
On the expressive power of communication
primitives in parameterised systems?

Benjamin Aminof1, Sasha Rubin2, and Florian Zuleger1

1 Technische Universität Wien, Austria
2 Università degli Studi di Napoli “Federico II”, Italy

Abstract. We study foundational problems regarding the expressive
power of parameterised systems. These (infinite-state) systems are com-
posed of arbitrarily many finite-state processes that synchronise using a
given communication primitive, i.e., broadcast, asynchronous rendezvous,
broadcast with message loss, pairwise rendezvous, or disjunctive guards.
With each communication primitive we associate the class of parame-
terised systems that use it. We study the relative expressive power of
these classes (can systems in one class be simulated by systems in an-
other?) and provide a complete picture with only a single question left
open. Motivated by the question of separating these classes, we also study
the absolute expressive power (e.g., is the set of traces of every param-
eterised system of a given class ω-regular?). Our work gives insight into
the verification and synthesis of parameterised systems, including new
decidability and undecidability results for model checking parameterised
systems using broadcast with message loss and asynchronous rendezvous.

1 Introduction

Parameterised systems are composed of arbitrarily many copies of the same
finite-state process. The processes in a system run independently, but are given
a mechanism by which they can synchronise, e.g., in broadcast systems one
process can send a message to all the other processes, while in a rendezvous
system the message is received by a single process [12,17]. Examples of such
systems abound in theoretical computer science (e.g., distributed algorithms
[18]) and biology (e.g., cellular processes [15]).

Problem Statement. Different synchronisation mechanisms, or communica-
tion primitives as we call them here, yield systems with different capabilities.
For instance, broadcast is at least as expressive as rendezvous since in two steps
broadcast may simulate a rendezvous (I broadcast “I want to rendezvous”, and
someone broadcasts the reply “I will rendezvous with you”, illustrated in Fig-
ure 5). On the other hand, intuitively, broadcast is more expressive than ren-
dezvous (since to simulate a broadcast a process would have to rendezvous with

? Benjamin Aminof and Florian Zuleger are supported by the Austrian National Re-
search Network S11403-N23 (RiSE) of the Austrian Science Fund (FWF) and by
the Vienna Science and Technology Fund (WWTF) through grant ICT12-059. Sasha
Rubin is a Marie Curie fellow of the Istituto Nazionale di Alta Matematica.

all other processes before anyone made a different move). The motivation of this
paper is to formalise such reasoning and make such intuitions precise.

Communication Primitives. This paper focuses on representative primitives
from the literature on formal methods for parameterised systems: Broadcast
(bc), like CBP message passing can model ethernet-like broadcast, GSM’s cell-
broadcast, or the notifyAll method in Concurrent Java [5,12,20]; Asynchronous
Rendezvous (ar) can model the notify method in Concurrent Java [5]; Broad-
cast with Message Loss (bcml) can model mobile ad hoc networks (MANETS)
and systems that use selective broadcast with nodes that can be activated or
deactivated at any time [6,7,8]; and Pairwise Rendezvous (pr), like CSP message
passing, can model population protocols [4,17]. For comparison we also consider
a primitive that admits cutoffs, i.e., disjunctive guards (dg) [10], a property not
shared by the previous primitives.3

Executions of Parameterized Systems. We systematically compare communi-
cation primitives using the standard notion of executions from the point of view
of single processes. Indeed, many papers (e.g. [5,7,6,11,12,13,9,17,2,3]) consider
specifications from the point of view of single processes — important examples
of such specifications are safety specifications like coverability and liveness spec-
ifications like repeated coverability and termination. Given a process P , and a
communication primitive cp, let Pncp be the finite-state system composed of n
copies of P that synchronise using cp (note that there is no special “controller”
process). An execution is a (finite or infinite) sequence of labels4 of states of a sin-
gle process in Pncp. In many applications (e.g., in parameterised verification), one
needs to consider systems of all sizes. Thus, we let P∞cp denote the infinite-state
system consisting of the (disjoint) union of the systems Pncp for each n ∈ N.

Relative Expressive Power. We define the natural comparison cp ≤IE cp′ as
follows: for every process P that uses cp there is a process Q that uses cp′, such
that P∞cp and Q∞cp′ have the same set of infinite executions. Similarly, we write
≤FE if considering only finite executions. The informal meaning of these compar-
isons ≤ is that cp′ can simulate cp, with respect to linear-time specifications. All
of our simulations (except of ar by pr) have the added properties that they also
hold for systems of a fixed finite size, and that they are efficiently computable.
This latter fact is useful for example for model checking (MC) classes of parame-
terised systems with respect to linear-time specifications (over a single process),
i.e., if cp ≤ cp′ and the translation from P to Q is efficient, then MC cp-systems
is (immediately) reduced to MC cp′-systems. We remark that most decidability
results for MC parameterised systems are for linear-time specifications, whereas
for branching-time specifications it is typically undecidable [17,2,3,11].

Absolute Expressive Power. Motivated by the problem of comparing com-
munication primitives, we also study their absolute expressive power. That is,
a communication primitive cp determines a class of languages Lcp, i.e., the

3 A cutoff is a maximal number of processes that needs to be model checked in order
to guarantee correct behaviour of any number of processes. Our results show that,
indeed, having a cutoff lowers the expressive power.

4 Typically, each label is a set of atomic propositions.

sets of executions of such systems. How does the class Lcp relate to canonical
classes of languages, such as regular, context-free, ω-regular, etc.? Answers to
such questions allow one to deduce that certain communication primitives cannot
be simulated by certain others, as well as directing one’s choice of communication
primitive for modeling and synthesis of distributed systems.

Our contributions.5

Relative Expressive Power. We provide a full picture of the relative expressive
power of these communication primitives, see Figures 1 and 2 — an arrow from
cp to cp′ means cp′ ≤ cp,6 and a mark across an arrow means that cp < cp′.

Section 3 establishes all but three of the arrows in Figures 1 and 2: we
get pr ≤IE bcml from Theorems 6 and 4, pr ≤FE dg from Theorems 2 and
Proposition 5, and ar ≤FE pr from Proposition 5 and Theorem 3.

bc

ar

prbcml

dg

Fig. 1: ≤FE

bc

ar

prbcml

dg

Fig. 2: ≤IE

pREG

ar,pr,bcml,dg

bc

pCF

Fig. 3: Finite Exe-
cutions of P∞cp

lim(REG)

dg

bc

ar

co-Büchi

pr, bcml

Büchi

Fig. 4: Infinite Ex-
ecutions of P∞cp

Absolute Expressive Power. The classes of languages of finite executions gen-
erated by the different primitives are illustrated in Figure 3. bc can generate lan-
guages that are not context free, whereas dg,pr,bcml,ar generate exactly the
prefix-closed regular languages (pREG). However, no communication primitive
can generate all prefix-closed context-free languages (pCF). The case of infinite
executions is illustrated in Figure 4. We show that dg can generate exactly limits
of regular languages, bcml,pr can generate exactly co-Büchi languages, ar,bc
can generate non ω-regular languages, whereas no communication primitive can
generate all ω-regular languages. We present our results on absolute expressive
power in Section 5. The strictness of the arrows in Figures 1 and 2 follow from
our results on absolute expressive power. To get dg <IE pr (and thus also de-
duce dg <IE bcml) use Theorem 4 and Theorem 7 (and the fact that there
are co-Büchi languages that are not the limit of any regular language, e.g., all
words over {a, b} with finitely many as). To get pr <IE ar use Proposition 9
and Theorem 6. To get ar <FE bc use Proposition 6 and Theorem 3. To get
ar <IE bc use Proposition 8 and Theorem 5.

Model Checking Linear-Time Specifications. Our techniques yield new results
about model checking (MC) ar and bcml parameterised systems for liveness

5 For lack of space, some proofs are missing or only sketched and can be found in the
full version of this paper.

6 We note that the transitivity of the relations ≤ gives rise to additional simulations
that, for clarity, are not drawn in the figures.

properties.7 In particular, even the simplest liveness property (i.e., does there
exist an infinite run) is undecidable for ar systems (Section 4). Also, liveness
properties are decidable in PTime for systems using bcml (a problem that was
not even known to be decidable); this follows because bcml can be efficiently
simulated by pr (Proposition 2), and the fact that MC of pr-systems can be
done in PTime (which itself follows from [17, Section 4]).

2 Definitions and Preliminaries

Tuples f over a set X may be written (x1, · · · , xk) or in functional notation
f ∈ X [k], i.e., f(i) = xi. Given a set Σ, we denote by Σ∗, Σ+, Σω the sets of all
finite strings, all non-empty finite string, and all infinite strings, respectively, over
Σ. Let ui denote the ith letter of u. We write pre(L) for the set of finite prefixes
of some language L ⊆ Σ∗ or L ⊆ Σω. A language L ⊆ Σ∗ is prefix closed if
L = pre(L). The limit of a language L ⊆ Σ∗ is the language limL ⊆ Σω such that
α ∈ limL if and only if infinitely many prefixes of α are in L. A labeled transition
system (LTS) is a tuple 〈Ω,A,Q,Q0, δ, λ〉 where Ω is a set of letters (also called
observables),8 A is a set of edge labels, Q is a finite set of states, Q0 ⊆ Q are
the initial states, δ ⊆ Q × A × Q is the transition relation, and λ : Q → Ω
is the labeling function. For τ = (q, a, q′) we write src(τ) = q, des(τ) = q′ and

edglab(τ) = a, and we also write q
a−→ q′. A path of an LTS is a (finite or

infinite) string of transitions π := π1π2 . . . of δ such that src(πi+1) = des(πi) for
every i. We write src(π) := src(π1), and if π is finite we write des(π) := des(π|π|).
A run is a path π where src(π) ∈ Q0. We write edglab(π) for the sequence
edglab(π1)edglab(π2) Typically the edge-labels will carry information, i.e.,
an action (e.g., send message m), and whether or not the edge is visible. See [22]
for basic notions about automata. In particular, we use the following acronyms:
NFW, NBW and NCW where N stands for “nondeterministic”, F for “finite”, B
for “Büchi”, C for “co-Büchi”, and W for “word automata”. Counter machines
CM are standard variations of Minsky Machines, i.e., they have a fixed number
of counters that can be incremented, decremented if not zero, and tested for zero.
In the rest of this paper, the word “simulation” is used as in ordinary natural
language, and not as part of the technical term “(bi)simulation relation”.

A note about simulations and visibility. In order to reason about simulations
we have to be able to hide some of the inner steps involved. Consider the follow-
ing motivating example. All the x86 family of processes support the same basic
instruction set, but they implement each instruction using their own sequences of
microcode instructions. This is fine since to the running software these sequences
of microcode are invisible and it can only see their effect on the observables, i.e.,
the values of the registers. In order to capture this basic trait of simulations, our
definition of local process labels each transition with a Boolean flag indicating
whether it is visible or not, with the added condition that invisible transitions

7 As in [12,9] we formalise safety properties as regular sets (of finite words) and liveness
properties as ω-regular sets (of infinite words).

8 In applications one typically takes Ω := 2AP where AP is a set of atomic predicates.

do not change the observables9. To demonstrate, in the introduction we illus-
trated that bc (effectively) simulates pr by replacing every pr transition by two
(successive) bc transitions. Thus, in order to preserve the set of executions, we
have to hide one of these two transitions (see Figure 5).

System Model. For a set Σ, let Σsync = {m!, m? | m ∈ Σ} be the synchronisation-
actions. Let Π be a set of internal-actions, disjoint from Σ. A local process is
a finite LTS P = 〈Ω,A, S, S0, δ, λ〉 where A := (Σsync ∪ Π) × B and for every
(q, (σ, b), q′) ∈ δ, if b = false then we must have that λ(q) = λ(q′). A transition
τ = (q, (σ, b), q′) is called visible if b = true and invisible if b = false. Thus, an
invisible transition may change the state but not what is observed.

Define functions act, vis such that act(τ) = σ and vis(τ) = b. A state s ∈ S is
able to receive (resp. able to send) message m ∈ Σ if there is a transition τ ∈ δ
with src(τ) = s and act(τ) = m? (resp. act(τ) = m!). States and transitions of
P are called local states and local transitions. Informally, local transitions with
σ ∈ Π are transitions that a single process must take alone, and are called
local internal transitions, whereas local transitions with σ ∈ Σsync may involve
synchronising with other processes, and are called local synchronising transitions.

For a local process P we now define the global system, i.e., the composition Pncp
of n-many copies of P that communicate using cp. A global state of Pncp is an n-
tuple of elements of S, collectively Sn. For f = (s1, · · · , sn), f ′ = (s′1, · · · , s′n) ∈
Sn a global transition τ = (f, ν, f ′) ∈ Sn × (Σ ∪Π)× Sn satisfies:

1. If ν ∈ Π then there exists i and b ∈ B such that si
ν,b−→ s′i, and s` = s′` for

` 6= i (internal transition).
2. If ν = m ∈ Σ:

– If cp = bc: there exist i and bi ∈ B such that si
m!,bi−→ s′i and letting R be

the set of processes j 6= i that are able to receive m, we must have that R

is non-empty and sj
m?,bj−→ s′j for all j ∈ R (and some bj ∈ B), and s` = s′`

for ` 6∈ R ∪ {i} (broadcast transition).10

– If cp = ar: there exist i and bi ∈ B such that si
m!,bi−→ s′i and either: there

exists j 6= i such that sj
m?,bj−→ s′j and s` = s′` for ` 6= i, j; or there is no

j 6= i such that j is able to receive m, and s` = s′` for ` 6= i (asynchronous
rendezvous transition).

– If cp = pr: there exist i 6= j and bi, bj ∈ B such that si
m!,bi−→ s′i and

sj
m?,bj−→ s′j , and s` = s′` for ` 6= i, j (rendezvous transition).

– If cp = bcml: there exist i and bi ∈ B such that si
m!,bi−→ s′i and there

is some, possibly empty, set R of processes (not containing i) such that

9 It is common to allow specifications (e.g., the LTL formula G p) to be satisfied by
computations that loop forever in the same state. Thus, we don’t consider every
transition in which the observables don’t change to be invisible. In particular, we
can have both visible and invisible self loops. Using the CPU analogy, the former
corresponds to a NOP in the instruction set, and the latter to a NOP in microcode.

10 A slightly different version of bc, in which R is also allowed to be empty, also appears
in the literature [12]. Our results also hold for this version.

sj
m?,bj−→ s′j for all j ∈ R (and some bj ∈ B), and s` = s′` for ` 6∈ R ∪ {i}

(broadcast with message loss transition).

– If cp = dg: there exist j 6= i and b ∈ B such that si
sj?,b−→ s′i and sj

sj !,false−→
sj , and s` = s′` for ` 6= i, j (guarded transition). 11

A process k is said to be involved in a global transition τ if it takes a local
transition γ from sk to s′k (e.g., in all cases above process i is involved in τ).
Moreover, it is visibly involved if vis(γ) = true.

Finally, Pncp is the LTS 〈Ωn, Σ ∪Π,Sn, Sn0 , ∆,Λ〉 where ∆ consists of the
global transitions (just defined), and Λ(f)(i) := λ(f(i)) for every i ∈ [n]. The
infinite state LTS P∞cp is the disjoint union of Pncp for n ∈ N, and it is called a
parameterised system, or just a system.

Executions. Let π be a path of Pncp. We will relate π to paths in P corresponding
to a single process. Fix a process index k ∈ [n]. Let i1 < i2 < . . . be the
set of indices such that process k is visibly involved in the global transition
πij , and define sj := Λ(src(πij))(k) ∈ Ω (for all j). If there are only finitely
many indices i1 < i2 < · · · < il, we let visletk(π) be the concatenation of
s1s2 . . . sl with the additional letter Λ(des(πil))(k) at the end. Otherwise, we set
visletk(π) := s1s2 We define the set of 1-executions of Pncp by

Exec(Pncp) := {visletk(π) : k ∈ [n], π is a run of Pncp} ⊆ Ωω ∪Ω∗

and the set of 1-executions of P∞cp as Exec(P∞cp) := ∪n∈N+Exec(Pncp). We denote
the infinite (resp. finite) elements of Exec(·) by InfExec(·) (resp. FinExec(·)).
It is worth noting that if a run π is infinite, but visletk(π) is finite, then process k
was only doing finitely many meaningful moves in π (which is akin, in a system
with only visible transitions, to it being scheduled only finitely many times)
which is why we do not include such traces in InfExec.

3 Relative Expressive Power

For communication primitives cp,cp′, write cp ≤IE cp′ if for every local process
P there is a local process Q (computable from P) such that InfExec(P∞cp) =
InfExec(Q∞cp′). Similarly, define ≤FE with FinExec replacing InfExec. For
x ∈ {IE,FE}, if cp ≤x cp′ ≤x cp then write cp ≡x cp′. If cp ≤x cp′ and
cp 6≡x cp′ then write cp <x cp′ (and define <x similarly). Informally, if cp ≤x
cp′ we say that cp′ simulates cp. Note that, in the definition of ≤x, if there is a
PTime algorithm that given P produces the corresponding Q then we say that
cp′ efficiently simulates cp. All the simulation results cp ≤x cp′ in this paper
(except for ar ≤FE pr) are efficient simulations.

11 If cp = dg then we also assume Σ = S (i.e., the synchronization alphabet is the set

of local states), and for every local state s ∈ S there is a transition s
t!,a−→ r if and

only if s = r = t and a = false (i.e., the only transition τ with act(τ) = s! is an
invisible self-loop on state s).

Relationship with verification. Every regular language of finite words is
called a safety property, and every ω-regular language of infinite words is called a
liveness property, cf. [12]. The model checking problem for parameterised systems
using cp for a given safety (resp. liveness) property L over Ω is the following:
given P , decide whether or not FinExec(P∞cp) ⊆ L (resp. InfExec(P∞cp) ⊆
L). This model checking problem is sometimes called the “parameterised model
checking problem” or “parameterised verification”, e.g., [11]. If cp′ effectively
simulates cp then the parameterised verification problem for systems using cp
is reducible to the parameterised verification problem for systems using cp′.

3.1 Simulations

The simulations dg ≤x pr ≤x bc, with x ∈ {FE, IE}, have already been dis-
covered in the literature [9]; we illustrate pr ≤x bc in Figure 5. These results
are the starting point for our fine-grained analysis. In this section we establish
the simulations dg ≤x bcml ≤x pr ≤x ar ≤x bc for x ∈ {IE,FE}. All these
simulations were not previously known. In all the proofs we efficiently construct,
given a local process P , a local process Q such that Exec(Pncp) = Exec(Qncp′).

q q′ q · q′

r r′ r · r′

(m!,a) (ms!,a) (ackm?,false)

(m?,b) (ms?,false) (ackm!,b)

(ackm?,false)

Fig. 5: Simulation of pr (left) by bc (right)

Proposition 1. ar ≤x bc, for x ∈ {FE, IE}.

Proof. Recall that the difference between pr and ar is only that in ar a process
can send a message m even if there is no other process to receive it (but if there is,
then one such process must receive m). We divide the global transitions of an ar
system into three types: internal transitions, synchronous transitions involving
two processes, and those involving only one process. Given local process P , we
build local process Q such that Qnbc simulates Pnpr (for every n > 2), by using
a sequence (called a transaction) of 1 or 2 global transitions. Simulating the
internal transitions is done directly, the synchronous transitions involving two
processes are simulated by a 2-step transaction as in the simulation of pr by bc,
and the synchronous transitions in which there is only a sender are simulated
by a single-step transaction as follows: let e = (p, (m!, b), q) be a local transition
in P ; in Q, a process can take the local transition (p, (msolo!, b), q) broadcasting
the message that it is simulating a send of m that should have no receivers, and
every process that is in a state that is able to receive m in P , receives msolo and
invisibly moves to a new special “disabled” copy of its current state from which
it can no longer do anything; all other processes simply receive msolo and invisibly

self-loop. The intuition is that by sending msolo process i guessed that there is
no process able to receive m in the simulated system, and thus we disable the
processes that witness the fact that the guess is wrong — effectively making it
right. Note that if we do not disable them then one of these processes will be in
the wrong state (since in the ar system one of them must receive m and move,
but in the simulating system none moved) and will be able to later allow moves
in the simulating system that are not possible in the simulated one. ut

p q p ue ve q

p′ q′ p′ ue′ q′

(m!,b) (int,false)

(ms!,false)

(int,b)

(mr?,false)

(int,false)

(m?,b′) (ms?,false) (mr !,b
′)

Fig. 6: Simulation of bcml (left) by pr (right)

Proposition 2. bcml ≤x pr, for x ∈ {FE, IE}.

Proof. Given a local process P , we build a local process Q such that Qnar sim-
ulates Pnpr (see Figure 6). A global transition where i sends m by taking a local
transition of the form e := (p, (m!, b), q), and a set R of processes receive, is simu-
lated by a multi-step transaction. The transaction needs multiple steps because
in pr only two processes move in every step. The main difficulty, and the reason
the transaction is complicated, is that we must be careful not to introduce new
executions that are not possible in the bcml system.

The simulation of sending the lossy broadcast message m is done in three
stages: (a) process i internally and invisibly moves from state p to the new
intermediate state ue; state ue has an invisible self-loop that sends message ms
(indicating it is trying to simulate sending m); the self-loop enables the message
to be sent to an arbitrary number of processes; (b) process i internally moves
from state ue to the new intermediate state ve with visibility b; state ve has an
invisible self-loop that receives message mr; the self-loop allows to acknowledge
that an arbitrary number of processes have received the message; (c) process i
internally and invisibly moves from state ve to state q.

The simulation of receiving message m, by taking a local transition of the
form e′ := (p′, (m?, b′), q′), is in two stages: (a) process j invisibly moves from
state p′ to the new intermediate state ue′ receiving message ms. (b) process j
moves from state ue′ to state q′ with visibility b′ sending message mr.

Unfortunately, we can not guarantee that this transaction is atomic, i.e.,
that no other global transitions intertwine with the simulation of a single lossy
broadcast. We can not even guarantee that if a process j has received a message
ms from process k, then it is going to send mr to process k, and not to another
process. The solution is to consider the processes that performed the second stage

with some process k as the ones which received the lossy broadcast message
m from k. This works since, for each process j, the first stage of receiving a
lossy broadcast message is invisible, and after that it can not do anything but
participate in a second stage of receiving a message. ut

Proposition 3. pr ≤x ar, for x ∈ {FE, IE}.

Proposition 4. dg ≤x bcml, for x ∈ {FE, IE}.

Remark: There is a version of broadcast, lets call it abc, where a process
can broadcast a message even when no other process is able to receive it. All our
results about bc hold also for abc since bc ≡x abc, for x ∈ {FE, IE}.

4 Model Checking Asynchronous-Rendezvous Systems

The theorem below states that model checking even the most basic liveness prop-
erties of ar systems is undecidable. The proof of the theorem is an adaptation
of the one used in ([12]) to prove a similar result for bc. Unfortunately, there is
a serious complication: ([12]) makes central use of the fact that bc systems can
elect a controller, but ar systems are not powerful enough to do that.

Fortunately, we can make do with a temporary controller, which ar can elect:
from the initial state a process can send the message “I am now the controller”
and enter the initial state of the “controller” component of the process template.
If later on another process sends this message then it becomes the new controller,
and the current controller, who receives this message, enters a special state D,
from which it can do nothing. Thus, there are never two controllers at the same
time, and at most n controller switches in a system with n processes.

The ability of ar to elect a temporary controller allows us not only to prove
the theorem below, it also allows us to later show (see Figure 4) that ar systems
have an expressive power that is in between pr (which cannot elect even a tem-
porary controller) and bc (which can elect a permanent controller). However,
interestingly enough, this is only true for infinite traces. For finite traces, hav-
ing a temporary controller, in contrast to a permanent one, provides no extra
expressive power (see Figure 3).

Theorem 1. (i) Model checking liveness properties of parameterised systems
communicating via ar is undecidable. (ii) In particular, the following problem
is undecidable: given local process P , decide if InfExec(P∞ar) is empty or not.

Proof. For the first item, it is enough to reduce the halting problem for input-free
deterministic counter machines CM (which is undecidable [19]) to the existence
of a run in an ar system P∞ar that visits a halting state infinitely often. It is
convenient to assume that when (and if) the halting location is reached then
the CM resets itself, i.e., it decrements all its counters until they become zero
and then loops back to the initial state. The basic encoding for the simulation is
from [12]. It uses one process called the controller to orchestrate the simulation
and store the line of the CM, and many memory processes. Each memory process

stores one bit for each counter, and the value of a counter is the number of
processes having a non-zero bit for it. Each process has a special dead state D,
which once entered cannot be exited.

A process may, from the initial state, nondeterministically become either the
temporary controller or a memory process. The transitions in a memory process
are, for each counter c ∈ C: if the stored c-bit is 0, then it can send the message
“inc(c)” and set the c-bit to 1; if the stored c-bit is 1, then it can send the
message “notzero(c)” and leave c unchanged, or send the message “dec(c)” and
set c to 0, or receive the message “iszero(c)” and go to state D. From every state
of the controller there is a complementary send/receive transition as specified by
the CM line that this state represents. Thus, for example, an “increment c” is
simulated by the controller receiving an “inc(c)” and moving to the next line of
the CM (or to the state D, if the current command to simulate is not “increment
c”), and an “if c = 0 goto l1 else goto l2” command is simulated by the controller
either receiving “notzero(c)” and moving to state l2; or moving to state l1 and
sending an “iszero(c)” which, if counter c is zero, is not received, and otherwise
is received by a memory process with a 1 c-bit which then enters state D.

It is not hard to show that Pnar can faithfully simulate the CM as long as
the counters stay below n − 1. Thus, if the CM reaches the halting location h
then there is an infinite run of Pnar, for a large enough n, in which the process
playing the controller is in h infinitely often. For the reverse direction, the key
point is that whenever the simulation makes an error (such as replacing the
temporary controller in mid simulation, or having the controller guess a counter
is zero when it is not, or when a memory process simulates a command that is
not what the controller wants to simulate) one process dies (i.e., enters state D).
Thus, since there are only finitely many processes participating in any execution
of P∞ar , in every infinite run of P∞ar , from some point on, no more processes die,
and thus from that point on the simulation is correct. It follows that if there
is a run of P∞ar in which a process is in state h infinitely often then the run of
the CM reaches the halting location. This completes the sketch of the proof of
the first item. The second item uses a standard trick (see e.g. [12]) of adding an
extra counter that increases in every step, and gets reset only when the halting
state is reached. Thus, the system will run out of its finite number of memory
processes and hang unless the CM reaches h. ut

5 Absolute Expressive Power

Finite Executions. First note that, since every prefix of a finite run is a run,
for every cp and P we have that FinExec(P∞cp) is prefix-closed.12

Proposition 5. For every cp and prefix-closed regular language L there exists
P such that FinExec(P∞cp) = L.

12 Although distributed systems are routinely studied this way, one may also introduce
final states to the local process and restrict to runs that end in final states.[16]

Proof. Transform an automaton for L into P by pushing letters into states (i.e.,
by changing L so that it remembers the last read input-letter in its state, labeling
each state by this letter, and adjusting the initial states), and making all local
transitions of P internal (i.e., not synchronisation transitions) and visible. ut

Proposition 6 (cf. [16]). (i) There is a P s.t. FinExec(P∞bc) = pre({anbn |n ≥
1}). Moreover, bc can generate non-context free languages; (ii) None of our com-
munication primitives can generate all prefix-closed context-free languages.

Theorem 2 ([17]). For every P , the language FinExec(P∞pr) is regular.

Theorem 3. For every P , the language FinExec(P∞ar) is regular.

Proof. Let P = 〈Ω,A, S, S0, δ, λ〉 be some local process. We will construct a
finite automaton (NFW) A that accepts exactly the traces in FinExec(P∞ar).
We call a local state s ∈ S unbounded if for every k ∈ N there is an n ∈ N, and
a reachable global state f in Pnar, such that |f−1(s)| ≥ k. We denote by U ⊆ S
the set of unbounded states of P and by B = S \ U the set of bounded states.
Observe that S0 ∩B = ∅, and that there is a K ∈ N such that |f−1(s)| ≤ K for
every s ∈ B, and every global state f in P∞ar .

We now define an automaton A. States of A are pairs 〈s, f〉, where s ∈ S
is the state of the process whose execution we are observing, and f ∈ S →
{0, 1, . . . ,K}∪{∞}, is such that f(u) =∞ for every u ∈ U . Intuitively, for each
state in B, f keeps track of the number the other processes in that state. A state
〈s, f〉 of A is initial iff: s ∈ S0 and f(u) = 0 for all u ∈ B. A has a transition
from 〈s, f〉 to 〈s′, f ′〉 if there is a local transition τ ∈ δ where the counter values
of f change to f ′ according to τ (and any possible matching transition if τ is a
synchronising transition), and if s is involved in τ then s changes to s′. Such a
transition is labeled by λ(s) if s was involved in the transition and vis(τ) = true,
and otherwise by ε. For example, if τ = (p, (m?, true), p′) then, together with the
any transition of the form (q, (m!, b), q′) in δ, it induces the following transitions

in A: (i) a transition 〈p, f〉 λ(p)−→ 〈p′, f ′〉 for every f, f ′ such that f(q) 6= 0, and f ′

is obtained from f by decrementing the value assigned to q and incrementing the
value assigned to q′; (ii) a transition 〈s, f〉 ε−→ 〈s, f ′〉 for every s and every f, f ′

such that f(p) 6= 0, f(q) 6= 0, and f ′ is obtained from f by decrementing the
values assigned to p, q and incrementing the values assigned to p′, q′ (as usual,
∞− 1 =∞ =∞+ 1).

Clearly, A is a finite automaton. We show that A (with all states accepting)
accepts exactly the traces in FinExec(P∞ar). For every n ∈ N, every execution
obtained from some path of FinExec(Pnar) is accepted by a run of A that “sim-
ulates” this execution by correctly updating the components s, f of its states.

It remains to prove that every word accepted by A is in FinExec(P∞ar). We
claim (*): for every k there exists nk ∈ N and a path πk of FinExec(Pnk

ar)
reaching a global state such that there are at least k processes in every local
state s ∈ U . To see that (*) yields L(A) ⊆ FinExec(P∞ar), let π be some run
of A, and take k ≥ 2|π|. Observe that in such a run at most k processes are
involved. We build a corresponding run in Pnk

ar . First, (†): using (*) we take a

path that results in at least k processes in every local state s ∈ U . Recall that
S0 ∩ B = ∅ and thus, in particular, there is at least one process in each of the
initial states. Then,(‡): the process we want to observe starts from the relevant
initial state and we imitate the run π of A step by step. This is indeed possible
since whenever a step of ‡ requires a process with a state in U then such a process
is available, and the same for processes in B. The former is guaranteed by ‡, and
the latter since (by induction on the step number) the number of processes with
states in B is at least as specified by the function f of the mimicked point in π.

We now prove (*). Let u1, ..., um be the states in U . Inducting on 0 ≤ i ≤
m, we construct paths πi in systems FinExec(Pni

ar) such that load at least k
processes in states u1, ..., ui. We start with the empty run π0 in FinExec(P 1

ar).
Clearly, π0 satisfies the inductive claim. Given πi, we construct πi+1 as follows:
Let li be the length of πi. By the definition of U , there is a path π in some
system FinExec(Pnar) that ends with at least li + k processes in state ui+1 and
at least one process in each of the initial states (thus, executing π in a larger
system does not force any of the additional processes out of the initial states).
We set ni+1 = n + ni and define πi+1 to be the concatenation of π and πi in
the system FinExec(P

ni+1
ar). Clearly, πi+1 loads at least k processes in states

u1, ..., ui+1 (since πi can remove at most li states from ui+1). ut

It is open if there is a constructive proof of Theorem 3.

Infinite Executions.

Theorem 4. For every co-Büchi language L, and for cp ∈ {pr,bcml,ar,bc},
there is a local process P s.t. InfExec(P∞cp) = L.

Proof. Given an NCW A recognizing L we build a local process P , in which all
transitions are visible, such that InfExec(P∞cp) = L. The local process P has
exactly the same structure, when viewed as a graph, as A, with an added special
sink state. In order to take a transition to a co-Büchi state (i.e., a state that an
accepting run of A can only visit finitely many times) the process has to receive
a message. A process that sends a message enters the sink state, and can not
send again. Thus, in a system with n processes a process can visit a co-Büchi
state up to n−1 times. Transitions to other states are internal transitions of the
process, and can always be taken. ut

We now show that not all ω-regular languages can be generated by our param-
eterised systems. In fact, the proof is general enough to apply to any reasonable
notion of communication primitive (not only those defined in this paper), unless
some additional fairness conditions are imposed. The proof employs a standard
pumping argument to derive a contradiction by showing that if ab1ab2a . . . is in
Exec(Pncp) then so is ab1ab2 . . . abcabω, where c is the number of states in Pncp.

Proposition 7. For every local process P , primitive cp, and n ∈ N∪ {∞}, the
set InfExec(Pncp) is not equal to the ω-regular language L ⊆ {a, b}ω consisting
of all infinite sequences that contain infinitely many occurrences of a.

The following is not hard to see:

Proposition 8. There is a bc-system that can generate the non co-Büchi lan-
guage {albmcω | l ≥ m ≥ 1}).

We use a variation of the proof of Theorem 1 to show that ar-systems can
generate languages that are not ω-regular:

Proposition 9. There is an ar-system that can generate a language L ⊂ {a, b}ω
that has the property that
1. every string α ∈ L has a suffix (anbn)ω for some integer n ∈ N, and
2. every string (anbn)ω is the suffix of some string in L.
In particular, the language L is not co-Büchi.

Proof. Standard fooling arguments show that any L with the properties de-
scribed is not Büchi (and thus not co-Büchi). We now describe an ar-system
that can generate a language L with the properties stated in the lemma. The idea
follows that in the proof of Theorem 1: a controller starts in mode a; in mode
a it repeatedly increments a counter c; at some point it checks if all memory
processes are 1 by issuing an “allone(c)” message (which can be implemented
symmetric to the “iszero(c)” message), and moves to mode b; in mode b it repeat-
edly decrements the counter c; at some point it checks if all memory processes
are 0 by issuing a “iszero(c)” message, and moves back to mode a to repeat the
computation. Build the local process P based on M and note that a process
that becomes a controller forever in P lar does not err from some point on, and
thus traces a path whose suffix is (anbn)ω with n ≤ l. Note that an abdicating
controller does not trace an infinite path (since the dead state is a dead-end). ut

The following is proved in almost the same way as Theorem 3:

Theorem 5. For every P , the language pre(InfExec(P∞ar)) is regular.

Model checking safety and liveness properties (given as automata) of param-
eterised systems communicating via pr is decidable in PTime [17]. Actually:

Theorem 6 (implicit in [17]). For every local process P , one can compute,
in PTime, a non-deterministic co-Büchi automaton for the set InfExec(P∞pr).

Theorem 7. Every InfExec(P∞dg) is the limit of a regular language.

Proof. By [10] there exists N ∈ N such that InfExec(P∞dg) = InfExec(PNdg)
(the idea is to pick N large enough such that every reachable state can be reached
and adding one extra process; this choice of N ensures that every reachable
self-loop (s, (s!, false), s) can always be fired; the extra process can therefore
move unrestrained). The language L := FinExec(PNdg) is regular (because it
is the projection of the finite-state machine PNdg). It is sufficient to prove that
InfExec(PNdg) = limL. Clearly InfExec(PNdg) ⊆ limL. To see the converse let
α ∈ limL. So there exists k ∈ [N] and an infinite set I ⊆ N such that for every
i ∈ I there exists a run ρi of PNdg such that the prefix of α of length i is equal to
visletk(ρi). The set pre{ρi : i ∈ I} is an infinite tree (under the prefix-ordering)
that is finitely-branching (this is where we use the fact that the ρis are in PNdg
and not P∞dg), and thus by Kőnig’s Lemma, it has an infinite branch ρ. Clearly
ρ is an infinite run of PNdg and visletk(ρ) = α. Thus α ∈ InfExec(PNdg). ut

6 Related Work and Conclusion

Related Work. The absolute and relative expressive power of Petri nets and
their extensions were studied for finite and infinite executions, e.g., [14,16,1].
They show a strict hierarchy of relative expressive power: Petri nets (PN) are
less expressive than Petri nets with non-blocking arcs (PN+NBA), which are
less expressive than Petri nets with transfer arcs (PN+T). Translating these re-
sults into the language of parameterised systems, one finds that these extensions
roughly correspond to a very powerful model of parameterised systems with a
controller and in which processes can be created and destroyed at any time. By
this translation, PNs correspond to communication by pr, PN+NBA to com-
munication by ar, and PN+T to communication by bc. In contrast, we focus
on the setting with no controller and with no process creation or destruction.
Thus, neither their simulation nor separation results are directly applicable to
our more restricted setting.

The paper [9] organises communication primitives by whether or not model
checking (MC) is decidable. Although they do have a notion of simulation, that
notion is based on reducing the MC problem of systems using one primitive to
systems using another primitive. In particular, their reduction transforms, while
ours preserves, the set of behaviours. For instance, despite their result that MC
safety properties of dg- and pr-systems are inter-reducible, we prove that there
is a set of traces of a pr system that can’t be generated by any dg system.

It was previously known that MC safety properties for systems using each
of the primitives in this paper is decidable, liveness for bc is undecidable, and
liveness for pr and dg is decidable [12,17,10,6,9]. We complete the picture, and
prove, in particular, that for ar systems liveness is undecidable. The result in [9]
on the undecidability of liveness for ar systems makes the additional assumption
that there exists a unique “leader” process. The presence of a leader usually
dramatically increases the expressive power, cf. [11,17], and makes it easier to
establish undecidability than in our fully symmetric case. A number of papers
focus on supplying the exact complexity of MC various parameterised systems,
e.g., [11,2,17,6,7,8,21].

Conclusion. Comparing the expressive power of various models of computation
is a central theme in theoretical computer science. In our case, such comparisons
can be used to transfer results from one model to another. For instance, we
prove that ar can be effectively simulated by bc, and thus the fact that safety
is decidable for bc (cf. [12]) implies that safety is decidable for ar ([9]). We
also deduced the new result, using [17] and the fact that bcml can be efficiently
simulated by pr, that liveness for bcml is decidable in PTime.

The results about absolute expressive power are useful not only to show,
e.g., that pr can not simulate ar, but also to point to the inherent limitations
of each communication primitive. Such results can be used in synthesis to show
that certain specifications are not realisable. As a concrete example, a minor
variation of our proof that no system can generate the language “infinitely many
a’s” (Proposition 7) yields that there is no parameterised system (and thus no

point in trying to synthesise one without adding external fairness conditions)
that satisfies the conjunction of the properties “every run has infinitely many
grants” and “some run has arbitrarily large gaps between successive grants”.

References

1. Abdulla, P.A., Delzanno, G., Begin, L.V.: A classification of the expressive power
of well-structured transition systems. Inf. Comput. 209(3), 248–279 (2011)

2. Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model
checking of rendezvous systems. In: CONCUR, pp. 109–124. Springer (2014)

3. Aminof, B., Rubin, S., Zuleger, F., Spegni, F.: Liveness of parameterized timed
networks. In: ICALP. pp. 375–387 (2015)

4. Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Middleware
for Network Eccentric and Mobile Applications, pp. 97–120. Springer-Verlag (2009)

5. Delzanno, G., Raskin, J.F., Begin, L.V.: Towards the automated verification of
multithreaded java programs. In: TACAS. pp. 173–187 (2002)

6. Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: The cost of parameterized
reachability in mobile ad hoc networks. CoRR abs/1202.5850 (2012)

7. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc
networks. In: CONCUR. LNCS, vol. 6269, pp. 313–327 (2010)

8. Delzanno, G., Sangnier, A., Zavattaro, G.: Verification of ad hoc networks with
node and communication failures. In: FTDS. pp. 235–250 (2012)

9. Emerson, E., Kahlon, V.: Model checking guarded protocols. In: LICS. pp. 361–370.
IEEE (2003)

10. Emerson, E., Kahlon, V.: Reducing model checking of the many to the few. In:
CADE. pp. 236–254 (2000)

11. Esparza, J.: Keeping a crowd safe: On the complexity of parameterized verification.
In: STACS (2014)

12. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. Symp.
on Logic in Computer Science p. 352 (1999)

13. Esparza, J., Ganty, P., Majumdar, R.: Parameterized verification of asynchronous
shared-memory systems. In: CAV. pp. 124–140 (2013)

14. Finkel, A., Geeraerts, G., Raskin, J., Begin, L.V.: On the omega-language expres-
sive power of extended petri nets. Theor. Comput. Sci. 356(3), 374–386 (2006)

15. Fisher, J., Henzinger, T.A.: Executable cell biology. Nature biotechnology 25(11),
1239–1249 (2007)

16. Geeraerts, G., Raskin, J., Begin, L.V.: Well-structured languages. Acta Inf. 44(3-4),
249–288 (2007)

17. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675–735 (1992)

18. Lynch, N.: Distributed Algorithms. Morgan Kaufman Publishers, Inc., San Fran-
cisco, USA (1996)

19. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA (1967)

20. Prasad, K.V.S.: A calculus of broadcasting systems. Sci. Comput. Program. 25(2-
3), 285–327 (1995)

21. Schmitz, S., Schnoebelen, Ph.: The power of well-structured systems. In: CON-
CUR. pp. 5–24 (2013)

22. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Banff
Higher Order Workshop. pp. 238–266 (1995)

	On the expressive power of communication primitives in parameterised systems

