

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Prototypical implementation of
an animal health record (AHR)

for livestock management

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Medizinische Informatik

eingereicht von

Christoph Aigner
Matrikelnummer 0525400

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Ao.Univ.Prof. Dipl.-Ing. Mag.rer.nat. Dr.techn. Rudolf Freund

Wien, 28.01.2014
 (Unterschrift Verfasser) (Unterschrift Betreuer)

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig und ohne fremde
Hilfe verfasst, andere als die angegebenen Quellen nicht benützt und die den benutz-
ten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich ge-
macht habe.

Wien, am --
 Name

Acknowledgments

I would like to thank first and foremost my grandparents, my parents and my friends for
their continuous support without which this thesis would have never been possible.

Moreover I would like to express my sincere gratitude to my advisor,
Ao.Univ.Prof. Dipl.-Ing. Mag.rer.nat. Dr.techn. Rudolf Freund for his guidance and
support.

Kurzfassung

Diese Diplomarbeit beschäftigt sich mit der prototypischen Konzeptionierung und der

Implementierung einer elektronischen Krankenakte für die Nutztierhaltung (abgekürzt

AHR). Ein AHR besteht aus mehreren Datensätzen, welche Gesundheitsdaten für Tiere

enthalten. Diese Arbeit beschäftigt sich mit Tieren, die Teil eines Tierbestandes im

Sinne der Nutztierhaltung sind. Der entwickelte Prototyp ist eine Webanwendung,

welche mit der Java Enterprise Edition-Technologie entwickelt wurde und von

Landwirten, weiterverarbeitenden Betrieben, staatlichen Einrichtungen und Tierärzten

gleichermaßen verwendbar ist. Zuerst werden die derzeitige Marktsituation, die

organisatorischen bzw. technischen Standards und die Grundlagen der Java

Webentwicklung beleuchtet. Danach wird die Konzeption dargelegt und Details der

Implementierung diskutiert. Zum Schluss wird das Ergebnis anhand von Screenshots

und textuellen Beschreibungen gezeigt. Im Rahmen der vorliegenden Arbeit wurde der

Design-Prozess und die konkrete Implementierung eines Prototypen detailliert

vorgestellt. Der entwickelte Prototyp ist kompatibel zu den EHR Standards, ermöglicht

einen plattformunabhängigen Zugriff und ist von allen beteiligten Akteuren nutzbar.

Keywords: veterinärmedizinische Krankenakte, AHR, hl7, Nutztierhaltung, javaee, java
server faces, hibernate, mysql

Abstract

This master thesis deals with the prototypical design and implementation of an animal

health record (AHR) for livestock management. An AHR is a series of electronic

datasets that contains health related information for animals. This work focuses on

animals that are part of a livestock. The prototype is a web application that is

implemented with Java Enterprise Edition technology and can be used by farmers,

processing industries, governmental bodies and veterinarians. First the current software

market situation, the organizational respectively technical standards and the

fundamentals of web development with Java are being analysed. Then the software

design is laid out and details of the implementation are being discussed. Finally the

results are shown in the form of screenshots and textual descriptions. The goal of this

thesis was to design and implement a prototype that is standard compliant, easy

accessible through all computer platforms and can be used by all involved stakeholders.

Keywords: animal health record, ahr, hl7, livestock management, javaee, java server
faces, hibernate, mysql

 I

Table of contents

Table of contents ... I

Table of figures ... IV

List of tables .. VI

1 Introduction ... 1
1.1 Problem description and motivation ... 1
1.2 Expected Results ... 2
1.3 Structure of thesis .. 3
1.4 State-of-the-art ... 4

2 Fundamentals of electronic health records ... 5
2.1 Definition of an EHR/AHR .. 5
2.2 Existing software products ... 6

2.2.1 “ANIMAL-office” .. 6
2.2.2 “easyVET” .. 7
2.2.3 „Vetinf“ .. 8
2.2.4 O3-Vet .. 9
2.2.5 Rinderdatenbank AMA ... 9
2.2.6 RDV4M ... 9
2.2.7 Veterinärinformationssystem (VIS) ... 11

2.3 Technical Standards .. 11
2.3.1 HL7 (Health Level 7) .. 11
2.3.2 CEN/ISO EN13606 ... 18
2.3.3 openEHR .. 19
2.3.4 DICOM ... 19

2.4 Classification systems .. 20
2.4.1 SNOMED CT .. 20
2.4.2 LOINC .. 21
2.4.3 Nomina Anatomica Veterinaria ... 22

3 Fundamentals of web development with Java EE 23
3.1 Basic Web technologies ... 23

3.1.1 Structural Layer .. 23
3.1.2 Presentation Layer ... 24
3.1.3 Behavioural Layer .. 25

3.2 Overview of the Java Platform, Enterprise Edition 26
3.2.1 Enterprise Java Beans ... 28
3.2.2 Java Persistence API (JPA) ... 30

 II

3.2.3 Servlets .. 31
3.2.4 SOAP ... 32
3.2.5 RESTful web service .. 32
3.2.6 JavaServer Faces .. 33
3.2.7 Adobe Flex ... 35
3.2.8 Security .. 35

3.3 Software Design Patterns .. 36
3.3.1 Data Access Objects .. 36
3.3.2 Dependency Injection ... 36
3.3.3 Model-View-Controller pattern .. 37

4 Design of the web application ... 38
4.1 Project Stakeholder.. 38
4.2 Requirements analysis ... 40

4.2.1 Functional requirements ... 40
4.2.2 Non-functional requirements .. 42

4.3 Roles .. 43
4.4 Database Design ... 44

4.4.1 Entity-Relationship diagram ... 45
4.4.2 Relations .. 47

4.5 Technology selection ... 51
4.5.1 JSF 2.0 ... 51
4.5.2 RESTful web service .. 52
4.5.3 Spring Security ... 52

4.6 Software architecture ... 53
4.6.1 Framework overview .. 53
4.6.2 Class diagram .. 54
4.6.3 Package diagram ... 56
4.6.4 Deployment diagram .. 56

4.7 GUI-mock-ups .. 57

5 Implementation of the web application .. 60
5.1 Development environment ... 60
5.2 Graphical user interface ... 60

5.2.1 Layout .. 61
5.2.2 Logo ... 62
5.2.3 Web forms and input fields ... 63
5.2.4 Navigation .. 65
5.2.5 Validators and converters ... 66
5.2.6 Notifications .. 66
5.2.7 Menu .. 67
5.2.8 Dialogs ... 67

 III

5.3 Database ... 68
5.3.1 MySQL ... 68
5.3.2 Hibernate .. 68

5.4 Security .. 73
5.5 Business Logic ... 75
5.6 Logging .. 77
5.7 RESTful web service .. 78

6 Results .. 80
6.1 Login/Logout .. 80
6.2 Start page .. 81

6.2.1 Administrators .. 81
6.2.2 Farmers .. 82
6.2.3 Veterinarians .. 83

6.3 Account page ... 84
6.4 Search for farms .. 85
6.5 Add/edit farm-data ... 86
6.6 Add/edit animal-data .. 88

6.6.1 Birth dialog ... 89
6.6.2 Treatment dialog .. 90
6.6.3 Test dialog .. 90
6.6.4 Diagnosis dialog ... 91
6.6.5 Medication dialog ... 92
6.6.6 Slaughter protocol dialog .. 93

6.7 Search for veterinarians ... 93
6.8 Add/edit veterinarian-data .. 94
6.9 Search for processing industries .. 95
6.10 Add/edit processing-industry-data ... 96
6.11 List of drugs ... 97
6.12 Add/edit drug-data ... 98
6.13 Web service ... 99

7 Discussion and Conclusion ... 101

8 Perspective ... 103

Glossary ... 105

Bibliography ... 107

 IV

Table of figures

Figure 1: Interface of ANIMAL-office for animal standing data [2] 7
Figure 2: Statistics module of ANIMAL-office GROSSTIER [2] 7
Figure 3: Main screen of “easyVET” displaying the card box paradigm [8] 8
Figure 4: RDV4M livestock summary („Tierliste“) [11] ... 10
Figure 5: HL7 Reference Information Model [21] .. 16
Figure 6: Major components of a CDA document [23] ... 17
Figure 7: EN 13606 reference model [24] .. 18
Figure 8: Minimal openEHR EHR System [28].. 19
Figure 9: Comparison of the traditional and Ajax web application model [41] ... 26
Figure 10: Java EE 6 architecture [42] ... 27
Figure 11: Architecture layering [43] ... 28
Figure 12: Role of Hibernate in a Java Application [46] ... 31
Figure 13: JSF architecture [43] .. 34
Figure 14: DAO pattern [54] ... 36
Figure 15: Entity Relationship diagram, C. Aigner .. 46
Figure 16: Overview of the Java EE framework components, C. Aigner 53
Figure 17: class diagram, C. Aigner .. 55
Figure 18: Package diagram, C. Aigner ... 56
Figure 19: Deployment diagram, C. Aigner ... 57
Figure 20: Login-page, C. Aigner .. 57
Figure 21: Entry-page (Cockpit), C. Aigner .. 58
Figure 22: Search mask for farms/industries, C. Aigner .. 58
Figure 23: Mask for farm/industry standing data, C. Aigner 59
Figure 24: Animal standing and treatment data, C. Aigner 59
Figure 25: Layout of the application, C. Aigner ... 62
Figure 26: Logo of the web application, C. Aigner .. 62
Figure 27: <p:inputText> component, C. Aigner ... 63
Figure 28: <p:calendar> component, C. Aigner .. 63
Figure 29: <p:selectOneMenu> component, C. Aigner ... 64
Figure 30: <p:selectOneRadio> component, C. Aigner ... 64
Figure 31: <p:selectBooleanCheckbox> component, C. Aigner 64
Figure 32: <p:Panel> component with a <h:panelGrid> layout, C. Aigner 65
Figure 33: Error message displayed with a p:growl component, C. Aigner 67
Figure 34: <p:Dialog> widget containing two panels and a button, C. Aigner ... 68
Figure 35: Login page, C. Aigner ... 80
Figure 36: Start page for admins, C. Aigner .. 82
Figure 37: start page for farmers, C. Aigner .. 83
Figure 38: start page for veterinarians, C. Aigner ... 84

 V

Figure 39: account page, C. Aigner .. 85
Figure 40: farm search view, C. Aigner .. 86
Figure 41: farm detail view, C. Aigner ... 87
Figure 42: animal detail view, C. Aigner ... 89
Figure 43: birth dialog, C. Aigner ... 90
Figure 44: treatment dialog, C. Aigner .. 90
Figure 45: test dialog, C. Aigner .. 91
Figure 46: diagnosis dialog, C. Aigner .. 92
Figure 47: medication dialog, C. Aigner ... 92
Figure 48: slaughter protocol dialog, C. Aigner ... 93
Figure 49: search veterinarian view, C. Aigner ... 94
Figure 50: add/edit veterinarian data, C. Aigner ... 95
Figure 51: search processing industry view, C. Aigner .. 96
Figure 52: add/edit processing industry data, C. Aigner .. 97
Figure 53: List of drugs, C. Aigner ... 98
Figure 54: add/edit drug data, C. Aigner .. 99
Figure 55: RESTful web service call, C. Aigner .. 100
Figure 56: PrimeFaces Mobile [72] ... 103

 VI

List of tables

Table 1: ISO/OSI network model [14] ... 12
Table 2: HL7v2 delimiters [1].. 13
Table 3: Relations including data types and constraints, C. Aigner 51

Introduction 1

1 Introduction
“Healthcare quality improvement is an economic and moral necessity. The

transformation, which is needed to improve productivity and effectiveness, will rely on

computer interoperability to deliver information when and where required, support

soundly-based decision-making, eliminate unnecessary repetition, reduce delays and

avoid errors.” [1]

This citation originating from literature dealing with medical informatics in the domain

of human health care also applies to veterinary medicine especially within livestock

husbandry where governmental bodies, agricultural holdings and medical institutions

must work together to fulfil various legal requirements respectively the needs of the

end-consumer-market.

1.1 Problem description and motivation
Goal of this master thesis is the prototypical implementation of an animal health record

(from now on abbreviated as AHR) within the domain of livestock husbandry. An AHR

is a series of electronic datasets that contains health information. The main difference

between an AHR for pets and an AHR for livestock husbandry is that the owner of the

animal being recorded may not just be a single person, but can also be a whole

agricultural holding, which has to be modelled as well. The medical field of activity

differs as well. Veterinarians working with livestock are responsible for the prevention

of epidemics, must be aware of legal regulations concerning food products and should

assist the owner with the breeding process. Governmental respectively non-

governmental entities and organizations can also be considered a part of animal health

records and thus may be a part of the data model as well.

The software will be used by veterinarians, farmers respectively by governmental

bodies. It is implemented as a web application and is accessible via a personal computer

using standard web browser software. The system also provides interfaces for

communication with other applications (e.g. Web Services). Security standards are

maintained as well (e.g. SSL/TLS) as the possibility to incorporate external data (e.g.

animal data from “Agrarmarkt Austria”).

Health records are part of the medical documentation process, which is an essential area

of medical informatics. In human medicine lifelong recording of electronic health data

Introduction 2

is an evolving concept, thus many standards for data storage and transmission have

already been developed. This master thesis shows, on the basis of a prototypical

implementation, which interoperability standard is best suitable for an AHR in livestock

husbandry (e.g. HL7, openEHR).

Since the application is web based, suitable technology was evaluated during the

development process. The premise was that the software (programming languages,

APIs, IDEs, server software, tools) which is going to be applied within this application

is based on open source technology, platform independent and accessible by any

computer supporting modern web browsers.

1.2 Expected Results
The expected result is a functional system architecture respectively a working prototype

of an animal health record for livestock management.

It will be built on the Java Platform, Enterprise Edition Version 6 (short Java EE 6) and

implemented as a web application. It will include parts of the use cases defined within

the AHR group to analyse the interaction between the determined user groups (e.g.

farmers, veterinarians), thus aiding in creating a user-interaction-concept. In the course

of the development process the following questions will be dealt with:

Standards
This work will clarify which human medicine based concept can be used to implement

an AHR. It will decide if it is reasonable to use the HL7v3 RIM standard as a basis for a

data model or if any other standard is more suitable for the task.

Design
The thesis will elaborate on a software design for an animal health record. It will define

the project stakeholders, the requirements and a user/role concept. A database design

that is based on an EHR standard will be made. The details of the underlying software

architecture will be laid out.

Implementation
The software will be developed as a web application that is built on Java Enterprise

Edition. Technology choices for the application logic, the database implementation, and

security aspects respectively the graphical user interface will be made. The work will

Introduction 3

answer the question, if a combination of web technology (HTML, Ajax or Flash/Flex)

with Java EE technology (including Spring, Hibernate) is reasonable and practical.

The thesis will discuss if external interfaces should be provided for third party

applications and on which technology they should be based on (e.g. SOAP, Servlet).

It will be clarified which external data the application should integrate (e.g. animal data

from AMA).

The prototype will include the whole source code and a compiled binary for deployment

on the server. The system will run on any standard desktop PC and, since the

application is going to be built on Java EE technology, the required software to run the

application will be freely accessible.

1.3 Structure of thesis
The first step is the requirements analysis (functional and non-functional), the

stakeholders and the use-cases. The next step is the design of the underlying system

architecture and database. These processes will be accomplished with other colleagues

working on these specific topics as a team and are depicted in chapters 3 and 4.

The Unified Modelling Language (UML) is used for the software design. The structure

will be modelled with class diagrams and package diagrams. As a typical process in UI

prototyping the first graphical user interfaces are going to be sketched by hand.

The next step will be the determination of the technology to build the graphical user

interfaces. There are two main choices:

• JavaServer Faces (built on HTML, JavaScript and AJAX)

• Adobe Flex (built on the open-source version of Adobe Flash Technology)

Furthermore the technology for the external interface has to be determined. The two

choices are SOAP or RESTful web services.

Before the implementation is going underway the right Integrated Development

Environment (short IDE) has to be chosen.

The application logic will be developed with Java EE technology. The development will

rely on the use of software engineering design patterns (e.g. MVC Pattern, DAO, and

Dependency Injection). It will make use of the Spring Framework and Hibernate.

Introduction 4

The database will be implemented with MySQL technology using the SQL 99 Standard

for definition and manipulation of data. These processes are depicted in chapter 5.

Chapter 6 outlines the result by means of screenshots and textual descriptions.

1.4 State-of-the-art
There are already commercial AHR software systems available on the market. The

products “easyVET” developed by the German based software company “IFS

Informationssysteme GmbH” and “Vetinf” developed by the company “Vetinf GmbH”,

which is also located in Germany focus mainly on veterinary practices and hospitals

(see Chapter 2.2).

The Austrian company “SEG Informationstechnik GmbH” developed the product

“ANIMAL office” which is a practice management system that also includes special

modules for livestock management [2].

The School of Veterinary Medicine, University of Milan developed a veterinary

electronic patient record named the O3-Vet project, that is compliant with the IT

standard HL7, DICOM and IHE [3].

Viktoria Willner wrote a master thesis that evaluates the requirements for an AHR

especially for small animals (e.g. pets) [4]. It discusses the EHR standards (like HL7,

openEHR) and medical nomenclatures (ICD 10, SNOMED and LOINC) in connection

with animal health records. Furthermore she conducted an empirical study with

veterinarians to determine their needs.

Andrea Füresz wrote a master thesis about a software architecture design for an AHR

[5]. After analysing the current market situation and the legal constraints she defined the

stakeholders, a role concept, the requirements and the software architecture. Her work

will be a basis for the prototypical implementation.

Fundamentals of electronic health records 5

2 Fundamentals of electronic health records
This chapter will give an overview of electronic health records respectively animal

health records. It will provide a basic definition of health records, a fundamental

overview of existing AHR-related software products and services (especially in Austria)

and an in-depth view of various technical standards used in conjunction with animal

health records.

2.1 Definition of an EHR/AHR
According to [6] an electronic health record can be understood as an electronic record of

a patient's health information generated by one or more encounters in any care delivery

setting. It includes patient demographics, progress notes, problems, medication, vital

signs, past medical history, immunizations, laboratory data and radiology reports [6].

The electronic health record is part of the medical documentation process and thus is

indented to be a mechanism for integrating health care information currently collected

in both paper and electronic medical records (EMR) for the purpose of improving

quality of care [7].

There is no consistent definition for an animal health record (AHR) in literature [4].

According to [4] an animal health record can be defined as a lifelong cross-institutional

record that contains all relevant medical data and associated documents of an animal.

This work expands that definition by focusing on animals that are part of a livestock.

An AHR in the context of this work can be understood as a series of electronic records

containing lifelong medical respectively organizational data (e.g. disease prevention,

slaughter protocols) for animals that are part of a livestock. This animals can be:

x Cattle

x Horses

x Pigs

x Sheep

x Goats

x Poultry

Fundamentals of electronic health records 6

2.2 Existing software products
The survey Viktoria Willner [4] conducted with Austrian veterinarians concluded that

the following three software products were the most commonly used:

x "ANIMAL-office"

x "easyVET"

x "Vetinf"

"ANIMAL-office" was the most frequently installed program followed by "easyVET"

and “Vetinf”.

All of the highlighted software products include modules for accounting and

organization as well. “ANIMAL-office” includes modules for livestock management in

contrast to its competitors.

2.2.1 “ANIMAL-office”
"ANIMAL-office" is a practice management software developed by the Austria

company "SEG Informationstechnik GmbH" [2]. There are versions available for small

(“ANIMAL-office KLEINTIER”) and for large (“ANIMAL-office GROSSTIER”)

animal vet practices. The software can be deployed as a client-server or as a standalone

application.

“ANIMAL-office KLEINTIER”
The software for small animal vet practices includes modules for the management of

animal standing data, treatment data, accounting and an ordering system. The use of a

product code scanner simplifies animal and product (e.g. medicine, fodder)

identification. The product is connected to various animal databases (including

animaldata.com) [2].

Fundamentals of electronic health records 7

Figure 1: Interface of ANIMAL-office for animal standing data [2]

“ANIMAL-office GROSSTIER”
The version for large animal vet practices includes modules for livestock management

and breeding guidance. It is able to produce various statistics of given breeding data. It

also includes solutions for pairing and insemination.

Figure 2: Statistics module of ANIMAL-office GROSSTIER [2]

2.2.2 “easyVET”
“easyVET” is a praxis management software developed by the company “IFS

Informationssysteme GmbH” from Hannover, Germany [8]. Its key concept is based on

Fundamentals of electronic health records 8

filing boxes. The main screen of the program consists of three filing boxes. The first one

contains the pet/livestock owners. The second one contains the livestock. The third one

is a representation of the clinical records [8].

“easyVET” also includes modules for accounting, statistics and clinic management. It

has a built-in calendar function and a to-do-list. It can also be connected to various

laboratory systems [8].

Figure 3: Main screen of “easyVET” displaying the card box paradigm [8]

2.2.3 „Vetinf“
“Vetinf” is developed by the German company “Vetinf Gmbh”. The product is available

in two versions “Vetinf Basis” and “Vetinf Standard”.

“Vetinf Basis” includes software modules for the management of patient data, medical

records and accounting.

“Vetinf Standard” contains extra modules for clinical management, statistics, pharmacy

management and the integration of laboratory systems.

Additionally modules for financial accounting and mobile use are available.

Fundamentals of electronic health records 9

2.2.4 O3-Vet
O3-Vet is an electronic patient record that is compliant with the IT standard HL7,

DICOM and IHE.

The software was developed as an open-source web application. The PHP scripting

language was used to implement the dynamic portion of the web interfaces. Database

access was developed with the help of the PEAR framework and distribution system for

reusable PHP components. MySQL was used as the database backend. According to [3]

the database contains two different sections: the first one stores all data structures to

satisfy the requirements of the IHE model. The second one stores all necessary

structures to implement the veterinary electronic patient record.

According to [3] the system was tested from May to October 2006 and results show that

the majority of the veterinarians involved in the test agreed on the advantages obtained

by the use of application.

2.2.5 Rinderdatenbank AMA
According to [9] the BSE incidents of the 1990s has caused a massive decline in the

consumption respectively export of beef. As a countermeasure the European Union

decided to establish a new edict for the identification of cattle within a central database.

The “Agrarmarkt Austria” (short AMA) was assigned the task to build such a database

in Austria. The “Rinderdatenbank” was officially recognised by the EU on the 1st of

October 1999.

Every cattle owner must report any incident (birth, acquisition, sale, slaughter, death)

within a period of seven days to the AMA database.

The database can be accessed online via the “eAMA” web application [10]. There are

no technical interfaces for third party applications available.

2.2.6 RDV4M
RDV4M (Rinderdatenverbund) is a software implemented by the company “Zucht Data

EDV-Dienstleistungen GmbH”. It is available as a web application for livestock owners

that are members of a “Landeskontrollverband LKV”. “eAMA” user credentials can be

used to gain access to the system [11]. The system supports data export via PDF or

comma-separated values.

Fundamentals of electronic health records 10

The software consists of four modules:

x Module “BETRIEB”

x Module “TIER”

x Module “GRAFIK”

x Module “ADMIN”

Module “BETRIEB“
This module maintains data about the livestock itself, performed work, departed animals

and breeding values. Inseminations can be saved and subsequently printed out as as

well.

Figure 4: RDV4M livestock summary („Tierliste“) [11]

Module “TIER”
The module “TIER” can be accessed by selecting an animal using its identification

number in one of the lists provided by the module “BETRIEB”. It contains information

about the heritage, calving, lactation and meat production of the animal. Activities can

be stored chronologically.

Module “GRAFIK”
This module displays interactive charts of results gathered from sample milkings.

Module “ADMIN”
This module lets the user configure various parameters of the application.

Fundamentals of electronic health records 11

2.2.7 Veterinärinformationssystem (VIS)
The “Veterinärinformationssystem” (VIS) is a combination of the central pig database

“Zentrale Schweinedatenbank” (ZSDB), which was created in 2002, and the database

for sheep and goat livestock that was introduced in 2005 [12]. The legal basis is the

“Tierkennzeichnungs- und Registrierungsverordnung 2009 idgF” (TKZVO 2009).

The database is helpful in the prevention of contagions and also provides a consistent

animal identification for sheep and goats [12].

VIS is implemented as a web application that is accessible via the Statistik.at web

portal. A username/password combination is required to access the system.

2.3 Technical Standards
Technical standards have been or are being developed to first and foremost support

health care interoperability. According to [13] the development of standards is essential

for sharing patient health information between health professionals respectively

supporting interoperability between organisations and software from different vendors.

This chapter describes the following standards:

x Health Level 7 (HL7 v2, HL7v3 RIM, CDA)

x CEN/ISO EN13606

x openEHR

HL7 and CEN/ISO EN13606 are both standards for information exchange in contrast to

openEHR which claims to be a standard that defines a complete electronic health

record.

The following standards were all developed for usage in the domain of humane

medicine but can also be adapted to be used within veterinary medicine.

2.3.1 HL7 (Health Level 7)
The name “Health Level 7” abbr. HL7 has two meanings. First, it is the name of an

international voluntary organization with affiliates in 31 countries that is accredited with

the American National Standards Institute (ANSI) and also collaborates with

international (ISO TC215) and European (CEN TC251) standards development

organizations. It creates standards for the exchange, management and integration of

electronic healthcare information for clinical and administrative purposes [1]. Three

Fundamentals of electronic health records 12

times a year, a week-long working group consisting of HL7 volunteers is working on

the development of the HL7 standards [1].

The second meaning is the name of the standards themselves. It is derived from the

ISO’s Open System Interconnect (OSI) network model [1]. According to [14] the OSI

model defines a seven-layer-stack, with each layer providing a specific network

function. Level one to four provides the network services and communicates data across

the network (interconnection). Level five to seven form the end-user layers and assist

application management (interworking) [14]. HL7 resides on the seventh layer of the

ISO/OSI reference model, the application layer and is thus called “Health Level 7”.

Layer Name Purpose
1 Physical Layer Data transport media
2 Data Link Layer Local network routing and addressing
3 Network Layer Remote network routing and addressing
4 Transport Layer Data collection and aggregation
5 Session Layer Extended duration connection management
6 Presentation Layer Data conversion
7 Application Layer End-user applications

Table 1: ISO/OSI network model [14]

HL7 in Austria
The Austrian authority for HL7 is the "HL7 Anwendergruppe Österreich". It is a non-

profit organization that assists data-communication within the public health-care sector

through the international standards of Health Level 7 [15]. Members have the ability to

download HL7 related papers and are also able to participate in discussion forums. An

annual individual membership costs 75 Euros.

HL7 Version 2
HL7 v2.0 was published in 1988, one year after the initial release of HL7 v1.0. It has

since been under continuous development. The latest version HL7 v2.7 was published

in 2011. According to [16] it is the workhorse of electronic data exchange in the clinical

domain and arguably the most widely implemented standard for healthcare in the world.

HL7v2 messages are encoded in ASCII format and are therefore human readable [17].

An integral part of HLv2 is its backward compatibility. According to [1] this is very

important because older versions are still widely used due to the technical respectively

Fundamentals of electronic health records 13

financial risks involved in upgrading to a newer version of the standard. HL7v2

achieves its backward compatibility by marking old methods as deprecated instead of

removing them completely.

HL7v2 messages are sent in response to trigger events [1]. An HL7 message consists of

one or more segments which are separated by the carriage return character \r or 0x0D in

hexadecimal [17]. The first segment is the message header. Each segment contains one

specific category of information, such as patient information or lab results [17]. The

name of each segment is specified in the first field which is always three characters

long[17]. "MSH" for example is the code for the message header. Segments (resp.

segment groups) of the same type can be repeated.

Information that is not defined by the HL7 standards can be encoded with custom

segments. Those segments begin with the letter Z and are thus called Z-segments [17].

Usually such segments are being ignored by applications who don't know how to handle

them [17].

 A segment is further divided into fields (also called composites) which are separated by

the pipe (|) character. Composites may contain one or more sub-composites which are

delimited by the caret (^) character. If those sub-composites also contains composites

the ampersand (&) character is used to divide them. Sub-sub-composites must be

primitive data types [17].

Symbol Usage
| Field separator
^ Component separator
~ Repetition separator
\ Escape character
& Subcomponent separator
<CR> Segment terminator

Table 2: HL7v2 delimiters [1]

The following example shows a message returning from a laboratory containing a test

result for serum glucose with a value of 182 mg/dL authored by Howard H. Hippocrates

[18]. The test was ordered by Patricia Primary for Patient Eve E. Everywoman [18]. The

use case takes place in the US Realm [18]. The format is HL7 V2.4.

MSH|^~\&|GHH LAB|ELAB-3|GHH OE|BLDG4|200202150930||ORU^R01|CNTRL-
3456|P|2.4<cr>

Fundamentals of electronic health records 14

PID|||555-44-4444||EVERYWOMAN^EVE^E^^^^L|JONES|19620320|F|||153
FERNWOOD DR.^
^STATESVILLE^OH^35292||(206)3345232|(206)752-121||||AC555444444||67-
A4335^OH^20030520<cr>
OBR|1|845439^GHH OE|1045813^GHH
LAB|15545^GLUCOSE|||200202150730|||||||||
555-55-5555^PRIMARY^PATRICIA P^^^^MD^^|||||||||F||||||444-44-
4444^HIPPOCRATES^HOWARD H^^^^MD<cr>
OBX|1|SN|1554-5^GLUCOSE^POST 12H
CFST:MCNC:PT:SER/PLAS:QN||^182|mg/dl|70_105|H|||F<cr>
The first segment contains the message header. Its ninth field determines the message

type. In this case it is an "ORU^R01" message. ORU is described as an "Observation

result - unsolicited" [1]. R01 is the trigger event. It is being describes as "ORU/ACK -

Unsolicited transmission of an observation" [19]. The sending applications is the GHH

Lab in ELAB-3 [18]. The receiving application is the GHH OE system located in

BLDG4 [18]. The message was sent on 2002-02-15 at 09:30 [18].

The second segment contains the patient identification (PID). It includes the date of

birth (1962-03-20), the place of residence (Statesville, OH) and the patient ID number

(555-44-4444).

The third segment contains the observation request (OBR). It encodes the fact that

Patricia Primary MD requested the observation 15545^GLUCOSE which in turn was

performed by Howard Hippocrates MD.

The final segment contains the observation result (OBX). The result was 182 mg/dL.

HL7 Version 3
The design process on the HL7 Version 3 standard began in the year 1992 with the

establishment of a task force [1].

One of the main characteristics of HL7v2 was its flexibility [1]. It allowed programmer

to customize the protocol to their needs by using optional data elements and segments.

The drawback of this flexibility is of course rising complexity. Most vendors made use

of this flexibility resulting in lots of different implementations.

Version 3 addresses these and other problems by introducing an object-oriented

methodology and a Reference Information Model (RIM) to create messages [1]. The

primary goal for HL7v3 was to offer a definite and testable standard for health care

interoperability, covering the entire healthcare domain, with the ability to certify

vendors' conformance [1].

Fundamentals of electronic health records 15

The RIM consists of three main classes (Act, Role and Entity) which are linked together

using three association classes (Act-Relationship, Participation and Role-Link) [1].

Every event is modelled as an Act [1]. Acts may have numerous Participations, which

are Roles being played by Entities [1]. Acts may also be related to other Acts, via Act-

Relationships [1].

Each of the three main classes are modelled as "is-a" relations (generalization).

According to [20] generalization is achieved by concentrating the properties, attributes

respectively relations, of similar entities into one super-entity. Attributes that cannot be

synthesized remain in the sub-entity [20]. Sub-entities can act as super-entities as well.

A sub-entity can also be called a specialization of a super-entity. For example,

Veterinarian is a sub-entity of Person. Veterinarian inherits all attributes from its super-

entity Person.

Fundamentals of electronic health records 16

Figure 5: HL7 Reference Information Model [21]

Fundamentals of electronic health records 17

HL7 CDA
HL7 CDA Release 2.0 is based on XML and specifies the structure and semantics of

clinical documents [22]. It is part of the HL7v3 specification and was approved as an

ANSI standard on May of 2005 [22]. CDA documents derive their machine processable

meaning from the HL7v3 RIM and use the HL7v3 data types [23].

A basic document is wrapped by the <ClinicalDocument> element which contains a

header and a body [23]. The header identifies and classifies the document and provides

information on authentication, the encounter, the patient, and the involved providers

[23]. The content of the body is the clinical report itself, which can be either an

unstructured blob (binary large object) or can be comprised of structured markup [23].

Figure 2 shows a structured body (<structuredBody> element) that is divided into

multiple sections. The narrative block (<text> element) is a critical component and

must contain the human readable content to be rendered [23].

Figure 6: Major components of a CDA document [23]

Some implementations are using the HL7 CDA standard for the exchange of messages

(e. g. laboratory results, prescriptions), making it hard to differentiate HL7 documents

and HL7 messages [23].

CDA documents can be exchanged in HL7 messages or other transport solutions (e-

mail/MIME, etc.) [23].

Fundamentals of electronic health records 18

2.3.2 CEN/ISO EN13606
According to [24] the overall goal of EN13606 is to define a rigorous and stable

information architecture for communicating part or all of the EHR of a single subject of

care, to support the interoperability of systems and components that need to

communicate EHR data via electronic messages. It was not intended to specify the

internal architecture or database design of EHR systems or components [24]. It was

developed by the European Committee for Standardisation 251 (CEN/TC 251) using the

openEHR archetype methodology [25].

EN13606 follows a dual model architecture that defines a clear separation between

information and knowledge [26]. The reference model contains the basic entities for

representing any information of the EHR [26]. The archetypes, which are formal

definitions of clinical concepts, are structured and constrained combinations of the

entities of a reference model [26].

Reference model
The reference model consists of seven components. The top-level container is called

EHR_EXTRACT. It contains EHR data as compositions, optionally organized by

folders [24]. Compositions contain entries, optionally contained within sections (which

may be nested) [24]. Entries contain elements, optionally contained within clusters

(which may be nested) [24].

Figure 7: EN 13606 reference model [24]

Archetype model
Archetypes are comprised of three main sections [26]:

x Header

Fundamentals of electronic health records 19

x Definition

x Ontology

The header contains metadata about the archetype (e. g. identifier, author) [26]. The

definition section contains the description of the clinical concept which represents the

archetype in terms of reference model entities [26]. The ontology part defines all

linguistic entities [27].

2.3.3 openEHR
The openEHR standard is maintained by the openEHR Foundation which is an

international, not-for-profit company whose mission is 'to promote and facilitate

progress towards electronic health records of high quality, to support the needs of

patients and clinicians everywhere' [25].

A minimal EHR system that follows the openEHR standard consists of an EHR

repository, an archetype repository, terminology (if available), and

demographic/identity information [28].

Figure 8: Minimal openEHR EHR System [28]

2.3.4 DICOM
The Digital Imaging and Communications in Medicine (short DICOM) Standard is

maintained by the multi-specialty DICOM Standards Committee and is being developed

by 26 different workgroups [29]. It specifies a non-proprietary data interchange

protocol, a digital image format and a file structure for biomedical images including

image-related information [29]. DICOM interfaces can connect image acquisition

Fundamentals of electronic health records 20

equipment (e.g. CT, MRI, and ultrasonography) with image archives and image

processing respectively display devices.

The standard was first conceived in 1985 by a joint committee consisting of the ACR

(American College of Radiology) and the NEMA (National Electrical Manufacturers

Association). It was followed up by Version 2.0 published in 1988 and Version 3.0

published in 1993. The standard has since been revised many times, mostly on yearly

bases [29].

A DICOM image contains, besides the image date itself, a header consisting of various

Information Object Definitions (IODs) such as patient data or modality information.

Used data compression standards are: JPEG, JPEG Lossless, JPEG 2000, or MPEG-2

for multi-image (video) sequences [29]. Images can be viewed with stand-alone

applications (e.g. Adobe Photoshop, IrfanView) or complete Picture archiving and

communication systems (PACS) [29].

A robust open-source implementation of the DICOM standard is "dcm4che". It is

written in Java and can be deployed on JDK 1.4 and up [30].

2.4 Classification systems

2.4.1 SNOMED CT
Systematised Nomenclature of Medicine (SNOMED) maintains a controlled vocabulary

with comprehensive coverage of diseases, clinical findings, etiologies, therapies,

procedures and outcomes [31].

It was realized in 1975 as a successor to the Systematized Nomenclature of Pathology

(SNOP) Standard, which was published in 1965 [1].

In 2002 a merger of SNOMED and NHS Clinical Terms Version 3 led to the release of

SNOMED CT [1]. As of January 2009, it contained over 310,000 active concepts,

990,000 English descriptions, and 1.38 million relationships [1].

SNOMED CT is composed of components that are identified by a SNOMED CT

Identifier (short SCTID) and have a validity status. These components can be concepts,

relationships, descriptions, subsets and cross maps.

Fundamentals of electronic health records 21

Concepts represent distinct clinical meanings. They are identified by a SCTID and are

associated with a set of relationships and two or more descriptions [32]. A description

links a human-readable term with a concept [1]. There are three description types [32]:

x Preferred Term is the most common word or phrase to name a concept.

x Fully Specified Name is an unambiguous way to name a concept

x Synonyms are the rest of the names that may be used for a concept.

Relations are the connections between concepts. Every SNOMED CT concept is at least

related to one other concept.

Subsets are used to specify picking lists for specific data entry fields to increase

usability [1].

Cross Maps link SNOMED CT terms to other terminologies [32].

Example SNOMED CT Concept [32]:

Fully Specified Name: Myocardial infarction (disorder)
DescriptionID 751689013
Preferred term: Myocardial infarction
DescriptionID 37436014
Synonym: Cardiac infarction
DescriptionID 37442013
Synonym: Heart attack
DescriptionID 37443015
Synonym: Infarction of heart
DescriptionID 37441018

2.4.2 LOINC
According to [33] Logical Observation Identifiers Names and Codes (LOINC) provides

a set of universal names and ID codes for identifying laboratory and clinical test results.

Its current scope includes all observations reported by clinical laboratories, including

the specialty areas of chemistry, toxicology, haematology, serology, blood bank,

microbiology, cytology, surgical pathology and fertility. A large number of veterinary

medicine terms have also been included [33].

The official LOINC manual [33] states that the fully specified name of a test result or

clinical observation has five or six main parts including the name of the component or

analyte measured, the property observed, the timing of the measurement, the type of the

sample, the scale of the measurement and - where relevant - the method of the

measurement.

Fundamentals of electronic health records 22

Formal syntax description of the fully specified name [33]:

<Analyte/component>:<kind of property of observation or
measurement>:<time aspect>:<system (sample)>:<scale>:<method>
Example for Gamma-GT (liver enzyme):

Gamma glutamyl transferase:CCnc:Pt:Ser/Plas:Qn
The components full name is "Gamma glutamyl transferase". "CCnc" stands for

"Catalytic Concentration". The time aspect "Pt" refers to a point in time. "Ser/Plas"

indicates that the sample came from blood plasma or serum. "Qn" refers to a

quantitative scale, which means that the result of the test is a numeric value that relates

to a continuous numeric scale [33].

2.4.3 Nomina Anatomica Veterinaria
The Nomina Anatomica Veterinaria (N.A.V.) is a compilation of anatomical terms for

use in veterinary science. The scientific text is prepared by the International Committee

of Veterinary Gross Anatomical Nomenclature [34].

The first edition was published in October of 1968. Before that, many publications used

terms of direction related to the human standing position, with the forearms supinated in

a posture that is impossible in most animals [34]. The 5th edition, which is the current

edition, was initially published in 2005. A revised version, containing merely

corrections of typographic errata was made available in 2012. The 5th edition was

published primarily on the Internet to increase distribution and at the same time reduce

costs [34].

A set of principles, which agree to a large extent with those of the Nomina Anatomica,

have served as guides in the work of the Committee: Each anatomical concept should be

designated by a single term. Each term should be in Latin. Terms should be as short and

simple as possible. Terms should be easy to remember and should have instructive

respectively descriptive value. Topographically close structures should have similar

names. Differentiating adjectives should usually be opposites. Eponyms should not be

used.

Fundamentals of web development with Java EE 23

3 Fundamentals of web development with Java EE
This chapter explains basic methods of web development with the Java Platform,

Enterprise Edition (short Java EE) on which the prototype is built on.

3.1 Basic Web technologies
Every web application, whether it is developed with Java EE, .NET or any other

programming framework relies on the basic web technologies to either interact with

users via web browsers or other systems via interfaces.

Web standards can be described in terms of layers. There are three basic layers that are

built on each other, resembling the ISO/OSI reference model [35]:

x Structural Layer

x Presentation Layer

x Behavioural Layer

The structural layer is formed by the marked up document. It builds the foundation on

which other layers may be applied [35]. The presentation layers provided instructions

on how the document should look on the screen, sound when it is read aloud, or be

formatted when it is printed [35]. These instructions are specified with Cascading Style

Sheets (CSS). The behavioural layer on top adds interactivity and dynamic effects to a

site [35]. This layer is specifically important for modern web applications, because it

increases and simplifies user interaction.

3.1.1 Structural Layer

HTML
HTML (HyperText Markup Language) is a mark-up language that describes the

appearance and content of a webpage. It was created in 1991 by Tim Berners-Lee as a

simple way to indicate the meaning and structure of hypertext documents [35]. Since

then, browser developers augmented the HTML specification with their own subset of

tags. To overcome this issue, Berners-Lee founded the World Wide Web Consortium

(W3C) in 1994 [35]. The W3C continues to release updated and standardized versions

of HTML in publications knows as “Recommendations” [35]. The latest version is

HTML 4.01 [36] respectively HTML 5.1 which is still a draft [37].

Fundamentals of web development with Java EE 24

The reformulation of HTML 4 is called XHTML 1.0 which uses the same vocabulary

but the syntactical rules are derived from XML (eXtensible Markup Language) [38].

For example, an empty element must either have an end tag or the start tag must end

with “/>”. The line break in HTML 4 looks like this: “
”. In XHTML 1.0 it looks

like “
” or “
</br>”.

3.1.2 Presentation Layer

CSS
Cascading Style Sheets (CSS), a W3C standard, define the presentation of web

documents [35]. The term presentation refers to the way a document is displayed or

delivered to the user, whether it is on a computer monitor, a mobile phone display or

read aloud by a screen reader [35].

Despite never intended to be a presentational language, HTML still supported tags for

the look of a webpage, e.g. the tag. With the introduction of CSS Level 1 in

1996 those tags became obsolete.

CSS 1 contained all the basics for attaching font, colour and spacing instructions to

elements on a web page [35] Internet Explorer 3 was the first browser to implement

CSS 1.

In 1998 CSS Level 2 was released. It added properties for positioning elements on the

page, introduced media type, table layout properties, aural style sheets and additional

sophisticated methods for selecting elements. CSS Level 2 Revision 1 (CSS 2.1) was

released in 2011. It fixed errors, deleted properties and moved some unsupported

features to the CSS 3 specification [35].

CSS 3, unlike CSS 2 is divided into several separate documents called modules. Some

of them are still working drafts and some have already been published as formal

recommendations. CSS 3 adds support for vertical flowing text, improved table

handling, international language and better integration with other XML technologies

such as SVG (Scalable Vector Graphics), MathML, and SMIL (Sychronized

Multimedia Interchange Language) [35].

Fundamentals of web development with Java EE 25

3.1.3 Behavioural Layer

Object models
DOM (Document Object Model) provides a platform- and language-neutral interface

that allows programs and scripts to dynamically access and update the content, structure

and style of documents [39]. The Document Object Model Level 1 Specification was

released in 1998 and covers core HTML and XML documents as well as document

navigation and manipulation [35]. DOM Level 2 was published in 2000 and includes a

style sheet object model. DOM Level 3 was introduced in 2004. It enhances DOM 2 by

completing the mapping between DOM and the XML Information Set, including the

support for XML Base, adding the ability to attach user information to DOM Nodes or

to bootstrap a DOM implementation. It also provides mechanisms to resolve namespace

prefixes or to manipulate “ID” attributes, giving to type information [40]. DOM4 is still

a working draft.

JavaScript
JavaScript is a web scripting language that was introduced with Netscape Navigator 2.0

[35]. It was standardized in 1998 by the W3C in coordination with the ECMA

International, an international industry association dedicated to the standardization of

information and communication systems [35]. JavaScript is a superset of the

ECMAScript standard scripting language [35].

AJAX
Asynchronous JavaScript + XML (short AJAX) is an approach to web interaction that

involves transmitting only a small amount of information to and from the server in order

to give the user the most responsive experience possible [41].

Instead of the web browser, an intermediate layer called the “Ajax Engine” is

responsible for initiating requests to, and processing requests from the web server [41].

Requests are done asynchronously, meaning that code execution does not wait for a

response before continuing [41].

Fundamentals of web development with Java EE 26

Figure 9: Comparison of the traditional and Ajax web application model [41]

The Ajax engine goes into action after receiving the server response, often parsing the

data and making several changes to the user interface based on the information that was

provided [41].

3.2 Overview of the Java Platform, Enterprise Edition
Java EE provide a standard-based platform for developing multi-tiered web and

enterprise applications [42]. It is a superset of Java SE (Java Standard Edition).

Typically these applications contain a frontend tier consisting of web frameworks, a

middle tier providing security and transactions, and a backend tier providing

connectivity to a database or a legacy system [42]. Java EE provides APIs for the

development of transactional, interoperable and distributed applications, just like Java

SE provides low-level APIs for common problems (e.g. Collections) [43]. Java EE

defines four types of components [43]:

x Applets

x Applications

x Web applications

x Enterprise applications

Fundamentals of web development with Java EE 27

Applets are applications that run in web-browsers using the Java-plugin often providing

a GUI. Applications in this context are understood as client-side applications which are

typically GUIs or batch-processing programs. Web applications are executed in a web

container and respond to HTTP requests from web clients. Enterprise applications are

executed in container-managed components for processing transactional business logic

(Enterprise Java Beans) [43].

The initial J2EE 1.2 specification was released in December 1999. J2EE 1.3 followed in

September 2001. J2EE 1.4 was released in November 2003 and introduced web

services. Java EE 5 was made available in May 2006.

Edition 6 of the Java EE Platform was published in 2009. It focuses mainly on

productivity improvements. XML configurations are replaced by annotations. A "web

profile" was introduced which aims towards a lightweight web development process.

Java EE 7 was released in May 2013 [44].

The following figure depicts the different components that are working together for the

provision of an integrated stack [42]

Figure 10: Java EE 6 architecture [42]

Java Persistence API (JPA), Java Transactional API (JTA) and Java Message Service

(JMS) provide the basic services such as database access, transactions and messaging

[42]. Managed Beans and Java Enterprise Beans (EJB) provide a simplified

programming model using POJOs [42]. According to [42] Context and Dependency

Fundamentals of web development with Java EE 28

Injection (CDI), Interceptors and Common Annotations provide concepts that are

applicable to a wide variety of components, such as type-safe dependency injection,

addressing cross-cutting concerns using interceptors and a common set of annotations.

Web services using the technologies JAX-RS and JAX-WS, Java Server Faces (JSF),

Java Server Pages (JSP) and Expression Language (EL) define the programming model

for web applications. Third-party web frameworks can be automatically registered with

Web Fragments. According to [42] CDI Extensions allow you to extend the platform

beyond its existing capabilities in a standard way. Bean Validations provides a standard

means to declare and validate constraints [42].

The reference implementation (RI) of Java EE 6 is the GlassFish application server. Sun

Microsystems created the GlassFish project in 2005 after donating the Tomcat

technology to the Apache Foundation [43]. Its latest version is 4.0 which was

introduced with Java EE 7.

3.2.1 Enterprise Java Beans
According to [43] Enterprise Java Beans (EJBs) are server-side components that

encapsulate business logic and take care of transactions and security. They are used to

build the business layer located between the persistence and the presentation layer.

Figure 11: Architecture layering [43]

Fundamentals of web development with Java EE 29

A Plain Old Java Object (POJO) can be deployed into an EJB container by using

annotations [43]. These EJB containers are runtime environments that provides services,

such as transaction management, concurrency control, pooling and security

authorization [43].

The Java EE platform defines several types of EJBs [43]:

x Session Beans

x EJB timer service

x Message-driven Beans (MDBs)

Session Beans
Session beans are the most important part of the EJB technology, because they are used

to encapsulate high-level business logic [43]. There are three different types of Session

beans:

x Stateless

x Stateful

x Singleton

Stateless session beans do not maintain any conversational state on behalf of a client

application. They are independent, self-contained and the most popular bean component

[43]. Stateless session beans are defined by using the @Stateless annotation on a

POJO.

Stateful beans preserve conversational state. They are used for more complex tasks that

cannot be done in one single step. A popular example is the shopping cart, where

various items can be added to the cart before the checkout occurs. Stateful session

beans are defined by using the @Stateful annotation on a POJO. To eliminate the bean

from memory the @Remove annotation can be used on a method, or alternatively the

class can be annotated with the @StatefulTimeout(value,unit) annotation [43].

Singleton beans are session beans that are instantiated only once per application [43].

They are defined by using the @Singleton annotation.

Fundamentals of web development with Java EE 30

Timer service
The timer service is a scheduling facility that allows EJBs to be registered for callback

invocation [43]. They are intended for long-lived business processes and are by default

persistent [43]. Timers can be created automatically if the bean has methods annotated

with the @Schedule annotation or can also be created programmatically and must

provide one callback method annotated with the @Timeout annotation.

Message driven beans (MDBs)
Message driven beans are asynchronous message consumers. They cannot be accessed

by client applications directly but rather be triggered by sending messages to the

destinations that the MDBs are listening to [43].

3.2.2 Java Persistence API (JPA)
The Java Persistence API (JPA) was part of the Java EE 5 specification to solve the

problem of data persistence. JPA 2.0 was introduced with Java EE 6. It is an abstraction

above JDBC that makes it possible to be independent of SQL [43]. The JPA consists of

the following main components [43]:

x Object-relational Mapping (ORM)

x Entity Manager API

x Java Persistence Query Language (JPQL)

x Java Transaction API (JTA)

x Callbacks

ORM is the mechanism to map objects to data stored in a RDBMS [43]. The Entity

Manager API performs database-related operations, such as Create, Read, Update,

Delete operations [43]. JPQL retrieves data by using an object-oriented query language

[43]. JTA provides transactions and locking mechanisms when accessing data

concurrently.

Example of a simple Entity:

@Entity
public class Person {
 @Id @GeneratedValue
 private int persnr;
 @Column(length = 200)

Fundamentals of web development with Java EE 31

 private String name;

 // Constructors, getters, setters
}
For a POJO to be recognized as an entity, it must be annotated with the @Entity

annotation. The @Id annotation is used to indicate the primary key. @GeneratedValue

tells the persistence provider to automatically generated the value of the identifier [43].

Hibernate
Hibernate is an object/relational persistence and query service that implements the JPA

2.0 (JSR 317) and the Enterprise JavaBeans 3.0 specification (JSR 220) [45]. It is

licensed under the open source GNU Lesser General Public License (LGPL) [45].

Figure 12: Role of Hibernate in a Java Application [46]

Hibernate uses Java Database Connectivity (JDBC) to communicate with the RDBMS.

The client communicates directly with the Hibernate system by using queries, or

indirectly via the POJO.

3.2.3 Servlets
A servlet is a web component that generates dynamic contest and is hosted in a servlet

container [42]. Clients interact with servlets using a request/response pattern [42]. A

POJO must be annotated with the @WebServlet annotation and extended with the

javax.servlet.http.HttpServlet class, to be defined as a servlet. The servlet

Fundamentals of web development with Java EE 32

interface provides the doX() methods to handle the requests - e.g. doGet() for handling

the (HTTP)GET-request and doPost() for the (HTTP)POST-request [42].

3.2.4 SOAP
A SOAP (Simple Object Access Protocol) web service constitutes a kind of business

logic exposed via a service interface to a client application [43]. The interface uses

XML for the communication and is therefore loosely coupled.

The web service interface is described with the use of the WSDL (Web Services

Description Language). It contains the message type, port, communication protocol,

supported operations, location and what the client should expect in return [43].

Messages are exchanged mostly with HTTP, but SMTP or JMS can also be used. Web

services can be located using the UDDI (Universal Description Discovery, and

Integration) mechanism. The UDDI registry points to public WSDL files that can be

used to invoke the web services [43].

SOAP messages consist of envelopes containing an optional header and a required body

[47]. The following example shows a simple SOAP response with an empty header. The

payload data contains the name of a person.

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 <soap:Header>
 </soap:Header>
 <soap:Body>
 <m:name xmlns:m="http://www.example.org/name">
 <m:firstname>John</m:firstname>
 <m:lastname>Doe</m:lastname>
 </m:name>
 </soap:Body>
</soap:Envelope>
The Java EE standard for the realization of SOAP web services is JAX-WS 2.2. It

defines a set of APIs and annotations for building and consuming web services with

Java [43]. Other standards that JAX-WS 2.2 relies on are Web Services 1.2 (JSR 109),

JAXB 2.2, WS-Metadata 2.0 and JAXR 1.0 [43]. The reference implementation is

Metro. The Metro stack is produced by the GlassFish community [43].

3.2.5 RESTful web service
The REST (Representational State Transfer) architecture centers on resources that can

be addressed using Uniform Resource Identifiers (URIs), typically links on the web

Fundamentals of web development with Java EE 33

[43]. URIs should be descriptive and target a unique resource [43]. For example a list of

persons should be accessible via http://www.example.com/info/people.

Unlike SOAP, which relies on W3C standard, REST has no standard and is just a style

of architecture with design criteria [43].

Similar to the WSDL used with SOAP web services, WADL (Web Application

Description Language) can be used to describe a RESTful web service [43]. Through

the use of HTTP methods all CRUD operations are available [43]:

x HTTP POST to create a resource(in XML, JSON, or text format)

x HTTP GET to read a resource

x HTTP PUT to update a resource

x HTTP DELETE to delete a resource

The Java EE standard for the implementation of RESTful web services is JAX-RS 2.0.

The reference implementation is Jersey, which is open source (dual licensed under

CDDL and GPL) [43].

3.2.6 JavaServer Faces
JavaServer Faces (JSF) is a server-side user interface framework for web applications

[42]. It was created in response to some limitations of Java Server Pages (JSP) and the

underlying servlet component [43]. The JavaServer Faces API allows developers to

think in terms of components and events instead of requests and responses [43]. JSF 2.0

introduced AJAX which aids in the process of creating rich internet applications [43].

Fundamentals of web development with Java EE 34

Figure 13: JSF architecture [43]

The FacesServlet is the main servlet that can optionally be configured by a faces-

config.xml file [43]. Renderers are responsible for displaying components and

translating user inputs into component property values [43]. Converters are useful for

the conversion of data types. Validators are used for the validation of user input.

ManagedBeans are used for the business logic and page navigation. JSF supports

multiple page description languages (PDLs) including JSP and Facelets (which is the

preferred PDL of JSF 2.0 and above).

Managed Beans
Managed Beans are POJOs that are treated as managed components by a Java EE

container [42]. It is responsible for the synchronization of values with corresponding

components, processing business logic (e.g. calling EJBs), and the navigation between

pages [43]. The Expression Language (EL) is used for the association of components

with specific managed Beans properties or actions.

<h:inputText value=“{#PersonController.Person.name}“ />
In this example, the input text’s value is directly hooked up with the property

Person.name of a managed bean called PersonController [43]

PrimeFaces
The implementation of the prototype uses PrimeFaces for additional JSF components.
PrimeFaces is an open source JSF component suite with built-in AJAX [48].

Fundamentals of web development with Java EE 35

3.2.7 Adobe Flex
Another user-interface technology that can be used for web applications is Adobe Flex.

It is an open source application framework developed by Adobe Systems. Flex consists

of three languages: MXML, ActionScript and FXG [49]. MXML is a markup language

and typically used for designing the user interface. ActionScript is a scripting language

that controls the behaviour of the application. FXG (Flash XML Graphics) is a XML-

based standard for sharing graphics [49]. Flex applications require Adobe Flash Player

or Adobe AIR to run [49].

The connection between Flex and Java EE can be done with web services (SOAP or

RESTful) or with BlazeDS - an open source component from Adobe Systems. It is a

collection of Java components that allows the use of Java Messaging Service for

communicating. BlazeDS also supports object remoting [50].

3.2.8 Security
Security in IT infrastructures can be divided into three major layers. These are the

network security layer, the operating system layer and the application layer [51].

The authentication and authorization of users in web applications are part of the

application security layer. A user must present valid credentials to be successful

authenticated. He also needs permissions to access certain secured resources.

Permissions can be managed with access control lists (ACLs). An ACL is a collection

of mappings between resources, users, and permissions [51].

Java EE provides the Java Authentication and Authorization Service (JAAS) for

application security. This API provides a pluggable system where authentication

mechanisms can be plugged independently to applications [51]. Other solutions include

Spring Security and Apache Shiro.

Spring Security
Spring Security can be used as an authentication and authorization appliance. Spring

Security is a framework that adheres to the Spring Framework and provides security

services to Java applications [51]. It provides layered security services and implements

many authentication models such as LDAP, form authentication, certificate X.509

authentication, database authentication, Jasypt cryptography [51].

Fundamentals of web development with Java EE 36

Apache Shiro
Shiro is an open-source security framework, developed by the Apache Software

Foundation that handles authentication, authorization, enterprise session management

and cryptography [52].It’s usage is very similar to Spring Security and Java EE

Security.

3.3 Software Design Patterns
The foundation of many Java EE concepts respectively mechanisms are software design

patterns. Patterns describe repeated problems and their reusable solutions [53].

3.3.1 Data Access Objects
A data access object (short DAO) encapsulates and abstracts all access to a known data

source [54]. It manages the connection with the data source to retrieve and write data

[54] A data source could be a relational database, an external service like a B2B

exchange, a LDAP database, or a business service accessed via a remote procedure call

[54]. The business component uses the simpler interfaces provided by the DAO to

receive the data in form of a POJO.

Figure 14: DAO pattern [54]

3.3.2 Dependency Injection
Dependency Injection is a form of “Inversion of control” where the control of the

application is handled by the underlying framework rather than the application itself

[55].

There are three main styles of dependency injection:

x Interface Injection (Type 1)

x Setter Injection (Type 2)

Fundamentals of web development with Java EE 37

x Constructor Injection (Type 3)

Interface injection means that the reference to an external module is provided by an

interface the user must implement.

Setter injection is defined by a setter method that the framework uses to inject the

dependency.

Constructor injection means that the dependencies are provided through the class

constructor.

3.3.3 Model-View-Controller pattern
The model-view-controller (short MCV) pattern is a very important design concept for

graphical user interfaces that originated with Smalltalk-80 [56].

MVC requires the use of three types of objects:

Models contain the data and the methods to access respectively manipulate the data

(especially getter and setter methods). A model often serves as a software

approximation of a real-world process [57].

Views render the presentation of the data to the user (e. g. graphical user interface). The

view must update its presentation when the model data changes. This can be achieved

by two different approaches: The push model dictates that the view must register itself

with the model for change notifications. The pull model on the other hand provides that

the view is responsible for calling the model when it needs to retrieve the most current

data [57].

Controllers process the data and update the model and the view [56]. A controller may

also select a new view, if the context demands it [57].

JavaServer Faces uses the MCV pattern for its core features.

Design of the web application 38

4 Design of the web application
The construction of the architecture for the animal health record for livestock

management was mainly a collaborative process within the AHR research group. First

the stakeholders were identified. After that, the requirements were evaluated and the

database design was laid down. After that, the technology for the implementation had to

be chosen. Finally the object oriented architecture of the application was defined and

basic UI mock-ups were created.

The architecture was documented with the help of the Unified Modelling Language

(UML) which is the standard modelling language for software and systems development

[58].

4.1 Project Stakeholder
According to [59] the term project stakeholder describes an organization or individual

that is actively involved in a project, or whose interest may be positively or negatively

affected as a result of project execution or successful project completion. These groups

can be further divided into internal or external respectively primary or secondary

stakeholders.

Internal stakeholders are usually directly affiliated with the project (e. g. project

managers, analysts, programmers, etc.). Customers and vendors can also be seen as

internal stakeholders because they may provide direct input to the execution of the

project.

External stakeholders can be depicted as every other individual or organization that is

affected by the outcome of the project.

Further fragmentation of the stakeholders results in the breakdown of primary and

secondary stakeholders. These terms identify the importance of a stakeholder.

The AHR research group identified the following external respectively primary

stakeholders for an AHR in livestock management. Those are also the acknowledged

users of the prototypical implementation:

Veterinarians
Veterinarians are responsible for farms, animals and livestock in terms of medical

support. They make diagnoses, prescribe drugs and perform therapies [5].

Design of the web application 39

Farmers
Farmers manage their livestock and produce food products such as milk, eggs or meat

[5].

Processing industries
Processing industries handle and process animal products before they can reach the

consumer, e. g. slaughterhouses, dairies, fisheries [5].

Consumers
Consumers can be customers or trading companies (e.g. supermarkets) [5].

“Agrarmarkt Austria – AMA”
The “Agrarmarkt Austria Marketing GmbH” short AMA is responsible for carrying out

all agricultural marketing across Austria. This includes quality improvement and classic

advertising and promotion [60]. It is also responsible for the registration of animals [5].

Organizations and associations
Austria accommodates various organizations and associations for livestock management

and animal health, e.g. “Landeskontrollverbände – LKV” [5].

Governmental departments
The Austrian government is the leading power behind the efforts for the implementation

animal health records. The department of agriculture, environment and water economy

(“Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft”) is

mainly concerned with food quality. The department of health (“Bundesministerium für

Gesundheit”) deals with animal health, drug administration and epidemic control [5].

The Austrian Veterinary Health Service (“Tiergesundheitsdienst”) is divided into sub

entities to represent eight of the nine Austrian provinces with the exception of Vienna. It

also houses the Poultry Health Service (QGV) that supervises all sectors of the poultry

industry on a national basis [61]. Its objectives are the improvement of animal health,

the prevention of infectious diseases, quality assurance, continuing development, advice

of participants and productivity increase of agricultural facilities [61]. Its legal basis is

the Austria Veterinary Medicines Control Act that came into force in April 2002 [61].

Design of the web application 40

4.2 Requirements analysis
The requirements analysis was a collaborative process that was conducted by the AHR

research group. Some of the identified stakeholders were personally interviewed to get a

more precise perspective of their needs and goals. The gained information was then

discussed within the group and formally written down. The existing AHR software

products depicted in chapter 2.2 were also taken into account.

4.2.1 Functional requirements
A functional requirement specifies a function that a system or a system component must

be able to perform [62]. It can be represented by written descriptions or use-cases which

in turn can be textual enumeration lists as well as diagrams, describing user actions

[62].

The following functional requirements are a subset of the ones that were evaluated and

laid out within the AHR research group [5], that the prototype implements:

Login/Logout
Users must be authenticated to be able to use the system. They must also be able to quit

their session.

Logging
Every action the system or a user performs must be logged into a file.

Add/edit farm-data
New farms can be added to the system. Existing farm-data can be modified.

Add/edit animal-data
New animals can be added to the system. Existing animal-data can be modified.

Search
Users can search for farms, companies, animals, veterinarians and drugs.

List of farms
A list of all registered farms can be browsed by the user.

Design of the web application 41

Farm detail view
After choosing a farm from the list, the user can view and edit all its metadata.

Choosing an animal by species
Many farms house multiple animal species. Therefore users must be able to choose

which animal species they want to see.

List of animals
The user must be able to browse a list of animals pre-sorted by species. This list can be

additional sorted and filtered by certain criteria.

Animal detail view
After choosing an animal from the list, the user can view and edit all its metadata.

Add/edit animal health data
Users, that have the specified access rights, must be able to add and edit all relevant

animal health data.

Upload documents
Users can upload documents and add them to a health record.

List of veterinarians
The system maintains a list of registered veterinarians. The list can be sorted and

filtered by certain criteria.

Add/edit veterinarian-data
New veterinarians can be added to the system. Existing veterinarian-data can be

modified.

List of processing industries
The system maintains a list of all processing industries. The list can be sorted and

filtered by certain criteria.

Add/edit processing-industry-data
New processing industries can be added to the system. Existing processing-industry-

data can be modified.

Design of the web application 42

Allocate a veterinarian to a farm/company
Veterinarians can be allocated to one or multiple farms. This grants them the right to see
all relevant data including animal health data of that farm or company.

List of drugs
The system maintains a list of administrable drugs. The list can be sorted and filtered by
certain criteria.

View log-files
Administrators must be able to manage and review all log-files.

Add/edit users
Administrators must be able to add and edit users.

Interfaces to existing AHR-software
The application includes web services for the exchange of data with existing AHR

software.

4.2.2 Non-functional requirements
Every requirement that does not fit the term of a functional requirement is called a non-

functional requirement. They can be categorized into three types [62]:

x Data requirements

x Constraints

x Quality requirements

Data requirements describe how functional requirements should be reflected in the

system [62]. Constraints explicitly restrict the system or process. They include

limitations of the engineering process, systems or system components’ functionality, or

its life cycle [62]. Quality requirements can be described as wanted qualities of the

product that are not directly related to functionality [62].

The following non-functional requirements were evaluated [5]:

Data requirements
x The web application must be usable with all common web browsers including

“Internet Explorer”, “Mozilla Firefox” and “Google Chrome”.

Design of the web application 43

x The system must be easily expandable, e.g. mobile application.

Constraints
x All communications must be secured with SSL or TLS.

x The system should be free of charge for veterinarians.

Quality requirements
x The system must be available 24x7.

x The system must be able to handle peak periods.

x The system must be scalable.

x The system must be customizable.

x The system must be easily to maintain. This can be achieved through code

documentation, automated tests or through the use of software design patterns.

x The acquisition and retrieval of data must not involve increased operating

expense.

x The handling of the software must be easy and time-saving.

x Search queries must respond within 5 seconds. The response time for retrieving

documents should be less than 5 seconds. For retrieving images it should be less

than 1 minute.

x The server components should be deployed redundantly. This ensures reliability

and load distribution.

x The user should be notified about changes or errors in the system in a consistent

manner.

4.3 Roles
The following roles are a subset of the ones that were evaluated and laid out within the

AHR research group [5], that the prototype implements:

Administrators
Administrators of the system are able to query, add, modify and delete all data. They

can also grant rights to users and add additional roles.

Design of the web application 44

Farmers
Farmers can modify their own company data. They can add treatments and diagnoses

made by veterinarians. They can associate veterinarian to modify their animal data.

Veterinarians
Veterinarians can add, modify, and delete treatment data of all farms they are

responsible for.

4.4 Database Design
The database design is loosely based on the HL7v3 reference information model. The

first draft was more oriented towards the constraints defined in the requirement analysis.

However, the decision was made to base the database model on the HL7 reference

information model because it is a well-known international standard and may also be a

good foundation for the data export respectively import of HL7 data.

A disadvantage of the HL7 approach is that constraints which are normally handled by

entity relations must be defined programmatically as part of the business logic. For

example, by defining a relation “Animal gets a treatment” it is clear that only an entity

of type animal can be associated with an entity treatment. The generic HL7 approach

makes it theoretical possible that an individual person can adopt the role “patient” and

subsequently receive a treatment.

Thus the model was simplified to better estimate the needs of the application. The

generic “Entity” and “Role” objects defined in HL7v3 RIM were omitted. The

Participation relation was split into two separate relations connecting persons and

animals to acts.

Despite the fact that most users are actors within the animal health record, their user

account data is stored in separate tables due to security concerns.

The database design was conveyed into an Entity-Relationship (ER) diagram using the

Chen diagrammatic technique including the “min, max” notation [63]. In this notation

an Entity is represented by a rectangular box and each relationship set is represented by

a diamond-shaped box [63]. The boxes must be connected to each other with lines.

These lines also describe the min, max occurrences of those relations. Attributes are

depicted as ovals but were omitted from this design to make the diagram more readable.

Design of the web application 45

4.4.1 Entity-Relationship diagram

Design of the w
eb application

46

Figure 15: Entity R
elationship diagram

, C
. A

igner

Design of the web application 47

Person is the base entity for veterinarians, farmers and processing industries. Persons

may have a legal form. They can also have a substitute authority. Farmers own animals.

Previous owners are being stored as well. An animal is derived from a certain species. It

can have a father respectively a mother. Races can be stored as well.

Every person respectively animal can participate with an Act. Acts can be related to

each other. An Act can represent a medication, a treatment, a diagnosis, a test, the birth

or a slaughter protocol. A medication includes the drugs that were administered. Tests

include laboratory values. Processing industries are related to slaughter protocols.

Users are associated to a certain role and can be related to a Person entity.

4.4.2 Relations
The following table contains the relations derived from the Entity-Relationship diagram

together with all the attributes.

Name Description Data type Constraint
Act

CaseNo Case number Character(10) primary key
PNo Person number Integer foreign key
ANo Animal number Character(12) foreign key
ActDate Date Date
Report Report Text
RecoverDate Date of recovery Date

Act_relationship
CaseNo1 Case number #1 Character(10) primary key, foreign key
CaseNo2 Case number #2 Character(10) primary key, foreign key

Treatment
CaseNo Case number Character(10) primary key, foreign key
Label Label Character(50)
Description Description Text
NextTreatment Date of next treatment Datetime

Diagnosis
CaseNo Case number Character(10) primary key, foreign key
DiagName Name Character(50)
Description Description Text
Notifiable Notifiable sickness Boolean

Birth
CaseNo Case number Character(10) primary key, foreign key

Design of the web application 48

BirthDate Date of birth Date
Stillbirth Stillbirth Boolean
InseminationDate Date of insemination Date
Natfert Natural fertilization Boolean
PregnancyDuration Duration of pregnancy

in weeks
Integer

Lactation Lactation Boolean
LabValue

Id Identification of the
value

Integer primary key

ValueName Name Character(30)
CaseNo Case number Character(10) primary key, foreign key
TestResult Test result Double
LowerBound Lower bound Double
UpperBound Upper bound Double

Farmer
IDno Identification no. Character(10) primary key, foreign key
FarmID Identification no. of

the farm
Character(30)

FarmerName Name of the Farm Character(255)
FarmerVetAssoc

IDFarmer ID of the farmer Integer primary key, foreign key
IDVet ID of the veterinarian Integer primary key, foreign key

Drug
Code Code Character(10) primary key
Name Name of the drug Character(50)
Patentee Owner of the patent Character(30)
Approved Approved for animals Boolean

Medication
CaseNo Case number Character(10) primary key, foreign key
Code Code of the drug Character(10)
Dosage Dosage Double
Repeat Repeat every n day Integer
UntilDate Repeat until Date
DosagePerDay Dosage per day Integer

Patient
IDNo Identification no. Character(10) primary key, foreign key

Person
IDNo Identification no. Character(10) primary key
Authority ID of stand-in authori- Character(10) foreign key

Design of the web application 49

ty
FirstName First name Character(30)
Surname Surname Character(30)
Title Title Character(15)
BirthDate Date of birth Date
PostalCode Postal code Character(5)
City City Character(30)
Street Street Character(50)
HouseNo House number Character(10)
TelephoneNo Telephone number Character(20)
Email E-Mail address Character(30)
Fax Fax number Character(30)
CompanyName Name of the company Character(200)
LegalForm Reference to legal

form
Integer foreign key

Race
Id Identification of the

race
Integer primary key

Description Description Character(100)
LegalForm

Id Identification of the
form

Integer primary key

Description Description Character(50)
SlaughterProtocol

CaseNo Case number Character(10) primary key, foreign key
SlaughterNo Slaughter number Integer
SlaughterDate Date of slaughter Date
ClassificationDate Date of classification Date
SlaughterWeight Slaughtering weight

(“Warm-­
schlachtgewicht”)

Double

MeatFatClass Meat and fat tissue
class (“Fleischigkeits-
und Fettgewebeklasse)

Character(3)

Category Category Character(3)
ClassifierBadge Badge of classifier Character(10)
MeatInspectionDate Date of meat and

slaughter inspection
Date

ResultBefore Examination result
before slaughter

Character(200)

Design of the web application 50

ResultAfter Examination result
after slaughter

Character(200)

Remarks Remarks Text
IDno ID of the processing

industry
Integer foreign key

TestAHR
CaseNo Case number Character(10) primary key, foreign key
TestType Type of test Character(30)
SicknessDate Date of sickness Date
Document Document Binary
Result Result Text
Remarks Remarks Text

Animal
IDNo Identification no. Character(12) primary key, foreign key
Species Reference to species Integer foreign key
DeathDate Date of death date
Name Name Character(20)
IDMother ID of the mother Character(10) foreign key
IDFather ID of the father Character(10) foreign key
Gender Gender Character(1)
BreedRegNo Breed registry number Character(20)
HairColour Colour of hair cover-

ing
Character(30)

Castrate Castrated animal Boolean
Race Reference to race Integer foreign key
Owner Owner Character(10) foreign key
PrevOwner Previous Owner Character(10) foreign key
ForeignEarmarkNo Number of foreign

earmark
Character(30)

Weight Weight Double
Remarks Remarks Text

Species
Id Identification of the

race
Integer primary key

Description Description Character(100)
Veterinarian

IDNo Identification no. Character(10) primary key, foreign key
Expertise Area of expertise Character(50)
OfficialVet Official Veterinary Boolean

ProcessingIndustry

Design of the web application 51

IDno Identification no. Character(10) primary key, foreign key
Sector Industrial sector Character(30)

UserAHR
Id Identification no. of

the user
Integer primary key

Username Username Character(20)
FirstName First Name of the user Character(50)
Surname Last Name of the user Character(50)
EMail E-Mail address of the

user
Character(50)

Password User Password (MD5) Character(100)
Person Reference to person Integer foreign key
GroupAHR Reference to group Integer foreign key

GroupAHR
Id Identification no. of

the group
Integer primary key

GroupName Name of the group Character(20)
Description Short description Character(200)

Table 3: Relations including data types and constraints, C. Aigner

4.5 Technology selection
The evaluation of the underlying technology was a very important step in the design

process. The choice of using Java EE technology as a foundation was determined in the

beginning of this project, but certain technology choices were made at a later point in

the design process.

4.5.1 JSF 2.0
Two technologies were evaluated for the development of a rich web client - Adobe Flex

(Adobe Flash) and JavaServer Faces 2.0. Both have the ability to provide the user with a

rich user interface experience. Adobe Flex provides more interactivity but requires a

browser plugin to run. This plugin may not be available on all operating systems

respectively browser platforms, especially on mobile devices like smartphones and

tablets.

JSF 2.0, enhanced with additional component suites like PrimeFaces component suite

provides a decent level of interactivity while still remaining platform independent,

because the API relies on JavaScript and AJAX. Web applications using JavaServer

Faces can be executed on any modern personal or tablet computer without any extra

Design of the web application 52

software. Even though Adobe provides its own open-source API for communication

with Java EE technology (BlazeDS), JSF 2.0 is a core technology of the Java EE

framework.

The decision was made to develop the web application with JSF 2.0 and the PrimeFaces

component suite because it is better integrated into Java EE and is cross-platform.

4.5.2 RESTful web service
SOAP and RESTful web services are very different in their technical approach. SOAP

originated from the XML-RPC protocol that was designed to exchange remote

procedure calls with XML encoded messages [64]. SOAP tends to be more

computationally intensive because of the time-consuming parsing process of the

messages. XML messages also produce larger amounts of overhead. One benefit of

SOAP is, that it includes directory services which are especially useful for enterprise

scaled distributed systems [64].

REST is built on HTTP and uses the basic HTTP request methods for communication. It

has not been standardized, in contrary to SOAP which is a W3C standard, but can be

seen as an architectural style [64].

Since RESTful web services are considered a defacto standard and are more light-

weight and easier to develop because no special interfaces and description files have to

be created, it was chosen as the underlying technology for the external interface of the

AHR web application.

4.5.3 Spring Security
Spring security is a security API that is part of the spring framework. It has more

features than the built-in Java EE security API and is more wider used [65]. Its

configuration is XML-based, unlike Apache Shiro which stores its configuration into a

text file, thus providing a more tight integration into the Java EE GlassFish

environment.

Apache Shiro seems to be more targeted towards non-web use and cryptography. The

main limitation is the lack of documentation [66].

Since Spring Security is wider used and its configuration integrates better with Java EE,

it was chosen as the security API for the application.

Design of the web application 53

4.6 Software architecture
The design of the software architecture was made to get a big picture of the system

before the actual implementation began. It includes a basic overview of the framework

components used, the class diagram, an overview of the packages and a deployment

diagram.

4.6.1 Framework overview
The application will be developed with Java EE. The presentation layer was

implemented with JSF 2.0 and PrimeFaces. The underlying management of the user

interface components was implemented with JSF ManagedBeans. The presentation

layer interacts with the application layer to execute the user requests and the

corresponding business logic.

The application layer includes Enterprise Java Beans and DAOs for the business logic

and Spring Security for security and authentication. The DAOS communicate with the

underlying persistence tier to execute the CRUD operations.

The persistence layer consists of Hibernate as the object relational mapper that

communicates with the database.

The interoperability layer consists of a RESTful web service that communicates with

the application layer.

Figure 16: Overview of the Java EE framework components, C. Aigner

Design of the web application 54

4.6.2 Class diagram
The attributes and their corresponding getter/setter methods were omitted from the

diagram to enhance clarity.

Design of the w
eb application

55

Figure 17: class diagram
, C

. A
igner

Design of the web application 56

4.6.3 Package diagram
The package diagram shows the java packet structure and their relations.

Figure 18: Package diagram, C. Aigner

4.6.4 Deployment diagram
The deployment diagram shows the connection between the systems and the user.

Design of the web application 57

Figure 19: Deployment diagram, C. Aigner

4.7 GUI-mock-ups
The final step in the design process was to draft the graphical user interface. This was

done by sketching mock-ups that were then discussed and refined within the AHR

research group.

Figure 20: Login-page, C. Aigner

Design of the web application 58

Figure 21: Entry-page (Cockpit), C. Aigner

Figure 22: Search mask for farms/industries, C. Aigner

Design of the web application 59

Figure 23: Mask for farm/industry standing data, C. Aigner

Figure 24: Animal standing and treatment data, C. Aigner

Implementation of the web application 60

5 Implementation of the web application
This chapter gives a detailed description of the development process and its results.

First the development environment is introduced and the implementation of the GUI is

described. After that the implementation of the Java Persistence API as a bridge

between MySQL and the web application and the security concept with Spring Security

is explained. Finally the implementation of the business logic and the interaction

between the various Java EE modules is described.

5.1 Development environment
The prototype was developed on an IBM-compatible Personal Computer running

Windows 7 x64. The actual programming was done with the integrated development

environment NetBeans version 7.3.

The prototype was deployed and tested on the GlassFish application server version

3.1.2.2. The configuration of GlassFish was stored in the WEB-INF/web.xml file.

MySQL version 5.6 was used as the underlying database server. MySQL Workbench

6.0 was used for the management and configuration of the MySQL database.

Apache Maven was used in conjunction with NetBeans 7.3 for build automation and

library management. All dependencies and settings were stored in the pom.xml file.

5.2 Graphical user interface
The GUI was developed with the JavaServer Faces 2.0 server-side user interface

framework. For additional controls and widgets the PrimeFaces component suite

version 4.0 was used.

To use these components the following dependencies have to be added to the pom.xml:

<dependency>
 <groupId>javax.faces</groupId>
 <artifactId>javax.faces-api</artifactId>
 <version>2.1</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.primefaces</groupId>
 <artifactId>primefaces</artifactId>
 <version>4.0</version>
</dependency>

Implementation of the web application 61

JSF implements the Model-View-Controller (MVC) design pattern (see chapter 3.3.3)

[67]. In this case, a ManagedBean adopts the role of the model. The Faces servlet is

responsible for the control flow and can thus be seen as the controller. Facelets,

basically XHTML files are responsible for the view.

For the JSF engine to work, the following lines have to be added to the web.xml file:

<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.xhtml</url-pattern>
</servlet-mapping>

5.2.1 Layout
The design of the web application was defined in a facelet template. It served as a

model for all subpages. Other facelets embedded it through the <ui:composition> tag.

The layout was made with HTML divisions, instead of tables to improve web

accessibility. The only exception was the alignment of the logo and the menu bar which

was made with a HTML table for visual reasons.

The layout consists of a header, a wrapper that contains the logo, the menu, the

breadcrumbs and the actual content, respectively a footer.

The visual style was implemented with cascading style sheets. The main colours used

were blue #004A72, grey #DDDDDD and white #FFFFFF. Texts were left black.

The header is a 20 pixel high blue coloured bar that serves only a visual purpose.

The wrapper division was centred – using the CSS command margin: 0 auto - and set

to a fixed width of 922 pixels. Two colour gradients from white to grey were used to

highlight it. The content area always begins with a Heading 1 tag.

Implementation of the web application 62

Figure 25: Layout of the application, C. Aigner

The yellow rectangles indicate the boundaries of the divisions used for the layout.

5.2.2 Logo
The logo was designed with the open-source image composition software GIMP (GNU

Image Manipulation Program) [68]. It is two-coloured (white and blue). The shade of

blue matches the one used for the headings and the title bar. The logo consists of two

bars. The top bar is made up of the three letters AHR. The bottom bar shows the

silhouettes of a cow a sheep and a pig.

Figure 26: Logo of the web application, C. Aigner

Implementation of the web application 63

5.2.3 Web forms and input fields
Every JSF page needs a <h:form> element to perform its actions, even though JSF 2.0

is heavily AJAX-driven and the default behaviour of the PrimeFaces

<p:commandButton> widget is a partial submit. It was defined globally in the

template.xhtml facelet.

The following PrimeFaces components were used for the web forms:

OutputLabel
The <p:outputLabel> component was used for the labelling of the input fields.

<h:outputLabel value="ID:"/>

InputText
The component <p:inputText> was used for the input of textual data. The value was

bound to an object attribute of the underlying ManagedBean.

<p:inputText id="firstname" size="30" value="#{aMB.user.firstname}"/>

Figure 27: <p:inputText> component, C. Aigner

Calendar
The <p:calendar> component was used for the selection of dates.

<p:calendar locale="de" pattern="dd.mm.yyyy" size="10" id="gebdat"
 value="#{farmManagedBean.farmer.birthdate}" required="true">

Figure 28: <p:calendar> component, C. Aigner

Implementation of the web application 64

SelectOneMenu
The component <p:selectOneMenu> was used for the selection of pre-loaded entries.

The entries were loaded with the an java.util.ArrayList object and defined using

the <f:selectItems> tag.

<p:selectOneMenu value="#{farmManagedBean.lfid}" >
 <f:selectItems value="#{farmManagedBean.legalforms}" var="lf"
 itemValue="#{lf.id}" itemLabel="#{lf.rechtsform}" />
</p:selectOneMenu>

Figure 29: <p:selectOneMenu> component, C. Aigner

SelectOneRadio
The <p:selectOneRadio> component was used for the selection of three or less items,
otherwise <p:selectOneMenu> was used.
<p:selectOneRadio id="gender" value="#{aMB.animal.gender}"
 required="true" >
 <f:selectItem itemLabel="männlich" itemValue="m" />
 <f:selectItem itemLabel="weiblich" itemValue="f" />
</p:selectOneRadio>

Figure 30: <p:selectOneRadio> component, C. Aigner

SelectBooleanCheckbox
The component <p:selectBooleanCheckbox> was used for Boolean attributes.

<p:selectBooleanCheckbox id="cast" value="#{aMB.animal.castrate}" />

Figure 31: <p:selectBooleanCheckbox> component, C. Aigner

Implementation of the web application 65

Panel
The input fields were grouped into panels and further subdivided into panel grids. The

following example shows the definition of a panel and a grid containing four columns.

The heading for the panel-grid was inserted with the <f:facet> tag:

<p:panel id="personaldata" header="Benutzerdaten" toggleable="true"
closable="false" toggleSpeed="500" closeSpeed="500" widgetVar="panel">
 <h:panelGrid columns="2" bgcolor="#eff5fa" >
 <f:facet name="header">Biologische Daten</f:facet>
...
 </h:panelGrid>
</p:panel>

Figure 32: <p:Panel> component with a <h:panelGrid> layout, C. Aigner

5.2.4 Navigation
Navigation was handled programmatically by the ManagedBeans, since JSF and

PrimeFaces do not support a forward-based navigation within an AJAX request [69].

The faces-redirect=true attribute must be appended to the URL to let JSF 2.0 send

the HTTP redirect 3xx code to the client, implementing the Post/Redirect/Get(PRG)

design pattern [69]. The code for handling the redirects were put into a static method of

the FacesUtil() class:

public static void redirectToTarget(String target) {
 FacesContext ctx = FacesContext.getCurrentInstance();
 ExternalContext ext = ctx.getExternalContext();
 try {
 ext.redirect(target + "?faces-redirect=true");
 } catch (IOException ex) {
 Logger.getLogger(FacesUtil.class.getName()).log(Level.SEVERE,
 null, ex);
 }
}

Implementation of the web application 66

5.2.5 Validators and converters
Before the model on the managed bean gets updated, after the user hit the submit button

the data had to be converted from string to target objects [43]. The reserve action took

place when the data was sent back to the client. Primitive data types are converted

automatically. For complex types JSF 2.0 provides converters for common types like

dates and numbers [43].

For converting date objects the javax.faces.convert.DateTime converter was used:

<p:calendar locale="de" pattern="dd.mm.yyyy" size="10" id="gebdat">
 <f:convertDateTime type="date"/>
</p:calendar>
JSF 2.0 provides server-side validators for verifying input data [43]. For the validation

of e-mail addresses the javax.faces.validator.RegexValidator was used:

<p:inputText id="mailadresse">
 <f:validateRegex pattern="(^([a-zA-Z0-9_\-\.]+)@((\[[0-9]{1,3}\.
 [0-9]{1,3}\.[0-9]{1,3}\.)|(([a-zA-Z0-9\-
]+\.)+))([a-zA-Z]{2,4}|[0-9]{1,3})(\]?)
 $)?"
 />
</p:inputText>

5.2.6 Notifications
Part of the non-functional requirements (see chapter 4.2.2) was the consistent approach

of user notifications. These can be error messages (e. g. validator messages) or

informational messages (e. g. save confirmation).

Notifications were implemented with the PrimeFaces component <p:growl>. Growl is

based on the Apple Macintosh growl notification widget [48]. It displays a rectangular

message in the upper right corner of the browser screen. The component was declared

globally in the template.xhtml file, so that every view can use it:

<p:growl id="growl" showDetail="false" globalOnly="false" />

After a command button is pressed, the underlying ManagedBean method that generates

the message is executed and on completion the growl component is updated.

<p:commandButton value="Speichern" update="growl" id="submit"

action="#accountManagedBean.saveUser"/>

To be displayed the message must be added to the current Faces context:

FacesContext.getCurrentInstance().addMessage(null,
 new FacesMessage(FacesMessage.SEVERITY_INFO,
 "Änderungen gespeichert", ""));

Implementation of the web application 67

Figure 33: Error message displayed with a p:growl component, C. Aigner

5.2.7 Menu
The menu was realized with the PrimeFaces component <p:menubar>. The content was

defined within the corresponding ManagedBean because the composition depends on

the logged-in user’s role. For this purpose a “DefaultMenuModel” object was created

and attached to the menu bar by using the attribute model.

<p:menubar model="{#menuManagedBean.mainMenuModel}" />

At creation time the ManagedBean calls the method fillMainMenu() which populates

the menu model according to the user role. The following code demonstrates the

creation of an ordinary menu item and a submenu containing one child.

DefaultMenuItem menuItem;
DefaultSubMenu submenuItem;

menuItem = new DefaultMenuItem();
menuItem.setValue("Start");
menuItem.setUrl("/ahrapp/index.xhtml");
menuItem.setIcon("ui-icon-home");
mainMenuModel.addElement(menuItem);

submenuItem = new DefaultSubMenu();
submenuItem.setLabel("Stammdaten");
submenuItem.setIcon("ui-icon-folder-open");

menuItem = new DefaultMenuItem();
menuItem.setValue("Landwirte suchen");
menuItem.setUrl("/ahrapp/searchfarm.xhtml");
menuItem.setIcon("ui-icon-search");
submenuItem.getElements().add(menuItem);

mainMenuModel.addElement(submenuItem);

5.2.8 Dialogs
Dialogs are PrimeFaces components that can be defined within the facelet or can be

referenced from another file.

The dialogs used in the applications are non-modal dialogs that are resizable, max- and

minimizable. They are completely AJAX driven.

Implementation of the web application 68

<p:dialog header="Vorgang" widgetVar="ahrDialog" id="ahrdialogid"
resizable="false" showEffect="puff" hideEffect="puff"
maximizable="true" minimizable="true">
They were made visible by the AJAX call widgetVar.show().

Figure 34: <p:Dialog> widget containing two panels and a button, C. Aigner

5.3 Database

5.3.1 MySQL
After defining the database schema with the CREATE SCHEMA statement, the

relations defined in chapter 4.4.2 were transcribed into a MySQL compatible SQL batch

and loaded into the schema.

5.3.2 Hibernate
The following dependencies have to be added to the pom.xml for Hibernate integration:

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-entitymanager</artifactId>
 <version>3.3.2.GA</version>
</dependency>
<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>ejb3-persistence</artifactId>
 <version>1.0.1.GA</version>
</dependency>
<dependency>
 <groupId>javax.sql</groupId>
 <artifactId>jdbc-stdext</artifactId>

Implementation of the web application 69

 <version>2.0</version>
</dependency>
<dependency>
 <groupId>javax.transaction</groupId>
 <artifactId>jta</artifactId>
 <version>1.0.1B</version>
</dependency>

Configuration
The hibernate-entitymanager package represents the O/RM implementation of the

JPA specification. The ejb3-persistence package contains the Hibernate Entity

Manager EJB3 persistence. Additionally the JDBC standard extension (jdbc-stdext)

and Java Transaction API (jta) packages are required.

The Hibernate configuration is stored in the file hibernate.cfg.xml. It contains the

connection to the database and the class mappings. The database connection was made

with JDBC. The property hibernate.current_session_context_class defines the

scope of the session that is given by the method

SessionFactory.getCurrentSession(). The option thread indicates that current

sessions are tracked by thread of execution rather than JTA transactions [70].

<hibernate-configuration>
 <session-factory>
 <property name="hibernate.dialect">
 org.hibernate.dialect.MySQLDialect
 </property>
 <property name="hibernate.connection.driver_class">
 com.mysql.jdbc.Driver
 </property>
 <property name="hibernate.connection.url">
 jdbc:mysql://localhost:3306/ahr
 </property>
 <property name="hibernate.connection.username">user</property>
 <property name="hibernate.connection.password">xxx</property>
 <property name="hibernate.current_session_context_class">
 Thread
 </property>

 <mapping class="com.healthresearch.ahr.tables.Person" />
 ...

 </session-factory>
</hibernate-configuration>

Object relational mapping
The configuration of the mapped Java classes is denoted with annotations. @Entity

declares the class as being mapped with a database table. It is the only Hibernate

annotation that is not optional. The @Table annotation can be used to define the name of

Implementation of the web application 70

the table if it not identical to the unqualified class name [70]. The class attributes can

be annotated as well. @Id marks the column containing or being part of the primary key

constraint. The @Column annotation can be used to define the name of the database

column the attribute is mapped to. For date columns the @Temporal annotation can be

used. Ids that are declared with the auto increment constraint, meaning that their value

will be generated by the MySQL database engine, can be annotated with

@GeneratedValue, so that they are left out in the insert statement Hibernate creates.

The following example shows the mapping of the table Person with the Java class

Person. The attribute id is the primary key and was declared as a generated value. The

column Firstname is mapped to the attribute firstname of type java.lang.String.

Birthdate has the SQL data type DATE and is mapped to a java.util.Date attribute

named birthdate that is marked with the TemporalType.DATE.

@Entity
@Table(name="person")
@Inheritance(strategy = InheritanceType.JOINED)
public class Person implements Serializable {

 @Id
 @Column(name = "IDno")
 @GeneratedValue
 private int id;

 @Column(name = "Firstname")
 private String firstname;

 @Column(name = "Birthdate")
 @Temporal(javax.persistence.TemporalType.DATE)
 private Date birthdate;
...
}
For the modelling of the “is-a” relations defined in the ER-diagram (see chapter 4.4.1)

java class inheritance was used. Hibernate knows three inheritance types [46]:

x One Table per class hierarchy (InheritanceType.SINGLE_TABLE)

x One Table per concrete Class (InheritanceType.TABLE_PER_CLASS)

x One Table per subclass (InheritanceType.JOINED)

The SINGLE_TABLE approach stores the entire class hierarchy into one single database

table. There are columns for each mapped field of the superclass and the distinct fields

of all derived classes within the hierarchy. Hibernate determines the appropriate type

Implementation of the web application 71

with the use of a discriminator column that distinguishes between each of the types

used. The root class must contain the @DiscriminatorColumn annotation [46].

The TABLE_PER_CLASS approach stores all of the fields of each type in the inheritance

hierarchy in distinct tables [46].

The JOINED approach stores the fields of the various derived types in distinct tables and

connects them with a one-to-one primary key relation [46]. Hibernate does not require a

discriminator column for this approach [70]. This method was used for the Person and

Act relations. In the example above the Person class was annotated with

@Inheritance(strategy = InheritanceType.JOINED). All sub classes were then

annotated with @PrimaryKeyJoinColumn(name="IDno").

The @OneToMany annotation was used to map 1:n entity relations. The following

example shows the mapping of laboratory values to a given Test. The fetched data is

stored in a java.util.ArrayList collection. The FetchType can be LAZY which

means that the SQL query is executed when the field is accessed or EAGER which means

that the SQL query is executed on creation of the class instance. The @JoinColumn

annotation marks the foreign key constraint within the table.

@OneToMany(fetch = FetchType.EAGER)
@JoinColumn(name = "Caseno")
private List<LabValue> labvalues = new ArrayList<LabValue>();
The opposite side of the 1:n relation can be modelled as well with the @ManyToOne

annotation, because in some cases it makes more sense to store the 1 side of the relation

instead of the n one. For example, it was more reasonable to store the legal form in the

class Person instead of storing a collection of all Persons associated with the form in

the class LegalForm.

@ManyToOne
@JoinColumn(name="Legalform")
private LegalForm legalform;
The @OneToOne annotation was used to map 1:1 entity relations. The following example

shows the mapping of the 1:1 relation Authority which is a self-reference to the table

Person.

@OneToOne
@JoinColumn(name="Authority")
private Person vertretungsbefugter;
M:n relations where modelled with the @ManyToMany annotation. @JoinTable defines

the join table and the corresponding columns. The following example shows the

Implementation of the web application 72

implementation of the m:n relation between farmers and veterinarians realized as a

java.util.HashSet within the Farmer class. The name of the join table is

farmervetassoc. The foreign key that references the table Farmer is called Idfarmer.

The column for the reference to the Veterinarian table is called Idvet.

@ManyToMany
@JoinTable(name = "farmervetassoc", catalog = "ahr",
 joinColumns = { @JoinColumn(name = "Idfarmer",
 nullable = false,
 updatable = false) },
 inverseJoinColumns = { @JoinColumn(name = "Idvet",
 nullable = false,
 updatable = false) })
private Set<Veterinarian> associatedvets = new
HashSet<Veterinarian>();

Data Manipulation
The actual CRUD operations were implemented with DAOs (see chapter 3.3.1). The

package com.healthresearch.ahr.dao contains all the DAO interfaces and the

implementations. The com.healthresearch.ahr.util.AHRHibernateUtil provides

the DAOs with the current Hibernate session. The following example shows the

interface and the implementation of the UserDAO. It contains a method for saving a user

and for searching a user by its username:

public interface UserDAO {
 public User getUserbyUsername(String username);
 public void saveUser(User u);
}

public class UserDAOImplHibernate implements UserDAO {

 @Override
 public User getUserbyUsername(String username) {
 User user = new User();
 Session s =
 AHRHibernateUtil.getSessionFactory().getCurrentSession();
 Transaction t = s.beginTransaction();
 Query q =
 s.createQuery("from User where username LIKE(:username)");
 q.setString("username", username);
 List<User> results = q.list();
 t.commit();
 if(!results.isEmpty())
 user = results.get(0);
 return user;
 }

 @Override
 public void saveUser(User u) {
 Session s =
 AHRHibernateUtil.getSessionFactory().getCurrentSession();

Implementation of the web application 73

 Transaction t = s.beginTransaction();
 s.saveOrUpdate(u);
 t.commit();
 }
}
The method getUserbyUsername(String username) uses the Hibernate Query

Language (HQL) to fetch the user from the table User. The addressed table in the from

clause is actually the java class name not the name of the database table. The result is

fetched into a java.util.List of User objects. The operation has to take place in a

transaction.

The second method saveUser(User u) persists the User object to the database. If it’s a

new user Hibernate will generate an INSERT statement. For existing users it will

generate a corresponding UPDATE statement. These operations must be performed in a

transaction as well.

5.4 Security
The role concept described in chapter 4.3 was realized with the component Spring

Security version 3.1.3. Spring Security is an authentication and access-control

framework that is part of the Spring Component framework [65]. The first step was to

add the following dependencies to the pom.xml:

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-core</artifactId>
 <version>3.1.3.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-crypto</artifactId>
 <version>3.1.3.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-web</artifactId>
 <version>3.1.3.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-config</artifactId>
 <version>3.1.3.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-taglibs</artifactId>
 <version>3.1.3.RELEASE</version>
</dependency>

Implementation of the web application 74

Maven automatically resolves the missing Spring core libraries that Spring Security

needs in order to work properly.

The next step was to create the configuration, which was stored in WEB-INF/security-

app-context.xml. The http tag defines which files are allowed to which roles.

<http use-expressions="true">
 <intercept-url pattern="/ahrapp/index.xhtml"
 access="isAuthenticated()" />
 <intercept-url pattern="/ahrapp/account.xhtml"
 access="isAuthenticated()" />
 <intercept-url pattern="/ahrapp/**"
 access="hasRole('Landwirt') or hasRole('Tierarzt')
 or hasRole('Administrator')" />
 <intercept-url pattern="/**" access="permitAll" />
 <form-login login-page="/login.xhtml"
 authentication-failure-url="/loginfailed.xhtml"
 default-target-url="/ahrapp/index.xhtml" />
 <remember-me />
 <logout logout-success-url="/logout.xhtml"
 invalidate-session="true" />
</http>
The <authentication-manager> tag defines where the users and groups are stored.

The simple form is to define the users in the XML file itself with the <user-service>

tag. For this application the users and groups were stored in the database and were

fetched by Spring Security with a data source defined in WEB-

INF/applicationContext.xml. Spring Security demands a field in the query where it

checks if the user is enabled. Since this field did not exist in the database it always

evaluated to true in the SQL query.

<authentication-manager>
 <authentication-provider>
 <jdbc-user-service data-source-ref="dataSource"
 users-by-username-query=
 "select username,passwort, 'true' as enabled from userahr
 where username=?"
 authorities-by-username-query=
 "select u.username,g.groupname from userahr u, groupahr g
 where u.groupahr = g.id and u.username = ?"
 />
 </authentication-provider>
</authentication-manager>
The final step was to modify the WEB-INF/web.xml file. The

org.spring.web.context.ContextLoaderListener is in charge of starting and

stopping the Spring root ApplicationContext interface and determines which

configurations are to be used, by looking at the <context-param> tag for

contextConfigLocation [65]. The before mentioned applicationContext.xml and

security-app-context.xml were added to this parameter.

Implementation of the web application 75

The springSecurityFilterChain intercepts all requests. The filter mappings are

considered in the order that they are declared [65].

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/applicationContext.xml
 /WEB-INF/security-app-context.xml
 </param-value>
</context-param>
<filter>
 <filter-name>springSecurityFilterChain</filter-name>
 <filter-class>
 org.springframework.web.filter.DelegatingFilterProxy
 </filter-class>
</filter>
<filter-mapping>
 <filter-name>springSecurityFilterChain</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>
<listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>

5.5 Business Logic
The actual business logic was developed with ManagedBeans – the model component

of JavaServer Faces - and Enterprise Java Beans. The ManagedBeans were mainly used

to control the data and information flow whereas the EJBs were used for computing the

business logic and communicating with the DAOs to perform the CRUD operations.

The ManagedBeans were annotated with @SessionScoped to last the whole user

session. Access to other ManagedBeans were made with managed properties. Java EE

performs a setter injection (see chapter 3.3.2) for the attribute that is annotated with

@ManagedProperty. EJBs can be injected with the @EJB annotation. The following

example shows an excerpt of the class FarmManagedBean:

@ManagedBean
@SessionScoped
public class FarmManagedBean {

 @EJB
 private AnimalBean animalBean;

 @EJB
 private ActBean actBean;

 @ManagedProperty(value = "#{animalManagedBean}")

Implementation of the web application 76

 private AnimalManagedBean animalmb;

...

 @PostConstruct
 Private void init() {
 doInit();
 }

 public void setAnimalmb(AnimalManagedBean animalmb) {
 this.animalmb = animalmb;
 }

 public void redirecttoAnimal() {
 //Set Animal object
 animalmb.setAnimal(animalBean.getAnimal(((Animal)
 selectedNode.getData()).getId()));
 //Set corresponding Farmer object
 animalmb.setFarmer(((Animal)
 selectedNode.getData()).getOwner());
 //Set Acts
 animalmb.setActlist((ArrayList<Act>)
 actBean.getActsbyId(((Animal)selectedNode.getData()).getId()));
 //Redirect to Animal detail page
 FacesUtil.redirectToTarget("animal.xhtml");
 }
...
The AnimalManagedBean bean was injected to set the Animal object the user had

chosen from the data table before the redirection to animal.xhtml occurred. The static

method FacesUtil.redirectToTarget(String target) loaded the external Faces

context and set a redirect to the given target. Since EJBs are injected after the

instantiation of the ManagedBean all initialisation code concerning EJBs must be done

after the constructor. This behaviour can be achieved by annotation a method with the

@PostConstruct annotation.

The EJBs were declared with the @Stateful annotation. @Stateful EJBs maintain

conversational state with the client. Every request that is coming from the

ManagedBean is passed to the same instance. This behaviour can be seen as a 1-to-1

relation between EJB instance and ManagedBean instance [43]. The following example

shows parts of the UserBean that was used by the AccountManagedBean for the

account.xhtml Facelet that displays and manipulates the current user details.

@Stateful
public class UserBean {

 UserDAO db = new UserDAOImplHibernate();

 public UserBean() {
 }

Implementation of the web application 77

...
 public void saveUser(User u) {
 try {
 db.saveUser(u);
 } catch (Exception e) {
 FacesContext.getCurrentInstance().addMessage(null,
 new FacesMessage(FacesMessage.SEVERITY_ERROR,
 "Fehler beim Speichern!", ""));
 }
 FacesContext.getCurrentInstance().addMessage(null,
 new FacesMessage(FacesMessage.SEVERITY_INFO,
 "Änderungen gespeichert", ""));
 }
}
The method saveUser(User u) calls the UserDAO to persist the given user. The user

gets notified with a success message or if an exception occurred with an error message.

5.6 Logging
Logging was done with the Apache log4j logging utility version 1.2.17. To use it, the

following dependency had to be added to the pom.xml:

<dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.17</version>
 <type>jar</type>
</dependency>
Log4j supports various log levels that are ordered [71]. These are TRACE < DEBUG <

INFO < WARN < ERROR < FATAL, TRACE being the most verbose, only to written to log

files only and FATAL being a severe error. [71].

The configuration was stored in the log4j.properties:

log4j.rootLogger = WARN, stdout
log4j.logger.AHR = DEBUG, FILE, stdout

Direct log messages to a log file
log4j.appender.FILE=org.apache.log4j.RollingFileAppender
log4j.appender.FILE.layout=org.apache.log4j.PatternLayout
log4j.appender.FILE.layout.ConversionPattern=
 %d{dd.MM.yyyy HH:mm:ss} %-5p %c[26] - %m%n
log4j.appender.FILE.File=C:\\temp\\ahr.log

Direct log messages to stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=
 %d{dd.MM.yyyy HH:mm:ss} %-5p %c[26] - %m%n
log4j.appender.stdout.Target=System.out
The rootLogger definition set the utility to print WARN, ERROR and FATAL messages of

any components respectively APIs to the console. The AHR logger was used to write all

CRUD actions, according to the functional requirements to a log file and additionally to

Implementation of the web application 78

the console. The entries were marked as INFO messages. The logger was called via the

final static attribute com.healthresearch.ahr.LogUtil.LOGGER. The entries were

formatted with the org.apache.log4j.PatternLayout and written to a predefined

folder to the local hard disk. The following example shows an extraction of the ahr.log

log file:

...
26.11.2013 19:01:45 INFO AHR - User: aigner has been saved
26.11.2013 19:01:53 INFO AHR - Veterinarian: Steinke has been saved
26.11.2013 19:01:58 INFO AHR - Veterinarian: Jan has been saved
26.11.2013 19:05:20 INFO AHR - User: groth has been saved
...

5.7 RESTful web service
The interface for external applications was realized with a RESTful web service. The

Java reference implementation of RESTful web services Jersey is already a part of the

Glassfish application server.

To initialize it, the following content has to be added to the web.xml:

<servlet>
 <servlet-name>jersey-serlvet</servlet-name>
 <servlet-class>
 com.sun.jersey.spi.container.servlet.ServletContainer
 </servlet-class>
 <init-param>
 <param-name>
 com.sun.jersey.config.property.packages
 </param-name>
 <param-value>com.healthresearch.ahr.interop</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>jersey-serlvet</servlet-name>
 <url-pattern>/rest/*</url-pattern>
 </servlet-mapping>
...
</servlet>
The Jersey-servlet must be declared with the initialization parameter

com.sun.jersey.config.property.packages pointing to the package the web

service classes reside. The servlet mapping declares the basic URI to call the services.

The following source code demonstrates the implementation of the web service that

retrieves farmers by their ids. The result is a XML file with all attributes of the farmer-

object:

@Path("farmer")

Implementation of the web application 79

@Produces(MediaType.APPLICATION_XML)
@Stateless
public class FarmServiceResource {

 PersonDAO db = new PersonDAOImplHibernate();

 @Context
 private UriInfo context;

 public FarmServiceResource() {
 }

 @GET
 @Path("{id}")
 public Farmer getFarmerbyId(@PathParam("id") int id) {
 Farmer f = db.getFarmerbyId(id);
 return f;
 }
}
The java class must be annotated with @Path(URI) to be declared a RESTful web

service. The @Produces annotation defines the MIME type of the output of GET

requests. The opposite would be the @Consumes annotation, which defines the MIME

type of the input for POST requests. These two annotations can also be attached to a

method. The @Stateless annotations gives the web service EJB capabilities, e.g.

transactional access to a persistent layer [43].

The @GET annotation connects the method to a HTTP GET request. @Path(“{id}”)

makes the parameter, the farmer id, part of the URI, to which the @PathParam(“id”)

annotation refers too. The method itself calls the DAO method to retrieve the farmer by

its id from the database using Hibernate and returns it. Since the class

com.healthresearch.ahr.tables.Farmer class is annotated with @XmlRootElement

and the @Produces annotation was set to produce XML files, the return value for the

GET request will be the farmer object with the given id formatted as a XML file.

To retrieve the farmer with id 1, the following URL must be called:
http://localhost:8080/AHR/rest/farmer/1

Results 80

6 Results
This chapter describes the functional prototype – being the result of this thesis – in the

form of screenshots and descriptions based on the functional requirements. The

screenshots were made at a resolution of 1280x1024 pixels.

6.1 Login/Logout
When the user requests any link under the URI /ahrapp without prior authorization, the

login.xhtml page is sent back to him instead. It contains two input fields and a

checkbox. The first input field is the username. The second input field is the password.

The entered password is being shown as dots for security reasons. The checkbox “Login

merken?” – “Remember login?” sets a cookie, so that when the user closes the web

browser and opens it again, he is still authenticated within the system.

Figure 35: Login page, C. Aigner

Results 81

6.2 Start page
After a successful login the user is presented with the start page. Its content depends on

the role the user has.

6.2.1 Administrators
Administrators get a list of registered users on their start page. Their main menu

contains the following items:

Start
Stammdaten
> Landwirte
>> Landwirte suchen
>> Neuer Landwirt
> Tierärzte
>> Tierärzte suchen
>> Neuer Tierarzt
> Weiterver. Betriebe
>> Betriebe suchen
>> Neuer Betrieb
> Benutzer
>> Benutzer suchen
>> Neuer Benutzer
> Arzneimittelkatalog
>> Neues Medikament
Informationen
> Arzneimittelkatalog
Benutzerkonto
Abmelden

Results 82

Figure 36: Start page for admins, C. Aigner

6.2.2 Farmers
Farmers get a searchable list of their animals. Their main menu contains the following

items:

Start
Mein Betrieb
Stammdaten
> Tierärzte
>> Tierärzte suchen
> Weiterver. Betriebe
>> Betriebe suchen
Informationen
> Arzneimittelkatalog
Benutzerkonto
Abmelden

Results 83

Figure 37: start page for farmers, C. Aigner

6.2.3 Veterinarians
Veterinarians get a list of the last treatments they conducted. Their main menu contains

the following items:

Start
Mein Betrieb
Stammdaten
> Landwirte
>> Landwirte suchen
> Tierärzte
>> Tierärzte suchen
> Weiterver. Betriebe
>> Betriebe suchen
Informationen
> Arzneimittelkatalog
Benutzerkonto
Abmelden

Results 84

Figure 38: start page for veterinarians, C. Aigner

6.3 Account page
With the menu button “Benutzerkonto – Account” the user gets the form to edit his user

details. The user can edit his first name, surname, e-mail address, password and his

associated role. The password field is attached with an indicator to inform the user of

the password strength he entered. The associated role input field has two command

buttons on its right side. The first one opens a dialog where the user can search for a

person (farmer, veterinarian or processing industry). After the search has been

conducted, he can click on a result in the list to connect it to his user object. On success

the associated role input field adopts the name of the associated role. The second button

deletes this reference.

The save button on the bottom of the page saves all changes and notifies the user of the

result of this operation with the help of the growl component.

The delete button is only enabled for users with administrative privileges and deletes the

current user (chosen before from the user-search form).

Results 85

Figure 39: account page, C. Aigner

6.4 Search for farms
Administrators and veterinarians can search for farms by clicking on the menu item

“Stammdaten – Landwirte – Landwirte suchen”. The view consists of a paginated data

table with input fields on every column. When the user enters a search criteria in one of

the input fields the system immediately begins the search and narrows down the results.

The order of the columns can be manipulated by dragging them to a desired position.

The list can also be sorted by any column.

By clicking on an entry in the data table, the user gets directed to the detail-view of the

chosen farm.

Results 86

Figure 40: farm search view, C. Aigner

6.5 Add/edit farm-data
Administrators can add farms via the menu button “Stammdaten – Landwirt – Neuer

Landwirt”. Existing farm data can be edited by searching a farm and clicking on the

result or by clicking on “Mein Betrieb” if the current user is associated with a farmer

object.

The farm-detail view consists of two collapsible panels. The first panel displays the

standing data of the farm object. The second panel displays the managed animals, with a

tree view component.

The user can edit his personal data, company data and contact data. The birthdate gets

chosen with the help of an overlay calendar that appears when the user clicks on the

input field. Legal forms can be chosen from a selection list. An associate can be

searched and added by clicking on the matching input field.

Results 87

The associated veterinarians are managed with a list box and two buttons. After clicking

the “Hinzufügen” button, a dialog opens and lets the user chose a veterinarian. With the

“Entfernen” button a selected veterinarian can be deleted.

There are three buttons at the bottom of the first panel. The first button saves the entered

data and notifies the user of the outcome. The second button deletes the farm (only

administrators can perform this operation). After deleting the object the user is

redirected to the start page. The “Abbrechen” button redirects the user back to the start

page. The administrator gets redirected to the farm-search view.

The second panel contains all animals that are managed by the farm. They are pre-

sorted by species and displayed as a tree. The user can click on the “+” sign left to the

species label to expand the list. By clicking on an animal he gets redirected to the

animal detail view.

Figure 41: farm detail view, C. Aigner

Results 88

6.6 Add/edit animal-data
The animal detail view consists of three panels. The first panel contains the actual

animal health record displayed as a data table. The columns can be sorted, reordered

and contain input fields for the search. When the user selects a row, the corresponding

dialog opens with the detail view of the particular act. The table footer contains the

command button “Hinzufügen”, that adds a new act.

The second panel contains the animal standing data. The user can modify general and

biological data of the animal. The input fields for “Rasse”, “Vater” and “Mutter” are

clickable and will open a search dialog for the association of the particular entities

“race”, “father animal” and “mother animal”. The panel footer contains three command

buttons. The first one “Speichern” saves the changes. The second one “Entfernen”, only

accessible to the farmer and administrators, deletes the animal. The third button

“Abbrechen” return the user to the farm view.

The third panel, which is collapsed by default contains personal and operating data of

the farm.

Results 89

Figure 42: animal detail view, C. Aigner

Dialogs are movable within the browser window, can be minimized respectively

maximized and be closed with three button located on the right side of the title bar.

They contain panels for the basic act data and the special act-type data. The footer

contains a button to save the changes and a button to delete the act from the database.

6.6.1 Birth dialog
The birth dialog contains all relevant data for the act “Birth”.

Results 90

Figure 43: birth dialog, C. Aigner

6.6.2 Treatment dialog
The treatment dialog contains all relevant treatment data.

Figure 44: treatment dialog, C. Aigner

6.6.3 Test dialog
The test dialog contains all relevant test data. It includes a sortable, searchable data

table for the analysed lab values. The button “Hinzufügen” adds a new lab value to the

Results 91

act. “Entfernen” deletes the selected lab value from the database. A file can be uploaded

by first clicking on “Auswählen”. This button opens the browsers native file open

dialog where the user can choose a file that needs to be uploaded. If the file passes

validation it can be uploaded with the “Hochladen” button. The actual upload happens

automatically with an AJAX call. The download button retrieves the saved document

from the database.

Figure 45: test dialog, C. Aigner

6.6.4 Diagnosis dialog
The diagnosis dialog contains all relevant diagnosis data.

Results 92

Figure 46: diagnosis dialog, C. Aigner

6.6.5 Medication dialog
The medication dialog contains all relevant data for the act “Medication”. The drug can

be selected by clicking on the medication input field, which opens a search dialog.

Figure 47: medication dialog, C. Aigner

Results 93

6.6.6 Slaughter protocol dialog
The slaughter protocol dialog contains all relevant data for the act “Slaughter protocol”.

The user can associate a processing industry by clicking on the corresponding input

field which opens a search dialog.

Figure 48: slaughter protocol dialog, C. Aigner

6.7 Search for veterinarians
Users can search for veterinarians by clicking on the menu button “Stammdaten –

Tierärzte – Tierärzte suchen”. The view contains a data table that is paginated, sortable

and searchable by column. Selecting a row redirects the user to the veterinarian detail

view.

Results 94

Figure 49: search veterinarian view, C. Aigner

6.8 Add/edit veterinarian-data
Administrators can add veterinarians via the menu button “Stammdaten – Tierärzte –

Neuer Tierarzt”. Existing veterinarian data can be accessed via the farm search form or

by clicking on “Mein Betrieb” if the current user is associated with a veterinarian

object.

The panel contains all relevant veterinarian data. The footer contains the button

“Speichern” that saves the veterinarian and the button “Entfernen”, which is only

enabled for administrators, to delete the veterinarian.

Results 95

Figure 50: add/edit veterinarian data, C. Aigner

6.9 Search for processing industries
The search form for processing industries is accessible via the menu entry “Stammdaten

– Weiterver. Betriebe – Betriebe suchen”. The view contains a data table that is

paginated, sortable and searchable by every column criteria. Authorized users may

select a row and then be redirected to the detail page of the industry.

Results 96

Figure 51: search processing industry view, C. Aigner

6.10 Add/edit processing-industry-data
Administrators can add processing industries via the menu button “Stammdaten –

Weiterver. Betriebe – Neuer Betrieb”. Existing industries can be edited by selecting

them in the processing industry search form.

Results 97

Figure 52: add/edit processing industry data, C. Aigner

6.11 List of drugs
The list of drugs is available via the menu button “Informationen –

Arzneimittelkatalog”. The view contains a data table that is paginated, sortable and

searchable by every column. Selecting a row redirects the user to the drug detail view.

Results 98

Figure 53: List of drugs, C. Aigner

6.12 Add/edit drug-data
To edit a drug, one must choose it from the data table. To add a new drug,

administrators must click the menu item “Stammdaten – Arzeimittelkatalog – Neues

Medikament”.

The form contains all relevant drug data. The panel footer contains two command

buttons. The first button “Speichern” saves the drug. The second one “Entfernen” is

only enabled for administrators and deletes the drug.

Results 99

Figure 54: add/edit drug data, C. Aigner

6.13 Web service
To access the web service to retrieve a farmer by his identification number, the user or

the external program must use the URI

http://localhost:8080/AHR/rest/farmer/{userid}. The following screenshot

shows the retrieval of the XML file via a web browser:

Results 100

Figure 55: RESTful web service call, C. Aigner

Discussion and Conclusion 101

7 Discussion and Conclusion
This master thesis describes the design process and implementation of a prototype for

an animal health record in livestock management. It defines the AHR as a series of

electronic records of medical and organizational data for an animal that is part of a

livestock. Compared to existing commercial or academic software products, this

prototype places a special emphasis on the management of livestock owners. Most of

the commercial software products tend to focus more on the domestic animal sector.

The O3-Vet project, developed at the University of Milan, focuses on veterinary

hospitals. This prototype illustrates how software can not only be used by the

veterinarian that oversees the livestock but by the owner himself. Since the prototype is

a web application, all the user needs is an internet connection and a capable device.

Conventional AHR-software must be installed and deployed in a hospital or private

practise environment. This prototype can be hosted on a central server for all potential

users.

The technological foundation of the prototype is the industry standard Java Enterprise

Edition, in contrast to the O3-Vet project which was implemented using the PHP

scripting language. PHP is a pure web technology whereas Java can be used in various

scenarios. This makes it easier to deploy it in production environments where Java is

already a prevalent technology. It gives the user a more state-of-the-art user experience

without the use of special browser plugins which makes the application more platform-

independent. The database was loosely based on the EHR standard HL7v3 RIM and

shows that an animal health record can incorporate standards and methods from the

field of human medicine.

The general conditions for this work were laid down in the AHR research group.

Especially the evaluation of the functional and non-functional requirements, the

stakeholders and roles were collaboratively done within the research group. These

findings were the basis for the software and database design of the prototype.

The database was loosely based on the HL7v3 RIM standard with the integration of all

the attributes and relations that were gathered by the research group.

Certain technologies had to be selected during the development process. It was decided

to use JSF 2.0 and the PrimeFaces component suite for the GUI because it is better

Discussion and Conclusion 102

integrated into Java EE and is cross-platform. Since RESTful web services are

considered a defacto standard and are more light-weight they were chosen as the

underlying technology for the external interface of the AHR web application. Spring

Security was chosen as the security API because it is wider used and its configuration

integrates better with Java.

The prototype was developed and tested with the integrated development environment

NetBeans version 7.3 and was deployed on the GlassFish application server version

3.1.2.2. MySQL version 5.6 was used as the underlying database server.

Perspective 103

8 Perspective
This work can be used as a source for implementing enhancements and additional use

cases that can improve the user experience and productivity.

A big step forward would be the support of mobile devices, especially smartphones. The

PrimeFaces framework includes components for mobile devices powered by jQuery

Mobile. It supports various platforms such as iPhone, Android, Palm, Blackberry and

Windows Mobile [72]. These components could be used to implement new JSF pages

that could utilize the existing business logic. The following example demonstrates the

look and feel of a standard web form developed with the PrimeFaces Mobile component

suite:

Figure 56: PrimeFaces Mobile [72]

The prototype does not implement all use cases the AHR group defined. Connecting the

application to existing governmental or non-government systems for the exchange of

data would be the next logical step. The development of a comprehensive report

generator would be a valuable feature as well.

Perspective 104

The use of more advanced JSF components, like the <p:autoComplete> component,

that executes queries the moment the user starts typing would be an interesting

enrichment for the application.

The drug database used for treatment data in the prototype is managed by an

administrative user. A replication of or remote connection to the official drug catalogue

provided by the ministry of health is mandatory for veterinarians managing their own

medical supplies. The Austrian federal law “BGBl. II Nr. 65/2005

Apothekenbetriebsordnung” paragraph 58 states that amongst others it is required to

possess a copy of the official drug catalogue, called the “Austria Codex-

Fachinformation”.

Furthermore, an individualization of the software could be beneficial. This could

involve theming (including a theme switcher) and distinct start pages for every user.

A requirement for a regular operation would be a comprehensive test phase with

farmers and veterinarians. The expected result of such a field test would be a refinement

of the uses cases and the role concept. Important questions the stakeholders could

answer are: Who should be able to access what data? Who wants to use the system

besides the roles already defined within the scope of this thesis? Are all the data fields,

especially for the various act datasets plausible?

Glossary 105

Glossary
AHR Animal health record

AJAX Asynchronous JavaScript and XML

API Application programming interface

CDDL Common Development and Distribution License

CRUD Create, read, update and delete

CT computed tomography

DAO Data access object

DICOM Digital Imaging and Communications in Medicine

EHR Electronic Health Record

EJB Enterprise Java Beans

GPL GNU General Public License

HL7 Health Level 7

HL7v3 RIM HL7 version 3 Reference Information Model

HQL Hibernate Query Language

HTML HyperText Markup Language

IHE Integrating the Healthcare Enterprise

IDE Integrated development environment

JDK Java Development Kit

JMS Java Message Service

JPEG Joint Photographic Experts Group

JPQL Java Persistence Query Language

JSON JavaScript Object Notation

JTA Java Transaction API

MRI Magnetic resonance tomography

Glossary 106

MPEG Moving Picture Experts Group

MVC Model view controller

ORM Object-relational Mapping

PACS Picture archiving and communication system

PEAR PHP Extension and Application Repository

REST Representational State Transfer

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSL Secure socket layer

TLS Transport layer security

UDDI Universal Description Discovery and Integration

UI User interface

UML Unified Modelling Language

WADL Web Application Description Language

WSDL Web Services Description Language

XML Extensible Mark-up Language

Bibliography 107

Bibliography
[1] T. Benson, Principles of Health Interoperability HL7 and SNOMED. London:

Springer-Verlag London Limited, 2010.
[2] S. I. GmbH. (2012, 01.10.2012). Animal Office. Available: http://www.animal-

office.at
[3] F. M. T. S. C. M. Zaninelli, A. Ferrara, E. Ferro, P.G. Brambilla, S. Faverzani,

S. Chinosi, P. Scarpa, M. Di Giancamillo, D. Zani, A. Zepponi, C. Saccavini,
"The O3-Vet project: A veterinary electronic patient record based on the web
technology and the ADT-IHE actor for veterinary hospitals," Computer methods
and programs in biomedicine, pp. 68-77, 2007.

[4] V. Willner, "Erhebung und Analyse der Anfordedrungen an einen Animal
Health Record (AHR) für Kleintiere," Fakultät für Informatik, Technische
Universität Wien, Wien, 2011.

[5] A. Füresz, "Analyse, Systemdesign und Architekturentwurf einer elektronischen
Gesundheitsakte für Nutztiere," Fakultät für Informatik, Technische Universität
Wien, Wien, 2012.

[6] Y. Yamada, "The electronic health record as a primary source of clinical
phenotype for genetic epidemiological studies," Genomic Medicine, vol. 2, p. 5,
2008.

[7] N. P. T. Tracy D Gunter, "The Emergence of National Electronic Health Record
Architectures in the United States and Australia: Models, Costs, and Questions,"
Journal of Medical Internet Research, vol. 7, 2005.

[8] I. I. GmbH. (2012, 01.10.2012). easyVET. Available: http://www.easyvet.eu
[9] A. Austria. (2013, 27.03.2013). Lebendrinderkennzeichnung und -registrierung.

Available:
http://www.ama.at/Portal.Node/ama/public?gentics.am=PCP&p.contentid=1000
7.19455

[10] A. Austria. (2013, 27.03.2013). eAMA. Available: https://services.ama.at/servlet/
[11] Z. D. E.-D. GmbH. 27.03.2013). RDV4M Rinderdatenverbund für Mitglieder

Benutzerhandbuch. Available: http://cgi.zar.at/download/Newsletter/RDV4M-
Doku-neu.pdf

[12] S. Austria. (2012). Veterinärinformationssystem. Available:
http://www.statistik.at/ovis/start/index.html

[13] T. B. Peter Schloeffel, George Hayworth, Sam Heard, Heather Leslie, "The
relationship between CEN 13606, HL7, and openEHR," presented at the HIC
2006, Sydney, Australia, 2006.

[14] N. Krawetz, Introduction to Network Security: Cengage Charles River Media,
2007.

[15] H. A. Österreich. (2012, 06.12.2012). HL7 Anwendergruppe Österreich.
Available: http://www.hl7.at

[16] H. L. S. International. (2012, 02.10.2012). HL7 Messaging Standard Version
2.7. Available:
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=146

[17] Interfaceware. (2012, 11.12.2012). Understanding HL7 Messages. Available:
http://www.interfaceware.com/understanding_hl7_messages.html

[18] R. Spronk. (2007, 11.12.2012). HL7 Message examples: version 2 and version
3. Available: http://www.ringholm.de/docs/04300_en.htm

Bibliography 108

[19] jwenet.net. (2005, 11.12.2012). HL7 Event Summary. Available:
http://jwenet.net/notebook/1777/1800.html

[20] A. E. A. Kemper, Datenbanksysteme, 2004.
[21] R. Brull. (2011, 14.01.2014). HL7 v3 RIM: Is It Really that Intimidating?

Available: http://www.hl7standards.com/blog/2011/05/31/hl7-v3-rim-is-it-
really-that-intimidating/

[22] iEHR. (2013, 25.01.2013). HL7 CDA. Available: http://iehr.eu/standards/hl7-
cda/

[23] L. A. Robert H Dolin, Sandy Boyer, Calvin Beebe, Fred M Behlen, Paul V
Biron, Amnon Shabo Shvo, "HL7 Clinical Document Architecture, Release 2,"
2005.

[24] ISO, "13606-1 Health informatics - Electronic health record communication," in
Reference model, ed, 2008.

[25] H. Leslie, "International developments in openEHR archetypes and templates,"
Health Information Management Journal, vol. 37, 2008.

[26] E. Association. (2013, 25.01.2013). The CEN/ISO EN13606 standard.
Available: http://www.en13606.org

[27] ISO, "13606-2 Health informatics - Electronic health record communication," in
Archetype interchange specification, ed, 2008.

[28] o. Foundation, "openEHR Architecture Release 1.0.2," in Architecture
Overview, ed, 2008.

[29] J. W. Dean Bidgood, MD, MS, Steven C. Horii, MD, Fred W. Prior, PhD,
Donald E. Van Syckle, "Understanding and Using DICOM, the Data
Interchange Standard for Biomedical Imaging," Journal of the American
Medical Informatics Association, vol. 4, 1997.

[30] dcm4che.org. (2013, 05.07.2013). Open Source Clinical Image and Object
Management. Available: http://www.dcm4che.org

[31] J. Wilcke, "SNOMED, What's in it? Who's Involved? What's it for?," presented
at the AVMA Vendors Meeting, New Orleans, Louisiana, 1999.

[32] M. F. Anne Casey RN, "SNOMED Clinical Terms - Introduction," ed: Royal
College of Nursing.

[33] M. Clem McDonald, Stan Huff, MD, Jamalynne Deckard, Kathy Mercer,
Jacqueline Phillips, and P. Daniel J. Vreeman, DPT. (2012). Logical
Observation Identifiers Names and Codes Users' Guide. Available:
http://loinc.org/downloads/files/LOINCManual.pdf

[34] I. C. on and V. G. A. N. (I.C.V.G.A.N.). (2012). Nomina Anatomica Veterinaria
Fifth Edition. Available: http://www.wava-amav.org/Downloads/nav_2012.pdf

[35] J. N. Robbins, Web Design in a Nutshell, Third Edition: O'Reilly, 2006.
[36] W3C, "HTML 4.01 Specification," ed, 1999.
[37] W3C, "HTML 5.1 Nightly," 2013.
[38] W3C, "XHTML 1.0 The Extensible HyperText Markup Language (Second

Edition)," ed: W3C, 2000.
[39] W3C, "Document Object Model (DOM) Level 1 Specification," ed, 1998.
[40] W3C, "Document Object Model (DOM) Level 3 Core Specification," 2004.
[41] J. M. Nicholas C. Zakas, Joe Fawcett, Professional Ajax, 2nd Edition: Wiley

Publishing, Inc., 2007.
[42] A. Gupta, Java EE 6 Pocket Guide: O'Reilly, 2012.
[43] A. Goncalves, Beginning Java EE 6 with Glassfish 3: From Novice to

Professional, Second Edition: Apress, 2010.

Bibliography 109

[44] C. D. o. J. T. Specifications. (2013, 26.08.2013). JSR 342: Java Platform,
Enterprise Edition 7 (Java EE 7) Specification.

[45] Hibernate. (2013, 02.09.2013). About Hibernate. Available:
http://www.hibernate.org/about.html

[46] J. L. a. D. Minter, Beginning Hibernate, Second Edition, 2010.
[47] J. S. Doug Tidwell, Pavel Kulchenko, Programming Web Services with SOAP,

2001.
[48] Ç. Çivici, Prime Faces Users' Guide 3.5, 2013.
[49] E. R. Alaric Cole, Learning Flex 4, 2011.
[50] D. Marx. (2009, 22.11.2013). Java EE and Flex, Part 1: A compelling

combination.
[51] C. Scarioni, Pro Spring Security, 2013.
[52] A. S. Foundation. (2013, 22.11.2013). Apache Shiro Documentation.
[53] R. H. Erich Gamma, Ralph Johnson, John Vlissides, Design Patterns: Elements

of Reusable Object-Oriented Software, 1994.
[54] S. M. Inc. (2002). Core J2EE Patterns - Data Access Object. Available:

http://www.oracle.com/technetwork/java/dataaccessobject-138824.html
[55] M. Fowler. (2004). Inversion of Control Containers and the Dependency

Injection pattern. Available: http://martinfowler.com/articles/injection.html
[56] T. V. F. Stuart Hansen, "Refactoring model-view-controller," Journal of

Computing Sciences in Colleges . JCSC, 2005.
[57] R. Eckstein. (2007, 17.11.2013). Java SE Application Design With MVC.

Available: http://www.oracle.com/technetwork/articles/javase/index-
142890.html

[58] R. M. Kim Hamilton, Learning UML 2.0, 2006.
[59] L. W. Smith, "Project Clarity Through Stakeholder Analysis," CrossTalk, vol.

13, pp. 4-9, 2000.
[60] A. A. M. G. (Ltd.). (2013, 04.09.2013). AMA Marketing. Available:

http://www.amaexport.at/en/ama-marketing.html
[61] F. I. f. R. E. a. Training, "Quality assurance in agricultural animal husbandry,"

ed, 2010.
[62] P. L. H. Eide. (2005, Quantification and Traceability of Requirements.
[63] P. P.-S. Chen, "The Entity-Relationship Model - Toward a Unified View of

Data," ACM Transactions on Database Systems, vol. 1, 1976.
[64] B. Zwattendorfer. (2013, Analyse SOAP vs. REST.
[65] P. M. Robert Winch, Spring Security 3.1, 2012.
[66] M. Raible. (2011, 27.11.2013). Web Application Security - Part III: Apache

Shiro. Available:
http://raibledesigns.com/rd/entry/java_web_application_security_part2

[67] M. K. Martin Marinschek, Gerald Müllan, Gerhard Petracek, Marcus Kröger,
Andrea Schnabl. (2013, 14.11.2013). JSF@Work.

[68] T. G. Team. (2013, 14.05.2013). GNU Image Manipulation Program. Available:
http://www.gimp.org/

[69] O. V. Mert Caliskan, PrimeFaces Cookbook: PACKT, 2013.
[70] I. Red Hat. (2013, 18.11.2013). Hibernate Reference Documentation. Available:

http://docs.jboss.org/hibernate/orm/4.2/manual/en-US/html/
[71] A. S. Foundation. (2012, 26.11.2013). Short introduction to log4j. Available:

http://logging.apache.org/log4j/1.2/manual.html

Bibliography 110

[72] PrimeFaces. (2013, 29.11.2013). PrimeFaces Mobile. Available:
http://www.primefaces.org/showcase/mobile/index.jsf

