost messages with QoS 0, the number
of duplicate messages with QoS 1 and the upper bound of messages that have to be
stored with QoS 2:

nqos0loss = tqos0loss

tv

nqos1dupl = tqos1dupl

tv

nqos2store = tqos2store

tv

These numbers based on the synchronization ∆tS are visualized in Figure 6.11 on the
right axis.

6.4.8 Network Load

To compare the size of the packets of our migration protocol compared to the packets of
MQTT, we list them in Table 6.5 and in Table 6.6.

There is potential to decrease the packet size of the Migration Protocol packets, since
whole JSON objects as strings are sent (see Listing 8.4). We did not optimize the packet
size, since the focus for our work was on the process itself. The number of migration
packets for an individual migration process is at most six, compared to the number of
PUBLISH packets varies for each application.

Since MQTT can run and our migration protocol runs over TCP/IP, additional ACK
packets (66 bytes) are sent in between other packets to confirm that MQTT packets
arrived.

Depending on the QoS level, MQTT is sending multiple packets in order to guarantee the
delivery for a single message (see Table 6.7). This has to be considered while choosing
the right QoS level for an application.

127

6. Evaluation

Table 6.5: MQTT messages size

Packet Size Description
CONNECT 96 bytes Connect Command
CONACK 70 bytes Connect Ack
PUBLISH 70 bytesi Publish Message
PUBACK 74 bytes Publish Ack
PUBREC 70 bytes Publish Received
PUBREL 70 bytes Publish Release
PUBCOMP 70 bytes Publish Complete

i With our MqttPayload and content.

Table 6.6: Migration Process packets size

Packet Size Description
MIGRATE 935 bytesii Migrate
MIGACK 163 bytes Migrate Ack
MIGTO 177 bytes Migrate To
MIGTOACK 147 bytes Migrate To Ack
MIGSYNC 336 bytesiii Migration Syncronization
MIGSYNCACK 149 bytes Migration Synchronization Ack

ii Size depends on the number of subscriptions (here: 6). iii Size depends on the number of subscriptions
(here: 2).

Beside sending our migration packets, the network load during the migration process
might decrease for QoS 0 subscriptions and it might increase for QoS 1 subscriptions. The
load for QoS 2 subscriptions stays the same, since every message is delivered exactly once.
Therefore, our solution approach has positive effects in an environment with many QoS 0
subscriptions and negative effects in an environment with many QoS 1 subscriptions.

Table 6.7: MQTT packets for each QoS

QoS n Packets Total size
QoS 0 1 PUBLISH 70 bytes
QoS 1 2 PUBLISH, PUBACK 144 bytes
QoS 2 4 PUBLISH, PUBREC, PUBREL, PUBCOMP 280 bytes

128

6.5. Summary & Discussion

6.5 Summary & Discussion

Our evaluation reveals the following results regarding the evaluation aspects:

• Correctness: The correctness was validated and verified with software testing and
empirical experiments. All unit, integration and system tests that were performed
are successful (Section 6.2). Furthermore, the empirical experiments result shows,
that all message delivery are still valid through our migration process (Section 6.3.4).
Therefore, we derive the correctness of our solution approach.

• Responsiveness: With empirical experiments and a theoretical analysis, we stage
the responsiveness of our solution approach. Our experiment results (Section 6.3.4)
reveal, that the migration process time depends on the network delays, amount of
subscriptions of a client, the QoS for each subscription and the synchronization
state of a subscriptions between the two brokers. When multiple subscriptions get
migrated, the migration time depends synchronization process time that takes the
longest. Furthermore, our theoretical analysis shows, that if the brokers within the
synched bucket, the migration process time is minimal for all QoS (Section 6.4.3).

• System Strains: The system strains were analyzed with empirical experiments
and an theoretical analysis. From our message load analysis (Section 6.4.7), we
derive that with QoS 0 subscriptions, we can reduce the network load (discard
messages), while we increase the network load with QoS 1 subscriptions (duplicate
messages). With QoS 2 subscriptions the network load stays the same, since our
solution approach ensures that no messages are lost or duplicated. Our bucket-
analysis shows, that with QoS 0 subscriptions it is better when the Target Broker
is synced or ahead, since the migration process can quickly finish (Section 6.4.4).
With QoS 1 subscriptions it is better when the Target Broker is further ahead,
since the number of duplicate messages will get minimized (Section 6.4.4). With
QoS 2 subscriptions is is also better when the Target Broker is ahead, since the
number of message that need to be stored is lower at its minimum. Therefore we
derive generally, that our solution approach is better when the Target Broker is
ahead.

The following sections summarize some benefits and limitations of our solution approach.

129

6. Evaluation

6.5.1 Benefits

We derive the following benefits from our solution approach:

• Use MQTT v3 to create a scalable (distributed) broker network.

• Enable client mobility between independent broker systems.

• During the migration process compared to common migration approaches24:

– Some messages (QoS 0) are discarded to decrease the network load.

– The Source Broker only has to store messages for QoS 2 .

– Messages do not need to be transferred between the brokers.

– Subscriber message arrival delay for QoS 1 messages is at its minimum since
both brokers send their messages in parallel until they overlap.

6.5.2 Limitations

Applying our solution approach comes with certain limitations.

A higher network load for duplicate messages for QoS 1 subscriptions.

The following improvements can be implemented to reduce the network load for QoS 1
message duplicates:

Instead of sending QoS 1 messages on Target Broker immediately, the Target Broker
can start sending them after the synchronization point from the Source Broker and to
minimize duplicates.

If a QoS 1 subscriptions has to be synchronized with the Target Broker (MIGSYNC
packet from the Target Broker), the Source Broker can stop sending QoS 1 messages
after its synchronization process finishes. This way, the Source Broker can stop sending
messages earlier compared to stop sending on MIGACK packet arrival. Nevertheless,
messages that are not sent have to be stored in case of a rollback scenario.

The Source Broker could also get notified with a MIGSYNC packet from the Target
Broker to stop sending messages for QoS 1 subscription, if the Target Broker is behind.
Doing this, some duplicate messages could be omitted. If the Source Broker stops sending,
it still has to store the messages in case of an error and a rollback.

24As stated in the our related work Section 3, common approaches treat all messages like QoS 2
(exactly once) subscriptions during migration and no message loss or duplication is considered or expected.

130

6.5. Summary & Discussion

Additional migration packets on the network for the migration process itself.

Since at maximum six packets are send with meta information of the subscriptions,
this limitation is minor. Nevertheless, instead of sending JSON objects, the migration
protocol can be optimized into a binary protocol to reduce the packet sizes.

Processing time on brokers for the barriers and packet handling.

The integration of the migration framework needs some progressing resources. Since our
work primary focused on creating a feasible solution and not a high-performing solution,
there might be still potential to further improve the implementation of our migration
framework and the integration into broker systems.

A topic can only be served by one publisher.

As made apparent in our assumptions (Section 4.2), our solution approach assumes
that only one publisher publishes to a specific topic, to be able to derive a comparable
sequence of messages. To solve this limitation is left for future work.

131

CHAPTER 7
Conclusion

Centralized publish/subscribe solutions with MQTT suffer from scalability issues. Since
MQTT v3 was not designed with horizontal scalability and large scale systems in mind
[MQT15], we extended MQTT v3 to support custom header information, e.g. for global
message ids, as we need it for our solution approach to globally identify messages
in a distributed broker network. As pointed out, MQTT v5 has introduced some
enhancements for scalability and large scale systems in the meanwhile and solves this
problem by introducing “user properties” which allows to add additional meta information
to messages [MQT19].

When enabling mobility for clients in distributed broker networks, it is critical that
systems operate reliably when migrating clients between brokers. Therefore, we designed
a migration process that enables MQTT clients mobility within a distributed MQTT
broker network. This migration process ensures the message delivery guarantees for client
subscriptions while using special characteristics of MQTTs message delivery guarantees
for message loss and duplication (Chapter 4). Distributed MQTT broker systems like
EMMA [RND18], that only support client migrations with QoS 0, profit from our solution
approach, since we consider QoS 0, QoS 1 and QoS 2 in our migration process.

In an iterative development process we implemented our solution approach as a framework
and successfully integrated into the existing Moquette broker system and our MQTT client
implementation (Chapter 5). We created a Broker CLI that acts as an API for external
components and allows the Coordinator, like the Controller in EMMA [RND18] or in
PubSubCoord [AKGH17], to trigger migration processes for clients in an orchestrated
components composition. Our solution approach, can even be used to perform client
migrations in inter-cloud settings, as in [CTVB12], with different broker implementations.

We evaluated our solution approach, our implementation and our integrations with
software testing, empirical experiments and a theoretical analysis to show correctness,
responsiveness and system strains of our work (Chapter 6).

133

7. Conclusion

• The correctness was successfully verified with unit, integration and system tests and
with empirical experiments by validating the message delivery guarantees (message
loss and duplication) for all subscriptions of the clients.

• The responsiveness evaluation of our solution approach revealed that the migration
duration time as well as the total network load during the migration process highly
depends on the synchronization state of the brokers that perform the migration,
the network latency between systems, the amount of the client’s subscriptions and
its requested QoS configurations. Furthermore, our bucket-analysis showed, that
the solution approach is ideal, when the brokers are synced or if the Target Broker
is ahead. In a typical scenario, with a publisher close to the Target Broker, with
a conservative message delay in the distributed network, with the Target Broker
synced or slightly ahead of the Source Broker and with a message production of
10 messages/s, the migration takes about 500 ms, with no message loss, a 1000 ms
time window with 10 duplicate messages for QoS 1 and 8 stored messages for QoS 2.
In a similar scenario, with high speed networks with low latency, the number of
duplicate and stored messages are close to zero.

• The system strain evaluation confirmed, that we decrease the network load, when
message loss with QoS 0 is considered. Nevertheless, message duplication with
QoS 1 has to be applied with care since it leads to a higher network traffic with our
migration process. In total, our solution approach adds 4 to 6 migration packets
(depending if additional message synchronization between the brokers is necessary
or not) to the network load for each client migration and therefore has no significant
effect on the network load.

Based on the assumption to have a comparable stream of messages for a topic, our
solution approach has the limitation, that the distributed system has to provide a total
ordering of messages for a single topic. This may be achieved with distributed locks on
the topics or with other methods to linearize the message stream.

Even through our solution approach builds on MQTT and its message delivery guarantees,
the concepts we presented and analysed are generalizable and could be applied to other
protocols like AMQP as well, since it also provides message delivery guarantees.

7.1 Future Work

• MQTT v5: In the meanwhile, since we started working on this thesis, MQTT v5
got released and provides some additional features that our solution can make
use of [MQT19]. One example is the feature of “user properties” as described in
Section 4.5, to directly store the global message id in the header information of
the MQTT PUBLISH packet without the need to split the payload into a custom
header and body section.

134

7.1. Future Work

• Multiple Publishers for a Topic: Since our solution approach relays on a total
ordering of messages for a topic, we took the approach that just one publisher
serves a topic, since the publisher generate the sequence number. Better approaches
might be found, e.g. with distributed topic locks, in order to support that multiple
publishers can publish to the same topic. Nevertheless, a single publisher can
publish to multiple topics with our solution approach, since the synchronization
process can handle gaps in the message stream.

• Publisher Mobility: As mentioned in the introduction, publisher mobility pro-
vides different challenges as shown in [MPJ05] and [MPDJ05] and therefore is
left for future work. Intermediate buffering methods, as shown in [LCC+15] and
[RND18], might be used on the Client during the migration process to support
publisher mobility as well.

• Publisher QoS: In our solutin approach, the QoS of the publisher is always
sending its MQTT messages with QoS 2 (exactly once). Nevertheless, all MQTT
QoS combinations as described in Section 2.6 should be considered to make the
solution approach work with different publisher QoS configurations as well.

• Optimizations: Additional approaches, like Prefetching or Logging (Section 3),
might help to further improve the responsiveness and system strains of our solution
approach. Furthermore, some suggestions were presented in the discussion of the
evaluation (Section 6.5), e.g. to stop sending duplicate messages for QoS 1 earlier
in the process, to reduce the network load.

135

CHAPTER 8
Appendix

8.1 Communication Implementation - Netty Channel

1 class MigrationPacketSocketChannelChannelInitializer extends
ChannelInitializer<SocketChannel> {

2
3 private final MigrationPacketHandler requestHandler;
4
5 public MigrationPacketSocketChannelChannelInitializer(

MigrationPacketHandler requestHandler) {
6 this.requestHandler = requestHandler;
7 }
8
9 protected void initChannel(SocketChannel ch) throws Exception {

10 ChannelPipeline pipeline = ch.pipeline();
11
12 // in (evaluation: down to top)
13 pipeline.addLast(new StringEncoder());
14 pipeline.addLast(new MigrationPacketToJsonEncoder());
15
16 // out (evaluation: top to down)
17 pipeline.addLast(new JsonObjectDecoder());
18 pipeline.addLast(new StringDecoder());
19 pipeline.addLast(new JsonToMigrationPacketDecoder());
20 pipeline.addLast(new MigrationPacketInboundHandler(requestHandler));
21 }
22 }

Listing 8.1: Migration server netty channel setup

137

8. Appendix

8.2 System Test Example

1 // Class: QoS0SourceScenarioTest
2 @Test
3 public void synced() {
4 incomingAndAssertUnprocessed(12);
5 incomingAndAssertUnprocessed(13);
6
7 MigratePacket migratePacket = migrate();
8 assertLastProcId(migratePacket, 13);
9

10 assertEquals(MigrationState.SYNCED, migration.getState());
11 assertEquals(MigrationSubscriptionState.SYNCED, subscription.getState());
12
13 incomingAndAssertDiscard(14);
14 incomingAndAssertDiscard(15);
15
16 assertEquals(MigrationState.SYNCED, migration.getState());
17 assertEquals(MigrationSubscriptionState.SYNCED, subscription.getState());
18
19 incomingAndAssertDiscard(16);
20
21 env.incomingPacket(new MigAckPacket(migration.getMigrationId(),

MigAckPacket.MigStatus.OK));
22 assertEquals(MigrationState.FINISHED, migration.getState());
23 assertEquals(MigrationSubscriptionState.FINISHED, subscription.getState()

);
24
25 incomingAndAssertUnprocessed(17);
26 incomingAndAssertUnprocessed(18);
27 incomingAndAssertUnprocessed(19);
28 }

Listing 8.2: A system test scenario example: Source Broker, QoS 0, synced state

8.3 Migration Process Analysis Script

1 calc <- function(qos,
2 # network
3 Dt_N_SBTB=50,
4 Dt_N_SBC=100,
5 Dt_N_TBC=50,
6 # message arrival delay
7 Dt_P_SB=0,
8 Dt_P_TB=0,
9 # production interval (every x ms)

10 t_v = 10
11) {
12 Dt_N <- Dt_N_SBC - Dt_N_TBC
13 Dt_P <- Dt_P_SB - Dt_P_TB
14

138

8.3. Migration Process Analysis Script

15 Dt_Ccon <- 4 * Dt_N_TBC
16
17 t_S_SB <- 0
18 t_S_TB <- t_S_SB + Dt_N_SBTB + Dt_Ccon
19 Dt_S <- t_S_SB - t_S_TB + Dt_P
20 Dt_D <- Dt_S + Dt_N
21
22 Dt_sync_SB <- NA
23 if(Dt_S > 0 && qos != 0) {
24 Dt_sync_SB <- max(Dt_S - (t_S_TB + Dt_N_SBTB), 0)
25 } else {
26 Dt_sync_SB <- 0
27 }
28
29 Dt_sync_TB <- NA
30 if(Dt_S > 0) {
31 if(qos == 0) {
32 Dt_sync_TB <- 0
33 } else {
34 Dt_sync_TB <- Dt_N_SBTB + Dt_sync_SB + Dt_N_SBTB
35 }
36 } else {
37 Dt_sync_TB <- -Dt_S;
38 }
39
40 # synchronization process duration
41 Dt_Sync <- NA
42 if(Dt_S > 0) {
43 # ahead
44 if(qos == 0)
45 Dt_Sync <- 0
46 if(qos == 1)
47 Dt_Sync <- Dt_N_SBTB + Dt_sync_SB
48 if(qos == 2)
49 Dt_Sync <- Dt_N_SBTB + Dt_sync_SB
50 } else if(Dt_S == 0) {
51 # synced
52 if(qos == 0)
53 Dt_Sync <- 0
54 if(qos == 1)
55 Dt_Sync <- 0
56 if(qos == 2)
57 Dt_Sync <- 0
58 } else {
59 # behind
60 if(qos == 0)
61 Dt_Sync <- Dt_sync_TB
62 if(qos == 1)
63 Dt_Sync <- Dt_sync_TB
64 if(qos == 2)
65 Dt_Sync <- Dt_sync_TB
66 }
67

139

8. Appendix

68 # migration process duration
69 Dt_mig <- Dt_N_SBTB + Dt_Ccon + Dt_sync_TB + Dt_N_SBTB
70
71 Dt_qos0_loss <- NA
72 if(Dt_S > 0) {
73 Dt_qos0_loss <- Dt_S
74 } else {
75 Dt_qos0_loss <- 0
76 }
77 n_qos0_loss <- Dt_qos0_loss / t_v
78
79 Dt_qos1_dupl <- NA
80 if(Dt_S > 0) {
81 Dt_qos1_dupl <- max((t_S_TB + Dt_N_SBTB) - Dt_S, 0) + Dt_N_SBTB +

Dt_N_SBTB
82 } else {
83 Dt_qos1_dupl <- Dt_mig + abs(Dt_S)
84 }
85 n_qos1_dupl <- Dt_qos1_dupl / t_v
86
87 Dt_qos2_store <- NA
88 if(Dt_S > 0) {
89 Dt_qos2_store <- Dt_mig - Dt_S
90 } else {
91 Dt_qos2_store <- Dt_mig
92 }
93 n_qos2_store <- Dt_qos2_store / t_v
94
95 return(list(
96 Dt_mig,
97 Dt_qos0_loss,
98 n_qos0_loss,
99 Dt_qos1_dupl,

100 n_qos1_dupl,
101 Dt_S,
102 Dt_N,
103 Dt_D,
104 Dt_qos2_store,
105 n_qos2_store,
106 Dt_Sync
107))
108 }

Listing 8.3: Migration time calculation

140

8.4. Migration Packets JSON

8.4 Migration Packets JSON

1 # MIGRATE packet
2 {"@class":".MigratePacket","migrationId":"bc3582fd-3018-48b0-99d4-7758

cd76e960","clientId":"Subscriber_001","clientHost":"172.172.3.1","
clientPort":1702,"subscriptions":[{"requestedQos":"EXACTLY_ONCE","
topicName":"topicC","lastProcessedGlobalMessageId":{"globalMessageId":"
topicC-86"}},{"requestedQos":"AT_MOST_ONCE","topicName":"topicD","
lastProcessedGlobalMessageId":{"globalMessageId":"topicD-77"}},{"
requestedQos":"AT_MOST_ONCE","topicName":"topicA","
lastProcessedGlobalMessageId":{"globalMessageId":"topicA-87"}},{"
requestedQos":"AT_LEAST_ONCE","topicName":"topicB","
lastProcessedGlobalMessageId":{"globalMessageId":"topicB-87"}},{"
requestedQos":"AT_LEAST_ONCE","topicName":"topicE","
lastProcessedGlobalMessageId":{"globalMessageId":"topicE-77"}},{"
requestedQos":"EXACTLY_ONCE","topicName":"topicF","
lastProcessedGlobalMessageId":{"globalMessageId":"topicF-76"}}]}

3
4 # MIGTO packet
5 {"@class":".MigToPacket","migrationId":"bc3582fd-3018-48b0-99d4-7758cd76e960"

,"host":"172.172.1.2","port":1883}
6
7 # MIGTOACK packet
8 {"@class":".MigToAckPacket","migrationId":"bc3582fd-3018-48b0-99d4-7758

cd76e960"}
9

10 # MIGSYNC packet
11 {"@class":".MigSyncPacket","migrationId":"bc3582fd-3018-48b0-99d4-7758

cd76e960","subscriptions":[{"topicName":"topicE","
lastProcessedGlobalMessageId":{"globalMessageId":"topicE-90"}},{"
topicName":"topicF","lastProcessedGlobalMessageId":{"globalMessageId":"
topicF-90"}}]}

12
13 # MIGSYNCACK packet
14 {"@class":".MigSyncAckPacket","migrationId":"bc3582fd-3018-48b0-99d4-7758

cd76e960"}
15
16 # MIGACK packet
17 {"@class":".MigAckPacket","migrationId":"bc3582fd-3018-48b0-99d4-7758cd76e960

","statusCode":"OK"}

Listing 8.4: Migration Packets JSON

141

List of Figures

1.1 Migration of a mobile MQTT Client in a distributed MQTT broker network
from the Source Broker to the Target Broker. 3

2.1 Message delivery guarantees through the broker network. 16
2.2 Migration Communication Patterns . 19

4.1 Message Scenarios . 28
4.2 Migration Phases . 30
4.3 Message Id (red) and Global Message Id (orange) ranges. 32
4.4 Enhanced MQTT PUBLISH packet. 33
4.5 Sequence diagram of the migration process of Client C from Source Broker

B1 to Target Broker B2 . 36
4.6 Synchronization states between brokers. 37
4.7 Synchronization state of Target Broker is ’ahead’, ’synced’ or ’behind’. . . 38
4.8 Legend for synchronization figures . 39
4.9 Target Broker is ahead of the Source Broker - QoS 0 41
4.10 Target Broker is ahead of the Source Broker - QoS 1 43
4.11 Target Broker is ahead of the Source Broker - QoS 2 45
4.12 Target Broker is synced with the Source Broker - QoS 0 47
4.13 Target Broker is synced with the Source Broker - QoS 1 49
4.14 Target Broker is synced with the Source Broker - QoS 2 51
4.15 Target Broker is behind of the Source Broker - QoS 0 53
4.16 Target Broker is behind of the Source Broker - QoS 1 55
4.17 Target Broker is behind of the Source Broker - QoS 2 57

5.1 Broker components . 62
5.3 State diagram of a QoS 0 subscription on the Source Broker 68
5.4 State diagram of a QoS 1 and a QoS 2 subscription on the Source Broker 68
5.2 State diagram of a migration on the Source Broker 68
5.6 State diagram of a QoS 0 subscription on the Target Broker 74
5.7 State diagram of a QoS 1 and a QoS 2 subscription on the Target Broker 74
5.5 State diagram of a migration on the Target Broker 74
5.8 Client components . 77

143

6.1 Evaluation Scenario . 85
6.2 Normal distributed broker network . 89
6.3 Mocked distributed broker network . 89
6.4 Experiment Result: Migration process durations 115
6.5 Mathematical model of the migration process with annotated variables. . 117
6.6 Synchronization process for QoS 0 . 120
6.7 Synchronization process for QoS 1 . 120
6.8 Synchronization process for QoS 2 . 120
6.9 Synchronization process time for each QoS based on the synchronization delta

∆tS . 121
6.10 Complete migration process time for each QoS based on the synchronization

delta ∆tS . 123
6.11 Time duration of lost, duplicate or stored messages for each QoS based on

the synchronization delta ∆tS . 124

144

List of Tables

2.1 Message loss and duplication validity for each QoS 15
2.2 Publish-Subscribe QoS combinations . 17

4.1 Scenario validity for different QoS . 28
4.2 Migration states. 39

5.1 Subscription synchronization states on the Source Broker. 67
5.2 Barrier actions on the Source Broker for a QoS 0 subscription 69
5.3 Barrier actions on the Source Broker for a QoS 1 subscription 69
5.4 Barrier actions on the Source Broker for a QoS 2 subscription 69
5.5 Subscription synchronization states on the Target Broker. 73
5.6 Barrier actions on the Target Broker for a QoS 0 subscription 75
5.7 Barrier actions on the Target Broker for a QoS 1 subscription 75
5.8 Barrier actions on the Target Broker for a QoS 2 subscription 76

6.1 Data integrity checks for different QoS . 90
6.3 Experiments Showcase Overview - Topics and characteristics 91
6.2 Experiments Configuration Overview . 92
6.4 Experiment result - Total message losses and duplicates 114
6.5 MQTT messages size . 128
6.6 Migration Process packets size . 128
6.7 MQTT packets for each QoS . 128

145

List of Listings

2.1 Moquette broker - Subscriber QoS calculation 16
8.1 Migration server netty channel setup 137
8.2 A system test scenario example: Source Broker, QoS 0, synced state . 138
8.3 Migration time calculation . 138
8.4 Migration Packets JSON . 141

146

Bibliography

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things:
A survey. Computer networks, 54(15):2787–2805, 2010.

[AKGH17] Kyoungho An, Shweta Khare, Aniruddha Gokhale, and Akram Hakiri.
An Autonomous and Dynamic Coordination and Discovery Service for
Wide-Area Peer-to-peer Publish/Subscribe. Proceedings of the 11th ACM
International Conference on Distributed and Event-based Systems - DEBS
’17, pages 239–248, 2017.

[AR02] Filipe Araujo and Luis Rodrigues. On QoS-aware publish-subscribe. In Pro-
ceedings 22nd International Conference on Distributed Computing Systems
Workshops, pages 511–515. IEEE, 2002.

[BCS12] Carsten Bormann, Angelo P. Castellani, and Zach Shelby. CoAP: An
application protocol for billions of tiny internet nodes. IEEE Internet
Computing, 16(2):62–67, 2012.

[Bet99] S.M.A. Bettencourt. Next Century Challenges: Scalable Coordination in
Sensor Networks. Proceedings of the ACM/IEEE International Conference
on Mobile Computing and Networking, (Section 4):263–270, 1999.

[BJD+04] Ioana Burcea, Hans Arno Jacobsen, Eyal De Lara, Vinod Muthusamy, and
Milenko Petrovic. Disconnected operation in publish/subscribe middle-
ware. Proceedings - 2004 IEEE International Conference on Mobile Data
Management, pages 39–50, 2004.

[BMCR14] Paolo Bellavista, Senior Member, Antonio Corradi, and Andrea Reale.
Quality of Service in Wide Scale Publish – Subscribe Systems. IEEE
Communications Surveys & Tutorials, 16(3):1591–1616, 2014.

[CCW03] Mauro Caporuscio, Antonio Carzaniga, and Alexander L. Wolf. Design and
Evaluation of a Support Service for Mobile, Wireless Publish/Subscribe
Applications. IEEE Transactions on Software Engineering, 29(12):1059–1071,
2003.

147

[CCWS03] Mauro Caporuscio, Antonio Carzaniga, Alexander L Wolf, and Ieee Com-
puter Society. Design and Evaluation of a Support Service for Mobile ,
Wireless Publish / Subscribe Applications. 29(12):1059–1071, 2003.

[CDF01] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastruc-
ture and its application to the development of the OPSS WFMS. IEEE
Transactions on Software Engineering, 27(9):827–850, 2001.

[Col14] Matteo Collina. Mosca Documentation - lib/server.js.
http://www.mosca.io/docs/lib/server.js.html, 2014.

[CS05] Yuan Chen and Karsten Schwan. Opportunistic overlays: Efficient con-
tent delivery in mobile ad hoc networks. In Proceedings of the ACM/I-
FIP/USENIX 2005 International Conference on Middleware, pages 354–374.
Springer-Verlag New York, Inc., 2005.

[CTVB12] Rodrigo N. Calheiros, Adel Nadjaran Toosi, Christian Vecchiola, and Rajku-
mar Buyya. A coordinator for scaling elastic applications across multiple
clouds. Future Generation Computer Systems, 28(8):1350–1362, 2012.

[Cug02] Gianpaolo Cugola. Using Publish / Subscribe Middleware for Mobile Systems.
ACM SIGMOBILE Mobile Computing and Communications Review, 6(4):25–
33, 2002.

[DDM+09] Elisabetta Di Nitto, Daniel J. Dubois, Raffaela Mirandola, Elisabetta Nitto,
Daniel J. Dubois, Raffaela Mirandola, and Politecnico Milano. Overlay self-
organization for traffic reduction in multi-broker publish-subscribe systems.
In Proceedings of the 6th International Conference on Autonomic Computing,
pages 61–62. ACM, 2009.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Computing Surveys,
35(2):114–131, 2003.

[EMQ17] EMQ broker 1.0 - Design - Architecture, Revision 7b021615. https://emqttd-
docs.readthedocs.io/en/latest/design.html, 2017.

[Eug07] Patrick Eugster. Type-based publish/subscribe. ACM Transactions on
Programming Languages and Systems, 29(1):6–es, 2007.

[GBMP13] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of Things (IoT): A vision, architectural elements,
and future directions. Future generation computer systems, 29(7):1645–1660,
2013.

[GÖ05] Lukasz Golab and M. Tamer Özsu. Issues in data stream management.
ACM SIGMOD Record, 32(2):5–14, 2005.

148

[GsGKK15] Julien Gascon-samson, Franz-philippe Garcia, Bettina Kemme, and Jörg
Kienzle. Dynamoth : A Scalable Pub / Sub Middleware for Latency-
Constrained Applications in the Cloud. 2015.

[GSKK17] Julien Gascon-Samson, Jorg Kienzle, and Bettina Kemme. MultiPub: La-
tency and Cost-Aware Global-Scale Cloud Publish/Subscribe. Proceedings -
International Conference on Distributed Computing Systems, pages 2075–
2082, 2017.

[HGM04] Yongqiang Huang and Hector Garcia-Molina. Publish/subscribe in a mobile
environment. Wireless Networks, 10(6):643–652, 2004.

[HTSC07] Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark. MQTT-S - A
publish/subscribe protocol for wireless sensor networks. 3rd IEEE/Create-
Net International Conference on Communication System Software and Mid-
dleware, COMSWARE, pages 791–798, 2007.

[IMA+16] Bukhary Ikhwan Ismail, Ehsan Mostajeran Goortani, Mohd Bazli Ab Karim,
Wong Ming Tat, Sharipah Setapa, Jing Yuan Luke, and Ong Hong Hoe.
Evaluation of Docker as Edge computing platform. ICOS 2015 - 2015 IEEE
Conference on Open Systems, pages 130–135, 2016.

[Jor14] JoramMQ, a distributed MQTT broker for the Internet of Things.
http://www.scalagent.com/IMG/pdf/JoramMQ_MQTT_white_paper-
v1-2.pdf, 2014.

[JS15] Antonio J Jara and Antonio F G Skarmeta. Mobility support for the small
and smart Future Internet devices. 2015.

[KCJ06] Alex King, Yeung Cheung, and Hans-arno Jacobsen. Dynamic Load Balanc-
ing in Distributed Content-Based Publish / Subscribe. Ifip International
Federation For Information Processing, pages 141–161, 2006.

[KKY+10] Minkyong Kim, Kyriakos Karenos, Fan Ye, Johnathan Reason, Hui Lei,
Konstantin Shagin, Yorktown Heights, Mt Carmel, Minkyong Kim, and Fan
Ye. IBM Research Report Efficacy of Techniques for Responsiveness in a
Wide-Area Publish / Subscribe System. 25058, 2010.

[KN01] Minkyong Kim and Brian Noble. Mobile network estimation. In Proceed-
ings of the 7th annual international conference on Mobile computing and
networking, number October, pages 298–309. ACM, 2001.

[LCC+15] Jorge E. Luzuriaga, Juan Carlos Cano, Carlos Calafate, Pietro Manzoni,
Miguel Perez, and Pablo Boronat. Handling mobility in IoT applications
using the MQTT protocol. 2015 Internet Technologies and Applications,
ITA 2015 - Proceedings of the 6th International Conference, pages 245–250,
2015.

149

[LKHJ13] Shinho Lee, Hyeonwoo Kim, Dong Kweon Hong, and Hongtaek Ju. Correla-
tion analysis of MQTT loss and delay according to QoS level. International
Conference on Information Networking, pages 714–717, 2013.

[LME+15] Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta,
Teruo Higashino, Adriana Iamnitchi, Marinho Barcellos, Pascal Felber,
Etienne Riviere, Pedro Garcia Lopez, Alberto Montresor, Dick Epema,
Anwitaman Datta, Teruo Higashino, Adriana Iamnitchi, Marinho Barcellos,
Pascal Felber, and Etienne Riviere. Edge-centric Computing: Vision and
Challenges. ACM SIGCOMM Computer Communication Review, 45(5):37–
42, 2015.

[MF05] Anton Michlmayr and P. Fenham. Integrating Distributed Object Trans-
actions with Wide-Area Content-Based Publish/Subscribe Systems. In
25th IEEE International Conference on Distributed Computing Systems
Workshops, 2005.

[MJ10] Vinod Muthusamy and Hans-arno Jacobsen. Mobility in Publish / Subscribe.
In Laurence T. Yang, Agustinus Borgy Waluyo, Jianhua Ma Bala, Ling Tan,
and Bala Srinivasan, editors, Mobile Intelligence, chapter Mobility i, pages
62–86. John Wiley & Sons, Inc., 2010.

[Mos18] Mosquitto mqtt bridge-usage and configuration. http://www.steves-internet-
guide.com/mosquitto-bridge-configuration, 2018.

[MPDJ05] V. Muthusamy, M. Petrovic, Dapeng Gao, and H. Jacobsen. Publisher
Mobility in Distributed Publish/Subscribe Systems. Science, pages 421–427,
2005.

[MPJ05] Vinod Muthusamy, Milenko Petrovic, and Hans-Arno Jacobsen. Effects of
routing computations in content-based routing networks with mobile data
sources. Proceedings of the 11th annual international conference on Mobile
computing and networking - MobiCom ’05, page 103, 2005.

[MQT15] MQTT Version 3.1.1 Specification. http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html, 2015.

[MQT19] MQTT Version 5.0 Specification. http://docs.oasis-
open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html, 2019.

[Nai17] Nitin Naik. Choice of effective messaging protocols for IoT systems: MQTT,
CoAP, AMQP and HTTP. 2017 IEEE International Symposium on Systems
Engineering, ISSE 2017 - Proceedings, 2017.

[PB02] P. R. Pietzuch and J. M. Bacon. Hermes: A distributed event-based middle-
ware architecture. Proceedings - International Conference on Distributed
Computing Systems, 2002-Janua:611–618, 2002.

150

[RD18] Thomas Rausch and Schahram Dustdar. Osmotic Message-Oriented Mid-
dleware for the Internet of Things. IEEE Cloud Computing, 5(2):17–25,
2018.

[RND18] Thomas Rausch, Stefan Nastic, and Schahram Dustdar. EMMA: Distributed
QoS-aware MQTT middleware for edge computing applications. In Proceed-
ings - 2018 IEEE International Conference on Cloud Engineering, IC2E
2018, number i, pages 191–197, 2018.

[Sat15] Mahadev Satyanarayanan. The Emergence of Edge Computing. Computer,
50(June):30–39, 2015.

[SCA+05] Publish-subscribe Systems, Nuno Carvalho, Filipe Ara, Filipe Araujo, and
Luis Rodrigues. Scalable QoS-Based Event Routing in. Network Computing,
pages 101–108, 2005.

[SCZ+16] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge
Computing: Vision and Challenges. IEEE Internet of Things Journal,
3(5):637–646, 2016.

[SDC16] Weisong Shi, Schahram Dustdar, and Edge Computing. The Promise of
Edge Computing. Computer, 49(5):78–81, 2016.

[SGGK14] Priyanka Sharma, Mili Gupta, Gitanjali Goyal, and Kiranjit Kaur. On
Quality-of-Service and Publish-Subscribe. Journal of Evolution of Medical
and Dental Sciences, 3(9):2236–2244, 2014.

[SHB14] Zach Shelby, Klaus Hartke, and Carsten Bormann. The constrained applica-
tion protocol (CoAP). Technical report, 2014.

[SMGJ09] Hu Songlin, Vinod Muthusamy, Li Guoli, and Hans Arno Jacobsen. Trans-
actional mobility in distributed content-based publish/subscribe systems.
Proceedings - International Conference on Distributed Computing Systems,
pages 101–110, 2009.

[SS83] Dale Skeen and Michael Stonebraker. A Formal Model of Crash Recovery
in a Distributed System. IEEE Transactions on Software Engineering,
SE-9(3):219–228, 1983.

[STO] Stomp protocol specification, version 1.2. http://stomp.github.io/stomp-
specification-1.2.html.

[TMV+14] Dinesh Thangavel, Xiaoping Ma, Alvin Valera, Hwee Xian Tan, and Colin
Keng Yan Tan. Performance evaluation of MQTT and CoAP via a common
middleware. IEEE ISSNIP 2014 - 2014 IEEE 9th International Confer-
ence on Intelligent Sensors, Sensor Networks and Information Processing,
Conference Proceedings, (April):21–24, 2014.

151

[TP13] Ran Tao and Stefan Poslad. Delay sensitive distributed sensor data exchange
for an IoT. Proceedings of the International Workshop on Adaptive Security
- ASPI ’13, pages 1–8, 2013.

[TSZ11] Nam Luc Tran, Sabri Skhiri, and Esteban Zimányi. EQS: An elastic and
scalable message queue for the cloud. In Proceedings - 2011 3rd IEEE
International Conference on Cloud Computing Technology and Science,
CloudCom 2011, pages 391–398, 2011.

[Ver18] VerneMQ - Clustering. https://docs.vernemq.com/vernemq-clustering, 2018.

[VPGB] Luis Vargas, Lauri I W Pesonen, Ehud Gudes, and Jean Bacon. Transactions
in Content-Based Publish / Subscribe Middleware.

[VRF+16] Massimo Villari, Omer Rana, Maria Fazio, Schahram Dustdar, Omer Rana,
and Rajiv Ranjan. Osmotic computing: A new paradigm for edge/cloud
integration. IEEE Cloud Computing, 3(6):76–83, 2016.

[VT06] Steve Vinoski and Iona Technologies. Advanced Message Queuing Protocol.
Ieee Internet Computing, (December):87–89, 2006.

[YKK+09] Hao Yang, Minkyong Kim, Kyriakos Karenos, Fan Ye, and Hui Lei. Message-
oriented middleware with QoS awareness. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 5900 LNCS:331–345, 2009.

[Zer] Zeromq message transport protocol, verion 2.3.
https://rfc.zeromq.org/spec:23/ZMTP/.

[Zha11] Lucy Zhang. Building Facebook Messenger.
http://www.facebook.com/notes/facebook-engineering/building-facebook-
messenger/10150259350998920, 2011.

All URLs online; accessed on 3. March 2019.

152

	Kurzfassung
	Abstract
	Introduction
	Motivation
	Problem Statement
	Aim of the Work & Expected Results
	Methodological Approach
	Terminology
	Outline

	Background
	Publish/Subscribe Paradigm
	Subscription Languages
	Subscription Types

	Broker Networks
	Protocols
	Broker Systems
	Quality-of-Service
	Message Delivery Guarantees
	Actual Subscriber QoS

	Client Migration Types
	Migration Communication Patterns

	Related Work
	Solution Approach
	Foundation
	Assumptions
	Migration Phases
	Identifiers
	Client Id
	Message Id
	Global Message Id
	Migration Id

	Enhanced MQTT PUBLISH Packet
	Payload Header
	Payload Body

	Migration Protocol
	Migration Sequence
	Synchronization State
	Synchronization Process
	Target Broker is ahead of the Source Broker
	Target Broker is synced with the Source Broker
	Target Broker is behind of the Source Broker

	Implementation
	Migration Framework
	MQTT Broker
	Broker Migration Manager
	Migration Broker Bridge
	Broker Migration Integrator
	Migration Store
	Migration Message Store
	Message Barrier
	Broker Command Line Interface (Broker CLI)
	Source Broker Process
	Target Broker Process

	MQTT Client
	Client Migration Manager
	Client Migration Bridge
	Command Line Interface (Client CLI)
	Client Process

	Communication
	Migration Packet Server
	Migration Packet Client

	Migration Protocol Packets
	MIGRATE packet
	MIGACK packet
	MIGSYNC packet
	MIGSYNCACK packet
	MIGTO packet
	MIGTOACK packet

	Evaluation
	Methodology
	Evaluation Scenario

	Software Testing
	Empirical Experiments
	Experiments Setup
	Experiments Configuration Overview
	Experimental Result
	Experiments Summary

	Theoretical Analysis
	Mathematical Model
	Synchronization Process Time
	Migration Process Time
	Loss, Duplication and Storage Time
	Message Arrival Shift
	First Message from Target Broker
	Message Load
	Network Load

	Summary & Discussion
	Benefits
	Limitations

	Conclusion
	Future Work

	Appendix
	Communication Implementation - Netty Channel
	System Test Example
	Migration Process Analysis Script
	Migration Packets JSON

	List of Figures
	List of Tables
	List of Listings
	Bibliography

