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Abstract
This thesis presents a system to operate a humanoid robot from a distance.
Teleoperated robots are used in environments inaccessible to humans for tasks
which cannot be performed autonomously. Because of the many degrees of
freedom of humanoid robots, manual teleoperation methods with keyboards,
joysticks and screens are cumbersome to use. The introduced solution is a
first-person teleoperation application where the robot imitates the movements
of the user’s upper body. The focus is on providing an intuitive user experience
with commercially available consumer-grade electronics: the Oculus Rift virtual-
reality headset with the Leap Motion 3D hand tracking sensor mounted. The
user receives visual feedback from the robot’s cameras inside the Oculus Rift
which tracks the user’s head pose. The robot’s head pose and therefore the
camera direction is controlled intuitively by the user turning his head. We
introduce a method for a representation of the video feed in a virtual 3D
space to avoid cyber-sickness. The user’s arm movements are tracked by the
Leap Motion sensor. We derive the necessary robot joint angles for natural
imitation of the user’s arm posture from the tracked joint positions and direction
vectors. The system is able to imitate human motions with high precision and
low latency. It was implemented for the humanoid robots Romeo and Pepper
manufactured by SoftBank Robotics. Over 100 users tested the system with
each robot. Each of them was able to control the robots’ upper-body within
seconds without any training.
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Kurzzusammenfassung
In dieser Arbeit wird ein System vorgestellt, um einen humanoiden Roboter
von einem entfernten Ort aus zu steuern. Teleoperierte Roboter werden in
Umgebungen eingesetzt, die für Menschen nicht zugänglich sind, um Aufgaben
zu erfüllen, die ein Roboter nicht autonom verrichten kann. Teleoperation
per Tastatur, Joystick und Bildschirm ist aufgrund der vielen Freiheitsgrade
eines humanoiden Roboters umständlich. Beim vorgestellten System imitiert
der Roboter die Bewegungen des Oberkörpers des Benutzers, welcher die
Umgebung des Roboters aus dessen Perspektive wahrnimmt. Der Fokus liegt
darauf, eine intuitive Art der Steuerung mit günstiger Unterhaltungselektronik
umzusetzen: die Oculus Rift Virtual-Reality-Brille und der Leap Motion 3D
Hand-Tracking Sensor. Die Kamerabilder des Roboters werden in der Oculus
Rift dargestellt, die auch die Orientierung des Kopfes misst. Die gemessen Pose
des Kopfes wird auf den Roboter übertragen. Damit beeinflusst der Benutzer
die Kamerarichtung auf eine natürliche Weise. Wir stellen eine Möglichkeit
zur Darstellung des Videos in einer virtuellen Welt vor, um Unwohlsein zu
vermeiden. Die Armbewegungen des Benutzers werden mit der Leap Motion
gemessen. Wir berechnen die nötigen Gelenkwinkel aus den Messungen der
Gelenkpositionen und der Richtungsvektoren so, dass der Roboter die Stellung
des Armes imitiert. Das System ist in der Lage, menschliche Bewegungen mit
hoher Präzision und niedriger Latenz zu imitieren. Es wurde für die humanoiden
Roboter Romeo und Pepper der Firma SoftBank Robotics implementiert. Über
100 Personen pro Roboter haben das System bereits getestet. Jeder von ihnen
konnte innerhalb kürzester Zeit, ohne jegliches Training, den Oberkörper der
Roboter kontrollieren.
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1 Introduction
Today, we are on the verge of having robots in our everyday life. Autonomous
vacuum cleaners or lawn mowers are available for consumers and so affordable
that they can be found as presents under lazy college students’ Christmas trees.
Humanoid robots are a category of robots that resemble humans in appearance.
A wide variety of humanoid robots exist. However, their capabilities are still
very limited and they do not meet many people’s expectations which are
based on science fiction movies. Teleoperation is a method, where the robot is
controlled by a human being from a distance to complete tasks which cannot
be performed autonomously and to overcome problems the robot might run
into.

1.1 Motivation
Humanoid robots have a few advantages over specialised machine-like robots
such as industrial robots. Humans are accustomed to interacting with each
other, and therefore a humanoid robot might appeal more to us than a faceless
machine. Additionally, our surroundings are customised for the human body
(stairs, dimensions of doors, tools). A humanoid robot can, in theory, operate
in the same environment and use the same tools as we do [1].
However, the capabilities of robots to act autonomously are still very limited,
especially in an unknown environment. A human supervisor can monitor and
support the robot. The act of controlling a system from a distance is called
teleoperation. This can be useful if the environment is too dangerous for humans,
for example in disaster-response scenarios1. A human can analyse complicated
situations much faster than a robot. Camera images are sent to the teleoperator
who is able to analyse the situation and react appropriately.Additionally, the
teleoperated robot can be used to communicate with people from a distance.
In contrast to a simple videoconference, a mobile robot enables the user to
look and move around freely. A humanoid robot may also enable nonverbal
communication such as gestures or facial expressions. This form of teleoperation
is called telepresence, due to the similarities of being present in person.
The introduced teleoperation application imitates human movements which

1http://www.darpa.mil/program/darpa-robotics-challenge

1
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can be used to bring human-like movements to the robot. The many degrees-
of-freedom of a humanoid robot make it difficult to program specific motions
manually. Because of the similarities to the human body, an approach is to have
the robot learn motions by imitating human motions. This is called learning
from demonstration and seems natural to us because we learn by observing
and being shown how to do something. Nobody learns how to ride a bike by
reading a book. The first step of this learning process for the robot is to copy
the human motion as best as possible and then adapt it in a way to accomplish
the desired task.
Another application of teleoperation is to use it in human-robot-interaction
research in so-called Wizard of Oz settings [2]. An examiner controls the robot
from a different room to simulate a more advanced robot. It is observed how a
test person interacts with the robotic puppet. This way, social interaction can
be studied safely for example in an early development stage of a robot.

1.2 Problem Statement
The many degrees of freedom of a humanoid robot pose a problem when
operating the robot from a distance. Classic teleoperation applications with a
joystick and camera images displayed on a computer screen are cumbersome
and difficult to use.
To generate human-like motions on the robot by learning through demonstration,
a system for human imitation is necessary.
In this thesis, an intuitive method to control the upper body of a humanoid
robot is introduced, utilising the capabilities of modern consumer hardware.

1.3 Scope of This Thesis
Intuitive Control: The focus of this thesis is to have an intuitive way to
control a humanoid robot. Therefore, we want to imitate the posture of the
user’s upper body as closely as possible. A different approach would be to
follow the end-effector position of the user. However, it was deemed more
important to give the user the feeling of the robot copying his movements
instead of optimising for the end-effector position. This way, the user acts as a
feedback loop. If he wants to reach a specific Point, he would adjust his hand
position according to the visual feedback of the robot’s hand. Low latency and
hardly any jitter are required for this to work. The Leap Motion hand tracking
sensor is used to track the user’s arm movements. It shows good results and
costs a fraction of the price of professional motion tracking hardware.
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Virtual Reality: The Oculus Rift virtual-reality (VR) headset is used to
display the camera images of the robot’s cameras as a visual feedback for the
user. Additionally, the user’s head pose is tracked by the headset. The robot
copies the head movements of the user. This way, the user naturally adjusts
the direction of the cameras, positioned on the head of the robot. The Leap
Motion sensor is attached to the headset because it is optimised for this use
case.

Telepresence for Object Manipulation: The user can teleoperate the upper
body of the robot for example to manipulate an object. The system is not
optimised for communication with other people via the robot. No audio
transmission or imitation of gaze direction is implemented. The teleoperation
is restricted to the head and the arms. So the movements of the feet, as well
as movements of the upper body such as leaning forward, are not imitated
by the robot. The system is not optimised to be used over a long distance.
The delays introduced by the application itself are kept to a minimum, but
delays resulting from data communication are not addressed (for example by
compression of the robot’s video feed).

Robots: The introduced system is implemented for the humanoid robots
Romeo2 and Pepper3 from SoftBank Robotics. We tested it with these robots
in the simulator and on the real robots. Over 100 persons used the teleoperation
with each robot in short demo settings. The algorithms and methods introduced
in this thesis are independent of a specific robotic platform. An interface to
use the teleoperation algorithm with other robots for example via the Robotic
Operating System (ROS) is not implemented yet.

1.4 Chapter Organization
Chapter 2 introduces different systems for teleoperation and human imitation
with a focus on humanoid robots. It starts with a short history of teleoperation.
The recent works are grouped into interesting approaches in the domains
of robot kinematics, capture systems and complete systems. In Chapter 3
the used hardware is described with its corresponding software tools, and
how the different components are linked together. Chapter 4 presents the
implementation of the teleoperation system. First, an introduction to coordinate
transformation is given followed by the methodology to convert the sensor

2http://projetromeo.com/en
3https://www.ald.softbankrobotics.com/en/cool-robots/pepper

http://projetromeo.com/en
https://www.ald.softbankrobotics.com/en/cool-robots/pepper


1 Introduction 1.4 Chapter Organization 4

information to motion on the robot. Afterwards, the design decisions for the
user interface as well as its implementation are explained. The experiments
for the teleoperation system are described in Chapter 5, with results from the
simulator, a real robot and user testing. Chapter 6 concludes the thesis, and
the introduced teleoperation system is analysed. Possibilities for future work
are discussed.



2 Related Work
Robots excel at performing the same acts over and over again, e. g. indus-
trial robotic arms for welding or spray-painting. However, many tasks are
unpredictable, and humans are in general better at adapting to unexpected cir-
cumstances than an automatic device. Teleoperation combines the capabilities
of robots and humans. A remote operator oversees and controls the actions of a
robot. In this chapter, related work in the domains of teleoperation and human
imitation is introduced with a focus on teleoperation of humanoid robots, the
used sensors and the different solutions of the inverse kinematic problem.
The Greek prefix tele means “at a distance” and the combined word teleop-
eration stands for operating at a distance. Sheridan [3] defines teleoperation
as “the extension of a person’s sensing and manipulation capability to a re-
mote location”. Telepresence enhances these capabilities, so “the operator feels
physically present at the remote site”.

2.1 History of Teleoperation
Robots can be used in hazardous and dangerous surroundings like space, deep
ocean or nuclear environments. Therefore, teleoperation has been researched for
the past 60 years. According to Sheridan [3], the first master-slave teleoperators
were developed by Goertz in the mid-1940s. It was a mechanical linkage to
handle nuclear material from outside the room. In 1954 Goertz and Thomp-
son [4] replaced the mechanical connection with an electrical servomechanism.
In the 1960s a lot of research has been done in teleoperated devices. A notable
example is the Handyman by Mosher in 1964 [5]. It is a teleoperated machine
with two electromechanical arms with ten degrees of freedom each (two in each
of the two fingers) and force feedback (Figure 2.1). These servomechanisms
were also applied in human prostheses. The first significant arm prosthesis that
used electrical signals created by the human body to control it was built by
Kobrinski in 1960 [6].
A head mounted display was introduced in 1968 by Sutherland [7]. It consists
of two miniature CRT (cathode ray tube) screens and an ultrasonic head po-
sition sensor to recognise changes in the head position and adjust the shown
image accordingly. In the 1960s telemanipulators and cameras were attached

5
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Figure 2.1: Handyman twirling a hoola hoop1

to submarines for deep sea exploration as well as rescue and recovery missions.
In 1966 the US Navy’s CURV (Cable-Controlled Underwater Recovery Vehicle)
recovered a nuclear bomb that was dropped in the Mediterranean Sea after an
accident while refuelling in mid-air [3]. Teleoperated devices were also used in
space exploration. Following the first missions that performed soft landings on
the moon (Surveyor by the USA, Luna by the Soviet Union) the first telerobot
landed on the moon on November 17, 1970. Lunokhod 1 was an unmanned
moon rover by the Soviet Union that was able to move and transmit camera
images and other sensor information back to earth. It was operated by a ground
crew of 5 members [8], [9].

2.2 Current Work with Humanoid Robots
Humanoid robots are robots that resemble humans in appearance. Today, most
robots in use are specialised for a particular task, which often defines the shape
of the robot. Therefore, they do not look human-like, e.g. industrial robotic
arms, robotic vacuum cleaners and surgical robots.
However, there are several reasons to design humanoid robots. The world

1http://cyberneticzoo.com/man-amplifiers/1958-9-ge-handyman-ralph-mosher-
american/

http://cyberneticzoo.com/man-amplifiers/1958-9-ge-handyman-ralph-mosher-american/
http://cyberneticzoo.com/man-amplifiers/1958-9-ge-handyman-ralph-mosher-american/
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around us is created for human locomotion. A human-like structure would
enable robots to move around a house with stairs, doors and furniture, which
often cause difficulties for wheeled robots [10], [11]. They are also able to
manipulate and interact with objects designed for humans. Research is done for
using humanoid robots in disaster response scenarios for situations like ladder
climbing or car ingress [12].
Another aspect of using humanoid robots is human-robot interaction. A hu-
manoid robot enables natural interaction, which increases social acceptance [13].
A humanoid robot enhances vocal interaction by sending paralinguistic com-
munication signals, such as facial expression, gestures, gaze direction and
posture [14]. It is even argued, that anthropomorphic design increases trust in
a machine [15].
There is a wide variety of applications for teleoperation of humanoid robots,
from using them in hazardous disaster situations in unknown environments (e.g.
nuclear accidents) to interacting with other humans from far away. Humanoid
robots have many degrees of freedom (e.g. the SoftBank Robotics Romeo has
37 degrees of freedom in total) so they are hard to be operated with controls,
such as joysticks and keyboards. Different sensory systems (e.g. cameras,
tracking suits) are used to capture human motion and transfer it to the robot.
These motion sequences are also often used to teach the robot human-like
movements, a technique called “Learning from Demonstration” [16]. Already in
1997, Schaal [17] showed its capabilities with a robotic arm which was able to
balance an inverse pendulum on the first try after a 30 seconds demonstration.
A well-known example of teleoperation of a humanoid robot is NASA’s Robo-
naut [18], [19]. It was developed to work in space alongside astronauts and use
tools made for humans. The second version of Robonaut was deployed on the
International Space Station in February 2011 [20]. The main operational mode
is teleoperation from the accompanying crew as well as from ground control.
The images of the robot’s stereo cameras can be displayed in a head mounted
display worn by the teleoperator to provide visual feedback (Figure 2.2). The
operator’s head position is tracked by a six-axis magnetic posture sensor on
the helmet. This information is used to control the neck. The same sensors are
positioned on the back of the operator’s hand to track its position. The user
wears a glove which captures the finger motion with resistive flex sensors which
is mapped to the robot’s hand [21]. This results in a very natural teleoperation.
However, many different devices need to be attached to the operator, which
might feel intrusive and encumbering. Therefore Martinez et al. [22] developed
a system to track the arm movement with a monocular camera. They used
a model of the right arm of a human and applied the Maximum-Likelihood
motion estimation algorithm to control the right arm of a virtual Robonaut.
They describe a tracking error of the position of shoulder, elbow and wrist in the
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Figure 2.2: Robonaut mounted on vehicle and teleoperated2

millimetre range when using synthetic image sequences. However, this system
is not able to track fingers, must be configured to the anatomical measurements
of the teleoperator and the camera is fixed. In our teleoperation application,
only the shoulder position is dependent on the dimensions of the teleoperator,
the fingers are tracked and the camera is moved when turning the head.

2.2.1 Robot Kinematics for Teleoperation
Teleoperation requires transferring human motions to robot motions. A motion-
capture system delivers a representation of human movements, often as joint
positions in a Cartesian space. A few common motion-capture systems are
described in Section 2.2.2. For now, consider the human motion data is given.
A robot is usually controlled by setting the angles of the different joints.
Forward kinematics is the domain of determining the pose of the end-effectors
in Cartesian space for given joint parameters. The calculation from Cartesian
space to robot joint variable space is called inverse kinematics. Different
approaches exist to solve the inverse kinematic problem either analytically or
numerically [11].
The most intuitive method is to use the forward kinematic equations which

2http://robonaut.jsc.nasa.gov/R1/sub/telepresence.asp

http://robonaut.jsc.nasa.gov/R1/sub/telepresence.asp
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calculate the position and orientation x of the end-effectors from the joint
angles θ

x = f(θ).
The equations depend on the robot’s dimensions and joints. These equations
are solved for the joint angles analytically [23]. However, for complex kinematic
chains, it is often too complicated to obtain an analytic solution for the inverse
kinematic problem due to non-linear terms. Robot manipulators are often
redundant, which means the robot has more degrees of freedom than would
be required to reach a specified position in Cartesian Space. This enables the
robot to avoid obstacles, but is problematic for solving the inverse kinematic
problem, because there are multiple solutions in the joint space for one pose of
the end-effector.
The inverse kinematic problem can also be solved by numerical methods, by
treating it as an optimisation problem. A specific cost function is defined,
usually with the robot’s joint angles as input arguments. A solution is considered
optimal if it minimises this function. Baillieul and Martin [24] distinguish
between global and local methods. Global methods calculate an optimal path
in joint space for a given movement in operational space. This approach is not
suitable for real-time applications because of its non-causality. Local methods
compute an optimal change of the joints θ̇ and therefore reach the desired
position iteratively. Whitney [25] proposed the rate control scheme in 1969
which uses the Jacobian and its pseudoinverse.

ẋ = Jθ̇, J = ∂

∂θ
f(θ).

If J is invertible at a certain point, θ̇ can be calculated by

θ̇ = J−1ẋ.

If J is rank deficient at a point, it cannot be inverted. Such a point is called
singularity and should be avoided in a path. For redundant manipulators J is
not quadratic and therefore not invertible. In this case, additional optimality
criteria are added to obtain a pseudo-inverse.
Capturing systems used for teleoperation of humanoid robots usually provide
more information than the pose of the end-effector, e. g. the position of various
markers placed on the human. Riley et al. [26] use a suit with coloured patches
and a 3D vision system to detect motion and transfer it to the Sarcos humanoid
robot. Either the robot’s internal cameras or external cameras are used. The
positions of 7 patches on the human body are obtained. The equivalent positions
on the robot are estimated for the current joint configuration. The cost function
is the difference between the estimated positions of the patches on the robot
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and the measured positions on the human. The joint angles are calculated
by minimising this function iteratively by using the Jacobian similar to the
approach described above. The problem is split into simpler subproblems
by exploiting the dependencies of body geometry. The operator has to start
from a defined starting position. If the operator moves too fast, the robot
will stop or return to this starting position and wait for the human to go
back to this position as well. This approach enables a real-time imitation of
full-body motion, but due to the coloured patches, only 7 degrees of freedom
are controlled. In our teleoperation application for the Romeo robot 19 degrees
of freedom are controlled.
Another possibility to calculate the inverse kinematics in a teleoperation setting
is to use neural networks. These networks have to be trained in the beginning to
map the human’s posture to the robot. Matsui et al. [27] use neural networks to
generate motion for a humanoid robot with a focus on appearing as human-like
as possible. They developed the android Repliee Q2 which looks like a Japanese
woman and can be seen in Figure 2.3. They use a marker-based system to
capture motion. They argue that a transformation of the obtained joint angles
of the human teacher to the robot would yield unnatural movements of the
robot because of the different kinematic structure. Additionally, human joint’s
centre of rotation changes when rotating, which is not considered by other
joint-based approaches. Therefore, markers are attached to the robot in the
same positions as on the teacher. A three-layer neural network is trained to
construct a mapping from the performer’s posture to the robot’s input. The
training sequence consists of 50000 samples. The robot moves randomly and the
error between the marker positions of the human and the robot is used to train
the neural network. In the experimental setup, 21 degrees of freedom of the
robot are controlled3. The wrist and the fingers are not controlled. The results
show that human motion can be transferred to the android but is restricted by
the possible speed of motion.

2.2.2 Capture Systems for Teleoperation
Motion capture systems can roughly be divided into optical and non-optical
systems. Moeslund, Hilton and Krüger [28] group the applications of motion
capture systems into three groups: surveillance, control and analysis. Surveil-
lance applications automatically monitor places such as airports and parking
spaces. In control applications, the body posture and movements are used
for controlling functionalities. For example, the user is interacting with a

3Each shoulder joint has 5 degrees of freedom. Additionally to the rotation, it can move
upwards/downwards and back/forth.
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Figure 2.3: Teacher (left) and Android Repliee Q2 (right) with markers [27]

game or controls a virtual character. Motion capturing of actors to create
animated characters for a movie or game are also part of this category. Analysis
applications contain automatic diagnostics of orthopaedic patients or analysis
of athletes’ movements. The car industry is also a driving factor for analysis
applications such as pedestrian detection or driver fatigue detection. Due to
this widespread application area, there are some highly sophisticated motion
capture systems commercially available.

Optical Systems In optical systems, cameras are used to track human motion.
Professional systems that track motion accurately for animating characters in
movies normally use markers attached to the actor and several cameras for
triangulation. These markers are either active (illuminated by LEDs) or passive
(retroreflective) and can be seen in Figure 2.3. Pollard et al. [29] use such a
commercially available marker-based motion capture system from Vicon to map
a human dancing motion of the upper body to a Sarcos humanoid robot shown
in Figure 2.4. The focus is on adapting the human motion to the limited range
of joint motion and velocity of the robot. The resulting trajectory should be as
similar to the original movement as possible. The same dance was performed
by different actors and the various dance styles should be distinguishable in
the robot motion sequences. The motion capturing system setup consists of
eight cameras and 35 markers. The raw marker data is mapped to the joint
angles of a skeleton by the provided software. These angles are scaled down by
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Figure 2.4: Sarcos humanoid robot and actor with motion capture markers
performing “little teapot” dance [29]

a scaling factor to be in the range of the robot’s joints. The joint velocity is
bound to an upper limit. This way, the motion is scaled down and therefore,
the position of the robot’s hand won’t necessarily match that of the actor’s as
closely as possible. The results are satisfying for many poses. It falls short for
some cases when the actor exceeds the limits of a degree of freedom of a joint
but another degree of freedom is in bound, because each degree of freedom
is scaled independently. So, if the actor is leaning forward and to the side, it
might result in the robot mostly leaning forward. Another drawback is the
expensive motion capture system as well as the lack of real-time processing
which would be required for teleoperation. However, the latter might be solved
with modern hardware.
Marker-based motion capture systems are very expensive and inconvenient.
They need to be set up in a fixed lab environment. Therefore, there is a big
interest in affordable and easy to set up markerless motion capture systems.
Do et al. [30] present a system for human motion imitation with markerless
and marker-based motion capture systems. They use the humanoid robot
ARMAR-IIIb for experimental testing (Figure 2.5). The markerless system has
a virtual human model and compares the filtered input from a stereo camera
system with this model involving a particle filter. This approach recognises only
4 degrees of freedom for each arm. Details on this algorithm are given in [31].
The acquired motions from both systems are translated to the unifying master
motor map, which consists of 58-dimensional vectors, each vector describing
a joint angle configuration of a human model. The joint angles of the robot
are determined by finding the optimal solution of a similarity function which
considers the robot angles and the position of the Tool Center Point (TCP).
The Levenberg-Marquardt method is used for solving the optimisation problem.
This is done because of different kinematic structures of a human and the
robot, a one-to-one mapping of joint angles would often result in unsatisfactory
reproduction of motion. Experimental results show that this approach is a
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good compromise between correct joint angles and a correct position of the end
effector.

Figure 2.5: Online Imitation by humanoid ARMAR-IIIb using a markerless
vision system for motion capturing by Do et al. [30]

The data acquired by markerless motion capture systems that are based on
RGB images is often too imprecise. In the approach above Do only used 4
degrees of freedom. In 2010 Microsoft released the Kinect camera to be used
for the Xbox 360 gaming system as a controller alternative. It uses an infrared
projector which emits an infrared pattern and an infrared camera to acquire
a depth image. The obtained data is used to map the movements of the user
to a virtual skeleton. The joint angles are calculated in real time. For more
details see [32]. The Kinect is well suited for teleoperation applications because
it is affordable and provides the human joint angles. Suay and Chernova [33]
presented one of the first implementations for the Nao humanoid robot in 2011.
Zuher and Romero [34] use the Kinect to recognise human motion and control a
Nao robot in real-time (Figure 2.6). They use different techniques to determine
the human joint angles, namely trigonometry, the rule of three and the method
provided by the used SDK (Software Development Kit). An imitation mode
and a gesture mode are implemented. In imitation mode, the robot copies
the head, hand and leg motions of the user. In gesture mode, different robot
behaviours are initiated with gestures. For example, the robot starts walking if
the arm is pointed forward. The system was tested with 10 users who reported
satisfactory teleoperation capabilities. However, leg movements were disabled
during user testing because they are too unstable. The robot would fall over.
Additionally, no collision detection for the legs is performed. The wrist is not
used and therefore only 4 degrees of freedom for each arm are controlled.
Ou et al. [35] imitate human motion with the Nao robot using the Kinect
Camera as well. The focus is on whole-body imitation with proper balancing
(Figure 2.7). The human motion is captured by the Kinect camera and the
corresponding joint angles are calculated by minimising a similarity error
function with the Levenberg-Marquardt algorithm. The Kinect does not
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Figure 2.6: Imitation with Nao Robot and Kinect Camera by Zuher and
Romero [34]

provide satisfactory information of the user’s ankle. The robot’s ankle joint
is controlled in order to maintain balance. A stable state is achieved if the
projection of the centre of mass lies within the supporting foot in the single-foot
supporting phase or on the line between the feet in the double-foot supporting
phase. The required angles of the ankle and hip joints are calculated by solving
an optimisation problem with the Levenberg-Marquardt method. If a collision
of links would occur, the corresponding motors stop. The experiments show
promising results. The robot is able to maintain balance most of the time while
the motion still is similar to the human’s. However, the speed of the legs is
reduced.

Figure 2.7: Whole-body imitation with Nao Robot and Kinect camera by Ou
et al. [35]

The Kinect camera is an affordable and easy to set up system for capturing
human motion. The accuracy of the Kinect is limited. The random error of
depth measurement increases quadratically with increasing distance from the
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sensor from a few millimetres to 4 cm at the maximum range of 5 m. The low
resolution of 640 × 480 for the depth image also limits the accuracy especially
for objects farther away [36]. The second version of Kinect is improved in these
domains [37]. However, the standard SDK still does not provide the possibility
to track each finger4.
In 2012 the Leap Motion sensor was introduced which specialises in hand
tracking. It enables tracking of the singular bones in the fingers with sub-
millimetre accuracy. For more details on the Leap Motion refer to Section 3.1.
Bassily et al. [38] use the Leap Motion to control the Jaco robotic arm. The
aim is to provide an easy interface for elderly and disabled people to control
the robotic arm to help them with simple tasks. The Leap Motion is positioned
on a table, and the user moves their hand above it as shown in Figure 2.8. If
the hand is moved in a direction, the end-effector of the robotic arm will move
in this direction as well. Angular information (roll, pitch, yaw) and grasping
motion are also mapped to the robotic arm. To neglect involuntary oscillating
movements caused by diseases such as Parkinson’s Disease, a threshold value
for each motion type is set in an initialising step. The Leap Motion is used
as an interface to control a robotic arm, but only the palm’s position and
orientation are considered. The posture of the rest of the arm is not imitated.

Figure 2.8: Jaco robotic arm controlled with Leap Motion sensor [38]

Yu et al. [39] propose a method to control a Nao humanoid robot with the Leap
Motion controller (Figure 2.9). The Leap Motion is again positioned on a table
with both hands moving above it. Gestures of the right hand are recognised
by the Leap Motion SDK and used to control leg movements. For example,
if a swipe is recognised, the robot walks forward, and if a circle gesture is
registered, the robot turns around. The user’s left hand movements are mapped

4https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx

https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx
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to the robot’s left hand. The Cartesian position and the angular motion are
considered, comparable to [38].

Figure 2.9: Nao robot controlled with Leap Motion sensor by Yu et al. [39]

Non-Optical Systems Motion capture can also be done without cameras.
Usually, these non-optical systems distribute several sensors on the user’s
body. Sensor fusion is used to combine the data from different sensors such
as 3D gyroscopes, accelerometers and magnetometer to compensate drift. In
the NASA’s Robonaut teleoperation mentioned above, such a system is used.
A commercially available motion-tracking suit is the Xsens MVN suit [40].
Koenemann, Burget and Bennewitz [41] use this suit to imitate whole-body
motions with the Nao robot in real-time (Figure 2.10). Only the position of
the end-effectors (hands and feet) and the position of the centre of mass are
considered. The orientation of end-effectors is neglected. The joint angles are
calculated by a numerical inverse kinematics solver based on damped least
squares method. The actor’s body proportions are measured while performing
a “T-pose” in an initialisation step. For posture stabilisation, only the robot’s
leg chain is influenced to keep similarity to the human motion. Similar to Ou’s
approach, the centre of mass is manipulated. Its projection is kept near the line
connecting the feet or inside one foot in single-foot support mode. The results
show a high similarity between robot and human motions, while maintaining
the robot’s balance. Stanton, Bogdanovych and Ratanasena [42] use the Xsens
MVN motion capture suit as well to teleoperate Nao. A neural network is
trained in the beginning by analysing a training sequence in which the human
actor imitates movements of the robot. Afterwards, a real-time teleoperation is
possible. No balance controller is used. The ankle joints are adapted to the
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hip and knee joints in order to keep the feet parallel with the ground. The
downside of the motion-capture suit is its high prize.

Figure 2.10: Whole-body imitation with Nao Robot and Xsens MVN motion-
capture suit by Koenemann, Burget and Bennewitz [41]

2.2.3 Applications Using Teleoperation
Nakaoka et al. [43] adapted and extended Pollard’s algorithm [29] for mapping
dancing motion to generate whole body motions for the HRP-1S humanoid
robot (Figure 2.11). The focus is on ensuring stability when moving the feet.
Motions are acquired by a marker based motion capturing system with eight
infrared cameras. For the particular Japanese dance three leg positions are
dominant and correspondent primitives are defined (stand, squat, step). To
ensure stability, trajectories of the “zero moment point”5 are created between
these primitives. In the simulation, the whole dance sequence can be recreated
by the robot. The real robot is only able to imitate the hand motions with a
reduced speed of motion by the factor 2.5 while standing.
Shon, Storz and Rao [44] use a motion capture system to imitate human
arm movements in real-time. Their approach focuses on learning the shown
motion from demonstration. The inverse kinematic problem is solved by
a commercially available motion-capture system. They use Forward Model
Learning with Hidden Markov Models to accomplish a goal. The demonstrator

5The zero moment point is the point at which the moments introduced by gravity and
inertia cancel each other out. This point should be in the area of the sole for a stable
state.
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Figure 2.11: HRP-1S performs a Japanese dance which was recorded beforehand
with a marker-based motion capturing system [43]

shows the robot how to lift a box with one hand or two hands. Afterwards, the
robot performs this task 40 times and learns, that it is not capable of lifting
the box with one hand and therefore will only use two hands consequently
(Figure 2.12).

Figure 2.12: HOAP-2 lifting a box after learning the movement from a human
demonstrator [44]

Fritsche et al. [45] present a first-person teleoperation interface for the iCub
humanoid robot. The human motions are captured by the Kinect v2. A sensor
glove is used to track the individual fingers and provide haptic feedback to the
user. The robot’s camera streams are shown in a head mounted display (Oculus
Rift DK2). The setup is shown in Figure 2.13. Four degrees of freedom are
controlled in each arm (pitch, roll, yaw of the shoulder and yaw of the elbow).
The wrist joint is neglected. The torso has 3 degrees of freedom. The arm and
torso motions are tracked by the Kinect camera and the required joint angles
are calculated from the tracked positions. The operator’s head movements are
tracked by the sensors in the Oculus Rift and mapped to 3 degrees of freedom
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of the neck. If the operator would exceed the limits of the neck joint angles,
the eyes are moved to increase the field of view. Each hand has 7 degrees of
freedom. The user’s fingers are tracked by the SensorGlove which also provides
haptic feedback via vibration. The intensity of the vibration is determined
by tactile sensors on iCub’s fingertips. After adapting to the dimensions of
the robot and to the delay introduced by filtering and processing sensor data,
a test user was able to pick up an object with the robot’s hand and place
it at a different location. No stereo vision is used in this approach, so the
depth perception is limited. Furthermore, the delay between the operator’s
movements obtained by the Kinect and the robot’s movements is about 800 ms.

Figure 2.13: The user wears an Oculus Rift virtual-reality headset and a sensor
glove to teleoperate the iCub robot; the user’s movements are
tracked by the Kinect camera [45]

Tomić et al. [46] tested different inverse kinematics algorithms with the Romeo
humanoid robot for human imitation. A marker-based motion capture system
is used to track human movements. Virtual markers are placed on the robot.
To imitate human motion, the distance between the user’s and the robot’s
markers is minimised by solving an optimisation problem. Usually, there is an
infinite number of solutions which satisfy this condition because of the high
number of degrees of freedom of humanoid robots. Therefore, Tomić et al.
introduce an additional criterion to choose one solution. Different criteria (for
example minimising joint velocities or minimising kinetic energy) are tested
and compared for best human imitation. Every algorithm is able to imitate
human motion. The experiments were performed on a simulation of the Romeo
robot. No information for real-time capabilities of these algorithms is given,
making them unsuitable for teleoperation.



3 Concept
In this chapter, the hardware and software components used for the intuitive
teleoperation application are explained. The user wears the Oculus Rift DK2
virtual-reality headset with the Leap Motion hand tracking sensor attached
for a first-person experience shown in Figure 3.1. The Leap Motion controller
is used to track the movement of the hands. The obtained joint positions are
sent to a computer which calculates the corresponding joint angles. These
are sent via a network connection to a humanoid robot (e. g. Romeo, Pepper),
which mirrors the movements of the user. The head movements of the user are
tracked with sensors in the Oculus Rift virtual-reality headset. The camera
images captured by the robot are sent back to the computer and displayed on
the Oculus Rift to provide feedback to the user.

Oculus Rift Virtual-Reality Headset
Leap Motion Hand Tracking Sensor
RGB Camera

Figure 3.1: Hardware setup: the user wears the Oculus Rift virtual-reality
headset with the Leap Motion sensor attached; the Pepper robot
imitates the user’s movements and provides the camera images
displayed in the Oculus Rift

20
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3.1 Leap Motion
The Leap Motion1 controller is a consumer-grade hand tracking device. The
device was initially developed to be placed on a desk in front of a screen and to
be used as an input device. The latest software releases focus on virtual reality.
In this setup, the Leap Motion is mounted on a VR headset, which is the way
it is used in the teleoperation system.
The basic setup consists of two infrared cameras and three infrared LEDs
displayed in Figure 3.2. The scene is illuminated by the LEDs which emit
infrared light with a wavelength of 850 nm only when a picture is taken2.
This narrow band and the pulsed light ensure that noise from other infrared
sources is negligible, such as remote controls or VR headsets. According to the
manufacturer, the sensor’s range is 25 mm to 600 mm above the device with sub-
millimetre accuracy. The range is limited by the infrared light propagation. For
hands farther away, a higher intensity is needed which is limited by the power
that can be drawn over the USB connection. The short light pulses improve
the available intensity. The images of both cameras are synchronised and saved
in the USB controller’s memory. The hardware itself only makes necessary
resolution adjustments and sends the stereo image via USB connection to the
computer3. The software removes background objects and reconstructs a 3D
representation. The data is compared with an internal model of a human hand
to calculate the position of the real hand. Filtering techniques are applied to
ensure temporal coherence and overcome problems resulting from occlusions.
The exact functionality of the algorithm is not disclosed, due to patent and
trade secret restrictions.
Different studies have been conducted to measure the precision. Guna et al. [47]
found the standard deviation in a static scenario to be less than 0.5 mm at all
times for a maximum distance of 250 mm. When moving to a discrete position
on a path the standard deviation was below 0.7 mm per axis [48]. The standard
deviation corresponds to the variability of the tracked position. In these studies,
tools were tracked that resemble fingertips which were positioned in parallel
to the sensor. In non-optimal settings, e. g. the fingers are not spread out,
the tracking performance and the robustness substantially decrease. These
studies were conducted with an old version of the SDK. In February 2016 Orion
was introduced, the newest version of the SDK4. This release focused on VR
applications and greatly improved tracking and latency. The range was also

1https://www.leapmotion.com
2http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-

controller-work/
3http://blog.leapmotion.com/understanding-latency-part-1/
4http://blog.leapmotion.com/orion/

https://www.leapmotion.com
http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work/
http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work/
http://blog.leapmotion.com/understanding-latency-part-1/
http://blog.leapmotion.com/orion/
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significantly extended up to 800 mm5. To the author’s knowledge, there have
not been any new studies published yet, analysing the improved capabilities.
However, a clear difference is observable, especially concerning the improved
sensory space, latency and robustness.

Infrared LEDs

Infrared Cameras

Figure 3.2: Opened Leap Motion controller exposes two infrared cameras and
three infrared LEDs6

The obvious alternative to the Leap Motion sensor is the Microsoft Kinect
camera with its provided skeletal tracking capabilities. The current version
tracks 25 skeletal joints of the whole body when the user is standing. This
would simplify the calculation of the shoulder joint angles in comparison with
the method introduced in this thesis because the Leap Motion does not provide
the position of the shoulder joint. However, the precision of the tracked joints
by the Kinect skeletal tracker is inferior to the Leap Motion. According to
Wang et al. [49] the mean joint position offset for most of the joints for a user
in motion is 50 mm to 100 mm and the standard deviation is 10 mm to 50 mm.
The Leap Motion has a standard deviation of the distance for movement in
the magnitude of ≈1 mm as mentioned above in comparison. To be fair, these
values were measured for fingertips. The positions of some other joints (e. g.
elbow) have a visible offset. The Leap Motions tracks the human hand in great
detail down to the position and direction of the single finger bones. The Kinect
only tracks the hands, the thumbs and the tips of the hands. The robots on

5http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-
controller-work/

6https://learn.sparkfun.com/tutorials/leap-motion-teardown

http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work/
http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work/
https://learn.sparkfun.com/tutorials/leap-motion-teardown
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which we tested the teleoperation application are only able to open and close
their hands. To control these simple end-effectors, the joints provided by the
Kinect might be sufficient. For more complex hands with independent fingers,
the Leap Motion sensor data is needed. Another advantage is the portability of
the Leap Motion. It is positioned on the Oculus Rift, so no additional camera
has to be set up opposite of the user.

3.1.1 Leap SDK and Orion
Leap Motion provides an SDK with two basic libraries, one written in C++
and the other in C. Language bindings for these libraries are also available
for C#, Objective-C, Java and Python. A WebSocket server and a client-side
JavaScript library are available for developing JavaScript and web applications.
Leap motion data can be used in the game engines Unity and Unreal with
plugins7.
The provided software runs on the client computer as a service on Windows
or as a daemon on Unix-based systems. It connects to the controller device
over USB and provides two APIs (application programming interface) to access
the sensor data: a native interface and a WebSocket interface. An application
connects to the native interface through a dynamically loaded library. The
WebSocket server sends tracking data in the form of JSON messages8.

Figure 3.3: Visualisation of a tracked arm by the Leap Motion sensor

7https://developer.leapmotion.com/documentation/cpp/devguide/Leap_SDK_
Overview.html

8https://developer.leapmotion.com/documentation/cpp/devguide/Leap_
Architecture.html

https://developer.leapmotion.com/documentation/cpp/devguide/Leap_SDK_Overview.html
https://developer.leapmotion.com/documentation/cpp/devguide/Leap_SDK_Overview.html
https://developer.leapmotion.com/documentation/cpp/devguide/Leap_Architecture.html
https://developer.leapmotion.com/documentation/cpp/devguide/Leap_Architecture.html
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To establish a connection to the Leap Motion device, a controller object has to
be created. This controller provides snapshots of the sensory data, so-called
frames. There are two possibilities of obtaining this data, either event-based or
by polling. The former requires a listener object defined by the Leap SDK. The
controller calls the relevant listener callback function when an event occurs,
e. g. on each new frame. These functions are called from a thread created
by the Leap Motion library. The other possibility is to call the controller’s
frame() function when the application needs the data. This is the simpler
option and is easy to use when the application already has a loop for example
for rendering. It is possible to get the same frame several times if the frame
rate of the application exceeds the frame rate of the Leap Motion. This effect
is avoided when using callback functions.
A class is defined for each tracked physical entity, like hands, fingers and
tools. The arm object describes the forearm and includes the position of the
elbow, of the wrist and the direction of the arm. The other objects contain
similar information down to the individual bones of the fingers. In Figure 3.3 a
visualisation of the tracked human arm is shown.

3.2 Oculus Rift
In order to control a robot in a teleoperation setting, the user has to see the
surroundings of the robot. A virtual reality headset has many advantages over
a conventional monitor. The head of the robot and therefore the orientation of
the cameras can be controlled by the motion sensors in the headset. This is a
very intuitive way of manipulating the field of view. Two cameras can be used
to create a stereoscopic 3D image, which makes it easier to complete certain
tasks like grabbing. The whole setup creates a sense of immersion for the user.
The Oculus Rift is a head-mounted display (HMD) and was first launched on
the crowd-funding website Kickstarter in 20129. The Development Kit 1 started
shipping on 29 March 2013 with a resolution of 1280x800 (640x800 per eye).
The updated Development Kit 2 was released in July 2014. The resolution was
increased to 1920x1080 (960x1080 per eye), the display technology changed
from LCD to OLED and a camera was included to track the user’s translational
motion. The Consumer Version started shipping on 25 March 2016. It uses
two panels, one for each eye, instead of one like the previous versions. These
panels have a resolution of 1080x1200 and a refresh rate of 90 Hz.

9https://www.kickstarter.com/projects/1523379957/oculus-rift-step-into-
the-game/

https://www.kickstarter.com/projects/1523379957/oculus-rift-step-into-the-game/
https://www.kickstarter.com/projects/1523379957/oculus-rift-step-into-the-game/
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3.2.1 Oculus Rift Development Kit 2
For our implementation, we use the Oculus Rift Development Kit 2 (DK2)
pictured in Figure 3.4. The improved Consumer Version was not available when
the project started, and the DK2 still has some advantages. Oculus stopped
supporting Linux operating systems with version 0.6 of their SDK, which is
required for the new headset. Furthermore, due to the lower screen resolution,
the DK2 does not need as much computation power.

Figure 3.4: Oculus Rift Development Kit 2

The screen used in the DK2 is the same panel that is built in the Samsung
Galaxy Note 3 phone. Its diameter is 140 mm with a resolution of 1920x1080.
In front of the display are two lenses, which increase the perceived field of view
because the light reaches the eyes from the sides as well as from straight ahead.
Furthermore, the lenses10 create collimated light which means the rays have
been aligned in parallel. This way, the display seems to be infinitely far away
instead of approximately 4 cm in front of the eyes, so the user’s eyes are able to
focus on the image. The lenses introduce distortions and chromatic aberration,
which have to be accounted for when rendering [50].
For an immersive VR experience, the user’s head orientation and position have
to be tracked fast and precisely. The DK2 has a gyroscope, accelerometer11

and a magnetometer built in. The sensors provide angular velocity, linear
acceleration and magnetic field strength at a refresh rate of 1000 Hz12. The

10http://vrtifacts.com/oculus-dk2-lens-characteristics/
11https://www.invensense.com/products/motion-tracking/6-axis/mpu-6500/
12The magnetometer readings only change at a rate of 220 Hz

http://vrtifacts.com/oculus-dk2-lens-characteristics/
https://www.invensense.com/products/motion-tracking/6-axis/mpu-6500/
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samples are sent to the host at a rate of 500 Hz13. Each package contains
two samples. The user’s head orientation is calculated by sensor fusion of the
different inputs to minimise the drift. Predictive filtering is applied to reduce
latency [51]. However, the head position cannot be calculated with these sensor
readings accurately. An offset in acceleration results in a quadratic error growth
of the position. The DK2 comes with a camera that has to be placed in front
of the user and tracks an array of infrared LEDs in the faceplate of the headset
to estimate the head position [52].

3.2.2 Virtual Reality Considerations
When designing an application for virtual reality, many things have to be taken
into account, that can be neglected when developing for traditional systems.
Many users experience symptoms of cybersickness when using VR headsets
comparable to motion sickness. These symptoms include nausea, disorientation,
eye strain and headaches. The cause of cybersickness is still not completely
understood. Different theories exist to explain the phenomenon, with sensory
conflict theory being the most prominent. It states that conflicts between visual
and vestibular systems are the main cause, so basically what you see differs
from what you feel [53], [54].
A key factor for minimising the user’s discomfort is to keep the latency very
low. Ideally, a motion-to-photon latency of less than 20 ms is recommended.
This is the total time between the user’s head movement and an updated image
being displayed on the screen [55]. The application’s frame rate should also
be at least at the display’s frame rate of the DK2 of 75 Hz to avoid judder.
This high frame rate is essential in VR settings, more modern headsets have
increased it to 90 Hz.
The described factors lead to a few consequences in a teleoperation setting.
It is not advisable to take the two camera images of the robot and display
them to the left and right eye of the user. The distance of the left and right
camera of the robot probably differs from the user’s interpupillary distance
(IPD). Therefore, the images probably would not result in one stereoscopic
image. More importantly, there will be a significant latency between the head
movements of the robot and of the user caused by computation time and limited
motor velocity. In the worst case, the user tries to look somewhere, where the
robot cannot reach because of kinematic restrictions. Additionally, the used
robots’ cameras support a maximum frame rate of 30 Hz with a low resolution
as stated in Section 3.3. To overcome these problems, a virtual environment
is created that reacts to movements of the user almost instantly. The robot’s

13http://doc-ok.org/?p=1405

http://doc-ok.org/?p=1405
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video feed is displayed on a floating canvas which position depends on the
robot’s head pose. This way, the user’s discomfort is kept to a minimum while
providing the robot’s camera readings with a feedback in which direction the
robot is looking. The detailed implementation is described in Section 4.2.2.

3.2.3 Oculus SDK 0.5
The Oculus Rift is still a very young product. Therefore, a lot of changes
occur between different versions of the SDK including major paradigm shifts.
In May 2015 Oculus VR announced to drop support for Linux and macOS14.
The so-called extended mode which made it possible to use the Oculus Rift as
an external monitor was removed as well, in favour of direct rendering to the
Oculus Rift which is more efficient. We wanted to implement the teleoperation
on Windows as well as on Ubuntu which forced us to stay at version 0.5 of the
SDK. This does not have any major restrictions besides that we are not able
to use the newest hardware as well as some optimised functions.

Distortion of the Lenses Rendered Image What the User sees

Pincushion Distortion Barrel Distortion Rectilinear

∘ ﹦

Figure 3.5: The rendered barrel distortion cancels out the pincushion distortion
introduced by the lenses of the Oculus Rift

In the application, an HMD object has to be created to establish a connection
to the Oculus Rift. The API provides functions to get the current pose of
the user’s head. To create a stereoscopic image the virtual scene has to be
rendered twice from different camera positions for the two eyes. The SDK
provides information for the distance of the cameras and the field of view. As
mentioned above, the lenses magnify the image to enhance the field of view.
This introduces distortions that have to be counteracted by post-processing
the rendered view. The pincushion distortion is cancelled out by applying
the inverse barrel distortion to the image as seen in Figure 3.5. Chromatic
aberration is an effect of lenses to focus light with different wavelengths to

14https://www.oculus.com/en-us/blog/powering-the-rift/

https://www.oculus.com/en-us/blog/powering-the-rift/


3 Concept 3.3 Humanoid Robots by SoftBank Robotics 28

Figure 3.6: A scene rendered for the Oculus Rift with barrel distortion and
colour shift applied to cancel out effects of the lenses

different convergence points. In the Oculus Rift, it is responsible for colour
fringes around edges near the lens periphery. It can be corrected by shifting the
different colour channels of the image in the opposing direction of the chromatic
aberration. The Oculus SDK takes care of these corrections. The developer just
needs to provide the two textures for the left and the right eye. In Figure 3.6
a rendered scene for the Oculus Rift is shown. The barrel distortion and the
colour shift are applied to each image.

3.3 Humanoid Robots by SoftBank Robotics
Romeo is a humanoid robot by the corporation SoftBank Robotics (formerly
Aldebaran Robotics) based in France. It’s the successor of the 58 cm tall Nao
robot which was released in 2008 to the public. Nao is mainly used as a research
platform and is the official robot for the RoboCup soccer tournament15. Pepper
is the newest robot of SoftBank focused on perceiving human emotions and
reacting accordingly to these emotions16. All of them are shown in Figure 3.7.

15https://www.ald.softbankrobotics.com/en/cool-robots/nao
16https://www.ald.softbankrobotics.com/en/cool-robots/pepper

https://www.ald.softbankrobotics.com/en/cool-robots/nao
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
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Figure 3.7: Humanoid robots by SoftBank Robotics (from left) Nao, Romeo
and Pepper17

3.3.1 Project Romeo
The Romeo project started in 2009 with the goal to create a humanoid robot
to assist people with loss of autonomy, such as elderly or disabled persons18.
The first prototype that is in use by different laboratories in Europe was
introduced in 2014. It is approximately 140 cm tall and has 37 degrees of
freedom. It is controlled by 4 CPU boards based on the Intel Atom (Z500
series) processor19, which are assigned to different domains like audio, video
and artificial intelligence respectively [56]. The robot has a total of four 2D
cameras (ON Semiconductor MT9M11420), two in the forehead and one in
each eye. These cameras provide a maximum frame rate of 30 Hz which is far
below the recommended frame rate for virtual reality applications of 75 Hz.
Optionally it is also equipped with a 3D camera (ASUS Xtion21). Romeo has
four microphones and two loudspeakers on his head. You can connect to it via
Ethernet or WiFi.
In our teleoperation application, only the head and arms are used. Therefore,
the further explanations will focus on these parts. The kinematic chain of Romeo
17https://www.ald.softbankrobotics.com/en/press/gallery/romeo
18https://www.ald.softbankrobotics.com/en/cool-robots/romeo
19http://doc.aldebaran.com/2-1/family/romeo/motherboard_romeo.html
20http://www.onsemi.com/pub_link/Collateral/MT9M114-D.PDF
21http://doc.aldebaran.com/2-1/family/romeo/video_3D_romeo.html

https://www.ald.softbankrobotics.com/en/press/gallery/romeo
https://www.ald.softbankrobotics.com/en/cool-robots/romeo
http://doc.aldebaran.com/2-1/family/romeo/motherboard_romeo.html
http://www.onsemi.com/pub_link/Collateral/MT9M114-D.PDF
http://doc.aldebaran.com/2-1/family/romeo/video_3D_romeo.html
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Figure 3.8: Joints of Romeo’s upper body

is illustrated in Figure 3.8. Each arm has 7 degrees of freedom comparable to the
human arm. The joints are listed in Table 3.1 with their corresponding range.
For comparison, the equivalent human joints that cause the same movement
are shown. Overall, the range is quite similar. Romeo exceeds in roll motions
but falls behind in most of the other motions. In Table 3.2 the different joints
of the head and neck are shown. Romeo has two separate joints to change the
pitch.

3.3.2 Pepper Robot
Pepper was unveiled to the public in June 2014. It is a humanoid robot. It
is commercially available and is used in SoftBank’s own stores as well as in
stores for overpriced coffee in capsules. It is approximately 120 cm tall and has
20 degrees of freedom. In contrast to Romeo and Nao, Pepper is a wheeled
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Joint Name Range of Romeo Range of human [57]
ShoulderPitch −82.7° to 127.2° −90° to 135°
ShoulderYaw −24.7° to 65.3° −50° to 120°
ElbowRoll22 −120° to 120° −80° to 110°
ElbowYaw −90° to 0° −145° to 0°
WristRoll −210° to 30° −180° to 5°
WristYaw −25° to 25° −15° to 30°
WristPitch −56° to 56° −85° to 85°

Table 3.1: Comparison of the range of arm joints between Romeo and a human

Joint Name Range of Romeo Range of human [58]
NeckYaw −90° to 90° −70° to 70°
NeckPitch −20° to 40° −40° to 55°
HeadPitch −20° to 16° -
HeadRoll −20° to 20° −35° to 35°

Table 3.2: Comparison of the range of head joints between Romeo and a human

robot with 3 multi-directional wheels and a maximum speed of 3 km/h23. It
is equipped with two 2D cameras (OmniVision OV564024) and a 3D depth
camera (ASUS Xtion25). Pepper uses an Intel Atom E3845 quad-core processor
with 4 GB of RAM. Four microphones on its head enable Pepper to locate
the direction of sound. For sound output, two speakers are located in its
ears. Pepper connects to a network via WiFi. For a faster connection, an
Ethernet port is available. It is powered by a 795 W h battery which lasts for
approximately 12 hours according to the manufacturer. In contrast, Romeo
does not have any battery and needs to stay connected to a power source.
For obstacle avoidance, Pepper is equipped with laser and sonar sensors. A
gyroscope and an accelerometer provide sensor information for the robot to
balance itself. A tablet is fixed to Pepper’s chest as an input method, for

22Romeo’s ElbowRoll results in a rotation of the fore-arm. The origin of the same movement
for humans is in the shoulder, so the joint would be called ShoulderRoll. To compare the
range they are listed in the same line.

23https://www.ald.softbankrobotics.com/en/cool-robots/pepper/find-out-more-
about-pepper

24http://doc.aldebaran.com/2-5/family/pepper_technical/video_pep.html
25http://doc.aldebaran.com/2-5/family/pepper_technical/video_3D_pep.html

https://www.ald.softbankrobotics.com/en/cool-robots/pepper/find-out-more-about-pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper/find-out-more-about-pepper
http://doc.aldebaran.com/2-5/family/pepper_technical/video_pep.html
http://doc.aldebaran.com/2-5/family/pepper_technical/video_3D_pep.html
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visualising information or transporting emotions.
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Figure 3.9: Joints of Pepper

The discussion will focus on Pepper’s upper body and how it compares to
Romeo’s upper body. The joints are shown in Figure 3.9. Each arm has five
degrees of freedom, not counting the opening and closing of the hand. The head
is moved by two different joints. In comparison to Romeo, Pepper lacks two
arm joints and two head joints. As a result, Pepper is not able to tilt its head
and perform a pitch or yaw movements of the hand. In Table 3.3 and Table 3.4
the range of the joints is shown. The human joints have a similar range in
comparison, with some major differences. ShoulderYaw cannot decrease below
0.5° because it would collide with the tablet. WristRoll range differs vastly
from the human equivalent probably to compensate for the rotation of the wrist
humans can induce in the shoulder joint. These adjustments make the pouring
motion possible for the robot and increase the human imitation performance
as shown in Chapter 5. The realisable angles for HeadPitch and ElbowRoll are
for various positions of the head and arm smaller than stated in the table, to
avoid collisions with the tablet.
For teleoperation, the operational space of Pepper is more restricted than
Romeo’s operational space. On the positive side, complexity is reduced due
to fewer joints. Pepper’s 2D cameras are positioned in its forehead and in
its mouth. Romeo has two stereo pairs of 2D cameras which can be used to
improve the horizontal field of view by displaying the left camera image on the
left side of the virtual reality headset and the right image on the right side.
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This is not possible for Pepper, and the horizontal field of view is therefore only
57.2°. Due to Pepper’s multidirectional wheels, a simple keyboard control for
locomotion can be implemented. Currently, a comparable solution for Romeo is
not possible, because there are no methods for walking available in the SDK.

Joint Name Range of Pepper Range of human [57]
ShoulderPitch −119.5° to 119.5° −90° to 135°
ShoulderYaw 0.5° to 89.5° −50° to 120°
ElbowRoll −119.5° to 119.5° −80° to 110°
ElbowYaw −89.5° to −0.5° −145° to 0°
WristRoll −104.5° to 104.5° −180° to 5°
WristYaw - −15° to 30°
WristPitch - −85° to 85°

Table 3.3: Comparison of the range of arm joints between Pepper and a human

Joint Name Range of Pepper Range of human [58]
HeadYaw −119.5° to 119.5° −70° to 70°
HeadPitch −40.5° to 36.5° −40° to 55°
HeadRoll - −35° to 35°

Table 3.4: Comparison of the range of head joints between Pepper and a human

3.3.3 NAOqi
The operating system of SoftBank robots is NAOqi OS which is an embedded
GNU/Linux distribution based on Gentoo26. It runs different programs and
libraries including NAOqi which is the main software that controls the robot.
The NAOqi framework is provided to develop for these systems and can be
used on Windows, Linux or macOS. It supports the programming languages
C++, Python Java and JavaScript.
The basic structure is shown in Figure 3.10. The NAOqi executable is a broker
which provides access to different methods over a network connection. When
the application launches it loads the preferences file autoload.ini that defines
which libraries are loaded. The libraries contain modules which are basically
26http://doc.aldebaran.com/2-1/dev/tools/opennao.html

http://doc.aldebaran.com/2-1/dev/tools/opennao.html
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Figure 3.10: Structure of the NAOqi Framework

classes within the corresponding library (e. g. ALMotion, ALVideoDevice).
These modules can either be used locally or remotely. A local module is
compiled as a library and can only run on the robot directly. A remote module
is compiled as an executable and can be used on an external computer. It
communicates with the robot over a network connection. In the teleoperation
application, the modules are used remotely because information from the Leap
Motion and Oculus Rift is needed to control the robot. These devices are
connected to a computer which calculates the required movements and sends
the corresponding instructions remotely to the robot. Vice versa, sensor data
from the robot is needed for rendering to the Oculus Rift such as images from
the cameras and the head pose.
To exchange information with the robot, a proxy to the needed module has to
be created. A proxy is an object that contains all methods of the corresponding
module (Figure 3.10). It can either be created locally or remotely. The
latter requires the IP and port of a broker, and the module must be in this
broker27. The internal communication between the upper-level software (NAOqi
modules) and the low-level electronic devices (boards, sensors, actuators) is
handled by the DCM28 (device communication manager). It sends commands

27http://doc.aldebaran.com/2-1/dev/naoqi/index.html
28http://doc.aldebaran.com/2-1/naoqi/sensors/dcm.html

http://doc.aldebaran.com/2-1/dev/naoqi/index.html
http://doc.aldebaran.com/2-1/naoqi/sensors/dcm.html
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Figure 3.11: Communication inside NAOqi framework

to the actuators and receives sensor data. The data is saved in a centralised
memory called ALMemory which can be accessed by upper-level modules29.
The communication process is shown in Figure 3.11.
In NAOqi two possibilities exist for calling functions. Blocking calls will
be executed sequentially. Non-blocking calls will initiate a task in a parallel
thread. When the task is complete, the corresponding thread will be terminated.
This allows, for example, to move different joints and access the video feed
simultaneously.

3.4 Teleoperation Setup
The complete hardware setup is shown in Figure 3.12. The teleoperation
application is running on a computer. The Leap Motion sensor is connected
via USB and sends the measured arm pose at a rate of approximately 115 Hz.
The Oculus Rift virtual-reality headset is connected via USB and HDMI. The
head pose is read by the teleoperation application. An instance of NAOqi runs
on the robot which communicates with the controlling computer via a network
connection. The teleoperation application polls the current joint angles and
the camera images of the robot. This data is used to calculate the desired joint
angles and render the images for the Oculus Rift headset.

29http://doc.aldebaran.com/2-1/naoqi/core/almemory.html

http://doc.aldebaran.com/2-1/naoqi/core/almemory.html
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Figure 3.12: Setup of the different hardware components used for teleoperation
and which kind of data is sent between the devices



4 Implementation
The components described above are combined to create the teleoperation
application. In this chapter, we describe the algorithm for calculating the joint
angles of the robot, how the camera images of the robot are displayed inside the
virtual-reality headset and how the different software modules are combined.
The focus is on providing the user with an intuitive method to control the
upper body of a humanoid robot. Low latency and small amount of jitter of
the robot’s movements as well as an implementation to avoid cybersickness are
key factors to accomplish a satisfying experience.

4.1 Imitation of User Motion
Forward Kinematics is the problem of calculating the end-effector position from
the values of the joint parameters. This is done by solving the specific kinematic
equations of the robot. Inverse Kinematics is the process of computing the
required joint angles to reach a desired position of the end-effector. In the
teleoperation application, the sensor information of the Leap Motion haas
to be translated to the appropriate joint angles. NAOqi does not provide
a solver for inverse kinematic problems for Romeo and Pepper. There are
different possibilities to solve this problem. It can be calculated analytically by
solving trigonometric equations for a specific kinematic chain or approximated
iteratively by minimising an error function. The latter numerical solution is
often used in complex kinematic chains, due to the difficulty of determining
the inverse function of the nonlinear forward kinematic equations. For more
details, refer to Section 2.2.1.

4.1.1 Homogeneous Transformation
The following mathematical description and notation is based on [59]–[61]. A
position in space can be described by a 3 × 1 vector. It is important, to attach
this vector to a specific coordinate system because in robotics there are typically
multiple coordinate systems. For example, each joint has at least one local
coordinate frame. In this work, only Cartesian coordinate systems are used
and the terms “reference frame”, “coordinate frame” and “coordinate system”

37
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are used equivalently. To show the coordinate frame the vector is defined in, a
subscript is written. For example,

pA =

pAxpAy
pAz

 (4.1)

defines a vector in the coordinate system {A}. The three values pAx, pAy, pAz
are the distances along the axes of {A}.
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Figure 4.1: Vector relative to frame and coordinate transformation.

A vector can be transformed to a different coordinate system {B} by

pB = RA
BpA + dAB (4.2)

illustrated in Figure 4.1. The rotation transformation matrix

RA
B =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (4.3)
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rotates the axes of the coordinate system {A} to equal the orientation of the
frame {B}. For example, the matrix

Rx,ψ =

1 0 0
0 cosψ sinψ
0 − sinψ cosψ

 (4.4)

rotates the reference frame counter-clockwise by an angle ψ around the x-axis
(Roll). Every rotation in space can be executed by performing rotations around
three coordinate axes subsequently. The rotation matrices around y (Pitch)
and z (Yaw) are

Ry,θ =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 Rz,φ =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 . (4.5)

Matrix multiplication is not a commutative operation and therefore, the order
of rotations is important. The order used in this work is x− y − z, as used in
the NAOqi documentation and most of the robots’ joints, so

R = Rz,φRy,θRx,ψ. (4.6)

In the standard definition of a rotation matrix, the columns have unit magnitude
and are orthogonal. A consequence is that

RA
B =

(
RB
A

)−1
=

(
RB
A

)T
, (4.7)

which means the rotation matrix from coordinate frame {A} to {B} is the
transpose of the rotation matrix from coordinate frame {B} to {A}.
The origin is moved by adding the translation vector

dAB =

dAxdAy
dAz

 . (4.8)

The summation in (4.2) can be included in a matrix operation by introducing
homogeneous coordinates and the homogeneous transformation:[

pB
1

]
= TA

B

[
pA
1

]
=

[
RA
B dAB

0 0 0 1

] [
pA
1

]
. (4.9)

This simplifies the transformation to a pure matrix multiplication, but because
the 4 × 4 matrix B

AT is not orthogonal, (4.7) is not applicable anymore:

TA
B

−1 6= TA
B

T
. (4.10)
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4.1.2 Algorithm for Robot Joint Angle Calculation
The imitation of the user’s head orientation is straightforward. The Oculus
Rift provides the head pose of the user. The sensor readings are converted
to Euler angles and sent to the robot. For Romeo, NeckY aw, HeadPitch
and HeadRoll are set to the corresponding measured angles. Pepper lacks the
possibility of tilting its head, so only HeadY aw and HeadPitch are set to the
corresponding values.
For the robot’s arm movements, the focus in our application is to be a good
imitation of the user’s arm movements. It is more important for the different
parts of the arm (upper arm, forearm, hand) to point in the right direction,
than the position of the end-effector to be precise. If only the position of the
user’s hand is considered for solving the inverse kinematic problem, the position
of the robot’s hand might be more accurate, but the robot’s arm posture might
differ a lot from the one of the user due to different physical dimensions of the
arms. Therefore, the direction vectors of the upper arm, forearm and hand are
used to calculate the joint angles of the shoulder, elbow and wrist respectively.
This results in a natural movement of the robot’s arms. If a precise position of
the hand is needed, for example for grabbing, the user will act as a feedback
loop and adjust the hand position due to the visual information.
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Figure 4.2: Coordinate frames on the user side, and the measured positions
and directions of the Leap Motion that are used in the algorithm
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Leap Motion provides many different measurements besides the palm position.
For the motion calculation, the measured elbow position, forearm direction
and hand direction and hand normal are used. This way, the inverse kinematic
problem breaks down to solving simpler equations which can be solved analyti-
cally with trigonometry. The Leap Motion sensor is positioned on the front
side of the Oculus Rift as shown in Figure 4.2. The sensor information needs
to be transformed to the different frames of reference in the joints.
The position of the user’s elbow is used to calculate the desired angles of
the shoulder joints. The elbow position in the Leap frame peL needs to be
transformed to the shoulder frame by[

peS
1

]
= TO

STL
O

[
peL
1

]
. (4.11)

The matrix TL
O transforms from the Leap to the Oculus frame. The first step

is to scale the Leap data from millimetres to metres, then rotate the coordinate
system to equal the one used for OpenGL and afterwards translate 21 cm in
the direction of the negative z-axis to move the origin to approximately the
middle of the head:

TL
O =


1 0 0 0
0 1 0 0
0 0 1 −0.21
0 0 0 1


︸ ︷︷ ︸

Translation


−1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 1


︸ ︷︷ ︸

Rotation


0.001 0 0 0

0 0.001 0 0
0 0 0.001 0
0 0 0 1


︸ ︷︷ ︸

Scaling

.

(4.12)
The 21 cm are composed of 8 cm to get to the height of the eyes1 and 13 cm to
reach the middle of the head. Subsequently, the origin is moved to the shoulder
with

TO
S =


0 0 −1 0

−1 0 0 0
0 1 0 0
0 0 0 1


︸ ︷︷ ︸

Rotation


1 0 0 ±0.21
0 1 0 0.225
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

Translation

 R(q)
0
0
0

0 0 0 1


︸ ︷︷ ︸

Rotation

. (4.13)

The matrix TO
S makes the sensor data independent of the head position. It

transforms the elbow position to a fixed coordinate frame in the shoulder. R(q)
is calculated from quaternions obtained by the Oculus sensors. For details refer
to the literature e. g. [1]. A final rotation has to be performed to get to the
robot’s coordinate system as used by NAOqi.

1http://blog.leapmotion.com/vr-essentials-need-build-scratch/

http://blog.leapmotion.com/vr-essentials-need-build-scratch/
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The translations used above are based on the average dimensions of German
males aged 26-40 [62]. Additionally, the position of our shoulder changes when
we are moving. Therefore, the described transformation moves to origin only
approximately to the centre of rotation of the shoulder joint. However, the
approximation only influences the shoulder joint angles. Direction vectors are
used to calculate the desired angles of the other joints. Therefore, no translation
has to be performed as described below. Additionally, the user can easily adapt
his arm posture to the error. Overall, the error made by the approximation
is negligible for our teleoperation system and an additional sensor to get the
shoulder position is not necessary.

yS

xS

zS

xE

yE

zE

zW

xW
yW

Figure 4.3: Coordinate frames on the robot side

The required pitch angle of the robot’s shoulder can be calculated by

ShoulderP itch = θS = atan2(−peSz,peSx) (4.14)

where pSx,pSy,pSz are the coordinates of the elbow’s position in the shoulder
frame. The robot’s ShoulderY aw joint rotates with the arm if ShoulderP itch is
changed. Therefore, the coordinate system has to be rotated before calculating
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ShoulderY aw. This is done by calculating

peS′ = Ry,θS
pS =

cos θS 0 − sin θS
0 1 0

sin θS 0 cos θS

 peS. (4.15)

The updated elbow position peS′ is used for

ShoulderY aw = φS = atan2(peS′y,p
e
S′x). (4.16)

To calculate the elbow angles, the Leap Motion provides the direction of the
forearm efL. This direction needs to be transformed to the robot’s elbow
coordinate system as seen in Figure 4.3. It is only necessary to apply the
various rotational matrices and no translation because it is a direction and not
a position:

efE = RS
ERO

S RL
OefL. (4.17)

RO
S and RL

O are the rotations of TO
S and TL

O respectively. The only new matrix
is RS

E, which transforms from the shoulder frame to the elbow frame. It depends
on the robot’s current joint angles of the shoulder and is calculated by

RS
E = Rz,φS

Ry,θS
=

 cosφS sinφS 0
− sinφS cosφS 0

0 0 1


cos θS 0 − sin θS

0 1 0
sin θS 0 cos θS

 , (4.18)

Two different approaches exist to calculate the rotation matrices which are
dependent on the robot’s joint angles. Either the current angles measured by
the robot’s sensors or the calculated desired angles can be used. Both methods
have advantages. When using the measured angles, the robot adapts the joints
further down the kinematic chain to the currently measured angles of the joints
that come before. This might reduce the error of the end-effector position
during fast movements of the shoulder joints while the elbow joints hardly
change. In a perfect world without latency, this method would be preferable.
Due to the latency of sending the measured joint angles to the teleoperation
computer, the robot adjusts the joint angles to measurements from the past.
This results in an overshooting of the end-effector position and an additional
delay because the correct end-positions of the joints can only be calculated when
the measurements of the joints further up the kinematic chain are available.
These problems do not occur when using the calculated desired joint angles.
These are the angles of the joint configuration the robot will be at after the
movement has finished. Of course, the calculated angles have to be bound to
the range of the robot’s joints. This is more complicated for Pepper because the
range of ElbowY aw changes depending on the value of ElbowRoll. However,
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even if the changing range is ignored, the results are still satisfying. Therefore,
this method is implemented in the teleoperation system.
ElbowRoll is computed by the equation

ElbowRoll = ψE = atan2(efEz,e
f
Ey) (4.19)

As before, the joint for ElbowY aw rotates when ElbowRoll changes. The
forearm direction efE needs to be rotated by

efE′ = Rx,ψS
efE =

1 0 0
0 cosψE sinψE
0 − sinψE cosψE

 efE, (4.20)

before calculating

ElbowY aw = φE = atan2(efE′y,e
f
E′x). (4.21)

Leap Motion provides a vector pointing from the wrist position to the palm
centre, as well as a vector perpendicular to the plane formed by the hand. This
normal vector nhL is used to calculate WristRoll after bringing it to the wrist
coordinate frame by

nhW = RE
WRS

ERO
S RL

OnhL (4.22)
with

RE
W =

 cosφE sinφE 0
− sinφE cosφE 0

0 0 1


1 0 0
0 cosψE sinψE
0 − sinψE cosψE

 . (4.23)

For Pepper, RE
W contains an additional rotation of −9◦ around the y-axis due

to its structure. Now, we can calculate

WristRoll = ψW = atan2(nhWy,− nhWz). (4.24)

For Pepper, the calculation of the arm joints ends at this point. Romeo has
two additional degrees of freedom in his wrist. To calculate the angles for the
two additional joints the direction vector ehL pointing from the position of the
wrist to the palm centre is used. It is transferred to the wrist coordinate frame
rotated by WristRoll by

ehW ′ = Rx,ψW
RE
WRS

ERO
S RL

OehL (4.25)

with

Rx,ψW
=

1 0 0
0 cosψW sinψW
0 − sinψW cosψW

 (4.26)
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which is used for

WristY aw = φW = atan2(ehW ′y,e
h
W ′x). (4.27)

WristP itch is calculated by

ehW ′′ = Rz,φW
ehW ′ =

 cosφW sinφW 0
− sinφW cosφW 0

0 0 1

 ehW ′ (4.28)

and
WristP itch = θW = atan2(−ehW ′′z,e

h
W ′′x). (4.29)

4.1.3 Filter
The calculated joint angles are sent to the robot through the NAOqi SDK with
the function ALMotionProxy::setAngles(). This function is a non-blocking
call which means the calling thread does not need to wait for the robot to reach
the desired location. As soon as new desired joint angles are available due to
new measurements, the updated values are sent to the robot. This ensures the
fastest possible translation from human motion to robot motion.
Sensor noise results in jitter of the robot motion. A filter can be added to reduce
this jitter. However, a filter adds time latency (so called lag) to the system.
The filter should be simple to limit computation time. The 1e filter introduced
by Casiez, Roussel and Vogel [63] is specifically developed for tracking human
motion. It is a first order low-pass filter with an adaptive cutoff frequency. An
ordinary low-pass filter would reduce jitter at slow speeds but would not be
able to follow fast movements. The 1e filter adapts the cutoff frequency for the
updated value depending on an estimate of the speed. When holding the hand
steady, a low cutoff frequency is used to reduce jitter. When moving fast, the
cutoff frequency is increased to reduce lag. A higher cutoff frequency increases
jitter, but humans are more sensitive to lag when moving fast according to
Casiez, Roussel and Vogel.
In our implementation, a separate filter is used for each joint angle. The 1e
filter has two tuneable parameters. These are set to the same values for every
joint angle.

4.2 User Interface
The goal is to provide the user with a natural and intuitive interface to control
the robot without causing discomfort. The Oculus Rift is used to display
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the camera feed of the robot to the user. There are two APIs supported by
the Oculus SDK for rendering to the head mounted display: OpenGL and
Direct3D. The latter is officially only implemented on the Windows platform2.
OpenGL is an open standard and is available on multiple platforms. To ensure
cross-platform compatibility, OpenGL was the obvious choice to use in the
teleoperation application.

4.2.1 OpenGL API
The following description of the OpenGL API is based on [64]. The OpenGL
API is a software library to access the features of graphics hardware in order to
render to a display. Rendering is the process of creating an image from models.
The models used in OpenGL are constructed from geometric primitives (points,
lines and triangles) defined by the corresponding vertices. A vertex is basically
a bundle of data values that are processed together, such as positional and
colour information. The rendering process consists of many different stages.
The sequence is called rendering pipeline and is shown in Figure 4.4.

Vertex Data Vertex Shader
Tessellation 

Control Shader

Tessellation 

Evaluation 

Shader

Geometry 

Shader
Primitive SetupClippingRasterization

Fragment 

Shader

Per Fragment 

Operations
Framebuffer

Figure 4.4: The stages of the OpenGL rendering pipeline

An essential part of the rendering pipeline are shaders, which are special func-
tions that the graphics hardware executes. They are compiled by OpenGL to be

2https://blogs.msdn.microsoft.com/windows-embedded/2009/06/25/component-
tales-directx/

https://blogs.msdn.microsoft.com/windows-embedded/2009/06/25/component-tales-directx/
https://blogs.msdn.microsoft.com/windows-embedded/2009/06/25/component-tales-directx/
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used by the graphics processing unit (GPU). A vertex shader is called for each
vertex and processes the data associated with the vertex. It basically deter-
mines the position of primitives on the screen usually by using transformation
matrices. The tessellation shader continues to process this data and increases
the number of primitives by subdividing primitives and generating a mesh of
triangles, for example. The geometry shader accepts complete primitives as
a collection of vertices as input. It can change the number and type of the
primitives. The tessellation and geometry shader are optional and are not used
in the teleoperation application.
The previous shader stages operated on vertices and the information how to
build primitives are carried along internally. The primitive assembly stage
organises the vertices to create primitives. The clipping stage takes care of
vertices outside of the rendering target and is done automatically by OpenGL.
Rasterization creates fragments from the primitives. A fragment is a “candidate
pixel” which might become a real pixel on the screen, but can still be rejected
by further steps. Rasterization can be understood as the transformation from
primitives in the 3D space to a 2D image space. The fragment shader deter-
mines the fragment’s colour. For example, an image can be mapped onto a
surface (texture mapping). The last stage is called per-fragment operations,
which determines the fragment’s visibility by various tests (depth testing3 and
stencil testing).

⎡

⎢⎣
m11 · · · m14
...

. . .
...

m41 · · · m44

⎤

⎥⎦

Object Space World Space

Model Matrix

Camera Space Screen Space

⎡

⎢⎣
v11 · · · v14
...

. . .
...

v41 · · · v44

⎤

⎥⎦

View Matrix

⎡

⎢⎣
p11 · · · p14
...

. . .
...

p41 · · · p44

⎤

⎥⎦

Projection Matrix

Figure 4.5: Transformation matrices used in OpenGL

3Depth testing is commonly known as z-testing
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View Frustum

Viewport

Figure 4.6: Perspective projection4

The most important stages in the rendering pipeline that can be influenced by
the programmer are the vertex shader and the fragment shader. The position
of primitives on the screen is calculated by projecting the models in 3D space
onto a 2D image space. The primitives are defined by various vectors and are
transformed by several matrix multiplications in the vertex shader (similar as
described in Section 4.1.1).
Usually, the transformation is separated into three steps as seen in Figure 4.5.
The model matrix moves an object such as the screen for our video feed to
a position in the world space by translation, rotation and scaling. The view
matrix moves the virtual camera position in space. In OpenGL, the camera
is fixed at the origin, so instead of moving the camera, the world around it is
moved, resulting in the same effect. This is needed in the teleoperation appli-
cation to adjust the position of the camera during the user’s head movements.
Additionally, when rendering to the Oculus Rift two cameras with different
view matrices are required, one for each eye. In other words, the same scene is
rendered twice with two different camera positions for the two eyes.
The projection matrix performs the perspective transformation from 3D space
to the 2D image space as illustrated in Figure 4.6. Objects further away from
the camera are smaller than objects in the front. The view frustum is the area

4adapted from http://www.xojo3d.com/tut002.php

http://www.xojo3d.com/tut002.php
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that can be seen from the camera. It is dependent on the field of view and the
near and far plane. Objects outside of this area cannot be seen in the camera
image. The projection matrix is also a 4 × 4 matrix and is provided by the
Oculus SDK5.

4.2.2 Virtual World for Video Feed
The camera feed of the robot has to be displayed in the Oculus Rift headset.
The easiest possibility of doing so is to show the left and right camera image
on the left and right side of the HMD respectively for a robot with a stereo
camera setup. This would cause major discomfort to the user as described in
Section 3.2.2 because the user’s and the robot’s movement speed and range differ.
Therefore, the perceived and real motion would diverge. The implemented
solution to this problem is a moving reference world frame that reacts quasi-
instantly on the user’s motion. The video feed is displayed on a floating
screen that adjusts to the robot’s head pose. The idea is adapted from the
implementation for live webcam video in the Oculus Rift from [50].

FrontLeft Right

Bottom

Back

Top

Figure 4.7: Textures used for the skybox6

5For details on the calculation of the projection matrix, please refer to relevant literature.
6Created by Chris Matz http://www.custommapmakers.org/skyboxes.php

http://www.custommapmakers.org/skyboxes.php
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As a reference world, we use a so-called skybox. A skybox is a cube with textures
on each side with a seamless transition between them. Typical textures are
the sky, clouds and distant mountains. The textures used for the teleoperation
application are shown in Figure 4.7. The camera is positioned in the centre
of this cube, and it appears as if the user is in an environment of distant 3D
surroundings.
To render a skybox, a vertex with the coordinates of a unit cube is created.
In the vertex shader, the model-view-projection transformation is performed.
The model matrix scales the cube to be far away. The view matrix is mainly
built up from the rotation matrix obtained by the Oculus SDK of the user’s
head position. This way, the skybox moves quasi-instantly as the user moves to
ensure a natural feeling and avoid cybersickness. In the fragment shader, the
textures are projected onto the sides using a special texture type from OpenGL
called Cubemap Texture7.

Camera rotates on 

user head movements

Screen rotates on robot 

head movements

Figure 4.8: Virtual screens with robot’s camera images and virtual camera
moving in skybox

The floating screen is a rectangle with the same aspect ratio as the robot’s
cameras. In the vertex shader, the view matrix is the same as before. The
model matrix is a combination of translating the rectangle in front of the virtual

7www.opengl.org/wiki/Cubemap_Texture

www.opengl.org/wiki/Cubemap_Texture
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camera and rotating it according to the sensor readings of the robot’s head
pose. This way, the screen moves in the world space to the position the robot
is actually looking at. If the robot has a stereoscopic camera setup, the image
of the left camera is displayed on the virtual screen in the texture rendered
for the left eye and the image of the right camera is displayed on the virtual
screen in the texture rendered for the right eye. A horizontal translation of the
screens in the two rendered images is added to get a stereoscopic effect. This
increases the otherwise fairly small horizontal field of view of only 50◦. In the
fragment shader, the current video image is projected onto the rectangle. The
described solution is illustrated in Figure 4.8.
The rendering process is done in a loop, so the frame is updated in every
iteration. The scene has to be rendered for both eyes separately with a small
offset in the virtual camera position. These rendered images are displayed next
to each other to create a stereoscopic image. The rendered scene is shown in
Figure 4.9. The Oculus SDK applies the necessary corrections to counteract the
distortions introduced by the lenses in the Oculus Rift (pincushion distortion,
chromatic aberration) as described in Section 3.2.3. The final result that is
displayed in the Oculus Rift is shown in Figure 4.10. The barrel distortion
counteracts the pincushion distortion introduced by the lenses. At the edges in
the periphery red and blue fringes can be seen. These are introduced by shifting
the different colour channels in different directions to negate the chromatic
aberration.

Figure 4.9: Rendered scene with robot’s camera images in the virtual environ-
ment without distortion correction
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Figure 4.10: Rendered scene with robot’s camera images in virtual environment
for Oculus Rift

4.3 Integration of Software Modules
In this section, the integration of the software modules described above into
one teleoperation application is explained. The two major software modules
Imitation of User Motion and User Interface are easily separable. Therefore,
they can be run simultaneously in parallel using multithreading. A program
can consist of multiple threads that execute tasks concurrently. Threads access
the same address space and therefore can interact with each other [65]. We use
this technique to minimise latency.
In Figure 4.11, the structure of the teleoperation application and how it interacts
with the external devices is illustrated. The User Interface Thread contains the
rendering loop which updates the images for the Oculus Rift in every iteration.
Therefore, it needs the current sensor readings of the head joints of the robot,
the camera images of the robot and the measured head pose of the user. Due
to the latency of the network connection to the robot, the data from the robot
is obtained by two separate threads. The Joint Thread requests the latest joint
sensor readings from the robot and saves them in an object that is accessible
from the other threads. The Camera Thread retrieves the most recent images
from the robot’s cameras and loads them directly to the GPU. In the User
Interface Thread, the joint object with the robot’s sensor readings is used to
calculate the model matrix and therefore the position of the virtual screen.
The measured head pose of the user provided by the Oculus Rift is used to
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Teleoperation Application

Camera Images

Measured Joint Angles

Measured Head Pose

Measured Arm Pose

Rendered Images
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Measured Head Joints
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User Motion 
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Robot
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Camera Thread

Leap Motion 
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Oculus Rift

Figure 4.11: The software modules for Imitation of User Motion and User
Interface run in parallel in different threads and receive inputs
from the used hardware components; Camera Thread and Joint
Thread buffer the camera images and the joint measurements
respectively to overcome latency issues

determine the orientation of the virtual camera. Additionally, the function to
display the robot’s camera image on the virtual screen is called. The rendered
images are sent to the Oculus Rift at the end of the rendering loop.
Without the buffering performed by the Camera Thread and the Joint Thread,
the rendering loop would have to wait for the robot to send the requested data
via the network connection. Additionally, the robot’s camera only updates at a
rate of 30 Hz. Therefore, latency is introduced, and it would not be possible
to accomplish a frame rate of 75 Hz. For the sensor readings from the Oculus
Rift, no separate thread is needed because the data is sent via USB connection
at a rate of 500 Hz and very low latency.
The Imitation of User Motion Thread calculates the desired joint angles from
the measured head pose provided by the Oculus Rift and from the measured arm
pose provided by the Leap Motion sensor. Both devices use a USB connection
for data transfer, and therefore no additional threads are needed. The Imitation
of User Motion Thread does not need the sensor readings of the robot’s joints in
our implementation. The transformation matrices for the different coordinate
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systems of the robot are generated from the angles calculated inside this thread.
as described in Section 4.1.2.



5 Experiments
In this chapter, the experimental setup and results are described. It is grouped
in experiments in the simulator, experiments on the real robot and a user study.
The focus of the teleoperation system is to provide an intuitive and satisfactory
user experience. The system has already been used by over a hundred people in
demo settings such as the open door day or the Pepper World 2017 event. For
these settings, the available data is limited to observations of the researcher. It
is planned to do a more thorough user study focused on task performance at a
later stage. The measurements described are meant to show characteristics of
the application and not to provide an accurate analysis of the precision of the
system for which a more complex experimental setup would be needed.
In Figure 5.1, a motion sequence is performed, and Pepper imitates the motion.

Figure 5.1: Motion sequence imitated by Pepper

55
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5.1 Experiments in the Simulator
Most of the development process was done on a simulated robot in the provided
software Choregraphe [66]. A virtual robot is created by running an instance
of NAOqi on the simulating computer. Choregraphe connects to this instance
and shows the robot’s movements, as displayed in Figure 5.2. Unfortunately,
no video images of the simulated robot’s cameras are provided, so there is no
feedback of the movements displayed in the Oculus Rift. Other simulation
software is available to accomplish this but was not used for the development
process.

Figure 5.2: Screenshot of Choregraphe with simulated robot

To discuss several aspects of the arm movement, the position of the palm
position of the right hand is plotted. In Figure 5.3 the trajectory of a horizontal
eight movement is shown. The origin of the coordinate system is in the shoulder
(compare Figure 4.3). The blue trajectory is the palm position data captured
by the Leap Motion controller. The red trajectory is the actual position of the
Romeo robot’s palm calculated by forward kinematics with the sensor readings
of the robot’s joint angles. The trajectories match only approximately due
to kinematic differences of the human and the robot. The arms of the robot
are shorter than the user’s arms. Furthermore, the imitation algorithm used
tries to copy the pose of the user’s arm instead of minimising the error of the
end-effector position as described in Section 4.1.2. Nevertheless, the overall
shape of the trajectory is reasonably copied.
In Figure 5.4, a different movement is shown divided into the three coordinate
axes. We recorded the movement performed by the user beforehand, so we
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Figure 5.3: Comparison of the palm position of the user and the simulated
Romeo robot during horizontal eight movement

can compare how the different robots handle the same input. Additionally,
we see differences of the real robot and the simulation. The yellow line is a
scaled version of the robot motion. It is calculated by forward kinematics from
the robot’s joint readings and the user’s arm dimensions. The tracked palm
position of the Leap Motion is transformed to the shoulder coordinate system.
This transformation is an approximation because the shoulder position is not
measured as described in Section 4.1.2. The same transformation is used for the
calculation of the desired joint angles, so the error made by the approximation
is cancelled out. However, as mentioned above the measurements are meant to
show characteristics of the robot and the algorithm and not to determine the
precision of the end-effector position accurately. Especially, since the focus of
the approach is not to approximate the end-effector position of the user but
rather imitate the arm posture.
The movement starts with the arm stretched out in front of the shoulder
(x ≈ 620, y ≈ −210, z ≈ 20). Then the hand is moved horizontally to the right
(seconds 3-6) and raised afterwards (seconds 6-10). At second 16 the arm is
stretched out in the front of the user again. Then the hand is moved in front
of the face with the palm facing the user (seconds 23-27). Afterwards, it is
returned to the starting position again. The movement was chosen to be in
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Entwurf: June 6, 2017
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Figure 5.4: Comparison of the tracked palm position, the simulated Romeo’s
palm position and Romeo’s scaled palm position during a movement
for each coordinate axis

the operational space of Romeo and Pepper, be easily reproducible and use
all joints except WristP itch and WristY aw because they are not available on
Pepper. We recorded the sensor measurements of the Oculus Rift and Leap
Motion sensor and then fed it to the algorithm. We chose this approach so
that we can use the exact same sensor readings with Pepper and Romeo. This
way, we can compare the different characteristics of the robots. The recorded
motion can also be used in the simulator as well as on a real robot to compare
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Figure 5.5: Desired and measured joint angles of the simulated Romeo robot
during movement

the latency.
The robot is able to follow the movement for the most part. The mean Euclidean
distance between the measured palm position of the user and the scaled palm
position of the robot for this movement is 10.56 mm with a standard deviation
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of 15.4 mm. If the time delay of ≈83 ms is cancelled out, the mean Euclidean
distance is reduced to 5.68 mm with a standard deviation of 8.45 mm.
The biggest error occurs between 4 s and 6 s, especially in the x-axis. This error
can be described when looking at the desired and measured angles shown in
Figure 5.5. The robot’s ShoulderY aw cannot reach the desired angle due to
the joint’s limits. This results in an error of the palm position mainly in the x
and y coordinate.
Another problem is that the WristRoll joint cannot follow the desired joint
angle over the whole course of the movement even though it exceeds the range
of the human equivalent as shown in Table 3.1. The reason is the different
structure of the robot’s arm and the human arm. We can provoke a rotation
of the palm in the shoulder joint1. Romeo lacks this degree of freedom in
the shoulder and instead has an additional degree of freedom in the elbow.
Therefore, the algorithm tries to compensate this rotation with its origin in the
shoulder by decreasing the joint angle of WristRoll. Additionally, the motor
in WristRoll is slower than the other motors, which can be seen at 19 s to 27 s
where the robot is not able to follow the desired angle. These problems do not
influence the palm position for this movement severely, but the orientation of
the palm is impaired. For the newer Pepper robot, the range of this joint is
different, and the motor’s speed is increased, to overcome these problems. It is
also planned to change the range for future Romeo prototypes from −210° to
30° to −140° to 80°.The desired angles in Figure 5.5 are discontinuous which is
a result of the sensor noise of the Leap Motion data. The influence of the noise
on the robot’s motion is negligible because the motors are not able to follow
these required fast movements and therefore perform a smoothing action. To
further reduce jitter due to noise, a filter can be applied to the desired joint
angles. A filter will introduce time latency. The 1e-filter is a simple filter
for tracking human motion which can be tuned for a good tradeoff between
reducing jitter and introducing lag. It is described in Section 4.1.3. We decided
against using the filter in favour of lower latency.

5.2 Experiments on the Robot
The teleoperation system was tested with the humanoid robots Romeo and
Pepper of SoftBank Robotics. Teleoperation with Romeo was shown to a broad
audience during demonstrations and tours through the lab. Teleoperation
with Pepper was presented at the Pepper World 2017 event. The experiences
from these user tests are summarised in Section 5.3. This section focuses on

1Try to rotate the hand outside with the upper arm pressed against the body and the elbow
at 90°. Then try to perform the same movement with the upper arm loose in the air.
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Figure 5.6: Comparison of the tracked palm position, Pepper’s palm position
and Pepper’s scaled palm position during a movement for each
coordinate axis

measurements.
The measurements were done with Pepper because Romeo was not available at
the time of the experiments. In Figure 5.6 the same recorded sensor data as
used for Figure 5.4 was played. Pepper was connected to a wireless network.
The teleoperation computer was connected to the same network via Ethernet
connection to minimise delay.
The mean Euclidean distance between the position measured by the sensor
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Figure 5.7: Desired and measured joint angles of Pepper during movement

and the scaled robot’s position is 21.66 mm with a standard deviation of
21.44 mm. The time delay is estimated by using an approach similar to the
method proposed by Viola and Walker [67]. The sample points of the reference
signal obtained by the Leap Motion are interpolated by cubic splines for each
coordinate axis. The obtained functions are delayed to minimise the mean
Euclidean distance to the scaled up version of the measured position of the
robot’s end-effector. The minimum is reached if the functions are delayed by
150.2 ms. Therefore, this value is the estimated time delay of the whole system
including sending the sensor information back from the robot to the computer.
The minimum Euclidean distance is 13.93 mm, and the standard deviation
equals 8.06 mm after cancelling out the time delay.
The remaining error after cancelling out time delay effects is a result of kinematic
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differences between the user and the robot and the restrictions of the robot’s
motors. As can be seen in Figure 5.7, the WristRoll joint is not able to follow
the fast movements performed by the user at second 10 and 15. The value
of WristRoll does not affect the end-effector position. Therefore, the lagging
joint does not result in an error of the end-effector position. It is notable that
Pepper’s WristRoll is much faster than the equivalent joint of Romeo (shown
in Figure 5.5). Additionally, due to the different range of the joint as mentioned
above, the desired joint angles stay in the attainable range.
Pepper misses two degrees of freedom in her wrist in comparison to Romeo.
Even though the performed movement was chosen to contain no WristY aw
and WristP itch movements, they are not entirely avoidable. These missing
degrees of freedom result in an error of the end-effector position. The error at
22 s to 26 s can be explained by this circumstance. The simulated Romeo robot
applies WristY aw ≈ 10◦ and WristP itch ≈ 20◦ to follow the movement in
this time interval.
For comparison, we used the same recording of the sensor data on a simulated
Pepper robot. The time delay in the simulation is 82.5 ms. The mean error is
14.12 mm with a standard deviation of 12.47 mm which decreases to 9.65 mm
with a standard deviation of 5.71 mm when cancelling out the time delay. So,
the network connection adds ≈70 ms of latency and the real robot kinematics
add an error of the palm position. However, the mean error of the simulated
Pepper is bigger than for the simulated Romeo due to the two missing degrees
of freedom in the wrist.
In this setup, the palm position of the robot was calculated by using forward
kinematics with the current sensor readings of the robot’s joints. Therefore,
errors of the end-effector position resulting from sensor errors of the robot’s
motors do not show up in the measurements. Errors in the calculation of the
elbow joints due to the approximation of the shoulder joints and sensor errors
of the Leap Motion cannot be seen in the measurements as well. Consequently,
the measurements done in the previous sections are not meant to be seen as an
accurate comparison of the position of the user’s hand and the robot’s hand in
real space. It was not a goal to measure the precision of the robot kinematics
or the precision of the Leap Motion sensor. However, the experiments show
how the robots are able to follow the available sensor readings within their
limits and expose specific characteristics like motor restrictions and latency.

5.3 User Study
The teleoperation application was developed from the beginning to be intuitive
and comfortable to use. The aim is for a novice user to pick up the Oculus Rift
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and start using the application without any previous knowledge of robotics.
Effects of cybersickness have to be averted as discussed in Section 3.2.2.
The teleoperation application with Romeo was used with over 100 users in
demo and presentation settings. Each user controlled the robot about 1 min to
2 min. No questionnaires were used to receive feedback from the users. Below
are qualitative observations. It is planned to do a more thorough user study in
the future which is described in Section 5.3.1.

Figure 5.8: Demo setting of teleoperation system with Romeo robot

The demo setting is shown in Figure 5.8. A demo starts with Romeo greeting
the audience, doing some gymnastics and talking about his various sensors.
The presenter continues to talk about the research goals and explains the
teleoperation application. The test users put the virtual reality headset on and
control the right arm of the robot. The left arm is not activated to avoid weird
movements when the robot tries to avoid self-collision of the arms.
We presented the teleoperation application with Pepper at the “Pepper World
2017” event in Paris. 24 companies showed their applications for Pepper to over
500 visitors and more than 100 SoftBank Robotics employees. The teleoperation
system could be tested in a booth. The users controlled both arms in this
setup. This was possible because the tablet on Pepper’s chest limits the range
of the arms in a way, that collision avoidance only has to be performed in edge
cases. The feedback for the teleoperation was overwhelmingly positive.
All of the users were able to grab a cup or a piece of cloth, that was handed to
them. The users were also able to perform a handshake motion of the robot
with another human being. Some users were asked to control the robot to pick
something up from a table. This is problematic because the range of the robot
in a plane parallel to the floor is very narrow. This is due to the fact that no
lean forward or a comparable motion is implemented. The human shoulder
joint is also able to have a translational movement additionally to rotation
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which is not possible for the robot.
Many of the test users were children. As described in Section 4.1.2, we tuned the
calculations for of the robot’s joint angles for average male adults. The different
dimensions of children result in a shifted origin of the shoulder coordinate
system. However, only the shoulder joints are influenced by this circumstance
because for the calculation of the other joint angles the direction vectors received
by the Leap Motion are used. These direction vectors are independent of the
position of the origin. When a child stretches out the arm horizontally in
front of it, the robot’s upper arm will be slightly tilted upward and to the
outside. This behaviour could be avoided, by starting the teleoperation with
an initialisation step. The user would have to do a specific pose to calibrate
the origin of the shoulder coordinate system. That would be in contrast to
the goal for the application to be intuitive. Therefore, no initialisation step is
implemented in order to keep the application easy to use. The user receives
feedback of the robot’s arm position and adjusts his arm accordingly to reach
the desired position.
The sensor range is problematic as well. The Leap Motion has a limited field
of view and looks for a shape that resembles a hand. So, the hand needs to be
at some distance in front of the Leap Motion. For small children, that is often
only achievable when stretching their short arms straight forward which limits
the possibilities for teleoperation. At the beginning, the users often put their
hand right on the sensor or move it outside the field of view. This results in
the robot not reacting to the hand movements. After an explanation of the
functionality of the Leap Motion, the users learn to look at their hands with a
fair distance to the sensor. None of the users noted that they were experiencing
symptoms of cybersickness. This might change if the users are exposed to the
teleoperation application for a longer period of time. It will be examined in a
future user study.

5.3.1 Future User Study
A more thorough user study is planned to be performed in the future. It was
not possible to perform it for this thesis, because of the unavailability of the
Romeo robot. The focus of the designed user study is on task performance,
usability and user experience. A comparable user study was performed by
Takayama et al. [68] to evaluate assisted driving of a mobile robot presence
system.
The study design is as follows: Before starting the task, the participants have
to complete a questionnaire about demographic information and technology
usage. The instructor explains how the teleoperation system works, especially
focusing on limitations like sensor range or the narrow operational space of the
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robot. The participant puts on the Oculus Rift and gets accustomed to the
teleoperation application. For training, a plastic cup is handed to the robot,
and the participant has to control the hand in order to grab the cup. The task
itself is to rearrange three cards on a table in front of the user. This task was
chosen because of the poor grabbing performance of Romeo. Cards can be
manipulated without closing the hand. An open hand improves the tracking
stability of the Leap Motion as well.
As suggested by Steinfeld et al. [69], the workload on the user and human
performance is measured by the NASA-Task Load IndeX (NASA-TLX) [70].
The usability and user experience are retrieved with the “IBM Computer
Usability Satisfaction Questionnaires” [71].



6 Conclusion
In this thesis, a teleoperation system for humanoid robots was implemented.
The capabilities of modern consumer electronics for real-time human upper
body imitation were investigated. In this chapter, the strengths and weaknesses
of the introduced approach, as well as possible future work, are discussed. It is
roughly grouped into topics concerning the imitation of user motion and the
user interface which is displayed inside the Oculus Rift.

6.1 Imitation of User Motion
The proposed algorithm for imitating the user’s motion shows promising results.
An executed trajectory by the user is followed with great precision. The sensor
data from the Leap Motion sensor enables a simple algorithm due to the great
number of tracked points (e. g. elbow, wrist, palm). The simplicity of the
algorithm minimises the time delay which is approximately 150 ms for the
whole system, including sending the robot’s sensor information back to the
computer. Therefore, the time delay of the motion imitation is smaller.
The Leap Motion sensor provides a stable position of the tracked entities in
normal lighting conditions. The robot’s dynamics act as smoothing. Jitter is
hardly noticeable, and additional filtering of the sensor data is not necessary
in favour of reducing time delay. For applications that require a more stable
position of the robot’s hand, the 1e was implemented and tested. This filter is
specialised on filtering human input and is easily tuneable.
The inverse kinematic algorithm was designed to imitate the user’s arm posture
instead of optimising for a minimum error of the end-effector position. If
a precise end-effector position is needed, the human operator will act as a
feedback loop and adjust the position of his hand accordingly. The experiments
have shown that the scaled up end-effector position is precise despite these
design decisions.
The proposed algorithm is not dependent on a specific robot and was tested
with the humanoid robots Romeo and Pepper of SoftBank Robotics. To date,
there is no easy interface implemented to adapt the algorithm to other robots.
Especially, an interface for the Robot Operating System (ROS) would be inter-
esting.

67
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6.2 User Interface
A commercially available virtual reality headset was used to display the robot’s
camera images and to measure the user’s head movements. This technology
provides an intuitive interface to control the robot’s head orientation and there-
fore the camera direction. The VR headset should also create an immersive
feeling while not causing cybersickness. The problem of different range and
speed of the user’s and the robot’s head motion was solved by displaying a
virtual screen with the camera images of the robot in a virtual 3D world. This
world would move accordingly to the user’s head movements while the screen
would move to where the robot is looking.
The small field of view and low refresh rate of the robot’s camera are not ideal.
This results in feeling like peeking through a window into the robot’s world
rather than being there in person. Interaction with objects is cumbersome
because the hands are easily outside the field of view of the cameras. The low
frame rate increases the probability for symptoms of cybersickness. Possible
solutions for these problems are presented in Section 6.3.
The manipulation of the camera position is very intuitive, as expected before-
hand. An implementation with VR headsets excels at this task. The concept
of changing the camera orientation by turning the head did not pose a problem
for the test users due to the similarity to what we are used to in everyday life.
However, the gaze direction is not tracked inside the VR. Robots with movable
eyes (e. g. Romeo, iCub) could benefit from gaze tracking and imitate the user’s
eye movements. First VR headsets with built-in eye tracking are currently in
development1.
The user interface utilises OpenGL for rendering and is easily portable to com-
parable VR headsets. The teleoperation system was tested with the Oculus Rift
Development Kit 2 and the Oculus Rift Consumer Version 1. The visualisation
was tested with a stereoscopic as well as a monoscopic camera system.

6.3 Future Work
In this section, suggestions for further improving the teleoperation system are
presented. The system can be enhanced to whole-body imitation by using
additional sensors like the Kinect camera to do skeleton tracking. Through
sensor fusion, this data can be used to do whole-body imitation comparable

1e. g. https://www.getfove.com

https://www.getfove.com
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to [35]. Even with the existing sensors in the system, a forward leaning motion
can be implemented, which would enhance the narrow operational space. The
optional external camera of the Oculus Rift provides sensor data of the head’s
translation. Currently, this data is not used in favour of portability. For
wheeled robots like Pepper a simple Joystick control for locomotion might be
more intuitive and easier to use when wearing the VR headset than the already
implemented Keyboard control. Visual feedback when moving might also be
interesting and should be considered.
As mentioned above, the immersion is not complete. The visual feedback is
sufficient to control the robot but the user does not feel present in the scene.
The immersion is dependent on the robot’s camera setup. Pepper’s cameras
provide a monoscopic image with 57.2° horizontal field of view and a frame
rate of 30 Hz. Romeo has at least a stereoscopic camera setup which improves
the horizontal field of view slightly and adds depth perception. Immersion can
be enhanced by using a different camera setup instead of the built in one. For
example, wide angle cameras can be mounted on the robot’s head. The virtual
screen in the user interface would extend and bend to a concave surface. A
wide-angle lens attached to the built-in cameras might have a similar effect.
Another possibility would be to utilise the built in depth camera to display
a point cloud of the surroundings. This could improve depth perception but
would increase latency due to additional data transmission and computation
time. The problem of the robot’s hands being easily outside the field of view of
the cameras can be tackled by displaying virtual representations of the tracked
user’s hands. Imitation of the gaze direction might improve immersion and
increase liveliness of the robot. A VR-headset with eye tracking would be
required for this endeavour. Another possibility to utilise the robot’s movable
eyes is to extend the range of the observable area if the neck joints reach their
limits comparable to the approach introduced in [45].
To use the system as a telepresence system to communicate with other people
a few features need to be added. The audio stream recorded by the robot’s
microphones has to be transmitted to the user. A possibility for the user to
make the robot talk has to be added. The type of implementation is dependent
on the use case. In a “Wizard of Oz” setting the robot’s voice should be
generated by its text-to-speech module, so the robot seems to be autonomous.
If the robot is used as a form of communication, it might be advisable to record
the user’s voice and play it over robot’s speakers. An interesting research topic
is how the robot can be used to transport emotions.
A future research goal is to generalise the introduced teleoperation system to
make it easily portable to other robotic platforms. A wrapper is planned for the
Robot Operating System which is an open source software project that provides
a structured communication layer between processes on multiple hosts [72].
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For other robots (especially non-humanoid robots) different algorithms for the
calculation of the joint angles might perform better. Therefore, we will evaluate
inverse kinematic algorithms based on local optimisation of the error of the
end-effector position.
Another ongoing research project is for the robot to learn action concepts from
observing a human tutor2. The here introduced teleoperation system is used
to track hands and transform the movements to the robot. It is coupled with
an object tracker which tracks the objects the user interacts with. A natural
language processing engine is used to analyse the verbal description of the
performed action. The robot shall learn from the accumulated data to perform
new tasks. A research question is if this kind of showing and explaining actions
comparable to how we teach children is suitable for robots to acquire new
actions.

2http://ralli.ofai.at

http://ralli.ofai.at
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