
Modular Nonmonotonic
Logic Programs

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Thomas Krennwallner
Registration Number 00026236

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Prof. Dr. Thomas Eiter

The dissertation has been reviewed by:

Docent Dr. Tomi Janhunen Prof. Dr. Stefan Woltran

Wien, 15.08.2018
Thomas Krennwallner

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der Arbeit
Thomas Krennwallner
Favoritenstraße 9–11, 1040 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendetenQuellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit—einschließlich Tabellen, Karten und Abbildungen—, die anderen Werken
oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall
unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 15.08.2018
Thomas Krennwallner

Abstract
Modular programming is common practice in software development, and the vast ma-
jority of general-purpose programming languages use modularity concepts to aid soft-
ware engineers in designing and building complex systems based on reusable software
components. Answer Set Programming (ASP), in comparison, is a popular paradigm
for declarative programming and knowledge representation, but methods for reusing
subprograms and program elements in ASP have not arrived for common use yet.

This thesis proposes Modular Nonmonotonic Logic Programs (MLPs), which are
disjunctive logic programs under answer set semantics with modules that have con-
textualized input. Such programs incorporate a call by value mechanism and allow for
unrestricted calls between modules—including mutual and self recursion—as a new
approach to extend ASP with module constructs akin to those found in conventional
programming. We define a model-theoretic semantics for this extended setting, show
that many desired properties of ordinary logic programming generalize to modular
ASP, and determine the computational complexity of the new formalism.

For the purpose of implementation, we consider rewriting techniques that make
MLP semantics amenable to off-the-shelf ASP solvers. We present translations that
take an MLP with module input and rewrite them in stages to a combined logic pro-
gram without input that is evaluable with ASP reasoners. This operation comes at
the price of inflating the program exponentially, but complexity-theoretic assumptions
suggest that this is unavoidable. The alternative macro expansion technique applicable
to syntactically restricted MLPs does not incur the blowup observable in the general
setting, and we make use of it to develop an application by embedding hybrid Descrip-
tion Logic Programs into MLPs. This effectively unites MLP with established Datalog
engines as backbone for the computation, which we experimentally evaluate.

We characterize answers sets in terms of classical (Herbrand) models of proposi-
tional, first-, and second-order sentences, extending a line of research for conventional
logic programs. To this end, we lift on one side well-known loop formulas to MLPs,
and otherwise augment ordered program completion for MLPs, which avoids explicit
loop formula construction by auxiliary predicates. A further result is a study on the re-
lationship of MLPs and DLP-functions, which is a notable formalism for compositional
modular ASPwith well-defined input/output interface. These investigations widen our
understanding of MLPs and may prove beneficial for further semantic analysis and im-
plementation perspectives.

i

Kurzfassung
Modulare Programmierung ist gängige Praxis in der Softwareentwicklung, und die
überwiegende Mehrzahl universeller Programmiersprachen verwenden Modularitäts-
konzepte, um Softwareentwicklern beim Entwerfen und Konstruieren komplexer Sys-
teme basierend auf wiederverwendbaren Softwarekomponenten zu helfen. Im Ver-
gleich dazu sindMethoden zur erneuten Verwendung von Unterprogrammen und Pro-
grammelementen in der Answer Set Programmierung (ASP), einem weitverbreiteten
Paradigma zur deklarativen Programmierung und Wissensrepräsentation, noch nicht
im allgemeinem Gebrauch angekommen.

Diese Arbeit schlägtModulareNichtmonotone Logische Programme (MLP) vor, das
heißt, disjunktive logische Programme unter Antwortmengen-Semantik mit Modulen,
die kontextuellen Input unterstützen. Solche Programme integrieren einenWertaufruf-
Mechanismus und erlauben uneingeschränkte Aufrufe zwischen den Modulen—inkl-
usive wechselseitiger sowie Selbst-Rekursion—, um ASP mit Konstrukten zu erwei-
tern, die auch in konventioneller Programmierung aufzufinden sind. Wir definieren
eine modell-theoretische Semantik für diese erweiterte Umgebung, zeigen, dass viele
gewünschte Eigenschaften der gewöhnlichen logischen Programmierung sich verall-
gemeinern lassen hin zumodularemASP, und bestimmen die Berechnungskomplexität
des neuen Formalismus.

Zwecks Implementierung betrachtenwir Umformungstechniken, umMLP zugäng-
lich für gebrauchsfertige ASP Solver zu machen. Wir präsentieren Konvertierungen,
die ein MLP mit Modul Input entgegennehmen und diese sukzessive in ein zusam-
mengesetztes logisches Programm ohne Input umschreiben, sodass diese dann für ASP
Reasoner auswertbar werden. Diese Operation hat ihren Preis in einem exponentiell
aufgeblähtem Programm, jedoch legen Annahmen aus der Komplexitätstheorie nahe,
dass dies unvermeidlich ist. Die alternative Makroexpansionstechnik anwendbar auf
syntaktisch eingeschränkte MLP erleidet diese Vergrößerung, die im allgemeinen Rah-
men wahrnehmbar ist, jedoch nicht. Daher benutzen wir diese, um eine Anwendung
durch Einbetten von hybriden Beschreibungslogikprogrammen in MLP zu entwickeln.
Dies vereint MLP mit bewährten Datalog Engines als Rückgrat zur Auswertung auf
wirksame Weise, welche wir experimentell evaluieren.

Wir charakterisieren die Antwortmengen anhand von klassischen (Herbrand) Mo-
dellen von Sätzen in propositionaler Logik sowie Prädikatenlogik erster und zweiter
Stufe, und erweitern dadurch eine Forschungsrichtung innerhalb der konventionellen

iii

logischen Programmierung. Dazu generalisieren wir einerseits die bekannten Loop-
Formeln, und andererseits erweitern wir geordnete Programmvervollständigung für
MLP, die explizite Loop-Formelerzeugung durch Hilfsprädikate umgehen. Ein weite-
res Ergebnis ist ein Studie über den Zusammenhang von MLP und DLP-Funktionen,
ein bedeutender Formalismus für kompositionelles modulares ASP mit wohldefinier-
ter Input/Output Schnittstelle. Diese Untersuchungen vertiefen unser Verständnis von
MLP, welche sich als nützlich für weitere semantische Analysen und Implementie-
rungsperspektiven erweisen könnten.

iv

Acknowledgments
I wish to thank many persons who supported me with my research. I am truly grateful
to my PhD advisors Thomas Eiter and Michael Fink for their guidance and help and
for the time, knowledge, discussions, and feedback that they kindly gave me. We have
had numerous meetings, which provided the basis for fleshing out technical details and
eliminating theoretical and practical problems at every stage of development. They
introduced me to the topic of modular logic programming and distributed reasoning,
which sparked the idea of setting up a research proposal that obtained funding for
pursuing this research. I want to thank hereby the Austrian Science Fund (FWF) for
materializing project Modular HEX-Programs (P20841).

I thankmy colleague and friendDAOTranMinh, withwhom I not only did research
in the aforementioned project, but also have the pleasure of working together at XIMES
company. Together we had investigated theoretical aspects, written scientific papers,
implemented algorithms, and traveled conferences. I am glad we can continue to work
as a team.

I thank Tomi Janhunen and Stefan Woltran for accepting to serve on my disserta-
tion committee, and for providing extensive and diligent feedback and comments on
draft manuscripts of this thesis, which helped to produce the final version.

I would like to thank Axel Polleres for his hospitality in giving me the opportunity
to work as research intern from October 2007 to May 2008 at DERI Galway before the
research project came into being. During this collaboration, new research directions
and ideas had flourished, which I had the great fortune not to miss.

I wish to express my gratitude to Giovambattista Ianni, with whom I not only
could continually do research fruitfully, but also organize the Answer Set Program-
ming Competition 2013, together with colleagues from University of Calabria and Vi-
enna University of Technology. To mark their contributions, I list them here by name
in alphabetical order: Mario Alviano, Francesco Calimeri, Günther Charwat, Carmine
Dodaro, Martin Kronegger, Johannes Oetsch, Andreas Pfandler, Jörg Pührer, Christoph
Redl, Francesco Ricca, Patrik Schneider, Martin Schwengerer, Lara Katharina Spendier,
Johannes Peter Wallner, and Guohui Xiao. Moreover, I thank my fellow co-authors,
colleagues, and students at the Knowledge Based Systems Group (in alphabetical or-
der): Harald Beck, Uwe Egly, Magdalena Ortiz, Peter Schüller, Mantas Šimkus, Daria
Stepanova, Hans Tompits, Antonius Weinzierl, and Lena Widl. I enjoyed our regu-

v

lar discussion, coffee breaks, research manuscripts preparations, organization duties,
teaching courses, and travels to scientific conferences together.

I would like to thank Elfriede Nedoma, who painstakingly arranged travels and
all sorts of administrative work. Moreover, I thank Matthias Schlögel for helping me
keeping the machines for our experimental HTCondor distributed computation envi-
ronment up and running. This thesis could not have been realized with all the fine
software tools and fonts that are carefully handcrafted and designed for typesetting by
able engineers and scientists, thus I dedicate a section at the end of this thesis to honor
their contributions.

I want to give thanks to my parents for always supporting me and making it pos-
sible to pursue my bachelor and master studies. The courses I had taken during that
time laid the foundation for this thesis.

vi

Dedicated to the cats of catland

Contents

Abstract i

Kurzfassung iii

Acknowledgments v

Contents ix

List of Figures xiii

List of Tables xiv

List of Results xv

I Modularity in Logic Programming 1

1 Introduction 3
Answer set programming; modularity; history; state-of-the-art; thesis outline.

1.1 Modular Programming 9
1.1.1 Programming paradigms 11
1.1.2 An Illustrative Example 13
1.1.3 Even in Imperative Languages 13
1.1.4 Even in Functional Languages 16

1.2 Modularity in Logic Programming 18
1.2.1 Even in Nonmonotonic Logic Programming 23

1.3 Goals 25
1.4 Methods 27
1.5 Contributions 28
1.6 Organization 30

ix

1.7 Publications Related with the Thesis 32

2 Preliminaries and Previous Results 35
Answer set semantics; Generalized quantifier logic programs.

2.1 Logic Programs under the Answer Set Semantics 35
2.1.1 Syntax of Answer Set Programs 36
2.1.2 Semantics of Answer Set Programs 38

2.2 GeneralizedQuantifier Logic Programs 42
2.2.1 Basic Concepts from Mathematical Logic 42
2.2.2 GeneralizedQuantifiers 43
2.2.3 Logic Programs with GeneralizedQuantifiers 44

2.3 Modular Logic Programming with GQLPs 47
2.3.1 Syntax of modular logic programs 47
2.3.2 Semantics of modular logic programs 48
2.3.3 Shortcomings of GeneralizedQuantifierModular Logic

Programs 49

II Elements of Modular Nonmonotonic Logic Programs 51

3 Modular Nonmonotonic Logic Programs 53
Syntax and semantics of MLPs; Basic semantic properties.

3.1 Syntax of Modular Nonmonotonic Logic Programs 54
3.2 Semantics of Modular Nonmonotonic Logic Programs 58
3.3 Basic Semantic Properties 64

4 Semantic Properties of Modular Nonmonotonic Logic Programs 67
Semantic properties of MLPs; Horn MLPs; Fixed-Point operators; Least fixed
point computation; Stratified MLPs.

4.1 Horn Modular Nonmonotonic Logic Programs 67
4.2 Fixed-Point Characterization 69
4.3 Stratified Modular Nonmonotonic Logic Programs 73

5 Computational Complexity of Modular Nonmonotonic Logic Pro-
grams 79
Complexity results for MLPs; Propositional MLPs; Nonground MLPs; Acyclic
MLPs; Bounded predicate MLPs.

x

5.1 Alternating Turing Machines and Complexity Classes 81
5.1.1 Alternating Turing Machines 81
5.1.2 Complexity Classes 82

5.2 Propositional MLPs without Input 85
5.3 Propositional MLPs with Input 88

5.3.1 Proof of Theorem 5.2, item 1 88
5.3.2 Proof of Theorem 5.2, item 2 99
5.3.3 Proof of Theorem 5.2, item 3 104

5.4 Acyclic MLPs 109
5.5 General MLPs 115

5.5.1 Proof of Theorem 5.4, item 1 116
5.5.2 Proof of Theorem 5.4, item 2 120
5.5.3 Proof of Theorem 5.4, item 3 123
5.5.4 Complexity of MLPs with bounded predicate arities 124

III Characterizing Modular Nonmonotonic Logic Programs 127

6 Translation of Modular Nonmonotonic Logic Programs to Datalog 129
Rewriting techniques from MLPs to Datalog; Macro expansion; Application to
dl-programs.

6.1 Module Input Reification 130
6.2 Rewriting Modules without Input 133
6.3 General MLP Rewriting Techniques to Datalog 137

6.3.1 Instance Rewriting 138
6.3.2 Call Rewriting 148
6.3.3 Module Removal of Connected Closed Call Sets 157

6.4 Macro Expansion of Modular Logic Programs 160
6.4.1 Module Copy Rewriting 161
6.4.2 Module Removal of Separated Modules 171

6.5 Application: Description Logic Programs 174
6.5.1 Rewriting Description Logic Programs to MLPs 175
6.5.2 Macro Expansion for dl-Programs 178

7 Representing MLPs with Classical Logic 183
Characterizing MLP with classical logic; Modular program completion; Mod-
ular loop formulas; Translational semantics; Ordered modular completion.

7.1 Program Completion for MLPs 185
7.2 Loop Formulas for MLPs 192

xi

7.3 Ordered Completion and Translational Semantics for MLPs on Fi-
nite Structures 199

7.3.1 Finite Structures and Translational Semantics for MLPs 200
7.3.2 Ordered Completion for MLPs 204

7.4 Discussion 214

8 Relevance-driven Evaluation of MLPs 219
Discussion of evaluation algorithm; experimental results.

8.1 Splitting for Modular Nonmonotonic Logic Programs 220
8.1.1 Global splitting for call-stratified MLPs 221
8.1.2 Local splitting for input and call stratified MLPs 222
8.1.3 Instance stratification 223

8.2 Top-Down Evaluation Algorithm 223
8.3 Implementation and Experimental Results 225

IV Related Approaches and Conclusion 231

9 Relationship to DLP-Functions 233
DLP-Functions; Module theorem; Translating DLP-functions and MLPs.

9.1 DLP-Functions 234
9.1.1 Syntax of DLP-Functions 234
9.1.2 Semantics of DLP-Functions 236
9.1.3 Module Theorem 237

9.2 Translation from DLP-Functions to MLPs 238
9.3 Translation from MLPs to DLP-Functions 242

10 Related Work 251
Comparison of related formalisms.

10.1 Compositional Approaches 251
10.2 Modularity by Language Constructs 253
10.3 Modules as Splitting Sets and Related Techniques 256
10.4 Equivalence Notions for Modular Logic Programming 258
10.5 Distributed and Heterogeneous Knowledge Bases 259

11 Conclusion 261
Conclusions; Further work; Open issues.

xii

11.1 Summary 262
11.1.1 Model Theoretic Semantics and Semantic Properties of

MLPs 262
11.1.2 Computational Complexity of MLPs 263
11.1.3 Rewriting MLPs to Datalog 264
11.1.4 Macro Expansion for MLPs 264
11.1.5 Modular Loop Formulas 265
11.1.6 Ordered Modular Completion 265
11.1.7 Relationship between DLP-Functions and MLPs 266

11.2 Open Issues and Further Research Directions 266
11.2.1 Formal Semantics 266
11.2.2 Extensions and Fragments of MLPs 267
11.2.3 Implementation 267
11.2.4 Loop Formulas and Ordered Completion 268
11.2.5 Modular Patterns for Logic Programming 269

Bibliography 271

List of Figures
1.1 Classic Sudoku Puzzle 3 fromWSC 2016 4
1.2 Classic Sudoku Puzzle 5 fromWSC 2016 4
1.3 Classic Sudoku Puzzle 8 fromWSC 2016 (no solutions) 5
1.4 Answer Set Programming Paradigm 9
1.5 Modular Structuring in three Programming Language Paradigms 21
1.6 Call graph of instantiated modules in Example 1.3 26
1.7 Leitfaden . 31

2.1 Graphs for Example 2.1 . 37
2.2 Graphs for Example 2.8 . 48

3.1 Call graph for Example 3.2 . 61
3.2 Call graph for Example 3.1 . 61

5.1 Complexity landscape of Modular Nonmonotonic Logic Programs 81

xiii

5.2 Relationships between deterministic and alternating hierarchies . 85
5.3 Relationships between complexity classes 85
5.4 Turing machine configurations on the cell-time grid 90
5.5 Turing machine motions in the cell-time-cube 91
5.6 Module dependencies of a deterministic Turing machine simulation 96
5.7 nondeterministic Turing machine run 101
5.8 Module dependencies of a nondeterministic Turing machine sim-

ulation . 102
5.9 Alternating Turing machine computation tree 106
5.10 Module dependencies of an alternating Turing machine simulation 107
5.11 A domino system tiles 𝑅 × 𝑅 . 111
5.12 Module dependencies of a domino system encoding 112
5.13 Module dependencies of a deterministic Turing machine simulation 121
5.14 Module dependencies of a nondeterministic Turing machine sim-

ulation . 122
5.15 Module dependencies of an alternating Turing machine simulation 124

6.1 Instance Rewriting . 144
6.2 Call Rewriting . 150
6.3 Module Removal . 158
6.4 Directed connection graph MCP . 163
6.5 Module dependencies of dl-program rewriting 179

7.1 Callgraph for Example 7.1 . 188
7.2 Modular dependency graphs . 193

List of Tables
2.1 Program classes . 36

5.1 Complexity of Horn MLPs . 80
5.2 Complexity of answer set existence for propositional MLPs 80
5.3 Complexity of answer set existence for nonground MLPs 80

8.1 Benchmark dl-programs DReW vs. TD-MLP (Runtime in secs) . . 225
8.2 Benchmark programs 𝑃1–𝑃5 . 226
8.3 Benchmark programs 𝑃6–𝑃7 . 228
8.4 Benchmark program 𝑃8 . 229

xiv

8.5 Benchmark program 𝑃9 . 230

List of Results
Proposition 3.1 Even not in Monadic ASP . 56
Proposition 3.2 Conservativity . 64
Lemma 3.3 . 64
Lemma 3.4 . 64
Proposition 3.5 Minimal models . 65
Proposition 3.6 Context refinement . 65
Proposition 4.1 Minimal models in positive MLPs 68
Proposition 4.2 Model intersection . 68
Corollary 4.3 Canonical model . 69
Proposition 4.4 Monotonicity . 70
Lemma 4.5 . 71
Lemma 4.6 . 72
Proposition 4.7 Continuous operator . 72
Lemma 4.8 . 72
Proposition 4.9 Least fix point . 73
Proposition 4.10 Stratified answer set . 75
Proposition 4.11 Stratified call graph . 76
Theorem 5.1 Computational complexity of propositional MLPs without input 86
Theorem 5.2 Computational complexity of propositional MLPs with input . . 88
Theorem 5.3 Computational complexity of acyclic MLPs 110
Theorem 5.4 Computational complexity of general MLPs 115
Corollary 5.5 Complexity of general MLPs with bounded predicate arities . . 125
Proposition 6.1 Module input reification . 132
Lemma 6.2 . 135
Lemma 6.3 . 144
Lemma 6.4 . 151
Proposition 6.5 Module Removal . 160
Lemma 6.6 . 164
Proposition 6.7 Module separation . 170
Lemma 6.8 . 171
Lemma 6.9 . 172
Proposition 6.10 Module pruning . 174

xv

Corollary 6.11 Separated module removal . 174
Lemma 6.12 . 177
Proposition 6.13 DL-rewriting . 178
Proposition 6.14 DL-module separation . 180
Proposition 6.15 DL-module pruning . 180
Corollary 6.16 Separated DL-module removal 181
Lemma 7.1 . 189
Proposition 7.2 Supported models . 190
Lemma 7.3 . 190
Theorem 7.4 MLP loop formulas . 196
Theorem 7.5 MLP translational semantics . 203
Lemma 7.6 . 209
Theorem 7.7 MLP ordered completion . 210
Proposition 9.1 Capturing stable models of DLP-functions 239
Lemma 9.2 . 246
Lemma 9.3 . 247
Theorem 9.4 MLP module theorem . 248
Proposition 9.5 Capturing mutually independent MLPs 248
Corollary 9.6 Capturing answer sets of MLPs 250

xvi

I
Modularity in Logic Programming

1

Introduction

A
nswer set programming (ASP) is a well-established paradigm for declar-
ative programming with roots to be found in Logic Programming and in
Knowledge Representation and Reasoning, the branch of Artificial Intelli-
gence concerned with explicitly representing information using logical

formalisms. An advantage of ASP is to provide a versatile declarative modeling frame-
work with many attractive features that allow turning problem statements of compu-
tationally hard problems with little to no effort into executable formal specifications,
also called answer set programs. These programs can be used to describe and reason
over problems in a large variety of domains, for example, commonsense and agent
reasoning, diagnosis, deductive databases, software upgrade dependency handling,
planning, product configuration, bioinformatics, scheduling, shift design, Markov net-
work learning, and timetabling. See Brewka et al. (2011) for an overview article, the
book by Gebser et al. (2013) for the practical details on how to implement answer set
programs, and Brewka et al. (2016) for applications of answer set programming and
further in-depth material. ASP has a close relationship to other declarative model-
ing paradigms and languages, such as SAT solving (Biere et al., 2009), Satisfiability
Modulo Theories (SMT, see Barrett et al., 2009; Nieuwenhuis et al., 2006), automated
theorem proving (Robinson and Voronkov, 2001), Constraint Programming (CP, see
Rossi et al., 2006), and many others. All these formalisms have in common that they
were designed for solving demanding problems, many of which arise in applications
in Artificial Intelligence.

In ASP, problems are represented by nonmonotonic logic programs, such that the
stable models (or answer sets) of the program represent the solutions to a given problem
instance (Gelfond and Lifschitz, 1991). As an example for a problem that can be solved
withASP is the Sudoku puzzle, a highly successful number-placement riddle. Although
simple to explain, Sudoku is neither easy to solve nor easy to implement efficientlywith
an imperative programming language. Given a 9×9 grid, the goal of the Sudoku game
is to fill every cell in the grid with numbers in the range 𝐷 = 1,… , 9, such that each

3

Chapter 1. Introduction

1 9 7
2 3 4 8

5 2 4
3 7

4 5 6
9 7
3 9 5

1 6 7 8
6 1 9
(a) Puzzle 3

1 9 7
2 3 4 8

5 2 4
3 7

4 5 6
9 7
3 9 5

1 6 7 8
6 1 9

6 8 2 4 3 5
7 1 5 6 9

7 9 3 6 8 1
8 6 2 9 1 5 4
1 7 3 9 8 2

4 5 8 2 3 1 6
7 6 8 4 2 1

4 2 5 6 3
5 8 2 7 4 3

(b) Unique solution

Figure 1.1: Classic Sudoku Puzzle 3 from WSC 2016

2 3 7 6
1 3 2

5 6 1 4
4 7 8

7 8 4
8 2 6 5

5 1 7
4 7 9 8

(a) Puzzle 5

2 3 7 6
1 3 2

5 6 1 4
4 7 8

7 8 4
8 2 6 5

5 1 7
4 7 9 8

9 4 8 1 5
4 6 5 7 8 9

7 8 2 9 3
5 2 9 6 3 1
3 6 8 2 1 4 9 7 5
9 1 3 5 6 2

9 7 4 1 3
6 3 9 8 2 4

1 3 5 2 6

9 4 8 1 5
4 6 5 7 8 9

7 8 2 9 3
3 6 2 1 9 5
5 2 8 9 6 4 3 7 1
9 1 3 5 6 2

9 7 4 1 3
6 3 9 8 2 4

1 3 5 2 6

(b) Two solutions

Figure 1.2: Classic Sudoku Puzzle 5 from WSC 2016

𝑑 ∈ 𝐷 appears exactly once in every row, every column, and every 3 × 3 sub-grid that
composes the grid. A Sudoku problem instance is a partially filled grid, which must be
completed given the Sudoku constraints defined before.

Next, we will show three puzzles from the Official Practice Test for the 11th World
Sudoku Championship (WSC) 2016 (Demiger, 2016). The first Sudoku instance, WSC
Puzzle 3, is shown in Figure 1.1a. It has a single solution presented with red numbers in
Figure 1.1b. But there are further kinds of Sudoku instances: one kind admits more than
one solution, the other kind has no solution at all. Figure 1.2a shows WSC Puzzle 5,
which has two solutions shown in Figure 1.2b: the first solution is displayed in blue
numbers in the bottom-left corners of the cells, the second solution uses red numbers
in the top-right corners of the cells. The cells with green background highlight the
alternative parts of each solution. A Sudoku instance without solution is the one in
Figure 1.3, WSC Puzzle 8; there is no way to fill the grid with numbers such that all
Sudoku constraints are satisfied.

Numerous Sudoku solving software and algorithms have been posed. A popular
approach to implement a Sudoku solver takes Knuth’s Dancing Link technique to im-
plement Algorithm D (Knuth, 2018), which is a nondeterministic procedure to find all

4

Chapter 1. Introduction

1 2
3 4 5

8 6 5
2 7

2 5 8 9
4 7

1 3 9
6 5 4
7 3

Figure 1.3: Classic Sudoku Puzzle 8 from WSC 2016 (no solutions)

solutions to the Exact Cover problem (Garey and D. S. Johnson, 1979). Norvig (2006)
describes further methods based on constraint propagation and search. All implemen-
tations have in common that they use backtracking search to deal with the inherent
nondeterminism of Sudoku. In fact, the generalized 𝑛 × 𝑛 grid Sudoku problem has
been shown to be NP-complete (Yato and Seta, 2003), and this suggests that the ap-
proaches described before are a natural way to implement a Sudoku solver.

To show the merits of Answer Set Programming, we will provide an implementa-
tion based on Gringo (Gebser et al., 2014c) and Clasp (Gebser et al., 2012), two programs
used to compute the answer set of a nonmonotonic logic program. Compared to an im-
perative implementation for Sudoku, which usually takes a few hundreds lines of code,
the declarative ASP version is almost atomic in scale, yet powerful and full-featured.
It consists of the four rules as given in Listing 1.1. The encoding uses many syntactic
shortcuts supported by Gringo that makes it easier to write answer set programs. The
formal definitions definitions for logic programs will be given in Chapter 2, but for the
purpose of explaining the program above, we do not go into details here. Answer set
programs consist of rules of the form

HEAD :- BODY1, ..., BODYn.

where HEAD, BODY1, …, BODYn are atomic expressions. A rule should be read as HEAD
is satisfied if BODY1 through BODYn is satisfied ; whenever HEAD is void, we call the
rule a constraint that would forbid solutions whenever BODY1 through BODYn are true.
Atomic expressions are built from variables (which start with uppercase letters), con-
stants (which start with lowercase letters or digits), and functions and relations such
as addition and equality, respectively. Listing 1.1 mentions variables 𝑅, 𝐶, 𝐷, 𝑄, 𝐵 and
constants 1, 2, 4, 7, 9, the binary function +, and the binary relations =,> and ternary
relation cell.

The first rule of Listing 1.1 from line 4 through line 5 encodes all possible ways
to fill all nine 3 × 3 sub-grids by using a choice rule. E.g., when producing a solution
to WSC Puzzle 3 from Figure 1.1a an ASP solver would satisfy atoms cell(1, 4, 2) and
cell(7, 3, 7), i.e., cell(1, 4, 2) encodes that the cell specified by row 1 and column 4 holds

5

Chapter 1. Introduction

1 % (1) place exactly one digit 𝐷 ∈ {1, … , 9} for each cell identified by
2 % row 𝑅 and column 𝐶 on a 9 × 9 grid such that 𝐷 is within a 3 × 3
3 % subgrid spanning (𝑄, 𝐵) to (𝑄 + 2, 𝐵 + 2), for 𝑄, 𝐵 ∈ {1, 4, 7}
4 { cell(R,C,D) : R = Q..Q+2, C = B..B+2 } = 1 :- D = 1..9,
5 Q = (1;4;7), B = (1;4;7).
6
7 % (2) cell (𝑅, 𝐶) may contain at most one digit 𝐷 ∈ {1, … , 9}
8 :- R = 1..9, C = 1..9, { cell(R,C,1..9) } > 1.
9
10 % (3) a digit 𝐷 in row 𝑅 may be assigned in at most one column 𝐶
11 :- D = 1..9, R = 1..9, { cell(R,1..9,D) } > 1.
12
13 % (4) a digit 𝐷 in column 𝐶 may be assigned in at most one row 𝑅
14 :- D = 1..9, C = 1..9, { cell(1..9,C,D) } > 1.

Listing 1.1: ASP Sudoku Solver

digit 2, while atom cell(7, 3, 7) states that row 7 and column 3 holds 7. Intuitively, the
head

{ cell(R,C,D) : R = Q..Q+2, C = B..B+2 } = 1

of the first rule expresses that the cardinality of the set of all atoms cell(𝑅, 𝐶, 𝐷) sat-
isfying the constraints on the variables 𝑅, 𝐶 after the colon must be exactly 1. Note
that the semantics of above expression is similar to list comprehensions found in other
programming languages and set-builder notation in mathematics. The exact range for
the variables 𝑅, 𝐶, 𝐷, 𝑄, 𝐵 are given by the three body atoms D = 1^..9 (𝐷 is a number
in the range 1 to 9), Q = (1;4;7) and B = (1;4;7) (there are three possible numbers
1, 4, 7 for 𝑄, 𝐵), as well as the two atoms

R = Q..Q+2, C = B..B+2

from the choice construct in the head, which represents the sub-grid beginning at row
𝑄 and column 𝐵.

Typically, answer set solvers evaluate ground programs, i.e., programs whose vari-
ables have been replaced by constants. Grounders such as Gringo perform this task
of intelligently replacing variables by constant symbols in all relevant ways. In the
program above the first rule alone would generate 81 ground instances (nine possible
values for 𝐷 and three possible values each for 𝑄 and for 𝐵). E.g., one of the ground
rules is the choice rule

{ cell(1,4,2); cell(1,5,2); cell(1,6,2);
cell(2,4,2); cell(2,5,2); cell(2,6,2);
cell(3,4,2); cell(3,5,2); cell(3,6,2) } = 1.

that has been instantiated from the body whose variables are set to 𝐷 = 2, 𝑄 = 1,
and 𝐵 = 4.

6

Chapter 1. Introduction

1 cell(1,2,1). cell(1,6,9). cell(1,7,7).
2 cell(2,1,2). cell(2,2,3). cell(2,3,4). cell(2,7,8).
3 cell(3,2,5). cell(3,8,2). cell(3,9,4).
4 cell(4,5,3). cell(4,9,7).
5 cell(5,4,4). cell(5,5,5). cell(5,6,6).
6 cell(6,1,9). cell(6,5,7).
7 cell(7,1,3). cell(7,2,9). cell(7,8,5).
8 cell(8,3,1). cell(8,7,6). cell(8,8,7). cell(8,9,8).
9 cell(9,3,6). cell(9,4,1). cell(9,8,9).

Listing 1.2: ASP Sudoku instance encoding WCS Puzzle 3 from Figure 1.1a

There are nine possible ways to pick exactly one atom from the set above, but only
one of them can be correct. Together with the other 80 ground rules instantiated by
the first rule, choosing a number placement produces a combinatorial explosion, as
each of those rules require to pick exactly one atom. But for WCS Puzzle 3, there is
only one solution that is consistent with the rules of Sudoku, thus further constraints
are required to find that particular solution. Indeed, the last three rules in Listing 1.1
are constraints that give us the desired solution. The counting aggregate

{ cell(R,C,1..9) } > 1

in the body of the second rule in line 8 evaluates to true whenever for given 𝑅 and 𝐶
in the range 1, … , 9 as specified by the two body atoms

R = 1..9, C = 1..9

there are at least two atoms satisfied in the set {cell(𝑅, 𝐶, 1), … , cell(𝑅, 𝐶, 9)}. As an
example, after grounding one instance for the second rule would be

:- { cell(1,4,1); cell(1,4,2); cell(1,4,3);
cell(1,4,4); cell(1,4,5); cell(1,4,6);
cell(1,4,7); cell(1,4,8); cell(1,4,9) } > 1.

which imposes a constraint for the cell in row 𝑅 = 1 and column 𝐶 = 4; again, we
would have 81 possible ground rules for the second rule. If other instantiations of
the first rule would try to generate a solution that satisfies cell(1, 4, 2) and cell(1, 4, 3)
simultaneously (i.e., the numbers 2 and 3 occur in the cell in row 1 and column 4), then
the above counting aggregate would be true, and thus the constraint would invalidate
the try to get a filled grid, as such an assignment would violate the rules of Sudoku.

Similarly, the other two constraints in line 11 and 14 would specify the regulations
that each of the rows and each of the columns in the grid must not hold the same
number more than once. As one can see, four ASP rules are sufficient to specify the
Sudoku regulations, but how can we bring our Sudoku encoding to solve a particular
problem instance? This is particularly easy in ASP, one needs to simply list all initial

7

Chapter 1. Introduction

% gringo sudoku.lp wcs3.lp | clasp
clasp version 3.3.3
Reading from stdin
Solving...
Answer: 1
cell(1,2,1) cell(1,6,9) cell(1,7,7) cell(2,1,2) cell(2,2,3) ↬

cell(2,3,4) cell(2,7,8) cell(3,2,5) cell(3,8,2) cell(3,9,4) ↬

cell(4,5,3) cell(4,9,7) cell(5,4,4) cell(5,5,5) cell(5,6,6) ↬

cell(6,1,9) cell(6,5,7) cell(7,1,3) cell(7,2,9) cell(7,8,5) ↬

cell(8,3,1) cell(8,7,6) cell(8,8,7) cell(8,9,8) cell(9,3,6) ↬

cell(9,4,1) cell(9,8,9) cell(1,1,6) cell(1,3,8) cell(1,4,2) ↬

cell(1,5,4) cell(1,8,3) cell(1,9,5) cell(2,4,7) cell(2,5,1) ↬

cell(2,6,5) cell(2,8,6) cell(2,9,9) cell(3,1,7) cell(3,3,9) ↬

cell(3,4,3) cell(3,5,6) cell(3,6,8) cell(3,7,1) cell(4,1,8) ↬

cell(4,2,6) cell(4,3,2) cell(4,4,9) cell(4,6,1) cell(4,7,5) ↬

cell(4,8,4) cell(5,1,1) cell(5,2,7) cell(5,3,3) cell(5,7,9) ↬

cell(5,8,8) cell(5,9,2) cell(6,2,4) cell(6,3,5) cell(6,4,8) ↬

cell(6,6,2) cell(6,7,3) cell(6,8,1) cell(6,9,6) cell(7,3,7) ↬

cell(7,4,6) cell(7,5,8) cell(7,6,4) cell(7,7,2) cell(7,9,1) ↬

cell(8,1,4) cell(8,2,2) cell(8,4,5) cell(8,5,9) cell(8,6,3) ↬

cell(9,1,5) cell(9,2,8) cell(9,5,2) cell(9,6,7) cell(9,7,4) cell(9,9,3)
SATISFIABLE

Models : 1
Calls : 1
Time : 0.007s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s

Listing 1.3: Gringo-Clasp Solving Pipeline

cells with their numbers as facts, i.e., rules having a ground atom in the head, but
whose body is void. For WCS Puzzle 3, this is encoded by the list of facts in Listing 1.2.

If we append Listing 1.1 (assudoku.lp) to Listing 1.2 (aswcs3.lp) as input for the
Gringo grounder, thus producing a ground program without variables, and then feed
the result into the Clasp answer set solver, we would get the desired solution. Invoking
Gringo and Clasp on the command line then results in the output shown in Listing 1.3.
This particular encoding for Sudoku shows the Answer Set Programming paradigm in
action (Janhunen and Niemelä, 2016) and can be used as a blueprint for practical im-
plementations that solve search and optimization problems. Conceptually, Figure 1.4
shows a model for programming with this paradigm. In the left box, users first need
to provide a formalization of the problem statement in ASP, and a concrete problem
instance (usually as a set of facts) that can be extracted from instance data. Then, by
running a grounder, we obtain a ground program without variables that encodes our
problem instance (middle box). Next, we then try to find a solution to our problem
instance by running a solver, which tries to search for answer sets of the ground pro-

8

1.1. Modular Programming

ASP Program
+Instance

Ground
Program Answer Set(s)Grounder

instantiates
Solver

searches

Figure 1.4: Answer Set Programming Paradigm

gram instance (right box). The answer sets are a representation of the actual solutions,
which can be extracted by transforming them into the proper solution format. If there
is no answer set for the ground program instance, then there are no solutions to the
problem instance.

The strategy outlined above hints already on a particular weak point of program-
ming in ASP. The ASP paradigm does not aid in reusing answer set programs per se.
Unlike any other programming language, there is no easy way to link a ready-made
program to a new and larger program, as every ASP encoding for a problem state-
ment must be tailored from scratch, possibly by manually assembling individual code
fragments. This thesis tries to remedy this particular weakness of ASP by presenting
a novel solution to modularity for answer set programs. Before we show the ideas of
Modular ASP, we first describe Modular Programming in general, which is common
and has spurred a lot of research in software engineering.

1.1 Modular Programming
A natural way to design large software systems for solving problems is to identify
easier to handle subproblems that can be solved independently from each other, and
then based on this analysis to craft corresponding software components that solve the
subproblems. Software elements grouped together this way form a module, and the
combination of such modules then gives an implementation for the whole problem and
a working software system. Software modules thus provide a key concept in Software
Engineering that helps developing software artifacts.

When following techniques based on structured design (Yourdon and Constantine,
1979), software elements building a module that are arranged based on relatedness of
functionality have a tendency to be more reliable and robust, and are easier to reuse.
Software design thus prefers systems with a high degree of cohesion, a software metric
that reflects the relationship between functionally related software components. A
software quality metric in contrast to cohesion is coupling, which is a measure for
the interdependence of modules in software. Naturally, loose coupling is preferred
over tight coupling, as loosely coupled modules tend to have increased reliability and
robustness. Thus, software with high cohesion and low coupling is said to have higher
structural quality. Testing software greatly benefits from structured programs, since
it involves defining well-suited interfaces to the components, which in turn assists

9

Chapter 1. Introduction

writing test cases. When many programmers are working on a software project, the
strict component-wise software design is the only way to success.

Two questions arise from these findings:

1. How to shape software with these desired traits?

2. Is there built-in support in programming languages that assists constructing
modular software?

We will touch upon possible answers to these questions in the following paragraphs.
The first question is usually answered by creating software through careful archi-

tecture and design using sophisticated software engineering methodologies like In-
version of Control (R. E. Johnson and Foote, 1988) and dependency injection (Fowler,
2004), Aspect-Oriented Software Development (Murphy et al., 2001), or designing sys-
tems based on Service-Oriented Architecture (Papazoglou and van den Heuvel, 2007)
and microservices (Pautasso et al., 2017a,b). Guidelines and examples for architectural
patterns like the ones mentioned here are described by Bass et al. (2013), Lakos (2016),
andMartin (2018), which give an in-detail account on software architecture and design.

The aforementioned strategies for building large software systems are state-of-the-
art, but they come at a cost of increased complexity and potentially turning software
applications into distributed systems, which adds further complexity to the runtime
dynamics and may be disadvantageous when looking for reliability and robustness in
software. That is, if we modularize software systems by building programs that com-
municate over computer networks, we must be aware of the following result, which
demonstrates that designing usable and flexible distributed systems is a challenging
task: Gilbert and Lynch (2002) show with their CAP Theorem that it is impossible to
achieve three highly desirable properties in a distributed software system all at once,
namely Consistency (e.g, a read request must return the data that a preceding write
request has written), Availability (the system must always respond to a request), and
Partition-tolerance (temporary disconnected networks must not result in a failing sys-
tem). We can only choose at most two out of the three properties, i.e., CA, CP, and
AP. Modern distributed software systems aim at achieving Availability and Partition-
tolerance, but drop the Consistency property; they use techniques like eventual con-
sistency (i.e., data updates over time eventually converge in the network of connected
systems) as a remedy to the missing hard consistency constraint (see Brewer, 2012, for
a discussion on remedial strategies).

In the context of Knowledge Representation and Logic Programming, frameworks
based on Heterogeneous Nonmonotonic Multi-Context Systems (Brewka and Eiter,
2007) address issues arising in distributed computing with suitable algorithms (Dao-
Tran et al., 2011, 2015) or asynchronous extensions to the equilibrium semantics (Dao-
Tran and Eiter, 2017). See also the discussion in Chapter 10.

10

1.1.1. Programming paradigms

Programming languages usually address the second question by adding a mod-
ule system to their core language. With such a feature, a compiler or interpreter can
aid building modules already at compile-time by dependency tracking of modules and
static code analysis. Most general-purpose languages have their own way to speci-
fying modules. Techniques like information hiding, abstraction, and structured pro-
gramming are well-established principles for breaking down subtasks and modules in
imperative programming (Dahl et al., 1972; Liskov and Zilles, 1974; Parnas, 1972), and
essentially any standard programming language has amenities that allow to define in-
put/output interfaces to modules for easy code-reuse in implementations of possibly
unrelated problems. Note that simple file inclusionmechanisms such as the C #include
preprocessor directive do not facilitate the flexibility requirements that a module can
cope with. Subtle issues such as duplicate definitions and circular #include dependen-
cies may arise when the same file is included in different parts of a program.

In this thesis, we are not concerned with modularity in software design and ar-
chitecture on the large scale, which is the target of the first question, rather, we aim
at providing a possible answer to the second question of adding modularity features
to the language level of nonmonotonic logic programming. We therefore continue to
define programming paradigms, which we later use to provide showcase examples for
modular programming.

1.1.1 Programming paradigms
Usually, one can broadly categorize a general-purpose programming language into
two different paradigms: imperative programming and declarative programming. The
imperative paradigm features programming languages whose expressions may have
side-effects, i.e., calling a function with the same input values twice may lead to dif-
ferent results or errors, depending on the state of, e.g., global variables, the operating
system, or programs running on a different computer. Such functions are said to be ref-
erentially opaque. In contrast, the declarative programming paradigm mostly forbids
side-effects in their expressions, therefore calling functions in such languages behave
in the mathematical sense, where the same input always produces the same result.
Functions that behave in the mathematical sense are called referentially transparent or
pure. A more in-detail presentation of programming paradigms is given by Van Roy
and Haridi (2004), which provides further programming language classification crite-
ria and their definitions.

Since we are concerned here with logic-based programming, we will classify pro-
gramming languages into the following three broad categories:

• imperative programming languages,

• functional programming languages, and

11

Chapter 1. Introduction

• logic-based programming languages.

That is, we split declarative languages into functional and logic-based programming
languages to make the distinction between their underlying model of computation
explicit: functions form the basis for functional languages, while relations are the basis
for logic programming languages (Hudak, 1989).

Programming languages of the imperative kind include procedural languages such
as C, and object-oriented languages such as C++, Java, C#, etc. Both procedural and
object-oriented languages are kept in the imperative paradigm because they both sat-
isfy the property of having implicit states and side-effects in their expressions. In
the functional programming realm, we include declarative languages such as Erlang,
Haskell, or ML, who by and large disregard side-effects in their expressions (for con-
cepts and historical evolution of functional programming see Hudak, 1989). For logic-
based programming languages, we include declarative languages such as Prolog (Apt,
1990; Shapiro and Sterling, 1994) and Answer Set Programs (Marek and Truszczyński,
1999; Niemelä, 1999).

DeRemer and Kron (1975) identified the need for a formal specification language
to describe the usage relationships between individual modules, amodule interconnec-
tion language that allows to describe and integrate smaller software components for
building a whole system. The authors distinguished Programming-in-the-Large and
Programming-in-the-Small, the former being a method to design and specify the global
architecture of a software system comprising of interconnected modules, and the latter
a way to express and implement modules in a programming language. In a general-
purpose programming language—and depending on the programming paradigm—a
module thus can be viewed as a container artifact that consists of basic building blocks
such as functions, variables, abstract data types, classes and their methods, class hier-
archies and interfaces, and other concepts.

On the other hand, formal languages aiding Programming-in-the-Large to describe
a complete software system as a portfolio of modules is less common. While well-
established imperative programming languages such as C, C++, C#, or Java (below
version 9) only have the means to specify individual modules in their core language,
functional languages usually do have more versatile module systems built-in that al-
low to describe the connections betweenmodules. Thismay be explained by the formal
nature of functional programming, which makes it easier to clearly separate function-
ality and reason about individual components. This should come as no real surprise, as
it is more natural to provide the formal means for modular programming in program-
ming languages rooted in the lambda calculus, a formal system in mathematical logic.
Working groups currently take remedial actions and specify standards and proposals
for module systems in C++ (see Reis et al., 2016, which may be incorporated in the next
C++20 standard) and the recent release of the Java 9 platform (Parlog, 2018; Reinhold,
2015, 2016), owing to the great demand for formal module systems in those imperative

12

1.1.2. An Illustrative Example

languages. Before Java 9, the OSGi Alliance defined a module system on top of the
Java core language (OSGi Alliance, 2014), which uses bundles as modular entities.

Before we take a look on the situation of modular programming in logic-based pro-
gramming languages, wewill next show howwe can specify and interconnect modules
in imperative and functional programming languages.

1.1.2 An Illustrative Example
We will now provide our running example that will be used throughout this thesis
to illustrate modularity concepts, in particular the most general use of modules, i.e.,
modules that mutually refer to each other. As written in the C++ Standardization
Committee technical report A Module System for C++ (Revision 4):

However, classes—and in general, most abstraction facilities—in real world
programs don’t necessarily maintain acyclic use relationship. When that
happens, the cycle is typically “broken” by a forward declaration usually
contained in one of the (sub)components. In a module world that situation
needs scrutiny. (Reis et al. (2016))

For this purpose, we take the Even property of integers (or parity) as a well-known
example in the literature to illustrate mutual recursion. A recursive definition for the
set of even (respectively, odd) natural numbers is as follows. Given a natural number
𝑛, we define

1. 𝑛 = 0 is even;

2. 𝑛 is even, if its predecessor 𝑛 − 1 is odd; and

3. 𝑛 is odd if its predecessor 𝑛 − 1 is even.

In the following, we will implement this property in various programming lan-
guages and paradigms, showing the use of modules and module systems.

1.1.3 Even in Imperative Languages
The C programming language (Kernighan and Ritchie, 1996) is the prime example for
imperative programming and also one of the most wide-spread programming lan-
guages currently in use. The current C and C++ standards do not specify a formal
way to express modules as first-class citizens, in fact, they do not have a module sys-
tem built into their core language (see Reis et al., 2016, for the current working draft
of a C++ module system). We therefore identify C modules as C functions that can be
called from other C functions.

13

Chapter 1. Introduction

/* forward declarations */
bool is_odd(int);
bool is_even(int);

bool is_odd(int N) {
if (N == 0) return false;
return is_even(N - 1);

}

bool is_even(int N) {
if (N == 0) return true;
return is_odd(N - 1);

}

Listing 1.4: Even in C

In order to implement the Even property with mutual recursion, one can define
two functions is_odd and is_even that take an integer as input and return bool as
presented in Listing 1.4. Note that the first two statements are necessary to declare the
functions is_odd(int) and functions is_even(int) before their first application. This
is due to the mutual usage in both functions, and allows to “break” the cycle between
them (see also the quotation above from Reis et al. (2016)).

Now take, as an example, the integer 42. In order to check whether 42 is an even
number, we call is_even(42), which in turn calls is_odd(41). Then, is_even(40)will
be called and this continues as before until we eventually reach the last call is_even
(0) in this chain of mutually recursive calls, which will give us true. Thus, we get
a sequence of alternating parities is_odd(1), is_even(2), …, is_odd(41), and finally
is_even(42), which all return true. This will also give us the final result that the
integer 42 is indeed an even number.

Note that above evaluation strategy will not work for large integers N. Every invo-
cation of is_odd(int) and is_even(int) in our call chain creates a fresh stack frame
in the call stack, which for large N grows out of proportion. Thus, we will be unlucky
and get a stack overflow when evaluating those functions for values of N larger than
roughly 300000 onmodern hardware, thus the programwill crash with a segmentation
fault. On closer inspection of Listing 1.4, we can realize that is_odd(int) and is_even
(int) are tail-recursive functions, i.e., their final step is a function call that leads to
a call in the call chain that will call itself again. Modern C compilers implement an
optimization technique called tail-call elimination, which removes the need to adding
a new stack frame to the call stack for every invocation of tail-recursive functions.
For instance, C compilers such as GCC (https://gcc.gnu.org/) and Clang (https://
clang.llvm.org/) accept the command-line options -O -foptimize-sibling-calls
that turn on this particular optimization, and the compiled program will then be able

14

https://gcc.gnu.org/
https://clang.llvm.org/
https://clang.llvm.org/

1.1.3. Even in Imperative Languages

template<int N>
struct Even {

static const bool is_even;
};

template<int N>
struct Odd {

static const bool is_odd;
};

template <>
const bool Even<0>::is_even = true;

template <>
const bool Odd<0>::is_odd = false;

template<int N>
const bool Odd<N>::is_odd = Even<N - 1>::is_even;

template<int N>
const bool Even<N>::is_even = Odd<N - 1>::is_odd;

Listing 1.5: Even in C++

to evaluate the full range of integers.
Of course, implementing Even through mutual recursion serves here only to illus-

trate the concept. The classical way to check whether an integer N is even uses modular
arithmetic modulo 2: the simple closed-form expression

N % 2 (1.1)

in the C programming language evaluates to 0 if and only if N is even. Alternatively,
one can check whether the least-significant bit of an integer is set, and in this case that
integer is odd. These constant time procedures are clearly favorable to evaluating a
recursive procedure. But in contrast to (1.1), the mutually recursive strategy outlined
above in the first paragraph is a more natural way to express the Even problem.

A further instance of the imperative programming paradigm is the C++ program-
ming language (Stroustrup, 2013), an object-oriented variant of C that has support for
various concepts to split functionality into components. Reis et al. (2016) note that
the current C++ standard lacks direct language support for modules. Nevertheless, we
may identify language constructs that help programmers to componentize their source
code. Some of these constructs support compile-time modularity, i.e., “modules” will
be instantiated at the compilation step of the program build process, and some of these
concepts come into play when the built program is executed. The concept of template

15

Chapter 1. Introduction

-module(odd).
-export([is_odd/1]).

is_odd(N) when N > 0 ->
even:is_even(N - 1);

is_odd(0) ->
false.

Listing 1.6: Even in Erlang (odd.erl)

-module(even).
-export([is_even/1]).

is_even(N) when N > 0 ->
odd:is_odd(N - 1);

is_even(0) ->
true.

Listing 1.7: Even in Erlang (even.erl)

meta-programming (Alexandrescu, 2001) clearly belongs to the former class of struc-
turing functionality into modules, and has been in widespread use in other program-
ming languages as well.

In the following example given by the C++ program in Listing 1.5, we take a closer
look into template meta-programming and exemplify modularity concepts of C++.
Listing 1.5 rephrases our mutually recursive C program from Listing 1.4 above and
computes the property of integers being even or odd at compile-time.

Now, when we want to know whether the integer 42 is an even number, we can
instantiate the templates with parameter N set to 42 and access the Boolean member
Even<42>^::is_even, which will immediately evaluate to the constant value truewhen
we run our program; when compiling our program, the C++ compiler will evaluate the
mutual recursion for us and generate an instantiated template along with the constant
member. Note that for large integer template parameters N, we will not be able to
compile Listing 1.5. The C++11 standard limits the depth of template class instantiation
to 1024, hence for template parameters N larger than 1024 wewill not be able to compile
the program.

1.1.4 Even in Functional Languages
Virtually all languages that belong to the functional programming paradigm have a
module system built-in, but only some of these languages support cyclic dependencies

16

1.1.4. Even in Functional Languages

-module(odd,[N]).
-export([is_odd/0]).

is_odd() when N > 0 ->
EvenMod = even:new(N - 1),
EvenMod:is_even();

is_odd() when N =:= 0 ->
false.

Listing 1.8: Even in Erlang with Parameterized Modules (odd.erl)

-module(even,[N]).
-export([is_even/0]).

is_even() when N > 0 ->
OddMod = odd:new(N - 1),
OddMod:is_odd();

is_even() when N =:= 0 ->
true.

Listing 1.9: Even in Erlang with Parameterized Modules (even.erl)

between modules. Other languages theoretically allow dependencies, but you must
specify directives that tell the compiler how to break cycles between modules.

One member of this branch of programming languages with module system that
supports cyclic dependencies is Erlang (Armstrong, 2003, 2007). We will now recast
our running example written in imperative languages above in the functional pro-
gramming language Erlang. This time, albeit not necessary, we use two modules to
emphasize mutual recursion over two modules in Listings 1.6 and 1.7.

The two listings above form essentially the same procedure as our C program from
Listing 1.4, but this time using twomodules odd and even to group related functionality
in a named context. The evaluation will proceed similarly to the C version of the
program.

Note that both functions odd:is_odd/1 and even:is_even/1 are tail-recursive, and
since recursion is omnipresent in functional programming language, we can rely on
tail-call elimination being always applied during program compilation, which in turn
prevents the unlimited growth of the call stack during execution.

Parameterized Erlang modules (R. Carlsson, 2003) are an Erlang extension that is
suitable for writing concise functional modules. We make use of this extension next
in Listings 1.8 and 1.9 by adapting the respective Erlang modules from Listings 1.6
and 1.7 and parameterize both modules with an input parameter N, which shares some

17

Chapter 1. Introduction

similarity to the C++ template meta-programming example from Listing 1.5.
The argument N to functions even:is_even/1 and odd:is_odd/1 from Listings 1.6

and 1.7 have been shifted into parameter N for the modules even,[N] and odd,[N].
The functions even:is_even/0 and odd:is_odd/0 from Listings 1.8 and 1.9 now do not
take arguments anymore. Instead of directly taking the integer N as input argument
to compute the even and the odd property, both functions use parameter N from their
respective module parameter even,[N] and odd,[N], and make even:is_even/0 and
odd:is_odd/0 applicable based on the evaluation of the function guards when N > 0
and when N ^^=:= 0 (note that Erlang uses ^^=:= to test for equality).

During program evaluation, odd:is_odd/0 and even:is_even/0 both explicitly in-
stantiate a new module even,[N-1] and odd,[N-1], respectively, using the module
constructors even:new(N-1) and odd:new(N-1). When binding the new modules to
variables EvenMod and OddMod, they call even:is_even/0 respectively odd:is_odd/0
on that fresh instance, and use the return value as result.

If we take N to be 42 again, we can start the mutual recursion by calling M =
even:new(42), M:is_even(), which in turn invokes even:is_even/0 respectively odd
:is_odd/0 along a chain of instantiated modules even,[42], odd,[41], …, odd,[1],
even,[0]. Again, the computation yields true, as expected.

Parameterizing modules have a long tradition in functional programming, and in
fact, this model for modularization is prevalent. For example, such an abstraction
mechanism is used in the following functional programming languages: in the R lan-
guage through parameterizedmodules (Warnholz, 2017), and inML (Milner et al., 1997),
Objective Caml (Leroy et al., 2017), and Haskell (Shields and Jones, 2002) through the
use of functors. Building on this idea seems to be a useful abstraction for modularity
in answer set programming, but before we delve into this realm, we first provide a
historic account on modular logic programming.

1.2 Modularity in Logic Programming
There is a long history of research in investigating modularity principles in logic pro-
gramming. A good overview is provided by Brogi et al. (1994) and Bugliesi et al. (1994),
which study modularity in the context of traditional definite Horn logic programming.
In spirit of DeRemer and Kron (1975), the articles by Brogi et al. (1994) and Bugliesi et al.
(1994) identify two directions for investigating modularity aspects in logic program-
ming:

• Programming-in-the-Large, which introduces compositional operators to com-
bine separate and independent modules; and

• Programming-in-the-Small, which builds upon abstraction and scoping mecha-
nisms.

18

1.2. Modularity in Logic Programming

Early influential work on modularity in logic programming include Fitting (1987)
and Gaifman and Shapiro (1989), where the former can be seen as an approach for
Programming-in-the-Small, while the latter is a prototypical instance of Programming-
in-the-Large.

For the Prolog programming language, there is a number of working implementa-
tions with module systems that allow to write Prolog programs with modules. The ISO
Prolog standard (ISO-Prolog, 2000) standardizes the ISO-Prologmodule system. Imple-
mentations of the Prolog like Ciao Prolog (Cabeza and Hermenegildo, 2000), SICStus
Prolog (M. Carlsson and Mildner, 2012), SWI-Prolog (Wielemaker et al., 2012), or XSB
Prolog (Swift and Warren, 2012) have a module system as part of their core language.

In contrast to the examples in §1.1 shown above, it is customary to view answer
set programs as monolithic entities, i.e., one program is tailored to solve a particular
problem without a clear separation of the subtasks, albeit the same principle of creat-
ing manageable pieces of knowledge will help users of ASP systems building knowl-
edge bases. Having an explicit way to modularize knowledge in logic programs is
thus needed and adding modularity principles to ASP has several advantages like easy
knowledge base reuse by clean input/output interfaces and helping to model complex
problem domains by focusing on smaller parts first. This issue has been identified and
various notions for modularizing logic programs have been proposed to support test-
ing logic programs, reusing and abstracting components, and maintaining program
code.

However, there are obstacles that impede to bring such characteristics to ASP. Tra-
ditional answer set semantics has no module concept and there is no straightforward
way that would allow that. It is not clear how a semantics should be defined that
caters for modules, as the declarative nature of ASP does not distinguish between
knowledge stored in different logic programs (when viewed as modules). Another
issue is to allow for cyclic module systems, i.e., when modules mutually refer to each
other. Modules that have such cyclic dependencies may bring in semantic issues like
unfounded models that would not be present when viewing logic programs as single
units. Both of these problems are related to the declarative nature of ASP, and any
prospective model-theoretic semantics for modular ASP has to deal with unwanted
semantic deficits. Methods that bring modularity aspects closer to ASP have not yet
stood the test of time, and no single semantics has gained general acceptance.

Thus, there has been an increasing interest in studying modularity aspects of An-
swer Set Programming in the recent years, in order to ease the composition of program
parts to an overall program. Since the early days of Datalog (Gottlob et al., 1989), mod-
ularity aspects have been recognized as an important issue, and already the seminal
notion of stratification (Apt et al., 1988) builds on an evaluation of subprograms in an
ordered way. This has been later largely elaborated to notions like modular stratifi-
cation (Ross, 1994) and XY-stratification incorporated in the ℒ𝒟ℒ++ system (Arni et

19

Chapter 1. Introduction

al., 2003), and has been generalized to a syntactic notions of modularity for disjunctive
Datalog programs (Eiter et al., 1994, 1997a,c) that, in the context of nonmonotonic logic
programming, has been independently found as Splitting Sets (Lifschitz and Turner,
1994), which generalize stratification and proved to be a useful tool to decompose pro-
grams.

However, compared to the study of modularity in logic programming (Brogi et
al., 1994; Bugliesi et al., 1994) (see Eiter et al. (1997b) for a historic account), work on
modular ASP is still less developed. In the context of answer set semantics, whose focus
lies in the treatment of negation-as-failure and disjunctive rules, several important
proposals have been put forward.

Representatives of Programming-in-the-Large provide compositional operators for
combining separate and independentmodules based on standard semantics. This direc-
tion for modular logic programming has been followed in DLP-functions (Janhunen et
al., 2009b) and modular smodels programs (Oikarinen and Janhunen, 2008), which fo-
cus on logic programs with Gaifman-Shapiro-style module architecture (Gaifman and
Shapiro, 1989). Additional work generalizes their approach to a module-based frame-
work for multi-language constraint modeling (Järvisalo et al., 2009) and to modular P-
log programs that combines probabilistic reasoning with logic programs (Damásio and
Moura, 2011). Recently, (Oikarinen and Janhunen, 2008) has been extended to lift syn-
tactic restrictions on the dependencies between modules (Moura and Damásio, 2014,
2015), which allows to express positive cycles between modules by introducing fresh
modules and rewriting output atoms. The work on abstract modular systems (Lierler
and Truszczyński, 2016) studies general modular knowledge representation systems.
Another proponent (Vennekens et al., 2006) is concerned with operator splitting simi-
lar in the vein of splitting sets (Lifschitz and Turner, 1994).

Programming-in-the-Small aims at enhancing ASP with abstraction and scoping
mechanisms similar as in other programming paradigms. This direction has been
widely considered, and modular extensions of answer set programs based on gener-
alized quantifiers (Eiter et al., 1997b), macros (Baral et al., 2006), templates (Calimeri
and Ianni, 2006), and for web rule bases (Analyti et al., 2011) have been proposed. On
a broader scale, multi-agent scenarios with logic programs have been studied in social
logic programs (Buccafurri and Caminiti, 2008) and communicating ASP (Bauters et
al., 2011).

The two directions Programming-in-the-Large and Programming-in-the-Small are
quite divergent, as Programming-in-the-Large requires to introduce new operators in
the language. However the above concepts do not cater a module concept as famil-
iar in conventional imperative and object-oriented languages, where procedures come
with parameters that are passed on during the evaluation. To provide support for this,
Eiter et al. (1997b) developed Modular ASP Programs, which are an early attempt to
narrow the gap between imperative and declarative languages a bit. Such modular

20

1.2. Modularity in Logic Programming

(a) Imperative Programming (C-style)

• Declaration:
int fun(int, int);

• Definition:
int fun(int x, int y) {

return [...];
}

• Use:
int z = fun(1,2);

(b) Functional Programming (Erlang-style)

• Declaration:
-spec fun(integer(),integer())

-> integer().

• Definition:
fun(X,Y) -> [...].

• Use:
Z = fun(1,2).

(c) Modular Nonmonotonic Logic Programming

• Declaration:
𝑚 = (fun[𝑝, 𝑞], 𝑅)

– fun is a module name
– 𝑝, 𝑞 are predicate names
– 𝑅 is a set of rules

• Definition:
𝑅 = {𝑜(𝑋) ← 𝑝(𝑋), 𝑞(𝑋, 𝑌),⋯ ; … }

• Use:
𝑧(𝑋) ← fun[𝑟, 𝑠].𝑜(𝑋)

Figure 1.5: Modular Structuring in three Programming Language Paradigms

logic programs are based on an extension of logic programs with genuine generalized
quantifiers, where modules can receive parametric input that is passed on in a call by
value mode, in addition to the usual call by reference access to atoms in other mod-
ules. Strachey (2000) defines these two parameter calling modes as follows: a function
which receives a parameter in call by value mode will receive the content (value) of
a memory area as formal parameter, whereas a function with call by reference mode
will receive the location of an area in memory as formal parameter; e.g., in C++, we
may define a function int f(int& x) that takes a formal parameter x by reference,
and calling f(y) allows f to change the content of y.

Figure 1.5 shows three functions expressed in different programming paradigms,

21

Chapter 1. Introduction

but all have in common that they receive their parameters in call by value mode. Fig-
ures 1.5a and 1.5b shows how to define, declare, and use call functions in C and Er-
lang, respectively. Both are essentially identical with only minor syntactic differences:
the outcome of a function call fun(1,2) will be assigned to a variable z, where fun
receives the values 1,2 as x,y in its function definition. Figure 1.5c shows the mod-
ule of a Modular ASP program in comparison. Here, the formal input parameters 𝑝
and 𝑞 for module fun will be given the extension of the predicates 𝑟 and 𝑠 in the rule
𝑧(𝑋) ← fun[𝑟, 𝑠].𝑜(𝑋), where 𝑟 and 𝑠will be computed outside the context of fun. This
gives rise to module instantiation for different values of 𝑝 and 𝑞 that are in spirit of
the parameterized Erlang module example shown in Listings 1.8 and 1.9 and the C++
template meta-programming example in Listing 1.5.

General quantifiers are used as a tool to access a module 𝑃𝑖 from another module 𝑃𝑗
using module atoms of the form 𝑃𝑖[p].𝑞(𝑋) (in slightly different syntax), where p is a
list of predicates and 𝑞 is a predicate; intuitively, the module atom evaluates to true for
𝑋 if, on input of the values of the predicates in p to the module 𝑃𝑖, the atom 𝑞(𝑋) will
be concluded by 𝑃𝑖 (under skeptical semantics). For a system 𝑃1[q1], … , 𝑃𝑛[q𝑛] of such
modules, where each q𝑖 is a (list of) formal input predicates, answer sets have been de-
fined using a generalization of the Gelfond-Lifschitz reduct. The resulting framework
is quite expressive, as it is EXPSPACE-complete in general.

But there are limitations and shortcomings in the seminal approach by Eiter et al.
(1997b). As for the former, an important restriction adopted by Eiter et al. (1997b) is
that calls of modules must be acyclic; that is, following the call chain, one may not re-
turn to a call of the same module. In fact, this condition was already imposed at the
syntactic level and prohibits the use of recursion, which is a common and natural pro-
gramming technique. Because of technical intricacies, also some other approaches to
modular answer set programming have limited recursive module calls. Most promi-
nently, DLP-functions (Janhunen et al., 2009b), which are disjunctive logic programs
with a well-defined input/output interface, exclude recursive calls that involve positive
recursion. The approach of Moura and Damásio (2014, 2015) shows how to allow posi-
tive recursion over modules as specified in the framework of Oikarinen and Janhunen
(2008) by using rewriting techniques for mutual recursive modules and adding fresh
modules, but there is no support for disjunctive logic programs. For more discussion,
we refer to Chapter 11.

Furthermore, Eiter et al. (1997b) based their semantics on the Gelfond-Lifschitz
reduct, which suffers from similar anomalies as answer sets for other extensions of
logic programs defined in this way. And finally, it was more concerned with defining
local models of a single module, by importing conclusions of other modules (where
for a given input the “output” of a module is unique) rather than giving a model-based
semantics to a collection 𝑃1, … , 𝑃𝑛 of modules, in which for the same input alternative
outputs of a module are possible.

22

1.2.1. Even in Nonmonotonic Logic Programming

As we will see, the restrictions for modular logic programs (Eiter et al., 1997b) will
be lifted in this thesis, with its contributions listed in §1.5. Next, we will look into the
Even property again and try to model it using an answer set program.

1.2.1 Even in Nonmonotonic Logic Programming
In logic programming with an ordinary ASP realization, assuming data types are avail-
able and, in particular, the predecessor 𝑛 − 1, the Even property is easily expressed
with recursive rules

even(𝑁) ← odd(𝑁 − 1)
odd(𝑁) ← even(𝑁 − 1)
even(0) ←

However, if no such predecessor is available, the task is more complicated. For ex-
ample, if 𝑛 is given as the cardinality of a set of elements, stored in a predicate 𝑞;
i.e., we need to tell whether the set of facts over 𝑞 has even cardinality. This problem
is known as the Even-query in databases and has been studied intensively. In fact,
it is well-known that this problem cannot be expressed in Datalog, and furthermore,
even not without the use of a binary predicate (Chandra and Harel, 1982). This follows
from Blass et al. (1986), which shows that logics with fixed-point operators like Datalog
have the 0–1 Law (Fagin, 1976; Glebskii et al., 1969). The same is true for ASP under
stable model semantics, where we have negation as failure, see Proposition 3.1.

A common solution to this problem is, in order to realize the recursion scheme
above, to guess an binary predecessor predicate pred(𝑥, 𝑦) over the elements in 𝑞 that
amounts to 𝑥 = 𝑦−1. This works well for smaller sets, but suffers scalability problems
as building the successor predicate is expensive (see also Abiteboul and Vianu, 1991,
for the mismatch between the complexity of database computation and conventional
Turing complexity).

If we can order the domain linearly, and provide this information together with the
minimal and maximal elements, i.e., when the relations pred/2, first/1, and last/1 are
stored in the extensional database, we may express the query with

even(𝑌) ← pred(𝑋, 𝑌), odd(𝑋)
odd(𝑌) ← pred(𝑋, 𝑌), even(𝑋)
odd(𝑋) ← first(𝑋)

𝑤 ← last(𝑋), even(𝑋)

such that 𝑤 is true whenever the domain contains an even number of elements.
Modular logic programming offers an alternative to express the Even query in a

fashion that avoids to build a successor predicate, and retains the simple structure of

23

Chapter 1. Introduction

the program above. All we need to do is to determine the predecessor of 𝑛 (which is
given by 𝑞) in a predicate 𝑞′ and then make a recursive call for 𝑞′. To this end, it is
sufficient to drop some arbitrary element from 𝑞 and let 𝑞′ be the result. Dropping an
element from 𝑞 can be easily expressed by nondeterministic choice rules in ASP. In
our formalism, this would lead to the following module, which shares some familiarity
to parametric modules in functional programming.

Example 1.1 (Even query) Consider the following module Parity[𝑞/1], which con-
sists of four rules that determine whether a set has an even respectively odd number
of elements:

𝑞′(𝑋) ∨ 𝑞′(𝑌) ← 𝑞(𝑋), 𝑞(𝑌), 𝑋 ≠ 𝑌
skip ← q(𝑋), not 𝑞′(𝑋)
odd ← skip, Parity[𝑞′].even
even ← not odd

Here, 𝑞/1 is a (formal) unary input predicate that stores the set. The first two rules
have the effect, by the minimality of answer sets, that 𝑞 becomes 𝑞′ with one element
arbitrarily removed (for which skip is true, as defined in the second rule). Do if 𝑞 repre-
sents 𝑛, then 𝑞′ represents 𝑛−1. The third rule determines recursively whether 𝑞 stores
an odd number of elements using the module atom Parity[𝑞′].even, while the last rule
defines even as the complement of odd . Intuitively, if we call the module Parity with a
predicate 𝑝 for input, then even is computed true, which is expressed by Parity[𝑝].even,
whenever 𝑝 stores an even number of elements.

Intuitively, if we call Parity with a predicate 𝑝 for input, then even is computed
true (which is expressed by Parity[𝑝].even), if 𝑝 stores an even number of elements.
Note that Parity is recursive, and for empty input 𝑝 it calls itself with the same input.

As amatter of fact, the programmodule above does not use a binary predicate; only
a guess of a unary predicate (for removing an element) is needed. In sense, the modular
ASP encoding builds a predecessor predicate locally on the fly, while an ordinary ASP
encoding builds it with a global guess, which should be less efficient. This intuition is
in fact confirmed by experimental results (see Chapter 8).

Roughly, an MLP is a system P = (𝑚1, … ,𝑚𝑛) of modules, where each module
𝑚𝑖 = (𝑃𝑖[q𝑖], 𝑅𝑖) has a module name 𝑃𝑖 with an associated list q𝑖 of formal input
atoms, and an associated set of rules 𝑅𝑖 (the “implementation”). A module 𝑚𝑖 can
access another module 𝑚𝑗 using module atoms in the body of rules in 𝑅𝑖 of the form
𝑃𝑗[p].𝑜. Intuitively, the module atom evaluates to true if, on input of the atoms in p
to the module 𝑃𝑗, the atom 𝑜 will be true in 𝑃𝑗. Such programs allow unrestricted
cyclic calls between modules; they can be seen as a generalization of DLP-functions
from propositional to Datalog programs that allow for positive cyclic calls between
modules (including recursion), and provide a call by value mechanism.

24

1.3. Goals

Example 1.2 (Even MLP) For example, the following MLP P = (𝑚1, 𝑚2, 𝑚3) re-
cursively checks whether the number of facts over predicate 𝑞 in the main module
𝑚1 = (𝑃1[q1], 𝑅1) is even. Note that 𝑚1 has no input (i.e., q1 is empty) and uses the
rules

𝑅1 = {
𝑞(𝑎) ←
𝑞(𝑏) ←
ok ← 𝑃2[𝑞].even

} ,

as implementation. Intuitively, 𝑚1 calls 𝑚2 with a rule for the check, and assigns the
result to ok. The module 𝑚2 = (𝑃2[q2], 𝑅2) is mutual recursive with module 𝑚3 =
(𝑃3[q3], 𝑅3). They have the formal inputs q2 = 𝑞2 and q3 = 𝑞3, respectively, and the
implementations

𝑅2 =
⎧⎪
⎨⎪
⎩

𝑞′2(𝑋) ← 𝑞2(𝑋), 𝑞2(𝑌), not 𝑞′2(𝑌), 𝑋 ≠ 𝑌
skip2 ← 𝑞2(𝑋), not 𝑞′2(𝑋)
even ← not skip2
even ← skip2, 𝑃3[𝑞′2].odd

⎫⎪
⎬⎪
⎭

and

𝑅3 = {
𝑞′3(𝑋) ← 𝑞3(𝑋), 𝑞3(𝑌), not 𝑞′3(𝑌), 𝑋 ≠ 𝑌
skip3 ← 𝑞3(𝑋), not 𝑞′3(𝑋)
odd ← skip3, 𝑃2[𝑞′3].even

} .

A call to 𝑚2 “returns” even, if either the input 𝑞2 to 𝑚2 is empty (as then skip2 is
false), or the call of𝑚3 with 𝑞′2 resulting from 𝑞2 by arbitrarily removing one element
(then skip2 is true) returns odd . Module 𝑚3 returns odd for input 𝑞3, if a call to 𝑚2
with 𝑞′3 analogously constructed from 𝑞3 returns even. In any answer set of P, ok is
true.

1.3 Goals
As described above, several semantics exist that deal with modularity in ASP. Virtually
all semantics are defined such that mutual recursion between modules is disallowed.
While this helps one to simplify the definitions of a semantics for modular ASP, in
general this may bring issues when different, possibly independently developed mod-
ules are combined. Many natural problems exist that have an inherent cyclic flavor,
and ruling out the chance to model problems using modules that depend on each other
may be too restrictive in practice, or even force to use counter-intuitive encodings. We
aim at defining amodel-theoretic semantics that caters for this situation, investigate its
semantic properties and computational complexity, and develop novel evaluation algo-
rithms for such modular nonmonotonic logic programs. The next example illustrates

25

Chapter 1. Introduction

𝑃[]

Parity[𝑞/1]

𝑃[∅]

Parity[∅]

Parity[{𝑞(1)}]

Parity[{𝑞(2)}]

Parity[{𝑞(1), 𝑞(2)}]

𝑝

𝑝

𝑝

𝑝

𝑞′

𝑞′
𝑞′

𝑞′

𝑞′
𝑞′

𝑞′

𝑞′

𝑞′

𝑞′

Figure 1.6: Call graph of instantiated modules in Example 1.3

cycles in modular logic programming using Modular Nonmonotonic Logic Programs
(MLP) as defined in Chapter 3, a formalism that admits arbitrary nonground disjunc-
tive nonmonotonic logic programs as modules. MLPs can be seen as a proponent of
the Programming-in-the-Small approach to modular programming, as it is using mod-
ule atoms as a language construct to access knowledge encoded in other modules. We
sketch the basic building blocks of MLPs and refer to Chapter 3 for proper formal def-
initions.

Example 1.3 We demonstrate the use of Parity from Example 1.1 in an MLP with the
(main) module 𝑃[] with empty input, which calls Parity with a set 𝑝 of two elements:

𝑝(1) ← 𝑝(2) ← pev ← Parity[𝑝].even

The combination of both modules gives the cyclic MLP P = (𝑃[], Parity[𝑞/1]). On the
surface, P can be seen as an “uninstantiated” modular program, whose semantics is
given by characterizing models at modules which have been instantiated with a set of
input facts: the value calls. Figure 1.6 depicts the call graph (the principle dependen-
cies) of P with value calls as nodes and edges labeled with input predicates; e.g., value
call 𝑃[∅] calls Parity[{𝑞(1), 𝑞(2)}] on input 𝑝. The dotted boxes highlight the modules
from which the value calls on the inside have been generated.

Loosely speaking, MLPs encode schematic dependencies between modules, and
instantiated modules then can be used to define a semantics that takes module input
into account which is defined over possibly cyclic modules. Different interpretations of
anMLP select different subgraphs of its call graph, and answer sets are defined based on
the selected subgraphs. For instance, P has two answer sets in which pev is true at the
main instantiation 𝑃[∅] and even is true at Parity[{𝑞(1), 𝑞(2)}] and Parity[∅], whereas
odd is satisfied at Parity[{𝑞(1)}] and Parity[{𝑞(2)}]. Both answer sets are symmetric
on the guess of 𝑞′ at Parity[{𝑞(1), 𝑞(2)}], but otherwise equal.

26

1.4. Methods

1.4 Methods

We have an advanced understanding of unexpected issues that arise when we allow
for module cycles in MLPs. One key aspect is the use of the FLP-reduct (Faber et al.,
2011) instead of the traditional GL-reduct (Gelfond and Lifschitz, 1991) to cure seman-
tic issues when dealing with negation-as-failure over potential nonmonotonic module
atoms. Roughly, given an interpretation of a program, the GL-reduct first removes each
rule whose negative body is false in the interpretation, and then cut offs the negative
literals from remaining rules. On the other hand, the FLP-reduct just removes rules
whose body is unsatisfied in a given interpretation, which leaves negative literals in
the result of this transformation. Applied to traditional answer set programs, both
reducts are equivalent, but FLP-semantics is beneficial for language extensions of ASP
such as logic programs with aggregates. In the context of MLPs, the FLP-semantics
guarantees that models are minimal, thus we retain groundedness of the semantics
and prohibit unfounded answer sets.

Another aspect of MLP is to contextualize module instantiation. Here, relevant in-
stantiations are a concept to concentrate on the important part of all instantiated mod-
ules. In general, module instantiation plays a key role for the definition of a semantics
for MLPs. Akin to the argument-passing semantics of imperative programming lan-
guages, the module instantiation employed in MLPs can be viewed as call by value
mechanism, where module instantiations call other instantiations with explicit input
facts, thus formal input arguments of modules cannot be changed after instantiation.

In the module framework of DLP-functions (Janhunen et al., 2009b), which can
be classified as call by reference mechanism, input is given implicitly by the models
of individual module, and composed modules may refer to input atoms as alias for
atoms in the model. Here, the truth value of atoms are instantiated through the com-
posed programs by a given model. To draw an analogy to the individual stages of
ASP, MLPs instantiate modules by “grounding” and keep the instantiations fixed, while
DLP-functions instantiate modules during model search.

Further results show thatMLPs have an increase in computational complexity com-
pared to standard ASP: propositional Horn-MLPs with unrestricted cyclic input over
modules are EXP-complete, and nonground ones are 2EXP-complete. If we restrict
propositional MLPs such that modules have no input predicates, we obtain for instance
that checking satisfiability of normal propositional MLPs is NP-complete, and for dis-
junctive MLP it is Σ𝑝2 -complete. In general, checking answer set existence of arbitrary
normal nonground MLPs is 2NEXP-complete, and 2NEXPNP-complete for the disjunc-
tive case.

27

Chapter 1. Introduction

1.5 Contributions
Concerning semantics, the use of the Gelfond-Lifschitz reduct effected that local mod-
els were in the spirit of Nash equilibria, viz., that a model is (locally) stable if as-
suming that all modules behave in the same way there is no need for the local pro-
gram to switch to another model. Specifically, a program 𝑃1 consisting of the clause
𝑞 ← 𝑃2[𝑞].𝑝, where the module 𝑃2[𝑞2] consists of the single clause 𝑝 ← 𝑞2, has two
answer sets, viz., ∅ and {𝑞}. The reason is that 𝑞 can be concluded in a self-stabilizing
way from the call 𝑃2[𝑞].𝑝; however, arguably ∅ may be considered as the single an-
swer set of 𝑃1.

Such behavior can be excluded using alternative reducts, like the Faber-Leone-
Pfeifer (FLP) reduct (Faber et al., 2011), which has been proposed in the context of ASP
with aggregates to ensure that answer sets are minimal models (see Example 3.8 for
the technical details). This reduct formed also the basis for defining the semantics
of hex-programs (Eiter et al., 2012a, 2006b), which generalized the semantics of logic
programs with generalized quantifiers to the HiLog setting; however, the setting has
been module-centric like (Eiter et al., 1997b), and no global semantics for a collection of
modules is evident. MLPs overcome a restriction of a preliminary approach by Eiter et
al. (1997b), in which module calls must be acyclic (which prohibits the use of recursion
through modules), as well as anomalies of the semantics due to the Gelfond-Lifschitz
reduct, which is replaced by the FLP reduct.

Motivated by these shortcomings, we reconsider modular ASP and make the fol-
lowing main contributions.

• We define a model theoretic semantics of a system 𝑃1[q1], … , 𝑃𝑛[q𝑛] of program mod-
ules, which are divided into one or multiple main modules 𝑃𝑖 that have no input (i.e.,
q𝑖 is void), and library modules which may have input (i.e., q𝑖 can be void). Informally,
the semantics assigns an answer set to each main module and module instance that is
called by the program under a call by value mechanism (Eiter et al., 1997b); the answer
set must be reproducible from the rules along its recursive computation.

Example 1.4 (cont’d) In Example 1.1 above, an answer set for the module instance
of Parity[𝑞], whose input 𝑞 stores 𝑆 = {𝑐1, … , 𝑐𝑛}, would have 𝑞′ storing, for some
permutation 𝜋 of {1, … , 𝑛}, the set 𝑆1 = 𝑆 ⧵ {𝑐𝜋(1)} and call the instance of Parity[𝑞]
with 𝑞 storing 𝑆1, whose answer set in turn stores 𝑆2 = 𝑆1 ⧵ {𝑐𝜋(2)} = 𝑆 ⧵ {𝑐𝜋(1), 𝑐𝜋(2)}
in 𝑞′, etc. The value of even and odd in the answer sets of the instances is determined
bottom up from the ground: for the instance of Parity[𝑞] where 𝑞 = ∅, 𝑞′ and skip
are void, and thus odd must be necessarily false; hence, even is true. On the way back,
even and odd are complemented with their values at the next recursion level.

While a naive definition of the semantics is straightforward, a more difficult question
is to delineate the relevant instances of modules for the computation. Intuitively, many

28

1.5. Contributions

(instances of) modules 𝑃𝑖[q𝑖] in a library might be completely irrelevant for determin-
ing the semantics of a particular collection of modules, but prevent the existence of a
global semantics if locally, for some input value of q𝑖, the instance has no answer set.

Example 1.5 (cont’d) Suppose in the module Parity in Example 1.1 there would also
be a fact 𝑟(𝑎) and a rule 𝑜𝑘 ← 𝑃′[𝑟].nonempty where the module 𝑃′[𝑞/1] consists of
the rules nonempty ← not nonempty and nonempty ← 𝑞(𝑋). Then, an instance 𝑃′ has
an answer set precisely if its input is not empty. Thus, the call 𝑃′[𝑟].nonempty in the
rule will always lead to an answer set in which nonempty is true, and hence we expect
an answer set for the instance of Parity with input 𝑆. However, as 𝑃′ has for empty
input no answer set, there is no global answer set; intuitively, the instance of 𝑃′ with
empty input is irrelevant, and may be discarded.

To remedy this situation and to keep the semantics simple, we use here minimal mod-
els as an approximation of answer sets in module instances that are outside of a context
(i.e., a scope), in which stability of models is strictly required. This context contains al-
ways at least the module instances along the call graph of the program and optionally
further instances to increase in a sense the degree of stability. The smaller the con-
text, the more permissive is the semantics. An alternative to using minimal models for
ensuring consistency would, e.g., be to use paracoherent answer set semantics (Amen-
dola et al., 2016; Sakama and Inoue, 1995); however the latter has higher computational
complexity than ordinary answer set semantics.

• We analyze semantic properties of the approach, and show that many of the desired
properties of ordinary logic programs generalize to our modular ASP. This includes
that the answer sets of a positive modular ASP are its minimal models; that Horn pro-
grams have a model intersection property, and thus a least model, which can be com-
puted by least fixpoint iteration; that the latter can be extended to stratified programs,
which have a canonical model modulo the relevant part.

• We characterize the computational complexity of the new formalism. Our modu-
lar ASP programs have the same complexity as ordinary ASP programs if the mod-
ules have no input, i.e., deciding answer set existence is Σ𝑝2 -complete in the propo-
sitional case and NEXPNP-complete in the nonground (Datalog) case. For programs
with arbitrary inputs, the complexity is exponentially higher, viz., NEXPNP-complete
and 2NEXPNP-complete, respectively. Consequently, our formalism is (under common
complexity hypothesis) more expressive than modular logic programs by Eiter et al.
(1997b); the latter have EXPSPACE complexity, and EXPSPACE is believed to be strictly
contained in 2NEXPNP. The picture is analogous for deciding membership of an atom
in the least model of a Horn program, which is P-complete for MLPs without input
(respectively, EXP-complete for nonground programs), and EXP-complete for MLPs

29

Chapter 1. Introduction

with arbitrary input (respectively, 2EXP-complete in the Datalog setting). However, if
the inputs are naturally bounded, then the complexity is the same as in the case with-
out inputs, and thus as in ordinary ASP. We further investigate normal MLPs, both
unrestricted and those which are acyclic with respect to their call graph, and show
that in either case deciding whether normal or acyclic MLPs have an answer set is
NEXP-complete.

• We provide two rewriting techniques for translating MLPs with module input into
programs of simpler structure. The first one rewrites arbitrary MLPs to MLPs without
module input, which may be transformed into logic programs without modules at all.
This approach is costly in general and may generate exponentially larger programs.
The second approach converts restricted MLPs to programs without modules, which
will be applied to transfer Datalog-rewritable DL-programs (Heymans et al., 2010) to
MLPs.

• We report a top-down evaluation procedure that expands only relevant module instan-
tiations based on novel notions of input- and call-stratified MLPs, for which Splitting
Set Theorem (Lifschitz and Turner, 1994) has been extended.

• We characterize the answer sets of MLPs in terms of classical models and explore the
notion of loop formulas (Lin and Zhao, 2004) and completion (Clark, 1978) for MLPs. We
further the work and study ordered completion exploring the recent approach of Asun-
cion et al. (2012).

• We analyze the relationship between our modular answer set programs and DLP-
functions (Janhunen et al., 2009b), which are one of the premier formalisms for com-
bining ASP modules. As it turns out, DLP-functions can be very naturally embedded
into our formalism, by regarding DLP modules as MLP modules with empty input list;
vice versa, a respective fragment of our modular ASP programs can be embedded into
DLP functions. As our approach admits mutual recursion of calls with positive loops,
and it furthermore also incorporates a call by value mechanism, it can be viewed as a
generalization of DLP-functions with these features.

We believe that the approach presented in this thesis contributes to modular ASP
in which modules can be used in an unrestricted and natural way for problem solving,
and looping recursion is handled by the very means of logic programming semantics.

1.6 Organization
This thesis is organized into four parts. In Part I, we started with an introduction into
modular programming and aspects of modularity in logic programming. In the next

30

1.6. Organization

Ch.9

Ch.10

Ch.11

Part IV

Ch.6

Ch.8

Ch.7

Part III

Ch.3

Ch.4

Ch.5

Part II

Ch.1

Ch.2

Part I

Figure 1.7: Leitfaden

Chapter 2 we give preliminaries for Answer Set Programming and review Generalized
Quantifier Logic Programs.

The following Parts II–IV then elaborate onmodular nonmonotonic logic programs
(MLPs), our contribution to modularity in logic programming. In Part II, we start by
introducing syntax and semantics of modular nonmonotonic logic programs in Chap-
ter 3. We then study in Chapter 4 semantic properties and consider some important
syntactic fragments of MLPs, before we proceed in Chapter 5 to analyze the computa-
tional complexity of the formalism.

The next Part III is concerned with characterizing MLPs using other logic for-
malisms. In Chapter 6 we investigate rewriting techniques for MLPs into programs of

31

Chapter 1. Introduction

simpler structure, namely into Datalog, which possibly completely removes all mod-
ules and thus potentially allows for easier program evaluation. This paves the way to
show an application for MLPs, namely evaluating hybrid knowledge bases in the form
of dl-programs with Datalog-rewritable description logics. Following this, Chapter 7
characterizes the semantics of MLPs in terms of classical models by adopting the no-
tion of loop formulas and ordered completion to MLPs. In Chapter 8, we review MLP
splitting sets and a top-down evaluation algorithm for MLPs. Moreover, we report the
findings of an experimental evaluation for a benchmark using MLPs derived by the
rewriting techniques developed for dl-programs in Chapter 6.

The final Part IV examines relatedwork and concludes this thesis. We first establish
a correspondence of a fragment of MLPs to DLP-functions (Janhunen et al., 2009b) in
Chapter 9, and then provide further approaches to modular logic programming and
their relationship to MLPs in Chapter 10. Chapter 11 considers potential future work,
addresses possible applications and gives conclusions.

Figure 1.7 summarizes the conceptual dependencies between the chapters, where
Chapter 11 implicitly depends on all chapters.

1.7 Publications Related with the Thesis
Dao-Tran et al. (2009a) devise a novel semantics for MLPs that allows for mutual re-
cursion between modules. We have studied the semantic properties of MLPs, their
computational complexity, and compared it to DLP-functions (Janhunen et al., 2009b);
interestingly, DLP-functions can be seen as MLPs that have no module input parame-
ters. MLPs conservatively extend ordinary logic programs, and many semantic prop-
erties of answer set programs generalize toMLPs. For instance, the important property
that every answer set of an MLP is a minimal model implies that answer sets in the
MLP setting are grounded (see discussion above). This thesis builds upon this work
and gives detailed proofs and extends it in Chapters 3–5 and Chapter 9.

Eiter et al. (2009a) investigate the relationships between various semantics for
modular logic programs and other nonmonotonic formalisms. We have provided a
more systematic view of approaches in combining nonmonotonic knowledge bases
and classified formalisms based on the program reduct and on the environment view,
i.e., whether their semantics is defined in terms of local models for each individual
knowledge base that implicitly converge to a semantics for the combined system, or
whether the formalism has a global state using a collection of explicitly accessible local
models.

We developed a novel evaluation algorithm forMLPs (Dao-Tran et al., 2009b). Here,
we concentrated on an MLP fragment called input- and call-stratified MLPs, whose
stratification can be evaluated in a top-down fashion starting from uninstantiatedmod-
ules. This way we could generalize the splitting set technique to MLPs and develop an

32

1.7. Publications Related with the Thesis

evaluation algorithm that traverses the call graph and instantiates modules on-the-fly.
Example 1.3 above is input-call-stratified, and the techniques developed by Dao-Tran
et al. (2009b) are applicable to it. In Chapter 8, we summarize their work there.

Krennwallner (2011) consolidates our work on Modular Nonmonotonic Logic Pro-
grams and pinpoints to issues that are present in cyclic module systems by highlighting
how MLPs addresses them.

We worked on two characterizations of MLPs in terms of classical models by in-
vestigating the notions of loop formulas (Lin and Zhao, 2004) and ordered comple-
tion (Asuncion et al., 2012) in MLPs (Dao-Tran et al., 2011). The results include mod-
ular loop formulas based on loops over module instantiations, and ordered completion
for MLPs without using explicit loop formulas. We generalized Clark’s completion and
positive dependency graph to MLPs with respect to different module instantiations.
Based on these results, we defined modular loop formulas that capture MLP seman-
tics. The second contribution was to explore ordered completion in the realm of MLPs.
Here, fresh predicates ensure a derivation order, and program completion is only ac-
tive for those predicates that do not participate in a positive loop, possibly involving
module instantiations. Chapter 7 extends this work.

Eiter et al. (2012b) consider recent and ongoing work on combining rules and
ontologies systems formalized in logic programming and description logics, respec-
tively. Nonmonotonic description logic programs are a major formalism for a loose
coupling of such combinations; this approach is attractive for combining systems, but
the impedance mismatch between different reasoning engines and the API-style inter-
facing are an obstacle to efficient evaluation of dl-programs in general. Uniform eval-
uation circumvents this by transforming programs into a single formalism, which can
be evaluated on a single reasoning engine. We use relational first-order logic (and thus
relational database engines) and Datalog with negation as target formalisms, conduct-
ing experiments whose results show that significant performance gains are possible
and suggest the potential of this approach.

33

2

Preliminaries and Previous Results

T
he objective of this chapter is to describe the formal specifications for two
essential formalisms that provide the basis for this thesis. §2.1 describes
the background for Answer Set Programs, i.e., disjunctive logic programs
under stable model semantics. Beyond that, §2.2 describes logic programs

with generalized quantifiers, which provide the theoretical underpinning for gener-
alized quantifier modular logic programs (GQMLP), described in §2.3. Such GQMLPs
constitute important previous results for modular logic programming in ASP and as
such forms the intellectual predecessor for modular nonmonotonic logic programs.

2.1 Logic Programs under the Answer Set Semantics
Answer Set Programming stems from the stable model semantics of normal logic pro-
grams (Gelfond and Lifschitz, 1988) line of research (also known as general logic pro-
grams), which typically deals with negation as failure. This kind of negation is closely
related to Reiter’s Default Logic (Reiter, 1980), hence it is also known as default nega-
tion or weak negation. Since negation as failure is different from classical negation (or
strong negation) in classical logic, Gelfond and Lifschitz proposed a logic programming
approach that allows for both negations (Gelfond and Lifschitz, 1990). Subsequently,
Gelfond and Lifschitz (1991) extended their semantics to disjunction in rule heads. Sim-
ilar definitions for general logic programs and other classes of programs can be found
in the literature (confer, e.g., (Lifschitz and Woo, 1992)). For an overview on other
semantics for extended logic programs, see also (Dix, 1995).

Prominent systems for computing answer sets of are ASSAT (Lin and Zhao, 2004),
Clasp (Gebser et al., 2011, 2012), Clingo (Gebser et al., 2017), Cmodels (Giunchiglia et
al., 2006), DLV (Adrian et al., 2018; Leone et al., 2006), DLV2 (Alviano et al., 2017),
DLVHEX (Eiter et al., 2018, 2006a, 2017), GnT (Janhunen et al., 2006), lp2* family (Jan-
hunen, 2018), smodels (Niemelä, 1999; Simons et al., 2002), and WASP (Alviano et

35

Chapter 2. Preliminaries and Previous Results

Name restriction

definite Horn 𝑘 = 1, 𝑛 = 𝑚
Horn 𝑘 ≤ 1, 𝑛 = 𝑚
normal 𝑘 ≤ 1
definite 𝑘 ≥ 1, 𝑛 = 𝑚
positive 𝑛 = 𝑚
disjunctive no restriction

Table 2.1: Program classes

al., 2015a), which allow for efficient declarative problem solving. Some of these an-
swer set solvers require ground input programs, which can be generated by sophis-
ticated grounders like Gringo (Gebser et al., 2014c), ℐ-DLV (Calimeri et al., 2017), or
Lparse (Syrjänen, 2001; Syrjänen, 2009).

2.1.1 Syntax of Answer Set Programs
Let 𝒫, 𝒞 and 𝒳 be disjoint sets of predicate, constant, and variable symbols from a
first-order vocabulary Φ, respectively, where 𝒳 is infinite and 𝒫 and 𝒞 are countable.
In accordance with common ASP solvers such as DLV, we assume that elements from
𝒞 and 𝒫 are string constants that begin with a lowercase letter or are double-quoted,
where elements from 𝒞 can also be integer numbers. Elements from 𝒳 begin with an
uppercase letter. A term is either a constant or a variable. Given 𝑝 ∈ 𝒫 an atom is
defined as 𝑝(𝑡1, … , 𝑡𝑘), where 𝑘 is called the arity of 𝑝 and 𝑡1, … , 𝑡𝑘 are terms. Atoms
of arity 𝑘 = 0 are called propositional atoms.

A classical literal (or simply literal) 𝑙 is an atom 𝑝 or a negated atom ¬𝑝, where
“¬” is the symbol for true (classical) negation. Its complementary literal is ¬𝑝 (respec-
tively, 𝑝). A negation as failure literal (or NAF-literal) is a literal 𝑙 or a default-negated
literal not 𝑙. Negation as failure is an extension to classical negation, denoting a fact as
false if all attempts to prove it fail. Thus, not l evaluates to true if it cannot be found-
edly demonstrated that l is true, i.e., if either l is false or we do not know whether l is
true or false.

A rule 𝑟 is an expression of the form

𝑎1 ∨⋯ ∨ 𝑎𝑘 ← 𝑏1, … , 𝑏𝑚, not 𝑏𝑚+1, … , not 𝑏𝑛 , (2.1)

where 𝑘 ≥ 0, 𝑛 ≥ 𝑚 ≥ 0, and 𝑎1, … , 𝑎𝑘, 𝑏1, … , 𝑏𝑛 are classical literals. We say that
𝑎1, … , 𝑎𝑘 is the head of 𝑟, while the conjunction 𝑏1, … , 𝑏𝑚, not 𝑏𝑚+1, … , not 𝑏𝑛 is the
body of 𝑟, where 𝑏1, … , 𝑏𝑚 (respectively, not 𝑏𝑚+1, … , not 𝑏𝑛) is the positive (respec-
tively, negative) body of 𝑟. We use 𝐻(𝑟) to denote its head literals, and 𝐵(𝑟) to de-
note the set of all its body literals 𝐵+(𝑟) ∪ 𝐵−(𝑟), where 𝐵+(𝑟) = {𝑏1, … , 𝑏𝑚} and

36

2.1.1. Syntax of Answer Set Programs

(a) Graph instance for Example 2.1

𝑎

𝑏𝑐

𝑑

𝑒

(b) Legal 3-coloring of Example 2.1

𝑎

𝑏𝑐

𝑑

𝑒

Figure 2.1: Graphs for Example 2.1

𝐵−(𝑟) = {𝑏𝑚+1, … , 𝑏𝑛}. A rule 𝑟 without head literals (i.e., 𝑘 = 0) is an integrity con-
straint. A rule 𝑟 with exactly one head literal (i.e., 𝑘 = 1) is a normal rule. If the body
of 𝑟 is empty (that is,𝑚 = 𝑛 = 0), then 𝑟 is a fact, and we often omit “←”.1 An extended
disjunctive logic program (EDLP, or simply program) 𝑃 is a finite set of rules 𝑟 of the
form (2.1).

Programs without disjunction in the heads of rules are called extended logic pro-
grams (ELPs). A program 𝑃 without negation as failure, i.e., for all 𝑟 ∈ 𝑃, 𝐵−(𝑟) = ∅
is called positive logic program. If, additionally, no strong negation occurs in 𝑃, i.e.,
the only form of negation is default negation in rule bodies, then 𝑃 is called a normal
logic program (NLP). The generalization of an NLP by allowing default negation in the
heads of rules is called generalized logic program (GLP). Additional program classes
of logic programs with the corresponding restrictions on the rules in a program are
summarized in Table 2.1. Program classes based on dependency information such as
stratified programs (Apt et al., 1988) are not considered here.

Next we will provide an answer set program as an example for specifying compu-
tational problems in a uniform way. This program will encode a problem from graph
theory, namely the graph three-colorability (3COL) problem, which is a well-known
NP-complete problem (Garey et al., 1976, give an accessible proof that reduces 3SAT to
3COL). The 3COL problem is defined as follows:
INSTANCE: Graph 𝐺 = (𝑉, 𝐸).
QUESTION: Does𝐺 have a legal 3-coloring of its nodes, i.e., is there a mapping 𝑓: 𝑉 →
{1, 2, 3} such that if (𝑢, 𝑣) ∈ 𝐸 then 𝑓(𝑢) ≠ 𝑓(𝑣)?

The encoding given in Example 2.1 is uniform in the sense that it separates the
problem specification from the concrete instance of a computational problem. That is,
in the Answer Set Program, the instance of a problem is usually given as set of facts,
while an additional set of rules that correspond to the problem specification is based

1In this thesis, we will use both forms “𝑎 ←” and “𝑎,” to denote that 𝑎 is a fact in a logic program.

37

Chapter 2. Preliminaries and Previous Results

on the relations defined by the instance facts. This way, problem encodings become
uniform, and we can abstract from concrete instances when defining the rules of the
problem specification. This is the essence of the Answer Set Programming Paradigm,
see Eiter et al. (2009b) and Janhunen and Niemelä (2016) for introductory material.

Example 2.1 (GraphThree-colorability (3COL)) Consider a graph 𝐺 as shown in
Figure 2.1a, which has six possible legal 3-colorings. One of them is depicted in Fig-
ure 2.1b, i.e., the mapping 𝑓 such that 𝑓(𝑎) = 𝑓(𝑐) = 1 (using red nodes), 𝑓(𝑏) =
𝑓(𝑑) = 2 (using green nodes), and 𝑓(𝑒) = 3 (in blue). If we would add the edge (𝑎, 𝑐)
to 𝐺, then 𝐺 would not be three-colorable. Alternatively, adding (𝑏, 𝑑) to 𝐺 would
have the same effect.

Now let 𝑃 be an answer set program with the following set of rules:

col(𝑋, red) ∨ col(𝑋, green) ∨ col(𝑋, blue) ← node(𝑋)
← col(𝑋, 𝐶), col(𝑌, 𝐶), edge(𝑋, 𝑌)

node(𝑋) ← edge(𝑋, 𝑌)
node(𝑋) ← edge(𝑌, 𝑋)

edge(𝑎, 𝑏) ←
edge(𝑏, 𝑐) ←
edge(𝑐, 𝑑) ←
edge(𝑑, 𝑎) ←
edge(𝑎, 𝑒) ←
edge(𝑏, 𝑒) ←
edge(𝑐, 𝑒) ←
edge(𝑑, 𝑒) ←

This program is essentially split into two parts: one part comprising of the first four
rules encodes the problem specification of 3COL, while the other part composed of
the last eight facts encodes the graph from Figure 2.1a as a particular problem in-
stance. Thus, 𝑃 is a uniform encoding, as customary in Answer Set Programming.
Note that the first rule is a disjunctive rule generating all 3-colorings using the colors
{red , green, blue} (instead of {1, 2, 3}), while the second rule is a constraint that forces
3-colorings to be legal as defined by the 3COL problem. The third and fourth rule use
the auxiliary unary predicate node for specifying the set of nodes given the set of edges
from the problem instance.

2.1.2 Semantics of Answer Set Programs
The semantics of extended disjunctive logic programs is defined for variable-free pro-
grams. Thus, we first define the ground instantiation of a program that eliminates its
variables.

38

2.1.2. Semantics of Answer Set Programs

The Herbrand universe of a program 𝑃, denoted HUP , is the set of all constant sym-
bols 𝐶 ⊂ 𝒞 appearing in 𝑃. If there is no such constant symbol, then HUP = {𝑐},
where 𝑐 is an arbitrary constant symbol from 𝒞. As usual, terms, atoms, literals, rules,
programs, etc. are ground iff they do not contain any variables. The Herbrand base of
a program 𝑃, denoted HBP , is the set of all ground (classical) literals that can be con-
structed from the predicate symbols appearing in 𝑃 and the constant symbols in HUP .
A ground instance of a rule 𝑟 ∈ 𝑃 is obtained from 𝑟 by systematically replacing all
instances of each variable that occurs in 𝑟 by a constant symbol from HUP . We use
ground(𝑃) to denote the set of all ground instances of rules in 𝑃.

The semantics for EDLPs is defined first for positive ground programs. A set of
literals 𝑋 ⊆ HBP is consistent iff {𝑝, ¬𝑝} ⊈ 𝑋 for every atom 𝑝 ∈ HBP . An interpreta-
tion 𝐼 relative to a program 𝑃 is a consistent subset of HBP . We say that a set of literals
𝑆 satisfies a rule 𝑟 if 𝐻(𝑟) ∩ 𝑆 ≠ ∅ whenever 𝐵+(𝑟) ⊆ 𝑆 and 𝐵−(𝑟) ∩ 𝑆 = ∅. A model
of a positive program 𝑃 is an interpretation 𝐼 ⊆ HBP such that 𝐼 satisfies all rules in
𝑃. An answer set of a positive program 𝑃 is a minimal model of 𝑃 with respect to set
inclusion.

In order to extend this definition to programswith negation as failure, we define the
Gelfond-Lifschitz transform (also often called theGelfond-Lifschitz reduct) of a program
𝑃 relative to an interpretation 𝐼 ⊆ HBP , denoted 𝑃𝐼, as the ground positive program
that is obtained from ground(𝑃) by

1. deleting every rule 𝑟 such that 𝐵−(𝑟) ∩ 𝐼 ≠ ∅, and

2. deleting the negative body from every remaining rule.

An answer set of a program 𝑃 is an interpretation 𝐼 ⊆ HBP such that 𝐼 is an answer set
of 𝑃𝐼.

Example 2.2 Consider the following program 𝑃:

𝑝 ← not 𝑞
𝑞 ← not𝑝

Let 𝐼1 = {𝑝}; then, 𝑃𝐼1 = {𝑝 ←} with the unique minimal model {𝑝} and thus 𝐼1 is an
answer set of 𝑃. Likewise, 𝑃 has an answer set {𝑞}. However, the empty set ∅ is not
an answer set of 𝑃, since the respective reduct would be {𝑝 ←; 𝑞 ←} with the minimal
model {𝑝, 𝑞}.

A constraint is used to eliminate “unwanted” models from the result, since its head
is implicitly assumed to be false. Amodel that satisfies the body of a constraint is hence
discarded from the set of answer sets.

39

Chapter 2. Preliminaries and Previous Results

Example 2.3 Let 𝑃 be the program

𝑝(𝑋) ∨ ¬𝑝(𝑋) ← 𝑞(𝑋), not 𝑟(𝑋)
𝑞(𝑐1) ←
𝑟(𝑐2) ←

The grounding of 𝑃 is

𝑝(𝑐1) ∨ ¬𝑝(𝑐1) ← 𝑞(𝑐1), not 𝑟(𝑐1)
𝑝(𝑐2) ∨ ¬𝑝(𝑐2) ← 𝑞(𝑐2), not 𝑟(𝑐2)

𝑞(𝑐1) ←
𝑟(𝑐2) ←

This program has several models. For instance, 𝐼1 = {𝑞(𝑐1), 𝑟(𝑐1), 𝑟(𝑐2), 𝑝(𝑐1)} is a
model of 𝑃, since 𝑃𝐼1 is just

𝑞(𝑐1) ←
𝑟(𝑐2) ←

However, 𝐼1 is not a minimal model of 𝑃𝐼1 . Now take 𝐼2 = {𝑞(𝑐1), 𝑟(𝑐2), 𝑝(𝑐1)}. We
obtain 𝑃𝐼2 as

𝑝(𝑐1) ∨ ¬𝑝(𝑐1) ← 𝑞(𝑐1)
𝑞(𝑐1) ←
𝑟(𝑐2) ←

Indeed, 𝐼2 is a minimal model of 𝑃𝐼2 , hence it is an answer set of 𝑃. The other answer
set is 𝐼3 = {𝑞(𝑐1), 𝑟(𝑐2), ¬𝑝(𝑐1)}, as 𝐼3 is a minimal model of 𝑃𝐼3 = 𝑃𝐼2 .

Example 2.4 Consider the 3COL example from above. The grounding of 𝑃 is the
program ground(𝑃):

col(𝑎, red) ∨ col(𝑎, green) ∨ col(𝑎, blue) ← node(𝑎)
col(𝑏, red) ∨ col(𝑏, green) ∨ col(𝑏, blue) ← node(𝑏)
col(𝑐, red) ∨ col(𝑐, green) ∨ col(𝑐, blue) ← node(𝑐)
col(𝑑, red) ∨ col(𝑑, green) ∨ col(𝑑, blue) ← node(𝑑)
col(𝑒, red) ∨ col(𝑒, green) ∨ col(𝑒, blue) ← node(𝑒)

col(blue, red) ∨ col(blue, green) ∨ col(blue, blue) ← node(blue)
col(green, red) ∨ col(green, green) ∨ col(green, blue) ← node(green)

col(red , red) ∨ col(red , green) ∨ col(red , blue) ← node(red)

40

2.1.2. Semantics of Answer Set Programs

← col(𝑎, 1), col(𝑎, 1), edge(𝑎, 𝑎)
← col(𝑎, 1), col(𝑏, 1), edge(𝑎, 𝑏)
⋮
← col(𝑎, 2), col(𝑎, 2), edge(𝑎, 𝑎)
← col(𝑎, 2), col(𝑏, 2), edge(𝑎, 𝑏)
⋮
← col(𝑎, 𝑎), col(𝑎, 𝑎), edge(𝑎, 𝑎)
← col(𝑎, 𝑎), col(𝑏, 𝑎), edge(𝑎, 𝑏)
⋮

node(𝑎) ← edge(𝑎, 𝑎)
node(𝑎) ← edge(𝑎, 𝑏)

⋮
node(𝑏) ← edge(𝑎, 𝑏)

⋮
edge(𝑎, 𝑏) ←
edge(𝑏, 𝑐) ←
edge(𝑐, 𝑑) ←
edge(𝑑, 𝑎) ←
edge(𝑎, 𝑒) ←
edge(𝑏, 𝑒) ←
edge(𝑐, 𝑒) ←
edge(𝑑, 𝑒) ←

Note that ground(𝑃) also contains unintuitive instances of rules from 𝑃 such as

col(blue, red) ∨ col(blue, green) ∨ col(blue, blue) ← node(blue)

or
← col(𝑎, 𝑎), col(𝑎, 𝑎), edge(𝑎, 𝑎) .

Since 𝑃 is positive, for each Herbrand interpretation 𝐼, 𝑃𝐼 = ground(𝑃). Hence, the
minimal models of ground(𝑃) and the answer sets of 𝑃 coincide. One of them is the set

𝐴 = {edge(𝑎, 𝑏), edge(𝑏, 𝑐), edge(𝑐, 𝑑), edge(𝑑, 𝑎),
edge(𝑎, 𝑒), edge(𝑏, 𝑒), edge(𝑐, 𝑒), edge(𝑑, 𝑒),
node(𝑎), node(𝑏), node(𝑐), node(𝑑), node(𝑒),
col(𝑎, red), col(𝑏, green), col(𝑐, red), col(𝑑, green), col(𝑒, blue)} ,

which corresponds to the 3-coloring shown in Figure 2.1b.

41

Chapter 2. Preliminaries and Previous Results

The main reasoning tasks that are associated with EDLPs under the answer-set
semantics are the following:

• decide whether a given program 𝑃 has an answer set;

• given a program 𝑃 and a ground propositional formula 𝜙, decide whether 𝜙 holds
in every (respectively, some) answer set of 𝑃 (cautious (respectively, brave) rea-
soning);

• given a program 𝑃 and an interpretation 𝐼 ⊆ HBP , decide whether 𝐼 is an answer
set of 𝑃 (answer-set checking); and

• enumerate the set of all answer sets of a given program 𝑃.

2.2 GeneralizedQuantifier Logic Programs
In this section, we recall definitions from Eiter et al. (1997b, 2000) forGeneralizedQuan-
tifier Logic Programs, which form the basis for modular logic programs with General-
ized Quantifiers (GQMLP) in §2.3. GQMLPs have been proposed as a logic program-
ming formalism to support combining independent modules of logic programs. Such
modular programs are nonmonotonic logic programs extended by the notion of gen-
eralized quantifiers (see Väänänen, 1999, for an introduction). In this approach, every
module can be accessed via its generalized quantifier interface. GQLPs and GQMLPs
are close in spirit to hex-programs (Eiter et al., 2012a, 2006b, 2017), which are based
on external atoms instead of generalized quantifier atoms.

2.2.1 Basic Concepts from Mathematical Logic
We start with defining notation. Letters 𝑃,𝑄,… denote predicates, lower case letters
𝑥, 𝑦, 𝑧 variables, 𝑎, 𝑏, 𝑐, … constants, and 𝑓, 𝑔… functions. The bold face version P
of a predicate symbol 𝑃 denotes a list 𝑃1, … , 𝑃𝑚 of predicate symbols, and similarly
for variable, function, and constant symbols. Fraktur letters 𝔄,𝔅,… denote logical
structures. Sets of structures are denoted by capital letter 𝐶, and classes or mappings
thereof byℳ,𝒬,… ; lower case Greek letters 𝜏, 𝜎, … denote signatures.

Definition 2.1 (Signature).
A signature 𝜏 is a sequence (𝑃𝑎11 , … , 𝑃

𝑎𝑘
𝑘 , 𝑓𝑏11 , … , 𝑓

𝑏𝑙
𝑙 , 𝑐1, … , 𝑐𝑚) where the 𝑃𝑖 are rela-

tional symbols of arity 𝑎𝑖 ≥ 0, the 𝑓𝑖 are functions with 𝑏𝑖 ≥ 1 arguments, and the 𝑐𝑖
are constants. 𝜏 is relational, if it contains only relational symbols.

42

2.2.2. GeneralizedQuantifiers

Definition 2.2 (Structure).
A structure 𝔄 over 𝜏 is denoted by (𝐴, 𝑃𝔄1 , … , 𝑃𝔄𝑘 , 𝑓𝔄1 , … , 𝑓𝔄𝑙 , 𝑐𝔄1 , … , 𝑐𝔄𝑚). The set 𝐴 is
called the universe or domain of 𝔄, and denoted |𝔄|. 𝔄 is finite if |𝔄| is finite. The set
of all structures over 𝜏 is denoted by Struct(𝜏).

Let𝔄,𝔅 ∈ Struct(𝜏) such that |𝔄| = |𝔅|. Then,𝔄 ⊆ 𝔅, if 𝑃𝔄𝑖 ⊆ 𝑃𝔅𝑖 for 1 ≤ 𝑖 ≤ 𝑘,
𝑓𝔄𝑖 = 𝑓𝔅𝑖 for 1 ≤ 𝑖 ≤ 𝑙, and 𝑐𝔄𝑖 = 𝑐𝔅𝑖 for 1 ≤ 𝑖 ≤ 𝑚.

For a relational signature 𝜏 and integer 𝑙, 𝜏(𝑙) = (𝑃𝑙𝑎11 , … , 𝑃𝑙𝑎𝑘𝑘) is called the 𝑙-ary
vectorization of 𝜏.

Let 𝔄 be a relational structure, and 𝑈 ⊆ |𝔄|. Then the restriction of 𝔄 to uni-
verse 𝑈, in symbols 𝔄|𝑈, is the structure (𝑈, 𝑃𝔄1 ∩ 𝑈𝑎1, … , 𝑃𝔄𝑘 ∩ 𝑈𝑎𝑘). For a 𝜏-
structure𝔄 and a signature 𝜏0 contained in 𝜏,𝔄|𝜏0 is the 𝜏0-structure obtained from𝔄
by removing all relations, functions, and constants not contained in 𝜏0. Given a 𝜏0-
structure 𝔅 such that |𝔄| = |𝔅| and 𝔅 = 𝔄|𝜏0, then 𝔅 is said to be the reduct of 𝔄
to 𝜏0, and conversely, 𝔄 is an expansion of𝔅 to 𝜏.

The set of all finite models of a formula Ψ is denoted by Mod(Ψ).
Let 𝜙(𝑥1, … , 𝑥𝑛) be a formula with free variables 𝑥1, … , 𝑥𝑛, and let𝔄 be a structure.

Then 𝜙𝔄 denotes the 𝑛-ary relation {(𝑑1, … , 𝑑𝑛) ∈ |𝔄|𝑛 ∣ 𝔄 ⊧ 𝜙(𝑑1, … , 𝑑𝑛)}.
Let ℒ be a syntactic fragment of first-order logic. Given signatures 𝜏, 𝜎 and a

natural number 𝑘, a 𝑘-ary interpretation 𝐼 of 𝜏 into 𝜎 is a definition of the 𝜎(𝑘) relations
in terms of 𝜏, i.e., a tuple of ℒ formulas, such that for each predicate symbol 𝑅 in 𝜎
with arity 𝑟, 𝐼 contains a formula 𝜙𝑅 over 𝜏with 𝑟 ⋅ 𝑘 free variables which defines 𝑅𝑟⋅𝑘.
For a structure 𝔄 ∈ Struct(𝜏), 𝐼(𝔄) denotes the structure over 𝜎(𝑘) which is defined
by 𝐼.

2.2.2 GeneralizedQuantifiers
Next, we define Generalized Quantifiers and their semantics.

Definition 2.3 (Generalized quantifiers).
Let 𝐶 be a class of logical structures over a relational signature 𝜎 = (𝑅1, … , 𝑅𝑛) with
arities 𝑎1, … , 𝑎𝑛 such that 𝐶 is closed under isomorphism, i.e., if 𝔄 ≅ 𝔅 and 𝔄 ∈ 𝐶,
then𝔅 ∈ 𝐶. Such class 𝐶 has an associated generalized quantifier (GQ) 𝑄𝐶.

The intended semantics of a GQ 𝑄𝐶 is to check if a relation defined by the under-
lying logic belongs to a class of logical structures 𝐶.

Definition 2.4 (Extension of logics by a GQ).
The extension ℒ(𝑄𝐶) of a logic ℒ by a GQ 𝑄𝐶 is the closure of ℒ under the following
rule: If 𝜙1(x1), … , 𝜙𝑛(x𝑛) are formulas of logic ℒ, where every 𝜙𝑖 has at least 𝑎𝑖 free
variables x𝑖, then𝑄𝐶x1⋯x𝑛[𝜙1, … , 𝜙𝑛] is a formula of the extensionℒ(𝑄𝐶), in which
the occurrences of x1, … ,x𝑛 are bound.

43

Chapter 2. Preliminaries and Previous Results

For clarity, we shall often write the list of remaining free variables y after the for-
mula. The semantics of a GQ 𝑄𝐶 is defined as follows.

Definition 2.5 (Semantics of GQs).
Let Θ be the formula

𝑄𝐶x1⋯x𝑛[𝜙1, … , 𝜙𝑛](y),
and let𝔄 be a structure and b a tuple over |𝔄|matching the arity of y. Then (𝔄, b) ⊧ Θ,
if and only if the structure (𝐴, 𝜙𝔄,b1 , … , 𝜙𝔄,b𝑛) belongs to 𝐶, where

𝜙𝔄,b𝑖 = {a ∣ 𝔄 ⊧ 𝜙𝑖[a, b]} .

Example 2.5 Let 𝔄 be a structure with a domain 𝐴 = |𝔄|. The following list shows
common generalized quantifiers and their semantics. Some of them will be used in
further examples.

• 𝑄∀ = {(𝐴,𝐴)} (universal quantifier)

• 𝑄∃ = {(𝐴,𝑈) | ∅ ≠ 𝑈 ⊆ 𝐴} (existential quantifier)

• 𝑄∼ = {(𝐴,𝑈, {𝑣}) | 𝑣 ∈ 𝐴 ⧵ 𝑈} (complement quantifier)

• 𝑄𝑀 = {(𝐴,𝑈,𝑉) | 𝑈, 𝑉 ⊆ 𝐴, |𝑈| > |𝑉|} (majority quantifier)

• 𝑄𝑘 = {(𝐴,𝑈) | |𝑈| ≡ 0 mod 𝑘} (modularity quantifier)

• 𝑄≅ = {(𝐴, 𝐸, 𝐹) |||
(𝐴, 𝐸) and (𝐴, 𝐹)

are isomorphic graphs } (isomorphism quantifier)

• 𝑄TC ={(𝐴, 𝐸, {(𝑢, 𝑣)})
|||
there is a path from 𝑢 to
𝑣 in the graph 𝐸 ⊆ 𝐴 × 𝐴} (transitive closure quantifier)

2.2.3 Logic Programs with GeneralizedQuantifiers
Now we can define logic programs with generalized quantifiers.

Definition 2.6 (GQ atoms and literals).
Suppose that 𝑄𝐶 is a GQ defined over the signature 𝜎 = (𝑅1, … , 𝑅𝑛, 𝑅𝑛+1)with associ-
ated arities 𝑎1, … , 𝑎𝑛, 𝑎𝑛+1 = 𝑙, and that 𝑆1, … , 𝑆𝑛 are predicates from 𝜏 such that the
arity of 𝑆𝑖 equals 𝑎𝑖. Then, the formula

𝑄𝐶x1⋯x𝑛+1[𝑆1(x1), … , 𝑆𝑛(x𝑛),x𝑛+1 = v](v) (2.2)

is a GQ-atom with free variables v = 𝑣1, … , 𝑣𝑙. A GQ-literal is a possibly negated
GQ-atom. For brevity, we denote a GQ atom (2.2) by

𝑄𝐶[S](v) (respectively, 𝑄𝐶[S], if v is void) , (2.3)

where S = 𝑆1, … , 𝑆𝑛, and similarly for negative GQ-literals.

44

2.2.3. Logic Programs with GeneralizedQuantifiers

Notice that formula x𝑛+1 = v located in GQ-atom (2.2) defines the singleton re-
lation {v}, whose purpose is to transfer domain elements into the quantifier. For GQ-
atoms of form (2.3), bound variables x1, … ,x𝑛 are implicitly understood.

Definition 2.7 (GQ logic programs).
Let 𝜏0 be a signature for describing the program input, and let 𝜏 be an extension of 𝜏0 by
new relational symbols. A logic program with GQs (GQLP) on 𝜏 is a finite collection 𝒫
of rules

𝐴 ← 𝐵1, … , 𝐵𝑚 (2.4)

where the head 𝐴 is a 𝜏-atom whose predicate does not occur in 𝜏0, and each body
literal 𝐵𝑖 is either a 𝜏-literal or a generalized quantifier literal (GQ-literal) over 𝜏.

For any collection 𝒬 of generalized quantifiers, we denote by 𝜏∗𝒬 the extension of
𝜏 by all predicate letters 𝑄𝐶[S], where 𝑄𝐶 ∈ 𝒬 and S = 𝑆1, … , 𝑆𝑛 is a list of predicate
letters 𝑆𝑖 from 𝜏whichmatches the signature of𝑄𝐶; every such𝑄𝐶[S] is aGQ-predicate.
Notice that 𝜏∗𝒬 is finite if 𝜏 and 𝒬 are finite. Then, a GQLP over 𝜏 is syntactically an
ordinary logic program over the signature 𝜏∗𝒬.

Example 2.6 Consider the following program 𝒫, which uses two GQs (see Exam-
ple 2.5 for their definitions). One is the isomorphism GQ 𝑄≅[𝐺1, 𝐺2], which tells
whether 𝐺1 and 𝐺2 are isomorphic graphs, and the transitive closure GQ 𝑇𝐶:

𝑆(𝑥, 𝑦) ← 𝑄TC[𝐸](𝑥, 𝑦), 𝑄TC[𝐸](𝑦, 𝑥)
𝐺𝑎(𝑥, 𝑦) ← 𝐸(𝑥, 𝑦), 𝑆(𝑎, 𝑥), 𝑆(𝑎, 𝑦)
𝐺𝑏(𝑥, 𝑦) ← 𝐸(𝑥, 𝑦), 𝑆(𝑏, 𝑥), 𝑆(𝑏, 𝑦)

𝐼𝑠𝑜 ← 𝑄≅[𝐺𝑎, 𝐺𝑏]

Suppose that 𝜏0 contains the relation 𝐸 and the constant symbols 𝑎 and 𝑏. Given
a graph 𝐺 = (𝑉, 𝐸), and vertices 𝑎, 𝑏 ∈ 𝑉, this program assigns the propositional
letter Iso to true, if the strongly connected components in which 𝑎 and 𝑏 lie are iso-
morphic.

The semantics of a GQLP 𝒫 is in spirit of the stable model semantics (Gelfond and
Lifschitz, 1988). In the following, suppose that we have signatures 𝜏0 and 𝜏 as above, a
GQLP 𝒫 and a structure 𝔄 ∈ Struct(𝜏).

Definition 2.8 (Ground instantiation).
Then, the ground instantiation of 𝒫 on𝔄, denoted ground(𝒫,𝔄), is the collection of all
interpreted rules 𝐶𝜃, where 𝐶 is from 𝒫 and 𝜃 is any ground substitution over 𝔄.

Definition 2.9 (Reduct).
Let 𝒫 be a GQLP and 𝔄 ∈ Struct(𝜏). The reduct of 𝒫 with respect to 𝔄, denoted
red(𝒫,𝔄), is the set of rules obtained from ground(𝒫,𝔄) as follows.

45

Chapter 2. Preliminaries and Previous Results

1. Remove every rule 𝑟 with a literal 𝐿 in the body of 𝑟 such that 𝔄 ⊭ 𝐿, where 𝐿
is either negative or a GQ-literal.

2. Remove all negative literals and GQ-literals from the remaining rules.

Notice that red(𝒫,𝔄) is a collection of interpreted Horn clauses, hence there is a
least structure 𝔅, denoted 𝔄∞(𝒫), such that 𝔅|𝜏0 = 𝔄|𝜏0 (i.e., 𝔅 provides the same
input to𝒫 as𝔄) and 𝐵 ⊧ 𝑟, for every rule 𝑟 ∈ red(𝒫,𝔄). Since red(𝒫,𝔄) is an ordinary
logic program, the structure𝔄∞(𝒫), also called the least model of 𝒫with respect to𝔄,
can be obtained as the least fixpoint of a monotonic operator, confer Lloyd (1987).

Definition 2.10 (GQ-stable models).
Let 𝒫 be a GQLP and let 𝔄0 ∈ Struct(𝜏0). An expansion 𝔄 ∈ Struct(𝜏) of 𝔄0 is a
GQ-stable model of 𝒫 on 𝔄0, iff it satisfies the fixpoint equation

𝔄 = 𝔄∞(𝒫).

The collection of all stable models of 𝒫 is denoted by SM(𝒫,𝔄0).
The meaning of 𝒫 on 𝔄0, denotedℳ𝑠𝑡

𝒫 (𝔄0), is the structure which is the intersec-
tion of all GQ-stable models of 𝒫 on 𝔄0, i.e.,

ℳ𝑠𝑡
𝒫 (𝔄0) = ⋂

𝔄∈SM(𝒫,𝔄0)
𝔄 .

If SM(𝒫,𝔄0) = ∅, thenℳ𝑠𝑡
𝒫 (𝔄0) is the unique maximal structure𝔅 such that𝔅|𝜏0 =

𝔄0.

Example 2.7 Consider the following program 𝒫, which uses the majority quantifier
𝑄𝑀 and the modularity quantifier 𝑄2 (i.e., the even quantifier).

𝑄(𝑥) ← ¬𝑆(𝑥)
𝑆(𝑥) ← ¬𝑄(𝑥)
𝐴(𝑥) ← 𝑄𝑀[𝑄, 𝑆], 𝑆(𝑥)
𝑄(𝑥) ← 𝑄2[𝐴], 𝑆(𝑥)

𝑊(𝑎, 𝑏) ←

Suppose that 𝜏0 contains merely the constant symbols 𝑎 and 𝑏, and 𝜏 contains in ad-
dition the relation symbols𝑊,𝐴,𝑄, and 𝑆.

Intuitively, the first two clauses choose complementary extensions for 𝑄 and 𝑆;
the third clause assures that 𝑆 implies 𝐴, if 𝑄 holds on more individuals than 𝑆; simi-
larly, the fourth clause assures that 𝑆 implies 𝑄, if 𝐴 holds true on an even number of
elements.

Consider Herbrand models on 𝜏 and let𝔐1 = {𝑊(𝑎, 𝑏), 𝑄(𝑎), 𝑄(𝑏)}. (We use the
familiar notation for Herbrand models.) This interpretation is a GQ-stable model of

46

2.3. Modular Logic Programming with GQLPs

𝒫 (with respect to the unique Herbrand model 𝔐0 ∈ Struct(𝜏0)). Indeed, the reduct
red(𝒫,𝔐1) consists of the clauses

𝑊(𝑎, 𝑏) ← 𝐴(𝑏) ← 𝑆(𝑏)
𝑄(𝑎) ← 𝑄(𝑎) ← 𝑆(𝑎)
𝑄(𝑏) ← 𝑄(𝑏) ← 𝑆(𝑏)
𝐴(𝑎) ← 𝑆(𝑎)

Program 𝒫 has the least model𝔐1 with respect to𝔐0. Another GQ-stable model
of 𝒫 is 𝔐2 = {𝑊(𝑎, 𝑏), 𝑆(𝑎), 𝑆(𝑏)}. The Herbrand model 𝔐3 = {𝑊(𝑎, 𝑏), 𝑄(𝑎),
𝑆(𝑏)} is not a GQ-stable model of 𝒫: red(𝒫,𝔐3) contains the clauses 𝑆(𝑏) ← and
𝑄(𝑏) ← 𝑆(𝑏), which means that the least model of 𝑟𝑒𝑑(𝒫,𝔐3) contains 𝑄(𝑏). We
obtain that SM(𝒫,𝔐0) = {𝔐1,𝔐2}, thus 𝔐1 and 𝔐2 are all GQ-stable models of 𝒫
with respect to𝔐0.

2.3 Modular Logic Programming with GQLPs
Based on GQLPs, we define a semantics for modular logic programming in this sec-
tion. This approach has been introduced by Eiter et al. (1997b, 2000), and we use their
definitions here.

2.3.1 Syntax of modular logic programs
The syntax ofmodular logic programs (GQMLPs) is the one of GQLPs defined in §2.2.3,
with the difference that the GQ-literals are intended to refer to a logic program, which
is a logic programmodule. The similarity type of LP[Q] is the list of arities of predicates
in Q.

We shall refer to the calling program as the main program, and the called module
as the subprogram; the GQ-literals in a GQMLP are termed call literals, and the GQ-
predicates call predicates. An atom is a call atom, if its predicate is a call predicate.
To distinguish ordinary predicates, atoms, and literals from call predicates, call atoms,
and call literals, we call the former standard predicates (atoms, literals, respectively).

Definition 2.11 (Logic program module).
A logic program module 𝜇 is a pair (LP[Q], 𝑃) of a module head LP[Q], which has an
associated integer 𝑛 ≥ 0 (the arity), and an ordinary logic program 𝑃 (the body), in
which the predicates Q are the input predicates and LP is the output predicate having
arity 𝑛; syntactically, occurrences of the predicates Q in 𝑃 are restricted to rule bodies.
We require that each LP module is uniquely identified by its name LP and the list of
the arities of the 𝑄𝑖 in Q (its similarity type).

47

Chapter 2. Preliminaries and Previous Results

(a) Directed graph

1

2

3

4

(b) Transitive closure of directed graph

1

2

3

4

Figure 2.2: Graphs for Example 2.8

Definition 2.12 (Modular logic programs).
A modular logic program is a finite collection 𝑃 of rules

𝐴 ← 𝐿1, … , 𝐿𝑚 ,

where the head𝐴 is a standard atom and each body literal 𝐿𝑖 is either a standard literal
or a call literal, plus a collection 𝒞 of logic program modules such that for each call
literal (¬)LP[Q](t) occurring in 𝑃, there is a module LP[Q′] in 𝒞, where LP has the
arity of t and each 𝑄𝑖 ∈ Q has the arity of 𝑄′

𝑖 ∈ Q′.

2.3.2 Semantics of modular logic programs
Next, we define the meaning of a modular logic program.

Every LP module 𝜇 = (LP[Q], 𝑃) under the semantics ℳ𝑠𝑡 can be seen as a GQ
𝑄𝐶(𝜇) that is associated with the collection 𝐶(𝜇) of all structures 𝔄 = (𝐴,Q′, 𝑅′),
where the Q′ are relations for the predicates Q on 𝐴 and 𝑅′ = {a}, for any tuple a
over 𝐴 such that

𝐶(𝜇) = {(𝐴,Q′, {a}) ∣ ℳ𝑠𝑡
𝑃 ((𝐴,Q′)) ⊧ LP(a)} .

Intuitively, 𝑃 derives the atom LP(a) on 𝔄0 = (𝐴,Q′). We call 𝑄𝐶(𝜇) the module
quantifier of 𝜇 underℳ𝑠𝑡.

Let 𝑃 be a modular logic program. The meaning of 𝑃 under ℳ𝑠𝑡 is defined as
the meaning of 𝑃, viewed as GQLP over the collection of GQs associated with the LP
modules used by 𝑃.

Example 2.8 Let𝔐 = {𝐸(1, 2), 𝐸(2, 3), 𝐸(3, 1), 𝐸(2, 4), 𝑈(1)} be aHerbrandmodel of
the signature 𝜏 = {𝐸,𝑈} on the domain {1, 2, 3, 4}. Then, 𝐸𝔐 is the digraph depicted
in Figure 2.2a.

Consider the module 𝜇 = (TC[𝐺], 𝑃𝑇𝐶), where 𝑃TC is the program

48

2.3.3. Shortcomings of GeneralizedQuantifier Modular Logic Programs

TC(𝑥, 𝑦) ← 𝐺(𝑥, 𝑦)
TC(𝑥, 𝑦) ← 𝑇𝐶(𝑥, 𝑧), 𝐺(𝑧, 𝑦)

The extension of TC in the least fixpoint of 𝑃TC is the transitive closure of the binary
relation 𝐺.

The program 𝑃TC has on 𝔄0 = {𝐺(1, 2), 𝐺(2, 3), 𝐺(3, 1), 𝐺(2, 4)} the least model
𝔐′ = {𝐺(1, 2), 𝐺(2, 3), 𝐺(3, 1), 𝐺(2, 4)} ∪ {TC(𝑖, 𝑗), TC(𝑖, 4) ∣ 1 ≤ 𝑖, 𝑗 ≤ 3}. Figure 2.2b
shows TC𝔄0 , where thick lines highlight those edges from graph TC𝔄0 that do not
belong to directed graph 𝐺𝔄0 . Thus, a call TC[𝐸] of 𝜇, where 𝐸 is defined in𝔐, yields
that, e.g., TC[𝐸](1, 1) is true, while TC[𝐸](4, 1) is false.

Note that compared to the GQLP in Example 2.6, we use 𝜇 to define a generalized
quantifier that is equivalent to GQ 𝑄𝑇𝐶 from Example 2.5.

2.3.3 Shortcomings of GeneralizedQuantifier Modular Logic
Programs

An important restriction for GQMLPs is that modules do not contain call literals them-
selves, i.e., the main program is the only part of a GQ modular logic program that can
access subprograms through generalized quantifier calls, but subprograms are forbid-
den to have call literals. This essential restriction is important, as the semantics for
GQMLPs would create semantic deficiencies like unfounded answer sets.

There is a way that allows one to make calls from subprograms to other subpro-
grams, but they must be strictly hierarchical. In essence, the call graph of the mod-
ules must be acyclic and this way, one can only express finitely nested logic programs
without mutual recursion (see the discussion by Eiter et al., 2000, Section 7). Similar
to GQLPs and GQMLPs, Eiter et al. (2013) define nested hex-programs, which give a
semantics to hierarchical subprograms using external atoms; we defer the discussion
to Chapter 10.

In the following chapters of this thesis, we will shed light on this problem and
provide a solution to this restriction using modular nonmonotonic logic programs. To
this end, we start with defining the principle framework for Modular Nonmonotonic
Logic Programs next and establish basic semantic properties for them.

49

II

Elements of Modular
Nonmonotonic Logic Programs

3

Modular Nonmonotonic
Logic Programs

W
e start here with our framework for modular answer set programs,
and define first syntax and then semantics of such programs. We as-

sume that the reader is familiar with basic notions of logic program-
ming and the answer set semantics of nonmonotonic logic programs

(see Chapter 2 and Gelfond and Lifschitz, 1991). The syntax is based on disjunctive
logic programs; our modular logic programs consist of modules as a way to structure
logic programs. Moreover, such modules allow for input provided by other modules;
it is safe to say that one module may call other modules and additionally provide in-
put. We pose no essential restriction on the rules, and modules may mutually call each
other in a recursive way, and, on top of that, provide mutual input.

The declarative semantics we provide for MLPs caters for this situation and is thus
not straight-forward. By the very notion of module input, it is apparent that modules
must be instantiated before they can be “used.” When defining a declarative semantics,
we abstract from the computational view of module calls and do not consider their
operational semantics. This would require to consider module call chains, which may
lead to infinite loops and thus necessitate loop checking. The MLP semantics is similar
in nature to Kripke semantics (Blackburn and Benthem, 2007; Goranko andOtto, 2007):
instead of worlds, there are so-called value calls with input, and the call graph of anMLP
resembles the accessibility relation in a Kripke frame. In contrast to Kripke semantics,
MLP semantics does not consider situations that are not modeled within the modular
program, i.e., if a module accesses another module, then there will be a labeled edge in
the call graph that records input information. This is different from Kripke semantics,
which admits Kripke frames of any shape.

To this end, we delineate contexts of models that carry instantiations of modules
and serve to define answer sets for modular programs. As noted by Eiter et al. (1997b),
answer sets of modular programs based on Gelfond-Lifschitz-style reducts may be

53

Chapter 3. Modular Nonmonotonic Logic Programs

weaker than answer sets of ordinary logic programs, we thus based the notion of an-
swer sets on the FLP-reduct (Faber et al., 2011) in order to gain the desired property of
minimality in answer sets.

3.1 Syntax of Modular Nonmonotonic Logic
Programs

We consider programs in a function-free first-order (Datalog) setting (this restriction
is not essential from a conceptual point of view, but convenient for the purposes of
this work).

Let 𝒱 be a vocabulary 𝒞, 𝒫,𝒳, andℳ of mutually disjoint sets whose elements are
called constants, predicate, variable, andmodule names, respectively, where each 𝑝 ∈ 𝒫
has a fixed associated arity 𝑛 ≥ 0, and each module name inℳ has a fixed associated
list q = 𝑞1, … , 𝑞𝑘 (𝑘 ≥ 0) of predicate names 𝑞𝑖 ∈ 𝒫 (the formal input parameters).
Unless stated otherwise, elements from 𝒳 (respectively, 𝒞 ∪ 𝒫) are denoted with first
letter in upper case (respectively, lower case).

Elements from 𝒞∪𝒳 are called terms. Ordinary atoms (or simply atoms) are of the
form 𝑝(𝑡1, … , 𝑡𝑛), where 𝑝 ∈ 𝒫 and 𝑡1, … , 𝑡𝑛 are terms; 𝑛 ≥ 0 is the arity of the atom.
A module atom is of the form

𝑃[𝑝1, … , 𝑝𝑘].𝑜(𝑡1, … , 𝑡𝑙) , 𝑘, 𝑙 ≥ 0, (3.1)

where 𝑃 ∈ ℳ is a module name, 𝑝1, … , 𝑝𝑘 is a list of predicate names 𝑝𝑖 ∈ 𝒫, called
module input list, such that 𝑝𝑖 has the arity of the formal input parameter 𝑞𝑖 from 𝑃, and
𝑜 ∈ 𝒫 is a predicate name with arity 𝑙 such that for the list of terms 𝑡1, … , 𝑡𝑙, 𝑜(𝑡1, … , 𝑡𝑙)
is an ordinary atom.

Intuitively, a module atom provides a way for deciding the truth value of a ground
atom 𝑜(c) in a program 𝑃 depending on the extension of a set of input predicates.

A rule 𝑟 is of the form

𝛼1 ∨⋯ ∨ 𝛼𝑘 ← 𝛽1, … , 𝛽𝑚, not 𝛽𝑚+1, … , not 𝛽𝑛 , (3.2)

where 𝑘 ≥ 1, 𝑛 ≥ 𝑚 ≥ 0, 𝛼1, … , 𝛼𝑘 are atoms, and 𝛽1, … , 𝛽𝑛 are either atoms ormodule
atoms. We define 𝐻(𝑟) = {𝛼1, … , 𝛼𝑘} and 𝐵(𝑟) = 𝐵+(𝑟) ∪ 𝐵−(𝑟), where 𝐵+(𝑟) =
{𝛽1, … , 𝛽𝑚} and 𝐵−(𝑟) = {𝛽𝑚+1, … , 𝛽𝑛}. If 𝐵(𝑟) = ∅ and 𝐻(𝑟) ≠ ∅, then 𝑟 is a fact ; 𝑟
is ordinary, if it contains only ordinary atoms. A rule 𝑟 is called positive if it satisfies
𝑚 = 𝑛; 𝑟 is a Horn rule if 𝑟 is positive and 𝑘 = 1. If 𝑘 ≤ 1, then 𝑟 is called normal.
Rules without restrictions are called disjunctive.

We now formally define the syntax of modules.

54

3.1. Syntax of Modular Nonmonotonic Logic Programs

Definition 3.1 (Module).
A module is a pair 𝑚 = (𝑃[q], 𝑅), where 𝑃 ∈ ℳ with associated formal input q, and
𝑅 is a finite set of rules. It is ordinary, if all rules in 𝑅 are ordinary, and ground, if all
rules in 𝑅 are ground. A module𝑚 is either a main module or a library module; if it is
a main module, then |q| = 0.

We refer with 𝑅(𝑚) to the rule set of 𝑚, or simply identify 𝑅 with 𝑃 respectively
𝑃[q] if 𝑚 is identified by 𝑃. When clear from the context, we omit empty [] and ()
from (main) modules and module atoms. E.g., the module Parity[𝑞] in Example 1.1 is a
library module; further examples are given below.

Based on modules, we define modular logic programs as follows.

Definition 3.2 (Modular logic program).
A modular logic program (MLP) P is an 𝑛-tuple of modules

(𝑚1, … ,𝑚𝑛) , 𝑛 ≥ 1, (3.3)

consisting of at least one main module, where ℳ = {𝑃1, … , 𝑃𝑛}. We say that P is
ground, if each module is ground.

An MLP P = (𝑚1, … ,𝑚𝑛) is called positive (respectively, Horn or normal) if for each
module 𝑚𝑖 of P, all rules 𝑟 ∈ 𝑅(𝑚𝑖) are positive (respectively, Horn or normal); P is
said to have empty inputs if all the associated lists of inputs for each module𝑚𝑖 of P is
empty.

Example 3.1 (cont’d) Suppose that we have a module 𝑚2 = (𝑃[𝑞], 𝑅2), where 𝑅2
is taken from the rules shown in Example 1.1. Besides 𝑚2, we have further module
𝑚1 = (𝑄[], 𝑅1), in which 𝑅1 is the set of rules

𝑠(𝑎) ←
𝑠(𝑏) ←
𝑠(𝑐) ←
𝑠(𝑑) ←

𝑠1(𝑋) ∨ 𝑠2(𝑋) ← 𝑠(𝑋)
ok ← 𝑃[𝑠1].even, 𝑃[𝑠2].even
ok ← not ok

Informally, the disjunctive rule splits the predicate 𝑠 into two predicates 𝑠1 and 𝑠2;
the subsequent rules check that they both store sets of even cardinality. Formally,
P = (𝑚1, 𝑚2) forms the respective MLP; here, 𝑚1 is the (single) main module.

55

Chapter 3. Modular Nonmonotonic Logic Programs

Theexample above shows an interesting property ofMLPs. Note that the predicates
in Example 3.1 are at most unary, i.e., the program P uses only monadic relations, and
that we have expressed the Even property with this program. It is well known that
traditional logic programs using monadic predicates cannot express Even, and this also
holds for programs with negation, which follows from Libkin (2004, Proposition 7.12).
The following proposition formally shows this observation.

Proposition 3.1 (Even not in Monadic ASP)
Monadic Answer Set Programs cannot express Even.

Proof Let 𝑃 be a monadic answer set program. Without loss of generality, we assume
that variables in 𝑃 are standardized apart, i.e., each rule in 𝑃 has a unique set of vari-
ables, and that 𝑃 does not contain constant symbols; every constant 𝑐 can be replaced
by a singleton unary relation. Let 𝐴 = {𝑝1, … , 𝑝ℓ} be the predicates occurring in 𝑃,
and 𝐴 = {𝑝1, … , 𝑝ℓ} be a set a fresh predicates.

We define Φ𝑃 to be the following monadic second order logic (MSO) formula:

∃𝐴 [Γ𝑃 ∧ ∀𝐴 ((𝐴 < 𝐴) ⊃ Ξ𝑃)]

where

• for the set 𝑋 = {𝑋1, … , 𝑋𝑦} of variables occurring in 𝑃

Γ𝑃 = ∀𝑋⋀
𝑟∈𝑃

(𝐵𝑟 ∧ 𝑁𝑟 ⊃ 𝐻𝑟)

and

Ξ𝑃 = ∃𝑋⋁
𝑟∈𝑃

¬ (𝐵𝑟 ∧ 𝑁𝑟 ⊃ 𝐻𝑟) ;

• for each rule 𝑟 of form (2.1) in 𝑃,

𝐻𝑟 = 𝑎1(𝑋𝜌(𝑟,1)) ∨⋯ ∨ 𝑎𝑘(𝑋𝜌(𝑟,𝑘))

𝐻𝑟 = 𝑎1(𝑋𝜌(𝑟,1)) ∨⋯ ∨ 𝑎𝑘(𝑋𝜌(𝑟,𝑘))

𝐵𝑟 = 𝑏1(𝑋𝜌(𝑟,𝑘+1)) ∧⋯ ∧ 𝑏𝑚(𝑋𝜌(𝑟,𝑘+𝑚))

𝐵𝑟 = 𝑏1(𝑋𝜌(𝑟,𝑘+1)) ∧⋯ ∧ 𝑏𝑚(𝑋𝜌(𝑟,𝑘+𝑚))

𝑁𝑟 = ¬𝑏𝑚+1(𝑋𝜌(𝑟,𝑘+𝑚+1)) ∧⋯ ∧ ¬𝑏𝑛(𝑋𝜌(𝑟,𝑘+𝑛)) ,

where 𝜌(𝑟, 𝑖) maps to a variable index for the set of variables 𝑋;

56

3.1. Syntax of Modular Nonmonotonic Logic Programs

• 𝐴 < 𝐴 is short for 𝐴 ≤ 𝐴 ∧ ¬(𝐴 ≤ 𝐴), where for the fresh variable 𝑌

𝐴 ≤ 𝐴 = ∀𝑌 (𝑝1(𝑌) ⊃ 𝑝1(𝑌)) ∧⋯ ∧ ∀𝑌 (𝑝ℓ(𝑌) ⊃ 𝑝ℓ(𝑌))

and
𝐴 ≤ 𝐴 = ∀𝑌 (𝑝1(𝑌) ⊃ 𝑝1(𝑌)) ∧⋯ ∧ ∀𝑌 (𝑝ℓ(𝑌) ⊃ 𝑝ℓ(𝑌)) .

Intuitively, Φ𝑃 expresses answer set semantics of a monadic program 𝑃 as an MSO
formula:

• 𝐴 and 𝐴 stand for interpretations of the monadic predicates in 𝑃,

• Γ𝑃 expresses that all rules 𝑟 ∈ 𝑃 are satisfied by 𝐴,

• 𝐴 < 𝐴 states that 𝐴 is a proper subset of 𝐴,

• Ξ𝑃 is true whenever 𝐴 does not satisfy at least one rule of the reduct 𝑃𝐴; note
that the truth value of 𝑁𝑟 is fixed by 𝐴.

Thus the intuitive reading of the MSO formula Φ𝑃 gives us that there exists an inter-
pretation 𝐴 such that 𝐴 is a model of 𝑃, and for all proper subsets 𝐴 of 𝐴, 𝐴 does not
satisfy the reduct 𝑃𝐴.

We show now the following: Φ𝑃 is satisfiable if and only if 𝑃 has an answer set.

(⇐) Let 𝑀 be an answer set of the monadic answer set program 𝑃. We transform 𝑀
to a relational interpretation𝔐 = (𝑈𝔐, ⋅𝔐) for Φ𝑃 as follows:

• for each 𝑝𝑖(𝑐) ∈ 𝑀 we add 𝑐 to 𝑈𝔐 and set 𝑐𝔐 = 𝑐,

• for predicates 𝑝𝑖, 1 ≤ 𝑖 ≤ ℓ, we set 𝑝𝔐𝑖 = {𝑐𝔐 ∣ 𝑝𝑖(𝑐) ∈ 𝑀}, and

• for predicates 𝑝𝑖, 1 ≤ 𝑖 ≤ ℓ we set 𝑝𝑖𝔐 to any proper subset of 𝑝𝔐𝑖 .

Intuitively, 𝑀 gives us an extension for 𝐴 and 𝐴 encodes a proper subset of 𝑀. Since
𝑀 ⊧ 𝑃, it is easy to see that for an extension for 𝐴, the model 𝔐 of Φ𝑃 satisfies Γ𝑃.
By 𝑀 being an answer set, 𝑀 is a minimal model of 𝑃𝑀. Thus, for all proper subsets
𝑁 of𝑀, there exists a rule 𝑟′ ∈ 𝑃𝑀 such that 𝑁 ⊭ 𝑟′, i.e., 𝑁 ⊧ 𝐵+(𝑟′) and 𝑁 ⊭ 𝐻(𝑟′).
Thus, if the set variable extensions in𝐴 happen to be a proper subset of the set variable
extensions in𝐴, which is encoded by𝐴 < 𝐴, then at least one rule must be false in 𝑃𝑀:
hence for an extension 𝐴 such that for all extensions 𝐴 the formula (𝐴 < 𝐴) ⊃ Ξ𝑃 is
true in 𝔐. And since 𝑀 is minimal, this holds for all proper subsets of 𝐴, hence
∀𝐴 ((𝐴 < 𝐴) ⊃ Ξ𝑃) is satisfied by𝔐. Thus, Φ𝑃 is satisfiable.

57

Chapter 3. Modular Nonmonotonic Logic Programs

(⇒) Let Φ𝑃 be satisfiable. We can deduce that 𝑃 has an answer set 𝑀 that can be
transformed from a model𝔐 = (𝑈𝔐, ⋅𝔐) for Φ𝑃 as follows:

𝑀 = {𝑝𝑖(𝑐) ∣ for 𝑐 ∈ 𝒞 and 𝑝𝑖 ∈ 𝐴 such that 𝑐𝔐 ∈ 𝑝𝔐𝑖 } .

Thus, 𝑀 corresponds to the extension of predicates from 𝐴. From 𝔐 satisfying the
conjunct Γ𝑃 for an extension𝐴we can deduce𝑀 ⊧ 𝑃 and𝑀 ⊧ 𝑃𝑀. Now we show that
since𝔐 is a model of ∀𝐴 ((𝐴 < 𝐴) ⊃ Ξ𝑃) for the fixed extension𝐴, we get that𝑀 is a
minimal model of 𝑃𝑀. Towards a contradiction, assume there exists an interpretation
𝑁 ⊂ 𝑀 that is a model of 𝑃𝑀. Thus, for 𝐴 corresponding to 𝑁 the antecedent 𝐴 < 𝐴
forces that the consequent Ξ𝑃 must be true in 𝔐, which means that for at least one
𝑟′ ∈ 𝑃𝑀, the interpretation 𝑁 corresponding to 𝐴 does not satisfy 𝑟′. But this is a
contradiction to 𝑁 ⊧ 𝑃𝑀. Consequently, 𝑀 is a minimal model of 𝑃𝑀, and thus 𝑀 is
an answer set of 𝑃.

Sincewe can express answer set existence of𝑃 inMSO, it follows from Libkin (2004,
Proposition 7.12) that Even cannot be expressed with monadic answer set programs.⧠

Related to the result above are frameworks for specifying nonmonotonic logics
in second order logic have been presented by Bogaerts et al. (2016) and Egly et al.
(2000), which use suitable encodings to capture the answer sets of logic programs by
Quantified Boolean Formulas.

The next example demonstrates positive mutual recursion over modules.

Example 3.2 Take, as an example, the MLP P = (𝑚1, 𝑚2), where both modules𝑚1 =
(𝑃1[], 𝑅1) with 𝑅1 = {𝑝1 ← 𝑃2.𝑝2} and 𝑚2 = (𝑃2[], 𝑅2) with 𝑅2 = {𝑝2 ← 𝑃1.𝑝1} are
main modules. Intuitively, P amounts to the ordinary logic program {𝑎 ← 𝑏; 𝑏 ← 𝑎}.

3.2 Semantics of Modular Nonmonotonic Logic
Programs

We now define the semantics of modular logic programs. It is defined in terms of Her-
brand interpretations and grounding as customary in traditional logic programming
and ASP.

The Herbrand base with respect to vocabulary 𝒱, HB𝒱, is the set of all possible
ground ordinary and module atoms that can be built using 𝒞, 𝒫 andℳ; if 𝒱 is implicit
from an MLP P, it is the Herbrand base of P and denoted by HBP. The grounding of a
rule 𝑟 is the set 𝑔𝑟(𝑟) of all ground instances of 𝑟 with respect to 𝒞; the grounding of
a rule set 𝑅 is 𝑔𝑟(𝑅) = ⋃𝑟∈𝑅 𝑔𝑟(𝑟), and the one of a module 𝑚, 𝑔𝑟(𝑚), is defined by
replacing the rules in 𝑅(𝑚) by 𝑔𝑟(𝑅(𝑚)); the grounding of an MLP P is 𝑔𝑟(P), which
is formed by grounding each module 𝑚𝑖 of P.

58

3.2. Semantics of Modular Nonmonotonic Logic Programs

The semantics of an arbitrary MLP P is given in terms of 𝑔𝑟(P).
Let 𝑆 ⊆ HBP be any set of atoms. For any list of predicate names p = 𝑝1, … , 𝑝𝑘

and q = 𝑞1, … , 𝑞𝑘, we use the notation 𝑆|p = {𝑝𝑖(c) ∈ 𝑆 ∣ 𝑖 ∈ {1, … , 𝑘}} and 𝑆|qp =
{𝑞𝑖(c) ∣ 𝑝𝑖(c) ∈ 𝑆, 𝑖 ∈ {1, … , 𝑘}}.

Definition 3.3 (Value calls).
Let P be an MLP. For a module name 𝑃 ∈ ℳ with associated formal input q we say
that 𝑃[𝑆] is a value call with input 𝑆, where 𝑆 ⊆ HBP|q. Let VC(P) denote the set of all
value calls 𝑃[𝑆] with input 𝑆 such that 𝑃 ∈ ℳ.

Note that VC(P) is also used as index set here. Given MLP P = (𝑚1, … ,𝑚𝑛),
VC(P) is the set of indexes with value calls of the form 𝑃𝑖[𝑆], where 𝑖 and 𝑆 is used as
a combined index. Here, 𝑖 ranges from 1 to 𝑛, and 𝑆 is a subset of HBP restricted to
atoms with predicates from the input list q𝑖 of module𝑚𝑖 = (𝑃𝑖[q𝑖], 𝑅𝑖). For the given
module 𝑚𝑖, VC(P) includes {𝑃𝑖[∅], … , 𝑃𝑖[HBP|q𝑖]}. In case where 𝑚𝑖 = (𝑃𝑖[], 𝑅𝑖) is a
main module or has empty input, i.e., the input list q𝑖 is void, only 𝑃𝑖[∅] remains as
value call in VC(P).

Based on value calls with inputs, we define module and program instantiations.

Definition 3.4 (Module and program instantiation).
A rule base is an (indexed) tupleR = (𝑅𝑃[𝑆] ∣ 𝑃[𝑆] ∈ VC(P)) of sets of rules𝑅𝑃[𝑆]. For a
module𝑚𝑖 = (𝑃𝑖[q𝑖], 𝑅𝑖) from P, its instantiation with 𝑆 ⊆ HBP|q𝑖 is 𝐼P(𝑃𝑖[𝑆]) = 𝑅𝑖∪𝑆.
For an MLP P, its instantiation is the rule base 𝐼(P) = (𝐼P(𝑃𝑖[𝑆]) ∣ 𝑃𝑖[𝑆] ∈ VC(P)).

We next define (Herbrand) interpretations and models of an MLP.

Definition 3.5 (Interpretation).
An interpretation M of an MLP P is an (indexed) tuple (𝑀𝑖/𝑆 ∣ 𝑃𝑖[𝑆] ∈ VC(P)), where
all𝑀𝑖/𝑆 ⊆ HBP contain only ordinary atoms.

Each𝑀𝑖/𝑆 is essentially short-cut notation for identifying the element of tuple M
that is indexed by value call 𝑃𝑖[𝑆]. Both 𝑖 and 𝑆 give us the combined index inM for the
set of atoms that is used to interpret the instantiation 𝐼P(𝑃𝑖[𝑆]) of module 𝑚𝑖 relative
to 𝑃𝑖[𝑆].

Based on interpretations, we define (classical) models of MLPs.

Definition 3.6 (Model).
Let P be an MLP, 𝑃𝑖[𝑆] be a value call from VC(P), and𝑚𝑘 = (𝑃𝑘[q𝑘], 𝑅𝑘) be a module
from P. An interpretation M of P is a model of

• a ground atom 𝛼 ∈ HBP at 𝑃𝑖[𝑆], denoted M, 𝑃𝑖[𝑆] ⊧ 𝛼, if

– 𝛼 ∈ 𝑀𝑖/𝑆, in case 𝛼 is an ordinary atom, and if
– 𝑜(c) ∈ 𝑀𝑘/((𝑀𝑖/𝑆)|

q𝑘
p), in case 𝛼 is a module atom 𝑃𝑘[p].𝑜(c);

59

Chapter 3. Modular Nonmonotonic Logic Programs

• a ground rule 𝑟 at 𝑃𝑖[𝑆] (M, 𝑃𝑖[𝑆] ⊧ 𝑟), if M, 𝑃𝑖[𝑆] ⊧ 𝐻(𝑟) or M, 𝑃𝑖[𝑆] ⊭ 𝐵(𝑟),
where

– M, 𝑃𝑖[𝑆] ⊧ 𝐻(𝑟) if M, 𝑃𝑖[𝑆] ⊧ 𝛼 for some 𝛼 ∈ 𝐻(𝑟), and
– M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟) if M, 𝑃𝑖[𝑆] ⊧ 𝛼 for all 𝛼 ∈ 𝐵+(𝑟) and M, 𝑃𝑖[𝑆] ⊭ 𝛼 for all
𝛼 ∈ 𝐵−(𝑟);

• a set of ground rules 𝑅 at 𝑃𝑖[𝑆] (M, 𝑃𝑖[𝑆] ⊧ 𝑅) iff M, 𝑃𝑖[𝑆] ⊧ 𝑟 for all 𝑟 ∈ 𝑅; and

• a ground rule base R (M ⊧ R) iff M, 𝑃𝑖[𝑆] ⊧ 𝑅𝑃𝑖[𝑆] for all 𝑃𝑖[𝑆] ∈ VC(P).

Finally, M is a model of an MLP P, denoted M ⊧ P, if M ⊧ 𝐼(P) in case P is ground
respectively, M ⊧ 𝑔𝑟(P), if P is nonground. An MLP P is satisfiable, if it has a model.

Example 3.3 Consider P from Example 3.2, thenM = (𝑀1/∅,𝑀2/∅) is a model of P,
where 𝑀1/∅ = {𝑝1} and 𝑀2/∅ = {𝑝2}. Indeed, by Definition 3.6 we have M, 𝑃1[∅] ⊧
𝑝1; M, 𝑃2[∅] ⊧ 𝑝2; M, 𝑃1[∅] ⊧ 𝑃2.𝑝2; M, 𝑃2[∅] ⊧ 𝑃1.𝑝1; hence M, 𝑃1[∅] ⊧ 𝑝1 ←
𝑃2.𝑝2; M, 𝑃2[∅] ⊧ 𝑝2 ← 𝑃1.𝑝1; thus M, 𝑃1[∅] ⊧ 𝐼P(𝑃1[∅]) and M, 𝑃2[∅] ⊧ 𝐼P(𝑃2[∅]);
therefore M ⊧ 𝐼(P) where 𝐼(P) = (𝐼P(𝑃1[∅]), 𝐼P(𝑃2[∅])); and finally M ⊧ P.

We next proceed to define answer sets of an MLP P. To this end, we need to com-
pare models and single out minimal models.

Definition 3.7 (Minimal models).
For any interpretations M and M′ of P, we define that M ≤ M′, if for every 𝑃𝑖[𝑆] ∈
VC(P) it holds that 𝑀𝑖/𝑆 ⊆ 𝑀′

𝑖/𝑆, and M < M′, if both M ≠ M′ and M ≤ M′. A
modelM of P (respectively, a ground rule base R) isminimal, if P (respectively, R) has
no modelM′ such thatM′ < M. The set of all minimal models of P (respectively, R) is
denoted by MM (P) (respectively, MM (R)).

In order to focus on relevant modules, we introduce the formal notion of a call
graph.

Definition 3.8 (Call graph).
Let P be an MLP, 𝑃𝑖[𝑆] and 𝑃𝑘[𝑇] be value calls from VC(P), and𝑚𝑖 = (𝑃𝑖[q𝑖], 𝑅𝑖) and
𝑚𝑘 = (𝑃𝑘[q𝑘], 𝑅𝑘) be modules from P. The call graph of an MLP P is a labeled digraph
CGP = (𝑉, 𝐸, 𝑙) with vertex set 𝑉 = VC(P) and an edge 𝑒 from 𝑃𝑖[𝑆] to 𝑃𝑘[𝑇] in 𝐸 iff
𝑃𝑘[p].𝑜(t) occurs in 𝑅(𝑚𝑖); furthermore, 𝑒 is labeled with an input list p, denoted 𝑙(𝑒).
Given an interpretationM, the relevant call graph CGP(M) = (𝑉′, 𝐸′) of P with respect
to M is the subgraph of CGP where 𝐸′ contains all edges from 𝑃𝑖[𝑆] to 𝑃𝑘[𝑇] of CGP
such that (𝑀𝑖/𝑆)|

q𝑘
𝑙(𝑒) = 𝑇, and𝑉′ contains all 𝑃𝑖[𝑆] that are mainmodule instantiations

or induced by 𝐸′; any such 𝑃𝑖[𝑆] is called relevant with respect to M.

60

3.2. Semantics of Modular Nonmonotonic Logic Programs

𝑃1[∅] 𝑃2[∅]

()

()

Figure 3.1: Call graph for Example 3.2

𝑄[∅]

𝑃[∅]

𝑃[{𝑞(𝑎)}] … 𝑃[{𝑞(𝑎), … , 𝑞(𝑑)}]

𝑠1 𝑠2

𝑠1
𝑠2 𝑠1

𝑠2

𝑞′

𝑞′

𝑞′
𝑞′

𝑞′

𝑞′

Figure 3.2: Call graph for Example 3.1

Example 3.4 Consider P from Example 3.2. Then 𝐼(P) = (𝐼P(𝑃1[∅]), 𝐼P(𝑃2[∅])), and
we obtain the call graph CGP = (VC(P), {(𝑃1[∅], 𝑃2[∅]), (𝑃2[∅], 𝑃1[∅])}, 𝑙), where 𝑙
maps each edge to the void input list (see Figure 3.1). Both 𝑃1[∅] and 𝑃2[∅] are rele-
vant, since they are mainmodules. Moreover, since bothmodules and all instantiations
have empty input, we have that CGP(M) = CGP for any interpretation M of P.

Example 3.5 Consider P from Example 3.1. The instantiation of P is

𝐼(P) = (𝐼P(𝑄[∅]), 𝐼P(𝑃[∅]), 𝐼P(𝑃[{𝑞(𝑎)}]), … , 𝐼P(𝑃[{𝑞(𝑎), … , 𝑞(𝑑)}])) ,

hence the graph shown in Figure 3.2 is the call graph ofP. The value call𝑄[∅] is always
relevant (because it is main), the other value calls are only relevant in certain models.
For instance, in a model M = (𝑀𝑄/∅,𝑀𝑃/∅,𝑀𝑃/{𝑞(𝑎)}, …) such that 𝑀𝑃/{𝑞(𝑎)} =
{𝑞(𝑎), skip(𝑎), odd}, we have that 𝑃[∅] is relevant as (𝑀𝑃/{𝑞(𝑎)})|

𝑞
𝑞′ = ∅.

We refer to the vertex and edge set of a graph 𝐺 by 𝑉(𝐺) and 𝐸(𝐺), respectively.
For defining answer sets, we use a reduct of the instantiated program as customary

61

Chapter 3. Modular Nonmonotonic Logic Programs

in ASP. A suggestive way is to apply a traditional reduct to each module instance
of P; however, this is not fully satisfactory, as in practice P might contain module
instantiations which have no answer sets for certain inputs, which compromises the
existence of an answer set of P. For this reason, we contextualize the notions of reduct
and answer sets.

Definition 3.9 (Context-based reduct).
Let M be an interpretation of an MLP P. A context for M is any set 𝐶 ⊆ VC(P) such
that 𝑉(CGP(M)) ⊆ 𝐶. The reduct of P at 𝑃[𝑆] with respect toM and 𝐶 is the rule set

𝑓P(𝑃[𝑆])M,𝐶 = {{
𝑟 ∈ 𝐼𝑔𝑟(P)(𝑃[𝑆]) ∣ M, 𝑃[𝑆] ⊧ 𝐵(𝑟)} if 𝑃[𝑆] ∈ 𝐶,
𝐼𝑔𝑟(P)(𝑃[𝑆]) otherwise.

The reduct of P with respect toM and 𝐶 is 𝑓PM,𝐶 = (𝑓P(𝑃[𝑆])M,𝐶 ∣ 𝑃[𝑆] ∈ VC(P)).

That is, outside 𝐶 the module instantiations of P (respectively, 𝑔𝑟(P)) remain un-
touched, while inside 𝐶 the FLP-reduct (Faber et al., 2011) is applied.

Definition 3.10 (Answer set).
LetM be an interpretation of a groundMLP P. ThenM is an answer set of Pwith respect
to a context 𝐶 for M if M is a minimal model of 𝑓PM,𝐶.

Note that 𝐶 is a parameter that allows to select a degree of overall-stability for
answer sets of P. The extremal case 𝐶 = VC(P) requires that all module instances have
answer sets. On the other end, the minimal context 𝐶 = 𝑉(CGP(M)) is the relevant
call graph of P; we consider this as the default context and omit 𝐶 from notation.

Example 3.6 Let P be from Example 3.1. We have that P obtains answer sets of four
different shapes, with each of them having exactly two instances of 𝑠1 and two in-
stances of 𝑠2 for the model𝑀𝑄/∅ of instantiation 𝑄[∅]. A specific answer set is

(𝑀𝑄/∅,𝑀𝑃/∅,𝑀𝑃/{𝑞(𝑎)},𝑀𝑃/{𝑞(𝑏)},𝑀𝑃/{𝑞(𝑐)},
𝑀𝑃/{𝑞(𝑑)},𝑀𝑃/{𝑞(𝑎), 𝑞(𝑐)},𝑀𝑃/{𝑞(𝑏), 𝑞(𝑑)}, …)

where

• 𝑀𝑄/∅ = {𝑠1(𝑎), 𝑠2(𝑏), 𝑠1(𝑐), 𝑠2(𝑑), 𝑜𝑘, 𝑠(𝑎), 𝑠(𝑏), 𝑠(𝑐), 𝑠(𝑑)},

• 𝑀𝑃/∅ = {even},

• all models for instantiations whose input is a singleton set, i.e., for 𝑀𝑃/{𝑞(𝑎)},
𝑀𝑃/{𝑞(𝑏)},𝑀𝑃/{𝑞(𝑐)}, and𝑀𝑃/{𝑞(𝑑)}, contain odd and the respective skip’d el-
ement, and

62

3.2. Semantics of Modular Nonmonotonic Logic Programs

• both𝑀𝑃/{𝑞(𝑎), 𝑞(𝑐)} and𝑀𝑃/{𝑞(𝑏), 𝑞(𝑑)} contain even.

Example 3.7 Consider P from Example 3.2. Let M0 = (𝑀0
1 /∅,𝑀0

2 /∅) such that
𝑀0

1 /∅ = 𝑀0
2 /∅ = ∅, and M1 = (𝑀1

1/∅,𝑀1
2/∅) such that𝑀1

1/∅ = {𝑝1} and𝑀1
2/∅ =

{𝑝2}, be interpretations for P. One can verify that both are models of P. Since we fixed
the context 𝐶 to VC(P), the reducts with respect to our models are

𝑓PM0 = (𝑓P(𝑃1[∅])M0, 𝑓P(𝑃2[∅])M0) = (∅,∅)

and
𝑓PM1 = (𝑓P(𝑃1[∅])M1, 𝑓P(𝑃2[∅])M1) = (𝐼P(𝑃1[∅]), 𝐼P(𝑃2[∅])) .

The minimal model of 𝑓PM0 is M0, hence it is an answer set of P, whereas we have
that the minimal model of 𝑓PM1 is also M0, i.e., M1 is not an answer set of P.

A question that could arise is whether the FLP-reduct is really needed in order
to obtain a well-behaved semantics for modular programs, or whether one could go
with the standard GL-reduct. The main difference between the GL- and FLP-reduct
is that the latter treats all atoms as “black boxes” (Faber et al., 2011), i.e., atoms need
the definition of a proper satisfaction relation ⊧ for evaluation, whereas the GL-reduct
simply needs set membership for verifying the value of an atom in an interpretation.
The next example will clarify this point.

Example 3.8 Let 𝑅1 = {𝑞 ← 𝑃2[𝑞].𝑝} and 𝑅2 = {𝑝 ← 𝑞2} be two rule sets. Take,
as an example, the MLP P = (𝑚1, 𝑚2) with the main module 𝑚1 = (𝑃1[], 𝑅1) and
the library module 𝑚2 = (𝑃2[𝑞2], 𝑅2). Let M1 = (𝑀1

1/∅,𝑀1
2/∅,𝑀1

2/{𝑞2}) and M2 =
(𝑀2

1/∅,𝑀2
2/∅,𝑀2

2/{𝑞2}) be two interpretations for P, where

• 𝑀1
1/∅ = 𝑀1

2/∅ = 𝑀2
2/∅ = ∅,

• 𝑀1
2/{𝑞2} = 𝑀2

2/{𝑞2} = {𝑝, 𝑞2}, and

• 𝑀2
1/∅ = {𝑞}.

Note that M1 < M2. When we apply the FLP-reduct to the instantiations, we get

𝑓P(𝑃1[∅])M1 = ∅
𝑓P(𝑃1[∅])M2 = 𝑅1
𝑓P(𝑃2[∅])M1 = 𝑓P(𝑃2[∅])M2 = 𝑅2

𝑓P(𝑃2[{𝑞2}])M1 = 𝑓P(𝑃2[{𝑞2}])M2 = 𝑅2 ∪ {𝑞2}.

We have that both M1 and M2 are models of 𝑓PM1 and 𝑓PM2 , respectively. Note that
only M1 is the single answer set of P as MM (𝑓PM1) = MM (𝑓PM2) = {M1}.

63

Chapter 3. Modular Nonmonotonic Logic Programs

For any reasonable definition of GL-reduct for MLPs, PM1 and PM2 , we would have
that the rule 𝑞 ← 𝑃2[𝑞].𝑝 would have a particular “fixed” instance in the reduct. That
is, in PM1 , 𝑃2[𝑞].𝑝 would refer to 𝑝 from 𝑃2[∅], and in PM2 , 𝑃2[𝑞].𝑝 would refer to 𝑝
from 𝑃2[{𝑞2}]. This means that M1 is not the minimal model of PM2 anymore, and we
get that M1 and M2 are both answer sets of P.

This shows that the FLP semantics is a reasonable choice and that the GL-transform
is insensitive to positive loops in the modular setting.

3.3 Basic Semantic Properties
We now consider some properties of modular nonmonotonic logic programs. Obvi-
ously, they conservatively generalize ordinary logic programs.

Proposition 3.2 (Conservativity)
Let𝑅 be an ordinary logic program. Then,𝑀 is an answer set of𝑅 iffM = (𝑀1/∅ ≔ 𝑀)
is an answer set of the MLP (𝑚1), where 𝑚1 = (𝑃1[], 𝑅) is a main module and 𝑃1 is a
module name.

Proof This proposition can be easily seen as the GL-reduct 𝑅𝑀 is equivalent to FLP-
reduct 𝑓 (𝑚1)(𝑃1[∅])M,𝐶, since there is only one context 𝐶 = {𝑃1[∅]}. ⧠

Some well-known properties from standard answer set programming carry over to
the semantics of modular logic programs. This is of avail not only to encompass un-
derlying intuitions, but also for characterizing computational aspects. Two straight-
forward consequences from the definition of FLP-reduct are the following.

Lemma 3.3
If M ⊧ 𝑓PM,𝐶 for some context 𝐶 for M, then M ⊧ P.

Proof Let M ⊧ 𝑓PM,𝐶 for some context 𝐶 for M. Thus, M, 𝑃𝑖[𝑆] ⊧ 𝑓P(𝑃𝑖[𝑆])M,𝐶 for
all 𝑃𝑖[𝑆] ∈ VC(P). We show now that for all 𝑃𝑖[𝑆] ∈ VC(P), M ⊧ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]). Con-
sider 𝑃𝑖[𝑆] ∉ 𝐶, then by definition we get that 𝑓P(𝑃𝑖[𝑆])M,𝐶 = 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]). Hence,
M, 𝑃𝑖[𝑆] ⊧ 𝑓P(𝑃𝑖[𝑆])M,𝐶 implies M ⊧ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]). In case 𝑃𝑖[𝑆] ∈ 𝐶, the FLP-reduct
is defined to be 𝑓P(𝑃𝑖[𝑆])M,𝐶 = {𝑟 ∈ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]) ∣ M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟)}. SinceM, 𝑃𝑖[𝑆] ⊧
𝑓P(𝑃𝑖[𝑆])M,𝐶, we can deduce thatM, 𝑃𝑖[𝑆] ⊧ 𝑟 for all rules 𝑟 in 𝑓P(𝑃𝑖[𝑆])M,𝐶. Now let
𝑟 ∈ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]) such that 𝑟 ∉ 𝑓P(𝑃𝑖[𝑆])M,𝐶. By definition of FLP-reduct we derive
M, 𝑃𝑖[𝑆] ⊭ 𝐵(𝑟), and thus M, 𝑃𝑖[𝑆] ⊧ 𝑟. Therefore, all 𝑟 ∈ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]) are satisfied at
𝑃𝑖[𝑆] by M, and the result follows. ⧠

Lemma 3.4
If M ⊧ P, then M ⊧ 𝑓PM′,𝐶 for any interpretation M′ and context 𝐶.

64

3.3. Basic Semantic Properties

Proof Let M ⊧ P. By definition, M ⊧ 𝐼(𝑔𝑟(P)) and for all 𝑃𝑖[𝑆] ∈ VC(P), M ⊧
𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]). Now let M′ be an interpretation of P and 𝐶 ⊆ VC(P) be a context. We
have to show that M ⊧ 𝑓P(𝑃𝑖[𝑆])M

′,𝐶 for all 𝑃𝑖[𝑆] ∈ VC(P).
Consider 𝑃𝑖[𝑆] ∉ 𝐶, then by definition 𝑓P(𝑃𝑖[𝑆])M

′,𝐶 = 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]). FromM ⊧ P
we derive M ⊧ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]). Hence, M ⊧ 𝑓P(𝑃𝑖[𝑆])M

′,𝐶. For the case 𝑃𝑖[𝑆] ∈ 𝐶, by
definition 𝑓P(𝑃𝑖[𝑆])M

′,𝐶 = {𝑟 ∈ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]) ∣ M′, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟)}. Hence, we have that
the FLP-reduct 𝑓P(𝑃𝑖[𝑆])M

′,𝐶 ⊆ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]). Since M ⊧ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]) we conclude
that M ⊧ 𝑓P(𝑃𝑖[𝑆])M

′,𝐶. Hence, for all 𝑃𝑖[𝑆], we have that M ⊧ 𝑓P(𝑃𝑖[𝑆])M
′,𝐶, and

thus M ⊧ 𝑓PM′,𝐶. ⧠

Consequently, we obtain that answer sets are minimal models of P.

Proposition 3.5 (Minimal models)
If M is an answer set of P with respect to context 𝐶, then M ∈ MM (P).

Proof LetM be an answer set of Pwith respect to 𝐶. ThenM ∈ MM (𝑓PM,𝐶), which
implies that M is a model of P by Lemma 3.3. We prove that it is a minimal model
of P. Towards a contradiction assume that M ∉ MM (P). Then, there exists M′ < M,
such that M′ ⊧ P. By Lemma 3.4, we conclude that M′ ⊧ 𝑓PM,𝐶. However, this is a
contradiction to M ∈ MM (𝑓PM,𝐶). Therefore, M is a minimal model of P. ⧠

Furthermore, the semantics is a proper refinement of a naive semantics that would
require stability with respect to all possible module instantiations disregarding their
relevance. This is a simple consequence of the following property.

Proposition 3.6 (Context refinement)
If M is an answer set of P with respect to context 𝐶 ⊆ VC(P), then M is an answer set
of P with respect to every context 𝐶′ ⊆ 𝐶 for M, i.e., 𝑉(CGP(M)) ⊆ 𝐶′ ⊆ 𝐶.

Proof Towards a contradiction, assume that M is an answer set of P with respect to
context 𝐶, but not with respect to context 𝐶′ for M, 𝑉(CGP(M)) ⊆ 𝐶′ ⊆ 𝐶. Since
M ⊧ P, we conclude that there exists M′ < M, such that M′ ⊧ 𝑓PM,𝐶′ . We prove
that M′ ⊧ 𝑓PM,𝐶. Consider any 𝑃𝑖[𝑆] ∈ 𝐶. If 𝑃𝑖[𝑆] is in 𝐶′, then 𝑓P(𝑃𝑖[𝑆])M,𝐶 =
𝑓P(𝑃𝑖[𝑆])M,𝐶′ , otherwise 𝑓P(𝑃𝑖[𝑆])M,𝐶 ⊆ 𝑓P(𝑃𝑖[𝑆])M,𝐶′ . Therefore, in both cases
M′, 𝑃𝑖[𝑆] ⊧ 𝑓P(𝑃𝑖[𝑆])M,𝐶′ implies M′, 𝑃𝑖[𝑆] ⊧ 𝑟 for all 𝑟 ∈ 𝑓P(𝑃𝑖[𝑆])M,𝐶. This proves
that M′ ⊧ 𝑓PM,𝐶, and since M′ < M, this contradicts the assumption that M is an
answer set of Pwith respect to context 𝐶. Hence,M is an answer set of Pwith respect
to context 𝐶′ as well. ⧠

Finally, it would be appreciated if we would have a syntactic property that face no
inconsistency in the scope of instantiations that are relevant to them. Let ord(P) denote
the result of deleting from an MLP P every rule that contains some module atom. If

65

Chapter 3. Modular Nonmonotonic Logic Programs

𝑉(CGP(M′)) ⊆ 𝐶 for all M′ ≤ M such that M′ ⊧ 𝑓 ord(P)M,𝐶, i.e., each decrease of M
to a model M′ of the ordinary rules in the reduct does not lead to a call of an instance
outside the scope 𝐶 then we would have a safe scope that gives us the desired property,
but this is difficult to check and thus a computationally hard problem.

From now on, we do not consider contextual reducts of MLPs P and focus on the
case where the context ranges over the whole set of value calls VC(P).

66

4

Semantic Properties of Modular
Nonmonotonic Logic Programs

S
emantic properties of MLPs provide the basis to find attractive features
like lower computational complexity, which can range from P-complete to
2EXP-complete in general. We will postpone the concrete elaboration of
details on the computational complexity landscape of modular nonmono-

tonic logic programs to the following Chapter 5, and concentrate in this chapter on the
inspection of several program classes that have a unique model property.

The first class of such programs are Horn Modular Nonmonotonic Logic Programs,
which will be defined in §4.1. We will show that they possess a canonical answer set,
which equals their unique minimal model, as models of Horn MLPs are closed under
model intersection.

Then, we will look into bottom up fixed-point computation for Horn programs in
§4.2, and define an appropriate monotone and continuous operator 𝑇P for Horn MLPs
P, such that applying the Kleene Fixed-PointTheorem establishes that the least fixpoint
of 𝑇P gives us the unique answer set of P.

In §4.3, we will define stratified MLPs, which extend Horn MLPs, and show that
such programs have a unique answer set that can be computed in 𝜔 steps for the limit
ordinal 𝜔. To this end, we will define an appropriate notion of program stratification
and define the 𝑇𝐿P operator, which provides the means for iterated fixed-point compu-
tation of the answer set for stratified MLPs.

4.1 Horn Modular Nonmonotonic Logic Programs
Recall that anMLP P is called Horn if each module of P only consists of Horn rules, i.e.,
rules whose body consists only of positive (module) literals and one atom in the head.
Obviously, answer sets coincide with the naive semantics if 𝑉(CGP(M)) = VC(P) for

67

Chapter 4. Semantic Properties of Modular Nonmonotonic Logic Programs

all interpretationsM of P, in particular, when all modules are main. Moreover, also for
positive MLPs the semantics coincides with the naive semantics. Just like in ordinary
logic programs, it behaves like the minimal model semantics in absence of negation.

Proposition 4.1 (Minimal models in positive MLPs)
Let P be positive. Then, the answer sets of P coincide with MM (P).

Proof According to Proposition 3.5, every answer set of P is a minimal model of P.
We prove the converse direction for positive P. LetM ∈ MM (P). Then, by Lemma 3.4,
M ⊧ 𝑓PM. Towards a contradiction assume that there exists M′ < M, such that M′ ⊧
𝑓PM. Then M′, 𝑃𝑖[𝑆] ⊧ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]) for all 𝑃𝑖[𝑆] ∈ VC(P) ⧵ 𝑉(CGP(M)). Moreover,
if 𝑃𝑖[𝑆] ∈ 𝑉(CGP(M)), then M′, 𝑃𝑖[𝑆] ⊧ 𝑓P(𝑃𝑖[𝑆])M and M′, 𝑃𝑖[𝑆] ⊭ 𝐵(𝑟) for all
𝑟 ∈ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]) ⧵ 𝑓P(𝑃𝑖[𝑆])M. Therefore, we conclude that M′ ⊧ 𝐼(P), i.e., M′ ⊧ P.
Since M′ < M, this contradicts the assumption that M ∈ MM (P). Hence, M is an
answer set of P. ⧠

By monotonicity of all module instances, one can easily show that the models of a
Horn MLP P are closed under a suitable notion of intersection.

Definition 4.1 (Intersection).
Given two interpretations M and N of the MLP P = (𝑚1, … ,𝑚𝑛), let their intersection
be the interpretation denoted M ∩ N such that

(𝑀 ∩ 𝑁)𝑖/𝑆 = ⋂
𝑆′⊇𝑆

(𝑀𝑖/𝑆′ ∩ 𝑁𝑖/𝑆′) ,

for every 𝑆 ⊆ HBP|q𝑖 and 𝑖 = 1, … , 𝑛.

Thus, the intersectionM∩N builds a component-wise intersection for all supersets 𝑆′
of input 𝑆. Note that the intersection reduces to (𝑀 ∩ 𝑁)𝑖/𝑆 = 𝑀𝑖/𝑆 ∩ 𝑁𝑖/𝑆 if 𝑆 ⊆ 𝑆′
implies 𝑀𝑖/𝑆 ⊆ 𝑀𝑖/𝑆′ and 𝑁𝑖/𝑆 ⊆ 𝑁𝑖/𝑆′. This generalizes the usual intersection of
Horn logic programs for MLPs with empty inputs, as in this case the condition 𝑆′ ⊇ 𝑆
requires that 𝑆 = 𝑆′ = ∅ and thus (𝑀 ∩ 𝑁)𝑖/∅ = 𝑀𝑖/∅ ∩ 𝑁𝑖/∅.

Based on intersection, we can prove the following statement.

Proposition 4.2 (Model intersection)
Suppose M ⊧ P and N ⊧ P, where P is Horn. Then M ∩ N ⊧ P.

Proof Towards a contradiction, assume M ⊧ P and N ⊧ P, but M ∩ N ⊭ P. Hence,
there exists some 𝑃𝑖[𝑆] ∈ VC(P) and some rule 𝑟 ∈ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]) such that M ∩
N, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟) and M ∩ N, 𝑃𝑖[𝑆] ⊭ 𝐻(𝑟). By definition,

(𝑀 ∩ 𝑁)𝑖/𝑆 = ⋂
𝑆′⊇𝑆

(𝑀𝑖/𝑆′ ∩ 𝑁𝑖/𝑆′) ,

68

4.2. Fixed-Point Characterization

and as 𝐻(𝑟) is an ordinary atom, without loss of generality 𝐻(𝑟) ∉ 𝑀𝑖/𝑆∗ for some
𝑆∗ ⊇ 𝑆, i.e., M, 𝑃𝑖[𝑆∗] ⊭ 𝐻(𝑟). However, for every ordinary atom 𝛼 ∈ 𝐵(𝑟) it holds
that M, 𝑃𝑖[𝑆∗] ⊧ 𝛼. We show that also for every module atom 𝛼 = 𝑃𝑗[p].𝑜(c) in 𝐵(𝑟),
M, 𝑃𝑖[𝑆∗] ⊧ 𝛼 holds.

Let 𝑆p = (𝑀 ∩ 𝑁)𝑖/𝑆|p be the input value of 𝛼 in 𝑃𝑖[𝑆]. AsM∩N, 𝑃𝑖[𝑆] ⊧ 𝛼, 𝑜(c) ∈
(𝑀 ∩ 𝑁)𝑗/𝑆p holds. Now let 𝑆∗p = (𝑀 ∩ 𝑁)𝑖/𝑆

∗|p be the input value of 𝛼 in 𝑃𝑖[𝑆∗]. It
holds that 𝑆∗|p ⊇ 𝑆|p; hence, by definition of M ∩ N, 𝑀𝑗/𝑆∗|p ⊇ (𝑀 ∩ 𝑁)𝑗/𝑆|p; the
latter means that 𝑜(c) ∈ 𝑀𝑗/𝑆∗|p, and hence M, 𝑃𝑖[𝑆∗] ⊧ 𝛼.

In summary, this shows that M, 𝑃𝑖[𝑆∗] ⊧ 𝐵(𝑟). From M ⊧ P, it follows that
M, 𝑃𝑖[𝑆∗] ⊧ 𝐻(𝑟), which is a contradiction. ⧠

Proposition 4.2 generalizes for any collection𝕄 of models for P such that

(⋂
M,N∈𝕄

M ∩ N) ⊧ P .

As a consequence, a Horn MLP has a canonical answer set. In the following, we say
that a given modelM of an MLP P is called least model iffM ≤ N for all modelsN of P.

Corollary 4.3 (Canonical model)
If P is Horn, then it has a unique answer set, which coincides with its least model.

4.2 Fixed-Point Characterization
Like for ordinary programs, we can compute the answer set of a Horn MLP by means
of a bottom up fixed-point computation. With this end in mind, we provide formal
definitions from lattice theory next (Gierz et al., 2003).

Definition 4.2 (Partially ordered set).
A partial order is a binary relation ≤ over a set 𝑉 that satisfies for all 𝑎, 𝑏, 𝑐 in 𝑉

• 𝑎 ≤ 𝑎 (reflexivity);

• if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎, then 𝑎 = 𝑏 (antisymmetry); and

• if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐, then 𝑎 ≤ 𝑐 (transitivity).

A set 𝑉 with a partial order ≤ is called partially ordered set (𝑉, ≤).

Definition 4.3 (Lower and upper bounds).
A lower bound (respectively, upper bound) of a subset𝑊 of a partially ordered set (𝑉, ≤)
is an element 𝑎 of 𝑉 such that for all 𝑥 ∈ 𝑊, 𝑎 ≤ 𝑥 (respectively, 𝑎 ≥ 𝑥). A lower
bound (respectively, upper bound) 𝑎 of𝑊 is called greatest lower bound (respectively,
least upper bound) of𝑊 if for all lower bounds (respectively, upper bounds) 𝑦 of𝑊 in
𝑉, 𝑦 ≤ 𝑎 (respectively, 𝑦 ≥ 𝑎).

69

Chapter 4. Semantic Properties of Modular Nonmonotonic Logic Programs

Definition 4.4 (Lattice).
A complete lattice is a partially ordered set (𝑉, ≤) such that each subset 𝑊 ⊆ 𝑉 has a
least upper bound lub(𝑊) and a greatest lower bound glb(𝑊).

For our purposes, the partially ordered set (𝑉, ≤), where 𝑉 is the set of all MLP
interpretations of a program P and ≤ is defined as in Definition 3.7, is a complete
lattice. An operator on a complete lattice (𝑉, ≤) is a mapping 𝑇: 𝑉 → 𝑉.

We can now define an operator for Horn MLPs, which is used for fixed-point com-
putation.

Definition 4.5 (Immediate consequence operator for Horn MLPs).
Given a Horn MLP P and an interpretation M of P, we define the operator 𝑇P(M)
componentwise as follows:

𝑇P(M) = (𝑇P(M)𝑃𝑖[𝑆] ∣ 𝑃𝑖[𝑆] ∈ VC(P)) ,

where

𝑇P(M)𝑃𝑖[𝑆] = 𝑀𝑖/𝑆 ∪ {𝐻(𝑟) ∣ 𝑟 ∈ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]) and M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟)} .

The 𝑇P operator for a HornMLP P is the inflationary variant (Abiteboul et al., 1995)
for the 𝑇𝑃 operator for ordinary Horn programs 𝑃 (Emden and Kowalski, 1976; Lloyd,
1987), and generalizes 𝑇𝑃 in order to take module input into account. Where 𝑇𝑃 is de-
fined for Herbrand interpretations, 𝑇P is defined for interpretations over MLPs P. The
main distinction is to introduce module instantiations into its definition and the point-
wise application of 𝑇P, essentially splitting 𝑇P based on value calls 𝑃𝑖[𝑆] ∈ VC(P).

In the following, we will show that 𝑇P is a monotone and continuous operator. We
start with the former property and define monotone operators.

Definition 4.6 (Monotone operators).
An operator 𝑇: 𝑉 → 𝑉 on partially ordered set (𝑉, ≤) is monotone, if for all 𝑥, 𝑦 ∈ 𝑉,

𝑥 ≤ 𝑦 implies 𝑇(𝑥) ≤ 𝑇(𝑦) .

Proposition 4.4 (Monotonicity)
The 𝑇P operator for a Horn MLP P is monotone.

Proof Let M and N be interpretations for P such that M ≤ N. We show now that
𝑇P(M) ≤ 𝑇P(N). Without loss of generality, let 𝑀𝑖/𝑆 ⊆ 𝑁𝑖/𝑆 for a value call 𝑃𝑖[𝑆] of
P, and let𝑀𝑗/𝑇 = 𝑁𝑗/𝑇 for all value calls 𝑃𝑗[𝑇] ≠ 𝑃𝑖[𝑆]. We get that

{𝐻(𝑟) ∣ 𝑟 ∈ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]) and M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟)} ⊆
{𝐻(𝑟) ∣ 𝑟 ∈ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]) and N, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟)} ,

70

4.2. Fixed-Point Characterization

as P is Horn and𝑀𝑖/𝑆 ⊆ 𝑁𝑖/𝑆. Therefore,

𝑀𝑖/𝑆 ∪ {𝐻(𝑟) ∣ 𝑟 ∈ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]) and M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟)} ⊆
𝑁𝑖/𝑆 ∪ {𝐻(𝑟) ∣ 𝑟 ∈ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]) and N, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟)} ,

and this implies that 𝑇P(M) ≤ 𝑇P(N). ⧠

Monotone operators enjoy useful fixpoint properties, such as the following.

Knaster-Tarski Theorem (Tarski, 1955)Any monotone operator 𝑇 on a complete lat-
tice (𝑉, ≤) has a least fixpoint

lfp(𝑇) = glb({𝑥 ∈ 𝑉 ∣ 𝑇(𝑥) ≤ 𝑥}) .

To show that 𝑇P is also continuous, we need to define continuous operators. We
start with directed sets of partially ordered sets.

Definition 4.7 (Directed sets).
Given the partially ordered set (𝑉, ≤), we call a nonempty subset 𝑊 ⊆ 𝑉 directed, if
for each pair 𝑥, 𝑦 ∈ 𝑊 there exists some 𝑧 ∈ 𝑊 such that 𝑥 ≤ 𝑧 and 𝑦 ≤ 𝑧.

The least upper bound of a directed set𝑊 is contained in𝑊.

Lemma 4.5
Let (𝑉, ≤) be a partially ordered set and𝑊 ⊆ 𝑉. If𝑊 is directed then lub(𝑊) ∈ 𝑊.

Proof Towards a contradiction, assume that lub(𝑊) ∉ 𝑊. From lub(𝑊) being an
upper bound, we can infer that there must exist 𝑥, 𝑦 ∈ 𝑊 with 𝑥 ≤ lub(𝑊) and
𝑦 ≤ lub(𝑊) such that 𝑥 ≰ 𝑦 and 𝑦 ≰ 𝑥 and there is no 𝑧 ∈ 𝑊 such that 𝑥 ≤ 𝑧 and
𝑦 ≤ 𝑧. Hence, 𝑥 and 𝑦 are two upper bounds in𝑊. Then, by𝑊 being directed, we have
that for all 𝑢, 𝑣 ∈ 𝑊 there exists 𝑧 ∈ 𝑊 such that 𝑢 ≤ 𝑧 and 𝑣 ≤ 𝑧. Now both 𝑥 and
𝑦 do not have a 𝑧 in 𝑊 such that 𝑥 ≤ 𝑧 and 𝑦 ≤ 𝑧, which contradicts our assumption
that lub(𝑊) ∉ 𝑊. ⧠

Definition 4.8 (Continuous operator).
An operator 𝑇: 𝑉 → 𝑉 on a complete lattice (𝑉, ≤) is continuous, if for every directed
set𝑊 ⊆ 𝑉,

𝑇(lub(𝑊)) = lub(𝑇(𝑊)) ,
where 𝑇(𝑊) = {𝑇(𝑥) ∣ 𝑥 ∈ 𝑊}.

Intuitively, directed models converge, as we can build a chain M0 < M1 < ⋯ .
Note that continuous operators are also monotone.

The following Lemma is useful for proving that 𝑇P is a continuous operator.

71

Chapter 4. Semantic Properties of Modular Nonmonotonic Logic Programs

Lemma 4.6
Let P be a HornMLP, let𝑊 be a directed set of interpretations for P, let 𝑃𝑖[𝑆] ∈ VC(P),
and let 𝐵 = {𝑏1, … , 𝑏𝑛} be a set of atoms. Then, lub(𝑊), 𝑃𝑖[𝑆] ⊧ 𝐵 iff M, 𝑃𝑖[𝑆] ⊧ 𝐵 for
some M ∈ 𝑊.

Proof (⇒) Let lub(𝑊), 𝑃𝑖[𝑆] ⊧ 𝐵. By Lemma 4.5, we obtain that lub(𝑊) ∈ 𝑊 and
thus we immediately get that M, 𝑃𝑖[𝑆] ⊧ 𝐵 for some M ∈ 𝑊.
(⇐) Let M, 𝑃𝑖[𝑆] ⊧ 𝐵 for some M ∈ 𝑊. We have that N ≤ lub(𝑊) for all N ∈ 𝑊, and
thus M ≤ lub(𝑊). Hence, lub(𝑊), 𝑃𝑖[𝑆] ⊧ 𝐵. ⧠

We can now show the following.

Proposition 4.7 (Continuous operator)
The 𝑇P operator for a Horn MLP P is continuous.

Proof Let 𝑊 be a directed set of interpretations, and let 𝑃𝑖[𝑆] ∈ VC(P). We show
that 𝑇P(lub(𝑊)) = lub(𝑇P(𝑊)). Then,

𝑇P(lub(𝑊)), 𝑃𝑖[𝑆] ⊧ 𝑎
⟺ 𝑎 ← 𝑏1, … , 𝑏𝑛 ∈ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]) and

lub(𝑊), 𝑃𝑖[𝑆] ⊧ 𝑏𝑗 for𝑗 ∈ {1, … , 𝑛} by Definition 4.5
⟺𝑎 ← 𝑏1, … , 𝑏𝑛 ∈ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]) and for some M ∈ 𝑊,

M, 𝑃𝑖[𝑆] ⊧ 𝑏𝑗 for 𝑗 ∈ {1, … , 𝑛} by Lemma 4.6
⟺𝑇P(M), 𝑃𝑖[𝑆] ⊧ 𝑎 for some M ∈ 𝑊 by Definition 4.5
⟺ lub(𝑇P(𝑊)), 𝑃𝑖[𝑆] ⊧ 𝑎 by Definition 4.4 . ⧠

A stronger Theorem than Knaster-Tarski Theorem holds for continuous operators.

Kleene Fixed-Point Theorem (Kleene, 1952)Any continuous operator 𝑇 on a com-
plete lattice (𝑉, ≤) has a least fixpoint

lfp(𝑇) = lub({𝑇𝑖 ∣ 𝑖 ≥ 0}) ,

where 𝑇0 = glb(𝑉) and 𝑇 𝑖+1 = 𝑇(𝑇𝑖), for all integers 𝑖 ≥ 0.

Since the 𝑇P-operator is continuous, it has a least fixed-point lfp(P) that results,
starting from the empty interpretation M∅ with 𝑀𝑖/𝑆 = ∅ for every 𝑃𝑖[𝑆] ∈ VC(P),
in 𝜔 steps, i.e., lfp(P) = 𝑇P↑𝜔(M∅).

Lemma 4.8
An interpretation M is a pre-fixpoint of 𝑇P iff M is a model of P.

72

4.3. Stratified Modular Nonmonotonic Logic Programs

Proof (⇒) Let 𝑇P(M) ≤ M. For all 𝑃𝑖[𝑆] ∈ VC(P) and all 𝑟 ∈ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]), it holds
that M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟) implies M, 𝑃𝑖[𝑆] ⊧ 𝐻(𝑟). Thus, M ⊧ 𝑟 for all rules 𝑟 appearing in
𝐼(P) and so we can conclude that M is a model of P.
(⇐) Let M be a model of P. Thus, M ⊧ 𝑟 for all 𝑟 ∈ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]) and all 𝑃𝑖[𝑆] ∈
VC(P), and thus for any 𝑟 in 𝐼P(𝑃𝑖[𝑆]), M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟) implies M, 𝑃𝑖[𝑆] ⊧ 𝐻(𝑟).
Hence, 𝑇P(M) ≤ M. ⧠

We obtain the following result.

Proposition 4.9 (Least fix point)
For a Horn MLP P, lfp(P) is the unique answer set of P.

Proof Since lfp(P) = 𝑇P↑𝜔(M∅) is a fixpoint of 𝑇P, it is also a pre-fixpoint and by
Lemma 4.8 it is a model of P. We show now that M = lfp(P) is also the least model
of P. LetN be an interpretation such thatM ≤ N and letM𝑘 = 𝑇P↑𝑘(M∅) for all 𝑘 ≥ 0.
We show that if N ⊧ P then M𝑖 ≤ N for all integers 𝑖 ≥ 0. We proceed by induction
on 𝑖. In the base case, we set 𝑖 = 0 and obtain that M0 = M∅, hence M0 ≤ N. For the
inductive step, let 𝑖 > 0 and let M𝑖 ≤ N be our inductive hypothesis. We show now
that M𝑖+1 ≤ N. By definition, M𝑖+1 = 𝑇P↑𝑖+1(M∅) = 𝑇P(𝑇P↑𝑖(M∅)) = 𝑇P(M𝑖), and
so we derive M𝑖 ≤ M𝑖+1. From M being a fixpoint of 𝑇P, we conclude that M𝑖 ≤ M
and M𝑖+1 ≤ M. As a consequence of M ≤ N, we can now infer M𝑖+1 ≤ N, what was
to be shown. ⧠

4.3 Stratified Modular Nonmonotonic Logic
Programs

A useful class of ordinary logic programs are called stratified logic programs, which
are normal logic programs that forbid recursion over negative literals (Apt et al., 1988).
Stratified programs extend Horn programs: both enjoy having a unique model that can
be computed by iterated application of a suitable operator, but unlike Horn programs,
stratified programs do allow a “safe use” of negation in the body. For this purpose,
Apt et al. (1988) define stratifications for normal logic programs 𝑃, and if there exists
a stratification for 𝑃, then 𝑃 is called a stratified program.

It is thus worthwhile to define stratified MLPs with similar properties as stratified
ordinary logic programs. Necessary to that end is to define stratifications for normal
MLPs. We will thus generalize this concept as follows. Intuitively, the usual notion
of the dependency graph of a program is extended by nodes standing for the module
atoms appearing in P, which serve to take care of the dependencies between input to
the module and module output. Furthermore, we assume that each predicate occurs in
ordinary atoms of at most one module.

73

Chapter 4. Semantic Properties of Modular Nonmonotonic Logic Programs

Definition 4.9 (Dependency graph).
Let P = (𝑚1, … ,𝑚𝑛) be an MLP. The dependency graph of P is the following directed
graph 𝐺P = (𝑉, 𝐸). The vertex set 𝑉 contains all 𝑝 ∈ 𝒫 ∪ ℰ, with 𝑝 appearing some-
where in P, and ℰ is the set of module atoms in P. The edge set 𝐸 is as follows:

• Let 𝑟 ∈ 𝑅(𝑚𝑖). There is a ⋆-edge 𝑝 →⋆ 𝑞 in 𝐺P, ⋆ ∈ {+,−}, if one of items 1–3
holds:

1. 𝑝(t1) ∈ 𝐻(𝑟) and 𝑞(t2) ∈ 𝐵⋆(𝑟);
2. 𝑝(t1), 𝑞(t2) ∈ 𝐻(𝑟) and ⋆ = −; and

3. 𝑝(t1) ∈ 𝐻(𝑟) and 𝑞 is a module atom in 𝐵⋆(𝑟).

• Let 𝛼 ∈ ℰ be of the form 𝑃𝑗[p].𝑜(t) in 𝑅(𝑚𝑖). There is a +-edge 𝑎 →+ 𝑏 in 𝐺P if
one of items 4–6 holds:

4. 𝑎 = 𝛼 and 𝑏 = 𝑜;
5. 𝑎 = 𝛼 and 𝑏 appears in q𝑗 of 𝑃𝑗[q𝑗]; or
6. 𝑎 = 𝑞ℓ and 𝑏 = 𝑝ℓ, where 𝑞ℓ appears in q𝑗 of 𝑃𝑗[q𝑗] and 𝑝ℓ appears in p.

Based on the dependency graph of an MLP, we can now defined stratified MLPs.

Definition 4.10 (Stratified MLP).
We say that an MLP P is stratified if no cycle in 𝐺P has −-edges.

As for ordinary logic programs, given a stratified MLP P, there exists a labeling
function 𝑙 from HBP to the nonnegative integers, such that 𝑙(𝛼) ≥ 𝑙(𝛽) if 𝑎 →+ 𝑏
in 𝐺P, and 𝑙(𝛼) > 𝑙(𝛽) if 𝑎 →− 𝑏 in 𝐺P, where 𝛼 = 𝑎(t), or 𝑎 ∈ ℰ and 𝑎 unifies with
𝛼, respectively for 𝛽 and 𝑏.

Let 𝑘 be the maximal value assigned by a particular such labeling function, and let
for 0 ≤ 𝑖 ≤ 𝑘 the set St𝑖 = {𝑎 ∈ HBP ∣ 𝑙(𝑎) = 𝑖} be a stratum for P. Then a partitioning
St0, … , St𝑘 of HBP is a stratification.

Example 4.1 Let P = (𝑚1, 𝑚2, 𝑚3) be an MLP with modules

𝑃1[]: 𝑎1 ← not 𝑏1
𝑐1 ← 𝑃3[𝑎1].𝑎3

𝑃2[]: 𝑎2 ← not𝑃1.𝑏1

𝑃3[𝑞3]: 𝑎3 ← 𝑞3

74

4.3. Stratified Modular Nonmonotonic Logic Programs

The unique answer set M is determined by

𝑀1/∅ = {𝑎1, 𝑐1} 𝑀2/∅ = {𝑎2} 𝑀3/∅ = ∅
𝑀3/{𝑞3} = {𝑎3, 𝑞3}

The dependency graph of P is 𝐺P = (𝑉, 𝐸), where 𝑉 = {𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑎3, 𝑞3} and 𝐸
consists of the edges

𝑎1 →− 𝑏1
𝑐1 →+ 𝑃3[𝑎1].𝑎3

𝑃3[𝑎1].𝑎3 →+ 𝑎3
𝑃3[𝑎1].𝑎3 →+ 𝑞3

𝑞3 →+ 𝑎1
𝑎2 →− 𝑃1.𝑏1

𝑃1.𝑏1 →+ 𝑏1
𝑎3 →+ 𝑞3

We have a stratification St0 = {𝑏1, 𝑃1.𝑏1}, St1 = {𝑎1, 𝑐1, 𝑃3[𝑎1].𝑎3, 𝑎2, 𝑞3, 𝑎3} of HBP.

Towards an iterated fixed-point computation of answer sets for stratified MLPs, we
define the following operator.

Definition 4.11 (Immediate consequence operator for stratified MLPs).
Given a normal MLP P, a subset 𝐿 of HBP, and an interpretationM of P, we define the
operator 𝑇𝐿P(M) as the operator 𝑇P(M), where 𝑇P(M)𝑃𝑖[𝑆] has been replaced with

𝑇𝐿P(M)𝑃𝑖[𝑆] = 𝑀𝑖/𝑆 ∪ {𝐻(𝑟) ∈ 𝐿 ∣ 𝑟 ∈ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]) and M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟)} .

Thus, compared to 𝑇P, the 𝑇𝐿P-operator has a certain set 𝐿 as an additional param-
eter used to project those atoms from HBP that belong 𝐿, i.e., 𝑇P = 𝑇HBP

P and for a
subset 𝐿 ⊆ HBP, we have 𝑇𝐿P(M)𝑃𝑖[𝑆] = 𝑀𝑖/𝑆 ∪ (𝑇P(M)𝑃𝑖[𝑆] ∩ 𝐿).

By 𝑇𝐿P↑𝜔(M), we denote the application of 𝑇𝐿P in 𝜔 steps, starting with M. Fur-
thermore, let M0 = M∅ be the empty interpretation, i.e., where 𝑀𝑖/𝑆 = ∅ for every
value call 𝑃𝑖[𝑆] ∈ VC(P). For any stratification St0, … , St𝑘 of HBP such that 𝑘 is the
maximal value assigned by a labelling function 𝑙 : HBP → ℕ, we let 𝐿𝑖 = ⋃0≤𝑗≤𝑖 St𝑗

and inductively define M𝑖+1 = 𝑇𝐿𝑖+1P ↑𝜔(M𝑖), for 0 ≤ 𝑖 < 𝑘.

Proposition 4.10 (Stratified answer set)
Let P be normal and stratified. Then M𝑘 is an answer set of P, for any stratifica-
tion St0, … , St𝑘 of HBP.

75

Chapter 4. Semantic Properties of Modular Nonmonotonic Logic Programs

Proof Let 𝑚𝑖 = (𝑃𝑖[q𝑖], 𝑅𝑖) be a ground module of P. For a 𝑗 ≤ 𝑘, we denote by
𝑚𝑗
𝑖 = (𝑃𝑖[q𝑖], 𝑅

𝑗
𝑖), where 𝑅𝑗𝑖 = {𝑟 ∈ 𝑅𝑖 ∣ 𝐻(𝑟) ∈ 𝐿𝑗}, and by P𝑗 = (𝑚𝑗

1, … ,𝑚
𝑗
𝑛).

We show now thatM𝑘 is an answer set of P𝑘 (= P). We proceed by induction on 𝑗
such that 0 ≤ 𝑗 ≤ 𝑘.

Let 𝑗 = 0 in the base case. We get by having only a single stratum St0 that 𝐼P0(𝑃𝑖[𝑆])
is Horn and coincides with 𝐼P(𝑃𝑖[𝑆]). Hence, 𝑇P0(M) = 𝑇P(M) for anyM, in particular
𝑇P0(M0) = 𝑇P(M0). Thus, 𝑇P0↑𝜔(M0) = 𝑇P↑𝜔(M0) = lfp(P).

Let 𝑗 > 0 in the inductive step and assume thatM𝑗−1 is an answer set of P𝑗−1 with
stratification St0, … , St𝑗−1. We first show that M𝑗 is a model of P𝑗 with stratification
St0, … , St𝑗. Towards a contradiction, assume that M𝑗 ⊭ P𝑗, i.e., M𝑗 ⊭ 𝐼(P𝑗). There is
a rule 𝑟 ∈ 𝐼P𝑗(𝑃𝑖[𝑆]) such that M𝑗, 𝑃𝑖[𝑆] ⊭ 𝑟, hence M𝑗, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟) and M𝑗, 𝑃𝑖[𝑆] ⊭
𝐻(𝑟). Since M𝑗−1 ⊧ P𝑗−1, this 𝑟 must not appear in 𝑚𝑗−1

𝑖 , thus 𝐻(𝑟) ∉ 𝐿𝑗−1. By
definition of 𝑚𝑗

𝑖 , we have 𝐻(𝑟) ∈ 𝐿𝑗, hence 𝐻(𝑟) ∈ 𝐿𝑗 ⧵ 𝐿𝑗−1 and thus 𝐻(𝑟) ∈ St𝑗.

Thereforewemust have𝐻(𝑟) ∈ 𝑇𝐿𝑗P𝑗 (M
𝑗−1), which is a contradiction to our assumption

that M𝑗 ⊭ P𝑗. Thus, M𝑗 is a model of P𝑗.
Now we show that M𝑗 is a minimal model of 𝑓P𝑗(𝑃𝑖[𝑆])M

𝑗 . Towards a contradic-
tion, assume there exists anM′ < M𝑗 that is a model of 𝑓P𝑗(𝑃𝑖[𝑆])M

𝑗 . SinceM𝑗−1 is an
answer set of P𝑗−1 with stratification St0, … , St𝑗−1, there must exist an atom 𝑎 ∈ 𝑀𝑗

𝑖 /𝑆
such that 𝑎 ∉ 𝑀𝑗−1

𝑖 /𝑆 for a particular 𝑃𝑖[𝑆], otherwise 𝑎 would be missing from
𝑀𝑗−1/𝑆, as M𝑗−1 is an answer set for P𝑗−1. Hence, 𝑎 is from 𝐿𝑗 ⧵ 𝐿𝑗−1, thus 𝑎 ∈ St𝑗.

From M𝑗 = 𝑇𝐿𝑗P ↑𝜔(M𝑗−1) we can conclude that there exists an 𝑟 ∈ 𝐼𝑔𝑟(P)(𝑃𝑖[𝑆]) with
𝐻(𝑟) = 𝑎, and since 𝑎 is from St𝑗, we must have that M𝑗−1, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟). Now,
M𝑗, 𝑃𝑖[𝑆] ⊧ 𝐻(𝑟), butM′, 𝑃𝑖[𝑆] ⊭ 𝐻(𝑟), thus we arrive at a contradiction forM′ being
a model of 𝑓P𝑗(𝑃𝑖[𝑆])M

𝑗 . ⧠

Example 4.2 (cont’d) Given P from the previous example, we have 𝐿0 = St0 and
𝐿1 = St0 ∪ St1. The answer set M = M1 can be obtained from M1 = 𝑇𝐿1P ↑𝜔(M0).

A further consequence of stratification is that the relevant call graph is unique.

Proposition 4.11 (Stratified call graph)
Let P be a stratified normal MLP and St0, … , St𝑘 be an arbitrary stratification of HBP.
Then, for every answer set M of P, it holds that

1. 𝑉(CGP(M)) = 𝑉(CGP(M𝑘)), and

2. 𝑀𝑖/𝑆 = 𝑀𝑘
𝑖 /𝑆, for all 𝑃𝑖[𝑆] ∈ VC(P) and any stratification St0, … , St𝑘 of HBP.

76

4.3. Stratified Modular Nonmonotonic Logic Programs

Proof Let St ′0, … , St ′ℓ1 and St
″
0 , … , St″ℓ2 be two stratifications for HBP. Observe that for

𝑖 < 𝑗 ≤ ℓ1 ≤ ℓ2, no stratum St ′𝑗 depends on a stratum St ′𝑖 and no stratum St″𝑗 depends
on a stratum St″𝑖 , respectively, which is guaranteed by the definition of 𝐺P.

Following the proof for (Apt et al., 1988, Theorem 11), we can transform both St ′0,… ,
St ′ℓ1 and St″0 , … , St″ℓ2 into a single stratification St0, … , St𝑘 by grouping clusters of rules
together; clusters are nonempty subsets of rules in P that are the unions of a maxi-
mal collection of definitions that define relations depending on each other. For this
purpose, one can define a partial order on clusters that order them based on their de-
pendencies. Clusters that are unrelated with respect to this partial order can then be
rearranged while preserving their answer set.

Hence, we get that

⋃
0≤𝑖<ℓ1

𝑇𝐿
′
𝑖+1

P ↑𝜔(M𝑖) = ⋃
0≤𝑖<𝑘

𝑇𝐿𝑖+1P ↑𝜔(M𝑖)

and

⋃
0≤𝑖<ℓ2

𝑇𝐿
″
𝑖+1

P ↑𝜔(M𝑖) = ⋃
0≤𝑖<𝑘

𝑇𝐿𝑖+1P ↑𝜔(M𝑖) .

Thus, for any stratification the answer set coincide, and both (1) and (2) hold. ⧠

Therefore, answer sets of stratified, normal MLPs coincide on relevant instances.
The answer set obviously is unique if all value calls of VC(P) are relevant, or if all
irrelevant instances have a unique minimal model.

77

5

Computational Complexity of
Modular Nonmonotonic Logic

Programs

T
his chapter discusses the computational costs of MLPs in the propositional
and the nonground settings. We study the complexity of MLPs with and
without module input and provide completeness results for the problem of
deciding whether a ground atom is contained in the unique answer set for

Horn MLPs, and for deciding answer set existence for normal and disjunctive MLPs.
All results are compactly summarized in Tables 5.1–5.3.

The complexity results have been obtained using Turing machine simulations and
bounded domino tiling problems; see also Börger et al. (1997) for an in-detail inves-
tigation on these techniques. Our findings in §5.2 show that allowing unrestricted
module input in MLPs increases the computational complexity by an exponential fac-
tor already in the Horn case. Similarly, as we show in §5.3, deciding whether a nor-
mal MLP has an answer set is NEXP-complete even in the propositional case, which
matches the complexity of nonground normal logic programs. As shown in §5.4, this
holds even for acyclic normal MLPs, i.e., normal MLPs whose call graph is acyclic.
§5.5 then presents complexity results for general MLPs without restrictions. Propo-
sitional disjunctive MLPs match the complexity of nonground disjunctive logic pro-
grams (NEXPNP-complete). In the nonground case, the complexity jumps again by an
exponential factor: nonground Horn MLPs are complete for 2EXP, while normal (re-
spectively, disjunctive) MLPs are complete for 2NEXP (respectively, 2NEXPNP). If we
bound the arities of the input predicates by a constant, then the complexity drops by
an exponential factor and matches that of ordinary logic programs: nonground Horn
MLPs with bounded predicates are complete for EXP, while nonground normal (re-
spectively, disjunctive) MLPs are then complete for NEXP (respectively, NEXPNP).

79

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

MLP P Computing lfp(P) Deciding 𝛼 ∈ lfp(P)
propositional, empty inputs polynomial time P-complete
propositional exponential time EXP-complete
nonground, bounded predicates exponential time EXP-complete
nonground double exponential time 2EXP-complete

Table 5.1: Complexity of Horn MLPs (𝛼 is a ground atom)

MLP P Answer set existence

normal, empty inputs NP-complete
empty inputs Σ𝑝2 -complete
normal NEXP-complete
acyclic NEXP-complete
unrestricted NEXPNP-complete

Table 5.2: Complexity of answer set existence for propositional MLPs

MLP P Answer set existence

normal, bounded predicates NEXP-complete
normal 2NEXP-complete
bounded predicates NEXPNP-complete
unrestricted 2NEXPNP-complete

Table 5.3: Complexity of answer set existence for nonground MLPs

Figure 5.1 illustrates the complexity landscape for the studied syntactic classes of
MLPs as an directed acyclic graph, where each node 𝑆: 𝐶 consists of the name 𝑆 of
the syntactic class on the left and the complexity class 𝐶 on the right of the colon.
There is an edge from 𝑆1 : 𝐶1 to 𝑆2 : 𝐶2 whenever 𝑆1 contains 𝑆2. Here, ℕ𝑟 and ℕ𝑏

𝑟 , for
𝑟 ∈ {𝑢, 𝑛, ℎ}, denote the classes of nonground MLPs with arbitrary module input (su-
perscript is void) and bounded predicate input (superscript 𝑏), respectively, such that
the rule sets consists of unrestricted rules (𝑢), normal rules (𝑛), and Horn rules (ℎ).
For the syntactic classes of propositional MLPs we let ℙ𝑟 and ℙ∅

𝑟 , for 𝑟 ∈ {𝑢, 𝑛, 𝑎, ℎ},
denote the classes of propositional MLPs with arbitrary module input (where the su-
perscript is void) and empty module input (with ∅ as superscript), respectively, such
that the rule sets consists of unrestricted rules (𝑢), normal rules (𝑛), acyclic rules (𝑎),
and Horn rules (ℎ).

We start with a recapitulation of the most important definitions from complexity
theory in the next section.

80

5.1. Alternating Turing Machines and Complexity Classes

ℕ𝑢 : 2NEXPNP ℕ𝑛 : 2NEXP ℕℎ : 2EXP

ℕ𝑏 : NEXPNP ℕ𝑏
𝑛 : NEXP ℕ𝑏

ℎ : EXP

ℙ𝑢 : NEXPNP ℙ𝑛 : NEXP ℙℎ : EXP

ℙ𝑎 : NEXP

ℙ∅
𝑢 : Σ

𝑝
2 ℙ∅

𝑛 : NP ℙ∅
ℎ : P

Figure 5.1: Complexity landscape of Modular Nonmonotonic Logic Programs

5.1 Alternating Turing Machines and Complexity
Classes

This section builds upon results and definitions by Chandra et al. (1981) and Dantsin et
al. (2001). Further material and details on complexity theory is provided by Papadim-
itriou (1994), by Börger et al. (1997), and by Garey and D. S. Johnson (1979).

Some of our results in this chapter rely on alternating Turing machine simulations.
This type of Turing machine can be considered as a generalization of the classical de-
terministic and nondeterministic Turing machine, hence we base our definitions on
alternating Turing machines, and then provide the restrictions necessary for deter-
ministic and nondeterministic machines.

5.1.1 Alternating Turing Machines
An alternating Turing machine (ATM) 𝑇 is a quintuple (𝑆, Σ, 𝛿, 𝑠0, 𝑔), where 𝑆 is a finite
set of states, Σ is a finite alphabet of input and tape symbols, 𝛿 is the transition relation,
𝑠0 ∈ 𝑆 is the initial state, and 𝑔: 𝑆 → {∃, ∀} is a mapping that assigns each state in 𝑆 a
state identifier. The transition relation 𝛿 is defined as

𝛿 ⊆ (𝑆 × Σ) × ((𝑆 ∪ {yes, no}) × Σ × {−1, 0, +1}) ,

where the states yes, no do not occur in 𝑆 and −1, 0, +1 denote motion directions. We
denote ∈ Σ to be the blank tape symbol.

We say that 𝑇 is a nondeterministic Turing machine (NTM) iff for each 𝑠 ∈ 𝑆 it
holds that 𝑔(𝑠) = ∃, and 𝑇 is called a deterministic Turing machine (DTM), iff it is a
NTM and 𝛿 is a functional relation over (𝑆 × Σ). Since 𝑔 is not important for DTMs

81

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

and NTMs, we simply identify them as quadruple (𝑆, Σ, 𝛿, 𝑠0). Thus, an NTM may
be considered to be an ATM without universal states, and a DTM is an NTM whose
transition relation 𝛿 is functional.

A configuration 𝛾 of ATM 𝑇 is a triple (𝑠, 𝑤, 𝑢) ∈ 𝑆 ∪ {yes, no} × Σ∗ × Σ∗, where 𝑠
represents the current state of 𝑇, and 𝑤 and 𝑢 represent the contents of the tape left
and right from the read-write head on the tape, respectively. Given an input string 𝐼,
we call configuration 𝛾0 = (𝑠0, , 𝐼) the initial configuration of 𝑇.

Let 𝛾 = (𝑠, 𝑤, 𝑢) be a configuration for the ATM 𝑇. If 𝑔(𝑠) = ∀, then 𝛾 is said to be a
universal configuration, and for 𝑔(𝑠) = ∃, we say that 𝛾 is an existential configuration.
We call 𝛾 accepting if 𝑠 = yes, and rejecting if 𝑠 = no. A halting configuration is either
an accepting or a rejecting configuration.

For an ATM 𝑇 = (𝑆, Σ, 𝛿, 𝑠0, 𝑔) and configurations 𝛾, 𝛾′ of 𝑇, we call 𝛾′ a successor
of 𝛾 if 𝛾′ can be reached from 𝛾 in one step according to the transition relation 𝛿. A
computation of 𝑇 is a sequence of configurations 𝛾0, 𝛾1, 𝛾2, … such that for each pair 𝛾𝑖
and 𝛾𝑖+1, 𝑖 ≥ 0, 𝛾𝑖+1 is a successor of 𝛾𝑖.

We can now define accepting and rejecting configurations given universal and ex-
istential configurations. Let 𝛾 = (𝑠, 𝑤, 𝑢) be a configuration such that 𝑔(𝑠) ∈ {∀, ∃}.
We call 𝛾 an accepting configuration if 𝛾 is universal and all successors 𝛾′ of 𝛾 are
accepting, or if 𝛾 is existential and there exists a successor 𝛾′ of 𝛾 that is accepting.
We say that the universal (respectively, existential) configuration 𝛾 is rejecting if some
successor 𝛾′ of 𝛾 is rejecting (respectively, all successors 𝛾′ of 𝛾 are rejecting).

The ATM 𝑇 accepts input 𝐼 if the initial configuration 𝛾0 is accepting, and rejects
input 𝐼 if 𝛾0 is rejecting. An ATM halts on an input 𝐼 if its initial configuration 𝛾0 is
accepting or rejecting. We say that an ATM 𝑇 decides a language 𝐿 if 𝑇 accepts all
strings 𝐼 ∈ 𝐿 and rejects all strings 𝐼 ∉ 𝐿.

5.1.2 Complexity Classes

Based on alternating Turing machines, we define now the complexity classes that are
used in our results. For a given function 𝑔: ℕ → ℕ, we denote by 𝑂(𝑔(𝑛)) the set
of functions {𝑓(𝑛) ∣ ∃𝑐, 𝑘 ∈ ℕ ⧵ {0} such that 0 ≤ 𝑓(𝑛) ≤ 𝑐𝑔(𝑛) for all 𝑛 ≥ 𝑘}. A func-
tion 𝑓: ℕ → ℕ is called a proper complexity function if for all 𝑛 ∈ ℕ, 𝑓(𝑛 + 1) ≥ 𝑓(𝑛),
and there exists a DTM 𝑇𝑓 that for a given input string 𝐼 such that 𝑛 = |𝐼| writes ex-
actly 𝑓(𝑛) blank symbols on the tape and whose computation has length𝑂(𝑛+𝑓(𝑛))
and touches 𝑂(𝑓(𝑛)) tape cells and halts. Let 𝑓 be a proper complexity function on
positive integers. Let ATIME (𝑓(𝑛)) be the class of all languages that are decided by
some ATM, whose computations halt on input 𝐼 with length 𝑛 = |𝐼| in at most 𝑓(𝑛)
steps. We define ASPACE (𝑓(𝑛)) to be the class of all languages that are decided by
some ATM, whose computations halt on input 𝐼 with length 𝑛 = |𝐼| with at most 𝑓(𝑛)
of cells visited. The definitions for deterministic (DTIME (𝑓(𝑛)), DSPACE (𝑓(𝑛))) and

82

5.1.2. Complexity Classes

nondeterministic (NTIME (𝑓(𝑛)), NSPACE (𝑓(𝑛))) resource bounds classes are analo-
gous, but instead of ATMs, they use DTMs and NTMs, respectively.

We can now define the main complexity classes for alternating computations.

ALOGSPACE = ASPACE (log𝑛)
AP = ⋃

𝑘>0
ATIME (𝑛𝑘)

APSPACE = ⋃
𝑘>0

ASPACE (𝑛𝑘)

AEXP = ⋃
𝑘>0

ATIME (2𝑛𝑘)

AEXPSPACE = ⋃
𝑘>0

ASPACE (2𝑛𝑘)

The deterministic and nondeterministic complexity classes for deterministic Turing
machines (LOGSPACE, P, PSPACE, EXP, EXPSPACE) and nondeterministic Turing
machines (NLOGSPACE, NP, NPSPACE, NEXP, NEXPSPACE) are defined accordingly
using DTIME (⋅) and DSPACE (⋅) respectively NTIME (⋅) and NSPACE (⋅) instead.

For a language 𝐿 over alphabet Σ ⧵ { } we let 𝐿 denote its complement language
(Σ ⧵ { })∗ ⧵ 𝐿. A complexity class 𝐶 has a complementary class co-𝐶 defined as the
set {𝐿 ∣ 𝐿 ∈ 𝐶}.

We define noworacle Turingmachines. Let 𝐿 ⊆ Σ∗ be a language. The computation
of an oracle machine 𝑇𝐿 with oracle 𝐿 proceeds like an ordinary Turingmachine with an
additional write-only query tape and additional three states 𝑞query , 𝑞yes , 𝑞no . Whenever
𝑇𝐿 is not in state 𝑞query the computation proceeds as a standard Turing machine, and
𝑇𝐿 may also write to the query tape. Let 𝐼𝑞 be the string written on the query tape. If
𝑇𝐿 is in state 𝑞query , then 𝑇𝐿 switches its state either to 𝑞yes in case 𝐼𝑞 ∈ 𝐿, or to 𝑞no
in case 𝐼𝑞 ∉ 𝐿, and then erases the query tape content. Note that we did not fix the
machine type here: whenever 𝑇 is a DTM, we call 𝑇𝐿 an deterministic oracle Turing
machine, and for 𝑇 being a NTM, we say that 𝑇𝐿 is a nondeterministic oracle Turing
machine. The time and space resource bounds are defined analogously as in standard
Turing machines, except that additionally the number of steps and required space on
the query tape is taken into account. Let 𝐶 be any deterministic or nondeterministic
time complexity class, we define 𝐶𝐿 to be the class of all languages accepted by a DTM
or NTM (whenever 𝐶 is deterministic or nondeterministic, respectively) with equal
time bound as in 𝐶 such that the machine has an oracle for language 𝐿. For a set of
languages 𝐴, we define 𝐶𝐴 = ⋃𝐿∈𝐴 𝐶

𝐿.
The polynomial hierarchy (Stockmeyer, 1976; Wrathall, 1976) consists of complexity

83

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

classes Δ𝑝𝑖 , Σ
𝑝
𝑖 , and Π

𝑝
𝑖 recursively defined as follows:

Δ𝑝0 = Σ𝑝0 = Π𝑝
0 = P

Δ𝑝𝑖+1 = PΣ
𝑝
𝑖

Σ𝑝𝑖+1 = NPΣ
𝑝
𝑖

Π𝑝
𝑖+1 = co-Σ𝑝𝑖+1

for all 𝑖 ≥ 0.
Further, we define complexity classes 𝑚EXP and 𝑚NEXP, for 𝑚 ≥ 1, as follows.

For 𝑛 ≥ 0, let 𝑛𝑎 denote the iterated exponentiation

𝑛𝑎 = {
1 𝑛 = 0,
𝑎((𝑛−1)𝑎) 𝑛 > 0.

Then

𝑚EXP = DTIME ((𝑚2)𝑛
𝑘
)

and

𝑚NEXP = NTIME ((𝑚2)𝑛
𝑘
) .

As an example, set 𝑚 = 2: then 2EXP = DTIME (22𝑛
𝑘
) and 2NEXP = NTIME (22𝑛

𝑘
),

which will be used in our complexity results. Note that for 𝑚 = 1, 1EXP = EXP and
1NEXP = NEXP.

Theweak EXP hierarchy (Hemachandra, 1989) consists of complexity classes Σ𝑒𝑖 and
Π𝑒
𝑖 recursively defined for all 𝑖 ≥ 0 as follows:

Σ𝑒0 = EXP

Σ𝑒𝑖+1 = NEXPΣ
𝑝
𝑖

Π𝑒
𝑖+1 = co-Σ𝑒𝑖+1

For our purposes, we simply use EXP, NEXP, and NEXPNP. We can also go one level
higher and define a double exponential hierarchy, but instead of EXP and NEXP as
base class, we use 2EXP and 2NEXP instead. We will later show that in general, MLPs
match the complexity class 2NEXPNP.

Next, we define reductions and completeness for complexity classes. We say that
language 𝐿1 can be reduced to language 𝐿2 if there is a function 𝑓: Σ∗ → Σ∗ (called
reduction from 𝐿1 to 𝐿2) computable by a DTM in polynomial time such that for all

84

5.2. Propositional MLPs without Input

LOGSPACE P PSPACE EXP EXPSPACE 2EXP⋯

ALOGSPACE AP APSPACE AEXP AEXPSPACE⋯

⊆ ⊆

=

⊆

=

⊆

=

⊆

= =

⊆ ⊆ ⊆ ⊆

Figure 5.2: Relationships between deterministic and alternating hierarchies

P

NP
co-

NP

Δ𝑝2
Σ 𝑝
2Π

𝑝
2

PSPACE
⋮

EXP

NEXP
co
-N
EX
P

EXPSPACE
⋮

2EXP
2NEXP

co-
2N

EX
P

⋮

Figure 5.3: Relationships between complexity classes

strings 𝐼 ∈ Σ∗, 𝐼 ∈ 𝐿1 iff 𝑓(𝐼) ∈ 𝐿2. Let 𝐶 be a complexity class and 𝐿 be a language
from 𝐶. We define 𝐿 to be 𝐶-hard if for all 𝐿′ ∈ 𝐶, 𝐿′ can be reduced to 𝐿. A language 𝐿
is called 𝐶-complete if 𝐿 is 𝐶-hard and 𝐿 ∈ 𝐶.

As shown by Chandra et al. (1981), the deterministic hierarchy shifts exactly by
one level in alternating complexity classes, and their relationships to deterministic
complexity classes can be summarized by Figure 5.2 (Grädel, 2007). Figure 5.3 reviews
the relationships of complexity classes used in our results (Papadimitriou, 1994).

5.2 Propositional MLPs without Input
To begin with, let us restrict our attention to Horn MLPs. Considering the propo-
sitional case, if the modules 𝑚𝑖 = (𝑃𝑖[q𝑖], 𝑅𝑖) in P have no input (i.e., q𝑖 is void),

85

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

then 𝐼(P) has polynomial size and lfp(P) is computable in polynomial time. For arbi-
trary propositional P with no inputs, we can guess and verify an answer set M of P
in polynomial time with an NP oracle. As shown in Proposition 3.2, MLPs subsume
ordinary logic programs, we thus obtain by known results the same complexity; com-
pare Dantsin et al. (2001). Note that the results here stay the same for stratified MLPs.
Indeed, the lower bounds in this section could have been obtained by reductions from
ordinary logic programs to MLPs with a single module without input. Instead we use
QBF encodings and Turing machine simulations, which we build upon in §5.3 and §5.5.
See also the discussion on simulating Turing machines by logical deduction in Dantsin
et al. (2001, Section 4.1).

With slight abuse of notation, for a ground atom 𝛼 and an interpretation M of P,
we write 𝛼 ∈ M if 𝛼 ∈ 𝑀𝑖/𝑆 for a given 𝑃𝑖[𝑆] ∈ VC(P) in the following.

Theorem 5.1 (Computational complexity of propositional MLPs without input)
Given a propositional MLP P = ((𝑃1[], 𝑅1), … , (𝑃𝑛[], 𝑅𝑛)),

1. if P is Horn, the unique answer setM = lfp(P) of P is computable in polynomial
time and to decide whether 𝛼 ∈ M for a ground atom 𝛼 is P-complete;

2. if P is normal, to decide whether P has an answer set is NP-complete; and

3. to decide whether P has an answer set is Σ𝑝2 -complete.

Proof of Theorem 5.1, item 1 We first show membership in P. Since every interpre-
tation of P is of form M = (𝑀1/∅,… ,𝑀𝑛/∅), we have that the least fixpoint of the
𝑇P operator can be computed in polynomial time: if we exhaustively apply 𝑇P(𝑀𝑖/∅),
1 ≤ 𝑖 ≤ 𝑛, we reach the fixpoint after at most (𝑚+1) ⋅ 𝑛 application steps, where𝑚 is
the number of rules in P. Each application of 𝑇P can be done in polynomial time. This
shows that the unique answer set M = lfp(P) can be computed in time polynomial in
the size of P.

Next we show P-hardness. A language 𝐿 ∈ P can be decided by a deterministic
Turing machine 𝑇 in polynomially many steps. We can translate each instance 𝐼 of 𝐿
with 𝑚 = |𝐼| to a Horn MLP with empty input modules that encodes 𝑇. Let P =
((𝑃1[], 𝑅1)). The rules in 𝑅1 are the initialization facts, transition rules, inertia rules,
and accept rules from Dantsin et al. (2001, Section 4.1). We have now that 𝑇P↑0(M∅) =
M∅ for M∅ = (𝑀1/∅) = (∅) and that𝑀1/∅ in 𝑇P↑1(M∅) consists of all initialization
facts from 𝑅. The least fixpoint lfp(P) is reached at 𝑇P↑𝑚+2(M∅) and contains accept
in 𝑀1/∅ iff 𝑇 accepts 𝐼 in at most 𝑚 steps. This is analogous to Dantsin et al. (2001,
Lemma 4.1). The reduction can be done in logarithmic space in the length of 𝐼 (see
proof of Dantsin et al. (2001, Theorem 4.2)), thus our P-hardness result follows. We
obtain that 𝛼 ∈ M is P-complete. ⧠

86

5.2. Propositional MLPs without Input

Proof of Theorem 5.1, item 2 Membership in NP follows from the following obser-
vation. The set of value calls VC(P) = {𝑃1[∅], … , 𝑃𝑛[∅]} contains only empty input
sets, thus for every interpretation M of P, we have that 𝑀𝑘/((𝑀𝑖/∅)|

()
()) = 𝑀𝑘/∅ for

every edge 𝑃𝑘[∅] → 𝑃𝑖[∅] in CGP. The reduct 𝑓PM thus can then be computed in
time polynomial in the size of P by just applying the FLP-reduction in all 𝑓P(𝑃𝑖[∅])M.
An algorithm that checks whether P is consistent works as follows. We first guess
an interpretation M = (𝑀1/∅,… ,𝑀𝑛/∅), which can be done in time polynomial in
the size of P. Then we compute 𝑓PM and check whether {M} = MM (𝑓PM) in time
polynomial in the size of P (negated atoms that survive the reduction 𝑓PM cannot be
inM, thus this amounts to checking a positive program). Hence, checking consistency
is in NP.

Next we show NP-hardness, which is shown similar to item 1. A language 𝐿 ∈ NP
can be decided by a nondeterministic Turing machine𝑀 in polynomially many steps.
We can translate each instance 𝐼 of 𝐿 with𝑚 = |𝐼| to a normal MLP with empty input
modules that encodes 𝑀. Let P = ((𝑃1[], 𝑅1)). Similarly to the hardness proof for
ordinary ASP, the rules in 𝑅1 are the initialization facts, transition rules, inertia rules,
and accept rules used in the proof of Dantsin et al. (2001, Theorem 5.7). Now every
answer set M = (𝑀1/∅) of P must contain accept , since the transition rules encode
the nondeterministic choice of the NTMs 𝑀 state transition. Analog to Dantsin et al.
(2001,Theorem 5.7),M corresponds to accepting computations of𝑀 in at most𝑚 steps.
The reduction can be done in time polynomial in the size of the instance 𝐼, thus our
completeness result follows. ⧠

Proof of Theorem 5.1, item 3 We start with showing membership in Σ𝑝2 . As shown
before in item 2, VC(P) = {𝑃1[∅], … , 𝑃𝑛[∅]} and the reduct 𝑓PM can then be com-
puted in time polynomial in the size of P by just applying the FLP-reduction in all
𝑓P(𝑃𝑖[∅])M. An algorithm that checks whether P is consistent works as follows. We
first guess an interpretation M = (𝑀1/∅,… ,𝑀𝑛/∅) and compute 𝑓PM in time poly-
nomial in the size of P. Then, we check whether M is a minimal model with respect
to ≤, i.e., there is no interpretation N < M that satisfies 𝑓PM. This check can be done
using a co-NP oracle, thus by NPco-NP = NPNP the Σ𝑝2 upper bound follows.

The hardness part can be shown similar to item 1. Let 𝜙 = ∃𝑋∀𝑌𝜓 be a QBF,
where 𝜓 is in 3-DNF. The problem of deciding whether 𝜙 is valid is a Σ𝑝2 -complete
problem. We can reduce this problem to answer set existence of propositional MLPs
without input analog to the reduction given in the proof of Eiter and Gottlob (1995,
Theorem 3.1). Instead of a DLP 𝑃 we use an MLP P = ((𝑃[], 𝑅)) such that 𝑅 contains
the rules of 𝑃. The reduction generates P in time polynomial in the size of 𝜙 and
works as expected: 𝜙 is valid iff P has an answer set. Thus we have a Σ𝑝2 lower bound
for item 3, and therefore deciding whether P has an answer set is Σ𝑝2 -complete. ⧠

87

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

5.3 Propositional MLPs with Input
The results in §5.2 generalize to the case where the module inputs in P have bounded
length, i.e., |q𝑖| ≤ 𝑘 for some constant 𝑘, as 𝐼(P) andM have polynomial size. For unre-
stricted inputs, however, 𝐼(P) and M are exponential and we get a respective blowup.

The hardness parts are shown by encodings of Turing machines, which adapt con-
structions by Dantsin et al. (2001). Roughly speaking, we use modules with three
groups of input predicates of the form 𝑃[c, c′, t], where c and c′ amount to tape cell
indexes, and t to a time stamp during a computation. With |c| = |c′| = |t| = ℓ, we can
model 2ℓ cells and 2ℓ time stamps. Further atoms store the cell contents, state of the
machine, and the position of the read-write head. The transition function is encoded
by rules with access to the contents of neighboring cells, which is realized by respec-
tive (recursive) module calls; neighboring cells and time stamps are computed using
local rules. Inertia rules are used to keep the tape content for cells that have not been
used in a computation step. This process requires to scan for the current position of the
read-write head relative to an unused position on the tape. Since we can have 2ℓ cells,
adding all possible cell positions in relation to the current head position would blow
up the encoding and thus the reduction would not be polynomial. Using cell positions
c and c′ as module input and their relative position c < c′ or c′ < c on a grid, we can
encode inertia rules in the required reduction time bounds.

Note that the Turing machine encodings given in this section are incremental, i.e.,
we build upon the Turing machine simulation of the syntactic class with lower com-
plexity and reuse them in the MLP fragment with higher computational costs.

We can therefore state our next result.

Theorem 5.2 (Computational complexity of propositional MLPs with input)
Given a propositional MLP P = (𝑃1[q1], … , 𝑃𝑛[q𝑛]),

1. if P is Horn, the unique answer setM = lfp(P) of P is computable in exponential
time and to decide whether 𝛼 ∈ M for a ground atom 𝛼 is EXP-complete;

2. if P is normal, to decide whether P has an answer set is NEXP-complete; and

3. to decide whether P has an answer set is NEXPNP-complete.

In the following, we will now prove this result for every item.

5.3.1 Proof of Theorem 5.2, item 1
We first show membership in EXP. Since |HBP| is linear in the size of P, we have that
every interpretation M of P consists of at most 𝑛 ⋅ 2|HBP| components, thus the least
fixpoint of the 𝑇P operator can be computed in exponential time: if we exhaustively
apply 𝑇P(𝑀𝑖/𝑆), 1 ≤ 𝑖 ≤ 𝑛 and 𝑆 ⊆ HBP|q𝑖 , we reach the fixpoint after at most

88

5.3.1. Proof of Theorem 5.2, item 1

(𝑚+1)⋅𝑛⋅2|HBP| application steps, where𝑚 is the number of rules inP. Each application
of 𝑇P can be done in polynomial time. This shows that the unique answer set M =
lfp(P) can be computed in time exponential in the size of P.

We show now EXP-hardness. Given a deterministic Turing machine 𝑇which halts
in less than 𝑁 = 2𝑚𝑘 steps for an input 𝐼 such that 𝑚 = |𝐼|, we can simulate 𝑇 by an
MLP consisting of three modules. Without loss of generality the encoding considers
Turing machines without input. Since we require that the running time is exponential
in the length of the input, we can adapt the transition function 𝛿 of an arbitrary Turing
machine 𝑇with respect to 𝐼, and encode the input in a transition function 𝛿′ by writing
down the input as a first step before the actual computation is done.

Turing machines that run in exponential time can potentially touch exponential
many tape cells at exponential many different time points. For that reason, we cannot
simply encode time points and cell positions in the atoms, but have to encode time
instants and positions as binary numbers and use a counter to address the correct
configuration of the machine. We can do this by using the input mechanism of MLPs
and encode the bits of a nonnegative number 𝑛 ∈ {0, … , 2ℓ−1} as a sequence of atoms
𝑏1, … , 𝑏ℓ, 𝑏1, … , 𝑏ℓ (short b). If 𝑏𝑖 is true in an interpretation then the 𝑖th bit of 𝑛 is 1 and
if 𝑏𝑗 is true then bit 𝑗 of 𝑛 is set to 0; intuitively, 𝑏𝑖 and 𝑏𝑖 must have complementary
truth values in a model. This way we can represent 2ℓ positions and time points.

In the following, let 𝑇 = (𝑆, Σ, 𝛿, 𝑠0) be a deterministic Turing machine and let 𝐼 be
an input string encoded in 𝛿. We use propositional atoms listed below in our modules
to encode the states and the tape content of 𝑇 during the computation. Note that we
do not need to add indexes for cell positions and time points in the atoms below, as
the formal input parameters to the modules are used to encode cells and time points.
This way, the value calls can be identified as cell-time reference to Turing machine
configurations. Let 𝑚 = |𝐼| be the length of 𝐼, ℓ = 𝑚𝑘 for some constant 𝑘, and
𝑁 = 2ℓ be the time bound for 𝑇.

• init , init , and start mean that in a run of 𝑇 we are at time point 0, in between time
points 1, … ,𝑁 − 1, and at the beginning of the tape, respectively;

• at time point 𝑡, the atoms 𝑡−𝑖 and 𝑡−𝑖 represent the 𝑖th bit of time point 𝑡 − 1;

• at cell 𝑐, the atoms 𝑐−𝑖 , 𝑐−𝑖 and 𝑐+𝑖 , 𝑐+𝑖 represent the 𝑖th bit of 𝑐−1 and 𝑐+1, respectively;

• at cell position 𝑐′, which is used to have a relative position for tape cell 𝑐, the atoms
𝑐′−𝑖 , 𝑐′−𝑖 and 𝑐′+𝑖 , 𝑐′+𝑖 represent the 𝑖th bit of 𝑐′ − 1 and 𝑐′ + 1, respectively;

• atom 𝑠 representing that at time point 𝑡, the machine is in state 𝑠 ∈ 𝑆;

• atom 𝜎 indicates that symbol 𝜎 ∈ Σ is written on cell 𝑐 at time point 𝑡 on the tape of
𝑇;

89

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

cell position

time point

0 𝑁 − 1
0

𝑁 − 1

(𝑐−1, 𝑡−1) (𝑐, 𝑡−1) (𝑐+1, 𝑡−1)

(𝑐, 𝑡)

(𝑐−1, 𝑡+1) (𝑐, 𝑡+1) (𝑐+1, 𝑡+1)

−1 0 +1

+1 0
−1

Figure 5.4: Turing machine configurations on the cell-time grid

• atoms 𝜎′−1, 𝜎′+1 encode that symbol 𝜎′ ∈ Σ will be written on cell 𝑐 − 1 or 𝑐 + 1 at
time point 𝑡 whenever the read/write head is at 𝑐 on the tape of 𝑇 for transitions with
motion directions from {−1, +1};

• head has the intuitive meaning that the read/write-head is at cell position 𝑐 at time
point 𝑡;

• m−1,m0,m+1 means that the read/write-head at cell position 𝑐 at time point 𝑡 moved
to the left, stay at the current, or moved to the right position from time point 𝑡 − 1,
respectively;

• atoms≤,=𝑖, and≠ that represent for two cell positions 𝑐 and 𝑐′ whether 𝑐 ≤ 𝑐′, 𝑐 = 𝑐′,
or 𝑐 ≠ 𝑐′ hold, respectively; and

• the atom accept , which means that 𝑇 accepts input 𝐼.

Note that the atoms 𝜎′−1, 𝜎′+1 capture that when we move from cell 𝑐 at time
point 𝑡 − 1 to 𝑐 + 𝑑 at 𝑡 for motion directions 𝑑 ∈ {−1,+1}, the symbol 𝜎 on 𝑐 at
𝑡 − 1 under the read/write head will remain and, depending on direction 𝑑, only the
successor/predecessor tape cell will get a new symbol at time point 𝑡.

Next we define the MLP D(𝑇,𝑁) = (𝑚D
1 , 𝑚D

2 , 𝑚3, 𝑚4) that, given DTM 𝑇 and time
bound 𝑁, simulates computations of 𝑇. Intuitively, the main module 𝑚D

1 computes
in accept the acceptance of 𝐼, while library module 𝑚D

2 encodes transition rules for 𝛿
(and therefore 𝐼). The library modules 𝑚3 and 𝑚4 help 𝑚D

2 with the computation of
successors and predecessors of cell positions and time points, and for computing a
linear order ≤ for cell positions.

Figure 5.4 visualizes possible configuration changes of a Turing machine based
on cell positions and time points using appropriate successor and predecessor con-

90

5.3.1. Proof of Theorem 5.2, item 1

𝑡

𝑐

𝑐′

𝑡 = 𝑖 − 1

𝑡 = 𝑖

𝑡 = 𝑖 + 1

𝜍𝑎 𝜍𝑏 𝜍𝑐 𝜍𝑑

𝜍𝑎 𝜍𝑏 𝜍𝑐 𝜍𝑑

𝜍𝑎 𝜍𝑏 𝜍𝑐 𝜍𝑑

𝜍𝑎 𝜍𝑏 𝜍𝑐 𝜍𝑑

𝜍′
𝑏𝜍′

𝑎 𝜍′
𝑐 𝜍𝑑

𝜍′
𝑎 𝜍′

𝑏 𝜍′
𝑐 𝜍𝑑

𝜍′
𝑎 𝜍′

𝑏 𝜍′
𝑐 𝜍𝑑

𝜍′
𝑎 𝜍′

𝑏 𝜍′
𝑐 𝜍𝑑

Figure 5.5: Turing machine motions in the cell-time-cube

figurations of cell 𝑐 at time 𝑡. It highlights cell-time point (𝑐, 𝑡) and shows possible
predecessor and successor positions with thick arrows depending on the motion di-
rections −1, 0, +1 of the read/write head: the computation may have come from cell
position 𝑐−1, 𝑐, or from 𝑐+1 at the direct predecessor time point 𝑡−1 in the past, and
looking into the future, we may continue with our computation at the direct successor
time point 𝑡 + 1 at cell position 𝑐 − 1, at 𝑐, or at 𝑐 + 1.

But using a two-dimensional grid as intuition for the Turing machine encoding
is not enough. In order to capture that cell contents remain unchanged on the tape
whenever they are not involved in a state transition, we use reference cell positions 𝑐′
that are used to scan for the head position for all positions 𝑐 such that 𝑐 < 𝑐′−max(𝑑, 0)
and 𝑐′−min(𝑑, 0) < 𝑐 depending on the motion directions 𝑑 ∈ {−1, 0, +1} of the head.
Whenever (𝑐′, 𝑐′) does not contain the machine head, we copy to position (𝑐, 𝑐′) at time

91

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

point 𝑡 the symbol 𝜎 from the direct predecessor time point 𝑡 − 1. Then, we copy the
tape contents of (𝑐, 𝑐 + 1) and (𝑐, 𝑐 − 1) at current time point 𝑡, thus distributing cell
contents over the whole grid and thus filling the computation tape along the diagonal.

Figure 5.5 illustrates this process. At time points 𝑡 = 𝑖 − 1, 𝑖, 𝑖 + 1, we span a grid
of cell positions (𝑐, 𝑐′). The cells along the dotted lines store the same tape content,
while the actual computation takes place in the diagonal of each grid, indicated by
filled circles. At time point 𝑡 = 𝑖 we have a cell highlighted as fish-eye bullet that has
three incoming and outgoing red edges. Whenever the machine head is located on this
position, we may have come from three configurations shown as black circles located
along the diagonal at time point 𝑡 = 𝑖 − 1. The tape content at 𝑡 = 𝑖 depends on the
motion direction: for motion 0, we have 𝜎′𝑎 = 𝜎𝑎 and 𝜎′𝑐 = 𝜎𝑐, for motion −1, we have
𝜎′𝑎 = 𝜎𝑎 and 𝜎′𝑏 = 𝜎𝑏, and for motion+1we have 𝜎′𝑏 = 𝜎𝑏 and 𝜎′𝑐 = 𝜎𝑐; in any case, 𝜎𝑑
at 𝑡 = 𝑖 remains unchanged. In the next step, the machine can only continue to three
configurations in the diagonal of time point 𝑡 = 𝑖 + 1. The computation is analog to
Figure 5.4, but this time, the grid of configuration covers all configurations located in
the diagonal for each grid 𝑡 = 0, … ,𝑁−1. For our Turing machine encoding, both cell
positions 𝑐 and 𝑐′ and time point 𝑡 will be given as formal input parameters to module
𝑚D
2 .
We setup the modules of D(𝑇,𝑁) = (𝑚D

1 , 𝑚D
2 , 𝑚3, 𝑚4) as follows.

• The main module 𝑚D
1 = (dtm[], 𝑅D

1), where 𝑅D
1 is the set of rules

𝑜1 ← ⋯ 𝑜ℓ ← (5.1)
accept ← conf [o, o, o].yes (5.2)

Note that o = 𝑜1, … , 𝑜ℓ, 𝑜1, … , 𝑜ℓ, i.e., input o, o, o represents the triple (𝑐, 𝑐′, 𝑡) =
(𝑁−1,𝑁−1,𝑁−1) in binary, since for 𝑖 = 1, … , ℓ we must have 𝑜𝑖 true and 𝑜𝑖 false in
all models.

• The library module

𝑚D
2 = (conf [𝑐1, … , 𝑐ℓ, 𝑐1, … , 𝑐ℓ, 𝑐′1, … , 𝑐′ℓ, 𝑐′1, … , 𝑐′ℓ, 𝑡1, … , 𝑡ℓ, 𝑡1, … , 𝑡ℓ], 𝑅D

2) ,
where 𝑅D

2 consists of the following groups of rules:

offset rules for 1 ≤ 𝑖 ≤ ℓ:
𝑡−𝑖 ← op[t].𝑏+𝑖 𝑡−𝑖 ← op[t].𝑏+𝑖 (5.3)

𝑐−𝑖 ← op[c].𝑏+𝑖
𝑐+𝑖 ← op[c].𝑏−𝑖

𝑐−𝑖 ← op[c].𝑏+𝑖
𝑐+𝑖 ← op[c].𝑏−𝑖

(5.4)

𝑐′−𝑖 ← op[c′].𝑏+𝑖
𝑐′−𝑖 ← op[c′].𝑏+𝑖

𝑐′+𝑖 ← op[c′].𝑏−𝑖
𝑐′+𝑖 ← op[c′].𝑏−𝑖

(5.5)

92

5.3.1. Proof of Theorem 5.2, item 1

auxiliary rules (distinguish initialization phase from computation phase):

init ← 𝑡1, … , 𝑡ℓ start ← 𝑐1, … , 𝑐ℓ, 𝑐′1, … , 𝑐′ℓ (5.6)

init ← 𝑡1 ⋯ init ← 𝑡ℓ (5.7)

initial rules:

head ← init , start 𝑠0 ← init , start ← init (5.8)

transition rules for (𝑠, 𝜎, 𝑠′, 𝜎′, +1) ∈ 𝛿:

head ← init , conf [c−, c−, t−].𝑠, conf [c−, c−, t−].𝜎, conf [c−, c−, t−].head (5.9)

𝑠′ ← init , conf [c−, c−, t−].𝑠, conf [c−, c−, t−].𝜎, conf [c−, c−, t−].head (5.10)

𝜎 ← init , conf [c−, c−, t−].𝑠, conf [c−, c−, t−].𝜎, conf [c−, c−, t−].head (5.11)

𝜎′−1 ← init , conf [c−, c−, t−].𝑠, conf [c−, c−, t−].𝜎, conf [c−, c−, t−].head (5.12)

𝜎′ ← init , conf [c+, c+, t].𝜎′−1 (5.13)

m+1 ← init , conf [c−, c−, t−].𝑠, conf [c−, c−, t−].𝜎, conf [c−, c−, t−].head (5.14)

transition rules for (𝑠, 𝜎, 𝑠′, 𝜎′, 0) ∈ 𝛿:

head ← init , conf [c, c, t−].𝑠, conf [c, c, t−].𝜎, conf [c, c, t−].head (5.15)

𝑠′ ← init , conf [c, c, t−].𝑠, conf [c, c, t−].𝜎, conf [c, c, t−].head (5.16)

𝜎′ ← init , conf [c, c, t−].𝑠, conf [c, c, t−].𝜎, conf [c, c, t−].head (5.17)

m0 ← init , conf [c, c, t−].𝑠, conf [c, c, t−].𝜎, conf [c, c, t−].head (5.18)

93

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

transition rules for (𝑠, 𝜎, 𝑠′, 𝜎′, −1) ∈ 𝛿:

head ← init , conf [c+, c+, t−].𝑠, conf [c+, c+, t−].𝜎, conf [c+, c+, t−].head (5.19)

𝑠′ ← init , conf [c+, c+, t−].𝑠, conf [c+, c+, t−].𝜎, conf [c+, c+, t−].head (5.20)

𝜎 ← init , conf [c+, c+, t−].𝑠, conf [c+, c+, t−].𝜎, conf [c+, c+, t−].head (5.21)

𝜎′+1 ← init , conf [c+, c+, t−].𝑠, conf [c+, c+, t−].𝜎, conf [c+, c+, t−].head (5.22)

𝜎′ ← init , conf [c−, c−, t].𝜎′+1 (5.23)

m−1 ← init , conf [c+, c+, t−].𝑠, conf [c+, c+, t−].𝜎, conf [c+, c+, t−].head (5.24)

inertia rules for each 𝜎 ∈ Σ (covering 𝑐 = 0,… , 𝑐′ − 2, 𝑐′ + 1,… ,𝑁 − 1):

𝜎 ←init , conf [c, c′, t−].𝜎, conf [c′, c′, t].head , conf [c′, c′, t].m−1, (5.25)
ord[c+, c′].≤, ord[c, c′].≠

𝜎 ←init , conf [c, c′, t−].𝜎, conf [c′, c′, t].head , conf [c′, c′, t].m−1, (5.26)
ord[c′, c].≤, ord[c, c′].≠

inertia rules for each 𝜎 ∈ Σ (covering 𝑐 = 0,… , 𝑐′ − 1, 𝑐′ + 1,… ,𝑁 − 1):

𝜎 ←init , conf [c, c′, t−].𝜎, conf [c′, c′, t].head , conf [c′, c′, t].m0, (5.27)
ord[c, c′].≤, ord[c, c′].≠

𝜎 ←init , conf [c, c′, t−].𝜎, conf [c′, c′, t].head , conf [c′, c′, t].m0, (5.28)
ord[c′, c].≤, ord[c, c′].≠

inertia rules for each 𝜎 ∈ Σ (covering 𝑐 = 0,… , 𝑐′ − 1, 𝑐′ + 2,… ,𝑁 − 1):

𝜎 ←init , conf [c, c′, t−].𝜎, conf [c′, c′, t].head , conf [c′, c′, t].m+1, (5.29)
ord[c, c′].≤, ord[c, c′].≠

𝜎 ←init , conf [c, c′, t−].𝜎, conf [c′, c′, t].head , conf [c′, c′, t].m+1, (5.30)
ord[c′, c−].≤, ord[c, c′].≠

94

5.3.1. Proof of Theorem 5.2, item 1

inertia rules for each 𝜎 ∈ Σ and state yes:

𝜎 ← init , conf [c, c′+, t].𝜎 (5.31)

𝜎 ← init , conf [c, c′−, t].𝜎 (5.32)

yes ← init , conf [c, c, t−].yes (5.33)

yes ← init , conf [c, c′+, t].yes (5.34)

yes ← init , conf [c, c′−, t].yes (5.35)

• The library module 𝑚3 = (op[𝑏1, … , 𝑏ℓ, 𝑏1, … , 𝑏ℓ], 𝑅3), where 𝑅3 consists of the fol-
lowing groups of rules:

successor rules for 1 ≤ 𝑖 < ℓ and 1 ≤ 𝑗 ≤ ℓ:

inv1 ←
inv𝑖+1 ← inv𝑖, 𝑏𝑖
inv𝑖+1 ← inv𝑖, 𝑏𝑖
inv𝑖+1 ← inv𝑖

𝑏+𝑗 ← 𝑏𝑗, inv𝑗
𝑏+𝑗 ← 𝑏𝑗, inv𝑗
𝑏+𝑗 ← 𝑏𝑗, inv𝑗
𝑏+𝑗 ← 𝑏𝑗, inv𝑗

(5.36)

predecessor rules for 1 ≤ 𝑖 < ℓ:

𝑏−1 ← 𝑏1
𝑐1 ← 𝑏1
𝑏−1 ← 𝑏1
𝑐1 ← 𝑏1

𝑏−𝑖+1 ← 𝑏𝑖+1, 𝑐𝑖
𝑐𝑖+1 ← 𝑏𝑖+1, 𝑐𝑖
𝑏−𝑖+1 ← 𝑏𝑖+1, 𝑐𝑖
𝑐𝑖+1 ← 𝑏𝑖+1, 𝑐𝑖

𝑏−𝑖+1 ← 𝑏𝑖+1, 𝑐𝑖
𝑐𝑖+1 ← 𝑏𝑖+1, 𝑐𝑖
𝑏−𝑖+1 ← 𝑏𝑖+1, 𝑐𝑖
𝑐𝑖+1 ← 𝑏𝑖+1, 𝑐𝑖

(5.37)

• and the library module

𝑚4 = (ord[𝑥1, … , 𝑥ℓ, 𝑥1, … , 𝑥ℓ, 𝑦1, … , 𝑦ℓ, 𝑦1, … , 𝑦ℓ], 𝑅4) ,

where 𝑅4 consists of the following groups of rules:

inequality rules for 1 ≤ 𝑖 ≤ ℓ:

≠ ← 𝑥𝑖, 𝑦𝑖 ≠ ← 𝑥𝑖, 𝑦𝑖 (5.38)

95

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

dtm[]

conf [c, c′, t]

ord[x,y]op[b]

Figure 5.6: Module dependencies of a deterministic Turing machine simulation

equality rules for 1 < 𝑖 ≤ ℓ:

=1 ← 𝑥1, 𝑦1
=𝑖 ← 𝑥𝑖, 𝑦𝑖, =𝑖−1

=1 ← 𝑥1, 𝑦1
=𝑖 ← 𝑥𝑖, 𝑦𝑖, =𝑖−1 (5.39)

successor rules for 1 ≤ 𝑖 ≤ ℓ:

𝑧𝑖 ← op[x].𝑏+𝑖 (5.40)

𝑧𝑖 ← op[x].𝑏+𝑖 (5.41)

order rules:

≤ ← =ℓ (5.42)
≤ ← ord[z,y].≤ (5.43)

Figure 5.6 shows the inter-module dependencies of the modules in D(𝑇,𝑁): the
modules represent nodes in the directed graph, and there exists an edge from a module
𝑚𝑖 to a module 𝑚𝑗 whenever 𝑚𝑖 has a module call to 𝑚𝑗. The graph shows the main
module 𝑚D

1 in white, while the library modules 𝑚D
2 , 𝑚3, 𝑚4 with input are shown in

gray. The structural dependencies make it clear that D(𝑇,𝑁) is cyclic: both 𝑚D
2 and

𝑚4 call themselves, while 𝑚3 is a sink module that do not call any other module.

96

5.3.1. Proof of Theorem 5.2, item 1

We show now that we can simulate the computation of a deterministic Turing
machine 𝑇 on input 𝐼 with D(𝑇,𝑁) and prove that 𝑇 accepts input 𝐼 within 𝑁 = 2𝑚𝑘

steps if and only if accept ∈ lfp(D(𝑇,𝑁)).

(⇒) Suppose 𝑇 accepts input 𝐼within𝑁 steps. First, we get that 𝑇D(𝑇,𝑁)↑0(M∅) = M∅.
Let 𝑋 ⊆ HBP|c,c′,t, 𝑌 ⊆ HBP|x,y, and 𝐵 ⊆ HBP|b. Then, 𝑇D(𝑇,𝑁)↑1(M∅) contains at
dtm[∅] all the facts 𝑜𝑖, at each conf [𝑋] it is equal to𝑋, at each op[𝐵] the facts𝐵∪{inv1},
and at each ord[𝑌] the facts 𝑌. Note that some instantiations may also contain invalid
bit representations 𝑆 for time points and cell positions, thus also the sets 𝑀𝑖/𝑆 of a
model M. This does not harm, in fact, we can partition the least fixpoint computation
into two parts: one part that contains only instantiations that represent valid cells and
time points, and one part that has arbitrary outcome. We defer the proof for that claim
until later and continue to look into instantiations with valid bit vectors only.

Let 𝐶𝑖 ⊆ HBP|c and 𝐶′
𝑗 ⊆ HBP|c′ and 𝑇𝑘 ⊆ HBP|t be valid bit representations for

cell positions 𝑐𝑖 and 𝑐′𝑗 and time points 𝑡𝑘. Now, 𝑇D(𝑇,𝑁)↑2(M∅) contains at conf [𝐶0 ∪
𝐶′
0 ∪ 𝑇0] the fact init , at conf [𝐶0 ∪ 𝐶′

0 ∪ 𝑇𝑖] for 0 ≤ 𝑖 < 𝑁 the fact start , and at
conf [𝐶𝑖 ∪ 𝐶′

𝑗 ∪ 𝑇𝑘] for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 < 𝑁 the fact init . Moreover, we have that
𝑇D(𝑇,𝑁)↑2(M∅) contains for a valid bit representations 𝐵 at each op[𝐵] the successor
and predecessor representation of 𝐵 stored in the atoms 𝑏+𝑖 , 𝑏+𝑖 , 𝑏−𝑖 , 𝑏−𝑖 , and at each
ord[𝑋 ∪ 𝑌] for valid bit representation 𝑋 and 𝑌 for integers 𝑥, 𝑦 ∈ {0, … ,𝑁 − 1} the
fact ≠ if 𝑥 ≠ 𝑦, or alternatively the facts =ℓ and ≤ when 𝑥 = 𝑦. Hence, we have
computed the binary relation ≠ and = on the set {0, … ,𝑁 − 1}, and the subset of the
binary relation≤ on {0, … ,𝑁−1}, viz. all the pairs along the diagonal of {0, … ,𝑁 − 1}2.
Thereafter, the initial rules will become applicable.

In the next step, 𝑇D(𝑇,𝑁)↑3(M∅) contains at conf [𝐶0∪𝐶′
0∪𝑇0] then the facts head

and 𝑠0, and at conf [𝐶𝑖 ∪ 𝐶′
𝑗 ∪ 𝑇0] for 0 ≤ 𝑖 ≤ 𝑗 < 𝑁 the fact , thus the blank

input tape, whose content consists only of blank tape symbols , is now stored in
our interpretation. Moreover, for valid bit representation 𝑋,𝑌, 𝑍 for integers 𝑥, 𝑦, 𝑧 ∈
{0, … ,𝑁−1} such that 𝑧 = 𝑥+1 and 𝑧 = 𝑦, our interpretation contains at ord[𝑋∪𝑌] the
facts from z that represent the successor of x, and the fact ≤. Now the interpretation
additionally stores 𝑥 ≤ 𝑥 + 1 for the binary relation ≤ on {0, … ,𝑁 − 1}. The following
steps 𝑇D(𝑇,𝑁)↑3+𝑖(M∅) for 1 < 𝑖 < 𝑁 continue to add to the binary relation ≤ further
line segments (𝑥, 𝑥 + 𝑖) located above and in parallel to the diagonal until we reach
𝑇D(𝑇,𝑁)↑3+𝑁−1(M∅), where we have for integers 𝑥, 𝑦, 𝑧 ∈ {0, … ,𝑁 − 1} such that
𝑧 = 𝑥 +𝑁 − 1 and 𝑧 = 𝑦 the fact ≤, hence the interpretation contains now all pairs of
the binary relation ≤ on {0, … ,𝑁 − 1}.

Interlaced with the computation for ≤, the steps that follow 𝑇D(𝑇,𝑁)↑3(M∅) com-
pute the outcome of the Turing machine run according to the transition relation 𝛿, i.e.,
we have init true in all value calls corresponding to time point 𝑡𝑖 for 𝑖 > 0, hence the
transition and some inertia rules become applicable. And since we can infer all ≤ at

97

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

ord[𝑋∪𝑌] after we have reached step 𝑇D(𝑇,𝑁)↑3+𝑁−1(M∅), we are then in the position
to apply all inertia rules.

In the first phase of the Turing machine run, the input 𝐼 is prepared. The transition
rules only examine configurations in the diagonal of the grid for 𝑡 − 1 of form (𝑐 −
1, 𝑐 − 1, 𝑡 − 1), (𝑐, 𝑐, 𝑡 − 1), or (𝑐 + 1, 𝑐 + 1, 𝑡 − 1), i.e., they inspect the former time
point 𝑡 − 1 and thus infer the current state 𝑠′ and symbol 𝜎′ depending on the motion
direction. Hence, the actual tape for the computation can only be found in the diagonal
(0, 0), (1, 1), … , (𝑁 − 1,𝑁 − 1) for each time point 𝑡.

The inertia rules (5.25)–(5.35) are more sophisticated. They scan for the head in the
diagonal (𝑐′, 𝑐′) and copy 𝜎 depending on the motion direction 𝑑 ∈ {−1, 0, +1} from
the interpretation encoding the previous time point 𝑡 − 1 whenever 𝑐′−min(𝑑, 0) < 𝑐
(rules (5.25), (5.27), and (5.29)) or 𝑐 < 𝑐′−max(𝑑, 0) (rules (5.26), (5.28), and (5.30)). This
way we copy all 𝜎 that have not been changed by the computation into time point 𝑡
at all (𝑐, 𝑐′) whenever the head is located at (𝑐′, 𝑐′). Hence unchanged tape content
has been copied into the interpretation horizontally connected through (𝑐′, 𝑐′), which
stores head and depending on themotion direction contains 𝜎′, 𝜎′−1, 𝜎′+1 derived from
the transition rules. In a next step, inertia rules (5.31)–(5.32) become applicable, whose
purpose is to copy at time point 𝑡 every symbol 𝜎 that is located at (𝑐, 𝑐′−1) or (𝑐, 𝑐′+1)
into the interpretation for (𝑐, 𝑐′, 𝑡), i.e., we distribute the same tape symbol 𝜎 vertically
at 𝑐. This implies that we will also fill the diagonal (𝑐, 𝑐, 𝑡) for every 𝑐 and thus the tape
that is used for the transition rules is complete and can be used for the next transition.

After 𝐼 has been prepared using 𝛿, the run of 𝑇 on 𝐼 is simulated and at conf [𝐶𝑖 ∪
𝐶′
𝑗 ∪ 𝑇𝑘] for 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 < 𝑁 we get the respective configuration of 𝑇 for cell posi-

tion 𝑐𝑖, 𝑐′𝑗 and time point 𝑡𝑘. Since 𝑇 accepts 𝐼, there is an accepting configuration 𝛾 =
(yes, 𝑤, 𝜎′⋯) for the run of 𝑇 on 𝐼 given by a transition (𝑠, 𝜎, yes, 𝜎′, ⋅) ∈ 𝛿. This tran-
sition is encoded by a transition rule with rule head yes, hence lfp(D(𝑇,𝑁)), conf [𝐶𝑖∪
𝐶′
𝑖∪𝑇𝑘] ⊧ yes for an 𝑖 and 𝑘 such that 0 ≤ 𝑖 ≤ 𝑘 < 𝑁 and from inertia rules (5.33)–(5.35)

we eventually get lfp(D(𝑇,𝑁)), conf [𝐶𝑁−1∪𝐶′
𝑁−1∪𝑇𝑁−1] ⊧ yes. This makes rule (5.2)

applicable and we end up with lfp(D(𝑇,𝑁)), dtm[∅] ⊧ accept . item 1 showed that the
least fixpoint needs exponential time to compute, hence the claim follows.

(⇐) Suppose lfp(D(𝑇,𝑁)), dtm[∅] ⊧ accept . For each conf [𝐶𝑖 ∪ 𝐶′
𝑖 ∪ 𝑇𝑘] such that

0 ≤ 𝑖 ≤ 𝑘 < 𝑁, we can extract a configuration 𝛾𝑘 = (𝑠, 𝜎0⋯𝜎𝑖−1, 𝜎𝑖⋯𝜎𝑁−1) for the
machine 𝑇 whenever lfp(D(𝑇,𝑁)), conf [𝐶𝑖 ∪𝐶′

𝑖 ∪𝑇𝑘] ⊧ 𝑠 and lfp(D(𝑇,𝑁)), conf [𝐶𝑖 ∪
𝐶′
𝑖 ∪𝑇𝑘] ⊧ head and for all 0 ≤ 𝑗 < 𝑁, lfp(D(𝑇,𝑁)), conf [𝐶𝑗∪𝐶′

𝑗∪𝑇𝑘] ⊧ 𝜎𝑗. Since we
can infer accept , we must have lfp(D(𝑇,𝑁)), conf [𝐶𝑁−1 ∪𝐶′

𝑁−1 ∪𝑇𝑁−1] ⊧ yes, and as
the transition rules encode the relation 𝛿 of 𝑇, there must be a transition (𝑠, 𝜎, yes, 𝜎′, ⋅)
in 𝛿 that fires the respective transition rule. Hence the computation 𝛾0𝛾1⋯𝛾𝑁−1 is
accepting, as we can reach a configuration 𝛾𝑘 from 𝛾0 such that 0 ≤ 𝑘 < 𝑁 and
𝛾𝑘 = (yes, 𝑤, 𝑢). Thus, 𝑇 accepts 𝐼 within 𝑁 = 2ℓ steps and halts in state yes.

98

5.3.2. Proof of Theorem 5.2, item 2

It remains to show that the least fixpoint computation can be partitioned into a
valid and an invalid part. If𝐵 is a valid representation of the bit vector 𝑏1,… ,𝑏ℓ, 𝑏1,… ,𝑏ℓ,
then 𝑇D(𝑇,𝑁)↑2(M∅) contains at each op[𝐵] the successor and predecessor representa-
tion of 𝐵 by the atoms 𝑏+𝑖 , 𝑏+𝑖 , 𝑏−𝑖 , 𝑏−𝑖 . If 𝐵 is not a valid representation, i.e., 𝑏𝑖, 𝑏𝑖 ∈ 𝐵
or 𝑏𝑖, 𝑏𝑖 ∉ 𝐵 for some 𝑖 ∈ {1, … , ℓ}, then 𝑇D(𝑇,𝑁)↑2(M∅) at op[𝐵] will either

1. contain at least a pair 𝑏+𝑖 , 𝑏+𝑖 or 𝑏−𝑖 , 𝑏−𝑖 of complementary bits, or

2. both 𝑏+𝑖 , 𝑏+𝑖 or 𝑏−𝑖 , 𝑏−𝑖 are not contained.

Since all transition and inertia rules contain module atoms of form conf [c⋆, c⋆, ⋅].𝑝,
conf [c′, c′, ⋅].𝑝, conf [c⋆, c′⋆, ⋅].𝑝, ord[c, c′].𝑝, or ord[c′, c].𝑝 such that ⋆ is either void
or from {+,−}, hence taking an ill-formed c, c′, and t or an ill-formed successor or
predecessor for c, c′, and t as input, each ill-valued instantiation will only take truth
values of ill-valued parts of an interpretation, and each valid instantiation will only
take truth values of valid parts of the interpretation. Since rules (5.1) represent a valid
bit vector, the rule (5.2) is applicable only in a valid instantiation, hence our result
follows.

The construction of D(𝑇,𝑁) is feasible in time polynomial in the size of 𝐼, thus
deciding whether 𝛼 ∈ lfp(P) is EXP-complete. ⧠

5.3.2 Proof of Theorem 5.2, item 2
Showing membership in NEXP works as follows. We first guess an interpretation M
for a normal MLP P. Every interpretation M of P uses at most 𝑛 ⋅ 2|HBP| value calls,
thus checking that all rules of 𝐼(P) are satisfied and whetherM is a minimal model for
𝑓PM takes exponentially many steps.

Hardness can be shown by adapting the Turingmachine encoding of item 1 in §5.3.1.
Given a nondeterministic TM 𝑇, we can make small modifications to the encoding
D(𝑇,𝑁) from above and use an MLP

N(𝑇,𝑁) = (𝑚N
1 , 𝑚N

2 , 𝑚3, 𝑚4, 𝑚N
5)

with the additional library module 𝑚N
5 that encodes branches in a nondeterministic

computation tree.
We use the following additional propositional atoms in our modules 𝑚N

2 and 𝑚N
5

to encode branches in a computation of 𝑇:

• the atom 𝑏𝑠,𝜍,𝑖 to encode that at time point 𝑡, the Turing machine chooses branch 𝑖 for
transition (𝑠, 𝜎, 𝑠′𝑖 , 𝜎′𝑖 , 𝑑𝑖) ∈ 𝛿; and

99

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

• the atoms final and bad to encode that 𝑇 is not at the final time point 𝑁 − 1 and
whether t encodes an invalid binary representation for a time point 𝑡, respectively.

We use the following modules in our encoding:

• the main module 𝑚N
1 = (ntm[], 𝑅N

1) such that 𝑅N
1 is the set of rules 𝑅D

1 and the addi-
tional rule

accept ← not accept (5.44)

• the library module

𝑚N
2 = (conf [𝑐1, … , 𝑐ℓ, 𝑐1, … , 𝑐ℓ, 𝑐′1, … , 𝑐′ℓ, 𝑐′1, … , 𝑐′ℓ, 𝑡1, … , 𝑡ℓ, 𝑡1, … , 𝑡ℓ], 𝑅N

2) ,

where 𝑅N
2 consists of 𝑅D

2 with the following modifications for the transition and inertia
rules: (5.9)–(5.35) get for a transition (𝑠, 𝜎, 𝑠′𝑖 , 𝜎′𝑖 , 𝑑𝑖) ∈ 𝛿 the additional body atom

branch[t−].𝑏𝑠,𝜍,𝑖 (5.45)

Take, as an example, the rule (5.10) from 𝑚D
2 . Then (5.10) in 𝑚N

2 amounts to the rules

𝑠′1 ← init , conf [c−, c−, t−].𝑠, conf [c−, c−, t−].𝜎, conf [c−, c−, t−].head ,
branch[t−].𝑏𝑠,𝜍,1

⋮
𝑠′𝑗 ← init , conf [c−, c−, t−].𝑠, conf [c−, c−, t−].𝜎, conf [c−, c−, t−].head ,

branch[t−].𝑏𝑠,𝜍,𝑗

for all +1-transitions (𝑠, 𝜎, 𝑠′1, 𝜎′1, +1), … , (𝑠, 𝜎, 𝑠′𝑗, 𝜎′𝑗, +1) ∈ 𝛿 such that 1 ≤ 𝑗 ≤ 𝑘,
where 𝑘 is the number of all (𝑠, 𝜎)-transitions of form (𝑠, 𝜎, 𝑠′𝑖 , 𝜎′𝑖 , 𝑑𝑖) ∈ 𝛿.

• the library module 𝑚3 (op[𝑏1, … , 𝑏ℓ, 𝑏1, … , 𝑏ℓ]) from D(𝑇,𝑁);

• the library module 𝑚4 (ord[𝑥1, … , 𝑥ℓ, 𝑥1, … , 𝑥ℓ, 𝑦1, … , 𝑦ℓ, 𝑦1, … , 𝑦ℓ]) from D(𝑇,𝑁);

• and the library module𝑚N
5 = (branch[𝑡1, … , 𝑡ℓ, 𝑡1, … , 𝑡ℓ], 𝑅N

5), where 𝑅N
5 is the follow-

ing groups of rules.

auxiliary rules for 1 ≤ 𝑖 ≤ ℓ:

final ← 𝑡𝑖 bad ← 𝑡𝑖, 𝑡𝑖 bad ← not 𝑡𝑖, not 𝑡𝑖 (5.46)

100

5.3.2. Proof of Theorem 5.2, item 2

(𝑠′, 𝜎′) (𝑠″, 𝜎″) (𝑠‴, 𝜎‴) ⋯

𝑡0

𝑡1

𝑡2

⋮

𝑡2𝑚𝑘−1

Figure 5.7: nondeterministic Turing machine run

branching rules for (𝑠, 𝜎, 𝑠′𝑖 , 𝜎′𝑖 , 𝑑𝑖) ∈ 𝛿 such that 1 ≤ 𝑖 ≤ 𝑘:

𝑏𝑠,𝜍,𝑖 ← final, not bad , not 𝑏𝑠,𝜍,1, … , not 𝑏𝑠,𝜍,𝑖−1, not 𝑏𝑠,𝜍,𝑖+1, … , not 𝑏𝑠,𝜍,𝑘 (5.47)

Note that 𝑘 = 1 for deterministic transitions and thus rules (5.47) collapse to the single
rule 𝑏𝑠,𝜍,1 ← final, not bad , i.e., the transition is determined simply by 𝑠 and 𝜎.

Since Turing machine computations start in state 𝑠0, connecting possible successor
states form a computation tree. Each level of the tree represents a time point in a
computation. In an actual run Γ = 𝛾0, … , 𝛾𝑁−1 of an NTM we will have one transition
made for each successor configuration 𝛾𝑗 to 𝛾𝑗+1, thus a run is a path from root 𝑠0
to a leaf state in the computation tree. Each successor configuration in a run is thus
determined by the chosen 𝑖th transition (𝑠, 𝜎, 𝑠′𝑖 , 𝜎′𝑖 , 𝑑𝑖) ∈ 𝛿. The branching rules above
generate all possible branches in the computation tree for each time point 𝑡.

Figure 5.7 shows shapes along dotted lines, which stand for all possible choices of
transitions (𝑠, 𝜎, 𝑠′𝑖 , 𝜎′𝑖 , 𝑑𝑖) ∈ 𝛿 that can be taken in a particular time point 𝑡, where
groups of equal shape share the same pair (𝑠, 𝜎). At time point 𝑡, we must therefore
select for each group (𝑠, 𝜎) exactly one transition (𝑠, 𝜎, 𝑠′𝑖 , 𝜎′𝑖 , 𝑑𝑖) ∈ 𝛿when themachine
is in state 𝑠 and the head is on 𝜎. The set of all those transitions (𝑠, 𝜎) are then the red-
colored shapes for each time point 𝑡. When we connect the red shapes that have been
chosen to go from a configuration 𝛾𝑗 to 𝛾𝑗+1, we can see the path that has been chosen
by a run Γ in the computation tree of the NTM. The red shapes connected by lines
then record the actual transition that has been taken in a run Γ (in this figure, the
computation starts in (𝑠″, 𝜎″) at time point 0 and then continues in (𝑠‴, 𝜎‴) at time
point 1, then continues at (𝑠′, 𝜎′) at time point 2, and via a path to (𝑠″, 𝜎″) it ends up
in (𝑠′, 𝜎′) at time point 𝑁 − 1).

Our encoding satisfies the requirement that only one choice 𝑖 for each pair (𝑠, 𝜎)
can be made for a given time point 𝑡. Intuitively, at each time point 𝑡we guess a branch

101

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

ntm[]

conf [c, c′, t]

ord[x,y]

op[b]

branch[t]

Figure 5.8: Module dependencies of a nondeterministic Turing machine simulation

of the nondeterministic computation in 𝑚N
5 and take then according to the transition

relation of the pair (𝑠, 𝜎) all possible 𝑘 branches of the computation into account, and
eventually kill all nonaccepting branches using the additional constraint (5.44) in𝑚N

1 .
Figure 5.8 shows the inter-module dependencies of the modules in N(𝑇,𝑁). The

graph shows the main module 𝑚N
1 in white, while the library modules 𝑚N

2 , 𝑚3, 𝑚4,
𝑚N
5 with input are shown in gray. Compared to the graph for D(𝑇,𝑁) in Figure 5.6,

the graph N(𝑇,𝑁) uses the adapted modules 𝑚N
1 and 𝑚N

2 , and adds the module 𝑚N
5

with an additional edge from 𝑚N
2 to 𝑚N

5 . Hence, N(𝑇,𝑁) is also cyclic: both 𝑚N
2 and

𝑚4 call themselves, while 𝑚3 and 𝑚N
5 are sink modules that does not call any other

module.
We show now that we can simulate the computation of a nondeterministic Turing

machine 𝑇 on input 𝐼 with N(𝑇,𝑁) and prove that 𝑇 accepts input 𝐼 and halts in state
yes in less than 𝑁 = 2𝑚𝑘 steps if and only if N(𝑇,𝑁) has an answer set.

(⇒) Suppose 𝑇 accepts input 𝐼 within 𝑁 steps and halts in state yes. Then there is a
sequence of chosen configurations Γ = 𝛾0, … , 𝛾𝑁−1 such that the final configuration
𝛾𝑁−1 has state yes. We show now that we can build an answer set for N(𝑇,𝑁) from Γ.

Let MN denote the answer set for N(𝑇,𝑁) that will be obtained from Γ as follows:
set 𝑀N

1 /∅ = {𝑜1, … , 𝑜ℓ, accept} and 𝑀N
3 /𝐵 to the successor and predecessor of the set

𝐵 encoding a bit vector b. For sets 𝑋,𝑌, 𝑍 that encode bit vectors x,y, z representing
integers 𝑥, 𝑦, 𝑧 ∈ {0, … ,𝑁 − 1} in binary, we set𝑀N

4 /(𝑋 ∪ 𝑌) = 𝑋 ∪ 𝑌 ∪ 𝑍 ∪ 𝑂𝑋,𝑌,𝑍,
where 𝑂𝑋,𝑌,𝑍 stores the bits of z, the atom ≤ whenever 𝑥 ≤ 𝑦, the atom =𝑖 whenever
the 𝑖th bits of 𝑥 and 𝑦 agree on their truth values, and the atom ≠ whenever 𝑥 = 𝑦.

Then, for a configuration 𝛾𝑖 = (𝑠, �̂� ̂𝜎, 𝜎�̂�) in Γ, let 𝛾𝑖+1 be one of the successor
configurations (𝑠′𝑗, �̂� ̂𝜎, 𝜎′𝑗�̂�), (𝑠′𝑗, �̂� ̂𝜎𝜎′𝑗, �̂�), or (𝑠′𝑗, �̂�, ̂𝜎𝜎′𝑗�̂�) that can be obtained from a

102

5.3.2. Proof of Theorem 5.2, item 2

transition 𝜏𝑖 = (𝑠, 𝜎, 𝑠′𝑗, 𝜎′𝑗, 𝑑𝑗) ∈ 𝛿 at time point 𝑖. We can now set

• 𝑀N
5 /𝑇𝑖 = {final} ∪ {𝑏𝑠,𝜍,𝑗} ∪ {𝑏𝑠′,𝜍′,1 ∣ 𝑠′ ≠ 𝑠 ∧ 𝜎′ ≠ 𝜎}, for 𝑇𝑖 representing time

points 𝑖 such that 0 ≤ 𝑖 < 𝑁 − 1,

• 𝑀N
5 /𝑇𝑁−1 = 𝑇𝑁−1, and

• 𝑀N
5 /𝑆 = 𝑆 ∪ {bad} ∪ {final ∣ 𝑡𝑗 ∈ 𝑆 for 𝑗 ∈ {1, … , ℓ}} for invalid bit representa-

tions 𝑆.

Given a configuration 𝛾𝑖 = (𝑠, 𝑤, 𝑢) of the sequence Γ, 𝑖 represents the time point 𝑡,
and |𝑤| is the position 𝑐 of the tape head. We can form the input for module 𝑚N

2 as
follows. First encode 𝑖 in binary as t using the atoms 𝑡𝑗 and 𝑡𝑗, for 1 ≤ 𝑗 ≤ ℓ. Then
encode |𝑤| in binary as c and for |𝑤| ≤ 𝑐′, encode 𝑐′ as c′ using, for 1 ≤ 𝑗 ≤ ℓ, atoms
𝑐𝑗, 𝑐𝑗 and 𝑐′𝑗, 𝑐′𝑗, respectively. Let the resulting set of atoms be 𝐶𝑐′

𝛾𝑖 consisting of atoms
from c, c′, and t. Then, setup

• 𝑀N
2 /𝐶𝑐′

𝛾𝑖 , for 1 ≤ 𝑖 < 𝑁 and 𝑐 ≤ 𝑐′, to 𝐶𝑐′
𝛾𝑖 and all atoms such that it satisfies

the offset and transition rules according to the transition 𝜏𝑖 that can be obtained
from Γ, and

• 𝑀N
2 /𝐶𝑐′

𝛾0 to 𝐶𝑐′
𝛾0 ∪ {head , 𝑠0, , init , start} ∪ 𝑂𝑐,𝑐′,𝑡, where 𝑂𝑐,𝑐′,𝑡 store the atoms

representing c′−, c′+, and t− for 𝑐 − 1, 𝑐 + 1 and 𝑡 − 1, respectively.

Whenever we have an invalid bit representation 𝑆 we set𝑀N
2 /𝑆 accordingly; here, the

transition rules are not applicable.
One can verify that the interpretation MN is a model of N(𝑇,𝑁). We show now

that it is also a minimal model of 𝑓N(𝑇,𝑁)M
N
. Towards a contradiction, assume that

there exists an interpretation M′ < MN such that M′ is a model of 𝑓N(𝑇,𝑁)M
N
. From

the construction of MN and the rules in N(𝑇,𝑁), we can only have that 𝑀′
5/𝑇𝑖 does

not have an atom 𝑏𝑠,𝜍,𝑗 which is in 𝑀N
5 /𝑇𝑖. But we must have a rule of form (5.47) in

𝑓N(𝑇,𝑁)M
N
, which contradicts the assumption that M′ is a model. Thus, MN is an

answer set of N(𝑇,𝑁).

(⇐) SupposeMN is an answer set ofN(𝑇,𝑁). We can extract a configuration sequence
Γ = 𝛾0, 𝛾1, … , 𝛾𝑁−1 for the machine 𝑇 in a similar way as we have shown in item 1.
Set 𝛾0 = (𝑠0, ,), and let successor configurations 𝛾𝑘 for 𝑘 > 0 be of the form
(𝑠𝑗, 𝑤, 𝑢).

For each time point 0 < 𝑘 < 𝑁 and cell position 0 ≤ 𝑖 < 𝑁 we inspect value
calls conf [𝐶𝑖 ∪ 𝐶′

𝑖 ∪ 𝑇𝑘] and their predecessors conf [𝐶𝑖−1 ∪ 𝐶′
𝑖−1 ∪ 𝑇𝑘−1], conf [𝐶𝑖 ∪

𝐶′
𝑖 ∪ 𝑇𝑘−1], and conf [𝐶𝑖+1 ∪ 𝐶′

𝑖+1 ∪ 𝑇𝑘−1]. Whenever MN, conf [𝐶𝑖 ∪ 𝐶′
𝑖 ∪ 𝑇𝑘] ⊧ head

103

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

and MN, conf [𝐶𝑖+𝑑 ∪ 𝐶′
𝑖+𝑑 ∪ 𝑇𝑘−1] ⊧ head for 𝑑 ∈ {−1, 0, +1}, we can pinpoint the

transition from 𝛿 that brought us from 𝛾𝑘−1 to 𝛾𝑘 as follows.
First we generate the words left and right from the tape head at time point 𝑘. As

the head is in position 𝑖, the word on the left is of the form 𝑤 = 𝜎0⋯𝜎𝑖−1 and the
word at the head position is 𝑢 = 𝜎𝑖𝜎𝑖+1⋯𝜎𝑁−1. For 0 ≤ 𝑖′ < 𝑖 and 𝑖 < 𝑖′ < 𝑁, we
get 𝜎𝑖′ from MN, conf [𝐶𝑖′ ∪ 𝐶′

𝑖′ ∪ 𝑇𝑘] ⊧ 𝜎𝑖
′ , and at the head position 𝑖, we let 𝜎𝑖 = 𝜎𝑗

for MN, conf [𝐶𝑖 ∪ 𝐶′
𝑖 ∪ 𝑇𝑘] ⊧ 𝜎𝑗.

The state is given by MN, conf [𝐶𝑖 ∪ 𝐶′
𝑖 ∪ 𝑇𝑘] ⊧ 𝑠𝑗, and we determine the motion

direction 𝑑𝑗 ∈ {−1, 0, +1} by reading MN, conf [𝐶𝑖 ∪ 𝐶′
𝑖 ∪ 𝑇𝑘] ⊧ m−1, MN, conf [𝐶𝑖 ∪

𝐶′
𝑖 ∪ 𝑇𝑘] ⊧ m0, or MN, conf [𝐶𝑖 ∪ 𝐶′

𝑖 ∪ 𝑇𝑘] ⊧ m+1, respectively.
Now given 𝑠𝑗, 𝜎𝑗, 𝑑𝑗, there must exist a transition (̂𝑠, ̂𝜎, 𝑠𝑗, 𝜎𝑗, 𝑑𝑗) ∈ 𝛿, which we

can locate from the single atom 𝑏 ̂𝑠,�̂�,𝑗 such that MN, branch[𝑇𝑘−1] ⊧ 𝑏 ̂𝑠,�̂�,𝑗.
Since we can infer MN, ntm[∅] ⊧ accept as required by rule (5.44), and as MN is a

minimal model, we also must have MN, conf [𝐶𝑁−1 ∪ 𝐶′
𝑁−1 ∪ 𝑇𝑁−1] ⊧ yes as required

by rule (5.2). Thus there must be an accepting configuration 𝛾 in the computation Γ
generated byMN. Since we have inferred all configurations by transitions from 𝛿, this
means that Γmust be accepting and that 𝑇 halts in state yes on input 𝐼, thus 𝑇 accepts
𝐼 within 2𝑚𝑘 steps.

The NTM encoding N(𝑇,𝑁) can be generated in time polynomial in the size of 𝐼,
hence deciding whether a normal P has an answer set is NEXP-complete. ⧠

5.3.3 Proof of Theorem 5.2, item 3
An algorithm for checking whether there exists an answer set M for a disjunctive P is
as follows. First we guess an interpretation M for P. Since M uses at most 𝑛 ⋅ 2|HBP|

value calls, we check that all rules from 𝐼(P) are satisfied and compute 𝑓PM in time
exponential in the size of P. The check whether whether M is a minimal model for
𝑓PM by using an oracle for co-NP, thus we arrive at an NEXPNP upper bound.

The hardness part of this proof can be shown by an encoding of alternating Turing
machines. An exponential-time bounded ATM 𝑇 that starts in an ∃-state 𝑠0 and have
exactly one alternation to a ∀-state solve the instances of problems in NEXPNP: let
Σ𝑘 and Π𝑘 denote 𝑘-alternation bounded ATMs as defined by Chandra et al. (1981),
and 𝐴Σ𝑒𝑘 and 𝐴Π𝑒

𝑘 denote the class of sets accepted by Σ𝑘 and Π𝑘 machines which
accept in exponential time, respectively, then following Chandra et al. (1981) we obtain
Σ𝑒𝑘 = 𝐴Σ𝑒𝑘 and Π𝑒

𝑘 = 𝐴Π𝑒
𝑘.

For the purpose of showing NEXPNP-hardness, we will adapt the encodingN(𝑇,𝑁)
from item 2 from §5.3.2 and use the MLP

A(𝑇,𝑁) = (𝑚A
1 , 𝑚A

2 , 𝑚3, 𝑚4, 𝑚A
5)

104

5.3.3. Proof of Theorem 5.2, item 3

where, compared to N(𝑇,𝑁),𝑚A
1 ,𝑚A

2 , and𝑚A
5 receive minor modifications to encode

universal configuration sequences for an ATM computation.
We use the following additional propositional atom in modules 𝑚A

1 , 𝑚A
2 , and 𝑚A

5
to capture the alternation to a universal configuration sequence in a computation of 𝑇:

• atom forall encodes that starting from a time point 𝑡 such that 0 < 𝑡 < 𝑁, Turing
machine configurations are universal.

The modules of A(𝑇,𝑁) have the following structure:

• the main module 𝑚A
1 = (atm[], 𝑅A

1), where 𝑅A
1 is the set of rules 𝑅N

1 , where rule (5.2)
is replaced by rule

accept ← conf [o, o, o].yes, conf [o, o, o].forall (5.48)

• the library module

𝑚A
2 = (conf [𝑐1, … , 𝑐ℓ, 𝑐1, … , 𝑐ℓ, 𝑐′1, … , 𝑐′ℓ, 𝑐′1, … , 𝑐′ℓ, 𝑡1, … , 𝑡ℓ, 𝑡1, … , 𝑡ℓ], 𝑅A

2) ,

where 𝑅A
2 consists of 𝑅N

2 and the following two groups of rules:

alternation rules for all states 𝑠 ∈ 𝑆 such that 𝑔(𝑠) = ∀:

forall ← init , 𝑠 (5.49)

forall ← init , conf [c, c′, t−].forall (5.50)

forall ← init , conf [c+, c′, t].forall (5.51)

forall ← init , conf [c−, c′, t].forall (5.52)

forall ← init , conf [c, c′+, t].forall (5.53)

forall ← init , conf [c, c′−, t].forall (5.54)

saturation rules for all states 𝑠 ∈ 𝑆 such that 𝑔(𝑠) = ∀ and all 𝜎 ∈ Σ:

head ← init , atm.accept , forall (5.55)

𝑠 ← init , atm.accept , forall (5.56)

𝜎 ← init , atm.accept , forall (5.57)

Take note that once we arrive at a universal state 𝑠 at time point 𝑡 we will derive forall
with rule (5.49). In following time points, the alternation rules keep deriving forall.
This is guaranteed by forcing forall to be true in every position of the grid (𝑐, 𝑐′) at
time point 𝑡 with rules (5.51)–(5.54), and then continuing to derive forall once it is true
in a past time point 𝑡 − 1 at any position (𝑐, 𝑐′) with rule (5.50).

105

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

𝑡0

𝑡1

𝑡2

⋮

𝑡2𝑁−1

∃

∃

∃ ∃

∀ 𝑠

yes yes yes

Figure 5.9: Alternating Turing machine computation tree

• the library module 𝑚3 (op[𝑏1, … , 𝑏ℓ, 𝑏1, … , 𝑏ℓ]) from D(𝑇,𝑁);

• the library module 𝑚4 (ord[𝑥1, … , 𝑥ℓ, 𝑥1, … , 𝑥ℓ, 𝑦1, … , 𝑦ℓ, 𝑦1, … , 𝑦ℓ]) from D(𝑇,𝑁);

• and the library module 𝑚A
5 = (branch[𝑡1, … , 𝑡ℓ, 𝑡1, … , 𝑡ℓ], 𝑅A

5), where 𝑅A
5 is the set of

auxiliary rules (5.46) from 𝑅N
5 and the following two groups of rules:

branching rules for (𝑠, 𝜎, 𝑠′𝑖 , 𝜎′𝑖 , 𝑑𝑖) ∈ 𝛿 such that 1 ≤ 𝑖 ≤ 𝑘:

𝑏𝑠,𝜍,1 ∨⋯ ∨ 𝑏𝑠,𝜍,𝑘 ← final, not bad (5.58)

saturation rules for 𝑠 ∈ 𝑆 such that 𝑔(𝑠) = ∀ and (𝑠, 𝜎, 𝑠′𝑖 , 𝜎′𝑖 , 𝑑𝑖) ∈ 𝛿 for 1 ≤ 𝑖 ≤ 𝑘:

𝑏𝑠,𝜍,𝑖 ← final, not bad , atm.accept , conf [t, t, t].forall (5.59)

Note that the module atom conf [t, t, t].forall in the saturation rules (5.59) uses t as
input for c and c′ for module 𝑚A

2 . The alternation rules of 𝑚A
2 allow us to undifferen-

tiatedly access atom forall in any time point 𝑡 whose corresponding configuration is
universal.

In analogy to nondeterministic Turing machines, alternating Turing machine com-
putations form a computation tree as shown in Figure 5.9. Accepting runs start at time
point 𝑡0 in an existential state 𝑠0 until they reach a universal configuration with state 𝑠
from which only universal configurations can follow for ATMs that have only one al-
ternation. Here, the difference of the acceptance condition to classical Turingmachines
come into play and we need to assure that all configurations of the subtree rooted at 𝑠
are accepting, i.e., all configurations of the subtree lead to a leaf with state yes.

The ATM encoding A(𝑇,𝑁) is essentially our NTM encoding N(𝑇,𝑁) from Theo-
rem 5.2, item 2, with the following modifications:

106

5.3.3. Proof of Theorem 5.2, item 3

atm[]

conf [c, c′, t]

ord[x,y]

op[b]

branch[t]

Figure 5.10: Module dependencies of an alternating Turing machine simulation

• the acceptance rule (5.48) from 𝑚A
1 additionally checks whether conf [o, o, o].forall is

satisfied,

• 𝑚A
2 superinduces alternation and saturation rules,

• 𝑚A
5 uses disjunctive branching rules and adds saturation rules.

InA(𝑇,𝑁)we introduce the atom forall that will be true in all value calls conf [𝐶 ∪
𝐶′ ∪ 𝑇𝑗] for 𝑚A

2 for any cell positions 𝑐 and 𝑐′ represented by 𝐶 and 𝐶′, respectively,
and all time points 𝑡𝑗 encoded by 𝑇𝑗 such that for an 𝑖 > 0, the machine 𝑇 is in an
existential configuration at 𝑡𝑖−1 and in a universal configuration at 𝑡𝑖, and 𝑡𝑗 ≥ 𝑡𝑖.

Figure 5.10 shows the inter-module dependencies of the modules in A(𝑇,𝑁). The
graph shows the main module𝑚A

1 in white, while the library modules𝑚A
2 ,𝑚3,𝑚4,𝑚A

5
with input are shown in gray. The graph for N(𝑇,𝑁) in Figure 5.8 is almost identical
to the graph for A(𝑇,𝑁): modules 𝑚N

1 , 𝑚N
2 , and 𝑚N

5 have been replaced by modules
𝑚A
1 , 𝑚A

2 , and 𝑚A
5 , respectively, with the additional dependencies from 𝑚A

2 and 𝑚A
5 to

𝑚A
1 . Hence, A(𝑇,𝑁) contains four cycles: both 𝑚A

2 and 𝑚4 call themselves, 𝑚A
2 and

the main module 𝑚A
1 are mutually recursive, and 𝑚A

5 is in a cycle with 𝑚A
1 and 𝑚A

2 .
As before, module 𝑚3 is a sink module.

We will show now that we can simulate the computation of an alternating Tur-
ing machine 𝑇 with bounded alternation from existential to universal on input 𝐼 with

107

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

A(𝑇,𝑁) and prove that 𝑇 accepts input 𝐼 and halts in state yes in less than 𝑁 = 2𝑚𝑘

steps if and only if A(𝑇,𝑁) has an answer set.

(⇒) Suppose ATM 𝑇 accepts input 𝐼 within 𝑁 steps and halts in state yes. There is
a computation Γ = 𝛾0, … , 𝛾𝑁−1 such that for 𝑖 > 0, Γ∃ = 𝛾0, … , 𝛾𝑖−1 are existential
configurations, Γ∀ = 𝛾𝑖, … , 𝛾𝑁−1 are universal configurations such that all possible
successors 𝛾′ of 𝛾𝑖 are accepting, and the final configuration 𝛾𝑁−1 has state yes. We
can build an interpretation MA for A(𝑇,𝑁) based on Γ = Γ∃Γ∀ similar to the proof of
Theorem 5.2, item 2 with MN for N(𝑇,𝑁) and show, mutatis mutandis, that MA is a
model for A(𝑇,𝑁) and minimal model of 𝑓A(𝑇,𝑁)M

A
.

We obtain MA from Γ as follows: set 𝑀A
1 /∅, 𝑀A

3 /𝐵, and 𝑀A
4 /(𝑋 ∪ 𝑌) to the same

values as𝑀N
1 /∅,𝑀N

3 /𝐵, and𝑀N
4 /(𝑋 ∪ 𝑌) fromMN in the proof ofTheorem 5.2, item 2.

Since N(𝑇,𝑁) is an encoding for ATMs that contain only existential configurations,
we can reuse the existential part Γ∃ of Γ for A(𝑇,𝑁) and consider all 𝛾𝑗 from Γ∃ =
𝛾0, … , 𝛾𝑖−1 and set

• 𝑀A
2 /𝐶𝑐′

𝛾𝑗 = 𝑀N
2 /𝐶𝑐′

𝛾𝑗 and

• 𝑀A
5 /𝑇𝑗 = 𝑀N

5 /𝑇𝑗 ∪ {𝑏𝑠,𝜍,1 ∣ (𝑠, 𝜎, 𝑠′𝑖 , 𝜎′𝑖 , 𝑑𝑖) ∈ 𝛿 such that 𝑔(𝑠) = ∀}.

To complete the interpretation MA we use the universal configurations Γ∀ from Γ as
follows. We set for all 𝛾𝑗 from Γ∀ = 𝛾𝑖, … , 𝛾𝑁−1

• 𝑀A
2 /𝐶𝑐′

𝛾𝑗 = {forall, head} ∪ {𝑠 ∣ 𝑠 ∈ 𝑆 such that 𝑔(𝑠) = ∀} ∪ Σ,

• 𝑀A
5 /𝑇𝑗 = 𝑇𝑗 ∪ {final} ∪ {𝑏𝑠,𝜍,1, … , 𝑏𝑠,𝜍,𝑘 ∣ 𝑠 ∈ 𝑆 and 𝜎 ∈ Σ such that 𝑔(𝑠) =

∀} ∪ {𝑏𝑠,𝜍,1 ∣ (𝑠, 𝜎, 𝑠′𝑖 , 𝜎′𝑖 , 𝑑𝑖) ∈ 𝛿 such that 𝑔(𝑠) = ∃}, for all 𝑇𝑗 representing time
point 𝑗 such that 𝑖 ≤ 𝑗 < 𝑁 − 1,

• 𝑀A
5 /𝑇𝑁−1 = 𝑇𝑁−1, and

• 𝑀A
5 /𝑆 = 𝑆 ∪ {bad} ∪ {final ∣ 𝑡𝑗 ∈ 𝑆 for 𝑗 ∈ {1, … , ℓ}} for invalid bit representa-

tions 𝑆.

Now MA is an interpretation for A(𝑇,𝑁). One can verify that the interpretation MA

is a model of A(𝑇,𝑁). We show now that it is also a minimal model of 𝑓A(𝑇,𝑁)M
A
.

Towards a contradiction, assume that there exists an interpretationM′ < MA such
that M′ is a model of 𝑓A(𝑇,𝑁)M

A
. From the construction of MA and the rules in

A(𝑇,𝑁), we can only have that𝑀′
5/𝑇𝑖 does not have an atom 𝑏𝑠,𝜍,𝑗 which is in𝑀A

5 /𝑇𝑖.
But we must have a rule of form (5.58) in 𝑓A(𝑇,𝑁)M

A
, which contradicts the assump-

tion that M′ is a model. Thus, MA is an answer set of A(𝑇,𝑁).

108

5.4. Acyclic MLPs

(⇐) SupposeMA is an answer set of MLPA(𝑇,𝑁). We can extract an accepting compu-
tation Γ = 𝛾0, … , 𝛾𝑁−1 for the machine 𝑇 fromMA such that for 𝑖 > 0, Γ∃ = 𝛾0, … , 𝛾𝑖−1
are existential configurations, Γ∀ = 𝛾𝑖, … , 𝛾𝑁−1 are universal configurations such that
all possible successors 𝛾′ of 𝛾𝑖 are accepting, and the final configuration 𝛾𝑁−1 has state
yes. By rules (5.44) and (5.48), we must have that accept ∈ 𝑀A

1 /∅, hence there exists
a maximal 𝑖 such that 0 < 𝑖 < 𝑁 − 1 and 𝛾0, … , 𝛾𝑖−1 are all existential configurations.

Set 𝛾0 = (𝑠0, ,), and let successor configurations 𝛾𝑘 for 𝑘 > 0 be of the form
(𝑠𝑗, 𝑤, 𝑢). We can now extract existential successor configurations starting from 𝛾0
similar to item 2 of the proof for NTMs, with the distinction that we have disjunc-
tive branching rules (5.58). Since we start in an existential phase the bodies of the
saturation rules (5.59) are not satisfied as forall cannot be inferred from time point
𝑡0 up to and including a time point 𝑡𝑖−1, where 0 < 𝑖 < 𝑁 − 1. Once we can infer
forall at time point 𝑡𝑖, the machine had performed an alternation, and we have arrived
at the universal computation Γ∀. Thus, the answer set MA gives us first the desired
existential configuration sequence Γ∃ = 𝛾0, … , 𝛾𝑖−1. Then, starting from 𝑖, we can
build Γ∀ = 𝛾𝑖, … , 𝛾𝑁−1 by following those universal transitions from 𝛿 that follow 𝛾𝑖
This works from the observation that our answer set MA is a minimal model and any
nonaccepting universal configuration that follow our fixed Γ∃ would have killed MA

by rule (5.44). This is not the case, and so all universal configurations are accepting
in the computation Γ∀ generated by MA. Since we have inferred all configurations by
transitions from 𝛿, this means that Γ must be accepting and that all configurations of
𝑇 halt in state yes on input 𝐼, thus 𝑇 accepts 𝐼 within 2𝑚𝑘 steps.

We can build the ATM encoding A(𝑇,𝑁) in polynomial time in the size of 𝐼, thus
we have shown that deciding whether a given disjunctive propositional MLP P has an
answer set is NEXPNP-complete. ⧠

5.4 Acyclic MLPs
In this section, we turn our attention to a restricted class of normal propositional MLPs
with input and define acyclic MLPs. As the name suggests, this class of MLPs do not
allow recursive module calls. Interestingly, acyclic MLPs are NEXP-complete, just like
unrestricted normal propositional MLPs. As an example of modular logic program-
ming, we show now how a domino problem can be encoded using a propositional MLP
with negation, using several modules. First, we define acyclic propositional MLPs.

Definition 5.1 (Acyclic MLP).
We say that a propositional normal MLP P is acyclic, if the call graph CGP is acyclic.

Next, we define domino systems, tilings, and the exponential square tiling problem,
which will be used in showing the hardness part for our complexity result. We follow
the definitions from Grädel (1989) and Savelsbergh and van Emde Boas (1984).

109

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

Definition 5.2 (Domino systems).
A domino system is a triple 𝒟 = (𝐷,𝐻,𝑉) such that 𝐷 = {𝑑1, … , 𝑑𝑘} is a finite set
whose elements are called dominoes, and 𝐻,𝑉 ⊆ 𝐷 × 𝐷 are binary relations. Let
𝑅 = {0, … , 2𝑛−1} be a set of integers given in binary digits of length 𝑛, we say that𝒟
tiles 𝑅 × 𝑅, if there is a tiling 𝜏 : 𝑅 × 𝑅 → 𝐷 such that, for each 𝑖, 𝑗 ∈ 𝑅,

(T1) if 𝜏(𝑖, 𝑗) = 𝑑 and 𝜏(𝑖 + 1, 𝑗) = 𝑑′, then (𝑑, 𝑑′) ∈ 𝐻; and

(T2) if 𝜏(𝑖, 𝑗) = 𝑑 and 𝜏(𝑖, 𝑗 + 1) = 𝑑′, then (𝑑, 𝑑′) ∈ 𝑉.

The exponential square tiling problem consists of all pairs (𝒟, 𝑅) such that𝒟 tiles 𝑅×𝑅.

Lewis (1978) has shown the following result.

Exponential Square Tiling (Lewis, 1978)The exponential square tiling problem is
NEXP-complete.

Example 5.1 (Domino system with square tiling) Let𝒟 = (𝐷,𝐻,𝑉) be a domino
system with dominoes 𝐷 = {⊕,⊖,⊗,⊘}, let

𝐻 = {(⊗,⊘), (⊘,⊗), (⊕,⊖), (⊖,⊕)}

and

𝑉 = {(⊗,⊕), (⊕,⊘), (⊘,⊖), (⊖,⊗)} ,

be binary relations, and let 𝑅 = {0, … , 15}, i.e., 𝑅 ranges from 0 to 2𝑛 − 1 for 𝑛 = 4.
The domino system 𝒟 tiles 𝑅 × 𝑅 with the following tiling 𝜏 as a witness:

𝑖 is even: 𝑖 is odd:

𝜏(𝑖, 𝑗) =
⎧⎪
⎨
⎪
⎩

⊗ 𝑗 ≡ 0 mod 4
⊕ 𝑗 ≡ 1 mod 4
⊘ 𝑗 ≡ 2 mod 4
⊖ 𝑗 ≡ 3 mod 4

𝜏(𝑖, 𝑗) =
⎧⎪
⎨
⎪
⎩

⊘ 𝑗 ≡ 0 mod 4
⊖ 𝑗 ≡ 1 mod 4
⊗ 𝑗 ≡ 2 mod 4
⊕ 𝑗 ≡ 3 mod 4

The placement of the dominoes on 𝑅 × 𝑅 is shown in Figure 5.11.

We can now show the following.

Theorem 5.3 (Computational complexity of acyclic MLPs)
Given an acyclic MLP P = (𝑃1[q1], … , 𝑃𝑛[q𝑛]), to decide whether P has an answer set
is NEXP-complete.

110

5.4. Acyclic MLPs

0 2𝑛 − 1
0

2𝑛 − 1

⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘
⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖
⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗
⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕
⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘
⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖
⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗
⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕
⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘
⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖
⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗
⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕
⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘
⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖
⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗ ⊘ ⊗
⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊕

Figure 5.11: A domino system tiles 𝑅 × 𝑅

Proof Membership in NEXP follows from the results inTheorem 5.2, as propositional
normal MLPs are NEXP-complete.

To show NEXP-hardness, we encode the tiling problem as acyclic MLP. Given a
domino system 𝒟 = (𝐷,𝐻,𝑉) and 𝑅 = {0, … , 2𝑛 − 1} as above, we can reduce the
problem whether 𝒟 tiles 𝑅 × 𝑅 to an acyclic MLP

T(𝒟, 𝑅) = (𝑚0, 𝑚1, … ,𝑚2𝑛+1, 𝑛1, 𝑛2, 𝑛3, 𝑛4)

as follows:

• The main module 𝑚0 = (main[], 𝑅0) has one rule

𝑅0 = {kill ← not gen1.ok, not kill} . (5.60)

• To encode integers in the range 𝑅, we use lists b = 𝑏1, … , 𝑏𝑛 of propositional atoms 𝑏𝑖.
The positions on the grid 𝑅2 are then encoded by pairs (x,y) of such lists.

The library modules 𝑚1, … ,𝑚2𝑛+1 issue the checks for each position on the grid.

For the range 𝑖 = 1, … , 2𝑛, this is done by cascading calls of modules

𝑚𝑖 = (gen𝑖[𝑏1, … , 𝑏𝑖−1], 𝑅𝑖),

111

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

main[] gen1[] gen2[𝑏1] ⋯ gen2𝑛[𝑏1, … , 𝑏2𝑛−1]

gen2𝑛+1[𝑏1, … , 𝑏2𝑛]

check[x,y]

tile[x,y] inc[b] order[b]

Figure 5.12: Module dependencies of a domino system encoding

where both values for the 𝑖th bit are considered in the rules 𝑅𝑖:

𝑏𝑖 ← (5.61)

𝑏𝑖 ← 𝑏𝑖 (5.62)

ok ← gen𝑖+1[𝑏1, … , 𝑏𝑖−1, 𝑏𝑖].ok, gen𝑖+1[𝑏1, … , 𝑏𝑖−1, 𝑏𝑖].ok (5.63)

Note that the dummy rule 𝑏𝑖 ← 𝑏𝑖 lets 𝑏𝑖 to be false in all minimal models. For 𝑖 =
2𝑛 + 1, we then call check[x,y] in module

𝑚2𝑛+1 = (gen2𝑛+1[𝑏1, … , 𝑏2𝑛], 𝑅2𝑛+1),

where 𝑅2𝑛+1 consists of the rule

ok ← check[𝑏1, … , 𝑏2𝑛].ok (5.64)

such that x = 𝑏1, … , 𝑏𝑛 and y = 𝑏𝑛+1, … , 𝑏2𝑛.

• The library module 𝑛1 = (tile[x,y], 𝑄1) assigns a position (x,y) on the grid 𝑅 × 𝑅
arbitrarily a tile from 𝐷 such that 𝑘 = |𝐷|:

𝑄1 = ⋃
𝑖∈{1,…,𝑘}

{𝑑𝑖 ← not𝑑1, … , not𝑑𝑖−1, not𝑑𝑖+1, … , not𝑑𝑘} . (5.65)

• On top of this, we have to check where the arbitrarily chosen tiling 𝜏 is legal, i.e., obeys
the relations 𝐻 and 𝑉. We do this using the library module

𝑛2 = (check[x,y], 𝑄2)

112

5.4. Acyclic MLPs

that receives as input a position (x,y) and has the rules 𝑄2:

ok ← not violated (5.66)

yup𝑖 ← not order[y].last , inc[y].𝑏+𝑖 for 𝑖 = 1, … , 𝑛 (5.67)

violated ← not order[y].last , for (𝑑𝑖, 𝑑𝑗) ∉ 𝑉 such that (5.68)
tile[x,y].𝑑𝑖, tile[x,yup].𝑑𝑗 𝑖, 𝑗 ∈ {1, … , |𝐷|}

xright 𝑖 ← not order[x].last , inc[x].𝑏+𝑖 for 𝑖 = 1, … , 𝑛 (5.69)

violated ← not order[x].last , for (𝑑𝑖, 𝑑𝑗) ∉ 𝐻 such that (5.70)
tile[x,y].𝑑𝑖, tile[xright,y].𝑑𝑗 𝑖, 𝑗 ∈ {1, … , |𝐷|}

• the module 𝑛3 = (inc[b], 𝑄3) calculates the increment of an input number b by one
in b+ = 𝑏+1 , … , 𝑏+𝑛 analog to the successor rules from module 𝑚3 = (op[b], 𝑅3) in the
proof of Theorem 5.2, item 1, and

• module 𝑛4 = (order[b], 𝑄4) tells in last whether the input number b is the maximum
in 𝑅:

last ← 𝑏1, … , 𝑏𝑛, not 𝑏1, … , not 𝑏𝑛 (5.71)

Figure 5.12 shows the inter-module dependencies of the modules in the domino
encoding T(𝒟, 𝑅) = (𝑚0, 𝑚1, … ,𝑚2𝑛+1, 𝑛1, 𝑛2, 𝑛3, 𝑛4). The main module 𝑚0 and li-
brary module without input𝑚1 is shown in white, and the library modules with input
𝑚2, … ,𝑚2𝑛+1 and 𝑛1, … , 𝑛4 are gray. The structural dependencies show that T(𝒟, 𝑅)
is acyclic: there is a chain of calls from𝑚0 to 𝑛1, and starting from there 𝑛1 calls three
sink modules 𝑛2, 𝑛3, 𝑛4 that do not call further modules.

TheMLPT(𝒟, 𝑅) can be constructed in polynomial time from𝒟 and 𝑅, and the call
graph CGT(𝒟,𝑅) is acyclic: rooted at𝑚1, the call graph is spanning a binary tree of value
calls gen𝑖[𝑆] → gen𝑖+1[𝑆 ∪ {𝑏𝑖}] and gen𝑖[𝑆] → gen𝑖+1[𝑆], whose leaves gen2𝑛+1[𝑆

′]
have an edge for 𝑋 = 𝑆′|𝑥1,…,𝑥𝑛𝑏1,…,𝑏𝑛 and 𝑌 = 𝑆′|𝑦1,…,𝑦𝑛𝑏𝑛+1,…,𝑏2𝑛 to the value call check[𝑋 ∪ 𝑌].
From check[𝑋 ∪ 𝑌] only three value calls follow: tile[𝑋 ∪ 𝑌], inc[𝑋 ∪ 𝑌], order[𝑋],
and order[𝑌], all of which do not possess any outgoing edges in CGT(𝒟,𝑅). There-
fore, T(𝒟, 𝑅) is an acyclic MLP. We show now that T(𝒟, 𝑅) has an answer set iff 𝒟
tiles 𝑅 × 𝑅.

(⇒) Suppose T(𝒟, 𝑅) has an answer set M. We show now that M can be transformed
into a tiling 𝜏 : 𝑅 × 𝑅 → 𝐷 such that (T1) and (T2) hold. Let 𝑀𝑛1/(𝑋 ∪ 𝑌) be the
part of M for module 𝑛1 = (tile[x,y], 𝑄1) such that 𝑋 and 𝑌 contains only atoms
from x and y being true in 𝑀𝑛1/(𝑋 ∪ 𝑌), respectively. Let 𝑖, 𝑗 ∈ 𝑅 be integers that
correspond to x and y, then we set the tiling 𝜏(𝑖, 𝑗) = 𝑑ℓ whenever 𝑑ℓ ∈ 𝑀𝑛1/(𝑋 ∪ 𝑌).

113

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

Since module 𝑛1 can only infer a single 𝑑ℓ ∈ 𝐷 for a particular pair (x,y), we get
that 𝜏 is a function. From module 𝑚0 we force the cascade of modules 𝑚1, … ,𝑚2𝑛+1
to have ok ∈ 𝑀𝑚𝑖/𝑆 for 1 ≤ 𝑖 ≤ 2𝑛+1, hence violated ∉ 𝑀𝑚𝑖/𝑆 for 𝑖 ≤ 2𝑛. Moreover,
we get that ok ∈ 𝑀𝑛2/(𝑋 ∪ 𝑌) from ok ∈ 𝑀𝑚2𝑛+1/𝑆 such that 𝑆 = 𝑋 ∪ 𝑌. The lists
of atoms xright and yup give us the successors for x and y in 𝑛2, hence there is no
pair (𝑑, 𝑑′) ∈ 𝐻 that violates (T1) and there is no pair (𝑑, 𝑑′) ∈ 𝑉 that violates (T2),
which is enforced by the rules (5.70) and (5.68), respectively. Therefore, 𝜏 is indeed a
tiling satisfying (T1) and (T2), and thus 𝒟 tiles 𝑅 × 𝑅.

(⇐) Let 𝒟 tile 𝑅 × 𝑅, i.e., there exists a tiling 𝜏 : 𝑅 × 𝑅 → 𝐷 such that (T1) and (T2)
hold. We show now that 𝜏 can be transformed into an answer set M of T(𝒟, 𝑅). We
set M as follows:

• 𝑀0/∅ = ∅;

• for 1 ≤ 𝑖 ≤ 2𝑛 and gen𝑖[𝑆] ∈ VC(T(𝒟, 𝑅)),𝑀𝑖/𝑆 = {ok, 𝑏𝑖} ∪ 𝑆;

• 𝑀2𝑛+1/𝑆 = {ok} ∪ 𝑆;

• for 𝑖, 𝑗 ∈ 𝑅 such that 𝜏(𝑖, 𝑗) = 𝑑ℓ, let x and y correspond to 𝑖 and 𝑗, and let 𝑋
and 𝑌 contain only those atoms from x and y that are true, we set𝑀𝑛1/(𝑋 ∪ 𝑌)
to {𝑑ℓ} ∪ 𝑋 ∪ 𝑌;

• for 𝑖, 𝑗 ∈ 𝑅, let x and y correspond to 𝑖 and 𝑗, let 𝑋 and 𝑌 contain only those
atoms from x and y that are true, let xright and yup correspond to 𝑖 + 1 and
𝑗 + 1, and let 𝑋right and 𝑌up contain only those atoms from xright and yup that
are true, respectively, we set𝑀𝑛2/(𝑋 ∪ 𝑌) = {ok} ∪ 𝑋 ∪ 𝑌 ∪ 𝑋right ∪ 𝑌up; and

• we set𝑀𝑛3/𝐵 to the successor of the bits in 𝐵 and𝑀𝑛4/𝐵 stores last whenever 𝐵
is the maximum in 𝑅.

It is easy to see that M is a model for T(𝒟, 𝑅). As 𝜏 is a tiling, we have at exactly one
𝑑 ∈ 𝐷 for all 𝑖, 𝑗 ∈ 𝑅 such that 𝜏(𝑖, 𝑗) = 𝑑, hence module instances of 𝑛1 are satisfied.

Next, we show thatM is a minimal model for 𝑓T(𝒟, 𝑅)M. Towards a contradiction,
assume to the contrary that there exists an interpretation N < M of T(𝒟, 𝑅) such that
N ⊧ 𝑓T(𝒟, 𝑅)M. Since𝑀0/∅ = ∅, wemust have ok and 𝑏𝑖 in𝑀𝑖/𝑆 for 1 ≤ 𝑖 ≤ 2𝑛, and
ok in𝑀2𝑛+1/𝑆. Therefore,𝑀𝑛2/𝑆must contain ok. The successor rules for xright and
yup in 𝑛2 force that the atoms for the given 𝑆 = 𝑋∪𝑌 are present, and since 𝜏 is a tiling,
𝑛1 requires that appropriate 𝑑𝑖, 𝑑𝑗 ∈ 𝐷 are true in𝑀𝑛1/(𝑋 ∪ 𝑌),𝑀𝑛1/(𝑋right ∪ 𝑌), and
𝑀𝑛1/(𝑋 ∪ 𝑌up), respectively. Since violated ∉ 𝑀𝑛2/𝑆, removing ok from any value call
in N violates that N ⊧ 𝑓T(𝒟, 𝑅)M. Hence, N is not a model of 𝑓T(𝒟, 𝑅)M as N < M,
which contradicts our assumption. Therefore, M is a minimal model for 𝑓T(𝒟, 𝑅)M
and so we proved that M is an answer set for T(𝒟, 𝑅).

114

5.5. General MLPs

We proved that deciding whether an acyclic MLP has an answer set is a NEXP-
hard problem, using a polynomial reduction from the tiling problem, which is NEXP-
complete by Exponential Square Tiling. Together with the NEXP upper bound we
obtain that deciding acyclic MLP consistency is NEXP-complete. ⧠

5.5 General MLPs

In this section, we first remove all syntactic restrictions and examine the computational
complexity of MLPs in general case, i.e., we admit nonground Datalog rules, allow 𝑛-
ary predicates as input, and cyclic module calls. Then, we restrict MLPs with bounded
input predicate arities in §5.5.4.

In the Datalog setting, we get for MLPs a similar picture as for ordinary logic pro-
grams, where the complexity of Datalog programs is exponentially higher than the
one of propositional programs. Intuitively, the process of grounding may introduce
exponentially many ground instances of an atom, which in turn may result in double
exponentially many module instances; thus, 𝐼(P) and interpretations M have double
exponential size in general. Computing lfp(P) for Horn MLPs P may thus take double
exponential time, and a guess for an answer set has double exponential size. For MLPs
with bounded input predicate arities we get that the complexity stays on the same level
as the one of ordinary logic programs.

The hardness parts can be shown by lifting the Turing machine constructions for
the propositional case from §5.3. Here, ℓ-ary predicates 𝑞(𝑋1, … , 𝑋ℓ) are used to store
2ℓ bits of a number, such that a range of 22ℓ tape cells and time stamps can be spanned
via module inputs q = 𝑞, 𝑞.

We get the following results.

Theorem 5.4 (Computational complexity of general MLPs)
Given a nonground MLP P = (𝑃1[q1], … , 𝑃𝑛[q𝑛]),

1. if P is Horn, the unique answer set M = lfp(P) of P is computable in double
exponential time and to decide whether 𝛼 ∈ M for a ground atom 𝛼 is 2EXP-
complete;

2. if P is normal, to decide whether P has an answer set is 2NEXP-complete; and

3. to decide whether P has an answer set is 2NEXPNP-complete.

The next sections will show this result.

115

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

5.5.1 Proof of Theorem 5.4, item 1
We first show membership in 2EXP. Since |HBP| is exponential in the length of P, we
have that every interpretation M of P consists of at most 𝑛 ⋅ 2|HBP| components, we
have that the least fixpoint of the 𝑇P operator can be computed in double exponential
time: if we exhaustively apply 𝑇P(𝑀𝑖/𝑆), 1 ≤ 𝑖 ≤ 𝑛 and 𝑆 ⊆ HBP|q𝑖 , we reach the
fixpoint after at most (𝑚 + 1) ⋅ 𝑛 ⋅ 2|HBP| application steps, where 𝑚 is the number of
ground rules in 𝑔𝑟(P) (which is exponential in the size of P). Each application of 𝑇P
can thus done in exponential time. This shows that the unique answer set M = lfp(P)
can be computed in time double exponential in the size of P.

We show now 2EXP-hardness. Given a deterministic Turing machine 𝑇 which
halts within 𝑁 = 22ℓ steps for an input 𝐼 such that 𝑚 = |𝐼| and ℓ = 𝑚𝑘 for some
constant 𝑘, we can simulate 𝑇 by an MLP D̂(𝑇,𝑁) = (𝑛D1 , 𝑛D2 , 𝑛3, 𝑛5, 𝑛4) consisting of
four modules. Similar to D(𝑇,𝑁) from §5.3.1, the main module 𝑛D1 computes in accept
the acceptance of 𝐼, while library module 𝑛D2 encodes transition rules for 𝛿 and thus
input 𝐼. The librarymodule 𝑛5 defines a linear order≤𝑖 for {0, 1}𝑖, which will be used by
library module 𝑛4 to define successor and predecessor rules for cell-time movements.

To address𝑁 = 22ℓ steps, we make use of ℓ-ary predicates in the input of modules
and encode the bits of a nonnegative number 𝑛 ∈ {0, … , 22ℓ − 1} as a sequence of
predicates 𝑏, 𝑏. In D(𝑇,𝑁) we use the atoms 𝑏𝑖 and 𝑏𝑖 to encode whether the 𝑖th bit is
true or false for a nonnegative integer 𝑛 ∈ {0, … , 2ℓ − 1}. In D̂(𝑇,𝑁) we lift index 𝑖
from atoms 𝑏𝑖 and 𝑏𝑖 and encode 𝑖 ∈ {0, … , 2ℓ − 1} in binary in the arguments of
𝑏(𝑋1, … , 𝑋ℓ) and 𝑏(𝑋1, … , 𝑋ℓ): if the 𝑗th bit of 𝑖 is 1, we set 𝑋𝑗 = 1 in 𝑏(𝑋1, … , 𝑋ℓ),
otherwise if the 𝑗th bit of 𝑖 is 0, we set 𝑋𝑗 = 0 in 𝑏(𝑋1, … , 𝑋ℓ). Now, for a fixed bit
sequence t of length ℓ, 𝑏(𝑡1, … , 𝑡ℓ) and 𝑏(𝑡1, … , 𝑡ℓ) must have complementary truth
values in a model. This way we can represent 22ℓ cell positions and time points.

We set up the modules of D̂(𝑇,𝑁) = (𝑛D1 , 𝑛D2 , 𝑛3, 𝑛4, 𝑛5) up as follows. We have

• a main module 𝑛D1 = (dtm[], 𝑄D
1), where 𝑄D

1 is the set of rules

𝑜(X) ← succ .firstℓ(X) (5.72)

𝑜(Y) ← 𝑜(X), succ .succℓ(X,Y) (5.73)

accept ← conf [𝑜, 𝑜, 𝑜, 𝑜, 𝑜, 𝑜].yes (5.74)

Note that 𝑄D
1 is essentially 𝑅D

1 with ℓ-ary predicates: the rules (5.1) are replaced by
rules (5.72)–(5.73) and rule (5.2) replaced by (5.74). For a number 𝑁 = 22ℓ and a bit
sequence t of length ℓ such that t encodes a nonnegative integer 𝑖 in binary, 𝑜(t) stands

116

5.5.1. Proof of Theorem 5.4, item 1

for the 𝑖th bit being 1 in nonnegative integer 𝑛 ∈ {0, … ,𝑁 −1} encoded in binary, thus
input (𝑜, 𝑜, 𝑜, 𝑜, 𝑜, 𝑜) represents integers (𝑁 − 1,𝑁 − 1,𝑁 − 1).

• a library module 𝑛D2 = (conf [𝑐, 𝑐, 𝑐′, 𝑐′, 𝑡, 𝑡], 𝑄D
2), where 𝑄D

2 consists of the rules from
the propositional encoding in𝑅D

2 withminormodifications: we drop the auxiliary rules
from 𝑅D

2 and keep

– the offset rules (5.3)–(5.5)

– the initial rules (5.8),

– the transition rules (5.9)–(5.24), and

– the inertia rules (5.25)–(5.35),

and apply the following customization to all rules: we drop all indices 𝑖 from the
atoms 𝑏+𝑖 , 𝑏−𝑖 , 𝑏+𝑖 , 𝑏−𝑖 , 𝑡−𝑖 , 𝑐−𝑖 , 𝑐+𝑖 , 𝑐′−𝑖 , 𝑐′+𝑖 and then use them as ℓ-place predicates 𝑏+,
𝑏−, 𝑏+, 𝑏−, 𝑡−, 𝑐−, 𝑐+, 𝑐′−, 𝑐′+ with the variables X = 𝑋1, … , 𝑋ℓ as parameters. Fur-
thermore, instead of the auxiliary rules of 𝑅D

2 , the set 𝑄D
2 contains the

auxiliary rules:

înit(X) ← 𝑡(X), succ .firstℓ(X) (5.75)

înit(Y) ← înit(X), 𝑡(Y), succ .succℓ(X,Y) (5.76)

ŝtart(X) ← 𝑐(X), succ .firstℓ(X) (5.77)

ŝtart(Y) ← ŝtart(X), 𝑐(Y), succ .succℓ(X,Y) (5.78)

init ← 𝑡(X) (5.79)

init ← înit(X), succ .lastℓ(X) (5.80)

start ← ŝtart(X), succ .lastℓ(X) (5.81)

Intuitively, înit and ŝtart compute all successor bits of the least significant bit for the
initial time point and cell position 0, respectively. Thus, init and start is true whenever
we have all possible 𝑡(t) and 𝑐(t) true, respectively.
To show the modifications for the offset rules in an exemplary way, the rules for 𝑐′−𝑖
and 𝑐′+𝑖 in (5.5) from 𝑚D

2 is in 𝑛D2 replaced by the rules

𝑐′−(X) ← op[c′].𝑏+(X) 𝑐′+(X) ← op[c′].𝑏−(X)

𝑐′−(X) ← op[c′].𝑏+(X) 𝑐′+(X) ← op[c′].𝑏−(X)

117

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

• a library module 𝑛3 = (succ[], 𝑄3), where𝑄3 consists of the following groups of rules.

initial index successor rules:

succ1(0, 1) ← first1(0) ← last1(1) ← (5.82)
val(0) ← val(1) ← (5.83)

index successor rules for 1 ≤ 𝑖 < ℓ (X𝑖 = 𝑋1, … , 𝑋𝑖 and Y𝑖 = 𝑌1, … , 𝑌𝑖):

succ𝑖+1(𝑍,X𝑖, 𝑍,Y𝑖) ← succ𝑖(X𝑖,Y𝑖), val(𝑍) (5.84)

succ𝑖+1(𝑍,X𝑖, 𝑍′,Y𝑖) ← succ1(𝑍, 𝑍′), last 𝑖(X𝑖),first 𝑖(Y𝑖) (5.85)

first 𝑖+1(𝑍,X𝑖) ← first1(𝑍),first 𝑖(X𝑖) (5.86)

last 𝑖+1(𝑍,X𝑖) ← last1(𝑍), last 𝑖(X𝑖) (5.87)

• a library module 𝑛4 = (op[𝑏, 𝑏], 𝑄D
4), where 𝑄D

4 consists of the following groups of
rules.

successor rules (X = 𝑋1, … , 𝑋ℓ and Y = 𝑌1, … , 𝑌ℓ):

inv (X) ← succ .firstℓ(X) (5.88)

inv (Y) ← inv (X), succ .succℓ(X,Y) (5.89)

inv (Y) ← inv (X), 𝑏(X), succ .succℓ(X,Y) (5.90)

inv (Y) ← inv (X), 𝑏(X), succ .succℓ(X,Y) (5.91)

𝑏+(X) ← 𝑏(X), inv (X) (5.92)

𝑏+(X) ← 𝑏(X), inv (X) (5.93)

𝑏+(X) ← 𝑏(X), inv (X) (5.94)

𝑏+(X) ← 𝑏(X), inv (X) (5.95)

118

5.5.1. Proof of Theorem 5.4, item 1

predecessor rules (X = 𝑋1, … , 𝑋ℓ and Y = 𝑌1, … , 𝑌ℓ):

𝑏−(X) ← 𝑏(X), succ .firstℓ(X) (5.96)

𝑏−(X) ← 𝑏(X), succ .firstℓ(X) (5.97)

𝑐(X) ← 𝑏(X), succ .firstℓ(X) (5.98)

𝑐(X) ← 𝑏(X), succ .firstℓ(X) (5.99)

𝑏−(Y) ← 𝑏(Y), 𝑐(X), succ .succℓ(X,Y) (5.100)

𝑐(Y) ← 𝑏(Y), 𝑐(X), succ .succℓ(X,Y) (5.101)

𝑏−(Y) ← 𝑏(Y), 𝑐(X), succ .succℓ(X,Y) (5.102)

𝑐(Y) ← 𝑏(Y), 𝑐(X), succ .succℓ(X,Y) (5.103)

𝑏−(Y) ← 𝑏(Y), 𝑐(X), succ .succℓ(X,Y) (5.104)

𝑐(Y) ← 𝑏(Y), 𝑐(X), succ .succℓ(X,Y) (5.105)

𝑏−(Y) ← 𝑏(Y), 𝑐(X), succ .succℓ(X,Y) (5.106)

𝑐(Y) ← 𝑏(Y), 𝑐(X), succ .succℓ(X,Y) (5.107)

Note that 𝑛4 lifts𝑚3 fromD(𝑇,𝑁) by moving indexes 𝑖 into predicate arguments, thus
we can compute successors and predecessors of integers encoded by 𝑏, 𝑏 in the range
{0, … ,𝑁 − 1}.

• and a library module 𝑛5 = (ord[𝑥, 𝑥, 𝑦, 𝑦], 𝑄5), where 𝑄5 consists of the following
groups of rules.

inequality rules (Z = 𝑍1, … , 𝑍ℓ):
≠ ← 𝑥(Z), 𝑦(Z) ≠ ← 𝑥(Z), 𝑦(Z) (5.108)

equality rules (Z = 𝑍1, … , 𝑍ℓ and Z′ = 𝑍′1, … , 𝑍′ℓ):
=̂(Z) ← 𝑥(Z), 𝑦(Z), succ .firstℓ(Z) (5.109)

=̂(Z) ← =̂(Z′), succ .succℓ(Z′,Z), 𝑥(Z), 𝑦(Z) (5.110)

=̂(Z) ← 𝑥(Z), 𝑦(Z), succ .firstℓ(Z) (5.111)

=̂(Z) ← =̂(Z′), succ .succℓ(Z′,Z), 𝑥(Z), 𝑦(Z) (5.112)

= ← =̂(Z), succ .lastℓ(Z) (5.113)

119

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

successor rules (X = 𝑋1, … , 𝑋ℓ):

𝑧(X) ← op[𝑥, 𝑥].𝑏+(X) (5.114)

𝑧(X) ← op[𝑥, 𝑥].𝑏+(X) (5.115)

order rules:

≤ ← = (5.116)
≤ ← ord[𝑧, 𝑧, 𝑦, 𝑦].≤ (5.117)

Note that 𝑛5 lifts𝑚4 from D(𝑇,𝑁) by moving index 𝑖 into predicate arguments. Thus,
we can order pairs of integers in the range {0, … ,𝑁−1} encoded by inputs 𝑥, 𝑥 and 𝑦, 𝑦.

Figure 5.13 shows the inter-module dependencies of the modules in D̂(𝑇,𝑁) =
(𝑛D1 , 𝑛D2 , 𝑛3, 𝑛4, 𝑛5). Compared to the dependencies for D(𝑇,𝑁) in Figure 5.6, D̂(𝑇,𝑁)
has an additional sink library module 𝑛3 for computing the successor relation and
which is used by all library modules 𝑛D2 , 𝑛4, 𝑛5. Just like D(𝑇,𝑁), D̂(𝑇,𝑁) has cyclic
dependencies: 𝑛D2 and 𝑛5 call themselves.

We show now that we can simulate the computation of a deterministic Turing
machine 𝑇 on input 𝐼 with D̂(𝑇,𝑁) and prove that 𝑇 accepts input 𝐼 within 𝑁 = 22𝑚

𝑘

steps if and only if accept ∈ lfp(D̂(𝑇,𝑁)). The argument that D̂(𝑇,𝑁) gives us the
desired outcome is the essentially the same as the argument in §5.3.1 (Theorem 5.2,
item 1)withD(𝑇,𝑁). We have changed the time step and cell position addressing in our
encoding D̂(𝑇,𝑁) by introducing predicate arguments that play the role of the indexes
inD(𝑇,𝑁). To this end we have introduced module 𝑛3, which takes care of computing
a successor relation for all pairs of integers (𝑛, 𝑛′) such that 𝑛, 𝑛′ ∈ {0, … , 2ℓ}. The
transition rules are essentially identical, with the difference that module input take
ℓ-place predicates for storing cell positions and time points.

From a given DTM 𝑇 and bound 𝑁 we can build D̂(𝑇,𝑁) in polynomial time in
the size of 𝐼, therefore deciding whether 𝛼 ∈ lfp(P) for a nonground Horn MLP P is
2EXP-complete. ⧠

5.5.2 Proof of Theorem 5.4, item 2
Showing membership in 2NEXP is similar to the proof of Theorem 5.2, item 2, from
§5.3.2. An algorithm that checks whether a nonground normal P has an answer set

120

5.5.2. Proof of Theorem 5.4, item 2

dtm[]

conf [𝑐, 𝑐, 𝑐′, 𝑐′, 𝑡, 𝑡]

succ[]

op[𝑏, 𝑏]

ord[𝑥, 𝑥, 𝑦, 𝑦]

Figure 5.13: Module dependencies of a deterministic Turing machine simulation

starts by guessing an interpretationM for P. Every interpretationM of P uses at most
𝑛 ⋅ 22|HBP| value calls, thus checking that all rules of 𝐼(P) are satisfied and whether M
is a minimal model for 𝑓PM takes double-exponentially many steps.

Hardness can be shown by adapting the Turing machine encoding of item 1 from
§5.5.1. We setup the modules of N̂(𝑇,𝑁) = (𝑛N1 , 𝑛N2 , 𝑛3, 𝑛4, 𝑛5, 𝑛N6) as follows. We have

• a main module 𝑛N1 = (ntm[], 𝑄N
1), where 𝑄N

1 is the set of rules 𝑄D
1 with the additional

rule (5.44) from the propositional module 𝑚N
1 ;

• a library module 𝑛N2 = (conf [𝑐, 𝑐, 𝑐′, 𝑐′, 𝑡, 𝑡], 𝑄N
2), where 𝑄N

2 consists of the initial rules,
transition rules, inertia rules from 𝑄D

2 with the following modifications for the transi-
tion and inertia rules: (5.9)–(5.35) get for a transition (𝑠, 𝜎, 𝑠′𝑖 , 𝜎′𝑖 , 𝑑𝑖) ∈ 𝛿 the additional
body atom

branch[𝑡−, 𝑡−].𝑏𝑠,𝜍,𝑖 (5.118)

As an example, the rule (5.10) from 𝑛D2 is in 𝑛N2 replaced by the rules

𝑠′1 ← init , conf [𝑐−, 𝑐−, 𝑐−, 𝑐−, 𝑡−, 𝑡−].𝑠, conf [𝑐−, 𝑐−, 𝑐−, 𝑐−, 𝑡−, 𝑡−].𝜎,
conf [𝑐−, 𝑐−, 𝑐−, 𝑐−, 𝑡−, 𝑡−].head , branch[𝑡−, 𝑡−].𝑏𝑠,𝜍,1

⋮
𝑠′𝑗 ← init , conf [𝑐−, 𝑐−, 𝑐−, 𝑐−, 𝑡−, 𝑡−].𝑠, conf [𝑐−, 𝑐−, 𝑐−, 𝑐−, 𝑡−, 𝑡−].𝜎,

conf [𝑐−, 𝑐−, 𝑐−, 𝑐−, 𝑡−, 𝑡−].head , branch[𝑡−, 𝑡−].𝑏𝑠,𝜍,𝑗
for all +1-transitions (𝑠, 𝜎, 𝑠′1, 𝜎′1, +1), … , (𝑠, 𝜎, 𝑠′𝑗, 𝜎′𝑗, +1) ∈ 𝛿 such that 1 ≤ 𝑗 ≤ 𝑘,
where 𝑘 is the number of all (𝑠, 𝜎)-transitions of form (𝑠, 𝜎, 𝑠′𝑖 , 𝜎′𝑖 , 𝑑𝑖) ∈ 𝛿.

121

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

ntm[]

conf [𝑐, 𝑐, 𝑐′, 𝑐′, 𝑡, 𝑡]

succ[]

op[𝑏, 𝑏]

ord[𝑥, 𝑥, 𝑦, 𝑦]

branch[𝑡, 𝑡]

Figure 5.14: Module dependencies of a nondeterministic Turing machine simulation

• the library module 𝑛3 (succ[]) from D̂(𝑇,𝑁);

• the library module 𝑛4 (op[𝑏, 𝑏]) from D̂(𝑇,𝑁);

• the library module 𝑛5 (ord[𝑥, 𝑥, 𝑦, 𝑦]) from D̂(𝑇,𝑁);

• and the library module 𝑛N6 = (branch[𝑡, 𝑡], 𝑄N
5), where 𝑄N

5 are the branching rules
from 𝑅N

4 such that all module input lists replace t = 𝑡1, … , 𝑡ℓ, 𝑡1, … , 𝑡ℓ with ℓ-ary input
predicates 𝑡, 𝑡. Furthermore, 𝑄N

5 has

auxiliary rules (X = 𝑋1, … , 𝑋ℓ):

final ← 𝑡(X) bad ← 𝑡(X), 𝑡(X) bad ← not 𝑡(X), not 𝑡(X) (5.119)

The inter-module dependencies for N̂(𝑇,𝑁) = (𝑛N1 , 𝑛N2 , 𝑛3, 𝑛4, 𝑛5, 𝑛N6) are shown
in Figure 5.14. Compared to the dependencies for N(𝑇,𝑁) in Figure 5.8, N̂(𝑇,𝑁) has
an additional sink library module 𝑛3, and since N̂(𝑇,𝑁) adapts D̂(𝑇,𝑁) for NTMs, it
contains the branching module 𝑛N6 just like N(𝑇,𝑁) contains 𝑚N

5 ; the two self-cycles
related with 𝑛N2 and 𝑛5 remain intact.

We show now that we can simulate the computation of a nondeterministic Turing
machine 𝑇 on input 𝐼 with N̂(𝑇,𝑁) and claim that 𝑇 accepts input 𝐼 and halts in state
yes within 𝑁 = 22𝑚

𝑘
steps if and only if N̂(𝑇,𝑁) has an answer set. The argument

122

5.5.3. Proof of Theorem 5.4, item 3

follows the one forN(𝑇,𝑁) in §5.3.2 (Theorem 5.2, item 2), as only minor modifications
to the input predicates have to be taken into account for addressing at most 22𝑚

𝑘
time

points and cell positions.
The algorithm outlined above for generating N̂(𝑇,𝑁) is a polynomial reduction

fromTuringmachine𝑇 on input 𝐼, thus we have shown that decidingwhether a normal
nonground MLP P has an answer set is 2NEXP-complete. ⧠

5.5.3 Proof of Theorem 5.4, item 3
We show membership in 2NEXPNP akin to the proof of Theorem 5.2, item 3, from
§5.3.3. An algorithm for answer set checking given a nonground disjunctive P works
as follows. First we guess an interpretation M for P. Since M uses at most 𝑛 ⋅ 22|HBP|

value calls, we verify that all rules from 𝐼(P) are satisfied and compute 𝑓PM in time
double-exponential in the size of P. The check whether whetherM is a minimal model
for 𝑓PM uses an oracle for co-NP, thus we reach a 2NEXPNP upper bound.

Hardness can be shown by adapting the Turing machine encoding of item 2 from
§5.5.2. We setup the modules of Â(𝑇,𝑁) = (𝑛A1 , 𝑛A2 , 𝑛3, 𝑛4, 𝑛5, 𝑛A6) as follows. We have

• a main module 𝑛A1 = (atm[], 𝑄A
1), where 𝑄A

1 is the set of rules 𝑅A
1 with the rules (5.1)

replaced by (5.72)–(5.73).

• a library module 𝑛A2 = (conf [𝑐, 𝑐, 𝑡, 𝑡], 𝑄A
2), where 𝑄A

2 consists of the initial rules,
transition rules, inertia rules, saturation rules from 𝑅A

2 , and the offset and auxiliary
rules from𝑄D

2 . For the rules from𝑅A
2 , we apply the usual indexmodification to all rules:

we drop all indices 𝑖 from the atoms 𝑏+𝑖 , 𝑏−𝑖 , 𝑏+𝑖 , 𝑏−𝑖 , 𝑡−𝑖 , 𝑐−𝑖 , 𝑐+𝑖 , 𝑐′−𝑖 , 𝑐′+𝑖 and then use ℓ-
place predicates 𝑏+, 𝑏−, 𝑏+, 𝑏−, 𝑡−, 𝑐−, 𝑐+, 𝑐′−, 𝑐′+ with the variables X = 𝑋1, … , 𝑋ℓ
as parameters.

• the library module 𝑛3 (succ[]) from D̂(𝑇,𝑁);

• the library module 𝑛4 (op[𝑏, 𝑏]) from D̂(𝑇,𝑁);

• the library module 𝑛5 (ord[𝑥, 𝑥, 𝑦, 𝑦]) from D̂(𝑇,𝑁);

• and the library module 𝑛A6 = (branch[𝑡, 𝑡], 𝑄A
5), where 𝑄A

5 are the branching rules and
saturation rules from 𝑅A

4 and the auxiliary rules from 𝑄N
5 . In all module atoms, we

replace input t = 𝑡1, … , 𝑡ℓ, 𝑡1, … , 𝑡ℓ with ℓ-ary input predicates 𝑡, 𝑡.

The MLP Â(𝑇,𝑁) = (𝑛A1 , 𝑛A2 , 𝑛3, 𝑛4, 𝑛5, 𝑛A6) is the most complex one in this chap-
ter. Its dependencies are shown in Figure 5.15, which shows the close relationship to
A(𝑇,𝑁) in Figure 5.10: Â(𝑇,𝑁) has an additional sink library module 𝑛3 like all non-
groundMLP encodings before, and since Â(𝑇,𝑁) adapts N̂(𝑇,𝑁) for ATMs, it contains

123

Chapter 5. Computational Complexity of Modular Nonmonotonic Logic Programs

atm[]

conf [𝑐, 𝑐, 𝑐′, 𝑐′, 𝑡, 𝑡]

succ[]

op[𝑏, 𝑏]

ord[𝑥, 𝑥, 𝑦, 𝑦]

branch[𝑡, 𝑡]

Figure 5.15: Module dependencies of an alternating Turing machine simulation

the branching module 𝑛A6 which calls 𝑛A1 , thereby creating an additional cycle in the
dependencies. The module 𝑛A2 adds another cycle through 𝑛A1 . The self-loops 𝑛A2 and
𝑛5 are present, too.

We will show now that we can simulate the computation of an alternating Tur-
ing machine 𝑇 with bounded alternation from existential to universal on input 𝐼 with
Â(𝑇,𝑁) and prove that 𝑇 accepts input 𝐼 and halts in state yes in less than 𝑁 = 22𝑚

𝑘

steps if and only if Â(𝑇,𝑁) has an answer set. The argument follows the one for
A(𝑇,𝑁) in §5.3.3 (Theorem 5.2, item 3), with the minor modifications to the ℓ-place
input predicates for addressing at most 22𝑚

𝑘
time points and cell positions.

The ATM encoding Â(𝑇,𝑁) can be built from 𝑇 and 𝑁 in polynomial time in the
size of 𝐼, which shows that deciding whether a disjunctive nonground MLP P has an
answer set is 2NEXPNP-complete. ⧠

5.5.4 Complexity of MLPs with bounded predicate arities
Finally, we note that the complexity drops by an exponential to the one of ordinary
logic programs if the arities of input predicates are bounded by a constant, as then

124

5.5.4. Complexity of MLPs with bounded predicate arities

𝐼(P) and M have single exponential size. Using the results in this chapter, the next
statement then follows immediately.

Corollary 5.5 (Complexity of general MLPs with bounded predicate arities)
Given a nonground MLP P = (𝑃1[q1], … , 𝑃𝑛[q𝑛]) whose predicate arities of q𝑖 for
𝑖 = 1, … , 𝑛 are bounded by a constant,

1. if P is Horn, the unique answer setM = lfp(P) of P is computable in exponential
time and to decide whether 𝛼 ∈ M for a ground atom 𝛼 is EXP-complete;

2. if P is normal, to decide whether P has an answer set is NEXP-complete; and

3. to decide whether P has an answer set is NEXPNP-complete.

Compared to answer set programs with bounded predicate arities (Eiter et al.,
2007a), which shows a similar drop in complexity, we are an exponential higher in
complexity. This is of no surprise, as modules with input have to be taken into ac-
count. Techniques based on (Eiter et al., 2010) may prove to be useful for implementing
a reasoner for MLPs with bounded-predicate arities.

125

III

Characterizing Modular
Nonmonotonic Logic Programs

6

Translation of Modular
Nonmonotonic Logic Programs to

Datalog

I
n this chapter, we investigate rewriting techniques for translating Modular
Nonmonotonic Logic Programs with module input into programs of simpler
structure. We are mainly concerned here with logic programs in the Datalog
setting (Gottlob et al., 1989), i.e., we try to shift a modular logic program by

rewriting the modules or a subset thereof into a Datalog program, so that large por-
tions or even the complete MLP can be evaluated using a Datalog reasoner. As a first
technique, we will show how to rewrite programs with multiple modules with empty
input into an MLP in normal form in §6.2. Next, we present a general technique in §6.3
that is concerned with rewriting arbitrary MLPs into ones that have no module input
such that they can, if desired, be transformed into logic programs without modules
at all. This approach comes at a cost; in the worst case, the translation is exponen-
tially larger than the original MLP. The macro expansion technique presented in §6.4
deals with a restricted syntactic class of MLPs that do not incur this blow-up. While
macro expansion cannot be applied to general MLPs, macros are still important in the
context of converting, e.g., Datalog-rewritable dl-programs (Heymans et al., 2010) into
modular logic programs, which we will show in §6.5.

Without loss of generality, we consider MLPs of form P = (𝑚1, … ,𝑚𝑛) such that
each module 𝑚𝑖 = (𝑃𝑖[𝑞], 𝑅𝑖) has at most one formal input parameter. This restric-
tion is immaterial and only serves the purpose of simplifying the rewriting rules in
this chapter; essentially, one can always transform a module with a positive number
of input predicates to one that has exactly one input predicate usingmodule input reifi-
cation. We will show how to reify modules with an input list of arbitrary length in the
first §6.1.

129

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

6.1 Module Input Reification
We start this chapter by showing how to translate an MLP that contains modules with
more than one formal input parameter into an equivalent MLP whose modules have
at most one input parameter.

Intuitively, we can reify a module𝑚 = (𝑃[q], 𝑅) into a module𝑚′ = (𝑃[𝑞′], 𝑅′) by
using a fresh predicate symbol 𝑞′ whose arity is 1 plus the maximal arity of all input
predicate symbols of q. Then, the set of rules 𝑅′ contains

• module input rules that transfer input from 𝑞′ back to the predicates from q,

• module atom input rules that reify input in a single predicate 𝑝𝑒 for each module
atom 𝑒 appearing in 𝑚, and

• a reified version of 𝑅 such that each module atom 𝑒 = 𝑄[p].𝑜(t) is replaced by
its reified module atom 𝑄[𝑝𝑒].𝑜(t).

This technique makes the restriction wemade in the beginning of this chapter insignif-
icant, i.e., requiring that all modules having at most one input parameter, as every MLP
can be converted into a reified MLP while preserving their answer sets.

In the following, let P = (𝑚1, … ,𝑚𝑛) be an arbitrary MLP such that each𝑚𝑖 of P is
of form (𝑃𝑖[q𝑖], 𝑅𝑖). Let 𝑝 be a predicate symbol from P, we define its associated arity
as 𝑎(𝑝). For a list of predicate symbols p = 𝑝1, … , 𝑝ℓ we let 𝑎(p) = max𝑝 is from p 𝑎(𝑝).
We define the set of module atoms appearing in module 𝑚 (respectively, in a rule 𝑟 ∈
𝑅(𝑚)) as ma(𝑚) (respectively, ma(𝑟)). Let 𝜖 be a fresh constant symbol not appearing
in P.

Whenever a module atom has more than one input parameter, we need module
atom input rules that compress all input predicates into a single reified input parameter.

Definition 6.1 (Module atom input rules and reified module atom).
For a module atom 𝑒 = 𝑃𝑗[p].𝑜(t) from P such that |p| > 1, we define themodule atom
input rules of 𝑒 as the set of rules

𝑝𝑒(1, 𝑋1, … , 𝑋𝑎(𝑝1), 𝜖, … , 𝜖⎵
𝑎(p)−𝑎(𝑝1)

) ← 𝑝1(𝑋1, … , 𝑋𝑎(𝑝1))

⋮
𝑝𝑒(ℓ, 𝑋1, … , 𝑋𝑎(𝑝ℓ), 𝜖, … , 𝜖⎵

𝑎(p)−𝑎(𝑝ℓ)
) ← 𝑝ℓ(𝑋1, … , 𝑋𝑎(𝑝ℓ))

where 𝑝𝑒 is a fresh predicate symbol not appearing in P with arity 𝑎(𝑝𝑒) = 𝑎(p) + 1.
The reified module atom for 𝑒 is the module atom 𝑃𝑗[𝑝𝑒].𝑜(t).

Note that 𝜖 is used to fill up missing positions when defining 𝑝𝑒(𝑖, …) for predicates 𝑝𝑖
such that 𝑎(𝑝𝑖) < 𝑎(p).

130

6.1. Module Input Reification

Whenever a module has more than one input parameter, we need module input
rules that transfer the reified input parameter back to their original input parameters.

Definition 6.2 (Module input rules).
Given a list of formal input parameters q𝑖 = 𝑞1, … , 𝑞𝑘 of a library module𝑚𝑖 of P such
that 𝑘 > 1, we define the module input rules of 𝑚𝑖 as the set of rules

𝑞1(𝑋1, … , 𝑋𝑎(𝑞1)) ← 𝑞′𝑖(1, 𝑋1, … , 𝑋𝑎(𝑞1), 𝜖, … , 𝜖⎵
𝑎(q)−𝑎(𝑞1)

)

⋮
𝑞𝑘(𝑋1, … , 𝑋𝑎(𝑞𝑘)) ← 𝑞′𝑖(𝑘, 𝑋1, … , 𝑋𝑎(𝑞𝑘), 𝜖, … , 𝜖⎵

𝑎(q)−𝑎(𝑞𝑘)
)

The following definition gives us reified MLPs, whose modules have at most one
input parameter.

Definition 6.3 (Reified module and reified MLP).
For any module 𝑚𝑖 from P, the reified module for 𝑚𝑖 is the module

𝑚′
𝑖 = {

(𝑃𝑖[𝑞′𝑖], 𝑅′𝑖) if|q𝑖| > 1
(𝑃𝑖[q𝑖], 𝑅′𝑖) if |q𝑖| ≤ 1

where 𝑞′𝑖 is a fresh predicate symbol with arity 𝑎(𝑞′𝑖) = 𝑎(q𝑖) + 1, and 𝑅′𝑖 consists of

• the module input rules of 𝑚𝑖 in case |q𝑖| > 1,

• module atom input rules for each module atom 𝑄[p].𝑜(t) appearing in 𝑅𝑖 when-
ever |p| > 1, and

• all rules from 𝑅𝑖 such that each module atom 𝑄[p].𝑜(t) ∈ ma(𝑚𝑖) with |p| > 1
is replaced by its reified module atom.

The reified MLP P′ is the MLP (𝑚′
1, … ,𝑚′

𝑛), where 𝑚′
𝑖 is the reified module for 𝑚𝑖.

To show that reified MLPs are equivalent to general MLPs, we define the following
functions and interpretations. Let 𝐴 ⊆ HBP be a set ground atoms, let p = 𝑝1, … , 𝑝ℓ
be a list predicates, and let 𝑞 be a predicate symbol. We define

𝑟(𝐴,p, 𝑞) = ⋃
𝑝𝑖 is from p

{𝑞(𝑖, c, 𝜖, … , 𝜖⎵
𝑎(p)−𝑎(𝑝𝑖)

)
||||
𝑝𝑖(c) ∈ 𝐴} .

and

̂𝑟(𝐴, 𝑞,p) = ⋃
𝑝𝑖 is from p

{𝑝𝑖(c)
||||
𝑞(𝑖, c, 𝜖, … , 𝜖⎵

𝑎(p)−𝑎(𝑝𝑖)
) ∈ 𝐴} .

LetM be an interpretation for an MLP P, we define incl(M) to be an interpretationM′

for the reified MLP P′ such that for all 𝑃𝑖[𝑆] ∈ VC(P), we set

131

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

• 𝑀′
𝑖/𝑆 = 𝑀𝑖/𝑆 in M′ whenever |q𝑖| ≤ 1 in module 𝑚𝑖 = (𝑃𝑖[q𝑖], 𝑅𝑖) from P, and

• otherwise, we set

𝑀′
𝑖/(𝑟(𝑆,q𝑖, 𝑞′𝑖)) = 𝑀𝑖/𝑆 ∪ 𝑟(𝑆,q𝑖, 𝑞′𝑖) ∪ ⋃

𝑒=𝑄[p].𝑜(t)∈𝑚𝑎(𝑅𝑖)
𝑟(𝑀𝑖/𝑆,p, 𝑝𝑒) .

Let M′ be an interpretation for the reified MLP P′. We let excl(M′) to be the interpre-
tation for the MLP P such that for all 𝑃𝑖[𝑆] ∈ VC(P′), we set

• 𝑀𝑖/𝑆 = 𝑀′
𝑖/𝑆 in M whenever |q𝑖| ≤ 1 in module 𝑚𝑖 = (𝑃𝑖[q𝑖], 𝑅𝑖) from P, and

• otherwise, we set

𝑀𝑖/(̂𝑟(𝑆, 𝑞′𝑖 ,q𝑖)) = (𝑀′
𝑖/𝑆 ⧵ HBP′|q′i) ∪

̂𝑟(𝑆, 𝑞′𝑖 ,q𝑖) ∪ ⋃
𝑒=𝑄[p].𝑜(t)∈𝑚𝑎(𝑅𝑖)

̂𝑟(𝑀′
𝑖/𝑆, 𝑝𝑒,p) .

We can now show the following.

Proposition 6.1 (Module input reification)
Let P be an arbitrary MLP. Then, the answer sets of P correspond one-to-one to the
answer sets of the reified MLP P′.

Proof Let M and M′ be interpretations for P and P′, respectively. We first show that
both incl(M) and excl(M′) are interpretations for P′ and P, respectively. Whenever
|q𝑖| ≤ 1 in a module 𝑚𝑖 = (𝑃𝑖[q𝑖], 𝑅𝑖) from P, module input reification does not
change 𝑚′

𝑖 , thus 𝑃𝑖[𝑆] ∈ VC(P) if and only if 𝑃𝑖[𝑆] ∈ VC(P′). For the case |q𝑖| >
1, the reified module 𝑚′

𝑖 has only one input predicate 𝑞′𝑖 derived from q𝑖. There is
a one-to-one correspondence between the value calls 𝑃𝑖[𝑆] ∈ VC(P) and 𝑃𝑖[𝑆′] ∈
VC(P′), concretely 𝑆′ = 𝑟(𝑆,q𝑖, 𝑞′𝑖) and 𝑆 = ̂𝑟(𝑆′, 𝑞′𝑖 ,q𝑖). Hence, 𝑃𝑖[𝑆] ∈ VC(P) if and
only if 𝑃𝑖[𝑆′] ∈ VC(P′). Furthermore, the call graphs CGP and CGP′ are isomorphic:
edge (𝑢, 𝑣) ∈ 𝐸(CGP) if and only if edge (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸(CGP′) for the bijection
𝑓: 𝑉(CGP) → 𝑉(CGP′) such that

𝑓(𝑃𝑖[𝑆]) = {
𝑃𝑖[𝑟(𝑆,q𝑖, 𝑞′𝑖)] if |q𝑖| > 1
𝑃𝑖[𝑆] otherwise

and

𝑓−1(𝑃𝑖[𝑆′]) = {
𝑃𝑖[̂𝑟(𝑆′, 𝑞′𝑖 ,q𝑖)] if |q𝑖| > 1
𝑃𝑖[𝑆′] otherwise

.

Rules without module atoms are left unchanged in reified MLPs, and using the
Horn module input rules, the rules agree on their truth values in bothM andM′. Now,

132

6.2. Rewriting Modules without Input

for rules with module atoms of form 𝑃𝑗[p].𝑜(c) ∈ 𝑚𝑎(𝑔𝑟(𝑅𝑖)) such that q𝑗 is the input
list of 𝑃𝑗[qj], we distinguish the case |q𝑗| ≤ 1, and |q𝑗| > 1. In the former case, module
input reification leaves the module atom unchanged, therefore they use the same value
call in the respective call graph to determine their truth value, and thus M, 𝑃𝑖[𝑆] ⊧
𝑃𝑗[p].𝑜(c) if and only if M′, 𝑃𝑖[𝑆] ⊧ 𝑃𝑗[p].𝑜(c). In the case |q𝑗| > 1, module input
reification changes 𝑃𝑗[p].𝑜(c) ∈ 𝑚𝑎(𝑔𝑟(𝑅𝑖)) to 𝑃𝑗[𝑝𝑒].𝑜(c) ∈ 𝑚𝑎(𝑔𝑟(𝑅′𝑖)) for 𝑒 =
𝑃𝑗[p].𝑜(t) ∈ 𝑚𝑎(𝑅𝑖). TheHornmodule atom input rules transfer the extension of each
predicate 𝑝 in p to the predicate 𝑝𝑒, and given that the call graphs are isomorphic using
𝑓, we arrive at identical value calls in both P and P′. The Horn module input rules then
dissect the extension of predicate 𝑞′𝑗 to the respective predicate 𝑞 from q𝑗, and we get
that corresponding rules are true in both M and M′ for P and P′, respectively. Hence,
the truth of a ground module atom 𝑃𝑗[p].𝑜(c) ∈ 𝑚𝑎(𝑔𝑟(𝑅𝑖)) inM for P coincides with
the truth of the corresponding ground module atom 𝑃𝑗[𝑝𝑒].𝑜(c) ∈ 𝑚𝑎(𝑅′𝑖) in M′ for
P′. Thus, the rules in 𝑓P(𝑃𝑖[𝑆])M coincide with the rules in 𝑓P′(𝑃𝑖[𝑆′])M

′ , and thus
M is an answer set for P if and only if M′ is an answer set for P′. ⧠

Note that applying module input reification to an MLP P = (𝑚1, … ,𝑚𝑛) adds at
most 𝑛 − 1 new predicate symbols 𝑞′𝑖 and their module input rules for all library mod-
ules𝑚𝑖 of P. If a library module𝑚𝑖 has input q𝑖 such that |q𝑖| = 𝑗, then there will be 𝑗
module input rules for𝑚𝑖. Then, if the modules of P contain 𝑘module atoms 𝑒1, … , 𝑒𝑘,
at most 𝑘 new predicate symbols 𝑝𝑒1, … , 𝑝𝑒𝑘 will be introduced together with their
module atom input rules. Module atoms 𝑒𝑖 having input list p𝑖 such that |p𝑖| = ℓ, give
us ℓ additional module atom input rules in a module of P. The modification of module
atoms to take 𝑝𝑒𝑖 as module input does not increase the overall complexity.

Mainmodules and librarymodules with at most one input parameter do not change
their input signature and will not receive additional module input rules. The same
is true for rules with module atoms with at most one input parameter, which do not
change and therefore do not require to addmodule atom input rules to ourMLP. There-
fore, whenever an MLP has only modules with at most one formal input parameter,
module input reification leaves the MLP untouched.

6.2 Rewriting Modules without Input
In this section, we define a simple syntactic restriction for modular logic programs:
there is exactly one module without input, the main module. This does not impose a
strong limitation in writing MLPs, as we will see below that every MLP can be reduced
with a linear rewriting step into its normal form. The rewriting methodology generally
comes in two stages: we combine all rules from all the input-less modules to a fresh
main module 𝑚0, and then exchange in the rules of the remaining modules calls to

133

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

the former input-less modules to calls to the fresh main module𝑚0. We now begin by
defining a normal form for modular logic programs.

Definition 6.4 (Normal form).
An MLP P = (𝑚1, … ,𝑚𝑛) is in normal form, if exactly one module 𝑚𝑖 of P has no
formal input parameters, i.e., 𝑚𝑖 = (𝑃𝑖[], 𝑅𝑖).

Note that Definition 3.2 then implies that module 𝑚𝑖 must be the main module for P.
In order to rewrite MLPs to their normal form, we first define a normalization

procedure for atoms and rules of a module.

Definition 6.5 (Module normalization).
For an atom 𝑎 appearing in a module 𝑚 = (𝑃[𝑞], 𝑅) of MLP P = (𝑚1, … ,𝑚𝑛), we
define

𝒩(𝑎) = {
𝑎 𝑎 is of form 𝑝(t) or 𝑃𝑖[𝑝].𝑜(t) ,

𝑃0.𝑜(t) 𝑎 is of form 𝑃𝑗.𝑜(t) .
Given a rule 𝑟 ∈ 𝑅 of form (3.2) from a module 𝑚 = (𝑃[𝑞], 𝑅), we define the rule

𝒩(𝑟) = 𝛼1 ∨⋯ ∨ 𝛼𝑘 ←𝒩(𝛽1), … ,𝒩(𝛽𝑚),
not𝒩(𝛽𝑚+1), … , not𝒩(𝛽𝑛), , (6.1)

and for a set of rules 𝑅 we define𝒩(𝑅) = {𝒩(𝑟) ∣ 𝑟 ∈ 𝑅}. For the module 𝑚 we let

𝒩(𝑚) = (𝑃[𝑞],𝒩(𝑅)) .

The next definition shows how to normalize an MLP P.
Definition 6.6 (MLP normalization).
Let P = (𝑚1, … ,𝑚𝑛) be an MLP such that each module𝑚𝑖 = (𝑃𝑖[𝑞𝑖], 𝑅𝑖) from P has at
most one input parameter 𝑞𝑖, and let 𝐼0 = {𝑚𝑖1, … ,𝑚𝑖𝑘} be the set of all modules from
P that have no formal input, and 𝐼1 = {𝑚𝑗1, … ,𝑚𝑗𝑛−𝑘} be the modules with exactly one
input parameter. We define the MLP normalization𝒩(P) of MLP P to be the MLP

𝒩(P) = (𝑚0,𝒩(𝑚𝑗1), … ,𝒩(𝑚𝑗𝑛−𝑘)) ,

where 𝑚0 is the fresh module (𝑃0[], 𝑅0) with 𝑅0 = ⋃𝑚∈𝐼0
𝒩(𝑅(𝑚)).

Note that 𝐼0 is always nonempty, as every MLP has a main module. Applying mod-
ule normalization on an MLP that is already in normal form does not change the call
structure, it simply replaces the single main module, say 𝑚𝑖, with a new module 𝑚0
and replaces each call to 𝑚𝑖 with a call to 𝑚0. That is, normalizing simply renames
𝑃𝑖[] to 𝑃0[].

We can now show that every MLP P can be transformed into an equivalent MLP
𝒩(P) that is in normal form. Without loss of generality, we assume for the next result
that each ordinary atom from P has a label identifying the rule base it appears in: for
a module 𝑚𝑗, each ordinary atom in 𝑅(𝑚𝑗) is of form 𝑝𝑗(t).

134

6.2. Rewriting Modules without Input

Lemma 6.2
The answer set of MLP P correspond one-to-one to the answer sets of MLP𝒩(P), i.e.,

• for every answer set M of P, there exists an answer set M′ of𝒩(P) such that

𝑀′
0/∅ = ⋃

𝑚𝑖𝑗
∈𝐼0

𝑀𝑖𝑗/∅, and (6.2)

𝑀′
𝑖/𝑆 = 𝑀𝑖/𝑆 for 𝑚𝑖 ∈ 𝐼1 (6.3)

• for every answer set M′ of𝒩(P) there exists an answer set M of P such that

𝑀𝑖/𝑆 = 𝑀′
𝑖/𝑆 for 𝑚𝑖 ∈ 𝐼1, and (6.4)

𝑀𝑖𝑗/∅ = {𝑎𝑖𝑗 ∈ 𝑀′
0/∅} for 𝑚𝑖𝑗 ∈ 𝐼0 . (6.5)

Proof (⇒) Let M be an answer set of P. We show now that there exists an answer
set M′ of 𝒩(P) such that (a) M′ ⊧ 𝑓𝒩(P)M

′
, and that (b) M′ is a minimal model of

𝑓𝒩(P)M
′
.

We start with item a. Let 𝑟′ ∈ 𝑓𝒩(P)(𝑃𝑖[𝑆])M
′ for 𝑚𝑖 ∈ 𝐼1. For the rule 𝑟 such that

𝒩(𝑟) = 𝑟′ and 𝑟 = 𝑟′, all calls in 𝑟′ and 𝑟 do not access module 𝑚0 respectively some
𝑚𝑖𝑗 ∈ 𝐼0. By construction ofM′, we can conclude that 𝑟 ∈ 𝑓P(𝑃𝑖[𝑆])M. In case 𝑟 ≠ 𝑟′,
one module atom 𝑎′ = 𝑃0.𝑜(c)must appear in 𝐵(𝑟′). Let 𝑎 = 𝑃𝑖𝑗.𝑜(c) be the atom such
that𝒩(𝑎) = 𝑎′, we have that𝑚𝑖𝑗 ∈ 𝐼0. From (6.2) we can conclude that 𝑜(c) ∈ 𝑀′

0/∅
iff 𝑜(c) ∈ 𝑀𝑖𝑗/∅. Therefore, 𝑟 ∈ 𝑓P(𝑃𝑖[𝑆])M. In both cases, we can conclude that
M′ ⊧ 𝑓𝒩(P)(𝑃𝑖[𝑆])M

′ since M is a model for all rules in 𝑓PM.
Let 𝑟′ ∈ 𝑓𝒩(P)(𝑃0[∅])M

′ such that 𝑟′ = 𝒩(𝑟) for a rule 𝑟 from 𝑚𝑖𝑗 ∈ 𝐼0. All
atoms in 𝐵(𝑟′) are satisfied by 𝑀′

0/∅. We have that for atoms 𝑎′ ∈ 𝐵(𝑟′) with the
corresponding atom 𝑎 ∈ 𝐵(𝑟) such that 𝒩(𝑎) = 𝑎′, either 𝑎 = 𝑎′ or 𝑎 ≠ 𝑎′. In
the former case, 𝑎 is ordinary and from 𝑚𝑖𝑗 , or 𝑎 is a module atom 𝑃𝑖[𝑝].𝑜(c) calling
𝑚𝑖 ∈ 𝐼1 from𝑚𝑖𝑗 ∈ 𝐼0. Thus,M, 𝑃𝑖𝑗[∅] ⊧ 𝑎 iffM′, 𝑃0[∅] ⊧ 𝑎′, which follows from (6.2)
and (6.3). In case 𝑎 ≠ 𝑎′, 𝑎′ is of form 𝑃0.𝑜(c) for a module atom 𝑎 of form 𝑃𝑘.𝑜(c)
such that 𝑚𝑘 ∈ 𝐼0. From (6.2) we can conclude that 𝑜(c) ∈ 𝑀′

0/∅ iff 𝑜(c) ∈ 𝑀𝑘/∅.
Therefore, M′, 𝑃0[∅] ⊧ 𝑎′ iff M, 𝑃𝑘[∅] ⊧ 𝑎. In both cases, we can now conclude that
𝑟 ∈ 𝑓P(𝑃𝑖𝑗[∅])

M, and since M ⊧ 𝑓PM, we get M′ ⊧ 𝑓𝒩(P)(𝑃0[∅])M
′ .

Since M′ ⊧ 𝑓𝒩(P)(𝑃𝑖[𝑆])M
′ for all 𝑃𝑖[𝑆] ∈ VC(𝒩(P)), we have shown that M′ ⊧

𝑓𝒩(P)M
′
.

Next, we consider item b. To show that M′ is a minimal model of 𝑓𝒩(P)M
′
, we must

ensure that there is no interpretation M″ such that M″ < M′ and M″ ⊧ 𝑓𝒩(P)M
′
.

135

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

Towards a contradiction, assumeM″ satisfies 𝑓𝒩(P)M
′
. AsM″ < M′, we consider

the following cases: (1) for some 𝑀″
𝑖 /𝑆 with 𝑚𝑖 ∈ 𝐼1, we have that 𝑀″

𝑖 /𝑆 ⊂ 𝑀′
𝑖/𝑆; or

(2) we have that𝑀″
0/∅ ⊂ 𝑀′

0/∅.
Let N denote an interpretation for P such that 𝑁𝑖/𝑆 = 𝑀″

𝑖 /𝑆 for 𝑚𝑖 ∈ 𝐼1, thus
𝑁𝑖/𝑆 = 𝑀′

𝑖/𝑆 = 𝑀𝑖/𝑆. Furthermore, for 𝑚𝑖𝑗 ∈ 𝐼0, let 𝑁𝑖𝑗/∅ = {𝑎𝑖𝑗 ∈ 𝑀″
0/∅}.

From the construction of𝑀″
𝑖 /𝑆 in case (1), and of𝑀″

0/∅ in case (2), we can now de-
duce that𝑁𝑖/𝑆 ⊂ 𝑀𝑖/𝑆 for case (1), and that𝑁𝑖𝑗/∅ ⊂ 𝑀𝑖𝑗/∅ in case (2). HenceN < M,
and fromM being a minimal model of 𝑓PM, we get in both cases thatN, 𝑃𝑖[𝑆] ⊭ 𝑓PM

and N, 𝑃𝑖𝑗[∅] ⊭ 𝑓PM, respectively. There is a rule 𝑟 ∈ 𝑓P(𝑃𝑖[𝑆])M (respectively,
𝑟 ∈ 𝑓P(𝑃𝑖𝑗[∅])

M) such that N, 𝑃𝑖[𝑆] ⊭ 𝑟 (respectively, N, 𝑃𝑖𝑗[∅] ⊭ 𝑟). From the
construction of𝑀′

𝑖/𝑆 (respectively,𝑀′
0/∅), we can deduce that there must be a corre-

sponding rule 𝑟′ ∈ 𝑓𝒩(P)(𝑃𝑖[𝑆])M
′ (respectively, 𝑟′ ∈ 𝑓𝒩(P)(𝑃0[∅])M

′) such that
𝑟′ = 𝒩(𝑟). But now we arrive at a contradiction, as in case (1) M″, 𝑃𝑖[𝑆] ⊭ 𝑟′ and
in case (2) M″, 𝑃0[∅] ⊭ 𝑟′. Thus, M″ does not satisfy 𝑓𝒩(P)(𝑃𝑖[𝑆])M

′ (respectively,
𝑓𝒩(P)(𝑃0[∅])M

′).
Therefore, in both cases (1) and (2) we can conclude that M′ is a minimal model of

𝑓𝒩(P)M
′
.

(⇐) Let M′ be an answer set of𝒩(P). We show now that there exists a corresponding
answer set M of P such that (a) M ⊧ 𝑓PM, and that (b) M is a minimal model of 𝑓PM.

Consider item a. Let 𝑟 ∈ 𝑓P(𝑃𝑖[𝑆])M for 𝑚𝑖 ∈ 𝐼1. For the rule 𝑟′ such that𝒩(𝑟) = 𝑟′
and 𝑟 = 𝑟′, all module calls in 𝑟′ and 𝑟 do not access module 𝑚0 respectively some
𝑚𝑖𝑗 ∈ 𝐼0. By construction of M in (6.4), we can conclude that 𝑟′ ∈ 𝑓𝒩(P)(𝑃𝑖[𝑆])M

′ .
In case 𝑟 ≠ 𝑟′, one module atom 𝑎′ = 𝑃0.𝑜(c) must appear in 𝐵(𝑟′). Let 𝑎 = 𝑃𝑖𝑗.𝑜

𝑖𝑗(c)
be the atom such that𝒩(𝑎) = 𝑎′, we have that 𝑚𝑖𝑗 ∈ 𝐼0. From (6.5) we can conclude
that 𝑜𝑖𝑗(c) ∈ 𝑀′

0/∅ iff 𝑜𝑖𝑗(c) ∈ 𝑀𝑖𝑗/∅. Therefore, 𝑟′ ∈ 𝑓𝒩(P)(𝑃𝑖[𝑆])M
′ . In both cases,

we can conclude that M ⊧ 𝑓P(𝑃𝑖[𝑆])M since M′ is a model for all rules in 𝑓𝒩(P)M
′
.

Let 𝑟 ∈ 𝑓P(𝑃𝑖𝑗[∅])
M such that 𝑟′ = 𝒩(𝑟) for a rule 𝑟 from 𝑚𝑖𝑗 ∈ 𝐼0. All atoms in

𝐵(𝑟) are satisfied by𝑀𝑖𝑗/∅. We have that for atoms 𝑎 ∈ 𝐵(𝑟) with the corresponding
atom 𝑎′ ∈ 𝐵(𝑟′) such that𝒩(𝑎) = 𝑎′, either 𝑎 = 𝑎′ or 𝑎 ≠ 𝑎′.

In the former case, 𝑎 is ordinary and from 𝑚𝑖𝑗 , or 𝑎 is a module atom 𝑃𝑖[𝑝].𝑜(c)
calling 𝑚𝑖 ∈ 𝐼1 from 𝑚𝑖𝑗 ∈ 𝐼0. Thus, M, 𝑃𝑖𝑗[∅] ⊧ 𝑎 iff M′, 𝑃0[∅] ⊧ 𝑎′, which follows
from (6.4) and (6.5).

In case 𝑎 ≠ 𝑎′, 𝑎′ is of form 𝑃0.𝑜𝑘(c) for a module atom 𝑎 of form 𝑃𝑘.𝑜𝑘(c) such
that 𝑚𝑘 ∈ 𝐼0. From (6.5) we can conclude that 𝑜𝑘(c) ∈ 𝑀′

0/∅ iff 𝑜𝑘(c) ∈ 𝑀𝑘/∅.
Therefore, M′, 𝑃0[∅] ⊧ 𝑎′ iff M, 𝑃𝑘[∅] ⊧ 𝑎. In both cases, we can now conclude that
𝑟′ ∈ 𝑓𝒩(P)(𝑃𝑖𝑗[∅])

M′ , and since M′ ⊧ 𝑓𝒩(P)M
′
, we get M ⊧ 𝑓P(𝑃𝑖𝑗[∅])

M.
Since M ⊧ 𝑓P(𝑃𝑖[𝑆])M for all 𝑃𝑖[𝑆] ∈ VC(P), we have shown that M ⊧ 𝑓PM.

136

6.3. General MLP Rewriting Techniques to Datalog

We show item b next. To show that M is a minimal model of 𝑓PM, we must ensure
that there is no interpretation M″ such that M″ < M and M″ ⊧ 𝑓PM.

Towards a contradiction, assume M″ satisfies 𝑓PM. As M″ < M, we consider the
following cases: (1) for some𝑀″

𝑖 /𝑆with𝑚𝑖 ∈ 𝐼1, we have that𝑀″
𝑖 /𝑆 ⊂ 𝑀𝑖/𝑆; or (2) we

have that for 𝑚𝑖𝑗 ∈ 𝐼0,𝑀″
𝑖𝑗/∅ ⊂ 𝑀𝑖𝑗/∅.

Let N denote an interpretation for𝒩(P) such that 𝑁𝑖/𝑆 = 𝑀″
𝑖 /𝑆 for 𝑚𝑖 ∈ 𝐼1, thus

𝑁𝑖/𝑆 = 𝑀′
𝑖/𝑆 = 𝑀𝑖/𝑆. Furthermore, let 𝑁0/∅ = ⋃𝑚𝑖𝑗

∈𝐼0
{𝑎𝑖𝑗 ∈ 𝑀″

𝑖𝑗/∅}.

From the construction of 𝑀″
𝑖 /𝑆 in case (1), and of 𝑀″

𝑖𝑗/∅ in case (2), we can now
deduce that 𝑁𝑖/𝑆 ⊂ 𝑀′

𝑖/𝑆 for case (1), and that 𝑁0/∅ ⊂ 𝑀′
0/∅ in case (2). Hence

N < M′, and from M′ being a minimal model of 𝑓𝒩(P)M
′
, we get in both cases

that N, 𝑃𝑖[𝑆] ⊭ 𝑓𝒩(P)M
′
and N, 𝑃0[∅] ⊭ 𝑓𝒩(P)M

′
, respectively. There is a rule

𝑟′ ∈ 𝑓𝒩(P)(𝑃𝑖[𝑆])M
′ (respectively, 𝑟′ ∈ 𝑓𝒩(P)(𝑃0[∅])M

′) such that N, 𝑃𝑖[𝑆] ⊭ 𝑟′
(respectively, N, 𝑃0[∅] ⊭ 𝑟′). From the construction of 𝑀𝑖/𝑆 respectively 𝑀𝑖𝑗/∅,
we can deduce that there must be a corresponding rule 𝑟 ∈ 𝑓P(𝑃𝑖[𝑆])M respectively
𝑟 ∈ 𝑓P(𝑃𝑖𝑗[∅])

M such that 𝑟′ = 𝒩(𝑟).
But now we arrive at a contradiction, as in case (1) M″, 𝑃𝑖[𝑆] ⊭ 𝑟 and in case (2)

M″, 𝑃𝑖𝑗[∅] ⊭ 𝑟. Thus, M″ does not satisfy 𝑓P(𝑃𝑖[𝑆])M (respectively, 𝑓P(𝑃𝑖𝑗[∅])
M).

Therefore, in both cases (1) and (2) we can conclude that M is a minimal model of
𝑓PM. ⧠

Example 6.1 Consider the MLP P = (𝑚1, 𝑚2, 𝑚3), where 𝑚1 = (𝑃1[], 𝑅1) is a main
module, 𝑚2 = (𝑃2[], 𝑅2) is an input-less module, and 𝑚3 = (𝑃3[𝑞/1], 𝑅3) is a library
module. The rules are

• 𝑅1 = {𝑎 ← 𝑃2.𝑜, 𝑐 ← 𝑃3[𝑎].𝑏};

• 𝑅2 = {𝑜 ← not𝑝, 𝑝 ← not 𝑜}; and

• 𝑅3 = {𝑏 ← 𝑃2.𝑜}.

The normalization of P is the MLP𝒩(P) = (𝑚0,𝒩(𝑚3)), where𝑚0 = (𝑃0[], 𝑅0) is the
new main module, and 𝒩(𝑚3) = (𝑃3[𝑞/1],𝒩(𝑅3)) is the normalized library module;
the rule bases are as follows:

• 𝑅0 = {𝑎 ← 𝑃0.𝑜, 𝑐 ← 𝑃3[𝑎].𝑏 𝑜 ← not𝑝, 𝑝 ← not 𝑜} and

• 𝒩(𝑅3) = {𝑏 ← 𝑃0.𝑜}.

6.3 General MLP Rewriting Techniques to Datalog
This section is split into three parts, each of them describe a rewriting technique for
MLPs: instance rewriting, call rewriting, andmodule removal of connected closed call sets.

137

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

The approach for the instance rewriting translation is the following. Given a set 𝑆 of
modules from an MLP P, we create for each module of 𝑆 a fresh module without input
parameters. Fresh modules get auxiliary rules and rewritten rules from their original
modules such that the adapted rules encode the value calls of the original module using
extra parameters in each atom. Additionally, in case a module from 𝑆 calls another
module from 𝑆, the module atom will be adapted to call the fresh module without
input parameters. Thus, the outcome of the instance rewriting will be an extension of
P that includes a clone of 𝑆, which preserves the call structure in 𝑆. The call rewriting
translation goes one step further and separates the original modules from the cloned
modules completely, thus the result of applying call rewriting to Pwill be an MLP that
has two parts: a cloned part, whose modules have no input parameters and resemble
the original MLP in call structure and answer sets, and a degenerated original part,
whose call structure has now been torn apart. After call rewriting, we can take off the
original part from P and receive an MLP without input parameters using the module
removal technique.

6.3.1 Instance Rewriting
We now start to define the instance rewriting translation. Let 𝑚 = (𝑃[𝑞], 𝑅) be a
module of P and ℓ > 0. We define for the list of distinct variables B = 𝐵0, … , 𝐵ℓ−1 the
list of unary atoms

bit(B) = bit(𝐵0), … , bit(𝐵ℓ−1) ,

where 𝑏𝑖𝑡 is a fresh predicate symbol not appearing in P. We define the set of module
atoms appearing inmodule𝑚 (respectively, in a rule 𝑟 ∈ 𝑅(𝑚)) asma(𝑚) (respectively,
ma(𝑟)).

For the integer 𝑘 ≥ 0, we define bpos𝑘 : 𝒞𝑘 → {0,… , |𝒞𝑘| − 1} to be a bijective
function that sends a 𝑘-tuple c ∈ 𝒞𝑘 to an integer from {0, … , |𝒞𝑘| − 1}. When clear
from context, we omit 𝑘 from bpos𝑘. We define

bv(c) = 𝐵0, … , 𝐵𝑗−1, 𝑏𝑗, 𝐵𝑗+1, … , 𝐵|𝒞𝑘|−1

to be the list of terms such that 𝑏𝑗 = 1 for 𝑗 = bpos𝑘(c) and for each 𝑖1 ≠ 𝑖2 we have
that 𝐵𝑖1 and 𝐵𝑖2 are pairwise distinct variables.

Intuitively, both bit(B) and bv(c) allow us to inflate ordinary predicates appear-
ing in a module such that the inflated tuple pinpoints to a value call in the call graph
CGP for an MLP P. While the atoms bit(B) will be used to bind the variables 𝐵𝑖 to
0 and 1, the list of terms bv(c) is then added to each inflated ordinary atom from the
input list 𝑞 of the module 𝑚.

Example 6.2 Let c = (𝑎7, 𝑎8, 𝑎9) be a triple formed from 𝒞 = {𝑎0, 𝑎1, … , 𝑎9}. Hence,
|𝒞| = 10 and the set of all triples over 𝒞 is of size |𝒞3| = 103 = 1000. We can now

138

6.3.1. Instance Rewriting

use bpos3(⋅) to encode c as integer as follows: given the triple (𝑎𝑖1, 𝑎𝑖2, 𝑎𝑖3) ∈ 𝒞3, we
let bpos3(𝑎𝑖1, 𝑎𝑖2, 𝑎𝑖3) = 102 ⋅ 𝑖1 + 101 ⋅ 𝑖2 + 100 ⋅ 𝑖3 and its inverse be bpos−13 (𝑁) =
(⌊ 𝑁

102
⌋mod 10, ⌊ 𝑁

101
⌋mod 10, ⌊ 𝑁

100
⌋mod 10). Thus, we get bpos3(𝑎7, 𝑎8, 𝑎9) = 789,

and for the inverse function bpos−13 (789) = (𝑎7, 𝑎8, 𝑎9). Moreover, the list bv(c) has
length 1000 and consists of the terms 𝐵0, … , 𝐵788, 1, 𝐵790, … , 𝐵999.

In general, given the set of constant symbols 𝒞 = {𝑎0, … , 𝑎𝑛−1} we can encode
𝑘-tuples c = (𝑎𝑖1, … , 𝑎𝑖𝑘) with

bpos𝑘(𝑎𝑖1, … , 𝑎𝑖𝑘) =
𝑘
∑
𝑗=1

𝑖𝑗 ⋅ 𝑛𝑘−𝑗

and

bpos−1𝑘 (𝑁) = (⌊ 𝑁
𝑛𝑘−1 ⌋

mod𝑛, ⌊ 𝑁
𝑛𝑘−2 ⌋

mod𝑛,… , ⌊ 𝑁𝑛1 ⌋mod𝑛, ⌊ 𝑁𝑛0 ⌋mod𝑛) .

As a first step, we define functions that, given a module𝑚 of P, produce rules that
prepare the input for𝑚 with ℐ(𝑚), and generate rules that mimic the value calls with
𝒱ℛ(𝑚), which is based on the module atoms appearing in 𝑚. Both ℐ(𝑚) and 𝒱ℛ(𝑚)
generate new auxiliary rules not appearing in 𝑅(𝑚).

For the following definitions, let B = 𝐵0, … , 𝐵|𝒞|𝑞||−1 be a list of pairwise distinct
variables of length |𝒞|𝑞||.

Definition 6.7 (Input rules and value rules).
Given module 𝑚 = (𝑃[𝑞], 𝑅), we define the input rules of 𝑚 as the set of rules

ℐ(𝑚) = { 𝑞(c,bv(c)) ← bit(B) || c ∈ 𝒞|𝑞|} .

For a module 𝑚, we define the value rules of 𝑚 as the set of rules

𝒱ℛ(𝑚) = ⋃
𝑒∈ma(𝑚)

𝒱ℛ𝑚(𝑒) ,

where

𝒱ℛ𝑚(𝑃[𝑝].𝑜(t)) = { val𝑝(c, 1,B) ← 𝑝(c,B),bit(B)
val𝑝(c, 0,B) ← not𝑝(c,B),bit(B) ∣ c ∈ 𝒞|𝑝|} .

Example 6.3 (cont’d) Consider an MLP P = (𝑚1, … ,𝑚𝑛) with 𝒞 as in Example 6.2.
Let 𝑚𝑗 = (𝑃𝑗[𝑞], 𝑅𝑗) be a module from P such that 𝑅𝑗 consists of the following two
rules:

𝑜 ←
𝑝(𝑋1, 𝑋2, 𝑋3) ← 𝑃𝑗[𝑝].𝑜, 𝑞(𝑋1, 𝑋2, 𝑋3)

139

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

We get for ℐ(𝑚𝑗) the following set of rules:

𝑞(𝑎0, 𝑎0, 𝑎0, 1, 𝐵1, 𝐵2, … , 𝐵997, 𝐵998, 𝐵999) ← bit(𝐵0), … ,bit(𝐵999)
𝑞(𝑎0, 𝑎0, 𝑎1, 𝐵0, 1, 𝐵2, … , 𝐵997, 𝐵998, 𝐵999) ← bit(𝐵0), … ,bit(𝐵999)

⋮
𝑞(𝑎9, 𝑎9, 𝑎8, 𝐵0, 𝐵1, 𝐵2, … , 𝐵997, 1, 𝐵999) ← bit(𝐵0), … ,bit(𝐵999)
𝑞(𝑎9, 𝑎9, 𝑎9, 𝐵0, 𝐵1, 𝐵2, … , 𝐵997, 𝐵998, 1) ← bit(𝐵0), … ,bit(𝐵999)

and for the module atom 𝑒 = 𝑃𝑗[𝑝].𝑜, we get the following rules for 𝒱ℛ𝑚𝑗(𝑒):

val𝑝(𝑎0, 𝑎0, 𝑎0, 1, 𝐵0, … , 𝐵999) ← 𝑝(𝑎0, 𝑎0, 𝑎0, 𝐵0, … , 𝐵999),
bit(𝐵0), … ,bit(𝐵999)

val𝑝(𝑎0, 𝑎0, 𝑎0, 0, 𝐵0, … , 𝐵999) ← not𝑝(𝑎0, 𝑎0, 𝑎0, 𝐵0, … , 𝐵999),
bit(𝐵0), … ,bit(𝐵999)

⋮
val𝑝(𝑎9, 𝑎9, 𝑎9, 1, 𝐵0, … , 𝐵999) ← 𝑝(𝑎9, 𝑎9, 𝑎9, 𝐵0, … , 𝐵999),

bit(𝐵0), … ,bit(𝐵999)
val𝑝(𝑎9, 𝑎9, 𝑎9, 0, 𝐵0, … , 𝐵999) ← not𝑝(𝑎9, 𝑎9, 𝑎9, 𝐵0, … , 𝐵999),

bit(𝐵0), … ,bit(𝐵999)

Next, we define the translationℬ(𝑚) that takes the rules of module𝑚 and rewrites
them to rules of the same form, but with atoms of higher arity, whose purpose is to
encode module instantiations of the value calls.

Definition 6.8.
For an atom 𝑎 appearing in a module 𝑚 = (𝑃[𝑞], 𝑅) of MLP P = (𝑚1, … ,𝑚𝑛), we
define

ℬ𝑚(𝑎) =

⎧
⎪

⎨
⎪
⎩

𝑝(t,B) 𝑎 is of form 𝑝(t) ,

𝑃𝑛+𝑗.𝑜(t,Va) 𝑎 is of form 𝑃𝑗[𝑝].𝑜(t),where Va

is a list of distinct variables of length |𝒞|𝑝|| ,
𝑎 𝑎 is of form 𝑃𝑗.𝑜(t) .

Note that ℬ𝑚(𝑎) distinguishes between module atoms 𝑎 with and without input:
an atom from the former category will be rewritten to a module atom that calls a
module not present inP, while a module atom from the latter class will not be rewritten
and still calls the same module from P.

140

6.3.1. Instance Rewriting

Definition 6.9.
For a module atom 𝑒 = 𝑃𝑗[𝑝].𝑜(t) appearing in 𝑚, we define the list of atoms

𝒱𝒞𝑚(𝑒) = val𝑝(c1, 𝑉𝑒
bpos(c1),B), … , val𝑝(c𝑢, 𝑉

𝑒
bpos(c𝑢),B) ,

where 𝒞|𝑝| = {c1, … , c𝑢}. Given a rule 𝑟 ∈ 𝑅(𝑚) of form (3.2), we can now define the
rule

ℬ𝑚(𝑟) = ℬ𝑚(𝛼1) ∨⋯ ∨ ℬ𝑚(𝛼𝑘) ← ℬ𝑚(𝛽1), … ,ℬ𝑚(𝛽𝑚),
notℬ𝑚(𝛽𝑚+1), … , notℬ𝑚(𝛽𝑛),
bit(B), 𝒱𝒞𝑚(𝑒1), … , 𝒱𝒞𝑚(𝑒𝑢) ,

(6.6)

where ma(𝑟) = {𝑒1, … , 𝑒𝑢}. Furthermore, we let

ℬ(𝑚) = {ℬ𝑚(𝑟) ∣ 𝑟 ∈ 𝑅(𝑚)} .

The module instance rewriting of 𝑚 is then given as 𝒯(𝑚).
Definition 6.10 (Module instance rewriting).
For a module 𝑚, we let the module instance rewriting 𝒯(𝑚) of 𝑚 be the set of rules

𝒯(𝑚) = {bit(0) ←, bit(1) ←} ∪ ℐ(𝑚) ∪ 𝒱ℛ(𝑚) ∪ ℬ(𝑚) .

Example 6.4 (cont’d) Continuing our example above, we get for ℬ(𝑚𝑗) the set of
rules

𝑜(𝐵0, … , 𝐵999) ← bit(𝐵0), … , bit(𝐵999)
𝑝(𝑋1, 𝑋2, 𝑋3, 𝐵0, … , 𝐵999) ← 𝑃𝑛+𝑗[𝑝].𝑜(𝑉𝑒

0, … , 𝑉𝑒
999), 𝑞(𝑋1, 𝑋2, 𝑋3, 𝐵0, … , 𝐵999),

bit(𝐵0), … , bit(𝐵999),
val𝑝(c0, 𝑉𝑒

bpos3(c1), 𝐵0, … , 𝐵999),
⋮
val𝑝(c999, 𝑉𝑒

bpos3(c999), 𝐵0, … , 𝐵999)

Note that 𝒞3 = {c0, … , c999} = {(𝑎0, 𝑎0, 𝑎0), … , (𝑎9, 𝑎9, 𝑎9)}, thus we obtain for

bpos3(c0), … ,bpos3(c999)

the sequence 0, … , 999. Then, 𝒯(𝑚𝑗) contains the facts

bit(0) ←
bit(1) ←

all rules from Example 6.3, andℬ(𝑚𝑗). Intuitively, for the module atom 𝑒 from module
𝑚𝑗, the atoms of form val𝑝(c𝑖, 𝑉𝑒

bpos3(c𝑖), 𝐵0, … , 𝐵999) (𝑖 ∈ {0, … , 999}) in this example
encode with the list of variables V𝑒 = 𝑉𝑒

0, … , 𝑉𝑒
999 and B = 𝐵0, … , 𝐵999 the self-call of

𝑚𝑗, that is, that the value call 𝑃𝑗[𝑇] calls 𝑃𝑗[𝑇′]. This means that B encodes 𝑇 in the
calling 𝑃𝑗[𝑇], and V𝑒 encodes 𝑇′ in the called 𝑃𝑗[𝑇′].

141

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

The module instance rewriting 𝒯(𝑚) is a set of rules that might contain module
atoms of form 𝑃𝑛+𝑗.𝑜(t,Va), i.e., a call to a module that does not belong to the MLP P.
Thus, without the perspective of P, and without further translated modules from P that
are getting called by 𝒯(𝑚), the module instance rewriting does not complete the pic-
ture of the instance rewriting translation. Hence, we further need the means to specify
inter-module dependencies in anMLP, i.e., thosemodules fromP that are getting called
by certain modules, which in turn might call further modules from P. Intuitively, given
a module𝑚𝑖 of P, we will refer to a set of modules as closure with respect to𝑚𝑖 when it
fulfills certain conditions for calling other modules, but never call modules that do not
belong to the closure. A (connected) closed call set is then based on the closure, and
further requires all those modules from P to be included in the closed call set whenever
they call modules from the closure. These notions will then be used to define instance
and call rewriting below, and are necessary to rewrite modules with 𝒯(⋅) in order to
build a new MLP that contains P and the rewritten modules with their dependencies.
We define now formally closure and closed call sets. In the following let 𝑝𝑐(𝑚) denote
the set of modules {𝑚𝑗 ∣ 𝑃𝑗[𝑝].𝑜(t) ∈ ma(𝑚)}.

Definition 6.11 (Closure and (connected) closed call set).
For a given module 𝑚𝑖 of an MLP P we define the closure clP(𝑚𝑖) of P with respect to
𝑚𝑖 as the smallest set 𝑆 such that

• 𝑚𝑖 ∈ 𝑆, and

• for all 𝑚𝑗 ∈ 𝑆, 𝑝𝑐(𝑚𝑗) ⊆ 𝑆.

Given an MLP P and a module 𝑚𝑖 of P, a closed call set with respect to 𝑚𝑖 is a set of
modules 𝑆 of P such that

• 𝑚𝑖 ∈ 𝑆, and

• for all 𝑚𝑗 ∈ 𝑆, clP(𝑚𝑗) ⊆ 𝑆.

The connection graph of P is the undirected graph 𝐶P = (𝑉, 𝐸) such that 𝑉 ⊂
{𝑚1, … ,𝑚𝑛} consists all library modules of P and 𝐸 = {(𝑚𝑖, 𝑚𝑗) ∈ 𝑉 × 𝑉 ∣ 𝑚𝑗 ∈
𝑝𝑐(𝑚𝑖)}. A closed call set 𝑆 is defined to be connected if 𝑆 is a connected component
of 𝐶P.

Note that for a given module 𝑚𝑖, 𝑝𝑐(𝑚𝑖) only contains modules with a nonempty
input list (i.e., library modules). The closure clP(𝑚𝑖) and closed call sets based on it
contain modules with empty input list only if 𝑚𝑖 has no input. Connected closed call
sets never contain modules without input, as the vertices of the connection graph 𝐶P
only contain library modules; thus, the vertices of 𝐶P can only be a proper subset of
the modules of P, as at least one module of P must be a main module. The closure

142

6.3.1. Instance Rewriting

clP(𝑚𝑖) of the MLP P with respect to the module 𝑚𝑖 is the least closed call set with
respect to 𝑚𝑖.

Example 6.5 Let P = (𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5) be an MLP such that

𝑚1 = (𝑃1[], 𝑅1 = {𝑎 ← 𝑃2[𝑎].𝑏, 𝑃3[𝑎].𝑐})
𝑚2 = (𝑃2[𝑞2], 𝑅2 = ∅)
𝑚3 = (𝑃3[𝑞3], 𝑅3 = {𝑐 ← 𝑃2[𝑐].𝑏, 𝑃4.𝑑})
𝑚4 = (𝑃4[], 𝑅4 = {𝑑 ← 𝑃2[𝑑].𝑏})
𝑚5 = (𝑃5[𝑞5], 𝑅5 = {𝑒 ← 𝑃2[𝑒].𝑏})

Figure 6.1a shows the call structure of the modules in P: modules represent nodes in
the directed graph, and edges from module𝑚𝑖 to module𝑚𝑗 are present whenever𝑚𝑖
has a module call to𝑚𝑗. The graph shows main modules as white nodes, while library
modules are gray.

Given module 𝑚1, the nodes inside the dotted area in Figure 6.1a represent the
closure clP(𝑚1), which is the set of modules {𝑚1, 𝑚2, 𝑚3}. The nodes attached to thick
edges display all the modules that are members that belong to one of 𝑝𝑐(𝑚1), 𝑝𝑐(𝑚2),
and 𝑝𝑐(𝑚3). The reason for𝑚4 ∉ clP(𝑚1) is that𝑚4 has no input list and therefore it is
not captured by 𝑝𝑐(𝑚3), whereas module 𝑚5 ∉ clP(𝑚1) because 𝑚5 has no incoming
call from modules in clP(𝑚1).

We can now define the instance rewriting with respect to a closed call set.

Definition 6.12 (Instance rewriting).
Let P = (𝑚1, … ,𝑚𝑛) be an MLP, let 𝑚𝑖 be a module from P, and let 𝑆 = {𝑚𝑖1, … ,𝑚𝑖ℎ}
be a closed call set with respect to 𝑚𝑖. The instance rewriting of MLP P with respect to
closed call set 𝑆 is the MLP

IRP(𝑆) = (𝑚1, … ,𝑚𝑛, 𝑚′
𝑛+1, … ,𝑚′

𝑛+ℎ) ,

where 𝑚′
𝑛+𝑗 = (𝑃𝑛+𝑗[], 𝒯(𝑚𝑖𝑗)).

We will refer to the fresh modules 𝑚′
𝑛+𝑗 from IRP(𝑆) as shadow modules, and call

the set {𝑚′
𝑛+1, … ,𝑚′

𝑛+ℎ} the shadow of IRP(𝑆).

Example 6.6 (cont’d) Let P = (𝑚1, … ,𝑚5) be the MLP from Example 6.5 and let 𝑆 =
{𝑚1, 𝑚2, 𝑚3, 𝑚5} be a closed call set with respect to module 𝑚1. The instance rewrit-
ing of P with respect to 𝑆 is the MLP IRP(𝑆) = (𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5, 𝑚′

1, 𝑚′
2, 𝑚′

3, 𝑚′
5),

where 𝑚′
𝑗 = (𝑃𝑛+𝑗[], 𝒯(𝑚𝑗)) (for simplicity, we will not use the index 𝑖𝑗 in 𝑆 to name

𝑚′
𝑗). Figure 6.1b shows the inter-module dependencies of IRP(𝑆), where 𝑆 = clP(𝑚1) ∪

{𝑚5} is shown using the dash-dotted area, and the shadow modules𝑚′
1, 𝑚′

2, 𝑚′
3, 𝑚′

5 for

143

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

(a) Inter-module dependencies of MLP P

clP(𝑚1)
𝑚1

𝑚3

𝑚4

𝑚2

𝑚5

(b) Inter-module dependencies of MLP IRP(𝑆)

clP(𝑚1)

𝑆

shadow

𝑚1
𝑚3

𝑚4

𝑚2

𝑚5

𝑚′
1

𝑚′
3

𝑚′
2

𝑚′
5

Figure 6.1: Instance Rewriting

𝑆 are within the dashed area. As can be seen from the graph, the sub-structure defined
by 𝑆 from the original MLP P is preserved in the shadow, except for the incoming call
from 𝑚4 to 𝑚′

2.

In order to show the next lemma, we define for a module 𝑚𝑗 = (𝑃𝑗[𝑞𝑗], 𝑅𝑗) the
bijective function bs𝑗 : {0, 1}

|𝑞𝑗| → 2HBP|𝑞𝑗 that sends b ∈ {0, 1}|𝑞𝑗| to the set of atoms

bs𝑗(b) = {𝑞𝑗(c) ∣ c ∈ 𝒞|𝑞𝑗| ∧ 𝑘 = bpos(c) ∧ 𝑏𝑘 = 1}

and bs−1𝑗 (𝐴) = b be its inverse function for a set of atoms 𝐴 ⊆ HBP|𝑞𝑗 . Intuitively,
bs𝑗(b) includes only those 𝑞𝑗(c) where bit 𝑏𝑘 for c is 1, whereas bs−1𝑗 (𝐴) gives us the
list of bits corresponding to the set 𝐴. We can now show the following.

Lemma 6.3
If M is an answer set of MLP P then there exists an answer set M′ of the MLP IRP(𝑆)
such that M′ coincides with M on the value calls of P, where

144

6.3.1. Instance Rewriting

• 𝑀′
𝑗/𝑇 = 𝑀𝑗/𝑇, for all 𝑃𝑗[𝑇] ∈ VC(P); and

• 𝑀′
𝑛+𝑗/∅, for 𝑗 ∈ {1, … , ℎ}, consists of

{bit(0), bit(1)} ∪ (6.7)

{𝑞𝑖𝑗 (c, b) ∣ c ∈ 𝒞|𝑞𝑖𝑗| ∧ b ∈ {0, 1}∗ ∧ 𝑏bpos(c) = 1} ∪ (6.8)

{𝑎(c, b) ∣ b ∈ {0, 1}∗ ∧ 𝑇 = bs𝑖𝑗(b) ∧ 𝑎(c) ∈ 𝑀𝑖𝑗/𝑇} ∪ (6.9)

⋃
𝑃[𝑝].𝑜(t)∈ma(𝑚𝑖𝑗

)
{val𝑝(c, 1, b) ∣

c ∈ 𝒞|𝑝| ∧ b ∈ {0, 1}∗∧
𝑇 = bs𝑖𝑗(b) ∧ 𝑝(c) ∈ 𝑀𝑖𝑗/𝑇

} ∪ (6.10)

⋃
𝑃[𝑝].𝑜(t)∈ma(𝑚𝑖𝑗

)
{val𝑝(c, 0, b) ∣

c ∈ 𝒞|𝑝| ∧ b ∈ {0, 1}∗∧
𝑇 = bs𝑖𝑗(b) ∧ 𝑝(c) ∉ 𝑀𝑖𝑗/𝑇

} . (6.11)

Proof LetM be an answer set ofP. We show now that there exists an answer setM′ of
IRP(𝑆) such that (a)M′ ⊧ 𝑓 IRP(𝑆)

M′
, and that (b)M′ is a minimal model of 𝑓 IRP(𝑆)

M′
.

We begin with item a. By construction of IRP(𝑆), CGP is a strict subgraph of CGIRP(𝑆)
such that some value calls from VC(IRP(𝑆)) ⧵ VC(P) have edges going to VC(P), but
CGIRP(𝑆) cannot have an edge from a value call in VC(P) that ends in VC(IRP(𝑆)). Thus
we can split IRP(𝑆) into a part𝑀′

𝑗/𝑇 of M′ that corresponds to P, and a part𝑀′
𝑛+𝑗/∅,

1 ≤ 𝑗 ≤ ℎ, of the shadow {𝑚′
𝑛+1, … ,𝑚′

𝑛+ℎ} for the closed call set 𝑆 = {𝑚𝑖1, … ,𝑚𝑖ℎ}.
Hence, M′ ⊧ 𝑓 IRP(𝑆)

M′
, as the part that is identical to M satisfies M′, 𝑃𝑗[𝑇] ⊧

𝑓 IRP(𝑆)
M′

for all 𝑃𝑗[𝑇] ∈ VC(P). Furthermore, the part 𝑀′
𝑛+1/∅,… ,𝑀′

𝑛+ℎ/∅ of
M′ satisfies M′, 𝑃𝑛+𝑗[∅] ⊧ 𝑓 IRP(𝑆)

M′
corresponding to shadow modules 𝑚′

𝑛+𝑗 =
(𝑃𝑛+𝑗[], 𝒯(𝑚𝑖𝑗)) for 1 ≤ 𝑗 ≤ ℎ:

• for each 𝑚′
𝑛+𝑗 we have that (6.7) satisfies {bit(0) ←, bit(1) ←} from 𝒯(𝑚𝑖𝑗);

• by (6.8), all rules from ℐ(𝑚𝑖𝑗) are satisfied: let 𝑟′ ∈ grnd(ℐ(𝑚𝑖𝑗)), as {bit(0),
bit(1)} ⊆ 𝑀′

𝑛+𝑗/∅, we have that 𝐵(𝑟′) is satisfied byM′. To see that𝐻(𝑟′) is also
satisfied, consider a ground substitution 𝜃 such that 𝐵(𝑟′) = bit(B)𝜃 = bit(b).
Hence, for c ∈ 𝒞|𝑞𝑖𝑗|, we have that bv(c)𝜃 = b such that 𝑏bpos(c) = 1. Thismeans
that 𝐻(𝑟′) = 𝑞𝑖𝑗(c,bv(c))𝜃 = 𝑞𝑖𝑗(c, b), and by construction of (6.8), we get that
𝐻(𝑟′) is also satisfied by M′.

145

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

• 𝑓𝒱ℛ(𝑚𝑖𝑗)
M′

is satisfied by M′: let 𝑝 be the input predicate from module atoms
appearing in 𝑚𝑖𝑗 . In case 𝑝(c) ∈ 𝑀𝑖𝑗/𝑇 by (6.10) we get that val𝑝(c, 1, b) ∈
𝑀′

𝑛+𝑗/∅ such that 𝑇 = bs𝑖𝑗(b). Otherwise, for 𝑝(c) ∉ 𝑀𝑖𝑗/𝑇, we have that
val𝑝(c, 0, b) ∈ 𝑀′

𝑛+𝑗/∅ by (6.11) such that 𝑇 = bs𝑖𝑗(b). By (6.9) we have 𝑝(c) ∈
𝑀𝑖𝑗/𝑇 iff 𝑝(c, b) ∈ 𝑀′

𝑛+𝑗/∅ such that 𝑇 = bs𝑖𝑗(b). Consider 𝑟
′ ∈ 𝑓𝒱ℛ(𝑚𝑖𝑗)

M′
,

and a ground substitution 𝜃 such that 𝐵(𝑟′) ⊃ bit(B)𝜃 = bit(b). As both
atoms {bit(0), bit(1)} ⊆ 𝑀′

𝑛+𝑗/∅, we have that bit(b) from 𝐵(𝑟′) is satisfied by
M′. We distinguish two cases: (1) 𝑟′ is of form val𝑝(c, 1, b) ← 𝑝(c, b),bit(b), or
(2) 𝑟′ is of form val𝑝(c, 0, b) ← not𝑝(c, b),bit(b). In case (1), we have 𝑝(c, b) ∈
𝑀′

𝑛+𝑗/∅ from 𝑓 IRP(𝑆)
M′

and therefore 𝑝(c) ∈ 𝑀𝑖𝑗/𝑇 by the set (6.9). Hence,
by (6.10), we get that val𝑝(c, 1, b) is contained in𝑀′

𝑛+𝑗/∅, thusM′, 𝑃𝑛+𝑗[∅] ⊧ 𝑟′.
Otherwise, in case (2), we have 𝑝(c, b) ∉ 𝑀′

𝑛+𝑗/∅ from 𝑓 IRP(𝑆)
M′

and therefore
𝑝(c) ∉ 𝑀𝑖𝑗/𝑇 by (6.9). Thus, we can deduce from (6.11) that val𝑝(c, 0, b) ∈
𝑀′

𝑛+𝑗/∅, and so M′, 𝑃𝑛+𝑗[∅] ⊧ 𝑟′. Therefore, all rules from 𝑓𝒱ℛ(𝑚𝑖𝑗)
M′

are
satisfied by M′.

• we have that (6.9)–(6.11) satisfy all rules from 𝑓ℬ(𝑚′
𝑛+𝑗)

M′
: let 𝑟′ be a rule from

𝑓ℬ(𝑚′
𝑛+𝑗)

M′
such that {bit(b)} ⊆ 𝐵+(𝑟′). By construction of ℬ(𝑚′

𝑛+𝑗), 𝑟′ =
ℬ𝑚𝑖𝑗

(𝑟) for a ground rule 𝑟 ∈ grnd(𝑅(𝑚𝑖𝑗)). AsM′, 𝑃𝑛+𝑗[∅] ⊧ 𝐵(𝑟′), we need to
show that M′, 𝑃𝑛+𝑗[∅] ⊧ 𝐻(𝑟′) in order to get that M′, 𝑃𝑛+𝑗[∅] ⊧ 𝑟′.
First, we show M′, 𝑃𝑖𝑗[𝑇] ⊧ 𝐵(𝑟) and M′, 𝑃𝑖𝑗[𝑇] ⊧ 𝐻(𝑟) for 𝑇 = bs𝑖𝑗(b). Let 𝑎 ∈
𝐵(𝑟). We consider three cases: (1) 𝑎 is of form 𝑎(c), (2) 𝑎 is of form 𝑃𝑘[𝑝].𝑜(c),
or (3) 𝑎 is of form 𝑃𝑘.𝑜(c). In case (1), we can deduce that there is a correspond-
ing atom 𝑎(c, b) ∈ 𝐵(𝑟′), therefore by (6.9), we get M′, 𝑃𝑛+𝑗[∅] ⊧ 𝑎(c, b) iff
M′, 𝑃𝑖𝑗[𝑇] ⊧ 𝑎(c). For case (2), we have a corresponding module atom 𝑎′ =
𝑃𝑛+𝑘.𝑜(c, v) ∈ 𝐵(𝑟′) such that for the ground substitution 𝜃 with {bit(B)}𝜃 =
{bit(b)} ⊆ 𝐵+(𝑟′) and for the ground substitution 𝜎 mapping each variable 𝑉𝑎

𝑢
to 𝑣𝑢 from v for 𝑢 ∈ {1, … , |𝒞|𝑝||} it holds that

𝒱𝒞𝑚𝑖𝑗
(𝑎)𝜃𝜎 = {val𝑝(c′, 𝑉𝑎

bpos(c′), b) ∣ c′ ∈ 𝒞|𝑝|} 𝜎 .

Since M′, 𝑃𝑛+𝑗[∅] ⊧ 𝑣 for all atoms 𝑣 ∈ 𝒱𝒞𝑚𝑖𝑗
(𝑎)𝜃𝜎, in case 𝑎′ ∈ 𝐵+(𝑟′),

M′, 𝑃𝑛+𝑗[∅] ⊧ 𝑎′, and thus we get M′, 𝑃𝑛+𝑘[∅] ⊧ 𝑜(c, v), whereas in case 𝑎′ ∈
𝐵−(𝑟′), we have M′, 𝑃𝑛+𝑗[∅] ⊭ 𝑎′ and thus we get M′, 𝑃𝑛+𝑘[∅] ⊭ 𝑜(c, v). As
M′, 𝑃𝑛+𝑘[∅] ⊧ 𝑜(c, v) iff M′, 𝑃𝑘[𝑇′] ⊧ 𝑜(c) for 𝑇′ = bs𝑘(v), we can deduce that
M′, 𝑃𝑖𝑗[𝑇] ⊧ 𝑎 for 𝑎 ∈ 𝐵+(𝑟) (respectively, M′, 𝑃𝑖𝑗[𝑇] ⊭ 𝑎 for 𝑎 ∈ 𝐵−(𝑟)) with
the following argument. From (6.10) (respectively, (6.11)), it follows that 𝑝(c) ∈
𝑀𝑖𝑗/𝑇 iff val𝑝(c, 1, b) ∈ 𝑀′

𝑛+𝑗/∅ (respectively, 𝑝(c) ∉ 𝑀𝑖𝑗/𝑇 iff val𝑝(c, 0, b) ∈

146

6.3.1. Instance Rewriting

𝑀′
𝑛+𝑗/∅). Hence, (𝑀𝑖𝑗/𝑇)|

𝑞𝑘
𝑝 = bs𝑘(v), as for all 𝑣𝑢 = 1 from v we get 𝑞𝑘(c′) ∈

bs𝑘(v) such that 𝑢 = bpos(c′), and for each val𝑝(c′, 1, b) ∈ 𝑀′
𝑛+𝑗/∅ we get

that 𝑝(c′) ∈ 𝑀𝑖𝑗/𝑇 and so 𝑞𝑘(c′) ∈ (𝑀𝑖𝑗/𝑇)|
𝑞𝑘
𝑝 . Thus, M′, 𝑃𝑛+𝑘[∅] ⊧ 𝑜(c, v)

iff M′, 𝑃𝑘[𝑇′] ⊧ 𝑜(c), and therefore M′, 𝑃𝑛+𝑗[∅] ⊧ 𝑎′ iff M′, 𝑃𝑖𝑗[𝑇] ⊧ 𝑎. In
case (3), we have that 𝑎 ∈ 𝐵(𝑟′). Now from M′, 𝑃𝑛+𝑗[∅] ⊧ 𝑎 we immediately
get that M′, 𝑃𝑖𝑗[𝑇] ⊧ 𝑎 as for any 𝑇, (𝑀𝑖𝑗/𝑇)|

()
() = ∅, and thus 𝑜(c) ∈ 𝑀′

𝑘/∅ iff
M′, 𝑃𝑛+𝑗[∅] ⊧ 𝑎.
Now, asM′, 𝑃𝑖𝑗[𝑇] ⊧ 𝐵(𝑟), and sinceM is identical toM′ for each 𝑃𝑖𝑗[𝑇] ∈ VC(P),
we can deduce that 𝑟 ∈ 𝑓P(𝑃𝑖𝑗[𝑇])

M. And sinceM is an answer set of P, wemust
have that M and thus M′ is a model for 𝑟 as M′, 𝑃𝑖𝑗[𝑇] ⊧ 𝐵(𝑟), we can conclude
that M′, 𝑃𝑖𝑗[𝑇] ⊧ 𝐻(𝑟) as was the claim. Now from this, since 𝑇 = bs𝑖𝑗(b), we
get that M′, 𝑃𝑛+𝑗[∅] ⊧ 𝐻(𝑟′), as for any 𝑎(c) ∈ 𝐻(𝑟) such that 𝑎(c) ∈ 𝑀𝑖𝑗/𝑇,
we have 𝑎(c, b) ∈ 𝐻(𝑟′) by construction of ℬ(𝑚′

𝑛+𝑗) and 𝑎(c, b) ∈ 𝑀𝑛+𝑗/∅
by (6.9).
In conclusion, we have that both M′, 𝑃𝑛+𝑗[∅] ⊧ 𝐵(𝑟′) and M′, 𝑃𝑛+𝑗[∅] ⊧ 𝐻(𝑟′),
hence M′, 𝑃𝑛+𝑗[∅] ⊧ 𝑟′ for all 𝑟′ ∈ 𝑓ℬ(𝑚′

𝑛+𝑗)
M′

.

We consider item b next. To show that M′ is a minimal model of 𝑓 IRP(𝑆)
M′

, we must
ensure that there is no interpretation M″ such that M″ < M′ and M″ ⊧ 𝑓 IRP(𝑆)

M′
.

Towards a contradiction, assumeM″ satisfies𝑓 IRP(𝑆)
M′

. AsM″ < M′, we consider
the following cases: (1) for some 𝑀″

𝑘/𝑇 with 𝑘 ≤ 𝑛 we have that 𝑀″
𝑘/𝑇 ⊂ 𝑀′

𝑘/𝑇; or
(2) we have that𝑀″

𝑛+𝑗/∅ ⊂ 𝑀′
𝑛+𝑗/∅ for some 𝑗 ∈ {1, … , ℎ} (recall that 𝑗 corresponds

to an index for a module from the closed call set 𝑆 = {𝑚𝑖1, … ,𝑚𝑖ℎ}).
In case (1), let N denote an interpretation for P such that 𝑁𝑘/𝑇 = 𝑀″

𝑘/𝑇 for all
𝑃𝑘[𝑇] ∈ VC(P): hence we have thatN < M. As themodules𝑚1, … ,𝑚𝑛 from IRP(𝑆) do
not call the shadowmodules𝑚′

𝑛+𝑗 for 𝑗 ∈ {1, … , ℎ}, it holds by construction ofM′ that
for all𝑃𝑘[𝑇] ∈ VC(P), 𝑓P(𝑃𝑘[𝑇])M = 𝑓 IRP(𝑆)(𝑃𝑘[𝑇])M

′ andN, 𝑃𝑘[𝑇] ⊧ 𝑓P(𝑃𝑘[𝑇])M;
it follows that N ⊧ 𝑓PM, which contradicts minimality.

In case (2), let N denote the interpretation for P such that for all 𝑃𝑖𝑗[𝑇] ∈ VC(P)
with 𝑚𝑖𝑗 ∈ 𝑆, we set

𝑁𝑖𝑗/𝑇 = {𝑎(c) ∈ HBP ∣ 𝑎(c, b) ∈ 𝑀″
𝑛+𝑗/∅ ∧ bs𝑘(b) = 𝑇} (6.12)

and 𝑁𝑘/𝑇 = 𝑀𝑘/𝑇 for all modules 𝑚𝑘 from P such that 𝑚𝑘 ∉ 𝑆. From our assump-
tion that M″ satisfies 𝑓 IRP(𝑆)

M′
, if {bit(0), bit(1)} ⊈ 𝑀″

𝑛+𝑗/∅ or there exists an atom
𝑎 ∈ 𝑀′

𝑛+𝑗/∅ of form val𝑝(c, 0, b) or val𝑝(c, 1, b) such that 𝑎 ∉ 𝑀″
𝑛+𝑗/∅, then we

get a contradiction for M″ ⊧ 𝑓 IRP(𝑆)
M′

, as M″ would not satisfy all the rules from

147

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

{bit(0) ←, bit(1) ←} respectively 𝑓𝒱ℛ(𝑚𝑖𝑗)
M′

of 𝒯(𝑚𝑖𝑗). Therefore N < M, as there
must be an atom 𝑎(c) ∈ 𝑀𝑖𝑗/𝑇 such that 𝑎(c) ∉ 𝑁𝑖𝑗/𝑇, which follows from M″ < M′

in case (2) and the construction of N in (6.12). For b = bs−1𝑖𝑗 (𝑇), we have now that
atom 𝑎(c, b) ∈ 𝑀′

𝑛+𝑗/∅ and 𝑎(c, b) ∉ 𝑀″
𝑛+𝑗/∅. This atom 𝑎(c, b) must be from (6.9).

Since M is a minimal model of 𝑓PM and N < M, we must have that N ⊭ 𝑓PM.
Hence, there is a rule 𝑟 ∈ 𝑓P(𝑃𝑖𝑗[𝑇])

M such that N ⊭ 𝑟, thus N, 𝑃𝑖𝑗[𝑇] ⊧ 𝐵(𝑟) and
N, 𝑃𝑖𝑗[𝑇] ⊭ 𝐻(𝑟). As M′ is a model of 𝑓 IRP(𝑆)

M′
and by construction of M′, there

must exist a rule 𝑟′ ∈ 𝑓 IRP(𝑆)(𝑃𝑛+𝑗[∅])M
′ such that for the ground substitution 𝜃

with {bit(B)}𝜃 = {bit(b)}, we have that 𝑟′ ∈ grnd(ℬ𝑚𝑖𝑗
(𝑟)𝜃). As N, 𝑃𝑖𝑗[𝑇] ⊧ 𝐵(𝑟),

we get by construction of N that M″, 𝑃𝑛+𝑗[∅] ⊧ 𝐵(𝑟′), and as N, 𝑃𝑖𝑗[𝑇] ⊭ 𝐻(𝑟)
we can derive that M″, 𝑃𝑛+𝑗[∅] ⊭ 𝐻(𝑟′). Therefore, M″, 𝑃𝑛+𝑗[∅] ⊭ 𝑟′. But since
𝑟′ ∈ 𝑓 IRP(𝑆)(𝑃𝑛+𝑗[∅])M

′ , we conclude M″ ⊭ 𝑓 IRP(𝑆)
M′

, which contradicts our as-
sumption thatM″ is a model for 𝑓 IRP(𝑆)

M′
. We therefore deduce thatM′ is a minimal

model for 𝑓 IRP(𝑆)
M′

. ⧠

6.3.2 Call Rewriting

This section is concerned with the call rewriting translation for MLPs, which is an
adaption of instance rewriting that allows us to completely isolate the modules from
a connected closed call set 𝑆 with modules that are not contained in 𝑆. In the follow-
ing, we let P = (𝑚1, … ,𝑚𝑛) be an MLP, 𝑚𝑖 = (𝑃𝑖[q𝑖], 𝑅𝑖) be a module from P such
that |q𝑖| ≤ 1, and 𝑆 = {𝑚𝑖1, … ,𝑚𝑖ℎ} is a connected closed call set with respect to 𝑚𝑖
(recall Definition 6.11).

Definition 6.13 (Value rules).
Let𝑚 be a module of P, we define the value rules of𝑚 with respect to a connected closed
call set 𝑆 as the set of rules

𝒱ℛ𝑆(𝑚) = ⋃
𝑚𝑖𝑗

∈𝑆
⋃

𝑃𝑖𝑗[𝑝].𝑜(t)∈ma(𝑚)
𝒱ℛ𝑚(𝑃𝑖𝑗[𝑝].𝑜(t)) .

Note that we only consider module calls 𝑃𝑖𝑗[𝑝].𝑜(t) with one input parameter, i.e., for
𝑚 calling library modules 𝑚𝑖𝑗 ∈ 𝑆.

Next, we define call redirection, which replaces calls tomodules from the connected
closed call set 𝑆 with calls to their accompanying shadow modules.

148

6.3.2. Call Rewriting

Definition 6.14 (Call redirection).
Given an atom 𝑎 appearing in a module 𝑚 = (𝑃[], 𝑅) without input parameters, we
define

𝒞𝑆𝑚(𝑎) =

⎧
⎪

⎨
⎪
⎩

𝑎 𝑎 is of form 𝑝(t) or of form 𝑃𝑘[p].𝑜(t), |p| ≤ 1,
such that 𝑚𝑘 ∉ 𝑆 ,

𝑃𝑛+𝑗.𝑜(t,Va)
𝑎 is of form 𝑃𝑖𝑗[p].𝑜(t), |p| ≤ 1, such that 𝑚𝑖𝑗 ∈ 𝑆,
where Va is a list of distinct variables of length |𝒞|p|| .

Given a rule 𝑟 ∈ 𝑅 of form (3.2), we can now define the rule

𝒞𝑆𝑚(𝑟) = 𝛼1 ∨⋯ ∨ 𝛼𝑘 ← 𝒞𝑆𝑚(𝛽1), … , 𝒞𝑆𝑚(𝛽𝑚), not𝒞𝑆𝑚(𝛽𝑚+1), … , not𝒞𝑆𝑚(𝛽𝑛),
𝒱𝒞𝑚(𝑒1), … , 𝒱𝒞𝑚(𝑒𝑢) ,

where 𝑒1, … , 𝑒𝑢 are those module atoms from ma(𝑟) such that 𝑒𝑘 is of form 𝑃𝑖𝑗[𝑝].𝑜(t)
with 𝑚𝑖𝑗 ∈ 𝑆. For a module 𝑚, we let

𝒞𝑆(𝑚) = {𝒞𝑆𝑚(𝑟) ∣ 𝑟 ∈ 𝑅(𝑚)} .

Note that we only consider module calls 𝑒1, … , 𝑒𝑢 in 𝒞𝑆𝑚(𝑟) that have an input param-
eter, which are library modules by definition. Module calls 𝑒𝑘 to input-less (main or
library) modules from 𝑆 do not need to be guarded with 𝒱𝒞𝑚(𝑒), as 𝒞𝑆𝑚(𝑒) is already
fixed and does not need to select the right module instance for accessing the output
atom. Such modules can only occur in 𝑆 if they are used to build a closed call set; for
instance, module 𝑚1 from Example 6.5 is such a module.

The module call rewriting of module 𝑚 and connected closed call set 𝑆 now com-
bines 𝒱ℛ𝑆(𝑚) and 𝒞𝑆(𝑚).

Definition 6.15 (Module call rewriting).
For a module 𝑚 and a connected closed call set 𝑆, we let the module call rewriting
𝒯𝒞𝑆(𝑚) be the following set of rules

𝒯𝒞𝑆(𝑚) = 𝒱ℛ𝑆(𝑚) ∪ 𝒞𝑆(𝑚) .

Next, we formally define the access set of a connected closed call set 𝑆.

Definition 6.16 (Access set of a connected closed call set).
Let P be an MLP, let𝑚𝑖 be a module of P, and let 𝑆 be a connected closed call set of P.
We define the access set of 𝑆 with respect to 𝑚𝑖 as the set of modules

accsP(𝑆) = {𝑚𝑘 ∣
𝑚𝑘 = (𝑃𝑘[], 𝑅𝑘) appears in P ∧ 𝑚𝑘 ∉ 𝑆∧
𝑚𝑖𝑗 ∈ 𝑆 ∧ 𝑃𝑖𝑗[𝑝].𝑜(t) ∈ ma(𝑚𝑘)

} .

149

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

𝑆′

accsP(𝑆′)

shadow

𝑚1 𝑚′
2

𝑚′
3

𝑚4

𝑚3

𝑚2

𝑚5

𝑚′
5

Figure 6.2: Call Rewriting

Intuitively, the access set gives us all modules 𝑚𝑘 without input parameters that
are not contained in 𝑆, such that 𝑚𝑘 calls modules from 𝑆. Thus we may rewrite the
calls from 𝑚𝑘 to 𝑆 using module call rewriting to access the shadow modules instead
of the modules of 𝑆.

Example 6.7 Let P be the MLP from Example 6.5. The connection graph 𝐶P = (𝑉, 𝐸)
has the set of vertices 𝑉 = {𝑚2, 𝑚3, 𝑚5} and the edges 𝐸 = {(𝑚3, 𝑚2), (𝑚5, 𝑚2)}.
Thus, 𝐶P consists of one connected component 𝑆′ = {𝑚2, 𝑚3, 𝑚5}, which will be the
connected closed call set we use for the call rewriting. Then, we get that accsP(𝑆′) =
{𝑚1, 𝑚4}, as 𝑚1 calls both 𝑚2 and 𝑚3, and 𝑚4 calls 𝑚2.

We can now define the call rewriting with respect to a connected closed call set.

Definition 6.17 (Call rewriting).
Let P = (𝑚1, … ,𝑚𝑛) be an MLP such that for a module 𝑚𝑖 = (𝑃𝑖[q𝑖], 𝑅𝑖) from P we
have |q𝑖| ≤ 1 and 𝑆 = {𝑚𝑖1, … ,𝑚𝑖ℎ} is a connected closed call set with respect to 𝑚𝑖.
We define the call rewriting of MLP P with respect to connected closed call set 𝑆 as the

150

6.3.2. Call Rewriting

MLP
CRP(𝑆) = (𝑚′

1, … ,𝑚′
𝑛, 𝑚′

𝑛+1, … ,𝑚′
𝑛+ℎ) ,

where for 𝑘 ∈ {1, … , 𝑛},

𝑚′
𝑘 = {

(𝑃𝑘[], 𝒯𝒞𝑆(𝑚𝑘)) if 𝑚𝑘 ∈ accsP(𝑆),
𝑚𝑘 otherwise,

and 𝑚′
𝑛+𝑗 = (𝑃𝑛+𝑗[], 𝒯(𝑚𝑖𝑗)) for 𝑗 ∈ {1, … , ℎ}.

Intuitively, we leave modules𝑚𝑖𝑗 ∈ 𝑆 untouched, and clone them as shadow mod-
ules 𝑚′

𝑛+𝑗, 𝑗 ∈ {1, … , ℎ}, by applying instance rewriting 𝒯(𝑚𝑖𝑗) on them. Then, mod-
ules 𝑚𝑘 ∈ accsP(𝑆) will be rewritten to call the shadow modules instead of modules
from 𝑆.

To show the next lemma we define for each𝑀𝑘/𝑇 from M the set val(𝑀𝑘/𝑇) con-
sisting of

val(𝑀𝑘/𝑇) = ⋃
𝑚𝑖𝑗

∈ 𝑆
⋃

𝑃𝑖𝑗[𝑝].𝑜(t) ∈ ma(𝑚𝑘)
{val𝑝(c, 1, b) ∣

c ∈ 𝒞|𝑝|∧
𝑝(c) ∈ 𝑀𝑘/𝑇∧
bs−1𝑘 (𝑇) = b

} ∪ (6.13)

⋃
𝑚𝑖𝑗

∈ 𝑆
⋃

𝑃𝑖𝑗[𝑝].𝑜(t) ∈ ma(𝑚𝑘)
{val𝑝(c, 0, b) ∣

c ∈ 𝒞|𝑝|∧
𝑝(c) ∉ 𝑀𝑘/𝑇∧
bs−1𝑘 (𝑇) = b

} (6.14)

and flat(𝑀𝑘/𝑇) be the set

flat(𝑀𝑘/𝑇) = {𝑎(c, b) ∣ 𝑎(c) ∈ 𝑀𝑘/𝑇 ∧ bs−1𝑘 (𝑇) = b} . (6.15)

For a module 𝑚𝑖𝑗 ∈ 𝑆 from IRP(𝑆) such that 𝑃𝑖𝑗[𝑇] ∈ VC(P) and a model 𝑀𝑛+𝑗/∅
from M for the shadow module 𝑚′

𝑛+𝑗 of IRP(𝑆), we let lift(𝑀𝑛+𝑗/∅, 𝑇) be the set

lift(𝑀𝑛+𝑗/∅, 𝑇) = {𝑎(c) ∈ HBP ∣ 𝑎(c, b) ∈ 𝑀𝑛+𝑗/∅ ∧ bs𝑖𝑗(b) = 𝑇} . (6.16)

We can now show the following.

Lemma 6.4
The answer sets of the MLP IRP(𝑆) correspond one-to-one to the answer sets of the
MLP CRP(𝑆), that is,

• for each answer set M of IRP(𝑆) there exists an answer set M′ for CRP(𝑆) such
that

151

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

– 𝑀′
𝑘/𝑇 = 𝑀𝑘/𝑇 for 𝑃𝑘[𝑇] ∈ VC(P) such that 𝑚𝑘 ∉ 𝑆 ∪ accsP(𝑆);

– 𝑀′
𝑖𝑗/𝑇 = lift(𝑀𝑛+𝑗/∅, 𝑇) for all 𝑃𝑖𝑗[𝑇] ∈ VC(P) such that 𝑚𝑖𝑗 ∈ 𝑆;

– for each module 𝑚𝑖𝑗 ∈ 𝑆,

𝑀′
𝑛+𝑗/∅ = {bit(0), bit(1)} ∪ ⋃

𝑃𝑖𝑗[𝑇]∈VC(P)
(val(𝑀𝑖𝑗/𝑇) ∪ flat(𝑀𝑖𝑗/𝑇)) ;

– 𝑀′
𝑘/∅ = 𝑀𝑘/∅ ∪ val(𝑀𝑘/∅) for each module 𝑚𝑘 ∈ accsP(𝑆); and

• for each answer set M′ of CRP(𝑆) there exists an answer set M of IRP(𝑆) such
that

– 𝑀𝑘/𝑇 = 𝑀′
𝑘/𝑇 for 𝑃𝑘[𝑇] ∈ VC(P) such that 𝑚𝑘 ∉ 𝑆 ∪ accsP(𝑆);

– 𝑀𝑖𝑗/𝑇 = lift(𝑀′
𝑛+𝑗/∅, 𝑇) for all 𝑃𝑖𝑗[𝑇] ∈ VC(P) such that 𝑚𝑖𝑗 ∈ 𝑆;

– for each module 𝑚𝑖𝑗 ∈ 𝑆,

𝑀𝑛+𝑗/∅ = {bit(0), bit(1)} ∪ ⋃
𝑃𝑖𝑗[𝑇]∈VC(P)

(val(𝑀′
𝑖𝑗/𝑇) ∪ flat(𝑀′

𝑖𝑗/𝑇)) ;

– 𝑀𝑘/∅ = 𝑀′
𝑘/∅ ∪ val(𝑀′

𝑘/∅) for each module 𝑚𝑘 ∈ accsP(𝑆).

Proof In case accsP(𝑆) = ∅, i.e., there are no modules outside 𝑆 that call modules
from 𝑆, it follows that IRP(𝑆) = CRP(𝑆), thus our claim holds. For the case that accsP(𝑆)
contains at least one module𝑚𝑘 we show now that for each answer set of IRP(𝑆) there
is a corresponding answer set of CRP(𝑆), and vice versa. Intuitively, an answer set
of IRP(𝑆) can be converted to an answer set of CRP(𝑆) by exchanging the part of the
answer set that correspond to 𝑆 with the part that correspond to the shadow modules.
The same holds when converting answer sets of CRP(𝑆) to answer sets of IRP(𝑆).

(⇒) Let M be an answer set of IRP(𝑆). We show now that there exists an answer set
M′ of CRP(𝑆) such that (a) M′ ⊧ 𝑓CRP(𝑆)

M′
, and that (b) M′ is a minimal model of

𝑓CRP(𝑆)
M′

. Intuitively, M′ is the result of swapping the part of M for the shadow
modules with the part of M for the modules from 𝑆, while modules from accsP(𝑆) get
additional atoms of form val𝑝(c, 1) (respectively, val𝑝(c, 0)); modules that belong to
neither part are kept the same.

Let us start with item a. In case module 𝑚𝑘 ∉ 𝑆 ∪ accsP(𝑆) for value calls 𝑃𝑘[𝑇] ∈
VC(P), we have that𝑀′

𝑘/𝑇 = 𝑀𝑘/𝑇 and 𝑚′
𝑘 = 𝑚𝑘, thus

𝑓CRP(𝑆)(𝑃𝑘[𝑇])M
′ = 𝑓 IRP(𝑆)(𝑃𝑘[𝑇])M ,

152

6.3.2. Call Rewriting

and since M satisfies 𝑓 IRP(𝑆)
M, we get that M′, 𝑃𝑘[𝑇] ⊧ 𝑓CRP(𝑆)(𝑃𝑘[𝑇])M

′ .
In case that a module 𝑚𝑖𝑗 ∈ 𝑆, it holds that 𝑀′

𝑖𝑗/𝑇 = lift(𝑀𝑛+𝑗/∅, 𝑇) for all
𝑃𝑖𝑗[𝑇] ∈ VC(P) such that 𝑚𝑖𝑗 ∈ 𝑆. As M is an answer set for IRP(𝑆), we have that
M ⊧ 𝑓 IRP(𝑆)

M, and in particular M, 𝑃𝑛+𝑗[∅] ⊧ 𝑓 IRP(𝑆)(𝑃𝑛+𝑗[∅])M. We show now
that M′, 𝑃𝑖𝑗[𝑇] ⊧ 𝑓CRP(𝑆)(𝑃𝑖𝑗[𝑇])

M′ for all 𝑃𝑖𝑗[𝑇] ∈ VC(P) such that 𝑚𝑖𝑗 ∈ 𝑆. Let
𝑟 ∈ 𝑓 IRP(𝑆)(𝑃𝑛+𝑗[∅])M, therefore M, 𝑃𝑛+𝑗[∅] ⊧ 𝐵(𝑟) as well as M, 𝑃𝑛+𝑗[∅] ⊧ 𝑟. We
distinguish the following cases:

• In case 𝑟 is from ℐ(𝑚𝑖𝑗), we have that 𝑟 is of form 𝑞𝑖𝑗(c, b) ← bit(b). Thus, for
𝑇 = bs𝑖𝑗(b), we get 𝑞𝑖𝑗(c) ∈ lift(𝑀𝑛+𝑗/∅, 𝑇) and so 𝑞𝑖𝑗(c) ∈ 𝑀′

𝑖𝑗/𝑇, which is a
requirement for M′ being a model for 𝑓CRP(𝑆)(𝑃𝑖𝑗[𝑇])

M′ .

• For the case that 𝑟 is from ℬ(𝑚𝑖𝑗), we have that 𝑟 is of form (6.6). Thus, for
{bit(b)} ⊆ 𝐵(𝑟) such that 𝑇 = bs𝑖𝑗(b), we show now that there is a rule 𝑟′ ∈
grnd(𝑅(𝑚𝑖𝑗)) such that 𝑟 = ℬ𝑚𝑖𝑗

(𝑟′), and 𝑟′ ∈ 𝑓CRP(𝑆)(𝑃𝑖𝑗[𝑇])
M′ . The rule 𝑟′

must be of form (3.2), i.e., whenever there is an inflated atom 𝑎(c, b) ∈ 𝐻(𝑟) ∪
𝐵(𝑟), we have 𝑎(c) ∈ 𝐻(𝑟′) ∪ 𝐵(𝑟′), and for module atoms 𝑃𝑛+𝑘.𝑜(c, v) ∈ 𝐵(𝑟)
(respectively, 𝑃𝑘.𝑜(c) ∈ 𝐵(𝑟)) we have the corresponding 𝑃𝑘[𝑝].𝑜(c) ∈ 𝐵(𝑟′)
(respectively, 𝑃𝑘.𝑜(c) ∈ 𝐵(𝑟′)). By construction of𝑀′

𝑖𝑗/𝑇 = lift(𝑀𝑛+𝑗/∅, 𝑇), we
can deduce that 𝑎(c) ∈ 𝑀′

𝑖𝑗/𝑇 iff 𝑎(c, b) ∈ 𝑀𝑛+𝑗/∅ such that 𝑎(c) ∈ HBP. Since
M, 𝑃𝑛+𝑗[∅] ⊧ 𝐵(𝑟), we get for ordinary atoms 𝑎(c) ∈ 𝐵+(𝑟′) that M′, 𝑃𝑖𝑗[𝑇] ⊧
𝑎(c) (respectively, for ordinary atoms 𝑎(c) ∈ 𝐵−(𝑟′) thatM′, 𝑃𝑖𝑗[𝑇] ⊭ 𝑎(c)). For
module atoms 𝑎′ = 𝑃𝑘.𝑜(c) ∈ 𝐵+(𝑟′) we get that M′, 𝑃𝑖𝑗[𝑇] ⊧ 𝑎

′ (respectively,
for 𝑎′ ∈ 𝐵−(𝑟′) that M′, 𝑃𝑖𝑗[𝑇] ⊭ 𝑎′), as

𝑀𝑘/(𝑀𝑛+𝑗/∅)|
()
() = 𝑀𝑘/(𝑀′

𝑖𝑗/𝑇)|
()
() = 𝑀𝑘/∅

for any 𝑃𝑖𝑗[𝑇] ∈ VC(P). Considering module atoms 𝑎′ = 𝑃𝑘[𝑝].𝑜(c) ∈ 𝐵(𝑟′),
we get that 𝑎 = 𝑃𝑛+𝑘.𝑜(c, v) ∈ 𝐵(𝑟) for the ground substitution 𝜎mapping each
variable 𝑉𝑎

𝑢 to 𝑣𝑢 from v for 𝑢 ∈ {1, … , |𝒞|𝑝||} such that

𝒱𝒞𝑚𝑖𝑗
(𝑎′)𝜎 = {val𝑝(c′, 𝑉𝑎

bpos(c′)) ∣ c′ ∈ 𝒞|𝑝|} 𝜎 ⊆ 𝐵+(𝑟) .

It holds that 𝑜(c, v) ∈ 𝑀𝑛+𝑘/(𝑀𝑛+𝑗/∅)|
()
() = 𝑀𝑛+𝑘/∅ for an 𝑎 ∈ 𝐵+(𝑟) (re-

spectively, 𝑜(c, v) ∉ 𝑀𝑛+𝑘/∅ for an 𝑎 ∈ 𝐵−(𝑟)). Thus, for the module 𝑚𝑖𝑘 ∈ 𝑆
and for 𝑇′ = bs𝑖𝑘(v), we have that 𝑜(c) ∈ 𝑀′

𝑖𝑘/𝑇
′ iff 𝑎 ∈ 𝐵+(𝑟). Now as

M, 𝑃𝑛+𝑗[∅] ⊧ 𝑣 for all 𝑣 ∈ 𝒱𝒞𝑚𝑖𝑗
(𝑎′)𝜎, we get that for 𝑝(c′, b) ∈ 𝑀𝑛+𝑗/∅ iff

𝑣𝑢 = 1 for 𝑣𝑢 from v such that 𝑢 = bpos(c′), and therefore, by construction of

153

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

lift(𝑀𝑛+𝑗/∅, 𝑇), we get 𝑝(c′) ∈ 𝑀′
𝑖𝑗/𝑇 iff 𝑣𝑢 = 1. Hence, 𝑞𝑘(c′) ∈ (𝑀′

𝑖𝑗/𝑇)|
𝑞𝑘
𝑝

iff 𝑣𝑢 = 1, which means that

(𝑀′
𝑖𝑗/𝑇)|

𝑞𝑘
𝑝 = bs𝑖𝑘(v) = 𝑇′ .

Therefore, we can now link 𝑃𝑖𝑗[𝑇] to 𝑃𝑖𝑘[𝑇
′] inM′, as it holds in case 𝑎′ ∈ 𝐵+(𝑟′)

that M′, 𝑃𝑖𝑗[𝑇] ⊧ 𝑎
′, and for 𝑎′ ∈ 𝐵−(𝑟′), we have that M′, 𝑃𝑖𝑗[𝑇] ⊭ 𝑎′.

Therefore, M′, 𝑃𝑖𝑗[𝑇] ⊧ 𝐵(𝑟
′), and we get that 𝑟′ ∈ 𝑓CRP(𝑆)(𝑃𝑖𝑗[𝑇])

M′ . By con-
struction of M′ and as M, 𝑃𝑛+𝑗[∅] ⊧ 𝐻(𝑟), we have for 𝑎(c) ∈ 𝐻(𝑟′) such that
M, 𝑃𝑛+𝑗[∅] ⊧ 𝑎(c, b) that M′, 𝑃𝑖𝑗[𝑇] ⊧ 𝑎(c). Thus, M′, 𝑃𝑖𝑗[𝑇] ⊧ 𝐻(𝑟

′), and so we
deduce M′, 𝑃𝑖𝑗[𝑇] ⊧ 𝑟

′.

Hence, M′, 𝑃𝑖𝑗[𝑇] ⊧ 𝑓CRP(𝑆)(𝑃𝑖𝑗[𝑇])
M′ for all value calls 𝑃𝑖𝑗[𝑇] such that 𝑚𝑖𝑗 ∈ 𝑆.

Next, we consider value calls 𝑃𝑛+𝑗[∅] for 𝑚𝑖𝑗 ∈ 𝑆. In this case, we have that
𝑀′

𝑛+𝑗/∅ = ⋃𝑃𝑖𝑗[𝑇]∈VC(P) val(𝑀𝑖𝑗/𝑇) ∪ flat(𝑀𝑖𝑗/𝑇). As M is an answer set for IRP(𝑆),

we have that M ⊧ 𝑓 IRP(𝑆)
M, and in particular M, 𝑃𝑖𝑗[𝑇] ⊧ 𝑓 IRP(𝑆)(𝑃𝑖𝑗[𝑇])

M for all
𝑃𝑖𝑗[𝑇] ∈ VC(P) such that 𝑚𝑖𝑗 ∈ 𝑆. In CRP(𝑆), we have 𝑚′

𝑖𝑗 = 𝑚𝑖𝑗 and 𝑚′
𝑛+𝑗 =

(𝑃𝑛+𝑗[], 𝒯(𝑚𝑖𝑗)), just as in IRP(𝑆). To show that M′, 𝑃𝑛+𝑗[∅] ⊧ 𝑓CRP(𝑆)(𝑃𝑛+𝑗[∅])M
′ ,

we can reuse the argument from part (a) of the proof for Lemma 6.3, which works
mutatis mutandis by considering M′ as defined here and showing that each part from
𝒯(𝑚𝑖𝑗) of 𝑓CRP(𝑆)(𝑃𝑛+𝑗[𝑆])

M′ is satisfied by M′ accordingly, that is, the part ℐ(𝑚𝑖𝑗),
𝑓𝒱ℛ(𝑚𝑖𝑗)

M′
, and 𝑓ℬ(𝑚′

𝑛+𝑗)
M′

.
The last case considers the modules 𝑚𝑘 from accsP(𝑆). Here, 𝑀′

𝑘/∅ = 𝑀𝑘/∅ ∪
val(𝑀𝑘/∅), and CRP(𝑆) defines 𝑚′

𝑘 = (𝑃𝑘[], 𝒯𝒞𝑆(𝑚𝑘)). As M is an answer set for
IRP(𝑆), we have that M ⊧ 𝑓 IRP(𝑆)

M, and in particular M, 𝑃𝑘[∅] ⊧ 𝑓 IRP(𝑆)(𝑃𝑘[∅])M
such that 𝑚𝑘 ∈ accsP(𝑆). We show now that M′, 𝑃𝑘[∅] ⊧ 𝑓CRP(𝑆)(𝑃𝑘[∅])M

′ .

• the atoms from (6.13) and (6.14) satisfy 𝑓𝒱ℛ𝑆(𝑚𝑘)
M′

: let 𝑟′ ∈ 𝑓𝒱ℛ𝑆(𝑚𝑘)
M′

,
thus M′, 𝑃𝑘[∅] ⊧ 𝐵(𝑟′). By construction of 𝒱ℛ𝑆(𝑚), we get that 𝑟′ is of form
val𝑝(c, 1) ← 𝑝(c) in case 𝑝(c) ∈ 𝑀′

𝑘/∅, otherwise 𝑟′ is of form val𝑝(c, 0) ←
𝑝(c) for 𝑝(c) ∉ 𝑀′

𝑘/∅. In the former case, we get from (6.13) that val𝑝(c, 1) ∈
𝑀′

𝑘/∅, while the latter allows us to conclude from (6.14) that val𝑝(c, 0) ∈ 𝑀′
𝑘/∅.

Therefore we can derive thatM′, 𝑃𝑘[∅] ⊧ 𝐻(𝑟′) and so we have thatM′, 𝑃𝑘[∅] ⊧
𝑟′ for all rules 𝑟′ ∈ 𝑓𝒱ℛ𝑆(𝑚𝑘)

M′
.

• all 𝑓𝒞𝑆(𝑚𝑘)
M′

are satisfied: let 𝑟′ ∈ 𝑓𝒞𝑆(𝑚𝑘)
M′

, thus M′, 𝑃𝑘[∅] ⊧ 𝐵(𝑟′). We
show now that 𝑟 ∈ 𝑓 IRP(𝑆)(𝑃𝑘[∅])M such that 𝑟′ = 𝒞𝑆𝑚𝑘(𝑟). Let 𝑎 ∈ 𝐵(𝑟). As

154

6.3.2. Call Rewriting

𝒞𝑆𝑚𝑘(𝑎) = 𝑎 for all ordinary atoms 𝑎 or for module atoms 𝑎 = 𝑃𝑗[𝑝].𝑜(c) such
that 𝑚𝑗 ∉ 𝑆, we get that M, 𝑃𝑘[∅] ⊧ 𝑎 iff M′, 𝑃𝑘[∅] ⊧ 𝑎. For module atoms
𝑎 ∈ 𝐵(𝑟) such that 𝑎 = 𝑃𝑖𝑗[𝑝].𝑜(c) with 𝑚𝑖𝑗 ∈ 𝑆, we have that 𝒞𝑆𝑚𝑘(𝑎) = 𝑎′ =
𝑃𝑛+𝑗.𝑜(c, v) for the ground substitution 𝜎mapping each variable𝑉𝑎

𝑢 to 𝑣𝑢 from v
for 𝑢 ∈ {1, … , |𝒞|𝑝||} such that 𝒱𝒞𝑚𝑘(𝑎)𝜎 = {val𝑝(c′, 𝑉𝑎

bpos(c′)) ∣ c′ ∈ 𝒞|𝑝|} 𝜎. As
M′, 𝑃𝑘[∅] ⊧ 𝐵(𝑟′), we distinguish: (1) 𝑎′ ∈ 𝐵+(𝑟′), or (2) 𝑎′ ∈ 𝐵−(𝑟′).
In case (1), M′, 𝑃𝑘[∅] ⊧ 𝑎′, hence 𝑜(c, v) ∈ 𝑀′

𝑛+𝑗/∅ such that 𝑇′ = bs𝑖𝑗(v).
We must have that 𝑜(c, v) ∈ flat(𝑀𝑖𝑗/𝑇

′) by construction of 𝑀′
𝑛+𝑗/∅, hence

𝑜(c) ∈ 𝑀𝑖𝑗/𝑇
′. Since 𝑞𝑖𝑗(c

′) ∈ 𝑇′ iff 𝑣𝑢 = 1 such that 𝑢 = bpos(c′), we

get by (6.13) and (6.14) that 𝑇′ = (𝑀′
𝑘/∅)|

𝑞𝑖𝑗
𝑝 , as whenever 𝑝(c′) ∈ 𝑀′

𝑘/∅ we
have val𝑝(c′, 1) ∈ 𝑀′

𝑘/∅, and for 𝑝(c′) ∉ 𝑀′
𝑘/∅ we have val𝑝(c′, 0) ∈ 𝑀′

𝑘/∅,
thus encoding𝑇′ bymeans of v. But since𝑀𝑘/∅ ⊆ 𝑀′

𝑘/∅ and both differ only in

atoms of form val𝑝(c′, 0) and val𝑝(c′, 0), we have that (𝑀′
𝑘/∅)|

𝑞𝑖𝑗
𝑝 = (𝑀𝑘/∅)|

𝑞𝑖𝑗
𝑝 ,

and thus 𝑇′ = (𝑀𝑘/∅)|
𝑞𝑖𝑗
𝑝 , whence we conclude that M, 𝑃𝑘[∅] ⊧ 𝑎.

In case (2), M′, 𝑃𝑘[∅] ⊭ 𝑎′, hence 𝑜(c, v) ∉ 𝑀′
𝑛+𝑗/∅ such that 𝑇′ = bs𝑖𝑗(v).

We must have that 𝑜(c, v) ∉ flat(𝑀𝑖𝑗/𝑇
′) by construction of 𝑀′

𝑛+𝑗/∅, hence
𝑜(c) ∉ 𝑀𝑖𝑗/𝑇

′. With a similar argument as in case (1), we can deduce that
M, 𝑃𝑘[∅] ⊭ 𝑎.
Therefore, M, 𝑃𝑘[∅] ⊧ 𝐵(𝑟), and so 𝑟 ∈ 𝑓 IRP(𝑆)(𝑃𝑘[∅])M. Now as M satisfies
M ⊧ 𝑓 IRP(𝑆)

M, we must have that M, 𝑃𝑘[∅] ⊧ 𝐻(𝑟), and since 𝐻(𝑟′) = 𝐻(𝑟),
we get M′, 𝑃𝑘[∅] ⊧ 𝐻(𝑟′) and thus M′, 𝑃𝑘[∅] ⊧ 𝑟′. Therefore, we can deduce
that M′, 𝑃𝑘[∅] ⊧ 𝑓𝒞𝑆(𝑚𝑘)

M′
.

We can derive now that for all value calls 𝑃𝑘[𝑇] ∈ VC(CRP(𝑆)) we have that
M′, 𝑃𝑘[𝑇] ⊧ 𝑓CRP(𝑆)

M′
, therefore M′ ⊧ 𝑓CRP(𝑆)

M′
.

We turn our attention to item b. To show that M′ is a minimal model of 𝑓CRP(𝑆)
M′

,
we must ensure that there is no interpretation M″ such that M″ < M′ and M″ ⊧
𝑓CRP(𝑆)

M′
.

Towards a contradiction, assume M″ satisfies 𝑓CRP(𝑆)
M′

. As M″ < M′, we con-
sider the following cases:

1. for some𝑀″
𝑘/𝑇 such that 𝑚𝑘 ∉ 𝑆 ∪ accsP(𝑆) we have that𝑀″

𝑘/𝑇 ⊂ 𝑀′
𝑘/𝑇;

2. for some𝑀″
𝑘/∅ such that 𝑚𝑘 ∈ accsP(𝑆) we have that𝑀″

𝑘/∅ ⊂ 𝑀′
𝑘/∅;

3. for some𝑀″
𝑖𝑗/𝑇 such that for𝑚𝑖𝑗 ∈ 𝑆 and 𝑃𝑖𝑗[𝑇] ∈ VC(P) we have that𝑀″

𝑖𝑗/𝑇 ⊂
𝑀′

𝑖𝑗/𝑇; or

155

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

4. for some𝑀″
𝑛+𝑗/∅ such that 𝑚𝑖𝑗 ∈ 𝑆 we have𝑀″

𝑛+𝑗/∅ ⊂ 𝑀′
𝑛+𝑗/∅.

Let N denote an interpretation for IRP(𝑆) such that

• 𝑁𝑘/𝑇 = 𝑀″
𝑘/𝑇 for all 𝑃𝑘[𝑇] ∈ VC(P) such that 𝑚𝑘 ∉ 𝑆 ∪ accsP(𝑆),

• 𝑁𝑘/∅ = 𝑀″
𝑘/∅ ⧵ val(𝑀𝑘/∅) for each module 𝑚𝑘 ∈ accsP(𝑆),

• 𝑁𝑖𝑗/𝑇 = lift(𝑀″
𝑛+𝑗/∅, 𝑇) for all 𝑃𝑖𝑗[𝑇] ∈ VC(P) such that 𝑚𝑖𝑗 ∈ 𝑆, and

• for each module 𝑚𝑖𝑗 ∈ 𝑆,

𝑁𝑛+𝑗/∅ = {bit(0), bit(1)} ∪ ⋃
𝑃𝑖𝑗[𝑇]∈VC(P)

val(𝑀″
𝑖𝑗/𝑇) ∪ flat(𝑀″

𝑖𝑗/𝑇) . (6.17)

If one of (1)–(4) is true, we get that N < M. For case (1), we have for 𝑚𝑘 ∉
𝑆 ∪ accsP(𝑆),𝑚′

𝑘 = 𝑚𝑘 by definition of CRP(𝑆) and𝑀′
𝑘/𝑇 = 𝑀𝑘/𝑇. Thus, for 𝑃𝑘[𝑇] ∈

VC(P) the reduct 𝑓 IRP(𝑆)(𝑃𝑘[𝑇])M is equal to 𝑓CRP(𝑆)(𝑃𝑘[𝑇])M
′ . Since 𝑀″

𝑘/𝑇 ⊂
𝑀′

𝑘/𝑇 and𝑀′
𝑘/𝑇 = 𝑀𝑘/𝑇, we get𝑁𝑘/𝑇 ⊂ 𝑀𝑘/𝑇. By assumptionM″ ⊧ 𝑓CRP(𝑆)

M′
, we

have that M″, 𝑃𝑘[𝑇] ⊧ 𝑓CRP(𝑆)
M′

for all 𝑃𝑘[𝑇] ∈ VC(CRP(𝑆)), and thus N, 𝑃𝑘[𝑇] ⊧
𝑓CRP(𝑆)

M′
for all 𝑃𝑘[𝑇] ∈ VC(IRP(𝑆)). But this contradictsM being a minimal model

of 𝑓 IRP(𝑆)
M, therefore N is not a model of 𝑓 IRP(𝑆)

M and thus M″ is not a model of
𝑓CRP(𝑆)

M′
.

In case (2),𝑀″
𝑘/∅ ⊂ 𝑀′

𝑘/∅, so we get that𝑁𝑘/∅ ⊂ 𝑀𝑘/∅, as from our assumption
that M″ is a model for 𝑓CRP(𝑆)

M′
, we cannot have that atoms from val(𝑀𝑘/∅) are

missing from 𝑀″
𝑘/∅. Therefore, N < M and by minimality of M we have that N does

not satisfy𝑓 IRP(𝑆)
M. Wemust have a rule 𝑟 ∈ 𝑓 IRP(𝑆)(𝑃𝑘[∅])M such thatN, 𝑃𝑘[∅] ⊭

𝑟, i.e., N, 𝑃𝑘[∅] ⊧ 𝐵(𝑟) but N, 𝑃𝑘[∅] ⊭ 𝐻(𝑟). From 𝑟 ∈ 𝑓 IRP(𝑆)(𝑃𝑘[∅])M we can
deduce that there exists an 𝑟′ ∈ 𝑓CRP(𝑆)(𝑃𝑘[∅])M

′ such that 𝑟′ = 𝒞𝑆𝑚𝑘(𝑟) and by
definition of the FLP-reduct, M″, 𝑃𝑘[∅] ⊧ 𝐵(𝑟′). But now we arrive at a contradiction,
as we must have that M″, 𝑃𝑘[∅] ⊭ 𝐻(𝑟′) and therefore M″, 𝑃𝑘[∅] ⊭ 𝑟′, which is
necessary to satisfy 𝑓CRP(𝑆)

M′
.

For the case (3),𝑀″
𝑖𝑗/𝑇 ⊂ 𝑀′

𝑖𝑗/𝑇, we have that (6.17) is true. The subset-relationship
N < M follows from 𝑀″

𝑖𝑗/𝑇 ⊂ 𝑀′
𝑖𝑗/𝑇, where 𝑀′

𝑖𝑗/𝑇 is lift(𝑀𝑛+𝑗/∅, 𝑇), and thus
𝑁𝑛+𝑗/∅ ⊂ 𝑀𝑛+𝑗/∅. Therefore, N < M holds and by minimality of M we have that
N does not satisfy 𝑓 IRP(𝑆)

M. We must have a rule 𝑟′ ∈ 𝑓 IRP(𝑆)(𝑃𝑛+𝑗[∅])M such that
N, 𝑃𝑛+𝑗[∅] ⊭ 𝑟′, that is N, 𝑃𝑛+𝑗[∅] ⊧ 𝐵(𝑟′) but N does not satisfy 𝐻(𝑟′) at 𝑃𝑛+𝑗[∅].
As 𝑟′ appears in the shadow modules it must be from the set grnd(ℬ𝑚𝑖𝑗

(𝑟)), where

𝑟 ∈ 𝑅(𝑚𝑖𝑗). Since 𝑟′ ∈ 𝑓 IRP(𝑆)(𝑃𝑛+𝑗[∅])M, we must have M, 𝑃𝑛+𝑗[∅] ⊧ 𝐵(𝑟′), and

156

6.3.3. Module Removal of Connected Closed Call Sets

by construction of M′ and N, we must have M′, 𝑃𝑖𝑗[𝑇] ⊧ 𝐵(𝑟), where 𝑇 = bs𝑖𝑗(b)
for {bit(b)} ⊆ 𝐵(𝑟′). Therefore, 𝑟 ∈ 𝑓CRP(𝑆)(𝑃𝑖𝑗[𝑇])

M′ . As N, 𝑃𝑛+𝑗[∅] ⊭ 𝐻(𝑟′), no
𝑎(c, b) ∈ 𝐻(𝑟′) is true in N, and from the construction of N, we can conclude that
for all 𝑎(c) ∈ 𝐻(𝑟) we have 𝑎(c) ∉ 𝑀″

𝑖𝑗/𝑇. Hence, M″, 𝑃𝑖𝑗[𝑇] ⊭ 𝐻(𝑟), so we get that
M″, 𝑃𝑖𝑗[𝑇] ⊭ 𝑟, which contradicts our assumption thatM″ satisfies 𝑓CRP(𝑆)(𝑃𝑖𝑗[𝑇])

M′ .

For the case (4), 𝑀″
𝑛+𝑗/∅ ⊂ 𝑀′

𝑛+𝑗/∅, we have that 𝑁𝑖𝑗/𝑇 = lift(𝑀″
𝑛+𝑗/∅, 𝑇) for

all 𝑃𝑖𝑗[𝑇] ∈ VC(P) such that𝑚𝑖𝑗 ∈ 𝑆. For some particular 𝑃𝑖𝑗[𝑇], we have that𝑁𝑖𝑗/𝑇 ⊂
𝑀𝑖𝑗/𝑇, which follows from the construction of 𝑀′

𝑛+𝑗/∅ from one of the 𝑀𝑖𝑗/𝑇. Now
we have thatN < M byminimality ofMwe conclude thatN does not satisfy 𝑓 IRP(𝑆)

M.
Now we can apply the same line of reasoning as in case (3), this time only reversing
the role of the shadow modules and the modules from 𝑆. We then arrive at M″ not
satisfying 𝑓CRP(𝑆)(𝑃𝑛+𝑗[∅])M

′ , a contradiction.

(⇐) LetM′ be an answer set of CRP(𝑆). We show now that there exists a corresponding
answer set M of IRP(𝑆) such that (a) M ⊧ 𝑓 IRP(𝑆)

M, and that (b) M is a minimal
model of 𝑓 IRP(𝑆)

M. Intuitively, we convert the shadow part from M′ to the 𝑆-part of
interpretation M, and the 𝑆-part from M′ to the shadow part from M. The proof now
works, mutatis mutandis, as the proof for (⇒), hence both (a) and (b) are true, and M
is an answer set of IRP(𝑆). ⧠

6.3.3 Module Removal of Connected Closed Call Sets
We are now able to show that we can remove a connected closed call set from an MLP
P in order to obtain a rewritten MLP without input parameters.

We first definemodule removal, whose aim is to prune offmodules from anMLP. In
later sections, we will employ module removal again for simplifying MLPs. We there-
fore define a general notion of module removal, and use it specifically for removing
connected closed call sets here.

Definition 6.18 (Module removal).
Let P = (𝑚1, … ,𝑚𝑛) be an MLP, let𝑚𝑘 be a module from P, and let 𝑆 = {𝑚𝑖1, … ,𝑚𝑖ℎ}
be a set of modules from P. We define

P −𝑚𝑘 = (𝑚1, … ,𝑚𝑘−1, 𝑚𝑘+1, … ,𝑚𝑛)

to be the reduced MLP P with respect to module 𝑚𝑘 and

P − 𝑆 = (⋯((P −𝑚𝑖1) − 𝑚𝑖2)⋯) − 𝑚𝑖ℎ

to be the reduced MLP P with respect to a set of modules 𝑆.

157

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

(a) P

𝑆

𝑚1

𝑚2

(b) CRP(𝑆)

𝑆

shadow

𝑚′
1

𝑚′
2

𝑚2

(c) CRP(𝑆) − 𝑆

𝑚′
1

𝑚′
2

Figure 6.3: Module Removal

Intuitively, removing modules from an MLP P might lead to a program that is not
well-formed, i.e., it could be that some modules in P − 𝑚𝑘 or P − 𝑆 depend on 𝑚𝑘 or
on modules in 𝑆. But under certain conditions, we can prune superfluous modules of
𝑆 from an MLP and get an equivalent MLP with fewer modules.

One possibility is to prune the call rewriting CRP(𝑆), where 𝑆 is a connected closed
call set with respect to a module 𝑚𝑖 of the MLP P. Since 𝑆 is a connected closed call
set, CRP(𝑆)−𝑆 is guaranteed to have no dependencies from CRP(𝑆)−𝑆 to any module
from 𝑆, which allows us to remove superfluous modules from the MLP CRP(𝑆).

The next example illustrates module removal using the even module.

Example 6.8 Consider the MLP P = (𝑚1, 𝑚2), where 𝑚1 = (𝑚𝑎𝑖𝑛[], 𝑅1) is a main
module with the set of rules 𝑅1

𝑝(𝑎) ←
𝑝(𝑏) ←

𝑟 ← 𝑃[𝑝].even

and 𝑚2 = (𝑃[𝑞/1], 𝑅2) is the module from Example 3.1. Let 𝑆 = {𝑚2} be a connected
closed call set with respect to 𝑚1. Figure 6.3a shows the inter-module dependencies
of P.

Then, the call rewriting CRP(𝑆) is given by the MLP (𝑚′
1, 𝑚2, 𝑚′

2), where 𝑚′
1 and

𝑚′
2 are shown below. Figure 6.3b shows the shadow module 𝑚′

2 and the disconnected
module𝑚2. Applying module removal of CRP(𝑆)with respect to 𝑆 yields CRP(𝑆)−𝑆 =

158

6.3.3. Module Removal of Connected Closed Call Sets

(𝑚′
1, 𝑚′

2) with the main module 𝑚′
1 = (main[], 𝑅′1), where 𝑅′1 is the set of rules

𝑝(𝑎) ←

𝑝(𝑏) ←

val𝑝(𝑎, 1) ← 𝑝(𝑎)
val𝑝(𝑎, 0) ← not𝑝(𝑎)
val𝑝(𝑏, 1) ← 𝑝(𝑏)
val𝑝(𝑏, 0) ← not𝑝(𝑏)

𝑟 ← 𝑃.even(𝑉1,1, 𝑉1,2), val𝑝(𝑎, 𝑉1,1), val𝑝(𝑏, 𝑉1,2)

and the library module 𝑚′
2 = (𝑃[], 𝑅′2), where 𝑅′2 is the set of rules

bit(0) ←
bit(1) ←

𝑞(𝑎, 1, 𝐵1,2) ← bit(𝐵1,1), bit(𝐵1,2)
𝑞(𝑏, 𝐵1,1, 1) ← bit(𝐵1,1), bit(𝐵1,2)

𝑞′(𝑋, 𝐵1,1, 𝐵1,2) ∨ 𝑞′(𝑌, 𝐵1,1, 𝐵1,2) ← 𝑞(𝑋, 𝐵1,1, 𝐵1,2), 𝑞(𝑌, 𝐵1,1, 𝐵1,2), 𝑋 ≠ 𝑌,
bit(𝐵1,1), bit(𝐵1,2)

skip(𝑋, 𝐵1,1, 𝐵1,2) ← 𝑞(𝑋, 𝐵1,1, 𝐵1,2), not 𝑞′(𝑋, 𝐵1,1, 𝐵1,2),
bit(𝐵1,1), bit(𝐵1,2)

val𝑞′(𝑎, 1, 𝐵1,1, 𝐵1,2) ← 𝑞′(𝑎, 𝐵1,1, 𝐵1,2), bit(𝐵1,1), bit(𝐵1,2)
val𝑞′(𝑎, 0, 𝐵1,1, 𝐵1,2) ← not 𝑞′(𝑎, 𝐵1,1, 𝐵1,2), bit(𝐵1,1), bit(𝐵1,2)
val𝑞′(𝑏, 1, 𝐵1,1, 𝐵1,2) ← 𝑞′(𝑏, 𝐵1,1, 𝐵1,2), bit(𝐵1,1), bit(𝐵1,2)
val𝑞′(𝑏, 0, 𝐵1,1, 𝐵1,2) ← not 𝑞′(𝑏, 𝐵1,1, 𝐵1,2), bit(𝐵1,1), bit(𝐵1,2)

odd(𝐵1,1, 𝐵1,2) ← skip(𝑋, 𝐵1,1, 𝐵1,2), 𝑃.even(𝑉1,1, 𝑉1,2),
bit(𝐵1,1), bit(𝐵1,2),
val𝑞′(𝑎, 𝑉1,1, 𝐵1,1, 𝐵1,2),
val𝑞′(𝑏, 𝑉1,2, 𝐵1,1, 𝐵1,2)

even(𝐵1,1, 𝐵1,2) ← not odd(𝐵1,1, 𝐵1,2), bit(𝐵1,1), bit(𝐵1,2)

Note that CRP(𝑆)−𝑆 consists of modules without input and preserves the call structure
of P, as shown in Figure 6.3c.

In the following, we let P = (𝑚1, … ,𝑚𝑛) be an MLP,𝑚𝑖 = (𝑃𝑖[q𝑖], 𝑅𝑖) be a module
from P such that |q𝑖| ≤ 1, and 𝑆 = {𝑚𝑖1, … ,𝑚𝑖ℎ} is a connected closed call set with
respect to 𝑚𝑖. We are now able to show the following.

159

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

Proposition 6.5 (Module Removal)
The answer sets of the MLP P correspond one-to-one to the answer sets of the MLP
CRP(𝑆) − 𝑆.

Proof As 𝑆 is a connected closed call set with respect to𝑚𝑖, themodules in 𝑆 call either
modules in 𝑆 or main modules from P that do not show up in 𝑆. Hence, CRP(𝑆) − 𝑆
is a proper MLP, as the remaining modules in CRP(𝑆) − 𝑆 do not call any module in 𝑆
anymore.

What is left to be shown is that the reduced MLP CRP(𝑆) − 𝑆 has the same answer
sets as P. Let M be an answer set for P, and let M𝑖 be the answer set M′ for IRP(𝑆)
that is obtained from the proof of Lemma 6.3. Furthermore, let M𝑐 be the answer set
M′ for CRP(𝑆) that is obtained from using M𝑖 as answer set of IRP(𝑆) in the proof
of Lemma 6.4. We obtain an interpretation M̂ for the MLP CRP(𝑆) − 𝑆 from M𝑐 by
removing all 𝑀𝑐

𝑖𝑗/𝑇 from M𝑐 such that 𝑚𝑖𝑗 ∈ 𝑆 and 𝑃𝑖𝑗[𝑇] ∈ VC(P). Since no module
from CRP(𝑆) − 𝑆 calls any module from 𝑆, we immediately get that M̂ is an answer set
for CRP(𝑆) − 𝑆.

Now let M̂ be an answer set for CRP(𝑆) − 𝑆. We receive an interpretation M for
P by first removing all 𝑀𝑛+𝑗/∅ from M̂ such that 𝑚𝑖𝑗 ∈ 𝑆, and then adding for each
𝑃𝑖𝑗[𝑇] ∈ VC(P) the set 𝑀𝑖𝑗/𝑇 = lift(𝑀𝑛+𝑗/∅, 𝑇) to M, where lift(⋅, ⋅) is the function
defined in (6.16).

To see that M is an answer set of P, we let M𝑐 be an interpretation of CRP(𝑆) that
is obtained from M̂ by adding 𝑀𝑐

𝑖𝑗/𝑇 = lift(𝑀𝑛+𝑗/∅, 𝑇) for all 𝑚𝑖𝑗 ∈ 𝑆 and 𝑃𝑖𝑗[𝑇] ∈
VC(P). It is easy to see that for each 𝑃𝑖𝑗[𝑇] ∈ VC(P) such that 𝑚𝑖𝑗 ∈ 𝑆, each rule
𝑟 ∈ 𝑓CRP(𝑆)(𝑃𝑖𝑗[𝑇])

M̂ has a corresponding rule 𝑟′ ∈ 𝑓 (CRP(𝑆) − 𝑆)(𝑃𝑛+𝑗[∅])M
𝑐 , thus

M𝑐 must be an answer set of CRP(𝑆). Now letM𝑖 be the answer set for IRP(𝑆) that is ob-
tained fromM𝑐 in the proof of Lemma 6.3. Note that we have now all the original rules
𝑟 from𝑚𝑘 ∈ accsP(𝑆) from the rewritten rules 𝒞𝑆𝑚𝑘(𝑟) for the module𝑚′

𝑘 from CRP(𝑆)
also satisfied in IRP(𝑆). Now as P does not call modules 𝑚𝑛+𝑗 from IRP(𝑆), we imme-
diately get that M is also an answer set of P, since 𝑓P(𝑃𝑖𝑗[𝑇])

M = 𝑓 IRP(𝑆)(𝑃𝑖𝑗[𝑇])
M𝑖

for all 𝑃𝑖𝑗[𝑇] ∈ VC(P). ⧠

6.4 Macro Expansion of Modular Logic Programs
In this section, we develop amacro expansion rewriting technique that does not impose
blowing up the arity of predicates. Here, we copy the rules from a particular module
into their calling module. Note that this approach to rewriting modular logic programs
is only applicable to modules whose rules are Horn, and whose call graph is acyclic.
In the following §6.5, we will then show how this technique can be applied to dl-
programs (Eiter et al., 2008).

160

6.4.1. Module Copy Rewriting

6.4.1 Module Copy Rewriting
Module copy rewriting is split into two parts, one for the module callee and one for
the module caller. The first one takes a module that is being called by another one and
rewrites its atoms by attaching the associated module call to its predicates, as well as
adding new rules that deal with module input. The second part of the translation takes
care of the caller module by replacing the module call by the fresh predicate created in
the first part of the translation. Adding the callee translation to the module caller then
gives us a new module that has one module call less and the rules of the called module
added to the caller module. When applying this method to all the module calls, we can
remove module atoms, thus creating an MLP with one or more disconnected library
modules, which in a subsequent step can be safely removed.

We begin with the definitions for rewriting module callees.

Definition 6.19 (Module callee input).
Let 𝑚 = (𝑄[𝑞], 𝑅) be a module and 𝑝 be a predicate symbol matching the arity of 𝑞.
We define the module callee input rule as

𝒞ℐ(𝑚,𝑄[𝑝]) = 𝑞𝑄[𝑝](X) ← 𝑝(X) .

The rules of a called module are rewritten based on the following translation.

Definition 6.20 (Module callee rewriting).
Let𝑚 = (𝑄[𝑞], 𝑅) be a module and let 𝑝 be a predicate symbol matching the arity of 𝑞.
For an atom 𝑎 appearing in 𝑚, we define

𝒞𝒯(𝑎, 𝑄[𝑝]) = {
𝑏𝑄[𝑝](t) if 𝑎 is of form 𝑏(t)
𝑃𝑗[𝑏𝑄[𝑝]].𝑜(t) if 𝑎 is of form 𝑃𝑗[𝑏].𝑜(t)

.

Given a rule 𝑟 of form (3.2), we can now define 𝒞𝒯(𝑟, 𝑄[𝑝]) to be the rule

𝒞𝒯(𝛼1, 𝑄[𝑝]) ∨⋯ ∨ 𝒞𝒯(𝛼𝑘, 𝑄[𝑝]) ← 𝒞𝒯(𝛽1, 𝑄[𝑝]), … , 𝒞𝒯(𝛽𝑚, 𝑄[𝑝]),
not 𝒞𝒯(𝛽𝑚+1, 𝑄[𝑝]), … , not 𝒞𝒯(𝛽𝑛, 𝑄[𝑝]) .

For the set of rules 𝑅 in 𝑚, we let

𝒞𝒯(𝑅,𝑄[𝑝]) = {𝒞𝒯(𝑟, 𝑄[𝑝]) ∣ 𝑟 ∈ 𝑅} .

The next part of the translation takes a calling module and a called module, and
rewrites the module atom of the called module. A module 𝑚𝑘 calls a module 𝑚𝑖 if
there is a rule in 𝑅(𝑚𝑘) that has a module atom of form 𝑃𝑖[𝑝].𝑜(t) in its body.

161

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

Definition 6.21 (Module caller rewriting).
Given two modules𝑚𝑘 = (𝑃𝑘[𝑞𝑘], 𝑅𝑘) and𝑚𝑖 = (𝑃𝑖[𝑞𝑖], 𝑅𝑖) such that𝑚𝑘 calls𝑚𝑖, we
define

𝒞ℳ(𝑎, 𝑃𝑖[𝑝]) = {
𝑜𝑃𝑖[𝑝](t) if 𝑎 is of form 𝑃𝑖[𝑝].𝑜(t)
𝑎 otherwise

,

and for a rule 𝑟 of form (3.2), we define 𝒞ℳ(𝑟, 𝑃𝑖[𝑝]) to be the rule

𝛼1 ∨⋯ ∨ 𝛼𝑘 ← 𝒞ℳ(𝛽1, 𝑃𝑖[𝑝]), … , 𝒞ℳ(𝛽𝑚, 𝑃𝑖[𝑝]),
not 𝒞ℳ(𝛽𝑚+1, 𝑃𝑖[𝑝]), … , not 𝒞ℳ(𝛽𝑛, 𝑃𝑖[𝑝]) .

For a set of rules 𝑅 and the module atom 𝑃𝑖[𝑝], we let

𝒞ℳ(𝑅, 𝑃𝑖[𝑝]) = {𝒞ℳ(𝑟, 𝑃𝑖[𝑝]) ∣ 𝑟 ∈ 𝑅} .

Given 𝑚𝑘 and 𝑚𝑖 as in Definition 6.21, we can now incorporate 𝑚𝑖 into 𝑚𝑘 such
that 𝑚𝑘 does not call 𝑚𝑖 anymore. We therefore formally define:

Definition 6.22 (Module copy rewriting).
The module copy rewriting of the MLP P with respect to the modules 𝑚𝑘 and 𝑚𝑖 and
module atom 𝑃𝑖[𝑝].𝑜(t) is the MLP

MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]) = (𝑚1, … ,𝑚𝑘−1, 𝑚′
𝑘, 𝑚𝑘+1, … ,𝑚𝑛) ,

where

𝑚′
𝑘 = (𝑃𝑘[𝑞𝑘], 𝒞ℳ(𝑅(𝑚𝑘), 𝑃𝑖[𝑝]) ∪ 𝒞𝒯(𝑅(𝑚𝑖), 𝑃𝑖[𝑝]) ∪ 𝒞ℐ(𝑚𝑖, 𝑃𝑖[𝑝])) .

Example 6.9 Let P = (𝑚0, 𝑚1, 𝑚2, 𝑚3) be an MLP with the main module 𝑚0 =
(𝑃0[], 𝑅0), and the three library modules 𝑚1 = (𝑃1[𝑞1], 𝑅1), 𝑚2 = (𝑃2[𝑞2], 𝑅2), and
𝑚3 = (𝑃3[𝑞3], 𝑅3). The rules of P are as follows:

𝑅0 = {
𝑎 ←
𝑐 ← 𝑃1[𝑎].𝑜1, 𝑃2[𝑏].𝑜2
𝑑 ← 𝑃1[𝑏].𝑜1

}

𝑅1 = { 𝑜1 ← not𝑃2[𝑞1].𝑜2
𝑜1 ← 𝑃3[𝑞1].𝑜3

}

𝑅2 = { 𝑜2 ← 𝑃3[𝑞2].𝑜3 }

𝑅3 = { 𝑜3 ← 𝑞3 }

For the modules 𝑚2 and 𝑚3 of the MLP P, the module copy rewriting is given by

MCR(P, 𝑚2, 𝑚3, 𝑃3[𝑞2]) = (𝑚0, 𝑚1, 𝑚′
2, 𝑚3) ,

162

6.4.1. Module Copy Rewriting

𝑎

𝑏

𝑏𝑞1
𝑞1

𝑞2

𝑚1 𝑚0

𝑚2𝑚3

Figure 6.4: Directed connection graph MCP

where 𝑚′
2 = (𝑃2[𝑞2], 𝑅′2) such that 𝑅′2 is

𝒞ℐ(𝑚2, 𝑃3[𝑞2]): 𝑞𝑃3[𝑞2]3 ← 𝑞2

𝒞ℳ(𝑅(𝑚2), 𝑃3[𝑞2]): 𝑜2 ← 𝑜𝑃3[𝑞2]3

𝒞𝒯(𝑅(𝑚2), 𝑃3[𝑞2]): 𝑜𝑃3[𝑞2]3 ← 𝑞𝑃3[𝑞2]3

In order to capture module dependencies for the rewriting, we define the following
dependency graph.

Definition 6.23 (Directed connection graph).
The directed connection graph of the MLP P is the directed labeled graph MCP = (𝑉, 𝐸)
with vertex set 𝑉 = {𝑚1, … ,𝑚𝑛} consisting of all modules of P and edge set 𝐸 =
{(𝑚𝑖, 𝑚𝑘, 𝑝) ∣ (𝑚𝑖, 𝑚𝑘) ∈ 𝑉 × 𝑉 and 𝑃𝑖[𝑝].𝑜(t) ∈ ma(𝑚𝑘)}.

That is, a labeled edge (𝑚𝑖, 𝑚𝑘, 𝑝) appears in MCP from 𝑚𝑖 to 𝑚𝑘 capturing the de-
pendency from the callee module 𝑚𝑖 to the caller module 𝑚𝑘 for every module input
predicate 𝑝 of a module atom 𝑃𝑖[𝑝].𝑜(t) in 𝑚𝑘. Note that the labels 𝑝 allow to have
multiple edges from 𝑚𝑖 to 𝑚𝑘.

Example 6.10 (cont’d) The directed connection graph MCP for the MLP P from Ex-
ample 6.9 is shown in Figure 6.4.

For a set of ground atoms𝑀 and module tag 𝑄[𝑝], we define the functions

tag(𝑀,𝑄[𝑝]) = {𝑎𝑄[𝑝](c) ∣ 𝑎(c) ∈ 𝑀} ,
untag(𝑀,𝑄[𝑝]) = {𝑎(c) ∣ 𝑎𝑄[𝑝](c) ∈ 𝑀} , and
notag(𝑀,𝑄[𝑝]) = 𝑀 ⧵ {𝑎𝑄[𝑝](c) ∈ 𝑀}

to show the following.

163

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

Lemma 6.6
Let P = (𝑚1, … ,𝑚𝑛) be an MLP such that for the modules 𝑚𝑘 and 𝑚𝑖 from P

• the module atom 𝑃𝑖[𝑝].𝑜(t) appears in 𝑚𝑘,

• 𝑚𝑖 is a Horn module, and

• no strongly connected component of MCP contains both 𝑚𝑖 and 𝑚𝑘.

Then,

• for an answer setM ofP there exists an answer setM′ of themodule copy rewrit-
ing MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]) such that for all 𝑃𝑗[𝑇] ∈ VC(P) with 𝑆 = (𝑀𝑗/𝑇)|

𝑞𝑖
𝑝 ,

𝑀′
𝑗/𝑇 = {

𝑀𝑘/𝑇 ∪ tag(𝑀𝑖/𝑆, 𝑃𝑖[𝑝]) if 𝑗 = 𝑘,
𝑀𝑗/𝑇 otherwise;

(6.18)

• for an answer set M′ of MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]) there exists an answer set M of
the MLP P such that for all 𝑃𝑗[𝑇] ∈ VC(P),

𝑀𝑗/𝑇 = {
notag(𝑀′

𝑗/𝑇, 𝑃𝑖[𝑝]) if 𝑗 = 𝑘,
𝑀′

𝑗/𝑇 otherwise.
(6.19)

Proof Intuitively, the answer sets of P and MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]) correspond one-
to-one to each other. An answer set M of P can be mapped to an answer set of
MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]) by copying the model𝑀𝑖/𝑆 and tagging the atoms with a mod-
ule atom label to 𝑀𝑘/𝑇 for value calls 𝑃𝑖[𝑆] that get called from 𝑃𝑘[𝑇]. In the other
direction, we can remove those additional atoms from𝑀′

𝑘/𝑇.

(⇒) Let M be an answer set of P. We show now that M′—constructed from M as
defined above—is an answer set of the MLP MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]), i.e., we show that
(a) M′ ⊧ 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])

M′
, and that (b) M′ is a minimal model of the reduct

𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])
M′

.

We show item a now. We immediately get thatM′, 𝑃𝑗[𝑇] ⊧ 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])
M′

for 𝑗 ≠ 𝑘, as
𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])(𝑃𝑗[𝑇])M

′ = 𝑓P(𝑃𝑗[𝑇])M

in this case. From the definition of module copy rewriting, we can see that

𝒞ℳ(𝑓P(𝑃𝑘[𝑇])M, 𝑃𝑖[𝑝]) ∪ 𝒞𝒯(𝑓P(𝑃𝑘[𝑇])M, 𝑃𝑖[𝑝])
⊆ 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])(𝑃𝑘[𝑇])M

′

⊆ 𝒞ℳ(𝑓P(𝑃𝑘[𝑇])M, 𝑃𝑖[𝑝]) ∪ 𝒞𝒯(𝑓P(𝑃𝑘[𝑇])M, 𝑃𝑖[𝑝]) ∪ grnd(𝒞ℐ(𝑚𝑖, 𝑃𝑖[𝑝])) .

164

6.4.1. Module Copy Rewriting

All rules of 𝒞𝒯(𝑓P(𝑃𝑘[𝑇])M, 𝑃𝑖[𝑝]) are satisfied, as we have that tag(𝑀𝑖/𝑆, 𝑃𝑖[𝑝]) is
contained in𝑀′

𝑘/𝑇. Furthermore, grnd(𝒞ℐ(𝑚𝑖, 𝑃𝑖[𝑝])) is satisfied by𝑀′
𝑘/𝑇, as for𝑀𝑖/𝑆

such that 𝑆 = (𝑀𝑘/𝑇)|
𝑞𝑖
𝑝 , we have that 𝑆 ⊆ 𝑀𝑖/𝑆 by definition of an interpretation for

an MLP P, hence all rules

𝑞𝑃𝑖[𝑝]𝑖 (c) ← 𝑝(c) ∈ grnd(𝒞ℐ(𝑚𝑖, 𝑃𝑖[𝑝]))

such that 𝑝(c) ∈ 𝑀𝑘/𝑇 are true in 𝑀′
𝑘/𝑇. Thus, all rules of 𝒞ℳ(𝑓P(𝑃𝑘[𝑇])M, 𝑃𝑖[𝑝])

without a module atom 𝑃𝑖[𝑝].𝑜(c) in their bodies are satisfied, as 𝑀′
𝑘/𝑇 contains all

atoms from 𝑀𝑘/𝑇, which is a model of 𝑓P(𝑃𝑘[𝑇])M. Now let 𝑟 ∈ 𝑓P(𝑃𝑘[𝑇])M such
that there is a module atom 𝑎 = 𝑃𝑖[𝑝].𝑜(c) ∈ 𝐵(𝑟). Then, there is the corresponding
rule 𝑟′ ∈ 𝒞ℳ(𝑓P(𝑃𝑘[𝑇])M, 𝑃𝑖[𝑝]) such that 𝑜𝑃𝑖[𝑝](c) ∈ 𝐵(𝑟′). For M, 𝑃𝑘[𝑇] ⊧ 𝑎 we
must have that M, 𝑃𝑖[𝑆] ⊧ 𝑜(c) for 𝑆 = (𝑀𝑘/𝑇)|

𝑞𝑖
𝑝 , and for M, 𝑃𝑘[𝑇] ⊭ 𝑎 we get

M, 𝑃𝑖[𝑆] ⊭ 𝑜(c). Hence, 𝑜(c) ∈ 𝑀𝑖/𝑆 (respectively, 𝑜(c) ∉ 𝑀𝑖/𝑆) and so we have
that 𝑜𝑃𝑖[𝑝](c) ∈ 𝑀′

𝑘/𝑇 (respectively, 𝑜𝑃𝑖[𝑝](c) ∉ 𝑀′
𝑘/𝑇), which proves that M′ satisfies

𝐵(𝑟′). As 𝐻(𝑟) = 𝐻(𝑟′), we also have that M′ satisfies 𝐻(𝑟′), since M is a model of 𝑟.
Hence, M′ ⊧ 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])

M′
.

We continue with item b. To show that M′ is a minimal model of

𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])
M′

,

we must ensure that there is no smaller interpretation M″ < M′ such that M″ is a
model of 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])

M′
.

Towards a contradiction, assume M″ ⊧ 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])
M′

. As M″ < M′,
we consider the following cases:

1. for some𝑀″
𝑗 /𝑈 such that 𝑗 ≠ 𝑘 and 𝑗 ≠ 𝑖, we have𝑀″

𝑗 /𝑈 ⊂ 𝑀′
𝑗/𝑈;

2. for some𝑀″
𝑘/𝑇 we have𝑀″

𝑘/𝑇 ⊂ 𝑀′
𝑘/𝑇; and

3. for some𝑀″
𝑖 /𝑆 we have𝑀″

𝑖 /𝑆 ⊂ 𝑀′
𝑖/𝑆.

Let N denote an interpretation for P such that

• 𝑁𝑗/𝑈 = 𝑀″
𝑗 /𝑈 for all 𝑃𝑗[𝑈] ∈ VC(P) such that 𝑗 ∉ {𝑖, 𝑘},

• 𝑁𝑘/𝑇 = notag(𝑀″
𝑘/𝑇, 𝑃𝑖[𝑝]) for each 𝑃𝑘[𝑇] ∈ VC(P),

• for each value call 𝑃𝑘[𝑇] ∈ VC(P) such that 𝑆″ = (𝑀″
𝑘/𝑇)|

𝑞𝑖
𝑝 , we set 𝑁𝑖/𝑆″ =

untag(𝑀″
𝑘/𝑇, 𝑃𝑖[𝑝]), and

• for all 𝑃𝑖[𝑆] ∈ VC(P) such that 𝑆 ≠ 𝑆″ for any 𝑆″ from above, we set 𝑁𝑖/𝑆 =
𝑀″

𝑖 /𝑆.

165

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

If one of (1)–(3) is true, then N < M. In case (1) and (3), we have that

𝑓P(𝑃𝑗[𝑈])M = 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])(𝑃𝑗[𝑈])M
′

and
𝑓P(𝑃𝑖[𝑆])M = 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])(𝑃𝑖[𝑆])M

′ ,

respectively. As M is an answer set of P, we get that N, 𝑃𝑗[𝑈] ⊭ 𝑓P(𝑃𝑗[𝑈])M in
case (1), and N, 𝑃𝑖[𝑆] ⊭ 𝑓P(𝑃𝑖[𝑆])M in case (3). Therefore, in either case, we get

M″, 𝑃𝑗[𝑈] ⊭ 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])(𝑃𝑗[𝑈])M
′

and
M″, 𝑃𝑖[𝑆] ⊭ 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])(𝑃𝑖[𝑆])M

′ ,

respectively, which contradicts M″ being a model for 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])
M′

.

In case (2), there must exist an atom 𝑎 ∈ 𝑀′
𝑘/𝑇 such that 𝑎 ∉ 𝑀″

𝑘/𝑇. We distinguish
the following cases: (i) 𝑎 is of form 𝑎𝑃𝑖[𝑝](c), or (ii) 𝑎 is from notag(𝑀′

𝑘/𝑇, 𝑃𝑖[𝑝]).
In the case (i), 𝑎 must be from tag(𝑀𝑖/𝑆, 𝑃𝑖[𝑝]), where 𝑆 = (𝑀𝑘/𝑇)|

𝑞𝑖
𝑝 . Hence,

for 𝑎(c) ∈ 𝑀𝑖/𝑆, we have that 𝑎(c) ∉ 𝑁𝑖/𝑆″ for 𝑆″ = (𝑀″
𝑘/𝑇)|

𝑞𝑖
𝑝 . Since 𝑚𝑖 is

Horn and by assumption that both M and N are models of 𝑓P(𝑃𝑖[𝑆″])M, we must
have that M ∩ N, 𝑃𝑖[𝑆″] ⊧ 𝑓P(𝑃𝑖[𝑆″])M. As 𝑁𝑖/𝑆″ ⊂ 𝑀𝑖/𝑆″, we must have that
M ∩ N < M, but since M is a minimal model which must be unique on the Horn
module 𝑚𝑖, we arrive at a contradiction that N is a model of 𝑓P(𝑃𝑖[𝑆″])M. Since
𝑓P(𝑃𝑖[𝑆″])M = 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])(𝑃𝑖[𝑆″])M

′ we also get that M″ does not sat-
isfy 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])(𝑃𝑖[𝑆″])M

′ , hence M″ ⊭ 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])
M′

and
we must have that M′ is a minimal model for 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])

M′
.

In case (ii), where 𝑎 ∈ notag(𝑀′
𝑘/𝑇, 𝑃𝑖[𝑝]), we have that 𝑎 ∉ 𝑀″

𝑘/𝑇, hence 𝑎 ∉
𝑁𝑘/𝑇. As 𝑁𝑘/𝑇 ⊂ 𝑀𝑘/𝑇, by minimality of M we can infer that there is a rule 𝑟 ∈
𝑓P(𝑃𝑘[𝑇])M such that N, 𝑃𝑘[𝑇] ⊭ 𝑟, therefore both N, 𝑃𝑘[𝑇] ⊧ 𝐵(𝑟) and N, 𝑃𝑘[𝑇] ⊭
𝐻(𝑟) hold. For the rule 𝑟′ = 𝒞ℳ(𝑟, 𝑃𝑖[𝑝]) both ordinary and module literals in 𝐵(𝑟′)
are satisfied by M′, as well as literals of form 𝑜𝑃𝑖[𝑝](c) = 𝒞ℳ(𝑃𝑖[𝑝].𝑜(c), 𝑃𝑖[𝑝]) (re-
spectively, not 𝑜𝑃𝑖[𝑝](c)). Thus, 𝑜(c) ∈ 𝑀𝑖/𝑆 (respectively, 𝑜(c) ∉ 𝑀𝑖/𝑆), so we have
that 𝑜𝑃𝑖[𝑝](c) ∈ tag(𝑀𝑖/𝑆, 𝑃𝑖[𝑝]) (respectively, 𝑜𝑃𝑖[𝑝](c) ∉ tag(𝑀𝑖/𝑆, 𝑃𝑖[𝑝])), and
therefore we conclude that M′, 𝑃𝑘[𝑇] ⊧ 𝐵(𝑟′), which means that

𝑟′ ∈ 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])(𝑃𝑘[𝑇])M
′ .

Hence we get M″, 𝑃𝑘[𝑇] ⊭ 𝑟′ as 𝐻(𝑟) = 𝐻(𝑟′) and M″, 𝑃𝑘[𝑇] ⊭ 𝐻(𝑟′); therefore we
have a contradiction for M″ being a model for 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])

M′
.

166

6.4.1. Module Copy Rewriting

(⇐) LetM′ be an answer set ofMCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]). We show now that there exists
an answer setM of P that can be constructed fromM′, i.e., we show that (a)M ⊧ 𝑓PM,
and that (b) M is a minimal model of 𝑓PM.

Let us consider item a. We immediately get that M, 𝑃𝑗[𝑇] ⊧ 𝑓PM for 𝑗 ≠ 𝑘, as

𝑓P(𝑃𝑗[𝑇])M = 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])(𝑃𝑗[𝑇])M
′

in this case. Otherwise, from the definition of module copy rewriting, we can see that
if 𝑟 ∈ 𝑓P(𝑃𝑘[𝑇])M, then there exists the rule 𝑟′ ∈ 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])(𝑃𝑘[𝑇])M

′

such that 𝑟′ = 𝒞ℳ(𝑟, 𝑃𝑖[𝑝]). For those rules, we have M′, 𝑃𝑘[𝑇] ⊧ 𝐵(𝑟′). Ordinary
literals are satisfied in 𝐵(𝑟) as well; it remains to show that literals with module atoms
of form 𝑃𝑖[𝑝].𝑜(c) ∈ 𝐵(𝑟) are also satisfied by M. This follows from 𝑚𝑖 being Horn,
since for a rewritten atom 𝑜𝑃𝑖[𝑝](c) = 𝒞ℳ(𝑃𝑖[𝑝].𝑜(c), 𝑃𝑖[𝑝]) ∈ 𝑀′

𝑘/𝑇 there must be
a rule ̂𝑟 ∈ 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])(𝑃𝑘[𝑇])M

′ such that 𝐻(̂𝑟) = 𝑜𝑃𝑖[𝑝](c). As 𝑚𝑖 is
Horn, it has a unique model on the value calls for 𝑚𝑖, thus there must exist a rule ̄𝑟 ∈
𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])(𝑃𝑖[𝑆])M

′ with 𝑆 = (𝑀′
𝑘/𝑇)|

𝑞𝑖
𝑝 such that 𝐻(̄𝑟) = 𝑜(c) and ̂𝑟 =

𝒞𝒯(̄𝑟, 𝑃𝑖[𝑝]). Now as M′, 𝑃𝑖[𝑆] ⊧ 𝐵(̄𝑟) and since 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])(𝑃𝑖[𝑆])M
′ =

𝑓P(𝑃𝑖[𝑆])M, we have ̄𝑟 ∈ 𝑓P(𝑃𝑖[𝑆])M, and since 𝑀𝑖/𝑆 = 𝑀′
𝑖/𝑆 we also have 𝐻(̄𝑟) =

𝑜(c) ∈ 𝑀𝑖/𝑆, thus M, 𝑃𝑖[𝑆] ⊧ 𝐻(̄𝑟). Now we can conclude that M, 𝑃𝑘[𝑇] ⊧ 𝑃𝑖[𝑝].𝑜(c),
and so we get that all literals from 𝐵(𝑟) are satisfied by M, and since 𝐻(𝑟) = 𝐻(𝑟′),
we have M, 𝑃𝑘[𝑇] ⊧ 𝐻(𝑟) from M′, 𝑃𝑘[𝑇] ⊧ 𝑟′. Therefore, M, 𝑃𝑘[𝑇] ⊧ 𝑟 and thus
M, 𝑃𝑘[𝑇] ⊧ 𝑓PM.

Now, we have that all value calls from 𝑓PM are satisfied byM, henceM is a model
for 𝑓PM.

Next, we consider item b. To show thatM is a minimal model of 𝑓PM, we must ensure
that there is no interpretation N such that N < M and N ⊧ 𝑓PM.

Towards a contradiction, assume N satisfies 𝑓PM. As N < M, we consider the
following cases:

1. for some 𝑁𝑗/𝑈 such that 𝑗 ≠ 𝑘, we have 𝑁𝑗/𝑈 ⊂ 𝑀𝑗/𝑈; and

2. for some 𝑁𝑘/𝑇 we have 𝑁𝑘/𝑇 ⊂ 𝑀𝑘/𝑇.

Let M″ denote an interpretation for MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]) such that

• 𝑀″
𝑗 /𝑈 = 𝑁𝑗/𝑈 for all 𝑃𝑗[𝑈] ∈ VC(P) such that 𝑗 ≠ 𝑘,

• 𝑀″
𝑘/𝑇 = 𝑁𝑘/𝑇 ∪ tag(𝑁𝑖/𝑆, 𝑃𝑖[𝑝]) such that 𝑆 = (𝑁𝑘/𝑇)|

𝑞𝑖
𝑝 for each 𝑃𝑘[𝑇] ∈

VC(P),

167

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

If one of (1) or (2) is true, then M″ < M′. In case (1), we have that

𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])(𝑃𝑗[𝑈])M
′ = 𝑓P(𝑃𝑗[𝑈])M .

As M′ is an answer set of MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]), we get that

M″, 𝑃𝑗[𝑈] ⊭ 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])(𝑃𝑗[𝑈])M
′ .

Therefore we get N, 𝑃𝑗[𝑈] ⊭ 𝑓P(𝑃𝑗[𝑈])N, which contradicts N being a model for
𝑓PM.

In case (2), there must exist an atom 𝑎 ∈ 𝑀𝑘/𝑇 such that 𝑎 ∉ 𝑁𝑘/𝑇. Thus, by minimal-
ity ofM′, we get thatM″ ⊭ 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])(𝑃𝑘[𝑇])M

′ , and as 𝑎must be from
notag(𝑀′

𝑘/𝑇, 𝑃𝑖[𝑝]), there must be a rule 𝑟′ ∈ 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝])(𝑃𝑘[𝑇])M
′ such

that M″, 𝑃𝑘[𝑇] ⊧ 𝐵(𝑟′) but M″, 𝑃𝑘[𝑇] ⊭ 𝐻(𝑟′). So we get that for the rule 𝑟′ both lit-
erals from𝑚𝑘 as well as literals of form 𝑜𝑃𝑖[𝑝](c) = 𝒞ℳ(𝑃𝑖[𝑝].𝑜(c), 𝑃𝑖[𝑝]) are satisfied
in the body of 𝑟′ by M′. Now let 𝑟 be a rule from P such that 𝑟′ = 𝒞ℳ(𝑟, 𝑃𝑖[𝑝]). Since
M″, 𝑃𝑘[𝑇] ⊧ 𝑜𝑃𝑖[𝑝] (respectively, M″, 𝑃𝑘[𝑇] ⊭ 𝑜𝑃𝑖[𝑝]), we get that also M, 𝑃𝑘[𝑇] ⊧
𝑃𝑖[𝑝].𝑜(c) (respectively, M, 𝑃𝑘[𝑇] ⊭ 𝑃𝑖[𝑝].𝑜(c)). Thus, 𝑟 ∈ 𝑓P(𝑃𝑘[𝑇])M. Now we
have that N, 𝑃𝑘[𝑇] ⊧ 𝐵(𝑟), and since 𝐻(𝑟) = 𝐻(𝑟′), we conclude N, 𝑃𝑘[𝑇] ⊭ 𝑟. There-
fore, we arrive at a contradiction to our assumption N ⊧ 𝑓PM, and M must be a mini-
mal model for 𝑓PM. ⧠

In the following, we consider sets of modules that can be rewritten using module
copy rewriting. We start with defining the topological sort of a subgraph of MCP.

Definition 6.24 (Topological sort).
The topological sort of MCP = (𝑉, 𝐸) with respect to a set 𝑆 of modules of P is a linear
ordering ≺ ⊆ 𝑆 × 𝑆 of vertices 𝑆 ⊆ 𝑉 such that for all𝑚𝑖, 𝑚𝑘 ∈ 𝑆,𝑚𝑖 ≺ 𝑚𝑘 whenever
𝑚𝑘 is reachable from 𝑚𝑖 in MCP.

Example 6.11 (cont’d) Continuing with Example 6.9, let 𝑆 = {𝑚1, 𝑚2, 𝑚3} be a set of
modules from P and MCP the directed connection graph of P as shown in Figure 6.4.
There exists only one topological sort ≺ ofMCP with respect to 𝑆: {(𝑚3, 𝑚1), (𝑚3, 𝑚2),
(𝑚2, 𝑚1)}, viz., 𝑚3 ≺ 𝑚2 ≺ 𝑚1.

We now define rewriting sequences, which are used to fix a sequence of rewriting
steps for the MLP P. Such sequences do not guarantee that we end up in a “rewrit-
ing fix point,” but for certain sequences—called admissible—we can guarantee that the
outcome of the applied rewriting steps end up in an MLP that has a disconnected part
ready to be removed from that program.

168

6.4.1. Module Copy Rewriting

Definition 6.25 (Rewriting sequence).
A module call rewriting step 𝜎 = (𝑠, 𝑡, 𝑝) for MLP P is the rewriting function

𝜎(P) = MCR(P, 𝑚𝑡, 𝑚𝑠, 𝑃𝑠[𝑝]) ,

where 𝑠, 𝑡 ∈ {1, … , 𝑛} and 𝑝 is a predicate symbol. A rewriting sequence 𝜃 is a sequence
of module call rewriting steps 𝜎1⋯𝜎ℓ−1𝜎ℓ such that 𝜃(P) = 𝜎ℓ(𝜎ℓ−1(⋯𝜎1(P))).

Example 6.12 (cont’d) The rewriting steps 𝜎1 = (𝑚3, 𝑚1, 𝑞1) and 𝜎2 = (𝑚3, 𝑚2, 𝑞2)
and 𝜎3 = (𝑚2, 𝑚1, 𝑞1) are the rewriting functions 𝜎1(P) = MCR(P, 𝑚1, 𝑚3, 𝑃3[𝑞1]),
𝜎2(P) = MCR(P, 𝑚2, 𝑚3, 𝑃3[𝑞2]), and 𝜎3(P) = MCR(P, 𝑚1, 𝑚2, 𝑃2[𝑞1]), respectively.
Put together, there are several possible rewriting sequences 𝜃𝑖,𝑗,𝑘 of the form 𝜎𝑖𝜎𝑗𝜎𝑘,
for 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3}, as well as sub-sequences thereof.

Based on a topological sort ≺ of MCP with respect to a set of modules 𝑆, we define
admissible rewriting sequences next.

Definition 6.26 (Admissible rewriting sequence).
Let 𝑆 be a set of modules from the MLP P and ≺ be a topological sort ofMCP = (𝑉, 𝐸)
with respect to 𝑆. A rewriting sequence 𝜃 = 𝜎1⋯𝜎ℓ of P is called admissible with
respect to 𝑆, if the following conditions hold:

1. for each 𝜎𝑖 = (𝑠, 𝑡, 𝑝) of 𝜃, both 𝑚𝑠 and 𝑚𝑡 are from 𝑆,

2. if𝑚𝑖 ≺ 𝑚𝑗 and𝑚𝑗 ≺ 𝑚𝑘 such that for all pairs 𝜎𝑎 = (𝑖, 𝑗, 𝑝𝑎), 𝜎𝑏 = (𝑗, 𝑘, 𝑝𝑏) in
𝜃, then 𝜎𝑎 appears before 𝜎𝑏 in 𝜃,

3. for (𝑚𝑖, 𝑚𝑘, 𝑝) ∈ 𝐸 such that 𝑚𝑖, 𝑚𝑘 ∈ 𝑆 implies there exists a 𝜎𝑗 = (𝑖, 𝑘, 𝑝) in
𝜃, and

4. for each 𝜎𝑖 = (𝑠𝑖, 𝑡𝑖, 𝑝𝑖) from 𝜃, the module 𝑚𝑠𝑖 is a Horn module.

Example 6.13 (cont’d) Let 𝑆 = {𝑚1, 𝑚2, 𝑚3} be a set of modules such that 𝑚3 ⪯
𝑚2 ⪯ 𝑚1 is a topological sort of MCP for the MLP P from Example 6.9. Then, there
are three admissible rewriting sequences 𝜎1𝜎2𝜎3, 𝜎2𝜎1𝜎3, and 𝜎2𝜎3𝜎1 with respect to
𝑆, as defined in Example 6.12.

Intuitively, (1) requires that all rewriting steps must work on the set of fixed mod-
ules 𝑆. Condition (2) ensures that the rewriting sequence 𝜃 respects the topological
sort ≺ of P. Condition (3) requires that all modules in 𝑆 will be completely rewritten;
both (2) and (3) then guarantee that in a particular module no call is left before the next
module is rewritten. The last condition (4) makes sure that all modules except the root
module are Horn, i.e., for the rewriting step 𝜎ℓ = (𝑠ℓ, 𝑡ℓ, 𝑝ℓ), the module 𝑚𝑡ℓ of P is
not required to be a Horn module. This allows to rewrite a sub-dag of the transposed

169

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

graph of MCP (i.e., every edge has reverse orientation) rooted in a generic module,
where every leaf and every inner node consists of Horn modules to be rewritten until
we reach the root module.

Following an admissible rewriting sequence 𝜃 with respect to a set of modules 𝑆,
we can rewrite P such that we create an MLP 𝜃(P) with a separated part 𝑆.

Proposition 6.7 (Module separation)
Let P = (𝑚1, … ,𝑚𝑛) be an MLP, let 𝑆 be a set of modules from P and let 𝜃 = 𝜎1⋯𝜎ℓ
be an admissible rewriting sequence of P with respect to 𝑆. Then, the answer sets of P
correspond one-to-one to the answer sets of 𝜃(P).

Proof We proceed by induction on ℎ for 1 ≤ ℎ ≤ ℓ such that 𝜃ℎ = 𝜎1⋯𝜎ℎ. In the
base case, we set ℎ = 1 and have 𝜃1 = 𝜎1 to be an admissible rewriting sequence with
respect to 𝑆. Then, for a pair 𝑚𝑖, 𝑚𝑘 ∈ 𝑆 such that 𝑚𝑖 ≺ 𝑚𝑘, we have 𝜎1 = (𝑖, 𝑘, 𝑝).
Hence, 𝜎1(P) = MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]), and by Lemma 6.6, we get that the answer sets
of P and 𝜃1(P) correspond.

In the inductive step, we let ℎ > 1 and assume that our proposition holds for
all 𝑗 < ℎ. We prove that if the answer sets of P and 𝜃𝑗(P) for all admissible rewriting
sequences 𝜃𝑗 = 𝜎1⋯𝜎𝑗 for 𝑗 < ℎ coincide, then the answer sets of P are in one-to-one
correspondence to 𝜃𝑗+1(P) for the admissible rewriting sequence 𝜃𝑗+1 = 𝜎1⋯𝜎𝑗𝜎𝑗+1.
Now, let 𝜎𝑗+1 = (𝑖, 𝑟, 𝑝) for a pair 𝑚𝑖, 𝑚𝑟 ∈ 𝑆 such that 𝑚𝑖 ≺ 𝑚𝑟. As 𝜎𝑗+1(𝜃𝑗(P)) =
MCR(𝜃𝑗(P),𝑚𝑟, 𝑚𝑖, 𝑃𝑖[𝑝]), we get by Lemma 6.6 that the answer sets of 𝜃𝑗+1(P)match
the ones of 𝜃𝑗(P), and by our assumption that 𝜃𝑗(P) and P have corresponding answer
sets, we get that the answer sets of 𝜃𝑗+1(P) and P coincide. ⧠

In general, module copy rewriting requires the addition of exponentially many
rule copies in order to exhaustively rewrite an MLP. This can be seen as follows: only
acyclic parts of the MLP can be rewritten, but we need to clone the rules of modules
along all possible paths in the directed connection graph; in the worst case, we may
have exponentially many paths. Take, as an example, a stack of diamond-shapedMLPs
similar to the one of Example 6.9—i.e., when a top-most module of a lower diamond
becomes the sink of an upper diamond—, we would need to copy the sink module into
more than one module along the edges ofMCP in direction to the main module. When
an anchor point module sharing two diamonds in the stack then joins its callee mod-
ules, it needs to copy also the two clones of the sink module. Continuing upwards
towards the top-module of two diamond subgraphs, we end up in four clones of the
sink module. Note that 𝑛 module calls from one module to another module also re-
quires to replicate the callee module 𝑛 times. If the number of paths in the directed
connection graph of an MLP is bounded by a polynomial, or the length of the paths is
polynomially bounded, then module copy rewriting increases the size of the MLP only
by polynomially many module clones. For instance, when the directed connection

170

6.4.2. Module Removal of Separated Modules

graph of an MLP forms a binary tree, we can rewrite leaf modules to their successor
modules and when we arrive at the top-most root module, we will have collected only
one copy for each preceding module in the root module.

6.4.2 Module Removal of Separated Modules
Once we have (exhaustively) applied module copy rewriting on anMLP, we potentially
end up with a rewritten MLP that has all source modules being separated from the
target part of the MLP. That is, the part of the rewritten MLP that contains the last
target module𝑚𝑡ℓ in the last rewriting step 𝜎ℓ = (𝑠ℓ, 𝑡ℓ, 𝑝ℓ) of an admissible rewriting
sequence 𝜃 = 𝜎1⋯𝜎ℓ is disconnected from all modules 𝑚𝑠1 to 𝑚𝑠ℓ . All those 𝑚𝑠𝑖
serve no purpose anymore when no other module is calling them, as the rewritten𝑚𝑡ℓ
would then contain all the rule copies from 𝑚𝑠1 up to 𝑚𝑠ℓ .

By inspecting the connected components of the underlying graph of the directed
connection graph MC𝜃(P)—i.e., the undirected variant of MC𝜃(P)—, we can remove
those modules of 𝜃(P) that appear in singleton connected components. This means
we can prune a module𝑚𝑖 whenever its connected component is {𝑚𝑖} in the underly-
ing graph of MC𝜃(P).

We now formally define the basic concepts for removing separated modules from
a rewritten MLP 𝜃(P). The underlying graph of an directed graph 𝐺 is the graph 𝑈𝐺
obtained by replacing each directed edge of 𝐺 by a corresponding undirected edge.
Let 𝑆 be a set of modules from an MLP P and let 𝜃 be an admissible rewriting sequence
of P with respect to 𝑆. Let UMC𝜃(P) be the underlying graph of MC𝜃(P) = (𝑉, 𝐸) for
the MLP 𝜃(P). A module 𝑚 from 𝜃(P) is called free to prune if the singleton set {𝑚} is
a connected component of UMC𝜃(P) and the MLP P𝑚 = (𝑚) has at least one minimal
model, i.e., MM (P𝑚) ≠ ∅. The set of modules 𝑃 ⊆ 𝑆 is called a pruning set with respect
to 𝜃 if for a rewriting step 𝜎 = (𝑠, 𝑡, 𝑝) from 𝜃, every module 𝑚𝑠 ∈ 𝑃 is free to prune,
and no module 𝑚′ ∈ 𝑆 is free to prune such that 𝑚′ ∉ 𝑃.

We can now show the following.

Lemma 6.8
Let P = (𝑚1, … ,𝑚𝑛) be an MLP, let 𝑆 be a set of free to prune modules from P. Then, if
M is an answer set of P there exists an answer setM′ of P−𝑆 such that𝑀′

𝑗/𝑇 = 𝑀𝑗/𝑇
for each 𝑚𝑗 ∉ 𝑆.

Proof We show now thatM′ is an answer set of P−𝑆, i.e., we show that both (a)M′ ⊧
𝑓 (P − 𝑆)M

′
, and that (b) M′ is a minimal model of 𝑓 (P − 𝑆)M

′
.

We commence with item a. AsM is an answer set of P, it satisfiesM, 𝑃𝑖[𝑇] ⊧ 𝑓PM for
each 𝑃𝑖[𝑇] ∈ VC(P). Thus, M′, 𝑃𝑖[𝑇] ⊧ 𝑓 (P − 𝑆)M

′
.

Next, in item b, since all𝑚𝑖 ∈ 𝑆 are free to prune, there are no calls of form𝑃𝑖[𝑝].𝑜(c) in
the rules from𝑚𝑗 of P−𝑆. This follows from {𝑚𝑖} being a connected component from

171

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

UMCP. Furthermore, 𝑚𝑖 must have a minimal model, and M captures one of them
with the interpretation (𝑀𝑖/𝑇 ∣ 𝑃𝑖[𝑇] ∈ VC(P)) for 𝑚𝑖. Towards a contradiction,
assume that there exists an interpretation M″ < M′ such that M″ ⊧ 𝑓 (P − 𝑆)M

′
.

Now let N be an interpretation for P such that 𝑁𝑖/𝑇 = 𝑀𝑖/𝑇 for each 𝑚𝑖 ∈ 𝑆 and
𝑀𝑗/𝑇 = 𝑀″

𝑗 /𝑇 for each 𝑚𝑗 ∉ 𝑆. It is clear that N < M, and since M is a minimal
model of 𝑓PM, there must be a rule 𝑟 from some module 𝑚𝑗 ∉ 𝑆 such that for the
value call 𝑃𝑗[𝑇], N, 𝑃𝑗[𝑇] ⊭ 𝑟. The same rule 𝑟 must exist in 𝑓 (P − 𝑆)(𝑃𝑗[𝑇])M

′ .
Hence, M″, 𝑃𝑗[𝑇] ⊭ 𝑟 in P − 𝑆, and thus M″, 𝑃𝑗[𝑇] ⊭ 𝑓 (P − 𝑆)(𝑃𝑗[𝑇])M

′ , which
contradicts our assumption that M″ ⊧ 𝑓 (P − 𝑆)M

′
. We can now conclude that M′ is a

minimal model of 𝑓 (P − 𝑆)M
′
. ⧠

Lemma 6.9
Let P = (𝑚1, … ,𝑚𝑛) be an MLP such that for the modules 𝑚𝑘 and 𝑚𝑖 from P

• the module atom 𝑃𝑖[𝑝].𝑜(t) appears in 𝑚𝑘,

• 𝑚𝑖 is a Horn module, and

• UMCMCR(P,𝑚𝑘,𝑚𝑖,𝑃𝑖[𝑝]) has the connected component {𝑚𝑖}.

Then,

1. for an answer set M of MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]) there exists an answer set M′ of
the MLP MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]) − {𝑚𝑖} such that for all 𝑃𝑗[𝑇] ∈ VC(P), 𝑗 ≠ 𝑖,

𝑀′
𝑗/𝑇 = 𝑀𝑗/𝑇 ; (6.20)

2. for an answer set M′ of MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]) − {𝑚𝑖} there exists an answer set
M of the MLP MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]) such that for all 𝑃𝑗[𝑇] ∈ VC(P),

𝑀𝑗/𝑇 = {
untag(𝑀′

𝑘/𝑆, 𝑃𝑖[𝑝]) if 𝑗 = 𝑖 and 𝑇 = (𝑀𝑘/𝑆)|
𝑞𝑖
𝑝 ,

𝑀′
𝑗/𝑇 otherwise.

(6.21)

Proof Note that item 1 follows fromLemma 6.8, since𝑚𝑖 is free to prune inmodule call
rewriting P′ = MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]), as𝑚𝑖 is a Horn module and𝑚𝑖 is disconnected
in P′.

What remains to show is item 2. AsM′ is equal toM on the part without value calls
𝑃𝑖[𝑇], what need to show that Mℎ = (𝑀𝑖/𝑇 ∣ 𝑃𝑖[𝑇] ∈ VC(P)) is a minimal model for
theMLP (𝑚𝑖), since𝑚𝑖 is disconnected inMCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]) and therefore𝑚𝑖 does
not call othermodules. Hence, the rules inmodule𝑚𝑘 fromMCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]) that

172

6.4.2. Module Removal of Separated Modules

correspond to 𝑚𝑖 do neither call other modules. Therefore, as 𝑚𝑖 is Horn, the rules in
the reduct 𝑓 (𝑚𝑖)

Mℎ
correspond one-to-one to the rules in the reduct

𝑓 (MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]) − {𝑚𝑖})(𝑃𝑘[𝑆])M
′ ,

i.e., 𝑟 ∈ 𝑓 (𝑚𝑖)(𝑃𝑖[𝑇])M
ℎ if and only if

𝒞𝒯(𝑟, 𝑃𝑖[𝑝]) ∈ 𝑓 (MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]) − {𝑚𝑖})(𝑃𝑘[𝑆])M
′ .

As M′ is a model for the MLP 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]) − {𝑚𝑖}(𝑃𝑘[𝑆])M
′ , we get

that Mℎ is a model for 𝑓 (𝑚𝑖)
Mℎ

. We show now that Mℎ is minimal. Towards a con-
tradiction, assume that Nℎ is an interpretation of (𝑚𝑖) such that Nℎ < Mℎ. Let M″ be
an interpretation for the MLP MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]) − {𝑚𝑖} such that 𝑀″

𝑗 /𝑇 = 𝑀′
𝑗/𝑇

for all 𝑗 ≠ 𝑘, and 𝑀″
𝑘/𝑇 = notag(𝑀′

𝑘/𝑇, 𝑃𝑖[𝑝]) ∪ 𝑁ℎ
𝑖 /𝑆 such that 𝑆 = (𝑀𝑘/𝑇)|

𝑞𝑖
𝑝 .

Therefore, M″ < M′ and thus M″, 𝑃𝑘[𝑇] ⊭ 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]) − {𝑚𝑖}
M′

. There
must be a rule 𝑟′ contained in the MLP 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]) − {𝑚𝑖}(𝑃𝑘[𝑇])M

′ such
that M″, 𝑃𝑘[𝑇] ⊭ 𝑟′. Since M″ differs from M′ in the atoms that correspond to 𝑚𝑖,
we get that 𝑟′ = 𝒞𝒯(𝑟, 𝑃𝑖[𝑝]) for a rule 𝑟 from 𝑚𝑖. Now as the rules in the reduct
𝑓 (𝑚𝑖)

Mℎ
and the rules in the reduct 𝑓MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]) − {𝑚𝑖}(𝑃𝑘[𝑇])M

′ corre-
sponding to 𝑚𝑖 match each other using 𝒞𝒯(⋅, ⋅), we have that Nℎ, 𝑃𝑖[𝑆] ⊭ 𝑟′, and
hence Nℎ is not a model for 𝑓 (𝑚𝑖)

Mℎ
, which contradicts our assumption. Hence, Mℎ

is a minimal model of 𝑓 (𝑚𝑖)
Mℎ

. Since 𝑚𝑖 is Horn, we get that M is an answer set of
MLP MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]). ⧠

Rewriting a set of modules requires to ensure that all calls from a calling module to
another callee module will be completely rewritten, before we can apply macro rewrit-
ing to the next module. To this end, we refine the definition for admissible rewriting
sequences and define module-oriented rewriting sequences next.

Definition 6.27 (Module-oriented rewriting sequence).
Let 𝜃 = 𝜎1⋯𝜎ℓ be an admissible rewriting sequence for MLP P with respect to a set
of modules 𝑆, then 𝜃 is called a module-oriented rewriting sequence with respect to 𝑆, if
for all subsequences 𝜎𝑖⋯𝜎𝑗⋯𝜎𝑘 of 𝜃 such that 𝑖 ≤ 𝑗 ≤ 𝑘 and 𝜎⋆ = (𝑠⋆, 𝑡⋆, 𝑝⋆) for
⋆ ∈ {𝑖, 𝑗, 𝑘}, if 𝑠𝑖 = 𝑠𝑘 then the following two hold:

1. 𝑠𝑖 = 𝑠𝑗 ∧ 𝑡𝑖 = 𝑡𝑗 = 𝑡𝑘

2. 𝑠𝑖 ≠ 𝑠𝑗 → 𝑡𝑖 ≠ 𝑡𝑘

Intuitively, module-oriented rewriting sequences enforce that all calls from a par-
ticular module to another module will be rewritten using a continuous sequence of

173

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

rewriting steps. Condition (1) is a safeguard that there is no intermediate rewriting
step 𝜎𝑗 that copies a module 𝑚𝑠𝑗 different from 𝑚𝑠𝑖 into module 𝑚𝑡𝑖 before all calls
from 𝑚𝑡𝑖 to 𝑚𝑠𝑖 have been rewritten. The second condition (2) guarantees that when-
ever there are two different modules 𝑚𝑠𝑖 and 𝑚𝑠𝑗 that get called by 𝑚𝑡𝑖 and 𝑚𝑡𝑘 , then
𝑚𝑡𝑖 and 𝑚𝑡𝑘 must be different.

For the following results, let P = (𝑚1, … ,𝑚𝑛) be an MLP, let 𝑆 be a set of modules
from P, let 𝜃 = 𝜎1⋯𝜎ℓ be a module-oriented rewriting sequence of P with respect
to 𝑆, and let 𝑃 be a pruning set with respect to 𝜃. Note that module-oriented rewriting
sequences rewrite Horn modules, thus even though 𝜃(P) and 𝜃(P) − 𝑃 do not share
modules from 𝑃, this does not create additional answer sets.

Proposition 6.10 (Module pruning)
The answer sets of 𝜃(P) correspond one-to-one to the answer sets of 𝜃(P) − 𝑃.

Proof We proceed by induction on ℎ for 1 ≤ ℎ ≤ ℓ such that 𝜃ℎ = 𝜎1⋯𝜎ℎ. In the
base case, we set ℎ = 1 and have 𝜃1 = 𝜎1 to be a module-oriented rewriting sequence
with respect to 𝑆. Then, for a pair𝑚𝑖, 𝑚𝑘 ∈ 𝑆 such that𝑚𝑖 ≺ 𝑚𝑘, we have 𝜎1 = (𝑖, 𝑘, 𝑝)
and 𝑃1 = {𝑚𝑖}. Hence, 𝜎1(P) = MCR(P, 𝑚𝑘, 𝑚𝑖, 𝑃𝑖[𝑝]), and by Lemma 6.9, we get that
the answer sets of 𝜃1(P) and 𝜃1(P) − 𝑃1 correspond.

In the inductive step, we let ℎ > 1 and assume that our proposition holds for all
𝑗 < ℎ. We prove that if the answer sets of 𝜃𝑗(P) and 𝜃𝑗(P)−𝑃𝑗 coincide for all module-
oriented rewriting sequences 𝜃𝑗 = 𝜎1⋯𝜎𝑗 for 𝑗 < ℎ such that 𝑃𝑗 = {𝑚𝑠1, … ,𝑚𝑠𝑗}
is a pruning set with respect to 𝜃𝑗, then the answer sets of 𝜃𝑗+1(P) are in one-to-
one correspondence to 𝜃𝑗+1(P) − 𝑃𝑗+1 for the module-oriented rewriting sequence
𝜃𝑗+1 = 𝜎1⋯𝜎𝑗𝜎𝑗+1 and the pruning set 𝑃𝑗+1 = 𝑃𝑗 ∪ {𝑚𝑠𝑗+1}. Now, let 𝜎𝑗+1 = (𝑖, 𝑟, 𝑝)
for a pair𝑚𝑖, 𝑚𝑟 ∈ 𝑆 such that𝑚𝑖 ≺ 𝑚𝑟. As 𝜎𝑗+1(𝜃𝑗(P)) = MCR(𝜃𝑗(P),𝑚𝑟, 𝑚𝑖, 𝑃𝑖[𝑝]),
we get by Lemma 6.6 that the answer sets of 𝜃𝑗+1(P) match the ones of 𝜃𝑗(P), and by
our assumption that 𝜃𝑗(P) and 𝜃𝑗(P)−𝑃𝑗 have corresponding answer sets, we get that
the answer sets of 𝜃𝑗+1(P) and 𝜃𝑗+1(P) − 𝑃𝑗+1 coincide. ⧠

Thenext result then immediately follows from Proposition 6.7 and Proposition 6.10.

Corollary 6.11 (Separated module removal)
There exists a one-to-one correspondence between the set of answer sets of P and the
set of answer sets of 𝜃(P) − 𝑃.

6.5 Application: Description Logic Programs
In this section, we will show how to use MLP macro expansion from §6.4 as an appli-
cation to implement dl-programs (Eiter et al., 2008), which is a prominent formalism
for representing hybrid knowledge bases based on Description Logics (DLs) and logic

174

6.5.1. Rewriting Description Logic Programs to MLPs

programs. To this end, we first show how to translate dl-programs based on the class of
Datalog-rewritable Description Logics into MLPs. Datalog-rewritable DLs have been
studied intensively over the last years as an efficient means to implement DL reasoning
by translating ontologies and queries into Datalog programs. This class of DLs com-
prises of DLs such as ℒ𝒟ℒ+ (Heymans et al., 2010), Horn-𝒮ℋℐ𝒬 (Eiter et al., 2012c),
ℛℒ (Krötzsch et al., 2013), 𝒮ℛ𝒪ℰℒ(⊓, ×) (Krötzsch, 2011), andmore (see also (Krötzsch
et al., 2015; Xiao, 2013) for an overview on Datalog-rewritable DLs). Several studies
on ontology-based data access (Poggi et al., 2008) use Datalog (Bienvenu et al., 2013;
Gottlob et al., 2014) as a basis. Following that, we apply macro expansion to the trans-
lated dl-programs and thus show how to efficiently evaluate dl-programs using MLPs.
Interestingly, the results here reduce in principle to the rewritings and optimization
techniques developed by Xiao (2013), the main difference being that their translations
are ad hoc for Datalog-rewritable DLs. We assume familiarity with Description Logics
and dl-programs as defined by Eiter et al. (2008).

6.5.1 Rewriting Description Logic Programs to MLPs
Let KB = (𝐿, 𝑃) be a dl-program, let 𝜆 = 𝑆1op1𝑝1, … , 𝑆𝑚op𝑚𝑝𝑚 be an input list ap-
pearing in a dl-atom from 𝑃, and let C = {𝐶1, … , 𝐶𝑘} and R = {𝑅1, … , 𝑅ℓ} be the set of
atomic concepts and the set of atomic roles from 𝐿, respectively.

We start with the definitions for rewriting the Description Logic knowledge base 𝐿.

Definition 6.28 (DL module).
The DL module for 𝐿 is defined as the module

𝑚𝐿 = (𝑃𝐿[𝐶1, … , 𝐶𝑘, 𝑅1, … , 𝑅ℓ], Ψ(𝐿)) ,

such that Ψ(𝐿) = Φ(𝐿) ∪ 𝑇𝑃, where

• Φ(𝐿) is a transformation from DL knowledge base 𝐿 to a Datalog program, and

• 𝑇𝑃 is the set of facts ⊤(𝑎) and ⊤2(𝑎, 𝑏) for each constant 𝑎, 𝑏 in the Herbrand
universe of 𝑃.

Note that Φ is a generic transformation for Datalog-rewritable Description Logics 𝐿;
confer Xiao (2013, Definition 4.1) for the details. For simplicity, we assume that all
Description Logics knowledge bases are using the ℒ𝒟ℒ+ Description Logic (Xiao,
2013), which is a Datalog-rewritable Description Logic. Thus, in the rest of this section,
we identify Φ with the transformation Φℒ𝒟ℒ+ defined by Xiao (2013, Section 4.2.2).

Example 6.14 LetKB = (𝐿, 𝑃) be a dl-program overℒ𝒟ℒ+ Description Logic knowl-
edge base 𝐿 = {𝐶 ⊑ 𝐷,𝐷 ⊑ ∀𝑅.𝐸}, where 𝐶,𝐷, 𝐸 are atomic concepts and 𝑅 is an

175

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

atomic role, and the logic program

𝑃 = {
𝑐(𝑎) ←

𝑟(𝑎, 𝑏) ←
𝑞(𝑋) ← DL[𝐶 ⊎ 𝑐, 𝑅 ⊎ 𝑟; 𝐸](𝑋)

} .

Then, Ψ(𝐿) = Φ(𝐿) ∪ 𝑇𝑃 consists of

Φ(𝐿) = { 𝐷(𝑋) ← 𝐶(𝑋)
𝐸(𝑌) ← 𝐷(𝑋), 𝑅(𝑋, 𝑌) } .

and 𝑇𝑃 = {⊤(𝑎), ⊤(𝑏), ⊤2(𝑎, 𝑏), ⊤2(𝑏, 𝑎)}, and the DL module for 𝐿 is

𝑚𝐿 = (𝑃𝐿[𝐶, 𝐷, 𝐸, 𝑅], Ψ(𝐿)) .

Next, we give definitions for rewriting input lists.

Definition 6.29 (Transfer module).
For a concept or role 𝑆𝑖 from a input list 𝜆, we define the transfer rule 𝜌(𝑆𝑖) as

𝜌(𝑆𝑖) = {
𝑐𝑆𝑖(𝑋) ← 𝑞𝑖(𝑋) if 𝑆𝑖 is an atomic concept
𝑟𝑆𝑖(𝑋, 𝑌) ← 𝑞𝑖(𝑋, 𝑌) if 𝑆𝑖 is an atomic role

.

The transfer rules for 𝜆 is the set of rules 𝜌(𝜆) = {𝜌(𝑆𝑖) ∣ 𝑆𝑖 is from 𝜆}.
For a dl-atom 𝑞 = DL[𝜆; 𝑄](t), we define the query rule 𝜗(𝑞) as the rule

𝑄(t) ← 𝑃𝐿[𝑐𝐶1, … , 𝑐𝐶𝑘, 𝑟𝑅1, … , 𝑟𝑅ℓ].𝑄(t) .

The query rules for 𝜆 is the set of rules

𝜗(𝜆) = {𝜗(𝑞) ∣ dl-atom 𝑞 appears in 𝑃 with input list 𝜆} .

Given an input list 𝜆 = 𝑆1op1𝑝1, … , 𝑆𝑚op𝑚𝑝𝑚 from a rule appearing in the dl-
program KB = (𝐿, 𝑃), we define the transfer module for 𝜆 as𝑚𝜆 = (𝑃𝜆[𝑞1, … , 𝑞𝑚], 𝑅𝜆),
where 𝑞𝑖 is an input predicate matching the arity of 𝑝𝑖 and 𝑅𝜆 = 𝜌(𝜆) ∪ 𝜗(𝜆).

Intuitively, themodule atom𝑃𝐿[𝑐𝐶1, … , 𝑐𝐶𝑘, 𝑟𝑅1, … , 𝑟𝑅ℓ].𝑄(t) stands for the DL atom
𝑞 = DL[𝜆; 𝑄](t), and 𝜗(𝑞) then assigns a truth value to Boolean DL queries 𝑄(c) based
on the truth values for ordinary atoms 𝑄(c) in DL module 𝑚𝐿 for the input list 𝜆
encoded by the module input 𝑐𝐶1, … , 𝑐𝐶𝑘, 𝑟𝑅1, … , 𝑟𝑅ℓ . Note that we can use 𝑄(t) in 𝑚𝐿
sinceΦ is defined to be a preserving transformation (Xiao, 2013), i.e., concept and roles
in 𝐿 are mapped to identically named predicates in Φ(𝐿).

176

6.5.1. Rewriting Description Logic Programs to MLPs

Example 6.15 (cont’d) For the input list 𝜆 = 𝐶 ⊎ 𝑐, 𝑅 ⊎ 𝑟 of dl-atom

𝑎 = DL[𝐶 ⊎ 𝑐, 𝑅 ⊎ 𝑟; 𝐸](𝑋)

from KB in the previous example, the transfer rules are

𝜌(𝜆) = { 𝑐𝐶(𝑋) ← 𝑞𝑐(𝑋)
𝑟𝑅(𝑋, 𝑌) ← 𝑞𝑟(𝑋, 𝑌)

} ,

the query rule for 𝑎 is

𝜗(𝑎) = 𝐸(𝑋) ← 𝑃𝐿[𝑐𝐶, 𝑐𝐷, 𝑐𝐸, 𝑟𝑅].𝐸(𝑋) ,

and the query rules for 𝜆 are 𝜗(𝜆) = {𝜗(𝑎)}. The transfer module𝑚𝜆 is theMLPmodule
(𝑃𝜆[𝑞𝑐, 𝑞𝑟], 𝑅𝜆), where 𝑅𝜆 = 𝜌(𝜆) ∪ 𝜗(𝜆).

We can now formally define the dl-program rewriting.

Definition 6.30 (dl-program rewriting).
Let Λ = {𝜆1, … , 𝜆𝑗} be the set of all input lists that appear in a dl-atom from the dl-
program KB = (𝐿, 𝑃). The dl-program rewriting of KB is the MLP

Δ(KB) = (𝑚𝑃, 𝑚𝐿, 𝑚𝜆1, … ,𝑚𝜆𝑗)

such that 𝑚𝑃 = (𝑃[], 𝑃′) is the main module, where 𝑃′ is the program 𝑃 with each
dl-atom DL[𝜆; 𝑄](t) replaced by the module atom 𝑃𝜆[𝑝1, … , 𝑝𝑚].𝑄(t) such that 𝜆 =
𝑆1op1𝑝1, … , 𝑆𝑚op𝑚𝑝𝑚.

Example 6.16 (cont’d) The dl-program rewriting Δ(KB) for our running example is
the MLP (𝑚𝑃, 𝑚𝐿, 𝑚𝜆), where 𝑚𝑃 = (𝑃[], 𝑃′) such that

𝑃′ = {
𝑐(𝑎) ←

𝑟(𝑎, 𝑏) ←
𝑞(𝑋) ← 𝑃𝜆[𝑐, 𝑟].𝐸(𝑋)

} .

For the next results, we let 𝐼 be an interpretation for dl-program KB and define 𝐼Ψ
in analogy to Xiao (2013, Lemma 4.5) and let

𝑆(𝜆, 𝐼) = {𝑞𝑖(c) ∣ 𝑆𝑖 ⊎ 𝑝𝑖 is in 𝜆 and 𝑝𝑖(c) ∈ 𝐼} .

Lemma 6.12
Let 𝐼 be an interpretation for dl-program KB and 𝑄(c) be a Boolean DL query. Then,
𝐼Ψ ⊧ 𝑄𝜆(c) if and only if M, 𝑃𝜆[𝑆] ⊧ 𝑄(c) such that 𝑆 = 𝑆(𝜆, 𝐼), where

• 𝑀𝑃/∅ = 𝐼,

177

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

• 𝑀𝐿/𝑇 = MM (Ψ(𝐿) ∪ 𝑇) for all 𝑃𝐿[𝑇], and

• for 𝜌(𝑇) = {𝑐𝑆𝑖(𝑎) ∣ 𝑞𝑖(𝑎) ∈ 𝑇} ∪ {𝑟𝑆𝑖(𝑎, 𝑏) ∣ 𝑞𝑖(𝑎, 𝑏) ∈ 𝑇}, we let

𝑀𝜆/𝑇 = 𝑇 ∪ 𝜌(𝑇) ∪

{𝑄(c) || 𝑄(c) ∈ 𝑀𝐿/𝑆 such that 𝑆 = 𝜌(𝑇)|𝐶1,…,𝐶𝑘,𝑅1,…,𝑅ℓ
𝑐𝐶1,…,𝑐𝐶𝑘,𝑟𝑅1,…,𝑟𝑅ℓ

}

for all 𝑃𝜆[𝑇].

Proof We prove both directions.

𝐼Ψ ⊧ 𝑄𝜆(c) ⇔ 𝑄𝜆(c) ∈ MM (Ψ(𝐿𝜆 ∪ {𝑆𝑖𝜆(c𝑖) ∣ 𝑝𝑖(c𝑖) ∈ 𝐼})) (6.22)

⇔ 𝑄(c) ∈ MM (Ψ(𝐿) ∪ {𝑆𝑖(c𝑖) ∣ 𝑝𝑖(c𝑖) ∈ 𝐼}) (6.23)
⇔ 𝑄(c) ∈ 𝑀𝐿/𝑇 for 𝑇 = {𝑆𝑖(c𝑖) ∣ 𝑝𝑖(c𝑖) ∈ 𝐼} (6.24)
⇔ 𝑄(c) ∈ 𝑀𝜆/𝑇 for 𝑇 = {𝑞𝑖(c𝑖) ∣ 𝑝𝑖(c𝑖) ∈ 𝐼} (6.25)
⇔ M, 𝑃𝜆[𝑆] ⊧ 𝑄(c) for 𝑆 = 𝑆(𝜆, 𝐼) (6.26)

The first equivalence (6.22) follows from Xiao (2013, Lemma 4.5). In (6.23) we use the
modularity property of Ψ of Xiao (2013, Definition 4.1) and that Ψ preserves names
in 𝐿. Equivalence (6.24) holds since 𝑀𝐿/𝑇 = MM (Ψ(𝐿) ∪ 𝑇). For (6.25) we use that
𝑀𝜆/𝑇 first translates 𝑞𝑖 to the concept and role atoms 𝑐𝑆𝑖 and 𝑟𝑆𝑖 with 𝜌(𝑇) and then
maps them as input to 𝑃𝐿[𝐶1, … , 𝐶𝑘, 𝑅1, … , 𝑅ℓ], thus 𝑞𝑖(c) ∈ 𝑇 if and only if 𝑝𝑖(c𝑖) ∈ 𝐼.
The last equivalence (6.26) then follows immediately by setting 𝑆 to 𝑇. ⧠

We can now show the following.

Proposition 6.13 (DL-rewriting)
Let KB = (𝐿, 𝑃) be a dl-program over a Datalog-rewritable Description Logic. Then,
the answer sets of KB correspond one-to-one to the answer sets of Δ(KB).

Proof Based on Xiao (2013, Lemma 4.5), we can extend an answer set 𝑀 from KB to
an answer set𝑀Ψ for Ψ(KB). Let MΔ be an interpretation based on𝑀Ψ for Δ(KB) as
defined in Lemma 6.12. We get that 𝑀Ψ ⊧ 𝑄𝜆(c) if and only if M, 𝑃𝜆[𝑆] ⊧ 𝑄(c) such
that 𝑆 = 𝑆(𝜆,𝑀). Hence, the FLP-reduct 𝑓Δ(KB)(𝑃[∅])MΔ is equivalent to the strong
dl-transform 𝑠𝑃𝑀𝐿 , which follows from𝑀𝑃/∅ = 𝑀. ⧠

6.5.2 Macro Expansion for dl-Programs
In this sectionwe showhow to applymacro expansion introduced in §6.4 to dl-program
rewriting. The key to macro expansion is defining a DL module rewriting sequence
for macro expansion. Figure 6.5 shows the module dependencies of the MLP Δ(KB)

178

6.5.2. Macro Expansion for dl-Programs

𝑚𝑃

𝑚𝜆1 ⋯ 𝑚𝜆𝑗

𝑚𝐿

Figure 6.5: Module dependencies of dl-program rewriting

for a given dl-program KB. Clearly, the module dependencies are acyclic, hence we
can copy the DL module 𝑚𝐿 into transfer modules 𝑚𝜆𝑖 , and then copy the result into
𝑚𝑃. When we do this for all input lists 𝜆1, … , 𝜆𝑗 appearing in KB, we end up in an
MLP that consists of a rewritten main module 𝑚𝑃 containing 𝑗 copies of 𝑚𝐿 and all
transfer modules𝑚𝜆𝑖 . After applying module removal using modules𝑚𝐿, 𝑚𝜆1, … ,𝑚𝜆𝑗
as separated part as shown in §6.4.2, we have a single main module MLP without input
as result, which can be evaluated in a Datalog engine.

Let KB = (𝐿, 𝑃) be a dl-program over a Datalog-rewritable Description Logic 𝐿. In
the following, we assume that the module calls of Δ(KB) have been reified using the
technique from §6.1 such that each library module has exactly one input parameter, i.e.,
the DL module𝑚𝐿 = (𝑃𝐿[𝑞𝐿], Ψ(𝐿)) has the input parameter 𝑞𝐿 and transfer modules
𝑚𝜆 = (𝑃𝜆[𝑞𝜆], 𝑅𝜆) have input parameter 𝑞𝜆. Furthermore, the module calls in𝑚𝜆 have
𝑝𝐿 as predicate parameter, and the main module 𝑚𝑃 use 𝑝𝜆 as parameter.

Example 6.17 (cont’d) Given KB and Δ(KB) from Example 6.16 such that module
atom 𝑒1 = 𝑃𝜆[𝑐, 𝑟].𝐸(𝑋) and module atom 𝑒2 = 𝑃𝐿[𝑐𝐶, 𝑐𝐷, 𝑐𝐸, 𝑟𝑅].𝐸(𝑋), the module
input reified MLP Δ(KB)′ = (𝑚′

𝑃, 𝑚′
𝐿, 𝑚′

𝜆), where main module 𝑚′
𝑃 = (𝑃[], 𝑃′) such

that

𝑃′ =

⎧
⎪

⎨
⎪
⎩

𝑐(𝑎) ←
𝑟(𝑎, 𝑏) ←

𝑝𝜆(1, 𝑋, 𝜖) ← 𝑐(𝑋)
𝑝𝜆(2, 𝑋, 𝑌) ← 𝑟(𝑋, 𝑌)

𝑞(𝑋) ← 𝑃𝜆[𝑝𝜆].𝐸(𝑋)

⎫
⎪

⎬
⎪
⎭

,

179

Chapter 6. Translation of Modular Nonmonotonic Logic Programs to Datalog

transfer module 𝑚′
𝜆 = (𝑃𝜆[𝑞𝜆], 𝑅𝜆) with

𝑅𝜆 = 𝜌(𝜆) ∪

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

𝑞𝐶(𝑋) ← 𝑞𝜆(1, 𝑋, 𝜖)
𝑞𝑅(𝑋, 𝑌) ← 𝑞𝜆(2, 𝑋, 𝑌)

𝑝𝐿(1, 𝑋, 𝜖) ← 𝑐𝐶(𝑋)
𝑝𝐿(2, 𝑋, 𝜖) ← 𝑐𝐷(𝑋)
𝑝𝐿(3, 𝑋, 𝜖) ← 𝑐𝐸(𝑋)
𝑝𝐿(4, 𝑋, 𝑌) ← 𝑐𝑅(𝑋, 𝑌)

𝐸(𝑋) ← 𝑃𝐿[𝑝𝐿].𝐸(𝑋)

⎫
⎪⎪⎪
⎬
⎪⎪⎪
⎭

,

and DL module 𝑚′
𝐿 = (𝑃𝐿[𝑞𝐿], 𝑅𝐿), where

𝑅𝐿 = Ψ(𝐿) ∪
⎧⎪
⎨⎪
⎩

𝐶(𝑋) ← 𝑞𝐿(1, 𝑋, 𝜖)
𝐷(𝑋) ← 𝑞𝐿(2, 𝑋, 𝜖)
𝐸(𝑋) ← 𝑞𝐿(3, 𝑋, 𝜖)

𝑅(𝑋, 𝑌) ← 𝑞𝐿(4, 𝑋, 𝑌)

⎫⎪
⎬⎪
⎭

.

Definition 6.31 (DL module rewriting sequence).
LetΛ = {𝜆1, … , 𝜆𝑗} be the set of all input lists that appear in a dl-atom from dl-program
KB = (𝐿, 𝑃). We say that

𝜃 = 𝜎1,𝑃𝜎1,𝐿𝜎2,𝑃𝜎2,𝐿⋯𝜎𝑗−1,𝑃𝜎𝑗−1,𝐿𝜎𝑗,𝑃𝜎𝑗,𝐿

is a DL module rewriting sequence, where each rewriting step is defined as

• 𝜎𝑖,𝐿 = (𝑚𝐿, 𝑚𝜆𝑖, 𝑝𝐿) for 𝑖 ∈ {1, … , 𝑗}, and

• 𝜎𝑖,𝑃 = (𝑚𝜆𝑖, 𝑚𝑃, 𝑝𝜆𝑖) for 𝑖 ∈ {1, … , 𝑗}.

In the following, let 𝑃KB = {𝑚𝐿, 𝑚𝜆1, … ,𝑚𝜆𝑗} be the set of modules from Δ(KB)
without 𝑚𝑃. We can now show the following results.

Proposition 6.14 (DL-module separation)
The answer sets of MLP Δ(KB) correspond one-to-one to the answer sets of MLP
𝜃(Δ(P)).

Proof This follows from Proposition 6.7, since 𝜃 is an admissible rewriting sequence
with respect to 𝑃KB. ⧠

The next result shows that we can remove all modules from 𝑃KB, thus only𝑚𝑃 with
the appropriate module copies is required to evaluate Δ(KB).

Proposition 6.15 (DL-module pruning)
The answer sets of MLP 𝜃(Δ(KB)) correspond one-to-one to the answer sets of MLP
𝜃(Δ(P)) − 𝑃KB.

180

6.5.2. Macro Expansion for dl-Programs

Proof This follows from Proposition 6.10, since 𝜃 is a module-oriented rewriting se-
quence and 𝑃KB is a pruning set with respect to 𝜃. ⧠

The next result follows immediately from Proposition 6.13, Proposition 6.14, and
Proposition 6.15.

Corollary 6.16 (Separated DL-module removal)
The answer sets of dl-program KB correspond one-to-one to the answer sets of the
MLP 𝜃(Δ(KB)) − 𝑃KB.

One can extend this technique to rewrite only parts ofΔ(KB). For instance, wemay
copy only the Horn-parts into𝑚𝑃 and leave the remainder alone. Subsequent module
removals then only discards the transfer modules that were involved in the Horn-parts
of Δ(KB).

Standard dl-programs only allow to access a single ontology 𝐿. As amild extension,
we may introduce dl-programs KB = (𝑃, 𝐿1, … , 𝐿𝑘) such that 𝑃 has dl-atoms access-
ing different ontologies 𝐿𝑖. With MLPs, such an extension can be swiftly captured by
introducing 𝑘 different DL modules 𝑚𝐿1, … ,𝑚𝐿𝑘 , which do not call any further mod-
ules. Transfer modules than prepare the input for each of them. Similarly, we may add
further MLP modules to Δ(KB), which can be used in 𝑃 from KB.

181

7

Representing Modular
Nonmonotonic Logic Programs with

Classical Logic

W
e further the work on MLPs and turn to characterizing answer sets in
terms of classical models in this chapter, which is in line with recent

research in Answer Set Programming. To this end, we first explore
the notion of loop formulas to MLPs. Lin and Zhao (2004) first used

loop formulas to characterize the answer sets of normal, i.e., disjunction-free, proposi-
tional logic programs by the models of a propositional formula comprised of the Clark
completion (Clark, 1978) and of additional formulas for each positive loop in the depen-
dency graph of the program. They built on this result by developing the ASP solver
ASSAT, which uses a SAT solver for answer set computation (Lin and Zhao, 2004).
The loop formula characterization has subsequently been extended to disjunctive logic
programs (Lee and Lifschitz, 2003), and to general propositional theories under a gen-
eralized notion of answer set (Ferraris et al., 2006). In the latter work, the notion of
a loop has been adapted to include trivial loops (singletons) in order to recast Clark’s
completion as loop formulas. Besides their impact on ASP solver development, loop
formulas are a viable means for the study of semantic properties of ASP programs, as
they allow to resort to classical logic for characterization. For instance, in the realm of
modular logic programming, loop formulas have recently been fruitfully extended to
DLP-functions (Janhunen et al., 2009b), simplifying some major proofs.

The expedient properties of MLPs, however, render a generalization of loop for-
mulas more involved. Due to the module input mechanism, it is necessary to keep
track of different module instantiations. Furthermore, because of unlimited recursion
in addition to loops that occur inside a module, loops across module boundaries, i.e.,
when modules refer to each other by module atoms, have to be captured properly. To
cope with this requirements,

183

Chapter 7. Representing MLPs with Classical Logic

• we adapt Clark’s completion for module atoms with respect to different module
instantiations;

• we provide a refined version of the positive dependency graph for an MLP, the
modular dependency graph, and cyclic instantiation signature: the combination
then relates module instantiations with the atoms of a module;

• based on it, we define modular loops and their external support formulas; and

• eventually, we define modular loop formulas, and show that the conjunction of
all modular loop formulas for an MLP characterizes the answer sets of P in its
(Herbrand) models.

Second, we explore the recent approach of Asuncion et al. (2012) to modify the
Clark completion in order to characterize answer set semantics of nonmonotonic logic
programs with finite Herbrand universes but without using loop formulas explicitly.
The idea is to introduce predicates of the form 𝐷𝑞,𝑃𝑘[𝑇]

𝑝,𝑃𝑖[𝑆] (y,x) which intuitively holds
when 𝑞(y) at value call 𝑃𝑘[𝑇] is used to derive 𝑝(x) at value call 𝑃𝑖[𝑆], and to respect
a derivation order. The completion is allowed to take effect only if no positive loop
is present, which is ensured by adding 𝐷𝑞,𝑃𝑘[𝑇]

𝑝,𝑃𝑖[𝑆] (y,x) ∧ ¬𝐷𝑝,𝑃𝑖[𝑆]
𝑞,𝑃𝑘[𝑇](x,y) in the com-

pletion of rules with head 𝑝(x) and 𝑞(y) in the positive body. For that to work, we
must ensure that 𝐷𝑞,𝑃𝑘[𝑇]

𝑝,𝑃𝑖[𝑆] (y,x) respects transitive derivations, i.e., the composition

of 𝐷𝑝,𝑃𝑖[𝑆]
𝑞,𝑃𝑗[𝑇](x,y) and 𝐷

𝑞,𝑃𝑗[𝑇]
𝑟,𝑃𝑘[𝑈](y, z) must be contained in 𝐷𝑝,𝑃𝑖[𝑆]

𝑟,𝑃𝑘[𝑈](x, z). The resulting
translation is called ordered completion.

An advantage of this approach is that, at the cost of fresh (existential) predicates,
constructing the (possible exponentially) many loop formulas can be avoided, while
answer sets may be extracted from the (Herbrand) models of a first-order sentence,
whichmay be fed into a suitable theorem prover. This similarly applies toMLPs, where
unrestricted call by value however leads to an unavoidable blowup, which may be
avoided by resorting to higher-order logic. Independent of computational perspectives,
the novel characterizations widen our understanding of MLPs and they may prove
useful for semantic investigations, similarly to those by Janhunen et al. (2009b).

In this chapter, we restrict our investigations to normal MLPs. There is no princi-
pal obstacle to extend the loop formula encoding given here to disjunctive MLPs, and
doing this would require to change just aspects of the propositional formulas given
here without changing the structure of the formulas. In contrast, ordered comple-
tion formulas for disjunctive MLPs and already ordinary logic programs need further
work; they may require a blowup given that ordinary disjunctive Datalog programs
are NEXPNP-complete.

In the sequel, we will characterize the answer sets of normal MLPs

• via loop formulas and program completion,

184

7.1. Program Completion for MLPs

• via second-order logic formulation, and

• via ordered completion.

Such characterizations consist of the following parts:

• the completion, which singles out classical models, which is studied in §7.1;

• the loop formulas, which take care of minimality (foundedness) aspects; this will
be considered in §7.2;

• a translational semantics using second-order logic, which is based on completion
and minimality formulation in §7.3.1;

• alternatively, the completion can be made ordered, which we present in §7.3.2.

7.1 Program Completion for MLPs
We start with adapting the classical Clark completion (Clark, 1978) to cater for module
atoms. The intuition behind this adaption is to replace every module atom 𝛽(y) =
𝑃𝑘[p].𝑜(y) in module𝑚𝑖 by a formula 𝜇(𝑃𝑖[𝑆], 𝛽(y)), which selects the value call 𝑃𝑘[𝑇]
for 𝑚𝑘 and the truth value for 𝑜(c) based on the value of the input atoms p for value
call 𝑃𝑖[𝑆].

Throughout this chapter we assume that predicate names appearing in the modules
of an MLP P are not shared in two different modules of P. Furthermore, we assume
that the variables in the head of all rules in Pmentioning the predicate symbol 𝑎 share
the same distinct variables x, i.e., 𝐻(𝑟) = {𝑎(x)} for all rules 𝑟 with predicate 𝑎 in
the head. Additionally, we assume that P does not contain constant symbols; every
constant in P can be replaced by a singleton unary relation.

Given a set 𝑆 ⊆ HBP of ordinary atoms, we assume that 𝑆 is enumerated, i.e.,
𝑆 = {𝑎1, … , 𝑎𝑛} where 𝑛 = |𝑆|. We identify subsets 𝐵 of 𝑆 with their characteristic
function 𝜒𝐵 : 𝑆 → {0, 1} such that 𝜒𝐵(𝑎) = 1 iff 𝑎 ∈ 𝐵.

For any ordinary atom 𝑎(x) and any set of ground ordinary atoms 𝐴, let 𝑎𝐴(x)
denote a fresh atom, and for any set 𝐵 of ordinary atoms, let 𝐵𝐴 = {𝑎𝐴(x) ∣ 𝑎(x) ∈ 𝐵}.
Let ¬.𝐴 = {¬𝑎(x) ∣ 𝑎(x) ∈ 𝐴} and, as usual, ⋁𝐹 = ⋁𝑓∈𝐹 𝑓 and ⋀𝐹 = ⋀𝑓∈𝐹 𝑓.
Note that⋁∅ = ⊥ and⋀∅ = ⊤.

Given a rule 𝑟 of form (3.2), for ⋆ ∈ {+,−}, let 𝐵⋆𝑜 (𝑟) and 𝐵⋆𝑚(𝑟) be the sets of
ordinary and module atoms appearing in 𝐵⋆(𝑟), respectively.

For the following definitions, let P be a normal MLP, and let 𝑚𝑖 = (𝑃𝑖[q𝑖], 𝑅𝑖) and
𝑚𝑘 = (𝑃𝑘[q𝑘], 𝑅𝑘) be two modules from P.

185

Chapter 7. Representing MLPs with Classical Logic

Definition 7.1 (Module atom completion).
Let 𝛽(z) = 𝑃𝑘[p].𝑜(z) be a module atom appearing in a rule from module 𝑚𝑖, let
q𝑘 = 𝑞𝑘,1, … , 𝑞𝑘,ℓ be the formal input parameter for module 𝑚𝑘, and let 𝑃𝑖[𝑆] and
𝑃𝑘[𝑇] be two value calls from VC(P). We define

𝜖(𝑃𝑖[𝑆], 𝑃𝑘[𝑇]) =
ℓ

⋀
𝑗=1

⋀
𝜒𝑇(𝑞𝑘,𝑗(c))=1

𝑝𝑆𝑗 (c) ∧ ⋀
𝜒𝑇(𝑞𝑘,𝑗(c))=0

¬𝑝𝑆𝑗 (c) .

The module atom completion formulas are defined as

𝜇(𝑃𝑖[𝑆], 𝛽(z)) = ⋁
𝑃𝑘[𝑇]∈VC(P)

(𝜖(𝑃𝑖[𝑆], 𝑃𝑘[𝑇]) ∧ 𝑜𝑇(z))

and

�̄�(𝑃𝑖[𝑆], 𝛽(z)) = ⋁
𝑃𝑘[𝑇]∈VC(P)

(𝜖(𝑃𝑖[𝑆], 𝑃𝑘[𝑇]) ∧ ¬𝑜𝑇(z)) .

Intuitively, 𝜖(𝑃𝑖[𝑆], 𝑃𝑘[𝑇]) encodes the module input for calls from value call 𝑃𝑖[𝑆]
to 𝑃𝑘[𝑇]. The module atom completion formulas 𝜇(𝑃𝑖[𝑆], 𝛽(z)) and �̄�(𝑃𝑖[𝑆], 𝛽(z)) se-
lect from a given value call 𝑃𝑖[𝑆] (the callingmodule) one of the target value calls 𝑃𝑘[𝑇]
such that some instance of 𝑜𝑇(z) is true in 𝜇(𝑃𝑖[𝑆], 𝛽(z))whenever 𝛽(z) appears in the
positive body of a rule, and if 𝛽(z) appears in the negative body of a rule, then we use
�̄�(𝑃𝑖[𝑆], 𝛽(z)) to address an instance of 𝑜𝑇(z) being false.

Next we define support rules.

Definition 7.2 (Support rules).
Let 𝑅 be a set of normal rules, then the support rules of 𝑅 with respect to an ordinary
atom 𝑎(t) is

SR(𝑎(t), 𝑅) = {𝑟 ∈ 𝑅 ∣ 𝐻(𝑟) = {𝑎(t)}} .

We can now define modular completion, which relates instantiations of the rules
in a module to propositional formulas. We will reuse some of the formulas later in a
nonground setting, thus the definitions apply to nonground programs.

Definition 7.3 (Modular completion).
Let 𝑟 ∈ 𝑅(𝑚𝑖) be a rule, let 𝑃𝑖[𝑆] ∈ VC(P) be a value call, and let y be the free variables
in the body of 𝑟. We define

𝛽(𝑃𝑖[𝑆], 𝑟) = ∃y [⋀𝐵+𝑜 (𝑟)
𝑆 ∧⋀
𝛽(z)∈𝐵+

𝑚(𝑟)

𝜇(𝑃𝑖[𝑆], 𝛽(z)) ∧⋀¬.𝐵−𝑜 (𝑟)
𝑆 ∧⋀
𝛽(z)∈𝐵−

𝑚(𝑟)
�̄�(𝑃𝑖[𝑆], 𝛽(z))]

186

7.1. Program Completion for MLPs

and for an atom 𝑎(x) appearing in some rule head, we let

𝛾(𝑃𝑖[𝑆], 𝑎(x)) = ∀x [⋁
𝑟∈SR(𝑎(x),𝑅(𝑚𝑖))

𝛽(𝑃𝑖[𝑆], 𝑟) ⊃ 𝑎𝑆(x)]

and

𝜎(𝑃𝑖[𝑆], 𝑎(x)) = ∀x [𝑎𝑆(x) ⊃ ⋁
𝑟∈SR(𝑎(x),𝑅(𝑚𝑖))

𝛽(𝑃𝑖[𝑆], 𝑟)] .

For any value call 𝑃𝑖[𝑆] of module 𝑚𝑖, let

𝛾(P, 𝑃𝑖[𝑆]) = ⋀
𝑟∈𝑅(𝑚𝑖)∧𝑎(x)∈𝐻(𝑟)

𝛾(𝑃𝑖[𝑆], 𝑎(x)) ∧⋀
𝜒𝑆(𝑞𝑖,𝑗(c))=1

𝑞𝑆𝑖,𝑗(c)

and

𝜎(P, 𝑃𝑖[𝑆]) = ⋀
𝑟∈𝑅(𝑚𝑖)∧𝑎(x)∈𝐻(𝑟)

𝜎(𝑃𝑖[𝑆], 𝑎(x)) ,

and for an MLP P we define

𝛾(P) = ⋀
𝑃𝑖[𝑆]∈VC(P)

𝛾(P, 𝑃𝑖[𝑆])

and

𝜎(P) = ⋀
𝑃𝑖[𝑆]∈VC(P)

𝜎(P, 𝑃𝑖[𝑆]) .

The intuition behind formulas 𝛽(𝑃𝑖[𝑆], 𝑟) is to state that the whole body of a rule
𝑟 from 𝐼P(𝑃𝑖[𝑆]) is satisfied, which is going to be used in 𝛾(𝑃𝑖[𝑆], 𝑎(x)) to encode that
for all x if one body of a rule with 𝑎(x) in the head is satisfied, then 𝑎𝑆(x) must be
true. Formula 𝜎(𝑃𝑖[𝑆], 𝑎(x)) gives the other direction that for all x if 𝑎(x) is true,
then one of the bodies must be satisfied. Formulas 𝛾(P, 𝑃𝑖[𝑆]) and 𝜎(P, 𝑃𝑖[𝑆]) then
extend 𝛾(𝑃𝑖[𝑆], 𝑎(x)) and 𝜎(𝑃𝑖[𝑆], 𝑎(x)) for all possible rules from 𝐼P(𝑃𝑖[𝑆]); note that
𝛾(𝑃𝑖[𝑆], 𝑎(x)) additionally adds all atoms from 𝑆 in value call 𝑃𝑖[𝑆]. The formulas 𝛾(P)
and 𝜎(P) then encode the whole MLP P by iterating over all possible value calls from
VC(P).

In the rest of this section, we assume that P is a ground normal MLP, thus the list
of terms t in Definition 7.2 amount to a list of constant symbols c from 𝒞.

We now give our two running examples that we use throughout this section.

187

Chapter 7. Representing MLPs with Classical Logic

𝑃1[∅]

𝑃2[∅] 𝑃2[{𝑞}]

𝑝 𝑝

Figure 7.1: Callgraph for Example 7.1

Example 7.1 Let𝑚1 = (𝑃1[], 𝑅1)with 𝑅1 = {𝑝 ← 𝑃2[𝑝].𝑟} and𝑚2 = (𝑃2[𝑞], 𝑅2)with
𝑅2 = {𝑟 ← 𝑞}. Then P = (𝑚1, 𝑚2) is a normal MLP with the main module 𝑚1. The
program P has the single answer set (𝑀1/∅ ≔ ∅,𝑀2/∅ ≔ ∅,𝑀2/{𝑞} ≔ {𝑟, 𝑞}).

The modular completion of P gives us the following formulas, where 𝑆1 = ∅,
𝑆02 = ∅, and 𝑆12 = {𝑞}:

• 𝛾(P, 𝑃1[∅]) = ((¬𝑝𝑆1 ∧ 𝑟𝑆02) ∨ (𝑝𝑆1 ∧ 𝑟𝑆12) ⊃ 𝑝𝑆1) ∧ ⊤,

• 𝛾(P, 𝑃2[∅]) = (𝑞𝑆02 ⊃ 𝑟𝑆02) ∧ ⊤,

• 𝛾(P, 𝑃2[{𝑞}]) = (𝑞𝑆12 ⊃ 𝑟𝑆12) ∧ 𝑞𝑆12 ;

and

• 𝜎(P, 𝑃1[∅]) = 𝑝𝑆1 ⊃ (¬𝑝𝑆1 ∧ 𝑟𝑆02) ∨ (𝑝𝑆1 ∧ 𝑟𝑆12),

• 𝜎(P, 𝑃2[∅]) = 𝑟𝑆02 ⊃ 𝑞𝑆02 ,

• 𝜎(P, 𝑃2[{𝑞}]) = 𝑟𝑆12 ⊃ 𝑞𝑆12 .

The conjunction of the first three formulas yields 𝛾(P), and the last three give us 𝜎(P).
Note that ⊤ in 𝛾(P, 𝑃1[∅]) and 𝛾(P, 𝑃2[∅]) stems from input ∅.

Example 7.2 For the MLP P in Example 3.2, we get the following modular completion
formulas:

• 𝛾(P) = (𝑝∅2 ⊃ 𝑝∅1) ∧ (𝑝∅1 ⊃ 𝑝∅2)

• 𝜎(P) = (𝑝∅1 ⊃ 𝑝∅2) ∧ (𝑝∅2 ⊃ 𝑝∅1)

For readability, we dropped ⊤ encoding the inputs ∅ of 𝛾(P, 𝑃1[∅]) and 𝛾(P, 𝑃2[∅]).

188

7.1. Program Completion for MLPs

Thecallgraphs for the programs defined in Examples 7.1 and 3.2 are shown in Figures 7.1
and 3.1, respectively. The former is acyclic, whereas that latter manifests cyclic module
calls. In the following §7.2, we will show that a rule like 𝑝 ← 𝑃2[𝑝].𝑟 from Example 7.1
gives us an intriguing cyclic dependency, which does not materializes in the call graph
alone.

As a first result, we can now show that for a normal MLP P, formula 𝛾(P) captures
the classical models of P.
Lemma 7.1
The models of 𝛾(P) correspond one-to-one to the models of P. That is,

1. if 𝑀 ⊧ 𝛾(P), then M ⊧ P, where 𝑀𝑖/𝑆 = {𝑝(c) ∈ HBP ∣ 𝑝𝑆(c) ∈ 𝑀 ∧ 𝑝 ∈ 𝒫𝑖},
for all 𝑃𝑖[𝑆], and

2. if M ⊧ P, then𝑀 ⊧ 𝛾(P), where

𝑀 = ⋃
𝑃𝑖[𝑆]∈VC(P)

(𝑀𝑖/𝑆)
𝑆 .

Proof For showing item 1, suppose that𝑀 ⊧ 𝛾(P), and let M be as defined. We need
to show that M, 𝑃𝑖[𝑆] ⊧ 𝑟 for each 𝑟 ∈ 𝐼P(𝑃𝑖[𝑆]) = 𝑅(𝑚𝑖) ∪ 𝑆 and 𝑃𝑖[𝑆] ∈ VC(P).
If 𝑟 is a fact 𝑞𝑗(c) ← for a formal input parameter 𝑞𝑗 of 𝑃𝑖[q], then 𝑞𝑗(c) ∈ 𝑆 and,
by 𝑀 ⊧ 𝛾(P, 𝑃𝑖[𝑆]), we have 𝑀 ⊧ 𝑞𝑆𝑗 (c); hence, 𝑞𝑗(c) ∈ 𝑀𝑖/𝑆, and thus M, 𝑃𝑖[𝑆] ⊧ 𝑟.
Otherwise, 𝑟 ∈ 𝑅(𝑚𝑖). As 𝑀 ⊧ 𝛾(P, 𝑃𝑖[𝑆]), we have that 𝑀 satisfies 𝛾(𝑃𝑖[𝑆], 𝛼) for
all rules 𝑟′ ∈ SR(𝛼, 𝑅(𝑚𝑖)) such that 𝐻(𝑟′) = {𝛼}, thus also for the rule 𝑟 such that
𝐻(𝑟) = {𝑎(c)}, hence 𝑀 ⊧ 𝛾(𝑃𝑖[𝑆], 𝑎(c)). By construction, for each ordinary atom
𝛽(c) in 𝑟, we have𝑀 ⊧ 𝛽𝑆(c) impliesM, 𝑃𝑖[𝑆] ⊧ 𝛽(c); furthermore,𝑀 ⊧ 𝜇(𝑃𝑖[𝑆], 𝛽(c))
for 𝑃𝑘[p].𝑜(c) implies 𝑀 ⊧ 𝑜𝑇(c), where 𝑇 ⊆ HBP|q𝑘 is the unique set 𝑇 such that
𝑀 ⊧ ⋀𝑗(𝑝

𝑆
𝑗 (c) ≡ 𝑞𝑇𝑘,𝑗(c)). That is, 𝑀 ⊧ 𝜇(𝑃𝑖[𝑆], 𝛽(c)) implies M, 𝑃𝑖[𝑆] ⊧ 𝛽(c).

This gives us that 𝑀 ⊧ 𝛽(𝑃𝑖[𝑆], 𝑟) implies M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟). Moreover, since 𝑀 ⊧
𝛾(𝑃𝑖[𝑆], 𝑎(c)) such that 𝐻(𝑟) = {𝑎(c)}, either 𝑀 ⊧ 𝑎𝑆(c), or 𝑀 ⊭ ⋁𝛽(𝑃𝑖[𝑆], 𝑟′) for
all 𝑟′ ∈ SR(𝑎(c), 𝑅(𝑚𝑖)). Thus, M, 𝑃𝑖[𝑆] ⊧ 𝐻(𝑟), or M, 𝑃𝑖[𝑆] ⊭ 𝐵(𝑟). Hence, it follows
that M, 𝑃𝑖[𝑆] ⊧ 𝑟 for any 𝑟 and 𝑃𝑖[𝑆] from P, thus M ⊧ P.

To prove item 2, letM ⊧ P, and let𝑀 = ⋃𝑃𝑖[𝑆]∈VC(P) (𝑀𝑖/𝑆)
𝑆. To show that𝑀 ⊧ 𝛾(P),

we prove that𝑀 ⊧ 𝛾(P, 𝑃𝑖[𝑆]) for all 𝑃𝑖[𝑆]. As 𝑆 ⊆ 𝐼P(𝑃𝑖[𝑆]) andM, 𝑃𝑖[𝑆] ⊧ 𝐼P(𝑃𝑖[𝑆]),
all conjuncts 𝑞𝑆𝑗 (c) (representing the formal input) in 𝛾(P, 𝑃𝑖[𝑆]) are satisfied by 𝑀;
thus it remains to show𝑀 ⊧ ⋀𝛾(𝑃𝑖[𝑆], 𝑎(c)) for all 𝑎(c) appearing in some rule head
in 𝑅(𝑚𝑖). Let 𝑟 ∈ 𝑅(𝑚𝑖) such that 𝐻(𝑟) = {𝑎(c)}. For each ordinary atom 𝛽(c) in
𝑟, we have by construction of 𝑀 that 𝑀 ⊧ 𝛽𝑆(c) if M, 𝑃𝑖[𝑆] ⊧ 𝛽(c); furthermore, for
each module atom 𝛽(c) = 𝑃𝑘[p].𝑜(c) in 𝑟, we have that 𝑀 ⊧ 𝜇(𝑃𝑖[𝑆], 𝛽(c)) whenever
𝑀 ⊧ 𝑜𝑇(c), which follows from 𝑜(c) ∈ 𝑀𝑘/𝑇, where 𝑇 ⊆ HBP|q𝑘 contains 𝑞𝑘,𝑗(c) if

189

Chapter 7. Representing MLPs with Classical Logic

𝑀 ⊧ 𝑝𝑆𝑗 (c) whenever 𝑝𝑗(c) ∈ 𝑀𝑖/𝑆. Thus,𝑀 ⊧ 𝜇(𝑃𝑖[𝑆], 𝛽(c)) if 𝑜(c) ∈ 𝑀𝑘/(𝑀𝑖/𝑆)|
q𝑘
p ,

which we obtain from M, 𝑃𝑖[𝑆] ⊧ 𝑜(c). Now we have shown that M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟)
implies𝑀 ⊧ 𝛽(𝑃𝑖[𝑆], 𝑟). As M, 𝑃𝑖[𝑆] ⊧ 𝑟, we have that M, 𝑃𝑖[𝑆] ⊧ 𝐻(𝑟) or M, 𝑃𝑖[𝑆] ⊭
𝐵(𝑟). Therefore, 𝑀 ⊧ 𝛾(𝑃𝑖[𝑆], 𝑎(c)). We have shown that this holds for any 𝑎(c) and
𝑃𝑖[𝑆], thus𝑀 ⊧ 𝛾(P). ⧠

Apt et al. (1988) define supported models for logic programs. For a normal MLP P,
we can show that answer sets are supported minimal models of P, which has been
shown for normal logic programs by Marek and Subrahmanian (1992). We first gener-
alize the definition to MLPs.

Definition 7.4 (Supported models for MLPs).
A model M of a normal MLP P is called supported if for every atom 𝛼 ∈ 𝑀𝑖/𝑆, where
𝑃𝑖[𝑆] ∈ VC(P), there is some rule 𝑟 ∈ SR(𝛼, 𝐼P(𝑃𝑖[𝑆])) such that M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟).

The following result shows that answer sets of P are supported models of P. The
reverse direction does not hold in general.

Proposition 7.2 (Supported models)
If M is an answer set of a normal MLP P, then M is a supported minimal model of P.

Proof SinceM is an answer set, it is a minimal model ofP by Proposition 3.5. Towards
a contradiction, suppose M is not supported. There is an atom 𝛼 ∈ 𝑀𝑖/𝑆 such that
all rules 𝑟 ∈ SR(𝛼, 𝐼P(𝑃𝑖[𝑆])) satisfy M, 𝑃𝑖[𝑆] ⊭ 𝐵(𝑟). Hence, there is no rule 𝑟 ∈
SR(𝛼, 𝐼P(𝑃𝑖[𝑆])) such that 𝑟 ∈ 𝑓P(𝑃𝑖[𝑆])M, contradictingM being a minimal model of
𝑓P(𝑃𝑖[𝑆])M. Therefore, M is a supported model of P. ⧠

Example 7.3 In Example 3.2, the following models of P are supported models of P:

• M1 = (𝑀1/∅ ≔ ∅,𝑀2/∅ ≔ ∅) and

• M2 = (𝑀1/∅ ≔ {𝑝1},𝑀2/∅ ≔ {𝑝2}).

While M1 is an answer set of P, this does not hold for M2, since M1 < M2.

Fages (1994) demonstrated for normal logic programs that supported models have
the intriguing property that whenever the rules in a program 𝑃 are acyclic, i.e., no atom
depends recursively on itself (also called tight logic programs by Erdem and Lifschitz,
2003), then 𝑃 has a single supported model, which gives rise to an answer set of 𝑃.

Based on Lemma 7.1 the following can be shown for MLPs.

Lemma 7.3
The models of 𝛾(P) ∧ 𝜎(P) correspond one-to-one to the supported models of P.

190

7.1. Program Completion for MLPs

Proof (⇒) Let𝑀 be a model of 𝛾(P)∧𝜎(P) and letM be the interpretation defined in
Lemma 7.1, item 1. Since𝑀 ⊧ 𝛾(P)∧𝜎(P), we have𝑀 ⊧ 𝛾(P). By Lemma 7.1,𝑀 ⊧ 𝛾(P)
impliesM ⊧ P. We show now thatM is a supported model, i.e., we show that for every
atom 𝛼 ∈ 𝑀𝑖/𝑆, there exists an 𝑟 ∈ SR(𝛼, 𝐼P(𝑃𝑖[𝑆])) such that M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟).

If 𝛼 ∈ 𝑆, i.e., 𝛼 is of form 𝑞𝑖,𝑗(c) from the formal input parameters of 𝑚𝑖, then
𝑀 ⊧ 𝛾(P, 𝑃𝑖[𝑆]) implies that M, 𝑃𝑖[𝑆] ⊧ 𝑆, and therefore there exists a rule 𝑟 ∈ 𝑆 with
𝐻(𝑟) = {𝛼}, hence 𝑟 ∈ SR(𝛼, 𝑆) and thus 𝑟 ∈ SR(𝛼, 𝐼P(𝑃𝑖[𝑆])). As this 𝑟 is a fact, we
have 𝐵(𝑟) = ∅ and thus M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟) holds vacuously.

If 𝛼 ∈ 𝑀𝑖/𝑆 ⧵ 𝑆, we have 𝛼𝑆 ∈ 𝑀, and thus we can conclude from the formulas
in 𝜎(P, 𝑃𝑖[𝑆]) that the antecedent 𝛼𝑆 requires that the consequent⋁𝛽(𝑃𝑖[𝑆], 𝑟) is true
in 𝑀 for 𝑟 ∈ SR(𝛼, 𝐼P(𝑃𝑖[𝑆])). It follows that there must be at least one of the formu-
las 𝛽(𝑃𝑖[𝑆], 𝑟) true in𝑀. Let 𝑟 be the rule from SR(𝛼, 𝑅(𝑚𝑖)) such that𝑀 ⊧ 𝛽(𝑃𝑖[𝑆], 𝑟).
Since 𝑀 ⊧ 𝐵+𝑜 (𝑟)

𝑆 and 𝑀 ⊭ 𝐵−𝑜 (𝑟)
𝑆, we get that M, 𝑃𝑖[𝑆] ⊧ 𝐵+𝑜 (𝑟) and M, 𝑃𝑖[𝑆] ⊭

𝐵−𝑜 (𝑟), thus ordinary atoms from𝐵(𝑟) are satisfied byM at 𝑃𝑖[𝑆]. Additionally, we have
𝑀 ⊧ 𝜇(𝑃𝑖[𝑆], 𝛽(c)) and 𝑀 ⊧ �̄�(𝑃𝑖[𝑆], 𝛽(c)) for each 𝛽(c) ∈ 𝐵+𝑚(𝑟) and 𝛽(c) ∈ 𝐵−𝑚(𝑟),
respectively. Thus, at least one of the disjuncts (𝜖(𝑃𝑖[𝑆], 𝑃𝑘[𝑇]) ∧ 𝑜𝑇(c)) or one of
the disjuncts (𝜖(𝑃𝑖[𝑆], 𝑃𝑘[𝑇]) ∧ ¬𝑜𝑇(c)) is true in 𝑀 for a 𝛽(c) ∈ 𝐵+𝑚(𝑟) ∪ 𝐵−𝑚(𝑟).
From that we can conclude that 𝑀 ⊧ 𝑜𝑇(c) implies M, 𝑃𝑘[𝑇] ⊧ 𝛽(c) = 𝑃𝑘[p].𝑜(c),
where 𝑇 ⊆ HBP|q𝑘 is the unique set 𝑇 such that 𝑀 ⊧ ⋀𝑗(𝑝

𝑆
𝑗 (c) ≡ 𝑞𝑇𝑘,𝑗(c)). That is,

𝑀 ⊧ 𝜇(𝑃𝑖[𝑆], 𝛽(c)) implies M, 𝑃𝑖[𝑆] ⊧ 𝛽(c) for 𝛽(c) ∈ 𝐵+𝑚(𝑟), and 𝑀 ⊧ �̄�(𝑃𝑖[𝑆], 𝛽(c))
implies M, 𝑃𝑖[𝑆] ⊭ 𝛽(c) for 𝛽(c) ∈ 𝐵−𝑚(𝑟). Hence, it follows that M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟), and
therefore M is a supported model of P.

(⇐) Let M be a supported model of P. Let 𝑀 be an interpretation of 𝛾(P) ∧ 𝜎(P) as
defined in Lemma 7.1, item 2. By Lemma 7.1 we can conclude that𝑀 ⊧ 𝛾(P). We show
now that𝑀 ⊧ 𝜎(P). From the construction of𝑀, we have 𝛼 ∈ 𝑀𝑖/𝑆 iff 𝛼𝑆 ∈ 𝑀. Since
M is supported there is a rule 𝑟 ∈ SR(𝛼, 𝐼P(𝑃𝑖[𝑆])) such that M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟). This
satisfies the formulas from 𝜎(P, 𝑃𝑖[𝑆]): since 𝛼𝑆 ∈ 𝑀, 𝑀 must satisfy the consequent
⋁𝛽(𝑃𝑖[𝑆], 𝑟) for 𝑟 ∈ SR(𝛼, 𝐼P(𝑃𝑖[𝑆])), i.e., at least one of the disjuncts 𝛽(𝑃𝑖[𝑆], 𝑟)must
hold in𝑀, which follows from M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟). Thus,𝑀 is a model for 𝛾(P) ∧ 𝜎(P).⧠

Example 7.4 (cont’d) We continue with Example 7.1. Formula 𝛾(P) admits the fol-
lowing models:

• 𝑀1 = {𝑟𝑆12 , 𝑞𝑆12 },

• 𝑀2 = {𝑝𝑆1, 𝑟𝑆02 , 𝑟𝑆12 , 𝑞𝑆12 },

• 𝑀3 = {𝑝𝑆1, 𝑟𝑆12 , 𝑞𝑆12 }, and

• 𝑀4 = {𝑝𝑆1, 𝑟𝑆02 , 𝑟𝑆12 , 𝑞𝑆02 , 𝑞𝑆12 }.

191

Chapter 7. Representing MLPs with Classical Logic

They correspond to the classical models

• M1 = (𝑀1/∅ ≔ ∅,𝑀2/∅ ≔ ∅,𝑀2/{𝑞} ≔ {𝑟, 𝑞}),

• M2 = (𝑀1/∅ ≔ {𝑝},𝑀2/∅ ≔ {𝑟},𝑀2/{𝑞} ≔ {𝑟, 𝑞}),

• M3 = (𝑀1/∅ ≔ {𝑝},𝑀2/∅ ≔ ∅,𝑀2/{𝑞} ≔ {𝑟, 𝑞}), and

• M4 = (𝑀1/∅ ≔ {𝑝},𝑀2/∅ ≔ {𝑟, 𝑞},𝑀2/{𝑞} ≔ {𝑟, 𝑞})

for P. The formula 𝛾(P) ∧ 𝜎(P) permits only 𝑀1, 𝑀3, and 𝑀4 as models, which give
us the supported models M1, M3, and M4 of P.

Example 7.5 (cont’d) In Example 7.2, the models of 𝛾(P) are

• 𝑀1 = ∅ and

• 𝑀2 = {𝑝𝑆1 , 𝑝𝑆2 },

which are also the models of 𝛾(P) ∧ 𝜎(P). Both of them correspond to the classical as
well as supported models of P, namely

• M1 = (𝑀1/∅ ≔ ∅,𝑀2/∅ ≔ ∅) and

• M2 = (𝑀1/∅ ≔ {𝑝1},𝑀2/∅ ≔ {𝑝2}).

7.2 Loop Formulas for MLPs
In this section, we develop modular loop formulas that instantiate each program mod-
ule with possible input to create the classical theory of the program, and then add
loop formulas similar to the approach of Lee and Lifschitz (2003) and Lin and Zhao
(2004). However, we have to respect loops not only inside a module, but also across
modules due to module atoms. The latter will be captured by a modular dependency
graph, which records positive dependencies that relate module instantiations with the
atoms in a module. The instantiation of the modules makes it necessary to create fresh
propositional atoms very similarly to grounding of logic programs, and our complexity
results in Chapter 5 suggest that there is no way to circumvent this; see Tables 5.1–5.3
for a synopsis of the complexity results. In the rest of this section, we assume that
MLP P is ground and normal.

We define now the modular dependency graph to keep track of dependencies be-
tween modules and rules. It is a ground dependency graph with two additional types
of edges.

192

7.2. Loop Formulas for MLPs

(a) Example 7.1

𝑚1

𝑚2

𝑝 𝑃2[𝑝].𝑟

𝑟 𝑞

(b) Example 3.2

𝑚1

𝑚2

𝑝1 𝑃2.𝑝2

𝑝2 𝑃1.𝑝1

Figure 7.2: Modular dependency graphs

Definition 7.5 (Modular dependency graph).
Let P = (𝑚1, … ,𝑚𝑛) be a normal MLP. The modular dependency graph of P is the di-
graph MGP = (𝑉, 𝐸)with vertex set 𝑉 = HBP and edge set 𝐸 containing the following
edges:

• 𝑝(c1) → 𝑞(c2), for each 𝑟 ∈ 𝑅(𝑚𝑖) with 𝐻(𝑟) = {𝑝(c1)} and 𝑞(c2) ∈ 𝐵+(𝑟).

• 𝑎 → 𝑏, if one of (1)–(2) holds, where 𝛼 is of the form 𝑃𝑗[p].𝑜(c) in 𝑅(𝑚𝑖) and 𝑃𝑗
has the associated input list q𝑗:

1. 𝑎 = 𝛼 and 𝑏 = 𝑜(c) ∈ HBP;

2. 𝑎 = 𝑞ℓ(c) ∈ HBP|q𝑗 and 𝑏 = 𝑝ℓ(c) ∈ HBP|p for 1 ≤ ℓ ≤ |q𝑗|.

Intuitively, the modular dependency graph does not cater for module instantia-
tions, i.e., all module atoms are purely syntactic and the dependencies between atoms
are coarse. This also means that cycles that show up in the modular dependency graph
must be instantiated in the formulas.

Example 7.6 (cont’d) Themodular dependency graphs of the MLPs defined in Exam-
ples 7.1 and 3.2 are shown in Figures 7.2a and 7.2b, respectively. In both figures, the
two upper nodes are from 𝑚2, while the nodes below stem from 𝑚1. Note that the
dashed edges stem from condition (1) in Definition 7.5, while dotted edges are from
condition (2). Straight edges are standard head-body dependencies.

Next, we define modular loops, which are based on modular dependency graphs.

Definition 7.6 (Modular loops).
A set of atoms ℒ ⊆ 𝑉(MGP) is called a modular loop for P iff the subgraph of MGP
induced by ℒ is strongly connected.

Note that ℒ may contain module atoms, and single-atom loops are allowed.

193

Chapter 7. Representing MLPs with Classical Logic

Modular loop formulas have then the same shape as standard loop formulas (Lee
and Lifschitz, 2003; Lin and Zhao, 2004), with the important distinction that external
support formulas may take the input 𝑆 from the value call 𝑃𝑖[𝑆]. For that, we first
define external support rules.

Definition 7.7 (External support rules).
Let 𝑅 be a set of ground normal rules. The external support rules of 𝑅 with respect to a
set of atoms ℒ ⊆ HBP is

ER(ℒ, 𝑅) = {𝑟 ∈ 𝑅 ∣ 𝐻(𝑟) ∩ ℒ ≠ ∅ ∧ 𝐵+(𝑟) ∩ ℒ = ∅} .

Note that ℒ may contain module atoms.
Modular loops may go through the atoms of multiple modules, but do not take care

of cycles over module instantiations that stem from the input. Given a modular loop,
the instantiated loop may be exponentially longer in the propositional case, whereas
it could have double-exponential length in the nonground case. To keep record of
these loops, we next define cyclic instantiation signatures that are used to instantiate
modular loops. In the following, let P = (𝑚1, … ,𝑚𝑛) be a normal MLP such that the
set of predicate symbols 𝒫 = 𝒫1 ∪ ⋯ ∪ 𝒫𝑛 such that 𝒫𝑖 consists only of predicate
symbols from 𝑚𝑖.

Definition 7.8 (Cyclic instantiation signature).
Let ℒ be a modular loop for the normal MLP P = (𝑃1[q1], … , 𝑃𝑛[q𝑛]). A cyclic instan-
tiation signature for ℒ is a tuple 𝒮 = (𝒮1, … , 𝒮𝑛), where each 𝒮𝑖 ⊆ 2HBP|q𝑖 is a family of
sets over HBP|q𝑖 such that

1. 𝒮𝑖 ≠ ∅ and all 𝑆 ∈ 𝒮𝑖 satisfy 𝑆 ∩ ℒ = ∅, whenever ℒ contains ground atoms
with predicates from 𝒫𝑖, and

2. 𝒮𝑖 = ∅ otherwise.

Intuitively, we use a modular loop as template to create loops that go over module
instantiations, as illustrated in the next examples.

Example 7.7 (cont’d) The MLP P in Example 7.1 has the loop ℒ = {𝑝, 𝑃2[𝑝].𝑟, 𝑟, 𝑞},
for which we get one cyclic instantiation signature 𝒮1 = ({∅}, {∅}). Note that the tu-
ples ({∅}, {{𝑞}}) and ({∅}, {∅, {𝑞}}) are not cyclic instantiation signatures as they share
atoms with ℒ, thus always get support from input 𝑆. Intuitively, this captures those
module instantiations that cycle over module input, but have no support from the for-
mal input, viz., 𝑃1[∅] ↔ 𝑃2[∅].

Example 7.8 (cont’d) In Example 3.2, we have a loop ℒ = {𝑝1, 𝑃2.𝑝2, 𝑝2, 𝑃1.𝑝1}. We
get one cyclic instantiation signatures: 𝒮1 = ({∅}, {∅}). Here, 𝒮1 builds a cycle over
module instantiations from the mutual calls in 𝑚1 and 𝑚2.

194

7.2. Loop Formulas for MLPs

Based on modular loops, cyclic instantiation signatures, and external support rule,
we are now in the position to define modular loop formulas for normal MLPs.

Definition 7.9 (Modular loop formulas).
Let 𝒮 = (𝒮1, … , 𝒮𝑛) be an instantiation signature for the modular loop ℒ in MLP P.
The loop formula 𝜆(𝒮,ℒ,P) for ℒ with respect to 𝒮 in P is

𝑛

⋁
𝑖=1

⋁
𝑇∈𝒮𝑖

(⋁(ℒ|𝒫𝑖)
𝑇) ⊃

𝑛

⋁
𝑖=1

⋁
𝑆∈𝒮𝑖

⋁
𝑟∈ER(ℒ,𝐼P(𝑃𝑖[𝑆]))

(𝐻(𝑟)𝑆 ⊃ 𝛽(𝑃𝑖[𝑆], 𝑟)) . (7.1)

Given P, the loop formula for a modular loop ℒ in P is the conjunction

𝜆(ℒ,P) = ⋀
𝒮
𝜆(𝒮,ℒ,P)

for all cyclic instantiation signatures 𝒮 of ℒ, and the loop formula for P is the conjunc-
tion

𝜆(P) = ⋀
ℒ
𝜆(ℒ,P)

for all modular loops ℒ in P. The modular loop formula for the MLP P is then

Λ(P) = 𝛾(P) ∧ 𝜎(P) ∧ 𝜆(P) .

Intuitively, the formal input in a value call 𝑃𝑖[𝑆] always adds external support for
the input atoms in 𝑆 as we add 𝑆 to the instantiation 𝐼P(𝑃𝑖[𝑆]). Since we obtain all
supported models with 𝛾(P) ∧ 𝜎(P), thus also have 𝑆 there, we can restrict to those
instantiation signatures 𝒮 for amodular loopℒ that have no support from formal input.

Example 7.9 (cont’d) Continuing with Example 7.1, we get the following modular
loop formulas based on the loop ℒ and instantiation signature 𝒮1 for ℒ shown in Ex-
ample 7.7 (here, 𝑆1 = ∅, 𝑆02 = ∅): 𝜆(𝒮1, ℒ,P) = (𝑝𝑆1 ∨ 𝑟𝑆02 ∨ 𝑞𝑆02) ⊃ ⊥. This formula
and 𝛾(P) ∧ 𝜎(P) yield Λ(P), whose model is𝑀1 = {𝑟𝑆12 , 𝑞𝑆12 }, which coincides with the
answer set M1 = (∅,∅, {𝑟, 𝑞}) of P.

Example 7.10 (cont’d) Based on Examples 7.2 and 7.8 we get the following modular
loop formulas using the loop ℒ and instantiation signature 𝒮1 (𝑆 = ∅): 𝜆(𝒮1, ℒ,P) =
𝑝𝑆1 ∨𝑝𝑆2 ⊃ ⊥∨⊥. The conjunction of 𝛾(P) ∧ 𝜎(P) and 𝜆(𝒮1, ℒ,P) yields formula Λ(P),
and its model is thus𝑀1 = ∅, which coincides with the single answer setM1 = (∅,∅)
of P.

We can now state our main result and show that Λ(P) captures the answer sets of
normal MLPs P.

195

Chapter 7. Representing MLPs with Classical Logic

Theorem 7.4 (MLP loop formulas)
Given a normal MLP P the answer sets of P and the models of Λ(P) correspond, such
that

1. if 𝑀 ⊧ Λ(𝑃), then there is some answer set M of P such that 𝑀𝑖/𝑆 = {𝑝(c) ∈
HBP ∣ 𝑝𝑆(c) ∈ 𝑀 ∧ 𝑝 ∈ 𝒫𝑖} for all 𝑃𝑖[𝑆] ∈ VC(P), and

2. if M is an answer set of P, then𝑀 ⊧ Λ(P), where

𝑀 = ⋃
𝑃𝑖[𝑆]∈VC(P)

(𝑀𝑖/𝑆)
𝑆 .

Proof Since a modular loop ℒ might span over multiple modules, we need to look at
the rules from multiple module instantiations. Let 𝑚(ℒ) = {𝑚𝑗1, … ,𝑚𝑗𝑘} be the set of
all modules whose module atoms appear in ℒ.

We begin with proving item 1. Let 𝑀 ⊧ Λ(P). Since 𝑀 ⊧ 𝛾(P) and 𝑀 ⊧ 𝜎(P),
Lemma 7.3 implies thatM is a supported model of P. We show now thatM is the model
of Pwhose atoms in each𝑀𝑖/𝑆 can be derived from 𝑓P(𝑃𝑖[𝑆])M for all 𝑃𝑖[𝑆] ∈ VC(P).
Thus, M must be the minimal model for 𝑓PM. Since 𝑀 ⊧ 𝜆(P), for all cyclic instanti-
ation signature 𝒮 and all modular loops ℒ the formulas 𝜆(𝒮,ℒ, 𝒫) are satisfied by 𝑀.
Observe that for a modular loop ℒ, there always exists a subset-maximal loop ℒ′ such
that ℒ ⊆ ℒ′ and there is no modular loop ℒ″ such that ℒ′ ⊂ ℒ″.

Letℛ0 be the rule base inheriting rules from 𝑓PM such that both the body and the
head is true in M, i.e.,

ℛ0 = (𝐹𝑃𝑖[𝑆] ∣ 𝑃𝑖[𝑆] ∈ VC(P))
where

𝐹𝑃𝑖[𝑆] = {𝑟 ∈ 𝑓P(𝑃𝑖[𝑆])M ∣ M, 𝑃𝑖[𝑆] ⊧ 𝐻(𝑟) ∧M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟)} .

For 𝑘 ≥ 0 we inductively define ℛ𝑘+1 as follows:

ℛ𝑘+1 = {
ℛ𝑘 if there is no modular loop in ℛ𝑘

LR(𝒮, ℒ𝑘, ℛ𝑘) for the subset-maximal loop ℒ𝑘 in ℛ𝑘 with respect to 𝒮

where for the rule base ℛ𝑘 = (𝑅𝑃𝑖[𝑆]), modular loop ℒ𝑘, and cyclic instantiation sig-
nature 𝒮 we let

LR(𝒮, ℒ𝑘, ℛ𝑘) = (𝑅𝑃𝑖[𝑆](ℒ𝑘) ⧵ 𝐸𝑃𝑖[𝑆](ℒ𝑘) ∣ 𝑚𝑖 ∈ 𝑚(ℒ𝑘) ∧ 𝑆 ∈ 𝒮𝑖)

such that

𝑅𝑃𝑖[𝑆](ℒ𝑘) = {𝑟 ∈ 𝑅𝑃𝑖[𝑆] ||
𝐻(𝑟) ∩ ℒ𝑘 ≠ ∅ ∧ 𝐵+(𝑟) ∩ ℒ𝑘 ≠ ∅∧
M, 𝑃𝑖[𝑆] ⊧ 𝐻(𝑟) ∧M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟)

}

196

7.2. Loop Formulas for MLPs

and

𝐸𝑃𝑖[𝑆](ℒ𝑘) = {𝑟 ∈ 𝑅𝑃𝑖[𝑆](ℒ𝑘) ||
∃𝑟′ ∈ ER(ℒ𝑘, 𝐼P(𝑃𝑖[𝑆])) such that
𝐻(𝑟) = 𝐻(𝑟′) ∧M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟′)

} .

Note that there always exists an 𝐸𝑃𝑖[𝑆](ℒ𝑘)which is nonempty: ℒ𝑘 must be a modular
loop in P as well, and since both𝑀 ⊧ 𝜆(𝒮,ℒ𝑘, 𝐼P(𝑃𝑖[𝑆])) and𝑀 ⊧ 𝑝𝑆 for some 𝑝 ∈ ℒ𝑘,
we must have a rule 𝑟′ ∈ ER(ℒ𝑘, 𝐼P(𝑃𝑖[𝑆]))whose body 𝐵(𝑟′) is satisfied byM at 𝑃𝑖[𝑆].

Intuitively, starting from a maximal loop ℒ𝑘 the rule base ℛ𝑘+1 removes those
rules from ℛ𝑘 that “break” the cycle ℒ𝑘 in P—i.e., from the rules 𝑅𝑃𝑖[𝑆](ℒ𝑘)—using
externally supported rules from 𝐸𝑃𝑖[𝑆](ℒ𝑘). The result is ℛ𝑘+1, which might contain
a different maximal modular loop ℒ𝑘+1 that is set for removal in ℛ𝑘+2. Eventually, as
𝑀 ⊧ 𝜆(P), no loop will be left, as argued next.

There exists a finite ℓ such that for all𝑚 > ℓ, ℛ𝑚 = ℛℓ and ℛℓ does not have any
modular loops since we started with ℛ0 having only a finite number of modular loops
and every ℛ𝑘, 𝑘 ≥ 0, is a sub-rule base of ℛ0.

Next, we show that for each atom 𝑎 ∈ 𝑀𝑖/𝑆, there is a rule 𝑟 from ℛℓ such that
𝐻(𝑟) = {𝑎}. We proceed by induction on 𝑘 ≥ 0. For the base case 𝑘 = 0, from
Lemma 7.3 we deduce that there is a rule 𝑟 ∈ 𝐼P(𝑃𝑖[𝑆]) such that 𝐻(𝑟) = {𝑎} since
M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟), hence 𝑟 ∈ 𝑓P(𝑃𝑖[𝑆])M and by construction 𝑟 ∈ 𝐹𝑃𝑖[𝑆] from ℛ0. For
the inductive step, assume that our claim holds for ℛ𝑘 such that 𝑘 ≥ 0. We show now
that the statement holds for ℛ𝑘+1 as well. We obtain the following cases:

• Ifℛ𝑘 has no modular loops, thenℛ𝑘+1 = ℛ𝑘 and our claim follows immediately.

• If ℛ𝑘 has a modular loop, then ℛ𝑘+1 is the result of removing 𝐸𝑃𝑖[𝑆](ℒ𝑘) from
ℛ𝑘 for the maximal modular loop ℒ𝑘 in ℛ𝑘.

Therefore, if 𝐻(𝑟) does not appear in the heads of the rules 𝐸𝑃𝑖[𝑆](ℒ𝑘), 𝑟 ∈
𝑅𝑃𝑖[𝑆](ℒ𝑘) ⧵ 𝐸𝑃𝑖[𝑆](ℒ𝑘) and hence 𝑟 will be in ℛ𝑘+1 as well.

Otherwise, if 𝐻(𝑟) appears in the heads of some rules in 𝐸𝑃𝑖[𝑆](ℒ𝑘) that have
been removed from ℛ𝑘 in the construction of ℛ𝑘+1, we show now that 𝑟 exists
in ℛ𝑘+1 such that 𝑟 ∈ ER(ℒ𝑘, 𝐼P(𝑃𝑖[𝑆])). We prove this by induction on 𝑗 such
that 0 ≤ 𝑗 < 𝑘. For the base case 𝑗 = 0, we have thatℒ𝑘 is a loop inℛ𝑘, thus it is
also a loop in ℛ0 and hence 𝑟 ∈ 𝐹𝑃𝑖[𝑆] from ℛ0. To carry out the inductive step,
assume that our claim of 𝑟 appearing in ℛ𝑗 holds for 0 ≤ 𝑗 < 𝑘. We show now
that our 𝑟 appears in ℛ𝑗+1 as well. Towards a contradiction, assume that 𝑟 has
been removed in ℛ𝑗+1. Then, there exists a maximal modular loop ℒ𝑗 such that
𝑟 ∈ 𝑅𝑃𝑖[𝑆](ℒ𝑗) and 𝑟 ∈ 𝐸𝑃𝑖[𝑆](ℒ𝑗). Now since𝐻(𝑟) is in bothℒ𝑗 and inℒ𝑘, their
union ℒ𝑗 ∪ ℒ𝑘 is a loop in ℛ𝑗 since 𝑗 < 𝑘. From ℒ𝑗 being maximal, we derive
ℒ𝑘 ⊆ ℒ𝑗. As 𝑟 has been removed in ℛ𝑗+1, 𝑟 ∉ 𝑅𝑃𝑖[𝑆](ℒ𝑗) ⧵ 𝐸𝑃𝑖[𝑆](ℒ𝑗) and from
the construction of ℛ𝑗+1 there is no rule 𝑟′ ∈ 𝑅𝑃𝑖[𝑆](ℒ𝑗) ⧵ 𝐸𝑃𝑖[𝑆](ℒ𝑗) such that

197

Chapter 7. Representing MLPs with Classical Logic

𝐻(𝑟′) = {𝑎}. Hence, there is no rule 𝑟 ∈ 𝑅𝑃𝑖[𝑆](ℒ𝑘) such that𝐻(𝑟) = {𝑎}, which
contradicts that 𝐻(𝑟) appears in the heads of some rules in 𝐸𝑃𝑖[𝑆](ℒ𝑘) that have
been removed fromℛ𝑘 in the construction ofℛ𝑘+1. Hence, 𝑟 is present in ℛ𝑗+1,
and thus 𝑟 exists in ℛ𝑘+1.

We have shown now that for all 𝑘 ≥ 0, if 𝑎 ∈ 𝑀𝑖/𝑆 then there exists a rule 𝑟 from ℛ𝑘
such that 𝐻(𝑟) = {𝑎}. Hence, there is a rule 𝑟 from ℛℓ such that 𝐻(𝑟) = {𝑎}.

Next, we prove that for all 𝑎 ∈ 𝑀𝑖/𝑆, 𝑎 is derived from a rule 𝑟 from ℛℓ such
that 𝐻(𝑟) = {𝑎} and M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟) such that 𝐵(𝑟) depends on a finite sequence of
rule applications starting from an atom 𝑎0 such that there exists a fact 𝑎0 ← in ℛℓ.
This is without loss of generality: whenever several facts 𝑎0 ← to 𝑎𝑘 ← for 𝑘 > 0
are needed to establish 𝑎 ∈ 𝑀𝑖/𝑆, we can replace, for 1 ≤ 𝑗 ≤ 𝑘, the fact 𝑎𝑖 ← by
rule 𝑎𝑖 ← 𝑎0 as intermediary in ℛℓ. From above, we know that there exists a rule 𝑟
such that 𝐻(𝑟) = {𝑎}. From the construction of ℛℓ, all rules satisfy M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟)
and M, 𝑃𝑖[𝑆] ⊧ 𝐻(𝑟). Moreover, ℛℓ has no modular loop. Thus, there must exist a
predecessor 𝑎′ for 𝑎 in MGP using a rule 𝑟 from ℛℓ and since M, 𝑃𝑖[𝑆] ⊧ 𝐵(𝑟), 𝑎′ must
be true in M. Continuing with 𝑎′, and since ℛℓ has no modular loop, we arrive using
a finite number of rule applications at a rule 𝑎0 ← in ℛℓ such that 𝑎0 is true in M.
Thus, ℛℓ gives us M as derived consequences. Since ℛℓ is a sub-rule base of 𝑓PM, all
atoms of M can be derived from 𝑓P(𝑃𝑖[𝑆])M for all 𝑃𝑖[𝑆] ∈ VC(P). Thus, M must be
a minimal model for 𝑓PM.

Next, we show item 2. Let M be an answer set of P. From M ⊧ P we can conclude
by Lemma 7.1 that 𝑀 ⊧ 𝛾(P). Proposition 7.2 implies that M is a supported model
for P, thus Lemma 7.3 gives us 𝑀 ⊧ 𝜎(P). We show now that 𝑀 ⊧ 𝜆(P). Assume to
the contrary that 𝑀 ⊭ 𝜆(P). There is a modular loop ℒ for P and a cyclic instantia-
tion signature 𝒮 for ℒ such that 𝑀 ⊭ 𝜆(𝒮,ℒ, 𝒫). This means that the antecedent of
formula (7.1) is true in𝑀, while the consequent is false. Thus,

𝑀 ⊭
𝑛

⋁
𝑖=1

⋁
𝑆∈𝒮𝑖

⋁
𝑟∈ER(ℒ,𝐼P(𝑃𝑖[𝑆]))

(𝐻(𝑟)𝑆 ⊃ 𝛽(𝑃𝑖[𝑆], 𝑟)) , (7.2)

hence at least one ordinary atom 𝑎𝑇 ∈ (ℒ|𝒫𝑖)
𝑇 for 𝑇 ∈ 𝒮𝑖 must be true in 𝑀, which

means that 𝑎 ∈ 𝑀𝑖/𝑇. Clearly, one module 𝑚𝑗𝑙 ∈ 𝑚(ℒ) must be 𝑚𝑖. Let

𝐸ℒ = (ER(ℒ, 𝐼P(𝑃𝑗[𝑈])) ∣ 𝑚𝑗 ∈ 𝑚(ℒ) ∧ 𝑈 ∈ 𝒮𝑗)

198

7.3. Ordered Completion and Translational Semantics for MLPs on Finite Structures

be the rule base
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑅𝑃𝑗1[𝑈] = {
𝑝𝑗1,1 ← 𝐵𝑗1,1

⋮
𝑝𝑗1,𝑛1 ← 𝐵𝑗1,𝑛1

}

⋮

𝑅𝑃𝑗𝑘[𝑈] = {
𝑝𝑗𝑘,1 ← 𝐵𝑗𝑘,1

⋮
𝑝𝑗𝑘,𝑛𝑘 ← 𝐵𝑗𝑘,𝑛𝑘

}

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where 𝑈 ranges over all possible 𝑈 ∈ 𝒮𝑗𝑙 and each 𝑟 ∈ 𝑅𝑃𝑗[𝑈] is a rule from a module
𝑚𝑗 ∈ 𝑚(ℒ) and 𝐵𝑗,𝑙 are lists of literals. The atoms 𝑝𝑗,𝑙, where 𝑗1 ≤ 𝑗 ≤ 𝑗𝑘 and
1 ≤ 𝑙 ≤ 𝑛𝑗, account for the rules in 𝐼P(𝑃𝑗𝑙[𝑈]) that share their heads with an ordinary
atom from the loop ℒ, but none of 𝐵𝑗,𝑙 is contained in ℒ. Let 𝐸M

ℒ be the FLP-reduct of
𝐸ℒ with respect to M, i.e.,

𝐸M
ℒ = (𝑓P(𝑃𝑗[𝑈])M ∩ ER(ℒ, 𝐼P(𝑃𝑗[𝑈])) ∣ 𝑚𝑗 ∈ 𝑚(ℒ) ∧ 𝑃𝑗[𝑈] ∈ 𝒮𝑗) ,

since 𝑓P(𝑃𝑗[𝑈])M ⊆ 𝐼P(𝑃𝑗[𝑈]) and ER(ℒ, 𝐼P(𝑃𝑗[𝑈])) ⊆ 𝐼P(𝑃𝑗[𝑈]). Then, (7.2) implies
𝑀 ⊭ ⋀𝑟∈𝐸 𝛽(𝑃𝑗[𝑈], 𝑟) for each set of rules 𝐸 from rule base 𝐸M

ℒ .
FromM, 𝑃𝑖[𝑇] ⊧ 𝑎, we must have the following sequence of rules appearing in the

rule base (𝑓P(𝑃𝑗[𝑈])M ∣ 𝑚𝑗 ∈ 𝑚(ℒ) ∧ 𝑃𝑗[𝑈] ∈ VC(P)):

𝑟0: 𝑞0 ←
𝑟1: 𝑞1 ← 𝐵1

⋮
𝑟ℓ−1: 𝑞ℓ−1 ← 𝐵ℓ−1

𝑟ℓ: 𝑞ℓ ← 𝐵ℓ

where 𝑞ℓ = 𝑎 at 𝑃𝑖[𝑇], and for each 𝑗 = 1,… , ℓ, 𝐵+𝑜 (𝑟𝑗) ⊆ {𝑞0, … , 𝑞𝑗−1} and 𝐵+𝑚(𝑟𝑗) ⊆
{𝑃𝑗1[p].𝑜, … , 𝑃𝑗[p].𝑜}. There must be an 𝑥 for 𝑥 = 0,… , ℓ such that {𝑞0, … , 𝑞𝑥−1}∩ℒ =
∅ and 𝑞𝑥 ∈ ℒ. From𝐵+𝑜 (𝑟𝑥) ⊆ {𝑞0, … , 𝑞𝑥−1} follows that𝐵+𝑜 (𝑟𝑥)∩ℒ = ∅, thus 𝑟𝑥 must
appear in 𝐸M

ℒ for a value call 𝑃𝑗[𝑈]. Thus, 𝑟𝑥 ∈ 𝑓P(𝑃𝑗[𝑈])M ∩ ER(ℒ, 𝐼P(𝑃𝑗[𝑈])) and
so we deduce thatM, 𝑃𝑗[𝑈] ⊧ 𝐵(𝑟𝑥). Since𝑀 ⊭ ⋀𝑟∈𝐸 𝛽(𝑃𝑗[𝑈], 𝑟) for each set of rules
𝐸 from rule base 𝐸M

ℒ , we now arrive at𝑀 ⊭ 𝛽(𝑃𝑗[𝑈], 𝑟𝑥), which is a contradiction to
M, 𝑃𝑗[𝑈] ⊧ 𝐵(𝑟𝑥). Therefore,𝑀 ⊧ 𝜆(P). ⧠

7.3 Ordered Completion and Translational
Semantics for MLPs on Finite Structures

In this section, we develop ordered completion for nonground normal MLPs based on
the approach by Asuncion et al. (2012). We consider MLPs in the Datalog setting, i.e., a

199

Chapter 7. Representing MLPs with Classical Logic

normal MLP P can be viewed as a modular nonmonotonic Datalog program that has an
infinite set of constants 𝒞 and is domain-independent (this is ensured by forcing safety
conditions to rules in P). Grounding of P is done with respect to a finite relational
structure 𝔐 (extended to MLPs), having a finite universe 𝑈𝔐 accessible by constants;
it is the active domain we are restricted to. We also need to adapt the notion of answer
set for this setting, which we develop in §7.3.1 by defining a translational semantics for
MLPs in second-order logic. This semantics will also be used to prove the correctness of
ordered completion, whose definitions and results are going to be presented in §7.3.2.

As in §7.2, we assume that MLP P is normal. Without loss of generality, we assume
that MLPs do not contain facts, i.e., rules of form (3.2) have nonempty body, since
we can remove facts from an MLP and map them to extensional relations in a finite
relational structure.

7.3.1 Finite Structures and Translational Semantics for MLPs
We start with defining finite structures for MLPs, which require the notion of inten-
sional and extensional predicates, as customary in the Datalog setting.

Definition 7.10 (Intensional and extensional predicates).
Given an MLP P and a predicate symbol 𝑝 ∈ 𝒫 of P, we call 𝑝 intensional if it occurs
in the head of a rule in a module of P or in the formal input parameters q𝑖 of a module
𝑚𝑖 = (𝑃𝑖[q𝑖], 𝑅𝑖), and extensional otherwise.

Intuitively, intensional predicates are defined by the rules in P and the input given
to a module instantiation, whereas extensional predicates stem from the extension
given by a relational structure, which will be defined next.

Definition 7.11 (Relational structure).
A finite (Herbrand) relational structure for P (H-structure) is defined as a pair 𝔐 =
(𝑈𝔐, ⋅𝔐), where the finite universe𝑈𝔐 consists of constants in P and ⋅𝔐 is a mapping
associating

• each constant 𝑐 in P with itself, i.e., 𝑐𝔐 = 𝑐,

• each extensional predicate 𝑞 in P with a relation 𝑞𝔐 over𝔐, where 𝑞𝔐 has the
same arity as 𝑞,

• each intensional predicate 𝑝 in a module 𝑚𝑖 = (𝑃𝑖[q𝑖], 𝑅𝑖), together with each
input 𝑆 from the value calls 𝑃𝑖[𝑆] ∈ VC(P), with a relation 𝑝𝔐,𝑆 whose arity is
the same as 𝑝.

Note that extensional predicates 𝑞 only appear once in𝔐, while intensional pred-
icates 𝑝 are labelled with the set 𝑆 to distinguish different instantiations for value calls
𝑃𝑖[𝑆] ∈ VC(P) of MLP P.

200

7.3.1. Finite Structures and Translational Semantics for MLPs

Next, we define signatures and grounding of an MLP P.

Definition 7.12 (Signature).
The signature of an MLP P contains all intensional predicates, extensional predicates,
and constants occurring in P. The set of intensional (respectively, extensional) predi-
cates in a module 𝑚 is denoted by Int(𝑚) (respectively, Ext(𝑚)).

The grounding process is gradually defined as follows.

Definition 7.13 (Grounding with relational structures).
The grounding of a rule 𝑟 under 𝔐 is the set gr(𝑟,𝔐) of all ground instances of 𝑟
by replacing all variables occurring in 𝑟 by domain objects in 𝔐. The grounding of a
module 𝑚 = (𝑃[q], 𝑅) with respect to𝔐, denoted by gr(𝑚,𝔐), is defined as

gr(𝑚,𝔐) = (𝑃[q], gr(𝑚, 𝑅,𝔐)) ,

where
gr(𝑚, 𝑅,𝔐) = ⋃

𝑟∈𝑅
gr(𝑟,𝔐) ∪ {𝑞(c) ∣ 𝑞 ∈ Ext(𝑚) ∧ c ∈ 𝑞𝔐} .

Finally, the grounding of P with respect to𝔐 is

gr(P,𝔐) = (gr(𝑚1,𝔐), … , gr(𝑚𝑛,𝔐)) .

Intuitively, gr(⋅,𝔐)means that rules are grounded with respect to𝔐 and facts are
taken from the finite structure as a database.
Definition 7.14 (Relational structures as answer sets).
A relational structure𝔐 is an answer set of the normal MLP P if and only if the MLP
interpretation

M = (ℰ(𝔐, 𝑃𝑖[𝑆]) ∪ ℐ(𝔐, 𝑃𝑖[𝑆]) ∣ 𝑃𝑖[𝑆] ∈ VC(P))

is an answer set of the MLP gr(P,𝔐) according to Definition 3.10, where

ℰ(𝔐,𝑃𝑖[𝑆]) = {𝑝(c) ∣ 𝑝 ∈ Ext(𝑚𝑖) ∧ c ∈ 𝑝𝔐}

and
ℐ(𝔐, 𝑃𝑖[𝑆]) = {𝑝(c) ∣ 𝑝 ∈ Int(𝑚𝑖) ∧ c ∈ 𝑝𝔐,𝑆} .

Next, we define the translational semantics for MLPs, which recasts an MLP into
an equivalent second-order sentence Φ(P) akin to the proof of Proposition 3.1. For
ordinary answer set programs 𝑃, the translational semantics is based on the stable
model operator SM(𝑃) (see Asuncion et al., 2012; Ferraris et al., 2011; Lin and Zhou,
2011) and generalizes to MLPs with Φ(P). In the following section, the translational
semantics will be used to prove ordered completion for MLPs.

201

Chapter 7. Representing MLPs with Classical Logic

Let 𝜋 be a predicate symbol from the signature of MLP P. If 𝜋 is an intensional
predicate 𝑝 then 𝜋 is defined as the fresh predicate symbol 𝑝 not occurring in the
signature of P, and if 𝑝 is extensional then 𝜋 = 𝑝. For a list p = 𝑝1, … , 𝑝ℓ of predicate
symbols from P, we define p̃ = 𝑝1, … , 𝑝ℓ. For an ordinary atom 𝑝(x), we let 𝑝(x) =
𝑝(x), and for a module atom 𝛽(x) = 𝑃𝑘[p].𝑜(x) we let 𝛽(x) = 𝑃𝑘[p̃]. ̃𝑜(x). For a set
of atoms 𝐴 = {𝛼1, … , 𝛼𝑘} we define 𝐴 = {𝛼1, … , 𝛼𝑘}. Recall that 𝛾(P) is defined in
Definition 7.3 for modular completion.

Definition 7.15 (Translational semantics for MLPs).
LetP be a nonground and normalMLP, let 𝐼 = {𝑝1, … , 𝑝𝑘} be the intensional predicates
of P, and let 𝐽 = {𝑝1, … , 𝑝𝑘} be a set a fresh predicates not occurring in P.

We define Φ(P) to be the second order logic sentence

𝛾(P) ∧ ¬∃𝐽 [(𝐽 < 𝐼) ∧ ̃𝛾(P)] ,

where

• for the variables x = {𝑥1, … , 𝑥𝑦} occurring in P,

̃𝛾(P) = ∀x ⋀
𝑃𝑖[𝑆]∈VC(P)

⋀
𝑟∈𝑅(𝑚𝑖)

̃𝛾(𝑃𝑖[𝑆], 𝑟) ,

where

̃𝛾(𝑃𝑖[𝑆], 𝑟) =⋀𝐵+𝑜 (𝑟)
𝑆
∧ ⋀

𝛽(t)∈𝐵+
𝑚(𝑟)

𝜇(𝑃𝑖[𝑆], 𝛽(t)) ∧

⋀¬.𝐵−𝑜 (𝑟)
𝑆 ∧ ⋀

𝛽(t)∈𝐵−
𝑚(𝑟)
�̄�(𝑃𝑖[𝑆], 𝛽(t)) ⊃ 𝐻(𝑟)

𝑆

• 𝐽 < 𝐼 is short for 𝐽 ≤ 𝐼 ∧ ¬(𝐼 ≤ 𝐽) such that

𝐽 ≤ 𝐼 = ⋀
𝑃𝑖[𝑆]∈VC(P)

𝑘

⋀
𝑗=1

∀x (𝑝𝑗𝑆(x𝑗) ⊃ 𝑝𝑗𝑆(x𝑗))

and

𝐼 ≤ 𝐽 = ⋀
𝑃𝑖[𝑆]∈VC(P)

𝑘

⋀
𝑗=1

∀x (𝑝𝑗𝑆(x𝑗) ⊃ 𝑝𝑗𝑆(x𝑗)) .

Note that ̃𝛾(𝑃𝑖[𝑆], 𝑟) replaces 𝐵+𝑜 (𝑟), 𝐵+𝑚(𝑟), and 𝐻(𝑟) in 𝛾(𝑃𝑖[𝑆], 𝑟) by 𝐵+𝑜 (𝑟), 𝐵+𝑚(𝑟)
and 𝐻(𝑟), respectively.

The next result shows that the translational semantics captures the MLP semantics
for relational structures.

202

7.3.1. Finite Structures and Translational Semantics for MLPs

Theorem 7.5 (MLP translational semantics)
Let P be a normal MLP. The answer sets of P correspond one-to-one to the models
of Φ(P).

Proof Let 𝔄 = (𝑈𝔄, ⋅𝔄) be a finite H-structure for P, let

M = (ℰ(𝔄, 𝑃𝑖[𝑆]) ∪ ℐ(𝔄, 𝑃𝑖[𝑆]) ∣ 𝑃𝑖[𝑆] ∈ VC(P)) ,

be an interpretation for P, and let

𝑀 = ⋃
𝑃𝑖[𝑆]∈VC(P)

(𝑀𝑖/𝑆)
𝑆 .

Observe that𝔐 is a structure for Φ(P) that is constructed from 𝔄 by setting

• 𝑈𝔐 = 𝑈𝔄;

• 𝑐𝔐 = 𝑐𝔄 for each constant symbol 𝑐 of P;

• (𝑞𝑆)𝔐 = 𝑞𝔄 for extensional 𝑛-ary predicates 𝑞 and any value call𝑃𝑖[𝑆] ∈ VC(P);

• (𝑝𝑆)𝔐 = 𝑝𝔄,𝑆 for intensional 𝑛-ary predicates 𝑝 and a value call 𝑃𝑖[𝑆] ∈ VC(P);
and

• (𝑝𝑆)𝔐 ⊂ 𝑝𝔄,𝑆 for intensional 𝑛-ary predicates 𝑝 and a value call 𝑃𝑖[𝑆] ∈ VC(P).

Note that 𝑝𝑆 encodes a proper subset of 𝑝𝑆, which we use in subformula 𝐽 < 𝐼.
We first show that𝔐 ⊧ 𝛾(P) iff M ⊧ gr(P, 𝔄). To wit,

M ⊧ gr(P, 𝔄)
⟺ M satisfies all ground rules at all 𝑃𝑖[𝑆] ∈ VC(P) by Definition 7.14
⟺ M, 𝑃𝑖[𝑆] ⊧ 𝑟𝜃, for an 𝑟 ∈ 𝑅(𝑚𝑖) and by Definition 3.6

ground substitution 𝜃
⟺𝑀 ⊧ 𝛾(𝑃𝑖[𝑆], 𝑎(x))𝜃 for 𝐻(𝑟) = {𝑎(x)} by Lemma 7.1
⟺𝔐⊧ 𝛾(𝑃𝑖[𝑆], 𝑎(x))𝜃 for 𝐻(𝑟) = {𝑎(x)} by reconstruction from 𝔄
⟺𝔐 ⊧ 𝛾(𝑃𝑖[𝑆], 𝑎(x)) by𝔐 being finite
⟺𝔐⊧ 𝛾(P) by Definition 7.3 .

Next we show that𝔐 ⊧ ¬∃𝐽 [(𝐽 < 𝐼) ∧ ̃𝛾(P)] iff there exists noN such thatN < M
and N satisfies 𝑓 gr(P, 𝔄)M.

We obtain
𝔐 ⊧ ¬∃𝐽 [(𝐽 < 𝐼) ∧ ̃𝛾(P)]

if and only if there are no H-structures𝔅 for P such that𝔅 = (𝑈𝔅, ⋅𝔅) satisfies

203

Chapter 7. Representing MLPs with Classical Logic

• 𝑈𝔅 = 𝑈𝔄;

• 𝑐𝔅 = 𝑐𝔄 for all constant symbols 𝑐;

• 𝑞𝔅 = 𝑞𝔄 for all extensional predicates 𝑞;

• 𝑝𝔅,𝑆 ⊆ 𝑝𝔄,𝑆 for all intensional predicates 𝑝 and all value calls 𝑃𝑖[𝑆] such that
for some intensional predicate �̌�, �̌�𝔅,𝑆 ⊂ �̌�𝔄,𝑆; and

• for all ground substitutions 𝜃 such that for all rules 𝑟 in 𝑅(𝑚𝑖), and all value calls
𝑃𝑖[𝑆], ifN, 𝑃𝑖[𝑆] ⊧ 𝐵+(𝑟𝜃) andM, 𝑃𝑖[𝑆] ⊭ 𝐵−(𝑟𝜃) thenN, 𝑃𝑖[𝑆] ⊧ 𝐻(𝑟𝜃), where

N = (ℰ(𝔅, 𝑃𝑖[𝑆]) ∪ ℐ(𝔅, 𝑃𝑖[𝑆]) ∣ 𝑃𝑖[𝑆] ∈ VC(P)) ,

if and only if there exists no N such that N < M, and for all value calls 𝑃𝑖[𝑆] such
that for all rules 𝑟𝜃 ∈ 𝑓 gr(P, 𝔄)(𝑃𝑖[𝑆])M for all ground substitutions 𝜃 such that
N, 𝑃𝑖[𝑆] ⊧ 𝑟𝜃, if and only if there exists no N such that N < M and N ⊧ 𝑓 gr(P, 𝔄)M.

Now, we have that for all M such that M ⊧ gr(P, 𝔄), there does not exist an N
such that N < M and N ⊧ 𝑓 gr(P, 𝔄)M if and only if𝔐 ⊧ 𝛾(P) ∧ ¬∃𝐽 [(𝐽 < 𝐼) ∧ ̃𝛾(P)].
Thus, 𝔄 is an answer set of P if and only if𝔐 ⊧ Φ(P), and so we have shown that the
answer sets of P correspond one-to-one to the models of Φ(P). ⧠

7.3.2 Ordered Completion for MLPs
In the following, we develop ordered completion for MLPs. Given an MLP P, our goal
is to give a translation of P to a first-order formula such that the models of the latter
correspond to the answer sets of the former. The basic intuition of ordered completion
is to recast program completion as defined in §7.1 to the nonground setting with a
modification concerning the order between predicates.

Following Asuncion et al. (2012), we use labeled predicates 𝐷 to keep track of the
derivation/dependency order of predicates occurring in an MLP P. Essentially, predi-
cate 𝐷 is labeled with super- and subscripts describing the two related predicates with
their inputs from value calls (the former is used in deriving the latter, in a transitive
way). For example, the atom 𝐷𝑞,𝑃𝑘[𝑇]

𝑝,𝑃𝑖[𝑆] (y,x) means that 𝑞(y) in a value call 𝑃𝑘[𝑇] is
used to derive 𝑝(x) in 𝑃𝑖[𝑆]. Hence, the formula

𝐷𝑞,𝑃𝑘[𝑇]
𝑝,𝑃𝑖[𝑆] (y,x) ∧ ¬𝐷

𝑝,𝑃𝑖[𝑆]
𝑞,𝑃𝑘[𝑇](x,y)

expresses that there is no cyclic dependency between 𝑞(y) and 𝑝(x), which is essential
in ordered completion.

204

7.3.2. Ordered Completion for MLPs

Definition 7.16 (Ordered modular derivation).
Let 𝑃𝑖[𝑆] and 𝑃𝑘[𝑇] be value calls from MLP P, and let 𝑝(x) and 𝑞(y) be two ordinary
atoms appearing in 𝑚𝑖 and 𝑚𝑘, respectively. The ordered modular derivation is the
formula

𝛿(𝑝(x), 𝑃𝑖[𝑆], 𝑞(y), 𝑃𝑘[𝑇]) = 𝐷𝑞,𝑃𝑘[𝑇]
𝑝,𝑃𝑖[𝑆] (y,x) ∧ ¬𝐷

𝑝,𝑃𝑖[𝑆]
𝑞,𝑃𝑘[𝑇](x,y) .

We can now use 𝛿 to treat module atoms using an ordering on the predicates. Given
a value call 𝑃𝑖[𝑆] of the module 𝑚𝑖 = (𝑃𝑖[q𝑖], 𝑅𝑖), let 𝛽(y) = 𝑃𝑘[p].𝑜(y) be a module
atom for accessing a module 𝑚𝑘 = (𝑃𝑘[q𝑘], 𝑅𝑘). In the following definition, we will
reconfigure the translation for module atoms 𝜇 as defined in Definition 7.1 to 𝜇 with
atom 𝑎(x) as an additional argument, which not only takes care of matching labels but
also prevents loops between the output atom of 𝛽(y) and 𝑎(x), as well as loops between
input predicates and formal arguments of the respective module call. To this end, we
reuse formula 𝜖(𝑃𝑖[𝑆], 𝑃𝑘[𝑇]) fromDefinition 7.1 of §7.1 for matching the interpretation
of p to a value call 𝑃𝑘[𝑇] of 𝛽(y) in our nonground setting. We obtain the accurate
𝑃𝑘[𝑇] by ranging over all possible subsets 𝑇 ⊆ HBP|q𝑘 of the called module 𝑚𝑘 with
formal input parameters q𝑘. For each of the subsets, we translate the module atom
𝛽(y) to its output predicate labeled with the corresponding value call 𝑃𝑘[𝑇].

In the following definition, 𝑝𝑗 and 𝑞𝑘,𝑗 stem from the input predicate list p =
𝑝1, … , 𝑝𝑛𝑘 of module atom 𝛽(y) and the formal arguments q𝑘 = 𝑞𝑘,1, … , 𝑞𝑘,𝑛𝑘 of mod-
ule 𝑚𝑘.

Definition 7.17 (Ordered module atom completion).
Let P be a normal MLP, let 𝑃𝑖[𝑆] ∈ VC(P) be a value call from P, let 𝛽(y) = 𝑃𝑘[p].𝑜(y)
be a module atom from module 𝑚𝑖, and let 𝑎(x) be an ordinary atom from 𝑚𝑖. The
ordered module atom completion is defined as

𝜇(𝑃𝑖[𝑆], 𝛽(y), 𝑎(x)) =

⋁
𝑃𝑘[𝑇]∈VC(P)

(𝜖(𝑃𝑖[𝑆], 𝑃𝑘[𝑇]) ∧ 𝑜𝑇(y) ∧ 𝛿(𝑎(x), 𝑃𝑖[𝑆], 𝑜(y), 𝑃𝑘[𝑇]) ∧

𝑛𝑘

⋀
𝑗=1

⋀
𝜒𝑇(𝑞𝑖,𝑗(c))=1

(𝛿(𝑞𝑘,𝑗(c), 𝑃𝑘[𝑇], 𝑝𝑗(c), 𝑃𝑖[𝑆]))) .

We are now in the position to define ordered completion. While Clark’s completion
formula (Clark, 1978) is based on logical biconditional ≡ for defining the completion
of relations, we split the completion into its logical equivalent form using the con-
junction of two material conditionals. The “only-if-part” of the ordered completion is
̂𝛾(𝑃𝑖[𝑆], 𝑎(x)), which lifts 𝛾(𝑃𝑖[𝑆], 𝑟) to the nonground case by merging all supporting

rules for 𝑎(x). The “if-part” is ̂𝜎(𝑃𝑖[𝑆], 𝑎(x)), which is based on 𝜎(P, 𝑃𝑖[𝑆]) and applies
to every intensional predicate 𝑎. Intuitively, ̂𝜎makes sure that whenever a head is true,

205

Chapter 7. Representing MLPs with Classical Logic

then there must be some rule with the body satisfied, plus there is no loop involving
the head and any atom in the body (both ordinary and module atoms), or between the
input predicates and the corresponding formal input parameters of the called module;
this is encoded in 𝛿 and 𝜇, respectively. We assume that rules with intensional pred-
icate 𝑎 use the same tuple x of distinct variables, i.e., a predicate 𝑎 appearing in the
head of a rule always has the form 𝑎(x).

Definition 7.18 (Ordered modular completion).
Let 𝑚𝑖 = (𝑃𝑖[q𝑖], 𝑅𝑖) be a module from MLP P, let 𝑃𝑖[𝑆] ∈ VC(P) be a value call, let
𝑟 ∈ 𝑅(𝑚𝑖) be a rule, let 𝑎(x) be an atom with intensional predicate 𝑎 ∈ Int(𝑚𝑖) such
that 𝐻(𝑟) = {𝑎(x)}, and let y be the free variables in the body of 𝑟. We define

̂𝛽(𝑃𝑖[𝑆], 𝑟) = ∃y⋀𝐵+𝑜 (𝑟)
𝑆 ∧ ⋀

𝛽(z)∈𝐵+
𝑚(𝑟)

𝜇(𝑃𝑖[𝑆], 𝛽(z), 𝑎(x)) ∧

⋀
𝑏∈Int(𝑚𝑖)

⋀
𝑏(z)∈𝐵+

𝑜 (𝑟)

𝛿(𝑎(x), 𝑃𝑖[𝑆], 𝑏(z), 𝑃𝑖[𝑆]) ∧

⋀¬.𝐵−𝑜 (𝑟)
𝑆 ∧ ⋀

𝛽(z)∈𝐵−
𝑚(𝑟)
�̄�(𝑃𝑖[𝑆], 𝛽(z)) .

and

̂𝜎(𝑃𝑖[𝑆], 𝑎(x)) = ∀x(𝑎𝑆(x) ⊃ ⋁
𝑟∈SR(𝑎(x),𝑅𝑖)

̂𝛽(𝑃𝑖[𝑆], 𝑟)) .

For an MLP P we define

̂𝛾(P) = ⋀
𝑃𝑖[𝑆]∈VC(P)

⋀
𝑎∈Int(𝑚𝑖)

𝛾(𝑃𝑖[𝑆], 𝑎(x))

and
̂𝜎(P) = ⋀

𝑃𝑖[𝑆]∈VC(P)
⋀

𝑎∈Int(𝑚𝑖)
̂𝜎(𝑃𝑖[𝑆], 𝑎(x)) .

Example 7.11 (cont’d) Take P from Example 7.1 and the labels 𝑆1, 𝑆02 , and 𝑆12 from
Example 7.9. We have

̂𝛾(𝑃1[∅], 𝑝) = (¬𝑝𝑆1 ∧ 𝑟𝑆02) ∨ (𝑝𝑆1 ∧ 𝑟𝑆12) ⊃ 𝑝𝑆1 .

Moreover, we get

̂𝜎(𝑃1[∅], 𝑝) = 𝑝𝑆1 ⊃ (¬𝑝𝑆1 ∧ 𝑟𝑆02 ∧ 𝐷𝑟,𝑆02
𝑝,𝑆1 ∧ ¬𝐷

𝑝,𝑆1
𝑟,𝑆02

∧ 𝐷𝑝,𝑆1
𝑞,𝑆02

∧ ¬𝐷𝑞,𝑆02
𝑝,𝑆1)∨

(𝑝𝑆1 ∧ 𝑟𝑆12 ∧ 𝐷𝑟,𝑆12
𝑝,𝑆1 ∧ ¬𝐷

𝑝,𝑆1
𝑟,𝑆12

∧ 𝐷𝑝,𝑆1
𝑞,𝑆12

∧ ¬𝐷𝑞,𝑆12
𝑝,𝑆1) .

206

7.3.2. Ordered Completion for MLPs

To capture the closure condition of the dependencies 𝐷𝑝,𝑃𝑖[𝑆]
𝑞,𝑃𝑘[𝑇](x,y) not only inside

but also across module instances, we consider triples of value calls 𝑃𝑖[𝑆], 𝑃𝑗[𝑇], and
𝑃𝑘[𝑈] (not necessarily distinct) coming from the call graph CGP.

Definition 7.19 (Ordered modular transitive derivation).
Let P be a normal MLP. The ordered modular transitive derivation 𝜏(P) is the conjunc-
tion of formulas

∀xyz (𝐷𝑝,𝑃𝑖[𝑆]
𝑞,𝑃𝑗[𝑇](x,y) ∧ 𝐷

𝑞,𝑃𝑗[𝑇]
𝑟,𝑃𝑘[𝑈](y, z) ⊃ 𝐷𝑝,𝑃𝑖[𝑆]

𝑟,𝑃𝑘[𝑈](x, z))

for all modules 𝑚𝑖, 𝑚𝑗, 𝑚𝑘 from P such that 𝑝 ∈ Int(𝑚𝑖), 𝑞 ∈ Int(𝑚𝑗), 𝑟 ∈ Int(𝑚𝑘),
and 𝑃𝑖[𝑆], 𝑃𝑗[𝑇], 𝑃𝑘[𝑈] ∈ VC(P).

Then, the ordered completion for an intensional predicate 𝑎 is simply the conjunc-
tion of ̂𝛾, ̂𝜎, and 𝜏. The ordered completion thus collects the completions for all value
calls in the call graph CGP and the closure axiom of the dependency order between
labeled predicates.

Definition 7.20 (Ordered completion for MLPs).
Let P be a normal MLP. The ordered completion of P is defined as the conjunction of
the ordered derivation and the ordered intensional completion of P,

Ω(P) = ̂𝛾(P) ∧ ̂𝜎(P) ∧ 𝜏(P) .

Comparing ordered completion to the characterization of MLPs with loop formu-
las Λ(P) = 𝛾(P) ∧ 𝜎(P) ∧ 𝜆(P) defined in the previous section yields a striking resem-
blance of the shape of formulae. While Λ(P) gives us the characterization via program
completion 𝛾(P) ∧ 𝜎(P) and additional loop formulae 𝜆(P) that are based on cyclic de-
pendencies in the MLP, ordered completion Ω(P) uses an adapted notion of program
completion ̂𝛾(P)∧ ̂𝜎(P) that includes expressions about noncyclic dependencies in the
MLP and adds transitive derivation formulae 𝜏(P).

Example 7.12 (cont’d) The conjunction of the formulas in Example 7.11 gives us

̂𝛾(𝑃1[∅], 𝑝) ∧ ̂𝜎(𝑃1[∅], 𝑝)

for module 𝑚1 of the MLP P in Example 7.1. For module 𝑚2 we obtain the formulas

̂𝛾(𝑃2[∅], 𝑟) ∧ ̂𝜎(𝑃2[∅], 𝑟) = (𝑞𝑆02 ⊃ 𝑟𝑆02) ∧ (𝑟𝑆02 ⊃ 𝑞𝑆02 ∧ 𝐷𝑞,𝑆02
𝑟,𝑆02

∧ ¬𝐷𝑟,𝑆02
𝑞,𝑆02

)

and

̂𝛾(𝑃2[{𝑞}], 𝑟) ∧ ̂𝜎(𝑃2[{𝑞}], 𝑟) = 𝑞𝑆12 ∧ (𝑞𝑆12 ⊃ 𝑟𝑆12) ∧ (𝑟𝑆12 ⊃ 𝑞𝑆12 ∧ 𝐷𝑞,𝑆12
𝑟,𝑆12

∧ ¬𝐷𝑟,𝑆12
𝑞,𝑆12

) .

207

Chapter 7. Representing MLPs with Classical Logic

The transitive derivation is

𝜏(P) = ⋀𝐷𝛼1,𝑣1
𝛼2,𝑣2 ∧ 𝐷

𝛼2,𝑣2
𝛼3,𝑣3 ⊃ 𝐷𝛼1,𝑣1

𝛼3,𝑣3

where 𝛼𝑖 ∈ {𝑝, 𝑞, 𝑟}, 𝑣𝑖 = 𝑃1[𝑆1] if 𝛼𝑖 = 𝑝 and 𝑣𝑖 ∈ {𝑃2[𝑆02], 𝑃2[𝑆12]} otherwise.
The ordered completion Ω(P) is then the conjunction of all four formulas above, i.e.,
̂𝛾(𝑃1[∅], 𝑝)∧ ̂𝜎(𝑃1[∅], 𝑝)∧ ̂𝛾(𝑃2[∅], 𝑟)∧ ̂𝜎(𝑃2[∅], 𝑟)∧ ̂𝛾(𝑃2[{𝑞}], 𝑟)∧ ̂𝜎(𝑃2[{𝑞}], 𝑟)∧𝜏(P),

which has a single model whose projection to labeled atoms is {𝑟𝑆12 , 𝑞𝑆12 }. This model
corresponds to the answer set mentioned in Example 7.1.

In order to prove that the models of the ordered completion Ω(P) capture the an-
swer sets of an MLP P, we define the derivation order of an MLP P with respect to an
H-structure 𝔐. Recall that ℐ(𝔐, 𝑃𝑖[𝑆]) and ℰ(𝔐,𝑃𝑖[𝑆]) denote the intensional and
extensional atoms contained in𝔐 at 𝑃𝑖[𝑆], respectively (confer Definition 7.14).

Definition 7.21 (Derivation order).
The derivation order of an H-structure𝔐 on a normal MLP P is a sequence 𝐷𝔐(P) =
(𝑝1(c1), 𝑣1) , … , (𝑝𝑘(c𝑘), 𝑣𝑘) of pairs of ground atoms and value calls such that

• {𝑣1, … , 𝑣𝑘} ⊆ VC(P),

• for all 𝑃𝑖[𝑆] ∈ VC(P),

ℐ(𝔐, 𝑃𝑖[𝑆]) = {𝑝𝑗(c𝑗) ∣
𝑣𝑗 = 𝑃𝑖[𝑆] ∧ (𝑝𝑗(c𝑗), 𝑣𝑗) ∈ {𝐷𝔐(P)} ∧

𝑝𝑗 ∈ Int(𝑚𝑖) ∧ c𝑗 ∈ 𝑝𝔐,𝑆
𝑗

} ,

• all ℐ(𝔐, 𝑃𝑖[𝑆]) cover 𝐷𝔐(P), i.e.,

⋃
𝑃𝑖[𝑆]∈VC(P)

{(𝑝(c), 𝑃𝑖[𝑆]) ∣ 𝑝(c) ∈ ℐ(𝔐, 𝑃𝑖[𝑆])} = {𝐷𝔐(P)} ,

• for all 𝑗 = 1,… , 𝑘 and for all 𝑃𝑖[𝑆] ∈ VC(P) there exists a rule 𝑟 ∈ 𝑅(𝑚𝑖) and a
ground substitution 𝜃 for the variables appearing in 𝑟 such that

– (𝐻(𝑟)𝜃, 𝑃𝑖[𝑆]) = (𝑝𝑗(c𝑗), 𝑣𝑗),
– for all intensional 𝑞(t) ∈ 𝐵+𝑜 (𝑟),

(𝑞(t)𝜃, 𝑃𝑖[𝑆]) ∈ {(𝑝1(c1), 𝑣1) , … , (𝑝𝑗−1(cj−1), 𝑣𝑗−1)} ,

– for all intensional 𝑞(t) ∈ 𝐵−𝑜 (𝑟),

𝑞(t)𝜃 ∉ ℐ(𝔐, 𝑃𝑖[𝑆]) ,

208

7.3.2. Ordered Completion for MLPs

– for all 𝑃𝑘[p].𝑜(t) ∈ 𝐵+𝑚(𝑟) such that for 𝑇 = (ℐ(𝔐, 𝑃𝑖[𝑆]) ∪ 𝑆)|
q𝑘
p ,

(𝑜(t)𝜃, 𝑃𝑘[𝑇]) ∈ {(𝑝1(c1), 𝑣1) , … , (𝑝𝑗−1(cj−1), 𝑣𝑗−1)} ,

– for all 𝑃𝑘[p].𝑜(t) ∈ 𝐵−𝑚(𝑟) such that for 𝑇 = (ℐ(𝔐, 𝑃𝑖[𝑆]) ∪ 𝑆)|
q𝑘
p ,

𝑜(t)𝜃 ∉ ℐ(𝔐, 𝑃𝑘[𝑇]) , and

– for all extensional 𝑞(t) ∈ 𝐵+𝑜 (𝑟) and 𝑞(t) ∈ 𝐵−𝑜 (𝑟), 𝑞(t)𝜃 ∈ ℰ(𝔐, 𝑃𝑖[𝑆])
and 𝑞(t)𝜃 ∉ ℰ(𝔐, 𝑃𝑖[𝑆]), respectively.

We can now show that derivation orders capture answer sets of normal MLPs.

Lemma 7.6
Let P be a normal MLP and𝔐 be a finite H-structure. Then, 𝔐 is an answer set of P
iff𝔐 ⊧ 𝛾(P) and there exists at least one derivation order 𝐷𝔐(P).

Proof Without loss of generality, we assume that P is a ground normal MLP.
(⇒) Let𝔐 be an answer set of P. ByTheorem 7.5,𝔐 ⊧ 𝛾(P). We construct a sequence
of pairs 𝐷 = (𝑝1(c1), 𝑣1) , … , (𝑝𝑘(c𝑘), 𝑣𝑘) from𝔐 as follows:

• for 𝑗 = 1,… , 𝑘 where 𝑣𝑗 = 𝑃𝑖[𝑆] ∈ VC(P), there exists a rule 𝑟 ∈ 𝑅(𝑚𝑖) such
that

1. (𝐻(𝑟), 𝑃𝑖[𝑆]) = (𝑝𝑗(c𝑗), 𝑣𝑗),
2. for all intensional 𝑞(c) ∈ 𝐵+𝑜 (𝑟),

(𝑞(c), 𝑃𝑖[𝑆]) ∈ {(𝑝1(c1), 𝑣1) , … , (𝑝𝑗−1(cj−1), 𝑣𝑗−1)} ,

3. for all intensional 𝑞(c) ∈ 𝐵−𝑜 (𝑟),

𝑞(c) ∉ ℐ(𝔐, 𝑃𝑖[𝑆]) ,

4. for all 𝑃𝑘[p].𝑜(c) ∈ 𝐵+𝑚(𝑟) such that for 𝑇 = (ℐ(𝔐, 𝑃𝑖[𝑆]) ∪ 𝑆)|
q𝑘
p ,

(𝑜(c), 𝑃𝑘[𝑇]) ∈ {(𝑝1(c1), 𝑣1) , … , (𝑝𝑗−1(cj−1), 𝑣𝑗−1)} ,

5. for all 𝑃𝑘[p].𝑜(c) ∈ 𝐵−𝑚(𝑟) such that for 𝑇 = (ℐ(𝔐, 𝑃𝑖[𝑆]) ∪ 𝑆)|
q𝑘
p ,

𝑜(c) ∉ ℐ(𝔐, 𝑃𝑘[𝑇]) , and

6. for all extensional 𝑞(c) ∈ 𝐵+𝑜 (𝑟) and 𝑞(c) ∈ 𝐵−𝑜 (𝑟), 𝑞(c) ∈ ℰ(𝔐, 𝑃𝑖[𝑆])
and 𝑞(c) ∉ ℰ(𝔐, 𝑃𝑖[𝑆]), respectively;

209

Chapter 7. Representing MLPs with Classical Logic

• for all 𝑃𝑖[𝑆] ∈ VC(P) there is no rule 𝑟 ∈ 𝑅(𝑚𝑖) such that (𝐻(𝑟), 𝑃𝑖[𝑆]) ∉ {𝐷}
and for 𝑗 = 𝑘, (2)–(6) holds.

Let
D = ({𝑝𝑗(c𝑗) ∣ (𝑝𝑗(c𝑗), 𝑃𝑖[𝑆]) ∈ {𝐷}} ∣ 𝑃𝑖[𝑆] ∈ VC(P)) .

Then, D is an interpretation for 𝑔𝑟(P,𝔐). Now consider M obtained from 𝔐 as in
Definition 7.14. From the construction ofD from𝔐, we conclude thatD ≤ M. Since𝔐
is an answer set ofP, thusM is an answer set for 𝑔𝑟(P,𝔐), thereforeM ⊧ 𝑓 gr(P,𝔐)M.
By the construction of D, we infer that D ⊧ 𝑓 gr(P,𝔐)M. Towards a contradiction,
assume that D ≠ M, i.e., D < M. This would mean that M is not a minimal model of
𝑓 gr(P,𝔐)M, a contradiction. Thus, D = M. This implies that all ℐ(𝔐, 𝑃𝑖[𝑆]) cover 𝐷
since D = M. Hence, 𝐷 is a derivation order of𝔐 on P.

(⇐) Let𝔐 ⊧ 𝛾(P) and let 𝐷𝔐(P) = (𝑝1(c1), 𝑣1) , … , (𝑝𝑘(c𝑘), 𝑣𝑘) be a derivation order
of 𝔐 on P. Let M be obtained from 𝔐 as in Definition 7.14. Since 𝔐 ⊧ 𝛾(P), we can
infer from Theorem 7.5 that M is a model of 𝑔𝑟(P,𝔐) and a model of 𝑓 gr(P,𝔐)M.
Now we show that M is a minimal model of 𝑓 gr(P,𝔐)M. Assuming the contrary,
there exists an interpretationN < M such thatN ⊧ 𝑓 gr(P,𝔐)M. For a value call 𝑃𝑖[𝑆]
there exists an atom 𝑝(c) ∈ 𝑀𝑖/𝑆 such that 𝑝(c) ∉ 𝑁𝑖/𝑆. Since 𝐷𝔐(P) is a derivation
order, we have that (𝑝(c), 𝑃𝑖[𝑆]) appears in the sequence 𝐷𝔐(P). Without loss of
generality, let (𝑝(c), 𝑃𝑖[𝑆]) be the element obtained from M such that 𝑝(c) ∉ 𝑁𝑖/𝑆
and (𝑝(c), 𝑃𝑖[𝑆]) appears in 𝐷𝔐(P) with the least ordinal 𝑗 ≤ 𝑘. Thus, there exists
a rule 𝑟 ∈ 𝑅(𝑚𝑖) such that (𝐻(𝑟), 𝑃𝑖[𝑆]) = (𝑝(c), 𝑃𝑖[𝑆]). Following Definition 7.21
for derivation orders, we must have that M ⊧ 𝐵(𝑟), and since 𝑗 is the least ordinal in
𝐷𝔐(P) such that 𝑝(c) ∉ 𝑁𝑖/𝑆, we get that also N ⊧ 𝐵(𝑟). But N, 𝑃𝑖[𝑆] ⊭ 𝐻(𝑟), which
contradicts N ⊧ 𝑓 gr(P,𝔐)M. Hence, M is a minimal model of 𝑓 gr(P,𝔐)M, and from
this follows that𝔐 is an answer set for P. ⧠

Based on the translational semantics, Theorem 7.5, and Lemma 7.6, we can now
show the correctness of ordered completion.

Theorem 7.7 (MLP ordered completion)
Let P = (𝑚1, … ,𝑚𝑛) be a normal MLP. Then,

1. if H-structure 𝔐 is an answer set of P, then 𝔒 is a model of Ω(P), where 𝔒
satisfies, for all 𝑃𝑖[𝑆] ∈ VC(P),

• 𝑈𝔒 = 𝑈𝔐,
• for each constant symbol 𝑐 from P, 𝑐𝔒 = 𝑐𝔐,

• for each extensional predicate 𝑞 of P, (𝑞𝑆)𝔒 = 𝑞𝔐, and

• for each intensional predicate 𝑝 at 𝑃𝑖[𝑆], (𝑝𝑆)
𝔒 = 𝑝𝔐,𝑆.

210

7.3.2. Ordered Completion for MLPs

• for the derivation order𝐷𝔐(P) = (𝑝1(c1), 𝑣1) , … , (𝑝𝑘(c𝑘), 𝑣𝑘) and ordinals
𝑗1, 𝑗2 ∈ {1, … , 𝑘} such that 𝑗1 ≤ 𝑗2, we set for each predicate 𝐷

𝑝𝑗1,𝑣𝑗1
𝑝𝑗2,𝑣𝑗2 ,

(𝐷
𝑝𝑗1,𝑣𝑗1
𝑝𝑗2,𝑣𝑗2)

𝔇
= {(cj1, cj2) ∣ (𝑝𝑗1(cj1), 𝑣𝑗1) , (𝑝𝑗2(cj2), 𝑣𝑗1) ∈ {𝐷𝔐(P)}} .

2. if 𝔒 = (𝑈𝔒, ⋅𝔒) is a model of Ω(P), then the 𝔐 = (𝑈𝔐, ⋅𝔐) is an answer set
of P, where𝔐 satisfies, for all 𝑃𝑖[𝑆] ∈ VC(P),

• 𝑈𝔐 = 𝑈𝔒,

• for each constant symbol 𝑐 from P, 𝑐𝔐 = 𝑐𝔒,

• for each extensional predicate 𝑞 of P, 𝑞𝔐 = (𝑞𝑆)𝔒, and

• for each intensional predicate 𝑝 at 𝑃𝑖[𝑆], 𝑝𝔐,𝑆 = (𝑝𝑆)𝔒.

Proof (item 1) Let 𝔐 be an answer set of P. By Lemma 7.6 there exists a derivation
order 𝐷𝔐(P). We show now that𝔒 ⊧ ̂𝛾(P) ∧ ̂𝜎(P) ∧ 𝜏(P). By construction of𝔒 from
𝐷𝔐(P), we obtain that 𝔒 ⊧ 𝜏(P), as 𝐷𝔐(P) satisfies transitivity and does not contain
loops. By Theorem 7.5, we get that 𝔒 ⊧ ̂𝛾(P) by construction of 𝔒 from 𝔐 agreeing
on all predicates and constant symbols, since 𝛾(P) = ̂𝛾(P).

We show now that 𝔒 ⊧ ̂𝜎(P) by contradiction. Assume that 𝔒 ⊭ ̂𝜎(P). There
exists an 𝑎 ∈ Int(𝑚𝑖) and 𝑃𝑖[𝑆] such that 𝔒 ⊭ ̂𝜎(𝑃𝑖[𝑆], 𝑎(x)). Thus there exists a
ground substitution 𝜃 such that𝔒 ⊧ 𝑎𝑆(x)𝜃 implies

𝔒 ⊭ ⋁
𝑟∈SR(𝑎(x),𝑅𝑖)

̂𝛽(𝑃𝑖[𝑆], 𝑟)𝜃 .

Hence, there is no rule 𝑟 ∈ SR(𝑎(x), 𝑅𝑖) such that ̂𝛽(𝑃𝑖[𝑆], 𝑟)𝜃 is satisfied by 𝔒. As
𝔒 ⊧ 𝛾(P) and𝔐 ⊧ gr(P,𝔐), i.e., all rules in gr(P,𝔐)must be satisfied. Furthermore,
from the existence of 𝐷𝔐(P) we obtain that there is a rule 𝑟 ∈ SR(𝑎(x), 𝑅𝑖) such
that the body of 𝑟 is satisfied by 𝔐. We argue now based on 𝐷𝔐(P) that our initial
assumption𝔒 ⊭ ̂𝜎(P) leads to a contradiction. Thus, since the body of 𝑟 is true in𝔐,
all the parts of ̂𝛽(𝑃𝑖[𝑆], 𝑟) must be satisfied by𝔒 except for the cases

(a) 𝛿(𝑎(x), 𝑃𝑖[𝑆], 𝑏(z), 𝑃𝑖[𝑆])𝜃 from

⋀
𝑏∈Int(𝑚𝑖)

⋀
𝑏(z)∈𝐵+

𝑜 (𝑟)

𝛿(𝑎(x), 𝑃𝑖[𝑆], 𝑏(z), 𝑃𝑖[𝑆]) , and

(b) 𝛿(𝑎(x), 𝑃𝑖[𝑆], 𝑜(y), 𝑃𝑘[𝑇])𝜃 from⋀𝛽(z)∈𝐵+
𝑚(𝑟)

𝜇(𝑃𝑖[𝑆], 𝛽(z), 𝑎(x)),

211

Chapter 7. Representing MLPs with Classical Logic

which are not satisfied by𝔒 by our assumption.
In case (a), where

𝔒 ⊭ 𝛿(𝑎(x), 𝑃𝑖[𝑆], 𝑏(y), 𝑃𝑖[𝑆])𝜃 ,

we have
𝔒 ⊭ 𝐷𝑏,𝑃𝑖[𝑆]

𝑎,𝑃𝑖[𝑆](z,x)𝜃 ∧ ¬𝐷
𝑎,𝑃𝑖[𝑆]
𝑏,𝑃𝑖[𝑆] (x, z)𝜃 ,

thus infer that𝔒 ⊧ ¬𝐷𝑏,𝑃𝑖[𝑆]
𝑎,𝑃𝑖[𝑆](z,x)𝜃 or𝔒 ⊧ 𝐷𝑎,𝑃𝑖[𝑆]

𝑏,𝑃𝑖[𝑆] (x, z)𝜃. In case (b), where

𝔒 ⊭ 𝛿(𝑎(x), 𝑃𝑖[𝑆], 𝑜(y), 𝑃𝑘[𝑇])𝜃 ,

we have assumed that

𝔒 ⊭ 𝐷𝑜,𝑃𝑘[𝑇]
𝑎,𝑃𝑖[𝑆] (y,x)𝜃 ∧ ¬𝐷

𝑎,𝑃𝑖[𝑆]
𝑜,𝑃𝑘[𝑇](x,y)𝜃 ,

and obtain that𝔒 ⊧ ¬𝐷𝑜,𝑃𝑘[𝑇]
𝑎,𝑃𝑖[𝑆] (y,x)𝜃 or𝔒 ⊧ 𝐷𝑎,𝑃𝑖[𝑆]

𝑜,𝑃𝑘[𝑇](x,y)𝜃.
Consider a pair (𝑎(x)𝜃, 𝑃𝑖[𝑆]) from 𝐷𝔐(P). According to Definition 7.21, there is a

rule whose head is 𝑎(x). Without loss of generality, let 𝑟 from above be the rule such
that 𝐻(𝑟)𝜃 = {𝑎(x)𝜃}. We consider now the different types of body atoms of 𝑟. For
case (a), we consider ordinary atoms, and by Definition 7.21 for all intensional 𝑞(z)𝜃
from 𝐵+𝑜 (𝑟𝜃), we obtain that the ordinal of pair (𝑞(z)𝜃, 𝑃𝑖[𝑆]) is less than the ordinal
for (𝑎(x)𝜃, 𝑃𝑖[𝑆]). Thus, we conclude 𝔒 ⊧ 𝐷𝑏,𝑃𝑖[𝑆]

𝑎,𝑃𝑖[𝑆](z,x)𝜃 and 𝔒 ⊧ ¬𝐷𝑎,𝑃𝑖[𝑆]
𝑏,𝑃𝑖[𝑆] (x, z)𝜃,

which contradicts
𝔒 ⊭ 𝛿(𝑎(x), 𝑃𝑖[𝑆], 𝑏(y), 𝑃𝑖[𝑆])𝜃

in case (a). For case (b), we get from Definition 7.21 that all module atoms 𝑃𝑘[p].𝑜(y)𝜃
are contained in 𝐵−𝑚(𝑟𝜃) such that 𝑇 = (ℐ(𝔐, 𝑃𝑖[𝑆]) ∪ 𝑆)|

q𝑘
p , hence the ordinal of

pair (𝑜(y)𝜃, 𝑃𝑘[𝑇]) is less than the ordinal for (𝑎(x)𝜃, 𝑃𝑖[𝑆]). Thus, we obtain 𝔒 ⊧
𝐷𝑜,𝑃𝑘[𝑇]
𝑎,𝑃𝑖[𝑆] (y,x)𝜃 and𝔒 ⊧ ¬𝐷𝑎,𝑃𝑖[𝑆]

𝑜,𝑃𝑘[𝑇](x,y)𝜃, which contradicts

𝔒 ⊭ 𝛿(𝑎(x), 𝑃𝑖[𝑆], 𝑜(y), 𝑃𝑘[𝑇])𝜃

in case (b). Therefore, both (a) and (b) are satisfied in ̂𝛽(𝑃𝑖[𝑆], 𝑟), and so we can infer
that𝔒 ⊧ ̂𝜎(𝑃𝑖[𝑆], 𝑎(x)). We have shown that𝔒 ⊧ ̂𝜎(P), and can infer that𝔒 ⊧ Ω(P).

(item 2) Let𝔒 ⊧ Ω(P) and let𝔐 be as defined. We let

M = (ℰ(𝔐, 𝑃𝑖[𝑆]) ∪ ℐ(𝔐, 𝑃𝑖[𝑆]) ∣ 𝑃𝑖[𝑆] ∈ VC(P)) ,

and construct from M the interpretation

𝑀 = ⋃
𝑃𝑖[𝑆]∈VC(P)

(𝑀𝑖/𝑆)𝑆 ,

212

7.3.2. Ordered Completion for MLPs

and show now that M is a model of gr(P,𝔐) and that M is a minimal model of
𝑓 gr(P,𝔐)M. Theorem 7.5 implies that from𝔒 ⊧ ̂𝛾(P) follows M ⊧ gr(P,𝔐).

We base our proof on the propositional modular loop formula Λ(gr(P,𝔐)). It
suffices to show that for all modular loops ℒ and cyclic instantiation signatures 𝒮 for
the ground program 𝑓 gr(P,𝔐)M the set𝑀 of ground atoms satisfies

𝑀 ⊧ 𝜆(𝒮,ℒ, 𝑓 gr(P,𝔐)M) . (7.3)

Towards a contradiction, assume that there exists a modular loop ℒ and cyclic
instantiation signatures 𝒮 for 𝑓 gr(P,𝔐)M such that𝑀 ⊭ 𝜆(𝒮,ℒ, 𝑓 gr(P,𝔐)M). There
exists an atom 𝑝0(c0) ∈ ℒ from 𝑃𝑖[𝑆] such that for 𝑝0 ∈ Int(𝑚𝑖) formula (7.1) is false in
𝑀, i.e., for 𝑝0(c0) ∈ ℒ in the antecedent of (7.1)𝑀 ⊧ 𝑝𝑆0(c0) but the consequent of (7.1)
is false in𝑀. This implies for all rules 𝑟 such that𝐻(𝑟) = {𝑝0(c0)} and 𝐵+(𝑟)∩ℒ = ∅,
𝑀 ⊭ 𝐻(𝑟)𝑆 ⊃ 𝛽(𝑃𝑖[𝑆], 𝑟). Hence, 𝑝0(c0) has no external support with respect to ℒ in
𝑓 gr(P,𝔐)M.

By 𝔒 ⊧ ̂𝛾(P) ∧ ̂𝜎(P) we can infer that there exists an 𝑟 ∈ SR(𝑝0(x), 𝑅𝑖) such that
for the ground substitution 𝜃 such that 𝑝0(x)𝜃 = 𝑝0(c0),𝔒 ⊧ ̂𝛽(𝑃𝑖[𝑆], 𝑟)𝜃. Hence,

(a) all 𝛿(𝑝0(x), 𝑃𝑖[𝑆], 𝑏(z), 𝑃𝑖[𝑆])𝜃 from

⋀
𝑏∈Int(𝑚𝑖)

⋀
𝑏(z)∈𝐵+

𝑜 (𝑟)

𝛿(𝑝0(x), 𝑃𝑖[𝑆], 𝑏(z), 𝑃𝑖[𝑆]) , and

(b) all 𝛿(𝑝0(x), 𝑃𝑖[𝑆], 𝑜(y), 𝑃𝑘[𝑇])𝜃 from

⋀
𝛽(z)∈𝐵+

𝑚(𝑟)

𝜇(𝑃𝑖[𝑆], 𝛽(z), 𝑝0(x))

are satisfied by𝔒.
Thus, for the case (a), both 𝔒 ⊧ 𝐷𝑏,𝑃𝑖[𝑆]

𝑎,𝑃𝑖[𝑆](z,x)𝜃 and 𝔒 ⊧ ¬𝐷𝑎,𝑃𝑖[𝑆]
𝑏,𝑃𝑖[𝑆] (x, z)𝜃 hold, and

for case (b), both 𝔒 ⊧ 𝐷𝑜,𝑃𝑘[𝑇]
𝑎,𝑃𝑖[𝑆] (y,x)𝜃 and 𝔒 ⊧ ¬𝐷𝑎,𝑃𝑖[𝑆]

𝑜,𝑃𝑘[𝑇](x,y)𝜃 hold. If all 𝑏(z)𝜃 and
𝛽(z)𝜃were not contained inℒ then 𝑝0(c0)would have external support, contradicting
our assumption.

Thus, there exists a 𝑝1(c1) ∈ ℒ in case (a), or 𝛽1(c1) = 𝑃𝑘[p].𝑝1(c1) ∈ ℒ and
𝑝1(c1) ∈ ℒ in case (b), where 𝑝1 is an intensional predicate, such that for the ground
substitution 𝜃, we have 𝑝1(c1) ∈ 𝐵+𝑜 (𝑟)𝜃 and 𝛽1(c1) ∈ 𝐵+𝑚(𝑟)𝜃, respectively. Hence,
in case (a), 𝔒 ⊧ 𝐷𝑝1,𝑃𝑖[𝑆]

𝑝0,𝑃𝑖[𝑆](c1, c0) and 𝔒 ⊧ ¬𝐷𝑝0,𝑃𝑖[𝑆]
𝑝1,𝑃𝑖[𝑆](c0, c1) hold, and in case (b), 𝔒 ⊧

𝐷𝑝1,𝑃𝑘[𝑇]
𝑝0,𝑃𝑖[𝑆] (c1, c0) and𝔒 ⊧ ¬𝐷𝑝0,𝑃𝑖[𝑆]

𝑝1,𝑃𝑘[𝑇](c0, c1) hold.
We can now apply above procedure starting from 𝑝1(c1) ∈ ℒ and a rule 𝑟 such

that for the ground substitution 𝜃, 𝐻(𝑟)𝜃 = {𝑝1(c1)}, and infer that there exists a
𝑝2(c2) ∈ ℒ in case (a), or 𝛽2(c2) = 𝑃𝑘[p].𝑝2(c2) ∈ ℒ and 𝑝2(c2) ∈ ℒ in case (b), such

213

Chapter 7. Representing MLPs with Classical Logic

that for the intensional predicate 𝑝2 we have 𝑝2(c2) ∈ 𝐵+𝑜 (𝑟)𝜃 and 𝛽2(c2) ∈ 𝐵+𝑚(𝑟)𝜃,
respectively. Hence, in case (a), 𝔒 ⊧ 𝐷𝑝2,𝑃𝑖[𝑆]

𝑝1,𝑃𝑖[𝑆](c2, c1) and 𝔒 ⊧ ¬𝐷𝑝1,𝑃𝑖[𝑆]
𝑝2,𝑃𝑖[𝑆](c1, c2) hold,

and𝔒 ⊧ 𝐷𝑝2,𝑃𝑘[𝑇]
𝑝1,𝑃𝑖[𝑆] (c2, c1) and𝔒 ⊧ ¬𝐷𝑝1,𝑃𝑖[𝑆]

𝑝2,𝑃𝑘[𝑇](c1, c2) in case (b).
Applying this procedure iteratively, we obtain a sequence of ground atoms

𝑝0(c0), 𝑝1(c1), 𝑝2(c2), … (7.4)

such that for all 𝑗 ≥ 0, 𝑝𝑗 is an intensional predicate, 𝑝𝑗(c𝑗) ∈ ℒ, and in case (a),

𝔒 ⊧ 𝐷𝑝𝑗+1,𝑃𝑖[𝑆]
𝑝𝑗,𝑃𝑖[𝑆] (cj+1, c𝑗) and𝔒 ⊧ ¬𝐷𝑝𝑗,𝑃𝑖[𝑆]

𝑝𝑗+1,𝑃𝑖[𝑆](c𝑗, cj+1)

hold, and in case (b),

𝔒 ⊧ 𝐷𝑝𝑗+1,𝑃𝑘[𝑇]
𝑝𝑗,𝑃𝑖[𝑆] (cj+1, c𝑗) and𝔒 ⊧ ¬𝐷𝑝𝑗,𝑃𝑖[𝑆]

𝑝𝑗+1,𝑃𝑘[𝑇](c𝑗, cj+1) ,

hold.
Since𝔒 is finite and𝔒 ⊧ 𝜏(P) implies the transitivity of derivation sequence (7.4),

there must exist an 𝑚 ≥ 0 with 𝑚 < 𝑛 for an 𝑛 ≥ 0 such that 𝑝𝑚(c𝑚) = 𝑝𝑛(c𝑛)
in (7.4), hence (7.4) is finite. We obtain𝔒 ⊧ 𝐷𝑝𝑗+1,𝑃𝑖[𝑆]

𝑝𝑗,𝑃𝑖[𝑆] (cj+1, c𝑗) in case (a), respectively

𝔒 ⊧ 𝐷𝑝𝑗+1,𝑃𝑘[𝑇]
𝑝𝑗,𝑃𝑖[𝑆] (cj+1, c𝑗) in case (b), for all 𝑗 ≥ 0, hence by transitivity, we get 𝔒 ⊧

𝐷𝑝𝑛,𝑃𝑖[𝑆]
𝑝𝑚+1,𝑃𝑖[𝑆](c𝑛, cm+1) in case (a), respectively𝔒 ⊧ 𝐷𝑝𝑛,𝑃𝑘[𝑇]

𝑝𝑚+1,𝑃𝑖[𝑆](c𝑛, cm+1) in case (b).

Therefore, in case (a), 𝔒 ⊧ 𝐷𝑝𝑚,𝑃𝑖[𝑆]
𝑝𝑚+1,𝑃𝑖[𝑆](c𝑚, cm+1), respectively in case (b), 𝔒 ⊧

𝐷𝑝𝑚,𝑃𝑘[𝑇]
𝑝𝑚+1,𝑃𝑖[𝑆](c𝑚, cm+1) holds by 𝑝𝑚(c𝑚) = 𝑝𝑛(c𝑛). But, in case (a), we infer that 𝔒 ⊧

¬𝐷𝑝𝑗,𝑃𝑖[𝑆]
𝑝𝑗+1,𝑃𝑖[𝑆](c𝑗, cj+1), respectively in case (b), 𝔒 ⊧ ¬𝐷𝑝𝑗,𝑃𝑖[𝑆]

𝑝𝑗+1,𝑃𝑘[𝑇](c𝑗, cj+1) holds for all
𝑗 ≥ 0, each leading to a contradiction.

Thus our assumption that 𝑀 does not satisfy formula (7.3) has been contradicted,
which shows that M is a minimal model of 𝑓 gr(P,𝔐)M. Thus, 𝔐 is an answer set
of P. ⧠

7.4 Discussion
The translations Λ(P), Φ(P), and Ω(P) from §7.2, §7.3.1, and §7.3.2, respectively, al-
low us to express the existence of answer sets of an MLP P as a satisfiability problem
in propositional logic, first-order and second-order predicate logic that is decidable.
However, for arbitrary calls by value, the resulting formulas are huge in general, given
that there are double exponential many value calls 𝑃𝑖[𝑆] for a list of input predicates q
in general.

214

7.4. Discussion

Loop formulas Loops in anMLP can be very long; in the general case, they can have
double exponential length. Ordinary normal logic programs already require to use ex-
ponentiallymany loop formulas to recast programs to propositional formulas (Lifschitz
and Razborov, 2006). However, the intrinsic complexity of MLPs already mentioned in
§7.2 suggests that even in the propositional case (where the number of different inputs
𝑆 is at most exponential) we cannot expect a polynomially computable transformation
of brave inference P ⊧ 𝑎 into a propositional SAT instance, as the problem is EXP-
complete for propositional Horn MLPs and NEXP-complete for propositional normal
MLPs.

There are multiple sources of additional complexity in MLPs that require to create
propositional formulas of double exponential size: first, we need to ground rules with
variables, module input requires to inspect double exponential manymodule instances,
and therefore loop formulas may have double exponential size.

Ben-Eliyahu and Dechter (1994) studied the class of head-cycle-free disjunctive
logic programs and provide a characterization of answer sets by a polynomial-time
translation to propositional theories. Reinterpreted into our setting, the complexity
of MLPs without inputs restricted to this class should drop to that of head-cycle-free
disjunctive logic programs using an appropriate translation. But allowing (relational)
input to the modules will give us the additional blowup observed in this chapter.

Lin and Zhao (2004) developed an algorithm that starts with the completion of a
logic program, tries to find a model, and then iteratively adds selected loop formulas
to the completion such that not all—in the worst case exponentially many—loop for-
mulas have to be added upfront before we arrive at an answer set. Their approach is
based on finding loops such that the corresponding loop formula is not satisfied by
the classical model of the current stage of the incremental loop formula translation. A
similar technique could work in the MLP setting as well, which requires experiments
to provide empirical evidence.

Another aspect would be to use first order loop formulas (Y. Chen et al., 2006;
Lee and Meng, 2011), but as shown by Y. Chen et al. (2006) the resulting first-order
theory may be infinite in size due to potential infinite number of loop formulas, thus
a translation for MLP would require to handle infinite first-order theories as well.

Ordered completion Regarding ordered completion forMLPs, our results hold only
for finite structures as ordered completion does not capture the answer set semantics
of normal logic programs over arbitrary structures, i.e., considering infinite structures
as well. Asuncion et al. (2012) showed this by using a normal logic program 𝑃 encoding
the transitive closure of a graph whose ordered completion 𝑂𝐶(𝑃) over finite struc-
tures encodes the answer sets of 𝑃. But over infinite structures there is no (infinite)
first-order theory 𝜙𝑃 such that the models of 𝜙𝑃 capture the answer sets of 𝑃 using
Fagin’s Theorem (see, e.g., Libkin, 2004).

215

Chapter 7. Representing MLPs with Classical Logic

As Example 7.12 shows, the transitive derivation formula 𝜏(P) can grow quickly
if the number of value calls is large in an MLP P. In practice, it could be that not
all conjuncts of 𝜏(P) are relevant and one might develop strategies to introduce them
lazily on demand.

Extending ordered completion over finite structures to disjunctive logic programs
was considered by Asuncion et al. (2012), but the result was negative: they have shown
that based on a widely believed assumption from computational complexity theory
that NP is not closed under complement (i.e., NP ≠ co-NP) implies that the answer
set semantics for disjunctive logic programs cannot be expressed by sentences in first-
order logic. This has also the immediate negative result that there is no translation
into first-order predicate logic for disjunctive MLPs.

Further extensions employing aggregates in MLPs may use ordered completion
with aggregates as a basis (Asuncion et al., 2015), which shows that normal logic
programs with convex aggregates—covering monotone and anti-monotone aggregate
functions—can be expressed by a first-order formula over convex aggregate contexts.
But there is a negative result with respect to nonconvex aggregates similar to the neg-
ative result for expressing ordered completion for disjunctive logic programs (Asun-
cion et al., 2012). Translations such as the one presented by Alviano et al. (2015b) could
prove to be useful to bring programs with convex aggregates into a simpler form that
is amenable to standard ASP solvers.

In general, the ordered completion formulaΩ(P) for a normal MLP P, which can be
seen as aΣ11 formula—i.e., a formula in existential second order logic—, is thus evaluable
in nondeterministic exponential time over finite structures (Vardi, 1982). Here, in the
propositional case the input values 𝑆 and𝑇may be encoded using (polynomially many)
predicate arguments (e.g., 𝑜𝑇(y) becomes 𝑜(x,y), where x = 𝑥1, … , 𝑥𝑘 encodes 𝑇) and
disjunction/conjunction over 𝑆 and 𝑇 expressed by (first-order) quantification. In this
way, it is possible to obtain a Σ11 formula of polynomial size over a finite structure,
such that this modified transformation is worst-case optimal with respect to the com-
plexity of propositional normal MLPs. Similar encoding techniques can be applied for
nonground MLPs if the predicate arities of formal input predicates are bounded by a
constant.

In the general nonground case, such polynomial encoding techniques are not ev-
ident; already in the Horn case deciding P ⊧ 𝑎 is 2EXP-complete, and for normal
MLPs brave inference is 2NEXP-complete. One may resort to predicate variables for
encoding 𝑆 and 𝑇, and naturally arrive at a formula in higher-order logic (e.g., 𝑜𝑇(y)
becomes 𝑜(T,y), where T = 𝑇1, … , 𝑇𝑘 is a list of predicate variables for the formal in-
put predicates q = 𝑞1, … , 𝑞𝑘). It remains to be seen, however, whether the structure of
the resulting (polynomial-size) formula would readily permit worst-case optimal eval-
uation with respect to the complexity of MLPs. The translational semantics Φ(P) may
provide insights for a characterization.

216

7.4. Discussion

Noticeably, however, we do not get a blowup if no call by value is made, i.e., if all
inputs lists are empty (which means all 𝑆 and 𝑇 have the single value∅). This setting is
still useful for structured programming, and amounts in the propositional case to the
DLP-functions of Janhunen et al. (2009b), and permits unlimited recursion through
modules, in particular positive recursion. Our results thus also provide ordered com-
pletion formulas for DLP-functions over normal programs. See also Chapter 9 for the
relationship between MLPs and DLP-functions.

217

8

Relevance-driven Evaluation of
Modular Nonmonotonic Logic

Programs

Based on results shown by Dao-Tran et al. (2009b), we will discuss in this
chapter the essential ideas for an efficient top-down evaluation strategy
for the fragment of input-call stratified MLPs.

In this chapter, we focus on reviewing efficient top-down evaluation techniques
for MLPs, which consider only calls to relevant module instances. To this end, Dao-
Tran et al. (2009b) generalize the well-known Splitting Theorem to the MLP setting
and present notions of call stratification. Call-stratified MLPs allow to split module
instantiations into two parts, one for computing input of module calls, and one for
evaluating the calls themselves with subsequent computations. Based on these results,
Dao-Tran et al. (2009b) have developed a top-down evaluation procedure that expands
only relevant module instantiations.

As the semantics of MLPs is based on module instantiations (which takes possible
input values into account), a naive evaluation following the definition is—similar to
grounding of ordinary ASP programs—infeasible in practice. In general, a particular
module may have double exponentially many instances (see Chapter 5). Towards im-
plementation, efficient evaluation strategies are thus essential, which are sensitive to
program classes that do not require a simple guess-and-check procedure on the instan-
tiation, but allow for a guided model building process. Starting from the main module,
instances of modules may be created on demand as needed by module calls, focusing
on relevant module instances.

Restrictions on programs, like stratification for normal MLPs as shown in §4.3, may
be helpful in this regard. However, the notion of stratification is very strict. It requires
that all module instances are stratified. Moreover, the fix-point semantics for stratified

219

Chapter 8. Relevance-driven Evaluation of MLPs

programs given there is inherently bottom-up and only applies to normal programs,
excluding a large class of programs that exploit recursion in a common and natural
way and are evaluable top-down, even if they are not normal or unstratified in the
sense of Definition 4.10.

For illustration, let us reconsider the EvenMLP P = (𝑚1, 𝑚2, 𝑚3) from Example 1.2
in §1.2.1. This example exploits a mutually recursive call pattern between two library
modules 𝑚2 and 𝑚3 to determine whether a set has even cardinality. Intuitively, 𝑚1
calls𝑚2 to check if the number of facts for predicate 𝑞 is even. The call to𝑚2 “returns”
even, if either the input 𝑞2 to𝑚2 is empty (as then skip2 is false), or the call of𝑚3 with
𝑞′2 resulting from 𝑞2 by arbitrarily removing one element (then skip2 is true) returns
odd . Module𝑚3 returns odd for input 𝑞3, if a call to𝑅2 with 𝑞′3 analogously constructed
from 𝑞3 returns even.

According to Definition 4.10, this program is a normal unstratified program, since
even negatively depends on odd , which in turn depends on even through the module
call 𝑃2[𝑞′3].even.

However, along the mutual recursive chain of calls 𝑃3[𝑞′2].odd , 𝑃2[𝑞′3].even the in-
puts 𝑞′2 and 𝑞′3 gradually decrease until the base, i.e., the empty input, is reached. Tak-
ing such decreasing inputs of the relevant module calls into account, we can evaluate
MLPs efficiently along the relevant call graph using a finer grained notion of stratifi-
cation, tolerating also disjunctive or unstratified rules in modules.

We briefly report on appropriate notions of call stratification and input stratifica-
tion for MLPs as a generalization of the Splitting Theorem (see §8.1 and Lifschitz and
Turner, 1994). Based on this, module instances calling othermodules can be locally split
into an input preparation part and a calling part. A top-down evaluation procedure ex-
ploiting this local splitting will be reviewed, which only expands the relevant module
instances in §8.2. Wijaya (2011) has implemented the TD-MLP system for evaluating
input-call stratified MLPs, and based on this system we have developed a benchmark
based on the LUBM ontology (Guo et al., 2005). We report experimental results in §8.3
for the dl-programs rewriting techniques shown in §6.5 above.

8.1 Splitting for Modular Nonmonotonic Logic
Programs

We investigate splitting for MLPs at two different levels: the global (module instanti-
ation) level along the relevant call graph, and the local level (inside module instanti-
ations) with respect to the (instance) dependency graph. These two notions reveal a
class of MLPs, for which an efficient top-down algorithm can be developed for answer
set computation.

220

8.1.1. Global splitting for call-stratified MLPs

8.1.1 Global splitting for call-stratified MLPs

We start by introducing call stratified MLPs, whose module instantiations can be split
into different layers and evaluated in a stratified way.

Intuitively speaking, the idea is to evaluate module instantiations of c-stratified
MLPs in a particular order along the call chain, such that potential self-stabilizing ef-
fects of cycles have to be taken into account only at the base, i.e., for module instanti-
ations with empty input.

Example 8.1 Recalling the program from Example 1.2, let 𝑆𝑖∅ = ∅, 𝑆𝑖𝑎 = {𝑞𝑖(𝑎)}, 𝑆𝑖𝑏 =
{𝑞𝑖(𝑏)}, and 𝑆𝑖𝑎𝑏 = {𝑞𝑖(𝑎), 𝑞𝑖(𝑏)}. Then VC(P) = {𝑃1[∅], 𝑃2[𝑆2𝑣], 𝑃3[𝑆3𝑤]}, where 𝑣, 𝑤 ∈

{∅, 𝑎, 𝑏, 𝑎𝑏}, and 𝐶𝐺P has edges 𝑃1[∅]
𝑞
→ 𝑃2[𝑆2𝑣], 𝑃2[𝑆2𝑣]

𝑞′2→ 𝑃3[𝑆3𝑤], and 𝑃3[𝑆3𝑤]
𝑞′3→

𝑃2[𝑆2𝑣]. For the interpretation M such that

• 𝑀1/∅ = {𝑞(𝑎), 𝑞(𝑏), ok},

• 𝑀2/𝑆2𝑎𝑏 = {𝑞2(𝑎), 𝑞2(𝑏), 𝑞′2(𝑎), skip2, even},

• 𝑀2/∅ = {even}, and

• 𝑀3/𝑆3𝑎 = {𝑞3(𝑎), skip3, odd},

the nodes of 𝐶𝐺P(M) are 𝑃1[∅], 𝑃2[𝑆2𝑎𝑏], 𝑃2[∅], and 𝑃3[𝑆3𝑎].

Example 8.2 Consider the MLP P and the interpretation M from Example 8.1. It is
easily verified that P is c-stratified with respect to M. One possible call chain for
evaluation is

𝑃1[∅]
𝑞
→ 𝑃2[{𝑞(𝑎), 𝑞(𝑏)}]

𝑞′2→ 𝑃3[{𝑞′2(𝑎)}]
𝑞′3→ 𝑃2[∅] .

In particular,𝑀𝑖/𝑆 is an answer set of 𝑅 = 𝐼P(𝑃𝑖[𝑆]) relative toM, if it is an answer
set of 𝑅while other instances are fixed by corresponding elements inM, i.e., all module
calls in 𝑅 are fixed.

Example 8.3 Consider P from Example 1.2 and M from Example 8.1, then 𝑀2/𝑆2𝑎𝑏 is
an answer set of 𝐼P(𝑃2[𝑆2𝑎𝑏]) relative to M.

For a concrete procedure, we need a notion of local splitting inside module in-
stances, to be introduced in the next section.

221

Chapter 8. Relevance-driven Evaluation of MLPs

8.1.2 Local splitting for input and call stratified MLPs
Dao-Tran et al. (2009b) extended the notion of Splitting Sets (Lifschitz and Turner,
1994) to MLPs. For practical purposes, we are interested in splitting a module instance
with respect to module calls. To this end, Dao-Tran et al. (2009b) introduce a general
and another specific notion of input splitting sets.

Example 8.4 Consider P from Example 1.2 and 𝑃2[𝑆2𝑎𝑏] from Example 8.1. Let 𝑅 be
the instantiation 𝑔𝑟(𝐼P(𝑃2[𝑆2𝑎𝑏])). A possible splitting set for 𝑅 is

𝑈 = {𝑞2(𝑎), 𝑞2(𝑏), 𝑞′2(𝑎), 𝑞′2(𝑏), skip2} .

Then the bottom 𝑏𝑈(𝑅) is

𝑞2(𝛼) ←
skip2 ← 𝑞2(𝛼), not 𝑞′2(𝛼)
𝑞′2(𝛼) ← not 𝑞′2(𝛽), 𝑞2(𝛼), 𝑞2(𝛽)

where 𝛼, 𝛽 ∈ {𝑎, 𝑏} such that 𝛼 ≠ 𝛽.

Example 8.5 Consider P from Example 1.2, M from Example 8.1, and 𝑅 from Ex-
ample 8.4. An answer set of 𝑅 is 𝑁 = {𝑞2(𝑎), 𝑞2(𝑏), 𝑞′2(𝑎), skip2}. By updating 𝑅 to
{𝑅 ⧵ 𝑏𝑈(𝑅)} ∪ 𝑁, we obtain 𝑅′:

𝑞′2(𝑎) ←
𝑞2(𝑎) ←
𝑞2(𝑏) ←
skip2 ←
even ← skip2, 𝑃3[𝑞′2].𝑜𝑑𝑑
even ← not skip2

Then𝑀2/𝑆2ab is an answer set of 𝑅′ relative to M.

Dao-Tran et al. (2009b) single out a subclass of c-stratified MLPs, namely input
and call stratified (ic-stratified) MLPs, which guarantee that input splitting sets exist
for their local splitting. The property of input stratification is defined at two different
levels of the dependency graph: the schematic level and the instance level. Comparing
these two options, checking the property at the schematic level is easier, but is often
too strong and misses input stratification at the instance level.

This notion of dependency graph refines the one in §4.3 concerning the labels of
arcs (types of dependencies) and allows us to capture input stratification. As an exam-
ple, the MLP in Example 1.2 is si-stratified.

222

8.1.3. Instance stratification

8.1.3 Instance stratification
Proceeding to finer grained level of instances, we define the instance dependency graph
𝐺M
P = (IV , IE) of P with respect to an interpretation M. The idea is to distinguish dif-

ferent predicate names and module atoms in different module instances by associating
them with the corresponding value call. Hence, a node in IV is a pair (𝑝, 𝑃𝑖[𝑆]) or
(𝛼, 𝑃𝑖[𝑆]), where 𝑝 (respectively, 𝛼) is a predicate name (respectively, module atom)
appearing in module 𝑚𝑖, and 𝑆 is the input for a value call 𝑃𝑖[𝑆] ∈ VC(P).

Example 8.6 In Example 8.4, 𝑈 is an input splitting set for 𝑃3[𝑆3𝑎].𝑜𝑑𝑑. As P is c-
stratified with respect to M (cf. Example 8.2) and si-stratified, P is ic-stratified with
respect to M.

Since ic-stratification (of an MLP P with respect toM) ensures that no cycle in 𝐺M
P

has in-edges, it yields intended local splits, where the input for any module atom is
fully prepared before this module atom is called.

8.2 Top-Down Evaluation Algorithm
Dao-Tran et al. (2009b) present the comp algorithm, which is a top-down evaluation
procedure comp for building the answer sets of ic-stratified MLPs along the call graph.
Intuitively, comp traverses the relevant call graph from top to the base and back. In
forward direction, it gradually prepares input to each module call in a set 𝑅 of rules, in
the order given by the instance local labeling function for 𝑅. When all calls are solved,
𝑅 is rewritable to a set of ordinary rules, and standard methods can be used to find the
answer sets, which are fed back to a calling instance, or returned as the result if we are
at the top level.

The algorithm has several parameters: a current set of value calls 𝐶, a list path of
sets of value calls storing the recursion chain of value calls up to 𝐶, a partial interpre-
tation M for assembling a (partial stored) answer set, an indexed set A of split module
atoms (initially, all𝑀𝑖/𝑆 and 𝐴𝑖/𝑆 are nil), and a set 𝒜𝒮 for collecting answer sets.

The algorithm first checks if a value call 𝑃𝑖[𝑆] ∈ 𝐶 appears somewhere in path. If
yes, a cycle is present and all value calls along path until the first appearance of 𝑃𝑖[𝑆] is
joined into 𝐶. If a value call in this cycle has nonempty input, then P is not ic-stratified
for any completion ofM, and comp simply returns. After checking for (and processing)
cycles, all instances in 𝐶 are merged into 𝑅 by the function rewrite.

If 𝑅 is ordinary, meaning that all module atoms (if any) are solved, ans can be
applied to find answer sets of 𝑅. Now, if path is empty, then a main module is reached
and M can be completed by the answer sets of 𝑅 and put into 𝒜𝒮 Otherwise, i.e., path
is nonempty, comp marks all instances in 𝐶 as finished, and goes back to the tail of
path where a call to 𝐶 was issued. In both cases, the algorithm uses an operator ⊎ for

223

Chapter 8. Relevance-driven Evaluation of MLPs

combining two partial interpretations as follows: M ⊎ N = {𝑀𝑖/𝑆 ⊎ 𝑁𝑖/𝑆 ∣ 𝑃𝑖[𝑆] ∈
VC(P)}, where 𝑥 ⊎ 𝑦 = 𝑥 ∪ 𝑦 if 𝑥, 𝑦 ≠ nil and 𝑥 ⊎ nil = 𝑥, nil ⊎ 𝑥 = 𝑥.

When 𝑅 is not ordinary, comp splits 𝑅 according to a module atom 𝛼 with smallest
ill𝑅(𝛼). If 𝐶 = {𝑃𝑖[𝑆]}, then ill𝑅 = ill𝑖, otherwise it is a function compliant with every
ill𝑖 such that 𝑃𝑖[𝑆] ∈ 𝐶. Then, comp adds 𝛼 to A for all value calls in 𝐶, and computes
all answer sets of the bottom of 𝑅, which fully determine the input for 𝛼. If the called
instance 𝑃𝑗[𝑇] has already been fully evaluated, then a recursive call with the current𝐶
and path yields a proper rewriting of 𝛼. Otherwise, the next, deeper level of recursion
is entered, keeping the chain of calls in path for coming back.

Example 8.7 Consider Algorithm comp onP fromExamples 1.2 and 8.1. The call chain

𝑃1[∅]
𝑞
→ 𝑃2[{𝑞(𝑎), 𝑞(𝑏)}]

𝑞′2→ 𝑃3[{𝑞′2(𝑎)}]
𝑞′3→ 𝑃2[∅]

𝑞′2→ 𝑃3[∅]
𝑞′3→ 𝑃2[∅]

will be reflected by the list {𝑃1[𝑆1∅]}, {𝑃2[𝑆2𝑎,𝑏}, {𝑃3[𝑆3𝑎]}, {𝑃2[𝑆2∅]}, {𝑃3[𝑆3∅]} in path, and
a current set of value calls 𝐶 = {𝑃2[𝑆2∅]}. Here, rather than prefixes, we use super-
scripts and subscripts like for instances (cf. Example 8.1). At this point, the last two
elements of the path will be removed and joined with 𝐶 yielding 𝐶 = {𝑃2[𝑆2∅], 𝑃3[𝑆3∅]}.
The rewriting 𝑅 with respect to 𝐶 is

𝑞′1∅(𝑋) ∨ 𝑞
′1
∅(𝑌) ← 𝑞1∅(𝑋), 𝑞1∅(𝑌), 𝑋 ≠ 𝑌
skip1∅ ← 𝑞1∅(𝑋), not 𝑞′

1
∅(𝑋)

𝑞′2∅(𝑋) ∨ 𝑞
′2
∅(𝑌) ← 𝑞2∅(𝑋), 𝑞2∅(𝑌), 𝑋 ≠ 𝑌
skip2∅ ← 𝑞2∅(𝑋), not 𝑞′

2
∅(𝑋)

even2∅ ← skip2∅, odd3∅
odd3∅ ← skip3∅, even2∅
even2∅ ← not skip2∅

The only answer set of 𝑅 is {even2∅}. On the way back, even2𝑣 is toggled with odd3𝑤,
and at 𝑃1 the answer set {𝑞1∅(𝑎), 𝑞1∅(𝑏), ok1∅} is built; comp adds a respective (partial)
interpretation M to 𝒜𝒮, i.e., where 𝑀2/∅ = {even}, 𝑀3/∅ = ∅, etc., and 𝑀1/∅ =
{𝑞(𝑎), 𝑞(𝑏), ok}. Following the chain

𝑃1[∅]
𝑞
→ 𝑃2[{𝑞(𝑎), 𝑞(𝑏)}]

𝑞′2→ 𝑃3[{𝑞′2(𝑏)}]
𝑞′3→ 𝑃2[∅] → ⋯ ,

comp finds another answer set of P.

This can be extended to P with multiple main modules. Compared to a simple
guess-and-check approach, comp can save a lot of effort as it just looks into the relevant
part of the call graph. Allowing non-ic-stratified answer sets, e.g., loops with non-
empty 𝑆, is a subject for further work.

224

8.3. Implementation and Experimental Results

Table 8.1: Benchmark dl-programs DReW vs. TD-MLP (Runtime in secs)

(a) Ontology 𝑈1

Program DReW TD-MLP
[clingo] [DLV] [clingo] [DLV]

𝑃1 0.31 0.45 1.98 2.88
𝑃2 0.32 0.44 1.69 2.47
𝑃3 0.32 0.44 2.63 3.82
𝑃4 0.31 0.43 1.66 2.42
𝑃5 0.32 0.45 2.45 3.63
𝑃6 0.61 0.86 1.66 2.46
𝑃7 1.79 2.76 5.65 8.41
𝑃8 2.70 4.30 8.04 11.60
𝑃9 2.76 4.26 9.70 14.12

(b) Ontology 𝑈15
Program DReW TD-MLP

[clingo] [DLV] [clingo] [DLV]

𝑃1 6.49 10.27 30.43 42.53
𝑃2 4.00 6.27 21.22 30.12
𝑃3 3.95 6.08 32.65 45.24
𝑃4 3.98 6.13 20.94 30.33
𝑃5 4.15 6.43 28.19 39.93
𝑃6 7.97 12.66 21.54 30.87
𝑃7 23.52 40.56 72.86 103.76
𝑃8 36.33 64.05 108.38 145.04
𝑃9 36.58 61.71 128.01 181.41

8.3 Implementation and Experimental Results
In this section, we review experimental results for an MLP benchmark scenario (see
Eiter et al., 2012b, for the report including further benchmarks scenarios unrelated to
MLPs). The algorithm for solving input-call stratified MLPs (Dao-Tran et al., 2009b)
has been implemented in the TD-MLP solver (Wijaya, 2011), which is based on the
DLVHEX system (Eiter et al., 2018, 2017).1 Using this solver, we could perform initial
experiments with the dl-program rewriting, which is the modular Datalog encoding
Δ(KB) from §6.5. We compare our MLP encoding with DReW (Xiao et al., 2013), a sys-

1http://www.kr.tuwien.ac.at/research/systems/dlvhex/

225

http://www.kr.tuwien.ac.at/research/systems/dlvhex/

Chapter 8. Relevance-driven Evaluation of MLPs

Table 8.2: Benchmark programs 𝑃1–𝑃5

Program Rules

𝑃1

𝑞(𝑋, 𝑌) ← DL[Faculty](𝑋),DL[Faculty](𝑌),
DL[doctoralDegreeFrom](𝑋,𝑈1),DL[worksFor](𝑋, 𝐷1),
DL[doctoralDegreeFrom](𝑌,𝑈2),DL[worksFor](𝑌, 𝐷2),
𝑈1 ≠ 𝑈2, 𝐷1 = 𝐷2

𝑃2
𝑞(𝑋, 𝑌) ← DL[GraduateStudent](𝑋),

DL[takesCourse](𝑋, 𝑌), 𝑌 = graduateCourse0

𝑃3

𝑞(𝑋, 𝑌, 𝑍) ← DL[GraduateStudent](𝑋),DL[University](𝑌),
DL[Department](𝑍),DL[memberof](𝑋, 𝑍),
DL[subOrganizationOf](𝑍, 𝑌),
DL[undergraduateDegreeFrom](𝑋, 𝑌)

𝑃4
𝑞(𝑋, 𝑌) ← DL[Publication](𝑋),

DL[publicationAuthor](𝑋, 𝑌), 𝑌 = assistantProfessor0

𝑃5

𝑞(𝑋, 𝑌1, 𝑌2, 𝑌2) ← DL[Professor](𝑋),DL[worksFor](𝑋, 𝑍),
𝑍 = department0@University0,
DL[name](𝑋, 𝑌1),DL[emailAddress](𝑋, 𝑌2),
DL[telephone](𝑋, 𝑌3)

tem specifically tailored to evaluate dl-programs over Datalog-rewritable Description
Logics using Datalog rewriting techniques.

The experiments have been run on an Ubuntu Linux 11.10 system on an AMD
Opteron Magny-Cours 6176 SE 2.3GHz system with 24 cores and 128GB RAM. Further
details are given on the benchmark webpage,2 with detailed implementation informa-
tion, all benchmark instances and benchmark details, as well as test run log files.3

For our experiments, we used dl-programs of the form KB𝑖,𝑗 = (𝑈𝑖, 𝑃𝑗), where 𝑈𝑖
(𝑖 ∈ {1, 15}) are simplified ℰℒ versions of the Lehigh University Benchmark (LUBM)
ontology (Guo et al., 2005) and programs 𝑃𝑗 (𝑗 ∈ {1, … , 9}) encode variants of the
LUBM queries;4 all dl-programs were acyclic.

We denote with 𝑈𝑖 the LUBM ontology instance that incorporates 𝑖 universities in
the ABox. The original LUBM is not fully in ℰℒ (inverse roles and data types are not
part of ℰℒ): there are 2 violating axioms in the TBox, and 2857 (respectively, 33154)
ABox axioms with data types are violated in 𝑈1 (respectively, 𝑈15). The resulting ℰℒ

2http://www.kr.tuwien.ac.at/research/systems/drew/experiments.html
3http://www.kr.tuwien.ac.at/research/systems/drew/downloads/

foiks2012-elp+mlp.tar.7z
4http://swat.cse.lehigh.edu/projects/lubm/query.htm

226

http://www.kr.tuwien.ac.at/research/systems/drew/experiments.html
http://www.kr.tuwien.ac.at/research/systems/drew/downloads/foiks2012-elp+mlp.tar.7z
http://www.kr.tuwien.ac.at/research/systems/drew/downloads/foiks2012-elp+mlp.tar.7z
http://swat.cse.lehigh.edu/projects/lubm/query.htm

8.3. Implementation and Experimental Results

version of LUBM then contains 86 TBox axioms using 43 concepts and 25 roles, and
5738 (respectively, 67691) ABox axioms with 1555 (respectively, 17174) individuals in in-
stance 𝑈1 (respectively, 𝑈15). The rules are from the DReW LUBM benchmark queries
and consist of nine programs 𝑃1–𝑃9. They can be split into two categories:

(C1) 𝑃1–𝑃5 have between 2 and 5 dl-atoms but no input list, while

(C2) 𝑃6–𝑃9 have between 2 and 9 dl-atoms, each with distinct input list.

The rules for the benchmark programs 𝑃1–𝑃5 and 𝑃6–𝑃9 are shown in Table 8.2 and
Tables 8.3–8.5, respectively.

We used twoDatalog engines to compute the models of the native and the modular
encodings: clingo 3.0.3 (Gebser et al., 2011) and DLV 2010-10-14 (Leone et al., 2006). We
compared TD-MLP toDReW using four benchmark run settings (the systems in square
brackets denote the model builders used to calculate the model):

• DReW[clingo],

• DReW[DLV],

• TD-MLP[clingo], and

• TD-MLP[DLV].

The test results are shown in Table 8.1a for KB1,𝑗 = (𝑈1, 𝑃𝑗) and in Table 8.1b for
KB15,𝑗 = (𝑈15, 𝑃𝑗).

DReW outperforms TD-MLP in all tests. But DReW’s lead is shrinking if we in-
crease the number of dl-atoms in the dl-programs from category (C2), i.e., for dl-
programs (𝑈𝑖, 𝑃6)–(𝑈𝑖, 𝑃9). The reason is that with DReW we create copies of the on-
tology as Datalog rules for every dl-atom upfront, thus creating a large single Datalog
program. In TD-MLP, we can always use a single copy of the rewritten ontology and
let theMLP semantics create the copies for us. As the current TD-MLP implementation
is not sophisticated enough, the overhead for instantiating modules during evaluation
is prevalent.

227

C
hapter

8.
R
elevance-driven

Evaluation
ofM

LPs

Table 8.3: Benchmark programs 𝑃6–𝑃7
Program Rules

𝑃6
pub(𝑎) ←

pubAuth(𝑎, assistProf0) ←
𝑞(𝑋, 𝑌) ← DL[Publication ⊎ pub; Publication](𝑋),

DL[publicationAuthor ⊎ pubAuth; publicationAuthor](𝑋, 𝑌),
𝑌 = assistProf0

𝑃7

gradStud(𝑎) ←
uni(𝑏) ←
dept(𝑐) ←

memb(𝑎, 𝑐) ←
subOrga(𝑐, 𝑏) ←

ugd(𝑎, 𝑏) ←
𝑞(𝑋, 𝑌, 𝑍) ← DL[GraduateStudent ⊎ gradStud;GraduateStudent](𝑋),

DL[University ⊎ uni;University](𝑌),
DL[Department ⊎ dept ;Department](𝑍),
DL[memberOf ⊎memb;memberOf](𝑋, 𝑍),
DL[subOrganizationOf ⊎ subOrga; subOrganizationOf](𝑍, 𝑌),
DL[underGraduateDegreeFrom ⊎ ugd; underGraduateDegreeFrom](𝑋, 𝑌)

228

8.3.
Im

plem
entation

and
Experim

entalR
esults

Table 8.4: Benchmark program 𝑃8
Program Rules

𝑃8

gradStud(𝑎) ←
uni(𝑏) ←

memb(𝑎, 𝑐) ←
subOrga(𝑐, 𝑏) ←

ugd(𝑎, 𝑏) ←
𝑞(𝑋, 𝑌, 𝑍) ← DL[GraduateStudent ⊎ gradStud;GraduateStudent](𝑋),

DL[University ⊎ uni;University](𝑌),
notDL[Department ⊎ dept ;Department](𝑍),
DL[memberOf ⊎memb;memberOf](𝑋, 𝑍),
DL[subOrganizationOf ⊎ subOrga; subOrganizationOf](𝑍, 𝑌),
DL[underGraduateDegreeFrom ⊎ ugd; underGraduateDegreeFrom](𝑋, 𝑌)

𝑞(𝑋, 𝑌, 𝑍) ← DL[GraduateStudent ⊎ gradStud;GraduateStudent](𝑋),
DL[University ⊎ uni,Department ⊎ dept ;University](𝑌),
DL[Department ⊎ dept ;Department](𝑍),
notDL[memberOf ⊎memb;memberOf](𝑋, 𝑍),
DL[subOrganizationOf ⊎ subOrga; subOrganizationOf](𝑍, 𝑌),
DL[underGraduateDegreeFrom ⊎ ugd ,Department ⊎ dept ; underGraduateDegreeFrom](𝑋, 𝑌)

𝑞(𝑋, 𝑌, 𝑍) ← DL[GraduateStudent ⊎ gradStud;GraduateStudent](𝑋),
DL[University ⊎ uni,Department ⊎ dept ;University](𝑌),
DL[Department ⊎ dept ;Department](𝑍),
notDL[memberOf ⊎memb;memberOf](𝑋, 𝑍),
DL[GraduateStudent ⊎ gradStud , subOrganizationOf ⊎ subOrga; subOrganizationOf](𝑍, 𝑌),
DL[underGraduateDegreeFrom ⊎ ugd ,Department ⊎ dept ; underGraduateDegreeFrom](𝑋, 𝑌)

229

C
hapter

8.
R
elevance-driven

Evaluation
ofM

LPs

Table 8.5: Benchmark program 𝑃9
Program Rules

𝑃9

gradStud(𝑎) ←
uni(𝑏) ←
dept(𝑐) ←

memb(𝑎, 𝑐) ←
subOrga(𝑐, 𝑏) ←

ugd(𝑎, 𝑏) ←
𝑞(𝑋, 𝑌, 𝑍) ← DL[GraduateStudent ⊎ gradStud;GraduateStudent](𝑋),

DL[University ⊎ uni;University](𝑌),
DL[Department ⊎ dept ;Department](𝑍),
DL[memberOf ⊎memb;memberOf](𝑋, 𝑍),
DL[subOrganizationOf ⊎ subOrga; subOrganizationOf](𝑍, 𝑌),
DL[underGraduateDegreeFrom ⊎ ugd; underGraduateDegreeFrom](𝑋, 𝑌)

𝑞(𝑋, 𝑌, 𝑍) ← DL[GraduateStudent ⊎ gradStud;GraduateStudent](𝑋),
DL[University ⊎ uni,Department ⊎ dept ;University](𝑌),
DL[Department ⊎ dept ;Department](𝑍),
DL[memberOf ⊎memb;memberOf](𝑋, 𝑍),
DL[subOrganizationOf ⊎ subOrga; subOrganizationOf](𝑍, 𝑌),
DL[underGraduateDegreeFrom ⊎ ugd ,Department ⊎ dept ; underGraduateDegreeFrom](𝑋, 𝑌)

𝑞(𝑋, 𝑌, 𝑍) ← DL[GraduateStudent ⊎ gradStud;GraduateStudent](𝑋),
DL[University ⊎ uni,Department ⊎ dept ;University](𝑌),
DL[Department ⊎ dept ;Department](𝑍),
DL[memberOf ⊎memb;memberOf](𝑋, 𝑍),
DL[GraduateStudent ⊎ gradStud , subOrganizationOf ⊎ subOrga; subOrganizationOf](𝑍, 𝑌),
DL[underGraduateDegreeFrom ⊎ ugd ,Department ⊎ dept ; underGraduateDegreeFrom](𝑋, 𝑌)

230

IV

Related Approaches and Conclusion

9

Relationship to DLP-Functions

T
his chapter examines the relationship between Modular Nonmonotonic
Logic Programs and DLP-functions (Janhunen et al., 2009b), a prominent
formalism for modular logic programs under the stable model semantics
that conforms to the Programming-in-the-large paradigm. Here, a mod-

ular program is a sequence of independent modules with well-defined input-output
interface of propositional atoms. Whenever each pair of distinct modules in this se-
quence satisfies syntactic dependency criterions that make them able to combine them,
a join operator is defined and the stable models of the combined modules agree with
the stable models of each individual module.

More specifically, a DLP-functionΠ is a tuple ⟨𝑅, 𝐼, 𝑂,𝐻⟩, where𝑅 is a set of propo-
sitional disjunctive rules and 𝐼, 𝑂,𝐻 are sets of propositional atoms defining input,
output, and hidden atoms, respectively. The operator⊕ sends a pair of DLP-functions
to a new DLP-function that respect hidden atoms of each input DLP-function. Then, if
two such DLP-functions Π1 and Π2 are not mutually (positive) dependent, then their
join Π1 ⊔ Π2 is defined and Π1 ⊕ Π2 is the outcome. Note that joinability allows
negative loops between DLP-functions, but prohibits positive ones. On top of joinable
DLP-functions, the Module Theorem is at the heart for computing the answer sets of a
sequence of DLP-functions by taking the union of mutually compatible answer sets of
eachmember; hence joinable DLP-functions qualify for having a compositional seman-
tics. The Module Theorem is fruitfully applied to build incremental computations in
Clingo (Gebser et al., 2017), an answer set solver that allows to deal with continuously
changing logic programs.

In this chapter, we will first review the syntax and semantics of DLP-functions, and
the Module Theorem in §9.1. Then, we will investigate on the relationship between
DLP-functions and MLPs by defining two translations: ∇ for rewriting a sequence of
DLP-functions to an MLP in §9.2, and Δ for rewriting an MLP to a sequence of DLP-
functions in §9.3, provided that the MLP adheres to syntactic restrictions that match
the joinability conditions of standard DLP-functions. As results we obtain that we

233

Chapter 9. Relationship to DLP-Functions

can capture the stable models of joined DLP-functions using an MLP, and that there
is a one-to-one correspondence between the stable models of DLP-functions and the
answer sets of a restricted class of MLPs.

9.1 DLP-Functions
We will now recapitulate the basic definitions for DLP-functions from Janhunen et al.
(2009b). We start with the syntax of DLP-functions, which is based on propositional
disjunctive logic programs.

9.1.1 Syntax of DLP-Functions
We begin with defining DLP-functions, which are entities to define modules in answer
set programs.

Definition 9.1 (DLP-function).
ADLP-function is a quadrupleΠ = ⟨𝑅, 𝐼, 𝑂,𝐻⟩, where 𝐼,𝑂, and𝐻 are pairwise distinct
sets of input atoms, output atoms, and hidden atoms, respectively, and 𝑅 is a disjunctive
logic program such that for each rule 𝑟 ∈ 𝑅 of form (2.1),

1. 𝐻(𝑟) = {𝑎1, … , 𝑎𝑘} and 𝐵(𝑟) = 𝐵+(𝑟) ∪ 𝐵−(𝑟) = {𝑏1, … , 𝑏𝑛} are positive atoms,

2. 𝐻(𝑟) ∪ 𝐵(𝑟) ⊆ 𝐼 ∪ 𝑂 ∪ 𝐻, and

3. if 𝐻(𝑟) ≠ ∅, then 𝐻(𝑟) ∩ (𝑂 ∪ 𝐻) ≠ ∅.

Based on DLP-functions, we can define when two DLP-functions can be composed
into a combined DLP-function. The key concept for this is to respect input/output
interfaces.

For the following definitions, we let Π = ⟨𝑅, 𝐼, 𝑂,𝐻⟩, Π1 = ⟨𝑅1, 𝐼1, 𝑂1, 𝐻1⟩, and
Π2 = ⟨𝑅2, 𝐼2, 𝑂2, 𝐻2⟩ be DLP-functions.

Definition 9.2 (Input/output interfaces).
Let 𝑆 be a set of atoms and 𝑅 be a disjunctive logic program, we define

Def𝑅(𝑆) = {𝑟 ∈ 𝑅 ∣ 𝐻(𝑟) ∩ 𝑆 ≠ ∅} .

Two DLP-functions Π1 and Π2 respect the input/output interfaces of each other if and
only if

1. (𝐼1 ∪ 𝑂1 ∪ 𝐻1) ∩ 𝐻2 = ∅,

2. (𝐼2 ∪ 𝑂2 ∪ 𝐻2) ∩ 𝐻1 = ∅,

234

9.1.1. Syntax of DLP-Functions

3. 𝑂1 ∩ 𝑂2 = ∅,

4. Def𝑅1(𝑂1) = Def𝑅1∪𝑅2(𝑂1), and

5. Def𝑅2(𝑂2) = Def𝑅1∪𝑅2(𝑂2).

Definition 9.3 (Composition).
Let Π1 and Π2 be two DLP-functions that respect the input/output interfaces of each
other. Then, the composition of Π1 and Π2 is defined and determined by

Π1 ⊕Π2 = ⟨𝑅1 ∪ 𝑅2, (𝐼1 ⧵ 𝑂2) ∪ (𝐼2 ⧵ 𝑂1), 𝑂1 ∪ 𝑂2, 𝐻1 ∪ 𝐻2⟩ .

The composition of two DLP-functions does not rule out the possibility of mutu-
ally dependent DLP-functions. We therefore define a join operator that operates on a
restricted fragment of DLP-functions, which requires the following definition.

Definition 9.4 (Signature).
We define the signature At(Π) of Π as 𝐼 ∪ 𝑂 ∪ 𝐻. Relative to signature At(Π), we let

• Atv(Π) = 𝐼 ∪ 𝑂 be the visible part,

• Ath(Π) = 𝐻 = At(Π) ⧵ Atv(Π) be the hidden part,

• Ati(Π) = 𝐼 are the input atoms of Π, and

• Ato(Π) = 𝑂 are the output atoms of Π, respectively.

For any set 𝑆 ⊆ At(Π) of atoms, we denote the projections of 𝑆 on Ati(Π), Ato(Π),
Atv(Π), and Ath(Π) by

• Ati(Π, 𝑆) = 𝑆 ∩ 𝐼,

• Ato(Π, 𝑆) = 𝑆 ∩ 𝑂,

• Atv(Π, 𝑆) = 𝑆 ∩ (𝐼 ∪ 𝑂), and

• Ath(Π, 𝑆) = 𝑆 ∩ 𝐻, respectively.

Definition 9.5 (Dependency graph).
For a DLP-function Π, we define 𝐷𝐺+(Π) = ⟨𝑂 ∪ 𝐻,≤1⟩ as the positive dependency
graph of Π, where 𝑏≤1𝑎 holds for a pair of atoms 𝑎, 𝑏 ∈ 𝑂∪𝐻 if and only if there is a
rule 𝑟 ∈ 𝑅 such that 𝑎 ∈ 𝐻(𝑟) and 𝑏 ∈ 𝐵+(𝑟). The reflexive and transitive closure of
≤1 gives rise to the dependency relation ≤ over 𝑂 ∪ 𝐻.

A strongly connected component (SCC) 𝐶 of the graph 𝐷𝐺+(Π) is a maximal set
𝐶 ⊆ 𝑂 ∪ 𝐻 such that 𝑏 ≤ 𝑎 for every pair 𝑎, 𝑏 ∈ 𝐶 of atoms.

235

Chapter 9. Relationship to DLP-Functions

Given that Π1 ⊕ Π2 is defined, we say that Π1 and Π2 are mutually dependent if
and only if 𝐷𝐺+(Π1 ⊕Π2) has an SCC 𝐶 such that 𝐶 ∩ 𝑂1 ≠ ∅ and 𝐶 ∩ 𝑂2 ≠ ∅, i.e.,
the component 𝐶 is shared by the DLP-functions Π1 and Π2 in this way. If Π1 and Π2
are not mutually dependent, we also call them mutually independent.

Mutually independent DLP-functions can be joined.

Definition 9.6 (Joins).
If the composition Π1⊕Π2 of DLP-functions Π1 and Π2 is defined and Π1 and Π2 are
mutually independent, then the joinΠ1⊔Π2 ofΠ1 andΠ2 is defined and we letΠ1⊔Π2
to be determined by the composition Π1 ⊕Π2.

9.1.2 Semantics of DLP-Functions
We define now the semantics of DLP-functions. For the following definitions, we let
Π = ⟨𝑅, 𝐼, 𝑂,𝐻⟩.

Definition 9.7 (Models).
An interpretation 𝑀 ⊆ At(Π) is a (classical) model of Π, denoted 𝑀 ⊧ Π, iff 𝑀 ⊧ 𝑅,
i.e., for every rule 𝑟 ∈ 𝑅, 𝐵+(𝑟) ⊆ 𝑀 and 𝐵−(𝑟) ∩ 𝑀 = ∅ imply𝑀 ∩𝐻(𝑟) ≠ ∅.

We can now define instantiations of DLP-functions relative to a subset of input 𝐼.

Definition 9.8 (Instantiation).
For an actual input 𝐽 ⊆ 𝐼 for Π such that 𝐼 are the input atoms of Π, the instantiation
of Π with respect to 𝐽, denoted by Π/𝐽, is the quadruple ⟨𝑅′, ∅, 𝑂,𝐻⟩, where 𝑅′ is the
set of rules

(𝐻(𝑟) ⧵ 𝐼) ← (𝐵+(𝑟) ⧵ 𝐼), not(𝐵−(𝑟) ⧵ 𝐼)

for each 𝑟 ∈ 𝑅 such that

• 𝐽 ∩ Ati(Π,𝐻(𝑟)) = ∅,

• Ati(Π, 𝐵+(𝑟)) ⊆ 𝐽, and

• 𝐽 ∩ Ati(Π, 𝐵−(𝑟)) = ∅.

Minimal models are defined with respect to input 𝐼.

Definition 9.9 (Minimal models).
A model 𝑀 ⊆ At(Π) of Π is 𝐼-minimal if and only if there is no model 𝑁 of Π such
that Ati(Π,𝑁) = Ati(Π,𝑀) and 𝑁 ⊂ 𝑀. The set of 𝐼-minimal models of Π is denoted
by MM (Π).

The reduct of DLP-functions is defined akin to the GL-reduct.

236

9.1.3. Module Theorem

Definition 9.10 (Reduct).
Given an interpretation 𝑀 ⊆ At(Π) for Π, the reduct of Π with respect to 𝑀 is the
positive DLP-function Π𝑀 = ⟨𝑅𝑀, 𝐼, 𝑂,𝐻⟩, where

𝑅𝑀 = {𝐻(𝑟) ← 𝐵+(𝑟) ∣ 𝑟 ∈ 𝑅 ∧𝑀 ⊧ 𝐵+(𝑟) ∧ 𝑀 ⊭ 𝐵−(𝑟)} .

The stable models of a DLP-function Π gives us the semantics of Π.

Definition 9.11 (Stable models).
An interpretation 𝑀 ⊆ At(Π) is a stable model of a DLP-function Π with an input
signature Ati(Π) iff𝑀 ∈ MM (Π𝑀), i.e.,𝑀 is an Ati(Π)-minimal model ofΠ𝑀. We let

SM(Π) = {𝑀 ⊆ At(Π) ∣ 𝑀 ∈ MM (Π𝑀)}

denote the set of stable models of Π.

9.1.3 Module Theorem
Next, we will define mutually compatible interpretations and the natural join of mu-
tually compatible interpretations, which form the basis for the Module Theorem.

Definition 9.12 (Mutually compatible interpretations).
Let Π1 and Π2 be DLP-functions, we say that the interpretations 𝑀1 ⊆ At(Π1) and
𝑀2 ⊆ At(Π2) aremutually compatible with respect to Π1 and Π2, denoted𝑀1≙v𝑀2, if
𝑀1 ∩ Atv(Π2) = 𝑀2 ∩ Atv(Π1).

Definition 9.13 (Natural join).
Let Π1 and Π2 be two DLP-functions such that the join Π1 ⊔Π2 is defined. Given any
sets of interpretations 𝒜1 ⊆ 2At(Π1) and 𝒜2 ⊆ 2At(Π2), we define the set of interpreta-
tions

𝒜1 ⋈ 𝒜2 = {𝑀1 ∪𝑀2 ∣ (𝑀1,𝑀2) ∈ 𝒜1 × 𝒜2 such that𝑀1 ≙v 𝑀2}

as the natural join of 𝒜1 and 𝒜2 with respect to Atv(Π1) ∩ Atv(Π2).

Janhunen et al. (2009b) have shown the Module Theorem, which will be subse-
quently used in the proofs for the translations in §9.2 and §9.3.

Module Theorem (Janhunen et al., 2009b)If Π1 and Π2 are DLP-functions such that
the join Π1 ⊔ Π2 is defined, then SM(Π1 ⊔ Π2) = SM(Π1) ⋈ SM(Π2).

In the rest of this chapter, we will define two translations: one for turning DLP-
functions into MLP modules, and another translation that is defined on a fragment of
MLPs without input and generates an equivalent sequence of DLP-functions. To be in
line with (Janhunen et al., 2009b), we consider only the propositional case.

237

Chapter 9. Relationship to DLP-Functions

9.2 Translation from DLP-Functions to MLPs
We now define a translation ∇ which maps sequences of DLP-functions to MLPs. To
this end, we map input atoms 𝑎 appearing in bodies of rules in some DLP-function to
module atoms of MLPs, whenever there is an output of another DLP-function which
contains 𝑎. Other atoms remain unchanged. Then, we add further guessing rules to
the modules; intuitively, they guess the truth value for input atoms which have not
been fixed by some output.

Definition 9.14 (MLP Translation).
Let (Π1, … ,Π𝑛) be a sequence of DLP-functions such that the join Π = Π1 ⊔⋯ ⊔ Π𝑛
is defined. We define for each 𝑎 ∈ At(Π𝑗), 1 ≤ 𝑗 ≤ 𝑛, the mapping

∇(𝑎) = {
𝑃𝑘.𝑎 𝑎 ∈ Ati(Π𝑗) and there exists Π𝑘 such that 𝑎 ∈ Ato(Π𝑘)
𝑎 otherwise

.

Let 𝑟 be a rule of form (2.1) that appears in a DLP-function Π𝑗. Whenever 𝑟 is normal
or disjunctive, we let

∇(𝑟) = ∇(𝑎1) ∨⋯ ∨ ∇(𝑎𝑘) ← ∇(𝑏1), … ,∇(𝑏𝑚), not∇(𝑏𝑚+1), … , not∇(𝑏𝑛) ,

and if 𝑟 is a constraint, we define

∇(𝑟) = fail ← ∇(𝑏1), … ,∇(𝑏𝑚), not∇(𝑏𝑚+1), … , not∇(𝑏𝑛), not fail ,

where fail is a fresh atom not occurring in any Π𝑗 and hidden from others. Given
Π𝑗 = ⟨𝑅𝑗, 𝐼𝑗, 𝑂𝑗, 𝐻𝑗⟩, we let∇(Π𝑗) = (𝑃𝑗[], ∇(𝑅𝑗)) be an MLP main module, where 𝑃𝑗
is a module name and

∇(𝑅𝑗) = {∇(𝑟) ∣ 𝑟 ∈ 𝑅𝑗} ∪ {𝑎 ∨ 𝑎 ←
||||
𝑎 ∈ 𝐼𝑗 ⧵⋃

𝑗≠𝑘
Ato(Π𝑘)}

such that 𝑎 are fresh atoms not occurring in anyΠ𝑗. For the sequence (Π1, … ,Π𝑛), we
denote by ∇(Π) the MLP formed by

(∇(Π1), … ,∇(Π𝑛)) .

Note that Π𝑘 in the definition of ∇(𝑎) is unique since each distinct pair Π𝑗, Π𝑘
from (Π1, … ,Π𝑛) respect the input/output interfaces of each other, i.e., they satisfy
condition Ato(Π𝑗) ∩ Ato(Π𝑘) = ∅ for every 𝑗 ≠ 𝑘.

In the following, we exemplify the MLP translation using illustrative examples.

238

9.2. Translation from DLP-Functions to MLPs

Example 9.1 Given a sequence (Π1, Π2) of DLP-functions, where

Π1 = ⟨{𝑎 ← not 𝑏}, {𝑏}, {𝑎}, ∅⟩

and
Π2 = ⟨{𝑏 ← not 𝑎}, {𝑎}, {𝑏}, ∅⟩ ,

the MLP translation of the join Π = Π1 ⊔ Π2, which is given by

Π = ⟨{ 𝑎 ← not 𝑏
𝑏 ← not 𝑎 } ,∅, {𝑎, 𝑏}, ∅⟩ ,

is ∇(Π) = (∇(Π1), ∇(Π2)), where ∇(Π1) and ∇(Π2) are the main modules whose
associated sets of rules are {𝑎 ← not 𝑃2.𝑏} and {𝑏 ← not 𝑃1.𝑎}, respectively. Here,
both Π and ∇(Π) possess two answer sets: Π has {𝑎} and {𝑏}, while ∇(Π) has ({𝑎}, ∅)
and (∅, {𝑏}).

Now, let Π1 be from above. In this case, we obtain the MLP (∇(Π1)), where
∇(Π1) = (𝑃1, ∇(𝑅1)) and ∇(𝑅1) = {𝑎 ← not 𝑏; 𝑏 ∨ 𝑏 ←}. We have that

• Π1 has the stable models {𝑎} and {𝑏}, and

• (∇(Π1)) has the answer sets ({𝑎, 𝑏}) and ({𝑏}).

We show now that ∇ captures the stable models of DLP-functions.

Proposition 9.1 (Capturing stable models of DLP-functions)
Let (Π1, … ,Π𝑛) be a sequence of DLP-functions such that the join Π = Π1 ⊔⋯ ⊔ Π𝑛
is defined. Then, the stable models of Π correspond one-to-one to the answer sets of
MLP ∇(Π).

Proof Let (Π1, … ,Π𝑛) be a sequence of DLP-functions such that each DLP-function
Π𝑖 = ⟨𝑅𝑖, 𝐼𝑖, 𝑂𝑖, 𝐻𝑖⟩. We define for a set 𝐴 ⊆ At(Π) of atoms the set 𝐴 = {𝑎 ∣ 𝑎 ∈ 𝐴}
of fresh atoms not occurring in Π.

(⇒) Let𝑁 be a stablemodel ofΠ. SinceΠ1⊔⋯⊔Π𝑛 is defined, we can apply theModule
Theorem and get that SM(Π) = SM(Π1) ⋈ ⋯ ⋈ SM(Π𝑛), hence 𝑁 = ⋃𝑛

𝑖=1𝑁𝑖 such
that each 𝑁𝑖 ∈ SM(Π𝑖) is a stable model of Π𝑖 and 𝑁𝑖 ≙v 𝑁𝑗 for all distinct pairs
𝑖, 𝑗 ∈ {1, … , 𝑛}. Let

𝐹𝑖 = 𝐼𝑖 ⧵⋃
𝑖≠𝑗

𝑂𝑗 , 1 ≤ 𝑖 ≤ 𝑛,

and let M = (𝑀1/∅,… ,𝑀𝑛/∅) be an interpretation for MLP ∇(Π), where for each
𝑃𝑖[∅] ∈ VC(∇(Π)) we set

𝑀𝑖/∅ = 𝑁𝑖 ⧵ 𝐼𝑖 ∪ (𝑁𝑖 ∩ 𝐹𝑖) ∪ (𝐹𝑖 ⧵ 𝑁𝑖) . (9.1)

239

Chapter 9. Relationship to DLP-Functions

We show now that M is an answer set of MLP ∇(Π) by showing that M is a model of
∇(Π) and that M is a minimal model of 𝑓∇(Π)M.

We first show that M ⊧ ∇(Π). Since 𝑁 is a stable model of Π, we have that
Ato(Π,𝑁) ∪ Ath(Π,𝑁) is a stable model of Π/Ati(Π,𝑁). Since 𝑁 ⊧ Π, we have
𝑁𝑘 ⊧ Π𝑘/Ati(Π𝑘, 𝑁𝑘) for all 1 ≤ 𝑘 ≤ 𝑛. Let 𝑟 be a rule from 𝑅𝑘, and let 𝑟′ be the
rule (𝐻(𝑟) ⧵ 𝐼𝑘) ← (𝐵+(𝑟) ⧵ 𝐼𝑘), not(𝐵−(𝑟) ⧵ 𝐼𝑘). If Ati(Π𝑘, 𝑁𝑘) ⊭ Ati(Π𝑘, 𝐵+(𝑟))
or Ati(Π𝑘, 𝑁𝑘) ⊧ Ati(Π𝑘, 𝐵−(𝑟)) then 𝑁𝑘 ⊭ 𝐵(𝑟) and 𝑟′ ∉ Π𝑘/Ati(Π𝑘, 𝑁𝑘). Other-
wise, 𝑟′ ∈ Π𝑘/Ati(Π𝑘, 𝑁𝑘), thus 𝑁𝑘 ⊧ Π𝑘/Ati(Π,𝑁𝑘) means either 𝑁𝑘 ⊭ 𝐵(𝑟′) (then
𝑁𝑘 ⊭ 𝐵(𝑟)) or 𝑁𝑘 ⊧ 𝐻(𝑟). Finally, we need to consider either

(1) 𝑁𝑘 ⊭ 𝐵(𝑟), or

(2) 𝑁𝑘 ⊧ 𝐻(𝑟).

Assuming (1), then either (a) there exists 𝑎 ∈ 𝐵+(𝑟) such that 𝑁𝑘 ⊭ 𝑎, or (b) there
exists 𝑎 ∈ 𝐵−(𝑟) such that 𝑁𝑘 ⊧ 𝑎. We distinguish

• 𝑎 ∈ Ati(Π𝑘)⧵⋃Ato(Πℓ), or 𝑎 ∉ Ati(Π𝑘), then∇(𝑎) = 𝑎, and by (9.1), we have in
case (a) that 𝑎 ∉ 𝑀𝑘/∅, henceM, 𝑃𝑘[∅] ⊭ 𝐵+(∇(𝑟)), and thereforeM, 𝑃𝑘[∅] ⊭
𝐵(∇(𝑟)). In case (b) we have 𝑎 ∈ 𝑀𝑘/∅, hence M, 𝑃𝑘[∅] ⊧ 𝐵−(∇(𝑟)), and thus
M, 𝑃𝑘[∅] ⊭ 𝐵(∇(𝑟));

• 𝑎 ∈ Ati(Π𝑘) and there existsΠℓ, 1 ≤ ℓ ≤ 𝑛, such that 𝑎 ∈ Ato(Πℓ), then∇(𝑎) =
𝑃ℓ.𝑎. Furthermore, since 𝑁𝑘 ≙v 𝑁ℓ, we have 𝑁𝑘 ∩ Atv(Πℓ) = 𝑁ℓ ∩ Atv(Π𝑘).
In case (a), from 𝑎 ∈ Atv(Π𝑘), 𝑎 ∈ Atv(Πℓ), and 𝑎 ∉ 𝑁𝑘 follows 𝑎 ∉ 𝑁ℓ.
Conversely, in case (b) from 𝑎 ∈ Atv(Π𝑘), 𝑎 ∈ Atv(Πℓ), and 𝑎 ∈ 𝑁𝑘, it holds
that 𝑎 ∈ 𝑁ℓ. Hence, by (9.1), we can deduce that 𝑎 ∉ 𝑀ℓ/∅ and M, 𝑃𝑘[∅] ⊭
∇(𝑎) in case (a), and 𝑎 ∈ 𝑀ℓ/∅ and M, 𝑃𝑘[∅] ⊧ ∇(𝑎) in case (b). Eventually,
M, 𝑃𝑘[∅] ⊭ 𝐵(∇(𝑟)).

Now assume (2), then there exists 𝑎 ∈ 𝐻(𝑟) such that𝑁𝑘 ⊧ 𝑎. In this case, 𝑎 ∉ Ati(Π𝑘),
hence 𝑎 ∈ 𝑀𝑘/∅ and we get that M, 𝑃𝑘[∅] ⊧ 𝐻(𝑟).

We have now that M, 𝑃𝑘[∅] ⊧ ∇(𝑟) for each 𝑟 ∈ 𝑅𝑘 and each 𝑃𝑘[∅] ∈ VC(∇(Π)).
Now consider a rule 𝑟 of form 𝑎 ∨ 𝑎 ← from ∇(Π𝑘). If 𝑎 ∈ 𝑁𝑘 ∩ 𝐹𝑘, then 𝑎 ∈ 𝑀𝑘/∅
and thus M, 𝑃𝑘[∅] ⊧ 𝑟. Otherwise, 𝑎 ∈ 𝐹𝑘 ⧵ 𝑁𝑘, thus 𝑎 ∈ 𝑀𝑘/∅ and M, 𝑃𝑘[∅] ⊧
𝑟. Therefore, all rules in ∇(Π𝑘) are satisfied by M at 𝑃𝑘[∅] for all 𝑃𝑘[∅] ∈ VC(P),
consequently M is a model of ∇(Π).

Next, we show that M is a minimal model for 𝑓∇(Π)M. Towards a contradiction,
assume that there is an interpretation M′ < M such that M′ ⊧ 𝑓∇(Π)M, i.e., there
is an 𝛼 ∈ 𝑀𝑘/∅ such that 𝛼 ∉ 𝑀′

𝑘/∅. By (9.1), 𝛼 ∈ 𝑁𝑘 or 𝛼 is of form 𝑎, thus we
distinguish

(i) 𝛼 ∈ At(Π𝑘) such that 𝛼 ∉ Ati(Π𝑘),

240

9.2. Translation from DLP-Functions to MLPs

(ii) 𝛼 ∈ 𝑁𝑘 ∩ 𝐹𝑘, or

(iii) 𝛼 ∈ 𝐹𝑘 ⧵ 𝑁𝑘 and 𝛼 = 𝑎.

In case (i), we have 𝑁𝑘 ∈ MM (Π𝑁𝑘
𝑘), there must exist a rule 𝑟 ∈ 𝑅𝑘 such that 𝛼 ∈

𝐻(𝑟), 𝑁𝑘 ⊧ 𝐵+(𝑟) and 𝑁𝑘 ⊭ 𝐵−(𝑟), hence there exists a rule 𝑟′ = 𝐻(𝑟) ← 𝐵+(𝑟) ∈
𝑅𝑁𝑘
𝑘 , and by minimality 𝑁𝑘 ⧵ {𝛼} ⊭ 𝐻(𝑟). By our translation, ∇(𝛼) = 𝛼 for 𝛼 ∈ 𝐻(𝑟),

thus 𝐻(∇(𝑟)) = {𝛼}. Since 𝑟′ ∈ 𝑅𝑁𝑘
𝑘 , we must have ∇(𝑟) ∈ 𝑓∇(Π)M. We therefore

obtain M, 𝑃𝑘[∅] ⊧ 𝐵(∇(𝑟)) and M, 𝑃𝑘[∅] ⊧ 𝐻(∇(𝑟)), hence M′, 𝑃𝑘[∅] ⊧ 𝐵(∇(𝑟)) and
M′, 𝑃𝑘[∅] ⊭ 𝐻(∇(𝑟)), hence M′, 𝑃𝑘[∅] ⊭ ∇(𝑟), which is a contradiction to M′ ⊧
𝑓∇(Π)M. Considering case (ii), we obtain from our translation that there is a rule
𝑟 = 𝑎 ∨ 𝑎 ← in 𝑓∇(Π)M. Since 𝑎 ∈ 𝑁𝑘, we have 𝑎 ∈ 𝑀𝑘/∅ but 𝑎 ∉ 𝑀𝑘/∅ as
𝑎 ∉ 𝐹𝑘 ⧵ 𝑁𝑘, hence M′, 𝑃𝑘[∅] ⊭ 𝑟, which is a contradiction for M′ being a model of
𝑓∇(Π)M. In case (iii), we obtain from our translation that there is a rule 𝑟 = 𝑎 ∨ 𝑎 ←
in 𝑓∇(Π)M. Since 𝑎 ∈ 𝐹𝑘 ⧵ 𝑁𝑘, we have 𝑎 ∉ 𝑁𝑘 and thus 𝑎 ∉ 𝑀𝑘/∅ and since
𝑎 ∉ 𝑀𝑘/∅ we get M′, 𝑃𝑘[∅] ⊭ 𝑟, which is a contradiction for M′ being a model of
𝑓∇(Π)M. Thus, M is a minimal model of 𝑓∇(Π)M, and we therefore have established
that M is an answer set for ∇(Π).

(⇐) Let M = (𝑀1/∅,… ,𝑀𝑛/∅) be an answer set of ∇(Π). Let 𝑁 = ⋃𝑛
𝑘=1𝑁𝑘, where

𝑁𝑘 = (𝑀𝑘/∅ ∩ At(Π𝑘)) ∪⋃
𝑖≠𝑘

{𝑎 ∈ Ato(Π𝑖) ∩ 𝑀𝑖/∅ ∣ 𝑎 appears in 𝑅𝑘} (9.2)

We show that 𝑁 is a stable model of Π by showing that for an 𝑁𝑘 from 𝑁, 𝑁𝑘 is a
model of Π𝑘/Ati(Π𝑘, 𝑁𝑘) and 𝑁𝑘 is a minimal model of Π𝑁𝑘

𝑘 /Ati(Π𝑘, 𝑁𝑘).
We show that 𝑁𝑘 satisfies all rules in Π𝑘, then immediately it satisfies all rules in

Π𝑘/Ati(Π𝑘, 𝑁𝑘). For a rule 𝑟 ∈ 𝑅𝑘, if 𝑁𝑘 ⊭ 𝐵(𝑟) then 𝑁𝑘 ⊧ 𝑟. Otherwise, we need to
show that𝑁𝑘 ⊧ 𝐻(𝑟). For such a rule 𝑟, we have the corresponding rule∇(𝑟) in∇(Π𝑘).
Since M is a model of ∇(Π), either M, 𝑃𝑘[∅] ⊭ 𝐵(∇(𝑟)) or M, 𝑃𝑘[∅] ⊧ 𝐻(∇(𝑟)). We
show that the first case cannot happen. Assume that M, 𝑃𝑘[∅] ⊭ 𝐵(∇(𝑟)) and 𝑁𝑘 ⊧
𝐵(𝑟), then either (i) there exists 𝑎 ∈ 𝐵+(𝑟) such that 𝑁𝑘 ⊧ 𝑎 and M, 𝑃𝑘[∅] ⊭ ∇(𝑎), or
(ii) there exists 𝑎 ∈ 𝐵−(𝑟) such that𝑁𝑘 ⊭ 𝑎 andM, 𝑃𝑘[∅] ⊧ ∇(𝑎). We distinguish the
following cases:

• ∇(𝑎) = 𝑎: We have 𝑁𝑘 ⊧ 𝑎 (respectively, 𝑁𝑘 ⊭ 𝑎) and M, 𝑃𝑘[∅] ⊭ 𝑎 (respec-
tively, M, 𝑃𝑘[∅] ⊧ 𝑎) in case (i) (respectively, (ii)). By (9.2), there must exist a
module atom 𝑃ℓ.𝑎 in a rule in 𝑅(𝑚𝑘) (respectively, 𝑎 ∈ 𝑁𝑘) in case (i) (respec-
tively, (ii)). For case (i), this module atom must be translated from Πℓ, which
means ∇(𝑎) = 𝑃ℓ.𝑎. In both cases, we have now arrived at a contradiction.

241

Chapter 9. Relationship to DLP-Functions

• ∇(𝑎) = 𝑃ℓ.𝑎: We have 𝑁𝑘 ⊧ 𝑎 (respectively, 𝑁𝑘 ⊭ 𝑎) and M, 𝑃𝑘[∅] ⊭ 𝑃ℓ.𝑎
(respectively, M, 𝑃𝑘[∅] ⊧ 𝑃ℓ.𝑎) in case (i) (respectively, (ii)). For case (i) we
have 𝑎 ∈ 𝑀𝑘/∅ by (9.2), which we can only get from Π𝑘, hence ∇(𝑎) = 𝑎. In
case (ii), M, 𝑃ℓ[∅] ⊧ 𝑎, and from (9.2) we get 𝑎 ∈ 𝑁𝑘. Again, both cases arrive
at a contradiction.

We can conclude that M, 𝑃𝑘[∅] ⊧ 𝐻(𝑟). Since ∇(𝑎) = 𝑎 for all 𝑎 ∈ 𝐻(𝑟), there
exists 𝑎 ∈ 𝐻(𝑟) such that 𝑎 ∈ 𝑀𝑘/∅, therefore 𝑎 ∈ 𝑁𝑘, hence 𝑁𝑘 ⊧ 𝐻(𝑟). We
therefore conclude that𝑁𝑘 ⊧ 𝑟, and thus𝑁𝑘 ⊧ Π𝑘/Ati(Π𝑘, 𝑁𝑘), which leads to𝑁 ⊧ Π.

Next we show that𝑁𝑘 is an 𝐼𝑘-minimal model ofΦ𝑘 = Π𝑁𝑘
𝑘 /Ati(Π𝑘, 𝑁𝑘). Towards

a contradiction, let us assume that there exists𝑁′
𝑘 ⊂ 𝑁𝑘 such that𝑁′

𝑘 ⊧ Φ𝑘, hence there
exists 𝑎 ∈ 𝑁𝑘 such that 𝑎 ∉ 𝑁′

𝑘. By our translation, the following cases can arise:

• If ∇(𝑎) = 𝑃ℓ.𝑎, then 𝑎 ∈ Ati(Π𝑘), therefore 𝑎 ∈ Ati(Π𝑘, 𝑁𝑘). Hence by the
creation of Φ𝑘, there exists a fact 𝑎 ← in Π𝑘/Ati(Π𝑘, 𝑁𝑘), and also in Φ𝑘. Im-
mediately, we get that 𝑁′

𝑘 ⊭ Φ𝑘, which is contradiction.

• Let ∇(𝑎) = 𝑎. If 𝑎 ∈ Ati(Π𝑘), the above argument leads to a contradiction.
In the following we consider the case in which 𝑎 ∉ Ati(Π𝑘). Since 𝑎 ∈ 𝑁𝑘,
it must be concluded from a rule 𝑟′ from Φ𝑘. Hence there exists a rule 𝑟 from
Π𝑘 such that 𝑎 ∈ 𝐻(𝑟), Ati(Π𝑘, 𝑁𝑘) ⊧ Ati(Π𝑘, 𝐵+(𝑟)), not Ati(Π𝑘, 𝐵−(𝑟)), and
𝑁𝑘 ⊧ not 𝐵−(𝑟). Due to our translation, 𝑎 is also concluded in𝑀𝑘 from the rule
∇(𝑟) ∈ 𝑃𝑘. Since 𝑀𝑘 is a minimal model of 𝑃𝑘, it holds that 𝑀𝑘 ⊧ 𝐵(∇(𝑟)),
𝑀𝑘 ⊧ 𝐻(∇(𝑟)), and 𝑀𝑘 ⧵ {𝑎} ⊭ 𝐻(∇(𝑟)). By (9.2), atoms in 𝑀𝑘 are copied into
𝑁𝑘, plus atoms from 𝑀ℓ where a module atom exists. Since those atoms from
𝑀ℓ do not appear in the head of a rule, we get that 𝑁𝑘 ⊧ 𝐵(𝑟), 𝑁𝑘 ⊧ 𝐻(𝑟), and
𝑁𝑘 ⧵ {𝑎} ⊭ 𝐻(𝑟). Therefore 𝑁′

𝑘 ⊭ 𝑟′, and 𝑁′
𝑘 ⊭ Φ𝑘, a contradiction.

Eventually, we get that 𝑁𝑘 is an 𝐼𝑘-minimal model of Φ𝑘, hence 𝑁 is a stable model
of Π. ⧠

9.3 Translation from MLPs to DLP-Functions
Compared to DLP-functions, MLPs have a fine-grained input mechanism. Concretely,
DLP-functions import atoms from other DLP-functions by means of an explicit in-
put/output interface; an atom, whose truth value originates from a different DLP-
function, can be seen as a call by reference. To clarify, take an MLP with library mod-
ules𝑚𝑘 = (𝑃[𝑞], 𝑅𝑘) and𝑚ℓ = (𝑄[𝑝], 𝑅ℓ). Consider a module atom 𝑄[𝑏].𝑎 appearing
in 𝑅𝑘; we are confronted with two different types of input:

242

9.3. Translation from MLPs to DLP-Functions

1. 𝑚ℓ retrieves input 𝑏 from𝑚𝑘 explicitly in form of an additional fact 𝑝 ← when-
ever 𝑏 holds in some instantiation of 𝑃[𝑞], which can be seen as call by value,
and

2. 𝑚𝑘 retrieves input from𝑚ℓ implicitly in form of 𝑎, which plays a similar role to
call by reference input in DLP-functions.

Here, we restrict our attention to MLPs with input of type (2). By complexity
arguments and the results of Chapter 5, translating MLPs with inputs of type (1) into
sequences of DLP-functions is likely to cause an exponential blow-up in general.

Without loss of generality, we consider only propositional MLPs without input in
which if a module atom 𝑃𝑖.𝑎 appears in a rule 𝑟 ∈ 𝑅(𝑚𝑗) of module 𝑚𝑗, then 𝑎 also
appears in heads of some rule 𝑟′ ∈ 𝑅(𝑚𝑖). Roughly speaking, in such a situation,
we can pre-process 𝑅(𝑚𝑗) as follows: if 𝑃𝑖.𝑎 ∈ 𝐵+(𝑟) then remove 𝑟 from 𝑅(𝑚𝑗); if
𝑃𝑖.𝑎 ∈ 𝐵−(𝑟) then remove 𝑃𝑖.𝑎 from 𝐵−(𝑟). Furthermore, we assume that MLPs do not
contain self-loops, i.e., in a module 𝑚𝑖 = (𝑃𝑖[], 𝑄𝑖) there is no rule in 𝑄𝑖 that contains
a module atom of form 𝑃𝑖.𝑎. Such module atoms can always be replaced simply by 𝑎
in 𝑄𝑖.

We proceed as follows: we first define a tagging function Δ𝑃𝑖 which maps proposi-
tional ordinary and module atoms to propositional atoms. This mapping will be lifted
to rules as usual. Finally, for a given module 𝑚𝑖 = (𝑃𝑖[], 𝑅𝑖), the input-output inter-
face of the correspondingDLP-functionwill be generated by the occurrences ofmodule
atoms in 𝑚𝑖 by means of a mapping Δ, which will be lifted to whole MLPs as well.

Definition 9.15 (DLP-function translation).
Let P = (𝑚1, … ,𝑚𝑛) be a propositional MLP and𝑚𝑖 = (𝑃𝑖[], 𝑄𝑖) be one of the modules
of P. For an atom 𝛼 ∈ HBP, we define

Δ𝑃𝑖(𝛼) = {
𝑎𝑃𝑖 if 𝛼 is an atom 𝑎
𝑏𝑃𝑗 if 𝛼 is a module atom of form 𝑃𝑗.𝑏

.

For a rule 𝑟 ∈ 𝑄𝑖 of form (3.2), we denote by Δ𝑃𝑖(𝑟) the DLP rule

Δ𝑃𝑖(𝛼1) ∨⋯ ∨ Δ𝑃𝑖(𝛼𝑘) ← Δ𝑃𝑖(𝛽1), … , Δ𝑃𝑖(𝛽𝑚), not Δ𝑃𝑖(𝛽𝑚+1), … , not Δ𝑃𝑖(𝛽𝑛) .

Given a module𝑚𝑖 from P, we let Δ(𝑚𝑖) = ⟨𝑅𝑖, 𝐼𝑖, 𝑂𝑖, 𝐻𝑖⟩ to be a DLP-function, where

• 𝑅𝑖 = {Δ𝑃𝑖(𝑟) ∣ 𝑟 ∈ 𝑄𝑖},

• 𝐼𝑖 = {Δ𝑃𝑖(𝑃𝑗.𝑏) ∣ 𝑃𝑗.𝑏 occurs in 𝑄𝑖},

• 𝑂𝑖 = {Δ𝑃𝑖(𝑎) ∣ 𝑃𝑖.𝑎 ∈ HBP}, and

• 𝐻𝑖 = {Δ𝑃𝑖(𝛼) ∣ 𝛼 ∈ HBP occurs in 𝑄𝑖} ⧵ (𝐼𝑖 ∪ 𝑂𝑖).

243

Chapter 9. Relationship to DLP-Functions

Next, we provide some examples of Δ.

Example 9.2 Let P = (𝑚1, 𝑚2) be a propositional MLP with modules𝑚1 = (𝑃1[], 𝑄1)
and 𝑚2 = (𝑃2[], 𝑄2), where 𝑄1 = {𝑎 ← not 𝑃2.𝑏}, and 𝑄2 = {𝑏 ← not 𝑃1.𝑎}. The
translation of P to a sequence of DLP-functions is given by (Δ(𝑚1), Δ(𝑚2)), where

• Δ(𝑚1) = ⟨{𝑎𝑃1 ← not 𝑏𝑃2}, {𝑏𝑃2}, {𝑎𝑃1}, ∅⟩ and

• Δ(𝑚2) = ⟨{𝑏𝑃2 ← not 𝑎𝑃1}, {𝑎𝑃1}, {𝑏𝑃2}, ∅⟩.

Their join Π = Δ(𝑚1) ⊔ Δ(𝑚2) is defined as

Δ(𝑚1) ⊔ Δ(𝑚2) = ⟨{ 𝑎𝑃1 ← not 𝑏𝑃2
𝑏𝑃2 ← not 𝑎𝑃1

} ,∅, {𝑎𝑃1, 𝑏𝑃2}, ∅⟩ .

Both P and Π admit two answer sets respectively stable models:

• (𝑀1/∅ ≔ {𝑎},𝑀2/∅ ≔ ∅) and (𝑀1/∅ ≔ ∅,𝑀2/∅ ≔ {𝑏}) for P, and

• {𝑎𝑃1} and {𝑏𝑃2} for Π.

Example 9.3 Consider an MLP P = (𝑚1) with single main module 𝑚1 = (𝑃1[], 𝑄1)
such that 𝑄1 = {𝑎 ← not 𝑏 ; 𝑏 ∨ 𝑏 ←}. We can translate P to a DLP-function Δ(𝑚1),
where

Δ(𝑚1) = ⟨{
𝑎𝑃1 ← not 𝑏𝑃1

𝑏𝑃1 ∨ 𝑏𝑃1 ← } ,∅,∅, {𝑎𝑃1, 𝑏𝑃1, 𝑏𝑃1}⟩ .

Both P and Δ(𝑚1) have two answer sets respectively stable models:

• (𝑀1/∅ ≔ {𝑎, 𝑏}) and (𝑀1/∅ ≔ {𝑏}) for P, and

• {𝑎𝑃1, 𝑏𝑃1} and {𝑏𝑃1} for Δ(𝑚1).

Example 9.4 Consider an MLP P = (𝑚1, 𝑚2) with modules 𝑚1 = (𝑃1[], 𝑄1) and
𝑚2 = (𝑃2[], 𝑄2) such that 𝑄1 = {𝑎 ← not 𝑏; 𝑏 ∨ 𝑏 ←} and 𝑄2 = {𝑑 ← not 𝑃1.𝑎}. The
sequence of DLP-functions (Δ(𝑚1), Δ(𝑚2)) is given by

Δ(𝑚1) = ⟨{
𝑎𝑃1 ← not 𝑏𝑃1

𝑏𝑃1 ∨ 𝑏𝑃1 ← } ,∅, {𝑎𝑃1}, {𝑏𝑃1, 𝑏𝑃1}⟩

and
Δ(𝑚2) = ⟨{𝑑𝑃2 ← not 𝑎𝑃1}, {𝑎𝑃1}, ∅, {𝑑𝑃2}⟩

such that their join Π = Δ(𝑚1) ⊔ Δ(𝑚2) is

⟨{
𝑎𝑃1 ← not 𝑏𝑃1

𝑏𝑃1 ∨ 𝑏𝑃1 ←
𝑑𝑃2 ← not 𝑎𝑃1

} ,∅, {𝑎𝑃1}, {𝑏𝑃1, 𝑏𝑃1, 𝑑𝑃2}⟩ .

We obtain two answer sets for P and two stable models for Π:

244

9.3. Translation from MLPs to DLP-Functions

• (𝑀1/∅ ≔ {𝑎, 𝑏},𝑀2/∅ ≔ ∅) and (𝑀1/∅ ≔ {𝑏},𝑀2/∅ ≔ {𝑑}) for P, and

• {𝑎𝑃1, 𝑏𝑃1} and {𝑏𝑃1, 𝑑𝑃2} for Π.

The mapping Δ translates MLPs to DLP-functions, which respect the hidden atoms
due to the global renaming in Δ𝑃𝑖 , hence the composition operator ⊕ is defined on
them. DLP-functions Π = ⟨𝑅, 𝐼, 𝑂,𝐻⟩ require that the heads of the rules in 𝑅 come
from 𝑂 ∪ 𝐻. With Δ, this prerequisite comes for free, since input of translated DLP-
functions comes from modular atoms which never appear in heads of rules.

However, the join operator ⊔ is not always defined for two DLP-functions Δ(𝑚𝑖)
and Δ(𝑚𝑗), where 𝑚𝑖 and 𝑚𝑗 are from P. The join Δ(𝑚𝑖) ⊔ Δ(𝑚𝑗) is only defined
when Δ(𝑚𝑖) and Δ(𝑚𝑗) are mutually independent. We show this situation in the next
example.

Example 9.5 When we translate the MLP

P = (𝑚1 ≔ (𝑃1[], 𝑄1 ≔ {𝑎 ← 𝑃2.𝑏}),𝑚2 ≔ (𝑃2[], 𝑄2 ≔ {𝑏 ← 𝑃1.𝑎}))

into the sequence of DLP-functions (Δ(𝑚1), Δ(𝑚2)) such that

• Δ(𝑚1) = ⟨{𝑎𝑃1 ← 𝑏𝑃2}, {𝑏𝑃2}, {𝑎𝑃1}, ∅⟩, and

• Δ(𝑚2) = ⟨{𝑏𝑃2 ← 𝑎𝑃1}, {𝑎𝑃1}, {𝑏𝑃2}, ∅⟩,

we create the mutually dependent DLP-functions Δ(𝑚1) and Δ(𝑚2). The dependency
graph of

Δ(𝑚1) ⊕ Δ(𝑚2) = ⟨{ 𝑎𝑃1 ← 𝑏𝑃2
𝑏𝑃2 ← 𝑎𝑃1

} ,∅, {𝑎𝑃1, 𝑏𝑃2}, ∅⟩

has the SCC 𝐶 = {𝑎𝑃1, 𝑏𝑃2} such that 𝐶 ∩ Ato(Δ(𝑚1)) ≠ ∅ and 𝐶 ∩ Ato(Δ(𝑚2)) ≠ ∅,
hence the join Δ(𝑚1) ⊔ Δ(𝑚2) is not defined.

Next, we provide a similar restriction on MLPs as the one given in Definition 9.5
on DLP-functions in order to create a faithful translation fromMLPs to DLP-functions,
such that the join ⊔ is defined and the Module Theorem is applicable.

Definition 9.16 (Positive dependency graph).
Let P be an MLP, we define the positive dependency graph of P as the directed graph
𝐺+
P = (𝑉, 𝐸), where 𝑉 contains all ordinary atoms from HBP, and 𝐸 is the set of edges

𝑎 →1 𝑏 such that for all modules 𝑚𝑖 from P and rules 𝑟 ∈ 𝑅(𝑚𝑖),

• 𝑎 ∈ 𝐻(𝑟) and 𝑏 ∈ 𝐵+(𝑟), or

• 𝑎 ∈ 𝐻(𝑟) and 𝑃𝑗.𝑏 ∈ 𝐵+(𝑟).

245

Chapter 9. Relationship to DLP-Functions

The reflexive and transitive closure→ of→1 is then a dependency relation over 𝑉.
A strongly connected component (SCC) 𝐶 of 𝐺+

P is a maximal set 𝐶 ⊆ 𝑉 such
that 𝑎 → 𝑏 for every pair 𝑎, 𝑏 ∈ 𝐶.

We define 𝑂(𝑚𝑖) = {𝑎 ∣ 𝑃𝑖.𝑎 ∈ HBP}. We say that two modules 𝑚𝑖 and 𝑚𝑗
from P aremutually dependent, if 𝐺+

P has a strongly connected component 𝐶 such that
𝐶 ∩ 𝑂(𝑚𝑖) ≠ ∅ and 𝐶 ∩ 𝑂(𝑚𝑗) ≠ ∅. If 𝑚1 and 𝑚2 are not mutually dependent, we
call them mutually independent.

The next result shows that given two modules 𝑚1 and 𝑚2 that are mutually de-
pendent, the translated DLP-functions Δ(𝑚1) and Δ(𝑚2) are also mutually dependent,
and vice versa.
Lemma 9.2
Let P = (𝑚1, 𝑚2) be an MLP andΠ1 = Δ(𝑚1) andΠ2 = Δ(𝑚2) be two DLP-functions.
Then, 𝑚1 and 𝑚2 are mutually dependent iff Π1 and Π2 are mutually dependent.

Proof We have to show that there exists an SCC 𝐶P in 𝐺+
P such that 𝐶P ∩𝑂(𝑚1) ≠ ∅

and 𝐶P ∩ 𝑂(𝑚2) ≠ ∅ if and only if there exists and SCC 𝐶Π in 𝐷𝐺+(Π1 ⊕ Π2) such
that 𝐶Π ∩ Ato(Π1) ≠ ∅ and 𝐶Π ∩ Ato(Π2) ≠ ∅.

We obtain for the not necessarily distinct pair of modules 𝑚𝑖, 𝑚𝑗 ∈ {𝑚1, 𝑚2} the
following observation: the dependency 𝑏𝑃𝑗 ≤1 𝑎𝑃𝑖 is in𝐷𝐺

+(Π1⊕Π2) if and only if the
dependency 𝑎 →1 𝑏 is in 𝐺+

P such that 𝑎 is from𝑚𝑖 and 𝑏 is from𝑚𝑗. This holds since
every rule 𝑟 ∈ 𝑅(𝑚𝑖) ∪ 𝑅(𝑚𝑗) appears as Δ(𝑟) in 𝑅𝑖 ∪ 𝑅𝑗, thus there exists a bijection
such that every element (𝑏𝑃𝑗, 𝑎𝑃𝑖) ∈≤1 can be mapped to an element (𝑎, 𝑏) ∈→1.
Hence, there exists a bijection from the reflexive and transitive closure of ≤1 to the
reflexive and transitive closure of →1, which means that there is a bijection of the
SCCs in 𝐷𝐺+(Π1 ⊕Π2) to the SCCs in 𝐺+

P .
What remains to be shown is that for an SCC 𝐶P in 𝐺+

P such that 𝐶P ∩𝑂(𝑚1) ≠ ∅
and𝐶P∩𝑂(𝑚2) ≠ ∅ there is an SCC𝐶Π in𝐷𝐺+(Π1⊕Π2) such that𝐶Π∩Ato(Π1) ≠ ∅
and 𝐶Π ∩ Ato(Π2) ≠ ∅, and vice versa.

(⇒) Let 𝐶P be an SCC in 𝐺+
P such that 𝐶P ∩ 𝑂(𝑚1) ≠ ∅ and 𝐶P ∩ 𝑂(𝑚2) ≠ ∅. Let

𝐶Π = {𝑎𝑃𝑖 ∣ 𝑎 ∈ 𝐶P and 𝑎 appears in 𝑚𝑖 for 𝑖 ∈ {1, 2}}.
We need to show that 𝐶Π ∩ Ato(Π1) ≠ ∅ and 𝐶Π ∩ Ato(Π2) ≠ ∅. Let 𝑖 ∈ {1, 2}
and let 𝑎 ∈ 𝐶P ∩ 𝑂(𝑚𝑖), thus there exists a module atom 𝑃𝑖.𝑎 in P by 𝑎 ∈ 𝑂(𝑚𝑖),
hence 𝑎𝑃𝑖 ∈ Ato(Π𝑖). And since 𝑎 ∈ 𝑂(𝑚𝑖), we must have that 𝑎 appears in 𝑚𝑖,
and thus 𝑎 ∈ 𝐶P implies that 𝑎𝑃𝑖 ∈ 𝐶Π. Therefore, 𝑎𝑃𝑖 ∈ 𝐶Π ∩ Ato(Π𝑖), and hence
𝐶Π ∩ Ato(Π𝑖) ≠ ∅ for 𝑖 ∈ {1, 2}.

(⇐) Let 𝐶Π be an SCC in 𝐷𝐺+(Π1 ⊕ Π2) such that 𝐶Π ∩ Ato(Π1) ≠ ∅ and 𝐶Π ∩
Ato(Π2) ≠ ∅. Let

𝐶P = {𝑎 ∣ 𝑎𝑃𝑖 ∈ 𝐶Π and 𝑎𝑃𝑖 appears in Π𝑖 for 𝑖 ∈ {1, 2}}.

246

9.3. Translation from MLPs to DLP-Functions

We need to show that 𝐶P ∩ 𝑂(𝑚1) ≠ ∅ and 𝐶P ∩ 𝑂(𝑚2) ≠ ∅. Let 𝑖 ∈ {1, 2} and
let 𝑎𝑃𝑖 ∈ 𝐶Π ∩ Ato(Π𝑖), thus there exists a module atom 𝑃𝑖.𝑎 in P by 𝑎𝑃𝑖 ∈ Ato(Π𝑖),
hence 𝑃𝑖.𝑎 ∈ HBP implies 𝑎 ∈ 𝑂(𝑚𝑖). And since 𝑎𝑃𝑖 ∈ Ato(Π𝑖), we must have that
𝑎𝑃𝑖 appears in Π𝑖, and thus 𝑎𝑃𝑖 ∈ 𝐶Π implies that 𝑎 ∈ 𝐶P. Therefore, 𝑎 ∈ 𝐶P ∩𝑂(𝑚𝑖),
and hence 𝐶P ∩ 𝑂(𝑚𝑖) ≠ ∅ for 𝑖 ∈ {1, 2}. ⧠

For the following results, we define for a set of atoms 𝑋 the set Δ𝑃𝑖(𝑋) = {Δ𝑃𝑖(𝑎) ∣
𝑎 ∈ 𝑋}. Let P = (𝑚1, 𝑚2) be an MLP with two modules without input, and letM be an
interpretation for P. We define a permutation 𝜋: {1, 2} → {1, 2} such that 𝜋 = (1 2

2 1),
and let

𝐼P𝑘 (M) = Δ𝑃𝑘 (𝑀𝑘/∅) ∪ (Ati(Δ(𝑚𝑘)) ∩ Δ𝑃𝜋(𝑘) (𝑀𝜋(𝑘)/∅))

for 𝑘 ∈ {1, 2} be a DLP interpretation.
The following Lemma shows that 𝐼P1 (M) and 𝐼P2 (M) are mutually compatible.

Lemma 9.3
Let P = (𝑚1, 𝑚2) be an MLP such that 𝑚1 and 𝑚2 are mutually independent, and
M = (𝑀1/∅,𝑀2/∅) be an interpretation for P, then 𝐼P1 (M) ≙v 𝐼P2 (M) with respect to
DLP-functions Δ(𝑚1) and Δ(𝑚2).

Proof We need to show that 𝐼P1 (M) ∩ Atv(Δ(𝑚2)) = 𝐼P2 (M) ∩ Atv(Δ(𝑚1)). Since
𝑚1 and 𝑚2 are mutually independent, we get that Δ(𝑚1) and Δ(𝑚2) are mutually
independent by Lemma 9.2, i.e., for all SCCs 𝐶 in 𝐷𝐺+(Δ(𝑚1) ⊕ Δ(𝑚2)) we have
𝐶 ∩ Ato(Δ(𝑚2)) = ∅ or 𝐶 ∩ Ato(Δ(𝑚1)) = ∅. By definition of Δ, we get that
𝛼 ∈ Ato(Δ(𝑚2)) iff 𝛼 ∈ Ati(Δ(𝑚1)), and 𝛼 ∈ Ato(Δ(𝑚1)) iff 𝛼 ∈ Ati(Δ(𝑚2)).
Thus, both Ato(Δ(𝑚2)) = Ati(Δ(𝑚1)) and Ato(Δ(𝑚1)) = Ati(Δ(𝑚2)) hold, and there-
fore Atv(Δ(𝑚1)) = Atv(Δ(𝑚2)). Then, both Δ𝑃1 (𝑀1/∅) ∩ Ato(Δ(𝑚2)) = ∅ and
Δ𝑃2 (𝑀2/∅) ∩ Ato(Δ(𝑚1)) = ∅ hold, as well as both Δ𝑃1 (𝑀1/∅) ∩ Ati(Δ(𝑚1)) = ∅
and Δ𝑃2 (𝑀2/∅) ∩ Ati(Δ(𝑚2)) = ∅.

Hence, by following the chain of equivalent transformations, we obtain:

𝐼P1 (M) ∩ Atv(Δ(𝑚2)) =
(Δ𝑃1 (𝑀1/∅) ∪ (Ati(Δ(𝑚1)) ∩ Δ𝑃2 (𝑀2/∅))) ∩ Atv(Δ(𝑚2)) =

(Δ𝑃1 (𝑀1/∅) ∪ (Ati(Δ(𝑚1)) ∩ Δ𝑃2 (𝑀2/∅))) ∩ (Ati(Δ(𝑚2)) ∪ Ato(Δ(𝑚2))) =
(Δ𝑃1 (𝑀1/∅) ∩ Ati(Δ(𝑚2))) ∪ (Ati(Δ(𝑚1)) ∩ Δ𝑃2 (𝑀2/∅) ∩ Ato(Δ(𝑚2))) =

(Δ𝑃1 (𝑀1/∅) ∩ Ati(Δ(𝑚2))) ∪ (Ato(Δ(𝑚2)) ∩ Δ𝑃2 (𝑀2/∅)) =

247

Chapter 9. Relationship to DLP-Functions

(Δ𝑃2 (𝑀2/∅) ∩ Ato(Δ(𝑚2))) ∪ (Ati(Δ(𝑚2)) ∩ Δ𝑃1 (𝑀1/∅)) =
(Δ𝑃2 (𝑀2/∅) ∩ Ati(Δ(𝑚1))) ∪ (Ati(Δ(𝑚2)) ∩ Δ𝑃1 (𝑀1/∅) ∩ Ato(Δ(𝑚1))) =
(Δ𝑃2 (𝑀2/∅) ∪ (Ati(Δ(𝑚2)) ∩ Δ𝑃1 (𝑀1/∅))) ∩ (Ati(Δ(𝑚1)) ∪ Ato(Δ(𝑚1))) =

(Δ𝑃2 (𝑀2/∅) ∪ (Ati(Δ(𝑚2)) ∩ Δ𝑃1 (𝑀1/∅))) ∩ Atv(Δ(𝑚1)) =
𝐼P2 (M) ∩ Atv(Δ(𝑚1)) . ⧠

Akin to the Module Theorem for DLP-functions, we can show now a variant of it
applied to the MLPs, which we then use to proof that Δ captures the answer sets of
MLPs.

Theorem 9.4 (MLP module theorem)
Let P = (𝑚1, 𝑚2) be an MLP such that 𝑚1 and 𝑚2 are mutually independent. Then,
SM(Δ(𝑚1) ⊔ Δ(𝑚2)) = SM(Δ(𝑚1)) ⋈ SM(Δ(𝑚2)).

Proof This theorem follows from Lemma 9.2, Lemma 9.3, and the Module Theorem
by showing that for an answer set M of P, we have 𝐼P1 (M) ∪ 𝐼P2 (M) ∈ SM(Δ(𝑚1)) ⋈
SM(Δ(𝑚2)) if and only if 𝐼P1 (M) ∈ SM(Δ(𝑚1)) and 𝐼P2 (M) ∈ SM(Δ(𝑚2)). ⧠

Now we can prove that answer sets of MLPs correspond to stable models of the
DLP-function⨆𝑖 Δ(𝑚𝑖). We first do this for MLPs consisting of twomutually indepen-
dent modules 𝑚1 and 𝑚2, the generalization to 𝑛 modules then follows immediately.

Proposition 9.5 (Capturing mutually independent MLPs)
Let P = (𝑚1, 𝑚2) be an MLP such that 𝑚1 and 𝑚2 are mutually independent. Then,
the answer sets of P correspond one-to-one to the stable models of Δ(𝑚1) ⊔ Δ(𝑚2).

Proof For readability, let Π = Π1 ⊔ Π2 stand for the DLP-function Δ(𝑚1) ⊔ Δ(𝑚2)
such that for 𝑖 ∈ {1, 2}, Π𝑖 = ⟨𝑅𝑖, 𝐼𝑖, 𝑂𝑖, 𝐻𝑖⟩.

(⇒) Let M = (𝑀1/∅,𝑀2/∅) be an answer set of P. We create 𝑁 = 𝑁1 ∪ 𝑁2 as an
interpretation for Π, where 𝑁1 = 𝐼P1 (M) and 𝑁2 = 𝐼P2 (M). Recall that

𝐼P𝑘 (M) = Δ𝑃𝑘 (𝑀𝑘/∅) ∪ (Ati(Δ(𝑚𝑘)) ∩ Δ𝑃𝜋(𝑘) (𝑀𝜋(𝑘)/∅)) ,

we show now that𝑁 is a stable model ofΠ by showing that𝑁 is a model ofΠ and that
𝑁𝑘 is a minimal model of Π𝑁𝑘

𝑘 /Ati(Π𝑘, 𝑁𝑘) for 𝑘 ∈ {1, 2}.
Since M is an answer set of P, we have that M, 𝑃𝑘[∅] ⊧ 𝑅(𝑚𝑘) for all 𝑘 ∈ {1, 2}.

Let 𝑟 ∈ 𝑅(𝑚𝑘), for which we have a corresponding rule Δ𝑃𝑘(𝑟) in 𝑅𝑘. By M, 𝑃𝑘[∅] ⊧
𝑅(𝑚𝑘), either M, 𝑃𝑘[∅] ⊭ 𝐵(𝑟) or M, 𝑃𝑘[∅] ⊧ 𝐻(𝑟). We show that 𝑁𝑘 ⊭ 𝐵(Δ𝑃𝑘(𝑟))
or 𝑁𝑘 ⊧ 𝐻(Δ𝑃𝑘(𝑟)). We distinguish two cases for Δ𝑃𝑘(𝛼) for atoms 𝛼 appearing in 𝑟:

248

9.3. Translation from MLPs to DLP-Functions

• If 𝛼 = 𝑎 is an ordinary atom, then Δ𝑃𝑘(𝑎) = 𝑎𝑃𝑘 . We have M, 𝑃𝑘[∅] ⊭ 𝐵(𝑟)
whenever 𝛼 ∈ 𝐵(𝑟) (respectively, M, 𝑃𝑘[∅] ⊧ 𝐻(𝑟) whenever 𝛼 ∈ 𝐻(𝑟)). Since
𝑁𝑘 = 𝐼P𝑘 (M), we obtain 𝑎𝑃𝑘 ∉ 𝑁𝑘 for M, 𝑃𝑘[∅] ⊭ 𝐵(𝑟) and 𝑎𝑃𝑘 ∈ 𝑁𝑘 for
M, 𝑃𝑘[∅] ⊧ 𝐻(𝑟), respectively. Thus, 𝑁𝑘 ⊭ 𝐵(Δ𝑃𝑘(𝑟)) (respectively, 𝑁𝑘 ⊧
𝐻(Δ𝑃𝑘(𝑟))).

• If 𝛼 is a module atom of the form 𝑃ℓ.𝑏, then Δ𝑃𝑘(𝑎) = 𝑏𝑃ℓ . We haveM, 𝑃𝑘[∅] ⊭
𝐵(𝑟) whenever 𝛼 ∈ 𝐵(𝑟), thus 𝑁𝑘 = 𝐼P𝑘 (M) implies that 𝑏𝑃ℓ ∉ 𝑁𝑘 and so we
obtain 𝑁𝑘 ⊭ 𝐵(Δ𝑃𝑘(𝑟)).

Therefore, 𝑁𝑘 ⊧ Δ𝑃𝑘(𝑟), and from this we get that 𝑁𝑘 ⊧ Π𝑘 and 𝑁 ⊧ Π.
Nowwe show that𝑁𝑘 is a minimal model ofΦ𝑘 = Π𝑁𝑘

𝑘 /Ati(Π𝑘, 𝑁𝑘) for 𝑘 ∈ {1, 2}.
Towards a contradiction, let us assume that there is an 𝑁′

𝑘 ⊂ 𝑁𝑘 such that 𝑁′
𝑘 ⊧ Φ𝑘,

i.e., there is an 𝑎𝑃ℓ ∈ 𝑁𝑘 such that 𝑎𝑃ℓ ∉ 𝑁′
𝑘. There are two cases to consider:

• If 𝑎𝑃ℓ = 𝑎𝑃𝜋(𝑘) , then 𝑎𝑃𝜋(𝑘) ∈ Ati(Π𝑘, 𝑁𝑘). Now consider M′ such that𝑀′
𝑘/∅ =

𝑀𝑘/∅ and 𝑀′
𝜋(𝑘)/∅ = 𝑀𝜋(𝑘)/∅ ⧵ {𝑎}. Then M′ < M, hence M′ ⊭ 𝑓PM as

M is a minimal model of 𝑓PM. There is a rule 𝑟 ∈ 𝑓P(𝑃𝑘[∅])M such that
M′, 𝑃𝑘[∅] ⊭ 𝑟, thus M′, 𝑃𝑘[∅] ⊧ 𝐵(𝑟) and M′, 𝑃𝑘[∅] ⊭ 𝐻(𝑟). There must
be a corresponding rule Δ𝑃𝑘(𝑟) ∈ 𝑅𝑘 such that 𝑁𝑘 ⊧ 𝐵(Δ𝑃𝑘(𝑟)), thus the re-
duced rule 𝑟′ = 𝐻(Δ𝑃𝑘(𝑟)) ← 𝐵+(Δ𝑃𝑘(𝑟)) ∈ Π𝑁𝑘

𝑘 . Therefore, 𝑁′
𝑘 ⊭ 𝑟′ as

𝐻(𝑟′) = 𝐻(Δ𝑃𝑘(𝑟)), 𝑎𝑃𝜋(𝑘) ∈ 𝐻(𝑟′) and 𝑎𝑃𝜋(𝑘) ∉ 𝑁′
𝑘. We can conclude that

𝑁′
𝑘 ⊭ Φ𝑘, a contradiction.

• If 𝑎𝑃ℓ = 𝑎𝑃𝑘 , then 𝑎 ∈ 𝑀𝑘/∅. Now consider M′ such that𝑀′
𝑘/∅ = 𝑀𝑘/∅ ⧵ {𝑎}

and 𝑀′
𝜋(𝑘)/∅ = 𝑀𝜋(𝑘)/∅. Due to minimality of M, there exists a rule 𝑟 ∈

𝑓P(𝑃𝑘[∅])M such that M, 𝑃𝑘[∅] ⊧ 𝐵(𝑟), M, 𝑃𝑘[∅] ⊧ 𝐻(𝑟), but M′, 𝑃𝑘[∅] ⊭
𝐻(𝑟). There is a corresponding rule Δ𝑃𝑘(𝑟) ∈ 𝑅𝑘 such that𝑁𝑘 ⊧ 𝐵(Δ𝑃𝑘(𝑟)), thus
the reduced rule 𝑟′ = 𝐻(Δ𝑃𝑘(𝑟)) ← 𝐵+(Δ𝑃𝑘(𝑟)) ∈ Π𝑁𝑘

𝑘 . Therefore, 𝑁′
𝑘 ⊭ 𝑟′ as

𝐻(𝑟′) = 𝐻(Δ𝑃𝑘(𝑟)), 𝑎𝑃𝑘 ∈ 𝐻(𝑟′) and 𝑎𝑃𝑘 ∉ 𝑁′
𝑘. We can conclude that𝑁′

𝑘 ⊭ Φ𝑘,
a contradiction.

Therefore,𝑁𝑘 is a minimal model ofΦ𝑘, and therefore𝑁 is an stable model ofΠ1⊔Π2.

(⇐) Let 𝑁 = 𝑁1 ∪ 𝑁2 be a stable model of Π. Let M = (𝑀1/∅,𝑀2/∅) such that

𝑀𝑖/∅ = {𝑎 ∣ 𝑎𝑃𝑖 ∈ 𝑁} .

We show thatM is an answer set of P by showing thatM ⊧ P and thatM is a minimal
model of 𝑓PM.

Since 𝑁 is a stable model of Π, 𝑁𝑘 ⊧ Π𝑘 for all 𝑘 ∈ {1, 2}. Then, a rule 𝑟 ∈ 𝑅(𝑚𝑘)
has a corresponding rule Δ𝑃𝑘(𝑟) ∈ 𝑅𝑘 such that 𝑁𝑘 ⊧ Δ𝑃𝑘(𝑟). From the construction

249

Chapter 9. Relationship to DLP-Functions

of M we immediately get that M, 𝑃𝑘[∅] ⊧ 𝑟 iff 𝑁𝑘 ⊧ Δ𝑃𝑘(𝑟), hence M, 𝑃𝑘[∅] ⊧ 𝑅(𝑚𝑘)
for all 𝑘 ∈ {1, 2} and thus M ⊧ P.

Now we show that M is a minimal model of 𝑓PM. Towards a contradiction, let
us assume that there is an M′ < M such that M′ ⊧ 𝑓PM, i.e., there is an 𝑎 ∈ 𝑀𝑘/∅
such that 𝑎 ∉ 𝑀′

𝑘/∅. Since 𝑎 ∈ 𝑀𝑘/∅ we get 𝑎𝑃𝑘 ∈ 𝑁, and since 𝑁1 ≙v 𝑁2, we
obtain 𝑎𝑃𝑘 ∈ 𝑁𝑘. Since 𝑁𝑘 ∈ MM (Π𝑁𝑘

𝑘), there must exist a rule Δ𝑃𝑘(𝑟) ∈ 𝑅𝑘 and

a the corresponding reduced rule 𝑟′ in Π𝑁𝑘
𝑘 such that the following statements hold:

𝑎𝑃𝑘 ∈ 𝐻(Δ𝑃𝑘(𝑟)), 𝑎𝑃𝑘 ∈ 𝐻(𝑟′) as 𝐻(𝑟′) = 𝐻(Δ𝑃𝑘(𝑟)), 𝑁𝑘 ⊧ 𝐵(Δ𝑃𝑘(𝑟)), 𝑁𝑘 ⊧ 𝐵(𝑟′)
and therefore 𝑁𝑘 ⊧ 𝐵+(𝑟′), 𝑁𝑘 ⊧ 𝐻(Δ𝑃𝑘(𝑟)) and thus 𝑁𝑘 ⊧ 𝐻(𝑟′), and 𝑁𝑘 ⧵ {𝑎𝑃𝑘} ⊭
𝐻(Δ𝑃𝑘(𝑟)), which implies𝑁𝑘⧵{𝑎𝑃𝑘} ⊭ 𝐻(𝑟′). Therefore, 𝑟must appear in𝑓P(𝑃𝑘[∅])M
as M, 𝑃𝑘[∅] ⊧ 𝐵(𝑟). But then we obtain that M′, 𝑃𝑘[∅] ⊧ 𝐵(𝑟) and M′, 𝑃𝑘[∅] ⊭ 𝐻(𝑟),
and so M′, 𝑃𝑘[∅] ⊭ 𝑟, a contradiction to our assumption that M′ ⊧ 𝑓PM. We can
conclude that M is an answer set of P. ⧠

From Theorem 9.4 and Proposition 9.5 we can derive that Δ faithfully translates
arbitrary mutually independent MLPs to DLP-functions.

Corollary 9.6 (Capturing answer sets of MLPs)
Let P = (𝑚1, … ,𝑚𝑛) such that the join Δ(𝑚𝑖) ⊔ Δ(𝑚𝑗) for all 𝑚𝑖 and 𝑚𝑗 are pairwise
defined and are mutually independent. Then, there is a one-to-one correspondence
between the answer sets of P and the stable models of Δ(𝑚1) ⊔⋯ ⊔ Δ(𝑚𝑛).

250

10

Related Work

S
everal modular logic programming formalisms and frameworks have been
proposed in the ASP context, whichwe are going to compare toMLPs in this
chapter. We have already reviewed the history of modularity in logic pro-
gramming in §1.2, modular logic programs based on generalized quantifiers

by Eiter et al. (1997b) in §2.3, and provided an in-detail investigation of DLP-functions
by Janhunen et al. (2009b) in Chapter 9. This chapter will now review further and
related approaches to modularity in logic programming.

10.1 Compositional Approaches
Enumeration operators Fitting (1987) defines logic programs as recursion-theore-
tic enumeration operators (see Rogers, Jr., 1987) that are used inmodular logic programs.
Let 𝜔 be the set {0, 1, 2, … }. Enumeration operators are functions of type 2𝜔 ↦ 2𝜔,
and Fitting uses them as the basis for defining a minimal model semantics for modular
Horn clauses of the form [PI

O], where P is a set of Horn clauses, I is an input predicate,
andO is an output predicate, such that for an input set 𝑆 ⊆ 𝜔 the application [PI

O](𝑆) is
the set of 𝑛-tuples x ⊆ 𝜔×⋯×𝜔 such thatO(x) can be derived from the logic program
P ∪ {I(y) ∣ y ∈ 𝑆}. Then, two modules [PI

J] and [QK
L] can be combined to build a new

module using closure operations like composition [PI
J]([QK

L](𝑆)) or Cartesian product
[PI

J](𝑆)×[QK
L](𝑆). This approach effectively brings a functional programming approach

to modularity in logic programming, and bears some similarity to the MLP approach
we have defined here. In contrast to enumeration operators, MLPs allow to define a
full ensemble of modules as a program that is linked together using recursive module
calls, while the combination of enumeration operators is strictly hierarchical. MLPs
use disjunctive rules and answer set semantics, whereas enumeration operators are
restricted to Horn clauses and minimal model semantics.

251

Chapter 10. Related Work

Compositional ASP Modules and DLP-Functions Another compositional appr-
oach is defined by Janhunen et al. (2009b) and Oikarinen (2008), which represent mod-
ular answer set programs by means of module composition operators as a way to com-
pose individual modules. Each program module consists of an input/output interface
which is used to combine themodules. In themost recent work, Janhunen et al. (2009b)
extended the Gaifman-Shapiro-style module architecture (Gaifman and Shapiro, 1989)
to the case of disjunctive logic programs as DLP-functions. The main differences and
similarities between MLPs and DLP-functions have been studied in greater detail in
Chapter 9.

Multi-Shot ASP Solving An interesting approach that semantically builds upon
the Module Theorem as shown by Oikarinen (2008) is Multi-Shot ASP solving (Gebser
et al., 2018, 2017), which uses Clingo as a backend for evaluating multi-shot programs.
Here, multi-shot logic programs behave as modules that evolve during grounding and
solving, using an imperative component for continuously selecting and linking of re-
placeable logic program modules. The Clingo system uses the #program directive to
structure logic programs into subcomponents. Modules in the sense of multi-shot ASP
solving are parameterizable subprograms that take input as a tuple of terms that are
used to ground the subprogram, in contrast to the relational input to program mod-
ules in MLPs. Similar to the compositional approach by Oikarinen (2008), multi-shot
solving programs are hierarchical and may not be defined when atoms are cyclic over
module boundaries.

First-OrderModular Logic Programs Harrison and Lierler (2016) define first-order
modular logic programs and their conservative extensions using a finite set of mod-
ules {SMp1[𝐹1], … , SMp𝑛[𝐹𝑛]}, where each module SMp𝑖[𝐹𝑖] is identified by the stable
model operator of first-order formula 𝐹𝑖 with intensional predicates p𝑖 as defined by Fer-
raris et al. (2011). This approach classifies modular programs into coherent programs
(no mutual positive recursion over module boundaries) and incoherent ones like the
following: {SM𝑝[𝑞 ⊃ 𝑝], SM𝑞[𝑝 ⊃ 𝑞]}. Coherent modular programs can be identified
as ordinary logic programs, as their answer sets coincide, whereas incoherent pro-
grams do not have this property. Clearly, the incoherent modular program shown
before essentially amounts to Example 3.2 in the MLP setting. First-order modular
logic programs build upon results for propositional modular logic programs (Lierler and
Truszczyński, 2013), which used input answer sets (Lierler and Truszczyński, 2011) as
the means to assign answer sets to a set of propositional modules. A set 𝑋 of atoms is
an input answer set of a normal logic programΠ if𝑋 is an answer set of of the program
Π ∪ (𝑋 ⧵ ℎ𝑑(Π)), where ℎ𝑑(Π) denotes the set of rules head from Π. Then, for a set
of programs 𝒫 = {Π1, … ,Π𝑛} (called propositional modular logic program), 𝑋 is an
answer set of 𝒫 if 𝑋 is an input answer set for each Π𝑖 ∈ 𝒫.

252

10.2. Modularity by Language Constructs

Compositional Semantics for Cyclic ASP Modules Moura (2016) worked on the
framework for normal logic programs as defined by Oikarinen and Janhunen (2008)
and—in contrast to the other methods reviewed here—allows positive recursion over
modules using a translational approach, which modifies the original modules such that
the natural join⋈ is applicable on them. To this end, a conservative composition opera-
tor ⊗ and an output renaming translation are defined such that the conservative module
theorem provides a variation of the Module Theorem (see Chapter 9). This approach
provides a compositional semantics with respect to the original signature before the
translation. Different from the approaches above, every conservative composition in-
troduces fresh atoms that do not appear in the original signature of the modules to
be composed, and an additional module that was not present before. In general, this
technique introduces additional stable models that would not exist on the original sig-
nature.

10.2 Modularity by Language Constructs
Macros and Ensembles Towards code reusability in ASP, Baral et al. (2006) intro-
duced language constructs that allow one to specify reusable modules and call those
via macros. A module is defined in a parameterized way, i.e., predicates/relations and
variables appearing in the argument list of the module definition are at a schematic
level and can be replaced by actual predicates and variables in the calls. A module may
include call-macro statements to other modules; however, the calling relation must be
acyclic. Furthermore, a module can specialize or generalize another module, which can
be seen as a similarity to class-subclass definition used in object oriented programming.

For the semantics, the authors described an initial macro-expansion phase in which
macro calls are appropriately replaced by AnsProlog code. The resulted program can
then be evaluated by a usual ASP solver.

To allow easy management of modules, the authors proposed to group modules
under “headings” called ensembles, which are pairs 𝐸 = (𝑆, 𝑅) of a set of classes 𝑆
and a set of relation schemas 𝑅. Associated with each ensemble is a set of modules
about those classes and schemas. Exploiting the class-subclass relation as an inheri-
tance mechanism, the notion of sub-ensembles was defined in which a sub-ensemble
𝐸′ = (𝑆′, 𝑅′) of 𝐸 can inherit or override original modules in 𝐸, have more modules,
depending on the relations between 𝑆 and 𝑆′, as well as 𝑅 and 𝑅′.

Templates Similar to macros is the DLP𝑇 template approach, which was introduced
in the DLP𝑇 language (Calimeri and Ianni, 2006; Ianni et al., 2003) to rapidly develop
new predefined constructs and to deal with compound data structures. Template pred-
icates can be seen as a way to define intensional predicates by means of subprograms,

253

Chapter 10. Related Work

which are generic and reusable. The DLP𝑇 language based on this notion was imple-
mented on top of the DLV system (Leone et al., 2006).

The semantics of the DLP𝑇 language is given through a suitable Explode algorithm,
which rewrites a DLP𝑇 program 𝑃 into an ordinary disjunctive logic program 𝑃′, by
iteratively applying the unfold operation to 𝑃: append to 𝑃 the rewritten code 𝑃𝑠 for
each template signature 𝑠 in 𝑃, and replace other template atoms 𝑎 having signature 𝑠
by suitable atoms 𝑎𝑠. The resulting program 𝑃′ can be evaluated by DLV and answer
sets of 𝑃 can be extracted from those of 𝑃′ by looking into atoms belonging to the
Herbrand base of 𝑃 only.

The Explode algorithm only terminates if the dependency graph encoding depen-
dencies between template atoms and template definition is acyclic. Determining this
property can be done in polynomial time. Furthermore, 𝑃′ is polynomially larger than
𝑃, hence DLP𝑇 keeps the same expressive power as DLP , which guarantees that DLP𝑇
program encodings are as efficient as plain DLP encodings.

Comparing the macro/ensemble (Baral et al., 2006) approach to the template ap-
proach (Calimeri and Ianni, 2006; Ianni et al., 2003), we can notice that both exploit the
idea of wrapping a piece of reusable logic programming rules into a unit which can be
referred to in another place. While macro calls to modules are separated to the rules
in the programs, template predicates appear in the bodies of the rules. Both serve at a
schematic level, i.e., arguments in their definitions can be replaced by actual predicates
and terms in each call. For the semantics, both approaches provided translations to or-
dinary ASP encoding under the same condition that the calling relationship in their
settings must be acyclic. The macro call technique by Baral et al. (2006) went one step
further and provided the notion of ensembles for grouping similar modules together
and allowing inheritance of modules.

Modular ASP Programs A different approach is used by Tari et al. (2005). Here,
the modules allow to import answer sets from other modules to compute the over-
all solution using different types of reasoning modes resembling cautious and brave
reasoning, and an ordering reasoning mode. However, this approach considers only
modular ASP programs with acyclic dependency graph.

RSig Another system called RSig (Balduccini, 2007) allows to specify modules and
provides an information hiding mechanism. Instead of substantial redesigning of an
ASP language, RSig aims at extending A-Prolog, in particular the lparse syntax, to
fulfill two requirements: modules exchange information with a global state via im-
port/export declarations, signature declarations of predicates, and function symbols.
Logic programs in RSig can be composed of regular rules at a global level, regular di-
rectives, signature declarations, and module definitions. Each module has a unique
name and should consist of #import , #export directives, and regular rules. Predicate

254

10.2. Modularity by Language Constructs

and function symbols in a module are local by default. If they appear in an #import
or #export directive then they are global; in this case, their truth values must coincide
with the ones with the same name in the global rules.

The semantics of RSig programs is given by a mapping of them to the language of
lparse in two steps: eliminating module definitions, and introducing explicit typing
for arguments of functions and predicates with signature declarations. The former
is of our interest. It is done based on module-elimination of function and predicate
symbols in eachmodule, by adding to the local ones the module name as a prefix, while
keeping the global ones as they were. Module-elimination for rules is straightforward
as replacing, in each rule, its components (function and predicate symbols) by the
module-eliminated ones; and the whole module is replaced by the set of its module-
eliminated rules. After this step, we get a mixed program where local symbols from
module definitions are distinguished from global ones by the prefixes. After adding
explicit typing predicates for the signature declarations, the result is a usual lparse
program and can be evaluated to give the global answer sets of the program (if any).

Nested hex-Programs Eiter et al. (2013) use external atoms to access the answer
sets of a subprogram. There are three basic external atoms:

• &callhexfile[prog](𝑃), which takes subprogram prog as input filename and as-
signs it a handle 𝑃;

• &answersets[𝑃](𝐴), which takes a subprogram handle 𝑃 and returns a sequence
counter 𝐴, one for each answer set of 𝑃; and

• &arguments[𝑃, 𝐴, 𝑄](𝐼, 𝑁, 𝑉), which takes a subprogram handle 𝑃, an answer
set counter 𝐴, and a predicate name 𝑄 as input and receives a literal identifier 𝐼,
predicate argument position 𝑁, and the constant value 𝑉 at the 𝑁th position of
𝑄(𝑡1, … , 𝑡𝑘).

Take, as an example, the following hex-program consisting of three rules that have
access to subprogram paths, which stores in node all the nodes of fixed graph 𝐺,
while path keeps all paths of 𝐺.

ℎ(𝑃,𝐴) ← &callhexfile[paths](𝑃), &answersets[𝑃](𝐴)
v(𝑋) ← ℎ(𝑃,𝐴), &arguments[𝑃, 𝐴, node](𝐼, 0, 𝑋)

t(𝑋, 𝑌) ← ℎ(𝑃,𝐴), &arguments[𝑃, 𝐴, path](𝐼, 0, 𝑋), &arguments[𝑃, 𝐴, path](𝐼, 1, 𝑌)

The first rule imports pairs ℎ(𝑃,𝐴), which uniquely identify each answer set of pro-
gram paths. The second rule retrieves, based an answer set 𝐴 of 𝑃, the extension of

255

Chapter 10. Related Work

node in 𝐴 as v . Similarly, the third rule takes all paths path(𝑋, 𝑌) from 𝐴 and assign
them to t .

This approach only allows for nested programs without module recursion, as this
would quickly lead to an infinite chain of external function calls. In order to support
module input, nested hex uses external atoms of the form

&simulator𝑛,𝑚[prog, 𝑝1, … , 𝑝𝑛](𝑋1, … , 𝑋𝑚) ,

which calls stratified subprograms prog with additional facts in𝑖(𝑎1, … , 𝑎𝑘𝑖) as input
for each atom 𝑝𝑖(𝑎1, … , 𝑎𝑘𝑖) to be true in an answer set of the calling program, while
the result of this called external atom stems from atoms out(𝑎1, … , 𝑎𝑚) that can be
derived in the unique answer set of prog.

10.3 Modules as Splitting Sets and Related
Techniques

Alternative to the approaches mentioned in §10.1 are the techniques mentioned in this
section, which focus on syntactic notions of modularity.

Splitting Sets and Modularity Properties For nonmonotonic logic programs, Lif-
schitz and Turner (1994) defined splitting sets as a means to partition a program into (a
chain of) independent subprograms such that they can be evaluated in an ordered way.
In the context of disjunctive Datalog, Eiter et al. (1994, 1997a) independently defined
modularity properties for disjunctive programs under stable model semantics, which
are equivalent to the splitting set technique. Both generalize stratified programs pio-
neered by Apt et al. (1988), upon which the results in §4.3 build upon. A splitting set 𝑈
is a subset of the Herbrand base such that for all rules 𝑟 of a program 𝑃, if the head
of 𝑟 contains literals in 𝑈 then the literals of 𝑟 must be contained in 𝑈. Such 𝑈 then
intuitively divides a logic program 𝑃 into two parts: the bottom 𝑏𝑈(𝑃) containing all
rules from 𝑃 whose literals are contained in 𝑈, and the top 𝑃 ⧵ 𝑏𝑈(𝑃). The Splitting
Set Theorem allows one to compute the answer sets of a given program 𝑃 using the top
and bottom parts independently, i.e., by evaluating the top part for each answer set of
the bottom part. In the Datalog setting, Eiter et al. (1997a) define that 𝜋1 is independent
to 𝜋2 (denoted 𝜋2 ⊳ 𝜋1), where 𝜋1 and 𝜋2 are two programs, whenever all predicates
of the heads of the rules in 𝜋2 do no occur in any rule of 𝜋1. Then, equivalently to
the splitting set theorem, Eiter et al. (1997a, Lemma 5.1) allows to obtain the answer
sets of the combined program 𝜋 = 𝜋1 ∪ 𝜋2 incrementally by adding, for each answer
set 𝑀 of 𝜋1, the set 𝑀 as facts to 𝜋2 and by computing the answer sets of program
𝜋2 ∪ 𝑀. Dao-Tran et al. (2009b) extended the notion of splitting sets to MLPs, which
splits module instantiations with respect to module calls. Here, splitting sets are used

256

10.3. Modules as Splitting Sets and Related Techniques

to get a sequence of module instantiation such that we can compute the answer sets
of an MLP hierarchically. Chapter 8 discusses the results and provides examples.

Vennekens et al. (2006) use the framework of approximation fixpoint theory to
characterize stratification and splitting of fixed point operators similar to the 𝑇𝑃 op-
erator for ordinary Horn programs 𝑃 (Emden and Kowalski, 1976; Lloyd, 1987). Our
fixed-point characterization of MLPs defined in §4.2 may use the results by Vennekens
et al. (2006) to obtain a splitting for operator 𝑇P for MLPs P.

Ji et al. (2015) define strong splitting as an extension to splitting sets, allowing to
use non-trivial strong splitting sets to split a disjunctive logic program, where standard
splitting sets would only allow to use trivial sets to split a program (i.e., the empty set
and the Herbrand base). This technique comes at the cost of introducing new atoms to
the program, but experimental results suggest that this technique may be valuable to
efficiently evaluate a logic program by strong splitting.

Generalizations of the splitting sets technique for semantics related to the stable
model semantics are investigated by Eiter et al. (1997c) for partial stable models, which
approximate total stable models, and by Amendola et al. (2016) for semi-equilibrium
semantics, a paracoherent semantics for answer set programs. Both approaches ex-
plore the modularity properties in their respective semantics, thus paving the way for
modularity in alternative stable model semantics. As to be discussed in Chapter 11,
semi-equilibrium semantics could prove to be useful to define a less strict semantics in
the context of MLPs in non-relevant module instantiations.

Magic Sets, Independent Sets, and Modules In the context of data integration,
Faber et al. (2007) developed an optimization technique based onmagic sets (Bancilhon
et al., 1986) for query answering over Datalog programs with unstratified negation. To
this end, Faber et al. (2007) defined dangerous predicates that occur in an odd cycle in
the dependency graph of a Datalog program or in the body of a rule with dangerous
head. Rules that contain dangerous predicates are also called dangerous, and based on
dangerous rules, they defined independent sets, which induce modules, i.e., subsets of
the given program. Then, based on a module, one can partition a Datalog program 𝑃
into a module-part 𝑇 and the program-part without 𝑇, i.e., 𝑃 ⧵ 𝑇, and whenever 𝑃 is
consistent, then the stable models of 𝑇 are in one-to-one correspondence to the stable
models of 𝑃 restricted to the signature of𝑇. In general, each stablemodel of 𝑃 restricted
to the signature of 𝑇 is a stable model of 𝑇. This property allows one to obtain that
answering a cautious or brave query 𝑄 on 𝑃 is equivalent to query answering 𝑄 on 𝑇,
whenever 𝑄 is defined by the rules of 𝑇 and 𝑃 is consistent. Since 𝑇 is usually smaller
than 𝑃, this should give a performance boost for query answering algorithms.

Symmetric Splitting and Module Theorem for the General Theory of Stable
Models Ferraris et al. (2009) build upon the idea of the Module Theorem and de-

257

Chapter 10. Related Work

fine symmetric splitting in the general theory of stable models, which gives a stable
model semantics for first-order theories based on the SMp[𝐹] stable model operator
defined by Ferraris et al. (2011). The Symmetric Splitting Theorem provides the solid
background to split a first-order theory 𝐹 ∧ 𝐺 (consisting of two sentences 𝐹 and 𝐺)
and obtain that SMpq[𝐹 ∧ 𝐺] is equivalent to SMp[𝐹] ∧ SMq[𝐺], whenever p and q
obey syntactic restrictions on the predicate dependency graph for 𝐹 and 𝐺.

Babb and Lee (2012) extend the symmetric splitting theorem and define suitable
joinability conditions for first-order modules to show aModuleTheorem for the general
theory of stable models akin to the Module Theorem for DLP-functions.

10.4 Equivalence Notions for Modular Logic
Programming

Several notions for checking equivalence of two programs or two modules have been
studied in the past, which relates to modular logic programming as a tool to check
whether two alternative modules behave in the same expected way. When two mod-
ules have shown to be equivalent, one module may be replaced by the other for, e.g.,
efficiency reasons or whether a supposedly innocent local change in a module has ill
consequences.

Janhunen and Oikarinen (2007) are concerned with checking visible equivalence of
two smodels logic programs 𝑃 and 𝑄 that agree on visible atoms, i.e., atoms that are
considered to be relevant to represent solutions, while hidden atoms are used for rep-
resenting auxiliary relations. Visible and hidden atoms are disjoint, and their union
determines the Herbrand base of 𝑃 or 𝑄. Given 𝑃 and 𝑄, 𝑃 is said to be visible equiv-
alent to 𝑄 if both have the same visible atoms and there is a bijective map 𝑓 that
translates every stable model𝑀 of 𝑃 to a stable model 𝑓(𝑀) of 𝑄 such that the visible
atoms contained in 𝑀 are equal to the visible atoms of 𝑓(𝑀). The task of verifying
visible equivalence of 𝑃 and 𝑄 is identical to checking unsatisfiability of the faithful
translations EQT(𝑃, 𝑄) and EQT(𝑄, 𝑃), which send 𝑃 and 𝑄 to appropriately prepared
smodels programs.

This approach has shown to be useful not only for ordinary logic programs, but
also in the context of the compositional ASP module approach (Janhunen et al., 2009b;
Oikarinen, 2008). Oikarinen and Janhunen (2009) study the problem of module equiv-
alence, i.e., given two smodels modules ℙ and ℚ, they are called modular equivalent
if they agree on their input atoms and ℙ and ℚ are visible equivalent (where the defi-
nition for visible equivalence is adapted from ordinary logic programs).

258

10.5. Distributed and Heterogeneous Knowledge Bases

10.5 Distributed and Heterogeneous Knowledge
Bases

Related to modularity is research on hybrid and distributed knowledge bases, i.e.,
knowledge bases that consists of multiple potentially different logical frameworks.
Here, instead of combining multiple subprograms to a coherent modular logic pro-
gram, one is concerned with putting together independent knowledge bases that may
not reside on the same machine, potentially using different logical frameworks.

MWeb Analyti et al. (2011) proposed amodular framework forweb rule bases (MWeb),
mainly concerning the support for hidden knowledge and the safe use of strong and
weak negation in the SemanticWeb. Such an MWebmodular rule base 𝒮 is a set of MWeb
rule bases. Each rule base 𝑠 ∈ 𝒮 can import knowledge for a predicate𝑝 from other rule
bases in 𝒮 that define 𝑝 and are willing to export this knowledge to 𝑠. Each predicate 𝑝
defined or imported by a rule base is associated with a reasoning mode (appearing in
increasing order), definite (weak negation is not accepted at all), open (only open-world
assumptions are accepted), closed (both closed-world and open-world assumptions are
accepted), or normal (weak negation is fully accepted). Moreover, a rule base can assign
to its predicates a scope, global, local, or internal. These scopes indicate, respectively,
that 𝑝 is either allowed to be redefined, allowed to be used but not redefined by, or
is invisible to other rule bases. The import-dependencies of the rule bases must be
acyclic.

Heterogeneous Nonmonotonic Multi-Context Systems The seminal paper by
Brewka and Eiter (2007) instantiated a line of research forHeterogeneous Nonmonotonic
Multi-Context Systems (MCS). Their approach is based on equilibrium semantics, which
allows to combine heterogeneous and independent knowledge bases (the contexts) into
amulti-context system using nonmonotonic bridge rules tomodel the information flow
in such an MCS. Dao-Tran (2014) and Dao-Tran et al. (2015) developed algorithms and
optimization techniques for the distributed evaluation of MCS knowledge bases, which
includes model streaming techniques for concurrent evaluation of MCS (Dao-Tran et
al., 2011). To this end, they defined partial equilibria at a certain context in an MCS that
can be used to incrementally build up the (global) equilibrium semantics of an MCS in
a distributed system setting. On the semantic level, Dao-Tran and Eiter (2017) extend
the equilibrium semantics for asynchronous continuous computations by introducing
window atoms that take a snapshots of input streams in a context (such as sensory
data) and operate on a closed interval of time points with associated sets of atoms.

Modular Model Expansion and Modular Systems Tasharrofi (2013), Tasharrofi
and Ternovska (2014), and Ternovska (2015) devise a modular framework based on

259

Chapter 10. Related Work

model expansion called modular model expansion, by viewing individual modules as
model expansion tasks and therefore are able to give a semantics to various hetero-
geneous logics using their modular framework. Based on model expansion tasks, the
modular system combines individual modules by suitable operators such as projection,
composition, union, and feedback, to form a newly integrated knowledge base from
individual constituents.

Abstract Modular Inference Systems Lierler and Truszczyński (2016) define a
framework for abstract modular inference systems (AMS) that can model multi-logics
system comprising logics with different semantics by abstracting their model gener-
ation algorithms into transition graphs pioneered by Nieuwenhuis et al. (2006). AMS
are capable of expressing modular logic programs by Lierler and Truszczyński (2013),
an approach to modularity that generalizes lp-modules by Oikarinen and Janhunen
(2009).

Discussion The main difference of MLPs to the heterogeneous formalisms shown
here is that MLPs only allow to modularize knowledge expressed with nonmonotonic
disjunctive logic programs, whereas the latter allow to interlink a variety of logi-
cal knowledge bases, possibly with diverse semantics, into a combined and coherent
knowledge base. The main distinction here is that MLPs enable the exchange of rela-
tions, i.e., we may supply an MLP module with relational input computed by a module.

260

11

Conclusion

C
oncluding the work, we have studied modular nonmonotonic logic pro-
grams (MLPs), a new approach to modular answer set programs under a
call by value mechanism. We have defined a model theoretic semantics
and studied its semantic properties. One of the outcomes is that MLPs al-

low to express the Even property using monadic relations, and we have shown that
this is not possible with ordinary answer set programs by expressing answer set exis-
tence of Answer Set Programs with unary relations in Monadic Second Order Logic.
We have defined syntactic fragments of MLPs that admit a unique model, namely Horn
MLPs and stratified MLPs, and showed how to compute their answer sets through (it-
erated) fixed-point computation using appropriate consequence operators. We have
investigated the computational costs for various classes of MLPs and provide com-
pleteness results for the computational complexity of deciding whether a ground atom
is contained in the least-fixpoint of a Horn MLP as well as answer set existence for
propositional and nonground MLPs for various classes of MLPs.

Towards translating MLPs with module input into equivalent MLPs without in-
put we have explored rewriting techniques to reformulate MLPs into programs with
simpler structure. Horn MLPs without input may be pruned module-by-module and
turned into ordinary logic programs with macro rewriting techniques, and using this
method paves theway to translate Datalog-rewritable Description Logic Programs into
MLPs iteratively. We have discussed the essential ideas for relevance-driven evalua-
tion of MLPs and provide experimental results for an MLP benchmark scenario based
on the macro rewriting techniques applied to Datalog-rewritable Description Logic
Programs.

Then, we have characterized the answer sets of MLPs in terms of classical models
and developed propositional logic encodings using loop formulas for ground normal
MLPs, and we have formulated first-order logic encodings over finite structures for
nonground normal MLPs using ordered completion. For this purpose we have ex-
pressed the MLP semantics as second-order logic sentences over finite structures. Fur-

261

Chapter 11. Conclusion

thermore, we have analyzed the relationship between MLPs and DLP-functions using
two translations, one for rewriting a sequence of DLP-functions into an equivalent
MLP without input, and one for rewriting an MLP without input into a sequence of
DLP-functions, provided that syntactic restrictions on the MLP are in order similar to
the ones for standard DLP-functions.

Next, we summarize the findings of this thesis inmore detail in §11.1, report outlook
and open issues and further research directions in §11.2.

11.1 Summary
The framework we have defined for writing modular logic programs is based on dis-
junctive logic programs that consist of modules of the form (𝑃[q], 𝑅), whose module
name 𝑃 has a list of input predicates q = 𝑞1, … , 𝑞𝑘 and an associated set of disjunctive
rules 𝑅, as a way to structure logic programs. Modules admit input q as facts provided
by other modules, which in spirit resembles a call by value regimen traditionally found
in imperative programming. One module may access the truth value of atoms defined
by another module by using module atoms 𝛼 of the form P[𝑝1, … , 𝑝𝑘].𝑜(𝑐1, … , 𝑐𝑛) in
the rule bodies, with the intuitive meaning that 𝛼 is true whenever 𝑜(𝑐1, … , 𝑐𝑛) is true
in an instantiation of the module 𝑃 identified by value call 𝑃[𝑆] given the extension
𝑆 of predicates 𝑝1, … , 𝑝𝑘 from the calling module as facts. In essence, this allows that
one module may call other modules and additionally provide input. The rules given
in modules have no essential restriction and modules may recursively call each other
with additional input.

In the following, we will emphasize the results of this thesis in more detail.

11.1.1 Model Theoretic Semantics and Semantic Properties of
MLPs

We have defined a model theoretic semantics for a system 𝑃1[q1], … , 𝑃𝑛[q𝑛] of pro-
gram modules consisting of at least one main module 𝑃𝑖 without input (i.e., q𝑖 is void),
and library modules that may have input (i.e., q𝑖 can be void). The semantics assigns an
answer set to each main module and module instance that is called by the program un-
der a call by value mechanism (Eiter et al., 1997b). The answer set must be reproducible
from the rules along its recursive computation.

The declarative semantics for MLPs provides a solution for the situation where
modules may introduce cyclic input, i.e., where modules are allowed to call each other
recursively. The framework uses module instantiations in form of a call graph to ab-
stract from the computational view of module calls. Such call graphs are in the spirit
of Kripke-style semantics, where we use value calls as input instead of Kripke worlds,
and the call graph of an MLP can be thought as the accessibility relation in a Kripke

262

11.1.2. Computational Complexity of MLPs

frame, which is defined by the MLP. The semantics can be contextualized, i.e., we de-
fined a context-based reduct andMLP answer sets based on the FLP-reduct (Faber et al.,
2011) relative to a set of value calls (the context).

We have studied the semantic properties of MLP semantics showed that many of
the desired properties of ordinary logic programs generalize to MLPs: the answer sets
of a positive MLP are minimal models, Horn MLPs have a least model computable by
least fixpoint iteration, and stratified MLPs have a canonical model that coincides on
relevant instances.

11.1.2 Computational Complexity of MLPs
We have characterized the computational complexity of the new formalism using al-
ternating Turing machine simulations and domino tiling problems. The results are
classified along various syntactic restrictions on the form of MLPs. Deciding whether
a modular nonmonotonic logic program has an answer set has the same complexity
as for ordinary answer set programs (the propositional case is complete for Σ𝑝2 and
the nonground case is complete for NEXPNP), provided that the modules have no in-
put. MLPs with unrestricted input have computational costs that are exponentially
higher: NEXPNP-complete for propositional MLPs and 2NEXPNP-complete for non-
ground MLPs. Modular logic programs by Eiter et al. (1997b) have EXPSPACE com-
plexity, which is believed to be strictly contained in 2NEXPNP, thus MLPs are more
expressive than Modular Logic Programs as GQLPs. Analog to the unrestricted case,
deciding whether an atom is contained in the least model of a Horn MLP without
input has the same complexity as an ordinary Horn logic program (P-complete for
propositional MLPs and EXP-complete for nonground MLPs, respectively). With un-
constrained input, we have obtained tight bounds for propositional Horn MLPs (EXP-
complete) and Horn MLPs in the Datalog setting (2EXP-complete). If module input of
an MLP is bounded by a constant, then the computational complexity is unchanged
compared to ordinary ASP and to MLPs whose input is void. We have defined acyclic
MLPs as propositional normal MLPs whose call graph does not contain cycles and
found that deciding whether acyclic MLPs have an answer set is a NEXP-complete
problem, just like propositional normal MLPs.

In essence, whenever we have MLPs with bounded predicate input or disallow
module input, we obtain the same computational costs as ordinaryASP. Unconstrained
module input shifts the complexity by one level from the weak exponential hierarchy
to the weak double exponential hierarchy in case of nonground MLPs, and from the
polynomial hierarchy to the weak exponential hierarchy for propositional MLPs; this
holds even for the case of acyclic propositional MLPs. The problem whether a propo-
sitional acyclic or a propositional normal MLP has an answer set is one the first level
of the exponential hierarchy, whereas answer set existence for unrestricted proposi-
tional MLPs is on the second level, which is believed to contain harder computational

263

Chapter 11. Conclusion

problems. The same is true for nonground MLPs, just one exponential higher on the
double exponential hierarchy.

11.1.3 Rewriting MLPs to Datalog
We have developed two rewriting techniques for translating MLPs with module input
into programs of simpler structure. Our results operate on MLPs in a certain canonical
form, i.e., MLPs having at most one module input predicate and only one module with
empty input, which by definition will be the main module. The first restriction can
be accomplished by module reification, and the second one by introducing a fresh
main module that collects empty input modules. Every MLP can be rewritten into
its canonical form without much overhead, i.e., at most linear fresh rules need to be
introduced for the reification, and the answer sets of the unrestricted MLP match one-
to-one to the answer sets of the canonical MLP.

The first Datalog rewriting technique, where we translate arbitrary MLPs to ones
without module input, aims at transforming MLPs into logic programs without mod-
ules at all. To this end, we have studied instance rewriting as a first step that creates
copies of modules with input to modules without input by introducing fresh predicate
arguments as a means to keep track of module input. The result will be a larger MLP
with a shadow copy that preserves the call structure of the original part. Then, the
next step introduces call rewriting to separate the cloned part from the original part
such that the original modules will not be called anymore and can be readily removed.
The final step will apply module removal of connected closed call sets, i.e., the origi-
nal part will be removed, and what is left is an MLP without input. We have shown
that the answer sets of the instance rewriting and the call rewriting are in one-to-one
correspondence, and once we have taken off the shadow part introduced by instance
rewriting by using module removal, we have a correspondence to the original MLP.
This approach is costly in general and may generate exponentially larger programs, as
we need to blow up the arity of the predicates in a program.

11.1.4 Macro Expansion for MLPs
The second approach to rewriting MLPs is called macro rewriting and it converts a re-
stricted syntactic class of MLPs into MLPs of simpler structure, i.e., Horn MLPs whose
call chain is acyclic. The purpose of macro rewriting is to avoid the exponential blow-
up introduced by instance rewriting and convert a given MLP into one without mod-
ules. Macro rewriting works step by step along the module connection graph by copy-
ing the rules of a module callee into the module caller. Once all modules have been
copied, we may apply module pruning and remove unneeded modules from the MLP.
This technique works incrementally, i.e., we may rewrite only those parts of an MLP
that are Horn and acyclic, or rewrite just a subset of the modules.

264

11.1.5. Modular Loop Formulas

Based on macro rewriting, we have developed an application for MLPs: Datalog-
rewritable Description Logic Programs (dl-programs), a hybrid knowledge representa-
tion formalism that combines description logics with logic programs. We have shown
how to encode dl-programs over a Datalog-rewritable Description Logic as an MLP.
Since the outcome is an acyclic HornMLP for the modules that implement the Descrip-
tion Logic part, we may apply macro rewriting and simplify the structure. Eventually,
we may use an off-the-shelf Datalog reasoner for evaluating the result.

Using the TD-MLP reasoner (Wijaya, 2011) we have created a dl-program bench-
mark based on LUBM (Guo et al., 2005) and compared our encoding for dl-programs
into MLPs with the DReW rewriting scheme (Xiao et al., 2013). The outcome showed
that DReW is superior to the MLP encoding with modules, but increasing the number
of dl-atoms decreases the competitive edge of DReW.The results suggest to further the
work on MLP implementations and optimize them for practical use.

11.1.5 Modular Loop Formulas
We have characterized the answer set semantics of normal MLPs by the classical mod-
els of propositional theories, i.e., by using loop formulas (Lin and Zhao, 2004) and pro-
gram completion (Clark, 1978) for normal ground MLPs. We have shown how to trans-
late a normal MLP with module input into a formula in classical propositional logic
by recasting Clark’s program completion for module atoms and MLP’s module input
mechanism. To address dependencies of module boundaries, we have defined themod-
ular dependency graph, which is a positive dependency graph for MLPs that captures
the dependencies between the rules within a particular module, and the (uninstanti-
ated) coarse dependencies between the modules of an MLP. Using the notion of cyclic
instantiation signatures, we can instantiate the dependencies of the modular depen-
dency graph and based on them we devise themodular loops of an MLP for generating
modular loop formulas, which lie at the heart of the characterization.

The size of the loop formula encoding for an MLP is double exponentially larger in
general. There are two sources of additional complexity that need to be handled: one
is the intrinsic complexity of the answer set semantics for ordinary logic programs (in
general, one needs to administer exponentially many loop formulas), and the other
is the MLP input mechanism, which requires to address exponentially many module
instantiations.

11.1.6 Ordered Modular Completion
In order to shape the answer sets of nonground normal MLPs using classical first-order
formulas, we further the work on ordered completion and investigate the approach
of Asuncion et al. (2012) to the MLP setting. To this end, we have defined finite re-
lational structures for MLPs, which in the MLP Datalog setting provide the means to

265

Chapter 11. Conclusion

ground the rules. To prove our results, we have defined a translational semantics for
MLP using second order logic and showed that the second order sentence captures
the models of MLPs. The ordered completion formula makes use of ordered modular
derivation, which plays the role of forcing a derivation order on the ground atoms in a
model of anMLP. The ordered completion for MLPs is essentially the conjunction of an
adapted ordered program completion and ordered transitive derivation. Using the re-
sult of the translational semantics and derivation orders, we have shown that ordered
completion captures the answer sets of MLPs.

11.1.7 Relationship between DLP-Functions and MLPs

Wehave analyzed the interrelationship betweenMLPs andDLP-functions (Janhunen et
al., 2009b), a formalism that proved to be appealing for modular ASP. As one result, we
have shown that DLP-functions can be straightly embedded into an MLP with empty
input list. The second result shows that the fragment of mutually independent MLPs
can be converted into a sequence of DLP-functions. Hence, we can view MLPs as a
generalization of DLP-functions, as MLPs permit positive loops over modules, possibly
under a call by value scheme.

11.2 Open Issues and Further Research Directions
While we have presented here the basic approach for modular nonmonotonic logic
programming with a call by value semantics, several issues remain open as prospective
research questions and directions. In this section, we will outline them and provide
further pointers we deem advisable as attractive topics of research in the context of
modularity in logic programming.

11.2.1 Formal Semantics

An interesting issue is to further analyze contexts and, e.g., to determine conditions
for contexts that are fully stable, which desirably should be small. Some (less effective)
conditions may be determined by syntactic analysis. To keep the semantics simple,
MLPs use minimal models as an approximation of answer sets in module instances that
are outside of a context (i.e., a scope), in which stability of models is strictly required.
This context contains always at least the module instances along the call graph of the
program and optionally further instances to increase in a sense the degree of stability.
The smaller the context, the more permissive is the semantics. An alternative to using
minimal models for ensuring consistency would, e.g., be to use paracoherent answer
set semantics (Amendola et al., 2016; Sakama and Inoue, 1995); however the latter has

266

11.2.2. Extensions and Fragments of MLPs

higher computational complexity than ordinary answer set semantics. On the seman-
tic side, we can imagine alternative ways of tolerating violations of stability outside
the context. This could be done, e.g., by using partial FLP-reducts (where not all rules
with false bodies are dropped, leading to a superset of the answer sets), or by genuine
approximations. Variants of stratification and splitting sets would also be interesting.
Another line of research is to improve the understanding of MLP semantics and give
it a logical foundation using (generalized) equilibrium logic (Pearce, 1997) and apply-
ing results on FLP-semantics (Truszczyński, 2010). Furthermore, one may relax the
restriction to minimal models in nonrelevant instantiations and use semi-equilibrium
models (Amendola et al., 2016) in the context of MLPs instead.

11.2.2 Extensions and Fragments of MLPs
Another issue is extensions of MLP to richer classes of programs, including constructs
like strong negation, constraints, external functions, etc. Going into a different direc-
tion, research on further useful fragments of MLPs and characterize their computa-
tional complexity in order to find MLPs whose complexity is lower than the standard
semantics is worthwhile. On the computational side, a detailed complexity study of
MLPs that considers various fragments is of interest, where in particular the interplay
of major classes of ordinary logic programs with dependency information through
module calls deserves attention; various notions similar to the ones mentioned by Eiter
et al. (1997b) might be considered here. Furthermore, efficient methods and algorithms
to compute answer sets of MLPs remain to be developed, as well as implementations.

The approach by Moura (2016) shows how to modify the framework of modular
smodels programs (Oikarinen and Janhunen, 2008) such that positive recursion over
modules is possible. Based upon the work in Chapter 9, one may find ways to extend
this approach to disjunctive logic programs similar to DLP-functions. The resulting
approach will be less expressive than general MLPs defined here, as DLP-functions
and their cyclic companions do not admit input values.

11.2.3 Implementation
Algorithms that efficiently implement the semantics of MLPs are required to animate
Modular Nonmonotonic Logic Programming and help answer set programmers build
modular programs. The work by Dao-Tran et al. (2009b) was an early attempt towards
a practical implementation for MLP, and Wijaya (2011) provided the first implemen-
tation. There are several further aspects that may be considered for implementation
strategies.

Based onmodular loop formulas and orderedmodular completion onemay develop
new algorithms that interweave methods for conflict-driven model building (see Geb-
ser et al., 2012; Marques Silva et al., 2009, for background) and module instantiation.

267

Chapter 11. Conclusion

Related to this is to investigate first-order theorem proving techniques (Robinson and
Voronkov, 2001) in the context of MLPs.

In direction of divide and conquer algorithms, Ferraris et al. (2009) present Sym-
metric Splitting as a generalization of the Module Theorem (Janhunen et al., 2009b;
Oikarinen and Janhunen, 2008) allowing to decompose also nonground programs like
MLPs do. This technique is only applicable to programs without positive cycles in the
dependency graph. Studying the relationship between Symmetric Splitting and our
notions of stratification is an interesting subject for future work.

Several further issues remain open, including extensions and refinements of the
stratification approach (Dao-Tran et al., 2009b). The relevance-driven evaluation ap-
proach there has focused on decreasing inputs in terms of set inclusion, thus the ex-
tension of the method to other partial orderings of inputs having bounded decreasing
chains is suggestive.

11.2.4 Loop Formulas and Ordered Completion
As for future work, refinement of the results and exploitation of the results for answer
sets computation using SAT and QBF solvers, as well as theorem provers remains to
be investigated; here, fragments of MLPs that allow for reasonable encodings might be
considered, and the suitability of higher-order theorem provers evaluated.

For this thesis, we have fixed the context 𝐶 in the context-based FLP-reduct to the
set VC(P) of all value calls, which thus can be omitted. Intuitively, a given context 𝐶
may be incorporated by ensuring that loop formulas are built only for relevant instan-
tiation signatures (𝒮1, … , 𝒮𝑛); for modular loops, which are those that contain some
value call 𝒮𝑖 inside 𝐶; furthermore, either none or all value calls 𝒮𝑖 must be in 𝐶. Rel-
ative to an interpretation M, the minimal context 𝐶 = 𝑉(CGP(M)) may be defined
using suitable formulas. The technical elaboration of these ideas is beyond this thesis.

Unfounded sets for logic programs with arbitrary aggregates have been defined
by Faber (2005). Given that for ordinary logic programs unfounded sets are a semantic
counterpart of loop formulas, this may inspire a similar notion of unfounded set for
MLPs and help developing a syntactic counterpart in terms of loop formulas. The work
by Lee andMeng (2009) and Truszczyński (2010), which inspect the FLP-semantics on a
more principled level, may also be useful in this respect. Different from answer seman-
tics under the GL-reduct, not only positive atoms need to be considered for derivability,
but also negated nonmonotonic module atoms.

A further issue are encodings for disjunctive MLPs, i.e., MLPs where the head of a
rule may be a disjunction 𝛼1∨⋯∨𝛼𝑘 of atoms. Loop formulas have been developed for
ordinary disjunctive logic programs (Lee and Lifschitz, 2003), and for general propo-
sitional theories under Answer Set Semantics (Ferraris et al., 2006). There is no prin-
cipal obstacle to extend the loop formula encoding of this thesis to disjunctive MLPs.
In contrast, ordered completion formulas for disjunctive MLPs and already ordinary

268

11.2.5. Modular Patterns for Logic Programming

LPs needs further work; they may require a blowup given that ordinary disjunctive
Datalog programs have NEXPNP complexity. Janhunen (2004) provides an alternative
to loop formulas, which is an encoding to propositional formulas whose size remains
in the order of 𝑛 log2𝑚 in the length 𝑛 of the logic program and the number of atoms
𝑚. This could be used to tackle the potentially exponential number of loop formulas.

Finally, relationships to other semantics of logic programming is an interesting is-
sue. X. Chen et al. (2013) showed that loops with at most one external support rule in
the program have a close connection to (disjunctive) well-founded semantics. Study-
ing MLPs under similar restrictions could provide similar results, yet well-founded
semantics for MLPs remains to be formalized.

The work of Asuncion et al. (2015, 2012) also present an interesting approach to
implement answer set semantics for normal logic programs using SMT solvers (Bar-
rett et al., 2009; Nieuwenhuis et al., 2006), which is based on reductions of answer
set programs to difference logic by Janhunen et al. (2009a) and Niemelä (2008). Here,
the derivation order predicates from the ordered completion mimic the level ranking
from Niemelä (2008), thus standard SMT solver are readily utilizable to compute the
answer sets of normal logic programs. Similar techniques can be used to implement
MLPs, although the ordered completion for MLPs have usually larger formulas. Re-
lated to the SMT approach is work on SAT modulo acyclicity (Gebser et al., 2014b),
which allows to implement answer set semantics using a translation shown by Gebser
et al. (2014a). Experimental evidence suggests that the translation into a SAT modulo
acyclicity problem gives a performance gain over the SMT translation. One down-
side of this translation is that the one-to-one correspondence between answer sets of
the logic program and the models of the SAT modulo acyclicity encoding may be lost.
Using dedicated algorithms that enumerate projections of satisfying assignment can
circumvent this issue.

11.2.5 Modular Patterns for Logic Programming
A different line of research that deserves attention is to establish a firm foundation
for practical programming techniques and design principles in spirit of software de-
sign pattern languages. Some recurring patterns have been described by Eiter et al.
(2009b), but no support for modularity patterns is shown there. An interesting aspect
that may provide useful insight is to bring Liskov Substitution Principle (Liskov and
Wing, 1994) closer to Logic Programming, which states replaceability conditions and
requirements for object-oriented programming. In the realm of Logic Programming
there is no hierarchy of types and classes, but the basic ideas live on in several equiv-
alence notions for answer set programming (see Eiter et al., 2007b; Woltran, 2008).
One consideration in this respect is to find simpler and potentially easier to evaluate
code fragments or modules that can be replaced on-the-fly. In the context of modular
logic programming, work by Janhunen and Oikarinen (2007), Oikarinen and Janhunen

269

Chapter 11. Conclusion

(2009), and Truszczyński and Woltran (2009) on equivalence notion in the context of
modular logic programming should be the starting point for further research.

270

Bibliography
Abiteboul, Serge, Richard Hull, and Victor Vianu (1995). Foundations of Databases.

Addison-Wesley (cit. on p. 70).
Abiteboul, Serge and Victor Vianu (1991). “Generic Computation and Its Complexity”.

In: Proceedings of the Twenty-third Annual ACM Symposium on Theory of Comput-
ing. STOC ’91. New Orleans, Louisiana, USA: ACM, pp. 209–219. isbn: 0-89791-
397-3. doi: 10.1145/103418.103444 (cit. on p. 23).

Adrian, Weronika T., Mario Alviano, Francesco Calimeri, Bernardo Cuteri, Carmine
Dodaro, Wolfgang Faber, Davide Fuscà, Nicola Leone, Marco Manna, Simona Perri,
Francesco Ricca, Pierfrancesco Veltri, and Jessica Zangari (2018). “The ASP System
DLV: Advancements and Applications”. In: Künstliche Intelligenz. First Online: 14
May 2018, p. 3. issn: 1610-1987. doi: 10.1007/s13218-018-0533-0 (cit. on p. 35).

Alexandrescu, Andrei (2001). Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley (cit. on p. 16).

Alviano, Mario, Francesco Calimeri, Carmine Dodaro, Davide Fuscà, Nicola Leone, Si-
mona Perri, Francesco Ricca, Pierfrancesco Veltri, and Jessica Zangari (2017). “The
ASP System DLV2”. In: Logic Programming and Nonmonotonic Reasoning - 14th
International Conference, LPNMR 2017, Espoo, Finland, July 3-6, 2017, Proceedings,
ed. by Marcello Balduccini et al. Vol. 10377. Lecture Notes in Computer Science.
Springer, pp. 215–221. isbn: 978-3-319-61659-9. doi: 10.1007/978-3-319-61660-
5_19 (cit. on p. 35).

Alviano, Mario, Carmine Dodaro, Nicola Leone, and Francesco Ricca (2015a). “Ad-
vances in WASP”. In: Logic Programming and Nonmonotonic Reasoning, ed. by
Francesco Calimeri et al. Cham: Springer International Publishing, pp. 40–54.
isbn: 978-3-319-23264-5. doi: 10.1007/978-3-319-23264-5_5 (cit. on p. 35).

Alviano, Mario, Wolfgang Faber, and Martin Gebser (2015b). “Rewriting recursive ag-
gregates in answer set programming: back tomonotonicity”. In:Theory and Practice
of Logic Programming 15.4–5, pp. 559–573. doi: 10.1017/S1471068415000228 (cit.
on p. 216).

Amendola, Giovanni,Thomas Eiter, Michael Fink, Nicola Leone, and JoãoMoura (2016).
“Semi-equilibrium models for paracoherent answer set programs”. In: Artificial
Intelligence 234, pp. 219–271. issn: 0004-3702. doi: 10.1016/j.artint.2016.01.
011 (cit. on pp. 29, 257, 266 sq.).

271

https://doi.org/10.1145/103418.103444
https://doi.org/10.1007/s13218-018-0533-0
https://doi.org/10.1007/978-3-319-61660-5_19
https://doi.org/10.1007/978-3-319-61660-5_19
https://doi.org/10.1007/978-3-319-23264-5_5
https://doi.org/10.1017/S1471068415000228
https://doi.org/10.1016/j.artint.2016.01.011
https://doi.org/10.1016/j.artint.2016.01.011

Bibliography

Analyti, Anastasia, Grigoris Antoniou, and Carlos Viegas Damásio (Jan. 2011). “MWeb:
a Principled Framework for Modular Web Rule Bases and its Semantics”. In: ACM
Transactions on Computational Logic 12.2, 17:1–17:46. doi: 10 . 1145 / 1877714 .
1877723 (cit. on pp. 20, 259).

Apt, Krzysztof R. (1990). “Logic Programming”. In: Formal Models and Semantics, ed. by
Jan van Leeuwen. Handbook of Theoretical Computer Science. Elsevier, pp. 493–
574. isbn: 978-0-444-88074-1. doi: 10.1016/B978-0-444-88074-1.50015-9 (cit. on
p. 12).

Apt, Krzysztof R., Howard A. Blair, and Adrian Walker (1988). “Towards a Theory
of Declarative Knowledge”. In: Foundations of Deductive Databases and Logic Pro-
gramming, ed. by J. Minker. Washington DC: Morgan Kaufman, pp. 89–148. doi:
10.1016/B978-0-934613-40-8.50006-3 (cit. on pp. 19, 37, 73, 77, 190, 256).

Armstrong, Joe (2003). “Making reliable distributed systems in the presence of software
errors”. PhD thesis. The Royal Institute of Technology, Stockholm, Sweden. url:
http://erlang.org/download/armstrong_thesis_2003.pdf (cit. on p. 17).

— (2007). Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf
(cit. on p. 17).

Arni, Faiz, KayLiang Ong, Shalom Tsur, Haixun Wang, and Carlo Zaniolo (2003). “The
Deductive Database Systemℒ𝒟ℒ++”. In:Theory and Practice of Logic Programming
3.1, pp. 61–94. doi: 10.1017/S1471068402001515 (cit. on p. 19).

Asuncion, Vernon, Yin Chen, Yan Zhang, and Yi Zhou (2015). “Ordered completion
for logic programs with aggregates”. In: Artificial Intelligence 224.Supplement C,
pp. 72–102. issn: 0004-3702. doi: 10.1016/j.artint.2015.03.007 (cit. on pp. 216,
269).

Asuncion, Vernon, Fangzhen Lin, Yan Zhang, and Yi Zhou (2012). “Ordered completion
for first-order logic programs on finite structures”. In:Artificial Intelligence 177–179,
pp. 1–24. issn: 0004-3702. doi: 10.1016/j.artint.2011.11.001 (cit. on pp. 30,
33, 184, 199, 201, 204, 215 sq., 265, 269).

Babb, Joseph and Joohyung Lee (2012). “Module theorem for the general theory of
stable models”. In: Theory and Practice of Logic Programming 12.4–5, pp. 719–735.
doi: 10.1017/S1471068412000269 (cit. on p. 258).

Balduccini, Marcello (2007). “Modules and Signature Declarations for A-Prolog: Prog-
ress Report”. In: Proceedings of the 1st International Workshop on Software Engineer-
ing for Answer Set Programming (SEA’07). url: http://www.depts.ttu.edu/cs/
research/documents/61.pdf (cit. on p. 254).

Bancilhon, François, DavidMaier, Yehoshua Sagiv, and Jeffrey D. Ullman (1986). “Magic
Sets and Other Strange Ways to Implement Logic Programs (Extended Abstract)”.
In: Fifth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems. New
York, NY, USA: ACM, pp. 1–15. isbn: 0-89791-179-2. doi: 10.1145/6012.15399
(cit. on p. 257).

272

https://doi.org/10.1145/1877714.1877723
https://doi.org/10.1145/1877714.1877723
https://doi.org/10.1016/B978-0-444-88074-1.50015-9
https://doi.org/10.1016/B978-0-934613-40-8.50006-3
http://erlang.org/download/armstrong_thesis_2003.pdf
https://doi.org/10.1017/S1471068402001515
https://doi.org/10.1016/j.artint.2015.03.007
https://doi.org/10.1016/j.artint.2011.11.001
https://doi.org/10.1017/S1471068412000269
http://www.depts.ttu.edu/cs/research/documents/61.pdf
http://www.depts.ttu.edu/cs/research/documents/61.pdf
https://doi.org/10.1145/6012.15399

Bibliography

Baral, Chitta, Juraj Dzifcak, and Hiro Takahashi (2006). “Macros, Macro calls and Use
of Ensembles in Modular Answer Set Programming”. In: Proceedings of the 22th
International Conference on Logic Programming (ICLP 2006). LNCS 4079. Springer,
pp. 376–390. doi: 10.1007/11799573_28 (cit. on pp. 20, 253 sq.).

Barrett, Clark, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli (2009). “Sat-
isfiability Modulo Theories”. In: Handbook of Satisfiability: Frontiers in Artificial
Intelligence and Applications. Vol. 185. IOS Press, pp. 825–885. doi: 10.3233/978-
1-58603-929-5-825 (cit. on pp. 3, 269).

Bass, Len, Paul Clements, and Rick Kazman (2013). Software Architecture in Practice.
3rd. Addison-Wesley Professional (cit. on p. 10).

Bauters, Kim, Steven Schockaert, Dirk Vermeir, and Martine De Cock (2011). “Com-
municating ASP and the Polynomial Hierarchy”. In: 11th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR 2011), Vancouver, BC,
Canada, May 16-19, 2011, ed. by James Delgrande et al. Vol. 6645. LNCS. Springer,
pp. 67–79. doi: 10.1007/978-3-642-20895-9_8 (cit. on p. 20).

Ben-Eliyahu, Rachel and Rina Dechter (Mar. 1994). “Propositional Semantics for Dis-
junctive Logic Programs”. In: Annals of Mathematics and Artificial Intelligence 12
(1–2), pp. 53–87. issn: 1573-7470. doi: 10.1007/BF01530761. url: https://www.
ics.uci.edu/~dechter/publications/r25-prop-sem-disj-logic-prog.pdf
(cit. on p. 215).

Bienvenu, Meghyn, Balder ten Cate, Carsten Lutz, and FrankWolter (2013). “Ontology-
based Data Access: A Study Through Disjunctive Datalog, CSP, and MMSNP”. In:
Proceedings of the 32Nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems. PODS ’13. New York, New York, USA: ACM, pp. 213–224. isbn:
978-1-4503-2066-5. doi: 10.1145/2463664.2465223 (cit. on p. 175).

Biere, Armin, Marijn Heule, Hans van Maaren, and Toby Walsh (2009). Handbook of
Satisfiability: Frontiers in Artificial Intelligence and Applications. Vol. 185. IOS Press
(cit. on p. 3).

Blackburn, Patrick and Johan van Benthem (2007). “Modal Logic: A Semantic Per-
spective”. In: Handbook of Modal Logic, ed. by Patrick Blackburn et al. Vol. 3.
Studies in Logic and Practical Reasoning. Elsevier, pp. 1–84. doi: 10.1016/S1570-
2464(07)80004-8 (cit. on p. 53).

Blackburn, Patrick, Johan van Benthem, and Frank Wolter, eds. (2007). Handbook of
Modal Logic. Vol. 3. Studies in Logic and Practical Reasoning. Elsevier.

Blass, Andreas, Yuri Gurevich, and Dexter Kozen (Oct. 1986). “A zero-one law for logic
with a fixed-point operator”. In: Information and Control 67.1–3, pp. 70–90. issn:
0019-9958. doi: 10.1016/S0019-9958(85)80027-9 (cit. on p. 23).

Bogaerts, Bart, Tomi Janhunen, and Shahab Tasharrofi (Apr. 2016). “Declarative Solver
Development: Case Studies”. In: Principles of Knowledge Representation and Rea-
soning: Proceedings of the Fifteenth International Conference, KR 2016, Cape Town,

273

https://doi.org/10.1007/11799573_28
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1007/978-3-642-20895-9_8
https://doi.org/10.1007/BF01530761
https://www.ics.uci.edu/~dechter/publications/r25-prop-sem-disj-logic-prog.pdf
https://www.ics.uci.edu/~dechter/publications/r25-prop-sem-disj-logic-prog.pdf
https://doi.org/10.1145/2463664.2465223
https://doi.org/10.1016/S1570-2464(07)80004-8
https://doi.org/10.1016/S1570-2464(07)80004-8
https://doi.org/10.1016/S0019-9958(85)80027-9

Bibliography

South Africa, April 25-29, 2016, ed. by Chitta Baral et al. AAAI Press, pp. 74–83.
url: http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12822 (cit. on
p. 58).

Börger, Egon, Erich Grädel, and Yuri Gurevich (1997). The Classical Decision Problem.
Berlin Heidelberg: Springer (cit. on pp. 79, 81).

Brewer, Eric (Jan. 2012). “CAP Twelve Years Later: How the ”Rules” Have Changed”.
In: Computer 45, pp. 23–29. issn: 0018-9162. doi: 10.1109/MC.2012.37. url:
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-
have-changed/ (cit. on p. 10).

Brewka, Gerd and Thomas Eiter (July 2007). “Equilibria in Heterogeneous Nonmono-
tonicMulti-Context Systems”. In: Proceedings of the 22nd AAAI Conference on Artifi-
cial Intelligence (AAAI-2007), July 22–26, 2007, Vancouver, British Columbia, Canada.
AAAI Press, pp. 385–390. url: https://www.aaai.org/Papers/AAAI/2007/
AAAI07-060.pdf (cit. on pp. 10, 259).

Brewka, Gerd, Thomas Eiter, and Miroslaw Truszczyński (2011). “Answer Set Pro-
gramming at a Glance”. In: Communications of the ACM 54.12, pp. 92–103. doi:
10.1145/2043174.2043195 (cit. on p. 3).

— eds. (2016). AI Magazine: Special Issue on Answer Set Programming. Vol. 37. 3.
Editorial pp. 5–6. AAAI Press. doi: 10.1609/aimag.v37i3.2669 (cit. on p. 3).

Brogi, Antonio, Paolo Mancarella, Dino Pedreschi, and Franco Turini (1994). “Modular
logic programming”. In:ACM Transactions on Programming Languages and Systems
16.4, pp. 1361–1398. issn: 0164-0925. doi: 10.1145/183432.183528 (cit. on pp. 18,
20).

Buccafurri, Francesco and Gianluca Caminiti (2008). “Logic programming with social
features”. In: Theory and Practice of Logic Programming 8.5-6, pp. 643–690. doi:
10.1017/S1471068408003463 (cit. on p. 20).

Bugliesi, Michele, Evelina Lamma, and Paola Mello (1994). “Modularity in Logic Pro-
gramming”. In: Journal of Logic Programming 19–20 (Supplement 1), pp. 443–502.
doi: 10.1016/0743-1066(94)90032-9 (cit. on pp. 18, 20).

Cabeza, Daniel and Manuel Hermenegildo (2000). “The Ciao Module System: A New
Module System for Prolog”. In: Electronic Notes inTheoretical Computer Science 30.3,
pp. 122–142. issn: 1571-0661. doi: 10.1016/S1571-0661(05)80105-7 (cit. on p. 19).

Calimeri, Francesco, Davide Fuscà, Simona Perri, and Jessica Zangari (2017). “I-DLV:
The new intelligent grounder of DLV”. In: Intelligenza Artificiale 11.1, pp. 5–20. doi:
10.3233/IA-170104 (cit. on p. 36).

Calimeri, Francesco and Giovambattista Ianni (2006). “Template programs for Disjunc-
tive Logic Programming: An operational semantics”. In: AI Communications 19.3,
pp. 193–206. url: http://content.iospress.com/articles/ai-communications/
aic373 (cit. on pp. 20, 253 sq.).

274

http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12822
https://doi.org/10.1109/MC.2012.37
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed/
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed/
https://www.aaai.org/Papers/AAAI/2007/AAAI07-060.pdf
https://www.aaai.org/Papers/AAAI/2007/AAAI07-060.pdf
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1609/aimag.v37i3.2669
https://doi.org/10.1145/183432.183528
https://doi.org/10.1017/S1471068408003463
https://doi.org/10.1016/0743-1066(94)90032-9
https://doi.org/10.1016/S1571-0661(05)80105-7
https://doi.org/10.3233/IA-170104
http://content.iospress.com/articles/ai-communications/aic373
http://content.iospress.com/articles/ai-communications/aic373

Bibliography

Carlsson, Mats and Per Mildner (Jan. 2012). “SICStus Prolog—The first 25 years”.
In: Theory and Practice of Logic Programming 12.1-2, pp. 35–66. doi: 10.1017/
S1471068411000482 (cit. on p. 19).

Carlsson, Richard (2003). “Parameterizedmodules in Erlang”. In: 2ndACMSIGPLANEr-
lang Workshop 2003 (ERLANG’03), Uppsala, Sweden, 29 August, 2003. ACM, pp. 29–
35. doi: 10.1145/940880.940885 (cit. on p. 17).

Chandra, Ashok K. and David Harel (1982). “Structure and complexity of relational
queries”. In: Journal of Computer and System Sciences 25.1, pp. 99–128. issn: 0022-
0000. doi: 10.1016/0022-0000(82)90012-5 (cit. on p. 23).

Chandra, Ashok K., Dexter C. Kozen, and Larry J. Stockmeyer (1981). “Alternation”. In:
Journal of the ACM 28.1, pp. 114–133. issn: 0004-5411. doi: 10.1145/322234.322243
(cit. on pp. 81, 85, 104).

Chen, Xiaoping, Jianmin Ji, and Fangzhen Lin (Feb. 2013). “Computing Loops with at
Most One External Support Rule”. In: ACM Transactions on Computational Logic
14.1, 3:1–3:34. issn: 1529-3785. doi: 10.1145/2422085.2422088 (cit. on p. 269).

Chen, Yin, Fangzhen Lin, Yisong Wang, and Mingyi Zhang (2006). “First-Order Loop
Formulas for Normal Logic Programs”. In: Tenth International Conference on Prin-
ciples of Knowledge Representation and Reasoning 2006, pp. 298–307. url: http:
//www.aaai.org/Papers/KR/2006/KR06-032.pdf (cit. on p. 215).

Clark, Keith L. (1978). “Negation as Failure”. In: Logic and Data Bases, pp. 293–322
(cit. on pp. 30, 183, 185, 205, 265).

Dahl, Ole-Johan, Edsger W. Dijkstra, and C. A. R. Hoare, eds. (1972). Structured Pro-
gramming. Academic Press Ltd. (cit. on p. 11).

Damásio, Carlos Viegas and João Moura (2011). “Modularity of P-Log Programs”. In:
11th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR 2011), Vancouver, BC, Canada, May 16-19, 2011, ed. by James Delgrande et al.
Vol. 6645. LNCS. Springer, pp. 13–25. doi: 10.1007/978-3-642-20895-9_4 (cit. on
p. 20).

Dantsin, Evgeny, Thomas Eiter, Georg Gottlob, and Andrei Voronkov (2001). “Com-
plexity and Expressive Power of Logic Programming”. In: ACM Computing Surveys
33.3, pp. 374–425. doi: 10.1145/502807.502810 (cit. on pp. 81, 86–88).

Dao-Tran, Minh (Feb. 2014). “Distributed Nonmonotonic Multi-Context Systems: Al-
gorithms and Efficient Evaluation”. PhD thesis. Karlsplatz 13, 1040 Vienna, Aus-
tria: Vienna University of Technology. url: https://repositum.tuwien.ac.at/
download/pdf/1634355 (cit. on p. 259).

Dao-Tran, Minh and Thomas Eiter (2017). “Streaming Multi-Context Systems”. In: Pro-
ceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI-17, pp. 1000–1007. doi: 10.24963/ijcai.2017/139 (cit. on pp. 10, 259).

Dao-Tran, Minh, Thomas Eiter, Michael Fink, and Thomas Krennwallner (July 2009a).
“Modular Nonmonotonic Logic Programming Revisited”. In: 25th International Con-

275

https://doi.org/10.1017/S1471068411000482
https://doi.org/10.1017/S1471068411000482
https://doi.org/10.1145/940880.940885
https://doi.org/10.1016/0022-0000(82)90012-5
https://doi.org/10.1145/322234.322243
https://doi.org/10.1145/2422085.2422088
http://www.aaai.org/Papers/KR/2006/KR06-032.pdf
http://www.aaai.org/Papers/KR/2006/KR06-032.pdf
https://doi.org/10.1007/978-3-642-20895-9_4
https://doi.org/10.1145/502807.502810
https://repositum.tuwien.ac.at/download/pdf/1634355
https://repositum.tuwien.ac.at/download/pdf/1634355
https://doi.org/10.24963/ijcai.2017/139

Bibliography

ference on Logic Programming (ICLP 2009), Pasadena, California, USA, July 14–17,
2009, ed. by Patricia M. Hill et al. Vol. 5649. LNCS. Springer, pp. 145–159.
isbn: 978-3-642-02845-8. doi: 10.1007/978-3-642-02846-5_16. url: http:
//www.kr.tuwien.ac.at/staff/tkren/pub/2009/iclp2009-mlp.pdf (cit. on
p. 32).

Dao-Tran, Minh, Thomas Eiter, Michael Fink, and Thomas Krennwallner (Aug. 2009b).
“Relevance-driven Evaluation of Modular Nonmonotonic Logic Programs”. In: 10th
International Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR 2009), Potsdam, Germany, September 14-18, 2009, ed. by Esra Erdem et al.
Vol. 5753. LNCS. Potsdam, Germany: Springer, pp. 87–100. isbn: 978-3-642-04237-
9. doi: 10.1007/978-3-642-04238-6_10. url: http://www.kr.tuwien.ac.at/
staff/tkren/pub/2009/lpnmr2009-splitting.pdf (cit. on pp. 32 sq., 219, 222 sq.,
225, 256, 267 sq.).

— (2011). “First-Order Encodings of Modular Nonmonotonic Logic Programs”. In:
Datalog 2.0, ed. by Georg Gottlob. LNCS. Springer. url: http://www.kr.tuwien.
ac.at/staff/tkren/pub/2011/datalog20-fomlp.pdf (cit. on p. 33).

Dao-Tran, Minh,Thomas Eiter, Michael Fink, andThomas Krennwallner (2011). “Model
Streaming for DistributedMulti-Context Systems”. In: 2ndWorkshop on Logic-based
Interpretation of Context: Modelling and Applications, Vancouver, Canada, May 16,
2011, ed. by Alessandra Mileo et al. Vol. 738. CEUR Workshop Proceedings, pp. 11–
22. url: http://ceur-ws.org/Vol-738/dao-tran-etal.pdf (cit. on pp. 10, 259).

— (2015). “Distributed Evaluation of Nonmonotonic Multi-context Systems”. In: Jour-
nal on Artificial Intelligence Research 52, pp. 543–600. doi: 10.1613/jair.4574 (cit.
on pp. 10, 259).

Demiger, Matúš (2016). Official Practice Test for the 11th World Sudoku Championship
2016 (Wacky Slovak Classics). url: http://logicmastersindia.com/lmitests/
?test=M201610S (cit. on p. 4).

DeRemer, Frank and Hans Kron (June 1975). “Programming-in-the Large Versus Pro-
gramming-in-the-small”. In: ACM SIGPLAN Notices - International Conference on
Reliable Software 10.6, pp. 114–121. issn: 0362-1340. doi: 10.1145/390016.808431
(cit. on pp. 12, 18).

Dix, Jürgen (1995). “Semantics of Logic Programs: Their Intuitions and Formal Proper-
ties. An Overview”. In: Logic, Action and Information. Proc. of the Konstanz Collo-
quium in Logic and Information (LogIn’92), ed. byAndre Fuhrmann et al. DeGruyter,
pp. 241–329 (cit. on p. 35).

Egly, Uwe,Thomas Eiter, Hans Tompits, and StefanWoltran (2000). “Solving Advanced
Reasoning Tasks using Quantified Boolean Formulas”. In: Seventeenth National
Conference on Artificial Intelligence and Twelfth Conference on on Innovative Appli-
cations of Artificial Intelligence, July 30 - August 3, 2000, Austin, Texas, USA, ed. by

276

https://doi.org/10.1007/978-3-642-02846-5_16
http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/iclp2009-mlp.pdf
http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/iclp2009-mlp.pdf
https://doi.org/10.1007/978-3-642-04238-6_10
http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/lpnmr2009-splitting.pdf
http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/lpnmr2009-splitting.pdf
http://www.kr.tuwien.ac.at/staff/tkren/pub/2011/datalog20-fomlp.pdf
http://www.kr.tuwien.ac.at/staff/tkren/pub/2011/datalog20-fomlp.pdf
http://ceur-ws.org/Vol-738/dao-tran-etal.pdf
https://doi.org/10.1613/jair.4574
http://logicmastersindia.com/lmitests/?test=M201610S
http://logicmastersindia.com/lmitests/?test=M201610S
https://doi.org/10.1145/390016.808431

Bibliography

Henry A. Kautz et al. AAAI Press, pp. 417–422. url: http://www.aaai.org/
Papers/AAAI/2000/AAAI00-064.pdf (cit. on p. 58).

Eiter, Thomas, Gerhard Brewka, Minh Dao-Tran, Michael Fink, Giovambattista Ianni,
and Thomas Krennwallner (Sept. 2009a). “Combining Nonmonotonic Knowledge
Bases with External Sources”. In: 7th International Symposium on Frontiers of Com-
bining Systems (FroCos 2009), Trento, Italy, September 16–18, 2009, ed. by Silvio Ghi-
lardi et al. Vol. 5749. LNAI. Springer, pp. 18–42. isbn: 978-3-642-04221-8. doi:
10.1007/978-3-642-04222-5_2 (cit. on p. 32).

Eiter,Thomas, Wolfgang Faber, Michael Fink, and StefanWoltran (2007a). “Complexity
results for answer set programming with bounded predicate arities and implica-
tions”. In: Annals of Mathematics and Artificial Intelligence 51.2–4, pp. 123–165. doi:
10.1007/s10472-008-9086-5 (cit. on p. 125).

Eiter, Thomas, Wolfgang Faber, and Mushthofa Mushthofa (2010). “Space Efficient
Evaluation of ASP Programs with Bounded Predicate Arities”. In: Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence. AAAI’10. Atlanta,
Georgia: AAAI Press, pp. 303–308 (cit. on p. 125).

Eiter, Thomas, Michael Fink, Thomas Krennwallner, and Christoph Redl (2012a). “Con-
flict-driven ASP solving with external sources”. In: Theory and Practice of Logic
Programming 12.4–5, pp. 659–679. doi: 10.1017/S1471068412000233 (cit. on pp. 28,
42).

Eiter, Thomas, Michael Fink, and Stefan Woltran (July 2007b). “Semantical Character-
izations and Complexity of Equivalences in Answer Set Programming”. In: ACM
Transactions on Computational Logic 8.3. issn: 1529-3785. doi: 10.1145/1243996.
1244000 (cit. on p. 269).

Eiter, Thomas, Stefano Germano, Giovambattista Ianni, Tobias Kaminski, Christoph
Redl, Peter Schüller, and Antonius Weinzierl (2018). “The DLVHEX System”. In:
Künstliche Intelligenz. First Online: 15 May 2018, p. 3. issn: 1610-1987. doi: 10.1007/
s13218-018-0535-y (cit. on pp. 35, 225).

Eiter,Thomas andGeorg Gottlob (Sept. 1995). “On the computational cost of disjunctive
logic programming: Propositional case”. In: Annals of Mathematics and Artificial
Intelligence 15.3, pp. 289–323. doi: 10.1007/BF01536399 (cit. on p. 87).

Eiter, Thomas, Georg Gottlob, and Heikki Mannila (1994). “Adding Disjunction to Dat-
alog”. In: Proceedings of the Thirteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, May 24-26, 1994, Minneapolis, Minnesota, USA,
pp. 267–278. doi: 10.1145/182591.182639 (cit. on pp. 20, 256).

— (Sept. 1997a). “Disjunctive Datalog”. In: ACM Transactions on Database Systems
22.3, pp. 364–417. doi: 10.1145/261124.261126 (cit. on pp. 20, 256).

Eiter, Thomas, Georg Gottlob, and Helmuth Veith (1997b). “Modular Logic Program-
ming and Generalized Quantifiers”. In: Proceedings of the 4th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR-1997). Vol. 1265.

277

http://www.aaai.org/Papers/AAAI/2000/AAAI00-064.pdf
http://www.aaai.org/Papers/AAAI/2000/AAAI00-064.pdf
https://doi.org/10.1007/978-3-642-04222-5_2
https://doi.org/10.1007/s10472-008-9086-5
https://doi.org/10.1017/S1471068412000233
https://doi.org/10.1145/1243996.1244000
https://doi.org/10.1145/1243996.1244000
https://doi.org/10.1007/s13218-018-0535-y
https://doi.org/10.1007/s13218-018-0535-y
https://doi.org/10.1007/BF01536399
https://doi.org/10.1145/182591.182639
https://doi.org/10.1145/261124.261126

Bibliography

LNCS. Springer, pp. 290–309. url: http://www.kr.tuwien.ac.at/staff/eiter/
et-archive/cdtr97108.ps.gz (cit. on pp. 20, 22 sq., 28 sq., 42, 47, 53, 251, 262 sq.,
267).

Eiter, Thomas, Georg Gottlob, and Helmuth Veith (2000). “Generalized Quantifiers
in Logic Programs”. In: Generalized Quantifiers and Computation, 9th European
Summer School in Logic, Language, and Information, ESSLLI’97 Workshop, Aix-en-
Provence, France, August 11-22, 1997, Revised Lectures, ed. by Jouko Väänänen. LNCS
1754. Springer, pp. 72–98. doi: 10.1007/3-540-46583-9_4 (cit. on pp. 42, 47, 49).

Eiter,Thomas, Giovambattista Ianni, andThomas Krennwallner (Sept. 2009b). “Answer
Set Programming: A Primer”. In: 5th International Reasoning Web Summer School
(RW 2009), Brixen/Bressanone, Italy, August 30–September 4, 2009, ed. by Sergio
Tessaris et al. Vol. 5689. LNCS. Springer, pp. 40–110. isbn: 978-3-642-03753-5. doi:
10.1007/978-3-642-03754-2_2. url: http://www.kr.tuwien.ac.at/staff/
tkren/pub/2009/rw2009-asp.pdf (cit. on pp. 38, 269).

Eiter, Thomas, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer, and
Hans Tompits (Aug. 2008). “Combining answer set programming with description
logics for the Semantic Web”. In: Artificial Intelligence 172.12-13, pp. 1495–1539. doi:
10.1016/j.artint.2008.04.002 (cit. on pp. 160, 174 sq.).

Eiter, Thomas, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits (2006a).
“dlvhex: A System for Integrating Multiple Semantics in an Answer-Set Program-
ming Framework”. In: Proceedings 20th Workshop on Logic Programming and Con-
straint Systems (WLP ’06), ed. by M. Fink et al. TU Wien, Inst. f. Informationssys-
teme, TR 1843-06-02, pp. 206–210. url: http://www.kr.tuwien.ac.at/events/
wlp06/S02-final.ps.gz (cit. on p. 35).

— (2006b). “Effective Integration of Declarative Rules with external Evaluations for
Semantic Web Reasoning”. In: Proceedings of the 3rd European Semantic Web Con-
ference (ESWC 2006). Vol. 4011. LNCS. Springer, pp. 273–287. doi: 10.1007/
11762256_22 (cit. on pp. 28, 42).

Eiter, Thomas, Tobias Kaminski, Christoph Redl, Peter Schüller, and Antonius Wein-
zierl (2017). “Answer Set Programmingwith External Source Access”. In: Reasoning
Web. Semantic Interoperability on the Web: 13th International Summer School 2017,
London, UK, July 7-11, 2017, Tutorial Lectures, ed. by Giovambattista Ianni et al.
Springer International Publishing, pp. 204–275. isbn: 978-3-319-61033-7. doi: 10.
1007/978-3-319-61033-7_7 (cit. on pp. 35, 42, 225).

Eiter, Thomas,Thomas Krennwallner, and Christoph Redl (2013). “HEX-Programs with
Nested Program Calls”. In: Applications of Declarative Programming and Knowledge
Management, ed. by Hans Tompits et al. Berlin, Heidelberg: Springer, pp. 269–278.
isbn: 978-3-642-41524-1. doi: 10.1007/978-3-642-41524-1_15 (cit. on pp. 49, 255).

Eiter, Thomas, Thomas Krennwallner, Patrik Schneider, and Guohui Xiao (Mar. 2012b).
“Uniform Evaluation of Nonmonotonic DL-Programs”. In: 7th International Sym-

278

http://www.kr.tuwien.ac.at/staff/eiter/et-archive/cdtr97108.ps.gz
http://www.kr.tuwien.ac.at/staff/eiter/et-archive/cdtr97108.ps.gz
https://doi.org/10.1007/3-540-46583-9_4
https://doi.org/10.1007/978-3-642-03754-2_2
http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/rw2009-asp.pdf
http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/rw2009-asp.pdf
https://doi.org/10.1016/j.artint.2008.04.002
http://www.kr.tuwien.ac.at/events/wlp06/S02-final.ps.gz
http://www.kr.tuwien.ac.at/events/wlp06/S02-final.ps.gz
https://doi.org/10.1007/11762256_22
https://doi.org/10.1007/11762256_22
https://doi.org/10.1007/978-3-319-61033-7_7
https://doi.org/10.1007/978-3-319-61033-7_7
https://doi.org/10.1007/978-3-642-41524-1_15

Bibliography

posium on Foundations of Information and Knowledge Systems (FoIKS 2012), ed. by
Thomas Lukasiewicz et al. Vol. 7153. LNCS. Kiel, Germany: Springer, pp. 1–22.
doi: 10.1007/978-3-642-28472-4_1. url: http://www.kr.tuwien.ac.at/staff/
tkren/pub/2012/foiks2012-uniform.pdf (cit. on pp. 33, 225).

Eiter, Thomas, Nicola Leone, and Domenico Saccà (Mar. 1997c). “On the Partial Seman-
tics for Disjunctive Deductive Databases”. In: Annals of Mathematics and Artificial
Intelligence 19.1–2, pp. 59–96. issn: 1573-7470. doi: 10.1023/A:1018947420290
(cit. on pp. 20, 257).

Eiter, Thomas, Magdalena Ortiz, Mantas Šimkus, Trung-Kien Tran, and Guohui Xiao
(2012c). “Query Rewriting for Horn-𝒮ℋℐ𝒬 Plus Rules”. In: Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence. AAAI’12. Toronto, Ontario,
Canada: AAAI Press, pp. 726–733. url: https://www.aaai.org/ocs/index.php/
AAAI/AAAI12/paper/view/4931 (cit. on p. 175).

Emden, Maarten H. van and Robert A. Kowalski (1976). “The Semantics of Predicate
Logic as a Programming Language”. In: Journal of the ACM 23, pp. 733–742. doi:
10.1145/321978.321991 (cit. on pp. 70, 257).

Erdem, Esra and Vladimir Lifschitz (July 2003). “Tight Logic Programs”. In: Theory
and Practice of Logic Programming 3.4, pp. 499–518. issn: 1471-0684. doi: 10.1017/
S1471068403001765 (cit. on p. 190).

Faber, Wolfgang (2005). “Unfounded Sets for Disjunctive Logic Programs with Ar-
bitrary Aggregates”. In: 8th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’05), ed. by Chitta Baral et al. Vol. 3662. LNCS.
Springer, pp. 40–52. doi: 10.1007/11546207_4 (cit. on p. 268).

Faber, Wolfgang, Gianluigi Greco, and Nicola Leone (2007). “Magic Sets and their
application to data integration”. In: Journal of Computer and System Sciences 73.4.
Special Issue: Database Theory 2005, pp. 584–609. issn: 0022-0000. doi: 10.1016/
j.jcss.2006.10.012 (cit. on p. 257).

Faber,Wolfgang, Nicola Leone, and Gerald Pfeifer (Jan. 2011). “Semantics and complex-
ity of recursive aggregates in answer set programming”. In: Artificial Intelligence
175.1, pp. 278–298. doi: 10.1016/j.artint.2010.04.002 (cit. on pp. 27 sq., 54,
62 sq., 263).

Fages, François (1994). “Consistency of Clark’s completion and existence of stable
models”. In: Methods of Logic in Computer Science 1.1, pp. 51–60 (cit. on p. 190).

Fagin, Ronald (1976). “Probabilities on Finite Models”. In: Journal of Symbolic Logic
41.1, pp. 50–58. doi: 10.1017/S0022481200051756 (cit. on p. 23).

Ferraris, Paolo, Joohyung Lee, and Vladimir Lifschitz (2006). “A generalization of the
Lin-Zhao theorem”. In: Ann. Math. Artif. Intell. 47.1-2, pp. 79–101. doi: 10.1007/
s10472-006-9025-2 (cit. on pp. 183, 268).

279

https://doi.org/10.1007/978-3-642-28472-4_1
http://www.kr.tuwien.ac.at/staff/tkren/pub/2012/foiks2012-uniform.pdf
http://www.kr.tuwien.ac.at/staff/tkren/pub/2012/foiks2012-uniform.pdf
https://doi.org/10.1023/A:1018947420290
https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4931
https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4931
https://doi.org/10.1145/321978.321991
https://doi.org/10.1017/S1471068403001765
https://doi.org/10.1017/S1471068403001765
https://doi.org/10.1007/11546207_4
https://doi.org/10.1016/j.jcss.2006.10.012
https://doi.org/10.1016/j.jcss.2006.10.012
https://doi.org/10.1016/j.artint.2010.04.002
https://doi.org/10.1017/S0022481200051756
https://doi.org/10.1007/s10472-006-9025-2
https://doi.org/10.1007/s10472-006-9025-2

Bibliography

Ferraris, Paolo, Joohyung Lee, and Vladimir Lifschitz (2011). “Stable models and cir-
cumscription”. In: Artificial Intelligence 175.1, pp. 236–263. issn: 0004-3702. doi:
10.1016/j.artint.2010.04.011 (cit. on pp. 201, 252, 258).

Ferraris, Paolo, Joohyung Lee, Vladimir Lifschitz, and Ravi Palla (July 2009). “Symmet-
ric Splitting in the General Theory of Stable Models”. In: Proceedings of the Twenty-
first International Joint Conference on Artificial Intelligence (IJCAI-09), Pasadena,
California, USA, July 11–17, 2009, ed. by Craig Boutilier. AAAI Press, pp. 797–
803 (cit. on pp. 257, 268).

Fitting, Melvin (Mar. 1987). “Enumeration operators and modular logic programming”.
In: Journal of Logic Programming 4.1, pp. 11–21. issn: 0743-1066. doi: 10.1016/0743-
1066(87)90019-7 (cit. on pp. 19, 251).

Fowler, Martin (2004). Inversion of Control Containers and the Dependency Injection
pattern. url: https://martinfowler.com/articles/injection.html (cit. on
p. 10).

Gaifman, Haim and Ehud Shapiro (1989). “Fully abstract compositional semantics for
logic programs”. In: POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages. New York, NY, USA: ACM, pp. 134–
142. doi: 10.1145/75277.75289 (cit. on pp. 19 sq., 252).

Garey, Michael R. and David S. Johnson (1979). Computers and Intractability – A Guide
to the Theory of NP-Completeness. New York: W. H. Freeman (cit. on pp. 5, 81).

Garey, Michael R., David S. Johnson, and Larry J. Stockmeyer (1976). “Some simplified
NP-complete graph problems”. In: Theoretical Computer Science 1.3, pp. 237–267.
issn: 0304-3975. doi: 10.1016/0304-3975(76)90059-1 (cit. on p. 37).

Gebser, Martin, Tomi Janhunen, and Jussi Rintanen (2014a). “Answer Set Program-
ming as SAT modulo Acyclicity”. In: ECAI 2014 - 21st European Conference on Ar-
tificial Intelligence, 18-22 August 2014, Prague, Czech Republic - Including Prestigious
Applications of Intelligent Systems (PAIS 2014). Vol. 263. Frontiers in Artificial In-
telligence and Applications. IOS Press, pp. 351–356. isbn: 978-1-61499-418-3. doi:
10.3233/978-1-61499-419-0-351 (cit. on p. 269).

— (2014b). “SAT Modulo Graphs: Acyclicity”. In: Logics in Artificial Intelligence: 14th
European Conference, JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014.
Springer International Publishing, pp. 137–151. isbn: 978-3-319-11558-0. doi: 10.
1007/978-3-319-11558-0_10 (cit. on p. 269).

Gebser, Martin, Roland Kaminski, Benjamin Kaufmann, Patrick Lühne, Philipp Ober-
meier, Max Ostrowski, Javier Romero, Torsten Schaub, Sebastian Schellhorn, and
Philipp Wanko (2018). “The Potsdam Answer Set Solving Collection 5.0”. In: Kün-
stliche Intelligenz. First Online: 14 May 2018, p. 2. issn: 1610-1987. doi: 10.1007/
s13218-018-0528-x (cit. on p. 252).

Gebser, Martin, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub (2013).
Answer Set Solving in Practice. Morgan & Claypool Publishers (cit. on p. 3).

280

https://doi.org/10.1016/j.artint.2010.04.011
https://doi.org/10.1016/0743-1066(87)90019-7
https://doi.org/10.1016/0743-1066(87)90019-7
https://martinfowler.com/articles/injection.html
https://doi.org/10.1145/75277.75289
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.3233/978-1-61499-419-0-351
https://doi.org/10.1007/978-3-319-11558-0_10
https://doi.org/10.1007/978-3-319-11558-0_10
https://doi.org/10.1007/s13218-018-0528-x
https://doi.org/10.1007/s13218-018-0528-x

Bibliography

— (2014c). “Clingo = ASP + Control: Preliminary Report”. In: Technical Communica-
tions of the Thirtieth International Conference on Logic Programming (ICLP’14), ed.
by M. Leuschel et al. Vol. arXiv:1405.3694v1. Theory and Practice of Logic Pro-
gramming, Online Supplement (cit. on pp. 5, 36).

— (2017). “Multi-shot ASP solving with clingo”. In: CoRR abs/1705.09811. url: http:
//arxiv.org/abs/1705.09811 (cit. on pp. 35, 233, 252).

Gebser, Martin, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten Sch-
aub, and Marius Schneider (2011). “Potassco: The Potsdam Answer Set Solving
Collection”. In: AI Communications 24.2, pp. 107–124. issn: 0921-7126. doi: 10.
3233/AIC-2011-0491 (cit. on pp. 35, 227).

Gebser, Martin, Benjamin Kaufmann, and Torsten Schaub (2012). “Conflict-driven an-
swer set solving: From theory to practice”. In: Artificial Intelligence 187, pp. 52–89.
doi: 10.1016/j.artint.2012.04.001 (cit. on pp. 5, 35, 267).

Gelfond, Michael and Vladimir Lifschitz (1988). “The Stable Model Semantics for Logic
Programming”. In: Logic Programming: Proceedings Fifth Intl Conference and Sym-
posium. Cambridge, Mass.: MIT Press, pp. 1070–1080 (cit. on pp. 35, 45).

— (1990). “Logic programs with classical negation”. In: Logic Programming: Proc. of
the Seventh Int’l Conf. Ed. by D. Warren et al. Cambridge, MA, USA: MIT Press,
pp. 579–597 (cit. on p. 35).

— (1991). “Classical negation in logic programs and deductive databases”. In: New
Generation Computing 9, pp. 365–385 (cit. on pp. 3, 27, 35, 53).

Gierz, Gerhard, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael
Mislove, and Dana S. Scott (2003). Continuous Lattices and Domains. Vol. 93. Ency-
clopedia of Mathematics and its Applications. Cambridge University Press, p. 628
(cit. on p. 69).

Gilbert, Seth and Nancy Lynch (June 2002). “Brewer’s Conjecture and the Feasibility
of Consistent, Available, Partition-tolerant Web Services”. In: SIGACT News 33.2,
pp. 51–59. issn: 0163-5700. doi: 10.1145/564585.564601. url: https://www.comp.
nus.edu.sg/~gilbert/pubs/BrewersConjecture-SigAct.pdf (cit. on p. 10).

Giunchiglia, Enrico, Yuliya Lierler, and Marco Maratea (Sept. 2006). “Answer Set Pro-
gramming Based on Propositional Satisfiability”. In: Journal of Automated Reason-
ing 36.4, pp. 345–377. issn: 1573-0670. doi: 10.1007/s10817-006-9033-2 (cit. on
p. 35).

Glebskii, Y. V., D. I. Kogan, I. M. Liogonki, and V. A. Talanov (1969). “The extent and
degree of satisfiability of a form of the restricted predicate calculus”. In:Kibernetika
2, pp. 31–42 (cit. on p. 23).

Goranko, Valentin and Martin Otto (2007). “Model Theory of Modal Logic”. In: Hand-
book of Modal Logic, ed. by Patrick Blackburn et al. Vol. 3. Studies in Logic and
Practical Reasoning. Elsevier, pp. 249–329. doi: 10.1016/S1570-2464(07)80008-5
(cit. on p. 53).

281

http://arxiv.org/abs/1705.09811
http://arxiv.org/abs/1705.09811
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.1016/j.artint.2012.04.001
https://doi.org/10.1145/564585.564601
https://www.comp.nus.edu.sg/~gilbert/pubs/BrewersConjecture-SigAct.pdf
https://www.comp.nus.edu.sg/~gilbert/pubs/BrewersConjecture-SigAct.pdf
https://doi.org/10.1007/s10817-006-9033-2
https://doi.org/10.1016/S1570-2464(07)80008-5

Bibliography

Gottlob, Georg, Simon Ceri, and Letizia Tanca (1989). “What You Always Wanted to
Know About Datalog (And Never Dared to Ask)”. In: IEEE Transactions on Knowl-
edge & Data Engineering 1, pp. 146–166. issn: 1041-4347. doi: 10.1109/69.43410
(cit. on pp. 19, 129).

Gottlob, Georg, Stanislav Kikot, Roman Kontchakov, Vladimir Podolskii, Thomas Sch-
wentick, and Michael Zakharyaschev (2014). “The price of query rewriting in onto-
logy-based data access”. In: Artificial Intelligence 213, pp. 42–59. issn: 0004-3702.
doi: 10.1016/j.artint.2014.04.004 (cit. on p. 175).

Grädel, Erich (1989). “Dominoes and the complexity of subclasses of logical theories”.
In: Annals of Pure and Applied Logic 43.1, pp. 1–30. issn: 0168-0072. doi: 10.1016/
0168-0072(89)90023-7 (cit. on p. 109).

Grädel, Erich (2007). “Finite Model Theory and Descriptive Complexity”. In: Finite
Model Theory and Its Applications. Berlin, Heidelberg: Springer, pp. 125–230. isbn:
978-3-540-68804-4. doi: 10.1007/3-540-68804-8_3 (cit. on p. 85).

Guo, Yuanbo, Zhengxiang Pan, and Jeff Heflin (2005). “LUBM: A benchmark for OWL
knowledge base systems”. In: Web Semantics 3.2-3, pp. 158–182. issn: 1570-8268.
doi: 10.1016/j.websem.2005.06.005 (cit. on pp. 220, 226, 265).

Harrison, Amelia and Yuliya Lierler (2016). “First-Order Modular Logic Programs and
their Conservative Extensions”. In: Theory and Practice of Logic Programming 16.5-
6, pp. 755–770. doi: 10.1017/S1471068416000430 (cit. on p. 252).

Hemachandra, Lane A. (1989). “The strong exponential hierarchy collapses”. In: Journal
of Computer and System Sciences 39.3, pp. 299–322. issn: 0022-0000. doi: 10.1016/
0022-0000(89)90025-1 (cit. on p. 84).

Heymans, Stijn, Thomas Eiter, and Guohui Xiao (2010). “Tractable Reasoning with
DL-Programs over Datalog-rewritable Description Logics”. In: 19th European Con-
ference on Artificial Intelligence, 16-20 August 2010 (ECAI 2010), ed. by Helder Coelho
et al. IOS Press, pp. 35–40. doi: 10.3233/978-1-60750-606-5-35 (cit. on pp. 30,
129, 175).

Hudak, Paul (Sept. 1989). “Conception, Evolution, and Application of Functional Progr-
amming Languages”. In: ACM Computing Surveys 21.3, pp. 359–411. doi: 10.1145/
72551.72554 (cit. on p. 12).

Ianni, Giovambattista, Guiseppe Ielpa, Adriana Pietramala, and Maria Carmela San-
toro (2003). “Answer Set Programming with Templates”. In: Proceedings of the 2nd
International Answer Set Programming Workshop (ASP’03). CEUR Workshop Pro-
ceedings. CEUR WS. url: http://www.ceur-ws.org/Vol-78/asp03-final-
ianni.pdf (cit. on pp. 253 sq.).

ISO-Prolog (June 2000). Programming Language Prolog part 2 – Modules. Tech. rep.
ISO/IEC 13211-2:2000(E). JTC1/SC22/WG17 (International StandardizationWorking
Group for the Programming Language Prolog) (cit. on p. 19).

282

https://doi.org/10.1109/69.43410
https://doi.org/10.1016/j.artint.2014.04.004
https://doi.org/10.1016/0168-0072(89)90023-7
https://doi.org/10.1016/0168-0072(89)90023-7
https://doi.org/10.1007/3-540-68804-8_3
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1017/S1471068416000430
https://doi.org/10.1016/0022-0000(89)90025-1
https://doi.org/10.1016/0022-0000(89)90025-1
https://doi.org/10.3233/978-1-60750-606-5-35
https://doi.org/10.1145/72551.72554
https://doi.org/10.1145/72551.72554
http://www.ceur-ws.org/Vol-78/asp03-final-ianni.pdf
http://www.ceur-ws.org/Vol-78/asp03-final-ianni.pdf

Bibliography

Janhunen, Tomi (2004). “Representing Normal Programs with Clauses”. In: 16th Eure-
opean Conference on Artificial Intelligence, ECAI 2004, Valencia, Spain, August 22-27,
2004, ed. by Ramón López de Mántaras et al., pp. 358–362. url: http://www.tcs.
hut.fi/~ttj/publications/ecai04.ps.gz (cit. on p. 269).

— (2018). “Cross-Translating Answer Set Programs Using the ASPTOOLS Collection”.
In: Künstliche Intelligenz. First Online: 14 May 2018, p. 3. issn: 1610-1987. doi:
10.1007/s13218-018-0529-9 (cit. on p. 35).

Janhunen, Tomi and Ilkka Niemelä (2016). “The Answer Set Programming Paradigm”.
In:AI Magazine: Special Issue on Answer Set Programming, ed. by Gerd Brewka et al.
Vol. 37. 3. Editorial pp. 5–6. AAAI Press, pp. 13–24. doi: 10.1609/aimag.v37i3.
2671 (cit. on pp. 8, 38).

Janhunen, Tomi, Ilkka Niemelä, Dietmar Seipel, Patrik Simons, and Jia-Huai You (Jan.
2006). “Unfolding Partiality and Disjunctions in Stable Model Semantics”. In: ACM
Transactions on Computational Logic 7.1, pp. 1–37. issn: 1529-3785. doi: 10.1145/
1119439.1119440 (cit. on p. 35).

Janhunen, Tomi, Ilkka Niemelä, and Mark Sevalnev (2009a). “Computing Stable Mod-
els via Reductions to Difference Logic”. In: Logic Programming and Nonmonotonic
Reasoning, 10th International Conference, LPNMR 2009, Potsdam, Germany, Septem-
ber 14-18, 2009. Proceedings, ed. by Esra Erdem et al. Vol. 5753. Springer, pp. 142–
154. doi: 10.1007/978-3-642-04238-6_14 (cit. on p. 269).

Janhunen, Tomi and Emilia Oikarinen (2007). “Automated Verification of Weak Equiv-
alence within the SMODELS System”. In:Theory and Practice of Logic Programming
7.6, pp. 697–744. doi: 10.1017/S1471068407003031 (cit. on pp. 258, 269).

Janhunen, Tomi, Emilia Oikarinen, Hans Tompits, and Stefan Woltran (2009b). “Mod-
ularity Aspects of Disjunctive Stable Models”. In: Journal of Artificial Intelligence
Research 35, pp. 813–857. doi: 10.1613/jair.2810 (cit. on pp. 20, 22, 27, 30, 32,
183 sq., 217, 233 sq., 237, 251 sq., 258, 266, 268).

Järvisalo, Matti, Emilia Oikarinen, Tomi Janhunen, and Ilkka Niemelä (2009). “A Mod-
ule-Based Framework for Multi-language Constraint Modeling”. In: 10th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR
2009), Potsdam, Germany, 14-18 September, 2009, ed. by Esra Erdem et al. Springer,
pp. 155–168. doi: 978-3-642-04238-6_15 (cit. on p. 20).

Ji, Jianmin, HaiWan, Ziwei Huo, and Zhenfeng Yuan (2015). “Splitting a Logic Program
Revisited”. In: Twenty-Ninth AAAI Conference on Artificial Intelligence. AAAI’15.
Austin, Texas: AAAI Press, pp. 1511–1517. isbn: 0-262-51129-0. url: http://www.
aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9538 (cit. on p. 257).

Johnson, Ralph E. and Brian Foote (June 1988). “Designing Reusable Classes”. In:
Journal of Object-Oriented Programming 1.2, pp. 22–35 (cit. on p. 10).

Kernighan, Brian W. and Dennis M. Ritchie (1996). The C Programming Language. 2nd.
Prentice Hall (cit. on p. 13).

283

http://www.tcs.hut.fi/~ttj/publications/ecai04.ps.gz
http://www.tcs.hut.fi/~ttj/publications/ecai04.ps.gz
https://doi.org/10.1007/s13218-018-0529-9
https://doi.org/10.1609/aimag.v37i3.2671
https://doi.org/10.1609/aimag.v37i3.2671
https://doi.org/10.1145/1119439.1119440
https://doi.org/10.1145/1119439.1119440
https://doi.org/10.1007/978-3-642-04238-6_14
https://doi.org/10.1017/S1471068407003031
https://doi.org/10.1613/jair.2810
https://doi.org/978-3-642-04238-6_15
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9538
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9538

Bibliography

Kleene, Stephen Cole (1952). Introduction to Metatmathematics. North Holland (cit. on
p. 72).

Knuth, Donald E. (2018). The Art of Computer Programming, Volume 4B, Fascicle 5.
Mathematical Preliminaries Redux; Backtracking; Dancing Links. Addison-Wesley.
url: https://www-cs-faculty.stanford.edu/~knuth/fasc5c.ps.gz (cit. on
p. 4).

Krennwallner, Thomas (July 6, 2011). “Promoting Modular Nonmonotonic Logic Pro-
grams”. In: Technical Communications of the 27th International Conference on Logic
Programming (ICLP 2011), Lexington, Kentucky, U.S.A., July 6–10, 2011, ed. by John
Gallagher et al. Vol. 11. Leibniz International Proceedings in Informatics (LIPIcs).
Lexington, Kentucky, U.S.A.: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
pp. 274–279. isbn: 978-3-939897-31-6. doi: 10.4230/LIPIcs.ICLP.2011.274. url:
http://www.kr.tuwien.ac.at/staff/tkren/pub/2011/iclp2011dc-mlp.pdf
(cit. on p. 33).

Krötzsch, Markus (July 2011). “Efficient Rule-Based Inferencing for OWL EL”. In:
Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJ-
CAI’11). AAAI Press, pp. 2668–2673. doi: 10.5591/978-1-57735-516-8/IJCAI11-
444 (cit. on p. 175).

Krötzsch, Markus, Sebastian Rudolph, and Pascal Hitzler (2013). “Complexities of Horn
Description Logics”. In: ACM Transactions on Computational Logic 14.1, 2:1–2:36.
doi: 10.1145/2422085.2422087 (cit. on p. 175).

Krötzsch, Markus, Sebastian Rudolph, and Peter H. Schmitt (2015). “A closer look at
the semantic relationship between Datalog and description logics”. In: Semantic
Web 6.1, pp. 63–79. doi: 10.3233/SW-130126 (cit. on p. 175).

Lakos, John (2016). Large-Scale C++ Software Design. Addison-Wesley Professional (cit.
on p. 10).

Lee, Joohyung and Vladimir Lifschitz (Dec. 2003). In: Proceedings of the Nineteenth
International Conference on Logic Programming (ICLP-03). Springer, pp. 451–465.
doi: 10.1007/978-3-540-24599-5_31 (cit. on pp. 183, 192, 194, 268).

Lee, Joohyung and Yunsong Meng (2009). “On Reductive Semantics of Aggregates in
Answer Set Programming”. In: 10th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR 2009), Potsdam, Germany, 14-18 September,
2009, ed. by Esra Erdem et al. Vol. 5753. LNCS. Springer, pp. 182–195. doi:
10.1007/978-3-642-04238-6_17 (cit. on p. 268).

— (2011). “First-order stable model semantics and first-order loop formulas”. In: Jour-
nal of Artificial Intelligence Research 42, pp. 125–180. doi: 10.1613/jair.3337 (cit.
on p. 215).

Leone, Nicola, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona
Perri, and Francesco Scarcello (2006). “The DLV System for Knowledge Represen-

284

https://www-cs-faculty.stanford.edu/~knuth/fasc5c.ps.gz
https://doi.org/10.4230/LIPIcs.ICLP.2011.274
http://www.kr.tuwien.ac.at/staff/tkren/pub/2011/iclp2011dc-mlp.pdf
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-444
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-444
https://doi.org/10.1145/2422085.2422087
https://doi.org/10.3233/SW-130126
https://doi.org/10.1007/978-3-540-24599-5_31
https://doi.org/10.1007/978-3-642-04238-6_17
https://doi.org/10.1613/jair.3337

Bibliography

tation and Reasoning”. In: Transactions on Computationl Logic 7.3, pp. 499–562.
issn: 1529-3785. doi: 10.1145/1149114.1149117 (cit. on pp. 35, 227, 254).

Leroy, Xavier, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérô-
me Vouillon (2017). The OCaml system release 4.06, Documentation and user’s man-
ual. Institut National de Recherche en Informatique et en Automatique. url: http:
//caml.inria.fr/pub/docs/manual-ocaml/ (cit. on p. 18).

Lewis, Harry R. (Oct. 1978). “Complexity of solvable cases of the decision problem for
the predicate calculus”. In: 19th Annual Symposium on Foundations of Computer
Science (FOCS 1978), pp. 35–47. doi: 10.1109/SFCS.1978.9 (cit. on p. 110).

Libkin, Leonid, ed. (2004). Elements of Finite ModelTheory. Springer. doi: 10.1007/978-
3-662-07003-1 (cit. on pp. 56, 58, 215).

Lierler, Yuliya andMiroslaw Truszczyński (2011). “Transition systems for model gener-
ators—A unifying approach”. In: Theory and Practice of Logic Programming 11.4–5,
pp. 629–646. doi: 10.1017/S1471068411000214 (cit. on p. 252).

— (2013). “Modular Answer Set Solving”. In: Late-Breaking Developments in the Field
of Artificial Intelligence, Bellevue, Washington, USA, July 14-18, 2013. Vol. WS-13-
17. AAAI Workshops. AAAI. url: http://www.aaai.org/ocs/index.php/WS/
AAAIW13/paper/view/7077 (cit. on pp. 252, 260).

— (2016). “On abstract modular inference systems and solvers”. In: Artificial Intel-
ligence 236, pp. 65–89. issn: 0004-3702. doi: 10.1016/j.artint.2016.03.004
(cit. on pp. 20, 260).

Lifschitz, Vladimir and Alexander Razborov (Apr. 2006). “Why Are There So Many
Loop Formulas?” In: ACM Transactions on Computational Logic 7.2, pp. 261–268.
issn: 1529-3785. doi: 10.1145/1131313.1131316 (cit. on p. 215).

Lifschitz, Vladimir and Hudson Turner (June 1994). “Splitting a Logic Program”. In:
Proceedings of the 11th International Conference on Logic Programming (ICLP 1994).
MIT Press, pp. 23–37 (cit. on pp. 20, 30, 220, 222, 256).

Lifschitz, Vladimir and Thomas Y. C. Woo (1992). “Answer Sets in General Nonmono-
tonic Reasoning (Preliminary Report)”. In: Proceedings of the 3rd International Con-
ference on Principles of Knowledge Representation and Reasoning (KR 1992), ed. by
B. Nebel et al. Morgan Kaufmann, pp. 603–614. url: http://www.cs.utexas.edu/
users/vl/papers/answersets.ps (cit. on p. 35).

Lin, Fangzhen and Yuting Zhao (2004). “ASSAT: computing answer sets of a logic
program by SAT solvers”. In: Artificial Intelligence 157.1–2. Preliminary version in
AAAI’02, pp. 115–137. doi: 10.1016/j.artint.2004.04.004 (cit. on pp. 30, 33, 35,
183, 192, 194, 215, 265).

Lin, Fangzhen and Yi Zhou (2011). “From answer set logic programming to circumscrip-
tion via logic of GK”. In: Artificial Intelligence 175.1, pp. 264–277. issn: 0004-3702.
doi: 10.1016/j.artint.2010.04.001 (cit. on p. 201).

285

https://doi.org/10.1145/1149114.1149117
http://caml.inria.fr/pub/docs/manual-ocaml/
http://caml.inria.fr/pub/docs/manual-ocaml/
https://doi.org/10.1109/SFCS.1978.9
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1017/S1471068411000214
http://www.aaai.org/ocs/index.php/WS/AAAIW13/paper/view/7077
http://www.aaai.org/ocs/index.php/WS/AAAIW13/paper/view/7077
https://doi.org/10.1016/j.artint.2016.03.004
https://doi.org/10.1145/1131313.1131316
http://www.cs.utexas.edu/users/vl/papers/answersets.ps
http://www.cs.utexas.edu/users/vl/papers/answersets.ps
https://doi.org/10.1016/j.artint.2004.04.004
https://doi.org/10.1016/j.artint.2010.04.001

Bibliography

Liskov, Barbara and Jeannette M. Wing (Nov. 1994). “A Behavioral Notion of Subtyp-
ing”. In: ACM Transactions on Programming Languages and Systems 16.6, pp. 1811–
1841. issn: 0164-0925. doi: 10.1145/197320.197383. url: http://reports-
archive.adm.cs.cmu.edu/anon/1999/CMU-CS-99-156.ps (cit. on p. 269).

Liskov, Barbara and Stephen Zilles (Mar. 1974). “Programming with Abstract Data
Types”. In: ACM SIGPLAN Notices 9.4, pp. 50–59. issn: 0362-1340. doi: 10.1145/
942572.807045 (cit. on p. 11).

Lloyd, John W. (1987). Foundations of Logic Programming. Berlin: Springer (cit. on
pp. 46, 70, 257).

Marek, Victor W. and V.S. Subrahmanian (1992). “The relationship between stable,
supported, default and autoepistemic semantics for general logic programs”. In:
Theoretical Computer Science 103.2, pp. 365–386. issn: 0304-3975. doi: 10.1016/
0304-3975(92)90019-C (cit. on p. 190).

Marek, VictorW. andMiroslaw Truszczyński (1999). “Stable Models and an Alternative
Logic Programming Paradigm”. In: The Logic Programming Paradigm: A 25-Year
Perspective. Springer, pp. 375–398. isbn: 978-3-642-60085-2. doi: 10.1007/978-3-
642-60085-2_17 (cit. on p. 12).

Marques Silva, João P., Inês Lynce, and Sharad Malik (2009). “Conflict-Driven Clause
Learning SAT Solvers”. In: Handbook of Satisfiability: Frontiers in Artificial Intelli-
gence and Applications. Vol. 185. IOS Press, pp. 131–153. doi: 10.3233/978-1-
58603-929-5-131 (cit. on p. 267).

Martin, Robert C. (2018). Clean Architecture: A Craftman’s Guide to Software Structure
and Design. Prentice Hall (cit. on p. 10).

Milner, Robin, Mads Tofte, Robert Harper, and David MacQueen (1997). The Definition
of Standard ML (Revised). MIT Press (cit. on p. 18).

Moura, João (Dec. 2016). “Modular Logic Programming: Full Compositionality and
Conflict Handling for Practical Reasoning”. PhD thesis. Campus de Campolide,
1099-085 Lisboa, Portugal: Universidade Nova de Lisboa. url: http://hdl.handle.
net/10362/30470 (cit. on pp. 253, 267).

Moura, João and Carlos Viegas Damásio (2014). “Generalizing Modular Logic Pro-
grams”. In: CoRR abs/1404.7205. url: http://arxiv.org/abs/1404.7205 (cit. on
pp. 20, 22).

— (2015). “Allowing Cyclic Dependencies in Modular Logic Programming”. In: 17th
Portuguese Conference on Artificial Intelligence (EPIA 2015), Coimbra, Portugal, Sep.
8-11, 2015, ed. by Francisco Pereira et al. Springer, pp. 363–375. doi: 10.1007/978-
3-319-23485-4_37 (cit. on pp. 20, 22).

Murphy, Gail C., Robert J. Walker, Elisa L. A. Baniassad, Martin P. Robillard, Albert Lai,
and Mik A. Kersten (Oct. 2001). “Does aspect-oriented programming work?” In:
Communications of the ACM 44.10, pp. 75–77. doi: 10.1145/383845.383862 (cit. on
p. 10).

286

https://doi.org/10.1145/197320.197383
http://reports-archive.adm.cs.cmu.edu/anon/1999/CMU-CS-99-156.ps
http://reports-archive.adm.cs.cmu.edu/anon/1999/CMU-CS-99-156.ps
https://doi.org/10.1145/942572.807045
https://doi.org/10.1145/942572.807045
https://doi.org/10.1016/0304-3975(92)90019-C
https://doi.org/10.1016/0304-3975(92)90019-C
https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.3233/978-1-58603-929-5-131
https://doi.org/10.3233/978-1-58603-929-5-131
http://hdl.handle.net/10362/30470
http://hdl.handle.net/10362/30470
http://arxiv.org/abs/1404.7205
https://doi.org/10.1007/978-3-319-23485-4_37
https://doi.org/10.1007/978-3-319-23485-4_37
https://doi.org/10.1145/383845.383862

Bibliography

Niemelä, Ilkka (1999). “Logic Programming with Stable Model Semantics as Con-
straint Programming Paradigm”. In: Annals of Mathematics and Artificial Intelli-
gence 25.3–4, pp. 241–273. doi: 10.1023/A:1018930122475 (cit. on pp. 12, 35).

Niemelä, Ilkka (Aug. 2008). “Stable Models and Difference Logic”. In: Annals of Math-
ematics and Artificial Intelligence 53.1–4, pp. 313–329. issn: 1012-2443. doi: 10.
1007/s10472-009-9118-9 (cit. on p. 269).

Nieuwenhuis, Robert, Albert Oliveras, and Cesare Tinelli (Nov. 2006). “Solving SAT
and SATModuloTheories: From an Abstract Davis–Putnam–Logemann–Loveland
Procedure to DPLL(T)”. In: Journal of the ACM 53.6, pp. 937–977. issn: 0004-5411.
doi: 10.1145/1217856.1217859 (cit. on pp. 3, 260, 269).

Norvig, Peter (2006). Solving Every Sudoku Puzzle. url: http://www.norvig.com/
sudoku.html (visited on 01/08/2017) (cit. on p. 5).

Oikarinen, Emilia (Oct. 2008). “Modularity in Answer Set Programs”. TKK Disserta-
tions in Information and Computer Science. P.O.Box 5400, 02015 Espoo, Finland:
Helsinki University of Technology. isbn: 978-951-22-9582-1. url: http://lib.
tkk.fi/Diss/2008/isbn9789512295821/ (cit. on pp. 252, 258).

Oikarinen, Emilia and Tomi Janhunen (Nov. 2008). “Achieving compositionality of the
stable model semantics for Smodels programs”. In: Theory and Practice of Logic
Programming 8.5–6, pp. 717–761. doi: 10.1017/S147106840800358X (cit. on pp. 20,
22, 253, 267 sq.).

— (2009). “A Translation-basedApproach to the Verification ofModular Equivalence”.
In: Journal of Logic and Computation 19.4, pp. 591–613. doi: 10.1093/logcom/
exn039 (cit. on pp. 258, 260, 269).

OSGi Alliance (June 2014). OSGi Core Release 6 Specification. Tech. rep. The OSGi
Alliance. url: https://osgi.org/download/r6/osgi.core-6.0.0.pdf (cit. on
p. 13).

Papadimitriou, Christos H. (1994). Computational Complexity. Addison-Wesley (cit. on
pp. 81, 85).

Papazoglou, Mike P. and Willem-Jan van den Heuvel (Mar. 2007). “Service oriented
architectures: approaches, technologies and research issues”. In:The VLDB Journal
16.3, pp. 389–415. issn: 0949-877X. doi: 10.1007/s00778-007-0044-3 (cit. on
p. 10).

Parlog, Nicolai (2018). The Java 9 Module System. Manning Early Access Program
(MEAP). Manning (cit. on p. 12).

Parnas, David Lorge (Dec. 1972). “On the Criteria to Be Used in Decomposing Systems
into Modules”. In: Communications of the ACM 15.12, pp. 1053–1058. issn: 0001-
0782. doi: 10.1145/361598.361623 (cit. on p. 11).

Pautasso, Cesare, Olaf Zimmermann, Mike Amundsen, James Lewis, and Nicolai Josut-
tis (Jan. 2017a). “Microservices in Practice, Part 1: Reality Check and Service De-

287

https://doi.org/10.1023/A:1018930122475
https://doi.org/10.1007/s10472-009-9118-9
https://doi.org/10.1007/s10472-009-9118-9
https://doi.org/10.1145/1217856.1217859
http://www.norvig.com/sudoku.html
http://www.norvig.com/sudoku.html
http://lib.tkk.fi/Diss/2008/isbn9789512295821/
http://lib.tkk.fi/Diss/2008/isbn9789512295821/
https://doi.org/10.1017/S147106840800358X
https://doi.org/10.1093/logcom/exn039
https://doi.org/10.1093/logcom/exn039
https://osgi.org/download/r6/osgi.core-6.0.0.pdf
https://doi.org/10.1007/s00778-007-0044-3
https://doi.org/10.1145/361598.361623

Bibliography

sign”. In: IEEE Software 34.1, pp. 91–98. issn: 0740-7459. doi: 10.1109/MS.2017.24
(cit. on p. 10).

Pautasso, Cesare, Olaf Zimmermann, Mike Amundsen, James Lewis, and Nicolai Jo-
suttis (Jan. 2017b). “Microservices in Practice, Part 2: Service Integration and Sus-
tainability”. In: IEEE Software 34.2, pp. 97–104. issn: 0740-7459. doi: 10.1109/MS.
2017.56 (cit. on p. 10).

Pearce, David (1997). “A new logical characterisation of stable models and answer
sets”. In: Non-Monotonic Extensions of Logic Programming, ed. by Jürgen Dix et al.
Vol. 1216. LNCS. Springer, pp. 57–70. doi: 10.1007/BFb0023801 (cit. on p. 267).

Poggi, Antonella, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo,Maurizio
Lenzerini, and Riccardo Rosati (2008). “Linking Data to Ontologies”. In: Journal
on Data Semantics 10, pp. 133–173. doi: 10.1007/978-3-540-77688-8_5 (cit. on
p. 175).

Reinhold, Mark (Apr. 2015). Java Platform Module System: Requirements. url: http:
//openjdk.java.net/projects/jigsaw/spec/reqs/2015-04-01 (cit. on p. 12).

— (Mar. 2016). The State of the Module System. url: http://openjdk.java.net/
projects/jigsaw/spec/sotms/2016-03-08 (cit. on p. 12).

Reis, Gabriel Dos, Mark Hall, and Gor Nishanov (Feb. 2016). A Module System for C++
(Revision 4). Tech. rep. P0142R0. JTC1/SC22/WG21 (The C++ Standards Committee
ISOCPP). url: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/
p0142r0.pdf (cit. on pp. 12–15).

Reiter, Raymond (1980). “A Logic for Default Reasoning”. In: Artificial Intelligence 13,
pp. 81–132. doi: 10.1016/0004-3702(80)90014-4 (cit. on p. 35).

Robinson, Alan and Andrei Voronkov, eds. (2001). Handbook of Automated Reasoning.
North-Holland. doi: 10.1016/B978-044450813-3/50000-X (cit. on pp. 3, 268).

Rogers, Jr., Hartley (1987). Theory of Recursive Functions and Effective Computability.
Reprint of the 1967 edition. New York: MIT Press (cit. on p. 251).

Ross, Keneth A. (1994). “Modular Stratification and Magic Sets for Datalog Programs
with Negation”. In: Journal of the ACM 41.6, pp. 1216–1267 (cit. on p. 19).

Rossi, Francesca, Peter van Beek, and Toby Walsh, eds. (2006). Handbook of Constraint
Programming. Elsevier. isbn: 9780444527264 (cit. on p. 3).

Sakama, Chiaki and Katsumi Inoue (1995). “Paraconsistent Stable Semantics for Ex-
tended Disjunctive Programs”. In: Journal of Logic and Computation 5.3, pp. 265–
285. doi: 10.1093/logcom/5.3.265 (cit. on pp. 29, 266).

Savelsbergh, Martin and Peter van Emde Boas (1984). “BOUNDED TILING, an alter-
native to SATISFIABILITY?” In: 2nd Frege Conference, ed. by Gerd Wechsung.
Akademie Verlag, pp. 354–363. url: https://ir.cwi.nl/pub/6527/6527A.pdf
(cit. on p. 109).

Shapiro, Ehud and Leon Sterling (1994). The Art of Prolog. 2nd. MIT Press (cit. on p. 12).

288

https://doi.org/10.1109/MS.2017.24
https://doi.org/10.1109/MS.2017.56
https://doi.org/10.1109/MS.2017.56
https://doi.org/10.1007/BFb0023801
https://doi.org/10.1007/978-3-540-77688-8_5
http://openjdk.java.net/projects/jigsaw/spec/reqs/2015-04-01
http://openjdk.java.net/projects/jigsaw/spec/reqs/2015-04-01
http://openjdk.java.net/projects/jigsaw/spec/sotms/2016-03-08
http://openjdk.java.net/projects/jigsaw/spec/sotms/2016-03-08
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0142r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0142r0.pdf
https://doi.org/10.1016/0004-3702(80)90014-4
https://doi.org/10.1016/B978-044450813-3/50000-X
https://doi.org/10.1093/logcom/5.3.265
https://ir.cwi.nl/pub/6527/6527A.pdf

Bibliography

Shields, Mark and Simon Peyton Jones (2002). “First class modules for Haskell”. In:
9th International Conference on Foundations of Object-Oriented Languages (FOOL 9),
Portland, Oregon. Springer, pp. 28–40. url: https://www.microsoft.com/en-
us/research/wp-content/uploads/2016/02/first_class_modules.pdf (cit. on
p. 18).

Simons, Patrik, Ilkka Niemelä, and Timo Soininen (June 2002). “Extending and Imple-
menting the Stable Model Semantics”. In: Artificial Intelligence 138 (1–2), pp. 181–
234. doi: 10.1016/S0004-3702(02)00187-X (cit. on p. 35).

Stockmeyer, Larry J. (1976). “The polynomial-time hierarchy”. In:Theoretical Computer
Science 3.1, pp. 1–22. issn: 0304-3975. doi: 10.1016/0304-3975(76)90061-X (cit. on
p. 83).

Strachey, Christopher (2000). “Fundamental Concepts in Programming Languages”.
In: Higher-Order and Symbolic Computation 13.1, pp. 11–49. issn: 1573-0557. doi:
10.1023/A:1010000313106 (cit. on p. 21).

Stroustrup, Bjarne (2013). The C++ Programming Language. 4th. Addison-Wesley (cit.
on p. 15).

Swift, Terrance and David S. Warren (Jan. 2012). “XSB: Extending Prolog with Tabled
Logic Programming”. In: Theory and Practice of Logic Programming 12.1-2, pp. 157–
187. doi: 10.1017/S1471068411000500 (cit. on p. 19).

Syrjänen, Tommi (2001). “Omega-Restricted Logic Programs”. In: Logic Programming
and Nonmotonic Reasoning (LPNMR 2011), ed. by Thomas Eiter et al. Berlin, Hei-
delberg: Springer Berlin Heidelberg, pp. 267–280. isbn: 978-3-540-45402-1. doi:
10.1007/3-540-45402-0_20 (cit. on p. 36).

Syrjänen, Tommi (Mar. 2009). “Logic Programs and Cardinality Constraints: Theory
and Practice”. TKK Dissertations in Information and Computer Science. P.O.Box
5400, 02015 Espoo, Finland: Helsinki University of Technology. isbn: 978-951-22-
9763-4. url: http://lib.tkk.fi/Diss/2009/isbn9789512297634/ (cit. on p. 36).

Tari, Luis, Chitta Baral, and Saadat Anwar (July 2005). “A Language for Modular An-
swer Set Programming: Application to ACC Tournament Scheduling”. In: 3rd An-
swer Set Programming Workshop (ASP’05), Bath, UK, July 27th–29th 2005. Vol. 142.
CEUR Workshop Proceedings. CEUR WS, pp. 277–293. url: http://www.ceur-
ws.org/Vol-142/page277.pdf (cit. on p. 254).

Tarski, Alfred (1955). “A lattice-theoretical fixpoint theorem and its applications.” In:
Pacific Journal of Mathematics 5.2, pp. 285–309. url: http://projecteuclid.org/
euclid.pjm/1103044538 (cit. on p. 71).

Tasharrofi, Shahab (Dec. 2013). “Arithmetic and Modularity in Declarative Languages
for Knowledge Representation”. PhD thesis. 8888 University Drive, Burnaby, BC,
Canada V5A 1S6: Simon Fraser University. url: http://summit.sfu.ca/item/
13936 (cit. on p. 259).

289

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/first_class_modules.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/first_class_modules.pdf
https://doi.org/10.1016/S0004-3702(02)00187-X
https://doi.org/10.1016/0304-3975(76)90061-X
https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1017/S1471068411000500
https://doi.org/10.1007/3-540-45402-0_20
http://lib.tkk.fi/Diss/2009/isbn9789512297634/
http://www.ceur-ws.org/Vol-142/page277.pdf
http://www.ceur-ws.org/Vol-142/page277.pdf
http://projecteuclid.org/euclid.pjm/1103044538
http://projecteuclid.org/euclid.pjm/1103044538
http://summit.sfu.ca/item/13936
http://summit.sfu.ca/item/13936

Bibliography

Tasharrofi, Shahab and Eugenia Ternovska (2014). “Three Semantics for Modular Sys-
tems”. In: CoRR abs/1405.1229.1405.1229. url: http://arxiv.org/abs/1405.1229
(cit. on p. 259).

Ternovska, Eugenia (2015). “An Algebra of Combined Constraint Solving”. In: GCAI
2015. Global Conference on Artificial Intelligence, ed. by Georg Gottlob et al. Vol. 36.
EPiC Series in Computing. EasyChair, pp. 275–295. doi: 10.29007/976n (cit. on
p. 259).

Truszczyński, Miroslaw (Nov. 2010). “Reducts of propositional theories, satisfiability
relations, and generalizations of semantics of logic programs”. In: Artificial Intel-
ligence 174.16–17, pp. 1285–1306. doi: 10.1016/j.artint.2010.08.004 (cit. on
pp. 267 sq.).

Truszczyński, Miroslaw and Stefan Woltran (Nov. 2009). “Relativized hyperequiva-
lence of logic programs for modular programming”. In: Theory and Practice of
Logic Programming 9.6, pp. 781–819. doi: 10.1017/S1471068409990159 (cit. on
pp. 269 sq.).

Väänänen, Jouko (1999). “Generalized Quantifiers, an Introduction”. In: Generalized
Quantifiers and Computation: 9th European Summer School in Logic, Language, and
Information, ESSLLI’97 Workshop, Aix-en-Provence, France, August 1997. Vol. 1754.
LNCS. Springer, pp. 1–17. url: http://www.math.helsinki.fi/logic/opetus/
ylkvantII/beatcs.pdf (cit. on p. 42).

Van Roy, Peter and Seif Haridi (2004). Concepts, Techniques, and Models of Computer
Programming. MIT Press (cit. on p. 11).

Vardi, Moshe Y. (1982). “The complexity of relational query languages (Extended Ab-
stract)”. In: 14th Annual ACM Symposium on Theory of Computing (STOC), May 5-7,
1982, San Francisco, California, USA. San Francisco, pp. 137–146. doi: 10.1145/
800070.802186. url: http://www.cs.rice.edu/~vardi/papers/stoc82.pdf.gz
(cit. on p. 216).

Vennekens, Joost, David Gilis, and Marc Denecker (Oct. 2006). “Splitting an Operator:
Algebraic Modularity Results for Logics with Fixpoint Semantics”. In: ACM Trans-
actions on Computational Logic 7.4, pp. 765–802. doi: 10.1145/1183278.1183284
(cit. on pp. 20, 257).

Warnholz, Sebastian (July 22, 2017). modules: Self Contained Units of Source Code.
CRAN. url: https://CRAN.R-project.org/package=modules (cit. on p. 18).

Wielemaker, Jan, Tom Schrijvers, Markus Triska, and Torbjörn Lager (Jan. 2012). “SWI-
Prolog”. In: Theory and Practice of Logic Programming 12.1-2, pp. 67–96. doi: 10.
1017/S1471068411000494 (cit. on p. 19).

Wijaya, Tri Kurniawan (Aug. 2011). “Top-Down Evaluation Techniques for Modular
Nonmonotonic Logic Programs”. MSc Thesis. Karlsplatz 13, 1040 Vienna, Austria:
Vienna University of Technology. url: https://repositum.tuwien.ac.at/
download/pdf/1614489 (cit. on pp. 220, 225, 265, 267).

290

http://arxiv.org/abs/1405.1229
https://doi.org/10.29007/976n
https://doi.org/10.1016/j.artint.2010.08.004
https://doi.org/10.1017/S1471068409990159
http://www.math.helsinki.fi/logic/opetus/ylkvantII/beatcs.pdf
http://www.math.helsinki.fi/logic/opetus/ylkvantII/beatcs.pdf
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/800070.802186
http://www.cs.rice.edu/~vardi/papers/stoc82.pdf.gz
https://doi.org/10.1145/1183278.1183284
https://CRAN.R-project.org/package=modules
https://doi.org/10.1017/S1471068411000494
https://doi.org/10.1017/S1471068411000494
https://repositum.tuwien.ac.at/download/pdf/1614489
https://repositum.tuwien.ac.at/download/pdf/1614489

Bibliography

Woltran, Stefan (2008). “A common view on strong, uniform, and other notions of
equivalence in answer-set programming”. In:Theory and Practice of Logic Program-
ming 8.2, pp. 217–234. doi: 10.1017/S1471068407003250 (cit. on p. 269).

Wrathall, Celia (1976). “Complete sets and the polynomial-time hierarchy”. In: The-
oretical Computer Science 3.1, pp. 23–33. issn: 0304-3975. doi: 10.1016/0304-
3975(76)90062-1 (cit. on p. 83).

Xiao, Guohui (Dec. 2013). “Inline Evaluation of Hybrid Knowledge Bases”. PhD thesis.
Karlsplatz 13, 1040 Vienna, Austria: Vienna University of Technology. url: https:
//repositum.tuwien.ac.at/download/pdf/1633893 (cit. on pp. 175–178).

Xiao, Guohui, Thomas Eiter, and Stijn Heymans (2013). “The DReW System for Non-
monotonic DL-Programs”. In: Semantic Web and Web Science, ed. by Juanzi Li et al.
New York, NY: Springer, pp. 383–390. isbn: 978-1-4614-6880-6. doi: 10.1007/978-
1-4614-6880-6_33 (cit. on pp. 225, 265).

Yato, Takayuki and Takahiro Seta (2003). “Complexity and Completeness of Finding
Another Solution and Its Application to Puzzles”. In: IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences E86-A.5, pp. 1052–
1060 (cit. on p. 5).

Yourdon, Edward and Larry L. Constantine (1979). Structured Design: Fundamentals of
a Discipline of Computer Program and Systems Design. Prentice-Hall (cit. on p. 9).

291

https://doi.org/10.1017/S1471068407003250
https://doi.org/10.1016/0304-3975(76)90062-1
https://doi.org/10.1016/0304-3975(76)90062-1
https://repositum.tuwien.ac.at/download/pdf/1633893
https://repositum.tuwien.ac.at/download/pdf/1633893
https://doi.org/10.1007/978-1-4614-6880-6_33
https://doi.org/10.1007/978-1-4614-6880-6_33

Colophon
This thesis was written in the LATEX2𝜀 language using AMS-LATEX, mathtools, ntheo-
rem for mathematical macros and environments, TikZ / PGF 3.0.1a for drawing graphs
and figures, listings for automatic source code pretty-printing, and BibLATEX v3.11 for
citation management. The document layout is based on an adapted veelo chapter style
from the memoir class version 3.7g, where the epigraphs in each chapter 𝑛 show hy-
percube graphs𝑄𝑛 in Part I, complete graphs𝐾𝑛 in Part II, wheel graphs𝑊𝑛 in Part III,
and star graphs 𝑆𝑛 in Part IV. The source code was written with the GNU Emacs 25.2.2
editor employing version 12.1.1 of the AUCTEX package. Revisions and changes of this
thesis were managed using the git 2.18.0 version control system. The thesis was typeset
with the LuaLATEX 107.0 LATEX-compiler and the biber v2.11 processor for BIBTEX database
files from the TEX Live 2018 distribution of the mainline development version of the
Debian GNU/Linux distribution codenamed Sid. This document uses version 5.3.0 of
the serif Linux Libertine, the sans-serif Linux Biolinum, the monospaced Fira Code
v1.204 typefaces for program listings, and STIX Two version 2.0.0 with stylistic sets
substitutions 2 and 14 for mathematical equations. Chapter lettrines were produced
withLinuxLibertine Initial (v5.3.0).

293

Biographical Sketch
Thomas Krennwallner received his BSc (Bakk. techn.) in software and information
engineering (2005) and MSc (Dipl.-Ing.) in computational intelligence (2007) from
the Vienna University of Technology, Austria. Since 2015 he works as senior soft-
ware engineer for data-intensive applications at XIMES GmbH and Qmetrix GmbH,
implementing data science workflow systems for quantitative analysis methods and
business analytics, work shift scheduling, and real-time airport passenger flow opti-
mization. From 2008 to 2014 he worked as research and university assistant in the
Knowledge-Based Systems Group at the Institute of Logic and Computation (Vienna
University of Technology), where he was doing research on modularity aspects and
evaluation algorithms for answer set programs and distributed multi-context systems.
He taught courses on introduction into artificial intelligence, logic programming and
knowledge-based systems. In 2007 and 2008, he was employed as research intern at
the Digital Enterprise Research Institute (DERI) of the National University of Galway,
Ireland, where he was studying query language extensions over RDF(S) and XML data
for semantic web reasoning tasks. Between 1999 and 2004 he was working as software
developer in several companies in the context of internet telephony and public key in-
frastructure. He won the Content Award Vienna 2012 Smart City Price with theMyITS
project. His research was honored with a best paper award of the Int’l Conference on
Logic Programming and Nonmonotonic Reasoning 2011, and a best presentation award
at the Doctoral Consortium of the Int’l Conference on Logic Programming 2011. He
has been awarded the OCG Förderpreis 2009 (OCG advancement award 2009) of the
Austrian Computer Society for his master thesis “Integration of Conjunctive Queries
over Description Logics into HEX-Programs.” Krennwallner is the competition chair
of the Federated Logic Conference (FLoC) Olympic Games 2014, organizing cochair of
the fourth Answer Set Programming Competition 2013, and local organization cochair
of the Reasoning Web (RW) 2012 summer school and the Int’l Web Reasoning and
Rules Conference (RR) 2012 in Vienna. He is a team member of knowledge represen-
tation systems such as DLVHEX, DMCS, GiaBATA, and XSPARQL, and a maintainer
for several Debian Science packages. He is a coauthor of one edited book, four book
chapters, ten journal and magazine articles, one W3C Member Submission, and more
than 30 conference and workshop papers.

	Titlepage
	Declaration
	Abstract
	Kurzfassung
	Acknowledgments
	Dedication
	Contents
	List of Figures
	List of Tables
	List of Results
	Modularity in Logic Programming
	Introduction
	Modular Programming
	Programming paradigms
	An Illustrative Example
	Even in Imperative Languages
	Even in Functional Languages

	Modularity in Logic Programming
	Even in Nonmonotonic Logic Programming

	Goals
	Methods
	Contributions
	Organization
	Publications Related with the Thesis

	Preliminaries and Previous Results
	Logic Programs under the Answer Set Semantics
	Syntax of Answer Set Programs
	Semantics of Answer Set Programs

	Generalized Quantifier Logic Programs
	Basic Concepts from Mathematical Logic
	Generalized Quantifiers
	Logic Programs with Generalized Quantifiers

	Modular Logic Programming with GQLPs
	Syntax of modular logic programs
	Semantics of modular logic programs
	Shortcomings of Generalized Quantifier Modular Logic Programs

	Elements of Modular Nonmonotonic Logic Programs
	Modular Nonmonotonic Logic Programs
	Syntax of Modular Nonmonotonic Logic Programs
	Semantics of Modular Nonmonotonic Logic Programs
	Basic Semantic Properties

	Semantic Properties of Modular Nonmonotonic Logic Programs
	Horn Modular Nonmonotonic Logic Programs
	Fixed-Point Characterization
	Stratified Modular Nonmonotonic Logic Programs

	Computational Complexity of Modular Nonmonotonic Logic Programs
	Alternating Turing Machines and Complexity Classes
	Alternating Turing Machines
	Complexity Classes

	Propositional MLPs without Input
	Propositional MLPs with Input
	Proof of Theorem 5.2, item 1
	Proof of Theorem 5.2, item 2
	Proof of Theorem 5.2, item 3

	Acyclic MLPs
	General MLPs
	Proof of Theorem 5.4, item 1
	Proof of Theorem 5.4, item 2
	Proof of Theorem 5.4, item 3
	Complexity of MLPs with bounded predicate arities

	Characterizing Modular Nonmonotonic Logic Programs
	Translation of Modular Nonmonotonic Logic Programs to Datalog
	Module Input Reification
	Rewriting Modules without Input
	General MLP Rewriting Techniques to Datalog
	Instance Rewriting
	Call Rewriting
	Module Removal of Connected Closed Call Sets

	Macro Expansion of Modular Logic Programs
	Module Copy Rewriting
	Module Removal of Separated Modules

	Application: Description Logic Programs
	Rewriting Description Logic Programs to MLPs
	Macro Expansion for dl-Programs

	Representing MLPs with Classical Logic
	Program Completion for MLPs
	Loop Formulas for MLPs
	Ordered Completion and Translational Semantics for MLPs on Finite Structures
	Finite Structures and Translational Semantics for MLPs
	Ordered Completion for MLPs

	Discussion

	Relevance-driven Evaluation of MLPs
	Splitting for Modular Nonmonotonic Logic Programs
	Global splitting for call-stratified MLPs
	Local splitting for input and call stratified MLPs
	Instance stratification

	Top-Down Evaluation Algorithm
	Implementation and Experimental Results

	Related Approaches and Conclusion
	Relationship to DLP-Functions
	DLP-Functions
	Syntax of DLP-Functions
	Semantics of DLP-Functions
	Module Theorem

	Translation from DLP-Functions to MLPs
	Translation from MLPs to DLP-Functions

	Related Work
	Compositional Approaches
	Modularity by Language Constructs
	Modules as Splitting Sets and Related Techniques
	Equivalence Notions for Modular Logic Programming
	Distributed and Heterogeneous Knowledge Bases

	Conclusion
	Summary
	Model Theoretic Semantics and Semantic Properties of MLPs
	Computational Complexity of MLPs
	Rewriting MLPs to Datalog
	Macro Expansion for MLPs
	Modular Loop Formulas
	Ordered Modular Completion
	Relationship between DLP-Functions and MLPs

	Open Issues and Further Research Directions
	Formal Semantics
	Extensions and Fragments of MLPs
	Implementation
	Loop Formulas and Ordered Completion
	Modular Patterns for Logic Programming

	Bibliography
	Colophon
	Biographical Sketch

