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Abstract
Although data reconciliation is intensely applied in process engineering, almost none of its powerful
methods are employed for validation of operational data from wastewater treatment plants. This is
partly due to some prerequisites that are difficult to meet including steady state, known variances of
process  variables  and absence  of  gross  errors.  However,  an  algorithm can be  derived from the
classical  approaches  to  data reconciliation  that  allows to find a comprehensive set  of  equations
describing  redundancy  in  the  data  when  measured  and  unmeasured  variables  (flows  and
concentrations)  are  defined.  This  is  a  precondition  for  methods  of  data  validation  based  on
individual mass balances such as CUSUM charts. The procedure can also be applied to verify the
necessity  of  existing or  additional  measurements  with respect  to  the  improvement  of  the data's
redundancy.  Results  are  given for  a  large  wastewater  treatment  plant.  The introduction  aims  at
establishing a link between methods known from data reconciliation in process engineering and
their application in wastewater treatment.
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1 Introduction
This work discusses a fundamental approach to the validation of operational data from wastewater
treatment plants through mass balancing. Historic records of plant data reflect the performance of a
treatment plant and are regularly exploited for monitoring, benchmarking and simulation, to adjust
control strategies and to  plan for process redesign or plant  extension.  However,  poor quality  of
historic data records is  the main obstacle for these tasks. This has been agreed upon widely in
literature (e.g. Rieger et al., 2010; Puig et al., 2008; Meijer et al., 2002; Barker and Dold, 1995) as
well as different IWA workshops on this question (e.g. Mont Sainte-Anne 2010, Budapest 2011).

The type of operational data typically used for these tasks are daily flow volumes and concentrations
measured in 24h-composite samples (where flow-proportionality is required for matching balances,
especially  in flows with strongly varying concentrations  such as the influent).  Higher frequency
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sensor data is more relevant in automated process control and therefore not of primary interest here.
However,  sensor  readings  are  usually  adjusted  to  the  less  frequent  but  more  reliable  laboratory
measurements.  Therefore,  the  validation  of  operational  data  from composite  samples  is  also  of
considerable relevance for plant control.

Spindler  and Vanrolleghem (2012) showed that  the application of  CUSUM charts  is  a  suitable
approach to continuous mass balancing1 and detects off-balance periods more reliably than mass
balances based on long term averages of data. Continuous mass balancing following this method
requires individual balance equations which describe redundancy of the measured data.

This work will  provide a  procedure for the computational determination of the complete set of
possible  redundancy  equations  (also:  balance  equations)  for  a  given  plant  layout.  This  aim  is
different from, but closely related to the principles and objectives of data reconciliation. With mass
balancing as the key to data reconciliation and gross error detection, there appears to exist a gap
between  development  and  application  of  methods  used  in  process  engineering  and  wastewater
treatment. Therefore a very short overview and comparison of the developments in both fields is
given in the following parts  of the introduction.  After  the presentation of the proposed method
results will be given for its application to a large and complex wastewater treatment plant.

1.1 Data reconciliation in process engineering
Data reconciliation has developed mainly in the field of (chemical) process engineering. It allows to
improve the measured values of process variables such as flows and concentrations based on the
laws  of  conservation.  Data reconciliation  requires  redundancy of  the  measured  variables  which
means that they can also be calculated from other measured variables.

A vast amount of literature exists. Research began some 50 years ago when the concept of data
reconciliation was introduced by Kuehn and Davidson (1961). Further research developed initially
in two lines – the  topology oriented approach first  presented by Václavek (1969;  Václavek and
Louĉka, 1976) and the  equation oriented approach,  represented among others by Crowe (1986;
Crowe et al., 1983). Some of the most recent progress in the field has been achieved by Kelly (e.g.
1998; 2004). Four comprehensive books have been written (Madron and Veverka, 1992; Narasimhan
and  Jordache,  2000;  Romagnoli  and Sánchez,  2000;  Bagajewicz,  2010).  Good overviews  about
research development are also provided in Crowe (1996) and Ponzoni et al. (1999).

A basic step in data reconciliation is the classification of the process variables. A process variable
can either  be directly  measured (observed)  or  unmeasured.  Unmeasured  refers  to  variables  that
could  be  measured  (at  least  theoretically)  but  are  not  for  some  reason.  A  process  variable  is
observable, if it can be calculated from a subset of other measured variables. Measured observable
process variables are called redundant. Crowe (1989) also classifies barely observable (unmeasured)
variables which require at least one non-redundant measured variable to be calculated.  Structural
redundancy  refers  only  to  the  theoretical  calculability  of  a  measured  variable  while  practical
redundancy also considers numerical and statistical accuracy of this calculation. The following short

1 The application of CUSUM charts had originally been labelled “dynamic mass balancing” to differentiate from the 
established approaches. But because it does not actually target kinetic rates this naming will be avoided in the future.



example is given to illustrate the difference between structural and practical redundancy.

The volume of dewatered sludge is negligible compared to influent and effluent of a wastewater
treatment plant. For structural redundancy of the overall flow it would, however, still be required to
be measured. Obviously the amount of dewatered sludge cannot be reconciled from this balance as
the propagation of errors would pose a very high uncertainty on this calculation. On the other hand,
in- and effluent would still be practically balanceable without the amount of dewatered sludge being
measured.

1.2 Data validation in wastewater treatment
So far the concept of data reconciliation has received little attention in wastewater treatment. This
becomes obvious in the terminology. The term mass balance is prevalent, possibly inspired by the
work of Nowak (1994; 1999).  Rieger et  al.  (2010) actually refer to the  order of redundancy as
“overlapping balances”. It reveals the practitioner's perspective where the individual mass balances
receive higher attention than the reconciliation of the entire data set. This will be discussed further
in the following section.

Literature in wastewater treatment focuses mainly on sensor fault detection and so far hardly regards
redundancy of measurements. Until recently wastewater related literature cited only two works from
the field of data reconciliation in process engineering (Meijer et al., 2002; Puig et al., 2008; Schraa
et al., 2006).

Van der Heijden et al. (1994) adapt research from the field of chemical process engineering and
apply  it  to  elemental  mass  balances  in  fermentation  processes.  Following works  in  the  field  of
wastewater treatment (Meijer et al., 2002; Puig et al., 2008) apply the methods of Van der Heijden et
al. (1994) thus re-adapting them back into process oriented applications where they originally stem
from. Meijer (2002) stress the importance of validation of operational data for use in simulation
studies. Puig et al. (2008) point out that the dynamic nature of wastewater treatment makes mass
balancing difficult. Both works rely exclusively on the method developed by Van der Heijden et al.
(1994) which was implemented in the software Macrobal (Hellinga, 1992). However, when applying
data reconciliation to elemental mass balances (Macrobal's purpose) the composition of substances
is exactly known (fixed) which is not the case for the composition of wastewater treatment streams.
Hence only in volumetric and mass flow rates the measurement variability was accounted for, but
not in measured concentrations. Additionally, the high variability of flow measurements (around
50% relative standard deviation) includes process dynamics which is disputable given the fact the
steady state is a prerequisite for the applied method of data reconciliation.

Schraa, et al. (2006) does mention data reconciliation citing Crowe (1996) but focuses on sensor
fault detection. He did investigate data reconciliation in an earlier publication (Schraa and Crowe,
1998) when he was not yet involved with wastewater treatment.

Very recently two papers on redundancy classification and fault detection based on mass balances
where published by Villez et al. (2013a; 2013b). In both papers the methods of data reconciliation
are explicitly applied to (synthetic) data from wastewater treatment. The basic applicability of these



methods is proven for the situation of sludge thickening in a settler. In the paper on redundancy
classification (Villez et al., 2013a) influent TSS is concluded to be observable when measurements
are  taken  only  in  the  activated  sludge  tank,  the  wastage  sludge  and the  effluent.  The  example
obviously refers to inorganic TSS in a plant without chemical phosphorus precipitation.

1.3 Data reconciliation vs. individual mass balancing
In data reconciliation the aim is to adjust the entire data set to fit the constraints. To achieve this, the
remaining random error (after removal of gross errors) is distributed over all variables according to
an allowance that is defined by the variance of the single measurement errors. The variance of the
measurement  error  needs  to  be  known.  Steady  state is  another  frequent  requirement  for  the
established methods of data reconciliation. Even though approaches to integrated data reconciliation
and gross error detection exist, considerable difficulties remain in dynamic systems (Narasimhan
and Jordache, 2000).

In many industrial applications the preconditions for data reconciliation are met closely enough for
its  successful  application.  Substance  influents  to  processes  are  usually  controlled  and set  point
changes of such controlled variables have rather low frequencies. In contrast, the influent is the main
disturbance to the process of wastewater treatment and makes the dynamic adjustment of actuators
such as pumps and blowers a constant challenge. Therefore wastewater treatment plants, especially
those with combined sewer influent, are  dynamic systems. This is also true if the measured data
consists of daily means of the process variables (flow sums / composite samples). Another important
difference to  many industrial  processes are the low concentrations  and significant  heterogeneity
(dissolved/suspended)  of  the  relevant  compounds.  The various  sources  of  measurement  random
errors (representative sampling, interference from additional compounds, range of expected values,
dynamic flows and concentrations) add up to comparatively larger uncertainty and make it complex
and time-consuming, if not impossible, to determine the random measurement error variances.

Continuous balancing by means of  CUSUM charts  avoids  these two main  obstacles.  The input
variable to this method is the error vector of daily mass balances and therefore error distributions of
the single measurements do not need to be known a priori. Continuous mass balancing has been
proven suitable for gross error detection in dynamic systems (Spindler and Vanrolleghem, 2012). It
requires individual balance (redundancy) equations, the determination of which is addressed in the
following.

2 Methods
The single steps  to  determine individual  redundancy equations  which  consist  only of  measured
variables  are  provided  below.  While  the  setup  of  the  incidence  matrix  and  classification  of
redundancy and observability (steps 1a and 2) are typical for data reconciliation, steps 1b and 3
(incidence  matrix  expansion  and  elimination  of  observable  variables)  are  characteristic  for  the
algorithm described here. It follows the idea, that an observable (i.e. calculable) variable can be
removed from an equation by expressing it in terms of other (measured) variables. If the observable
variable can be calculated in various ways, several different redundancy equations are found.

Step 1: Incidence matrix setup and expansion



The  description  of  a  flow network  is  commonly  given  as  directed  incidence  matrix  M,  where
columns  represent  streams  (edges  in  the  network  graph)  and  rows  represent  single  subsystems
(nodes in the network graph). The environmental node (Mah et al., 1976) is the source and sink of
streams coming into and leaving the overall system, it represents the outside world. The values aij of
matrix M are:

  1, if stream j enters node i,
 -1, if stream j leaves node i and
  0, if stream j is not incident with node i.

A complete incidence matrix M consists of m independent rows where m is equal to the number of
nodes in the process network. In its most evident form the rows of the incidence matrix represent the
single nodes themselves (or subsystems, e.g. an activated sludge tank). The representation of a single
node  in  the  incidence  matrix  can  be  directly  transformed  into  linear  and  bilinear  equations
describing (mass) flow in and out of the corresponding subsystem.

Following its setup, the incidence matrix M is expanded to represent  all possible combinations of
single subsystems of the given process network. This is achieved by finding all XOR-combinations
of the m linearly independent rows in M. The new resulting matrix is M2. It needs to be reduced to
M3 in an extra step because  M2 is likely to contain rows of zero, double entries and rows that
represent  combinations  of  subsystems  which  do  not  share  any  stream  and  thus  are  physically
independent  of  one  another.  For  example,  thickening  and  dewatering  facilities  of  a  wastewater
treatment  plant  usually  do not  share any input  or  output  streams.  When setting up redundancy
equations, these types of balances should be avoided. The procedure to clean M2 of the latter type of
unnecessary rows is simply by stepwise comparison of each row with all other rows. If other rows
have entries different from zero in exactly the same columns as the current row (and maybe more)
they  can  be  deleted.  A  graph  theoretical  approach  to  finding  the  relevant  set  of  subsystem
combinations might proof more efficient but was not investigated here.

Step 2: Classification of redundancy and observability
In wastewater treatment, the equations that describe a balance around a node can be of two types.
Flow balances contain only measured (volumetric) flows and are therefore linear. Mass balances of
a specific compound are calculated from the products of flows and the compound's concentration in
each stream and are therefore bilinear (a linear structure composed of simple products). Mass flows
that are not bound to a water flow such as methane, nitrogen and oxygen uptake (digested COD) are
linear parts of otherwise bilinear balance equations. Mass flow or concentration of a compound can
also be zero in certain streams such as phosphorus in the gas phase. This can be relevant when
equations are actually set up in step 3.

The linear and bilinear nature of the equations that describe flow and mass flow in wastewater
treatment simplifies the classification of observability and redundancy (as opposed to sometimes
nonlinear equations in process engineering). A straightforward classification method for the bilinear
case has been described by Ragot et al. (1990). They base their classification of observability on a
simple analysis of measured and unmeasured flows and concentrations around the single nodes. It
yields  that  only one unmeasured concentration of a  compound can be calculated from a single



balance equation and only if all flows of that balance are observable. Flows on the other hand might
be calculated from known concentrations, too. As proposed in Ragot et al. (1990) the procedure is
iterative and stops when no further observable variables are found. Here, the algorithm is adapted to
determine both redundancy and observability in each node (row of M3). The necessity of iteration is
met in step 3.

For a single node it might be possible to directly set up a flow or mass balance equation, to set up a
balance  equation  through  elimination  of  (an)  unmeasured  flow(s),  or  to  calculate  a  flow,
concentration or mass flow. The rules are:

(1) If all flows Q are measured, a redundancy equation can be set up.
(a) If additionally all concentrations or mass flows of one compound are measured, another

redundancy equation can be set up.
(b) If  only  one  concentration  or  mass  flow  of  a  compound  is  unmeasured,  it  can  be

calculated in this node (for later elimination in another node).
(2) If only one flow Q is unmeasured it can be calculated from the other flows in this node (for

later elimination in another node).
(3) If one or more flows Q are unmeasured and

(a) there are as many or more compounds with all concentrations / mass flows measured
than missing flows, the missing flows can be eliminated and a redundancy equation for
this node be set up.

(b) the number of compounds with all concentrations / mass flows measured is one less than
the number of unmeasured flows Q , the missing flows can still be calculated in this node
(for later elimination in another node).

(c) only one concentration or mass flow of a compound is unmeasured and the number of
other  compounds with all  concentrations  /  mass flows measured is  not  less than the
number of unmeasured flows Q, still all unmeasured values can be calculated in this node
(for later elimination in another node).

Some  additional  attention  has  to  be  paid  to  nodes  such  as  splitters,  where  a  compounds
concentration is equal in all streams. Therefore unmeasured flows cannot be calculated from known
concentrations in a splitter. The only meaningful redundancy equations for these nodes are those for
flow Q. Splitters have to be indicated seperately. In a system with only 3 streams, no storage and just
one compound X the classification can be illustrated easily (Figure 1).

Figure 1: Single system with 2 input streams and 1 output stream, carrying 1 component (X)



The balance equations are:
1a32 e=Q+Q+Q1 (1a) flow balance

b32 e=XQ+XQ+XQ 13211 (1b) mass balance
Each balance equation yields an error e with an expected value of zero.

When Q1, Q2, Q3, X1 are measured and X2, X3 unmeasured, only the flows Q are redundant (eq. 1a).
When  another  concentration,  e.g.  X2 is  measured,  the  remaining  concentration  X3 becomes
observable but all concentrations are still not redundant.

When X1, X2, X3, Q3 are measured, none of them are redundant and all flows are (barely) observable.
When another  flow,  e.g.  Q2 is  measured,  the  concentrations  become redundant,  Q2 and  Q3 are
redundant and Q1 is observable. The redundancy equation becomes:

  321131211 , XXXe=XQ+QXQ+XQ c22  (1c)
The method this classification of observability and redundancy is based on (Ragot et al. 1990) is
especially obvious and simple to follow. Other methods – which give the same classification results
– often require more involved mathematics and/or are part of the iterative reconciliation process thus
depending on measurement data. A good overview is given in Bagajewicz (2010).

Step 3: Elimination of observable variables and setup of redundancy equations
For  the  computerized  setup  of  the  actual  redundancy  equations  software  capable  of  symbolic
calculations is beneficially applied. First, for each row in M3 that contains variables observable in
that  node,  one or  several  equations  that  solve  for  this  variable can be written.  After  one  cycle
through the rows of  M3 there exists an incomplete set of equations that can be used to calculate
observable variables. With the observable variables assumed to be measured, another cycle starts
after the repetition of step 2. This is repeated until no further equations to solve for observable
variables are found.

Finally, for each balance in  M3 that contains no unobservable variables the redundancy equations
are set up with the observable variables being replaced by their solving equations. Each balance
equation then consists only of redundant variables. In case several equations are available for the
calculation of an observable variable, multiple redundancy equations will be set up for this balance.
It is advisable to limit the number of replaced observable variables in the redundancy equations to
control complexity of the resulting equations.

The procedure was implemented using the Sage Mathematics Software (Stein et al., 2012). Sage
itself relies on a number of other computational programs out of which use has primarily been made
of The R Project for Statistical Computing (R Core Team, 2013) as well as Singular (Decker et al.,
2011) and Maxima (2013) for symbolic calculations.

Simpel sensor placement
The expansion of  M into  M3  can also be applied to determine useful additional measurements.
Assuming that in order to establish redundancy of a measured variable the new redundancy equation
should be simple and contain only few variables, it follows that it will be taken directly from a row



in M3. Therefore, the linear and bilinear redundancy equations resulting from M3 simply need to be
scanned for those that contain both the variable that should become redundant and at the same time
the minimum number of unmeasured variables, preferably only one. This unmeasured variable(s)
need  to  be  measured  additionally.  While  this  approach  to  sensor  placement  is  utile  due  to  its
simplicity,  it  is  also  limited.  It  does  not  guaranty  the  smallest  possible  number  of  additional
measurements in order to establish overall redundancy of a given variable but does provide for a
simple redundancy equation. It does not aim at data reconciliation either.

3 Results
Results  are  presented  for  the  application  of  the  above  method  to  a  large  two-stage  wastewater
treatment plant (160.000 p.e.). The numbering of the subsections is in accordance with the single
steps in the methods section.

The plant layout of the application example is given in Figure 2. The plant treats wastewater from
various municipal (M1-M4) and industrial (I1-I4) sources. For a full analysis, all flows regardless of
their size are included with only the polymer and precipitant dosage being neglected. For example,
the main industrial source (I3) is sampled in a side stream and for that reason a splitter can be found
in the plant layout. The mass flows leaving AST1 and AST2 and labelled “gas” refer to oxygen
uptake  and  elementary  nitrogen.  Because  each  activated  sludge  tank  and  its  clarifier  are  one
functional unit they are not separated.

Figure 2: Plant layout of the application example.



Step 1: Incidence matrix setup and expansion
The incidence matrix M resulting from the plant layout is given in Table 1. It has 11 independent
rows (subsystems) and 36 columns (streams). 

Table 1: Incidence matrix M describing the example plant layout.
1

M1
2

M2
3

M3
4

M4
5
I1

6
I2

7
I3

8
I3a

9
I3b

10
I4

11
Co

12 stw PCeff 14
PS

PSth 16
WAS1

17
WAS2

WASth

PC 1 1 · · 1 · · · · · · · -1 -1 · · · ·
PS thick. · · · 1 · · · · · · · · · 1 -1 · · ·
AST1 · · 1 · · · · 1 · · · · · · · -1 1 ·
AST2 · · · · · 1 · · · · · · 1 · · · -1 ·
WAS thick. · · · · · · · · · · · · · · · 1 · -1
AD · · · · · · 1 · · · 1 · · · 1 · · 1
DS storage · · · · · · · · · · · · · · · · · ·
Dewatering · · · · · · · · · · · · · · · · · ·
split · · · · · · · -1 -1 1 · · · · · · · ·
merge · · · · · · · · 1 · · 1 · · · · · ·
Gas engine · · · · · · · · · · · · · · · · · ·
env. node -1 -1 -1 -1 -1 -1 -1 · · -1 -1 -1 · · · · · ·

19 gas
AST1

20
gas

AST2

21
Eff1

22
Eff2

23
stor

AST1

24
stor

AST2

25
gas
AD

26
DS

27
stor
AD

stor
DS

29
DS

press

30
DS
dew

PS
rej

WAS
rej

DS
rej

34
scum

35
rej

36
el.en

PC · · · · · · · · · · · · · · · · 1 ·
PS thick. · · · · · · · · · · · · -1 · · · · ·
AST1 -1 · -1 · 1 · · · · · · · · · · · · ·
AST2 · -1 1 -1 · 1 · · · · · · · · · -1 · ·
WAS thick. · · · · · · · · · · · · · -1 · · · ·
AD · · · · · · -1 -1 1 · · · · · · · · ·
DS storage · · · · · · · 1 · -1 · -1 · · · · · ·
Dewatering · · · · · · · · · · -1 1 · · -1 · · ·
split · · · · · · · · · · · · · · · · · ·
merge · · · · · · · · · · · · 1 1 1 1 -1 ·
Gas engine · · · · · · 1 · · · · · · · · · · -1
env. node 1 1 · 1 -1 -1 1 · -1 1 1 · · · · · · 1

The variables'  division into  measured  and unmeasured  flows and concentrations  is  indicated  in
Figure 2 and explicitly given in Table 2. Note that for the splitter, all concentrations are known
(measured) despite only one sampled.
The expansion M2 of Matrix M yields a total of 2047 different combinations of subsystems (2m-1,
m=11).  The  number  of  subsystem  combinations  increases  exponentially  with  the  number  of
independent subsystems. When reduced to M3, 688 combinations of subsystems remain for which
linear and bilinear balance equations could be set up.



Table 2: Classification of measured and unmeasured flows, concentrations and mass flows.

Flow COD
zero:19,20,23,24,25,27,36 zero:---

   
concentration

measured:1,2,3,4,5,6,7,10,11,14,15,16,
17,18,22,28,29,30,33,34,35

measured:1,2,3,5,6,7,8,9,10,13,15,16,
17,18,21,22,26,28,29,30,35

unmeasured:8,9,12,13,21,26,31,32 unmeasured:4,11,12,14,31,32,33,34
   mass flow

measured:19,20,23,24,25,27,36
unmeasured:---

Phosphorus Nitrogen
zero:19,20,25,36 zero:25,36

   
concentration

   
concentration

measured:1,2,3,5,6,7,8,9,13,15,16,
17,18,21,22,26,28,29,30,35

measured:1,2,3,5,6,7,8,9,10,13,15,16,
17,18,21,22,26,28,29,30,35

unmeasured:4,10,11,12,14,31,32,33,34 unmeasured:4,11,12,14,31,32,33,34
   mass flow    mass flow

measured:23,24,27 measured:23,24,27
unmeasured:--- unmeasured:19,20

Step 2: Classification of observability and redundancy
Overall,  there  are 96 measured  and 35 unmeasured variables  in  the example.  Of the  measured
variables 81 are redundant and 22 unmeasured variables are observable. There are 21 measured
flows (all  but  one redundant) and 75 measured concentrations  and mass flows out of which 14
remain structurally not redundant. The 8 unmeasured flows in the example are all observable and out
of the 27 unmeasured concentrations or mass flows 14 can still be calculated from other variables.
Because the classification of observability and redundancy is not the primary aim of this work, the
detailed results for each individual variable are not included here.

Step 3: Elimination of observable variables and setup of redundancy equations
Based on the division into measured and unmeasured variables, only 4 linear balance equations out
of the 688 different subsystem combinations can be readily calculated with all their components
being measured. Three of those are the equations describing flow balances around the anaerobic
digester and the dewatering facilities (see Figure 2 for comparison). The validation of flows 10, 11,
15, 18, 28, 29, 30, 33 is possible from these equations.  Only one directly available redundancy
equation for a compound can be found. It is the simple balance around the gas engine, where the
methane content of the gas and the electrical efficiency of the engine are needed to calculate the
COD mass flows (superscript mf refers to “mass flow”). The respective equations are:

2d

2c33DSrej30DSdew28storDS10I4

2b29DSpress28storDS10I4

2a33DSrej30DSdew29DSpress

e=
e=
e=
e=

mf
36el.en

mf
25gasAD

18WASth15PSth11Co

18WASth15PSth11Co

CODCOD
QQQQ+Q+Q+Q

QQQ+Q+Q+Q
QQQ









(2a-d)



It can be verified from Figure 2 that for the linear flow balance equations (2a-c) the corresponding
bilinear balance equations describing mass flow cannot be set up due only to missing values for the
co-substrate and the reject from dewatering.

Two valid redundancy equations can be found directly through the elimination of unmeasured flows
from within the same node. They describe balances of the high load activated sludge tank (AST1)
and its combination with the splitter (eq. 3a-b). In these two cases there are 2 flows unmeasured but
2 concentrations (COD and P) fully measured in all streams giving 3 equations with 2 unknowns
which combine to  1 redundancy equation.  Owing to the splitter,  equation 5b contains  the  term
(COD7-COD9)·Q7  that effectively yields zero.

(3a-b)Equations 4a and 4b are again mass balances around the storage tank, but the missing flow
rate from the anaerobic digester, Q26, is calculated from the flow balances around other neighboring
subsystems. In the same way, equation 4c balances flows around the system PC-merge-AST1-AST2
where flow Q8 is missing and can be calculated from the combination of flow and COD balances
around AST1.

(4a-c)Equations 5a-b show examples, where two observable variables had to be replaced in order to
set up redundancy equations:

     
   

        
     

 
  5b921

2316916

17917393797

821231621161721163321

163

5a14

1411

2355

e =

e=

CODCOD
CODCODQCODCOD

QCODCODQCODCODQCODCOD
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Obviously,  the  number  and  complexity  of  equations  increases  with  the  number  of  replaced
observable  variables  allowed  per  equation.  At  the  same  time,  practical  usability  is  likely  to

Q28⋅COD28+Q29⋅COD29−(Q28+Q30+Q33 )⋅COD26 =e4a

Q28⋅COD28+Q29⋅COD29−(Q10+Q11+Q15+Q18 )⋅COD26 =e4b

Q1+Q2+Q3+Q5+Q35+Q6−Q14−Q16−Q22−Q34

−[(COD21−COD3 )⋅Q3−(COD17−COD21)⋅Q17+ (COD16−COD21 )⋅Q16+COD19
mf

−COD23
mf ]÷(COD21−COD8 ) =e4c

(COD21−COD8 )⋅(Q3⋅P3−Q16⋅P16+Q17⋅P17+P23
mf )

−[(COD21−COD3 )⋅Q3−(COD17−COD21)⋅Q17+ (COD16−COD21)⋅Q16+COD19
mf−COD23

mf ]⋅P8

−[(COD3−COD8 )⋅Q3+ (COD17−COD8 )⋅Q17−(COD16−COD8 )⋅Q16−COD19
mf+COD23

mf ]⋅P21 =e3a

(COD21−COD9 )⋅(Q3⋅P3+Q7⋅P7−Q16⋅P16+Q17⋅P17+P 23
mf )

−[(COD21−COD7 )⋅Q7+ (COD21−COD3 )⋅Q3−(COD17−COD21 )⋅Q17+(COD16−COD21)⋅Q16+COD19
mf

−COD23
mf ]⋅P9

−[(COD7 −COD9 )⋅Q7+(COD3−COD9)⋅Q3+ (COD17−COD9 )⋅Q17−(COD16−COD9 )⋅Q16−COD19
mf+COD23

mf ]⋅P21 =e3b



deteriorate. While only 10 redundant variables can be put in four balance equations when solutions
of observable variables where not allowed, this number increases to 31 with those two additional
equations where observable variables are eliminated within the same node. With one observable
variable calculated from another node, there are 21 distinct equations expressing redundancy of 57
variables. Equations including solutions for two observable variables yield 199 distinct equations for
74 redundant variables.

Sensor placement
When the incidence matrix expansion into M3 is scanned to improve overall redundancy, it turns out
that  the  additional  measurement  of  the  reject  flow  from  primary  sludge  thickening  (Q31)  and
sampling  of  the  scum  (COD34,  P34,  N34)  would  have  the  greatest  effect  on  overall  structural
redundancy. While before the introduction of these additional measurements there were 81 variables
redundant out of 96 measured, this ratio increases to 96 redundant variables out of 100 measured.
For  this  structural  analysis,  reasonability  of  the  suggested  additional  measurements  was  not
regarded.

4 Discussion
The computational determination of bilinear redundancy equations has been shown for the case of
structural redundancy. It allows to set up suitable mass balances for data validation procedures that
require individual balance equations such as CUSUM charts. This is of particular interest when the
dynamic nature of wastewater treatment is considered where reliable gross error detection is still a
challenge. The computational approach also provides equations that might not be obviously visible
to  the  expert's  eye,  particularly  for  large  and complex wastewater  treatment  systems.  This  way,
substantially  more  process  variables  become accessible  to  the data validation  procedure.  In  the
example only 10 out of 81 redundant variables could be expressed in simple balance equations
whereas 74 redundant variables became accessible when the calculation of 2 observable variables
per equation was allowed. Additionally, the approach of incidence matrix expansion allows for a
simple  investigation  about  the  placement  of  additional  measurements  to  provide  redundancy of
chosen variables.

The  expansion  of  the  incidence  matrix  M  is  possible  even  for  large  and  complex  wastewater
treatment plants. However, the number of subsystems even in those wastewater treatment plants is
rather  limited  compared  to  some  chemical  industries.  Due  to  the  exponentially  growing
computational effort, the approach of incidence matrix expansion might not be feasible in other
fields.

For practical applicability of the method further research is necessary.  As most of the resulting
redundancy equations (such as eq. 5b) are very complex and include many variables, some criteria
will be needed to select equations that are actually useful for data validation. A sensitivity analysis
could reveal which variables in such equations can be validated and for which variables in such
equations no conclusions can be drawn. Much alike, many redundancy equations cannot be set up
because they include variables that are in fact negligible. In the example, neglecting Q8 (the flow of
the sampling side stream of the industrial influent  7_I3) would allow the setup of a flow balance
around the primary clarifier and the activated sludge tanks AST1 and AST2. However,  flow  Q8



might not be negligible with respect to the merging of the various reject waters. These questions
address practical redundancy in addition to structural redundancy of the variables. An extension of
the above described algorithm should be possible to find approximate redundancy equations. This
would be based on an estimation of all variables, where possible by the classical methods of data
reconciliation. Following an analysis of sensitivity, for each equation in  M2 the negligible terms
would  be  eliminated  before  solutions  for  observable  variables  and  redundancy  equations  are
calculated. Investigations in this direction shall be the objective of a subsequent paper.

5 Conclusions
An algorithm is  presented that  allows the  determination  of  all  structurally  possible redundancy
equations for a given plant layout and classification of measured and unmeasured variables. Due to
the separate treatment of flows and concentrations not only linear redundancy equations can be
found. The algorithm is derived from data reconciliation methods which are applied extensively in
the  field  of  (chemical)  process  engineering  but  so  far  hardly  present  in  wastewater  treatment.
Because of a possibly large number and high complexity of the resulting redundancy equations, the
investigation of practical redundancy appears necessary. The underlying concept of incidence matrix
expansion also allows a simple investigation on the effect of additional measurements.

It has been shown, that the setup of individual redundancy equations for data validation based on
mass  balancing  can  be  fully  computerized.  This  is  an  important  step  in  the  development  of
automated data validation in wastewater treatment systems.
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