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Kurzfassung

In dieser Arbeit wird untersucht, inwieweit sich Wellenphänomene mittels Randintegral-
methoden approximieren lassen. Derartige Methoden zeichnen sich dadurch aus, dass
anstelle einer partiellen Differentialgleichung eine Integralgleichung am Rand des Gebi-
ets betrachtet wird. Ein Vorteil dieser Formulierung ist, dass dadurch Streuprobleme auf
unbeschränkten Gebieten numerisch behandelt werden können. Für stationäre Probleme
sind Randelementmethoden bereits eine etablierte alternative zu klassischen Finite Element
Methoden. Um Randintegralmethoden für Zeitabhängige Probleme anwendbar zu machen
bietet sich die Methode der Faltungsquadratur von Lubich [Lub88a] an. Diese Methode
besitzt günstige Stabilitätseigenschaften und besitzt ein Äquivalenzprinzip zur Approxima-
tion einer Halbgruppe mittels eines passenden Zeitschrittverfahrens. Dieses Prinzip wird
in dieser Arbeit ausgenutzt um das betrachtete Diskretisierungsschema zu analysieren und
unterscheidet sich von der klassischen Herangehensweise, welche die Konvergenz mittels
Abschätzungen im Laplace-Bereich zeigt. Diese reine Zeitbereichsmethode hat den Vorteil,
dass die so erlangten Abschätzungen meist schärfer sind und mit weniger Regularitätsan-
nahmen auskommen.

In dieser Arbeit werden drei unterschiedliche Modellprobleme betrachtet: die zeitabhängige
Schrödingergleichung in Rd, diskretisiert mittels einer Kombination von Finiten- und Ran-
delementen, ein nichtlineares Streuproblem im Außenraum, gegeben durch die lineare
Wellengleichung mit nichtlinearer Randbedingung, und ein Streuproblem für Komposit-
materialien mit nicht-konstanter Wellenzahl. Für diese Modellprobleme werden Fragen zur
Konvergenz und Stabilität beantwortet.

Numerische Simulationen untermauern die theoretischen Resultate.





Abstract

In this thesis, we consider different classes of time dependent wave propagation problems,
and investigate whether they can be efficiently approximated using boundary integral meth-
ods. The idea of these methods is to replace partial differential equations with an integral
equation on the boundary of the domain of interest. One of the main advantages of this
approach is that problems posed on unbounded domains can be handled without further
difficulties. For stationary problems boundary integral methods are well established as an
alternative to more classical finite element based methods. In order to treat time dependent
problems, one possibility is to apply Lubich’s method of Convolution Quadrature [Lub88a].
This approach has many favorable properties, including an equivalence principle, which re-
lates the CQ approximation to the approximation of the underlying semigroup with an
appropriate time-stepping scheme. In this work, we exploit this equivalence to analyze the
discretization schemes under consideration. Our approach differs from the more standard
way of treating time domain boundary integral equations, which relies on estimate in the
Laplace domain in order to infer convergence results. The pure time-domain approach
has the benefit of yielding stronger estimates with fewer regularity assumptions than the
Laplace domain counterpart.

In this thesis, we consider three different model problems, namely the time dependent
Schrödinger equation posed in Rd, treated by a coupling of Finite- and Boundary Element
Methods, a nonlinear scattering problem in the exterior domain consisting of the linear
wave equation augmented by a nonlinear impedance boundary condition, and a scattering
problem by a composite material characterized by a non-constant wave number. For all
of these model problems we answer questions regarding convergence and stability of the
discretization scheme.

Numerical simulations support the theoretical findings.
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1 Introduction

Many phenomena in nature can be modeled by the propagation of waves, from water
waves to electromagnetic scattering to the quantum wave functions on the microscopic
scale. Mathematically, these phenomena can be modeled by partial differential equations
of hyperbolic type. In this thesis, we are concerned with deriving and analyzing ways to
approximately solve these partial differential equations in a robust and efficient way.

A particular feature of many of these problems is that they are posed on an unbounded
domain, either the full space Rd or the exterior of some object Rd \ Ω. The most widely
used discretization methods, namely Finite Element Methods (FEM) and Finite Difference
(FD) discretizations, cannot handle such domains in a straightforward way. To overcome
this limitation, oftentimes an artificial bounded domain is introduced on which the problem
is discretized using these methods. Then, some transparent boundary conditions are im-
posed on the artificially introduced boundary, such as Perfectly Matched Layer and Infinite
Element Methods.

Another possible approach, which has gained interest over the recent years, is to use
boundary integral methods to replace the differential equation on the unbounded domain
by an integral equation on the boundary. Due to this reformulation, it is possible to handle
unbounded domains without introducing additional difficulties. If the resulting integral
equations are discretized using an approach similar to the Finite Element Method, i.e., by
approximating the solution via piecewise polynomials on a triangulation of the boundary,
this is referred to as the Boundary Element Method (BEM).

For stationary problems, e.g., the Laplace or Helmholtz equations, boundary element
methods are fairly widespread and presented in the monographs [SS11; HW08; Ste08]. The
treatment of transient problems using this approach is not yet as common, an overview can
be found in [Say16]. When discretizing time domain boundary integral equations, there are
two main approaches: space-time Galerkin methods and Convolution Quadrature (CQ).
When employing a space-time Galerkin scheme, one directly discretizes the retarded poten-
tials associated with the wave equation. This introduces the need for accurately computing
singular integrals on non-standard shapes (namely, triangles intersected with time cones),
which makes the method difficult to implement in a stable way (early works on the math-
ematical basis for these methods are [BH86; BD86]). The other common approach, which
is the one taken in this thesis, is to use Lubich’s Convolution Quadrature, as introduced
in [Lub88a; Lub88b]. This approach has the benefit that it can be implemented easily
by reusing boundary element libraries developed for the Helmholtz equation. Convolu-
tion Quadrature comes in two flavors, based on multistep and Runge-Kutta time stepping
schemes. While the multistep kind, introduced in the original works by Lubich, only allows
order up to two, the Runge-Kutta Convolution Quadrature, introduced in [LO93], can be
implemented for an arbitrary convergence order. While it is most common to use constant
timestep size when using CQ (this will also be the class of methods considered in this
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1 Introduction

thesis), there have also been recent developments to allow varying timesteps in order to
accommodate problems with non-smooth solutions, cf. [LS13; LS15; SS17] for generalized
CQ based on the implicit Euler method and [LS16] for the Runge-Kutta based version.

The Convolution Quadrature method has many favorable stability properties, but the
methods lead to non-local problems of convolution type. In order to efficiently solve such
problems, there have been many efforts to develop fast algorithms see [Ban10; BS09; BK14;
HKS09]).

The analysis for Convolution Quadrature based methods is most commonly carried out
in the Laplace domain. There, frequency explicit bounds lead to convergence estimates in
a very black-box kind of approach (see [Lub88a; Lub88b; BL11; BLM11] for the general
theory). These kind of estimates in the Laplace domain were already developed for simple
wave propagation problems in the works by Bamberger and Ha-Duong (cf. [BH86; BD86]),
but a much larger class of problems was not unlocked until [LS09]. There, a new approach to
formulate the spatially discrete problem using non-standard Hilbert spaces was developed.

When passing through the Laplace domain for the analysis of the discretization scheme,
one loses certain information. Namely, the regularity assumptions on the exact solution are
unnecessarily restrictive and the dependence of the discretization error on the time interval
under consideration are somewhat opaque. In order to overcome these difficulties there has
recently been interest in bypassing the Laplace domain for the analysis and carrying out
all estimates directly in the time domain ([BLS15a; HS16; Has+15]; see also [MR17; BR17]
which form part of this thesis). This will be the approach taken in this thesis.

The “strictly in the time domain” approach for the discretization relies on applying
the “exotic Hilbert space” approach by Laliena-Sayas in the context of C0-semigroups for
the discretization in space, and an equivalence principle between the Convolution Quadra-
ture approximations and the multistep or Runge-Kutta approximations of said underlying
semigroup. Estimates on the convergence of the method are then inferred by applying
the general theory of such time-stepping methods, as developed in [BT79; BCT82; Cro76;
AP03].

1.1 Structure of this Dissertation

In Chapter 2, we collect some of the definitions and results needed for the following chapters.
Most notably, we present the theory of C0-semigroups in the linear and nonlinear case,
as well as the most important results on Sobolev spaces, which will feature prominently
throughout the rest of the thesis. We then present basic results on Finite- and Boundary
Element Methods, and generalize some well known results about boundary integrals for
the Helmholtz equation to the case of a class of Helmholtz-like systems.

Chapter 3 then presents the multistep and Runge-Kutta methods and introduces the
Convolution Quadrature discretization for convolution integrals. We then go on to present
results on the stability and approximation quality of Runge-Kutta methods when applied
in a semigroup setting. Most notably, we prove some new results on the convergence rates
when considering certain difference quotients and discrete integrals of RK-approximations,
which allows for norm bounds other than those of the underlying Banach space of the
semigroup.

2



1.1 Structure of this Dissertation

In Chapter 4 we apply the general methodology presented previously to a concrete prob-
lem, namely a discretization of the Schrödinger equation by a Runge-Kutta method in
time and a coupling of a Finite Element Method with a Boundary Element discretization
as transparent boundary condition. We then analyze the resulting fully discrete scheme in
terms of stability and convergence.

Chapter 5 showcases that time domain boundary integral methods can be used to dis-
cretize certain nonlinear problems. We consider the (linear) wave equation in the exterior
domain coupled with a nonlinear boundary condition of impedance type. We present sev-
eral convergence results, differing in the assumptions made on the underlying problem.
Most notably we show unconditional convergence, as well as full convergence rates if the
exact solution of the problem is sufficiently smooth.

Finally, Chapter 6 deals with a different kind of scattering problem, in which the scatterer
consists of a composite material with different wave speeds. Unlike Chapter 4 we use a
pure Boundary Element based method. In this case, we prove rigorous a priori estimates
for the discretization as well.

3





2 Background

2.1 General notation

We start by introducing some general notation used throughout the thesis. We write
R+ := {t ∈ R : t > 0} for the positive real numbers, and C+ := {z ∈ C : Re(z) > 0} as well
as C− := {z ∈ C : Re(z) < 0} for the complex half spaces.

For Banach spaces X and Y we write B(X ,Y) for the space of all bounded linear oper-
ators between X and Y together with the shorthand B(X ) := B(X ,X ). On B(X ,Y) we
consider the operator norm given by

‖T‖B(X ,Y) := sup
x∈X

‖Tx‖Y
‖x‖X

.

The topological dual space of X will be denoted by X ′, and we define the duality bracket
as 〈

x′, x
〉
X ′×X := x′(x) for x′ ∈ X ′ and x ∈ X .

We will also write Id for a generic identity operator, where it should be clear from context
which spaces are involved. If A is a linear operator (or matrix) on a space X , we often
write A− λ := A− λ Id and define

ρ(A) :=
{
λ ∈ C : (A− λ)−1 exists in B(X )

}
for the resolvent set and σ(A) := C \ ρ(A) for the spectrum. The inner product on a space
X will be denoted by 〈·, ·〉X , using the convention that it is linear in the first and antilinear
in the second. For two spaces X and Y we write X ↪→ Y to mean X ⊆ Y and Id : X → Y
is bounded.

For Banach spaces X , Y with X ⊆ Y we define the annihilator space

X ◦ :=
{
y′ ∈ Y ′ :

〈
y′, x

〉
Y ′×Y = 0 ∀x ∈ X

}
. (2.1)

We will also often write X for the topological closure of a set in a larger space Y which
should be clear from context. If we want to emphasize which norm is used, we write
clos(X , ‖·‖Y).

For operators A and B we write A ⊆ B if dom(A) ⊆ dom(B) and Ax = Bx for x ∈
dom(A). Also we write A for the operator obtained by taking the closure of the graph of
A.
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2 Background

We introduce notation for the spaces of p-times continuously differentiable functions with
values in a Banach space X . For a bounded interval I ⊆ R, we write Cp(I,X ), and equip
this space with the norm

‖u‖Cp(I,X ) :=

p∑
`=0

sup
τ∈I

∥∥∥u(`)(τ)
∥∥∥
X
.

In the same vein, we also introduce the space of essentially bounded functions L∞(I,X )
with the norm ‖u‖L∞(I,X ) := esssupt∈I ‖u(t)‖X , where esssup denotes the supremum up to
a set of measure zero.

Throughout this thesis, C will denote a generic constant greater than 0, which may be
different in each instance but will not depend on any of the principal quantities of interest
like mesh- or timestep size. We usually clarify the dependencies of the constant within the
context. For two quantities a, b, we also write a . b to mean a ≤ Cb, as well as a ∼ b to
mean a . b . a.

2.2 Semigroups

The phenomena considered in this dissertation can all be formulated using the theory of
operator semigroups. In this chapter we present the most important definitions. We spend
most of the time on the case of linear problems, the case of nonlinear semigroups will then
be handled in Section 2.2.2. For convenience, we collect the main results used throughout
this thesis. To keep the presentation succinct, we state all the results without proof and
refer the reader to the relevant literature.

2.2.1 Linear Semigroups

The theory of linear, strongly continuous semigroups (or C0-semigroups) is well developed
and can be found in most textbooks on functional analysis, see e.g. [Yos80] or, for a more
detailed treatment, see [Paz83]. In this section all spaces can either be real or complex
valued.

Definition 2.1. Let X denote a real or complex Banach space. A family of operators
T (t) ∈ B(X ) for t ≥ 0 is called a linear C0-semigroup given that the following conditions
hold:

(i) T (0) = Id,

(ii) T (s+ t) = T (s)T (t) for s, t ≥ 0,

(iii) T (t) is strongly continuous at 0, i.e. ‖T (t)x− x‖X
t→0+

→ 0 ∀x ∈ X .

Definition 2.2 (infinitesimal generator). Let (T (t))t≥0 be a C0 semigroup. The linear
operator A defined via

dom(A) :=

{
x ∈ X : lim

t→0+

T (t)x− x
t

exists

}
(2.2)

Ax := lim
t→0+

T (t)x− x
t

for x ∈ dom(A) (2.3)

6



2.2 Semigroups

is called the infinitesimal generator (or just generator) of T .

The following proposition is the main reason why we are interested in C0-semigroups,
namely they can be used to solve initial value problems.

Proposition 2.3 ([Paz83, Chapter 4, Theorem 1.3]). A semigroup T (·) is uniquely deter-
mined by its infinitesimal generator A. For all x ∈ X , the map t 7→ T (t)x is continuous.
For x ∈ dom(A), the function u(t) := T (t)x is continuously differentiable and solves the
initial value problem

u̇(t) :=
d

dt
u(t) = Au(t) ∀t > 0, (2.4a)

u(0) = x. (2.4b)

This proposition motivates the notation etA := T (t) for the semigroup which emphasizes
the importance of the generator A and generalizes the usual matrix exponential.

When discussing the existence of solutions to evolution equations by using semigroup
theory, it is necessary to determine whether a given operator A is the generator of a
semigroup. The following proposition gives a characterization of all generators.

Proposition 2.4 (Hille-Yosida, see [Paz83, Chapter 1, Theorem 5.3]). Let A be a linear
(unbounded) operator on a Banach space X . A is the generator of a C0-semigroup T (·) on
X if and only if:

(i) A is closed and densely defined, i.e. A = A and dom(A) = X ,

(ii) there exist constants ω ≥ 0, M ≥ 1, such that the resolvent set ρ(A) satisfies
{λ : Re(λ) > ω} ⊆ ρ(A) and powers of the resolvent can be bounded by:∥∥(A− λ)−n

∥∥
B(X )

≤ M

(Re(λ)− ω)n
∀Re(λ) > ω, ∀n ∈ N. (2.5)

The semigroup then satisfies the following a priori estimate:

‖T (t)‖B(X ) ≤M eωt ∀t ≥ 0. (2.6)

Corollary 2.5. Let A be the generator of a C0 semigroup T (·) satisfying (2.5). For initial
conditions u0 ∈ dom(A) we define u(t) := T (t)u0. Then, the following estimate holds:

‖u̇‖X ≤Meωt ‖Au0‖X .

Proof. It is easy to calculate that (see [Paz83, Chapter 1, Theorem 2.4, c)])

u̇(t) = AT (t)u0 = T (t)Au0.

The estimate follows from the operator bound on T (t) in Proposition 2.4.

While Proposition 2.4 gives necessary and sufficient conditions on generators of semi-
groups, they are often not easy to verify. We will instead make use of a different set of
conditions, at the heart of which lies the following definition:

7



2 Background

Definition 2.6. Let A be a linear (unbounded) operator on a Banach space X . We say A
is dissipative, iff for every x ∈ dom(A) there exists a functional x′ ∈ X ′ such that〈

x′, x
〉
X ′×X = ‖x‖2X =

∥∥x′∥∥2

X ′ and Re
〈
x′, Ax

〉
X ′×X ≤ 0.

If X is a Hilbert space, this condition can be simplified to

Re 〈Ax, x〉X ≤ 0 ∀x ∈ dom(A).

We call A maximally dissipative, if range(A− λ0) = X for some λ0 > 0.

Proposition 2.7 (Lumer-Phillips, [Paz83, Chapter 1, Theorem 4.3]). Let A be a linear
operator on a Banach space X with dense domain. Then, the following statements hold:

(i) If A is maximally dissipative, then A is the generator of a C0-semigroup of contrac-
tions T (t), i.e., the semigroup satisfies ‖T (t)‖B(X ) ≤ 1 ∀t ≥ 0.

(ii) If T (t) is a semigroup of contractions, then A is maximally dissipative.

This implies that in this case, the resolvent bound (2.5) becomes:∥∥(A− λ)−1
∥∥

B(X )
≤ 1

Re(λ)
∀ Re(λ) > 0. (2.7)

One last existence theorem tells us when an operator A generates a group instead of a
semigroup, i.e., we can also evaluate T (−t) with T (t)T (s) = T (s+ t) for arbitrary s, t ∈ R.
We first recall the definition of symmetric and self-adjoint operators:

Definition 2.8 (see e.g. [Paz83, Chapter 1, Definition 10.7]). A linear operator A on a
Hilbert space H is called symmetric, if dom(A) is dense and A ⊆ A∗ where A∗ is defined
via

〈Ax, y〉H = 〈x,A∗y〉H ∀x ∈ dom(A)

and dom(A∗) := {y ∈ H : A∗y exists}. We call the operator A self-adjoint if A∗ = A, i.e.
A is symmetric and dom(A) = dom(A∗).

We call a linear operator U unitary if it is isometric and bijective, i.e., ‖Ux‖H = ‖x‖H
and U−1 exists.

Proposition 2.9 (Stone, [Paz83, Chapter 1, Theorem 10.8]). Let A be a linear, densely
defined operator on a Hilbert space H. Then, A is the generator of linear group of unitary
operators if and only if iA is self-adjoint. This is also equivalent to the fact that ±A are
both maximally dissipative.

Proof. The first part is Stone’s theorem, [Paz83, Chapter 1,Theorem 10.8]. The second part
seems to be well known, but is usually not stated explicitly. Therefore we sketch a proof
for completeness. We show that generating a unitary C0-group is equivalent to ±A being
maximally dissipative. For a group of unitary operators T (t) it is easy to see that T (t) and
T (−t) are C0-semigroups of contractions and the generator of T (−t) is −A. Proposition 2.7
then implies that ±A are maximally dissipative. On the other hand, if ±A are both

8



2.2 Semigroups

maximally dissipative, they generate semigroups of contractions T (t) and S(t). We first
show S(t) = T (t)−1, which can be easily seen by [T (t)S(t)]′ = AT (t)S(t)− T (t)AS(t) = 0,
since semigroups commute with their generator. Since S(0) = T (0) = Id this implies
T (t)S(t) = Id. We define the function

U(t) :=

{
T (t) t ≥ 0

S(−t) t ≤ 0.

It is easy to check that (U(t))t∈R is a group of operators (see also [Paz83, Chapter 1, Lemma
6.4]). To see that U(t) is unitary we note that T (t) and T−1(t) = S(t) are contractions by
Proposition 2.7 thus U(t) is isometric for t ≥ 0 and analogously for t ≤ 0. Since U(t) is
also invertible this implies that U(t) is unitary.

Semigroup theory can also be used for analyzing PDEs with an inhomogeneous right-
hand side. To do so, we use the following variation of the well known Duhamel formula,
which can easily be checked:

Proposition 2.10 (Duhamel’s formula, [Paz83, Chapter 4, Corollary 2.11]). Let T (t) be
a C0-semigroup with infinitesimal generator A on a reflexive Banach space X . Let the
given right hand side f ∈ C ([0,∞),X ) be locally Lipschitz continuous and also assume
u0 ∈ dom(A). Define

u(t) := T (t)u0 +

∫ t

0
T (t− τ)f(τ) dτ, (2.8)

with the integral to be understood in the sense of Riemann. Then u solves the problem

d

dt
u(t)−Au(t) = f(t) ∀t > 0, (2.9)

u(0) = u0. (2.10)

For f ∈ C1 ((0,∞),X ), the assumption that X is reflexive is not needed and the following
a priori bounds holds:

‖u(t)‖X ≤Meωt
[
‖u0‖X +

∫ t

0
‖f(τ)‖X dτ

]
‖u̇(t)‖X ≤Meωt

[
‖Au0‖X + ‖f(0)‖X +

∫ t

0

∥∥∥ḟ(τ)
∥∥∥
X
dτ

]
.

Proof. Existence is the content of [Paz83, Chapter 4, Corollary 2.10 and 2.11]. The a priori
bound on u follows from the definition in (2.8) and (2.6). For the bound on the derivative,
we use the representation

u̇ = T (t)Au0 + T (t)f(0) +

∫ t

0
T (t− τ)ḟ(τ) dτ

(the term T (t)Au0 corresponds to the homogeneous semigroup, see Corollary 2.5; the inho-
mogeneous part follows by a change of variables and the fundamental theorem of calculus,
see the proof of [Paz83, Chapter 4, Corollary 2.5]). The bound then follows from the
operator bound on T (t) in (2.6).
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In order to account for non-homogeneous boundary conditions in a semigroup framework,
we will work with a lifting operator. The construction is taken from [Has+15]. Since it
highlights a common construction used throughout this thesis we include a short proof.

Proposition 2.11. Let A? be a closed linear operator on a reflexive Banach space X ,
and let B : dom(A?) → M be a bounded linear operator, where M is a normed space,
and dom(A?) carries the graph norm ‖x‖A? := ‖x‖X + ‖A?x‖X . We make the following
assumptions:

(i) the operator A := A?|ker(B) generates a C0-semigroup,

(ii) B is surjective and has a bounded right-inverse denoted by EB :M→ dom(A?) (again
using the graph norm), which in addition satisfies A? ◦ EB = EB,

(iii) the data satisfies f ∈ C1 ([0,∞),X ), Ξ ∈ C2 ((0,∞),M) ∩ C0 ([0,∞),M).

Then, the initial value problem of finding u ∈ C1 ((0,∞),X ) ∩ C0 ([0,∞],X ), such that

u̇(t) = A?u(t) + f(t) ∀t > 0, (2.11a)

[Bu](t) = Ξ(t) and u(0) = u0 (2.11b)

has a unique solution for all u0 ∈ dom(A?) with Bu0 = Ξ(0).
Assume that the initial conditions satisfy u0 ∈ dom(A), f(0) = 0 as well as Ξ(0) =

Ξ̇(0) = 0. Then the solution satisfies the following a priori estimates:

‖u(t)‖X . eωt
[
‖u0‖X +

∫ t

0
‖Ξ(τ)‖M +

∥∥∥Ξ̇(τ)
∥∥∥
M

+ ‖f(τ)‖X dτ

]
(2.12a)

‖u̇(t)‖X . eωt
[
‖Au0‖X +

∫ t

0

∥∥∥Ξ̇(τ)
∥∥∥
M

+
∥∥∥Ξ̈(τ)

∥∥∥
M

+
∥∥∥ḟ(τ)

∥∥∥
X
dτ

]
. (2.12b)

Here, ω is the constant in (2.5), and the implied constants depend on M from (2.5) and
the operator norm of EB.

Proof. By Proposition 2.10, there exists a solution to the problem with homogeneous
boundary values

u̇hom(t) = Auhom(t) + f(t) + EBΞ(t)− EBΞ̇(t) ∀t > 0,

uhom(0) = u0 − EBΞ(0),

(note that we have Bu0 − BEBΞ(0) = Bu0 − Ξ(0) = 0 by assumption and therefore
uhom(0) ∈ dom(A)). By defining u(t) := uhom(t) + EBΞ(t) for t ≥ 0 we get that u solves:

u̇(t) = u̇hom(t) + EBΞ̇(t) = Auhom(t) + EBΞ(t) + f(t)

= A? [uhom(t) + EB[Ξ(t)]] + f(t)

= A?u(t) + f(t).

By definition u also satisfies [Bu](t) = B[uhom(t)] + B[EBΞ(t)] = 0 + Ξ(t) = Ξ(t). To see
uniqueness we note that the difference of two solutions satisfies the homogeneous equation
and we can therefore apply the uniqueness of semigroups (Proposition 2.3).

10



2.2 Semigroups

The a priori bounds then follow from the bounds on uhom in Proposition 2.10 and the
continuity of EB, where the terms due to initial values of the right-hand side vanish by
assumption. We absorb the term ‖EB[Ξ(t)]‖X in the integral of ‖Ξ̇‖M for simpler presen-
tation.

Remark 2.12. In practice M will be a Sobolev space on the boundary of a bounded do-
main (or a subspace thereof) and B will be some combination of trace operators (see Sec-
tion 2.3.2).

We end with a small lemma, relating the operator A? to the time derivative. This will
be useful when estimating errors with regards to stronger spatial norms.

Lemma 2.13. Let u denote the solution from Proposition 2.11. Assume that the right-hand
side satisfies

(i) f(t) ∈ dom(A?) ∀t ≥ 0, and A?f ∈ C1 ([0, T ] ,X ),

(ii) Bf ∈ C2 ([0, T ] ,M),

(iii) Ξ ∈ C3 ([0, T ] ,M),

(iv) A?u0 ∈ dom(A?),

(v) Bu0 = Ξ(0) = 0 and B[A?u0] = Ξ̇(0)−Bf(0).

Then, the function v(t) := A?u(t) solves:

v̇(t) = A?v(t) +A?f(t), (2.13a)

B[v(t)] = Ξ̇(t)−B[f(t)] and v(0) = A?u0. (2.13b)

Proof. We define w(t) as the solution of (2.13), which exists by Proposition 2.11. Define
the function

y(t) := u0 +

∫ t

0
w(τ) + f(τ) dτ.

By construction, we have ẏ(t) = w(t) + f(t). Thus, if we are able to show y(t) = u(t) we
get v(t) = A?u(t) = u̇(t) − f(t) = w(t). We show this by using the fact that solutions of
(2.11) are unique. We calculate:

A?y(t) = A?u0 +

∫ t

0
A?w(τ) +A?f(τ) dτ

= A?u0 +

∫ t

0
ẇ(τ) dτ = w(t)

= ẏ(t)− f(t)

(we can exchange the integral with the operator A? since the operator is assumed closed
and both w + f and A?(w + f) are integrable by the a priori bounds (2.12)). For the
constraint we get

B[y(t)] = Bu0 +

∫ t

0
Ξ̇(τ) dτ = Ξ(t)

since Bu0 = Ξ(0) = 0 by assumption. Therefore, y solves (2.11), which gives y = u and
w = A?u.

11



2 Background

2.2.2 Nonlinear Semigroups

When dealing with nonlinear evolution problems, one can hope to retain some of the
language and results of Section 2.2.1. The presentation in this chapter mostly follows
[Sho97]. We focus on the case that H is a Hilbert space.

Following [Kōm67], we make the following generalization of a contraction semigroup:

Definition 2.14. Let H be a Hilbert space. A family of (nonlinear) operators T (t) : H → H
for t ≥ 0 is called a nonlinear contraction semigroup iff:

(i) For any fixed t ≥ 0, T (t) is a continuous (nonlinear) operator defined on H into H,

(ii) for any fixed x ∈ H, the map t 7→ T (t)x is continuous in t,

(iii) T (t+ s) = T (t)T (s) for all s, t ≥ 0 and T (0) = Id,

(iv) ‖T (t)x− T (t)y‖H ≤ ‖x− y‖ for every x, y ∈ H and ∀t ≥ 0.

The nonlinear setting has an analog to the Lumer-Phillips theorem, using the following
definition as starting point:

Definition 2.15. Let H be a Hilbert space and A : dom(A) ⊆ H → H be a (not necessarily
linear or continuous) operator with domain dom(A). We call A maximally monotone if it
satisfies:

(i) 〈Ax−Ay, x− y〉H ≤ 0 ∀x, y ∈ domA,

(ii) range (A− Id) = H.

Remark 2.16. We follow the notation used in [Gra12]. Other authors, e.g. [Nev78] work
with −A instead.

Proposition 2.17 (Kōmura-Kato, [Sho97, Proposition 3.1]). Let A be a maximally mono-
tone operator on a Hilbert space H with domain dom(A).

For each u0 ∈ dom(A) there exists a unique absolutely continuous function u : [0,∞)→
H, which is differentiable almost everywhere and satisfies:

u̇ = Au and u(0) = u0 (2.14)

almost everywhere in t. In addition, u is Lipschitz continuous with

‖u̇‖L∞((0,∞);H) ≤ ‖Au0‖H

and u(t) ∈ dom(A) for all t ≥ 0. The family of operators T (t) : dom(A) → H, defined
as T (t)u0 := u(t), where u(t) is the solution to (2.14), is called the nonlinear contraction
semigroup generated by A.

2.3 Function spaces

In this thesis, we will need several classes of function spaces. The goal of this section is
to introduce the spaces, collect their properties as needed for the subsequent results and
present the notation used.
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2.3 Function spaces

2.3.1 Interpolation spaces

In a lot of cases, the regularity of functions can be characterized as somewhere between
two well-behaved function spaces. In order to formalize this idea, we use the concept of
real interpolation of Banach spaces. See [Tar07; Tri95] or [McL00, Appendix B] for details
and proofs.

Let X0 and X1 denote two Banach spaces with continuous embedding X1 ⊆ X0. For a
parameter θ ∈ (0, 1) and p ∈ [1,∞], we define the K-functional and the interpolation norm
as

K(t;u) := inf
v∈X1

(
‖u− v‖X0

+ t ‖v‖X1

)
,

‖u‖[X0,X1]θ,p
:=

(∫ ∞
0

(
t−θK(t, u)

)p dt
t

)1/p

, for 1 ≤ p <∞,

‖u‖[X0,X1]θ,∞
:= esssupt∈(0,∞)

(
t−θK(t, u)

)
,

where esssup denotes the supremum up to a set of measure zero. We will mostly focus
on the case of p = 2. For the cases θ = 0, 1, we use the notational convention that
[X0,X1]θ,p := Xθ.

The following proposition is the main reason, why we are interested in interpolation
spaces:

Proposition 2.18 ([Tar07, Lemma 22.3]). Consider two pairs of Banach spaces X1 ⊆ X0

and Y1 ⊆ Y0. Let T : X0 → Y0 be a linear operator that is bounded for both pairs of
spaces X0 → Y0 and X1 → Y1. Then, T is also a bounded operator mapping [X0,X1]θ,p →
[Y0,Y1]θ,p.

The operator norm can be bounded by

‖T‖B([X0,X1]θ,p,[Y0,Y1]θ,p)
≤ ‖T‖1−θB(X0,Y0) ‖T‖

θ
B(X1,Y1) ∀θ ∈ [0, 1]. (2.15)

Another simple, but important property is the following:

Proposition 2.19 ([McL00, Lemma B.1]). If x ∈ X1, then the interpolation norm can be
estimated by

‖x‖[X0,X1]θ,p
≤ ‖x‖1−θX0

‖x‖θX1
∀θ ∈ [0, 1].

Most importantly, since X1 ↪→ X0, we have:

‖x‖[X0,X1]θ,p
. ‖x‖X1

∀θ ∈ [0, 1].

Often, it becomes necessary to interpolate pairs (or more generally tuples) of spaces.
This can be done by the following proposition:

Proposition 2.20 ([Tri95, Sect. 1.18.1]). Let
(
X i0
)N
i=0

and
(
X i1
)N
i=0

be tuples of Banach
spaces satisfying X i1 ⊆ X i0 with continuous embedding. Consider the product spaces X0 :=
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∏N
i=0X i0 and X1 :=

∏N
i=0X i1 with the norm ‖·‖Xj :=

(
N∑
i=0

‖·‖pX ij

)1/p

for j = 0, 1 and some

parameter p ∈ [1,∞). Then,

[X0,X1]θ,p =
N∏
i=0

[
X i0,X i1

]
θ,p
,

where the product is again equipped with the corresponding `p-norm and the equality is in
the sense of equivalent norms.

2.3.2 Sobolev spaces

In this section, we introduce the usual Sobolev spaces, the main reference on the topic is
[AF03], other books that give good introductions include [McL00] and [Tar07].

Sobolev spaces on Lipschitz domains

In this section Ω ⊆ Rd denotes a Lipschitz domain. Its boundary will be denoted by
Γ := ∂Ω. We also introduce the space of smooth and compactly supported test functions.
For an open set O ⊆ Rd we denote them by C∞0 (O).

We denote the usual Lebesgue spaces by Lp(Ω) for p ∈ [1,∞], where we will mostly work
with complex valued functions. The norms are given by

‖u‖Lp(Ω) :=

(∫
Ω
|u|p dx

)1/p

for 1 ≤ p <∞, and ‖u‖L∞(Ω) := esssupΩ(|u|).

For a multi-index α = (α1, . . . , αd) ∈ Nd, we denote the (classical) derivative by

Dαu :=
∂|α|u

∂xα1
1 . . . ∂xαdd

.

Derivatives will be understood in the weak sense, i.e. Dαu is defined as the locally integrable
function satisfying∫

Ω
Dαuϕdx := (−1)|α|

∫
Ω
uDαϕdx ∀ϕ ∈ C∞0 (Ω). (2.16)

This definition of derivative leads to the scale Sobolev spaces for p ∈ [1,∞] and m ∈ N0

and their corresponding norms, defined via:

‖u‖Wm,p(Ω) :=
∑
α∈N0
|α|≤m

‖Dαu‖Lp(Ω),

Wm,p(Ω) :=
{
u ∈ Lp(Ω) : ‖u‖Wm,p(Ω) <∞

}
.

For s ∈ R+ with s = m + r for m ∈ N0 and r ∈ (0, 1) we define the fractional Sobolev
spaces via interpolation:

W s,p(Ω) :=
[
Wm,p(Ω),Wm+1,p(Ω)

]
r,p
.
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We also need another family of Sobolev spaces, which encode homogeneous boundary con-
ditions. For s ≥ 0, we define:

W̃ s,p(Ω) := C∞0 (Ω), closure with respect to the W s,p(Rd)-norm.

For s ∈ N, it is more common to use the notation W s,p
0 (Ω) := W̃ s,p(Ω). For negative s, we

define the Sobolev spaces via duality:

W−s,p(Ω) :=
(
W̃ s,p(Ω)

)′
and W̃−s,p(Ω) := (W s,p(Ω))′ .

The most important case of Sobolev spaces is p = 2. Therefore we introduce the additional
notation for s ∈ R:

Hs(Ω) := W s,2(Ω) and H̃s(Ω) := W̃ s,2(Ω).

The spaces Hs(Ω) are Hilbert spaces. When working with the spaces H̃s(Ω), it is often
convenient to characterize them as interpolation spaces:

Proposition 2.21 ([McL00, Theorems B.8 and B.9]). Let s1, s2 ∈ R, θ ∈ [0, 1]. Then, the
following equivalence holds:

[Hs1(Ω), Hs2(Ω)]θ,2 = Hs(Ω),[
H̃s1(Ω), H̃s2(Ω)

]
θ,2

= H̃s(Ω)
with s := (1− θ)s1 + θ s2.

Proposition 2.22 ([McL00, Theorem 3.40(i)]). For 0 ≤ s < 1/2, the two families of
Sobolev spaces Hs(Ω) and H̃s(Ω) coincide, i.e.,

Hs(Ω) = H̃s(Ω)

with equivalent norms. The implied constants depend only on Ω.

Proof. Theorem 3.40 (i) in [McL00] considers the slightly different family of spaces Hs
0(Ω)

instead of H̃s(Ω). For s 6= 1
2 ,

3
2 , . . . they are shown to coincide with H̃s(Ω) in [McL00,

Theorem 3.33].

When working with Sobolev functions, it is useful to be able to extend them from the
domain Ω to the full space. The fact that this can be done in a stable way is the content
of the next proposition.

Proposition 2.23 (Stein extension operator, see [Ste70, Chap. VI.3]). Let Ω ⊂ Rd be a
Lipschitz domain. Then, there exists a linear operator E with the following properties:

(i) for m ∈ N0, E : Hm(Ω)→ Hm(Rd) is a bounded linear operator, satisfying

‖Eu‖Hm(Rd) ≤ C(m,Ω) ‖u‖Hm(Ω) ,

(ii) Eu is an extension of u, i.e. Eu|Ω = u.
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We will also need the space of functions whose divergence is in L2. We define the weak

divergence analogously to (2.16) by

∫
Ω

div vϕdx = −
∫

Ω
v · ∇ϕdx for all ϕ ∈ C∞0 (Ω). The

corresponding function space is:

‖v‖2H(div,Ω) := ‖v‖2
[L2(Ω)]d

+ ‖div v‖2L2(Ω) , (2.17)

H (div,Ω) :=
{
v ∈

[
L2(Ω)

]d
, ‖v‖H(div,Ω) <∞

}
. (2.18)

Similarly, we define the space of functions with (distributional) Laplacian in L2 by:

‖u‖2H1
∆(Ω) := ‖u‖2H1(Ω) + ‖∆u‖2L2(Ω) ,

H1
∆ (Ω) :=

{
u ∈ L2(Ω) : ‖u‖H1

∆(Ω) <∞
}
.

It is easy to see that H1
∆ (Ω) =

{
u ∈ H1(Ω) : ∇u ∈ H (div,Ω)

)
.

Under certain conditions, we can trade in regularity for integrability. This is contained
in the following proposition.

Proposition 2.24 (Sobolev embeddings, [AF03, Theorem 4.12]). Let Ω be a bounded
Lipschitz domain in Rd. Let m ∈ N and 1 ≤ p <∞. Then for mp < d:

Wm,p(Ω) ↪→ Lq(Ω) for p ≤ q ≤ p? := dp/(d−mp)

and in the case mp = d:

Wm,p(Ω) ↪→ Lq(Ω) for p ≤ q ≤ ∞.

Sobolev spaces on the boundary and trace operators

In order to be able to treat boundary integral equations, we also need Sobolev spaces of
functions supported on the boundary of a Lipschitz domain. Most of the spaces introduced
in the previous setting have a natural correspondence on the boundary.

Let Ω denote a bounded Lipschitz domain, and Γ := ∂Ω be its boundary. We let Lp(Γ)
denote the usual Lebesgue space for 1 ≤ p ≤ ∞, and define the space H1(Γ) via

‖u‖2H1(Γ) := ‖u‖2L2(Γ) + ‖∇Γu‖2L2(Γ) ,

H1(Γ) :=
{
u ∈ L2(Γ) : ‖u‖H1(Γ) <∞

}
,

where ∇Γ denotes the surface gradient. For s ∈ (0, 1), we then define the fractional Sobolev
spaces via interpolation as

Hs(Γ) :=
[
L2(Γ), H1(Γ)

]
θ,2
.

Negative order Sobolev spaces are defined by duality H−s(Γ) := (Hs(Γ))′. Since it is often
convenient, we define the sesquilinear form 〈·, ·〉Γ on H−1/2(Γ)×H1/2(Γ) as the continuous
extension of 〈u, v〉Γ :=

∫
Γ uv for u, v ∈ L2(Γ).
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Often, we need to distinguish between the interior and the exterior of the domain Ω. In
order to have a unified notation we set Ω− := Ω and Ω+ := Rd \Ω. Many operators have a
version defined on the interior and the exterior. As a notational convention we will indicate
which domain an operator belongs to by the superscript ±.

The following two propositions characterize the fractional Sobolev spaces on Γ as the
trace spaces of functions on Ω.

Proposition 2.25. Let Ω± denote either Ω or the exterior Rd \ Ω.

(i) For s ∈ (1/2, 3/2) there exists a bounded linear operator Hs(Ω±) → Hs−1/2(Γ) such
that:

γ±u := u|Γ for u ∈ C∞(Ω) and
∥∥γ±u∥∥

Hs−1/2(Γ)
≤ C(s,Ω±) ‖u‖Hs(Ω±) .

(ii) There exists a bounded linear operator γ±n : H (div,Ω±)→ H−1/2(Γ) which satisfies

γ±ν v := v · ν|Γ for v ∈
[
C∞(Ω)

]d
and

∥∥γ±ν v∥∥H−1/2(Γ)
≤ C(Ω±) ‖v‖H(div,Ω±)

where ν denotes the normal vector pointing out of Ω.

Proof. Part (i) can be found in [Cos88b, Lemma 3.6]. Part (ii) is well known and can be
found for example in [Tar07, Lemma 20.2].

Proposition 2.26. Let Ω± denote either Ω or the exterior Rd \ Ω.

(i) For s ∈ (1/2, 3/2) the trace operator γ± : Hs(Ω±) → Hs−1/2(Γ) is surjective and
admits a bounded right-inverse EDΓ , i.e.

γ± ◦ EDΓ = Id, and
∥∥EDΓ u∥∥Hs(Ω)

≤ C(s,Ω±) ‖u‖Hs−1/2(Γ) .

(ii) For s ∈ (0, 1/2] the normal trace operator has a bounded right inverse ENΓ satisfying:

γ±ν ◦ ENΓ = Id,∥∥ENΓ u∥∥[Hs(Ω±)]d
≤ C(s,Ω±) ‖u‖H−1/2+s(Γ) .

For s = 0, the normal trace can be lifted into H (div,Ω±), i.e.∥∥ENΓ u∥∥H(div,Ω±)
≤ C(Ω±) ‖u‖H−1/2(Γ) .

Proof. For the proof of (i) see [Cos88b, Lemma 4.2]. The lifting from (ii) can be constructed
by solving an elliptic Neumann problem

−∆ϕ+ ϕ = 0 and ∂nϕ = u

and taking the gradient. This directly gives the case s = 0. The case s = 1/2 was proven
in [JK81]. The intermediate cases can be seen by combining the mapping properties of the
Neumann-to-Dirichlet map (see [Cos88b, Lemma 3.7] or [McL00, Theorem 4.24(ii)]) with
the regularity properties of the Dirichlet mapping in (i).
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The trace operator for H(div) functions allows us to define the normal derivative:

∂±ν : H1
∆

(
Ω±
)
→ H−1/2(Γ), u 7→ γ±ν ∇u. (2.19)

When working with boundary integral equations, often times the quantity of interest
is not the trace of a function but its jump across the interface. We introduce the jump
operators for s ∈ (1/2, 3/2)

Jγ·K : Hs(Rd \ Γ)→ Hs−1/2(Γ), u 7→ γ+u− γ−u, (2.20a)

J∂ν ·K : H1
∆

(
Rd \ Γ

)
→ H−1/2(Γ), u 7→ ∂+

ν u− ∂−ν u, (2.20b)

Jγν ·K : H
(

div,Rd \ Γ
)
→ H−1/2(Γ), u 7→ γ+

ν u− γ−ν u, (2.20c)

as well as the mean values:

{{γ·}} : Hs(Rd \ Γ)→ Hs−1/2(Γ), u 7→ 1

2

(
γ+u+ γ−u

)
, (2.21a)

{{∂ν ·}} : H1
∆

(
Rd \ Γ

)
→ H−1/2(Γ), u 7→ 1

2

(
∂+
ν u+ ∂−ν u

)
, (2.21b)

{{γν ·}} : H
(

div,Rd \ Γ
)
→ H−1/2(Γ), u 7→ 1

2

(
γ+
ν u+ γ−ν u

)
. (2.21c)

Remark 2.27. Oftentimes in the literature, the signs in the definitions of the jumps are
reversed. In our applications we are often dealing with exterior problems, i.e., with functions
vanishing in Ω− and we therefore have γ+u = JγuK. When dealing with spatial semi-
discretization this relation simplifies the signs in many of the formulas.

For Sobolev indices higher than 1, the spaces Hs(Γ) are only well defined for smooth
geometries, as the definition would depend on the choice of coordinates. In order to prove
a priori estimates, we instead consider the spaces of piecewise Hs-functions. For details on
these spaces, we refer to [SS11, Definition 4.1.48].

Definition 2.28. Let Γ be piecewise smooth, i.e., assume there exists an open partitioning
C := {Γi : 1 ≤ i ≤ q} such that Γ =

⋃q
i=1 Γi. For s > 1, we define the space

Hs
pw(Γ) :=

{
u ∈ H1(Γ) : u|Γi ∈ Hs(Γi) ∀Γi ∈ C

}
(2.22)

equipped with the norm ‖u‖2Hs
pw(Γ) :=

∑
Γi∈C
‖u‖2Hs(Γi)

. For s ≤ 1, we define Hs
pw(Γ) := Hs(Γ)

with the usual norm.

The Sobolev embeddings also transfer to the spaces on the boundary. We will need the
following special case:

Proposition 2.29 (Sobolev embeddings, [Tar07, Lemma 32.1]). Let Γ be the boundary of
a bounded Lipschitz domain Ω ⊆ Rd. Then the following embeddings hold for s < (d−1)/2:

Hs(Γ) ↪→ Lp(s)(Γ) with
1

p(s)
=

1

2
− s

d− 1
. (2.23)
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2.4 Triangulations

For the space H1/2(Γ) this implies:

H1/2(Γ) ↪→ Lp(Γ) for

{
1 ≤ p <∞ d = 2,

1 ≤ p ≤ 2d−2
d−2 d ≥ 3.

(2.24)

Proposition 2.30 (Rellich, [McL00, Theorem 3.27]). For 0 ≤ t < s ≤ 1 the embedding

Hs(Γ) ↪→ Ht(Γ)

is compact.

2.4 Triangulations

In this work we consider discretizations of the space variables using Galerkin-type meth-
ods. In order to realize these, we need finite dimensional spaces Vh ⊆ Hs(Ω) with good
approximation properties. While most of the results in this work are formulated for gen-
eral (conforming) discretization spaces, in practice we will use standard finite element and
boundary element spaces. The purpose of this section is to introduce these spaces together
with the appropriate notation used throughout this thesis, as well as some projection
and (quasi)-interpolation operators, which will provide concrete constructions for the ab-
stract assumptions made when discussing the different discretizations for wave propagation
problems. Throughout this section, let Ω ⊆ Rd be a bounded Lipschitz polyhedron with
boundary Γ.

Definition 2.31 (see [BS08, Definition 4.4.13]). Let Th be a decomposition of Ω ⊆ Rd into
open d-simplices. We call Th a regular triangulation if it does not contain any hanging
nodes (i.e. the intersection of elements K ∩K ′ is either empty, a common vertex, side or
face). We say Th is shape regular if the ratio diam(K)/ρ(K), where ρ(K) is the diameter
of the largest ball contained in K, satisfies

max
K∈Th

(
diam (K)

ρ(K)

)
≤ γ

for a constant γ > 0 independent of the mesh size. We define the mesh size of Th as
h := max

K∈Th

(
diam (K)

)
. The triangulation is called quasi-uniform, if there exists a constant

C > 0 such that
max
K∈Th

(
diam(K)

)
≤ C min

K∈Th

(
diam(K)

)
,

i.e., h ∼ minK∈Th
(

diam(K)
)
.

To each element K ∈ Th, we assign the (bijective) element map FK : K̂ → K where K̂
denotes the reference element given by:

K̂ :=


{x ∈ R : 0 ≤ x ≤ 1} if d = 1,{

(x, y) ∈ R2 : 0 ≤ x, y ≤ 1 ∧ 0 ≤ x+ y ≤ 1
}

if d = 2,{
(x, y, z) ∈ R3 : 0 ≤ x, y, z ≤ 1 ∧ 0 ≤ x+ y + z ≤ 1

}
if d = 3.
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We are now able to define the spaces of piecewise polynomials:

Definition 2.32. Let Th be a regular and shape-regular triangulation of Ω. For p ∈ N0,
denote by

Pp(K̂) :=


span

{
xi, 0 ≤ i ≤ p

}
d = 1,

span
{
xiyj , 0 ≤ i+ j ≤ p

}
d = 2,

span
{
xiyjzk, 0 ≤ i+ j + k ≤ p

}
d = 3

the space of polynomials of degree up to p on the reference element. Define the space of
piecewise polynomials as

Sp,0(Th) :=
{
u ∈ L∞(Ω) : u|K ◦ FK ∈ Pp(K̂) ∀K ∈ Th

}
, (2.25)

Sp,1(Th) := Sp,0(Th) ∩ C0(Ω). (2.26)

For d = 2, 3, all the definitions above also transfer to the discretizations of the boundary
in a natural way.

Definition 2.33 (see [SS11, Section 4.1.2]). Let T Γ
h denote a decomposition of Γ into line

segments/triangles with element maps FK : K̂ → K. The terms regular, shape-regular and
uniform are defined analogously to the case of volume meshes (see Definition 2.31). We
define the spaces

Sp,0(T Γ
h ) :=

{
u ∈ L∞(Γ) : u|K ◦ FK ∈ Pp(K̂) ∀K ∈ T Γ

h

}
, (2.27)

Sp,1(T Γ
h ) := Sp,0(T Γ

h ) ∩ C0(Γ). (2.28)

The approximation properties of these spaces can be found in most literature on finite
element methods, e.g. [BS08, Theorem 4.4.20]. We summarize them in the following
proposition:

Proposition 2.34. Let Th be a quasi-uniform triangulation of a bounded Lipschitz polyhe-
dron Ω. Then, the following estimates hold with constants depending on the shape-regularity
constant γ, Ω, and p: For m ≥ 0 the discontinuous spline spaces satisfy

inf
vh∈Sp,0(Th)

‖u− vh‖L2(Ω) ≤ Ch
min(p+1,m) ‖u‖Hm(Ω) ∀u ∈ Hm(Ω).

In the case of continuous approximation spaces, we get for u ∈ Hm(Ω) with m ≥ 1:

inf
vh∈Sp,1(Th)

(
‖u− vh‖L2(Ω) + h ‖∇u−∇vh‖L2(Ω)

)
≤ Chmin(p+1,m) ‖u‖Hm(Ω) .

For a family of quasi-uniform triangulations (Th)h≥0 such that the mesh size h goes to 0,⋃
h≥0

Sp,1(Th) ⊆ Hs(Ω) is dense for s ≤ 1,

⋃
h≥0

Sp,0(Th) ⊆ Hs(Ω) is dense for s ≤ 0.
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2.5 Boundary integral equations for the Helmholtz equation

For approximations on the boundary Γ, a similar result can be shown, but one has to
take into account that Sobolev spaces are not well defined for s > 1. Instead we have the
following result:

Proposition 2.35 ([SS11, Theorem 4.3.20 and Theorem 4.1.51]). Let Γ be the piecewise
smooth boundary of a Lipschitz polyhedron and let T Γ

h be a regular and quasi-uniform tri-
angulation of Γ: Then the following estimates hold:

inf
vh∈Sp,0(T Γ

h )
‖u− vh‖H−1/2(Γ) ≤ Ch

min(p+1,s)+1/2 ‖u‖Hs
pw(Γ) ∀u ∈ Hs

pw(Γ), s ≥ −1/2,

inf
vh∈Sp,1(T Γ

h )
‖u− vh‖H1/2(Γ) ≤ Ch

min(p+1,s)−1/2 ‖u‖Hs
pw(Γ) ∀u ∈ Hs

pw(Γ), s ≥ 1/2.

Sometimes, instead of relying on the abstract existence of approximating functions, we
need to construct them using linear and stable operators. These can be constructed in
multiple ways, see e.g. [KM15] for a very general construction which is robust in p. Other
ways to construct such an operator include the construction by Scott and Zhang [SZ90] (we
use the version as modified in [Aur+15, Lemma 3]) or (for low order) operators of Clément
type (see [Clé75]), see also[GE16]. In the very simple case of quasi-uniform triangulations,
the L2-projection also satisfies the necessary assumptions (see also [CT87; BY14] for other
sufficient conditions).

Proposition 2.36. Let Γ be the piecewise smooth boundary of a Lipschitz polyhedron and
T Γ
h is a regular and quasi-uniform triangulation of Γ. Then, there exists an operator JΓ

h :
L2(Γ)→ Sp,1(T Γ

h ) with the following properties:

(i) JΓ
h : Hs(Γ)→ Hs(Γ) is linear and bounded for s ∈ [0, 1],

(ii) the following approximation property holds for 0 ≤ t ≤ 1 and s ≥ t:∥∥u− JΓ
h u
∥∥
Ht(Γ)

≤ Chmin(p+1,s)−t ‖u‖Hs
pw(Γ) ∀u ∈ Hs

pw(Γ).

Analogously if Th is a regular and quasi-uniform triangulation of Ω, there exists an operator
Jh : L2(Ω)→ Sp,1(Th) such that

(i) Jh : Hs(Ω)→ Hs(Ω) is linear and bounded for s ∈ [0, 1],

(ii) the following approximation property holds for s ≥ 1:

‖u− Jhu‖L2(Ω) + h ‖∇ (u− Jhu)‖L2(Ω) ≤ Ch
min(p+1,s) ‖u‖Hs(Ω) ∀u ∈ Hs(Ω).

2.5 Boundary integral equations for the Helmholtz equation

In this section, we develop the theory of boundary integral equations for the Helmholtz
equation, which will form the basis for all the discretization schemes used in this thesis.
The results in this section are all standard in the literature and can, for example, be
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found in the monographs [McL00; SS11; Ste08; HW08]. For a more time-domain oriented
introduction we refer to [Say16]. For s ∈ C with Re(s) > 0, we consider solutions u of

−∆u+ s2u = 0 in Rd \ Γ, (2.29)

where Γ denotes the boundary of a bounded Lipschitz domain Ω.
We start with the simple fact that transmission problems are uniquely solvable:

Proposition 2.37. For s ∈ C with Re(s) > 0 and ϕ ∈ H−1/2(Γ), ψ ∈ H1/2(Γ), the
problem of finding u ∈ H1

∆

(
Rd \ Γ

)
such that

−∆u+ s2u = 0 (2.30a)

JγuK = ψ and J∂νuK = ϕ (2.30b)

has a unique solution.

Proof. We only show uniqueness. Existence can, for example, be shown using the potentials
in Proposition 2.38 or the Lax-Milgram theory together with appropriate boundary liftings.

By linearity it is sufficient to consider the homogeneous problem ϕ = ψ = 0 and show
u = 0. We note that in H1

∆

(
Rd \ Γ

)
the integration by parts formula holds. This can be

seen by using the density of compactly supported test-functions in H1
∆

(
Rd \ Γ

)
. Multiply-

ing (2.30a) by su, integrating and integration by parts gives:

s ‖∇u‖2L2(Rd\Γ) + |s|2 s ‖u‖2L2(Rd\Γ) = 0.

Since we assumed Re(s) > 0 we can deduce ‖u‖H1(Rd\Γ) = 0 by taking the real part.

We introduce the fundamental solution for the differential operator −∆ + s2:

Φ(x; s) :=

{
i
4H

(1)
0 (is |x|) for d = 2,

e−s|x|

4π|x| , for d = 3.
(2.31)

Here H
(1)
0 denotes the Hankel function of the first kind and order zero. For details,

see [McL00, Chapter 9].

Proposition 2.38. Define the single- and double-layer potentials for x ∈ Rd \ Γ:

(S(s)ϕ) (x) :=

∫
Γ

Φ(x− y; s)ϕ(y) dS(y), (2.32a)

(D(s)ψ) (x) :=

∫
Γ
∂ν(y)Φ(x− y; s)ψ(y) dS(y). (2.32b)

If u ∈ H1
∆

(
Rd \ Γ

)
solves (2.29) for s ∈ C+, it can be written using the representation

formula

u(x) = −
[
S(s) J∂νuK

]
(x) +

[
D(s) JγuK

]
(x) ∀x ∈ Rd \ Γ. (2.33)

Conversely, if we define u via u := −S(s)ϕ+D(s)ψ for some boundary data ϕ ∈ H−1/2(Γ)
and ψ ∈ H1/2(Γ), then u solves (2.29) with J∂νuK = ϕ and JγuK = ψ.
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2.5 Boundary integral equations for the Helmholtz equation

Finally, we introduce the boundary integral operators corresponding to the potentials:

V (s) : H−1/2(Γ)→ H1/2(Γ), V (s) := γ±S(s), ”single layer operator”, (2.34a)

K(s) : H1/2(Γ)→ H1/2(Γ), K(s) := {{γD(s)}} , ”double layer operator”, (2.34b)

KT (s) : H−1/2(Γ)→ H−1/2(Γ), KT (s) := {{∂νS(s)}} , ”adjoint double layer”, (2.34c)

W (s) : H1/2(Γ)→ H−1/2(Γ), W (s) := −∂±ν D(s), ”hypersingular operator”. (2.34d)

In practice, these operators can be computed via explicit representation as integrals over
the boundary Γ. For sufficiently smooth functions ψ, ϕ the following equations hold:

V (s)ϕ =

∫
Γ

Φ(·, y, s)ϕ(y) dΓ(y), (2.35a)

KT (s)ϕ =

∫
Γ
∂ν(·)Φ(·, y, s)ϕ(y) dΓ(y), (2.35b)

K(s)ψ =

∫
Γ
∂ν(y)Φ(·, y, s)ψ(y) dΓ(y), (2.35c)

W (s)ψ = −∂ν
∫

Γ
∂ν(y)Φ(·, y, s)ψ(y) dΓ(y). (2.35d)

Remark 2.39. Since the fundamental solution depends analytically on the wave number
for s ∈ C+, the dependence of the boundary integral operators on s is also analytic. This
will be important, as it allows us to apply the Convolution Quadrature techniques, which
will be introduced in Section 3.3, to these operators.

2.5.1 The Helmholtz equation with matrix-valued wave number

In this section, we generalize the results from the scalar problem (2.29) to the system
of equations −∆U + B2U where B ∈ Cm×m is a matrix and U is vector valued. This
setting is common when considering Runge-Kutta type discretizations of wave propagation
problems, see Section 3.2. Most of the results of the previous section have an analogous
counterpart. We use the usual trace and jump operators also for vector valued functions,
without notational distinction. They are meant to be applied component-wise.

In order to define potentials and boundary integral operators, we need to be able to
apply the functions to a matrix. This is done using the following functional calculus:

Definition 2.40 (c.f. [Yos80, Chapter VIII.7], [GV13, Chapter 11]). Let F : G→ B(X ,Y)
be a holomorphic function, which is defined on a domain G ⊆ C, and X , Y be Banach
spaces. Let B be a matrix with σ(B) ⊆ G. We then define F (B) via the Riesz-Dunford
functional calculus for holomorphic functions:

F (B) :=
1

2πi

∫
C

(B − λ)−1 ⊗ F (λ)dλ,

where C ⊂ G is a closed path with winding number 1 encircling σ(B). The operator ⊗
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denotes the Kronecker product, i.e., for a matrix A ∈ Cm×m we write

A⊗ F :=

a11F . . . a1mF
... . . .

...
am1F . . . ammF

 .

This defines the operator F (B), mapping from the product space [X ]m to the product space
[Y]m. For a fixed matrix B ∈ Cm×m, the mapping F 7→ F (B) is linear and an algebra
homomorphism, i.e. (FG) (B) = F (B)G(B).

Since we often need to apply the same operator A to vectors of functions, we use the
notation A := [Id⊗A] = diag(A, . . . , A) for the diagonal product operator, where we
assume that the number of entries is clear from context.

We start with generalizing Proposition 2.37 in a straight-forward way:

Proposition 2.41. For B ∈ Cm×m with σ(B) ⊆ C+, Φ ∈
[
H−1/2(Γ)

]m
, and Ψ ∈[

H1/2(Γ)
]m

, the transmission problem: find U ∈
[
H1

∆

(
Rd \ Γ

)]m
such that

−∆U +B2U = 0 in Rd \ Γ

JγUK = Ψ, and J∂νV K = Φ

has a unique solution.

Proof. We focus on uniqueness, existence follows from using potentials in Lemma 2.42. For
a solution of the homogeneous problem, i.e. Φ = Ψ = 0, we can write B = XJX−1 in
Jordan form. Most notably J is an upper triangular matrix. This implies −∆X−1U +
J2X−1U = 0 with homogeneous jump conditions. Since the scalar problem has a unique
solution by Proposition 2.37, we immediately see that the last component of X−1U must
be 0. A backward substitution argument then gives, in each step using Proposition 2.37,
that X−1U = 0, which in turn means U = 0.

We now are able to generalize the representation formula (2.33):

Lemma 2.42. Let U ∈
[
H1

∆

(
Rd \ Γ

)]m
solve the equation

−∆U +B2U = 0 in Rd \ Γ (2.36)

for a matrix B ∈ Cm×m with σ(B) ⊆ C+. Then U can be written as

U = −S(B) J∂νUK +D(B) JγUK . (2.37)

Proof. We show that the function V := −S(B) J∂νUK +D(B) JγUK, defined analogously to
(2.37), solves the transmission problem:

−∆V +B2V = 0 in Rd \ Γ

JγV K = JγUK and J∂νV K = J∂νUK .

Since solutions to such problems are unique via Proposition 2.41 this is sufficient. The
jump conditions follow directly from the definitions using the Riesz-Dunford calculus and
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2.5 Boundary integral equations for the Helmholtz equation

the jump properties of the scalar single- and double layer potentials. To see the differential
equation, we first look at S(B) and calculate:

−∆S(B) J∂νUK = −∆

(∫
C

(B − λ)−1 ⊗ S(λ) J∂νUK dλ
)

= −
∫
C

(B − λ)−1 ⊗ [−∆S(λ)] J∂νUK dλ

= −
∫
C

(B − λ)−1 ⊗
[
λ2S(λ)

]
J∂νUK dλ

= −B2S(B) J∂νUK ,

where in the last step we used that the functional calculus is an algebra homomorphism.
The same calculation can be done for D(B).

The representation formula can be used to derive boundary integral equations for the
jumps or traces of solutions to (2.29). While there are many ways to write these equations,
we focus on a version which allows us to easily derive an expression for the Dirichlet-to-
Neumann map.

Proposition 2.43. Let U ∈
[
H1

∆

(
Rd \ Γ

)]m
solve (2.36). Then, the following identities

hold on the boundary:(
γ−U
∂+
ν U

)
= −

(
1
2 −K(B) V (B)
W (B) −1

2 +KT (B)

)(
JγUK
J∂νUK

)
. (2.38)

If we consider solutions to the exterior problem, i.e. −∆U +B2U = 0 in Rd \Ω, the traces
solve (

0
−∂+

ν U

)
=

(
1
2 −K(B) V (B)
W (B) −1

2 +KT (B)

)(
γ+U
∂+
ν U

)
. (2.39)

Proof. Equation (2.38) follows from the representation formula and the definitions of the
boundary integral operators. In order to derive (2.39), we extend U by 0 on Ω and ap-
ply (2.38).
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3 Time-stepping and Convolution
Quadrature

In this chapter, we introduce some of the most common ways of discretizing time evolution
problems. We consider time-stepping based methods, which generate a sequence of approx-
imations at discrete times tn. Since we are interested in applying Convolution Quadrature
based methods later, we restrict our considerations to the case where all tn are multiples of
a common factor, i.e., tn := k n for some parameter k > 0 which we call the timestep size.
Most of the definitions and elementary results on these methods presented in this section
are taken from the books [HNW93; HW10].

We will introduce the methods by first considering a simple ODE, namely, finding u :
[0,∞)→ C such that

u̇ = f(t, u) and u(0) := u0, (3.1)

for some initial condition u0 ∈ C and given right-hand side f : R+ × C→ C.
While all the algorithms generate a sequence of approximations at discrete times tn,

we usually assume that we are given initial conditions for t ≤ 0 such that we may define
approximations for all t by shifting the initial time t0 such that t becomes a grid-point.
This allows us to use function notation, e.g., uk(t) for our approximating sequence.

3.1 Multistep methods

A multistep method is determined by its number of steps m and by coefficients αj and βj ,
j = 0, . . . ,m. The simplest cases are the explicit and implicit Euler methods, which approx-
imate u by uk(tn) := uk(tn−1)+k f(tn−1, u

k(tn−1)) and uk(tn) = uk(tn−1)+k f(tn, u
k(tn)).

Higher order methods are achieved by reusing more of the previously computed approxi-
mations. The general approximation scheme is given by the defining equation for n ≥ m:

1

k

m∑
j=0

αju
k(tn−j) =

m∑
j=0

βjf
(
tn−j , u

k(tn−j)
)
. (3.2)

To close the system we assume that we are given uk(tn) := u(tn) for n = 0, . . .m − 1
(in practice when using multistep methods for ODEs, these are computed approximately
using some other time-stepping method). The coefficients for the most common multistep
methods are listed in Table 3.1. These and many other examples can be found in [HNW93].
The function δ(z) listed in the table is important in the context of Convolution Quadrature
and will be introduced in (3.15).

We say a multistep method is of order p, if for arbitrary initial value problems (3.1)
with sufficiently smooth exact solutions u, the discretization error can be bounded by
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3 Time-stepping and Convolution Quadrature

Method m α0, . . . αm β0 . . . , βm δ(z)

Implicit Euler/BDF1 1 1, -1 1, 0 1− z
Trapezoidal rule 1 1, −1 1

2 ,1
2

2(1−z)
1+z

BDF2 2 3
2 , −2, 1

2 1, 0, 0 1
2(1− z)(3− z)

Table 3.1: Examples for commonly used A-stable multistep methods

∣∣u(tn)− uk(tn)
∣∣ = O(kp), where the implied constant is allowed to depend on u and f , but

not on k.
An important class of multistep methods are the ones which preserve some qualitative

properties of the exact solution in addition to the approximation properties. We only
consider the following class of methods:

Definition 3.1. A multistep method is called A-stable, if for linear ODEs of the form
f(t, y) := λ y with Re(λ) ≤ 0, the approximations uk(tn) computed via (3.2) are uniformly
bounded with respect to n.

The methods listed in Table 3.1 are all A-stable (see [HW10, Sect. V.1]). A strong lim-
itation when using multistep methods for discretizing PDEs, especially using Convolution
Quadrature, is the following result on the achievable order:

Proposition 3.2 (Dahlquist’s second barrier, [HW10, Sect. V.1, Theorem 1.6]). An A-
stable multistep method must be of order p ≤ 2.

The BDF1 and BDF2 methods have another important property which will prove useful
when investigating nonlinear problems in Chapter 5.

Proposition 3.3. The linear multistep methods BDF1 and BDF2 are G-stable. This
means, there exists a matrix G = (gij)i,j=1,...,m that is symmetric and positive definite
such that

Re

〈
m∑
j=0

αju
n−j , un

〉
≥ ‖Un‖2G − ‖Un−1‖2G,

where Un = (un, . . . , un−m+1)T and

‖Un‖2G =
m∑
i=1

m∑
j=1

gij〈un−m+i, un−m+j〉.

Proof. As BDF methods are equivalent to their corresponding one-leg methods, the result
follows from [HW10, Chapter V.6, Theorem 6.7] and its proof.

3.2 Runge-Kutta methods

Proposition 3.2 limits the order achievable by A-stable multistep methods. Since we are
interested in using higher order methods, we introduce a second kind of time-stepping
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3.2 Runge-Kutta methods

method, which will not suffer from such limitations. An m-stage Runge-Kutta method is
characterized by a matrix Q ∈ Rm×m and two vectors b, c ∈ Rm. The approximation to the
problem (3.1) is then given by (in each step) first computing the stage vector Uk(tn) and
then using this to compute the approximation uk(tn+1) via the following defining equations:

Uk(tn) = uk(tn)1+ kQf
(
tn + kc, Uk(tn)

)
, (3.3)

uk(tn+1) = uk(tn) + kbT f
(
tn + kc, Uk(tn)

)
, (3.4)

together with the initial condition uk(0) := u0. Here f
(
tn + kc, Uk(tn)

)
denotes the vector

f(tn + kc, Uk(tn)) :=

 f
(
tn + kc1, U

k
1 (tn)

)
...

f
(
tn + kcm, U

k
m(tn)

)
 ,

and 1 := (1, . . . , 1)T is the constant-one vector. Throughout this dissertation we require
that Q is invertible.

Completely analogous to the case of multistep methods, one can define the class of A-
stable methods by: for ODEs of the form f(t, y) := λ y with Re(λ) ≤ 0, the approximations
uk(tn) computed via (3.2) are uniformly bounded with respect to n. In practice, it is more
useful to use the following characterization:

Definition 3.4. A Runge-Kutta method is called A-stable, if for z ∈ C with Re(z) ≤ 0,
(I − zQ) is invertible and the stability function

r(z) := 1 + zbT (I − zQ)−1
1 (3.5)

satisfies |r(z)| ≤ 1.

Corollary 3.5. For z ∈ C−, i.e., Re(z) < 0, the strict inequality holds:

|r(z)| < 1, ∀Re(z) < 0.

Proof. The statement is well known, and follows from the maximum principle for holomor-
phic functions.

Another important class of methods, which is often convenient to work with has the
property that the approximation uk(tn+1) coincides with the last entry of the stage vector
Uk(tn). Algebraically they are characterized as follows:

Definition 3.6. We call a Runge-Kutta method stiffly accurate, if it satisfies bTQ−1 =
(0, . . . , 1).

Sometimes we use the following reformulation of a Runge-Kutta step. Using the definition
r(∞) := 1− bTQ−11, we can rewrite (3.3) as:

Uk(tn) = uk(tn)1+ kQf
(
tn + kc, Uk(tn)

)
, (3.6)

uk(tn+1) = r(∞)uk(tn) + bTQ−1Uk(tn). (3.7)

When analyzing Runge-Kutta methods, the following order conditions play an important
role:
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3 Time-stepping and Convolution Quadrature

Definition 3.7. We say the Runge-Kutta method defined by Q,b, c has stage order q and
classical order p if the approximations satisfy:∣∣∣u(kc)− Uk(k)

∣∣∣ = O
(
kq+1

)
and

∣∣∣u(k)− uk(k)
∣∣∣ = O

(
kp+1

)
for arbitrary right-hand sides f in (3.1), as long as the exact solution is sufficiently smooth.

Using the notation c` := (c`1, . . . , c
`
m) for the entry-wise powers, we use the following

order conditions satisfied by such Runge-Kutta methods:

c` = `Qc`−1, 1 ≤ ` ≤ q, (3.8)

bTQjc` =
1

(j + `+ 1)(j + `) · · · (`+ 1)
, 0 ≤ j + ` ≤ p− 1. (3.9)

Remark 3.8. The fact that the definition of order implies the order conditions (3.8) and
(3.9) is well known, see [AP03; OR92] and can be seen by applying the method to ODEs
with right hand sides of the form f(t, u) := u+ g(t).

3.3 Convolution Quadrature

Convolution Quadrature (CQ) was introduced by Christian Lubich in [Lub88a; Lub88b]
as a method for discretizing convolution integrals and fractional derivatives. It possesses
very favorable stability properties due to an implicit regularization in time. For the pur-
pose of using it to discretize boundary integral equations, its main advantage is that it can
approximate convolutions without having to evaluate the convolution kernel in the time
domain. Instead it is sufficient that the Laplace transform of the kernel is well-behaved and
known explicitly. In our applications, these considerations in the Laplace domain will lead
to boundary integral methods for the Helmholtz equation with complex wave numbers, as
introduced in Section 2.5. Convolution Quadrature comes in two flavors corresponding to
an underlying time discretization via multistep or Runge-Kutta methods. We will intro-
duce the basic principles of these two methods together with some convenient operational
calculus notation in the following sections.

The general premise is to approximate convolution integrals of the form

u(t) :=

∫ t

0
κ(t− τ)g(τ) dτ (3.10)

for a given kernel function κ : R+ → C and data g : R → C. We make the additional
assumption that g is a causal function, meaning that g(t) = 0 for t ≤ 0 and assume that
the Laplace transform K(s) := L [κ] (s) of κ can be computed explicitly, where we define
L [κ] (s) :=

∫∞
0 e−sτκ(τ) dτ . We can rewrite (3.10) as

u(t) := L −1 (K (·) L [g]) (3.11)

as long as the inverse Laplace transform exists (this imposes restrictions on the decay
properties of the Laplace transform L [g] which we specify later on). The motivation for
considering convolutions of the form (3.10) when interested in wave propagation problems
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3.3 Convolution Quadrature

and the related semigroups can be seen from Duhamel’s formula (2.8). Similarly, the
boundary integral equations will be derived in convolution form from this principle.

In order to emphasize the importance of the Laplace transform K(s) in (3.11) over the
kernel function κ, we introduce an operational calculus notation which is common in the
literature on Convolution Quadrature (see [Lub94]; note that the corresponding operational
calculus dates back much further, e.g., [Gen83] and[Yos84]).

Definition 3.9. Let K(s) : X → Y be a family of bounded linear operators between Banach
spaces X and Y that is analytic for Re(s) > 0. We define

K(∂t)g := L −1
(
K(·)L [g]

)
,

where g ∈ dom (K(∂t)) is such that the inverse Laplace transform exists, and the expression
above is well defined.

Remark 3.10. [Say16, Chapter 3] contains a very general treatment of when the inverse
Laplace transform exists using the theory of distributions. If L [g] decays sufficiently fast,
the inverse can be computed using the Bromwich integral:

K(∂t)g(t) =
1

2πi

∫
σ+iR

estK(s)L [g] (s) ds, σ > 0.

Proposition 3.11. This operational calculus has the following important properties:

(i) For kernels K1(s) and K2(s), we have K1(∂t)K2(∂t) = (K1K2) (∂t) .

(ii) For K(s) := s, we have: K(∂t)g(t) = g′(t) ∀g ∈ C1(R+), with g(0) = 0.

(iii) For K(s) := s−1 we have: K(∂t)g(t) =
∫ t

0 g(ξ) dξ ∀g ∈ C(R+).

The last statement motivates the notation ∂−1
t for the integral, which will be important

when we introduce a corresponding discrete version.

Proof. Part (i) follows directly by inserting the definitions of K1(∂t)[K2(∂t)g]. Part (ii)
follows from the properties of the Laplace transform, see, e.g., [Say16, Section 2.3]. The
last part then directly follows from (i) and (ii).

As an application of this calculus, we look at the following time-domain analog of repre-
sentation formula (2.33).

Proposition 3.12 (Kirchhoff’s representation formula, [Say16, Proposition 3.5.1]). Let Γ
be the boundary of a bounded Lipschitz domain, and let u ∈ C2(R, H1

∆

(
Rd \ Γ

)
) solve the

wave equation ü = ∆u in Rd \ Γ. Assume that u(t) = 0 for t ≤ 0 and that an a priori
estimate ‖u(t)‖H1

∆(Rd\Γ) ≤ C(1 + t`) holds for all t ≥ 0 and some ` ∈ N0.

Then, u can be written as

u = −S(∂t) J∂νuK +D(∂t) JγuK , (3.12)

where S and D denote the single and double layer potentials from (2.32).
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3 Time-stepping and Convolution Quadrature

3.3.1 Multistep method based CQ

The multistep based Convolution Quadrature was the original version introduced in [Lub88a;
Lub88b]. A detailed introduction to multistep Convolution Quadrature can also be found in
[Say16, Chapter 4]. An important tool when working with CQ is the so-called Z-transform.
For a sequence g := (gn)n∈N0 , it is defined by

Z [g] (z) :=
∞∑
n=0

gnz
n. (3.13)

(Note: we use the complex parameter z instead of s, as it does not directly correspond
to the Laplace parameter s. Instead the correspondence is z = es). We also identify a
function f with the sequence (f(tn))n∈N when writing Z [f ]. Let (αj)

m
j=0, (βj)

m
j=0 be the

coefficients of an m-step method as described in Section 3.1.
In order to motivate the definitions for approximating (3.10), we follow [Lub88a] and

make a (in our case purely formal) calculation. Let g : R → C be a causal function such
that (3.10) is well defined. Starting with (3.10), we use the Bromwich integral to write
κ = L −1[K], and calculate for σ > 0:

u(t) =

∫ t

0

(
1

2πi

∫
σ+iR

K(s)est ds

)
g(t− τ) dτ

=
1

2πi

∫
σ+iR

K(s)

∫ t

0
estg(t− τ) dτ ds

=
1

2πi

∫
σ+iR

K(s)

∫ t

0
es(t−τ)g(τ) dτ ds.

The inner integral is the solution to the ODE y′ = sy + g with y(0) = 0 by Duhamel’s
formula, which we will approximate by a multistep method. Let k > 0 denote the timestep
size used for the approximation. Since g(t) = 0 for t ≤ 0, we can equivalently start the
equation with y(−mt) = 0 in order to get the initial conditions for the multistep method
y(−jt) = 0 for j = 0, . . . ,m. Denoting the approximation at time step tn := nk (as defined
in (3.2)) by the multistep method as yk(tn; s) gives:

u(tn) ≈ 1

2πi

∫
iR
K(s)yk(tn; s) ds =: uk(tn).

In order to get an explicit representation of uk(tn), we take the Z-transform to get:

Z
[
uk
]

=
1

2πi

∫
iR
K(s)Z

[
yk(·; s)

]
ds. (3.14)

We need an explicit representation of Z
[
yk(·; s)

]
. This can be derived via the Z-transform
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of (3.2):

1

k

∞∑
n=0

zn

 m∑
j=0

αjy
k(tn−j ; s)

 =
∞∑
n=0

zn
m∑
j=0

βj

[
syk(tn−j ; s) + g(tn−j)

]
⇐⇒

1

k

m∑
j=0

αjz
j

[ ∞∑
n=0

zn−jyk(tn−j ; s)

]
=

m∑
j=0

βjz
j

[ ∞∑
n=0

zn−j
(
syk(tn−j ; s) + g(tn−j)

)]
⇐⇒

1

k

m∑
j=0

αjz
jZ

[
yk(·; s)

]
=

m∑
j=0

βjz
j
(
sZ

[
yk(·; s)

]
+ Z [g]

)
⇐⇒[

δ(z)

k
− s
]

Z
[
yk(·; s)

]
= Z [g] ,

with the generating function

δ(z) :=

∑m
j=0 αjz

j∑m
j=0 βjz

j
. (3.15)

Inserting this into (3.14) and using the Cauchy integral theorem gives:

Z
[
uk
]

(z) =
1

2πi

∫
σ+iR

K(s)

[
δ(z)

k
− s
]−1

Z [g] ds = K

(
δ(z)

k

)
Z [g] .

Taking the inverse of the Z-transform in this equation then motivates the following defini-
tion:

Definition 3.13. Let K(s) : X → Y be a family of bounded linear operators between
Banach spaces which is analytic in s for Re(s) > 0. Let g : R → X be a causal function.
Let (αj)

m
j=0, (βj)

m
j=0 originate from an A-stable multistep method. Then, we define for

t ∈ R: [
K(∂kt )g

]
(t) :=

∞∑
j=0

Wjg(t− j k), (3.16)

where the operators Wj : X → Y are defined as the coefficients in the power series

∞∑
j=0

Wjz
j = K

(
δ(z)

k

)
(3.17)

and δ(z) is defined in (3.15).

The convolution weights in (3.17) are well defined due to the following mapping property
of δ and the analyticity assumption on K(s) for s ∈ C+.

Proposition 3.14 ([HW10, Chapter V.1, Theorem 1.5]). If a multistep method is A-stable,
then its generating function δ(z) as defined in (3.15) has no poles on the open unit disk
and satisfies Re(δ(z)) > 0 for |z| < 1.
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3 Time-stepping and Convolution Quadrature

3.3.2 Runge-Kutta based CQ

In order to get methods of order higher than two, the Runge-Kutta based Convolution
Quadrature method was introduced in [LO93]. The general derivation is similar to the
multistep case, replacing the approximation of the integral

∫ t
0 e

s(t−τ)g(τ) dτ with a Runge-
Kutta based time-stepping. The analysis based on Laplace domain estimates of K(s) for
hyperbolic problems has been successively developed in [BL11; BLM11]. We will not use
those results as we instead take a pure time domain approach in the later chapters.

Convolution Quadrature is only well defined for a certain subclass of methods. We make
the following restrictions:

Assumption 3.15. The Runge-Kutta method given by (Q, b, c), satisfies:

(i) the method is A-stable,

(ii) the matrix Q is invertible.

We again introduce the Convolution Quadrature approximation using an operational
calculus notation:

Definition 3.16. Assume that the RK-method defined by Q, b, c satisfies Assumption 3.15.
Let K(s) : X → Y be a family of bounded linear operators between Banach spaces, which is
analytic in s for Re(s) > 0, and let g : R→ X be a causal function. We define the function

δ(z) :=

(
Q+

z

1− z
1bT

)−1

. (3.18)

Using this, we define an analogous calculus to (3.16) via:[
K(∂kt )g

]
(t) :=

∞∑
j=0

Wjg(t− j k + kc),

and the matrix operators Wj : [X ]m → [Y]m are defined as the coefficients in the power
series

∞∑
j=0

Wjz
j = K

(
δ(z)

k

)
, (3.19)

where K(δ(z)/k) is defined using the Riesz-Dunford calculus introduced in Definition 2.40.

We also use the same notation if G : R→ [X ]m is already vector valued:[
K(∂kt )G

]
(t) :=

∞∑
j=0

WjG(t− j k).

Using a simple post-processing, we can compute an improved approximation. For a
function U : R+ → Cm we define

G [U ] (t) := 0 for t ≤ 0, (3.20)

G [U ] (t) := r(∞)G [U ] (t− k) + bTQ−1U(t) for t > 0, (3.21)

and analogously for Banach space valued functions. We immediately note that for stiffly
accurate methods this definition simplifies to projecting to the last component of U .
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3.3 Convolution Quadrature

Remark 3.17. Note that for Runge-Kutta methods, [K(∂kt )g](t) ∈ [Y]m is defined to be
vector valued. Sometimes in the literature, the notation [K(∂kt )g](t) is instead used for the

post processing G
[∑∞

j=0Wjg(t− j k + kc)
]
.

In order to see that (3.19) is well defined, we need the following statement about the
spectrum of δ(z):

Proposition 3.18 ([BLM11, Lemma 2.6]). Assume that the Runge-Kutta matrix defined
by Q, b, c satisfies Assumption 3.15. Then, for |z| < 1, the spectrum of δ(z) satisfies

σ(δ(z)) ⊆ σ(A−1) ∪ {w ∈ C : r(w)z = 1},

where r(w) denotes the stability function from Definition 3.4. Hence, if the Runge-Kutta
method is A-stable, then σ(δ(z)) lies in the open right half-plane C+ := {z ∈ C : Re(z) > 0}.

While most of the classical analysis of Convolution Quadrature methods are based on
estimates in the Laplace domain and the relation of the CQ-approximation to the ap-
proximation of a Duhamel integral ([Lub88a; Lub88b; BL11; LO93; BLM11]), we take a
different approach based on studying the approximation properties directly in the time
domain. This approach has recently gained interest and was pioneered in[BLS15a; MR17].
The basis of this approach is the following lemma, which tells us that the Convolution
Quadrature approximation corresponds to the solution of a time-stepping scheme. This re-
lationship was already noticed in the early works on the topic (e.g. [LO93]). We formulate
the transformation in a general lemma:

Lemma 3.19. Let X be a Banach space and A denotes a closed, not necessarily bounded,
linear operator on X . Let functions y : R+ → X , Y : R+ → [X ]m, and F : R+ → [X ]m be
given such that the following relations hold:

Y (tn) = y(tn)1+ k[Q⊗A]Y (tn) + k[Q⊗ Id]F (tn), (3.22)

y(tn+1) = r(∞)y(tn) + bTQ−1Y (tn). (3.23)

Assume that the Z-transforms Ŷ := Z [Y ] and F̂ := Z [F ] exist for sufficiently small z as
power series in [X ]m. Then, the Z-transforms solve the problem

−δ(z)
k
Ŷ +A Ŷ =

[
1

1− r(∞)z
k−1Q−11

]
y(0)− F̂ , (3.24)

where the matrix-valued function δ(z) is defined as in (3.18).

Proof. We begin by noting a different representation of δ(z), which is a simple consequence
of the Sherman-Morrison formula. Namely, for |z| < 1 we have

δ(z) = Q−1 − zQ−11bTQ−1

1− zr(∞)
. (3.25)

We consider the Z-transform of (3.23). Multiplying by zn and summing over n ∈ N0 gives

z−1 (ŷ − y(0)) = r(∞)ŷ + bTQ−1Ŷ
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3 Time-stepping and Convolution Quadrature

or equivalently after some simple manipulations:

ŷ =
z

1− r(∞)z

(
bTQ−1Ŷ + z−1y(0)

)
. (3.26)

The Z-transform of (3.22) is more involved, as it involves an unbounded operator. We
multiply by zn and sum up to a fixed N ∈ N. This gives (after rearranging for the terms
involving A):

k [Q⊗A]
N∑
n=0

zn Y (tn) =
N∑
z=0

zn Y (tn)−
N∑
z=0

zn y(tn)1− k [Q⊗ Id]
N∑
n=0

zn F (tn).

Since A is closed, k[Q ⊗ A] is also a closed operator. By assumption, the Z-transforms
Ŷ , and F̂ exist, and so does ŷ by (3.26). Therefore by the equality above, the limit
k [Q⊗A]

∑N
n=0 Y

nzn also exists for N → ∞. Due to the closedness of A the equality
becomes:

k [Q⊗A] Ŷ = Ŷ − ŷ1− k [Q⊗ Id] F̂ .

Inserting (3.26) this becomes:

k [Q⊗A] Ŷ =

[
Id− z

1− r(∞)z
1bTQ−1

]
Ŷ +

1

1− r(∞)z
y(0)1− k [Q⊗ Id] F̂ .

Applying Q−1 and rearranging the terms then gives the stated result.

3.4 Approximation of Semigroups via Runge-Kutta methods

In this section, we look at how well a semigroup can be approximated by using a Runge-
Kutta method. We perform our analysis in a general Banach or Hilbert space setting,
which will allow us to apply the results to a variety of problems, see Chapters 4 and 6. We
note that, since we are interested in time domain BEM based approximation schemes rather
than simple time stepping, the spaces we encounter later on will be somewhat non-standard
and infinite dimensional.

For maximal generality, we consider the setting of Proposition 2.11. Let A? be a closed
linear operator on a Banach space X . The operator B : domA? → M is assumed to
be linear and bounded, such that A := A?|kerB generates a C0-semigroup. Then, the
Runge-Kutta approximation of the Problem (2.11) is given by:

Uk(tn) = uk(tn)1+ k [Q⊗A?]Uk(tn) + k[Q⊗ I]F (tn + k c), (3.27a)

B
[
Uk(tn)

]
= Ξ (tn + k c) , (3.27b)

uk(tn+1) = uk(tn) + k
[
bT ⊗A?

]
Uk(tn) + k[bT ⊗ I]F (tn + k c), (3.27c)

for n ∈ N0 and uk(0) := u0.
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3.4.1 Rational functions of operators

We often work with rational functions of unbounded operators, as they provide a nice way
of transferring results from the scalar theory of Runge-Kutta methods to the semigroup
setting. The definitions are slightly awkward since rational functions over C commute, but
when dealing with operators we must pay attention to the domains.

Lemma 3.20. Let A be an (unbounded) operator on a Banach space X . Consider a family
R := (ξj , sj)

n
j=0 such that ξj ∈ C, sj ∈ {−1, 1} and ξj ∈ ρ(A) if sj = −1. We call such a

family a rational expression of A and associate an operator and a rational function over C
to it by defining:

R(A) :=
n∏
j=0

(A− ξj)sj , R(z) :=
n∏
j=0

(z − ξj)sj .

Let q(z) := p1(z)
p2(z) be a rational function defined by the two polynomials

p1(z) :=

n1∏
j=0

(z − µj) and p2(z) :=

n2∏
j=0

(z − λj).

If we assume λj /∈ σ(A) ∀j = 0, . . . , n2, the function q(z) induces a rational expression
Q := (ξj , sj)

n1+n2+1
j=0 defined as

(ξj , sj) :=

{
(µj , 1) for j = 0, . . . , n1,

(λj−n1−1,−1) for j = n1 + 1, . . . , n1 + n2 + 1.

By construction, we get Q(z) = q(z). We write q(A) := Q(A) using this associated rational
expression.

The following statements hold:

(i) R(A) is well defined and a linear operator dom(R(A))→ X .

(ii) For two rational expressions R, Q, for which the associated rational functions co-
incide, i.e. R(z) = Q(z) ∀z ∈ C, the associated operators coincide on the shared
domain, i.e., R(A)x = Q(A)x for x ∈ dom (R(A)) ∩ dom (Q(A)).

(iii) If
∑n

j=0 sj ≤ 0, then R(A) has a bounded extension B ∈ B(X ) with R(A) ⊆ B. The

norm ‖B‖B(X ) depends on q and
∥∥(A− ξj)−1

∥∥
B(X )

for j = 0, . . . , n with sj = −1.

For rational functions this means that, if deg(p1) ≤ deg(p2), then q(A) is bounded.

(iv) For two rational expressions R and Q, the rational expression R ·Q, defined by con-
catenating the tuples, satisfies [R ·Q] = R(z)Q(z) and [R ·Q](A) = R(A)Q(A).

(v) For P , Q rational expressions and µ ∈ C, the operator B := P (A) + µQ(A) has an
extension, which can be written as R(A) for a new rational expression R.
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Proof. Part (i) is easily seen since we assumed that ξj ∈ ρ(A) for sj = −1.

Ad (ii): We write R := (ξj , sj)
n1
j=0 and Q := (ξ̃j , s̃j)

n2
j=0. We note that for x ∈ dom(A),

the factors satisfy (A − ξi)
−1(A − ξj)x = (A − ξj)(A − ξi)

−1x for ξi ∈ ρ(A), ξj ∈ C.
Thus we can reorder the terms in the product, such that those with sj = −1 are on the
right-most side of the expression without changing the value (but possibly extending the
domain). We also note that since linear factors (A − ξi) commute and so do the factors
(A−ξi)−1, we can permute these factors internally. By this insight, we observe that we may
assume that R (and by analogous considerations Q) is in simplified form, meaning that for
i, j ∈ {1, . . . , n1} with ξi = ξj we always have si = sj , as otherwise we may permute the
factors to cancel out.

Since the associated rational functions coincide over C and both expression are in sim-
plified form, the coefficients must be a permutation of each other, i.e., ξ̃j = ξP (j) and
s̃j = sP (j). By the previous considerations we can reorder the expression to be the same
for R(A) and Q(A).

Ad (iii): We reorder the coefficients and set Q := (ξ̃i, s̃i) = (ξP (i), sP (i)) such that s̃i = 1
for the first n1 terms and s̃i = −1 for the others. Since

∑n
j=0 sj ≤ 0, we get that n1 ≤ n−n1.

Therefore, we can group the operators into pairs and define the operator:

Q(A) =

 n1∏
j=0

(A− ξ̃j)(A− ξ̃j+n1)−1

 n∏
j=n1+1

(A− ξ̃j+n1)−1


and its corresponding rational expression Q. Since the pairings (A− ξ̃j)(A− ξ̃j+n1)−1 are

bounded with an operator norm depending only on ξ̃j , ξ̃j+n1 and
∥∥∥(A− ξ̃j+n1)−1

∥∥∥
B(X )

, this

operator is bounded. Also, as it corresponds to a reordering of the coefficients (ξj , sj)
n
j=0,

it is an extension of R(A) via (ii), which proves (iii).
Part (iv) follows trivially from the definitions.
Part (v): Since we’re only talking about extensions, let w.l.o.g. P (A) = p1(A)[p2(A)]−1

and Q(A) = q1(A)[q2(A)]−1 with pi,qi polynomials. Then, since the bounded operators
[p2(A)]−1 and [q2(A)]−1 commute, we can write for x ∈ dom(P (A)) ∩ dom(P (Q)):

(P (A) + µQ(A))x = [p1(A)q2(A) + p2(A)q1(A)] [q1(A)q2(A)]−1 x.

Since p1(A)q2(A) + p2(A)q1(A) is a polynomial in A, it can be written using linear factors.
Together with the factors of [q1(A)q2(A)]−1 this gives a new rational expression R with
R(z) = P (z) + µQ(z) and P (A) + µQ(A) ⊆ R(A).

When working with Runge-Kutta methods, it is often the case that we would like to use
(3.27a) in order to express an explicit formula for the stage vectors Uk(tn). In order to do
so, we need to invert a system of equations involving the operator A. The fact that this
can be done is subject of the next lemma.

Lemma 3.21. Let A be a linear (not necessarily bounded) operator on a Banach space
X and M ⊆ Cm×m be a matrix. Assume σ(A) ∩ σ(M) = ∅ and the resolvent satisfies∥∥∥(A− µ Id)−1

∥∥∥
B(X )

≤ Cρ for µ ∈ σ(M).
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3.4 Approximation of Semigroups via Runge-Kutta methods

Then, the matrix operator (A−M ⊗ Id) mapping [dom(A)]m → [X ]m is invertible and
satisfies ∥∥∥(A−M ⊗ Id)−1

∥∥∥
B(Xm)

≤ CCρ.

The constant C > 0 depends only on M . The inverse can be written as a rational expression[
(A−M ⊗ Id)−1

]
ij

= Rij(A), i, j = 1, . . . ,m.

Proof. We can bring M to Jordan form, and write M = XJX−1 where J consists of
Jordan-blocks and most notably is an upper triangular matrix with eigenvalues (µj)

m
j=1 on

its diagonal. It is easy to see that we can write the inverse as

(A−M ⊗ Id)−1 = [X ⊗ Id]−1 (A− J ⊗ Id)−1 [X ⊗ Id]

where the left-hand side exists if and only if the right-hand side does. Due to its triangu-
lar structure, (A− J ⊗ Id)−1 can be constructed by a backward substitution, each entry
involving the solution of a problem (A− µj)−1 and linear combinations of the entries com-
puted before. Since the resolvents exist and are bounded by Cρ, the full inverse can then
easily be constructed, and the bound follows from the triangle inequality. The form using
rational expressions follows directly from this construction.

An analogous result to Lemma 3.21 also holds for two different classes of problems which
will feature occasionally in this thesis. We compile these results here for ease of presentation.

Lemma 3.22. Let A be a linear (not necessarily bounded) operator on a Banach space X
and M ⊆ Cm×m be a given matrix. Let B : dom(A)→ Y be a linear operator representing
a side constraint such that for all λ ∈ σ(M) and f ∈ X , g ∈ Y there exists a unique
u ∈ dom(A), satisfying

Au− λu = f and Bu = g.

Assume that this solution u satisfies the estimate ‖u‖X ≤ Cλ
(
‖f‖X + ‖g‖Y

)
. Then, the

matrix valued problem, given F ∈ [X ]m and G ∈ [Y]m, find U ∈ [dom(A)]m such that

AU −MU = F and BU = G

has a unique solution, which satisfies

‖U‖[X ]m ≤ C
(
‖F‖[X ]m + ‖G‖[Y]m

)
.

The constant C > 0 depends only on M and the constants Cλ for λ ∈ σ(M).

Lemma 3.23. Let a(·, ·) be a bilinear form on a Banach space Y. Let X be a Hilbert space
with Y ⊆ X with continuous embedding. Assume that for λ ∈ σ(M) and f ∈ Y ′ the scalar
problems of finding u ∈ Y such that

a(u, v)− λ 〈u, v〉X = 〈f, v〉Y ′×Y ∀v ∈ Y
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have a unique solution with ‖u‖1 ≤ Cλ ‖f‖2 for some norms ‖·‖1 on Y and ‖·‖2 on Y ′.
Given F ∈ [Y ′]m, the problem find U = (Uj)

m
j=0 ∈ [Y]m such that

m∑
j=0

a(Uj , Vj)− 〈MU,V 〉[X ]m = 〈F, V 〉[Y ′×Y]m ∀V = (Vj)
m
j=0 ∈ [Y]m

has a unique solution, which satisfies

‖U‖1 ≤
(

max
λ∈σ(M)

Cλ

)
CM ‖F‖2

with the product versions of the norms ‖·‖1 and ‖·‖2. The constant CM > 0 depends only
on M .

Proof of Lemmas 3.22 and 3.23. Follows verbatim to the proof of Lemma 3.21, as we only
needed that, after transforming to Jordan form, the scalar problems had unique solutions.

Before we can prove the stability of Runge-Kutta methods, we need two results from
functional analysis. We will make use of the spectral theorem for self-adjoint operators.

Proposition 3.24 (Spectral theorem, [Wer07, Satz VII.3.1, page 354] or [RS80, Theorem
VIII.4]). Let A be a (not necessarily bounded) self-adjoint operator on a Hilbert space H.
Then there exists a measure space 〈O, µ〉, a measurable function F : O → R, and a unitary
map U : H → L2(O, dµ) with the following properties:

(i) x ∈ dom(A) if and only if F · Ux ∈ L2(µ),

(ii) (UAU−1f)(z) = F (z)f(z) ∀z ∈ O.

We use this result in the following version:

Corollary 3.25. Let A be a (not necessarily bounded) self-adjoint operator on a Hilbert
space H. Then, for a rational function q(z) with |q(z)| = 1 for z ∈ R, the operator q(A) is
an isometry.

Proof. It is easy to see using the notation from Proposition 3.24 that, since the poles of q
are not on the real line, (A−µ)−1 corresponds to multiplying by (F (z)−µ)−1. By writing
the linear factors in the definition of q(A) as U−1(F (z)− ξ)sjU , and cancelling the pairings
U−1U , we get q(A) = U−1q(F (·))U , where q(F (·)) denotes the multiplication operator.

Since U is unitary, this allows us to calculate the norms:

‖q(A)x‖2H = ‖q(F (·))[Ux](z)‖2L2(µ) =

∫
|q(F (z))|2 |[Ux](z)|2 dµ(z)

=

∫
|[Ux](z)|2 dµ(z)

= ‖x‖2H .

When dealing with non-self-adjoint operators we will use the following result:
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Proposition 3.26 (von Neumann). Let H be a Hilbert space and q(z) a rational function
with |q(z)| ≤ 1 for |z| ≤ 1. Then, for all bounded linear operators T ∈ B(X ):

‖T‖B(X ) ≤ 1 implies ‖q(T )‖B(H) ≤ 1.

Proof. See [Neu51, Section 4] or [RS90, Chapter XI, Section 154].

3.4.2 Stability of Runge-Kutta time-stepping

The previous preparatory results allow us to show the following stability estimate:

Lemma 3.27 (Discrete Stability). Let A be a linear, maximally dissipative operator on
a Hilbert space H. Then, for A-stable Runge-Kutta methods and arbitrary k > 0, we can
bound

‖r(k A)‖B(H) ≤ 1. (3.28)

If in addition −A is also maximally dissipative (or equivalently iA is self-adjoint), and
the RK-method satisfies |r(it)| = 1 for t ∈ R, then the operator is an isometry:

‖r(k A)u‖H = ‖u‖H ∀u ∈ H. (3.29)

Proof. In order to show (3.28) we make use of results and ideas in [Neu51]. The results
there are formulated for bounded operators A, but we will follow the same techniques.
We consider the operator Φ := (A+ Id) (A− Id)−1 (the existence of the inverse is guaran-
teed by the maximality assumption, see (2.7)). Then, Φ is a contraction by the following
calculation for u ∈ dom(A):

‖(A+ Id)u‖2H = 〈(A+ Id)u, (A+ Id)u〉H = ‖Au‖2H + 2 Re 〈Au, u〉H + ‖u‖2H
= 〈(A− Id)u, (A− Id)u〉H + 4 Re 〈Au, u〉H
≤ ‖(A− Id)u‖2H ,

where in the last step we used the dissipativity, i.e. 4 Re 〈Au, u〉H ≤ 0. Setting u :=
(A− Id)−1ϕ then gives ‖Φϕ‖H ≤ ‖ϕ‖H or ‖Φ‖B(H) ≤ 1.

Looking at the map C : z 7→ z+1
z−1 , it is easy to see that for Re(z) < 0 it holds that

|C (z)| ≤ 1 and C (C (z)) = z. Thus C maps B1(0) to {z ∈ C : Re(z) < 0}.
Since |r(z)| ≤ 1 for Re(z) ≤ 0 due to A-stability, this implies that the rational func-

tion g(z) := r
(
z+λ
z−λ

)
satisfies |g(z)| ≤ 1 for |z| ≤ 1 (where we have implicitly removed

the singularity at z = 1, since |g(1)| = |r(∞)| ≤ 1). By Proposition 3.26 this implies
‖g(Φ)‖B(X ) ≤ 1.

Since g(Φ) and r(A) are two rational expressions of A, both defining operators defined on
all of X , for which the rational functions satisfy g(C (z)) = r(C ◦C (z)) = r(z) by definition,
we get that g(Φ) = r(A) by Lemma 3.20(ii).

If −A is also maximally dissipative, this implies that iA is self adjoint by Propo-
sition 2.9. We can apply Corollary 3.25 to the function q(z) := r(−iz), to estimate
‖u‖H = ‖q(iA)u‖H =

∥∥r(−i2A)u
∥∥
H = ‖r(A)u‖H.
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In the previous theorem it is crucial that H is a Hilbert space. For general Banach
spaces the estimate does not hold. Instead, the following estimate was shown by Brenner
and Thomée:

Proposition 3.28 ([BT79]). Let A be the generator of a C0-semigroup on a Banach space
X . Then, for nk ≤ T , there exist constants C and κ such that the following estimate holds:

‖r(k A)n‖B(X ) ≤ C n
1/2eκωT ,

where κ and C depend on the a priori estimates from (2.5) but are independent of k and n.

Now that we have studied the operator r(k A), we need to make the connection to the
Runge-Kutta approximation. We start with the following simple result, showcasing the
calculus of rational functions.

Lemma 3.29. For homogeneous constraints, i.e. Ξ ≡ 0, and F ≡ 0, we can reformu-
late (3.27) as

uk(tn+1) = r(kA)uk(tn), (3.30)

where r(z) is the stability function (3.5).

Proof. For Ξ ≡ 0 and F ≡ 0 , the problem becomes finding Uk(tn) ∈ [dom(A)]m such that:

Uk(tn) = uk(tn)1+ k [Q⊗A]Uk(tn) (3.31)

uk(tn+1) = uk(tn) + k
[
bT ⊗A

]
Uk(tn). (3.32)

Bringing k [Q⊗A]Uk(tn) to the left-hand side, we can write the first equation by Lemma 3.21
as

Uk(tn) = [Id−kQ⊗A]−1 uk(tn)1.

Inserting this equation into (3.32) allows us to eliminate the stage vector Uk(tn) and get

uk(tn+1) =
(

1 + k
[
bT ⊗A

]
[Id−kQ⊗A]−1

1
)
uk(tn).

It is easy to check that
[
bT ⊗A

]
[Id−kQ⊗A]−1

1 is a bounded operator corresponding to
a rational expression of A. Therefore, by 3.20(ii) we can write this using our calculus for
rational functions as (3.30).

The Runge-Kutta approximation has the following stability property:

Lemma 3.30. Let X be a Hilbert space and A a maximally dissipative operator. For
f ∈ L∞ ([0, T ],X ) and F ∈ L∞ ([0, T ], [X ]m), let Uk and uk be a perturbed Runge-Kutta
approximation, i.e., assume they solve:

Uk(tn) = uk(tn)1+ k [Q⊗A]Uk(tn) + k[Q⊗ Id]F (tn),

uk(tn+1) = uk(tn) + k
[
bT ⊗A

]
Uk(tn) + kf(tn).
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Then, the following estimate holds:∥∥∥uk(tn)
∥∥∥
X
≤
∥∥∥uk(0)

∥∥∥
X

+ Ck
n−1∑
j=0

[
‖F (tj)‖[X ]m + ‖f(tj)‖X

]
. (3.33)

For the stages this implies:∥∥∥Uk(tn)
∥∥∥

[X ]m
≤ C

∥∥∥uk(0)
∥∥∥
X

+ Ck

n∑
j=0

[
‖F (tj)‖[X ]m + ‖f(tj)‖X

]
. (3.34)

The constant C > 0 depends only on the Runge-Kutta method.

Proof. Using an analogous reformulation to Lemma 3.29, we can write

uk(tn+1) = r(k A)uk + k
[
bT ⊗A

]
[Id−kQ⊗A]−1 kQF (tn) + kf(tn).

The operator k
[
bT ⊗A

]
[Id−kQ⊗A]−1 can be rewritten as

k
[
bT ⊗A

]
[Id−kQ⊗A]−1 =

[
bTQ−1 ⊗ Id

]
− bT [Id−kQ⊗A]−1 ,

which is a bounded operator by Lemma 3.21. Estimate (3.33) then follows from (3.28)
and the discrete Gronwall lemma (see [Tho06, Lemma 10.5]). Estimate (3.34) follows from
Lemma 3.21 and the estimate on the end points uk(tn).

3.4.3 Convergence of Runge-Kutta methods for semigroups

The approximation properties of Runge-Kutta methods for semigroups have been exten-
sively studied in the literature. Early results by Crouzeix, Brenner, and Thomé considered
the case of homogeneous problems [BT79; Cro76]. Some inhomogeneities were later al-
lowed in [BCT82]. In order to obtain convergence rates which exceed the stage order,
the authors focus on solutions satisfying u(t) ∈ dom(A`) for ` ∈ N, which is not suitable
when dealing with inhomogeneous boundary conditions. Later in [OR92], it was shown
that sometimes one achieves fractional orders of convergence, depending on the assump-
tion u(t) ∈ dom(Aµ), but still based on the assumption µ ≥ 1. The case µ ∈ [0, 1] was later
addressed in [AP03], in which the authors proved that it is possible to regain a fractional
convergence rate, assuming that the exact solution is in some interpolation space between
X and dom(A).

We use the following notation, generalizing the interpolation spaces from Section 2.3.1

Definition 3.31. For a closed operator A on a Banach space X , we define the interpolation
space for µ ∈ N0 as

Xµ := [X ,dom(A)]µ,2 := dom(Aµ),

where dom(Aµ) is equipped with the graph norm ‖Aµu‖ :=
∑µ

`=0

∥∥A`u∥∥X .
For 0 ≤ µ /∈ N0, we define the spaces by interpolation as:

Xµ := [X , dom(A)]µ,2 :=
[
dom(Aµ0), dom(Aµ0+1)

]
µ−µ0,2

,

where µ0 := bµc is the integer part of µ.
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For k > 0 and T > 0, we define the quantity ρk(T ), which gives an estimate on the error
propagation due to the Runge-Kutta method by

ρk(T ) := sup
0≤nk≤T

‖r(kA)n‖B(X ) . (3.35)

Most notably, in the case of contraction semigroups on a Hilbert space, we have ρk(T ) ≤ 1
via Lemma 3.27.

The following two Propositions summarize the results of [AP03] in our notation.

Proposition 3.32 ([AP03, Theorem 1]). Let the assumptions of Proposition 2.11 hold.
Assume that the exact solution u ∈ Cp+1 ([0, T ] ,Xµ) for µ ≥ 0. Let uk denote the Runge-
Kutta approximation from (3.27). Then, there exist constants k0 > 0, C > 0, such that for
0 < k ≤ k0 and 0 < nk ≤ T the following estimate holds:

∥∥∥u(tn)− uk(tn)
∥∥∥
X
≤ CTρk(T )kmin(p,q+µ)

p+1∑
`=q+1

max
τ∈[0,T ]

∥∥∥u(`)(τ)
∥∥∥
Xµ
. (3.36)

The constant C depends on the Runge-Kutta method, µ, and the constants M and ω from
Proposition 2.4. The constant k0 depends only on the constants M and ω. If A generates
a semigroup of contractions, k0 can be chosen arbitrarily.

Proof. We only make some small remarks on the differences in notation. [AP03] uses a
different definition of interpolation spaces, but the proof only relies on estimates of the
form (2.15). The choice of k0 follows from the fact that it is only needed to ensure that
(I − kQ ⊗ A) is invertible. For contraction semigroups we have that σ(k A) ⊆ C− and
σ(Q) ⊆ C+. By Proposition 3.21 this inverse exists for k > 0. The assumption µ ≤ p− q,
the authors of [AP03] made in their formulation of Theorem 1, can be replaced by using
the rate min(p, q + µ) in (3.36) as the spaces Xµ ⊆ Xp−q are nested for µ ≥ p− q.

For a subset of Runge-Kutta methods, these estimates can be improved:

Proposition 3.33 ([AP03, Theorem 2]). Let the assumptions of Proposition 3.32 hold,
and assume that, in addition, the RK-method satisfies

|r(z)| < 1 for Re(z) ≤ 0 ∧ z 6= 0 and r(∞) 6= 1. (3.37)

Then, there exist constants k0 > 0, C > 0, such that for 0 < k ≤ k0 and 0 < nk ≤ T the
following improved estimate holds:

∥∥∥u(tn)− uk(tn)
∥∥∥
X
≤ CTρk(T )kmin(p,q+1+µ)

p+1∑
`=q+1

max
τ∈[0,T ]

∥∥∥u(`)(τ)
∥∥∥
Xµ
. (3.38)

The constant C depends on the Runge-Kutta method, µ, and the constants M and ω from
Proposition 2.4. The constant k0 depends only on the constants M and ω. If A generates
a semigroup of contractions it can be chosen arbitrarily.
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Proof. Again, this is just a slight simplification of [AP03, Theorem 2]. We first note that,
due to our assumption on |r(z)|, we are always in the case m = 0. Since we assumed
that on the imaginary axis r(z) is not equal to 1, we directly note that for sufficiently
small k ≤ k0, all the zeros of r(z) − 1 satisfy Re(z) > kω. By the resolvent bound (2.5)
we therefore can estimate

∥∥(zI − kA)−1
∥∥

B(X )
≤ M

Re(z)−k0ω
for Re(z) < k0ω, i.e., we have

a uniform resolvent bound in the set Zα,δ (using their notation). We also note that we
reformulated the convergence rate such that we do not have the restriction µ ≤ p− q − 1,
since the exceptional cases are already proved by Theorem 3.32.

Remark 3.34. The assumption |r(z)| < 1 for Re(z) ≤ 1 and r(∞) 6= 1 is satisfied by
the RadauIIa family of Runge-Kutta methods, but is violated by the Gauss methods, which
satisfy |r(z)| = 1 on the imaginary axis.

We need the following simple lemma when working with Z-transforms of semigroups.

Lemma 3.35. Let the assumptions of Proposition 2.11 hold, i.e., A? is a closed operator
on a Banach space X , B : dom(A?)→ Y is a surjective bounded linear operator such that
A := A?|ker(B) generates a C0-semigroup. Then there exists a constant k0 > 0, such that

for all F̂ ∈ [X ]m, Ξ̂ ∈ [Y]m and |z| < 1, the problem of finding Û ∈ [dom(A)]m such that

−δ(z)
k
Û +A?Û = F̂ ,

BÛ = Ξ̂

has a unique solution for k ≤ k0. The constant k0 depends on the constants in (2.5) and
can be chosen arbitrarily for the case tat A is maximally dissipative.

Proof. To see existence, let Ŵ ∈ [dom(A?)]
m satisfy BŴ = Ξ̂ (B was assumed surjective).

By setting Û := Û0 + Ŵ , where Û0 solves

−δ(z)
k
Û0 +AÛ0 = F̂ +

δ(z)

k
Ŵ −AŴ ,

it is sufficient to show that the problem with homogeneous side constraint, i.e., Ξ̂ = 0 has
a solution. Since σ (δ(z)) ⊆ C+ (Proposition 3.18), and µ ∈ ρ(A) for Re(µ) > ω, where
ω is the constant from (2.5). For k sufficiently small, we can apply Lemma 3.21 to get
existence.

To see uniqueness, consider the difference of two solutions Û − V̂ . Due to linearity the
difference satisfies the homogeneous problem, i.e., Ξ̂ = 0 and F̂ = 0, and we can apply
Lemma 3.21 again.

Since we are interested in using the Runge-Kutta theory for boundary integral equations,
we often need estimates in norms which are stronger than the natural norm of the under-
lying space. The next lemma is the basis for obtaining such stronger estimates (see also
Lemma 2.13 for a continuous-in-time version).

Lemma 3.36. Let k be sufficiently small such that Lemma 3.35 holds. Let Uk, uk solve (3.27)
with homogeneous initial conditions uk(t) = 0 for t ≤ 0. Define V k := k−1Q−1(Uk − uk1)
and vk := G

[
V k
]
. Then, the following statements hold:
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(i) V k, vk solve (3.27) with modified right-hand sides:

V k(tn) = vk(tn)1+ k [Q⊗A?]V k(tn) + k[Q⊗ Id]G(tn) (3.39a)

B
[
V k(tn)

]
= Θ(tn), (3.39b)

with G := ∂kt F , Θ := ∂kt Ξ.

(ii) V k can be related to A?U
k via

A?U
k(tn) = V k(tn)− F (tn + k c).

(iii) If the Runge-Kutta method is stiffly accurate, the inhomogeneities can be simplified
to G(t) = k−1Q−1 (F (t+ k c)− F (t)1) and Θ(t) := k−1Q−1 (Ξ (t+ k c)− Ξ(t)).

Proof. Ad (i): We prove that V k solves (3.39) by showing that the Z-transform of V k

coincides with the Z-transform of the solutions to (3.39), which will be denoted by Y k. By
Lemma 3.19 and the definition of G and Θ, the transformed variable Ŷ k := Z

[
Y k
]

solves:

−δ(z)
k
Ŷ k +A?Ŷ

k = −δ(z)
k
F̂ ,

B
[
Ŷ k
]

=
δ(z)

k
Ξ̂.

On the other hand, V̂ k = k−1Q−1
(
Ûk − ûk1

)
. Using (3.26), this becomes

V̂ k = k−1Q−1

(
Ûk − z

1− r(∞)z

(
bTQ−1Ûk

)
1

)
=
δ(z)

k
Ûk

via (3.25). Therefore, V̂ k solves:

−δ(z)
k
V̂ k +A?V̂

k = −
(
δ(z)

k

)2

Ûk +
δ(z)

k
A?Û

k

= −δ(z)
k
F̂ ,

and analogously for the constraint. By the uniqueness of the transformed problem, proved
in Lemma 3.35, this proves (i).

Ad (ii): Follows directly from equation (3.27a).
Ad (iii): For stiffly accurate methods, we have r(∞) = 0. Thus, we calculate

δ(z) = Q−1 − zQ−11bTQ−1,

or, in terms of F :

[∂kt F ](tn) = k−1Q−1F (tn + kc)−Q−11bTQ−1F (tn−1 + kc)

= k−1Q−1F (tn + kc)−Q−11F (tn),

since stiffly accurate methods satisfy bTQ−1 = (0, . . . , 1) and cm = 1. A completely
analogous computation for ∂kt Ξ concludes the proof.

46



3.4 Approximation of Semigroups via Runge-Kutta methods

We now consider what happens with the approximation properties when using the dis-

crete derivative or integral, i.e., apply ∂kt and
(
∂kt
)−1

. We prove statements analogous to
Proposition 3.32 and Proposition 3.33. Due to the technical nature of these results, we
defer the proofs to the end of the section.

Theorem 3.37. Let u solve (2.11) and let Uk, uk solve (3.27) with homogeneous initial
conditions u(t) = uk(t) = 0 for t ≤ 0. Define x(t) := ∂−1

t u(t). Let Xµ denote the
interpolation space [X ,dom(A)]µ,2 for µ ∈ [0,∞). Assume that the exact solution satisfies

u ∈ Cp ([0, T ] ,Xµ) and that EB
[
Ξ(`)

]
∈ C0 ([0, T ] ,Xµ) for ` = −1, . . . , p as well as that

F ∈ Cp ([0, T ] ,Xµ). In addition, assume that k is sufficiently small such that Lemma 3.35
applies.

Consider Xk :=
(
∂kt
)−1

Uk and xk := G
[
Xk
]
. Then, the following statements hold:

(i) The functions Xk, xk satisfy the system:

Xk(tn) = xk(tn)1+ k [Q⊗A?]Xk(tn) + k[Q⊗ Id]G(tn) (3.40a)

BXk(tn) = Γk(tn), (3.40b)

xk(tn+1) := xk(tn) + k[bT ⊗A?]Xk(tn) + k[bT ⊗ Id]G(tn), (3.40c)

xk(t) = 0 for t ≤ 0, (3.40d)

where Γk(tn) is itself given by a Runge-Kutta integration:

Γk(tn) = γk(tn)1+ kQΞ(tn + kc),

γk(tn+1) = γk(tn) + kbTΞ(tn + kc),

γk(t) = 0 for t ≤ 0 ,

and the new right-hand side is defined by G := (∂kt )−1F .

(ii) For the approximation of the integral, there exists a parameter k0 > 0 such that the
following error estimates holds for all 0 ≤ k ≤ k0 and nk ≤ T :∥∥∥x(tn)− xk(tn)

∥∥∥
X
≤ CTρk(T )kmin(q+µ,p)

×
p+1∑
`=q+1

(
max
τ∈[0,T ]

∥∥∥x(`)(τ)
∥∥∥
Xµ

+ max
τ∈[0,T ]

∥∥∥EB [Ξ(`−1)
]

(τ)
∥∥∥
Xµ

+ max
τ∈[0,T ]

∥∥∥F (`−1)(τ)
∥∥∥
Xµ

)
(3.41)

with a constant C, which depends only on the Runge-Kutta method, µ, and the con-
stants M and ω from Proposition 2.4. If A generates a semigroup of contractions k0

can arbitrarily be chosen.

If the Runge-Kutta method satisfies the additional assumption (3.37), then (3.41) can
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be improved to:∥∥∥x(tn)− xk(tn)
∥∥∥
X
≤ CTρk(T )kmin(q+1+µ,p)

×
p+1∑
`=q+1

(
max
τ∈[0,T ]

∥∥∥u(`)(τ)
∥∥∥
Xµ

+ max
τ∈[0,T ]

∥∥∥EB [Ξ(`−1)
]

(τ)
∥∥∥
Xµ

+ max
τ∈[0,T ]

∥∥∥F (`−1)(τ)
∥∥∥
Xµ

)
.

(3.42)

A similar estimate can be shown for the difference quotients ∂kt U
k. We focus on the

stiffly accurate case.

Theorem 3.38. Let u be the exact solution to (2.11) and let vk and V k be defined as
in Lemma 3.36. Assume that the Runge-Kutta method is stiffly accurate, i.e. bTQ−1 =
(0, . . . , 1).

Define v := u̇ and assume that the exact solution satisfies v ∈ Cp+1 ([0, T ],Xµ) and that
EB
[
Ξ(`)

]
∈ C0 ([0, T ] ,Xµ) for ` = 1, . . . , p + 2 as well as F ∈ Cp+2 ([0, T ] ,Xµ). Then the

following error estimate holds:∥∥∥v(t)− vk(tn)
∥∥∥
X
≤ CTkmin(q+µ−1,p−1)

×
p+1∑
`=q+1

(
max
τ∈[0,T ]

∥∥∥v(`)(τ)
∥∥∥
Xµ

+ max
τ∈[0,T ]

∥∥∥EB [Ξ(`+1)(τ)
]∥∥∥
Xµ

+ max
τ∈[0,T ]

∥∥∥F (`+1)(τ)
∥∥∥
Xµ

)
. (3.43)

If the method also satisfies (3.37), the estimate can be improved to∥∥∥v(t)− vk(tn)
∥∥∥
X
≤ CTkmin(q+µ,p)

×
p+1∑
`=q+1

(
max
τ∈[0,T ]

∥∥∥v(`)(τ)
∥∥∥
Xµ

+ max
τ∈[0,T ]

∥∥∥EB [Ξ(`+1)(τ)
]∥∥∥
Xµ

+ max
τ∈[0,T ]

∥∥∥F (`+1)(τ)
∥∥∥
Xµ

)
. (3.44)

Remark 3.39. Most of the effort in proving the above theorem is in order to obtain a
convergence rate higher than q, even though the constraint in the stages only approximate
with order q.

Some Lemmata regarding Runge-Kutta methods

In order to prove Theorems 3.37 and 3.38, we need some more technical lemmas, which
summarize properties of some rational functions when applied to the generator of a semi-
group.

Lemma 3.40. Let A be the generator of a C0-semigroup on a Banach space X , and let
Xµ := [X ,dom(A)]µ,2 for µ ≥ 0. Assume that the Runge-Kutta method given by Q, b, c
satisfies (3.37).
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We define the following rational functions for β ∈ {−1, 0, 1}:

g(z) := zbT [Id−zQ]−1 ,

r(z) := 1 + zbT [Id−zQ]−1
1,

r`,β(z) := zbT [Id−zQ]−1Qβ
(
c` − `Qc`−1

)
.

Then, there exists a constant k0 > 0, depending on the constants M and ω from (2.5), such
that for ` ≤ p, 0 < k ≤ k0 with nk ≤ T and β = 0, 1 the following estimates hold for all
x ∈ Xµ and X ∈ [X ]m:∥∥∥∥∥∥

n∑
j=0

[r(k A)]jr`,β(k A)x

∥∥∥∥∥∥
X

≤ C ρk(T )kmin(µ,p−`−β) ‖x‖Xµ , (3.45)

∥∥∥∥∥∥
n∑
j=0

[r(k A)]jg(k A)X

∥∥∥∥∥∥
X

≤ C ρk(T ) ‖X‖[X ]m . (3.46)

The constant C > 0 depends only on the Runge-Kutta method, the constants M and ω
from (2.5), k0, `, and µ, but is independent of n, k, or x. If the Runge-Kutta method is
stiffly accurate, estimate (3.45) also holds for β = −1. If A generates a C0-semigroup of
contractions, k0 can be chosen arbitrarily.

Proof. We modify the proof of [AP03, Lemma 6], which only covers the case β = 0. We
first assume p− `− β ≥ 0 and fix µ ∈ N0 such that µ ≤ p− `− β (for µ ≥ p− `− β we can
just redefine µ := p − ` − β without changing the claimed estimate). Define the rational
function

fβ`,µ(z) :=
r`,β(z)

(r(z)− 1) zµ
.

Since we assumed r(∞) 6= 1, it is easy to see that fβ`,µ is bounded for z → ∞. By
considering the RK-approximation of the ODE y′ = z y, we get that r(z) approximates ez

with order p+ 1, and since p ≥ 1 this means r(z)− 1 = z + z2/2 + . . . for z → 0, and thus
0 is a simple root of the function r(z)− 1.

We recall the order conditions from (3.9):

bTQjc` =
1

(j + `+ 1) (j + `) · · · (`+ 1)
, 0 ≤ j + ` ≤ p− 1. (3.47)

We now have to distinguish the different cases for β = −1, 0, 1. We prove that in all
three cases we have that r`,β(z) = O(zp+1−`−β) for z → 0 (for the case µ = −1 we need
the additional assumption of stiff accuracy).

For β = −1 we first note that since we assumed the method to be stiffly accurate, we
can calculate using c = Q1 and the order conditions:

cm = bTQ−1c = bTQ−1Q1 = bT1 = 1.
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Using the definition of r`,−1 and the Neumann series for (Id−zQ)−1 gives:

r`,−1(z) = zbT (Id−zQ)−1Q−1(c` − `Qc`−1) = zbT
∞∑
j=0

zjQjQ−1(c` − `Qc`−1)

= zbTQ−1
(
c` − `Qc`−1

)
+ z

∞∑
j=1

zjbTQj−1(c` − `Qc`−1)

= z

∞∑
j=1

zjbTQj−1(c` − `Qc`−1),

where in the last step, we used that bTQ−1c` = c`m = 1 by our assumptions together with
bT c`−1 = 1

` by the order condition to eliminate the first term. By the order conditions,
the next p− ` terms also vanish, i.e., we can start the sum at j = p+ 1− `, which means
that r`,−1(z) = O(zp+2−`) for z → 0.

For β = 0 an analogous computation, but using only the order conditions gives:

r`,0(z) = zbT (Id−zQ)−1(c` − `Qc`−1) = z
∞∑

j=p−`
zjbTQj(c` − `Qc`−1),

which proves that r`,0(z) = O(zp+1−`) for z → 0.
For β = 1, the order conditions lead to one less term vanishing, i.e., we have

r`,1(z) := zbT (Id−zQ)−1Q(c` − `Qc`−1) = z
∞∑

j=p−1−`
zjbTQj+1(c` − `Qc`−1),

which gives r`,1(z) = O(zp−`).
Since we assumed 1 + µ ≤ p + 1 − ` − β, and |r(z)| < 1 for z ∈ iR \ {0}, we get that

fβ`,µ has no pole in the closed left-half plane. For k0 sufficiently small, we therefore get

that σ(kA) ⊆ {z ∈ C : Re(z) ≤ k0ω} and the set of poles of fβ`,µ are uniformly separated
w.r.t. k (for semigroups of contractions, we have ω = 0 and therefore k0 can be arbitrary).

We apply Proposition 3.20(iii) to get that fβ`,µ(k A) is a bounded linear operator with the

constant depending only on fβ`,µ and the distance of σ(k A) to the poles of fβ`,µ by (2.5).

Using fβ`,µ allows us to write:

n∑
j=0

r(z)jr`,β(z)z−µ =
r(z)n+1 − 1

(r(z)− 1)zµ
r`,β(z) = (r(z)n+1 − 1)fβ`,µ(z).

Setting z = kA gives for x ∈ Xµ (implicitly using Lemma 3.20(ii)):

n∑
j=0

r(kA)jr`,β(kA)x = (r(k A)n+1 − 1)fβ`,µ(kA)kµAµx.

Taking the norm, using the definition of ρk(T ) and interpolating between bµc and bµc+ 1,
then concludes the proof for r`,β in the case p− `− β ≥ 0.
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An analogous argument proves the estimate involving g. The important part is that
we get g(z) = O(z) for z → 0 also in this case, as the function (Id−zQ)−1 → Id. Since
z (Id−zQ)−1 can be bounded independently of z for Re(z) ≤ 0, this implies that the

function g(z)
r(z)−1 also has no poles and is bounded in {z ∈ C : Re(z) ≤ 0}. The rest of the

argument follows analogously.
It remains to show the estimate involving r`,β in the case p− ` < β. Since ` ≤ p this only

happens for β = 1. Since we can write r`,β(z) = g(z)Qβ
(
c` − `Qc`−1

)
, the stated estimate

is weaker than the previous estimate involving just g(kA).

When dealing with Runge-Kutta methods which do not satisfy the additional assump-
tion (3.37), we still have the following result:

Lemma 3.41. Let A be the generator of a C0-semigroup on a Banach space X , and let
Xµ := [X , dom(A)]µ,2 for µ ≥ 0 as in Definition 3.31. Define r`,β as in Lemma 3.40.

Then there exists a constant k0 > 0, depending on the constants M and ω from (2.5),
such that for ` ≤ p, 0 < k ≤ k0 and µ = 0, 1 the following estimates hold for all x ∈ Xµ:

‖r`,β(k A)x‖X ≤ C k
min(µ,p+1−`−β) ‖x‖Xµ . (3.48)

The constant C > 0 depends only on the Runge-Kutta method, the constants M and ω from
(2.5), k0, ` ,and µ, but is independent of k or x.

If the Runge-Kutta method is stiffly accurate, (3.48) also holds for β = −1. If A generates
a C0-semigroup of contractions, k0 can be chosen arbitrarily.

Proof. The proof follows using similar techniques to Lemma 3.40. We fix µ ∈ N0 such
that µ ≤ p + 1 − ` − β. We have already established in the proof of Lemma 3.40 that
r`,β = O(zp+1−`−β) for z → 0 and that r`,β is bounded for z ∈ C−. Therefore, we can write
r`,β(z) = q(z)zµ, where q(z) is a bounded rational function on C−. For k ≤ k0 sufficiently
small, the poles of q and the spectrum of kA are uniformly separated (for contraction
semigroups the spectrum of A is in the left half plane so the condition is always satisfied).
Using Lemma 3.20(ii), we get:

‖r`,β(k A)x‖X ≤ ‖q(kA) (kA)µ x‖X . kµ ‖Aµx‖X .

The case for non-integer µ follows again by interpolation.

Lemma 3.42. Let A generate a C0-semigroup on a Banach space X . Assume u ∈
Cp+1 ([0, T ] ,Xµ) for some µ ≥ 0. For β ∈ {−1, 0, 1}, we define the rational functions
g(z), r(z) and r`,β(z) as in Lemma 3.40. We set α := 1 if the Runge-Kutta method satis-
fies (3.37), i.e., |r(z)| < 1 for z ∈ iR \ {0} and r(∞) 6= 1. Otherwise we set α := 0.

Define e(tn) as

e(tn) :=
n∑
j=0

[r(kA)]n−j g(kA) (kQ)β [u(tj + kc)− u(tj)1− kQu̇(tj + kc)].

Then, the following error estimates hold for β ∈ {0, 1}:

‖e(tn)‖X ≤ Cρk(T )Tkmin(q+α+β+µ,p)
p+1∑
`=0

max
τ∈[0,T ]

∥∥∥u(`)(τ)
∥∥∥
Xµ
.
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If we assume that the Runge-Kutta method is stiffly accurate, i.e., bTQ−1 = (0, . . . , 1),
then the following estimate holds for β = −1:

‖e(tn)‖X ≤ CTρk(T )kmin(q+µ−1,p−1)+α
p+1∑
`=0

max
τ∈[0,T ]

∥∥∥u(`)(τ)
∥∥∥
Xµ
.

Proof. We prove both estimates at the same time, the only place where the stiff accuracy
enters is in the applicability of Lemma 3.40. The case β = 0 was shown in [AP03, Theorem
1 and 2], we modify their proof slightly to also account for β = ±1.

For ease of notation, we introduce a new symbol for the term in the rightmost bracket
of the definition of e(tn) and write:

∆k(t) := [u(t+ kc)− u(t)1− kQu̇(t+ kc)] . (3.49)

In the case α = 1, i.e., the Runge-Kutta method satisfies (3.37), we sum by parts, writing
Sn(z) :=

∑n
j=0 [r(z)]j . This gives:

e(tn) = Sn−1(k A)g(kA)(kQ)β ∆k(t0) + S0(k A)g(kA)(kQ)β ∆k(tn)

+
n∑
j=1

Sn−j(k A)g(kA)(kQ)β
[
∆k(tj)−∆k(tj−1)

]
=: e1(tn) +

n∑
j=1

e
(j)
2 (tn). (3.50)

For fixed j ∈ N0, we write u(tj + t) = πj(t) + ϕj(t) as its Taylor polynomial πj of order
p, centered at tj , with remainder term ϕj . This means, we can write ∆k(tj) as:

∆k(tj) = [u(tj + kc)− u(tj)1− kQu̇(tj + kc)]

= πj(kc) + ϕj(kc)− πj(0)1− kQπ̇j(kc)− kQϕ̇j(kc)

=

p∑
`=1

k`
[
c` −Q`c`−1

]
u(`)(tj) + ϕj(kc)− kQϕ̇j(kc)

=:

p∑
`=1

k`
[
c` −Q`c`−1

]
u(`)(tj) + θ(tj) (3.51)

with θ(tj) := ϕj(kc) − kQϕ̇j(kc) collecting the remainder terms. Due to the stage order
condition (3.8), the first q terms of the above sum vanish, giving:

∆k(tj) =

p∑
`=q+1

k`
[
c` −Q`c`−1

]
u(`)(tj) + θ(tj).

From the integral representation of the remainder term ϕj , one can see that the following
estimates hold for 0 ≤ t ≤ k:

‖ϕj(t)‖X .
kp+1

(p+ 1)!
max

τ∈[tj ,tj+1]

∥∥∥u(p+1)(τ)
∥∥∥
X
, ‖ϕ̇j(t)‖X .

kp

p!
max

τ∈[tj ,tj+1]

∥∥∥u(p+1)(τ)
∥∥∥
X
,
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which implies ‖θ(tj)‖X = O(kp+1).
Using the definition of the rational function r`,β(z), we can rewrite the error terms in

(3.50) as

e1(tn) =

p∑
`=q+1

k`+β

`!
Sn−1(kA)r`,β(kA)u(`)(t0)

+ Sn−1(kA)g(k A)(kQ)βθ(t0)

e
(j)
2 (tn) =

p∑
`=q+1

k`+β

`!
Sn−1(kA)r`,β(kA)

(
u(`)(tj)− u(`)(tj−1)

)
+ Sn−1(kA)g(k A)(kQ)β [θ(tj)− θ(tj−1)] .

We first look at the contributions e
(j)
2 (tn). Using the mean value theorem, we can write for

some ξ ∈ [tj−1, tj ]:∥∥∥u(`)(tj)− u(`)(tj−1)
∥∥∥
Xµ

=

∥∥∥∥∥
∫ tj

tj−1

u(`+1)(ξ)dξ

∥∥∥∥∥
Xµ

≤ k max
ξ∈[tj−1,tj ]

∥∥∥u(`+1)(ξ)
∥∥∥
Xµ
.

Applying the results of Lemma 3.40, we can conclude that

∥∥∥e(j)
2 (tn)

∥∥∥
X
. k1+min(q+1+β+µ,p)

p∑
`=q+1

max
τ∈[0,T ]

∥∥∥u(`+1)(τ)
∥∥∥
Xµ

+
∥∥∥Sn−1(kA)g(k A)(kQ)β [θ(tj)− θ(tj−1)]

∥∥∥ .
To estimate the last term, we recall the definition of θ(tj) and reorder the terms to

θ(tj)− θ(tj−1) = (ϕj(kc)− ϕj−1(kc))− kQ (ϕ̇j(k c)− ϕ̇j−1(k c)) .

We use the integral form of the remainder in Taylor’s formula and calculate:

ϕj(t)− ϕj−1(t) =

∫ t

0

(t− τ)p

p!

(
u(p+1)(tj + τ)− u(p+1)(tj + τ − k)

)
dτ

which gives ‖ϕj(t)− ϕj−1(t)‖X = O(kp+2) by again writing the difference u(p+1)(τ) −
u(p+1)(τ − k) as an integral. Analogously, we can estimate ϕ̇j(t)− ϕ̇j−1(t) to be O(kp+1).
Combined, this gives the estimate θ(tj) − θ(tj−1) = O(kp+2). Together with the stability
of Sn−1(kA)g(kA) from Lemma 3.40 this gives:

∥∥∥e(j)
2 (tn)

∥∥∥
X
≤ k1+min(q+1+β+µ,p)

p∑
`=q+1

max
τ∈[0,T ]

∥∥∥u(`+1)(τ)
∥∥∥
Xµ

+O(kp+2+β).

The term e1(tn) can be estimated to be O
(
kmin(q+1+β+µ,p)

)
using similar estimates but

without the extra power of k due differences u(`)(tj) − u(`)(tj−1) etc. Inserting all these
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estimates into (3.50) and using the estimate nk ≤ T gives the stated estimates for the case
α = 1.

In the case α = 0, the proof is even simpler. We start by applying the triangle inequality
and the definition of ρk(T ) to get:

‖e(tn)‖X ≤ ρk(T )
n∑
j=0

∥∥∥g(kA) (kQ)β ∆k(tj)
∥∥∥
X
.

For fixed j ∈ N0, we write ∆k(tj) as its Taylor polynomial of order p (cf. (3.51)). Since
the remainder term takes the form kβg(kA)Qβ (ϕ(c)− kQϕ̇(c)) and is of order kp+1+β, we
get by applying Lemma 3.41:∥∥∥g(kA) (kQ)β ∆k(tj)

∥∥∥
X
.

p∑
`=q+1

k`+β
∥∥∥r`,β(k A)u(`)(tj)

∥∥∥
X

+O(kp+1+β)

.
p∑

`=q+1

k`+βkmin(µ,p−`−β)
∥∥∥u(`)(tj)

∥∥∥
Xµ

+O(kp+1+β)

. kmin(q+1+β+µ,p+1)
∥∥∥u(`)(tj)

∥∥∥
Xµ

+O(kp+1+β).

Summing over j then completes the proof.

Proofs of Theorem 3.37 and Theorem 3.38

We can now finally give the proofs of Theorem 3.37 and Theorem 3.38. We start with a
remark on notation. Since the spectral properties are very important for the analysis and
the spectrum depends on the constraint B, we emphasize the difference between functions
in dom(A) and dom(A?) by consequently using the operator A for functions satisfying
Bu = 0.

Proof of Theorem 3.37. Ad (i): For the sake of this proof, let Xk be defined as the ab-
stract solution to problem (3.40). We note that, using the Z-transform, we can see that
Γ̂ := Z [Γ] solves the same equation as k [δ(z)]−1 Ξ̂(z), where Ξ̂ := Z [Ξ]. Taking the Z-
transform of problem (3.40) using Lemma 3.19, we get that X̂k and k [δ(z)]−1 Ûk(z) solve
the same boundary value problem in the frequency domain. Due to the uniqueness result

of Lemma 3.35, Xk and
(
∂kt
)−1

Uk must coincide.
Ad (ii): The proof has a similar structure as in [AP03, Theorems 1 and 2]. By applying

Propositions 3.33 or 3.32, we can reduce the problem to an approximation by a perturbed
constraint and right-hand side. To formalize this, let x̃k and X̃k denote the solutions to
the problem (3.40) where the constraint is replaced by BX̃k(tn) =

(
∂−1
t Ξ

)
(tn + kc), and

the right hand side by G̃ := ∂−1
t F using the exact integrals. Then, the difference to the

exact solution can be bounded by Propositions 3.32/ 3.33 as

∥∥∥x(t)− x̃k(tn)
∥∥∥
X
≤ Cρk(T )Tkmin(q+α+µ,p)

p+1∑
`=0

max
τ∈[0,T ]

∥∥∥x(`)(τ)
∥∥∥
Xµ
, (3.53)
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where α = 0, 1 depending on whether r(z) satisfies the additional assumption (3.37).
For ease of presentation, we assume a homogeneous right hand side F (t) = 0, and only

deal with the perturbed constraint. The error due to the difference of G and G̃ can be
treated using similar techniques, but is slightly simpler since no further corrections are
needed to enforce that the error functions are in the domain of A. We define the following
error terms:

Ek(tn) := X̃k(tn)−Xk(tn)−∆k(tn), (3.54)

ek(tn) := x̃k(tn)− xk(tn)− δk(tn), (3.55)

where

∆k(tn) := EB
(
BX̃k(tn)−BXk(tn)

)
, (3.56)

δk(tn) := EB
(
∂−1
t Ξ(tn)− γk(tn)

)
(3.57)

are corrections to ensure BEk = 0, which means Ek ∈ dom(A), and δk will be needed to
ensure full convergence order.

Since the Runge-Kutta method induces a quadrature formula of order p (order p+ 1 in
each step, see (3.9) with j = 0) and the lifting EB is a bounded operator, we observe that∥∥x̃k(tn)− xk(tn)

∥∥
X =

∥∥ek(tn) + δk(tn)
∥∥
X .

∥∥ek(t)∥∥X +O(kp). This means, it is sufficient

to bound ek(tn).
From the definition of the error terms, we get the following error equations:

Ek(tn) = ek(tn)1+ k[Q⊗A]Ek(tn)−∆k(tn) + δk(tn)1+ k [Q⊗A?] ∆k(tn), (3.58)

ek(tn+1) = ek(tn) + k
[
bT ⊗A

]
Ek(tn)− δk(tn+1) + δk(tn) + k

[
bT ⊗A?

]
∆k(tn). (3.59)

We relabel the different error terms in order to consider them separately later on:

Ek(tn) = ek(tn)1+ k[Q⊗A]Ek(tn) + Θk
I (tn), (3.60)

ek(tn+1) = ek(tn) + k
[
bT ⊗A

]
Ek(tn) + Θk

II(tn), (3.61)

with

Θk
I (t) := −∆k(t) + δk(t)1+ k [Q⊗A?] ∆k(t),

Θk
II(t) := −δk(t+ k) + δk(t) + k

[
bT ⊗A?

]
∆k(t).

Inserting the equation for the stage vector (3.60) into (3.61), we get:

ek(tn+1) =
(

Id +k
[
bT ⊗A

]
[Id−kQ⊗A]−1

1
)
ek(tn)

+ k[bT ⊗A] [Id−kQ⊗A]−1 Θk
I (tn) + Θk

II(tn)

= r(kA)ek(tn) + k
[
bT ⊗A

]
[Id−kQ⊗A]−1 Θk

I (tn) + Θk
II(tn),

where we used that the operator
[
bT ⊗A

]
[Id−kQ⊗A]−1 is bounded and thus we can use

our calculus for rational functions without worrying about domains.
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3 Time-stepping and Convolution Quadrature

By unravelling the recursion and using the initial conditions ek(0) = 0, we get using the
triangle inequality and the definition of ρk(T ) from (3.35):∥∥∥ek(tn+1)

∥∥∥
X

≤

∥∥∥∥∥∥
n∑
j=0

[r(kA)]n−j
[
bT ⊗ kA

]
[Id−kQ⊗A]−1 Θk

I (tj)

∥∥∥∥∥∥
X

+ ρk(T )

n∑
j=0

∥∥∥Θk
II(tj)

∥∥∥
X
. (3.62)

We estimate the two terms separately, focusing on the term involving Θk
II first, splitting

it up further into two contributions:

Θk
II(t) = Θk

IIa(t) + Θk
IIb(t) :=

(
−δk(t+ k) + δk(t)

)
+
(
k[bT ⊗A?]∆k(t)

)
.

A direct estimate of the term Θk
IIa using the triangle inequality would give order O(kp) as

δk is the Runge-Kutta approximation of an integral. Instead, we rewrite the difference as:

δk(tj+1)− δk(tj) = EB
(

[∂−1
t Ξ](tj+1)− γk(tj+1)− [∂−1

t Ξ](tj) + γk(tj)
)

= EB
(
[∂−1
t Ξ](tj+1)− [∂−1

t Ξ](tj) + kbTΞ(tj + k c)
)
,

where in the last step we used the defining equation for γk(tj+1). Since b and c induce a
quadrature formula of order p+ 1, this term is also of order p+ 1.

For the term Θk
IIb, we first observe that, since A?EB = EB, we can rewrite it as

Θk
IIb(t) = k[bT ⊗ Id]∆k(t),

or inserting the definition of ∆k(t):

k[bT ⊗ Id]∆k(tj) = kEB[bT ⊗ Id]
(
[∂−1
t Ξ](tj + kc)− [∂−1

t Ξ](tj)1− kQΞ(tj + k c)
)

− kEB[bT ⊗ Id]
(
γk(tj)1− [∂−1

t Ξ](tj)1
)
.

The last term is of order O(kp+1) by the approximation properties of γk. Next, we write
∂−1
t Ξ(tj + t) =: π(t) + ϕ(t) as its Taylor polynomial of degree p − 1 based in tj with

remainder term ϕ. This allows us to write:

k[bT ⊗ Id]
(
∂−1
t Ξ(tj + kc)− ∂−1

t Ξ(tj)1− kQΞ(tj + k c)
)

= k[bT ⊗ Id] (π(kc) + ϕ(kc)− π(0)1− kQπ̇(c)− kQϕ̇(kc))

= k[bT ⊗ Id] (ϕ(kc)− kQϕ̇(kc)) ,

where we used that [bT ⊗ Id]
(
c` − `Qc`−1

)
vanishes for ` ≤ p− 1 due to the order condi-

tions (3.9). The functions ϕ and kϕ̇ are of order O (kp) and their norm can be controlled
using Ξ(p). We conclude that k[bT ⊗ Id]∆k(tn) is of order O(kp+1). Overall, the previous
calculations show that the error terms involving Θk

II all have order O(kp+1) and therefore
do not impact the convergence rate, even when summed over all j = 0, . . . , n.
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3.4 Approximation of Semigroups via Runge-Kutta methods

Next, we look the error terms involving Θk
I . Again, we split it into two contributions:

Θk
I (t) =: Θk

Ia(t) + Θk
Ib(t) := [−∆k(t) + δk(t)1] + k [Q⊗A?] ∆k(t).

Starting with Θk
Ia, and inserting the definition of ∆k(tn) and δk(tn), we get

∆k(tn)− δk(tn)1 = EB
(
∂−1
t Ξ(tn + kc)− γk(tn)1− kQΞ(tn + k c)− ∂−1

t Ξ(tn)1+ γk(tn)1
)

= EB
[
∂−1
t Ξ(tn + kc)−

(
∂−1
t Ξ(tn)1+ kQΞ(tn + k c)

)]
.

This means that the term involving Θk
Ia in (3.62) structurally fits the setting of Lemma 3.42

for u := EB
[
∂−1
t Ξ

]
and β = 0. Depending on whether r(z) fulfills the additional assump-

tion (3.37), this implies convergence rates O
(
kmin(q+µ,p)

)
or O

(
kmin(q+1+µ,p)

)
.

For the term Θk
Ib, we note that due to the lifting property A?EB = EB we can drop A?

and get k[Q ⊗ A?]∆k(tn) = k[Q ⊗ Id]∆k(tn). Using the definition of ∆k, and inserting a
term of the form ∂−1

t Ξ− γk, we calculate

k[Q⊗ Id]∆k(tn) = kQEB
(
∂−1
t Ξ(tn + kc)− γk(tn)1− kQΞ(tn + k c)

)
= kQEB

(
∂−1
t Ξ(tn + kc)− ∂−1

t Ξ(tn)1− kQΞ(tn + k c)
)

+ kQEB
(
∂−1
t Ξ(tn)− γk(tn)

)
1.

The last term is of order O(kp+1) as γk(tn) approximates the integral with order p. The
first term is again similar to a Runge-Kutta consistency error term, and fits Lemma 3.42
with β = 1 (due to the additional power of kQ), which implies convergence of order
O(kmin(q+1+µ+α,p)) (α = 0 or 1 depending on whether (3.37) holds). This concludes the
proof.

Proof of Theorem 3.38. The proof is similar to the one of Theorem 3.37. Again, we reduce
the problem to the case of perturbed data by using Propositions 3.32 or 3.33. Namely, we
have the following estimate:∥∥∥v(t)− ṽk(tn)

∥∥∥
X
≤ CTρk(T )kmin(q+α+µ,p)

p+1∑
`=0

max
τ∈[0,T ]

∥∥∥v(`)(τ)
∥∥∥
Xµ
,

where ṽk together with the stages Ṽ k solves (3.39) with the “exact” constraint BṼ k(t) =
Ξ̇(t+ k c) instead of the difference quotient and a right-hand side G̃(t) := Ḟ (t+ k c).

What remains to estimate is the influence of the error term in the constraint and right-
hand side. Again, we drop the right-hand side term as it can be dealt with using the same
techniques, and focus on the boundary terms. We define

∆k(t) := EB
[
k−1Q−1 (Ξ(t+ kc)− Ξ(t)1)− Ξ̇(t+ kc)

]
= k−1Q−1

[
Ξ(t+ kc)− Ξ(t)1− kQΞ̇(t+ kc)

]
,

Ek(t) := V k(t)− Ṽ k(t)−∆k(t),

ek(t) := vk(t)− ṽk(t).
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3 Time-stepping and Convolution Quadrature

We note that, by the lifting property, we have BEk(t) = 0 and thus Ek(t) ∈ [dom(A)]m.
The stages Ek satisfy the following equation:

Ek(tn) = ek(tn)1+ k [Q⊗A]Xk(tn)−∆k(tn) + k[Q⊗ Id]∆k(tn),

where we used the lifting property A?EB = EB. Eliminating Ek and using the rational
function calculus r(k A), gives for the end point:

ek(tn+1) = r (k A) ek(tn) + k
[
bT ⊗A

] [
Id−kQ⊗A

]−1
(kQ− Id) ∆k(tn).

We recursively plug in the representation of the truncation error, reorganize some terms,
and use the homogeneous initial conditions to get the representation:

ek(tn) =
n∑
j=0

[r(kA)]n−jg(k A) [kQ− Id] ∆k(tn)

=

n∑
j=0

r(kA)n−jg(k A)kQ∆k(tj)−
n∑
j=0

[r(kA)]n−jg(k A) ∆k(tj)

=: ∆I(tn) + ∆II(tn),

with g(z) := zbT (Id−zQ)−1.
Both terms structurally fit the assumptions of Lemma 3.42: For ∆I we use β = 0, which

gives the rate O
(
kmin(q+α+µ,p)

)
; For ∆II , we use β = −1 which gives convergence rate

O
(
kmin(q+µ−1,p−1)+α

)
(note the extra term k−1Q−1 hidden in the definition of ∆k). Thus,

we conclude that overall we get the convergence rate O
(
kmin(q+µ,p)

)
if α = 1, i.e., the

Runge-Kutta method satisfies (3.37), and O
(
kmin(q+µ−1,p−1)

)
otherwise. This concludes

the proof.
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4 FEM-BEM coupling for the Schrödinger
equation

In this section, we apply the boundary integral equation techniques to the Schrödinger
equation. The Schrödinger equation is one of the main governing equations in quantum
mechanics, and as such has a myriad of applications in the sciences. In its usual form, it
is posed on the full space Rd, which makes pure finite elements impractical. By making
the assumption that the complicated dynamics of the system are localized in a bounded
domain Ω−, we are able to replace the approximation on the unbounded domain Rd with
a discretization on Ω− augmented by transparent boundary conditions using the tools of
boundary integral equations and convolution quadrature developed in the previous sections.

This discretization scheme leads to a coupling of finite element and boundary element
methods (FEM-BEM coupling). Two classical procedures for such a coupling are the
symmetric coupling introduced in [Cos88a] and [Han90], as well as the Johnson-Nédélec
coupling [JN80]. We will focus on the symmetric approach.

A first numerical study of using Convolution Quadrature for the Schrödinger equation
in 2D is given in [Sch02]. There, the author uses a Johnson-Nédélec based FEM-BEM
coupling and convolution quadrature based on the trapezoidal rule for discretization and
observes optimal convergence rates in time.

While boundary integral equations provide a convenient way of implementing transparent
boundary conditions, it is in no way the only or even the most widespread approach. Other
ways of representing these boundary conditions can be found under the names “Perfectly
matched Layer” (PML) or “infinite elements”. A recent survey of the different approaches
that may be taken for transparent boundary conditions for the Schrödinger equation is
[Ant+08].

Most of the results in this section have already appeared as part of [MR17].

4.1 Model problem and notation

We consider the time-dependent Schrödinger equation in Rd for d = 2 or d = 3. For a
potential V : Rd → R, we seek u such that

i
∂

∂t
u = −∆u+ V u in Rd,

u(0) = u0,

where u0 is a given initial condition.
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4 FEM-BEM coupling for the Schrödinger equation

By introducing the Hamilton operator

H : dom(H) ⊆ L2(Rd)→ L2(Rd)
Hu := −∆u+ V (·)u,

this equation can be written more succinctly as

iu̇ = Hu and u(0) = u0. (4.1)

In order to be able to apply our discretization scheme, we make the following assumptions:

Assumption 4.1. We consider the 2d and 3d case, i.e., d = 2 or 3.

(i) V : Rd → R is real valued,

(ii) V (x) ≡ V0 for x ∈ Ω+ := Rd \ Ω−, where Ω− is a bounded Lipschitz domain,

(iii) u0 ∈ dom(H) and suppu0 ⊆ Ω−,

(iv) the potential can be written as V = V1 + V2 with V1 ∈ L∞(Rd) and V2 ∈ L2(Rd),

(v) V is bounded from below, i.e. V ≥ V− for a constant V− ∈ R.

Remark 4.2. We note that assumption (iv) is somewhat natural to make as it leads to a
self-adjoint Hamilton operator. In the case d = 3, this assumption is, for example, satisfied
by potentials of Coulomb type which behave like |x|−1 for |x| → 0. See also [RS75, Section
X] for similar assumptions.

In order to discretize this problem, we first perform a discretization in time by an A-stable
Runge-Kutta method (see Section 3.2), derive an equivalent formulation using boundary
integral equations, and then discretize those using a Galerkin method. We derive the
equations in a mostly formal way, the construction will then later be made rigorous as part
of Lemma 4.8.

4.2 The discretization scheme

The semi-discretization of (4.1) is given by

Uk(tn) = uk(tn)1− ik[Q⊗H]Uk(tn), (4.2)

uk(tn+1) = uk(tn)− ik[bT ⊗H]Uk(tn) (4.3)

and the initial value uk(0) := u0.
By Lemma 3.19, the Z-transform of the stage vectors Ûk := Z

[
Uk
]

solves:

−δ(z)
k
Ûk − iHÛk =

1

1− r(∞)z
k−1Q−11u0.
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4.2 The discretization scheme

Restricting this equation to Rd \ Ω− and applying the assumption suppu0 ⊆ Ω− gives:

−iδ(z)
k

Ûk −∆Ûk + V0Û
k = 0, in Rd \ Ω−, (4.4)

which corresponds to a Helmholtz equation with the matrix-valued wave number B(z) :=√
−iδ(z)
k + V0 Id. Here, we consider the branch of the square root satisfying Re(z) ≥ 0 and

use the Riesz-Dunford calculus (Definition 2.40) for the matrix square root. As the solution
to a Helmholtz-type problem, we can now derive the boundary integral equations, which
will serve as transparent boundary conditions. The Z-transform Ûk := Z

[
Uk
]

satisfies
the following boundary integral equations via Proposition 2.43 (we use (2.39) and the fact
that γ+Ûk = γ−Ûk and ∂+

ν Û
k = ∂−ν Û

k):(
1
2 −K(B(z)) V (B(z))
W (B(z)) −1

2 +KT (B(z))

)(
γ−Ûk

∂−ν Û
k

)
=

(
0

−∂−ν Ûk

)
. (4.5)

In order to simplify the notation, we introduce the new boundary integral operators

Ṽ (z) := V
(√
−iz + V0

)
, K̃(z) := K

(√
−iz + V0

)
,

K̃T (z) := KT
(√
−iz + V0

)
, W̃ (z) := W

(√
−iz + V0

)
and the modified potentials:

S̃(z) := S
(√
−iz + V0

)
, D̃(z) = D

(√
−iz + V0

)
.

By using the inverse Z-transform and the discrete operational calculus, we can derive the
following set of semi-discrete equations for Uk, introducing the new unknown Λk := ∂+

ν U
k:

Uk(tn) = uk(tn)1− ik[Q⊗H]Uk(tn) in Ω− , (4.6a)

uk(tn+1) = r(∞)uk(tn) + bTQ−1Uk(tn), (4.6b)(
0

−∂−ν Uk
)

=

(
1
2 − K̃(∂kt ) Ṽ (∂kt )

W̃ (∂kt ) −1
2 + K̃T (∂kt )

)(
γ−Uk

Λk

)
. (4.6c)

For discretization, let Vh ⊆ H1(Ω−) and Xh ⊆ H−1/2(Γ) be closed (not necessarily finite
dimensional) subspaces. In order to deal with unbounded potentials, we have to make an
additional assumption:

Assumption 4.3. Let one of the following assumptions hold:

(i) Vh contains test functions, i.e., C∞0 (Ω−) ⊆ Vh, or

(ii) Vh is finite dimensional such that Vh ⊆ L∞(Ω−) and admits an inverse estimate
‖ϕ‖L∞(Ω−) ≤ C(Vh) ‖ϕ‖L2(Ω−) ∀ϕ ∈ Vh. The constant may depend on anything except
on ϕ.
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4 FEM-BEM coupling for the Schrödinger equation

Using the sesquilinear form

A(U,W ) := (U,W )L2(Ω−) + ik ([Q⊗∇]U,∇W )L2(Ω−) + ik ([Q⊗ V ]U,W )L2(Ω−) ,

the discretized form of (4.6a) is then given by: Find Uk,h ∈ [Vh]m, Λk,h ∈ [Xh]m, such that
for discrete times t = tn:

A(Uk,h,Wh)+ik
〈
Q
[
W̃ (∂kt )γ−Uk,h − [1/2− K̃T (∂kt )]Λk,h

]
, γ−Wh

〉
Γ

=
(
uk,h1,Wh

)
L2(Ω−)

, (4.7a)

and the boundary values solve〈
Ṽ (∂kt )Λk,h, Qh

〉
Γ

+
〈(

1/2− K̃(∂kt )
)
γ−Uk,h, Qh

〉
Γ

= 0 (4.7b)

for all Wh ∈ [Vh]m, Qh ∈ [Xh]m. The approximation at tn+1 is computed by

uk,h(tn+1) = uk,h(tn) + bTQ−1Uk(tn),

and we assume we are given an approximation of the initial condition uk,h(0) ∈ Vh.

4.3 An equivalent formulation as an exotic semigroup

The system (4.7) is not well suited for direct analysis, as it involves the non-local in time
operators Ṽ (∂kt ), K̃(∂kt ), etc. Instead, we analyze a different system based on the exotic
Hilbert spaces from [LS09]. A similar construction has recently been presented in [HS16]
in the context of coupling FEM and BEM for the wave equation but focus on a trapezoidal
rule time discretization.

Since we will be dealing a lot with pairs of spaces, we introduce X 0 := L2(Ω−)×L2(Rd\Γ)
and X 1 := H1(Ω−)×H1

(
Rd \ Γ

)
, both equipped with the natural inner product. In order

to make use of the abstract setting of Section 3.4, we introduce a new operator Hh. It
is defined in such a way that A := −iHh generates a semigroup and the Runge-Kutta
approximation of this semigroup coincides with solving (4.7).

Definition 4.4. We introduce the spaces

X 1
h :=

{
(uh, u?) ∈ Vh ×H1

(
Rd \ Γ

)
, γ−uh = Jγu?K ∧ γ−u? ∈ X◦h

}
(4.8)

with the X 1 norm and inner-product, as well as X 0
h := clos

(
X 1
h , ‖·‖X 0

)
with the X 0 product.

Let the operator Hh : dom(Hh) ⊆ X 0
h → X 0

h be defined as Hh : (uh, u?) 7→ (xh, x?), where
(xh, x?) ∈ X 0

h is such that for all (wh, w?) ∈ X 1
h

〈xh, wh〉L2(Ω) + 〈x?, w?〉L2(Rd)

= 〈∇uh,∇wh〉L2(Ω) + 〈∇u?,∇w?〉L2(Rd) + 〈V uh, wh〉L2(Ω) + 〈V0u?, w?〉L2(Rd) . (4.9)

The domain is defined as

dom(Hh) :=
{

(uh, u?) ∈ X 1
h : ∃(xh, x?) ∈ X 0

h , s.t. (4.9) holds
}
.

We also introduce the notation V (u, u?) := (V u,V0u?) for elements of X 0.
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4.3 An equivalent formulation as an exotic semigroup

We note that Hh is well defined since for two solutions (x1
h, x

1
?), (x2

h, x
2
?) satisfying (4.9),

the difference solves 0 =
〈
x1
h − x2

h, wh
〉
X 0 +

〈
x1
? − x2

?, w?
〉
X 0 . Since the inner product van-

ishes on a dense subset of X 0
h , we get (x1

h, x
2
?) = (x2

h, x
2
?).

Remark 4.5. The use of the space X 0
h is needed to treat the case Vh := H1(Ω−) and

“Vh is finite dimensional” in the same setting. In the former case, we get X 0
h = X 0 since

C∞0 (Ω−)×C∞0 (Rd\Γ) is dense. If Vh is finite dimensional, it becomes X 0
h = Vh×L2(Rd\Γ)

since Vh is closed and the restrictions on the traces are not seen by the L2-based norm. This
also means that Hh corresponds to either the classical weak Laplacian or a version of the
discrete Laplacian defined using the usual stiffness and mass matrices.

Using this definition, we can show the following consequence of Assumption 4.3.

Lemma 4.6. For every a > 0 there exists a constant b > 0, such that

‖V u‖X 0 ≤ a
∥∥∥H̃hu

∥∥∥
X 0

+ b ‖u‖X 0 ,

where H̃h denotes the Hamilton operator corresponding to V = 0, i.e., Hh − V .
Additionally, the bilinear form induced by V is bounded in the following sense:

|〈V u, v〉X 0 | ≤ C ‖u‖X 1 ‖v‖X 1 . (4.10)

Proof. If Assumption 4.3(i) holds, this is well known as a consequence of [RS75, Theorem
X.15] and Assumption 4.1(iv) as H̃h coincides with the classical weak definition of the
Laplacian in each component.

If Assumption 4.3(ii) holds, we can use Assumption 4.1(iv) to estimate:

‖V u‖X 0 ≤ ‖V1u‖X 0 + ‖V2u‖X 0 ≤ ‖V1‖L∞(Rd) ‖u‖X 0 + ‖V2‖L2(Rd) ‖u‖L∞(Ω−) ,

where we used that we may choose V2 = 0 on Rd \ Ω− by absorbing it into V1. Since we
assumed the inverse estimate of Assumption 4.3(ii), this gives the estimate

‖V u‖X 0 . C(Xh) ‖u‖X 0 ,

i.e., we may even use a = 0.
To see (4.10), we estimate for the interior, unbounded contribution:∣∣∣∣∫
Ω−

V2u v

∣∣∣∣ ≤ ∥∥∥|V2|1/2 u
∥∥∥
L2(Ω−)

∥∥∥|V2|1/2 v
∥∥∥
L2(Ω−)

≤ ‖V2‖1/2L2(Ω−)
‖u‖L4(Ω−) ‖V2‖1/2L2(Ω−)

‖v‖L4(Ω−)

≤ ‖V2‖L2(Ω−) ‖u‖H1(Ω−) ‖v‖H1(Ω−) ,

where in the last step we used the Sobolev embedding H1(Ω−) ↪→ L4(Ω−) (for d ≤ 3)
from Proposition 2.24. The contributions of V1 and the exterior part of X 0 can easily be
bounded by the L2-norm as the corresponding potential is bounded.

Lemma 4.7. The operator Hh is self-adjoint on X 0
h and −iHh generates a unitary C0-

group.
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4 FEM-BEM coupling for the Schrödinger equation

Proof. We start with the case V = 0, i.e., we look at the operator H̃h := Hh − V . We use
the characterization of Proposition 2.9 and set A := −iH̃h. To see that ±A is dissipative,
we calculate for u ∈ dom(A):

Re 〈±Au, u〉X 0 = ± Im
〈
H̃hu, u

〉
X 0

= ± Im 〈∇u,∇u〉X 0 = 0.

We now show that ±iH̃h − Id is invertible on X 0
h . Consider f = (f0, f?) ∈ X 0

h . The
sesquilinear form

a(u, v) := 〈±i∇u,∇v〉X 0 − 〈u, v〉X 0

is bounded and coercive on X 1
h . By the Lax-Milgram lemma, we can find u = (uh, u?) ∈ X 1

h ,
such that a(u, v) = 〈f, v〉X 0 . We need to show that u ∈ dom(A) and ∓Au−u = f . Defining
x := u+ f ∈ X 0

h , we see that for v ∈ X 1
h :

〈x, v〉X 0 = 〈u, v〉X 0 + 〈f, v〉X 0

= 〈u, v〉X 0 + a(u, v)

= 〈u, v〉X 0 + 〈±i∇u,∇v〉X 0 − 〈u, v〉X 0

= 〈±i∇u,∇v〉X 0 .

This means x satisfies the defining equation for ±iH̃hu (see (4.9)), and therefore u ∈
dom(A) = dom(H̃h) and ±iH̃hu = x.

To see that ±iH̃h generates a C0-semigroup, we need to show that dom(H̃h) is dense
in X 0

h . In the case of Assumption 4.3(i), we get that C∞0 (Ω−) × C∞0 (Rd \ Γ) ⊆ dom(H̃h).
This set is dense in X 0

h = X 0. If Vh is finite dimensional, we get that functions of the
form (vh, v?) with vh ∈ Vh, v?|Ω− ∈ C∞0 (Ω−), v?|Ω+ ∈ C∞(Ω+) with γ+v? = γ−vh are

both, contained in dom(H̃h) and dense in X 0
h (note that γ−v? = 0 and Jγv?K = γ−vh by

construction). This concludes the proof without potentials, i.e., for H̃h.
In order to deal with the potential, we use [RS75, p. X.12], which states that if the

estimate from Lemma 4.6 is satisfied and H̃h is self adjoint, then Hh = H̃h+V is also self-
adjoint. The fact that A generates a unitary C0 group is Stone’s theorem (Proposition 2.9).

The next lemma forms the basis of our future analysis. It allows us to replace the bound-
ary integrals from (4.7) with the Runge-Kutta time-stepping of a non-standard semigroup.

Lemma 4.8. If
(
Uk,h,Λk,h

)
solves (4.7) and we define Uk,h? := −S̃(∂kt )Λk,h+D̃(∂kt )γ−Uk,h,

then Xk,h := (Uk,h, Uk,h? ) solves

Xk,h(tn) = xk,h(tn)1− ik[Q⊗Hh]Xk,h(tn), (4.11a)

xk,h(tn+1) = xk,h(tn) + bTQ−1Xk,h(tn). (4.11b)

Conversely, if Xk,h =: (Uk,h, Uk,h? ), xk,h =: (uk,h, uk,h? ) solves (4.11), then (Uk,h,Λk,h)

with Λk,h :=
r
∂νU

k,h
?

z
solves (4.7).
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4.3 An equivalent formulation as an exotic semigroup

Before we can show the equivalence, we need the following small lemma, which we prove
separately:

Lemma 4.9. Let Ψ ∈ L∞
(

[0, T ],
[
H1/2(Γ)

]m)
and Φ ∈ L∞

(
[0, T ],

[
H−1/2(Γ)

]m)
be

given. Define the functions U? := −S̃(∂kt )Φ + D̃(∂kt )Ψ and u? := G [U?]. Then these
functions have the following properties:

(i) u?(t) = 0 for t ≤ 0,

(ii) JγU?K = Ψ and J∂νU?K = Φ,

(iii) for t > 0, U?(t) ∈ H1
∆

(
Rd \ Γ

)
solves:

U?(t)− ikQ∆U?(t) + ikQV0U?(t) = u?(t)1, (4.12)

(iv) the boundary traces of U? solve the following boundary integral equations:(
−∂+

ν U?
−γ−U?

)
=

(
W̃ (∂kt ) −1

2 + K̃T (∂kt )
1
2 − K̃ Ṽ (∂kt )

)(
Ψ
Φ

)
. (4.13)

Proof. We will define a function X? such that (4.12) is satisfied, and then show that X?

coincides to U?, as defined via the representation formula. To do so, we define a function
x?(t) := 0 for t ≤ 0, and then inductively define X? such that (4.12) is satisfied and
JγX?(t)K = Ψ(t) as well as J∂νX?(t)K = Φ(t). By Proposition 3.22 this problem has a
unique solution. Then, defining x?(t + k) := r(∞)x?(t) + bTQ−1X?(t) allows us to define
X?(t+ k) etc. We also have the (crude) a priori estimates

‖X?(t)‖[H1
∆(Rd\Γ)]

m ≤ C(k)
(
‖x?(t)‖H1

∆(Rd\Γ) + ‖Φ(t)‖[H−1/2(Γ)]
m + ‖Ψ(t)‖[H1/2(Γ)]

m

)
.

As such, the Z-transform X̂? := Z [X?] exists, and solves by Lemma 3.19

−∆X̂? +

(
− iδ(·)

k
+ V0 Id

)
X̂? = 0.

The traces satisfy
r
γX̂?

z
= Z [Ψ] and

r
∂νX̂?

z
= Z [Φ]. By the properties of the potentials

in the Laplace domain Z [U?] solves the same transmission problem. The uniqueness result
from Proposition 2.41 gives that X̂? = Z [U?] and therefore X? = U?. The rest of the
Lemma follows immediately by definition of the CQ-operators and the integral equations
in the Laplace domain (Proposition 2.43).

We are now in a position to prove Lemma 4.8.

Proof of Lemma 4.8. Let (Uk,h,Λk,h) solve (4.7) and define Uk,h? := −S̃(∂kt )Λk,h+D̃(∂kt )γ−Uk,h,

uk,h? := G
[
Uk,h?

]
. We show that both (Uk,h, Uk,h? ) and Xk,h defined by (4.11) solve the fol-

lowing weak formulation for all W := (Zh, Z?) ∈
[
X 1
h

]m
and times t = tn:〈

Y k,h,W
〉
X 0

+
〈
ik[Q⊗∇]Y k,h,∇W

〉
X 0

+
〈
ik[Q⊗ V ]Y k,h,W

〉
X 0

=
〈
yk,h1,W

〉
X 0
,

(4.14)
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4 FEM-BEM coupling for the Schrödinger equation

where ∇ is applied to both components. For Y k,h ∈ X 1
h the solution to this problem is

unique by Lemma 3.23, and thus, if the solutions exist, they have to coincide.
We note that by (4.13) and (4.7b) we get that γ−Uk,h? ∈ [X◦h]m. The fact that Y k,h :=

(Uk,h, Uk,h? ) then solves (4.14) follows from (4.7a) and integration by parts in (4.12). The
boundary terms involving W (∂kt ) and 1/2 − K̃T (∂kt ) cancel due to (4.13). The boundary

term
〈
Q

r
∂νU

k,h
?

z
, γ−W?

〉
Γ

vanishes since
r
∂νU

k,h
?

z
= Λk,h ∈ [Xh]m and γ−Z? ∈ [X◦h]m.

The fact that Y k,h := Xk,h also solves (4.14) follows from (4.11), the definition of Hh,
and Xk,h ∈

[
X 1
h

]m
by assumption.

What is left to establish is that the original system (4.7) has a solution. From the abstract

semigroup theory we get that Xk,h exists and is unique. We show that
(
Uk,h, J∂νU

k,h
? K

)
solves (4.7) by starting from (4.14). Testing with W := (0, Z?) with Z? ∈

[
C∞0 (Rd \ Γ)

]m
gives the pointwise equality

Uk,h? − ikQ∆Uk,h? + ikQV0U
k,h
? = uk,h? 1. (4.15)

Hence (4.14) becomes

A(Uk,h, Zh)−
〈
ikQ∂+

ν U
k,h
? , JγZ?K

〉
Γ

+
〈
iQ

r
∂νU

k,h
?

z
, γ−Z?

〉
Γ

=
(
uk,h1, Zh

)
L2(Ω−)

.

If we show that
r
∂νU

k,h
?

z
∈ [Xh]m and−∂νUk,h? = W̃ (∂kt )γ−Uk,h+(−1/2+K̃T (∂kt ))

r
∂νU

k,h
?

z

this becomes (4.7a) since γ−Z? ∈ X◦h and γ−Zh = JγZ?K from the definition of X 1
h . To seer

∂νU
k,h
?

z
∈ [Xh]m, we choose Ξ ∈ [X◦h]m and W :=

(
0, EDΓ [Ξ]

)
a lifting of Ξ. Integration

by parts and the already established (4.15) gives

0 =
〈
ikQ∂+

ν U
k,h
? ,Ξ

〉
Γ
−
〈
ikQ∂−ν Uk,h? ,Ξ

〉
Γ
,

i.e.
r
∂νU

k,h
?

z
∈ ([X◦h]m)◦ = [Xh]m. The integral equations (4.7b) then follow by taking the

Z-transform via Lemma 3.19 and Proposition 2.43.

What is left to do is to establish the connection between the original Schrödinger equation
and the semigroup generated by −iHh. This is content of the following lemma:

Lemma 4.10. Assume for the moment that Vh := H1(Ω) and Xh := H−1/2(Γ). Then the
following equivalences hold:

(i) If u ∈ H2(Rd) solves the Schrödinger equation (4.1), then y := (v, v?) defined as
v := u|Ω− and v? := u|Ω+ in Ω+ and v? := 0 in Ω− solves the equation iẏ = Hhy and
y(0) = (u0, 0).

(ii) If y := (v, v?) solves iẏ = Hhy and y(0) = (u0, 0), then u := v in Ω− and u := v? in
Ω+ solves (4.1).
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4.4 Analysis of the discretization scheme

Proof. Ad (i): Since u is in H2(Rd) we get that ∂+
ν u = ∂−ν u. Inserting the definitions of

(v, v?), we get that (−∆v + V v,−∆v + V0v) satisfies the defining equation for Hh(v, v?)
in (4.9) via integration by parts. Since ẏ = (u̇|Ω, u̇1Ω+) where 1Ω+ denotes the indicator
function on Ω+. Therefore y is the solution to the semigroup.

Ad (i): Since y ∈ dom(Hh), we can insert test functions in C∞0 (Ω−) × C∞0 (Rd \ Γ) in
(4.9) and get that Hhy = (−∆v + V v,−∆v? + V0v?) using the weak Laplacian on both
domains. From the definition of X 1

h we get γ−v = γ+v?, and integration by parts implies
that ∂−ν v = ∂+

ν v?, since the corresponding boundary term vanishes in the weak form. This
means that u defined in the piecewise way is in H2

(
Rd
)
. The differential equation then

follows from the fact that y is the semigroup solution.

In Lemma 4.10, we have seen that H and Hh are closely related in the case of no dis-
cretization in space. Namely, we have that Hh(u, u?) = (−∆v + V v,−∆v + V0v). There-
fore we will extend the definition of H to pairs of functions, i.e.,

H(u, u?) := (−∆v + V v,−∆v + V0v) , (4.16)

with dom(H) = dom(Hh) as defined in Definition 4.4 (using Vh := H1(Ω) and Xh :=
H−1/2(Γ)). Since the corresponding semigroups are closely related this should not cause
confusion.

4.4 Analysis of the discretization scheme

This reformulation now allows us to make statements about the discretization by applying
the abstract “Runge-Kutta for semigroups” theory. We begin with stability. It is well
known that the Schrödinger equation conserves the L2 norm and energy. While we cannot
completely retain this property, we get the following similar result:

Theorem 4.11. Let (Uk,h,Λk,h) solve (4.6a), define Uk,h? via post-processing as in Lemma 4.8

and set uk,h? := G
[
Uk,h?

]
. Then the following estimates hold for all n ∈ N:

∥∥∥uk,h(tn)
∥∥∥2

L2(Ω−)
+
∥∥∥uk,h? (tn)

∥∥∥2

L2(Rd)
≤
∥∥∥uk,h(0)

∥∥∥2

L2(Ω−)
. (4.17)

For the energy H(u) := ‖∇u‖2L2(Rd) + ‖V u‖2L2(Ω−) we get for α ≥ −V−:

H(uk,h(tn)) +H(uk,h? (tn)) ≤ H(uk,h(0)) + α
∥∥∥uk,h(0)

∥∥∥2

L2(Ω−)
. (4.18)

If we assume that the Runge-Kutta method satisfies |r(it)| = 1 for t ∈ R, we get conser-
vation of mass and energy:∥∥∥uk,h(tn)

∥∥∥2

L2(Ω−)
+
∥∥∥uk,h? (tn)

∥∥∥2

L2(Rd)
=
∥∥∥uk,h(0)

∥∥∥2

L2(Ω−)
, (4.19)

H(uk,h(tn)) +H(uk,h? (tn)) = H(uk,h(0)). (4.20)
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4 FEM-BEM coupling for the Schrödinger equation

Proof. To see (4.17) and (4.19), we apply Lemma 3.27 to the reformulation (4.11).
For α ≥ −V−, the operator B := Hh + α Id satisfies 〈Bu, u〉X 0 ≥ 0. Since it is also self-

adjoint, we can use the spectral representation theorem to define B1/2 with the following
properties (see also [Ber68; Wou66] for elementary constructions of the operator square
root):

• B1/2 is self-adjoint

•
(
B1/2

)2
= B

• dom(B1/2) ⊇ dom(B)

• B1/2 commutes with B, i.e., BB1/2 = B1/2B.

The last statement implies that B1/2 commutes with Hh, which in turn gives that

B1/2 [r(iHh)]x = r(iHh)B1/2x for x ∈ dom(Hh).

This operator allows us to calculate, using the fact that r(kiHh) is a contraction:

H
(
uk,h(tn+1)

)
+ α

∥∥∥uk,h(tn+1)
∥∥∥2

X 0
=
〈
Buk,h(tn+1), uk,h(tn+1)

〉
X 0

=
∥∥∥B1/2uk,h(tn+1)

∥∥∥2

X 0

=
∥∥∥r(ikHh)B1/2uk,h(tn)

∥∥∥2

X 0

≤
∥∥∥B1/2uk,h(tn)

∥∥∥2

X 0

= H
(
uk,h(tn)

)
+ α

∥∥∥uk,h(tn)
∥∥∥2

X 0
,

we note that uk,h(t) ∈ dom(Hh) for all t ≥ 0. The conservation of H under the stricter
assumptions follows along the same lines from the conservation of the X 0-norm, we just

note that since the L2-norms are conserved, we can just subtract the terms α
∥∥uk,h(·)

∥∥2

X 0

at the end.

Corollary 4.12. For m ∈ N0, the discrete stability also holds for higher derivatives, i.e.,
assume that xk,h(0) ∈ dom (Hm

h ). Then we can estimate∥∥∥Hm
h x

k,h(tn)
∥∥∥
X 0
≤
∥∥∥Hm

h x
k,h(0)

∥∥∥
X 0
,∥∥∥Hm

h X
k,h(tn)

∥∥∥
X 0
≤ C

∥∥∥Hm
h x

k,h(0)
∥∥∥
X 0
.

Proof. Applying Hh commutes with the Runge-Kutta time-stepping. Therefore, the state-
ment follows by applying the stability results from Lemma 3.30.

Remark 4.13. The statements of Corollary 4.12 for m > 1 are mostly interesting for the
semi-discrete case of Vh = H1(Ω−) and Xh = H−1/2(Γ), where they directly correspond to
regularity assumptions on the initial data since Hh = H is the classical (weak) Hamiltonian
(see Lemma 4.21).
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4.4 Analysis of the discretization scheme

4.4.1 Convergence with respect to space discretization

We now study the convergence of the approximation scheme. In order to do so, we consider
two sequences of approximations Xk and Xk,h of (4.11), where for Xk we use the full spaces
Vh := H1(Ω−), Xh = H−1/2(Γ). We denote the corresponding Hamiltonian as defined
in (4.9) by H (or equivalently (4.16)). Since it corresponds to the pointwise Hamilton
operator, where −∆+V is applied to u and −∆+V0 to u?, this should not cause confusion.

Lemma 4.14. We introduce a variation of the Ritz projector Πh : dom(H) ⊆ X 1 → X 1
h as

Πh := (Hh − i)−1 ΠX 0
h

(H− i)

where ΠX 0
h

: X 0 → X 0
h is the L2-projection. We write κh := ΠX 0

h
−Πh.

Then the following error estimate holds:∥∥∥xk(tn)− xk,h(tn)
∥∥∥
X 0
≤
∥∥∥Πhx

k(0)− xk,h(0)
∥∥∥
X 0

+
∥∥∥xk(tn)−Πhx

k(tn)
∥∥∥
X 0

+ C k

n−1∑
j=0

∥∥∥κh [Xk(tj)
]∥∥∥
X 0

+
∥∥∥κh [HXk(tj)

]∥∥∥
X 0
. (4.21)

The constant C > 0 depends on Q and b.

Proof. We start by noting that, by construction, the operator Πh satisfies

HhΠhx = ΠX 0
h

[Hx− ix] + iΠhx = ΠX 0
h
Hx− iκh[x] for x ∈ dom(H). (4.22)

The function ΠhX
k solves (pointwise in time):

ΠhX
k = Πhx

k1− ik[Q⊗Hh]ΠhX
k +

[
ΠhX

k −Πhx
k1+ ik [Q⊗HhΠh]Xk

]
.

We have a closer look at the consistency errors ∆k :=
[
ΠhX

k −Πhx
k1+ ik [Q⊗HhΠh]Xk

]
.

By linearity and equation (4.11) in the semi-discrete setting, we have:

∆k =
[
Πh(Xk − xk1) + ik

[
Q⊗HhΠhX

k
]]

=
[
Q⊗Πh(−ikHXk) + ik [Q⊗HhΠh]Xk]

]
= ik

[
[Q⊗ κh] HXk − i [Q⊗ κh]Xk

]
, (4.23)

where in the last step we used (4.22).
Therefore, the differences E := Xk,h −ΠhX

k, e := xk,h −Πhx
k solve:

E(tn) = e(tn)1− ik[Q⊗Hh]E(tn) + ∆k(tn)

e(tn+1) = r(∞)e(tn) + bTQ−1E(tn).

The stability result of Lemma 3.30, together with the triangle inequality to estimate∥∥∥xk(tn)− xk,h(tn)
∥∥∥
X 0
≤
∥∥∥xk(tn)−Πhx

k(tn)
∥∥∥
X 0

+
∥∥∥Πhx

k(tn)− xk,h(tn)
∥∥∥
X 0

then implies (4.21).
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4 FEM-BEM coupling for the Schrödinger equation

In order to estimate the approximation properties of Πh, we have to get our hands dirty
and see what it actually does in our concrete setting of spaces. This is done in the following
lemma:

Lemma 4.15. The operator Πh has the following approximation property for all pairs
x = (u, u?) ∈ dom(H):

‖x−Πhx‖X 1 ≤ C inf
wh∈X 1

h

‖u− wh‖X 1 + C inf
ϕh∈Xh

‖J∂νuK− ϕh‖H−1/2(Γ). (4.24)

The constant C > 0 depends only on Ω− and V−. This also immediately gives the estimate:

‖κhx‖X 0 ≤ C inf
wh∈X 1

h

‖u− wh‖X 1 + C inf
ϕh∈Xh

‖J∂νuK− ϕh‖H−1/2(Γ). (4.25)

Proof. By definition, y := Πhx solves for wh = (zh, z?) ∈ X 1
h :

〈(Hh − i)y, wh〉X 0 =
〈

ΠX 0
h
(H− i)x,wh

〉
X 0

= 〈(H− i)x,wh〉X 0 .

Using the definition of Hh, and defining a(x,w) := 〈∇x,∇w〉X 0 + 〈(V − i)x,∇w〉X 0 , this
can be written as:

a(y, wh) = 〈(H− i)x,wh〉X 0 .

We note that wh is not in the set of admissible test functions for the semi-discrete definition
of H due to the constraint γ−z? /∈

[
H−1/2(Γ)

]◦
= {0}. But, since C∞0 (Rd \ Γ) ⊆ dom(H),

we get that the definition coincides with the weak Laplacian in both components together
with the additional condition that ∂−ν u = ∂+

ν u?. Integration by parts then gives:

〈(H− i)x,wh〉X 0 = a(x,wh) +
〈
J∂νu?K , γ−z?

〉
Γ
.

This means, we can alternatively characterize the Ritz projector via

a(Πhx,wh) = a(x,wh) +
〈
J∂νu?K , γ−z?

〉
Γ

∀wh = (zh, z?) ∈ X 1
h . (4.26)

We now proceed similarly to the usual proof of Céa’s Lemma. We write y? for the second
component of y. For wh := (zh, z?) ∈ X 1

h and ϕh ∈ Xh we calculate:

a(x− y, x− y) = a(x− y, x− wh) + a(x− y, wh − y)

= a(x− y, x− wh) +
〈
J∂νu?K , γ−z? − γ−y?

〉
Γ

= a(x− y, x− wh) +
〈
J∂νu?K− ϕh, γ−z? − γ−y?

〉
Γ
, (4.27)

where in the last step we used that γ−z?, γ
−y? ∈ X◦h.

By using the fact that V induces an X 1-bounded bilinear form by (4.10) and Young’s
inequality, this lets us bound

|a(x−y, x−y)| ≤ ‖x− y‖X 1 ‖x− wh‖X 1 + ‖J∂νu?K− ϕh‖H−1/2(Γ) ‖wh − z‖X 1

≤ ε‖x− y‖2X 1 + ε−1‖J∂νu?K− ϕh‖2H−1/2(Γ)+ 2ε−1 ‖x− wh‖2X 1 + ε ‖x− y‖X 1 .
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4.4 Analysis of the discretization scheme

From the real part of (4.27), we get:

‖x− y‖2X 0 ≤ 2ε ‖x− y‖2X 1 + ε−1 ‖J∂νu?K− ϕh‖2H−1/2(Γ) + 2ε−1 ‖x− wh‖2X 1 .

Taking the imaginary part of (4.27) gives

‖∇x−∇y‖2X 0 + 〈V (x− y), x− y〉X 0

. 2ε ‖x− y‖2X 1 + ε−1 ‖J∂νu?K− ϕh‖2H−1/2(Γ) + 2ε−1 ‖x− wh‖2X 1 .

We add these two estimates and note that, since V is bounded from below by V0, we can
choose ε sufficiently small to get (4.24). To see (4.25), we note that κh = (ΠX 0

h
− Id) +

(Id−Πh). Since the L2-projection is optimal, we can absorb the error term corresponding
to ΠX 0

h
− Id into the Id−Πh term and apply (4.24).

Lemma 4.16. The operator Πh also has approximation properties with respect to the
Hamiltonian, i.e. for all x ∈ dom(H) we can estimate:

‖Hx−HhΠhx‖X 0 ≤ C inf
wh∈X 0

h

‖Hx− wh‖X 0 + C ‖x−Πhx‖X 0 . (4.28)

For the second component, the approximation is even better. If we write u? for the second
component of x ∈ dom(H) and y? for the second component of Πhx, we get:

−∆y? + (V0 − i)y? = −∆u? + (V0 − i)u? in Rd \ Γ.

Proof. By definition, we have HhΠhx = ΠX 0
h
Hx− iκh[x]. Therefore, we calculate:

‖Hx−HhΠhx‖X 0 ≤
∥∥∥Hx−ΠX 0

h
Hx
∥∥∥
X 0

+ ‖κh[x]‖X 0

≤
∥∥∥Hx−ΠX 0

h
Hx
∥∥∥
X 0

+
∥∥∥(Id−ΠX 0

h
)x
∥∥∥
X 0

+ ‖(Id−Πh)x‖X 0 .

Since the L2 projection is optimal, estimate (4.28) follows.
To see equality in the second component, we take test functions of the form (0, w?) with

w? ∈ C∞0 (Rd \ Γ). Inserting the definition of H and Hh gives:

(∇y?,∇w?)L2(Rd) + ((V0 − i)y?, w?)L2(Rd)

= (∇u?,∇w?)L2(Rd) + ((V0 − i)u?, w?)L2(Rd) ,

where we used the equality HhΠhx− iΠhx = ΠX 0
h
(Hx− ix). By the definition of the weak

Laplacian this concludes the proof.

Lemma 4.17. The space X 1
h has the following approximation properties for all x =

(u, u?) ∈ X 1 with γ−u? = 0 and Jγu?K = γ−u:

inf
wh∈X 1

h

‖x− wh‖X 0 ≤ C inf
vh∈Vh

‖u− vh‖L2(Ω−) ,

inf
wh∈X 1

h

‖x− wh‖X 1 ≤ C inf
vh∈Vh

‖u− vh‖H1(Ω−) ,

where both constants depend on Ω−. The function wh = (zh, z?) in the infima can be chosen
to satisfy γ−z? = 0.
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4 FEM-BEM coupling for the Schrödinger equation

Proof. For vh ∈ Vh, we define the function wh := (zh, z?) ∈ X 1
h as zh := vh, z? := u? on Ω−

and z? := u?+δ? on Ω+ with δ? := E(vh−u). Here, E denotes the Stein extension operator
to Ω+ from Proposition 2.23. By definition, we have zh ∈ Vh, and γ−z? = 0 ∈ X◦h. The
Dirichlet jump satisfies:

Jγz?K = Jγu?K + γ+δ? = γ−u+ γ−vh − γ−u = γ−vh

due to the extension properties of E . This means w ∈ X 1
h . The L2- and H1-estimates on x−

w then follow immediately from the definitions and the stability of the Stein extension.

While L2 is a natural setting for the Schrödinger equation, we are also interested in the
convergence rate in stronger norms, most notably the convergence of the boundary variable
Λk,h → Λk.

Lemma 4.18. Assume that the Runge-Kutta method satisfies |r(∞)| < 1, and that the
semi-discretization satisfies Uk(tn) ∈ dom(H2) for all n ∈ N0. Then the following error
estimate holds, where the implied constant depends only on the Runge-Kutta method:∥∥∥Hhx

k,h(tn)−Hxk(tn)
∥∥∥
X 0

.
∥∥∥Hxk(tn)−HhΠhx

k(tn)
∥∥∥
X 0

+
∥∥∥κh [Hxk(0)

]∥∥∥
X 0

+
∥∥∥κh [xk(0)

]∥∥∥
X 0

+
∥∥∥HhΠhx

k(0)−Hhx
k,h(0)

∥∥∥
X 0

+ k

n−1∑
j=0

(∥∥∥κh [H2Xk(tj)
]∥∥∥
X 0

+
∥∥∥κh [HXk(tj)

]∥∥∥
X 0

+
∥∥∥κh [Xk(tj)

]∥∥∥
X 0

)
.

We can also quantify the convergence in the H1-norm by:∥∥∥xk,h(tn)− xk(tn)
∥∥∥
X 1

.
∥∥∥xk(tn)−Πhx

k(tn)
∥∥∥
X 1

+
∥∥∥κh [Hxk(0)

]∥∥∥
X 0

+
∥∥∥κh [xk(0)

]∥∥∥
X 0

+
∥∥∥Πhx

k(0)− xk,h(0)
∥∥∥
X 1

+ k

n−1∑
j=0

(∥∥∥κh [H2Xk(tj)
]∥∥∥
X 0

+
∥∥∥κh [HXk(tj)

]∥∥∥
X 0

+
∥∥∥κh [Xk(tj)

]∥∥∥
X 0

)
.

Proof. For ease of presentation, we assume that xk,h(0) = Πhx
k(0). The general statement

can then be recovered by using the stability from Theorem 4.11 and Corollary 4.12 when
perturbing the initial conditions.

As in the proof of Lemma 4.14, we start by again considering E(t) := Xk,h(t)−ΠhX
k(t),

e := G [E]. This quantity satisfies (cf. Lemma 4.14)

E(tn) = e(tn)1− ik[Q⊗Hh]E(tn) + [Q⊗ Id]∆k(tn)

e(tn+1) = r(∞)e(tn) + kbTQ−1E(tn),
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where ∆k := ik
(
κh
[
HXk,h

]
− iκh

[
Xk,h

])
is the consistency error from (4.23) (up to a

factor Q which is factored out to fit the setting of Lemma 3.36). By Lemma 3.36(ii), we
can write HhE(tn) = k−1Q−1 (E(tn)− e(tn)1) − ∆(tn), and by Lemma 3.36(i) and the
discrete stability (Lemma 3.30) we can bound

‖HhE(tn)‖X 0 ≤ C
n∑
j=0

∥∥∥Θk(tj)
∥∥∥
X 0

(4.29)

with Θk :=
[
∂kt ∆k

]
. Next, we need to compute Θk explicitly. For simplicity, we focus on

the first term ∆k
1 := ikκh

[
HXk

]
and set Θk

1 := [∂kt ∆k
1]. Taking the Z-transform of Xk via

Lemma 3.19, we get that

−δ(z)
k
X̂k = iHX̂k +

1

1− r(∞)z
k−1Q−11xk(0)

and by linearity of κh:

Z
[
Θk

1

]
=
δ(z)

k
Z
[
∆k

1

]
= ikκh

[
H
δ(z)

k
X̂k

]
= k κh

(
H2X̂k

)
−
[
i

1

1− r(∞)z
κh

(
Hxk(0)

)]
Q−11.

Taking the inverse Z-transform implies for Θ1 by using the geometric series for 1
1−r(∞)z :

Θk
1(tj) = k κh

[
H2Xk(tj)

]
− i [r(∞)]j κh

[
Hxk(0)

]
Q−11.

The first term has the right powers of k in order to not impact the convergence rates.
For the second one, we use the geometric series and our assumption that |r(∞)| < 1 to
estimate:

n∑
j=0

∥∥∥Θk
1(tj)

∥∥∥ ≤ Ck n∑
j=0

∥∥∥κh (H2Xk(tj)
)∥∥∥
X 0

+ C

n∑
j=0

∣∣r(∞)j
∣∣ ∥∥∥κh[Hxk(0)]

∥∥∥
X 0

≤ Ck
n∑
j=0

∥∥∥κh (H2Xk(tj)
)∥∥∥
X 0

+ C
1− |r(∞)|n

1− |r(∞)|

∥∥∥κh [Hxk(0)
]∥∥∥
X 0
.

A completely analogous computation gives the explicit representation of Θk
2 as:

Θk
2(tj) = −k κh

(
HXk(tj)

)
+ i [r(∞)]j κh

[
xk(0)

]
Q−11,

which can be estimated along the same lines as Θk
1. Collecting the estimates thus far gives:∥∥∥HhX

k,h(tn)−HhΠhX
k(tn)

∥∥∥
X 0

.
∥∥∥κhHxk(0)

∥∥∥
X 0

+
∥∥∥κhxk(0)

∥∥∥
X 0

+k

n∑
j=0

(∥∥∥κh [H2Xk(tj)
]∥∥∥
X 0

+
∥∥∥κh [HXk(tj)

]∥∥∥
X 0

+
∥∥∥κh [Xk(tj)

]∥∥∥
X 0

)
.

(4.30)
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4 FEM-BEM coupling for the Schrödinger equation

Since Hhx
k,h −HhΠhx

k = G
[
HhX

k,h −HhΠhX
k
]
, we get inductively:∥∥∥Hhx

k,h(tn)−HhΠhx
k(tn)

∥∥∥
X 0

.
n∑
j=0

|r(∞)|n−j
∥∥∥HhX

k,h(tj)−HhΠhX
k,h(tj)

∥∥∥
X 0
.

A triangle inequality to relate Hxk−Hhx
k to Hh[xk,h−Πhx

k] and Hxk −HhΠhx
k concludes

the proof of the estimate for Hxk,h. To get the estimate in the X 1-norm, we calculate for
any function xh ∈ dom(Hh) since V is bounded from below:

〈∇xh,∇xh〉X 0 = 〈Hhxh, xh〉X 0 − 〈V xh, xh〉X 0

. ‖Hhxh‖X 0 ‖xh‖X 0 + ‖xh‖2X 0 (4.31)

. ‖Hhxh‖2X 0 + ‖xh‖2X 0 .

Setting xh :=
[
xk,h(tn)−Πhx

k,h(tn)
]

then gives:∥∥∥xk,h(tn)−Πhx
k,h(tn)

∥∥∥
X 1

. ‖Hhxh‖X 0 + ‖xh‖X 0 .

Therefore the estimate in the X 1-norm follows from the estimate in X 0 and the estimate
on Hhx

k,h together with the triangle estimate to get to xk − xk,h instead of the Ritz-
projector.

A refined L2-estimate on convex or smooth geometries

The convergence of our method relies on the approximation properties of the Ritz-projector.
As seen in Lemma 4.15, the approximation with respect to the H1-based norm is quasi-
optimal, but for the L2-norm we would hope to get an increased rate of convergence, as
Lemma 4.15 tells us that the space X 1

h does indeed have such an improved approximation
property. While we cannot obtain this rate in the fully general setting, the improved rate
can indeed be proven by using the common Aubin-Nitsche trick under slight additional
assumptions. This is the content of the following lemma:

Lemma 4.19. Assume that Ω− is convex or has a smooth boundary (such that a shift
theorem holds for the homogeneous Dirichlet problem, see [Gri11]).

Assume that the spaces Vh and Xh satisfy the following approximation property:

inf
vh∈Vh

‖ψ − vh‖H1(Ω−) + inf
xh∈Xh

‖λ− xh‖H−1/2(Γ) ≤ Capprox h
(
‖ψ‖H2(Ω−) + ‖λ‖H1/2(Γ)

)
(4.32)

for all (ψ, λ) ∈ H2(Ω−)×H1/2(Γ).
Let x =: (u, u?) ∈ dom(H), in particular u ∈ H1

∆ (Ω−), u? ∈ H1
∆

(
Rd \ Γ

)
and γ−u =

Jγu?K, as well as γ−u? = 0. Then the following error estimate holds for the Ritz projector
Πh:

‖x−Πhx‖X 0 ≤ Ch ‖x−Πhx‖X 1 .

The constant C depends only on Capprox and Γ.
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4.4 Analysis of the discretization scheme

Proof. We write Πhx =: (uh, u
?
h) for the two components. Consider the solutions ψ1, ψ2 to

the following two problems:

−∆ψ1 + (V − i)ψ1 =

{
u− uh in Ω−

u? − u?h in Ω+
,

Jγψ1K = J∂νψ1K = 0,

−∆ψ2 + (V0 − i)ψ2 = u? − u?h in Ω−,

γ−ψ2 = 0.

We note that ψ1 is the solution to an elliptic full space problem. Using Fourier techniques
(see e.g.,[RS75, page 52]) we can estimate ‖ψ1‖H2(Rd) . ‖−∆ψ1‖L2(Rd) + ‖ψ1‖H1(Rd). Due
to our assumptions on V and Lemma 4.6, we can further estimate for constants 0 ≤ a < 1/2
and b ≥ 0:

‖−∆ψ1‖L2(Rd) ≤ ‖Hψ1‖L2(Rd) + ‖V ψ1‖L2(Rd)

≤ ‖Hψ1‖L2(Rd) + a ‖−∆ψ1‖L2(Rd) + b ‖ψ1‖L2(Rd) ,

which in turn gives due to the equation for Hψ1:

‖ψ1‖H2(Rd) . ‖Hψ1‖L2(Rd) + ‖ψ1‖H1(Rd)

. ‖x−Πhx‖X 0 .

Since we assumed that a shift theorem holds for Ω−, and we are working with the constant
potential V0, the same estimate holds for ψ2, i.e, ‖ψ2‖H2(Ω−) ≤ C ‖x−Πhx‖X 0 .

We rearrange the terms into

ψ := ψ1|Ω− ,

ψ? :=

{
ψ2 in Ω−

ψ1 in Ω+
,

and write χ := (ψ,ψ?). Integration by parts then gives (again using the bilinear form a(·, ·)
from the proof of Lemma 4.15:

‖u− uh‖2L2(Ω−) + ‖u? − u?h‖
2
L2(Rd)

= (−∆ψ + (V − i)ψ, u− uh)L2(Ω−) + (−∆ψ? + (V0 − i)ψ?, u? − u?h)L2(Rd)

= a (χ, x−Πhx)−
〈
∂−ν ψ, γ

−(u− uh)
〉

Γ

−
〈
∂−ν ψ

?, γ−(u? − u?h)
〉

Γ
+
〈
∂+
ν ψ

?, γ+(u? − u?h)
〉

Γ

= a (χ, x−Πhx)−
〈
∂−ν ψ, γ

−(u− uh)
〉

Γ
+
〈
∂+
ν ψ

?, Jγ(u? − u?h)K
〉

Γ

+
〈
J∂νψ?K , γ−(u? − u?h)

〉
Γ
.

Since ∂−n ψ = ∂−n ψ1 = ∂+
n ψ1 = ∂+

n ψ
∗ and γ− (u− uh) = Jγ(u? − u?h)K, this becomes:

‖u− uh‖2L2(Ω−) + ‖u? − u?h‖
2
L2(Rd) = a (χ, x−Πhx) +

〈
J∂νψ?K , γ−(u? − u?h)

〉
Γ
.
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4 FEM-BEM coupling for the Schrödinger equation

For χh := (ψh, ψ
?
h) ∈ X 1

h with γ−ψ? = 0 and λh, µh ∈ Xh we can use the alternative
characterization of the Ritz-projector (4.26) as well as the knowledge that γ−ψh = 0 and
γ−(u− uh) ∈ X◦h , to get:

‖u− uh‖2L2(Ω−) + ‖u? − u?h‖
2
L2(Rd)

= a (χ− χh, x−Πhx) +
〈
J∂νψ?K− µh, γ−(u? − u?h)

〉
Γ

.
(
‖χ− χh‖X 1 + ‖J∂νψ?K− µh‖H−1/2(Γ)

)
‖x−Πhx‖X 1 .

Here we used that the bilinear form a(·, ·) is bounded on X 1 via (4.10). The best approxima-
tion property of X 1

h , derived in Lemma 4.15 and the assumed approximation property (4.32)
(note that the restriction to discrete functions satisfying γ−ψh = 0 does not impact the
best approximation property, see Lemma 4.17) then give

‖u− uh‖2L2(Ω−) + ‖u? − u?h‖
2
L2(Rd) . h

[
‖ψ‖H2(Ω−) + ‖J∂νψ?K‖H1/2(Γ)

]
‖x−Πhx‖X 1

. h ‖x−Πhx‖X 0 ‖x−Πhx‖X 1 ,

where in the last step we used the regularity of (ψ,ψ?).

Looking back at Lemma 4.18, the argument only works for a certain class of methods,
such as the RadauIIa, but does not hold for example for the Gauss methods. Since Gauss
methods are of interest due to their better conservation of energy (see Theorem 4.11), we
also show a variation of Lemma 4.14, which covers all A-stable methods but requires a
condition on the time step size, the approximation quality of Vh as well as on the geometry
of Ω−.

Lemma 4.20. Assume that the requirements of Lemma 4.19 hold, namely that Ω− is convex
or has smooth boundary and that the spaces Vh and Xh have the approximation property
(4.32). Then the following error estimate holds, where the implied constants depends on
the Runge-Kutta method, Ω and Capprox:∥∥∥Hxk(tn)−Hhx

k,h(tn)
∥∥∥
X 0

.
∥∥∥Hhx

k,h(0)−HhΠhx
k(0)

∥∥∥
X 0

+
∥∥∥Hhx

k,h(tn)−HhΠhx
k(tn)

∥∥∥
X 0

+ h
n−1∑
j=0

(∥∥∥κh [HXk(tj)
]∥∥∥
X 1

+
∥∥∥κh [Xk(tj)

]∥∥∥
X 1

)
.

Thus for h . k we regain full order of convergence. In the X 1 norm we get∥∥∥xk(tn)− xk,h(tn)
∥∥∥
X 1

.
∥∥∥xk(tn)−Πhx

k(tn)
∥∥∥
X 1

+
∥∥∥xk,h(0)−Πhx

k(0)
∥∥∥
X 1

+
(
hk + h

√
k
) n−1∑
j=0

(∥∥∥κh [HXk(tj)
]∥∥∥
X 1

+
∥∥∥κh [Xk(tj)

]∥∥∥
X 1

)
,

i.e., it suffices to assume h .
√
k to retain full convergence rates.
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Proof. As in the previous lemmas, we assume that xk,h(0) = Πhx
k(0) and we consider the

quantities E(t) := Xk,h(t)−ΠhX
k(t), e := G [E]. These functions satisfy (cf. Lemma 4.14)

E(tn) = e(tn)1− ik[Q⊗Hh]E(tn) + ∆k(tn)

e(tn+1) = r(∞)e(tn) + kbTQ−1E(tn),

where ∆k := ik
[
[Q⊗ κh] HXk,h − i [Q⊗ κh]Xk,h

]
is the consistency error from (4.23).

Using the notation g(−ikHh) := bTQ−1 [Id +ikQ⊗Hh]−1, and using the stability function
r(−ikHh) we get (cf. Lemma 3.29):

e(tn+1) = r(−ikHh)e(tn) + g(−ikHh)∆k(tn). (4.33)

The operator kHhg(−ikHh) satisfies:

kHhg(−ikHh) = kbTQ−1Hh [Id +ikQ⊗Hh]−1

= −ibTQ−1Q−1
(

Id− [Id +ikQ⊗Hh]−1
)
.

We can write [Id +ikQ⊗Hh] = −Q
[
−ikHh −Q−1

]
. The spectrum of Q−1 satisfies

Re(λ) > 0 due to A-stability. From (2.7) we get that the resolvent of −ikHh is uniformly
bounded on σ(Q−1) with respect to k. This means that kHh(g − ikHh) is a bounded
operator on X 0

h via Lemma 3.21. Hh commutes with r(−ikHh), and we get from (4.33) by
applying Hh to both sides and taking the norm:

‖Hhe(tn+1)‖X 0 ≤ ‖r(−ikHh)Hhe(tn)‖X 0 + Ck−1
∥∥∥∆k(tn)

∥∥∥
X 0
.

Using Lemma 4.19, we can estimate the X 0-norm of ∆k(tn) by∥∥∥∆k(tn)
∥∥∥
X 0

. k
(∥∥∥κh[HXk(tn)]

∥∥∥
X 0

+
∥∥∥κh[Xk(tn)]

∥∥∥
X 0

)
. kh

(∥∥∥(Id−Πh)[HXk(tn)]
∥∥∥
X 1

+
∥∥∥(Id−Πh)[Xk(tn)]

∥∥∥
X 1

)
.

This proves the estimate for Hxk −Hhx
k,h. Using the same argument as in Lemma 4.18

(see (4.31)), we get for the X 1-norm:

‖∇e(tn+1)‖2X 0 . ‖Hhe(tn+1)‖X 0 ‖e(tn+1)‖X 0 + ‖e(tn+1)‖2X 0

. k−1

 n∑
j=0

∥∥∥∆k(tj)
∥∥∥
X 0

2

+

 n∑
j=0

∥∥∥∆k(tj)
∥∥∥
X 0

2

. (h2k + h2k2)

 n∑
j=0

[∥∥∥(Id−Πh)[HXk(tj)]
∥∥∥
X 1

+
∥∥∥(Id−Πh)[Xk(tj)]

∥∥∥
X 1

]2

.

Taking the square root, we get the stated result, after again using the triangle inequality
to estimate ∥∥∥xk,h − xk∥∥∥

X 1
≤ ‖e‖X 1 +

∥∥∥Πhx
k − xk

∥∥∥
X 1
.
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4 FEM-BEM coupling for the Schrödinger equation

4.4.2 Convergence of the fully discrete scheme

In this section we investigate the convergence of the fully discrete scheme, i.e. Runge-
Kutta in time and the FEM-BEM coupling in space. This is now a simple consequence
of the previous section and the general Runge-Kutta theory for semigroups presented in
Section 3.4.

We start with a small lemma, giving a sufficient condition for the regularity of the semi-
discrete stage vector:

Lemma 4.21. Let u0 ∈ Hs(Ω−) for s ≥ 2 and assume that V is sufficiently smooth. Then
the following estimates holds:∥∥∥uk(tn)

∥∥∥
Hs(Rd)

≤ C ‖u0‖Hs(Ω−) and
∥∥∥Uk(tn)

∥∥∥
[Hs(Rd)]

m≤ C ‖u0‖Hs(Ω−) .

The constant C > 0 depends on s and the potential V .

Proof. We first show the case s = 2` for ` ∈ N. We have already established the following
estimates in Corollary 4.12:∥∥∥H`uk(tn)

∥∥∥
L2(Rd)

≤ C ‖u0‖H2`(Ω−) , and
∥∥∥H`Uk(tn)

∥∥∥
[L2(Rd)]

m ≤ C ‖u0‖H2`(Ω−) .

Since we assumed that V is smooth, we can estimate
∥∥∆`uk(tn)

∥∥ ≤ C ∥∥H`uk(tn)
∥∥
L2(Rd)

+

lower order terms, and using Fourier techniques (see e.g., [RS75, page 52]) this allows us
to bound ∥∥∥uk(tn)

∥∥∥
H2`(Rd)

≤ C
∥∥∥H`uk(tn)

∥∥∥
L2(Rd)

+ lower order terms.,

By induction in `, we get the bound of the H2`(Rd) norm. The general case follows by
interpolation of the operator Tn : u0 7→ uk(tn). The proof for the stages follows along the
same lines.

We make the following assumptions on the discretization spaces:

Assumption 4.22. Let q ∈ N be such that the pair (Vh, Xh) has the following approxima-
tion properties:

(i) for all u ∈ Hm(Ω−) where m ≥ 1:

inf
vh∈Vh

(
‖u− vh‖L2(Ω−) + h ‖∇u−∇vh‖L2(Ω−)

)
≤ Chmin(q+1,m) ‖u‖Hm(Ω−) ,

(ii) for all λ ∈ Hs
pw(Γ) with s ≥ −1/2:

inf
λh∈Xh

(
‖λ− λh‖H−1/2(Γ)

)
≤ Chmin(q+1,s)+1/2 ‖u‖Hs

pw(Γ) .

Remark 4.23. For arbitrary q > 1, this assumption can be satisfied by choosing Vh :=
Sq,1(Th), Xh := Sq−1,0(T Γ

h ) as defined in Section 2.4.
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Theorem 4.24. Let u0 ∈ dom
(
Hp+1

)
where p denotes the order of the Runge-Kutta

method employed. Assume that V is sufficiently smooth, and assume that the approximation
of the initial condition satisfies

∥∥u0 − uk,h(0)
∥∥
X 0 . hq+1.

Then the following estimate holds for 0 ≤ nk ≤ T :∥∥∥uk,h(tn)− u(tn)
∥∥∥
L2(Ω−)

+
∥∥∥uk,h? (tn)− u(tn)

∥∥∥
L2(Ω+)

≤ C[u0]T (kp + hq) .

If Ω− is convex or has a smooth boundary, the spatial rate can be improved to∥∥∥uk,h(tn)− u(tn)
∥∥∥
L2(Ω−)

+
∥∥∥uk,h? (tn)− u(tn)

∥∥∥
L2(Ω+)

≤ C[u0]T
(
kp + hq+1

)
. (4.34)

Proof. We use the equivalent characterization of
(
uk,h, uk,h?

)
as the Runge-Kutta approxi-

mation xk,h(tn) from Lemma 4.8. Additionaly, we identify the exact solution with the pair
(u|Ω− , u?) with u? = u|Ω+ on Ω+ and 0 on Ω−, as was justified in Lemma 4.10. This gives:∥∥∥uk,h(tn)− u(tn)

∥∥∥
L2(Ω−)

+
∥∥∥uk,h? (tn)− u(tn)

∥∥∥
L2(Ω+)

≤
∥∥∥u(tn)− xk,h(tn)

∥∥∥
X 0
.

We insert the semi-discrete approximation xk(tn) and estimate:∥∥∥u(tn)− xk,h(tn)
∥∥∥
X 0
≤
∥∥∥u(tn)− xk(tn)

∥∥∥
X 0

+
∥∥∥xk(tn)− xk,h(tn)

∥∥∥
X 0
.

The first term is O(Tkp) by Proposition 3.32. The second term can be estimated by
Lemma 4.14, the best approximation property of the Ritz-projector in Lemma 4.15, and
the assumption on the spaces of Assumption 4.22. The necessary regularity of the stages
was already established in Lemma 4.21.

The improved estimate (4.34) follows along the same lines, using Lemma 4.19 in addition
to Lemma 4.15.

Theorem 4.25. Let u0 ∈ dom
(
Hp+2

)
where p denotes the order of the Runge-Kutta

method employed. Assume that V is sufficiently smooth and the Runge-Kutta method sat-
isfies |r(∞)| < 1. Assume that

∥∥u0 − uk,h(0)
∥∥
X 1 . hq and

∥∥Hu0 −Hhu
k,h(0)

∥∥
X 0 . hq

(this is for example satisfied for the Ritz-projector). Define λh,k := G
[
Λk,h

]
.

Then the following estimates hold for 0 < nk ≤ T :∥∥∥uk,h(tn)− u(tn)
∥∥∥
H1(Ω−)

+
∥∥∥uk,h? (tn)− u(tn)

∥∥∥
H1(Ω+)

≤ C[u0] T (kp + hq) ,∥∥∥λh,k(tn)− ∂+
ν u(tn)

∥∥∥
H−1/2(Γ)

≤ C[u0] T (kp + hq) .

Proof. We again split the error term into
∥∥u(tn)− xk(tn)

∥∥
X 1 +

∥∥xk(tn)− xk,h(tn)
∥∥
X 1 .

The error due to discretization in time can be estimated by
∥∥H[u(tn)− xk(tn)]

∥∥
X 0 and∥∥u(tn)− xk,h(tn)

∥∥
X 0 by integration by parts and the Cauchy-Schwarz inequality. Both

of these terms are of order kp by Proposition 3.32 (the operator H commutes with the
Runge-Kutta discretization). The H1-estimate in space follows from the X 1-estimate in
Lemma 4.18 with the approximation properties in Lemma 4.15.
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4 FEM-BEM coupling for the Schrödinger equation

In order to see the estimate for the normal derivative, we first note that we can write∥∥∥λh,k(tn)−∂+
ν u(tn)

∥∥∥
H−1/2(Γ)

=
∥∥∥r∂νuk,h? (tn)

z
− ∂+

ν u(tn)
∥∥∥
H−1/2(Γ)

.
∥∥∥Hhu

k,h
? (tn)−Hu(tn)

∥∥∥
L2(Rd\Γ)

+
∥∥∥uk,h? (tn)− u(tn)

∥∥∥
H1(Rd\Γ)

by using the trace theorem in H1
∆

(
Rd \ Γ

)
and the fact that we can bound −∆ by H and

lower order terms. Thus what is left to do is estimate the convergence of the hamiltonians,
i.e. of Hhx

k,h −Hu. The proof works analogously to the proof of Theorem 4.24. Since
H commutes with Runge-Kutta approximation and the continuous time evolution, we can
apply Proposition 3.32 to Hu−Huk to get

∥∥Hu(tn)−Huk(tn)
∥∥
L2(Rd)

= O(kp). We have

also already established the convergence of Hhx
k,h −Hxk in Lemma 4.18.

If we drop the requirement |r(∞)| < 1, we can still obtain the following result:

Theorem 4.26. Let u0 ∈ dom
(
Hp+2

)
, where p denotes the order of the Runge-Kutta

method employed. Assume that V is sufficiently smooth and Ω is convex or has smooth
boundary, such that the assumptions of Lemma 4.19 are fulfilled. Define λh,k := G

[
Λk,h

]
.

Then the following estimate holds for h . k1/2:∥∥∥uk,h(tn)− u(tn)
∥∥∥
H1(Ω−)

+
∥∥∥uk,h? (tn)− u(tn)

∥∥∥
H1(Ω+)

≤ C[u0] T (kp + hq) .

If h . k, we also get the full rate for the approximation of the normal derivative:∥∥∥λh,k(tn)− ∂+
ν u(tn)

∥∥∥
H−1/2(Γ)

≤ C[u0] T (kp + hq) .

Proof. Follows along the same line as Theorem 4.25, except that instead of Lemma 4.18,
we use Lemma 4.20.

For the case of an unbounded or non-smooth potential V , we still get the rate O(kp) in
time (assuming u0 ∈ dom(Hp+2)) and quasi-optimality in space (see Lemma 4.17), but the
regularity of the semi-discrete stage vectors is less clear. As an exemplary result of what
can be expected, we treat the case of “lowest order” FEM/BEM discretization.

Theorem 4.27. Let u0 ∈ dom
(
Hp+1

)
, where p ≥ 1 denotes the order of the Runge-Kutta

method employed, and let Vh ×Xh satisfy Assumption 4.22 for q ≥ 1. Then the following
estimate holds for 0 ≤ nk ≤ T :∥∥∥uk,h(tn)− u(tn)

∥∥∥
L2(Ω−)

+
∥∥∥uk,h? (tn)− u(tn)

∥∥∥
L2(Ω+)

≤ C[u0]T
(
kp + h1

)
.

If Ω− is convex or has a smooth boundary, the spatial rate can be improved to∥∥∥uk,h(tn)− u(tn)
∥∥∥
L2(Ω−)

+
∥∥∥uk,h? (tn)− u(tn)

∥∥∥
L2(Ω+)

≤ C[u0]T
(
kp + h2

)
. (4.35)
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Proof. Follows along the same lines as Theorem 4.24. We just note that the only place where
the smoothness of V was used, was in the estimates for

∥∥Uk∥∥
Hs(Rd)

and
∥∥HUk

∥∥
Hs(Rd)

. But

for the case s = 2, this is not necessary, as for u ∈ dom(H) we can bound using Lemma 4.6:

‖−∆u‖L2(Rd) ≤ ‖Hu‖L2(Rd) + ‖V u‖L2(Rd)

≤ ‖Hu‖L2(Rd) +
1

2
‖−∆u‖L2(Rd) + b ‖u‖L2(Rd)

for some constant b > 0. Together with the general estimate

‖u‖H2(Rd) . ‖−∆u‖L2(Rd) + ‖u‖L2(Rd)

this implies that we can bound both the H2-norm of the stages and of HUk uniformly,
as long as the initial condition is smooth enough. This in turn is sufficient to get the full
convergence rate for lowest order discretization in space via Assumption 4.22.

4.5 Numerical results

In order to support our theoretical findings, we implemented the proposed method using a
combination of the finite element software package NGSolve [Sch14] and the boundary ele-
ment library BEM++ [Śmi+15]. To compute the convolution quadrature contributions we
used the algorithm presented in [Ban10], which avoids computing the convolution weights
and instead replaces them with the trapezoidal discretization of Cauchy’s integral formula
computed on the fly. While this introduces an additional error that has not been accounted
for in our analysis, this error can be reduced easily and should therefore not impact the
convergence rate (cf. [BS09]).

As a model problem we consider the free Schrödinger equation, i.e., V = 0, in 3D.
Following [Ant+08], given a point xc ∈ R3 and a wave number p0 ∈ R3, we set the initial
condition as

u0(x) :=
4

√
2

π
e−|x−xc|

2+ip0·(x−xc).

For this initial condition, the exact solution is given by

uex(x, t) =
4

√
2

π

√
i

−4t+ i
exp

(
−i |x− xc|2 − p0 · (x− xc) + |p0|2 t

−4t+ i

)
.

For the computational domain we chose the cube Ω− := [−4, 4]3. In order to be able to
better distinguish convergence from artificial damping, we consider the case of two Gaussian
beams. One is centered at x1

c := (1,−1, 0)T and has wave number p1
0 := (0, 0, 0)T , which

means it will remain stationary and we expect to only see a dispersive effect. The second
beam is centered at (−1, 1, 0)T and has a wave number (1, 0, 0)T , which means the wave
packet will travel out of the domain Ω−. While this choice of initial conditions does not
satisfy the assumption suppu0 ⊂ Ω−, the decay of the functions is sufficiently fast that the
truncation at the domain boundary becomes negligible.
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4 FEM-BEM coupling for the Schrödinger equation
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(a) 1 stage Gauss (order 2)
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(b) 2 stage RadauIIa (order 3)
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(c) 3 stage RadauIIa (order 5)

Figure 4.1: Comparison of different Runge-Kutta methods for the Schrödinger equation

We look at the convergence rates for different Runge-Kutta methods, namely we compare
a one-stage Gauss method to the 2 and 3 stage RadauIIa methods. For spatial discretization
we use finite and boundary elements, such that the order is the same as for the time-
stepping, i.e. we use q = p for the FEM and q = p − 1 for the BEM part. We compare
the maximum error for the FEM part in the L2- and the H1-norm, i.e., we compute

max
n=0,...,N

∥∥∥uk,h(tn)− u(tn)
∥∥∥
L2(Ω)

and max
n=0,...,N

∥∥∥uk,h(tn)− u(tn)
∥∥∥
H1(Ω)

. Figure 4.1 collects the

results. For the Gauss and two-stage Radau method, we see the full classical order of 2
and 3 respectively as predicted. For the higher order RadauIIa method, we do not see the
predicted rate, but this might just be pre-asymptotic behavior due to the limited number
of timesteps. Nevertheless the high order method offers a beneficial ratio of number of
operations to achieved accuracy.
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5 CQ for the wave equation with nonlinear
impedance boundary condition

In this chapter, we investigate whether boundary integral methods and Convolution Quadra-
ture can be used when discretizing nonlinear problems. In order to keep the level of tech-
nicalities to a minimum, we only consider a rather simple model problem and restrict our
methods to the case of BDF1 and BDF2 based Convolution Quadrature. The problem con-
sists of the linear wave equation complemented with a nonlinear boundary condition. The
motivation for the problem under consideration comes from nonlinear acoustic boundary
conditions, as investigated in [LT93; Gra12], and boundary conditions in electromagnetism
obtained by asymptotic approximation of thin layers of nonlinear materials [HJ02]. An-
other source of interesting nonlinear boundary conditions is [Ayg+04], which investigates
the coupling of wave propagation with nonlinear circuits. Compared with these references,
the boundary condition used in this chapter is simple, but already contains enough difficul-
ties to warrant development of new tools of analysis, which hopefully can be extended to
more involved situations. Many of the results of this section have appeared in [BR17] and
are the result of collaboration with Lehel Banjai. This model problem was first suggested
in [Ban15] and it has recently also been investigated using different techniques, namely
a positivity preservation property of the underlying boundary integral operators [BL17],
wherein the authors focus on a Runge-Kutta based discretization instead of multistep
methods.

5.1 Model problem

We consider an exterior scattering problem, using the linear wave equation and a nonlinear
boundary condition. Let Ω− ⊆ Rd be a bounded Lipschitz domain, and let Ω+ := Rd \Ω−

be the exterior. We denote the boundary by Γ := ∂Ω−. Given a function g : R→ R and a
constant wave speed c > 0, we consider the model problem:

1

c2
ütot = ∆utot in Ω+, (5.1a)

∂+
n u

tot = g
(
u̇tot

)
on Γ, (5.1b)

and use the initial condition utot(t) = uinc(t) for t ≤ 0, where the incident wave uinc itself
satisfies the wave equation

1

c2
üinc = ∆uinc in Ω+.

We assume that at time t = 0 the incident wave has not reached the scatterer yet, i.e.,
we assume that for t ≤ 0, uinc(·, t) vanishes in a neighborhood of Ω−. For notational
convenience, we set uinc(x, t) := 0 for x ∈ Ω− and ∀t ∈ R.
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5 CQ for the wave equation with nonlinear impedance boundary condition

We make the following assumptions on the nonlinearity g:

Assumption 5.1. (i) g ∈ C1(R),

(ii) g(0) = 0,

(iii) g(µ)µ ≥ 0 ∀µ ∈ R,

(iv) g′(µ) ≥ 0 ∀µ ∈ R,

(v) g satisfies the growth condition |g(µ)| ≤ C(1 + |µ|p), where{
1 < p <∞ d = 2,

1 < p ≤ d
d−2 d ≥ 3.

(vi) g is strictly monotone, i.e., there exists β > 0, such that

(g(λ)− g(µ)) (λ− µ) ≥ β |λ− µ|2 ∀λ, µ ∈ R. (5.2)

Remark 5.2. The growth condition (v) is chosen in a way to ensure that the operator

η 7→ g(η) is bounded, i.e., the estimate ‖g(u)‖H−1/2(Ω) ≤ C
(

1 + ‖u‖p
H1/2(Γ)

)
holds. This

will be proved in Lemma 5.7.

Remark 5.3. We will show well-posedness of (5.1) under these conditions on g as part
of Theorem 5.12. The well posedness of such problems has already been established with
more general boundary conditions but under slightly stronger growth conditions in [LT93]
and [Gra12].

5.2 Discretization using boundary integrals

In order to discretize the problem using boundary integral techniques, it is convenient to
work with homogeneous initial conditions. We therefore decompose the solution using the
ansatz utot = uinc + uscat. Since uinc satisfies the wave equation and utot(t) = uinc(t) for
t ≤ 0, the scattered field uscat solves the following problem:

1

c2
üscat = ∆uscat in Ω+, (5.3)

∂+
n u

scat = g(u̇scat + u̇inc)− ∂+
n u

inc on Γ, (5.4)

uscat(t) = 0 in Rd for all t ≤ 0. (5.5)

In order to simplify the notation, we make the assumption c = 1.
To derive the boundary integral equations and their discretization, we will work mostly

formally as we will not need the precise statements for the analysis. Since uscat solves the
wave equation with homogeneous initial conditions, we can apply Kirchhoff’s representation
formula (3.12) and write it as

uscat = −S(∂t)∂
+
n u

scat +D(∂t)γ
+uscat.
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5.2 Discretization using boundary integrals

We define the Calderón operators for s ∈ C+ as

B(s) :=

(
sV (s) K(s)
−KT (s) s−1W (s)

)
, (5.6a)

Bimp(s) := B(s) +

(
0 −1

2 Id
1
2 Id 0

)
. (5.6b)

Taking the traces in the representation formula and inserting the boundary condition
then gives an equivalence between the boundary integral equation

Bimp(∂t)

(
ϕ
ψ

)
+

(
0

g(ψ + u̇inc)

)
=

(
0

−∂+
n u

inc

)
(5.7)

and the scattering problem (5.3), namely:

(i) If uscat solves (5.3), then (ϕ,ψ), with ϕ := −∂+
n u

scat and ψ := γ+u̇scat, solves (5.7).

(ii) If (ϕ,ψ) solves (5.7), then uscat := S(∂t)ϕ+ ∂−1
t D(∂t)ψ solves (5.3).

Remark 5.4. We keep this equivalence statement purely formal and without detailed as-
sumptions as we will not make use of the continuous boundary integral equations. Instead,
we will prove a discrete version of this equivalence principle in Lemma 5.11.

For discretization, let Xh ⊆ H−1/2(Γ) and Yh ⊆ H1/2(Γ) be closed (not necessarily finite
dimensional) subspaces and let JYhΓ : H1/2(Γ)→ Yh be a stable linear operator with “good”
approximation properties, see Proposition 2.36 for possible constructions. The detailed
approximation requirements for the projection operator and the discrete spaces can be
found in Assumption 5.32 or Lemma 5.35 respectively; in practice, we used a simple L2-
projection (see [CT87; BY14] for sufficient conditions on the stability of the L2-projection).

In order to discretize in time, we use a multistep based Convolution Quadrature with
step size k > 0, see Section 3.1, based on either the BDF1 or BDF2 method. We denote
the corresponding coefficients by (αj)

m
j=0 (for BDF methods we have β0 = 1 and βj = 0

∀j > 0, thus we drop these coefficients).
The discretized version of (5.7) then reads:

Problem 5.5. Find functions ϕk and ψk, such that ϕk(t) ∈ Xh, ψk(t) ∈ Yh and〈
Bimp(∂kt )

(
ϕk

ψk

)
,

(
ξ
η

)〉
Γ

+
〈
g(ψk + JYhΓ u̇inc), η

〉
Γ

=
〈
−∂+

n u
inc(tn), η

〉
Γ

(5.8)

for all (ξ, η) ∈ Xh × Yh (equality to be understood as a function in t ∈ [0, T ]).

Remark 5.6. As always, we will only need to compute the solution to (5.8) for discrete
times tn := nk, using continuous time just simplifies the notation.

Since we will be dealing with pairs (ϕ,ψ) ∈ H−1/2(Γ) ×H1/2(Γ) on a regular basis, we
introduce the norm on the product space

|||(ϕ,ψ)|||2 := ‖ϕ‖2H−1/2(Γ) + ‖ψ‖2H1/2(Γ) . (5.9)
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5 CQ for the wave equation with nonlinear impedance boundary condition

5.3 Well posedness of the discretization scheme

We start by investigating under which conditions the discrete Problem 5.5 has a unique
solution. In order to do so, we start with some basic properties of the operator induced by
g and the operator Bimp(s).

Lemma 5.7. The operator g : H1/2(Γ) → H−1/2(Γ), η 7→ 〈g(η), ·〉Γ has the following
properties:

(i) The operator g is a bounded (nonlinear) operator, satisfying

‖g(η)‖H−1/2(Γ) ≤ C
(

1 + ‖η‖p
H1/2(Γ)

)
,

where p is the bound from Assumption 5.1(v), and the constant C > 0 depends on Γ
and g.

(ii) The operator g is monotone in the following sense:

〈g(η1)− g(η2), η1 − η2〉Γ ≥ 0 for all (real valued) η1, η2 ∈ H1/2(Γ).

(iii) The map η 7→ g(η) is continuous as a map H1/2(Γ)→ H−1/2(Γ).

Proof. Ad (i): We recall that the following Sobolev embeddings hold (Proposition 2.29)

H1/2(Γ) ⊆ Lp′(Γ)

{
∀1 ≤ p′ <∞ for d = 2,

∀1 ≤ p′ ≤ 2d−2
d−2 for d ≥ 3.

(5.10)

Using p from Assumption 5.1 (v), we fix p′, q′ such that 1/p′+ 1/q′ = 1 and both p′ and pq′

are in the admissible range of the Sobolev embedding. The case d = 2 is clear. For d ≥ 3
we use p′ = 2d−2

d−2 and q′ := 2d−2
d .

For η, ξ ∈ H1/2(Γ) we calculate:∫
Γ
g(η)ξ ≤ ‖g(η)‖Lq′ (Γ) ‖ξ‖Lp′ (Γ) .

(
1 + ‖η‖p

Lq′p(Γ)

)
‖ξ‖H1/2(Γ)

.
(

1 + ‖η‖p
H1/2(Γ)

)
‖ξ‖H1/2(Γ) .

Ad (ii): Given η1, η2 ∈ H1/2(Γ), we apply the mean value theorem to get:

〈g(η1)− g(η2), η1 − η2〉Γ =

∫
Γ
g′(s(x))(η1(x)− η2(x))2 dx.

Since g′ ≥ 0 by Assumption 5.1(iv), the integral is non-negative.
Ad (iii): We take a sequence ηh → η in H1/2(Γ) and show g(ηh)→ g(η) in H−1/2(Γ). We

focus on the case d ≥ 3, the case d = 2 is even simpler because all the Sobolev embeddings
hold for arbitrary Lp-spaces. By the Sobolev embedding (Proposition 2.29, c.f. (5.10)), we
can estimate:

‖g(η)− g(ηh)‖H−1/2(Γ) = sup
06=v∈H1/2(Γ)

〈g(η)− g(ηh), v〉Γ
‖v‖H1/2(Γ)

. ‖g(η)− g(ηh)‖Lq′ (Γ) ,
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5.3 Well posedness of the discretization scheme

with q′ := (2d− 2)/d.
If ηh → η in H1/2(Γ), the Sobolev-embeddings give ηh → η in Lq(Γ) for q ≤ 2d−2

d−2 . By
[Bre83, Theorem IV.9] (see also the proof of [Rud87, Theorem 3.11]), this implies that there
exists a sub-sequence ηhj , which converges pointwise almost everywhere and there exists a
function ζ ∈ Lq(Γ) such that |ηh| ≤ ζ almost everywhere.

From the growth conditions on g, we get that
∣∣g(ηhj )

∣∣ ≤ C (1 + |ζ|p) for all j ∈ N. The

same calculation from the proof of part (i) gives that (1 + |ζ|p) ∈ Lq′(Γ), thus we have an
integrable upper bound.

Since g is continuous by assumption, g(ηhj ) converges to g(η) pointwise almost every-

where. By the dominated convergence theorem this implies
∫

Γ

∣∣g(ηhj )− g(η)
∣∣q′ → 0. The

same argument can be applied to show that every sub-sequence of g(ηh) has a sub-sequence
that converges to g(η) in H−1/2(Γ). This is sufficient to show that the whole sequence con-
verges.

The operator Bimp(s) is elliptic in the frequency domain:

Lemma 5.8. There exists a constant β > 0 depending only on Γ, such that

Re

〈
Bimp(s)

(
ϕ
ψ

)
,

(
ϕ
ψ

)〉
Γ

≥ βmin(1, |s|2)
Re(s)

|s|2
|||(ϕ,ψ)|||2 . (5.11)

Proof. An analogous estimate to (5.11) for the operator B(s) was shown in [BLS15b,
Lemma 3.1]. Estimate (5.11) then follows directly since the difference Bimp(s) − B(s)
is skew-hermitean.

In order to prove the solvability of the nonlinear discrete problem (5.8), we need the
following tool from functional analysis:

Proposition 5.9 (Browder and Minty, [Sho97, Chapter II, Theorem 2.2]). Let X be a
real, separable and reflexive Banach space and let A : X → X ′ be a (not necessarily linear)
bounded, continuous, coercive and monotone map from X to its dual space. In other words,
let A satisfy:

(i) A : X → X ′ is continuous,

(ii) the set A(M) is bounded in X ′ for all bounded sets M ⊆ X ,

(iii) lim
‖u‖X→∞

〈A(u), u〉X ′×X
‖u‖X

=∞,

(iv) 〈A(u)−A(v), u− v〉X ′×X ≥ 0 for all u, v ∈ X .

Then the variational equation

〈A(u), v〉X ′×X = 〈f, v〉X ′×X ∀v ∈ X ,

has at least one solution for all f ∈ X ′. If the operator is strongly monotone, i.e., if there
exists a constant β > 0 such that

〈A(u)−A(v), u− v〉X ′×X ≥ β ‖u− v‖
2
X for all u, v ∈ X ,

then the solution is unique.
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5 CQ for the wave equation with nonlinear impedance boundary condition

Proof. The existence statement is just a slight reformulation of [Sho97, Theorem 2.2],
based on some of the equivalences stated in the same chapter. Uniqueness can be shown
by considering two solutions u and v and applying the strong monotonicity to conclude
‖u− v‖X = 0.

These preparatory results allow us to now prove that indeed, Problem 5.5 is well posed.

Theorem 5.10. Let k > 0 and (Xh, Yh) ⊆ H−1/2(Γ)×H1/2(Γ) be closed subspaces. Then
the discrete system of equations (5.8) has a unique solution in the space Xh × Yh for all
times t ∈ R+.

Proof. We show the result for discrete times tn = nk, the general case follows by considering
shifted initial conditions. We remark that due to the symmetry properties of the boundary
integral operators, namely B(s) = B(s), the convolution weights are real-valued and we
can restrict all our considerations on real valued functions. We prove this by induction on
n. For n = 0 we are given the initial condition ϕk = ψk = 0. Now assume that we have
solved (5.8) up to the n−1st step. We denote the operators from the definition of Bimp(∂kt )

as Bj , j ∈ N0, dropping the subscript and set ψ̃ := ψk +JYhΓ u̇inc and bring all known terms
to the right-hand side. Then, in the n-th step the equation reads〈

B0

(
ϕk(tn)

ψ̃(tn)

)
,

(
ξ
η

)〉
Γ

+
〈
g(ψ̃(tn)), η

〉
Γ

=

〈
fn,

(
ξ
η

)〉
Γ

, (5.12)

with fn :=

(
0

−∂+
n u

inc(tn)

)
−
n−1∑
j=0

Bn−j

(
ϕk(tj)
ψk(tj)

)
+B0

(
0

JYhΓ u̇inc(tn)

)
.

The right-hand side is a continuous linear functional with respect to (ξ, η) due to the
mapping properties of the operators Bj that are easily transferred from the frequency-
domain versions (2.34); see [Lub94].

We want to apply Proposition 5.9, we note that the operator B0 : H−1/2(Γ)×H1/2(Γ)→
H1/2(Γ) × H−1/2(Γ) is the leading term of a power series centered at zero. This means

we can compute B0 = Bimp

(
δ(0)
k

)
. Lemma 5.8 and Proposition 3.14 therefore imply B0 is

elliptic. The non-linearity satisfies: 〈g(η), η〉Γ =
∫

Γ g(η)η ≥ 0 by Assumption 5.1 (iii). This
implies that the left-hand side in (5.12) is coercive.

Since B0 is linear and elliptic and g is monotone via Lemma 5.7(ii), the left-hand side
in (5.12) is strongly monotone. Boundedness has been proven in Lemma 5.7. The continuity
is a consequence of the boundedness of B0 and the continuity from Lemma 5.7(iii).

5.4 Convergence analysis

In this section, we will analyze the convergence behavior of the discrete solutions to the
exact ones. This is done by making use of a correspondence between the convolution
quadrature based method and the multistep approximation of a related semigroup. We
start with showing that the CQ-approximations can be written as the solution of a sequence
of multistep type problems.

88



5.4 Convergence analysis

Lemma 5.11. Let k > 0, and let Xh ⊆ H−1/2(Γ), Yh ⊆ H1/2(Γ) be closed subspaces.
Define

Hh :=
{
u ∈ H1

(
Rd \ Γ

)
: JγuK ∈ Yh, γ−u ∈ X◦h

}
. (5.13)

For n ∈ N, let vh,kie (tn) ∈ Hh and wh,k
ie (tn) ∈ H

(
div,Rd \ Γ

)
solve

1

k

m∑
j=0

αjw
h,k
ie (tn−j) = ∇vh,kie (tn), (5.14a)

1

k

m∑
j=0

αjv
h,k
ie (tn−j) = div

(
wh,k

ie (tn)
)
, (5.14b)

r
γνw

h,k
ie (tn)

z
∈ Xh, (5.14c)

γ+
ν wh,k

ie (tn)− g
(r
γvh,kie (tn)

z
+ JYhΓ u̇inc(tn)

)
+ ∂+

n u̇
inc(tn) ∈ X◦h, (5.14d)

where tn := nk and wh,k
ie (t) = vh,kie (t) := 0 for t ≤ 0. Then the following two statements

hold:

(i) If ϕk and ψk solve (5.8) and we define uh,kie := S(∂kt )ϕk +
(
∂kt
)−1

D(∂kt )ψk, then

wh,k
ie := ∇uh,kie and vh,kie := ∂kt u

h,k
ie solve (5.14).

(ii) If wh,k
ie and vh,kie solve (5.14), the jumps ϕk := −

r
γνw

h,k
ie

z
, ψk :=

r
γvh,kie

z
solve (5.8).

Note: the subindex “ie”, which stands for “integral equations”, is used to separate this
sequence from the one obtained by applying the multistep method to the semigroup, as
defined in (5.25).

Proof. We first note that (5.14) has a solution in Hh.

We show this by induction on n. For n ≤ 0 we set uh,kie (tn) := vh,kie (tn) := 0. For n ∈ N,

we consider the weak formulation, find wh,k
ie (tn) ∈ H

(
div,Rd \ Γ

)
, vh,kie (tn) ∈ Hh, such that

1

k

m∑
j=0

αjw
h,k
ie (tn−j) = ∇vh,kie (tn), (5.15a)1

k

m∑
j=0

αjv
h,k
ie (tn−j), zh


L2(Rd)

=−
(
wh,k

ie (tn),∇zh
)
L2(Rd)

−
〈
g
(r
γvh,kie

z
(tn) + JYhΓ u̇inc(tn)

)
− ∂+

n u
inc(tn), JγzhK

〉
Γ

(5.15b)

for all zh ∈ Hh. Multiplying the first equation by k and collecting all the terms in-
volving wh,k

ie (tj) for j < n in Fn ∈ H
(
div,Rd \ Γ

)
, the condition becomes α0w

h,k
ie (tn) =
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5 CQ for the wave equation with nonlinear impedance boundary condition

k∇vh,kie (tn) + Fn. After inserting this identity into (5.15b) and combining all known terms

into a new right-hand side F̃n ∈ H′h, the second equation becomes

α0

k

(
vh,kie (tn), zh

)
L2(Rd)

+
k

α0

(
∇vh,kie (tn),∇zh

)
L2(Rd)

+〈
g
(r
γvh,kie (tn)

z
+ JYhΓ u̇inc(tn)

)
, JγzhK

〉
Γ

=
〈
F̃n, zh

〉
H′h×Hh

.

Since Hh is a closed subspace of H1
(
Rd \ Γ

)
, this equation can be solved for all n ∈ N

due to the monotonicity of the operators involved and the Browder-Minty theorem; see
Proposition 5.9 and also the proof of Theorem 5.10 for how to treat the nonlinearity.
Defining α0w

h,k
ie (tn) := k∇vh,kie (tn) + Fn, we have found a solution to (5.15).

What still needs to be shown is that Jγνw
h,k
ie (tn)K ∈ Xh. Note that it is sufficient to show

JγνZ [wh,k
ie ](z)K ∈ Xh for the Z-transformed variable, as we can then express Jγνw

h,k
ie (tn)K

as a Cauchy integral in Xh. The details of this argument are given later.
It is easy to see that∥∥∥∥∥
(

wh,k
ie (tn)

vh,kie (tn)

)∥∥∥∥∥
H(div,Rd\Γ)×H1(Rd\Γ)

≤ C(k)
n−1∑
j=0

∥∥∥∥∥
(

wh,k
ie (tj)

vh,kie (tj)

)∥∥∥∥∥
H(div,Rd\Γ)×H1(Rd\Γ)

,

where the constant may depend on k, but not on vh,kie , wh,k
ie or n. This implies that the

Z-transform ŵ(z) is well defined for |z| sufficiently small.

To simplify notation, define the function G := g
(
Jγvh,kie K + JYhΓ u̇inc

)
− ∂nuinc. Taking

the Z-transforms ŵ := Z
[
wh,k

ie

]
and v̂ := Z

[
vh,kie

]
, a simple calculation shows that

δ(z)
k ŵ(z) = ∇v̂(z) and for zh ∈ Hh((

δ(z)

k

)2

v̂, zh

)
L2(Rd)

+ (∇v̂,∇zh)L2(Rd) +

〈
δ(z)

k
Ĝ, JγzhK

〉
Γ

= 0.

For zh ∈ C∞0
(
Rd \ Γ

)
, this implies

−∆v̂(z) +

(
δ(z)

k

)2

v̂(z) = 0.

From zh ∈ Hh with zh|Ω− = 0 we see ∂+
n v̂ − k−1δ(z)Ĝ ∈ Y ◦h . Let ξ ∈ X◦h and choose zh as

a lifting of ξ to H1
(
Rd \ Γ

)
, i.e., γ+zh = γ−zh = ξ. Then we get by integration by parts:〈
−∂+

n v̂, ξ
〉

Γ
+
〈
∂−n v̂, ξ

〉
Γ

= 0,

or J∂ν v̂K ∈ (X◦h)◦ = Xh, which in turn implies JγŵK (z) = kδ(z)−1 J∂ν v̂(z)K ∈ Xh. We can
use the Cauchy-integral formula to write:

r
γνw

h,k
ie

z
(tn) =

1

2πi

∫
C
Jγνŵ(z)K z−n−1 dz,
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5.4 Convergence analysis

where the contour C := {z ∈ C : |z| = const} denotes a sufficiently small circle, such that
all the Z-transforms exist. Since we have shown that JγνŵK ∈ Xh and we assumed that

Xh is a closed space, this implies
r
γνw

h,k
ie (tn)

z
∈ Xh. Thus, we have shown the existence

of a solution to (5.14).
We can now show the equivalence of (i) and (ii). We start by showing that the traces

of the solutions to (5.14) solve the boundary integral equation. We have the following
equation in the frequency domain:

−∆v̂(z) +

(
δ(z)

k

)2

v̂(z) = 0,

∂+
n v̂(z)− δ(z)

k
Ĝ(z) ∈ Y ◦h .

For simpler notation, we define sk := δ(z)
k . The representation formula then tells us that

we can write v̂(z) = −S(sk) Jγν v̂(z)K +D(sk) Jγv̂(z)K. Introducing the new traces

ψ̃(z) := Jγv̂(z)K and ϕ̃(z) := − 1

sk
J∂ν v̂(z)K = Jγνŵ(z)K

and inserting these definitions into the representation formula gives

v̂(z) = skS(z)ϕ̃(z) +D(z)ψ̃(z).

Taking the interior trace γ− and testing with a discrete function ξh ∈ Xh gives

0 =
〈
γ−v̂, ξh

〉
Γ

= 〈skV (sk)ϕ̃, ξh〉Γ +
〈

(K(sk)− 1/2) ψ̃, ξh

〉
Γ
.

Analogously, by starting from the representation formula multiplied by s−1
k , taking the

exterior normal derivative ∂+
n , and testing with ηh ∈ Yh, we obtain that〈

Ĝ, ηh

〉
Γ

=

〈
1

sk
∂+
n v̂, ηh

〉
Γ

=
〈(

1/2−KT (sk)
)
ϕ̃, ηh

〉
Γ

+

〈
1

sk
W (sk)ψ̃, ηh

〉
Γ

.

Together, this is just the Z-transform of (5.8). By taking the inverse Z-transform, we

conclude that the traces
r
γvh,kie

z
and

r
γνw

h,k
ie

z
solve (5.8). By the uniqueness of the

solution via Theorem 5.10, this implies ϕk = −
r
γνu

h,k
ie

z
and ψk =

r
γvh,kie

z
, which then

shows (ii).
For (i), we observe that due to the uniqueness of solutions to Helmholtz transmission

problems (wh,k
ie , vh,kie ) defined via (5.14) and (wh,k

ie , vh,kie ) defined via potentials have the
same Z-transform and therefore coincide also in the time domain.

5.4.1 A related semigroup - semi-discretization in space

In order to analyze (5.1) and its discretization by solving Problem 5.5, we reformulate the
problem using a nonlinear semigroup framework as introduced in Section 2.2.2. To do so,
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5 CQ for the wave equation with nonlinear impedance boundary condition

we switch to a first order formulation of (5.1) by introducing the new variables v := u̇ and
w := ∇u to get:(

ẇ
v̇

)
=

(
∇v

div w

)
and γ+

ν w = g(γ+v + u̇inc)− ∂+
ν u̇

inc.

The next theorem lays out the functional analytic setting in detail and shows existence of
a continuous solution as well as a semi-discrete in space version.

Theorem 5.12. Consider the space X :=
[
L2(Rd)

]d × L2(Rd) with the product norm and
corresponding inner product and define the block operator

A :=

(
0 ∇

div 0

)
,

dom(A) :=

{
(w, v) ∈ X : div w ∈ L2(Rd \ Γ), v ∈ Hh,

JγνwK ∈ Xh, γ
+
ν w − g(JγvK) ∈ Y ◦h

}
. (5.16)

Then A is a maximally monotone operator on X and generates a strongly continuous semi-
group that solves (

ẇ
v̇

)
= A

(
w
v

)
, w(0) = w0, v(0) = v0 (5.17)

for all initial data (w0, v0) ∈ dom(A). The solution satisfies:

(i) u(t) := u0 + ∂−1
t v = u0 +

∫ t
0 v(τ) dτ solves the wave equation ü = ∆u and satisfies

u̇ = v. If ∇u0 = w0, then u satisfies ∇u(t) = w(t) for t ≥ 0. If Xh = H−1/2(Γ) and
Yh = H1/2(Γ), then u solves (5.1).

(ii) (w(t), v(t)) ∈ dom(A). If u0 ∈ Hh, then u(t) ∈ Hh and v(t) ∈ Hh for all t > 0.

(iii) If u0 ∈ Hh, then u ∈ C1,1
(
[0,∞), L2(Rd)

)
∩ C0,1

(
[0,∞), H1(Rd \ Γ)

)
,

(iv) u̇ ∈ L∞
(
(0,∞), H1

(
Rd \ Γ

))
,

(v) ü ∈ L∞
(
(0,∞), L2(Rd)

)
.

Proof. We first show monotonicity. Let x1 = (w1, v1), x2 := (w2, v2) be in dom(A). Then

〈Ax1 −Ax2, x1 − x2〉X = 〈∇v1 −∇v2,w1 −w2〉 + 〈div w1 − div w2, v1 − v2〉
=
〈
γ−ν w1 − γ−ν w2, γ

−v1 − γ−v2

〉
Γ
−
〈
γ+
ν w1 − γ+

ν w2, γ
+v1 − γ+v2

〉
Γ

= −
〈
Jγν [w1 −w2]K , γ−[v1 − v2]

〉
Γ
−
〈
γ+
ν w1 − γ+

ν w2, Jγ(v1 − v2)K
〉

Γ

= −〈g(Jγv1K)− g(Jγv2K), Jγ(v1 − v2)K〉Γ
≤ 0,
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5.4 Convergence analysis

where in the last step, we used the definition of the domain of A, which contains the
boundary conditions, and the fact that JγνwjK ∈ Xh. The definition of Hh from (5.13)
gives that Jγ(v1 − v2)K ∈ Yh.

Next we show range(A − Id) = X , i.e., for (x, y) ∈ X we have to find U = (w, v) ∈
dom(A), such that AU −U = (x, y). In order to do so, we first assume x ∈ H

(
div,Rd \ Γ

)
(a dense subspace of

[
L2(Rd)

]d
). From the first equation, we get∇v−w = x, or w = ∇v−x,

which makes the second equation: ∆v − v = y + div x. For the boundary conditions this
gives us the requirements

γ−v ∈ X◦h, JγvK ∈ Yh,
JγνwK ∈ Xh, ∂+

n v − g(JγvK)− γ+
ν x ∈ Y ◦h .

This can be solved analogously to the proof of Lemma 5.11. The weak formulation is: Find
v ∈ Hh, such that for all ξh ∈ Hh

(v, ξh)L2(Rd) + (∇v,∇ξh)L2(Rd) + 〈g(JγvK), JγξhK〉Γ = − (y, ξh)L2(Rd) + (x,∇ξh)L2(Rd) .

Due to the monotonicity of the left-hand side, this problem has a solution via Proposi-
tion 5.9 (see also the proof of Lemma 5.11).

We set w = ∇v − x. The fact that the conditions on JγνwK hold follows from the same
argument as in Lemma 5.11, by using test functions satisfying JγξhK = 0 and γ+ξh ∈ X◦h
and the fact that (X◦h)◦ = Xh. We therefore have (w, v) ∈ domA.

For general X := (x, y) ∈ X , we argue via a density argument. Let Xn := (xn, yn) be a
sequence in X ∩

(
H
(
div,Rd \ Γ

)
× L2(Rd)

)
, such that Xn → X. Let Un := (un, vn) be the

respective solutions to (A − Id)Un = Xn. From the monotonicity of A, we easily see that
for n,m ∈ N: ‖Un − Um‖X ≤ ‖Xn −Xm‖X , which means (Un) is Cauchy and converges
to some U =: (w, v). From the first equation ∇vn − wn = xn we get that vn → v in
H1
(
Rd \ Γ

)
. From the second equation div wn−vn = yn we get div wn → div w in L2(Rd).

Therefore, we have wn → w in H
(
div,Rd \ Γ

)
, which implies JγνwnK→ JγνwK ∈ Xh. From

Lemma 5.7(iii) we get 〈g(JγvnK), ξ〉Γ → 〈g(JγvK), ξ〉Γ, which implies γ+w − g(JγvK) ∈ Y ◦h .
The other trace conditions follow from the H1-convergence of vn. The existence of the
semigroup then follows from the Kōmura-Kato theorem (Proposition 2.17).

The fact that we can recover a solution to the wave equation using the definition of u(t)
is straight forward, and ∇u = w follows from u̇ = v and ẇ = ∇v together with the initial
condition. Since Hh is a closed subspace and u0 = u(0) ∈ Hh, it follows that u(t) ∈ Hh.

The regularity results follow from the regularity statements in Proposition 2.17. Since v
is Lipschitz continuous with values in L2(Rd) we get u ∈ C1,1((0, T ), L2(Rd)). From ∇u =
w +∇u0 −w0, we further get u ∈ C0,1

(
(0, T ), H1

(
Rd \ Γ

))
as long as ∇u0 ∈ L2(Rd).

Approximation theory in Hh and dom(A)

In this section, we collect some important properties of the space Hh, namely how well it is
able to approximate arbitrary functions in H1(Ω+) under different assumptions, and look
at how these approximation properties influence the approximation properties in dom(A).
In order to to so, we introduce several projection/quasi-interpolation operators.
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5 CQ for the wave equation with nonlinear impedance boundary condition

We start by defining an operator, which in some sense represents a “volume version” of
JYhΓ ; see Lemma 5.14 (ii).

Definition 5.13. Let EDΓ : H1/2(Γ) → H1
(
Rd \ Γ

)
denote the linear, continuous lifting

operator, such that γ+EDΓ v = v and EDΓ v = 0 in Ω−. Then, we define the operator Π0 as

Π0 :
{
u ∈ H1

(
Rd \ Γ

)
: γ−u = 0

}
→
(
Hh, ‖·‖H1(Rd\Γ)

)
v 7→ v − EDΓ

((
Id−JYhΓ

)
γ+v

)
in Rd \ Γ.

Recall that JYhΓ denotes a linear, H1/2(Γ)→ (Yh, ‖·‖1/2) stable operator.

In the next lemma, we collect some of the most important properties of Π0.

Lemma 5.14. The following statements hold:

(i) if JYhΓ is a projection, then Π0 is a projection,

(ii) JγΠ0uK = JYhΓ JγuK,

(iii) Π0 is stable, with the constant depending only on Γ and
∥∥∥JYhΓ

∥∥∥
H1/2(Γ)→H1/2(Γ)

,

(iv) Π0 has the same approximation properties in the exterior domain as JYhΓ on Γ, i.e.,

‖u−Π0u‖H1(Ω+) ≤ C
∥∥∥JγuK− JYhΓ JγuK

∥∥∥
H1/2(Γ)

.

Proof. All the statements are immediate consequences of the definition and the continuity
of EDΓ (Proposition 2.26) and JYhΓ .

In the analysis of time-stepping schemes, it is important to construct an operator which
is well behaved with respect to the operator A. This is achieved by constructing a Ritz-type
projector, which for our functional-analytic setting takes the following form:

Lemma 5.15. Let α > 0 be a fixed stabilization parameter. Define the Ritz-projector
Π1 : H1

∆

(
Rd \ Γ

)
→ Hh, where Π1u is the unique solution to

(∇Π1u,∇zh)L2(Rd) + α (Π1u, zh)L2(Rd)

= (∇u,∇zh)L2(Rd) + α (u, zh)L2(Rd) +
〈
J∂νuK , γ−zh

〉
Γ
∀zh ∈ Hh. (5.18)

The operator Π1 has the following properties:

(i) Π1 is a stable projection onto the space Hh ∩
{
u ∈ H1

∆

(
Rd \ Γ

)
: J∂νuK ∈ Xh

}
with

respect to the H1
(
Rd \ Γ

)
-norm.

(ii) Π1 almost reproduces the exterior normal trace:〈
∂+
n Π1u, ξ

〉
Γ

=
〈
∂+
n u, ξ

〉
Γ
∀ξ ∈ Yh.
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(iii) Π1 has the following approximation property for all u ∈ H1
∆

(
Rd \ Γ

)
:

‖(Id−Π1)u‖H1(Rd\Γ) ≤ C
(

inf
uh∈Hh

‖u− uh‖H1(Rd\Γ) + inf
xh∈Xh

‖J∂νuK− xh‖H−1/2(Γ)

)
.

For u ∈ H1(Rd \ Γ) with γ−u = 0, this approximation problem can be reduced to the
boundary spaces Xh, Yh:

‖(Id−Π1)u‖H1(Rd\Γ)≤C1 inf
yh∈Yh

∥∥γ+u− yh
∥∥
H1/2(Γ)

+ C2 inf
xh∈Xh

‖J∂νuK− xh‖H−1/2(Γ). (5.19)

All the constants depend only on Γ and α.

Proof. The operator is well defined and stable as Hh is a closed subspace of H1(Rd \ Γ),
the bilinear form used is elliptic and the right-hand side is a bounded linear functional.

In order to prove J∂νΠ1uK ∈ Xh, we follow the same argument as in the proof of
Lemma 5.11. First, we establish by using zh ∈ C∞0 (Rd \ Γ) that Π1u solves the PDE
−∆Π1u+αΠ1u = −∆u+αu. For ξ ∈ X◦h we obtain by using a global H1-lifting, i.e., such
that γ+zh = γ−zh = ξ, and using integration by parts:

〈J∂νΠ1uK , ξ〉Γ = 〈J∂νuK , ξ〉Γ − 〈J∂νuK , ξ〉Γ = 0.

This means J∂νΠ1uK ∈ (X◦h)◦ = Xh and range(Π1) ⊆ Hh∩
{
u ∈ H1

∆

(
Rd \ Γ

)
: J∂νuK ∈ Xh

}
.

The fact that Π1 reproduces the normal jump follows from testing with an arbitrary
zh ∈ Hh with γ−zh = 0 together with integration by parts and the PDE for Π1u.

To see that it is a projection, we note that for u ∈ Hh with J∂νuK ∈ Xh, the term
〈J∂νuK , γ−zh〉Γ vanishes due to the requirement γ−zh ∈ X◦h.

In order to prove the approximation property, we fix arbitrary uh ∈ Hh and xh ∈ Xh

and calculate:

‖(Id−Π1)u‖2
H1(Rd\Γ)

. (∇(Id−Π1)u,∇(Id−Π1)u)L2(Rd) + α ((Id−Π1)u, (Id−Π1)u)L2(Rd)

= (∇(Id−Π1)u,∇u−∇uh)L2(Rd) + α ((Id−Π1)u, u− uh)L2(Rd)

+
〈
J∂νuK− xh, γ−Π1u− γ−uh

〉
Γ

. ‖(Id−Π1)u‖H1(Rd\Γ) ‖u− uh‖H1(Rd\Γ)

+ ‖JγνuK− xh‖H−1/2(Γ)

(
‖u−Π1u‖H1(Rd\Γ) + ‖u− uh‖H1(Rd\Γ)

)
.

Young’s inequality concludes the proof.
For (5.19), we need to estimate infuh∈Hh ‖u− uh‖H1(Rd\Γ). We do this in a manner

similar to what was done for the Schrödinger case in Lemma 4.17. Let yh ∈ Yh be arbitrary
and let θ be a continuous H1-lifting of γ+u − yh to Ω+. Define uh := u|Ω− in Ω− and
uh := u|Ω+ − θ in Ω+. Since we assumed γ−u = 0, we get JγuhK = yh ∈ Yh and therefore
uh ∈ Hh. For the norm we estimate:

‖u− uh‖H1(Rd\Γ) = ‖θ‖H1(Ω+) ≤ C
∥∥γ+u− yh

∥∥
H1/2(Γ)

due to the continuity of the lifting operator (Proposition 2.26).
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All the previous approximation operators require the function to have at least H1-
regularity. Since we are interested in the case of no additional regularity assumptions
on the exact solution, we also need an additional operator that is stable in an L2-setting.
The construction is very similar to the one used in Lemma 4.15 for the Schrödinger setting.
In order to be able to define such an operator, we need to make an additional assumption
on Yh.

Assumption 5.16. For all h > 0, there exist spaces Y Ω−
h ⊆ H1(Ω−), such that Yh ⊇

γ−Y Ω−
h and there exists a linear operator JYh

Ω− : L2(Ω−)→ Y Ω−
h with the following proper-

ties: JYh
Ω− is stable in the L2- and H1-norm and for s ∈ {0, 1} satisfies the strong convergence∥∥∥u− JYhΩ−u

∥∥∥
Hs(Ω−)

→ 0 for h→ 0, ∀u ∈ Hs(Ω−).

This allows us to define our last approximation operator.

Lemma 5.17. Let E± : Hm (Ω±) → Hm(Rd) denote the Stein extension operator from
Proposition 2.23, which is stable for all m ∈ N0. Then we define a new operator Π2 :
L2(Ω+)→ Hh by

u 7→ Π2u :=

{
u− E−

((
Id−JYh

Ω−

)
E+u

)
in Ω+

0 in Ω−
,

i.e., in order to get a correction term similar to the one for Π0, instead of relying on
traces and lifting, we extend the function to the interior, apply the approximation operator
mapping to Y Ω−

h and extend it back outwards.
This operator has the following nice properties:

(i) Π2 is stable in L2 and H1,

(ii) for s ∈ [0, 1]: ‖u−Π2u‖Hs(Ω+) .
∥∥∥(Id−JYh

Ω−)E+u
∥∥∥
Hs(Ω−)

,

(iii) for all u ∈ L2(Ω+) and for h→ 0, Π2u converges to u in the L2-norm without further
regularity assumptions. For u ∈ H1(Ω+), the convergence is in the H1-norm.

Proof. In order to see that Π2u ∈ Hh, we have to show γ+Π2u ∈ Yh. We calculate:

γ+Π2u = γ+u− γ+u+ γ−JYh
Ω−E

+u ∈ Yh

due to the fact that E− reproduces the trace and the assumptions on Y Ω+

h . For the approx-
imation properties, we use the continuity of the Stein extension (see Proposition 2.23(i))
and estimate:

‖u−Π2u‖Hs(Rd\Γ) =
∥∥∥E− ((Id−JYh

Ω−

)
E+u

)∥∥∥
Hs(Rd\Γ)

.
∥∥∥(Id−JYh

Ω−

)
E+u

∥∥∥
Hs(Rd\Γ)

.

The extension E+u has the same regularity as u, thus we end up with the correct conver-
gence rates of Y Ω−

h .
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Remark 5.18. While Assumption 5.16 may look somewhat artificial, in most cases it is
easily verified by constructing a “virtual triangulation” of Ω− with piecewise polynomials
in the spirit of a FEM-BEM coupling procedure as for example used in Chapter 4. The
projection operator JYh

Ω− is then (for example) given by some stable quasi-interpolation op-
erator(see 2.36).

Remark 5.19. We used a space on Ω− for the quasi-interpolation step as it reflects the fact
that usually a natural triangulation on Ω− is given and the boundary mesh was generated
by restricting a volume mesh. This choice is arbitrary and could for example be replaced
by an artificial layer of triangles around Γ in Ω+. This would have allowed to drop the
extension step to the interior.

To conclude this section, we look at some properties of the nonlinearity g, namely how
approximations in η impact the convergence of g(η).

Lemma 5.20. Let η ∈ H1/2(Γ) and ηh ∈ H1/2(Γ) be such that ηh converges to η weakly,
i.e., for ξ ∈ H−1/2(Γ) it holds that

〈ξ, ηh〉Γ → 〈ξ, η〉Γ for h→ 0;

we write ηh ⇀ η. Then the following statements hold:

(i) g(ηh) ⇀ g(η) in H−1/2(Γ).

(ii) Assume that ηh → η in the H1/2(Γ) norm, and assume the stricter growth condition
|g(µ)| ≤ C(1 + |µ|p) with p < ∞ for d = 2 and p ≤ d−1

d−2 for d ≥ 3. Then the

nonlinearity converges with respect to the L2(Γ)-norm as well:

‖g(η)− g(ηh)‖L2(Γ) → 0.

(iii) If we assume |g′(s)| ≤ Cg′(1 + |s|q), where q < ∞ is arbitrary for d = 2, and q ≤ 1
for d = 3, then the following estimates hold:

‖g(η)− g(ηh)‖L2(Γ) ≤ C(η) ‖η − ηh‖L2+ε(Γ) for d = 2, ∀ε > 0,

‖g(η)− g(ηh)‖L2(Γ) ≤ C(η) ‖η − ηh‖H1/2(Γ) ,

where the constant C(η) depends on η but does not depend on h.

(iv) For η ∈ L∞(Γ) and ‖ηh − η‖L∞(Γ) ≤ C∞ we have

‖g(η)− g(ηh)‖L2(Γ) ≤ C(‖η‖∞ , C∞) ‖η − ηh‖L2(Γ) .

where C(‖η‖∞ , C∞) depends on η, C∞ and g but not on h.

Proof. Ad (i): We focus on the case d ≥ 3, the case d = 2 follows along the same lines
but is simpler since the Sobolev embeddings hold for arbitrary p ∈ [1,∞). Since weakly
convergent sequences are bounded (see [Yos80, Theorem 1(ii), Chapter V.1]), we can apply
Lemma 5.7(i) to get that g(ηh) is uniformly bounded in H−1/2(Γ). By the Eberlein–Šmulian
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theorem, see [Yos80, page 141], this implies that there exists a subsequence g(ηhj ), j ∈ N,

which converges weakly to some limit g̃ ∈ H−1/2(Γ). We need to identify the limit g̃ as
g(η). By Rellich’s theorem, the sequence ηh converges to η in Hs(Γ) for s < 1/2, and using
Sobolev embeddings we get that ηhj → η in Lp

′
(Γ) for p′ < 2d−2

d−2 . [Bre83, Theorem IV.9]
then gives (up to picking another subsequence) that ηhj → η pointwise almost everywhere

and there exists an upper bound ζ ∈ Lp′(Γ) such that
∣∣ηhj ∣∣ ≤ ζ almost everywhere. By

the growth condition on g, we get that |g(η)| ≤ C(1 + |ζ|p) and since p ≤ d
d−2 ≤ p′, the

function 1 + |ζ|p is integrable. By the continuity of g we also get g(ηhj ) → g(η) almost
everywhere. For test functions φ ∈ C∞(Γ), we get:∫

Γ
g(ηhj )φ→

∫
Γ
g(η)φ

by the dominated convergence theorem (note that φ is bounded). On the other hand,
since C∞(Γ) ⊆ H1/2(Γ), we get

〈
g(ηhj ), φ

〉
Γ
→ 〈g̃, φ〉Γ due to the weak convergence.

Since C∞(Γ) is dense in H1/2(Γ), we get g(η) = g̃. This proof can be repeated for every
subsequence, thus the whole sequence must converge weakly to g(η). Ad (ii): The proof
follows along the same lines as in Lemma 5.7(iii). Instead of estimating the H−1/2-norm by
the p′ norm via the duality argument, we can directly work in L2. Due to our restrictions
on g and the Sobolev embedding, we get an upper bound C(1+ |η|p) in L2(Γ), which allows
us to apply the same argument as before to get convergence.

Ad (iii): Using the growth condition on g′ we estimate for fixed x ∈ Γ:

|g(η(x))− g(ηh(x))| =

∣∣∣∣∣
∫ η(x)

ηh(x)
g′(ξ) dξ

∣∣∣∣∣ ≤ |ηh(x)− η(x)| sup
ξ∈[ηh(x),η(x)]

∣∣g′(ξ)∣∣
≤ |ηh(x)− η(x)|C (1 + max (|ηh(x)|q , |η(x)|q)) . (5.20)

In the case d = 3, we use the Cauchy-Schwarz inequality to estimate:

‖g(η)− g(ηh)‖2L2(Γ) .
∥∥∥(1 + max(|ηh|q , |η|q))2

∥∥∥
L2(Γ)

∥∥∥(η − ηh)2
∥∥∥
L2(Γ)

.
(

1 + ‖ηh‖2L4q(Γ) + ‖η‖2L4q(Γ)

)
‖(η − ηh)‖2L4(Γ)

.
(

1 + ‖ηh‖2H1/2(Γ) + ‖η‖2H1/2(Γ)

)
‖(η − ηh)‖2H1/2(Γ) ,

where in the last step we used the Sobolev embedding. Since weakly convergent sequences
are bounded, the first term can be uniformly bounded with respect to h, which shows (iii)
for d ≥ 3.

In the case d = 2, we have by Sobolev’s embedding that ‖max(|ηh| , |η|)‖Lp′ (Γ) can be

bounded independently of h for arbitrary p′ > 1. Using (5.20) to estimate the difference
and applying Hölders inequality then proves (iii) in the case d = 2.

Ad (iv): Since g is assumed to be continuously differentiable, g′ is bounded on compact
subsets of R. Arguing as before and using the bounds on η and ηh, the derivative g′(ξ(x))
is therefore uniformly bounded in this case. The statement then follows again by using
Hölders inequality.
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Convergence of the semi-discretization in space

We can now give an estimate of how the discretization in space, due to the choice of spaces
Xh and Yh and represented in the domain of the semigroup in Theorem 5.12, impacts the
solution. In order to do so, it is easier to work in a weak formulation of the semigroup.

Lemma 5.21. Let Hh be defined as in Lemma 5.11. Then the semi-discrete solution
to (5.17) denoted by (wh, vh)(t) solves

(
ẇh(t),qh

)
[L2(Rd)]

d =
(
∇vh(t),qh

)
[L2(Rd)]

d , (5.21a)(
v̇h(t), zh

)
L2(Rd)

= −
(
wh(t),∇zh

)
[L2(Rd)]

d −
〈
g
(
JvhK

)
, JγzhK

〉
Γ

(5.21b)

for all (qh, zh) ∈ H
(
div,Rd \ Γ

)
×Hh and t > 0. The exact solution satisfies

(ẇ(t),qh)
[L2(Rd)]

d = (∇v(t),qh)
[L2(Rd)]

d , (5.22a)

(v̇(t), zh)L2(Rd) = − (w(t),∇zh)
[L2(Rd)]

d

− 〈g(JγvK), JγzhK〉Γ −
〈
JγνwK , γ−zh

〉
Γ

(5.22b)

for all (qh, zh) ∈ H
(
div,Rd \ Γ

)
×Hh and t > 0. We note that we also have the function

u(t) ∈ C1,1(R+, H
1
∆

(
Rd \ Γ

)
) such that ∇u = w and u̇ = v.

Proof. This is a simple consequence of (5.14), the definition of dom(A) and integration
by parts. The last term in (5.22b), which would not appear in a straight-forward weak
formulation of the exterior scattering problem (5.1), is due to the fact that we replaced γ+zh
with JγzhK in the boundary term containing the nonlinearity. In comparison to (5.21) with
Xh and Yh as the full space, the additional term is there because the condition γ−zh ∈ X◦h,
which would imply γ−zh = 0 for the full space case, is violated for our admissible test
functions in (5.22).

Theorem 5.22. Assume that there exists an L2-stable operator Π2, which takes values in
Hh with ‖v −Π2v‖L2(Ω+) → 0 for h→ 0 as described in Lemma 5.17.

Introducing the error functions

ρ(t) :=

(
ρw(t)
ρv(t)

)
:=

(
w −∇Π1u
v −Π2v

)
,

θ(t) := g(Jγv(t)K)− g(JγΠ2v(t)K),
ε(t) := u(t)−Π1u(t),

the convergence can be quantified as∥∥∥vh(t)− v(t)
∥∥∥2

L2(Rd)
+
∥∥∥wh(t)−w(t)

∥∥∥2

[L2(Rd)]
d+β

∫ t

0

∥∥∥Jγvh(τ)K− Jγv(τ)K
∥∥∥2

L2(Γ)
dτ

.
∥∥∥vh(0)− v(0)

∥∥∥2

L2(Rd)
+
∥∥∥wh(0)−w(0)

∥∥∥
[L2(Rd)]

d

+ T

∫ t

0
‖ρ̇(τ)‖2X + ‖∇ρv(τ)‖2

[L2(Rd)]
d + ‖ε(τ)‖2L2(Rd) + β−1 ‖θ(τ)‖2L2(Γ) dτ.

(5.23)
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The implied constant depends only on the stabilization parameter α from (5.18).
If the operator g : H1/2(Γ) → L2(Γ) is continuous (see Lemma 5.20(ii) for a sufficient

condition), then the right-hand side converges to zero for h→ 0.

Proof. The additional error function

e(t) :=

(
ew(t)
ev(t)

)
:=

(
wh −∇Π1u
vh −Π2v

)
solves for fixed t ≥ 0

(ėw, qh)
[L2(Rd)]

d = (∇ev, qh)
[L2(Rd)]

d − (ρ̇w, qh)
[L2(Rd)]

d + (∇ρv, qh)
[L2(Rd)]

d

for wh ∈ H
(
div,Rd \ Γ

)
and zh ∈ Hh as well as

(ėv, zh)L2(Rd) = − (ew,∇zh)
[L2(Rd)]

d −
〈
g(JvhK)− g(JΠ2vK), JγzhK

〉
Γ

+ (ρ̇v, zh)L2(Rd) + α (ε, zh)L2(Rd) + 〈θ, JγzhK〉Γ .

Testing with qh := ew and zh := ev and adding the two equations gives, using the strong
monotonicity:

1

2

d

dt
‖e‖2X + β ‖JγevK‖2L2(Γ) ≤ 〈ė, e〉X +

〈
g(JvhK)− g(Π2 JγvK), JγevK

〉
Γ

= − (ρ̇w, ew)
[L2(Rd)]

d + (∇ρv, ew)L2(Rd)

+ (ρ̇v, ev)L2(Rd) + α (ε, ev)L2(Rd) + 〈θ, JγevK〉Γ
≤ ‖ρ̇‖X ‖e‖X + ‖∇ρv‖[L2(Rd)]

d ‖ew‖[L2(Rd)]
d

+ α ‖ε‖L2(Rd) ‖ev‖L2(Rd) + ‖θ‖L2(Γ) ‖JγevK‖L2(Γ)

.

(
‖ρ̇‖X + ‖∇ρv‖[L2(Rd)]

d + ‖ε‖L2(Rd)

)
‖e‖X

+ ‖θ‖L2(Γ) ‖JγevK‖L2(Γ) .

Young’s inequality and integrating then gives:

‖e‖2X+β

∫ t

0
‖JγevK‖2L2(Γ) . T

∫ t

0
‖ρ̇(τ)‖2X + ‖∇ρv(τ)‖2

[L2(Rd)]
d+‖ε(τ)‖2L2(Rd) + ‖θ‖2L2(Γ) dτ

+ T−1

∫ t

0
‖e(τ)‖2X + ‖Jγev(τ)K‖2L2(Γ) dτ.

Gronwall’s inequality ([Tes12, Lemma 2.7]) then lets us bound ‖e‖2X +β
∫ t

0 ‖JγevK‖
2
L2(Γ) by

the right hand side of (5.23). The triangle inequality
∥∥(wh −w, vh − v

)∥∥
X ≤ ‖e‖X + ‖ρ‖X

then completes the proof of (5.23).
In order to see convergence, we need to investigate the different error contributions.

By Theorem 5.12, we have u, v ∈ L∞
(
(0, T ), H1(Ω)

)
. ρ̇ measures the approximation of
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5.4 Convergence analysis

∇u̇ = ∇v and v̇. By the approximation properties of Π1 in the H1-norm and Π2 in the
L2-norm (see Lemmas 5.15 and 5.17) we get convergence of ‖ρ̇‖X . The term ‖ε‖L2(Rd)

also converges due to the properties of the Ritz-projector. The term ‖∇ρv‖ is also no
problem as Π2 has approximation properties in the full range of Sobolev spaces in [0, 1].
This means, as long as the nonlinear term converges, we obtain convergence of the fully
discrete scheme.

Remark 5.23. It might seem advantageous to use the Ritz projector Π1 throughout the

proof of Theorem 5.22 (or a Ritz-type operator adapted to

(
0 ∇

div 0

)
) as this choice elim-

inates the term ‖∇ρv‖L2(Rd\Γ), but the Ritz projector is not defined for v̇ ∈ L2(Rd). Thus,
we have to either assume additional regularity or use the projector Π2.

5.4.2 Time discretization analysis

The next step in analyzing the discretization quality of our numerical method is to investi-
gate the error made due to the Convolution Quadrature treatment. Lemma 5.11 hints that
it is sufficient to look at the multistep approximation of the related semigroup introduced
in the previous section. This will be the topic of this section. We start with a general result
from the literature regarding the approximation of semigroups by multistep methods.

Proposition 5.24. Let A be a maximally monotone operator on a separable Hilbert space H
with domain dom(A) ⊆ H, and let u denote the semigroup solution from Proposition 2.17.

For k > 0, we define the multistep approximation uk by

1

k

m∑
j=0

αju
k(tn−j) = Auk(tn), (5.24)

where we assumed uk(t) = u(t) for t < mk, and the coefficients αj originate from the
implicit Euler or the BDF2 method.

Then uk is well-defined, i.e., (5.24) has a unique sequence of solutions, with uk(tn) ∈
dom(A). If uk(t) ∈ dom(A) for t < mk, then the following estimate holds for nk ≤ T :

max
nk≤T

∥∥∥u(tn)− uk(tn)
∥∥∥
H
≤ C ‖Au0‖H

[
k + T 1/2k1/2 +

(
T + T 1/2

)
k1/3

]
.

Assume that u ∈ Cp+1([0, T ],H), where p is the order of the multistep method. Then

max
nk≤T

∥∥∥u(tn)− uk(tn)
∥∥∥
H
≤ C(u)Tkp.

Here the constant C(u) depends on u and its derivatives but not on k.

Proof. The general convergence result was shown by Nevanlinna in [Nev78, Corollary 1].
The improved convergence rate is shown in [HW10, Chapter V.8, Theorem 8.2] or follows
directly by inserting exact solution into the discrete scheme, applying the stability theorem
[Nev78, Theorem 1] and estimating the consistency error by Taylor’s theorem.
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Remark 5.25. We will use a shifted version of the previous proposition, where we assume
uk(t) = u(t) for t ≤ 0 and define all uk(t) via (5.24) for all t = t0 + k n with t0 ∈ (−mk, 0]
and n ∈ N. This does not impact the stated results.

We are now able to define the multistep approximation sequence (uh,ksg , v
h,k
sg ) ⊆ dom(A)

of the (spatially discrete) semigroup from Theorem 5.12 as

1

k

m∑
j=0

αjw
h,k
sg (tn−j) = ∇vh,ksg (tn), (5.25a)

1

k

m∑
j=0

αjv
h,k
sg (tn−j) = div wh,k

sg (tn), (5.25b)

together with the initial conditions uh,ksg (t) = uinc(t), vh,ksg (t) = u̇inc(t) for t ≤ 0; see Propo-
sition 5.24.

Comparing this definition to (5.14), we see that due to the way we dealt with uinc, the
approximation of the semigroup does not coincide with the approximation induced by the
boundary integral equations. This discrepancy does not compromise the convergence rates,
as is shown in the following lemma.

Lemma 5.26. Let p > 0 denote the order of the multistep method and assume

uinc ∈ Cµ
(

(0, T ), H1(Rd \ Γ)
)
,

u̇inc ∈ Cµ
(

(0, T ), L2(Rd \ Γ)
)

for µ > 1. Using the operators Π0 and Π1, as defined as in Section 5.4.1, we define the
shifted version of uh,kie via ũh,kie := uh,kie +Π1u

inc, ṽh,kie := ∂kt u
h,k
ie +Π0u̇

inc and w̃h,k
ie := ∇ũh,kie .

Then the following error estimate holds:(∥∥∥vh,ksg (tn)− ṽh,kie (tn)
∥∥∥2

L2(Rd)
+
∥∥∥wh,k

sg − w̃h,k
ie

∥∥∥2

[L2(Rd)]
d

)1/2

. kmin(p,µ−1)T
∥∥(∇uinc, u̇inc)∥∥

Cµ((0,T ),X )
+ k

n∑
j=0

∥∥∥(Id−JYhΓ

)
γ+u̇inc(tj)

∥∥∥
H1/2(Γ)

+ k
n∑
j=0

inf
xh∈Xh

∥∥∂+
n u̇

inc(tj)− xh
∥∥
H−1/2(Γ)

+ k
n∑
j=0

∥∥∥(Id−JYhΓ

)
γ+üinc(tj)

∥∥∥
H1/2(Γ)

.

The same convergence rates hold if we use uinc and u̇inc instead of the projected versions
on the left hand side. Thus, in practice, we do not depend on the non-computable operators
Π0 and Π1.

Proof. Inserting the definition of w̃h,k
ie and ṽh,kie into the multistep method, using (5.14), we
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see that (w̃h,k
ie , ṽh,kie ) solves

1

k

m∑
j=0

αjw̃
h,k
ie (tn−j) = ∇ṽh,kie (tn) +∇ε(tn),

1

k

m∑
j=0

βj ṽ
h,k
ie (tn−j) = div(w̃h,k

ie (tn)) + θ(tn)

with right-hand sides

ε(t) :=
1

k

m∑
j=0

αjΠ1u
inc (t− tj)−Π0u̇

inc(t),

θ(t) :=
1

k

m∑
j=0

αjΠ0u̇
inc (t− tj)−∆Π1u

inc(t).

In Theorem 5.12 we have shown that A is maximally monotone. From the properties of Π0

and Π1, we have (ũh,kie (tn), ṽh,kie (tn)) ∈ dom(A) (Lemmas 5.14 and 5.15). This means, we
can apply the stability estimate [Nev78, Theorem 1] to get for the differences:(∥∥∥vh,ksg (tn)− ṽh,kie (tn)

∥∥∥2

L2(Rd)
+
∥∥∥wh,k

sg (tn)− w̃h,k
ie (tn)

∥∥∥2

[L2(Rd)]
d

)1/2

≤ k
n∑
j=0

(
‖θ(tj)‖2L2(Rd) + ‖∇ε(tj)‖2[L2(Rd)]

d

)1/2

.

It remains to estimate the error terms ‖θ‖L2(Rd) and ‖∇ε‖
[L2(Rd)]

d . We start with ε and

rewrite it as

ε(t) = Π1

1

k

m∑
j=0

αju
inc (t− tj)− u̇inc(t)

+ (Π0 −Π1)
[
u̇inc(t)

]
.

Due to the H1 stability of Π1 and the approximation properties of Π0 and Π1 this gives
for the norm of the gradient:

‖∇ε(t)‖
[L2(Rd)]

d .

∥∥∥∥∥∥1

k

m∑
j=0

αju
inc (t− tj)− u̇inc(t)

∥∥∥∥∥∥
H1(Rd\Γ)

+
∥∥∥(Id−JYhΓ

)
u̇inc(t)

∥∥∥
H1/2(Γ)

+ inf
xh∈Xh

∥∥∂+
n u̇

inc(t)− xh
∥∥
H−1/2(Γ)

.

The first term is O
(
kmin(p,µ−1)

)
as the consistency error of a p-th order multistep method.

A similar argument can be employed for θ; noticing that ∆Π1u = ∆u and arranging the
terms as above gives

‖θ(t)‖L2(Rd) .

∥∥∥∥∥∥1

k

m∑
j=0

αj u̇
inc (t− tj)−∆uinc(t)

∥∥∥∥∥∥
L2(Rd)

+
∥∥(Id−Π0)∆uinc(t)

∥∥
L2(Rd)

.
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Since we assumed that uinc solves the wave equation, we can recognize the first term as
another consistency error (this time for ü), and replace ∆uinc with üinc. This means, we
can estimate:

‖θ(t)‖L2(Rd) ≤ O
(
kmin(p,µ−1)

)
+ C

m∑
j=0

∥∥(Id−Π0)üinc(tn)
∥∥
L2(Rd)

,

which, together with the approximation properties of Π0 and Π1, concludes the proof.

Summarizing the previous results, we get the following convergence for a pure time-
discretization:

Theorem 5.27. Assume for a moment that Xh = H−1/2(Γ) and Yh = H1/2(Γ). The

discrete solutions, obtained by uh,kie := S(∂kt )ϕk + (∂kt )−1D(∂kt )ψk converge to the exact
solution u of (5.17) with the rate

max
nk≤T

∥∥∥∇u(tn)−∇uh,kie (tn)−∇uinc(tn)
∥∥∥

[L2(Rd)]d
≤ C(u)T k1/3,

max
nk≤T

∥∥∥u̇(tn)− vh,kie (tn)− u̇inc(tn)
∥∥∥
L2(Rd)

≤ C(u)T k1/3.

If we assume that the exact solution satisfies (∇u, u̇) ∈ Cp+1 ([0, T ],X ), then we regain the
full convergence rate of the multistep method

max
nk≤T

∥∥∥∇u(tn)−∇uh,kie (tn)− uinc(tn)
∥∥∥

[L2(Rd)]d
≤ C(u)T kp,

max
nk≤T

∥∥∥u̇(tn)− vh,kie (tn)− u̇inc(tn)
∥∥∥
L2(Rd)

≤ C(u)T kp.

For the fully discrete setting, the same rates in time hold, but with additional projection
errors due to uinc; see Lemma 5.26. All the constants depend on the exact solution u and
on uinc but are independent of k.

Proof. This statement is easily obtained by combining Proposition 5.24 with Lemma 5.26.

5.4.3 Convergence of the fully discrete scheme

Finally, we are able to answer the question under which conditions the solutions to the
fully discrete boundary integral equations (5.8) converge to the exact solutions. This will
be answered in Corollary 5.28. We also look at the case of what happens if we make the
additional assumption that the exact solution satisfies additional smoothness properties.

The non-smooth case

We start by investigating the case of no assumed regularity. This case can be handled
easily by combining the estimates from the previous sections which immediately give a
convergence result for the full discretization:
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Corollary 5.28. Assume that the incoming wave satisfies (∇uinc, u̇inc) ∈ Cµ ((0, T ),X )

for µ > 1. Setting ũh,kie := uh,kie + uinc and ṽh,kie := vh,kie + u̇inc, the discretization error can
be quantified by:∥∥∥∇ũh,kie (tn)−∇u(tn)

∥∥∥
[L2(Rd)]

d +
∥∥∥ṽh,kie (tn)− u̇(tn)

∥∥∥
L2(Rd)

. T
(
‖Au(0)‖X + ‖(∇u, u̇)‖Cµ((0,T ),X )

)
kmin(µ−1,1/3)

+k

n∑
j=0

[∥∥∥(Id−JYhΓ

)
γ+u̇inc(tj)

∥∥∥
H1/2(Γ)

+ inf
xh∈Xh

∥∥∂+
n u̇

inc(tj)− xh
∥∥
H−1/2(Γ)

]

+k

n∑
j=0

∥∥∥(Id−JYhΓ

)
γ+üinc(tj)

∥∥∥
H1/2(Γ)

+ T 1/2

(∫ tn

0
‖ρ̇(τ)‖2X + ‖∇ρv(τ)‖2L2(Rd) dτ

)1/2

+T 1/2

(∫ tn

0
‖u−Π1u‖2L2(Rd) + β−1/2 ‖θ(τ)‖2L2(Γ) dτ

)1/2

where the error terms satisfy

‖ρ̇(t)‖X . inf
yh∈Yh

‖u̇− yh‖H1(Ω−) +
∥∥∥u̇− JYhΩ−E

+u̇
∥∥∥
L2(Ω−)

+ inf
xh∈Xh

∥∥∂+
ν u̇− xh

∥∥
H−1/2(Γ)

,

‖∇ρv(t)‖L2(Rd) .
∥∥∥u̇− JYhΩ−E

+u̇
∥∥∥
H1(Ω−)

,

‖θ(t)‖L2(Γ) = ‖g(JγvK)− g(JγΠ2vK)‖L2(Γ) .

Assuming |g(µ)| .
(

1 + |µ|
d−1
d−2

)
for d ≥ 3, this gives strong convergence

∇uh,kie +∇uinc → ∇u in L∞
(

(0, T ), [L2(Rd)]d
)
,

∂kt u
h,k
ie + u̇inc → u̇ in L∞

(
(0, T ), L2(Rd)

)
,

with a rate in time of k1/3 and quasi-optimality in space.

Proof. We just collect all the estimates from the previous sections. The stronger growth
condition on g is needed to ensure that the error in the nonlinearity θ converges in L2(Γ)
(see Lemma 5.20(ii)).

The smooth case

While the general convergence result of Corollary 5.28 is nice, it does not provide any
insight into how fast the convergence with respect to the spatial discretization is, and in
time we were only able to prove the reduced rate of O(k1/3). Both of these shortcomings
can be overcome if we make further assumptions on the regularity of the exact solution.
Namely we assume:

Assumption 5.29. Assume that the exact solution of (5.1) has the following regularity
properties:
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(i) u ∈ Cp
(
(0, T ), H1(Ω+)

)
,

(ii) u̇ ∈ Cp
(
(0, T ), L2(Ω+)

)
,

(iii) γ+u, γ+u̇ ∈ L∞ ((0, T ), Hs(Γ)),

(iv) ∂+
n u, ∂

+
n u̇ ∈ L∞

(
(0, T ), Hs−1(Γ)

)
,

(v) ü ∈ L∞ ((0, T ), Hs(Ω−)),

(vi) γ+u̇ ∈ L∞ ((0, T )× Γ),

for some s ≥ 1/2. Here p denotes the order of the multistep method that is used.

Remark 5.30. We need the strong requirement of γ+u̇ ∈ L∞ ((0, T )× Γ) in order to be
able to apply Lemma 5.20 (iv). Alternatively, we can make stronger growth assumptions
on g′ instead and drop this requirement.

Since we only made assumptions on the exact solution u, instead of on the continuous-
in-time/discrete in space solution of (5.17), we can not use the procedure of splitting the
discretization steps into first in space then in time and analyze them separately as was done
in 5.28. Instead, we will look at the discretization in space and time separately and repeat
the argument of Theorem 5.22 in a time discrete setting. The main tool for this argument
will be the G-stability of the linear multistep method used.

Lemma 5.31. Let uh,ksg , vh,ksg denote the sequence of approximations obtained by applying
the BDF1 or BDF2 method to (5.17), as defined in (5.25), and let u be the exact solution
of (5.1) with v := u̇. We will use the finite difference operator ∂kt , defined as

[∂kt u](t) :=
1

k

k∑
j=0

αju(t− tj)

(This is consistent with Definition 3.13 for K(s) = s since we are using a BDF method).
We introduce the following error terms:

ΘI(t) := Π1

(
[∂kt u](t)− u̇(t)

)
,

ΘII(t) := Π2

(
[∂kt v](t)− v̇(t)

)
,

ΘIII(t) := (Π1 −Π2) v(t),

ΘIV (t) := (Id−Π2) v̇(t),

ΘV (t) := g(Jγv(t)K)− g(JγΠ2v(t)K),
ΘV I(t) := (Id−Π1)u(t).
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Then∥∥∥∥∥
(

vh,ksg (tn)− v(tn)

wh,k
sg (tn)−∇u(tn)

)∥∥∥∥∥
2

X 0

+ βk
n∑
j=0

∥∥∥rγ(vh,ksg (tj)− v(tj))
z∥∥∥2

L2(Γ)

. k

n∑
j=0

‖∇ΘI(tj)‖2[L2(Rd)]
d + ‖ΘII(tj)‖2L2(Rd) + ‖∇ΘIII(tj)‖2[L2(Rd)]

d

+ k
n∑
j=0

‖ΘIV (tj)‖2L2(Rd) + ‖ΘV (tj)‖2L2(Γ) + ‖ΘV I(tj)‖2L2(Rd).

The implied constant depends only on the parameter α in the definition of Π1.

Proof. The proof is fairly similar to the ones of Theorem 5.22 and Lemma 5.26 and many
similar terms appear. We define the additional error functions

e :=

(
ew
ev

)
:=

(
∇Π1u−wh,k

sg

Π2v − vh,ksg

)
.

The overall strategy of the proof is to substitute e in the defining equation for the multistep
method and compute the truncation terms. We then test with e in order to get discrete
stability just as we did in Theorem 5.22. The proof becomes technical, due to the many
different error terms that appear.

The error e(t) solves the following equation for all fixed times t > 0 and for all qh ∈
H
(
div,Rd \ Γ

)
and zh ∈ Hh, see (5.22),(

∂kt [ew], qh

)
[L2(Rd)]

d = (∇ev, qh)
[L2(Rd)]

d + (∇ (ΘI + ΘIII) , qh)
[L2(Rd)]

d(
∂kt [ev], zh

)
L2(Rd)

= − (ew,∇zh)
[L2(Rd)]

d −
〈
g(Jvh,ksg K)− g(JγΠ2vK), JγzhK

〉
Γ

+ (ΘII + ΘIV + αΘV I , zh)L2(Rd) + 〈ΘV , JγzhK〉Γ .

By testing with qh := ∇e, zh := e, we get from the strict monotonicity of g:〈
∂kt [e], e

〉
X

+ β ‖JγevK‖2L2(Γ) ≤ (∇ (ΘI + ΘIII) , ew)L2(Rd) + 〈ΘV , JγevK〉Γ
+ (ΘII + ΘIV + αΘV I , ev)L2(Rd) .

We write En := (e(tn), . . . , e(tn−m))T and use the G-stability of the BDF methods (Propo-
sition 3.3) to obtain a lower bound on the left-hand side. Using the Cauchy-Schwarz and
Young inequalities on the right-hand side then gives after multiplying by k:

‖En‖2G −
∥∥En−1

∥∥2

G
+ βk ‖Jγev(tn)K‖2L2(Γ)

. k ‖∇ΘI +∇ΘIII‖2[L2(Rd)]
d + k ‖ΘV ‖2L2(Γ) + k ‖ΘII + ΘIV + αΘV I‖2L2(Rd) .

Summing over n and noting the equivalence of the G-induced-norm to the standard Rm
norm gives the stated result.
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We close this section by writing down explicit convergence rates for the approximation
instead of the best-approximation properties. In order to do so, we make the following
assumptions on the spaces Xh and Yh:

Assumption 5.32. Assume that the spaces Xh, Yh and the operator JYhΓ satisfy the fol-
lowing approximation properties

inf
xh∈Xh

‖ϕ− xh‖H−1/2(Γ) ≤ Ch
1/2+min(q+1,s) ‖ϕ‖Hs

pw(Γ) ∀ϕ ∈ Hs
pw(Γ), (5.26a)∥∥∥ψ − JYhΓ ψ

∥∥∥
H1/2(Γ)

≤ Chmin(q+1,s)−1/2 ‖ψ‖Hs
pw(Γ) ∀ψ ∈ Hs

pw(Γ), (5.26b)

for parameters h > 0 and q ∈ N, with constants that depend only on Γ and q. Assume
further that the fictitious space Y Ω−

h and the operator JYh
Ω− from Assumption 5.16 also satisfy∥∥∥u− JYhΩ−u

∥∥∥
L2(Ω−)

≤ Chmin(q+1,s) ‖u‖Hs(Ω−) ∀u ∈ Hs(Ω−). (5.27)

Theorem 5.33. Let Assumptions 5.29 and 5.32 be satisfied and assume that we use
BDF1(p = 1) or BDF2(p = 2) discretization in time. Assume either |g′(s)| . 1 + |s|r
with r ∈ N arbitrary for d = 2 or r ≤ 1 for d = 3, or assume that ‖Π2u̇‖L∞(Rd) ≤ C is
uniformly bounded w.r.t. h. Then the following convergence result holds:∥∥∥vh,ksg (tn)− u̇(tn)

∥∥∥
L2(Rd)

+
∥∥∥wh,k

sg (tn)−∇u(tn)
∥∥∥

[L2(Rd)]
d = O

(
T
(
hmin(q+1/2,s) + kp

))
.

The implied constant depends on Γ, g, α, the regularity of u as required in Assumptions
5.29, and the constants from Assumption 5.32.

Proof. We already have proven all the necessary estimates, and only need to combine
them with our additional assumptions. We combine Lemma 5.31 with the approximation
properties of the operators from Section 5.4.1. ΘI and ΘII are the local truncation errors of
the multistep method and therefore O(kp) (the operators Π1, Π2 are stable). To estimate
ΘV , the assumptions on g or Π2 are such that we can apply Lemma 5.20.

Remark 5.34. The assumptions on the spaces Xh, Yh are satisfied, if we use standard
piecewise polynomials of degree q for Yh and q − 1 for Xh on some triangulation Th of Γ
(Proposition 2.35). In this case, the approximation property (5.27) holds via the construc-
tion from Lemma 5.17 using some standard quasi-interpolation operator from the FEM
theory (see Proposition 2.36). The requirements on Π2u̇ can be fulfilled in numerous ways,
e.g., in 2D and 3D it can be shown by balancing approximation and inverse estimates, as
is for example done in [Tho06, Lemma 13.3]. The same result could also be achieved by
replacing Π2 by some operator which also provides L∞-stability like nodal interpolation.

The case of more general nonlinearities g

Up to now, we only considered nonlinearities, which were strictly monotone. This was
needed in order to get control over the boundary values of v. Since many authors, e.g.,
[Gra12] treat this assumption as optional, we investigate in what sense we can recover the
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convergence results of the previous sections. We first generalize Theorem 5.22 to the new
setting, where the lack of strict monotonicity requires us to weaken the convergence and
drop the explicit error estimates. Instead we get:

Lemma 5.35. Assume the families of spaces (Xh)h>0 and (Yh)h>0 are dense in H−1/2(Γ)
and H1/2(Γ) respectively. Assume that g satisfies Assumption 5.1(i)–(v) but is not neces-
sarily strictly monotone.

Then, for h→ 0, the sequence of solutions wh(t), vh(t) of (5.21) converges weakly towards
the solution of (5.22) for almost all t ∈ (0, T ).

Proof. We fix t ∈ (0, T ]; all the arguments hold only almost everywhere w.r.t t, which
is sufficient to obtain the stated result. Since g(

q
γvh

y
) ·

q
γvh

y
≥ 0, testing (5.21) with

qh = wh(t) and zh = vh(t) in (5.21) gives∥∥∥(wh(t), vh(t)
)∥∥∥
X
≤
∥∥∥(wh(0), vh(0)

)∥∥∥
X
.

By the Eberlein–Šmulian theorem, see [Yos80, page 141], the sequence
(
wh(t), vh(t)

)
has

a weakly convergent sub-sequence; for ease of notation again denoted by (wh(t), vh(t)),
uniqueness of the solution will give convergence of the whole sequence anyway. We write
(w(t), v(t)) for the weak limit. Since the convergence is with respect to the spatial dis-
cretization, it is easy to see that ẇh ⇀ ẇ and v̇h ⇀ v̇.

As the incident wave vanishes at the scatterer for t ≤ 0, we get for the initial condition(
uinc(0), u̇inc(0)

)
∈ dom(A). The a priori estimate in Proposition 2.17 then implies∥∥∥(ẇh(t), v̇h(t)

)∥∥∥
X
≤ C

(
u̇inc

)
.

Since ẇh = ∇vh, this implies that
∥∥vh(t)

∥∥
H1(Rd\Γ) is uniformly bounded and therefore

(up to another sub-sequence) the trace also converges: Jvh(t)K ⇀ Jγv(t)K in H1/2(Γ). It
was already shown in Lemma 5.20(i) that this implies g

(
Jvh(t)K

)
⇀ g (Jγv(t)K). Overall,

we have shown that there exists a sub-sequence of (wh, vh), which converges weakly to a
solution of (5.22). Since the same argument can be applied to each sub-sequence of (wh, vh)
and the limit is unique, due to the uniqueness from Proposition 2.17, we get that the full
series converges weakly.

The convergence of the time-discretization in Proposition 5.24 does not depend on the
strong monotonicity of g. This insight immediately gives the following corollary:

Corollary 5.36. Assume the families of spaces (Xh)h>0 and (Yh)h>0 are dense in H−1/2(Γ)
and H1/2(Γ) respectively and assume that the operator JYhΓ converges strongly to the iden-

tity, i.e., for all y ∈ H1/2(Γ) we have that JYhΓ y → y converges for h→ 0.

Let ũh,kie , ṽ
h,k
ie again be defined using the representation formula and adding back uinc

(see Lemma 5.11; we note that this is defined for all t ∈ R by using the staggered initial
conditions). Then these approximations converge weakly towards the solution of (5.1) for
almost all t ∈ (0, T ) for k → 0 and h→ 0.

Proof. Inspecting the proof of Lemma 5.26 and Theorem 5.27, we did not require g to
be strictly monotone. This means that ∇ũh,kie and ṽh,kie converge (strongly) to wh and vh

respectively. The stated result then follows directly from Lemma 5.35.
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Convergence of the boundary traces

In the previous sections, we have looked at convergence of the solutions obtained by ap-
plying the representation formula to the boundary data. Since it is hard to compute the
norms of these functions on the unbounded domain Ω+ in practice, we look at what these
convergence results imply for the boundary traces themselves. To prove convergence of the
traces, we first need the following simple result.

Lemma 5.37. Let f ∈ Cr((0, T ),X ), f̃ ∈ C((0, T ),X ) for some Banach space X and
T ∈ R+ with 0 = f(0) = f ′(0) = · · · = f (r−1)(0) = f̃(0) and r ≤ p, where p is the order of
the multistep method used. Then

max
t∈[0,T ]

∥∥∥∥∂−1
t f(t)−

[(
∂kt

)−1
f̃

]
(t)

∥∥∥∥
X
≤ Ct

[
kr max

τ∈[0,t]
‖f r(τ)‖X + max

τ∈[0,t]

∥∥∥f(τ)− f̃(τ)
∥∥∥
X

]
.

Proof. We split the error into two terms by writing∥∥∥∥∂−1
t f −

(
∂kt

)−1
f̃

∥∥∥∥
X
≤
∥∥∥∥∂−1

t f −
(
∂kt

)−1
f

∥∥∥∥
X

+

∥∥∥∥(∂kt )−1 (
f − f̃

)∥∥∥∥
X
.

The stated estimate then follows from the standard theory of convolution quadrature; see
[Lub88a, Theorem 3.1], noting that ∂−1

t is a sectorial operator.

This allows us to prove convergence estimates for ψk and ϕk.

Lemma 5.38. Let u solve (6.3), write uscat(t) := u(t)− uinc(t), and define the continuous

traces ψ(t) := γ+u̇scat(t) and ϕ(t) := −∂+
n u

scat. Let uh,kie , vh,kie solve (5.14) with correspond-

ing traces ϕk := −
r
∂νu

h,k
ie

z
, ψk :=

r
γvh,kie

z
solving (5.8). Then

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∂−1

t ψ −
[(
∂kt
)−1

ψk
]

∂−1
t ϕ−

[(
∂kt
)−1

ϕk
]
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
Γ

.
∥∥∥∇uscat −∇uh,kie

∥∥∥
L2(Rd)

+
∥∥∥u̇scat − vh,kie

∥∥∥
L2(Rd)

+ O (kr)

holds for all t ≤ T , with constants that depend only on Γ and the end time T , and where r
is the smaller of the two regularity indices of ψ(t) and ϕ(t).

Proof. From the definition of ψ and the properties of the operational calculus, we have that(
∂kt

)−1
ψie =

(
∂kt

)−1 r
γvh,kie

z
=
(
∂kt

)−1
∂kt

r
γuh,kie

z
=

r
γuh,kie

z

and analogously ∂−1
t ψ =

q
γuscat

y
. The standard trace theorem then gives the estimate∥∥∥∥∂−1

t ψ(tn)−
(
∂kt

)−1
ψk(tn)

∥∥∥∥
H1/2(Γ)

≤ C
∥∥∥uscat − uh,kie

∥∥∥
H1(Rd\Γ)

.

We can further estimate the L2 contribution in the norm above by noting∥∥∥uscat(tn)− uh,kie (tn)
∥∥∥
L2(Rd)

=

∥∥∥∥∂−1
t u̇scat(tn)−

(
∂kt

)−1
vh,kie (tn)

∥∥∥∥
L2(Rd)
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and applying Lemma 5.37.
Since uh,kie solves (5.14) and ∆ is linear, we note that

∆
(
∂kt

)−1
uh,kie =

(
∂kt

)−1
∆uh,kie =

(
∂kt

)−1
∂kt v

h,k
ie = vh,kie ,

and analogously ∆
(
∂−1
t uscat

)
= u̇scat.

From the definition of ϕ and the stability of the normal trace operator in H1
∆

(
Rd \ Γ

)
we have∥∥∥∥∂−1

t ϕ(tn)−
(
∂kt

)−1
ϕk(tn)

∥∥∥∥
H−1/2(Γ)

≤ C
∥∥∥∥∂−1

t uscat(tn)−
(
∂kt

)−1
uh,kie (tn)

∥∥∥∥
H1

∆(Rd\Γ)

≤ C

[∥∥∥∥∂−1
t uscat(tn)−

(
∂kt

)−1
uh,kie (tn)

∥∥∥∥
H1(Rd\Γ)

+
∥∥∥u̇scat(tn)− vh,kie (tn)

∥∥∥
L2(Rd)

]
.

We apply Lemma 5.37 twice to estimate the H1-term of the integral by the L2-norm of the
gradient and to estimate the L2-norm of the derivative up to higher order error terms.

5.5 Numerical results

We again implemented the methods proposed in this chapter in order to compare the
performance of the method to the theoretical findings. Since the problem is nonlinear, we
need to solve the system in a time-stepping fashion. This is achieved in an efficient way by
the FFT-based algorithm in [Ban10]. For the boundary integral operators we rely on the
BEM++ software library [Śmi+15].

A scalar example

We start by a simple example, which allows us to efficiently compute the approximation.
We follow the ideas by [SV14] and consider the case of scattering by a spatially homogeneous
incident wave by the unit sphere. Since the constant functions are eigenfunctions of the
boundary operators, we can replace them by multiplication with the eigenvalue and the
resulting scattered wave is also constant in space. This means that we can reduce the 3D
problem to the scalar case. Since an explicit expression for the exact solution is not known,
we compute the numerical approximation to a high degree of accuracy and compare it to
the previous approximations, i.e., the reference solution was computed with at least twice
the number of timesteps compared to the approximate solutions.

Example 5.39. Let g(µ) := 1
4µ+ |µ|µ and consider the incident wave

uinc(x, t) := cos(2πt)e−(t−t0)/α,

where we set t0 := π/2, α = 1/5. In Figure 5.1, we see that the exact solution is not
smooth. The first derivative has several kinks and the second derivative has singularities.
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5 CQ for the wave equation with nonlinear impedance boundary condition

Nevertheless, the convergence graphs of Figure 5.2 show that the numerical method gives
optimal convergence rates, not only in the integrated norm but also for ψ itself.
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Figure 5.1: Exact solution to Example 5.39
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Figure 5.2: Convergence rates for Example 5.39

Scattering from a non-convex domain

In order to test our method on a more realistic problem, we consider the scattering from a
three-dimensional non-convex domain, as was also used in [Ban10].

Example 5.40. We chose g(µ) := µ
4 + |µ|µ, and uinc(x, t) := φ(p ·x−t) with p := (1, 0, 0)T

and

φ(t) := cos(ωt)e−
(t−t0)2

σ2 .

We chose t0 := 3, σ := 0.5 and ω := 4π, computing up to an end-time T = 10. We applied
a BDF2 method for the Convolution Quadrature and chose a fixed mesh consisting of 4074
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5.5 Numerical results

Figure 5.3: Geometry for Example 5.40

vertices and 8688 triangles. We used lowest order BEM spaces and computed the difference
to the reference solution, which was computed by using 1024 timesteps.

In Figure 5.4 we see that in this case the method does not provide us with the optimal
convergence rate, but instead the rate appears to be reduced to linear convergence.

Since it is difficult do determine the asymptotic behavior for the full 3D problem, we
return to the case of scattering from a sphere. In order to capture the difficulty of the non-
convex domain, we consider the case of a “completely trapping sphere”, i.e., we assume
that the wave starts inside the sphere and has no way to escape. Mathematically, this
means we solve the boundary integral equations(

∂kt V (∂kt ) −K(∂kt )− 1
2

1
2 +KT (∂kt ) (∂kt )−1W (∂kt )

)(
ϕ
ψ

)
+

(
0

g
(
ψ + u̇inc

)) =

(
0
0

)
.

We use a similar model problem to Example 5.40, namely g(µ) := µ
4 +|µ|µ and an incoming

wave of the form uinc(x, t) := φ(t), with the same parameters t0 := 3, σ = 0.5 and ω = 4π.
Figure 5.5 shows that the BDF2 method no longer offers the full convergence rate of O(k2).

113



5 CQ for the wave equation with nonlinear impedance boundary condition
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Figure 5.4: Convergence for Example 5.40
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Figure 5.5: Convergence rates for the scattering by the completely trapping sphere
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6 Scattering by composite media

In this chapter, we look at a scattering problem, where the scatterer is not made up of a
homogeneous material, but instead consists of layers of materials with different wave prop-
agation speeds. Mathematically, this means we deal with the wave equation with piecewise
constant coefficients. One way to handle these difficulties would be to use a coupling of
Finite Element and Boundary Element Methods, similar to what we did in Chapter 4
when discussing the Schrödinger equation. This approach was for example taken in [HS16].
An alternative view, which will be the approach taken in this chapter, is to do a pure
Boundary Element formulation of the problem. This is achieved by considering separate
scattering problems on subdomains, where the coefficient functions are constant and en-
forcing continuity conditions across subdomain boundaries. In the setting of time harmonic
scattering, this formulation was pioneered in [CS85] for the case of two subdomains and in
more generality in [Pet89]. There is a multitude of possible formulations for the boundary
integral equations, based on both a single- and multitrace formulation and boundary inte-
gral equations of the first and second kind, see, e.g., [Cla11; CH13; HJ12]. We restrict our
considerations to a singletrace approach of first kind.

In the case of time-domain scattering, the case of two domains and of “nested domains”,
in which domains are layered within each other, not allowing multiple domains to touch in
a single point was investigated in [QS16] and [Qiu16] respectively. Our work generalizes
these results in a unified framework by working in abstract spaces, which reduces to the
specific constructions of the Costabel-Stephan system in the two domain case. The results
of this chapter are part of a joint work with Francisco-Javier Sayas. This chapter also
serves as a showcase for the power of the results on general Runge-Kutta approximation of
semigroups as presented in Section 3.4.

6.1 Model problem

The scattering problem we are interested in is given by Lipschitz domains Ω1, . . . ,ΩL for
L ∈ N, where we assume that the domains are pairwise disjoint and bounded. We define
the exterior and the skeleton as

Ω0 := Rd \
L⋃
`=0

Ω` and Γ :=

L⋃
`=1

∂Ω`.

The material properties of the scatterer, determined by the functions κ, c: Rd → R, are
assumed to be piecewise constant and positive, i.e., we write

κ|Ω` ≡ κ` > 0 and c|Ω` ≡ c` > 0, ` = 0, . . . , L,

for coefficients κ`, c` ∈ R.
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6 Scattering by composite media

Ω1 Ω2 Ω3

uinc

uscatt uscatt

Figure 6.1: Example of geometric situation

We are interested in solutions of the wave equation utot ∈ C2
(
R+, H

1
loc(Rd)

)
satisfying:

c−2ütot(t) = div
(
κ∇utot(t)

)
, (6.1a)

utot(t) = uinc(t) for t ≤ 0, (6.1b)

where uinc is a given initial condition. Just like in Chapter 5, we make the additional
assumption that uinc is an incoming wave, as formalized in the next assumption.

Assumption 6.1. The incident wave uinc satisfies:

(i) uinc solves the wave equation in the exterior:

c−2
0 ü = κ0∆u in Ω0, (6.2)

(ii) suppuinc(t) ⊆ Ω0 for t ≤ 0.

For notational convenience, we define uinc(x, t) := 0 for x ∈ Rd \ Ω0. Just like in
Chapter 5, we make the decompositional ansatz utot = u+uinc. In order to get a convenient
formulation for the continuity conditions across interfaces, let B ⊆ Rd be a sufficiently large
ball containing the skeleton, i.e., assume that Ω` ⊂ B for all ` = 1, . . . , L. This gives us
the model problem: find u ∈ C2

(
R, H1

(
Rd \ Γ

))
, such that:

ü(t) = div(κ∇u(t)) in Rd \ Γ, (6.3a)

u(t)− uinc(t) ∈ H1(B), (6.3b)

κ∇
(
u(t)− uinc(t)

)
∈ H (div, B) , (6.3c)

and initial condition u(t) = u̇(t) = 0 for t ≤ 0. We are now interested in deriving a
boundary integral based discretization scheme for (6.3).

6.2 A multiply overlapped wave problem

In this section, we reformulate (6.3) in a way that makes it more easily treatable by bound-
ary integral methods. We will do this by splitting the equation (6.3) into subproblems on
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6.2 A multiply overlapped wave problem

the domains Ω` and imposing the jump conditions in a clever way. This means we will end
up with L+1 fields u0, . . . uL with u` ≈ u|Ω` . In order to derive this formulation we need to
introduce some additional notation, which mainly extends the definitions of Section 2.3.2
to the multi-domain case. For ` = 0, . . . , L, we define the traces, jumps and means

γint
` , γext

` , Jγ` ·K, {{γ` ·}} : H1
(
Rd \ ∂Ω`

)
→ H1/2(∂Ω`),

where the interior and exterior traces are self-explanatory (note that for the boundary
of unbounded domain Ω0, the interior trace is taken from Ω0, i.e., it corresponds to the
external trace of the scatterer) and

Jγ`uK := γext
` u− γint

` u, {{γ`u}} := 1
2(γint

` u+ γext
` u).

Similarly, we introduce the normal traces

γint
ν,` , γ

ext
ν,` , Jγν,` ·K, {{γν,` ·}} : H

(
div,Rd \ ∂Ω`

)
→ H−1/2(∂Ω`),

where we note that the normal is always taken to point out of the domain; most notably
for Ω0 it points into the scatterer.

The fields we consider live in a certain class of product spaces. We define:

Hdiv :=

L∏
`=0

H
(

div,Rd \ ∂Ω`

)
, H1 :=

L∏
`=0

H1
(
Rd \ ∂Ω`

)
, (6.4)

H−1/2 :=
L∏
`=0

H−1/2 (∂Ω`), H1/2 :=
L∏
`=0

H1/2 (∂Ω`), (6.5)

all endowed with the corresponding product norms. On these spaces, we define the diagonal
trace operators

γint,γext, Jγ ·K, {{γ ·}} : H1 → H1/2,

γint
ν ,γext

ν , Jγν ·K, {{γν ·}} : Hdiv → H−1/2.

We make the convention that 〈·, ·〉Γ denotes the extension of the L2 product toH−1/2×H1/2,
while 〈·, ·〉` denotes the same on H−1/2 (∂Ω`)×H1/2 (∂Ω`). Since we will often be working
with pairs of functions on the boundary, we define the product norm on H−1/2 ×H1/2 by
|||(λ,ψ)|||2Γ := ‖λ‖2H−1/2 + ‖ψ‖2H1/2 .

In order to enforce continuity between the different components across the interfaces
∂Ω` ∩ ∂Ωk, we follow ideas by [Pet89] (but use the notation by [CH13]) and introduce the
single-trace spaces:

Y :=
{

(γint
` u)L`=0 : u ∈ H1(Rd)

}
=
{
ψ ∈ H1/2 : ∃u ∈ H1(Rd) : ψ = γintu

}
(6.6a)

X :=
{

(γint
ν,`v)L`=0 : v ∈ H

(
div,Rd

)}
=
{
λ ∈ H−1/2 : ∃v ∈ H

(
div,Rd

)
: λ = γint

ν v
}
. (6.6b)
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6 Scattering by composite media

(Note: we have committed a slight abuse of notation by applying the diagonal trace op-
erators to a single function, this is to be understood as the function copied L + 1 times.)
Since the trace operators are bounded, it is easy to see that X and Y are closed subspaces
of H−1/2 and H1/2 respectively.

In order to derive a discretization scheme with respect to the space variable, we consider
closed subspaces Xh ⊆ X and Yh ⊆ Y. We will later present possible ways to construct
such spaces in Section 6.3.1. The annihilator spaces take the following form

X ◦h =
{
ψ ∈ H1/2 : 〈µ,ψ〉Γ = 0 ∀µ ∈ Xh

}
,

Y◦h =
{
λ ∈ H−1/2 : 〈λ,χ〉Γ = 0 ∀χ ∈ Yh

}
.

(Note that we are using the annihilators with respect to the full spaces H±1/2 instead of
the single trace spaces X and Y). In the case that Xh = X and Yh = Y, it can be shown
(see [Cla11, Proposition 2.1]) that X ◦ = Y and Y◦ = X , most notably, we have

〈λ,ψ〉Γ = 0 for λ ∈ X and ψ ∈ Y. (6.7)

When working with the spaces, we often need to change our point of view from the
“global field satisfying jump conditions” to the “family of fields on each subdomain”. This
is formalized in the next lemma:

Lemma 6.2 (Restricting and gluing). Let U = (u`)
L
`=0 ∈ H1 satisfy JγUK ∈ Y and

γextU ∈ Y. Then u : Rd → R, defined by u|Ω` := u`|Ω` is in H1(Rd). Similarly, for
V = (v`)

L
`=0 ∈ Hdiv satisfying JγνV K ∈ X and γext

ν V ∈ X , the function v : Rd → Rd
defined as v|Ω` := v`|Ω` is in H

(
div,Rd

)
.

Proof. The conditions imply γintU ∈ Y and γint
ν V ∈ X . The statements then follow from

the definition of X , Y as they enforce that the traces of the functions defined domain-wise
match up.

Using these preparatory results, we can now present a new formulation of the model
problem as a multiply overlapped transmission problem, which will be more amendable
to discretization via boundary integral methods and the analysis thereof. (Note that the
choice of transmission conditions is motivated by the Galerkin discretization of the under-
lying boundary integral equations. The reasons for these particular conditions will become
apparent in Section 6.3.)

Problem 6.3. Given boundary data β0 : [0,∞) → H1/2 and β1 : [0,∞) → H−1/2, find
Uh =: (uh` )L`=0 : [0,∞)→ H1 and V h =: (vh` )L`=0 : [0,∞)→ Hdiv such that:

(i) the individual fields satisfy the wave equation in its first order form:

u̇h` = c2
` div(vh` ), v̇h` = κ`∇uh` in Rd \ ∂Ω` for ` = 0, . . . , L, (6.8a)

(ii) the following trace relations hold for t ≥ 0:

JγUhK(t) + β0(t) ∈ Yh, JγνV hK(t) + β1(t) ∈ Xh, (6.8b)

γextUh(t) ∈ X ◦h , γext
ν V h(t) ∈ Y◦h, (6.8c)
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6.3 Time domain boundary integral equations

(iii) the functions satisfy homogeneous initial conditions:

Uh(0) = 0 V h(0) = 0. (6.8d)

The relationship between (6.8) and (6.3) is laid out in the next lemma. As a short remark
on notation, we write 1Ω` for the characteristic function of the set Ω` and ∂−1

t u :=
∫ t

0 u(τ) dτ
for the integral of a function u.

Lemma 6.4. Let β0 :=
(
γint

0 uinc, 0, . . . , 0
)

and β1 :=
(
κ0γ

int
ν,0∇∂

−1
t uinc, 0, . . . , 0

)
, and take

Xh = X and Yh = Y. Then the following equivalence holds:

(i) If (Uh,V h) solves Problem 6.3, then u : [0,∞) → H1(Rd \ Γ) defined as u(t)|Ω` :=
uh` (t)|Ω` solves (6.3).

(ii) If u solves (6.3), then the fields Uh, V h, defined via

uh` := u`1Ω` and vh` := ∂−1
t ∇uh` ,

solve Problem 6.3.

Proof. Follows by inspection and Lemma 6.2.

6.3 Time domain boundary integral equations

In this section, we relate Problem 6.3 to an equivalent system of boundary integral equa-
tions, which is better suited for practical computations. We will then discretize these using
a Runge-Kutta convolution quadrature approach. The boundary integral equations also
motivate the choice of transmission conditions for (6.8b) and (6.8c).

In order to adapt the results from Section 2.5, we need to introduce some further notation.
For ` = 0, . . . , L, we define the potentials S`(s) and D` as the single- and double layer
potentials corresponding to the subdomain Ω` in the following modified form:

(S`(s)λ) (x) :=

∫
∂Ω`

Φ(x− y; s/m`)λ(y) dσ(y),

(D`(s)φ) (x) :=

∫
∂Ω`

∂ν(y)Φ(x− y; s/m`)φ(y) dσ(y),

where m` := c`
√
κ` is the effective wave speed on the subdomain. Using the operator

calculus, these operators induce time-domain counterparts S`(∂t) and D`(∂t). We collect
the operators on the subdomains into the diagonal operators

S(∂t)λ = S(∂t)(λ`)
L
`=0 := (S`(∂t)λ`)

L
`=0,

D(∂t)φ = D(∂t)(φ`)
L
`=0 := (D`(∂t)φ`)

L
`=0,

and collect those operators again into the Green representation operator

G(∂t) := [−S(∂t), D(∂t)] .
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6 Scattering by composite media

Just like we did for trace and normal trace, we introduce the vector version of the normal
derivative ∂ν and the corresponding interior and exterior traces, jumps and means.

We introduce the spaces

L2 :=
L∏
`=0

[
L2(Rd)

]
, L2 :=

L∏
`=0

[
L2(Rd)

]d
.

It is convenient to introduce the component-wise differentiation operators ∇ : H1 → L2

and div : Hdiv → L2, which are defined in the natural way. We also introduce the diagonal
scaling operators T c2 : L2 → L2 and T κ : L2 → L2 defined by

T c2 (u`)
L
`=0 :=

(
c2
`u`
)L
`=0

and T κ (v`)
L
`=0 := (κ`v`)

L
`=0 .

We will now derive a system of continuous in time boundary integral equations. We pro-
ceed in a mostly formal way, as we do not need the equivalence principle on the continuous
level. The equivalence can be made rigorous using the theory of Laplace transformable
causal distributions, as is presented in [Say16]. We will instead prove the rigorous equiva-
lence in the time-discrete setting later on in Section 6.5.

Solutions to the wave equation, given by

U̇ = T c2 div(V ), and V̇ = T κ∇U,

can be written using Kirchhoffs formula (3.12) as

U = −S(∂t)J∂νUK + D(∂t)JγUK = −S(∂t)JγνT−1
κ V̇ K + D(∂t)JγUK

= G(∂t)Q
−1
κ

(
JγνV̇ K, JγUK

)T
,

with the diagonal scaling operator Qκ(λ,φ)T := (T κλ,φ)T . We define the Calderón oper-
ator as

C(∂t) :=

[
{{∂ν ·}}
{{γ ·}}

]
G(∂t) =

[
KT (∂t) W(∂t)
V(∂t) −K(∂t)

]
,

(the operators KT (∂t) etc. are to be understood as the diagonal operators on each sub-
domain and using the modified wave number with the additional factor m−1

` ). From this
definition and the jump conditions of G, we immediately get[

∂ext
ν

γext

]
G(∂t) = C(∂t)−

1

2
Id . (6.9)

We collect the right hand sides into the vector Θ := (β̇
1
,β0)T , and write for the boundary

traces Λh := (λh,ψh)T =
(
JγνV̇ K + β̇

1
, JγUK + β0

)
.

Writing Uh = G(∂t)Q
−1
κ

(
JγνV̇ K, JγUK

)T
, and taking the exterior normal derivative then

immediately gives the following boundary integral equations if the jump relations (6.8b)
and (6.8c) hold:

Qκ

(
C(∂t)−

1

2
Id

)
Q−1
κ

(
Λh −Θ

)
∈ Y◦h ×X ◦h .
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6.3 Time domain boundary integral equations

Since Xh × Yh ⊆ Y◦h × X ◦h (see (6.7)), the statement still holds if we drop the factor 1
2Λh.

On the other hand, one can prove using a similar approach that the following equivalence
holds:

(i) If Λh : R→ Xh × Yh solves〈
QκC(∂t)Q

−1
κ Λh,η

〉
Γ

=

〈
Qκ

(
C(∂t)−

1

2
Id

)
Q−1
κ Θ,η

〉
Γ

(6.10)

for all η ∈ Xh × Yh, and Λh(t) = (0, 0)T for t ≤ 0, then

Uh := G(∂t)Q
−1
κ

(
Λh −Θ

)
and V h := T κ∇∂−1

t Uh

solve Problem 6.3.

(ii) If (Uh,V h) solves Problem 6.3, then Λh :=
(
JγνV̇ K + β̇

1
, JγUhK + β0

)
solves (6.10).

This shows that the transmission conditions in Problem 6.3 correspond to a conforming
Galerkin discretization using the spaces Xh and Yh of the equivalent boundary integral
equations. By using the formalism of convolution quadrature, we can immediately formu-
late the fully discrete boundary integral problem:

Problem 6.5 (Fully discrete formulation 1). Given Θ := (β̇
1
,β0)T with Θ(t) = (0, 0)T

for t ≤ 0, find Λh,k : R→ [Xh × Yh]m, such that Λh,k = (0, 0)T for t ≤ 0 and〈
QκC(∂kt )Q−1

κ Λh,k,η
〉

Γ
=

〈
Qκ

(
C(∂kt )− 1

2
Id

)
Q−1
κ Θ,η

〉
Γ

∀η ∈ [Yh ×Xh]m , (6.11)

where equality is understood as a function in t. The approximation of the traces at time t
is again given by λh,k(t) := G

[
λh,k

]
and ψh,k(t) := G

[
ψh,k

]
.

The analysis of an equivalent problem will reveal that it is advantageous to consider the
following fully discrete problem:

Problem 6.6 (Fully discrete formulation 2). Given Σ := (β̇
1
, β̇

0
)T with Σ(t) = (0, 0)T

for t ≤ 0, find Λh,k : R→ [Xh × Yh]m, such that Λh,k(t) = (0, 0)T for t ≤ 0 and〈
QκC(∂kt )Q−1

κ Λh,k,η
〉

Γ
=

〈
Qκ

(
C(∂kt )− 1

2
Id

)
Q−1
κ I(∂kt )Σ,η

〉
Γ

∀η ∈ [Yh ×Xh]m ,

(6.12)

where equality is understood as a function in t and I(s) := diag(1, s−1) denotes the discrete
integral in the second argument. The approximation of the traces at time t is then given by
λh,k(t) := G

[
λh,k

]
and ψh,k(t) := G

[
ψh,k

]
.

Theorem 6.7. Problems 6.5 and 6.6 are well posed, i.e., they have a unique solution.
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6 Scattering by composite media

Proof. We show the theorem for Problem 6.5. Since the left-hand sides are the same the
statement for Problem 6.6 follows. By induction on n, the existence and uniqueness of
solutions can be reduced to the question if〈

QκC

(
δ(0)

k

)
Q−1
κ x,η

〉
Γ

= 〈F,η〉Γ , ∀η ∈ [Yh ×Xh]m

can be solved for all right-hand sides F ∈ [X ′h × Y ′h]m (see the proof of Lemma 5.10). We
note that the bilinear form induced by the operator QκC(s)Q−1

κ is coercive on the product
space H−1/2×H1/2 for Re(s) > 0. This can be seen since on each subdomain the operators
are coercive by [BLS15b, Lemma 3.1](cf. Lemma 5.8, the diagonal scaling by s and s−1/2

does not impact the coercivity). Since (6.10) is just a restriction of this bilinear form, it is
also coercive on Xh×Yh. This means the scalar version of (6.11) has a unique solution for
Re(s) > 0. Let B(s) : Xh×Yh → Xh×Yh denote the operator induced by this bilinear form.
Then B−1(s) exists and is bounded for Re(s) > 0 by the previous considerations. Since

Re(δ(0)) > 0, we therefore get that B−1
(
δ(0)
k

)
is well defined using the Riesz-Dunford

calculus and is the inverse of B
(
δ(0)
k

)
due to the homomorphism property.

6.3.1 One possible construction for Xh and Yh
In this section, we present one possible way to construct spaces Xh and Yh, such that the
resulting spaces have good approximation properties, and they can be easily implemented
using existing boundary element technology. We assume that all domains Ω` are Lips-
chitz polyhedra. We separate Γ into a finite collection of (relatively) open, flat surfaces
Γ1, . . . ,ΓM such that for all ` ∈ {0, . . . , L} there exists an index set I(`) ⊆ {1, . . . ,M},
such that

∂Ω` =
⋃

i∈I(`)

Γi.

Let T Γ
h denote a regular and shape-regular triangulation of Γ (see Section 2.4) which

respects this subdivision, i.e., for all K ∈ T Γ
h , either K ⊆ Γi or K ∩ Γi = ∅. This can be

constructed by generating a volume mesh Th of Ω1 ∪ · · · ∪ ΩK , such that no tetrahedral
element intersects Γ, and then setting T Γ

h := Th|Γ for the restriction.
On T Γ

h we use the usual spaces of piecewise polynomials Sr,0(T Γ
h ) and Sr+1,1(T Γ

h ) as
defined in Definition 2.33. In order to define a conforming subspace of Y, we define:

Yh :=
{

(ψh|∂Ω`)
L
`=0 : ψh ∈ Sr+1,1(T Γ

h )
}
. (6.13)

It is easy to prove that Yh and Sr+1,1(T Γ
h ) are isomorphic and the corresponding map can

easily be implemented in practice by exploiting the association of basis functions to the
geometric quantities of the mesh.

In order to define Xh, we need to deal with the orientation of the boundaries. For that
purpose we introduce a sign function. For ` ∈ {0, . . . , L}, we define a function s` : Γ →
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6.3 Time domain boundary integral equations

{−1, 0, 1}, which is constant on each face Γi, such that s` := 0 outside of ∂Ω` and |s`| ≡ 1
on ∂Ω`. We assume that common faces have opposite signs, i.e.,

s` + sk ≡ 0 on Γi for all i ∈ I(`) ∩ I(k).

Such a function can be constructed by assigning a normal vector to each face Γi, and then
write s`|Γi := 1 if the normal vector on ∂Ω` matches the chosen one on Γi and s`|Γi := −1
otherwise. This allows us to define the conforming space Xh ⊆ X by

Xh :=
{

(s`λh|∂Ω`)
L
`=0 : λh ∈ Sr,0(T Γ

h )
}
. (6.14)

Proposition 6.8. For r ∈ N0, the spaces Xh and Yh have the following approximation
property:

inf
λh∈Xh

∥∥∥λ− λh∥∥∥
H−1/2

≤ Chr+3/2
L∑
`=0

‖λ`‖Hr+1
pw (∂Ω`)

, (6.15a)

inf
ψh∈Yh

∥∥∥ψ −ψh∥∥∥
H1/2

≤ Chr+3/2
L∑
`=0

‖ψ`‖Hr+2
pw (∂Ω`)

(6.15b)

for all λ := (λ`)
L
`=0 ∈ X with λ` ∈ Hr+1

pw (∂Ω`) and all ψ := (ψ`)
L
`=0 ∈ Y with ψ` ∈

Hr+2
pw (∂Ω`) and with the additional restriction that the lifting u ∈ H1(Rd) from (6.6a) is

continuous on Γ.

Proof. We start with the estimate for λ. For each i ∈ {0, . . . ,M}, we pick a subdomain Ω`i ,
such that i ∈ I (`i), and set λh|Γi := s`iΠiλ`|Γi , where Πiλ` ∈ Sm,0(T Γ

h ) is the orthogonal
projection with respect to the L2-product on Γi. Since Sm,0(T Γ

h ) is only required to be

L2-conforming, this defines a function in Xh via λh := (λh` ) :=
(
s`λ

h|∂Ω`

)L
`=0

. We calculate
for ` ∈ 0, . . . , L:

∥∥∥λ` − λh` ∥∥∥2

L2(∂Ω`)
=
∑
i∈I(`)

∥∥∥λ` − s`λh∥∥∥2

L2(Γi)
=

M∑
i=1

‖s`is`λ` − s`λh‖
2
L2(Γi)

,

where in the last step we used that for λ ∈ H−1/2, the components of two subdomains
sharing a face Γi differ only by a sign, and s` = 0 if the components do not share a face.
By definition of λh we can therefore estimate

∥∥∥λ` − λh` ∥∥∥
L2(∂Ω`)

.
M∑
i=1

‖λ`i −Πiλ`i‖L2(Γi)
. hr+1

M∑
i=1

‖λ`i‖Hr+1(Γi)

. hr+1
L∑
`=0

‖λ`‖Hr+1
pw (∂Ω`)

,

where we used the approximation property of Proposition 2.35.
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6 Scattering by composite media

To get an estimate in the H−1/2-norm, we calculate for ` ∈ {0, . . . , L}, using the fact
that λ` − λh` is orthogonal to the piecewise polynomials on each face:

∥∥∥λ` − λh` ∥∥∥
H−1/2(∂Ω`)

= sup
06=χ∈H1/2(∂Ω`)

〈
λ` − λh` , χ

〉
∂Ω`

‖χ‖H1/2(∂Ω`)

= sup
06=χ∈H1/2(∂Ω`)

∑
i∈I(`)

〈
λ` − λh` , χ

〉
Γi

‖χ‖H1/2(∂Ω`)

= sup
06=χ∈H1/2(∂Ω`)

∑
i∈I(`)

〈
λ` − λh` , χ−Πiχ

〉
Γi

‖χ‖H1/2(∂Ω`)

.
√
h sup

06=χ∈H1/2(∂Ω`)

∑
i∈I(`)

∥∥λ` − λh` ∥∥L2(Γi)
‖χ‖H1/2(Γi)

‖χ‖H1/2(∂Ω`)

.
√
h
∥∥∥λ` − λh` ∥∥∥

L2(∂Ω`)
.

For estimating ψ, we note that our assumptions on the lifting u implies that the functions
ψ` are continuous on ∂Ω`, most notably at the boundary of the facets. Therefore, we may
employ a nodal interpolation operator I` : C(∂Ω`)→ Sp+1,1(T Γ

h |∂Ω`) (where T Γ
h |∂Ω` denotes

the restriction of the triangulation to the subdomain ∂Ω`). It is well known that

‖ψ` − I`ψ`‖H1/2(∂Ω`)
. hr+3/2 ‖ψ`‖Hr+2

pw (∂Ω`)
,

see [SS11, Theorem 4.3.22].
Since the functions ψ`, ψk are assumed to be traces of a continuous function u, they must

coincide on ∂Ω` ∩ ∂Ωk. This means that the interpolated functions I`ψ` also coincide on
∂Ω` ∩ ∂Ωk or (I`ψ`)

L
`=0 ∈ Xh.

6.4 Analysis of the transmission problem - the semigroup setting

Now that we have derived the model problem and a suitable discretization scheme, we
would like to analyze its properties. In order to do so, we fit the problem into the abstract
semigroup framework from Section 2.2. We start with the case of continuous time.

While the spaces H1, Hdiv are a natural setting to formulate problem 6.3, they are not
the right spaces if one wants to use semigroup theory. Just like in the previous chapters, it is
advantageous to adopt an L2-based view. The spaces most convenient to recast Problem 6.3
into the semigroup framework, as introduced in Proposition 2.11, are defined as follows:

H := L2 ×L2 and V := H1 ×Hdiv,

where V is equipped with the usual norm, and for H we use the norm:

(U,V ) =
(
(u`)

L
`=0, (v`)

L
`=0

)
7−→ ‖(U,V )‖2H :=

L∑
`=0

c−2
` ‖u`‖

2
L2(Rd) +

L∑
`=0

κ−1
` ‖v`‖

2
L2(Rd) ,

and the corresponding inner product. In order to enforce the boundary conditions of (6.8b)
and (6.8c), we introduce the space M := (Y◦h)′ × (X ◦h )′ × X ′h × Y ′h, where Y◦h and Xh are
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6.4 Analysis of the transmission problem - the semigroup setting

equipped with the H−1/2-norm, X ◦h and Yh with the H1/2-norm and M carries the product-
dual norm of these spaces.

We define the operators A? : V→ H and B : V→M by

A?

(
U
V

)
:=

(
Tc2 div(V )
Tκ∇U

)
and B

(
U
V

)
:=


JγUK|Y◦h

JγνV K|X ◦h
γextU |Xh
γext
ν V |Yh

 .

Here, the restrictions are using the same notational convention as [Has+15]. Namely we
regard the traces as functionals via the Riesz-map and restrict the functionals. This means
we define: 〈

JγUK|Y◦h ,µ
〉

(Y◦h)′×(Y◦h)
:= 〈µ, JγUK〉Γ ∀µ ∈ Y◦h,〈

JγνV K|X ◦h ,χ
〉

(X ◦h )′×(X ◦h )
:= 〈JγνV K,χ〉Γ ∀χ ∈ X ◦h ,〈

γextU |Xh ,µ
〉
X ′h×Xh

:=
〈
µ,γextU

〉
Γ

∀µ ∈ Xh,〈
γext
ν V |Yh ,χ

〉
Y ′h×Yh

:=
〈
γext
ν V ,χ

〉
Γ
. ∀χ ∈ Yh.

Using this notation, we can recast Problem 6.3 in the following form.

Problem 6.9. Given Ξ(t) : [0,∞)→M, defined by

Ξ(t) := −
(
β0(t)|Y◦h ,β

1(t)|X ◦h , 0, 0
)
,

find Xh := (Uh,V h) : [0,∞)→ V satisfying

Ẋ
h
(t) = A?X

h(t) and BXh(t) = Ξ(t) ∀t ≥ 0 with Xh(0)= 0.

We remark that ‖Ξ(t)‖M .
∥∥β0(t)

∥∥
H1/2 +

∥∥β1(t)
∥∥
H−1/2 . This problem fits the abstract

framework of Proposition 2.11, we just have to check some conditions. This will be content
of the next section.

6.4.1 Checking the semigroup requirements

In order to apply the abstract semigroup theory, we need to check some conditions. We
start by characterizing the kernel of B.

Lemma 6.10. (U,V ) ∈ ker(B) is equivalent to the four conditions

JγUK ∈ Yh, JγνV K ∈ Xh, (6.16a)

γextU ∈ X ◦h , γext
ν V ∈ Y◦h. (6.16b)

Proof. If JγUK ∈ Yh, then the functional ξ 7→ 〈ξ, JγUK〉Γ vanishes for ξ ∈ Y◦h by definition
of the annihilator, thus JγUK|Y◦h = 0. An analogous consideration shows that the conditions
in (6.16) imply (U,V ) ∈ ker(B). On the other hand, if (U,V ) ∈ ker(B), we get for the
first component 0 = 〈ξ, JγUK〉Γ for all ξ ∈ Y◦h or JγUK ∈ (Y◦h)◦ = Yh, since we assumed Yh
to be closed.
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6 Scattering by composite media

Lemma 6.10 also establishes that Problem 6.9 is indeed equivalent to Problem 6.3.

Lemma 6.11. A? is dissipative on the kernel of B, i.e.,

〈A?X,X〉H = 0 ∀X ∈ ker(B).

Proof. We write X =: (U,V ) with U =: (u`)
L
`=0 and V =: (v`)

L
`=0 for the different fields.

Integration by parts then gives:

〈A?X,X〉H =

L∑
`=0

c−2
`

〈
c2
` div v`, u`

〉
L2(Rd)

+

L∑
`=0

κ−1
` 〈κ`∇u`,v`〉[L2(Rd)]d

=
L∑
`=0

〈
γint
ν,`v`, γ

int
` u`

〉
`
−
〈
γext
ν,` v`, γ

ext
` u`

〉
`

=
〈
JγνV K,γintU

〉
Γ

+
〈
γext
ν V , JγUK

〉
Γ
. (6.17)

By Lemma 6.10, the second term vanishes by definition of the polar sets.
To see that the first term also vanishes, we write γintU = γextU − JγUK. Since Yh ⊆
Y ⊆ X ◦ ⊆ X ◦h by (6.7), we get JγUK ∈ X ◦h . γextU ∈ X ◦h was already established in (6.16).
Since JγνV K ∈ Xh, the corresponding term in (6.17) also vanishes.

Lemma 6.12. For all (F,G) ∈ H and Ξ ∈M, there exists a unique (U,V ) ∈ V solving

(U,V ) = A?(U,V ) + (F,G) and B(U,V ) = Ξ.

There exists a constant C > 0 depending only on the geometry and the physical parameters
κ, c, such that

‖(U,V )‖V ≤ C
(
‖(F,G)‖H + ‖Ξ‖M

)
.

In the special case (F,G) = (0, 0), we write EB[Ξ] for the solution to U = A?U and
BU = Ξ.

Proof. We write F = (f`)
L
`=0, G = (g`)

L
`=0 and

Ξ = (ξ1, ξ2, ξ3, ξ4) ∈ (Y◦h)′ × (X ◦h )′ ×X ′h × Y ′h.

We rewrite the equation as a second order elliptic system. To that end, we define

a(U,W ) :=
L∑
`=0

c−2
` (u`, w`)L2(Rd) +

L∑
`=0

κ`(∇u`,∇w`)[L2(Rd\∂Ω`)]
d ,

b(W ) :=

L∑
`=0

c−2
` (f`, w`)L2(Rd) −

L∑
`=0

(g`,∇w`)L2(Rd\∂Ω`)

+ 〈ξ2,γ
intW 〉(X ◦h )′×X ◦h + 〈ξ4, JγW K〉Y ′h×Yh ,
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6.4 Analysis of the transmission problem - the semigroup setting

using the space

W := {W ∈ H1 : JγW K ∈ Yh,γextW ∈ X ◦h} = {W ∈ H1 : (W, 0) ∈ kerB}.

We now look for U ∈ H1 satisfying

a(U,W ) = b(W ) ∀W ∈ W, (6.18a)

JγUK|Y◦h = ξ1, γextU |Xh = ξ3. (6.18b)

The bilinear form a can be checked easily to be bounded and coercive with respect to the
H1 norm, with constants depending only on the physical coefficients. The linear form b is
bounded by

‖b‖W ′ ≤ C (‖(F,G)‖H + ‖Ξ‖M) .

In order to show that the inhomogeneous problem (6.18) has a solution, we need to show
that the trace conditions have a bounded right-inverse. The general solution is then con-
structed by lifting the boundary data and solving a modified homogeneous problem via
Lax-Milgram.

The map
H1 3 U 7−→ (JγUK,γextU) ∈ H1/2 ×H1/2

admits a bounded right-inverse by using the lifting operators from Proposition 2.26. The
restriction map

H1/2 ×H1/2 = (H−1/2)′ × (H−1/2)′ → (Y◦h)′ ×X ′h
admits a norm-preserving right-inverse via Hahn-Banach’s theorem [Rud91, Theorem 3.3].
This shows that the linear map that imposes the essential transmission conditions in (6.18b)
admits a bounded right-inverse with bound independent of the choice of Xh and Yh. Overall,
this shows that (6.18) has a unique solution. Define V := T κ∇U+G. It is then straightfor-
ward to prove by using smooth test functions which on the skeleton, that T c2 divV +F = U
(in particular V ∈ Hdiv). Integration by parts then gives for arbitrary W ∈ W:〈
JγνV K,γintW

〉
Γ

+
〈
γext
ν V , JγW K

〉
Γ

=
〈
ξ2,γ

intW
〉

(X ◦h )′×X ◦h
+ 〈ξ4, JγW K〉Y ′h×Yh ∀W ∈ W.

Using the fact that the mapW 3W 7−→ (γintW, JγW K) ∈ X ◦h×Yh is surjective, the missing
two conditions to obtain B(U,V ) = Ξ are proved. The rest of the proof is straightforward.

The following lemma allows us to conveniently infer results about −A? from their coun-
terpart about A?:

Lemma 6.13. The sign flipping operator Φ : H → H, (U,V ) 7→ (U,−V ) is an isometric
involution that leaves ker(B) invariant and satisfies ΦA? = −A?Φ.

Proof. Follows directly from the definitions.
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6 Scattering by composite media

Theorem 6.14. Problem 6.9 is well-posed, the operator A := A?|kerB generates a unitary

C0-group. For (β0,β1) ∈ C2
(
[0,∞),H1/2 ×H−1/2

)
with β0(0) = β̇

0
(0) = 0 as well as

β1(0) = β̇
1
(0) = 0, the solution satisfies:∥∥∥(Uh(t),V h(t)

)∥∥∥
H
≤ C

∫ t

0

∣∣∣∣∣∣(β1(τ),β0(τ))
∣∣∣∣∣∣

Γ
+
∣∣∣∣∣∣∣∣∣(β̇1

(τ), β̇
0
(τ))

∣∣∣∣∣∣∣∣∣
Γ
dτ,∥∥∥(U̇h(t), V̇

h
(t)
)∥∥∥
H
≤ C

∫ t

0

∣∣∣∣∣∣∣∣∣(β̇1
(τ), β̇

0
(τ))

∣∣∣∣∣∣∣∣∣
Γ

+
∣∣∣∣∣∣∣∣∣(β̈1

(τ), β̈
0
(τ))

∣∣∣∣∣∣∣∣∣
Γ
dτ.

If in addition
(
β0,β1

)
∈ C3

(
[0,∞),H1/2 ×H−1/2

)
and

(
β̈0(0), β̈1(0)

)
= (0, 0), we can

estimate:∥∥∥(U̇h(t), V̇
h
(t)
)∥∥∥
V
≤ C

∫ t

0

∣∣∣∣∣∣∣∣∣(β̇1
(τ), β̇

0
(τ))

∣∣∣∣∣∣∣∣∣
Γ

+
∣∣∣∣∣∣∣∣∣(β̈1

(τ), β̈
0
(τ))

∣∣∣∣∣∣∣∣∣
Γ
dτ

+ C

∫ t

0

∣∣∣∣∣∣∣∣∣(...β1
(τ),

...
β

0
(τ))

∣∣∣∣∣∣∣∣∣
Γ
dτ. (6.19)

Proof. By Lemma 6.11 and 6.12, the operator A is maximally dissipative. By using the
sign flip, this implies that −A is also maximally dissipative. To see that dom(A) is dense
in H, we consider the set[

C∞0 (Rd \ Γ)
]L+1

×
([
C∞0 (Rd \ Γ)

]d)L+1

⊆ dom(A),

(the boundary conditions are trivially fulfilled). Since this set is dense in H, we can apply
Stone’s theorem (Proposition 2.9), which then gives that A generates a unitary C0-group.
The lifting operator EB[Ξ] was already defined in Lemma 6.12 and is bounded with con-
stants depending only on the geometry, κ, and c. Therefore, we are in the setting of
Proposition 2.11, which gives existence, uniqueness, and the a priori bounds.

The bound of (6.19) follows by using Lemma 2.13, and using the a priori bounds for this
initial value problem.

Remark 6.15. Higher derivatives of
(
Uh,V h

)
can also be estimated by inductively using

Lemma 2.13 and Theorem 6.14.

6.4.2 Convergence of the space discretization

Now that we have done the preparatory work, we can analyze how the choice of Xh and
Yh impacts the convergence rates. We consider solutions X := (U,V ) of Problem 6.3
in the case Xh = X and Yh = Y (or equivalently the solution of (6.3)) and the solution
Xh := (Uh,V h) for general conforming subspaces Xh ⊆ X and Yh ⊆ Y. The convergence
rate is characterized in the following theorem:

Theorem 6.16. Let Ξ := −(β0|Y◦h ,β
1|X ◦h , 0, 0) ∈ C3(R+,M) be given, with Ξ(j)(0) = 0

for j ∈ {0, 1, 2}. Let X := (U,V ) denote the solution to Problem 6.3 for Xh = X and
Yh = Y, and let Xh := (Uh,V h) be the solution for general conforming subspaces Xh ⊆ X
and Yh ⊆ Y.
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6.5 Runge-Kutta discretization

Define the traces λ := γint
ν V̇ + β̇

1
, ψ := γintU + β0, and set Λ := (λ,ψ). Then the

following estimates hold, using the best approximation operator Π : X × Y → Xh × Yh:∥∥∥X(t)−Xh(t)
∥∥∥
H
≤ C

1∑
j=−1

∫ t

0

∣∣∣∣∣∣∣∣∣Λ(j)(τ)−ΠΛ(j)(τ)
∣∣∣∣∣∣∣∣∣

Γ
dτ, (6.20a)

∥∥∥X(t)−Xh(t)
∥∥∥
V
≤ C

2∑
j=−1

∫ t

0

∣∣∣∣∣∣∣∣∣Λ(j)(τ)−ΠΛ(j)(τ)
∣∣∣∣∣∣∣∣∣

Γ
dτ. (6.20b)

For the discrete boundary traces λh := γint
ν V̇

h
+ β̇

1
and ψh := γintU + β0, we get:∥∥∥ψ(t)−ψh(t)

∥∥∥
H−1/2

≤ C
2∑

j=−1

∫ t

0

∣∣∣∣∣∣∣∣∣Λ(j)(τ)−ΠΛ(j)(τ)
∣∣∣∣∣∣∣∣∣

Γ
dτ, (6.21a)

∥∥∥λ(t)− λh(t)
∥∥∥
H−1/2

≤ C
3∑
j=0

∫ t

0

∣∣∣∣∣∣∣∣∣Λ(j)(τ)−ΠΛ(j)(τ)
∣∣∣∣∣∣∣∣∣

Γ
dτ. (6.21b)

Proof. We consider the difference E := (E1,E2) := X −Xh. This function solves the
differential equation Ė = A?E, and the transmission conditions satisfied by Xh give the
following transmission conditions for E:

JγE1K(t)− JγUK(t)− β0(t) ∈ Yh, JγνE2K(t)− JγνV K(t)− β1(t) ∈ Xh,
γextE1(t) ∈ X ◦h , γext

ν E2(t) ∈ Y◦h
for all t ≥ 0. Secondly, we notice that these conditions are invariant under subtracting
discrete functions, i.e., for χh(t) ∈ Yh, µh(t) ∈ Xh, the following conditions are equivalent:

JγE1K(t)−ψ(t) + χh(t) ∈ Yh, JγνE2K(t)− ∂−1
t λ(t) + µh(t) ∈ Xh,

γextE1(t) ∈ X ◦h , γext
ν E2(t) ∈ Y◦h,

where we also inserted the definitions of ψ and λ to shorten notation. Using the best
approximation operator Π, setting (χh(t),µh(t)) := ΠΛ(t) and applying the stability esti-
mate of Theorem 6.14 gives the estimate (6.20a). To get (6.20b), we use the estimate on
Ė from Theorem 6.14 and the equation A?E = Ė to bound the stronger norm. To bound
the traces λ and ψ, we use the bounds on E (see also (6.19)) and the trace theorem from
Proposition 2.25.

6.5 Runge-Kutta discretization

Since we have already established the semigroup setting, we can immediately write down
the Runge-Kutta approximation Xh,k := (Uh,k,V h,k) as

Xh,k(tn) = Xh,k(tn)1+ k[Q⊗A?]Xh,k(tn), (6.22a)

BXh,k(tn) =

((
∂kt

)−1
Σ(tn), 0, 0

)
, (6.22b)

Xh,k(tn+1) = R(∞)Xh,k(tn) + bTQ−1Xh,k(tn), (6.22c)
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6 Scattering by composite media

and Xh,k(0) := 0. Note that instead of using the boundary data Θ = (β0, β̇1), we used

the differentiated version Σ := (β̇
0
, β̇

1
) as introduced in Problem 6.6. If instead of using

(∂kt )−1Σ we used (β0, (∂kt )−1β̇
1
), we would end up with a system equivalent to Problem 6.5.

Theorem 6.17. The system (6.22) and the fully discrete system of integral equations (6.12)
are equivalent in the following sense:

(i) If Xh,k solves (6.22), then the traces λh,k := ∂kt JγνV
h,kK+ β̇

1
and ψh,k := JγUh,kK+

(∂kt )−1β̇
0

solve Problem 6.6.

(ii) If Λh,k := (λh,k,ψh,k) solves Problem 6.6, then

Uh,k := G(∂kt )Q−1
κ

(
Λh,k − I(∂kt )Σ

)
, V h,k := T κ∇

[
(∂kt )−1Uh,k

]
, (6.23)

Uh,k := G
[
Uh,k

]
, V h,k := G

[
V h,k

]
(6.24)

solves (6.22).

Proof. We show that both approximations satisfy the following problem in the Z-domain:

A?Ŷ − s2
kŶ = 0, (6.25)

JγŶ 1K + s−1
k Z

[
β̇

0
]
∈ [Yh]m , JγνŶ 2K + s−1

k Z
[
β̇

1
]
∈ [Xh]m , (6.26)

γextŶ 1 ∈ [X ◦h ]m , γext
ν Ŷ 2 ∈ [Y◦h]m , (6.27)

with sk := δ(z)
k ∈ Cm×m. Since the boundary conditions fit the semigroup setting, this

problem has a unique solution via Lemma 3.35. The fact that the Z-transform of the Runge-
Kutta approximation in (6.22) solves this problem is an easy consequence of Lemma 3.19
and the definition of (∂kt )−1.

By Theorem 6.14, Problem 6.6 has a unique solution. From the proof of the theorem it
is also straight forward to see that we have some a priori estimate∣∣∣∣∣∣∣∣∣Λh,k(tn)

∣∣∣∣∣∣∣∣∣
Γ
≤ C(k)

(
max

0≤τ≤tn
|||Σ(τ)|||Γ + max

0≤τ≤tn−1

∣∣∣∣∣∣∣∣∣Λh,k(τ)
∣∣∣∣∣∣∣∣∣

Γ

)
.

Thus, as long as Σ(τ) is uniformly bounded, the Z transform Λ̂
h,k

(z) := Z
[
Λh,k

]
(z)

exists (for |z| sufficiently small). The requirement on Σ does not impact the result, as we
may consider a modified problem where Σ is cut off for sufficiently large times without
impacting the approximating sequences at finite times tn ≤ T .

Using the Z-transform for the potentials, we get that the Z-transform of the function
Uh,k as defined in (6.23) satisfies

Û
h,k

(z) = G(sk)Q
−1
κ

(
Λ̂
h,k
− I(sk)Σ̂

)
,

V̂
h,k

(z) = T κ∇
[
s−1
k Û

h,k
]
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6.5 Runge-Kutta discretization

with Λ̂
h,k

:= Z
[
Λh,k

]
and Σ̂ := Z [Σ]. Since the potentials solve the Helmholtz equation,

we get that Ŷ :=
(
Û
h,k
, V̂

h,k
)

solves (6.25). We write Λ̂
h,k

:=
(
λ̂
h,k
, ψ̂

h,k
)

for the two

components. From the jump properties, we get JγÛ
h,k

K = ψ̂
h,k
− s−1

k Z
[
β̇

0
]
, as well as

JγνV̂
h,k

K = s−1
k λ̂

h,k
− s−1

k Z
[
β̇

1
]
, and therefore (6.26) since λ̂

h,k
∈ Xh and ψ̂

h,k
∈ Yh.

To see the conditions on the exterior traces, we calculate using the frequency analogue
of (6.9): [

skγ
ext
ν V̂

h,k

γextÛ
h,k

]
= Qκ

(
C(sk)−

1

2
Id

)
Q−1
κ

(
Λ̂
h,k
− I(sk)Σ̂

)
,

which is in [Y◦h ×X ◦h ]m by (6.12). Since the multiplication with sk in the first component
leaves the space Y◦h invariant, this concludes the proof.

Now that we have established the equivalence of the TDBIE formulation and the Runge-
Kutta approximation, we can use the theory from Section 3.4 to easily derive error esti-
mates. For notational convenience, we introduce the interpolation spaceHµ := [H, dom(A)]µ,2,
where µ ≥ 0. For p ∈ N, we write ‖·‖p,T,Hµ := ‖·‖Cp([0,T ],Hµ) and if p = 0, we also write

‖·‖T,Hµ := ‖·‖C([0,T ],Hµ).

Theorem 6.18. Set Ξ := (Σ, 0, 0). Let Xh be the solution to Problem 6.3 and assume
Xh ∈ Cp+3 ([0, T ] ,Hµ) as well as EB[Ξ(`)] ∈ C([0, T ],Hµ) for ` = 0, . . . , p+ 3. Set α := 1
if the Runge-Kutta method satisfies (3.37) and α := 0 otherwise. If Xh,k is the solution
to (6.22), then the following error estimates hold for 0 < tn ≤ T :∥∥∥Xh(tn)−Xh,k(tn)

∥∥∥
H
. Tkmin(q+µ+α,p)

[∥∥∥Xh
∥∥∥
p+1,T,Hµ

+

p+1∑
`=0

∥∥∥EB [Ξ(`−1)
]∥∥∥

T,Hµ

]
,

(6.28a)∥∥∥Xh(tn)−Xh,k(tn)
∥∥∥
V
. Tkmin(q+µ+α,p)

[∥∥∥Xh
∥∥∥
p+2,T,Hµ

+

p+2∑
`=0

∥∥∥EB [Ξ(`−1)
]∥∥∥

T,Hµ

]
,

(6.28b)

where p and q denote the classical and stage order of the Runge-Kutta method employed.
For the traces in (6.12), the following estimates can be shown:∥∥∥ψh(tn)−ψh,k(tn)

∥∥∥
H1/2

. Tkmin(q+µ+α,p)

[∥∥∥Xh
∥∥∥
p+2,T,Hµ

+

p+2∑
`=0

∥∥∥EB [Ξ(`−1)
]∥∥∥

T,Hµ

]
.

(6.28c)

If the Runge-Kutta method is stiffly accurate, we can also estimate λh by:∥∥∥λh(tn)− λh,k(tn)
∥∥∥
H−1/2

. Tkmin(q+µ−1,p−1)+α

[∥∥∥Xh
∥∥∥
p+3,T,Hµ

+

p+3∑
`=0

∥∥∥EB [Ξ(`)−1
]∥∥∥

T,Hµ

]
.

(6.28d)

The constants depend on the Runge-Kutta method and µ.
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6 Scattering by composite media

Proof. (6.28a) follows from Theorem 3.37, since we are in the situation of an integrated
boundary condition. In order to get an estimate on A?(X

h −Xh,k), we use Lemma 3.36
and Lemma 2.13. Namely, we get that Y h,k := A?X

h,k solves

Y h,k(tn) = Y h,k(tn)1+ k[Q⊗A?]Y h,k(tn), (6.29a)

BXh,k(tn) =
(
∂kt
(
∂kt
)−1

Σ(tn), 0, 0
)

= (Σ(tn), 0, 0) , (6.29b)

Y h,k(tn+1) = R(∞)Y h,k(tn) + bTQ−1Y h,k(tn), (6.29c)

while Y h := A?X
h solves Ẏ h = A?Y

h and BY h = (Σ, 0, 0). Therefore we we can apply
Proposition 3.32 or 3.33 to get the estimate

∥∥∥A? [Xh(tn)−Xh,k(tn)
]∥∥∥
H
. Tkmin(q+µ+α,p)

[∥∥∥Xh
∥∥∥
p+2,T,Hµ

+

p+2∑
`=0

∥∥∥EB [Ξ(`−1)
]∥∥∥

T,Hµ

]
.

Together with the H-estimate we can estimate the V-norm. The trace theorem then im-
mediately gives (6.28c).

In order to estimate λh − λh,k we need to control div(V̇
h
) − div(G

[
∂kt V

h,k
]
). This

can be estimated by applying Lemma 3.36 again and using Theorem 3.38 to estimate the
differentiated error.

Remark 6.19. This is the point, where it became advantageous to use Problem 6.6 instead
of Problem 6.5 for the discretization. In Problem 6.5, we would already have a consistency
error when estimating ∂ktX

h,k in (6.29). Thus, we would have to use Theorem 3.38 instead
of Proposition 3.33 and would lose a convergence rate of one for the V-norm (and get no
result for λ).

6.5.1 Determining the value of µ

The convergence rates in Theorem 6.18 depend on the condition EB[Ξ(`)] ∈ C([0, T ],Hµ)
for some interpolation space Hµ between H and dom(A). While the regularity of EB[Ξ] is
not an issue since it is in dom(A?) by construction, the boundary condition B (EB[Ξ]) = 0
is violated, unless when dealing with the homogeneous problem Ξ = 0. The goal of this
section is to determine under what conditions we can expect convergence rates with µ > 0.

In order to not get lost in notation, we often silently identify spaces of the form
∏L
`=0 [H`]

d

with
[∏L

`=0H`

]d
. This should not cause confusion within the context. We will need some

Sobolev spaces in addition to H±1/2 and H1. For s ∈ [0, 1], we write:

Hs(Rd \ Γ) :=

L∏
`=0

Hs(Rd \ ∂Ω`), H̃s(Rd \ Γ) :=

L∏
`=0

H̃s(Rd \ ∂Ω`),

Hs(Γ) :=

L∏
`=0

Hs(∂Ω`).
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6.5 Runge-Kutta discretization

In order to differentiate “volume” and “boundary” spaces, this means we will now add the
parameters Rd \Γ and Γ respectively, whereas up to now it was clear from the index of the
space whether it was a boundary or volume space.

We start with the following lemma, relating the interpolation spaces Hµ to Sobolev
norms:

Lemma 6.20. Let 0 ≤ µ < 1/2. Then the following estimates holds for all (u,V ) ∈
H1(Rd \ Γ)×

[
Hµ
(
Rd \ Γ

)]d
:

‖(u,V )‖Hµ . ‖u‖H1(Rd\Γ) + ‖V ‖[Hµ(Rd\Γ)]d ,

where Hµ := [H,dom(A)]µ,2. The implied constant depends only on the geometries Ω0, . . . ,Ω`

and µ.

Proof. It is easy to see that the space with zero traces satisfies:

H̃1 := H̃1(Rd \ Γ)× [H̃1(Rd \ Γ)]d ⊆ ker(B) = dom(A).

Thus, by interpolating the identity operator we estimate, using Proposition 2.20 to split
the norms of the two components:

‖(u,V )‖Hµ ≤ ‖(u,V )‖
[H,H̃1]µ,2

. ‖u‖
[H0(Rd\Γ),H̃1(Rd\Γ)]µ,2

+ ‖V ‖[
[H0(Rd\Γ),H̃1(Rd\Γ)]

µ,2

]d .
For µ < 1/2, the interpolation spaces Hs(Rd \ Γ) and H̃s(Rd \ Γ) coincide with equivalent
norms by Proposition 2.22 (again using Proposition 2.20 to deal with the product spaces).
Thus, we can further estimate:

‖(u,V )‖Hµ . ‖u‖[H0(Rd\Γ),H1(Rd\Γ)]µ,2
+ ‖V ‖[

[H0(Rd\Γ),H1(Rd\Γ)]
µ,2

]d
. ‖u‖Hµ(Rd\Γ) + ‖V ‖[Hµ(Rd\Γ)]d .

With this previous lemma, we have answered the question of admissible µ for the case of
functions which have additional Sobolev regularity. As a final tool to show lower bounds for
µ, we investigate the mapping properties of the lifting operator EB by splitting the result
into a part in dom(A) and a part with higher regularity.

Lemma 6.21. Let 0 ≤ µ < 1/2, and assume

Ξ =: (ξ1, ξ2, ξ3, ξ4) ∈Mµ := H1/2+µ(Γ)×H−1/2+µ(Γ)×H1/2+µ(Γ)×H−1/2+µ(Γ).

We identify Ξ with its induced functional in M = (Y◦h)′ × (X ◦h )′ × X ′h × Y ′h via the Riesz-
and restriction maps. Then EB[Ξ] can be estimated in the following stronger norms:

‖EB[Ξ]‖Hµ ≤ C ‖Ξ‖Mµ
,

where C depends on the geometries Ω0, . . . ,Ω` and µ, but not on the spaces Xh or Yh.
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6 Scattering by composite media

Proof. We write EB[Ξ] =: (U,V ) for the two components. Since the transmission con-
ditions of dom(A) are independent for U and V , we can perform the interpolation of
the spaces independently in each of the two components. We note that for each domain

Ω` there exist continuous lifting operators ẼD` :
[
H1/2+µ(∂Ω`)

]2 → H1+µ(Rd \ ∂Ω`) and

ẼN` :
[
H−1/2+µ(∂Ω`)

]2 → [
Hµ(Rd \ ∂Ω`)

]d
satisfying the following lifting properties:

Jγ`ẼD` (η, χ)K = η, γext
` ẼD` (η, χ) = χ,

Jγν,`ẼN` (λ, µ)K = λ, γext
ν,` ẼN` (λ, µ) = µ.

They can be constructed by the Dirichlet- and Neumann-liftings from Proposition 2.26.
We collect the operators on each subdomain into the diagonal operators ẼD and ẼN.

We define functions Û := ẼD(ξ1, ξ3) and V̂ := ẼN (ξ2, ξ4). By construction, we have
that B(Û , V̂ ) = Ξ, which implies by linearity (U − Û ,V − V̂ ) ∈ ker(B) = dom(A). We
calculate, using the fact that the interpolation spaces are nested:

‖(U,V )‖Hµ ≤
∥∥∥(U − Û ,V − V̂ )

∥∥∥
Hµ

+
∥∥∥(Û , V̂ )

∥∥∥
Hµ

.
∥∥∥(U − Û ,V − V̂ )

∥∥∥
H1

+
∥∥∥(Û , V̂ )

∥∥∥
Hµ

.

The first term can be estimated by the H1(Rd) ×Hdiv-norm of (U,V ) and (Û , V̂ ), which
are both bounded by the M0 norm of Ξ due to the continuity of EB and the lifting opera-

tors. To estimate
∥∥∥(Û , V̂ )

∥∥∥
Hµ

, we apply Lemma 6.20 together with the stricter regularity

assumptions and mapping properties of the liftings.

Corollary 6.22. For µ ∈ [0, 1/2) and m ∈ N0, let γuinc ∈ Cm
(
[0, T ] , H1/2+µ(∂Ω0)

)
and ∂νu

inc ∈ Cm−1
(
[0, T ] , H−1/2+µ(∂Ω0)

)
, and assume that the solution to Problem 6.3

satisfies Xh ∈ Cm ([0, T ] ,V). Then Xh is also in Cm ([0, T ] ,Hµ).

Proof. For Ξ := −
(
β0,β1, 0, 0

)
, and β0 :=

(
γuinc, 0, . . . , 0

)
, β1 :=

(
κ0∂ν∂

−1
t uinc, 0, . . . , 0

)
we write Xh =

(
Xh − EB[Ξ]

)
+ EB[Ξ]. Due to the boundary conditions on Xh we get(

Xh(t)− EB[Ξ(t)]
)
∈ dom(A) and we can estimate:∥∥∥(Xh(t)− EB[Ξ(t)]

)∥∥∥
Hµ
≤
∥∥∥(Xh(t)− EB[Ξ(t)]

)∥∥∥
H

+
∥∥∥A(Xh(t)− EB[Ξ(t)]

)∥∥∥
H

≤
∥∥∥Xh(t)

∥∥∥
V

+ ‖Ξ(t)‖M .

The term ‖EB[Ξ(t)]‖Hµ can be estimated by Lemma 6.21.

6.6 Convergence of the fully discrete scheme

In order to quantify the convergence rates of the full discretization, we make the following
assumption on the spaces Xh and Yh (see Section 6.3.1 for a way to satisfy this assumption).
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6.6 Convergence of the fully discrete scheme

Assumption 6.23. For a parameter r ∈ N0, the discrete spaces Xh and Yh satisfy the
following approximation property for all λ := (λ`)

L
`=0 ∈ X with λ` ∈ Hr+1

pw (∂Ω`) and all

ψ := (ψ`)
L
`=0 ∈ Y with ψ` ∈ Hr+2

pw (∂Ω`), such that the lifting in (6.6a) is continuous on Γ:

inf
λh∈Xh

‖λ− λh‖H−1/2 ≤ Chr+3/2
L∑
`=0

‖λ`‖Hr
pw(∂Ω`)

, (6.30a)

inf
ψh∈Xh

‖ψ −ψh‖H1/2 ≤ Chr+3/2
L∑
`=0

‖ψ`‖Hr+1
pw (∂Ω`)

, (6.30b)

where the constant C depends on r, and the geometry but not on h, λ or ψ.

Then the following theorem holds:

Theorem 6.24. For µ ∈ [0, 1/2), let γuinc ∈ Cp+3
(
[0, T ] , H1/2+µ(∂Ω0)

)
and ∂nu

inc ∈
Cp+3

(
[0, T ] , H−1/2+µ(∂Ω0)

)
. Assume that the traces of the exact solution satisfy λ` ∈

C3
(
[0, T ] , Hr+1

pw (∂Ω`)
)

and ψ` ∈ C3
(
[0, T ] , Hr+2

pw (∂Ω`)
)

for a parameter r ∈ N0. Also

assume that ψ(`) admits a lifting to H1(Rd) which is continuous on Γ for ` = 0, . . . , 3 (see
Assumption 6.23).

Let p denote the classical order of the Runge-Kutta method and q its stage order. Set
α := 1 if the method satisfies assumption (3.37) (i.e. |r(z)| < 1 for 0 6= z ∈ iR and
r(∞) 6= 1), and set α := 0 otherwise. Let Assumption 6.23 be satisfied for Xh and Yh for
r ∈ N0.

Let Xh,k, λh,k and ψh,k denote the solutions to Problem 6.6. Then the following esti-
mates hold for tn = nk with tn ≤ T :∥∥∥X(tn)−Xh,k(tn)

∥∥∥
V
≤ C(X)

(
hr+3/2 + kmin(q+α+µ,p)

)
, (6.31a)∥∥∥ψ(tn)−ψh,k(tn)

∥∥∥
H1/2

≤ C(X)
(
hr+3/2 + kmin(q+µ+α,p)

)
. (6.31b)

If the method is stiffly accurate, we get:∥∥∥λ(t)− λh,k(tn)
∥∥∥
H−1/2

≤ C(X)
(
hr+3/2 + kmin(q+µ−1,p−1)+α

)
. (6.31c)

The constant C(X) depends on the exact solution, the incoming wave, the geometry, T ,
the Runge-Kutta method, and the constants in Assumption 6.23, but is independent of h
and k.

Proof. We estimate∥∥∥X(tn)−Xh,k(tn)
∥∥∥
V
.
∥∥∥X(tn)−Xh(tn)

∥∥∥
V

+
∥∥∥Xh(tn)−Xh,k(tn)

∥∥∥
V
.

The convergence of the semi-discretization in space is quasi-optimal by Theorem 6.16. The
convergence with respect to time can be estimated by Theorem 6.18, where Lemma 6.21
and Corollary 6.22 tell us that we may use the value µ ≥ 0 determined by the regularity
assumptions. The bounds on ψ − ψh,k follows from the continuity of the trace operator.
The trace on λ − λh,k follows along the same lines but using the stronger bounds proved
in Theorems 6.16 and 6.18.
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6 Scattering by composite media

6.7 Numerical examples

In order to verify our theoretical findings, we implemented the proposed schemes (6.11)
and (6.12) using the 2D boundary element code developed by F.-J. Sayas and his work
group at the University of Delaware. For the Convolution Quadrature, we used the al-
gorithm presented in [BS09] as implemented in the deltaBEM package (see [Say17]). As
the underlying geometry, we used a simple checkerboard consisting of 2 × 2 squares with
differing wave numbers, see Figure 6.2.

In order to be able to quantify the convergence, we prescribe an exact solution in the
following way: On each subdomain Ω` for ` = 1, . . . , L, the solution u` is given as a plane
wave with

u`(x, t) := G (d` · x− κ`(t− tlag)) , where G(t) := e−2t/α sin(t).

Here, d` is the direction the wave is traveling. We chose the following parameters for our
example:

d` :=

{
1√
2
(1,−1)T ` is even

1√
2
(1, 1)T ` is odd

,

tlag = 5/2, and α := 1/4. On the exterior, we chose u0 := 0 in order to not have to worry
about radiation conditions.

The boundary traces were chosen in the following way, using the function φ(t) := t9 e−2t

to ensure homogeneous initial conditions:

ψ(x, t) := φ(t) sin(x1) cos(x2) and λ(x, t) := φ(t) cos(x1) sin(x2).

(These functions are to be understood as functions on the skeleton. λ is then built by
restricting to the subdomains and multiplying with a sign function as is done in Sec-
tion 6.3.1). The boundary data β0 and β1 were then calculated accordingly in order to
yield these solutions.

Example 6.25. In this example, we are interested in the convergence with regards to the
time discretization. Therefore, we fix a fine uniform mesh with h ∼ 0.03125 and use
r = 4, i.e. quartic polynomials for the discontinuous space and quintic for the continuous
splines. We applied a two-stage RadauIIa method which satisfies q = 2 and p = 3. By
Theorem 6.24, we expect order O(k3) for the Dirichlet trace and O

(
k2.5−ε) for the Neumann

trace when using (6.12). As a comparison, we also compute the solutions using (6.11).
Figure 6.3 shows the result. Most notably, it shows that when using (6.12), the Neumann
trace outperforms our predictions and converges with the full classical order. We also see
that using (6.11) gives a reduced order of 2 when approximating λ.

Example 6.26. We perform the same experiment as in Example 6.25, but use a 3-stage
RadauIIa method. We expect orders O(k4.5−ε) and O(k3.5−ε) for the Dirichlet and Neu-
mann traces respectively. Again the method (6.12) outperforms our expectations, giving the
full classical order 5, while using (6.11) gives a reduced rate.
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6.7 Numerical examples

κ1 := 3 κ2 := 1

κ3 := 5 κ4 := 6

κ0 := 2

Figure 6.2: Example geometry and wave-numbers used throughout Section 6.7

We also look at the convergence rate with respect to the space discretization.

Example 6.27. We use the same model problem as Example 6.25, but we fix the time
discretization at k ≈ 0.015 using a 3-stage RadauIIa method. We vary the approximation
in space by performing successive uniform refinements of the grid, and compare different
polynomial degrees s = 0, . . . , 3. Since it is easier to compute, we consider the L2-norm of
the errors. As we see in Figure 6.5, we get the optimal convergence rates, up to an error
of ≈ 10−6, at which point other error contributions prohibit further convergence.
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Figure 6.3: Convergence rates using a 2-stage RadauIIa method. Comparison of discretiza-
tion schemes
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Figure 6.4: Convergence rates using a 3-stage RadauIIa method. Comparison of discretiza-
tion schemes
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Figure 6.5: Convergence rates w.r.t. the spatial discretization
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