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Abstract

Bioresorbable implants are a class of implants that are resorbed by the body of a patient over the
time of healing. Especially magnesium based alloys are a promising class of implants as no further
operation is necessary but, unlike polymer systems they exhibit sufficient mechanical properties to
effectively support the bone structure mechanically in case of a fracture. A class of patients that can
hugely benefit from this behavior are children as they still exhibit significant skeletal growth and
would hence need a second operation in the case of a non-degradable implant. The investigations
are embedded into the BRIC (BioResorable Implants for Children) project that is a currently running
project initiative of the Laura Bassi Laboratory under the project lead of MedUni Graz. This thesis
deals with the nanostructural response of the bone structure on the implant over a certain span of
time as studied by the method of small angle x-ray scattering (SAXS). The nanostructural changes of
six rat femur bones with different Magnesium implant dwelling times from one to 18 month has been
characterized on the basis of the orientation and morphology of the mineral platelets that make up the
mineral reinforcement of the collagen matrix of the bone. A 2D mapping has been carried out to gain
knowledge on local transitions in response to the implant with a resolution of about 350 µm. From
the scattering patterns averaged information on the degree and direction of preferential orientation
as well as the shape, thickness of the mineral platelets has been extracted. In this master thesis it is
shown that:

• the direction of the platelets changes with the distance to the implant.

• the thickness of the mineral increases over time

• a different degradation behaviour of the pin is visible of in different types of bone.
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Zusammenfassung

Bioresorptive Implantate sind Implantate, die vom PatientInnenkörper in der Heilungszeit resorbiert
werden. Besondere Magnesiumlegierungen sind eine zukunftsträchtige Implantateklasse, weil keine
weitere Operation nötig ist. Sie besitzen jedoch im Gegensatz zu Polymersystemen ausreichende
mechanische Eigenschaften, um die Knochenstruktur im Falle eines Bruches mechanisch auf effek-
tive Weise zu unterstützen. Eine PatientInnengruppe die stark von diesen Eigenschaften profitiert
sind Kinder, da sie noch signifikantes Skelettwachstum aufweisen und daher im Falle eines nicht
abbaubaren Implantats eine zweite Operation benötigen würden. Die Forschungen sind Teil des
BRIC (BioResorbable Implants for Children) Projekts, welches eine Projektinitiative des "Laura Bassi
Laboratory" ist, das gegenwärtig unter der Projektleitung des Med Uni Graz durchgeführt wird.
Diese Masterarbeit behandelt die nanostrukturelle Reaktion des Knochenstruktur auf das Implantat
über eine bestimmte Zeitspanne. Als Methode wurde die Röntgenkleinwinkelstreuung- Small An-
gle X-ray Scattering (SAXS) verwendet. Von 6 Ratten wurden die nanostrukturellen Veränderungen
der Femurknochen mit Magnesiumimplantaten untersucht. Die Implantationszeiten erstreckten sich
von 1 bis 18 Monate. Als Grundlage der Untersuchung dienten die Ausrichtung und Morpholo-
gie der Mineralplättchen, welche die mineralische Verstärkung der Kollagenmatrix des Knochens
bilden. Mit Hilfe eines 2D Mapping wurden Informationen über lokale Veränderungen gesammelt,
welche in Reakion auf das Implantat stattfanden. Die Auflösung des Mapping war c.a. 350 µm.
Aus den Streuungsignalen wurden gemittelte Informationen über die Mineralplättchen gewonnen:
Grad und Orientierung einer bevorzugte Ausrichtung, sowie Form und Dicke der Plättchen werden
untersucht. In dieser Masterarbeit wurde gezeigt dass:

• sich die Richtung des Partikels mit der Distanz zum Implantat verändert,

• die Dicke des Minerals im laufe der Zeit zunimmt,

• ein unterschiedliches Abbauverhalten des Implantates in den unterschiedlichen Knochentypen
sichtbar wird.
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Figure 1: The crystals of hydroxyapatite in the collagen fibers [1]

Bone as a biomaterial

The main representation that we have from bones is a white and resistant material. But bone is much
more than just an inert recollection of minerals. It has more functions than only bearing our body’s
weight and allowing us to move, as it acts as calcium storage, blood cells production in the bone
marrow. Thanks to those structures, the bone is light and resistant, adaptable and optimized for the
load it has to endure. This biocomposite material allying high strength and fracture resistance has
been often analyzed und studied to inspire

Aim of the study

When a kid breaks his arm, usually, two solutions are available, either, his arm is put in an orthopedic
cast, or, if the wound is more serious, he has to be operated to have metallic implants that realign and
maintain the bone in a more efficient way. The alloy chosen to make the implants is biocompatible
and also resists to corrosion. But this has the consequence of needing a second operation when
the fracture is repaired, in order to take the implants back, so it does not disturb bone growth by
constraining it. A second surgery leads to more trauma, more scars, a need for rehabilitation, which
in the end, has not only an impact on the health of the child, but has also a cost. Current research
aims at avoiding this second operation, by having an implant that would dissolve itself when the
bone is healed. The aim of the study is to see how bone nanostructure react to such implants and
their degradation and which ways are the way to follow to improve its reaction.

The use of the SAXS method

SAXS stands for Small Angle X-ray Scattering. This is a non destructive method, which in contrast
to conventional X-ray absorption imaging, use the scattering of the X-ray to give information on the
structure. With a wave length in the range of the angstrom, information on crystals structure and
on the nanometer scale can be gained. The SAXS method was used in this study to investigate the
potential influences of Mg alloy and its residues after resorption on bone growth.

Figure 2: The partners in the BRIC project



Part I

Theory
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Chapter 1

Bone

Bones are those kind of material that scientists are eager to understand. Its properties are efficient,
allying mechanical resistance, light weight design, regeneration process and adaptation to stresses.
The role of bones is not only to support the movement of the body; they also have a role in the
blood cell production, and in the calcium regulation. For this master thesis, the focus is made on the
structure of bone. The properties of bone depends on many factors as, the species that produces it,
the age of the individual, the type of bone that is taken, e.g. long bones or skull, and also, it may
depend of the health of the specimen. Structures on seven levels are usually described [2, 3], from
the biggest structure to the smallest (see figure 1.1):

• Whole bone decimeter and centimeter scale,

• Spongy versus compact bone, centimeter to millimeter scale,

• Cylindrical motifs, osteons and laminae, millimeter scale to micrometer scale,

• Fibril array patterns micrometer scale,

• Fibril array micrometer to nanometer scale,

• Mineralized collagen fibril nanometer to angstrom scale,

• Molecular components of the bone sub nanometer scale.

1.1 Bones hierarchical structure

1.1.1 Macrostructure, the whole bone

The bone in itself is a very interesting structure, the general geometry of which allows movement,
muscle attachment, articulation and mobility. Its general form is also linked to its function. Long
bone provide a good resistance to bending and buckling as tibia, whereas short bones as the vertebra
are found to be optimized to resist to compression.

1.1.2 Mesostructure, spongy bone versus cortical bone

When a bone is represented in cross section, as for the femur, strong structural differences can be
distinguished between generally the outside part and the inside part (see figure 1.2). The outer part,

9



CHAPTER 1. BONE 10

Figure 1.1: The hierarchical levels of structure found in secondary osteonal bone, as demonstrated by
Weiner and Wagner [2]

more dense, and strongly oriented is the cortical or compact bone. This outer shell thickness can
go from a few millimeters to a few centimeters. The inner part, less dense, with a higher porosity
is the trabecular bone or cancellous bone with a meshing from approximately 100 to 300 µm (see
figure1.3). Those structure have different mechanical properties and it is hard to obtain an overall
value for the Young modulus as it strongly depends of where the sample is taken, value can range
from 0.3 MPa to 3000 MPa [1]. Those structures are differentiable already with a naked eye, and the
differences are also visible on a lower level. The porosity of cortical bone is low, around 6%, mainly
due to the presence of blood vessels. The blood vessels are usually surrounded by material placed
concentrically, the osteons, the next level in the hierarchical structure of the bone. The holes formed
by the meshing of the trabecular bone are called trabeculae. These trabeculae are responsible for the
high mean porosity in the cancellous bone, approximately 80%. Their orientation depends on the
load in the bone. The trabeculae are filled with bone marrow, thus with nutrient for the bone cells.

Figure 1.2: Spongy bone and cortical bone [4]



CHAPTER 1. BONE 11

Figure 1.3: Cancellous bone [1]

1.1.3 Microstructure, osteons with Haversian system and substructure, the lamellae

On a lower level, mainly in the cortical bone, concentric structures can be observed, centered on
canals. Those are osteons around Haversian canals, essential to supply the cells, allowing blood
circulation in the cortical bone (see figure 1.4). The size of those structures is approximately 10 µm to
500 µm. Those canals are formed by lamellae. The lamellae are long structures which enable the bone
to have a better resilience and thus resist better to fracture. The size of lamella is comprised between
3 µm to 7 µm.

1.1.4 Nanostructure, collagen fibers and fibrils, bone crystals formation

At a nanometer scale, from 100 nm to 1 µm the bone is organized in collagen fibers, themselves
composed of collagen fibrils, with mineral deposition. These fibers are made of collagen fibrils, the
next level of the hierarchical structure of the bone. The collagen fibrils, are made from the periodic
arrangements of collagen molecules mainly from the type I collagen, (28 types are known nowadays)
and constitute 85-90% of the bone [1]. Those molecules, are approximately 300 nm long, and have
a diameter from 1.23 nm have themselves a sub structure, three proteins named procollagen, which

Figure 1.4: Osteons centered on blood vessels (black holes) [1]
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Figure 1.5: The structure of collagen fibrils [3]

form an helix. This helix assembles itself with other helix to form a tertiary structure having a 67 nm
periodicity with a gap zone of 40 nm and a overlapping zone of 27 nm [3] (see figure 1.5).

The collagen fibrils are interspersed by tiny crystals of hydroxyapatite Ca5(PO4)3OH, which are
nucleated in the collagen gap zone. The amount of impurities in the crystals is small, but neither
negligible and it is not exactly known why, but it is thought to play a role in bone reformation [5].
Indeed, thanks to those impurities, the crystal is less stable, and the bone is a material which is
perpetually renewed and then, needs to be easily removed, thus if the crystal is not too stable, it
will be more easily removed, which is an advantage. This crystals are small platelets, for human,
arranged mainly parallel to the collagen molecules with a periodicity approximately of 67 nm. Their
length and width are approximately 50 X 25 nm and the crystal thickness range from 1.5 to 4.5 nm
(depending usually on the age of the crystals). This is the parameter that we are going to observe with
the SAXS experiments as they give us information to the growth of bone. The crystals is thought to
nucleate in the gap zone, then to grow needle like, then platelet like and only there to thicken. Those
mechanisms are not perfectly known, and the means of exploration of this structure influence the
answer. In order to have a better idea of the mechanisms, the scientists are trying to regrow the
nanostructure of bone synthetically. [5]

At last, in the bone, some no collagenous proteins are present, their role being thought as template
and director for bone growth.
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Figure 1.6: The different bone cells and their role [6]

1.2 Bone growth

The mechanism of bone growth is also an important matter for our study. Indeed, when the implant
is inserted into the bone, as it is aimed to be on broken bone, bone is going to have to grow at this
place. We have to be able to know how the bone is normally growing to say if the growth is normal,
stimulated or retarded. There are many hypotheses on how the bone is growing and they are going
to be explained in the following pages. The bone formation is usually made in two steps, called
primary and secondary osteogenesis.

The primary ossification is rapid and needs a precursor, usually cartilage; this ossification hap-
pens during the prenatal life, during the skeleton formation, and also when the bone is injured and
that the two pieces of bone are not joined, but only an orthopedic cast is put around the broken limb.
During this bone formation, the bone is relatively unorganized and forms what is called a woven
bone, where the collagen fibers are not mineralized from the inside but only on the exterior of the
fibrils. The degree of mineralization is lower than in the bone formed by the second osteogenesis.

The second form of osteogenesis is slower, and happens after the primary ossification. During
this bone formation, the structures explained above are modeled, the bone is more efficient if re-
paired quickly a first time then slowly deeply rebuild. Nevertheless, this second ossification needs
more time than the primary one, and it can be understood as an evolution selection to have this
two stepped answer to bone fracture. The bone is constantly being remodeled in order to have a
better adaptation to the loads and it is estimated that 10% of an adult skeleton are renewed each
year. [7] The cells responsible for those remodeling are the osteocytes, osteoblastes and osteoclastes.
Osteoclastes are the cells responsible for the bone resorption, osteoblats for the bone formation and
osteocytes are thought to play a role in directing the bone remodeling, they derived from osteoblasts.
It is interesting to know that the bone degradation time by osteoclasts lasts approximately 2 or 3
weeks and the bone formation is much slowly, approximately 3 months (see figure 1.6).
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1.3 Means of investigation on bones

To study the bone, many techniques are used, enabling access to different information. Those tech-
niques are summarize in the following table 1.1

Technique Information gained

X-ray imaging General density of the bone, shape, macro parameters
Optical microscope Texture, structure, local information
Scanning electronic microscope Texture, structure, local information
Transmission electronic microscope Electron density, local information
Ultrasound studies Mechanical properties, Young modulus, Poisson ratio
Nanoindentation Local hardness, Young modulus
Mechanical testing Young modulus, fracture behavior, Poisson ratio
Small Angle X-ray Scattering Shape, thickness and orientation

of the mineral platelets, bulk information
Wide Angle X-ray Scattering Crystal in the bone, bulk information

Table 1.1: Techniques of exploration of the bone



Chapter 2

Implants

2.1 General considerations

First point to notice is that an ideal implant is ideal for a certain use. If a hip prosthesis has to be
placed on a patient, the characteristics of the implanted new hip are totally different from an implant
for a child who broke his arm. For the first case, it is expected from the implant to be as resistant to
time as possible, to be a substitute to the bone and cartilage that has been removed. On the opposite,
an ideal implant for a broken bone would be an implant that would replace bone as long as the bone
is broken and would promote its growth. It should be strong enough to keep bone pieces in place
the time that the bone heals and then should disappear without any other operation and without
releasing any harmful substances in the body. The time during which it should be solid, should
be approximately 12 weeks. Moreover, it should also not over constrained the bone nor bother its
growth. The body should not have a defensive reaction to it, but should consider it as a part of itself.
The following table 2.1 summarizes the characteristics expected for biomedical applications.

Property Desirables

Biocompatibility Non-inflammatory, non-toxic, non-carcinogenic,
non-pyrogenic, blood compatible, non-allergic

Sterilizability Not destroyed by typical sterilizing techniques like auto-
claving, dry heat, ethylene oxide, radiation

Physical characteristics Strength, elasticity, durability
Manufacturability Machinable, extrudable, moldable

Table 2.1: Material specifications for biomedical applications [8]

2.2 State of the art on orthopedic implants

Before introducing the different biomaterials used in orthopedic surgery, it seems important to de-
fine what is the biocompatibility of an implant. According to the IUAPC, the biocompatibility is the
ability to be in contact with a living system without producing an adverse effect. Indeed it could be
differentiated many levels of biocompatibility, from having a full reject of the implant, or an indiffer-
ence to its presence, to promote the growth of cells around the implant. The research in the implants
field has kept on trying to improve the answer of the bone.

15
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Figure 2.1: Intramedullar rod and plates [9]

In the early 1900’s an alloy called "vanadium steel" was developed to the specific use of human
implants. Plates and rods of this alloy were made to stabilize fractures. Then, facing problems of
biocompatibility and implants failure, doctors tried to improve the alloys used and also the design
used. Indeed, they were at the time using the available materials, as steel or iron and noted how
quickly those implants dissolve, and also how the bone was badly reacting to their presence. The
noble metals such as gold or silver were too weak to be used to maintain the bone.[9]

Intramedullary rods were invented during the World War II by Gerhard Küntscher (see figure
2.1), and enabled the soldiers to have a much shorter time of immobilization a few weeks instead
of a few months as they were sharing the loads with the bone and not only taking all the weight.
Those implants where made from stainless steel and were the first to have a wide use. Then alloy
from stainless steel was improved with molybdenum, the 316 stainless steel had a better resistance
to corrosion. A small drop in the percentage of carbon in the alloy increased again the resistance of
316L stainless steel in the 1950’s.

The other alloys that changed the landscape in orthopedic implants are the titanium alloys in-
troduced around 1947 and the cobalt-chromium alloys more recently. The biocompatibility of both
alloys are higher and their mechanical properties better than previously used materials.. Those two
alloys are now widely used, and in the following table 2.2, are shown, the application of the different
metallic alloys in the biomedical field. The main problem with metallic implants is of course the cor-
rosion, but is also due to the difference of mechanical properties between the bone and the implant.
Having a higher elastic modulus than the bone can cause in the end its osteolysis.

Not only metallic alloys are used in the orthopedic field, but also ceramic and polymers and
even autograph of bone of the patient. For the aim of repairing broken bones, only the ceramic are
discussed as it can bear load more than polymers. The problem with ceramic is their fragility and
their lack of resistance to the shock. Research is also done in ceramic with phosphate substitute,
calcium ceramic or even with mother of pearl because of the mechanical properties that are not too
different from those of the bone. The following table 2.3 summarizes, the current ceramic used in the
biomedical field.

The bone grafting techniques are used when, the risk of failure of the implant or of the healing
process is high, or is very complex. Bone pieces can be taken on the patient himself, autograph,
or come from cadaver, allograph, or being placed on scaffold made from hydroxyapatite or from
calcium. The procedure is expensive and reserved for critical cases.
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Metal Application

Cobalt–chromium alloys Artificial heart valves, dental prosthesis, orthopedic fixa-
tion plates, artificial joint components, vascular stents

Stainless steel Dental prostheses, orthopedic fixation plates,
vascular stents

Titanium alloys Artificial heart valves, dental implants, artificial joint com-
ponents, orthopedic screws, pacemaker cases, vascular
stents

Gold or platinum Dental fillings, electrodes for cochlear implants
Silver–tin–copper alloys Dental amalgams

Table 2.2: Commonly used metals in biomedical applications [8]

Ceramic Application

Aluminium oxides orthopedic joint replacement, orthopedic load-bearing
implants, implant coatings, dental implants

Zirconium oxides orthopedic joint replacement, dental implants
Calcium phosphates orthopedic and dental implant coatings, dental implant

materials, bone graft substitute materials
Bioactive glasses orthopedic and dental implant coatings, dental implants,

facial reconstruction components, bone graft substitute ma-
terials, bone cements

Table 2.3: Commonly used ceramic in biomedical applications [10, 8]
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2.3 Magnesium implant

2.3.1 History of magnesium implants

In the section above, we only described what was currently done in the orthopedic field, but the
subject of this thesis was to study a new type of implant, the biodegradable magnesium implant.
Already in 1878, magnesium was used to ligature blood vessels and its degradable behavior was
noticed.[11] Indeed, what is very interesting with the magnesium implants is that when implanted,
it is degradable, thus can disappear. Another positive point of the magnesium implant is that it
does not release toxic metallic ions or particles through wear which could lead to osteolysis, as it is
the case sometimes with other biocompatible alloys as stainless steels, titanium or cobalt-chromium
alloys. [12]

In 1900, Payr already tried to use magnesium sheet to stabilize fracture, but this led to more
operations. Then Lambotte made in 1907 four operations, where the bone was stabilized with mag-
nesium nails. The four patients healed all per primam without any other complications than the
formation of gas cavities due to the degradation of magnesium. But this drawback was the only one
that Lambotte noticed from his experiment. In the X-ray imaging he made, one year after the oper-
ations, he observed the disappearance of the magnesium implant, and no hypertrophy of the bone.
Then during thirty years other researchers developed the magnesium implants for the use of healing
compound fractures, or fixing autologous grafts [11]. In 1948, Troitskii and Tsitrin noticed that the
presence of magnesium could stimulate the formation of a callus by neutralizing the acidity in the
tissue caused by inflammatory reactions. In order to prevent electrolytic corrosion, they advised, as
Payr, that magnesium was also to be implanted alone.

Figure 2.2: Implant with a high corrosion rate, the gas product by the corrosion of magnesium led to
the formation of cavities in the bone

The difficulties with magnesium came from the cavities caused by the corrosion of magnesium
which produces dihydrogen and from its too quick disappearance (see figure 2.2). The following
equations are the theoretical corrosion reactions that happens in the body that leads to that gas pro-
duction [12].

Mg(s) + 2H2O→ Mg(OH)2(s) + H2(g) (2.1)

Mg(s) + 2Cl−(aq)→ MgCl2 (2.2)
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Mg(OH)2(s) + 2Cl−(aq)→ MgCl2 (2.3)

Magnesium without coating will quickly react with water to form a layer of oxyde and dihydrogene.
With high concentration of Cl−, that oxide will react to form magnesium chloride and hydrogen gas.
The rate of this reaction has a high influence on the bone reaction. The surface exposed also plays an
important role in the degradation rate. Indeed, if the implant degrades too quickly, the bone is not
going to be able to evacuate the gas formed, which would lead to the formation of cavities, which
would indirectly damage the bone and needs more time to repair. Pure magnesium in physiological
system with a pH of 7.4-7.6 and a high chloride environment degrade too quickly, the bone does not
have time to heal and the gas production is too high to be eliminated by the bone. At the beginning of
the research on magnesium, that was what dissuaded its development, but now, new ways exists to
slow the reaction, by coating the implants, or by alloying it. This path is the path that Witte et al. took,
by trying to alloy magnesium with aluminium or zinc and rare earth elements.[13] They observed
an increased bone apposition along the implants, and when mechanical push out test were made,
researchers found an increased interfacial strength [14] . Alloying enables to increase the mechanical
properties of the implant, which is very brittle if used pure, and enhances the resistance of implant
to corrosion.

2.3.2 The WZ21 magnesium alloy class

For this master thesis, only one type of magnesium alloy has been studied. It has been developed for
the BRIC project, BioResorbable Implants for Children. This program was grounded by the trauma
surgeon Annelie Weinberg at the medical University of Graz in collaboration with the Technical uni-
versities of Vienna and Graz, the University for Natural Ressources and Live Sciences Vienna and
Heraeus Medical. The aim was to try for new ways of supporting the healing of bone by children
and to shorten the time they spend in hospitals. With that perspective, implants that dissolve them-
selves are an interesting way of research.

ρ(g.cm−3) Young modulus (MPa) Fracture toughness (MPa.m
1
2 )

Human bone 1.8 - 2.1 3 - 20 3 - 6
Magnesium 1.74 - 2.0 41 - 45 15 - 40

Titanium 4 - 5 116 44 - 66

Table 2.4: Mechanical properties of Bone, magnesium and Titanium [15]

This WZ21 alloy has been chosen because of its rather slow degradation rate: 50% of the implant
is still visible after 5 to 6 months and the complete degradation is only reached after 18 months [16]:
but also for its mechanical properties that are closer of those of the bone than Titanium implant.
Compared for example with the LV1 alloy that is almost 50% degraded in three months and totally
degraded in 6 months, the WZ21 has a much slower degradation rate, which enables the bone to
eliminate the hydrogen.

The implant composition is the following: WZ21 stands for Yttrium 2% and Zinc 1%, in mass
weight on total and the rest Calcium 0.25%, Manganese, 0.15% and 96.60% in pure magnesium. The
corrosion products are not harmful on the level of cells. The dimension of the pin inserted were the
following [15]: a diameter of 1.6 mm and a length of 8 mm .
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Small Angle X-Ray Scattering

3.1 History of the X-ray diffraction techniques

In 1895 Röntgen discovered the X-ray, and since that day, the use of it has been extraordinarily vari-
ous: thanks to it, one can gain informations on the meter scale, as X-ray are used to studied structures
of some walls, centimeter scale to micrometer, the X-ray radiograph or computed tomography that
is done by the doctor to know if a bone is broken, but also, and this is the point that we are going to
develop, on the µm and even nanometer thanks to the method of X-ray diffraction which enable for
example to discover the structure of the deoxyribonucleic acid, the DNA. X-ray are electromagnetic
waves with a wavelength in the region of 1 Å (10−10m).

First the differences between X-ray diffraction and X-ray scattering should be made [17]:

Scattering: deviation of radiation or moving particles from a straight path caused by one or more
local non-uniformities in the medium through which they pass, influenced by the difference of
the electron densities

Diffraction: apparent bending of waves around small obstacles and the spreading out of waves past
small openings (involves interference), influenced by the lattice dimension of crystal.

But in the case of X-ray, the scattering is supposed to refer to amorphous materials, and diffraction
to crystalline or periodic materials; usually, the two denominations are used without making a dif-
ference.

3.2 Ground principles: Bragg law

In this following pages, we are going to have a deeper look on the X-ray diffraction, as it is the
technique that we used to study the nanostructure of bone.

The Bragg law states the conditions to have constructive interferences of X-rays diffracted from a
crystal [17]:

nλ = 2d sin(θ) (3.1)

with

• λ the wavelength,

• n an integer,

20
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Figure 3.1: Bragg law condition for constructive interferences with k the incident X-ray and k’ the
scattered one.[18]

• d the distance between the scattering planes,

• 2θ the angle at which the constructive interference happens or angle of diffraction.

The consequences of that equation is that the smaller is the wave length, the smaller are the details
that can be studied. With X-ray wavelength being in the order or the Å, and even smaller, one can
study structure of that size. Also, the larger is an diffracting object of size d, the smaller is the angle
of diffraction.

The X-ray is scattered and the modification of its trajectory can be written with vector:

~Q =~k− ~k′ (3.2)

with

• | Q |= 4π
λ sin(θ) the wave vector transfer,

• | k |= 2π
λ the incident wave vector,

• | k′ |= 2π
λ the scattered wave vector as we consider an elastic scattering,

3.3 SAXS

Small Angle X-ray Scattering is the method used in this thesis. The use of this technique was initiated
in 1937 by A. Guinier[19] and developped by Kratky and Porod with the introduction of the Kratky-
Porod model [20]. It consists of studying the scattering at small angles, approximately till 2θ = 10◦

which gives us access to information of the nanometer size. The very interesting point is that it
also work with noncrystalline and non ordered materials. Through that study, the size, shape, inner
surface, fractal dimension and orientation of the mineral particles can be gained. The following table
3.1 summarizes the advantages and disavantages of the Small Angle X-ray Scattering.

The SAXS analysis consists in studying the bidimensionnal pattern of the intensity projected on
the detector, with that intensity being proportional to the number of X-ray photons scattered by the



CHAPTER 3. SMALL ANGLE X-RAY SCATTERING 22

Figure 3.2: The diffraction image of AgBeh, this material is used for calibration as the condition for
its scattering angle is known

Advantages Difficulties

Not only ordered or crystalline materials Interpretation of the curve harder through
pattern that are not as clear
as for crystalline material

Non destructive method Background needs to be corrected
Integral method Need for interpretation and modelling of the

curve

Table 3.1: SAXS Advantages and difficulties [18]

material, which is in its self proportional to the constrast in electron density. An example of this
pattern is shown on figure 3.2. In the case of bone, the scattering intensity is going to be mainly due
to the hydroxyapatite, as it is the element in bone which has the higher electron density compared
with void, collagen, or resin. In case of spherically symetric system or spherically average system,
the intensity hitting the detector can generally be described as [17]:

ISAXS(q) = ∆ρ2V2
p | F (q) |2 (3.3)

with

q: the scattering vector,

∆ρ : the difference of electron density, between the element of the material here collagen and mineral,

Vp : the integrated volume of the particle,

F (q) = 1
Vp

∫
Vp

eiqrdr : the form factor of particle which depends of its shape and of its size.
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3.3.1 Guinier approximation: small q

At small q compared to the characteristic size R of the particles, qR � 1, the form factor of the
equation 3.3, can be approximated, which gives us the following equation:

ISAXS(q) = ∆ρ2V2
p e
−q2R2

5 (3.4)

This approximation, that was developed by Guinier, was first derived for spherical particles. The
form factor of simple shapes can be computed for example for full sphere, rods or discs. In order to
have a better understanding of the phenomenon, the notion of radius of gyration is introduced:

Rg =

∫
Vp

ρ(r)r2dVp∫
ρ(r)dVp

(3.5)

This will allow the extention of the results that are only valid for full sphere to other shape of particles
in case of spherically averaged systems. . In the case of a sphere where R2

g = 3
5 R2, the equation can

be rewritten as: ISAXS,sphere(q) = ∆ρ2V2
p e
−q2R2

g
3 Nevertheless, it can be extended to other shape of

particles, assuming that they are randomly oriented, they can be considered as sphere of a certain
radius of gyration Rg. We can then deduce that for a random orientation of the particles and an

arbitrary shape, the above equation gets: ISAXS(q) ≈ ∆ρ2V2
p e
−q2R2

g
3 Assuming that ∆ρ and Vp do not

change ISAXS becomes

ISAXS(q) = I0e
−q2R2

g
3 (3.6)

which allows us to identify the characteristic size if the shape is known.
The shape can be deduced also from the slope of the curve in the Guinier region on a log log

graph, which is at small q, in the case of very high aspect ratio and of length of rod or platelets
outside the visible range of scattering angles. With a slope of 0, the particles are full sphere, with a
slope of -1, the particles are rods, with a slope of -2, platelets (see table 3.2).

3.3.2 Porod approximation: high q

At large q compared to the characteristic size R of the particles, qR � 1, the scattering curve has
a decay of q−4 whatever the shape is, provided the interface is smooth. The intensity can then be
rewritten in the following way:

ISAXSPorod(q) =
P
q4 + B (3.7)

with

• P the Porod constant which is proportional to the inner surface S of the sample,

• and B the background noise due to diffuse scattering.

3.3.3 Invariants

The Porod constant is useful in order to compute the thickness of the particles. Indeed, using the
following integral, 3.8, one has a access to an invariant, proportional to the volume of the particles.

Iinvariant =
∫ ∞

0
q2 I(q)dq (3.8)
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This Iinvariant depends on the scattering volume V of particles, the electron density contrast and the
proportion of each phase. It does not depend on the structure, nor of the shape of the particles, but
using the ratio of those two invariants, we obtain the following relation:

P
Iinvariant =

1
πφ(1− φ)

S
V

(3.9)

with φ the mineral content of the sample.
This relation allows us to identify the characteristic size of the particles as S

V is proportional to the
T parameter. Assuming a mineralization of 50% and platelet shape and according to the litterature
[21], we obtain the following equation:

T =
V
S

=
4

πP

∫ ∞

0
q2 I(q)dq (3.10)

Radius of gyration Rg Slope in Guinier region

Sphere
√

3
5 R 0

Rod
√

1
2 R -1

Platelet
√

1
12 L -2

Table 3.2: Radius of gyration and Guinier exponents depending on the shape of the particles [17]

3.4 SAXS devices

The simplified device to make X-ray diffraction is the following (see figure 3.3):

• an X-ray source, that would produce a monochromatic, well collimated beam

• pinholes to reduce beam size and the divergence

• a vacuum chamber where the sample is put, so that the beam is not scattered by air molecules

• a detector to register the scattered photon.

• a photodiode in order to measure the absorption of the beam by the materials.

The figure 3.4 shows the device used for preliminary measurements to this study. Due to unexpected
instrument downtime, the major part of the experiments had to be conducted at the SAXS laboratory
of Prof. Peterlik, University of Vienna..
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Figure 3.3: Schematic layout of a small-angle X-ray scattering instrument. A monochromatic X-
ray beam is collimated using a set of apertures and then impinges on the sample. The scattered
beam is detected on a two-dimensional, position sensitive detector (PSD). For isotropic samples, the
scattering can be azimuthally averaged to produce a plot of scattered intensity versus wave vector
transfer.[17]

Figure 3.4: The SAXS device of the BOKU with its X-ray generator, its pinholes, its vaccum chamber
where the sample is placed and the photo detector where the scattering pattern is recorded
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Chapter 4

The SAXS Experiment

4.1 Sample preparation

The bone were taken from six male Sprague-Dawley rats five weeks of age at the moment of the
implantation at the medical university of Graz. They had an implant on each leg through all bone.
Regular CT scans were made on the rats to see the evolution of the degradation of the implants and
to try to see the formation of gas cavities in the bone. They were then sacrificed at different period of
time reported in the table 4.1 .

Sample Duration of implantation in months

4187 1
4172 3
4050 6
4165 9
4280 12
4340 18

Table 4.1: Duration of implantation of the WZ21 implants

After sacrifice, the bone were scanned, cut in two half and then reduced to slices which were used
for an histological analysis, for micro nano indentation and for SAXS analysis. The bone were filled
with resin and the thickness was then reduced by sanding in order to reach an optimal thickness, that
minimize the absorption and maximize the scattering. Six samples were studied for this alloy.

4.2 SAXS method

The measurement were partly done at the University of Natural Resources and Applied Life Sciences
Vienna and partly done at the University of Vienna.

Parameters for mapping

The beam size was 350 µm and the step size was 350 µm. Mapping was usually approximately made
4 mm above the implants and 4 mm under it on the full width. Calibration was done using Silver
behenate powder.

27
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SAXS device configuration

Configuration Distance sample-detector (mm) λ(Å) Time/ point (s)

Long 300 1.5418 200

Table 4.2: Parameters of the SAXS device for the measurements

Range of q reached by the configuration: 0.015 Å−1 to 0.71 Å−1. Range of q effectively reached
with the configuration : 0.043 Å−1 to 0.4 Å−1.

Background correction

The background was measured in places were only resin was present (see figure 4.1). We assumed
that the thickness was constant and only the proportion of bone and resin was changing. Assuming
also that intensity in the high value of q is only due to background, we can then correct each curve
by normalizing the background.

Figure 4.1: Background profile when radially integrated, arbitrary unit for the intensity
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Mathematical modeling of the integrated
intensity

To get access to the information, the 2-dimensionnal pattern obtained on the detector must first be
integrated. This can be done in two ways (see figure 5.1):

azimuthal integration : At each angle, the data or integrated along the radius,

I(χ) =
∫ q

0
I(q, χ)dq

through that integration, information about the orientation of the particles can be gained.

radial integration : At each radius, the data are integrated all over a concentric circle,

I(q) =
∫ 360◦

0
I(q, χ)dχ

through that integration, information about the shape, size, inner surface and fractal dimension
can be gained,

5.1 Azimuthal intensity integration

To be able to discriminate if there is a preferential orientation, the intensity is integrated azimuthally.
If the particles have a preferential orientation, then, the X-ray photons are going to be scattered in
preferential directions, which would mean that the 2D pattern projected on the detector is not going
to be concentric circles. In the case of mineral platelets, once azimuthally integrated, the curve is
going to be approximated by two Gaussian peaks separated by 180◦(see figure 5.2). The parameters
used to quantify the orientation of the particles are the following:

orientation : the degree at which the peak appear modulus 180 ◦,

degree of orientation : the inverse of the width at middle height of the Gaussian peaks.

The intensity is modeled by a double Gaussian curve:

I(χ) = B + a(e−(
(χ−b)2

2∗c2 + e−(
(χ−b−180)2

2∗c2 ) (5.1)

where

29



CHAPTER 5. MATHEMATICAL MODELING OF THE INTEGRATED INTENSITY 30

Figure 5.1: The two way of integrating the data, I in arbitrary unit

B: the background noise,

a: the height of the peak,

b: the position of one of the peak,

c: the width of the peak at middle height.

Then it can be deduced that the orientation is b and the degree of orientation is 1
c (see figure 5.3).

Detector with beam stop

The detector from the University of Natural Resources and Applied Life Sciences Vienna had a beam
stop which created a shadow on the detector (see figure 5.4). That shadow had to be corrected before
the analyze of the azimuthal intensity integration. The correction of the beam stop shadow was
made by taking points 180◦away from the shadow and adapting it to the local value. If the curve was
anisotropic, then the correction was working well. If we had an isotropic point, then the correction
was also valid, as the points were uniformly spread.
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Figure 5.2: The difference between an isotropic point and an isotropic point, I arbitrary unit

Figure 5.3: The different parameters of the fitting function, I arbitrary unit



CHAPTER 5. MATHEMATICAL MODELING OF THE INTEGRATED INTENSITY 32

Figure 5.4: The beam stop influence, I arbitrary unit

5.2 Radial intensity integration

The radial integration enables to identify the thickness and the shape of the particles.

5.2.1 Determination of the T parameter

The first approach, and the classic one, to have an idea of the thickness is to use the T parameter,
using the ratio that exists between the inner surface of particles and their volumes. According to
literature [21]:

T =
4

πP

∫ ∞

0
q2 I(q)dq (5.2)

with P the Porod constant at high q. As we do not have an access to the shape parameter and to all
the curve from 0 to infinity, the curve needs to be extrapolated. Under qmin, its value is set to qmin,
and above qmax till infinity, the value is set to P

q4 . [22] This approximation is biased by the fact that
we do not have a constant mineralization rate and also because we assume the shape of the crystals
to always be platelets.

5.2.2 Guinier Porod fitting: Hammouda model

Our second approach that we used has been developed mainly by two authors: G.Beaucage and
B.Hammouda.[23, 24, 25, 26] and uses a combination of Guinier and Porod approximation, together
with an option to take particle shape into account.

The curve is then modeled with the following equations (see figure 5.5): In the Guinier region, for
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Figure 5.5: The parameters for the Guinier Porord fitting [23], I arbitrary unit

q ≤ Q1 :

fguinier(q) =
G
qs e

−q2Rg2
3−s (5.3)

and in the Porod region for q ≥ Q1

fporod(q) =
De
qd . (5.4)

with

s: the coefficient that will allow the identification of the shape of the particle also named α,

Rg: the radius of gyration of the particle,

De: the Porod constant De = Ge
−Q2

1Rg2

3−s Qd−s
1 ,

d: the slope coefficient in the Porod region, which was taken to be 4,

Q1: the place where the curve is changing of slope Q1 = 1
Rg (

(d−s)(3−s)
2 )1/2.

The parameter on which, the program was free to move in order to fit the curve were:

• G,

• s or named α,

• Rg.

The results of the fitting to the Hammouda model that were used to access the thickness and
shape were then the radius of gyration Rg, the shape parameter α.
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5.2.3 Identification of thickness and shape with the Beaucage/Hammouda model

Once the curves were fitted, a few manipulations were still necessary to get the thickness and the
shape. In case of the Hammouda model, an extrapolation on the thickness was made depending on
the shape and of the radius of gyration. The following table 5.1 gives the value for shape known,
assuming that the other dimensions are much larger than the thickness, and thus do not appear on
our 2 D pattern (see figure 5.6) :

Sphere Rod Platelet

α 0 1 2

Thickness function of Rg 2 ∗
√

5
3 Rg 2

√
2Rg

√
12Rg

V
S

R
3

R
2

T
2

T parameter 6V
S Diameter 4V

S Diameter 2V
S

Table 5.1: Radius of gyration, thickness and ration surface on volume depending on the shape of the
particles

Extrapolation of the results

Then having α, as it was not always an integer equal to 0, 1 or 2 we extrapolate the thickness with the
following formulas:

• between sphere and rod (0 and 1):

Thickness(α) = (2
√

2Rg− 2

√
5
3

Rg)α + 2

√
5
3

Rg (5.5)

• between rod and platelets between (1 and 2):

Thickness(α) = (
√

12Rg− 2
√

2Rg)(α− 1) + 2
√

2Rg (5.6)

• above 2:
Thickness(α) =

√
12Rg (5.7)

Figure 5.6: Signification of the thickness parameter depending on the shape of the particles
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5.2.4 Segmentation on the data

To identify the different points on the mapping, the scattered intensity has been normalized:

Iscattered =

∫ qmax
qmin

Icorrected(q)dq

Itransmitted
(5.8)

If Iscattered was too low, it means that there is not enough scattering material and thus, that the results
are not consistent. IfIscattered was too high, it means that the Itransmitted is too low and thus that we do
not have actually lot of data to analyze.

Through that discrimination it is possible to differentiate cortical bone (highly scattering with a
strong absorbance) from spongious bone, and thus have a better analysis of the data (see table 5.2).

Cortical
Bone

Spongious
bone

Void Resin Implant

Preferred
Orientation

Highly
oriented

Random
orientation

No
orientation

No
orientation

No
orientation

Itransmitted Low Medium High Medium No
transmission

Iscattered High Medium
to low

No scattering No scattering No scattering

Table 5.2: Discrimination of the data through orientation, Iscattered and Itransmitted
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Chapter 6

Time series for the WZ21 alloy pins

6.1 Pin implanted one month: sample 4187

The first sample was the bone of a rat where the implant has been implanted only for one month.
In the figure 6.1 microscopic images of the sample are shown with absorption and scattering maps
from the Small Angle X-ray Scattering. The figure 6.1.a shows the microscopic image of the slice of
bone that was submitted to the SAXS analysis. The pin is still clearly visible and only superficially
corroded. The black scale bar represent 1 mm. On the second microscopic image, the figure 6.1.b,
is shown the mirror slice of bone that was dyed to be submitted to a histological analysis. The
tissue which are pink are bone. This mirror image of our sample helped us to identify the nature
of the point of the mapping, if it was cortical bone or spongious bone. Nevertheless, this mirror is
exactly the same, as it was taken on the other half of the bone. The figure 6.1.c is the image of the
transmitted intensity. This is equivalent to say that this image is an X-ray radiograph with a precision
of 350 µm of the bone. It has only an arbitrary unit. The normalized scattered intensity is represented
in figure 6.1.d. The absolute scattered intensity has been divided by the transmitted intensity. This
scattered intensity is a measure of the amount of mineral particles in the beam. It can well be seen
that the scattered intensity is correlated to the presence of cortical bone. On the edges of the implant,
the scattered intensity seems to decrease. The figure 6.2 shows the results from the specific SAXS
analysis. The mineral particle thickness (Å) derived from the Hammouda model (figure 6.2.a) seems
to be lower near implant. The T parameter (Å) derived from the classic approach seems constant on
all the sample and a little increase may be visible near implant. Since the Hammouda model is also
sensitive to the shape of the particles in the Guinier region, the shape parameter can be represented
on the graph 6.2.c . The shape parameter describes the shape of the particles with 0 being spherical
particles, 1 rod like particles and 2 platelet like particles. It does not have a unit. This graph can
give the impression that the particles tend to be more platelet like near implant. The last figure 6.2.d
is the results of the azimuthal integrations. It represents the orientation of the particles with their
degree of orientation as length. In the background is plotted the normalized scattered intensity, to
help to visualize the nature of the point scanned. The orientation of the cortical bone is changing
near implant.
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Figure 6.1: 1 month: a: microscopic image of the sample (scale bar 1 mm);
b: microscopic image of the dyed opposite slice of the bone (scale bar 2 mm);
c: the transmitted intensity (arbitrary unit);
d: the normalized scattered intensity (arbitrary unit).

Figure 6.2: 1 month: a: the thickness computed with the Hammouda model (Å);
b: the T parameter (Å);
c: the shape parameter of the particles (no unit);
d: the orientation of the particles with the scattered intensity in background.
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6.2 Pin implanted three months: sample 4172

In that sample, the implant was left in the bone for three months. It can be seen that it has already be-
gun to dissolve, on the exterior of the bone (see figure 6.3.a). The corrosion is not only a uniform one,
as it can be seen, the implant is also being more degraded on some localized parts. The histological
microscopic image of the figure 6.3.b seems to show an irregular bone formation. The transmitted
intensity seems to be higher under the implant (see figure 6.3.c), maybe in places where the implant
was and where new bone is beginning to grow. The scattered intensity is higher in points where the
cortical bone is (see figure 6.3.d). It can also be noticed that the thickness of the mineral particles
near the implant seems to drop (figure 6.4.a). When compared with the T parameter in figure 6.4.b,
the T seems to increase close to the implant, which is counterintuitive and thought to be due to the
changed degree of mineralization rather than a real effect. The shape parameter of the particles near
the implant also seems to increase in figure 6.4.c, which means more platelets like mineral near im-
plant and needle like mineral in the rest of the bone. In the figure 6.4.d the bone is reorienting itself
near implant to be, not in the direction of the long bone, but to be around the implant, as in the figure
6.2.d.

Figure 6.3: 3 months: a: microscopic image of the sample (scale bar 1 mm);
b: a microscopic image of the dyed opposite slice of the bone (scale bar 2 mm);
c: the transmitted intensity (arbitrary unit);
d: the normalized scattered intensity (arbitrary unit).
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Figure 6.4: 3 months: a: the thickness computed with the Hammouda model (Å);
b: the T parameter (Å);
c: the shape parameter of the particles (no unit);
d: the orientation of the particles with the scattered intensity in background.

6.3 Pin implanted six months: sample 4050

In this sample, the pin, implanted for six months, is still visible but already half degraded in its
center (see figure 6.5. In that sample it is clearly visible that the implant is degraded faster in the
spongious bone than in the cortical bone (see figure 6.5.a and b). The region of the bone where the
implant used to be is not highly scattering, but has a high transmitted intensity (figure 6.5.c and d),
which means that it does not have lot of mineral. The thickness of the mineral particles computed
by the Hammouda model is getting smaller near implant (see figure 6.5.f) and the shape parameter
is getting higher near implant (figure 6.5.e), which means that the particles tend to be more platelet
like near implant. In the figure 6.5.g, the T parameter increases slightly near implant near implant.
The reorientation of the particles is also visible near implant (figure 6.5.h.)
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Figure 6.5: 6 months: a: a microscopic image of the sample (scale bar 1 mm);
b: a microscopic image of the dyed opposite slice of the bone (scale bar 1 mm);
c: the transmitted intensity (arbitrary unit);
d: the normalized scattered intensity (arbitrary unit):
e: the shape parameter of the particles (no unit);
f: the thickness computed with the Hammouda model (Å);
g: the T parameter (Å);
h: the orientation of the particles with the scattered intensity in background.
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6.4 Pin implanted nine months: sample 4165

The pin was implanted for nine months, and what remains of the pin is very small. A cavity which
was formed in the bone is also visible (see figure 6.6.a and b). The transmitted intensity is very strong
in the region where the bone has newly grown (figure 6.6.c) as in the sample where the pin was
implanted for 6 months (figure 6.5.c) The scattering intensity is very strong in cortical bone (figure
6.6.d) as in the sample 4050 (figure 6.5.d) and 4172 (figure 6.3.d). The thickness of the particles fitted
with the Hammouda model seems to decrease near implant (figure6.7.a) when the T parameter seems
rather constant (figure 6.7.b). The bone particles seem to be more platelets like in newly formed bone,
which is in places where the implant was (figure 6.7.c). The particles have reoriented themselves
around the implant in the figure 6.7.d. At position where the implant used to be, the orientation is
still perturbed but it looks like the bone is already beginning to get the crystals in the main direction.

Figure 6.6: 9 months: a: microscopic image of the sample (scale bar 1 mm);
b: microscopic image of the dyed opposite slice of the bone (scale bar 2 mm);
c: the transmitted intensity (arbitrary unit);
d: the normalized scattered intensity (arbitrary unit).
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Figure 6.7: 9 months: a: the thickness computed with the Hammouda model (Å);
b: the T parameter (Å);
c: the shape parameter of the particles (no unit);
d: the orientation of the particles with the scattered intensity in background.

6.5 Pin implanted twelve months: sample 4280

That pin was less degraded in that sample after twelve months of implantation than the sample 4165
with 9 months (See figure 6.8.a and b compared with figure 6.6.a and b). Nevertheless, it is well
visible that the pin has more degraded in the spongious bone than in the cortical bone. We do not
see any cavity due to gas formation. The transmitted intensity is very high in the region of newly
formed bone, i. e. where the implant has already begun to degrade (figure 6.8.c) and the scattering
intensity is maximal in the cortical bone (See figure 6.8.d). The thickness of the particles computed
with the Hammouda method tends to decrease in the newly formed bone as it is visible on the figure
6.9.a . The T parameter has some changes near the implant but that changes are not significant as it
can be seen on the figure 6.9.b . The shape tends to increase in newly formed bone, as the figure 6.9.c
seems to show. Bone is again adapting the orientation of the particles near implants in figure 6.9.d,
and the perturbation of orientation compared to the main direction of the bone does not seem to be
corrected.
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Figure 6.8: 12 months: a: microscopic image of the sample (scale bar 1 mm);
b: microscopic image of the dyed opposite slice of the bone (scale bar 2 mm);
c: the transmitted intensity (arbitrary unit);
d: the normalized scattered intensity (arbitrary unit).

Figure 6.9: 12 months: a: the thickness computed with the Hammouda model (Å);
b: the T parameter (Å);
c: the shape parameter of the particles (no unit);
d: the orientation of the particles with the scattered intensity in background.
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6.6 Pin implanted eighteen months: sample 4340

The pin was implanted for 18 months and had totally dissolved during that period of time as the
figure 6.10.a and 6.10.b show it. The bone did not perfectly rebuild itself, as it can very well be seen
on the dyed histological photography: it has made a loop , which would then weaken the bone. This
weakness is visible on the transmitted intensity graph, figure 6.10.c . Nevertheless the bone has build
new cortical bone which scatters as much as old cortical bone: on the figure 6.10.d the old cortical
bone being the points that are away from the center of the sample where the implant was and which
is now the new cortical bone. Nevertheless, the bone shape is pretty consistent in all sample, and the
orientation follows the newly formed cortical bone. The thickness of the particles computed with the
Hammouda model, nor the T parameter, do not seem to depend of the position of the implant (figure
6.11.a and b), which is contrasting with the other sample with shorter dwelling time. The shape
parameter describing the particles shape also seems independent of the position of the implant on
the figure 6.11.c. The orientation of the particles (figure 6.11.d), when correlated with the microscopic
images 6.10.c and 6.10.d seem to follow the structure of cortical bone.

Figure 6.10: 18 months: a: microscopic image of the sample (scale bar 1 mm);
b: microscopic image of the dyed opposite slice of the bone(scale bar 2 mm);
c: the transmitted intensity (arbitrary unit);
d: the normalized scattered intensity (arbitrary unit).
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Figure 6.11: 18 months: a: the thickness computed with the Hammouda model (Å);
b: the T parameter (Å);
c: the shape parameter of the particles (no unit);
d: the orientation of the particles with the scattered intensity in background.
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Chapter 7

Evolution of the parameters

Discussion of the time evolution

In the previous part, each sample was studied individually, which, makes the analysis dependent on
the natural individual variation. In this part, more general tendencies are going to be shown.

7.1 Difference cortical and spongious bone

In the spongious bone, the metabolism is higher and there is more blood circulation, which could
easily explain why the pin is often more degraded in the spongious bone than in the cortical bone,
for example, the sample 4050, 4165, 4280 (see figure 7.1.c ,d, and e). Indeed, as, there is more blood,
the evacuation of the degradation product is made quicker, which constantly displaces the state of
equilibrium of the Mg corrosion. The reaction has then a higher degradation rate.

Figure 7.1: The pin states after 1, 3, 6, 9, 12 and 18 months of implantation (scale bar 1 mm) (respec-
tively a, b, c, d, e, f

48
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Denomination of cortical bone and newly formed bone

For the following analysis of the parameter to have a better view of the influence of the implant, two
types of data points on the mapping were taken: the so called newly formed bone ( in green in figure
7.2) and the cortical bone (in blue in figure 7.2). The newly formed bone is the bone that grew in place
where the implant was and had degraded. The cortical bone are the points of the bone that form the
outer layer of the bone. It can be seen that the denomination of newly formed bone has been only
considered for sample with implantation time longer than 3 months.

Figure 7.2: In green were the so called newly formed bone and in blue the zone for the cortical bone.
Bones with dewlling time of 1, 3, 6, 9, 12 and 18 months, respectiveley a, b, c, d, e and f.
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7.2 The scattered intensity

The scattered intensity is a parameter which gives information on the relative amount of mineral,
which provides in our bone sample the most scattering contrasts, as it is the material with the higher
differences of electron density, compared to void, collagen or resin. As said earlier, the scattered
intensity that is studied here has been normalized with the transmitted intensity to be independent
of the thickness of material it goes through. The evolution in the newly formed bone is not very clear,
although a tendency can be guessed in some sample: it seems that the scattered intensity is decreasing
near implant in figure 7.3.a, 7.3.b and 7.3.c . This drop of scattered intensity can be explained by a
drop of mineralization near implant. Indeed with growing bone, the first elements that are present
are not crystals but first the collagen fibers, that would form the callus. This callus is then going to be
mineralized but its degree of mineralization is lower than mature bone. So it would be logical to have
a drop of mineralization near implant. When the evolution of the scattered intensity as a function
to the distance to the implant is studied in the cortical bone, some sample show the same tendency,
figure 7.4.c and 7.4.d . This drop in the scattered intensity could be correlated to the evolution of the
T parameter near implant (cf section 7.6.1).

Figure 7.3: Scattered intensity (Arbitrary unit) as a function of the distance to the implant (mm) in
the newly formed bone
a: 6 months implantation; b: 9 months implantation; c: 12 months implantation; d: 18 months im-
plantation.
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Figure 7.4: Scattered intensity (Arbitrary unit) as a function of the distance to the implant (mm) in
the cortical bone
a: 1 month implantation; b: 3 months implantation; c: 6 months implantation; d: 9 months implanta-
tion; e: 12 months implantation; f: 18 months implantation.
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7.3 Thickness of the particles computed with the Hammouda model
Evolution near Implant

The thickness of the particles is an indicator of the age of the particles till a certain thickness which is
the thickness of a mature bone particle. Indeed, the older a particle is, the more mineral would have
been formed, and then the thicker the particles is going to be. In the figure 7.5.a, b and d, it seems
that near implant, the thickness is getting smaller, which would be logical, as it is newly formed
particles. This impression is also due to the fact that near implant, the dispersion of the value of the
particle’s thickness seems larger than away from the implant (figure 7.5.a, b and d). Nevertheless,
that tendency is not visible in all bone as the bone with a dwelling time of 12 months (figure 7.5.c9,
where that tendency is not visible.
In cortical bone, it seems that near implant, the thickness is more variable and smaller than away
from the implant: in figure 7.6.b, c, d and e, respectively 3, 6, 9 and 12 months of implantation time.
Nevertheless, all sample do not seem to have an increasing thickness size with increasing distance to
the implant as the bones implanted for 1 and 18 months (respectively figure 7.6.a and f), where no
relation seems to exist between thickness of the particles and the distance to the implant. This could
be explain for the first one, that in one month, the bone did not have time to grow new particles.
For the second case where no influence seems to exist between distance and thickness, this could
be explain by the fact that the bone particles have all attained their mature size and thus, that the
thickness of the particles is independent of its age.

Figure 7.5: Thickness (Å) as a function of distance to the implant (mm) in newly formed bone
a: 6 months implantation; b: 9 months implantation; c: 12 months implantation; d: 18 months im-
plantation.
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Figure 7.6: Thickness (Å) as a function of distance to the implant (mm) in cortical bone
a: 1 month implantation; b: 3 months implantation; c: 6 months implantation; d: 9 months implanta-
tion; e: 12 months implantation; f: 18 months implantation.
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7.4 The shape parameter α computed with the Hammouda model

7.4.1 Needle like particles and platelets like particles

The α parameter used to describe the shape has been extracted of the 2D diffraction pattern by the
fitting of the radial integration to the Hammouda model which is sensitive to the shape. The value of
the shape parameter gave us mainly value of α between 0 and 2 at the maximum with a majority of
the data points being between 0 and 1 which means that the particles have a shape between a sphere
and a rod, which is an ellipsoid (see figure 7.7). Studying human bone, we would have expected the
particles to be more platelets like [1, 3], but as the bone studied were bones from rats, those results
are actually consistent [21],as rats and mice bones tends to have particles which are more needle like
than platelets like.

Figure 7.7: Shape parameter (no unit) as a function of duration of implantation of the pin;
The white line is the median, the two extrema of the blue box are respectively, 25% and 75% of the
data points of the mapping and the extremities of the black bar are the extrem values of the shape
parameter

7.4.2 Influence of the distance to the implant

As it can be seen on those graphs, the shape parameter dispersion seems to increase near the implant
in cortical bone (see figure 7.8.b c and d ) and in newly formed bone (see figure 7.9a, b and d). This
higher dispersion has the effect that the shape parameter seems to increase near implant, which
means that the particles are more platelet like near implant and more ellipsoidal like away from the
implant.
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Figure 7.8: Shape parameter (no unit) as a function of the distance to the implant (mm) in cortical
bone
a: 6 months implantation; b: 9 months implantation; c: 12 months implantation; d: 18 months im-
plantation.
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Figure 7.9: Shape parameter (no unit) as a function of the distance to the implant (mm) in newly
formed bone

7.4.3 Guinier slope fitting influence on the shape parameter α

The shape parameter α is fitted in the Guinier region, which is the region of low q. This region can
appear extended in logarithmic scale, but is in reality very narrow and only a few points issued from
the radial integration of the diffraction pattern are present in that region. Indeed the data range
for the radial integration runs from 0.042 Å−1 to 0.4 Å−1 and the Guinier region runs usually from
0.04 Å−1 to 0.1 Å−1 when the Porod region runs from 0.1 Å−1 to 0.4 Å−1, which is five times larger.
Would it be a small difference in the integrated points, which would make the integrated intensity
more high, this would have for consequence an increase of the shape parameter. As we do not have
lot of data in that region of the integration, the variability is high for the shape parameter found with
the Hammouda model. Moreover, near the implant the scattering intensity is smaller, which means
less integrated points on which the data could be fitted, then the increase of the shape parameter
near the implant is to be taken with caution. The figure 7.10, shows how the shape parameter can be
shifted.
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Figure 7.10: Influence of the data in the Guinier region on the shape parameter found with the Ham-
mouda model

7.5 Orientation parameter

The preferred orientation of the mineral particles in bone is known to follow the principal directions
of the load and therefore indicates how the bone is reacting to the presence of the implant. If the
bone was not even noticing the presence of the pin, the main orientation would only be the one of
the long bone. This is not what we observe in most of our samples. Indeed, in cortical bone near
implant, it seems, that the particles are preferably oriented along the implant directions. This can
be measured with the orientation deviation from the long bone direction. In figure 7.11.a, c, d and
f it can be seen that the deviation is higher near implant than away from it. When that deviation
is computed for newly formed bone in figures 7.12.b, c and d, it seems that there is not preferred
direction of orientation, except for the figure 7.12.a where a cluster of points seems to aggregate at
above 1.5 mm away from the implant.
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Figure 7.11: Orientation deviation (◦) to the longitudinal direction of the bone, as a function to the
distance to the implant (mm) in cortical bone
a: 1 month implantation; b: 3 months implantation; c: 6 months implantation; d: 9 months implanta-
tion; e: 12 months implantation; f: 18 months implantation.
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Figure 7.12: Orientation deviation (◦) to the longitudinal direction of the bone, as a function to the
distance to the implant (mm) in newly formed bone
a: 6 months implantation; b: 9 months implantation; c: 12 months implantation; d: 18 months im-
plantation.

7.6 Comparison of the thickness derived from the Hammouda model and
the T parameter

7.6.1 Evolution of the T parameter near implant

During this master thesis, the thickness has been computed directly from the integrated curve, by
using the Hammouda model. Nevertheless, the results have been compared with the standard way
of computing thickness, using the T parameter [21]. When compared, the two parameters were
different, a difference from a factor two (see table 7.1), but also different was the evolution near
implant, with a decrease of the thickness size near implant for the thickness computed with the
Hammouda model and sometimes a small increase of the T parameter near implant (See figures
7.13.b, d and f or 7.14. a and b).

The difference of behavior in the T parameter results near implant can be explained through the
degree of mineralization. Indeed near implant and in newly formed bone, the scattered intensity is
lower than in the rest of the bone, which is correlated to a lower mineral amount as mineral is the
most scattering material in bone. But the T parameter depends on the degree of mineralization φ,
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Figure 7.13: T parameter (Å) as a function of the distance to the implant(mm) in cortical bone
a: 1 month implantation; b: 3 months implantation; c: 6 months implantation; d: 9 months implanta-
tion; e: 12 months implantation; f: 18 months implantation.
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Figure 7.14: T parameter (Å) as a function of the distance to the implant(mm) in newly formed bone
a: 6 months implantation; b: 9 months implantation; c: 12 months implantation; d: 18 months im-
plantation.

and this degree is assumed to be constant and equal to 50%:

T =
P

Iinvariant =
1

πφ(1− φ)

S
V

(7.1)

and if the degree of mineralization is dropping, the thickness should increase as T is conversely
proportional to the degree of mineralization. Thus the difference of evolution that we can see in
figures 7.13 and 7.14.

The difference of value between the thickness computed from the Hammouda model and the T
parameter can be explained by the fact that the T parameter is defined as a correlation length, which
is not exactly equal to the thickness but can be interpreted as a measure of the thickness.
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7.6.2 Comparison of the thickness from the Hammouda model and of the T parameter

Even if the value of the thickness computed with the Hammouda model and of the T parameter are
not the same, the evolution over time of the two thickness parameters are similar (see table 7.1 and
figures 7.15 and 7.16): a tendency to increase of the mean thickness and of the T parameter over time,
tendency that is in the range of the standard deviation, thus to be taken with caution.

Sample Months Mean (standard deviation) on
thickness computed with the
Hammouda model (Å)

Mean (standard deviation) on
the T parameter (Å)

4187 1 36.45 (7.18) 20.38 (2.20)

4172 3 38.00 (8.41) 20.52 (2.18)

4050 6 39.67 (8.50) 20.97 (1.38)

4165 9 39.65 (9.05) 21.51 (1.56)

4280 12 39.45 (8.28) 21.18 (1.69)

4340 18 42.50 (7.60) 22.88 (1.84)

Table 7.1: Comparison of the model to obtain thickness

Figure 7.15: Evolution of the thickness of the particles computed with the Hammouda model (Å)
over time
The white line is the median, the two extrema of the blue box are respectively, 25% and 75% of the
data points of the mapping and the extremities of the black bar are the extrem values of the shape
parameter
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Figure 7.16: Evolutionof the T parameter (Å) over time
The white line is the median, the two extrema of the blue box are respectively, 25% and 75% of the
data points of the mapping and the extremities of the black bar are the extrem values of the shape
parameter
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Conclusion

This master thesis was part of the BRIC project (BioResorbable Implants for Children). A promising
implant is a magnesium alloyed pin from the WZ21 class. this master thesis aimed to observe the
reaction of the nanostructure of rats bone to the implantation and degradation of that bio resorbable
magnesium pin. The reaction was to be quantified with criteria on size, shape, and orientation of the
mineral crystals that constitute bone on the nanoscopic level. Six rats were implanted with the pin
for a period of 1, 3, 6, 9, 12 and 18 months. The implanted bones were then removed and prepared
in slices to be then analyzed with histological techniques, Small Angle X-ray Scattering. The six bone
samples were scanned with the Small Angle X-ray Scattering technique at the University of Natural
Resources and Life Sciences Vienna and at the University of Vienna. For each sample a mapping
of at least 300 points of dimension 350 µm by 350 µm was made, which represents approximately
data 4 mm of bone above and under the implant. From those SAXS experiment were obtained 2D
diffraction patterns. Those patterns were integrated first radially then azimuthally to be then fitted,
in order to identify, the thickness of the minerals, their shape and their direction of orientation. The
radial integration enabled to identify, the mean thickness and shape of the particles present in the
scanned points, when the azimuthal integration made possible the characterization of the orientation
of the particles. Two models were compared for computing the thickness of the particles. The first
model was the Hammouda model that used the fitting of the radial integration, the thickness was
computed from the shape of the curve in the Guinier and in the Porod regions. The second model
used the invariants of the radial integration and the result of that model was the T parameter. The
experiment also gave information on the relative mineralization in each sample. It has been observed:

• that the degradation rate of the WZ21, is slow enough to prevent the formation of gas cavities,

• that the bone is reacting by forming new crystals, whose thickness grows over time to stabilize
between 12 and 18 months,

• that the bone is reacting by orienting near implant the crystals parallel to the implant directions,
and that this difference of orientation is no more visible after 18 months,

• that the bone is forming more platelets like particles near implant,

• that the new bone is less mineralized but this difference disappears over time.

The variation of thickness over time, found with the two models were both in the range of the stan-
dard deviation and thus were to be taken with caution.
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Next development of the project

The first development is to study the behavior of bone with other alloy, for example a fast degrading
one, to see the reaction of the bone on a long term. This is going to be done at the BOKU with
LV1 magnesium alloy pins. The next development for the project, is going to be the study of the
sample through X-Ray fluorescence to get to know how the magnesium and other part of the alloy
are spread out. Indeed with the SAXS analysis, we gained information on the bone crystals reaction,
but no information could be gained on the dispersion of the magnesium, and of the other part of
the alloy. This complementary study will allow to see how the bone is evacuating the pin corrosion
products. This part of the project is going to take place at the Technical University Vienna.

In conclusion, in my opinion, the WZ21 alloy is a promising alloy for the pediatric orthopedic
surgery and the SAXS technic a good complementary way to study bone’s reaction to implantation.

Difficulties and experience gained

This master thesis has been a very interesting and enriching experience, with difficulties I had to
overcome, but which enabled me to have a better understanding of the phenomenon I studied. The
first difficulty I met was to get to understand the principle of SAXS, and the only way to go past that
difficulty was actually to get to work with the experiment, to understand what was the influence
of each parameter. In the end, I am really amazed by the information that the SAXS could give
and by the possibility of the device. The second difficulty was to use Mathematica, and to handle
the different types of data. This has been a true brainteaser, but it has also been the better way to
understand how to manipulate the data.
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Appendix A

Mathematica files

A.1 Complete file

1 (∗ 4340 ∗ )
2 (∗ i n i t i a l i z a r i o n of the time ∗ )
3 t 0 = TimeUsed [ ] ;
4 name = 4340 ;
5 (∗ v a r i a b l e s are c lear ed ∗ )
6 Clear [ f i l e s , FileNameList , FileNameList1 , inxy , pathin , pathin1 , xpt , ypt , ext , l ,

Filename , FileNameList2 , i , imax , in , xmin , xmax , dx , ymin , ymax , dy , z , i n t e n s i t y ,
in tens i tygraph , lxy , i n t e n s e 2 ] ;

7
8 (∗Copy of the d i r e c t o r y to manipulate i t without having to change the o r i g i n a l data ∗ )
9 Dele teDirec tory [ "C:\\ Users\\ogier\\Desktop\\DATA\\4340 _Integrat ionKopie " , DeleteContents

−> True ] ;
10 pathin1 = "C:\\ Users\\ogier\\Desktop\\DATA\\4340 _ I n t e g r a t i o n " ;
11
12 pathin = CopyDirectory [ pathin1 , "C:\\ Users\\ogier\\Desktop\\DATA\\4340 _Integrat ionKopie " ] ;
13 len = Str ingLength [ pathin1 ] ;
14
15 (∗ importat ion of the f i l e of the r a d i a l i n t e g r a t i o n S e l e c t i o n of the f i l e of i n t e r e s t
16 f i r s t r a d i a l i n t e g r a t e d f i l e ∗ )
17 f i l e s = FileNames [ { " Bone_∗_∗ r a d i a l . p l t " } , FileNameJoin [ { pathin } ] ] ;
18 FileNameList = FileNameTake [ # , −1] & /@ f i l e s ;
19 len2 = Str ingLength [ FileNameList [ [ 1 ] ] ] ;
20
21 (∗ Modif icat ion of the extens ion of the f i l e to have i t in t x t so we can manipulate them

∗ )
22 FileNameList1 =
23 RenameFile [ # , S t r i n g I n s e r t [ StringDrop [ # , −3] , " . t x t " , len + len2 + 3 (∗ length of the

name of the f i l e ∗ ) ] ] & /@ f i l e s ;
24 (∗Only the name i s taken ∗ )
25 FileNameList2 = FileNameTake [ # , −1] & /@ FileNameList1 ;
26 (∗ Ordering of the f i l e to manipulate them in the order by which they have been scanned

f i r s t number of c h a r a c t e r in the f i l e name before the three c h a r a c t e r i s t i c s number
004 f o r example and second one , the number of c h a r a c t e r a f t e r t h a t number∗ )

27 f [ s t r _ ] := { s t r , StringDrop [ StringDrop [ s t r , 1 2 ] , −7]} ;
28 FileNameList = SortBy [Map[ f , FileNameList2 ] , Last ] [ [ All , 1 ] ] ;
29 (∗number of points measured ∗ )
30 imax = Length [ FileNameList ] ;
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31
32 (∗ obtent ion of the azimuthal i n t e g r a t i o n ∗ )
33 f i l e s a z i = FileNames [ { " Bone_∗_∗ a z i . p l t " } , FileNameJoin [ { pathin } ] ] ;
34 (∗ Modif icat ion of the extens ion of the f i l e to have i t in t x t so we can manipulate them

∗ )
35 i n t e r = FileNameTake [ # , −1] & /@ f i l e s a z i ;
36 l e n 2 a z i = Str ingLength [ i n t e r [ [ 1 ] ] ] ;
37 Fi leNameList1azi = RenameFile [ # , S t r i n g I n s e r t [ StringDrop [ # , −3] , " . t x t " , len +

len2 (∗ lenght of the name of the f i l e without the extens ion ∗ ) ] ] & /@ f i l e s a z i ;
38 (∗Only the name i s taken ∗ )
39 Fi leNameList2azi = FileNameTake [ # , −1] & /@ FileNameList1azi ;
40 (∗ Ordering of the f i l e to manipulate them in the order by which they have been scanned

f i r s t number of c h a r a c t e r in the f i l e name before the three c h a r a c t e r i s t i c s number
004 f o r example and second one , the number of c h a r a c t e r a f t e r t h a t number ∗ )

41 f a z i [ s t r _ ] := { s t r , StringDrop [ StringDrop [ s t r , 7 ] , −7]} ;
42 Fi leNameListazi = SortBy [Map[ f a z i , Fi leNameList2azi ] , Last ] ;
43
44 (∗Thanks to the i n t e n s i t y f i l e and the h i s t o l o g i c a l and photo , you have deduced where was

the implant , you should then have t h i s coordinates in the fol lowing l i n e s i t i s
going to be use fu l f o r computation of the d i s t a n c e to the implant i n f l u e n c e ∗ )

45 For [ i = 0 , i < 7 , i ++ ,
46 I f [ ToExpression [ S t r i n g S p l i t [ Import [
47 FileNames [ " Implant∗ t x t " ,
48 FileNameJoin [
49 "C:\\ Users\\ogier\\Desktop\\DATA\\background_f i le " ] ] [ [ 1 ] ]
50 ] ] ] [ [ 5 ∗ i + 1 ] ] == name ,
51 yimplantmin = ToExpression [ S t r i n g S p l i t [ Import [
52 FileNames [ " Implant∗ t x t " ,
53 FileNameJoin [
54 "C:\\ Users\\ogier\\Desktop\\DATA\\background_f i le " ] ] [ [ 1 ] ]
55 ] ] ] [ [ 5 ∗ i + 2 ] ] ;
56 yimplantmax = ToExpression [ S t r i n g S p l i t [ Import [
57 FileNames [ " Implant∗ t x t " ,
58 FileNameJoin [
59 "C:\\ Users\\ogier\\Desktop\\DATA\\background_f i le " ] ] [ [ 1 ] ]
60 ] ] ] [ [ 5 ∗ i + 3 ] ] ;
61 ximplantmin = ToExpression [ S t r i n g S p l i t [ Import [
62 FileNames [ " Implant∗ t x t " ,
63 FileNameJoin [
64 "C:\\ Users\\ogier\\Desktop\\DATA\\background_f i le " ] ] [ [ 1 ] ]
65 ] ] ] [ [ 5 ∗ i + 4 ] ] ;
66 ximplantmax = ToExpression [ S t r i n g S p l i t [ Import [
67 FileNames [ " Implant∗ t x t " ,
68 FileNameJoin [
69 "C:\\ Users\\ogier\\Desktop\\DATA\\background_f i le " ] ] [ [ 1 ] ]
70 ] ] ] [ [ 5 ∗ i + 5 ] ] ; ]
71 ]
72
73
74 (∗ Define Background F i l e here ∗ )
75 backgroundimp3 =
76 ToExpression [
77 S t r i n g S p l i t [
78 Import [ "C:\\ Users\\ogier\\Desktop\\DATA\\background_f i le\\Bone_2_\
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79 377 r a d i a l . t x t " , { " Lines " , Range [ 1 7 , 507 , 1 ] } , Path −> pathin ] ] ] ;
80
81 backgroundimp1 = Drop [ backgroundimp3 , None , 1 ] ;
82 backgroundimp = Drop [ backgroundimp1 , None , { 2 } ] ;
83 backgroundimp =
84 backgroundimp [ [ All , { 1 , 2 } ] ] = backgroundimp [ [ All , { 2 , 1 } ] ] ;
85
86 backg = ListLogLogPlot [ backgroundimp , PlotRange −> All ]
87 intbackground3 = Drop [ backgroundimp , None , { 1 } ] ;
88
89 intbackgroundsave = intbackground3 ;
90 Length [ intbackgroundsave ] ;
91 intbackground2 = Drop [ intbackground3 , −135];
92 intbackground = Drop [ intbackground2 , 3 4 0 ] ;
93
94 (∗ Creat ion of a l i s t to s tock the r e s u l t s ∗ )
95 l = { } ;
96 l 1 = { } ;
97 l 2 = { } ;
98 l 3 = { } ;
99 l 4 = { } ;

100 l d i s t a n c e = { } ;
101 l s c a t t e r = { } ;
102 l c o r r = { } ;
103 l c o r r f i t = { } ;
104 l h i s t o = { } ;
105 l i n t e n s e = { } ;
106 l 1 a z i = { } ;
107 l a z i = { } ;
108
109 l d i s t a n c e a z i = { } ;
110 lxy = { } ;
111 (∗ r e s u l t s f i l e s , e t c . . . ∗ )
112 i n t e n s i t y =
113 OpenWrite [
114 "C:\\ Users\\ogier\\Desktop\\DATA\\4340 _ I n t e g r a t i o n \\ i n t e n s i t y . t x t " ] ;
115 r e s u l t s =
116 OpenWrite [
117 "C:\\ Users\\ogier\\Desktop\\DATA\\4340 _ I n t e g r a t i o n \\ r a d i a l r e s u l t s .\
118 t x t " ] ;
119 i n t e n s i t y f o r a z i =
120 OpenWrite [
121 "C:\\ Users\\ogier\\Desktop\\DATA\\4340 _ I n t e g r a t i o n \\ i s c a t . t x t " ] ;
122 Resul t s =
123 OpenWrite [
124 "C:\\ Users\\ogier\\Desktop\\DATA\\4340 _ I n t e g r a t i o n \\ a z i r e s u l t s .\
125 t x t " ] ;
126 (∗number of the l a s t l i n e to import in the azimuthal i n t e g r a t i o n ∗ )
127 l a s t l i n e p l t f i l e = 7 3 7 ;
128
129 (∗ obtent ion of the xy coordinate ∗ )
130 f i l e s x y = FileNames [ { " ∗ . csv " } , FileNameJoin [ { pathin } ] ] ;
131 FileNameListxy = FileNameTake [ # , −1] & /@ f i l e s x y ;
132 Filenamexy = Part [ FileNameListxy , 1 ] ;
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133 inxy = Import [ f i l e s x y [ [ 1 ] ] , Path −> pathin ] ;
134
135 (∗ loop on a l l the points measured ∗ )
136 For [ i = 1 , i < imax + 1 , i ++ ,
137 Clear [ Rg , d , s , G, q , De , Q1 , nlm , in t , d a t f i t , datplot , f g u i n i e r , fporod , in , dat , dat1

, raw , q l i s t , i n t i 2 , i n t i , r a t i o , sca le , inbackgroundscale , h i n t e r g r u n d k o r r i g i e r t ,
hint , i n t c o r r e c t e d , radcorrected , corr , xpt , ypt , valuepeak , valueangle , backgazi ,
ext , intense2 , datazi , i n a z i ] ;

138 Filename = FileNameList [ [ i ] ] ;
139 (∗ obtent ion of i n t e n s i t y in q=0 photodiode i n t e n s i t y ∗ )
140 i n i n t = ToExpression [
141 S t r i n g S p l i t [
142 Import [ FileNameList [ [ i ] ] , { " Lines " , Range [ 1 7 , 18 , 1 ] } ,
143 Path −> pathin ] ] ] ;
144 d a t i n t = i n i n t ;
145 i n t e n s e 2 = d a t i n t [ [ 1 , 2 ] ] ;
146
147 z == Wri teStr ing [ i n t e n s i t y , Filename , " \ t " , intense2 , "\n" ] ;
148 (∗ obtent ion of x and y of the points ∗ )
149 ext = Part [ inxy , i ] [ [ 1 ] ] ;
150 xpt = ToExpression [ S t r i n g S p l i t [ ex t ] [ [ 3 ] ] ] ;
151 ypt = ToExpression [ S t r i n g S p l i t [ ex t ] [ [ 4 ] ] ] ;
152 d i s t a n c e = ( ( Min [ { yimplantmax − ypt ,
153 yimplantmin − ypt } ] ) ^2 + ( Min [ { ximplantmax − xpt ,
154 ximplantmin − xpt } ] ) ^2) ^ 0 . 5 ;
155 l i n t e n s e = AppendTo [ l i n t e n s e , { xpt , ypt , i n t e n s e 2 } ] ;
156 lxy = AppendTo [ lxy , { xpt , ypt } ] ;
157
158 I f [ i n t e n s e 2 == 0 ,
159 l = AppendTo [ l , { Filename , xpt , ypt , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ] ;
160 ,
161
162 (∗ Obtention of the data
163 f i r s t r a d i a l i n t e g r a t e d data ∗ )
164 in = ToExpression [
165 S t r i n g S p l i t [
166 Import [ FileNameList [ [ i ] ] , { " Lines " , Range [ 1 7 , 507 , 1 ] } ,
167 Path −> pathin ] ] ] ;
168 dat = Drop [ in , None , 1 ] ;
169 dat1 = Drop [ dat , None , { 2 } ] ;
170 dat1 = dat1 [ [ All , { 1 , 2 } ] ] = dat1 [ [ All , { 2 , 1 } ] ] ;
171 raw = ListLogLogPlot [ dat1 , PlotRange −> All ] ;
172 q l i s t = Drop [ dat1 , None , { 2 } ] ;
173 i n t i 2 = Drop [ dat1 , None , { 1 } ] ;
174
175 (∗ This determines the range of background normal isa t ion ∗ )
176 i n t i = Drop [ i n t i 2 , −135];
177 i n t i = Drop [ i n t i , 3 4 0 ] ;
178
179 r a t i o = i n t i /intbackground ;
180 s c a l e = Mean[ r a t i o ] ;
181 intbackgroundscale = s c a l e ∗ { intbackgroundsave } ;
182 intbackgroundscale = F l a t t e n [ F l a t t e n [ intbackgroundscale ] ] ;
183 h i n t e r g r u n d k o r r i g i e r t =
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184 Transpose [ I n s e r t [ Transpose [ q l i s t ] , intbackgroundscale , 2 ] ] ;
185 hint = ListLogLogPlot [ h i n t e r g r u n d k o r r i g i e r t , PlotRange −> All ] ;
186
187 i n t c o r r e c t e d = i n t i 2 − intbackgroundscale ;
188 i n t c o r r e c t e d = F l a t t e n [ i n t c o r r e c t e d ] ;
189
190 radcorrec ted = Transpose [ I n s e r t [ Transpose [ q l i s t ] , i n t c o r r e c t e d , 2 ] ] ;
191 corr = ListLogLogPlot [ radcorrected , PlotRange −> All ] ;
192 (∗Show[ corr , raw , backg ] ; ∗ )
193 (∗Number of datapoints to drop f o r the f i t t i n g ∗ )
194 d a t f i t = Drop [ radcorrected , 2 0 ] ;
195 d a t f i t = Drop [ d a t f i t , −250];
196 (∗ c a l c u l a t i o n of the s c a t t e r e d i n t e n s i t y as the r a t i o n of the sum \
197 of the i n t e n s i t y of the curve and the i n t e n s i t y of the photodiode
198 and w r i t t i n g of i t f o r the azimuthal i n t e g r a t i o n ∗ )
199 i t o t a l = Part [ Tota l [ d a t f i t ] , 2 ] ;
200 s c a t t e r e d i n t e n s i t y = i t o t a l / i n t e n s e 2 ;
201
202 i s c a t ==
203 WriteStr ing [ i n t e n s i t y f o r a z i , FileNameList [ [ i ] ] , " \ t " ,
204 s c a t t e r e d i n t e n s i t y , "\n" ] ;
205
206 datp lo t = ListLogLogPlot [ d a t f i t , PlotRange −> All ] ;
207
208 (∗ begining of the loop to f i l t e r data ∗ )
209 (∗ f i r s t step ,
210 exclude the data t h a t are not coherent through i n t e n s i t y ∗ )
211 I f [ s c a t t e r e d i n t e n s i t y < 100 || s c a t t e r e d i n t e n s i t y > 2000 ,
212
213 P r i n t [ " FileName : " , Filename , " ( x , y ) : ( " , xpt , " , " , ypt ,
214 " ) , Non coherent because of s c a t t e r e d i n t e n s i t y : " ,
215 s c a t t e r e d i n t e n s i t y ] ;
216 Unprotect [ Out ] ; Clear [ Out ] ;
217 put ==
218 WriteStr ing [ r e s u l t s , FileNameList [ [ i ] ] , " \ t " ,
219 " non coherent because of s c a t t e r e d i n t e n s i t y " , "\n" ] ;
220 datp lo t = ListLogLogPlot [ d a t f i t , PlotRange −> All ] ;
221 donnee =
222 ListLogLogPlot [ dat1 [ [ All , { 1 , 2 } ] ] ,
223 P l o t S t y l e −> RGBColor [ 1 , 0 , 0 ] ] ;
224 l = AppendTo [
225 l , { Filename , xpt , ypt , d is tance , intense2 , i t o t a l ,
226 s c a t t e r e d i n t e n s i t y , 0 , 0 , 0 , 0 } ] ;
227 s c a t t e r e d i n t e n s i t y = 0 ;
228 Rg = 0 ;
229 s = 0 ;
230 l 1 = AppendTo [ l1 , { xpt , ypt , 0 } ] ;
231 l 2 = AppendTo [ l2 , { xpt , ypt , 0 } ] ;
232 l 3 = AppendTo [ l3 , { xpt , ypt , 0 } ] ;
233 l s c a t t e r = AppendTo [ l s c a t t e r , { xpt , ypt , s c a t t e r e d i n t e n s i t y } ] ;
234 P r i n t [Show[ datplot , PlotRange −> All ] ] ,
235
236 (∗ d e f i n i t i o n of the f i t func t ion and f i t t i n g ∗ )
237 f g u i n i e r = G/q^s∗Exp[(−q^2∗Rg^2) /(3 − s ) ] ;
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238 fporod = De/q^d ;
239
240 Q1 = 1/Rg∗ ( ( d − s ) ∗ (3 − s ) /2) ^1/2;
241 De = G∗Exp[−Q1^2∗Rg^2/(3 − s ) ]∗Q1^(d − s ) ;
242 i n t = Piecewise [ { { f g u i n i e r , q < Q1} , { fporod , q >= Q1 } } ] ;
243 d = 4 ;
244 (∗ f i t t i n g ∗ )
245 nlm = NonlinearModelFit [ d a t f i t ,
246 in t , { { Rg , 1 0 } , {G, Max[ d a t f i t ] ∗ 0 . 6 } , { s , 1 . 5 } } , q ] ;
247
248 Rg = Abs [Rg ] /. nlm [ " Bes tF i tParameters " ] ;
249 G = G /. nlm [ " Bes tF i tParameters " ] ;
250 s = s /. nlm [ " Bes tF i tParameters " ] ;
251
252 (∗Then e v i c i t i o n of non coherent values ∗ )
253 I f [ s <= 0 || s > 3 . 5 || Rg < 3 || G < 0 || Rg > 21 ||
254 NotElement [G, Reals ] || NotElement [ Rg , Reals ] ||
255 NotElement [ s , Reals ] ,
256 P r i n t [ " FileName : " , FileNameList [ [ i ] ] , " ( x , y ) : ( " , xpt , " , " , ypt ,
257 " ) " , " , Non coherent f i t because of Rg or s : ( " , Rg , " , " , s ,
258 " ) , s c a t t e r e d i n t e n s i t y : " , s c a t t e r e d i n t e n s i t y ] ;
259 datp lo t = ListLogLogPlot [ d a t f i t , PlotRange −> All ] ;
260 donnee =
261 ListLogLogPlot [ dat1 [ [ All , { 1 , 2 } ] ] ,
262 P l o t S t y l e −> RGBColor [ 1 , 0 , 0 ] ] ;
263 l = AppendTo [
264 l , { Filename , xpt , ypt , d is tance , intense2 , i t o t a l ,
265 s c a t t e r e d i n t e n s i t y , s , Rg , 0 , 0 } ] ;
266 Rg = 0 ;
267 s = 0 ;
268 l 1 = AppendTo [ l1 , { xpt , ypt , s } ] ;
269 l 2 = AppendTo [ l2 , { xpt , ypt , Rg } ] ;
270 l 3 = AppendTo [ l3 , { xpt , ypt , 0 } ] ;
271 l s c a t t e r = AppendTo [ l s c a t t e r , { xpt , ypt , s c a t t e r e d i n t e n s i t y } ] ;
272 P r i n t [Show[ datplot , PlotRange −> All ] ]
273 Unprotect [ Out ] ; Clear [ Out ] ;
274 put ==
275 WriteStr ing [ r e s u l t s , FileNameList [ [ i ] ] , " \ t " , Rg , " \ t " , G,
276 " \ t " , s , " \ t " , d , " \ t " , Q1 , " \ t " , De , s c a t t e r e d i n t e n s i t y ,
277 "\ t " , " non coherent because of rg or s " , "\n" ] ; ,
278
279
280 (∗ C a l c u l a t i o n of the Porod constant ,
281 then the Kratky i n t e g r a l to gain a c c e s s to the t h i c k n e s s as \
282 c a l c u l a t e d usual ly placed here so only i n t e g r a t i o n when there should \
283 be a f i t ∗ )
284 nlm [ " FittedModel " ] ;
285 J = I n t e g r a t e [4/\[ Pi ]∗q^2∗nlm [ q ] , { q , 0 . 0 0 1 , 0 . 4 } ] +
286 4/\[ Pi ]∗0 .001^3∗nlm [ 0 . 0 0 1 ] / 2 + De/0.4∗4/\[ Pi ] ;
287 I f [ Element [ J , Reals ] ,
288 Q1 ;
289 De ;
290 Tstandard = J /De ;
291 (∗ loop to s e l e c t the data t h a t are the most s c a t t e r i n g ,
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292 mainly c o r t i c a l bone to have them computing the d i s t a n c e ∗ )
293 I f [ s c a t t e r e d i n t e n s i t y < 400 ,
294 I f [ s > 0 && s < 1 ,
295 (∗ i n t e r p o l a t i o n to know the t h i c k n e s s depending of s and Rg∗ )
296 T = ( ( 2 ^ 1 . 5 − 2 (5/3) ^ 0 . 5 ) ) ∗Rg∗ s + 2 (5/3) ^0.5∗Rg ;
297 l 1 = AppendTo [ l1 , { xpt , ypt , s } ] ;
298 l 2 = AppendTo [ l2 , { xpt , ypt , T } ] ;
299 l 3 = AppendTo [ l3 , { xpt , ypt , Tstandard } ] ;
300 l h i s t o = AppendTo [ l h i s t o , { s , Rg , T , Tstandard } ] ;
301 l d i s t a n c e = AppendTo [ l d i s t a n c e , { dis tance , s , T , Rg } ] ;
302 l c o r r = AppendTo [ l c o r r , { s , Rg } ] ;
303 l c o r r f i t = AppendTo [ l c o r r f i t , { s , Rg } ] ;
304 l s c a t t e r = AppendTo [ l s c a t t e r , { xpt , ypt , s c a t t e r e d i n t e n s i t y } ] ;
305 l =
306 AppendTo [
307 l , { Filename , xpt , ypt , d is tance , intense2 , i t o t a l ,
308 s c a t t e r e d i n t e n s i t y , s , Rg , T , Tstandard } ] ;
309 nlm [ " FittedModel " ]
310 P r i n t [ " Filename " , FileNameList [ [ i ] ] , " Rg " , Rg , " ; s " , s ,
311 " , T " , T , " , Tstandard " , Tstandard , " ( x , y ) : ( " , xpt , " , " ,
312 ypt , " ) , s c a t t e r e d i n t e n s i t y : " , s c a t t e r e d i n t e n s i t y ] ;
313
314 P r i n t [
315 Show[ datplot ,
316 LogLogPlot [ nlm [ q ] , { q , 0 . 0 1 , 0 . 7 } ,
317 P l o t S t y l e −> RGBColor [ 1 , 0 , 0 ] ] , PlotRange −> All ] ]
318 Unprotect [ Out ] ; Clear [ Out ]
319 put ==
320 WriteStr ing [ r e s u l t s , FileNameList [ [ i ] ] , " \ t " , Rg , " \ t " , G,
321 " \ t " , s , " \ t " , d , " \ t " , Q1 , " \ t " , De , "\ t " ,
322 s c a t t e r e d i n t e n s i t y , "\n" ] ; ,
323 I f [ s >= 1 && s <= 2 ,
324 (∗ i n t e r p o l a t i o n to know the t h i c k n e s s depending of s and Rg∗ )
325
326
327 T = ( ( 1 2 ^ 0 . 5 − 2 ^ 1 . 5 ) ) ∗Rg∗ ( s − 1) + 2^1.5∗Rg ;
328
329 l 1 = AppendTo [ l1 , { xpt , ypt , s } ] ;
330 l 2 = AppendTo [ l2 , { xpt , ypt , T } ] ;
331 l 3 = AppendTo [ l3 , { xpt , ypt , Tstandard } ] ;
332
333 l h i s t o = AppendTo [ l h i s t o , { s , Rg , T , Tstandard } ] ;
334 l d i s t a n c e = AppendTo [ l d i s t a n c e , { dis tance , s , T , Rg } ] ;
335 l c o r r = AppendTo [ l c o r r , { s , Rg } ] ;
336 l c o r r f i t = AppendTo [ l c o r r f i t , { s , Rg } ] ;
337 l s c a t t e r = AppendTo [ l s c a t t e r , { xpt , ypt , s c a t t e r e d i n t e n s i t y } ] ;
338 nlm [ " FittedModel " ]
339 P r i n t [ " Filename " , FileNameList [ [ i ] ] , " Rg " , Rg , " ; s " , s ,
340 " , T " , T , " , Tstandard " , Tstandard , " ( x , y ) : ( " , xpt , " , " ,
341 ypt , " ) , s c a t t e r e d i n t e n s i t y : " , s c a t t e r e d i n t e n s i t y ] ;
342 l =
343 AppendTo [
344 l , { Filename , xpt , ypt , d is tance , intense2 , i t o t a l ,
345 s c a t t e r e d i n t e n s i t y , s , Rg , T , Tstandard } ] ;
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346 P r i n t [
347 Show[ datplot ,
348 LogLogPlot [ nlm [ q ] , { q , 0 . 0 1 , 0 . 7 } ,
349 P l o t S t y l e −> RGBColor [ 1 , 0 , 0 ] ] , PlotRange −> All ] ]
350 Unprotect [ Out ] ; Clear [ Out ]
351 put ==
352 WriteStr ing [ r e s u l t s , FileNameList [ [ i ] ] , " \ t " , Rg , " \ t " , G,
353 " \ t " , s , " \ t " , d , " \ t " , Q1 , " \ t " , De , "\ t " ,
354 s c a t t e r e d i n t e n s i t y , "\n" ] ; ,
355 I f [ s > 2 && s <= 3 ,
356 (∗ i n t e r p o l a t i o n to know the t h i c k n e s s depending of s and Rg∗ )
357
358
359 T = 12^0.5∗Rg ;
360
361 l 1 = AppendTo [ l1 , { xpt , ypt , s } ] ;
362 l 2 = AppendTo [ l2 , { xpt , ypt , T } ] ;
363 l 3 = AppendTo [ l3 , { xpt , ypt , Tstandard } ] ;
364
365 l h i s t o = AppendTo [ l h i s t o , { s , Rg , T , Tstandard } ] ;
366 l d i s t a n c e = AppendTo [ l d i s t a n c e , { dis tance , s , T , Rg } ] ;
367 l c o r r = AppendTo [ l c o r r , { s , Rg } ] ;
368 l c o r r f i t = AppendTo [ l c o r r f i t , { s , Rg } ] ;
369 l s c a t t e r = AppendTo [ l s c a t t e r , { xpt , ypt , s c a t t e r e d i n t e n s i t y } ] ;
370 l =
371 AppendTo [
372 l , { Filename , xpt , ypt , d is tance , intense2 , i t o t a l ,
373 s c a t t e r e d i n t e n s i t y , s , Rg , T , Tstandard } ] ;
374 nlm [ " FittedModel " ]
375
376 P r i n t [ " Filename " , FileNameList [ [ i ] ] , " Rg " , Rg , " ; s " , s ,
377 " , T " , T , " , Tstandard " , Tstandard , " ( x , y ) : ( " , xpt , " , " ,
378 ypt , " ) , s c a t t e r e d i n t e n s i t y : " , s c a t t e r e d i n t e n s i t y ] ;
379
380 P r i n t [
381 Show[ datplot ,
382 LogLogPlot [ nlm [ q ] , { q , 0 . 0 1 , 0 . 7 } ,
383 P l o t S t y l e −> RGBColor [ 1 , 0 , 0 ] ] , PlotRange −> All ] ]
384 Unprotect [ Out ] ; Clear [ Out ]
385 put ==
386 WriteStr ing [ r e s u l t s , FileNameList [ [ i ] ] , " \ t " , Rg , " \ t " ,
387 G, " \ t " , s , " \ t " , d , " \ t " , Q1 , " \ t " , De , "\ t " ,
388 s c a t t e r e d i n t e n s i t y , "\n" ] ;
389 ] ] ]
390
391 , (∗ i f i t i s not c o r t i c a l bone ∗ )
392 I f [ s > 0 && s < 1 ,
393 (∗ i n t e r p o l a t i o n to know the t h i c k n e s s depending of s and Rg∗ )
394 T = ( ( 2 ^ 1 . 5 − 2∗ (5/3) ^ 0 . 5 ) ) ∗Rg∗ s + 2∗ (5/3) ^0.5∗Rg ;
395
396 l 1 = AppendTo [ l1 , { xpt , ypt , s } ] ;
397 l 2 = AppendTo [ l2 , { xpt , ypt , T } ] ;
398 l 3 = AppendTo [ l3 , { xpt , ypt , Tstandard } ] ;
399 l =
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400 AppendTo [
401 l , { Filename , xpt , ypt , d is tance , intense2 , i t o t a l ,
402 s c a t t e r e d i n t e n s i t y , s , Rg , T , Tstandard } ] ;
403 l h i s t o = AppendTo [ l h i s t o , { s , Rg , T , Tstandard } ] ;
404 l c o r r = AppendTo [ l c o r r , { s , Rg } ] ;
405 l c o r r f i t = AppendTo [ l c o r r f i t , { s , Rg } ] ;
406 l s c a t t e r = AppendTo [ l s c a t t e r , { xpt , ypt , s c a t t e r e d i n t e n s i t y } ] ;
407 nlm [ " FittedModel " ]
408 P r i n t [ " Filename " , FileNameList [ [ i ] ] , " Rg " , Rg , " ; s " , s ,
409 " , T " , T , " , Tstandard " , Tstandard , " ( x , y ) : ( " , xpt , " , " ,
410 ypt , " ) , s c a t t e r e d i n t e n s i t y : " , s c a t t e r e d i n t e n s i t y ] ;
411
412 P r i n t [
413 Show[ datplot ,
414 LogLogPlot [ nlm [ q ] , { q , 0 . 0 1 , 0 . 7 } ,
415 P l o t S t y l e −> RGBColor [ 1 , 0 , 0 ] ] , PlotRange −> All ] ]
416 Unprotect [ Out ] ; Clear [ Out ]
417 put ==
418 WriteStr ing [ r e s u l t s , FileNameList [ [ i ] ] , " \ t " , Rg , " \ t " , G,
419 " \ t " , s , " \ t " , d , " \ t " , Q1 , " \ t " , De , "\ t " ,
420 s c a t t e r e d i n t e n s i t y , "\n" ] ; ,
421 I f [ s >= 1 && s <= 2 ,
422 (∗ i n t e r p o l a t i o n to know the t h i c k n e s s depending of s and Rg∗ )
423
424
425 T = ( ( 1 2 ^ 0 . 5 − 2 ^ 1 . 5 ) ) ∗Rg∗ ( s − 1) + 2^1.5∗Rg ;
426
427 l 1 = AppendTo [ l1 , { xpt , ypt , s } ] ;
428 l 2 = AppendTo [ l2 , { xpt , ypt , T } ] ;
429 l 3 = AppendTo [ l3 , { xpt , ypt , Tstandard } ] ;
430 l =
431 AppendTo [
432 l , { Filename , xpt , ypt , d is tance , intense2 , i t o t a l ,
433 s c a t t e r e d i n t e n s i t y , s , Rg , T , Tstandard } ] ;
434 l h i s t o = AppendTo [ l h i s t o , { s , Rg , T , Tstandard } ] ;
435 l c o r r = AppendTo [ l c o r r , { s , Rg } ] ;
436 l c o r r f i t = AppendTo [ l c o r r f i t , { s , Rg } ] ;
437 l s c a t t e r = AppendTo [ l s c a t t e r , { xpt , ypt , s c a t t e r e d i n t e n s i t y } ] ;
438 nlm [ " FittedModel " ]
439 P r i n t [ " Filename " , FileNameList [ [ i ] ] , " Rg " , Rg , " ; s " , s , " , T " , T , " ,

Tstandard " , Tstandard , " ( x , y ) : ( " , xpt , " , " , ypt , " ) , s c a t t e r e d i n t e n s i t y : " ,
s c a t t e r e d i n t e n s i t y ] ;

440
441 P r i n t [
442 Show[ datplot ,
443 LogLogPlot [ nlm [ q ] , { q , 0 . 0 1 , 0 . 7 } ,
444 P l o t S t y l e −> RGBColor [ 1 , 0 , 0 ] ] , PlotRange −> All ] ]
445 Unprotect [ Out ] ; Clear [ Out ]
446 put ==
447 WriteStr ing [ r e s u l t s , FileNameList [ [ i ] ] , " \ t " , Rg , " \ t " , G,
448 " \ t " , s , " \ t " , d , " \ t " , Q1 , " \ t " , De , "\ t " ,
449 s c a t t e r e d i n t e n s i t y , "\n" ] ; ,
450 I f [ s > 2 && s <= 3 ,
451 (∗ i n t e r p o l a t i o n to know the t h i c k n e s s depending of s and Rg∗ )



APPENDIX A. MATHEMATICA FILES 77

452
453
454 T = 12^0.5∗Rg ;
455
456 l = AppendTo [
457 l , { Filename , xpt , ypt , d is tance , intense2 , i t o t a l ,
458 s c a t t e r e d i n t e n s i t y , s , Rg , T , Tstandard } ] ;
459 l 1 = AppendTo [ l1 , { xpt , ypt , s } ] ;
460 l 2 = AppendTo [ l2 , { xpt , ypt , T } ] ;
461 l 3 = AppendTo [ l3 , { xpt , ypt , Tstandard } ] ;
462
463 l h i s t o = AppendTo [ l h i s t o , { s , Rg , T , Tstandard } ] ;
464 l c o r r = AppendTo [ l c o r r , { s , Rg } ] ;
465 l c o r r f i t = AppendTo [ l c o r r f i t , { s , Rg } ] ;
466 l s c a t t e r = AppendTo [ l s c a t t e r , { xpt , ypt , s c a t t e r e d i n t e n s i t y } ] ;
467 nlm [ " FittedModel " ]
468
469 P r i n t [ " Filename " , FileNameList [ [ i ] ] , " Rg " , Rg , " ; s " , s ,
470 " , T " , T , " , Tstandard " , Tstandard , " ( x , y ) : ( " , xpt , " , " ,
471 ypt , " ) , s c a t t e r e d i n t e n s i t y : " , s c a t t e r e d i n t e n s i t y ] ;
472
473 P r i n t [
474 Show[ datplot ,
475
476 LogLogPlot [ nlm [ q ] , { q , 0 . 0 1 , 0 . 7 } ,
477 P l o t S t y l e −> RGBColor [ 1 , 0 , 0 ] ] , PlotRange −> All ] ]
478 Unprotect [ Out ] ; Clear [ Out ]
479 put ==
480 WriteStr ing [ r e s u l t s , FileNameList [ [ i ] ] , " \ t " , Rg , " \ t " ,
481 G, " \ t " , s , " \ t " , d , " \ t " , Q1 , " \ t " , De , "\ t " ,
482 s c a t t e r e d i n t e n s i t y , "\n" ] ;
483 ] ] ] ] ,
484 l =
485 AppendTo [
486 l , { Filename , xpt , ypt , d is tance , intense2 , i t o t a l ,
487 s c a t t e r e d i n t e n s i t y , s , Rg , T , 0 } ] ;
488 ] ] ] ;
489
490 Clear [ g , valueangle , valuepeak , a , b , c , backgazi , x , inaz i , da taz i ] ;
491 (∗ here are t r e a t e d the azimuthal i n t e g r a t i o n ∗ )
492
493
494 (∗ Obtention of the i n t e g r a t e d data of one point which begin a t the 17 th l i n e , and end

at the l i n e you should look f o r i t in one f i l e ∗ )
495 i n a z i =
496 ToExpression [
497 S t r i n g S p l i t [
498 Import [ Fi leNameListazi [ [ i , 1 ] ] , { " Lines " ,
499 Range [ 1 7 , l a s t l i n e p l t f i l e , 1 ] } , Path −> pathin ] ] ] ;
500 dataz i = i n a z i ;
501 backgazi = Min [ Part [ da taz i [ [ All , 2 ] ] ] ] ;
502 valuepeak = Max[ Part [ da taz i [ [ All , 2 ] ] ] ] ;
503
504 valueangle =
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505 Part [ Pick [ da taz i [ [ All , 1 ] ] , da taz i [ [ All , 2 ] ] , valuepeak ] , 1 ] ;
506
507 (∗ s e l e c t i o n on s c a t t e r i n g i n t e n s i t y ∗ )
508 I f [ s c a t t e r e d i n t e n s i t y > 400 && s c a t t e r e d i n t e n s i t y < 2000 ,
509 I f [ valuepeak <= 0 .005 ,
510 zaz i ==
511 WriteStr ing [ Results , Filename , " ; " , " Not c o n s i s t e n t value \n" ] ;
512 donneeazi =
513 L i s t P l o t [ i n a z i [ [ All , { 1 , 2 } ] ] , P l o t S t y l e −> RGBColor [ 1 , 0 , 0 ] ] ;
514
515 P r i n t [ " FileName : " , Filename ,
516 " Value not c o n s i s t e n t because i n t e n s i t y : " ,
517 s c a t t e r e d i n t e n s i t y , " ( " , xpt , " , " , ypt , " ) \n" ]
518 P r i n t [Show[ donneeazi , PlotRange −> All ] ]
519 (∗ f o r the vec tor p l o t ∗ )
520 (∗Degree of o r i e n t a t i o n ∗ )
521 Clear [ degofor ient , b f i t ] ;
522 degofor ient = 0 ;
523 (∗ D i r e c t i o n of o r i e n t a t i o n ∗
524 1=90 degree r e a l space , 0=0 degree r e a l space , −1=
525 90 degree r e a l s p a c e ∗ )
526 b f i t = 0 ;
527 l a z i =
528 AppendTo [
529 l a z i , { { xpt ,
530 ypt } , { { degofor ient ∗Cos [ b f i t Degree ] ,
531 degofor ient ∗Sin [ b f i t Degree ] } , s c a t t e r e d i n t e n s i t y } } ] ;
532 l 1 a z i =
533 AppendTo [
534 l 1 a z i , { { xpt , ypt } , { degofor ient ∗Cos [ b f i t Degree ] ,
535 degofor ient ∗Sin [ b f i t Degree ] } } ] ;
536
537 OrVec = { d i r e c t i o n , degofor ient } ;
538 l = I n s e r t [ l , 0 , { i , −1}] ;
539 l = I n s e r t [ l , 0 , { i , −1}] ;
540 ,
541
542
543 valueangle =
544 Part [ Pick [ da taz i [ [ All , 1 ] ] , da taz i [ [ All , 2 ] ] , valuepeak ] , 1 ] ;
545 (∗ Test to know where might be the peak to apply the r i g h t f i t t i n g \
546 func t ion ∗ )
547 I f [ valueangle <= 45 ,
548 g = backgazi + a∗E^−(((x − b ) ^2) /(2 c ^2) ) +
549 a∗E^−(((x − b − 180) ^2) /(2 c ^2) ) +
550 a∗E^−(((x − b − 360) ^2) /(2 c ^2) ) ,
551 I f [45 < valueangle <= 135 ,
552 g = backgazi + a∗E^−(((x − b ) ^2) /(2 c ^2) ) +
553 a∗E^−(((x − b − 180) ^2) /(2 c ^2) ) ,
554 I f [135 < valueangle <= 225 ,
555 g =
556 backgazi + a∗E^−(((x − b + 180) ^2) /(2 c ^2) ) +
557 a∗E^−(((x − b − 180) ^2) /(2 c ^2) ) + a∗E^−(((x − b ) ^2) /(2 c ^2) ) ,
558 I f [225 < valueangle <= 315 ,
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559 g =
560 backgazi + a∗E^−(((x − b ) ^2) /(2 c ^2) ) +
561 a∗E^−(((x − b + 180) ^2) /(2 c ^2) ) ,
562 I f [315 < valueangle <= 360 ,
563 g = backgazi + a∗E^−(((x − b ) ^2) /(2 c ^2) ) +
564 a∗E^−(((x − b + 180) ^2) /(2 c ^2) ) +
565 a∗E^−(((x − b + 360) ^2) /(2 c ^2) ) ] ] ] ] ] ;
566 F i t f u n c t i o n a z i [ x_ ] = g ;
567
568 (∗ f i t t i n g ∗ )
569 nlmazi =
570 NonlinearModelFit [ da taz i [ [ All , { 1 , 2 } ] ] ,
571 F i t f u n c t i o n a z i [ x ] , { { a , valuepeak } , { b , valueangle } , c } , x ,
572 VarianceEst imatorFunct ion −> (Mean[#^2] &) ] ;
573 nlmazi [ " Bes tF i tParameters " ] ;
574 Rsq = nlmazi [ " RSquared " ] ;
575 ARsq = nlmazi [ " AdjustedRSquared " ] ;
576 AIC = nlmazi [ "AIC" ] ;
577 AICc = nlmazi [ " AICc " ] ;
578 BIC = nlmazi [ " BIC " ] ;
579 c e r r = nlmazi [ " ParameterErrors " ] ;
580 a f i t = a /. nlmazi [ " Bes tF i tParameters " ] ;
581 b f i t = b /. nlmazi [ " Bes tF i tParameters " ] ;
582 c f i t = c /. nlmazi [ " Bes tF i tParameters " ] ;
583 d f i t = backgazi / . nlmazi [ " Bes tF i tParameters " ] ;
584
585 (∗ c t r i t e r i u m f o r i so t ropy ∗ )
586 I f [ c e r r [ [ 3 ] ] > 0 . 8 3 || c f i t < 2 ,
587 P r i n t [ " FileName : " , Filename , " , Point i s i s o t r o p e . ( " , xpt ,
588 " , " , ypt , " ) " ] ;
589 Clear [ degofor ient , b f i t ] ;
590 (∗ f o r the vec tor p l o t ∗ )
591 (∗Degree of o r i e n t a t i o n ∗ )
592 degofor ient = 0 ;
593 (∗ D i r e c t i o n of o r i e n t a t i o n ∗
594 1=90 degree r e a l space , 0=0 degree r e a l space , −1=
595 90 degree r e a l s p a c e ∗ )
596 b f i t = 0 ;
597 l a z i =
598 AppendTo [
599 l a z i , { { xpt ,
600 ypt } , { { degofor ient ∗Cos [ b f i t Degree ] ,
601 degofor ient ∗Sin [ b f i t Degree ] } , s c a t t e r e d i n t e n s i t y } } ] ;
602 l 1 a z i = AppendTo [
603 l 1 a z i , { { xpt , ypt } , { degofor ient ∗Cos [ b f i t Degree ] ,
604 degofor ient ∗Sin [ b f i t Degree ] } } ] ;
605
606
607 OrVec = { d i r e c t i o n , degofor ient } ;
608 (∗ graph ∗ )
609 donneeazi =
610 L i s t P l o t [ i n a z i [ [ All , { 1 , 2 } ] ] ,
611 P l o t S t y l e −> RGBColor [ 0 . 5 , 1 . 5 , 0 ] ] ;
612 P r i n t [Show[ donneeazi , PlotRange −> All ] ]
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613
614 zaz i == Wri teStr ing [ Results , Filename , " ; i s o t r o p e " , "\n" ] ;
615 l = I n s e r t [ l , 0 , { i , −1}] ;
616 l = I n s e r t [ l , 0 , { i , −1}] ;
617 ,
618
619 (∗Degree of o r i e n t a t i o n ∗ )
620 degofor ient = 1/ c f i t ;
621 (∗ D i r e c t i o n of o r i e n t a t i o n ∗
622 1=90 degree r e a l space , 0=0 degree r e a l space , −1=
623 90 degree r e a l s p a c e ∗ )
624 d i r e c t i o n = Cos [ b f i t Degree ] ;
625 l a z i =
626 AppendTo [
627 l a z i , { { xpt ,
628 ypt } , { { degofor ient ∗Cos [ b f i t Degree ] ,
629 degofor ient ∗Sin [ b f i t Degree ] } , s c a t t e r e d i n t e n s i t y } } ] ;
630 l 1 a z i =
631 AppendTo [
632 l 1 a z i , { { xpt , ypt } , { degofor ient ∗Cos [ b f i t Degree ] ,
633 degofor ient ∗Sin [ b f i t degree ] } } ] ;
634
635 OrVec = { d i r e c t i o n , degofor ient } ;
636 l d i s t a n c e a z i =
637 AppendTo [ l d i s t a n c e a z i , { dis tance , degofor ient , Mod[ b f i t , 1 8 0 ] } ] ;
638 l = I n s e r t [ l , degofor ient , { i , −1}] ;
639 l = I n s e r t [ l , Mod[ b f i t , 1 8 0 ] , { i , −1}] ;
640
641 P r i n t [ " FileName : " , Filename , " , background : " , backgazi ,
642 " , peak height : " , a f i t , " , peak p o s i t i o n ( deg ) : " , b f i t ,
643 " , peak width : " , c f i t ,
644 " , standard devia t ion on peak width : " , c e r r [ [ 3 ] ] ,
645 " , s c a t t e r e d i n t e n s i t y : " , s c a t t e r e d i n t e n s i t y , " ( " , xpt , " , " ,
646 ypt , " ) " ] ;
647
648 (∗ graph ∗ )
649 f i t t e d c u r v e = P l o t [ nlmazi [ x ] , { x , 0 , 3 6 0 } ] ;
650 donneeazi = L i s t P l o t [ da taz i [ [ All , { 1 , 2 } ] ] ] ;
651 P r i n t [Show[ donneeazi , f i t t e d c u r v e , PlotRange −> All ] ] ;
652
653
654 zaz i ==
655 WriteStr ing [ Results , Filename , " ; " , a f i t , " ; " , b f i t , " ; " ,
656 c f i t , " ; " , d f i t , " ; " , degofor ient , " ; " , d i r e c t i o n , " ; " ,
657 OrVec , "\n" ] ;
658 ] ]
659 ,
660 I f [ valuepeak <= 0 . 0 0 5 ,
661 zaz i ==
662 WriteStr ing [ Results , Filename , " ; " , " Not c o n s i s t e n t value \n" ] ;
663 donneeazi =
664 L i s t P l o t [ i n a z i [ [ All , { 1 , 2 } ] ] , P l o t S t y l e −> RGBColor [ 1 , 0 , 0 ] ] ;
665
666 P r i n t [ " FileName : " , Filename ,
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667 " Value not c o n s i s t e n t because i n t e n s i t y : " ,
668 s c a t t e r e d i n t e n s i t y , " ( " , xpt , " , " , ypt , " ) \n" ]
669 P r i n t [Show[ donneeazi , PlotRange −> All ] ]
670 (∗ f o r the vec tor p l o t ∗ )
671 (∗Degree of o r i e n t a t i o n ∗ )
672 Clear [ degofor ient , b f i t ] ;
673 degofor ient = 0 ;
674 (∗ D i r e c t i o n of o r i e n t a t i o n ∗
675 1=90 degree r e a l space , 0=0 degree r e a l space , −1=
676 90 degree r e a l s p a c e ∗ )
677 b f i t = 0 ;
678 l a z i =
679 AppendTo [
680 l a z i , { { xpt ,
681 ypt } , { { degofor ient ∗Cos [ b f i t Degree ] ,
682 degofor ient ∗Sin [ b f i t Degree ] } , s c a t t e r e d i n t e n s i t y } } ] ;
683 l = I n s e r t [ l , 0 , { i , −1}] ;
684 l = I n s e r t [ l , 0 , { i , −1}] ;
685 l 1 a z i = AppendTo [
686 l 1 a z i , { { xpt , ypt } , { degofor ient ∗Cos [ b f i t Degree ] ,
687 degofor ient ∗Sin [ b f i t Degree ] } } ] ;
688
689 OrVec = { d i r e c t i o n , degofor ient } ;
690 ,
691 valueangle =
692 Part [ Pick [ da taz i [ [ All , 1 ] ] , da taz i [ [ All , 2 ] ] , valuepeak ] , 1 ] ;
693 (∗ Test to know where might be the peak ∗ )
694 I f [ valueangle <= 45 ,
695 g = backgazi + a∗E^−(((x − b ) ^2) /(2 c ^2) ) +
696 a∗E^−(((x − b − 180) ^2) /(2 c ^2) ) +
697 a∗E^−(((x − b − 360) ^2) /(2 c ^2) ) ,
698 I f [45 < valueangle <= 135 ,
699 g = backgazi + a∗E^−(((x − b ) ^2) /(2 c ^2) ) +
700 a∗E^−(((x − b − 180) ^2) /(2 c ^2) ) ,
701 I f [135 < valueangle <= 225 ,
702 g =
703 backgazi + a∗E^−(((x − b + 180) ^2) /(2 c ^2) ) +
704 a∗E^−(((x − b − 180) ^2) /(2 c ^2) ) + a∗E^−(((x − b ) ^2) /(2 c ^2) ) ,
705 I f [225 < valueangle <= 315 ,
706 g =
707 backgazi + a∗E^−(((x − b ) ^2) /(2 c ^2) ) +
708 a∗E^−(((x − b + 180) ^2) /(2 c ^2) ) ,
709 I f [315 < valueangle <= 360 ,
710 g = backgazi + a∗E^−(((x − b ) ^2) /(2 c ^2) ) +
711 a∗E^−(((x − b + 180) ^2) /(2 c ^2) ) +
712 a∗E^−(((x − b + 360) ^2) /(2 c ^2) ) ] ] ] ] ] ;
713 F i t f u n c t i o n a z i [ x_ ] = g ;
714 nlmazi =
715 NonlinearModelFit [ da taz i [ [ All , { 1 , 2 } ] ] ,
716 F i t f u n c t i o n a z i [ x ] , { { a , valuepeak } , { b , valueangle } , c } , x ,
717 VarianceEst imatorFunct ion −> (Mean[#^2] &) ] ;
718 nlmazi [ " Bes tF i tParameters " ] ;
719 Rsq = nlmazi [ " RSquared " ] ;
720 ARsq = nlmazi [ " AdjustedRSquared " ] ;
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721 AIC = nlmazi [ "AIC" ] ;
722 AICc = nlmazi [ " AICc " ] ;
723 BIC = nlmazi [ " BIC " ] ;
724 c e r r = nlmazi [ " ParameterErrors " ] ;
725 a f i t = a /. nlmazi [ " Bes tF i tParameters " ] ;
726 b f i t = b /. nlmazi [ " Bes tF i tParameters " ] ;
727 c f i t = c /. nlmazi [ " Bes tF i tParameters " ] ;
728 d f i t = backgazi / . nlmazi [ " Bes tF i tParameters " ] ;
729 (∗ c t r i t e r i u m f o r i so t ropy ∗ )
730 I f [ c e r r [ [ 3 ] ] > 0 . 8 3 || c f i t < 2 ,
731 P r i n t [ " FileName : " , Filename , " , Point i s i s o t r o p e . ( " , xpt ,
732 " , " , ypt , " ) " ] ;
733 Clear [ degofor ient , b f i t ] ;
734 (∗ f o r the vec tor p l o t ∗ )
735 (∗Degree of o r i e n t a t i o n ∗ )
736 degofor ient = 0 ;
737 (∗ D i r e c t i o n of o r i e n t a t i o n ∗
738 1=90 degree r e a l space , 0=0 degree r e a l space , −1=
739 90 degree r e a l s p a c e ∗ )
740 b f i t = 0 ;
741 l a z i =
742 AppendTo [
743 l a z i , { { xpt ,
744 ypt } , { { degofor ient ∗Cos [ b f i t Degree ] ,
745 degofor ient ∗Sin [ b f i t Degree ] } , s c a t t e r e d i n t e n s i t y } } ] ;
746 l 1 a z i = AppendTo [
747 l 1 a z i , { { xpt , ypt } , { degofor ient ∗Cos [ b f i t Degree ] ,
748 degofor ient ∗Sin [ b f i t Degree ] } } ] ;
749
750 l = I n s e r t [ l , 0 , { i , −1}] ;
751 l = I n s e r t [ l , 0 , { i , −1}] ;
752 OrVec = { d i r e c t i o n , degofor ient } ;
753 (∗ graph ∗ )
754 donneeazi =
755 L i s t P l o t [ i n a z i [ [ All , { 1 , 2 } ] ] ,
756 P l o t S t y l e −> RGBColor [ 0 . 5 , 1 . 5 , 0 ] ] ;
757 P r i n t [Show[ donneeazi , PlotRange −> All ] ]
758
759 zaz i == Wri teStr ing [ Results , Filename , " ; i s o t r o p e " , "\n" ] ;
760 ,
761
762 (∗Degree of o r i e n t a t i o n ∗ )
763 degofor ient = 1/ c f i t ;
764 (∗ D i r e c t i o n of o r i e n t a t i o n ∗
765 1=90 degree r e a l space , 0=0 degree r e a l space , −1=
766 90 degree r e a l s p a c e ∗ )
767 d i r e c t i o n = Cos [ b f i t Degree ] ;
768 l a z i =
769 AppendTo [
770 l a z i , { { xpt ,
771 ypt } , { { degofor ient ∗Cos [ b f i t Degree ] ,
772 degofor ient ∗Sin [ b f i t Degree ] } , s c a t t e r e d i n t e n s i t y } } ] ;
773 l 1 a z i =
774 AppendTo [
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775 l 1 a z i , { { xpt , ypt } , { degofor ient ∗Cos [ b f i t Degree ] ,
776 degofor ient ∗Sin [ b f i t Degree ] } } ] ;
777
778 OrVec = { d i r e c t i o n , degofor ient } ;
779 l = I n s e r t [ l , degofor ient , { i , −1}] ;
780 l = I n s e r t [ l , Mod[ b f i t , 1 8 0 ] , { i , −1}] ;
781
782 P r i n t [ " FileName : " , Filename , " , background : " , backgazi ,
783 " , peak height : " , a f i t , " , peak p o s i t i o n ( deg ) : " , b f i t ,
784 " , peak width : " , c f i t ,
785 " , standard devia t ion on peak width : " , c e r r [ [ 3 ] ] ,
786 " , s c a t t e r e d i n t e n s i t y : " , s c a t t e r e d i n t e n s i t y , " ( " , xpt , " , " ,
787 ypt , " ) " ] ;
788
789 (∗ graph ∗ )
790 f i t t e d c u r v e = P l o t [ nlmazi [ x ] , { x , 0 , 3 6 0 } ] ;
791 donneeazi = L i s t P l o t [ da taz i [ [ All , { 1 , 2 } ] ] ] ;
792 P r i n t [Show[ donneeazi , f i t t e d c u r v e , PlotRange −> All ] ] ;
793
794
795 zaz i ==
796 WriteStr ing [ Results , Filename , " ; " , a f i t , " ; " , b f i t , " ; " ,
797 c f i t , " ; " , d f i t , " ; " , degofor ient , " ; " , d i r e c t i o n , " ; " ,
798 OrVec , "\n" ] ;
799 ] ] ] ] ]
800
801 (∗ c r e a t i o n of the histogramme ∗ )
802 lhalpha = { } ;
803 lhRg = { } ;
804 lhT = { } ;
805 lhTstandard = { } ;
806 lhalpha =
807 F l a t t e n [ Drop [ Drop [ Drop [ l h i s t o , None , { 2 } ] , None , { 2 } ] , None , { 2 } ] ] ;
808 lhRg = F l a t t e n [
809 Drop [ Drop [ Drop [ l h i s t o , None , { 3 } ] , None , { 3 } ] , None , { 1 } ] ] ;
810 lhT = F l a t t e n [
811 Drop [ Drop [ Drop [ l h i s t o , None , { 1 } ] , None , { 1 } ] , None , { 2 } ] ] ;
812 lhTstandard =
813 F l a t t e n [ Drop [ Drop [ Drop [ l h i s t o , None , { 1 } ] , None , { 1 } ] , None , { 1 } ] ] ;
814
815 graphlhalpha =
816 Histogram [ lhalpha , 10 , " Count " ,
817 PlotLabe l −> { name , " Alpha mean" , Mean[ lhalpha ] , " median " ,
818 Median [ lhalpha ] } ] ;
819 graphlhRg =
820 Histogram [ lhRg , 10 , " Count " ,
821 PlotLabe l −> { name , "Rg mean" , Mean[ lhRg ] , " median , " ,
822 Median [ lhRg ] } ] ;
823 graphlhT =
824 Histogram [ lhT , 10 , " Count " ,
825 PlotLabe l −> { name , "T mean" , Mean[ lhT ] , " median " ,
826 Median [ lhT ] } ] ;
827 graphlhTstandard =
828 Histogram [ lhTstandard , 10 , " Count " ,



APPENDIX A. MATHEMATICA FILES 84

829 PlotLabe l −> { name , " Tstandard mean " , Mean[ lhTstandard ] ,
830 " median " , Median [ lhTstandard ] } ] ;
831 Show[ graphlhalpha ]
832 Show[ graphlhRg ]
833 Show[ graphlhT ]
834 Show[ graphlhTstandard ]
835 (∗ c r e a t i o n of the d i s t a n c e dependence graph ∗ )
836 dis tancea lpha =
837 L i s t P l o t [ Drop [ Drop [ l d i s t a n c e , None , { 3 } ] , None , { 3 } ] ,
838 PlotLabe l −> { name , " d i s t a n c e to implant Alpha " } ,
839 AxesLabel −> { " Distance " , " Alpha " } ] ;
840 distanceT =
841 L i s t P l o t [ Drop [ Drop [ l d i s t a n c e , None , { 2 } ] , None , { 3 } ] ,
842 PlotLabe l −> { name , " d i s t a n c e to implant T" } ,
843 AxesLabel −> { " Distance " , "T" } ] ;
844 distanceRg =
845 L i s t P l o t [ Drop [ Drop [ l d i s t a n c e , None , { 2 } ] , None , { 2 } ] ,
846 PlotLabe l −> { name , " d i s t a n c e to implant Rg" } ,
847 AxesLabel −> { " Distance " , "Rg" } ] ;
848 dis tancedof =
849 L i s t P l o t [ Drop [ l d i s t a n c e a z i , None , { 3 } ] ,
850 PlotLabe l −> { name , " d i s t a n c e to implant Degree of o r i e n t a t i o n " } ,
851 AxesLabel −> { " Distance " , "DOF" } ] ;
852 d i s t a n c e d i r =
853 L i s t P l o t [ Drop [ l d i s t a n c e a z i , None , { 2 } ] ,
854 PlotLabe l −> { name , " d i s t a n c e to implant d i r e c t i o n " } ,
855 AxesLabel −> { " Distance " , " d i r e c t i o n of o r i e n t a t i o n " } ] ;
856 Show[ dis tancedof ]
857 Show[ d i s t a n c e d i r ]
858 Show[ dis tancea lpha ]
859 Show[ distanceRg ]
860 Show[ dis tanceT ]
861 (∗ loop to f i l l the graph with value =0 where we do not have data ∗ )
862 xmin = Min [ Drop [ lxy , None , { 2 } ] ] ;
863 xmax = Max[ Drop [ lxy , None , { 2 } ] ] ;
864 ymin = Min [ Drop [ lxy , None , { 1 } ] ] ;
865 ymax = Max[ Drop [ lxy , None , { 1 } ] ] ;
866 dx = 0 . 3 5 ;
867 dy = 0 . 3 5 ;
868 y1 = Round [ ( ymax − ymin ) /dy + 2 ] ;
869 x1 = Round [ ( xmax − xmin ) /dx + 2 ] ;
870 (∗ r a t i o to have square data points ∗ )
871 z1 = y1/x1 ;
872 For [ j = 0 , j < (ymax − ymin ) /dy + 2 , j ++ ,
873 For [ k = 0 , k < ( xmax − xmin ) /dx + 2 , k++ ,
874 y = ymin + j ∗dy ;
875 x = xmin + k∗dx ;
876 s e l = S e l e c t [ lxy , # == { x , y } &]
877 I f [ Length [ s e l ] < 1 ,
878 l 1 = AppendTo [ l1 , { x − dx , y , 0 } ] ;
879 l 2 = AppendTo [ l2 , { x − dx , y , 0 } ] ;
880 l 3 = AppendTo [ l3 , { x − dx , y , 0 } ] ;
881 l s c a t t e r = AppendTo [ l s c a t t e r , { x − dx , y , 0 } ] ;
882 l a z i = AppendTo [ l a z i , { { x − dx , y } , { { 0 , 0 } , 0 } } ] ;
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883 l 1 a z i = AppendTo [ l 1 a z i , { { x − dx , y } , { 0 , 0 } } ] ;
884 l i n t e n s e = AppendTo [ l i n t e n s e , { x − dx , y , 0 } ] ;
885 ] ] ]
886
887 (∗ Creat ion of the array and graphica l r e p r e s e n t a t i o n ∗ )
888 i n t e n s i t y g r a p h =
889 L i s t D e n s i t y P l o t [ l i n t e n s e , FrameLabel −> { " x " , " y " } ,
890 PlotRange −> Ful l , PlotLegends −> Automatic ,
891 ColorFunction −> " SunsetColors " , In terpo la t ionOrder −> 0 ,
892 PlotLabe l −> " i n t e n s i t y photodiode " , AspectRatio −> z1 ]
893
894 alphaparameter =
895 L i s t D e n s i t y P l o t [ l1 , FrameLabel −> { " x " , " y " } , PlotRange −> Ful l ,
896 PlotLegends −> Automatic , ColorFunction −> " SunsetColors " ,
897 In terpo la t ionOrder −> 0 , P lotLabe l −> { name , "Form parameter " } ,
898 AspectRatio −> z1 ]
899 Tparameter =
900 L i s t D e n s i t y P l o t [ l2 , FrameLabel −> { " x " , " y " } , PlotRange −> Ful l ,
901 PlotLegends −> Automatic , ColorFunction −> " SunsetColors " ,
902 In terpo la t ionOrder −> 0 , P lotLabe l −> { name , " Thickness parameter " } ,
903 AspectRatio −> z1 ]
904 Tstandardparameter =
905 L i s t D e n s i t y P l o t [ l3 , FrameLabel −> { " x " , " y " } , PlotRange −> Ful l ,
906 PlotLegends −> Automatic , ColorFunction −> " SunsetColors " ,
907 In terpo la t ionOrder −> 0 ,
908 PlotLabe l −> { name , " Thickness Standard parameter " } ,
909 AspectRatio −> z1 ]
910 scat teredgraph =
911 L i s t D e n s i t y P l o t [ l s c a t t e r , FrameLabel −> { " x " , " y " } ,
912 PlotRange −> Ful l , PlotLegends −> Automatic ,
913 ColorFunction −> " SunsetColors " , In terpo la t ionOrder −> 0 ,
914 PlotLabe l −> { name , " S c a t t e r e d i n t e n s i t y " } , AspectRatio −> z1 ]
915 f e s s a i [ s_ ] :=
916 Piecewise [ { { Mean[ lhT ] / ( ( 2 ^ 1 . 5 − (5/3) ^ 0 . 5 ) ∗ s + (5/3) ^ 0 . 5 ) ,
917 s < 1 } , {Mean[ lhT ] / ( ( 1 2 ^ 0 . 5 − 2 ^ 1 . 5 ) ∗ ( s − 1) + 2 ^ 1 . 5 ) , s >= 1 } } ] ;
918 g e s s a i = P l o t [ f e s s a i [ s ] , { s , 0 , 2 } , PlotRange −> F u l l ] ;
919 corrgraph =
920 L i s t P l o t [ l c o r r , Frame −> True , FrameLabel −> { " alpha " , " Thickness " } ,
921 PlotRange −> F u l l ]
922 (∗ f i t t i n g of alpha and Rg∗ )
923 l i n e = F i t [ l c o r r f i t , { 1 , z i } , z i ] ;
924
925 graph1 = L i s t V e c t o r D e n s i t y P l o t [ l a z i , FrameLabel −> { " x " , " y " } ,
926 V e c t o r S t y l e −> { Thick , Arrowheads [ 0 ] } , Vec torSca le −> Small ,
927 PlotRange −> { { xmin , xmax } , { ymin , ymax } } ,
928 PlotLabe l −> { name , " Degree of o r i e n t a t i o n and i n t e n s i t y " } ,
929 ColorFunction −> " P a s t e l " , Mesh −> 5 , VectorPoints −> { x1 , y1 } ,
930 AspectRatio −> z1 ]
931 graphvector =
932 L i s t V e c t o r P l o t [ l 1 a z i , FrameLabel −> { " x " , " y " } ,
933 V e c t o r S t y l e −> { Thick , Arrowheads [ 0 ] } , Vec torSca le −> Small ,
934 PlotRange −> { { xmin , xmax } , { ymin , ymax } } ,
935 VectorPoints −> { x1 , y1 } , AspectRatio −> z1 ] ;
936 g r a p h i n t e n s i t y =
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937 L i s t D e n s i t y P l o t [ l s c a t t e r ,
938 PlotLabe l −> { name , " Degree of o r i e n t a t i o n and i n t e n s i t y " } ,
939 PlotLegends −> Automatic , In terpo la t ionOrder −> 0 ,
940 ColorFunction −> " P a s t e l " ,
941 PlotRange −> { { xmin − dx , xmax + dx } , { ymin − dy , ymax + dy } } ,
942 Cl ippingSty le −> Red , AspectRatio −> z1 ] ;
943 g ra ph in t en s i ty 2 =
944 L i s t D e n s i t y P l o t [ l s c a t t e r ,
945 PlotLabe l −> { name , " Degree of o r i e n t a t i o n and i n t e n s i t y " } ,
946 PlotLegends −> Automatic , In terpo la t ionOrder −> 1 ,
947 ColorFunction −> " P a s t e l " ,
948 PlotRange −> { { xmin , xmax } , { ymin , ymax } } , C l ippingSty le −> Red ,
949 AspectRatio −> z1 ] ;
950 graph = Show[ graphintens i ty , graphvector ]
951 graph2 = Show[ graphintens i ty2 , graphvector ]
952
953
954 Show[ L i s t P l o t [ l c o r r f i t , P l o t S t y l e −> Blue , Frame −> True ,
955 FrameLabel −> { " alpha " , "Rg" } ] , P l o t [ l i n e , { zi , 0 , 3 } ] , g e s s a i ]
956 (∗ here the d i r e c t o r r y where the p i c t u r e are going to be saved i s wr i t ten ∗ )
957 S e t D i r e c t o r y [ "C:\\ Users\\ogier\\Desktop\\Mathematica\\Image " ] ;
958 Export [ " 4340 _beamstopintensi ty . jpg " , i n t e n s i t y g r a p h ] ;
959 Export [ " 4340 _a lpha_radia l . jpg " , alphaparameter ] ;
960 Export [ " 4340 _T_radia l . jpg " , Tparameter ] ;
961 Export [ " 4340 _T_standard_radia l . jpg " , Tstandardparameter ] ;
962 Export [ " 4340 _ s c a t t e r e d i n t e n s i t y . jpg " , sca t teredgraph ] ;
963 Export [ " 4340 _ c o r r e l a t i o n . jpg " , corrgraph ] ;
964 Export [ " 4340 _his to_a lpha . jpg " , graphlhalpha ] ;
965 Export [ " 4340 _his to_T . jpg " , graphlhT ] ;
966 Export [ " 4340 _histoT_standard . jpg " , graphlhTstandard ] ;
967 Export [ " 4340 _histo_Rg . jpg " , graphlhRg ] ;
968 Export [ " 4340 _ h i s t o _ d i s t a n c e a l p h a . jpg " , d is tancea lpha ] ;
969 Export [ " 4340 _ h i s t o _ d i s t a n c e T . jpg " , dis tanceT ] ;
970 Export [ " 4340 _his to_dis tanceRg . jpg " , distanceRg ] ;
971 Export [ " 4340 _ o r i e n t a t i o n _ i n t e n s i t y . jpg " , graph ] ;
972 Export [ " 4340 _ o r i e n t a t i o n _ i n t e n s i t y j o l i . jpg " , graph1 ] ;
973 Export [ " 4340 _ o r i e n t a t i o n _ i n t e r p o l a t e d . jpg " , graph2 ] ;
974 Export [ " 4340 _ o r i e n t a t i o n _ d e g r e e . jpg " , d is tancedof ] ;
975 Export [ " 4340 _ o r i e n t a t i o n _ d i r e c t i o n . jpg " , d i s t a n c e d i r ] ;
976 Export [ " 4340 _data . x l s " , l , "XLS" ] ;
977
978 Close [ "C:\\ Users\\ogier\\Desktop\\DATA\\4340 _ I n t e g r a t i o n \\ i n t e n s i t y . t x t " ] ;
979 Close [ "C:\\ Users\\ogier\\Desktop\\DATA\\4340 _ I n t e g r a t i o n \\ i s c a t . t x t " ] ;
980 Close [ "C:\\ Users\\ogier\\Desktop\\DATA\\4340 _ I n t e g r a t i o n \\\
981 r a d i a l r e s u l t s . t x t " ] ;
982 Close [ "C:\\ Users\\ogier\\Desktop\\DATA\\4340 _ I n t e g r a t i o n \\\
983 a z i r e s u l t s . t x t " ] ;
984 t = TimeUsed [ ] − t 0

A.2 Statistical analysis

1 xmin1 = 3 4 ;
2 xmax1 = 3 5 ;
3 xmin2 = 3 9 ;
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4 xmax2 = 4 0 ;
5 ymin1 = 6 3 ;
6 ymax1 = 7 2 ;
7 \!\(\∗
8 ButtonBox [ " I n s t a l l J a v a " ,
9 BaseStyle−>" Link " ,

10 ButtonData−>" p a c l e t : JLink/ r e f / I n s t a l l J a v a " ] \ ) [ ] ;
11 Path2 = "C:\\ Users\\ogier\\Desktop\\Mathematica\\Image " ;
12 S e t D i r e c t o r y [ Path2 ] ;
13 l4340 = Import [ " 4340 _data . x l s " , Path −> Path2 ] [ [ 1 ] ] ;
14 (∗ d i r e c t i o n ∗ )
15 data4340ddir = { } ;
16 l 4340ddir =
17 Drop [ Drop [ Drop [ l4340 , None , { 5 , 1 1 } ] , None , { 3 } ] , None , { 1 } ] ;
18 For [ i = 1 , i < Length [ l4340ddir ] + 1 , i ++ ,
19 I f [ ( l4340ddir [ [ i ] ] [ [ 1 ] ] > xmin1 && l4340ddir [ [ i ] ] [ [ 3 ] ] > 0 &&
20 l 4340ddir [ [ i ] ] [ [ 1 ] ] < xmax1 ) || ( l4340ddir [ [ i ] ] [ [ 1 ] ] > xmin2 &&
21 l 4340ddir [ [ i ] ] [ [ 3 ] ] > 0 && l4340ddir [ [ i ] ] [ [ 1 ] ] < xmax2 ) ,
22 data4340ddir =
23 AppendTo [
24 data4340ddir , { l4340ddir [ [ i ] ] [ [ 2 ] ] , l 4340ddir [ [ i ] ] [ [ 4 ] ] } ] ; ] ]
25
26 m = 9 0 ;
27 For [ i = 1 , i < Length [ data4340ddir ] + 1 , i ++ ,
28 data4340ddir [ [ i ] ] [ [ 2 ] ] = Abs [m − data4340ddir [ [ i ] ] [ [ 2 ] ] ] ; ]
29
30 l p d i r = L i s t P l o t [ data4340ddir ,
31 PlotLabe l −> " D i r e c t i o n as a funct ion of d i s t a n c e 4340 " ,
32 AxesLabel −> { " Distance " , " D i r e c t i o n \n of o r i e n t a t i o n " } ,
33 PlotRange −> { { 0 , 6 } , { 0 , 1 0 0 } } ] ;
34 l p d i r
35 Export [ " 4340 _d_dir . jpg " , l p d i r ] ;
36
37 (∗ degree of o r i e n t a t i o n ∗ )
38 data4340ddof = { } ;
39 l4340ddof =
40 Drop [ Drop [ Drop [ Drop [ l4340 , None , { 1 3 } ] , None , { 5 , 1 1 } ] , None , { 3 } ] ,
41 None , { 1 } ] ;
42 For [ i = 1 , i < Length [ l4340ddof ] + 1 , i ++ ,
43 I f [ ( l4340ddof [ [ i ] ] [ [ 1 ] ] > xmin1 && l4340ddof [ [ i ] ] [ [ 3 ] ] > 0 &&
44 l4340ddof [ [ i ] ] [ [ 1 ] ] < xmax1 ) || ( l4340ddof [ [ i ] ] [ [ 1 ] ] > xmin2 &&
45 l4340ddof [ [ i ] ] [ [ 3 ] ] > 0 && l4340ddof [ [ i ] ] [ [ 1 ] ] < xmax2 ) ,
46 data4340ddof =
47 AppendTo [
48 data4340ddof , { l4340ddof [ [ i ] ] [ [ 2 ] ] , l4340ddof [ [ i ] ] [ [ 3 ] ] } ] ; ] ]
49
50
51 lpdof = L i s t P l o t [ data4340ddof ,
52 PlotLabe l −>
53 " Degree of o r i e n t a t i o n as a funct ion of d i s t a n c e 4340 " ,
54 PlotRange −> { { 0 , 6 } , { 0 , 0 . 0 4 } } ,
55 AxesLabel −> { " Distance " , "DOF" } ] ;
56 lpdof
57 Export [ " 4340 _d_dof . jpg " , lpdof ] ;
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58
59 (∗ shape ∗ )
60 data4340ds = { } ;
61 l4340ds =
62 Drop [ Drop [ Drop [ Drop [ l4340 , None , { 9 , 1 3 } ] , None , { 5 , 7 } ] ,
63 None , { 3 } ] , None , { 1 } ] ;
64 For [ i = 1 , i < Length [ l4340ds ] + 1 , i ++ ,
65 I f [ ( l4340ds [ [ i ] ] [ [ 1 ] ] > xmin1 && l4340ds [ [ i ] ] [ [ 3 ] ] > 0 &&
66 l4340ds [ [ i ] ] [ [ 1 ] ] < xmax1 ) || ( l4340ds [ [ i ] ] [ [ 1 ] ] > xmin2 &&
67 l4340ds [ [ i ] ] [ [ 3 ] ] > 0 && l4340ds [ [ i ] ] [ [ 1 ] ] < xmax2 ) ,
68 data4340ds =
69 AppendTo [ data4340ds , { l4340ds [ [ i ] ] [ [ 2 ] ] , l4340ds [ [ i ] ] [ [ 3 ] ] } ] ; ] ]
70
71 lps = L i s t P l o t [ data4340ds ,
72 PlotLabe l −> " Shape parameter as a funct ion of d i s t a n c e 4340 " ,
73 AxesLabel −> { " Distance " , " Alpha " } ,
74 PlotRange −> { { 0 , 6 } , { 0 , 2 . 5 } } ] ;
75 lps
76 Export [ " 4340 _d_s . jpg " , lps ] ;
77 (∗ Thickness ∗ )
78 data4340dT = { } ;
79 l4340dT =
80 Drop [ Drop [ Drop [ Drop [ l4340 , None , { 1 1 , 1 3 } ] , None , { 5 , 9 } ] ,
81 None , { 3 } ] , None , { 1 } ] ;
82 For [ i = 1 , i < Length [ l4340dT ] + 1 , i ++ ,
83 I f [ ( l4340dT [ [ i ] ] [ [ 1 ] ] > xmin2 && l4340dT [ [ i ] ] [ [ 3 ] ] > 0 &&
84 l4340dT [ [ i ] ] [ [ 1 ] ] < xmax2 ) || ( l4340dT [ [ i ] ] [ [ 1 ] ] > xmin1 &&
85 l4340dT [ [ i ] ] [ [ 3 ] ] > 0 && l4340dT [ [ i ] ] [ [ 1 ] ] < xmax1 ) ,
86 data4340dT =
87 AppendTo [ data4340dT , { l4340dT [ [ i ] ] [ [ 2 ] ] , l4340dT [ [ i ] ] [ [ 3 ] ] } ] ; ] ]
88
89 lpT = L i s t P l o t [ data4340dT ,
90 PlotLabe l −> " Thickness as a funct ion of d i s t a n c e 4340 " ,
91 PlotRange −> { { 0 , 6 } , { 0 , 6 0 } } , AxesLabel −> { " Distance " , "T" } ] ;
92 lpT
93 Export [ " 4340_d_T . jpg " , lpT ] ;
94 (∗ Thickness with i n v a r i a n t ∗ )
95
96 data4340dTst = { } ;
97 l4340dTst =
98 Drop [ Drop [ Drop [ Drop [ l4340 , None , { 1 2 , 1 3 } ] , None , { 5 , 1 0 } ] ,
99 None , { 3 } ] , None , { 1 } ] ;

100 For [ i = 1 , i < Length [ l4340dTst ] + 1 , i ++ ,
101 I f [ ( l4340dTst [ [ i ] ] [ [ 1 ] ] > xmin2 && l4340dTst [ [ i ] ] [ [ 3 ] ] > 0 &&
102 l4340dTst [ [ i ] ] [ [ 1 ] ] < xmax2 ) || ( l4340dTst [ [ i ] ] [ [ 1 ] ] > xmin1 &&
103 l4340dTst [ [ i ] ] [ [ 3 ] ] > 0 && l4340dTst [ [ i ] ] [ [ 1 ] ] < xmax1 ) ,
104 data4340dTst =
105 AppendTo [
106 data4340dTst , { l4340dTst [ [ i ] ] [ [ 2 ] ] , l4340dTst [ [ i ] ] [ [ 3 ] ] } ] ; ] ]
107
108 lpTs t = L i s t P l o t [ data4340dTst ,
109 PlotLabe l −>
110 " Thickness computed with i n v a r i a n t \n as a funct ion of d i s t a n c e \
111 4340 " , PlotRange −> { { 0 , 6 } , { 1 5 , 3 0 } } ,
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112 AxesLabel −> { " Distance " , "T" } ] ;
113 lpTs t
114 Export [ " 4340 _d_Tst . jpg " , lpTs t ] ;
115
116 (∗ s c a t t e r i n g ∗ )
117 data4340dscat = { } ;
118 l 4 3 4 0 d s c a t =
119 Drop [ Drop [ Drop [ Drop [ l4340 , None , { 8 , 1 3 } ] , None , { 5 , 6 } ] ,
120 None , { 3 } ] , None , { 1 } ] ;
121 For [ i = 1 , i < Length [ l 4 3 4 0 d s c a t ] + 1 , i ++ ,
122 I f [ (∗ ( l 4 3 4 0 d s c a t [ [ i ] ] [ [ 1 ] ] > xmin1 &&l 4 3 4 0 d s c a t [ [ i ] ] [ [ 3 ] ] > 0 &&
123 l 4 3 4 0 d s c a t [ [ i ] ] [ [ 1 ] ] <
124 xmax1 ) ||∗ ) ( l 4 3 4 0 d s c a t [ [ i ] ] [ [ 1 ] ] > xmin2 &&
125 l 4 3 4 0 d s c a t [ [ i ] ] [ [ 3 ] ] > 0 && l 4 3 4 0 d s c a t [ [ i ] ] [ [ 1 ] ] < xmax2 ) ,
126 data4340dscat =
127 AppendTo [
128 data4340dscat , { l 4 3 4 0 d s c a t [ [ i ] ] [ [ 2 ] ] , l 4 3 4 0 d s c a t [ [ i ] ] [ [ 3 ] ] } ] ; ] ]
129
130 l p s c a t = L i s t P l o t [ data4340dscat ,
131 PlotLabe l −> " S c a t t e r i n g i n t e n s i t y as a funct ion of d i s t a n c e 4340 " ,
132 PlotRange −> { { 0 , 6 } , { 0 , 1 0 0 0 } } ,
133 AxesLabel −> { " Distance " , " S c a t t e r e d \n i n t e n s i t y " } ] ;
134 l p s c a t
135 Export [ " 4340 _d_scat . jpg " , l p s c a t ] ;

A.3 Azimuthal integration with beam stop

1 Clear [ a , b , c , d , e , i , j , k , l , l1 , l2 , l i s t e , DropFront , DropBack , pathin , imax , f i l e s
, f i l e s t r a n s , Fi leNameListtrans , FileNameList , Results , Filename , in , in t rans ,
f u l l d a t a , datprel , dat , backg , F i t f u n c t i o n , nlm , a f i t , b f i t , c f i t , d f i t , degofor ient
, coef , valuepeak , value2 , d i r e c t i o n , OrVec , x , z , xmin , xmax , dx , ymin , ymax , dy ,
Beamstopstart , Beamstopend , t0 , t t o t a l ] ;

2 ClearAl l ;
3 (∗ In order to have a good f i t t i n g , p lease take care to have 720 points f o r the azimuthal

i n t e g r a t i o n in the SaxsGui s c r i p t f o r automat isa t ion ∗ )
4 t 0 = TimeUsed [ ]
5 (∗ Obtention of the f i l e s to analyse ∗ )
6 pathin = "C:\\ Users\\ogier\\Desktop\\DATA\\4182_SAXS_BOKU" ;
7 f i l e s = FileNames [ { " ∗ a z i i n t x y . csv " } , FileNameJoin [ { pathin } ] ] ;
8 f i l e s t r a n s = FileNames [ { " ∗ t r a n s . csv " } , FileNameJoin [ { pathin } ] ] ;
9 FileNameList = FileNameTake [ # , −1] & /@ f i l e s ;

10 Fi leNameList trans = FileNameTake [ # , −1] & /@ f i l e s t r a n s ;
11
12 imax = Length [ FileNameList ] ;
13 DropFront = 0 ;
14 DropBack = 0 ;
15 Beamstopstart = 2 9 5 ; (∗ in degree ∗ ) ;
16 Beamstopend = 3 5 7 . 5 ;
17 xmin = 1 7 ;
18 xmax = 2 6 ;
19 dx = 0 . 2 5 ;
20 ymin = −3;
21 ymax = 2 ;
22 dy = 0 . 2 5 ;
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23
24 Resul t s = OpenWrite [ "C:\\ Users\\ogier\\Desktop\\DATA\\4182_SAXS_BOKU\\ r e s u l t s . t x t " ] ;
25
26 l = { } ;
27
28 For [ i = 1 , i < imax + 1 , i ++ ,
29 Filename = Part [ FileNameList , i ] ;
30 Fi lenametrans = Part [ Fi leNameListtrans , i ] ;
31 in = Import [ f i l e s [ [ i ] ] , Path −> pathin ] ;
32 i n t r a n s = Import [ f i l e s t r a n s [ [ 1 ] ] , Path −> pathin ] ;
33 f u l l d a t a = in ;
34 datpre l = Drop [ in , DropFront ] ;
35 dat = Drop [ datprel , −DropBack ] ;
36 t r a n s = i n t r a n s [ [ i , 1 ] ] ;
37
38 l 1 = { } ;
39 l 2 = { } ;
40 For [ k = Beamstopstart ∗2 − 360 , k < Beamstopend∗2 − 360 , k = k + 25 ,
41 m = Mean [ { dat [ [ k , 2 ] ] , dat [ [ k + 1 , 2 ] ] , dat [ [ k + 3 , 2 ] ] ,
42 dat [ [ k + 4 , 2 ] ] , dat [ [ k + 5 , 2 ] ] , dat [ [ k + 6 , 2 ] ] } ] ;
43 AppendTo [ l1 , m] ;
44 AppendTo [ l2 , dat [ [ k + 3 , 1 ] ] ] ;
45 ] ;
46 Clear [ j , k ] ;
47 For [ j = 0 , j < 4 , j ++ ,
48 For [ k = 0 , k < 25 , k++ ,
49 dat [ [ Beamstopstart ∗2 + 25∗ j + k , 2 ] ] =
50 Mean [ { dat [ [ Beamstopstart ∗2 + 25∗ j − 3 , 2 ] ] ,
51 dat [ [ Beamstopstart ∗2 + 25∗ j − 2 , 2 ] ] ,
52 dat [ [ Beamstopstart ∗2 + 25∗ j − 1 ,
53 2 ] ] } ] + ( l 1 [ [ j + 2 ] ] − l 1 [ [ j + 1 ] ] ) /( l 2 [ [ j + 2 ] ] −
54 l 2 [ [ j + 1 ] ] ) ∗ ( dat [ [ Beamstopstart ∗2 + 25∗ j + k , 1 ] ] −
55 dat [ [ Beamstopstart ∗2 + 25∗ j − 1 , 1 ] ] ) ; ] ] ;
56
57 (∗ to not take the minimum in the beam stop shadow∗ )
58 backg = Min [ Drop [ Part [ dat [ [ All , 2 ] ] ] , −170]] ;
59 valuepeak = Max[ Part [ dat [ [ All , 2 ] ] ] ] ;
60
61 I f [ valuepeak <= 0 .005 || valuepeak >= 17 ,
62 z == Wri teStr ing [ Results , Filename , " ; " ,
63 " Not c o n s i s t e n t value " , "\n" ] ;
64 donnee = L i s t P l o t [ in [ [ All , { 1 , 2 } ] ] , P l o t S t y l e −> RGBColor [ 1 , 0 , 0 ] ] ;
65
66 P r i n t [ " FileName : " , Filename , " Value not c o n s i s t e n t " ]
67 P r i n t [Show[ donnee , PlotRange −> All ] ]
68 (∗ f o r the vec tor p l o t ∗ )
69 (∗Degree of o r i e n t a t i o n ∗ )
70 Clear [ degofor ient , b f i t ] ;
71 degofor ient = 0 ;
72 (∗ D i r e c t i o n of o r i e n t a t i o n ∗
73 1=90 degree r e a l space , 0=0 degree r e a l space , −1=90 degree r e a l s p a c e ∗ )
74
75
76 b f i t = 0 ;
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77 l = AppendTo [
78 l , { { degofor ient ∗Cos [ b f i t ] , degofor ient ∗Sin [ b f i t ] } , t r a n s } ] ;
79 ,
80 valueangle = Part [ Pick [ dat [ [ All , 1 ] ] , dat [ [ All , 2 ] ] , valuepeak ] , 1 ] ;
81 (∗ Test to know where might be the peak ∗ )
82 I f [ valueangle <= 45 ,
83 g = backg + a∗E^−(((x − b ) ^2) /(2 c ^2) ) +
84 a∗E^−(((x − b − 180) ^2) /(2 c ^2) ) +
85 a∗E^−(((x − b − 360) ^2) /(2 c ^2) ) ,
86 I f [45 < valueangle <= 135 ,
87 g = backg + a∗E^−(((x − b ) ^2) /(2 c ^2) ) +
88 a∗E^−(((x − b − 180) ^2) /(2 c ^2) ) ,
89 I f [135 < valueangle <= 225 ,
90 g = backg + a∗E^−(((x − b + 180) ^2) /(2 c ^2) ) +
91 a∗E^−(((x − b − 180) ^2) /(2 c ^2) ) + a∗E^−(((x − b ) ^2) /(2 c ^2) ) ,
92 I f [225 < valueangle <= 315 ,
93 g =
94 backg + a∗E^−(((x − b ) ^2) /(2 c ^2) ) +
95 a∗E^−(((x − b + 180) ^2) /(2 c ^2) ) ,
96 I f [315 < valueangle <= 360 ,
97 g = backg + a∗E^−(((x − b ) ^2) /(2 c ^2) ) +
98 a∗E^−(((x − b + 180) ^2) /(2 c ^2) ) +
99 a∗E^−(((x − b + 360) ^2) /(2 c ^2) ) ] ] ] ] ] ;

100 F i t f u n c t i o n [ x_ ] = g ;
101
102 nlm = NonlinearModelFit [ dat [ [ All , { 1 , 2 } ] ] ,
103 F i t f u n c t i o n [ x ] , { { a , valuepeak } , { b , valueangle } , c } , x ,
104 VarianceEst imatorFunct ion −> (Mean[#^2] &) ] ;
105 nlm [ " Bes tF i tParameters " ] ;
106 Rsq = nlm [ " RSquared " ] ;
107 ARsq = nlm [ " AdjustedRSquared " ] ;
108 AIC = nlm [ "AIC" ] ;
109 AICc = nlm [ " AICc " ] ;
110 BIC = nlm [ " BIC " ] ;
111 c e r r = nlm [ " ParameterErrors " ] ;
112 a f i t = a /. nlm [ " Bes tF i tParameters " ] ;
113 b f i t = b /. nlm [ " Bes tF i tParameters " ] ;
114 c f i t = c /. nlm [ " Bes tF i tParameters " ] ;
115 d f i t = backg /. nlm [ " Bes tF i tParameters " ] ;
116 (∗ c t r i t e r i u m f o r i so t ropy ∗ )
117 I f [ c e r r [ [ 3 ] ] > 0 . 9 3 ,
118 P r i n t [ " FileName : " , Filename , " , Point i s i s o t r o p e . " , c e r r [ [ 3 ] ] ] ;
119 Clear [ degofor ient , b f i t ] ;
120 (∗ f o r the vec tor p l o t ∗ )
121 (∗Degree of o r i e n t a t i o n ∗ )
122 degofor ient = 0 ;
123 (∗ D i r e c t i o n of o r i e n t a t i o n ∗
124 1=90 degree r e a l space , 0=0 degree r e a l space , −1=
125 90 degree r e a l s p a c e ∗ )
126 b f i t = 0 ;
127 l = AppendTo [
128 l , { { degofor ient ∗Cos [ b f i t ] , degofor ient ∗Sin [ b f i t ] } , t r a n s } ] ;
129 (∗ graph ∗ )
130 donnee =
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131 L i s t P l o t [ in [ [ All , { 1 , 2 } ] ] , P l o t S t y l e −> RGBColor [ 0 . 5 , 1 . 5 , 0 ] ] ;
132 P r i n t [Show[ donnee , PlotRange −> All ] ]
133
134 z == Wri teStr ing [ Results , Filename , " ; i s o t r o p e " , "\n" ] ;
135 ,
136
137 (∗Degree of o r i e n t a t i o n ∗ )
138 degofor ient = 1/ c f i t ;
139 (∗ D i r e c t i o n of o r i e n t a t i o n ∗
140 1=90 degree r e a l space , 0=0 degree r e a l space , −1=
141 90 degree r e a l s p a c e ∗ )
142 d i r e c t i o n = Cos [ b f i t ] ;
143 l = AppendTo [
144 l , { { degofor ient ∗Cos [ b f i t ] , degofor ient ∗Sin [ b f i t ] } , t r a n s } ] ;
145 P r i n t [ " Or ienta t ionVector " ] ;
146 OrVec = { d i r e c t i o n , degofor ient } ;
147
148 P r i n t [ " FileName : " , Filename , " , background : " , backg ,
149 " , peak height : " , a f i t , " , peak p o s i t i o n ( deg ) : " , b f i t ,
150 " , peak width : " , c f i t , " , standard devia t ion on { a , b , c } : " ,
151 c e r r [ [ 3 ] ] ] ;
152 (∗ " , Rsquared : " , Rsq , " , AdjRsquared : " , ARsq , " , AIC : " ,
153 AIC , " , AICc : " , AICc , " , BIC : " , BIC∗ )
154 (∗ graph ∗ )
155 f i t t e d c u r v e = P l o t [ nlm [ x ] , { x , 0 , 3 6 0 } ] ;
156 donnee = L i s t P l o t [ dat [ [ All , { 1 , 2 } ] ] ] ;
157 P r i n t [Show[ donnee , f i t t e d c u r v e , PlotRange −> All ] ]
158 z ==
159 WriteStr ing [ Results , Filename , " ; " , a f i t , " ; " , b f i t , " ; " ,
160 c f i t , " ; " , d f i t , " ; " , degofor ient , " ; " , d i r e c t i o n , " ; " ,
161 OrVec , "\n" ] ;
162 ] ] ]
163 (∗ c r e a t i o n of the array f o r the vec tor p l o t ∗ )
164 l i s t e = { } ;
165 Clear [ k , j , x , y ] ;
166
167 For [ j = 0 , j < 1 + (ymax − ymin ) /dy , j ++ ,
168 For [ k = 0 , k < 1 + ( xmax − xmin ) /dx , k++ ,
169 I f [(−1)^ j > 0 ,
170 l i s t e =
171 AppendTo [ l i s t e , { { ymin + dy∗ j , xmin + dx∗k } , Part [ l , k + (1 + ( xmax − xmin ) /dx ) ∗ j +

1 ] } ] ,
172 l i s t e =
173 AppendTo [ l i s t e , { { ymin + dy∗ j , xmax − dx∗k } , Part [ l , k + (1 + ( xmax − xmin ) /dx ) ∗ j +

1 ] } ]
174 ] ] ]
175 L i s t V e c t o r D e n s i t y P l o t [ l i s t e ,
176 VectorPoints −> { Floor [2 + (ymax − ymin ) /dy ] ,
177 Floor [2 + ( xmax − xmin ) /dx ] } , FrameLabel −> { y , x } ,
178 V e c t o r S t y l e −> { Thick , Arrowheads [ 0 ] } , Vec torSca le −> Medium,
179 PlotRange −> F u l l ]
180
181 Close [ "C:\\ Users\\ogier\\Desktop\\DATA\\4182_SAXS_BOKU\\ r e s u l t s . t x t " ] ;
182 t t o t a l = TimeUsed [ ] − t 0
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