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Kurzfassung

Seit der Einfithrung der isogeometrischen Analysis (IGA) im Jahr 2005 sind die Finite-
Element-Methode (FEM) und die Randelementmethode (BEM, engl. boundary element me-
thod) mit Splines zu einem aktiven Forschungsfeld geworden. Die zentrale Idee von IGA ist
es, die gleichen Funktionen zur Approximation der Losung der betrachteten partiellen Dif-
ferentialgleichung (PDE, engl. partial differential equation) zu verwenden, die auch fiir die
Darstellung der Problemgeometrie in Computer Aided Design (CAD) genutzt werden. Nor-
malerweise basiert CAD auf Tensorprodukt-Splines. Um adaptive Verfeinerung zuzulassen,
wurden einige Erweiterungen von diesen entwickelt, z.B. hierarchische Splines, T-Splines
oder LR-Splines. Im Hinblick auf Geometrie induzierte Singularitéiten und der Tatsache,
dass isogeometrische Methoden Ansatzfunktionen mit hoher Ordnung verwenden, ist der
Gewinn durch adaptive Verfeinerung (bzw. Verlust bei uniformer Verfeinerung) gewaltig.

In dieser Arbeit betrachten wir zuerst eine adaptive FEM mit hierarchischen Splines
von beliebigem Grad fiir lineare elliptische PDE-Systeme zweiter Ordnung mit Dirichlet-
Randbedingung in R? fiir d > 2. Wir nehmen an, dass die Problemgeometrie iiber dem
d-dimensionalen Einheitswiirfel parametrisiert werden kann. Wir stellen eine Verfeinerungs-
strategie vor, um eine Folge lokal verfeinerter Gitter und diskreter Losungen zu erzeugen.
Adaptivitit wird hierbei von einem gewichteten a posteriori Residualfehlerschéitzer gesteu-
ert. Wir beweisen lineare Konvergenz des Fehlerschétzers (bzw. der Summe aus Fehler und
Datenoszillationen) mit optimaler algebraischer Rate.

Danach betrachten wir eine adaptive Randelementmethode mit hierarchischen Splines von
beliebigem Grad fiir schwach-singulédre Integralgleichungen erster Art, die bei der Lésung von
linearen elliptischen PDE-Systemen zweiter Ordnung mit konstanten Koeffizienten und
Dirichlet-Randbedingung auftreten. Wir nehmen an, dass der Geometrierand die Vereini-
gung von Oberfléchen ist, die iiber dem (d—1)-dimensionalen Einheitswiirfel parametrisiert
werden konnen. Erneut stellen wir eine Verfeinerungsstrategie vor, um eine Folge lokal ver-
feinerter Gitter und diskreter Losungen zu erzeugen, wobei Adaptivitdt durch einen gewich-
teten a posteriori Residualfehlerschitzer gesteuert wird. Wir beweisen lineare Konvergenz
des Fehlerschitzers mit optimaler algebraischer Rate. Im Gegensatz zu fritheren Arbeiten,
welche auf das Laplace-Modellproblem beschrinkt sind, ldsst unsere Analysis beliebige el-
liptische PDE-Systeme zweiter Ordnung mit konstanten Koeffizienten zu.

Schliellich untersuchen wir fiir eindimensionale Rénder eine adaptive BEM mit Stan-
dardsplines statt hierarchischen Splines. Wir modifizieren den entsprechenden Algorithmus
so, dass er zusitzlich die lokale Glattheit der Ansatzfunktionen steuert. Erneut beweisen
wir lineare Konvergenz des Fehlerschétzers mit optimaler algebraischer Rate.

Um die genannten Resultate zu beweisen, entwickeln wir einen abstrakten Rahmen fiir
adaptive konforme FEM und BEM. Insbesondere kénnte dieser Rahmen auch fiir IGA mit
T-Splines oder LR-Splines genutzt werden. Durchwegs belegen wir unsere theoretischen
Ergebnisse mit numerischen Beispielen.






Abstract

Since the advent of isogeometric analysis (IGA) in 2005, the finite element method (FEM)
and the boundary element method (BEM) with splines have become an active field of
research. The central idea of IGA is to use the same functions for the approximation of the
solution of the considered partial differential equation (PDE) as for the representation of
the problem geometry in computer aided design (CAD). Usually, CAD is based on tensor-
product splines. To allow for adaptive refinement, several extensions of these have emerged,
e.g., hierarchical splines, T-splines, and LR-splines. In view of geometry induced generic
singularities and the fact that isogeometric methods employ higher-order ansatz functions,
the gain of adaptive refinement (resp. loss for uniform refinement) is huge.

In this work, we first consider an adaptive FEM with hierarchical splines of arbitrary
degree for linear elliptic PDE systems of second order with Dirichlet boundary condition
in R? for d > 2. We assume that the problem geometry can be parametrized over the
d-dimensional unit cube. We propose a refinement strategy to generate a sequence of
locally refined meshes and corresponding discrete solutions. Adaptivity is driven by some
weighted-residual a posteriori error estimator. We prove linear convergence of the error
estimator (resp. the sum of error plus data oscillations) with optimal algebraic rate.

Next, we consider an adaptive BEM with hierarchical splines of arbitrary degree for
weakly-singular integral equations of the first kind that arise from the solution of linear
elliptic PDE systems of second order with constant coefficients and Dirichlet boundary
condition. We assume that the boundary of the geometry is the union of surfaces that can
be parametrized over the (d — 1)-dimensional unit cube. Again, we propose a refinement
strategy to generate a sequence of locally refined meshes and corresponding discrete solu-
tions, where adaptivity is driven by some weighted-residual a posteriori error estimator.
We prove linear convergence of the error estimator with optimal algebraic rate. In contrast
to prior works, which are restricted to the Laplace model problem, our analysis allows for
arbitrary elliptic PDE operators of second order with constant coefficients.

Finally, for one-dimensional boundaries, we investigate an adaptive BEM with standard
splines instead of hierarchical splines. We modify the corresponding algorithm so that it
additionally uses knot multiplicity increase which results in local smoothness reduction of
the ansatz space. Again, we prove linear convergence of the employed weighted-residual
error estimator with optimal algebraic rate.

In order to prove all these results, we provide an abstract framework for adaptive con-
forming FEM and BEM. In particular, this framework might also be applicable to IGA
with T-splines or LR-splines. Throughout, we provide numerical evidence for our theoret-
ical findings.
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1 Introduction

On a given rectangular mesh, splines are piecewise polynomials with certain smoothness
properties across the boundaries of the mesh elements. Since the advent of isogeometric
analysis (IGA) in 2005, the finite element method (FEM) based on splines has become
an active field of research. The central idea of IGA is to use the same functions for
the approximation of the solution of the considered partial differential equation (PDE)
as for the representation of the problem geometry Q in computer aided design (CAD);
see [ , , ]. The CAD standard for geometry representation relies
on splines resp. rational splines which are quotients of standard splines. IGA is of particular
interest, if the solution of the PDE describes some geometric quantity, e.g., a deformation
of €. In this case, one can directly use the approximate solution in the CAD program,
since it is in the corresponding format.

Usually, CAD provides only a parametrization of the boundary 952 instead of the domain
Q itself. Since FEM requires a mesh of €2, the parametrization needs to be extended to
the whole domain, which is non-trivial and still an open research topic, in particular, for
CAD geometries consisting of multiple patches. The boundary element method (BEM),
which can be seen as FEM on the boundary, circumvents this difficulty by working only on
the CAD provided boundary mesh. However, compared to the literature on isogeometric
analysis with FEM (IGAFEM), only little is found for isogeometric analysis with BEM
(IGABEM). The latter was first considered in | | for 2D and in | ] for 3D.

To obtain an accurate approximation of the PDE solution, the CAD provided boundary
mesh has to be refined, since the initial mesh is often too coarse to resolve certain behavior
of the solution. This can be achieved by uniformly bisecting all elements of the mesh.
However, in general, this approach might be unnecessarily (or even prohibitively) expensive
in terms of computational effort. Indeed, geometry or data induced singularities of the
(unknown) exact solution might reduce the order of convergence significantly and hence
spoil the accuracy of numerical simulations for uniform refinement. However, in many
situations, local refinement at these singularities significantly improves the accuracy and
is hence preferable. In order to automatically steer such a local refinement, one has to
implement so-called adaptive algorithms. These algorithms estimate the approximation
error on all current mesh elements and refine only those elements, where the error appears
to be largest.

1.1 Goal of this work

The goal of this work is the development and the mathematical analysis of adaptive algo-
rithms for [IGAFEM and IGABEM. In particular, the emphasis is on the rigorous proof that
the proposed algorithms lead to (optimal) convergence of the approximations towards the
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exact solution of the PDE. In order to numerically investigate these algorithms, implemen-
tations for adaptive IGABEM in 2D, adaptive IGAFEM in 2D, and adaptive IGABEM
in 3D were developed. These implementations are used to underline the mathematical
findings with numerical experiments.

1.2 OQOutline & Contributions

Chapter 2
This chapter is essentially a summary of the results from [ | and its slight general-
ization [ ]. Both works consider a standard adaptive algorithm from a very abstract

point of view. They provide the so-called azioms of adaptivity for the error estimator and
the mesh-refinement which imply convergence of the estimator at optimal algebraic rate;
see Theorem 2.3.1.

Chapter 3

In this chapter, we introduce the so-called splines. On a given mesh of the unit interval,
splines are piecewise polynomials with certain smoothness properties at the breakpoints
of the mesh. A tensor-product approach provides a definition for the higher-dimensional
case d > 2. Since the tensor-mesh structure has to be preserved in each refinement step,
the standard splines are not suited for adaptive refinement if the dimension d is larger
than one. To allow for adaptive refinement, several extensions of the standard model
have recently emerged, e.g., hierarchical splines | , |, analysis-suitable T-
splines | , ], or LR-splines | , |. In this work, we focus
on hierarchical splines which are defined in Section 3.4. We recall the definition of two
well-known bases of the space of hierarchical splines, namely the hierarchical B-splines and
the truncated hierarchical B-splines (THB-splines). In Section 3.4.5, we present a Scott—
Zhang type projection onto hierarchical splines from the recent own work | ]. Under
additional assumptions on the underlying mesh, this operator is locally L2-stable, locally
H'-stable, and has a local first-order approximation property.

Chapter 4

On a d-dimensional bounded Lipschitz domain (), we consider a general linear system of
second-order PDEs with homogenous Dirichlet boundary condition

Pu=f inQ,

(1.2.1)
u=0 onl :=099Q,

where we seek the solution u : Q — RP with D > 1. Provided that P is H}(Q)P-elliptic,
(1.2.1) admits for arbitrary vector-valued f € L?(Q)” a unique weak solution u € Hg(Q)P
which can be approximated with the help of FEM.

For standard FEM with globally continuous piecewise polynomials, adaptive algorithms
of the form

[(sotve] — [estumave] — [mare] —» [rofime]
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are well understood; see, e.g., [ , , ) , , | and
[ | for milestones on convergence and optimal convergence rates.

In contrast, so far there exists only little literature concerning the thorough mathematical
analysis of adaptive FEM with splines: | | investigates an estimator reduction for an
IGAFEM with certain hierarchical splines. [ | investigates linear convergence of an
adaptive IGAFEM with truncated hierarchical B-splines. In the continuation of the latter
work, [ | studies the corresponding mesh-refinement strategy together with some
refinement-related properties for the proof of optimal convergence.

Chapter 4 builds upon the recent own work | ] and proves that adaptive IGAFEM
with hierarchical splines leads to linear convergence with optimal rate. At the time | ]
was written, the mathematical proof that the adaptive strategy of | ] leads to optimal
convergence rates, was still missing in the literature. Independently and during the review
process of [ |, optimal convergence behavior for symmetric PDEs was proved in the
preprint | ], but not underpinned by numerical experiments. Unlike our strategy from
[ |, the algorithm of | | was designed for truncated hierarchical B-splines only
and the use of hierarchical B-splines may lead to non-sparse Galerkin matrices. In general,
truncated hierarchical B-splines have smaller but also more complicated supports, which
are possibly not even connected. Further, the truncation procedure leads to an additional
overhead that should not be neglected.

Sections 4.2-4.3

In Section 4.2, we give an abstract framework for adaptive mesh-refinement for conforming
FEM for the model problem (1.2.1). In Theorem 4.2.7, we identify sufficient condi-
tions for the underlying meshes, the local FEM spaces, as well as the employed (local)
mesh-refinement rule which guarantee that the usual weighted-residual a posteriori error
estimator satisfies the axioms of adaptivity from Chapter 2. In particular, we see that the
corresponding adaptive algorithm (Algorithm 4.2.6) leads to linear convergence of the error
estimator at optimal algebraic rate. Moreover, Theorem 4.2.7 states that under certain as-
sumptions on the data approximation spaces, the employed error estimator is equivalent to
the so-called total error infy,cx, (||u — Ve|lg1(q) + 0sce(Vs)), where osce(-) denotes certain
data oscillation terms. This implies that also the total error converges linearly at optimal
rate. Section 4.3 is devoted to the proof of Theorem 4.2.7.

Sections 4.4-4.6

Section 4.4 defines hierarchical meshes and hierarchical splines on 2, derives the canonical
basis of the hierarchical spline space X, C H&(Q)D with Dirichlet boundary condition, and
introduces some local mesh-refinement strategy (Algorithm 4.4.1) which preserves a certain
admissibility property. This admissibility property particularly yields that the number
of (truncated) hierarchical B-splines on each element as well as the number of elements
contained in the support of each (truncated) hierarchical B-spline is uniformly bounded;
see Proposition 3.4.3. If one uses the strategy of | , , | instead, this is
not true for hierarchical B-splines, but only for truncated hierarchical B-splines.

The main result of this chapter is Theorem 4.4.6 which states that hierarchical splines
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together with the proposed local mesh-refinement strategy satisfy all assumptions of Sec-
tion 4.2, so that Theorem 4.2.7 applies and proves optimal convergence behavior of the
adaptive algorithm. The proof is given in Section 4.5. Whereas the corresponding result
of | , | adapts the analysis of | | and is thus restricted to symmetric
problems, we exploit some recent ideas from [ | in order to cover the non-symmetric
case as well. Remark 4.4.7 extends Theorem 4.4.6 to rational hierarchical splines.

We conclude the chapter with three numerical experiments in Section 4.6 which underpin
the theoretical results, but also demonstrate the limitations of hierarchical splines in the
frame of adaptive FEM if the solution u exhibits edge singularities.

Chapter 5

We consider a general linear system of second-order PDEs on the d-dimensional bounded
Lipschitz domain Q with PDE operator 8. We assume that the coefficients of B are
constant and that the induced bilinear form is H&(Q)D -elliptic up to some compact per-
turbation. Let G : R?\ {0} — RP*P be the corresponding (matrix-valued) fundamental
solution in the sense of | , page 198]. For ¢ € L>®(T')P, we define the single-layer
operator as boundary convolution with G, i.e.,

(YY) (x) = /FG(CU —y)(y)dy for all z €T. (1.2.2)

This operator can be extended to a bounded linear operator
0 H V()P - HY2(I)P, (1.2.3)

where H'/2(T") denotes the space of traces of H'(Q) and H~Y2(T) is its dual space. U
is always elliptic up to some compact perturbation. We assume that it is elliptic even
without perturbation. This is particularly satisfied for the Laplace problem or for the
Lamé problem.

Given a right-hand side f € H'/ 2(T")P, we investigate the boundary integral equation

Vo = f. (1.2.4)

Such integral equations arise from (and are even equivalent to) the solution of Dirichlet
problems of the form

Pu=0 in N (12.5)
u=g onl

for some g € HY2(I')P. Indeed, if u € H'(Q)P is a corresponding weak solution, then
its conormal derivative ¢ = D,u (i.e., the Neumann data) satisfies (1.2.4) with f :=
(R+1/2)g. Here, & : H'/2(T')P — H'Y/?(T)P denotes the double-layer operator. Conversely,
if ¢ € H-Y2(I')P satisfies (1.2.4) with f := (& + 1/2)g, then a weak solution of (1.2.5)
is given by the representation formula u := Q~]¢ — Jgg, where U : H-'2(MP — HY(Q)P
denotes the single-layer potential and R: HY2()P — HY(Q)P denotes the double-layer
potential.



1.2 Outline & Contributions

The Lax-Milgram lemma provides existence and uniqueness of the solution ¢ € H~/2(I")P
of the equivalent variational formulation of (1.2.4)

(B, ) = (f, ) forall e HV2T)P. (1.2.6)

In the Galerkin boundary element method, the test space H —1/2 (F)D is replaced by some
discrete subspace X, C L? (F)D C H-'2(I)P and the Lax-Milgram lemma guarantees the
existence and uniqueness of a discrete solution ®, € X,.

For standard BEM with (dis)continuous piecewise polynomials, a posteriori error esti-
mation and adaptive mesh-refinement are well understood. In particular, optimal con-
vergence of mesh-refining adaptive algorithms has recently been proved for polyhedral
boundaries | , , | as well as smooth boundaries | ]. The
work | | allows to transfer these results to piecewise smooth boundaries. However,
a posteriori error estimation for [GABEM has only been considered for the two-dimensional
Laplace problem in the recent own works [ , , ]

Sections 5.2-5.3

Similarly as in Section 4.2, in Section 5.2, we give an abstract framework for adaptive
mesh-refinement for conforming BEM in 2D and 3D for the model problem (1.2.4). In
Theorem 5.2.5, we identify sufficient conditions for the underlying meshes, the local
BEM spaces, as well as the employed (local) mesh-refinement rule which guarantee that the
standard weighted-residual a posteriori error estimator satisfies the axioms of adaptivity
from Chapter 2. In particular, this implies that the corresponding adaptive algorithm
(Algorithm 5.2.4) leads to linear convergence of the error estimator at optimal algebraic
rate. In particular, Theorem 5.2.5 states that the employed error estimator is reliable, i.e.,
that it is an upper bound for the error |[¢ — @4||;-1/2(r) (up to a multiplicative constant).
The proof of Theorem 5.2.5 is given in Section 5.3.

To prove reliability of the weighted-residual estimator, we show that it is an upper
bound for the so-called Faermann estimator, proposed and analyzed for standard BEM in
[ , ]. For ansatz spaces that contain certain piecewise polynomials, Faermann
proved reliability as well as efficiency of this estimator. We extend this result and prove that
the Faermann estimator is reliable and efficient for arbitrary BEM spaces that satisfy certain
assumptions; see Proposition 5.3.7 and Proposition 5.3.8. Moreover, Remark 5.3.10 states
that one obtains at least plain convergence limy_, o ||¢ — (I)g||H71/2(F) = 0 if Algorithm 5.2.4

is steered by the Faermann estimator. Such a result was first proved in | | for
piecewise constants on affine triangulations of T'.
In contrast to [ , | which only verify the axioms of adaptivity for a single

model problem, namely the Laplace problem, our analysis allows for arbitrary linear second-
order PDE operators 8 with constant coefficients. The crucial step is the generalization
(Proposition 5.3.15) of the inverse inequality from [ | with the help of a Caccioppoli
type inequality (Lemma 5.3.13).
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Sections 5.4-5.6

Section 5.4 defines hierarchical meshes and hierarchical splines on the boundary I' and
introduces some local mesh-refinement rule (Algorithm 5.4.2) which preserves a similar
admissibility property as in Chapter 4. To the best of our knowledge, this thesis is the first
work which investigates and analyzes IGABEM in 3D with hierarchical splines as ansatz
space. The main result of Section 5.4 is Theorem 5.4.5 which states that hierarchical
splines together with the proposed local mesh-refinement strategy satisfy all assumptions
of Section 5.2, so that Theorem 5.2.5 applies and proves optimal convergence behavior
of the adaptive algorithm. The proof is given in Section 5.5. Remark 5.4.6 extends the
result to rational hierarchical splines. In particular, in Section 5.5.9 and Section 5.5.15, we
generalize an inverse inequality for piecewise polynomial ansatz functions from [ | to
rational hierarchical splines.

Two numerical experiments in Section 5.6 underpin the theoretical results, but also
demonstrate the limitations of hierarchical splines in the frame of adaptive BEM if the
solution ¢ exhibits edge singularities.

Sections 5.7-5.9

In Section 5.7, we consider IGABEM in 2D. We present an adaptive algorithm (Algo-
rithm 5.7.3) from the recent own work [ | with one-dimensional splines as ansatz
space. Whereas the adaptive algorithm of Section 5.2 resp. Section 5.4 only uses h-
refinement, the latter additionally allows for knot multiplicity increase and thus for local
smoothness control of the ansatz functions. Theorem 5.7.4 states again reliability and
linear convergence of the error estimator at optimal rate. The proof is given in Section 5.8.
Remark 5.7.6 extends the result to rational splines. In particular, in Section 5.8.3 and
Section 5.8.11, we generalize an inverse inequality for piecewise polynomials | | to
rational splines. Again, we note in Remark 5.8.3 that the application of the Faermann
estimator would at least lead to plain convergence. We conclude this chapter with three
further numerical experiments in Section 5.9.

Implementations

During the PhD studies, implementations for adaptive IGABEM in 2D, adaptive IGAFEM
in 2D, and adaptive IGABEM in 3D were developed. These implementations are used in
the numerical experiments of Section 5.9, Section 4.6, resp. Section 5.6. The 2D IGABEM
code was mainly written for the own master’s thesis | |, where the focus was on the
Faermann error estimator. During the PhD studies, the weighted-residual error estimator
was implemented. Moreover, the possibility of knot multiplicity increase instead of pure
h-refinement was added. The MATLAB implementation for 2D IGAFEM was developed
together with Daniel Haberlik within the framework of his bachelor’s thesis [Hab] which
was jointly supervised by the author of this work and Dirk Praetorius. The implementation
of 3D IGABEM was developed for this thesis. As for the implementation of 2D IGABEM,
the assembly of the Galerkin matrix, the right-hand side vector, and the estimator for 3D
IGABEM is realized in C via MATLAB’s MEX interface, whereas the refinement procedure
is implemented in MATLAB.



1.3 General notation

Related own publications

Parts of this thesis are already found in the recent own works | , , ,

| that were written during the PhD studies. | ) | introduce the adap-
tive algorithm for one-dimensional rational splines steered by the Faermann estimator resp.
the standard weighted-residual estimator and prove reliability of the employed estimator.

There, the Laplace problem is chosen as model problem. | | additionally considers
collocation IGABEM which is usually preferred by engineers. Both works are based on
the own master’s thesis | ] which focuses on the a posteriori analysis and empiri-

cally investigates the corresponding adaptive algorithm without knot multiplicity increase.
[ |, which is also restricted to the two-dimensional Laplace problem, proves that the

adaptive algorithm from | , | leads to optimal convergence of the weighted-
residual estimator and to plain convergence of the Faermann estimator. While the results
of Section 5.7 and Section 5.8 go back to | , , |, the current pre-
sentation differs and the results are generalized. | | treats optimal convergence for
adaptive IGAFEM with hierarchical splines. The contents of Chapter 3 and Chapter 4
are found in [ |, while the present presentation provides more details. The results
on adaptive 3D IGABEM with hierarchical splines have not been published yet. Besides
the mentioned four publications | , , , | which are part of
this PhD thesis, two further publications | ) | were written during the PhD
studies.

1.3 General notation

Throughout, | - | denotes the absolute value of scalars, the Euclidean norm of vectors,
and the Hausdorff measure of a set in R™ for n > 1, where the corresponding Hausdorff
dimension is denoted by dim(-). The respective meaning will be clear from the context.
Moreover, # denotes the cardinality of a finite set.

For an arbitrary point x € R™ and r > 0, we denote the corresponding open ball B, (x) :=
{yeR": |z —y| <r}. If S CR?, we write B.(S) := J{B,(z) : € S}. Further, we
define its characteristic function x5 : R" — {0,1} via xs|s = 1 and xs|gn\g = 0.

For real-valued quantities A, B, we write A < B resp. A 2 B to abbreviate A < ¢B
resp. A > ¢B with some generic constant ¢ > 0 which is clear from the context. Moreover,
A ~ B abbreviates A < B < A.

Mesh-related quantities have the same index, e.g., X, is the ansatz space corresponding
to the mesh 7,. The analogous notation is used for meshes 75, 7T, or Ty etc. Moreover, we
use - to transfer quantities in the physical domain to the parameter domain, e.g., we write
T for the set of all admissible meshes in the parameter domain, whereas T denotes the set
of all admissible meshes in the physical domain.






2 Axioms of Adaptivity

2.1 Introduction

In this chapter, we consider a standard adaptive algorithm from a very abstract point of
view. We provide a set of sufficient properties for the error estimator as well as for the
mesh-refinement which guarantee convergence of the estimator at optimal algebraic rate.
These properties are known as azioms of adaptivity, and have been introduced in | ].
In one way or another, the axioms arose over the years in various works throughout the

literature. In | , Section 3.2], a historical overview on the their development can be
found. This chapter is essentially a summary of the results from | ] and its slight
generalization [ |. The proofs are not new but included for the convenience of the

reader. We fix the abstract framework in Section 2.2. In particular, the adaptive algorithm
is given in Section 2.2.2. Then, in Section 2.3, we introduce the axioms of adaptivity and
formulate the implied main results on convergence for the error estimator and for locally
equivalent error estimators. Section 2.4 and Section 2.5 are devoted to the corresponding
proofs. Note that, as in [ , |, we focus on the error estimator instead of the
error itself. This is in a certain sense natural, since the adaptive algorithm has no other
information than the error estimator to steer the mesh-refinement. However, at least in
Chapter 4, we will show that the corresponding concrete error estimator is equivalent to
the so-called total error (which is the sum of error plus data oscillations).

2.2 Abstract framework

In this section, we introduce general abstract meshes and error estimators, and formulate
the adaptive algorithm.

2.2.1 General meshes

Let T be a set of finite sets, which we refer to as meshes. Let refine(-,-) be a fixed
refinement strategy such that, for 7, € T and marked M, C 7,, there holds that 7, =
refine(7,, M,) € T with My C T4 \ 75 and refine(7,,0) = T,. For arbitrary T,, 7, € T,
we write 7 € refine(7s), if 7 is obtained by iterative application of refine, i.e., To = T(
= refine(’T(J,l),M(J,l)), 7-(J,1) = refine(’T(J,g), M(J,g)), e ,7-(1) = refine('ﬁo), M(O))
with 7y = Te. Note that 7, € refine(7,). We assume that refine(7p) = T.

We suppose that we are given a function with integer values on the set of all possible
elements pi : Uy, cr 7o — N and define u(S) := > g pu(T) for S € 7o and 7o € T. We
assume that p(7,) < wu(7s) for all 74 € T and all 75 € refine(7,) with 74 # 7. The
subset of all refinements which have at most N € Ny elements more than the initial mesh
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To, reads
T(N):={Te €T : u(Ts) — u(To) < N}. (2.2.1)

Note that the analysis of | , | does not include such a general measure p, but u
is just chosen as the cardinality # of a set. Nevertheless, the proofs work almost verbatim.
We will make the same standard choice in Section 4.2 and in Section 5.2, whereas we will
choose u as knot multiplicity in Section 5.7.

2.2.2 Adaptive algorithm

We suppose that we are given an error estimator associated to each mesh 7, € T, i.e.,
a function ne : 7o — [0,00). By abuse of notation, we also write 1e := 7e(7s), Where
N0(S) == (X resme(T)?)Y? for all S C T,. Based on this error estimator, we consider the
following adaptive algorithm.

Algorithm 2.2.1. Input: Dérfler parameter 6 € (0, 1] and marking constant Chin € [1, 00].
Loop: For each £ =0,1,2,..., iterate the following steps:

(i) Compute refinement indicators ng(T') for all elements T € Ty.

(ii) Determine a set of marked elements My C Ty which is up to the multiplicative constant
Chnin mianimal’ with respect to p, such that the following Dérfler marking is satisfied

0n7 < ne(My)% (2.2.2)

(ili) Generate refined mesh Tyyq := refine(Ty, My).

Output: Refined meshes Ty and error estimators ny for all £ € Ny.

2.3 The axioms

This section is devoted to the axioms of adaptivity from [ , |. They are suf-
ficient to prove convergence of the error estimator sequence generated by the adaptive
algorithm at optimal algebraic rate. Indeed, the axioms are even necessary in some sense;
see | , Section 2.6].

2.3.1 Set of axioms

We suppose that we are given some fixed perturbations® ge . for all Ty € T, T € refine(T,),
and constants Cqm Crefa Cdreh CSOIU CCIOS7 Cover > 17 and 0 < Pred; Eqos Edrel < 1 such that
for the sequence (77)¢en, from Algorithm 2.2.1, there hold:

'This means that pu(My) < Cminp(S) for all sets S C T with 007 < 7¢(S)?. If Cmin = 00, this is always
satisfied and allows for uniform refinement, where M, = 7.

2In the following chapters, ge,o will always be the error |Us — Us|| between two approximations Us and
U, corresponding to the meshes 7o and 7s.

10
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(E1) Stability on non-refined elements: For all 7, € T and all 7, € refine(7,), it holds
that

‘770(7: ﬂ%) - 770(7: ﬂ%)‘ < Qeyo-

(E2) Reduction on refined elements: For all 7, € T and all 7, € refine(7,), it holds
that

Mo (To\To)* < preans (T \ To)* + €2 o
(E3) General quasi-orthogonality: It holds that

L= (1+6)(1 = (1 prea))
< 3
0_€qo<21>113 9 4 o1 )

and for all £, N € Ny that

{+N

Z(Q?J-Fl - 6(1077]2‘) < qu'r]%-
=t

(E4) Discrete reliability: For all 7, € T and all 7, € refine(7,), there exists T \ 7o C
Reo C To with f1(Ra,o) < Cret(1(T5) — (7)) such that
020 < Edrels + Clreille(Re0)*.
(T1) Son estimate: For all ¢ € Ny, it holds that
1(Tex1) < Csonpi(To).

(T2) Closure estimate: For all £ € Ny, it holds that

/-1

,U(ﬁ) - M(%) < Cclos ZM(MJ)

J=0

(T3) Overlay property: For all £ € Ny and 7, € T, there exists a common refinement
7o € refine(Ty) Nrefine(7,) which satisfies the overlay estimate

1(T5) < Cover (1(Ta) — 1(To)) + p(Te).

2.3.2 Optimal convergence for the error estimator

The following theorem is the main result of this chapter. It was already proved in [ ,
Theorem 2.3.3], and, in a slightly weaker form, in [ , Theorem 4.1 and Corollary 4.8].
We include the proof in Section 2.4. For arbitrary s > 0, we set

Clpprox(8) := su min N +1)°n,)) € [0, ]. 2.3.1
ppos(s) = sup_min (N +1)'m) € [0.x) (231)

This definition characterizes the best possible algebraic convergence rate for the error esti-
mator starting from 7.

11
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Theorem 2.3.1. Let (T¢)een, be the meshes generated by Algorithm 2.2.1. Then, there
hold:

(i) Suppose the azioms (E1)—(E2), where it suffices to consider Ty € refine(T;) for
all £ € Ny, and assume that limy_,o 0¢ 041 = 0. Then, for all 0 < 6 < 1 and all
Chin € [1,00], the estimator converges, i.e.,

lim n, = 0. (2.3.2)
£—o00

(ii) Suppose the axioms (E1)—(E3), where it suffices to consider To11 € refine(Ty) in
(E1)-(E2) for all £ € Ng. Then, for all0 < 8 <1 and all Cyin € [1,00], the estimator
converges linearly, i.e., there exist constants 0 < pin < 1 and Cy, > 1 such that

77%+j < Clinp{inn% for all j, ¢ € Ny. (2.3.3)

(iii) Suppose the azioms (E1)—-(E4) and (T1)—(T3). Then, for all 0 < 6 < Ogpt = (1 —
arel)/(1 + C2 ) and all Cpin € [1,00), the estimator converges at optimal rate, i.e.,
for all s > 0 there exist constants copt, Copy > 0 such that

coptCapprox(s) < ZSUI\II) (M(ﬁ) - /1'(76) + 1)37” < Coptcapprox(3)7 (234)
€No

where the lower bound relies only (T1).

The constants Ciin, piin depend only on pred, Cqo,€q0 and on 6. The constant Copy de-
pends additionally on Cuin, Cref; Carel, €drels Celoss Cover, and on s, while copy depends only
on Cson, 11(To), s, and if there exists Ly with ng, = 0 also on £y and ng.

Remark 2.3.2. The upper bound in (2.3.4) states that the estimator sequence ny of Al-
gorithm 2.2.1 converges with algebraic rate s if Capprox(s) < 00. This means that if a
decay with rate s is possible for optimally chosen meshes, the same decay is realized by the
adaptive algorithm. The lower bound in (4.2.23) states that the convergence rate of the
estimator sequence characterizes the theoretically optimal convergence rate.

2.3.3 Optimal convergence for equivalent error estimators

We suppose that we are given a second locally equivalent error estimator associated to each
Te € T, ie., a function 7 : T — [0,00) such that there exists a constant Ceq > 1 with

Ci'ne(T)? < 7o(T)? < Ceqna(T)* for all T € 7. (2.3.5)

We also use the notation 7, := 774(7,), where 7(S) := (X _res e (T))1/2 for all S C T,.
Based on this error estimator, we consider Algorithm 2.2.1 with 7 replaced by 7.

Algorithm 2.3.3. Input: Dérfler parameter € (0,1] and marking constant Cyin € [1, 0c].
Loop: For each £ =0,1,2,..., iterate the following steps:

(i) Compute refinement indicators ny(T) for all elements T € Ty.

12
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(ii) Determine a set of marked elements My C Ty which is up to the multiplicative constant
Cumin minimal® with respect to u, such that the following Dérfler marking is satisfied

077 < (M) (2.3.6)

(iii) Generate refined mesh Tyy1 := refine(Ty, My).
Output: Refined meshes Ty and error estimators 1y for all £ € Ny.

A more general version of the next corollary is proved in | , Section 4.2]. It is an
easy consequence of Theorem 2.3.1. We include the proof in Section 2.5.

Corollary 2.3.4. Let (T¢)een, be the meshes generated by Algorithm 2.3.3. Then, there
hold:

(i) Suppose the axviom (E1)—~(E2) (for the estimator n), where it suffices to consider Toy1 €
refine(7y) for all ¢ € Ny, and assume that limy_,o 07041 = 0. Then, for all 0 < 6 <
1, the equivalent estimator converges, i.e.,

lim 7 = 0. (2.3.7)
{—00

(ii) Suppose the azioms (E1)—(E3) (for the estimator n but the meshes generated by Al-
gorithm 2.3.3), where it suffices to consider Ty11 € refine(Ty) for all £ € Ng. Then,
for all 0 < 0 < 1 and all Cyin € [1,00], the equivalent estimator converges linearly,
i.e., there exists 0 < pun < 1 and Cyn > 1 such that

T4; < CeaCiinpliyl;  for all j, £ € No. (2.3.8)

(iii) Suppose the axioms (E1)~(E4) and (T1)~(T3) (for the estimator n but the meshes
generated by Algorithm 2.3.3). Then, for all 0 < 6 < C’e_qzﬁopt = C2(1 — eqrel) /(1 +

Cgrel) and all Cpin € [1,00) the equivalent estimator converges at quasi-optimal rate,
i.e., there exist copt, Copt > 0 such that for all s > 0

Cra Copt Capprox(s) < sup (u(Te) = ju(To) + 1) < CoqCoptCapprox(s) (239)
€No

where the lower bound requires only (T1) to hold.

The constants Ciin, piin depend only on pred, Cqo,€q0 and on C,;fg. The constant Copy
depends additionally on Cumin, Cqo, Celos, Cdrel, Edrel, and on s, while cqpy depends only on
Cson, 11(7T0), s, and if there exists Ly with ng, = 0 also on £y and ng. O

2.4 Proof of Theorem 2.3.1

In this section, we prove the main result stated in Theorem 2.3.1. The proof follows along
the lines of | , Section 4] or | , Chapter 2].

3This means that uw(M,) < émin,u(S) for all sets S C 7, with 5773 < 775(8)2. If émin = 00, this is always
satisfied.

13
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2.4.1 Estimator reduction and convergence

In this section, we give the proof of Theorem 2.3.1 (i). The following lemma states uni-
form contraction of the error estimators 7, of Algorithm 2.2.1 in each step up to some
perturbation.

Lemma 2.4.1. Let 0 < 6 < 1 and suppose the azioms (E1)-(E2), it suffices to consider
Tes1 € refine(Ty). Then, there holds estimator reduction in the sense that

M1 < Pest N + Cost 0041 for all £ € Ny, (2.4.1a)
where
pest = (1 +0)(L— (1 — prea)d) and Cegy=2+05"" (2.4.1b)
for all sufficiently small § > 0 with 0 < pest < 1.

Proof. First, we split the estimator 77§+1 = N1 (Tew1 \ To)? + 1031 (Te N Tey1)?. We apply
reduction (E2) and stability (E1) together with Young’s inequality to obtain for arbitrary
6 > 0 that

77%+1 < Prea e(Te \ Te41)” + (1 +8) me(Te N Teg1)® + Cest Q%,Prl'

Next, we rearrange this estimate as

Ny < (14 6) (07 = ne(Te \ Tex1)?) + Preae(Te \ Te41)” + Cest 07 041
< (1 + 5) ("rlt2 - (1 - pred) 77@(72 \ 72-1-1)2) + Clest Q%,Z—l—l'

Finally, My C T; \ To41 and Dérfler marking (2.2.2) show that 7,(7¢ \ To41)? > ne(My)? >
9773. Together with the latter estimate, this concludes the proof.

O

Proof of Theorem 2.3.1 (i). First, Lemma 2.4.1 and our assumption limy . 0p¢41 = 0
show that

limsup 77, < limsup (pest 77 + Cost 07 ¢41) = Pest M sup 7,
{—00 {—00 £—00

It remains to show that limsup,_,. 7¢+1 < 0o to conclude that 0 = liminf, 77%+1 =
lim supy_, o0 112 +1- Induction on ¢ with the estimator reduction of Lemma 2.4.1 proves for
all / € Ny that

¢
2 +1, 2 (=7 2
Ne1 < Pese Mo+ Clest Z Pest” 05 j+1-
Jj=0

Since gj j+1 converges by assumption, it is uniformly bounded from above by some constant
C > 0. We obtain that

77?—}—1 < pﬁ;’;lng + 02 Cest(l - pest)ila

and thus boundedness of lim supy_, o, 7¢ < supgep, 70 < 0. O

14
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2.4.2 Linear convergence

Before we come to the proof of Theorem 2.3.1 (ii), we consider equivalent formulations of
linear convergence.

Lemma 2.4.2. Let (ay)oen, be a sequence with ag > 0 for all £ € Ny. Then the following
three statements are pairwise equivalent:

(i) There exists a constant C1 > 0 such that

Z a? < Cyai  for all £ € Ny. (2.4.2)
j=t+1

(ii) For all s > 0, there exists a constant Cy > 0 such that

~
—

a;'* < Coa;"* forall £ €N, (2.4.3)

Il
o

J
where we use the convention 0~1/* := co.
(i) There exist constants 0 < p3 <1 and C3 > 0 such that
aﬁﬂ < Cgpgal% for all j,¢ € Ny. (2.4.4)

Proof. We show the equivalences (i) <= (iii) as well as (ii) < (iii).
Step 1: We show the implication (iii) == (i). There holds that

oo o0

E a? < Cza? g p?{z =C3 £s a? for all £ € No.
. ! . L—p3
j=t+1 j=t+1

Step 2: We show the implication (iii) = (ii). There holds that
azl/s < C';/(Qs)pé/@s)a;_&]/s for all j, ¢ € Ng with ayy; > 0,
Put differently, we get that
aj_l/s < C?}/(Qs)pge_j)/(%)a;l/s for all j,£ € Ny with £ > 5 and ay > 0.

Without loss of generality let ¢ € N with a, > 0. This leads us to

r—1 /-1
Z aj—l/s < C;/(2s)a;1/s Zpééfj)/@s) <
j=0 i=0

cve

5) Yo
1_ p;’/@ )

Step 3: We show the implication (i) = (iii). There holds that

o0

(1+07t Z i 2—|—a§:ia% for all £ € Np.

=0+1 k=¢

15
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We set p3 := (1 + 01—1)71_ This shows that

[e.9] oo
Z az < pgzai for all £ € Ny.
k=41 k=t

For all j,¢ € Ny, induction yields that

o o
A< S d<aYd-d( Y d+dd) <A+
k=0+j k=¢ k=0+1

Step 4: We show the implication (ii) = (iii). Essentially, the proof works as in Step 3.
There holds that

l—
1+C;t Z 1/S<Za /5 forall £ € N.
k=0 k=0

We set p3 := (1 + Cy1)~1. This shows that

-1 ¢
Zalzl/s < ﬁgZagl/s for all £ € N.
k=0 k=0

Without loss of generality, let j, £ € Ny with ag4; > 0, which implies due to (2.4.3) that
ar, > 0 for all £ < £+ j. Induction yields that

0+j £+5-1 .
0o < Za s < nga‘”s ( Z a, —:]/s) < 4(Ca + Dag [l

Taking the equation to the power of —2s shows (iii) with p3 = p3* and C3 = (Co+1)%*. O

Proof of Theorem 2.3.1 (i). We show that the estimator reduction (2.4.1) and general quasi-
orthogonality (E3) imply linear convergence (2.3.3). Recall that the assumptions (E1)-(E2)
imply (2.4.1) according to Lemma 2.4.1. By Lemma 2.4.2, it suffices to show (2.4.2) with
(ar)een, = (Me)een,- For all N € Ny and all 6 > 0, estimator reduction yields that

{+N+1 {+N+1
Z 77]2 < Z (Pest77]2'71 + CestQ?—l,j)
j=ta J=t (2.4.5)
{+N+1 _
= Z ((pest + 5)77]2'71 + Cest (9?71 \J 5Cest 77] 1))
j=t+1

Recall that

1— (1 40)(1 = (1 = prea)d)
< .
O e R
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2.4 Proof of Theorem 2.3.1

Thus, (2.4.1b) shows that one can choose 6 > 0 and hence pest and Ces such that €qo <

(1 = pest)/Cest- Therefore, we can choose §>0withd <1— Pest and £qo < 6~C;Stl General
quasi-orthogonality (E3) proves for the second term in (2.4.5) that

{+N+1 {+N
2 S—1,2 2 S—1,2 2
Z (Qj—l,j - 6Cest nj—l) = Z(Qj,j-i—l - 6Cest77j) < qunf‘
j=L+1 j=t

We apply the latter estimate in (2.4.5) to obtain that

(+N-+1 (+N+1 " (+N+1 " _
Z 77]2 < Z (Pest + 6)77?_1 + Cestho'r][? < Z (pest + 5)77j2 + (pest +0+ CestCQO)nl?'
j=0+1 j=0+1 j=0+1

Simplifying and passing to the limit N — oo yields that

i 2 < Pest + g+ Cestho 773
i = = .
j=0+1 1 — (pest +6)

This concludes the proof of (2.4.2) and by Lemma 2.4.2 also the proof of linear conver-
gence (2.3.3). O
2.4.3 Optimal convergence

So far, we have seen that Dorfler marking (2.2.2) in the adaptive algorithm implies linear
convergence (2.3.3) of ny. The next proposition essentially states the converse implication.
In other words, Dorfler marking is not only sufficient for linear convergence, but in some
sense even necessary.

Proposition 2.4.3. Suppose stability (E1) and discrete reliability (E4). Let To € T and
7o € refine(T,). Then, for all 0 < 0 < Oopt := (1 — eqra)/(1 + C3;), there exists some
0 < py < 1 such that

2 < peni = O < ne(Reo)’. (2.4.6)
The constant pg depends only on Clyyel, Edrel, and 6.

Proof. Throughout the proof, we work with a free variable pg > 0, which will be fixed at
the end. For all 6 > 0, the Young’s inequality together with stability (E1) shows that

e =Ne(Te \ T0)> + 0e(Te N To)? < e(Te\ T0)* + (1 +6 o (Te N To)* + (14 6) 02 .-

With Reo 2 Te \ 7o, we get for the first term on the right-hand side that 7e(7s \ To)? <
Ne(Reo)?. The assumption (2.4.6) proves that 7.(7e N 75)* < n2 < pgn?. Together with
discrete reliability (E4), we obtain that

773 < UQ(RQ,O)Q + (1 + 5_1),00773 + (1 + 5) (edreln% + Cgrelno(Ro,o)Q)-

17



2 Axioms of Adaptivity

Put differently, we end up with

1—(1+5 1)p9—(1+5)5dre1 2 2
< 7e Roo .
1+(1+5)Cd2rel o =1 ( ’ )

Finally, we choose d > 0 and then 0 < py < 1 such that

f < 1-— (1 + 571)P€ - (1 + 5)€dre1 1- Edrel
- 1+ (146)C3, 1+C3

- Hopt .
rel

This concludes the proof. ]

In the following lemma, we show that the estimator is monotone up to some multiplicative
constant.

Lemma 2.4.4. Suppose (E1)—(E2), where the restriction pyeq < 1 is not necessary, and
(E4). Then, there exists a constant Cyon > 1 such that there holds quasi-monotonicity in
the sense that

773 < Cmonnf for all T € T, 75 € refine(7,). (2.4.7)

The constant Cpon depends only on pred, €drel; 01d Cyyel-

Proof. We split the estimator and apply stability (E1) in combination with Young’s in-
equality, and reduction (E2). For all § > 0, we see that

Mo = No(Te N To)? +16(To \ Te)? < (1 + 6)0e(Te N To)? + preane(Te \ To)? + (2 + 6 )2,
< (140 + prea)nd + (2+ 071l
The application of discrete reliability (E4) yields that
03 < (L4684 prea + (248 eara) 12 + (2 + 071 Cliartie(Rayo)?
< (143 + prea + (2+ 07 Nearel + (2461 )Cha) 2,
which concludes the proof. ]

The next lemma provides the key ingredient for the proof of optimal convergence of the
error estimator.

Lemma 2.4.5. Suppose the overlay property (T3) and quasi-monotonicity (2.4.7). Let
¢ € Ng such that g > 0 and let 0 < p < 1. Then, for all s > 0 with Capprox(s) < 00 there
exists a refinement T, € refine(Ty) with

e < png, (2.4.82)
1(To) = 1(T2) < Cover CHZ) Coppronc (5) 1 p~ 1/ 290y 715, (2.4.8b)
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2.4 Proof of Theorem 2.3.1

Proof. We prove the assertion in two steps.
Step 1: We show a modified (2.4.8) for some 7, € T instead of a refinement 7, €
refine(7,), i.e., we prove with p := p/Cpon that

R (2.4.92)
W(T) — 1(To) < Capprox(s)Y/* 512y, 12, (2.4.9b)

Let N € Ny be minimal such that Cypprox(s)(IN +1)7% < 7'/%n,. Note that N > 0 by the

fact that n, < I11/0211770 < CI;/OQHCapme(S) and 0 < p < 1. Hence, minimality of N yields

that
5"/%10 < Capprox(s)N~°.
This leads us to
N < Capprox(s)p /2y, 1. (2.4.10)

Next, we choose 7, € T(N) with 7, = ming, ey 7e- By definition of Capprox(s) and the
choice of N, this gives (2.4.9a). Moreover, (2.4.9b) follows at once from (2.4.10).

Step 2: We consider a common refinement 75 of 7y and 7, as in (T3). (2.4.9a) and quasi-
monotonicity (2.4.7) show (2.4.8a). Moreover, the overlay property from (T3) and (2.4.9b)
prove that

WTo) = 1(Te) < Cover (1(T2) = 1(To)) + 1(Te) = (T2) = Cover (1(T2) = 1(To))
S COVeI' CapprOX(S)l/S Z)/_l/(QS)’r]ZI/S’

which is just (2.4.8b). O

Proof of Theorem 2.3.1 (iii). We split the proof into two steps.
Step 1: We show the first inequality of (2.3.4). Let N € Np.

First, we suppose that there exists a minimal ¢y with 7,, = 0. Algorithm 2.2.1 implies
that My = 0 and hence Ty = Ty, for all £ > ¢y. If N > u(Ty,) — (7o), we have that
ming, cr(n) (N +1)°ne) = 0. If N < 1u(Ty,) — 11(7o), the son estimate (T1) yields that

T.renﬂi?m (N +1)%n0) < (1l(Teo) = 1(T0))*10 < (CiS = 1)°(To)*mo.

Now, we suppose that n, > 0 for all £ € Ny. Due to Algorithm 2.2.1 this implies that

My # ) for all £ € Ny and thus limy_, . x(77) = co. Hence, there exists a maximal integer
¢ € Ng with p(77) — u(To) < N, or equivalently 7, € T(N). This yields that

in (N +1)°n) < (N +1)°n,. 24.11
T.renq;{lm(( +1)°ne) < (N +1)°ng ( )

Since ¢ is maximal, there holds that N + 1 < p(7p4+1) — p(To). Moreover, the son estimate
(T1) implies that N + 1 < Csonut(Ty) — 11(To). There holds that Csonp(Te) — u(7To) <
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2 Axioms of Adaptivity

C(u(Te) — u(To) + 1), where the constant C' > 0 depends only on Cy,, and p(7g). Together
with (2.4.11), we see that
. s S S
pin (N +1)°n0) < C°(u(Te) = p(To) + 1) 0.

Step 2: We show the second inequality of (2.3.4). Without loss of generality, we assume
that Capprox(s) < 0o. If g, = 0 for some ¢y € Ny, then, Algorithm 2.2.1 implies that 7, = 0
for all £ > ¢y. Moreover (u(70) — (7o) + 1)°n9 < Capprox(s) is trivially satisfied. Thus,
it is sufficient to consider 0 < ¢ < ¢y resp. 0 < £ if no such ¢y exists. Now, let j < /.
According to Lemma 2.4.4, we may apply Lemma 2.4.5 for the mesh 7, where we choose
p = pp as in Proposition 2.4.3. In particular, (2.4.6) in combination with (2.4.8a) shows
that R ;. satisfies the Dorfler marking 977]2- <n; (7?,]',0)2. Since, M is an essentially minimal
set satisfying Dorfler marking, we get that

#(M;) < Crinpt(Rjo)-
Thus, discrete reliability (E3) and (2.4.8b) show that

H(M]) < Cmincref (ﬂ(%) - M(’];)) < Cmincrefcovercrln/égs)Capprox( )1/SP;1/(2S)77;1/8-

Together with the closure estimate (T2), this proves that

-1
M(n) - /1'(76) +1< 2(/1'(72) - M(%)) < 2C’clos Z,U'(M
=0

< 2CclosC’minCrefc’overcd/(%)Capp OX 1/8 71/ = Z l/s

mon
7=0

Finally, linear convergence (2.3.3) and Lemma 2.4.2 show that the term S~ i=0 n]_ Y5 can be

bounded from above by Cn, 1/s

we end up with

where C > 0 depends only on piin, Ciin, and s. Therefore,

(,U,(ﬁ) - M(7-0) + 1)5775 < 2°C” (floscrillncs Cgvercél/OQHCaPPTOX(S)pe_l/Q7

which concludes the proof. ]

2.5 Proof of Corollary 2.3.4

Before we come to the proof of Corollary 2.3.4, note that Dorfler marking (2.3.6) for the
equivalent estimator 77 implies by local equivalence (2.3.5) Dorfler marking for 7, i.e., there
holds that

007 < 0Ceqiz < Coqile(M)? < CZ1p(My)?  for all £ € Ny, (2.5.1)

Proof of Corollary 2.3.4 (i). (2.5.1) shows that C’e_qzﬂnz < ne(My)? for all £ € Ny. In

particular, n, can be seen as the output of Algorithm 2.2.1 with 6 = Cg, 29 and Cypin =
Therefore, Theorem 2.3.1 (i) implies the convergence limy_,~, 1 = 0. The local equlvalence
(2.3.5) concludes the proof. O
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Proof of Corollary 2.5.4 (ii). (2.5.1) shows that 0;12577? < ne(My)? for all £ € Ny. In
particular, 7y can be seen as the output of Algorithm 2.2.1 with 6 = C‘;fg and Cpin =

0o. Therefore, Theorem 2.3.1 (ii) implies linear convergence n? 4 S Chnpf'mng. The local
equivalence (2.3.5) proves that

77%_‘_]‘ < Ceqnlg-i-j < C’eq(/ylinp{in'r/lg < ngclinp{inﬁlg’
which concludes the proof. O

Proof of Corollary 2.3.4 (iii). The first inequality of (2.3.9) is satisfied due to local equiv-
alence (2.3.5) and Theorem 2.3.1 (iii), since the lower bound in (2.3.4) requires only (T1)
to hold.

To see the second inequality, we essentially copy Step 2 from the proof of Theorem 2.3.1 (iii).
Without loss of generality, we assume that Capprox(s) < 0o. If 7y, = 0 for some ¢y € Ny,
then, Algorithm 2.3.3 implies that 7, = 0 for all £ > ¢y. Moreover (u(7o) — pu(To) + 1) <
Capprox () is trivially satisfied. Thus, it is sufficient to consider 0 < ¢ < £ resp. 0 < ¢ if no
such £y exists. Now, let j < £. According to Lemma 2.4.4, we may apply Lemma 2.4.5 for
the mesh 7;, where we choose p = py with 0 < ¢ := ngg < Oopt, as in Proposition 2.4.3. In
particular, (2.4.6) in combination with (2.4.8a) shows that R, satisfies Dérfler marking
977]2 < nj(R;jo)? Therefore, one sees the Dérfler marking 577]2 < 7;(Rjo)? as in (2.5.1).
Hence, minimality of M; yields that p(M;) < CN'minu(Rj7o). If one sets Cpip := émin, the
rest of the proof can be copied exactly from the proof of Theorem 2.3.1 (iii). O
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3 Splines

3.1 Introduction

In this chapter, we introduce the so-called splines, which are piecewise polynomials on a
given mesh with certain smoothness properties across the boundaries of the mesh elements.
We will use these functions in the following chapters to approximate the solution of a PDE
(Chapter 4) resp. the solution of an integral equation (Chapter 5). In order to do so, it
is crucial to have a suitable basis at hand. Therefore, we introduce B-splines on R in
Section 3.2. Next, in Section 3.3, we define splines on the d-dimensional unit cube. To
this end, we consider first the one-dimensional case. A tensor-product approach provides
a definition for the higher-dimensional case. Moreover, we consider a corresponding well-
known quasi-interpolation projection. Since the tensor mesh structure has to be preserved
in each refinement step, the standard splines are not suited for adaptive refinement if the
dimension d is larger than one. However, to allow for adaptive refinement, several extensions
of the standard model have recently emerged, e.g., analysis-suitable T-splines [ ,

|, hierarchical splines | , |, or LR-splines | , ]. In this
thesis, we focus on hierarchical splines which are defined in Section 3.4. We define two
well-known bases of the space of hierarchical splines, namely the hierarchical B-splines and
the truncated hierarchical B-splines (THB-splines). Under additional assumptions on the
underlying mesh, and with the help of properly chosen dual basis functions, we constructed
in a recent own work | ] alocally L2-stable projection onto hierarchical splines. This
operator is finally presented in Section 3.4.5.

3.2 B-splines on R

Throughout this section, let

o~

Ko = (tej)jez (3.2.1)

be a sequence of knots te ; € R such that t, ;1 < t,; for j € Z and lim;_, 4+ te j = £00.
We introduce the multiplicity of an arbitrary real number ¢ € R as

H#ot :=#{j€Z : t=ts;} €Ny. (3.2.2)
Let
Noi={te; : j€Z}={2; : j €L} (3.2.3)

denote the corresponding set of nodes with /Z\.J‘_l < fz\.,j. Moreover, let

Te:={Tv; : j€Z} withTyj:=[Za;1,%,] (3.2.4)
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3 Splines

be the induced mesh. With the convention (-)/0 := 0, we recursively define the j-th B-spline
of degree p € Ng for j € Z as

Beji0 = Xlte j-1.te )

t—tei1 =~ teiin —1 =~ (3.2.5)
> eip1+ LB, 1,1 forpeN,

o))

°j.p =

lej—1+4p — tej—1 lej+p — te,j

The following lemma collects essentially all properties of B-splines that will be needed
throughout this thesis. All the results are well-known in the literature; see, e.g. | l. A
more detailed presentation of B-splines can be found in [ , ) , ]

Lemma 3.2.1. Let p € Ng. Then, there hold the following points:

(i) For arbitrary finite intervals I = [a,b), the setA{E.,Mh D] ELN E-J,p‘l # 0}
is a basis for the space of all right-continuous Te-piecewise polynomials of degree p
on I which are, at each node z € N, p — #ez times continuously differentiable if

p—#.?Z 0.

ii) Forj € 7Z, the B-spline E, i» vanishes outside the interval |te i_1,te. i1p). It is positive
J 45D J J+p
on the open interval (te j—1,te j+p)-

iii) Forj € Z, the —spmeA.- is completely determined by the p+2 knotste j_1,...,te jip-
iii) Forj € Z, the B-spline B, j p letely det d by th 2 knots t, j tej+p
Therefore, we sometimes use the notation

B( . ‘t',j—h e 7t0,j+p) = Bo,j,p- (326)
(iv) The B-splines of degree p form a (locally finite) partition of unity, i.e.,

> Bejp=1. (3.2.7)

JEZ

(v) For j € Z, s € R, and ¢ > 0, we have with the transformed knots K, = (tej)jez =
(s + ctej)jez

Bijp = Bejp((-)/c — s). (3.2.8)
(vi) For j € Z with tej—1 < tlej=""+=tejtp < tejt+p+1, it holds that
Bajp(tej—) =1 and Baji1p(te;) = 1. (3.2.9)

(vii) Forp>1 and j € Z, the right derivative satisfies that

Dl b ey P ~
ivjvp = t B.7j7p71 - tiB.,jJrl,pfly (3-2.10)

oj+p—1 — lej—1 ojt+p — lej

where we suppose the convention p/0 := 0.
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3.3 Standard splines

(vili) Let t' € (ty—1,ts] for some £ € Z and let Ko be the refinement of Ke, obtained by
adding t'. Then, for all coefficients (ae j)jcz, there exist coefficients (ao j)jez such

that ~ ~
Y aeiBejp = 0By (3.2.11)
JEZ JEZ

With the multiplicity #.t' of t' in the knots EO, the new coefficients can be chosen as
convex combinations of the old coefficients

Qe j if 1 <l —p+H#t' —1,
toj—14p—t Qe j—1 + %a.,j if 0 —p+#t' <5<,

o, j—1+p—le,j—1 te,j—1+p—le,j—1

G j—1 if 0+1<j.

ao?] -

(3.2.12)

If one assumes #4t; < p+1 for all j € Z, these coefficients are unique. Note that the
three cases are equivalent to te j_14p <V, tej—1 <t < tej_14p, r€Sp. t' < tq;_1.

Proof. The proof of (i) is found, e.g., in | , Theorem 6], and (ii)—(iii) are proved in
[ , Section 2]. (iv) is proved in [ , Section 4]. (v) follows elementarily from the
definition (3.2.5). The same holds for (vi); see, e.g., [ , Lemma 2.1]. Finally, (vii)—(viii)
are found in [ , Sections 10-11]. O

3.3 Standard splines

In this section, we introduce splines, first, in one dimension, and then also for higher dimen-
sions via a tensor-product approach. Moreover, we consider a standard quasi-interpolation
projection onto these functions. For more details on splines, see, e.g., | , ,

: J-
3.3.1 One-dimensional case
Let p € Ny be a fixed polynomial degree. Let
—~ N,
Ko = (teg)i20" (3.3.1)

be a vector with 0 <, j_1 <te; < 1forj e {1,...,Ne+p}, where teo = 0and te ny,4p = 1.
Again, we introduce for arbitrary t € [0, 1] its multiplicity as

#ot :=#{j€{l,...,No+p} : t =ts;} €Ny. (3.3.2)
We suppose that #ete; < p+1 for all j € {1,..., Ng + p}, where
#Hleo=p+1 and #ten,ip=p+ 1. (3.3.3)
We call such a vector p-open knot vector on [0,1]. Let

No={tej:j€{0,....No+p}} ={2; : 5€1{0,...,n4}} (3.3.4)
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3 Splines

denote the corresponding set of nodes with Z, j—1 < Zs j for j € {0,...,ns}. Moreover, let
Te:={Te; : j€{l,...,na}} with Tu; := [Zaj_1,% ] (3.3.5)

be the induced mesh on [0,1]. For & C [0, 1], we introduce the patches of order q € Ny
inductively by

@) =0, @) =|J{TeT: Tnal@) #£0}. (3.3.6)
The corresponding set of elements is defined as
@) ={TeT.: TCal@}, ie, mi@) =Jm@). (3.3.7)

To abbreviate notation, we set 74(W) := mq (¥) and I, (@) := I, (@).

For a p-open knot vector IC., we define the corresponding splines Sp (K .) of degree p as
the set of all (right-continuous) 7A: -piecewise polynomials of degree p on [0,1) which are, at
each node z € ./V., P — #ez times continuously differentiable if p — #42z > 0. In particular,
if all nodes have the maximal multiplicity p + 1, the corresponding spline space coincides
with the space of all right-continuous To- -piecewise polynomials of degree p.

In order to obtain a basis for SP (IC ), we first extend the knot vector K. arbitrarily to a
knot sequence (t;);ez as in Section 3.2. For simplicity, we use the notation Ko for both, the
knot vector as well as the extended knot sequence. With this, we may apply Lemma 3.2.1
(1)—(ii) to see that

SP(K,) = span(B,) with B, := {E-J,pi[O,l) cje{l,...,No}}, (3.3.8)

where the set of B-splines B, even forms a basis; see Figure 3.1 for an illustration of
some B-splines. Due to Lemma 3.2.1 (iii), the support of E.J,p is an interval in [0, 1]
and the union of at most p + 1 elements in ’7A'. It is well-known that the functions in
B, are even locally linearly independent, i.e, for any open set O C [0,1]%, the restricted
B-splines {E.M,]O cJ€{l,..., N} A supp(é.d‘,p) NnNo # @} are linearly independent.
This follows easily from Lemma 3.2.1 (i): Suppose the assertion is false, then there exists
a non-trivial linear combination of 0. Let E.,M; have a corresponding non-zero coeflicient,
and let [a,b) C supp(B, j.p) NO. If we restrict the non-trivial linear combination to [a, b),
we get a contradiction to Lemma 3.2.1 (i).

If K, is a finer p-open knot vector, which means that Ko is a subsequence of ICO, the
corresponding spline spaces are nested

SP(Ky) € SP(K,). (3.3.9)

3.3.2 Higher-dimensional case

For d > 1, let (p1,...,pq) be a vector of fixed polynomial degrees in Ny. Let

o~

Ko = (’Ei(.), oy Kagey) (3.3.10)
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Figure 3.1: The B-splines B, for the polynomial degree p = 2 and the p-open knot vector
Ko = (0,0,0,0.25,0.25,0.5,0.75,0.75,0.75,1,1, 1) are depicted.

be a d-dimensional vector, where the i-th entry I%Z-(,) is a p;-open knot vector as in the

previous Section 3.3.1 for all 7 € {1,...,d}. In particular, this induces the tensor mesh
Te:={Ti x - xTy: T, € Ty fori € {1,....d}} (3.3.11)

We define the corresponding tensor-product splines as

§(p1,---,pd) (]/C\.) — 3\1(.) R ® §d(o)

—~ PPN (3.3.12)
= {Sl ®--Q8g:5; € Sp'(ICZ(.)) for i e {1,...,d}},
where we define the tensor-product of one-dimensional splines as
~ ~ d ~
(S1®---®8)(t) :== HSi(ti) for all t = (ty,...,t4) € [0,1)% (3.3.13)
i=1

According to Section 3.3.1, the functions in Sp1pa) (/E.) are ﬁ—piecewise tensor-product
polynomials with certain smoothness properties across the boundaries of the mesh elements.
In particular, if the one-dimensional knots Iai(.) have the maximal multiplicity p; + 1 for
all i € {1,...,d}, then the corresponding tensor-product spline space just coincides with
the space of all ﬁ—piecewise tensor-product polynomials of degree (p1,...,pq), which are
right-continuous in each component.
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With (3.3.8), we see that

g(plv"'vpd)(,/c\.) = Span(B\.) With B\. = {B\l ® e ® B\d :

~ (3.3.14)
Bi € Bz(o) for i € {1,. .. ,d}},
where the set of tensor-product B-splines g. even forms a basis. Due to Lemma 3.2.1
(iii), their support is a d-dimensional rectangle which is the union of at most ngl(pi +1)
clements in Ty. It is well-known that these functions are even locally linearly independent,
i.e, for any open set O C [0, 1]%, the restricted B-splines {B’O : B € B, with supp(B) NOo #
@} are linearly independent. This follows as for the one-dimensional case.
If K, is a finer vector of p;-open knot vectors, which means that Ei(.) is a subsequence

of I/C\i(o) for all i € {1,...,d}, the corresponding tensor-product spline spaces are nested

SPrapa) (IC,) € SPr-Pa) (IC,). (3.3.15)

3.3.3 Quasi-interpolation projection

In this section, we introduce a well-known quasi-interpolation projection onto the space of
splines as in | , Sections 2.1.5 and 2.2.2]. We only consider the one-dimensional
case d = 1, since we will not need such an operator for standard tensor-product splines.
However, a similar operator can also be defined for d > 1. Moreover, we will introduce a
different quasi-interpolation operator for hierarchical splines in Section 3.4.5. Let p € Ny
and K, be a p-open knot vector on [0,1]. In | , Section 4.6], it is shown that for all

. 2 3 . *
j € {1,...,No} there exists a dual basis function B.]p € L°(0,1) with supp(B.]p) -

Supp(g.d,p) such that

1ifj =7,

1
/0 Bg j p(t)Ba jip(t) dt = 05 = {0 (3.3.16)

else,
and
B3 ollzzen < (2p+ 3)97|supp(Ba.j,p)| /2. (3.3.17)

Note that there holds supp(é.,m) = [te,j—1,tej+p] C [0,1] according to Lemma 3.2.1 (ii).
For higher dimensions, such dual basis functions can be defined as tensor-product. We
define the operator

I, : L*(0,1) = SP(K.), 7~ Z/ By, ,(t)0(t) dt B jpl0,1)- (3.3.18)

With the properties of the dual basis functions, one easily proves that f. is a local L*-
stable projection. Formally, this is stated in the following proposition which is taken from
[ , Proposition 2.2]. The proof is included for completeness.

Proposition 3.3.1. The operator I. from (3.3.18) satisfies the following two properties:
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3.3 Standard splines

~

(i) For T € To and ¥ € L2(0,1), the inclusion @\]ﬂ(f € cSA’p(IE.)]Wf(Ff) = {S\’Wf(f) : S e

SP(Ka)} implies that 9|5 = (I,0)

)
|5

(ii) Let élocuni > 0 be an upper bound for the quotient of lengths of neighboring elements,
i.e.,

T sm_ 2 s s .
s {% DT e Te with TNT #0} < Crocuni (3.3.19)

There exists a constant C > 0 such that for all T € L2(0,1) and all T € Ta, there
holds that

12020y < Clol ez (3.3.20
where C' depends only on p and élocuni.

Proof. We prove the assertion in two steps. R R
Step 1: Lemma 3.2.1 (ii) shows that all B-splines B, j, which are non-zero on T, have
support in 75(T). Let S € SP(K,) with i)\|7rp((f)) = S|7rp((f)). Due to (3.3.8), there exist

coefficients (aj);-vz'l with § = Z;V:'I ajét,j,p‘[o,l)- Altogether, we see with duality (3.3.16)
that

Ne
Eolp= S / B, (00()di Bu s
j=1 supp(Ba,j,p)
supp(B, j,p)Cme (T)
Ne
= Z a.] B.vjyp 'j; = S|'j;'

Jj=1
supp(B, ;) C7h (1)

Step 2: To see (ii), we apply two times the Cauchy—Schwarz inequality

No

su ®.J,p

j=1
supp(Be,j,p)Ce (T)

No

L2(T)

< Z HB:j,pHLQ(Supp(E.,j,p)) HﬁHp(Supp(E.,j,p)) ||B"j’pHL2(f)
j=1
SuPp(éoij,p)gﬂ'f(f)

Next, we use the fact that 0 < E.,M, < 1 which follows from Lemma 3.2.1 (ii) and (iv).
With (3.3.17), this gives that

Ne
R RS Do 1sup(Besin)l IO ) T

i=1
supp(B, ;) C7h (1)
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3 Splines

Finally, we apply (3.3.19) and Lemma 3.2.1 (ii) to see that

Ne

j=1
supp(B, j,p)Crh (T)

This concludes the proof. ]

3.4 Hierarchical splines

We use the notation from Section 3.3 to define hierarchical meshes and splines. For a more
detailed introduction, we refer to, e.g., | , ) , ]

3.4.1 Nested tensor-product splines

For d > 1, let (p1,...,pq) be a vector of fixed polynomial degrees in N, and set

Pmax = mMax pj. (3.4.1)
i=1,...,d

Let
Ko = (,/C\l((])a e Jed(o)) (3.4.2)

be a fixed initial d-dimensional vector of p;-open knot vectors as in Section 3.3.2, where we
additionally suppose that all interior knots ;) ; € (0,1) satisfy that

#2(0 0),] < Pi fOI’ all Z S {17 e ,d},j S {2 +p“ e 7Ni(0) — 1} (343)

Note that this ensures at least continuity of the corresponding spline functions. We set
’Cum(O) = ICO and recursively define ’Cunl(k+1) for £ € Ny as the uniform h-refinement of

Kuni(k), 1-€., it is obtained by inserting the knot (Z;(uni(k)),j—1 + zz(um(k ;)/2 with multiplic-
ity one of each one-dimensional element [Zj(uni(k)),j—1> Zi(uni(k)),j] € 7; (uni(k)) to the knots
Kiuni(k)), where i € {1,...,d} and j € {1,...,n(uni(k))}- This yields a nested sequence of
tensor-product spline spaces

SPr2a) (IC i) € SP1Pa) (I iy 1)) © C0([0,1)%), (3.4.4)

where the last relation follows from the assumption for the multiplicity of the interior knots.
In particular, each B\uni(k) can be written as linear combination of functions in B\uni(k’) if
kK > k. Due to Lemma 3.2.1 (viii), the corresponding coefficients are non-negative. In
[ |, this property is referred to as two-scale relation with only non-negative coefficients
between bases of consecutive levels. Finally, we remark that Bum(k) N Bum(k/) = () for all
k # k'. This follows easily from Lemma 3.2.1 (viii) and the fact that both sets are bases;
see [ , page 167].
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3.4 Hierarchical splines

Remark 3.4.1. We define the nested sequence of tensor-product spline spaces in the most
simple way. Another natural approach is to use uniform h-refinement with knots of some
fized multiplicities 1 < q; < p; fori € {1,...,d}: With q = (q1,...,qq4), we set Iauni(()’q) =
IEO, and define Ieum(kﬂ,q) recursively for k € Ny as the d-dimensional knot vector, that
results from inserting the knot (Zj(uni(k,q)),j—1 Zi(uni(k,q)),j )/ 2 With multiplicity g; to the knots
Ki(uni(k)), where i € {1,...,d} and j € {1,..., Nituni(k,q))}- If ¢ = 1 for all i € {1,...,d},
we have that ’Cum(k) = ,Cunl(k q)- This choice leads to the highest possible regularity of
the splines at newly inserted mesh lines, whereas the maximal choice q; = p; only leads
to continuity at mew mesh lines. In particular, if all interior knots of the initial knots
IEZ-(O) already have multiplicity p;, the latter choice leads to the space of all continuous
ﬁni(hq) -piecewise tensor-product polynomials of degree (p1,...,pq). Note that all following
definitions of this chapter can be made similarly if uni(k) is replaced by uni(k,q). Also the
corresponding results remain valid.

3.4.2 Hierarchical meshes and splines

We say that a set

bl

€Np

is a hierarchical mesh if it is a partition of [0, 1]¢ in the sense that U7e = [0,1]%, where the
intersection of two different elements T # T' with T, T’ € T has (d- dlmensmnal) measure
zero. Since 7:1111 k) N 7:1111(19’) = () for k, k' € Ny with k& # k', we can define for an element

TeT,
level(f) =k €Ny with T e ﬁni(k)- (3.4.6)

For an illustrative example of a hierarchical mesh, see Figure 3.2. In particular, any uni-
formly refined tensor mesh 7yyi(x) with & € Ng is a hierarchical mesh. For @ C [0, 14, we
introduce the patches of order q € Ny inductively by

@) =0, @) =J{TeT: Tnai@)+0}. (3.4.7)
The corresponding set of elements is defined as
@) :={TeT,: TCal@}, ie, @) =JI@®). (3.4.8)
To abbreviate notation, we set me (W) := 7 L) and T1,(©) := L (@).
For a hierarchical mesh 7o, we define a corresponding nested sequence (Q’f)keNO of closed

subsets of [0, 1]

K>k
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3 Splines

Figure 3.2: A two—dimensional/\hiera;\chica}\meslq\7\: is depicted, where ﬁf = (). The corre-
sponding domains Q9 D Q! D Q2 D Q2 are highlighted in black, red, blue and
green.

With K, € N, we denote the minimal integer such that Qf(‘ = (). There holds that

T = U {T € Tanigry : TCOLNT Z QFFY (3.4.10)

keNp

Indeed, in the literature, one usually assumes that one is given the sequence (Qk) keN, and
defines the corresponding hierarchical mesh via (3.4.10). Note that, for T € 7a, level(T) is
also the unique integer k& € Ny with TC (Alk' and T z Q’f“.

With the notation S®1-- 7pd)( wni(k)) o = {S|w . S € §(p17---,pd)(;€um(k))} for any set

& C[0,1), we define the space of hierarchical splines as in | , Section 3] by

SPrpd) (ICo, Ty) := {S:[0,1)? = R :

(3.4.11)

S|[O 1)d\Qk+1 S S(pl’ ’pd)( um )|[0 1)d\Qk+1 for all k € No}

In particular, each hierarchical spline is a ’7A'.—piecewise tensor product polynomial of degree

(p1,...,pq). Put into words, hierarchical splines are coarse splines on coarse mesh elements,
and they are fine splines on fine mesh elements.

Throughout the whole thesis, we will rarely make direct use of this definition, but rather

consuier the space of hierarchical splines as the span of the set of all hierarchical B-splines
Be := BK°_1
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3.4 Hierarchical splines

(i) Define E? = guni(o)-
(ii) For k=0,...,K, — 2, define BF! := old(BF1) U new(BF 1), where
old(By*) == {§ € By + supp(B) € L},

P ~ S AR (3.4.12)

HGW(B. ) = {B € Buni(k+1) : Supp(ﬂ) - Qo }
It is easy to check, that if 7o is a tensor mesh, and hence coincides with some ’ﬁni(k),
then the hierarchical basis and the standard tensor product B-spline basis are the same.
Thus, the notation is consistent with the notation from (3.3.14). One can prove that the

f/z\z'emrchz’ccg baﬁis g. is linearly independent (see [ , Lemma 2]) and spans the space
S (pl""’pd)(lcm Te) (see | , Theorem 2]). By definition, it holds that
Bo = |J {B € Bunitr) : supp(B) € Q% Asupp(B) € QH'}. (3.4.13)
keNg

Since guni(k) N guni(k/) = () for k # k' € Ny, we can define for a basis function 3 € B,
level(3) := k € Ny with § € Bynr)- (3.4.14)

Note that level(ﬁ) is also the unique integer k € No with supp(ﬁ) - Qlf and supp(ﬁ) z ﬁ’f“.
The hierarchical basis B, and the mesh 7, are compatible in the following sense: For all

~

3 € [3:, the corresponding support can be written as union of elements in 7:1ni(level(§))’ ie.,

supp(ﬁ) = U {f € ﬁni(level(ﬁ)) T C supp(ﬁ)}. (3.4.15)
Each such element 7' € fmi(level(g)) with T C supp(g) - ﬁl.evel(ﬁ ) satisfies that T € 7o or

T - (All.evel(ﬁ )+1. In either case, we see that T can be written as union of elements in ’7A'.

with level greater or equal than level(3). Altogether, we have that

~

supp(f) = U {T\ €Ten ﬁm(k) T C supp(ﬁ)}. (3.4.16)

k>level(B)

-~ -~

Moreover, supp(/3) must contain at least one element of level level(/5) Otherwise one would

get the contradiction supp(ﬁ) - Ql.evel(ﬁ)ﬂ. In particular, this shows that

~

level(B) = min level(T) for all B € B,. (3.4.17)
TETe
fstpp(é)

Finally, we say that a hierarchical mesh 7, is finer than ZA'. if 7:; is obtained from 7, via
iterative dyadic bisection. Formally, this can be stated as QF C QF for all k € Ny. In this
case, the corresponding hierarchical spline spaces are nested, i.e.,

§(p1,---,pd)(]€0’ﬁ) C g(pl,---,pd)(ﬁo,ﬁ). (3.4.18)
This follows immediately from (3.4.11). In particular, this implies that
§(p17---,pd)(ﬁ0’ﬁni(0)) C §(p17---7pd)(ﬁo7'ﬁ) C §(p1,---,pd)(}€0’fmi(K._l)) (3.4.19)

In the following chapters, we will need the following auxiliary lemma.
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Lemma 3.4.2. Let ’7'. and 7; be hzemrchzcal meshes such that 7; 18 ﬁner than 7'., .e.,
Qk - Qk for all k € Ng. Then, for all ﬁo € B, there exists ﬁ. € B, with Supp(ﬁo) C

supp(fa ).

Proof. Clearly, we may assume that 50 € B, \B Let k := level(ﬂo) and define ﬁk = ﬁo
Since By € Bo, (3.4.13) implies that supp(ﬂk)\Q"“Jrl # 0 and supp(ﬂk) C QF. Since ﬁk ¢ B,
(3.4.13) implies that Supp(ﬁk) \ QFFL = 0 or supp(ﬁk) Z QF. However, Qk+1 C Qkt1 and
supp(ﬁk) \ Qk+1 £ ¢ imply that supp(ﬁk) \ Qk+1 £ g, Hence, we have supp(ﬁk) Z Ok,
which especially implies that k£ > 0. This is equivalent to Supp(ﬁk) \Qk # (). Clearly, there
exists 5k 1€ Bunl(k 1) with supp(ﬁk) - supp(ﬁk 1). If ﬂk | € B., we are done. Otherwise,
(3.4.13) implies that supp(ﬁk_l) \ Q]f =0 or Supp(ﬁk_l) Z Qlf_l. Again, the first case is
not possible because

supp(Br_1) \ Q% D supp(Bx) \ OF # 0.

Hence, we have that_ supp(/:,y\g ) Z Qk I which especially implies that k — 1>0. This is
equivalent to supp(Bx_1) \ Q=1 £ 0. Inductively, we obtain a sequence ﬁk, o ,BJ with
Bj € Buni(j) and supp(8y) 2 --- 2 supp(ﬁk) where ,BJ € B, for some J > 0. O

3.4.3 Truncated hierarchical B-splines

For a hierarchical mesh 7A'., we present a second basis for the corresponding hierarchical
splines S (plv“'vpd)(Eo, 7\:), namely the truncated hierarchical B-splines (THB-splines) intro-
duced in | ]. In general, they have a smaller but also more complicated support than
the hierarchical B-splines.

For k € Ny, we define the truncation truncht1 : S@1.- m)(/g ni(k)) — g(pl,---,pd)(]/c\uni(kﬂ))
as follows:

trunck“(g) = Z aBB for § = Z GBB € §(p1~~vpd)(i€um(k)), (3.4.20)
Beguni(k+1) Beguni(k+l)
supp(B)ZQ5 !

i.e., truncation is defined via the (unique) basis representation of S e g(pl""’pd)(launi(k))
with respect to the consecutive basis Bypiry1)- Recall that Ko € N is the minimal integer

such that ?2{(‘ = (). For all 3 € B\., the corresponding truncated hierarchical B-spline
(THB-spline) reads

Trunc.(ﬁ) = truncie—! (truncK' 2( <trun lovel(8) Jr1(5)) . >>, (3.4.21)

As the set B., the set of THB- Sphnes { Trunc, (3) ﬁ € B, } forms a basis of the space of

hierarchical splines S S(pi- ’pd)(lCo, ’7'.), see, e.g., | , Theorem 6 and 9]. In Section 3.4.1,
we mentioned the two-scale relation with only non-negative coefficients between bases of
consecutive levels, i.e., the fact that each basis function in B is the linear combination

of basis functions guni(k+1), where the corresponding coefficients are non-negative. For
RS g., this proves that

0< Trunc.(g) < 3, (3.4.22)
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3.4 Hierarchical splines

and in particular supp(Trunc.(B)) - supp(B). Moreover, | , Theorem 10] states that,
in contrast to hierarchical B-splines, THB-splines form a partition of unity, i.e.,
Z Trunc.(ﬁ) =1. (3.4.23)
BeB.

3.4.4 Admissible hierarchical meshes

The results of this section stem from the recent own work [ ]. Let 7. be an arbitrary
hierarchical mesh. We define the set of all neighbors of an element T' € T, as

N.(T) := {T\/ €7.:38€B, T, C supp(ﬁ)}, (3.4.24)

According to (3.4.16), the condition T, f’ - supp(ﬁ) is equivalent to | N supp(/3 )| #0 #
|T" Nsupp(B)]. As in [ ], we call T admissible if

level(T) — level(T)| < 1 for all T, 7" € T, with T’ € No(T). (3.4.25)

Let T be the set of all admissible hierarchical meshes. Clearly, all tensor meshes ’fmi(k), k€

Np, belong to T. Moreover, admissible meshes satisfy the following interesting properties
which are also important for an efficient implementation of finite or boundary element
methods with hierarchical splines.

Proposition 3.4.3. Let To € T. The support of any hierarchical B-spline ﬂ € B, is the
union of at most 2%(pmax + 1)° elements T' € To. Moreover, for any T e T., there are at
most 2(pmax + 1)? basis functions 3 € B, that have support on T, i.e., |supp(8') N T| > 0.

Proof. We abbreviate k := level(B) By (3.4.17), there exists T" C supp(/ﬂ\) with level(T° T )=
k. Admissibility of 7. together with (3.4.16) shows that level(T") € {k,k+1} forall T" € 7,
with 7" C supp(ﬁ). Since 5 is an element of Bum(k) its support is the union of at most

24 (pmaLX + 1)? elements in ﬁm(kﬂ) This proves the first assertion. For B\’ € B, and

T € 7. with |supp(8’) N T| > 0, the characterization (3.4.16) proves that T C supp(ﬂ)
Hence, (3.4.17) together with admlsmblhty of T proves that 1eve1(ﬁ ) = k := level(T) or
level(ﬁ ) =k — 1. With Bum( 1) = Bum(O) there are at most (pmax + 1)¢ basis functions

in Bum(k 1 and (pmax + 1)¢ basis functions in guni(%) that have support on the element T.
This concludes the proof. ]

Remark 3.4.4. Since the support of any 5 € B, is connected, Proposztzon 3.4.8 particularly
shows that T' C supp(ﬁ) for an element T' € T implies that supp(ﬁ) 2(pma“‘Jrl)(T’) By
(3.4.16), T' C supp(B) is equivalent to |T’ N supp(3)| > 0.

The following lemma provides a relation between the set of neighbors and the patch of
an element 7' € T,.

Lemma 3.4.5. Let ’7A'. be an arbitrary hierarchical mesh. Then, there holds that

II,(T) C No(T) for all T € Ta. (3.4.26)
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Proof. Let T' € ,(T), ie., T' € Te with TNT +# 0. We abbreviate k := level(T). Since
all multiplicities of interior knots of ;) are smaller than p; + 1 for all i € {1,...,d},
Lemma 3.2.1 (ii) implies the existence of some [}, € gum( k). such that [T Nsupp(By)| # 0 #

adla supp(ﬁkﬂ. If B, € B., then 7/ € N, (T). If B, € B., the characterization (3.4.13)
shows that supp(ﬁk) Z Qk or supp(ﬁk) Qk“ By choice of k, it holds that TC supp(ﬂk)
In view of (3.4.10), T € T, implies_that T ¢ Q1. Hence, supp(ﬁk) Z OF and,

particular k > 0. Next, there exists ﬁk 1€ Bum(k 1) such that supp(ﬂk) - supp(ﬂk 1)- If

ﬁk 1€ B., then 7 € N, (T ) If ﬁk 1€ B,, there holds again that either supp(ﬂk 1) € Qk 1
or supp(ﬂk 1) C Qk Due to supp(ﬁk) z Q , the second case is not possible. Hence,
supp( ﬂk 1) z Qk I and, in particular, k — 1 > 0. We proceed in the same way to get a

sequence S, . .. ,ﬁJ with ﬁ] € Bum(J) and supp(ﬂJ) 2. D supp(ﬁk) where ﬁ] € B, for
some J > 0. |

Remark 3.4.6. In the proof of Lemma 3.4.5, we used that all interior knot multiplicities
are smaller or equal than the corresponding polynomial degree p;. Actually, this is the
only place, where we need this assumption. However, this lemma is of course essential
as it implies for example local quasi-uniformity for admissible meshes. If one drops the
additional assumption on the knot multiplicities and allows multiplicities up to p; + 1 as
well as lowest-order polynomial degrees p; = 0, one could define the neighbors of an element
TeT. differently as

No(T):={T"e7.: 38 €B. T,T' Csupp(B)) vV (TNT' #0)}. (3.4.27)

Then, all results of the current Section 3.4 remain valid. Moreover, newly inserted knots
can also have multiplicity p; + 1, i.e., the choice q; = p; + 1 in Remark 3.4.1 is possible.

The next proposition shows that for an admissible mesh Te € 7\:, the full truncation

level 1
Trunc, reduces to trunce Ve (ﬁ )+

Proposition 3.4.7. Let 7A: IS T and B € g.. Then, it holds that

Trunc.(ﬁ) = truncy! )H(B\). (3.4.28)

Proof. We prove the assertion 1n two steps
Step 1: Let ¥ < k" € Ny and 3’ € Bum(k/) with representation 3 = 23” B

uni(k’’)

G,B‘,,,/B\I/.
Let ﬁ € Bum(k//) such that aﬁ,, # 0. Then, local linear independence (with the open set

O 1= (0,1)%\ supp(B")) of Byyi(s~) implies that supp(3") C supp(B).
Step 2: We prove (3.4.28). We abbreviate k := level(B). Let B Zﬁ'eB et B,B’

Let ﬁ' € Buni(k+1) with supp( "N & Qk+1 and ag # 0. By Step 1, this proves that
supp(ﬁ ) C supp(ﬁ) For k" > k + 1, we consider the representation

trunck (5) Z ag,,ﬁ”, where 3 = Z ag,,ﬂ”.
Bueguni(k”) B”eguni(k”)
supp(B") g QK"
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For B" € guni(k//) with supp(B8”) C QF', let T" € ﬁm(kn) with 7" C supp(53”). (3.4.10)
shows the existence of an element T € T, with level(f) > k" such that T C T". To see that

agn = 0, we argue by contradiction and assume that agn =% (0. By Step 1, this implies that

T C supp(3”) QEupp(B\') C supp(B). Due to level(T) > k+1 and (3.4.17), this contradicts
admissibility of 7,. This proves that agn = 0. Overall, we conclude that trunc]f"(ﬁ’ ) =04,
and thus trunct” (trunch ™ (B)) = trunch 1 (B) as well as (3.4.28).

O

3.4.5 Quasi-interpolation projection

In this section, we introduce a quasi-interpolation projection onto the space of hierarchical
splines which was developed in the recent own work | |. Let 7o € T be a given
admissible hierarchical mesh. First, we define certain dual basis functions for the tensor-
product B-splines. Recall that Byyuix) N Bunik) = () for k # k'. For k € Ny and 3 € Bunik)s
let fg € ﬁni(k) be an arbitrary but fixed element with fg C supp(/ﬂ\). If B € g., we

additionally require that! TB € ’7A'.7 which is possible due to (3.4.17). Let TBE denote the
interior of T\B\. By local linear independence of B\uni(k) (see Section 3.4.1), also the restricted

basis functions { B |70 Be guni(k) A supp(B) N TE # 0} are linearly independent. Hence,
B

the Riesz theorem guarantees the existence and uniqueness of some 3* € {§ |7 S e
B

§(p1,...,pd)(]€uni(k))} such that

A BB dt =055 forall B € By (3.4.29)
f

In contrast to the one-dimensional dual functions presented in Section 3.3.3, the support
of B* consists only of one single element TB' These dual basis functions §* satisfy the
following scaling property.

Lemma 3.4.8. There exists a constant C > 0 such that for all k € Ny and all 3 € guni(k),
it holds that

”B*HL“’(TE) < C‘T§’_1 (3.4.30)

The constant C' depends only on d, 7A6, and (p1,...,Pd)-

Proof. Recall that the element T\B\ is a rectangle of the form

[t 1 uni(k)), 61— 1> tL(uni(k)),e ] X X [Ed(uni(r)),ea—15 Ld(uni(k)),eq)-

We use the abbreviations C; := ]Tgll/d and (ay, ..., aq) = (t1(uni(k)),ei—1> - - - > td(uni(k)),L—1)-

We define the normalized element TB = (fg— (a1,...,aq))/C1 and the corresponding affine

!Therefore, the elements fg depend additionally on the considered mesh Te.
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transformation & : TB — TB. We apply the transformation formula to see that

BB =cy / (B 0 ®)(B o ®) dt.
TB L

T

Therefore, the Riesz theorem implies that 3* = (ﬁ* o® 1)/ C’fl, where 5* is the unique
element in {So® : S¢€ SP1pa) (Kuni(k)) } such that

= 5*5’ dt = (5575, for all /’é/ S guni(k) = {B\/ od : ,/8\1 S B\uni(k)}-

By definition (3.3.14) and Lemma 3.2.1 (iii), each = guni(k) is at any point (s1,...,54) =
(51,...,54)C + (a1, ...,aq) of the form

d
5/(:517 .- H B Sz‘tl(um(k ))ji—1s- -+ 7ti(uni(k)),j¢+pi)'

We only have to consider 5’ that are supported on TE' Since the support of any B-spline

B(-[tituni(k)) gi—15 -+ » Licani(k)).gi+p:) 18 JUSt [Eicuni(h)) ji—1 - - > Eiguni(k)).ji+p;)] (se€ Lemma 3.2.1
(ii)), it is sufficient to consider j; = ¢; — p;, ..., ¥;. According to Lemma 3.2.1 (v), an affine
transformation in the parameter domain can just be passed to the knots, i.e.,

B(siltiqumi(k)) ji—1s - - - » tiuni(k))jsps) = B (5| Gigunitr)) jim1 — @) /C1 - - (iunih)) jitps — @)/ C1)-

Altogether, we see that B* depends only on the knots

ti uni i—1 — Q4 ti uni jitpi — @i, :
( ( (k))gl 1 . ( (k))éz+Pz :1_1’___’d/\]i:Ei—pi7...,€i).
1 1

Since we only use global dyadic bisection between two consecutive levels, we see that these
knots depend only on d, Ty and (pi,...,pq) but not on the level k. This shows that

HBHLOO(%) < 1, where the hidden constant depends only on d, 7o, and (P1y- -+ Dd)- O
We use the approach of | | with our concrete dual functions, and define an operator

which maps to the space of hierarchical splines

~

I, : L*([0,1]%) — SPvpa) (Ko, T0), T " B*0dt Trunc,(B). (3.4.31)

Note that, for d = 1, the operator for standard splines f. from (3.3.1) does not necessarily
coincide with the currently considered operator I, from (3.4.9). Still, the latter satisfies
the same properties as in Proposition 3.3.1, which is stated in the next proposition.

Proposition 3.4.9. With the abbreviation q := 2(pmax + 1), the operator 1. from (3.4.31)
satisfies the following two properties:
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3.4 Hierarchical splines

(i) ForallT € Ty and all € L2([0,1]%), the inclusion ] q a(7) € Swr2a) (Ko, T,)
{§|7r2(f) :Se g(pl""’pd)(ﬁo,'ﬁ)} implies that V|5 = (./T\i)\)|T

a7y =

(ii) There exists a constant C > 0 such that for all o € L2([0,1]%) and all T € T, there
holds that R
o0l 27y < ClIO L2 g (7). (3.4.32)

where C' depends only on d, ’7A'0, and (p1,...,pd)-

Proof. We prove the assertions in three steps.

Step 1: Remark 3.4.4 shows that for 5 € B, with ]supp&ﬁ ﬂT] > 0, it holds that supp (
7e(T). By (3.4.22), the same holds true for Trunce(3), i.e., |[supp(Trunce(S )) T
implies that supp(B) C 7(T). This yields the identity

B) C
> 0

Lolz= Y _ B*dt Trunce(5)| -
geB, 75
supp(8)Cmd(T)

Step 2: We prove (i). Let § € 8®1ra) (K, 7,) such that 7|
and the fact that Tx - supp(g), we see that

B
Golp = > | B* S dt Trunce(B)|7 = (I 9))|
BeB, 78
supp(B)Cme(T)
According to [SM 16, Theorem 4], I isa global projection in the sense that S € §prpa) (/Co T)

implies that I, S = S Thus, we conclude that

Step 3: We prove (ii). Step 1 and the triangle inequality prove that

HL@HB(T) < Z; ”5*HL2(TE)H77|’L2(f§)HTrunC-(ﬁ)Hp(f)-
Beb.
supp(8)Cnd(T)

This and the fact that T\B - supp(ﬁ) yield that
Bty < Wlpgry 2o I8 I I Bl oy (3433)

iR

supp(B)Cme(T)
We consider the set { BeB. : supp(B) - W?(f)} Since the support of each basis function
in B, consists of elements in 7, (see (3.4.16)), this set is a subset of {B €B,: 3T €
(T with 77 C supp(B)}. Lemma 3.4.5 and admissibility of 7, show that the number
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3 Splines

of elements in H'Z(f) is uniformly bounded by a constant which depends only on d and
(p1,...,pq). Therefore, Proposition 3.4.3 proves that also the cardinality of the latter set
is uniformly bounded. Now, let 3 € B, with supp(B) - ﬂg(f). (3.4.22), (3.4.30), and
Lemma 3.2.1 (iv) prove that

18 g ITrnca (Bl gy < 1E51"2 1B oy B2 S Il V2112

Note that T\B € Hg(f), wherefore Lemma 3.4.5 in combination with admissibility yields
that |T\B\|_1/2|T\|1/2 < 1. Plugging everything into (3.4.33) concludes the proof. O
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4 Finite Element Method

4.1 Introduction

In this chapter, we propose and investigate an adaptive finite element method with (ra-
tional) hierarchical splines for general second-order elliptic systems of partial differential
equations (PDEs) in arbitrary dimension d > 2. We essentially present the results from
the recent own work | ]

4.1.1 State of the art

Due to the advent of isogeometric analysis (IGA), the spline-based finite element method
(FEM) has become an active field of research in the last decade. The central idea of
IGA is to use the same ansatz functions for the discretization of the PDE as for the rep-
resentation of the problem geometry € in computer aided design (CAD); see [ ,

, |. The CAD standard for spline representation in a multivariate set-
ting relies on tensor-product splines. However, to allow for adaptive refinement, sev-
eral extensions of the standard model have recently emerged, e.g., analysis-suitable T-
splines [ , |, hierarchical splines | , , |, or LR~
splines | , ]; see also | , | for a comparison of these approaches
in the frame of FEM. All these concepts have been studied via numerical experiments. How-
ever, so far there exists only little literature concerning the thorough mathematical analysis
of adaptive isogeometric finite element methods (IGAFEM): | | investigates an esti-
mator reduction of an IGAFEM with certain hierarchical splines introduced in [ ]
[ ] investigates linear convergence of an IGAFEM with truncated hierarchical B-
splines introduced in | |. In the continuation of the latter work | I, 1 ]
studies the corresponding mesh-refinement strategy together with some refinement related
properties for the proof of optimal convergence. At the time the recent own work | 1,
which will be treated in the current chapter, was written, the mathematical proof that the

adaptive strategy of | | leads to optimal convergence rates, was still missing in the lit-
erature. During the review process of [ |, the preprint | ] filled this gap. Unlike
our strategy from | |, the algorithm of | | was designed for truncated hierar-

chical B-splines only and the use of hierarchical B-splines may lead to non-sparse Galerkin
matrices. It is important to note that the procedure of truncation requires a specific con-
struction that entails complicated supports of the basis functions, which are in general not
even connected, and their use may produce an overhead with an adaptive strategy that
cannot be neglected. So far, the adaptive algorithm of | | has not been investigated
numerically. Further, their analysis is restricted to symmetric partial differential opera-
tors. For standard FEM with globally continuous piecewise polynomials, adaptivity is well
understood; see, e.g., | , ) , , , | and | | for
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4 Finite Element Method

milestones on convergence and optimal convergence rates.

4.1.2 Model problem

Let 2 C R? with d > 2 be a bounded Lipschitz domain as in | , Definition 3.28]. We
consider a general second-order linear system of PDEs with homogenous Dirichlet boundary
condition

d d

d
Pu = — Z Z 0; (A Opu) + Z biOju+cu=f in Q,
i=14'=1 i=1

(4.1.1)
u=0 onlI:=09Q,

RP*D with some fixed dimen-

where the coefficients A;;, b;, ¢ are functions from 2 into
sion D > 1. We pose the following regularity assumptions on the coefficients: A;; is
Lipschitz continuous, i.e, A € W (Q)P*P and b; as well as ¢ are bounded, i.e.,
bi,c € L>®(Q)P*P. We use the abbreviations [|Al| (o) = max;yeq,ap | Air || ()
[ Allw.oe () = max; yeqr,.ay [|Aiir [l () and [[b]| Lo () = maxjeqy, a4y [[bil Lo (). More-
over, we suppose that AiTi, = A;;. We interpret P in its weak form and define the corre-
sponding bilinear form

d d d
(w, v)p = /Q Z Z(A“v@i/v) - O0jw + Z(blﬁiv) cw ~ (ev) - wdz. (4.1.2)
] i=1

i=14'=1
The bilinear form is continuous, i.e., it holds with Ceont := || Al poe () + (|6l Loo (@) + llel oo ()
that
(w, v)p < Ceontl|w|| g1 () 1V]| i1 (@) for all v,w € HY(Q)P. (4.1.3)

Additionally, we suppose ellipticity of (-, -)q on HI(Q)P, ie.,
(v, vV)p > Cell”””%{l(ﬂ) for all v € Hy(Q)P. (4.1.4)

Note that, for scalar PDEs with D = 1, (4.1.4) is for instance satisfied if the matrix
A= (Aii/)(ii,i’zl is uniformly positive definite and if the vector b := (by,...,bq) € H(div,Q)
satisfies that —% divb 4 ¢ > 0 almost everywhere in ).

Overall, the boundary value problem (4.1.1) fits into the setting of the Lax—Milgram
theorem. For arbitrary vector-valued f € L2(Q)P, it therefore admits a unique solution
u € H}(Q)P to the weak formulation

(u, v)p = /Qf ~vdx  for all v € HL(Q)P. (4.1.5)

We note that the additional regularity A; € W12(Q)P*P (instead of A;y € L>®(Q)P*P)
is only required for the well-posedness of the residual a posteriori error estimator; see
Section 4.2.
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4.1.3 Outline & Contributions

The remainder of this chapter is roughly organized as follows: Section 4.2 provides an
abstract framework for adaptive mesh-refinement for conforming FEM for the model prob-
lem (4.1.1). Its main result is Theorem 4.2.7 which states optimal convergence behavior
of the standard adaptive Algorithm 2.2.1 applied to the model problem at hand. In Sec-
tion 4.4, a conforming FEM based on hierarchical splines is presented. Its main result is
Theorem 4.4.6 which states that hierarchical splines fit into the framework of Section 4.2.
The proofs of Theorem 4.2.7 and Theorem 4.4.6 are given in Section 4.3 and Section 4.5,
respectively. Three numerical experiments in Section 4.6 underpin the theoretical results,
but also demonstrate the limitations of hierarchical splines in the frame of adaptive FEM
when the solution u exhibits edge singularities.

Sections 4.2-4.3

In more detail, the contribution of Section 4.2 can be paraphrased as follows: We formulate
a concrete realization (Algorithm 4.2.6) of the abstract adaptive Algorithm 2.2.1 driven
by some weighted-residual a posteriori error estimator (4.2.13) in the frame of conforming
FEM. We formulate four assumptions (M1)—(M4) on the underlying meshes (Section 4.2.1),
five assumptions (R1)—(R5) on the mesh-refinement (Section 4.2.2), six assumptions (S1)—
(S6) on the FEM spaces (Section 4.2.3), and four assumptions (O1)—(O4) on the data
approximation spaces (Section 4.2.5). First, these assumptions are sufficient to guarantee
that the error estimator 7, associated with the FEM solution U, € X, C H} ()P is efficient
and reliable, i.e., there exist Ceg, Crel > 0 such that

C;ﬁl Ne < V‘ig{. (Hu — V.HH1(Q) —i—osc.(V.)) < lu — U.HHI(Q) + 0sCe(Us) < Crel Mo, (4.1.6)

where osce(+) denotes certain data oscillation terms. Second, Theorem 4.2.7 states that Al-
gorithm 4.2.6 leads to linear convergence with optimal rate as in Theorem 2.3.1. Section 4.3
is devoted to the proof of Theorem 4.2.7.

In explicit terms, we identify sufficient conditions of the underlying meshes, the local
FEM spaces, as well as the employed (local) mesh-refinement rule which guarantee that
the related residual a posteriori error estimator satisfies the axioms of adaptivity from Chap-
ter 2. Although this framework is only exploited for IGAFEM with hierarchical splines,
it is likely that it serves as a promising starting point to analyze different technologies for
adaptive IGAFEM like (analysis-suitable) T-splines or LR-splines, as well as for other con-

forming discretizations like the virtual element method (VEM) from | ]. Indeed,
for analysis-suitable T-splines, the refinement properties are already found in | | for
2D resp. in | | for 3D.

Sections 4.4-4.6

Based on the definitions from Section 3.4, Section 4.4 defines hierarchical meshes and hi-
erarchical splines on the physical domain 2 (Section 4.4.2), derives the canonical basis
of the hierarchical spline space Xy C HE(Q)” with Dirichlet boundary condition (Sec-
tion 4.5.8), and introduces some local mesh-refinement rule which preserves admissibility
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4 Finite Element Method

(Section 4.4.3). One crucial observation is that the new mesh-refinement strategy for hier-
archical meshes (Algorithm 4.4.1) guarantees that the number of (truncated) hierarchical
B-splines on each element as well as the number of active elements contained in the support
of each (truncated) hierarchical B-spline is uniformly bounded; see Proposition 3.4.3. If
one uses the strategy of | , , | instead, this property is not satisfied for
hierarchical B-splines, but only for truncated hierarchical B-splines. In general, the latter
have a smaller, but also more complicated and not necessarily connected support.

The main result of Section 4.4 is Theorem 4.4.6 which states that hierarchical splines
together with the proposed local mesh-refinement strategy satisfy all assumptions of Sec-
tion 4.2, so that Theorem 4.2.7 applies. Whereas the corresponding result of | , ]
adapts the analysis of [ ] and is thus restricted to symmetric problems, we exploit
some recent ideas from | ] in order to cover the non-symmetric case as well. Finally,
Remark 4.4.7 extends Theorem 4.4.6 to rational hierarchical splines.

Technical contributions of general interest in Section 4.5, which is devoted to the proof
of Theorem 4.4.6, include the following: We prove that a hierarchical mesh is admissible if
and only if it can be obtained by the mesh-refinement strategy of Algorithm 4.4.1 (Proposi-
tion 4.4.2). Recall that admissible meshes also allow a simpler computation of truncated hi-
erarchical B-splines in the sense that truncation simplifies considerably (Proposition 3.4.7).
Together with some ideas from | |, we use this observation to define a Scott—Zhang
type projector J, : L2(Q)P — X, which is locally L2- and H'-stable and has a first-order
approximation property (Section 4.5.10).

We conclude this part with three numerical examples in Section 4.6, where we also give
a heuristic explanation for the observed rates for solutions with edge-singularity.

4.2 Axioms of adaptivity (revisited)

A similar version of the current section is already found in the recent own work | ,
Section 2]. The aim of it is to formulate an adaptive algorithm (Algorithm 4.2.6) for con-
forming FEM discretizations of our model problem (4.1.1), where adaptivity is driven by
the weighted-residual a posteriori error estimator (4.2.13). We identify the crucial prop-
erties of the underlying meshes, the mesh-refinement, as well as the finite element spaces
which ensure that the residual error estimator fits into the general framework of Chapter 2
and which hence guarantee optimal convergence behavior of the adaptive algorithm. The
main result of this section is Theorem 4.2.7 which is proved in Section 4.3.

4.2.1 Meshes

Throughout, T, is a mesh of the bounded Lipschitz domain Q € R in the following sense:
e 7, is a finite set of compact! Lipschitz domains;
e for all T,T' € T, with T # T’, the intersection T'NT" has measure zero;

e 0= Urer, T, ie., T, is a partition of €.

LA compact Lipschitz domain is the closure of a bounded Lipschitz domain.
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4.2 Axioms of adaptivity (revisited)

We suppose that there is a countably infinite set T of admissible meshes. In order to ease
notation, we introduce for 7, € T the corresponding mesh-width function

he € L®(Q) with he|z = hy == |T|Y4 for all T € Ts. (4.2.1)
For w C Q, we define the patches of order g € Ny inductively by
(W) i=w, wl(w):= U {TeTs: Tnrli N w) #0}. (4.2.2)
The corresponding set of elements is defined as
Mi(w):={T €T : TCriw)}, ie, mi(w)=JT(w). (4.2.3)
To abbreviate notation, we set 7e(w) := 7l (w) and M, (w) := }(w). For S C T,, we define
7e(8) =7l (US) and TIL(S) := (U S).
We suppose that there exist constants Clocunis Cpatchs Ctraces Cdual > 0 such that all
meshes T, € T satisfy the following four properties (M1)—(M4):
(M1) Bounded element patch: For all T' € 7,, it holds that
#11o(T') < Chatch,
i.e., the number of elements in a patch is uniformly bounded.
(M2) Local quasi-uniformity: For all T € 7,, it holds that
hr/hrr < Cloeuni  for all T" € T, (T),
i.e., neighboring elements have comparable size.

(M3) Trace inequality: For all T’ € 7, and all v € H!(2), it holds that
17207 < Curace (b7 0117207y + 101l 22¢0) IV V]l L2 ) -
(M4) Local estimate in dual norm: For all T € T, and all w € L%(T), it holds that
h' lwll =17y < Cavarllwllz2(7),
where ||w||H_1(T) = sup { fT wvdx @ v E H&(T) A ||v||H1(T) = 1}.

Remark 4.2.1. Actually, we will apply (M3)—(M4) for vector-valued v € HY(Q)P resp.
w € L2(Q)P. Indeed, (M3)—~(M4) easily imply the corresponding higher-dimensional ver-
sions. Moreover, note that (M4) is only needed for the proof of efficiency for the estimator;
see Theorem 2.3.1 (ii).

The following two propositions show that (M3)—(M4) are actually always satisfied. How-
ever, in general the multiplicative constants depend on the shape of the elements.
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4 Finite Element Method

Proposition 4.2.2. Let w be an arbitrary d-dimensional bounded Lipschitz domain. Then,
there exists a constant Cirace(w) > 0 such that for all v € H'(w), it holds that

HUH%Q(aw) < Ctrace(w)(‘er/dﬂv”%%w) + HUHL2(w)HVUHL2(w))- (4.2.4)
The constant Cirace(w) > 0 depends only on the shape of w.

Proof. Without loss of generality, we assume that |w| = 1. The general case follows with a
simple scaling argument. We prove the assertion in three steps.

Step 1: By definition of Lipschitz domains [ , Definition 3.28|, the boundary dw
is locally the graph of Lipschitz functions. Formally, this means that there exist a finite
set of open and bounded sets {Wj g eA{L,... ,J}} with dw C U}]:l W; such that for
all j € {1,...,J}, wnNW; = w; N W; for some set w; which is up to some rigid motion
a Lipschitz hypograph. Neglecting the rigid motion, w; has the form w; = {:C e R? :
g < Cj(xl,...,md,l)} for some Lipschitz continuous mapping (; : R4l — R. Note
that Rademacher’s theorem shows that each (; is almost everywhere differentiable with
bounded gradient V(; € L®(R?1). According to [ , page 97], the outer normal
vector v; satisfies for almost all € dw; that

V](‘T) = (|VCJ(-’E1, e ,$d_1)|2 + 1)71/2 <_VC](1.171 .. 7xd1)> )

In particular, this shows for arbitrary o; € R? of the form 0j =(0...,0,0j4) that

€1
vi(@) - (z = 0j) = (IV¢j(@1, . wg- )P+ )72 | =VG(an,yzan) - | 3 |+ (2a— 00)
Ld—1
Hence, we can fix a sufficiently small 0;4 < 0 such that for almost all z € dw; N Wj, it
holds that

—([|V|| oo (ra—1y + 1) sup A Tl — 0454
Ui(@) - (& — o) > (IVGll Lo )2 ) meawjlmgfﬂ | —oj, —e >0,
(HVCJH oo (Rd—1) + 1) /

Note that o0; 4 as well as £; depend only on w. We set € := minjcqy . 1€ > 0.

Step 2: We come to the proof of (4.2.4). Let {cpj cjed{l,..., J}} be a smooth partition
of unity on dw subject to {W; : j € {1,...,J}}, ie., ¢; € C>®(RY), Z}]:1 ¢; =1, and
supp(p;) C Wj for all j € {1,...,J}.

Step 1 shows that

1/2

J J
ol 2wy € D lesvllzeon,) < <23 ( /B #i(@)0(@)? (2 = o) - v;(a) da)
j=1 j=1

Next, we apply the divergence theorem [ , Theorem 3.34]
| e@rl @ - o) w@yds = [ divtey(@Polaf (e - o) do
ow; wj

= 2/ i (@)o(@)V (pj(@)v(@) - (= 07) dw + dlpjv][ 72w,
w;NW;

S HUHL2(wnWj)HVUHL2(wnWj) + HUH%%ij)-
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Altogether, we obtain that

HUH%%&U) S Z (HUHB(wnwj)HVUHB(WWJ) + HUH%Q(wﬂWj))
j=1

S ol Vol + 10lZ2 ),
which concludes the proof. O

Proposition 4.2.3. Let w be an arbitrary d-dimensional bounded Lipschitz domain. Then,
there exists a constant Caual(w) > 0 such that for all w € L*(w), it holds that

| 7wl 1wy < Canar (@) [0]] 2w (4.2.5)
The constant Cayal(w) > 0 depends only on the shape of w.
Proof. Without loss of generality, we assume that |w| = 1. The general case follows with a

simple scaling argument. Let v € H}(w). The Cauchy—Schwarz inequality proves that

/wv dr < wll2@)lvllze@w) < lwllzz) vl w),
which concludes the proof. O

4.2.2 Mesh-refinement

For 7, € T and an arbitrary set of marked elements M, C 7T,, we associate a corre-
sponding refinement T, := refine(Te, M,) € T with Mo C To \ 7o, i.e., at least the
marked elements are refined. Moreover, we suppose for the cardinalities that #7, < #7o
if Mg # 0 and 7o = T, else. We define refine(7,) as the set of all 7, such that
there exist meshes 7g), ..., 7(s) and marked elements M), ..., M) with 7o = T(;) =
refine(7( 1), M(j-1)),---,T1) = refine(T(p), M(p)) and Ty = To. We assume that
there exists a fixed initial mesh 7g € T with T = refine(7p).

We suppose that there exist Csop > 2 and 0 < pgon < 1 such that all meshes T, €
T satisfy for arbitrary marked elements M, C 7, with corresponding refinement 7, :=
refine(7,, M,), the following elementary properties (R1)—(R3):

(R1) Son estimate: It holds that
#To < Cson #7e,

i.e., one step of refinement leads to a bounded increase of elements.

(R2) Father is union of sons: For all T' € 7, it holds that
T=J{T"eT: T'CT},

i.e., each element T is the union of its successors.
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(R3) Reduction of sons: For all T' € 7T,, it holds that
IT'| < pson |T| for all T" € To with T" G T,
i.e., successors are uniformly smaller than their father.

By induction and the definition of refine(7,), one easily sees that (R2)—(R3) remain valid
if 75 is an arbitrary mesh in refine(7,). In particular, (R2)—(R3) imply that each refined
element T' € T, \ 7o is split into at least two sons, wherefore

H(To\To) < #To — #To for all T; € refine(T,). (4.2.6)

Besides (R1)—(R3), we suppose the following non-trivial requirements (R4)—(R5) with
generic constants Ceios, Cover > O:

(R4) Closure estimate: Let (7)sen, be an arbitrary sequence in T such that Tpy; =
refine(7;, M) with some My C Ty for all £ € Ny. Then, for all £ € Ny, there holds
that

/-1

#To — #7T0 < Catos Y _ #M,;.

J=0

(R5) Overlay property: For all 7,,7, € T, there exists a common refinement 75 €
refine(7,) Nrefine(7,) which satisfies the overlay estimate

#7; S Cover(#’]; - #7-0) + #7:
4.2.3 Finite element space
With each T, € T, we associate a finite dimensional space of vector valued functions
Xe C {v e HY ()P : vjp € HX(T)P for all T € T4} (4.2.7)

Let U, € A, be the corresponding Galerkin approximation to the solution u € H&(Q)D ,
ie.,

(Us, Va)p = / f-Vedzx forall V, € A,. (4.2.8)
Q

We note the Galerkin orthogonality
(u—"Us, Vo)pg =0 forall V, € A, (4.2.9)

as well as the resulting Céa type quasi-optimality

lu—Usllgr() < Ccéa in [ = Velliri)  with  Cog := Ge2t. (4.2.10)

ell

We suppose that there exist constants Cin, > 0 and gioc, @proj € No such that the following
properties (S1)—(S3) hold for all 7, € T:
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(S1) Inverse inequality: For all j, k € {0,1,2} with £ < j, all V, € X, and all T € T, it
holds that

j—k
B IVellasr) < Cinw [Vell ey
(S2) Nestedness: For all 7; € refine(7,), it holds that

Xeo C X

(S3) Local domain of definition: For all 7, € refine(7,), T € T \ III(Te \ 7o) C
Te N To, and V, € X, it holds that

Vo‘ﬂ_zproj (T) S {Vo‘ﬂ_zproj VO S XO}

(1)

Besides (S1)—(S3), we suppose that there exist Cs, > 0 as well as g5, € Ny such that for
all 7, € T, there exists a Scott-Zhang type projector J, : Hi (2)P — X, with the following
properties (S4)—(S6):

(S4) Local projection property: Let g¢poj € No from (S3). For all v € H}(Q)P and
T € T,, it holds that

(Jov)|r = |1 ifv]wgproj(T) € {V.]ngroj(T) : Ve € X}

(S5) Local L2-approximation property: For all T € 7, and all v € H}(Q)P, it holds
that

(1 = Jo)vllr2ry < Cop h |0]] 1 ez 1y -
(S6) Local H!-stability: For all T € 7, and v € H}(Q)P, it holds that
IVJevllr2(ry < Collvll g (s (1))

4.2.4 Error estimator

Let 7o € T and T € 7T,. For almost every = € 917 NS, there exists a unique element Ty € T,

with « € T1NT,. We denote the corresponding outer normal vectors by vy = (v1,1,...,v1,4)
resp. Vo = (V21,...,V24). With the notation
d d d
= Z Z V1, Aiir Oy () tesp. Dy,(+) Z Z vo,i Air Oy () (4.2.11)
i=1i'=1 i=14=1

we define the normal jump as

[D.U](@) := (D, Us|1y ) (2) + (DuUs |1, ) (). (4.2.12)
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With this definition, we employ the weighted-residual a posteriori error estimator

Ne :=1e(Te) with 74(S)?:= Z ne(T)? for all S C T, (4.2.13a)
TeS

where, for all T' € T,, the local refinement indicators read
1e(T)? := W7 ||lf = BUIZ2 () + hrl[D0UI 22 070 (4.2.13b)

We refer, e.g., to the monographs | , | for the analysis of the residual a posteriori
error estimator (4.2.13) in the frame of standard FEM with piecewise polynomials of fixed
order.

Remark 4.2.4. If X, C C1(Q), then the jump contributions in (4.2.13) vanish and ne(T)
consists only of the volume residual; see [ | in the frame of IGAFEM.

4.2.5 Data oscillations

The definition of the data oscillations corresponding to the residual error estimator (4.2.13)
requires some further notation. Let P(Q) € H*(Q)P be a fixed discrete subspace. We

suppose that there exists C{ > 0 such that the following property (O1) holds for all
Te € T:

(01) Inverse inequality in dual norm: For all W € P(Q2), and T € 7, it holds that
hr[Wllpzery < Cioy IWllg-1(7),

m

where HWH%,I(T) = Z]D:l HWjH%,l(T) and ||[Wjllg-1¢p) = sup{ [, Wjvdz : v €
Hy(T) A vl ey = 1}

Besides (O1), we suppose that there exists Cyg > 0 such that for all 7, € T and all
T,T" € To with (d — 1)-dimensional intersection E := T NT’, there exists an operator
Lep: {Wlg : WeP()} = H(T UT')P with the following properties (02)-(O4):

(02) Lifting inequality: For all W € P(Q), it holds that
/ W -Wdx < C]ift/ Lep(Wlg) - W dz.
E E
(03) L2-control: For all W € P(), it holds that
|EesW)llz2erom) < Cun(hy’” + By Wl z2cm.
(04) H'-control: For all W € P(), it holds that

IV L, (W|5)l| 2rury < Cus(hn> + B )W |2 ()

20



4.2 Axioms of adaptivity (revisited)

Let 7, € T. For T € T,, we define the L?-orthogonal projection Py p : L*(T) — {W|r :
W e P(Q)}. For an interior edge E € Ear := {TNT" : T' € Te ANdim(T' NT") = d — 1},
where dim(-) denotes the dimension, we define the L2-orthogonal projection Py g : L*(E) —
{W|g : WeP@Q)}. For V, € X,, we define the corresponding oscillations

08Ce(Va) := 08ce(Va,Ts) with osc.(V.,S)2 = Z OS(:.(V.,T)2 for all S C 7,, (4.2.14a)
TeS

where, for all T' € 7T,, the local oscillations read

osc.(V.,T)2 = h%‘|(1 —Por)(f — (BUo)H%?(T)

+ Y hrll(1 = P p)[DuUL 72 (s (4.2.14D)
EEgo,T
We refer, e.g., to | | for the analysis of oscillations in the frame of standard FEM with

piecewise polynomials of fixed order.

Remark 4.2.5. If X, C CY(Q), then the jump contributions in (4.2.14) wvanish and
0sce(Ve, T) consists only of the volume oscillations; see [ | in the frame of IGAFEM.
4.2.6 Adaptive algorithm

We consider the following concrete realization of the abstract Algorithm 2.2.1.

Algorithm 4.2.6. Input: Dorfler parameter 6 € (0, 1] and marking constant Cin € [1, 00].
Loop: For each £ =0,1,2,..., iterate the following steps:

(i) Compute Galerkin approzimation Uy € Xy.
(ii) Compute refinement indicators ne(T') for all elements T € Ty.

(iii) Determine a set of marked elements My C Ty which has up to the multiplicative
constant Cuin minimal cardinality, such that the following Dorfler marking is satisfied

01 < ne(My)*. (4.2.15)

(iv) Generate refined mesh Tyy1 := refine(Ty, My).

Output: Refined meshes Ty and corresponding Galerkin approzimations Uy with error es-
timators ng for all £ € Ny.

4.2.7 Optimal convergence

With p from Section 2.2.1 defined as cardinality #, we recall the definitions of Chapter 2
T(N):={Te €T : #Ta — #To < N} for all N € Ny, (4.2.16)
and for all s > 0

Capprox(8) := sup min (N +1)°n, € [0, ]. 4.2.17
approx () NeII\I)OToGT(N)( )°n [ ] ( )
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4 Finite Element Method

We say that the solution u € H&(Q)D lies in the approzimation class s with respect to the
estimator if

HUHA‘E“ = Capprox(s) < 0Q. (4218)

Further, we say that it lies in the approzimation class s with respect to the minimal total
error if

] ptor := e (7’.ren1li‘?N)(N +1)° nf (lle = Vall gy + osc.(V.))> <oo.  (4.219)

By definition, [Jul[pest < oo resp. [Jullater < oo implies that the error estimator e resp.
the minimal total error on the optimal meshes 7T, decays at least with rate O((#T.)_S).
The following main theorem states that each possible rate s > 0 is in fact realized by
Algorithm 4.2.6. The proof is given in Section 4.3 and is also found in | , Section 4].
It essentially follows from its abstract counterpart Theorem 2.3.1 by verifying the axioms
of Section 2.3. For piecewise polynomials on shape-regular triangulations of a polyhedral
domain €2, optimal convergence was already proved in | | for symmetric B resp. in
[ | for non-symmetric .

Theorem 4.2.7. Let (Ty)ien, be the sequence of meshes generated by Algorithm 4.2.6.
Then, there hold:

(i) Suppose (M1), (M3) and (S5)—(S6). Then, the residual error estimator satisfies reli-
ability, i.e., there exists a constant Cie > 0 such that

|u = Us |l 1 () + 08ce < Craine  for all To € T. (4.2.20)

(ii) Suppose (M1)—(M4), (S1), and (O1)—(04). Then, the residual error estimator satis-
fies efficiency, i.e., there exists a constant Ceg > 0 such that

Coine < Vin/f\{ (llw = Vel gy + 0sce(Ve))  for all Tq € T. (4.2.21)

.E L]

(iii) Suppose (M1)—-(M3), (R2)-(R3), (S1)-(S2), and (S5)—(S6). Then, for arbitrary 0 <

0 <1 and Cyin € [1,00], the residual error estimator converges linearly, i.e., there
exist constants 0 < pin < 1 and Cyin > 1 such that

iy < Ciwplyny  for all j € € Ny, (4.2.22)

(iv) Suppose (M1)—-(M3), (R1)~(R5), and (S1)-(S6). Then, there exists a constant 0 <
Oopt < 1 such that for all 0 < 6 < Oopy and Cpin € [1,00), the estimator converges at
optimal rate, i.e., for all s > 0 there exist constants copt, Copy > 0 such that

Copt [[ufl aest < fup (#Te — #To + 1)° e < Copt|ul|pest, (4.2.23)
€Np

where the lower bound requires only (R1) to hold.
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4.3 Proof of Theorem 4.2.7

All involved constants Ctel, Cer, Clin, Qlin, Oopt, and Copy depend only on the assumptions
made as well as the dimensions d, D, the coefficients of the differential operator B and
diam(2), where Chin, piin depend additionally on 6 and the sequence (Up)en,, and Copy
depends furthermore on Crin and s. The constant copy depends only on Cson, #7T0, S, and
if there exists £y with 1y, = 0 also on £y and no.

Remark 4.2.8. If the assumptions of Theorem 4.2.7 (i)—(ii) are satisfied, there holds in
particular that

Ce_ﬂlHuHAgst < lullgrer < Crallullpese  for all s > 0. (4.2.24)

Remark 4.2.9. If the bilinear form (-, -)p is symmetric, then Chn, piin, and Copy are
independent of (Up)een,; see Remark 4.3.3 below.

Remark 4.2.10. If X, ¢ CY(Q), all jump contributions vanish; see Remark 4.2.4 and
Remark 4.2.5. In this case, the assumptions (02)—(04) are not necessary for the proof of
(4.2.21).

Remark 4.2.11. (a) Under the assumption that |h| o) — 0 as £ — oo, one can

show that Xoo := Upen, Xe = HE(Q)P. To see this, recall that nestedness (S2) ensures that
UZGNO Xy is a vector space and, in particular, convex. By Mazur’s lemma (see, e.g., [ ,
Theorem 3.12]), it is thus sufficient to show that | J,cy, Xe is weakly dense in H}(Q)P. Let
v € HY(Q)P. The Banach-Alaoglu theorem (see, e.g., [ , Theorem 3.15]) together with
(M1) and (S5)—(S6) proves that each subsequence (Jy, v)men, admits a further subsequence
(Jon, V)nen, which is weakly convergent in H} ()P towards some limit w € Hi(Q)P. The
Rellich compactness theorem hence implies that [[w — Jp,, vl2) — 0 as n — oo. On
the other hand, (S5) together with (M1), (R2)-(R3), and [|h¢[| @) — 0 shows that ||v —
Jovlr2) S el @) l0llg1 @) — 0 as £ — oo. Together with the uniqueness of limits,
these two observations imply that v = w. Overall, each subsequence (Jy,, V)men, of (Jov)ren
admits a further subsequence (Jy,, vV)nen, which converges weakly in HY(Q)P to v. Basic
calculus thus yields that Jyv — v weakly in H&(Q)D as £ — oco. This concludes the proof.
(b) The latter observation allows to follow the ideas of [ | and to show that the
adaptive algorithm yields convergence even if the bilinear form (-, -)q is only elliptic up
to some compact perturbation, provided that the continuous problem is well-posed. This
includes, e.g., adaptive FEM for the Helmholtz equation. For details, the reader is referred

to [ ].

4.3 Proof of Theorem 4.2.7

In the following subsections, we prove Theorem 4.2.7. To prove (iii)—(iv), we just verify the
abstract axioms from Section 2.3, which allows to apply Theorem 2.3.1. The perturbation
0e,o 15 chosen as

000 = Cy|Us = Us|lg1(qy for all 7o € T, T; € refine(T), (4.3.1)

with some constant C, > 0 which is fixed later in Section 4.3.3. To apply Theorem 2.3.1 (i),
we additionally have to show that lim/_,o 0r¢+1 = 0. Finally, reliability (4.2.20) resp.
efficiency (4.2.21) are treated explicitly in Section 4.3.7 resp. Section 4.3.8.
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4 Finite Element Method

4.3.1 Convergence of perturbations

Nestedness (S2) ensures that X := gy, X2 is a closed subspace of Hj(€2)” and hence
admits a unique Galerkin solution Uy, € X. Note that Uy is also a Galerkin approximation
of Us. Hence, the Céa lemma (4.2.10) with u replaced by Us, proves that ||Use—Usl| g1 (o) —
0 as £ — co. In particular, we obtain that limy o [|[Up1 — Uel| 1) = 0.

4.3.2 Stability on non-refined elements (E1)

Similarly asin | , Corollary 3.4], we show that the assumptions (M1)—(M3) and (S1)-
(S2) imply stability (E1), i.e., the existence of Cstar, > 1 such that for all 7, € T, and all
T € refine(7,), it holds that

’770(7'. N 7:3) - 770(7: N 7;)’ < CstabHUo - UQHHl(Q)

In Section 4.3.3, we will fix the constant C, > 0 for the perturbations (4.3.1) such that
Cstab < C,. For § C 7T, we abbreviate

081 = (X MW~ U)X @0 W~ U Bagoreey)

TeS TeS
(4.3.2)
The inverse triangle inequality shows that
[16(Te N To) = 1a(Ta N To) 2
1/2 1/25 2
<(( X M -FUBar) = (X WIS - PUE) )
TeTeNTo TeTeNTo
1/2 1/25 2
+(( X mleUdpr) (> @) )
TeTeNTo TeTeNTo
< e o(Te N To)% (4.3.3)

It remains to control the term e o(7¢ N 7). We consider an arbitrary set S C 7. We
use the inverse triangle inequality and the inverse inequality (S1) in combination with
nestedness (S2), to see that the volume residual part satisfies that

2 2 1/2 <
(D2 BB = Uli7qry) S 10s = Ul o-
TeS

To deal with the jump part of aeo(S), let T € S be arbitrary, and Ts € T with dim(77 N
Ty) = d — 1, where dim(-) denotes the dimension. We set E :=T; N Ty € & 1. Note that
the number of such elements T5 is uniformly bounded due to (M1). Then, the definition of
[-] and local quasi-uniformity (M2) show that

hr, H[QV(UO - U‘)]H%Q(E) = hry ”9111([]0 - U‘)’TI + QVQ(UO - U‘)’B”%?(E)

d d
Shry Y N0i(Us = Ul 22 0my + e Y 10i(Uo = Ud) 1,172 0m5)- (4.3.4)
i=1 i=1
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4.3 Proof of Theorem 4.2.7

For v = (v1,...,vp) € HY(Q)P, we abbreviate Vv := (Voy,...,Vop) € L2(Q)P°. To
estimate the first summand, we apply the trace inequality (M3) and the inverse inequality
(S1) in combination with nestedness (S2), and see for i € {1,...,d} that

b, 10 (Vs — U3 B2 oy S 11000 = Ua) |22, i)
+ 1310 (Vo = Ua)ll 2y |V (9 (Vo = U)z2ri) S 10 = Uallipa . a
The second summand of (4.3.4) is estimated similarly. Altogether, we have deduced that

e 0(S) < Cstab [|[Us — Us | 51 (02)- (4.3.6)

where the constant Cgar, depends only on (M1)-(M3), (S1), as well as on d, D, || Ay, (@),
6/ o ()5 llell e (), and diam(2). Thus, (4.3.3) concludes the proof of (E1).

4.3.3 Reduction on refined elements (E2)

Similarly as in | , Corollary 3.4], we show that the assumptions (M1)—(M3), (R2)-
(R3), and (S1)—(S2) imply reduction on refined elements (E2), i.e., the existence of Cyeq > 1
and 0 < preq < 1 such that all 74 € T and all 7, € refine(7,) satisfy that

770(7; \ 7:)2 < Pred 770(7:\773)2 + CredHUO - U'H%H(Q)
With this, we can fix the constant C, > 0 for the perturbations (4.3.1) as
C, = max(Cstab, Coty)- (4.3.7)

First, we apply the triangle inequality and the Young’s inequality, and use the definition
of e o(75 \ 7o) from (4.3.2) to see for arbitrary 6 > 0 that

1o(To\ Ta)? < (1407 o(To\ Ta)?

+(1+ 5)( > gl = BU G + hT”[QVUO]H%Q(aTﬂQ))'
TeTo\Te
According to (4.3.6), there holds that ao(Us,Us) < [|[Us — Us|| 1 (q)- To control the volume
residual term, we use (R2)—(R3)

Yo BRI =BGy < Y pE R D If = BUZay

TeTo\Te T'eT\To TeTo
TCT
2/d 2 2
:psc{n Z hT’”f_q:;UOHLQ(T’)'
T'eT\To

With the same arguments, we can also estimate the jump term. Here, we additionally use
the fact that [D,U,] = 0 on (9T'\ 9T") NQ for all sons TS T of an element 7" € 7, which
follows from Us|7» € H?(T')P. This gives

Y @y < YL pabr D DU 720000

TeTo\Te T'€Te\To ;go/
d
D D ([ oA Py
T'eT\To
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4 Finite Element Method

Choosing 6 > 0 sufficiently small, we conclude the proof of (E2), where the constants
Cred and preq depend only on (M1)—~(M3), (R2)—(R3), (S1) as well as on d, D, [[A|ly1.(q),
6/l ()5 llcllnoe (), and diam(£2).

4.3.4 General quasi-orthogonality (E3)

According to Theorem 2.3.1 (i), Section 4.3.1, Section 4.3.2 and Section 4.3.3 already imply
estimator convergence limy_,., 17, = 0. Therefore, reliability (4.2.20), which will be proved
in Section 4.3.7 below, implies error convergence limy o |u — Ul g1 () = 0. In particular,

we obtain that u € X = ey, Av- Similarly as in [ , Proof of Theorem 4.1], we
show that the latter inclusion u € X, reliability (4.2.20), and (S2) imply general quasi-
orthogonality (E3), i.e., the existence of

1—(1+6)1 = (1= prea)d)

0 < ego < su , 4.3.8
- 5>Ig 2+071 ( )
and Cgo > 1 such that
{+N
Z(CQHUJ‘H - UjH%ﬂ(Q) — qun]?) < Cyomp for all £, N € Ny. (4.3.9)
j=¢

Recall that we already fixed the constant C, in (4.3.7). The key ingredient is provided

by the following Lemma 4.3.2 which stems from | , Proposition 3.6]. There, the
assertion is formulated in a more concrete setting. However, the generalization to Hilbert
spaces is straightforward and is also found in [ , Lemma 18]. The proof is only given

for completeness and requires the assertion of the next lemma.

Lemma 4.3.1. Let H be a Hilbert space with dual space H*, and let (He)oen, be a nested
sequence of subspaces with Hy C Hpr1 C H for all £ € No. Further, let B : H — H* be a
continuous linear operator which is elliptic, i.e., there exists a constant C > 0 such that

lyll3; < C(By,y) forallyeH. (4.3.10)
For given F € H*, let x € H denote the unique solution to

Bz = F. (4.3.11)

Suppose that © € Heoo = UﬁeNO He, and let X, be the corresponding Galerkin approxima-
tions in Hy. Then, the sequences (eg)sen, and (Ep)ien, defined by

(4.3.12)

z—X, Xep1—Xo

a=Xe X XemXe g x, X

o ;:{HJ»‘—XZIIH Jore#Xe 4 ::{nxmxeny fz o1 7 Xo,
elLse.

0 else,

converge weakly to zero.
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4.3 Proof of Theorem 4.2.7

Proof. We only prove the assertion for the sequence (eg)sen,, the weak convergence of
(Er)een, follows along the same lines. We show that every subsequence (ef;)jen, has
itself a subsequence (eg].k )keN, Which converges weakly to zero, which concludes the proof.
Boundedness ||e/[|3; < 1 implies by the Banach-Alaoglu theorem the existence of (s, )ren,
such that e, =Y for some y € H. It remains to show that y = 0. We apply Mazur’s
lemma, which states that closed convex sets are weakly closed, and obtain that y € Ho
Now, let n € Ny and Y,, € H,, arbitrary but fixed. Due to Galerkin orthogonality there
holds that

0=(B(x— X, ), Yn) forl; >n.

In particular, we derive that <%egjk , Y,) = 0. Therefore, weak convergence leads to
(By, Y,) = 0. By definition of H > y and since Y,, was arbitrary, this yields that
(By, y) = 0. With ellipticity (4.3.10), we conclude that y = 0 and thus the proof. O

Lemma 4.3.2. Under the assumptions of Lemma 4.3.1, we additionally suppose that the
corresponding operator B can be written as B = A + € with continuous linear operators
A,C:H — H*, where 2 is symmetric, i.e.,

Ry, z) = Az, y) forally,zeH, (4.3.13)
and € is compact. We define
Iyl := (By, )/ for all y € H. (4.3.14)

Then, for all 0 < 6 < 1, there exists an index o € Ny such that

1
I = Xestls + 1 Xes — Xelly < T—llo = Xelly  for all €2 6o, (4.3.15)

Proof. Elementary algebra shows for all £ € Ng that

Iz = Xeg1lld + 1 Xer1 — Xellg + (B(z — Xeg1) , Xew1 — Xo)
= |lz — Xo||% — (B(Xep1 — Xo), 7 — Xop1)-

Note that the third summand vanishes due to Galerkin orthogonality and nestedness of the
ansatz spaces, i.e.,

o = Xexall3 + 1 Xess — Xell = o — Xell3 — (B(Xew1 — Xe), 2 — Xea). (4.3.16)

Note that, if B was symmetric, the last term would vanish too. The difficulty comes with
the non-symmetric part €. Exploiting the symmetry of 21, we see that
[(B(Xe1 — Xo), @ — Xpg1)| = [z — Xpg1), Xopr — Xo) + (€( X1 — Xo), @ — Xoga)|
< |(B(x — Xey1), Xep1 — Xo)| + [(€(z — Xop1, Xo1 — Xo)|
+ (€(Xeg1 — Xo), @ — Xog)|-
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4 Finite Element Method

Using again Galerkin orthogonality, we derive that

(B(Xey1— Xo), ¢ — Xo1)| < [(€(x = Xpy1, Xopr — Xo)| + [(€(Xey1 — Xp), . — Xoqa)|
< [[€Ceoprllmerlz — Xewrllnl Xewr — Xelln + |€E,|
= (II€ers1llae- + 1€E|

Recall that compact operators transfer weak convergence into strong convergence. Since

eer1, B¢ — 0 as £ — oo, we see that Ceypy1,CEy — 0 in H* as £ — oco. In particular, for all
€ > 0, this provides some £y € Ny such that

e | X1 — Xellulle — Xogalln
1+ ) 1o — Xl X — Xellu-

I€eritllz + [CE |3+ < € for all £ > 4. (4.3.17)
From now on, let £ > f3. We obtain that
(B(Xer1 — Xo) s # = Xega)| < ellz — Xegallal X1 — Xelln-
We plug this into (4.3.16) and use ellipticity (4.3.10) to see that

2 — Xoqall3s + 1 Xer1 — Xelld < llz— Xell3s + € lle — Xega | Xerr — Xelln
<l = Xell% + Ce (lz = Xyl + 1 X1 — Xells)-

Choosing € = C~1§ concludes the proof. O

We come to the proof of (E3) itself.
Step 1: We show that our concrete setting fits into the framework of Lemma 4.3.2. We
choose H := H}(Q)P with H* = (H}(Q)P)* and H, := A, for all £ € Ny. Note that, with
H=YQ) := HY(Q)*, H1(Q)P is a realization of (Hg(Q)P)* with equivalent norms. The
involved operators are defined as

d d
v, w) = / Z Z(Aii/(?,vv) -Qwdz  for all v,w € HL(Q)P. (4.3.18)
Qi=1i=1
and
d
(Cu, w) := / Z(b,@iv) cw+ () -wdz  for all v,w € HH(Q)P. (4.3.19)
i1

which gives (B, -) = (-, -)p. Due to our assumption A, = Ay;, A is symmetric. Rellich’s
compactness theorem easily implies that € is compact; see, e.g., | , Lemma 3.4].
Finally, we fix the right-hand side as

F(v) := / f-vdz forall v e H}(Q)P. (4.3.20)
Q
Recall that we already observed at the beginning of the current subsection that u € X.

Step 2: Let e > 0 with (4.3.8) and 0 < § < 1 be sufficiently small such that

CoCan

e €q0(Cre1Ceont) 2 < CpCl. (4.3.21)

0<
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4.3 Proof of Theorem 4.2.7

Further, let ¢y € Ny be the corresponding index with (4.3.15). With this, reliability (4.2.20),
and ellipticity (4.1.4), we get for all £ > ¢y and N € Ny that

(+N L+N

D (CollUj1 = Ujllinay — caom) < D (CollUj1 = Ujlln ) — faoCrat 1t = Uil )
=t =t
(4N

CoCen _
< Z; (ﬁ”u - UjH?B — CoCnl|u — Uj+1H2sB - quCre?Hu - Uj”?{l(n))-
]:

With continuity (4.1.3) and (4.3.21), we proceed

{+N

CoCen _
<> (555 — cao(CraCoon) ) Ju = Uyl = CoCellu = Upsal3)
j=t
{(+N
CyCen _
< (755 —cao(CraCeont) %) D (Ilu = Ujll3 = llu = Ujia %)
j=t
CgCeH

_ CoCen _
< (T3 ~ ao(CraCeom) ) lu = Ulllg < (T=5 = €ao(CraaCeont) ) Ceontl|t = Uillfys .

Reliability (4.2.20) concludes the proof for ¢ > ¢y. It remains to consider 0 < ¢ < ¢y. To
that end, we define

lo—1
L . -2 . . 112
Cmax = Ze{g,r.l.z.i;o(fl} H’LL UZHHI(Q) ;:g: CQHU]+1 U] HHl(Q)

With the convention oo - 0 = 0, this term is well-defined, since ||u — Uy||g1(q) = 0 implies
due to nestedness (S2) of the ansatz spaces that w = Uy = U; for all j > ¢ and therefore
also [|Uj+1 — Ujllg1(q) = 0. The previous estimate and reliability (4.2.20) imply that

{+N
Y (CollUj1 = Ul ay — £ao)
j=t
Lo—1 +N
< CollUisr = Uilliny + Y (CollUssr = Uil ay — gaom)) S lu = Uil q) S -
Jj=t Jj=to

Altogether, this concludes the proof of (4.3.9), where Cy, depends only on the dimension D,
the chosen e, the perturbation constant C,, the reliability constant C\., the coefficients
of P, and the sequence (Up)yen, -

Remark 4.3.3. If the bilinear form (-, -)q is symmetric, (4.3.9) follows from the Pythago-
ras theorem |ju — Uj”?B + [|[Ujs1 — Uj”?p = |lu — Uj”?p in the PB-induced energy norm
HUH% == (v, v)p and norm equivalence

+N +N
Y MU = Ujllinay = D IUj1 = Uilly = llu = Uellgs = llu = Usen 3 S llu = Uellf -
j=¢ j=¢

Together with reliability (4.2.20), this proves (4.3.9) even for eqo = 0, and Cqyq is indepen-
dent of the sequence (Uy)pen, -
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4 Finite Element Method

4.3.5 Discrete reliability (E4)

Under the assumptions (M1), (M3), (4.2.6), and (S2)—(S6), we show that there exist
Clrel, Cref > 1 such that for all 7, € T and all 7, € refine(7,), the subset Reo =
I1de (T4 \ 7o) C 7o satisfies that

C HU U, HH1 < Cdrel U.(R.,o), Te \ T C R, ,09 and #Ro,o < Cref(#% - #7:)

The last two properties are obvious with Cief = C’g;iccch by validity of (M1), (S3), and

(4.2.6). For the first property, we argue as in | , Theorem 4.1]: Ellipticity (4.1.4),
eo = U, — Uy € X, (which follows from (S2)), and Galerkin orthogonality (4.2.9) with
Ve := Jeeo € X prove that

1Us = UsllZi (@) < {eo s eo)gy = (eo, (1= Ja)eo)y.
The Galerkin formulation (4.2.8) and nestedness (S2) yield that

/f (1= Ja)eodr — (Us, (1 = Js)eo)sp-

We split € into elements T' € T, and apply elementwise integration by parts, where we
denote the conormal derivative by @, (-) (see (4.2.11)). With U,|r € H?(T)P, this leads to

=y (/T(f_qu.) (1= Ja)es dx+/aT(®VU.)(1 —Jo)€o ds>. (4.3.22)

TeTe

The properties (S3)—(S4) immediately prove for any V, € X, that

JVo =V, on Q\ﬂ'qloc(’]: \7;) = Q\UR"O = U(’TO\RO,O)'

Hence, the sum in (4.3.22) reduces from T € Ty to T € Rao. Since (1 — Jo)eo € H(Q)P,
we have that (1 — Js)e, = 0 on O(|Re,0) in the sense of traces. We define the set of facets
Eopo 1= {T1 NTy : T1,T5 € Reo Ndim(Th NT) = d — 1}. Almost all z € U€.7o belong to
precisely two elements with opposite normal vectors. Hence,

(D,U,) Jeo ds = (D,U,) (1 — Jo)eod
< [©D,Us] (1 — Jo)eo|ds = = — Jeo)eo| ds.
z/n s z/m Jeo s

Ec&e o TE’R

Altogether, we have derived that

0~ Ol 5 3 ([ (=00 - eodot [ (@000~ Sec|ds)

TGR.,O

< 3 (el = Rl 11 = Feslser (1.3.23)

TERe,0

RN, U e oy by 21— J-)60HL2(aTmQ)>-
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4.3 Proof of Theorem 4.2.7

By (M3), (S5), and (S6), we have that

_ —1/2
h (1 = Jo)eollr2(ry + hy 2l - Jo)eollrzarna) S 1Us — Usllg (nts= (1)

Plugging this into (4.3.23) and using the Cauchy—Schwarz inequality, we obtain that

/
10~ Vel = (X ne@?) (X 10— Vel )

TER.o TERe o

1/2

With (M1), the second factor is controlled by |[Us — Us||gr1(qy- This concludes the current
section, and Cgye depends only on Cy, d, D, Cepp, (M1), (M3), and (S2)-(S6).

4.3.6 Refinement axioms (T1)—(T3).

Clearly, the properties (R1), (R4), and (R5) are even slightly stronger versions of the axioms
(T1)~(T3).

4.3.7 Reliability (4.2.20)

Note that osce < 7, follows immediately from their definitions (4.2.13)—(4.2.14). If one
replaces U, € X, by the exact solution u € Hol(Q)D , Reo by Te, and C, by 1, reliability
(4.2.20) follows along the lines of Section 4.3.5, but now, (S2)—(S4) are not needed for the
proof.

4.3.8 Efficiency (4.2.21)

We prove efficiency in three steps.
Step 1: Asin | , Theorem 7], we show that the assumptions (M1)—(M4) and (O1)-
(O4) imply that

Mo S |l — Usllmri(q) + 0sce(Us). (4.3.24)

First, we bound the volume residual part of 7,. We abbreviate ro := f — BU,. For all
T € T, there holds with the triangle inequality and (O1) that

hrlrellp2(ry < hrllPerrellpz(ry + hrll(1 — Por)rel 2 (1)
S Perrellgr—1(r) + hrl|(1 = Por)rellL2(1)
<|rellg—1(ry + I(1 = Per)rellg—1(r) + hrl|(1 = Por)rell2(r).  (4.3.25)

Elementary calculations show that
7ol r—1(7) = sup { / e -vdr v e HY(T)P A vl gy = 1}, (4.3.26)
T

where the hidden constants depend only on the dimension D. Moreover, the definition
(4.1.5) of the weak solution u as well as partial integration yield that

=sup {(u—"Us,, v)y : vE H(T)" A ollgrery = 1} (4.3.27)
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4 Finite Element Method

Since (-, -)q is continuous (see (4.1.3)), the latter term can be bounded up to some multi-
plicative constant by |[u — Us | g1 (7). Due to (M4), the second summand of (4.3.25) can be
bounded by hr||(1 — Pe1)re||2(1). Thus, we conclude that

W lIralZegry S = Uallyagry + B3I = Pa)rallBar) (43.28)
Now, we come to the jump part of 1. Let T,7" € Ty and E :=TNT" € & 1 an interior
(d — 1)-dimensional edge of 7. We abbreviate jo = [©,U,| and jo := Lo g(Pe £ jo) €
H (T UT'). We start with the simple observation that
1/2) . 1/2 . 1/2 .
b lgellizey < hel* I Pop dolliacmy + by *I(L = Pap)iallieey. (4.3.29)
It remains to estimate the first summand. (O2) shows that
HP.,E'].H%2(E) S / }. . Po,Ejo dx
E

= / Jo (Pop —1)jedz + / Te - jedz (4.3.30)
E E

To control the first summand of (4.3.30), we apply the Cauchy—Schwarz inequality as well
as the trace inequality (M3) in combination with (03)—(04)

‘ /E;- (Po,g —1)Jo dw‘ < Gell 2@l = Pog)isllremy S 1Pok dollr2myll(1 = Pog)iellr2(m

To control the second summand of (4.3.30), we note that the definition (4.1.5) of the weak
solution u as well as partial integration on 7' and T” yield that

/j.-j.dx:—/ r.-}.dm—l—(u—U.,}.%p.
E TUT
The Cauchy-Schwarz inequality and continuity (4.1.3) of (-, -)p imply that
‘ /Ejo “Jo dx‘ S Irellzcrurn el L2 rury + llw — Us|l gy oz o ll 1 (rurry -

Note that the Friedrichs inequality applied on a ball of diameter diam({2) which covers
Q, shows that |7 || HU(TUT) S V7l r2(Turr), Where the hidden constant depends only on
the dimensions d, D and diam(2). Therefore, we obtain with the stability assumptions
(03)—(04) and the shape-regularity (M2) that

~ . 1/2 —1/2 .
‘ /EJ- “Je dm‘ < <hT/ HT-HL2(TUT') + hy / [[u— U-HHI(TUT')) | Pe, J-HL2(E)-
Plugging everything into (4.3.30) and dividing by [|Ps £ je || 12(r), we end up with

. . 1/2 —1/2
1Ps 5 ol 2 () S 1L = Pop)dell 2y + hat el iz oy + 1w = Usll g (rory-

62



4.3 Proof of Theorem 4.2.7

Together with (4.3.29), we obtain that

hrllgel 22y S brll(1 = Pop)jellZo(gy + 1u = Uslf gy + PEllrell Zorugn-  (4:3.31)
To obtain (4.3.24), we finally combine (4.3.28) and (4.3.31), sum over all elements, and
apply the property (M1)

e = Z h%’HTOH%Q(T) + hTHjOH%Q(BTmQ) S Z Z <HU - U'H%Tl(TUT’)
TeT, TeT, T'cTe
dim(TNT")=d—1
+BEI(L = Por)rellZaqry + W (1= Pogr)rel|72 oy + hrll(1 - PO,E)j-H%Q(E))

S Hu - U’HQHI(Q) + OSC.(UQ)Q-

Step 2: As in | , Proposition 3.3], we show that the assumptions (M1)-(M3)
and (S1) imply for all V, € X, that
osc(Us) S osce(Ve) + [|Us — Ve[ g1()- (4.3.32)

Let T € T,. With the triangle inequality, we see that

osce(Ua, T)? = M7 (1 = Por)(f = BU[72(ry + D hrll(1 = Pop)[@uU] 1725

EES.,T
SEHI(L = Por)(f = BVe)llf2ry + D hrll(1 = Pop) @ Vall72 ()
E'Eg.,T
2 2 2
+h7l|(1 = Por)BUe = Vlliory + D hrll(1 = Pop)[@u(Ue = VoDl 72 (k)
EES.,T

Hence, stability of orthogonal projections (with constant one) yields that

osca(Un, T S o5ca(Ve, TV + B B(We — Vol oy + 3 ArlDu(Us — Vol g
Eeg.yT

Due to the inverse estimate (S1), the second summand can be bounded up to some mul-
tiplicative constant by ||Us — V.H%,I(T). The third one can be bounded up to some multi-

plicative constant as in (4.3.4)—(4.3.5) by ||[Us — V-”?ql(m(T))' Summing over all elements
and taking into account (M1), we conclude (4.3.32).

Step 3: Step 2 in combination with the triangle inequality and the Céa lemma (4.2.10)
show for all V, € X, that

(4.3.32)
[u—Usllzi) +0sce(Us) < lu—Uslmi(a) + 0sce(Ve) + [|Us — Vellm1(q)

~

(4.2.10)
< Hu— V.HHl(Q) +OSC.(V.).

~

This proves that [[u—Us|| g1(q)+0sce(Us) = infy, cx, (||u—V.||H1(Q)—|—osc.(V.)). Combining
this observation with Step 1, we conclude efficiency (4.2.21), where Cog depends only on
(M1)~(M4), (S1) and (01)-(04), as well as on d, D, [[A|[wr.e(q), [0l L) [l¢llLe (@), Cen,
and diam(€2).
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4 Finite Element Method

4.4 Finite element method with hierarchical splines

A similar version of the current section is already found in the recent own work | ,
Section 3]. We introduce hierarchical splines in the physical domain € and propose a
local mesh-refinement strategy. We use the notation from Section 3.4, where we already
introduced hierarchical splines in the parameter domain Q = (0,1)4. The main result
of this section is Theorem 4.4.6 which states that hierarchical splines together with the
proposed mesh-refinement strategy fit into the abstract setting of Section 4.2 and are hence
covered by Theorem 4.2.7. The proof of Theorem 4.4.6 is given in Section 4.5.

4.4.1 Parametrization of the physical domain

We assume that 2 can be parametrized via

705 with yeWE2(@Q)NCXTy) and e WhoQ)NCHTo), (4.4.1)
Where C2(T) = = {v: 0O R: ol € C*(T T) for all T € 76} resp. C%(Tp) = {v:Q —

D vlr € CQ( ) for all T € To}. Consequently, there exists C;, > 0 such that for all
i,j,ke {1,...,d}

H@t i HLOO(Q H ax] 1)iHL°°(Q) = (4.4.2)

<y,

H ot,00, il @) = H 9,02, (i HLOO(Q)

1

where 7; resp. (77 1); denote the i-th component of y resp. 7! and the second derivatives

are defined elementwise.

4.4.2 Hierarchical meshes and splines in the physical domain

Let (p1,...,pq) be a vector of fixed positive polynomial degrees in N, and set
max +— 4.4.3
Pma e ?11,&)% }p, ( )
Let
Ko = (K1(0ys - - - s Kago)) (4.4.4)

be a fixed initial d-dimensional vector of p;-open knot vectors as in Section 3.3.2, where we
additionally suppose that all interior knots #;(g) ; € (0,1) even satisfy that

#2(0 i(0),j <p; forallie {1, R ,d},j € {2 + Diy .. ’Ni(O) — 1} (445)

For an arbitrary hierarchical mesh ’7A'.7 we define the space of all hierarchical splines which
vanish (in the sense of traces) at the boundary as

X. — g(ph ’pd)(Ko,T — {V c Sph ’pd)(’Co,T)D V |(99 = 0}

Loo . (4.4.6)
c{vewy ()P :v|T€C (T)P forallTET.}.
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4.4 Finite element method with hierarchical splines

In order to transform the definitions from the parameter domain Q to the physical do-
main {2, we use the parametrization from Section 4.4.1. All definitions can now also be
made in the physical domain, just by pulling them from the parameter domain via the
diffeomorphism ~ from Section 4.4.1. For these definitions, we drop the symbol =. If
7. is a hierarchical mesh, we define the corresponding mesh in the physical domain as
Te := {W(T\) T e 7\:} In particular, we have that Ty = {W(T\) T e 7\6} Moreover, let
T:= {7'. : 7A: € T} denote the set of all admissible meshes in the physical domain, where
T is the set of all admissible meshes in the sense of Section 3.4.4. For a hierarchical mesh

Te, let Xy := {XA/. o ,},71 : XA/. € AA,’.} be the the corresponding hierarchical spline space. By
regularity of v, we particularly obtain that
Xe C Lo e Wy ( Q)P @ v|p € CHT)P for all T € T, )

4.4.7
c {ve Hy()P : vjr € HX(T)P for all T € T4 }. (4.47)

4.4.3 Refinement of hierarchical meshes

In this section, we present a concrete refinement algorithm to specify the setting of Sec-
tion 4.2.2. We start in the parameter domain. Recall that we call a hierarchical mesh 7o
finer than another hierarchical mesh 7o it QF C OF for all k € Ny; see (3.4.9). This just
means that 7, is obtained from 7Te by iterative dyadic bisections of the elements in T.. To

bisect an element T’ € 7, one just has to add it to the set Qlevel(T)H, see (4.4.10) below.
In this case, the corresponding spaces are nested according to (3.4.18), i.e

X, C X,. (4.4.8)

Let 7+ be a hierarchical mesh and T € T.. With the set of neighbors N.(T) = {T’
35 € B, T T C supp(S } from (3.4.24), we define the set of bad nezghbors

NE(T) := {T" € No(T) : level(T") = level(T) — 1}, (4.4.9)

Algorithm 4.4.1. Input: Hierarchical mesh ’7A'. , marked elements ./T/(\. =: M\EO) - 7A:
(i) Iterate the following steps (a)—(b) for i =0,1,2,... until U =0:
(a) Define U = Ufeﬂgi) {T' €T\ M T e N'fad(T)}.
(b) Define ./(/I\EHU = ./T/I\SZ) Uﬁ.(i).
Alevel(T)+1

(ii) Dyadically bisect all T € ./\/((Z by adding T to the set Qs
hierarchical mesh 72, where

and obtain a finer

O =0k U J{T e MY level(T) =k — 1} for all k € N. (4.4.10)

—

Output: Refined mesh T, = refine(To, M,).
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4 Finite Element Method

Cleatrly7 ref 1ne(7'.7 ./\/(.) is finer than 7A: For any hierarchical mesh 7A'., we define
ref 1ne(T) as the set of all hierarchical meshes T such that there exist hierarchical meshes
7AE0), - 7AEJ) and marked elements ./\/l(o), .. M(J 1) with 7, = TJ) = reflne(ﬁJ_l),.K/l\(J_l)),

’7A'(1) = reflne(ﬁo),ﬂ/l\( )), and 7A' = 7.. Note that refine(7,,0) = 7o, wherefore
7: € refine(7,). The following proposmon characterizes the set refine(7,).

Proposition 4.4.2. IfT. € ']1‘ then reflne(T.) coincides with the set of all admissible
hierarchical meshes To € T (see Section 3.4.4) that are finer than 7.

Proof. We prove the assertion in four steps.

Step 1: We show that To = reflne(T.,M ) € T for any M\ C 7. Let T\,T\’ e T
with 7" € No(T), i.e., there exists B, € Bo with |T N supp(Bs)| # 0 # [T’ N supp(Bs)|;
see (3.4.24). By Lemma 3.4.2, there exists some (not necessarily unique) B € B, with
supp(go) - supp(g.). We consider four different cases.

(i) Let T,7" € T. Then, lfﬂ Supp(@ﬂ #0# 17" N supp(Ba)], ie., T € No(T) and
hence |level(T) — level(T")| <1 by T, € T.

@ 1t TP €T\ T L Fu Ty it T ST, T
level(T T) = level(T,) + 1, level(T") = level(T}) —|— 1 as we
1T N supp(ﬁ.)]. By deﬁmtlon it follows that T, I, € N
level(T")| = [level(T,) — level(T)| < 1 by T, € T.

T!. Then, it holds that
ITs N supp(Ba)| # 0 #

as
T.) and hence |level(T) —

(iii) Let T € 7, \T.,T' €. Let Ty € To with T G Tu. Then, |Ts N supp(Ba)| # 0 #
17" N supp(Ba)|, and |level( o) — level(T’)| <1 by 7. € T. We argue by contradiction
and assume that [level(T) — level (T )] > 1. Together with level( V) 4+ 1 = level(T),
this yields that level(Ty) — 1 = level(T"). Hence, T’ € NY4(T,) with T, € MY,
By Algorithm 4.4.1 (i), we get that 7' e M™Y. This contradicts 7’ € To and hence
proves that |level(T) — level(T")| < 1.

(iv) Let T € T, T' € To \ Te. Since/\f/ € N.(]A:\) is equivalent to 7' € No(T"), we argue as
in (iii) to conclude that |level(T') — level(T”)| < 1.

Step 2: It is clear that an arbitrary 7. € ref 1ne(7'.) is finer than 7,. By induction, Step 1
proves the inclusion refine(7,) C T.
Step 3: To prove the converse inclusion, let ’7; € T be an admlssmle mesh that is finer than
To. Morcover, let T € T\ 7. We show that 7, is also finer than 7, :=refine(7,, {T}). W
argue by contradiction and suppose that 7, is not finer than 7,. Since refine bisects each
element of T at most once, there exists a reﬁned element TO) ¢ T\'ﬁ which is also in 7;,
ie, T 70) ¢ (’7'.\7;)0’7?3 In partlcular 70 #* T e ’7'.&’7?3 Thus, Algorlthm £.4.1Ash0vv§ that
T ) e Nbad(T Ta )) for some TW € ’7'.\7; If 7W € 7, and hence T4 € € (Te\ Tx) NT5, we
have again that T #£ T as Well as T e NPT for some T® € T, \ 7,. Inductively,
we see the existence of T/~ e (7, \ 7,) N To such that 70— ¢ Nbad(A( )) for some

T € 7T, \7; with 7°¢/) ¢ 7.. In particular, this implies the existence of T ) ¢ 7. with
§”;ﬂU

By definition of Nbad( ), we have that 7)), T(/~1) C su

o~

PN LA) for some 3 € By as well
as level(TU~D) = level(T)) — 1. Hence, (3.4.17) d 7. €Tsh

ow that k := level(ﬁ) =
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4.4 Finite element method with hierarchical splines

level(f(‘]*l)) Since T-1 e 7T, (3.4.10) implies that TU=1) g QF+1 and hence supp(ﬂ) z
QF L. Moreover, (3.4.13) shows that Supp(ﬁ) C OF C QF. Using (3.4.13) again, we see
that ﬁ € B,. Together with T TU-1 ¢ supp(ﬂ) and level(A(‘])) > level(T(M)) + 1 =
level (T D) 2, this contradicts admlsmblhty of 7, € T, and concludes the proof.

Step 4: Let again 7; e T be an arbitrary admissible mesh that is finer than 7: Step 3 to-

gether with Step 2 shows that we can iteratively refine 7. and obtain a sequence TO T( J)
with Ty = TO T(JH = refine(7] () {T )}) with some T(J € T \T]H forj=1,...,J-1
and T = 7.. By definition, this proves that 7, € refine(7,). O

Finally, we transfer the definitions and results of this section to the physical domain
Q. We say that a hierarchical mesh 7 is finer than another hierarchical mesh 7, if the
corresponding meshes in the parameter domain satisfy this relation, i.e., if 7, is finer than
7e. In this case, there holds that

X, C X.. (4.4.11)

If now Mo C T, with a hierarchical mesh Te, we abbreviate M\. = {V*I(T) T e ./\/l.}
and define refine(7,, M,) := {7 . T ¢ refine(ﬁ,ﬁ/l\.)}. For an admissible T, €
T, we define refine(7,) sumlarly as in Section 4.2.2. According to Proposition 4.4.2,
refine(7,) coincides with the set of all 7, € T that are finer than 7,. In particular, we
have that refine(7j) =

Remark 4.4.3. The works / | studied a related refinement strategy, where
N, (T) from (3.4.24) and N24(T) from (4.4.9) are replaced by
NJ(T) := {T' €7, :3Pe Bum (level(F)) With 1T Nsupp(B)| # 0 [T' N supp(ﬁ)|},

NEad = {T' € N, : level(T") = level(T) — 1}.

(4.4.12)

There, the refinement strateqy was designed for truncated hierarchical B-splines; see Sec-
tion 3.4.3. Compared to the hierarchical B-splines BA., those have generically a smaller, but
also more complicated and not necessarily connected support. Then, [ , Corollary 17]
shows that the generated meshes are strictly admissible in the sense of [ , ],

i.e., for all k € N, it holds that

Qk c U {T\ € ﬁmi(kfl) L VB € B\uni(k‘fl) (f - supp(g) — Supp(g) - ﬁffl)}
(4.4.13)

This definition actually goes back to [ , Appendiz A]. According to [ , Sec-
tion 2.4/, strictly admissible meshes satisfy a similar version of Proposition 3.4.3 for trun-
cated hierarchical B-splines. However, the example from Figure 4.1 shows that the proposi-
tion fails for hierarchical B-splines and the refinement strategy from [ [. In particular,
strictly admissible meshes are not necessarily admissible in the sense of Section 3.4.4.
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4 Finite Element Method

Remark 4.4.4. Actually, the proposed refinement strategy of Algorithm 4.4.1 was designed
for hierarchical B-splines; see also Proposition 3.4.3. However, (3.4.22) implies that Propo-
sition 3.4.3 holds accordingly for truncated hierarchical B-splines. Moreover, if one applies
the refinement strategy of Algorithm 4.4.1, Proposition 3.4.7 shows that the computation
of the truncated hierarchical B-splines simplifies significantly.

4.4.4 Optimal convergence for hierarchical splines

Before we come to the main result of this section, we fix positive polynomial orders
(P}, --.,p,) and define for 7, € T the space of transformed polynomials

P(Q) = {/W o~ : W is a tensor-product polynomial of order (h,....pp)}  (4.4.14)

Remark 4.4.5. In order to obtain higher-order oscillations, the natural choice of the poly-
nomial orders is p, > 2p; — 1; see, e.g., [ , Section 8.1]. If Xy C C1(Q), it is sufficient
to choose p}; > 2p; — 2; see Remark 4.2.5.

Altogether, we have specified the abstract framework of Section 4.2 to hierarchical meshes
and splines. The following theorem is the second main result of this chapter. It shows
that all assumptions of Theorem 4.2.7 are satisfied for the present hierarchical approach.
The proof is given in Section 4.5 and is already found in the recent own work [
Theorem 3.1].

)

Theorem 4.4.6. Hierarchical splines on admissible meshes satisfy the abstract assump-
tions (M1)—-(M4), (R1)~(R5), and (S1)—~(S6) from Section 4.2, where the constants depend
only on d,D, C,, ’7A'0, and (p1,...,pa). Moreover, the piecewise polynomials P(2) from
(4.4.14) on admissible meshes satisfy the abstract assumptions (O1)—(04), where the con-
stants depend only on d,D, C,, ’7A'0, and (p},...,p}). By Theorem 4.2.7, this implies relia-
bility (4.2.20) as well as efficiency (4.2.21) of the error estimator, and linear convergence
(4.2.22) at optimal rate (4.2.23) for the adaptive strategy from Algorithm 4.2.6.

Remark 4.4.7. Theorem 4.4.6 is still valid if one replaces the ansatz space X, by rational
hierarchical splines, i.e., by the set

xWo .= {Wo—lv. Ve X.}, (4.4.15)

where WO = Wy oy is a fixed positive weight function in the initial space of hierarchical
splines g(plv"'vpd)(ﬁo,’%). We will prove this version in Section 4.5.13. The constants
depend additionally on /Wo. Moreover, Theorem 4.4.6 still holds true if newly inserted
knots have a multiplicity higher than one, i.e., if one uses as in Remark 3.4.1 the uniformly
refined knots ,/C\uni(k,q) with 1 < q; < p; instead of I/C\um(k) to define (rational) hierarchical
splines. The corresponding proof works verbatim.
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4.4 Finite element method with hierarchical splines

Algorithm | ]

Algorithm 4.4.1

Figure 4.1: An initial mesh 7\6 with only one element [0,1]? is locally refined in the lower

left corner using the refinement of | | (above) resp. the refinement of Al-
gorithm 4.4.1 (below); see Remark 4.4.3 . The lowest-order case (p1,p2) = (1,1)
is considered. By repetitive refinement via [ |, the number of elements in

the support of the hierarchical B-spline §(51\0,0.5, 1)§(32\0,0.5, 1) grows to
infinity. Moreover, the number of hierarchical B-splines with support on the
element in the lower left corner grows to infinity. This is not the case if one
uses Algorithm 4.4.1; see Proposition 3.4.3.
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4.5 Proof of Theorem 4.4.6

This section is devoted to the proof of Theorem 4.4.6, i.e., to the verification of the mesh
properties (M1)—(M4), the refinement properties (R1)—(R5), the finite element space prop-
erties (S1)—(S6) as well as the data approximation properties (O1)—(04). In Section 4.5.8,
we characterize the restriction of hierarchical splines to the boundary. With this, we are
able to give a basis for the used finite element spaces, which will be used for the verification

of (S3)-(S6).

4.5.1 Verification of (M1)—(M2)

With Lemma 3.4.5, one can easily verify that T satisfies (M1)-(M2): Let 7, € T. We
start with (M1). Let T € T, and T" € 1I4(T). Lemma 3.4.5 and admissibility show for
the corresponding elements 7', 7" in the parameter domain that |level(T) — level(T")| < 1.
With this, one easily sees that #Il,(7") < Cpatch With a constant Cpaen > 0 that depends
only on the dimension d. To prove local quasi-uniformity (M2), let T' € T, and T" € I14(T).
As before, we have that |level(T) — level(T")| < 1 for the corresponding elements in the
parameter domain. Regularity (4.4.2) of the transformation ~ yields that |T'| ~ |T"|. The
constant Cloeuni > 0 depends only on d, C,, and 7\6.

4.5.2 Verification of (M3)—(M4)

Proposition 4.2.2 implies that the trace inequality (M3) holds in the parameter domain,
where the constant depends only on the shape of the elements. Since we only use dyadic
bisection, the number of different shapes is uniformly bounded. Regularity (4.4.2) of ~
yields (M3), where the constant Cirace depends only on d, C,, and 7\6.

Proposition 4.2.3 implies that (M4) holds in the parameter domain, where the constant
depends only on the shape of the elements. We have just seen that the number of different
shapes is uniformly bounded. Regularity (4.4.2) of v shows that ||w||2(p) = [|@]] - 7 for

al T €T, € T and w € L(T) with T := v~ 1(T) and @& := w o 7v|4. Further, we show that
lwllg-1(7) = H@HH_l(f)- (4.5.1)

To see this, let v € Hj(T) and ¥ := vo~|= Due to the assumptions on v, we can

assume without loss of generality that det(Dj) >0on 7. In particular, we have that
|det(D)|5| € CH(T') and ©|det Dy|5| € HJ(T). Therefore, regularity (4.4.2) of v proves
that

[ wods = [ @014t dt 11525181 det Do gy = 125y oy,

We conclude that ||w||g-1(7) < [|@0] ;- (7)- The proof of the converse inequality works

analogously. This concludes (M4), where Cqyua depends only on d, C,, and 7\6.
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4.5.3 Verification of (R1)—(R3)

Let To € T, Ts € refine(T,), and T € T,. The son estimate (R1) is trivially satisfied with
Cion = 2¢, since each refined element is split into exactly 2¢ elements. Moreover, the union
of sons property (R2) holds by definition.

To see the reduction property (R3), let 77 € 75 with 7" ;Cé T'. Since each refined element
is split into 2% elements, we have for the corresponding elements in the parameter domain
that |T\’| = 2_d|f|. Next, we prove |T’| < pson|T| with a constant 0 < pgon < 1 which
depends only on d and C.,. Indeed, we even prove for arbitrary measurable sets &' C & C Q
and w := (@), W' = y(@') that 0 < |&'| < 274|&| implies that |w'| < pson|w|. To see this,
we argue by contradiction and assume that there are two sequences of such sets (0, )nen
and (&), )neny with |w!|/|wn| — 1. This implies that |wy, \ w)|/|wn] — 0 and yields the
contradiction

G \Bp| _ Sz, [t DYOIE o \ | oo,
T Bl [ ldet Dy(lde T el |

4.5.4 Verification of (R4)

The closure estimate (R4) was first showed in the seminal works | , ]. Our
analysis builds on | , Section 3| which proves (R4) for the refinement strategy
of [ ]; see also Remark 4.4.3. The following auxiliary result states that refine(:,-)
is equivalent to iterative refinement of one single element. For a mesh in the parameter
domain ’7A'. e T and an arbitrary set M,, we define refine(’7A'.7 M,) = refine(7A'., M, ﬂ’7A'.)
and note that refine(7,,0) = 7,.

Lemma 4.5.1. Let 7A: €T and .//\/\l. = {ﬁ, . ,fn} - 7A'., where n € N. Then, it holds that
refine(7,, M\.) — refine(refine(...refine(7s, {T1}) ..., {Tp1}),{T0}). (4.5.2)

Proof. We only show that refine(7,, M,) = refine(refine(Ts,{T1}), M. \ {T1}), and
then (4.5.2) follows by induction. We define

?\El) .= refine(7., {T1}), ’7'(2) = refine('?\'(l),./(/l\. \{T}),
-/T/(\(O) = M\Egg = {fl}, .K/l\(l) = M\E?; = M‘/(l) = M\/E?; = .K/l\. \ {fl}

For i € Ny, we introduce the following notation which is conform with that of Algo-
rithm 4.4.1:

A+ () bad (73 T+ ) bad /7S
M(O) T M(O) Y U _ N*(T), M(l) a M(l) U U . N (1),
TeMy) Te M)

U |J N

Fe D)
TeMy)

~(i+1) _ )
My =My
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4 Finite Element Method

Finally, we set

Cjlend) . Stend) || o) oylend) | | o0)
Mg = U Mig), M= U M), MY = U MG
1€Ng 1€Ng 1€Ng

With these notations, we have that
- - 1 s (end - - end
Te \ 7‘(1) = MEO) )a (1 \T2 Mgl) )a
T. \ refine('?., M\.) Mgend) U Mgi?d).

To conclude the proof, we will prove that ./\/l end) U M(end = M! end) U M(end To this end,
we split the proof into three steps.

Step 1: We first prove that /(/I\E%ld) cT. by induction. Clearly, we have that M\Egg c 7.
Now, let ¢ € Ny and suppose that ./\/((Z) - ’7A'. To see that ./\/((ZH) - 7A'., we argue
by contradiction and assume that there exists 7 € ./\/l ) and T € Nbad( )\ 7.. By

Lemma 3.4.2, the unique father element T, € 7o with T’ C T! satisfies that T/ € No(T).

Therefore, admissibility of 7. proves that [level(T) — level(T’ )] < 1, which contradicts

level(T}) = level(T' ) —1 = level(T) —

Step 2: Let T e Mgend) In this Step, we prove that

(0)

T r(end 2 end) ad
ME D UNE(T) = M{gY UNE(T). (4.5.3)

By Step 1, we have that T' € T,. Lemma 3.4.2 proves that N](Df‘)d( )N Te € NP24(T). Using

Step 1 again, we see that N](Da)d( ) C ./\/lgir)ld C 7. and conclude “C” in (4.5.3). To see “D”,

let 7/ € Nbad(T) \ M gr)ld Note that 7" € To N T since T, \T MES? ). There exists

B € B, with T,T' - supp@). By ad/r\msablhty of To € ']1‘ level(T' ) = level(T ) 1, and
(3.4.17), we see that level(3) = level(T") =: k. Hence, (3.4.13) yields that supp(ﬁ) c Q¥
as well as supp(ﬂ) Z Qk *1. The definition of k¥’ and (3 4.10) show that T ¢ Qk +1 We

conclude that supp(ﬂ) C Qk‘ C Q’(fl) and supp(ﬂ) Z QI(CJI, since 7'1) 5T C supp(ﬂ).
Therefore, (3.4.13) shows that BeB (1)- Altogether, we have that T' e NPad(T).

A T (1)
Step 3: Finally, we prove that M(end M(Z) = M(end) UMEZI)) by induction on i € Ny. In

(0)
particular, this will imply that M(end M(end Mg(e]r)ld) U ./\/lg?)ld). For 7 = 0, the claim
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4.5 Proof of Theorem 4.4.6

follows from ./\/18 = ME?; By Step 2, the induction step works as follows:

MY oMY = MgV oMo NegT

il
TeMp),

( -3) (end) 1 () bad
MgZumMpu U N
TeME Dyt

(0) (1)
_ nqlend) 4= (0) bad (73
=MgTumMpu U N
TeMigPumy)
. (end) 7 (i+1)
This concludes the proof. O

Let To€T. For T € T., let mid(T" ) denote its midpoint in the parameter domain. Let
TeT,and T € N, (o (T ) Hence, there is 5 € B such that T T C supp(ﬁ) In particular,
it holds that [mid(T) — m1d(T’)| < dlam(supp(ﬁ)) By admissibility of 7, and (3.4.17), we
see that [level(3) — level(T)| < 1. This proves that

mid(7) — mid(T")| < € 271D for all T e 7o, T € N (T), (4.5.4)

where C' > 0 depends only on d, ’7A'0 and (p1,...,pq). With this observation, we can prove
the following lemma. The proof follows along the lines of | , Lemma 11], but is
included here for completeness.

Lemma 4.5.2. There exists a constant C > 0 such that for all Te € ’/]1\‘, T € 7A'., and
To = refine(T,,{T"}), it holds that
mid(7) — mid(T")| < 279D for all T € To\ To, (4.5.5)

where C' > 0 depends only on d, 7\6, and (p1,---,Pd)-

Proof. T e T, \T 1mphes the existence of a sequence T’ = TJ,TJ 1, T\O such that
Tj L € Nbd(T, ;) for j = ,J and T is a child of Ty, ie., T S To and level(T) =
level(Tp) + 1. Since level(T, -1 ) = level( ]) — 1, it follows that
level(fj) = level(Ty) + j. (4.5.6)
The triangle inequality proves that
Imid(T) — mid(7")| < |mid(T) — mid(Tp)| + |mid(Tp) — mid(T")|
J

< [mid(T) — mid(Tp)| + Y [mid(T}) — mid(T;_,)]
j=1

Further, there holds that

mid(T) — mid(Ty)| S 277D,
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4 Finite Element Method

where the hidden constant depends only on 7o and d. With (4.5.4) and (4.5.6), we see that

J R (45.4) _J -
> mid(T)) —mid(Tj_y)| <y 27eeld)
j=1

j*l

—level(Th)—j —o—level(T)—1
ZQ evel(Tp) j§2 evel(T) ,

which concludes the proof. O

Finally, let 7, € T and 7' € To. We abbreviate 7o = ref ine(7,,{T}). Then, there holds
that

level(T") < level(T) 4+ 1 for all refined elements 77 € 75 \ Te. (4.5.7)

To see this, note that all elements " e T, \ 7AZ,, which are refined, satisfy that T =T
or level(T") < level(T) — 1. Therefore, their children satisfy that level(7”) < level(T) + 1.
With Lemma 4.5.1 and Lemma 4.5.2 and this last observation, we can argue as in the
proof of | , Theorem 12] to show the closure estimate (R4). The constant Cgps > 0
depends only on d, ’7A'0, and (p1,...,Pd)-

4.5.5 Verification of (R5)

We prove (R5) in the parameter domain Q. Let ’7A'.7 7A; € T be two admissible hierarchical
meshes. We define the overlay

Fom{l.cTe: 3T eT. LCTyU{l.eT,: MeTe TCL). (458

Note that 7o is a hierarchical mesh with hierarchical domains ﬁ’g = ﬁ’f U ﬁ’j for k € Np.
In particular, 7, is finer than 7, and ’72 Moreover, the overlay estimate easily follows
from the definition of 7. It remains to prove that T is admissible. To see this, let
T.7 €7, with T' € No(T), i.e., there exists B, € B, such that \Tﬂ supp(B.)| FO0F#
|T N Supp(ﬁo)| _Without loss of generality, we suppose that level(T) > level(T”) and
TeT,. If T' € 7o, Lemma 3.4.2 shows that 7/ € No(T), and admissibility of 7, implies
that [level(T T — level(T’ )| < 1. Now, let T € 7,. By definition of the overlay, there exists
T, € To with T C T’ and level(T’ ) < level(T' ). Further, Lemma 3.4.2 provides some (not
necessarily unique) ﬁ. € B, such that supp(ﬁo) - supp(ﬁ.) Hence, |T N Supp(ﬁ.)| #£0+#
1T, N supp(Ba)|, i-e., T € No(T). Since T, € T, it follows that \level( T) —level(T))| < 1.
Altogether, we see that

level(T) — level(T")| = level(T) — level(T") < level(T') — level(T)) < 1.

This concludes the proof of (R5).
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4.5.6 Verification of (S1)

Let T € To € T and V, € X,. Define ‘7. =Vsovy € i’\. and T := v HT) e 7\: Regularity
(4.4.2) of ~ proves for j € {0,1,2} that

IVellzzs(ry = IVell g 7y (4.5.9)

where the hidden constants depend only on d, D and C,. Since Vi is a 7A'.—piecewise tensor-
product polynomial, a standard inverse estimate shows for j, k € {0, 1,2} with k& < j that

A | A (45.10)

where the hidden constant depends only on d, D, ’7A'0, and (p1,...,pd)- Together, (4.5.9)—
(4.5.10) conclude the proof of (S1), where Ciy,, depends only on d, D, C, Ty, and (p1, . . ., pd)-

4.5.7 Verification of (S2)

In (4.4.11), we already saw that 7, € refine(7,) implies nestedness of the corresponding
ansatz spaces Xy C X.

4.5.8 Basis of hierarchical splines which vanish on the boundary

In this section, we characterize a basis of the hierarchical splines X, that vanish on the
boundary. Clearly, this provides a corresponding basis of X, in the physical domain as
well. First, we determine the restriction (in the sense of traces) of the hierarchical basis
g. to a facet of the boundary. It turns out that this restriction coincides with the set of
(d — 1)-dimensional hierarchical B-splines.

Proposition 4.5.3. Let T be an arbitrary hierarchical mesh on the parameter domain Q.
For E = [0,1)"~' x {e} x [0,1]%" with some i’ € {1,...,d} and some e € {0,1}, set

o~ ~ ~

Koni),5 = Krquni©)s -+ K1) ni(0)) K1) (ni(0)) -+ » Kaguni(0)) )

and for k € Ny

~

QI:E = {(s1,.-.,80—1,8741,.--,8a) : (s1,...,5q) € Qk NE}.

Moreover, let 7A: 5 be the corresponding hierarchical mesh and 3.7 5 the corresponding hier-
archical basis. Then, there holds® that Z/S\.ﬁ = {B|E . B e BoA B\|E # 0}. Moreover, the
restriction (-)|z : Be — B\.ﬁ is essentially injective, i.e., for 31,52 € B, with Bl =+ 52 and
§1|E £ 0, it follows that Bﬂ@ + §2|E

2 Actually, the set on left-hand side consists of functions defined on [0, 1]"1_17 whereas the right-hand side
functions are defined on E. However, clearly these functions can be identified.
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Proof. We prove the assertion in two steps.

Step 1: Let £ € Ng. We recall that the knot vectors ’/C\i(uni(k)) are p;-open for all ¢ €
{1,...,d}. In particular, this implies that the corresponding one-dimensional B-splines
B\i(unl(k)) are 1nterp01at0rlc at the end points e € {0,1}: This means that the first B-

spline (i.e., Bj(uni(k)),1,p;) 15 equal to one at 0 and vanishes at 1; the last B-spline (i.e.,

Ei(um(k)LNi(um(k)),pi) is equal to one at 1 and vanishes at 0; all other B-splines of Ez‘(uni(k))
vanish at 0 and 1; see Lemma 3.2.1 (vi) and (iv).
Step 2: For k € Ny, let B ni(k), B = be the set of tensor product B-splines induced by the

reduced knots Eum(k) 7 Wwhich are defined analogously as ICuni(O) 5+ Since Ki(uni(k)) is ps-
open, it holds that B ni(k).B {ﬁ|E Be guni(k) A B|E # 0}; see also Step 1. Then, the
identity (3.4.13) shows that

B,z = U {Blz: B Buniw A Blg # 07 supp(Blz) € OF 5 Asupp(Blz) € Q4.
keNy
(4.5.11)

Let ,8 € Bunl(k) for some k € NO with /8|E 7£ 0. Weset J:=1fore=0 Tresp. J = ’(unl( )
for e = 1. Since the trace of B; i/ (uni(k))
B must be of the form

Jjypy &b € does not vanish only if j; = J (see Step 1),

~

B(st,....5q) = Bi/(uni(k)),J,pi/(si ) B\i(uni(k)),ji,pi(si)7 (4.5.12)

w}ﬁ;&

where the first factor is one if s;; = e and satisfies that
supp( By (uni(k)),Jp,y ) = [ti'(uni(k)),J— 15 Lt (uni(k)), J+py+1)-

In particular, this shows that supp(ﬁ) is the union of elements 7' € 'ﬁni(k) with non-
empty intersection with E. Hence supp(B\ lz) C SAZ':E is equivalent to supp(g) C ﬁ’f, and

supp(g\ﬁ) QkJrl is equivalent to supp(ﬂ) Z ﬁ'f“. Therefore, (4.5.11) becomes

g.ﬁ = U {ﬁh:j : € Bunigry A Bl # 0 Asupp(B) € Qf Asupp(B) € Qlf“}-
keNg
Together with (3.4.13), this shows that B, 5 = {B|z : B € Bs A B|5 # 0}. Finally, let
31,32 € B, with Bﬂ@ #£0. If B\l‘ﬁ = ,/8\2’@, then (4.5.12) already implies that Bl = B\Q. This
concludes the proof. O

Corollary 4.5.4. Let T be an arbitrary hierarchical mesh on the parameter domain Q.
Then, {ﬁ € BP . Blog = O} and {Trunc.(ﬁ) : BeBP ABlgg = 0} are bases of X, where
Trunce(-) denotes the componentwise truncation operator from Section 3.4.3.
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Proof. We prove the assertion in two steps. Without loss of generality, we can assume that

D=1.

Step 1: Linear independence as well as {B € g. : B\ ] 50 = 0} - /?. are obvious. To

see X - span{ﬂ € B 3] 90 = O} let 17 € X,. Consider the unique representation
ZBGB. Bﬁ with az € R. For arbitrary ﬁ € B, with B|8Q =# 0, we have to prove

=0, i.e., we have to show the implication

)

aE

Z agﬁbﬁzo — <Vﬁ€g. With,@bﬁ#o CLB\ZO).

AEEB\.

6|aﬁ7ﬁo

oo i —1 e — . 2. —

Let £ = [0,1]" ! x {e} x [0,1]*"* with Z/l\ € {Al,...,d}/\and ZBGB\./\B\|E7§OGJ35|E =0
According to Proposition 4.5.3, the family (5|E 1B EBJNBl # 0) is linearly independent.
Hence, ag = 0 for B € B, with B’E =% 0. Since 99 is the union of such facets E’, this

concludes Step 1.
Step 2: We show that the second set is a basis. In Section 3.4.3, we saw that {Trunc.ﬂ :

B € E.} is a basis of the space of all hierarchical splines §<P1~~~vpd>(i€0,?.). Moreover,
(3.4.22) states that 0 < Trunc.(ﬁ) < B. Thus, we see that {Trunc.(g) : Be B\'/\Bbﬁ =0}
is a subset of /'?., and has the same cardinality as {3 € B, : ﬁ|a§ = 0}. With Step 1, we
conclude the proof. O

4.5.9 Verification of (S3)

We show the assertion in the parameter domain. Without loss of generality, we may assume
that D = 1. The higher-dimensional case follows immediately from the one-dimensional
case, since X, is the D-dimensional product of one-dimensional hierarchical spline spaces.
For arbitrary gproj € No (which will be fixed later in Section 4.5.10 to be Qproj *= 2(pmax+1))
we set Qloc = Gproj + 2(Pmax + 1). Let 7. € T T, € reflne(’T.) and V, € X, First, we
show that

[T4e (T ) C T N0 T for all T € 7\: \ HgIOC(’?\: \ 7\;) (4.5.13)

To this end, we argue by contradiction and assume that there exists T € [Idee (T ) with
T’ -4 T. N 7; This is equivalent to T € IIdoc (T’ ) and T ¢ T, \ T.. This implies that
T e 12> (T,\ 7o), contradicts T € To \ 1% (7, \ 75), and hence proves (4.5.13). According
to Corollary 4.5.4, it holds that

~ ~

{Val_ doroi 7y : Vo € X} = span{j| pioroi )+ B € Ba A Blyq = 0 A [supp(B) Nl (T)| > 0},

as well as

~ ~

{V\ Gproi (7) V€ X, } = span{ﬂ] dprod () 8 € B, B\ =0A ]supp(g) ﬂwfp“’j(f)] > 0}.
We prove that

{3 € B, : |supp(B ) N 7o (T)] > 0} = {5 € B, : |supp(B ) N 7 de (T > 0}, (4.5.14)
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which concludes (S3). First, let B be an element of the left set. By Remark 3.4.4, this implies
that supp() C wdec(T'). Together with (4.5.13), we see that supp(3) C [J(7« N 75). This
proves that no element within supp(B) is changed during refinement, i.e., @’f N supp(B) =
ng Nsupp(B) for all k € No. Thus, (3.4.13) proves that 3 € B,. The proof works the same

if we start with some $ in the right set. This proves (4.5.14) and therefore (S3).

4.5.10 Verification of (S4)—(S6)

Given 7, € T, we introduce a suitable Scott-Zhang type operator Jo : H}(Q)P — X,
which satisfies (S4)-(S6). To this end, it is sufficient to construct a corresponding operator
Jo : H}(Q) — X, in the parameter domain, and to define

JoU 1= (j.(v 0v)) oyt forall v € HJ(Q). (4.5.15)

By regularity (4.4.2) of ~y, the properties (S4)—(S6) immediately transfer from the pa-
rameter domain §) to the physical domain 2. Since /?. is the D-dimensional product of
one-dimensional hierarchical spline spaces, Jo can be defined componentwise for the higher-
dimensional case. Hence, we may assume without loss of generality that D = 1. We define
A essentially as the operator I, from Section 3.4.5, where we drop the basis functions
which does not vanish at the boundary

Jo HY Q)= X, T Y /Ag*ﬁdtTrunc.(B\). (4.5.16)
BeB. 778
Bloa=0

Recall that {Trunc, (B) : BeBsNB og = 0} is a basis of X, according to Corollary 4.5.4.

To verify (S4) in the parameter domain with gproj := 2(pPmax + 1), one can copy the proof
of Proposition 3.4.9 (i) , which states the same for the operator I,. Note that the required
[ , Theorem 4] is only proved for 1. However, with Corollary 4.5.4, the proof works
exactly the same. Also the next proposition can be proved verbatim to Proposition 3.4.9 (ii).

Proposition 4.5.5. There exists a constant C' > 0 such that for all v € Lz(ﬁ) and T € 7.,
there holds that

HJ.@\HLQ(IJ’?) < C‘|6‘|L2(7rf(pmax+l)(f))’ (4517)
where C' depends only on d, ’7A'0, and (p1,...,pd)- O

Next, we prove (S5) with g, := 4(pmax + 1). Let T € 7o, 0 € Hol(ﬁ), and V, € X,. By
(S4) and (4.5.17), it holds that

~ (S4) ~ =~ A ~ o~
(1 — JO)”HQ(?) = (1= Je)(¥ — VO)Hp(rf) < v - V0HL2(T“) Sl PACES VO)Hp(f)
@si1n
S H’U - V’HLQ(ﬂf(PmaX‘H)(T\))'
To proceed, we distinguish between two cases, first, Wf(p max+1)(f) NoQ = () and, second,

Wf(pmaXJrl)(T\) NOQ +# 0, ie., if T is far away from the boundary or not. Note that these
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cases are equivalent to |7T. pmax+1)( T)NOQ| = 0 resp. |ms pmax+1)( T) N &% > 0, since the
clements in the parameter domain are rectangular. In the first case, we proceed as follows:
(3.4.19) especially proves that 1 € S®1--Pd) (Ko, T,) with 1 = ZﬁeB 6ﬁ on ) for some

coefficients ag. With Remark 3.4.4, we sce that supp() N mo® ""‘”‘H)( T)| > 0 implies that
supp(g) - wf(pma"H)(T) Therefore, the restriction onto 71'2(pm‘”‘+1)(T) satisfies that

1= Z aEﬁLTE(PmaX‘Fl) (,1’—7) = Z aBIBLTE(Pmax‘Fl) (,1’:)
BeB. BeB.
[supp(B)nms Pmex ) (T) >0
= ,Z alﬁ\ﬂlwf(?max‘Fl)(f)'
BEB,
supp(B)Cre Pt (T)

In the first case, we define

‘/. i}\ 2(?max+1)(T) Z a/B/B 6 XO,
BeB.
Supp(B)Cﬂ4(pmaX+1)(f)
-~ 2(pmax+1 N —1 ~
where U 2(pmax Te vdt.
raPmax D) () ¢ = (7)) /7rg(pmax+1)(f)

In the second case, we set 17. := 0. For the first case, we apply the Poincaré inequality,

whereas we use the Friedrichs inequality in the second case. In either case, we obtain that
Ve € X, and

- i 4 max+1
HU - V’HL2(7T3(Pmax+1)(T)) g dla‘m( ® ( ))HVUH Pmax+1)( )) (4518)
where the hidden constant depends only on the shape of the patch 772(1) max+1)(T) resp. the

shape of Ta maXJrl)(T) and of 72 m‘""‘Jrl)( T)Nox. However, Lemma 3.4.5 and admissibility
show that [level(T") — level(T")| < 1 for all T/, T" € To with 7/ N T" # (). This shows
that the number of such patch shapes is bounded itself by a constant which depends only
on d, T and (p1,.-.,pq).- Moreover, this yields that diam(ﬂf(p"‘a"ﬂ)(f)) o~ \f!l/d, which
concludes the proof of (S5) in the parameter domain for D = 1.

Finally, we prove (S6) with gs, = 4(pmax + 1). Let again T € 7, and 0 € HOI(SA)) For
all Vo € X, which are constant on T\, the projection property (S4), the inverse estimate
(4.5.10) in the parameter domain as well as the local L2-stability (4.5.17) imply that

. (s4) - (4.5.10) vy R
VIO 27 = IV =Vo)ll 2y S [TI77 ) Je(v = Ve

(4.5.17) e O
S T =Vl

) HL2 (:T“)
L2 (ﬂ_f(l)max-ﬁ-l) (j—‘\)) .

Arguing as before and using (4.5.18), we conclude the proof.
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4.5.11 Verification of (01)

An analogous inverse estimate in the parameter domain, i.e., |T|Y/%||W o ey S W o
7‘|H*1(7A“) for all W € P(Q) and all T € T, € T, follows by a standard scaling argument.
With T := ~(T), the regularity (4.4.2) of v immediately shows that ||IW o ’YHLz 7y =
[Wlz2(r).- Moreover, [[W o~ _ W) = >~ ||W||g-1(r) follows from the correspondmg one—

dimensional equality (4.5.1). This concludes (O1), where the constant C_ , depends only
on d, D, Cy, To, and (p},...,p}).

4.5.12 Verification of (02)—(04)

This section adapts | , Section 3.4], where similar assertions are proved on regular
triangulations. Let W € P(2), Te € T, and T, T" € T, with (d — 1)-dimensional intersection
E:=TNT. Weset W :=Won, T :=~"Y(T), T := v (T"), and E := 7—1(E). Let
: R? — R? be the affine transformation with the reference element 7' := V7 LT ) [0, 1]¢.
Due to admissibility of T., the number of different configurations for the set T = WA (T’)

is uniformly bounded by a constant that depends only on d and ’7'0 We fix some smooth
cut-off function @ € C°(TUT")NH{ (TUT’) with @ > 0 almost everywhere on E := V7 L(E).

We define ¢ := gpoyA oyl and W = (Wovyoys)lg,5- We denote P(TUT") as the space
of all D- dlmenswnal (non plecevvlse) tensor-product polynomials of degree (pl, ...,py) on

TUT', and P(TUT )|z as the corresponding space of restrictions onto E. Note that
W € P(TUT'). Equipping P(T UT")

quotient norm V|E — inf {||g0V’

|z with the norm V]E > HVHLQ(E) or with the

HHl(TUT/) V' eP(TUT)AV|p = V|E}, and exploiting

its finite dimension, proves the existence of W’ € P(T UT") with W| 5= id 7 and
H&W/HHl(fUrf/) 5 HWHL2(E)- (4-5-19)

Finally, we set W’ := W’Ofy%}o'yfl, and Lo p(W|g) := @ W'. Finite dimension of P(TUT")
shows that

~W-Wdt§/Nva-(@W)dt:/~va-(L.,E(W\E))dt (4.5.20)
E E E

Standard scaling arguments together with the regularity (4.4.2) of ~ applied to (4.5.19)—
(4.5.20), prove that (02)—(0O4) are satisfied, where the constants depend only on d, D, C,

To, and (pi,...,p)).

4.5.13 Proof of Theorem 4.4.6 for rational hierarchical splines

As mentioned in Remark 4.4.7 , Theorem 4.4.6 is still valid if one replaces the ansatz space
X, for T, € T by rational hierarchical splines, i.e., by the set

xWo .= {Wo—lv. Ve € X.}, (4.5.21)
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where /V[70 := Wy o~ is a fixed positive weight function in the initial space of hierarchical
splines S®17a) Ky, 7g). Indeed, the mesh properties (M1)—(M4) as well as the refinement
properties (R1)—(R5) from Section 4.2 are independent of the discrete spaces. To verify
the validity of Theorem 4.4.6 in the rational setting, it thus only remains to verify the
properties (S1)—(S6) for the rational finite element spaces. The inverse estimate (S1) follows
from the analogous version for standard hierarchical splines, since for all v € H?(T)” and
j € {0,1,2}, it holds that ||[v|| () =~ HWo_lvHHj(T), where the hidden constants depend
only on d,D,C,, and Wo. The properties (52)-(S3) depend only on the numerator of
rational hierarchical splines and thus transfer. To see (S4)—(S6), one can use again the

corresponding results for standard hierarchical splines. The Scott—Zhang type operator
JVo HYQ)P — 2V now reads

JVoy = Wy J,(Wov)  for all v € HY(Q)P. (4.5.22)

With this definition, (S4) follows immediately from the version of (S4) for hierarchical
splines. Next, we prove (S5). For all v € H}(Q)P and T € T, € T, (S5) for hierarchical
splines implies that

(S5)
11 = Tl 2y S NQ = J)Wor)llrzery S bl Wovll g rsse (ryy S B[l (rase (-

We abbreviate ¢ := max(2(pmax + 1), gsz). To see (S6), we use Proposition 4.5.5 as well as
(S6) for hierarchical splines

HVJ.WOUHL2(T) = HV(Wo_lJ-(WOU))”B(T) N HJ-(WOU)”B(T) + HVJ-(WOU)”L2(T)
(4.5.17)+(S6)
< 0[] 2 (2tomax+0 gy + IWo0l 1 (rges () S 0]l 1 mg 1))

This concludes the proof of (S6), and hence of Theorem 4.4.6 for rational hierarchical
splines.

4.6 Numerical examples
In this section, we apply Algorithm 4.2.6 to the two-dimensional Poisson problem

—Au=f in,

(4.6.1)
=0 on JN.

on different domains Q C R?. In Section 4.6.1, we consider a solution with edge singularity,
and give at least a heuristic explanation for the observed adaptive convergence rates in
Section 4.6.2. In Section 4.6.3, the solution exhibits a generic (i.e., geometry induced)
singularity. In Section 4.6.4, we prescribe a piecewise constant right-hand side f, which
leads to less regularity of the solution. Similar examples are also considered in the recent
own work [ ].

In all examples, the geometry 2 can be parametrized via rational splines, i.e., there
exist polynomial orders py(,),pa(y) € N, a two-dimensional vector /@ = (iﬁlm,i@m) of
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4 Finite Element Method

Pi(y)-open knot vectors with multiplicity smaller or equal to p;(,) for the interior knots,

and a positive spline weight function /VIZ, e S P 2(7))(1/&,) such that the parametrization
satisfies that

ye (W15 : §eSmmrm)(K,)2}. (4.6.2)

Based on the knots E,Y for the geometry, we choose the initial knots I/C\O for the dis-
cretization. As basis for the considered ansatz spaces of (non-rational) hierarchical splines,
we use the (non-truncated) basis given in Corollary 4.5.4. To (approximately) calculate
the Galerkin matrix, the right-hand side vector, and the weighted-residual error estimator
(4.2.13), we use tensor Gauss quadrature. Recall that Lemma 3.2.1 (vii) provides a for-
mula for the derivative of B-splines. The MATLAB-implementation, which is used for the
following experiments, was developed together with Daniel Haberlik within the framework
of his bachelor’s thesis [Hab] supervised by Dirk Praetorius.

To (approximately) calculate, the energy error, we proceed as follows: Let U, € Ay be
the Galerkin approximation of the ¢-th step with the corresponding coefficient vector cg.
Further, let Ay be the Galerkin matrix. With the Galerkin orthogonality (4.2.9) and the
energy norm HVUH%Q(Q)’ we can compute the energy error as

IVu = VU729 = IVl 29y = VUl 72 () = VulF2(q) — Aece - ce. (4.6.3)

In Section 4.6.1, where the solution u is known, the term HVUH%Q(Q) is computed exactly,

whereas it is obtained by Aitken’s AZ-extrapolation in Section 4.6.3 and Section 4.6.4.

4.6.1 Solution with edge singularity on square

In the first experiment, we consider the unit square
Q:=(0,1)?, (4.6.4)

where we choose py(,) 1= pay) = 1, 161(7) = 162(7) :=(0,0,1,1), and Wv :=1; see | ,
Section 6.1]. We choose f such that the exact solution of (4.6.1) is given by

u(zy,x9) = 2] (1 — x1)ze(1 — x2) (4.6.5)

with a parameter 7 > 1/2 with 7 ¢ N. The solution is singular at the edge {0} x [0, 1].
Elementary calculations show for all j € Ny that v € H’(Q) if and only if 7+ 1/2 > j.
Assuming that this property is also satisfied for arbitrary o > 0 instead of j, we see that
u e H™H1/27¢(Q) for all € > 0.

For the initial ansatz space with spline degrees p; := py € {2,3,4,5}, we choose the
initial knot vectors I/C\l(o) = IEQ(O) :=(0,...0,1,...,1), where the multiplicity of 0 and 1 is
p1 + 1 = po + 1. We choose the parameters of Algorithm 4.2.6 as 8 = 0.5 and Cyin = 1.
For comparison, we also consider uniform refinement, where we mark all elements in each
step, i.e., My = T, for all £ € Ny. This leads to uniform bisection of all elements. Note
that in both cases the resulting ansatz functions in X, are even in C''(Q). In particular, the
jump terms of the error estimator 7, vanish; see Remark 4.2.4. First, we consider 7 := 9/4,

82



4.6 Numerical examples

ie., u € HY/*1/2=¢(Q) = H'7/4=¢(Q). For uniform mesh-refinement, one may expect a
convergence rate of O(h7/*) = O(N~7/8) with respect to the uniform mesh-size h resp. the
number of elements N. In Figure 4.2, one can see some adaptively generated hierarchical
meshes. In Figure 4.3 and Figure 4.4, we plot the energy error ||[Vu — VU 12(q) and the
error estimator 7y against the number of elements #7;. All values are plotted in a double
logarithmic scale such that the experimental convergence rates are visible as the slope of the
corresponding curves. In all cases, the lines of the error and the error estimator are parallel,
which numerically indicates reliability (4.2.20) and efficiency (4.2.21). With p := p; = pa,
the uniform approach leads to the suboptimal convergence rate O((#7;)~ ™*(7=1/22)/2) due
to the edge singularity at {0} x [0, 1]. However, it seems that the adaptive strategy converges
at rate O((#7T;)~™n(7=1/2.p/2)) i e | (if possible) at double rate. The speed of convergence
remains unchanged if one decreases the adaptivity parameter 0; see, e.g., Figure 4.4 for
6 = 0.1. For smooth solutions u, one would expect a rate of O((#7;) /). However,
according to Theorem 4.4.6, the achieved rate is optimal if one uses the proposed refinement
strategy and the resulting hierarchical splines. The reduced optimal convergence rate is
probably due to the edge singularity which would actually require anisotropic refinement.
In Figure 4.6, we consider 7 € {5/4,7/4} with § = 0.5. Then, u € H3/%(Q) resp.
u € H™/4(Q), and we expect a rate of O(N~3/8) resp. O(N~5/8) for uniform refinement.
In the following Section 4.6.2, we give a heuristic argumentation which suggests that the
optimal convergence rate with respect to the number of elements for isotropic refinement
is bounded by min(7 — 1/2,p/2). In our numerical examples, it seems that this rate is
attained exactly.

4.6.2 Convergence rate for solutions with edge singularity

In this section, we try to understand the observed adaptive convergence rates of the previous
Section 4.6.1. We essentially follow the heuristic argumentation of | , Section 7.3],
where a similar reduced convergence rate is witnessed for boundary integral equations on
screens and continuous piecewise affine ansatz functions.

Let 7 be an anisotropic rectangular mesh graded towards the singular edge {0} x [0, 1]
with grading parameter 5 > 1, i.e.,

T= {2 ()]« [ 2] e et}
n n n 'n

We abbreviate the width of the elements as h := n~!, and the number of elements N := n2.
Note that there are n elements at the singular edge having a length h?. To obtain the same
accuracy, a corresponding isotropic rectangular mesh Ti, requires elements at this edge
of the same length. However, in order to limit the aspect ratio, the width must be of
the same order O(h®). We see that, while the anisotropic mesh has only N elements, the
corresponding isotropic mesh must have solely at the singular edge more than 1/h? = N /2
elements, i.e., Nigo > NB/2,

The mesh grading procedure yields a convergence rate O(N~%) for some o > 0. With
the initial number of elements Ny, this implies for the corresponding errors that

_ log(eny/en)
log(N/No)
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With N, > N B/ 2 and assuming the same error ej, n,, = €n, we obtain the isotropic
convergence rate

_ log(eny /€iso.Nis,) - log(eno/en) _  log(N/No) 1 —log(No)/log(N)

%0 = e (Neo/No)  ~ Toa(NF/2/Ng) ~ “Tog(NP/2/Ng) ~ B2 = log(No)/ log ()"

For N — oo, the last term converges to 2«a/3. To obtain the optimal convergence rate
a = agpt for graded meshes, | , Theorem 4.2 and Remark 4.4] suggests the choice
B = Qopt/0umi for the grading parameter /3, where oupi is the convergence rate for uniform
refinement. With this, we conclude that ciso < 200pt/8 = 200ni and altogether

Qliso < maX(2aunia aopt)- (466)

Note that, in particular, ajs, is generically bounded independently of p, while op; depends
on p.

4.6.3 Generically singular solution on L-shape

To obtain the L-shaped domain

Q= (0,1)%\ ([0, 1/2] x [0,1/2]), (4.6.7)
we choose py(y,) = Pa(y) = 1 and 161(7) :=(0,0,0.5,1,1), 162(7) :=(0,0,1,1), and Wv =1
see [ , Section 6.2]. We consider the Poisson problem (4.6.1) with

fi=1 (4.6.8)

For the initial ansatz space with spline degrees p; := py € {2,3,4,5}, we choose the
initial knot vectors Ky := (0,...,0,0.5,...,0.5,1,...,1) and Ky, := (0,...,0,1...,1),
where the multiplicity of 0 and 1 is p; + 1 = p2 + 1, whereas the multiplicity of 0.5 is p;.
We choose the parameters of Algorithm 4.2.6 as § = 0.4 and Cp,;, = 1. For comparison, we
also consider uniform refinement, where we mark all elements in each step, i.e., My = Ty
for all / € Ny. This leads to uniform bisection of all elements. Note that in both cases the
resulting ansatz functions in X are differentiable except at the line v({0.5} x [0, 1]), where
they are only continuous due to the higher multiplicity of 0.5. In particular, the jump
terms of the error estimator 7, only have to be calculated at this line; see Remark 4.2.4. In
Figure 4.7, one can see some adaptively generated hierarchical meshes. In Figure 4.8 and
Figure 4.9, we plot the energy error ||[Vu — VUp||2(q) and the error estimator 7, against
the number of elements #7,. All values are plotted in a double logarithmic scale such that
the experimental convergence rates are visible as the slope of the corresponding curves.
In all cases, the lines of the error and the error estimator are parallel, which numerically
indicates reliability (4.2.20) and efficiency (4.2.21). The uniform approach leads to the
suboptimal convergence rate O((#7;)~'/?), since the reentrant corner at (0.5,0.5) causes a
generic singularity of the solution u. However, the adaptive strategy recovers the optimal
convergence rate O((#7;)?/?) with p := p; = ps.

84



4.6 Numerical examples

4.6.4 Piecewise constant right-hand side on quarter ring

We construct the rational spline surface given in polar coordinates
Q := {r(cos(p),sin(p)) : 7€ (1/2,1) A € (0,7/2)} (4.6.9)

by choosing pi(y) = 2,pay) := 1 and Ky(,y := (0,0,0,1,1,1), Koy := (0,0,1,1); see
[ , Section 6.3]. As right-hand side in (4.6.1), we choose the indicator function

fi=xs with S:= {r(cos(p),sin(y)): r e (1/2,3/4) Ay € (0,7/4)}. (4.6.10)

There holds that S = v((0.5,1) x (0,0.5)).

For the (non-rational) initial ansatz space with spline degrees p; := po € {2,3,4,5}, we
choose the initial knot vectors 161(0) = 162(0) = (0,...,0,0.5,...,0.5,1...,1), where the
multiplicity of 0 and 1 is p1 + 1 = p2 + 1, whereas the multiplicity of 0.5 is p; = ps. In
particular, this implies that f is smooth on each element which allows for standard tensor
Gauss quadrature. We choose the parameters of Algorithm 4.2.6 as § = 0.8 and Chyn = 1.
For comparison, we also consider uniform refinement, where we mark all elements in each
step, i.e., My = T, for all £ € Ng. This leads to uniform bisection of all elements. In
Figure 4.10, some adaptively generated hierarchical meshes are illustrated. In Figure 4.11
and Figure 4.12, we plot the energy error ||[Vu — VU|12(q) and the error estimator
against the number of elements #7;. All values are plotted in a double logarithmic scale
such that the experimental convergence rates are visible as the slope of the corresponding
curves. In all cases, the lines of the error and the error estimator are parallel, which
numerically indicates reliability (4.2.20) and efficiency (4.2.21). The uniform approach
leads to the suboptimal convergence rate O((#7;)~!) due to the lack of regularity of the
right-hand side f. However, the adaptive strategy recovers the optimal convergence rate

O((#T¢)"?/?) with p := p1 = po.
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Figure 4.2: Experiment with solution with edge singularity (7 = 9/4) on square of Sec-
tion 4.6.1. Hierarchical meshes Ts, 7g, 77 generated by Algorithm 4.2.6 (with
6 = 0.5) for hierarchical splines of degree p; = ps = 3.
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Figure 4.3: Experiment with solution with edge singularity (7 = 9/4) on square of Sec-
tion 4.6.1. Energy error [|[Vu—VUj||12(q) and estimator 7, of Algorithm 4.2.6 for
hierarchical splines of degree p1 = py € {2,3,4,5} are plotted versus the number
of elements #7;. Uniform and adaptive (0 = 0.5) refinement is considered.
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Figure 4.4: Experiment with solution with edge singularity (7 = 9/4) on square of Sec-
tion 4.6.1. The energy errors ||[Vu—VUy||12(q) of Algorithm 4.2.6 for hierarchical
splines of degree p; = p2 € {2,3,4,5} are plotted versus the number of elements
#7Ty. Uniform (for p; = po = 2) and adaptive (§ = 0.5 for p; = py € {2,3,4,5})
refinement is considered.
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Figure 4.5: Experiment with solution with edge singularity (7 = 9/4) on square of Sec-
tion 4.6.1. The energy errors ||[Vu—VUj|12(q) of Algorithm 4.2.6 for hierarchical
splines of degree p; = ps € {2,3,4,5} are plotted versus the number of elements
#7Ty. Uniform (for p; = pa = 2) and adaptive (§ = 0.1 for p; = po € {2,3,4,5})
refinement is considered.
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Figure 4.8: Experiment with generically singular solution on L-shape of Section 4.6.3. En-
ergy error ||Vu— VU 12(q) and estimator 7 of Algorithm 4.2.6 for hierarchical
splines of degree p; = p2 € {2,3,4,5} are plotted versus the number of elements
#7T;. Uniform and adaptive (0 = 0.4) refinement is considered.
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Figure 4.9: Experiment with generically singular solution on L-shape of Section 4.6.3. The
energy errors ||[Vu — VUgl||p2(q) of Algorithm 4.2.6 for hierarchical splines of
degree p1 = p2 € {2,3,4,5} are plotted versus the number of elements #7,.
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refinement is considered.
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Figure 4.10: Experiment with piecewise constant right-hand side on quarter ring of Sec-

tion 4.6.4. Hierarchical meshes Ty, 75, T¢ generated by Algorithm 4.2.6 (with
6 = 0.8) for hierarchical splines of degree p; = py = 3.
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Figure 4.11: Experiment with generically singular solution on quarter ring of Section 4.6.4.
Energy error |[Vu — VUl 12(q) and estimator 7 of Algorithm 4.2.6 for hierar-
chical splines of degree p; = py € {2,3,4,5} are plotted versus the number of
elements #7;. Uniform and adaptive (f = 0.8) refinement is considered.
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Figure 4.12: Experiment with generically singular solution on quarter ring of Section 4.6.4.
The energy errors ||[Vu — VUy| 12(q) of Algorithm 4.2.6 for hierarchical splines
of degree p; = p2 € {2,3,4,5} are plotted versus the number of elements #7,.
Uniform (for p; = p2 = 2) and adaptive (0 = 0.8 for p; = py € {2,3,4,5})
refinement is considered.
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5 Boundary Element Method

5.1 Introduction

In this chapter, we propose and investigate an adaptive boundary element method with
(rational) hierarchical splines for general second-order elliptic systems of partial differential
equations (PDEs) in arbitrary dimension d > 3. For d = 2, we study an adaptive boundary
element method with one-dimensional (rational) splines which allows for knot multiplicity
increase. Whereas the method for hierarchical splines has not been published yet, the
results for the latter method are essentially collected from the recent own works | )
| which treat the two-dimensional Laplace problem.

)

5.1.1 State of the art

Usually, CAD programs only provide a parametrization of the boundary 02 instead of
the domain  itself. In particular, for isogeometric FEM, the parametrization needs to
be extended to the whole domain €2, which is non-trivial and still an open research topic
[ , , |. The boundary element method (BEM) circumvents
this dlfﬁculty by working only on the CAD provided boundary 0€2. However, compared
to the IGAFEM literature, only little is found for isogeometric BEM (IGABEM). The
latter was first considered in [ | for 2D and in | | for 3D. Unlike standard
BEM with piecewise polynomials which is well-studied in the literature, cf. the mono-
graphs [ , | and the references therein, the numerical analysis of IGABEM is
widely open. We refer to | , , , ] for numerical experi-
ments, to | , , , | for fast IGABEM based on wavelets,
fast multipole, H-matrices resp. 7—[2 matrices, and to [ , , , ]
for some quadrature analysis. However, to the best of our knowledge, a posteriori error
estimation for IGABEM, has only been considered for simple 2D model problems in the
recent own works | , , ].
For standard BEM with (dis)continuous piecewise polynomials, a posteriori error esti-
mation and adaptive mesh-refinement are well understood. We refer to | , )
| for weighted-residual error estimators and to [ ) | for recent
overviews on available a posteriori error estimation strategies. Moreover, optimal con-
vergence of mesh-refining adaptive algorithms has recently been proved for polyhedral
boundaries | , | as well as smooth boundaries | ]. The
work [ ] allows to transfer these results to piecewise smooth boundaries; see also
the discussion in the review article | ].
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5.1.2 Sobolev spaces

For arbitrary d > 2, let @ C RY be a bounded Lipschitz domain as in | , Defini-
tion 3.28] and I := 99 its boundary. For o € [0,1], we define the Hilbert spaces H*(T)
as in [ , page 99] by use of Bessel potentials on R4~! and liftings via bi-Lipschitz
mappings! that describe I'. For ¢ = 0, there holds that H°(I') = L?(I') with equivalent
norms. We set || - || go(ry == || - || z2(r)-

For o € (0, 1], any measurable subset w C T', and all v € H?(I"), we define the associated
Sobolev—Slobodeckij norm

' S, [, oWl dedy it o € (0, 1),
HUH%{a(w) = ||U||%2(w) + |v|%—[°’(w) with |v|%{"(w) = {HV U"’x Y ool
ToNL2 () )
(5.1.1)
It is well-known that [ - || o) provides an equivalent norm on H(T'); see, e.g., [ ,
Lemma 2.19] and | , Theorem 3.30 and page 99] for o € (0,1) and | , Theo-

rem 2.28] for ¢ = 1. Here, Vr(-) denotes the usual (weak) surface gradient which can
be defined for almost all € I' as follows: Since I' is a Lipschitz boundary, there exist
an open cover (Oj)f:1 in R? of T such that each wj = O; NI can be parametrized by a
bi-Lipschitz mapping 7., : @; — w;, where &; C R41 is an open set. By Rademacher’s
theorem, 7, is almost everywhere differentiable. The corresponding Gram determinant
det(D’ijD*ywj) is almost everywhere positive; see Lemma 5.2.1 below. Moreover, by def-
inition of the space H'(T'), v € H'(I') implies that v oy, € H'(@;). With the weak
derivative V(v o,,;) € L*(@;)?, we can hence define

(Vro)|w,; = (D%,j(D%TjD%,j)*lV(v ©Yu;)) © %jjl for all v € HY(I). (5.1.2)

One can show that this definition does not depend on the particular choice of the open
sets (O])j , and the corresponding parametrizations (7., ). i1 see [ , Theorem 2.28].
With (5.1.2), we immediately obtain the chain rule

V(vory,)= D%Tj((va) 09,) forallve HY(T). (5.1.3)

For o € (0,1], H=?(I") is a realization of the dual space of H?(I") according to [ ,
Theorem 3.30 and page 99]. With the dual bracket (-, -), we define an equivalent norm

1% -+ () := sup {{v,¥) : ve H'(T)A vl o vy = 1} forallyy e H (). (5.1.4)

[ , page 76] states that H71(I") C H?2(T") for —1 < 01 < 03 < 1, where the inclusion
is continuous and dense. In particular, H°(T') ¢ L*(I') ¢ H=°(T) forms a Gelfand triple
in the sense of [ , Section 2.1.2.4] for all o € (0,1], where ¢ € L?(T") is interpreted as
function in H~7(T") via

(v, ¥) == (v, )2y = / vipdr for all v € H(T),s € L*(T). (5.1.5)

T

For & C R¥! and w C RY, a mapping v : ® — w is bi-Lipschitz if it is bijective and ~ as well as its
inverse v~ ! are Lipschitz continuous.
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So far, we have only dealt with scalar-valued functions. For D > 1, o0 € [0,1], v =
(v1,...,vp) € H°(T)P, we define HvHHi(,(F) Z] 1 H’U]HHi(,( ry o >0, and w CT'is
an arbitrary measurable set, we define ||v|| o () and [v|go () similarly. With the definition

V[‘Ul
Vrov = : € LQ(I’)D2 for all v € HY(I')P, (5.1.6)
Vrup

there holds that [v| 1) = || Vrvl|12(,)- Note that H7(I')” with o € (0,1] can be identified
with the dual space of H?(T")”, where we set

D
= (vj, ;) forallve H(T)P, ¢ € Ho(T)". (5.1.7)
7j=1

Moreover, we set

D
Z (vj, V) /v ~pdx for all v e H(I)P,y e LA(I)P. (5.1.8)
T

Jj=1

The spaces H?(I") can be also defined as trace spaces or via interpolation, where the
resulting norms are always equivalent with constants which depend only on the dimension
d and the boundary I'. For a more detailed introduction to Sobolev spaces on the boundary,
the reader is referred to | , , ].

5.1.3 Model problem

Again, we consider a general second-order linear system of PDEs on the d-dimensional
bounded Lipschitz domain 2 with partial differential operator

d d

d
‘Bu = Z Z 82(14”1({9@/11) + Z blazu + cu, (5.1.9)

i=14'=1 i=1

where the coefficients Ay, b;, ¢ € RP*P are constant for some fixed dimension D > 1.
We suppose that AiTi, = A;;;. Moreover, we assume that 33 is coercive on H&(Q)D , i.e.,
the bilinear form (-, -)q of (4.1.2) is elliptic up to some compact perturbation. This is
equivalent to strong ellipticity? of the matrices Ay in the sense of | , page 119].

Let G : R?\ {0} — RP*P be a corresponding (matrix-valued) fundamental solution in
the sense of | , page 198], i.e., a distributional solution of PG = 0, where J denotes

the Dirac delta function. For ¢ € L>(T')P, we define the single-layer operator as

/ Gz — y)dy forall x €. (5.1.10)

2Unfortunately, this name might be misleading. Indeed, strong ellipticity in the sense of [ | does not
necessarily imply ellipticity as in (4.1.4).
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According to | , pages 209 and 219-220] and | , Corollary 3.38], this operator
can be extended for arbitrary o € (—1/2,1/2] to a bounded linear operator

0 H /o mP - HY2Ho )P, (5.1.11)

[ , Theorem 7.6] states that U is always elliptic up to some compact perturbation.
We assume that it is elliptic even without perturbation, i.e.,

(0, §) = Call|[3 12y for all € HT2(ID)P. (5.1.12)

This is particularly satisfied for the Laplace problem or for the Lamé problem, where the
case d = 2 requires an additional scaling of the geometry Q; see, e.g., | , Chapter 6].
Moreover, the bilinear form (U -, -) is continuous due to (5.1.11), i.e., it holds with Ceopt :=

HQ]HH*l/Q([‘)D*)Hl/Q(F)D that
(0, €) < Coont|9ll-1/20) €l g-1/2py  for all € € HA(T)P. (5.1.13)
Given a right-hand side f € H'(I')”, we consider the boundary integral equation
Vo= [. (5.1.14)

Such equations arise from the solution of Dirichlet problems of the form Bu = 0 in Q with
u = g on I' for some g € H1/2(F)D; see, e.g., Section 5.6 or [ , pages 226-229] for
more details. The Lax—Milgram lemma provides existence and uniqueness of the solution
¢ € H-Y2(I")P of the equivalent variational formulation of (5.1.14)

(B, ) = (f, ) forall p € HV2(I)P. (5.1.15)

In particular, we see that % : H=/2(I')? — HY?(I')P is an isomorphism. In the Galerkin
boundary element method, the test space H—Y/ 2(I")P is replaced by some discrete subspace
Xeo C LQ(F)D C H-Y2(I")P. Again, the Lax Milgram lemma guarantees existence and
uniqueness of the solution ®, € X, of the discrete variational formulation

(VP , Vo) = (f, U,) forall U, € A, (5.1.16)

and @, can in fact be computed by solving a linear system of equations. Note that (5.1.11)
implies that YV, € HY(T')P for arbitrary ¥ € A,. The additional regularity f € H(I")"
instead of f € HY/?(T")? is only needed to define the residual error estimator (5.2.17) below.
For a more detailed introduction to boundary integral equations, the reader is referred to
the monographs [ , , ]

5.1.4 Qutline & Contributions

The remainder of this chapter is roughly organized as follows: Section 5.2 provides an
abstract framework for adaptive mesh-refinement for conforming BEM for the model prob-
lem (5.1.14). Its main result is Theorem 5.2.5 which states optimal convergence behavior
of the standard adaptive Algorithm 2.2.1 applied to the model problem at hand. Its proof
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is given in Section 5.3. In Section 5.4, a conforming BEM for d > 3 based on hierarchical
splines is presented. Its main result is Theorem 5.4.5 which states that hierarchical splines
fit into the framework of Section 5.2. Section 5.5 is devoted to the proof of Theorem 5.4.5.
Two numerical experiments in Section 5.6 underpin the theoretical results, but also demon-
strate the limitations of hierarchical splines in the frame of adaptive BEM when the solution
¢ exhibits edge singularities. In Section 5.7, we introduce a new adaptive algorithm (Algo-
rithm 5.7.3) for d = 2 with one-dimensional splines as ansatz space. Whereas the adaptive
algorithm of Section 5.2 resp. Section 5.4 only uses h-refinement, the latter additionally
allows for knot multiplicity increase and thus for local smoothness control of the ansatz
functions. Theorem 5.7.4 states optimal convergence behavior of Algorithm 5.7.3, which is
proved in Section 5.8. We conclude this chapter with three further numerical experiments
in Section 5.9.

Sections 5.2-5.3

In more detail, the contribution of Section 5.2 can be paraphrased as follows: Similarly as in
Section 4.2, we formulate a concrete realization (Algorithm 5.2.4) of the abstract adaptive
Algorithm 2.2.1 driven by some weighted-residual a posteriori error estimator (5.2.17) in the
frame of conforming BEM. We formulate five assumptions (M1)—-(M5) on the underlying
meshes (Section 5.2.1), five assumptions (R1)—(R5) on the mesh-refinement (Section 5.2.2),
and six assumptions (S1)—(S6) on the BEM spaces (Section 5.2.3). First, these assumptions
are sufficient to guarantee that the error estimator 7, associated with the BEM solution
®, € X, C L2(T)P ¢ H/2(T")P is reliable, i.c., there exists Cie > 0 such that

¢ = @allgr-1/2ry < Chel7o- (5.1.17)

Second, Theorem 5.2.5 states that Algorithm 5.2.4 leads to linear convergence with opti-
mal rate as in Theorem 2.3.1. In explicit terms, we identify sufficient conditions of the
underlying meshes, the local BEM spaces, as well as the employed (local) mesh-refinement
rule which guarantee that the related residual a posteriori error estimator is reliable and
satisfies the axioms of adaptivity from Chapter 2.

Section 5.3 is devoted to the proof of Theorem 5.2.5. To prove reliability (5.1.17), we
use a localization argument (Proposition 5.3.7), i.e.,

HUH?{I/%F) < Csplit Z Z ’U’?;Il/2(TuT/) (5.1.18)
T€Te T/l (T)

for all v € HY 2(T')P that are L%-orthogonal onto the ansatz space X, corresponding to
some mesh T,, where Cgplit, > 0 is independent of v. Here, II4(T") denotes the patch of T
For certain piecewise polynomial ansatz functions, this result goes back to | , I
In Remark 5.3.10, we note that that one obtains at least plain convergence limy_, ||¢ —
(PKHH—1/2(F) = 0 if Algorithm 5.2.4 is steered by the so-called Faermann estimator which is
reliable and efficient. This result was first proved in | | for piecewise constants on
affine triangulations of I'. In contrast to | ) ] which only verify the axioms
of adaptivity for the Laplace problem, our analysis allows for arbitrary strongly-elliptic
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partial differential operators 8 with constant coefficients as in Section 5.1.3. The crucial
step is the generalization (Proposition 5.3.15) of the inverse inequality from | ], ie.,

||hl/2vFQ]¢||L2(F) < Cinv,%(”¢||H—1/2(1‘) + Hhi/Qﬂ)Hlﬁ(p)) for all ¢ € LQ(F)D, (5119)

where Ciny 9 > 0, with the help of a Caccioppoli-type inequality (Lemma 5.3.13). Here,
he € L*°(I") denotes the local mesh-size function. Moreover, to cover the non-symmetric
PDEs, we apply some ideas from [ ].

Sections 5.4-5.6

Based on the definitions from Section 3.4, Section 5.4 defines hierarchical meshes and
hierarchical splines on the boundary I" and introduces some local mesh-refinement rule
(Algorithm 5.4.2) which preserves admissibility. To the best of our knowledge, this work is
the first one which investigates BEM in 3D with hierarchical splines as ansatz space. The
main result of Section 5.4 is Theorem 5.4.5 which states that hierarchical splines together
with the proposed local mesh-refinement strategy satisfy all assumptions of Section 5.2,
so that Theorem 5.2.5 applies. Remark 5.4.6 extends the result to rational hierarchical
splines.

To prove this result in Section 5.5, we verify the properties from Section 5.2 for (rational)
hierarchical splines. In particular, we derive the following inverse inequality (Sections 5.5.9
and 5.5.15)

he"* a2y < Cinl[Wall 172y for all Uy € A, (5.1.20)

where Ci,y > 0 and X, denotes the space of all (rational) hierarchical splines on some mesh
T,. For piecewise polynomial ansatz functions, this result goes back to [ , ,
|. Further, we construct a quasi-interpolation projection J, 7 : L?(I")P — X, which
is locally L2-stable (Section 5.5.14 and Section 5.5.15).
We conclude this part with two numerical examples in Section 5.6.

Sections 5.7-5.9

Section 5.7 defines knot vectors and corresponding univariate splines on the boundary I' of
a two-dimensional domain Q ¢ R?. We formulate an adaptive algorithm (Algorithm 5.7.3)
which is driven by a node-based version of the weighted-residual a posteriori error estima-
tor (5.2.17). Instead of marking elements, it marks nodes. Given these nodes, we apply a
refinement strategy (Algorithm 5.7.2) which uses classical bisection as well as knot multi-
plicity increase to obtain a finer knot vector. Theorem 5.7.4 states again reliability (5.1.17)
and linear convergence of the error estimator at optimal algebraic rate. Remark 5.7.6
extends the result to rational splines.

To prove this result in Section 5.8, we consider an equivalent reformulation of Algo-
rithm 5.7.3. We prove slightly adapted versions of the properties from Section 5.2 to see
that the reformulation fits into the abstract framework of Chapter 2. In particular, The-
orem 5.7.4 follows from Corollary 2.3.4. The adapted properties from Section 5.2 include
the inverse estimate (5.1.20) (Section 5.8.3 and Section 5.8.11) for the space of (rational)
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splines X, and the existence of a quasi-interpolation projection J, 7, : L? (F)D — X, which
is locally L2-stable (Section 5.8.7 and Section 5.8.11). Again, we note in Remark 5.8.3 that
the application of the Faermann estimator would lead at least to plain convergence.

We conclude this part with three numerical examples in Section 5.9.

5.2 Axioms of adaptivity (revisited)

The aim of this section is to formulate an adaptive algorithm (Algorithm 5.2.4) for conform-
ing BEM discretizations of our model problem (5.1.14), where adaptivity is driven by the
residual a posteriori error estimator (see (5.2.17) below). We identify the crucial proper-
ties of the underlying meshes, the mesh-refinement, as well as the boundary element spaces
which ensure that the residual error estimator fits into the general framework of Chapter 2
and which hence guarantee optimal convergence behavior of the adaptive algorithm. The
main result of this section is Theorem 5.2.5 which is proved in Section 5.3.

5.2.1 Meshes

Throughout, 7y is a mesh of the boundary I' = 9 of the bounded Lipschitz domain  C R?
in the following sense:

e 7, is a finite set of compact Lipschitz domains on I', i.e., each element T has the
form T = ~vp(T ), where T is a compact® Lipschitz domaln in R and ~7 : T>T
is bi-Lipschitz;

e forall 7,7 € T, with T' # T’, the intersection TNT" has (d—1)-dimensional Hausdorff
measure zero;

e 7, is a partition of T, i.e., I' = Upey, T-

We suppose that there is a countably infinite set T of admissible meshes. In order to ease
notation, we introduce for T, € T the corresponding mesh-width function

he € L¥(T) with he|p = hy == |T)V/@ D for all T € 7Ts. (5.2.1)
For w C I', we define the patches of order ¢ € Ny inductively by
(W) =w, wl(w): U {TeTs: TnriHw)#0}. (5.2.2)
The corresponding set of elements is
M(w) = {T€Te: TCriw)}, ie, miw)=|Jm(w). (5.2.3)

To abbreviate notation, we set me(w) := 7 (w) and e (w) := Il (w). If w = {2} for some
z € T, we write md(z) = wd({z}) and II{(z) := I{({z}), where we skip the index for

3A compact Lipschitz domain is the closure of a bounded Lipschitz domain. For d = 2, it is the finite
union of compact intervals with non-empty interior.
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q = 1 as before. For S C 7T,, we define 7d(S) := nd(|JS) and II(S) := IMI(JS), and the
superscript is omitted for ¢ = 1.

We assume the existence of constants Chatch, Clocuni> Cshapes Ceents Csemi > 0 such that
the following assumptions are satisfied for all T, € T:

(M1) Bounded element patch: For all T € 7, there holds that
#11.(T) < Chatchs
i.e., the number of elements in a patch is uniformly bounded.
(M2) Local quasi-uniformity: For all T € 7,, there holds that
diam(T) /diam(T") < Cloeuni  for all T € T, (T),
i.e., neighboring elements have comparable diameter.
(M3) Shape-regularity: For all T' € 7,, there holds that
diam(7T") /hr < Cshape-
Since there always holds that hy < diam(7'), this implies that hy ~ diam(T").
(M4) Patch centered elements: For all T € T, there holds* that
diam(7T) < Ceent dist(T, T\ me(T)),
i.e., each element lies essentially in the center of its patch.
(M5) Local seminorm estimate: For all z € T' and v € H*(T'), there holds that
107172 (2) < Coemi diam (e () [0] g1 ey (2))-

The following proposition shows that (M5) is actually always satisfied. However, in
general the multiplicative constant depends on the shape of the point patches. The proof
is inspired by | , Proposition 2.2], where an analogous assertion for norms instead
of seminorms is found. For ¢ = 1/2 and d = 2, we already showed the assertion in
the recent own work [ , Lemma 4.5]. For polyhedral domains 2, it is proved in
[ , Proposition 3.3] via interpolation techniques. First, we need the following
elementary lemma, which is stated, e.g., in | , Lemma 2.14]. We include the proof for
completeness.

Lemma 5.2.1. Let & be an open set in R~ w C R and v : @ — w bi-Lipschitz, i.e.,
there exists a constant C' > 0 such that

Cls—t < |y(s) —v(t)| < Cls—t| forall s,t €. (5.2.4)
Then, v is differentiable almost everywhere, and it holds for almost all t € & that
C7Yr| < |Dy(t)r| < Clr|  for all + € RL. (5.2.5)

For the corresponding Gram determinant, this implies that almost all t € & satisfy that

O~ <\ [det(DyT (1) DA(1)) < O (5.2.6)
“We use the convention dist(7, §) := diam(T").
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Proof. By Rademacher’s theorem -~ is differentiable almost everywhere. If v is differentiable
at t € @, there holds that

D~(t)r = lim (t+er) - V(t),

e—0 €

and bi-Lipschitz continuity of v immediately implies (5.2.5). If r is even an eigenvector of
D~(t) " Dy(t) with eigenvalue A, we derive that
2
C_2 < A= ‘DV(t)T‘ < CQ.
7[>
Since det(D~ " (t)Dy(t)) is the product of the d—1 eigenvalues of D~ (t) Dv(t), we conclude
(5.2.6), and thus the proof. O

Proposition 5.2.2. Let @ C R%! be a bounded and connected Lipschitz domain and
VYo 1 @ = w C T bi-Lipschitz. In particular, there exists a constant Cliprer > 0 such that

|7w(5) — 'Yw(t)|

-1
Clipref’s - t’ < diam(w)

< Clipret|s — t|  for all s,t € . (5.2.7)

Then, for arbitrary o € (0,1) there exists a constant Csemi(@0) > 0 such that
10| 5o (@) < Csemi(&) diam(w)1_0|v|H1(w) for allv € HY(T). (5.2.8)
The constant Ceemi(@W) > 0 depends only on the dimension d, o, the set @, and Clipyef.

Proof. We split the proof into three steps.
Step 1: According to | , Theorem A.4], there exists a continuous linear extension
operator € : H'(@) — HY(RY!) with (€,v)|5 = v|g. We define the operator

1 1
¢: HY(@) —» HY(RI, vH@l(v—W/Avd:Q—l—@/Avdx.

Then, € is also a continuous linear extension operator with (€v)|s = v|z. The Poincaré
inequality proves the existence of a constant Cex(w) > 0 depending only on & and the
operator norm ||&;|| such that

1
@]

g P Y | /vdxH < Cexe( @)Vl 22 (5.2.9)
@ H(@)

Step 2: We prove (5.2.8) in the parameter domain, where the corresponding seminorms are

defined analogously. Let & be the extension operator of Step 1. Note that & particularly

extends any function on @ to its convex hull co(@). Let © € H'(@). First, we assume
that €0 € C®°(R¥1)n H'(R?1). Then, the (higher-dimensional) fundamental theorem of
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5 Boundary Element Method

calculus and the Cauchy—Schwarz inequality prove that

SO B (2
oy = [ [ ot deds

5 |S —f[d-Tr2e

dtds

// fo A< s+7(t—s))-(t—s)d7)2

|d71+2o

|V EV(s + T(t — s))]2
<[] [ B
|VE&D(s + 77) |2
// / |r|d 3730 drdrds.
Next, we enlarge the integration domains and apply the Fubini theorem
9 V& (s + 77)|?
0130 @) /Rd 1 / / !r\d oo drdrds

|VeEu(s)
/ /Rdlwd 3Jr2Udd?“.

Note that & — & C Bagiam(@)(0), where Bagiam(@ )( ) denotes the open ball in R~ with
center 0 and radius 2 diam(w). With this and (5.2.9) from Step 1, we conclude that

010 @) < V€D gy / [ +3-20 g

Badiam(@)(0)

(5.2.10)
< Cext( ) HVi)\HLQ / |T|_d+3_20dr.
B2dlam(w) (0)

Transforming to polar coordinates, shows that the integral in (5.2.10) is finite. By density
of C®(RTH N HY(R¥) in HY(RY) (see, e.g. | , page 76]), (5.2.10) is also valid if
¢v € HY(RIY).

Step 3: Now, we prove (5.2.8). Lemma 5.2.1 shows that

—(d-1) _ Vdet(Dyg Dy)(s) _ i -
Clipret = < diam(:)d—uf < Cliprer for almost all s € . (5.2.11)

With (5.2.7), it hence holds that
> [v(x) — v(y)|”
[0]31(w) —/w | p = g ey
, o [0 (5)) — v(w (1)) 1?
< (dlam( ) Chpref)d 1+2 (dlam( )Chpref)2(d b // |S |d—1+20 dsdt
2
Ndlam( d 1- 20’// ‘U (fYUJ( ))’ dsdt

‘S _ t‘d 1+20

= diam (W) |v 0 G0 g
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5.2 Axioms of adaptivity (revisited)

Next, we apply Step 2 with the chain rule (5.1.3) to see that
|v|§{g(w) < diam(w) || V(vo %;)H%z(@)
= diam(w)d12"/ | Dy (1) T Vo (. (2)) 2 dt.
@

Note that [|[Dv, | re@) < Clipret diam(w) due to Lemma 5.2.1. Together with (5.2.11), we
derive that

|v|§{a(w) < diam(w)4172 diam(w)? diam (w) =@~V / |Vro(z)|? da.
This concludes the proof. ]

5.2.2 Mesh-refinement

We make exactly the same assumptions as in Section 4.2.2. For convenience of the reader,
we state them again in this section.

For 7, € T and an arbitrary set of marked elements M, C 7T,, we associate a cor-
responding refinement T, := refine(T,, M,) € T with My C T, \ T, i.e., at least the
marked elements are refined. Moreover, we suppose for the cardinalities that #7, < #75
if Mg # 0 and 75 = T, else. We define refine(7,) as the set of all 7, such that
there exist meshes 7(q), ..., 7(y) and marked elements Mq),..., M) with To =T ;) =
refine(7(j_1), My—1)),---,T1) = refine(T(p), M) and T = To. We assume that
there exists a fixed initial mesh 7g € T with T = refine(7p).

We suppose that there exist Csop > 2 and 0 < pgon < 1 such that all meshes T, €
T satisfy for arbitrary marked elements M, C 7, with corresponding refinement 7, :=
refine(7,, M,), the following elementary properties (R1)—(R3):

(R1) Son estimate: It holds that
#7; S Cson #7:7

i.e., one step of refinement leads to a bounded increase of elements.

(R2) Father is union of sons: For all T' € 7, it holds that
T=\J{T"eT T CT},

i.e., each element T is the union of its successors.

(R3) Reduction of sons: For all T' € 7,, it holds that
IT'| < pson |T| for all T" € 75 with T" G T,

i.e., successors are uniformly smaller than their father.
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5 Boundary Element Method

By induction and the definition of refine(7,), one easily sees that (R2)—(R3) remain valid
if 75 is an arbitrary mesh in refine(7,). In particular, (R2)-(R3) imply that each refined
element T € T, \ 7o is split into at least two sons, wherefore

H(To\To) < #To — #To for all T; € refine(T,). (5.2.12)

Besides (R1)—(R3), we suppose the following less trivial requirements (R4)—(R5) with
generic constants Ceios, Cover > O:

(R4) Closure estimate: Let (7)sen, be an arbitrary sequence in T such that Tpy; =
refine(7;, M) with some My C Ty for all £ € Ny. Then, for all £ € Ny, there holds
that

/-1

#72 - #76 < Cclos Z #M]

J=0

(R5) Overlay property: For all 7,7, € T, there exists a common refinement 7, €
refine(7,) Nrefine(7,) which satisfies the overlay estimate

#7?; S Cover(#’]; - #76) + #7:

5.2.3 Boundary element space

With each 7T, € T, we associate a finite dimensional space of vector valued functions
X, c L2 ()P c HV2(0)P. (5.2.13)

Let & € X, be the corresponding Galerkin approximation to the solution ¢ € H —1/2 (F)D
of (5.1.14), i.e.,

(VD , Vo) = (f, W,) forall ¥, € A,. (5.2.14)
We note the Galerkin orthogonality
(f — VP, W) =0 forall ¥, € X, (5.2.15)
as well as the resulting Céa type quasi-optimality

H¢ — @.HH—UQ(F) < CCéa \III.IIEH/%. H¢ - \IJ.HH—UQ(F) with CCéa = % (5216)

We assume the existence of constants Ciny > 0, Giocs @proj, @supp € No, and 0 < punity < 1,
such that the following properties (S1)—(S4) hold for all 7, € T:

(S1) Inverse inequality: For all ¥4 € A, it holds that
1/2
e el 2y < Cony [ Wallg-172r).

(S2) Nestedness: For all 7, € refine(7,), it holds that

Xo C X
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5.2 Axioms of adaptivity (revisited)

(S3) Local domain of definition: For all 7; € refine(7,), T € To \ & (Te \ 7o) C
Te N T, and ¥, € X,, it holds that

\Ilo|ﬂ_3proj (T) € {\I].|7r3proj (T) . \I]. € X.}
(S4) Componentwise local approximation of unity: For all 7 € T, and all j €
{1,..., D}, there exists some ¥, 7 ; € X, with
T C supp(¥e 1) € 7™ (T),

such that only the j-th component does not vanish, i.e.,

(Verj)y =0 for j' #j,

and
1/2
11 = (Ya3)jll 2 supp(wa 7.s)) < Pty |suPP(Wa 7,)[7.

Remark 5.2.3. Clearly, (S4) is in particular satisfied if Xe is a product space, i.e., Xy =
H?Zl(/l’.)j, and each component (X,); C L*(T') satisfies (S4).

Besides (S1)—(S4), we suppose that there exist constants Cy, > 0 as well as g5, € Ny such
that for all 7, € T and S C 7,, there exists a linear operator J, s : LQ(F)D — {\I’. c X, :
Wl y(7a\s) = 0} with the following properties (S5)—(S6):

(S5) Local projection property. Let qioc, gproj € No from (S3). For all ¢ € L?(T')P and
T € To with IId°¢(T') C S, it holds that

(Jos¥)lr = Ylr, i Gl oros gy € { Wl spros gy + Yo € Ko}

(S6) Local L2-stability. For all ¢ € L?(T)? and T € T, it holds that
[Je¥llL2 (1) < Coall¥ll L2 (r352 (7)) -

5.2.4 Error estimator

Let 7, € T. Due to the regularity assumption f € H'(I")”, the mapping property (5.1.11),
and X, C LQ(I‘)D7 there holds that f — Y¥, € HI(F)D for all ¥, € A,. This allows to
employ the weighted-residual a posteriori error estimator

Ne :=1e(Ta) with 10e(S)?:= Z ne(T)? for all S C T, (5.2.17a)
TeS

where, for all T' € 7T,, the local refinement indicators read

16(T)? i= hr|f — VPul3 . (5.2.17b)
This estimator goes back to the works | , |, where reliability (5.2.22) is proved
for standard 2D BEM with piecewise polynomials on polygonal geometries, while the cor-
responding result for 3D BEM is found in | ]
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5 Boundary Element Method

5.2.5 Adaptive algorithm
We consider the following concrete realization of the abstract Algorithm 2.2.1.

Algorithm 5.2.4. Input: Dorfler parameter 6 € (0, 1] and marking constant Chin € [1, 00].
Loop: For each £ =0,1,2,..., iterate the following steps:

(i) Compute Galerkin approximation ®, € Xj.
(i1) Compute refinement indicators ng(T') for all elements T € Ty.

(i) Determine a set of marked elements My, C Ty which has up to the multiplicative
constant Crin minimal cardinality, such that the following Dorfler marking is satisfied

0 < nu(My). (5.2.18)

(iv) Generate refined mesh Tyi1 := refine(Ty, My).

Output: Refined meshes Ty and corresponding Galerkin approximations ®; with error es-
timators ng for all £ € Ny.

5.2.6 Optimal convergence

With p from Section 2.2.1 defined as cardinality #(-), we recall the definitions of Chapter 2
T(N):={Te €T : #Te —#To < N} forall N € Ny (5.2.19)
and for all s > 0

C «(8):= sup min (N +1)°ne € [0, 0]. 5.2.20
ros(s) = sup_min (N + 1) € 0.5 (5.2.20)

We say that the solution ¢ € H~Y/ 2(T)P lies in the approzimation class s with respect to
the estimator if

H(b”A‘;;“ = Capprox(s) < o0. (5221)

By definition, [¢||pest < oo implies that the error estimator 7 on the optimal meshes 7,
decays at least with rate O((#7,)~%). The following main theorem states that each pos-
sible rate s > 0 is in fact realized by Algorithm 5.2.4. The proof is given in Section 5.3.
It essentially follows from its abstract counterpart Theorem 2.3.1 by verifying the axioms
of Section 2.3. Such an optimality result was first proved in [ ] for the Laplace
operator 8 = —A on a polyhedral domain 2. As ansatz space, they considered piecewise
constants on shape-regular triangulations. [ | in combination with [ | ex-
tends the assertion to piecewise polynomials on shape-regular curvilinear triangulations of
some piecewise smooth boundary I'. Independently, | ] proved the same result for
globally smooth I'" and arbitrary symmetric and elliptic boundary integral operators.

Theorem 5.2.5. Let (Ty)ien, be the sequence of meshes generated by Algorithm 5.2.4.
Then, there hold:
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(i) Suppose (M1)—(M5), and (S4). Then, the residual error estimator satisfies reliability,
i.e., there exists a constant Crq > 0 such that

¢ — Pellgr-172r) < Crerme  for all To € T. (5.2.22)

(ii) Suppose (M1)—-(M>5), (R2)~(R3), and (S1)~(S2). Then, for arbitrary 0 < 6 <1 and
Chin € [1,00], the estimator converges linearly, i.e., there exist constants 0 < py, < 1
and Chin > 1 such that

M < Cinplynp for all j,€ € Ny, (5.2.23)

(iii) Suppose (M1)—-(M5), (R1)—(R5), and (S1)—~(S6). Then, there exists a constant 0 <
Oopt < 1 such that for all 0 < § < Oypy and Cpin € [1,00), the estimator converges at
optimal rate, i.e., for all s > 0 there exist constants copt, Copy > 0 such that

Copt [| @[l acst < Sup #Te = #To + 1) e < Copt |9l agst (5.2.24)
€No

where the lower bound requires only (R1) to hold.

All involved constants Ctel, Cin, Qiin, Gopt, and Copy depend only on the assumptions made
as well as the dimensions d, D, the coefficients of the differential operator B, and I, while
Clin, plin depend additionally on 6 and the sequence (®r)een,, and Copt depends furthermore
on Crin, and s > 0. The constant copy depends only on Cson, #7T0, s, and if there exists £y
with ng, = 0, then also on £y and ng.

Remark 5.2.6. In contrast to FEM, efficiency (4.2.21) for the weighted-residual error
estimator ne is an open question. Indeed, [ | is the only available result in the
literature. However, [ | is restricted to the two dimensional case Q C R? with
piecewise constant ansatz functions. Moreover, additional (regularity) assumptions on the
right-hand side f are required.

Remark 5.2.7. If the bilinear form (-, -) is symmetric, then Cln, piin, and Copy are
independent of (®y)een,; see Remark 5.3.17 below.

Remark 5.2.8. Let Ty S T be an open subset of I' = 0 and let &) : L*(I)? — L*(T)P
denote the operator that extends a function defined on Iy to a function on I’ by zero. We
define the space of restrictions H/?(T) := {vlr, 1 v e Hl/z(F)} endowed with the quotient
norm vy +— inf{||v||H1/2(F) : vlp, = vo} and its dual space HY2(Dy) := HY2(y)*.
According to [ , Section 2.1], €y can be extended to an isometric operator &g :
IA-I/'*l/Q(FO)D — H-Y2()P. Then, one can consider the integral equation

(B€o9)[ry = flro, (5.2.25)
where (VE())|r, : HY2(Tg)P — HY2(To)P. In the literature, such problems are known

as screen problems; see, e.g., | , Section 3.5.3]. Theorem 5.2.5 should hold analogously
for the screen problem (5.2.25). Indeed, the works [ | , f ]
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5 Boundary Element Method

cover this case as well. However, the literature on restricted Sobolev spaces and their equiv-
alent definitions is often not very thorough. In particular, the corresponding proof requires
the fact that for all vo € H?(T'o), the norm ||vol|g1/2(r,) defined in (5.1.1) is equivalent to
the quotient norm inf {HvHHl/z(F) : vlp, = vo} (which is considered in [ /). To ease
the presentation, we focus on closed boundaries T' = 0f).

Remark 5.2.9. (a) We additionally assume that Xs contains all componentwise constant
functions, i.e.,

r€X, forallzecRP. (5.2.26)

Then, under the assumption that ||he||pe@) — 0 as £ — oo, one can show that Xy =
Usen, Xe = H-Y2(M)P. To see this, recall that HY2(I)P is continuously and densely
embedded in L*(T')P which is itself continuously and densely embedded in H=/?>(T')P. For
¢ € H-Y2(T)P and arbitrary € > 0, let 1 € HY2(T)P with ||¢p — Vellg-120r) < €. We
abbreviate the projection operator J; := Jy 1, for all £ € No. For all T € Ty, the projection
property (S5) in combination with our additional assumption (5.2.26) as well as the local
L?-stability (S6) show that

L(T)

10— dewelazery = |0 =90 (b= gy [ g )]

1
Ve R @) / o da|

With this, the Poincaré—type inequality from Lemma 5.3.3 below, and (M1)—(M3), we see
that

L2(n¢*(T))

<

1@ = Tellzzry < hil* el sssry < el 2 oy el o,

Squaring and summing over all elements yields that

H(l - JE)T/%H?{—W(F) S H(l - JE)T/%H%?(F) S HhEHLOO(F) Z |¢e|§11/2(T)-
TeTe

Elementary calculations prove that Y . e %1/2(1,) < ]1/16@11/2 ; see also Proposition 5.3.8.

r
Since limg_o0 ||he poe(ry = 0 and € was arbitrary, this conclude; %he proof.

(b) The latter observation allows to follow the ideas of [ | and to show that the
adaptive algorithm yields convergence even if the bilinear form (-, -) is only elliptic up
to some compact perturbation, provided that the continuous problem is well-posed. This
includes, e.g., adaptive BEM for the Helmhotz equation; see [ , Section 6.9]. For

details, the reader is referred to [ ].

5.3 Proof of Theorem 5.2.5

In the following subsections, we prove Theorem 5.2.5. Reliability (5.2.22) is treated ex-
plicitly in Section 5.3.2. It follows immediately from an auxiliary result on the localization
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of the Sobolev—Slobodeckij norm which is investigated in Section 5.3.1. To prove (ii)—(iii),
we just verify the abstract axioms of Section 2.3 following the ideas of the seminal works
[ , ]. This allows to apply Theorem 2.3.1. The perturbations g, . are
chosen as

0s,0 1= Cp||®o — Pul|g-1/2(ry for all 7o € T, 75 € refine(7s), (5.3.1)

with some constant C, > 0 which is fixed later in Section 5.3.6. To apply Theorem 2.3.1
(i), we additionally have to show that lim,_,. 0¢¢+1 = 0.

5.3.1 Localization of the Sobolev—Slobodeckij norm

Let 7o € T. In contrast to the integer-case, for o € (0, 1), the norm ||- || o () is not additive
in the sense that

ooy = > lol3e ) for all v e HO(T)P.
TeTe

Whereas the lower bound ”>” can be proved elementarily for arbitrary v € H?(I')? (see
Proposition 5.3.8), the upper bound ”<” is in general false; see [ , Section 3]. The
main result of this section is Proposition 5.3.7. It states that, if one replaces the elements
T by some overlapping patches, then the upper bound is satisfied for functions v € H°(I")”
which are L?-orthogonal to the ansatz space X,. With this, one can immediately construct
a reliable and efficient error estimator, namely the so-called Faermann estimator; see Re-
mark 5.3.10. For d = 2, the result of the proposition goes back to [ ], where X, is
chosen as space of splines transformed via the arc length parametrization v : [a, b] — I" onto
the one-dimensional boundary. In the recent own works [ , |, we generalized
the assertion to rational splines, where we could also drop the restriction that v is the
arc length parametrization. For d = 3, | | proved the result for certain (transformed)
polynomials of degree p € {0,1,5,6} on a curvilinear triangulation of I'. The proof of our
extended version was essentially inspired by [ ]. The key ingredient is the assumption
(S4) which is exploited in Lemma 5.3.4. We start with the following basic estimate, which
is also proved in | , Lemma 8.2.4] for a piecewise smooth boundary T

Lemma 5.3.1. For all A\ > 0, there is a constant C(\) > 0 such that for all z € R? and
all € > 0, there holds that

/ oz —y| " Ay < C(V)e (5.3.2)
I\Be(x)

The constant C(X\) depends only on the parameter X\, the dimension d, and T.

Proof. We only prove the assertion if I" is the graph of a Lipschitz mapping ¢ : R~ — R.
The general case then follows easily from the definition of Lipschitz domains | )
Definition 3.28]. Note that the mapping v : Rt — RY with v(s) = (s, ((s)) is bi-Lipschitz.
Let C; be an upper bound for the Lipschitz constants of v and y~!. Lemma 5.2.1 shows
that

Cl_(d_l) < \/det(D'yTD’y)(s) < 8=t for almost all s € R4L, (5.3.3)

113



5 Boundary Element Method

Step 1: First, we consider z = (s) € I' with some s € R?~!. By Lipschitz continuity of
7, there holds that B, ¢, (s) C 7~ 1(Be(x)). This together with Lipschitz continuity of y~*
and the boundedness (5.3.3) of the Gram determinant shows that

/ | —y| "y = / () = A0~ Jdet(Dy T D) ()d
I\Be(z) RA-1\y~1 (B (2))

< / Cd=1HA s — |12 od=1gy,
RI=\B(c/cy)(s)
Transforming to polar coordinates, we conclude that

[eS) CO\
/ lz — y| "y < / pdH1=A d—2g. Y1 -
M\ Be(z) €/Ch A

Step 2: Let # € T and let 29 = v(s¢) € I' with |z — 2| = dist(x,T') and some so € R~
First, let |z — 29| > €/2. The triangle inequality shows that |xg — x| + |xo — y| < |y — x| +
|zg — x| + | — y| < 3|z —y| for all y € T'. This and (5.3.3) imply that
[ de=al My < [ o=yl 1Ny S [ (ol + oo - g1y
I'\B.(z) r r
S [, Gz —al+ () -2 @)
Rd-1
< / (e/2 4 CY|so — t]) "1 2at.
Rd—-1

By transforming to polar coordinates, we conclude that

/ |,I _ y|fd+17)\dy 5 / (E + T,)*OH*lf)\,rdedr < / T*)\fld,r — 67)\/)\.
M\ Be(z) 0

€

Now, let [z —xo| < €/2. We use again |z — x|+ |[ro — y| < 3|z —y| and B(c/2)(z0) C Be(w)
to see that

[ ey [ (o= oo — o) Ay
I'\Be(z) M\Be(z)
S[ mal )y
\B(e/2)(xo)

< / o — y| " dy.
P\B(c/2)(z0)

We already proved in Step 1 that the last term satisfies that
/ e — 9]y $ 2,
\B(e/2) ()

which concludes the proof. ]
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The following lemma is the first step towards the localization of the norm ||v|| oy for
certain functions v € H°(T")P.

Lemma 5.3.2. Let o € (0,1) and To € T. Then, (M4) implies the existence of a constant
C > 0 such that for all v € H°(T')? there holds that

[lZemy < Y D [olfequry +C D diam(T) " |[v]| 2. (5.3.4)

TeTe T'€1le(T) TeTe
The constant C depends only on the dimension d, o, T, and the constant from (M4).

Proof. Without loss of generality, we may assume that D = 1. Since diam(T") < diam(T"),
we can immediately bound

[Vl 72(y < diam(T)*7 Y~ diam(T) " |[v]|72 1,
TeTe

It remains to estimate the seminorm |v|go ). To this end, we introduce the abbreviation

_ 2
Vix,y) := % forall z,y e ',z # y. (5.3.5)

There holds that

”U’?{U(F) (/ / V(z,y dxdy—i—/ / V(z,y dxdy) (5.3.6)
TeT, me(T) T\7e(T

The first summand in (5.3.6) can be estimated from above by > ey, (1) v]2, (rurr)- Hence,
we only need to estimate the second one
Z / / (z,y)dzdy <2 Z / lv(y |2/ |z — y|" 2 dady
T'\7e (T T\7e(T)
TeTe TeTe (5.3.7)
+2 Z / x)\Z/ |z — y| " 2 dydu.
Te7, T\ (T T

Next, we show that the two sums of the last term in (5.3.7) are equal. Indeed, we have
with the characteristic function xp\r, 7y of I'\ me(T') that

§ :/ .%')‘2/ ‘x_y‘fdJrlfQodydx
TeTs T\ (T T
23 v /|w Yy iy = 3 / o(@)2H (x

= / |’U
r TcT, TET,

Let T" € T, and x in the interior of 7". We show that H(z) = fF\W.(T’) |z — y|~ 1 2oqy,
which proves equality of the two summands in (5.3.7). We see for any T' € T, that

=:H(x)

XF\W.(T’)('I") =1 zx¢€ F\T('.(T/) — TNT = 0
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This implies for almost every x € T’ that

Z / ‘.%' ’ —d+1— 20’dy / ‘.%' - y’—d+1—20dy.
TeTe M\7e(T7)
TNnT' =

(5.3.7) now becomes
Z / / (z,y)dxdy < 4 Z / lv(y |2/ |z — y| "2 dady.
TeT. T'\me (T TeTe T\me(T)

For y € T, it holds that Bgigxrr\r,(r)(¥) NI € 7e(T), which yields together with
Lemma 5.3.1 that

/ |z —y| 124y < / 2 — y| "2 de < dist(T, T\ e (T)) 2.
M\me(T) I\ Byist(1,0\ e (1)) (%)

(M4) shows that dist(7T, T\ e (7)) 2% < diam(7")~2° and concludes the proof. O

It remains to control the second summand in (5.3.4). To this end, we need the following
elementary Poincaré type inequality of | , Lemma 2.5].

Lemma 5.3.3. For any o € (0,1) and any measurable w C T', there holds for allv € H? (w)
that

diam (w)?—1+20 1

[v]172 () < e + 5 (5.3.8)

Proof. We have that

2
2@;/ @)z — 2| [ v(z)da

= [ [ty [ [Pzt =2 [ [ oa)-vdody
= [ [ @) = vt Pasdy

_ 2
:/ |’U($) U(y)| ‘x_y‘d71+2odxdy

’1. _ y’d—l—l—Qa

< ]v[%a(w)diam(w)&l”".

This is just the assertion of the lemma. O

We start to estimate the second summand in (5.3.4).

Lemma 5.3.4. Let 0 € (0,1), 7o € T and T € T,. Then, (M1)~(M3) and (S4) im-
ply the existence of a constant C > 0 such that for all v € H? ()P which satisfy that
(v, Werg)r2my =0 for all j € {1,..., D}, where Vo ; are the functions from (S4), there
holds that

Hho_UUHLQ(T) S C’U’HU(WgsUPP(T))7 (539)

where qsupp @5 the constant from (S4). The constant C' depends only on the dimension d,
o, I', and the constants from (M1)—-(M3) and (S4).
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Proof. We prove (5.3.9) for each component v; of v, where j € {1,..., D}. Then, squaring
and summing up all components concludes the proof. (S4) and Lemma 5.3.3 show that

2 2
lvillz2ery < VillZ2 (supp(wa 2.,))
2
< diam(supp(\If.j,j))d_H‘Q‘7 1

2 U, o |vj|%{"(supp(‘1f. ) T U, .
[supp (Ve 7)) 130 [supp(Ve 1,5))|

/ vj(x)d
supp(Ve,T,5)
(5.3.10)

Now, we apply the orthogonality and (S4) to get for the second summand that

/ vj(x)dx
supp(Ve,T,;)

2 2 2
< app@e g 12 eump e I = (Yo )i 22 suppwa,r ) < Pty 103122 cuppies .

2 2

1
lsupp(Ve,1,5)|

1
~ |supp(We,r;)|

/ o3 (2)(1 = oz j(x))da
supp(¥e,T,5)

Inserting this in (5.3.10) gives

diam(supp(Ve 1) yd—1420

2[supp(We ;)|

(1= Panit ) 105 12 upp o)) < [Vl 5e upp(w ) (5:3-11)

With (S4) and (M1)-(M3), we see that diam(supp(\I’.,TJ)) < diam(7&™?(T)) < diam(T) ~
hr. Further, (S4) implies that [supp(¥e 7 ;)| > |T| = h% ', Inserting this in (5.3.11) and
using again (S4), we derive that

< hE

2 2 2 2
o122y < 11012 upp(wa ) S 27103l (suppar ) < BT 103 0 asumey

Altogether, this concludes the proof. O
The following lemma allows us to further estimate the term v, (asuwp (7)) Of (5.3.9).

Lemma 5.3.5. Let g € Ny and Tq € T. Then, (M1)—~(M4) imply the existence of a constant
C(q) > 0 such that for all v € H°(T)? and all T € T, there holds that

|v|?'{0(7r3(T)) < C(Q) Z |’U|§_I0'(TluTN)- (5312)

T, 7" el (T)
/AT 0

The constant depends only on the dimension d,o,q, and the constants from (M1)—(M4).

Proof. Without loss of generality, we may assume that D = 1. We prove the assertion in
two steps.

Step 1: Let Ty, T4, ..., Ty, be a chain of elements in IT{(T) with T, NT; = @ for |i — j| > 1
and T; NT; # 0 if |i — j| =1, where 1 < m < q. We set Tij = UiziTg for i < j and prove
by induction on m that there exists a constant C(m) > 0 which depends only on d, o, q,m
and (M2)—(M4), such that

m—1

‘U‘%IU(TOW) < Ci(m) Z ‘U‘%I"(TiuTiH)' (5.3.13)
=0
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5 Boundary Element Method

For m =1, (5.3.13) with C1(1) = 1 even holds with equality. The induction hypothesis for
1 <m —1 < q reads: For any chain Ty, ..., T}, 1 of elements in IT{(T), it holds that

m—2

v ing"—l) < Cym = 1)) [olfre o, ) (5.3.14)
=0
Let Ty, € I{(T) with T,,, N T; = @ for i < m — 2 and T,,, N T; # O for i = m — 1. Recall
the abbreviation V(z,y) from (5.3.5). The definition (5.1.1) of the Sobolev-Slobodeckij
seminorm shows that

|’U|?;IO'(T(’)H7,) :/ / V(z,y)dzdy
o I
:/ / V(m,y)dmdy—i—/ / V(x,y)dwdy+2/ / V(z,y)dxdy
Tt JTt T T JT
— 2 2
= ]v]HU(T(;nA) + \U\HU(TM) + Q/Tm /T5”2 V(z,y)dxdy + 2/m /Tm_l V(z,y)dzdy
< |’U ?’-IO'(Tgn_l) + |v|§{U(Tm,1UTm) + 2/ /Tm2 V(,I,y)dﬂ?dy
m v 1g

With (5.3.14), we see that it remains to estimate [ [rm-2V(z,y)dzdy. First, we note
m 0
that for x € Tgr“?,y € Ty, 2z € Tyn—1, it holds that

v(z) —v(y)|? v(z) —v(2)]? v(z) —v(y)|?
Viz,y) = ||x(_)y|d(lﬁ)2|o < 2||x(_)y|d§+)2|a 2||x(_)y|d(lﬁ)2|a' (5.3.15)

Moreover, (M4) shows that |x —y| > dist(T},,I' \ me(T}n)) 2 diam(7},). Since z,y,z € T§",
(M2) shows that max(|z — z|, |y — z|) < diam(7,,). Hence we can proceed the estimate of
(5.3.15)

V(z,y) SV(x,2)+V(z,y).

This implies that

1
/ / V(z,y)dxdy = 7/ / / V(x,y)dxdydz
T J T2 Tl J1,,_y J1300 JT772
1

S / / / V(z,z) + V(y, z)dzdydz
‘Tm—1’ Tm—1 ™ Tgn_Q

1
- [ [ Ve [ [ vy
To—1] \ J1y,_y Jzn—2 Tt T

max(|Ton |, [T0" %)) /) )
- |Tm71| (|/U| O'(T(;'n—l) + |U|HJ(Tm—1UTm)).

Note that max(|Tp,|, |Tg" %) /|Tm-1] < 1 by (M2)-(M3). Together with the induction
hypothesis (5.3.14), this concludes the induction step.
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5.3 Proof of Theorem 5.2.5

Step 2: We come to the assertion itself. By definition, we have that

D DI i o
)T/ T//

T T"end(T

Let T',T" € II3(T). First, we suppose that T' # T" = (). Then, there exists a chain as in
Step 1 with TV = Ty and T” = T,,. Step 1 proves that

L L vewdedy < by s 3 bl

T/, T!"ennd(T)
/AT #0

If T/ = T", the same estimate holds true. Since the number of T/, 7" € II%(T) is uniformly
bounded by a constant, which depends only on the constant of (M1) and g, this estimate
concludes the proof. O

With the property (M5), one immediately derives the following Poincaré inequality.

Corollary 5.3.6. Let To € T and T € To. Then, (M1)—-(M5) and (S4) imply the existence
of a constant Cpoinc > 0 such that for allv € HY(T')P which satisfy that (v, Verj)r2mr) =0
forall j € {1,...,D}, where Yo 1 ; are the functions from (S4), there holds that

Hh:l’UHLQ(T) S CpoinC’U’Hl (ﬂ_gsupp"’l(T)) s (5316)

where gsupp s the constant from (S4). The constant Cpoine depends only on the dimension
d, I', and the constants from (M1)—(Mb5) and (S4).

Proof. We apply Lemma 5.3.4 and Lemma 5.3.5 to see that

—1/2
[ e 1] S D SO (1 Ayppy

T’,T”el‘[lzsuPp(T)
T'NT" #£0
For T, T" € Ty with T" N T" # (), we fix some point z(T',T") € T'NT". With (M5), we
continue our estimate

—1/2 112 2 Z 2
Hh' UHLQ(T) 5 ’U’HI/Q(Wfsupp(T)) S ‘U‘Hl/Q(ﬂ.(z(T’7T”))
T/,T//estuPp(T)
T/AT! 0

SJ Z diam(ﬂ'.(Z(Tl,Tl/)) HVFUH%Q(T(.(T’))'
T T el'[gsupp (T)
T'NT" #0
(M1)—(M3) imply that hy =~ he on oot (T'), and that the last term of the latter estimate

can be bounded from above (up to a multiplicative constant) by Hhi/ Vo2 detoptl ) -
12 (wlPp (7))

This concludes the proof.
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5 Boundary Element Method

With all the preparations, we can finally come to the main result of this section.

Proposition 5.3.7. Let 0 € (0,1) and 7o € T. Then, (M1)~(M4) and (S4) imply the
existence of a constant Cspiy > 0 such that for any v € He(T)P which satisfies that

(v, Wery)j)r2m =0 for allT € Tq and all j € {1,...,D}, where Y 1 are the functions
from (S4), there holds that
||v||§{ff < Cspht Z Z |U|H°'(TUT’ (5317)

TeTe T'€lle (T)

The constant Cgpli, depends only on the dimension d,o, I', and the constants from (M1)-
(M4) and (S4).

Proof. Together with (M3), Lemma 5.3.2 proves that
Wolfey S Y- Y lheur + D b lolFa
TeTe T'elle (T) TeTe
It remains to estimate the second sum. With Lemma 5.3.4 and Lemma 5.3.5, we see that

Z h 20’”””[/2 T) Z "()‘2 o l]supp )) S Z Z ”U’?;IJ(T/UITN). (5318)

TeTe TeTe T€Te 7,7/ c1%UPP (1)
TIAT! £0

If T €Ty and T',T" € TIE™(T) with T/ N'T" # (), then T € TIE*?(T') and T” € T (T").
Plugging this into (5.3.18) shows that

—2
E hy OHUHB(T E E E |U|?{0(T'UT”)’
TeTe T'€Te TelIE PP (T7) T" €11o (T)

and #I1F™P(T7) < 1 (see (M1)) concludes the proof. O

As already mentioned, the converse inequality of (5.3.7) is trivially satisfied for any
function v € H?(I')P.

Proposition 5.3.8. Let 0 € (0,1) and To € T. Then, (M1) implies the existence of a
constant Cy . > 0 such that for any v € HO(T' )P, there holds that

Z Z |U|H0(TUT' <Clpht|v|H°’
TeTe T'elle(T)

The constant C'! split depends only on the constant from (M1).

Proof. With the abbreviation V(z,y) of (5.3.5) and (M1), there holds that

Z Z |”|H0(TUT' Z Z |U|H0(T +2// (z,y d$dy+|v|Ho(T'>

TeTe T'lle (T) TeTe T'elle(T)
:22 Z // xydxdy—l—// mydwdy
TeTe T"1la( '
< 2(Cpaten + 1)|U|Ho(r)-
This concludes the proof. O
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5.3 Proof of Theorem 5.2.5

The following easy corollary is the key ingredient for the proof of reliability (5.2.22).

Corollary 5.3.9. Let T, € T and o € {0,1/2,1}. Then, (M1)-(M5) and (S4) imply
the existence of a constant C; > 0 such that for any v € HY(I)P which satisfies that
(v, Yeorj)r2my =0 for all T € To and all j € {1,..., D}, where Vo1 ; are the functions
from (S4), there holds that

[0l ey < Cratllha™ Vol g2y (5.3.19)

The constant C!_, depends only on the dimension d, I', as well as the constants from (M1)-

(M5) and (S4).

Proof. First, let o = 1/2. For all T,T" € Tq with TNT', let 2(T,T") € TNT’. Proposi-
tion 5.3.7 together with (M5) proves that

Wiy S D D Whiememrm S D, O, 1M 7Vroliem aarrmy)-

TeTe T'lle (T) TeTe T'elle(T)

With (M1), we see that

HUHHO'(F) > Z #11o(T)| ke~ UVFUHLQ(W.(T S lhe” UVFUHL?
TeT,

which concludes the proof. If ¢ = 0, the assertion follows easily from Corollary 5.3.6.
If o = 1, we use the assertion for 0 = 0 to see that |[v[|g1r) S ]HFP/(d*I)Vrva(F) +
Vol L2 ry- U

5.3.2 Reliability (5.2.22)
Let T, € T. Since U : H-Y/*(I')P — HY?(I')P is an isomorphism, we have that
¢ = Pl gr-172(0y = [1D(d — o)l 1721y (5.3.20)
Due to Galerkin orthogonality (5.2.15), we can apply Corollary 5.3.9 to obtain that
16 = @all 12y = 1f = Bl g2y < [0 *Vr(f = B2 20y = 0.

Remark 5.3.10. The equivalence (5.3.20), Proposition 5.3.7, and Proposition 5.3.8 show
that

Hf_mé‘ufql/Q Z Z ‘f m(b ’HI/Q(TUT’ (5321)

TeTe T'elle (T

This is even true for arbitrary f € HY?(I')P without the additional restriction f € H'(T')P
In particular,

Fo(T)? = > |f— m@.@UQ(TUT/) for all T €T, (5.3.22)
T'cTe(T)
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5 Boundary Element Method

provides a local error indicator. The corresponding error estimator Fe is often referred to
as Faermann estimator. In BEM, it is the only known estimator which is reliable and effi-
cient (without further assumptions as, e.g., the saturation assumption [ , Section 1]).
Obviously, one could replace the residual estimator ng in Algorithm 5.2.4 by F;. However,
due to the lack of an h-weighting factor, it is unclear whether the reduction property (E2)
of Section 5.5.2 is satisfied. [ , Theorem 7] proves at least plain convergence of
Fe even for f € H1/2(F)D if one uses piecewise constants on affine triangulations of I' as
ansatz space. The proof immediately extends to our current abstract situation, where the as-
sumptions (M1)—(Mb5), (R2)—<(R3), and (S1)—(S2) are employed. The key ingredient is the
construction of an equivalent mesh-size function he € L°°(T") which is contractive on each
element which touches a refined element, i.e., there exists a uniform constant 0 < per < 1
such that

holr < pesche|T  for all Ty € refine(Ts) and all T € 4 (Ta \ T3). (5.3.23)

The existence of such a function is proved in [ , Section 8.7] for shape-regular
triangular meshes, where the proof works verbatim for our situation.

5.3.3 Convergence of perturbations

Nestedness (S2) ensures that Xy := [Jyen, A¢ s a closed subspace of H 2P and
hence admits a unique Galerkin solution ®,, € X,. Note that ®, is also a Galerkin
approximation of ®,. Hence, the Céa lemma (5.2.16) with ¢ replaced by ®, proves
that |®e — @l g-1/2(ry = 0 as £ — oo. In particular, we obtain that lim/ e [|Pey1 —

q)ZHH—l/Q(I‘) = 0.

5.3.4 An inverse inequality for U

In Proposition 5.3.15, we establish an inverse inequality for the single-layer operator ‘0.
Throughout this section, the ellipticity of U is not needed, wherefore we can drop this
assumption here. For the Laplace operator 8 = —A, such an estimate was already proved
in | , Theorem 3.1] for shape-regular triangulations of a polyhedral boundary T.
Independently, [ | derived a similar result for globally smooth I and arbitrary sym-
metric and elliptic boundary integral operators. In [ , Theorem 3.1], | ,
Theorem 3.1] is generalized to piecewise polynomial ansatz functions on shape-regular
curvilinear triangulations. In particular, our Proposition 5.3.15 does not only extend this
result to arbitrary general meshes as in Section 5.2.1, but is also novel for the Lamé and

the Helmholtz equation. The proof works very similar as in [ , Section 4]. We
start with the following lemma, which was proved in | , Theorem 4.1] on shape-regular
triangulations.

Lemma 5.3.11. For T, € T, let PY(T)P < L2(T)P be the set of all functions whose
D components are To-piecewise constant functions on I'. Let Py : L>(I')P — PY(T)P be
the corresponding L?-projection. Then, (M1) and (M3) imply for arbitrary o € (0,1) the
existence of a constant C' > 0 such that

11 = P)llgoy < ClASWllay  for all & € LA(D). (5.3.24)
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5.3 Proof of Theorem 5.2.5

The constant C depends only on the dimension D, the boundary I', o, and the constants
from (M3).

Proof. Let v € H°(I')P. Then, there holds that

(v, T =P)p) = (v, (1 = Pe)Y) 2y = (1 = Po)v, ) r2(r)-
Further, the Cauchy—Schwarz inequality proves that

(v, (1 < 3 1@ = Paoll2 ey 19l

TeTe
Since P,v is nothing but the integral mean on each element T' € T,, we see with Lemma 5.3.3
and (M3) that |[(1—Pe)v|lr2(1) S h%|v|HJ(T Together with the Cauchy-Schwarz inequal-
ity and the definition of || - H Ho (1), this shows that

(v, ( Z vl ey llhe ¥l 2y < 1ol 1Sl L2y
TeTe

Since H~?(T")? is the dual space of H(I')”, and || - || sy—o 1y is equivalent to the dual norm,
where the constants depend only on D and I, the latter inequality concludes the proof. [

Remark 5.3.12. Obviously, (5.3.24) holds as well for o = 0. If one additionally assumes
(M2) and (M4)—(M5), it is also satisfied for o = 1. This follows from Corollary 5.5.6 and
similar arguments as above. However, we will only apply (5.3.24) for o = 1/2.

In contrast to | ], we cannot use the Caccioppoli type inequality from [ ,
Lemma 5.7.1] which is only shown for the Poisson problem there. Therefore, we prove
the following generalization. For an open set O C R? and an arbitrary u € H?(0), we
abbreviate [u|g1(0) = [[Vull 120y and |u|g2(0y = (2?21 \Biu\fql(o))l/?

Lemma 5.3.13. Let r > 0, x € R? and u € H*(Ba,(x))” be a weak solution of Pu = 0.
Then, u|p, () € C(B,(2))P and there exists a constant C > 0 such that

L+ 407
The constant C depends only on the dimensions d, D, and the coefficients of the partial
differential operator .

Proof. By | ; Theorem 4.16], there holds that u|p, ,@) € Hk(Bgr/Q(x))D for all
k € No, and the Sobolev embedding theorem proves that ulp, @) € C>®(Bs,2(x))P. In

particular, u is a strong solution of ‘Pu = 0 on By, /5(z). To prove (5.3.25), let A € RP be
an arbitrary constant vector, and define @ := u o ¢ with the affine bijection ¢ : Bs /5 (0) —
B, 2(z), p(y) = ry + x for y € Bs/5(0). Since the coefficients of *P are constant and u is
a strong solution, there holds for all § € Bs /5 (0) with y := o(y) that

ul iz, (2)) < C (1wl 2By () +

d d d d

SN 0 At (@ =N @) =~ SN 0 A8 (u — N)(y)

S =1 Z/d 1 (5.3.26)
= (S~ ) + e~ ) + ).
=1
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5 Boundary Element Method

We define the right-hand side as f € C>(B3/2(0)), i.e.,

d
F@) = =r2( D2 bidu(u = N (@) + e = N (@() + e )
=1

This shows that u — A is a strong (and thus weak) solution of a strongly elliptic (see
Section 5.1.3) system of second-order partial differential equations with smooth coefficients
and smooth right-hand side. The application of | , Theorem 4.16] yields the existence
of a constant C7 > 0, which depends only on d, D, and the coefficients of the matrices A;;,
such that

i = N2y0)) < Crll@ = M s, 500 + IF 1|28, 0 00))- (5.3.27)
Standard scaling arguments prove that
~ r?
[U — Al 2B, (0) = ey [l 2B, (2))

- 1
[ = Al z2(Bs,5(0)) = m”u = M2y, o ()

~ r
[ = Al (s o0 = —apz Ul (s, 2(00)

T2

1 llr2(Bs (0 S W\U!HI(BST/Q(QU)) + WHU = AMlz2(Ba, o)) T 77l
Plugging this into (5.3.27), we obtain that

1+7? 147
[ul 2B, (2)) S ( 2 [l = Al £2(Bs, ()

. IU\HI(BW(x))+7“d/2W)- (5.3.28)

We choose A as the integral mean \ := st (@) u(y)dy/|Bsyj2(x)|. The Cauchy-Schwarz
inequality implies that

NS Nl 23 By, o) /1B o @) < el (m,, @)/ | Barjo @)/ = w9/

Using this and the Poincaré inequality in (5.3.28) shows that

[ullz2(Bs, ()

Ltr+r°
’u‘Hl(B:wm(ﬂC)))'

Finally, the assumption 7 < R comes into play and guarantees that (1 4 7 + r2)/r <
(1+R+R?)/r. Together with the fact that Bs,./o(x) C Ba(z), this concludes the proof. [

’u‘H2(BT(x)) S (HUHLQ(B:J,T/Q(JC))

Remark 5.3.14. Throughout the whole thesis, Lemma 5.3.13 is the only place where we
need the assumption that the coefficients of the differential operator B are constant instead

of bounded C* functions as in [ |. Indeed, with the definition Ay = A o p, one
could try to modify (5.3.26) in the proof of Lemma 5.53.13 as follows
d d _ d d
=D 0i(Aiw 0 (@ = N))@) = =YD 0i( A dir(u— \))(y) r?
i=1i'=1 i=1i'=1
d
= =12 D2 bl = N(y) + ew)(u = N () + () A).
i=1
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5.3 Proof of Theorem 5.2.5

The resulting system is still strongly elliptic. However, the constant Cy depends now on the
coefficients of this new system, i.e., on the matrices Ay instead of Ay, and thus possibly
on r.

For the proof of the next proposition, we need the linear and continuous single-layer
potential from | , Theorem 6.11]

U : H V2P - HY(0)P, (5.3.29)

where O is an arbitrary bounded domain with I' C O. The single-layer operator U is just
the trace of U, i.e.,

0 =0()|r: H V2P — H/>(I)P; (5.3.30)

see [ , pages 219-220]. Indeed, for ¢ € L>®(T), | , pages 201-202] states the
following integral representation

(@) () = /F Gz — y)bly)dy forall z € O. (5.3.31)

Proposition 5.3.15. Suppose (M1)—(M5). For T, € T, let we € L>®(T") be a function
which satisfies for some a > 0 and all T € Tq that

[wel| oo (1) < qwe(z)  for almost all x € To(T). (5.3.32)
Then, there exists a constant Ciny a3 > 0 such that for all ¢ € L?()P, there holds that

1/2
e Ve aqry < Coneo (e /B el g-1raey + wetliary)- (5.3.33)

The constant Ciny g5 depends only on (M1)—~(M5), T', the coefficients of B, and the admis-

sibility constant a. The particular choice we = hi/ 2 shows that

1e 00 20y < Clanesn (15120 + 190 2(r) - (5.3.34)
Proof. By (M4) and with the abbreviation
diam(T")
0(T) i = ———=
1( ) 2Cfcent
and Ut := B (1)(T), there holds for all T' € 7, that
UT NnT C B2(51(T) (T) N C 7T.(T). (5335)

This provides us with an open covering of I' C (Jpcr, Ur. We show that it is even locally
finite in the sense that there exists a constant C' > 0 with #{T €Te i x € UT} < C for
all x € R%: Let Ty € To with z € Ur, such that 6;(7p) is minimal, and let xg € Ty with
|z — 20| < 01(Tp). Let € Upep, Ur. If T' € Ty with x € Up, the triangle inequality yields
that dist(zo,T) < 201(T"). By choice of 61(T), (M4) and (M1) imply that

#{TeTe:xecUr} <#{TeTs : 20 €m(T)} < Clpien- (5.3.36)
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5 Boundary Element Method

We fix (independently of 7,) a bounded domain U C R? with Ur C U for all T' € T,.
We define for T' € T, the near-field and the far-field of ug := L1y by

near far

Uy = B(Yxrav,) and Uy = (¢XF\UT)- (5.3.37)

In the following five steps, the near-field and the far-field are estimated separately. The
first two steps are devoted to the near-field, whereas the last three steps deal with the
far-field.

Step 1: We consider the near-field. We show that for all T € 7,, all T,-piecewise (compo-
nentwise) constant functions W € PY(7,)P with supp(¥I) C 7, (T) satisfy that

1D a1y S 10”07 | L2 ra - (5.3.38)
For z € Up \ T, (5.3.31) implies that
(VDU (2 Z v Gz —y)dy 9L |7
T'elle(
With (M1), we derive that
(VU (2)]? < Z / |V.G(x — )ydy> VAR (5.3.39)
T'elle (T)

Similarly, one sees that

@D@Es Y ([ 166 la) Wl (5:3.00
T'elle(T)
According to | , Theorem 6.3 and Corollary 6.5], the fundamental solution G satisfies

for all x,y € U that
IV.G(z — )| <o —y|™ 4 and |Gz —y)| < max(|log |z — yl|, |z — y|~4F?).
Together with (5.3.39)—(5.3.40), this implies that
% 2
H‘I]\I/TH?W(UT) S Z \\I/,T!T/IQ/ (/, |z —y| 74 dy) dx. (5.3.41)
T'elle(T) Ur *JT

To proceed, we prove the following estimate for arbitrary 7" € I14(7T')

2
/ ( |z — |74+t dy) dz < hé-. (5.3.42)
Ur T

Since € is a Lipschitz domain, 7e(7") is (up to a rigid motion) a subset of a Lipschitz
hypograph {x eR? : gy = Gz, ... ,xd,l)} for some Lipschitz mapping ¢ : R — R
provided that its diameter diam(me(7)) is sufficiently small. (Otherwise we must have
diam(T") ~ 1 and (5.3.42) is trivially satisfied.) Note that the mapping Z : R? — R? with
Z(%) := ((T1,...,Tq_1) +Tq for T € R? is bi-Lipschitz and onto. Due to (M2)—(M3), there
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5.3 Proof of Theorem 5.2.5

exists a point Ty € R%! x {0} and a generic constant C' > 0 such that Ur = ZY(Ur) C
Ben, (To) and T' == Z7Y(T") C Bep, (To) N (R x {0}). The transformation formula
[ , Section 3.3.3] yield that

/UT< T,|x—y|_d+1dy>2d:c:/ﬁT </fl|Z(?5)—Z(@|_d+1\/Wdﬂ)2|detDZ(:E)|dEc’

2 2
2/~ ( _ |z — g d@) d%gh%/ (/ \s—t\—d“dt) ds.
Or N7 Bc(0) M Be(0)n(RI1x{0})

The last integral in the latter estimate is finite, wherefore we conclude (5.3.42). Plugging
(5.3.42) into (5.3.41) and using (M2)—(M3), we conclude Step 1.
Step 2: We show that ujfat € H'(U) and ujsdt|p € H'(T') with the near-field bound

near 1/2 near
> weVruFs ey + Y lwe/ha 7o o 15 i 0y S lwet 172y (5.3.43)
TeTe TeTe

First, we apply the stability of U : L?(T')? — HYT')? of (5.1.11) to see for each T € T,
that

near

IVrug Tl 2oy < 1B@xvrar)lmr ey S 1¥xvrorllizey = 1912 @wpnr)-

Summing the last estimate over all elements T' € T, and using (5.3.35)—(5.3.36) as well as
the admissibility (5.3.32), we derive that

Z Hw.Vpu%ef%H%Q(T) S Z ||wo||%oo(T)||¢H%2(UTmr) = ||w.¢||%2(r).
TeTe TeT,

It remains to bound the second term in (5.3.43). With the notation of Lemma 5.3.11,
we decompose the near field for T' € 7T, as uy'y = ‘f]P.(szUTmF) + (1 — Py)(YXUpnr)-
The property (5.3.35) shows that supp(Pe(¥Xv,nr)) C me(T'). In particular, we can apply
Step 1 with I := P,(¢xy,nr), which yields together with the local L2-stability of P, and
(M1)—(M3) that

1/2 i
S Nwa /B 11 e () 1B P (30200 71 1
TeTe

<N Mwa/h P e oy 1182 Po (o) B2 racry) S Ilwatbllary-
TeTe

(5.3.44)

Next, we exploit the stability 2 : H~Y/2(T)? — HY(U)P of (5.3.29) as well as the approx-
imation property of Lemma (5.3.11). Together with (5.3.35) and (M1)-(M3), we obtain
that

S Nwe/ha"? 112 e oy 1B = Po) (xvror) | o)
TETe

< Z ||w./hl/2||%0°(T)||(1 = Po)(xvrn)|l g-172(r) (5.3.45)
TeT.

1/2 1/2
SN Nwe/ha oy 108 P oxuror 2y = llwatb]|2a -
TeTe
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5 Boundary Element Method

Finally, we combine (5.3.44)—(5.3.45) to bound the second term in (5.3.43).
Step 3: We consider the far-field. We set Q% := R?\ Q. According to | , Theo-
rem 6.11], for all T € T, ufar is a solution of the transmission problem

‘BU%YT = on QU Q™
[ur] = 0 in H'*(I)”,
[©vu’r] = —¥xr\uy in H~Y2(1)P,
where [-] resp. [©,(-)] denotes the jump of the traces resp. the conormal derivatives (see
(4.2.11) resp. | , page 117] for a precise definition) across the boundary I'. Twofold
integration by parts [ , Theorem 4.4] on Q resp. Q%' that uses these equalities shows

that (uff}rT , Prv) = 0 for all z € T and all test functions v € C°°(Bj, (1)/2(x)) with compact
support. Here, P* denotes the adjoint partial differential operator to 3. This shows that
far

ug;'r satisfies the equation ‘Bufar = 0 weakly on Bs, (1y/2(x) C Ur for all z € T. Hence,
we can apply Lemma 5.3.13 to see that ufar € C*(Bs,(1)/4()) with

|U%TT|H2(351(T)/4($)) N HufmafTHLQ(Bél(TW(f)) + diam(T)il|u%fT|H1(B&1(T)/2(m))' (5.3.46)

Step 4: With the latter inequality at hand, we prove the following local far-field bound
for the single-layer potential U

1/2 T I I
|he T ruirllrairy < (b *Vulillramy S luellm wr)- (5.3.47)

The first estimate of (5.3.47) follows from the fact that, for C! functions v, the surface
gradient Vrov is the orthogonal projection of the gradient Vu onto the tangent plane,

e., Vrv = Vo — (Vv - v)v, where v denotes the outer normal vector; see, e.g., | ,
Lemma 2.22].

To derive the second one, we first show an auxiliary trace inequality. Let B = B,.(z) be
an arbitrary open ball in R? and v € H'(B') with B’ := By.(x). According to [ )
Theorem 3.6, there exists a smooth indicator function Xp € C*°(R?) which only takes
values in [0, 1] such that Yz = 1 on B, xg = 0 on R\ B’, and IVXBI Lo (ray < Cr~! for
some generic constant C' > 0. Together with the trace inequality of Proposition 4.2.2, we
see that

10l 2 g < IXBYIZ: ) S IXBYIT2(0) + IXBYL20) IV (XBO) ] 22(0)

5.3.48
St | )

H%?(B’) + [[vll 28y [Vl L2(B1).-

By Step 3, we can apply (5.3.48) to v := 0; ufar on B := Bs ()/4(z) with x € T € T,.
Together with (5.3.46) and the abbreviation B' := Bs,(7)(x), this yields that

far 2
Uy, T g1 (rnB) ~

far far
ht lugr |H1(B’ + [ugr | w2y S hytluly ||H1(B//) (5.3.49)
To exploit the latter estimate, we use a covering argument for T € T,. The set F :=
{Bs, (1y/a(T) + x € T}, is a cover of T' consisting of closed balls with sup g r diam(B) < oo,

where T is the set of their midpoints. Besicovitch’s covering theorem | , Section 1.5.2]
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implies the existence of a constant Ny € N, which depends only on the dimension d, and
countable subsets G; C F, j = 1,..., Ny, where the elements of each G; are pairwise
disjoint, such that T' C Uj.\f:dl UBegj B. We define G/ := {Bs,ry(x) : Bs,(1ya(z) € G;}.
Since the elements of G; are pairwise disjoint and all balls have the same radlus n(T)/4,
there is a constant N/ € N, which depends only on the dimension d, such that at most N}
elements of G7 overlap. Therefore, (5.3.49) leads to

f: f; f; f;
Vel < S 3 IVl A7 Y S Il < b Na g B
=175 BGQ'J j=1 B”GQ’”

and thus to (5.3.47). N
Step 5: Finally, we prove the following far-field bound for U

> waVrulr 2oy < D7 lwe Vulrll2a
i TeT. (5.3.50)
1/2
< Hwo/ho/ H%oo(r)”d”ﬁrlﬂ(r) + Hw‘wH?ﬁ(F)'

By definition (5.3.37), (5.3.50) together with (5.3.43) of Step 2 will conclude the proof of
the proposition. The estimate (5.3.47) and the definition (5.3.37) show that

ar 1/2 ar
S lweVruirliam S D lwe/ha 3oy lufr 1
T€eTe TcTe
1/2 near 1/2
S 3 /B e W sy + D e/ e [B0 s (5:350)
TeT. TeTe

The first term in (5.3.51) can be bounded with the near-field bound (5.3.43). For the second
one, we apply (5.3.36) and the stability 0 : H=1/2(T')? — HY(U)P of (5.3.29) to see that

S e /h e () 1Bl 11y S Nwe /B 3oy 1D 01 ) S e /a2 o 0112 -

T€Te
This concludes the proof. ]
Remark 5.3.16. [ | does not only treat the single-layer operator U : H*1/2(F)D —

HY2(T)P, but also derives similar inverse estimates as in (5.3.33) for the double-layer op-
erator & : H'/2(T)P — H'Y2(')P, the adjoint double-layer operator & : H-1/2(I)P —
H='2(T)P, and the hyper-singular operator 20 : HY2(I)P — H-V/2(T)P; see, e.g.,
/ , page 218] for a precise definition (where these operators are denoted by T, TV*,
and R). Although they only considered the Laplace problem, with the techniques of the
proof of Proposition 5.3.15, their result can be extended to arbitrary partial differential
operators P with constant coefficients as in Section 5.1.3. Indeed, one can show for all
Y € L2T)P and v € HY(T)P that

lwa VBl 2ry + [ wek D 2y S (lwe/ha’ | poe ey 10 120y + lwetd ]l 2ry)

<
1/2
lwa Ve o] 2y + [[we0v]| 2ry < (lwa/hs! Iz loll g2y + lwe Vol z2r))-
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5 Boundary Element Method

For the second inequality, one additionally needs the assumption that P has no lowest-
order terms, i.e., ¢ = 0. Although it is likely that also the general case ¢ # 0 is valid,
the analysis of [ | exploits the fact that the double-layer potential & : H 12(m)P -
HY Q)P (see, e.g, [ | for a definition) of the Laplacian satisfies that Rx is constant
for arbitrary constant functions x € RP. In general, this is only satisfied if the considered
partial differential operator has no lowest-order terms.

5.3.5 Stability on non-refined elements (E1)

We show that the assumptions (M1)—(M5) and (S1)—(S2) imply stability (E1), i.e., the
existence of Cyar, > 1 such that for all 74 € T, and all 75 € refine(7,), it holds that

’770(7: N 773) - 770(7: N 7?3)‘ S CstabH(I)o - q)oHH—l/Q(F). (5352)

In Section 5.3.6, we will fix the constant C, for the perturbations (5.3.1) such that Cgap <
C,. The reverse triangle inequality and the fact that ho = he on |J(7¢ N 75) prove that

16(Te N'T5) = 1a(Ta N To)| = || VEB(d — o) 12(ranroy) — I1he VB (6 — @)l 2 (erarTs)

1/2
< [|h*VEB(®6 — @)l 2 (727
< |n*VrB(Po — @a)l| 2 ().

(S2) shows that ®, — &, € X,. Therefore, the inverse inequalities from (S1) and (5.3.34)
are applicable, which implies (5.3.52). The constant Cy,p depends only on d, D, T', the
coefficients of B, and the constants from (M1)—(M5) and (S1).

5.3.6 Reduction on refined elements (E2)

We show that the assumptions (M1)—(M5), (R2)-(R3), and (S1)—(S2) imply reduction on
refined elements (E2), i.e., the existence of Cieq > 1 and 0 < preq < 1 such that for all
Te € T and all 75 € refine(7,), there holds that

10(76\ T)? < prea e (T\To)? + Creal| o — a3 12 py- (5.3.53)
With this, we can fix the constant for the perturbations (5.3.1) as
Cy = max(Cytap, C13). (5.3.54)
First, we apply the triangle inequality
1e(To\ o) = ||he* Vr(6 — @o)l L2y )
< 11> Ve = @a)l|2 7o) + 18 Vr(@o = )2y e

(R2)~(R3) show that J(75\ 7o) = U(Te \ 7o) and ho < pili* Y he on J(Te \ To). Thus, we

can proceed the estimate as follows

1o(To\ 7o) < pC DN RPVr0 (6 — @)l 2 7av7e) + 1182 VB (@0 — @)l 272\ 72)
_ 1/2
= D (To\ To) + | VrB (@6 — ©4) || 127272
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5.3 Proof of Theorem 5.2.5

Since ®, € Xy C X, according to (S2), we can apply the inverse estimates (S1) and (5.3.34).
Together with the Young’s inequality, we derive for arbitrary 4 > 0 that

1o(To\ To)? < (14 ) na (T \ To)? 4 (L4 67Oy (1 + Cin )2 [ — Bl 1oy

Choosing § > 0 sufficiently small, we obtain (5.3.53). The constant Ci.q depends only on
d, D, T, the coefficients of B, and the constants from (M1)-(M5), (R2)-(R3), and (S1).

5.3.7 General quasi-orthogonality (E3)

According to Theorem 2.3.1 (i), Section 5.3.3, Section 5.3.5, and Section 5.3.6 already imply
estimator convergence limy_, o, 17, = 0. Therefore, reliability (5.2.22) implies error conver-
gence limy_, || — <I>gHH_1/2(F) = 0. In particular, we obtain that ¢ € Xy, = UZGNO Xy. As
in Section 4.3.4, we show that the latter inclusion ¢ € X, reliability (5.2.22), and (S2)
imply general quasi-orthogonality (E3), i.e., the existence of

1- (1 +6)1 = (1= prea)d)

0<egp < 21;18 2151 , (5.3.55)
and Cg, > 1 such that
(+N
Z(CQH(I)j'i‘l — <I>jH§I_1/2(F) — qunjz) < qun% for all £, N € Ny. (5.3.56)
j=¢

Recall that we already fixed the constant C, in (5.3.54). Again, the key ingredient is pro-
vided by the abstract Lemma 4.3.2. We choose H := H~'/2(T')\? with #* = (H~Y>(I")P)*
and Hy := X, for all £ € Ny. Note that, H'/?(T')P is a realization of (H~Y2(I")P)* with
equivalent norms. To define the involved operators, we first introduce the principal part of
B as the corresponding partial differential operator without lower-order terms

Pov := Z Z 0i (A 0;v) (5.3.57)

i=14'=1

According to | , Lemma 4.5, the principal part is also coercive on H}(Q)P. We
denote its corresponding single-layer operator which can be defined as in Section 5.1.3 by

Vo : HV2()P — HY2(M)P. (5.3.58)

With this, we set 2 := U as well as € := U —Y, which gives B =¥ in Lemma 4.3.2. Our
assumption A;, = Ay; easily implies that Uy is symmetric; see, e.g., [ , page 218].
To see compactness of €, one can proceed as in | , Lemma 3.9.8], where the assertion
is proved for the Helmholtz operator: First, one shows as in [ , Theorem 6.1] that
the corresponding Newton potentials satisfy the mapping property ‘ﬁ ‘ﬁo H U(Rd)

HoH3(RHP for all 0 € R. In combination with Rellich’s compactness theorem | ,
Theorem 3.27], one can now adapt the proof of | , Theorem 6.11] which yields com-
pactness of €. Recall that we already observed at the beginning of the current subsection
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5 Boundary Element Method

that ¢ € X,. Altogether, we see that Lemma 4.3.2 is applicable. The rest follows along
the lines of Step 2 from Section 4.3.4, where Cy, depends only on the dimension D, the
boundary I', the chosen e, the perturbation constant C,, the reliability constant Ci, the
coefficients of 3, and the sequence (®y)eny, -

Remark 5.3.17. If the bilinear form (-, ) is symmetric, (5.3.56) follows from the
Pythagoras theorem ||¢ — @[3 + |®j41 — D;[3 = ¢ — @;||3; in the V-induced energy
norm ||¢]|% == (D, ¥) and norm equivalence

L+N {+N

Z 19541 = D113 12y = D I1®j41 — Bjll = 16 — Pellg — 6 — Pernll3
Jj=L

S lé = @ellf1/2ry-

Together with reliability (5.2.22), this proves (5.3.56) even for eqo = 0, and Cqy, is indepen-
dent of the sequence (Py)sen, -

5.3.8 Discrete reliability (E4)

The proof of (E4) is inspired by | , Proposition 5.3] which considers piecewise
constants on shape-regular triangulations as ansatz space. Under the assumptions (M1)-
(M5), (5.2.12), and (S1)—(S6), we show that there exist Cgyel, Cref > 1 such that for all
Te € T and all 7, € refine(7,), the subset

Rao = IEwortaloct2 (700 ) (5.3.59)
satisfies that

CQH(I)O - ¢.||H*1/2(F) < Cdrel n.(RO,O)a 7: \ 77) - Ro,o, and #Ro,o < Cref(#’]; - #7:)

The last two properties are obvious with Cles = Cg;‘;zfl—i—qloc—i_ by validity of (M1) and
(5.2.12). Before we start the proof itself, we provide the following lemma about certain

smooth characteristic functions.

Lemma 5.3.18. Let T € T and S C T,. Suppose (M1)—~(M4). Then there ezists a function
Xs € HY(T) such that for almost all x € T

Xs(z) =1 ifxel s,
0 <xs(z) < if v € me(S), (5.3.60)
Xs(x) =0 if © & o (S).

Further, there exists a constant C > 0 such that for almost all x € T, there holds that
[VrXs(z)] < Che(ax)™! (5.3.61)

The constant C depends only on the dimension d and the constants from (M1)—(M4).
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Proof. In the following three steps, we will even prove the existence of a function ys €
C*(0) with an open superset O D I' such that the restriction to I' has the desired
properties. With the constants from (M1)—(M2) and (M4), we introduce the following
abbreviations for T € T,

diam(T")
2C’patch C’locuni Ccent ’

diam(7")
Ccent ’

diam(7")

T) .= .
51( ) 2C’Cent

85(T) := 83(T) := (5.3.62)

Step 1: First, we construct an equivalent smooth mesh-size function b€ C ®(R%). Let
K1 € C®(R%) be a standard mollifier with 0 < K; < 1 on B;(0), K1 = 0 on R?\ B;(0),
and [pq K1 dx = 1. For s > 0, we set K,(-) := Ki(-/s)s~%. With the convolution operator,
we define

= > 51(T) XBy, iz (1) * Koo (5.3.63)
TET.
Note that SUPP(XB52(T)(T) * Ks,()) € Basy(r)(T) for T € T,. Thus, (M4) and the choice
(5.3.62) of §2(T") yields that SUPP(X352(T)(T) * Ks,r)) NI C me(T). Together with (M1)-
(M2) and 0 < X B, ry(T) * Koy(r) < 1, this implies for the interior T° of any T € T,
that

g"T’O < Z 51( Xe(T) ‘T’O = Z 51 < Cpatchclocuni 51(T/)-
T€T, Telle (T7)

By continuity of g., this estimate is also satisfied if 7" is replaced by T, i.e., g.]T/ <
CpatchClocunid1(T").  The fact that X By, ooy (1) * Ksypry = 1 on T’" shows that also the
2

converse estimate is valid. This leads to
51(T") < bl 7v < Cpaten Clocuni 01(T")  for all T' € T, (5.3.64)

In particular, this proves the existence of an open set O D I such that de > 0on O. Finally,
we consider the gradient of d, for z € I'. Recall that SUPP(XB(;Q(T)(T) * Ks,(1y) € me(T).

Together with the Holder inequality, ||V Ks|p1 ey S s~!, and (M1)-(M2), this proves that

Ve (@) = Y 01(T) Xra (1) (®) IX By, 1y (1) * V iy ()]
e 1 (5.3.65)
N Z OU(T) Xra (1) (2)02(T) " S 1.
T€Te

Step 2: We set S := U {353(T) (T): Te S}. For z € O, we define the quasi-convolution
Xs(x) = / X5W) K3,y (x —y) dy.
Rd

Since d, > 0 on O D T, there holds that Ys € C*(0), and thus Ys|r € HY(I'); see, e.g.,
[ , pages 98-99]. In this step, we verify (5.3.60). Since supp(Ks) = B;(0), there holds
that

o= [ X Ko ) dy (5.3.66)
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5 Boundary Element Method

We observe that xs(z) =1 if Bs, ) (z) € 8. Due to 4|7 < d3(T") for all T' € T, (which
follows from (5.3.62) and (5.3.64)), this is particularly satisfied if € (JS. Moreover,
(5.3.66) shows that 0 < Ys(z) < 1 for all z € R? and Ys(z) = 0 if Bg.(m)(:v) ns = 0.
It remains to prove that @ € I' \ me(S) implies that Bj @) () NS = 0. We prove the
contraposition. Let x € I'" and suppose that B(S (@ )( x) NS # (. Then, there exists T € S

and y € R? such that |z — y| < 0s(z) and dist(y,T) < 63(T). The triangle inequality yields
that

dist(z, T) < |z — y| + dist(y, T) < 0u(x) + 03(T) < 2max(d(z), d3(T)). (5.3.67)

Now, we differ two different cases: If 84 () < 83(T), then we have that dist(z, T') < 263(T).
The choice (5.3.62) of 03(T") together with (M4) shows that x € 7e(T) C 7e(S). If de(x) >
85(T), then we have that dist(z,T) < 204(z). Let T" € Ts with 2 € T’ and z € T with
|z — z| = dist(z, T). Together with (5.3.64) and (5.3.67), this yields that

dist(z, T") < |z — 2| = dist(z, T) < 25.(1‘) < 2Cpateh Clocuni 01 (7).

The choice (5.3.62) of 01(7") together with (M4) implies that even an open neighborhood
of z is contained in e (7). We conclude that 7" € II,(T), and thus x € T" C 7o (7).

Step 3: Finally, we prove (5.3.61). We recall that 5e > 0 on O; see Step 1. With the
identity matrix I € R%? and the matrix (z —y)(Vds(2))T € R, elementary calculations
prove for all z € O D T and all y € R? that

T y\\T de(@)] — (@ =) (Vou(@)T +
+ K (2 )de(@) ™ (=) (V0 (2) "

0 ()

Considering the norm yields that
V2 (K (2 = )] S (@)™ + [z — Y195 (@)]Ba )2 + B (2) 1 [ Voa ).

Together with supp(Ks) = Bs(0), this shows for all x € T" that

[VXs(@ (/ XsW)Va (K53, )(w—y))dy‘

N/ ()5-( )™ [z = yl|Voa(@)] 00 (2) "7 + Ge(2) 4 Ve ()| dy
6.(ac)

< 0u(2) T L + [V 8a Lo (1)

Thus, (5.3.64)-(5.3.65), and (M2) prove that |Vxs(z)| < he(x)~! for almost all » € T.
Moreover, for smooth functions, the surface gradient Vr is the orthogonal projection of

the gradient V onto the tangent plane; see, e.g., | , Lemma 2.22]). With the outer
normal vector v, this implies that Vrxs = Vxs — (Vxs - v)v almost everywhere on I', and
concludes the proof with the previous estimate. O
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Remark 5.3.19. For shape-reqular triangular meshes as in [ , |, the proof
of Lemma 5.8.18 simplifies a lot. Indeed, one can define Xs with the help of standard hat
functions on T'; see [ , Section 5.3].

Now, we prove discrete reliability (E4) in three steps.
Step 1: For S; := T, N T, let J, s, be the corresponding projection operator from (S5)-
(S6). Ellipticity (5.1.12), nestedness (S2) of the ansatz spaces, and the definition (5.2.14)
of the Galerkin approximations yield that

B0 — Bull21ngpy S (e~ Ba), @0 — Da) sy
= (D6~ @4), (1 - Jos,)(@o — 22)) pa(r).

(S3) shows that (&, — <1>.)|7T£>roj(T) € {\I’.|7r£)mj(T : Wy € X} for any T € T\ 113 (T \ To).

Moreover, one easily sees (as in (4.5.13)) that

)

[2(T) C ToNTo =8 forall T e Ty \ Ie(T, \ To). (5.3.68)

Hence, the local projection property (S5) of J, s, is applicable and proves that J, s, (P —
D,) = O, — D, on '\ wde(T, \ 75). Altogether, we conclude with Lemma 5.3.18 and
S := (T \ T5) that

[0 = Bulld1agr) S (R B0 = 00), (1= o)) (@0 = Py (5369

We bound the two terms (Xs, V(¢ — Po), Po — Po) 12y and (Xs, V(¢ — @), Jos5,(Po —
®,)) 2(r) separately. Since H~'2(T")P is the dual space of H'/?(T")P, there holds that

(X5 D6 — B), o — B p2(r) < [T B(6 — @)l s €0 — Bullyoy.  (5:3.70)

The Cauchy—Schwarz inequality shows that

<§S2 U(p — D), JO,S1((I>0 - (I)°)>L2(F)

< |lhe X5, V(D — Bo) | p2ry1ha > T .1 (B0 — Bl 12(r-

Since Jo s, : LA(D)P — {0, € A, : V| (7a\51) = 0}, it holds that supp(Jas, (Po — Ps)) C
U(Te N T5). This together with the fact that he = ho on |J(7e N 7o), the local L2-stability
(S6) and (M1)—(M3) implies that
~1/2~ 1/2
= [1he*Xs, V(& = )2y 116 o s, (B0 = ) L2 Uraey
—1/2~ 1/2
< [1he X5, B — @)z e (B0 — @)l |2 (r)-

With the inverse inequality (S1) applied to &, — P4 € X, (see (52)), the latter estimate
implies that

(X5 B(6 = Ba) , Jusy (B0 — D)) 121y S 1 X206 = D) 1200 [P0 — Dl o -
(5.3.71)
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Plugging (5.3.70) and (5.3.71) into (5.3.69) shows that

[P0 — Pollr-172(r) < e V255, D V(¢ — Po)llz2(r) + [IXs, V(P — Po)l g2y (5:3.72)

Step 2: Next, we deal with the first summand of (5.3.72). First, we note that supp(xs,) C
gt (TN T5) and 0 < Ys, < 1 (see (5.3.60)) imply that

e X5, (6 = @lzaqr) < e B0 = Bl o (ot 7 7 (5.3.73)

By Galerkin orthogonality (5.2.15), we see that (¢ — ®,) is L?-orthogonal to all functions
of X, which includes in particular the functions W, 7 ; from (S4). Hence, we can apply
Corollary 5.3.6. Together with (M1)—(M3) and recalling (5.3.59), we prove that

e 1/2%82 B(p — <I>.)HL2(F) S ||hl/2VFQ3(¢ - ‘1>o)||L2 (ﬂ_gsupp‘FQIoC‘FQ(,T.\%)) = 1e(Re0)-

Step 3: It remains to consider the second summand of (5.3.72). Lemma 5.3.2 in conjunc-
tion with shape-regularity (M3) implies that

~ 1/2~
K5, D& — @) 2oy S D D K8 B — @) 2pssgpun + I1he K, D6 — @) 12(r).
TeTe T'elle(T)

We have already dealt with the second summand in Step 2. For the first one, we fix again
some z(T,T") e TNT' for any T € Ty, T' € I1o(T). (M1)—(M3) and (M5) show that

Z Z ’XSz (¢ — (b)‘Hl/QTUT’ Z Z ’XSz (¢ — ®)‘H1/27r,(z(TT/)))

TETe T/ (T) TeTe T/l (T)

<N InVr(Rs B — @) R ey S 172V (Res, B — 90) 221

TeTe T'€114(T)

With the product rule and (5.3.61), we continue our estimate

X2 D& = )12y S e B0 = D)3 suppiis, ) + 158 VrB(6 = P2 qupp(xs, -

Note that we have already dealt with the first summand in Step 2 (see (5.3.73)). Finally,
supp(Xs,) € 7l (To\ 7o) (see (5.3.60)) and Tt (T, \ 7o) € Ra o (see (5.3.59)) prove

for the second one that
1/2
|he/ V0 (6 — o)l 72 (supp(is,)) < Te(Re)”.

With this, we conclude the proof of discrete reliability (E4). The constant Cgye depends
only on C,,d, D, I', and the constants from (M1)-(M5) and (S1)-(S6).

5.3.9 Refinement axioms (T1)—(T3)

Clearly, the properties (R1), (R4), and (R5) are even slightly stronger versions of the axioms
(T1)—(T3).
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5.4 Boundary element method with hierarchical splines

5.4 Boundary element method with hierarchical splines

In this section, we consider Q C R? with d > 3. We introduce hierarchical splines on
the boundary I" and propose a local mesh-refinement strategy. To this end, we assume
the existence of a mesh {Fm cm e {1,... ,M}} of I' in the sense of Section 5.2.1 such
that each surface I';, can be parametrized over fm = |0, 1]d*1. We use the notation
from Section 3.4 (with an additional index m for the surface I'y,), where we have already
introduced hierarchical splines in the parameter domain fm. The main result of this section
is Theorem 5.4.5 which states that hierarchical splines together with the proposed mesh-
refinement strategy fit into the abstract setting of Section 5.2 and are hence covered by
Theorem 5.2.5. The proof of Theorem 5.4.5 is given in Section 5.5.

5.4.1 Parametrization of the boundary

We assume that for all m € {1,..., M}, the surface I';,, can be parametrized via a bi-
Lipschitz mapping

Ym : fm — I, (5.4.1)

where T, = [0,1]7L. In particular, Lemma 5.2.1 (applied on the interior of T',) shows
that 7, is almost everywhere differentiable, and there exists a constant Cy > 0 such that

C s — t] < [m(s) — ym(8)]| < Cyls —t| for all s,¢ € Ty, (5.4.2a)

and the Gram determinant satisfies that

C; @D < \/det(m;(t)mm(t)) < 041 for almost all ¢ € T',. (5.4.2b)

We define the set of nodes N, := U%:1 {vm(2) : 7€ {0,1}%71}. We suppose that there
are no (initial) hanging nodes, i.e., the intersection I';, N Ty with m # m/ is either empty
or a common (transformed) lower- dlmensmnal hyperrectangle v, (Ep) = Vs (Epy), where
E,, and E,, are the convex hulls of at most d — 2 points in {0,1}4~1. Moreover, with
the node patch (2 U{F :me{l,..., M} Nz € Fm} for z € N, we suppose
the following Compatlblhty assumption for the different parametrizations: For all nodes
z € N, there exists a polytope 7, (z) C R~ j.e., a polygon for d = 3 and a polyhedron
for d = 4, and a bi-Lipschitz mapping

Ve 1 Ty (2) = Ty(2) (5.4.3)

such that 75! o7, is an affine bijection for all m € {1,..., M} with I';, C m,(2). Put into
words, this means that each node patch 7, (z) can be flattened, where the corresponding
bi-Lipschitz mapping restricted to any contained surface I';, essentially coincides with the
parametrization ,,. In particular, this prohibits the case 7, (2) = I'. The same assumption
is also made in | , Assumption 4.3.25] for curvilinear triangulations. It particularly
implies that the parametrizations essentially coincide at the boundary of the surfaces,
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5 Boundary Element Method

ie., for all m # m/ _with non empty intersection E := T',, N T,y # 0, there holds with
=~~U(E) and B,y = v HE)

m

tm

fym|ﬁm = Yyt O (fy;L,l 09,0 'yz_l o 'ym|Em), (5.4.4)

where 7;1/1 07,07, oy B, Em — Em/ is an affine bijection. By possibly enlarging C,
from (5.4.2), we can assume that

C'v_l|s —t] < |ra(s) = 7:(t)] < Cyls —t| forall 5,t € Ty (2). (5.4.5)

5.4.2 Hierarchical meshes and splines on the boundary

For m € {1,...,M}, let (p1,m,---,Pd—1,m) be a vector of fixed polynomial degrees in N,
and set

Pmax = max {pim : 1 € {1,....,d} Ame{l,...,M}}. (5.4.6)

Let

~

’eo,m = (’/C\l(O,m), s Ka-nom)) (5.4.7)

be a fixed initial (d — 1)-dimensional vector of p; ,,-open knot vectors as in Section 3.3.2,
where we additionally suppose that all interior knots ;) ; € (0,1) even satisfy that

#i(o,m)ti(Qm),] S Piom for all 7 € {1, . ,d — 1},] € {2 + DPimy - - - ’Ni(O,m) — 1} (548)

For any corresponding hierarchical mesh 7A'.7m, we define /\A,’.m as the space of all hierarchical
splines on I',,, = [0,1]%"! as

o~

= g(pl,m7~~~,pd71,m)(]€07m’ ﬁ,m)D (5 49)
C {T,/Z)\ € COT,)P : Plp € C¥(T)P for all T € ﬁ,m}
In order to transform the definitions from the parameter domain fm to the boundary
part I',,, we use the parametrizations from Section 5.4.1. All previous definitions can
now also be made on each part I';,, just by pulling them from the parameter domain via
the bi-Lipschitz mapping ~,,. For these definitions, we drop the symbol =. If 7. om IS a
hierarchical mesh in the parameter domain Fm, we define the correspondlng mesh on I'y,
as Tem = {’ym T ¢ ’7'. } In particular, we have that 7o ,, = {’ym T ¢ 76m}
Moreover, let ']I'm = {T, m - T. m € ']I'm} denote the set of all admissible meshes on I',,
where ’]I‘m is the set of all admissible hierarchical meshes on Fm in the sense of Section 3.4.4.
For an arbitrary hierarchical mesh 7, ,, on I';,,, we introduce the corresponding hierarchical
spline space

Ko = {We oyl i Uem € Xeyn} € COT)P € LAT,,)P € HTY2(D,,)P. (5.4.10)

Finally, it remains to define hierarchical meshes and splines on I' itself. This can be
done by gluing the previous definitions for the single surfaces I';,, together. For all m €
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5.4 Boundary element method with hierarchical splines

{1,..., M}, let To 1, be a hierarchical mesh on I';,,. We define the corresponding hierarchical
mesh on I" as 7, := U%[:l Tem- Clearly, 7T, is a mesh in the sense of Section 5.2.1, where

T:=~;4T) and ~p:= Ymlp for T € Tom withm € {1,..., M}, (5.4.11)
and we can use the notation from there. For T' € 7,
level(T) := level(T). (5.4.12)
We call T, admissible if the mesh satisfies the following two properties:

e All partial meshes are admissible, i.e., To ., € Ty, for all m € {1,..., M}.

e There are no hanging nodes on the boundary of the surfaces I';,, i.e., the intersec-
tion TNT' for T € Tom,T' € Tem with m # m’ is either empty or a common
(transformed) lower-dimensional hyperrectangle.

We define the set of all admissible hierarchical meshes on I' as T, and suppose that the
initial mesh on I'" is admissible, i.e.,

M
To=J TomeT. (5.4.13)

m=1

For an arbitrary hierarchical mesh 7, on I', the corresponding hierarchical splines read

Xe:={Te:T = RP : W,p, € X, forallme {1,..., M}} c L*(D)P ¢ H2()P.
(5.4.14)

Remark 5.4.1. (a) The property that there are no hanging nodes implies local quasi-
uniformity at the boundaries Ty, , i.e., if T € Tom, T € Tomy withm # m’ have non-empty
intersection T N'T" # 0, then |level(T) — level(T")| < 1. Indeed, the intersection T N'T’
of T € TomsT' € Tamy is either empty or a common (transformed) lower-dimensional
hyperrectangle. Thus, if dim(TNT') > 1, then level(T) = level(T"). If dim(TNT') =0, i.e.,
if TNT" is only a point, there exists a sequence of elements Ty € Temys--., T € Tom, with
Ty =T and Ty =T" such that mj # mji1 and Aim(T;NTj41) > 1 forallj € {1,...,J—1}.
The previous argumentation yields that level(T) = level(T").

(b) Since, the ansatz space only needs to be a subset of H*I/Q(P)D, the property that there
are no hanging nodes can actually be replaced by local quasi-uniformity at the boundaries
Iy, as in (a), which is sufficient for the following analysis. However, for the hyper-singular
integral equation which appears for the Neumann problem Bu = 0 in Q with Dyu = ¢ on
I' for some given ¢ € H*1/2(I‘)D; see, e.g., | , pages 229-231], the ansatz functions
must be in HY?>(T)P. In this case, the natural choice for the ansatz space is Xo N CO(I)P,
which is even a subset of H (). If one supposes that there are no hanging nodes, one can
define a local basis with the help of Proposition 4.5.3. The knowledge of such a basis is not
only essential for an efficient implementation, but is also needed, e.q., for the definition of
a quasi-interpolation operator.
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5 Boundary Element Method

5.4.3 Refinement of hierarchical meshes

In this section, we present a concrete refinement algorithm to specify the setting of Sec-
tion 5.2.2. We start in the parameter domain. Recall that we call a hierarchical mesh ﬁ,m
finer than another hierarchical mesh 7\:7m if ﬁ’fm - Q’jm for all £ € Ny. This just means
that 7\; .m 1s obtained from 7\: .m by iterative dyadic bisections of the elements in ﬁ,m. To
bisect an element 7 € T, ,m, one just has to add it to the set Qlevel( )+1; see (5.4.22) below.
In this case, the corresponding spaces are nested according to (3 4.18), i.e.,

Xom C Xom- (5.4.15)

To transfer this definition onto the surface I', for m € {1,..., M}, we essentially just drop
the symbol ~. We say that a hierarchical mesh 7 ,,, on Iy, is ﬁner than another hierarchical
mesh 7: .m on 'y, if the correspondmg meshes in the parameter domain satisfy this relation,

, if ’7; ,m is finer than ’7'. . In this case, there holds that

Ko C Xom. (5.4.16)

Finally, we call a hierarchical mesh 7, on I finer than another hierarchical mesh 7, on I,
if the corresponding partial meshes satisfy this relation, i.e., if 75, is finer than 7, ,, for
all m € {1,..., M}. In this case, there holds that

X, C X.. (5.4.17)

Let 7, be a hierarchical mesh and T' € 7,, and hence T' € 7T, ,,, for some m € {1,...,M}.
Moreover, let T = ~,.1(T) be the corresponding element in the parameter domain. We
define the sets of neighbors

Newn(T) := {4m(T") : T' € No (1)}, (5.4.18)
where N.,m(f) = {T\’ € ﬁ,m 3B € B\.m T,T' C supp(ﬁ)} is the set from (3.4.24), and

No(T):i=New(TU | {T' €Tam : TNT #0}. (5.4.19)

m’'#m

Further, we define the sets of bad neighbors

NS (T) o= {y(T7) « T' € NE?,g(f)}, (5.4.20)
where Nbad {T’ € No (T T) : level(T') = level(T) — 1} is the set from (4.4.9), and
N(T) = NES(T)U | {T € Tom : dim(TNT) >0} (5.4.21)
m/#m

Algorithm 5.4.2. Input: Hierarchical mesh Ty , marked elements Mo =: MEO) C 7.

(i) Iterate the following steps (a)—(b) fori=0,1,2,... until ul? = o:
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5.4 Boundary element method with hierarchical splines

(a) Deﬁne u.(z) = UTEMV) {T/ € 7: \ MEZ) T e NEad(T)}

(b) Define METY .= MmO uul?.

(ii) Dyadically bisect oll T € Mﬁ” in the parameter domain by adding the corresponding
T € 7A:7m to the set @L?EI(T)H
me{l,.... M} and ke N

and obtain a finer hierarchical mesh T, where for all

QF =0 UU{T € Tomn : @) € MY Alevel(T) =k — 1}, (5.4.22)

Output: Refined mesh To = refine(Te, Ma).

Clearly, refine(7,, M,) is finer than 7,. For any hierarchical mesh 7, on I', we de-
fine refine(7,) as the set of all hierarchical meshes 7, on I' such that there exist hi-
erarchical meshes 7(qy,...,7(s) and marked elements Mgy, ..., My_1) with To = T;) =
refine(7(j_1), M(j_1)),---, T(1) = refine(T(g), M(0)), and T(g) = Te. Note that refine(7,,0) =
Te, wherefore 7, € refine(7,). The following proposition characterizes the set refine(7,).
In particular, it shows that refine(7p) = T.

Proposition 5.4.3. If T, € T, then refine(7,) coincides with the set of all admissible
hierarchical meshes T, that are finer than T,.

Proof. The proof is achieved similarly as that of Proposition 4.4.2. Therefore, we mainly
focus on the differences.

Step 1: We show that 75 := refine(7,, M,) € T for arbitrary marked elements M, C 7.
As in Step 1 of the proof of Proposition 4.4.2, one derives that 7, € T, for all m €

{1,..., M}. Thus, it remains to verify the compatibility conditions across the boundary of
the surfaces I',,. Let T,T" € T, with non-empty intersection and 7' C I'y,, T’ C I',,,/, where
m,m’ € {1,..., M} with m # m’/. We consider four different cases.

(i) Let T, T" € TeNTs. Since T, is admissible, one immediately sees that the intersection
of T and T” is a common (transformed) lower-dimensional hyperrectangle.

(ii) Let T,7" € 75 \ To. Then, there are T,, T, € To with 'S T, C Ty and TV G Ty C
[ Admissibility of T, shows that T, and T share a common (transformed) lower-
dimensional hyperrectangle. Due to (5.4.4), and since T resp. T’ results from one
single bisection of T, resp. T, this property holds as well for T and T".

(iii) Let T € To \ Te and T" € To N T5. Then, there is Ty € T with T ; T, C T,,.
By admissibility of 7o, Ts and 7" share a common (transformed) lower-dimensional
hyperrectangle. It is not possible that they share more than one single point, since
otherwise the refinement of 7T, would also lead to the refinement of 7" € 7,.

(iv) Let T € TeNTo and T" € T \ Te. Clearly, this case can be treated as case (iii).

Step 2: It is clear that an arbitrary 7, € refine(7,) is finer than 7,. By induction, Step 1
concludes the inclusion refine(7,) C T.
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5 Boundary Element Method

Step 3: To show the converse inclusion, let 7, be an admissible mesh which is finer than
Te. We prove that 75 is finer than 7, := refine(7,,{T}), where T' € T, \ T; is arbitrary.
We suppose that the assertion is false and lead this to contradiction. As in Step 3 from the
proof of Proposition 4.4.2, one derives the existence of some T" € (T, \ T5) N To such that
T' € Nb4(T") for some T" € Ty \ (T UT3).

The definition of N22(T") implies that either 7" € NE?SL(T” ) with T/, 7" C T, or TV
and T"” are contained in different boundary parts I',,,; and I',,,» and they share a common
lower-dimensional hyperrectangle. The first case can be treated exactly as in Step 3 of the
corresponding proof for FEM. For the second case, let T} € 7. with 7' & T" such that
the intersection of 7" and T is non-empty as well. We see that 7" N T is not a common
(transformed) lower-dimensional hyperrectangle. Since T, T € T, this finally contradicts
the admissibility of 7s.

Step 4: With Step 2-3, one concludes the remaining inclusion as in Step 4 from the proof
of Proposition 4.4.2. O

Remark 5.4.4. In Section 5.5.11, we will give a basis of (transformed) hierarchical B-
splines and truncated hierarchical B-splines for Xy on Te € T. Actually, the proposed
refinement strategy of Algorithm 5.4.2 was designed for hierarchical B-splines; see also
Proposition 3.4.3. However, (3.4.22) implies that Proposition 3.4.3 holds accordingly for
truncated hierarchical B-splines. Moreover, if one applies the refinement strateqy of Al-
gorithm 5.4.2, (3.4.28) shows that the computation of the truncated hierarchical B-splines
simplifies significantly.

5.4.4 Optimal convergence for hierarchical splines

Altogether, we have specified the abstract framework of Section 5.2 to hierarchical meshes
and splines. The following theorem is the second main result of this chapter. It shows that
all assumptions of Theorem 5.2.5 are satisfied for the present hierarchical approach. The
proof is given in Section 5.5.

Theorem 5.4.5. Hierarchical splines on admissible meshes satisfy the abstract assumptions
(M1)-(M5), (R1)—=(R5), and (S1)—(S6) from Section 5.2, where the constants depend only
on the dimensions d, D, the (fixred) number M of boundary parts Ty, the parametrizations
Ym and 7y, the initial meshes 7A67m, and the polynomial orders (p1.m.,-..,Pd—1,m) for m €
{1,...,M} and z € N,. By Theorem 5.2.5, this implies reliability (5.2.22) of the error
estimator, and linear convergence (5.2.23) at optimal rate (5.2.24) for the adaptive strategy
from Algorithm 5.2.4.

Remark 5.4.6. (a) Theorem 5.4.5 is still valid if one replaces the ansatz space Xo by
rational hierarchical splines, i.e., by the set

Vo .= {Wo_lllf. LU, € X.}, (5.4.23)

where /WO,m = Wooym s a fized positive weight function in the initial space of hierarchical
splines S(pl’m"“’pdfl’m)(lCo,m,’7'0,m) for allm € {1,...,M}. With the B-spline basis By m
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5.5 Proof of Theorem 5.4.5

on 7A67m, we additionally suppose that Wo,m can be written as

ng = Z wo’mﬁ/ﬂ\ with non-negative coefficients w, 5> 0. (5.4.24)
BEBo,m
We will prove this generalization in Section 5.5.15. In this case, the constants depend
additionally on Wy.

(b) Moreover, Theorem 5.4.5 still holds true if newly inserted knots have a multiplic-
ity higher than one, i.e., if one uses, as in Remark 3.4.1, the uniformly refined knots
i%um(k,(ql,qudfLm))m with 1 < ¢ m < pim instead of Iaum(k),m to define (rational) hierar-
chical splines. The corresponding proof works verbatim.

(¢c) Finally, if one defines for an element T of a hierarchical mesh 7A:7m its neighbours
N.,m(f) as in Remark 3.4.6, and adapts the definition of admissibility and refine(-,-)
accordingly, one can also allow for lowest-order polynomial degrees p; m € No as well as full
knot multiplicities q; m = pim + 1.

5.5 Proof of Theorem 5.4.5

This section is devoted to the proof of Theorem 5.4.5, i.e., to the verification of the mesh
properties (M1)—(M5), the refinement properties (R1)—(R5), and the boundary element
space properties (S1)—(S6).

5.5.1 Verification of (M1)

Let T, € T and T € T,. We split the patch as follows
M
II(T) = U (ILe(T) N Tem U {Ile(E) N Tam : E lower-dim. hyperrect. of T'}.
m=1
If II(E) N Tom # 0, there exists T’ € Tom with 0 2 ENT' C T NT'. By admissibility,
this implies that E is even a common (transformed) lower-dimensional hyperrectangle of
T and T'. In particular, this leads to II¢(E) N Term C He(T7) N Tem = e m(T”), where
My 1 (T7) := {ym(f) T e H.,m(f’)}. Since 7o m € Ty, one sees as in Section 4.5.1 that
#1e m(T") < 1. Altogether, we derive that #I14(T") < Cpaten With a constant Cpagen which
depends only on d and M.

5.5.2 Verification of (M2)

Let 7o € T and T,7" € Ty with TNT" # (). If both T" and 7" are in the same boundary
part, i.e., T,7" C T, for some m € {1,..., M}, one sees as in Section 4.5.1 that dlam(T) o~
diam(7T" ) for T = y;1(T) and T' = 7*1(T "). Bi-Lipschitz continuity of =, yields that
diam(T") ~ diam(7”). Otherwise, let m,m’ € {1,..., M} with m #m/, T C T, and T’ C
I'ypy. By admissibility of 7, and Remark 5.4.1, we see that level(T") = level(7”). This implies
that diam(7T) ~ diam(T") for T = v H(T) and T' = 4 1(T"), and thus diam(T) ~ diam(T")
due to bi-Lipschitz continuity of 7, and ~,,. This concludes local quasi-uniformity (M2),
where the constant Cloeuni depends only the dimension d, the constant C,, and the initial

meshes %,m forme {1,...,M}.
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5.5.3 Verification of (M3)

Let 7o € T, T € To, and m € {1,...,M} with T C T,,,. We abbreviate T := Y H(T).
As the refinement procedure refine only uses uniform bisection of an element in the
parameter domain, we see that diaurn(j;)d_1 o~ |T\|, where the hidden constants depend
only on the dimension d and the initial mesh 7A67m. Since 7, is bi-Lipschitz, we see that
diam(7T') ~ diam(T'). Moreover, (5.4.2) shows that |T| ~ |T)|. Altogether, we conclude that
diam(7T")4~! ~ |T'|, where the hidden constants depend only on d, C., and ’7A'0,m.

5.5.4 Verification of (M4)

Let 7o € T, T € To, and m € {1,...,M} with T C T',,. We show that there exists
r ~ diam(T") with B,(T) NT' C me(T), which concludes (M4).

Step 1: According to Lemma 3.4.5 and Remark 5.4.1, admissibility 7, € T shows that
llevel(T") —level(T")| < 1 for all 7" € II4(T). Since we only use dyadic bisection, there exists
an upper bound for the number of possible configurations of 7" and me(7") depending only
on the initial meshes 7A67m/ and (an upper bound for) level(T"). In particular, this implies
that diam(7") < dist(7,T" \ me(T")), but the hidden constant still depends on (an upper
bound for) level(T'). We see that it only remains to consider small elements 7" with high
level.

Step 2: In this step, we show that there exists z € A, and a generic constant C' > 0
such that 74(T") C m4(2) and Ba(T) NT' C 7 (2) if level(T') is sufficiently high. Without
loss of generality, we assume that T N7, ([0,1/2]%71) # ) and set z := 7,,(0). Note that
Ym([0,1/2]471) N A, = {z}. Since we assumed that the surfaces have no hanging nodes,
z & T,y implies that Ty Ny, ([0,1/2]971) = 0 for all m/ € {1,..., M}. We abbreviate

Crn = ?11111 " dist (T, ¥ ([0, 1/2]971)) = dist (I \ 7, (2), 7 ([0, 1/2]971) > 0.
m'e{1,...,
2L,

Let level(T) be sufficiently high such that diam(me(7")) < C,,, which is possible due to
(M1)-(M2). Note that this choice depends only on the dimension d, the constant C,,
and the initial meshes. With the assumption that 7" N 7,,([0,1/2]"1) # 0, we derive that
Te(T') C m,(2). The same argument proves that B¢, o(T) NI C 7,(2) if diam(T) < Cp, /2.
Step 3: Due to Step 2, we may consider the set 72 (7e(T")) C 7, (2) provided that level(T)
is sufficiently high. Recall that |level(T') — level(7”)| < 1 for all T € I1,(T); see Step 1.
With the assumptions for the mapping =, of Section 5.4.1, and since we only use dyadic
bisection, we see that the number of possible shapes of v 1(T) and ;! (e (7)) is uniformly
bounded. In particular, there exists 7 ~ diam(vy; (7)) with Br(v; (T)) C v ' (7e(T)). Bi-
Lipschitz continuity of 7, and Step 2 yield the existence of r ~ diam(T") with r < C,,/2
such that

BA(T)NT = Bo(T) N7y (2) C ma(T).

Together with Step 1, this concludes (M4), where the constant Ceen depends only on
the dimension d, the parametrizations <, and 7., and the initial meshes 7 ,, for m €
{1,...,M} and z € N,
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5.5.5 Verification of (M5)

We show that there are only finitely many reference point patches. Then, Proposition 5.2.2
will conclude (M5). Let 7o € T and z € I'. According to Lemma 3.4.5 and Remark 5.4.1,
admissibility T, € T shows that |level(T') — level(T”)| < 1 for all 77 € II4(z). Since there
are no hanging nodes in A, there exists 2’ € A such that me(z) C m(2'). With the
assumptions for the mapping v, of Section 5.4.1, and since we only use dyadic bisection,
we see that the number of possible shapes of Te(z) := 7;1(77.(27)) C 7,(2') is uniformly
bounded. More precisely, there exists a finite set {@j i j € {1,...,J}} of connected
subsets W; C R such that for arbitrary z € I'" and corresponding 2’ € N, there exist
j €{1,...,J} and an affine bijection yz,(.) : @; — Te(2) with

V70 (2)(8) = Vru(2) (D)
diam (7 (2))

~|s—t| foralls,ted;. (5.5.1)
Since 7,/ is bi-Lipschitz, there holds that diam(7e(z)) ~ diam(me(z)), and we see for the
mMAapping Vr,(z) := V2’ © Vrl(z) that

Te(2 T Ime(z 13 ~
i .(d)i;jr)mwf);z:)())( ) ~|s—t| forall s,te€ ;. (5.5.2)

Thus, the application of Proposition 5.2.2 (on the interior of &;) concludes (M5).
The constant Cisepi depends only on the dimension d, the parametrizations v, and ./,
and the initial meshes 7o, for m € {1,..., M} and 2’ € N,

5.5.6 Verification of (R1)—(R3)

The son estimate (R1) is trivially satisfied with Cson = 2971 since each refined element is
split into exactly 2971 sons. The union of sons property (R2) holds by definition. Finally,
the proof of (R3) works just as in Section 4.5.3, where one now has to use (5.4.2) instead
of (4.4.2). The constant pson depends only on d and C,.

5.5.7 Verification of (R4)

We imitate the proof of Section 4.5.4. For a mesh 7, € T and an arbitrary set M,, we
define refine(7,, M,) := refine(T,, M, N T,) and note that refine(7,,0) = 7T,. With
this notation, Lemma 4.5.1 is also valid in the current situation. Recalling the definitions
(5.4.19) resp. (5.4.21) of N4(-) resp. NP24(.), the proof can be essentially copied.

Lemma 5.5.1. Let T, € T. Then, there holds that
refine(7,, M,) = refine(refine(... (refine(7,{71})...,{T0n-1}),{Tn}) (5.5.3)
for arbitrary Me = {T1,...,T,} C Te with n € N. O

Let 7o € T. For T € Ty with T' C Iy, for some m € {1,..., M}, we define mid(T’) as
Ym(mid(T")), where mid(7") denotes the midpoint of the corresponding element 7" in the
parameter domain I';,. Now, let T,7" € T, with 77 € No(7T), and let m,m' € {1,..., M}
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5 Boundary Element Method

with T'C Ty, and 77 C T',,,r. Therefore, either 7" € N, ,,,(T), or T and 1" are in different
boundary parts, i.e., m # m’, and the intersection T'N 7" is non-empty. In both cases
admissibility of 7, provides [level(T") — level(T”)| < 1; see Lemma 3.4.5 and Remark 5.4.1.
For the first case, (4.5.4) and bi-Lipschitz continuity of ,, show that

Imid(T) — mid(7")| < 27level(D), (5.5.4)

Clearly, the same holds true in the second case. This particularly implies that Lemma 4.5.2
holds accordingly. Indeed, the proof can be copied verbatim (up to the symbol = ).

Lemma 5.5.2. There exists a constant C > 0 such that for all Tq € T, T" € To, and
To = refine(7,,{T"}), it holds that

Imid(T) — mid(T")| < ¢ 27D for all T € To \ T, (5.5.5)

where C' > 0 depends only on the dimension d, the constant C, the initial meshes 7A67m,
the polynomial degrees and (p1m, ... ,DPd—1,m) for m € {1,...,M}. O

Also the property (4.5.7) is still valid: For T' € T, and 7 := refine(7,,{1'}) there holds
that

level(T") < level(T) + 1 for all refined 7" € 75 \ Ts. (5.5.6)

This follows from the fact that all elements T € T, \ 7o that are refined satisfy that
level(T”) < level(T'), wherefore their children 7" satisfy (5.5.6). With this last observation,
we can argue as in the proof of | , Theorem 12] to show the closure estimate (R4).
The constant Cjs depends only on d, C., 7\67% and (P1m, -+, Pd—1,m) form e {1,..., M}.

5.5.8 Verification of (R5)

Let Tq, T, € T. For each m € {1,..., M}, let ﬁ,m be the common refinement of ’?.m and
T,m of Section 4.5.5. We already saw there that 7, ,,, € T,,, and that

#%,m S #ﬁ,m + #7;771’1, - #%,m (557)

Summing all components gives the overlay estimate
#To < #Te + #Ti — #7To- (5.5.8)

We still have to show that 7, is a refinement of 7, and 7. Clearly, 75 is finer than these
meshes. By Proposition 5.4.3, we just have to verify admissibility of 7,. Let T,T7" € Tg
with non-empty intersection, and suppose that T C I',,, and 7" C T',,,; for some m,m’ €
{1,...,M} with m # m/. We have to show that TN T’ is a common (transformed)
lower-dimensional hyperrectangle. Without loss of generality, we assume that T € T, and
T' € T,. Further, we may assume that dim(7°N7T") > 0. Then, by definition of 7g,
there exist T, € T, and T, € T, with T C Ty, C 'y, and T C T, C T,,». Obviously, T
and T, have non-empty intersection as well. Hence, admissibility of 7, shows that TN T,
is a common (transformed) hyperrectangle. We suppose that 7" is obtained from T via

146



5.5 Proof of Theorem 5.4.5

iterative bisections, i.e., T" G Ty, and lead this to a contradiction. The intersection T'NT" is
only a proper subset of a (transformed) hyperrectangle of T'. Since T, 2 T', the same holds
for T, instead of T, i.e., Ty NT" is only a proper subset of a (transformed) hyperrectangle
of T,. Thus, admissibility of 7, leads to a contradiction, and we see that 7" = T, sharing
a common (transformed) hyperrecangle with 7.

5.5.9 Verification of (S1)

For piecewise constants and piecewise affine functions on a triangulation of the boundary
of a polyhedral domain €, the inverse estimate (S1) is already found in [ , Theo-
rem 4.7]. [ , Theorem 3.6] and [ , Theorem 3.9] generalized the result to arbi-
trary piecewise polynomials on curvilinear triangulations. In the recent own work [ ,
Proposition 4.1] and based on the ideas of | |, we proved (S1) for non-rational splines
on a one-dimensional piecewise smooth boundary I'. In the proof, we derived the following
abstract criterion for the ansatz functions which is sufficient for the inverse inequality (S1).
Although, there, we only considered d = 2, the proof works for arbitrary dimension d > 2.

Proposition 5.5.3. Let T, € T be a general mesh as in Section 5.2.1 which satisfies (M1)—
(Mb). We assume that the Lipschitz constants of the mappings yp : T — T are uniformly
bounded, i.e., there exists a constant Cyip, > 0 such that

o hr(s) ()]

lip < s — 1] < Cip forall s,t € T with T € Te. (5.5.9)
S fe—

Moreover, let ¢ € L*(T) satisfy the following assumption: There exists a constant pip; €
(0,1), such that for all T € Tq there exists a hyperrectangular subset R of the interior
T° (i.e., Ry has the form Rp = VT(ET) with Ry = H?;ll lar,i, bri] C T° for some real
numbers ar; < br;) such that |Rr| > pint|T|, ¥ does not change its sign on Ry, and

inf [9(x)| > pint Y] oo (7). (5.5.10)
TERT

where inf denotes here the essential infimum. We further assume that the shape-regqularity
constants of the sets R are uniformly bounded, i.e., there exists a constant Crec > 0 such
that

br; —ar,;

max {
bry — ary

T eTahi,i € {1,...,d—1}} < Cre foralTeTa (5511

Then, there exists a constant Ciny > 0 such that

1/2
15> %20y < CinnllWll 172y (5.5.12)
The constant Ciny depends only on d, Clip, pint, Crec, and (M1)—(M5).

Proof. We split the proof into three steps.
Step 1: We construct a suitable test function v € H'/2(T"). For T € T,, we define a bubble
function By on I' via

d—1 s —~1 .
- ti—ar;  bri—t; B fzeR
Br(t) = | | i 70T | i b . Br(z):= T oy (%) Irx e fvr,
=5 \bri —ar; bri—ar; 0 else.
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5 Boundary Element Method

It satisfies that 0 < By < 1 and supp(Br) = Rp. A standard scaling argument together
with Lemma 5.2.1 proves that

|Rr| <|IBrl 22y S IBrlloiar) S IR, (5.5.13)

where the hidden constants depend only on d, Ciec, and Cyip. Moreover, Br is Lipschitz
continuous, which implies that By € H'(T'); see, e.g., | , Theorem 2.28]. Again, a
standard scaling argument together with the chain rule (5.1.3) and Lemma 5.2.1 proves
that

| Ry ’2/((1 1)HVFBTHL2(RT) HBTHL2 (Rr) (5.5.14)
where the hidden constant depends only on d, Crec, and Cy;,. We define the coefficients
cr = sgn(Y|r, )hr inf |Y(x)]. (5.5.15)
TERT

By definition of the dual norm, it holds that

(0O it e, 0= 3" erBre H(T) c HYA(I).  (5.5.16)

P
120 = ol oy =

Step 2: We estimate the numerator in (5.5.16). The definition (5.5.15) shows that

Z/w Yer By (x) da

TET

> Z hr lnf (@) | Brll i (ry)-
TeTe

The application of (5.5.10) and (5.5.13), together with the fact that |T'| ~ |Rp| proves that

o, ) 2 S bl BTl rey 2 D b 9122y = 10 >0l 22py-  (5.5.17)
TeTe T€eTe

Step 3: It remains to estimate the denominator [[v|[g1/2(ry in (5.5.16) from above by

th 2¢H r2(r)- Similarly as in the proof of Corollary 5.3.9, one easily derives from Lemma 5.3.2
with (M1)—(M3) and (Mb5) that

—1/2 1/2
1012272y S 1he 20120y + 1ha > Vol 3y

Note that ||he 1/2 vaH 21) = hTCT||VFBTHL2 Ry) 85 well as ||h vHLQ(T) ||BTHL2 (Rp)
for all T € T,. Thus, we see with (5.5.14) and hy = |T|V/(@=1) ~ |Rp|V/(d-1) that

—1/2
gy S I ol + 3 AV ey
T€Te
T I Py + Y bk Re D B
N . L2(T) Ter|itr TlL2(Ry)
T€Te
—1/2
~  |nY 122y
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5.5 Proof of Theorem 5.4.5

With (5.5.13) and (5.5.15), we proceed

—1/2 _
e o2y = Y bR GIBrl sy

TeTe

5.5.13

S Ry
TeETe

CLD S ey inf ()P Ry

TERT
TETe
1/2
<> hrllBRaay < P Ra )
TeTe
This concludes the proof. O

To apply Proposition 5.5.3 to hierarchical splines, we need the next elementary lemma
which was already proved in the recent own work | , Proposition 4.1].

Lemma 5.5.4. Let p € Ny be a fized polynomial degree, and let I be a compact interval
with |I| > 0. Then, there exists a constant p € (0,1) such that for all polynomials P of
degree p on I, there exists some interval [a,b] C I° of length (b—a) > p|I| such that P does
not change its sign on [a,b] and

in [P > plIP|lrooin. 5.5.18
féﬁ]’ &) = p Pl ( )

The constant p depends only on p.

Proof. We only prove the assertion for I = [0,1]. The general case follows immediately by
a scaling argument. Instead of considering general polynomials PP (0, 1) of degree p, it is
sufficient to consider the following subset

M= {P e PP(0,1) : [P~ =1}

Note that M is a compact subset of L>°(0,1) and that differentiation (-)’ : PP(0,1) —
PP=1(0,1) with P~1(0,1) := {0} is continuous due to finite dimension. In particular, this
implies boundedness suppe g || P'[|o(0,1) < C < 0o. We may assume that C' > 2. For

given P € M, we define an interval [a,b] C I having all the desired properties but [a,b] C
I°: Without loss of generality, we assume that the maximum of |P| is attained at some
a € [0,1/2] and that P(a) = 1. We set to :=a+1/C € (a,1] and b:=a+1/(2C) € (a,3/4].
Then, (b —a) = 1/(2C) and for all ¢ € [a,b] it holds that

1/2 2 Cltg—t) = P(@) + Ca—t) < P@ + [Pl (@—1) < P(t) = |P@®)].
Altogether, we have that

p:=1/(2C) <1/2 < min |P(t)] and b—a=p.
tela,b]

Now, we shrink the interval [a, b] around its midpoint, i.e., we choose a := (a+b)/2—(b—a) /4
and b := (a+0b)/2 + (b —a)/4. Clearly, [a,b] C I° has the desired properties with p :=
p/2. O
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5 Boundary Element Method

Finally, we come to the proof of the inverse inequality (S1). Let 7o € T be an admissible
hierarchical mesh on I'. We recall that X, is a product space of transformed hierarchical
splines. Thus, we can assume without loss of generality that we are in the scalar case, i.e.,
D = 1. We show that all ¥, € X, C L?(I") satisfy the assumptions of Proposition 5.5.3 and
hence conclude that Hhi/Q\IJ.Hp(F) S 1Wellgr-1/2(r)- We have already seen that (M1)—-(M5)
are satisfied. Moreover, (5.5.9) is trivially satisfied since each ~p is just the restriction of
some Y, to T = VX (T), where m € {1,...,M}. For T € T,, we abbreviate U, := U, 077
Due to the regularity (5.4.2) of the parametrlzatlons Ym it is sufficient to find a uniform
constant pinf € (0,1) and a shape-regular hyperrectangle Ry C T° such that |Ry| > pinl T,
¥, does not change sign on RT, and

inf [We(t)] > ﬁinH\IIOHLoo(j"\)' (5.5.19)
tERT

Indeed, one sees as in Section 4.5.3 that |Rp| > pine|T| implies that |Rp| > ping|T| for some
uniform constant pi,s € (0,1). Recall that T, coincides with a tensor- product polynomial
P. Hence, there exist polynomials P; of degree pmax such that P(t) = [/} P;(t;). With the
notation 7' = H‘ij:_ll T, and Ry = H?:_ll (ET)Z', we see that the latter inequality is satisfied
if for all 4 € {1,...,d — 1} it holds that

. ~1 d 1
inf [Pt > 5k NPl ez, (5.5.20)
t,€(Rr);

We define (RT) as the interval of Lemma 5.5.4 corresponding to the polynomlal P; on the
interval I = T With the constant p of Lemma 5.5.4, we set pmf = p?=1. Then, (5.5. 20)
and therefore (5.5.19) is satisfied. Moreover, one sees that \Ry| > pmf]T\ and that ¥,
does not change its sign on RT C T°. It remains to prove shape-regularity (5.5.11).
Since, ‘the refinement procedure refine only uses uniform bisection of elements, the ele-
ment 7T is shape-regular in the sense that T;| ~ |Ty| for all i,7/ € {1,...,d —1}. This,
together with |(Rr);| > p|T;|, proves (5.5.11). Altogether, we conclude (Sl), where the
constant Cj,, depends only on the dimensions d, D, the (fixed) number M of boundary
parts I';,, the parametrizations -,, and <., the initial meshes ’7A'0,m, and the polynomial
orders (p1,m,-..,Pd—1,m) for m € {1,..., M} and z € N,.

5.5.10 Verification of (S2)
Let T € T and 7, € refine(7,). The nestedness X, C X, was already stated in (5.4.17).

5.5.11 Basis of hierarchical splines on the boundary

In this section, we give a basis for X,. For m € {1,..., M}, recall the definition of hierar-
chical B-splines B, ,, from Section 3.4.2. Then,

Xem = Span(Bf?m) with  Bem, = {Bo b Be l;)’\.,m}, (5.5.21)

where BL,, forms even a basis. For 3 € BY “m> let Trunce(B) := Trunc, ,,(8) = Trunc.m(/ﬂ\o
Vm)O%n denote the componentwise truncation of Section 3.4.3 transformed onto I';;,. Then,
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5.5 Proof of Theorem 5.4.5

another basis is given by
X m = span{Trunce (3) : B € Bf?m . (5.5.22)

If we identify functions in L?(I',,)” with their extension (by zero) in L?(I')”, there holds
that

M
X, = span(BP) with B, := U Be m.: (5.5.23)
m=1
where BY forms even a basis. Another basis is given by
X, = span{Trunc.(8) : § € BP}. (5.5.24)

5.5.12 Verification of (S3)

Let 7, € T, T5 € refine(7,), and T' € T, \ I1d°*(T, \ Ts), where we set gioc := Gproj +
2(Ppmax + 1). Later, gproj will be fixed as gproj := 2(Pmax + 1). Since X, is a product space
of transformed hierarchical splines, we can assume without loss of generality that D = 1.
The proof now works essentially as in Section 4.5.9. There holds that

(el s gy o € Ao} = span{B] s+ 8 € Bu A [supp(8) 1787 (7)) > 0)

(T)

as well as
{Wol s gy + o € Ko} = span{B]_sows ) + B € Bo A [supp(8) N 7™ (T)| > 0}.
We show that
{B € Bs : [supp(B) N7 (T)| > 0} = {B € B, : |supp(8) N7 (T)| > 0}.  (5.5.25)

First, let 5 be an element of the left-hand side. Then, Remark 3.4.4 implies supp(5) C

7a°°(T). As in (4.5.13), one easily verifies that TI3°*(T) C 7, N 7;. In particular, we
see that supp( ) - U(T. N 7;m) for the correspondmg 5 = [ o7y in the parameter
domain F . This proves that no element within Supp(ﬁ ) is changed during refinement, i.e.,
Q’im N supp(ﬁ) Q’gm N supp(ﬂ) for all k € Ny. Thus, (3.4.13) proves that 5 € B, ™o and
hence 8 € B,. The proof works the same if we start with some 8 in the right-hand side of
(5.5.25). This proves (5.5.25) and therefore (S3).

5.5.13 Verification of (S4)

Let T, € T. First, we recall that X, is a product space of transformed hierarchical splines.
With Remark 5.2.3, we can thus assume without loss of generality that D = 1. | )
Lemma 2.6] resp. | , Lemma 3.5] prove a similar version of (S4) for splines on a
one-dimensional boundary I' resp. for certain piecewise polynomials of degree 0,1,5, and
6 on curvilinear triangulations of a two-dimensional boundary I". There, the proof follows
from direct calculations, where [ , Lemma 2.6] actually only proves (S4) for splines of
degree 2. In contrast, we will make use of the following abstract result.
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5 Boundary Element Method

Proposition 5.5.5. Let D = 1. Let To € T be a general mesh as in Section 5.2.1 which
satisfies (M1)—(M3). Assume that there exists a finite subset By C Xo, which satisfies the
following three properties:

(i) Non-negativity: Each B € B, is non-negative.
(ii) Locality: There is some qly,, € No such that for all B € B, there exists an element
T3 € To with supp(3) C wféupp (T).
(iii) Partition of unity: It holds that 35 5. B=1.

Then, (S4) is satisfied with Gsupp = 2qkupp, and the constant punity depends only on (M1)-
(M3) and qlypp-

Proof. Let T € To. We set
Very = Ver = Z B.
BeBe
T Csupp(B)
This implies that 0 < Uy 7 < 1 and ¥, r|r = 1, wherefore we have that 7' C supp(Ve 7).
Note that 7" C supp(f) implies that 7' C supp(3) C Teuer (TE)' In particular, we obtain

that 7' e I8P (T), and hence wa“PP(TE) C me&P(T) with gsupp =
that supp(Ve ) C 7" (7). Finally, there holds that

/ (1= Wor)?de < / (1= 0)%da = Jsupp(Va 7)| — |T
supp(\I/.yT) supp(\I/.’T)\T

2qupp- We conclude

T
= 1= 7) supp(Ve,7
(1= eapprwgyy) upp(¥er)
T 2
< <1 - m) [supp(Ve, 1) < prunity [supp(Ye,7)],
where 0 < punity < 1 depends only on (M1)-(M3) and ¢l O

We choose By = {Trunce(3) : 8 € B} in Proposition 5.5.5. Then, (i) follows from
(3.4.22), (ii) with ¢fypp = 2(Pmax + 1) from Remark 3.4.4, and (iii) from (3.4.23). This
concludes the proof of (S4), where gsupp = 4(Pmax + 1), and punity depends only on the
dimension d, the number M of boundary parts I';,, the constant C, the initial meshes

7\67% and (p1,m;---,Pd—1,m) form € {1,..., M}.

5.5.14 Verification of (S5)—(56)

Let 7o and S C 7,. Since X, is a product space of transformed hierarchical splines, we
may assume without loss of generality that D = 1. For m € {1,..., M}, we set S
{'y T eSNnT, m} Let ﬁ* be the dual basis functions and TA thelr correspondmg
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support (which depends on ’7A'.m) of Section 3.4.5. We define the operator J, s : L3(T) —
{‘I’. e X, : \I’.|U(7—.\S) = 0} via

(Jo.5%) 0 Yy, = j: m&, (Yoym) forallmed{l,.... M}, (5.5.26)
where
Tyms,  DP@Cn) = Xem, b Y | B*¢ dx Trunce , (8). (5.5.27)
Beﬁ.,m R s
supp(8)CU Sm

Note that the sum is always finite since the maximal level is bounded. Recall that 0 <
Trunc.,m(ﬁ) <B (see (3.4.22)), wherefore J, s clearly maps into the desired space {¥, €
Yo Walyiras) =05

We come to the verification of the properties (S5)—(S6). Let gproj := 2(Pmax + 1) and
Qloc = Gproj + 2(Pmax + 1) of Section 5.5.12. Moreover, let T' € T, with [Ide<(T) C S and
m € {1,..., M} with T C T,,. Recall the notation T = VX (T). For all ¢ € L*(T'), there
holds with the abbreviation 12 := 1) 0 7, that

(Jo,8¢) o ’7m|f = (:]\.7m7§m72)\)|j“\ = Z N B\*(de Trunco,m(gﬂf'
BeAgo,m . TE
supp(8)CUJ Sm

-~

Note that Truncs,,,(3)|# vanishes if lsupp(3)NT| = 0. Due to Remark 3.4.4, [supp(8)NT| >

0 implies that supp(ﬁ) - H%S&maXJrl)(T\) C Hg{%ﬁ(f) We abbreviate 1255 (T') := {y(f’) :
T € Hg{%(f)} and note that & (T) C H&°(T) N Tem, € S N Tom, which yields that

~

&5 (T) C S,y Hence, we see that

(Jo,5%) © Yl = Z /ﬁ B dw Trunc.m(g)lf.

= T
BEBem P

The right-hand side just coincides with the quasi-interpolation (./T\.,m{b\ﬂf corresponding to

the mesh ’Tim of Section 3.4.5. If 9 satisfies that ¢|ﬂ_zproj 1 € {\I’.|7T:zproj 1) U, € /'\,’.},
and hence ¢|ﬂqpr0j 7 € {\If.7m|7rqpmj K Vem € X.,m}, Proposition 3.4.9 proves that

(Jois8) 0 Ymlz = (Tan®)|7 =

This proves the local projection property (S5).

Finally, we prove local L?-stability (S6). Let again 7' € T, and m € {1,..., M} with
T CT,,. With the notation from before, the boundedness of the Gram determinant (5.4.2)
shows that

||Jo,$¢||L2(T) = ||j:,m,§m¢HLQ(f)
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Exactly as in the proof of Proposition 3.4.9, one estimates

1o Pl 2y S 182t

Thus, from the boundedness of the Gram determinant (5.4.2), we derive with 7digs(T') :=

~

Y (755 (T)) that

120 use iy = 1l g cryy < 9oy

Te,m

which concludes (S6). The constant Cy, depends only on the dimension d, the constant C.,
the initial meshes 7, ,, and the polynomial orders (p1,m, . ..,Pd—1,m) for m € {1,..., M}.

5.5.15 Proof of Theorem 5.4.5 for rational hierarchical splines

As mentioned in Remark 5.4.6, Theorem 5.4.5 is still valid if one replaces the ansatz space
X, for T, € T by rational hierarchical splines, i.e., by the set

P {Wo_l\I/. LU, € )(.}, (5.5.28)

where /V[707m = Wy ovm € g(pl’m"“’pdflvm)(leo,m,’7A'0,m) is a fixed positive weight function
in the initial space of hierarchical splines for all m € {1,..., M}, where we additionally
assume the representation (5.4.24). Indeed, the mesh properties (M1)—(Mb5) as well as the
refinement properties (R1)—(R5) of Section 5.2 are independent of the discrete spaces. To
verify the validity of Theorem 5.4.5 in the rational setting, it thus only remains to verify
the properties (S1)—(S6) for the rational boundary element spaces.

To see the inverse estimate (S1), it is again sufficient to consider D = 1. In Section 5.5.9,
we proved (S1) for X, by applying Proposition 5.5.3 for all Uy € X,. With the notation
from Section 5.5.9, we showed that

inf |We(z)| > pintl| Vel poo(ry forall T € To, ¥y € A,

TERT
where W, does not change its sign on Rp. With 0 < wpiy = infyer Wo(x), wmax ==
supger Wo(z), and pinf := PinfWmin/Wmax, this yields for all ¥, € X, that

~ — Pinf 1 . . —
Pin [Wo el oe(ry < == [ Wa| ooy < inf [Uo(z)| < inf [Wy'We(a)l.
TERT

max max TERT

In particular, the conditions for Proposition 5.5.3 are also satisfied for the functions in
&0 which concludes (S1).

The properties (S2)—(S3) depend only on the numerator of the rational hierarchical
splines and thus transfer.

For the proof of (S4), we exploit the representation (5.4.24) to verify the conditions of
the abstract Proposition 5.5.5. Again, we assume without loss of generality that D = 1.
Let 7, € T. Note that Wy,, is also an element of the standard tensor-product spline
space S\(pl’m"“7pd71’m)(Kuni(k)7m) for all m € {1,...,M} and k € Ny. In particular, it can

be written as linear combination of B-splines in B\uni(k),m- The representation (5.4.24)
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5.6 Numerical experiments with hierarchical splines

and the two-scale relation with only non-negative coefficients between bases of consecutive
levels of Section 3.4 yields that the corresponding coefficients are non-negative. Therefore,
[ , Theorem 1] or [ , Theorem 12] imply that also the coefficients of the linear
combination of WO,m in {Trunc.,m(g) : B € govm} are non-negative, i.e.,

/Wom = Z w, BTrunc.m(B\) with non-negative coefficients w, 5=0. (5.5.29)
Eeg-,m

If we identify functions in L?(I',,) with their extension (by zero) in L?(T'), we can choose

M o -
B, = U {(% Trunc.,m(3)> 07,;1 : 3 € B\.,m} C X,WO.

m=1 O,m

As in Section 5.5.13, one sees that this choice satisfies the assumptions of Proposition 5.5.5.
To see (S5) and (S6), we define the corresponding projection operator

Jf}fg LD 5 {Pe € X Vo s =0}, ¥ = Wy ' e s(Wot). (5.5.30)

The desired properties transfer immediately from the non-rational case.

5.6 Numerical experiments with hierarchical splines

In this section, we empirically investigate the performance of Algorithm 5.2.4 in two typical
situations: In Section 5.6.1, the solution is generically singular at the edges of I' = 9€2. In
Section 5.6.2, the solution is nearly singular at one point.

We consider the 3D Laplace operator ¢ := —A as partial differential operator. The
corresponding fundamental solution reads

Gl2) = — L forall - € B3\ {0). (5.6.1)

T A |z
As already mentioned in Section 5.1.3, the corresponding single-layer operator % : H—1/2 () —
H'Y2(T) is elliptic.

In the first example (Section 5.6.1), we consider the exterior Laplace-Dirichlet problem

~Au=0 inR3\Q,

(5.6.2a)
u=g onl,

for given Dirichlet data g € H/2 (T"), together with the far field boundary condition
1
u(z) = O(m) as |x| — oo. (5.6.2b)

Then, (5.6.2) can be equivalently rewritten as integral equation (5.1.14); see, e.g., | ,
Theorem 7.15 and Theorem 8.9], | , Section 7.5], or [ , Section 3.4.2.2]. Indeed,
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5 Boundary Element Method

the (exterior) normal derivative ¢ := J,u of the weak solution u of (5.6.2) satisfies the
integral equation (5.1.14) with f:= (R —1/2)g, i.e.,

Vo= (R—1/2)g, (5.6.3)

where
R: HYX() - HY?(I) (5.6.4)
denotes the double-layer operator. According to | , Corollary 3.3.12 and Theorem 3.3.13],

if T" is piecewise smooth and if g € L*°(T"), there holds for all z € I the representation
Ryg(x) = / 9(¥)0y(y)G(x,y)dy if I' is smooth in z and g is continuous at . (5.6.5)
r

In the second example (Section 5.6.2), we consider the interior Laplace-Dirichlet problem

—Au =0 in{,

5.6.6
u=g onl, ( )

for given Dirichlet data ¢ € HY?(I'). Then, (5.6.6) can be equivalently rewritten as
integral equation (5.1.14); see, e.g., [ , Theorem 7.6], | , Section 7.1], or | ,
Section 3.4.2.1]. Indeed, the normal derivative ¢ := d,u of the weak solution u of (5.6.6)
satisfies the integral equation (5.1.14) with f := (R +1/2)g, i.e.,

Vp = (R+1/2)g, (5.6.7)

where R denotes again the double-layer operator (5.6.4).

The integral representation (5.6.4) is satisfied for both considered examples. Indeed,
the surfaces I'), of the boundary I' = U%zl I',, are parametrized via rational splines,
i.e., for each m € {1,..., M} there exist polynomial orders pi(y m),Pa(y,m) € N, a two-
dimensional vector E%m = (El(%m),EQ(%m)) of pj(,m)-open knot vectors with multiplicity
smaller or equal to pj(y,m,) for the interior knots, and a positive spline weight function

—

Wym € SPi(y,m) ’pQ(V’m))(IE%m) such that the parametrization -, : fm — T, satisfies that
Vi € {Wv—’#g . Se g(pl('v,m)7p2(%m))(}€%m)3}. (5.6.8)

Based on the knots I/C\%m for the geometry, we choose the initial knots Eom for the
discretization. As basis for the considered ansatz spaces of (non-rational) hierarchical
splines, we use the basis given in (5.5.23). To (approximately) calculate the Galerkin
matrix and the right-hand side vector, we proceed as in | , Chapter 5] where all singular
integrals are transformed via Duffy transformations and then computed with tensor Gauss
quadrature. For the (dense) Galerkin matrix, we do not apply any matrix compression
techniques such as wavelet methods | ) , |, fast multipole methods [ ,

, ], or H-matrix methods | , |. To calculate the weighted-
residual error estimator® (5.2.17), we employ formula (5.1.2) for the surface gradient and

5To ease computation, we replace hr = |T|"/? in (5.2.17) by the equivalent term diam(I) |7'|'/2. Here, T
denotes the corresponding element of T' € T;,,, in the parameter domain I'y,.
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5.6 Numerical experiments with hierarchical splines

use again tensor Gauss quadrature. To this end, we approximate V((f —L®;) o~,,) on an
clement T' € ﬁ,m by the gradient of the polynomial interpolation of the residual f —0®, as
in [ , Section 7.1.5]. In particular, we have to evaluate the residual at some quadrature
points which can be done (approximately) using appropriate Duffy transformations and
tensor Gauss quadrature as in | , Sections 5.1-5.2].

To (approximately) calculate the energy error, we proceed as follows: Let ®, € &, be
the Galerkin approximation of the ¢-th step with the corresponding coefficient vector cg.
Further, let V; be the Galerkin matrix. With Galerkin orthogonality (5.2.15) and the
energy norm ||@||3; = (V¢ , ¢) obtained by Aitken’s A%-extrapolation, we can compute the
energy error as

6 — ol|3 = |03 — @13 = |6]1% — Ve - ce. (5.6.9)

5.6.1 Solution with edge singularities on cube

In the first experiment, we consider the cube
Q:= (0,1/10)3. (5.6.10)

Each of the six faces I',;, of €2 can be parametrized by non-rational splines of degree
P1(y,m) = P2(y,m) = 1 corresponding to the knot vectors El(%m) = I/C\Q(%m) :=(0,0,1,1);
see [ , Section 6.1]. We choose the right-hand side f := 1 in (5.1.14). Note that the
constant function 1 satisfies the Laplace problem, wherefore (5.6.7) implies that K1 = —1/2.
We conclude that

f=(R—1/2)g withg:=—1. (5.6.11)

This means that the considered integral equation stems from an exterior Laplace—Dirichlet
problem (5.6.2). In particular, we expect singularities at the non-convex edges of R3 \ Q,
i.e., at all edges of the cube €.

We consider polynomial degrees p € {0,1,2}. For the initial ansatz space with spline
degree pi m = pam 1= p for all m € {1,...6}, we choose the initial knot vectors Iel(o,m) =
Iez(o,m) :=1(0,...0,1,...,1) for all m € {1,...,6}, where the multiplicity of 0 and 1 is p+1.
We choose the parameters of Algorithm 5.2.4 as § = 0.5 and Cpin = 1, where we use the
refinement strategy of Remark 5.4.6 (c¢) in the lowest-order case p = 0. For comparison, we
also consider uniform refinement, where we mark all elements in each step, i.e., My = T
for all £ € Ny. This leads to uniform bisection of all elements. In Figure 5.1, one can
see some adaptively generated hierarchical meshes. In Figure 5.2 and Figure 5.3, we plot
the energy error ||¢ — ®y||y and the error estimator 7, against the number of elements
#7T. All values are plotted in a double logarithmic scale such that the experimental
convergence rates are visible as the slope of the corresponding curves. Although we only
proved reliability (5.2.22) of the employed estimator, the curves for the error and the
estimator are parallel in each case, which numerically indicates reliability and efficiency.
The uniform approach always leads to the suboptimal convergence rate O((#7;)~'/3) due
to the edge singularities. Independently on the chosen polynomial degree p, the adaptive
approach leads approximately to the rate O((#7;)~'/2). For smooth solutions ¢, one
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5 Boundary Element Method

would expect the rate O((#7T;)~3/47P/?); see | , Corollary 4.1.34]. However, according
to Theorem 5.4.5, the achieved rate is optimal if one uses the proposed refinement strategy
and the resulting hierarchical splines. The reduced optimal convergence rate is probably
due to the edge singularites. A similar convergence behavior is also witnessed in [ ,
Section 5.2] for the lowest-order case p = 0. | | additionally considers anisotropic
refinement which recovers the optimal convergence rate O((#7;)5/4).

5.6.2 Nearly singular solution on quarter pipe
We consider the quarter pipe
Q= {107 (rcos(B),rsin(B),z) : r € (1/2,1)AB € (0,7m/2) Az € (0,1)}; (5.6.12)

see Figure 5.4. We split the boundary I into the six surfaces

Iy = {107 (cos(B)/2,sin(B)/2,2) : B € (0,7/2) Az € (0,1)}
Iy :={107'(r,0,2) : 7€ (1/2,1) Az € (0,1)}

T3 := {107 (cos(B),sin(B),z) : B € (0,7/2) Az € (0,1)}
Ty:={1071(0,r,2) : 7€ (1/2,1) Az € (0,1)}

Is:= {1071(7" cos(B),rsin(B),0) : r e (1/2,1) AB € (077T/2)}
T := {107 (rcos(B), rsin(B),1) : 7€ (1/2,1) A B € (0,7/2)}

I'1,I'3,['5, and I' can be parametrized by rational splines of degree py(y ) = 2, Pa(y,m) =
1 corresponding to the knot vectors /El(%m) = (0,0,0,1,1,1),/62(%@ := (0,0,1,1); see
[ , Chapter 8]. The affine surfaces I'y and I'y can be parametrized by non-rational
splines of degree pi(y ) := Pa(y,m) = 1 corresponding to the knot vectors /El(w) =
IEQ(W,L) :=(0,0,1,1); see [ , Section 6.1].

We prescribe the exact solution of the interior Laplace-Dirichlet problem (5.6.6) as the
shifted fundamental solution

1 1

w(x) = G(x — = 5.6.13

(@) = Gl =) = - (5613

with o := 1071(0.95 - 273/2,0.95 - 273/2,1/2) € R3\ Q. Although u is smooth on Q, it

is nearly singular at the midpoint 7o := 1071(27%/2,273/21/2) of I';. We consider the
corresponding integral equation (5.6.7). The normal derivative ¢ = d,u of u reads

L z—wo

o(x) =— -v(x). (5.6.14)

47 |z — yo?

We consider polynomial degrees p € {0,1,2}. For the initial ansatz space with spline
degree p1,m, := p2.m = p for all m € {1,...6}, we choose the initial knot vectors El(O,m) =
’/C\Q(O’m) :=1(0,...0,1,...,1) for all m € {1,...,6}, where the multiplicity of 0 and 1 is p+1.
We choose the parameters of Algorithm 5.2.4 as § = 0.5 and Cp,;, = 1, where we use the
refinement strategy of Remark 5.4.6 (c) in the lowest-order case p = 0. For comparison, we
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5.6 Numerical experiments with hierarchical splines

also consider uniform refinement, where we mark all elements in each step, i.e., My =T,
for all £ € Ny. This leads to uniform bisection of all elements. In Figure 5.4, one can see
some adaptively generated hierarchical meshes. In the Figure 5.5 and Figure 5.6, we plot
the energy error ||¢ — /||y and the error estimator 7, against the number of elements #7y.
All values are plotted in a double logarithmic scale such that the experimental convergence
rates are visible as the slope of the corresponding curves. In all cases, the lines of the error
and the error estimator are parallel, which numerically indicates reliability and efficiency.
Since the solution ¢ is smooth, the uniform and the adaptive approach both lead to the
optimal asymptotic convergence rate O((#7;)~%/4~P/2). However, ¢ is nearly singular at
Y0, Wherefore adaptivity yields a much better multiplicative constant.
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5.7 Boundary element method with one-dimensional splines

In this section, we consider the model problem (4.1.1) for d = 2. To ease presentation
and without loss of generality, we assume that the one-dimensional boundary I' C R? is
connected. If I' consists of finitely many connected components, the following results hold
accordingly. We introduce univariate splines on I' and propose a node-based local mesh-
refinement. In contrast to the previous refinement strategies that we have considered, this
strategy does not only use element bisections but also increases certain knot multiplici-
ties leading to local regularity reduction of the ansatz functions. We use the notation of
Section 3.3, where we already introduced standard splines in the parameter domain. We
define a node-based version of the residual error indicators of the previous section; see
(5.7.17) below. These are used to steer an adaptive algorithm (Algorithm 5.7.3), which
was developed and numerically investigated in the recent own work | ]

The main result of this section is Theorem 5.7.4 which states that the estimator is reliable
and the adaptive algorithm leads to linear convergence at optimal algebraic rate. This
theorem is already found in the recent own works | ) |, where [ ]
proves reliability, and | | proves linear convergence at optimal rate. It is covered
by the abstract framework of Chapter 2. The verification of the corresponding axioms is
done in Section 5.8.

5.7.1 Parametrization of the boundary

We set T = [0,1], and assume that the boundary I' can be parametrized by a closed
continuous curve

v:T =T with v(0) = ~(1) (5.7.1)

such that the restriction 7\[071) is bijective. Throughout and by abuse of notation, we write
v~ ! for the inverse of Ylj0,1) Tesp- ¥|(0,1)- The meaning will be clear from the context. More-

over, we suppose the existence of finitely many points N, = {E%m :m € H{0,... ,M}} C
[0,1] with 0 = 2,9 < Zy1 < -+ < Zym < 1 such that, with 'y, := [2y —1,%y,m] and
L= 'Y(Pm)7

Ym =g, U L (5.7.2)

is bi-Lipschitz for all m € {1,..., M }. In particular, Lemma 5.2.1 (applied on the interior of
I';;,) shows that v, is almost everywhere differentiable, and there exists a constant C,, > 0
such that

C s —t] < [Am(s) — ym(8)| < Cyls —t| forall s,t € Ty, (5.7.3a)

and
C;l < |y, (#)] < C, for almost all ¢ € Lo (5.7.3b)
We additionally suppose that M > 3 so that each node patch m(z) = {F i m €
{1,....M} Az ey} for z € Ny :={v(Zm) : me{l,...,M}} can be transformed to
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5.7 Boundary element method with one-dimensional splines

some interval: For all nodes z =z, ,,, for m € {1,..., M}, we define an interval 7 (z) C R
and a mapping

Ve 1 Ty (2) = Ty (2), (5.7.4)

via v, = ’y’[g%m717g%m+1} for m < M resp. 'yz\[gmehu = *y\[g%thu and 73‘[17%,1-#1] =
Y(()=Dlpz,, 41 form = M. Then, v, is automatically Lipschitz continuous. We addition-

ally assume that also the inverse . ! is Lipschitz continuous, wherefore v, is a bi-Lipschitz
mapping.

5.7.2 One-dimensional splines on the boundary

Let p € Ny be a fixed polynomial degree. For any p-open knot vector Ko on [0, 1], we define
the space of all splines on I' = [0, 1] as

X, = §p(l€.)D C {(b\ T > RP . {MT € Cm(f)D for all T € 7\’,} (5.7.5)

In order to transform the definitions from the parameter domain T to the boundary T,
we use the parametrization v of Section 5.7.1. All previous definitions can now also be
made on I', just by pulling them from the parameter domain via the mapping . For
these definitions, we drop the symbol ~. If Ke = (te,0,---,te,N,) is a p-open knot vector in
the parameter domain f, we define the corresponding knot vector Ky on I' as the vector
((tep);---(te,N,)). Moreover, we define the nodes Ny := {7(2) : Z € ./\7.} on I' as

the set of all knots. If Te is the corresponding mesh in the parameter domain, we set
Te := {fy(T) T e 7'.}. Clearly, T, is a mesh in the sense of Section 5.2.1, where

~

T:=~y"YT) and ~p:=qlz for T €T, (5.7.6)
and we can use the notation from there. We introduce the corresponding spline space on I

Xe:={Ue0y ' U, € X} C LX(D)P c HVA(D)P. (5.7.7)
According to (3.3.8), a basis of X, is given by the (transformed) B-splines

X, = span(BP) with B, := {E.,M, oyt :je{l,... ,Not}. (5.7.8)

5.7.3 Refinement of knot vectors

In this section, we present a concrete refinement algorithm which uses both bisection and
knot multiplicity increase. To this end, we also introduce an auxiliary refinement algorithm
which fits into the setting of Section 5.2.2. We start in the parameter domain. Recall that
we call a p-open knot vector K. finer than another p-open knot vector Ko if Ko is a
subsequence of IEO. In this case, (3.3.9) implies that the corresponding spaces are nested,
ie.,

X, C X, (5.7.9)
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To transfer this definition onto the boundary I', we essentially just drop the symbol ~. We
say that a p-open knot vector Ky on I' is finer than another p-open knot vector Ko on I,
if the corresponding knots in the parameter domain satisfy this relation, i.e., if KCo is finer
than I/C\.. In this case, there holds that

Xe C X (5.7.10)
Let Ko be a fixed initial p-open knot vector on I' such that
N, CN. (5.7.11)

We set

Ro = max{ T, T € To with TN T # @}. (5.7.12)

7]
For a p-open knot vector Ky on I' and 1" € 7,, we define the set
154(T) == {T" € T (T) : |T'] > Ro|T|}. (5.7.13)

With this, we can formulate the first auxiliary refinement procedure of | , Algo-
rithm 2].

Algorithm 5.7.1. Input: p-open knot vector Ko , marked elements Mo =: ./\/lso) CT,.
i) Iterate the followm steps (a)—(b) fori=20,1,2,... until Z/I.(i) = (:
(i) g
(a) Define Us” = Uy {T' € TAMY : T' € I24(T) .
(b) Define .MSZH) =M uud.

(ii) Bisect all T e ./\/l() in the parameter domain by inserting the midpoint of the corre-
sponding T € To with multiplicity one in the knot vector Ko and obtain a finer knot
vector K.

Output: Refined p-open knot vector Ko = refine(/Co, Ma).

The next algorithm is the main refinement strategy which we will use in the adaptive
Algorithm 5.7.3. In contrast to Algorithm 5.7.1, it receives marked nodes instead of marked
elements as input and also uses knot multiplicity increase for refinement.

Algorithm 5.7.2. Input: p-open knot vector Ko, marked nodes Mq C N.
(i) Define the set of marked elements M, := ().

(ii) If both nodes of an element T € T4 belong to M, mark the element T by adding it to

(iii) For all other nodes in Ma,, increase the multiplicity if it is less or equal to p + 1.
Otherwise mark the elements which contain one of these nodes, by adding them to

M,.
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(iv) With obtained knot vector K, define Ko := refine(K,, M,).
Output: Refined p-open knot vector Ko = refine(Ko, M,).

Clearly, refine(K,, M,) is finer than ICs. For any p-open knot vector Ke on I', we
define refine(kC,) as the set of all p-open knot vectors ICo on I' such that there exist
p-open knot vectors K(g), ..., Ky and marked nodes M),..., M;_1) with Ko = K
= refine(lC(J_l),./\/l(J_l)),... ,]C(l) = refine(lC(O),M(o)), and ,C(O) = Ke.. Note that
refine(lC,,0) = Ko, wherefore Kq € refine(K,). We define the set of all admissible
p-open knot vectors on I as

K := refine(Ky). (5.7.14)
Similarly as in Proposition 5.4.3, one shows that ICy € K implies that
IT|/|IT"| < 2Ry for all T,T" € T, with T NT" # 0. (5.7.15)

This is also proved in | , Theorem 3|. Indeed, one can show (as in Proposition 5.4.3)
that K coincides with the set of all p-open knot vectors K which are obtained via iterative
bisections in the parameter domain and arbitrary knot multiplicity increases which satisfy
(5.7.15). Further, we define the corresponding admissible meshes on T’

T:={T, : K. € K}, (5.7.16)
which coincides with the set of all meshes which result from iterative bisections in the
parameter domain, and which satisfy (5.7.15).

5.7.4 Error estimator

Let Ko € K. Due to the mapping property (5.1.11) and &, C L?(I')?, there holds that
LYY, € H 1(F)D for all ¥, € X,. This allows to employ a node-based version of the
weighted-residual a posteriori error estimator of Section 5.2.4

Ne = Ne(Na) with 14(S)? := Zn.(z)2 for all S C N,, (5.7.17a)
z2€8

where, for all z € N,, the local refinement indicators read
10(2)” = |me (|| f = VPal31 7, ))- (5.7.17b)

5.7.5 Adaptive algorithm
We consider the following adaptive algorithm.

Algorithm 5.7.3. Input: Dérfler parameter 6 € (0,1] and marking constant Cin € [1, 00].
Loop: For each £ =0,1,2,..., iterate the following steps:

(i) Compute Galerkin approximation ®y € Xj.

(ii) Compute refinement indicators ny(z) for all nodes z € Ny.
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5 Boundary Element Method

(iii) Determine a set of marked nodes My C Ny which has up to the multiplicative constant
Chin minimal cardinality, such that the following Dorfler marking is satisfied

O < ne(My)2. (5.7.18)

(iv) Generate refined knot vector Ky = refine(KCp, My).

Output: Refined knot vectors Ky and corresponding Galerkin approximations ®, with error
estimators ng for all £ € Ny.
5.7.6 Optimal convergence for one-dimensional splines

Recall that, for e € K, Ng + 1 denotes the number of all knots in the parameter domain
[0,1]. We define

K(N):={Ke € K: Ng— Ny <N} forall NeNg (5.7.19)
and for all s >0

Clapprox(8) == su min (N +1)°n, € [0, o0]. 5.7.20
approx ( ) NeII\I)O IC.eK(N)( )¥n [ ] ( )

We say that the solution ¢ € H -1/ 2(1“)D lies in the approximation class s with respect to
the estimator if

HQSHA‘;“ = Capprox(s) < 00. (5721)

By definition, [|¢]|gest < oo implies that the error estimator 7 on the optimal knots vectors
Ko decays at least with rate (’)(N: s ) The following main theorem states that each possible
rate s > 0 is in fact realized by Algorithm 5.7.3. The proof is given in Section 5.8 and is
also found in the recent own work [ , Theorem 3.2]. It essentially follows from its
abstract counterpart Theorem 2.3.1 by verifying the axioms of Section 2.3. In particular,
Theorem 5.7.4 (i) states reliability which was verified for the current setting in the recent
own works | , Theorem 4.4] and | , Theorem 3.8].

Theorem 5.7.4. Let (KCy)een, be the sequence of knots generated by Algorithm 5.7.3. Then,
there hold:

(i) The residual error estimator satisfies reliability, i.e., there exists a constant Cye > 0
such that

¢ = Pallg-1/2(r) < Creine  for all Ko € K. (5.7.22)

(ii) For arbitrary 0 < 6 < 1 and Cpin € [1,00], the residual error estimator converges
linearly, i.e., there exist constants 0 < piin < 1 and Cy, > 1 such that

s < Cwplynii for all 5,0 € N, (5.7.23)

170



5.7 Boundary element method with one-dimensional splines

(iii) There exists a constant 0 < Oopy < 1 such that for all 0 < 6 < Oop and Cin €
[1,00), the estimator converges at optimal rate, i.e., for all s > 0 there exist constants
Copts Copt > 0 such that

Copt||pllags < Sup (Ne = No +1)° 1¢ < Copt [| ] acst - (5.7.24)
€No

All involved constants Crel, Clin, Plin, fopt, and Copy depend only on the dimension D, the
coefficients of the differential operator B, the parametrization =y, the polynomial order p,
and the initial mesh 7\6, while Chin, prin depend additionally on 6 and the sequence (®¢)sen,,
and Copy depends furthermore on Cin and s > 0. The constant copy depends only on p, Ny,
s, and if there exists £y with ng, = 0, also on ¢y and np.

Remark 5.7.5. If the bilinear form (U(-), -) is symmetric, then Clyn, piin, and Cop are
independent of (®y)een,; see Remark 5.3.17.

Remark 5.7.6. Theorem 5.7. is still valid if one replaces the ansatz space Xy by rational
one-dimensional splines, i.e., by the set

Vo .= {Wo_l\I/. LU, € )(.}, (5.7.25)

where Wg := Wpony is a fized positive weight function in the initial space of splines §p(I€0).

With the B-spline basis go = {Eo,j,p’[o,l) cje{l,... ,N.}}, we even suppose that Wy can
be written as

No
Wo = Zwo,j Bojpl,1)  with non-negative coefficients wo ; > 0. (5.7.26)
j=1

We will prove this version in Section 5.8.11. Then, the constants depend additionally on

Wo.

Remark 5.7.7. If one modifies the adaptive Algorithm 5.7.8 such that ny denotes again
the element-based residual error estimator of Section 5.2.4, My C Ty is a set of marked
elements, and refine(kCy, My) results from Algorithm 5.7.1 (which does not use knot mul-
tiplicity increase) instead of Algorithm 5.7.2, it fits into the abstract framework of Sec-
tion 5.2. Indeed, all the assumptions from there are satisfied, which can be proved similarly
as in Section 5.5; see also Section 5.8. In particular, Theorem 5.2.5 is applicable and guar-
antees linear convergence of the estimator at optimal algebraic rate. Again, one can also
use rational splines as in Remark 5.7.6.

Remark 5.7.8. If P := —A is chosen as the Laplace operator, | | proves that Theo-
rem 5.7.4 resp. the generalization of Remark 5.7.6 holds accordingly for integral equations
of the form

Wu = f, (5.7.27)

where N : HY?(I') — H~'/2(T") denotes the hyper-singular operator and f € HY(I') is
a given right-hand side. Such equations arise from the solution of Neumann problems of

171



5 Boundary Element Method

the form Pu = 0 in Q with D,u = ¢ on I’ for some ¢ € H*I/Q(F); see, e.g., [ ,
pages 229-231] for more details. In this case, one has to choose continuous ansatz spaces
Ve := X, NCOUT) ¢ HYI) ¢ HY*(I'). Note that all functions X, are continuous on
'\ {7y(0)} provided that the corresponding knot multiplicities are bounded by p instead of
p+ 1. Hence, the adapted algorithm of [ | only increases knot multiplicities up to the
value p. Since, for the Laplace operator, 23 is only elliptic up to constant functions, the
analysis of | | requires an additional stabilization term for the induced bilinear form.

5.8 Proof of Theorem 5.7.4

In Section 5.8.2, we show reliability (5.2.22). The proof works as in Section 5.3.2. To
prove Theorem 5.7.4 (ii)—(iii), we want to apply the abstract results of Chapter 2. How-
ever, at first glance, the adaptive Algorithm 5.7.3 does not fit exactly in the framework
of Chapter 2. Indeed, in each refinement step, one refines the current knot vector based
on some marked nodes instead of purely refining the mesh based on some marked mesh
elements. Nevertheless, we can equivalently reformulate Algorithm 5.7.3 such that it is a
special realization of its abstract counterpart Algorithm 2.2.1. To this end, we introduce
for an admissible knot vector Ky € K, the corresponding set of extended node patches

N, = {%.(z) Dz € ./\/.} with  Te(2) := (7'('.(2’),#.Z.Jeft,#.Z,#.Z.,right) (5.8.1)

where Zq 1ot € No N Te(2) is (with respect to y) the left node and ze right € Ne N7e(2) is the
right node in the patch me(2). Hence, To(z) is just the patch me(2) with the multiplicities
of the nodes that it contains. We define the set of all admissible sets of extended node
patches

N:={N : K. €K} (5.8.2)

Note that K and N are in a bijective relation, and the knowledge of the knot vector Ky € K
implies the knowledge of the corresponding set of extended node patches N, € N and vice
versa. To concretize the setting of Chapter 2, we choose the set of general meshes T of
Section 2.2.1 (which should not be mistaken for the set of admissible meshes T of (5.7.16))

as N. With the refinement strategy of Algorithm 5.7.1, we define for N, € Igl, Mo C NG,
and corresponding nodes M, := {z € N, : To(2) € M.},

refine(N,, M,) := N, with K, = refine(K,, MS,). (5.8.3)

Note that M. C N, \./\N/'O, i.e., each marked extended node patch is changed (by inserting
a knot in it) during refinement. Similarly as in Section 2.2.1, we define refine(N,) as the
set of all refinements. Moreover, we define for S C N, the number of all corresponding
knots

w(S) = Z pu(m) with  p(Te(2)) := #ez for all z € N. (5.8.4)
7eS
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5.8 Proof of Theorem 5.7.4

Recall the abbreviation N + 1 for the number of all knots in the parameter domain [0, 1].
Since #40 = p + 1, we see that

w(N) =No—p and  p(N,) — u(Ny) = No — Np. (5.8.5)
We define
N(N) = {N, €N : p(M,) — p(Np) < N} for all N € Ny, (5.8.6)

Altogether, we have a particular realization of Section 2.2.1. Now, we concretize Sec-
tion 2.2.2. For N, € N, we set

Ne = ne(Na)  with 1e(S)? 1= ) ne(7)? for all § C AL, (5.8.7a)
=
where, for all z € N,, the local refinement indicators read
T (Fo())2 = Ima ()L = B2 (5.8.7b)
We consider the following adaptive algorithm.

Algorithm 5.8.1. Input: Dirfler parameter 6 € (0,1] and marking constant C*. € [1,00].
Loop: For each £ =0,1,2,..., iterate the following steps:

(i) Compute Galerkin approximation ®y € Xj.
(ii) Compute refinement indicators 1y(%) for all extended node patches © € Ny.

(iii) Determine a set of marked extended node patches M, C Ny which is up to the mul-
tiplicative constant C*.  minimal with respect to p, such that the following Dorfler
marking is satisfied

07 < no(Mo)>. (5.8.8)

(iv) Generate refined Nyyq := refine(Ny, My).

Output: Refined sets J\N/g and corresponding Galerkin approrimations ®y with error esti-
mators ng for all £ € Ny.

Let A, € N. Since the maximal knot multiplicity is p + 1, we see that #S < M(g’) <
(p+1)#S for arbitrary S C N, with corresponding nodes S C N,. Further, with the node-
based estimator from (5.7.17), there holds by definition 7s(7e(2)) = ne(2) for all z € N,.
This shows that the output of Algorithm 5.7.3 can be seen as output of Algorithm 5.8.1, if
one chooses for both algorithms the same 6 and C%. = (p + 1)Chyin with Cyin € [1, 00] of
Algorithm 5.7.3. Further, (5.8.5) implies that the approximation constants coincide for all
s >0, ie.,

[llaest = sup  min (N +1)°ne = sup min (N +1)°n,. (5.8.9)
NeNy Ke€K(N) NeNo NoeN(N)
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5 Boundary Element Method

Altogether, we see that Theorem 5.7.4 (ii)—(iii) follows from Corollary 2.3.4 if 7, is locally
equivalent to an estimator 7, which satisfies the axioms (E1)—(E4) and the refinement
axioms (T1)-(T3) are satisfied. To define a suitable equivalent estimator, we replace the
weight |7e(2)| in (5.8.7) by an equivalent weight hz,(,) which uniformly contracts if a knot is
inserted in the patch me(z). Similarly as in the recent own work | , Proposition 4.2],
we construct such a weight in the following proposition.

Proposition 5.8.2. For N.eNandz € Ne, we define with a constant 0 < peq < 1 which
depends only on Ky and p (and which is fized in the proof)

By o) 1= |y (e (2))| pliy e T oS e S (5.8.10)

Then, there exists a constant Ceq > 0 such that
Collme(2)] < E%.(z) < Ceq|me(2)], (5.8.11)

where Ceq depends only on C., Ky, and p. If additionally N, € refine(/\Nf.), then there
exists a constant 0 < pety < 1 such that for all z € Ny with Te(2) € No \No and all 2" € N,
with 2/ = z or 2/ € we(2) \ N, there holds that

hizy (1) < Petr Py (2)- (5.8.12)
where pety depends only on Ko and p.

Proof. (5.8.11) follows immediately from the regularity (5.7.3) of 7. To see (5.8.12), note
that 7. (2) € Ny \ N, implies that at least one new knot is inserted in the patch e (2).

First, we suppose that thereby no bisection is used, wherefore only knot multiplicities
are increased within me(2). Due to our assumption for 2/, this implies that 2’ = z. There
holds that

h"' |fy (,n-o(z)) pj;oZo,left“l‘#oz-i-#ozo’right
S ’,Y—l(ﬂ_.(z)) pz%loZ.,left‘i’#.z‘i’#ozo,right‘f’l _ peq h~ ( )

Now, we suppose that at least one bisection takes place within me(z). By local quasi-
uniformity (5.7.15), there holds that |y~ (7o(2"))| < p1|y ! (7e(2))| with a constant 0 <
p1 < 1 that depends only on Ky. We choose 0 < peq < 1 sufficiently large such that
1 pgq3p < 1. Since the maximal knot multiplicity is p 4 1, this yields that

%%O(Z,) _ ’7—1(%( ))‘ p#oZo Jeftt# 02+ #o0 %0 right
< puly ! (ma(2)) ] ply e T .
The choice pctr := max(peq, p1 pe_q?’p ) concludes the proof. O
For N, € N , we define the locally equivalent estimator
Tle 1= 77.(/\7.) with  77,(S Z 770 (7)? for all SCA., (5.8.13a)

7esS
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5.8 Proof of Theorem 5.7.4

where, for all z € N,, the local refinement indicators read
ﬁ'(%'(z))Q = E%.(z) |f = Q]q)oﬁ{l(ﬂ.(z))- (5.8.13b)

To apply Corollary 2.3.4, we prove in the following subsections the estimator axioms (E1)-
(E4) for the equivalent estimator 7, as well as the refinement axioms (T1)—(T3). The
perturbation ge. is chosen as C,||®, — <I>.||H71/2(F) with some constant C, > 0 which
is fixed later in Section 5.8.5. For the proof, we verify adapted versions of the assumed
properties of the abstract Section 5.2. This can essentially be done as in Section 5.5. With
these, we can derive the axioms similarly as in Section 5.3.

5.8.1 Mesh properties (M1)—(M5)

In this section, we verify the mesh properties of Section 5.2.1 such that we can use some of
the auxiliary results of Section 5.5. Clearly, (M1) is trivially satisfied with Cpaten = 2. (M2)
follows from the regularity (5.7.3) of v as well as (5.7.15). Further, (5.7.3) yields (M3).
(M4) is proved similarly as in Section 5.5.4. Finally, (M5) follows from Proposition 5.2.2
since there exists only one reference point patch: Indeed, due to the assumptions on =, for
all z € I, there exists a bi-Lipschitz mapping 7r, ;) : [0, 1] — 7e(2) such that

[Vre(2)(8) = Vrru(2) (B)]
diam(7e(z))

~|s—t| foralls,tel0,1]. (5.8.14)

The constants of (M2)-(M5) depend only the parametrization v, the polynomial order p,
and the initial mesh 7.

5.8.2 Reliability (5.7.22)
Let Ko € K. There holds Galerkin orthogonality

(f — 0P, \I/.>L2(p) =0 forall ¥, €AX,. (5.8.15)

In Section 5.8.7, we will prove (S4) for &, associated to arbitrary Ko € K. In particular,
we can apply Corollary 5.3.9. Together with the fact that 5 : H~/2(T)P — H/2(I')P is
an isomorphism, we obtain that
16 = Pall 1720y S 10(¢ — o)l 17200y = IS = Dol /21
1/2
S A2 Tr(f = D) | 2y = e

Remark 5.8.3. As in Remark 5.3.10, one sees that

Hf RUGH HH1/2(F) Z Z ‘f Lo, ‘H1/2 (TUT")

TETe T'Ele(T)

=2 |f = 0ulf 2, )

z€N,

(5.8.16)
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5 Boundary Element Method

Again, this is even true for arbitrary f € H/ 2(T)P without the additional regularity f €
HYT)P. In particular,

Fo(2)? :=|f — %@.\él/g(m(z)) for all z € N, (5.8.17)

provides a local error indicator. The corresponding error estimator Fo is often referred to
as Faermann estimator; see also Remark 5.3.10. Obviously, one could replace the residual
estimator np in Algorithm 5.7.3 by the Faermann estimator Fp. However, due to the lack
of an h-weighting factor, it is unclear whether the reduction property (E2) of Section 5.3.2
is satisfied. Based on the ideas of | , Theorem 7], we proved in the recent own
work [ , Theorem 3.4] that one obtains at least estimator convergence limy_, o Fy = 0
and due to reliability also error convergence limy_, . || — <I>gHH_1/2(F) = 0. We even proved
this assertion for rational splines as in Remark 5.7.6. Although [ , Theorem 3.4/
only treats the Laplace problem, the proof immediately extends to the current situation if
one exploits the generalized inverse inequality (5.3.34).

5.8.3 An inverse inequality for splines

We prove the following analogous version of (S1).

Proposition 5.8.4. There exists a constant Ciy > 0 such that for all Ko € K with
corresponding ansatz space X, there holds for all V4 € X, that

Hh \II HL2 < CHIVH\IJ ”H 1/2(1)- (5818)

The constant Ciny depends only on the parametrization -y, the polynomial order p, and the
initial mesh Ty.

Proof. Since A, is a product space of transformed one-dimensional splines, we can assume
without loss of generality that we are in the scalar case, i.e., D = 1. Similarly as in
Section 5.5.9, we show that all ¥, € X, satisfy the assumptions of Proposition 5.5.3, which
concludes the proof. The condition (5.5.9) is trivially satisfied since each ~p is just the
restriction of some v to 7 = 4~ 1(T). Indeed, (5.7.3) yields that Clp < Cy. For T € T,,
we abbreviate ¥y := W, o ~vr. Due to the regularity (5.7.3) of the parametrization =, it
is sufficient to ﬁnd a uniform constant pins € (0,1) and some interval RT C T° such that
|RT| > ,omf|T| T, does not change sign on RT, and

inf [We(t)] = Pintl|Wellfoc (77 - (5.8.19)
tERT

Indeed, one sees as in Section 4.5.3 that |Rp| > ,omf|T| implies that |Rp| > pine|T| for
some umform constant pips € (0,1). Recall that \I/. is just a polynomial of degree p. We
define RT as the interval from Lemma 5.5.4 corresponding to the polynomial ¥, on the
interval I := 7. With the constant P from Lemma 5.5.4, we set Pint := p. Then, (5.8.19) is

satisfied. Moreover, one sees that |RT| > pmf|T| and that ¥, does not change its sign on
RT C TO. |
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5.8 Proof of Theorem 5.7.4

5.8.4 Stability on non-refined elements (E1)

We show the existence of Cyia, > 1 such that for all N, € ﬁl, and all N, € ref ine(./\~/.), it
holds that

ToNa N A) = e (N 1G] < Crtan [P — Ball 121,

In Section 5.8.5, we will fix the constant C, for the perturbations such that Cgap < C,.

The reverse triangle inequality and the fact that me(2) = mo(2) if Te(2) € No NN, prove
that

7o (N NNL) = Tla(Ne NAS)]

~ ~ 911/2
<| 3 UL I — D) liera ey — L T = B8l 12(ra )|
ﬁo(z;:%:ﬁ]\\fo
71/2 5 1/2
= ‘ D I VrB(®e = )l Far, )|

‘eNo
To(2z)ENeNNo

With the regularity (5.7.3) of 7, local quasi-uniformity (5.7.15), and the equivalence (5.8.11),
we proceed

7o (Ne N L) = Tio(Na VNG| S [17e/* V(@ — )] 21y, (5.8.20)

(5.7.10) shows that ®, — ®4 € X,. Therefore, the inverse inequalities (5.3.34) and (5.8.18)
are applicable, which concludes the proof of (E1). The constant Cga, depends only on
the dimension D, the coefficients of the differential operator 3, the parametrization -, the
polynomial order p, and the initial mesh 7\6.

5.8.5 Reduction on refined elements (E2)

We show the existence of Croq > 1 and 0 < preq < 1 such that for all N, € N and all

Ns € refine(N,), there holds that
ﬁo(ﬁo \-/vo)z < Pred ﬁ.(ﬁ.\ﬁo)z + CredHcI)O - (I)°H§{*1/2(F)'
With this, we can fix the constant for the perturbations as

C, = max(Cstab, C’je/j). (5.8.21)
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First, we apply the triangle inequality and the Young inequality to see for arbitrary § > 0
that

TN \NM) = Y Hﬁ;ﬁz)vr(f — 0122, (2)

ze.ﬁfvo ~
To(2)ENo\Ne
< S (IR VR~ 000 oy + [ VeB(@, — B, 2
< Fo() ¥ T oML o (=) T o (2) VI T = BelllL2 (e (2))
z NO
%o(z)iﬁo\ﬁo
T1/2
SR NED DR AT AR U N[
%0(22)2%2\/7.
_ 1/2
+(1+467h) ZN: 1AL VrB(Pe = @) 72, -
ﬁo(z§§N2\No

The second term can be estimated as in Section 5.8.4. To bound the first one, we split each
patch 76 (2) = To jeft (2) U To right (2) into a (with respect to the parametrization v) left and
a right element in 7;. We obtain that

Z Hh1/2 F(f—mq)o)H%Q(ﬂ'o(z))

zEJ}Co
%o(z)e./\/’o\/\/'o

T1/2 T1/2
D DR A2 PR U B1 T SN U=y R L] A"

ZG./r\\/;o ZENVO ~
%o (2)ENo\Ne 7o (2)ENo\Ne

Note that the domains in the first resp. second sum do not overlap. Let z € No with
To(z) € No \ No. If 2z € N,, we define 2/ := z, where 7o(2/) € N, \ N,. Otherwise,
there exists a unique 2’ € Ny with z € Ty 1t (2'), where T4 je5(2") is defined analogously as
above. Again, this implies that 7e(2') € N, \./\7O Altogether, we see with the contraction
property (5.8.12) that

71/2
> IR Ve~ B2 Bar,

z€No
Fo(z)ENo\Ne
1/2
< X > IV~ B,
2/ €Ne 2€No

7o (2')ENe\No Z:ZlvzeTo,left(Z,)\N'

IN

71/2
Z Pctr Hh%i(z/)vf‘(f - mq)O)H%Q(T.’left(z’))'
%o(z/)gﬁo\ﬁo

The same holds for the right elements. Hence, we end up with

> I Ve = DR Fapr ey S per DL I Vo — B [T, o

‘N ‘N,
To(2)ENo\Ne Te(2')ENe\No
~ 7\ RFA2
= Pctr 770(-/\/; \No) .
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5.8 Proof of Theorem 5.7.4

Choosing ¢ sufficiently small such that preq := (1 4+ §)petr < 1 concludes the proof. The
constant Cleq depends only on the dimension D, the coefficients of the differential operator
B, the parametrization -, the polynomial order p, and the initial mesh 7.

5.8.6 General quasi-orthogonality (E3)

Exactly as in Section 5.3.3, one shows convergence of the perturbations limy . || Prr1 —
®¢|[r-1/2(ry = 0. Therefore, the proof of general quasi-orthogonality (E3) can be copied
verbatim from Section 5.3.7.

5.8.7 Discrete reliability (E4)

We show that there exist ggrel € Ng and Clyrel, Crer = 1 such that for all Xy € K and all
Ko € refine(K,), the subset

Reo = MU (NG \ NG i= {Fa(2) : FFa(?) €N\ Ns 2 € No NIl ()} (5.8.22)
satisfies that

Coll®o — Bl 1720y < Care T (), No \ No € R and p(Rac) < Cr(u(Ns) — (L)),

The second property A \J\N/'O C 75,.70 is obvious. Since the maximal knot multiplicity is
bounded by p + 1, we have that

:U'(,iéo,o) § IU'(NO \K/o),

where the hidden constant depends only on p and qqre). Note that 7e(z) € N, \./\N/'O holds
only if a knot is inserted in the corresponding patch Te(2), where a new knot can be inserted
in at most three old patches. Since u(Ns) — p(N,) is the number of all new knots, we see
that

PN\ NG) < 3(u(N) — u(NG)).

Now, we devote ourselves to the first property [ ®o — Qe[ r-1/2(r) < 7o (7%.,0). We prove the
assertion in five steps. First, we derive similar versions of (S1)—(S6).

Step 1: In Proposition 5.8.4, we already proved that (S1) holds accordingly. By (5.7.10),
nestedness (S2) with o, Ko € K instead of 7o, 75 € T is also satisfied.

Step 2: Next, we prove an adapted version of (S3): For gproj € No which will be fixed later
as proj := P, and Gloc := Gproj+p, there holds for all K, € refine(K,), T € '7‘.\11210ch1 ({z €

N, : Tulz) €N, \./\70}), and ¥, € X, that

Vol sproi gy € {\I/.ngproj ) - Ve € X} (5.8.23)
To see this, we argue as in Section 5.5.12.
First, we verify by contradiction that®
2o (T) C I ({z € Ny : Ta(2) € N, ﬂ/\Nfo}). (5.8.24)

5The proof reveals that this is even true for arbitrary ¢ € Ny instead of gioc = Qproj + P-
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5 Boundary Element Method

Suppose there exists T € IId°¢(T) with T" ¢ H.({z eMN, : 7€ N, ﬂ./\~/o}). This is
equivalent to 7' € T1&*¢(T") and T € T \ H.({z e N, : Te(2) € A OJ\N/O}), which yields
that T € TJZec (’7'. \H.({z eEN, : Te(2) € ./\7. ﬂ./\~/o})) Note that

T\ ({z € N} : Ta(2) eN, ﬂ./\N/’o} CIL({z €N, : Te(2) E./\N/'.\./\N/'o},

since T” in the left-hand side implies that z ¢ T" for all T4(2) € N, ﬂJ\N/'O, but T" NN, # 0,
which implies the existence of Te(2) € Ny \ N, with z € T”. Altogether, we see that

T e Mt ({2 € Ny : Ta(z) € N, \./\N/'o}),

which contradicts our assumption for 7" and thus proves (5.8.24).
Next, we prove (5.8.23). Since X, is a product space of (transformed) splines, we can
assume without loss of generality that D = 1. There holds that

{\D.\ﬂzproj ) U, e X} = span{ﬁ\ﬂzpmj 1) B € B, Alsupp(8) N 7™ (T)| > 0}
as well as
{\Ilolwgproj T U, XO} = span{ﬁ\ﬂzpmj (T - B € B, A |supp(8) N 7w (T))| > 0}.
We show that
{B € B, : |supp(B) N7 (T)| >0} = {B € Bs : [supp(B) N7we™ (T)| > 0}. (5.8.25)

First, let 5 be an element of the left-hand side. By Lemma 3.2.1 (ii), supp(/3) is connected
and consists of at most p + 1 elements, which implies supp(8) C wd<(T). We show
by contradiction that no knots are inserted in wd°(7T) and thus in supp(3) during the
refinement from Ko to Ko. Due to (5.8.24), a corresponding node 2’ € N, would satisfy
2! € me(z) for some z € N, with Te(2) € N. A N,. Since N, NN, is just the set of
all (extended) node patches where no new knot is inserted, this leads to a contradiction.
Hence, Lemma 3.2.1 (iii) proves that 5 € B,. The proof works the same if we start with
some (3 in the right-hand side of (5.8.25). This proves (5.8.25) and hence (S3).

Step 3: (S4) still holds true if A, is associated to an arbitrary knot vector Ky € K:
According to Remark 5.2.3, we can assume without loss of generality that D = 1. Then,
(S4) follows from Proposition 5.5.5, where the (transformed) B-splines B, := B, satisfy the
required assumptions due to Lemma 3.2.1.

Step 4: For K, € K and a subset of the corresponding mesh § C 7,, we construct a quasi-
interpolatorion projection J, s : L>mP — {\I’. c X, : ‘I’-|U(T.\S) = 0} which satisfies
(S5)—(S6) with gproj := p and gs, := p. Since X, is a product space of (transformed) splines,
we may assume without loss of generality that D = 1. With the definition S = {7_1(T’ )

T eS8 } and the dual functions B*

.ip of Section 3.3.3, we start in the parameter domain

Jo: L20,1) = Xy, 00— > /O By, ()9 () dt Bajpli.)- (5.8.26)
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5.8 Proof of Theorem 5.7.4

By definition, j. even maps into {\Tl. € AA,’. : \Tl.]U TS = O} With this, we can define
Jos: L*(D) = {We € X : U yirs) =0}, ¥ Ja(por)onyh. (5.8.27)

To show (S5), let T' € T, with IIg*(T) € S and let T be the corresponding element in
the parameter domain. Since {7 (1) : T' € H.(T)} C II4(T), this particularly implies
that TI&(T) C S. Further, let ¢ € L2(T") and ¥ = 1) o v. There holds that

Ne
(Jﬂb) OV‘T\ = (J.¢)’f = Z / B*,],p dtB 7J7P’T'
j=1
supp(Ba,jp)CUS

The term §.7j7p\f does not vanish only if ]supp(ﬁ. gp) N T| > 0. Due to Lemma 3.2.1 (ii),

this requires supp(§.7j,p) C 78 (T). Hence, II%*(T) C & implies that

.¢ o'y|T Z/ B.]p dtB ,J7p|f.

The right-hand side just coincides with the quasi-interpolation (1, (A.ﬁ) ]T of Section 3.3.3. If ¢
satisfies that ¢|ﬂzpmj ) S {\If.|ﬂ:zpmj ) U, € X, } and hence 1/)| Goroj (7 {\I’ | om0l (7
U, € X.}, Proposition 3.3.1 proves that

) .

~

(Jo.s%) 07z = (1Y) |7 = ¥l5.

This concludes the local projection property (S5).
Finally, we prove local L?-stability (S6). Let again T' € T,. With the abbreviations from
before, the regularity (5.7.3) of v shows that

||J-,S¢||L2 - HJ $¢HL2

As in the proof of Proposition 3.3.1, the local quasi-uniformity (5.7.15) yields that
HJ S¢||L2(T S H¢HL2 llsz(T))

Thus, the regularity (5.7.3) of  implies that
H¢HL2 llsz < ||71Z)HL2(7TqSZ (7))

which concludes (S6). The constant Cs, depends only the constant C.,, the polynomial

order p, and the initial mesh 7\6.
Step 5: We set

4drel ‘= {supp + max((ﬂom qSZ) + 2.
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5 Boundary Element Method

Replacing 7, N 7o by H.({z eEN, : Te(2) € A ﬂ./\~/o}) as well as T, \ T5 by H.({z eN, :
Te(2) € N, \./\N/'o}) and using the properties from the Steps 1-4, one can show exactly as in
the Steps 1-3 of Section 5.3.8 that
1/2
H(po - q)°HH_1/2(F) S Hh°/ va(¢ - (p.)HLQ (ﬂ’gdrerH({ZGN.I%.(Z)EN.\/VO}))7

where the adapted (5.3.68) follows from (5.8.24). Recalling the definition (5.8.22) of 75,.,0,
we see that

ndarei Tl ({2 € Ny To(2) € No \NGY) = J{me(2) : 2 € NG AT(2) € Rao}.

Therefore, we obtain with the regularity (5.7.3) of +, local quasi-uniformity (5.7.15), and
the equivalence (5.8.11) that

~ 1/2
CQHq)o - ‘I).HH—I/Q(F) < Cdrel( Z Hh%_(z)vr‘ll(@o - @.)H%Q(ﬂ.(z))>
z€Ne
i.(z)Eﬁo,o

- Cdrelhvo (Ro,o ) 5

where the constant Cqre1 depends only on the perturbation constant C,, the dimension D,
the coefficients of the differential operator 3, the parametrization -y, the polynomial order
p, and the initial mesh 7.

5.8.8 Son estimate (T1)

Let £ € Ng. During the refinement from the extended node patches ./\N/'g to ./\N/'g+1 of Algo-
rithm 5.8.1, one can increase the multiplicity of at most #AN; nodes, and only #7; = #N;
bisections can take place. Therefore, the number of newly inserted knots is bounded by
2H#N, < 2M(,/\~/g). With Cson := 3, we see that

M(M—I—l) < Cson,u(-/vﬁ)-

5.8.9 Closure estimate (T2)

Let £ € Ng. For all j € Ny, let ./\~/j be the extended node patches, Mvj - ./\7] the marked
extended node patches with corresponding nodes M; C N, and ./\/l; C 7; the marked
elements of Algorithm 5.7.2 and Algorithm 5.8.1. With the auxiliary refinement Algo-
rithm 5.7.1, we recursively define K(g) := Ko and K;) := refine(K;_1), Mj_;) for j € N.
Note that 7(;) = 7; for all j € No. [ , Theorem 3] shows that these meshes satisfy
the closure estimate, i.e.,

-1
#T0 = #To < Clios y_ #M), (5.8.28)

J=0

where the constant C?)

Section 5.5.7. Since p(Np) — ,u(J\N/'o) is just the number of newly inserted knots, this term

> (0 depends only on the initial mesh 7A6. The proof works as in
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5.8 Proof of Theorem 5.7.4

can be written as the number of all bisections #7, — # 7y plus the number of all multiplicity
increases. Since, only the multiplicity of marked nodes can be increased, we derive with
(5.8.28) that

-1 -1 /-1
pNG) = n(No) < #To = #To + ) #M; < Clos y # M+ #M,.
j=0 Jj=0 Jj=0

Note that the refinement strategy of Algorithm 5.7.2 yields that #./\/l; < 2#M;. Together

with #M,; < u(M;), this concludes the proof of (T2).

5.8.10 Overlay property (T3)

Let No,N, € N. We define N, via N, := Ny UN, with #.2 := max(#z, #.2) for
all z € N, | , Theorem 3] shows that the corresponding mesh 7, satisfies local
quasi-uniformity (5.7.15). The simple proof works as in Section 5.5.8. Thus, we see that
the corresponding knots K are admissible, wherefore N, € N. Clearly, we have that

N, € refine(N,) Nrefine(N,). Further, by definition, there holds that

WNG) < nNQ) + u(Nz) — o).

5.8.11 Proof of Theorem 5.7.4 for rational hierarchical splines

As mentioned in Remark 5.7.6, Theorem 5.7.4 is still valid if one replaces the ansatz space
X, for g € K by rational hierarchical splines, i.e., by the set

XV = {Wo—lxp. L, € )(.}, (5.8.29)

where WO = Wy o~ !is a fixed positive weight function in the initial space of splines
Sp (I/C\O), where we additionally assume the representation (5.7.26). The mesh properties
(M1)—(Mb) as well as the refinement axioms (T1)—(T3) are independent of the discrete
spaces. To verify the validity of Theorem 5.7.4 in the rational setting, it thus only remains
to verify the axioms (E1)—(E4) for the rational boundary element spaces. Note that these
axioms hinge only on the similar versions of (S1)—(S6) from Section 5.8.7.

To see the inverse estimate (S1), i.e., Proposition 5.8.4, in the rational setting, it is again
sufficient to consider D = 1. We proved Proposition 5.8.4 for X, by applying Proposi-
tion 5.5.3 for all ¥, € A,. With the notation from the proof of Proposition 5.8.4, we
showed for all T' € T, that

. f \I/. > . \Ij. 0o f 11\I/.€Xo7
mler}%T‘ (1‘)’ = meH HL (r) tora

where W, does not change sign on Rp. With 0 < wpy = infeep Wo(z), Wmax =
sup,er Wo(z), and ping := PinfWmin/Wmax, this yields for all ¥, € X, that

~ — Pinf . . _
i W5 Wl < L2 Wy < —— inf [Wa(@) < inf Wy Wa(o)]

max Wmax TERT
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5 Boundary Element Method

In particular, the conditions for Proposition 5.5.3 are also satisfied for the functions in
X0, which concludes (S1).

The (adapted) properties (52)—(S3) depend only on the numerator of the rational splines
and thus transfer.

For the proof of (S4), we exploit the representation (5.7.26) to verify the conditions of
the abstract Proposition 5.5.5. Again, we assume without loss of - generality that D = 1.
Let Ko € K. Note that WO is also an element of the e spline space Sp (IC ). In particular, it
can be written as linear combination of B-splines in B.. The representation (5.7.26) and the
two-scale relation with only non-negative coefficients between bases of consecutive levels of
Section 3.4 yields that the corresponding coefficients are non-negative. This implies that

Wy = Z W, j B ,“;][0 1) Wwith non-negative coefficients w, j > 0.

With the choice

~

— We. i Be
B.;:{M 'y*l:je 1,...,N, },
T { }

Lemma 3.2.1 shows that the assumptions of Proposition 5.5.5 are satisfied.
To see the (adapted) properties (S5)—(S6), we define the corresponding projection oper-
ator

TN LPMP 5 {Ty € Xy 1 Bl yras) =0}, ¥ o Wil Jos(Woh). (5.8.30)

The desired properties transfer immediately from the non-rational case.

5.9 Numerical experiments with one-dimensional splines

In this section, we empirically investigate the performance of Algorithm 5.7.3 in three
typical situations: In Section 5.9.1, the solution is piecewise smooth on I' = 9Q with
certain jumps which locally require discontinuous ansatz functions. In Section 5.9.2, the
solution exhibits a generic (i.e., geometry induced) singularity.

We consider the Laplace-Dirichlet problem

—Au=0 in{,
(5.9.1)
u=g¢g onl,
for given Dirichlet data g € HY/?(I'). The fundamental solution of —A is given by
1
G(z) == 5 log|z| for all z € R*\ {0}. (5.9.2)
T

To guarantee ellipticity of the corresponding single-layer operator 2, we additionally sup-
pose that diam(€) < 1; see Section 5.1.3. Then, (5.9.1) can be equivalently rewritten as
integral equation (5.1.14); see, e.g., [ , Theorem 7.6], | , Section 7.1], or | ,
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5.9 Numerical experiments with one-dimensional splines

Section 3.4.2.1]. Indeed, the normal derivative ¢ := 9,u of the weak solution u of (5.9.1)
satisfies the integral equation (5.1.14) with f := (R +1/2)g, i.e.,

Vo= (R+1/2)g, (5.9.3)

where
R: HYX() - HY*(I) (5.9.4)
denotes the double-layer operator. According to | , Corollary 3.3.12 and Theorem 3.3.13],

if T" is piecewise smooth and if g € L>°(T"), there holds for all z € T' the representation
Ry(z) = / 9(y)0y()G(x,y) dy if T is smooth in x and g is continuous at z.  (5.9.5)
r

These conditions are satisfied for all considered examples. Indeed, the boundary I' is
parametrized via rational splines, i.e., there exists a polynomial order p, € N, a py-open
knot vector K, on [0,1], and a positive spline weight function

N'Y
W, = Z we,j By jplio,) With non-negative coefficients w, ; > 0. (5.9.6)
j=1

such that

~

ve (W15 : §e s (K,)?) (5.9.7)

Based on the knots E,Y for the geometry, we choose the initial knots Eo for the discreti-
sation such that (at least) the corresponding nodes coincide, i.e., ./Vo = ./(\/;,. As basis for
the considered ansatz spaces, we use (5.7.8). To (approximately) calculate the Galerkin
matrix, the right-hand side vector, and the weighted-residual error estimator’ (5.7.17), we
transform the singular integrands into a sum of a smooth part and a logarithmically sin-
gular part. Then, we use adapted Gauss quadrature to compute the resulting integrals

with appropriate accuracy; see [ , Section 5] for details. For the (dense) Galerkin
matrix, we do not apply any matrix compression techniques such as wavelet methods
[ , , |, fast multipole methods | , , |, or H-matrix
methods | ) ].

To (approximately) calculate the energy error, we proceed as follows: Let ®, € & be
the Galerkin approximation of the ¢-th step with the corresponding coefficient vector cg.
Further, let V; be the Galerkin matrix. With Galerkin orthogonality (5.8.15) and the
energy norm ||@||3; = (V¢ , ¢) obtained by Aitken’s A%-extrapolation, we can compute the
energy error as

6 — ol|3 = |03 — @3 = |6]1% — Ve - ce. (5.9.8)

"To ease computation, we replace the term |m(z)| in the error indicators ne(z) = |||me(2)|*2Vr(f —
BP)||x, (=) by the equivalent term diam(I") he. Here, hy € L°°(I") denotes the mesh-width function with
helr = |[v(T)| for all T € Te.
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5 Boundary Element Method

5.9.1 Jump solution on square

We consider the Laplace-Dirichlet problem (5.9.1) on the square
Q= (0,1/4)% (5.9.9)

see Figure 5.7. The boundary I' is parametrized on [0, 1] by a (non-rational) spline curve
of degree p, := 1, where E,Y :=(0,0,1/4,1/2,3/4,1,1). We prescribe the exact solution of
(5.9.1) as

u(z1,x2) := sinh(27z1) cos(2mx2), (5.9.10)

and consider the corresponding integral equation (5.9.3). The normal derivative ¢ = J,u

of u reads
cosh(27xy) cos(2mxs)

sinh(27z1) cos(2mx2)

é(21, 1) = 210 < ) (21, 22). (5.9.11)

It is smooth up to four points as can be seen in Figure 5.8.

We employ splines of degree p := p, with initial knots IEO = 1@. The parameters of
Algorithm 5.7.3 are chosen as # = 0.75 and Cpj, = 1. For comparison, we also consider
uniform refinement, where we mark all nodes in each step, i.e., M, = N, for all / € Ny. Note
that this leads to uniform bisection (without knot multiplicity increase) of all elements.
In Figure 5.9, the corresponding errors and error estimators are illustrated. All values
are plotted in a double logarithmic scale such that the experimental convergence rates
are visible as the slope of the corresponding curves. Although we only proved reliability
(5.7.22) of the employed estimator, the curves for the error and the estimator are parallel
in each case, which numerically indicates reliability and efficiency. The solution ¢ o« has
jumps at the points ¢t = 1/4, t = 1/2, and t = 1 resp. ¢t = 0. As the knots /@ used
for the parametrization of I' all have multiplicity one, the functions of the isogeometric
initial ansatz space are continuous at the points ¢t = 1/4, ¢ = 1/2. Uniform refinement
leads to the suboptimal rate O(N~!) for the energy error, whereas adaptive refinement
increases the knot multiplicity at these problematic points and leads again to the optimal
rate O(N—3/27P) = O(N~5/2); see | , Corollary 4.1.34].

5.9.2 Singular solution on pacman geometry

We consider the Laplace—Dirichlet problem (5.9.1) on the pacman geometry

Q= {r (Z:’;%) cre(0,1/4)AB e (—w/zT,w/zT)} , (5.9.12)

with 7 :=4/7; see Figure 5.10. The geometry is parametrized on [0, 1] by a rational spline
curve of degree p, := 2, where

K, :=(0,0,0,1/6,1/6,1/3,1/3,1/2,1/2,2/3,2/3,5/6,5/6,1,1,1), (5.9.13)

and with the abbreviation w := cos(7/7),

(Wy1s-- o wya3) = (Lw, L, w,1,1,1,1,1,w,1,w,1); (5.9.14)
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5.9 Numerical experiments with one-dimensional splines

see [ , Section 5.3]. We prescribe the exact solution of (5.9.1) as
u(zy1, za) =17 cos (75) (5.9.15)

in polar coordinates (x1,z9) = r(cos3,sin3) with f € (—m, 7). We consider the corre-
sponding integral equation (5.9.3). The normal derivative ¢ = d,u of u reads

(
_ (cos(fB) cos (73) + sin(S3) sin (75)
(a1, 2) = (sin(ﬁ) cos (78) — cos(f3) sin (79)

and has a generic singularity at the origin. In Figure 5.11, the solution ¢ is plotted over
the parameter domain. The singularity is located at ¢ = 1/2 and two jumps are located at
t=1/3 resp. t =2/3.

First, we make a pure 1sogeometr1c approach and choose the polynomial degree p := p,,
the initial knots ICO = ICV, and Wo = Wy; see Remark 5.7.6. We choose the parameters
of Algorithm 5.7.3 as 8 = 0.75 and Cp, = 1. For comparison, we also consider uniform
refinement, where we mark all nodes in each step, i.e., My, = N for all £ € Ny. Note
that this leads to uniform bisection (without knot multiplicity increase) of all elements. In
Figure 5.12, the corresponding errors and error estimators are plotted. All values are plotted
in a double logarithmic scale such that the experimental convergence rates are visible as
the slope of the corresponding curves. Although we only proved reliability (5.7.22) of the
employed estimator, the curves for the error and the estimator are parallel in each case,
which numerically indicates reliability and efficiency. Since the solution lacks regularity,
uniform refinement leads to the suboptimal rate O(N —4/ 7) for the energy error, whereas
adaptive refinement leads to the optimal rate O(N—3/27?) = O(N~"/2). For adaptive
refinement, Figure 5.13 provides a histogram of the knots in [a,b] of the last refinement
step. We observe that at 1/2, where the singularity occurs, mainly h-refinement is used.
Instead, at the two jump points 1/3 and 2/3, the adaptive algorithm just increases the
multiplicity of the corresponding knots to its maximum allowing for discontinuous ansatz
functions.

Next, we consider non-rational splines with

) cv(xy, ) T (5.9.16)

— d Ko= (0> >-22
p 0 an ’CO (0,6,3,2’3’6’ )a
~ 11125
=1 and =(0,0,=,=,-,2,2 1,1
p an ’CO (0,056,35253565 ) ),
~ 1111112255
p =2 and ,CO :(070707_7_7_7_7_7_7_7_7_7_717171)7
6633223366
11111111122252535
p=3 and Ko:=1(0,0,0,0,=, =, =, =, =, =, 2,2, 5,2y =2 = = = 1,1,1,1),

6'6°6°373322°2°333666 "

e., the initial ansatz space mimics (if possible) the smoothness of the geometry repre-
sentation v at the nodes ./\70 = ./\77. Note that ~+ is only continuous and not necessarily
differentiable at the nodes. Again, we consider adaptive refinement with 6 = 0.75 and
Chin = 1 and uniform refinement. For p = 2, we compare in Figure 5.14 the energy errors
with the isogeometric approach from before. In Figure 5.15 and 5.9.3, we plot the errors
and the estimators for p € {0,1,2,3}. Again, adaptive refinement leads to the optimal
convergence rate O(N~3/27p),
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5.9.3 Singular solution on heart geometry

We consider the Laplace—Dirichlet problem (5.9.1) on the heart geometry (consisting of
two semicircles and a square)

2om (- () - (Se) e lovamns e ipnsm
U{ (S?r?((gb N <—11/?8> irel0,V2/8)npe [—W/4737T/4]} (5.9.17)

({2021 Q)

where co(-)° denotes the interior of the convex hull of a set; see Figure 5.17. The geometry
is parametrized on [0,1] by a rational spline curve of degree p, := 2, where

28

Q

K, :=(0,0,0,1/6,1/6,1/3,1/3,1/2,1/2,2/3,2/3,5/6,5/6,1,1,1), (5.9.18)

and with the abbreviation w := 1/v/2,

(Wy1y-- o wyas) = (Lw, 1,w,1,1,1,w,1,1,1,1,1); (5.9.19)
see [ , Section 2.4.1.1]. We set 7 := 2/3 and prescribe the exact solution of (5.9.1) as
u(zy,x2) =17 cos (T(S + 7/2)) (5.9.20)

in polar coordinates (z1,72) = 7(cos,sin3) with 8 € (—37/2,7/2). We consider the
corresponding integral equation (5.9.3). With the abbreviation 8 := 8 + 7/2, the normal
derivative ¢ = 0,u of u reads

o o) — cos(é)cos(Té)—i—sin(é)sin(T@ g g0 g1
91,22 (sin(ﬁ)cos(Tﬁ)—ms(ﬁ)sin(Tﬁ)) (o1, 2) (5:921)

and has a generic singularity at the origin. In Figure 5.18, the solution ¢ is plotted over
the parameter domain. The singularity is located at t = 1/2.

First, we make a pure 1sogeometrlc approach and choose the polynomial degree p := p,,
the initial knots ICO = ICV, and Wo = W% see Remark 5.7.6. We choose the parameters
of Algorithm 5.7.3 as 8 = 0.75 and C,in = 1. For comparison, we also consider uniform
refinement, where we mark all nodes in each step, i.e., M, = Ny for all £ € Ny, which leads
to uniform bisection (without knot multiplicity increase) of all elements. In Figure 5.19,
the corresponding errors and error estimators are plotted. All values are plotted in a double
logarithmic scale such that the experimental convergence rates are visible as the slope of
the corresponding curves. Again, the curves for the error and the estimator are parallel in
each case. Since the solution lacks regularity, uniform refinement leads to the suboptimal
rate O(N -2/ 3) for the energy error, whereas adaptive refinement leads to the optimal rate

O(N—3/27P) = O(N~7/2).
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5.9 Numerical experiments with one-dimensional splines

Next, we consider non-rational splines with

p:=0 and Kp:= (0767575’5’6’1)’
p:=1 and IEO = (0,0,%,%,%,;,%,1,1),
pi=2 and Ky:= (0,0,0,é,%,%,%,%,%,2,2,2,2,1,1,1 ,

i.e., the initial ansatz space mimics (if possible) the smoothness of the geometry repre-
sentation v at the nodes ./\70 = ./\77. Note that v is only continuous and not necessarily
differentiable at the nodes. As before, we consider adaptive refinement with § = 0.75 and
Chin = 1 and uniform refinement. For p = 2, we compare in Figure 5.20 the energy errors
with the isogeometric approach from before. In Figure 5.21 and 5.9.3, we plot the errors
and the estimators for p € {0,1,2,3}. Again, adaptive refinement leads to the optimal
convergence rate O(N~3/2-7),
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0.3

v(3/4) v(1/2)
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0.05 b

(0 ~(1/4)
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Figure 5.7: Geometry and initial nodes for the experiment of Section 5.9.1.
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parameter domain

Figure 5.8: Experiment with jump solution on square of Section 5.9.1. The solution ¢ o~
is plotted on the parameter parameter domain.
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Figure 5.9: Experiment with jump solution on square of Section 5.9.1. Energy error ||¢ —
®y|ly and estimator 1, of Algorithm 5.7.3 for splines of degree p = 1 are plotted
versus the number of knots N. Uniform and adaptive (§ = 0.75) refinement is
considered.
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Figure 5.10: Geometry and initial nodes for the experiment of Section 5.9.2.

. _—\ //—_

| ﬁ |
=
o
=

=-10 B
_
o
|2

15 4

20 | _

-25 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

parameter domain

Figure 5.11: Experiment with singular solution on pacman geometry of Section 5.9.2. The
singular solution ¢ o~y is plotted on the parameter domain, where 0.5 corre-
sponds to the origin, where ¢ is singular.
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5.9 Numerical experiments with one-dimensional splines
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Figure 5.12: Experiment with singular solution on pacman geometry of Section 5.9.2. En-
ergy error ||¢ — ®y||y and estimator 1, of Algorithm 5.7.3 for rational splines of
degree p = 2 are plotted versus the number of knots N. Uniform and adaptive
(0 = 0.75) refinement is considered.
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Figure 5.13: Experiment with singular solution on pacman geometry of Section 5.9.2. His-
togram of number of knots over the parameter domain for the knot vector Kog
generated by Algorithm 5.7.3 (with 6 = 0.75) for rational splines of degree
p = 2. Knots with maximal multiplicity p + 1 = 3 are marked.
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Figure 5.14: Experiment with singular solution on pacman geometry of Section 5.9.2. En-
ergy error ||¢ — ®y|ly and estimator n,; of Algorithm 5.7.3 for (rational) splines
of degree p = 2 are plotted versus the number of knots N. Uniform and
adaptive (6 = 0.75) refinement is considered.
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Figure 5.15: Experiment with singular solution on pacman geometry of Section 5.9.2. En-
ergy error ||¢ — ®y||y and estimator 7, of Algorithm 5.7.3 for splines of degree
p € {0,1,2,3} are plotted versus the number of knots N. Uniform and adap-
tive (6 = 0.75) refinement is considered.
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Figure 5.16: Experiment with singular solution on pacman geometry of Section 5.9.2. The
energy errors |[¢ — ®y|ly of Algorithm 5.7.3 for splines of degree p € {0, 1,2, 3}
are plotted versus the number of knots N. Uniform (for p = 0) and adaptive
(0 =0.75 for p € {0,1,2,3}) refinement is considered.
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Figure 5.17: Geometry and initial nodes for the experiment of Section 5.9.3.
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Figure 5.18: Experiment with singular solution on heart geometry of Section 5.9.3. The
solution ¢ o« is plotted on the parameter domain.
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Figure 5.19: Experiment with singular solution on heart geometry of Section 5.9.3. Energy
error ||¢ — ®y|ly and estimator 7, of Algorithm 5.7.3 for rational splines of
degree p = 2 are plotted versus the number of knots N. Uniform and adaptive
(0 = 0.75) refinement is considered.
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Figure 5.20: Experiment with singular solution on heart geometry of Section 5.9.3. Energy
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error ||¢ — ®||y and estimator 7, of Algorithm 5.7.3 for (rational) splines of
degree p = 2 are plotted versus the number of knots N. Uniform and adaptive
(0 = 0.75) refinement is considered.
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Figure 5.21: Experiment with singular solution on heart geometry of Section 5.9.3. Energy
error ||¢ — ®yllg and estimator 7, of Algorithm 5.7.3 for splines of degree p €
{0,1,2,3} are plotted versus the number of knots N. Uniform and adaptive
(f = 0.75) refinement is considered.
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Figure 5.22: Experiment with singular solution on heart geometry of Section 5.9.3. The
energy errors ||¢ — ||y of Algorithm 5.7.3 for splines of degree p € {0,1,2,3}
are plotted versus the number of knots N. Uniform (for p = 0) and adaptive
(0 =0.75 for p € {0,1,2,3}) refinement is considered.
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