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Kurzfassung

Das Forschungsgebiet der Argumentation, inbesonders formale Modelle von Argumen-
tation, wurde in letzter Zeit zu einem wichtigen Thema in der künstlichen Intelligenz.
Dies ergibt sich durch die Verbindung zu - sowie diversen Anwendungen in - anderen
Disziplinen wie Philosophie, Rechtswissenschaften, Logik, und Medizin, aber auch durch
die thematische Nähe zu anderen Formlismen der KI, insbesonders aus dem Bereich
der Wissensrepräsentation. Obwohl eine Vielzahl von Formalismen für Argumentation
vorgeschlagen wurde, sticht ein Ansatz hervor, nämlich die von Dung eingeführten ab-
strakten Argumentation Frameworks (AFs). Ein AF ist einfach ein gerichteter Graph,
wobei die Knoten Argumente repräsentieren, und die Kanten Konflikte. Diese Konflikte
werden dann mittels Semantiken aufgelöst. Obwohl AFs sehr populär sind, stößt ihre
Aussdrucksstärke in verschiedenen Anwendungen an ihre Grenzen. Daher finden sich in
der Literatur zahlreiche Erweiterungen, wobei Abstract Dialectical Frameworks (ADFs)
weit verbreitet sind. ADFs erlauben flexible Beziehungen zwischen Argumenten, welche
mittles aussagenlogischer Formalen spezifiziert werden.

In dieser Arbeit wollen wir einige Lücken in der Forschung über ADFs schließen. So werden
wir z.B. das Fundamentale Lemma von Dung auf ADFs erweitern. Weiters wollen wir
untersuchen, ob sich gewisse Eigenschaften, die für spezielle Subklassen von AFs gelten,
sich mittels geeigneter Definition von Subklassen auf ADFs ubertragen. Hierfür definieren
wir verschiedene neue Klassen (symmetric ADFs, acyclic ADFs, attack symmetric ADFs,
acyclic support ADFs, complete ADFs) und untersuchen deren Eigenschaften. Ein weiterer
Aspekt dieser Arbeit sind Resultate zur Aussdrucksstärke dieser Klassen in bezug auf das
Konzept der sogenannten Realisierbarkeit. Abschließend stellen wir eine Implementierung
eines Generators für die genannten ADF Subklassen vor und untersuchen damit inwiefern
sich existierende Systeme für ADFs in der Handhabung von Zyklen verhalten.
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Abstract

Argumentation, and in particular computational models of argumentation, has recently
become a main topic within artificial intelligence. This is not only because of its crucial
importance and wide applications in other fields of science like philosophy, law, logic, and
medicine but also because of its connection to other areas of AI, in specific, knowledge
representation. Although there exists a wide variety of formalisms of argumentation, one
popular, prominent and simple formalism stands out, namely abstract argumentation
frameworks (AFs) first introduced by Dung. Intuitively, an AF is a directed graph in
which nodes represent arguments and directed links represent conflicts between arguments.
The conflicts between the arguments are resolved on the semantical level. Although AFs
are very popular tools in argumentation because of their conceptual simplicity, they are
not expressive enough to define different kind of relations. Several generalizations of AFs
exist, in particular, abstract dialectical frameworks (ADFs), a powerful generalization
of AFs, are widely studied. ADFs, first defined by Brewka and Woltran, are capable to
express arbitrary relations between arguments with no need of defining a new type of
relations and by assigning an acceptance condition to each argument in the form of a
propositional formula.

In the current work we close some gaps in existing research on ADFs. More specifically,
we investigate whether some main results carry over from AFs to ADFs. For instance,
we reformulate Dung’s Fundamental Lemma and we study under which conditions all
semantics of an ADF coincide. We also study whether particular properties which are
known to hold for certain subclasses can be extended to the world of ADFs by defining
related subclasses of ADFs. To do so, we introduce several such classes (symmetric
ADFs, acyclic ADFs, attack symmetric ADFs, acyclic support symmetric ADFs, complete
ADFs) and investigate their properties. A central aspect of our work is comparing the
expressivity of subclasses of AFs and ADFs from the perspective of realizability. At the
end we introduce an implementation of a generator to produce such subclasses of ADFs.
We use this generator in order to evaluate the effect of cycles on the performance of
existing solvers for ADFs.
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CHAPTER 1
Introduction

To investigate the importance of argumentation it is enough to mention that reasoning
has been a specific topic in philosophy since the time of Aristotle. According to Leibniz,
"the only way to rectify our reasonings is to make them as tangible as those of the
Mathematicians, so that we can find our error at a glance, and when there are disputes
among persons, we can simply say: Let us calculate [calculemus], without further
ado, to see who is right". Argumentation and in particular computational models of
argumentation has recently become a main topic within artificial intelligence (AI) [6, 9,
13, 38].

Based on the definition explained by Bench-Capon and Dunne [6] argumentation can be
considered as, "concerned with how assertions are proposed, discussed, and resolved in
the context of issues upon which several diverging opinions may be held." Argumentation
is a method of negotiating beliefs among agents and an argument usually presents beliefs
and reasonable justifications. The importance of understanding argumentation and its
role in human reasoning in different fields like philosophy [44], law [7], politics [2, 12],
decision support [3] to name just a few, motivated AI scientists to analyze the structure
of arguments and to define different formalizations that deal with the situation when
mutually conflicting arguments have to be taken into account. Moreover, recently
argumentation has become a center of attention in AI because of its connection to other
areas of AI, in specific, knowledge representation [8], game theory [37] and non-monotonic
reasoning [24].

There are a number of ways to define an argument. One can consider an argument as a
pair s.t. the first item in this pair is a minimal set of consistent formulas and the second
item is a logical consequence of the first part. To explain an argument formally consider
∆ to be a knowledge base which is a set of propositional formulas. An argument is a
pair 〈φ, α〉 in which φ is a consistent subset of ∆ s.t. φ is a model of α, φ |= α, and
for all ψ ⊂ φ, ψ 6|= α. For instance, let ∆ = {s, w, r, s → ¬r, w → ¬s, r → ¬w} be a
knowledge base in which s, w and r represent sunny, windy and rainy day, respectively.
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1. Introduction

Then, φ1 = {s, s→ ¬r} is a consistent subset of ∆ and φ1 |= ¬r and none of the strict
subsets of φ1 is a model of ¬r. That is, 〈φ1,¬r〉 is an argument of ∆. Another argument
of ∆ is 〈φ2,¬s〉 s.t. φ2 = {w,w → ¬s}. In addition, there is another argument 〈φ3,¬w〉
in which φ3 = {r, r → ¬w}. Then, there is a conflict between these two arguments.
Formally, we say that there is an attack from 〈φi, αi〉 to 〈φj , αj〉 whenever there exists a
µ ∈ ∆ s.t. αi |= ¬µ and µ ∈ φj . When there is an attack form 〈φi, αi〉 to 〈φj , αj〉 it is
depicted in a diagram by an arrow from 〈φi, αi〉 to 〈φj , αj〉. The diagram depicted in
Figure 1.1 show the attacks among the three arguments of ∆.

〈{w, w → ¬s},¬s〉

〈{s, s→ ¬r},¬r〉 〈{r, r → ¬w},¬w〉

Figure 1.1: Conflicts among arguments of knowledge base ∆ = {s, w, r, s → ¬r, w →
¬s, r → ¬w}

Argumentation frameworks (AFs for short) first introduced by Dung [24] provide a formal
tool that abstracts from the internal structure (content) of arguments. It is mainly
defined based on a set of arguments and a binary relation between arguments which
represents conflicts (attacks). An AF corresponding to the above example which abstracts
away from the content of arguments is depicted in Figure 1.2 in which, ai = 〈φi, αi〉.

a2

a1 a3

Figure 1.2: AF modeling the diagram in Figure 1.1

More formally, an AF is a pair (A,R) such that A is a set of arguments and R ⊆ A×A
is a binary relation representing conflict (attack) between arguments. In AFs statements
(called arguments) are formulated together with a relation (attack) between them and
the conflicts between the arguments are resolved on the semantical level. Several ways of
defining semantics of AFs are possible. One of them which is used in the current work is
extension-based in which the idea is finding sets of arguments which are accepted jointly.
Further semantics are defined in [4, 5, 20]. The concept of realizability is defined in [25]
which is focusing on analyzing whether an extension-set is in correspondence to the set of
outcomes of a semantics of an AF. Because of the crucial role of AFs in AI and the fact
that there are many reasoning problems in argumentation frameworks, efficient solving
techniques for reasoning tasks within AFs are needed. In [21], an overview of different
methods for solving abstract argumentation tasks on AFs are given.
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Although AFs are a very popular tool in argumentation because of their conceptual
simplicity, they are not powerful enough because of several reasons. For instance, AFs
defined based on single relation attack are not expressive enough to express different
kind of relations among arguments, like support. Many studies focus on generalizing AFs
by defining and adding a positive relation among arguments, named support relations.
This generalization is called Bipolar AFs [14, 18, 22, 34]. Bipolar AFs have their own
drawbacks. For instance, we need to define a new set of relations to define support
relations. In addition, what if one argument a is not strong enough to attack b and another
argument also is needed to jointly attack b. This kind of relation is very common, however
AFs are not powerful enough to model them directly. There are several generalizations
of AFs, see e.g. [18] for an overview. Currently abstract dialectical frameworks, ADFs
for short, first introduced by Brewka and Woltran [16] and further refined in [17], are
widely studied as a generalization of AFs. ADFs try to unify several generalizations of
AFs. ADFs are powerful enough to express arbitrary relations between arguments with
no need of defining a new type of links. An ADF is a tuple (S,L,C) in which S is a set
of arguments, L is a set of links and C is a set of propositional formulas. The meaning of
links in ADFs are very flexible: they can be support, attack (or both or neither). Each
argument s ∈ S is in correspondence with a propositional formula in C which is called
acceptance condition of s denoted by ϕs.

It is shown in [39] that semantics of ADFs are proper generalizations of AFs. Semantics
of ADFs are mainly defined based on three-valued interpretations which are similar to
labelling-based semantics defined for AFs [20]. The concept of realizability in ADFs
has been studied in [40, 41, 35]. In addition, it is shown in [17] that ADFs are more
expressive than AFs. Various results on ADF complexity have been studied in [28, 42, 43].
While ADFs are a powerful generalization of AFs, this capability comes for ADFs by
increasing one level up in the polynomial hierarchy compared to AFs. Given the power
and role of ADFs in AI and the fact that there are many reasoning problems with high
computational complexity, implementation methods are an important research topic
as well. Solvers for ADFs can be classified based on the target-formalism: answer set
programming (ASP) and Quantified Boolean Formula (QBFs). DIAMOND [26, 27] and
YADF [19] are based on ASP and QADF [23] is based on QBFs. Solvers for ADFs are highly
relevant because ADFs are able to capture many of the other generalizations of Dung’s
frameworks that exists [18, 33]. ADFs have themselves also received increasing attention
as a representation formalism recently [36, 15, 1].

Dung’s argumentation frameworks have been extensively investigated. For example it is
shown in [24] that when the framework is well-founded, all semantics are equivalent, and
in [22] it is illustrated that symmetric AFs are coherent and relatively grounded. To the
best of our knowledge, it has not been investigated under which conditions these results
carry over to ADFs. The main purpose of this thesis as follows.

• Reformulating and proving Dung’s Fundamental lemma [24] for ADFs.

3



1. Introduction

• Specifying a subclass of ADFs in which different semantics can collapse to the same
set of interpretations.

• Clarifying whether symmetric ADFs are coherent and relatively grounded.

• Study properties of more fine-grained subclasses of ADFs, namely, attack symmetric
ADFs, acyclic support symmetric ADFs and complete ADFs.

• Comparing the expressivity of different argumentation formalisms (studied in the
current work) from the perspective of realizability.

• Providing a generator to produce acyclic ADFs, attack symmetric ADFs and acyclic
support symmetric ADFs for a given undirected graph as input.

• Using this generator to illustrating the effect of cycles on the performance of solvers
for ADFs.

This thesis is organized as follows. In Chapter 2 we recall some relevant background. In
particular, we provide a short recap on AFs, ADFs and a well-known subclass of ADFs,
BADFs. The presentation of this chapter is based on [24, 16, 17]. In addition, Dung’s
Fundamental lemma [24] is reformulated in this chapter. In Chapter 3 we show that
some main results carry over from AFs to ADFs, for instance, the conditions under which
semantics of ADFs are collapsing into a unique semantics are studied. In addition, it
is investigated whether properties of symmetric AFs, namely coherency and relatively
groundedness, carry over to ADFs. To illustrate under which conditions these properties of
AFs hold for ADFs we introduce and study subclasses of ADFs, namely, attack symmetric
ADFs, acyclic support symmetric ADFs and complete ADFs. In Chapter 4 the notion of
realizability of an extension-set and an interpretation-set in argumentation formalisms
and expressiveness of different formalisms are described along the lines of [25, 40, 41, 35].
Then, the expressiveness of formalisms defined in Chapter 3 are studied. In Chapter 5 we
first describe the generator by which acyclic ADFs, attack symmetric ADFs and acyclic
support symmetric ADFs are generated. Then, to illustrate the effect of cycles on the
performance of solvers for ADFs we carried out some practical experiments. Finally, in
Chapter 6 we will summarize and conclude the presented results and refer to the open
questions we would like to address next.
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CHAPTER 2
Background

In this chapter we briefly survey the notions of Argumentation Frameworks (AFs) and
Abstract Dialectical Frameworks (ADFs) which are used in the rest of the work. In
particular, in Section 2.1 we provide a short recap of AFs defined by Dung [24] which
are modified in a way we use in our work. In Section 2.2 we introduce the syntax and
semantics of ADFs as well as bipolar ADFs (BADFs), mainly based on [16, 17]. Moreover,
in Section 2.2 we reformulate the Fundamental Lemma of AFs in the context of ADFs.
The latter is a new result, which we nevertheless consider better placed in this chapter.

2.1 Argumentation Frameworks
Dung’s argumentation frameworks (AFs for short) are a standard formalism of studying
abstract argumentation, first defined in [24] and then refined by several authors. AFs
nowadays become a central formalisms in artificial intelligence (AI) and it is widely
used and studied among other argumentation firmalisms. It is a field that studies how
arguments relate to each other regarding to directed conflicts which are named attack
relations. AFs can be considered as a knowledge representation formalism, since it is
used to represent the knowledge about the arguments and the relations between them.
The basic definitions of AFs explained by [24] are described as follows:

Definition 1. An argumentation framework (AF) is a pair (A,R) such that A is a set of
arguments and R ⊆ A×A is a binary relation representing attacks between arguments.

Remark 1. For each a, b ∈ A, R(a, b) or (a, b) ∈ R means that there is an attack from a
to b.

In another word, an argumentation framework AF F = (A,R) is a directed graph in
which nodes represent arguments and links denote that one argument attacking another
one. In Example 1 the graph corresponds to the given AF is depicted.
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2. Background

Example 1. Let F = ({a, b, c, d}, {(a, c), (c, c), (b, c), (d, c), (d, a), (c, d)}) be an AF. The
graph depicted in Figure 2.1 is corresponding to AF F .

a b

c d

Figure 2.1: AF used in Example 1

Definition 2. Let F = (A,R) be an AF, it is named finite argumentation framework
when A is a finite set of arguments.

We say S ⊆ A attacks b ∈ A if there exists a ∈ S such that (a, b) ∈ R. For instance,
for a given AF F = ({a, b, c, d}, {(a, c), (c, c), (b, c), (d, c), (d, a), (c, d)}) in Example 1,
S = {a, c} attacks d, since (c, d) ∈ R.

Definition 3. Let F = (A,R) be an AF. An argument a ∈ A is defended by S ⊆ A (or
it is acceptable with respect to S) (in F ) if for each argument c ∈ A: if (c, a) ∈ R then
there exists b ∈ S such that (b, c) ∈ R.

For instance, in the AF of Example 1, argument a is defended by S = {a, c}. Since S
defenses a by c against the attack of d.
The idea of argumentation is that whether an argument can argue successfully against
attacking arguments. AF is concerned about ways to pick subsets of the arguments,
extensions, that can all be accepted. The methods to clarify whether an argument is
accepted in an AF is named semantics. Roughly speaking, in AFs a semantics is a
function from the set of AFs to sets of sets arguments.

Definition 4. Let FA denote the set of all AFs over A. An extension semantics is a
function σ : FA → 22A . That is, for every AF F = (A,R) we have σ(F ) ∈ 22A . The
elements of σ(F ) are called extensions.

In the following we explain some of the properties and semantics of AFs based on [24]. An
extension is a set of jointly acceptable arguments from a certain point of view. Semantics
give rise to extensions, i.e. a semantics maps each AF to a set of extensions. Example 3
clarifies the following definitions by computing all semantics of the given AF.

Definition 5. Let F = (A,R) be an AF. The set S ⊆ A is a conflict-free set in F if
there is no a, b ∈ S such that (a, b) ∈ R. The set of all conflict-free sets is denoted by
cf(F ).

6



2.1. Argumentation Frameworks

A naive extension of F is a maximal conflict-free set of F w.r.t. set inclusion which is
defined as follows:

Definition 6. Let F = (A,R) be an AF. A conflict-free set (cf(F )) of arguments S ⊆ A
is a naive extension of F if for each conflict-free set of arguments T ⊆ A it is not the
case that S ( T . The set of naive extensions is denoted by nai(F ).

Definition 7. Let F = (A,R) be an AF. A set of arguments S ⊆ A is admissible in F
if S is a conflict-free set in F and for each a ∈ S, a is defended by S in F . The set of
admissible sets in F is denoted by adm(F ).

A preferred extension of F is a maximal admissible set of F w.r.t. set inclusion.

Definition 8. Let F = (A,R) be an argumentation framework. An admissible set of
arguments S of F is a preferred extension of F if for each admissible set of arguments
T ⊆ A it is not the case that S ( T . The set of preferred extensions of F is denoted by
prf(F ).

Definition 9. Let F = (A,R) be an AF. The unique grounded extension of F is a set S
which is an output of the following algorithm:

• put each argument a ∈ A which is not attacked in F into S; if there is no such
argument, return S;

• remove from F all (new) arguments in S and all arguments attacked by them
(together with all adjacent attacks); and continue with Step 1.

The unique grounded extension is denoted by grd(F ).

Definition 10. Let F = (A,R) be an AF. An admissible set S ⊆ A of F is a complete
extension of F if each argument a ∈ A defended by S in F is contained in S. That is, S
contains all the arguments that are defended by S in F . The set of complete extensions
of F is denoted by com(F ).

Theorem 1. [24] In any argumentation framework F = (A,R) the grounded extension
of F is a subset-minimal complete extension of F .

Definition 11. Let F = (A,R) be an argumentation framework. A conflict-free set
S ⊆ A of F is a stable extension of F if for each a ∈ A \ S there exists b ∈ S such that
(b, a) ∈ R. That is, a conflict-free set S is a stable extension iff S attacks all arguments
which do not belong to S. The set of stable extensions of F is denoted by stb(F ).

Lemma 1. Let F = (A,R) be an argumentation framework. A set of arguments S ⊆ A
is a stable extension if and only if S = {a ∈ A| a is not attacked by S}.

Lemma 2. For any argumentation framework F = (A,R) the following holds:

7



2. Background

• Each stable extension of F is a preferred extension of F .

• Each preferred extension of F is a complete extension of F .

• Each complete extension of F is an admissible extension of F .

Since in each AF F = (A,R) empty set is an admissible extension, any AF possesses
at least a σ-extension, σ ∈ {adm, prf, com,nai, grd}, however, there is no guarantee of
possessing of stable extension. That is, the set of all stable extensions could be empty.
This fact is illustrated by the following example.

Example 2. Let F = ({a, b, c, d}, {(a, b), (b, c), (d, c), (d, d)}) be an AF, depicted in
Figure 2.2 . To compute the stable extensions of F first we compute the set of conflict-
free sets: cf(F ) = {∅, {a}, {b}, {c}, {a, c}}. None of the sets of cf(F ) attacks all arguments
which do not belongs to it. Therefore, stb(F ) = ∅.

a b c d

Figure 2.2: AF used in Example 2

By Theorem 1 each AF contains a unique grounded extension. However, the set of
σ-extensions, for σ ∈ {adm, prf, com, stb,nai}, could be a multiple set. To illustrate
the definitions explained in this subsection all the extensions studied in this work are
computed for the AF in Example 3.

Example 3. Consider an AF F = ({a, b, c, d, e}, {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)})
depicted in Figure 2.3.

• The set of conflict-free extensions of F is: cf(F ) = {{a, c}, {a, d}, {b, d}, {a}, {b}, {c},
{d}, ∅},

• The set of naive extensions of F is: nai(F ) = {{a, c}, {a, d}, {b, d}},

• The set of admissible extensions of F is: adm(F ) = {{a, c}, {a, d}, {a}, {c}, {d}, ∅},

• The set of preferred extensions of F is: prf(F ) = {{a, c}, {a, d}},

• The set of complete extensions of F is: com(F ) = {{a, c}, {a, d}, {a}},

• The unique grounded extension of F is: grd(F ) = {a},

• The stable extension of F is: stb(F ) = {{a, d}}.

One of the crucial lemma in AFs proven by Dung in [24] is the Fundamental Lemma. To
the best of our knowledge the Fundamental Lemma has not been reformulated in ADFs.

8



2.2. Abstract Dialectical Frameworks

a b c d e

Figure 2.3: AF used in Example 3

Lemma 3. [24] Let F = (A,R) be an AF and S ⊆ A be an admissible set of arguments
for F , and a and a′ be arguments which are acceptable w.r.t. A in F . Then,

1. A′ = A ∪ {a} is admissible for F , and

2. a′ is acceptable for F w.r.t. A′.

2.2 Abstract Dialectical Frameworks
In the previous section we studied the syntax and semantics of AFs which are mainly based
on a single relation among arguments, namely attack. Although AFs are popular and
well-studied in argumentation, it is not powerful enough to express technical arguments.
To over come to this impotency of AFs as a representation formalism there exists quite
a number of generalizations of AFs, for an overview see e.g. [18]. Abstract dialectical
frameworks (ADFs for short) introduced first by Brewka and Woltran in [16] can be
considered as one of the powerful generalizations of AFs in which both arguments and
links are abstract. ADFs can be considered as a knowledge representation formalism
which is used to express knowledge about argument and relations between them. While
in AFs all relations are attacks in ADFs the meaning of relations in ADFs are flexible. In
ADFs each argument is associated with a propositional formula over its parents arguments
which is called the acceptance condition of an argument. That is, in ADFs when to
accept each argument is clarified by acceptance condition explicitly. An ADF is a tuple
(S,L,C) in which S is a set of arguments, L is a set of links and C is a set of propositional
formulas. However, in ADFs the meaning of relations between arguments can be support
or attack (both or neither). We will explain the type of links at the end of this section.
Various results on ADF semantics and complexity have been studied in [39, 43]. ADFs is
defined formally as follows:

Definition 12. [16] An abstract dialectical framework (ADF) is a tuple D = (S,L,C)
where,

• S is a set of nodes (argument, statement, positions),

• L ⊆ S × S is a set of links,

• C = {ϕs}s∈S is a set of propositional formulas (acceptance conditions).

Definition 13. (Finite ADF)
A finite ADF is an abstract dialectic framework D = (S,L,C) in which S is a finite set.

9



2. Background

To visualize the structure of ADFs we use a directed graph such that nodes represent
arguments and links represent relations among arguments. The meaning of relations in
ADFs is very flexible and the nodes’ status only depends on their parent’s status. Parents
of a node s is the set of nodes with a direct link into s and are denoted by par(s), i.e.
par(s) = {a ∈ S | (a, s) ∈ L}. Each node s has an acceptance condition ϕs in which
conditions under which s is accepted are explicitly defined. In another word, acceptance
condition ϕs is a propositional formula such that an argument a occurs in ϕs if and only
if a ∈ par(s). Since acceptance condition ϕs specifies the parents of s implicitly, there is
no need to give the links in ADFs explicitly. Therefore, one can define an ADF as a tuple
D = (S,C) where S and C is the same as above and (a, s) ∈ L if and only if a ∈ par(s).
Remark 2. From now on if not explicitly stated we assume that all acceptance conditions
are written in conjunctive normal form, CNF.

Example 4. Let D = ({a, b, c, d, e}, {ϕa : >, ϕb : b, ϕc : a ∧ ¬b, ϕd : ¬b, ϕe : ⊥}) be an
ADF in which each acceptance condition is defined by a propositional formula, depicted in
Figure 2.4. Intuitively ϕa states that a should always be accepted, ϕb says its acceptance
depends on b, the acceptance condition of c depends on acceptance of a and b, ϕd is
defined by negation of b and ϕe states that e should always be rejected.
The set of parents of c is {a, b}, a and e does not have any parent, b is a parent of b and
d. It is clear that there is no need to define the set of links among arguments explicitly.
For example ϕc : a∧¬b implicitly says that the correspondence graph of D contains links
(a, c) and (b, c).

a

c

b

d

e

> b

a ∧ ¬b ¬b

⊥

Figure 2.4: ADF used in Example 4

Definition 14. Let D = (S,L,C) be an ADF. An argument s ∈ S without any incoming
and outgoing link is called isolated argument.

Definition 15. Let D = (S,L,C) be an ADF. An argument s ∈ S without any parents
is named initial argument.

Acceptance condition of isolated and initial argument is either > or ⊥. In Example 4, e
is an isolated argument and a is an initial argument.

10



2.2. Abstract Dialectical Frameworks

2.2.1 Semantics of ADFs

To define and compute the semantics of ADFs the concept of operation-based semantics
is defined and used in [39, 17]. The mandatory definitions for computing semantics of
ADFs are explained as follows:

Definition 16. A three-valued interpretation v is a function from a set of arguments S
to {t, f, u}, v : S → {t, f, u}. An interpretation is called two-valued if v : S → {t, f}.
The intuition of t, f, and u is that an argument is true, false and undecided, respectively.

Definition 17. A three-valued interpretation is named trivial if assigns all arguments
to u. Otherwise, it is named non-trivial. The trivial interpretation is denoted by vu.

Let V (resp. V2) be the set of all three-valued interpretations (resp. two-valued interpreta-
tions) of S, V = {v : S 7→ {t, f, u}} (resp. V2 = {v : S 7→ {t, f}}). Interpretations can
be ordered by the information ordering ≤i. This ordering assigns a greater information
content to the classical truth value {t, f} than to u, that is, u <i t and u <i f , and ≤i
is the reflexive, transitive closure of <i. The partially ordered set ({t, f, u},≤i) forms a
meet-semilattice with the meet operator ui, such that t ui t = t, f ui f = f and returns
u otherwise. In addition (V,≤i) forms a complete meet-semilattice and its meet operator
given by (v1 ui v2)(s) = v1(s) ui v2(s), such that;

v1 ≤i v2 if and only if ∀s ∈ S : v1(s) ≤i v2(s).

The least element of this semilattice is the trivial interpretation vu : S → {u} mapping
all arguments to undecided. v2 is called an extension of v1 if and only if v1 ≤i v2.
Let v be an arbitrary three-valued interpretation. [v]2 = {w ∈ V2 | v ≤i w} is the set
of all two-valued interpretations which have more information than v. That is, a single
three-valued interpretation v serves to approximate a set of two-valued interpretations
with more information than v with respect to ≤i. In addition, vx is used to denote the
set of arguments assigned to x ∈ {t, f} under v.

Definition 18. Let V be the set of interpretations and v1 and v2 be two interpretation
sets of V. v1 and v2 are called incomparable whenever neither v1 ≤i v2 nor v2 ≤i v1.
This is denoted by v1 6∼ v2.

Example 5. Consider the three-valued interpretation v = {a 7→ t, b 7→ u, c 7→ f, d 7→
u, e 7→ u}. v has 27 different extensions: some of them are incomparable. For instance,
v1 = {a 7→ t, b 7→ t, c 7→ f, d 7→ u, e 7→ u} and v2 = {a 7→ t, b 7→ f, c 7→ f, d 7→ u, e 7→ u}
are incomparable. However, v3 = {a 7→ t, b 7→ t, c 7→ f, d 7→ t, e 7→ u} is an extension of
v1 i.e. v1 ≤i v3. [v]2 contains 16 interpretations; one of them is: v4 = {a 7→ t, b 7→ t, c 7→
f, d 7→ f, e 7→ t}.
Let w = {a 7→ f, b 7→ t, c 7→ f, d 7→ u, e 7→ f} be another three-valued interpretation.
The meet of v and w is: v ui w = {a 7→ u, b 7→ u, c 7→ f, d 7→ u, e 7→ u}.
In addition, vt = {a} and vf = {c}.

11



2. Background

The operator ΓD which is defined in [16] transforms three-valued interpretations into
others, ΓD : V → V.

Definition 19. Let D = (S,L,C) be an ADF and v be a three-valued interpretation
and ϕs be an acceptance condition of s. The revised interpretation ΓD(v) : S → {t, f, u}
is given by:

s 7→ ui{w(ϕs) | w ∈ [v]2}
in which w(ϕs) is obtained by evaluating ϕs with w.

The operator takes a three-valued interpretation v as an input and returns a three-
valued interpretation ΓD(v). That is, we can compute the truth value of an argument
s under interpretation v with the help of computing the meets of the evaluations of ϕs
under all completions of v. If v is two-valued then [v]2 = {v}. Therefore, in this case
ΓD(v)(s) = v(ϕs). That is, when v is a two-valued interpretation ΓD(v)(s) is obtained
by evaluating ϕs with v.
There is an alternative way of introducing the operator ΓD described as the follows:
Given an interpretation v : S → {t, f, u} and ADF D = (S,L,C). Let ϕs be a
propositional formula (acceptance condition) corresponding to s. Then the operator
ΓD(v) : S → {t, f, u} yields a new interpretation as follows:

s 7→


t if ϕvs is irrefutable ,
f if ϕvs is unsatisfiable,
u otherwise

Such that the partial valuation of ϕs by v is;

ϕvs = ϕs[p/> : v(p) = t][p/⊥ : v(p) = f ]

where p is an argument occurring in ϕs.
A formula is irrefutable when it is satisfied under all two-valued interpretations, that is,
the formula is a tautology. The definition of the operator is clarified via the following
example:

Example 6. Consider ADF D = ({a, b, c, d, }, {ϕa : >, ϕb : ⊥, ϕc : ¬a∧b, ϕd : (a∧c)∨b})
depicted in Figure 2.5 and three-valued interpretation v = {a 7→ t, b 7→ f, c 7→ u, d 7→ u}.

• First we compute revision of v with the first definition given for the operator ΓD:
Since ϕa : >, for each w ∈ [v]2, w(ϕa) = t. Hence, ui{w(ϕa) | w ∈ [v]2} = t. That
is, ΓD(v)(a) = t. With the same method it is easy to show that ΓD(v)(b) = f .
Since in all w ∈ [v]2, a is assigned to t and b is assigned to f , w(ϕc) = f for all
w ∈ [v]2. Therefore, ΓD(v)(c) = f .
To compute ΓD(v)(d) consider w1 is a completion of v in which c is assigned to true
and w2 is a completion of v in which c is assigned to false, then w1(ϕd) = t and
w2(ϕd) = f . Hence, w1(ϕd)uiw2(ϕd) = tuif = u. That is, ΓD(v)(d) 7→ u.Therefore,
an operator ΓD transforms three-valued interpretation v = {a 7→ t, b 7→ f, c 7→
u, d 7→ u} in to v′ = {a 7→ t, b 7→ f, c 7→ f, d 7→ u}.

12



2.2. Abstract Dialectical Frameworks

• Then we show that applying second definition of ΓD on v leads the same interpre-
tation v′.
Partial evaluation of ϕd with v takes the two-valued part of v and replaces the
evaluated variables by their truth value. a, b and c are arguments that occur in
ϕd and v(a) = t, v(b) = f and v(c) = u. Therefore, to compute ϕvd we replace
a with >, b with ⊥ and argument c will remain in ϕd. ϕvd = (> ∧ c) ∨ ⊥ ≡ c.
ϕvs in neither irrefutable nor unsatisfiable, hence, ΓD(v)(d) = u. With the same
way, ϕvc = (¬>) ∧ ⊥ ≡ ⊥, that is, ϕvc is unsatisfiable. Then by the definition
ΓD(v)(c) = f . That is, v′ = {a 7→ t, b 7→ f, c 7→ f, d 7→ u}.

a

c

b

d

> ⊥

¬a ∧ b (a ∧ c) ∨ b

Figure 2.5: ADF used in Example 6

The fixed point of ΓD is an interpretation that cannot be updated anymore, that is, there
is no way to add a truth value to any arguments. It can be easily checked that ΓD in
Example 6 has only one fixed point v = {a 7→ t, b 7→ f, c 7→ f, d 7→ f}.
In the following, the notation ϕvs ≡ > means ϕvs is irrefutable and ϕvs ≡ ⊥ means ϕvs is
unsatisfiable.
v|sx is a function on a three-valued interpretation v and assigns x to s, such that x ∈ {t, f}
and it is equal to v on all other arguments.

Example 7. Assume an ADF D = ({a, b, c}, {ϕa : >, ϕb : a, ϕc : ¬a}) and a three-valued
interpretation v = {a 7→ t, b 7→ u, c 7→ u}. By the definition v|bf is {a 7→ t, b 7→ f, c 7→ u}
and v|ct is {a 7→ t, b 7→ u, c 7→ t}. However, neither v|bf nor v|bt is obtainable by applying
the operator ΓD on v. Since, ΓD(v) = {a 7→ t, b 7→ t, c 7→ f}

The concept of acceptability is defined for AFs and it is used in the Fundamental
Lemma [24]. In the following we define acceptability and deniablity of an argument s
w.r.t. an interpretation v to reformulate the lemma in ADFs.

Definition 20. Let D = (S,L,C) be an ADF and v be an interpretation on S.

13



2. Background

• An argument s ∈ S is named acceptable w.r.t. v if ϕvs is irrefutable,

• An argument s ∈ S is called deniable w.r.t. v if ϕvs is unsatisfiable.

In Example 8 the acceptability and deniability of arguments of the given ADF are
illustrated with respect to the given interpretation.

Example 8. Let D = ({a, b, c, d, e}, {ϕa : ¬d, ϕb : >, ϕc : ¬a ∧ b, ϕd : ¬b, ϕe : ¬a}) and
v = {a 7→ t, b 7→ u, c 7→ u, d 7→ u, e 7→ u}.

• By the definition ϕva = ¬d. Therefore, a is neither acceptable nor deniable w.r.t. v.

• ϕvb ≡ > then b is acceptable w.r.t. v. In addition, b is acceptable under all
interpretations.

• ϕvc ≡ ¬⊥ ∧> ≡ >, that is, c is acceptable w.r.t. v.

• ϕvd = ¬b that is, d is neither acceptable nor deniable w.r.t. v.

• ϕve ≡ ¬> ≡ ⊥, that is, e is deniable w.r.t. v.

Since ADFs are defined basically based on arguments and their acceptance conditions,
looking for the truth value of each argument is a common issue. The semantics of ADFs
are the criteria by which the acceptability, deniability and even undecidability of an
argument is clarified. Formally, let FS denotes the set of all ADFs over a S. A semantics
is a function form FS to the set of interpretation sets, i.e. σ : FS 7→ 2V . More specific;
semantics of an ADF D = (S,L,C) is σ(D) ⊆ V. Clearly, the elements of σ(D) are
interpretations. As mentioned before the operator ΓD defined by Brewka and Woltran
[16], Brewka et al. [17] is used in ADFs to transform three-valued interpretations to
others. Operator ΓD can be used to define semantics of ADFs as follows.

Definition 21. [16, 17], Let D = (S,L,D) be an ADF and v : S 7→ {t, f, u} be an
interpretation;

• v is an admissible interpretation for D if v ≤i ΓD(v); the set of all admissible
interpretations for D is denoted by adm(D).

• v is a preferred interpretation for D if v is ≤i-maximal admissible; the set of all
preferred interpretation for D is denoted by prf(D).

• v is a complete interpretation for D if v = ΓD(v); the set of all complete interpreta-
tions for D is denoted by com(D).

• v is a grounded interpretation for D if and only if v is the ≤i-least fixed point of
ΓD(v). v is called non-trivial grounded interpretation iff v does not take u to all
arguments. The unique grounded interpretation for D is denoted by grd(D)
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2.2. Abstract Dialectical Frameworks

• v is a two-valued model for D if and only if v assigns all arguments to either true or
false and v = ΓD(v); the set of all two-valued models (or models) for D is denoted
by mod(D).

• v is conflict-free for D iff for each s ∈ S we have; v(s) = t implies ϕvs is satisfiable
and v(s) = f implies ϕvs is unsatisfiable. The set of all conflict-free interpretations
for D is denoted by cf(D).

Intuitively, v is an admissible interpretation if the truth assignment of its arguments
can be justified. For example, each member of vt must be valid no matter how the
undecided arguments of v are interpreted. That is, for an argument a in vt(resp. vf ),
ϕa must evaluate to true (resp. false) in all completions of v. In other words, v is an
admissible if for all s ∈ S, v(s) = t implies ϕvs is irrefutable and v(s) = f implies ϕvs is
unsatisfiable. Hence, the trivial interpretation, vu, is an admissible interpretation in an
arbitrary ADF. Clearly, conflict-freeness is a weaker version of admissibility, in which the
truth assignment of an argument is justified by satisfiability instead of irrefutably. That
is, in contrast to admissibility for conflict-freeness it is enough to check whether each
argument of vt is satisfiable. The difference of these two interpretations is clarified in
Example 14.

Example 9. Let D = ({a, b, c}, {ϕa : ¬c, ϕb : ¬a, ϕc : ¬b}) be the ADF depicted in
Figure 2.6. D contains ten conflict-free interpretations, but only one of them is admissible,
vu. That is the only admissible interpretation of D is vu = {a 7→ u, b 7→ u, c 7→ u}. To
check whether v1 = {a 7→ t, b 7→ f, c 7→ u} is a conflict-free interpretation we show that
ϕv1
a is satisfiable and ϕv1

b is unsatisfiable. By evaluating ϕv1
b = ϕb[a/> : v1(a) = t],

ϕv1
b ≡ ⊥. That is, ϕ

v1
b is unsatisfiable.

To show that ϕv1
a = ¬c is satisfiable it is enough to consider v2 a completion of v1 in

which c assigns to f . Then, ϕv2
a ≡ ¬⊥ ≡ >. That is, ϕv1

a is satisfiable.To show that v1 is
not an admissible interpretation, we show that ϕv1

a is not irrefutable. Then, it is enough
to assume v3 a completion of v1 in which c assigns to t. That is, ϕv3

a ≡ ¬> ≡ ⊥. That is,
ϕv1
a is not irrefutable. Thus, v1 is not an admissible interpretation.

a

c b

¬c

¬b ¬a

Figure 2.6: ADF used in Example 14

Next, we reformulate Dung’ s Fundamental Lemma [24] for ADFs.
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2. Background

Lemma 4. Fundamental Lemma Assuming v is an admissible interpretation of ADF
D, and a and a′ are arguments which are acceptable (resp. deniable) with respect to v.
Then,

1. v′ = v|at (resp. v′ = v|af ) is admissible, and

2. a′ is acceptable (resp. deniable) with respect to v′.

Proof. Let v be an admissible interpretation of D and a be an argument acceptable (resp.
deniable) w.r.t. v and v′ = v|at (resp. v′ = v|af ). First, we illustrate that v ≤i v′.

Assume that a is acceptable w.r.t. v we claim that v(a) cannot be f . Suppose to
the contrary that v(a) = f . Since v is an admissible interpretation, v ≤i ΓD(v)
implement that ΓD(v)(a) = f . By the definition, ΓD(v)(a) = f if ϕva is unsatisfiable.
This is a contradiction with our assumption that a is acceptable w.r.t. v. Therefore,
v(a) could be either t or u. By the definition v′(a) = t. Thus, v ≤i v′ whenever a
is acceptable w.r.t. v.

Suppose that a is deniable w.r.t. v we show that v(a) 6= t. Toward a contradiction
assume that v(a) = t. Again since v is an admissible interpretation, v ≤i ΓD(v)
enforce that ΓD(v)(a) = t. By the definition of the operator ΓD, ΓD(v)(a) = t if
ϕva is irrefutable. This is a contradiction with the assumption that a is deniable
w.r.t. v. Then, va ∈ {u, f}. By the definition v′(a) = f . Thus, v ≤i v′ whenever a
is deniable w.r.t. v.

Hence, v ≤i v′. In the following we prove two parts of lemma separately.

1. By the definition of admissible interpretation we need to show that v′ ≤i ΓD(v′),
that is, for all s ∈ S, v′(s) ≤i ΓD(v′)(s). Then, it is enough to show that ∀s ∈ S:
v′(s) ∈ {t, f} ⇒ v′(s) = ΓD(v′)(s). Let s be an argument such that v′(s) = t.
There are two cases either s = a or s 6= a.

a) Assuming s 6= a by the definition of v′, v(s) = t. Since v is an admissible
interpretation ΓD(v)(s) = ui{w(ϕs) | w ∈ [v]2} = t.

b) Suppose s = a. By our assumption a is acceptable w.r.t. v, that is, ϕvs is
irrefutable. That is, ui{w(ϕs) | w ∈ [v]2} = t.

By our claim v ≤i v′, then [v′]2 ⊆ [v]2. Therefore, ui{w(ϕs) | w ∈ [v′]2} = t. That
is, in both cases ΓD(v′)(s) = t. Let s be an argument such that v′(s) = f . With
the same proof method we can show that ΓD(v′)(s) = f . Therefore, v′ ≤i ΓD(v′),
that is, v′ is an admissible interpretation.
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2.2. Abstract Dialectical Frameworks

2. Let a′ be acceptable w.r.t. v, we show that a′ is acceptable w.r.t. v′. By our
assumption a′ is acceptable w.r.t. v, hence ui{w(ϕa′) | w ∈ [v]2} = t. Since v ≤i v′,
[v′]2 ⊆ [v]2. Therefore, ΓD(v′)(a′) = ui{w(ϕa′) | w ∈ [v′]2} = t. That is, a′ is
acceptable w.r.t. v′. The proof method when a′ is deniable w.r.t. v is exactly the
same.

To define the stable model semantics for ADFs we define a method, first proposed in [16]
similar to the one used in logic programming. Suppose D = (S,L,C) is an ADF and v is
a two-valued model. We are eager to know whether v is a stable model. To compute
the reduction of ADFs, first, we eliminate all nodes and corresponding links from D
which are false under the two-valued model v. Then, we replace eliminated nodes by
⊥ in all acceptance conditions. We check whether nodes that are t in v coincide with
those that are t in the grounded interpretation of the reduced ADF. That is, we must
find a constructive proof for all arguments v takes to be true. This is the reason why
we compute the grounded interpretation of the reduced ADFs. The formal method of
computing the reduced ADFs Dv and checking whether v is a stable model is defined as
the follows:

Definition 22. Let D = (S,L,C) be an ADF and v be a two-valued model of D. Define
the reduced ADF Dv = (Sv, Lv, Cv) where,

• Sv = vt,

• Lv = L ∩ (Sv × Sv),

• Cv = {ϕs[p/⊥ : v(p) = f ]}s∈Sv .

Denote by w the unique grounded interpretation of Dv. The two-valued model v of D is
a stable model of D if and only if vt = wt.

We illustrate the semantics defined in this section by the following example:

Example 10. Consider the ADF explained in Example 4, D = ({a, b, c, d, e}, {ϕa :
>, ϕb : b, ϕc : a ∧ ¬b, ϕd : ¬b, ϕe : ⊥}). Let v = {a 7→ t, b 7→ f, c 7→ u, d 7→ u, e 7→ u}.

We show that v is an admissible interpretation but not a complete interpretation.
D possesses 32 different admissible interpretations. To show that v is an admis-
sible interpretation we have to show v ≤i ΓD(v). It is enough to check whether
ΓD(v)(a) = t and ΓD(v)(b) = f .
Since ϕa ≡ >, ϕva is irrefutable w.r.t. all interpretations v. That is ΓD(v)(a) = t.
Acceptance condition of b is defined based on itself, ϕb = b. That is, if b is as-
signed to false by an interpretation v then ϕvb = ϕb[b/⊥ : v(b) = f ] ≡ ⊥. Since
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b is assigned to f by v, ϕvb ≡ ⊥, that is, ϕb is unsatisfied under v. Therefore,
ΓD(v)(b) = f . That is, v(b) = ΓD(v)(b). Then v is an admissible interpretation.
Applying ΓD(v) on the remaining arguments, c, d, and e, changes their truth as-
signment. It can be computed that ΓD(v)(c) = t, ΓD(v)(d) = t and ΓD(v)(e) = f .
Therefore, v 6= ΓD(v). That is, v is not a complete interpretation.

com(D) = {{a 7→ t, b 7→ u, c 7→ u, d 7→ u, e 7→ f}, {a 7→ t, b 7→ t, c 7→ f, d 7→
f, e 7→ f}, {a 7→ t, b 7→ f, c 7→ t, d 7→ t, e 7→ f}}. The first interpretation is the
≤i-least fixed point of γD(v) hence it is the grounded interpretation. The two latter
interpretations are two-valued and preferred interpretations.

We illustrate whether the two-valued models are stable. Let v1 = {a 7→ t, b 7→ t, c 7→
f, d 7→ f, e 7→ f} and v2 = {a 7→ t, b 7→ f, c 7→ t, d 7→ t, e 7→ f}. The reduct of v1
depicted in Figure 2.7. The grounded interpretation of Dv1 is w1{a 7→ t, b 7→ u}.
While, w1(b) = u, b is assigned to t by v1. Hence, v1 is not a stable interpretation.

a b

> b

Figure 2.7: Reduct Dv1

The reduct of v2 is depicted in Figure 2.8. The grounded interpretation of Dv2 is
w2 = {a 7→ t, c 7→ t, d 7→ t}. Since the arguments that are assigned to t in v2 coincide
with those that are t in the grounded interpretation of the reduced ADF, v2 is a stable
model. Hence, the only stable model of D is {a 7→ t, b 7→ t, c 7→ f, d 7→ t, e 7→ f}.

a

c d

>

a ∧ ¬⊥ ¬⊥

Figure 2.8: Reduct Dv2

The following theorem [17] shows that the relationship among semantics of AFs defined
on Dung [24] carry over to ADFs.
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Theorem 2. Let D be an ADF.

• Each stable model of D is a two-valued model of D;

• each two-valued model of D is a preferred interpretation;

• each preferred interpretation of D is a complete one;

• each complete interpretation of D is an admissible interpretation;

• The grounded interpretation of D is a complete interpretation.

It is stated in [16] that any ADF possesses at least a preferred interpretation and the
grounded interpretation, however, there is no guarantee of possessing a stable or two-
valued model. The fact that prf(D) is non-empty for each ADF D is concluded directly
by the fact that the trivial interpretation is admissible and by the definition of preferred
interpretation which says each preferred interpretation v is ≤i-maximal admissible. Again
the fact that the trivial interpretation is admissible (together with the fact that the
set of all three-valued interpretations of an ADF D with the meet operator ui forms
a complete meet-semilattice) implements the existence of the grounded interpretation
which is a ≤i-least fixed point of ΓD. The relation of different semantics is illustrated in
Figure 2.9. We show a σ-interpretation is a γ-interpretation by drawing an arrow from
σ-interpretation to γ-interpretation.

To clarify that ADFs are a proper generalization of Dung’s notion for AFs it is explained
in [17] that each AF is associated with an ADF which is rescripted in Definition 23. In
addition, it is illustrated by a theorem in [17], which says the class of all semantics of an
AF F and its associated ADF DF are essentially the same.

Definition 23. For an AF F = (A,R) define the ADF associated to F as DF = (A,R,C)
with C = {ϕa}a∈A s.t. the acceptance condition is given by:

ϕa =
∧

a∈A,(b,a)∈R
¬b

In Section 2.1 semantics of AFs are defined based on extensions and in Section 2.2
semantics of ADFs are defined based on interpretations. To investigate the correspondence
between semantics of an AF F and its associated ADF DF , first we show how these
notions of semantics relate to one another.

Definition 24. Let F = (A,R) be an AF, σ be a semantics σ ∈ {adm, prf, stb, com, grd},
and e be an extension of σ(F ), e ∈ σ(F ). The associated interpretation ve is defined as
follows.

ve(a) =


t a ∈ e
f ∃b ∈ e, (b, a) ∈ R
u otherwise
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stable model

two-valued model

preferred interpretation

complete interpretation

admissible interpretation

grounded interpretation

Figure 2.9: Relation between ADF semantics

Note that the associated interpretation to e = ∅ is vε which does not assign any argument
to t, f or u.

Definition 25. Let D = (A,L,C) be an ADF and v be a three-values interpretation of
D. The associated extension ev of v is:

ev = {a ∈ A | a 7→ t ∈ v}

By ve which is defined in Definition 24 an interpretation correspondence to an extension
e of an AF F = (A,R) is computable by computing ve(a) for each a ∈ A. Note that
the associated extension, ev of v for σ ∈ {prf, com, grd} is unique, however, for σ = adm
sometimes ev is not one-to-one. In addition, ve for σ = adm is not always a subjective
function. These facts are illustrated by Example 11.

Example 11. Let F = ({a, b, c, d}, {(a, b), (a, c), (c, a), (c, c), (b, d), (d, b), (d, d)}) be an
AF depicted in Figure 2.10. By the Definition 23, the associated ADF to F is DF =
({a, b, c, d}, {ϕa : ¬c, ϕb : ¬a ∧ ¬d, ϕc : ¬a ∧ ¬c, ϕd : ¬b ∧ ¬d}).
adm(F ) = {∅, {a}} let e1 = ∅ and e2 = {a}. By the Definition 24 the associated
interpretations of e1 and e2 are ve1 = {a 7→ u, b 7→ u, c 7→ u, d 7→ u} and ve2 =
{a 7→ t, b 7→ f, c 7→ f, d 7→ u}, respectively. It is clear that ve1 and ve2 are admissible
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interpretations of DF . In addition,

adm(DF ) ={{a 7→ u, b 7→ u, c 7→ u, d 7→ u},
{a 7→ t, b 7→ f, c 7→ f, d 7→ u},
{a 7→ t, b 7→ u, c 7→ f, d 7→ u}}

Which shows that ve for σ = adm is not a subjective function. By the Definition 25
the extension correspondence to the first interpretation of adm(DF ) is ev1 = ∅ and the
extension correspondence to two others interpretations is ev = {a}. That is, ev for
σ = adm is not one-to-one.
Moreover, in this example com(F ) = prf(F ) = {{a}}, grd(F ) = {a}. By Definition 24 the
associated interpretation of e2 is ve2 = {a 7→ t, b 7→ f, c 7→ f, d 7→ u} which is equivalent
with the grounded, preferred and complete interpretation of DF .

c

a b

d

Figure 2.10: AF used in Example 11

In summary, let F = (A,R) be an AF and DF = (A,R,C) be its associated ADF. If
an extension e is admissible, preferred, complete or grounded for F then its associated
interpretation ve is admissible, preferred, complete or grounded for DF , respectively.
Moreover, if an interpretation v is admissible, preferred, complete or grounded for DF

its associated extension ev is admissible, preferred, complete or grounded for F .

2.2.2 Bipolar ADFs

As mentioned before acceptance conditions characterize acceptability of arguments based
on their parents’ status. That is, each ADF D = (S,L,C) can be represented by a tuple
(S,C), set of arguments and their acceptance conditions, and implicity (a, b) ∈ L iff a
apears in ϕb. In this subsection the meaning of the link, (a, b) ∈ L is investigated. In
addition, we would like to study whether a restriction of acceptance conditions lead to a
subclass of ADFs. The relations can be categorized in four groups, depending on whether
they have support or attacking nature (or both or neither). This leads to the concept of
bipolar ADFs (BADFs for short) defined in [16]. BADFs are a strict generalization of
AFs and are a strict subclass of ADFs. BADFs rely on attacking and supporting which
are defined as follows:

Definition 26. Let D = (S,L,C) be an ADF. A link (r, s) ∈ L is called
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• supporting in D iff for all v ∈ V2, v(ϕs) = t implies v |rt (ϕs) = t,

• attacking in D iff for all v ∈ V2, v(ϕs) = f implies v |rt (ϕs) = f ,

• dependent iff it is neither attacking nor supporting,

• redundant iff it is both attacking and supporting.

An ADF D = (S,L,C) is a BADF if all links in L are supporting, attacking or both.

Definition 27. Let D = (S,L,C) be an ADF and L+ be the set of all support links
of L and L− be the set of all attack links of L. D is named a bipolar ADF (BADF) iff
L = L+ ∪ L−.

It is clear that the associated ADF DF of each AF F is a bipolar ADF in which all links
are attack, that is, L = L−. Example 12 is an instance of an ADF which is a BADF and
Example 13 is an instance of an ADF which is not a BADF.

Example 12. Let D = ({a, b, c}, {ϕa : c→ b, ϕb : ¬a∨c, ϕc : a∧c}) be an ADF depicted
in Figure 2.11.

We illustrate whether (c, a) is a support or attack. There are three two-valued
interperetations, v1 = {c 7→ f, b 7→ t}, v2 = {c 7→ t, b 7→ t}, v3 = {c 7→ f, b 7→ f} by
which vi(ϕa) = t for i ∈ {1, 2, 3}. However, v3|ct(ϕa) = f thus (c, a) is not a support
relation.
There is a two-valued interpretation v4 = {c 7→ t, b 7→ f} by which v4(ϕa) = f and
v4|ct(ϕa) = f . Therefore, (c, a) is an attack relation.

To check whether (a, b) is a support link, there are two two-valued interpretations
v1 = {a 7→ t} and v2 = {a 7→ f} by which vi(ϕb) = t for i ∈ {1, 2}. It is clear that
vi|at (ϕb) = t for i ∈ {1, 2}. Hence, (a, b) is support.
Since there is no two-valued interpretation by which v(ϕb) = f then (a, b) is also
an attack link. Since (a, b) is both an attack and support simultaneously, it is
redundant.

It is easy to check that (b, a), (a, c) and (c, c) are supports.

Therefore, the set of support links of D is L+ = {(b, a), (a, b), (a, c), (c, c)} and the
set of attack links of D is L− = {(a, b), (c, a)}. Since L = L+ ∪ L−, D is a BADF.

Example 13 illustrates that the family of BADFs is a proper subset of ADFs.

Example 13. Let D = ({a, b, c}, {ϕa : b, ϕb : a ↔ c, ϕc : ¬b}) be an ADF depicted in
Figure 2.12. We show that (a,b) is neither an attack nor a support.
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a

b c

c→ b

¬a ∨ a a ∧ c

Figure 2.11: ADF used in Example 12

• There are two two-valued interpretations v1 = {a 7→ t, c 7→ t} and v2 = {a 7→
f, b 7→ f} under which vi(ϕb) = t, for i ∈ {1, 2}. However, v2|at (ϕb) = f . That is,
(a, b) is not a support relation.

• There are two two-valued interpretations v3 = {a 7→ t, c 7→ f} and v4 = {a 7→
f, b 7→ t} under which vi(ϕb) = f , for i ∈ {1, 2}. However, v4|at (ϕb) = t. That is,
(a, b) is not an attack relation.

That is (a, b) 6∈ L+ and (a, b) 6∈ L−. Then, L 6= L+ ∪ L−. Therefore, D is not a BADF.

b

a c
b

a↔ c

¬b

Figure 2.12: ADF used in Example 13
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CHAPTER 3
Investigating Subclasses of

Abstract Dialectical Framework

In this chapter we investigate whether certain results which have been shown for AFs
carry over to ADFs. In [24] the properties under which certain extensions of an AF
are equivalent is studied. In Section 3.1 the conditions under which main semantics
of ADFs are collapsing into a unique semantics is studied. In Section 3.2 we study
whether the properties of AFs, coherency and relatively groundedness, which are proven
in [22] for symmetric AFs carry over to symmetric ADFs. To show that under which
conditions these properties of AFs also hold for ADFs we introduce more fine-grained
subclasses of ADFs: attack symmetric ADFs and acyclic support symmetric ADFs. In
Section 3.3 we investigate a subclass of ADFs in which the sets of admissible and complete
interpretations are the same.

3.1 Acyclic ADFs
In [24] an AF F = (A,L) is named well-founded if there exists no infinite sequence of
arguments a1, . . . , ai, . . . s.t. for each i, (ai+1, ai) ∈ L. It is shown by Dung [24] that when
a framework is well-founded all AF semantics are equivalent. That is, each well-founded
AF F = (A,L) has exactly one complete extension which is also grounded, preferred and
stable. In this section we investigate under which conditions the results carry over to
ADFs. That is, we illustrate whether different semantics can collapse to the same set of
interpretations.

Definition 28. A finite ADF D = (S,L,C) is named acyclic if its corresponding directed
graph does not contain any directed cycle.

To show our results we need the concept of maximum level of ADFs defined as follows.
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3. Investigating Subclasses of Abstract Dialectical Framework

Definition 29. Let D = (S,L,C) be an ADF. The level of an argument s is the number
of links on the longest path from an initial argument to s plus one.

Example 14. Let D = (S,L,C) be an ADF, depicted in Figure 3.1. The level of a is
one and the level of c is 3. a is an initial argument and it is clear that the level of each
initial argument is always one.

a

c b

ϕa

ϕc ϕb

Figure 3.1: ADF used in Example 14

Definition 30. The maximum level of an (acyclic) ADF D is the level that is greater
than every other level of an argument of D.

The maximum level of the ADF D in Example 14 is 3. Note that level and maximum
level are not defined for cyclic ADFs.

Lemma 5. When the maximum level of an acyclic ADF D is a number m then for each
i, 1 ≤ i ≤ m, there exists an argument of level i.

Proof. Suppose D is an acyclic ADF with finite maximum level m. Towards a contra-
diction assume there exists an i between 1 and m such that there exists no argument
with level i. By our assumption the maximum level of D is m, that is, there exists
an argument sm with level m. By the definition of level there is a path between an
initial argument s1 and sm with length m − 1. Define sj , for each 1 ≤ j ≤ m, as the
argument such that the number of the links in this path between s1 and sj is j − 1. By
the contradiction assumption there is no argument with level i. Then the level of si is
not i. It is clear that the level of si cannot be less than i. Suppose level of si is greater
than i. Then, there exists an initial argument s′1 and there exists a path between s′1
and si with length k such that k ≥ i. Therefore, there exists a path between s′1 and sm
with length m− i+ k − 1 which is greater than m− 1. This is a contradiction by the
assumption that the maximum level of D is m.

Proposition 1. In every acyclic ADF D with maximum level m the least fixed point of
ΓD is a two-valued model.

Proof. Assuming D = (S,L,C) is an acyclic ADF. Define the following interpretations.

• v0 := S 7→ {u}, maps all the arguments to unknown.
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• vi := ΓD(vi−1) for 1 ≤ i ≤ m.

Claim: For all i, 1 ≤ i ≤ m, and an arbitrary argument sj which is in level j, if j ≤ i
then either vi(sj) = t or vi(sj) = f .
Proof of claim by induction on i:

• Base case: Suppose s1 is an arbitrary argument of level one (an acyclic ADF
always includes an initial argument). Since s1 is an initial argument, its acceptance
condition ϕs1 is either > or ⊥. Then, v1(s1) = ΓD(v0)(s1) is either true or false.

• Inductive step: Assuming this property holds for all k, 1 ≤ k ≤ i < m we show it
holds for i+ 1.
We know that: ϕvi

sj
= ϕsj [sk/> : vi(sk) = t][sk/⊥ : vi(sk) = f ] such that sk is an

argument of ϕsj which occurs in a level less than j.
For all sk that occur in ϕsj if j ≤ i+ 1 then k < j ≤ i+ 1. Therefore, by induction
hypothesis for each sk, vi(sk) is either true or false. Then, ϕvi

sj
can be simplified to

either > or ⊥. Therefore, vi+1(sj) is either true or false.

Claim: vm is a two-valued model. We know that m is a maximum level, that is, the level
of all arguments is less than or equal to m. Therefore, by the previous claim vm(sj) is
either true or false for all sj ∈ S, i.e. it is a two-valued interpretation. It remains to show
that vm = Γ(vm). Let sj ∈ S be an arbitrary argument of level j, 1 ≤ j ≤ m. Assuming
vm(sj) is true (the proof method for vm(sj) = f is exactly the same), then ϕvm−1

sj can
be simplified to >. Therefore, ϕvm

sj
= ϕ

vm−1
sj ≡ >. Hence, ΓD(vm) = vm that is, vm is a

two-valued model.
Claim: vm is the least fixed point of ΓD. In the previous claim it is shown that
ΓD(vm) = vm, i.e. vm is a fixed point of ΓD. Towards a contradiction assume vm is not
the least fixed point. Then there exists an interpretation v which is a least fixed point.
That is, v = ΓD(v), v ≤i vm and v 6= vm. Then there exists an argument s such that
vm(s) is either true or false and v(s) is undecided. Assume s is in level i. Since D is
an acyclic ADF all arguments sk that occur in ϕs are in level less than i. Therefore,
there exists at least an argument sj of level j < i in ϕs such that v(sj) is undecided.
By iterating this method after at most i − 1 times we reach an argument of level one
which is undecided. This is a contradiction, since the acceptance condition of each initial
argument is either > or ⊥.

Corollary 1 is an immediate consequence of Proposition 1 together with the fact that
each ADF D possesses a unique grounded interpretation.

Corollary 1. Every acyclic ADF D with maximum level m has a non-trivial grounded
interpretation.

Let v be the least fixed point of ΓD. Thus v is a two-valued model. Intuitively, it is clear
that v is a stable model. Because, there is a constructive proof for all arguments assigned
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to t by v. In Proposition 2 it is formally proven that in acyclic ADFs, their two-valued
models and stable models coincide.

Proposition 2. In every acyclic ADF D with maximum level m each two-valued model
of D is a stable model of D.

Proof. Let D = (S,L,C) be an ADF with maximum level m. Assume v is a two-valued
model of ΓD. Further, let Dv = (Sv, Lv, Cv) be a reduct of D and w be the unique
grounded interpretation of Dv. Since Dv is also an acyclic ADF then for each sk ∈ Sv,
w(sk) is either true or false. Towards a contradiction suppose v is not a stable model.
Therefore, there exists an argument sk ∈ S in level k, 1 ≤ k ≤ m such that v(sk) = t
and w(sk) = f . We show the contradiction in two following steps:

• If k = 1 then s1 is an initial argument. By the definition, v(s1) = t if and only
if ϕvs1 ≡ > and by the reduct definition s1 ∈ Sv. s1 is an initial argument then,
ϕvs1 = ϕv0

s1 = ϕs1 ≡ >. s1 ∈ Sv and ϕs1 ≡ > then, by the definition of ground
interpretation w(s1) = t. That is, for all initial arguments s, v(s) = t implies
w(s) = t. In addition, for an initial argument s1 if v(s1) = f then ϕs1 ≡ ⊥ and
by the reduction definition s1 6∈ Sv. Then w(s1) 6= t. Therefore, for each initial
argument s, v(s) = t if and only if w(s) = t.

• Let sk be an argument in level k, 1 < k ≤ m, such that v(sk) = t and w(sk) = f .
Then ϕsk

contains an argument si, 1 ≤ i < k such that v(si) 6= w(si). If i = 1 by
the first step it is a contradiction. Otherwise, v(si) 6= w(si) means ϕsi contains an
argument sj , 1 ≤ j < i, such that v(sj) 6= w(sj). Since D is an ADF of maximum
level by iterating this process after finite steps we reach an initial argument s such
that v(s) 6= w(s). This has a contradiction with the fact proven in the first step
which says for each initial argument s of an acyclic ADF D, v(s) = t if and only if
w(s) = t.

The following theorem shows that each acyclic ADF D with maximum level m has exactly
one complete interpretation.

Theorem 3. An acyclic ADF D = (S,L,C) with maximum level m has exactly one
complete interpretation which is grounded, two-valued model, preferred and stable.

Proof. Let D be an acyclic ADF with maximum level m. We show that the grounded
interpretation vg is a stable model. By Proposition 1 the least fixed point of ΓD
is a two-valued model. That is, the grounded interpretation is a two-valued model.
By Proposition 2 each two-valued model is a stable model. Therefore, the grounded
interpretation vg is a stable model. By Theorem 2 the grounded interpretation of D is a
complete interpretation of D. Since the grounded interpretation vg of D is a two-valued
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model, D does not contain any other complete interpretations. By Theorem 2 each
stable model of D is a two-valued model of D, each two-valued model of D is a preferred
interpretation of D and each preferred interpretation of D is a complete interpretation
of D. Thus, D has exactly one complete interpretation which is grounded, two-valued
model, preferred and stable as well.

To summarize, all main semantics coincide for acyclic ADFs.

3.2 Symmetric ADFs
It is shown in [22] that the family of Dung’s finite AFs for which attacks are nonempty,
irreflexive and symmetric, every element of this family is coherent and relatively grounded,
however, none of them is well-founded. That is, in this family of AFs which is named sym-
metric AFs, prf(D) = stb(D) and grd(D) =

⋂
prf(D), for each AF D. In Section 3.2.1 we

investigate the relation between extensions of a symmetric AF which are not investigated
by Coste-Marquis et al. [22]. For instance, we illustrate whether the set of admissible
extensions and complete extensions (resp. complete extension and preferred extension) of
symmetric AFs are equivalent. As mentioned in Section 3.1 all semantics of an acyclic
ADF are equivalent. The results of [22] motivate us to answer to the natural question
whether the same properties of symmetric AFs carry over to a subclass of ADFs. In
Sections 3.2.2, 3.2.3 and 3.2.4 first we define subclasses of ADFs and then we illustrate
whether they are coherent and relatively grounded and also study several other properties.

3.2.1 Symmetric AFs

In [22] the relation between the set of admissible extensions and the set of complete
extensions (resp. the set of complete extensions and the set of preferred extensions) in
symmetric AFs is not shown. To investigate that the sets of former extensions are not
equivalent we draw our attention to the Example 15; Example 16 will clarify that the
complete and preferred extensions are not equivalent. In the following first symmetric
AFs, coherency and relatively groundedness are recalled formally by Definitions 31, 32
and 33, respectively.

Definition 31. Let F = (A,L) be an AF. It is called symmetric AF if L is symmetric
and irreflexive.

Definition 32. Let F = (A,L) be an AF. It is named coherent whenever the set of
all preferred extensions and the set of all stable extensions of F are equivalent, i.e.
prf(F ) = stb(F ).

Definition 33. Let F = (A,L) be an AF. It is called relatively grounded if the intersection
of preferred extensions and the grounded extension are the same, i.e. grd(F ) =

⋂
prf(F ).

In the definition of symmetric AFs in [22] it is assumed that the attack relation is non-
empty. However, without considering this extra condition all properties proven in [22]
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remain unchanged, that is, each symmetric AF is coherent and relatively grounded. We
thus will not make this assumption in the current work.

Proposition 3. For each symmetric AF F = (A,L).

1. cf(F ) = adm(F ).

2. nai(F ) = stb(F ) = prf(F ).

Proof. 1. Whenever L is non-empty, it is proven in [22] that cf(F ) = adm(F ). When-
ever L is an empty set, cf(F ) = adm(F ) = {B | B ⊆ A}. Hence, in each symmetric
AF cf(F ) = adm(F ).

2. It is shown in [22] that whenever L is non-empty, each symmetric AF is coherent. Let
L be the empty set, then, prf(F ) = stb(F ) = {A}. Therefore, each symmetric AF is
coherent. In addition, by the definition each naive extension is a maximal conflict-
free set w.r.t. set inclusion and each preferred extension is a maximal admissible
set w.r.t. set inclusion. In a family of symmetric AFs, even when L is the empty
set, nai(F ) = prf(F ) since cf(F ) = adm(F ). Therefore, nai(F ) = stb(F ) = prf(F ).

In the following we investigate whether in each symmetric AF F , com(F ) = adm(F ) and
com(F ) = prf(F ).

Example 15. Let F = ({a, b, c}, {(a, b), (b, a), (a, c), (c, a)} be a symmetric AF, depicted
in Figure 15. The set {c} is an admissible extension but it is not a complete extension.
Therefore, adm(F ) 6= com(F ).

ac b

Figure 3.2: Symmetric AF used in Example 15

Example 16. Let F = ({a, b, c}, {(a, b), (b, a)}) be a symmetric AF, depicted in Fig-
ure 3.3. The single grounded extension of F is {c}. However, prf(F ) = {{a, c}, {b, c}}.
That is, the set of preferred extensions and complete extensions are not equivalent.

ac b

Figure 3.3: Symmetric AF used in Example 16

By Proposition 4 it is shown that symmetric AFs are relatively grounded, even when the
attack relation L is the empty set.
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Proposition 4. For a symmetric AF F , it holds that grd(F ) =
⋂
prf(F ).

Proof. In [22] it is proven that if F = (A,L) is a symmetric AF in which L is non-empty
then F is relatively grounded. To show that the result is true even when L is the empty
set assume that L = ∅. In this case, since com(F ) = prf(F ) = {A}, the unique grounded
extension of F is {A}. Therefore, grd(F ) =

⋂
prf(F ).

3.2.2 General Symmetric ADFs

To clarify whether the properties of symmetric AFs which are proven in [22] carry over
to symmetric ADFs, that is, whether the family of symmetric ADFs is coherent and
relatively grounded, we first generalize the definition of symmetric AFs to symmetric
ADFs. Then we show that these properties do not carry over to symmetric ADFs in
general. In addition, we restrict ADFs to some subclasses to clarify under which specific
conditions some of these properties hold.

Definition 34. (Symmetric ADF)
A symmetric ADF is a finite abstract dialectic framework D = (S,L,C), in which L is
irreflexive and symmetric and L does not contain any redundant links.

Definition 35. An ADF D = (S,L,C) is said to be coherent if each preferred interpre-
tation of D is a stable model.

In the following we investigate the coherency of symmetric ADFs by some examples.

Example 17. Let D = ({a, b, c}, {ϕa : ¬b∨¬c, ϕb : ¬a, ϕc : ¬a}) be the symmetric ADF,
depicted in Figure 3.4. D has two preferred interpretations v1 = {a 7→ t, b 7→ f, c 7→ f}
and v2 = {a 7→ f, b 7→ t, c 7→ t} and each of them is a stable model. Hence, D is coherent.

bac

¬b ∨ ¬c ¬a¬a

Figure 3.4: ADF used in Example 17

Example 18. Let D = ({a, b}, {ϕa : b, ϕb : a}) be the ADF depicted in Figure 3.5. D
is a symmetric ADF and both links are supporting. D has two preferred interpretation
v1 = {a 7→ t, b 7→ t} and v2 = {a 7→ f, b 7→ f}. Both of them are two-valued models and
v2 is stable model. However, v1 is not a stable model. Therefore, D is not coherent.

In the following example a symmetric ADF is investigated in which only one of the links
is support, however it is not coherent.
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ba

b a

Figure 3.5: ADF used in Example 18

Example 19. Let D = ({a, b}, {ϕa : b, ϕb : ¬a}) be the ADF depicted in Figure 3.6 in
which the link (a, b) is attacking and the link (b, a) is supporting. The trivial interpretation
vu is a unique preferred interpretation of D. That is, the preferred interpretation of D is
not a two-valued model. Therefore, D is not coherent.

ba

b ¬a

Figure 3.6: ADF used in Example 19

Due to this distinction between two-valued and stable models in ADFs, different levels of
coherency can be considered which are defined in the Definitions 36 and 37.

Definition 36. A symmetric ADF D = (S,L,C) is called weak-coherent if each two-
valued model of D is a stable model.

Definition 37. A symmetric ADF D = (S,L,C) is called semi-coherent if each preferred
interpretation of D is a two-valued model.

Example 18 is an instance of a semi-coherent ADF which is not weak-coherent and
Example 19 is an instance of a weak-coherent ADF which is not semi-coherent. One
may suppose that whenever an ADF contains a support link it is not coherent. To
investigate whether an ADF contains a symmetric link is coherent we draw your attention
to Example 20.

Example 20. Let D = ({a, b, c}, {ϕa : b ∧ ¬c, ϕb : ¬a, ϕc : ¬a}) be the symmetric
ADF depicted in Figure 3.7. v = {a 7→ f, b 7→ t, c 7→ t} is the unique preferred
interpretation of D which is also both a two-valued model and a stable model. That is,
D is a symmetric ADF including a support which is semi-coherent, weak-coherent and
consequently, coherent as well.

Proposition 5. An ADF is coherent if and only if it is semi-coherent and weak-coherent.

Another concept which is expressed in [22] is relatively groundedness. It is demonstrated
in [22] that each symmetric AF is relatively grounded. First we generalize this definition
to ADFs and then we illustrate whether each symmetric ADF is relatively grounded.
An ADF D is named relatively grounded if the unique grounded interpretation of D is
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b

a c
b ∧ ¬c

¬a

¬a

Figure 3.7: Symmetric ADF used in Example 20

equivalent to the meet of all preferred interpretations of D. It is formally defined as
follows:

Definition 38. An ADF D = (S,L,C) is said to be relatively grounded if grd(D) =d
i prf(D).

Example 21. The symmetric ADFD = ({a, b, c}, {ϕa : ¬b∨¬c, ϕb : ¬a, ϕc : ¬a}) defined
in Example 17 and depicted in Figure 3.4 is relatively grounded, since the meet of two
preferred interpretations v1 = {a 7→ t, b 7→ f, c 7→ f} and v2 = {a 7→ f, b 7→ t, c 7→ t} is
the trivial interpretation and the grounded interpretation of D is the trivial interpretation
as well.

To illustrate that it is not the case that each symmetric ADF is relatively grounded we
draw our attention to Example 22.

Example 22. Let D = ({a, b, c}, {ϕa : c ∨ ¬b, ϕb : c ∨ ¬a, ϕc : b ∨ ¬a}) be a symmetric
ADF, depicted in Figure 3.8. The set of preferred interpretations of D is, prf(D) =
{{a 7→ t, b 7→ t, c 7→ t}, {a 7→ t, b 7→ f, c 7→ f}} and the unique grounded interpretation
of D is the trivial interpretation. However, the meet of preferred interpretation is
{a 7→ t, b 7→ u, c 7→ u}, hence D is not relatively grounded.

b

a c

c ∨ ¬b

c ∨ ¬a

b ∨ ¬a

Figure 3.8: ASADF used in Example 22

Example 22 investigates that symmetric ADFs are not relatively grounded in general. In
the following we investigate whether there exist subclasses of symmetric ADF which are
coherent and relatively grounded.
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3. Investigating Subclasses of Abstract Dialectical Framework

3.2.3 Attack Symmetric ADFs

In [22] it is proven that each symmetric AF F is coherent. By the definition in [17] for
each AF F = (S,R) there exists an associated ADF DF = (S,R,C), (cf. Definition 23).
Hence the corresponding DF of a symmetric AF F is also symmetric. It is shown in
[17] that an interpretation is admissible, complete, preferred, grounded for F iff it is
admissible, complete, preferred, grounded for DF , in the sense of Definitions 24 and 25.
Therefore, the corresponding symmetric ADF DF of symmetric AF F is also coherent.
Based on the definition all relations in DF associated to F are attacks. One may guess
symmetric ADFs in which all relations are attack relations are coherent. However, by
Example 23 it is illustrated that this assumption is not true.

Definition 39. A symmetric ADF D = (S,L,C) in which all links are attacking is
named attack symmetric ADF (ASADF for short).

Example 23. Let

D = ({a, b, c, d, e},
{ϕa : ¬c ∧ (¬d ∨ ¬b),
ϕb : ¬a ∧ (¬d ∨ ¬c),
ϕc : ¬b ∧ (¬d ∨ ¬a),
ϕd : ¬e ∧ (¬a ∨ ¬b ∨ ¬c),
ϕe : ¬d}).

D depicted in Figure 3.9 is an attack symmetric ADF and it has four preferred interpre-
tations:

v1 ={a 7→ f, b 7→ f, c 7→ t, d 7→ t, e 7→ f},
v2 ={a 7→ f, b 7→ t, c 7→ f, d 7→ t, e 7→ f},
v3 ={a 7→ t, b 7→ f, c 7→ f, d 7→ t, e 7→ f},
v4 ={a 7→ u, b 7→ u, c 7→ u, d 7→ f, e 7→ t}.

Each two-valued interpretation of D, v1, v2 and v3, is stable model, that is, D is weak-
coherent. v4 is a preferred interpretation which is not a two-valued model. Hence, D is
not semi-coherent, and therefore, D is not coherent.

Although, by Example 23 it is shown that attack symmetric ADFs are not coherent, it
seems that they are weak-coherent. To prove this statement formally in Proposition 4 we
first prove Lemma 6.

Lemma 6. Let D = (S,L,C) be an ADF, v be a two-valued model of D and s ∈ S be an
argument s.t. all parents of s are attackers and s does not occur in ϕs. If ϕvs is irrefutable
then ϕs[si/⊥ : v(si) = f ] is irrefutable.
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b

a c

d e

¬c ∧ (¬d ∨ ¬b)

¬a ∧ (¬d ∨ ¬c)

¬b ∧ (¬d ∨ ¬a)

¬e ∧ (¬a ∨ ¬b ∨ ¬c) ¬d

Figure 3.9: ASADF used in Example 23

Proof. Assume v is a two-valued model of D. Towards a contradiction assume ϕvs is
irrefutable and ϕs[si/⊥ : v(si) = f ] is not irrefutable. Since, all parents of s are
attackers, each si in acceptance condition of s occurs in the form of ¬si. By our
assumption ϕs[si/⊥ : v(si) = f ] is not irrefutable, there are two cases: either it is
unsatisfiable or it is undecided. If it is unsatisfiable then ϕvs will be unsatisfiable which
is a contradiction. Suppose it is undecided, since s does not occur in ϕs, ϕs contains
arguments si 6= s such that v(si) 6= f . Since v is a two-valued model, v(si) = t. Because
ϕs only contains connectives ∧/∨ by replacing the arguments which are assigned to true
by v in ϕs we have ϕvs is unsatisfiable. This is a contradiction with our assumption that
ϕvs is irrefutable.

In specific, since in each attack symmetric ADF all relations are irreflexive and all links
are attacking, Corollary 2 is an immediate consequence of Lemma 6.

Corollary 2. Let D = (S,L,C) be an attack symmetric ADF and v be a two-valued
model of D. If ϕvs is irrefutable then ϕs[si/⊥ : v(si) = f ] is irrefutable.

Proposition 6. Let D = (S,L,C) be an attack symmetric ADF. Each two-valued model
of D is a stable model.

Proof. Assume D is an attack symmetric ADF and v : S → {t, f} is a two-valued model of
D. We show that v is a stable model of D. Suppose Dv = (Sv, Lv, Cv) is the reduct of D
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and w is the unique grounded interpretation of Dv. We show that for each s ∈ S, v(s) = t
implies w(s) = t. Let s be an argument such that v(s) = t, that is ϕvs is irrefutable. By
the definition, ϕs[si/> : v(si) = t][si/⊥ : v(si) = f ] is irrefutable, in which si
are arguments occurring in ϕs, by Corollary2, ϕs[si/⊥ : v(si) = f ] is irrefutable.
That is, for each s ∈ Sv, ϕvs is irrefutable, therefore, w(s) = t.

Theorem 4. Every attack symmetric ADF is weak-coherent.

Proof. Let D = (S,L,C) be an attack symmetric ADF. By Proposition 6 each two-valued
model of D is a stable model of D. In general, for every ADF, every stable model is a
two-valued model. Therefore, in D the sets of stable and two-valued models are equivalent.
Thus, D is weak-coherent.

In Section 3.2.2 it is shown by Example 22 that symmetric ADFs are not relatively
grounded in general. It is shown in [22] that each symmetric AF F is relatively grounded.
Therefore, its associated ADF DF is also relatively grounded. Then, a natural question
is that whether the family of attack symmetric ADFs is relatively grounded. In the
following we investigate by Example 24 that there exists a symmetric ADF in which all
relations are attacks but it is not relatively grounded.

Example 24. Let D = ({a, b, c}, {ϕa : ¬b∨¬c, ϕb : ¬a∧¬c, ϕc : ¬a∨¬b}) be an attack
symmetric ADF depicted in Figure 3.10.

• The unique preferred interpretation of D is vp = {a 7→ t, b 7→ f, c 7→ t} and the
grounded interpretation of D is the trivial interpretation. That is, the meet of all
preferred interpretations is not the same as the grounded interpretation. Therefore,
D is not relatively grounded.

• In addition, this example shows that complete interpretations and preferred interpre-
tations are not the same in the family of attack symmetric ADFs, prf(D) 6= com(D).

• In addition, vp is a two-valued model which is a stable model. Hence, the grounded
interpretation is not stable in this family, i.e. stb(D) 6= {grd(D)}.

• D contains four admissible interpretations. One of them is {a 7→ u, b 7→ f, c 7→ t}
which is not preferred. Since, each preferred interpretation is a complete interpre-
tation we can conclude that in this family the set of admissible interpretations and
complete interpretations are not the same, i.e. adm(D) 6= com(D).

The following Example 25 is an instance of attack symmetric ADFs which contains
only one ∨ connective, however, it is not relatively grounded. Note that without the
occurrence of ∨, this ADF would be associated to some symmetric AF, and thus be
relatively grounded.
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b

a c

¬b ∨ ¬c

¬a ∧ ¬c

¬a ∨ ¬b

Figure 3.10: ASADF used in Example 24

Example 25. LetD = ({a, b, c, d}, {ϕa : ¬b∧¬c, ϕb : ¬a∧¬c∧¬d, ϕc : ¬a∧¬b∧¬d, ϕd :
¬b∨¬c}). D is an attack symmetric ADF depicted in Figure 3.11 that contains only one
∨ connective. vp = {a 7→ t, b 7→ f, c 7→ f, d 7→ t} is the unique preferred interpretation of
D, however, its grounded interpretation is the trivial interpretation. Therefore, D is not
relatively grounded.

a

b c

d

¬b ∧ ¬c

¬a ∧ ¬c ∧ ¬d ¬a ∧ ¬b ∧ ¬d

¬b ∨ ¬c

Figure 3.11: ASADF used in Example 25 which is not relatively grounded

Attack symmetric ADF of Examples 24 and 25 contain just one preferred interpretation.
In Example 26 we investigate the attack symmetric ADF with more than one preferred
interpretation such that their meet is not the trivial interpretation and it is not relatively
grounded.

Example 26. Let D = ({a, b, c, d, e, f}, {ϕa : ¬b ∧ ¬c ∧ ¬e, ϕb : ¬a ∧ ¬c ∧ ¬d, ϕc :
¬a∧¬b∧¬d, ϕd : ¬b∨¬c, ϕe : ¬a∨¬f, ϕf : ¬e}) be the ADF depicted in Figure 3.12.
The meet of the preferred interpretations is {a 7→ u, b 7→ f, c 7→ f, d 7→ t, e 7→ u, f 7→ u}
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3. Investigating Subclasses of Abstract Dialectical Framework

and the grounded interpretation is the trivial interpretation, vu. Hence, D is not relatively
grounded.

a

b c

d

e f

¬b ∧ ¬c ∧ ¬e

¬a ∧ ¬c ∧ ¬d ¬a ∧ ¬b ∧ ¬d

¬b ∨ ¬c

¬a ∨ ¬f ¬e

Figure 3.12: ASADF used in Example 26 which is not relatively grounded

By Examples 24, 25 and 26 we illustrated that attack symmetric ADFs are not relatively
grounded in general. In the following we investigate under which condition an attack
symmetric ADF is relatively grounded.

Lemma 7. Let D = (S,L,C) be an attack symmetric ADF such that it does not contain
any isolated argument. The grounded interpretation of D is the trivial interpretation, vu.

Proof. Let D = (A,L,C) be an arbitrary attack symmetric ADF that does not have any
isolated argument. To show that the grounded interpretation is the trivial interpretation
it is enough to show that the meet of all complete interpretations of D is the trivial
interpretation, i.e.

d
i com(D) = vu. In other words, we show that ΓD(vu) = vu. Suppose

to the contrary that ΓD(vu) 6= vu, then there exists at least an argument a s.t. ΓD(vu)(a)
is either assigned to t or f . W.l.o.g. assume that ΓD(vu)(a) = t (the proof method for
ΓD(vu) = f is exactly the same). Let w1 and w2 be two completions of vu s.t. in w1 all
arguments of par(a) are assigned to t and in w2 all arguments of par(a) are assigned to f .
Since D is an attack symmetric ADF all arguments appear in ϕa in the form of negation
of arguments of par(a) and the only connectives in ϕa are ∧/∨. In addition, since the
set of isolated arguments of D is the empty set and D is an attack symmetric ADF,
par(a) 6= ∅ for each a ∈ A. Therefore, it is obvious that w1(ϕa) = f and w2(ϕa) = t.
Then, w1(ϕa) ui w2(ϕa) = u. That is, ΓD(vu)(a) = u which is a contradiction with our
assumption. Hence, ΓD(vu) = vu. That is, the grounded interpretation of D is the trivial
interpretation.
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3.2. Symmetric ADFs

Lemma 8. ADF D is relatively grounded when the meet of all preferred interpretation
is the trivial interpretation, vu.

Proof. Assume D is an ADF in which the meet of all preferred interpretations is the
trivial interpretation, i.e.

d
i prf(D) = vu. Since each preferred interpretation is a

complete interpretation,
d
i com(D) ≤i

d
i prf(D). Therefore,

d
i com(D) = vu which is

the grounded interpretation of D. Then, D is relatively grounded.

Theorem 5. An attack symmetric ADF D without any isolated argument is relatively
grounded iff the meet of all preferred interpretations is the trivial interpretation, vu.

Proof. (→) Since D is an attack symmetric ADF by Lemma 7 the grounded
interpretation of D is the trivial interpretation. By theorem assumption D is
relatively grounded, that is, the meet of all preferred interpretations and grounded
interpretation are equivalent. Hence, the meet of all preferred interpretations is the
trivial interpretation.

(←) by Lemma 8.

It is also proven in [22] that in the family of symmetric AFs conflict-freeness and
admissibility are equivalent. In the following we investigate whether this property
carries over to ADFs. Example 27 illustrates that in attack symmetric ADFs the set of
conflict-free interpretations and the set of admissible interpretations can be different.

Example 27. Assume

D = ({a, b, c, d, e},
{ϕa : ¬b ∨ (¬c ∧ ¬d),
ϕb : ¬c ∨ (¬a ∧ ¬d),
ϕc : ¬a ∨ (¬b ∧ ¬d),
ϕd : (¬a ∧ ¬b ∧ ¬c) ∨ ¬e,
ϕe : ¬d})

as an attack symmetric ADF, depicted in Figure 3.13. We claim that the set of conflict-
free interpretations of D and the set of admissible interpretations of D are not equivalent.
In the following we show that v = {a 7→ t, b 7→ u, c 7→ f, d 7→ t, e 7→ f} is a conflict-free
interpretation of D which is not an admissible interpretation. To check whether v is
conflict-free we show that ϕva and ϕvd are satisfiable and ϕvc and ϕve are unsatisfiable. It
is easy to check that ϕvd ≡ > and ϕvc = ϕve ≡ ⊥. Therefore, the truth value of c, d and
e are unchanged in all completions of v. That is, ϕvc and ϕvd are unsatisfiable and ϕvd
is not only satisfiable but also irrefutable. To illustrate that v is conflict-free, we show
that ϕ′a = ϕva = ϕa[c/⊥ : v(c) = f ][d/> : v(d) = t] = ¬b is satisfiable. Let w1 be a
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3. Investigating Subclasses of Abstract Dialectical Framework

completion of v in which b is assigned to f then ϕ′w1
a ≡ >. That is, ϕva is satisfiable. To

illustrate that v is not an admissible interpretation, we show that ϕva is not irrefutable.
Let w2 be a completion of v in which b is assigned to t then, ϕ′w2

a ≡ ⊥. Therefore, ϕva is
not irrefutable. That is, v is a conflict-free but not an admissible interpretation of D.
That is, adm(D) 6= cf(D).

a

b c

de

ϕa : ¬b ∨ (¬c ∧ ¬d)

ϕb : ¬c ∨ (¬a ∧ ¬d) ϕc : ¬a ∨ (¬b ∧ ¬d)

ϕd : (¬a ∧ ¬b ∧ ¬c) ∨ ¬eϕe : ¬d

Figure 3.13: ADF used in Example 27

The following Example 28 shows an attack symmetric ADF which contains only one
connective ∨ in which conflict-freeness and admissibility are not the same.

Example 28. Let D = ({a, b, c}, {ϕa : ¬b∧¬c, ϕb : ¬a∧¬c, ϕc : ¬a∨¬b}) be an attack
symmetric ADF, depicted in Figure 3.14. We claim that v = {a 7→ t, b 7→ f, c 7→ u} is a
conflict-free interpretation of D which is not admissible. To verify that v is a conflict-free
interpretation we check whether ϕvb is unsatisfiable and ϕva is satisfiable. Replacing truth
value of a in ϕb results in ϕvb ≡ ⊥. Therefore, ϕvb is unsatisfiable. Let w1 and w2 be two
completions of v s.t. c is assigned to t by w1 and c is assigned to f by w2. Hence, ϕva
is satisfiable under w2 and it is not satisfiable under w1. That is, ϕva is not irrefutable.
Therefore, v is a conflict-free interpretation which is not admissible.

3.2.4 Acyclic Support Symmetric ADFs

In this subsection we investigate the coherency and relatively groundedness of another
subclass of ADFs called acyclic support symmetric ADFs which is defined in the following.
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a

b c

ϕa : ¬b ∧ ¬c

ϕb : ¬a ∧ ¬c ϕc : ¬a ∨ ¬b

Figure 3.14: ADF used in Example 28

Definition 40. Let D = (S,L,C) be an ADF. D contains a directed cycle if its corre-
sponding graph contains a directed cycle.

Definition 41. Given D = (S,L,C), let T be the set of all support links. The corre-
sponding graph (S, T ) is named the reduct of D to supports.

Definition 42. Let D = (S,L,C) be an ADF. D contains a support cycle whenever the
reduct of D to supports contains a directed cycle.

Example 29. Let D = ({a, b, c, e}, {ϕa : c ∧ ¬b, ϕb : a ∧ ¬c, ϕc : b ∧ ¬a ∧ e, ϕe : ¬c}) be
the ADF depicted in Figure 3.15. The reduct of D to supports is depicted in Figure 3.16.
It is clear that the graph in Figure 3.16 contains a directed cycle. That is, D contains a
support cycle in which a, b and c are supported by c, a and b, respectively.

a

b c e

ϕa : c ∧ ¬b

ϕb : a ∧ ¬c ϕc : b ∧ ¬a ∧ e ϕe : ¬c

Figure 3.15: ADF used in Example 29

a

b c e

Figure 3.16: Reduct to support of the ADF of Example 29
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However, the ADF of Example 30 does not contain any support cycle.

Example 30. Let D = ({a, b, c, e}, {ϕa : c ∧ b, ϕb : ¬a ∧ ¬c, ϕc : b ∧ ¬a ∧ e, ϕe : ¬c}).
The reduct of D to supports depicted in Figure 3.17 . It does not contain any directed
cycle, therefore, D does not contain any support cycle.

a

b c e

Figure 3.17: Reduct of the ADF of Example 30 to supports

Definition 43. Let D = (S,L,C) be a symmetric BADF. It is named acyclic support
symmetric ADF (ASSADF for short) if it does not contain any support cycle.

Note that both ASADFs and ASSADFs are subclasses of BADFs. In the definition of
ASSADFs it is mentioned explicitly that D is a symmetric BADF, although, in the
definition of ASADFs D assumed as a symmetric ADF. Since in ASADFs all links are
attacking, there is no dependent link. That is, it is assumed in the definition of ASADFs
implicitly that D is a BADF.
By the definition, the ADF D of Example 29 is not an ASSADF, however, the ADF D of
Example 30 is an instance of ASSADFs. The natural question is that whether the family
of ASSADFs is coherent and relatively grounded. Example 31 illustrates that the family
of ASSADFs is not coherent.

Example 31. Let D = ({a, b}, {ϕa : ¬b, ϕb : a}) be an ASSADFs depicted in Figure 3.18.
D is an instance of ASSADF with the unique preferred interpretation vp = {a 7→ u, b 7→ u}
which is not two-valued. That is, D is not semi-coherent. Therefore, D is not coherent.

ab

ϕa : ¬bϕb : a

Figure 3.18: ASSADF which is not coherent

In [22] the equivalence of admissibility and conflict-freeness of symmetric AFs is studied.
In Example 32 we show that this property, relatively groundedness and some other
properties do not carry over from symmetric AFs to ASSADFs.

Example 32. Let D = ({a, b, c}, {ϕa : ¬b ∧ ¬c, ϕb : ¬a ∧ ¬c, ϕc : a ∨ ¬b}) be an
ASSADF, depicted in Figure 3.19.
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a

b c

ϕa : ¬b ∧ ¬c

ϕb : ¬a ∧ ¬c ϕc : a ∨ ¬b

Figure 3.19: ASSADF of Example32

• We show that v = {a 7→ t, b 7→ f, c 7→ u} is a conflict-free interpretation for D. It
is easy to check that ϕva is satisfiable but not irrefutable and ϕvb is unsatisfiable.
For instance, ϕva ≡ ¬c is satisfiable by v1 = {a 7→ t, b 7→ f, c 7→ f} and it is
unsatisfiable by v2 = {a 7→ t, b 7→ f, c 7→ t}. In addition, ϕvb ≡ ⊥ is unsatisfiable by
any interpretation. That is, v is conflict-free but not admissible. Therefore, D is
an example of an acyclic support symmetric ADF in which conflict-freeness and
admissibility are not the same.

• In addition, v = {a 7→ u, b 7→ f, c 7→ t} is an admissible interpretation of D which
is not complete. Since, ΓD(v) = {a 7→ f, b 7→ f, c 7→ t}, v ≤i ΓD(v) and v 6= ΓD(v).
That is, admissibility and completeness of ASSADF D are not the same.

• D contains two preferred interpretations v1 = {a 7→ f, b 7→ f, c 7→ t} and v2 = {a 7→
f, b 7→ t, c 7→ f}. The meet of these two interpretations is {a 7→ f, b 7→ u, c 7→ u}.
However, the grounded interpretation of D is the trivial interpretation vu. That is,
D is not relatively grounded.

• Moreover, vg = {a 7→ u, b 7→ u, c 7→ u} is a complete interpretation of D which is
not preferred. Therefore, the sets of complete and preferred interpretations of D
are not equivalent.

• Both preferred interpretations of D are stable models. Although, D is an instance
of coherent ASSADF, the set of stable models of D and the grounded interpretation
of D are not equivalent.

We investigated via Examples 31 and 32 that the following properties hold in ASSADFs:
prf 6= mod, prf 6= stb, cf 6= adm, adm 6= com, com 6= prf, grd 6=

d
prf and stb 6= {grd}.

In Theorem 6 it is shown that in every ASSADF each two-valued model is a stable model.
That is, each ASSADF is weak-coherent.

Theorem 6. Every acyclic support symmetric ADF D is weak-coherent.
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Proof. Assume that D = (S,L,C) is an acyclic support symmetric ADF. Further let
v : S → {t, f} be a two-valued model of D, and Dv = (Sv, Lv, Cv) be the reduct of D,
w be the unique grounded interpretation of Dv, and ϕ′s = ϕs[si/⊥ : v(si) = f ]. We
show that vt = wt. Suppose to the contrary that there exists an argument s, s.t. v(s) = t
and w(s) 6= t. That is, ϕ′s 6≡ >. Then ϕ′s contains an argument s1, s.t. s1 supports s,
otherwise by Lemma 6, ϕ′s is irrefutable. v(s1) = t otherwise it is replaced by ⊥ in ϕ′s. In
addition, ϕvs1 is neither > nor ⊥, otherwise it is replaced in ϕ′s. Therefore, since supports
are acyclic, by the same reason ϕ′s1 = ϕs1 [si/⊥ : v(si) = f ] contains an argument s2
which is different from s and s1 and which is support of s1. Thus there exists an infinite
sequence of s1, s2, · · · s.t. si+1 supports si. This is a contradiction with our assumption
that symmetric ADFs are finite.

3.3 Complete ADFs
It is shown is Examples 24 and 32 that the sets of admissible interpretations and
complete interpretations are not equivalent in ASADFs and ASSADFs, respectively. In
the current section we investigate whether there exists conditions in ADFs under which
adm = com. In general whenever the grounded interpretation of an ADF D is not the
trivial interpretation, the set of admissible interpretations of D and the set of complete
interpretations of D are not equivalent. Therefore, being the trivial interpretation for
grounded interpretation is a necessary condition of an ADFD for adm(D) = com(D).
Example 33 is an instance of ADF in which the set of admissible interpretations and the
set of complete interpretations are equivalent.

Example 33. Let D = ({a, b, c}, {ϕa : a ↔ (¬b ∨ c), ϕb : (c ∧ b) ∨ (¬c ∧ ¬b), ϕc :
(¬a ∧ c) ∨ (a ∧ ¬c)}) be an ADF, depicted in Figure 3.20. We have

adm(D) = com(D) ={{a 7→ u, b 7→ u, c 7→ u},
{a 7→ f, b 7→ u, c 7→ t},
{a 7→ f, b 7→ f, c 7→ t},
{a 7→ f, b 7→ t, c 7→ t}}.

Definition 44. An ADF D = (S,L,C) is named a complete ADF (CADF for short)
whenever for each a ∈ S, ϕa : ψa ↔ a and ψa does not contain a.

It is shown by Theorem 7 that the set of admissible interpretations and the set of complete
interpretations are equivalent for each CADF.

Theorem 7. adm(D) = com(D) for any CADF D = (S,L,C).

Proof. We know that each complete interpretation is admissible, hence we need to show
under the theorem conditions that each admissible interpretation is complete. Assume
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a

b c

ϕa : a↔ (¬b ∨ c)

ϕb : (c ∧ b) ∨ (¬c ∧ ¬b) ϕc : (¬a ∧ c) ∨ (a ∧ ¬c)

Figure 3.20: ADF used in Example 33

D is a CADF, that is, the acceptance condition of each argument a is in the form of
ϕa : ψa ↔ a such that ψa does not contain a. Towards a contradiction suppose v is an
admissible interpretation which is not complete. Therefore, v ≤i ΓD(v) and v 6= ΓD(v).
That is, there exists an a ∈ S such that v(a) 6= ΓD(v)(a). The only case that we have
to investigate is when v(a) is undecided and ΓD(v)(a) is either true or false. Suppose
v(a) is undecided and ΓD(v)(a) is true, that is ϕva ≡ >. Let w1 = v|at and w2 = v|af . It is
clear that v ≤i w1 and v ≤i w2. Since, ϕva ≡ > and v ≤i w1 it holds that ϕw1

a ≡ >. As
w1(a) = t and ϕa = ψa ↔ a it follows that ψw1

a ≡ >. Since, ϕva ≡ > and v ≤i w2 it holds
that ϕw2

a ≡ >. As w2(a) = f and ϕa = ψa ↔ a it follows that ψw2
a ≡ ⊥. That is, ψw1

a

and ψw2
a are not equivalent. This is a contradiction by our assumption that w1 and w2

are equivalent in all arguments except on a. Since ψa does not contain a, ψw1
a and ψw2

a

have to be equivalent.

Example 33 is an instance of an ADF which is a CADF, that is, adm(D) = com(D) for
the given ADF D. Now by Examples 34 and 35 we investigate further properties of
CADFs, for instance, whether cf = adm in CADFs.

Example 34. We use again the ADF of Example 33, namely D = ({a, b, c}, {ϕa : a↔
(¬b ∨ c), ϕb : (c ∧ b) ∨ (¬c ∧ ¬b), ϕc : (¬a ∧ c) ∨ (a ∧ ¬c)}}).

• We illustrate that the interpretation, v = {a 7→ u, b 7→ t, c 7→ u} is an instance
of conflict-free interpretation which is not admissible. To show that v is conflict-
free it is enough to show that ϕvb is satisfiable. It is easy to see that ϕvb ≡ c is
indeed satisfiable, for instance by the interpretation v1 = {a 7→ t, b 7→ t, c 7→ t}.
Recalling the admissible interpretations of D from Example 33, we conclude that
adm(D) 6= cf(D).

• The given D contains two two-valued models, mod(D) = {{a 7→ f, b 7→ f, c 7→
t}, {a 7→ f, b 7→ t, c 7→ t}}, none of them is a stable model. That is, mod(D) 6=
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stb(D) for a CADF D. Thus D is not weak-coherent and in consequence it is not
coherent.

• Moreover, since none of the two-valued models of D is stable, D does not have
any stable model. Since the unique grounded interpretation of D is the trivial
interpretation, stb(D) 6= {grd(D)}.

• In addition, in this example the unique grounded interpretation is the trivial
interpretation. However, meet of preferred interpretations is {a 7→ f, b 7→ u, c 7→ t}.
Thus, D is not relatively grounded.

• Since the trivial interpretation is a complete interpretation which is not preferred,
prf(D) 6= com(D).

Some properties of CADFs are explored by Example 34. For instance, since D of
Example 34 is not weak-coherent and coherent, we conclude that the family of CADFs is
not weak-coherent and coherent. However, in Example 33, each preferred interpretation
is a two-valued interpretation, that is, D is semi-coherent. Example 35 illustrates that
CADFs are not semi-coherent in general.

Example 35. Let D = ({a, b, c, d}, {ϕa : a ↔ ¬c, ϕb : b ↔ a, ϕc : c ↔ d ∨ ¬b, ϕd :
d↔ c}) be a CADF depicted in Figure 3.21. D contains two preferred interpretations,
v1 = {a 7→ u, b 7→ u, c 7→ t, d 7→ t} and v2 = {a 7→ t, b 7→ f, c 7→ f, d 7→ u}, none of them
is a two-valued model. Thus, D is not semi-coherent.

a

c bd

ϕa : a↔ ¬c

ϕb : b↔ a
ϕc : c↔ d ∨ ¬b

ϕd : d↔ c

Figure 3.21: ADF used in Example 35

3.4 Summary
This chapter first studied whether the properties which are explained and proven in [22]
for symmetric AFs carry over to symmetric ADFs. Then, we have tried to investigate
whether some weaker properties hold in symmetric ADFs, its subclasses and CADFs.
The results of this study are summarized in Table 3.1 and 3.2. Table 3.1 shows that
none of the properties which hold in symmetric AFs carries over to symmetric ADFs and
Table 3.2 illustrates the relation between some subclasses of ADFs and some properties.
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In these tables in the first horizontal line, different families of AFs and ADFs are written
and in the first vertical line different properties are listed, for example, cf = adm. As
mentioned before, this equivalence means that the set of conflict-free interpretations and
the set of admissible interpretations are the same. Whenever there exists a proof that
shows that a family of argumentation formalisms has a property is indicated by

√
and

when a property does not hold for a family of AFs or ADFs it is marked by – in the
table. For instance, each member of the family of symmetric AFs is relatively grounded
while by Example 25 we showed that it is not the case for the family of attack symmetric
ADFs even for an ASADF with only one ∨ connective.

Symmetric AFs Symmetric ADFs
cf = adm

√
–

adm = com – –
prf = mod (semi-coherent)

√
–

mod = stb (weak-coherent)
√

–
com = prf – –
stb = {grd} – –
relatively grounded

√
–

coherent
√

–

Table 3.1: Comparison of symmetric AFs and ADFs

Acyclic ADFs Symmetric ADFs ASADFs ASSADFs CADFs
cf = adm – – – – –
adm = com – – – –

√

prf = mod (semi-coherent)
√

– – – –
mod = stb (weak-coherent)

√
–

√ √
–

com = prf
√

– – – –
stb = {grd}

√
– – – –

relatively grounded
√

– – – –
coherent

√
– – – –

Table 3.2: Properties of subclasses of ADFs
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CHAPTER 4
Expressiveness and Realizability

There is no shadow of doubt that ADFs are more powerful than AFs. It is shown formally
in [17] that the family of ADFs is strictly more expressiveness than the family of AFs.
In Chapter 3 we studied some subclasses of ADFs. In this chapter we approach ADFs,
AFs, and all of their subclasses as a knowledge representation formalisms. A formalism
F is the set of structures available in a formalism and each element of F is a knowledge
base (kb for short) of that formalism. Recently, the study of expressiveness of different
argumentation formalisms has gotten increased attention. Intuitively, a set of sets S is
realizable under a semantics σ in a formalism F when there exists a framework F in
F s.t. S = σ(F ) in which σ(F ) is the set of all σ extensions (resp. σ interpretations)
of F . If such a framework does not exist in a formalism F then S is not realizable
by the formalism F . Formalism F1 is called more expressive than formalism F2 for a
semantics σ if each set of sets which is realizable under σ by F2 is also realizable by F1.
For instance, we would like to study whether there is a relation between the set of all
sets of preferred interpretations which are realizable by ADFs and the set of all sets of
preferred interpretations which are realizable by attack symmetric ADFs. Expressiveness
of different formalisms has been studied in [40, 41, 29]. In addition, some efforts have
been done to design and compare different semantics of a formalism. For example, it
is shown in [25] that the set of all sets of preferred extensions realizable by AFs is a
superset of the set of all sets of naive extensions realizable by AFs. In the following of
this chapter in Section 4.1 first we define some preliminary definitions which are used in
this work. In Section 4.2 we illustrate expressiveness of symmetric AFs in comparison to
AFs and in Section 4.3 we study expressiveness of subclasses of ADFs which are studied
in Chapter 3 and compare them with existing results.
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4.1 Preliminary definitions
To compare different formalisms the concepts of realizability, signature of a formalism
w.r.t. a semantics and expressiveness are defied as follows.

Definition 45. Let F be a formalism and S be a set of sets and σ be a semantics. S is
called realizable by F under σ if there exists kb ∈ F s.t. σ(kb) = S.

Signature of a formalism F collects all sets which are realizable by F under a semantics
σ, which is defined formally as follows.

Definition 46. The signature Σσ
F of a formalism F w.r.t. semantics σ is defined as:

Σσ
F = {σ(kb) | kb ∈ F}

in which kb is a knowledge base of that formalism.

Definition 47. Let F1 and F2 be two formalisms. We say that F1 is strictly more
expressive than F2 for σ, whenever Σσ

F2
⊂ Σσ

F1
on a fixed semantics σ.

Definition 48. Let F be a formalism and σ1 and σ2 be two semantics. Signature of a
formalism F w.r.t. σ1 and signature of F w.r.t. σ2 are called incomparable whenever
Σσ1
F 6⊆ Σσ2

F and Σσ2
F 6⊆ Σσ1

F . It is denoted by Σσ1
F 6∼ Σσ2

F .

In this section whenever we are working with AFs we restrict ourselves to extension notion
and whenever we are working with ADFs we use three-valued interpretations. When
we want to compare expressiveness between AFs and ADFs we work with three-valued
interpretations. That is, whenever we want to compare the signature of an AF with the
signature of an ADF we work with the associated interpretations of extensions of such
an AF, according to Definition 24.

4.2 Expressiveness of AFs
In this section we restrict ourselves to AFs. In [25] different semantics of AFs are compared
comprehensively. The formal definition of realizability and the signature in AFs is as
follows.

Definition 49. Let A be a set of arguments of an AF F and S ⊆ 2A. S is named
an extension-set if |A| is finite.

Definition 50. The extension-set S is named realizable under σ (σ-realizable) if there
is an AF F s.t. σ(F ) = S.
The signature Σσ

AF w.r.t. a semantics σ is,

Σσ
AF = {σ(F ) | F is an AF}.

50



4.2. Expressiveness of AFs

In Definition 50 σ is a function which maps each F to a set of σ-extensions. More
precisely, Σσ

AF contains all sets of σ-extensions realizable by AFs. As mentioned before
in realizability we face the question whether a set of extensions, S is contained in Σσ

AF .

For all semantics σ each element S ∈ Σσ
AF is an extension-set whenever we are dealing

with finite AFs. The extension-set S given in Example 36 is not an element of Σcf
AF .

Example 36. Let S = {{a, b}, {a, c}, {b, c}} and σ = cf . Since for each AF F , cf(F )
always contains the empty set, there is no AF F s.t. S = cf(F ). That is, S 6∈ Σcf

AF .

Intuitively, the set S in Example 36 is not realizable by any argumentation framework
under conflict-freeness. Example 37 is an instance of extension-set which is is realizable
in AFs under σ = prf.

Example 37. Let S = {{a, b, e}, {c, d, f}} and σ = prf. We claim that the extension-set
S is an element of Σprf

AF . That is, we show that there exists an AF F such that prf(F ) = S.
One witness of our claim is: F = ({a, b, c, d, e, f}, {(a, b), (b, a), (c, d), (d, c), (c, e), (e, c),
(d, e), (e, d), (e, f), (f, e), (a, d), (d, c), (a, f), (b, f)}), depicted in Figure 4.3.

a

b d

c

e f

Figure 4.1: AF used in Example 37

Definition 51. Let S be an extension set and S1 and S2 be two elements of S.

• S1 and S2 are called incomparable whenever neither S1 ⊆ S2 nor S2 ⊆ S1. It is
denoted by S1 6∼ S2.

• S is named incomparable if all elements of S are pairwise incomparable.

The extension-set S = {{a, b, e}, {c, d, f}} which is defined in the Example 37 is incompa-
rable. However, the extension-set S = {{a, b, e}, {c, d, f}, {c, d, f, g}} is not incomparable,
the second element of S is a subset of the third element. [25] illustrates relations among
signatures of different semantics, some of them are in Theorem 8.

Theorem 8. [25] The following relations hold:

• Σnai
AF ( Σstb

AF \ {∅} ( Σprf
AF ,

• Σcf
AF ( Σadm

AF ( Σcom
AF .
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4. Expressiveness and Realizability

Theorem 8 says that whatever an extension-set is nai-realizable then it is prf-realizable but
not vice versa. That is there exists a set S which is prf-realizable but not nai-realizable.
For example, the extension-set S = {{a1, b2, b3}, {a2, b1, b3}, {a3, b1, b2}} explained in [25]
and depicted in Figure 4.2 is prf-realizable in AFs. Since b2 and b3 appear in the first
element of S there is no conflict between them. With the same reason, because of the
second element of S there is no conflict between b1 and b3 and because of the third element
of S there is not any conflict between b1 and b2. Thus, {b1, b2, b3} is a conflict-free set.
Since it is a maximal conflict-free set, {b1, b2, b3} is a naive extension. Since S does not
contain {b1, b2, b3}, it is not nai-realizable in AFs.

a1 a2 a3

b3b2b1

Figure 4.2: AF used in a proof pf part 1 of Theorem 8

The expressiveness among AFs, BADFs and ADFs under different semantics is illustrated
in [41, 29]. It expresses in the following theorem:

Theorem 9. [17] For σ ∈ {adm, com, prf,mod}, we have

Σσ
AF ( Σσ

BADF ( Σσ
ADF

for the stable model, stb,
Σstb
AF ( Σstb

BADF = Σstb
ADF

4.2.1 Expressiveness of Symmetric AFs

In [22] symmetric AFs (SYMAFs for short) are studied as a proper subclass of AFs. In
the following we study relations among various signatures of SYMAFs and expressiveness
of SYMAFs in comparison to AFs.

Theorem 10. Following relations hold among semantics of SYMAFs:

• Σadm
SYMAF = Σcf

SYMAF,

• Σprf
SYMAF = Σstb

SYMAF = Σnai
SYMAF,

• Σprf
SYMAF 6∼ Σcom

SYMAF,

• Σadm
SYMAF 6∼ Σcom

SYMAF,

• (Σcom
SYMAF ∩ Σprf

SYMAF) \ Σadm
SYMAF 6= ∅,
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• (Σcom
SYMAF ∩ Σadm

SYMAF) \ Σprf
SYMAF 6= ∅.

Proof. • Let F be an arbitrary SYMAF. By Proposition 3, cf(F ) = adm(F ) then
Σadm

SYMAF = Σcf
SYMAF.

• By Proposition 3 prf(F ) = stb(F ) = nai(F ) for each SYMAF F . Then, Σprf
SYMAF =

Σstb
SYMAF = Σnai

SYMAF.

• To show Σprf
SYMAF 6∼ Σcom

SYMAF we check whether Σprf
SYMAF 6⊆ Σcom

SYMAF and Σcom
SYMAF 6⊆

Σprf
SYMAF.

– To show Σprf
SYMAF 6⊆ Σcom

SYMAF it is enough to show that there exists S s.t.
S ∈ Σprf

SYMAF and S 6∈ Σcom
SYMAF. Let S = {{a}, {b}} be an extension-set.

Let F = ({a, b}, {(a, b), (b, a)}). F is a SYMAF s.t. S = prf(F ). That is,
S ∈ Σprf

SYMAF. Suppose to the contrary that S ∈ Σcom
SYMAF. That is, there exists

a SYMAF F ′ s.t. S = com(F ′). It is proven in [25] that for each S ∈ Σcom
AF the

intersection of all elements of S is an element of S. However, the intersection of
elements of S is: {a}∩{b} = ∅ and ∅ 6∈ S. Therefore, S is not com-realizable in
AF. Then it is not com-realizable in SYMAF, too. Hence, Σprf

SYMAF 6⊆ Σcom
SYMAF.

– For Σcom
SYMAF 6⊆ Σprf

SYMAF we show that there exists an extension-set S s.t.
S ∈ Σcom

SYMAF and S 6∈ Σprf
SYMAF. Let S = {{a}, {b}, ∅} be an extension-set.

Let F = ({a, b}, {(a, b), (b, a)}). F is a SYMAFs s.t. S = com(F ). That is,
S ∈ Σcom

SYMAF. Suppose to the contrary that S ∈ Σprf
SYMAF. That is, there

exists SYMAFs F ′ s.t. S = prf(F ′). It is proven in [25] if S ∈ Σprf
AF then S

is incomparable. Since ∅ ⊆ {a} and ∅ ⊆ {b}, S is not incomparable. Then,
Σcom

SYMAF 6⊆ Σprf
SYMAF.

• To prove Σadm
SYMAF 6∼ Σcom

SYMAF, first we show that Σadm
SYMAF 6⊆ Σcom

SYMAF and then
Σcom

SYMAF 6⊆ Σadm
SYMAF.

– To show Σadm
SYMAF 6⊆ Σcom

SYMAF let S = {∅, {a}, {b}, {c}, {b, c}}. A witness of
adm-realizability of S in SYMAFs is F = ({a, b, c}, {(a, c), (c, a), (a, b), (b, a)}).
Then S ∈ Σadm

SYMAF. We show that S is not com-realizable in SYMAFs. Suppose
to the contrary that there exists a SYMAF F ′ = (A′, L′) s.t. com(F ′) = S.
It is clear that A′ is a superset of A. Since F ′ is a SYMAF each argument
of A′ appears in at least a preferred extension and in a complete extension
then A′ ⊆ A. Therefore, A = A′ . In the following it is shown that under all
different possibilities of choosing links of L′, com(F ′) 6= S:
∗ any of these arguments cannot appear as an isolated argument in F ′,
otherwise, the grounded extension which is also a complete extension of
F ′ is not the empty set.

∗ Because of {b, c} ∈ S there is no link between b and c in L′. Then, the only
possible way of defining relations in F ′ is L′ = {(a, b), (b, a), (a, c), (c, a)}.
Hence, com(F ′) = {∅, {a}, {b, c}} and S 6= com(F ′).
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Then, S 6∈ Σcom
SYMAF. That is, S is not com-realizable in SYMAFs.

– To show Σcom
SYMAF 6⊆ Σadm

SYMAF let S = {{a}, {a, b}, {a, c}}. Then, S is com-
realizable in SYMAFs and the witness of S com-realizability in SYMAFs
is F = ({a, b, c}, {(b, c), (c, b)}). We know the empty set is an admissible
extension for each AF F . That is, ∅ ∈ adm(F ) for each AF F. However, S
does not contain the empty set. That is, S is not adm-realizable in SYMAFs.

• To show that (Σcom
SYMAF ∩ Σprf

SYMAF) \ Σadm
SYMAF 6= ∅, let S = {{a, b}}. A witness of

complete and preferred realizability of S in SYMAFs is F = ({a, b}, ∅). Since ∅
is an admissible extension for any SYMAF F and S does not contain it, S is not
adm-realizable in SYMAFs. This is a desired result.

• To investigate that whether (Σcom
SYMAF∩Σadm

SYMAF)\Σprf
SYMAF 6= ∅, let S = {∅, {a}, {b}}.

A witness of complete and admissible realizability of S in SYMAFs is F =
({a, b}, {(a, b), (b, a)}). Since S contains comparable elements, it is not prf-realizable
in SYMAFs, which is the desired result.

Theorem 11 shows that AFs are strictly more expressive than SYMAFs in some of the
semantics and are equivalent for σ ∈ {cf,nai, grd}:

Theorem 11. For σ ∈ {cf,nai, grd} the following relation holds:

Σσ
SYMAF = Σσ

AF

and for σ = {adm, prf, stb, com}:

Σσ
SYMAF ( Σσ

AF

Proof. • Since each SYMAF is an AF, it is clear that Σσ
SYMAF ⊆ Σσ

AF for σ =
{adm, prf, cf, stb,nai, com, grd}. To show that Σσ

SYMAF = Σσ
AF for σ ∈ {cf,nai, grd}

we illustrate that Σσ
AF ⊆ Σσ

SYMAF.

– To show that Σcf
AF ⊆ Σcf

SYMAF let A be an arbitrary extension-set s.t. A ∈ Σcf
AF .

We show that A ∈ Σcf
SYMAF. Suppose that F = (A,L) is an AF s.t. cf(F ) = A.

Let B be the set of all arguments of A with self-attack. Construct F ′ = (A′, L′)
as follows:
∗ A′ = A \B,
∗ L′ = K ∪ {(b, a) | (a, b) ∈ K} in which K = {(a, b) | a, b ∈ A′, (a, b) ∈ L}.

It is easy to see that cf(F ) = cf(F ′). The idea of F ′ is to remove all self-
attack arguments of F and to make attacks among all other arguments of F
symmetric. Therefore, there is a conflict between arguments in F ′ if and only
if there is a conflict between arguments in F . That is, Σcf

SYMAF = Σcf
AF .

54



4.2. Expressiveness of AFs

– To show that Σnai
AF ⊆ Σnai

SYMAF let A be an arbitrary extension-set s.t. A ∈ Σnai
AF .

Then, there exists an AF F = (A,L) s.t. nai(F ) = A. By the definition, the
conflict-free subsets of A which are maximal w.r.t. ⊆ are naive extensions of
A. By the previous part Σcf

SYMAF = Σcf
AF hence, Σnai

SYMAF = Σnai
AF .

– To show that Σgrd
AF ⊆ Σgrd

SYMAF let A be an arbitrary extension-set s.t. A ∈ Σgrd
AF .

We investigate that A ∈ Σgrd
SYMAF by dividing the problem in the following two

cases:

∗ Suppose the unique grounded extension A is the empty set. Any SYMAFs
without any isolated argument is a witness of grd-realizability of A in
SYMAFs.

∗ Suppose the unique grounded extension A is not empty, i.e. A = {S}.
Any SYMAF in which the set of isolated arguments is equivalent with
A is a witness of grd-realizability of A in SYMAFs. For instance A is
grd-realizable in SYMAFs by F = (S, ∅).

• To show that Σσ
SYMAF is a proper subset of Σσ

AF for σ = {adm, com} we show that
there exists an extension-set S which is σ-realizable in AFs but not σ-realizable
in SYMAFs. With the help of other theorems we show that Σσ

SYMAF ⊆ Σσ
AF for

σ ∈ {prf, stb}.

– To investigate that whether Σadm
SYMAF ( Σadm

AF let S = {∅, {a}, {a, c}}. A witness
of adm-realizability of S in AFs is F = ({a, b, c}, {(a, b), (b, c)}). Toward a
contradiction assume that there exists a SYMAF F ′ = (A′, L′) s.t. adm(F ′) =
S. Since F ′ is a SYMAF then each argument of A′ appears in at least one
admissible extension. That is, A′ has to be {a, c}. In the following we compute
adm(F ′) for different possibilities of defining L′:

∗ If L′ = ∅ then a and c are isolated arguments. Therefore, adm(F ′) =
{∅, {a}, {c}, {a, c}}.

∗ If L′ = {(a, c), (c, a)} then adm(F ′) = {∅, {a}, {c}}.

In both cases adm(F ′) 6= S. Hence, S is not adm-realizable in Σadm
SYMAF. That

is, Σadm
AF is a strict supperset of Σadm

SYMAF.

– To show Σprf
SYMAF ( Σprf

AF . It is proven in the first part of this theorem that
Σnai

SYMAF = Σnai
AF . It is also shown in Theorem 10 that Σprf

SYMAF = Σnai
SYMAF.

Hence, Σprf
SYMAF = Σnai

SYMAF = Σnai
AF . In addition, by Theorem 8 we have Σnai

AF (
Σprf
AF . Thus, Σprf

SYMAF = Σnai
SYMAF = Σnai

AF ( Σprf
AF . That is, Σprf

SYMAF ( Σprf
AF .

– We prove Σstb
SYMAF ( Σstb

AF with the same proof method as we used in previous
part. It is proven in Theorem 10 that Σstb

SYMAF = Σnai
SYMAF. By the first part

of the current theorem we have Σnai
SYMAF = Σnai

AF . Moreover, by Theorem 8 we
have Σnai

AF ( Σstb
AF . Thus, Σstb

SYMAF = Σnai
SYMAF = Σnai

AF ( Σstb
AF . Hence, Σstb

SYMAF
is a strict superset of Σstb

AF .
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– To show that Σcom
SYMAF ( Σcom

AF let S = {∅, {b, e}}. We show that S is com-
realizable in AFs. A witness of this claim could be an AF F = ({a, b, c, e}, {(a, b),
(b, c), (c, a), (a, e), (e, a)}). Suppose to the contrary that there exists a SYMAF
F ′ = (S′, L′) which is a witness of com-realizability of S. Since S contains
the empty set then it has to be the grounded interpretation of F ′. Therefore,
F ′ does not contain any isolated argument. That is b and e are not isolated
arguments in F ′. Because of {b, e} ∈ S there is no link between b and e.
Therefore, there exists at least an additional argument s ∈ S′. Since F ′ is a
SYMAF then s appears in a preferred extension, P . Each preferred extension
is a complete extension. That is, P ∈ com(F ′), however, P is not in S. Thus,
S is not com-realizable in SYMAF.

Therefore, Σσ
SYMAF ( Σσ

AF , for σ = {adm, prf, stb, com}.

In the beginning of Section 4.2.1 we investigated by Theorem 10 the relations among
different semantics of signatures of SYMAFs and by Theorem 11 it is shown that the
signature of AFs is more expressive than the signature of SYMAFs, in semantics σ,
σ ∈ {adm, prf, stb, com}. In the following of this section we show some general results
about σ-realizability in SYMAFs based on the cardinality of an extension-set. For instance,
it is proven by Theorem 11 that Σσ

AF is a strict superset of Σσ
SYMAF for σ ∈ {prf, stb}.

However, it will be shown in Propositions 7 and 8 that whenever the cardinality of an
extension-set is less than or equal to two and it is σ-realizable in AFs for σ ∈ {prf, stb},
it is σ-realizable in SYMAFs.

Proposition 7. Let S be an extension-set s.t. |S| = 1. S is σ-realizable in SYMAFs for
σ ∈ {prf, stb, com}.

Proof. Suppose that S is an extension-set s.t. |S| = 1, S = {K}. We show that S is σ-
realizable in SYMAFs for σ ∈ {prf, stb, com}. We claim that F = (A,L) in which A = K
and L = ∅ is a witness of σ-realizability of S in SYMAFs for σ ∈ {prf, stb, com}. F is a
SYMAF s.t. stb(F ) = prf(F ) = com(F ) = {A}. That is, σ(F ) = S for σ ∈ {prf, stb, com}.
That is, S is σ-realizable in SYMAF for σ ∈ {prf, stb, com}.

Corollary 3. If |S| = 1 and S is σ-realizable in AFs for σ ∈ {adm, cf,nai, prf, stb, com, grd}
then S is σ-realizable in SYMAFs as well.

Proof. Let S be σ-realizable in AFs and |S| = 1:

• It is proven in Proposition 7 that each extension-set s.t. |S| = 1 is σ-realizable
in SYMAFs for σ ∈ {prf, stb, com}. Therefore, if S is an extension-set which
is σ-realizable in AFs and |S| = 1 then it is σ-realizable in SYMAFs for σ ∈
{prf, stb, com}.
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• If |S| = 1 and S is adm-realizable in AFs then S = {∅}. Let F = (A,L) in which
A = ∅ and L = ∅. Then F is a SYMAF and adm(F ) = {∅}. That is, S is
adm-realizable in SYMAFs.

• It is proven in Theorem 11 that an extension is σ-realizable in AFs for σ ∈
{cf,nai, grd} if and only if it is σ-realizable in SYMAFs for σ ∈ {cf,nai, grd} which
includes this case, too.

Proposition 8. Let S be an extension-set s.t. |S| = 2 and S be σ-realizable in AFs for
σ = {prf, stb}. S is σ-realizable in SYMAFs for σ = {prf, stb}.

Proof. Suppose S is σ-realizable in AFs for σ = {prf, stb} and |S| = 2. That is, there exists
an AF F = (S,L) s.t. σ(F ) = S. We illustrate that there exists a SYMAF F ′ = (S′, L′)
s.t. σ(F ′) = S. Since |S| = 2 and S is σ-realizable in AFs for σ = {prf, stb} there are
two non-empty incomparable sets S1 and S2 s.t. S1, S2 ∈ S. Construct F ′ = (S′, L′) as
follows:

• S′ = S1 ∪ S2,

• L′ = {(a, b), (b, a) | a ∈ (S1 \ S2), b ∈ (S2 \ S1)}.

The idea of F ′ is to consider each argument in the intersection of S1 and S2 as an
isolated argument and to define a symmetric relation between other arguments of S1 and
S2 s.t. there is no relation between arguments of S1 (resp. S2). It is easy to see that
stb(F ′) = S. Then, S is stb-realizable in SYMAFs. By Proposition 3 in each SYMAF F ,
prf(F ) = stb(F ). Then, S is σ-realizable in SYMAF for σ ∈ {prf, stb}.

We know by Theorem 11 that Σσ
AF is a strict superset of Σσ

SYMAF for σ ∈ {prf, stb}. That
is, there exists S s.t. S ∈ Σσ

AF and S 6∈ Σσ
SYMAF. By Propositions 7 and 8 we have shown

that whenever |S| ≤ 2, S is σ-realizable in AFs if and only if it is σ-realizable in SYMAFs
for σ ∈ {prf, stb} . The natural question is that whether there exist conditions under
which S ∈ Σσ

SYMAF whenever S ∈ Σσ
AF and |S| > 2 for σ ∈ {prf, stb}. In Proposition 9

we investigate that whenever the intersection of each two elements of S is the same,
S ∈ Σσ

SYMAF for σ ∈ {prf, stb}.

Proposition 9. Let S be an extension-set s.t. |S| > 2 and S be σ-realizable in AFs for
σ = {prf, stb} and there is some set K s.t. for every Si, Sj ∈ S, Si ∩ Sj = K for i 6= j. S
is σ-realizable in SYMAFs for σ = {prf, stb}.

Proof. Let S be σ-realizable in AFs s.t. |S| > 2 for σ = {prf, stb}. Then, there exists a
finite AF F s.t. σ(F ) = S. Then there exists a finite number n > 2 s.t. |S| = n. That is,
there exists n different non-empty incomparable sets, S1, . . . , Sn s.t. Si ∈ S for 1 ≤ i ≤ n.
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4. Expressiveness and Realizability

Let si be an element of Si. By proposition assumption the intersection of each two
elements of S is a fixed set K. We investigate that F ′ = (S′, L′) constructed as follows is
a witness of prf-realizability of S in SYMAFs. That is, prf(F ′) = S.

• S′ =
⋃

1≤i≤n Si,

• L′ =
⋃

1≤l≤n
⋃
sl∈Sl\K

⋃
m 6=l

⋃
sm∈Sm\K(sl, sm).

The idea of F ′ is to keep each element of K as an isolated argument and to classify other
arguments of S′ in to n different subsets s.t. there is no relation among elements of each
set and each element of each set is in conflict with all elements of the other sets. Then, it
is clear that stb(F ′) = S. Again by Proposition 3 we conclude that stb(F ′) = prf(F ′) = S.
Therefore, S is σ-realizable in SYMAFs for σ ∈ {prf, stb}.

By Propositions 7, 8 and 9 the conditions under which an extension-set which is σ-
realizable in AFs is also σ-realizable in SYMAFs for σ ∈ {prf, stb} are studied. In the
following we investigate whether the result of Proposition 8 carries over to σ ∈ {adm, com}.
That is, whether for each extension-set s.t. |S| = 2 and S ∈ Σσ

AF , we can conclude
that S ∈ Σσ

SYMAF. The results are illustrated in Proposition 10 and in Example 38.
Proposition 10 shows that in general whenever |S| = 2, S 6∈ Σcom

SYMAF. Since Lemma 9 is
used in the proof of Proposition 10, first we show Lemma 9.

Lemma 9. Let F = (A,L) be a SYMAF. If F contains arguments which are not isolated
then prf(F ) contains at least two incomparable preferred extensions.

Proof. Suppose that F = (A,L) is a SYMAF s.t. F contains arguments which are
not isolated. Then, at least there are two arguments a1, a2 ∈ A s.t. (a1, a2) ∈ L and
(a2, a1) ∈ L. Since F is a SYMAF each of its arguments occurs at least in a preferred
extension. Since there is a symmetric link between a1 and a2 then, there exists at least
two preferred extensions A1 and A2 s.t. a1 ∈ A1 and a2 ∈ A2. It is clear that A1 6∼ A2.
Then prf(F ) contains at least two incomparable preferred extension.

Proposition 10. Let S be an extension-set s.t. |S| = 2. Then S is not com-realizable in
SYMAFs.

Proof. Towards a contradiction assume that S is com-realizable in SYMAFs. That is,
there exists a SYMAF F = (A,L) s.t. com(F ) = S. Let S1 and S2 be two elements of S.
Since |S| = 2, A 6= ∅. Let B = S1 ∩S2. That is, B is the grounded extension of F . There
two different possibilities for B we investigate in both cases S cannot be com-realizable
in SYMAFs.

• If B 6= S1 and B 6= S2 then B, S1 and S2 are in com(F ). That is, |com(F )| > 2.
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4.3. Expressiveness of ADFs

• If B is equivalent with either S1 or S2 then F contains isolated arguments B and
arguments which are not isolated. Since F contains arguments which are not
isolated, by Lemma 9 F contains at least two incomparable preferred extensions.
Each preferred extension is a complete extension. Hence, |com(F )| > 2.

Then, com(F ) 6= S. That is, S is not com-realizable in this case, too.

It is proven by Theorem 11 that S is σ-realizable in AFs, for σ ∈ {cf,nai, grd}, if and only
if it is σ-realizable in SYMAFs. Corollary 3 together with the fact that Σα

SYMAF ⊆ Σα
AF

show that if |S| = 1 then S is σ-realizable in AFs if and only if σ-realizable in SYMAFs,
for σ = {adm, cf,nai, prf, stb, com, grd}. In addition, it is shown by Proposition 8 that
whenever |S| = 2 and S is σ-realizable in AFs, for σ ∈ {prf, stb}, then it is σ-realizable in
SYMAFs . However, we investigate in Proposition 10 that each extension-set S s.t. |S| = 2
is not com-realizable in SYMAFs. In the following we try to answer this natural question
that whenever S is an extension-set which is adm-realizable in AFs and |S| = 2 whether S
is adm-realizable in SYMAFs. There are a large number of adm-realizable extension-sets
in AFs which are also adm-realizable by SYMAFs, for instance, S = {∅, {a}}. In general,
whenever S is adm-realizable in AFs and |S| = 2 s.t. the cardinality of one of the elements
of S is one then S is adm-realizable in SYMAFs. In Example 38 we show that there exists
an extension-set with cardinality two which is adm-realizable in AFs but not in SYMAFs.

Example 38. Let S = {∅, {a, b}} be an extension-set. A witness of adm-realizability
of S in AFs is an AF F , depicted in Figure 4.3. We claim that S is not adm-realizable
in SYMAFs. Towards a contradiction assume that there is a SYMAF F ′ = (A′, L′) s.t.
adm(F ′) = S. Since F ′ is a SYMAF, A′ = {a, b}. Otherwise, an additional argument has
to appear in at least one of admissible interpretations of F ′. Since F ′ is a SYMAF, it
does not contain any self-attack. There are two possibilities of defining relations of F ′ as
follows:

• a and b are isolated arguments, (L′ = ∅): adm(F ′) = {∅, {a}, {b}, {a, b}}.

• There is a symmetric link between a and b, (L′ = {(a, b), (b, a)}): adm(F ′) =
{∅, {a}, {b}}.

In both cases adm(F ′) 6= S. Therefore, S is not adm-realizable in SYMAFs.

4.3 Expressiveness of ADFs
In Chapter 3 we have studied some subclasses of ADFs: acyclic ADFs (ACADFs for
short), attack symmetric ADFs (ASADFs for short) and acyclic support symmetric ADFs
(ASSADFs for short). It is reasonable to study the expressiveness of these subclasses
compared to other formalisms, namely, AFs, BADFs and ADFs. As mentioned in the
beginning of this chapter, from now on we are working with three-valued interpretations.
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a

b

d

c

Figure 4.3: AF used in Example 38

Definition 52. Let F = (A,L,C) be an ADF and V be the set of all three-valued
interpretations of A. A set S ⊆ 2V is named an interpretation-set if |A| is finite.

Whenever we are dealing with finite ADFs, for each semantics σ each S ∈ Σσ
ADF is named

an interpretation-set.

4.3.1 Expressiveness of Subclasses of ADFs

In Proposition 11 it is shown that BADFs are more expressive than ASSADFs for
σ ∈ {adm, prf, com,mod}. Expressivity of ASSADFs compared to ASADFs is investigated
by Proposition 12.

Proposition 11. For σ ∈ {adm, prf, com,mod} the following relation holds:

Σσ
ASSADF ( Σσ

BADF

Proof. Since the family of ASSADFs is, by definition, a strict subset of the family of
BADFs, Σσ

ASSADF ⊆ Σσ
BADF for σ ∈ {adm, prf, com,mod}. To show that Σσ

BADF is a
strict superset of Σσ

ASSADF it is enough to find an interpretation-set S which is σ-realizable
in BADFs, for σ ∈ {adm, prf, com,mod}, but not σ-realizable in ASSADFs.

• To investigate that Σσ
ASSADF ( Σσ

BADF for σ ∈ {prf,mod}, we show that there
exists a witness of σ-realizability in BADFs which is not σ-realizable in ASSADF.
Suppose S = {{a 7→ t}, {a 7→ f}}. A witness of σ-realizability of S in BADFs
is F = ({a}, {ϕa : a}), that is, mod(F ) = prf(F ) = S. Suppose to the contrary
that S is σ-realizable in ASSADFs. That is, there exists an ASSADF F ′ s.t.
mod(F ′) = prf(F ′) = S. Since S contains only one argument, F ′ has to have
just one argument. Otherwise, an additional argument has to appear in preferred
interpretations and two-valued models of F ′. Since F ′ is an ASSADF and it contains
only one argument, it does not have any link. Therefore, there are only two ways
to define an acceptance condition of a:
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4.3. Expressiveness of ADFs

– If ϕa ≡ > then mod(F ′) = prf(F ′) = {{a 7→ t}},
– if ϕa ≡ ⊥ then mod(F ′) = prf(F ′) = {{a 7→ f}}.

In both cases σ(F ′) 6= S for σ ∈ {mod, prf}. That is, S is not σ-realizable in
ASSADFs.

• To show that Σσ
ASSADF ( Σσ

BADF , for σ ∈ {com, adm}, let X = {{a 7→ u}, {a 7→
t}, {a 7→ f}}. The witness of σ-realizability of X in BADFs for σ ∈ {com, adm} is
the BADF F = ({a}, {ϕa : a}). The proof method to show that X is not σ-realizable
in ASSADFs for σ ∈ {com, adm} is exactly the same as previous part of the proof.

Proposition 12. Let σ ∈ {adm, prf, com}. It holds that

Σσ
ASADF ( Σσ

ASSADF

Proof. Since the family of ASADFs is a subset of the family of ASSADFs it is clear that
Σσ

ASADF ⊆ Σσ
ASSADF, for an arbitrary interpretation σ. In the following we show that

Σσ
ASSADF is a strict superset of Σσ

ASADF, for σ ∈ {adm, prf, com}.

• To investigate that Σprf
ASADF ( Σprf

ASSADF, let S = {{a 7→ u, b 7→ u}}. A witness of
prf-realizability of S in ASSADFs is F = ({a, b}, {ϕa : b, ϕb : ¬a}). Suppose to the
contrary that S is prf-realizable in ASADFs. Then, there exists an ASADF F ′

s.t. prf(F ′) = S. The set of arguments of F ′ is {a, b}. Otherwise, an additional
argument has to appear in preferred interpretation of F ′. None of the arguments
could be an isolated argument. Otherwise, their acceptance conditions are either
equivalent with > or ⊥. Then there is a symmetric attack link between a and b. It
is clear that in this case, prf(F ′) = {{a 7→ t, b 7→ f}, {a 7→ f, b 7→ t}}. Hence, S is
not prf-realizable in ASADFs.

• To show Σcom
ASADF ( Σcom

ASSADF we use an interpretation-set S = {{a 7→ u, b 7→ u}}.
It is clear that S is com-realizable in ASSADFs by F = ({a, b}, {ϕa : b, ϕb : ¬a}).
Suppose to the contrary that S is com-realizable in ASADFs. That is, there exists an
ASADF F ′ s.t. com(F ′) = S. The same as before, F ′ contains only two arguments
a and b s.t. none of them is an isolated argument. Then there is a symmetric
attack link between a and b. Therefore, com(F ′) = {{a 7→ u, b 7→ u}, {a 7→ t, b 7→
f}, {a 7→ f, b 7→ t}}. That is, com(F ′) 6= S. Hence, S is not com-realizable in
ASADFs.

• To show that Σadm
ASADF ( Σadm

ASSADF we claim that the given S and F of previous
parts also work here. It is easy to see that F = ({a, b}, {ϕa : b, ϕb : ¬a}) is a
witness of adm-realizability of S = {{a 7→ u, b 7→ u}} in ASSADFs. However, S is
not adm-realizable in ASADFs. It is easy to proof this claim in exactly the same
way as we did for σ = com.
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4. Expressiveness and Realizability

In the following we try to investigate that neither ASADFs are more expressive than AFs
nor AFs are more expressive than ASADFs, for σ ∈ {adm, prf, com}. The former one is
proven in Proposition 13 and the latter one is shown in Proposition 14.

Proposition 13. Σσ
AF 6⊆ Σσ

ASADF, for σ ∈ {adm, prf, com}.

Proof. To investigate that Σσ
AF 6⊆ Σσ

ASADF, for σ ∈ {adm, prf, com} we show that there
exists an interpretation-set which is σ-realizable in AFs but not in ASADFs, for σ ∈
{adm, prf, com}.

• To show Σσ
AF 6⊆ Σσ

ASADF, for σ ∈ {prf, com}, suppose S = {{d 7→ u}}. The witness
of σ-realizability of S in AFs for σ ∈ {prf, com} is F = ({d}, {(d, d)}). The ADF
associated to F is DF = ({d}, {(ϕd : ¬d})). However S is not σ-realizable in
ASADFs for σ ∈ {prf, com}. Suppose to the contrary that there exists an ASADF
F ′ s.t. σ(F ′) = S for σ ∈ {prf, com}. The set of arguments of F ′ has to be {d}.
Otherwise, an additional argument has to appear in preferred (resp. complete)
interpretations of F ′. Since F ′ is assumed as an ASADF, its relations are irreflexive.
Therefore, there are two possibilities to define acceptance condition of d as follows:

– If ϕd ≡ > then prf(F ′) = com(F ′) = {{d 7→ t}}.

– If ϕd ≡ ⊥ then prf(F ′) = com(F ′) = {{d 7→ f}}.

In both cases σ(F ′) 6= S for σ ∈ {prf, com}. Hence, S is not σ-realizable in ASADFs
for σ ∈ {prf, com}.

• To show that Σadm
AF 6⊆ Σadm

ASADF, again let S = {{d 7→ u}}. Given an AF F =
({d}, {(d, d)}) and its correspondence ADF DF = ({d}, {ϕd : ¬d})) are witness
of adm-realizability of S in AFs. Towards a contradiction assume that S is adm-
realizable in ASADFs by F ′. By the same arguments that we have in the previous
part there are two posibilities of defining acceptance condition of D as follows:

– If ϕd ≡ > then adm(F ′) = {{d 7→ u}, {d 7→ t}}.

– If ϕd ≡ ⊥ then adm(F ′) = {{d 7→ u}, {d 7→ f}}.

In both cases adm(F ′) 6= S. Therefore, S is not adm-realizable in ASADFs.

Proposition 14. Σσ
ASADF 6⊆ Σσ

AF , for σ ∈ {adm, prf, com}.
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4.3. Expressiveness of ADFs

Proof. • To show that Σprf
ASADF 6⊆ Σprf

AF , let

S = {{a 7→ f, b 7→ t, c 7→ t, e 7→ t},
{a 7→ t, b 7→ f, c 7→ t, e 7→ f},
{a 7→ t, b 7→ t, c 7→ f, e 7→ f}}.

A witness of prf-realizability of S in ASADFs is F = ({a, b, c, e}, {ϕa : ¬e ∧ (¬b ∨
¬c), ϕb : ¬a ∨ ¬c, ϕc : ¬a ∨ ¬b, ϕe : ¬a}). Note that all arguments in F only occur
as attackers and all links are symmetric, thus F is clearly an ASADF. Suppose to
the contrary that S is prf-realizable in AFs. Then, there exists an F ′ in AFs s.t.
prf(F ′) = S. The set of arguments of F ′ is {a, b, c, e}. Otherwise, an additional
argument has to appear in S. Because of the first set in S there is no attack between
b and c in F ′, because of the second set in S there is no attack between a and c in
F ′ and because of the third set there is no attack between a and b in F ′. That is,
there is no link between a, b and c in F ′.

– If there is no attack from any of a, b and c to e then e has to be assigned to t
in all preferred interpretations of F ′.

– If there is an attack from any of a, b and c to e then a 7→ t, b 7→ t and c 7→ t
appear in a preferred interpretation of F ′.

In both cases, prf(F ′) 6= S. Hence, S is not prf-realizable in AFs.

• To show that Σcom
ASADF 6⊆ Σcom

AF , let S′ = S ∪ {{a 7→ u, b 7→ u, c 7→ u, e 7→ u}},
for S defined in the previous part. It is easy to check that S′ is com-realizable
in ASADFs. A witness of this realizability is the ASADF F = ({a, b, c, e}, {ϕa :
¬e ∧ (¬b ∨ ¬c), ϕb : ¬a ∨ ¬c, ϕc : ¬a ∨ ¬b, ϕe : ¬a}) defined above. Towards a
contradiction assume that S′ is com-realizable in AFs. That is, there exists an AF
F ′ s.t. com(F ′) = S′. Since all elements of S are incomparable and are two-valued,
each of them is a preferred interpretation of F ′. Therefore, prf(F ′) = S. That
is, S defined in the previous part of the proof is prf-realizable in AFs, which is a
contradiction.

• To show that Σadm
ASADF 6⊆ Σadm

AF , again let F = ({a, b, c, e}, {ϕa : ¬e ∧ (¬b ∨ ¬c), ϕb :
¬a ∨ ¬c, ϕc : ¬a ∨ ¬b, ϕe : ¬a}) and X = adm(F ). Then, obviously X is adm-
realizable in ASADFs and prf(F ) = S, for S defined in first part. Towards a
contradiction assume that X is adm-realizable in AFs. That is, there exists an AF
F ′ s.t. adm(F ′) = X. Therefore, the set of maximal admissible interpretations of
F ′ is equivalent with the set of maximal admissible interpretations of F . That is,
prf(F ′) = S. Hence, the interpretation-set S defined in the first part is prf-realizable
in AFs, which is a contradiction.
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4. Expressiveness and Realizability

Theorem 12 is a direct consequence of Proposition 13 and Proposition 14 s.t. the
former one shows that Σσ

AF 6⊆ Σσ
ASADF and the latter one shows Σσ

ASADF 6⊆ Σσ
AF for

σ ∈ {adm, prf, com}.

Theorem 12. Σσ
AF 6∼ Σσ

ASADF, for σ ∈ {adm, prf, com}.

It is shown by Theorem 12 that Σσ
AF and Σσ

ASADF are incomparable under σ ∈ {adm, prf, com}.
In the following we investigate whether they are incomparable under σ = stb as well.

Proposition 15. Σstb
ASADF 6⊆ Σstb

AF .

Proof. Let S = {{a 7→ t, b 7→ t, c 7→ f}, {a 7→ f, b 7→ t, c 7→ t}, {a 7→ t, b 7→ f, c 7→ t}} be
an interpretation-set. A witness of stb-realizability of S in ASADFs is F = ({a, b, c}, {ϕa :
¬b ∨ ¬c, ϕb : ¬a ∨ ¬c, ϕc : ¬a ∨ ¬b}). That is, S ∈ Σstb

ASADF. We investigate that S
is not stb-realizable in AFs. Towards a contradiction assume that there exists an AF
F ′ = (A′, L′) s.t. stb(F ′) = S. The set of arguments of F ′ is equivalent with {a, b, c}
otherwise it has to appear in stb(F ′). Because of the first set in S there is no link between
a an b in F ′, because of the second set in S there is no link between b and c and because
of the third set in S there is no link between a an c in F ′. Then there is no link among a,
b and c in F ′. Then, {a 7→ t, b, 7→ t, c 7→ t} is an element of stb(F ′). That is, stb(F ′) 6= S.
Hence, S 6∈ Σstb

AF .

Corollary 4. Σstb
α 6⊆ Σstb

AF for α ∈ {ASADF,ASSADF, BADF,ADF}.

Proof. Each ASADF is an ASSADF, is a BADF and is an ADF. Therefore, interpretation-
set S = {{a 7→ t, b 7→ t, c 7→ f}, {a 7→ f, b 7→ t, c 7→ t}, {a 7→ t, b 7→ f, c 7→ t}} defined
in Proposition 15 is stb-realizable in α, for α ∈ {ASADF,ASSADF, BADF,ADF}. By
Proposition 15 S is not stb-realizable in AFs. That is, for each α ∈ {ASADF,ASSADF,
BADF,ADF}, Σstb

α 6⊆ Σstb
AF .

Corollary 5. Σstb
ASADF 6⊆ Σnai

AF .

Proof. By Proposition 15 Σstb
ASADF 6⊆ Σstb

AF and we know that the family of SYMAFs is
a subset of the family of AFs, therefore, Σstb

ASADF 6⊆ Σstb
SYMAF. By Theorem 11 Σnai

AF =
Σnai

SYMAF and by Theorem 10 Σstb
SYMAF = Σnai

SYMAF. Therefore, Σstb
SYMAF = Σnai

AF . Hence,
Σstb

ASADF 6⊆ Σnai
AF .

In the following we would like to investigate whether ASADFs are strictly more expressive
than AFs under stable interpretation, that is, Σstb

AF ( Σstb
ASADF. It is mentioned in [17]

that each AF F is associated to an ADF DF . Therefore, each symmetric AF associates to
a symmetric ADF. That is, whenever an interpretation-set S is stb-realizable in SYMAFs
it is also stb-realizable in ASADFs, Σstb

SYMAF ⊆ Σstb
ASADF. In Theorem 11 it is proven

that Σstb
SYMAF ( Σstb

AF , that is, there exists an extension-set which is stb-realizable in AFs
and it is not stb-realizable in SYMAFs. One may guess that this set could be a good
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candidate to show Σstb
AF and Σstb

ASADF are incomparable. Surprisingly, as is illustrated
with the following interpretation-set

S = {{a 7→ t, b 7→ f, c 7→ f, d 7→ f, e 7→ t, f 7→ t},
{a 7→ f, b 7→ t, c 7→ f, d 7→ t, e 7→ f, f 7→ t},
{a 7→ f, b 7→ f, c 7→ t, d 7→ t, e 7→ t, f 7→ f}},

S is stb-realizable in ASADFs, however, it is not stb-realizable in SYMAFs. A witness of
stb-realizablity of S in ASADFs is as follows:

F = ({a, b, c, d, e, f},
{ϕa : ¬d ∧ ¬b ∧ ¬c,
ϕb : ¬a ∧ ¬c ∧ ¬e,
ϕc : ¬a ∧ ¬b ∧ ¬f,
ϕd : ¬a ∧ (¬e ∨ ¬f),
ϕe : ¬b ∧ (¬d ∨ ¬f),
ϕf : ¬c ∧ (¬d ∨ ¬e)})

Proposition 16 bellow shows that the signature of ASADFs under σ = stb is a strict super
set of the signature of AFs under σ = stb. That is, if a framework is stb-realizable in AFs
it is also stb-realizable in ASADFs.
It is proven in [25] that for each AF F = (A,R), stb(F ) is incomparable. To investigate
whether this property holds in ADFs first we define the notion of ≤t order. This ordering
assigns a greater value to t rather than f , that is, f ≤t t. Thus an interpretation vi is
named ≤t-less than vj if and only if for each argument s, vi(s) ≤t vj(s).

Definition 53. Let V be an interpretation-set and vi and vj be two elements of V.

• vi and vj are called ≤t-incomparable whenever neither vi ≤t vj nor vj ≤t vi. This
is denoted by vi 6∼t vj .

• V is named ≤t-incomparable if all elements of V are pairwise incomparable.

It is remarked in [41] and rescripted in Lemma 10 that stb(F ) of each ADF F is ≤t-
incomparable.

Lemma 10. Let F = (A,L,C) be an ADF. stb(F ) is ≤t-incomparable.

Proposition 16. Σstb
AF \ {vε} ( Σstb

ASADF

Proof. By Proposition 15 we know that Σstb
ASADF 6⊆ Σstb

AF . To show that Σstb
ASADF is

a strict superset of Σstb
AF we show that Σstb

AF ⊆ Σstb
ASADF. Let S = {v1, . . . , vn} be an

interpretation-set which is stb-realizable in AFs. Therefore, there exists an AF F = (A,L)
s.t. stb(DF ) = S in which, DF is the ADF associated to F . We claim that an ADF
F ′ = (A′, L′, C ′) constructed as follows is a desired ASADF:
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• A′ = A

• If a 7→ t ∈
d
vi then ϕa = >.

• If a 7→ f ∈
d
vi then ϕa = ⊥.

• Otherwise,
ϕa :

∨
vi∈S,vi(a)=t

∧
vi(b)=f∧

∃vj∈S:(vj(a)=f∧vj(b)=t)

¬b (4.1)

In the following first we illustrate that F ′ is an ASADF then we show that stb(F ′) = S.

• To show that F ′ is an ASADF we show that F ′ is a symmetric ADF in which all
links are attacking.

– Assume a is an argument which is not assigned to t (resp. f) in all vi, for
1 ≤ i ≤ n, then, ϕa is defined as above. Assume that b is an argument which
appears in ϕa. To show that F ′ is symmetric we investigate that a also appears
in ϕb. b appears in ϕa if and only if, by the definition there exists vi ∈ S s.t.
vi(a) = t and vi(b) = f , and there exists vj ∈ S s.t. vj(b) = t and vj(a) = f .
That is, there exists vj ∈ S s.t. vj(b) = t and vj(a) = f , and there exists vi ∈ S
s.t. vi(a) = t and vi(b) = f , therefore, by definition a appears in ϕb. That is,
all links are symmetric. Since, each argument a cannot assign to t and f in a
vi, the defined ADF F ′ is irreflexive.

– Assume that vi(a) = t (resp. vi(a) = f) appears in all vi, for 1 ≤ i ≤ n then
ϕa ≡ > (resp. ϕa ≡ ⊥). By the previous part all links of F ′ are symmetric.
That is, such an argument a is an isolated argument.

That is, F ′ is a symmetric ADF.
It remains to show that F ′ is an attack symmetric ADF which is clear by the syntax
of the acceptance condition of each argument.

To investigate that stb(F ′) = S we show that S ⊆ stb(F ′) and stb(F ′) ⊆ S.

• To prove that S ⊆ stb(F ′) let vi be an arbitrary element of S. We show that
vi ∈ stb(F ′). In order to show that vi ∈ stb(F ′) first we investigate whether vi is a
two-valued model of F ′.

Let a be an argument s.t. vi(a) = t. There are two cases either a 7→ t in
all elements of S or not. If a 7→ t in all elements of S then by the definition
ϕa = >. Hence, ϕvi

a ≡ >.
If it is not the case that a 7→ t in all elements of S then there exists vj ∈ S
s.t. vj(a) = f . It is proven in [25] that for each AF F , stb(F ) is incomparable.

66



4.3. Expressiveness of ADFs

Hence, S is incomparable. Therefore, there exists bi s.t. vi(bi) = f and
vj(bi) = t. Hence, bi appears in the acceptance condition of a. The set of
all arguments like bi which are assigned to f by vi and are assigned to t by
a vj s.t. a 7→ f ∈ vj make a conjunctive clause of ϕa which guarantees that
ϕvi
a ≡ >.

Let a be an argument s.t. vi(a) = f . If a is assigned to f by all elements of S
then by the definition ϕa = ⊥ thus ϕvi

a ≡ ⊥.
If it is not the case that a is assigned to f by all elements of S then there
exists vj ∈ S s.t. vj(a) = t. Let N be the set of all elements of S in which
a is assigned to t. Since S is incomparable, for each vj ∈ N there exists an
argument bj s.t. vj(bj) = f and vi(bj) = t. Therefore, each conjunctive clause
of the acceptance condition of a contains such a bj . This guarantees that
ϕvi
a ≡ ⊥.

Hence, each element of S is a two-valued model of F ′. By Proposition 4 each
ASADF is weak-coherent, that is, each two-valued model of an ASADF is stable.
Since F ′ is an ASADF, each element of S is a stable model of F ′.

• To show that stb(F ′) ⊆ S if |S| = 1 then by the construction of F ′ it is clear that
stb(F ′) = S. Suppose that |S| > 1 we assume that there exists v ∈ stb(F ′) s.t.
v 6∈ S. Then we show that v is not a model of F ′ and in consequence it cannot
be a stable model of F ′. Lemma 10 together with the assumption that |S| > 1
and the fact that F ′ is an ASADF implies that there exists at least an a ∈ A s.t.
ϕa 6≡ > and ϕva ≡ >, otherwise, v is ≤t-comparable with other elements of stb(F ).
Fix this a and let K be the set of all vi ∈ S in which vi(a) = t. Since v 6∈ S and
stb(F ′) is ≤t-incomparable, in each vi ∈ K there exists at least an argument bi s.t.
v(bi) = t and vi(bi) = f . Let B be the set of all such bi’s. We claim that either
each conjunctive clause of ϕa contains a bi, 1 ≤ i ≤ m or there exists at least a
bi ∈ B s.t. each conjunctive clause of ϕbi

contains an element of B. By proof of
this claim we show that either ϕva ≡ ⊥ or there exists a bi ∈ B s.t. ϕvbi

≡ ⊥. Thus,
v cannot be a model of F ′ and consequently, it cannot be a stable model of F ′.
We proof the claim by induction on the cardinality of K.

Base case: |K| = 1, that is, there exists only one vi in which a is assigned
to t and bi is assigned to f . Since bi is assigned to t by v and is assigned to
f by vi, ϕbi

6≡ ⊥. Then, there exists vj in which vj(a) = f and vj(bi) = t,
otherwise, ϕbi

≡ ⊥. Therefore, bi appears in a conjunctive clause of ϕa. Since
a is assigned to t by only one of vi, its acceptance condition contains only
one conjunctive clause. Therefore, if ϕvbi

= t then ϕva = f . That is, v is not a
model of F ′ and in consequence it is not a stable model of F ′.
To clarify the idea of the proof we show also base case for |K| = 2. That
is, when a is assigned to t by exactly two elements of S. Assume that a
is assigned to t by vi and vj . By the assumption there exist bi and bj s.t.
v(bi) = v(bj) = t and vi(bi) = f and vj(bj) = f . By the same reason that we

67



4. Expressiveness and Realizability

describe for |K| = 1, there exist elements of S in which bi and bj are assigned
to t. If they are assigned to true in elements by which a is assigned to f there
is noting to do. Since it guarantees that bi and bj occur in conjunctive clauses
of ϕa. Assume that none of bi and bj is assigned to t by any of the S \ K.
Therefore, bi has to be assigned to t by vj and bj has to be assigned to f by
vi. This means that bi appears in a conjunctive clause of ϕbj

and bj appears
in a conjunctive clause of ϕbi

. That is, bi and bj cannot be assigned to t by a
model of F ′, simultaneously. Thus, v cannot be a stable model.

Induction step: Let |K| = m, that is, a is assigned to t by exactly m elements
of S. W.l.o.g assume v1, . . . , vm are elements of S by which a is assigned to t
and b1, . . . , bm are arguments which are assigned to t by v and are assigned
to f by v1, . . . , vm, respectively. If each conjunctive clause of ϕa contains a
bi there is nothing to prove. Assume that there exists at least a conjunctive
clause of ϕa which does not contain any bi we show that there exists a bi
s.t. each of the conjunctive clauses of its acceptance condition contains a
bj . W.l.o.g. assume that b1 is an argument which does not appear in any
conjunctive clause of ϕa. If each conjunctive clause in ϕb1 contains a bj there
is nothing to do, otherwise, eliminate v1 from K. That is, |K| become m− 1
which means the acceptance condition of a contains exactly m− 1 conjunctive
clauses. By induction hypothesis, either all of these conjunctive clauses contain
bi’s or there exists bi s.t. each of the conjunctive clauses of ϕbi

contains a
bj . In the former case all bi’s which appear in ϕa have to be assigned to t
by v1, otherwise, all of m conjunctive clauses of ϕa contain bi’s, which is a
contradiction with our assumption. Since ϕb1 6≡ ⊥ and b1 does not appear
in ϕa, b1 has to be assigned to t by a vi ∈ K. Since by our assumption all
of these m− 1 conjunctive clauses of the acceptance condition of a contains
a bi, there exists a bj which is assigned to t by v1 and assigned to f by vi.
Therefore, all conjunctive clauses of b1 contain a bi, which is a contradiction!
That is, it is not the case that all of these m− 1 conjunctive clauses in the
acceptance condition of a contains a bi. Therefore, by the latter part of the
induction hypothesis there exists a bi s.t. each of the conjunctive clause of its
acceptance condition contains a bj . Fix this bi.
If v1(bi) = f the acceptance condition of bi does not change by adding v1,
which is removed from K. That is, bi is an argument s.t. all the conjunctive
clauses of ϕbi

contains one of the elements of B. Thus, bi is a desired argument.
Assume that v1(bi) = t if at least one of the bj ’s which appears in ϕbi

is assigned
to false by v1 again bi is a desired argument. Otherwise, since b1 does not
appear in the acceptance condition of a, it has to be assigned to t by at least
one of vi ∈ K. Let vl be an element of K s.t. vl(b1) = t, either bi is assigned
to t or to f by vl. If vl(bi) = f then b1 appears in a conjunctive clause of bi,
which means again bi is a desired argument. If vl(bi) = t by our assumption
there exists an argument bk which appears in acceptance condition of bi and
vl(bk) = f . Therefore, bk appears in ϕb1 . Hence, each conjunctive clause of b1
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contains an element of B. That is, b1 is a desired argument. That is, if ϕa
contains a conjunctive clause which does not contain any bi then there exists
at least a bi s.t. each conjunctive clause of its acceptance condition contains
an element of B. That is, all elements of B’s and a cannot be assigned to t by
a model of F ′. Thus, v cannot be a model of F ′ and in consequence, v is not
a stable model of F ′.

Now we strength Proposition 13 in the following proposition. The construction of the
proof is exactly the same.

Proposition 17. Σσ
AF 6⊆ Σσ

ASSADF, for σ ∈ {adm, prf, com}.

Proof. To prove that Σσ
AF 6⊆ Σσ

ASSADF, for σ ∈ {adm, prf, com} again let S = {{d 7→ u}}
defined in Proposition 13. As it is mentioned, a witness of σ-realizability in AF, for
σ ∈ {adm, prf, com} is F = ({d}, {(d, d)}) and its ADF correspondence to F is DF =
({d}, {ϕd : ¬d}). Suppose to the contrary that there exists an ASSADF F ′ s.t. σ(F ′) = S,
for σ ∈ {adm, prf, com}. The set of arguments of F ′ is {d}. Otherwise, an additional
argument has to appear in interpretations of F ′. Since F ′ is assumed as an ASSADF,
by the definition, all relations are irreflexive. Therefore, There are two possibilities of
defining acceptance condition of F ′ as follows:

• If ϕd ≡ > then prf(F ′) = com(F ′) = {{d 7→ t}} and adm(F ′) = {{d 7→ u}, {d 7→
t}}.

• If ϕd ≡ ⊥ then prf(F ′) = com(F ′) = {{d 7→ f}} and adm(F ′) = {{d 7→ u}, {d 7→
f}}.

In both cases, σ(F ′) 6= S, for σ ∈ {adm, prf, com}. Hence, S 6∈ Σσ
ASSADF, for σ ∈

{adm, prf, com}.

Proposition 18. Σσ
ASSADF 6⊆ Σσ

AF , for σ ∈ {adm, prf, com}.

Proof. By Proposition 14 Σσ
ASADF 6⊆ Σσ

AF , for σ ∈ {adm, prf, com}. Then there exists an
interpretation-set S s.t. S ∈ Σσ

ASADF and S 6∈ Σσ
AF , for σ ∈ {adm, prf, com}. By Proposi-

tion 12 Σσ
ASADF ( Σσ

ASSADF, for σ ∈ {adm, prf, com}. Therefore, for σ ∈ {prf, adm, com}
there exists an interpretation-set S s.t. S is σ-realizable in ASADFs and ASSADFs but it
is not σ-realizable in AFs. Hence, Σσ

ASSADF 6⊆ Σσ
AF , for σ ∈ {adm, prf, com}.

Theorem 13 is an immediate consequence of Propositions 17 and 18.

Theorem 13. Σσ
ASSADF 6∼ Σσ

AF for σ ∈ {adm, prf, com}.
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4. Expressiveness and Realizability

Proposition 19 indicates that there exists an interpretation-set which is realizable in AFs
and ASSADFs but it is not realizable in ASADFs, for σ ∈ {adm, prf, com}.

Proposition 19. (Σσ
ASSADF ∩ Σσ

AF ) \ Σσ
ASADF 6= ∅, for σ ∈ {adm, prf, com}.

Proof. Let S = {{a 7→ u, b 7→ u}}. A witness of σ-realizability of S in AFs (resp. in
ASSADFs) is F = ({a, b}, {(a, a), (b, b)}) (resp. F ′ = ({a, b}, {ϕa : b, ϕb : ¬a})), for
σ ∈ {adm, prf, com}. We show that S is not σ-realizable in ASADFs. Suppose to a
contrary that there exists a ASADF G s.t. σ(G) = S for σ ∈ {adm, prf, com}. The
set of arguments of G is {a, b}. Otherwise an additional argument has to appear in
interpretations of G. Since by our assumption G is an ASADF, either a and b are isolated
arguments or there is an attack symmetric link between a and b. In both cases σ(G)
contains at least an interpretation in which one of these arguments is not assigned to
u. Thus, S is not σ-realizable in ASADFs for σ ∈ {adm, prf, com} which is a desired
result.

The following theorem concludes some main results of this section and a theorem in [17].

Theorem 14. For σ ∈ {adm, com, prf}, we find that

Σσ
ASADF ( Σσ

ASSADF ( Σσ
BADF ( Σσ

ADF

Proof. By Proposition 12 it is shown that Σσ
ASADF ( Σσ

ASSADF, for σ ∈ {adm, com, prf}.
By Proposition 11 it follows that Σσ

ASSADF ( Σσ
BADF , for σ ∈ {adm, prf, com,mod}. By

Theorem 9 mentioned in [17], for σ ∈ {adm, prf, com,mod} we find that Σσ
BADF ( Σσ

ADF .
Hence, Σσ

ASADF ( Σσ
ASSADF ( Σσ

BADF ( Σσ
ADF for σ ∈ {adm, com, prf}.

In the following of this subsection we study expressiveness of acyclic ADFs (ACADFs
for short) in comparison to other formalisms. Since each acyclic ADF is an ADF,
the immediate result is that Σσ

ACADF ⊆ Σσ
ADF for σ ∈ {adm, prf, stb,mod, grd, com}.

In Proposition 21 it is investigated that Σσ
ADF is a strict supper set of Σσ

ACADF, for
σ ∈ {adm, prf, stb,mod, grd, com}.

Proposition 20. Let S be an interpretation-set s.t. |S| > 1. S is not σ-realizable in
ACADFs, for σ ∈ {prf, stb,mod, com}.

Proof. By Theorem 3 an ACADF D with maximal level m has exactly one complete
interpretation which is preferred, stable and a two-valued model. That is, for each
ACADF D, |prf(D)| = |com(D)| = |mod(D)| = |stb(D)| = 1. Therefore, if |S| > 1 then S
is not σ-realizable in ACADFs, for σ ∈ {prf, stb,mod, com}.

By definition the grounded interpretation is always unique. One may conclude that
whatever is grd-realizable in ADFs is also grd-realizable in ACADFs. However, it is shown
in Proposition 21 that Σgrd

ADF is a strict superset of Σgrd
ACADF.
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Proposition 21. Σσ
ADF * Σσ

ACADF, for σ ∈ {adm, prf, stb,mod, com, grd}.

Proof. We show that there exists an interpretation-set S which is σ-realizable in ADFs
but not in ACADFs, for σ ∈ {adm, prf, stb,mod, com}.

• Let S = {{a 7→ t, b 7→ f}, {a 7→ f, b 7→ t}}. A witness of σ-realizability of S in ADFs,
for σ ∈ {prf, stb,mod, com}, is F = ({a, b}, {ϕa : ¬b, ϕb : ¬a}). By Proposition 20
S is not σ-realizable in ACADFs, for σ ∈ {prf, stb,mod, com}, since |S| > 1.

• Let S′ = {a 7→ u, b 7→ u} ∪ S. Again F = ({a, b}, {ϕa : ¬b, ϕb : ¬a}) is a witness of
adm-realizability of S′ in ADFs. Suppose to a contrary that S′ is adm-realizable in
ACADFs by F ′. By the definition of preferred interpretation {a 7→ t, b 7→ f} and
{a 7→ f, b 7→ t} are preferred interpretations of F ′. That is, S is prf-realizable in
ACADFs. This is a contradiction.

• Again by Theorem 3, the unique grounded interpretation of an ACADF D is a two-
valued model. Therefore, whenever an interpretation-set S contains an argument
assigned to u it is not grd-realizable in ACADFs. For instance, S = {a 7→ u, b 7→ u} is
grd-realizable in ADFs by F = ({a, b}, {ϕa : ¬b, ϕb : ¬a}) but it is not grd-realizable
in ACADFs.

Corollary 6 is an immediate consequence of Proposition 21 and that fact that each
ACADF is an ADF, that is, Σσ

ACADF ⊆ Σσ
ADF for each semantics σ.

Corollary 6. For σ ∈ {adm, prf, stb,mod, com, grd} it holds that,

Σσ
ACADF ( Σσ

ADF

Corollary 7. Σσ
β * Σσ

ACADF, for σ ∈ {adm, prf, stb,mod, grd, com} and β ∈ {ASADF,
ASSADF, BADF}.

Proof. The ADF F = ({a, b}, {ϕa : ¬b, ϕb : ¬a}) which is used in the proof of Propo-
sition 21 to show that S (resp. S′) is σ-realizable in ADF, for σ ∈ {adm, prf, stb,mod,
grd, com}, and is not σ-realizable in ACADFs is also an ASADF, an ASSADF and
a BADF. Therefore, Σσ

β * Σσ
ACADF, for σ ∈ {adm, prf, stb,mod, grd, com} and for

β ∈ {ASADF,ASSADF, BADF}.

Since each ACADF does not contain any dependent link, each ACADF is a BADF. There-
fore, we immediately conclude that Σσ

ACADF ⊆ Σσ
BADF for σ ∈ {adm, prf, com, grd, stb,

mod}. All of these properties except admissibility hold for ASADF and ASSADF which
are shown in Proposition 22. In Proposition 23 it is illustrated that there exists an
interpretation-set which is adm-realizable in ACADF but not in ASADF and ASSADF.
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Proposition 22. Σσ
ACADF ( Σσ

β, for σ ∈ {prf, com, grd, stb,mod} and β ∈ {ASADF,
ASSADF}.

Proof. Let S = {S} be an interpretation-set which is σ-realizable in ACADF, for σ ∈
{prf, com, grd, stb,mod}. Since each ASADF is an ASSADF, we only show that S is
σ-realizable in ASADF, for σ ∈ {prf, com, grd, stb,mod}. Construct F = (A,L,C) as
follow:

• A contains all arguments which appear in S.

• If a 7→ t ∈ S then ϕa : > ∈ C.

• If a 7→ f ∈ S then ϕa : ⊥ ∈ C.

It is obvious that F is an ASADF and σ(F ) = S. That is, S ∈ Σσ
ASADF, for σ ∈

{prf, com, grd, stb,mod}.

Proposition 23. Σadm
ACADF * Σadm

β , for β ∈ {ASADF,ASSADF}.

Proof. Let S = {{a 7→ u, b 7→ u}, {a 7→ t, b 7→ u}, {a 7→ t, b 7→ t}} be an interpretation-
set. A witness of adm-realizability of S in ACADF is F = ({a, b}, {ϕa : >, ϕb : a}. We
claim that S is neither adm-realizable in ASADF nor in ASSADF. Since each ASADF
is an ASSADF we show the result only for ASSADF. Suppose to the contrary that S
is adm-realizable in ASSADF by F = (A,L,C). Therefore, A = {a, b} otherwise, the
additional argument has to appear in adm(F ). If a and b are isolated arguments in all the
ways that one can define their acceptance conditions, adm(F ) 6= S. Assume that a and
b are not isolated arguments then there are two possibilities to define their acceptance
conditions as follows:

• If ϕa : ¬b and ϕb : ¬a then adm(F ) = {{a 7→ u, b 7→ u}, {a 7→ t, b 7→ f}, {a 7→
f, b 7→ t}}.

• If ϕa : b and ϕb : ¬a (resp. ϕa : ¬b and ϕb : a) then adm(F ) = {{a 7→ u, b 7→ u}}.

In both cases adm(F ) 6= S. Hence, S is not adm-realizable in ASADF and ASSADF.

In Section 4.3.1 we studied expressiveness of subclasses of ADFs namely, ACADFs,
ASADFs, ASSADFs. For instance, it showed in Theorem 14 that Σσ

ASADF ( Σσ
ASSADF (

Σσ
BADF ( Σσ

ADF for σ ∈ {adm, prf, com}. In the following we focus on some exceptions
like the ones we had in the previous section. For instance, it is proved in Proposition 7
and 8 that whenever S is an extension-set which is stb-realizable in AFs and |S| ≤ 2, it
is stb-realizable in SYMAFs. In the following it is investigated whether this property
carries over to ADFs and its subclasses.
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Proposition 24. Suppose that |S| = 1 and S is stb-realizable in ADFs. Then, S is
stb-realizable in ACADFs.

Proof. Since |S| = 1, let S be the unique element of S. We claim that F = (A,L,C) in
which A and C are defined as follows is a witness of stb-realizabilty of S in ACADFs.

• Let A be the set of all arguments of S.

• For each a ∈ A:

– If a 7→ t ∈ S then ϕa ≡ >,
– If a 7→ f ∈ S then ϕa ≡ ⊥.

By our assumption, since S is stb-realizable in ADFs then each argument is either
assigned to t or f by S. Therefore, if a 7→ t ∈ S then ϕa ≡ > ∈ C and if a 7→ f ∈ S then
ϕa ≡ ⊥ ∈ C. Then, stb(F ) = S.

With the same proof method of Proposition 24, Proposition 25 is also provable.

Proposition 25. Let S be an interpretation-set s.t. |S| = 1 and S be mod-realizable in
ADFs. S is mod-realizable in ASADFs.

Corollary 8. Let S be an interpretation-set s.t. |S| = 1 and S be stb-realizable in ADFs.
Then, S is stb-realizable in ASADFs, ASSADFs and BADFs.

Corollary 9. Let S be a two-valued interpretation-set s.t. |S| = 1. Then, S ∈ Σstb
α , for

α ∈ {ADF,BADF,ASADF,ASSADF,ACADF}.

We know by Theorem 9 that in general Σstb
ADF is a strict superset of Σstb

AF . By Corollary 9 we
know that whenever the cardinality of an interpretation-set S is one and it is stb-realizable
in α, for α ∈ {ADF,BADF,ASADF,ASSADF,ACADF} then it is stb-realizable in β,
for β ∈ {ADF,BADF,ASADF,ASSADF,ACADF}. In the following we investigate
whether we can generalize Corollary 9 for AFs. That is, whether |S| = 1 and it is
stb-realizable in ADFs then it is stb-realizable in AFs. We investigate in Example 39 that
there exists an interpretation-set with cardinality one which is stb-realizable in ADFs but
not in AFs. That is, even for the class of interpretation-sets with cardinality one Σstb

ADF

is a strict superset of Σstb
AF .

Example 39. Let S = {{a 7→ f, b 7→ f, c 7→ f}}. A witness of stb-realizability of S in
ADFs is F = ({a, b, c}, {ϕa : c, ϕb : a, ϕc : b}). We claim that S is not stb-realizable in
AFs. Towards a contradiction, assume that there exists an AF F = (A,L) s.t. stb(F ) = S.
A = {a, b, c}, otherwise an argument has to appear in a stable model of F . None of these
arguments can be an isolated argument, otherwise, it is assigned to t in a stable model.
It is easy to check for all way of defining links among a, b and c, stb(F ) 6= S. Hence, S is
not σ-realizable in AFs.
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In the following we investigate whether an interpretation-set with cardinality two which
is stb-realizable in ADFs is stb-realizable in subclasses of ADFs. However, it is proven
by Proposition 20 that whenever |S| > 1, S is not stb-realizable in ACADF. It is shown
bellow in Proposition 26 that if |S| = 2 and it is stb-realizable in ADFs it is stb-realizable
in other subclasses of ADFs explained in this study.

Proposition 26. Suppose that |S| = 2 and S is stb-realizable in ADFs. Then S is
stb-realizable in ASADFs.

Proof. Let S = {v1, v2}. By the assumption S is stb-realizable in ADFs then there exists
an ADF D = (A,L,C) s.t. stb(D) = S. Construct an ADF F = (A′, L′, C ′) as follows:

• Let A′ = A.

• For each a ∈ A′:

– If a 7→ t ∈ v1 ∩ v2 (resp. a 7→ f ∈ v1 ∩ v2) then let ϕa : > ∈ C ′ (resp.
ϕa : ⊥ ∈ C ′).

– otherwise, If a 7→ t ∈ v1 (resp. a 7→ f ∈ v1) then let ϕa :
∧
ai 7→f∈v1 ¬ai (resp.

ϕa :
∧
ai 7→t∈v1 ¬ai).

Since S is stb-realizable in ADFs it is not the case that all arguments are assigned to t by
either v1 or v2. Hence, by the definition of C ′, F is an ASADF. In addition, stb(F ) = S.
That is, S is stb-realizable in ASADFs.

By the construction of acceptance conditions in the proof of Proposition 26 each con-
structed ADF F is not only a ASADF but also correspondence to a SYMAF. Therefore,
whenever, an interpretation-set S with cardinality two is stb-realizable in ADFs it is also
stb-realizable in SYMAFs and in AFs as a consequence. However, Example 39 shows that
there exists an interpretation-set S with cardinality one which is stb-realizable in ADFs
and it is not stb-realizable in AFs.

Corollary 9, Proposition 26 and the fact that each ASADF is an ASSADF and a BADF
yield the following corollary.

Corollary 10. Suppose that |S| ≤ 2 and S is stb-realizable in ADFs. Then S is stb-
realizable in α, for α ∈ {ASADF,ASSADF, BADF}.

In the following we investigate whether there is a corresponding result for two-valued
models as stable models proven in Proposition 26. That is, we illustrate in Example 40
that it is not the case that whenever the cardinality of interpretation-set is two and it is
mod-realizable in ADFs then it is mod-realizable in ASADFs.

Example 40. Let S = {{a 7→ t}, {a 7→ f}}. It is clear that S is mod-realizable in ADFs
by F = ({a}, {ϕa : a}) and it is not realizable by any ASADFs.

74



4.4. Summary

The same interpretation-set S = {{a 7→ t}, {a 7→ f}} of Example 40 is used to show that
there exists an interpretation-set with cardinality two which is prf-realizable in ADFs
but not in ASADFs.

4.4 Summary
In the beginning of this chapter first we focused on AFs and its subclass SYMAFs. The
relations between signatures of SYMAFs for semantics, σ ∈ {adm, cf, prf, stb,nai} were
studied in Theorem 10, depicted in Figure 4.4. For instance, it is shown that while Σadm

AF

is a strict superset of Σcf
AF by [25] , the signature of SYMAFs under admissible and

conflict-free semantics are equivalent.

{{∅}} Σnai = Σprf = ΣstbΣadm = Σcf

Σcom

Figure 4.4: Relations between signatures of SYMAFs shown in Theorem 10

Next we investigated expressiveness of AFs in comparison with SYMAFs. In Theorem 11
depicted in Figure 4.5 we have shown that for σ ∈ {adm, prf, stb, com} the signatures of
AFs are strict supersets of the signatures of SYMAFs while for σ ∈ {cf,nai, grd} both of
them are equivalent.

Σσ
AF = Σσ

SYMAF Σσ
AFΣσ

SYMAF

for σ ∈ {cf,nai, grd} for σ ∈ {adm, prf, stb, com}

Figure 4.5: Relations between signatures of SYMAFs and AFs shown in Theorem 11

In the following of this section we concentrated on the cardinality of an extension-set
and we investigated some results of σ-realizability in SYMAFs based on cardinality of
extension-sets which do not hold in general. For instance, it is proven in Theorem 11 that
Σstb
AF is a strict superset of Σstb

SYMAF, while whenever the cardinality of an extension-set is
two, it is stb-realizable in AFs if and only if it is stb-realizable in SYMAFs.

Via Section 4.3.1 we studied the expressiveness of subclasses of ADFs. The main results
which are proven in Theorems 12, 13, 14 and Proposition 19 are depicted in Figure 4.6,
for σ ∈ {adm, com, prf}.
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Σσ
ADFΣσ

BADFΣσ
ASSADFΣσ

ASADF

Σσ
AF

Figure 4.6: Expressivity of subclasses of ADFs shown in Theorem 14 for σ ∈
{adm, prf, com}

In addition, it is proven that, while signatures of ASADFs and ASSADFs are incomparable
with signatures of AFs in most of the semantics, namely for σ ∈ {adm, com, prf}, Σstb

AF

is a strict subset of Σstb
ASADF. It is shown by [39] that Σstb

AF is a strict subset of Σstb
BADF .

However, in Proposition 16 it is proven that Σstb
AF \ {vε} is a strict subset of Σstb

ASADF.
Thus, consequently, Σstb

AF is a strict subset of Σstb
ASSADF and Σstb

BADF .
Moreover, the expressiveness of ACADFs in comparison to ADFs, ASADFs and ASSADFs
is also studied in this work. We showed that signatures of ACADFs are strict subsets
of signatures of ASSADFs, and in consequence they are strict subsets of signature of
ASSADFs and signature of ADFs for σ ∈ {prf, com, grd, stb,mod}. While the signature
of ACADFs are also a strict subset of the signature of ADFs for admissible semantics
as well, Σadm

ACADF * Σadm
β , for β ∈ {ASADF,ASSADF}. At the end of this section we

again focused on the cardinality of an interpretation-set and for instance, we have shown
that an interpretation-set with cardinality 2 is stb-realizable in ADFs if and only if it is
stb-realizable in ASADFs.

76



CHAPTER 5
Experiments on Subclasses of

ADFs

In this chapter we change focus, and report on a preliminary investigation on the extent
to which current solvers for ADFs are affected by their inputs being restricted to certain
subclasses of ADFs. For this, we first adapted an existing generator for ADFs so that it
generates acyclic, attack symmetric and acyclic support symmetric ADFs inhereting the
structure of any arbitrary undirected graph. Secondly, we carried out experiments to
determine the performance of existing solvers for ADFs on acyclic vs non-acylic ADFs
generated via our generator.

The first section of this chapter describes the functioning (Section 5.1) as well as the
use (Section 5.1.2) of the generator we implemented. In Section 5.2 we report on the
experimental setup (Section 5.2.2) and the results of our experiments (Section 5.2.3),
after having given a very brief survey on current existing solvers for ADFs (Section 5.2.1).

5.1 A generator for subclasses of ADFs

5.1.1 Description of the generator

This section focuses on the description of the generator by which acyclic ADFs, attack
symmetric ADFs (ASADFs) and acyclic support symmetric ADFs (ASSADFs) are gener-
ated for the input undirected graph s.t. the generated ADF inheriting the structure of
the input graph except that it is irreflexive. As indicated previously, the generator on
which we report here builds on an existing generator for ADFs used in the experiments
reported in [19]. We have modified the generator reported in [19] so that it expects
undirected graphs as input. The generated ADFs then inherit the structure of the input
graphs, i.e. arguments correspond to nodes and attacks to edges in the input graph. We
also build on the generator in [19] in constructing the acceptance conditions associated
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5. Experiments on Subclasses of ADFs

to the arguments. Arguments without parents (in the input graph) have as acceptance
conditions either > or ⊥ with equal probability. Otherwise, parents of each argument
s in the input graph are first assigned to one of five different groups: attackers, group-
attackers, supporters, group-supporters and the XOR group denoted by A, B, S, T and X,
respectively. This is done with some probability that can be given by the user; the default
is equal probability. The group to which a parent of s is assigned, determines how it will
appear in the acceptance condition of s. Attackers appear negated and connected via
conjunction. Group-attackers appear negated and connected via disjunction. Supporters
appear as positive (not negated) literals connected via disjunction, while group-supporters
appear positively and connected via conjunction. Finally, parents in the XOR group are
connected via XOR; they appear positively or negatively with equal probability.
In the following we detail how we adapt the generator reported in [19] for our purposes.

To compute an acyclic ADF:

1. A total order on the vertices of the input graph is chosen randomly.

2. An acyclic directed graph is produced based on the total order.

3. Each parent of an argument is assigned to one of the 5 groups explained above
with equal probability.

4. The acceptance condition of each argument is constructed following [19].

To compute an ASADF:

1. All self-loops of the given graph are removed.

2. Let a and b be two arbitrary nodes of an edge of the input graph. By the assumption
the input graph is undirected. Hence, a ∈ par(ϕb) and b ∈ par(ϕa).

3. Since each parent in an ASADF is an attacker, it could either belong to attacks or
group-attacks.

4. The acceptance condition of each argument is constructed following [19].

To compute the ASSADF:

1. A total order is picked for vertices of the input graph.

2. A directed graph is produced based on the total order. Note that, this directed
graph is used to choose supporter nodes.

3. Those parents of an argument appearing as parents also in the support-group are
assigned to any of the five groups: attacks, group-attacks, support, group-support,
XOR.
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4. Those parents not being parents in the support group (the one which are not chosen
in previous part) can only be attacks or group-attacks.

5. The acceptance condition of each argument is constructed following [19].

Our generator has been implemented using the programming language Scala [31]; Scala
programs can be compiled into Java executables.

5.1.2 Use of the generator

We make the generator, adfgen (version 0.2) available, as a java executable 1. To see all
the options with which the generator can be executed (some of these are not relevant for
our purposes), adfgen can be called as follows:

java -jar adfgen-0.2.0.jar -h

The input graph is specified via the option -I inputFile where inputFile is a file containing
the description of the graph. We refer to the representation of the graph later on.
There are two main types of options for calling adfgen that are relevant for our work.
The first type of options control the generation of the acceptance conditions while the
others are used to transform the input graph. In the case of the acceptance conditions,
probabilities with which parents are assigned to one of the different groups detailed in
Subsection 5.1 are set via the handle -A pA -S pS -B pB -T pT -X pX where A, S, B, T,
X stand for attackers, supporters, group-attackers, group-supporters, XOR-group and
pA, pS, pB, pT, pX refer to the probabilities.
Regarding the construction of the graph, it can be controlled via the following options:

-acyc make (undirected) graph generated via input file acyclic.

-nslf remove self-loops from (undirected) graph generated from input file.

-supacyc make ASSADFs which may not irreflexive.

Our design of adfgen enables a user to generate not only acyclic ADFs, ASADFs and
ASSADFs but also other desired ADFs by changing the input parameters.
There are some other options like -G used to generate a random ADF based on the input
graph which we do not go into details, since they are not related to our implementation.
The options -c and -d are used to determine the format of the output (these are optional).

-c generate integer identifiers for arguments in the input graph.

-d print debug information.
1https://www.dbai.tuwien.ac.at/proj/grappa/subadfgen
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5. Experiments on Subclasses of ADFs

In the following we give examples of the use of adfgen to generate arbitrary ADFs as well
as acyclic ADFs, ASADFs and ASSADFs.

• An arbitrary ADF can be constructed as follows:

java -jar adfgen-0.2.0.jar -I [given graph] -A [pA] -S[pS] -B [pB] -T [pT] -X
[pX] [options]

The parameter [given graph] is the file name where the input graph is specified. It
is mandatory to specify the file name. [p–] could be any arbitrary number between
0 and 1. It is used to determine the probability of assigning parents to groups.
Note that the sum of the probability of all groups has to be one. Although, if they
are not denoted in command line the probability of all groups are assumed equal
by default. [options] can be either -c, -d or none of them.

• An acyclic ADF can be generated as follows:

java -jar adfgen-0.2.0.jar -I [given graph] -acyc -A [pA] -S [pS] -B [pB] -T [pT]
-X [pX] [options]

To generate an acyclic ADF [given graph] and -acyc are mandatory. Just as for
generating an arbitrary graph assigning probabilities parents to groups is optional.

• An ASADF can be generating using:

java -jar adfgen-0.2.0.jar -I [given graph] -nslf -A [p] -S 0.0 -B [p] -T 0.0 -X
0.0 [options]

Since we desire to generate ASADFs, the probabilities of -S, -T and -X are 0.0.
In addition, choosing the probability of A and B must be specified by the user.
Moreover, using -nslf in the command eliminates all self-loops in the input graph.
Hence, to generate an ASADF using -nslf is necessary.

• An ASSADF can be generated by using:

java -jar adfgen-0.2.0.jar -I [given graph] -nslf -supacyc [options]

Having [given graph], -nslf and -supacyc are necessary to generate an ASSADF. This
command assigns parents also appearing as parents in the support or support-group
to one of the five groups with equal probability (if one wants, it is also possible to
control the probabilities). Parents which do not appear as parents in supports or
support-groups are considered attackers or group-attackers with equal probability.
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Input

To represent the input graph, the input file should contain an expression (relation schema)
”edge(”s”, ”t”).” and an expression ”vertex(”s”).” in which s and t are strings representing
vertices of the graph. An expression ”edge(”s”, ”t”).” in the input file means that there
is an edge between the two vertices s and t in the given graph. It is not necessary to list
all vertices appearing in edges in the graph, that is only necessary for isolated nodes.
As mentioned previously the input graph is assumed to be undirected. If a user writes
both ”edge(”a”, ”b”).” and ”edge(”b”, ”a”).” in the input file the program ignores one of
them without any error being indicated.

Output

The format of the output of adfgen has been chosen to be compatible with the input
of existing solver systems for ADFs. The output of the program contains propositional
formulas each of which represents the acceptance condition of an argument of the ADF.
The output file contains an expression ”s(s).” and an expression ”ac(s, acceptance −
condition).” where ”s” is the name of the argument and ”acceptance − condition” is
the acceptance condition associated to the argument with identifier s. In the following
different symbols which may occur in the output file are described:

”ac(a, c(v))” (resp. ”ac(a, c(f))”) denotes that the acceptance condition of argument
a is equivalent to > (resp. ⊥).

The symbols for the connectives used in the output file are ”neg” for ¬, ”and” for
∧, ”or” for ∨ and ”xor” for XOR.

Example 41. The input format of the graph which is depicted in Figure 5.1 is as follows:

edge(”b”, ”e”).
edge(”c”, ”a”).
edge(”a”, ”d”).
edge(”d”, ”e”).
edge(”a”, ”b”).
edge(”e”, ”e”).
edge(”b”, ”b”).
vertex(”f”).

A possible acyclic ADF generated by adfgen from input graph of Example 41, depicted
in Figure 5.2, is as follows:
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a

d

e

b

c f

Figure 5.1: Input graph of Example 41

s ( a ) .
s ( e ) .
s (d ) .
s (b ) .
s ( c ) .
s ( f ) .
ac ( a , and ( neg (d ) , or ( neg ( c ) , b ) ) ) .
ac ( e , d ) .
ac (d , c ( f ) ) .
ac (b , neg ( e ) ) .
ac ( c , c ( f ) ) .
ac ( f , c ( f ) ) .

a

d

e

b

c f

Figure 5.2: Acyclic ADF inheriting the structure of the graph of Figure 5.1

The attack symmetric ADF, depicted in Figure 5.3, is a possible output of adfgen for the
graph depicted in Figure 5.1.

s ( a ) .
s ( e ) .
s (d ) .
s (b ) .
s ( c ) .
s ( f ) .
ac ( a , or ( or ( neg ( c ) , neg (d ) ) , neg (b ) ) ) .
ac ( e , or ( neg (b ) , neg (d ) ) ) .
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ac (d , and ( neg ( a ) , neg ( e ) ) ) .
ac (b , or ( neg ( a ) , neg ( e ) ) ) .
ac ( c , neg ( a ) ) .
ac ( f , c ( v ) ) .

a

d

e

b

c f

Figure 5.3: Attack symmetric ADF inheriting the structure of the graph of Figure 5.1

Since each ASADF is an ASSADF, the graph depicted in Figure 5.3 could be supposed as
an ASSADF output of Example 41. The graphs corresponding to ASADFs and ASSADFs
generated by adfgen for the same input graph are equal except on the acceptance
conditions. However, there exist ASSADFs for a given graph which are not ASADFs. A
possible ASSADF inheriting the structure of the graph of Figure 5.1 which is not an
ASADF is as the follows.

s ( a ) .
s ( e ) .
s (d ) .
s (b ) .
s ( c ) .
s ( f ) .
ac ( a , or ( and ( neg ( c ) , neg (d ) ) , b ) ) .
ac ( e , or (b , d ) ) .
ac (d , or ( neg ( a ) , neg ( e ) ) ) .
ac (b , and ( neg ( a ) , neg ( e ) ) ) .
ac ( c , a ) .
ac ( f , c ( f ) ) .

For instance, in the above ASSADF, vi(ϕa) = t for v1 = {b 7→ t, c 7→ f, d 7→ f},
v2 = {b 7→ f, c 7→ f, d 7→ f}, v3 = {b 7→ t, c 7→ f, d 7→ t}, v4 = {b 7→ t, c 7→ t, d 7→ f} and
v5 = {b 7→ t, c 7→ t, d 7→ t}. In addition, vi|bt(ϕa) = t for 1 ≤ i ≤ 5. This means, b is a
supporter of a. Hence, the above ADF cannot be an ASADF.
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5.2 The effect of cycles on the performance of solvers for
ADFs

5.2.1 Overview of ADF systems

Given the special role of abstract argumentation in artificial intelligence and the fact that
there are many reasoning problems with high computational complexity, implementation
methods are an important research topic. In [21] an overview of different methods for
solving abstract argumentation tasks on Dung style framework are given. Two main
approaches explained in [21] are reduction based approaches and direct approaches. Only
the former method has been taken up for abstract dialectical frameworks. Reduction
based approaches for ADF can be classified according to the target-formalism: answer set
programming (ASP) and Qualified Boolean (QADFs). Among the mentioned methods
answer set programming (ASP) has been particularly a significant.

The first system for ADFs, ADFSys [27] is already based on ASP. DIAMOND [27, 26] is the
successor of ADFSys. There are several versions of DIAMOND by now 2. Since DIAMOND relies
on static encodings, it is limited by the data complexity of ASP. A more recent system
for ADFs, YADF 3 [19], uses dynamic encodings.

As mentioned previously, the only other existing approach to implementing reasoning
on ADFs, implemented in the system QADF 4 [23], is via reduction to quantified boolean
formulas, more specifically to the problem of satisfiability of QBFs, QSAT. This enables
using QSAT solvers as reasoning back-ends.

5.2.2 Experimental setup

As indicated in the introduction, we have carried out initial experiments to evaluate the
effect of cycles on the performance of existing solvers for ADFs. To do this evaluation
first we redefine two decision problems associated to ADFs used in the solvers.

• Credulous acceptance under σ: Let F = (A,L,C) be an ADF and a ∈ A be an
argument. Dose there exist a σ-interpretation v s.t. v(ϕa) = t?

• Skeptical acceptance under σ: Let F = (A,L,C) be an ADF and a ∈ A be an
argument. Is it the case that v(ϕa) = t for all σ-interpretations v?

More specifically, we carried out experiments comparing the performance of 2 different
versions of DIAMOND, as well as the recent versions of YADF and QADF on credulous and
skeptical acceptance problems for the admissible and preferred semantics. We ran the
solvers on acyclic and non-acyclic ADFs generated by our ADF generator, adfgen.

2http://diamond-adf.sourceforge.net/
3http://www.dbai.tuwien.ac.at/proj/adf/yadf/
4https://www.dbai.tuwien.ac.at/proj/adf/qadf/
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5.2. The effect of cycles on the performance of solvers for ADFs

For the experiments we generated ADFs using 8 different metro networks as an input
graphs. 10 different acyclic ADFs, resp. non-acyclic ADFs, are generated for each input
graph. Therefore, in total 160 instances are generated, 80 instances for acyclic ADFs and
80 instances for non-acyclic ADFs.
For DIAMOND we used the last version which is known to have no errors, 0.9, as well
as a recent version, goDIAMOND, which has been submitted to the second international
competition for computational models of argumentation (ICCMA 2017) 5. For YADF we
used version 0.1.0, with the rule decomposition tool lpopt [10]. For QADF we used version
0.3.2 with the preprocessing tool bloqqer035 [11] and the QSAT solver DepQBF, version 4.0
[30]. Both for DepQBF and YADF we used clingo version 4.4.0.

All experiments were carried out on an Debian (8.5) machine with eight IntelXeon processors
(2.33 GHz) and 48 GB of memory. In our experiments we chose a time-out of 10 minutes
for each run of the reasoners on the different ADF instances.

5.2.3 Result of the experiment

It is shown in Table 5.1 that in order to decide credulous acceptance for the admissible
semantics for both acyclic ADFs and non-acyclic ADFs in all systems except QADF there
are no time-outs. There are significant number of time-outs for QADF on non-acyclic
ADFs. goDIAMOND fares better regarding average running time for both acyclic and non-
acyclic instances. For all systems, there is a substantial improvement in performance for
acyclic instances.

Time-outs Mean
DIAMOND 0 5.2813

adm-acyclic goDIAMOND 0 0.0667
YADF 0 1.5727
QADF 4 3.1635
DIAMOND 0 17.641

adm-non-acyclic goDIAMOND 0 0.202
YADF 0 2.1679
QADF 35 5.5060

Table 5.1: Number of time-outs and Mean running times in seconds for credulous
acceptance under admissible semantics.

Figure 5.4 represents the number of acyclic and non-acyclic ADF-credulous-acceptance-
problems solved in running time x second s.t. (0 < x ≤ 600) by DIAMOND, goDIAMOND, YADF

and QADF for the admissible semantics.

Table 5.2 shows that the performance of all systems for skeptical acceptance for the
preferred semantics for both acyclic and non-acyclic ADFs are not so good as for credulous

5https://www.dbai.tuwien.ac.at/iccma17/
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Figure 5.4: Number of instances solved in running time less than x second (0 < x ≤ 600)
for acyclic and non-acyclic reasoning under admissible.

acceptance problems for the admissible semantics. Systems DIAMOND 0.9 and QADF have
time-outs on all instances. The system goDIAMOND again fares much better than the other
systems. It timed-out only on 8 instances for solving non-acyclic ADFs and was able to
solve all acyclic ADFs in a very short time.

Time-outs Mean
DIAMOND 80 –

prf-acyclic goDIAMOND 0 0.144
YADF 57 90.696
QADF 80 –
DIAMOND 80 –

prf-non-acyclic goDIAMOND 8 1.2838
YADF 40 126.128
QADF 80 –

Table 5.2: Number of time-outs and mean running times in seconds for skeptical accep-
tance under the preferred semantics

Figure 5.5 represents the number of acyclic and non-acyclic ADF skeptical acceptance
problems solved by YADF and goDIAMOND in running time x second (0 < x ≤ 600) under
the preferred semantics. Since DIAMOND and QADF timed-out on all instances they are
not depicted in this figure. In Figure 5.5 it seems that YADF under preferred works better
on non-acyclic ADFs than acyclic ADFs. The reason is that YADF solves only on 23
acyclic ADFs, however it solves 40 non-acyclic ADFs. Table 5.2 illustrates that the mean
running time of YADF on acyclic ADFs under preferred is better than for non-acyclic
ADFs. That is, mean running time of solving acyclic ADFs under both admissible and
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preferred interpretations in all systems which are used in these experiments is less than
the mean running time of solving non-acyclic ADFs.
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Figure 5.5: Number of instances solved in running time less than x seconds (0 < x ≤ 600)
for acyclic and non-acyclic reasoning under preferred.

It is proven by Theorem 3 that each acyclic ADF contains a unique preferred interpretation.
Therefore, for acyclic ADFs each argument is credulously accepted under preferred
semantics if and only if it is skeptically accepted under preferred semantics. That is,
by uniqueness of preferred interpretation in acyclc ADFs, credulous acceptance and
skeptical acceptance are equivalent for acyclic ADFs. In addition, credulous acceptance
for admissible semantics and preferred semantics are the same. Hence, in acyclic ADFs
an argument is credulously accepted under admissible semantics iff it is skeptically
accepted under preferred semantics. Therefore, these two decision problem have the
same complexity, theoretically. However, the experiments on which we reported in
this section show that there is a significant different between the results of deciding
credulous acceptance for the admissible semantics and deciding skeptical acceptance for
the preferred semantics for acyclic ADFs in practice.

On the other hand, while the experiments do not clearly suggest that current ADF
solvers perform better for acyclic ADFs when making use of encodings for the skeptical
acceptance for the preferred semantics, it is possible to conclude that there is some
difference in the case of the encodings for the admissible semantics. The latter may be
due to the fact that acyclicity of ADFs is recognized ”under the hood” at least for the
admissible semantics, i.e. by the ASP solvers, pre-processing, rule-decomposition or the
QBF solver. Further experiments would be necessary to show exactly what causes the
solvers to perform better for the admissible semantics, as well as whether also for the
preferred semantics encodings there is some improvement in performance.
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CHAPTER 6
Conclusion and Future Work

6.1 Summary
A motivation of the current work was to cover some of the gaps in the understanding
of AFs and ADFs. For instance, to the best of our knowledge there is no equivalent of
Dung’s fundamental Lemma for ADFs; thus, we reformulated this important lemma and
proved that it holds for ADFs in the background of this work. Also, Dung [24] showed
that well-founded AFs are equivalent when evaluated under the complete, grounded,
preferred, and stable semantics. In Section 3.1 we showed that the same semantics (plus
the two-valued) coincide for acylic ADFs.

A further topic in this work was to verify whether properties that are known to hold for
symmetric AFs [22] also hold for subclasses of ADFs. While symmetric AFs are coherent
and relatively grounded, we showed that symmetric ADFs are neither coherent nor
relatively grounded. To deepen our investigation on this issue we introduced more fine-
grained subclasses of ADFs: attack symmetric ADFs, acyclic support symmetric ADFs
and complete ADFs. We were then able to prove that, for example, attack symmetric
ADFs and acyclic support symmetric ADFs are weak-coherent.

We also considered properties of symmetric AFs which are not studied in [22], but are
relevant to understand the relative expressivity of subclasses of AFs. For instance, we
showed that the admissible and complete semantics are not equivalent for symmetric AFs.
We also studied similar questions for ADFs. For example, we were able to prove that for
complete ADFs the admissible and complete semantics coincide. All results of our study
on properties of subclasses of AFs and ADFs are summarised in Tables 3.1 and 3.2.

A central aspect of our work has been to compare the expressivity of subclasses of AFs
and ADFs from the perspective of realizability. In the first section of Chapter 4, we
showed that Σσ

AF is more expressive than Σσ
SYMAF for σ ∈ {adm, prf, stb, com} and that

they are equivalent for σ ∈ {cf,nai, grd}. Then we showed some general results: for
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instance, while Σσ
AF is more expressive than Σσ

SYMAF for σ ∈ {prf, stb}, each extension-set
with cardinality two which is σ-realizable in AFs is also σ-realizable in SYMAFs for
σ ∈ {prf, stb}. Moreover, it was shown that any extension-set with cardinality two is not
com-realizable in SYMAFs.

One of the main result of Section 4.3 is that: Σσ
ASADF ( Σσ

ASSADF ( Σσ
BADF ( Σσ

ADF

for σ ∈ {adm, com, prf}. In addition, we showed that Σmod
BADF is a strict superset of

Σmod
ASSADF. While Σmod

ASSADF is a superset of Σmod
ASADF, we were not able to determine whether

Σmod
ASSADF 6= Σmod

ASADF. [39] showed that Σstb
BADF is a strict superset of Σstb

AF ; we proved
that, while Σσ

AF is incomparable with Σσ
ASADF, and Σσ

ASSADF for σ ∈ {adm, prf, com},
Σstb
AF \{vε} is a strict subset of Σstb

ASADF and consequently is a strict subset of Σstb
ASSADF and

Σstb
BADF . However, it remains to be seen whether the relations among Σstb

ASADF, Σstb
ASSADF

and Σstb
BADF are strict.

Although all ADFs contain the unique grounded interpretation there is no guarantee that
it is grd-realizable in ACADFs. For instance, an interpretation-set S = {a 7→ u, b 7→ u} is
grd-realizable in ADFs and it is not grd-realizable in ACADFs because the unique grounded
interpretation of each ACADF is a two valued model by Theorem 3. Moreover, we proved
that for most of the semantics, i.e. σ ∈ {prf, com, grd, stb,mod} any interpretation-set
which is σ-realizable in ACADFs is also σ-realizable in ASADFs and consequently in
ASSADFs as well. However, admissibility is an exception. For instance, the interpretation-
set S = {{a 7→ u, b 7→ u}, {a 7→ t, b 7→ u}, {a 7→ t, b 7→ t}} is adm-realizable in ACADFs
but not in ASADFs and ASSADFs. At the end of Section 4.3.1 we proved that whenever
the cardinality of an interpretation-set which is stb-realizable in ADFs is less than or
equal to two, it is stb-realizable in ASADFs and ASSADFs.

In the last chapter of this work we reported on a modification of the generator defined
in [19] so that, given an undirected graph as input, it is able to produce acyclic ADFs,
attack symmetric ADFs, as well as acyclic support symmetric ADFs. We used this
generator in order to evaluate the effect of cycles on the the performance of existing
solvers for ADFs. Specifically, we carried out experiments to compare the performance of
two versions of the solver DIAMOND as well as YADF and QADF on credulous and skeptical
acceptance problems for the admissible and preferred interpretations.

As expected, our experiments show a significant improvement in the performance of ADF
solvers for acyclic ADFs in comparison to non-acyclic ADFs for credulous acceptance
w.r.t. the admissible semantics. On the other hand, in Theorem 3 we showed that
each acyclic ADF possesses the unique preferred interpretation. That is, in acyclic
ADFs each argument is credulously accepted under the preferred semantics iff it is
skeptically accepted. Moreover, credulous acceptance for admissible semantics and
preferred semantics are the same. Thus, credulous acceptance for admissible semantics
and skeptical acceptance for the preferred semantics in acyclic ADFs have the same
computational complexity, theoretically. However, our experiments show a significant
difference in deciding credulous acceptance for the admissible semantics and skeptical
acceptance for the preferred semantics for acyclic ADFs. This suggests that current
solvers for ADFs are not yet tuned to make use of acyclicity for the preferred semantics.
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6.2. Future Work

6.2 Future Work
The presented work leaves open various directions for future work.

• There is the work by Polberg [32] which introduced further ADF semantics and in
the future we want to check how these semantics behave in the subclasses studied
in this thesis.

• The computational complexity of reasoning tasks for ADFs are well-studied [42,
43, 28]. We plan to study the computational complexity of reasoning tasks for the
subclasses of ADFs considered in Chapter 3.

• There remain some open questions in regard to expressiveness as considered in
Chapter 4. For instance, while it was shown that Σstb

BADF is a superset of Σstb
ASSADF

and Σstb
ASSADF is a superset of Σstb

ASADF, we still need to determine whether these
properties are strict. In addition, the expressivity of a number of further semantics
have not been studied yet.

• Finally, the results of our experiments in Chapter 5 suggest that solvers for ADFs
can/should be optimised w.r.t. subclasses. Nevertheless, a more detailed experi-
mental evaluations, also with subclasses of ADFs beyond acyclic ADFs, would also
be of benefit.
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