
D I S S E RTAT I O N

PAT T E R N S I N L A B E L L E D C O M B I N AT O R I A L
O B J E C T S

Ausgeführt zum Zwecke der Erlangung des akademischen
Grades einer Doktorin der technischen Wissenschaften unter

der Anleitung von

ao. univ. prof . dr . alois panholzer

E104, Institut für
Diskrete Mathematik und Geometrie

eingereicht an der Technischen Universität Wien
Fakultät für Mathematik und Geoinformation

von

marie-louise bruner

Matrikelnummer 0525370

Josefstädterstraße 43-45/2/4

A-1080 Wien

Wien, am 13. Mai 2015 Marie-Louise Marie-Louise Bruner
Marie-Louise Bruner

Marie-Louise Bruner
Alois Panholzer

Marie-Louise Bruner
Vincent Vatter

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

PAT T E R N S I N L A B E L L E D C O M B I N AT O R I A L O B J E C T S

marie-louise bruner

Institute of Discrete Mathematics and Geometry
Vienna University of Technology

May 2015

Marie-Louise Bruner: Patterns in labelled combinatorial objects, May 2015

Dedicated to the memory of my mother, Ingela Bruner.

1952 – 2014

Thank you for always believing in me. (I U 2)∞

D E C L A R AT I O N

I herewith declare that I have completed the present thesis indepen-
dently, making use only of the specified literature and aids. Sentences
or parts of sentences quoted literally are marked as quotations; identi-
fication of other references with regard to the statement and scope of
the work is quoted. The thesis in this form has not been submitted to
an examination body and has not been published. This thesis draws
however on previous publications of the author. For a complete list
of my relevant scientific articles, I refer to page xi.

Vienna, May 2015

Marie-Louise Bruner

A B S T R A C T

This thesis is concerned with various types of patterns and structural
restrictions in labelled combinatorial objects. We say that a combina-
torial object A is contained in another combinatorial object B as a
pattern if A can be obtained by deleting parts of B. Moreover, the
order structure of the labels must be preserved.

A first part of this thesis addresses patterns in permutations. A
question that is of particular interest is the decision problem “Does
the permutation τ contain the pattern π”? In general, this problem
is NP-complete. We present an fpt-algorithm that solves this problem
efficiently if τ has few alternating runs. We also analyse the com-
putational complexity of this problem for several different types of
permutation patterns. For a special permutation class arising in the
context of the third part of this thesis, we solve the enumeration prob-
lem. Finally, the log-concavity of a combinatorial sequence related to
permutation patterns is investigated.

A second part of this work is concerned with Cayley trees, i.e.,
rooted unordered trees and mappings, i.e., functions from a finite
set to itself. First, we present a new bijective proof of Cayley’s for-
mula which will subsequently allow us to establish bijective corre-
spondences. Next, we generalize the label patterns “ascents” and “as-
cending runs” from permutations to Cayley trees and mappings and
investigate their distribution. Another topic treated in this part is the
generalization of the concept of parking functions to Cayley trees and
mappings. The asymptotic analysis of the numbers of these objects
leads to an interesting phase transition behaviour.

A third part deals with so-called single-peaked elections that play
an important role in social choice theory. We introduce the concept of
configurations in elections and establish a correspondence with per-
mutation patterns. For the special case of single-peaked profiles we
answer the question how likely these are to occur when preferences
are chosen at random.

Some of the results presented in this thesis have already been pub-
lished in scientific articles by the present author. For a complete list
of the papers this thesis is based on, we refer to page xi.

ix

Z U S A M M E N FA S S U N G

Diese Dissertation beschäftigt sich mit unterschiedlichen Arten von
Mustern und strukturellen Einschränkungen in markierten kombina-
torischen Objekten. Ein kombinatorisches Objekt A ist in einem an-
deren größeren Objekt B als Muster enthalten, falls man A erhalten
kann, indem Teile von B entfernt werden. Dabei muss auch die Ord-
nungsstruktur der Marken (engl. “labels”) erhalten bleiben.

Ein erster Teil dieser Arbeit befasst sich mit Mustern in Permuta-
tionen. Besondere Aufmerksamkeit wird in diesem Zusammenhang
dem Entscheidungssproblem “Enthält die Permutation τ das Muster
π?” gewidmet. Dieses Problem ist bekanntlich NP-vollständig. Wir
stellen einen fpt-Algorithmus für dieses Problem vor, der besonders
effizient ist, wenn die Permutation τ nur wenige “alternating runs”
aufweist. Außerdem analysieren wir die Komplexität dieses Problems
für verschiedene Typen von Permutationsmustern. Für eine beson-
dere Permutationsklasse, die durch vier vermiedene Muster definiert
ist und im dritten Teil dieser Arbeit auftaucht, konnten wir das Abzähl-
problem lösen. Weiters wird die Log-Konkavität einer kombinato-
rischen Zahlenfolge, die mit Mustervermeidung zusammenhängt, un-
tersucht.

Ein zweiter Teil dieser Dissertation beschäftigt sich mit Cayley Bäu-
men, das sind gewurzelte ungeordnete Bäume, und mit Mappings,
das sind Abbildungen einer endlichen Menge auf sich selbst. Zunächst
präsentieren wir einen neuen bijektiven Zusammenhang zwischen
Cayley Bäumen und Mappings, der uns im Folgenden erlauben wird,
bijektive Resultate zu beweisen. Wir verallgemeinern die für Permuta-
tionen definierten Muster “Aufstiege” und “aufsteigende Runs” und
untersuchen deren Verteilung für Cayley Bäume und Mappings. Ein
weiteres Thema sind Parkfunktionen, die wir auf Cayley Bäume und
Mappings verallgemeinern. Das asymptotische Verhalten der Abzähl-
formeln weist dabei ein interessantes Phasenübergangsverhalten auf.

Ein dritter Teil behandelt sogenannte “Single-peaked elections”, die
in der sozialen Wahltheorie eine wichtige Rolle spielen. Wir führen
den allgemeinen Begriff von Konfigurationen in Präferenzen ein und
stellen eine Verbindung zu Permutationsmustern her. Für die spezielle
Single-peaked-Konfiguration beantworten wir außerdem die Frage,
wie wahrscheinlich es ist, dass diese in zufälligen Präferenzen auf-
taucht.

Die in dieser Dissertation vorgestellten Resultate sind zum Teil
schon in wissenschaftlichen Artikeln der Autorin publiziert worden.
Eine Auflistung der Arbeiten, auf denen diese Dissertation aufgebaut
ist, findet sich auf Seite xi.

x

P U B L I C AT I O N S

This thesis is based on the following publications and preprints:

[41] Marie-Louise Bruner and Martin Lackner. A fast algorithm for
permutation pattern matching based on alternating runs. In Fe-
dor V. Fomin and Petteri Kaski, editors, SWAT, volume 7357 of
Lecture Notes in Computer Science, pages 261–270. Springer, 2012.

[42] Marie-Louise Bruner and Martin Lackner. The computational
landscape of permutation patterns. Pure Mathematics and Appli-
cations, 24(2)(2):83–101, 2013.

[30] Miklós Bóna and Marie-Louise Bruner. Log-concavity, the Ulam
distance and involutions. arXiv preprint, arXiv:1502.05438, 2015.

[44] Marie-Louise Bruner and Alois Panholzer. Parking functions
for trees and mappings. arXiv preprint, arXiv:1504.04972, 2015.

[43] Marie-Louise Bruner and Martin Lackner. The likelihood of
structure in preference profiles. In Proceedings of the 8th Mul-
tidisciplinary Workshop on Advances in Preference Handling (MPref
2014), 2014.

xi

A C K N O W L E D G M E N T S

First and foremost I wish to thank my supervisor Alois Panholzer. He
was the one who, in his lecture on “Discrete Methods”, first sparked
my interest for discrete mathematics and combinatorial problems.
During my PhD studies, I greatly valued the substantial freedom
Alois gave me to pursue my own research directions. This allowed me
to explore various aspects of the combinatorial world. Also, he made
it possible for me to participate in many conferences and workshops
and to spend a month at the University of Florida. It has meant a lot
to me personally to have his support in emotionally difficult times
and never having to feel under pressure. I am also most thankful that
he is not only enabling but also encouraging me to pursue my plan
of hiking, kayaking and bicycling from Oslo back home this summer.

I would also like to thank all the other great researchers whom I
met and interacted with during my studies. Thank you for making me
feel part of the Analysis of Algorithms and the Permutation Patterns
community. Thank you for welcoming me into your world and for en-
couraging me. In particular, my thanks go to Cyril Banderier, Miklós
Bóna, Michael Drmota, Danièle Gardy, Antoine Genitrini, Bernhard
Gittenberger, Markus Kuba, Adeline Pierrot and Vincent Vatter.

To Vincent Vatter I also owe my thanks for accepting the task of re-
viewing my thesis. In addition, I would like to thank him very much
for inviting me for a second research stay at the University of Florida
this past winter.

During my daily work in Vienna, it was my colleagues as well
as my (current and former) roommates who made my days as a
PhD student very enjoyable. These are in particular: Danièle Gardy,
Veronika Kraus, Benoît Loridant, Johannes Morgenbesser, Adeline
Pierrot, Georg Seitz and Michael Wallner. My special thanks also go to
our secretary Barbara Dolezal-Rainer whose open ear for all sorts of
questions and good sense of humour always created a warm-hearted
and welcoming atmosphere at our department.

The program WINA+ was started rather recently to support young
researchers at the Vienna University of Technology. The regular meet-
ings with colleagues from various disciplines and our coach Stephan
Faatz were very encouraging and helped to solve small and big prob-
lems. Furthermore, the wonderful seminars on scientific writing led
by Katherine Tiede were very inspiring and taught me the joy of writ-
ing.

I would also like to thank Gerhard Bruner, Martin Lackner, Diana
Newton-Smith and Michael Wallner who helped me by proof-reading
my thesis.

xiii

If there is one thing that my mother’s illness taught me, it is how
much my family and friends mean to me. I am very grateful for the
time we were able spend together and for the many strong memories
I have of my mother. After her passing away last spring, my family
and friends were a tremendous support. Especially I want to thank
my father Gerhard Bruner for his generosity, patience, cheerful dis-
position, trust in me and helpfulness. Also, I would like to thank my
“new” family, the Lackners, for including me in their lives and mak-
ing me feel so much at home in their company.

My greatest support throughout the last years has been my part-
ner Martin Lackner with whom I can share not only mathematical
research but also crazy plans for outdoor adventures. Thank you for
being my rain boots when it’s pouring, the hot cup of tea on a cold
winter day, the shelter when it’s stormy and for being by my side to
enjoy the sunny days.

Last but not least, my thanks go to the Austrian Science Fund FWF
that supported my research throughout most of the duration of my
thesis via the projects P25337-N23 “Restricted labelled combinatorial
objects: new enumerative, statistical, asymptotic and complexity the-
oretical aspects” and 9608 “Combinatoric analysis of data structures
and tree-like structures”.

xiv

C O N T E N T S

1 introduction 1

2 preliminaries 13

2.1 Asymptotic notation 13

2.2 Permutations, patterns and Standard Young tableaux 14

2.3 Cayley trees and Mappings 20

2.4 Preferences and Social Choice Theory 22

2.5 Algorithms and complexity theory 24

2.6 Symbolic method and analytic combinatorics 27

2.7 Probabilistic tools 36

2.8 Method of characteristics 40

2.9 Log-concavity and combinatorial sequences 41

i permutations 45

3 efficient permutation pattern matching : the al-
ternating run algorithm 47

3.1 The alternating run algorithm 49

3.2 The parameter run(π) 75

3.3 Summary of the results 79

4 the computational complexity of generalized per-
mutation pattern matching 81

4.1 Types of patterns 82

4.2 The possibility of polynomial-time algorithms 86

4.3 The impact of the pattern length 89

4.4 Summary of the results 95

5 central binomial coefficients 97

6 log-concavity, longest increasing subsequences

and involutions 105

6.1 The conjecture and a first result 105

6.2 A class of permutations for which the conjecture holds 106

6.3 Lattice paths and 321-avoiding permutations 117

6.4 Summary of the results 119

ii cayley trees and mappings 121

7 a new bijective proof of cayley’s formula 123

8 ascending runs in mappings 127

8.1 A probabilistic warm-up: Ascents in mappings and trees 128

8.2 Ascending runs in mappings 131

8.3 Summary of the results 148

9 parking in trees and mappings 151

9.1 Introduction 151

9.2 Basic properties of parking functions for trees and map-
pings 155

xv

xvi contents

9.3 Total number of parking functions: the number of drivers
coincides with the number of parking spaces 162

9.4 Total number of parking functions: the general case 173

9.5 Summary of the results 197

iii preferences and elections 199

10 on the likelihood of single-peaked elections 201

10.1 A general result based on permutation patterns 204

10.2 Counting results and the Impartial Culture assump-
tion 211

10.3 The Pólya urn model 214

10.4 Mallows model 218

10.5 Numerical Evaluations 221

10.6 Summary of the results 223

11 further research 225

notation 233

bibliography 235

curriculum vitæ 247

1
I N T R O D U C T I O N

The notion of patterns or substructures is omnipresent within discrete
mathematics and especially within combinatorics. Given a combina-
torial object A we say that it contains a combinatorial object B if we
can obtain B by removing some parts of A. Let us mention a couple
of well-known examples:

Within graph theory, the notion of induced subgraphs is a very basic
one. Given a graph G = (V, E), we say that it contains H = (V ′, E′)
as an induced subgraph if V ′ ⊆ V, E′ ⊆ E and E′ contains all edges
from E that have both endpoints in V ′. That is, if we start with the
graph G and successively remove all vertices in V \V ′ together with
their adjacent edges, we end up with the graph H. Many properties of
graphs or graph classes can be described with the help of (forbidden)
subgraphs. For instance, consider the class of split graphs. These are
graphs for which the vertex set V can be partitioned into two subsets
V1 and V2 for which the following holds: the subgraph induced by V1

is a clique, i.e., all possible edges between vertices in V1 are present,
and the subgraph induced by V2 is an independent set, i.e., no two
vertices in V2 are connected by an edge. Split graphs arise amongst
others in the context of skew-merged permutations; the permutation
graph, i.e., the graph in which an edge (i, j) is present for every in-
version in the permutation, of a skew-merged permutation is a split
graph. If we want to check whether a graph is a split graph or not, it
is not necessary to check every partition of V into two sets. Indeed, a
split graph can also be characterized with the help of forbidden sub-
graphs: A graph is a split graph if and only if it has no cycle of length
four or five and no pair of disjoint edges as induced subgraph.

Another simple example is that of cycles in permutations. A permu-
tation π of length n is a bijective function from the set {1, 2, . . . , n}
to itself. A permutation can be decomposed in a unique way into its
cycles. We say that π contains a cycle of length k if there is some
element i in {1, 2, . . . , n} such that πk(i) = i and π j(i) 6= i for all
1 ≤ j < k. That is, if we apply the permutation π k times to the ele-
ment i we end up at i again. The cycle containing the element i then
consists of the integers i, π(i), π2(i), . . . , πk−1(i). If we remove all the
other elements from the set {1, 2, . . . , n} and restrict the function π to
the set

{
i, π(i), . . . , πk−1(i)

}
, we obtain a function that is also a bijec-

tion and that consists of a single cycle of length k. We can thus say
that π contains a cycle of length k as a pattern. Cycles can for instance
be used to define involutions. An involution is a permutation π that
is self-inverse, that is π ◦ π = π2 = id. If we have the cycle structure

1

2 introduction

stack

inputoutput

5

3

1 4 2

Figure 1: Attempting to sort the permutation π = 5 3 1 4 2 with the help of
a stack. As we can see, the subsequence 3 4 2 causes trouble and
cannot be sorted.

of a permutation π at hand, it is very easy to say whether it is an
involution or not. Indeed, since π2(i) = i has to hold for all elements
i of the permutation, all cycles need to be of length one or two. Thus,
involutions can be characterized as those permutations that do not
contain any k-cycles for k ≥ 3 as a pattern.

The next example is also related to permutations. Let us consider
the following sorting device called a stack. A stack is a linear list for
which all insertions and deletions are made at one end of the list.
That is, the last element inserted from the input into the stack, will
be the first to be deleted and placed in the output. Stacks are thus
also called LIFO-(Last-In-First-Out-)lists. For a graphical representa-
tion of a stack, see Figure 1. The question is now: Which permutations
π can be sorted with the help of a stack? In other words: For which
permutations π as input is it possible to obtain the identity permu-
tation π as output? Let us consider the permutation π = 5 3 1 4 2 in
Figure 1 as an example. As we can see, we get stuck as soon as the
element 3 is placed in the stack and it is not possible to output the
element 2 before the element 4. Within the permutation π, it is the
subsequence 342 that cannot be sorted. This observation can be gen-
eralized and one can prove that a permutation π is stack-sortable if
and only if there are no three elements `, m, n in the permutations
with ` < m < n and m stands to the left of n and n to the left of `.
That is, π may not contain a subsequence of length three in which the
elements are in the same order as in the permutation 2 3 1. One also
says that a permutation is stack sortable if and only if it avoids the
pattern 2 3 1.

The first two examples of patterns or substructures have a point
in common that distinguishes them from the third example. The pat-
terns were defined by the underlying graph or cycle structure and
the specific labels of the involved vertices or the elements of the per-

introduction 3

mutation were of no importance. For instance, when considering a
graph containing a cycle of length 4, it is of no relevance whether the
elements forming this cycle are labelled 1, 2, 3, 4 or 7, 2, 1, 5. This is
in contrast to the third example where we introduced 231-avoiding
permutations. Here, the involved elements of the permutation play a
crucial role since they need to be in a specific order to form a 231-
pattern.

This leads us to the concept of label patterns in combinatorial ob-
jects that is at the heart of this thesis. First, all combinatorial objects
that we will consider are labelled ones. This means that the “atoms”
– these are for instance the vertices in a graph or the elements in a
permutation – have positive integers attached to them. We call these
integers the labels. Second, we say that a labelled combinatorial ob-
ject A contains a labelled combinatorial object B if we can obtain
B by removing some parts of A. Additionally, the labels of B have
to be order-isomorphic to the labels of the substructure of A that
we obtained after deleting some parts. Returning to the example of
stack-sortable permutations, we can formalize the definition of 231-
avoiding permutations as follows: A permutation π contains the pat-
tern 231 if and only if there are three positions i < j < k in π such
that π(k) < π(i) < π(j), i.e., the subsequence π(i)π(j)π(k) in π is
order-isomorphic to 231.

In this thesis, we will study different types of label patterns in var-
ious combinatorial objects. Our research is devoted to a varied set of
problems that concern algorithmical, enumerative, analytic and prob-
abilistic questions. Also, the methods employed throughout this the-
sis are diverse: We employ techniques from analytic combinatorics,
complexity theory, probability theory as well as bijective proofs. Fig-
ure 2 provides an overview of the combinatorial objects studied in
this thesis and the methods that were used. A detailed introduction
to the objects studied in this thesis is given in the Preliminaries, start-
ing on page 13.

Part i of this thesis is devoted to permutation patterns. The history
of permutation patterns can be traced back to the beginning of the
20th century and MacMahon’s study [120] of permutations that can
be partitioned into two decreasing subsequences, i.e., 123-avoiding
permutations. Also, the studies by Erdős and Szekeres showing that
a permutation of length n always contains an increasing subsequence
of length

√
n− 1 or a decreasing subsequence of length

√
n− 1 [67]

along with Schensted’s study of longest increasing subsequences in
permutations [139] can be seen as studies of the monotone patterns
12 . . . k for some integer k. However, the birth of permutation pat-
terns is mostly attributed to Knuth who published the first volume
of The Art of Computer Programming [111] in 1968. There, in an ex-
ercise, he asks which permutations can be sorted with the help of
a stack and his question naturally leads to permutation patterns as

4 introduction

PERMUTATIONS
of length n

bijections π : [n]→ [n]

Permutation patterns

MAPPINGS
on the set [n]

arbitrary functions f : [n]→ [n]

Consecutive label patterns

Parking functions

Cayley TREES
of size n

Consecutive label patterns

Parking functions

PREFERENCES
on n candidates

total orders of a set C of size n

Configurations

Bijection
in Chapter 7

Connection
in Chapter 10

3 C P

4 C

5 E

6 E

10E P 8 A E P

9 A E P

9 A E P

8 A E P

remove

bijectivity

impose

bijectivity

allow cycles

& several

components

forbid cycles

& impose

connectedness

add ordered

structure to C

replace [n]

by any set C of size n

Chapters in this thesis and publications

3
Efficient PPM: the alternating
run algorithm [BL12]

4
The computational complexity of
generalized PPM [BL13]

5
A permutation class enumerated by
the central binomial coefficients

6
Log-concavity, longest increasing
subsequences and involutions [BB15]

7
A new bijective proof of
Cayley’s formula [BP15]

8 Ascending runs in mappings

9 Parking in trees and mappings [BP15]

10
Configuration avoidance in
preference profiles[BL14]

Methods employed

A Analytic combinatorics

C
Computational complexity
and algorithms

E
Enumerative combinatorics
and bijective methods

P Probability theory

Figure 2: An overview of the objects studied and the methods employed in
this thesis. Dashed lines mark connections between combinatorial
objects and solid lines mark connections that are proved within
this thesis.

introduction 5

we have seen above. The first systematic study of patterns in permu-
tations was not performed until 1985 by Simion and Schmidt [140].
Since then, the field of permutation patterns has become a vastly
growing part of combinatorics. This is evidenced by the attention
attributed to this topic in various monographs: several chapters in
Bóna’s Combinatorics of Permutations are concerned with permutation
patterns[25]; a comprehensive presentation of results related to var-
ious types of patterns in permutations and words can be found in
Kitaev’s monograph Patterns in Permutations and Words [108]; and a
survey of permutation classes and recent research directions can be
found in Vatter’s Chapter 12 in the Handbook of Enumerative Combina-
torics [29]. Moreover many applications of permutation patterns have
been discovered: their relation to stack and deque sorting, genome
sequences in computational biology, statistical mechanics and in gen-
eral their numerous connections to other combinatorial objects [108].

So far, computational aspects of permutation patterns have received
far less attention than enumerative ones. The computational prob-
lem of detecting permutation patterns, the Permutation Pattern

Matching (PPM) problem, can be formulated as follows: Does a per-
mutation τ of length n (the text) contain a permutation π of length
k ≤ n (the pattern)? In Chapters 3 and 4 we will take the viewpoint of
computational complexity and consider this algorithmical problem.

PPM has been shown to be NP-complete [31]. This implies that, un-
less P = NP, we cannot hope for a polynomial time algorithm for
PPM. This is however not the end of the story: even though PPM is
NP-complete in general, one can hope to find polynomial time algo-
rithms for special cases of the problem. For instance, if π is the iden-
tity 12 . . . k, PPM consists of looking for an increasing subsequence of
length k in the text – this is a special case of the Longest Increasing

Subsequence problem. This problem can be solved inO(n log n)-time
for sequences in general [139] and in O(n log log n)-time for permu-
tations [48, 122]. Another example is that of separable patterns. These
are permutations avoiding both patterns 3142 and 2413. In this case,
PPM can be solved in O(k · n4) time [99]. Another possibility that
allows to circumvent the computational hardness of PPM is to con-
fine the combinatorial explosion to a certain parameter of the input
(τ, σ). This is the approach of parameterized complexity theory, a rather
new branch of complexity theory that has, so far, mostly been used
for problems on graphs [59]. In Chapter 3 we employ parameterized
complexity theory and construct an algorithm that has a worst-case
runtime of O(1.79run(τ) · n · k) where run(τ) denotes the number of
alternating runs in τ. This algorithm is particularly well-suited for
instances where τ has few alternating runs, i.e., few ups and downs.
Moreover, since run(τ) < n, this can be seen as a O(1.79n · n · k) algo-
rithm that is the first to beat the exponential 2n exponential runtime of
brute-force search. Furthermore, we prove that under standard com-

6 introduction

plexity theoretic assumptions such a fixed-parameter tractability re-
sult is not possible for run(π).

In Chapter 4 we consider variations of PPM. In the last years, dif-
ferent types of patterns in permutations have been studied: vincular,
bivincular and mesh patterns, just to name a few. Every type of per-
mutation pattern naturally defines a corresponding computational
problem. The goal of Chapter 4 is to draw a map of the computational
landscape of permutation pattern matching with different types of
patterns. We provide a classical complexity analysis and investigate
the impact of the pattern length on the computational hardness.

Chapter 5 is devoted to the enumeration of a specific permutation
class. The set of permutations avoiding the patterns 2431, 4231, 1432
and 4132 simultaneously arises in the context of single-peaked elec-
tions that are studied in Chapter 10. Using two bijections, we can
show that this class in enumerated by the central binomial coefficients.
Thus this permutation class can join the list of classes that have “nice”
enumeration formulæ.

An important property of combinatorial sequences is that of log-
concavity. A sequence (an)n∈N is called log-concave if the property
an−1 · an+1 ≤ a2

n holds for all n. In Chapter 6 we formulate our con-
jecture that the sequence `n,k counting permutations of length n with
a longest increasing subsequence of length k is log-concave. Alter-
natively, `n,k counts permutations of length n that contain the pat-
tern 12 . . . k but avoid the pattern 12 . . . k(k + 1). We prove our con-
jecture in some special cases, i.e., for certain subsets of permutations
of length n. One tool in our proofs is a technique that allows us to
turn injections between sets of involutions into injections between
sets of permutations. In addition, we use several consequences of the
well-known Robinson-Schensted correspondence (see e.g. Chapter 14

in [29]). The sequence `n,k can also be interpreted as counting the
number of permutations of length n that have Ulam-distance n − k
to the identity permutation 12 . . . n. This distance was introduced by
Ulam as an “evolutionary distance” in the context of biological se-
quences [150]. The Ulam distance U(σ, τ) of two permutations σ and
τ is the minimal number of steps needed to obtain τ from σ where
each step consists in taking an element from the current permutation
and placing it at some other position. If τ is the identity permutation
id of length n, then it is easy to see that n −U(σ, τ) is equal to the
length `(σ) of the longest increasing subsequence in σ. Our results
can thus be seen as a contribution to the study of notions of distance
for permutations and biologically motivated sorting algorithms that
has received increased interest in the last years. A collection of these
results can be found in [73].

Part ii is concerned with Cayley trees and mappings. Cayley trees
are one of the simplest tree models in discrete mathematics and are
a fundamental data structure in computer science: they are rooted la-

introduction 7

1

2

1

1

2

1

2 3

2

1 3

3

1 2

1

2

3

1

3

2

2

1

3

2

3

1

3

1

2

3

2

1

Figure 3: All Cayley trees of size up to n = 3

belled unordered trees. “Rooted” means that there is one designated
node in the tree that we call the root (this node can be any one of the
nodes) and we consider all the edges to be oriented toward the root.
“Labelled” means that every node carries a label, which we assume
to be an integer between 1 and n, where n is the size of the tree and
every label occurs exactly once. “Unordered” means that there is no
order among the children of a given node. Figure 3 provides a rep-
resentation of all Cayley trees of size n = 1, 2 and 3. The roots are
drawn on top and are marked by a black border. Cayley trees carry
their name from the British mathematician Arthur Cayley who stud-
ied them in 1889 [47]. In this paper he showed that the number Tn of
rooted unordered trees with n nodes is equal to nn−1 or, equivalently,
that the number of unrooted unordered trees with n nodes is equal
to nn−2. Cayley was however not the first to have stated this result.
An equivalent result had already been shown earlier by Borchardt
(1860) and Sylvester (1857), but Cayley was the first to use graph the-
ory terms. The theorem stating that Tn = nn−1 has since been known
as Cayley’s formula. Since Cayley’s paper, various proofs have been
given for his formula, using bijections, double counting, recursions
and even methods from linear algebra, see e.g. the collection in [2].

In Chapter 7 we present a new proof of Cayley’s formula by con-
structing a bijection between pairs (T, w) where T is a Cayley tree
of size n and w is a node of T and n-mappings. An n-mapping is a
function from the set {1, 2, . . . , n} into itself. Clearly, there are nn n-
mappings and thus providing such a bijection is indeed a proof of
Cayley’s formula. The advantage of our bijection is that it can be ap-
plied to the objects studied in the subsequent two chapters and allows
us to provide combinatorial explanations for facts that we obtain with
the help of generating functions.

Besides this bijective correspondence between Cayley trees and map-
pings, these combinatorial objects are also structurally linked to each
other. To see this, let us consider the functional digraph G f associ-
ated with an n-mapping f . This graph is defined on the vertex set
{1, 2, . . . , n} and a directed edge is present between vertex i and ver-

8 introduction

f : 1 7→ 3
2 7→ 2
3 7→ 6

4 7→ 3
5 7→ 2
6 7→ 3

2

5

3 6

1 4

Figure 4: The functional graph of the 6-mapping f

tex j whenever j = f (i). For an example, see the 6-mapping f de-
picted in Figure 4. The connected components of such a functional
digraph are Cayley trees whose root nodes have been arranged in cy-
cles. In our example, the connected component containing the node 1
has two cyclic elements: the node 3 and the node 6. The node 3 is the
root node of a Cayley tree of size 3 and the node 6 is the root node of
a Cayley tree of size 1. The second connected component has a single
cyclic node and simply consists of a Cayley tree of size 2 where an
additional loop edge has been attached to the root. Cayley trees with
an additional edge from the root node to itself can thus be seen as a
special case of mappings. This structural connection between Cayley
trees and mappings translates easily into the language of generating
functions using the symbolic method.

Random n-mappings, or simply random functions from the set
{1, 2, . . . , n} into itself, appear in various applications: for instance in
the birthday paradox, the coupon collector problem and occupancy
problems, just to name a few. Structural properties of the functional
digraphs of random mappings have widely been studied, see e.g. the
work of Arney and Bender [8], Kolchin [112], Flajolet and Odlyzko [75].
For instance, it is well known that the expected number of connected
components in a random n-mapping is asymptotically 1/2 · log(n),
the expected number of cyclic nodes is

√
πn/2 and the expected

number of terminal nodes, i.e., nodes with no preimages, is e−1n. In
the functional graphs corresponding to random mappings the labels
of nodes play an important role and thus it is somewhat surprising
that the occurrences of label patterns have, so far, not received more
attention. In Chapter 8 we perform a first analysis of such a label
pattern in random mappings. Namely, we generalize the notion of as-
cending runs from permutations to mappings and study the random
variable counting the number of ascending runs in a random map-
ping. We obtain exact enumeration formulæ and limiting distribution
results for the occurrences of ascending runs both in mappings and
in Cayley trees. We also analyse the occurrence of ascents in ransom
mappings and Cayley trees. Some recent research in this direction
has been undertaken by Panholzer who studied alternating mappings
in [130]. These are a generalization of the concept of alternating per-
mutations to mappings. They can be defined as those mappings for
which every iteration orbit forms an alternating sequence. Alternat-

introduction 9

Figure 5: An example of a parking function: If the drivers want to park at
the spaces 1, 5, 3, 1, 2 everyone can park successfully.

ing mappings can thus also be seen as mappings that do not contain
two consecutive ascents or descents, this being a characterization in
terms of forbidden label patterns.

Chapter 9 is devoted to a generalization of parking functions to
Cayley trees and mappings. Parking functions were introduced by
Konheim and Weiss [113] in the context of linear probing hashing. An
illustrative description of parking functions can be given as follows:
Consider a one-way street with n parking spaces numbered from 1 to
n and a sequence of m drivers with preferred parking spaces s1, s2, . . . ,
sm. The drivers arrive sequentially and each driver k, 1 ≤ k ≤ m, tries
to park at her preferred parking space with address sk ∈ [n]. If it
is free she parks. Otherwise she moves further in the allowed direc-
tion, thus examining parking spaces sk + 1, sk + 2, . . . , until she finds a
free parking space where she parks. If there is no such parking space
she leaves the street without parking. A parking function is then a se-
quence (s1, . . . , sm) ∈ [n]m of addresses such that all m drivers are able
to park. For an example of a parking function with 5 parking spaces
and 5 drivers, see Figure 5. The sequence 1, 5, 3, 1, 2 of preferred park-
ing spaces is a parking function. However, if the last driver decides
that she wants to park at the fifth parking space she will not be able
to park and thus the sequence 1, 5, 3, 1, 5 is not a parking function.

The notion of parking functions has been generalized in various
ways, yielding amongst others (a, b)-parking functions [159], bucket
parking functions [23], x-parking functions [148] and G-parking func-
tions [135]. We introduce a new generalization of parking functions by
starting with the original definition of parking functions and apply-
ing it to rooted trees and mappings. Thus, we consider the nodes in
a Cayley tree or a functional digraph of a mapping as parking spaces
and the directed edges as one-way streets in a branched road net. The
drivers first attempt to park at their preferred parking space. If this

10 introduction

one is not free, they continue their route following the directed edges
until they find a free parking space. For this generalization of park-
ing functions, we count the total number of tree-parking functions as
well as the total number of mappings functions. Interestingly, it turns
out that these numbers are directly linked to each other which can
also be explained in a bijective manner. Furthermore, we perform an
asymptotic analysis of these quantities using methods from analytic
combinatorics. Subsequently, we observe an interesting phase transi-
tion behaviour at the point where the number m of drivers is equal to
half the number of parking spaces.

Parking functions represent a structural restriction on integer se-
quences but cannot directly be interpreted in terms of label patterns.
However, there does exist a correspondence between parking func-
tions and certain types of patterns. In order to state this correspon-
dence, consider the following sorting device, called a priority queue. In
a priority queue, two possible operations can be performed: one can
either insert the next element from the input to the queue or, when-
ever the queue is not empty, one can move the smallest element in the
queue to the output. With such a sorting device, the possible output
permutations depend on the input. For instance, the identity permu-
tation id = 12 . . . n will always lead to the same output, namely the
identity again. However, if the input permutation is n(n− 1) . . . 21, it
can lead to various different output permutations. The pairs (σ, τ) of
input-output pairs that can be obtained with a priority queue – these
are called allowable pairs – can also be characterized in terms of forbid-
den patterns. Indeed, a pair (σ, τ) is an allowable pair if and only if it
does not contain the pattern-pairs (12, 21) and (321, 132). This means
that if there are two entries σ(i) and σ(j) with i < j and σ(i) < σ(j)
in the input permutation, the elements σ(i) and σ(j) may not occur
in inverse order in τ. Similarly, if there are positions i < j < k in
the input permutation with σ(i) > σ(j) > σ(k), these elements may
not occur in the order σ(k), σ(i), σ(j) in the output permutation. This
notion of pattern avoidance is connected with pattern avoidance in
permutations but it requires patterns to occur simultaneously on the
same elements in two permutations. Now, allowable pairs of size n
are in bijective correspondence with parking functions with n park-
ing spaces and n drivers. In [90], such a bijection is described where
the output permutation of the allowable pair is equal to the output of
the corresponding parking function. For a parking function, the out-
put permutation associates to each driver the parking space where
she eventually ends up parking. Thus parking functions have a nice
connection to a certain notion of label patterns.

The last part of this thesis is devoted to so-called single-peaked elec-
tions and configurations in elections. The single-peaked restriction, in-
troduced by Black [22], is an extensively studied concept in social
choice theory. A collection of preferences, i.e., total orders on a set

introduction 11

axis A
18◦ 19◦ 20◦ 21◦ 22◦ 23◦

?

?

?

?

?

?

Alice

Bob

Claire

? Doug

Figure 6: Alice’s, Bob’s and Claire’s preferences form a single-peaked elec-
tion with respect to the axis A = 18◦C < 19◦C < 20◦C < 21◦C <
22◦C < 23◦C. However, Doug’s vote is not single-peaked with re-
spect to A.

of candidates, is single-peaked if the candidates can be ordered lin-
early – on a so-called axis – so that each preference is either strictly
increasing along this ordering, or strictly decreasing, or first increas-
ing and then decreasing. For example, the preferences of voters Alice,
Bob and Claire on the temperature in a class room are single-peaked
with respect to the axis 18◦C < 19◦C < 20◦C < 21◦C < 22◦C < 23◦C
as depicted in Figure 6. However, Doug’s vote is not single-peaked
with respect to this axis and one could argue with him whether his
preferences make sense – or not.

Single-peaked elections play an important role in social choice the-
ory since they have several nice properties. Probably their most im-
portant feature is that they they allow to circumvent Arrow’s para-
dox [10]. Arrow’s paradox states that as soon as there are more than
two candidates, every possible way of aggregating individual prefer-
ences to a common preference in a way that this common preference
fulfils two very basic properties, is a dictatorship. This means that
there exists a voter whose preferences will always prevail. However,
if we restrict ourselves to single-peaked elections, Arrow’s paradox
does not hold any longer and there do exist preference aggregation
mechanisms with many desirable properties.

In Chapter 10 we perform the first combinatorial analysis of the
single-peaked domain. Our aim is to establish results on the likeli-
hood that an election is single-peaked for some axis. We consider
three probability distributions for elections: the Impartial Culture (IC)
assumption in which all total orders are equally likely and are chosen
independently; the Pólya urn model which assumes a certain homo-
geneity among voters; and the Mallows model in which the proba-

12 introduction

bility of a vote depends on its Kendall-tau distance to a given ref-
erence vote. We also define the concept of configurations in elections
and prove a general result on the probability that an election does not
contain a configuration of size (2, k).

Before we start with the actual results of this thesis, we gather the
most important definitions of concepts that occur throughout this the-
sis in Chapter 2. In this Chapter, we also present the methods that
will be employed in this thesis. In Chapter 10.6 we point out various
directions for further research.

2
P R E L I M I N A R I E S

In this chapter, we introduce the objects and methods that will be
used throughout this thesis. After some basic asymptotic notation we
present the combinatorial objects that will be analysed throughout
this thesis: permutations, Cayley trees, mappings and preference pro-
files. We continue by giving a brief introduction to the methods used
to analyse these objects; these are algorithmic, analytic, probabilistic
and combinatorial tools. Parts of this chapter are taken from the pub-
lications this thesis is based on, see page xii for a complete list.

Some standard notation that is used throughout this thesis is gath-
ered in the Notation-Section on page 233 and following pages.

2.1 asymptotic notation

Throughout this thesis we will often be interested in the asymptotic
growth of functions, both in the context of the runtime of algorithms
and of the enumeration of combinatorial objects.

When comparing the growth rates of functions, we use the follow-
ing standard asymptotic notation introduced by Bachmann and Lan-
dau. The presentation here follows the one in [78]. Let x0 be some
element of a set X on which some notion of neighbourhood exists. In
this thesis this will be: X = N∪ {∞} and x0 = ∞, X = R and x0 any
real number or X = C and x0 = 0. Furthermore, let f and g be two
real or complex functions defined on X \ {x0}.

• We write f (x) = O(g(x)) as x → x0, if the ratio f (x)/g(x) stays
bounded as x → x0. That is, if there is a constant C > 0 and a
neighbourhood U of x0 such that

| f (x)| ≤ C · |g(x)| for all x 6= x0, x ∈ U .

One says that “ f is of order at most g” or “ f is big-Oh of g”.

• We write f (x) = o(g(x)) as x → x0, if the ratio f (x)/g(x) tends
to 0 as x → x0. That is, if for every ε > 0 there is a neighbour-
hood Uε of x0 such that

| f (x)| ≤ ε · |g(x)| for all x 6= x0, x ∈ Uε.

One says that “ f is of order smaller than g” or “ f is little-oh of
g”.

• We write f (x) ∼ g(x) as x → x0, if the ratio f (x)/g(x) tends to
1 as x → x0. One says that “ f and g are asymptotically equiva-
lent”.

13

14 preliminaries

The concepts above clearly depend very strongly on the point x0 cho-
sen. Most of the time it will be clear from the context what the choice
of x0 is and we will thus omit as x → x0 from the notation.

In order to obtain asymptotic expansions we will often use the well-
known Taylor expansions of the following elementary functions:

(1 + z)α = ∑
n≥0

(
α

n

)
zn,

1
(1− z)α+1 = ∑

n≥0

(
n + α

n

)
zn,

exp z = ∑
n≥0

zn

n!
, log

(
1

1− z

)
= ∑

n≥1

zn

n
.

Moreover the following two asymptotic expansions will be used:

1. Stirling’s formula:

n! =
nn

en

√
2πn · (1 + λn) , where 0 < λn <

1
12n

. (1)

2. The harmonic numbers:

Hn :=
n

∑
i=1

1
i
= ln(n) + γ +

1
2n

+O
(

1
n2

)
, (2)

with the Euler-Mascheroni constant γ ≈ 0.5772

2.2 permutations , patterns and standard young tableaux

Permutations

A permutation π is a bijective function from a finite set onto itself. We
will denote by π−1 the inverse function of π, i.e., the unique function
that fulfils π ◦π−1 = π−1 ◦π = id. A permutation that is self-inverse,
i.e., for which it holds that π ◦ π = id, is called an involution.

If π is defined on a set of size n, we speak of a permutation of
length n or of an n-permutation. For the definition of permutation
patterns that will be given in Section 2.2 it is crucial that we have the
natural order defined by < on the elements of a permutation. We will
thus assume that an n-permutation is always defined on the set [n].

An n-permutation π can thus also be seen as the sequence π(1),
π(2), . . . , π(n) in which every one of the integers in [n] appears ex-
actly once. We will also use the notation π1, π2, . . . , πn to refer to this
sequence. This representation of a permutation is also known as the
one-line notation. Given an integer m ∈ [n] we may refer to m as an
element of π and say that its position in π is i if π−1(m) = i. Every
n-permutation π defines a total order on [n] that we will denote by
≺π. We write k ≺π m if π−1(k) < π−1(m), i.e., the element k lies to
the left of the element m in the sequence π. In this case, we say that
k is left of m or that m is right of k. We also use the non-strict total

2.2 permutations , patterns and standard young tableaux 15

order �π associated to π: k �π m iff k ≺π m or k = m. In this case,
we say that k is not right of m or that m is not left of k.

Viewing permutations as sequences allows us to speak of subse-
quences of a permutation. We speak of a contiguous subsequence of π

if the sequence consists of contiguous elements in π or, equivalently,
if the corresponding positions form an interval of [n]. Given a set
S ⊆ [n], we write π|S to denote the subsequence of π consisting ex-
actly of the elements of S.

Graphically, a permutation π on [n] can be represented with the
help of a plot in the integer plane in which dots are placed at the po-
sitions (i, π(i)). This representation thus corresponds to the function
graph of π when viewing permutations as bijective maps. For exam-
ples, see Figure 7 on page 17 where the two permutations πex = 2 3 1 4
and τex = 1 8 12 4 7 11 6 3 2 9 5 10 which will serve as running exam-
ples throughout this section are represented with the help of plots.

We denote by πr := π(n)π(n− 1) . . . π(1) the reverse of π and by
πc := (n− π(1) + 1)(n− π(2) + 1) . . . (n− π(n) + 1) its complement.
From the plot corresponding to π one obtains πr’s plot by reflecting
across x = n/2 and πc’s plots by reflecting across y = n/2. Also, the
plot of π−1 is obtained by reflecting across the line y = x.

For other possible definitions and representations of permutations
we refer to Stanley’s Enumerative combinatorics [146], especially the
section Geometric representations of permutations. Furthermore, for a ex-
tensive treatment of permutations as combinatorial objects, we refer
to Bóna’s monograph Combinatorics of Permutations [25].

Ups and downs in permutations: various statistics

In this section, we gather various definitions related to the up-down
structure of permutations. In this thesis, three different notions of
monotone subsequences in permutations will appear: alternating runs,
ascending runs and longest increasing subsequences.

We discern two types of local extrema in permutations: valleys and
peaks. A valley of a permutation π is an element π(i) for which it
holds that π(i− 1) > π(i) and π(i) < π(i + 1). If π(i− 1) or π(i + 1)
is not defined, we still speak of valleys. Similarly, a peak denotes an
element π(i) for which it holds that π(i − 1) < π(i) and π(i) >

π(i + 1).
Valleys and peaks partition a permutation into contiguous mono-

tone subsequences, so-called alternating runs. The first run of a given
permutation starts with its first element (which is also the first local
extremum) and ends with the second local extremum. The second
run starts with the following element and ends with the third local
extremum. Continuing in this way, every element of the permutation
belongs to exactly one alternating run. Observe that every alternat-
ing run is either increasing or decreasing. We therefore distinguish

16 preliminaries

between runs up and runs down. Note that runs up always end with
peaks and runs down always end with valleys. The parameter run(π)

counts the number of alternating runs in π. Hence, run(π) + 1 equals
the number of local extrema in π. These definitions can be analo-
gously extended to subsequences of permutations.

Example 2.1. In the permutation τex = 1 8 12 4 7 11 6 3 2 9 5 10 the val-
leys are 1, 4, 2 and 5 and the peaks are 12, 11, 9 and 10. A decompo-
sition into alternating runs is given by: 1 8 12|4|7 11|6 3 2|9|5|10 and is
graphically represented in Figure 7. a

A permutation in which all alternating runs except the first one are
of length one only is called an alternating permutation. If an alternat-
ing permutation π starts with a run up it is also called an up-down-
permutation and its elements have to satisfy π(1) < π(2) > π(3) <
. . .. Analogously, alternating permutations starting with a run down
are called down-up-permutations and have to satisfy π(1) > π(2) <

π(3) > Note that a slightly different notation is sometimes used
in the literature, calling alternating permutations in our sense zigzag
permutations and only referring to up-down permutations as alter-
nating permutations.

Example 2.2. The permutation πex = 2 3 1 4 is an alternating permu-
tation. To be more precise, it is an up-down permutation. a

A different way of characterizing alternating permutations is with
the help of ascents and descents. An ascent of a permutation π is a
position i for which it holds that π(i) < π(i + 1). Similarly, a descent
of a permutation π is a position i for which it holds that π(i) >

π(i + 1). Thus, an alternating permutation is a permutation where
every ascent is directly followed by a descent and vice-versa.

The descents of a permutation π partition it into so-called ascend-
ing runs. These are increasing contiguous subsequences of maximal
length. The following holds: if π has k descents, it is the union of k+ 1
ascending runs. In order to make the difference between ascending
and alternating runs clear, let us note the following: an alternating
run that is a run up is always also an ascending run; however, a run
down is the union of multiple ascending runs of length one.

Example 2.3. In our running example τex the five descents are the fol-
lowing elements: 12, 11, 6, 3, 9. The decomposition into six ascending
runs is given as follows : 1 8 12|47 11|6|3|2 9|5 10. a

Another important concept in permutations is that of longest in-
creasing and longest decreasing subsequences. A longest increasing sub-
sequence of a permutation π is a monotonically increasing subse-
quence that is of maximal length. Note that the longest increasing or
decreasing subsequence need not be unique and in general are not
contiguous subsequences.

2.2 permutations , patterns and standard young tableaux 17

2

3

1

4

run up
run down 1

8

12

4

7

11

6

3
2

9

5

10

Figure 7: The pattern πex = 2 3 1 4 (left-hand side) is contained in the per-
mutation τex = 1 8 12 4 7 11 6 3 2 9 5 10 (right-hand side).

Example 2.4. In our running example τex the two increasing subse-
quences of maximal length are: 146910 and 147910. a

Permutation patterns

Classical permutation patterns, or simply permutation patterns, are
at the heart of Part i of this thesis.

Definition 2.5. Let π be a permutation of length k and τ = τ(1) . . . τ(n) a
permutation of length n. An occurrence of the permutation pattern π in
τ is a subsequence τ(i1) τ(i2) . . . τ(ik) of τ that is order-isomorphic to π.
The subsequence τ(i1) τ(i2) . . . τ(ik) is order-isomorphic to π if τ(ia) <

τ(ib) holds iff π(a) < π(b). If such a subsequence exists, one says that
τ contains π or that there is a matching of π into τ. If there is no such
subsequence one says than τ avoids the pattern π. If π is contained in τ we
write π ≤ τ and if τ avoids π we write π � τ.

Matching π into τ thus consists in finding a monotonically increas-
ing map M : [k] → [n] that maps elements in π to elements in τ in
such a way that the sequence M(π), defined as M(π(1)), M(π(2)),
. . . , M(π(k)), is a subsequence of τ. We then refer to such a function
M as a matching.

Example 2.6. The pattern πex is contained in the permutation τex as
witnessed by the subsequence 4 6 2 9. The matching corresponding to
this occurrence of πex is M(1) = 2, M(2) = 4, M(3) = 6, M(4) = 9.
However, τex avoids the pattern σ = 1 2 3 4 5 6 since the length of the
longest increasing subsequence of τex is 5. For an illustration see again
Figure 7. a

Representing permutations with the help of plots allows for a sim-
ple interpretation of pattern containment respectively avoidance in

18 preliminaries

permutations. Indeed, the pattern π is contained in the permutation
τ iff the plot corresponding to π can be obtained from the one cor-
responding to τ by deleting some columns and rows. Moreover, it is
easy to see that the following statements are all equivalent:

• π ≤ τ

• π−1 ≤ τ−1

• πr ≤ τr

• πc ≤ τc.

The pattern containment relation ≤ defines a partial order on the
set of all permutations. This leads to the following definition:

Definition 2.7. A permutation class is a downset of permutations in the
containment order. That is, if C is a permutation class that contains a per-
mutation τ, then every π with π ≤ τ is also contained in C.

A permutation class can be defined by pattern avoidance and we
use the following notation:

Av(B) :=
{

τ : π � τ for all π ∈ B
}

Avn(B) := {τ ∈ Av(B) : τ is of length n}
Sn(B) := |Avn(B)|

If the set B is an antichain, i.e., no element of B is contained in
another on, then it is called the basis of the permutation class.

For an introduction to permutation patterns and a survey of the
main results of this field we refer to the Chapters 4, 5 and 8 in
Bóna’s Combinatorics of Permutations [25]. A comprehensive presen-
tation of results related to various types of patterns in permutations
and words can be found in Kitaev’s monograph Patterns in Permu-
tations and Words [108]. A survey of permutation classes and recent
research directions can be found in Vince Vatter’s Chapter 12 in [29].

Standard Young tableaux

The famous Robinson-Schensted correspondence establishes a bijective
correspondence between permutations and pairs of standard Young
tableaux of the same shape. Let us start by defining these:

Definition 2.8. Let λ = λ1, . . . , λk be a partition of n, i.e., λ1 ≥ λ2 ≥
. . . ≥ λ1 ≥ 1 and ∑k

i=1 λi = n. A Young diagram of shape λ consists of n
square boxes that are arranged in k left-justified rows such that the i-th row
contains λi boxes. A Young tableau is obtained by filling in the boxes of
a Young diagram with elements from some ordered set. A standard Young
Tableau, short SYT, of size n is a Young tableau on n boxes filled in with
the elements in [n] in such a way that every element appears exactly once
and that the rows and columns are increasing when going to the right and
down.

2.2 permutations , patterns and standard young tableaux 19

Note that we label boxes in a Young diagram in the same way as
one labels entries in matrices, i.e., we say that a box is at position (i, j)
if it lies in the i-th row and the j-th column.

Example 2.9. Two SYT of size 12 and of the same shape are displayed
in Figure 9. The underlying partition for both Young diagrams is λ =

(5, 2, 2, 2, 1). a
We can now define the Robinson-Schensted correspondence. In a

step-by-step procedure, it associates to every n-permutation σ a pair
(P(σ), Q(σ)) of SYT of size n of the same shape. In order to alleviate
notation, we will write (P, Q) instead of (P(σ), Q(σ)) whenever no
confusion is possible. The procedure constructs a sequence (P0, Q0),
(P1, Q1), · · · , (Pn, Qn) = (P, Q) of pairs of Young tableaux of the same
shape, where P0 = Q0 are empty tableaux. The intermediate tableaux
Pi and Qi for i < n are in general not SYT since they don’t necessarily
contain all elements in [i]. However, they do have the property that
every element occurs only once and that columns and rows are in-
creasing. Having constructed Pi−1, Pi is formed by inserting σ(i) into
Pi−1 according to the Schensted insertion that will be explained in a
moment. The tableaux Pi are thus referred to as insertion tableaux. At
the same time, Qi is created by adding the element i to Qi−1 in the
box that is added to the shape by the insertion of σ(i) into Pi−1. The
tableaux Qi are referred to as recording tableaux.

The Schensted insertion or row insertion of an element σ(i) into a
Young tableau Pi−1 can now be described as follows. If Pi−1 is empty,
we place a box at position (1, 1) containing the element σ(i). Other-
wise, proceed recursively:

1. Find the leftmost element j in the first row that is larger than
σ(i). If there is no such element, we place σ(i) at the end of the
first row and are done. Otherwise, we replace the element j by
σ(i) and proceed to the next step.

2. Using the Schensted insertion, insert the element j into the Young
tableau that is obtained by deleting the first row of Pi−1. Place
the resulting tableau under the row obtained in the first step.

Example 2.10. For the permutation τex = 1 8 12 4 7 11 6 3 2 9 5 10, the
intermediate insertion tableau P6 is displayed on the left-hand side
of Figure 8. The next element to be inserted is τex(7) = 6. The in-
termediate steps of the Schensted insertion of the element 6 into P6,
leading to P7, are shown in the same figure. The pair (P, Q) of SYT
corresponding to τex is displayed in Figure 9. a

In the following, we list some important properties of the Robinson-
Schensted correspondence that will be of use to use:

• If the permutation σ corresponds to the pair (P, Q) of SYT, the
inverse permutation σ−1 corresponds to the pair (Q, P). Thus,

20 preliminaries

1 4 7 11
8 12

→ 1 4 6 11
8 12

→ 1 4 6 11
7 12

→ 1 4 6 11
7 12
8

insert 6 insert 7 insert 8

in row 1 in row 2 in row 3

Figure 8: The Schensted insertion of the element 6 into an insertion tableau

P =

1 2 5 9 10
3 6
4 11
7 12
8

Q =

1 2 3 6 12
4 5
7 10
8 11
9

Figure 9: The pair (P, Q) of SYT corresponding to τex under the Robinson-
Schensted correspondence

if σ is an involution, it corresponds to a pair (P, P) and can be
identified with the single SYT P.

• The length of the first row in P(σ) and Q(σ) corresponds to the
length of the longest increasing subsequence in σ.

The number of SYT of size n and of a given shape can be deter-
mined with the help of the so-called hooklength formula.

Definition 2.11. Let b be a box in a Young diagram. Then the hook Hb of b
consists of the box b itself, all boxes in the same row and to the right of b and
all boxes in the same column and below b. The hook-length hb is the number
of cells in the hook Hb.

Example 2.12. Let b be the box at position (1, 2) in the SYT P dis-
played on the left-hand side of Figure 9, i.e., the box containing the
element 2. Then hb = 3 + 3 + 1 = 7. a
Theorem 2.13. Let D be a young diagram with n boxes. Then the number
of SYT of shape D is equal to

n!
∏b hb

where the product is taken over all boxes b of D.

For an overview of the connections between permutations and SYT,
see Chapter 7 in [25] and the references given therein. See also Chap-
ter 14 of [29] for a recent survey by Ron Adin and Yuval Roichman
on Standard Young Tableaux.

2.3 cayley trees and mappings

Part ii is concerned with Cayley trees and with mappings, two closely
related types of combinatorial objects that we introduce in the follow-

2.3 cayley trees and mappings 21

4

1 2

3 6 5

=

4

2

5 3 6

1 6=

4

2 1

3 6 5

Figure 10: Examples of Cayley trees of size n = 6

ing. In this section, we only present the basic definitions of Cayley
trees and mappings. For analytic properties of the corresponding gen-
erating functions, we refer to the examples in Section 2.6, in particular
Examples 2.26, 2.27 and 2.29. For more background, we refer to [78].

Cayley trees

In a graph-theoretic sense, a tree is an acyclic undirected connected
graph. A rooted tree is a tree in which one specific node is distin-
guished; it is called the root. In this case the edges can be oriented in
a natural way, either towards or away from the root. Throughout this
thesis, edges will always be oriented towards the root. Thus, the root
node is always the unique node that has no outgoing edges. Nodes
with no incoming edges are called leaves. Let i and j be nodes in a
tree such that the directed edge (i, j) is present, i.e., j lies on the path
from i to the root. Then j is called i’s parent and i is a child of j. Fur-
thermore, unordered trees are rooted trees in which there is no order
on the children of any node. Such trees are sometimes also referred
to as non-plane trees.

The main family of trees studied in this thesis is the following:

Definition 2.14. A Cayley tree of size n is a unordered labelled tree with
n nodes. In a labelled tree of size n every node carries a distinct integer from
the set [n] as a label.

In the following, we will simply refer to Cayley trees as trees and
indicate if we speak about other types of trees. Throughout this thesis
we will always identify nodes with their labels.

Example 2.15. Three examples of Cayley trees of size n = 6 can be
found in Figure 10. The tree to the left hand side and the one in
the middle are the same since they can be obtained from another by
changing the order of some subtrees. However, the tree on the right
hand side is actually different from the other two trees. a

The number of Cayley trees of size n, that is denoted by tn through-
out this thesis, is given by the following simple formula

tn = nn−1. (3)

22 preliminaries

This formula is attributed to Arthur Cayley and thus also referred to
as “Cayley’s formula”. It is sometimes also stated in the following
form: the number of (unrooted) labelled trees of size n is equal to
nn−2. Many proofs of this formula have been given since Cayley’s
proof in 1889, using various different methods. See for instance the
collection of proofs in Proofs from THE BOOK [2]. In Chapter 7 we will
present a new bijective proof of Cayley’s formula.

Mappings

Definition 2.16. A function f from the set [n] into itself is called an n-
mapping. Given an n-mapping f , its functional digraph G f is defined
to be the directed graph on the vertex set [n] where a directed edge (i, j) is
drawn whenever f maps i to j.

In this thesis we will always identify a mapping with its functional
digraph and will not make any distinction between the objects f and
G f . Sometimes, mappings are also referred to as functional graphs or
functional digraphs in the literature.

Note that an n-mapping can alternatively also be interpreted as a
sequence (fi)i∈[n] of length n over the alphabet [n] by setting fi = f (i).

The structure of mappings is simple and is well described in [78]:
the weakly connected components of their digraphs are simply cycles
of Cayley trees. That is, each connected component consists of rooted
labelled trees whose root nodes are connected by directed edges such
that they form a cycle. In this context, we will call a node j that lies
on a cycle in a mapping f , i.e., for which there exists a k ≥ 1 such
that f k(j) = j, a cyclic node.

How this structural connection to trees can be translated into the
language of generating functions using the symbolic method is de-
scribed in Example 2.27 on page 30.

Example 2.17. For the 19-mapping corresponding to the sequence
7, 1, 10, 14, 17, 7, 11, 10, 16, 10, 17, 7, 17, 4, 7, 4, 1, 13, 13, see Figure 11. This
mapping consists of three connected components: one of size 4 with
a cycle length 2, another one of size 12 with a cycle length 4 and a
last one of size 3 with a cycle length 1. a

2.4 preferences and social choice theory

One of the central goals in Social Choice Theory is to design methods
that allow to combine individual preferences in order to obtain a col-
lective decision. In order to formalize the notion of “preferences”, let
us start by gathering some notation on sets and orders.

Let S be a finite set. A relation on S is total if for every a, b ∈ S,
either the pair (a, b) or (b, a) is contained in the relation. A total order

2.4 preferences and social choice theory 23

1

7

11

17

5

2

6
12

15

13

15

19
18

10

3 8

4 14

16

9

Figure 11: Functional graph of a 19-mapping

on S is a reflexive, antisymmetric, transitive and total relation. Let T
be a total order of S. Instead of writing (a, b) ∈ T, we write a ≤T b or
b ≥T a. We write a <T b or b >T a to state that a ≤T b and a 6= b. As
a short form, we write T : s1s2s3 . . . si instead of s1 >T s2 >T s3 >T

. . . >T si for s1, s2, . . . , si in S. We write T(i) to denote the i-th largest
element with respect to T.

Every pair (T1, T2) of total orders on a set with m elements can
be identified with the m-permutation p(T1, T2), which is defined as
follows: i is the i-th largest element in T1 maps to the j-th largest
element in T2. For T1 : bac and T2 : cab we have p(T1, T2) = 321. Note
that p(T1, T2) = p(T2, T1)

−1.
We can now define elections:

Definition 2.18. An (n, m)-election (C,P) consists of a size-m set C and
an n-tuple (V1, . . . , Vn) of total orders on C. The set C is referred to as the
candidate set. The total orders V1, . . . , Vn are votes or preferences.

We write V ∈ P to denote that there exists an index i ∈ [n] such
that V = Vi. Given a vote Vi ∈ P with Vi : cicj, this means that the
i-th voter prefers candidate ci to candidate cj.

When counting elections we do not care about the specific names
that candidates have. Thus, if the candidate set C consists of m ele-
ments, we assume that the candidates are c1, c2, . . . , cm. This implies
that the number of (n, m)-elections is (m!)n.

The most fundamental result in Social Choice Theory is an impos-
sibility result. Namely, it states that there is no way of aggregating
individual preference in a way that three very basic and desirable
properties are fulfilled simultaneously. In order to state the theorem,
let us introduce the notion of a social welfare function: a social welfare
function is a function that associates to every election (C,P) a single
preference on the set C. The idea is that this single preference is an
aggregation of all the preferences that are present in the election.

24 preliminaries

Theorem 2.19 (Arrow’s paradox [10]). Let f be a social welfare function
and (C,P) an election with preferences V1, . . . , Vn. As soon as |C| > 2 the
following three conditions are incompatible:

• unanimity, or Pareto efficiency: If Vi : ab holds for all preferences,
then f ((C,P)) : ab.

• independence of irrelevant alternatives: Consider a second election
(C,Q) with preferences W1, . . . , Wn. If for all voters i it holds that
candidates a and b have the same order in Vi as in Wi, candidates a
and b have the same order in f ((C,P)) as in f ((C,Q))

• non-dictatorship: There is no voter i whose preferences always pre-
vail. That is, there is no i ∈ [n] such that for all elections (C,P) it
holds that f ((C,P)) = Vi.

If we make the task easier and do not ask for a total ordering of
all candidates but only for a winner of the election, this leads to the
concept of voting rules. However, this only seemingly decreases the
difficulty of the problem since the Gibbard-Satterthwaite theorem [89,
137] states a similar impossibility result as Arrow’s paradox.

2.5 algorithms and complexity theory

This thesis classifies several permutation pattern matching problems
by proving membership in complexity classes, see Chapters 4 and
3. We thus give a brief introduction to classical and parameterized
complexity theory in the following.

Classical complexity theory

The two fundamental classes in classical complexity theory are P and
NP. The class P contains all decision problems that can be solved in
polynomial time on a deterministic Turing machine. A decision prob-
lem is a computational problem that takes as input some string over
an alphabet Σ and outputs either “YES” or “NO”. A subset L ⊆ Σ∗

defines a decision problem in the following sense: the strings in L are
the YES-instances of the problem and all other strings in Σ∗ are NO-
instances. If there exists an algorithm that outputs the correct answer
for any input string of length n in O(nc) steps, where c is a constant
that is independent of the input, then one says that the problem can
be solved in polynomial time. Many natural problems are contained
in P. For instance, consider the following decision problem related to
permutation patterns (see Definition 2.5):

2.5 algorithms and complexity theory 25

Permutation order-isomorphism

Instance: Two sequences of integers σ and τ of the same
length.

Question: Are σ and τ order-isomorphic?

This question can be answered by sorting the sequence σ using any
sorting algorithm, for instance bubble-sort. While we sort σ, we per-
form exactly the same operations on τ and obtain a sequence τ̃. This
can be done in O(n2)-time. It remains to check whether τ̃ is a non-
decreasing sequence which can be done in linear time. The sequences
σ and τ are order-isomorphic if and only if this is the case.

The class NP contains all problems that can be solved in polynomial
time on a non-deterministic Turing machine. This means that a prob-
lem is contained in NP if the instances where the answer is “YES”
have polynomial time verifiable proofs of the fact that the answer is
indeed “YES”. For instance, the following problem has this property:

Clique

Instance: A graph G = (V, E) and a positive integer k.

Question: Is there a subset of vertices S ⊆ V of size k such
that S forms a clique, i.e., the induced subgraph
G[S] is complete?

Here, a proof of the fact that the input graph G contains a clique of
size k would be a set S = {s1, . . . , sk} containing k of the vertices.
In order to verify that the induced subgraph G[S] indeed is a clique
we need to check for all subsets

{
si, sj

}
of S of size two whether the

corresponding edge is contained in E. This can clearly be done in
O(k2) = O(n2)-time and thus Clique is contained in NP.

The Clique problem does not only have the property to be con-
tained in NP, it is also NP-hard and thus NP-complete. Informally
speaking, this means that Clique is among the hardest problems in
NP: if Clique can be solved in polynomial time, this can be done for
any other problem in NP as well. In order to formalize these notions,
we need to introduce the concept of polynomial time many-one reduc-
tions. A polynomial-time many-one reduction from a problem L1 to a
problem L2 transforms inputs to the first problem into inputs to the
second problem in polynomial time and in such way that the output
of the transformed problem is the same as for the original problem.

Definition 2.20. Let L1, L2 ⊆ Σ∗ be two decision problems. A polynomial
many-one time reduction from L1 to L2 is a mapping G : Σ∗ → Σ∗ such
that

• I ∈ L1 if and only if G(I) ∈ L2.

• G is computable by a polynomial time-algorithm.

26 preliminaries

A problem is called NP-hard if every problem in NP can be reduced
to it by a polynomial time reduction. Note that this can also be the
case for decision problems that are not in NP. Furthermore, a problem
is NP-complete if it is contained in NP and NP-hard. The Clique de-
cision problem was one of the 21 problems shown to be NP-complete
by Richard Karp in 1972 [106]. Under standard complexity-theoretical
assumptions, namely P 6= NP, this result implies that Clique cannot
be solved in polynomial time.

For a formal definition of Turing machines and the complexity
classes mentioned above, see e.g. [97]. A detailed introduction to
complexity theory can be found in the monographs by Papadim-
itriou [132], Goldreich [91], and Arora and Barak [9].

Parameterized complexity theory

Many problems that have practical relevance are known to be NP-
complete. Thus, unless P = NP, there is no hope for polynomial time
algorithms for a large class of problems. If such problems need to
be solved efficiently anyhow, methods such as approximation algo-
rithms or heuristics can be used. Another, relatively new approach
that originated in the work of Downey and Fellows [59] is to try to
confine the combinatorial explosion to a parameter of the input. For
instance, if the treewidth of the input graph is bounded, Clique can
be solved in O(nc)-time with a constant c that is independent of the
treewidth [53]. Finding such parameters that allow to handle NP-hard
problems efficiently is the key idea of parametrized complexity the-
ory.

In contrast to classical complexity theory, a parameterized complex-
ity analysis studies the runtime of an algorithm with respect to an
additional parameter and not just the input size |I|. Therefore every
parameterized problem is considered as a subset of Σ∗ ×N. An in-
stance of a parameterized problem consequently consists of an input
string together with a positive integer p, the parameter.

Definition 2.21. A parameterized problem is fixed-parameter tractable
(or in FPT) if there is a computable function f and an integer c such that
there is an algorithm solving the problem in O(|I|c · f (p)) time.

The algorithm itself is also called fixed-parameter tractable (fpt).
A central concept in parameterized complexity theory are fixed-

parameter tractable reductions.

Definition 2.22. Let L1, L2 ⊆ Σ∗ ×N be two parameterized problems. An
fpt-reduction from L1 to L2 is a mapping R : Σ∗ ×N → Σ∗ ×N such
that

• (I, k) ∈ L1 iff R(I, k) ∈ L2.

• R is computable by an fpt-algorithm.

2.6 symbolic method and analytic combinatorics 27

• There is a computable function g such that for R(I, k) = (I′, k′), k′ ≤
g(k) holds.

Other important complexity classes in the framework of parame-
terized complexity are W[1] ⊆ W[2] ⊆ . . ., the W-hierarchy. For our
purpose, only the class W[1] is relevant. It can be defined as follows:

Definition 2.23. The class W[1] is the class of all problems that are fpt-
reducible to the following parameterized version of the Clique problem.

Clique

Instance: A graph G = (V, E) and a positive integer k.

Parameter: k

Question: Is there a subset of vertices S ⊆ V of size k such
that S forms a clique, i.e., the induced subgraph
G[S] is complete?

It is conjectured (and widely believed) that W[1] 6= FPT. Therefore
showing W[1]-hardness can be considered as evidence that the prob-
lem is not fixed-parameter tractable.

Definition 2.24. A parameterized problem is in XP if it can be solved in
time O(|I| f (k)) where f is a computable function.

All the aforementioned classes are closed under fpt-reductions. The
following relations between these complexity classes are known:

FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ XP as well as

FPT ⊂ XP.

Further details can be found, for example, in the monographs by
Downey and Fellows [59], Niedermeier [127] and Flum and Grohe [80].

2.6 symbolic method and analytic combinatorics

For an extensive introduction to the field of Analytic Combinatorics and
a thorough treatment of the underlying theory, we refer to the mono-
graph be Flajolet and Sedgewick [78]. Also, for a vivid presentation
of generating functions as a bridge between discrete mathematics and
continuous analysis we refer to Herbert Wilf’s generatingfunctionol-
ogy [158].

Generating functions

Throughout this thesis we consider various combinatorial sequences
(an)n≥0, i.e., an = |An| is the number of objects of size n in some
combinatorial class A. The size of an object α in A, denoted by |α|,

28 preliminaries

is a non-negative integer assigned to the object α. Throughout this
thesis, it will always be clear from the context how the concept of size
is to be understood. For instance, the size of a Cayley tree is simply
its number of nodes.

The (ordinary) generating function (OGF) of A is the (formal) power
series

A(z) = ∑
n≥0

anzn = ∑
n≥0
|An|zn = ∑

α∈A
zα. (4)

The combinatorial objects in this thesis are always labelled ones.
That is, every object of size n of A consists of n “atoms” (e.g., the
nodes in a tree) to which the integers in [n] are associated in a bijec-
tive manner. In this context one considers the exponential generating
function (EGF) associated with the class A:

A(z) = ∑
n≥0

an
zn

n!
= ∑

n≥0
|An|

zn

n!
= ∑

α∈A

z|α|

|α|! . (5)

Note that the concepts presented here are also applicable to a more
general setting where sequences (an)n≥0 are merely required to be
sequences of real numbers.

The symbolic method

The symbolic method is a powerful tool in the context of generating
functions. It allows to translate certain combinatorial constructions
directly to equations for generating functions. Since all objects anal-
ysed in this thesis are labelled ones, we present the symbolic method
for the case of exponential generating functions only. For the case of
ordinary generating functions and even more combinatorial construc-
tions, we refer to Chapters I and II of [78].

In what follows we collect some of the so-called admissible construc-
tions that will be used in this thesis and which make it possible to
build complex combinatorial classes from simpler ones.

∪̇ Disjoint union: If A and B are two disjoint labelled classes, then
A ∪̇ B denotes the union of A and B in the set-theoretic sense.
However, ∪̇ can also be defined for not necessarily disjoint
classes: If A and B are two arbitrary labelled classes, then A ∪̇B
denotes the union of two disjoint copies of A and B. Such disjoint
copies can, e.g., be constructed by choosing two distinct colours,
and colouring the elements of A with the first colour, and the
elements of B with the second one.

? Labelled product: The labelled product β ? γ of two labelled ob-
jects β and γ of respective sizes |β| = m and |γ| = n is a set of
pairs, defined as follows

β ? γ :=
{
(β′, γ′) |distinct labels in [m + n]

:= (β′, γ′) s.t. ρ(β′) = β, ρ(γ′) = γ
}

,

2.6 symbolic method and analytic combinatorics 29

where ρ relabels each labelled object of size k such that exactly
the integers {1, . . . , k} are used, while preserving the relative
order of all labels. The labelled product B ? C of two labelled
classes B and C is defined by

B ? C :=
⋃

β∈B,γ∈C
(β ? γ).

Seq Sequences: The sequence class of B is defined by

Seq (B) := {ε} ∪̇ B ∪̇ B ? B ∪̇ B ? B ? B ∪̇ . . . =
⋃

k≥0

Bk,

where ε denotes the empty sequence.

Set Sets: Let the equivalence relation R identify sequences of equal
length whenever the components of one are a permutation of
the components of the other. Then the set class of B is defined
as the quotient Seq (B) /R.

Cyc Cycles: Let the equivalence relation S identify sequences of equal
length whenever one can be obtained from the other by cycli-
cally shifting the components of the other, i.e., βSγ for β =

(β1, . . . , βn) and γ = (γ1, . . . , γm) iff (βk, . . . , βn, β1, . . . , βk−1) =

(γ1, . . . , γm) for some k. The cycle class of B is then defined as
the quotient (Seq (B) \ {ε}) /S.

The following theorem states how these admissible constructions
allow for a direct translation into equations for the associated expo-
nential generating functions:

Theorem 2.25 (Symbolic method [78]). Let A, B, C be classes of labelled
objects, and A(z), B(z), C(z) their associated exponential generating func-
tions. Then the following holds:

If A = B ∪̇ C, then A(z) = B(z) + C(z),

if A = B ? C, then A(z) = B(z) · C(z),

if A = Seq (B) and B0 = ∅, then A(z) =
1

1− B(z)
,

if A = Set (B) and B0 = ∅, then A(z) = exp B(z),

if A = Cyc (B) and B0 = ∅, then A(z) = log
(

1
1− B(z)

)
.

Example 2.26. As defined in Section 2.3, a Cayley tree consists of a
root node and a set of Cayley trees attached to it as children. If T
denotes the labelled combinatorial class of Cayley trees its combina-
torial construction can thus be described as follows

T = Z ? Set (T)

30 preliminaries

where Z is an atom, i.e., a single node carrying the label 1. We thus
immediately obtain that T(z), the EGF of T , is implicitly defined by
the following functional equation

T(z) = zeT(z). (6)

This function is known as the (Cayley) tree function and will appear at
several occasions in this thesis.

The tree function is closely related to the so-called (Lambert) W-
function [51] that is defined by the following functional equation:

z = W(z)eW(z).

The simple connection between the Cayley tree function and the
Lambert W-function is:

T(z) = −W(−z).

a
Example 2.27. Using the symbolic method, the structural connection
between Cayley trees and mappings can also easily be taken to the
level of generating functions. Indeed, if T , C andM denote the com-
binatorial classes of Cayley trees, connected mappings and mappings,
respectively, and if T(z), C(z) and M(z) denote their exponential gen-
erating functions we have the following connection:

C = Cyc (T) =⇒ C(z) = log
(

1
1− T(z)

)

M = Set (C) =⇒ M(z) = exp(C(z)) =
1

1− T(z)

a
In this thesis we will often be interested in enumerating combinato-

rial objects of a class A not only according to size but also according
to some parameter χ. A d-dimensional parameter χ = (χ1, . . . , χd) is
a function that maps an object α ∈ A to a tuple χ(α) of non-negative
integers. In our studies, we will mostly have d = 1.

Given a labelled combinatorial class A and a d-dimensional param-
eter χ on A, the multivariate exponential generating function of the pair
〈A, χ〉 is defined by

A(z, u) := ∑
α∈A

uχ(α) z|α|

|α|! ,

where u := (u1, . . . , ud) and u(k1,...,kd) := uk1
1 · · · u

kd
d .

In case of a 1-dimensional parameter χ, the bivariate exponential gen-
erating function of the pair 〈A, χ〉 is defined by

A(z, u) := ∑
n≥0

∑
k≥0

An,k

n!
ukzn, (7)

2.6 symbolic method and analytic combinatorics 31

where An,k is the number of combinatorial objects in A of size n and
for which χ = k. One says that the variable z in A(z, u) marks the
size whereas u marks χ.

When working with multivariate generating functions, one can use
an extension of the symbolic method. This will not be detailed here
and we refer again to [78] as well as to the new monograph Analytic
Combinatorics in Several Variables by Pemantle and Wilson [133].

Extracting coefficients

Once we have computed the generating function A(z) of some com-
binatorial class A, we need to know how to get our hands on the
coefficients An (or An/n! for EGF) since this is what we are actu-
ally interested in. In this context, we will denote by [zn] the operator
which extracts the coefficient of zn from a (formal) power series, i.e.
[zn]A(z) = an, if A(z) = ∑n≥0 anzn. Sometimes, the generating func-
tions will take simple forms and extracting coefficients can be done
easily by using the Taylor expansions of well-known functions such
as those in Section 2.1.

If this is not the case, it can be helpful to apply Cauchy’s integral
formula. If the radius of convergence of A(z) is positive the coefficient
[zn]A(z) can be obtained as follows

[zn]A(z) =
1

2πi

∮ A(z)
zn+1 dz, (8)

where the integral is taken in counter-clockwise direction along a
simple closed curve around the origin that lies completely inside the
circle of convergence of A(z).

Moreover, we will often deal with generating functions F(z) which
are implicitly given by a functional equation of the form F(z) =

zϕ(F(z)). This is for instance the case for the Cayley tree function
defined in Equation (6) where ϕ(u) = exp(u). When extracting coef-
ficients of such an implicitly defined function, the following theorem
proves useful:

Theorem 2.28 (Lagrange’s inversion formula [78]). Let F(z) and ϕ(u)
be formal power series which satisfy F(z) = zϕ(F(z)) and ϕ0 = [u0]ϕ(u) 6=
0. Then one has

[zn]g(F(z)) =





1
n [F

n−1]g′(x)(ϕ(F))n, n > 0

[F0]g(F), n = 0,

for every formal power series g(x).

Example 2.29. Let us consider the Cayley tree function T(z). Its func-
tional equation is of the form described in Theorem 2.28 with ϕ(u) =
exp(u) = ∑n≥0 un/n!. Thus ϕ0 = 1 and the conditions are fulfilled. If

32 preliminaries

we are interested in the coefficients of T(z), i.e., tn/n! where tn is the
number of Cayley trees of size n, we have g(x) = x.

We thus obtain

tn =n! · [zn]T(z) = n! · 1
n
[Tn−1](exp(T))n = n! · 1

n
[Tn−1](exp(T))n

=n!
1
n
[Tn−1] ∑

k≥0

nkTk

k!
= nn−1

and t0 = [F0]F = 0. We have thus rediscovered Cayley’s formula,
using the symbolic method and Lagrange inversion. a

Singularity analysis

Singularity analysis is one of the most prominent techniques presented
in Flajolet and Sedgewick’s monograph Analytic combinatorics [78]. It
allows to give asymptotic expansions for the coefficients of generating
functions that have isolated singularities on the boundary of their
disc of convergence. Singularity analysis is based on the following
two statements:

First Principle of Coefficient Asymptotics. The location
of a function’s singularities dictates the exponential growth
of its coefficients.

Second Principle of Coefficient Asymptotics. The nature
of a function’s singularities determines the associate subex-
ponential factor.

In the following, let us assume that the generating function f (z)
has a unique dominant singularity ρ, i.e., ρ is the unique singularity
that lies on the boundary of f ’s disc of convergence. Then one can of
course make use of the scaling rule

[zn] f (z) = ρ−n[zn] f (ρz),

and hence consider the case where ρ = 1 only. In this case, the follow-
ing theorem can be applied:

Theorem 2.30 (Big-Oh transfer [76]). Let R > 1 and 0 < φ < π
2 , and

assume that f (z) is analytic in a so-called ∆-domain

∆ = ∆(φ, R) := {z | |z| < R, z 6= 1, |Arg(z− 1)| > φ} .

Furthermore, assume that, as z→ 1 in ∆,

f (z) = O (|1− z|α) ,

for some constant α ∈ R. Then, as n→ ∞,

[zn] f (z) = O
(

n−α−1
)

.

2.6 symbolic method and analytic combinatorics 33

As a consequence, one obtains the following:

Theorem 2.31 (Singularity analysis [76]). Assume that f (z) is analytic
in the domain ∆ from Theorem 2.30, and that, as z→ 1 in ∆,

f (z) =
m

∑
j=0

cj(1− z)αj +O
(
|1− z|A

)
,

for real numbers α0 ≤ α1 ≤ . . . ≤ αm < A and a sequence of complex
numbers (cj)0≤j≤m. Then, as n→ ∞,

[zn] f (z) =
m

∑
j=0

cj

(
n− αj − 1

n

)
+O

(
n−A−1

)
.

In case f has a finite number of dominant singularities, a similar
result can be applied and the contributions of each singularity are
added up. We won’t detail this here and refer to [78].

As we will often encounter generating functions that are defined
by a functional equation of the type F(z) = z · ϕ

(
F(z)

)
as in Theo-

rem 2.28, the following theorem will be useful:

Theorem 2.32 (Singular Inversion, Theorem VI.6 in [76]). Let F = F(z)
be a function satisfying the functional equation

F = z · ϕ
(

F
)
, and F(0) = 0,

where ϕ(u) = ∑n≥0 ϕnun with ϕn ∈ R. Assume that ϕ(u) fulfils the
following conditions:

• ϕ(u) is analytic at u = 0, ϕ0 6= 0 and ϕ(u) 6≡ ϕ0 + ϕ1u

• Within the open disc of convergence of ϕ(u), |u| < R, there exists
a (then necessarily unique) solution to the so-called characteristic
equation

∃τ : 0 < τ < R, ϕ(τ)− τ · ϕ′(τ) = 0. (9)

• ϕ(u) is aperiodic, i.e., there does not exist an integer p ≥ 2 such that
ϕ(u) = ψ(up) for some function ψ

Then it follows that

ρ =
τ

ϕ(τ)
=

1
ϕ′(τ)

is the radius of convergence of F and f has a unique dominant singularity
at z = ρ, where it admits a local expansion:

F(z) = τ −
√

2ϕ(τ)

ϕ′′(τ)
·
√

1− z
ρ
+ ∑

j≥2
(−1)jdj

(
1− z

ρ

)j/2

,

where the dj are some computable constants. Thus, F(z) is analytic in a
∆-domain.

34 preliminaries

Example 2.33. The above theorem can easily be applied to the Cayley
tree function (6) in order to obtain an asymptotic expansion of T(z).
Here, the function ϕ(u) is simply exp(u) and clearly fulfils the three
conditions of the theorem. The characteristic equation is

eu − τ · eu = 0,

implying that τ = 1 and ρ = e−1. Thus T(z) has its unique dominant
singularity at e−1 and admits the following local expansion:

T(z) = 1−
√

2 ·
√

1− ez + d2(1− ez) +O
(
(1− ez)3/2

)
, (10)

where the constant d2 can be determined as follows. With help of the
Taylor expansion of T exp(−T) around T = 1, we obtain:

z =
1
e
− 1

2e
(T − 1)2 +

1
3e
(T − 1)3 − 1

8e
(T − 1)4 + . . .

Solving for T gives

T − 1 = −
√

2 ·
√

1− ez +
2
3
(1− ez) +O

(
(1− ez)3/2

)

and thus d2 = 2/3. A further expansion could be obtained using the
same idea. a

Saddle point method

The saddle point method allows to investigate the asymptotic be-
haviour of the coefficients of generating functions. It is especially use-
ful when the generating function is free of singularities and other
methods such as singularity analysis presented in the previous sec-
tion cannot be applied. We shall present this method with the help
of an example and will follow the presentation in Chapter VIII of
Analytic combinatorics [78]. We also refer to [57] for an instructive ex-
position of this method.

A saddle point of a surface is a point that resembles the inner part
of a saddle or of a pass between two mountains. If the surface is
defined by the modulus of an analytic function, saddle points are
simply the zeros of the derivative of the function.

The main idea of the saddle point method is to express the coef-
ficients with the help of Cauchy’s Integral formula and to choose a
suitable integration contour passing through or at least close to the
dominant saddle point, i.e., the saddle point lying closest to the ori-
gin. Thus, one chooses the contour in such a way that, locally around
the saddle point, it follows the steepest descents and steepest ascent
lines. This ensures that the main contribution of the integral comes
from a small part of the curve containing the saddle point.

This technique is detailed and illustrated in the following example.

2.6 symbolic method and analytic combinatorics 35

Example 2.34. In the following, we shall use the saddle point method
in order to prove Stirling’s formula (1) for the asymptotic equivalent
of the factorials. The goal is thus to estimate 1

n! = [zn] exp(z). Using
Cauchy’s Integral formula (8), we obtain

1
n!

= In =
1

2πi

∮ exp(z)
zn+1 dz,

where the integration is performed along a circle centred at the origin.
The saddle points can be found where the derivative of the integrand
vanishes, i.e., at:

(
exp(z)

zn+1

)′
=

exp(z)(z− (n + 1))
zn+2 = 0⇔ z = n + 1.

We thus expect to obtain an asymptotic estimate of n! by adopting a
circle passing through the saddle point or close to it. Thus, we pass
to polar coordinates and set z = neiφ:

In =
1

2π
· en

nn

∫ π

−π
exp

(
n(eiφ − 1− iφ)

)
dφ,

where we will denote by h(φ) the function eiφ − 1− iφ. We now need
to split the integral in two parts: a central part that corresponds to the
integral for a small angle φ ∈ [−φ0, φ0] and that will deliver the main
contribution as well as the remaining tails that will be asymptotically
negligible.

I(0)n =
∫ φ0

−φ0

exp (nh(φ)) dφ and I(1)n =
∫ 2π−φ0

φ0

exp (nh(φ)) dφ.

In order to satisfy the desired tail and central approximation, one can
make use of the saddle point dimensioning heuristic. For the case of an
integral of the form

∮
exp(f (z))dz and a saddle point at z = ζ, it

states that the angle φ0 has to satisfy the following:

f ′′(ζ)(φ0)
2 n→∞−−→ ∞ and f ′′′(ζ)(φ0)

3 n→∞−−→ 0

where the choice of φ0 clearly depends on n. Here, φ0 needs to satisfy

nh′′(0)(φ0)
2 = −n(φ0)

2 n→∞−−→ ∞ and nh′′′(0)(φ0)
3 = −i · n(φ0)

3 n→∞−−→ 0

and we can choose φ0 = nα where α is a number between −1/2 and
−1/3. Let us thus fix

φ0 = n−2/5.

In particular, this implies that the angle of the central region of the
integral tends to zero when n tends to infinity.

The asymptotic approximation of In now consists of three parts:
tails pruning, central approximation and tails completion.

36 preliminaries

1) Tails pruning: With z = neiφ, one has | exp(z)| = exp(n cos(φ)).
Since the cosine is a unimodal function on [−π, π] with its peak at
φ = 0, we have:

∣∣∣I(1)n

∣∣∣ = O (exp(n cos(φ0)− 1)) = O
(

exp
(
−Cn1/5

))
(11)

for some constant C > 0. The tail integral is thus exponentially small.
2) Central approximation: Around φ = 0 we have the following ex-

pansion of h(φ):

h(φ) = −1
2

φ2 +O(φ3).

For φ ∈ [−φ0, φ0], the integrand can thus be approximated as follows:

exp(nh(φ)) = exp
(
−n

2
φ2 +O(nφ3)

)
= exp

(
−n

2
φ2
) (

1 +O(nφ3)
)

and the central integral becomes

I(0)n =
∫ n−2/5

−n−2/5
exp

(
−n

2
φ2
)

dφ ·
(

1 +O(n−1/5)
)

=
1√
n

∫ n1/10

−n1/10
exp

(
− t2

2

)
dt ·

(
1 +O(n−1/5)

)
, (12)

where the latter expression is obtained by the change of variables
t = φ

√
n.

3) Tails completion: What remains to be done is to show that the
tails can be completed back in the integral (12). For tails of Gaussian
integrals we have for every c > 0 that

∫ +∞

c
exp

(
− t2

2

)
dt = O

(
exp

(
− c2

2

))
.

It follows that, for n → ∞ we have the following asymptotic equiva-
lent:

I(0)n ∼ 1√
n

∫ ∞

−∞
exp

(
− t2

2

)
dt =

√
2π

n
.

Finally, putting (11) and (12) together, we obtain

I(0)n + I(1)n ∼
√

2π

n
and thus In ∼

en

nn
√

2πn
.

Of course, using a refined Taylor expansion for h(φ), one could obtain
further coefficients in the asymptotic expansion of n! using the same
method. a

2.7 probabilistic tools

In this section we collect some probabilistic concepts and techniques
we will use throughout this thesis. For a detailed introduction to these
topics as well as for proofs we refer to the monographs by Billings-
ley [21] and Klenke [109].

2.7 probabilistic tools 37

Basics

Let A be a labelled combinatorial class, An the subset of A consisting
of objects of size n and An the cardinality of An. If we speak about a
random object in An, we will always mean the uniform probability dis-
tribution over An. That is, every object in An has the same probability,
namely 1/An. Whenever we consider other probability distributions
this will be stated explicitly.

Often we are interested in some parameter χ of A, see the remark
on bivariate generating functions in Section 2.6. For every n ∈ N, it
defines a discrete random variable Xn:

P(Xn = k) =
An,k

An
,

where An,k denotes the number of objects in An for which χ = k.
Let us recall the following two elementary definitions: The expecta-

tion or mean of the discrete random variable X is defined as

E(X) = µ = ∑
k

P(X = k) · k

and is a linear functional. Note that From the second moment E(X2),
one obtains the variance

V(X) = E
(
(X− µ)2) = E(X2)− µ2

and the standard deviation σ =
√

V(X).
Let X be a discrete random variable supported by N with a given

distribution. If one needs to calculate the expected value of a function
g(X) of X when one does not explicitly know the distribution of g(X),
the Law of the Unconscious Statistician or Change of Variables Theorem
comes in handy. It states that, if the expected value of g(X) exists,
then the following holds:

E(g(X)) = ∑
n∈N

g(n)P(X = n).

One of the most fundamental discrete probability distributions is
the Bernoulli distribution. It is the distribution of a random variable
X that takes the value 1 with probability p, where 0 ≤ p ≤ 1, and
the value 0 with probability (1− p); one writes X ∼ B(p). Clearly,
E(X) = p and V(X) = p(1− p).

The normal distribution or Gaussian distribution is a continuous prob-
ability distribution that occurs very commonly in various contexts. It
will appear as limiting distribution of discrete random variables in
this thesis. A random variable X is normally distributed with mean
µ and standard deviation σ, noted as X ∼ N (µ, σ), iff it has the prob-
ability density function

fX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .

38 preliminaries

The distribution function of the standard normal distribution N (0, 1) is
denoted by Φ(x).

Probability and moment generating functions

In the following we introduce two generating functions that are closely
related to the distribution of Xn.

1. The probability generating function (PGF) of Xn is the function
pXn(v) := pn(v) := E(vXn). It is the ordinary generating func-
tion of the sequence of probabilities:

pn(v) = ∑
k≥0

P(Xn = k)vk.

If A(z, v) is the bivariate generating function of the parameter
χ over A, i.e.,

A(z, v) = ∑
n≥0

∑
k≥0

An,k
zn

n!
vk,

then there is a close relation between pn(v) and the coefficients
of A(z, v). Indeed, it holds that

pn(v) =
n!
An

[zn]A(z, v) =
[zn]A(z, v)
[zn]A(z, 1)

.

If pn(v) exists in a neighbourhood of v = 1 it can be helpful in
order to compute the factorial moments

E(Xr) = E(X(X− 1) · · · (X− r + 1))

of X = Xn. The factorial moments can be obtained by r-fold
differentiation followed by evaluation at v = 1:

E(Xr) =
∂r pn(v)

∂vr

∣∣∣∣
v=1

.

If the random variable X can be written as a sum of indepen-
dent random variables Xi, i.e., X = ∑r

i=1 aiXi where the ai are
constants, the probability generating function has a particularly
simple form:

pX(v) =
r

∏
i=1

pXi(vai).

2. The moment generating function of Xn is the function gXn(s) :=
gn(s) is defined by :

gn(s) := pn (es) = E(esXn) = ∑
k≥0

P(Xn = k)esk.

2.7 probabilistic tools 39

It is the exponential generating function of the sequence of mo-
ments, i.e.,

gn(s) = ∑
k≥0

E(Xk)
sk

k!

and thus the moments E(Xr) can be obtained by r-fold differen-
tiation followed by evaluation at v = 1:

E(Xr) =
∂rgn(s)

∂sr

∣∣∣∣
s=0

.

Convergence in distribution

Let (Xn)n∈N be a sequence of random variables, and (Fn(x))n∈N the
respective distribution functions. Furthermore, let X be another ran-
dom variable with distribution function F(x). The sequence (Xn)n∈N

is said to converge in distribution to X iff

lim
n→∞

Fn(x) = F(x),

for every x ∈ R where F is continuous. One then also says that
(Xn)n∈N converges weakly to X, and writes

Xn
(d)−→ X.

If the random variable X can be written as a sum of indepen-
dent and identically distributed (short: iid) random variables Xi, i.e.,
X = ∑n

i=1 Xi whit E(Xi) = µ < ∞ and V(Xi) = σ2 < ∞, then the Cen-
tral limit theorem (CLT) implies that the standardized random variable
converges in distribution to the standard normal distribution:

X− nµ

σ
√

n
(d)−→ N (0, 1).

In case the random variable X is the sum of independent but not nec-
essarily identically distributed random variables the following stronger
version of the CLT can be used:

Theorem 2.35 (Ljapunov CLT). Let X1, X2, . . . , Xn be a sequence of inde-
pendent random variables, with finite mean µi and variance σ2

i each. More-
over, let s2

n = ∑n
i=1 σ2

i . If there exists a δ > 0 such that the Ljapunov
condition

1
s2+δ

n

n

∑
i=1

E
(
|Xi − µi|2+δ

)
→ 0 as n→ ∞ (13)

is fulfilled, then X = ∑n
i=1 Xi converges to a normal distribution:

X−
n

∑
i=1

µi

sn

(d)−→ N (0, 1).

40 preliminaries

Often we will encounter sequences of random variables (Xn)n∈N

that are not independent. In order to show that such a sequence has
linear mean and variance and that it is asymptotically normal dis-
tributed when suitably standardized, a useful theorem is the follow-
ing:

Theorem 2.36 (Hwang’s quasi-power theorem [98]). Let (Xn)n∈N be
a sequence of discrete random variables supported by N0. Assume that the
moment generating functions (gn(s))n∈N are analytic in a fixed complex
neighbourhood of s = 0 in which they have an expansion of the form

gn(s) = exp
(
φnU(s) + V(s)

)
·
(

1 +O
(

1
κn

))
,

where φn, κn → ∞ and U(s), V(s) do not depend of n and are analytic at
s = 0. Assume finally that U(s) satisfies the so-called “variability condition”
U′′(0) 6= 0. Under these conditions, the mean and variance of Xn satisfy

E(Xn) =φnU′(0) + V ′(0) +O(κ−1
n),

V(Xn) =φnU′′(0) + V ′′(0) +O(κ−1
n).

Furthermore, Xn is after standardization asymptotically normally distributed,
with speed of convergence O(κ−1

n + φ−1/2
n):

P

{
Xn −E(Xn)√

V(Xn)
≤ x

}
= Φ(x) +O

(
1
κn

+
1√
φn

)
,

where Φ(x) is the distribution function of the standard normal distribution.

2.8 method of characteristics

The method of characteristics is a technique for solving linear partial
differential equations. We will use this method in order to solve some
of the differential equations that occur in this thesis. We thus give
a brief introduction to it; for details and more background we refer
to [69].

In what follows we consider homogeneous quasilinear first order
PDEs for a function f (x, y) in two variables. These are of the following
form

a(x, y, f) fx(x, y) + b(x, y, f) fy(x, y) = c(x, y, f), (14)

with an initial condition f (x, 0) = u(x). The idea behind the method
of characteristics is to convert this PDE to a system of ordinary differ-
ential equations along so-called characteristic curves.

Let us first note that the following holds:

(a, b, c) · (fx, fy,−1) = 0.

This can be understood geometrically as follows: A plot of z = f (x, y)
corresponds to a surface in (x, y, z)-space. The vector (fx, fy,−1) is
normal to this solution surface and (a, b, c) is tangent.

2.9 log-concavity and combinatorial sequences 41

Starting with any point of the initial curve f (x, 0) = u(x), we follow
the vector (a, b, c) in order to construct a curve on the solution surface.
Such a curve is then called a characteristic curve. Once we have found
all the characteristic curves, the solution f (x, y) is fully characterized.

We parametrize our characteristic curves by an auxiliary parameter
t. Then, given a characteristic curve (x(t), y(t), f (t)) its tangent vector
is (

∂x
∂t

,
∂y
∂t

,
∂ f
∂t

)

However, as described above, we chose our curves in such a way that
(a, b, c) is tangent. We thus obtain the following system of characteristic
equations,

x′ =
dx
dt

= a(x, y, f),

y′ =
dy
dt

= b(x, y, f), (15)

f ′ =
d f
dt

= c(x, y, f).

The next step is then to find first integrals of the system (15), i.e.,
functions ζ(x, y, F) that are constant along any characteristic curve.
This is usually done by considering the equations

∂x
∂y

=
a(x, y, f)
b(x, y, f)

,
∂x
∂ f

=
a(x, y, f)
c(x, y, f)

or
∂y
∂ f

=
b(x, y, f)
b(x, y, f)

.

If one has found two independent first integrals ζ1(x, y, F) and ζ2(x, y, F)
of (15), the general solution is given by:

G(ζ1(x, y, f), ζ2(x, y, f)) = const.,

where G is an arbitrary differentiable function in two variables. Us-
ing the initial condition f (x, 0) = u(x), this function G can then be
specified.

2.9 log-concavity and combinatorial sequences

Log-concavity

Log-concave sequences play an important role in Combinatorics; see
the extensive surveys by Stanley [147] and Brenti [40] as well Chapter
7 of [29] for a recent survey by Petter Brändén on the subject.

Definition 2.37. Let a1, a2, · · · , an be a sequence of positive real numbers.
We say that the sequence is log-concave if for all indices k, the inequality
ak−1ak+1 ≤ a2

k holds.

Note that a sequence (ak)1≤k≤n is log-concave if and only if the
sequence (bk)1≤k≤n := (log(ak))1≤k≤n is concave.

Log-concavity implies another important property of combinatorial
sequences:

42 preliminaries

Proposition 2.38. If the sequence a1, a2, · · · , an is log-concave then it is
unimodal, i.e., there exists an index 0 ≤ k ≤ n such that a1 ≤ a2 ≤ . . . ≤ ak
and an ≤ an−1 ≤ . . . ≤ ak.

The following property is even stronger than log-concavity:

Definition 2.39. We say that the sequence a1, a2, · · · , an has real roots
only or real zeros only if the corresponding polynomial A(x) = ∑n

i=1 aixi

has real roots only.

The following holds:

Proposition 2.40. If the sequence a1, a2, · · · , an has real roots only then it
is log-concave as well.

Note that the converse of this statement does not hold. For instance
the sequence 1, 1, 1 is log-concave but the polynomial 1 + x + x2 has
two complex roots.

Example 2.41. A combinatorial sequence for which it is straightfor-
ward to prove real-rootedness for every fixed n is the sequence of
binomial coefficients:

bn,k =

(
n
k

)
with 0 ≤ k ≤ n.

It follows, that this sequence is log-concave and unimodal. Indeed, we
know that the binomial coefficients (n

k) have a unique peak at k = n/2
in case n is even and have two maximal elements at k = (n − 1)/2
and k = (n + 1)/2 in case n is odd.

Another prominent example of a combinatorial sequence that has
real roots only is the sequence of Eulerian numbers A(n, k). The Eu-
lerian numbers count permutations of length n with exactly k as-
cents. Equivalently, A(n, k) counts n-permutations that are the union
of (k + 1) ascending runs. a

Various combinatorial sequences appearing in this thesis

In the following Table 1 we give an overview of the most important
combinatorial sequences appearing in this thesis and gather some of
their properties.

Table 1 only contains univariate combinatorial sequences. A fa-
mous bivariate sequence that appears in this thesis in Chapter 8 is
the sequence of Stirling numbers of the second kind. The sequence Sn,k
counts partitions of the set [n] into m nonempty subsets and we will
see that it is closely related to the number of n-mappings with m runs
(see Chapter 8). The following holds for the Stirling numbers of the
second kind:

{
n
m

}
:= Sn,k =

1
m!

m

∑
`=0

(
m
`

)
(−1)m−``n

2.9 log-concavity and combinatorial sequences 43

This sequence is the entry A008277 in Sloane’s OEIS [128].
For a detailed introduction to these combinatorial sequences we

refer the reader to the monographs by Bóna [27] and Stanley [146].
For the viewpoint of analytical combinatorics, we refer to Flajolet and
Sedgewick’s monograph [78].

https://oeis.org/A008277

Formula Combinatorial objects counted by these
numbers and appearing in this thesis

Exponential (EGF) or
Ordinary (OGF) GF

Asymptotics Entry in
OEIS
[128]

pn = n! n-permutations (Part i) EGF: P(z) =
1

1− z
pn ∼

√
2πn

(n
e

)n
A000142

Catn =
1

n + 1

(
2n
n

)
sorted n-parking functions (Chapter 9),

321-avoiding n-permutations (Chapter 5)
OGF: C(z) =

1−
√

1− 4z
2z

Catn ∼
4n

n3/2
√

π
A000108

bn =

(
2n
n

)
(n + 1)-permutations avoiding

2431, 4231, 1432, 4132 (Chapter 5)
OGF: B(z) =

1√
1− 4z

bn ∼
4n
√

nπ
A000984

in =
bn/2c
∑
k=0

n!
(n− 2k)!2kk!

involutions of length n (Chapter 6),
SYT with n boxes (Chapter 6)

EGF: I(z) = exp
(

z +
z2

2

)
in ∼

nn/2e
√

n−n/2−1/4
√

2
A000085

tn = nn−1 Cayley trees with n nodes (Part ii) EGF: T(z) = zeT(z) tn = nn−1 A000169

mn = nn n-mappings (Part ii) EGF: M(z) =
1

1− T(z)
mn = nn A000312

fn = (n + 1)n−1 ordinary n-parking functions
(Chapter 9)

EGF: F(z) =
T(z)

z
fn = (n + 1)n−1 A000272

Table 1: An overview of famous combinatorial sequences appearing in this thesis.

https://oeis.org/A000142
https://oeis.org/A000108
https://oeis.org/A000984
https://oeis.org/A000085
https://oeis.org/A000169
https://oeis.org/A000312
https://oeis.org/A000272

Part I

P E R M U TAT I O N S

This part is concerned with various aspects of patterns
in permutations. Chapters 3 and 4 focus on the computa-
tional problem of Permutation Pattern Matching, the
first one with the design of an fpt algorithm for this prob-
lem and the second one dealing with the computational
complexity of this problem for different types of patterns.
Chapter 5 deals with a permutation class that arises within
the study of domain restrictions and that has a nice enu-
meration formula. Chapter 6 deals with the conjectured
log-concavity of the combinatorial sequence enumerating
permutations by the length of their longest increasing sub-
sequence. Especially, it provides two examples of permu-
tation classes for which the conjecture holds.

3
E F F I C I E N T P E R M U TAT I O N PAT T E R N M AT C H I N G :
T H E A LT E R N AT I N G R U N A L G O R I T H M

This chapter is based on joint work with Martin Lackner which has
lead to the article A Fast Algorithm for Permutation Pattern Matching
Based on Alternating Runs which has recently been accepted for publi-
cation in Algorithmica. A preliminary version of this paper appeared
in the proceedings of the 13th Scandinavian Symposium and Work-
shops on Algorithm , SWAT 2012 [41].

The main goal of this chapter is the design of an efficient algorithm
for the following computational problem:

Permutation Pattern Matching (PPM)

Instance: A permutation τ (the text) of length n and a per-
mutation π (the pattern) of length k ≤ n.

Question: Is there a matching of π into τ?

Bose, Buss and Lubiw [31] showed that PPM is in general NP-complete.
The trivial brute-force algorithm checking every subsequence of length
k of τ has a runtime of O(2n · n). So far, no algorithm has been discov-
ered that improves the exponential runtime to cn for some constant
c < 2. Improving exponential time algorithms is a major topic in algo-
rithmics, as witnessed by the monograph of Fomin and Kratsch [81].

In this chapter we tackle the problem of solving PPM faster than
O(2n · n) for arbitrary π and τ. We achieve this by exploiting the de-
composition of permutations into alternating runs. Note that when-
ever we speak of runs in this Section, we will always mean alternating
runs and not ascending runs (see Section 2.2 for a distinction of these
two concepts). The number of alternating runs in a permutation π

is denoted by run(π) throughout this chapter. Alternating runs are
a fundamental permutation statistic and were studied already in the
late 19th century by André [7]. Despite the importance of alternating
runs within the study of permutations, the connection to PPM has so
far not been explored.

This chapter is organized as follows: The main section, Section 3.1,
describes the alternating run algorithm and is divided into the follow-
ing subsections. Section 3.1 introduces matching functions. Section 3.1
describes the alternating run algorithm in detail. Section GetMatching
contains proof details necessary to verify the correctness of the alter-
nating run algorithm. Section GetMatching proves the corresponding
runtime bounds. Our results concerning the parameter run(π) can be
found in Section 3.2. The contributions of this chapter to the PPM
problem are summarized in Section 3.3.

47

48 efficient permutation pattern matching

Throughout this chapter the pattern permutation πex = 2 3 1 4 and
the text permutation τex = 1 8 12 4 7 11 6 3 2 9 5 10, as introduced in the
Preliminaries, will serve as a running example. A graphical represen-
tation can be found in Figure 13 on page 51.

related work . The most relevant paper is the recent break-
through result by Guillemot and Marx [93] showing that PPM is FPT
with respect to the length of the pattern. Their algorithm has a run-
time of 2O(k

2·logk) · n. This FPT result is anteceeded by algorithms with
a runtime of O(n1+2k/3 · log n) [3] and O(n0.47k+o(k)) [1].

Although PPM is NP-complete in general, there are polynomial
time algorithms if only certain permutations are allowed as patterns.
The most important example are separable permutations: these are per-
mutations that contain neither 3142 nor 2413. If the pattern is separa-
ble, PPM can be solved in polynomial time [3, 31, 99, 138]. In case P is
the identity 1 2 . . . k, PPM consists of looking for an increasing subse-
quence of length k in the text T – this is a special case of the Longest

Increasing Subsequence problem. This problem can be solved in
O(n log n)-time for sequences in general [139] and in O(n log log n)-
time for permutations [48, 122]. An O(k2n6)-time algorithm is pre-
sented in [94] for the case that both the text and the pattern that do
not contain 321. If the pattern is required to be matched to consecu-
tive elements in the text, a O(n + k) algorithm has been found [114].
A similar result has been found independently in [107]. This work has
been extended to the cases where some mismatches are tolerated [84];
also suffix trees have recently been generalized to be applicable in this
setting [55].

The related Longest Common Pattern problem is to find a longest
common pattern between two permutations T1 and T2, i.e., a pattern
P of maximal length that can be matched both into T1 and T2. This
problem is a generalization of PPM since determining whether T1

is the longest common pattern between T1 and T2 is equivalent to
checking whether T2 contains T1 as a pattern. In [34] a polynomial
time algorithm for the Longest Common Pattern problem is pre-
sented for the case that one of the two permutations T1 and T2 is
separable. A generalization of this problem, the so called Longest

Common C-Pattern problem was introduced in [35]. This problem
consists of finding the longest common pattern among several permu-
tations belonging to a class C of permutations. For the case that C is
the class of all separable permutations and that the number of input
permutations is fixed, the problem was shown to be polynomial time
solvable [35].

For a class of permutations X, the Longest X-Subsequence (LXS)
problem is to identify in a given permutation T its longest subse-
quence that is isomorphic to a permutation of X. Polynomial time al-
gorithms for many classes X exist, but in general LXS is NP-hard [4].

3.1 the alternating run algorithm 49

notation. To avoid confusion, we introduce the following nota-
tion for this chapter: Capital letters are used for functions, sets and
lists; lower case letters for natural numbers. The letters i and j are
exclusively used to denote positions or indices such as positions in
permutations or indices in lists. We use greek letters only in the fol-
lowing cases: π (the pattern) and τ (the text) are permutations; κ ∈ [k]
as well as ν ∈ [n] are the main variables in the algorithm. In this chap-
ter, tuples always have length run(π) and are denoted with bars, e.g.,
~x. The elements of ~x are x1, . . . , xrun(π).

3.1 the alternating run algorithm

We start with an outline of the alternating run algorithm. Its descrip-
tion consists of two parts. In Part 1 we introduce so-called matching
functions. These functions map runs in π to sequences of adjacent runs
in τ. The intention behind matching functions is to restrict the search
space to certain subsequences of length k, namely to those where all
elements in a run in π are mapped to elements in the corresponding
sequences of runs in τ. In Part 2 a dynamic programming algorithm
is described. It checks for every matching function whether it is pos-
sible to find a compatible matching. This is done by finding a small
set of representative elements to which the element 1 can be mapped
to, then – for a given choice for 1 – finding representative elements
for 2, and so on.

Theorem 3.1. The alternating run algorithm solves the PPM problem in
time O(1.79run(τ) · n · k). Therefore, PPM parameterized by run(τ) is in
FPT.

Since run(τ) < n, we obtain as an immediate consequence:

Corollary 3.2. The alternating run algorithm solves the PPM problem in
time O(1.79n · n · k).

Before we start with the description of the alternating run algo-
rithm, we introduce two functions which play an important role.

Definition 3.3. Let u ∈ [k]. The run predecessor pre(u) denotes the
largest element smaller than u that is contained in the same run as u in π

(if such an element exists). Moreover, the run index function ri is defined as
follows: ri(u) = i if u is contained in the i-th run in π.

Note that both functions concern only the pattern π.

Matching functions.

We introduce the concept of matching functions. These are functions
from the interval [run(π)] to sequences of adjacent runs in τ. For a

50 efficient permutation pattern matching

P:

T:

F

= F(1)
= F(2)

= F(3)
= F(4)

Figure 12: A sketch of a matching function and its M- and W-shaped subse-
quences

given matching function F the search space in τ is restricted to match-
ings where an element κ contained in the i-th run in π is matched to
an element in F(i). As we will see later on in Lemma 3.7, this re-
striction of the search space does not influence whether a matching
can be found or not: if a matching exists, a corresponding matching
function can be found. In addition, Lemma 3.27 will show that it is
possible to iterate over all matching functions in fpt time. Thus, our
algorithm verifies for all matching functions whether a compatible
matching exists.

Let us now give a formal definition of matching functions.

Definition 3.4. A matching function F maps an element of [run(π)] to
a subsequence of τ. It has to satisfy the following properties for all i ∈
[run(π)].

(P1) F(i) is a contiguous subsequence of τ.

(P2) If the i-th run in π is a run up (down), F(i) starts with an element
following a valley (peak) or the first element in τ and ends with a
valley (peak) or the last element in τ.

(P3) F(1) starts with the first and F(run(π)) ends with the last element in
τ.

(P4) F(i) and F(i + 1) have one run in common: F(i + 1) starts with the
leftmost element in the last run in F(i).

Property (P2) implies that every run up is matched into an M-
shaped sequence of runs of the form up–down–up–...–up–down (if
the run up is the first or the last run in π the sequence might start
or end differently) and every run down is matched into a W-shaped
sequence of runs of the form down–up–down–...–down–up (again, if
the run down is the first or the last run in π, the sequence might start
or end differently). These M- and W-shaped sequences are sketched
in Figure 12.

Property (P4) implies that two adjacent runs in π are mapped to se-
quences of runs that overlap with exactly one run, as is also sketched

3.1 the alternating run algorithm 51

2

3

1

4

1

8

12

4

7

11

6

3

2

9

5

10

= F(ri(2)) = F(ri(3)) = F(1)

= F(ri(1)) = F(2)

= F(ri(4)) = F(3)

Figure 13: πex and τex together with a matching function F and the compat-
ible matching witnessed by the subsequence 4 6 2 9

in Figure 12. This overlap is necessary since elements in different runs
in π may be matched to elements in the same run in τ. More precisely,
valleys and peaks in π might be matched to the same run in τ as their
successors (see the following example).

Example 3.5. In Figure 13, πex (left-hand side) and τex (right-hand
side) are depicted together with a matching function F. A matching
compatible with F is given by 4 6 2 9. We can see that the elements
6 and 2 lie in the same run in τex even though 3 (a peak) and 1 (its
successor) lie in different runs in πex. a

Note that there are no matching functions if run(π) > run(τ). This
corresponds to the fact that in such a case no matching from π into
τ exists either. The properties (P1)-(P4) guarantee that the number of

functions we have to consider is less than (
√

2)
run(τ)

, as will be proven
in Section GetMatching, Lemma 3.27. This allows us to iterate over all
matching functions in fpt time.

Let us formalize what we mean by compatible matchings.

Definition 3.6. A matching M is compatible with a matching function F
if M(κ) ∈ F(ri(κ)) for every κ ∈ [k], i.e., M matches each element contained
in the i-th run in π to an element in F(i).

Lemma 3.7. For every matching M of π into τ there exists a matching
function F such that M is compatible with F.

The proof of this lemma can be found in Section GetMatching
on page 61. We continue with the observation that, when searching
for a compatible matching by looking for the possible values that
M(1), M(2) and so on can take, we do not have to remember all the
previous choices we made. Let us have a look at an example first:

52 efficient permutation pattern matching

Example 3.8. In Figure 13, assume that we already have a partial
matching: M(1) = 2 and M(2) = 4. We now have to decide where
to map 3. There are two constraints that have to be satisfied: First,
M(3) > M(2). Second, M(3) has to be to the right of M(2), since
2 ≺π 3. Since our choices for M(3) are limited to F(ri(3)) = F(1), we
do not have to check whether M(3) is left of M(1) but only whether
M(3) > M(2). Later, when deciding where to map 4, we will only
have to verify that M(4) > M(3).

In more generality, we observe that given a matching function and
a partial matching M defined on [κ − 1], deciding where to map κ

only requires the knowledge of M(κ − 1) and of M(κ′), where κ′ is
the previous element in the same run as κ. a

Let us now make this observation more precise:

Lemma 3.9. Let F be a matching function. A function M:[k] → [n] is a
matching of π into τ compatible with F if and only if for every κ ∈ [k]:

1. M(κ) ∈ F(ri(κ)),

2. M(κ) > M(κ − 1) and

3. if pre(κ) exists, then pre(κ) ≺π κ if and only if M(pre(κ)) ≺τ M(κ),
i.e., if κ is contained in a run up (down), then M(κ) is right (left) of
M(pre(κ)).

As we will see soon, this lemma is essential for our algorithm. Its
proof can be found in Section GetMatching on page 62.

Algorithm description

Before we start explaining the actual fpt algorithm, let us consider
a simple algorithm based on alternating runs. This simple algorithm
(Algorithm 1) does not have fpt runtime but has the same basic struc-
ture as the fpt algorithm. In particular, this simple algorithm will
already demonstrate the importance of Lemma 3.9.

From Lemma 3.7 we know that when checking whether τ contains
π as a pattern, it is sufficient to test for all matching functions whether
there exists a compatible matching. Let us fix a matching function F.
We first find suitable elements to which 1 can be mapped, then suit-
able elements for 2, and so on. Observe that we can use Lemma 3.9
to verify what suitable elements are. In addition, Lemma 3.9 tells
us that when finding suitable elements for κ ∈ [k], we only require
the values of M(κ − 1) and M(pre(κ)). This means in particular that
we do not have to store all values of a possible partial matching
(M(1), . . . , M(κ)) but only the values of M for the largest element ≤ κ

in each run in π. For example, when trying to match π = 2 3 5 7 4 1 6
into some text and looking for the possible elements for κ = 4, we
only have to consider possibilities for M(3) and M(pre(4)) = M(1).

3.1 the alternating run algorithm 53

Algorithm 1: A Simple Alternating Run Algorithm

1 XF
0 ← {(0, . . . , 0)} // The tuple (0, . . . , 0) has run(π)

elements.

2 foreach matching function F do
3 for κ ← 1 . . . k do // κ is the element to be matched.

4 XF
κ ← ∅

5 foreach ~x ∈ XF
κ−1 do

6 R← {ν ∈ [n] : ν ∈ F(ri(κ)) ∧ ν >

xri(κ−1) ∧ (pre(κ) ≺π κ ↔ xri(pre(κ)) ≺τ ν)}
// Conditions according to Lemma 3.9

7 foreach ν ∈ R do
8 XF

κ ←
XF

κ ∪ {(x1, . . . , xri(κ)−1, ν, xri(κ)+1, . . . , xrun(π))}
9 if XF

k 6= ∅ then
10 return “π can be matched into τ.”
11 return “π cannot be matched into τ.”

In this simple algorithm, we want to keep track of all possible par-
tial matchings (M(1), . . . , M(κ)) for every κ ∈ [k]. Since such partial
matchings can be described by storing a single value per run in π,
every one of them can be stored as a tuple ~x of length run(π). The
first element of ~x contains a possible choice for the largest element
≤ κ in the first run of π, the second element of ~x contains a possi-
ble choice for the largest element ≤ κ in the second run of π, etc.
We formalize this notion of “tuples encoding partial matchings” as
(κ, F)-matchings:

Definition 3.10. Let κ be an integer in [k]. A tuple~x = (x1, x2, . . . , xrun(π))

with xi ∈ [0, n] for all i ∈ [run(π)] is called a (κ, F)-matching of π into τ if
the following holds: There exists a function M : [κ]→ [n] that is a matching
of π|[κ] into τ that is compatible with F and for which it additionally holds
that for every xi 6= 0, M(max{κ′ ≤ κ : ri(κ′) = i}) = xi, i.e., M maps the
largest element ≤ κ in the i-th run of π to the i-th element of ~x.

The following lemma states that XF
κ – as constructed by Algorithm 1

– indeed contains only tuples that are (κ, F)-matchings:

Lemma 3.11. Let XF
κ be the set of tuples as constructed by Algorithm 1.

Then every ~x ∈ XF
κ is a (κ, F)-matching.

The proof can be found in Section GetMatching on page 63. As
an immediate consequence of this lemma, we know that if XF

k 6= ∅
then there exists a matching from π into τ that is compatible with F.
Observe that XF

k is always empty if a previous XF
κ was empty. If for

every F the set XF
k = ∅, we know from Lemma 3.7 that π cannot be

matched into τ.

54 efficient permutation pattern matching

Example 3.12. For our running example (πex, τex) and κ = 1 the data
structure is given as follows: XF

1 = {(0, 6, 0), (0, 3, 0), (0, 2, 0), (0, 9, 0)}.
Given the choice M(1) = 3, we obtain 6 (2, F)-matchings, namely:
(8, 3, 0), (12, 3, 0), (4, 3, 0), (7, 3, 0), (11, 3, 0) and (6, 3, 0). In total XF

2
contains 19 elements. a

As seen in this small example, the set R and consequently the set
XF

κ can get very large. In particular, it is not possible to bound the size
of XF

κ by a function depending only on run(τ) and not on n – which is
necessary for obtaining our fpt result. Thus, we have to further refine
our algorithm.

We proceed by explaining how this simple algorithm can be im-
proved in order to obtain an fpt algorithm based on alternating runs
(Algorithm 2). This is the main algorithm described in this chapter.
In the following description we fix F to be the current matching func-
tion under consideration. There are two modifications that have to be
made in order to obtain fpt runtime. First, we have to restrict the set
R to fewer, representative choices. Second, we have to change the data
structure of XF

κ from a set to an array of fixed size. In the array XF
κ ,

every (κ, F)-matching has a predetermined position. Observe that if
there are two (κ, F)-matchings ~x, ~y where ~x leads to a matching only
if ~y leads to a matching as well, the algorithm only has to remember ~y.
The position of a (κ, F)-matching will thus be assigned in such a way
that one of two (κ, F)-matching sharing the same position is prefer-
able in the above sense. We will now explain both modifications in
detail.

Algorithm 2: The Alternating Run Algorithm

1 XF
0 ← [(0, . . . , 0)] // (0, . . . , 0) has run(π) elements.

2 foreach matching function F do
3 for κ ← 1 . . . k do // κ is the element to be matched.

4 XF
κ ← [ε, . . . , ε] // XF

κ is a fixed-size array.

5 foreach ~x ∈ XF
κ−1 with ~x 6= ε do

6 R← Rep(~x, κ, F)
7 foreach ν ∈ R do
8 i← Index(x1, . . . , xri(κ)−1, ν, xri(κ)+1, . . . , xrun(π))

9 ~y← XF
κ (i)

10 if ~y = ε or yri(κ) > ν then
11 XF

κ (i)← (x1, . . . , xri(κ)−1, ν, xri(κ)+1, . . . , xrun(π))

12 if XF
k 6= [ε, . . . , ε] then // Is XF

k non-empty?

13 return “Matching found: GetMatching (XF
1 , . . . , XF

k)”
14 return “π cannot be matched into τ.”

Concerning the first modification, restricting the set R, we intro-
duce the procedure Rep(~x, κ, F). This procedure returns a set of repre-
sentative elements to which κ can be mapped to. These choices have

3.1 the alternating run algorithm 55

to be compatible with previously chosen elements (x1, x2, . . . , xrun(π))
and the matching function F.

Procedure Rep(~x, κ, F)

input : a (κ, F)-matching ~x = (x1, x2, . . . , xrun(π)), κ ∈ [k], a
matching function F

output : R, the set of representative elements for M(κ)

1 R← F(ri(κ))
2 R← R ∩ [xri(κ−1) + 1, n]
3 R← Valleys(τ|R)
4 if κ is in a run up in π then
5 if xri(κ) 6=0 then

6 R←
{

ν ∈ R : xri(κ) ≺τ ν
}

7 if κ is the largest element in its run then
8 R← {min R}
9 else

10 R← {ν ∈ R : ∃ν′ with ν′ ∈ F(ri(κ)) ∧ ν′ > ν ∧ ν ≺τ ν′}
11 else
12 if xri(κ) 6=0 then

13 R←
{

ν ∈ R : ν ≺τ xri(κ)
}

14 if κ is the largest element in its run then
15 R← {min R}
16 else
17 R← {ν ∈ R : ∃ν′ with ν′ ∈ F(ri(κ)) ∧ ν′ > ν ∧ ν′ ≺τ ν}
18 return R

An element ν ∈ [n] is contained in Rep(~x, κ, F) if the following
conditions are met:

(C1) [Line 1] It has to hold that ν ∈ F(ri(κ)) (cf. Condition 1 in
Lemma 3.9).

(C2) [Line 2] It has to hold that ν > xri(κ−1) (cf. Condition 2 in
Lemma 3.9).

(C3) [Line 3] It is always preferable to choose elements that are as
small as possible. To be more precise: If we consider the sub-
sequence of τ containing all elements in the set R, we merely
need to consider the valleys of this subsequence. The function
Valleys(τ|R) returns exactly these valleys.

(C4) [Lines 6 and 13] It has to hold that if κ is contained in a run up
(down), then ν has to be right (left) of xri(κ), i.e., the element to
which the run predecessor of κ is mapped (cf. Condition 3 in
Lemma 3.9).

(C5) [Lines 8 and 15] If κ is the largest element in its run, the optimal
choice is the smallest possible element.

56 efficient permutation pattern matching

(C6) [Lines 10 and 17] If κ is not the largest element in its run, the
choice of ν must not prevent finding elements for the next el-
ements in its run. Thus, if κ is contained in a run up (down),
then there has to be a larger element to its right (left) that is
contained in F(ri(κ)).

Since this smaller set R is a subset of the set R in the simple algo-
rithm (Algorithm 1), we immediately obtain the following corollary
of Lemma 3.11:

Corollary 3.13. Let XF
κ be the set of tuples as constructed by Algorithm 2.

Then every ~x ∈ XF
κ is a (κ, F)-matching.

Example 3.14. Let us explain how the elements in Rep((4, 2, 0), 3, F)
are determined in our running example. The elements fulfilling Con-
dition (C1) are: 1, 8, 12, 4, 7, 6, 3 and 2 (listed in the order they appear
in τ). Among these, the elements larger than xri(2) = x1 = 4 are: 8, 12,
7, 11, 6 (cf. (C2)). If we consider this subsequence, its valleys are: 8, 7,
and 6 (these are the elements fulfilling Condition (C3)). The element
3 is contained in a run up in τ, thus the element it is mapped to has
to lie to the right of xri(pre(3) = xri(2) = 4. The elements also fulfilling
(C4) thus are 7 and 6. Since 3 is the largest element in its run in π, we
only need to store the smallest possibility which is 6 (cf. (C5)). Condi-
tion (C6) does not apply here. If there were another, larger element in
the same run as 3 in π, we would have to choose the element 7, since
there are no larger elements in F(ri(3)) to the right of 6. a

If any matching of π into τ can be found that is compatible with F,
it is also possible to find a matching that only involves representative
elements. This statement is formalized and proven in Section Get-
Matching (Definition 3.21 and Lemma 3.23). For the time being, let us
convey the intuition behind this:

Example 3.15. In Figure 13, {2 7→ 4, 3 7→ 6, 1 7→ 3, 4 7→ 10} is a match-
ing of πex into τex where the elements 3 and 10 are not representative:
3 /∈ Rep((0, 0, 0), 1, F) and 10 /∈ Rep((6, 3, 0), 4, F). This can be seen
since 3 is not a valley in τ and 10 is not a valley in the subsequence
consisting of elements larger than 6. However, this matching can be
represented by the matching {2 7→ 4, 3 7→ 6, 1 7→ 2, 4 7→ 9} that only
involves representative elements (3 is represented by 2; 10 by 9) and
that is compatible with the same matching function F. a

This concludes our description of representative elements, our first
modification of the simple alternating run algorithm. We proceed by
explaining the data structure XF

κ , which is changed from a set to an
array of fixed size. In this array, every (κ, F)-matching ~x has a prede-
termined position which depends on the notion of vales.

Definition 3.16. A subsequence of a permutation π consisting of a consec-
utive run down and run up (formed like a V) is called a vale. If π starts

3.1 the alternating run algorithm 57

3

1

2

10

2

8

9

5

= F(ri(1)) = F(ri(3))

4

7

= F(ri(2))

Figure 14: Schematic representation of the permutations occurring in Exam-
ple 3.17: to the left the pattern π and to the right the text τ

with a run up, this run is also considered as a vale and analogously if π

ends with a run down. Let vale(π) denote the number of vales in π. Fi-
nally, we define the vale index function vi(u): given a matching function
F and u ∈ F(i), let vi(u) = j if u is contained in the j-th vale in F(i). For
notational convenience we set vi(0) = 1.

The main idea is the following: Two (κ, F)-matchings ~x and ~y in XF
κ

with vi(xi) = vi(yi) for all i ∈ [run(π)] are comparable in the sense
that one of these is less likely to lead to a matching. More precisely,
the (κ, F)-matching containing the larger element at the ri(κ)-th po-
sition (this is also the largest element of the entire tuple) leads to a
matching only if the other one leads to a matching as well. Thus, the
former (κ, F)-matching can be discarded and only the latter (κ, F)-
matching has to be stored. The following example illustrates this no-
tion of comparability:

Example 3.17. Consider the two permutations π and τ schematically
represented in Figure 14. We are searching for representative ele-
ments for κ = 3 which lies in a run down in π. Which elements κ

may be matched to depends on the choices for its run predecessor
pre(3) = 1 and for κ− 1 = 2. For the element 1, two representative el-
ements are 2 (circle) and 5 (square), the valleys in F(ri(1)) in τ. They
lead to one representative element for 2 each: if 2 has been chosen
then 4 is a representative element (circle) and if 5 has been chosen
then 7 (square) is one. At this point, we have the following two (2, F)-
matchings: ~x = (. . . , 0, 2, 4, 0, . . .) and ~y = (. . . , 0, 5, 7, 0, . . .). On the
one hand, ~x seems to be preferable since it involves smaller elements
than ~y and this leaves more possibilities for the following elements.
On the other hand, ~y seems to be preferable since it involves 5 in
F(ri(1)), which is further to the right than 2. This is advantageous
since F(ri(1)) corresponds to a run down and this means that larger
elements in the same run will have to be chosen to the left. All to-

58 efficient permutation pattern matching

gether we cannot say which of ~x and ~y is preferable and thus have to
store both of them.

When we now turn to the element 3 in π, there are three represen-
tative elements: if we have chosen ~x the only possible choice is the el-
ement 10; if we have chosen ~y there are two possible choices namely 8
and 9. We thus obtain three (3, F) matchings: ~x′ = (. . . , 0, 10, 4, 0, . . .),
~y′ = (. . . , 0, 8, 7, 0, . . .) and ~y′′ = (. . . , 0, 9, 7, 0, . . .). We can now ob-
serve that we do not have to keep track of all three possibilities. In-
deed, the two (3, F)-matchings ~x′ and ~y′ have coinciding vales and ~x′

can be discarded in favour of ~y′ since ~x′ will only lead to a matching
of π into τ if ~y′ does. This is due to the fact that x′ri(3) = 10 > 8 = y′ri(3)
and can be seen as follows:

Let u be an element in the same run as 3 in π that is larger than 3
(which means that it lies to the left of 3). All elements to the left of
and larger than 10 in F(ri(u)) are clearly also to the left of and larger
than 8. Thus, if there exists an element in Rep(~x′, u, F) there also exists
a smaller element in Rep(~y′, u, F). This means that from the point of
view of the run containing 3, ~y′ is to be preferred over ~x′. Now let
v > 3 be an element in the same run in π as 2 (which means that it
lies to the right of 2). Representative elements for v have to both lie
to the right of the element chosen for 2 (4 or 7) and be larger than
the element chosen for 3 (10 or 8). Since 4 and 7 lie in the same vale
in τ there are no larger elements in between them. This implies that
elements that are to the right of 4 in F(ri(2)) and larger than 10 are
automatically to the right of 7 and larger than 8. From the point of
view of the run containing 2, ~y′ it also to be preferred over ~x′. The
same argument also holds for any other element in π that is larger
than 3.

To put this example in a nutshell: if we have two (κ, F)-matchings
~x and ~y with coinciding vales and yri(κ) ≤ xri(κ) we only need to store
~y. For a formal proof of this statement, we refer to Lemma 3.25 on
page 67 in Section GetMatching. a

If we store only one (κ, F)-matching out of those with identical
vales, the question arises how many vales there are in F(i), i ∈ [run(π)].
The answer is that at most brun(F(i))/2c + 1 exist: all vales but the
two outermost consist of two runs and the two outermost may consist
of only one run (cf. Definition 3.16). This would yield that we have
to store at most ∏run(π)

i=1

(
b run(F(i)

2 c+ 1
)

many (κ, F)-matchings. This
number is still too large to show our desired runtime bounds. How-
ever, it suffices to distinguish between brun(F(i))/2c many vales in
F(i) with i ∈ [run(π)− 1]. This is achieved by not distinguishing be-
tween the first and the last vale in F(i) for i < run(π). We only briefly
mention that this is correct due to the Conditions (C5) and (C6); a for-
mal proof will follow with Lemma 3.25 in Section GetMatching. For
i = run(π), the last run in π, we still consider all vales occurring in
F(run(π)).

3.1 the alternating run algorithm 59

Recall that our goal is to assign a position in the array XF
κ to every

(κ, F)-matching ~x. For every one of the run(π) values of the (κ, F)-
matching there are at most brun(F(i)/2c vales that need to be dis-
tinguished, except for the last one where we have to distinguish
between brun(F(run(π)))/2c + 1 vales. Thus, it is natural to use a
mixed radix numeral system with bases b1 = brun(F(1)/2c, b2 =

brun(F(2)/2c, . . . , brun(π)−1 = brun(F(run(π) − 1)/2c and brun(π) is
equal to the number of vales in F(run(π)). Let Index be the func-
tion that assigns a position in the array to each (κ, F)-matching ~x =

(x1, . . . , xrun(π)):

Index
(

x1, . . . , xrun(π)

)
= 1 +

run(π)

∑
i=1

(vi(xi)− 1 mod bi) ·
i−1

∏
j=1

bj.

The mod operator is required since for x ∈ F(i), vi(x) ∈ [bi + 1] – as
explained above.

Example 3.18. Let us discuss what the Index function looks like for
our running example πex and τex (cf. Figure 13). The subsequence
F(1) contains four runs. Thus, b1 = 2. Since both F(2) and F(3) con-
tain two runs, b2 = b3 = 1. Consequently, in our running example,
XF

κ contains at most two elements for every κ ∈ [k]. For example,
Index(8, 3, 10) = 1, Index(6, 3, 10) = 1 and Index(11, 3, 10) = 2. a

From the definition of the Index-function, it follows that the length
of our array is ∏run(π)

i=1 bi. We will show in Lemma 3.28 that ∏run(π)
i=1 bi =

O
(

1.2611run(τ)
)

. At this point, we see the huge advantage of this ar-
ray data structure over the set data structure in the simple algorithm:
the set XF

κ has a potential size of nrunπ – too large for an fpt algorithm.
This concludes the description of the array data structure. Let us

now – once again – return to our running example and see how this
would be dealt with by the alternating run algorithm.

Example 3.19. Let us demonstrate how the alternating run algorithm
works. As before, consider τex, πex and the matching function F as rep-
resented in Figure 13. We already know from the last example that
XF

κ has size 2, i.e., the Index function has range {1, 2}. We start with
XF

0 = {(0, 0, 0)}. Refer to Table 2 for an overview. For the element
1 in π the only representative element is 2. Since Index(0, 2, 0) = 1,
we store this (1, F)-matching at position 1 in XF

1 . Position 2 remains
empty (symbolized by ε). For the element 2, we have more representa-
tive elements: Rep((0, 2, 0), 2, F) = {4, 8}. Note that 3 is not a represen-
tative element since there is no larger element to its right in F(ri(2)) =
F(1) (cf. (C6)). Since Index(8, 2, 0) = 1 and Index(4, 2, 0) = 2, both
(2, F)-matchings are stored in XF

2 . For placing the element 3, observe
that 3 is the largest element in its run in π. Thus, Condition (C5)
applies. We obtain Rep((8, 2, 0), 3, F) = min{11, 12} = {11} as well

60 efficient permutation pattern matching

Index(., ., .) = 1 Index(., ., .) = 2

XF
1 (0, 2, 0) ε

XF
2 (8, 2, 0) (4, 2, 0)

XF
3 (6, 2, 0) (11, 2, 0)

XF
4 (6, 2, 9) ε

Table 2: The arrays XF
1 , . . . , XF

4 for our running example (cf. Figure 13)

as Rep((4, 2, 0), 3, F) = min{7, 6} = {6}. Thus, we have two (3, F)-
matchings to store in XF

3 : (11, 2, 0) and (6, 2, 0) with Index(11, 2, 0) =
2 and Index(6, 2, 0) = 1. Finally, we have to place the element 4. Since
Rep((11, 2, 0), 4, F) = ∅ the (3, F)-matching (11, 2, 0) does not lead
to a matching. However, Rep((6, 2, 0), 3, F) = {9}. Thus, XF

4 contains
the (4, F)-matching (6, 2, 9). This (4, F)-matching corresponds to the
matching {2 7→ 4, 3 7→ 6, 1 7→ 2, 4 7→ 9}. a

Finally, it only remains to explain the GetMatching procedure. From

Procedure GetMatching(XF
1 , . . . , XF

k)

input : k arrays XF
1 , XF

2 , . . . , XF
k generated by Algorithm 2

output : M, a matching of π into τ that is compatible with F
1 for κ ← k . . . 1 do
2 if κ = k then
3 ~x ← some element in XF

k
4 else
5 ~x ← some element ~y in XF

κ with xi = yi for all i 6= ri(κ)

6 M(κ)← xri(κ)
7 return M = (M(1), M(2), . . . , M(k))

Lemma 3.11 we know that if there is an element in XF
k , a matching

from π into τ that is compatible with F exists. However, we have
not yet shown how a matching can be constructed from an element
in XF

k . This is what the GetMatching procedure does: it extracts an
actual matching M : [k] → [n] out of the arrays XF

1 , . . . , XF
k . We con-

struct M recursively: First, we pick some element ~x ∈ XF
k and set

M(k) := xri(k). Now, suppose the matching has been determined for
κ ∈ [k] and M(κ) = xri(κ) for some ~x ∈ XF

κ . Then there must exist an
element ~y ∈ XF

κ−1 that has led to the element ~x ∈ XF
κ , i.e., ~y differs

from ~x only at the ri(κ)-th element. We define M(κ − 1) := yri(κ−1).
This defines the function M : [k] → [n]. It can easily be seen with the
help of Lemma 3.9 that the function M returned by the GetMatching

procedure is indeed a matching of π into τ that is compatible with F.
This concludes our description of the alternating run algorithm. We

would like to remark that this description omits two minor details

3.1 the alternating run algorithm 61

necessary for obtaining the polynomial factor O(n · k) of the desired
runtime. The one detail concerns the calculation of the Index function.
The second details concerns how data is stored in the array. These
details are described in the proof of the runtime, Proposition 3.29.

Correctness

We start by providing the proof of Lemma 3.7, which states that for
every matching M there exists a matching function F such that M is
compatible with F.

Lemma 3.7. Given a matching M from π to τ, we will construct a
matching function F such that M is compatible with F. In order to
describe F, it is enough to determine the first (=leftmost) element
lF(i) of every F(i), where i ∈ [run(π)]. In order to specify the last
(=rightmost) element rF(i) of F(i) for i ∈ [run(π)], we simply need to
apply the properties (P3) and (P4): rF(i) is either the last element in τ

or the leftmost valley (peak) in F(i + 1) in case that the i-th run is a
run up (down). Clearly, lF(1) = τ(1), the first element in τ – cf. (P3).
When determining lF(i), let lπ,i be the first element in the i-th run in π

and rπ,i be the last element in the i-th run in π. If the i-th run is a run
up (down), lF(i) is the right-most element in τ not lying to the right
of M(lπ,i) and following a valley (peak). This construction guarantees
that F is a matching function.

In order to prove that M is compatible with F, we need to show
for all i ∈ [run(π)] that lF(i) �τ M(lπ,i) and M(rπ,i) �τ rF(i). The first
statement holds by construction. For i = run(π), the second state-
ment clearly also holds by construction. Let i ∈ [run(π)− 1]. Let us
assume that the i-th run is a run up – the proof for runs down is anal-
ogous. We distinguish between the following cases that are depicted
in Figure 15:

• M(rπ,i) and M(lπ,i+1) lie in the same run in τ. Since we have
assumed that the i-th run in π is a run up, rπ,i is a peak in π.
Hence, this case is only possible if M(rπ,i) is in a run down in
τ and rπ,i > lπ,i+1. Thus, lF(i+1) is the first element in this run,
which implies that rF(i) is the last element of this run and thus
M(rπ,i) �τ rF(i).

• M(rπ,i) and M(lπ,i+1) do not lie in the same run in τ and the
element M(lπ,i+1) is in a run up in τ. In this case, rF(i) is the last
element in the run down preceding this run and thus it clearly
holds that M(rπ,i) �τ rF(i).

• M(rπ,i) and M(lπ,i+1) do not lie in the same run in τ and the ele-
ment M(lπ,i+1) is in a run down in τ. In this case, rF(i) is the last
element in this run and again it clearly holds that M(rπ,i) �τ

rF(i).

62 efficient permutation pattern matching

� and ◦ in the same
run

� and ◦ not in the
same run; ◦ in a

run up

� and ◦ not in the
same run; ◦ in a

run down

LF(i+1)
RF(i)

LF(i+1)
RF(i)

LF(i+1)
RF(i)

Figure 15: Three cases that have to be distinguished in the proof of
Lemma 3.7 when showing that M(rπ,i) �τ rF(i) for all i ∈
[run(π)− 1] under the assumption that the i-th run in π is a run
up. The element M(rπ,i) is represented by a � and the element
M(lπ,i+1) by a ◦.

Example 3.20. Constructing F as described in the proof of Lemma 3.7
for the matching 4 6 2 9 of πex into τex yields the matching function
represented in Figure 13. a

Next, we prove Lemma 3.9. This lemma states that a function M
from the set [k] into the set [n] is a matching of π into τ compatible
with F if and only if for every κ ∈ [k]:

1. M(κ) ∈ F(ri(κ)),

2. M(κ) > M(κ − 1) and

3. if pre(κ) exists, then pre(κ) ≺π κ if and only if M(pre(κ)) ≺τ

M(κ), i.e., if κ is contained in a run up (down), then M(κ) is
right (left) of M(pre(κ)).

Lemma 3.9. Let M:[k] → [n] be a matching of π into τ that is com-
patible with F. Recall Definition 2.5 which states that M has to be a
monotonically increasing function. This implies the second condition.
Moreover, the sequence M(π) = M(π(1)), M(π(2)), . . . , M(π(k)) has
to be a subsequence of τ. This means nothing else than M(π(1)) ≺τ

M(π(2)) ≺τ . . . ≺τ M(π(k)). In particular it must hold that M(u) ≺τ

M(v), where u and v are two neighbouring elements in the same run
in π with u ≺π v. This implies the third condition. Finally, the first
condition follows directly from the definition of compatibility (Defi-
nition 3.6).

Let M:[k] → [n] be a function fulfilling the three conditions stated
above. The second condition implies that M is monotonically increas-
ing. In order to show that M is indeed a matching of π into τ, we

3.1 the alternating run algorithm 63

have to show that M(π) = M(π(1)), M(π(2)), . . . , M(π(k)) is a sub-
sequence of τ. In other words, we have to show that for all i ∈ [k− 1]
it holds that M(π(i)) ≺τ M(π(i + 1)). We distinguish three cases:

• The elements π(i) and π(i + 1) lie in the same run in π. Thus,
for the case of a run up (down) we have π(i) = pre(π(i + 1))
(π(i + 1) = pre(π(i))). With κ = π(i + 1) (κ = π(i)) it follows
from the third condition that M(π(i)) ≺τ M(π(i + 1)) (in both
cases).

• The elements π(i) and π(i + 1) do not lie in the same run in π

and M(π(i)) and M(π(i + 1)) do not lie in the same run in τ.
If π(i) lies in the j-th run in π, the first condition implies that
M(π(i)) lies in F(j) and that M(π(i + 1)) lies in F(j + 1) in τ.
Then property (P4) of matching functions (the leftmost run of
F(j + 1) is the rightmost run of F(j)) implies that M(π(i)) lies
to the left of M(π(i + 1)) in τ.

• The elements π(i) and π(i + 1) do not lie in the same run in π

but M(π(i)) and M(π(i + 1)) lie in the same run in τ. By the
definition of matching functions and since it holds that M(κ) ∈
F(ri(κ)) for all κ ∈ [k], this can only be possible if M(π(i)) is
in the last run of F(j) and M(π(i + 1)) is in the first run of
F(j + 1) for some j ∈ [run(π)]. Thus, if π(i) lies in a run up
(down) in π both M(π(i)) and M(π(i + 1)) are contained in
a run down (up) in τ. On the other hand, if π(i) is in a run
up (down) it must be a peak (valley) and thus it holds that
π(i) > π(i + 1) (π(i) < π(i + 1)). The second condition then
ensures that M(π(i)) > M(π(i + 1)) (M(π(i)) < M(π(i + 1))),
which implies that M(π(i)) lies to the left of M(π(i + 1)) in τ.

The function M is thus a matching of π into τ additionally fulfilling
that M(κ) ∈ F(ri(κ)) which means that M is a matching compatible
with F.

Lemma 3.11 states that in Algorithm 1, ~x ∈ XF
κ is a (κ, F)-matching.

This can be shown as follows:

Lemma 3.11. We prove this statement by induction over κ. For κ =

1 this is easy: An element ~x ∈ XF
1 looks as follows: xi = 0 for all

i 6= ri(1) and xri(1) is equal to some u ∈ F(ri(1)). Thus, the function
M : [1]→ [n] with M(1) = u is clearly a (1, F)-matching.

Now suppose we have proven the statement of Lemma 3.11 for
κ − 1 and we want to prove it for κ. If ~x ∈ XF

κ , then there must
exist an element ~y ∈ XF

κ−1 and an element ν ∈ [n] such that ~x =

(y1, . . . , yri(κ)−1, ν, yri(κ)+1, . . . , yrun(π)) (see lines 5 to 8 in Algorithm 1).
This element ν may not be any arbitrary element, it must fulfil the
following conditions (see Algorithm 1, Line 6): ν ∈ F(ri(κ)), ν >

xri(κ−1)) and pre(κ) ≺π κ if and only if xri(pre(κ)) ≺τ ν. Since ~y ∈ XF
κ−1 it

64 efficient permutation pattern matching

is a (κ− 1, F)-matching and thus there exists a function M : [κ− 1]→
[n] that is a matching of π|[κ−1] into τ that is compatible with F and
for which it additionally holds that for every yi 6= 0, M(max{κ′ ≤
κ − 1 : ri(κ′) = i}) = yi.

We now define a function M̃ : [κ] → [n] as follows: M̃(u) = M(u)
for all u ∈ [κ − 1] and M̃(κ) = ν. We will see that this function M̃
is a witness for the fact that ~x is a (κ, F)-matching. For this purpose
we have to check that the three conditions in Lemma 3.9 are fulfilled
for every u ∈ [κ]. For u < κ these conditions are necessarily fulfilled
since we then have M̃(i) = M(i) and M is a matching of π|[κ−1]
into τ that is compatible with F. For u = κ, i.e., M̃(u) = ν, these
conditions are exactly those stated above that must be fulfilled by
the element ν ∈ [n]. The last condition in Definition 3.10, namely
that for every xi 6= 0, M̃(max{κ′ ≤ κ : ri(κ′) = i}) = xi, is fulfilled
since M is a witness for the fact that ~y is a (κ − 1, F)-matching and
since we defined M̃(κ) to be equal to ν = xri(κ). Thus, ~x is a (κ, F)-
matching.

The next lemma shows that it is sound to consider elements re-
turned by the Rep procedure only.

Definition 3.21. Let F be a matching function and~x = (x1, x2, . . . , xrun(π))

be a (κ, F)-matching for some κ ∈ [k]. A matching M (κ, F)-extends ~x if
M is compatible with F and if for every xi 6= 0, M(max{κ′ ≤ κ : ri(κ′) =
i}) = xi, i.e., M maps the largest element ≤ κ in the i-th run of π to the
i-th element of ~x.

Definition 3.22. Let ~x = (x1, . . . , xrun(π)). In the following, we write
~x(ri(κ)← ν) instead of (x1, . . . , xri(κ)−1, ν, xri(κ)+1, . . . , xrun(π)).

Lemma 3.23. Let κ ∈ [k] and ~x ∈ XF
κ . If there exists a matching M that

(κ, F)-extends ~x, then there exist an element ν ∈ Rep(~x, κ + 1, F) and a
matching M̃ that (κ + 1, F)-extends ~x(ri(κ + 1)← ν).

Proof. Let us first explicitly show how to pick the element ν. Then we
will prove that it indeed holds that ν is in Rep(~x, κ + 1, F). We define
M̃ as follows: M̃(κ + 1) := ν and M̃(u) := M(u) otherwise. Finally,
we will see that M̃ is a matching that (κ + 1, F)-extends ~x(ri(κ + 1)←
ν).

In order to increase legibility, let i ∈ [k] be the position for which
π(i) = κ + 1. Let us then consider the set S consisting of all elements
in τ that lie to the right of M(π(i− 1)) and to the left of M(π(i + 1)),
that are contained in F(ri(κ + 1)) and that are larger than M(κ) =

xri(κ). More formally, we have

S :={u ∈ [n] : M(π(i− 1)) ≺τ u ≺τ M(π(i + 1))}
∩ F(ri(κ + 1)) ∩ [M(κ) + 1, n].

This set is never empty: Especially, M(κ + 1) is contained in S since
M is a matching that (κ, F)-extends ~x. We now define ν := min(S).

3.1 the alternating run algorithm 65

We have to check that it indeed holds that ν ∈ Rep(~x, κ + 1, F). We
refer the reader to the definition of Rep(~x, κ + 1, F) on page 55.

• (C1) is fulfilled by construction of S.

• (C2) is fulfilled since ν > M(κ − 1) = xri(κ−1).

• (C3) is fulfilled: ν is a valley in the subsequence of τ consisting
of elements larger than M(κ) by construction of S.

• (C4) If the run predecessor of κ + 1 exists and κ + 1 lies in a run
up (down), pre(κ + 1) = π(i− 1) (pre(κ + 1) = π(i + 1)). More-
over, note that M(pre(κ + 1)) = xri(κ+1) since M (κ, F)-extends
~x. Since S ⊆ {u ∈ [n] : M(π(i− 1)) ≺τ u ≺τ M(π(i + 1))}, it is
guaranteed that ν lies on the correct side of xri(κ+1).

• (C5) In case κ + 1 is the largest element in its run in π, there is
only a single element in Rep(~x, κ + 1, F) which is exactly ν.

• (C6) In case κ + 1 is not the largest element in its run in π

and κ + 1 lies in a run up (down), the element M(π(i + 1))
(M(π(i − 1))) is an element larger than ν that lies to the right
(left) of ν in F(ri(κ + 1)) since M is compatible with F.

Now let us show that M̃ as defined above is a matching that (κ +

1, F)-extends ~x(ri(κ + 1) ← ν). First we need to show that the func-
tion M̃ is a matching of π into τ that is compatible with F. Here
Lemma 3.9 comes in handy since it tells us that we only have to check
the following three conditions for all u ∈ [k]:

1. M̃(u) ∈ F(ri(u)): For u = κ + 1 this holds by construction of ν

and for u 6= κ + 1 this holds since we then have M̃(u) = M(u)
and M is a matching that is compatible with F.

2. M̃(u + 1) > M̃(u) for u 6= k: For u /∈ {κ, κ + 1} this again holds
since M is a matching.

u = κ: By the construction of S, M̃(κ + 1) = ν > M(κ) = M̃(κ).

u = κ + 1: Again by the construction of S we know that ν ≤
M(κ + 1). Since M is a matching M(κ + 1) < M(κ + 2) = M̃(κ +

2) it follows that ν = M̃(κ + 1) < M̃(κ + 2).

3. If pre(u) exists, then pre(u) ≺π u if and only if M̃(pre(u)) ≺τ

M̃(u): Since M is a matching, we only have to check this condi-
tion for κ + 1 and its run predecessor pre(κ + 1) as well as for κ +

1 and κ′, the next largest element in the same run in π (we could
call this element the run successor of κ + 1), i.e., pre(κ′) = κ + 1.
If κ + 1 lies in a run up (down), we have pre(κ + 1) = π(i− 1)
and κ′ = π(i + 1) (pre(κ + 1) = π(i + 1) and κ′ = π(i− 1)). By
construction of S we have that M(π(i− 1)) = M̃(π(i− 1)) ≺τ

ν = M̃(κ + 1) ≺τ M̃(π(i + 1)) = M(π(i + 1)) and thus this
condition is also fulfilled.

66 efficient permutation pattern matching

possible for i = 1
possible for

i ∈ [1, run(P)− 1]

th
e

i-
th

ru
n

in
P

is
a

ru
n

up
b1 = number of vales in

F(1)− 1
bi = number of vales in

F(i)− 1

th
e

i-
th

ru
n

in
P

is
a

ru
n

do
w

n

b1 = number of vales in
F(1)− 1

bi = number of vales in
F(i)

Figure 16: Possible shapes that F(i) can have in τ, where i 6= run(π). Runs
that are drawn with dashed lines indicate that elements x lying
in these runs fulfil vi(x) ≡ 1 mod bi.

In order to show that M̃ (κ + 1, F)-extends ~y := ~x(ri(κ + 1) ← ν)

it remains to show that for every yi 6= 0, M̃(max{κ′ ≤ κ : ri(κ′) =

i}) = yi. For i 6= ri(κ + 1) this follows from the fact that yi = xi
and that M is a matching that (κ, F)-extends ~x. For i = ri(κ + 1) this
hold by definition of M̃: we have yi = ν and M̃(max{κ′ ≤ κ + 1 :
κ′ is in the same run as κ + 1}) = M̃(κ + 1) = ν.

It remains to prove that the use of the array data structure and
in particular the Index function do not cause that relevant (κ, F)-
matchings are discarded. This is done by the following two lemmas.

Lemma 3.24. Let ~x,~y be two (κ, F)-matchings, where κ ∈ [k] and F is a
matching function. If Index(~x) = Index(~y), then for all i ∈ [run(π)] it
holds that

• xi and yi lie in the same vale in τ or

• the largest element in the i-th run in π is smaller or equal to κ.

Proof. From the definition of the Index function it is clear that the
following holds for all i ∈ [run(π)]: if Index(~x) = Index(~y), then
vi(xi) ≡ vi(yi) mod bi. Recall that for i = run(π), bi corresponds ex-
actly to the number of vales in F(i) and thus vi(xrun(π)) ≡ vi(yrun(π))

mod bi is only possible if vi(xrun(π)) = vi(yrun(π)) which means noth-
ing else than that xrun(π) and yrun(π) lie in the same vale in τ.

For the case that i 6= run(π), this is not always that simple. Consider
the four possible shapes that F(i) can have, as depicted in Figure 16.
Let us first take a look at the case that the i-th run in π is a run up.
Here, vi(xi) ≡ vi(yi) mod bi is possible if xi and yi lie in the same

3.1 the alternating run algorithm 67

vale in τ or if xi lies in the first vale in F(i) and yi lies in the last run
in F(i) (or vice-versa). Now recall the definition of the Rep procedure:
an element in the last run (which is always a run down) may only be
chosen for the largest element in its run in π (Condition (C6)). This
means that the largest element in the i-th run in π must be smaller or
equal to κ. Now let us consider the case that the i-th run in π is a run
down. Here, if xi and yi do not lie in the same vale in τ, vi(xi) ≡ vi(yi)

mod bi is only possible for i = 1 and if τ starts with a run up: xi has
to then lie in this first run of τ and yi in the last vale of F(1) (or vice-
versa). Again, because of Condition (C6), this is only possible for the
largest element in its run in π. Thus, we can again conclude that the
largest element in the i-th run in π must be smaller or equal to κ.

Lemma 3.25. Let ~x,~y be two (κ, F)-matchings, where κ ∈ [k] and F is
a matching function. In addition to that, let νx ∈ Rep(~x, κ + 1, F) and
νy ∈ Rep(~y, κ + 1, F). If

Index(~x(ri(κ + 1)← νx)) = Index(~y(ri(κ + 1)← νy))

and νy ≤ νx the following holds: if there exists a matching that (κ + 1, F)-
extends ~x(ri(κ + 1) ← νx), then there exists a matching that (κ + 1, F)-
extends ~y(ri(κ + 1)← νy). Thus, the alternating run algorithm only has to
keep track of the (κ + 1, F)-matching ~y(ri(κ + 1)← νy).

Proof. Let Mx be a matching of π into τ that (κ + 1, F)-extends ~x(ri(κ +
1) ← νx). We shall construct a function My : [k] → [n] and show that
it is a matching that (κ + 1, F)-extends ~y(ri(κ + 1)← νy).

Since ~y is a (κ, F)-matching (Recall Definition 3.10) there exists a
partial matching M : [κ]→ [n] of π|[κ] into τ for which it additionally
holds that for every yi 6= 0, M(max{κ′ ≤ κ : ri(κ′) = i}) = yi. We
define the function My as follows:

My(u) =





M(u), for u ∈ [κ]

νy, for u = κ + 1

Mx(u), for u ∈ [κ + 2, k]

We now need to show that My is indeed a matching that (κ + 1, F)-
extends ~y(ri(κ + 1) ← νy). As in the proof of Lemma 3.23, we shall
use Lemma 3.9 to show that My is a matching that is compatible with
F. We have to check the following three conditions for all u ∈ [k]:

1. My(u) ∈ F(ri(u)): For u = κ + 1 this holds since νy ∈ Rep(~y, κ +

1, F) (Condition (C1)) and for u 6= κ + 1 this holds since Mx and
M are matchings that are compatible with F.

2. My(u + 1) > My(u) for u 6= k: For u /∈ {κ, κ + 1} this again
holds since Mx and M are matchings.

68 efficient permutation pattern matching

a) My(κ + 1) > My(κ) or equivalently νy > M(κ) = yri(κ):
This holds since νy ∈ Rep(~y, κ + 1, F) (Condition (C2)).

b) My(κ + 2) > My(κ + 1) or equivalently Mx(κ + 2) > νy:
Since Mx is a matching that (κ+ 1, F)-extends ~x(ri(κ+ 1)←
νx) it has to hold that Mx(κ + 2) > Mx(κ + 1) = νx. Since
we have νy ≤ νx, this condition is fulfilled.

3. If pre(u) exists, then pre(u) ≺π u if and only if My(pre(u)) ≺τ

My(u): Since Mx and M are matchings, this condition is fulfilled
for all u ∈ [k] such that both u < κ + 1 and pre(u) < κ + 1 or
such that both u > κ + 1 and pre(u) > κ + 1. Thus, we only
have to check this condition for u = κ + 1 and for all κ′ ∈
[κ + 2, k] that satisfy pre(κ′) ≤ κ + 1. Let K be the set of all such
κ′. Observe that such a κ′ is the smallest element in the ri(κ′)-th
run in π that is strictly larger than κ + 1. This means that pre(κ′),
if it exists, is the largest element in the ri(κ′)-th run in π that is
smaller or equal to κ + 1. We only consider the case that u is
contained in a run up – the proof for the case that u lies in a
run down works analogously. We have to check the condition
for the following three situations:

a) u = κ + 1: If pre(κ + 1) exists it has to hold that My(pre(κ +

1)) = yri(κ+1) ≺τ νy. This condition is fulfilled since νy ∈
Rep(~y, κ + 1, F) (Condition (C4)).

b) u = κ′ ∈ K such that pre(κ′) = κ + 1: If this element κ′

exists we have to show that νy ≺τ My(κ′) = Mx(κ′). Since
κ + 1 is not the largest element in its run in π, we know
from Lemma 3.24 that νx and νy lie in the same vale in τ.
Moreover we know that νx ≥ νy – but what does this imply
for the right-left order of νx and νy within this vale? Two
cases may occur: νx may lie in the run up or in the run
down of this vale. If νx lies in the run up, then it has to
hold that νy ≺τ νx. Since Mx is a matching, it has to hold
that νx = Mx(κ + 1) ≺τ Mx(κ′) and thus νy ≺τ Mx(κ′). If
νx lies in the run down, νx ≺τ νy and all elements between
νx and νy in τ are smaller than vx. This implies that Mx(κ′)
which is larger than νx and lies to the right of νx also has
to lie to the right of νy in τ.

c) u = κ′ ∈ K with pre(κ′) < κ + 1: We need to show that
yri(pre(κ′)) = yri(κ′) = M(pre(κ′)) ≺τ Mx(κ′). Since Mx is
a matching that (κ + 1, F)-extends ~x(ri(κ + 1) ← νx), we
know that Mx(pre(κ′)) = xri(κ′) and that xri(κ′) ≺τ Mx(κ′).
Moreover, since Index(~x(ri(κ + 1)← νx)) = Index(~y(ri(κ +

1) ← νy)) and pre(κ′) is not the largest element in its run
in π we know from Lemma 3.24 that xri(κ′) and yri(κ′) lie in
the same vale in τ. However, nothing is known about the
relative positions of these two elements within this vale

3.1 the alternating run algorithm 69

and we have to distinguish two cases. If yri(κ′) ≺τ xri(κ′) the
statement follows easily since yri(κ′) ≺τ xri(κ′) ≺τ Mx(κ′). If
xri(κ′) ≺τ yri(κ′) we have to collect a few more arguments in
order to prove that the condition holds. By transitivity and
the condition checked in Point 2. of this proof we know
that yri(κ′) < νy = My(κ + 1) < Mx(κ′). Now note that
the elements that lie in τ between xri(κ′) and yri(κ′) are all
smaller than max(xri(κ′), yri(κ′)) (since both are contained in
the same vale). Thus, the element Mx(κ′) – that is to the
right of xri(κ′) and larger than yri(κ′) – has to lie to the right
of yri(κ′). This is what we wanted to prove.

Let ~y′ = ~y(ri(κ + 1) ← νy). It remains to show that for every i ∈
[run(π)] with y′i 6= 0, My(max{κ′ ≤ κ + 1 : ri(κ′) = i}) = y′i. This
follows directly from the definition of My(κ + 1) and the fact that M
is a witness for ~y being a (κ, F)-matching.

Finally, we have gathered all necessary information to prove the
correctness of the alternating run algorithm.

Proposition 3.26. π can be matched into τ if and only if XF
k is non-empty

for some matching function F.

Proof. (⇒) If there is a matching of π into τ, then there is at least one
matching function F for which XF

k is nonempty:
Since there exists a matching M, we know from Lemma 3.7 that there
exists some matching function F such that M is compatible with F.
Let us fix this F. We prove by induction over κ ∈ [k] that there is an
~x ∈ XF

κ and a matching Mκ that (κ, F)-extends ~x. For κ = 1 this is
easy. Let ν be the valley in τ that lies in the same vale as M(1). It
is clear that ν ∈ Rep((0, . . . , 0), 1, F). Consequently, the tuple ~x with
xi = 0 for i 6= ri(1) and xri(1) = ν is contained in XF

1 . Observe that
M1 being defined by M1(u) = M(u) for u 6= 1 and M1(1) = ν is a
matching that (1, F)-extends ~x.

Now, let κ ∈ [k] and assume that ~x ∈ XF
κ and Mκ κ-extends ~x. We

show that there exist an ~x′ ∈ XF
κ+1 and a Mκ+1 that (κ + 1)-extends

~x′. By Lemma 3.23, there exists a ν ∈ Rep(~x, κ + 1, F) and a matching
Mκ+1 that (κ + 1)-extends ~x(ri(κ + 1) ← ν). At this point, we can-
not be sure that ~x(ri(κ + 1) ← ν) ∈ XF

κ+1 since XF
κ+1 may contain

another (κ, F)-matching ~y with Index(~x) = Index(~y). However, this
is only possible if yri(κ+1) ≤ xri(κ+1) (see Line 10 in Algorithm 2). By
Lemma 3.25 we know that, in this case, there exists a matching that
(κ + 1)-extends ~y. So, no matter whether ~x(ri(κ + 1) ← ν) ∈ XF

κ+1
or not, we can conclude that there is an ~x′ ∈ XF

κ+1 and a matching
function Mκ+1 that (κ + 1)-extends ~x′. By induction, we have shown
that XF

k 6= ∅.
(⇐) If there is a matching function F such that the corresponding XF

k
is non-empty, then a matching of π into τ can be found: This is an
immediate consequence of Corollary 3.13.

70 efficient permutation pattern matching

Finally, let us remark that the function M returned by the proce-
dure GetMatching(XF

1 , . . . , XF
k) is indeed a matching, as can easily be

seen with the help of Lemma 3.9: The first condition in the lemma is
satisfied because of Condition (C1) for representative elements. The
second condition holds because of Condition (C2). The third condi-
tion corresponds to Condition (C4). Note that(C3), (C5) and (C6) are
only required for improving the runtime.

Runtime

We are now going to prove the promised fpt runtime bounds. First,
we bound the number of matching functions.

Lemma 3.27. There are less than (
√

2)
run(τ)

functions from [runπ] to sub-
sequences of τ that satisfy (P1) to (P4).

Proof. A matching function F can be uniquely characterized by fixing
the position of the first run up in every F(i) for i ∈ [run(π)]. This
is because the last run of F(i) is the first run of F(i + 1) for all i ∈
[run(π) − 1]. Moreover the first run up in F(1) is always the first
run up in τ. Thus, the number of matching functions is equal to the
number of possibilities of picking run(π)− 1 runs (for the first run in
π no choice has to be made) among the at most drun(τ)/2e runs up
in τ. Hence, we obtain

(drun(τ)/2e
run(π)− 1

)
≤ 2drun(τ)/2e−1 < (

√
2)

run(τ)
.

The first inequality holds since (n
k) < 2n−1 for all n, k ∈ N as can

easily be proven by induction over n.

Now we bound the size of XF
κ , which is the main step to achieve

the 1.79run(τ) runtime bound.

Lemma 3.28. For any given matching function F and every κ ∈ [k]

|XF
κ | ≤ 2 ·

run(π)

∏
i=1

run(F(i))
2

≤ 1.6 · 1.261071run(τ).

Proof. Recall that each (κ, F)-matching in XF
κ has a position as deter-

mined by the function Index, defined by

Index(x1, . . . , xrun(π)) = 1 +
run(π)

∑
i=1

(vi(xi) mod bi) ·
i−1

∏
j=1

bj.

For i ∈ [run(π) − 1] we have bi = brun(F(i)/2c and for i = run(π)

brun(π) ≤ brun(F(run(π))/2c+ 1 since brun(π) is equal to the number

3.1 the alternating run algorithm 71

of vales in F(run(π))1. The range of Index is
{

1, . . . , ∏run(π)
i=1 bi

}
. Since

the function Index determines the positions in the array XF
κ , we obtain

|XF
κ | =

run(π)

∏
i=1

bi ≤
run(π)−1

∏
i=1

⌊
run(F(i))

2

⌋
·
(⌊

run(F(run(π)))

2

⌋
+ 1
)

and consequently

|XF
κ | ≤ 2 ·

run(π)

∏
i=1

run(F(i))
2

. (16)

We want to bound XF
κ and thus want to know when the product in

Equation (16) is maximal. The maximum of this product has to be
determined under the condition that

run(π)

∑
i=1

run(F(i)) = run(τ) + run(π)− 1, (17)

since two subsequent F(i)’s have one run in common (cf. Defini-
tion 3.4). The inequality of geometric and arithmetic means implies
that the product in Equation (16) is maximal if all run(F(i)) are equal,
i.e., for every i ∈ run(π), run(F(i)) = run(τ)+run(π)−1

run(π)
. Therefore, XF

κ

has at most 2 ·
(
run(τ)+run(π)−1

2·run(π)

)run(π)
elements. To shorten the proof,

we write in the following p for run(π) and t for run(τ).
Thus, we want to determine the maximum of the function

g(p) =
(

t + p− 1
2p

)p

(we omit the factor 2 for the calculation). The derivative of g(p) is:

g′(p) =
1
p

(
2−p

(p + t− 1
p

)p−1
· h(p)

)

where h(p) =(p + t− 1)
(

log
(

p + t− 1
p

)
− log(2)

)
− t + 1.

And thus:

g′(p) = 0→ h(p) = 0→ log
(

p + t− 1
2p

)
=

t− 1
p + t− 1

.

The solutions are:

p1(t) = (−1 + t)/(−1 + 2e1+W0(−1/(2e)))

p2(t) = (−1 + t)/(−1 + 2e1+W−1(−1/(2e))),

1 The reason why we do not set brun(π) = brun(F(run(π))/2c is a rather technical one:
F(run(π)) may end with a run up if the last run in π is a run up and may end
with a run down if the last run in π is a run down. This would lead to unwanted
collisions concerning the Index function and consequently would prohibit the proof
of Lemma 3.24.

72 efficient permutation pattern matching

where W0 is the principal branch of the Lambert function (defined by
x = W(x) · eW(x)) and W−1 its lower branch. It holds that

(−1 + t)/3.311071 ≤ p1(t) ≤ (−1 + t)/3.311070

(−1 + t)/− 0.62663 ≤ p2(t) ≤ (−1 + t)/− 0.62664,

The second solution p2(t) is negative and therefore of no interest to
us. The first solution p1(t) is a local maximum as can be checked
easily and yields

g(p1) ≤
(

t + (−1 + t)/3.311070− 1
2(−1 + t)/3.311071

)(−1+t)/3.311070

≤ 0.80 · (1.261071)t .

It therefore holds that |XF
κ | ≤ 1.6 · 1.261071run(τ).

Proposition 3.29. The runtime of the alternating run algorithm (Algo-
rithm 2) is O(1.784run(τ) · n · k).

Proof. The main structure of the algorithm is the following: for ev-
ery matching function F and for every κ ∈ [k] the array XF

κ is com-

puted. There are (
√

2)
run(τ)

matching functions (Lemma 3.27). The
maximal number of elements in XF

κ is 1.6 · 1.2611run(τ) (Lemma 3.28).
Given a matching function and an element κ ∈ [k], the algorithm has
to execute Lines 6 to 11 for every ~x ∈ XF

κ−1. Once we have shown
that the runtime of these lines is O(n), we obtain a total runtime of

O
(
(
√

2)
run(τ) · 1.2611run(τ) · k · n

)
= O(1.784run(τ) · k · n).

So it remains to show that the runtime of the Lines 6 to 11 is O(n).
First, observe that determining the set R with the help of the Rep

procedure requires O(n) time. Second, for every element in R the
Lines 8, 10 and 11 are executed. Since R only contains valleys (of
some subsequence of τ), its size is less than run(τ). Assuming unit
cost for arithmetic operations, computing Index requires O(run(π))

time. However, note that it is not necessary to repeat all calculations
for Index for every element ν in R. Indeed, for a fixed ~x ∈ XF

κ , the
elements for which Index is computed at Line 8 only differ at the
ri(κ)-th position. Assume that we have already computed Index(~x)
for some ~x. Computing Index(~y) for a ~y that is identical to ~x except
at the ri(κ)-th position can be done as follows:

Index(~y) =Index(~x)

+
(
vi(yri(κ))− vi(xri(κ)) mod bri(κ)

)
·
ri(κ)−1

∏
j=1

bj.

Consequently, Line 8 requires (amortized) constant time.
Checking the condition in Line 10 requires only constant time. How-

ever, Line 11 requires O(run(π)) time to write the (κ, F)-matching

3.1 the alternating run algorithm 73

to its position in XF
κ . This is too much time to obtain the desired

runtime bound – we can only afford amortized O(n) time per ~x ∈
XF

κ−1. This can be achieved by executing Line 11 at most once per
~x ∈ XF

κ−1. Let ν ∈ R be the first element for which the condition
at Line 10 is fulfilled. For this element Line 11 is executed and a
pointer p′ to the position Index(~x(ri(κ) ← ν)) is created. (Recall
the ~x(ri(κ) ← ν) notation from Definition 3.22.) If the condition at
Line 10 is fulfilled for the same ~x and some other ν′ ∈ R, we do
not execute Line 11. Instead we only store the pointer p′ and the
element ν′. This is sufficient information since two (κ, F)-matchings
in Line 11 that originate from the same ~x are identical except for
the ri(κ)-th element. It might be that Line 11 is executed for some
other element ~y ∈ XF

κ−1 and νy ∈ Rep(~y, κ, F) at a later point. It is
then possible that a (κ, F)-matching ~x(ri(κ) ← ν) is overwritten that
has other (κ, F)-matchings ~x(ri(κ)← ν′) pointing to it. However, this
can only happen in the following situation: ~x(ri(κ) ← ν′) is (κ, F)-
extendable only if ~y(ri(κ) ← ν′) is (κ, F)-extendable. (It holds that
Index(~x(ri(κ)← ν′)) = Index(~y(ri(κ)← ν′)). Lemma 3.25 shows that
if ~x(ri(κ) ← ν′) is (κ, F)-extendable, then so is ~y(ri(κ) ← ν′). Strictly
speaking Lemma 3.25 is not applicable since it is not guaranteed that
ν′ ∈ Rep(~y, κ, F) because ν′ might not be a valley in the corresponding
subsequence of τ (cf. Condition (C3)). However, all other conditions
are satisfied and this suffices to prove Lemma 3.25.) Therefore, this
modified array data structure is equivalent to the original data struc-
ture described in Section 3.1. Thus, we have shown that Lines 6 to 11

have a runtime of O(n), if we modify the array data structure to also
allow for pointers. This concludes our proof.

We conclude this section about the runtime of the alternating run
algorithm by proving that an even smaller constant than 1.784 can be
expected. Indeed, the following holds:

Theorem 3.30. Let Rn be the random variable counting the number of al-
ternating runs in an n-permutation chosen uniformly at random amongst
all n-permutations. Then for n ≥ 2 we have: E

(
1.784Rn

)
= O (1.515n).

Proof. In the following, let Rn,m denote the number of n-permutations
with exactly m alternating runs. Then the mean of Rn is given as
follows:

E(Rn) = ∑
m≥1

m · Rn,m

n!
.

By the law of the unconscious statistician we then have that:

E
(

1.784Rn
)
= ∑

m≥1
1.784m · Rn,m

n!
.

74 efficient permutation pattern matching

Let Rn(u) = ∑m≥1 Rn,mum denote the generating function of alternat-
ing runs in n-permutations. Then E

(
1.784Rn

)
can also be expressed

as follows:

E
(

1.784Rn
)
=

Rn(1.784)
n!

.

A lot is known about the numbers Rn,m as well as the associated gener-
ating functions: for instance E(Rn) =

2n−1
3 and V(Rn) =

16n−29
90 (see

e.g.[117]). However we cannot get our hands on Rn(1.784) directly,
but we can do so by exploiting a connection to the well-studied Eule-
rian polynomials. The n-th Eulerian polynomial An(u) enumerates n-
permutations by their ascents and is defined as An(u) = ∑m≥1 An,mum,
where An,m is the number of n-permutations with exactly m ascents.
Now, for the Eulerian polynomials, the following is known:

∑
n≥0

An(u)
zn

n!
=

1− u
e(u−1)z − u

. (18)

Moreover, we have the following connection between Rn(u) and An(u)
for all integers n ≥ 2 (established in [56] and formulated more con-
cisely by Knuth [111]):

Rn(u)
n!

=

(
1 + u

2

)n−1

(1 + w)n+1An

(
1− w
1 + w

)
,

where w =
√
(1− u)/(1 + u). In order to evaluate Rn(u) at u =

1.784, we thus only need to determine An(u) at the corresponding
value. As demonstrated in Example IX.12 in [78], it is easy to get
asymptotics for the coefficients of zn in ∑n≥0 An(u) zn

n! by a straight-
forward analysis of the singularities. Indeed, for |u| < 2, one has:

An(u)
n!

=

(
u− 1

log(u)

)n+1

+O(2−n). (19)

Putting Equations (18) and (19) together, we finally obtain:

E
(

1.784Rn
)
=

Rn(1.784)
n!

=O
((

2.784
2
· (1 + w) ·

1−w
1+w − 1

log(1−w
1+w)

)n)

=O (cn) ,

where w =
√
(1− 1.784)/(1 + 1.784). Computations using any com-

puter algebra system show that the constant c is strictly less than
1.515. Finally, we remark that the tempting approach E

(
1.784Rn

)
=

1.784E(Rn) is not correct.

Corollary 3.31. The runtime of the alternating run algorithm can be ex-
pected to be in O

(
1.514run(τ) · n · k

)
.

3.2 the parameter run(π) 75

2

5

9

7

4

6

8

3

1

1

2

3

4

5

6

7

8

9

Figure 17: To the left is a graphical representation of the permutation π in-
troduced in Example 3.33, to the right the corresponding inci-
dence graph Gπ .

3.2 the parameter run(π)

The aim of this section is twofold: First, we want to show that PPM
can be solved in time O (n1+run(π)). This result builds upon an algo-
rithm by Ahal and Rabinovich [1] and a novel connection between the
pathwidth of the incidence graph of a permutation [1] and the number
of alternating runs in that permutation. Second, we show that this
runtime cannot be improved to an fpt result unless FPT = W[1]. Let
us start by defining incidence graphs:

Definition 3.32. Given an m-permutation π, the incidence graph Gπ =

(V, E) of π is defined as follows: The vertices V := [m] represent positions
in π. There are edges between adjacent positions, i.e., E1 :=

{
{i, i+ 1} | i ∈

[m − 1]
}

. There are also edges between positions where the corresponding
elements have a difference of 1, i.e., E2 :=

{
{i, j} | π(i)− π(j) = 1

}
. The

edge set is defined as E := E1 ∪ E2.

Example 3.33. Consider the permutation

π =

(
1 2 3 4 5 6 7 8 9

2 5 9 7 4 6 8 3 1

)

written in two-line representation. A graphical representation of π

can be found on the left-hand side of Figure 17. The corresponding
graph Gπ is represented on the right-hand side of the same figure.
The solid lines correspond to the edges in E1 and the dashed lines to
the ones in E2. a

Definition 3.34. Let G = (V, E) be a simple graph, i.e., E is a set of
cardinality 2 subsets of V. A path decomposition of G is a sequence of subsets
Si ⊆ V such that

1. Every vertex appears in at least one Si.

76 efficient permutation pattern matching

2. Every edge is a subset of at least one Si.

3. Let three indices h < i < j be given. If a vertex is contained both in
Sh and Sj then it is also contained in Si.

The width of a path decomposition is defined as maxi(|Si|) − 1. The path-
width of a graph G, written pw(G), is the minimum width of any path
decomposition.

In [1], Theorem 2.7 and Proposition 3.5, the authors present an algo-
rithm that solves PPM in time O

(
n1+pw(Gπ)

)
. The following lemma

relates pw(Gπ) and the number of alternating runs in π.

Lemma 3.35. For all permutations π, it holds that pw(Gπ) ≤ run(π).

Proof. Given an m-permutation π we will define a sequence S1, . . . , Sm.
We then show that this sequence is a path decomposition of Gπ =

(V, E) with width at most run(π).
In order to define the sequence S1, . . . , Sm of subsets of V, we shall

extend alternating runs to maximal monotone subsequences. This
means that we add the preceding valley to a run up and the pre-
ceding peak to a run down. For any i ∈ [run(π)], Ri then denotes
the set of elements in the i-th run in π together with the preceding
valley or peak. Note that this implies that |Ri ∩ Ri+1| = 1 for all
i ∈ [run(π)− 1].

We define S′1 := {1} and for every v ∈ [2, m],

S′v :=
{

max(Rj ∩ [v− 1]) | j ∈ [run(π)] and Rj ∩ [v− 1] 6= ∅
}
∪
{

v
}

,

i.e., S′v contains v and the largest element of every run that is smaller
than v. Since Sv should contain positions in π (and not elements), we
define

Sv := {π−1(w) | w ∈ S′v}.
For an example of this construction, see Example 3.37. We now

check that S1, . . . , Sm indeed is a path decomposition.

1. The vertex i appears in Sπ(i).

2. First we consider edges of the form {i, i + 1}. Without loss of
generality let π(i) < π(i + 1). Then {i, i + 1} is a subset of
Sπ(i+1). Clearly, i + 1 ∈ Sπ(i+1). Since π(i) and π(i + 1) are adja-
cent in π there has to be an s ∈ [run(π)] such that {π(i), π(i +
1)} ⊆ Rs. It then holds that max(Rs ∩ [π(i + 1) − 1]) = π(i)
since π(i) ∈ Rs ∩ [π(i + 1)− 1] and π(i) is the largest element
in Rs smaller than π(i + 1). Consequently i ∈ Sπ(i+1).

Second, every edge {i, j} ∈ E with π(i)−π(j) = 1 is a subset of
Sπ(i): As before i ∈ Sπ(i). Let s be any element of [run(π)] such
that j ∈ Rs. Then max(Rs ∩ [π(i) − 1]) = max(Rs ∩ [π(j)]) =

π(j) and hence j ∈ Sπ(i).

Only these two types of edges exists.

3.2 the parameter run(π) 77

v S′v Sv

1 1 9

2 12 91

3 123 918

4 234 185

5 2345 1852

6 3456 8526

7 34567 85264

8 3 5678 8 2647

9 5 789 2 473

Figure 18: The sets S′1, . . . , S′9 and S1, . . . , S9 for the permutation π =
2 5 9 7 4 6 8 3 1

3. Let 1 ≤ u < v < w ≤ m with i ∈ Su and i ∈ Sw. Let s be any
element of [run(π)] such that π(i) ∈ Rs. Then either π(i) ∈ Rs ∩
[u− 1] or π(i) = u. In both cases is π(i) ∈ Rs ∩ [v]. Furthermore,
since π(i) < w, π(i) = max(Rs ∩ [w − 1]) = max(Rs ∩ [v]).
Hence π(i) ∈ S′v and i ∈ Sv.

The cardinality of each Si is at most run(π) + 1 and hence pw(Gπ) ≤
run(π).

Remark 3.36. This bound is tight: For π = 1 2 3 . . . m the graph Gπ is
a path and hence pw(Gπ) = run(π) = 1.

Example 3.37. Consider again π as defined in Example 3.33. The el-
ements of the sets S′1, . . . , S′9 and those of S1, . . . , S9 as defined in the
proof of Lemma 3.35 are given in Figure 18. It is easy to check that
S1, . . . , S9 indeed is a path decomposition of width 4 = run(π). Note
that in the given table, columns of equal numbers do not contain any
gaps. This fact corresponds to the third condition in the definition of
path decompositions. a

Theorem 3.38. PPM can be solved in time O(n1+run(π)).

Proof. Lemma 3.35 tells us that pw(Gπ) ≤ run(π). Thus the runtime
of the O(n1+pw(Gπ)) algorithm can be bounded by O(n1+run(π)).

We continue with a corresponding hardness result. We prove that
one cannot hope to substantially improve the XP results in Theo-
rem 3.38: an fpt algorithm with respect to run(π) is only possible
if FPT = W[1].

Theorem 3.39. PPM is W[1]-hard with respect to the parameter run(π).

78 efficient permutation pattern matching

Proof. We give an fpt-reduction from the W[1]-hard Segregated Per-
mutation Pattern Matching Problem [42] to PPM. This problem
is defined on page 90 in Section 4.3.

In this problem we are looking for matchings M where for all u ≤ p
it holds that M(u) ∈ [t] and for all u > p it holds that M(u) ∈
[t + 1, n]. Let (π, τ, p, t) be a SPPM instance, where |π| = k ≤ n = |τ|.
We are going to construct a PPM instance (π̃, τ̃) as follows:

π̃ = (p + 0.5) (k + 1)(k + 2) . . . (k + n + 1)︸ ︷︷ ︸
=Rπ

π

τ̃ = (t + 0.5) (n + 1)(n + 2) (2n + 1)︸ ︷︷ ︸
=Rτ

τ

Note that the increasing runs R{π} and Rτ both consist of (n + 1)
elements. The element placed at the beginning of π̃, p + 0.5, is larger
than p but smaller than p+ 1. Analogously, t+ 0.5 in τ̃ is larger than t
but smaller than t + 1. Note that π̃ and τ̃ are not permutations in the
classical sense, since they contain elements that are not integers. How-
ever, in order to obtain permutations on [k + n + 2] and [2n + 2], we
simply need to relabel the respective elements order-isomorphically.

Given this construction of π̃ and τ̃ the following holds: In every
matching of π̃ into τ̃ the element p + 0.5 has to be mapped to t + 0.5.
Indeed, the increasing run of elements Rπ = (k + 1)(k + 2) . . . (k +
n + 1) in π̃ has to be mapped to the increasing run of elements
Rτ = (n + 1)(n + 2) (2n + 1) in τ̃ and consequently π has to
be matched into τ. This holds because of the following observation:
If the element (k+ 1) in π̃ is mapped to an element (n+ u) with u > 1
in τ̃, some of the elements of Rπ have to be matched into τ since Rπ

and Rτ have the same length. This is however not possible, since all
elements in τ are smaller than (n+ u). If (k + 1) is instead mapped to
one of the elements of τ, then all remaining elements of Rπ also have
to be matched into τ which is not possible since Rπ is longer than τ.
Therefore, the element (k + 1) in π̃ is always mapped to the element
(n + 1) in τ̃. Both in π̃ and in τ̃ there is only one element lying to the
left of (k + 1) and one to left of (n + 1): (p + 0.5) and (t + 0.5), respec-
tively. Thus, (p + 0.5) has to be mapped to (t + 0.5). This implies that
all elements smaller than (p+ 0.5), i.e., elements in the interval [p], in
π have to be mapped to elements smaller than t+ 0.5, i.e., elements in
the interval [t], in τ. We have shown that (π, τ, p, t) is a YES-instance
of SPPM if and only if (π̃, τ̃) is a YES-instance of PPM.

It remains to show that this reduction can be done in fpt-time.
Clearly run(π̃) = 2 + run(π) = O(k). Moreover the length of τ is
bounded by a polynomial in the size of G since |τ| = n + 2 + |τ| =
2n + 2 = O(n).

3.3 summary of the results 79

3.3 summary of the results

Let us sum up the contributions of this chapter:

• Our main result is a fixed-parameter algorithm for PPM with a
runtime of O(1.79run(τ) · n · k). Since the combinatorial explosion
is confined to run(τ), this algorithm performs especially well
when τ has few alternating runs.

• Since run(τ) ≤ n, the alternating run algorithm also solves PPM
in time O(1.79n · n · k). This is a major improvement over the
brute-force algorithm with a runtime of O(2n · n).

• Since the number of runs in a random permutation is unlikely
to be n, one can expect an even smaller constant than 1.79 on
average. Indeed, we prove that the expected runtime of our al-
gorithm is in O(1.52n · n · k).

• We also show that an algorithm by Ahal and Rabinovich [1]
has a runtime of O(n1+run(π)). This is achieved by proving that
the pathwidth of a certain graph generated by a permutation is
bounded by the number of alternating runs of this permutation.

• Finally, we prove that – under standard complexity theoretic
assumptions – no fixed-parameter algorithm exists with respect
to run(π), i.e., we cannot hope for an algorithm with runtime
O(crun(π) · poly(n)) for some constant c. Thus, the runtime of the
aforementioned O(n1+run(π)) algorithm cannot be substantially
improved.

4
T H E C O M P U TAT I O N A L C O M P L E X I T Y O F
G E N E R A L I Z E D P E R M U TAT I O N PAT T E R N
M AT C H I N G

This chapter is based on the publication The computational landscape of
permutation patterns [42] which is joint work with Martin Lackner.

Permutation patterns, which we will refer to as classical permu-
tation patterns in this chapter, have become well-established combi-
natorial objects and are widely studied in the combinatorial liter-
ature. In recent years, several other types of permutation patterns
were introduced and have received increased interest, such as vincu-
lar [13], bivincular [33], mesh [36], boxed mesh [12] and consecutive
patterns [62]. All these pattern types are introduced in Section 4.1.

Every type of permutation pattern naturally defines a correspond-
ing computational problem. Let C denote any type of permutation
pattern, i.e., let C ∈ {classical, vincular, bivincular, mesh, boxed mesh,
consecutive}.

C Permutation Pattern Matching (C PPM)

Instance: A permutation τ (the text) and a C pattern π

Question: Does the C pattern π occur in τ?

In this chapter we study the classical, vincular, bivincular, mesh, boxed
mesh and consecutive pattern matching problem. Often we abbrevi-
ate Classical Permutation Pattern Matching with PPM and the
other problems with C PPM, where C is the corresponding pattern
type.

While the combinatorial structure of permutation patterns is being
extensively studied, the computational perspective has so far received
less attention. Related work to computational aspects of permutation
patterns has been gathered on page 48 in the preceding Chapter 3.
This chapter draws a map of the computational landscape of per-
mutation patterns and thus aims at paving the way for a detailed
computational analysis of these problems.

The contents of this chapter are the following:

• In Section 4.1, we survey different types of permutation pat-
terns. Our focus lies on classical, vincular, bivincular, mesh,
boxed mesh and consecutive patterns. The hierarchy of these
patterns with the most general one at the top is displayed in
Figure 19.

• In Section 4.2, we study the computational complexity of every
corresponding decision problem. We strengthen the result that

81

82 the computational complexity of generalized ppm

mesh

boxed mesh bivincular

vincular

consecutive classical

NP-com
plete

in
P

Figure 19: Hierarchy of pattern types

Classical Permutation Pattern Matching is NP-complete [31]
and also show in which cases C PPM can be solved in polyno-
mial time.

• In Section 4.3, we offer a more fine-grained complexity analy-
sis by employing the framework of parameterized complexity.
For most NP-complete problems we provide a more detailed
complexity classification by showing W[1]-completeness with re-
spect to the parameter length of π.

• Both the classical as well as the parameterized complexity re-
sults are summarized in Section 4.4 and in the two Tables 3 and
4 on pages 83 and 84, respectively.

4.1 types of patterns

In this section we give an overview of several different types of per-
mutation patterns that have been introduced in the last years and
that will be of interest in this paper. Besides classical permutation
patterns that were defined in the Preliminaries (see Section 2.2, we
consider the following types of patterns: vincular, bivincular, mesh,
boxed mesh and consecutive patterns. A schematic representation of
their hierarchy can be found in Figure 19 and examples can be found
in Tables 3 and 3. For details, we refer to the Chapters 1 and 5-7 in
Kitaev’s monograph Patterns in Permutations and Words [108].

Before we introduce non-classical types of patterns, we extend the
definition of matchings from classical to other types of patterns:

Definition 4.1. Let C ∈ {classical, vincular, bivincular, mesh, boxed mesh,
consecutive}. A matching of a C pattern π of length k into a permutation τ

of length n is an increasing mapping M : [k] → [n] such that the sequence
M(P(1)), M(P(2)), . . . , M(P(k)) is an occurrence of the C pattern π in τ.

Matchings are denoted by M throughout this chapter.

4.1 types of patterns 83

Classical Vincular Bivincular

Pattern

π = 132 =
ooo

π = 1 3 2 =
blub

cols(π) = 1

π =
1
1

2
3

3
2 =

cols(π) = 1
rows(π) = 2

Text

Classical
complexity

NP-complete [31]
NP-complete
Corollary 4.8

NP-complete
Corollary 4.8

Parameterized
complexity

FPT [93]
W[1]-complete
Theorem 4.15

W[1]-complete
Theorem 4.16

Table 3: Examples of classical, vincular and bivincular permutation patterns

Vincular patterns

Let τ(i1)τ(i2) . . . τ(ik) be an occurrence of the classical pattern π in
the text τ. Then there are no requirements on the elements in τ ly-
ing in between τ(ij) and τ(ij+1). It is however natural to ask for
occurrences of patterns in which certain elements are forced to be
adjacent in the text, i.e., τ(ij+1) = τ(ij + 1). Vincular patterns are a
generalization of classical patterns capturing these requirements on
adjacency in the text. They were introduced under the name of gener-
alized patterns in 2000 by Babson and Steingrímsson in [13], where it
was shown that essentially all Mahonian permutation statistics in the
literature can be written as linear combinations of vincular patterns.
For a survey of this topic, see [149].

Here we use the name of vincular patterns as it was introduced by
Kitaev in [108]. We also use the notation introduced there, since it is
consistent with the notation for classical patterns.

Definition 4.2. A vincular pattern π is a permutation in which certain
consecutive entries may be underlined. An occurrence of π in a permutation
τ is then an occurrence of the corresponding classical pattern for which un-
derlined elements are matched to adjacent elements. To be more formal: An
occurrence of π in τ corresponds to a subsequence τ(i1)τ(i2) . . . τ(ik) of τ

that is order-isomorphic to π and for which τ(ij+1) = τ(ij + 1) whenever π

contains π(j)π(j + 1). Furthermore, if π starts with π(1) an occurrence
of π in τ must start with the first entry in τ, i.e., τ(i1) = τ(1). Similarly,
if π ends with π(k) it must hold that τ(ik) = τ(n).

When using plots in a [0, n + 1] × [0, n + 1]-grid to represent n-
permutations, adjacency of positions clearly corresponds to adjacency
of columns. In order to represent the underlined elements in vincular
patterns in the corresponding grids, one shades the columns which

84 the computational complexity of generalized ppm

Mesh Boxed mesh Consecutive

Pattern
π = (π, R) =

cells(π) = 5

π = 132 = π = 1 3 2 =
ooo

Text

Classical
complexity

NP-complete
Corollary 4.8

in P; Theorem 4.9 in P; Theorem 4.10

Parameterized
Complexity

W[1]-complete
Theorem 4.17

trivially FPT trivially FPT

Table 4: Examples of mesh, boxed mesh and consecutive permutation pat-
terns

may not contain any elements in a matching. For an example, see the
middle column of Table 3. Matching the pattern 132 into the permuta-
tion τ, means that no elements may lie in the columns between M(1)
and M(3) in τ.

In order to specify how many adjacency restrictions are made in
the vincular pattern π, we define cols(π) to be the number of shaded
columns in the grid corresponding to π.

Note that the operations complement and reverse may be performed
on vincular patterns, leading to some (other) vincular pattern. Simi-
larly as for classical patterns it then holds that π can be matched into
τ iff πc can be matched into τc and iff πr can be matched into τr.
The inverse of a vincular pattern is however not clearly defined. This
leads to a larger class of patterns which is introduced below.

Bivincular patterns

Bivincular patterns generalize classical patterns even further than vin-
cular patterns. Indeed, in bivincular patterns, not only positions but
also values of elements involved in a matching may be forced to be
adjacent. When Bousquet-Mélou, Claesson, Dukes and Kitaev intro-
duced bivincular patterns in 2010 [33], the main motivation was to
find a minimal superset of vincular patterns that is closed under the
inverse operation. As mentioned in Section 4.1, the inverse of a vin-
cular pattern is not well-defined – it is a bivincular, but not a vincular
pattern.

Definition 4.3. A bivincular pattern π is a permutation written in two-
line notation, where some elements in the top row may be overlined and
the bottom row is a vincular pattern as defined in Definition 4.2. An oc-
currence τ(i1)τ(i2) . . . (ik) of π in a permutation τ is an occurrence of

4.1 types of patterns 85

the corresponding vincular pattern where additionally the following holds:
τ(ij+1) = (ij) + 1 whenever the top row of π contains j(j + 1). Further-
more, if the top row starts with 1, an occurrence of π in τ must start with
the smallest entry in τ, i.e., τ(i1) = 1. Similarly, if the top row ends with k ,
it must hold that τ(ik) = n.

This definition gets a lot less cumbersome when representing per-
mutations with the help of grids: As remarked earlier, underlined
elements in the bottom row are translated into forbidden columns
in which no elements may occur in a matching. Similarly, overlined
elements in the top row are translated into forbidden rows. For an
example, see the right column in Table 3.

Again, in order to specify how many adjacency restrictions are
made in the bivincular pattern π, we define – in addition to cols(π) –
rows(π) to be the number of shaded rows in the grid corresponding
to π.

Mesh patterns

A further generalization of bivincular patterns was given by Brändén
and Claesson who introduced mesh patterns in [36] in 2011. Mesh pat-
terns allow further restrictions on the relative positions of the entries
in an occurrence of a pattern. Several permutation statistics can be for-
mulated as the number of occurrences of certain mesh patterns [36].

Definition 4.4. A mesh pattern is a pair π = (π, R) where π is a per-
mutation of length k and R ⊂ [0, k]× [0, k] is a relation. An occurrence of
π in a permutation τ is an occurrence of the classical pattern π fulfilling
additional restrictions defined by R. That is to say there is a subsequence
τ(i1)τ(i2) . . . τ(ik) of τ that is order-isomorphic to π and for which holds:

(x, y) ∈ R =⇒@i ∈ [n] : ix < i < ix+1

∧ τ
(

iπ−1(y)

)
< τ(i) < τ

(
iπ−1(y+1)

)
.

This definition is again a lot easier to capture when representing
permutations as grids. Indeed, the relation R can be translated very
easily into the graphical representation of π = (π, R), by shading the
unit square with bottom left corner (x, y) for every (x, y) ∈ R. An
occurrence of π in a permutation τ is then a classical occurrence of π

in τ such that no elements of τ lie in the shaded regions of the grid.
Again, in order to specify how many adjacency restrictions are

made in the mesh pattern π, we define cells(π) to be the number
of shaded cells in the corresponding grid. Thus cells(π, R) := |R|. For
an example where π = 132 and R = {(1, 0), (1, 2), (2, 3), (3, 0), (3, 1)}
see the left column in Table 4.

86 the computational complexity of generalized ppm

Boxed mesh patterns

A special case of mesh patterns, so called boxed mesh patterns, was
very recently introduced by Avgustinovich, Kitaev and Valyuzhenich
in [12].

Definition 4.5. A boxed mesh pattern, or simply boxed pattern, is a mesh
pattern π = (π, R) where π is a permutation of length k and R = [1, k−
1]× [1, k− 1]. π is then denoted by π .

In the grid representing a boxed pattern all but the boundary squares
are shaded. For an example, see the middle column of Table 4.

It is straightforward to see that the set of boxed patterns is closed
under taking complements, reverses and inverses and that these oper-
ations are compatible with pattern containment. Interestingly, it was
shown [12] that the statement “π can be matched into τ iff π can be
matched into τ” is only true if π is one of the following permutations:
1, 12, 21, 132, 213, 231, 312.

Consecutive patterns

Consecutive patterns are a special case of vincular patterns, namely
those where all entries are underlined. In an occurrence of a consecu-
tive pattern it is thus necessary that all entries are adjacent. Finding
an occurrence of a consecutive pattern therefore consists in finding
a contiguous subsequence of τ that is order-isomorphic to π. For an
example, see the right column of Table 4.

Several well-known enumeration problems for permutations can
be formulated in terms of forbidden consecutive patterns; Elizalde
and Noy [62] provide examples. Chapter 5 in [108] is devoted to and
gives an overview of different methods employed in the literature for
the study of consecutive patterns.

4.2 the possibility of polynomial-time algorithms

The results of this Section are summarized in Figure 19 in which the
studied problems are partitioned into those that are in P and those
that are NP-complete.

NP-completeness

At the 1992 SIAM Discrete Mathematics meeting Herbert Wilf asked
whether it is possible to solve the permutation pattern matching prob-
lem in polynomial time. The answer is no unless P=NP, as shown by
the NP-completeness result of Bose, Buss and Lubiw [31]. This result
immediately yields NP-hardness for all generalizations of classical
permutation pattern matching. In this section we are going to show

4.2 the possibility of polynomial-time algorithms 87

that NP-hardness holds for these problems even in a more restricted
case. Indeed,NP-hardness can be shown for instances in which all
alternating runs are as short as possible, i.e., for alternating permuta-
tions.

Theorem 4.6. Every Mesh Permutation Pattern Matching instance
(π, τ) = ((π, R), τ) can be transformed into an instance (π′, τ′) with π′ =
(π′, R) and the following properties: (π′, τ′) is a yes-instance iff (π, τ) is
yes-instance, |π′| = 2|π|, |τ′| = 2|τ| and both π′ and τ′ are alternating
permutations. This transformation can be done in polynomial time.

Proof. Let π = π1 . . . πk and τ = τ1 . . . τn. We define

π′ = (k + 1) π1 (k + 2) π2 (k + 3) . . . (2k) πk

τ′ = (n + 1) τ1 (n + 2) τ2 (n + 3) . . . (2n) τn.

Clearly, |π′| = 2|π|, |τ′| = 2|τ| and both permutations π′ and τ′ are
alternating. We are now going to show that there is a matching from
π into τ iff there is a matching from π′ into τ′. Assume that M is a
matching from π into τ, i.e., a map from [k] to [n]. We extend this
map to a map M′ from [2k + 1] to [2n + 1] in the following way:

M′(i) =





M(i), if i ∈ [k],

τ(j), where M(i− k) = τ(j + 1) if i > k.

In other words, M′ maps (i + k) to the element in τ left of M(i). For
example if M(π3) = τ5 then π3 ∈ π′ is matched to τ5 ∈ τ′ and
(k + 3) ∈ π′ is matched to n + 5 ∈ τ′ (which is the element in τ lying
directly to the left of τ5). Observe that the function M′ is a matching
from π′ into τ′.

Now let us assume that M′ is a matching from π′ into τ′. If we
restrict the domain of M′ to [k] then we obtain a matching from π

into τ.

Theorem 4.7. PPM is NP-complete even when both π and τ are alternating
permutations.

Proof. We apply the transformation in Theorem 4.6 to show NP-hard-
ness. NP-membership holds for this restricted class of input instances
as well.

Corollary 4.8. Vincular, Bivincular and Mesh PPM are NP-complete
even when both π and τ are alternating permutations.

Proof. NP-hardness follows from Theorem 4.6 as well as from Theo-
rem 4.7. NP-membership holds since checking whether the additional
restrictions imposed by the vincular, bivincular or mesh pattern are
fulfilled can clearly be done in polynomial time.

88 the computational complexity of generalized ppm

Polynomial time algorithms

We have seen that polynomial time algorithms are unlikely to exist
for PPM and its generalizations. However, this is not the case for the
special cases of boxed mesh and consecutive pattern matching.

Theorem 4.9. Boxed Mesh Permutation Pattern Matching can be
solved in O(n3) time.

Proof. Let π be a boxed pattern of length k and τ a permutation of
length n. For every pair (i, j) where i ∈ [n] and i + k ≤ j ≤ n check
whether there is a matching M of the boxed pattern π into τ where
the smallest element in π is matched to i and the largest one to j, i.e.,
M(1) = i and M(k) = j.

Checking whether such a matching exists can be done in the fol-
lowing way: From the permutation τ, construct the permutation τ̃ by
deleting all elements that are smaller than i and larger than j. Clearly,
the matching that we are looking for must be contained in τ̃, it could
otherwise not be an occurrence of a boxed pattern. Moreover, it has
to consist of k consecutive elements in τ̃. Since the positions of the
smallest and the largest element are fixed, the positions for all other
elements of π are equally determined. Thus there is only one sub-
sequence of τ that could possibly be a matching of π into τ with
M(1) = i and M(k) = j. Deleting the elements that are too small
or too large and checking whether this subsequence actually corre-
sponds to an occurrence of π in τ, i.e., whether it is order-isomorphic
to π, can be checked in at most n steps. Note that this subsequence
might consist of less than k elements in which case it clearly does not
correspond to an occurrence.

In total, there are (n− k+ 1) · (n− k+ 2)/2 = O(n2) pairs (i, j) that
have to be checked which leads to the runtime bound O(n3).

Theorem 4.10. Consecutive Permutation Pattern Matching can
be solved in O((n− k) · k) time.

Proof. Let π be a consecutive pattern of length k and τ a permuta-
tion of length n. For every i ∈ [n − k + 1] check whether there is a
matching of π into τ where the first element of π is mapped to i.
Since we are looking for an occurrence of a consecutive pattern, the
only possible subsequence of τ then consists of the element i and
the following (k − 1) elements of τ. Whether this sequence is order-
isomorphic to π can be checked in k steps which leads to the runtime
bound O((n− k) · k).

As was recently shown by Kubica et.al. in [114], this simple result
can be improved by an algorithm with runtime O(n + k).

4.3 the impact of the pattern length 89

mesh

boxed mesh bivincular

vincular

consecutive classical

FP
T

W[1]-
complete

in
P

Figure 20: The influence of the pattern length on the computational hard-
ness: parameterized complexity of permutation pattern matching

4.3 the impact of the pattern length

PPM can be solved in O(nk) time by exhaustive search, where k is
the length of π. This trivial upper bound has been improved first by
Albert et al. to O(n1+2k/3 · log n) [3] and then to O(n0.47k+o(k)) by Ahal
and Rabinovich [1]. In a recent breakthrough result, Guillemot and
Marx have shown that PPM can be solved by an FPT algorithm [93].
Its runtime is 2O(k

2·log k) · n. In this section we are going to show that
such a result is likely not to be achievable for Vincular, Bivincular

and Mesh PPM. This is done by showing W[1]-hardness with respect
to the parameter k. First, we show that Mesh PPM and therefore all
other problems studied in this paper are contained in W[1].

All results in this section are summarized in Figure 20.

Theorem 4.11. Mesh Permutation Pattern Matching is contained
in W[1].

Proof. For showing membership we encode Mesh PPM as a model
checking problem of an existential first order formula. W[1]-member-
ship is then a consequence of the fact that the following problem is
W[1]-complete [79].

Existential first-order model checking

Instance: A structure A and an existential first-order for-
mula ϕ

Parameter: |ϕ|
Question: Is A a model for ϕ?

Let ((π, R), τ) be a Mesh PPM instance. We compute a structure
A = (A,<,≺τ, E), where the domain set A = {1, . . . , n} represents
indices in the text. The binary relation≺τ is defined as follows: x ≺τ y
holds iff τ(x) < τ(y). E is a quaternary relation where E(w, x, y, z) is
true iff there are no elements in τ that are left of w, right of x, larger
than y and smaller than z. Intuitively, w, x, y and z describe a forbid-
den rectangle in the permutation grid of τ which may not contain

90 the computational complexity of generalized ppm

any elements of τ. The relations ≺τ, E and < can be computed in
polynomial time. The formula ϕ we want to check is

ϕ =∃x1 . . . ∃xk x1 < x2 ∧ x2 < x3 ∧ . . . ∧ xk−1 < xk ∧∧

P(i)<P(j)
for i,j∈[k]

xi ≺T xj

︸ ︷︷ ︸
ϕ1

∧
∧

P(i)>P(j)
for i,j∈[k]

¬(xi ≺T xj)

︸ ︷︷ ︸
ϕ2

∧

∧

i,j∈[k] and
R(i,j) is true.

E(xi, xi+1, xj, xj+1)

︸ ︷︷ ︸
ϕ3

.

Observe that the length of ϕ is in O(k2). The two sub-formulæ ϕ1

and ϕ2 are true exactly when a subsequence τ(x1)τ(x2) . . . τ(xk) of τ

can be found such that τ(xi) < τ(xj) iff π(i) < π(j). Thus ϕ1 ∧ ϕ2 is
true iff there is a matching of the classical pattern π into τ. The sub-
formula ϕ3 encodes the relation R and is true iff no elements lie in
the forbidden regions of τ, as can be seen by recalling Definition 4.4.
Thus ϕ is true iff ((π, R), τ) is a yes-instance of Mesh PPM.

We now want to prove W[1]-hardness for vincular, bivincular and
mesh pattern matching. For this purpose, we introduce Segregated

Permutation Pattern Matching, a generalization of PPM. All sub-
sequent hardness theorems use reductions from this problem.

Segregated Permutation Pattern Matching (SPPM)

Instance: A permutation τ (the text) of length n, a permuta-
tion π (the pattern) of length k ≤ n and two posi-
tive integers p ∈ [k], t ∈ [n].

Parameter: k

Question: Is there a matching M of π into τ such that M(i) ≤
t iff i ≤ p?

Example 4.12. Consider the pattern π = 132 and the text τ = 53142.
As shown by the matching M(2) = 3, M(1) = 1 and M(3) = 4, the
instance (π, τ, 2, 3) is a yes-instance of the SPPM problem. However,
(π, τ, 2, 4) is a NO-instance, since no matching of π into τ can be
found where M(3) > 4. a
Theorem 4.13. Segregated Permutation Pattern Matching is W[1]-
hard with respect to the parameter k.

Proof. We show W[1]-hardness by giving an fpt-reduction from the
W[1]-complete Clique problem (see Section 2.5 in the Preliminaries)
to SPPM.

The reduction has three parts. First, we will show that we are able
to reduce a Clique instance to a pair (π′, τ′), where π′ and τ′ are two

4.3 the impact of the pattern length 91

permutations on multisets, i.e., permutations in which elements may
occur more than once. Applying Definition 2.5 to permutations on
multisets means that in a matching repeated elements in the pattern
have to be mapped to repeated elements in the text. In addition to
repeated elements, π′ and τ′ contain so-called guard elements. Their
function is explained below. Second, we will show how to get rid of
repetitions. The method used in this step has already been used in the
NP-completeness proof of PPM provided by Bose, Buss and Lubiw
in [31]. Third, we implement the guards by using the segregation
property and have thus reduced Clique to SPPM.

Let (G, k) be a Clique instance, where V = {v1, v2, . . . , vl} is the set
of vertices and E = {e1, e2, . . . , em} the set of edges. Both the pattern
and the text consist of a single substring coding vertices (π̇ resp. τ̇)
and substrings coding edges (π̄i resp. τ̄i for the i-th substring). These
substrings are listed one after the other, with guard elements placed in
between them. These guard elements have the function of separating
substrings in a matching: guard elements will have to be mapped to
guard elements and substrings embraced by two consecutive guard-
elements will also have to be mapped to substrings embraced by two
consecutive guard-elements. For the moment, we will simply write
brackets to indicate where guard elements are placed. The meaning
of these brackets is then the following: a block of elements enclosed by
a 〈 to the left and a 〉 to the right has to be matched into another block
of elements between two such brackets. How the guard-elements are
implemented as elements of a permutation is explained at the end of
the proof after Claim 2.

We define the pattern to be

π′ := 〈π̇〉〈π̄1〉〈π̄2〉〈. . .〉〈π̄k(k−1)/2〉
= 〈123 . . . k〉〈12〉〈13〉〈. . .〉〈1k〉〈23〉〈. . .〉〈2k〉〈. . .〉〈(k− 1)k〉.

π̇ corresponds to a list of (indices of) k vertices. The π̄i’s represent all
possible edges between the k vertices (in lexicographic order).

For the text
τ′ := 〈τ̇〉〈τ̄1〉〈τ̄2〉〈. . .〉〈τ̄m〉

we proceed similarly. τ̇ is a list of the (indices of the) l vertices of G.
The τ̄i’s represent all edges in G (again in lexicographic order). Let us
give an example:

Example 4.14. Let l = 6 and k = 3. Then the pattern permutation is
given by

π′ = 〈123〉〈12〉〈13〉〈23〉.
Consider for instance the graph G with six vertices v1, . . . , v6 and
edge-set

{{1, 2} , {1, 6} , {2, 3} , {2, 4} , {2, 5} , {3, 5} , {4, 5} , {4, 6}} .

represented in Figure 21 (we write {i, j} instead of
{

vi, vj
}

).

92 the computational complexity of generalized ppm

v1v6

v4

v2v5

v3

Pattern: 1 2 3 12 13 23

Text: 1 4 6 12 16 24 45 462 3 5 23 25 35

Figure 21: An example for the reduction of an Independent Set instance to
a PPM instance

Then the text permutation is given by:

τ′ = 〈123456〉〈12〉〈16〉〈23〉〈24〉〈25〉〈35〉〈45〉〈46〉.

a
Claim 1. A clique of size k can be found in G iff there is a simultaneous
matching of π̇ into τ̇ and of every π̄i into some τ̄j.

Example 4.14 (continuation). In our example {v2, v3, v5} is a clique
of size three. Indeed, the pattern π′ can be matched into τ′ as can be
seen by matching the elements 1, 2 and 3 onto 2, 3 and 5 respectively.
See again Figure 21 where the involved vertices respectively elements
of the text permutation have been marked in gray. a

Proof of Claim 1. A matching of π̇ into τ̇ corresponds to a selection of
k vertices amongst the l vertices of G. If it is possible to additionally
match every one of the π̄’s into a τ̄ this means that all possible edges
between the selected vertices appear in G. This is because τ′ only
contains pairs of indices that correspond to edges appearing in the
graph. The selected k vertices thus form a clique in G. Conversely, if
for every possible matching of π̇ into τ̇ defined by a monotone map
M : [k] → [l] some π̄i = xy cannot be matched into τ′, this means
that {M(x), M(y)} does not appear as an edge in G. Thus, for every
selection of k vertices there will always be at least one pair of vertices
that are not connected by an edge and therefore there is no clique of
size k in G.

In order to get rid of repeated elements, we identify every variable
with a real interval: 1 corresponds to the interval [1, 1.9], 2 to [2, 2.9]
and so on until finally k corresponds to [k, k+ 0.9] (resp. l to [l, l + 0.9]).
In π̇ and τ̇ we shall therefore replace every element j by the pair of
elements (j + 0.9, j) (in this order). The occurrences of j in the π̄i’s
(resp. τ̄i’s) shall then successively be replaced by real numbers in the
interval [j, j + 0.9]. For every j, these values are chosen one after the
other (from left to right), always picking a real number that is larger
than all the previously chosen ones in the interval [j, j + 0.9].

4.3 the impact of the pattern length 93

Observe the following: The obtained sequence is not a permutation
in the classical sense since it consists of real numbers. However, by
replacing the smallest number by 1, the second smallest by 2 and
so on, we do obtain an ordinary permutation. This defines π and τ

(except for the guard elements).

Example 4.14 (continuation). Getting rid of repetitions in the pattern
of the above example could for instance be done in the following way:

π = 〈1.9 1 2.9 2 3.9 3〉〈1.1 2.1〉〈1.2 3.1〉〈2.2 3.2〉

This permutation of real numbers is order-isomorphic to the follow-
ing ordinary permutation:

π = 〈4 1 8 5 12 9〉〈2 6〉〈3 10〉〈7 11〉.

a
Claim 2. π can be matched into τ iff π′ can be matched into τ′.

Proof of Claim 2. Suppose that π′ can be matched into τ′. When match-
ing π into τ, we have to make sure that elements in π that were copies
of some repeated element in π′ may still be mapped to elements in
τ that were copies themselves in τ′. Indeed this is possible since we
have chosen the real numbers replacing repeated elements in increas-
ing order. If i in π′ was matched to j in τ′, then the pair (i + 0.9, i)
in π may be matched to the pair (j + 0.9, j) in τ and the increasing
sequence of elements in the interval [i, i + 0.9] may be matched into
the increasing sequence of elements in the interval [j, j + 0.9].

Now suppose that π can be matched into τ. In order to prove that
this implies that π′ can be matched into τ′, we merely need to show
that elements in π that were copies of some repeated element in π′

have to be mapped to elements in τ that were copies themselves in τ′.
Then returning to repeated elements clearly preserves the matching.
Firstly, it is clear that a pair of consecutive elements i + 0.9 and i in π̇

has to be matched to some pair of consecutive elements j + 0.9 and j
in τ̇, since j is the only element smaller than j + 0.9 and appearing to
its right. Thus intervals are matched to intervals. Secondly, an element
x in π for which it holds that i < x < i + 0.9 must be matched to an
element y in τ for which it holds that j < y < j + 0.9. Thus copies of
an element are still matched to copies of some other element.

Finally, replacing real numbers by integers does not change the
permutations in any relevant way.

It remains to implement the guards in order to ensure that sub-
strings are matched to corresponding substrings. Let πmax and τmax

denote the largest integer that is contained in π respectively τ at this
point. We now replace all guards with integers larger than πmax re-
spectively τmax and will choose the segregating elements p and t such
that guards and “original” pattern/text elements are separated. We

94 the computational complexity of generalized ppm

insert the guard elements in the designated positions (previously
marked by 〈 and 〉) in the following order: πmax + 2 (instead of the
first 〈), πmax + 1 (instead of the first 〉), πmax + 4 (instead of the sec-
ond 〈), πmax + 3 (instead of the second 〉), . . . , πmax + 2i (instead of
the i-th 〈), πmax + 2i− 1 (instead of the i-th 〉), . . ., and so on until we
reach the last guard-position. The guard elements are inserted in this
specific order to ensure that two neighbouring guard elements 〈 and
〉 in π have to be mapped to two neighbouring guard elements 〈 and
〉 in τ. We proceed analogously in τ. To ensure that guards in π are
matched to guards in τ and pattern elements of π are matched to text
elements in τ, we set p to πmax and t to τmax.

This finally yields that (G, k) is a yes-instance of Clique iff (π, τ, p, t)
is a yes-instance of SPPM. It can easily be verified that this reduction
can be done in fpt-time.

As can easily be seen, the reduction performed in the proof of The-
orem 4.13 can be done in polynomial time. Thus this proof immedi-
ately yields NP-hardness for SPPM.

Now, that we have obtained this result, we are able to show W[1]-
hardness for PPM with vincular, bivincular and mesh patterns. As
before, the parameter is the length of the pattern.

Theorem 4.15. Vincular Permutation Pattern Matching is W[1]-
complete with respect to k. This holds even when restricting the problem to
instances (π, τ) with cols(π) = 1.

Proof. We reduce from Segregated PPM. Let (π, τ, p, t) be an SPPM
instance. The Vincular PPM instance (π′, τ′) constructed from (π, τ)

will have have an additional element in π′ and an additional element
in τ′. The new element in π, denoted by p′, is p + 0.5, i.e., p′ is larger
than p but smaller than p + 1. Analogously, t′ = t + 0.5 is the new
element in τ. We define π′ = p ′π and τ′ = t′ τ. In order to obtain
a permutation π on [k + 1] and τ on [n + 1], we simply need to rela-
bel the respective elements order-isomorphically. In every matching
of π′ into τ′ the element p′ has to be mapped to t′. Consequently, all
elements larger than p′ in π′ have to be mapped to elements larger
than t′ in τ′ and all elements smaller than p′ have to be mapped to
elements smaller than t′. This implies that (π, τ, p, t) is a Segregated

PPM yes-instance iff (π′, τ′) is a Vincular PPM yes-instance. This
reduction is done in linear time which proves W[1]-hardness of Vin-
cular PPM. Membership follows from Theorem 4.11.

Theorem 4.16. Bivincular Permutation Pattern Matching is W[1]-
complete with respect to k. This holds even when restricting the problem to
instances (π, τ) with rows(π) = 1.

Proof. As in the previous proof we reduce from Segregated PPM. Let
(π, τ, p, t) be an SPPM instance. Identically to the previous proof, we
define p′ = p + 0.5 and t′ = t + 0.5. The Bivincular PPM instance

4.4 summary of the results 95

consists of a permutation π′ with elements in [k + 1] ∪ {p′} and τ′, a
permutation on [n+ 1]∪{t′}. The permutation π′, written in two-line
notation, is given as follows:

π′ =

(
1 2 3 . . . p′ . . . (k+1)

p′ (k + 1) π(1) . . . π(k)

)

and τ′ is defined to be t′(n + 1)τ. In order to obtain permutations
on [k + 2] respectively [n + 2] we again relabel the elements order-
isomorphically.

In any matching of π′ into τ′ the element (k + 1) has to be mapped
to (n + 1) and therefore p′ has to be mapped to t′. Thus all elements
larger than p′ in π′ have to be mapped to elements larger than t′ in
τ′ and all elements smaller than p′ have to be mapped to elements
smaller than t′. This implies that (π, τ, p, t) is a Segregated PPM
yes-instance iff (π′, τ′) is a Bivincular PPM yes-instance. Since this
reduction can again be done in linear time, Bivincular PPM is W[1]-
hard. Membership follows again from Theorem 4.11.

Theorem 4.17. Mesh Permutation Pattern Matching is W[1]-complete
with respect to k. This holds even if cells(π) = 1.

Proof. Let (π, τ, p, t) be a Segregated PPM instance. As before, we
define p′ = p + 0.5 and t′ = t + 0.5. The Mesh PPM instance consists
of a permutation π′ with elements in [k]∪ {p′} and τ′, a permutation
on [n + 1] ∪ {t′}. Again, permutations on [k + 1] respectively [n + 2]
can be obtained by relabelling the elements order-isomorphically. We
define π′ = p′ π and τ′ = t′ (n + 1) τ. Furthermore, we define:
R = {(0, (k + 1))}. This means that for every matching M of π′ into
τ′ the following must hold: to the left of M(p′) in τ′, there are no ele-
ments larger than M(k). However, it surely holds that M(k) ≤ (n+ 1).
Consequently, p′ has to be mapped to t′. This implies that (π, τ, p, t)
is a Segregated PPM yes-instance iff (π′, τ′) is a Mesh PPM yes-
instance. Since this reduction can again be done in linear time, Mesh

PPM is W[1]-hard. Membership follows from Theorem 4.11.

These hardness results show that we cannot hope for a fixed-parameter
tractable algorithm for Vincular/Bivincular/Mesh Permutation

Pattern Matching.

4.4 summary of the results

Let us briefly sum up the contributions of this chapter. We analysed
several versions of Permutation Pattern Matching, based on var-
ious types of permutation patterns that were recently introduced in
the literature. This allows us to draw a picture of the computational
landscape of generalized PPM:

96 the computational complexity of generalized ppm

We performed a classical complexity analysis and could show that
the only cases where C PPM can be solved in polynomial time are
Consecutive PPM and Boxed Mesh PPM. All other versions of PPM
are NP-complete, even if the input instances are reduced to the case
where both the pattern and the text are alternating permutations. This
partition of the C PPM problems is represented in Figure 19 on page
82.

We offered a more fine-grained complexity analysis of the NP-hard
versions of C PPM by employing the framework of parameterized
complexity. We were able to show that Mesh, Bivincular and Vin-
cular PPM are W[1]-complete with respect to the length of the pat-
tern. This is in strong contrast to the case of classical PPM, that is
fpt with respect to this parameter [93]. This partition of the C PPM
problems that are NP-complete is represented in Figure 20 on page
89.

5
A P E R M U TAT I O N C L A S S E N U M E R AT E D B Y T H E
C E N T R A L B I N O M I A L C O E F F I C I E N T S

This short chapter is concerned with the enumeration of permuta-
tions avoiding the patterns 2431, 4231, 1432 and 4132 simultaneously.
This permutation class arises in the context of single-peaked elections
that are introduced and studied in Chapter 10 of this thesis. To be
more precise, we can show that permutations of length n that avoid
the four patterns above are in bijective correspondence with elections
{V1, V2} on a candidate set C = {c1, c2, . . . , cn} that are single-peaked
and where V1 is the vote c1 > c2 > . . . > cn. This allows us to derive
an upper bound on the number of single-peaked elections with an
arbitrary number of votes. For definitions, the precise statements of
our results and their proofs, we refer to Chapter 10 and in particular
to Theorem 10.17 therein.

The study of this permutation class leads to a surprisingly simple
exact enumeration formula, namely the central binomial coefficients:

Theorem 5.1. For all n ∈N the following holds:

Sn(2431, 4231, 1432, 4132) =
(

2 · (n− 1)
n− 1

)
= bn−1.

In the following, let us denote the set of permutations avoiding the
forbidden patterns 2431, 4231, 1432 and 4132 by S and the subset of
S consisting of permutations of length n by Sn.

We shall prove this theorem by identifying every permutation in
Sn by a certain code word of length (n− 1). Later on we count these
code words and show that they are precisely enumerated by the cen-
tral binomial coefficients. This is done by identifying the non-initial
segments of code words with certain lattice paths.

The set of code words corresponding to permutations in S is de-
fined in the following way:

Definition 5.2. W ⊆ ({2, 3, . . .} ∪ {B, E})N is the set of words W =

w1w2 . . . fulfilling the following conditions:

1. wi ∈ {B, E} ∪ {j ∈N : 2 ≤ j ≤ i},

2. if wi 6= B, E then wi+1 6= B, E,

3. if wi 6= B, E then wi+1 ≥ wi.

We shall denote by Wn the set of all code words of length n and by Wn its
cardinality.

97

98 central binomial coefficients

In a code word, the letters B and E stand for beginning and end,
respectively. Integers in a code word represent positions in the corre-
sponding permutation. The precise meaning of this will become clear
in the proof of the following Lemma 5.4.

Form the definition above it follows that code words contain an
initial segment of letters B and E (conditions 1 and 3). This initial
segment is followed by a non-decreasing sequence of not too large
integers (conditions 1 and 2).

Example 5.3. The six code words of length two are: BB, BE, EB, EE,
B2, E2. For an example of a code word of length 8, see Figure 22 on
page 101. a

Lemma 5.4. There is a bijection between code words in Wn−1 and permu-
tations in Sn.

The approach used to prove the lemma above can be seen as a gen-
erating trees approach. This is a technique introduced in the study of
Baxter permutations and systematized by Julian West [157] in the con-
text of pattern avoidance. It is frequently used for the enumeration of
permutation classes, see e.g. [32]. However, we decided not to intro-
duce the generating trees terminology here: The following arguments
and especially the enumeration of code words can be done in a bijec-
tive manner and do not require the use of rewriting rules and of the
associated generating functions.

Proof. Given a permutation π in Sn, we can associate with it the se-
quence π|[1], π|[2], . . . π|[n−1], π|[n], where π|[i] is the permutation π

restricted to the elements in [i]–as defined in Section 2.2. Note that if
π is in S , all π|[i] are as well. Thus, a permutation π in Sn is created
by inserting the element n in some allowed position in the permutation
π|[n−1]. In the following, we will use this observation in order to iden-
tify every permutation π|[i], i ∈ [n], with an element of the alphabet
{2, 3, . . .} ∪ {B, E} that encodes where the largest element of π|[i] was
inserted in π|[i−1]. This will be done in such a way that the resulting
word bijectively encodes the permutation π.

For this purpose, let us consider a permutation π of length n− 1
that lies in S . Where are we allowed to insert the element n without
creating one of the forbidden patterns?

• If π contains a 132-pattern on the elements abc, then the element
n may not be inserted to the left of a since this would create a
4132-pattern and not between a and b since this would create
a 1432-pattern. In other words, the element n must be inserted
somewhere to the right of b.

• Similarly, if π contains a 231-pattern on the elements abc, the
element n must be inserted somewhere to the right of b. Other-
wise a 4231- or a 2431-pattern would be created.

central binomial coefficients 99

Thus the position of the rightmost element b that plays the role of the
3 in a 132- or a 231-pattern in π tells us where the element n may be
inserted without creating any of the forbidden patterns. Indeed, if the
element b is at the i-th position in π, the element n can be inserted at
any of the positions i + 1 up to n.

Example 5.5. In the permutation π = 2413 the elements 241 form a
231-pattern and the elements 243 form a 132-pattern. In both patterns
the element 4 plays the role of the 3 and thus all positions to the right
of 4 are allowed. Indeed, we can insert 5 at the third, fourth and fifth
position in π and obtain the following permutations in S5: 24513,
24153 and 24135. a

Since this position will be the key to describing a permutation in S
by a code word in a unique way, let us set up the following notation:

p(π) := max {i ∈ [n] : ∃j < i < k s.t. π(j) < π(i) and π(k) < π(i)} ,

where we set max(∅) := 0.
Now, given a permutation π and its associated sequence of permu-

tations π|[2], . . . , π|[n], we identify it with a word w = w1 . . . wn−1 on
the alphabet {2, 3, . . .}∪ {B, E} in the following way. For all i ∈ [n− 1]
we define:

wi :=





p(π|[i+1]) if p(π|[i+1]) 6= 0

B if p(π|[i+1]) = 0 and

(i + 1) lies at the beginning of π|[i+1]

E if p(π|[i+1]) = 0 and

(i + 1) lies at the end of π|[i+1]

Example 5.6. Consider the permutation π = 245178396 in S9. As
shown in the table on the left hand side of Figure 22 on page 101, it
can be identified with the word w = BE233568 in W8. a

Let us note that two distinct permutations can never be identified
with the same code word. Indeed, if the permutation π|[i] is given
and if we know that p(π|[i+1]) is equal to some element in {2, 3, . . .} ∪
{B, E}, there is only a single possibility for placing the element (i + 1)
in π|[i] in order to obtain π|[i+1]. Thus the map that sends an element
in Sn to a word of length n− 1 is injective.

Now we need to show that this map actually associates permu-
tations in S with code words as described in Definition 5.2. The first
condition of code words is clearly fulfilled: First, w1 = B for π|[2] = 21
and w1 = E for π|[2] = 12. Second, if wi 6= B, E we have 2 ≤ wi ≤ i
since 2 ≤ p(π|[i+1]) ≤ i. In order to show that the second and third
condition are also fulfilled we need to identify at which positions new
132- or 231-patterns can be created when the element i is inserted in
a permutation in Ci−1.

100 central binomial coefficients

• If the element i is inserted at some position j with 1 < j < i
then it automatically creates a 132- or 231-pattern in which the
element i plays the role of the 3. Thus, irrespective of the value
of wi−1, we have p(π|[i]) = j. Since i can only be inserted into
π|[i−1] to the right of the p(π|[i−1]-th position, we always have
that p(π|[i]) = wi > p(π|[i−1]).

• If the element i is inserted at the beginning or at the end of the
permutation, no new 132- or 231-patterns are created. Thus if
there were no occurrences of such patterns before, we have that
wi+1 is equal to B or E, depending on whether i is inserted at
the beginning or at the end.

However, if p(π|[i−1]) 6= 0, that is if wi−1 is neither B nor E, we
have p(π|[i]) = p(π|[i−1]) + 1 if the element i is inserted at the
beginning and p(π|[i]) = p(π|[i−1]) if it is inserted at the end.
Together with the fact that wi 6= B, E whenever i is not inserted
at the first or last position, this implies that the second condition
of code words is fulfilled. Furthermore, we also have in this case
that wi ≥ wi−1 whenever wi−1 is an integer and thus the third
condition of code words is also fulfilled.

Finally, it remains to show that this map is surjective. Given a code
word w of length n − 1 it is straightforward how to construct the
corresponding permutation π in a recursive manner. Start with the
element 1 and then place the elements 2 up to n one after the other at
the positions prescribed by w: if wi = B the element i + 1 is placed at
the beginning of the permutation, if wi = E it is placed at the end of
the permutation and if wi = j for some integer 2 ≤ j ≤ i it is placed at
the j-th position of the permutation. That the resulting permutation
π is an element of S and avoids all forbidden patterns follows from
the discussion at the beginning of this proof.

Lemma 5.7. For all n ∈N the following statement holds:

Wn =

(
2n
n

)
.

Proof. First of all, let us note that

Wn =
n

∑
i=1

2i · w(n− i, i)

where i corresponds to the length of the initial segment consisting of
letters B and E and where w(n − i, i) is the number of words w =

w1 . . . wn−i of length (n − i) where 2 ≤ wj ≤ j + i and wj ≤ wj+1.
These numbers w(n − i, i) can be easily computed by viewing the
words that they count as certain lattice paths.

First, let us remark that we can decrease every integer in such a
word by 2 and counts the number of words of length (n− i) where

central binomial coefficients 101

i π|[i+1] wi

1 21 B

2 213 E

3 2413 2

4 24513 3

5 245136 3

6 2451736 5

7 24517836 6

8 245178396 8 x

y

y = x + 2

(6, 7)

(0, 0)
0 1 1 3 4 6

1

2

3

4

5

6

7

Figure 22: The permutation π = 245178396 in S9 can be identified with
the word w = BE233568 in W8 as shown in the table on the left
hand side. The sequence of integers that remains when the initial
segment BE has been removed from w and when all integers are
decreased by 2 is 011346. It can be represented as the lattice path
shown on the right-hand side that starts at (0, 0) and ends at (6, 7)
without ever touching the dashed line.

0 ≤ wj ≤ j + i− 2 and wj ≤ wj+1. Now we can represent each such
word by a lattice path starting at (0, 0), ending at (n− i, n− 1) and
consisting of unit steps to the East or the North as follows: If wj = k
for some integer k, the j-th step to the East is at height k, i.e., we
take a step from (j− 1, k) to (j, k). Since it holds that wj ≤ wj+1, the
remaining gaps can simply be filled in with North-steps and there is
no need for South-steps. The condition that wj ≤ j + i − 2 is easily
translated into the condition that the lattice path must always stay
below and never touch the line y = x + i.

It is now easy to convince oneself that this correspondence between
words of length (n − i) where 2 ≤ wj ≤ j + i and wj ≤ wj+1 and
North-East-lattice paths from (0, 0) to (n− i, n− 1) that never touch
the line y = x + i is one-to-one.

Example 5.8. For an example of this correspondence, see the path
corresponding to 011346 that is represented on the right-hand side of
Figure 22. a

Such lattice paths have been widely studied in the literature and it
is shown, for instance in the first chapter of Mohanty’s monograph
on lattice path counting [125], that their number is:

w(n− i, i) =
(

2n− i− 1
n− 1

)
· i

n

102 central binomial coefficients

Since it is so simple and beautiful, let us briefly repeat the argument
of the bijective proof here. It is known as Andrés reflection principle.
First, let us remark that

w(n− i, i) =
(

2n− i− 1
n− 1

)
− r(n− i, i), (20)

where the binomial coefficient counts all North-East-lattice paths from
(0, 0) to (n− i, n− 1) and r(n− i, i) is the number of such paths that
do touch the line y = x + i at some point. Given such a “bad” path
from (0, 0) to (n− i, n− 1), we denote by X the point where it touches
the forbidden line for the first time. From this path we now construct
a new path as follows: The part to the left of X is reflected about the
line y = x+ i, thus turning North-steps into East-steps and vice-versa;
the part to the right of X stays the same. The new path is then a path
from (−i, i) to (n− i, n− 1) and this transformation is a one-to-one
correspondence to all such paths. Therefore, we have

w(n− i, i) =
(

2n− i− 1
n− 1

)
−
(

2n− i− 1
n

)
,

and thus the enumeration formula stated in Equation (20). Finally,
this leads to:

Wn =
n

∑
i=1

2i ·
(

2n− i− 1
n− i

)
· i

n

=
1
n
·

n−1

∑
j=0

2n−j ·
(

n + j− 1
j

)
· (n− j)

In order to prove that Wn = (2n
n) let us first remark that a more general

statement holds. It holds that
n−1

∑
j=0

2m−j ·
(

m + j− 1
j

)
· (m− j) = n · 2m−n+1

(
m + n− 1

n

)
(21)

for all m, n ∈ N as can be showed very easily by induction over n
and every fixed m. The induction start for n = 1 is trivially true
since the left hand side of Equation (21) is equal to 2m · m and the
right hand side to 2m · (m

1). For the induction step, let us assume that
Equation (21) has been proven for n. For n + 1, we have:

n

∑
j=0

2m−j ·
(

m + j− 1
j

)
· (m− j) =

= n · 2m−n+1
(

m + n− 1
n

)
+ 2m−n

(
m + n− 1

n

)
· (m− n)

=2m−n
(

m + n− 1
n

)
· (2n + m− n)

=2m−n
(

m + n
n + 1

)
· n + 1

m + n
· (m + n),

central binomial coefficients 103

which proves Equation (21) for n + 1.
Setting m = n in Equation (21) leads to the central binomial coeffi-

cients and finishes the proof.

Let us very briefly sum up the results of this Chapter: We consid-
ered a permutation class that arises in the context of domain restric-
tions in preference profiles (see Chapter 10) and showed that its ele-
ments are enumerated by the central binomial coefficients. The proof
used bijective methods and establishes a link to certain lattice paths.

6
L O G - C O N C AV I T Y, L O N G E S T I N C R E A S I N G
S U B S E Q U E N C E S A N D I N V O L U T I O N S

This chapter in based on joint work with Miklós Bóna that has re-
cently been submitted to a journal. A preprint of the article can be
found on arXiv.org [30].

At the heart of this chapter lie two important concepts in combi-
natorics: First, the notion of log-concave sequences and second, that
of longest increasing subsequences in permutations. Throughout this
chapter we will denote by `(σ) the length of the longest increasing
subsequence in the permutation σ. Moreover, we will denote by Ln,k
the set of all permutations of length n that satisfy `(σ) = k. The car-
dinality of Ln,k will be denoted by `n,k.

The algorithmic question of determining the length of the longest
increasing subsequence can be answered in O(n log(n))-time for se-
quences in general [139] and in O(n log(log(n)))-time for permuta-
tions of length n [48]. The distribution of the parameter `(σ) has been
the subject of vigorous study for over 60 years. See [14] for strongest
results on this subject, and see [6] for a history of the problem. How-
ever, it is still not known whether the sequence `n,1, `n,2, · · · , `n,n is
log-concave for each fixed n.

Supported by numerical evidence, we state our conjecture that this
sequence indeed is log-concave for every fixed value of n (Section 6.1).
Then, in Sections 6.2 and 6.3 we proceed to prove the conjecture in
some special cases, that is, for certain subsets of permutations of
length n, as opposed to the entire set of n! permutations of length
n. One tool in our proofs will be a technique that allows us to turn
injections between sets of involutions into injections between sets of
permutations. In addition, we will use several consequences of the
well-known Robinson-Schensted correspondence. The results of this
chapter are summed up in Section 6.4.

6.1 the conjecture and a first result

Supported by the data that we computed for permutations of length
up to n = 15, we conjecture the following:

Conjecture 6.1. For every positive integer n the sequence `n,k where 1 ≤
k ≤ n is log-concave.

Let In,k denote the set of all involutions of length n with longest
increasing subsequence of length k. The cardinality of In,k will be
denoted by in,k.

105

106 log-concavity, longest increasing subsequences and involutions

Theorem 6.2. For every positive integer n the following holds: If the se-
quence (in,k)1≤k≤n is log-concave, then so is the sequence (`n,k)1≤k≤n.

Proof. In order to show that the sequence (`n,k) is log-concave it would
suffice to find an injection from Ln,k−1 × Ln,k+1 to Ln,k × Ln,k for all
n ≥ 1 and 2 ≤ k ≤ n− 1.

Assume that the statement of log-concavity is true for involutions.
Then there is an injection fn,k from In,k−1 × In,k+1 to In,k × In,k for all
n ≥ 1 and 2 ≤ k ≤ n− 1. Now let π1 ∈ Ln,k−1 and π2 ∈ Ln,k−2. Then,
they correspond to the pairs (P1, Q1) and (P2, Q2) of Standard Young
Tableaux. Define F(π1, π2) = (σ1, σ2), where σ1 is the permutation
in Ln,k whose pair of SYT is f (P1, P2), and σ2 is the permutation in
Ln,k whose pair of SYT is f (Q1, Q2). Then F is injective since f is
injective.

In the following, we will apply this result to specific classes of per-
mutations and show that our conjecture indeed holds there.

6.2 a class of permutations for which the conjecture

holds

First we show that the conjecture holds for permutations whose cor-
responding SYT are hooks. This implies that the conjecture is true for
the class of skew-merged involutions. Then we will define a general-
ization of hooks, introducing (l, m)-protected SYT. We will see that
the conjecture holds for these much larger classes of SYT respectively
permutations as well, for every pair (l, m) of non-negative integers.

Hook-shaped SYT and skew-merged involutions

Definition 6.3. We call a SYT a hook if it consists of exactly one row and
one column.

In the following, let Hn,k denote the set of all hooks of size n with
first row of length k. The cardinality of Hn,k will be denoted by hn,k.

Theorem 6.4. For every positive integer n the sequence (hn,k)1≤k≤n is log-
concave.

Proof. First, let us remark than it is straightforward to determine the
numbers hn,k. Indeed, in order to create a hook with n boxes with k of
them in the first row, we simply need to choose the (n− 1) elements
larger than 1 that will be in the first row. The remaining elements are
then placed in increasing order in the first column. Thus

hn,k =

(
n− 1
k− 1

)

6.2 a class of permutations for which the conjecture holds 107

and it is immediately clear that the sequence (hn,k)1≤k≤n is log-concave.
In the following we will provide a combinatorial explanation for this
fact.

To give a combinatorial proof of the log-concavity of (hn,k)1≤k≤n we
follow the same procedure as in [26]: The sequence (hn,k)1≤k≤n is log-
concave if and only if hn,k · hn,l ≤ hn,k+1 · hn,l−1 for all n ≥ 1 and 1 ≤
k ≤ l − 2 ≤ n− 2. We shall therefore inductively construct injections
ϕn,k,l from Hn,k × Hn,l to Hn,k+1 × Hn,l−1 for all n ≥ 3 and 1 ≤ k ≤
l − 2 ≤ n− 2. First we construct the injections ϕn,k,l for the smallest
meaningful value of n, which is n = 3. Since there is only a single
element in H3,1 × H3,3, we shall also describe the functions ϕ4,k,l for
all admissible values of k and l. Next, for the induction step, we use
the assumption that the maps ϕn−1,k,l exist for all admissible values of
k and l to construct the maps ϕn,k,k+2. It is not necessary to construct
the maps ϕn,k,l for k < l − 2 since the existence of the injective maps
ϕn,k,k+2 implies the log-concavity of the sequence (hn,k)1≤k≤n which
implies the existence of the maps ϕn,k,l for 1 ≤ k < l − 2 ≤ n− 2.

First note that the element n in a hook of size n will always lie
in the last box of the first column or in the last box of the first row.
This allows us to define the type of a hook-shaped Standard Young
Tableau: it is of type ↓ if the element lies in the first column and of
type → otherwise. Since we are dealing with pairs of SYT there are
four possible types of pairs that can occur: ↓↓, ↓→, →↓ and →→.
The maps ϕn,k,l that we are going to construct are such that the type
is preserved: the type of the image ϕn,k,l(T1, T2) is the same as the
type of (T1, T2). This will allow us to prove the injectivity of these
maps.

Now let us start with the base step at n = 3 of our induction proof.
The map ϕ3,1,3 is described in the top part of Figure 23. Since ϕ3,1,3 is
defined on a single element and this does not allow us to see what
the functions ϕn,k,l actually do, we have also included the description
of the functions ϕ4,k,l for (k, l) = (1, 3), (1, 4) and (2, 4) in the bottom
part of Figure 23.

Let us turn to the induction step and assume that the injective func-
tions ϕn−1,k,l for 1 ≤ k ≤ l− 2 ≤ n− 3 have already been constructed.
The definition of the function ϕn,k,k+2 depends on the type of the pair
of Tableaux it is applied to and we have two different rules:

1. Type ↓→:

This is the easy case: For a pair (T1, T2) ∈ Hn,k × Hn,k+2 of type
↓→ we can take the element n in T1 and move it to the end of
the first row in T1 in order to obtain a Tableau U1 where the first
row has length k + 1. Similarly, in T2 we can take the element n
and move it to the end of the first column in order to obtain a
Tableau U2 where the first row has length k+ 1. Now the type of
(U1, U2) is →↓, so we define ϕn,k,l(T1, T2) to be (U2, U1). For an
example of the map ϕn,k,k+2 in this case for n = 5, see Figure 24.

108 log-concavity, longest increasing subsequences and involutions

n = 3
(k, l) = (1, 3)




1
2
3

, 1 2 3

 7−→

(
1 2
3

, 1 3
2

)

n = 4
(k, l) = (1, 3)




1
2
3
4

, 1 2 3
4


 7−→




1 2
3
4

, 1 3
2
4







1
2
3
4

, 1 2 4
3


 7−→




1 2
3
4

, 1 4
2
3







1
2
3
4

, 1 3 4
2


 7−→




1 3
2
4

, 1 4
2
3




(k, l) = (1, 4)




1
2
3
4

, 1 2 3 4

 7−→




1 2
3
4

, 1 2 4
3




(k, l) = (2, 4)




1 2
3
4

, 1 2 3 4

 7−→

(
1 2 3
4

, 1 2 4
3

)




1 4
2
3

, 1 2 3 4

 7−→

(
1 2 4
3

, 1 3 4
2

)




1 3
2
4

, 1 2 3 4

 7−→

(
1 2 3
4

, 1 3 4
2

)

Figure 23: The base step of the induction in the proof of Theorem 6.4: the
maps ϕn,k,l for n = 3 and n = 4 and all allowed values for k and l.
The box containing the largest element is marked in gray in every
SYT and we can see that a pair of SYT of a given type is always
mapped to a pair of SYT of the same type.

6.2 a class of permutations for which the conjecture holds 109

2. Other type:

When the type is not ↓→ it is less obvious how to define the
map ϕn,k,k+2. Here we make use of the maps ϕn−1,k,l for 1 ≤ k ≤
l − 2 ≤ n− 3 that exist by induction hypothesis. The function
ϕn,k,k+2 is then defined as follows for a pair (T1, T2) ∈ Hn,k ×
Hn,k+2: First we remove the element n both in T1 and in T2. If
the type is ↓↓ we obtain a pair (t1, t2) ∈ Hn−1,k × Hn−1,k+2, if
it is →↓ we obtain a pair (t1, t2) ∈ Hn−1,k−1 × Hn−1,k+2 and if
it is →→ we obtain a pair (t1, t2) ∈ Hn−1,k−1 × Hn−1,k+1. In all
three cases we can apply one of the maps ϕn−1,k,l with 1 ≤
k ≤ l − 2 ≤ n− 3 for suitable values of k and l. We do so and
obtain a pair (u1, u2) which is in Hn−1,k+1 × Hn−1,k+1 for type
↓↓, in Hn−1,k × Hn−1,k+1 for type →↓ and in Hn−1,k × Hn−1,k for
type →→. Finally, we replace the element n in both Tableaux
of the pair (u1, u2) according to its original positions in (T1, T2),
thus creating a pair of Tableaux with n boxes of the same type
as (T1, T2). For all three types, replacing the element n in its
original position will lead to a pair (U1, U2) ∈ Hn,k+1 × Hn,k+1.
For an example of the map ϕn,k,k+2 for a pair of type →→ and
for n = 5, see Figure 24.

The construction described above ensures that the type of the image
(U1, U2) under the map ϕn,k,k+2 will always be the same as the one
of (T1, T2). Thus, in order to prove that the map ϕn,k,k+2 is injective,
it suffices to prove that two distinct pairs (T1, T2) and (S1, S2) of SYT
with n boxes that are of the same type cannot have the same image.
First, let us take a look at the case of pairs of type ↓→: If the image
of two pairs (T1, T2) and (S1, S2) of type ↓→ is the same, this means
that the two pairs have to be the same if we remove the element n
in all involved SYT. Since (T1, T2) and (S1, S2) are both of type ↓→ it
follows that (T1, T2) = (S1, S2). Second, the case of pairs of other type:
the argument is similar here. For two pairs (T1, T2) and (S1, S2) let us
denote by (t1, t2) and (s1, s2) the corresponding pairs of SYT where
the element n has been removed. If the image of (T1, T2) and (S1, S2)

is the same, this means that the image of (t1, t2) and (s1, s2) has to be
the same. The image of (t1, t2) and (s1, s2) is given by one of the maps
ϕn−1,k,l for suitable k and l. By the induction hypothesis these maps
are injective and thus the image of (t1, t2) and (s1, s2) can only be the
same if (t1, t2) = (s1, s2) This in turn implies that (T1, T2) = (S1, S2).
This finishes the proof.

Now let us turn from SYT to permutations: Pairs of hooks of size
n and with a first row of length k bijectively correspond to permuta-
tions of length n and with a longest increasing sequence of length k
and a longest decreasing sequence of length n− k + 1. That is, these
permutations are the merge of an increasing and a decreasing subse-

110 log-concavity, longest increasing subsequences and involutions

Type
↓→




1 2
3
4
5

, 1 2 4 5
3


 7−→




1 2 4
3
5

, 1 2 5
3
4




Other
type




1 2 5
3
4

, 1 2 3 4 5

 7−→

(
1 2 3 5
4

, 1 2 4 5
3

)

99K remove element 5

99
K replace element 5




1 2
3
4

, 1 2 3 4

 799K

apply
ϕ4,2,4

(
1 2 3
4

, 1 2 4
3

)

Figure 24: Two examples of the injective map ϕ5,k,l described in the proof of
Theorem 6.4.

quence having one point in common. Let us denote these numbers by
mn,k. Then Theorems 6.2 and 6.4 lead to the following:

Corollary 6.5. For every positive integer n the sequence (mn,k)1≤k≤n is
log-concave.

Permutations which are the merge of an increasing and a decreas-
ing sequence are called skew-merged permutations. They have been
shown to be exactly those permutations avoiding the two patterns
2143 and 3412 [145]. However, not all skew-merged permutations cor-
respond to hook-shaped SYT. Indeed, a skew-merged permutation of
length n can consist of a longest increasing subsequence of length k
and of a longest decreasing subsequence of length n− k, i.e., the two
sequences do not intersect. The shape of the corresponding tableau is
then not a hook but a hook with an additional box at position (2, 2).
Note however that not all pairs of SYT of this shape actually corre-
spond to skew-merged permutations.

For skew-merged involutions the situation appears to be simpler
and we can prove the following result:

Proposition 6.6. The SYT associated to a skew-merged involution is always
hook-shaped.

From this we finally obtain the following result about skew-merged
involutions:

Corollary 6.7. The number of skew-merged involutions of length n and
with longest increasing sequence of length k is:

in,k =

(
n− 1
k− 1

)
.

6.2 a class of permutations for which the conjecture holds 111

x

y

green

red

white

yellow

blue

Figure 25: The disposition of colours in a skew-merged permutation due to
Atkinson [11]

Thus the total number in of skew-merged involutions is simply 2n−1 and the
sequence (in,k)1≤k≤n is log-concave.

Proof of Proposition 6.6. In the following, we will use the notation in-
troduced by Atkinson in [11] and will apply one of the intermediary
Lemmas proven there.

Atkinson views a permutation σ as the set of points (i, σ(i)) in
the plane. If σ is skew-merged the points can be partitioned into five
(possibly empty) sets: there are red, blue, green, yellow and white
points as represented in Figure 25. The red and yellow points are
decreasing, the green and blue ones are increasing and the white
points are either increasing or decreasing.

The points that are of particular interest to us are the white ones.
White points can be defined as follows: Whenever one chooses two
points (i, r) and (j, s) that are not of the same colour and are to the
left (or to the right) of a white point (k, t), i.e. i, j < k (or k > i, j),
t is neither the largest nor the smallest among the elements r, s and
t. Skew-merged permutations with at least one white point are ex-
actly those which are the union of an increasing subsequence α and
a decreasing subsequence β that have a common point. Thus skew-
merged permutations with at least one white point correspond to
hook-shaped SYT. Conversely skew-merged permutations with no
white points are those where the associated SYT is not a hook but
a hook with an additional box at position (2, 2).

The goal of this proof is to show that a skew-merged permutation
with no white elements cannot be an involution.

For this, we assume that the skew-merged involution σ has no
white elements and construct a contradiction to the fact that σ is skew-
merged.

112 log-concavity, longest increasing subsequences and involutions

In order to so, we will need a slightly weaker version of one of the
two assertions in Lemma 11 in [11]. We shall state it here in the form
we need it:

Lemma [11]: Suppose that σ is a skew-merged permutation of
length n with no white points. Then there exist indices 1 ≤
i < j < j + 1 < k ≤ n such that one of the following two
statements holds:

• σ(i)σ(j)σ(j + 1)σ(k) forms a 3142-pattern in σ

• σ(i)σ(j)σ(j + 1)σ(k) forms a 2413-pattern in σ

We will now show the following: If σ(i)σ(j)σ(j + 1)σ(k) forms a
3142-pattern then σ also contains the pattern 3412 or 2143 and is thus
not skew-merged. In order to do so we distinguish three different
cases. To alleviate notation, we will write cadb instead of σ(i)σ(j)σ(j+
1)σ(k) and will keep in mind that a < b < c < d.

1. d ≤ j + 1:

This implies that a ≤ d− 3 ≤ j− 2 and that b ≤ d− 2 ≤ j− 1.
Especially this means that a and b cannot be fixed points in σ.
Since σ is an involution we thus have σ(a) = j and σ(b) = k.
Since a < b < j < k, we have jkab as a subsequence of σ that
forms a 3412-pattern.

2. a ≥ j:

This implies that c ≥ a + 2 ≥ j + 2 and that d ≥ a + 3 ≥ j + 3.
Especially this means that c and d cannot be fixed points in σ.
Since σ is an involution we thus have σ(c) = i and σ(d) = j + 1.
Since i < j + 1 < c < d, we have cda(j + 1) as a subsequence of
σ that forms a 3412-pattern.

3. d > j + 1 and a < j:

In this case a and d aren’t fixed points and since σ is an involu-
tion we have σ(a) = j and σ(d) = j + 1. Since a < j < j + 1 < d,
we have jad(j + 1) as a subsequence of σ that forms a 2143-
pattern.

Note that it is crucial in the arguments above that the elements a and
d are adjacent in σ which is due to the fact that there are no white
points in σ.

If the second statement of the Lemma above is fulfilled, that is if
σ(i)σ(j) σ(j + 1)σ(k) forms a 2413-pattern, we consider the reversed
permutation σr, i.e., the permutation σ read from right to left. The
permutation σr then contains the pattern 3142 at the positions (n +

1 − k), (n − j), (n + 1 − j) and (n + 1 − i). This implies that σr also
contains 3412 or 2143 as a pattern and is not skew-merged. Remark
that a permutation is skew-merged exactly then when its reverse is

6.2 a class of permutations for which the conjecture holds 113

1

m elements

l elements

the eastern surplus

the southern surplus

the protected area

ac

d
b

Figure 26: The decomposition of a SYT into its surplus and protected area. The
protected area consists of m elements of which l are in the first
row.

skew-merged. Thus we conclude that σ is not skew-merged in this
case either.

We have thus proven that a skew-merged involution must contain
at least one white point and the shape of its associated SYT is a hook.

The set of (l, m)-protected SYT

Definition 6.8. Given an arbitrary SYT T, it can be decomposed into two
parts in a unique way as follows: The protected area of T is obtained from
T by removing as many boxes as possible in the first row and in the first
column of T without creating a shape that is no longer a Young diagram.
The removed elements form the surplus of T. The elements that have been
removed in the first row are referred to as the eastern surplus and the ones
in the first column as the southern surplus.

Example 6.9. For an illustration of this decomposition of a SYT into
protected area and surplus, see Figure 26. Note that if T is a hook in
the sense of Definition 6.3, then the protected area of T consists of the
box containing the element 1 only. a

We can now define the following class of SYT:

Definition 6.10. Let T be a SYT in which all elements contained in its sur-
plus are larger than all elements contained in the first row and first column
of its protected area. If T has a protected area of size m of which l elements
are contained in the first row it is called (l, m)-protected.

114 log-concavity, longest increasing subsequences and involutions

Example 6.11. For an example of an (l, m)-protected SYT with l = 4
and m = 12, see the top part of Figure 27 where the protected areas
have been marked in gray. a

Let a, b, c and d be the elements of T as displayed in Figure 26,
i.e., a is the smallest element in the eastern surplus and c is its left
neighbour in T, b is the smallest element in the southern surplus and
d is its top neighbour in T. Then the condition that all elements in the
surplus are larger than those in the first row and first column of the
protected area is equivalent to:

min(a, b) > max(c, d). (22)

Before we tackle our conjecture for the set of (l, m)-protected SYT,
let us consider the special case of (2, 4)-protected SYT and take a
closer look at the set of these SYT. For (2, 4)-protected SYT, i.e., SYT
whose shape is a hook with an additional box at the position (2, 2),
condition (22) is fulfilled if and only if the elements 1, 2, and 3 are con-
tained in the protected area. Equivalently, the elements 1, 2, and 3 may
not be contained in the same row or column of the SYT. Turning to
involutions, this translates as follows: Involutions that correspond to
(2, 4)-protected SYT have the property that the lengths of the longest
increasing and of the longest decreasing sequence add up to the total
length of the permutation and the elements 1, 2, and 3 do not form a
123- or a 321- pattern.

A question that is of interest here is the following: how many SYT
whose shape is a hook with an additional box at the position (2, 2) ac-
tually fulfil condition (22)? We will see that this is the case for roughly
half of the SYT of this shape.

Proposition 6.12. Let pn denote the number of (2, 4)-protected SYT of
size n and let bn denote the number of SYT whose shape is a hook with an
additional box at the position (2, 2). Then the following holds for all n ≥ 4:

pn = (n− 3)2n−3, bn = (n− 4)2n−2 + 2 and thus lim
n→∞

pn

bn
=

1
2

.

Proof. Let us start by counting (2, 4)-protected SYT. We know that the
elements 1, 2 and 3 have to be present in the protected area and there
are two different possibilities of arranging them. Moreover we can
choose the element i that will lie in the box at position (2, 2) among
the integers 4, . . . , n. The remaining entries are then inserted one after
the other in increasing order. For every element we can choose to
place it either in the eastern or in the southern surplus of the tableau
which gives us a total of 2n−4 possibilities. In total we have:

pn = 2 · (n− 3)2n−4 = (n− 3)2n−3.

Now let us count SYT whose shape is a hook with an additional
box at the position (2, 2) but that are not (2, 4)-protected. That is,

6.2 a class of permutations for which the conjecture holds 115

we determine bn − pn. This means that the elements 1, 2 and 3 are
all contained in the first row or in the first column of the SYT. Let
us concentrate on the case where 1, 2 and 3 are all contained in the
first row; the second case can then be obtained by symmetry. Let us
denote by i the element at position (2, 1), i.e., to the south of 1, and
by j the element at position (2, 2), i.e., to the east of i and to the south
of 2. The element i can be any integer in {4, . . . , n− 1} and j can be
any integer in {i + 1, . . . , n}. All elements that are smaller than i have
to be placed in the eastern surplus. For the elements that are larger
than i and not equal to j, we can choose whether to place them in
the eastern or southern surplus. There are thus 2n−i−1 possibilities of
placing these elements. In total we have:

bn − pn = 2 ·
n−1

∑
i=4

(n− i) · 2n−i−1,

which leads to:

bn =
n−1

∑
i=3

(n− i) · 2n−i = 2n ·
(

n ·
n−1

∑
i=3

2−i −
n−1

∑
i=3

i2−i

)

= 2n ·
(

n ·
(

1
4
− 1

2n

)
− 2n − 2− n

2n

)
= 2n−2(n− 4) + 2.

We indeed obtain that pn is roughly one half of bn and that the fraction
pn/bn tends to 1/2 when n tends to infinity.

Note that this result for the numbers bn can of course also be ob-
tained by applying the hooklength formula (see Chapter 14 in [29]).
However this leads to rather tedious manipulations of sums involv-
ing fractions of binomial coefficients and the approach above is much
faster.

Now let us turn to (l, m)-protected SYT for arbitrary integers l and
m. In the following, for 1 ≤ m ≤ n and 1 ≤ l ≤ k, we will denote by
P(l,m)

n,k the set of all (l, m)-protected SYT of size n where the first row
has length k. Whenever it is clear from the context, we will write Pn,k

instead of P(l,m)
n,k . The cardinality of P(l,m)

n,k shall be denoted by p(l,m)
n,k or

pn,k.

Theorem 6.13. For every positive integer n and every fixed pair (l, m), the
sequence (pn,k)1≤k≤n is log-concave.

Proof. Let us fix the integers l and m and omit them in the notation.
In order to prove the log-concavity of the sequence (pn,k) we need
to construct injections ψn,k from Pn,k−1 × Pn,k+1 to Pn,k × Pn,k for all
n ∈N and 1 ≤ k ≤ n.

Let (T1, T2) be a pair of SYT in Pn,k−1 × Pn,k+1. The maps ψn,k shall
never affect the protected areas of T1 and T2 – thus this name. Let

116 log-concavity, longest increasing subsequences and involutions




1 3 6 9
2 4 7 15
5 8
10 13
11
12
14

, 1 2 3 4 11 14
5 6 8 12
7 10 13 15
9



7−→




1 3 6 9 12
2 4 7 15
5 8
10 13
11
14

, 1 2 3 4 14
5 6 8 12
7 10 13 15
9
11




99K form hooks

99
K replace surpluses




1
11
12
14

, 1 11 14
9







1 12
11
14

, 1 14
9

11




∼ ∼


1
2
3
4

, 1 3 4
2


 799K

apply
ϕ4,1,3




1 3
2
4

, 1 4
2
3




Figure 27: An example of the injective map ψ15,5 described in the proof
of Theorem 6.4. Here, the map is applied to a pair of (4, 12)-
protected SYT.

H1 and H2 be the hooks that one obtains from the surpluses of T1

and T2 as follows: Place the element 1 at position (1, 1); then at-
tach the respective eastern surplus to the east of 1 and the south-
ern surplus to the south of 1. The hooks H1 and H2 then both con-
sist of (n − m + 1) boxes. Moreover, the first row of H1 has k − l
elements and the first row of H2 has k − l + 2 elements. Let us de-
note by H̃i the SYT that we obtain from Hi for i = 1, 2 by replac-
ing the entries order-isomorphically by the integers from 1 up to
(n−m + 1). We can then apply the injection ϕn−m+1,k−l,k−l+2 defined
in the proof of Theorem 6.4 to (H̃1, H̃2) and obtain a pair (J1, J2) in
Hn−m+1,k−l+1 × Hn−m+1,k−l+1.

In order to obtain (U1, U2), the image of (T1, T2) under ψn,k, we
now do the following for i = 1, 2: First we create the hooks J̃i by
order-isomorphically replacing the elements 2, . . . , n−m + 1 in Ji by
the elements that occurred in the respective surpluses of Ti. Then
we attach the eastern surplus of J̃i to the east of the first row of the
protected area of Ti and the southern surplus of J̃i to the south of its
first column.

The only change that has been made to the shapes of T1 and T2

was to remove one box at the end of the first column or row and
to place it at the end of the first row or column. The shapes of U1

and U2 are thus as desired and the sizes of the protected areas are
unchanged. We still need to check whether U1 and U2 are actually
SYTs, i.e., whether the numbers in all rows and columns are increas-

6.3 lattice paths and 321-avoiding permutations 117

ing. Clearly, we only need to do so for the first row and the first
column since the other parts have not been affected. By definition of
the maps ϕn−m+1,k−l,k−l+2, the elements in the surpluses of U1 and
U2 are increasing. Moreover, the elements in the surpluses of U1 and
U2 are all larger than the elements contained in the first row and first
column of the corresponding protected areas. Thus we indeed obtain
a pair of tableaux (U1, U2) in Pn,k × Pn,k with the same values for l
and m as for (T1, T2). The injectivity of the maps ψn,k clearly follows
from the injectivity of the maps ϕn−m+1,k−l,k−l+2.

Example 6.14. For an example of the map ψn,k with n = 15, k = 5
and (l, m) = (4, 12), see Figure 27. a

6.3 lattice paths and 321-avoiding permutations

In the following, let An ,k denote the set of all 321-avoiding involu-
tions of length n with longest increasing sequence of length k. The
cardinality of An ,k will be denoted by an ,k . The Robinson-Schensted
correspondence maps elements of An ,k into SYT that consist of at
most two rows such that the length of the first row is k ≥ dn/2e.
Then the hooklength formula yields that

an ,k =

(
n
k

)
2k − n + 1

k + 1
.

Using this formula, it is routine to prove that for any fixed n, the
sequence an ,k is log-concave if k ∈ [dn/2e , n], but that proof is not
particularly elucidating. In what follows, we provide a more elegant,
injective proof.

There is a natural bijection f = f n between the set of such SYT and
lattice paths using steps (0, 1) and (1, 0) that start at (0, 0), consist
of n steps, and never go above the diagonal x = y. We will refer to
these steps as East and North steps. Indeed, if i1 , i2 , · · · , ik are the
numbers in the first row of the SYT T , and j1 , j2 , · · · , jn−k are the
numbers in the second row of T , then we can set f (T) to be the lattice
path starting at (0, 0) whose East steps are in positions i1 , i2 , · · · , ik ,
and whose North steps are in positions j1 , j2 , · · · , jn−k . The fact that
T is a SYT means that i t < jt for all t ≤ n − k, so f (T) will indeed
stay below the diagonal x = y since its t-th North step will come
some time after its t-th East step. Note that elements of An ,k will be
mapped into paths that end in (k , n − k).

Example 6.15. The SYT with elements 1, 3, 4, 5, 6, 7 in the first row
and the element 2 in the second row corresponds to the path Q con-
sisting of the following steps: E, N, E, E, E, E, E. It is represented
by circles on the left hand side of Figure 28. Similarly, the SYT with
elements 1, 2, 4, 7 in the first and elements 3, 5, 6 in the second row
corresponds to the path P : E, E, N, E, N, N, E. a

118 log-concavity, longest increasing subsequences and involutions

P′1

P′2

Q1

Q2X

P′1

P′2

Q1

Q2X

Figure 28: The main step in the construction of the map φ

Let L(n , k) be the set of lattice paths using steps (0, 1) and (1, 0)
that start at (0, 0), never go above the diagonal x = y, and end in
(k , n − k), where n − k ≤ k ≤ n − 2. We define a map

φ : L(n , k) × L(n , k + 2) → L(n , k + 1) × L(n , k + 1)

as follows.
Let (P, Q) ∈ L(n, k)× L(n, k + 2). Let us translate P by the vector

(1,−1) to obtain the path P′ that starts at (1,−1), ends in (k + 1, n−
k − 1), and never goes above the diagonal x − 2 = y. As Q starts West
of P′ and ends East of P′, the paths P′ and Q will have at least one
point in common. Let X be the last such point. Note that X is not the
endpoint of P′ or Q, since those two paths do not end in the same
point. We now “flip” the paths at X, which means the following. Let
P′1 and Q1 denote the parts of P′ and Q that end in X, and let P′2 and
Q2 denote the parts of P′ and Q that start in X. Then we define φ(P, Q)

as ((P′1Q2)∗, Q1P′2), where (P′1Q2)∗ denotes the path P′1Q2 translated
back by the vector (−1, 1) so that it starts at (0, 0). See Figure 28 for
an illustration.

Proposition 6.16. The map φ described above indeed maps into the set
L(n, k + 1) × L(n, k + 1) and is an injection from L(n, k) × L(n, k + 2)
into L(n, k + 1)× L(n, k + 1).

Proof. It is a direct consequence of the definitions that both (P′1Q2)∗
and Q1P′2 will indeed start at (0, 0) and end in (k+ 1, n− k+ 1). So, all
we need to do in order to prove that φ(P, Q) ∈ L(n, k+ 1)× L(n, k+ 1)
is to show that neither (P′1Q2)∗ and Q1P′2 ever goes above the diagonal
x = y.

• To show that (P′1Q2)∗ does not go above the diagonal x = y is
equivalent to showing that P′1Q2 does not go above the diagonal
x− 2 = y. This is true for P′1 by its definition (it is a part of P′),
and this is true for Q2 since Q2 is entirely below P′2, and P′2, by
its definition (it is a part of P′), never goes above the diagonal
x− 2 = y.

• It is clear that Q1P′2 never goes above the diagonal x = y, since
neither Q1 (a part of Q) nor P′2 (a part of P) do.

6.4 summary of the results 119

Finally, in order to prove that the map φ is injective, let (R, S) be
in L(n, k + 1) × L(n, k + 1). If R and S have no points in common
(other than their starting and ending points), (R, S) has no preimage
under φ. Otherwise, we can recover X as the last point that R and
S have in common other than their endpoint, and then reversing the
“flipping” operation described in the construction of φ we can recover
the unique preimage of (R, S).

Corollary 6.17. For any fixed n, the sequence (an,k)n/2≤k≤n is log-concave.

Therefore, it follows by the principle that we used to prove Theo-
rem 6.2 that we have an injective proof of the following corollary as
well.

Corollary 6.18. Let bn,k denote the number of 321-avoiding permutations
of length n in which the longest increasing subsequence is of length k. Then
for any fixed n, the sequence (bn,k)n/2≤k≤n is log-concave.

6.4 summary of the results

Let us briefly summarize the results of this chapter. First we stated
our conjecture that the sequence (`n,k)1≤k≤n is log-concave for fixed
n ∈ N and showed that it suffices to prove this conjecture for invo-
lutions in order to obtain a result for permutations in general. Sec-
ond, we proved that our conjecture holds for SYT whose shape is a
hook which implies that it holds for skew-merged involutions. This
result could be extended to a larger class of permutations, based on
the concept of (l, m)-protected SYT. Third, we showed that our con-
jecture holds for 321-avoiding permutations. For all our results we
provided combinatorial proofs and exploited the Robinson-Schensted
correspondence between permutations and pairs of SYT.

Part II

C AY L E Y T R E E S A N D M A P P I N G S

This part treats two seemingly unrelated topics on Cayley
trees and mappings. First, Chapter 7 provides a new bijec-
tive proof of Cayley’s formula that will be applied in the
following chapters. Second, Chapter 8 deals with ascend-
ing runs in trees and mappings, analysing the occurrence
of a specific pattern that involves the labels of the combi-
natorial object. Third, Chapter 9 generalizes the concept of
parking functions to trees and to mappings. Even though
these two topics have little in common at first sight, a simi-
lar decomposition approach leading to PDEs is fruitful for
tackling the enumeration task.

7
A N E W B I J E C T I V E P R O O F O F C AY L E Y ’ S F O R M U L A

We start this part by presenting a new bijective proof of Cayley’s for-
mula. This bijection will be used in the following two chapters that
concern ascending runs in trees and mappings (Chapter 8) and a gen-
eralization of the concept of parking functions to trees and mappings
(Chapter 9).

Theorem 7.1. For each n ≥ 1, there exists a bijection ϕ from the set of pairs
(T, w), with T ∈ Tn a tree of size n and w ∈ T a node of T, to the set of
n-mappings. Thus

n · Tn = Mn, for n ≥ 1.

Proof. In the following, we will denote by T(v) the parent of node v
in the tree T. That is, for v 6= root(T), T(v) is the unique node such
that (v, T(v)) is an edge in T.

Given a pair (T, w), we consider the unique path w root(T)
from the node w to the root of T. It consists of the nodes v1 = w,
v2 = T(v1), . . . , vi+1 = T(vi), . . . , vr = root(T) for some r ≥ 1. We
denote by I = (i1, . . . , it), with i1 < i2 < · · · < it for some t ≥ 1, the
indices of the right-to-left maxima in the sequence v1, v2, . . . , vr, i.e.,

i ∈ I ⇐⇒ vi > vj, for all j > i.

The corresponding set of nodes in the path w root(T) will be de-
noted by VI := {vi : i ∈ I}. Of course, if follows from the definition
that the root node is always contained in VI , i.e., vr ∈ VI .

We can now describe the function ϕ by constructing an n-mapping
f . The t right-to-left maxima in the sequence v1, v2, . . . , vr will give
rise to t connected components in the functional digraph G f . More-
over, the nodes on the path w root(T) in T will correspond to the
cyclic nodes in G f . We describe f by defining f (v) for all v ∈ [n],
where we distinguish whether v ∈ VI or not.

(a) Case v /∈ VI : We set f (v) := T(v).

(b) Case v ∈ VI : Setting T(vi0) := v1 = w, we define

f (vi`) := T
(
vi`−1

)
.

This means that the nodes on the path w root(T) in T form t
cycles C1 := (v1, . . . , vi1), . . . , Ct := (T(vit−1), . . . , vr = vit) in G f .

It is now easy to describe the inverse function ϕ−1. Given a map-
ping f , we sort the connected components of G f in decreasing order

123

124 a new bijective proof of cayley’s formula

10

3 8 14

4

16

9

17

5 11

7

1

2

6 12 15

13

18 19

v1

v2

v3

v4

v5

v6

v7

Figure 29: Taking the image of the pair (T, 1) where T is depicted above
leads to the mapping described in Figure 11 on page 23. Nodes
in S are drawn in white.

of their largest cyclic elements. That is, if G f consists of t connected
components and ci denotes the largest cyclic element in the i-th com-
ponent, we have c1 > c2 > . . . > ct. Then, for every 1 ≤ i ≤ t, we
remove the edge (ci, di) where di = f (ci). Next we reattach the com-
ponents to each other by establishing the edges (ci, di+1) for every
1 ≤ i ≤ t − 1. This leads to the tree T. Note that the node ct is at-
tached nowhere since it constitutes the root of T. Setting w = d1, we
obtain the preimage (T, w) of f .

Example 7.2. Taking the image of the pair (T, 1) where the tree T is
depicted in Figure 29 leads to the mapping described in Figure 11

on page 23. We consider the unique path from the node labelled 1 to
the root of T. It consist of the following nodes: 1, 7, 11, 17, 4, 14 and 10.
Within this sequence, the right-to-left maxima are 17, 14 and 10 which
are marked by gray nodes in the figure. When creating the image of
(T, 1) under the map ϕ, the edges (17, 4) and (14, 10) are removed
and the edges (17, 1), (14, 4) and (10, 10) are created. a

For the bijection described in Theorem 7.1, the following properties
that will turn out to be useful in Chapter 8 are fulfilled:

Proposition 7.3. Consider the pair (T, w) where T is a Cayley tree and w
is a node in T. Let f be the image of (T, w) under the bijection ϕ described
in Theorem 7.1. Furthermore, for every node v that is not the root of T, let
us denote by T(v) the parent node of v in T . Then the following holds for
every node v in T:

1. T(v) > v⇐⇒ f (v) > v,

a new bijective proof of cayley’s formula 125

2. There exists a node x < v in T with T(x) = v

⇐⇒ There exists an element x < v in f with f (x) = v.

Proof. The main reason why these properties hold is the following:
When creating the image of some (T, w) under the map ϕ, the only
edges that are removed are decreasing ones. That is, the only edges
that are present in T but not in G f , are of the form (v, x) where v > x.
The edges that are created instead in G f are also decreasing ones. In
the following, we prove the two statements of the theorem in more
detail:

1. As in the proof of Theorem 7.1 we distinguish whether the node
v in T is contained in VI or not: If v is not contained in VI ,
f (v) = T(v) and thus the statement is clearly true. If v ∈ VI , v
is a right-to-left maximum in the unique path from w to the root
of T. It thus holds v = vi` for some ` and clearly T(v) < v. We
need to show that this implies that f (v) ≤ v. By definition, we
have f (vi`) = T

(
vi`−1

)
. T
(
vi`−1

)
is either equal to vi` or it is not a

right-to left maximum in which case it is clearly strictly smaller
than vi` . This proves the first statement of this proposition.

2. (=⇒) : If the node v has a child x with x < v, then x cannot
belong to the set of nodes VI . Thus f (x) = T(x) = v and in the
mapping f the node v has a preimage x with x < v.

(⇐=) : Let x be an element with x < v and f (x) = v. Suppose
x = vi` for some `. Then v = f (x) = T(vi`−1) ≤ x. Thus x /∈ VI

and we have f (x) = T(x). Therefore x is a child of v in T that
fulfils x < v.

8
A S C E N D I N G R U N S I N M A P P I N G S

This chapter is based on joint work with Alois Panholzer.
Random mappings, i.e., random functions from the set [n] into it-

self, arise in many applications and are very well-studied objects both
from a combinatorial and a probabilistic point of view. For examples
of situations where random mappings occur, see e.g. the introduction
of [75]. Previous research has concentrated on structural parameters
of the corresponding functional graphs. Structural parameters such
as the number of connected components, the size of the largest tree,
the number of terminal nodes, etc. are well-studied objects. Exem-
plarily, we would like to mention the work of Arney and Bender [8],
Kolchin [112], Flajolet and Odlyzko [75], Drmota and Soria [61] (given
in chronological order).

In the functional graphs corresponding to random mappings, the
labels of nodes play an important role and thus it is somewhat sur-
prising that, despite the many studies of mappings concerning struc-
tural quantities, the occurrences of label patterns have received far
less attention so far.

Some recent research in this direction has been performed by Pan-
holzer who studied alternating mappings in [130]. These are a gen-
eralization of the concept of alternating permutations to mappings;
they can be defined as those mappings for which every iteration orbit
forms an alternating sequence. Alternating mappings can thus also
be seen as mappings that do not contain two consecutive ascents or
descents; this is a characterization in terms of forbidden label pat-
terns. Also, we would like to mention the PhD thesis of Okoth [129]
who has very recently studied local extrema in trees (called sources
and sinks there). His studies also lead to results for the corresponding
quantities in mappings.

In this chapter, we study the occurrence of a specific label pattern
in mappings by generalizing the concept of ascending runs from per-
mutations to mappings. See Section 2.2 in the Preliminaries, for a
definition and a distinction between ascending and alternating runs.
Since the only types of runs encountered in this chapter are ascending
runs, we will also use runs for short. As we will see in Section 32,
counting runs in mappings is equivalent to counting the number of
nodes that form the label pattern on the left-hand side in Figure 30.
Our goal is to enumerate mappings by their size and by their number
of ascending runs and to characterize the typical behaviour of this
label pattern in random mappings. Since connected mappings can be

127

128 ascending runs in mappings

i

. . .

− −− −

i is the start of a run

j

+

j is an ascent

Figure 30: The label patterns in mappings studied in this chapter: Counting
ascending runs is equivalent to counting the occurrences of the
label pattern depicted on the left, counting ascents clearly corre-
sponds to counting the occurrences of the pattern on the right.

described as cycles of Cayley trees, our studies of runs in mappings
will also lead to corresponding results for runs in trees.

We start this chapter by studying ascents in mappings in Section 8.2.
From a probabilistic point of view, this is a straightforward task.
Counting ascents in mappings corresponds to counting nodes in map-
ping graphs forming the label pattern on the right-hand side in Fig-
ure 30. The results can then be transferred to ascents in trees by using
the bijection presented in Section 7. The main part of this chapter is
devoted to the exact and asymptotic study of ascending runs in map-
pings, which leads to results for Cayley trees as well. Ascending runs,
which will formally be introduced in Section 8.2, are maximal ascend-
ing paths in the corresponding functional graphs. We use a combina-
torial decomposition of the tree respectively mappings according to
the smallest node. This leads to a recurrence relation for the studied
numbers that can be translated into a partial differential equation for
the corresponding generating functions. Solving this PDE allows for
extraction of coefficients and for a characterization of the limiting dis-
tribution of the number of ascending runs in a random mapping or
tree. Again, the bijection presented in Section 7 will allow to explain
a simple connection between the results for trees and for mappings.
Finally, we close this chapter by summarizing the results and setting
them in relation with the corresponding results that have been ob-
tained for permutations.

Note that throughout this chapter, we will identify a mapping with
its functional graph.

8.1 a probabilistic warm-up : ascents in mappings and

trees

In this introductory section, we consider ascents in mappings, i.e.
nodes with label i such that f (i) > i. For an example, consider Fig-
ure 31 in which the ascents have been marked in our running ex-
ample fex. Ascents in mappings are easily dealt with. Indeed, in a
random n-mapping, the probability of i being an ascent is simply
equal to (n − i)/n. Thus, if the random variable Ai

n is the indicator

8.1 a probabilistic warm-up : ascents in mappings and trees 129

1

7

11

17

5

2

6
12

15

13

19
18

10

3 8

4 14

16

9

Figure 31: In our running example fex, 10 out of 19 nodes are ascents. These
are marked by square nodes.

variable for the event “node i is an ascent in a random n-mapping”
Ai

n follows a Bernoulli distribution with parameter p = (n − i)/n:
Ai

n ∼ B((n − i)/n). Moreover, An = ∑n
i=1 Ai

n and since the Ai
n’s

are independent random variables we easily obtain An’s probability-
generating function

mAn(t) =
∞

∑
k=0

tkP {An = k}

=
n

∏
i=1

mAi
n
(t)

=
n

∏
i=1

i + t(n− i)
n

.

Thus, An follows a so-called Poisson binomial distribution (see e.g. [21]).
The number An,m of n-mappings with exactly m ascents is thus simply
given as:

An,m = [tm]
n

∏
k=1

k + t(n− k)

= ∑
I⊆[n]
|I|=m

(
∏
i∈I

(n− i) ∏
j∈Ic

j

)
.

130 ascending runs in mappings

Clearly, the sequence (An,m)m=0...n is symmetric: An,m = An,n−1−m.
It is also easily shown to be unimodal since mAn(t) has real roots only.
Moreover, one readily sees that

E(An) =
n

∑
i=1

E(Ai
n) and V(An) =

n

∑
i=1

(
1−E(Ai

n)
)

E(Ai
n)

=
n

∑
i=1

n− i
n

=
n

∑
i=1

i
n
· n− i

n

=
n− 1

2
=

n2 − 1
6n

.

Using the Ljupanov-version of the Central Limit Theorem, Theorem 2.35,
we can show even more:

Theorem 8.1. Let An denote the random variable counting the number of
ascents in a random n-mapping. Then the standardized random variable

An −E(An)√
V(An)

converges in distribution to a standard normal distribution.

Proof. The result follows by a basic application of the Ljapunov CLT.
Similar proofs can be found in any textbook on probability theory. We
need to check whether there exists a δ > 0 such that

1
√

V(An)
2+δ

n

∑
i=1

E
(
|Ai

n −E(Ai
n)|2+δ

)
→ 0 as n→ ∞

is fulfilled. Let δ > 0. Then the following holds:

1 ≥ n− i
n
· i

n
= E

((
Ai

n −
n− i

n

)2
)

= V

(
Ai

n −
n− i

n

)
≥ E

((
Ai

n −
n− i

n

)2+δ
)

.

Thus we obtain

1
√

V(An)
2+δ

E

((
Ai

n −
n− i

n

)2+δ
)

≤ 1
√

V(An)
2+δ

V

(
Ai

n −
n− i

n

)

=
1

√
V(An)

δ
=

(
6n

n2 − 1

)δ/2

and since the right hand side tends to zero as n → ∞ we obtain the
desired statement.

8.2 ascending runs in mappings 131

These results themselves are maybe not particularly surprising, but
what is less straightforward is that they can be transferred to the
corresponding enumeration problem for trees. Indeed, as shown in
Theorem 7.1 and Proposition 7.3, we can identify every pair (T, w)

where T is a Cayley tree of size n with m ascents and w is a node in T
with an n-mapping f with m ascents. We thus obtain the following:

An,m = n · Bn,m,

where Bn,m denotes the number of trees with n nodes and exactly m
ascents. Thus, if Bn is the random variable counting ascents in a tree
of size n, An and Bn have exactly the same probability-generating
function for every integer n.

Corollary 8.2. Let Bn denote the random variable counting the number of
ascents in a random Cayley tree of size n. Then the expectation and variance
satisfy

E(Bn) =
n− 1

2
and V(Bn) =

n2 − 1
6n

.

Furthermore, the standardized random variable

Bn −E(Bn)√
V(Bn)

converges in distribution to a standard normal distribution.

A similar result for ascents in trees seems to have been obtained
in [49]. However, this simple approach via the detour of ascents in
mappings is, to the best of our knowledge, new.

8.2 ascending runs in mappings

We consider here the number of ascending runs of a mapping. Gen-
eralizing the definition of ascending runs for permutations (see Sec-
tion 2.2), an ascending run in a mapping f is a maximal ascending
sequence i < f (i) < f 2(i) < · · · < f k(i), i.e., an ascending sequence
which is not contained in a longer such sequence. The only type of
“runs” studied in this chapter are ascending runs, we will thus also
use the shorter term run when speaking of ascending runs. These are
not to be confused with alternating runs as studied in Chapter 3 (see
Section 2.2 for a distinction of these two concepts).

Given a specific mapping f and its functional graph G f , the number
of runs in f can be counted easily by considering the first element of
a run: Indeed, an element j is the first element of a run iff each label i
of a preimage of j is not smaller than j, i.e., (f (i) = j) ⇒ (i ≥ j). We
thus need to count nodes in the mapping that form the label pattern
depicted on the left-hand side of Figure 30. Note that elements with

132 ascending runs in mappings

1

7

11

17

5

2

6
12

15

13

19
18

10

3 8

4 14

16

9

Figure 32: In fex there are 13 ascending runs. If an element is the first ele-
ment in a run, its node is white; otherwise it is gray. Increasing
edges, i.e., edges (i, j) with i < j, are marked by dashed lines.

no preimages at all, i.e., terminal nodes in the graph, are of course
always at the beginning of a run.

Recall that for permutations the following simple connection be-
tween descents and ascending runs holds: if a permutation π has k
descents, i.e., positions i for which it holds that π(i) > π(i + 1), it can
be decomposed into (k + 1) ascending runs. Moreover, by taking the
complement πc of π one obtains a permutation with k ascents. Thus,
studying the distribution of the following parameters in permutations
is equivalent: ascents, descents, ascending runs and descending runs.
This is clearly not the case for mappings: The presence of k descents
does not yield a decomposition into (k + 1) ascending runs. For ex-
ample, in fex there are 10 ascents and thus 9 descents but the number
of ascending runs is equal to 13. Thus, the study of ascending runs
has to be performed separately and requires, as we will see, far more
involved techniques than the one of ascents.

Example 8.3. In Figure 32, our running example fex of a 19-mapping
is depicted. In its functional graph, the nodes that correspond to first
elements of an ascending run are marked by white nodes. There are
13 such nodes and thus our mapping has 13 ascending runs. More-
over, edges (i, j) where i < j are marked with dashed lines and edges
with j > i are marked with full lines. An ascending run is thus a path
of maximal length consisting of dashed edges only (or no edges at all).
An element that is the start of an ascending run can be characterized
as a node where no incoming edges are dashed. a

In the following, Rn will denote the r.v. that counts the number of
ascending runs in a random n-mapping. Because of the combinatorial
structure of mappings as presented in Example 2.27, we will first
analyse the corresponding random variable for trees before we study
Rn.

8.2 ascending runs in mappings 133

...T1 T2 Tr
...T1 TrT2

T0

i

1

1

Figure 33: Decomposition of a tree with respect to its smallest node

Runs in trees

To study Rn we first consider the corresponding quantity in trees,
where the edges are oriented towards the root node of the tree. Thus,
we introduce the random variable Fn which counts the number of
runs in a random Cayley tree of size n. Let us further introduce the
generating function

F(z, v) = ∑
n≥1

∑
m≥0

P{Fn = m}Tn
zn

n!
vm

= ∑
n≥1

∑
m≥0

Fn,m
zn

n!
vm,

where Tn = nn−1 is the number of trees of size n and Fn,m is the
number of trees of size n with exactly m ascending runs.

Clearly, F1,m = δm,1. In order to establish a recurrence relation for
the numbers Fn,m, we decompose a tree of size n ≥ 2 with respect to
the node labelled 1. Two different cases, as shown in Figure 33, have
to be considered:

Case (1): The node 1 is the root node. In this case a set of r ≥ 1
subtrees T1, T2, . . . , Tr is attached to the root 1. Since the root has the
smallest of all labels, it will always constitute a run of its own. Thus,
if the subtrees Ti have respective sizes ni and mi runs each, the entire
tree will consist of n nodes and have m runs iff ∑r

i=1 ni = n− 1 and
∑r

i=1 mi = m− 1. The contribution to Fn,m is therefore:

F(1)
n,m = ∑

r≥1

1
r! ∑

∑ ni=n−1
∑ mi=m−1

Fn1,m1 · · · Fnr ,mr ·
(

n− 1
n1, . . . , nr

)
,

where the multinomial coefficient reflects the number of possibilities
of redistributing the labels in [n− 1] order-isomorphically to the sub-
trees.

Case (2): The node 1 is not the root node. In this case the node 1 is
attached to some node labelled i of a tree T0 of size n0 and with m0

runs and has itself a set of r ≥ 0 subtrees T1, T2, . . . , Tr attached to

134 ascending runs in mappings

it. Depending on where in T0 the node 1 is attached, a new run is
created or not. If 1 is attached at the begin of a run in T0 no new run
is created – there are m0 possibilities of attaching 1 in this way. If 1
is however attached somewhere in the middle of a run, a new run
will be created – for this case there are (n0 − m0) possibilities. The
contribution to Fn,m is therefore:

F(2a)
n,m = ∑

1≤n0·≤n−1
1≤m0≤m

m0 ·∑
r≥0

1
r! ∑

∑ ni=n−n0−1
∑ mi=m−m0

Fn0,m0 · · · Fnr ,mr

(
n− 1

n0, . . . , nr

)

for the case that the node 1 is attached to the beginning of a run in T0

and

F(2b)
n,m =∑

1≤n0≤n−1
1≤m0≤m

(n0 −m0) ·∑
r≥0

1
r! ∑

∑ ni=n−n0−1
∑ mi=m−m0−1

Fn0,m0 · · · Fnr ,mr

(
n− 1

n0, . . . , nr

)

in the other cases.
The goal is now to translate this recurrence relation for Fn,m =

F(1)
n,m + F(2a)

n,m + F(2b)
n,m into the language of generating functions. In order

to alleviate notation we write F for F(z, v), Fz and Fv for the partial
derivatives of F with respect to z and v.

First, let us note that for F(1)
n,m we have the following:

F(1)
n,m = ∑

r≥1

(n− 1)!
r! ∑

∑ ni=n−1
∑ mi=m−1

[zn1 vm1]F · · · [znr vmr]F

= (n− 1)![zn−1vm−1] exp(F)

= (n− 1)![znvm]zv exp(F).

Recall that m0 · Fn0,m0 /(n0)! = [zn0 vm0]vFv. We then obtain for F(2a)
n,m :

F(2a)
n,m = (n− 1)! ∑

n0,m0

([zn0 vm0]vFv) ·
(
[zn−n0−1vm−m0] exp(F)

)

= (n− 1)![znvm]zvFv exp(F).

Similarly, for F(2b)
n,m :

F(2b)
n,m = (n− 1)![znvm]zv (zFz − vFv) exp(F).

Thus, we can write Fn,m as follows:

Fn,m =n![znvm]F

=(n− 1)![znvm]zv exp(F) (1 + zFz + (1− v)Fv) ,

or equivalently,

∑
n≥1

∑
m≥1

n[znvm]F = zFz = zv exp(F) (1 + zFz + (1− v)Fv) .

8.2 ascending runs in mappings 135

Thus the bivariate generating function F(z, v) is defined by the fol-
lowing following partial differential equation:

(
1− zveF(z,v)

)
Fz(z, v) = v(1− v)eF(z,v)Fv(z, v) + veF(z,v),

with the initial condition F(0, v) = 0.
This PDE can be solved using the method of characteristics (see

Section 2.8). Let us thus regard z, v and F as variables depending
on t. We then obtain the following system of ordinary differential
equations, the so-called system of characteristic differential equations:

dz
dt

= 1− zv · eF(z,v), (23a)

dv
dt

= eF(z,v) · v(v− 1), (23b)

dF
dt

= v · eF(z,v). (23c)

We are now looking for first integrals of the system (23), i.e., for
functions ζ(z, v, F) that are constant along any solution curve – a so-
called characteristic curve – of (23). From (23b) and (23c) one obtains
the following differential equation

dv
dF

= v− 1

which has the general solution

v = c1 · eF + 1.

Thus a first integral of (23) is given by:

ζ1(z, v, F) = c1 = e−F · (v− 1). (24)

From (23a) and (23c) one obtains, after substituting v = c1 · eF + 1, the
following differential equation

dz
dF

=
1

(c1eF + 1) · eF − z.

The general solution of this first order linear differential equation is

z =
F− ln

(
c1 · eF + 1

)
+ c2

eF .

After backsubstituting c1 = e−F · (v − 1) one obtains the following
first integral of (23) which is independent of (24):

ζ2(z, v, F) = c2 = z · eF − F + ln(v). (25)

The general solution of (23) is thus given by:

G(ζ1(z, v, F), ζ2(z, v, F)) = const.,

136 ascending runs in mappings

where G is an arbitrary differentiable function in two variables. One
can also solve this equation with respect to the variable z and obtains:

z = e−F ·
(

F− ln(v) + g
(

v− 1
eF

))
,

where g is an arbitrary differentiable function in one variable. In order
to specify this function g, we plug the initial condition F(0, v) = 0 into
this equation. This leads to:

g(v− 1) = ln(v),

and finally we obtain that the solution of (23) is given by the following
functional equation:

z =
ln
(

eF(z,v)−1+v
v

)

eF(z,v)
. (26)

Extracting coefficients can now be done by applying Lagrange’s in-
version formula with ϕ(F) = exp(F)F/ ln

(
eF−1+v

v

)
and twice Cauchy’s

integral formula:

[zn]F(z, v) =
1
n
[Fn−1]

enF · Fn

ln
(

eF−1+v
v

)n

=
1

n · 2πi

∮ enF

ln
(

eF−1+v
v

)n dF

=
1

n · 2πi

∮
(eS · v− 1 + v)n−1 · eSv

Sn dS

=
1
n
[Sn−1](eS · v− 1 + v)n−1 · eSv

=
v
n

n−1

∑
k=0

1
(n− 1− k)!

n−1

∑
`=0

(
n− 1
`

)
`kv`

k!
(v− 1)n−1−`

=
v
n

n−1

∑
`=0

(
n− 1
`

)
v`(v− 1)n−1−` (l + 1)n−1

(n− 1)!

When passing form the second to the third line above we use the
substitution S = ln

(
eR−1+v

v

)
for which it holds that dR = eR−1+v

eR dS =

veS

veS−1+v dS.
What remains to do now is to extract the coefficients in v:

Fn,m =n![vmzn]F(z, v)

=
n−1

∑
`=0

(
n− 1
`

)
(`+ 1)n−1[vm−`−1](1− v)n−1−`

=
n−1

∑
`=0

(
n− 1
`

)
(`+ 1)n−1

(
n− `− 1
m− `− 1

)
(−1)m−`−1

8.2 ascending runs in mappings 137

Finally, we obtain the following explicit solution for the numbers
Fn,m = TnP{Fn = m} = n![znvm]F(z, v) of size-n trees with exactly m
runs:

Fn,m =

(
n− 1
m− 1

) m−1

∑
`=0

(`+ 1)n−1(−1)m−1−`
(

m− 1
`

)
.

These numbers can also be described with the help of the Stirling
numbers of second kind. Indeed, since the Stirling numbers of second
kind {n

m} satisfy
{

n
m

}
=

1
m!

m

∑
`=0

(
m
`

)
(−1)m−``n, (27)

we obtain the following for n ≥ 1:

Fn,m =

(
n− 1
m− 1

) m

∑
`=1

`n−1(−1)m−`
(

m− 1
`− 1

)

=

(
n− 1
m− 1

) m

∑
`=1

`n−1(−1)m−` ·
((

m
`

)
−
(

m− 1
`

))

=

(
n− 1
m− 1

)(
m!
{

n− 1
m

}
+ (m− 1)!

{
n− 1
m− 1

})

=

(
n− 1
m− 1

)
· (m− 1)!

(
m
{

n− 1
m

}
+

{
n− 1
m− 1

})

=

(
n− 1
m− 1

)
· (m− 1)!

{
n
m

}

= (n− 1)m−1
{

n
m

}
(28)

In our studies of runs in mappings and of the numbers Rn we will
however not use these exact numbers, we only require the generating
function F(z, v) computed above in (26).

Runs in (connected) mappings

Having computed the generating functions F(z, v) of ascending runs
in trees in the previous section, we now turn to our actual problem,
namely the enumeration of mappings by size and number of ascend-
ing runs. We introduce the following bivariate generating function

R(z, v) = ∑
n≥0

∑
m≥0

P{Rn = m}Mn
zn

n!
vm, (29)

with Mn = nn the number of n-mappings. Actually, it is easier to
study the quantity for connected mapping graphs first. We thus in-
troduce the corresponding g.f. C(z, v). Due to the combinatorial con-
struction of mappings as sets of connected mappings (see Example 2.27),
it holds that

R(z, v) = eC(z,v).

138 ascending runs in mappings

...T1 TrT2

C0

...T1 TrT2

T0
i i

1 1

Figure 34: Decomposition of a connected mapping with respect to its small-
est node

As for trees, we decompose a connected mapping graph according
to the node labelled 1. Here, we have to consider three different cases,
two of which are depicted in Figure 34.
Case (1): The node 1 is a cyclic node in a cycle of length one. In this
case the mapping graph is simply a tree with root node 1 and an
additional loop-edge (1, 1). We thus have exactly the same situation
as in the first case for trees. See the left hand side of Figure 33. The
contribution to Cn,m is therefore:

C(1)
n,m = ∑

r≥1

1
r! ∑

∑ ni=n−1
∑ mi=m−1

Fn1,m1 · · · Fnr ,mr ·
(

n− 1
n1, . . . , nr

)
,

Case (2): The node 1 is a cyclic node in a cycle containing more than
one element; this case is depicted on the left hand side of Figure 34.
The structure of such a mapping can be understood as follows: There
is a (non-empty) tree T0 in which the node 1 has been attached to
some node i. Moreover, the root of T0 is attached to the node 1, thus
forming a cycle consisting of the path from i to the root of T0 and
i. Since 1 can have arbitrarily many children, we pick a set of r ≥ 0
subtrees and attach them to 1. Whether the node 1 contributes to a
new run or not depends on whether it is attached at the beginning
or somewhere in the middle of a run (as in the second case for trees).
Indeed, if T0 is of size n0 and has m0 runs itself, there are m0 pos-
sibilities of attaching 1 at the begin of a run in T0 thus not creating
a new run. Moreover, there are (n0 − m0) possibilities of attaching 1
somewhere in the middle of a run and of creating a new run. The
contribution to Cn,m is therefore:

C(2)
n,m =∑

1≤n0≤n−1
1≤m0≤m

m0 ∑
r≥0

1
r! ∑

∑ ni=n−n0−1
∑ mi=m−m0

Fn0,m0 · · · Fnr ,mr

(
n− 1

n0, . . . , nr

)

+ ∑
1≤n0≤n−1
1≤m0≤m

(n0 −m0) ·∑
r≥0

1
r! ∑

∑ ni=n−n0−1
∑ mi=m−m0−1

Fn0,m0 · · · Fnr ,mr

(
n− 1

n0, . . . , nr

)

8.2 ascending runs in mappings 139

Case (3): The node 1 is not a cyclic node; this case is depicted on
the right hand side of Figure 34. Here, the node 1 is attached to some
node i of a connected mapping C0 and a set of r ≥ 0 trees are attached
to 1. Again, the node 1 contributes to a new run or not depending on
where it is attached. Similarly as in the second case, we obtain that
the contribution to Cn,m is:

C(3)
n,m =∑

1≤n0≤n−1
1≤m0≤m

m0 ∑
r≥0

Cn0,m0

r! ∑
∑ ni=n−n0−1
∑ mi=m−m0

Fn1,m1 · · · Fnr ,mr

(
n− 1

n0, . . . , nr

)

+ ∑
1≤n0≤n−1
1≤m0≤m

(n0 −m0) ·∑
r≥0

Cn0,m0

r! ∑
∑ ni=n−n0−1

∑ mi=m−m0−1

Fn1,m1 · · · Fnr ,mr

(
n− 1

n0, . . . , nr

)

=(n− 1)![znvm]zv exp(F) (zCz + (1− v)Cv)

Adding up the contributions of these three cases and summing over
n ≥ 1 and m ≥ 1 we obtain the following:

Cz = v exp(F) · (1 + (1− v)Fv + zFz + (1− v)Cv + zCz)

Thus, the bivariate generating function C(z, v) is defined by the fol-
lowing partial differential equation:

Cz (1− zv · exp(F)) = v(1− v) exp(F)Cv + Fz

where Fz(z, v) is defined by Equation (26).
Using the auxiliary function H(z, v) that is defined by

exp(H) =
exp(F)− 1 + v

v
(30)

and that satisfies the following functional equation

z =
H

veH + 1− v
(31)

we can solve this PDE. We do not provide details here, since the ap-
proach is very similar to the one used for parking functions in Sec-
tion 9.4 in Chapter 9. We find that the solution is given as follows:

C(z, v) = ln

(
veH(z,v) + 1− v

veH(z,v)
(
1− H(z, v)

)
+ 1− v

)
,

with H(z, v) as given above. Checking that this function indeed is a so-
lution to the partial differential equation can be done easily by using
implicit differentiation in order to compute the partial derivatives.

We thus also obtain the solution for ascending runs in arbitrary
mappings:

R(z, v) =
veH(z,v) + 1− v

veH(z,v)
(
1− H(z, v)

)
+ 1− v

=
H/z

H/z− Hv exp(H)
=

1
1− zv · exp(H(z, v))

(32)

with H(z, v) defined above.

140 ascending runs in mappings

Exact enumeration formula and asymptotic distribution

Having found the generating functions F(z, v) and R(z, v) for trees
and mappings, respectively, we can prove the following interesting
connection between ascending runs in trees and in mappings:

Theorem 8.4. Let Fn,m denote the number of Cayley trees of size n with
exactly m ascending runs and Rn,m the number of n-mappings with exactly
m ascending runs. Then for all n ≥ 1 and m ≥ 1 the following identity
holds:

Rn,m = n · Fn,m.

Proof. We will prove the assertion above at the level of generating
functions. Combining Equation (30) and (32) we have:

R(z, v) =
1

1− z · (exp(F(z, v)− 1 + v))
.

Moreover, implicit differentiation of (26) with respect to z leads to:

Fz(z, v) =
exp(F(z, v))− 1 + v

1− z · (exp(F(z, v)− 1 + v))
.

Thus one easily sees that

R(z, v) = 1 + z · Fz(z, v)

Extracting coefficients for n ≥ 1 and m ≥ 1 leads to

Rn,m = n![znvm]R(z, v) = n![zn−1vm]Fz(z, v) = n · Fn,m

A combinatorial proof of this result can be found in Section 8.2.
Combining this result with the formula obtained for Fn,m in Equa-

tion (28) on page 137, we obtain the following.

Theorem 8.5. The number Rn,m of n-mappings with exactly m runs is
given as follows:

Rn,m = nm
{

n
m

}
=

n!
(n−m)!

{
n
m

}
. (33)

In order to show that the random variable Rn has linear mean
and variance and that it is asymptotically normal distributed when
suitably standardized, we apply H.-K. Hwang’s quasi-power theo-
rem [98]. We then obtain the following:

8.2 ascending runs in mappings 141

Theorem 8.6. Let Rn denote the random variable counting the number of
ascending runs in a random n-mapping. Then the expectation and variance
satisfy

E(Rn) = (1− e−1)n +O(1) and

V(Rn) = (e−1 − 2e−2)n +O(1).

Furthermore, the standardized random variable

Rn −E(Rn)√
V(Rn)

is asymptotically Gaussian distributed with a rate of convergence of order
O(n−1/2).

Note that Theorem 8.4 implies that the random variable Rn count-
ing the number of runs in n-mappings and the random variable Fn

counting the number of runs in trees of size n follow exactly the same
distribution. The theorem above thus holds for Fn as well.

Proof. Before we get our hands on the bivariate generating function
R(z, v) defined in Equation (29), we will need to take a closer look at
the function H(z, v) from Equation (31) that is involved in the func-
tional equation (32) for R(z, v). Once we have a singular expansion
of H(z, v), we can obtain an expansion of R(z, v). Extracting coeffi-
cients [zn] in R(z, v) will then then allow us to obtain an asymptotic
expansion of the probability generating function pn(v) and the mo-
ment generating function gn(s) = pn(es). This will finally allow us
to apply the quasi-power theorem (Theorem 2.36) and to obtain the
statement of this Theorem.

Asymptotic expansion of H. The function H = H(z, v) is defined by a
functional equation of the form H = zϕ(H) where the function ϕ is
defined as ϕ(u) = v · eu + 1− v. It is thus amenable to the Singular-
Inversion theorem (Theorem 2.32). The first and third condition on
the function ϕ(u) can easily be checked. Since the constant term ϕ0

is equal to 1 and ϕ1 = v they are clearly fulfilled. For the second con-
dition, we need the characteristic equation (see Equation (9)). Since
ϕ′(u) = veu it is given as:

ϕ(τ)− τ · ϕ′(τ) = 0

⇔ veτ + 1− v− τ · veτ = 0

⇔ τ = 1 +
1− v
veτ

. (34)

For v = 1 we have τ = 1 and whenever v is close to 1 a unique
solution to Equation (34) exists as can be seen by applying the Implicit
Function Theorem. Note that τ is a function of v. This will however
be omitted in the notation and in the following, τ will always denote
the unique solution of Equation (34). Theorem 2.32 then implies that

142 ascending runs in mappings

the unique dominant singularity of H, seen as a function in z, is at
z = ρ, with:

ρ =
1

ϕ′(τ)
=

1
veτ

(35)

(34)
=





1
e , if v = 1,
τ−1
1−v , if v 6= 1.

(36)

Before we continue by giving the asymptotic expansion of H, we want
to characterize its unique dominant singularity ρ with the help of a
functional equation. From (34) and ρ = τ/ϕ(τ) it follows that:

τ = 1 + ρ(1− v) and

τ = ρ · (veτ + 1− v)

= ρ ·
(

ve1+ρ(1−v) + 1− v
)

.

Dividing by ρ then leads to

1
ρ
+ 1− v = ve1+ρ(1−v) + 1− v,

or, equivalently,

ρ =
1

v · e · eρ(1−v)
.

Thus

(1− v)ρeρ(1−v) =
1− v
v · e (37)

and ρ can be expressed with the help of the Lambert W function for
v 6= 1 but in a neighbourhood of 1:

ρ =
1

1− v
W
(

1− v
ev

)
.

Note that the above expression is not defined for v = 1. However,
taking limits as v tends to 1, the right-hand side tends to exp(−1) as
expected from Equation (36).

According to Theorem 2.32 the function H admits the following
asymptotic expansion around its unique dominant singularity ρ, i.e,
for z→ ρ:

H(z, v) =τ −
√

2ϕ(τ)

ϕ′′(τ)
·
√

1− z
ρ
+ K ·

(
1− z

ρ

)
+O

(
1− z

ρ

)3/2

,

=τ −
√

2τ

√
1− z

ρ
+ K ·

(
1− z

ρ

)
+O

(
1− z

ρ

)3/2

,

where K is a computable constant that will not be needed explicitly
in the following.

8.2 ascending runs in mappings 143

Asymptotic expansion of R. We can now use this result in order to de-
scribe the analytic behaviour of the function R(z, v). Indeed, R inher-
its a unique dominant singularity at z = ρ from H. This can be seen
as follows: Let us first recall that (R(z, v))−1 = 1− zv · exp(H(z, v)).
Thus, R has a singularity whenever zv · exp(H) = 1 or equivalently,
whenever H = − ln(zv). Using the functional equation for H given
in Equation (31), this is equivalent to:

z =
− ln(zv)

v · exp(− ln(zv)) + 1− v

⇔1 =
− ln(zv)

1 + z− zv

⇔z exp(z(1− v)) =
1
ev

which is exactly the same as Equation (37) for ρ. Thus z = ρ is the
unique dominant singularity of R.

In order to provide the asymptotic expansion of R for z→ ρ, let us
write z as (z− ρ) + ρ and H as (H − τ) + τ:

1
R

= 1− vρeτ · eH−τ + vρ

(
1− z

ρ

)
eτ · eH−τ

= 1− eH−τ +

(
1− z

ρ

)
· eH−τ

since vρeτ = 1 by definition of ρ (see Equation (35)). Using the power
series expansion of exp and the asymptotic expansion for H(z, v) we
obtain the following (for z→ ρ):

eH−τ = 1 + (H − τ) +O((H − τ)2)

= 1−
√

2τ

√
1− z

ρ
+O(1− z

ρ
)

and thus

1
R

= 1− 1 +
√

2τ

√
1− z

ρ
+O(1− z

ρ
).

Finally, with τ = 1 + ρ(1− v), we obtain

R(z, v) =
1

√
2τ
√

1− z
ρ +O

(
1− z

ρ

)

=
1√

2
√

1 + ρ(1− v)
√

1− z
ρ

·
(

1 +O
(√

1− z
ρ

))
. (38)

144 ascending runs in mappings

Asymptotic expansion of pn(v). Let us first apply Theorem 2.31 (Sin-
gularity Analysis) in order to obtain the asymptotics of the coeffi-
cients of R(z, v). It yields

[zn]R(z, v) =
1
ρn [z

n]R(zρ, v)

=
1
ρn ·

[
1√

2
√

1 + ρ(1− v)
·
(

n + 1
2 − 1
n

)
+O

(
1
n

)]

=
1
ρn ·

1√
2
√

1 + ρ(1− v)
· 1√

πn
·
(

1 +
√

nO
(

1
n

))
.

Since pn(v) = n!/nn · [zn]R(z, v), we obtain the following expansion
of the probability generating function by applying Stirling’s formula:

pn(v) =
n!
nn

1
ρn ·

1√
2
√

1 + ρ(1− v)
· 1√

πn
·
(

1 +O
(

1√
n

))

=
nn
√

2πn
ennn ·

(
1 +O

(
1
n

))
1
ρn

· 1√
2
√

1 + ρ(1− v)
· 1√

πn
·
(

1 +O
(

1√
n

))

=
1

(e · ρ)n ·
√

1 + ρ(1− v)
·
(

1 +O
(

1√
n

))
(39)

Applying the quasi-power theorem. The expansion (39) now immedi-
ately gives an asymptotic expansion for the moment generating func-
tion:

gn(s) =
1

(e · ρ)n ·
√

1 + ρ(1− es)
·
(

1 +O
(

1√
n

))

= exp
(
−n · ln(e · ρ)− ln

(√
1 + ρ(1− es)

))

·
(

1 +O
(

1√
n

))

This is precisely the situation where the quasi-power theorem, Theo-
rem 2.36, can be applied. The involved functions are here defined as
follows:

φn = n, U(s) = − ln(e · ρ),
κn =

√
n and V(s) = − ln

(√
1 + ρ(1− es)

)
.

Note once again that ρ is not a constant but depends on es. We only
need to check the variability condition U′′(0) 6= 0; the other condi-
tions are clearly fulfilled. For this purpose, let us use Equation (35)
and write U(s) as follows:

U(s) = − ln
(e

eseτ

)
= −1 + s + τ.

8.2 ascending runs in mappings 145

We thus obtain that the first and second derivative of U(s) are given
as follows:

U′(s) = 1 + τ′(es) · es

U′′(s) = es ·
(
τ′′(es) + τ′(es)

)
,

where τ is viewed as a function in v = es. In order to determine τ′

and τ′′, we will make use of implicit differentiation and the functional
equation for τ given in (34):

τ′ = − 1
v2eτ

− 1− v
veτ

· τ′, implying τ′ =
1

v · (v− 1− veτ)
.

Furthermore,

τ′′ =− (v− 1− veτ) + v · (1− eτ − veτ · τ′)
v2(v− 1− veτ)2

=
eτ

v(v− 1− veτ)3 +
2veτ + 1− 2v

v2(v− 1− veτ)2 .

Recalling that τ = 1 for es = v = 1, we obtain:

U′(0) = 1 + τ′(1) = 1 +
1

−eτ(1)

= 1− e−1 ≈ 0.632 . . . ,

U′′(0) = τ′′(1) + τ′(1) =
e
−e3 +

2e− 1
e2 − e−1

= −2e−2 + e−1 ≈ 0.0972

In a similar way, we could also determine V ′(0) and V ′′(0). Since
the calculations are rather tedious and we are not interested in the
additive constants in E(Rn) and V(Rn)), we omit this here. It suffices
to note that V ′(0) and V ′′(0) are both real constants. This finally gives
us the desired result that

E(Rn) = (1− e−1)n +O(1) and V(Rn) = (e−1 − 2e−2)n +O(1),

and that the standardized random variable (Rn − E(Rn))/
√

V(Rn)

converges to a standard normal distribution. Moreover, since κ−1
n =

n−1/2 = φ−1/2
n , the speed of convergence is of order O(n−1/2).

Bijective proofs

In the previous section, we proved two results about ascending runs
in trees and mappings where a combinatorial, i.e., bijective explana-
tion would be very desirable. First, the fact that Rn,m = n · Fn,m and
second the fact that the numbers Rn,m can very easily be expressed
with the help of the Stirling numbers of the second kind. In this Sec-
tion we will thus provide bijective proofs for these statements.

146 ascending runs in mappings

Theorem 8.7. There is a bijection between pairs (T, w) where T is a tree of
size n with exactly m ascending runs and w is a node in T and n-mappings
f with exactly m ascending runs.

Proof. This statement follows quite directly form Proposition 7.3. For
a pair (T, w), let f be its image under the bijection described in The-
orem 7.1. We need to show the following: A node v is at the start of
a run in T if and only if v is at the start of a run in f . As remarked
earlier, a node v is at the start of a run in a tree or mapping if and only
if all children or preimages x of v have labels larger than x. Then the
statement of this theorem follows by negating the second property in
Proposition 7.3.

Example 8.8. As described in Chapter 7, the pair (T, 1) where T is
depicted in Figure 29 is identified with the mapping fex as depicted in
Figure 32. As can be seen very easily both T and fex have 13 ascending
runs and the nodes that are at the start of a run are the following:
1, 2, 3, 4, 5, 6, 8, 9, 12, 13, 15, 18 and 19. a

Now let us turn to the second interesting fact that asks for a bijec-
tive proof, namely that the number Rn,m of n-mappings with m as-
cending runs can be expressed with the help of the Stirling numbers
of the second kind as in Theorem 33. We shall prove the following:

Theorem 8.9. There is a bijection between the set of n-mappings with ex-
actly m runs and the set of pairs (S, x), where S is a set-partition of [n]
into m parts and x = (n1, . . . , nm) is an integer sequence of length m.
The set partition is given as S = (S1, S2, . . . , Sm) where the parts are or-
dered decreasingly according to the largest element in each part, i.e., it holds
max(S1) > max(S2) > · · · > max(Sm). The sequence x then has to fulfil
the following restriction: nj ∈ [n] \

(⋃j−1
i=1 min{` ∈ Si : ` > max(Sj)}

)
.

The idea of the bijection is to successively decompose the mapping
into ascending runs. This is done by starting with a run ending at the
largest element of the mapping, then one ending at the next-largest
element that has not been involved yet aso. The runs then correspond
to blocks of the partition. In order to keep track of how these runs
where “glued” together and to be able to reconstruct the mapping,
we additionally store the image of the last element of each run in the
sequence x.

Proof. First we remark that this indeed will prove that

Rn,m = nm
{

n
m

}

since the number of set-partitions of [n] into m parts is given by {n
m}

and the number of sequences x satisfying the restrictions is given by
n · (n− 1) · · · (n−m + 1) = nm.

8.2 ascending runs in mappings 147

S1 = {19} n1 = 13

S2 = {18} n2 = 13

S3 = {17, 13} n3 = 1

S4 = {16, 9} n4 = 4

S5 = {15} n5 = 7

S6 = {14, 4} n6 = 4

S7 = {12} n7 = 7

S8 = {11, 7, 6} n8 = 17

S9 = {10, 8} n9 = 10

S10 = {5} n10 = 17

S11 = {3} n11 = 10

S12 = {2} n12 = 1

S13 = {1} n13 = 7

1

7

11

17

5

2

6
12

15

13

15

19
18

10

3 8

4 14

16

9

Figure 35: Example of the bijection described in the proof of Theorem 8.9
for the mapping depicted in Figure 11

To prove the theorem we consider an n-mapping with exactly m
runs and iterate the following procedure, where we colour the ele-
ments of the mapping until all elements are coloured.

• In the j-th step we consider the largest element in the mapping
which has not been coloured so far; let us denote it by s(j)

1 . Con-

sider all preimages of s(j)
1 with a label smaller than s(j)

1 and, if
there are such ones, take the one with largest label amongst
them; let us denote this element by s(j)

2 . Then iterate this step
with s(j)

2 , i.e., amongst all preimages of s(j)
2 with a label smaller

than s(j)
2 take the one with largest label, which is denoted by s(j)

3 .

After finitely many steps we arrive at an element s(j)
k j

, which
does not have preimages with a smaller label. We then define
the set Sj := {s(j)

1 , . . . , s(j)
k j
}. Note that in the mapping graph this

corresponds to a path s(j)
k j
→ · · · → s(j)

2 → s(j)
1 with increasing

labels on it.

• Additionally we store in nj the image of s(j)
1 . Clearly s(j)

1 is in [n].
Due to the construction further restrictions hold: Indeed, if i < j,
nj cannot be the smallest element in Si larger than s(j)

1 , since

otherwise s(j)
1 would have been chosen during the construction

of the set Si.

• Finally colour all elements of the mapping contained in Sj.

Since the mapping contains exactly m runs and the smallest ele-
ment in each set Sj corresponds to the minimal element of a run the

148 ascending runs in mappings

procedure stops after exactly m steps. It thus defines a pair of a set
partition S = (S1, . . . , Sm) and a sequence x = (n1, . . . , nm) with the
given restrictions.

If the pair (S, x) is given, the corresponding mapping can easily be
reconstructed. Indeed, the partition S gives us a decomposition of the
mapping into ascending runs and the sequence x tells us how these
runs have to be linked to each other. The inverse of this bijection can
therefore be defined in a straightforward way.

Example 8.10. The construction of the partition S and the sequence x
for the mapping described in Figure 11 can be found in Figure 35. Let
us exemplarily explain how the set S8 is constructed. At this point,
the elements in ∪7

i=1Si, i.e., 19, 18, 17, 13, 16, 9, 15, 14, 4 and 12, have
already been coloured. Thus, the largest element that has not been
coloured so far is 11 = s(8)1 . For s(8)2 , we consider the preimages of 11
that have a label smaller than 11. The only such element is 7 and thus
s(8)2 = 7. Next, the preimages of 7 are 6, 12 and 15 and thus s(8)3 = 6.
Since 6 does not have any preimages, we stop here and S8 = {11, 7, 6}.
Since the image of 11 is 17, we set n8 = 17. a

8.3 summary of the results

Let us briefly discuss the results of this chapter.
We started with a study of ascents in mappings – which is easy

since the probability of a node i being an ascent in a random n-
mapping is simply (n− i)/n. The results obtained here can be trans-
lated to trees, where the study of ascents is less straightforward.

As can be seen very easily a permutation with k ascents consists
of exactly k + 1 descending runs and thus the study of these two
permutation statistics is equivalent. This is in contrast to the case of
mappings, where results on ascents can not directly be translated to
results on descending or ascending runs. We thus proceeded with
the study of ascending runs in mappings which was the main focus
of this chapter. Using a PDE we obtained exact enumeration formulæ
involving the Stirling numbers of the second kind.

Both for ascents and for ascending runs in mappings (and trees), we
could also obtain limiting distribution results and show convergence
to a normal distribution. Let us compare this to the known results for
the Eulerian numbers that enumerate permutations by their length
and their number of ascents.

In [46] it is shown that the random variable Xn counting the num-
ber of ascents in a random permutation of length n satisfies a central
limit theorem. Indeed, with E(Xn) =

n−1
2 and V(Xn) =

n+1
12 it holds

that the standardized random variable (Xn − E(Xn))/
√

V(Xn) con-
verges in distribution to a standard normal distribution. Equivalently,
the random variable Yn = Xn + 1 counting the number of ascending

8.3 summary of the results 149

runs in a random permutation of length n satisfies a central limit the-
orem with E(Yn) =

n+1
2 and V(Yn) = V(Xn). Thus, both for ascents

and for ascending runs we have E ∼ n/2 and V ∼ n/12 = 0.083̇ · n.
Here, we could show similar results for ascending runs and ascents

in trees and mappings. Indeed, we also obtained a linear mean and
variance and convergence in distribution to a standard normal distri-
bution of the standardized random variable. However, the involved
coefficients are not the same:

• E(An) ∼ n/2 as well as V(An) ∼ n/6 for ascents and

• E(Rn) ∼ (1− e−1)n with 1− e−1 ≈ 0.632 . . . as well as V(Rn) ∼
(e−1 − 2e−2)n with e−1 − 2e−2 ≈ 0.0972 . . . for ascending runs.

9
PA R K I N G I N T R E E S A N D M A P P I N G S

This chapter is based on joint work with Alois Panholzer. A manuscript
has recently been submitted to a journal and a preprint can be found
on arxiv.org [44].

In this chapter, we apply the well-known concept of parking func-
tions to Cayley trees and to mappings by considering the nodes as
parking spaces and the directed edges as one-way streets: Each driver
has a preferred parking space and starting with this node she1 follows
the edges in the graph until she either finds a free parking space or
all reachable parking spaces are occupied. If all drivers are successful
we speak about a parking function for the tree or mapping.

A more detailed introduction to the topic of this chapter, related
literature and the organization of this chapter can be found in the
following section.

9.1 introduction

Parking functions are combinatorial objects originally introduced by
Konheim and Weiss [113] during their studies of the so-called linear
probing collision resolution scheme for hash tables. Since then, park-
ing functions have been studied extensively and many connections
to various other combinatorial objects such as forests, hyperplane ar-
rangements, acyclic functions and non-crossing partitions have been
revealed, see, e.g., [146].

An illustrative description of parking functions is as follows: con-
sider a one-way street with n parking spaces numbered from 1 to n
and a sequence of m drivers with preferred parking spaces s1, s2, . . . ,
sm. The drivers arrive sequentially and each driver k, 1 ≤ k ≤ m, tries
to park at her preferred parking space with address sk ∈ [n]. If it is
free she parks. Otherwise she moves further in the allowed direction,
thus examining parking spaces sk + 1, sk + 2, . . . , until she finds a free
parking space where she parks. If there is no such parking space she
leaves the street without parking. A parking function is then a se-
quence (s1, . . . , sm) ∈ [n]m of addresses such that all m drivers are
able to park. It has been shown already in [113] that there are exactly
Pn,m = (n+ 1−m) · (n+ 1)m−1 parking functions for n parking spaces
and 0 ≤ m ≤ n drivers.

The notion of parking functions has been generalized in various
ways, yielding, e.g., (a, b)-parking functions [159], bucket parking
functions [23], x-parking functions [148], or G-parking functions [135].

1 In the following we use “she” as a generic pronoun.

151

152 parking in trees and mappings

3

8 1

4

2 7

6

5

(2, 8, 7, 2)
⇒

3

8 1

4

2 7

6

5

Figure 36: An example of a (8, 4)-tree parking function

Another natural generalization that has however not been considered
yet is the following: Starting with the original definition of park-
ing functions as a vivid description of a simple collision resolution
scheme, we apply it to other objects of interest, namely, to rooted
trees and mappings.

First, when allowing branches in the road net, this collision reso-
lution scheme leads to a natural generalization of parking functions
to rooted labelled trees, i.e., Cayley trees. Consider a Cayley tree T
of size |T| = n. As usual, we assume that the edges of the tree
are oriented towards the root node, which we will often denote by
root(T). We thus view edges as “one-way streets”. Now, we consider
a sequence of m drivers, where again each driver has her preferred
parking space which in this case is a node in the tree, respectively its
label. The drivers arrive sequentially and each driver k, 1 ≤ k ≤ m,
tries to park at her preferred parking space with address sk ∈ [n]. If
it is free she parks. Otherwise she follows the edges towards the root
node and parks at the first empty node, if there is such one. If there is
no empty node, she leaves the road net, i.e., the tree without parking.
A sequence s ∈ [n]m of addresses is then called a parking function
for the tree T, if all drivers are successful, i.e., if all drivers are able
to find a parking space. More precisely, we will call a pair (T, s) an
(n, m)-tree parking function, if T is a rooted labelled tree of size n and
s ∈ [n]m is a parking function for T with m drivers.

Example 9.1. Consider the tree T of size 8 depicted in Figure 36.
Moreover, consider the sequence s = (2, 8, 7, 2) of addresses of pre-
ferred parking spaces for 4 drivers. All drivers are successful, thus
(T, s) yields a (8, 4)-tree parking function. Conversely, the sequence
(2, 8, 8, 2) is not a parking function for T, since the fourth driver is not
able to park. a

Second, one can go a step further and consider structures in general
for which the simple collision resolution scheme is applicable, i.e., for
which a driver reaching an occupied parking space can move on in
a unique way to reach a new parking space. This naturally leads to
a generalization of parking functions to mappings: Consider the set
[n] of addresses and a mapping f : [n] → [n]. If a driver reaches

9.1 introduction 153

5

1

18

1315

11
8

12

2

17

10

6

4

16
19

7 14

3

9

(10, 5, 14, 10, 13, 14)

⇓

5

1

18

1315

11
8

12

2

17

10

6

4

16
19

7 14

3

9

Figure 37: An example of a (19, 6)-mapping parking function

address i and is unable to park there, she moves on to the parking
space with address j = f (i) for her next trial. The road net is then the
functional digraph G f of the mapping f . Again, the drivers arrive se-
quentially and each driver has her preferred parking space which is a
node in the graph. If it is empty she will park, otherwise she follows
the edges and parks at the first empty node, if such one exists. Oth-
erwise she cannot park since she would be caught in an endless loop.
A sequence s ∈ [n]m of addresses is then called a parking function
for the mapping f if all drivers are successful, i.e., all drivers find
a parking space. A pair (f , s) is called an (n, m)-mapping parking
function, if f is an n-mapping and s ∈ [n]m is a parking function for
f with m drivers. Note that we will always identify mappings with
their functional digraphs in the course of this chapter.

Example 9.2. Consider the mapping f of size 19 depicted in Fig-
ure 37 and the sequence s = (10, 5, 14, 10, 13, 14) of addresses of pre-
ferred parking spaces for 6 drivers. All drivers are successful, thus
(f , s) yields a (19, 6)-mapping parking function. When a new driver
with preferred parking space 7 arrives, she is not able to park. Thus
(10, 5, 14, 10, 13, 14, 7) is not a parking function for f . a

To each (n, m)-tree parking function (T, s) (or (n, m)-mapping park-
ing function (f , s)), we associate the corresponding output-function
π := π(T,s) (or π := π(f ,s)), with π : [m] → [n], where π(k) is the
address of the parking space (i.e., the label of the node) in which the
k-th driver ends up parking. Of course, π is an injection and for the
particular case m = n a bijection; thus in the latter case one may speak
about the output-permutation π. This notion will be useful in subse-
quent considerations describing characterizations and bijections for
tree and mapping parking functions.

154 parking in trees and mappings

Example 9.3. Consider again the tree parking function represented
in Figure 36. The parking positions of the drivers are given by the
sequence (2, 8, 7, 4) defining the output-function π(T,s). a

Obviously, both concepts of parking functions generalize ordinary
parking functions: first, each ordinary parking function on [n] can be
identified with a parking function for the linear tree (i.e., the chain)
1 − 2 − · · · − n with root n, and second, each parking function for
a tree T of size n can be identified with a parking function for the
functional digraph which is obtained from T by adding a loop-edge
to the root.

We start our studies of tree and mapping parking functions by giv-
ing some of their basic properties and characterizations in Section 9.2.
This extends corresponding properties and characterizations for or-
dinary parking functions. As an application we can characterize the
extremal values for the number of parking functions with 0 ≤ m ≤ n
drivers amongst all size-n trees.

The main focus of this chapter lies on the exact and asymptotic
enumeration of the total number of (n, m)-tree parking functions and
(n, m)-mapping parking functions. This is done in Sections 9.3 and
9.4. We are interested in the exact and asymptotic behaviour of the
quantities

Fn,m := |{(T, s) : T ∈ Tn, s ∈ [n]m a parking function for T}|,
Mn,m := |{(f , s) : f ∈ Mn, s ∈ [n]m a parking function for f }|,

counting the total number of (n, m)-tree parking functions and (n, m)-
mapping parking functions.

In order to get exact enumeration results we use suitable combi-
natorial decompositions of the objects which give recursive descrip-
tions of the quantities of interest. The recurrences occurring can be
treated by a generating functions approach yielding partial differen-
tial equations. These differential equations allow for implicit charac-
terizations of the generating functions. This treatment is divided into
two main steps: First, in Section 9.3 we treat the important particular
case m = n, i.e., we consider parking functions where the number of
drivers is equal to the number of parking spaces. Second, the general
case in which the number of drivers m is less than or equal to the
number of parking spaces n is then treated in Section 9.4.

To give a complete picture of the asymptotic behaviour of Mn,m

(and thus also Fn,m) depending on the growth of m w.r.t. n requires a
more detailed study using saddle point methods. In Section 9.4, we
consider the probability pn,m := Mn,m/nn+m = Fn,m/nn+m−1 that a
randomly chosen pair (f , s) of an n-mapping f and a sequence s of m
addresses is indeed a parking function and thus the probability that
all drivers are successful.

In Section 9.5 we summarize the results of this chapter.

9.2 basic properties of parking functions for trees and mappings 155

9.2 basic properties of parking functions for trees and

mappings

In this section we will state and prove some basic facts on parking
functions for trees and mappings. The following notation will turn
out to be useful: Given an n-mapping f , we define a binary relation
� f on [n] via

i � f j :⇐⇒ ∃k ∈N : f k(i) = j.

Thus i � f j holds if there exists a directed path from i to j in the
functional digraph G f , and we say that j is a successor of i or that i is
a predecessor of j. In this context a one-way street represents a total
order, a tree represents a certain partial order, where the root node
is the maximal element (to be precise, a partially ordered set with
maximal element, where every interval is a chain – this is also called
tree in set theory) and a mapping represents a certain pre-order (i.e.,
binary relation that is transitive and reflexive).

Changing the order in a parking function

For ordinary parking functions the following holds: changing the or-
der of the elements of a sequence does not affect its property of being
a parking function or not. This fact can easily be generalized to park-
ing functions for mappings (which might also be trees).

Lemma 9.4. A function s : [m] → [n] is a parking function for a mapping
f : [n] → [n] if and only if s ◦ σ is a parking function for f for any
permutation σ on [m].

Proof. Since each permutation σ on [m] can be obtained by a sequence
of transpositions of consecutive elements, i.e., σ = τr ◦ τr−1 ◦ · · · ◦ τ1,
with τi = (ki ki + 1), 1 ≤ ki ≤ m− 1, 1 ≤ i ≤ r, it suffices to prove
the following: if s is a parking function for f , then s ◦ σ is a parking
function for f for any transposition σ of consecutive elements, i.e., for
any permutation σ on [m] that swaps two consecutive elements and
leaves the other elements fixed. The statement for general σ follows
from this by iteration.

Thus, let s : [m] → [n] be a parking function for f : [n] → [n] and
s′ = s ◦ σ, where σ = (k k + 1), with 1 ≤ k ≤ m− 1, i.e., σ(k) = k + 1,
σ(k + 1) = k, and σ(j) = j otherwise. In other words, s′ is the parking
sequence obtained from s by changing the order of the k-th and the
(k + 1)-th car.

In the following the mapping f is fixed and we denote by πs =

π(f ,s) the output-function of the parking function s and consider the
parking paths of the drivers: the path yj = sj ; πs(j) denotes the
parking path of the j-th driver of s in the mapping graph G f start-
ing with the preferred parking space sj and ending with the parking
position πs(j). In order to show that s′ is still a parking function, we

156 parking in trees and mappings

have to show that all cars can successfully be parked using s′. In the
following we do this and also determine the output-function πs′ of
s′ (and thus the parking paths y′j = s′j ; πs′(j), 1 ≤ j ≤ m, of the
drivers of s′).

Clearly, the parking paths of the first (k− 1) cars are not affected
by the swapping of the k-th and the (k + 1)-th car and we have that
πs′(1) = πs(1), . . . , πs′(k− 1) = πs(k− 1). For the k-th and the (k+ 1)-
th car we will distinguish between two cases according to the parking
paths yk = sk ; πs(k) and yk+1 = sk+1 ; πs(k + 1).

(a) Case yk ∩ yk+1 = ∅: Since the parking paths yk and yk+1 are dis-
joint, swapping the k-th and the (k+ 1)-th car simply also swaps
the corresponding parking paths, i.e., y′k = yk+1 and y′k+1 = yk,
and in particular πs′(k) = πs(k + 1) and πs′(k + 1) = πs(k).

(b) Case yk ∩ yk+1 6= ∅: Let us denote by v the first node in the
path yk that also occurs in yk+1. Then, according to the parking
procedure, the parking paths can be decomposed as follows:

yk = sk ; v ; πs(k) and

yk+1 = sk+1 ; v ; πs(k) ; πs(k + 1),

i.e. πs(k + 1) is a proper successor of πs(k), i.e., πs(k) ≺ f πs(k +
1). Thus, when swapping the k-th and the (k + 1)-th car, both
cars can also be parked yielding the parking paths

y′k = sk+1 ; v ; πs(k) and

y′k+1 = sk ; v ; πs(k) ; πs(k + 1).

In particular, we obtain πs′(k) = πs(k) and πs′(k + 1) = πs(k +
1).

Thus, in any case we get {πs(k), πs(k + 1)} = {πs′(k), πs′(k + 1)},
and consequently swapping the k-th and the (k + 1)-th car does not
change the parking paths of the subsequent cars and we obtain πs′(j) =
πs(j), k + 2 ≤ j ≤ m. So all drivers in the parking sequence s′ are suc-
cessful and s′ is indeed a parking function for f .

Alternative characterizations of parking functions

Using the fact that reordering the elements of a function does not
have any influence on whether it is a parking function or not, one
can obtain the following well-known simpler characterization of or-
dinary parking functions (see, e.g., [146]): A sequence s ∈ [n]n is a
parking function if and only if it is a major function, i.e., the sorted
rearrangement s′ of the sequence s satisfies:

s′j ≤ j, for all j ∈ [n].

9.2 basic properties of parking functions for trees and mappings 157

s = (1, 1, 2, 3, 3, 4, 7)

5

3 2

71 6

4

[1] s = (2, 4, 4, 4, 5, 6, 7)

5

3 2

71 6

4

[2]

j 1 2 3 4 5 6 7

p(j) 2 2 4 1 7 1 1

q1(j) 3 2 5 1 7 0 1

q2(j) 3 2 4 3 7 1 1

Figure 38: Exemplifying the characterization of generalized parking func-
tions given in Lemma 9.5 for a tree T of size 7. The sequence s[1]

represented on the left-hand-side does not give a parking func-
tion for T, whereas the sequence s[2] represented on the right-
hand-side does.

This statement can be reformulated in the following way: A se-
quence s ∈ [n]n is a parking function if and only if for every j ∈ [n],
it does not contain more than (n− j) elements that are larger than j.
Or again in other words, there must be at least j elements that are not
larger than j:

| {k ∈ [n] : sk ≤ j} | ≥ j, for all j ∈ [n]. (40)

Now, this characterization of parking functions can easily be gen-
eralized to parking functions for trees and mappings. Indeed, in (40)
we merely need to replace the ≤ and ≥ relation which come from the
order on the elements 1, 2, . . . , n represented by the one-way street of
length n by the binary relation given by the respective tree or map-
ping. The following characterization of (n, n)-mapping parking func-
tions (which might also be trees) is now possible.

Lemma 9.5. Given an n-mapping f and a sequence s ∈ [n]n, let p(j) :=
|
{

i ∈ [n] : i � f j
}
| denote the number of predecessors of j and q(j) :=

|
{

k ∈ [n] : sk � f j
}
| the number of drivers whose preferred parking spaces

are predecessors of j. Then s is a mapping parking function for f if and only
if

q(j) ≥ p(j), for all j ∈ [n].

Example 9.6. Consider the two pairs (T, s[1]) and (T, s[2]) represented
in Figure 38. The sequence s[1] = (1, 1, 2, 3, 3, 4, 7) does not give a park-
ing function for T, whereas the sequence s[2] = (2, 4, 4, 4, 5, 6, 7) repre-
sented on the right-hand-side does. This can be seen in the following
way, where we denote by q1(j) and q2(j) the quantity q(j) for s[1] and

158 parking in trees and mappings

s[2], respectively: for the sequence s[1] we have q1(6) = 0 < 1 = p(6)
thus violating the condition q(j) ≥ p(j), whereas each element p(j) is
smaller or equal to the corresponding element q2(j). a
Proof of Lemma 9.5. First, assume that q(j) < p(j) holds for some j ∈
[n]. Let us denote by P(j) := {i ∈ [n] : i �j j} the set of predecessors
of j. Obviously, if sk 6∈ P(j) then the k-th driver will not get a parking
space in P(j). Thus, at most q(j) = |{k ∈ [n] : sk ∈ P(j)}| drivers are
able to park in P(j). In other words, at least p(j)− q(j) > 0 parking
spaces in P(j) remain free. Since there is the same number of cars and
of parking spaces, this means that at least one driver will not be able
to park successfully. Thus s is not a parking function for f .

Next, assume that q(j) ≥ p(j) holds for all j ∈ [n]. It will be suffi-
cient to show the following: Let s ∈ [n]n be a parking sequence such
that q(j) ≥ p(j) for some j, then node j will be occupied after ap-
plying the parking procedure. Due to the assumption above we may
then conclude that all nodes will be occupied after applying the park-
ing procedure and thus that all n drivers are successful, which means
that s indeed is a parking function for f .

To prove the assertion above we distinguish between two cases:

(a) j is not a cyclic node: Then the set P(j) of predecessors of j is
a tree. If there is a driver k with preferred parking space sk = j
then in any case node j will be occupied. Thus let us assume that
sk 6= j, for all j ∈ [n]. Let us further assume that i1, . . . , ir are the
preimages of j, i.e., f (it) = j, 1 ≤ t ≤ r. Since q(j) ≥ p(j), but no
driver wishes to park at j, it holds that there exists a preimage
i`, such that q(i`) > p(i`). This means that there must be at least
one driver appearing in P(i`) that is not able to get a parking
space in P(i`) and thus, according to the parking procedure,
she has to pass the edge (i`, j). Consequently, node j will be
occupied.

(b) j is a cyclic node: If the edge (j, f (j)) is passed by some driver
during the application of the parking procedure this necessarily
implies that the node j is occupied. Thus let us assume that
the edge (j, f (j)) will never be passed while carrying out the
parking procedure. Then we may remove the edge (j, f (j)) from
G f without influencing the outcome of the parking procedure.
By doing so, node j becomes a non-cyclic node and according
to case (a), node j will be occupied.

Now let us turn to parking functions, where the number of drivers
does not necessarily coincide with the number of parking spaces. It
is well-known and easy to see that a parking sequence s : [m] → [n]
on a one-way street is a parking function if and only if

| {k ∈ [m] : sk ≥ j} | ≤ n− j + 1, for all j ∈ [n]. (41)

9.2 basic properties of parking functions for trees and mappings 159

This characterization can be generalized to (n, m)-tree parking func-
tions as follows.

Lemma 9.7. Given a rooted labelled tree T of size |T| = n and a sequence
s ∈ [n]m. Then s is a tree parking function for T if and only if

|
{

k ∈ [m] : sk ∈ T′
}
| ≤ |T′|, for all subtrees T′ of T containing root(T).

Proof. First, let us assume that there exists a subtree T′ of T containing
root(T), such that q(T′) := |Q(T′)| := | {k ∈ [m] : sk ∈ T′} | > |T′|.
Clearly, the possible parking spaces for any driver k with preferred
parking space sk ∈ T′ form a subset of T′. Here, the number of such
drivers q(T′) exceeds the amount of parking spaces |T′| and thus at
least one of the drivers in Q(T′) will be unsuccessful. Thus s is not a
parking function for T.

Next, let us assume that s is not a parking function for T. Let us fur-
ther assume that ` ∈ [m] is the first unsuccessful driver in s when ap-
plying the parking procedure. We consider the situation after the first
` drivers: Define T′ as the maximal subtree of T containing root(T)
and only such nodes that are occupied by one of the first `− 1 cars.
Of course, since the `-th driver is unsuccessful, the root(T) has to be
occupied by one of the first `− 1 cars, anyway. Due to the maximal-
ity condition of T′, it holds that each driver ` that has parked in T′

must have had her preferred parking space in T′, thus |{k ∈ [`− 1] :
sk ∈ T′}| = |T′|. Since the `-th driver is unsuccessful, her preferred
parking space is also in T′, yielding |{k ∈ [`] : sk ∈ T′}| > |T′|. Of
course, this implies |{k ∈ [m] : sk ∈ T′}| > |T′|, for the subtree T′ of
T containing root(T).

We remark that the characterization above could be also extended
to mapping parking functions (where one has to consider connected
subgraphs of G f containing all cyclic nodes of the respective compo-
nent). Since we will not make use of it in the remainder of this chapter
we omit it here.

Extremal cases for the number of parking functions

Given an n-mapping f : [n] → [n] (which might be a tree), let us
denote by S(f , m) the number of parking functions s ∈ [n]m for f
with m drivers. So far we are not aware of enumeration formulæ for
the numbers S(f , m) for general f . In Sections 9.3 and 9.4 however,
we will compute the total number Fn,m := ∑T∈Tn

S(T, m) and Mn,m :=
∑ f∈Mn

S(f , m) of (n, m)-tree and (n, m)-mapping parking functions.
Before continuing, we first state the obvious fact that isomorphic

mappings (or trees) yield the same number of mapping (or tree) park-
ing functions, since one simply has to adapt the preferred parking
spaces of the drivers according to the relabelling.

160 parking in trees and mappings

Proposition 9.8. Let f and f ′ two isomorphic n-mappings, i.e., there exists
a bijective function σ : [n] → [n], such that f ′ = σ ◦ f ◦ σ−1. Then for
0 ≤ m ≤ n it holds

S(f , m) = S(f ′, m).

Proof. First note that the corresponding functional digraphs G f =

([n], E) and G f ′ = ([n], E′) are isomorphic in the graph theoretic sense,
since

e = (i, j) ∈ E⇔ j = f (i)⇔ σ(j) = σ(f (i))

⇔ σ(j) = f ′(σ(i))⇔ σ(e) = (σ(i), σ(j)) ∈ E′.

It is then an easy task to show via induction that a function s =

(s1, . . . , sm) ∈ [n]m is a parking function for f if and only if s′;=
σ ◦ s = (σ(s1), . . . , σ(sm)) is a parking function for f ′.

In the following we consider the extremal cases of S(f , m). Obvi-
ously, each surjective function s ∈ [n]m is a parking function for every
mapping f ∈ Mn, which yields the trivial bounds

nm ≤ S(f , m) ≤ nm, for f ∈ Mn. (42)

These bounds are actually tight. Indeed, for the identity idn : j 7→ j,
for j ∈ [n], we have S(idn, m) = nm since no collisions may occur.
Moreover, for

cyclen : j 7→





j + 1, for 1 ≤ j ≤ n− 1,

1, for j = n,

a cycle of length n, it holds that S(cyclen, m) = nm.
The situation becomes more interesting when we restrict ourselves

to trees. The following simple tree operation will turn out to be useful
in order to identify the extremal cases. Let T be a rooted labelled tree
and v a node of T. Furthermore, let U be a subtree of T attached
to v such that T \ U is still a tree, i.e., the graph consisting of all
edges not contained in U has one connected component. For a node

w not contained in U, we denote by reallocate
(

T
∣∣∣ U
↓
v
7→ U

↓
w

)
the tree

operation of first detaching the subtree U from v and then attaching
it to w. See Figure 39 for an illustration.

Lemma 9.9. Let T be a rooted labelled tree and w �T v, for two nodes
v, w ∈ T. Furthermore, let U be a subtree of T attached to v that does not
contain w such that T \U is still a tree. Let us denote by T̃ the tree which
is obtained by reallocating U from v to w, i.e.,

T̃ = reallocate
(

T
∣∣∣ U
↓
v
7→ U

↓
w

)
.

Then it holds that
S(T̃, m) ≥ S(T, m).

9.2 basic properties of parking functions for trees and mappings 161

v

w

U

T

⇒
v

w

U

T̃

Figure 39: Illustrating the tree operation of reallocating the subtree U from v
to w in T which yields the tree T̃. Here the nodes v and w satisfy
w �T v, as required in the proof of Lemma 9.9.

Proof. By applying Lemma 9.5 we will show that each parking func-
tion s ∈ [n]m for T is also a parking function for T̃. For this purpose,
let s be a parking function for T and consider a node j in T. We need
to show that q(j) ≥ p(j) implies that q̃(j) ≥ p̃(j), where we denote
by q̃(j) the number of drivers whose preferred parking spaces are
predecessors of j in T̃ and by p̃(j) the number of predecessors of j in
T̃.

We can assume that j lies somewhere on the path from w to v, since
for all other nodes i it holds that p(i) = p̃(i) and q(i) = q̃(i). Now the
following holds:

q̃(j) = q(j) + q(root(U)),

where q(root(U)) corresponds to the number of drivers that want to
park in the subtree U. Similarly, we have:

p̃(j) = p(j) + p(root(U)),

where p(root(U)) = |U| corresponds to the number of nodes in the
subtree U.

Since it holds that q(j) ≥ p(j) and q(root(U)) ≥ p(root(U)), the
desired statement for T̃ holds.

With this lemma we can easily obtain tight bounds on S(T, m).

Theorem 9.10. Let starn be the rooted labelled tree of size n with root node
n and the nodes 1, 2, . . . , n− 1 attached to it. Furthermore let chainn be the
rooted labelled tree of size n with root node n and node j attached to node
(j + 1), for 1 ≤ j ≤ n− 1. Then, for any rooted labelled tree T of size n it
holds

S(starn, m) ≤ S(T, m) ≤ S(chainn, m), (43)

yielding the bounds

nm +

(
m
2

)
(n− 1)m−1 ≤ S(T, m) ≤ (n−m + 1)(n + 1)m−1, (44)

162 parking in trees and mappings

for 0 ≤ m ≤ n.

Proof. Each tree T of size n can be constructed from a tree T0, which is
isomorphic to starn, by applying a sequence of reallocations Ti+1 :=

reallocate
(

Ti

∣∣∣∣
Ui
↓
vi
7→ Ui

↓
wi

)
, with wi �Ti vi, for 0 ≤ i ≤ k, with k ≥ 0.

Furthermore, starting with T =: T̃0, there always exists a sequence

of reallocations T̃i+1 := reallocate
(

T̃i

∣∣∣∣
Ũi
↓
ṽi

7→ Ũi
↓
w̃i

)
, with w̃i �T̃i

ṽi, for

0 ≤ i ≤ k̃, with k̃ ≥ 0, such that the resulting tree is isomorphic to
chainn. Thus, equation (43) follows immediately from Lemma 9.9.

The upper bound in (44) is the well-known formula for the num-
ber parking functions in a one-way street (which corresponds to the
number of tree parking functions for chainn). For the lower bound one
has to compute the number of parking functions with m drivers for
starn: there are only two possible cases, namely either s is injective or
exactly two drivers have the same non-root node as preferred parking
space, whereas all remaining drivers have different non-root nodes as
preferred parking spaces. Elementary combinatorics yields the stated
result.

9.3 total number of parking functions : the number of

drivers coincides with the number of parking spaces

In this section, we consider the total number of parking functions for
trees and mappings for the case that the number of drivers m is equal
to the number of parking spaces n. As for ordinary parking functions,
this case is not only interesting in its own. It will also occur during the
studies of the general case via initial values for recurrence relations.

Tree parking functions

We study the total number Fn := Fn,n of (n, n)-tree parking functions,
i.e., the number of pairs (T, s), with T ∈ Tn a Cayley tree of size n
and s ∈ [n]n a parking sequence of length n for the tree T, such that
all drivers are successful. To obtain a recursive description of the total
number Fn of tree parking functions we use the decomposition of a
Cayley tree T ∈ Tn w.r.t. the last empty node. We thus consider the
situation just before the last driver starts searching a parking space.

Two different situations have to be considered for the last empty
node: it might be the root node of the tree T as depicted in Figure 40

or a non-root node as in Figure 41.

Case (1): The last empty node is the root node. In this case the last
driver will always find a free parking space regardless of the n possi-
ble choices of her preferred parking space.

9.3 total number of parking functions : m = n 163

sdfjhsiudfhsiudfhisuhdfiushjgduifffffffffffffffffffffff︸ ︷︷ ︸

... kr nodesk1 nodes k2 nodes

r subtrees with a total of n− 1 nodes

Figure 40: Schematic representation of the first case that can occur when
considering parking functions with n drivers for a Cayley tree
with n nodes. The last empty node which is marked in white in
the tree is the root node of the tree.

sdfjhsiudfhsiudfhisuhdfius︸ ︷︷ ︸

T ′ of size k

...k1 kr

T ′′ of size n− k

r ≥ 0 subtrees

Figure 41: Schematic representation of the second case that can occur when
considering parking functions with n drivers for a Cayley tree
with n nodes. The last empty node which is marked in white in
the tree is a non-root node.

164 parking in trees and mappings

Case (2): The last empty node is a non-root node. Here, the last driver
will only find a free parking space if her preferred parking space is
contained in the subtree (call it T′′) rooted at the node corresponding
to the free parking space. If we detach the edge linking this subtree
T′′ with the rest of the tree we get two unordered trees. Let us as-
sume the tree containing the original root of the tree (denote it with
T′) has size k, whereas the remaining tree T′′ has size n − k. Then
there are n − k choices for the preferred parking space of the last
driver such that she is successful. Furthermore, it is important to take
into account that, given T′ and T′′, the original tree T cannot be re-
constructed, since there are always k different trees in Tn leading to
the same pair (T′, T′′); in other words, given T′ and T′′, we have k
choices of constructing trees T̃ ∈ Tn by attaching the root of T′′ to
any of the k nodes of T′.

Taking into account the order-preserving relabellings of the sub-
trees and also the merging of the parking sequences for the subtrees,
we obtain the following recursive description of Fn.

Fn = ∑
r≥1

1
r! ∑

∑ ki=n−1
ki≥1

Fk1 · Fk2 · · · · · Fkr n
(

n
k1, k2, . . . , kr, 1

)(
n− 1

k1, k2, . . . , kr

)

+ ∑
r≥0

1
r! ∑

k+∑ ki=n−1
k≥1,ki≥1

Fk · Fk1 · Fk2 · · · · · Fkr k(n− k)· (45)

·
(

n
k, k1, k2, . . . , kr, 1

)(
n− 1

k, k1, k2, . . . , kr

)
, for n ≥ 2,

with initial value F1 = 1. Here r denotes the number of subtrees of
the free parking space (i.e., of the empty node), thus the factor 1

r!
occurs, since each of the r! orderings of the subtrees of the empty
node represent the same tree. In order to treat this recurrence we
introduce the following generating function

F(z) := ∑
n≥1

Fn

(n!)2 zn.

Then, after straightforward computations which are omitted here, (45)
can be transferred into the following differential equation:

F′(z) = exp(F(z)) ·
(
1 + zF′(z)

)2 , F(0) = 0. (46)

This differential equation can be solved by standard methods and it
can be checked easily that the solution of (46) is given as follows:

F(z) = T(2z) + ln
(

1− T(2z)
2

)
, (47)

where T(z) denotes the Cayley tree function.
We shall not extract coefficients from (47) at this point yet, since

we will soon see in Theorem 9.12 that the total number Fn of parking

9.3 total number of parking functions : m = n 165

functions for trees of size n is directly linked to the total number Mn

of parking functions for mappings of size n. The latter quantity is
treated in the next section and thus also yields exact and asymptotic
enumeration formulæ for Fn.

Mapping parking functions

Now we study the total number Mn := Mn,n of (n, n)-mapping park-
ing functions, i.e., the number of pairs (f , s), with f ∈ Mn an n-
mapping and s ∈ [n]n a parking sequence of length n for the map-
ping f , such that all drivers are successful. Recall the structure of
functional graphs of mappings: the connected components are cycles
of Cayley trees. It is thus natural to introduce connected mappings
as auxiliary objects and study parking functions for them first. It will
then be easy to treat the general situation for mappings when we
have obtained results for connected mappings.

Whereas the relation between mappings and connected mappings
can be translated immediately into connections between parking func-
tions for these objects, this is not the case for connected mappings and
trees. Indeed, the decomposition of connected mappings C into Cay-
ley trees T is not consistent with the parking procedure. Instead of
using this composition, we will therefore apply a decomposition of
connected mappings w.r.t. the last empty node in the parking proce-
dure. So, let us introduce the total number Cn of parking functions
of length n for connected n-mappings, i.e., the number of pairs (f , s),
with f ∈ Cn a connected n-mapping and s ∈ [n]n a parking sequence
of length n for f , such that all drivers are successful. We will then ob-
tain a recursive description of Cn in which the quantity Fn counting
the number of (n, n)-tree parking functions which was introduced in
Section 9.3 appears.

Here, we have to distinguish three different situations. To treat
these cases only slight adaptions to the considerations made in Sec-
tion 9.3 have to be done:

Case (1): The last empty node is the root node of the Cayley tree that
forms a length-1 cycle. This situation is the same as the first case for
parking functions for trees and has been depicted in Figure 40.

Case (2): The last empty node is the root node of a Cayley tree lying
in a cycle of at least two trees. This case is depicted in Figure 42. Here,
the last driver will always find a free parking space regardless of the
n possible choices of her preferred parking space. Let us denote by
T′′ the tree whose root node is the last free parking space. When we
detach the two edges linking T′′ with the rest of the mapping graph,
we cut the cycle and the graph decomposes into two trees: the tree
T′′ and the unordered tree (call it T′), which we may consider rooted
at the former predecessor of the free parking space in the cycle of
the original graph. Let us assume that T′ has size k, whereas T′′ has

166 parking in trees and mappings

...

tree T ′

of size k

sdfjhsiudfhsiuduhdfius︸ ︷︷ ︸

T ′′ of size n− k

r ≥ 0 subtrees

k1 kr

Figure 42: Schematic representation of the second situation that might oc-
cur when considering parking functions with n drivers for a con-
nected n-mapping. The last empty node is a cyclic node in a cycle
of length at least two.

size n − k. Then, given T′ and T′′, there are k different choices of
constructing graphs in Cn by adding an edge from the root of T′ to
the root of T′′ and attaching the root of T′′ to any of the k nodes of
T′.

Case (3): The last empty node is not a cyclic node, i.e., it is not one
of the root nodes of the Cayley trees forming the cycle. This case is
depicted in Figure 43. Here the last driver will only find a free parking
space if her preferred parking space is contained in the subtree (call
it T′′) rooted at the node corresponding to the free parking space. If
we detach the edge linking this subtree T′′ with the rest of the graph,
a connected mapping graph remains (call it C′). Let us assume that
C′ has size k, whereas the tree T′′ has size n− k. Then there are n− k
possibilities of preferred parking spaces for the last driver such that
she is successful. Again, given C′ and T′′, there are k different choices
of constructing graphs in Cn by attaching the root of T′′ to any of the
k nodes of C′.

9.3 total number of parking functions : m = n 167

...

sd
f
jh

si
u
d
h
si
u
df
h
f
h
si
u
g
g
g
g
g
g
f
f
f
f
f
f
f
df
h
ih
df
if
f
f
f
f
f
f

︸
︷︷

︸

sdfjhsiudfhsiudfhisuhdfifffffff︸ ︷︷ ︸
r subtrees

k1 nodes k2 nodes kr nodes...

tree T ′′ of size n− k

connected

of size k
mapping C ′

Figure 43: Schematic representation of the third situation that might occur
when considering parking functions with n drivers for a con-
nected n-mapping. The last empty node is a non-cyclic node.

Again, taking into account the order-preserving relabellings of the
substructures and also the merging of the parking sequences for them,
we obtain the following recursive description of Cn, valid for all n ≥ 1:

Cn = ∑
r≥0

1
r! ∑

∑ ki=n−1
Fk1 Fk2 · · · Fkr · n

(
n

k1, k2, . . . , kr

)(
n− 1

k1, k2, . . . , kr

)

+ ∑
r≥0

1
r! ∑

k+∑ ki=n−1
FkFk1 Fk2 · · · Fkr · kn

(
n

k, k1, . . . , kr

)(
n− 1

k, k1, . . . , kr

)

+ ∑
r≥0

1
r! ∑

k+∑ ki=n−1
CkFk1 Fk2 · · · Fkr · k(n− k)· (48)

·
(

n
k, k1, . . . , kr

)(
n− 1

k, k1, . . . , kr

)
.

Now we introduce the generating function

C(z) := ∑
n≥1

Cn

(n!)2 zn.

Then, recurrence (48) yields the following differential equation for
C(z),

C′(z) ·
(
1− z exp(F(z))− z2F′(z) exp(F(z))

)

=
((

1 + zF′(z)
)2

+ zF′(z) + z2F′′(z)
)

exp(F(z)), C(0) = 0, (49)

168 parking in trees and mappings

where F(z) denotes the generating function of the number of tree
parking functions given in (47). This differential equation has the fol-
lowing simple solution:

C(z) = ln

(
1

1− T(2z)
2

)
, (50)

as can be checked easily by using the functional equation of the tree
function T(z) (Equation (6)).

Extracting coefficients from (50) gives the following auxiliary result.

Lemma 9.11. The total number Cn of parking functions of length n for
connected n-mappings is, for n ≥ 1, given as follows:

Cn = n!(n− 1)!
n−1

∑
j=0

(2n)j

j!
.

Proof. Using the functional equation of the tree function T(z) in Equa-
tion (6), a standard application of the Lagrange inversion formula
yields

[zn] ln

(
1

1− T(2z)
2

)
= 2n[zn] ln

(
1

1− T(z)
2

)
=

2n

n
[Tn−1]

enT

2(1− T
2)

=
2n−1

n

n−1

∑
j=0

nn−1−j

2j(n− 1− j)!
=

1
n

n−1

∑
j=0

(2n)j

j!
,

and further

Cn = (n!)2[zn]C(z) = (n!)2[zn] ln

(
1

1− T(2z)
2

)
= n!(n− 1)!

n−1

∑
j=0

(2n)j

j!
.

Now we are in the position to study the total number Mn of (n, n)-
mapping parking functions. Again we introduce the generating func-
tion

M(z) := ∑
n≥0

Mn
zn

(n!)2 .

Since the functional digraph of a mapping can be considered as the
set of its connected components and furthermore a parking function
for a mapping can be considered as a shuffle of the corresponding
parking functions for the connected components, we get the following
simple relation between the generating functions M(z) and C(z) of
parking functions for mappings and connected mappings:

M(z) = exp(C(z)).

9.3 total number of parking functions : m = n 169

Thus, by using (50), the generating function M(z) is given as follows:

M(z) =
1

1− T(2z)
2

. (51)

Next, we remark that the following relation between M(z) and F(z),
the generating functions for the number of parking functions for map-
pings and trees, holds:

1 + zF′(z) = 1 +
T(2z)

1− T(2z)
·
(

1− 1
2− T(2z)

)

= 1 +
T(2z)

2

1− T(2z)
2

= M(z),

where we used T′(z) = T(z)/(z · (1− T(z))) obtained by differentiat-
ing Equation (6). At the level of coefficients, this immediately shows
the following somewhat surprising connection between Fn and Mn.

Theorem 9.12. For all n ≥ 1 it holds that the total numbers Fn and Mn of
(n, n)-tree parking functions and (n, n)-mapping parking functions, respec-
tively, satisfy:

Mn = n · Fn.

Since it also holds that the number of mappings of size n is exactly
n times the number of Cayley trees of size n, this implies that the
average number of parking functions per mapping of a given size
is exactly equal to the average number of parking functions per tree
of the same size. Later, in Section 9.3 we establish a combinatorial
explanation for this interesting fact.

Extracting coefficients from the generating function solution (51) of
M(z) easily yields exact formulæ for Mn and, due to Theorem 9.12,
also for Fn.

Theorem 9.13. The total number Mn of (n, n)-mapping parking functions
is for n ≥ 1 given as follows:

Mn = n!(n− 1)! ·
n−1

∑
j=0

(n− j) · (2n)j

j!
.

Corollary 9.14. The total number Fn of (n, n)-tree parking functions is for
n ≥ 1 given as follows:

Fn = ((n− 1)!)2 ·
n−1

∑
j=0

(n− j) · (2n)j

j!
.

Proof of Theorem 9.13. Again, using (6) and the Lagrange inversion for-
mula, we obtain

[zn]
1

1− T(2z)
2

= 2n[zn]
1

1− T(z)
2

=
2n

n
[Tn−1]

enT

2
(
1− T

2

)2

=
2n−1

n

n−1

∑
k=0

(k + 1)nn−1−k

2k(n− 1− k)!
=

1
n

n−1

∑
j=0

(n− j)(2n)j

j!
,

170 parking in trees and mappings

and thus

Mn = (n!)2[zn]M(z) = (n!)2[zn]
1

1− T(2z)
2

= n!(n− 1)!
n−1

∑
j=0

(n− j) · (2n)j

j!
.

The asymptotic behaviour of the numbers Mn and Fn for n → ∞
could be deduced from these exact formulæ; however, it seems eas-
ier to start with the generating function solution (51) of M(z). Us-
ing the asymptotic expansion of the tree function T(z) in a complex
neighbourhood of its unique dominant singularity 1

e (as derived in
Example 2.33),

T(z) = 1−
√

2
√

1− ez +
2
3
(1− ez) +O

(
(1− ez)

3
2

)
, (52)

one immediately obtains that M(z) inherits a singularity from T(z)
at ρ = 1

2e . According to (51), there might be another singularity at the
point z0 where T(2z0) = 2. Due to the functional equation of T(z)
(6), this would imply 2 = 2z0e2, i.e. z0 = 1/e2. It is easy to check
that T(2/e2) ≈ 0.4 6= 2. Therefore, M(z) has its unique dominant
singularity at ρ = 1

2e . Its local expansion in a complex neighbourhood
of ρ can easily be obtained as follows:

M(z) =
2

2− T(2z)
=

2

1 +
√

2
√

1− 2ez− 2
3 (1− 2ez) +O((1− 2ez)

3
2)

= 2

(
1−
√

2
√

1− 2ez +
2
3
(1− 2ez)

+

(
−
√

2
√

1− 2ez +
2
3
(1− 2ez) +O((1− 2ez)

3
2)

)2

+O((1− 2ez)
3
2)

)

= 2− 2
√

2
√

1− 2ez +
16
3
(1− 2ez) +O((1− 2ez)

3
2).

A standard application of Theorem 2.31 shows the following asymp-
totic equivalent of the numbers Mn. We get

[zn]M(z) ∼
√

2√
π

(2e)n

n
3
2

and the following corollary, which follows directly when applying
Stirling’s approximation formula for the factorials [78].

9.3 total number of parking functions : m = n 171

3

8 1

4

2 7

6

5

(7, 3, 3, 6, 8, 5, 6, 1)

ranks⇒
3

8 1

4

2 7

6

5

4

3

2 1

5

6 7

8

ϕ⇒

ϕ⇒
3

8 1

4 2

7

6

5

43

2 1

5

6

7

8

(ranks)−1

⇒
3

8 1

4 2

7

6

5

(7, 3, 3, 6, 8, 5, 6, 1)

Figure 44: The bijection ψ described in Theorem 9.16 is applied to the
triple (T, s, w) with T the tree depicted in the top left corner,
s = (7, 3, 3, 6, 8, 5, 6, 1) a parking function for T and the node
w = 6. It yields the mapping parking function (f , s) represented
in the bottom right corner. The function ϕ is the bijection de-
scribed in Theorem 7.1.

Corollary 9.15. The total number Mn of (n, n)-mapping parking functions
and the total number Fn of (n, n)-tree parking functions, respectively, are
asymptotically, for n→ ∞, given as follows:

Mn ∼
√

2π 2n+1n2n
√

n en , and Fn ∼
√

2π 2n+1n2n

n
3
2 en

.

Bijective relation between parking functions for trees and mappings

The simple relation between the total number of parking functions
of a given size for trees and mappings stated in Theorem 9.12 was
proved by algebraic manipulations of the corresponding generating
functions. This does not provide a combinatorial explanation of this
fact.

Of course, the numbers Tn := |Tn| = nn−1 of Cayley trees of size n
and the numbers |Mn| = nn of n-mappings themselves satisfy such
a relationship. However, standard constructions such as Prüfer codes
do not seem to give a simple explanation why this carries over to the
total number of parking functions. We thus present a bijective proof
of this result in the following. An example of the bijection ψ is given
after the proof in Example 9.18 and illustrated in Figure 44.

172 parking in trees and mappings

Theorem 9.16. For each n ≥ 1, there exists a bijection ψ from the set of
triples (T, s, w), with T ∈ Tn a tree of size n, s ∈ [n]n a parking function
for T with n drivers, and w ∈ T a node of T, to the set of pairs (f , s) where
f ∈ Mn is an n-mapping and s ∈ [n]n is a parking function for f with n
drivers. Thus

n · Fn = Mn, for n ≥ 1.

Remark 9.17. The parking function s remains unchanged under the
bijection ϕ. Thus, when denoting by F̂n(s) and M̂n(s) the number of
trees T ∈ Tn and mappings f ∈ Mn, respectively, such that a given
s ∈ [n]n is a parking function for T and f , respectively, it holds:

n · F̂n(s) = M̂n(s), for n ≥ 1.

Proof of Theorem 9.16. Let us start by defining the rank of a node v
in T: the rank k(v) is defined as π−1(v), where the output-function
π of (T, s) is a bijection since s is a parking function for T with n
drivers. That is, k(v) = i if and only if the i-th car in the parking
sequence ends up parking at node v in T. For an example, see the
second picture in Figure 44.

The ranks associated to every node in T define a new tree T̃ that has
the same shape as T but different labels. We now apply the bijection
ϕ described in Theorem 7.1 to the pair (T̃, k(w)) in order to obtain
a mapping f̃ . From this mapping f̃ we construct the mapping f by
associating to every node i in f the label j if and only if k(j) = i, i.e.,
j = π(v).

What needs to be shown now is that s is a parking function for f
as well. For this purpose, let us use the notation introduced in the
proof of Theorem 7.1: v1, v2, . . . , vr are the nodes in T constituting the
unique path from w to the root of T and the ranks k1, . . . , kr are the
labels of corresponding nodes in T̃. Furthermore, i1 < i2 < · · · < it

are the positions of right-to-left maxima in the sequence k1, . . . , kr.
Recall that the only edges that are deleted in T̃ are those between

the nodes ki` and their parents T (ki`) for 1 ≤ ` ≤ t. Equivalently,
the edges that are removed in T are those between vi` and their par-
ents T (vi`) The crucial observation is that these edges (ki` , T (ki`)) are
never used by any of the drivers of s. Since ki` is a right-to-left max-
imum in the sequence k1, . . . , kr, all nodes that lie on the path from
ki` to the root are already occupied when the ki`-th driver parks at ki` .
Thus, no driver before ki` (then she would have parked at ki`) nor after
ki` (then she would not be able to park anywhere) could have reached
and thus left the node ki` . We may thus delete this edge and attach
the node ki` to an arbitrary node without violating the property that s
is a parking function. Having defined the mapping f in this way, the
sequence s is also a parking function for f and it holds that the park-
ing paths of the drivers coincide for T and f . In particular, it holds
that π(f ,s) = π(T,s) for the corresponding output-functions.

9.4 total number of parking functions : the general case 173

Example 9.18. Consider the tree T of size 8 depicted in the top left
corner of Figure 44. The sequence s = 7, 3, 3, 6, 8, 5, 6, 1 is a parking
function for T. In the top right corner of the figure, the ranks of every
node in T can be found. With w = 6, the path from w to the root
consists of the nodes 6, 2, 8, 4 with respective ranks 4, 7, 3, 5. Within
this sequence of ranks, the right-to-left maxima are 7 and 5. The map-
ping f associated to the triple (T, s, w) thus consists of two connected
components, as depicted in the bottom left corner of the figure. In the
functional graph of f , the cyclic elements are 6, 2, 8, 4. It can easily be
checked that s is a parking function for f as well. a

9.4 total number of parking functions : the general case

In this section we study the exact and asymptotic behaviour of the
total number of tree and mapping parking functions for the general
case of n parking spaces and 0 ≤ m ≤ n drivers. In what follows
we will always use m̃ := n−m, i.e., m̃ denotes the number of empty
parking spaces (i.e., empty nodes) in the tree or mapping graph after
all m drivers have parked. The case m̃ = 0 has already been treated
in Section 9.3 and the results obtained there will be required here.

Tree parking functions

We analyse the total number Fn,m of (n, m)-tree parking functions, i.e.,
the number of pairs (T, s), with T ∈ Tn a Cayley tree of size n and
s ∈ [n]m a parking sequence of length m for the tree T, such that
all drivers are successful. Furthermore, as introduced in Section 9.3,
Fn = Fn,n denotes the number of tree parking functions when the
number of parking spaces n coincides with the number of drivers m.

Let us now consider tree parking functions for the case that m̃ park-
ing spaces will remain free. In the following it is advantageous to use
the abbreviation F̃n,m̃ := Fn,n−m̃, thus F̃n,0 = Fn. Let us assume that
1 ≤ m̃ ≤ n. To get a recursive description for the numbers F̃n,m̃, we
use the combinatorial decomposition of a Cayley tree T ∈ Tn w.r.t.
the free node which has the largest label amongst all m̃ empty nodes
in the tree.

Again, the two situations depicted in Figures 40 and 41 have to be
considered. The argumentation given in Section 9.3 for the case m̃ = 0
can be adapted easily:

Case (1): The root node is the empty node with largest label and we
assume that the r subtrees of the root are of sizes k1, . . . , kr (with
∑i ki = n− 1) and contain `1, . . . , `r (with ∑i `i = m̃− 1) empty nodes,
respectively.

Case (2): Here, a non-root node is the empty node with largest label.
We denote by T′′ the subtree of T rooted at this empty node. After de-

174 parking in trees and mappings

taching T′′ from the remaining tree we obtain a tree T′ that is of size
k and has ` empty nodes for some 1 ≤ k ≤ n− 1 and 0 ≤ ` ≤ m̃− 1.
Furthermore, we assume that the r subtrees of the root of T′′ are of
sizes k1, . . . , kr (with k + ∑i ki = n − 1) and contain `1, . . . , `r (with
` + ∑i `i = m̃ − 1) empty nodes, respectively. In the latter case one
has to take into account that there are k possibilities of attaching the
root of T′′ to one of the k nodes in T′ yielding the same decomposi-
tion. The following recursive description of the numbers F̃n,m̃ follows
by considering the order-preserving relabellings of the subtrees and
also the merging of the parking sequences for the subtrees. Moreover,
one uses the simple fact that, when fixing an empty node v and con-
sidering all possible labellings of the m̃ empty nodes, only a fraction
of 1

m̃ of all labellings leads to v having the largest label amongst all
empty nodes.

We then get the following recurrence for 1 ≤ m̃ ≤ n

F̃n,m̃ =
1
m̃ ∑

r≥0

1
r! ∑

∑ ki=n−1
∑

∑ `i=m̃−1
F̃k1,`1 · F̃k2,`2 · · · F̃kr ,`r ·

·
(

n
k1, k2, . . . , kr

)(
n− m̃

k1 − `1, k2 − `2, . . . , kr − `r

)
(53)

+
1
m̃ ∑

r≥0

1
r! ∑

k+∑ ki=n−1
· ∑
`+∑ `i=m̃−1

F̃k,` F̃k1,`1 · · · F̃kr ,`r · k·

·
(

n
k, k1, . . . , kr

)(
n− m̃

k− `, k1 − `1, . . . , kr − `r

)
,

with initial values F̃n,0 = Fn. It is advantageous to introduce the gen-
erating function

F̃(z, u) := ∑
n≥1

∑̃
m≥0

F̃n,m̃
znum̃

n!(n− m̃)!
= ∑

n≥1
∑

0≤m≤n
Fn,n−m

znun−m

n!m!
. (54)

The recurrence relation (53) then yields, after straightforward compu-
tations, the following partial differential equation for F̃(z, u):

F̃u(z, u) = z2F̃z(z, u) exp(F̃(z, u)) + z exp(F̃(z, u)), (55)

with initial condition F̃(z, 0) = F(z) and F(z) = ∑n≥1 Fn
zn

(n!)2 given
by (47). A suitable representation of the solution of this PDE as given
next is crucial for further studies.

Proposition 9.19. The generating function F̃(z, u) defined in (54) is given
by

F̃(z, u) = Q · (2 + u(1−Q)) + ln (1−Q) = ln
(

Q(1−Q)

z

)
,

where the function Q = Q(z, u) is given implicitly as the solution of the
functional equation

Q = z · eQ·(2+u(1−Q)). (56)

9.4 total number of parking functions : m ≤ n 175

Proof. Of course, once a solution is found, it can be checked easily
after some computations that this solution indeed satisfies the PDE
(55) as well as the initial condition F̃(z, 0) = F(z). However, we find
it useful to carry out solving this first order quasilinear partial dif-
ferential equation via the method of characteristics. To start with we
assume that we have an implicit description of a solution F̃ = F̃(z, u)
of (55) via the equation

g(z, u, F̃) = c = const.,

with a certain differentiable function g. Taking derivatives of this
equation w.r.t. z and u we obtain gz + gF̃ F̃z = 0 and gu + gF̃ F̃u = 0.
After plugging these equations into (55) we get the following linear
PDE in reduced form for the function g(z, u, F̃):

gu − z2eF̃gz + zeF̃gF̃ = 0. (57)

To solve it we consider the following system of so-called characteristic
differential equations,

u̇ = 1, ż = −z2eF̃, ˙̃F = zeF̃, (58)

where we regard z = z(t), u = u(t), and F̃ = F̃(t) as dependent of
a variable t, i.e., ż = dz(t)

dt , etc. Now we search for first integrals of
the system of characteristic differential equations, i.e., for functions
ξ(z, u, F̃), which are constant along any solution curve (a so-called
characteristic curve) of (58).

We may proceed as follows. The second and third equation of (58)
yield the differential equation

dz
dF̃

= −z,

leading to the general solution z = c1e−F̃; thus, we get the following
first integral of (58):

ξ1(z, u, F̃) = c1 = zeF̃.

To get another first integral (independent from this one) we consider
the first and third differential equation of (58) and get, after the sub-
stitution z = c1e−F̃, simply

du
dF̃

=
1
c1

.

The general solution u = F̃
c1
+ c2 yields, after backsubstituting c1 =

zeF̃ the following first integral:

ξ2(z, u, F̃) = c2 = u− F̃
zeF̃

.

176 parking in trees and mappings

Thus the general solution of (57) is given as follows:

g(z, u, F̃) = H
(
ξ1(z, u, F̃), ξ2(z, u, F̃)

)

= H
(

zeF̃, u− F̃
zeF̃

)
= const., (59)

with H an arbitrary differentiable function in two variables. We can
solve (59) w.r.t. the variable u and obtain that the general solution of
the PDE (55) is implicitly given by

u =
F̃(z, u)
zeF̃(z,u)

+ h
(

zeF̃(z,u)
)

, (60)

with h(x) an arbitrary differentiable function in one variable. It re-
mains to characterize the function h(x) by adapting the general solu-
tion (60) to the initial condition F̃(z, 0) = F(z). First, we obtain

h(zeF(z)) = − F(z)
zeF(z)

,

with F(z) given by (47). To get an explicit description of h(x) we
require some manipulations. Using the abbreviations F = F(z), T =

T(2z) and introducing R = R(z) := zeF(z), we get

R = zeF = zeT+ln(1− T
2) = zeT

(
1− T

2

)
=

T
2

(
1− T

2

)
,

where we applied (3) for the last identity. Thus

T = 1−
√

1− 4R,

since T(0) = R(0) = 0 determines the correct branch for the solution.
We can characterize the function h(x) via

h(R) = − F
R

= −T + ln(1− T
2)

R
= −1−

√
1− 4R + ln(1− 1−

√
1−4R
2)

R
.

Therefore, plugging this characterization of h(x) into (60), the gener-
ating function F̃ = F̃(z, u) is given implicitly as follows:

uzeF̃ − F̃ +
(

1−
√

1− 4zeF̃
)
+ ln

(
1− 1−

√
1− 4zeF̃

2

)
= 0. (61)

To get a more amenable representation we introduce Q = Q(z, u) via

Q :=
1−

√
1− 4zeF̃

2
.

First, we get

eF̃ =
Q(1−Q)

z
, (62)

9.4 total number of parking functions : m ≤ n 177

and, after plugging this into (61),

F̃ = uQ(1−Q) + 2Q + ln(1−Q).

Exponentiating the latter equation shows then the functional equation
characterizing Q,

Q = zeuQ(1−Q)+2Q,

finishing the proof.

As for the case where the number of drivers coincides with the size
of the tree, we do not extract coefficients at this point yet. We will
see in Theorem 9.22 that the numbers Fn,m are again linked directly
to the numbers Mn,m counting mapping parking functions and we
shall therefore content ourselves with extracting coefficients for the
corresponding generating function M̃(z, u).

Mapping parking functions

We continue our studies on mapping parking functions by consider-
ing the total number Mn,m of (n, m)-mapping parking functions, i.e.,
the number of pairs (f , s) with f ∈ Mn an n-mapping and s ∈ [n]m a
parking sequence of length m for the mapping f , such that all drivers
are successful.

As pointed out already in Section 9.3, it suffices to provide the rele-
vant considerations for the subfamily Cn of connected n-mappings,
since results for the general situation can then be deduced easily.
Thus, let us introduce the total number Cn,m of parking functions
of length m for connected n-mappings, i.e., the number of pairs (f , s),
with f ∈ Cn a connected n-mapping and s ∈ [n]m a parking sequence
of length m for f , such that all drivers are successful. Additionally,
we require the numbers Fn, Cn and Fn,m as introduced in the Sections
9.3, 9.3 and 9.4, respectively.

Let us consider parking functions for connected mappings for the
case that m̃ = n − m parking spaces remain free after all drivers
have parked successfully. In what follows it is advantageous to de-
fine C̃n,m̃ := Cn,n−m̃ and also to use F̃n,m̃ := Fn,n−m̃ as done previ-
ously. Then it holds that C̃n,0 = Cn and F̃n,0 = Fn. Let us assume that
1 ≤ m̃ ≤ n. To obtain a recursive description of the numbers C̃n,m̃ we
use the combinatorial decomposition of a connected mapping f ∈ Cn

w.r.t. the free node which has the largest label amongst all m̃ empty
nodes in the mapping graph.

Three situations may occur when using this decomposition: in the
first case the empty node with largest label is the root node of the
Cayley tree which forms a length-1 cycle (depicted in Figure 40), in
the second case the empty node with largest label is the root node
of a Cayley tree forming a cycle of at least two trees (depicted in
Figure 42) and in the third case the empty node with largest label is

178 parking in trees and mappings

not a cyclic node (depicted in Figure 43). Analogous considerations
to the ones given for tree parking function in Section 9.4 show the
following recursive description of the number of parking functions
for connected mappings for 1 ≤ m̃ ≤ n:

C̃n,m̃ =
1
m̃ ∑

r≥0

1
r! ∑

∑ ki=n−1
∑

∑ `i=m̃−1
F̃k1,`1 · F̃k2,`2 · · · F̃kr ,`r ·

·
(

n
k1, k2, . . . , kr

)(
n− m̃

k1 − `1, k2 − `2, . . . , kr − `r

)

+
1
m̃ ∑

r≥0

1
r! ∑

k+∑ ki=n−1
∑

`+∑ `i=m̃−1
F̃k,` F̃k1,`1 · · · F̃kr ,`r · k· (63)

·
(

n
k, k1, . . . , kr

)(
n− m̃

k− `, k1 − `1, . . . , kr − `r

)

+
1
m̃ ∑

r≥0

1
r! ∑

k+∑ ki=n−1
∑

`+∑ `i=m̃−1
C̃k,` F̃k1,`1 · · · F̃kr ,`r · k·

·
(

n
k, k1, . . . , kr

)(
n− m̃

k− `, k1 − `1, . . . , kr − `r

)
,

with initial values C̃n,0 = Cn. When introducing the generating func-
tion

C̃(z, u) := ∑
n≥1

∑̃
m≥0

C̃n,m̃
znum̃

n!(n− m̃)!
, (64)

recurrence (63) yields the following first order linear partial differen-
tial equation for the function C̃(z, u):

C̃u(z, u) =z2C̃z(z, u) exp(F̃(z, u)) + z exp(F̃(z, u)) (65)

+ z2F̃z(z, u) exp(F̃(z, u)),

with F̃(z, u) = ∑n,m̃ F̃n,m̃
znum̃

n!(n−m̃)! the corresponding generating func-
tion for the number of tree parking functions given in Proposition 9.19,
and initial condition C̃(z, 0) = C(z), with C(z) = ∑n≥1 Cn

zn

(n!)2 given
by (50). A suitable representation of the solution of the PDE (65) is
given in the following proposition.

Proposition 9.20. The generating function C̃(z, u) defined in (64) is given
as follows:

C̃(z, u) = ln
(

1
(1−Q)(1− uQ)

)
,

where the function Q = Q(z, u) is given implicitly as the solution of the
following functional equation:

Q = z · eQ·(2+u(1−Q)).

Proof. To solve equation (65) we first consider the partial derivatives
of the function Q = Q(z, u) occurring in the characterization of the

9.4 total number of parking functions : m ≤ n 179

function F̃ = F̃(z, u) given in Proposition 9.19. Starting with (56),
implicit differentiation yields

Qz =
Q

z(1− 2Q)(1− uQ)
and Qu =

Q2(1−Q)

(1− 2Q)(1− uQ)
. (66)

Thus, due to (62), it holds

Qu(z, u) = z2Qz(z, u)eF̃(z,u),

i.e., Q(z, u) solves the reduced PDE corresponding to (65). This sug-
gests the substitution z = z(Q) := Q

eQ(2+u(1−Q)) and we introduce

Ĉ(Q, u) := C̃(z(Q), u) = C̃
(

Q
eQ(2+u(1−Q))

, u
)

.

After straightforward computations, which are thus omitted, equa-
tion (65) reads as

Ĉu(Q, u) =
Q

1− uQ
.

Thus, after backsubstituting z and C̃(z, u), the general solution of this
equation is given by

C̃(z, u) = ln
(

1
1− uQ(z, u)

)
+ h̃(Q(z, u)), (67)

with an arbitrary differentiable function h̃(x). To characterize it, we
evaluate (67) at u = 0 and use the initial condition C̃(z, u) = C(z),
with C(z) given by (50). Using the abbreviation T̃ := T(2z)

2 , one easily
gets Q(z, 0) = T̃ and further

h̃(T̃) = h̃(Q(z, u)) = C̃(z, 0) = C(z) = ln
(

1
1− T̃

)
,

which characterizes the function h̃(x). The proposition follows imme-
diately.

We are now able to treat the total number Mn,m of (n, m)-mapping
parking functions. We introduce M̃n,m̃ := Mn,n−m̃ and the generating
function

M̃(z, u) := ∑
n≥0

∑̃
m≥0

M̃n,m̃
znum̃

n!(n− m̃)!
. (68)

The decomposition of mapping parking functions into parking func-
tions for their connected components immediately gives the relation

M̃(z, u) = exp
(
C̃(z, u)

)

for the respective generating functions. According to Proposition 9.20

we obtain the following solution of M(z, u).

180 parking in trees and mappings

Proposition 9.21. The generating function M̃(z, u) defined in (68) is given
as follows:

M̃(z, u) =
1

(1−Q)(1− uQ)
,

where the function Q = Q(z, u) is given implicitly as the solution of the
following functional equation:

Q = z · eQ·(2+u(1−Q)).

Using the representations of the generating functions F̃(z, u) and
M̃(z, u) for the number of tree and mapping parking functions given
in Proposition 9.19 and 9.21, respectively, it can be shown easily how
they are connected with each other. Namely, together with (66), we
obtain

1 + zF̃z(z, u) = 1 + z
(

1− 2Q
Q(1−Q)

Qz −
1
z

)

=
1− 2Q

Q(1−Q)

Q
(1− 2Q)(1− uQ)

=
1

(1−Q)(1− uQ)

= M̃(z, u).

Thus, at the level of their coefficients, we obtain the following sim-
ple relation between the total number of tree and mapping parking
functions extending Theorem 9.12.

Theorem 9.22. For all n ≥ 1 it holds that the total numbers Fn,m and Mn,m

of (n, m)-tree parking functions and (n, m)-mapping parking functions, re-
spectively, satisfy:

Mn,m = n · Fn,m.

In Section 9.4 we will extend the considerations made in Section 9.3
for the particular case m = n and provide a combinatorial proof of
this relation.

Using Proposition 9.21, extracting coefficients leads to the follow-
ing explicit formulæ for the numbers Mn,m and Fn,m. Note that spe-
cializing m = n restates Theorem 9.13 and Corollary 9.14.

Theorem 9.23. The total number Mn,m of (n, m)-mapping parking func-
tions is, for 0 ≤ m ≤ n and n ≥ 1, given as follows:

Mn,m =
(n− 1)!m!nn−m

(n−m)!

m

∑
j=0

(
2m− n− j

m− j

)
(2n)j(n− j)

j!
.

Corollary 9.24. The total number Fn,m of (n, m)-tree parking functions is,
for 0 ≤ m ≤ n and n ≥ 1, given as follows:

Fn,m =
(n− 1)!m!nn−m−1

(n−m)!

m

∑
j=0

(
2m− n− j

m− j

)
(2n)j(n− j)

j!
.

9.4 total number of parking functions : m ≤ n 181

Proof of Theorem 9.23. In view of the representation of M̃(z, u) given
in Proposition 9.21 containing the function Q = Q(z, u), we make
a change of variables in order to extract coefficients. Using the func-
tional equation (56) and the derivative (66) of Q w.r.t. z, an application
of Cauchy’s integral formula gives

[zn]M̃(z, u) =
1

2πi

∮ M̃(z, u)
zn+1 dz =

1
2πi

∮ 1
zn+1

1
(1−Q)(1− uQ)

dQ

=
1

2πi

∮ e(uQ(1−Q)+2Q)(n+1)

(1−Q)(1− uQ)Qn+1
(1− 2Q)(1− uQ)

euQ(1−Q)+2Q
dQ

= [Qn]
en(uQ(1−Q)+2Q)(1− 2Q)

1−Q
.

Further, for 0 ≤ m ≤ n,

[znun−m]M̃(z, u) = [Qnun−m]
eunQ(1−Q)e2nQ(1− 2Q)

1−Q

=
nn−m

(n−m)!
[Qm](1−Q)n−m−1e2nQ(1− 2Q).

(69)

We get

Mn,m = n!m![znun−m]M̃(z, u)

=
n!m!nn−m

(n−m)!
[Qm](1−Q)n−m−1e2nQ(1− 2Q) (70)

=
n!m!nn−m

(n−m)!

m

∑
j=0

(
n−m− 1

j

)
(−1)j[Qm−j]e2nQ(1− 2Q)

=
n!m!nn−m

(n−m)!

m

∑
j=0

(
n−m− 1

j

)
(−1)j 2(n−m + j)(2n)m−j−1

(m− j)!

=
(n− 1)!m!nn−m

(n−m)!

m

∑
j=0

(
j + m− n

j

)
(n−m + j) (2n)m−j

(m− j)!

=
(n− 1)!m!nn−m

(n−m)!

m

∑
j=0

(
2m− n− j

m− j

)
(n− j) (2n)j

j!
.

From Theorem 9.23 we can easily derive exact values for the total
number of (n, m)-mapping parking functions for a moderate size of n.
However, due to the alternating sign of the summands in the explicit
formula of Mn,m that is inherent in the binomial coefficient, it is not
well suited to deduce the asymptotic behaviour of these numbers
and thus to give answers to questions concerning the probability pn,m

that a random pair (f , s) of an n-mapping f and a sequence s ∈
[n]m of addresses of length m is a parking function, when n → ∞.
Starting from (69), such asymptotic considerations will be carried out
in Section 9.4 using saddle point methods.

182 parking in trees and mappings

3

8 1

4

2 7

6

5

(7, 3, 3, 6)

ranks⇒
3

8 1

4

2 7

6

5

4

3

2 1
completion⇒

of s

3

8 1

4

2 7

6

5

4

3

2 1

5

6

7

8
(ranks)−1

⇒
3

8 1

4

2 7

6

5

(7, 3, 3, 6, 1, 2, 4, 5)

ψ⇒

ψ⇒
3

8 1

4

2 7

6

5

(7, 3, 3, 6, 1, 2, 4, 5)

reduction⇒
to s

3
8 1

4

2 7

6

5

(7, 3, 3, 6)

Figure 45: The bijection ψ′ described in Theorem 9.25 is applied to the
triple (T, s, w) with T the tree depicted in the top left corner,
s = (7, 3, 3, 6) a parking function for T and the node w = 6. It
yields the mapping parking function (f , s) represented in the bot-
tom right corner. The function ψ is the bijection described in The-
orem 9.16.

Bijective relation between parking functions for trees and mappings

We will extend the bijection given in Theorem 9.16, such that it also
works for the general case and thus gives a bijective proof of Theo-
rem 9.22.

Theorem 9.25. For 0 ≤ m ≤ n and n ≥ 1, there exist a bijection ϕ′ from
the set of triples (T, s, w), with T ∈ Tn a tree of size n, s ∈ [n]m a parking
function for T with m drivers, and w ∈ T a node of T, to the set of pairs
(f , s) of (n, m)-mapping parking functions, i.e, f ∈ Mn an n-mapping and
s ∈ [n]m a parking function for f with m drivers. Thus

n · Fn,m = Mn,m, for n ≥ 1.

9.4 total number of parking functions : m ≤ n 183

Remark 9.26. It holds that the parking function s remains unchanged
under the bijection ϕ′. Thus, also the general case satisfies the relation

n · F̂n(s) = M̂n(s), for n ≥ 1,

where again F̂n(s) and M̂n(s) denote the number of trees T ∈ Tn and
mappings f ∈ Mn, respectively, such that a given sequence s ∈ [n]m

is a parking function for T and f , respectively.

Proof of Theorem 9.25. In order to a establish a bijection ψ′ from the set
of triples (T, s, w) to pairs (f , s), we will first extend the tree parking
function s ∈ [n]m to a tree parking function s′ ∈ [n]n with n drivers.
Then we apply the bijection ψ described in the proof of Theorem 9.16

Finally, we reduce s′ to the original parking function s. We only need
to ensure that the extension from s to s′ is done in such a way that the
whole procedure can be reversed in a unique way. This can be done
as follows.

Starting with a triple (T, s, w), let us denote by Vπ the set of nodes
which are occupied after the parking procedure, i.e., Vπ := π([m]) =

{π(k) : 1 ≤ k ≤ m}, where π = π(T,s) is the output-function of (T, s).
Let us arrange the n − m free nodes in ascending order w.r.t. their
labels: V \Vπ = {x1, x2, . . . , xn−m}, with x1 < x2 < · · · < xn−m. Then
we define the sequence s′ = (s′1, . . . , s′n) ∈ [n]n as follows:

s′i := si, 1 ≤ i ≤ m,

s′m+i := xi, 1 ≤ i ≤ n−m.

Of course s′ is a parking function for T since s is a parking function for
T and every one of the drivers m+ 1, . . . , n can park at their preferred
parking space. Applying ψ from Theorem 9.16 gives an n-mapping
f , such that s′ is a parking function for f . Thus the sequence s =

(s1, . . . , sm) = (s′1, . . . , s′m), which contains the preferences of the first
m drivers of s′, is a parking function for f . We define the pair (f , s) to
be the outcome of ψ′.

As for the case m = n, it holds that the parking paths of the drivers
coincide for T and f . In particular, it holds π(f ,s) = π(T,s) for the
corresponding output-functions. Thus, ψ′ can be reversed easily, since
the extension from s to s′ can also be constructed when starting with
f .

Example 9.27. Consider the tree T of size 8 depicted in the top left
corner of Figure 45. The sequence s = (7, 3, 3, 6) is a parking function
for T with 4 drivers. In the top right corner of the figure, the ranks of
the nodes in T that are occupied by a car can be found. Completing s
to a parking function with 8 drivers leads to the ranks in the middle
left and the sequence s′ = 7, 3, 3, 6, 1, 2, 4, 5 as described in the middle
right of the figure. Applying the mapping ψ described in the proof of
Theorem 9.16 to (T, s′, w) yields the mapping parking function (f , s′)

184 parking in trees and mappings

as depicted in the bottom left corner. Reducing s′ to the first 4 drivers
leads to the original parking function s. The image (f , s) of (T, s, w)

under ψ′ is depicted in the bottom right. It can be checked very easily
that s is indeed a parking function for f . a

Asymptotic considerations

Let us now turn to the asymptotic analysis of the number Mn,m of
(n, m)-mapping parking functions. Due to Theorem 9.22, our results
for parking functions for mappings can automatically be translated
to results for parking functions for trees. In this context the following
question will be of particular interest to us: How does the probability
pn,m := Mn,m

nn+m that a randomly chosen sequence of length m on the
set [n] is a parking function for a randomly chosen n-mapping swap
from being equal to 1 (which is the case for m=1) to being close to 0
(which is the case for m = n) when the ratio ρ := m

n increases?
In order to get asymptotic results for Mn,m (and so for Fn,m and pn,m,

too) we start with the representation (70), which can be written as

Mn,m =
n!m!nn−m

(n−m)!
An,m, (71)

with

An,m = [wm](1− 2w)e2nw(1− w)n−m−1

=
1

2πi

∮
(1− 2w)e2nw(1− w)n−m−1

wm+1 dw, (72)

where, in the latter expression, we choose as contour a suitable sim-
ple positively oriented closed curve around the origin, e.g., for each
choice of m and n, we may choose any such curve in the dotted disk
0 < |w| < 1.

Next we will use the integral representation (72) of An,m and make
use of the saddle point method. We write the integral as follows:

An,m =
1

2πi

∫

Γ

g(w)enh(w)dw, (73)

with Γ a suitable contour and

g(w) :=
1− 2w

(1− w)w
and (74)

h(w) = hn,m(w) := 2w +
(

1− m
n

)
log(1− w)− m

n
log w.

In the terminology of [78] the integral (73) has the form of a “large
power integral” and saddle points of the relevant part enh(w) of the
integrand can thus be found as the zeros of the derivative h′(w). The
resulting equation

h′(w) = 2−
(

1− m
n

) 1
1− w

− m
n

1
w

= 0

9.4 total number of parking functions : m ≤ n 185

Figure 46: Plots of the modulus of the function enh(w) near the saddle point
for the three different regions; to the left the case ρ < 1/2, in the
middle ρ > 1/2 and to the right ρ = 1/2. In the middle row:
plots of the integration paths and steepest ascent/descent lines.
The functions depicted here correspond to n = 12 and m = 3,
m = 9 and m = 6 (from left to right).

yields the following two solutions:

w1 =
m
n

and w2 =
1
2

.

The present situation is illustrated in Figure 46. In our asymptotic
analysis we will have to distinguish whether w1 < w2, w1 > w2 or
w1 = w2. Actually, we will restrict ourselves to the cases (i) ρ = m

n ≤
1
2 − δ (with an arbitrary small, but fixed constant δ > 0), (ii) ρ = m

n ≥
1
2 + δ, and (iii) ρ = m

n = 1
2 . However, the transient behaviour of the

sequences Mn,m, etc. for m ∼ n
2 could be described via Airy functions

as illustrated in [16]. The Airy function is a probability distribution
that occurs as a limiting distribution for various combinatorial objects,
amongst others for the area below lattice paths [118] and sums of
parking functions [115].

We can sum up our results in the following theorem.

186 parking in trees and mappings

Theorem 9.28. The total number Mn,m of (n, m)-mapping parking func-
tions is asymptotically, for n → ∞, given as follows (where δ denotes an
arbitrary small, but fixed, constant):

Mn,m ∼





nn+m+ 1
2
√

n−2m
n−m , for 1 ≤ m ≤ (1

2 − δ)n,

Γ
(2

3

)√ 2
π 3

1
6 n

3n
2 − 1

6 , for m = n
2 ,

m!
(n−m)! · n2n−m+ 3

2 22m−n+1

(2m−n)
5
2

, for (1
2 + δ)n ≤ m ≤ n.

Let us fix the ratio ρ = m/n. This ratio can be interpreted as a “load
factor” – a term used in open addressing hashing. Then the asymp-
totic behaviour of the probabilities pn,m = pn,ρn follows immediately.

Corollary 9.29. The probability pn,m that a randomly chosen pair (f , s),
with f an n-mapping and s a sequence in [n]m, represents a parking function
is asymptotically, for n → ∞ and m = ρn with 0 < ρ < 1 fixed, given as
follows:

pn,m ∼





C<(ρ), for 0 < ρ < 1
2 ,

C1/2 · n−1/6, for ρ = 1/2,

C>(ρ) · n−1 · (D>(ρ))n, for 1/2 < ρ < 1,

with

C<(ρ) =

√
1− 2ρ

1− ρ
, C1/2 =

√
6
π

Γ(2/3)
31/3 ≈ 1.298 . . . ,

C>(ρ) = 2 ·
√

ρ

(1− ρ)(2ρ− 1)5 , D>(ρ) =

(
4ρ

e2

)ρ e
2(1− ρ)1−ρ

.

From Corollary 9.29 it follows that the limiting probability L(ρ) :=
limn→∞ pn,ρn that all drivers can park successfully for a load factor ρ

is given as follows :

L(ρ) =





√
1−2ρ

1−ρ , for 0 ≤ ρ ≤ 1
2 ,

0, for 1
2 ≤ ρ ≤ 1.

See Figure 47 for an illustration: On the left hand-side the limiting
distribution L(ρ) is plotted and on the right hand-side the exact prob-
abilities pn,ρn for some values of n can be found.

The proof of Theorem 9.28 is given in Sections 9.4-9.4. As we can
see from Theorem 9.28 and Corollary 9.29, the most interesting region
for us is case (i), i.e., where less than half of the parking spaces are oc-
cupied. We will thus provide the calculations for this region in detail,
whereas the application of the saddle point method is only sketched
for the other two regions. Before we continue with the computations,
we want to comment on relations between mapping parking func-
tions and ordered forests of unrooted trees.

9.4 total number of parking functions : m ≤ n 187

Figure 47: To the left: The limiting probability L(ρ) that all drivers are
able to park successfully in a mapping, for a load factor 0 ≤
ρ ≤ 1. To the right: The exact probabilities pn,ρn for n =
20, 50, 200, 500, 1000, 5000.

Remark 9.30. Qualitatively, the transient behaviour at m ∼ n
2 is the

same as observed previously in other combinatorial contexts, such as,
e.g., in the analysis of random graphs. The study of random graphs
G(n, m) with n nodes and m edges was initiated by Erdős and Rényi
in the late 1950s [66]. The structure of G(n, m) has three different
phases depending on the ratio m

n :

• When m = µn for some µ < 1
2 , the graph G(n, m) consists

with high probability, i.e., with probability tending to one when
n → ∞, only of trees and of unicyclic components. Moreover,
the size of the largest component is of order O(log n).

• For m = 1
2 n +O(n2/3, there appear with high probability one

or several semi-giant components of size O(n2/3).

• When m = µn for some µ > 1
2 , the graph G(n, m) consists with

high probability of a unique giant component of size propor-
tional to n.

For each case refined estimates that are obtained with the help of
analytic techniques can be found in [74] and [104].

Such phase transition phenomena have for instance also been ob-
served for random planar maps, see [16].

Remark 9.31. Let Gn,m denote the number of ordered forests, i.e., se-
quences of m unrooted labelled trees and comprised of n nodes in
total. The problem of evaluating Gn,m asymptotically by using saddle
point techniques has been considered in [78, p. 603f.]; as has been
mentioned there, it is also relevant to the analysis of random graphs
during the phase where a giant component has not yet emerged [74].

Since there are nn−2 unrooted labelled trees of size n ≥ 1, the expo-
nential generating function U(z) = ∑n≥1 nn−2 zn

n! is given by U(z) =

188 parking in trees and mappings

T(z)− T2(z)
2 , with T(z) the tree-function. Thus the numbers Gn,m can

be obtained as follows:

Gn,m = n![zn]U(z)m = n![zn]

(
T(z)− T2(z)

2

)m

= n!
1

2πi

∮ (
T(z)− T2(z)

2

)m dz
zn+1 ,

by using a suitable contour around the origin. The substitution z = T
eT

leads to

Gn,m = n!
1

2πi

∮ enT (1− T
2

)m
(1− T)

Tn−m+1 dT.

After substituting T = 2w, one obtains

Gn,m = n!
1

2πi

∮ e2nw (1− w)m (1− 2w)

2n−mwn−m+1 dw

=
n!

2n−m [wn−m](1− 2w)e2nw(1− w)m,

and so
[wm](1− 2w)e2nw(1− w)n−m =

2m

n!
Gn,n−m. (75)

Comparing Equation (75) with Equation (72) for An,m suggests that
the same phase change behaviour occurs for An,m (and thus also Mn,m)
and for Gn,n−m as studied in [78].

Remark 9.32. By slightly adapting the considerations made in the pre-
vious remark we can even express the numbers Mn,m directly via the
number of ordered forests. Namely, let G̃n,m denote the number of
ordered forests made of one rooted labelled tree followed by m − 1
unrooted labelled trees and comprised of n nodes in total. This yields

G̃n,m = n![zn]T(z)U(z)m−1 = n![zn]T(z)
(

T(z)− T2(z)
2

)m−1

= n!
1

2πi

∮
T(z)

(
T(z)− T2(z)

2

)m−1 dz
zn+1 ,

and, after the substitutions z = T
eT and T = 2w, we end up with

G̃n,m =
n!

2n−m

∮ e2nw(1− w)m−1(1− 2w)

wn−m+1 dw

=
n!

2n−m [wn−m](1− 2w)e2nw(1− w)m−1.

We get

An,m =
2m

n!
G̃n,n−m,

and thus we are able to express Mn,m by counting a certain number
of ordered forests:

Mn,m =
m!2mnn−m

(n−m)!
G̃n,n−m.

9.4 total number of parking functions : m ≤ n 189

The region ρ ≤ 1
2 − δ

The geometry of the modulus of the integrand of (73) as depicted in
Figure 46 is easily described: There is a simple dominant saddle point
at w = w1, where the surface resembles an ordinary horse saddle
or a mountain pass. There are two steepest ascent/steepest ascent
lines: one following the real axis and one parallel to the imaginary
axis. It is thus natural to adopt an integration contour that lies close
to the steepest ascent and steepest descent line perpendicular to the
real axis. In Equation (73) we thus choose the contour Γ to be a circle
centered at the origin and passing through the dominant saddle point
w1, i.e., it has radius r = ρ.

Using the parametrization Γ = {w = ρeiφ : φ ∈ [−π, π]}, we obtain
from (73) the representation

An,m =
1

2π

∫ π

−π
ρeiφg(ρeiφ)enh(ρeiφ)dφ. (76)

Next we want to find a suitable splitting of the integral into the cen-
tral approximation and the remainder. That is , we need to choose
a proper value φ0 = φ0(n, m) to write the contour as Γ = Γ1 ∪ Γ2,
with Γ1 := {w = ρeiφ : φ ∈ [−φ0, φ0]} and Γ2 := {w = ρeiφ : φ ∈
[−π,−φ0] ∪ [φ0, π]} yielding the representation An,m = I(1)n,m + I(2)n,m,
such that I(2)n,m = o

(
I(1)n,m

)
, where

I(1)n,m :=
1

2π

∫

Γ1

ρeiφg(ρeiφ)enh(ρeiφ)dφ and

I(2)n,m :=
1

2π

∫

Γ2

ρeiφg(ρeiφ)enh(ρeiφ)dφ.

To do this we consider the local expansion of the integral around φ =

0; the following results are obtained by straightforward computations,
which are thus omitted:

ρeiφg(ρeiφ) =
1− 2m

n eiφ

1− m
n eiφ =

1− 2m
n

1− m
n
·
(

1 +O
(

mφ

n

))
,

nh(ρeiφ) =n
(

2
m
n

eiφ +
(

1− m
n

)
log
(

1− m
n

eiφ
)
− m

n
log
(m

n
eiφ
))

=2m + (n−m) log
(

1− m
n

)
−m log

(m
n

)

− mφ2

2
+

m2

2(n−m)
φ2 +O(mφ3),

yielding

ρeiφg(ρeiφ)enh(ρeiφ) =

(
1− 2m

n

)(n
m

)m
e2m
(

1− m
n

)n−m−1
· (77)

· e−
(

m
2 − m2

2(n−m)

)
φ2
(

1 +O
(
mφ3)+O

(
mφ

n

))
.

190 parking in trees and mappings

From the latter expansion we obtain that we shall choose φ0, such
that mφ2

0 → ∞ (then the central approximation contains the main
contributions) and mφ3

0 → 0 (then the remainder term is asymptot-
ically negligible). E.g., we may choose φ0 = m−

1
2+

ε
3 , for a constant

0 < ε < 1
2 . With such a choice of φ0 we obtain for the integral I(1)n,m the

following asymptotic expansion:

I(1)n,m =
1

2π

(
1− 2m

n

)(n
m

)m
e2m
(

1− m
n

)n−m−1
·

·
∫ φ0

−φ0

e−
(

m
2 − m2

2(n−m)

)
φ2

dφ ·
(

1 +O
(

m−
1
2+ε
))

=
1

2π

(
1− 2m

n

)(n
m

)m
e2m
(

1− m
n

)n−m−1 1√
m
·

·
∫ m

ε
3

−m
ε
3

e−
1
2 (1− m

n−m)t2
dt ·

(
1 +O

(
m−

1
2+ε
))

,

where we used the substitution φ = t√
m for the latter expression.

For the so-called tail completion we use that
∫ ∞

c
e−αt2

dt = O
(

e−αc2
)

, for c > 0 and α > 0,

which can be shown, e.g., via

∫ ∞

c
e−αt2

dt ≤
∞

∑
i=0

e−α(c+i)2
= e−αc2 ·

∞

∑
i=0

e−αi(2c+i) = O
(

e−αc2
)

,

since ∑∞
i=0 e−α(c+i)2

converges.
Thus we obtain

∫ ∞

m
ε
3

e−
1
2 (1− m

n−m)t2
dt = O

(
e−

1
2 (1− m

n−m)m
2ε
3

)
,

which yields a subexponentially small and thus negligible error term.
Using this we may proceed in the asymptotic evaluation of I(1)n,m and
get

I(1)n,m =
1

2π

(
1− 2m

n

)(n
m

)m
e2m
(

1− m
n

)n−m−1 1√
m
·

∫ ∞

−∞
e−

1
2 (1− m

n−m)t2
dt
(

1 +O
(

m−
1
2+ε
))

.

Using ∫ ∞

−∞
e−αt2

dt =
√

π√
α

, for α > 0,

9.4 total number of parking functions : m ≤ n 191

the Gaussian integral occurring can be evaluated easily, which yields

I(1)n,m =
1

2π

(
1− 2m

n

)(n
m

)m
e2m
(

1− m
n

)n−m−1 1√
m
·

·
√

2π√
1− m

n−m

·
(

1 +O
(

m−
1
2+ε
))

=
(n−m)n−m− 1

2
√

n− 2me2m
√

2πmm+ 1
2 nn−2m

·
(

1 +O
(

m−
1
2+ε
))

.

Next we consider the remainder integral

I(2)n,m =
1

2π

(
1− 2m

n

)
·

·
∫

Γ2

1− 2m
n eiφ

1− m
n eiφ en(2 m

n eiφ+(1−m
n) log(1−m

n eiφ)−m
n log(m

n)−m
n iφ)dφ.

To estimate the integrand we use the obvious bounds
∣∣∣∣1−

2m
n

eiφ
∣∣∣∣ ≤ 1 +

2m
n

and
1∣∣1− m
n eiφ

∣∣ ≤
1

1− m
n

,

as well as the following:
∣∣∣en(2 m

n eiφ+(1−m
n) log(1−m

n eiφ)−m
n log(m

n)−m
n iφ)

∣∣∣

=
(n

m

)m
en(2ρ cos φ+ 1−ρ

2 log(1−2ρ cos φ+ρ2)).

This yields
∣∣∣I(2)n,m

∣∣∣ ≤ 1
2π

(1− 2m
n)(1 + 2m

n)

1− m
n

·
(n

m

)m
·

·
∫

Γ2

en(2ρ cos φ+ 1−ρ
2 log(1−2ρ cos φ+ρ2))dφ.

Considering the function

H̃(x) := 2ρx +
1− ρ

2
log(1− 2ρx + ρ2),

it can be shown by applying standard calculus that H̃(x) is a mono-
tonically increasing function for x ∈ [−1, 1]. Setting x = cos φ it fol-
lows that amongst all points of the contour Γ2 the integrand reaches
its maximum at φ = φ0. Thus, we obtain
∣∣∣I(2)n,m

∣∣∣ ≤ (1− 2m
n)(1 + 2m

n)

1− m
n

·
(n

m

)m
· e2m cos φ0+

n−m
2 log(1− 2m

n cos φ0+(m
n)

2)

≤2 ·
(n

m

)m
· e2m cos φ0+

n−m
2 log(1− 2m

n cos φ0+(m
n)

2)

=2
(n

m

)m
e2me

n−m
2 log

(
1− 2m

n +(m
n)

2)
·

· e
2m(cos φ0−1)+ n−m

2 log
(

1− 2m
n cos φ0+(

m
n)

2

1− 2m
n +(m

n)
2

)

=2
(n

m

)m
e2m
(

1− m
n

)n−m
· e2m(cos φ0−1)+ n−m

2 log
(

1−
2m
n (cos φ0−1)
(1−m

n)2

)

.

192 parking in trees and mappings

Using the estimates

log(1− x) ≤ −x, for x < 1, and cos x− 1 ≤ − x2

6
, for x ∈ [−π, π],

we may proceed f as follows:

|I(2)n,m| ≤ 2
(n

m

)m
e2m
(

1− m
n

)n−m
· em(cos φ0−1)·

(
2− 1

1−m
n

)

≤ 2
(n

m

)m
e2m
(

1− m
n

)n−m
· e−

φ2
0
6 m

(
2− 1

1−m
n

)

= 2
(n

m

)m
e2m
(

1− m
n

)n−m
· e−

1
6

(
2− 1

1−m
n

)
m

2ε
3

.

Thus we obtain

|I(2)n,m| = |I(1)n,m| · O
(√

me−cm
2ε
3

)
, with c =

1
6

(
2− 1

1− m
n

)
,

i.e., I(2)n,m is subexponentially small compared to I(1)n,m.
Combining these results we get

An,m =
(n−m)n−m− 1

2
√

n− 2me2m
√

2πmm+ 1
2 nn−2m

·
(

1 +O
(

m−
1
2+ε
))

and, by using (71) and applying Stirling’s approximation formula for
the factorials,

Mn,m =
n!m!nn−m(n−m)n−m− 1

2
√

n− 2me2m
√

2π(n−m)!mm+ 1
2 nn−2m

·
(

1 +O
(

m−
1
2+ε
))

=
nn+m

√
1− 2m

n

1− m
n

·
(

1 +O
(

m−
1
2+ε
))

. (78)

Note that according to the remainder term in (78) we have only
shown the required result for m → ∞. However, again starting with
(76), we can easily show a refined bound on the error term for small
m. Namely, we may write the integral as follows:

An,m =
1

2π

(n
m

)m
·
∫ π

−π

e2meiφ
(1− m

n eiφ)n−m−1(1− 2m
n eiφ)

eimφ
dφ,

and use for m = o(
√

n) the expansions

(
1− m

n
eiφ
)n−m−1

= e−meiφ ·
(

1 +O
(

m2

n

))
and

1− 2m
n

eiφ = 1 +O
(m

n

)
,

which gives

An,m =
1

2π

(n
m

)m
·
∫ π

−π

emeiφ

eimφ
dφ ·

(
1 +O

(
m2

n

))
.

9.4 total number of parking functions : m ≤ n 193

Using the substitution z = eiφ this yields for m = o(
√

n)

An,m =
1

2πi

(n
m

)m
·
∮ emz

zm+1 dz ·
(

1 +O
(

m2

n

))
=

nm

m!
·
(

1 +O
(

m2

n

))

and, again by using (71) and applying Stirling’s approximation for-
mula for the factorials, furthermore

Mn,m =
n!nn

(n−m)!
·
(

1 +O
(

m2

n

))
= nn+m ·

(
1 +O

(
m2

n

))

=
nn+m

√
1− 2m

n

1− m
n

·
(

1 +O
(

m2

n

))
.

The region ρ ≥ 1
2 + δ

For this region we choose in (73) the contour Γ to be a circle centred
at the origin and passing through the dominant saddle point w2, i.e.,
it has radius r = 1

2 . Using the parametrization Γ = {w = 1
2 eiφ : φ ∈

[−π, π]}, we obtain from (73) the representation

An,m =
1

2π

∫ π

−π

1
2

eiφg(
1
2

eiφ)enh(1
2 eiφ)dφ, (79)

with functions g(w) and h(w) defined in (74).
As in the previous region we expand the integrand in (79) around

φ = 0 to find a suitable choice for φ0 to split the integral. However,
due to cancellations, we require a more refined expansion which can
again be obtained by straightforward computations. Namely, we ob-
tain

1
2

eiφg
(

1
2

eiφ
)
=− 2iφ + 3φ2 +O(φ3),

nh
(

1
2

eiφ
)
=n + (2m− n) log 2−

(
m− n

2

)
φ2

+ i
(

5n
6
−m

)
φ3 +O(nφ4),

which gives

1
2

eiφg
(

1
2

eiφ
)

enh(1
2 eiφ) =en22m−ne−(m−

n
2)φ

2 ·

·
(
− 2iφ + 3φ2 +

(
5n− 6m

3

)
φ4+

+O(φ3) +O(nφ5) +O(n2φ7)

)
.

Thus we may choose φ0 = n−
1
2+ε, with 0 < ε < 1

6 to split the contour
Γ = Γ1 ∪ Γ2, with Γ1 = {w = 1

2 eiφ : φ ∈ [−φ0, φ0]} and Γ2 = {w =
1
2 eiφ : φ ∈ [−π,−φ0] ∪ [φ0, π]}. Let us again denote by I(1)n,m and I(2)n,m

194 parking in trees and mappings

the contribution of the integral in the representation (79) over Γ1 and
Γ2, respectively.

For I(1)n,m we use the above expansion for the integrand and obtain
after simple manipulations

I(1)n,m = cn,m

∫ φ0

−φ0

e−(m−
n
2)φ

2 ·

·
(
−2iφ + 3φ2 +

(
5n− 6m

3

)
φ4 +O(n− 3

2+7ε)

)
dφ,

where the multiplicative factor cn,m is equal to en22m−n 1
2π . Again it

holds that completing the tails only gives a subexponentially small
error term and we obtain

I(1)n,m = cn,m

∫ ∞

−∞
e−(m−

n
2)φ

2 ·

·
(
−2iφ + 3φ2 +

(
5n− 6m

3

)
φ4 +O(n− 3

2+7ε)

)
dφ

=
cn,m√

n

∫ ∞

−∞
e−(

m
n − 1

2)t
2 ·

·
(
−2i

t√
n
+

3t2

n
+

5n− 6m
3

t4

n2 +O
(

n−
3
2+7ε

))
dt,

where we used the substitution φ = t√
n to get the latter expression.

Using the integral evaluations (with α > 0):
∫ ∞

−∞
te−αt2

dt = 0,
∫ ∞

−∞
t2e−αt2

dt =
√

π

2α
3
2

,
∫ ∞

−∞
t4e−αt2

dt =
3
√

π

4α
5
2

,

we obtain

I(1)n,m =
cn,m

n
3
2


 3

√
π

2
(m

n − 1
2

) 3
2
+

(
5− 6m

n

)√
π

4
(m

n − 1
2

) 5
2


 ·

(
1 +O

(
n−

1
2+7ε

))

=
en22m−n+1

√
2πn

3
2
(2m

n − 1
) 5

2
·
(

1 +O
(

n−
1
2+7ε

))
.

Again, it can be shown that the main contribution of An,m comes
from I(1)n,m, i.e., that it holds

I(2)n,m =
1

2π

∫

Γ2

1
2

eiφg
(

1
2

eiφ
)

enh(1
2 eiφ)dφ = o

(
I(1)n,m

)
,

but here we omit these computations. Thus we obtain

An,m =
en22m−n+1

√
2πn

3
2
(2m

n − 1
) 5

2
·
(

1 +O
(

n−
1
2+7ε

))
,

and

Mn,m =
m!

(n−m)!
· n2n−m−122m−n+1

(2m
n − 1

) 5
2

·
(

1 +O
(

n−
1
2+7ε

))
.

9.4 total number of parking functions : m ≤ n 195

The monkey saddle for ρ = 1/2

For ρ = m
n = 1

2 , the situation is slightly different to the previous
regions since the two otherwise distinct saddle points coalesce to a
unique double saddle point. The difference in the geometry of the
surface, i.e., of the modulus of the large power en·h(w) in (73), is that
there are now three steepest descent lines and three steepest ascents
lines departing from the saddle point (in contrast to two steepest
descent lines and two steepest ascents lines for the case of a simple
saddle point). This explains why such saddle points are also referred
to as “monkey saddles”: they do not only offer space for two legs but
also for a tail. In this particular case the three steepest descent and
steepest ascent lines departing from the saddle point at w = w1 =

w2 = 1
2 have angles 0, 2π/3 and −2π/3 as can be seen in the middle

right of Figure 46. This also follows from a local expansion of h(w) as
defined in (74) around w = 1

2 :

h(w) = 1− 8
3

(
w− 1

2

)3

+O
((

w− 1
2

)4
)

.

Thus, we may choose as integration contour two line segments
joining the point w = 1

2 with the imaginary axis at an angle of
−2π/3 and 2π/3, respectively, as well as a half circle centred at
the origin and joining the two line segments. See the bottom right
of Figure 46. This yields Γ = Γ1 ∪ Γ2 ∪ Γ3 and An,m = I(1)n,m + I(2)n,m +

I(3)n,m for the corresponding integrals, where we use the parametriza-
tions Γ1 :=

{
1
2 − e−

2πi
3 t : t ∈ [−1, 0]

}
, Γ2 :=

{
1
2 + e

2πi
3 t : t ∈ [0, 1]

}
,

and Γ3 :=
{√

3
2 eit : t ∈ [π

2 , 3π
2]
}

.
We first treat

I(1)n,m =
1

2πi

∫ 0

−1

(
−e−

2πi
3

)
g
(

1
2
− e−

2πi
3 t
)

e
nh
(

1
2−e−

2πi
3 t
)

dt

=
1

2πi

∫ 1

0

(
−e−

2πi
3

)
g
(

1
2
+ e−

2πi
3 t
)

e
nh
(

1
2+e−

2πi
3 t
)

dt.

In order to find a suitable choice t0 for splitting the integral for the
central approximation and the remainder we consider the expansion
of the integrand around t = 0, which can be obtained easily:

−e−
2πi

3

2πi
g
(

1
2
+ e−

2πi
3 t
)

e
nh
(

1
2+e−

2πi
3 t
)

=
4ene−

4πi
3

πi
te−

8
3 nt3 ·

(
1 +O(t2) +O(nt5)

)
. (80)

Thus we obtain the restrictions nt3
0 → ∞ and nt5

0 → 0 which are, e.g.,
satisfied when choosing t0 = n−

1
4 . This splitting yields I(1)n,m = I(1,1)

n,m +

I(1,2)
n,m , for the integration paths t ∈ [0, t0] and t ∈ [t0, 1], respectively.

196 parking in trees and mappings

Using the local expansion of the integrand (80) as well as the before-
mentioned choice for t0, the central approximation I(1,1)

n,m gives

I(1,1)
n,m =

4ene−
4πi

3

πi

∫ t0

0
te−

8
3 nt3

dt ·
(

1 +O(n− 1
4)
)

=
4ene−

4πi
3

πi

∫ ∞

0
te−

8
3 nt3

dt ·
(

1 +O(n− 1
4)
)

,

since one can show easily that completing the integral only yields a
subexponentially small error term. Moreover, also the remainder

I(1,2)
n,m =

1
2πi

∫ 1

t0

(
−e−

2πi
3

)
g
(

1
2
+ e−

2πi
3 t
)

e
nh
(

1
2+e−

2πi
3 t
)

dt

only yields a subexponentially small error term compared to I(1,1)
n,m .

Thus, we get the contribution

I(1)n,m =
4ene−

4πi
3

πi

∫ ∞

0
te−

8
3 nt3

dt ·
(

1 +O(n− 1
4)
)

.

The integral

I(2)n,m =
1

2πi

∫ 1

0

(
e

2πi
3

)
g
(

1
2
+ e

2πi
3 t
)

e
nh
(

1
2+e

2πi
3 t
)

dt,

can be treated in an analogous manner which gives the contribution

I(2)n,m = −4ene
4πi

3

πi

∫ ∞

0
te−

8
3 nt3

dt ·
(

1 +O(n− 1
4)
)

.

Moreover, one can show that the contribution of

I(3)n,m =
1

2πi

∫ 3π
2

π
2

√
3

2
ieitg

(√
3

2
eit

)
enh

(√
3

2 eit
)

dt

is asymptotically negligible compared to I(1)n,m and I(2)n,m.
Collecting the contributions and evaluating the integral yields

An,m ∼
4en

πi

(
e−

4πi
3 − e

4πi
3

)
·
∫ ∞

0
te−

8
3 nt3

dt =
4
√

3en

π

∫ ∞

0
te−

8
3 nt3

dt

=
3

1
6 enn−

2
3

π
Γ
(

2
3

)
,

and thus by using (71):

Mn,m ∼
√

2 3
1
6 Γ(2

3)n
3n
2

√
π n

1
6

.

9.5 summary of the results 197

9.5 summary of the results

This chapter constitutes the first treatment of parking functions for
trees and mappings. Let us summarize our contributions:

• We have provided several different characterizations of parking
functions on trees and mappings, showing that results for ordi-
nary parking functions may be extended. Also, we were able to
characterize the extremal cases for the number of parking func-
tions for trees, i.e., the types of trees which allow for a maximal
or a minimal number of parking functions.

• The main task of this chapter was to count the number of pairs
(T, s) where T is a tree of size n and s a parking function for s
as well as the number of pairs (f , s) that are mapping parking
functions. This was first done for the case that the number of
drivers m coincides with the number n of parking spaces and
later on for the general case m = n. The generating functions
approach also led to the surprising result that n · Fn,m = Mn,m.
We were able to provide a bijective proof for this result, thus
providing a combinatorial explanation of this interesting fact.

• The numbers Fn,m and Mn,m of tree and mapping parking func-
tions were also analysed from an asymptotic point of view. Us-
ing the saddle point method, we could show that these numbers
exhibit a phase transition behaviour for m = n/2, i.e., when
half of the parking spaces are occupied. Similar phase transi-
tion phenomena have for instance been observed in the analysis
of random graphs during the phase where a giant component
has not yet emerged.

Part III

P R E F E R E N C E S A N D E L E C T I O N S

This part deals with patterns in elections which are re-
ferred to as so-called configurations and occur within the
concept of domain restrictions. We establish a connection
to permutation patterns and study the likelihood of the
single-peaked domain restriction under several probabil-
ity models.

10
O N T H E L I K E L I H O O D O F S I N G L E - P E A K E D
E L E C T I O N S

This chapter is based on joint work with Martin Lackner. A prelimi-
nary version of the results presented here has been published in the
Proceedings of the 8th Multidisciplinary Workshop on Advances in
Preference Handling (MPref 2014) [43].

The single-peaked restriction [22] is an extensively studied prefer-
ence domain in social choice theory. A collection of preferences, i.e.,
total orders on a set of candidates, is single-peaked if the candidates
can be ordered linearly – on a so-called axis – so that each preference
is either strictly increasing along this ordering, or strictly decreasing,
or first increasing and then decreasing. See Figure 48 for examples.
Intuitively, the axis reflects the society’s ordering of the candidates
and voters always prefer candidates that are closer to their ideal can-
didate over those farther away. In political elections, for example, this
axis could reflect the left-right spectrum of the candidates or a natural
ordering of political issues such as the maximum income tax.

Single-peaked preferences have several nice properties. First, they
guarantee that a Condorcet winner exists and further that the pair-
wise majority relation is transitive [100]. Let us explain this briefly:
The pairwise majority relation ≺M is obtained by considering all
pairs of candidates (ci, cj). If a majority of voters ranks ci above cj,
then we set cj ≺M ci. The relation obtained in this way is not nec-
essarily transitive since cycles can occur. However, for single-peaked
elections cycles are not possible and ≺M is indeed transitive which
implies that it can serve as output for a social welfare function. The
highest ranked candidate with respect to ≺M is called the Condorcet
winner and is the candidate that wins most pairwise comparisons.
Thus single-peaked preferences are a way to escape Arrow’s para-
dox, Theorem 2.19. Second, non-manipulable voting rules exist for
single-peaked preferences (Moulin 1980) and hence the single-peaked
restriction also offers a way to circumvent the Gibbard-Satterthwaite
paradox [89, 137]. By adopting an algorithmic viewpoint, a third ad-
vantage becomes apparent. Restricting the input to single-peaked
preferences often allows for faster algorithms for computationally
hard voting problems [20, 37, 71, 154].

In this chapter we perform the first combinatorial analysis of the
single-peaked domain. Our aim is to establish results on the likeli-
hood that a collection of preferences – which we call an election – is
single-peaked for some axis. To be more precise, we allow the axis to
be chosen depending on the preferences and do not assume that it is

201

202 on the likelihood of single-peaked elections

axisc1 c2 c3 c4 c5 c6 c7

?

?

?

?

?

?

?

Figure 48: The vote V1 : c4 > c5 > c6 > c3 > c2 > c7 > c1, shown as a solid
line, is single-peaked with respect to the axis c1 < c2 < c3 < c4 <
c5 < c6 < c7. The vote V2 : c3 > c5 > c4 > c2 > c6 > c1 > c7,
depicted as a dashed line, is not single-peaked with respect to
this axis since both c3 and c5 form a peak. However, note that
both votes are single-peaked with respect to the axis c1 < c2 <
c3 < c5 < c4 < c6 < c7.

given together with the election. We consider three probability distri-
butions for elections: the Impartial Culture (IC) assumption in which
all total orders are equally likely and are chosen independently, the
Pólya urn model which assumes a certain homogeneity among voters
and Mallows model in which the probability of a vote depends on its
Kendall-tau distance to a given reference vote.

This chapter is organized as follows: We start by presenting some
related work as well as the studied probability models and give a
formal definition of single-peaked elections. The results on configu-
ration definable restrictions can be found in Section 10.1, results on
counting single-peaked elections in Section 10.2, results on the Pólya
urn model in Section 10.3 and results on the Mallows model in Sec-
tion 10.4. In Section 10.5 we provide numerical evaluations of our
results and discuss their implications. We summarize our results in
Section 10.6.

related work . Computing the likelihood of properties related
to voting has been the focus of a large body of research. The most
fundamental question in this line of research is the choice of appro-
priate probability distributions, see [54] for a survey. We would like to
mention two particular properties of elections that have been studied
from a probability theoretic point of view: the likelihood of manipu-
lability and the likelihood of having a Condorcet winner.

An election is manipulable if a voter or a coalition of voters is better
off by not voting sincerely but by misrepresenting their true prefer-
ences. The Gibbard-Satterthwaite paradox [89, 137] states that every
reasonable voting system for more than two candidates is susceptible

on the likelihood of single-peaked elections 203

to manipulation. However, the Gibbard-Satterthwaite does not offer
insight into how likely it is that manipulation is possible. Determin-
ing this likelihood both for single manipulators and coalitions of ma-
nipulators has been the focus of intensive research. Results have been
obtained under a variety of probability distributions: for example un-
der the Independent Culture assumption [82, 101, 141, 142], the Pólya
urn model [116], the Independent Anonymous Culture [72, 143].

The likelihood that an election has a Condorcet winner or, its con-
verse, the likelihood of the Condorcet paradox has been the focus
of many publications (see [86] for a survey and [87, 88] for more
recent research). In particular, we would like to mention a result of
Gehrlein [85] who determined that the likelihood of an election with
three candidates having a Condorcet winner under the Impartial Cul-
ture assumption is 15(n + 3)2/[16(n + 2)(n + 4)]. We will comment
on the relation between this result and our results in Chapter 10.6.

probability distributions over elections . In this chapter
we consider three probability distributions. The first and simplest is
the Impartial Culture (IC) which assumes that in an election all votes,
i.e., total orders of candidates, are equally likely and are chosen inde-
pendently. Thus, the IC assumption can be seen as the uniform distri-
bution over all elections of a given size. Our results concerning IC do
not state probabilities but rather count the number of elections. If, e.g.,
the number of single-peaked (n, m)-elections is a(n, m, SP), then the
probability under the IC assumption that an (n, m)-election is single-
peaked is a(n,m,SP)

(m!)n . It is important to note that elections contain an
ordered list of votes. Thus, we distinguish elections that consists of
the same votes but appearing in a different order. This is in contrast
to the Impartial Anonymous Culture assumption, in which elections
contain a multiset of votes and thus elections are not ordered. We do
not consider the Impartial Anonymous Culture assumption here.

In addition to the IC assumption, we consider the Pólya urn model
and the Mallows model. Both distributions are generalizations of the
IC assumption and generate more structured elections. We are going
to define the Pólya urn and the Mallows model in Section 10.3 and
10.4, respectively.

single-peaked preferences The single-peaked restriction as-
sumes that the candidates can be ordered linearly on a so-called axis
and voters prefer candidates close to their ideal point to candidates
that are further away.

Definition 10.1. Let (C,P) be an election and A a total order of C. A
vote V on C contains a valley with respect to A on the candidates
c1, c2, c3 ∈ C if A : c1 c2 c3 and V ranks c2 below c1 and c3. The election
(C,P) is single-peaked with respect to A if for every V ∈ P and for
all candidates c1, c2, c3 ∈ C, V does not contain a valley with respect to

204 on the likelihood of single-peaked elections

A on c1, c2, c3. We then call the total order A the axis. The election (C,P)
is single-peaked if there exists a total order A of C such that (C,P) is
single-peaked with respect to A.

Remark 10.2. Given an axis on m candidates, there are 2m−1 votes
that are single-peaked with respect to this axis. This has been shown
in [68] and can be seen as follows: The last ranked candidate has to
be one of the two outermost candidates on the axis and hence there
are two possibilities. Once we have picked this last candidate, we can
iterate the argument for the next lowest ranked candidate, where we
again have two possibilities. Thus, for all positions in the total order
(except for the top ranked candidate), there are two candidates to
choose from – which yields 2m−1 possibilities in total.

10.1 a general result based on permutation patterns

Before we study the single-peaked domain in detail, we prove a gen-
eral result that is applicable to a large class of domain restrictions
including the single-peaked domain. To precisely define this class of
domain restrictions, we require the notion of configuration definabil-
ity.

Configuration definable domain restrictions

Single-peaked elections may also be defined in the following way:

Theorem 10.3 (15). An (n, m)-election (C,P) is single-peaked if and only
if there do not exist candidates a, b, c, d ∈ C and indices i, j ∈ [n] such that

• Vi : abc, Vi : db,

• Vj : cba and Vj : db holds

and there do not exist candidates a, b, c ∈ C and indices i, j, k ∈ [n] such
that

• Vi : ba, ca (i.e., a is ranked below b and c),

• Vj : ab, cb and

• Vk : ac, bc holds.

Note that this theorem defines single-peakedness without referring
to an axis. Indeed, single-peakedness is now defined as a local prop-
erty in the sense that certain configurations must not be contained in
the election. Similar definitions have also been found for the single-
crossing [39] and group-separable [15] domain. Our aim is to prove
a theorem that is applicable to arbitrary domain restrictions that can
be defined in such a way. Thus, we give a precise definition of what
it means for a domain to be configuration definable.

10.1 a general result based on permutation patterns 205

Configuration:

d > a > b > c

c d b a> > >

f

f

Election:

u v w x y

w y v u x

y u x w v

> > > >

> > > >

> > > >

Figure 49: The configuration on the left-hand side is contained in the elec-
tion on the right-hand side as witnessed by f : {1 7→ 1, 2 7→ 3}
and g : {a 7→ v, b 7→ x, c 7→ y, d 7→ u}.

Definition 10.4. An (l, k)-configuration (S, T) consists of a finite set S
of cardinality k and a tuple T = (T1, . . . , Tl), where T1, . . . , Tl are total
orders on S. An election (C,P) contains configuration C if there exist an
injective function f from [l] into [n] and an injective function g from S into
C such that, for any x, y ∈ S and i ∈ [l], it holds that Ti : xy implies
Vf (i) : g(x)g(y).

We use (S, T) v (C,P) as a shorthand notation to denote that the
election (C,P) contains the configuration (S, T). An election (C,P)
avoids a configuration (S, T) if (C,P) does not contain (S, T). In such
a case we say that (C,P) is (S, T)-restricted. If the set S is clear from
the context, we omit it and just use T to describe a configuration.

Example 10.5. Let us consider an election (C,P) with C = {u, v, w, x, y}
and P = (uvwxy, wyvux, yuxwv) and a configuration (S, T) with
S = {a, b, c, d} and T = (dabc, cdba). Election (C,P) contains the
configuration (S, T) as witnessed by the functions f : {1 7→ 1, 2 7→ 3}
and g : {a 7→ v, b 7→ x, c 7→ y, d 7→ u}. In Figure 49, the functions f
and g are depicted graphically.

By considering all linearizations of the partial orders appearing in
Theorem 10.3 we can now restate it as follows.

Theorem 10.6 (15). An election is single-peaked if and only if it avoids

• the following (2, 4)-configurations:

(dabc, dcba), (adbc, dcba), (dabc, cdba) and (adbc, cdba)

• as well as the following (3, 3)-configurations:

(bca, acb, abc), (cba, acb, abc), (bca, cab, abc), (cba, cab, abc),

(bca, acb, bac), (cba, acb, bac), (bca, cab, bac), (cba, cab, bac).

The first four configurations correspond to the first condition in
Theorem 10.3, the remaining eight correspond to the second condi-
tion.

206 on the likelihood of single-peaked elections

Definition 10.7. Let Γ be a set of configurations. A set of elections Π is
defined by Γ if Π consists exactly of those elections that avoid all config-
urations in Γ. We call Π configuration definable if there exists a set of
configurations Γ which defines Π. If Π is definable by a finite set of configu-
rations, it is called finitely configuration definable.

By Theorem 10.6 we know that the set of all single-peaked elec-
tions is finitely configuration definable. This is also true for the set
of group-separable elections [15] and for the set of single-crossing
elections [39].

We are now going to characterize which sets of elections are config-
uration definable. In the following definition, for two elections (C,P)
and (C′,P ′), we write (C′,P ′)v (C,P) if (C′,P ′), considered as a con-
figuration, is contained in (C,P). Since every election can be seen as
a configuration, the configuration containment relation immediately
translates to election containment.

Definition 10.8. A set of elections Π is hereditary if for every election
(C′,P ′) it holds that if there exists an election (C,P) ∈ Π with (C′,P ′) v
(C,P), then (C′,P ′) ∈ Π.

Proposition 10.9. A set of elections is configuration definable if and only if
it is hereditary.

Proof. Let a set of elections Π be defined by a set of configurations
Γ and (C,P) ∈ Π. Let (C′,P ′) v (C,P). Since (C,P) ∈ Π, (C,P)
avoids all configurations in Γ. Due to (C′,P ′) v (C,P), also (C′,P ′)
avoids all configurations in Γ and is therefore contained in Π. For
the other direction, let Πc denote the set of all elections that are not
contained in Π. It is easy to observe that Πc is a (possibly infinite) set
of configurations that defines Π.

As a consequence of Proposition 10.9, we know that 2D single-
peaked elections [17] and 1D Euclidean [50, 110] are configuration de-
finable. However, Proposition 10.9 does not help to answer whether
these restrictions are finitely configuration definable. Finite configu-
ration definability has been crucial for establishing algorithmic re-
sults [38, 64].

A natural example of a meaningful restriction that is not configura-
tion definable is the set of all elections that have a Condorcet winner.
The property of having a Condorcet winner is not hereditary and thus
cannot be defined by configurations. There are also sets of elections
that are configuration definable but not finitely configuration defin-
able. The proof of this statement builds upon a connection between
configuration avoiding elections and permutation patterns, which we
establish now.

10.1 a general result based on permutation patterns 207

The connection to permutation patterns

In this section, we establish a strong link between the concept of con-
figuration containment and the concept of pattern containment in
permutations. We are going to prove two lemmas. The first lemma
(Lemma 10.10) states that every permutation pattern matching query
can naturally be translated in a configuration containment query. The
second lemma (Lemma 10.12) states that for (2, k)-configurations, a
configuration containment query can naturally be translated in a per-
mutation pattern query.

Lemma 10.10. Let π be a k-permutation and τ an m-permutation. We
define the corresponding configuration and election as follows: Let (C,P) be
a (3, m)-election with C = {c1, . . . , cm}, P = (V1, V2, V3) and

V1 : c1c2 · · · cm V2 : c1c2 · · · cm V3 : cτ(1)cτ(2) · · · cτ(m).

Furthermore, let (S, T) be a (3, k)-configuration with S = {x1, . . . , xk},
T = (T1, T2, T3) and

T1 : x1x2 · · · xm T2 : x1x2 · · · xm T3 : xπ(1)xπ(2) · · · xπ(k).

Then (C,P) contains (S, T) if and only if τ contains π.

Proof. Assume that we have a matching µ from π into τ. We have to
find an injective function f from {1, 2, 3} into {1, 2, 3} and an injective
function g from S into C such that, for any x, y ∈ S and i ∈ {1, 2, 3},
it holds that Ti : xy implies Vf (i) : g(x)g(y). Let f be the function
{1 7→ 1, 2 7→ 2, 3 7→ 3} and g = µ. It holds for xi, xj ∈ S that T1 : xi xj
if and only if V1 : cµ(i) cµ(j) since µ is monotone. The same holds for
T2 and V2. For T3 and V3 observe that T3 : xi xj implies V3 : cµ(i) cµ(j)
since µ is a matching. Thus, the election fulfils (S, T) v (C,P).

For the other direction, assume that (C,P) contains (S, T). Conse-
quently, there exists an injective function f from {1, 2, 3} into {1, 2, 3}
and an injective function g from S into C such that, for any x, y ∈ S
and i ∈ {1, 2, 3}, it holds that Ti : xy implies Vf (i) : g(x)g(y). First,
we claim that f (3) = 3. Observe that f has to map T1 and T2 to
identical total orders. Thus, unless V1 = V2 = V3, f (3) = 3. In the
case that V1 = V2 = V3, we can assume without loss of generality
that f (3) = 3. We will construct a function µ and show that µ is a
matching from π into τ. Let us define µ(i) = j if g(xi) = cj. Ob-
serve that µ is strictly increasing since for i < j, V1 : cg(i) cg(j) and
V1 : c1c2 · · · cm. In addition, µ(π) =

(
µ(π(1)), µ(π(2)), . . . , µ(π(k))

)

is a subsequence of τ since, by definition of T3 and V3 and the fact
that f (3) = 3,

(
g(xπ(1)), g(xπ(2)), . . . , g(xπ(k))

)
is a subsequence of(

cτ(1), cτ(2), . . . , cτ(m)

)
.

We can now state our first result that builds upon the connection
between configuration avoiding elections and permutation patterns.

208 on the likelihood of single-peaked elections

Proposition 10.11. There are sets of elections that are configuration defin-
able but not finitely configuration definable.

Proof. Take an infinite set of permutations that pairwise avoid each
other [25]. Then use the construction in Lemma 10.10 to generate cor-
responding configurations. There are no two configurations that pair-
wise contain each other. Thus the set of elections defined by avoid-
ing these configurations is not definable by a finite set of configura-
tions.

Next, we will prove the second lemma, which is essential for Theo-
rem 10.13. As of now, we shall denote by Sm(π1, . . . , πl) the cardinal-
ity of the set of m-permutations that avoid the patterns π1, . . . , πl .

Lemma 10.12. Let (S, T) be a (2, k)-configuration with T = (T1, T2).
Furthermore, let V1 be a total order on the candidate set C = {c1, . . . , cm}.
Then the number of total orders V2 such that the election (C,P) with P =

(V1, V2) avoids (S, T) is equal to Sm(π, π−1), where π = p(C1, C2).

Proof. Let us start by proving the following statement: The configu-
ration (S, T) is contained in an election (C,P) with P = (V1, V2) if
and only if the permutation π or the permutation π−1 is contained in
p(V1, V2). In order to alleviate notation, we will assume in the follow-
ing that C = {1, 2, . . . m} and S = {1, 2, . . . k}.

”⇐” We can assume without loss of generality that T1 : 12 . . . k and
V1 : 12 . . . m. If π is contained in p(V1, V2) as witnessed by a matching
µ, then the functions f = {1 7→ 1, 2 7→ 2} and g = µ show that
(S, T) v (C,P) (cf. Definition 10.4). If π−1 is contained in p(V1, V2)

as witnessed by a matching µ, then the functions f = {1 7→ 2, 2 7→ 1}
and g = µ show that (S, T) v (C,P).

”⇒” Let (S, T) v (C,P). Without loss of generality we assume
that T1 : 12 . . . k. Note that renaming C does not change whether
(S, T) v (C,P). Thus, it is safe to rename the candidates according
to the f function: If f = {1 7→ 1, 2 7→ 2}, let V1 : 12 . . . n. Since
f (1) = 1, g is monotonic. It is easy to verify that g is a matching from
π into p(V1, V2). If f = {1 7→ 2, 2 7→ 1}, let V2 : 12 . . . n. Now, g is a
matching from π into p(V2, V1) = (p(V1, V2))−1. This is equivalent to
g being a matching from π−1 into p(V1, V2).

It follows that (C,P) avoids the configuration (S, T) if and only if
the permutation p(V1, V2) avoids both the patterns π and π−1. More-
over, for the fixed total order V1 and a fixed m-permutation τ, there
is a single total order V2 such that p(V1, V2) = τ. Thus the number
of votes V2 such that p(V1, V2) avoids π and π−1 (and equivalently
the number of votes V2 such that (C,P) avoids (S, T)) is equal to
Sm(π, π−1), the number of m-permutations avoiding π and π−1.

From this lemma follows the main theorem of this section that is
applicable to any set of configurations that contains at least one con-
figuration of cardinality two.

10.1 a general result based on permutation patterns 209

Elections that avoid a (2, k)-configuration

With the help of Lemma 10.12, we are able to establish the following
result.

Theorem 10.13. Let a(n, m, Γ) be the number of (n, m)-elections avoiding
a set of configurations Γ. Let k ≥ 2. If a set of configurations Γ contains a
(2, k)-configuration, then it holds for all n, m ∈N that

a(n, m, Γ) ≤ m! · c(n−1)m
k ,

where ck is a constant depending only on k.

This result shows that forbidding any (2, k)-configuration is a very
strong restriction. Indeed, m! · c(n−1)m

k is very small compared to the
total number of (n, m)-elections which is (m!)n. This result allows us
to bound the number of single-peaked and group-separable elections.
However, let us prove this result first before we explore its conse-
quences.

In order to prove this result we make use of the link between con-
figuration avoiding elections and pattern avoiding permutations es-
tablished in Lemma 10.12 and profit from a very strong result within
the theory of pattern avoidance in permutations, the Marcus-Tardos
theorem (former Stanley-Wilf conjecture).

Proof. We will provide an upper bound on the number of (n, m)-
elections avoiding a (2, k)-configuration (S, T) with T = (T1, T2). Let
us start by choosing the first vote V1 of the election at random. For
this there are m! possibilities. When choosing the remaining (n− 1)
votes V2, . . . , Vn, we have to make sure that no selection of two votes
contains the forbidden configuration (S, T). We relax this condition
and only demand that for none of the pairs (V1, Vi) with i 6= 1, the
election (C, (V1, Vi)) contains the forbidden configuration. Hereby we
obtain an upper bound for a(n, m, {C}). Now Lemma 10.12 tells us
that there are – under this relaxed condition – Sm(π, π−1) choices for
every Vi where π = p(C1, C2). Thus we have the following upper
bound:

a(n, m, {C}) ≤ m!Sm(π, π−1)n−1 ≤ m!Sm(π)n−1, (81)

where the second inequality follows since all permutations avoiding
both π and π−1 clearly avoid π.

Now we apply the famous Marcus-Tardos theorem [124]: For every
permutation π of length k there exists a constant ck such that for
all positive integers m we have Sm(π) ≤ ck

m. Putting this together
with Equation (81) and noting that a(n, m, {C}) is an upper bound
for a(n, m, Γ), we obtain the desired upper bound.

210 on the likelihood of single-peaked elections

The proof of the Marcus-Tardos theorem provides an explicit expo-
nential formula for the constants ck. Indeed, it holds that

Sm(π) ≤
(

152k4(k2
k)

)m

.

These constants are however far from being optimal and there is an
ongoing effort to find minimal values for ck with fixed k. In particular
it has been shown that c2 = 1, c3 = 4 [140] and c4 ≤ 13.738 [28].

Let us discuss the implications of this theorem. It is applicable
to all (not necessarily finite) configuration definable domain restric-
tions that contain a configuration of cardinality two. In particular,
we obtain the following upper bounds for single-peaked and group-
separable elections.

Corollary 10.14. Let a(n, m, Γsp) denote the number of single-peaked (n, m)-
elections. For n, m ≥ 2 it holds that

a(n, m, Γsp) ≤ m! · 4(m−1)(n−1).

Proof. We know from Theorem 10.3 that the single-peaked domain
avoids the (2, 4)-configurations (dabc, dcba), (adbc, dcba), (dabc, cdba)
and (adbc, cdba). We can use Equation (81) in the proof of Theo-
rem 10.13 to bound a(n, m, Γsp).

For this, we have to compute the permutations and their inverses
corresponding to the four configurations. We obtain the permuta-
tions π1 = p(dabc, dcba) = 1432, π2 = p(adbc, dcba) = 4132, π3 =

p(dabc, cdba) = 2431 and π4 = p(adbc, cdba) = 4231. Their inverses
are π−1

1 = π1, π−1
2 = π3, π−1

3 = π2 and π−1
4 = π4. Hence it holds that

the number of (n, m)-elections that avoid these four configurations
is bounded by m! · Sm(π1, π2, π3, π4)

n−1. As shown in Theorem 5.1,
Sm(π1, π2, π3, π4) = (2m−2

m−1), which, in turn, is bounded by 4m−1.

In the next section, we will see that the growth rate of a(n, m, Γsp)

is indeed of the form m! · c(m−1)(n−1) for some constant c. However,
the constant found in Corollary 10.14 is not optimal as we will see
by providing a better bound for the single-peaked restriction that is
even asymptotically optimal.

As another corollary of Theorem 10.13, we prove a bound on the
number of group-separable elections. An election is group separable
if for every subset of candidates C′ there exists a partition C1, C2 of
C′ such that in every vote either all candidates in C1 are preferred
to all candidates in C2 or vice versa. In [15] it is shown that the
group-separable domain is finitely configuration definable. In par-
ticular, this domain avoids the configuration (abcd, bdac). Therefore,
Theorem 10.13 is applicable.

10.2 counting results and the impartial culture assumption 211

Corollary 10.15. Let a(n, m, Γgs) denote the number of group-separable
(n, m)-elections. For n, m ≥ 2 it holds that

a(n, m, Γgs) ≤ m! · (3 + 2
√

2)m(n−1).

Proof. The proof is similar to the one of Corollary 10.14. We use
Equation (81) in the proof of Theorem 10.13 to bound a(n, m, Γgs),
i.e., a(n, m, Γgs) ≤ m! · Sm(π, π−1)n−1, where π = p(abcd, bdac) =

2413 and π−1 = 3142. Permutations avoiding these two patterns are
known under the name of separable permutations. It is known that sepa-
rable permutations are counted by the large Schröder numbers (OEIS
A006318) and that Sm(π, π−1) ≤ (3 + 2

√
2)m [156].

10.2 counting results and the impartial culture assump-
tion

As in the previous section, let a(n, m, Γsp) denote the number of single-
peaked elections. In this section, we prove a lower and upper bound
on a(n, m, Γsp). These two bounds are asymptotically optimal, i.e.,
the lower bound converges to the upper bound for every fixed m
and n → ∞. In addition, we prove exact enumeration results for
a(2, m, Γsp), a(n, 3, Γsp) and a(n, 4, Γsp).

Our results immediately imply derive bounds on the probability
that an (n, m)-election is single-peaked assuming that elections are
drawn uniformly at random, i.e., according to the Impartial Culture
assumption. The probability is simply a(n, m, Γsp)/(m!)n.

Theorem 10.16. It holds that

m!
2
· 2(m−1)·n · (1− ε(n, m)) ≤ a(n, m, Γsp) ≤

m!
2
· 2(m−1)·n,

where ε(n, m)→ 0 for every fixed m and n→ ∞.

Proof. First observe that an election is single-peaked with respect to
an axis if and only if it is single-peaked with respect to its reverse, i.e.,
the axis read from right to left. Thus the total number of axes on m
candidates that need to be considered is m!/2. Second, recall that the
number of votes that are single-peaked with respect to a given axis is
2m−1 (cf. Remark 10.2).

Now we have gathered all facts necessary for the upper bound. For
every one of the m!/2 axes considered, select an ordered set of votes
from the 2m−1 votes that are single-peaked with respect to this axis.
There are exactly 2(m−1)·n such possibilities, which yields the upper
bound. Since an election may be single-peaked with respect to more
than two axes, this number is only an upper bound for a(n, m, Γsp).

Let us turn to the lower bound. Given a vote V, there are only two
axes with respect to which both V and its reverse V̄ are single-peaked,

212 on the likelihood of single-peaked elections

namely the total orders V and V̄ themselves. Thus the presence of the
votes V and V̄ in an election forces the axis to be equal to either V or
V̄. If we fix a vote V, the number of single-peaked elections containing
both V and V̄ can thus be determined exactly. Multiplying this by the
number of possible choices for V leads to:

m!
2
· ∑

1≤i,j
i+j≤n

(
n
i

)
·
(

n− i
j

)(
2m−1 − 2

)n−i−j
, (82)

where i denotes the number of times the vote V appears in the elec-
tions and j the number of times the vote V̄ appears. The other votes
may be any of the 2m−1 votes that are single-peaked with respect to
the axis V respectively V̄ – except V and V̄ themselves – and n− i− j
of them must be chosen.

Setting k = i + j in equation (82) leads to:

n

∑
k=2

k−1

∑
i=1

(
n
i

)
·
(

n− i
k− i

)(
2m−1 − 2

)n−k

=
n

∑
k=2

(
2m−1 − 2

)n−k
(

n
k

) k−1

∑
i=1

(
k
i

)

=
n

∑
k=2

(
2m−1 − 2

)n−k
(

n
k

)(
2k − 2

)

=
(

2m−1
)n
− 2 · n

(
2m−1 − 2

)n−1
−
(

2m−1 − 2
)n

− 2 ·
((

2m−1 − 1
)n
− n ·

(
2m−1 − 2

)n−1
−
(

2m−1 − 2
)n
)

= 2(m−1)·n +
(

2m−1 − 2
)n
− 2 ·

(
2m−1 − 1

)n

= 2(m−1)·n · (1− ε(n, m)) ,

where ε(n, m) =
2 · (2m−1 − 1)n −

(
2m−1 − 2

)n

2(m−1)n
.

Since ε(n, m) ≤ 2 ·
(

2m−1−1
2m−1

)n
, ε(n, m) tends to 0 for every fixed m and

n→ ∞. Clearly, not all single-peaked elections contain a pair of votes
where one is the reverse of the other. Thus this number is indeed only
a lower bound.

In the next theorem we prove exact enumeration formulæ for the
number of (n, m)-single-peaked elections for n = 2, m = 3 and m = 4.
Note that for m ≤ 2 and for n = 1 all (n, m)-elections are single-
peaked. For n > 2 and for m > 4 we have not been able to find exact
enumeration formulæ.

Theorem 10.17. It holds that

(i.) a(2, m, Γsp) = m! · (2m−2
m−1) for m ≥ 1,

10.2 counting results and the impartial culture assumption 213

(ii.) a(n, 3, Γsp) = 6 · 2n−1 (2n − 1) and

(iii.) a(n, 4, Γsp) = 24 · 4n−1 ·
(
2n+1 − 3

)
.

Proof. (i.) a(2, m, Γsp) = m! · (2m−2
m−1): This follows from Lemma 10.12.

We choose the first vote arbitrarily (m! possibilities). The second vote
has to be chosen in such a way that all configurations that characterize
single-peakedness are avoided. Since we consider only elections with
two votes, the relevant configurations are (dabc, dcba), (adbc, dcba),
(dabc, cdba) and (adbc, cdba) (Theorem 10.6). We obtain the permuta-
tions π1 = p(dabc, dcba) = 1432, π2 = p(adbc, dcba) = 4132, π3 =

p(dabc, cdba) = 2431 and π4 = p(adbc, cdba) = 4231. Their inverses
are π−1

1 = π1, π−1
2 = π3, π−1

3 = π2 and π−1
4 = π4. Thus, the num-

ber of a(2, m, Γsp) = Sm(π1, π2, π3, π4). As shown in Theorem 5.1,
Sm(π1, π2, π3, π4) = (2m−2

m−1).
(ii.) a(n, 3, Γsp) = m! · 2n−1 (2n − 1): We consider all elections with

three candidates. There are m! many possibilities for the first vote
V1. Without loss of generality, let us consider only the vote V1 : abc.
Since we have only three candidates, single-peakedness boils down
to having at most two last ranked candidates (cf. Theorem 10.3). Due
to our assumption that V1 : abc, we distinguish three cases: elections
in which the votes rank either a or c last, elections in which the votes
rank either b or c last and elections in which all votes rank c last.
The number of elections in which the votes rank either a or c last
can be determined as follows: every vote can either be abc, bac, cba or
bca. Hence, there are 4n−1 possibilities for elections in which the votes
rank either a or c last and where V1 : abc holds. By the same argument,
the number of elections in which the votes rank either b or c last is
4n−1 as well. The number of elections where c is always ranked last
is 2n−1. We obtain a total number of single-peaked elections with a
fixed first vote of 4n−1 + 4n−1− 2n−1 = 2n−1 · (2 · 2n−1− 1). Given that
6 options for the first vote exist, we obtain the stated enumeration
result.

(iii.) a(n, 4, Γsp) = m! · 4n−1 ·
(
2n+1 − 3

)
: As in the previous proof,

we fix V1 : abcd. This vote V1 already rules out some possible axes.
Indeed, only eight axes are single-peaked axes for V1, namely A1 :
abcd, A2 : bacd, A3 : cabd, A4 : cbad, and their reverses. Since the
reverse of an axis permits the same single-peaked votes, we have to
consider only A1, A2, A3, A4. For 1 ≤ i ≤ 4, let Wi denote the set of
four-candidate votes that are single-peaked with respect to axis Ai.

214 on the likelihood of single-peaked elections

We count the number of single-peaked elections with four candidates
by using the inclusion-exclusion principle, i.e.,

a(n, 4, Γsp) =m! · (|W1|+ |W2|+ |W3|+ |W4|
− |W1 ∩W2| − |W1 ∩W3| − |W1 ∩W4|−
− |W2 ∩W3| − |W2 ∩W4| − |W3 ∩W4|
+ |W1 ∩W2 ∩W3|+ |W1 ∩W2 ∩W4|+ |W2 ∩W3 ∩W4|
− |W1 ∩W2 ∩W3 ∩W4|)

It is easy to verify that W1 ∩W2 = W1 ∩W4 = W2 ∩W3 = {abcd, bacd}.
Consequently, all intersections of three or four sets consist also of
these two votes. The remaining intersections look as follows:

W1 ∩W3 = {abcd, bacd, cbad, bcad},
W2 ∩W4 = {abcd, bacd, cabd, acbd},
W3 ∩W4 = {abcd, bacd, badc, abdc}.

The number of votes single-peaked with respect to one axis is 2m−1

(see Remark 10.2), i.e., in our case 8. We obtain

a(n, 4, Γsp) = 4! · (4 · 8n−1 − 3 · 2n−1 − 3 · 4n−1 + 4 · 2n−1 − 2n−1) =

= 24 · (4 · 8n−1 − 3 · 4n−1).

10.3 the pólya urn model

The Pólya urn model (also refereed to as the Pólya-Eggenberger urn
model) [19, 105, 121] is an approach to sample elections with a vari-
able degree of social homogeneity, i.e., where preferences are not inde-
pendent but voters tend to have the same preferences as other voters.
In the following the parameter a, a non-negative integer, describes
the degree of social homogeneity. As we will see in a moment, the
case a = 0 corresponds to the Impartial Culture assumption, i.e., a
population with no homogeneity.

The setting of the Pólya urn model for an election with n votes
and m candidates can be described as follows. Consider a large urn
containing m! balls. Every ball represents one of the m! possible votes
on the candidate set and has a different colour. An election is then
created by subsequently pulling n balls out of the urn according to
the following rule. The first ball is pulled at random and constitutes
the first vote of the election. Then the pulled ball is returned to the
urn and a other balls of the same colour are added to the urn. This
procedure is repeated n times until an election consisting of n votes
is created.

At a first glance, it might seem that the probability assigned to a
certain election within the Pólya urn model depends on the order

10.3 the pólya urn model 215

of the votes. However this is not the case: Any election that can be
obtained by rearranging a given election (C,P), i.e, by changing the
order of the votes, has exactly the same probability of occurring as
the election (C,P) itself. First, when the i-th ball is drawn from the
urn, i.e., when the i-th vote is chosen, there are always m! + (i− 1) ·
a balls present in the urn. Second, for any vote V the number of
balls corresponding to V, i.e., the number of favourable cases, only
depends on how often the vote V has already been pulled out of the
urn and is equal to (1 + k · a) where k is the number of times V has
already been pulled.

It is now easy to give a concise characterization of this discrete
distribution. In order to alleviate notation, let us use the so called
Pochhammer k-symbol as introduced in [58].

Definition 10.18. The Pochhammer k-symbol is defined as

(x)n,k =
n

∏
i=1

(x + (i− 1) · k)

where in our context x ∈ R and n, k are non-negative integers. Note that
(x)n,1 = x(x + 1)(x + 2) . . . (x + n− 1) is the ordinary Pochhammer sym-
bol (also known as rising factorial) and (1)n,1 = n!.

We can now define the probability of a given (n, m)-election with `

distinct votes. Let ni, i ∈ [m!] be non-negative integers with ∑m!
i=1 ni =

n such that, for all i ∈ [`] vote Vi appears ni times. The probability of
such an election is given by:

(
n

n1, . . . , n`

)
· ∏`

i=1(1)ni ,a

(m!)n,a
=

n!

∏`
i=1 ni!

· ∏`
i=1(1)ni ,a

(m!)n,a
. (83)

Note that setting a = 0 corresponds to the case where every one
of the n votes is drawn from exactly the same urn, namely the urn
containing every one of the m! balls exactly once. Thus, the votes
are chosen independently and every vote has the same probability of
occurring; this corresponds to the Impartial Culture assumption.

Theorem 10.19. Let pP(n, m, a) denote the probability of an (n, m)-election
being single-peaked if it is created according to the Pólya urn model with
homogeneity a. It holds that:

pP(n, m, a) ≥ m!(n− 1)!
a
(m!

a

)
n,1

·
[

1 +
2
a

(
2m− 2
m− 1

)
Hn−1+

+
n
a

n−1

∑
l=2

(2m−1 − 2)n−l,a

an−l · Hl−1

l(n− l)!

]
,

where Hk denotes the k-th harmonic number ∑k
i=1

1
i .

216 on the likelihood of single-peaked elections

Proof. Before we start with the actual proof, let us collect a few useful
observations. In the following we will use that

(m!)n,a = an ·
n

∏
i=1

(
m!
a

+ (i− 1)
)
= an

(
m!
a

)

n,1
. (84)

Moreover, we will use the following bound:

(1)k,a =
k

∏
i=1

(1 + (i− 1) · a) ≥
k

∏
i=2

(i− 1) · a = (k− 1)! · ak−1. (85)

Since it holds that

1
i · (l − i)

=
1
l
·
(

l − i + i
i · (l − i)

)
=

1
l
·
(

1
i
+

1
l − i

)

the following sum can be expressed with the help of the harmonic
numbers:

l−1

∑
i=1

1
i · (l − i)

=
1
l
·
(

l−1

∑
i=1

1
i
+

l−1

∑
i=1

1
l − i

)
=

2
l
·

l−1

∑
i=1

1
i
=

2
l

Hl−1. (86)

The proof of the theorem is now split in three parts: First, we con-
sider elections with only one distinct vote. Then, we determine a
lower bound on the probability of single-peaked elections that con-
sist of exactly two distinct votes. Third, we give a lower bound on the
number of single-peaked elections that contain at least three distinct
votes.

Let us now start with the first part of the lower bound. Clearly, an
election in which all votes are identical is single-peaked. Let us denote
the probability of this event by p1 – in the following we fix m, n, a
an omit them in the notation. According to the discrete probability
distribution of the Pólya urn model (83), the probability of this event
is:

p1 = m! · (1)n,a

(m!)n,a
≥ m!(n− 1)!an−1

an
(m!

a

)
n,1

=
m!(n− 1)!
a
(m!

a

)
n,1

,

where we used Equations (84) and (85).
Next, we want to determine the probability that an election is sam-

pled that is single-peaked and consists of exactly two distinct votes.
Let us denote the probability of this event by p2. From the third state-
ment of Theorem 10.17 we know that there are exactly m! · (2m−2

m−1)
elections with two voters and m candidates that are single-peaked.
That is, if we pick a first vote V1 at random, there are (2m−2

m−1) votes V2

that form a single-peaked election together with V1. We thus have the
following (again according to (83)):

p2 = m!
(

2m− 2
m− 1

)
·

n−1

∑
i=1

P(i votes equal to V1; n− i votes equal to V2︸ ︷︷ ︸
=p′(i)

)

10.3 the pólya urn model 217

According to (83) the probability p′(i) is equal to

p′(i) =
(

n
i

)
(1)i,a · (1)n−i,a

(m!)n,a
.

Using the bound in Equation (85) and the equality in Equation (84),
p′(i) can be bounded from below as follows:

p′(i) ≥
(

n
i

)
(i− 1)! · ai−1 · (n− i− 1)! · an−i−1

(m!)n,a
.

=
n! · an−2

an
(m!

a

)
n,1 · i(n− i)

.

For p2 we thus obtain

p2 ≥ m! ·
(

2m− 2
m− 1

)
n!

a2
(m!

a

)
n,1

n−1

∑
i=1

1
i(n− i)

=
m!(n− 1)!(m!

a

)
n,1

·
(

2m− 2
m− 1

)
2
a2 Hn−1,

where the transformation from the first to the second line is done
with the identity in Equation (86).

Finally, for single-peaked elections that have more than two distinct
votes, we only consider elections that contain a vote V and also its
reverse V̄. Let us denote the probability of this event by p3. As in the
proof of the bounds under the IC assumption this idea is based on
the following fact about single-peakedness: If a vote V and its reverse
vote V̄ are both present within an election, then there are at most two
axes with respect to which this election can be single-peaked, namely
the axes V and V̄. Thus, if a single-peaked election contains both the
vote V and V̄, all the other votes must be among the 2m−1 − 2 votes
that are also single-peaked with respect to the axis V (respectively V̄).
Let us denote this set of votes that are not equal to V or V̄ and that
are single-peaked with respect to the axis V by SV .

The probability p3 is then given as follows:

p3 =
m!
2

n−1

∑
l=2

l−1

∑
i=1

P(i votes equal to V, l − i votes equal to V̄, rest in SV)

=
m!
2

n−1

∑
l=2

l−1

∑
i=1

(
n
i

)(
n− i
l − i

)
(1)i,a · (1)l−i,a · (2m−1 − 2)n−l,a

(m!)n,a
,

where m!/2 stands for the number of possible choices for the vote V,
i is the number of times the vote V appears and l − i is the number
of times the vote V̄ appears.

By using the bound in Equation (85) as well as the identity in Equa-
tion (86), we obtain the following:

218 on the likelihood of single-peaked elections

p3 ≥
m!

2(m!)n,a

n−1

∑
l=2

(2m−1 − 2)n−l,a

l−1

∑
i=1

(
n
i

)(
n− i
l − i

)
(i− 1)!(l − i− 1)!al−2

=
m!

2(m!)n,a

n−1

∑
l=2

(2m−1 − 2)n−l,a · al−2
l−1

∑
i=1

n!(n− i)!(i− 1)!(l − i− 1)!
i!(n− i)!(l − i)!(n− l)!

=
m!n!

2(m!)n,a

n−1

∑
l=2

(2m−1 − 2)n−l,a ·
al−2

(n− l)!

l−1

∑
i=1

1
i(l − i)

=
m!n!(m!
a

)
n,1

n−1

∑
l=2

(2m−1 − 2)n−l,a

an+2−l · 1
l(n− l)!

Hl−1.

Since p1 + p2 + p3 ≤ pP(n, m, a), we obtain the desired lower bound.

Corollary 10.20. If a = m! we have:

pP(n, m, a) ≥ 1
n
·
(

1 + 2
ln(n− 1)

m!
· (2m− 2)!
((m− 1)!)2

)
.

10.4 mallows model

The Mallows model [123] assumes that there is a reference vote and
votes are more likely to appear in an election if they are close to
this reference vote. Closeness is measured by the Kendall tau rank
distance, defined as follows.

Definition 10.21. Given two votes V and W contained in an election
(C,P), the Kendall tau rank distance κ(V, W) is a metric that counts
the number of pairwise disagreements between V and W. To be more precise:

κ(V, W) = |{{c, c′} ⊆ C : (V : cc′ ∧W : c′c) ∨ (V : c′c ∧W : cc′)}|.

Note that κ(V, W) is also the minimum number of transpositions,
i.e., swaps, of adjacent elements, needed to transform V into W or
vice versa. We can now define the Mallows model.

Definition 10.22. Let C be a set of candidates with |C| = m and let T(C)
be the set of all total orders on C. Given a reference vote V and a real num-
ber φ ∈ (0, 1], the so-called dispersion parameter, the Mallows model is
defined as follows. Every vote W of an (n, m)-election is determined indepen-
dently from the others according to the following probability distribution:

PV,φ(W) =
1
Z
· φκ(V,W), (87)

where the normalization constant Z = ∑W∈T(C) φκ(V,W) fulfils Z = 1 · (1+
φ) · (1 + φ + φ2) · · · (1 + . . . + φm−1).

10.4 mallows model 219

axis Ac7 c5 c3 c1 c2 c4 c6

?

?

?

?

?

?

?

Figure 50: The axis A and the reference vote V : c1c2c3c4c5c6c7, shown as a
solid line. The dashed line represents the vote W : c1c4c2c3c6c7
and is not single-peaked with respect to A. The Kendall tau dis-
tance of V and W is 2. Note that all votes with a Kendall tau
distance to V of 1 are single-peaked with respect to A.

Note that choosing φ = 1 corresponds the Impartial Culture as-
sumption and as φ → ∞ one obtains a distribution that concentrates
all mass on V.

Theorem 10.23. Let pM(n, m, φ) denote the probability of an (n, m)-election
being single-peaked if it is created according to the Mallows model with dis-
persion parameter φ. Then the following lower bound holds:

pM(n, m, φ) ≥
(

1 + φ · (m− 1) + φ2 · (m− 2)(m− 3)/2
Z

)n

.

Proof. Without loss of generality, we can assume that the reference
vote is V : c1c2 . . . cm. We define a total order A which will serve as
axis as follows: A : . . . c6c4c2c1c3c5 Clearly, V is single-peaked with
respect to A and it will turn out that “many” other votes that are close
to V with respect to the Kendall tau distance are also single-peaked
with respect to this axis. See Figure 50 for a representation of the axis
A and the reference vote V for the case of seven candidates. In the
following, we will write “W is SP” as a shortform of “the total order
W on C is single-peaked with respect to axis A”.

The idea of this proof is to bound the probability pM(n, m, φ) from
below as follows:

pM(n, m, φ) ≥
(
PV,φ(W : W is SP)

)n .

Moreover, we use the following bound:

PV,φ(W : W is SP) ≥ PV,φ(V) + ∑
W is SP and
κ(V,W)=1

PV,φ(W) + ∑
W is SP and
κ(V,W)=2

PV,φ(W)

First, it is clear that P(V) = 1/Z.

220 on the likelihood of single-peaked elections

Second, we need to compute the number of votes W that are single-
peaked with respect to A and that fulfil κ(V, W) = 1. Votes W with
κ(V, W) = 1 are votes in which the order of exactly one pair of can-
didates (ci, ci+1) has been changed in V. Since there are (m− 1) pairs
of adjacent candidates in V, there are exactly (m− 1) votes W with
κ(V, W) = 1. All these votes are single-peaked with respect to the
axis A since:

• If c1 and c2 are interchanged, the position of the peak on the
axis A is changed, but clearly no new peaks arise.

• If two other candidates ci and ci+1 are interchanged, one of these
two candidates lies to the left of the peak on A and the other
one to the right of the peak. Thus, interchanging only these two
candidates does not create a new peak either.

Therefore we have the following:

∑
W is SP and
κ(V,W)=1

PV,φ(W) = (m− 1) · φ

Z
.

Third, we need to compute the number of votes W that are single-
peaked with respect to A and that fulfil κ(V, W) = 2. Here we have a
different situation: Not all votes that can be obtained by exactly two
swaps of adjacent candidates in V are single-peaked with respect to
A. For instance, first swapping the candidates (c3, c4) and then swap-
ping (c2, c4) in V, does not lead to a vote that is single-peaked with
respect to A. For this example, see the vote shown as a dashed line
in Figure 50. The problem here is that the swapping of these two
pairs changes the order of c2 and c4, two elements that both lie on the
same side of the peak on A, and thus a valley is created by the ele-
ments c1, c2 and c4. In general, a pair of swaps (ci, ci+1) and (cj, cj+1)

is always allowed if the two pairs of candidates do not have any ele-
ments in common. Note that the order of the two (disjoint) swaps is
of no importance and without loss of generality we can assume that
i + 1 < j.

Knowing this, we can bound the number of votes W with κ(V, W) =

2 that are single-peaked with respect to A as follows: If the first swap
is (ci, ci+1) for some i ∈ [1, m− 3] and the second swap (cj, cj+1) is dis-
joint from the first one, j has to fulfil j ∈ [i + 2, m− 1] and thus there
are (m− i− 2) possibilities for (cj, cj+1). Summing over all possible i
we obtain that there are at least

m−3

∑
i=1

m− i− 2 =
(m− 2)(m− 3)

2

many votes W with κ(V, W) = 2 that are single-peaked with respect
to A. Thus we have

∑
W is SP and
κ(V,W)=2

PV,φ(W) ≥ φ2

Z
· (m− 2)(m− 3)

2
.

10.5 numerical evaluations 221

Putting the results for Kendall tau distance equal to 0, 1 and 2

together we obtain the desired lower bound.

Corollary 10.24. Assuming φ = 1
m , it holds that

pM(n, m, φ) ≥

1.5

(
1− 1

m

1−
(1

m

)m

)m−1



n

>

(
1− 1

m

)(m−1)n

.

Proof. Inserting φ = 1
m in the lower bound of Theorem 10.23 yields

pM(n, m, φ) ≥
(

1 + m−1
m + (m−2)(m−3)

2m2(
1 + 1

m

)
·
(
1 + 1

m + 1
m2

)
· · ·
(
1 + 1

m + · · ·+ 1
mm−1

)
)n

.

As can be checked easily, the numerator is larger than 1.5. Moreover
the finite geometric sums in the denominator are all bounded from
above by

1−
(1

m

)m

1− 1
m

.

We thus obtain

pM(n, m, φ) ≥

1.5

(
1− 1

m

1−
(1

m

)m

)m−1



n

.

Replacing the numerator by 1 and every one of the finite geometric
sums in the denominator by an infinite geometric row leads the sec-
ond, much rougher lower bound. Note that this is simply a bound on
the probability of sampling an (n, m)-election in which all votes are
equal to the reference vote.

Comparing this bound with the asymptotic tight bound for the
probability of an (n, m)-election being single peaked under the IC
assumption that is given in Theorem 10.16 and is of the form

m!
2
·
(

2m−1

m!

)n

,

we see that the likelihood of single-peakedness is far larger in the
Mallows model with dispersion parameter φ = 1

m .

10.5 numerical evaluations

In this section we provide numerical evaluations of our probability
results from the previous sections. In Table 51, we list exact probabil-
ities that an (n, m)-election is single-peaked assuming the Impartial
Culture assumptions for small values of m and bounds for these prob-
abilities for a larger number of candidates. These probabilities illus-
trate how unlikely it is that an election drawn uniformly at random

222 on the likelihood of single-peaked elections

(n, m) exact
probability

(2, 3) 1

(5, 3) 0.38

(10, 3) 0.05

(25, 3) 1.19 · 10−4

(50, 3) 4.70 · 10−9

(2, 4) 0.83

(5, 4) 0.05

(10, 4) 2.03 · 10−4

(25, 4) 1.42 · 10−11

(50, 4) 1.67 · 10−23

(n, m) lower
bound

upper
bound

(2, 5) 0.58 (via Thm 10.17)

(5, 5) 1.6 · 10−4 2.6 · 10−3

(10, 5) 2.2 · 10−8 1.1 · 10−7

(25, 5) 5.0 · 10−21 8.0 · 10−21

(50, 5) 9.7 · 10−43 1.1 · 10−42

(2, 10) 1.3 · 10−2 (via Thm 10.17)

(5, 10) 7.6 · 10−18 1.1 · 10−13

(10, 10) 1.9 · 10−36 5.7 · 10−33

(25, 10) 2.3 · 10−93 1.0 · 10−90

(50, 10) 4.6 · 10−189 5.5 · 10−187

Figure 51: The likelihood that an (n, m)-election is single-peaked when
drawn uniformly at random (Impartial Culture assumption). The
probabilities in the left table are obtained via Theorem 10.17;
those in the right table are obtained via Theorem 10.16 (except
for n = 2).

(n, m) a = 10 a = m!/2 a = m!

(10, 5) 1.6 · 10−4 0.13 0.43

(25, 5) 8.4 · 10−8 3.0 · 10−2 0.21

(50, 5) 1.5 · 10−10 9.1 · 10−3 0.12

(10, 10) 3.6 · 10−36 2.0 · 10−2 0.10

(25, 10) 2.3 · 10−91 3.6 · 10−3 4.4 · 10−2

(50, 10) 2.6 · 10−181 9.7 · 10−4 2.2 · 10−2

Figure 52: Lower bounds obtained from Theorem 10.19 on the likelihood
that an (n, m)-election is single-peaked when sampled according
to the Pólya urn model with homogeneity a

(n, m) φ = 0.2 φ = 0.1 φ = 0.05 φ = 0.01

(10, 5) 0.15 0.59 0.86 0.99

(25, 5) 8.7 · 10−3 0.26 0.70 0.98

(50, 5) 7.6 · 10−5 7.2 · 10−2 0.49 0.97

(10, 10) 2.7 · 10−3 0.20 0.66 0.98

(25, 10) 3.7 · 10−7 1.9 · 10−2 0.36 0.96

(50, 10) 1.4 · 10−13 3.7 · 10−4 0.13 0.92

Figure 53: Lower bounds via Theorem 10.23 on the likelihood that an (n, m)-
election is single-peaked when sampled according to the Mallows
model with dispersion parameter φ

10.6 summary of the results 223

is single-peaked – even for small n and m. The probability that an
(n, m)-election is single-peaked is considerably higher if we assume
that votes are drawn subject to the Pólya urn and Mallows models.
Table 52 shows lower bounds for the Pólya urn model and Table 53

shows lower bounds for the Mallows model. Note that Table 53 also
includes results for φ = 1

m : for m = 5 these can be found in the col-
umn φ = 0.2 and for m = 10 in the column φ = 0.1. Our results
indicate that the Mallows model with small φ is a very restrictive
probability distribution, since it generates single-peaked preferences
with rather high probability.

10.6 summary of the results

In this chapter we performed the first combinatorial study of the like-
lihood of single-peakedness in random elections. Our main results
are the following:

• Configuration definable restrictions: Many domain restrictions can
be characterized by forbidden configurations, in particular the
single-peaked domain. We proved a close connection between
configurations and permutations patterns. This novel connec-
tion allowed us to obtain a very general result (Theorem 10.13),
showing that many domain restrictions characterized by forbid-
den configurations are very unlikely to appear in a random elec-
tion chosen according to the Impartial Culture assumption.

• Counting single-peaked elections: We performed a detailed com-
binatorial analysis of the single-peaked domain by counting
the number of single-peaked elections. We established an upper
bound for single-peaked elections which asymptotically matches
our lower bound result (Theorem 10.16). In addition, we showed
exact enumeration results for elections with two voters or up to
four candidates (Theorem 10.17). Our results rigorously show
that the single-peaked restriction is highly unlikely to appear in
random elections chosen according to the IC assumption. This
holds even for elections with few votes and candidates (cf. Sec-
tion 10.5).

• Pólya urn model: In contrast to the IC assumption, single-peaked
elections are considerably more likely if elections are chosen ac-
cording to the Pólya urn model. We provided a lower bound on
the corresponding likelihood (Theorem 10.19) and showed that,
if a sufficiently strong homogeneity is assumed, the probability
of an election with n votes being single-peaked is larger than
1/n (Corollary 10.20).

• Mallows model: We encountered the most likely occurrence of
single-peaked elections under Mallows model. As for the Pólya

224 on the likelihood of single-peaked elections

urn model we established a lower bound result on the likeli-
hood (Theorem 10.23). If the dispersion parameter φ is suffi-
ciently small, we were able to show that single-peaked elections
are likely to appear (Corollary 10.24 and Table 53).

11
F U RT H E R R E S E A R C H

Let us conclude this thesis by pointing out some directions for fur-
ther research. These suggestions are based on the Future research-
sections in the respective publications, see page xi.

efficient permutation pattern matching

In Chapter 3 we performed a parameterized complexity analysis of
the PPM problem and constructed an fpt-algorithm for the parame-
ter run(τ), the number of alternating runs in the text permutation τ

(Theorem 3.1). This fpt-algorithm performs particularly well for PPM
instances with few alternating runs.

An immediate consequence of this theorem is that any PPM in-
stance can be reduced by polynomial time preprocessing to an equiv-
alent instance – a kernel – of size depending solely on run(τ). This
raises the question whether even a polynomial-sized kernel exists.
Such kernels, and in particular polynomial kernels, have been the
focus of intensive research in algorithmics [95]. In [24], it has been
shown that no such polynomial-sized kernel exists for the parameter
k = |π|. Thus a positive result for the parameter run(τ) would be of
great interest.

Another research direction is the study of further parameters such
as the permutation statistics listed in the Appendix A of [108].

At this point, several algorithms exist that solve PPM without im-
posing restrictions on π and τ. The algorithms by Guillemot and
Marx [93], Albert et al. [3] and Ahal and Rabinovich [1] seem to be
particularly well-suited for small patterns. In contrast, the runtime
of our algorithm does not depend that critically on |π|. Thus, it may
be expected that our algorithm is preferable for large patterns. How-
ever, only implementations and benchmarks could allow to settle this
question and compare these algorithms.

generalized permutation pattern matching

In Chapter 4 we analysed the PPM problem for several different types
of permutation patterns. We strengthened the previously known NP-
hardness result for PPM and proved NP-completeness for its gener-
alizations. We also provided simple polynomial time algorithms for
boxed mesh and consecutive PPM. Furthermore, we performed a pa-
rameterized complexity analysis, which shows that for vincular, bivin-
cular and mesh PPM a fixed-parameter tractable algorithm is unlikely
to exist.

225

226 further research

In Section 4.2 we have listed several special cases for which PPM is
in P. This list, however, is certainly far from being complete. In par-
ticular, polynomial time fragments of vincular, bivincular and mesh
permutation pattern matching are not known at all.

In Section 4.3 we studied the influence of the length of the pattern
on the complexity of the different types of Permutation Pattern

Matching problems. For the cases where W[1]-hardness was shown
as well as for PPM which is solvable by an FPT algorithm, it is of
interest to find out whether other parameters of the input instances
lead to fixed parameter tractability results. For future work any per-
mutation statistic could be taken into account for a parameterized
complexity analysis of all versions of PPM. An analysis of PPM with
respect to several different parameters would then allow to draw a
more detailed picture of the computational landscape of permutation
pattern matching.

Another type of patterns was introduced by West [155]: barred pat-
terns. A barred pattern π is a permutation where some letters are
barred. One denotes by π the underlying permutation without any
bars and by π′ the permutation obtained by removing all barred let-
ters. A permutation τ then avoids the barred pattern π if every oc-
currence of π′ in τ is part of an occurrence of π in τ. For details and
results on barred patterns, see Chapter 7 in [108]. Brändén and Claes-
son [36] showed that mesh patterns can easily be used to write any
barred pattern with only one barred letter.

There exist further generalizations of mesh patterns: marked mesh
and decorated patterns. These two types of patterns were introduced
by Úlfarsson in [151] and [152], respectively. They allow a finer con-
trol over whether certain regions in a permutation may contain ele-
ments. Mesh patterns permit to specify regions in a permutation that
may not contain elements in a matching. Marked mesh patterns allow
more, namely to specify how many elements may be contained in cer-
tain regions (exactly, at most or at least). Decorated patterns go even
further: they allow to detail in which order these elements may lie by
describing forbidden patterns. These forbidden patterns may again
be decorated patterns. Since both marked mesh and decorated pat-
terns are generalizations of mesh patterns, the W[1]-hardness result
given in Theorem 4.17 can be extended to these two types of patterns.

We considered patterns in permutations. However, the concept of
pattern avoidance respectively containment can easily be extended to
patterns in words over ordered alphabets (or permutations on multi-
sets). In a matching of a word W into another word V, copies of the
same letter have to be mapped to copies of some letter in the text. The
topic of patterns in words has received quite some attention in the
last years, see e.g. Heubach and Mansour’s monograph Combinatorics
of compositions and words [96]. The corresponding pattern matching
problems have not yet been studied.

further research 227

a permutation class enumerated by the central bino-
mial coefficients

Chapter 5 was devoted to the study of a special permutation class,
namely the class of permutations avoiding the patterns 2431, 4231,
1432 and 4132 simultaneously. We could show that this class is enu-
merated by the central binomial coefficients.

The proof presented in Chapter 5 first constructs a bijection to a
certain set of words and then counts these words by establishing a
correspondence of certain segments of these words to lattice paths.
However, it remains open to construct a direct bijection to some com-
binatorial object that is also counted by the central binomial coef-
ficients. For instance, it would be nice to have a direct bijection to
granny walks which are direct routes from the pint (0, 0) to the point
(n, n) in an integer grid.

The permutation class studied in this chapter is not the only one
known to be enumerated by the central binomial coefficients. Indeed,
in [5] the authors describe a general scheme to enumerate permuta-
tion classes. As an example, they give the permutation class avoiding
the patterns 3124, 4123, 3142 and 4132 that is also enumerated by the
central binomial coefficients.

Preliminary studies show that there are in total nine permutation
classes that are defined by four forbidden patterns of length four and
that are enumerated by the central binomial coefficients. It would be
desirable to develop a general framework that can be used to prove
that all these classes are indeed counted by the central binomial coef-
ficients and that no other such classes exist.

log-concavity, longest increasing subsequences and in-
volutions

Chapter 6 was devoted to the sequence `n,k counting permutations of
length n and with a longest increasing subsequence of length k. We
conjectured that this sequence is log-concave for every fixed n and
characterized several sets of permutations for which our conjecture
holds. One main tool was to first prove our results for involutions
and then to transfer them to arbitrary permutations. A next step in
this line of research and towards proving our conjecture in general
would be to find larger sets of permutations for which this method
can be applied. Also, it would be interesting to find applications of
this technique to other permutation statistics than the length of the
longest increasing subsequence.

228 further research

ascending runs in mappings

In Chapter 8 we generalized the patterns “ascents” and “ascending
runs” from permutations to Cayley trees and to mappings. We pro-
vided exact enumeration formulæ that are linked to the Stirling num-
bers of the second kind and showed that the random variables count-
ing ascents and ascending runs in random mappings is asymptoti-
cally normal distributed.

The combinatorial decomposition of Cayley trees and mappings
employed there can also be used to study other label patterns. Indeed,
our method can also be applied to count the number of local minima
or maxima, thus generalizing the notion of valleys and peaks in per-
mutations. However, the results contained in Okoth’s thesis [129] are
more general and thus the study of local minima and maxima was not
included in Chapter 8. Moreover, preliminary studies show that our
method can also be applied to what we call up-ups. For an n-mapping
f , these are elements i in [n] for which it holds that i < f (i) < f 2(i).
The notion of up-ups thus generalizes consecutive 123-patterns in per-
mutations. Permutations avoiding this pattern have been studied in
[62].

All label patterns mentioned so far were consecutive patterns, i.e.,
they concerned the images or preimages of nodes in the mappings
graph. A probably more involved task would be to study non-conse-
cutive label patterns in mappings. For instance, the non-consecutive
pattern 21 corresponds to an inversion in the mapping. Of course,
one could also study longer non-consecutive patterns in mappings or
Cayley trees.

parking in trees and mappings

In Chapter 9 we generalized the concept of parking functions to Cay-
ley trees and mappings. As this is the first study of such parking
functions, several possible directions for further research arise:

Given a tree T or a mapping f , we obtained general, but sim-
ple bounds for the number of tree and mapping parking functions
S(T, m) and S(f , m). It is possible to obtain explicit formula for some
simple classes of trees (or mappings), e.g., for “chain-like” trees with
only few branchings. However, the following question remains open:
Is it possible in general to give some “simple characterization” of the
numbers S(T, m) and S(f , m)?

With the approach presented, one can also study the total number
of parking functions for other important tree families such as labelled
binary trees or labelled ordered trees. We already performed some
preliminary work for these tree families and according to our consid-
erations, the results are considerably more involved than for labelled
unordered trees and mappings. However, they do not seem to lead to

further research 229

new phase change phenomena. Thus we did not comment on these
studies here.

In contrast to the previous comment, the problem of determining
the total number of parking functions seems to be interesting for so-
called increasing (or decreasing) tree families (see, e.g., [60, 131]). That
is, the labels along all leaf-to-root-paths form an increasing (or, de-
creasing) sequence. For so-called recursive trees (see, e.g., [83, 144]),
i.e., unordered increasing trees, the approach presented could be ap-
plied, but the differential equations occurring do not seem to yield
“tractable” solutions. For such tree families quantities such as the
“sums of parking functions” as studied in [115] could be worthwhile
treating as well.

As for ordinary parking functions one could analyse important
quantities for tree and mapping parking functions. E.g., the so-called
“total displacement” (which is of particular interest in problems re-
lated to hashing algorithms, see [77, 102]), i.e., the total driving dis-
tance of the drivers, or “individual displacements” (the driving dis-
tance of the k-th driver, see [103, 153]) seem to lead to interesting
questions.

A refinement of parking functions can be obtained by studying
what has been called “defective parking functions” in [45], or “over-
flow” in [92], i.e., pairs (T, s) or (f , s), such that exactly k drivers
are unsuccessful. Preliminary studies indicate that the approach pre-
sented is suitable to obtain results in this direction as well.

Again, as for ordinary parking functions, one could consider enu-
meration problems for some restricted parking functions for trees (or
mappings). E.g., we call (T, s), with T a size-n tree and s ∈ [n]n a
parking function for T, an ordered tree parking function, if π−1(v) <
π−1(w), whenever v ≺ w (i.e., if the k-th driver parks at parking space
w, all predecessors of w are already occupied by earlier drivers). Then
it is easy to show that for any size-n tree T there are exactly n! ordered
tree parking functions.

Let us denote by Xn the random variable measuring the number
of parking functions s with n drivers for a randomly chosen labelled
unordered tree T of size n. Then, due to our previous results, we get
the expected value of Xn via

E(Xn) =
Fn

Tn
∼
√

2
√

π2n+1nn− 1
2

en .

However, with the approach presented here, it seems that we are not
able to obtain higher moments or other results on the distribution of
Xn.

The rather simple exact enumeration formulæ for perking func-
tions for Cayley trees, connected mappings or arbitrary mappings
for the case that the number of drivers coincides with the number
of parking spaces also allow for other combinatorial interpretations.

230 further research

For instance, recall that the number of such parking functions for
connected mappings was given by (Lemma 9.11):

Cn = n!(n− 1)!
n−1

∑
j=0

(2n)j

j!
.

Compare this with the number of connected mappings C̃n that can be
derived easily using the symbolic method and Lagrange inversion:

C̃n = (n− 1)! ·
n−1

∑
k=0

nk

k!
.

In this formula, k corresponds to the number of elements not ly-
ing on the cycle. Thus Cn/n! can also be interpreted as the num-
ber of connected n-mappings in which the non-cyclic elements are
coloured either blue or red. It would thus be interesting to find a bi-
jection between parking functions for connected mappings and pairs
(π, C) where π is a permutation of length n and C is connected map-
ping with coloured non-cyclic elements. Similar interpretations can
be given for the numbers Fn of tree-parking functions and Mn of
mappings parking functions and could also allow for bijective cor-
respondences.

As mentioned in the Introduction of this thesis on page 10, ordi-
nary parking functions can bijectively be identified with allowable
input-output pairs of priority queues. It would be interesting to find
a generalization of this result to parking functions for trees and map-
pings, thus providing an interpretation of these in terms of forbidden
patterns. Such a generalization might be possible by replacing the nat-
ural order on the numbers 1, . . . , n by the order induced by the tree
or mapping.

on the likelihood of single-peaked elections

In Chapter 10 we studied the likelihood of single-peakedness in ran-
dom elections. This was the first combinatorial study of single-peaked
elections and we see various directions for future research.

Theorem 10.13 requires that the domain restriction avoids a (2, k)-
configuration and thus is not applicable to domain restrictions such
as the single-crossing restriction [39, 136]. It remains open whether
this result can be extended to such domain restrictions as well and
how the corresponding bound would look like. It would also be in-
teresting to complement Theorem 10.13 with a corresponding lower
bound result.

In general, the likelihood of other domain restrictions such as the
single-crossing [136] or the 2D single-peaked restriction [17] has yet
to be studied.

In Section 10.2 we obtained counting results for the number of
single-peaked elections. In particular, it follows from Theorem 10.17

further research 231

that under the IC assumption the likelihood that an (n, 3)-election
is single-peaked is (2n−1 − 1)/3n−1. The likelihood that such an elec-
tion has a Condorcet winner is 15(n + 3)2/[16(n + 2)(n + 4)] [85].
Note that the former probability is significantly smaller than the lat-
ter and, in particular, the former converges to 0 whereas the latter
converges to 15/16 for n→ ∞. Recently, the top monotonicity restric-
tion has been proposed [18] which is a generalization of the single-
peaked and single-crossing domain but still guarantees a Condorcet
winner. It would be highly interesting to know the likelihood of top
monotonicity restricted preferences and whether this probability is
non-zero for n→ ∞.

Another direction is to consider other probability distributions such
as the Plackett-Luce model [119, 134] or Mallows mixture models
where more than one reference vote is considered [126]. One could
also analyse the probability distribution that arises when assuming
that all elections are single-peaked and that all elections of the same
size are equally likely. This would allow to ask questions such as
“How likely is it that a single-peaked election is also single-crossing?”.
Finally, a recent research direction is to consider elections that are
nearly single-peaked, i.e., elections that have a small distance to be-
ing single-peaked according to some notion of distance [38, 52, 63, 65,
70]. The likelihood that elections are nearly single-peaked remains a
worthwhile direction for future research.

N O TAT I O N

[n] the set of integers {1, . . . , n}

[m, n] for m ≤ n, the interval of integers {m, m + 1, . . . , n}

n! factorial of a nonnegative integer n

0! = 1, n! = n · (n− 1)! = n(n− 1) · 1

Γ(z) Gamma function: Γ(z) =
∫ ∞

o tz−1e−tdt

Γ(n) = (n− 1) for a nonnegative integer n

αk falling factorial of α for a real α and a nonnegative k:

α0 = 1, αk = α · (α− 1)k−1 = α(α− 1) · (α− k + 1)

(x)n,k Pochhammer k-symbol: (x)n,k = ∏n
i=1(x + (i− 1) · k)

where x ∈ R and n, k ∈N(
α

k

)
binomial coefficient for real α and nonnegative k:
(

α

k

)
=

αk

k!
, for n ∈N :

(
n
k

)
=

n!
(n− k)!k!{

n
m

}
Stirling numbers of the second kind

E(X) expected value of X

V(X) variance of X

π, σ, τ permutations

|T| size of the combinatorial object T

iff if and only if

w.r.t with respect to

� end of proof

a end of example

233

B I B L I O G R A P H Y

[1] S. Ahal and Y. Rabinovich. On complexity of the subpattern
problem. SIAM Journal on Discrete Mathematics, 22(2):629–649,
2008.

[2] M. Aigner and G. M. Ziegler. Proofs from the Book. Springer,
2014.

[3] M. Albert, R. Aldred, M. Atkinson, and D. Holton. Algorithms
for pattern involvement in permutations. In P. Eades and
T. Takaoka, editors, Algorithms and Computation, volume 2223 of
Lecture Notes in Computer Science, pages 355–367. Springer, 2001.

[4] M. H. Albert, R. E. L. Aldred, M. D. Atkinson, H. P. van Dit-
marsch, B. D. Handley, C. C. Handley, and J. Opatrny. Longest
subsequences in permutations. Australasian Journal of Combina-
torics, 28:225–238, 2003.

[5] M. H. Albert, S. Linton, and N. Ruškuc. The insertion encoding
of permutations. The Electronic Journal of Combinatorics, 12(1):31,
2005.

[6] D. Aldous and P. Diaconis. Longest increasing subsequences:
from patience sorting to the Baik-Deift-Johansson theorem. Bull.
Amer. Math. Soc. (N.S.), 36(4):413–432, 1999.

[7] D. André. Étude sur les maxima, minima et séquences des
permutations. Annales scientifiques de l’École normale supérieure,
3(1):121–135, 1884.

[8] J. Arney and E. Bender. Random mappings with constraints on
coalescence and number of origins. Pacific Journal of Mathemat-
ics, 103(2):269–294, 1982.

[9] S. Arora and B. Barak. Computational complexity: a modern ap-
proach. Cambridge University Press, 2009.

[10] K. J. Arrow. A difficulty in the concept of social welfare. The
Journal of Political Economy, 58(4):328–346, 1950.

[11] M. D. Atkinson. Permutations which are the union of an in-
creasing and a decreasing subsequence. The Electronic Journal of
Combinatorics, 5:87–100, 1998.

[12] S. Avgustinovich, S. Kitaev, and A. Valyuzhenich. Avoidance of
boxed mesh patterns on permutations. Discrete Applied Mathe-
matics, 161(1-2):43–51, 2013.

235

236 bibliography

[13] E. Babson and E. Steingrímsson. Generalized permutation pat-
terns and a classification of the mahonian statistics. Séminaire
Lotharingien de Combinatoire, 44:117, 2000.

[14] J. Baik, P. Deift, and K. Johansson. On the distribution of the
length of the longest increasing subsequence of random permu-
tations. J. Amer. Math. Soc., 12(4):1119 – 1178, 1999.

[15] M. A. Ballester and G. Haeringer. A characterization of the
single-peaked domain. Social Choice and Welfare, 36(2):305–322,
2011.

[16] C. Banderier, P. Flajolet, G. Schaeffer, and M. Soria. Random
maps, coalescing saddles, singularity analysis, and Airy phe-
nomena. Random Structures & Algorithms, 19:194–246, 2001.

[17] S. Barberà, F. Gul, and E. Stacchetti. Generalized median voter
schemes and committees. Journal of Economic Theory, 61(2):262–
289, 1993.

[18] S. Barberà and B. Moreno. Top monotonicity: A common root
for single peakedness, single crossing and the median voter re-
sult. Games and Economic Behavior, 73(2):345–359, Nov. 2011.

[19] S. Berg. Paradox of voting under an urn model: The effect of
homogeneity. Public Choice, 47(2):377–387, 1985.

[20] N. Betzler, A. Slinko, and J. Uhlmann. On the computation of
fully proportional representation. Journal of Artificial Intelligence
Research (JAIR), 47:475–519, 2013.

[21] P. Billingsley. Probability and Measure. John Wiley & Sons, sec-
ond edition edition, 1984.

[22] D. Black. On the rationale of group decision making. Journal of
Political Economy, 56(1):23–34, 1948.

[23] I. F. Blake and A. G. Konheim. Big buckets are (are not) better!
Journal of the Association for Computing Machinery, 24:591–606,
1977.

[24] I. Bliznets, M. Cygan, P. Komosa, and L. Mach. Kernelization
lower bound for permutation pattern matching. Information Pro-
cessing Letters, 2015.

[25] M. Bóna. Combinatorics of permutations. Discrete Mathematics
and Its Applications. Chapman & Hall/CRC, 2004.

[26] M. Bóna. A combinatorial proof of the log-concavity of a fa-
mous sequence counting permutations. The Electronic Journal of
Combinatorics, 11, 2005.

bibliography 237

[27] M. Bóna. A walk through combinatorics: an introduction to enumer-
ation and graph theory. World Scientific, 2011.

[28] M. Bóna. A new record for 1324-avoiding permutations. Euro-
pean Journal of Mathematics, pages 1–9, 2014.

[29] M. Bóna, editor. Handbook of Enumerative Combinatorics. CRC
Press – Chapman Hall, 2015.

[30] M. Bóna and M.-L. Bruner. Log-concavity, the Ulam distance
and involutions. arXiv preprint, arXiv:1502.05438, 2015.

[31] P. Bose, J. F. Buss, and A. Lubiw. Pattern matching for permu-
tations. Information Processing Letters, 65(5):277 – 283, 1998.

[32] M. Bousquet-Mélou. Four classes of pattern-avoiding permu-
tations under one roof: Generating trees with two labels. The
Electronic Journal of Combinatorics, 9(2), 2003.

[33] M. Bousquet-Mélou, A. Claesson, M. Dukes, and S. Kitaev. (2+
2)-free posets, ascent sequences and pattern avoiding permu-
tations. Journal of Combinatorial Theory Series A, 117(7):884–909,
2010.

[34] M. Bouvel and D. Rossin. The longest common pattern problem
for two permutations. Pure Mathematics and Applications, 17(1-
2):55–69, 2006.

[35] M. Bouvel, D. Rossin, and S. Vialette. Longest common sep-
arable pattern among permutations. In B. Ma and K. Zhang,
editors, Combinatorial Pattern Matching, Lecture Notes in Com-
puter Science, pages 316–327. Springer, 2007.

[36] P. Brändén and A. Claesson. Mesh patterns and the expansion
of permutation statistics as sums of permutation patterns. The
Electronic Journal of Combinatorics, 18(2):P5, 2011.

[37] F. Brandt, M. Brill, E. Hemaspaandra, and L. A. Hemaspaan-
dra. Bypassing combinatorial protections: Polynomial-time al-
gorithms for single-peaked electorates. In Proceedings of the 24th
AAAI Conference on Artificial Intelligence (AAAI 2010), pages 715–
722, 2010.

[38] R. Bredereck, J. Chen, and G. J. Woeginger. Are there any nicely
structured preference profiles nearby? In Proceedings of the 23rd
International Joint Conference on Artificial Intelligence (IJCAI 2013),
pages 62–68, 2013.

[39] R. Bredereck, J. Chen, and G. J. Woeginger. A characteriza-
tion of the single-crossing domain. Social Choice and Welfare,
41(4):989–998, 2013.

238 bibliography

[40] F. Brenti. Log-concave and unimodal sequences in algebra, com-
binatorics, and geometry: an update. Contemporary Mathematics,
178:71–89, 1994.

[41] M.-L. Bruner and M. Lackner. A fast algorithm for permutation
pattern matching based on alternating runs. In F. V. Fomin
and P. Kaski, editors, SWAT, volume 7357 of Lecture Notes in
Computer Science, pages 261–270. Springer, 2012.

[42] M.-L. Bruner and M. Lackner. The computational landscape
of permutation patterns. Pure Mathematics and Applications,
24(2)(2):83–101, 2013.

[43] M.-L. Bruner and M. Lackner. The likelihood of structure in
preference profiles. In Proceedings of the 8th Multidisciplinary
Workshop on Advances in Preference Handling (MPref 2014), 2014.

[44] M.-L. Bruner and A. Panholzer. Parking functions for trees and
mappings. arXiv preprint, arXiv:1504.04972, 2015.

[45] P. J. Cameron, D. Johannsen, T. Prellberg, and P. Schweitzer.
Counting defective parking functions. The Electronic Journal of
Combinatorics, 15:R92, 2008.

[46] L. Carlitz, D. Kurtz, R. Scoville, and O. Stackelberg. Asymptotic
properties of eulerian numbers. Zeitschrift für Wahrscheinlichkeit-
stheorie und Verwandte Gebiete, 23(1):47–54, 1972.

[47] A. Cayley. A theorem on trees. Quart. J. Math, 23(376-378):69,
1889.

[48] M.-S. Chang and F.-H. Wang. Efficient algorithms for the max-
imum weight clique and maximum weight independent set
problems on permutation graphs. Information Processing Letters,
43(6):293–295, 1992.

[49] L. Clark. Ascents and descents in random trees. Journal of Dis-
crete Mathematical Sciences and Cryptography, 11(4):483–492, 2008.

[50] C. H. Coombs. A Theory of Data. John Wiley & Sons, 1964.

[51] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E.
Knuth. On the Lambert W function. Advances in Computational
Mathematics, 5(1):329–359, 1996.

[52] D. Cornaz, L. Galand, and O. Spanjaard. Bounded single-
peaked width and proportional representation. In Proceedings of
the 20th European Conference on Artificial Intelligence (ECAI 2012),
volume 242, pages 270–275. IOS Press, 2012.

bibliography 239

[53] B. Courcelle. The monadic second-order logic of graphs. i.
recognizable sets of finite graphs. Information and computation,
85(1):12–75, 1990.

[54] D. E. Critchlow, M. A. Fligner, and J. S. Verducci. Probabil-
ity models on rankings. Journal of Mathematical Psychology,
35(3):294–318, Sept. 1991.

[55] M. Crochemore, C. S. Iliopoulos, T. Kociumaka, M. Kubica,
A. Langiu, S. P. Pissis, J. Radoszewski, W. Rytter, and T. Walen.
Order-preserving incomplete suffix trees and order-preserving
indexes. In O. Kurland, M. Lewenstein, and E. Porat, editors,
String Processing and Information Retrieval, volume 8214 of Lec-
ture Notes in Computer Science, pages 84–95. Springer, 2013.

[56] F. N. David and D. E. Barton. Combinatorial chance. Griffin, 1962.

[57] N. de Bruijn. Asymptotic methods in analysis. North-Holland
Publishing Co., 1958.

[58] R. Díaz and E. Pariguan. On hypergeometric functions and
pochhammer k-symbol. Divulgaciones Matemáticas, 15(2):179–
192, 2007.

[59] R. G. Downey and M. R. Fellows. Parameterized Complexity.
Springer, 1999.

[60] M. Drmota. Random trees. Springer, 2009.

[61] M. Drmota and M. Soria. Images and preimages in random
mappings. SIAM Journal on Discrete Mathematics, 10(2):246–269,
1997.

[62] S. Elizalde and M. Noy. Consecutive patterns in permutations.
Advances in Applied Mathematics, 30(1):110–125, 2003.

[63] E. Elkind, P. Faliszewski, and A. M. Slinko. Clone structures in
voters’ preferences. In Proceedings of the 13th ACM Conference on
Electronic Commerce (EC 2012), pages 496–513. ACM, 2012.

[64] E. Elkind and M. Lackner. On detecting nearly structured pref-
erence profiles. In Proceedings of the 28th AAAI Conference on
Artificial Intelligence (AAAI 2014), 2014.

[65] G. Erdélyi, M. Lackner, and A. Pfandler. Computational as-
pects of nearly single-peaked electorates. In Proceedings of the
26th AAAI Conference on Artificial Intelligence (AAAI 2013). AAAI
Press, 2013.

[66] P. Erdős and A. Rényi. On random graphs. Publicationes Mathe-
maticae Debrecen, 6:290–297, 1959.

240 bibliography

[67] P. Erdös and G. Szekeres. A combinatorial problem in geometry.
Compositio Mathematica, 2:463–470, 1935.

[68] B. Escoffier, J. Lang, and M. Öztürk. Single-peaked consistency
and its complexity. In Proceedings of the 18th European Conference
on Artificial Intelligence (ECAI 2008), volume 178 of FAIA, pages
366–370. IOS Press, 2008.

[69] L. C. Evans. Partial differential equations. American Mathemati-
cal Society, 2010.

[70] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra.
The complexity of manipulative attacks in nearly single-peaked
electorates. Artificial Intelligence, 207(0):69 – 99, 2014.

[71] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and
J. Rothe. The shield that never was: Societies with single-peaked
preferences are more open to manipulation and control. Infor-
mation and Computation, 209(2):89 – 107, 2011.

[72] P. Favardin, D. Lepelley, and J. Serais. Borda rule, copeland
method and strategic manipulation. Review of Economic Design,
7(2):213–228, 2002.

[73] G. Fertin, A. Labarre, I. Rusu, E. Tannier, and S. Vialette. Com-
binatorics of Genome Rearrangments. MIT Press, 2009.

[74] P. Flajolet, D. E. Knuth, and B. Pittel. The first cycles in an
evolving graph. Discrete Mathematics, 75:167–215, 1989.

[75] P. Flajolet and A. M. Odlyzko. Random mapping statis-
tics. In Advances in cryptology-EUROCRYPT’89, pages 329–354.
Springer, 1990.

[76] P. Flajolet and A. M. Odlyzko. Singularity analysis of generat-
ing functions. SIAM Journal on Discrete Mathematics, 3:216–240,
1990.

[77] P. Flajolet, P. Poblete, and A. Viola. On the analysis of linear
probing hashing. Algorithmica, 22:490–515, 1998.

[78] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge
University press, 2009.

[79] J. Flum and M. Grohe. Model-checking problems as a basis for
parameterized intractability. Logical Methods in Computer Science,
1(1), 2005.

[80] J. Flum and M. Grohe. Parameterized complexity theory. Springer,
2006.

bibliography 241

[81] F. Fomin and D. Kratsch. Exact Exponential Algorithms. Texts
in Theoretical Computer Science. An EATCS Series. Springer,
2010.

[82] E. Friedgut, G. Kalai, N. Keller, and N. Nisan. A quantitative
version of the gibbard-satterthwaite theorem for three alterna-
tives. SIAM Journal of Computation, 40:934–952, 2011.

[83] M. Fuchs, H.-K. Hwang, and R. Neininger. Profiles of random
trees: limit theorems for random recursive trees and binary
search trees. Algorithmica, 46:367–407, 2006.

[84] P. Gawrychowski and P. Uznanski. Order-preserving pattern
matching with k mismatches. arXiv preprint, arXiv:1309.6453,
2013.

[85] W. V. Gehrlein. The expected probability of Condorcet’s para-
dox. Economics Letters, 7(1):33–37, 1981.

[86] W. V. Gehrlein. Condorcet’s Paradox. Springer, 2006.

[87] W. V. Gehrlein, D. Lepelley, and I. Moyouwou. Voters’ prefer-
ence diversity, concepts of agreement and condorcet’s paradox.
Quality & Quantity, pages 1–24, 2014.

[88] W. V. Gehrlein, I. Moyouwou, and D. Lepelley. The impact of
voters’ preference diversity on the probability of some electoral
outcomes. Mathematical Social Sciences, 66(3):352–365, 2013.

[89] A. Gibbard. Manipulation of voting schemes. Econometrica,
41(4):587–601, 1973.

[90] J. D. Gilbey and L. H. Kalikow. Parking functions, valet func-
tions and priority queues. Discrete mathematics, 197:351–373,
1999.

[91] O. Goldreich. Computational Complexity: A Conceptual Perspective.
Cambridge University Press, 2008.

[92] G. H. Gonnet and J. I. Munro. The analysis of linear probing
sort by the use of a new mathematical transform. Journal of
Algorithms, 5:451–470, 1984.

[93] S. Guillemot and D. Marx. Finding small patterns in permu-
tations in linear time. In Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Port-
land, Oregon, USA, January 5-7, 2014, SODA’14, pages 82–101.
SIAM, 2014.

[94] S. Guillemot and S. Vialette. Pattern matching for 321-avoiding
permutations. In Y. Dong, D.-Z. Du, and O. Ibarra, editors, Al-
gorithms and Computation, volume 5878 of Lecture Notes in Com-
puter Science, pages 1064–1073. Springer, 2009.

242 bibliography

[95] J. Guo and R. Niedermeier. Invitation to data reduction and
problem kernelization. SIGACT News, 38(1):31–45, Mar. 2007.

[96] S. Heubach and T. Mansour. Combinatorics of compositions and
words. Chapman & Hall/CRC, 2009.

[97] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[98] H.-K. Hwang. On convergence rates in the central limit theo-
rems for combinatorial structures. European Journal of Combina-
torics, 19(3):329–343, 1998.

[99] L. Ibarra. Finding pattern matchings for permutations. Informa-
tion Processing Letters, 61(6):293–295, 1997.

[100] K.-i. Inada. The simple majority decision rule. Econometrica,
37(3):490–506, 1969.

[101] M. Isaksson, G. Kindler, and E. Mossel. The geome-
try of manipulation—a quantitative proof of the Gibbard-
Satterthwaite theorem. Combinatorica, 32(2):221–250, 2012.

[102] S. Janson. Asymptotic distribution for the cost of linear probing
hashing. Random Structures & Algorithms, 19:438–471, 2001.

[103] S. Janson. Individual displacements for linear probing hash-
ing with different insertion policies. ACM Transactions on Algo-
rithms, 1:177–213, 2005.

[104] S. Janson, D. E. Knuth, T. Łuczak, and B. Pittel. The birth of the
giant component. Random Structures & Algorithms, 4(3):233–358,
1993.

[105] N. L. Johnson and S. Kotz. Urn models and their application. Wiley,
1977.

[106] R. M. Karp. Reducibility among combinatorial problems. In
R. Miller, J. Thatcher, and J. Bohlinger, editors, Complexity of
Computer Computations, The IBM Research Symposia Series,
pages 85–103. Springer, 1972.

[107] J. Kim, P. Eades, R. Fleischer, S.-H. Hong, C. S. Iliopoulos,
K. Park, S. J. Puglisi, and T. Tokuyama. Order preserving match-
ing. arxiv preprint, arxiv:1302.4064, 2013.

[108] S. Kitaev. Patterns in Permutations and Words. Springer, 2011.

[109] A. Klenke. Probability Theory: A Comprehensive Course. Springer,
2008.

[110] V. Knoblauch. Recognizing one-dimensional Euclidean prefer-
ence profiles. Journal of Mathematical Economics, 46(1):1 – 5, 2010.

bibliography 243

[111] D. E. Knuth. The Art of Computer Programming, Volume I: Funda-
mental Algorithms. Addison-Wesley, 1968.

[112] V. F. Kolchin. Random mappings. Optimization Software, 1986.

[113] A. G. Konheim and B. Weiss. An occupancy discipline and ap-
plications. SIAM Journal on Applied Mathematics, 14:1266–1274,
1966.

[114] M. Kubica, T. Kulczyński, J. Radoszewski, W. Rytter, and
T. Waleń. A linear time algorithm for consecutive permutation
pattern matching. Information Processing Letters, 113(12):430 –
433, 2013.

[115] J. P. Kung and C. Yan. Exact formulas for moments of sums
of classical parking functions. Advances in Applied Mathematics,
31(1):215–241, 2003.

[116] D. Lepelley and F. Valognes. Voting rules, manipulability and
social homogeneity. Public Choice, 116(1-2):165–184, 2003.

[117] H. Levene and J. Wolfowitz. The covariance matrix of runs
up and down. The Annals of Mathematical Statistics, 15(1):58–69,
1944.

[118] G. Louchard. Kac’s formula, levy’s local time and brownian
excursion. Journal of Applied Probability, 21(3):pp. 479–499, 1984.

[119] R. D. Luce. Individual choice behavior. Wiley, 1959.

[120] P. A. MacMahon. Combinatory Analysis. Cambridge University
Press, 1915–16.

[121] H. Mahmoud. Pólya urn models. Texts in Statistical Science.
Chapman & Hall/CRC, 2008.

[122] E. Mäkinen. On the longest upsequence problem for permuta-
tions. International Journal of Computer Mathematics, 77(1):45–53,
2001.

[123] C. L. Mallows. Non-null ranking models. I. Biometrika,
44(1/2):114–130, 1957.

[124] A. Marcus and G. Tardos. Excluded permutation matrices and
the stanley–wilf conjecture. Journal of Combinatorial Theory, Se-
ries A, 107(1):153–160, 2004.

[125] S. G. Mohanty. Lattice path counting and applications. Academic
Press, 1979.

[126] T. B. Murphy and D. Martin. Mixtures of distance-based mod-
els for ranking data. Computational Statistics & Data Analysis,
41(3–4):645 – 655, 2003.

244 bibliography

[127] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Ox-
ford Lecture Series in Mathematics And Its Applications. Ox-
ford University Press, 2006.

[128] The On-Line Encyclopedia of Integer Sequences. Published
electronically at http://oeis.org, 2015.

[129] I. O. Okoth. Combinatorics of oriented trees and tree-like structures.
PhD thesis, University of Stellenbosch, South Africa, 2015.

[130] A. Panholzer. Alternating mapping functions. Journal of Combi-
natorial Theory, Series A, 120(7):1835–1850, 2013.

[131] A. Panholzer and H. Prodinger. Level of nodes in increas-
ing trees revisited. Random Structures & Algorithms, 31:203–226,
2007.

[132] C. H. Papadimitriou. Computational complexity. John Wiley and
Sons Ltd., 2003.

[133] R. Pemantle and M. C. Wilson. Analytic Combinatorics in Several
Variables. Cambridge University Press, 2013.

[134] R. L. Plackett. The analysis of permutations. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 24(2):193–202, 1975.

[135] A. Postnikov and B. Shapiro. Trees, parking functions, syzy-
gies, and deformations of monomial ideals. Transactions of the
American Mathematical Society, 356:3109–3142, 2004.

[136] K. W. Roberts. Voting over income tax schedules. Journal of
Public Economics, 8(3):329–340, 1977.

[137] M. Satterthwaite. Strategy-proofness and Arrow’s conditions:
Existence and correspondence theorems for voting procedures
and social welfare functions. Journal of Economic Theory,
10(2):187–217, 1975.

[138] S. Saxena and V. Yugandhar. Parallel algorithms for separa-
ble permutations. Discrete Applied Mathematics, 146(3):343–364,
2005.

[139] C. Schensted. Longest increasing and decreasing subsequences.
Classic Papers in Combinatorics, pages 299–311, 1987.

[140] R. Simion and F. W. Schmidt. Restricted permutations. European
Journal of Combinatorics, 6:383–406, 1985.

[141] A. Slinko. On asymptotic strategy-proofness of classical social
choice rules. Theory and Decision, 52(4):389–398, June 2002.

http://oeis.org

bibliography 245

[142] A. Slinko. On asymptotic strategy-proofness of the plurality
and the run-off rules. Social Choice and Welfare, 19(2):313–324,
2002.

[143] A. Slinko. How the size of a coalition affects its chances to
influence an election. Social Choice and Welfare, 26(1):143–153,
Dec. 2005.

[144] R. T. Smythe and H. M. Mahmoud. A survey of recursive trees.
Theory of Probability and Mathematical Statistics, 51:1–27, 1996.

[145] Z. E. Stankova. Forbidden subsequences. Discrete Mathematics,
132(1):291–316, 1994.

[146] R. Stanley. Enumerative combinatorics, volume I & II. Cambridge
University press, 1997 & 1999.

[147] R. P. Stanley. Log-concave and unimodal sequences in algebra,
combinatorics, and geometrya. Annals of the New York Academy
of Sciences, 576(1):500–535, 1989.

[148] R. P. Stanley and J. Pitman. A polytope related to empirical
distributions, plane trees, parking functions, and the associahe-
dron. Discrete & Computational Geometry, 27:603–634, 2002.

[149] E. Steingrímsson. Generalized permutation patterns - a short
survey. Permutation Patterns, 376:137–152, 2010.

[150] S. Ulam. Some ideas and prospects in biomathematics. Annual
Review of Biophysics and Bioengineering, 1(1):277–292, 1972.

[151] H. Úlfarsson. A unification of permutation patterns related to
Schubert varieties. In Formal power series and algebraic combi-
natorics (FPSAC 2010), DMTCS Proceedings, pages 1057–1068,
2010.

[152] H. Úlfarsson. Describing west-3-stack-sortable permutations
with permutation patterns. Séminaire Lotharingien de Combina-
toire, 67:20, 2012.

[153] A. Viola. Exact distribution of individual displacements in lin-
ear probing hashing. ACM Transactions on Algorithms, 1:214–242,
2005.

[154] T. Walsh. Uncertainty in preference elicitation and aggregation.
In Proceedings of the 22nd National Conference on Artificial Intelli-
gence (AAAI 2007), pages 3–8. AAAI Press, 2007.

[155] J. West. Permutations with forbidden subsequences, and, stack-
sortable permutations. PhD thesis, Massachusetts Institute of
Technology, 1990.

246 bibliography

[156] J. West. Generating trees and the Catalan and Schröder num-
bers. Discrete Mathematics, 146(1-3):247–262, 1995.

[157] J. West. Generating trees and forbidden subsequences. Discrete
Mathematics, 157(1):363–374, 1996.

[158] H. S. Wilf. generatingfunctionology. A K Peters/CRC Press, third
edition, 2006.

[159] C. H. Yan. Generalized parking functions, tree inversions, and
multicolored graphs. Advances in Applied Mathematics, 27:641–
670, 2001.

C U R R I C U L U M V I T Æ – M A R I E - L O U I S E B R U N E R

personal information

Address Josefstädterstraße 43-35/2/10, 1080 Vienna, Austria

Email marie-louise.bruner@tuwien.ac.at

Web http://dmg.tuwien.ac.at/mbruner/

Born July 27th 1987 in Vienna

Citizenship Austrian

education

Oct 2011–
Jun 2015

PHD studies, Vienna University of Technology, under
the supervision of Alois Panholzer

Jun 2012 “Dr. Maria Schaumayer”-prize, awarded for the
diploma thesis

Oct 2005–
Jun 2011

Studies of “Technische Mathematik”, Vienna Univer-
sity of Technology

Jun 2011 Master’s degree (Dipl.-Ing.), Vienna University of
Technology, Master thesis “Restricted Permutations
on Multisets” supervised by Alois Panholzer, passed
with distinction

Aug 2008–
Dec 2008

Erasmus exchange term, Royal Institute of Technology
in Stockholm (KTH), Sweden

Aug 1993–
Jun 2005

Lycée Français de Vienne, Ecole primaire, collège, lycée,
Section S (scientifique/sciences)

Jun 2005 French Baccalauréat, Lycée Français de Vienne, passed
with distinction

Jun 2005 Austrian Matura, Lycée Français de Vienne, passed
with distinction

academic career

All positions so far at the Institute for Discrete Mathematics and Ge-
ometry at the Vienna University of Technology.

247

248 curriculum vitæ

Feb 2013–
present

Research fellow, FWF-project P25337-N23 “Restricted
labelled combinatorial objects: new enumerative, statis-
tical, asymptotic and complexity theoretical aspects”,
Project director: Prof. Alois Panholzer

Mar 2012–
Jul 2013

Graduate teaching and research assistant, Under
the responsibility of Prof. Michael Drmota and Prof.
Monika Ludwig

Jun 2011–
Feb 2012

Research fellow, FWF-project S9608 “Combinatoric
analysis of data structures and tree-like structures”, part
of the national research network (NFN) “Analytic
Combinatorics and Probabilistic Number Theory”,
Project director: Prof. Alois Panholzer

Oct 2010–
Jun 2011

Undergraduate teaching assistant, Under the re-
sponsibility of Prof. Monika Ludwig

Mar 2009–
Jun 2010

Tutor, Exercises for mechanical engineering and civil en-
gineering students, Under the responsibility of Prof.
Peter M. Gruber

research areas to date

◦ Combinatorics: Enumeration of labelled combinato-
rial objects - exact and asymptotic results; generating
functions and bijective proofs

◦ Complexity analysis of combinatorial problems: clas-
sical and parametrized complexity theory; design of
(FPT)-algorithms

◦ Computational Social Choice: combinatorial and
complexity theoretic properties of domain restric-
tions

scientific articles

2015 Parking functions for trees and mappings, with Alois
Panholzer, submitted.

2015 Log-concavity, the Ulam distance and involutions, with
Miklós Bóna, submitted.

2015 A Fast Algorithm for Permutation Pattern Matching
Based on Alternating Runs, with Martin Lackner, ac-
cepted for publication in Algorithmica

curriculum vitæ 249

2014 The Likelihood of Structure in Preference Profiles, with
Martin Lackner, in Proceedings of the 8th Multidis-
ciplinary Workshop on Advances in Preference Han-
dling (MPref 2014)

2013 On restricted permutations on regular multisets, in Per-
mutation Patterns 2012 Proceedings, special issue of
Pure Mathematics and Applications

2013 The computational landscape of permutation patterns,
with Martin Lackner, in Permutation Patterns 2012

Proceedings, special issue of Pure Mathematics and
Applications.

2012 From Peaks to Valleys, Running Up and Down: Fast Per-
mutation Pattern Matching, with Martin Lackner, Tiny
Transactions on Computer Science

2012 A Fast Algorithm for Permutation Pattern Matching
Based on Alternating Runs, with Martin Lackner, Al-
gorithm Theory – SWAT 2012

talks

2015 The likelihood of single-peaked preference profiles: a combi-
natorial approach
Combinatorics Seminar, University of Florida,
Gainesville, USA.

2015 A combinatorial approach to structure in preference pro-
files
Seminar of the “Arbeitsgemeinschaft Diskrete Math-
ematik”, Vienna University of Technology, Austria.

2014 The Likelihood of Structure in Preference Profiles
Workshop on Challenges in Algorithmic Social
Choice, Bad Belzig, Germany.

2014 Permutation Pattern Matching: From separable permuta-
tions to fixed-parameter algorithms
Combinatorics Seminar, University of Florida,
Gainesville, USA.

2013 The computational landscape of permutation patterns
11th Permutation Patterns conference, University
Paris Diderot, Paris, France.

250 curriculum vitæ

2013 Parking in trees
4th biennial Canadian Discrete and Algorithmic
Mathematics Conference, CanaDAM 2013, Memorial
University of Newfoundland, St. John’s, Canada.

2013 Label patterns in mappings
24th International Meeting on Probabilistic, Combi-
natorial and Asymptotic Methods for the Analysis
of Algorithms, AofA 2013, Cala Galdana, Menorca,
Spain.

2013 Parking arborescent
Journées Aléa 2013, CIRM, Marseille, France.

2012 A Fast Algorithm for Permutation Pattern Matching
Based on Alternating Runs
Seminar of the “Arbeitsgemeinschaft Diskrete Math-
ematik”, Vienna University of Technology, Austria.

2012 A Fast Algorithm for Permutation Pattern Matching
Based on Alternating Runs
10th Permutation Patterns conference, University of
Strathclyde, Glasgow, Scotland.

2011 Counting multiset-permutations avoiding the pattern 122
and another pattern of length three
30th Colloquium on Combinatorics, Magdeburg,
Germany.

2011 Enumerative formulae for multiset-permutations avoiding
the pattern 122 and another pattern of length three
Joint Mathematical Conference of the Austrian, Cata-
lan, Czech, Slovak and Slovenian Mathematical Soci-
eties, Krems, Austria.

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

http://code.google.com/p/classicthesis/
http://postcards.miede.de/

	Dedication
	Declaration
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents

	1 Introduction
	2 Preliminaries
	2.1 Asymptotic notation
	2.2 Permutations, patterns and Standard Young tableaux
	2.3 Cayley trees and Mappings
	2.4 Preferences and Social Choice Theory
	2.5 Algorithms and complexity theory
	2.6 Symbolic method and analytic combinatorics
	2.7 Probabilistic tools
	2.8 Method of characteristics
	2.9 Log-concavity and combinatorial sequences

	Permutations
	3 Efficient permutation pattern matching: the alternating run algorithm
	3.1 The alternating run algorithm
	3.2 The parameter run()
	3.3 Summary of the results

	4 The computational complexity of generalized permutation pattern matching
	4.1 Types of patterns
	4.2 The possibility of polynomial-time algorithms
	4.3 The impact of the pattern length
	4.4 Summary of the results

	5 Central binomial coefficients
	6 Log-concavity, longest increasing subsequences and involutions
	6.1 The conjecture and a first result
	6.2 A class of permutations for which the conjecture holds
	6.3 Lattice paths and 321-avoiding permutations
	6.4 Summary of the results

	Cayley trees and mappings
	7 A new bijective proof of Cayley's formula
	8 Ascending runs in mappings
	8.1 A probabilistic warm-up: Ascents in mappings and trees
	8.2 Ascending runs in mappings
	8.3 Summary of the results

	9 Parking in trees and mappings
	9.1 Introduction
	9.2 Basic properties of parking functions for trees and mappings
	9.3 Total number of parking functions: the number of drivers coincides with the number of parking spaces
	9.4 Total number of parking functions: the general case
	9.5 Summary of the results

	Preferences and elections
	10 On the Likelihood of Single-Peaked Elections
	10.1 A general result based on permutation patterns
	10.2 Counting results and the Impartial Culture assumption
	10.3 The Pólya urn model
	10.4 Mallows model
	10.5 Numerical Evaluations
	10.6 Summary of the results
	Further research

	11 Further research
	Notation

	Notation
	Bibliography
	Curriculum Vitæ

	Curriculum Vitæ
	Colophon

