Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt
(http://www uistuwiensacrat)e

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Top-Down Evaluation Techniques

for Modular Nonmonotonlc
Logic Programs

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Master of Science (Computational Logic) (MSc)
im Rahmen des Studiums
Computational Logic (Erasmus Mundus)
eingereicht von

Tri Kurniawan Wijaya
Matrikelnummer 1028269

an der
Fakultat fir Informatik der Technischen Universitat Wien

Betreuung: O.Univ.-Prof. Dipl.-Ing. Dr. techn. Thomas Eiter
Mitwirkung: Univ. Ass. Dipl.-Ing. Thomas Krennwallner
Minh Dao-Tran, MSc.

Wien, 11.08.2011

(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

Faculty of Informatics

FAKULTAT
FUR INFORMATIK

Top-Down Evaluation Techniques

for Modular Nonmonotonlc
Logic Programs

MASTER'’S THESIS
submitted in partial fulfillment of the requirements for the degree of
Master of Science (Computational Logic) (M.Sc.)
in
Computatinal Logic (Erasmus Mundus)
by

Tri Kurniawan Wijaya
Registration Number 1028269

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: O.Univ.-Prof. Dipl.-Ing. Dr. techn. Thomas Eiter
Assistance: Univ. Ass. Dipl.-Ing. Thomas Krennwallner
Minh Dao-Tran, MSc.

Vienna, 11.08.2011

(Signature of Author) (Signature of Advisor)

Technische Universitat Wien
A-1040 Wien - Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

Erklarung zur Verfassung der Arbeit

Tri Kurniawan Wijaya
Toko MELATT, JI. Muria, Genteng Kulon, Genteng-Banyuwangi 68465, Jawa Timur, Indonesia

Hiermit erkldre ich, dass ich diese Arbeit selbstindig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen der Arbeit
- einschlieBlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

Acknowledgements

I would to say thanks:

To Prof. Thomas Eiter, who let me work with him and his group on such an interesting topic.
Every meeting with him is always exciting and encouraging, and every word from him is always
insightful.

To Thomas Krennwallner and Minh Dao-Tran, together with Prof. Eiter they made such a
great team to support me from the beginning ’till the end. I cannot imagine finishing all the
works without them.

To Peter Schueller, who always there to help me with dlvhex system.

To Eva Nedoma, secretary of our groups; who always eager to help with office and bureau-
cratic matters. Every morning before anybody comes, she also makes sure that we have enough
coffee and milk in our kitchen.

To all of my partners in crime in the third floor: Tran Trung Kien, Carmine Dodaro, Xiao
Guohui, Patrik Schneider, and Umut Oztok. I cannot imagine spending my time in the lab
without you, guys. All of our jokes, discussions, lunches, and even stupidity, made me ’alive’.

To all of my friends and colleagues for their understanding, support, and encouragement
during my ’thesis mode’.

Finally, to my wonderful mother, sister, and families back home who always believe in me.

- Tri -

iii

Abstract

Answer Set Programming (ASP) is a very useful tool for knowledge representation and declar-
ative problem solving. Recently, enabling modularity aspects in ASP has gained increasing
interest to help composing (sub-)programs to a combined logic program. Modularity not only
allows for problem decomposition, but also facilitates high (code) reusability and provides better
support for large-scale projects. Among the contemporary approaches, Modular Nonmonotonic
Logic Programs (MLPs) have distinguished strengths, e.g., they allow for mutual recursive calls
and utilize predicate symbols as module inputs, resulting in more dynamic problem encodings.
MLPs are very expressive and have high computational complexity, thus creating practicable im-
plementations for this formalism is a very challenging task. In this thesis, we develop TD-MLP,
a concrete algorithm for computing answer sets for MLPs. TD-MLP is based on a top-down
evaluation technique which considers only relevant module calls. In addition, we have devised
an optimization technique that splits module instantiations to avoid redundant recomputation.
We have incorporated the optimization technique into the original approach and experiments on
a benchmark suite show promising results. Furthermore, we also evaluate the performance of
different encodings for different problems, involving modular and ordinary encodings. Experi-
ments show in some cases our modular encoding can outperforms the ordinary ones.

Kurzfassung

Answer Set Programming (ASP) ist ein sehr niitzliches Werkzeug fiir die Wissensreprisenta-
tion und zum Losen von deklarativen Problemstellungen. In letzter Zeit werden Modularitit-
saspekte in ASP zunehmend interessant, bei dem es darum geht, (Sub-)Programme zu einem
(kombinierten) Logikprogramm zusammenzusetzen. Modularitét erlaubt nicht nur das gegebene
Problem in seine Teilprobleme zu zerlegen, sondern erleichtert auch die Wiederverwendbarkeit
von logischen Programmen und bietet bessere Unterstiitzung fiir grofle Softwareprojekte. Zu
den gegenwirtigen Ansétzen in diesem Bereich zdhlen Modular Nonmonotonic Logic Programs
(MLP), welche einige Stdrken aufweisen: Sie erlauben wechselseitige rekursive Aufrufe und
nutzen Priadikatensymbole als Modul-Input, wodurch dynamischere Kodierungen der Probleme
entstehen. MLPs sind sehr ausdrucksstark und haben eine hohe computationale Komplexitit,
deswegen ist es sehr anspruchsvoll, eine praktikable Implementierung fiir diesen Formalismus
zu erstellen. In dieser Arbeit entwickeln wir TD-MLP, einen konkreten Algorithmus zur Berech-
nung von Modellen fiir MLPs. TD-MLP basiert auf Top-down-Auswertungstechniken, die nur
relevante Modulaufrufe beriicksichtigen. Wir integrieren eine Optimierungstechnik, die Mod-
ulinstanzen separiert und damit redundante Berechnungen vermieden werden. Wir haben diese
Optimierungstechnik implementiert und Experimente auf Benchmark Instanzen zeigen vielver-
sprechende Resultate. Dariiber hinaus evaluieren wir auch unterschiedliche Kodierungen fiir
Probleme, um modularen und mit einfachen logischen Programmen zu vergleichen. Experimente
zeigen, dass in einigen Fillen die modulare Kodierung die gewohnlichen Programme iibertreffen
konnen.

vii

Contents

(I__Introduction| 1
1.1~ Answer Set Programming|. 2
[1.2 Modularity in Logic Programs| 4
(1.3 Thesis Contributionf oo 5
1.4 Organization of the Chapters| 6

? Preliminarics 9
2.1~ Answer Set Programming|. o000 9
[2.2 Modular Nonmonotonic Logic Programs|. 16

22.1 Syntaxof MLPs| 16
222 Semanticsof MLPs[. oo 18

3 Top-Down Approach for MLPs| 23
[3.1 Splitting Sets| 23
[3.2 Splitting for input-call-stratiied MLPs| 24

3.2.1 Globalsplitting| 24
3.2.2 Localsplitting], 26
[3.3 Top-Down Evaluation Algorithm| 28

|4 Instantiation Splitting for Input-Call-Stratified ML Ps| 33
7 D T) 33
[4.2 Instantiation Splitting| 36

|5 Evaluating Input-Call-Stratified MLPs with Instantiation Splitting| 39
[5.1 Evaluvation Algorithm| Lo o oo 39
[5.2 Sub-Algorithms| 40

[5.2.1 Stratified Checking| 41
5.2.2 Rewriting| 42
5.2.3 Splitting Set Preparation| 45
[5.2.4 Value Call Preparation| 47
[5.3 Soundness and Completeness of Algorithm solveMLP|. 48
531 Soundnessl 49
5.3.2 Completeness| 53

iX

|6 Implementation|

6.1 System Architecture{.

16.1.2 Syntax Checking|
6.1.3 Evaluatod

Experiments|

7.1 Random Programs|
[7.1.1 Experiment Characteristics|. . . .
[7.1.2 Experiment Results|.

7.3 Packing Problem|
/4 Even-Odd

. ummary| L0000

Bibliographyi

|A° Experiment Results|

ding
[B. I HanoiTowed.
B.1.1 Ordinary ASP|.
B.12 MIP
B P o
B.2.1 Ordinary ASP|.
B.2.2 MLP: Encoding I|.
B23 MLP Encoding 2.
.................
B3.1 MILP

[B.3.2" Ordinary ASP - Labeling Solution|

57
57
57
60
61
65
66
67
68
69

71
71
71
74
75
78
80
83

85
85
86

87

CHAPTER

Introduction

The area of Artificial Intelligence (AI) has been growing rapidly since its inception in 1956.
Since then, along with molecular biology, Al has regularly been cited as “the field I would most
like to be in” by scientists in other disciplines [Russell and Norvig, 2009]]. Moreover, John Mc-
Carthy called Al as “the science and engineering of making intelligence machines.” Currently,
Al covers a high variety of subfields, such as problem solving, knowledge representation, au-
tomated reasoning, planning, machine learning, natural language processing, computer vision,
robotics, and so on. In short, one cannot discuss about an intellectual task done by machine
without mentioning Al

Knowledge representation, problem solving, and automated reasoning are the subfields in
Al that became our concern in this thesis. Together, they play an important role in AI. Knowl-
edge representation itself contains a broad discussion on how to store what machine knows, the
knowledge of the machines, or description of the world, one might say. Given the stored infor-
mation, automated reasoning can give an answer to a particular question and even draw a new
conclusion. And given a goal description, problem solving find a solution on how to achieve the
goal from its current state using any capability it possessed from its reasoning ability.

As one might notice from the title, the topic of this thesis is about modularity in logic pro-
grams, in particular, in Answer Set Programs (ASP). Among many approaches, we consider a
novel formalism in [Dao-Tran et al., [2009a], modular nonmonotonic logic programs (MLPs).
This thesis aims to:

e implements a top-down algorithm to evaluate modules in ASP (in particular, we will use
the formalization and approach in [Dao-Tran et al., | 2009a,b]),

e devises a technique to optimize and enhance the performance of the algorithm,

e cvaluates the implementation through several experiments with benchmark suite.

1.1 Answer Set Programming

Answer set programming (ASP) is one of the Al subfields mentioned previously, namely: knowl-
edge representation, automated reasoning, and problem solving. This due to the fact that ASP:

e has a power to represent knowledge and formalize problems naturally,
e is able to derive new conclusions from facts and rules (description of a world),

e is a declarative programming paradigm that could be used to solve problems in a declara-
tive way [Lifschitz, [2008]].

The term ASP itself was first introduced by Vladimir Lifschitz to refer to a new declarative
programming paradigm that has its roots in stable model semantics (also known as answer set)
of logic programs. One could also say that ASP is a form of declarative programming oriented
towards search problems. However, as one could see a little later, ASP is more to the logical
representation of a knowledge rather than programming. In order to solve a problem using ASP,
a program is devised in such a way that the solutions of the problem can be retrieved from
the answer sets of the program. An ASP solver is a system that takes as input a program and
computes answer sets for it. DLV [Leone et al., |2006], clasp [[Gebser et al., 2007], Smodels
[Syrjanen and Niemeld, [2001], GnT [Janhunen et al., 2006]], Cmodels [Lierler, [2005]], ASSAT
[Lin and Zhao| 2004 are few examples of ASP solver available nowadays.

As we already know, knowledge representation and problem solving often involves infor-
mation that is implicitly given. Implicit information, in turn, often requires reasoning to make it
explicit. To this end, answer set programming shows its power. To illustrate this, consider the
following puzzle in Example [I.1]

Example 1.1 Donald and Daisy Duck took their nephews, age 4, 5, and 6, on an outing. Each
boy wore a T-shirt with a different design (camel, giraffe, or panda) on it and of a different color
(yellow, white, or green). You are also given the following information:

(a) The 5-year-old wore the T-shirt with the camel design;

(b) Dewey’s T-shirt was yellow;

(c) Louie’s T-shirt bore the giraffe design;

(d) The panda design was not featured on the white T-shirt.

(e) Huey is younger than the boy in the green T-shirt;

A solution to this puzzle shall consist of a complete description of the T-shirts (color and design)
and ages of the three nephews: Dewey, Louie, and Huey.

In order to solve this puzzle, one might encode it into ASP:

Listing 1.1: Disney puzzle

% three nephews

nephew (dewey) .

nephew(louie).

nephew Chuey).

% nephews’ age

age(4,X) v age(5,X) v age(6,X) :- nephew(X).

:- age(A,X), age(A,Y), nephew(X), nephew(Y), X!=Y.

% t-shirt design

design(camel ,X) v design(giraffe,X) v design(panda,X) :- nephew(X).
:- design(A,X), design(A,Y), nephew(X), nephew(Y), X!=Y.
% t-shirt color

color(yellow,X) v color(white,X) v color(green,X) :- nephew(X).

:- color(A,X), color(A,Y), nephew(X), nephew(Y), X!=Y.

% five further information (a) - (e)

age(5,X) :- design(camel, X), nephew(X). % (a)
color(yellow,dewey). % (b)
design(giraffe,louie). % (c)
:- design(panda,X), color(white,X), nephew(X). % (d)

:- age(AX,huey), color(green,Y), age(AY,Y), nephew(Y), AX>=AY. % (e)

As one can see the ASP representation of the problem is quite straight-forward. The first 3
lines of the code are to assert the facts that Dewey, Louie, and Huey are the nephews. For the
next 6 lines, the code represents the description of the problem that their age should be 4, 5, or 6
(line 4 — 5); the design of their shirt should be camel, giraffe, or panda (line 6 — 7); with yellow,
white, or green color (line 8 — 9). Then, the last 5 lines represent the further information given
on (a), (b), (¢), (d), and (e) respectively.

Please note that the lines that begin with : - represent constraints. For example:

:- age(A,X), age(A,Y), neph(X), neph(Y), X!=Y.

states that if X is A years old, and Y is A years old, where X and Y are the nephews, then both
of them cannot be different (X and Y must be the same person). Running the ASP code in the
Listing|l.1jon DLV, we will compute exactly one answer set:

{

nephew(dewey), nephew(louie), nephewChuey),
design(panda,dewey), design(giraffe,louie), design(camel,huey),
color(yellow,dewey), color(green,louie), color(white,huey),
age(4,dewey), age(6,louie), age(5,huey)

}

If we observe the answer set carefully, then we will realize that it is also the answer of the
puzzle! One can interprets the answer set in a very intuitive way, e.g., Dewey wears the panda
design, Louie wears the giraffe design, Huey wears the white shirt, Dewey is 4 years old, Huey
is 5 years old, and so on.

From Example|l.1|above, one might see that ASP is an elegant tool to represent knowledge,
which is very advantageous for the Al community. Not only a very intuitive formalization of a
problem (or knowledge), but ASP also fosters an automated reasoning and problem solving at
the same time. For details, the formal syntax and semantics of ASP is given in Chapter 2]

1.2 Modularity in Logic Programs

For the past few decades, modularity plays an important role in any programming paradigm.
Basically, modularity breaks down a program into modules where each accomplishing one par-
ticular task and contains all the source codes and variables needed. By segmenting the program
into modules that perform clearly defined functions, we can determine the source of program
errors easier and much clearer code can be produced, which in the end enhances the reusability
of the codes.

From a problem solving point of view, modular programming also brings a great help to ease
problem decomposition in which a big task can be divided into several less complex modules,
and similar tasks can be solved together in one module. These properties make modular designed
systems more “interesting” than traditional monolithic designs.

Modularity also facilitates the composition of projects into smaller projects. In general, a
modularized software project is much easier to handle, since a team member does not need to
know about the whole system. This is particularly useful on large-scale projects. She can focus
on an assigned smaller task only. Modularity also enables a new member to join the project in
the middle of the schedule since she can be assigned into a self-contained module.

The concept of modularity has been growing rapidly in imperative programming and even
becomes a must. However, this is not the case with logic programming. For instance, it is a
common knowledge that one need to create a monolithic code to solve a problem using logic
programming. Despite its advantages as declarative programming paradigm, it will not be very
handy when we encounter big and complex problems.

Nevertheless, it does not mean that no researchers are aware of the lack of modularity in
logic programming. Researchers in logic and knowledge representation have worked on this
topic and gained increasing interest in the last years [Brogi et al.l (1994, |Bugliesi et al., 1994,
Kontchakov et al,2010]. It has evolved along two different directions:

(i) Various papers have focused primarily on the problems of programming-in-the-large [Jan-
hunen et al., 2009, Oikarinen and Janhunen, 2008||. This paradigm introduce compositional
operators to combine separate and independent modules.

(i) Other proposals concentrated on the problem of programming-in-the-small, e.g., general-
ized quantifiers [Eiter et al. [1997], macros [Baral et al., [2006], templates [Calimeri and
Tanni, 2006], import rules [Tari et al., 2005] and web rulebases [[Analyti et al., 2011]]. This
paradigm attempts to enrich logic programming with building an abstraction and scoping
mechanisms.

This thesis utilizes [Dao-Tran et al, 2009a] as the basis, i.e., modular nonmonotonic logic
programs (MLP). This formalism allows providing input and retrieving output from a module

4

dynamically. The main strength of MLPs compared to other approaches is that MLPs allow
recursive calls between modules.

The approach in [Janhunen et al., [2009|], DLP-functions, is also one of the premier for-
malisms to combine ASP modules. It turns out that actually a fragment of MLP can be translated
into DLP-functions and vice versa [Dao-Tran et al.,[2009a]. However, since MLP admits mutual
recursion and module input, MLP can be viewed as a generalization of DLP-functions.

Rooted in theoretical works, some practical implementations of the formalisms have also
been made in these directions. However, they do not offer the advantages of modularity to the
full extent since some of them are not specifically tailored for modular concepts:

1. DLT [Calimeri and Ianni, 2006]: It extends DLV with templates predicates, it works as
a parser and produces an output that can be computed by DLV. The implementation is
based on [Calimeri and Ianni, 2006]]. However, since the main approach is rewriting the
program, it does not support recursive calls between modules.

2. LPEQ [Oikarinen and Janhunen, 2009]: It verifies a variety of equivalences in logic pro-
grams in the input language of smodels system [Syrjinen and Niemeld, [2001]], including
modular equivalence of smodels program modules. It does not allowed positive recursion
between modules.

3. Modular AnsProlog [Tari et al., 2005]]: It specifically tailored to introduce a modular
approach in answer set programming. It uses Smodels [Syrjanen and Niemeld, 2001] as
the backbone. The approach had already support input to a module, but only in the form
of constants (compared to predicates in MLP).

4, MWeb [Analyti et al., [2011]] (short for Modular Web Framework): It views modules as
web rulebases. It does not support input to module.

1.3 Thesis Contribution

This thesis has made several contributions, especially to people who are interested in declarative
problem solving, logic programming, and knowledge representation:

1. We implement a system that covers the modular approach for logic programs under answer
set semantics, MLP [[Dao-Tran et al.,2009al]. Since MLP is quite expressive and has a high
computational complexity, we evaluate it with the top-down approach described in [Dao-
Tran et al., [2009b]. This is the first implementation of such kind of system that allows
dynamic input (by the means of predicate symbols) and mutual recursive calls between
modules. Since one might have seen the effectiveness of ASP in formally representing
knowledge and solving a problem in a declarative way, we are confident that the modular
extensions of it can popularize ASP even more.

2. We develop an optimization strategy for the top-down evaluation algorithm in [Dao-Tran
et al., 2009b], called instantiation splitting. The idea is based on our observation when
evaluating a module instantiations. Actually, there is a chance for us to not evaluate the

5

whole rules. Some part of the rules had already been evaluated when we prepare inputs for
module calls. By applying splitting set theorem [Lifschitz and Turner, |1994] on module
instantiations, we are able to evaluate only part of the rules that had not been evaluated
before. Using this optimization, redundant computation can be avoided.

3. Another concern of such an expressive modular formalism like MLP is the overhead that
modules bring in compared to ordinary ASP encodings. For this case, our implementation
shows promising results. Re-encoding the ordinary ASP into MLP, experiments suggest
that the running time for solving the MLP encoding show a very little time difference only.
This has shown us a positive sign for the MLPs development in the future. In addition,
there is also a case where MLP confidently outperforms ordinary ASP encodings.

4. Several experiments have been made to investigate the performance of the our implemen-
tation. We create a benchmark suite to evaluate the top-down algorithm with and without
the optimization. The benchmark suite is also used to measure the performance and scal-
ability of the algorithm for such an unpredictable program. In addition, we also test the
system on several well-known problems, such as: hanoi tower, packing problem, and de-
ciding even-odd cardinality of a set. We conduct the experiments using several different
ASP solvers, and involving both, MLP and ordinary ASP encodings.

1.4 Organization of the Chapters

This thesis is divided into eight different chapters. From this introduction chapter, we continue
with the basic concepts of MLPs, the top-down evaluation approach, the optimization we have
made, our system description, and experiment results. We close with conclusions and outlook
for further work.

Chapter 2 This chapter contains the basic preliminaries of ASP and MLP. For readers who are
not familiar with ASP, this chapter will be a good place to start, while for others who are
already familiar with ASP, this chapter provides them with the basic notion that we will
use throughout this thesis. The fundamentals of MLP [Dao-Tran et al., 2009a] is then
presented in Section [2.2]including many examples.

Chapter 3 As MLP is very expressive, we need nontrivial techniques to evaluate it. This chapter
explains the top-down approach that has been proposed in [Dao-Tran et al., 2009b]. In this
chapter, we briefly give the basic of splitting set notion that became the underlying idea
of the approach, and also some other approaches, e.g., [Oikarinen and Janhunen| [2008].
The top-down evaluation technique in [Dao-Tran et al., 2009b|] has became our starting
point for implementing the system, and is the first and the only approach that is currently
available.

Chapter 4 This chapter discusses our optimization techniques. We give the intuition behind in-
stantiation splitting, formalize it, and give an example on how the evaluation will actually
look like at runtime.

Chapter 5 In this chapter we present a new algorithm. This algorithm takes the one in [Dao-
Tran et al.l [2009b] as the basis and improve it with instantiation splitting techniques. In
addition, we also give the proof of soundness and completeness of the algorithm.

Chapter 6 In this chapter, we present the first system, 7D-MLP, that has been developed to eval-
uate MLPs. First, we present the architecture of the system. Then, we provide guidance
on how to write the input language to the system and how to interpret the results. The
format we used is similar to the format of DLV. We also explain the parameters of the
system which are useful for the users according to their needs.

Chapter 7 The results of experiments with TD-MLP are presented in this chapter. It starts from
comparing the average of evaluation time using the original approach in [Dao-Tran et al.,
2009b] and using the instantiation splitting optimization. Then, we move to see the over-
head caused by the modular approach comparing to the original monolithic ASP encoding.

Chapter 8 In the end, we conclude our work and give the interested readers some directions on
how and where the work could be advanced in the future.

CHAPTER

Preliminaries

This chapter gives basic definitions needed for this thesis. In particular, we present here funda-
mental concepts of answer set programs and modular nonmonotonic logic programs |[Dao-Tran
et al.,[2009al]. We give the basic idea of answer set programs first, since modular nonomonotonic
logic program (MLP) is defined on top of it.

2.1 Answer Set Programming

Answer Set Programming (ASP) [Brewka et al., |2011]] is rooted on the stable model (answer
set) semantics for logic programs [|Gelfond and Lifschitz, 1988, [1991]] and default logic [Reiter,
1980] for the analysis of negation as failure. In ASP, solving search problems are reduced to
computing stable models, and answer set solvers (programs for generating stable models) are
used to perform search.

In this section we define the syntax of ASP. We took [Eiter et al., 2009] as the main reference
for the definitions. Let “V be a vocabulary and C, #, X be mutually disjoint sets whose elements
are called constant, predicate, and variable symbols where each predicate symbol has a fixed
associated arity n > 0. We define elements from C U X as terms. An atom is of the form

p(t1,...,t,) where p € Pand tq,...,1, are terms.

Definition 2.1 (Positive Logic Program) A positive (horn) logic program P is a finite set of
clauses (rules) of the form

a<by,....,b, (m=0)

where a, by, ..., by, are atoms. Atom a is called the head of the rule, while by, ..., b, is the
body of the rule.

This notion could be interpreted as a if ... then ... sentence, i.e., if by, ..., by, is true then
conclude a. In other words, whenever we have by, ..., b,, then we also want to have a. A
condition whether some atom is true or false is defined over interpretation as follows:

Definition 2.2 (Herbrand Universe, Base, Interpretation) Given a logic program P, we sat
that

o the Herbrand universe of P, HUp, is the set of all terms which can be formed from con-
stants and function symbols in P;

e the Herbrand base of P, HBp, is the set of all ground atoms which can be formed from
predicates and terms t € HUp;

e a (Herbrand) interpretation is a first-order interpretation I = (D,-1) of the vocabulary
with domain D = HU p where each term t € HUp is interpreted by itself. i.e., t' = t; and

e [is identified with the set {p(ty,...,t,) € HBp | {t!,.. ., tl) € p}

Example 2.3 Consider the following program P,;:

smart(X) <« phd(X)
lucky(Y) < phd(X),couple(X,Y)
phd(john) <«
couple(john, jane)

Since the set of constant symbols appearing in P, is {john, jane}, HUp,, = {john, jane}. The set
of predicate symbols in Py is {phd, smart, lucky, couple}, hence

HB» = phd(john), phd(jane), smart(john), smart(jane),
Pe =\ lucky(john), lucky(jane), couple(john), couple(jane), |’

which is basically the set of all possible atoms that can be formed using predicates and terms in
Pyj.
This program also has many possible Herbrand interpretations. Some of them are:

e [=0,

e L =HBp,,

o I3 = {phd(john), lucky(jane), couple(john, jane)},
etc.

The semantics of positive logic programs is defined in terms of grounding. Grounding can
also be seen as a way to materialize the universal quantification of variables appearing in a
clause.

Definition 2.4 (Ground Instance) Let Var(C) denotes the set of variables in clause C, then a
ground instance of a clause C is any clause C’ obtained from C by applying a substitution:

6: Var(C) » HUp

to the variables in C. gr(C) denotes the set of all possible ground instances of C. And for any
program P, the grounding of P is gr(P) = Ucep g7(C)

10

Example 2.5 Let us consider the second rule from program P;; in the Example[2.3}
r = smart(X) < phd(X)

Its ground instance will be:

smart(john) <« phd(john)}

grr) :{ smart(jane) <« phd(jane)

Next, we define when an interpretation is compatible with a clause, and finally with a pro-
gram.

Definition 2.6 (Model) An interpretation I is a (Herbrand) model of

e a ground (variable-free) clause C = a < by, ...,by, denoted as I = C, if either {by, ..., by} €
loracel;

e aclause C, denoted as I E C, if [|E C’ for every C’ € gr(C), and
e aprogram P, denoted as I = P, if | = C for every clause C in P.

A model I of P is minimal, if there exists no model J of P such that J C 1. If a program has a
single minimal model, such model is also called the least model of P.

Example 2.7 Consider program P,; and interpretation Iy, I», I3 from Example[2.3]

e]| is not a model for Pj; since at least we need to have phd(john) and couple(john, jane)
in our model.

e [, is a model. In addition, for an arbirary positive logic program P, HBp is a model of P.
e [3isnot a model since whenever we have phd(john) then we also need to have smart(john).

In addition, Iy = {phd(john), couple(john,jane), lucky(jane), smart(john)} is a model of Py;.
There are also several facts about the models:

e > is not a minimal model, since I4 C I, is also a model of Py;.
e [, is a minimal model of Pp, and also the least model of Pj;.

One can easily justify that indeed I, is the least model for P, (hence also the minimal model
of P;j) by applying the immediate consequence operator defined below.

Definition 2.8 (Immediate Consequence Operator) Immediate consequence operator for a
program P, Tp : 2HBr — 2HBr s defined as:

Tp(I) = {a | there exists some a < by,...,by, in gr(P) such that {by,...,b,} C I}.

We define Tg =0, and T;,“ = Tp(T;,) fori > 0. The least model of a program P can be obtained
through an iterative process of applying T%, starts from i = O until it converges (reaches its

fixpoint).

11

Example 2.9 Let us consider program P;; from Example 2.3] Applying immediate conse-
quence operator to Pjy:

° Tg =0
o T}, = Tp0) = {phd(john), couple(john, jane)}

° le, = Tp({phd(john), couple(john, jane)}) =
{phd(john), couple(john, jane), lucky(jane), smart(john)}

° T133 = Tp({phd(john), couple(john, jane), lucky(jane), smart(john)}) =
{phd(john), couple(john, jane), lucky(jane), smart(john)} = TIZJ (reaches fixpoint)

Sometimes, a counterfactual about a particular condition appears to be more intuitive. In
some cases, negation often appear to be more declarative representation, especially when stating
all possible negative facts considered to be an expensive task. Consider an example where there
are two trains scheduled from Vienna to Salzburg today, at 10.00 and 14.00. Then, we typically
assume that there will be no train from Vienna to Salzburg at 9.00. Instead of writing whether
there is a train or not for each possible minutes (or even seconds), the schedule is written in such
a way that it displays only the time when there is a train. Other than that (if it is not written in
the schedule), there will be no train from Vienna to Salzburg. One could intuitively represent a
simple representation about this as:

noTrainAtTime(X) < notscheduledAtTime(X)
Definition 2.10 (Normal Logic Program) A normal logic program is a set of rules of the form
a<by,...,by,notcy,...,notc, (m,n>0)

where a,by,...,bj,c1,...,c, are atoms. We call not as “negation as failure”, “default nega-
tion”, or “weak negation”.

Definition 2.11 (Reduct, Stable Model) The Gelfond-Lifschitz reduct [Gelfond and Lifschitz,
1988, or GL-reduct, or simply reduct of a ground program P with respect to an interpretation
M, denoted as PM, is the program obtained from P by

(i) removing rules with not p in the body if p € M; and
(ii) removing literals not g from all rules if g ¢ M
An interpretation M of P is a stable model of P, if M is a minimal model of PM.

Example 2.12 Consider the following program Py:

child(gill) «
boy(X) <« child(X),notfemale(X)

Intuitively, the second rule can be read as: If X is a child and we cannot prove that X is a female,
then we conclude that X is a boy. One can easily verifies that the ground program of Py is:

12

child(gill) «
boy(gill) « child(gill), not female(gill)

Consider interpretations:

o M = {child(gill), boy(gill)}, then condition (ii) from Definition [2.11] is applied on the
second rule. The reduct P]A\;I =

child(gill) «
boy(gill) « child(gill)

Since M, is the least model of P%I L, it is a model of Py.

o M, = {child(gill), female(gill), boy(gill)}, then condition (i) from Definition[2.T1|is applied
on the second rule. The reduct P?V/IZ =

{ chilagily « }

M, is a model for PIA\;IZ, but it is not minimal. This because we have {child(gill)} C M, is
also a model for be. Hence, M, is not a model for Py

As one can see from the Example @, M>, which is the HBp,, is not a model for Py. In
general, for a normal logic program P, HBp is no longer always a model P (as in positive logic
program).

Next, let us take a look at a particular rule that with an empty head.

Definition 2.13 (Constraints) A constraint is a rule of the form
«— by,...,by,notcy,...,notc, (m,n>0)
where by,...,bj,cy,...,c, are atoms.

Consider a constraint
—a,b,c

. Intuitively it says that there could not be the case that a, b, and ¢ in the model at the same time.

In other cases, sometimes we also want to state that if a certain condition is satisfied then
there could be several consequences applied. This idea is expressed within disjunctive rule that
allows disjunction in the rule head, which then becomes an important ingredient of answer set
programs.

Definition 2.14 (Disjunctive Rule, Disjunctive Logic Program) A disjunctive rule is a rule of
the form:
aiV...Vag < by,...,b,,notcy,...,notc,

where ay,...,ax, by, ...,by,c1,...,c, are atoms and k,m,n > 0. A disjunctive logic program
is a finite set of disjunctive rules. An answer set program is of the form of disjunctive logic
program.

13

Definition 2.15 (Answer Sets) We define a notion of a model taking multiple atoms in the head
into account. An interpretation I is a model of

e a ground clause C: a; vV ...V a < by,...,by,,notcy,...,notcy,, denoted as I = C, if
either {by,...,by,} € Toriay,...,ar,c1,y...,ca} NI £0

e aclause C, denoted as I = C, if I E C’ for every C’ € gr(C), and
e a program P, denoted as I = P, if I |= C for every clause C in P.
An answer set M of a program P, is a minimal model of PM.

For disjunctive rules, definition above states that if the rule body is satisfied, i.e., {b1,..., by} €
Iand {cy,...,c,}NI # 0, then at least one of the head must be in the model ({ay, ..., ar}NI # 0).

The definition of an answer set above also take constraint into account. If the rule we
consider is a constraint, then k = 0. Then, either

e {by,...,b,} € I (at least a positive body atoms not in the model), or
e {c,...,cy} NI # 0 (at least a negative body atom in the model).

Example [2.16] and give a clear idea about models in disjunctive logic program. For
simplicity, these two examples disregard the existence of negation as failure. We give a more
complex example involving disjunction in the head and negation as failure in the body in Exam-

ple[2.18]

Example 2.16 Consider the following programs Pp,:
{ avbVvce }

Intuitively Pp, can be read as: in all cases, at least one of a, b, or c is true. Hence, interpre-
tation M is a model of Pp,, if it contains at least one element of the set {a, b, c¢}. For example:

e M; = 0 is not a model of Pp,.

o M, = {a}, M3 = {b}, M4 = {c} are models of Pp, and they are minimal (since the only
possible proper subset of My, M3, M4 is 0 but () is not a model of Pp,).

e Ms = {a,c} and Mg = {a, b, c} are also models of Pp,, but they are not minimal models.
Example 2.17 Consider the following programs Pp,:
{ graduate(tom) V company(tom) < smart(tom) }

Program Pp, can be read as: whenever smart(tom) is true, at least one of the graduate(tom)
and company(tom) should be true as well. There are several possible interpretations for Pp,:

e M, = {smart(tom), graduate(tom)}, M, = {smart(tom), graduate(tom), company(tom)} are
models of Pp,.

14

o M3 = {smart(tom)} is not a model of Pp,.

e M, =0 is also a model of Pp, and it is minimal.

The following example gives a more comprehensive discussion in determining whether an
interpretation is an answer set of a program. It includes disjunction and negation as failure.

Example 2.18 Consider another program P below:
avb « (1)
p « noth (2)
Let us now as examples take 5 possible interpretations of P:

e My = {p,a}. One can quickly verified that M, is an answer set of P. Condition (ii) from
Definition is applied, and give us the reduct PM:

avVb «
p —
M, is a minimal model of P™'. Hence, M| is an answer set for P.

e M, = {p, b}. In this case, condition (i) from Definition [2.11|is applied to the rule (2). We
have PM2:

{ aVvVb « }
M, is not an answer set of P because M, is not a minimal model of PM2. This is due to
. 2
{a} and {b} are proper subsets of M, which are also models of PM

e M3 = {p,a,b}. Since b € M3, condition (i) from Definition is applied to rule (2).
The reduct PM3 = PM2_ Since {p,a, b} is also not a minimal model of PM2 M5 is not an
answer set of P.

e M, = {a}. The reduct PM+ = PMi and since My is not even a model of P4, it is not an
answer set of P.

e M5 = {b}. The reduct PMs = pMs — pMa and since M5 is one of the minimal model PMs
it is an answer set of P.

Example [2.19 give an idea considering a rule of the form of constraint into account.
Example 2.19 Consider a program Pc:

aVvb
cvd

15

If we consider only the first and the second rule, then we will have four answer sets:
e M ={a,c},
o M, ={a,d},
e Mz ={b,c}, and
o My=1{b,d}

However, we have the third rule that requires to not include » and c at the same time. This
removes M3 from the list of our answer sets, which eventually yields only three answer sets:
Ml, Mz, and M4.

2.2 Modular Nonmonotonic Logic Programs

Now, we present the syntax and semantics of Modular Nonmonotonic Logic Programs (MLP)
which was originally introduced in [Dao-Tran et al., 2009a].

2.2.1 Syntax of MLPs

The syntax of MLPs is based on answer set programs. MLPs consist of modules as a way to
structure logic programs. In MLPs, each module can receive input provided by other modules.
In addition, one module may call other modules and additionally provide input for that call.
Modules may also mutually call each other in a recursive way.

Let V be a vocabulary, C, P, X, and M of mutually disjoint sets whose elements are called
constants, predicate, variable, and module names, respectively. Each p € P has a fixed associ-
ated arity n > 0, and each module name in M has a fixed associated list q = ¢y, ..., gx (k > 0)
of predicated names ¢; € P (the formal input parameters). As in logic programs, elements from
C U X are called ferms.

Definition 2.20 (Ordinary and Module Atoms) Ordinary atoms (simply atoms) are of the form
p(t1,...,t,), where p e Pandty,...,t, are terms; n > 0 is the arity of the atom. A module atom
is of the form

Plpi,....pilo(ty, ..., t) 2.1)

where py, ..., px is a list of predicate names p; € P, called module input list, such that p; has
the arity of the formal input parameter q;, o € P is a predicate name with arity n such that for
the list of terms t1, ..., t,, 0(t1,...,t,) is an ordinary atom, and P € M is a module name.

Intuitively, a module atom provides a way for deciding the truth value of a ground atom o(t)
in a module P.

Definition 2.21 (Rule) A rule r is of the form
a1V ---Vag < Br,...,Pm, N0t By41,... 006, , (2.2)

16

wherek > 1, m,n >0, ay,...,a are atoms, and 31, . . ., B, are either atoms or module atoms.

As usual we define the head of the rule, H(r) = {ay, ..., ai}, and the body of the rule,
B(r) = B*(r) UB~(r), where B*(r) = {B1, ..., Bu} and B~(r) = {Bus1, - .., Bu}. And we define
at(R) = H(r) U B*(r) U B™(r) as the set of all atoms occuring in r. A rule r is ordinary if it
contains only ordinary atoms.

From Definition [2.21] we know that rules in MLPs actually extend disjunctive rules with a
slight modification, namely allowing module atoms in the body. We next proceed to define what
a module is.

Definition 2.22 (Module) A module is a pair m = (P[q], R), where P € M with associated
Sformal input q which is a list of predicates, and R is a finite set of rules. A module is ordinary, if
all rules in R are ordinary, and ground, if all rules in R are ground. A module m is either a main
module or a library module; if |q| = O, then it is a main module. We also define R(m) as the rule
set of module m and omit empty [] from (main) modules and module atoms if it is unambiguous.

And finally we define a modular logic program formally.

Definition 2.23 (Modular Logic Program) A Modular Logic Program (MLP) P is an n-tuple
of modules
(ml’~~~7mn) 7”219 (23)

consisting of at least one main module, where M = {Py,..., P,}. We say that P is ground, if
each module is ground.

Example 2.24 Let us consider a simple example taken from [Dao-Tran et al., 2009a], MLP
P4 = (my, my, m3), where:

e my = (Pi[],{a « P,.b}),
e my = (P2[],{b « Py.a}),
e m3 = (P3[c], {c « not c}).

Both m and m; are main modules, and mj3 is a library module. While a, b, and ¢ are ordinary
atoms, P,.b and P;.a are examples of module atoms. Intuitively, m; and m, resemble the logic

program:
a <« b
b « a

while m3 is a simple constraint with formal input c.

Example 2.25 Let us now consider a more complex MLP. Let Pr be an MLP consisting of three
modules m; = (P1,Ry), my = (P2[q2], R2), and m3 = (P3[g3], R3), where:

q(a) <

R =1 10 <
even <« Pj[q].even
odd < not even

17

HX)V @ (Y) < @X),qY),X#Y
Ry = skip, < q2(X),not g5(X)
even « not skip, ’
even «— skip,, P3[q,].odd
;X V@Y) <« X)), q3(Y),X#Y
R3 = skipy < gq3(X), not g5(X)
odd <« skips, P> [q’3] .even

In this example, we have one main module only, m;, while the other two, m, and m3 are
library modules with formal input g, and g3 respectively. Intuitively, Pr determines whether the
set g in R has even or odd number of elements.

Let us now take a closer look to Example in order to understand the intuition behind
Pz better. In the beginning, m; calls m; and passes g to check whether the number of facts for
predicate g is even. In this case, m, and m3 are the modules that work together in order to decide
whether the number of facts for their formal input is even/odd.

The idea behind m; is to single out one element from its formal input (done by the first rule),
put it into ¢}, and then call m;3 to check whether the number of facts in ¢} is odd (which means
the number of facts in g, is even, see the fourth rule). In addition, if the formal input has no fact,
even will also be set to true since skip; is false (see the second and the third rule of R;). Similar
to module m;, m3 singles out one fact from its formal input and passes it to m;, to see whether it
has even number of facts (if that is the case, odd is set to true).

2.2.2 Semantics of MLPs

The semantics of MLPs is defined in terms of Herbrand interpretations and ground as in ordinary
answer set programs.

The Herbrand base w.r.t. vocabulary V, HB«y, is the set of all possible ground ordinary and
module atoms that can be built using C, # and M. If V is implicit from an MLP P, it is the
Herbrand base of P and denoted by HBp.

Definition 2.26 (Grounding) The grounding of:

a rule r is the set gr(r) of all ground instances of r w.r.t. C

a rule set R is gr(R) = \J,cg gr(r)

a module m, gr(m), is defined by replacing the rules in R(m) by gr(R(m))
e an MLP P is gr(P), which is formed by grounding each module m; in P

The semantics of an arbitrary MLP P is given in terms of gr(P).

Before going further, we define some notation that will ease our next definitions. Let § C
HBp be any set of atoms. For any list of predicate names p = py,...,prand q = g1, ..., Gk, We
define

o Sp={pi(c)eS |iefl,... . k}}

18

o Sy =1{qi(0) | pi(e) € S,i € {l,... . k}}

In the sequel, we define the notion of module instantiations. For this purposes, we need to
identify each module in MLP P with input it received. This concept is captured in the definition
of value call below.

Definition 2.27 (Value Call) For an MLP P, a P € M with associated formal input q we say
that P[S] is a value call with input S, where S C HBpl|q. Let VC(P) denote the set of all value
calls P[S] in P with input S such that P € M.

Example 2.28 Take P4 from Example [2.24] Considering all possible inputs for each module in
P4, we have VC(P4) = {P1[0], P>[0], P3[0], P3[{c}]}.

Definition 2.29 (Rule Base) A rule base is an (indexed) tuple R = (Rpisy | PLS] € VC(P)) of
sets of ground rules Rps).

Definition 2.30 (Instantiation) For a module m; = (P;[qil, R;) from P, its instantiation with
S C HBply;, is Ip(P;i[S]) = R; US. For an MLP P, its instantiation is the rule base 1(P) =
(Ip(Pi[S] | Pi[S] € VC(P)).

Example 2.31 Let us consider MLP P4 from Example [2.24] Instantiation of P3[{c}] (P3 with
input {c}) is:

Ip, (P3[{c}]) = { © T }

c < notc

Please note that in order to instantiate an MLP P, one has to consider all possible inputs for
each module in P. We define an interpretation and a model of P based on an instantiation of P.

Definition 2.32 (Interpretation) An interpretation M of an MLP P is an (indexed) tuple (M;/S |
P;[S] € VC(P)), where all M;/S C HBp contains only ordinary atoms.

Example 2.33 Considering P4 from Example [2.24] then M = (M,/0, M»/0, M3/0, M3/{c})
where M1/0 = {a}, M /0 = {b}, and M3/0 = M3/{c}={c} is an example of interpretation of P4.

We can now define models of an MLP P.
Definition 2.34 (Model) An interpretation M of an MLP P is a model of

e a ground atom a € HBp at P;[S], denoted M, P;[S] E «, if in case « is an ordinary atom,
a € M;/S, and if @ = P¢[p]l.o(¢) is a module atom, o(c) € Mk/((Mi/S)ng);

o a ground rule r at P;[S] (M, P;[S] E r), if M, P;[S] E H(r) or M, P;[S] [~ B(r), where

(i) M, P;[S] = H(r), if M, P;[S] E a for some a € H(r), and

(ii) M, P;[S] E B(r), if M, P;[S] E «a for all @« € B*(r) and M, P;[S] £ « for all a €
B~ (r);

o a set of ground rules R at P;[S] (M, P;[S] E R) iff M, P;[S] = r forall r € R;

19

e a ground rule base R (M E R) iff M, P;[S] E Rp,is) for all P;[S] € VC(P).

Finally, M is a model of an MLP P, denoted M | P, if M = I(P) in case P is ground resp.
M E gr(P), if P is nonground. An MLP P is satisfiable, if it has a model.

Example 2.35 Consider M from Example and P4 from Example M is a model of
Py.

e First, let us consider m; and m,.

We have M, P{[0] & a and M, P,[0] E b. This also means that M, P;[0] E P,.b and
M, PQ[@] |= Pl.a. Then M, Pl[@] '= a «— Pz.b and M, Pz[@] |= b« P].a.

Hence M, P[0] = Ip(P1[0]) and M, P>[0] E Ip(P2[0]).

e Next, we show that M, P3[0] E Ip(P3[0]), and M, Ps[{c}] E Ip(P3[{c}]).

M, P5[0] E cand M, P3[0] £ ¢ « not c. This is also the case for P3[{c}], i.e., M, P3[{c}] E
c and M, P3[{c}] E ¢ < not c.

Hence, M, P3[0] = Ip(P3[0]), and M, P3[{c}] Ip(P3[{c}]).

e Since I(P) = (Ip(P1[0]), Ip(P2[0]), Ip(P3[0]), Ir(P3[{c}])), then we have M = P.

Finally before we proceed to define an answer set of an MLP P, we define the notion of
minimal models. Since an interpretation is now defined as a tuple, we also need to compare
interpretations based on the tuples.

Definition 2.36 (Minimal Models) For any interpretations M and M’ of P, we define that
M < M, if for every P;[S] € VC(P) it holds that M;/S € M/S, and M < M, if both M # M’
and M < M'. A model M of P (resp., a rule base R) is minimal, if P (resp., R) has no model M’
such that M’ < M. The set of all minimal models of P (resp., R) is denoted by MM(P) (resp.,
MM(R)).

When evaluating module calls starting from a particular module, not all module instantia-
tions are needed. We call those which contribute to the evaluation as the relevant ones. The
following notion of (relevant) call graph helps us with respect to this. Then, we proceed to
define context and context-based reduct, and finally the notion of answer set for MLPs.

Definition 2.37 (Call Graph) The call graph of an MLP P is a labeled digraph CGp = (V, E,)
with vertex set V = VC(P) and an edge e from P;[S] to Py[T] in E iff Pi[p].o(t) occurs in R(m;);
furthermore, e is labeled with an input list p, denoted l(e). Given an interpretation M, the
relevant call graph CGp(M) = (V’, E’) of P w.r.t. M is the subgraph of CGp where E’ contains
all edges from P;[S] to P¢[T] of CGyp such that (Mi/S)IE';) =T, and V' contains all P;[S] that
are main module instantiations or induced by E’; any such P;[S] is called relevant w.r.t. M.

Example 2.38 Let us consider P4 from Example [2.24] and VC(P,4) from Example 2.28] The
call graph of P, is simply CGp, = (VC(P4), E, 1), where E = {(P1[0], P2[0]), (P2[0], P1[0])},
and [maps each edge to the void input list. See Figure [2.1](a) for an illustration.

20

| P3[01] | Psl{ch]

|Pi0]] [Pal0]] [P0 | Pa0]]

(a) (b)

Figure 2.1: (a) CGp,, (b) CGp,(M) as in Example

Moreover, CGp,(M) = ({P1[0], P2[0]}, E,) is a relevant call graph of P4 with respect to M
for any interpreation M of P4 since both P[0] and P,[(] are main modules (they are always
relevant), and P3[0] and Ps[{c}] are never called (they are always irrelevant). Figure b)
illustrates this.

Definition 2.39 (Context) Let M be an interpretation of an MLP P. A context for M is set of
value calls C, where V(CGp(M)) C C C VC(P).

Below we give a definition of the reduct of a program, which is based on the FLP-reduct
[Faber et al., [2004].

Definition 2.40 (Context-based Reduct) Let M be an interpretation of an MLP P and C be
a context for M. The reduct of P at P[S] w.r.t. M and C, denoted fP(P[S])M’C, is the rule set
Lyyp)(P[S]) from which, if P[S] € C, all rules r such that M, P[S] £ B(r) are removed. The reduct
of P w.r.t. M and C is the rule base fPMC = (fP(P[S)M-C | P[S] € VC(P)).

Definition 2.41 (Answer Set) Let M be an interpretation of a ground MLP P. Then M is an
answer set of P w.r.t. a context C for M, if M is a minimal model of fPM-C.

From Definition [2.40] we know that the reduct is not applied to all instantiations of the pro-
gram, but only to the instantiations in the context. Since the definition about answer set is defined
on top of a context, as a consequences, it could be the case that an answer set of an MLP P with
respect to a particular context Cy is not an answer set with respect to a different context C;.

Example 2.42 Consider P4 from Example[2.24]and two interpretations:

e M= (M;/0,M/0,M3/0, M3/{c}) from Example[2.33] and

o My = (MV/0, M9/0, MJ/0, MY /{c}), where MO /0 = M) /0 = 0, M3 /0= M /{c}={c}.
Let us define a context C = {P1[0], P>[0]}.

e One can verify that M is not an answer set of P4 w.r.t C. This is due to the fact that:

(i) fPYYC = (FPAPIIODMC, FPA(PL[ODMCS, fPA(PA[ODME, FPA(P5[{IMC) = (I, (P1[0)),
Ip, (P2[0)), Ip, (P3[01), Ip, (P3[{c}])), and

21

(i1) M is not a minimal model of fPIXI’C (since My < M and My is also a model of
PO,

e Now, let us consider My. The reduct w.r.t. Mg is fPMoC = (fP(P{[0])MoC, fP(P,[0])MoC,
FPP3[ODMC, FP(P3[{c}DMC) = (0, 0, Ip(P3[0]), Ip(P3[{c}]). Since My is a minimal
model of fPMo-C is | it is an answer set of P w.r.t. C.

Let us now consider a different context, namely C, = {P[0], P>[0], P3[0]}. In this case My is
no longer an answer set of P4 (with respect to context C»), since fPM0-C2 = (0, 0, 0, Ip(P3[{c}])),
and My is not its minimal model.

The context C decides the overall-satisfiability of an MLP. From now on, for an MLP P and
its interpretation M, we consider the minimal context C = V(CGp(M)) as the default context
(unless stated otherwise). Note that the maximal reduct C = VC(P) requires all module instances
to have answer sets, while the minimal context C = V(CGp(M)) considers only the relevant call
graph of P with respect to M.

22

CHAPTER

Top-Down Approach for MLPs

This chapter describes a top-down evaluation technique to compute MLP semantics presented
in [Dao-Tran et al., 2009b]. First, we recall the concept of splitting sets since they will be
used extensively later. Next, we define some notions of splitting a particular class of modular
programs called input and call stratified MLPs, which admit a top-down approach to compute
its answer sets. Finally, we present the original top-down evaluation algorithm [Dao-Tran et al.,
2009b] for this fragment.

3.1 Splitting Sets

Splitting sets were first introduced in [Lifschitz and Turner| [1994] with the purpose of making
the evaluation of logic programs faster. The idea is to split a program into two parts and solve
each part separately.

Given a rule of the form

ayV...Va < by,...,by,notcy,...,notc, (k,m,n>0)

We define the head of the rule, H(r) = {ay, ..., ax}, and the body of the rule, B(r) = B*(r)UB™(r),
where B*(r) = {by,...,b,} and B~ (r) = {cy, ..., c,}. And we define at(R) = H(r)UB*(r)UB (r)
as the set of all atoms occurring in r.

A splitting set for a program P is any set U of atoms such that, for every rule r € P, if
H(r)NU # 0 then at(r) C U. We call a set of rule by(P) = {r € P | at(P) C U} as the bottom of
P relative to U, and P \ by(P) is the top of P relative to U. Example [3.1]illustrates this concept.

Example 3.1 Consider a program P with the rules

d <« a,c
C —
aVvVb «

23

Then U = {a, b, c} is a splitting set of this program. The bottom b;(P) contains the second and
the third rule, while the top P \ by (P) is the first rule.

The idea of splitting set to ease program evaluation is to first evaluate botfom, and then based
on the answer of the bottom, we evaluate fop. The bottom in Example [BLI']has two answer sets,
namely {a, c} and {b, ¢}. The partial evaluation of the top part of P is defined by function ey
defined next.

Definition 3.2 (Partial Evaluation) Ler U and X be two sets of literal U, X and P be a program.
We define a partial evaluation ey (P, X) as the set of rules {r € P}, where

e if B()NU C Xand B(r)NUNX # 0, we replace r with r', where: H(r') = H(r),
Bt(r)=B*(W)\U,and B (') =B (r)\ U.

e otherwise, remove r

Example 3.3 Consider program P as in Example U = {a,b,c} as its splitting set, and
X = {a, c}, then the partial evaluation ey (P \ by(P), {a,c})is{d « }.

Next, we recall the splitting set theorem [Lifschitz and Turner, [1994] on top of splitting set,
bottom, and partial evaluation.

Theorem 3.4 (Splitting Set Theorem [Lifschitz and Turner} (1994]) Let U be a splitting set
for a program P. Then M is an answer set for P iff it can be written as X U Y where X is an
answer set for by (P) and Y is an answer set for ey (P \ by(P), X).

Example 3.5 Consider again program P from Example [3.1} and let U = {a, b, ¢}. The bottom
consists of the second and the third rules and has two answer sets, {a, ¢} and {b, c}.

e Program ey (P \ by(P),{a,c}) consists of one rule {d <}, and has one answer set, {d}.
Thus, the first answer set of P is {a, c, d}

e Program ey (P \ by(P), {b, c}) consists of one rule {d < a, c}, and has one answer set, (.
Thus the second answer set of P is {b, ¢}

3.2 Splitting for input-call-stratified MLPs

Extending the notion of splitting sets to MLP, we observe that it can be done at 2 levels, namely
the global and the local splitting. In the following we discuss these two splitting techniques in
details.

3.2.1 Global splitting

This section characterizes a class of MLPs named call-stratified MLPs. Together with input-
stratified MLPs that we will introduce in the next section, they admit an efficient top-down
evaluation technique. The idea is to restrict cycles on the relevant call graph only to instantiations
with empty input. Whenever such cycle occurs, we collect all instantiations forming the cycle
and compute the answer sets simultaneously.

24

/ ’

q q
PA[0] — Pallg(a), ab))] — Pallgt@)] —— Po[0] > P3[o]
9

Figure 3.1: CGp,(M) from Example

Definition 3.6 (call stratified MLP [Dao-Tran et al., 2009b[]) Let M be an interpretation of
an MLP P. We say that P is c-stratified (call stratified) w.r.t. M iff cycles in CGp(M) contain
only nodes of the form P;[0].

Example 3.7 Consider the MLP P from Example [2.25]and an interpretation M where

o M/0 = {q(a),q(b), even},

M>/{g2(a), q2(D)} = {q2(a), q2(D), g5(a), skip,, even},

M3 {q3(a)} = {q3(a), skips, odd},

M, /0 = {even}, and

M5/0 =0.

We have that the call graph CGp,(M) is as depicted in Figure 3.1} Since the loop on CGp, (M)
contains only P»[0] and P3[0], Pg is c-stratified with respect to M.

Before proceeding to an important proposition which gives the idea for performing the top-
down evaluation algorithm, we need to define the notion of answer set of a rule base.

Definition 3.8 (Answer Set of a Rule Base) Let M be an interpretation of an MLP P and R be
a rule set. We say that M;/S is an answer set of R relative to M, iff M is an answer set of the
rule base (Rpis1 | PIS] € VC(P)), where Rps1 = R and Rpj[T] = Mj/TfOi‘i zjorS #T.

Example 3.9 Let us take a look at Pr and M from Example Based on Definition [3.8] one
can see that M3/{g3(a)} is an answer set of Ip, (P3[{g3(a)}]) relative to M.

Proposition 3.10 ([Dao-Tran et al., 2009b]]) Let M be an interpretation of a c-stratified MLP
P. Suppose that along CGp(M), M;/S is an answer set of Ip(P;[S]) relative to M for each
Pi[S] € V(CGp(M)). If there is an answer set of P that coincides with M for every P;[0] on a
cycle in CGp(M), then P has an answer set that coincides with M on CGp(M).

On building top down evaluation techniques, cycles in general create problems. However,
from Proposition [3.10one can see that cycles containing instantiation with empty input are safe
to be evaluated independently.

25

3.2.2 Local splitting

Locally inside a module instantiation, the idea of splitting is to prepare input for each module
call, i.e., we identify a class of MLPs satisfying that whenever a module call is executed, all of
its formal inputs are fully evaluated.

Definition 3.11 (Predicate Definition) Ler P be an MLP, R be a set of ground rules and « be
a ground module atom of form Pi[p]l.o(c). For a list of predicate names p = {p1,...,pr}, we

define def (p, R) = {p¢(d) | Ar € R, p¢(d) € H(r), p¢ € p}-

Definition 3.12 (Splitting Set in MLP) Let P be an MLP, R be a set of ground rules and a be
a ground module atom of the form Py[p].o(c).
A splitting set of R is a set U C HBp s.t.

(i) forany ruler € R, if Hir) N U # 0 then at(r) C U, and

(ii) if @ € U then def(p,R) C U.

Moreover, for a splitting set U of R, bottom of R with respect to U is by(R) = {r € R |
H(r) N U # 0}, while the top of R with respect to U is {R \ by(R)}.

Definition 3.13 (Input Splitting Set) Let P be an MLP, R be a set of ground rules and « be a
ground module atom of form P[p].o(c), and U be a splitting set of R. We say that U is an input
splitting set of R for «, iff @ ¢ U and def(p,R) C U.

Example 3.14 Consider P from Example

(i) Let R = Ip,(P1[0]) and a = P:[q].even then U = {g(a), q(b)} is an input splitting set of R
for a. The bottom by (R) is
{ gla) }
qb) < |

(i1) Let us consider another example where R = Ip,(P2[{q2(a), g2(b)}]) and @ = P3[q§].odd.
Then U = {q2(a), q2(b), ¢5(a), q} is an input splitting set of R for a. The bottom by (R) is

qa) «

q2(b)
g5(@Vg,(b) «— qaa),q2(b),a # b
g,(b)Vgy(a) «— qa(b),q2(a),b #a

The theorem below characterizes the splitting set theorem related to an instantiation and its
answer set.

26

Theorem 3.15 ([Dao-Tran et al.,[2009b]]) Let M be an interpretation of a c-stratified MLP P,
R be the instantiation gr(Ip(P;[S))) for P;[S] € VC(P), and let U be a splitting set for R. Then
M;/S is an answer set of R relative to M iff it is an answer set of {R\ by(R)} U N, where N is an
answer set of by(R) relative to M.

Example 3.16 Take R and U from case (ii) in Example[3.14] and M from Example
An answer set of by (R) is N = {g2(a), g2(b), q’z(a)}. On the other hand:

skip, < ga2(a),not g (a)
skip, « q2(b),not g (b)
even « not skip,

even « skip,, P3[q}].odd

R\ by(R) =

We have M>/{q2(a), g2(b)} is an answer set of R = Ip,(P2[{g2(a), g2(b)}]), and also an answer
set of {R\ by(R)} UN.

Next, we define i-stratified MLPs, a class of MLP that could guarantee the existence of input
splitting set. We proceed first by introducing the instance dependency graph over an instantia-
tion.

Definition 3.17 (Instance Dependency Graph) Let P be an MLP and M is an interpretation
of P. The instance dependency graph of P is the digraph GII\,/I = (IV,IE), where

o The vertex set IV contains of pairs of the form (p, P;[S]) or (a, P;[S]), where p is a predi-
cate name and « is a module atom, appearing in module m;, and S is the input for a value
call P;[S] € VC(P).

o The edge set IE is define as follows: Let r € R(m;) and a = P;[p].o(t) € B(R(m;)), then:

(i) (&, Pi[SD) =™ (w, Pi[S]), if v(t1) € H(r) and w(tz) € B*(r)
(ii) (v, Pi[S]) =Y (w, Pi[S]), if v(t1), w(tz) € H(r)
(iii) (v, Pi[S]) —=* (w, Pi[S]), if v(ty) € H(r) and w is a module atom in B*(r).
(iv) (a, Pi[S]) =™ (pe, PilS)), for every pr € p of a
(v) (e, Pi[S]) =™ (0, P {(Mi/S)I5'])
For any module atoms a1, ay, we say that a; locally depends on a», if @y ~» a», where

~w = ot U 57 U =Y U™ Then, we define an instance local labelling function ill;: IV — N
such that illi(ay, Pi[S]) > illi(aa, Pi[S)) if (a1, Pi[S]) ~ (a2, Pi[S]).

Instance dependency graphs capture the dependency relationship between each predicate in
an instantiation, a module atom with its input predicates (intuitively, a module atom and its
input provider) and a module atom with its output predicates. Finally, we define a notion of
input stratified MLPs on top of instance dependency graphs.

Definition 3.18 (Input Stratified MLP [Dao-Tran et al., 2009b[]) Ler M be an interpretation
of an MLP P. We say that P is i-stratified (input stratified) w.r.t. M, iff cycles with in-edges in
GII\,/I contain only nodes of the form (X, P;[0]).

27

The definition below characterizes the class of ic-stratified MLPs. The top down evaluation
algorithm described in the next section is devised for this class.

Definition 3.19 (Input and Call Stratified MLP [Dao-Tran et al., 2009b]]) Let M be an inter-
pretation of an MLP P. We say that P is ic-stratified (input and call stratified) w.r.t. M iff it is
both i-stratified and c-stratified w.r.t. M.

The existence of an input splitting set for a module atom in an instantiation is important to
evaluate the module calls. Within ic-stratified MLP, this condition is guaranteed.

Theorem 3.20 ([Dao-Tran et al., 2009b]]) Letr M be an interpretation of an ic-stratified MLP P,
Pi[S] be a value call in V(CGp(M)), and let R = gr(Ip(P;[S])). Then, for every ground module
atom « occurring in R, there exists an input splitting set U of R for a.

3.3 Top-Down Evaluation Algorithm

This section briefly discusses a basic top-down evaluation algorithm for ic-stratified MLPs pre-
sented in [Dao-Tran et al., 2009b]]. Procedure comp in Algorithm [3.1]has 6 parameters:

e P: an MLP that is being evaluated.

C: a set of value calls.

e path: a list of sets of value calls. path stores the call chain from the main module to the
current set value calls evaluated.

e M: an indexed set of interpretations. The interpretation for each instantiation in the call
graph is computed gradually by the algorithm, and finally we will have in M each M;/S
as an answer set of Ip(P;[S]) where P;[S] € CGp(M).

e A: anindexed set of sets of module atom A;/S which contains all module atoms that have
been solved so far in instantiation P;[.S]. In the end of the execution of the algorithm, A;/S
shall contain all module atom in P;[S], which means that all module atoms have been
solved.

o AS: set of answer set (if any) of P, as the final result of the algorithm.

In order to solve an MLP P from a main module P[], one can call comp by specifying
C = {P[0]}, path = ¢, M and A are nil at all elements, and AS = 0.
In the process, comp makes use of several helper methods:

mlipize(N, C) : Convert a set of ordinary atoms N to a partial interpretation N (having undefined
components nil), by projecting atoms in N to module instances P;[S] € C, removing
module prefixes, and putting the result at position N;/S in N.

ans(R) : Find the answer sets of a set of ordinary rules R.

28

Algorithm 3.1: comp(in: P, C, path, M, A, in/out: AS)
Input: MLP P, set of value calls C, list of sets of value calls path, partial model M,
indexed set of sets of module atoms A, set of answer sets AS
1 if AP;[S] € C s.t. Pi[S] € Cprey for some Cppe, € path then
2 if S # 0 for some P;[S] € C then return
3 repeat
4 C’ :=tail(path) and remove the last element of path
5
6

if AP;[T] € C' s.t. T # () then return else C:=C U’
until C’ = Cppey
7 R:=rewrite(C,M, A)
8 if R is ordinary then
9 if path is empty then

10 | forall the N € ans(R) do AS:=AS U (M & mipize(N, C)}

11 else

12 C’ :=tail(path) and remove the last element of path

13 forall the P;[S] € Cdo A;/S :=fin

14 forall the N € ans(R) do comp(P, C’, path, M & mipize(N, C), A, AS)
15 else

16 pick an @ := P;[p].o(¢) in R with smallest illz(«) and find splitting set U of R for a
17 forall the P;[S] € C doif A;/S = nil then A;/S :={a} else A;/S :=A;/S U {a}
18 forall the N € ans(by(R)) do

19 T:=N| |gj

20 if (M;/T # nil) A (A;/T = fin) then C’:=C and path’ := path
21 else C':={P,[T1]} and path’ := append(path, C)

22 comp(P,C’, path’ ;M & mlpize(N, C), A, AS)

rewrite(C,M, A) : For all P;[S] € C, put into a set R all rules in Ip(P;[S]), and M;/S as facts if
not nil, prefixing every ordinary atom (appearing in a rule or fact) with P;[S]. Futhermore,
replace each module atom @ = P;[p].o(t) in R, such that @ € A;/S, by o prefixed with
P;[T], where T = (M,~/S)|qf, and p; is p without prefixes; moreover add any atoms from
(M;/T)l, prefixed by P;[T] to R.

To understand the algorithm, we divide the discussion into 3 parts:

1. Preliminary (line 1 —7). In this part, the algorithm verifies whether the MLP is ic-stratified.
There are two possibilities:

a) If we have no cycle in the value call chain, then the algorithm will run without once
executing line 2 — 6.

b) However, if such a cycle occurs (condition in line 1 is satisfied), then we continue
only if all value calls in the cycle has @ as input. Then, those instantiations are
collected together in C (line 3 — 6).

29

Then, in line 7 we rewrite all value calls in the current C. Recall that the instantiations
collected in rewrite can be from more than one value call only if we found a cycle in the
chain of value calls. Otherwise, we have an instantiation from one value call only in C.

2. Ordinary evaluation (line 8 — 14). The result of rewrite, R, is ordinary only if all module
atoms in the instantiation of all value calls in C are solved. Then:

e if path is empty, then the main module is reached. M is updated with the answer sets
of R (see M W mipize(N, C) in line 10, where N is an answer set of R). At this point,
M has become a full answer set of P and is added to AS.

e if path is not empty, the algorithm continues the computation to the set of value calls
from tail(path) which is the parent of the current C (line 12). Since all module atoms
have been solved, we mark the current instantiation with finish (line 13, represented
as a special element fin), update our partial model M with the current result, and call
comp recursively (line 14).

3. Module atom evaluation (line 15 — 22). The result of rewrite, R, is not ordinary. It means
that there is still at least a module call that has to be computed. There are 3 main things
happen here:

a) A module atom a which does not depend on other module atom is picked (line 16).

b) Then « is added to A;/S where P;[S] € C (line 17), which means that « is going to
be processed. This information will be used later in further computation, in rewrite
procedure (where we replace « with its output atom when a € A;/S — which means
that we have processed «).

c¢) From the answer set of the input splitting set, we create a module call of @, P;[T]
(line 18 — 22). There are two possibilities:

e If the next module call has been solved (denoted by A;/T = fin), then we do not
need to proceed further. Instead we stay at the current C and path.

e Otherwise, we proceed further. We add the C to path, to keep track the call
chain. And we make a call to comp to solve the module call P;/T. M is updated
with the answer set of the bottom.

Example 3.21 We take the main idea from Example 10 in [Dao-Tran et al., [2009b]]. Let us
consider Algorithm on Pg from Example and a current set of value calls C = {P»[0]},
and path = {P1[0]}, {P2[{q2(a), q2(b)}]}, {P3[{g3(a)}1}, (P2[01}, {P3[0]}. See Figure [3.1] for the
illustration of the chain of value calls. Note that since in the current set of value calls we have
P5[0], and at this point we already have an element in path which contains P,[(], the condition
in line 1 is satisfied. Next, we collect the last two element of path, and join them into together in
C. Then C = {P,[0], P5[0]}. For clarity, we rename predicate q’2 and qg to ry and r3 respectively
and we use superscripts instead of prefixes. The rewriting R w.r.t. C is

30

rjzoz[(z)](X)Ver[(D](Y) - qum](X),qum](Y),X +Y
SklpPz[(D] - Pz[(D] (X), not 1’52[0](}()
even™0 not skzp 210]
even20l sklppzm] odd""
r3(X)P3[0]VI”P3[0](Y) - 33[0](X),q§3[m(Y),X +Y
sklpP3m] — ¢"x), not 10 (x)
0dd™? Sklppg[ﬂ] event210]

The only answer set of R is {even™!?}, which is in turn placed in M, /0 as even.
On the way back, when evaluating C = {P3[g3(a)]}, after rewrite we will have odd"3143@)
true, since skips is true and even[? is true. The result of the rewrite is as the following:

P
q3 3[q3(a)] (a)

r§3[q3(a)](X)\/ P3[£13(a)](Y) - q33[43(a)](X) qP%[q%(a)](Y) X+Y

sklpp3[q3(a)] — q§3[CI3(a)](X) not rf}[q3(a)](X)

oddPIP@) skipPIB@) gy o Pal0)
P[0]

«—

even

And we have M3/{g3(a)} = {g3(a), skips, odd}.

Similarly, when we evaluate {P;[{g2(a), ¢2(b)}]} (on the way up after evaluating P3[g3(a)]),
we have P[{g2(a), q2(b)}]_even, and M3 /{q2(a), q2(b)} = {q2(a), q2(D), r2(a), skip,, even}. In
the end, back to P{[0], we have even”'1%1, and M, /0 = {q(a), q(b), even}. M is added to AS.

Continuing with the call chain P1[0] - Pa[{g(a), ¢(b)}] = P3[{r(B)}] = P2[0] — - -, (as
we find the the second answer set from line 18 when evaluating C = {P»[{g(a), g(b)}1}), comp
returns another answer set of P (disregarding irrelevant module instances, i.e., M;/S = nil iff
Pi[S] ¢ V(CGp(M))).

Finally, AS =

«—

M/0 = {q(a),q(b),even},
Mz /{q2(a), q2(b)} = {q2(a), q2(b), r2(a), skip,, even},
{

M;/{q3(@)} = {q3(a),skips,odd}, ,
M/0 = {even},
M3/0 = 0
M/0 = {q(a),q(b),even},

M>/{q2(a), q2(b)} = {qa2(a),qa(b), r2(b), skip,, even},
M3/{q3(b)} = {q3(D), skips, odd},
My/0 = {even},
M;/0 = 0

31

CHAPTER

Instantiation Splitting for
Input-Call-Stratified MLPs

This chapter explains about instantiation splitting optimization technique. Instantiation splitting
is particularly useful to reduce the work delivered to the ASP solver when computing the answer
sets of an instantiation, hence helps to improve the overall performance. Section gives the
intuition behind this technique. We outline the main idea and provide an example on how the
instantiation splitting works and give its potential advantages. Section [4.2] presents the formal
definition.

4.1 Intuition

We offer an optimization technique that maximizes the use of our partial model M (as in Algo-
rithm [3.1]) and splitting set theorem.

Suppose that we have an MLP P which consists of three modules: one main module Py and
two library modules Py and P>. Py has a module call to P; and P; has a module call to P5.
Example 4.1 and Figure {.T| gives an illustration. This is a simple example whose main purpose
is to give an intuition about the idea of instantiation splitting.

Example 4.1 Consider an MLP P = (mg, m;,m;), where mg = (Py, Rg) is a main modules,
while m; = (P1lq1], R1), and my = (Pz[qg2], R») are library modules, where:

qo(a) <«

Ro={ qo(b) < qo(a) }
outy < qo(b), P1[qo].out,
ri(@
ri(b) «

R {pm - q0,ne0 [
out; <« Py[p1].outy

33

P>[S>]

P;[S8;]

-
o o e

(a) (b) () (d) ©)

bold outline: processed instantiation
gray: currently being evaluated
black: deleted

Figure 4.1: Module call instantiation with instantiation splitting

R; ={ outy <« qr(a) }

Intuitively, Po passed a set go to Py. Then, P filters the input, picks only elements that
matches with set r; and put the result in set p;. Finally, P, concludes out, only if the input
contain an element a.

Figure {.T] depicts the evaluation process in 5 steps, from (a) to (e). The input with respect
to the displayed instantiations are So = 0, S| = {q1(a), q1(b)}, and S = {qi(a),q1(b)}. Gray
represents a part that is being processed while black represents a part that has been deleted. Let
M? be an indexed set of ordinary atoms (Mf’ /S C HBp | P;[S] € P), where each Mf’ /S is 0.

First, in step (a), we divide the instantiation Py[Sy] (represented by the rectangle in the
bottom) into two parts: the lower part that represents bottom (contain only ordinary rules), and
the upper part that represent fop (that contain a module call to P;). Take the MLP in Example[4.T]
the ordinary part (bottom) will be

{ qo(@) }

qo(b) <« qo(a)

and the non-ordinary part (fop) will be {outy «— qo(b), P1lqol.out;}. Because the bottom
contains only ordinary rules, we can solve it right away (colored with gray), add the result to
Mg /0, and forget it (delete the botrom from the instantiation).

In step (b), we can see that the lower part is colored with black (recall that black means it has
been deleted. We add {go(a), go(b)} to M(I)’ /0 as the answer of {go(a) <, go(b) < go(a)}. The idea
is to forget {go(a) <, go(b) < qo(a)}, and only {outy < qo(b), P1lgo].out,} left to be processed
in the instantiation of Py[Sy]. Next, we proceed to call P;[S;]. Since in P;[S;] we have a module
call to P,, we divide it into bottom and top, solved bottom, add the result to Mﬁ’ /S1, and then
delete the bottom rules. In this case, the bottom is

34

Table 4.1: Partial interpretation

M5/0 | {q0(a). qo(D) }
Mllj/Sl {Cll(a)a‘h(b), rl(a)’rl(b)’pl(a)’pl(b)}
MS/SZ {42(61)’ qZ(b)7 Out2}

Table 4.2: Top after solving P;[S ;]

Pol0] | {outy < qo(b), Pilqol.out,}
P;[S1] | {outy < P2[p1].outr}
P>[S2] | O

Table 4.3: Answer set of P

M2 /0 | {qo(a), go(b), outy }
M?/S | | {91(@), 1(b), r1(a), r1(b), p1(a), p1(b), out1}
MS/SZ {q2(a), q2(b), outr}

ri(a) <

{ ri(b) < }

pPiX) <« qi(X),ri(X)

and the rop will be {out; <« P»[p;].out,}. We have Mll’/Sl ={q1(a), q1(b), r1(a), r1(b), p1(a), p1(b)}
as the answer set of the bottom.

In step (c), we have that the instantiation P>[S>] contains only ordinary rules, thus we can
solve it in one go. We add the result, {g2(a), g2(b), out»}, to Mé’ /S,. Table summarizes the
partial interpretation we have so far, while from Table [4.2] one could already see that a certain
number of rules had already been removed compared to the original instantiation. This illustrates
the main advantage of instantiation splitting optimization, i.e. to have less and less rules during
the computation.

In step (d), after solving P»[S>], we go back to P;[S;] to solve the top part. Our optimiza-
tion starts to play a role here. Compare to the orginal approach in [Dao-Tran et al.| 2009b] that
requires to evaluate all rules in P;[S;] (see Figure@] (d)), we only need to evaluate the top part,
that is {out; < P,[pi].out,} (since the bottom has already been deleted), only one rule to eval-
uate compared to the 4 original rules. This optimization technique is particularly useful when
we have a big ordinary (bottom) part, or when we have several module calls in one instantiation.
We add the evaluation result of this top part, {out,}, into M{’ /S 1. Combined with the result from
the bottom part (that has been previously stored), M i’ /S 1 currently is the full result of P;[S;].

In the end, step (e), similarly we form the full result for Mg /S 0. We solved the top part, add
the result {outy} to Mg /So. This ends our computation and the answer set is shown in Table

35

P3[S3]

P>[S>]

P;[S87]

(a) (b) () (d) ©)

bold outline: processed instantiation
grey: currently evaluated

Figure 4.2: Module call instantiation without instantiation splitting

4.2 Instantiation Splitting

Next, we formally define splitting sets at the instantiation level and partial interpretations with
respect to instantiation splitting sets. Let mod(r) be a set of module atoms in a rule r and
mod(R) = |J,cg mod(r) be a set of all module atoms in a rule set R.

Definition 4.2 (Subordinate Module Atoms Set) A subordinate module atoms set of a ground
rule set R is a set A C mod(R) such that for any ay,ay € mod(R), if ®; € A and a) ~~» «a; then
@y € A (recall Definition[3.17]for “~»").

Intuitively, a subordinate module atoms set can be used to capture the chain of solved module
atoms. Suppose that A is a subordinate module atoms set for a ground rule set R, and @ and 8
are in R. If @ and S do not depend to each other or any other module atoms, then one can
freely include them into A. However, if for instance a depends on g (@ ~» 8) then whenever we
include « into A, we also have to include 5. This is similar as in our computation that we have
to compute a module call for 8 before we can compute a module call for a.

In the sequel, we will define an instantiation splitting set with respect to a subordinate mod-
ule atoms set. This allows us to select the size of a splitting set of an instantiation with respect
to a particular subordinate module atoms set.

Definition 4.3 (Instantiation Splitting Sets) Ler P be an MLP, and A be a subordinate module
atoms set for lg.p)(Pi[S]), where P;[S] € VC(P). An instantiation splitting set of P;[S] with
respect to A is a set U(A) C at(Iy,p)(P;[S])), where

(i) U(A) is a splitting set for I,,p)(P;[S]), and

(i) U(A) N mod(Iyp)(Pi[S]) = A

36

Moreover, if A = mod(l4,p)(P;[S])), we define U(A) = at(Iy,p)(Pi[S])). As usual, we define the
bottom of Io,p)(P;[S]) with respect to U(A) is bya)(Lgrp)(Pi[S]) = {r € Ig@)(Pi[SD | HiNNU #
0})

Next, we lift the notion of a particular module instantiation to MLPs.

Definition 4.4 (Instantiation Splitting Sets for MLPs) Ler P be an MLP. We define a subordi-
nate module atoms set for P as an indexed tuple of subordinate module atoms set A = (A;/S |
P;[S] € VC(P)). Furthermore, we define an instantiation splitting set of P with respect to A as
an indexed tuple of instantiation splitting set Up(A) = (U;/S(A;/S) | Pi[S] € VC(P)), where
each U;/S (A;/S) is an instantiation splitting set of P;[S] with respect to A;/S.

Example 1.5]give an idea about the notion of instantiation splitting set.

Example 4.5 Consider an MLP P = (m, m;) where m; = (Py,R;), my = (P2[p], R2), and

a «—
Ri=¢{b « a
c « b,Pyb].c

R2={C<—p}

We have VC(P) = {P[0], P»[0], P2[{b}]}. Suppose that we have A = (A/0,A,/0,A>/{b}),
where A{/0 = 0, A»/0 = 0, and A,/{b} = 0. Then, Up(A) = (U/0,U,/0, U /{b}), where
U1/0 ={a, b}, U2/0 = {c, p}, U2/{b} = {c, p}.

On another case when we have A /0 = {P,[b].c} (other elements of A are unchanged), then
we will have U1 /0 = {a, b, c, P>[b].c} (with other elements of Up(A) remain the same as before).

Next, we define a partial evaluation for an occurence of a module atom.

Definition 4.6 (Partial Evaluation) Let P be an MLP, M be an interpretation of P, and R be
a set of ground rules. We define a partial evaluation of R with respect to P, M, and U;/S (A;/S)
where P;[S] € VC(P), denoted ell;’./MS(A,/S)(R, X), as a set of rules {r € R} where:

1. Let a be an ordinary atom in B(r) and a € U;/S (A;/S), then

e a € BY(r); if a € X, remove a from B*(r), otherwise remove r from the resulting set.
e a€ B (r), ifa ¢ X, remove a from B~ (r), otherwise remove r from the resulting set.

2. Let a = Pj[pl.o(¢c) be a module atom in B(r), T = quj, and qj is the formal input of
module P;.

e a € B(r); ifo(c) € M;/T, remove « from B*(r), otherwise remove r from the
resulting set.

e a € B (r); ifo(c) ¢ M;/T, remove a from B (r), otherwise remove r from the
resulting set.

37

Definition @] extends the partial evaluation from [Lifschitz and Turner, [1994] with the eval-
uation of module atoms. Intuitively, when the truth value of a module atom « in a rule r is
satisfied, we remove « from r. Otherwise, we remove r (because the body is not satisfied).

Let P be an MLP and P;[S] € VC(P). In general, when applying our instantiation split-
ting optimization to an instantiation Ig.p)(P;[S]) which contains a module call, we apply the
following steps:

1. Split it into two parts: bottom (ordinary part), and fop (non-ordinary part).
2. Solve bottom, store the result into our incremental interpretation Mf’ /S.

3. Next, in order to evaluate fop, we recursively solved the remaining module calls one by
one and store each module call instantiation that has been solved into A;/S .

4. Back from evaluating each module call instantiation, instead of evaluating Io.p)(P;[S]),
we evaluate only the rules from I,,p)(P;[S]) that we have not solved before (the rules
from the instantiations without the botfom part).

Since we always partition our computation into two parts (bottom and top), Proposition
make sure that we always compute towards an answer set, i.e., an answer set of the bottom so
far combined with the answer set of the top part (that is not evaluated yet) will be an answer set
of the instantiation.

Proposition 4.7 Let M be an interpretation of an MLP P, and R = I.p)(P;[S]) for P;[S] €
VC(P). Then X UY is an answer set of R relative to M, iff X is an answer set of by,;s,/s)(R)

and Y is an answer set ofel;%(A_/S)(R \ bu,ssas)(R), X) relative to M.

Proof. Let R be an instantiation Io.p)(P;[S]), where P;[S] € VC(P). Recall that U;/S (A;/S) is
an instantiation splitting set for R with respect to A;/S, and by,/s(a,/s)(R) is the bottom of R
with respect to U;/S (A;/S). The proof is akin to Splitting set theorem in [Lifschitz and Turner,
1994]. In addition, the rules resulting from the partial evaluation are always ordinary. From
Definition 4.6 we know that if a rule r contain a module atom ¢, then either « is removed (if
a € B*(r) and its output atom is in the model, or @ € B~(r) and its output atom is not in the
model) or the rule is deleted.]

Proposition 4.8 make sure that, in the end, we compute an answer set of an instantiation.

Proposition 4.8 Let M be an interpretation of an MLP P, A be a subordinate module atoms set
of P, and Up(A) be a instantiation splitting set of P with respect to A. In addition, let M;/S be
an answer set of lq.p)(Pi[S]) relative to M for P;[S] € VC(P). If A;/S = mod(I¢,p)(P;[S])) and
X is an answer set of by, ;s a,/s)(Lgrp)(Pi[S])) relative to M then X = M;/S.

Proof. We need to show that X is an answer set of I,,p)(P;[S])) relative to M. Since A;/S =
mod(Igp)(P;[S])), by definition U;/S (A;/S) = at(Igrp)(Pi[S]).

Since U;/S(Ai/S) = at(lgp)(Pi[S])), for each rule r € Ig@)(Pi[S]), we have H(r) N
Ui/S(A;/S) # 0. From this fact, we get bU,-/S(A,—/S)(Igr(P)(Pi[S])) = Igr(p)(P,‘[S])). Because
we have X is an answer set of by,/s(a,/5)(Igrp)(Pi[S])) relative to M, then X is also an answer set
of Iy, (P;[S])) relative to M. O

38

CHAPTER

Evaluating Input-Call-Stratified MLPs
with Instantiation Splitting

The authors of [Dao-Tran et al., [2009b]], presented a top-down algorithm to evaluate a subclass
of MLPs, namely input-call (ic) stratified MLPs. Intuitively, ic-stratified MLPs restrict MLPs in
a way that the inputs for a module call are always prepared before the call is made and a cycle
between calls can occur only between instantiations with empty input.

The new algorithm solveMLP presented in this chapter takes the algorithm in [Dao-Tran
et al., 2009b] as the basis and then optimizes it by introducing our instantiation splitting tech-
nique.

5.1 Evaluation Algorithm

The main difference of solveMLP and the algorithm in [Dao-Tran et al., [2009b] (see Algo-
rithm for details) is that we incorporate instantiation splitting optimization into our eval-
uation algorithm. Parameters used in solveMLP are almost the same as paramaters used in
Algorithm except for U (see Algorithm for the details of solveMLP). In this case, U
represents (and used as) the instantiation splitting set (recall Definition 4.4).

Algorithm [5.1| proceeds in three parts as in Algorithm [3.1]

1. In the preliminary part, we make sure that the input program is c-stratified, and collect
the instantiation if a cycle of value call occurs (see Algorithm [5.2). Next, we perform
rules rewriting. The rewrite procedure in Algorithm [5.3] works on ground rule bases and
applying partial evaluation akin to [Lifschitz and Turner, [1994] to the output atom of a
module atom that has been solved.

2. In the ordinary evaluation part, solveMLP proceeds almost the same as Algorithm [3.1]
except that in solveMLP we also pass the instantiation splitting set U in the recursion.

39

Algorithm 5.1: solveMLP(in: P, C, path, M, A, U, in/out: AS)

Input: MLP P, set of value calls C, list of sets of value calls path, partial model M,
indexed set of sets of module atoms A, instantiation splitting set U, set of answer
sets AS

Output: set of answer sets AS

1 (C, path) := stratificationCheck(C, path)

2 R:=rewrite(P,C,M, A, U)

3 if R is ordinary then /*ordinary evaluation*/

4 if path = € then

5 foreach N € ans(R) do

6 L AS :=AS U {M W mipize(N, C)} /*collect answer sets*/

else

forall the P;[S] € C do A;/S :=fin /*mark as finished*/
C’ :=tail(path) and remove the last element of path

10 foreach N € ans(R) do

11 M’ :=M W mipize(N, C)

12 L solveMLP(P,C’,path, M’, A, U, AS)

13 else /*module atom evaluation¥*/

14 (A, U, a, U) :=prepareSplittingSet(R, C, A, U)

15 foreach N € ans(by(R)) do

16 (C’, path”) := prepareNextCall(a, C, path, N, A, U)

17 M’ :=M @ mlpize(N, C)

18 solveMLP(P,C’,path’,M’, A, U, AS)

3. In the module atom evaluation part, we look for a module atom « that does not depend
on another module atom and prepare an input splitting set for a. If such module atom or
input splitting set does not exist, the evaluation is stopped (because the input program is
not i-stratified). In addition to update A, we also update the instantiation splitting set U in
this part (see Algorithm[5.4). Then, we prepare the next module call (see Algorithm [5.3).
Another call to solveMLP is made for further evaluation.

Next, we present the sub-algorithms in details.

5.2 Sub-Algorithms

Algorithm [5.1] uses 4 sub-algorithms which are used to checks the stratification of the input
program (Algorithm [5.2)), rewrites rules (Algorithm [5.3)), prepares input splitting set (Algo-
rithm [5.4)), and prepares the next value call to be processed (Algorithm 5.5).

40

Algorithm 5.2: stratificationCheck(in/out: C, path)
Input: set of value calls C, list of sets of value calls path
Output: return (set of value calls C, list of sets of value calls path)

1 if AP;[S] € C s.t. Pi[S] € Cprey for some Cppe, € path then /* detect cycle */
2 if S # 0 for some P;[S] € C then

3 L exit with failure

4 repeat /* collect value calls */
5 C’ :=tail(path) and remove the last element of path

6 if AP;[T] € C' s.t. T # 0 then

7 ‘ exit with failure

8 else

9 | cC:=CcucC

10 until C’ = Cppey

11 return (C, path)

5.2.1 Stratified Checking

Algorithm [5.2] performs on the fly stratification checking to make sure that the program given
by users is ic-stratified. It takes as input a set of value calls C and a list of sets of value calls
path. Tt first checks whether a cycle exists (line [I)). If so, the algorithm exit with failure when
the cycle contains an instantiation with non empty input, as our MLP violates the ic-stratified
condition (line [3] and [7); otherwise, all instantiations with empty input that form the cycle are
combined/collected to be solved together. The change (if any) with respect to C and path are
returned (line [TT)).

In this process, path plays an important role since it maintains the call chain. More details
on appending a set of value calls into path can be traced in Algorithm [5.5] and Algorithm [5.]
(line [0) for deleting an element of path.

Example 5.1 Suppose that we have a call graph
Po[0] — Pil{g(a)}] — Pol0].

Clearly this is not a c-stratified MLP. When evaluating C = {Py[0]} (the second Py[0@]), and
path = [{Po[01}, {P1[{g(a)}]}], Algorithm [5.2] will detect a cycle in the call chain (because Py[0]
exists in the first element of path. We will pass the strafication checking in line [2|since in C we
have only Py[0]. Then, we enter the repeat ... until block and proceed to line 5 to collect the
set of value calls that forms the cycle. When encountering P;[{g(a)}], we exit with failure.

Example 5.2 Consider another case, suppose that the input to Algorithm [5.2]are C = {P,[0]},
and path = [{Po[01}, {P1[{g(@)}1}, {P2[01}, { P, [01}].

We detects a cycle (because P,[0] exists in the third element of path. We collect all value
calls starting from the last value call in path, until the value call having P,[0] in it. In this case
we collect in C (and then remove it from path) the fourth and the third element of path. As the
end result, we will get C = {P,[0], P1[0]} and path = [{Py[0]}, {P1[{g(@)}]}].

41

5.2.2 Rewriting

In our top-down approach, the procedure rewrite() presented in Algorithm [5.3] has an impor-
tant role in evaluating the rules of the current instantiation. In this algorithm we rewrite the
instantiation of each value call in C (set of value calls that currently under evaluation).

The main difference from the rewrite() in [Dao-Tran et al., 2009b] is that in Algorithm [5.3]
we consider only the top part of the ground rule base. This makes the algorithm more effective
since we do not compute the botfom part that has been evaluated before.

Taking Definition i.3]and .4]into account, in this algorithm we write

e U instead of Up(A),
e U,;/S instead of U;/S (A;/S),

since we always refer to a particular MLP P and subordinate module atoms set A under evalua-
tion.

1. For each instantiation, we retrieve its ground rule base (line [3)

2. Instead of considering the full instantiation, we consider only the top part of the instanti-
ations based on the instantiation splitting set U (line [).

3. Then, each rule in the fop is analyzed (line[5). For each module atom in the rule that has
been evaluated, we apply the partial evaluation akin to [Lifschitz and Turner, [1994]]. The
idea is to remove the positive module atom evaluated to true and negative module atoms
evaluated to false (line [I2] - [I4), or to remove the rule whose body is not satisfied (see

line[16] and [T8)).

4. Finally, we add the partial model that we have found so far. One might notice from
Algorithm [5.1] (line [I5] - [I8) that the partial model that we have is an answer set of the
bottom part so far.

Overall, rewrite plays an important role in the evaluation process in retrieving the result of
previously evaluated module calls and combining it with the current set of rules. Example
and [5.4]provide a concrete example on how the rewrite procedure in Algorithm [5.3]works. Note
that for simplicity, in this example we do not show the indexed sets with all of its elements.
Instead, we present only the elements that relevant to the example.

Example 5.3 Let us consider a simple MLP P = (mg, m;), where my = (Py, Rg), and m; =
(P1lg1], R1), where:

_ { go(@) }
outp(X) <« Pilgol.out;(X)
Rlz{ s1@ }
outj(X) « s51X),q1(X)

Supposed that we have gone through Py[0] 2 P1[{g1(a)}] and solved the instantiation
P1[{q1(a)}. On the way back to Py[0], we evaluate solveMLP with:

42

Algorithm 5.3: rewrite(in: P, C,M, A, U, out: R)

3

N=IE- I I WY B N

11
12
13
14
15
16
17

18

19

20

Input: MLP P, set of value calls C, partial model M, indexed set of sets of module

atoms A, instantiation splitting set U,

Output: return set of rules R
1 R:=0
2 foreach P;[S] € C do

let Rp,is) be the ground rule base of P;[S]
top := Rp,.[s] \ bU,-/S (Rpi[g]) /% collect top *
foreach r € top do
del, :=false
foreach occurence of module atom a € B(r) in r do
if € A;/S then
let @ = Pj[p].o(c)
T ::(Mi/S)Igj where g is the formal input of P;
if (o(c) € M;/T) A (@ € B*(r)) then /* partial evaluation *
| BY(r):=B*(n\«a
else if (o(c) ¢ M;/T) A (@ € B™(r)) then
| B (r:=B(\«a
else
del, :=true /* mark r as deleted *
L break
if del, = false then R=RUr
Add M;/S as facts to R /% add an answer set of the bottom *
return R

C = {Po[0]}
path = €

Moy/0 = {go(a)},
M /{qi(a)} = {s1(a), q1(a), out|(a)}

Ao/0 = {P1lqol.outi(a)}
Ai/{qi(@)} = fin

Uo/0 = {go(a)}
Ui q1(@)} = {s1(@), q1(a), outi(a)}

Initially we set R = 0, then rewrite will proceed as follows:

line 3 We retrieve the ground rule base of Py[0],

Rpypo) = { qgo(a) « }

outo(a) « Pilgol.outi(a)

43

line 4 We get by, 0(Pol0]) = {go(a) «}. Hence, top = {outy(a) < P1lqo].outi(a)}.
line 5 Consider r = outo(a) <« P1[qo]-outi(a).
line 8 Since we have P;[qo].outi(a) € Ay/0,

line 10 T = {q1(a)}

line 11 The condition is satisfied, i.e., out;(a) € M;/{g1(a)} and Pi[go].outi(a) € B*(r).
Hence, we have r = outg(a) «.

line 18 We have R = R U {outy(a) <}, hence R = {outg(a) «}.
line 19 We add M,/ to R, which makes R =
qo(@) <«
outg(a) < ’
Since C contain only one element, Py[0], rewrite stops here and returned R as the result.

Example 5.4 Suppose that we have an MLP P = (mg, m, my), where mg = (Po,Rg), m; =
(P1lq1], R1), and my = (P2[q2], R2), where:

Ro = qo(a) <
0 outy <« Pilqgo].out;

R = s1X)Vsi(Y) <« qX),q(Y),X#Y
1= outy, «— Ps[si].outr

Rz:{ 2 < @) }

outy <« Pi[sz].outy

For example, let us compute rewrite(C,M, A, U) when: !

o C ={P[0], P1[0]}
° Ml/(Z) =0
M>/0=0
o A1/0 = {Ps[s1].outr},

Az /0 = {P1[s2].out}

U1/0 = {s1(a), q1(a), a # a}*
U /0 = {s2(a), q2(a)}

The computation started by inspecting each elements in C one by one. Initially we set R = ()

IThe call graph is: Po[0] = P\[{g1a}] = P,[0] = P,[0] = P,[0]
ZPlease note that “#” is also a predicate symbol. It is a predicate symbol with special syntax (infix notation) and
semantics (tests inequality).

44

1. For P,[0]:

line 3 We retrieve the ground rule base of P,[0],

Rpo) = { s2(a) < qo(a) }

outy <« Pi[s2].outq
line 4 We get by, j0(P2[0]) = {s2(a) < g2(a)}. Hence, top = {outy «— Pi[s2].out,}.
line 5 Consider r = outy < Pi[s2].out;.
line 8 Since we have Pq[s2].out; € A2/0,

line10 T =0

line 16 The condition in line 11 and 13 are not satisfied. Hence we enter line 16 and
set del, = true

line 18 The condition is not satisfied since we have del, = true, hence R = 0.

line 19 We add M, /0 to R. Since M, /0 = (), we have R = (.

2. For P1[0], the computation is similar as before. From line 3, we get

Ryl ={ si@ Vi@ < qia).qa@).a*a }

outy <« Pj[si].out,
From line 4, we get by, jo(P1[0]) = {51(a) V 51(a) < q1(a),q1(a).a # a). Hence, top =
{out, « Py[s1].outp}. Considering r = out; < P;[s1].outz, condition in line 8 is satisfied
since we have P;[s].out, € A1/0. Then, we have T = 0 in line 10. In partial evaluation,
the condition in line 11 and 13 are not satisfied. Hence we enter line 16 and set del, = true.

Condition in line 18 is not satisfied because we have del, = true. Hence R is still empty.
In the end, we add M;/0 to R (line 19). Since M/0 = @, we have R =

3. As the final result, we return R =) which is much less than plain collection of module
instantiations.

5.2.3 Splitting Set Preparation

Basically, splitting set (and the bottom) is prepared in Algorithm[5.4] It works as follows:

e Choose a module atom @ which does not depend on the other module atoms (line [I). If
such module atom does not exist the evaluation exit immediately since the input program
is not i-stratified (line[10).

o If such module atom « exist (all of the input predicates could be prepared without depend-
ing on other module atoms), then we collect in U an input splitting set of @ (line [2)). If
an input splitting set for @ does not exist, the evaluation exit immediately since it means
that the input program is not i-stratified (line [8). Otherwise, we mark the module atom
a as “processed” (by adding it to A;/S for each P;[S] € C) (line 3 — 4), and update our
instantiation splitting set U (line [6).

45

Algorithm 5.4: prepareSplittingSet(in: P, R, C, infout: A, U, out: @, U)
Input: MLP P, set of rules R, set of value calls C, indexed set of sets of module atoms A,
instantiation splitting set U
Output: return indexed set of sets of module atoms A, instantiation splitting set U,
module atom «, set of atoms U
1 if 3 a module atom « in R s.t. A module atom B in R where a ~ 3 then
2 if 3 an input splitting set U of R for @ then
3 foreach P;[S] € C do
4 L if A;/S =nilthen A;/S :={a} else A;/S :=A;/S U{a} /* update A */
5

6 U:=U W mlpize(U U a,C) /% update U */
else
| exit with failure /* not i-stratified */
9 else
10 L exit with failure /* not i-stratified */

11 return (A,U,a, U)

Example[5.5] [5.6] and[5.7] give a clear idea on how Algorithm [5.4] works. Example 5.5] pro-
vide a case for i-stratified MLP, while the other two examples provide cases for non i-stratified
MLPs.

Example 5.5 Suppose that we have an MLP P = (mg, m;,my), where m; = (Pg,Rg), m; =
(Pilg1],Ry), my = (P2[q2],R2), and

qla) «

qb) <
r « Pilql.out
s « Pslr].out;

In addition, let us assume that C = {Py[0]}, Ag/0 = nil, Uy/0 = nil.

Since we have P;[r].out, ~» Pi[q].out|, and P;[q].out; does not depend on any other mod-
ule atom, we set @ = Pi[g].out; (line[I)), and we have splitting set U = {g(a), g(b)} (line [2).
Then, we set Ag/0 = {P[g].out;} (line[d)), and Uy/0 = {g(a), g(b)} (line [6).

Ry =

Example 5.6 Let us assume that we have C = {Py[0]}, Ag/D = nil, and a rule set R =

g(a) <
qb) <
r(a) <« Pilql.out;

qla) « Pjlr].out,

In this case, Pi[ql.out; and P;[r].out, depend to each other. Choosing either P;[q].out;(X)
or Py[r].out>(X) will not satisfy the condition in line[T]and causes the algorithm to exit (line[T0).
Indeed, this is an example of non i-stratified program (caused by the third and the fourth rule in
R), and the computation will stop immediately, as expected.

46

Algorithm 5.5: prepareNextCall(in: P, a, C, path, N, A, out: C’, path’)
Input: MLP P, module atom a, set of value calls C, list of sets of value calls path, set of
ordinary atoms as the answer set of botfom N, indexed set of sets of module atoms
A
Output: return set of value calls C’, list of sets of value calls path’
1 T:=N|¥, where @ = P;[p].o(cj) and g; is the formal input parameter of P,
2 if A;/T = fin then
3 | return (C,path)
4 else
5 C’':={pP;[T]}
6 path’ := append(path, C)
7 return (C’, path”)

Example 5.7 Let us assume that we have C = {Py[0]}, Ag/0 = nil, and a rule set R =

ql@) <
qb) <
q(c) <« Pilgl.out

This is another simple example of not i-stratified program (caused by the third rule in R). We
have only one module atom, simply choosing @ = Pj[g].out; will pass the condition in line [I}
However, then we cannot have an input splitting set for Pj[q].out;. This is because the input
predicate for P[g].out, is g, but g(c) depends on P[g].out;. Condition in line]is not satisfied,
the evaluation will exit immediately (line [8).

5.2.4 Value Call Preparation

In Algorithm [5.5] we prepare the next value call needed to evaluate for the module atom @
returned by prepareSplittingSet procedure in Algorithm[5.4] There are two possibilities:

e We have evaluated this value call before (condition in line 2 is satisfied), hence we can
continue with the current C and path. Instead, we stick to the current value call and later
we let the next recursion step of solveMLP (Algorithm[5.1)) to solve it.

e Otherwise, as one might expected, we proceed to solve the new value call created, P;[T],
by putting it into C’ (line 5) as the next value call to be evaluated and add to path the
current value call, C.

In this algorithm, fin (see line 2) is a special value on A;/S to mark that all module atoms
inside instantiation P;[S] has been evaluated (see Algorithrn line to see when we put fin).

Using a simple program, Example [5.8 and Example [5.9] gives an illustration on how Algo-
rithm 5.4l runs.

Example 5.8 Suppose that we have MLP P = (myg,m,m;), where mg = (Po,Rp), m; =
(P1lg1],R1), and my = (P2[q2],R2). For simplicity, we do not give the complete rule sets.

47

However, we provide Figure [3;1'] to illustrate how the modules call each other, where So = 0,

S1 =1{q1(@), q1(b)}, and S» = {g2(a), q2(b)}.
Now, let us assume:

o a = Pilrol.rn(X),

o C={Pi[0]},

e path = €,

o N = {ro(a), ro(b)}

e Ag/0 = {P;[ro].ri(X)}, while the other elements of A are still. nil

Let us assume that currently we are evaluating the top most instantiation on Figure[5.1] and
preparing to make a module call to the left (P{[S1]). From line 1, we have T = {q(a), q1(b)}.
Since A1/{g1(a), q1(b)} is still nil, we skip line 2 — 4 and execute line 5 — 7 instead. Then we
have C’ = Pi[{q1(a), q1(b)}] and path’ = [{P1[0]}].

Example 5.9 Take a look at Example [5.8] and Figure [5.1] again. To illustrate the other cases in
Algorithm@ let us consider the step when we evaluate P»[S>]. When we run prepareNextCall
with:

o a = Pi[r].ri(X),

o C = {P2[{g2(a), q2(D)}1},

e path = [{Po[01}],

* N ={q2(a), q2(D), r2(a), r2(b)}, and

o A1/{q1(a),q1(b)} = fin (the other element of A are irrelevant for this example).

Then we have T = {g1(a), g1 (b)} from restricting N to r, (actual input parameter in @) and
then replacing r, with g (formal input parameter of P1). Since we know that A /{q(a), q1(b)} =
fin, hence C’ = C and path’ = path. This example illustrates the case when we have computed
the answer set of Ip(P;[S;]) in instantiation Py[Sp], we do not need to compute it again when we
see it again in P>[S>].

5.3 Soundness and Completeness of Algorithm solveMLP

In this section we prove the soundness and completeness of, Algorithm[5.1] To do this, we need
the following notion.

A value call P;[T] is said to be induced by a value call P;[S]iff P;[p].o(c) occurs in R(m;) and
T =N Iqi, where N is an answer set of by(Ip(P;[S])) and U is an input splitting set of Ip(P;[S])
for P;[p].o(c).

The following lemma highlight the case when an element A;/S of A is set to fin, meaning
that all module atoms in instantiation P;[S] has been evaluated.

48

P;[S$7]

Figure 5.1: Utilized previously computed answer set of a module call

Lemma 5.10 Let P be an ic-stratified MLP, and C, path, M, A, U, AS are data structures as
defined in Algorithm When we call solveMLP(P,C, path, M, A, U, AS), with A;/S = fin,
M;/S contains an answer set of Ip(P;[S]) relative to M.

Proof. We assign fin to A;/S only in line[§|in Algorithm 5.1 When we execute line[8] it means
that R as the result from rewrite is ordinary (hence, all module atoms has been solved). Then we
have two possibilities:

(1) From line ans(R) returns nil. This means that R has no answer set. Since we do not
proceed with line[T2] A will not be propagated. The next call to solveMLP is not executed,
the algorithm will backtrack to a state where A;/S # fin.

(i) ans(R) returns at least one element, which means that R has at least one answer set. Then
line 12| will be executed, A will be propagated together with M’ that has been updated
with N, where N is an answer set of R. Then M’ will be M in the next call of solve MLP.
Recall that mlpize(N, C) convert N to a partial interpretation N, projects each atom in N to
Pi[S] € C, and put the result into N;/S. And then M @ N basically add to M;/S all atoms
in N;/S.

O

For the soundness and completeness, we adapt Proposition 7 from [Dao-Tran et al., [2009b].

5.3.1 Soundness

Theorem 5.11 Let P be an ic-stratified MLP with a main module my,gin, = (Pmainll, Rimain)- If
M € AS then M is an answer set of P, where AS is the result of solveMLP(P,{P,,,in[0]}, path,
M, A, U,AS) with AS = 0, path = €, M, A, and U to have nil at all components in the
beginning (disregarding irrelevant module instances, i.e., M;/S = nil iff P;[S] ¢ V(CGp(M))).

Proof. We need to show that if M € AS, M is an answer set of P, that is M;/S is an answer set

of Ip(P;[S]) for P;[S] € V(CGp(M)) relative to M.
To make it simple, we show soundness of our algorithm step by step:

49

50

1. We assume that the condition in line 1 in Algorithm[5.2] never satisfied, and we disregard
line 2 — 5 in Algorithm[5.5]

2. We extend the proof, considering the condition in line 1 in Algorithm [5.2]is satisfied.

3. Finally we show that line 2 — 5 in Algorithm [5.5]is an optimization that enable us to not
compute an already computed instantiation twice. We show that with or without this lines,
our algorithm is sound.

We now proceed with the proof as outlined above:

1. We proof by structural induction on how each element of M is formed.

Induction Base For C = {P;[S]}, where instantiation Ip(P;[S]) does not have a module
atom in it, solveMLP will proceed as follows:

rewrite will return an ordinary rules R (that is Ip(P;[S]))

Regardless path is empty or not, from ans(R) we get the answer set(s) of R in
N.

mlpize(N,C) put N in M;/S.
Hence we get M;/S as an answer set of Ip(P;[S]) relative to M.

Induction Hypothesis M{/S1,..., My/Sy are answer sets for Ip(P;[S;]),..., Ip(Pr[Sk])
relative to M respectively.

Induction Case Let us consider C = {P;[S;]} where in the instantiation Ip(P;[S;]) eventu-
ally we create module calls to P;[S/], ..., P¢[St], we need to show that M;/S; is an
answer set of Ip(P;[S;]) relative to M. solveMLP will proceed as follows:

— First, in line[2] rewrite will return non-ordinary rules R (since we had a module
calls to P; [S]], cee, Pk[Sk]).

— Then the algorithm will proceed with solving P;[S;],..., Pr[Sx] and got an-
swer sets M1/S1,..., My/Sk. The process itself is started from line in Algo-
rithm [5.1] for choosing the next module atom to evaluate, e, and providing an
input splitting set for it. Then for each answer set of the botrom, we prepare the
next module call for @. More details:

a) Without loss of generality, let us assume that we Pr[qx].o1(ck) > ... ~»
Pi[q1].01(cy). Later, proceeding with this ordering will create calls to
P;[S], ..., Pe[Skl.

b) First, we will proceed with @« = Pi[q1].01(c1). We add Pi[qq].01(cy) to
A;/S; (which intuitively means that we proceed to compute P[q1].01(cy)
in Ip(P;[S:])).

¢) Based on the answer set of the bottom, ans(by(R)), where R is the result of
rewriting Ip(P;[S;]) and U is a result from Algorithm [5.4] we prepare the
next call in C’ and path’ (line 6 and 7 from Algorithm 5.5]and then proceed
with line[18]in Algorithm[5.1)). In this case, C’ will be P;[S;] and path’ will
consist of the current path with P;[S;] in the tail.

d) We make a call to P;[S;] (proceed from line @] in Algorithm@ and later
we get M/S as the answer set (from Induction Hypothesis). It is also
important to mention here that we always update U;/S; in Algorithm [5.4]
that is executed in line and add to M;§; an answer set of by, /s (R). From
Proposition we can combine the answer set of by, ;s (R) with the answer
set of the rop part of R to form the complete answer set of R.

e) In the recursive call, please note that when we finish computing P;[S;], we
will proceed to line 8| — 12| (since the path is not empty). Then we enter a
recursive call which continues evaluating P;[S;].

f) In this recursive call, entering solveMLP with C = {P;[S;]} will produce
a different result from rewrite. In this phase, we have U;/S; # nil and
M;/S ; # nil. This reflects to the splitting set theorem that we want combine
the answer set of the botfom (currently in M;/S ;) with the answer set of the
top (we do not have it yet, but we proceed to that)

g) Next, since we still have Pr[qk].o1(ck) ~» ... w» Pr[q2].02(c2) in R (if k >
1), then again we proceed with the non-ordinary part (line[I4]—[I8). Please
note that we do not have P[q1].01(cy) in R because of the partial evaluation
that we done in Algorithm [5.3] When we have evaluated a module atom,
then these two condition always apply:

(i) the module atom is removed (see line[I2]and [I4]in Algorithm[5.3)), or
(ii) the rule that contain the module atom is removed (see line[16]and [18§]
in Algorithm[5.3).
This is akin to partial evaluation in [Lifschitz and Turner} [1994].

h) and the process continue until we compute Pi[Sk].

— Once we solved module calls P;[S;],..., Px[Sk], rewrite will return R in an
ordinary form and we have {P;[S/],..., P¢[St]} € A. Either path is empty or
not, from line@or@], we will get the answer set of R in N from ans. Then, from

M @ mipize(N, C) and justified by Proposition 4.8, we get the complete answer
set of P;[S;]in M;/S ;.

2. We extend the proof, considering that P;[S] is one of instantiations that form a cycle in the
value call chain.

e We extend the Induction Base:

— Consider Py, [0], ..., P, [0] where Ip(P;,[0]) has only one module call, that is to
Py, ,[0] for 1 <i < k and eventually Ip(Py,[0]) has a module call to Py, [0].

— When we enter solveMLP with C = {Py,[0]}, eventually we will make a call to
P,[0],...,P;[0] and then to P;,[0]. For this last call, our stratificationCheck
algorithm will detect a cycle (see line 1 in Algorithm[5.1] and continue to lineT]
in Algorithm[5.2)). Checking condition in line 2]in Algorithm [5.2] will succeed
since we have a c-stratified program. Next, we collect P;,[0],...,P;[0] in C

(line 4] - (10} Algorithm[5.2)).

51

— rewrite will return an ordinary rules R from instantiations of Ip(Py,[0]), ...,
Ip(Py[0]). Ordinary, because partial evaluation has been done to all module
atoms Py [qy].0;,(¢c;) for 1 < i < k. This is due to the case Py, [qy,,].01,,(Ci+1) €
Ap/S) for 1 <i <k, and Py, [qi,].0;(c1) € Ay /S ;. One can see from line [3]—[4]
in Algorithm [5.4] that we always put the next module atom that we will call in
A;/S given that P;[S] is in the current set of value calls being evaluated, C.

— Then either path is empty or not, we will have an answet of R in N. And by
M @ mlpize(N, C) we will have the answer set of Ip(P;,[0]), ..., Ip(P;[0]) in
M;, /0, ..., M, /0 relative to M

o We extend the Induction Hypothesis:
Assume that Mg, /Sy,, Mg[‘ki /Sg,;kl- are answer sets for Ip(Py, , [Sg,, D . . -, Ip(Pg,.Ykl_ [Sg,-,kl-])
forl <i<n

e We extend the Induction Case:
Now we consider the case that we have other module calls in a cycle. Suppose
that we have a cycle formed by module calls from P,,,[0],..., Py, [0] and from
P, [0] back to Py, [0]. And later, we will consider that each P, [0] also has other
module calls to Py, [Se,,1...., Py, [Sg,.] for I < i < n. We need to show that
M, /0, ..., My, /0 are answer sets for Ip(Py,, [0]), ..., Ip(Pp,[0]).

— Collection of module instantiation that responsible for the cycle, i.e., C =
{Pp,[0], ..., Py, [0]} will be started similar to Induction Base.

— However, in the end we do not have an ordinary rules R. Instead, we still have
Py, (g 1-0g,,(Cgi) - - Py [y, 1054, (Cg,), module atoms to solve, for 1 <
i<n.

— Similar to the Induction Case in the previous case, by maintaining path we
solve those module atoms one by one. And by Induction Hypothesis, we have
My, ..., My, asanswer sets for Ip(Py,;,[Sg; 1), - .., Ip(Pg,, [Sg,, 1) for 1 <i <
n.

— Once we solved Pgi,l[qgi,l]'ogi,l(cgi,l)’ teeo Pgi,ki [qgi,ki]'ogi,ki (cgi,ki)’ with I < i <
n, on the way back from recursion, when we solved the last module call, i.e.
Pg, .. [Sg,., 1, again we will have C = {P,,,[0], ..., Py, [0]} and we will have R as
the result of rewrite is ordinary.

— Then either path is empty or not, we will have an answet of R in N. And by
M @ mipize(N, C) we will have the answer set of Ip(Py,,[0]), ..., Ip(Py,[0]) in
My, /0,..., My, /0

3. We prove that adding line 2 — 4 in Algorithm [5.5] solveMLP is still sound. Consider an
arbitrary value call C4 and path path, and without loss of generality assume that « is the
last module atom that need to be solved from the rule set as the result of rewriting C4. In
Algorithm[5.4] @ is added to A;/S for each A;/S € Cy.

Now, let us assume that P;[T] is a value call for created for @. Without line 2 — 4 in
Algorithm@ actually we have to evaluate P;[T] and get an answer set of P;[T]in M;/T
before we back to the execution of solveMLPwith C = C4 and path = path, to continue

evaluating value calls in C4. Now, we need to show that with line 2 — 4 in Algorithm[5.5]
eventually we will evaluate C = C, with path = path, and M;/T contain an answer set
of P;[T] (*). Consider that we execute line 2 — 4 in Algorithm[5.5|and A;/T = fin.

e Executing Algorithm [5.5| means that currently we are executing prepareNextCall
procedure in line [16]in solveMLP.

e Since A;/T = fin, M;/T contain an answer set of P;[T] (Lemma|5.10).
e C’ = C4 and path’ = pathy.

e Return from prepareNextCall we execute line [18|in solveMLP. Which bring us to
the condition that we want (*).

5.3.2 Completeness

Theorem 5.12 Let P be an ic-stratified MLP with a main module My,qi, = (Pmainl], Rimain). Let
AS be the result of solveMLP(P,{Py[01}, path, M, A, U, AS) with AS = 0, path = ¢, M, A,
and U to have nil at all components in the beginning. If AS = 0 then P has no answer set.

Proof. First, assume that AS = 0, then we need to show that MLP P has no answer set. There
are two possibilities:

1.

The algorithm reach line [f] Then we have R as the result of rewrite in line 2]is ordinary
and path is empty. Condition path is empty could only be achieved when we evaluate C
where P,,,in[0] € C.

a) C = Pyuin[0] then basically R = Ip(Pyain[0]):

e P,.ix[0] has no module call. Since AS = 0, then it means that R has no answer
set. Since R actually is Ip(Pain[0]), it means that Ip(P,,4i,[0]) has no answer
set, which means MLP P also has no answer set.

e P,..in[0] has module calls. All module calls in P,,,;,[@] have been evaluated
(hence R is ordinary). But still, R has no answer set. Similar to the previous
cases, since (P,4in[0]) has no answer set, MLP P also has no answer set.

b) C contain several module instantiation, including P,;,4;,[0]. This is a condition where
there is a cycle that contains Py,;,[0]. P also has no answer set. This is due to the
fact that:

e C contain Pp,,[0] and value call(s) induced by P,in[0]
e rewrite took all instantiation of all P;[S] € C, put the result in R.

e Since R has no answer set, it means that we do not find an answer set for
Ip(Pin[0]) and instantiations from value call(s) induced by it, hence P also
has no answer set.

53

54

2. The execution of Algorithm [5.1] never reach line [f] Never reach line [6] means that the
algorithm actually stop, without once executing line[6] Since path = € (condition in line 4]
in order to reach line [6)) can only be reached when evaluating the main module, this also
means that during the execution of the algorithm, when the algorithm evaluate the main
module (Py4in[0] € C), R as the result from rewrite is not ordinary (condition in line [3).

We have R from rewrite is not ordinary means that there is a module atom that still need
to be evaluated. Let us consider the last time path = € before the algorithm actually stop
(*). Then:

e The algorithm proceed to line

o Let @ = Pj[gj].o(c). From line [T4] we get U as the input splitting set for a. In
line [T6] we execute prepareNextCall from Algorithm [5.5]to prepare the next value
call to evaluate. However, we need to make sure that we will eventually evaluate all
possible value calls that can be created. This condition is guarantee by line [I5] and
[16]in Algorithm [5.1] Line[I5]iterates over all possible answer sets of the bottom of
U. Then, in line [I6] we prepares the value call which inputs based on those answer
set.

Then we have two possibilities:

(i) If the value call has been evaluated before, looking at Algorithm [5.5]in more
detail, condition in line 2 in Algorithm [5.5] is satisfied. But then this means
that path’ = path, returning from prepareNextCall to solveMLP, eventually we
will execute the recursive case in line [I§] which gave us another execution of
solveMLP with path = €. This contradicts our previous assumption (x), i.e.,
the last time execution of solveMLP with path = €.

(i1) If the value call has never been evaluated before, then we have:
- C’" ={P;[T]} where T ::quj, and
— the current C is appended to path (currently path = €) and we put the result
to path’, which makes path’ contain one element, C.
From this step, there are two possibilities:

(a) P; has no module atom. Then, the condition in line @ will be satisfied.
Line [8] and O will be executed. In line 0 we remove the last element of
path. Since the current path contain only one element, then path becomes
€. Suppose that we have M as an answer set of P, then in CGp(M) we will
have P,,4i,[0] — P;[T] and M, /T as the answer set of P;[T] relative to M.
Since the iteration in line[I5]|guarantees that we explore all possible answer
sets of the bottom of U and line [T6| prepares the value call that can be
created from «, eventually we will visit this particular value call P;[T].
Then:

— the result of rewriting, R, is ordinary,
— in line[9| we delete one element of path (hence path becomes empty),

— ans in line [I0] will return at least an element,

(b)

— line [12| will be executed, which means another execution of solveMLP
with path = €

This contradicts our assumption (*). Hence, P must not has an answer set.
P has module atom(s). If we have an answer set M of P, then by the com-
putation that follows the call chain P,u;,[0] — Pj[T] — ... in CGp(M),
even though we always add each value call induced by P;[T] to path, even-
tually we will get an answer set for each instantiation created from the
value calls induced by P;[T]. Then:

the rewriting process of instantiation P;[T’] will result in an ordinary R,

line O] will be executed (remove an element of path, which caused path
to be empty),

ans in line [T0] will return at least an answer set,
line [T2] will be executed, and
we will have another execution of solveMLP with empty path.

This contradicts our assumption (), hence P must not has an answer set.

O

55

CHAPTER

Implementation

This chapter discusses the implementation of an MLP solver that has been developed on this
thesis. We start the chapter by describing the system architecture, then continue with specifying
the allowed input format, and finally end it with explaining how one can run the system.

The system developed is called TD-MLP, a short for top-down evaluation solver for MLPs.
We did not build the system from scratch, but rather based it on dlvhex'. Our implementation
uses C++ as its programming language, and makes use of several libraries, such as Boost? and
Bitmagic? library.

6.1 System Architecture

This section describes the architecture of TD-MLP as an extension from dlvhex system [Eiter
et al., [2006]]. TD-MLP introduces two new concepts/items, namely module atom and module
header. Section [6.1.1] explains the main architecture and Section [6.1.2] and [6.1.3] describe in
more detail two important components: Syntax Checking and Evaluator.

6.1.1 Main Architecture

Figure[6.1]displays the main architecture of 7D-MLP, which includes the following components:

1. Syntax Checking (SC): makes sure that users write MLP in a correct syntax (see Section
[6.2] for syntax) so that the evaluation algorithm can also run correctly.

2. Main Modules Collector: identifies main modules defined by users.

3. Evaluator: computes answer sets of an MLP.

'dlvhex is a prototype implementation of HEX-program [Eiter et al., [2005], which are an extension of ASP
towards integration of external computation source.

Zhttp://www.boost.org/

3http://bmagic.sourceforge.net

57

program l

Syntax ASP Solver
Checker
\ answer set ordinary program
program
MLP Solver / \ /
Main Module C Cé& Call Graph
Evaluator .
Collector aip Builder
‘\request

answer set

Output Printer

Figure 6.1: System Architecture

4. ASP Solver: called by Evaluator, computes answer sets of an ordinary program.
5. Call Graph Builder: produces a call graph from the evaluation that has been done.

6. Output Printer: outputs results in a readable format for the user.

Different types of data used in the systems are:
1. C:represents a set of value calls (referring to C in Algorithm 5.1).

2. aip: actual input parameter, a set of atoms that is used as the input parameters for value
calls created.

3. request: notification for Main Modules Collector from Evaluator that the current evalua-
tion is finished and asks for another main module to be solved (if any).

From Figure [6.1) we can see that, first, an input program is passed to SC. This component
makes sure that the program provided is syntactically correct. A syntactically correct input is
important so that the solver interpret the problem (which is reprented in the input) correctly and
deliver the intended results.

After the syntax is proven to be correct, Main Modules Collector identifies all main modules
in the input program one by one and passed it to the Evaluator. During evaluation, Evaluator
calls the ASP Solver component to solve an ordinary program (either to solve the bottom or to
solve the ordinary program in the last phase of the computation where all module calls have been
solved). The current set of value calls, C, of the computation and the actual input parameter, aip,
for each value call are always passed to the Call Graph Builder in order to build a call graph of
the evaluation.

58

main|[{}]

{p}

lib[{r(a)}]

Figure 6.2: An example of Call Graph

Whenever the evaluation is done, the answer set is passed to the Output Printer to be polished
and delivered to users. Next, the evaluator requests the next main module to solve (if any).

Example 6.1 Suppose that we have an MLP P = (m,my) where m; = (main,Ry), my, =
(lib[r], Ry), and

R - pla)V p(b) «
1= getA « lib[pl.q(a)

Ry={qx) < r}

To evaluate P using TD-MLP, firstly SC checks whether the input program is syntactically
correct (see Section [6.2] for more details on syntax). Assume for now that this is the case. Next,
Main Modules Collector collects all main modules in the program. In this case, we found only
main[0). Main Modules Collector passes a value call containing a main module, main[0] to the
Evaluator.

If there are several main modules, they are then passed one by one. Starting from the first
main module, Evaluator solves it, and then sends a request for the next main module to be
solved.

On the process, we know that based on the algorithm described in Chapter [5| Evaluator
has to call an ASP Solver to solve an ordinary program. And as explained before, this ordinary
program can be a bottom part of a set of rules, or even the complete set from rewrite (when the
module atoms occurred have been solved). As an example, from the R; above the bottom that
needs to be solved by the ASP Solver is {p(a) V p(b)}. In this case, {p(a)} and {p(b)} are the
answer sets of the bottom and will be returned by ASP Solver, one by one.

While evaluating an MLP, Evaluator also sends a value call that is currently being processed,
together with the actual input to the Call Graph Builder. As an example, during its first evalua-
tion, Evaluator will send C; = {main[0]}. Next, suppose that we got {p(a)} as the first answer set
from the ASP Solver, then as the next value call we will have C, = {lib[{r(a)}]} (and {p(a)} as the
actual input parameter). Evaluator will also send this to the Call Graph Builder. Then, based
on this information, Call Graph Builder will build the call graph. A call graph that is obtained
from this example can be seen in Figure[6.2]

Once the evaluation is finished, the final answer set is transferred from the Evaluator to the
Output Printer in order to be printed for end users. A real example on how the final answer set
looked like can be seen in Section

Then, we proceed to the second answer set {p(b)}. Proceed similarly, we have C3 = lib[{r(b)}]
as the next value call.

59

Syntax Checker

program | Module Header program Module Atom program

Verification Verification

Figure 6.3: Architecture of Syntax Checking

When we finish in evaluating all possible answer sets, Evaluator sends a request to Main
Module Collector, solved = true. If there is another main module that needs to be solved, Main
Modules Collector will send a set of value calls, C, containing only the main module considered
to the Evaluator and the evaluation process is started again. If there is no main module left, the
evaluation process ends.

6.1.2 Syntax Checking

Figure [6.3] depicts the architecture of the component Syntax Checker, SC, which contains two
sub-components, namely:

1. Module Header Verification; make sure that:

(i) the declaration of module headers specified by users are correct, in the sense that
there should be no two or more modules having the same name, and

(i1) the arity of formal input predicates (in the module header) match with the arity of
the predicates in the rule sets (of that module).

2. Module Atom Verification; for each module atom, make sure that:

(i) the actual input parameters have the same arity as the corresponding formal input
parameters specified in the header of the called module, and

(i1) the arity of output predicate matches the arity of the corresponding original predicate
in the called module.

Checking the syntax is done as follows:
1. The ordinary part of the program is verified by dlvhex.

2. The input program is passed through Module Header Verification component. Syntax of
all module headers are verified.

3. After passed the second verification, the program is passed through Module Atom Verifi-
cation. All module atoms, its input and output predicate, are verified.

60

answer set ordinary program

Evaluator
Smallest ill

module rewritten

atom rules

rewritten

c ic-Stratified Cc) rules Rule Cé&
Rewrite
Checker Evaluator aip

request answer set

Figure 6.4: Architecture of Evaluator

6.1.3 Evaluator

Figure [6.4] describes the architecture of Evaluator which represents the core component of our
MLP solver. The sub-components inside Evaluator are:

1. ic-Stratified Checker: performs value call chain analysis to make sure that the MLP pro-
vided by users is ic-stratified.

2. Rewrite: instead of dealing with a ground program as in Algorithm[5.3] we manage non-
ground programs to have a light-weight implementation (ground programs causes an ex-
ponential increase on the data). The idea to use prefix as in [Dao-Tran et al., 2009b] to
differentiate rules and atoms from different module instantiations. For a computed module
atom @ = Pj[p].o(c) in an instantiation P;[S], instead of directly applying partial evalua-
tion where we remove « or rules, we replace a with its output atom and add (M;/T)lo as
facts (where T = (M;/S)Igi and q; is the formal input of P;) to the resulting rule set. In
other words:

(i) for facts and ordinary atoms: prefix the predicates with the instantiation,
(i) for module atoms: if this module atom has been solved before,

i. take the output predicate, prefix it with the called instantiation, and

ii. add facts from the answer set of the called instantiation that corresponds to the
output predicates, prefixed it with the called instantiation.

See Example[6.2]for illustration.

3. Rule Evaluator: analyzes the rewritten rules, decides either to pass them to the ASP Solver
in case the rules are ordinary, or proceeds for further computation otherwise.

61

4. Smallest ill: given a set of rules R, Smallest ill finds a module atom which has the smallest
instance local labeling rank, illg (see Definition |3.17)).

In Evaluator, there is a data type that we have not discussed before, namely rewritten rules.
This is a set of rules as the result from the Rewrite component described above. Example [6.2]
illustrated this.

Example 6.2 Consider an MLP P = (mg, m;, my), where my = (main, Ry), m; = (lib;[p], R1),
my = (libs[p2], R2), and R = {g(X) < p(X), libs[p].r>(a)}. For simplicity, we do not state Ry
and R, here since their contents can be disregarded for this example and instead of prefix, we
will use superscript here.

Now, let us consider a set of value calls C = {lib;[{p(a)}]}. The instantiation of lib;[{p(a)}]
is:

{p(a) — }
qX) < pX),lib[pl.r(a) |

From this instantiation, after Rewrite there are two possibilities:

(i) If module atom libs[p].r2(a) has not been solved yet, and for instance My, /{p(a)} = nil,
and My;,, /{p2(a)} = nil, then the rewritten rules are:
plibilir@i gy
{ qlibl[{P(a)}](X) — plib1[{p(a)}](x)’ lib>[p].r2(a) }
Rewrite takes the instantiation and prefixes the predicates of the fact and ordinary atoms
with the instantiation. Rewrite does not perform further tasks.

(ii) If the module atom /iby[p].r2(a) has been solved before, and for instance My, /{p(a)} =
{p(a)}, and My;p,, /{p2(a)} = {r2(a), r2(), s2(a), s2(b)}, then the rewritten rules are:
Plbr@N ()
gt (xy plibl[{p(a)}](X)’ rlzzbz[{pz(a)}](a)
rlibz[{pz(a)}](a)

2
r121b2 Hp2(a)}] (b)

«—
«—

Since the module atom lib,[p].r»(a) has been solved, after prefixing the fact and ordinary
atoms, Rewrite replaces lib,[p].ry(a) with its output predicate, ry(a). Next, r»(a) is prefixed
with the called instantiation /iby[{p2(a)}]. And from My, /{p(a)}, Rewrite takes atoms
which has predicate r, and put them as facts, prefixes them with M;;, /{p(a)}.

In addition, instead of managing instantiation splitting set, we manage a set of rules that still
need to be solved (the top part). The reason behind this is because managing ground atoms is
very expensive in term of space and time since the number of ground atoms could be exponential.
See Algorithm|[6.1]for an idea how the new rewriting approach is performed.

In Algorithm[6.1] for each module instantiation considered, one of the two cases apply:

(i) The instantiation has been partially computed before. Instead of considering the full in-
stantiation, we consider only the fop part of the instantiations (line 3 — 4). Intuitively,
Top;/S contains the unsolved part of instantiation P;[S]

62

Algorithm 6.1: rewrite(in: C,M, A, Top) : R
Input: set of value calls C, partial model M, indexed set of sets of module atoms A,
indexed set of sets of rules Top
Output: return set of rules R

1R=0

2 foreach P;[S] € C do

3 if Top;/S # nil then /* collect top */
4 | | R=RUTop/S

5 else

6 L prefix Ip(P;[S]) with P;[S], add the result to R

7 | if M;/S # nil then /* add an answer set of bottom */

8 L prefix M;/S with P;[S], add the result as facts to R
9 foreach module atom P ;[p].o(t) € R do

10 if P;[p].o(t) € A;/S then /* replace module atoms */
11 T =(M;/S)|gj and q; is the formal input parameter of P;

12 replace P;[p].o(t) with prefixed(o(t), P;[T])

13 prefix (M;/T)|, with P;[T], add the result as facts to R

14 return R

(i) Otherwise, we consider the complete (prefixed) instantiation of the calls only when we
have not evaluate these instantiation before (line 6). Even though we assume that the set
of predicates in each module is disjoint, it could be the case that we consider more than
one instantiations from the same module, i.e., P;[S] and P;[T] where S # T. Hence, the
idea to prefix predicates is needed to differentiate which rules and atoms come from which
instantiation.

Next, in line 7 — 8, we add the partial model (as the answer set of the bottom part) we found
so far. We also make sure that for each module atom that had been evaluated before, the result
is added (line 11 — 13):

e replace the module atoms with the their output atom (line[I2)), and

e add the interpretation of the call instantiation produced by those module atoms (line[T3).

The following example illustrates the rewriting process involving prefixes and storing the
top.

Example 6.3 Let us consider a simple MLP P = (mg,m;), where my = (Pg,Rp), and m| =
(P1lq1], Ry), where:

={ qo(a) « }
out)(X) <« Pilgol.out;(X)

63

. :{ si(@) }
! outj(X) « s51(X),q1(X)

In the beginning of the computation with:
o C={Pi[0]}
e path =€

In addition we have Top as an indexed set of sets of rules which will be used to store top
rules. Let us start from the beginning of the computation with Top, M (partial model), and A
(indexed set of sets module atoms) to have nil at all components (recall M and A as in Algo-

rithm [5.1)).

Initially, in line 1 we set R = (), then rewrite will proceed as follows:

line 3 — 6 Since Top,/0 = nil then we add the prefixed instantiation of Py[0].

[e -
outg(’[m(X) «— Pilgol.out;(X)
line 7 We do not add anything to R since My /0 = nil
line 9 We have one module atom Pi[qo].out|(X) in R.

line 10 Since Ay/0 = nil, we do not proceed further.

Since C contain only one element, Py[0], rewrite stops here and returned R as the result.

Next, since R as the result of rewrite is not ordinary the evaluation will continue to evaluate
the module atom in R, Pi[qo].out|(X). The input splitting set for P[go].out;(X) is evaluated,
A/0 is updated to {P;[go].out1(X)}, and Top,/0 is updated to {our,*®'(X) « Pi[gol.outi(X)}.
The evaluation proceed with computing module call P[{g(a)}].

Now, let us assume that the computation of module call to P;[{g(a)}] is completed and we
are back to Py[0], with:

o C={P[0]}
e path =€

* My/0 = {qo(a)},
M1/0 = {s1(a), q1(a), out (a)}

e Ay/0 = {P1lqo].out1(X)}
Ai/{q1a} = fin

o Top,y/0 = {out,""\(X) « Pi[go].outi (X))
Top, [{q1a} = 0

Please note that since in rewrite we do not ground the rules, we can have non-ground module
atoms in A. Initially we set R = @, then rewrite will proceed as follows:

64

line 3 Since Topy/0 # nil, then R = RUour! " (X) « Polqol.outi(X)}, yields R = {our" " (X) «
Polgol.out, (X)}

line 7 — 8 We prefix My/0 with Py[@]. Then, we have R = R U {qg(’[m (a)}, hence:
oo outt"N(X) — Pilgol.outi(X)
| e < '
line 9 We have Pi[qo].out;(X) in R.

line 10 We have Pi[gg].out(X) € Ay/0.
line 11 T = {g(a)}.

line 12 We take the output atom from Pj[qo].out;(X), and prefix it with P[{g(a)}]. This
yields outf‘ lt1@H %y Then, we replace P1[qo].outi(X) with outf‘ @ x) Hence:

R OMIOP] UM(X) P Outfl[{ql(a)}](x)
g6""@) —

line 13 We take (M /{q1(a)})lous, » prefix it with Pi[{g1(a)}], and add it to R. Then:

Outgl[m(X) - OMtfl[{ql(a)}](X)
P[0
R = 05""N@)
Outfl[{%(a)}](a) —

In the end, we return R as the result.
As a summary, the Evaluator works as follows:

e In the beginning of the evaluation ic-Stratified Checking component always makes sure
that we work on ic-stratified. If the program is not ic-stratified, we simply stop the evalu-
ation process.

o Next, we rewrite the rules, add additional facts from previous computation (all is done by
the Rewrite component).

e Then, Rule Evaluator evaluates the rewritten rules. If in this phase an answer set is found,
the answer set is sent to the Output Printer. However, if further computation is needed,
we go back to ic-Stratified Checking passing the next value call C to be evaluated.

6.2 Input/Output Format

In this section we show how to specify an MLP as an input to TD-MLP and how to interpret the
returned result.

65

6.2.1 Input

We base our syntax on dlvhex syntax* and explain here only the extension with respect to MLP.
A module requires a header and the corresponding rule set. More than one module can be
specified. In addition, an input file can also contain one or more modules.

o module header: consists of module name and formal input parameter. Each module can
have zero, one, or more formal input parameter.

#module (<MODULENAME>, [<PRED>/<ARITY>, ...]).

Example:

— Module graphR with empty input parameter:
#module (graphR, []1).

— Module modReachable with two input parameters (predicate p which has arity one
and g which has arity two):
#module (modReachable, [p/1, q/2]1).

e module atom: consist of module name, (possibly zero, one, or more) input predicates, and
an output atom.

@<MODULENAME> [<INPUTPREDICATE, ...>]::<OUTPUTATOM>

Example: Suppose that r is a 1-arity predicate, s is a 2-arity predicate, and outB is an atom
in the rule set of module modReachability, then we can make a call to modReachability
with r and s as inputs and get the truth value of outB by specifying:

@modReachable[r,s]::outB

Example [6.4]and [6.5]give a clear idea of correct inputs for TD-MLP.

Example 6.4 Suppose that we have an MLP P = (m, my), where: m; = (graphR,R;), my =
(modReachablelfirst, edge], R;), and
firstVertex(a)
edge(a, b)
edge(b, c)
edge(c,d)
ok modReachablelfirstVertex, edge].reachable(c)
R = { reachable(X) first(X) }
2= reachable(X) reachable(X), edge(X,Y) |
Actually, R represents a graph showed in Figure[6.5] In the fifth rule of R; we perform a test
whether vertex c is reachable from a (note that predicate firstVertex contain a only). To perform

Ry

T T

“http://www.kr.tuwien.ac.at/research/systems/dlvhex/hexlanguage.html

66

O——(—)

Figure 6.5: Simple graph

this task, this rule calls modReachable. We pass firstVertex and edge as the inputs. Then, module
modReachable computes the reachability based on these inputs and returns the answer via the
output predicate reachable(c) We can see from the graph presented in Figure [6.5]that indeed c is
reachable from a.
A representation of P in a correct TD-MLP input format will be:
#module (graphR, []).

firstVertex(a).

edge(a,b).

edge(b,c).

edge(c,d).

ok :- @modReachable[firstVertex,edge]::reachable(c).

#module (modReachable, [first/1, edge/2]).
reachable(X) :- firstX).
reachable(Y) :- reachable(X), edge(X,Y).

Example 6.5 The MLP showed in Example can be written (in a correct format) as:
#module (main, [1).
p(@) v p(b).
getA :— @lib[p]::q(a).
#module(lib, [r/1]).
qX) - rX).

6.2.2 Output

To display an output of TD-MLP, we print each answer set in a separate line, and inside paran-
theses. An example of an output of 7D-MLP can be seen in Example [6.6]

Example 6.6 The MLP showed in Example 6.1 has two answer sets, namely:

e M!, where M!

n

ain!® = (p(B)}, and M}, /{r(b)} = {r(b), q(b)}, and

e M2, where M2

n

win! 0 = (p(a), getA}, and M}, [{r(a)} = {r(a), q(a)}.

When the input is provided to TD-MLP in the correct format as in Example [6.5] we get the
result as shown below:

(main[{}]1={p(b)}, lib[{r(b)}]1={r(),q(®}

(main[{}]={p(a),getA}, lib[{r(a)}]l={r(a),qCa})

67

Each answer set consists of <INSTANTIATION>={<INTERPRETATION>}. For example, in the
first answer set above, we have two instantiations, i.e., main[{}] and 1ib[{p(b)}]. {p(b)} is
the interpretation of main[{}] and {p(b),q(b)} is the interpretation of 1ib[{p(b)}]. Another
example of the result produced by TD-MLP can be seen in Example [6.7]

Example 6.7 The MLP about reachability in graphs presented in Example has an answer
set: M, where:

Mgrath/0 =
firstVertex(a),
edge(a, b), edge(b, c), edge(c,d), ¢, and
ok
MmadReachable/{ﬁFSt(a)’ edge(a’ b), edge(b’ c), edge(c, d)} =
first(a),
edge(a,b),edge(b, c), edge(c,d),
reachable(a), reachable(b), reachable(c), reachable(d)

The answer set that we got from 7D-MLP from solving its representation in Example[6.4]is again
intuitively similar:

(graphR[{}]={firstVertex(a),edge(a,b),edge(b,c),edge(c,d),ok},
modReachable[{first(a),edge(a,b),edge(b,c),edge(c,d)}]={first(a),edge(a,b),
edge(b,c),edge(c,d) ,reachable(a),reachable(b),reachable(c),reachable(d)})

6.3 Parameters

Dlvhex system is executed using command line:
dlvhex [OPTION] FILENAME [FILENAME ...]

Argument inside [...] is optional. In case an MLP is written in several files, then all of the files
should be listed under FILENAME.
There are several parameters in the system that is relevant to our MLP solver.

e --mlp: activates MLP mode.

e --num=<N>: specifies the maximal number N of answer sets expected. if --num=0 or not
specified, then TD-MLP returns all answer set.

e --solver=<SOLVER>: specifies the ASP solver to be used (depends on systems availabil-
ity). For example: --solver=1ibclingo or --solver=dlv. DLV is used by default.

e --split: activate instantiation splitting optimization.
For example, executing:
dlvhex --mlp simple.mlp

will give us all of answer sets of an MLP in file simple.mlp, while:

68

dlvhex --mlp --split --num=3 one.mlp two.mlp

will make TD-MLP using instantiation splitting optimization in its computation and return at
most 3 answer sets of an MLP formed by modules specified in one.mlp and two.mlp.

6.4 Usage

In this section we will give another example of solving practical mathematical problem using
MLP, namely compares the cardinality between two sets. This problem could be represented
easily in MLP by single out an element from each set one by one without introducing any
specific ordering mechanisms. Listing[6.1]and [6.2]illustrate this:

e Inmain.mlp, two sets are specified: q and r. Then, module cardinality is called with q
and r as the input parameters.

e In cardinality.mlp, q1 and g2 are the formal input predicates which receive input from
q and r (from module main) respectively. Then we single out one element from g1 and g2,
putitinto q1i and g2i respectively. We continue by calling cardinality recursively with
sets whose cardinality have been already decreased by one (qli and g2i). This proceeds
until there is no element in either set. If both sets have no element in the same step, we
will have equal in hand. Otherwise, equal will not be derived. If it has been derived,
equal is transferred backwards along the calling chain to deliver the final result.

Listing 6.1: main.mlp

#module (main, []).

qCa). q(b).
r(a). r(b).
equalQR :- @cardinality[q,r]::equal.

notEqualQR :- not equalQR.

Listing 6.2: cardinality.mlp

#module (cardinality, [ql/1, q2/1]).

qli(X) v qliCYy) :- ql(X), ql(y), X =Y.

g2i(X) v gq2i(Y) :- gq2(X), q2(Y), X =Y.

skipl :- ql(X), not qli(X).

skip2 :- q2(X), not g2i(X).

equal :- skipl , skip2 , @cardinality[qli,q2i]::equal.
equal :- not skipl , not skip2.

Using command:
dlvhex --mlp main.mlp cardinality.mlp

we will have equalQR in all answer sets:

69

(main[{}1={q(a),q(b),r(a),r(b),equalQR},
cardinality[{ql1(a),ql(b),q2(a),q2(b)}]1={gql(a),ql(b),q2(a),q2(b),skipl,skip2,
equal,q2i(b),qli(b)},
cardinality[{ql(b),q2(b)}]1={ql(b),q2(b),skipl,skip2,equal},
cardinality[{}]={equal})

(main[{}1={q(a),qb),r(a),r(b),equalQR},
cardinality[{ql(a),ql(b),q2(a),q2(b)}]1={qlCa),ql(b),q2(a),q2(b),skipl,skip2,
equal,qli(b),qg2i(a)},

cardinality[{}]={equal},
cardinality[{ql(b),q2(a)}]1={ql(b),q2(a),skipl,skip2,equal})

(main[{}]={q(a),q(b),r(a),r(b),equalQR},
cardinality[{ql(a),ql(b),q2(a),q2(b)}]1={qlCa),ql(b),q2(a),q2(b),skipl,skip2,
equal,q2i(b),qli(a)},

cardinality[{}]={equal},
cardinality[{ql(a),q2(b)}]1={ql(a),q2(b),skipl,skip2,equal})

(main[{}]={q(a),q(b),r(a),r(b),equalQR},
cardinality[{ql(a),ql(b),q2(a),q2(b)}]1={qlCa),ql(b),q2(a),q2(b),skipl,skip2,
equal,q2i(a),qli(a)},

cardinality[{}]={equal},
cardinality[{ql(a),q2(a)}]={ql(a),q2(a),skipl,skip2,equal})

CHAPTER

Experiments

In this chapter we show empirical evaluations that have been done on TD-MLP. We evaluate the
performance of the solver with and without instantiation splitting implementation. The chapter
starts by explaining how the system is set up then followed by several evaluation settings. First,
we show the evaluation on abstract and random programs. Next, we run experiments on well-
known problems with different encodings, i.e. modular and non-modular ones. We run all of our
experiment on a machine with Intel Xeon 3.00GHz quad-core processor and 16GB RAM. The
system is running on Ubuntu 10.10.

7.1 Random Programs

Experiments on random program are motivated by the curiosity to see how TD-MLP behaves
on such unexpected program. The experiments in general involves several call pattern settings
which consists of several parameter settings, such as the number of modules involved, the num-
ber of constants and predicate symbols, negation as failure, and disjunctive or non-disjunctive
case.

7.1.1 Experiment Characteristics
On experiments random programs experiments we introduce several different settings on how

modules call each other. Given an MLP P = (my, ..., m,):

e line: The call is always generated from m; to m;,; where 0 < i < n, and from m, to
m,, (in order to demonstrate the ability of the algorithm to evaluate an instantiation loop).
Figure[7.1[(a) gives an example for a line pattern for n = 4.

e ring: This module call pattern is similar to line pattern, except that in this case m, calls
my. See Figure[7.1|b) for an example of a ring call pattern with n = 4

71

72

diamond: One diamond-shape is actually created by 4 modules. If the number of modules
is more than 4, then a chain of diamonds is created. So, given 1 < i < n:

— if i can be divided by 3, then m; has two module calls, namely to m;;; and m;,; (to
create the branching mechanism).

— if i — 1 can be divided by 3, then m; has one module call to m;, ;.

— fori > 2,if i — 2 can be divided by 3, then m; has one module call to m; .

Please note that whenever we create a call to m; where j > n, we cancel the call creation,
and create a self-recursive call instead. Figure [7.1]c) gives an illustration of a diamond
call pattern with n = 6.

star: a pattern which from a main module, all library modules are called, and library
modules create a recursive call to itself:

— in mg we create module calls to mq, ..., m;_

— inmy,...,m, there is only one module call in each module, to itself.
An example of star call pattern with n = 4 can be seen in Figure[7.2{a).

tree: given a specific parameter nChild, we create a tree-shaped call in which each node
has at most nChild children. In Figure[7.2(b) we can see an example of tree-shaped call
pattern with nChild = 3 and n = 6. Since my, ..., mg do not have any child, we create a
recursive call for them.

random: the existence of module calls between each module m; tom;, where 0 < i, j < nis
created based on a random number generator and density parameter. The range of density
parameter is between O and 1. The higher the density parameter, the more likely an edge
from m; to m; created. In this pattern we cannot really know how the graph looked like, in
terms of which module calls which module. Because, apart from the density parameter, it
also depends on the random number generator. However, Figure[7.3|provide an illustration
of one example of this pattern generated with n = 4 and density = 0.25.

Apart from the module call pattern, we also do the evaluation with several different parame-
ters:

c: the number of constant symbols on each modules, where ¢ € {10, 20, 30, 40}.
p: the number of predicate symbols on each modules, where p € {10, 20, 40}.
v: the existence of disjunctive head and negation as failure, where d € yes, no
m: the number of modules, where m € {5, 10, 15, 20, 25}

other special parameters:

mo

1

m3

F-EHEHEH

4

)

(a) (b)

() (b)

Figure 7.3: Module call pattern: random

— nChild: the number of children for each node in the tree pattern, where nChild <
{2,3,5}, and

— density: the percentage of whether a call is made from a module to another module,
and from a module to itself. density € {0.10,0.15,0.20, 0.25}. This parameter exists
only in random pattern).

73

Table 7.1: Detail information from experiments on finding the first answer set of a program over
different call patterns

Call Pattern V(CGp(M)) M| # Call to ASP solver

line 11.87 808.11 23.74

ring 11.25 771.03 12.25
diamond 13.60 876.27 31.76
star 17.66 976.60 44.57

tree 15.84 951.35 38.28
random 5.50 520.00 11.50

Let M be an answer set of an MLP P run on experiments,
column V(CGp(M)) represents the average number of vertex in CGp(M),
column [M] represents the average number of ground atom that is set to true in M.

The value of each parameter is chosen in such a way that we can observe the behavior of
TD-MLP from small and simple programs to very complicated and large programs.

7.1.2 [Experiment Results

During the experiments, we run TD-MLP with its default setting (without instantiation split-
ting optimization), and with instantiation splitting optimization (activates --split option). Fig-
ure[7.4]shows the time spent by TD-MLP to get the first answer set on overage over all parameter
setting on each call pattern. It turned out that turning on instantiation splitting optimization gives
us better evaluation time in general.

Table gives us more detailed description about what is going on in the experiments.
The table gives us different information obtained on average over different parameter settings
when TD-MLP found the first answer set of a program. Intuitively, the first column represents
the average number of module instantiations created, the second column represents the average
number of ordinary ground atoms set to true in the first answer set, and the third column is the
average number of calls made to the ASP solver. One can see these data provide us more fine-
grained information on how the evaluation time on such pattern is related to such information.
From Table[7.T|we can see that the time spent on a call pattern is relatively higher than the other
when the number of module instantiations, ordinary atoms considered, and also calls made to
the ASP solver higher.

In addition, we also investigated the relation between the number of modules to be solved
and the performance of our solver. We run the experiment over all call patterns. The result is
depicted in Figure The evaluation time showed is the average of time spent by TD-MLP to
produce an answer set, over all call patterns. As expected, the evaluation time increases with
the increasing number of modules to be solved in general. However, in this setting instantiation
splitting optimization also outperforms the default setting. The interesting point here is that the
larger number of modules we considered, the more performance we gained from instantiation
splitting optimization. This is a good sign since it means that the bigger program we have, the
more advantage we obtain from applying the optimization.

74

0.3 T T T T T T
(17.66)

(13.60)

(15.84)
0.25 |-

0.2

(11.87)

0.15 -

0.1

(with the number of instantiations)

(11.25)

0.05

Evaluation time for the first answer set (in seconds)

line ring diamond star tree random
Call pattern
default setting

instantiation splitting optimization ===

Figure 7.4: Experiment result on different call pattern

One might also curious on how TD-MLP scales, in terms on the time spent by TD-MLP to
find an answer set one after the other. For this purpose, we stored the time spent by TD-MLP
to output each answer set. As one can see from Figure [7.6] that TD-MLP behaves nicely with
the increasing number of answer found. The evaluation time increases linearly by the number of
answer set found.

7.2 Hanoi Tower

“Hanoi Tower” is a classical problem on search. Given 3 pegs and several disks, the goal is to
move all disks from the left most peg to the right most peg with the help of middle peg. Initially
all disks are in the left most peg, and placed in an order such that the bigger disk always placed
below the smaller disk. The rules are:

1. move one disk at a time.

2. only the top disk on a peg can be moved.

75

0.5 T

T
default setting —+—
instantiation splitting optimization
0.45 - E

04 | -

0.35 —

0.2 | —
0.15 —
01| —

0.05 - —

Evaluation time on average per answer set (in seconds)
o
N
[6)]
T
1

0 1 1 1
5 10 15 20 25

modules

Figure 7.5: Evaluation time with increasing number of modules

3. larger disk cannot be placed on top of a smaller one.

It is known that, for a classical Hanoi tower problem with n disks, the plan of moving all n
disks from the left-most peg to the right-most peg consists of 2" — 1 moves. In this experiment,
we set 3 pegs: a, b, and c. With a as the left most, ¢ as the right most, and b as the middle peg.
For disks, we use different setting of disks: 2, 3, 4, and 5.

In this experiment, we run not only 7D-MLP with several different setting but also DLV
and dlvhex? as comparison. The encoding for this problem is taken from [Cabalar, 2011] with
minor modification (so that it can be run under DLV and dlvhex). The reader can take a look at
the encoding in Appendix and for ordinary ASP and MLP, respectively.

In addition to DLV, in this experiment we also run TD-MLP with clingo® as the ASP solver.
Below is the complete list of TD-MLP setting run for this experiment:

(a) solver used: DLV; instantiation splitting optimization: no.

Thttp://www.dbai.tuwien.ac.at/proj/dlv/
Zhttp://www.kr.tuwien.ac.at/research/systems/dlvhex/
3http://potassco.sourceforge.net/

76

300 T T T T T T T
default setting —+—
instantiation splitting optimization

250 —
0
©
c
o 200 .
o
I}
n
£
) L]
£ 150
c
9
IS
> 100 F E
@©
>
|

50 |- E

0 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

answer set

Figure 7.6: Time vs answer set on tree call pattern

(b) solver used: DLV instantiation splitting optimization: yes.
(c) solver used: clingo; instantiation splitting optimization: no.
(d) solver used: clingo; instantiation splitting optimization: yes.

The result of the experiment can be seen in Figure [7.7} As the result and previous experi-
ments suggest, we gain better or at least the same time evaluation using instantiation splitting
optimization. The performances of TD-MLP compare to DLV and dlvhex are also not so far
behind. This is a good sign although it is not surprising since the encodings of the problem
(ordinary and MLP case) are nearly the same. However, one can spot the most interesting cases
here is that the performance of TD-MLP(c) and TD-MLP(d) are far better than TD-MLP(a) and
TD-MLP(b) and even DLV, and dlvhex. This is due to the different setting of the solver. In this
particular case, clingo performs better.

Experiment with 4 and 5 disks justify our decision not to fix the choice of our ASP solver
into one particular solver (the reason behind providing parameter --solver for the system). The
experiment suggests that changing the ASP solver used from DLV to clingo gives us a huge

77

1000 [T T T
o
[100 e
8]
%]
o2}
o
—_ 10 F 4
(%)
o
ey
o
o
@
%] 1} -
=]
(0]
£
§e]
IS
=
g 0.01 =
L
0.001
2 disks 3 disks 4 disks 5 disks
DLV TD-MLP[DLV,no] TD-MLP[clingo,no] =3
divhex == TD-MLP[DLV,yes] === TD-MLP[clingo,yes] ——

Figure 7.7: Hanoi tower experiments

evaluation time difference for this particular problem. Since there many ASP solvers currently
being independently improved by its developer, experimenting with different solvers could be a
hint to gain better performance, especially when our favorite ASP solver perform surprisingly
bad on a particular case.

7.3 Packing Problem

The problem (and its encoding in ASP syntax) is taken from the ASP Competition 2011 4.
Packing problem consists of a rectangular area and a set of squares in which require us to pack
all squares into the rectangular area without any overlapping squares. The dimension of the
rectangular area and each square is given. White space left in the rectangular area is allowed.
The original encoding from the competition has been slightly modified in order to conform
with dlvhex syntax. An interested reader can take a look the code at Appendix Then we
compare the execution time of solving this problem using DLV, dlvhex, and TD-MLP. For MLP

“https://www.mat.unical.it/aspcomp2011/

78

25 T T
~— 2 B N
%)
ko]
c
o
O
3
s r i
N—’
)
£
c
s T il
IS
=
©
i

05 | 4

0 — [
setting
DLV mmmm TD-MLP[DLV] Enc.1 TD-MLP[DLV] Enc.2 =3
divhex 3 TD-MLP[clingo] Enc.1 s TD-MLP[clingo] Enc.2 C——3

Figure 7.8: Execution time for Packing Problem

setting, we had created two encodings which can be seen in Appendix [B.2.2] (encoding 1) and
[B.2.3] (encoding 2). The main idea is to differentiate between the input part and the problem
solving part.

From the experiment results, divhex and TD-MLP (encoding I) run a little bit slower than
DLV. This could be understood since both of them actually utilize DLV in their computation.
The time difference between them and DLV could be regarded as the overhead occurring when
they call DLV.

Since encoding 1 does not really differ that much from the original ASP encoding, its execu-
tion time also does not have a big difference, as expected. But this is not the case with encoding
2. We see an obvious different evaluation time between encoding 1 and encoding 2. The big
difference basically caused by module generatePos in encoding 2. This module creates a choice
point (disjunction case) that forces our solver to make a call to DLV many times (to combine the
output from generatePos and module solvePacking). However, using clingo in this setting we
could reduce the evaluation time for encoding 2 for more than 50%.

79

Table 7.2: Even-Odd experiments using TD-MLP

Evaluation time

lgl V(CGp,(M)) M| # Call to ASP solver (in seconds)

20 23 553 45 0.16
40 43 1893 85 0.64
60 63 4033 125 1.74
80 83 6973 165 3.99
100 103 10713 205 7.62
120 123 15253 245 13.40
140 143 20593 285 22.38
160 163 26733 325 34.93
180 183 33673 365 52.35
200 203 41413 405 73.63

Let M be an answer set of an MLP Pg run on experiments,
column V(CGp,(M)) represents the average number of vertex in CGp, (M),
column |M]| represents the average number of ground atom that is set to true in M.

7.4 Even-Odd

Finally, we tested the performance of 7D-MLP on Even-Odd program in Example 2.25] Even-
Odd program, as we know, tests whether a set g has an even or odd number of elements. The
idea of the experiment is to increase the number of elements (constant symbols) in g, and then
observe the evaluation time needed to get the first answer set of the program, how much time
does TD-MLP need to solve the problem with increasing number of elements in the set.

In this experiment, we fixed the system setting to:

(1) instantiation splitting optimization is activated, and
(ii) clingo is used as the backbone solver.

This is due to the fact that the default setting took much more time than the setting described
previously. For example, the default setting took around 50 seconds to solve Even-Odd program
with 100 elements in g, compare to only less than 10 seconds using the setting with clingo and
instantiation splitting optimization.

The details of the experiment result is given in Table One can see how the number of
instantiations, the number of ordinary ground atoms considered, and called to clingo grow as the
number of constant symbols in g increases.

The number of instantiation grows with only three difference from the number of constants
in g. This is due to the nature of Even-Odd program which single-out the elements in g one
by one, creating n instantiation, where 7 is the number of elements considered in ¢g. The other
three instantiations: one instantiation is created for the main module in the beginning, and two
instantiations for P, and P3, in the form of empty input, are created when all elements has been

80

singled-out (then they form a cycle of value call). Please recall that P; is the main module, P>
and Ps3 alternately test whether the number of elements is even or odd respectively.

The number of call to the ASP solver is almost doubled compared to the instantiation since
we need to evaluate each instantiation twice (except the last one). One call to evaluate the bottom
(to provide an input for the module call) and one call after one module call has been solved. Note
that in Even-Odd program, each module has exactly one module atom.

From Table[7.2] we also see that the evaluation time grows rapidly with the increasing num-
ber of constants (elements in g) considered. This can be understood since not only the number of
call to the answer set solver grew, but also because we always sent a program with bigger Her-
brand base (as the number of constants increases) to the answer set solver, which then caused a
bigger ground instance, and longer time is needed for evaluations.

Looking at such dramatic increase in the time spent by TD-MLP, it triggered our curiosity to
do the experiment on an ordinary ASP solver as well. For this purpose, we create an encoding
for Even-Odd program in ordinary ASP.

Listing 7.1: Even-Odd program with ordinary-monolithic encoding

% put q here: q(a). q(b).

% (a) create a pair

pX,Y) v p2(X,Y) :- gq(X), q(Y), X!=Y.

% (b) make sure that the element is unique
- pX,Y), pX,Z), Y!=Z.

- pX,Y), p(Z,X), Y!=Z.

- p(Y,X), pX,2), Y!=Z.

- p(Y, XD, p(Z2,X), Y!=2Z.

% (c) mark which element is 1in

in(X) :- pX,Y).

in(Y) :- p(X,Y).

% (d) cannot be two elements out in the same time
- p2(X,Y), not in(X), not in(Y).

% (e) get the result

odd :- q(X), not in(X).

even :- not odd.

Given a predicate g with some elements, then the idea behind the program in Listing [7.1]is
to:

(a) Put all elements of g in a set of two element (pair). In the program above p represent the set
of pair that we want, and p, represent outliers.

(b) Make sure that once an element has been put into a pair, it cannot be appear in another pair.
(c) Mark whether an element from ¢ has been put into p.

(d) Force that at least only one element out of p. Because, if there is two elements out of p, then
actually both of them can form a pair. This requirement is required so that p is condense. In
other words, if ¢ has even number of elements, all of them will be in the pair.

(e) The result is odd if there is one element of g that is not in p. Otherwise, it is even.

81

300 T ' T
TD-MLP
clingp —e—
DLV

250 —
0
©
c
o 200 [.
o
Q
%]
E
(] L]
£ 150
c
9
IS
> 100 F E
©
>
L

50 |- E

0 &= P 1 1
0 50 100 150 200

elements in the set

Figure 7.9: Evaluation time comparison on Even-Odd program on TD-MLP, clingo, and DLV

In addition to the pairing solution in Listing [7.1] we also create another ordinary encoding
for Even-Odd problem (see Appendix [B.3.2)). Suppose that we want to know whether the set ¢
has an even or odd number of elements, then the idea of this encoding is:

(a) Given a set of label with successor relation, we assign those label to each element of ¢ and
make sure that each element of g got exactly one label.

(b) We assign each element as an odd or even element based on the successor relations of the
label. We start by defining the element which has the smallest label as odd. Then, we define
the element which has the label which as the successor of the smallest label as even. We
continue this labeling process onto each element alternately between odd and even until all
elements in g has been labeled.

(c) The final result is taken from the element which has the largest label. If this element is
assigned to odd, then the final result is odd. Otherwise, the final result is even.

This labeling solution, actually is an approach to solve Even-Odd problem that is more
similar to our MLP encoding (compare to the encoding in Listing [7.2)). It alternately assigns

82

Table 7.3: The evaluation time for solving Even-Odd problem with ordinary encoding (in sec-
onds)

Encodingl Encoding?2
lal clingo DLV clingo DLV
5 0.01 0.01 1.18 10.05
10 0.02 0.02 394 100.12
15 0.03 0.09 852 >300
20 0.07 030 >300 >300

Encodingl = Listing|7.1
Encoding2 = Appendix

odd or even for each element in the set g. However, we do not compare the performance of this
encoding against TD-MLP because its performance is not as good as the encoding in Listing[7.1]
clingo and DLV, both of them need much longer time to solve the Even-Odd problem with this
solution. See Tabel for details.

Next, we use both clingo and DLV to run on the program in Listing with increasing
number of elements in g. Then, we compare the evaluation time with the MLP encoding (see
Appendix [B.3.1) run on TD-MLP. The result is depicted in Figure[7.9] In this case, MLP shows
its strength. TD-MLP outperform clingo and DLV and has much better evaluation time. One
could understand that the main reason why both of our ordinary ASP solver have very low
performance in this problem is because of the choice rule created by the first rule. MLP encoding
for this problem as in Example [2.25] also has a choice point. However, the choice point that it
has does not really problematic as in the first rule in Listing Instead of creating a pair
(combination of two), MLP cleverly create another set copy, minus one element. Then, call
another module to inspect it. This process goes on recursively until all elements has been singled
out (see Example [2.25] for detail explanation). This is possible because one of the strengths of
MLP that it admits mutual recursive calls between modules. However, this cannot be done in
an ordinary-monolithic ASP encoding. Since the problem is to decide whether a set has even or
odd number of elements, transferring the elements into pairs is a solution. We know that if all
elements can be transferred into pairs, then the number of elements on the set is even. Otherwise,
itis odd. Labeling also became another solution. But we know that in this case, the performance
of labeling solution is not as good as the pairing solution.

7.5 Summary

From the experiments that have been done, there are several facts that could be pointed out:

e Most of the times, TD-MLP with instantiation splitting optimization performs better (at
least it has the same performance) compared to 7D-MLP with default setting. And, the
bigger the program is, the more performance we gain from the optimization.

83

84

¢ Time difference on getting the next answer set from the current answer set increases lin-
early with the number of answer sets.

e [t is a good approach not to fix the choice of the ASP solver used in TD-MLP. Since
currently the characteristics and performance of different ASP solver is quite varied, trying
different ASP solvers could yield far better performance (even hundred times better).

o Although it mostly depend on the encoding, the performance of 7D-MLP and ordinary
ASP solvers are also depend on the nature of the problem. With a nearly similar encod-
ing, performance of TD-MLP is not far behind the ordinary ASP solver. However, with
careful implementation and utilized the full features of MLP, we have shown that 7D-
MLP do provide another option on how to solve a problem, and confidently outperforms
the performance of an ordinary ASP solvers.

CHAPTER

Conclusion and Further Work

This chapter concludes the thesis and summarizes the main points. In Section [8.1| we conclude
our work, state the progress and results we have gained so far. In addition, for such a new and
challenging research, it is also important to give an overview on what still needs to be done and
what can come next. We give an overview about the further work in Section [8.2]

8.1 Conclusion

In this thesis we consider the concept of modular nonmonotonic logic programs (MLPs). It
is a novel formalism defined in [Dao-Tran et al., 2009a] for logic programs to embrace many
advantages offered by modularity paradigm. Using MLPs, logic programs can now be defined as
modules. Program decomposition becomes concrete and easier than before. MLPs also offer a
possibility to handle dynamic input for module calls and allow recursive calls between modules.
Seems to be very common in most of imperative programming languages, but such features are
quite recent in nonmonotonic logic programming.

In this thesis, we have developed an evaluation system for MLPs called TD-MLP. Since
MLPs has high computational complexity, a nontrivial way of evaluation is needed. We based
our system on the top-down evaluation technique in [Dao-Tran et al., [2009b]]. It was the first and
the only approach available at the time this thesis is written.

Furthermore, based on deep analysis we noticed that there is a chance for performance im-
provement by forgetting the rules that had been evaluated before (instead of always considering
the complete rules). From this observation, we develop an instantiation splitting technique that
can be integrated into the algorithm in [Dao-Tran et al.,[2009b]]. Empirical evaluations show that
instantiation splitting optimization offers better the performance in general. Experiments also
suggest that the bigger the program is, the more performance one can gain from the optimization.

Since evaluation of MLPs is quite expensive compared to the evaluation of ordinary ASP
in the worst case scenario, we also carried out experiments involving both encodings. We re-
encode the ordinary ASP encodings into MLP and run it on TD-MLP. Experiments suggest that

85

MLP produce only a little time overhead. On another experiment that we set on solving Even-
odd (cardinality of a set) problem, MLP outperforms ordinary ASP encodings. We have created
two ordinary encodings to solve this problem, i.e., pairing and labeling solutions, and an MLP
encoding which single out an element of the set one by one. The experiment shows that the
ordinary encodings cannot solve the problem with 100 elements in the set under 300 seconds,
while the MLP encodings can solve it on less than 10 seconds only.

8.2 Further Works

There are still many open problems that need to be tackled. Some of them are, but not limited

to:

86

e The evaluation technique introduced in [Dao-Tran et al.,|2009b] is quite successful. How-

ever, it is restricted to ic-stratified MLPs. To push MLPs even further, one need to find
more expressive fragments of MLPs that still allow for efficient evaluation techniques.

We have stored and reused information about solved module atoms in an indexed set of
module atoms (see data structure A in Algorithm [5.1)). However, one can go further with
tabled evaluation techniques introduced in [Chen and Warren, [1996]. The idea is to store
the results of previous computations to be used later. However one needs to be careful not
to store all information, i.e., answer sets from all instantiations obtained since the number
of answer sets caused by disjunctive rules or unstratified negation can be exponential.
To limit the size of such table and further investigation for a replacement strategy, i.e.,
choosing which elements need to be kept or discarded can be another topic of interest.

When there are two or more module atoms that can solved in simultaneously (they do not
depend to each other, and all of their inputs can be completely prepared), several ideas can
be applied:

— Choose a module atom that can narrow the computation tree. This can be achieved by
defining a heuristics approach or machine learning algorithms to estimate the number
of choice points that will be created (potentially) from a particular instantiation.

— Investigate the possibility to apply parallel (possibly distributed) algorithms to evalu-
ate the module atoms at the same time. However, a redundant computation can occur
when more than one process computes the same instantiation. One has consider this
trade off and take it into account when devising such algorithms.

As we here seen in the experiments, choosing a different ASP solver as the backbone can
yield a better evaluation time (even by two orders of magnitude). Since the performance
behaviors of ASP solvers are quite diverse, we have to keep in mind that parameterized
backbone solver is a always a good idea.

Bibliography

Anastasia Analyti, Grigoris Antoniou, and Carlos Viegas Damasio. Mweb: A principled frame-
work for modular web rule bases and its semantics. ACM Trans. Comput. Logic, 12:17:1-
17:46, January 2011. ISSN 1529-3785.

Chitta Baral, Juraj Dzifcak, and Hiro Takahashi. H.: Macros, macro calls, and use of ensembles
in modular answer set programming. In International Conference on Logic Programming.
Springer Verlag, 2006.

Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczyriski. Answer set programming at a
glance. Communication of the ACM, 2011. (to appear).

Antonio Brogi, Paolo Mancarella, Dino Pedreschi, and Franco Turini. Modular logic program-
ming. ACM Trans. Program. Lang. Syst., 16:1361-1398, July 1994. ISSN 0164-0925.

Michele Bugliesi, Evelina Lamma, and Paola Mello. Modularity in logic programming. J. Log.
Program., 19/20:443-502, 1994.

Pedro Cabalar. Answer set; programming? In Marcello Balduccini and Tran Son, editors, Logic
Programming, Knowledge Representation, and Nonmonotonic Reasoning. Essays Dedicated
to Michael Gelfond on the Occasion of His 65th Birthday, pages 334-343. Springer Verlag,
2011. ISBN 978-3-642-20831-7.

Francesco Calimeri and Giovambattista [anni. Template programs for disjunctive logic program-
ming: An operational semantics. Al Commun., 19:193-206, August 2006. ISSN 0921-7126.

Weidong Chen and David S. Warren. Tabled evaluation with delaying for general logic pro-
grams. J. ACM, 43:20-74, January 1996. ISSN 0004-5411.

Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. Modular nonmono-
tonic logic programming revisited. In Proceedings of the 25th International Conference on
Logic Programming, ICLP °09, pages 145-159, Berlin, Heidelberg, July 2009a. Springer-
Verlag. ISBN 978-3-642-02845-8. doi: http://dx.doi.org/10.1007/978-3-642-02846-5_16.
URL http://dx.doi.org/10.1007/978-3-642-02846-5_16.

Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. Relevance-driven
evaluation of modular nonmonotonic logic programs. In Proceedings of the 10th Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR ’09, pages

87

http://dx.doi.org/10.1007/978-3-642-02846-5_16

87-100, Berlin, Heidelberg, September 2009b. Springer-Verlag. ISBN 978-3-642-04237-
9. doi: http://dx.doi.org/10.1007/978-3-642-04238-6_10. URL http://dx.doi.org/10.
1007/978-3-642-04238-6_10.

Thomas Eiter, Georg Gottlob, and Helmut Veith. Modular logic programming and generalized
quantifiers. In Proceedings of the 4th International Conference on Logic Programming and
Nonmonotonic Reasoning, LPNMR °97, pages 290-309, London, UK, 1997. Springer-Verlag.
ISBN 3-540-63255-7.

Thomas Eiter, Giovambattista lanni, Roman Schindlauer, and Hans Tompits. A uniform integra-
tion of higher-order reasoning and external evaluations in answer-set programming. In IJCAI,
pages 90-96, 2005.

Thomas Eiter, Giovambattista lanni, Roman Schindlauer, and Hans Tompits. dlvhex: A system
for integrating multiple semantics in an answer-set programming framework. In Michael Fink,
Hans Tompits, and Stefan Woltran, editors, WLP, volume 1843-06-02 of INFSYS Research
Report, pages 206-210. Technische Universitit Wien, Austria, 2006.

Thomas FEiter, Giovambattista lanni, and Thomas Krennwallner. Answer Set Programming: A
Primer, pages 40—110. Springer-Verlag, Berlin, Heidelberg, 2009. ISBN 978-3-642-03753-5.
doi: 10.1007/978-3-642-03754-2_2.

Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Recursive Aggregates in Disjunctive Logic
Programs: Semantics and Complexity. In José Julio Alferes and Jodo Alexandre Leite, editors,
Proceedings of the 9th Conference on Logics in Artificial Intelligence (JELIA 2004), volume
3229 of LNCS, pages 200-212. Springer, September 2004. doi: 10.1007/b100483.

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving. In
M. Veloso, editor, Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI’07), pages 386-392. AAAI Press/The MIT Press, 2007.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In ICLP/SLP, pages 1070-1080. MIT Press, 1988.

Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Comput., 9(3/4):365-386, 1991.

Tomi Janhunen, Ilkka Niemeld, Dietmar Seipel, Patrik Simons, and Jia-Huai You. Unfolding
partiality and disjunctions in stable model semantics. ACM Trans. Comput. Log., 7(1):1-37,
2006.

Tomi Janhunen, Emilia Oikarinen, Hans Tompits, and Stefan Woltran. Modularity aspects of
disjunctive stable models. J. Artif. Int. Res., 35:813-857, August 2009. ISSN 1076-9757.

Roman Kontchakov, Frank Wolter, and Michael Zakharyaschev. Logic-based ontology compar-
ison and module extraction, with an application to dl-lite. Artif. Intell., 174(15):1093-1141,
2010.

88

http://dx.doi.org/10.1007/978-3-642-04238-6_10
http://dx.doi.org/10.1007/978-3-642-04238-6_10

Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The dlv system for knowledge representation and reasoning. ACM
Trans. Comput. Logic, 7:499-562, July 2006. ISSN 1529-3785.

Yuliya Lierler. cmodels - sat-based disjunctive answer set solver. In Chitta Baral, Gianluigi
Greco, Nicola Leone, and Giorgio Terracina, editors, LPNMR, volume 3662 of Lecture Notes
in Computer Science, pages 447-451. Springer, 2005. ISBN 3-540-28538-5.

Vladimir Lifschitz. What is answer set programming? In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 1594-1597. MIT Press, 2008.

Vladimir Lifschitz and Hudson Turner. Splitting a logic program. In Proceedings of the eleventh
international conference on Logic programming, pages 23-37, Cambridge, MA, USA, 1994.
MIT Press. ISBN 0-262-72022-1.

Fangzhen Lin and Yuting Zhao. Assat: computing answer sets of a logic program by sat solvers.
Artif. Intell., 157(1-2):115-137, 2004.

Emilia Oikarinen and Tomi Janhunen. Achieving compositionality of the stable model semantics
for smodels programs. Theory Pract. Log. Program., 8:717-761, November 2008. ISSN
1471-0684. doi: 10.1017/S147106840800358X.

Emilia Oikarinen and Tomi Janhunen. A translation-based approach to the verification of mod-
ular equivalence. J. Log. Comput., 19(4):591-613, 2009.

Ray Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81-132, 1980.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (3rd Edition).
Prentice Hall, 3 edition, December 2009. ISBN 0136042597.

Tommi Syrjdnen and Ilkka Niemeld. The smodels system. In Thomas Eiter, Wolfgang Faber,
and Miroslaw Truszczynski, editors, LPNMR, volume 2173 of Lecture Notes in Computer
Science, pages 434-438. Springer, 2001. ISBN 3-540-42593-4.

Luis Tari, Chitta Baral, and Saadat Anwar. A language for modular answer set programming:
Application to acc tournament scheduling. In In Proc. of the 3rd International Workshop
on Answer Set Programming, volume 142 of CEUR Workshop Proceedings, pages 277-292,
2005.

&9

APPENDIX A I

Experiment Results

91

[s2pnpouy]-[sapnig]-[10% |-[§poqs]-[prays]-[saiwopaidy |-[1upisuody-oulj-appopy

- 0 ¥6'8¢ 8¢€91 ¥6'05€ LY LY1 66 V16V £8°¢80¢C SOv9Sy LT'LE6T 66'9C 00'81¢ 0 L9°01 01-0¥-01-01-C-S-0C-aul[-3[NPON
- 0 Y0'8¥1 8¥'0v1 8¢ LTI 0S¥€01 12°9%891 LISYSY1 e 10vs1 eeTIPEl LY vy £8'€6S S0 0501 01-0C-01-01-C-S-0T-aul[-3[NPOIN
- - 100 L00 000 00l LO'1 00'1T LO'T 00'1¢C 6C°0¢ 79°08% €50 0501 01-01-01-01-C-G-0T-2ul[-3[NpOJN
- - 10°0 €00 000 00°1 0L SL0C Y0'1 eL'oc €c6l STILY 0 8¢°01 01-S-01-01-C-S-0C-2ul[-9[NPOIN
- - 200 oro 000 00°1 LO'1 00°'1C LO'1 00'1¢C LE6E 05°008 €50 0501 01-01-01-0T-C-S-0T-2ul[-3[NpO]N
- - SN 61°0 68°¢ 8¢€T w99 [h44 $$'T9 sTey £6°ee SL'T8Y 50 29°01 01-01-01-S1-C-S-0T-2ul[-3[NPON
- - 100 L0°0 000 00T LO'T 00'1C LO'T 00'1¢C 6C°0¢ 7908y £5°0 0c01 01-01-01-01-C-S-0C-aul[-3[NpON
- - P81 8Y'el 8Y'€61 88'LY1 66'760¢ CcI'LLTT L9'¥06T A 4 STevs ce0 88°01 01-01-01-6-T-6-0T-2ul[-9[NPOIN
- 10 €0°L L6’ 18'1¢C STyl 09'8901 0S'1€9 689101 819 1€°66 CIL8cTl 90 STSe ST-01-01-01-C-S-0C-2ul[-9[NPOJA
- 10 0L'o 0l 88°C (394 LT901 00°¢€91 e0l L96ST 10°0% 001766 170 £€8°0¢ 0C-01-01-01-C-S-0C-aul[-3[NPON
10 - 9Tl 00l €9°L L1'9 8¢€70T L9891 9IL'Y61 05°€91 LEYE 0S'99L 0 L9°ST SI-01-01-01-C-S-0C-ul[-9[NPOA
- - 10°0 LO0 000 00°1 LO'1 00'1C LO'1 00'1¢C 6C°0¢ 79°08% €50 0501 01-01-01-01-C-S-0C-2ul[-3[NpON
- - v'0 LT°0 96'01 88V 79°86 889 89°L8 00°¢y £€6'S¢ 05°69¢ 000 009 S-01-01-01--S-0¢-2ul-9[NPON
- - I1°0 €00 901 91 0L'81 88'C¢ [S WA Sa43 Y1'8L1 0S°L19C 000 0011 01-01-01-01-C-0%-0C-2ul-9[npON
- - 200 1o 000 00T 000 00T 000 00°CC P1°691 79°¢8¢Cl 000 00°TT 01-01-01-01-C-0¢-0C-2ul]-3[npON
- - 8L0 990 LES m9°¢ 9T 011 29901 €0°S01 00201 6L 1S 0S'LIL 0 2901 01-01-01-01-C-01-0C-2ul-3[NPON
- 10 06'C 140! £€C'Te 006 145944 8¢°081 16'cey 8¢TLI SY'8¢ GL'GC8 90 SLOT 01-01-01-01-C-S-0-aul-3[NPON
0 - 100 600 000 001 o1l (are ort 0zT'1c LS'ST 00°6L9 S0 0901 01-01-01-01-C-S-0¢-aul[-3[NPON
- - 100 L00 000 00T LO'1 00'1T LO'T 00'1¢C 6C°0¢ 79°08% €50 0501 01-01-01-01-C-S-0T-aul[-3[NpOJN
- - 10°0 L00 000 00°1 0'1 STl1¢ Y0'1 eT1c 16Tl 00°16C 0 2901 01-01-01-01-C-G-01-3ul[-3[NPON
- - I¥'C 9¢'l 000 00°1 €60 0s'1T €6'0 0s'1¢ vS161S SL'6T6C 90 SLOI 01-0%-0-01-1-S-0C-2ul[-9[NpPOIA
- - 200 o1ro 000 00°1 0L ST1T ¥0'1 S veer SASNSS 0 2901 01-02-0-01-1-S-0C-2ul[-9[NpPOIN
- - 100 L0°0 000 00T €60 0¢°0C £€6'0 0¢°0C 80T 8¢C8Y 90 STo1 01-01-0-01-1-S-0C-=ul[-9[NPOIA
- - 100 €00 000 001 Y01 STI¢ Y01 ST1e S¥ol 08881 60 2901 01-6-0-01-1-5-0T-2ul[-9[NPOIA
- - 100 L0°0 000 00T 01 SL0C Y01 SLoc 80°ST 88°60S 0 8¢°01 01-01-0-0C-1-S-0C-=ul[-9[NPOIA
- - 100 80°0 000 001 LO'T 00'1C LO'T 00'1¢C 120¢ ST 18y £5°0 0501 01-01-0-S1-1-S-0C-ul[-9[NPOJA
- - 100 L00 000 00l €60 05°0C €6'0 05°0C 8C°0C 8¢T8Y 90 STol 01-01-0-01-1-S-0C-2ul[-9[NPO]A
- - 10°0 L00 000 00°1 0'1 STl1e Y0'1 eT1c 68°LE 8¢PES 0 2901 01-01-0-S-1-S-0T-3ul[-9[NPOIA
- - €00 LT0 000 00°1 1.0 SL'IS IL°0 SL'IS €eop SLISTI Se0 88°6C ST-01-0-01-1-S-0C-ul[-9[nPOAL
- - 200 0c0 000 00°1 01 STy ¥0'1 Sai4 £6'8¢S 0Sv101 60 90T 0C-01-0-01-1-S-0C-2ul[-9[NpPOIN
- - 200 Y10 000 00T LO'T 00'TE LO'T 00'1¢ IL°LT 8CTYL £6°0 (VY SI1-01-0-01-1-S-0C-_ul-9[nPOAL
- - 100 L0°0 000 00T €60 05°0C £6'0 0¢°0C 8C°0C 8¢T8Y 90 STo1 01-01-0-01-1-S-0C-2ul[-9[NPO]A
- - 000 €00 000 001 10 SLIT 1L°0 SLTT TT'8T 00'96T S0 88°¢ S-01-0-01-1-S-0T-9uI[-3[nPON
- - €0°0 LT°0 000 001 €60 0s°1T €6'0 0s'1C LS0TT SLTOYT 90 SLOT 01-01-0-01-1-0t-0C-aul[-3[NPON
- - 100 cro 000 001 €60 0s'1T €6'0 0s°'1¢ LTOL SLYLTI 90 SLOT 01-01-0-01-1-0C-0C-2ul[-3[NpON
- - 10°0 800 000 00°1 0'1 STl1e ¥0'1 eT1e €0°6T SL'GEL 0 2901 01-01-0-01-1-01-0C-3ul[-3[NPON
- - 200 110 000 00°1 LO'1 00'1C LO'1 00'1¢C or' 111 §T'T66 €50 0501 01-01-0-01-1-S-0F-2ul[-9[NpPOIA
- - 10°0 600 000 00°1 €60 0s'1C €60 0s'1¢C 6818 8€90L 90 SLOT 01-01-0-01-1-S-0¢-2ul[-9[NpPOIN
- - 100 L00 000 00T €60 0¢°0C £€6'0 0¢°0C 80T 8¢C8Y 90 STo1 01-01-0-01-1-S-0C-=ul[-9[NPO]A
- - 000 900 000 001 LO'T 00°1¢T LO'T 00°1¢C 88°¢C1 00°€0€ €50 001 01-01-0-01-1-S-01-3ul[-9[NPOIN
JNO-WoW Jno-owrn AJP'PIS 3ae AJP'PIS 3ae AP'PIS 3ae AJD'PIS 3ae AJP'PIS 3ae AJP'PIS e srdwex

9011083y swlL, SV [e0L ATQ WoL] SV ATd OL I1®D Al (W 7490)A ! d

Sumids uonenueisur Jnoym uzened oury 1V dqeL

92

[sapnpousg]-[sajnag]-[10U9][Spoqu]-[ppays]-[sapotpasdy]-[upisuoog]-aulj-apnpop

- 44 1£ce S¥'6 ¥6'0S€ L9'LY1 66'v16¥ £8°¢80C SOv9SY LT°LE6T 66'9C 00°81¢S w0 L901 01-0%-01-01-T-S-0C-2Ul[-2[NPOIN
- 0 oL6vl Srecl 1ceort €€9¥6 SELTOST 00°0L6¢ET Lo'Tlev] L1'€68C1 Ly vy £8°€65 S 00T 01-0C-01-01-C-S-0C-9ul[-[MPON
- - 100 S0°0 000 001 LO'T 00'1¢ LO'T 00°1¢C 6C0¢ 908y €50 0S50l 01-01-01-01-C-S-0C-9ul[-3[MPOIA
- - 000 00 000 001 Y01 SL0T Y0l SL0T €561 STILY 60 8€'0l 01-5-01-01-C-5-0T-SUl[-9[NPOJA
- - 00 L00 000 001 LO'T 00'1¢ LO'T 00°1¢C LE6E 057008 €50 050l 01-01-01-0C-C-S-0C-9ul[-o[NPOIA
- - 8C0 S1°o 68°¢ 8€C w99 [$h44 ¥$'C9 sTey £5ee SLT8Y 0 901 01-01-01-ST-C-S-0C-2Ul[-o[NPOIN
- - 10°0 S0'0 000 001 LO'T 00°'1T LO'T 00°1C 6T°0¢ 9°08% £5°0 0501 01-01-01-01-C-S-0C-_Ul[-2[NPOIN
- - 06°¢l 1ot 8v'¢6l 88'LVYI 66760¢ Cr'LLTe L9'¥06C §ToelT S8'SYy STEVS Se0 8801 0I-0I-01-S-C-S-0C-SUl-9[NPON
- 1o L6'S see 18'1C STyl 09'8901 0S'1€9 689101 ST8I9 1£°66 CI'L8zl 9’0 STST ST-01-01-01-CT-S-0T-2ul-2[NPOIN
- - S0 18°0 88C €y LT901 007€91 el L96ST 10°0¥ 00166 170 €8'0¢ 0C-01-01-01-C-S-0¢-2Ul-2[MPON
o - 86°0 8L°0 €9°L L9 8€°C0C L9891 9Lv61 05°€91 LEYE 0S°99L (43 L9°ST S1-01-01-01-C-S-0C-Ul-9[NPOIN
- - 10°0 SO0 000 001 LO'1 00'1¢ L0l 00°1¢C 600¢ 908y €50 0S50l 01-01-01-01-C-S-0C-9ul[-o[NPOIA
- - 0€'0 €ro 9601 88Y ¥9'86 88'9% 89'L8 00°ey £6°6¢ 05°69¢ 000 009 S-01-01-01-¢-S-0T-Ul-9[NPON
- - cro 81°0 90°1 Wl 0L'81 88CE SOLI sTee YI'8LI 0s°LI9C 000 0011 01-01-01-01-C-0¥-0¢-2ul[-9[NPON
- - 00 010 000 001 000 00cc 000 00'ce P1°691 98t 000 00°TT 01-01-01-01-T-0C-0T-2Ul-9[MPOIN
- - 990 50 LES 9°¢ 9C 011 29901 €0°601 0070l 6L 1S OS°LIL (4K} 2901 01-01-01-01-C-01-0C-SUl-3[MPON
- o 0€C 680 €TTT 006 149944 87081 16'cey 8€CLI St'8S SL'GS8 9’0 SLO1 0T1-01-01-01-T-S-0%-2ul[-2[NPOIN
0 - w00 LO0 000 001 or't 0T'Ie ort 01T LS'ST 00°6L9 S 090 01-01-01-01-C-S-0¢-9ul[-MPON
- - 100 S0°0 000 001 LO'T 00'1¢ LO'T 00°1¢C 6C0¢ 908y €50 00l 01-01-01-01-C-S-0C-9ul[-9[MPON
- - 100 00 000 001 01 STle ¥0'L STIe ¥6'Cl 00°16¢ 60 2901 01-01-01-01-C-5-0[-9Ul[-3[NPOIN
- - 'l §6°0 000 001 €60 0s°'I¢ €60 0s°1¢C YSI6lS SL'6T6C 9Y'0 SL'OT 0I-0%-0-01-1-S-0C-Sul[-3[MPOJA
- - 10°0 LO0 000 00°1 01 sTle Y0l sTie yeey §TSse 0 901 01-02-0-01-1-$-0C-aul[-3[MPOJA
- - 10°0 S0'0 000 001 €60 0s°0T £€6'0 0s°0c 8T°0C 8€°C8Y 9’0 STol 01-01-0-01-1-$-0T-oul[-o[MPOJA
- - 000 00 000 001 0’1 sTle 0’1 STle S0 0588y (4K} 2901 01-6-0-01-1-6-0C-2ul[-9[nPON
- - 10°0 90°0 000 001 Y01 SL0T ¥0'1 SL0tT 80°C1 88505 6o 8¢°01 0T1-01-0-0T-1-G-0C-°ul[-a[MPOIN
- - 100 SO0 000 001 LO'T 00°T¢ LO'T 00°1¢C 1coe ST18Y €50 00T 01-01-0-SI-1-S-0T-aul[-a[MpPON
- - 100 SO0 000 001 €60 0$°0¢C €60 05°0C 8C°0¢ 8€C8Y 9’0 §T0L 0I-01-0-01-I-S-0C-Sul-3[MPOA
- - 000 S0°0 000 001 01 STle ¥0'L STle 68'LE 8EPES (41} 290l 01-01-0-6-1-6-0C-2uI-9[npPON
- - €00 1o 000 001 10 SLIS 1.0 SL'IS £E9Y SL1scl Se0 88°GC ST-01-0-01-1-S-0C-Sul[-3[MPOJA
- - 10°0 91’0 000 00°1 01 STy Y0l STy €6°8¢ 0s'v101 [790 0T-01-0-01-1-S-0C-aul]-a[MpoN
- - 100 600 000 00'1 LO'1 00'1¢ LO'1 00'1¢ IL'LT 8€TYL €50 0SSl S1-01-0-01-1-S-0T-Ul[-9[NPOIN
- - 100 SO0 000 001 €60 0$°0¢C £€6'0 05°0T 8C0¢ 8€C8Y 90 §T0r OI-01-0-01-I-S-0C-Sul-3[MPON
- - 000 00 000 001 L0 SLTT 120 SLT1 8T 00°95¢ Se0 88°¢ $-01-0-01-1-6-0C-2Ul[-9[NPON
N - €00 cro 000 001 €60 0s'1¢ €60 0s°1¢T LS0CTC sLeere 90 SLOT OI-01-0-01-T-0%-0C-"Ul-2[MPON
- - 100 80°0 000 001 €60 0s°'I¢ €60 0s°1¢C LT9L SLvLTL 9’0 SLOT 0I-01-0-01-1-0C-0-2Ul-o[MPON
- - 000 900 000 001 0’1 STlIe ¥0'L STlIe €0°s¢ SLSEL (41} 290l 01-01-0-01-1-01-0C-9ul[-3[NPON
- - 100 LO0 000 001 LO'T 00'1¢ LO'T 00°1¢C (annt §TT66 €50 0’0l 01-01-0-01-1-S-Op-oul[-9[MpPON
- - 10°0 900 000 001 €60 0s°'1¢ €60 0s'1¢C 6878 8€°90L 90 SLOT 01-01-0-01-1-S-0¢-Sul[-3[MPOJA
- - 100 SO0 000 00'1 €60 0$°0C €60 05°0C 8C0C 8€°C8Y 9’0 SToI1 01-01-0-01-1-$-0C-oul[-o[MPOJA
- - 000 700 000 001 LO'T 00°1¢ LO'T 00°1¢T 88°¢C1 00°€0¢ €50 00T 01-01-0-01-1-S-01-9ul[-9[MPOIN
JNO-WAW Jno-oWl AJP'PIS 3Ae AJD'PIS 3ae AJD'PIS 3Ae AJD'PIS 3ae AJD'PIS 3ae AP'P)S 3Ae orduexg

90IN0SY SwiL], SV [e10L ATQ wolf SV ATd OL 11D Il (W ™0d)A 1w

Sumrds uonenueisur yim uiened aury 7'V dqeL

93

[s2pnpousy]-[sapnig]-[10%][Spoq]-[prayg]-[saioipaidy]-[upisuody]-Surt-anpopy

10 o 620 €€0 Is°¢ €y el 00°0¢ 1091 L9'9¢ SELL 00°80¢ 000 0001 01-0%-01-01-C-§-0¢-3ul-d[NPOIy
- - 691 SY'0L 690§ 0S°S8C vL'88¥1 8€°C96 6£'¢S8 8EELS 8¢ 00°86¥% 000 0001 01-0T-01-01-T-S-0T-3uL-9[NPOIN
- - 600 600 §S¢ §Te Loe 8¢1C L1'81 croc wcl 00°S8¥ 000 0001 01-01-01-01-C-§-0Z-Sul-o[pojy
- - 000 €00 000 001 000 0011 000 0011 SL'LT 88'C9v 000 0001 01-6-01-01-C-§-0¢-3uLI-d[MPoy
1’0 - €00 900 6v°0 6Tl 6C°¢ 98°Cl [4:X4 LSCI 60'1¢C 98°CLY 000 0001 01-01-01-0T-C-$-0T-8ul-d[NPOIy
- - 110 [AN0) 4 ILe 08°0C £v'ec 8081 1L0¢ 66'9¢ 6C'86Y 000 0001 01-01-01-$1-C-§-0T-Suu-o[pojy
- - 600 600 54 §Te Lo 8¢IC L1'81 croc (k4! 00°S8¥% 000 0001 01-01-01-01-C-§-0C-3ul-d[NPOjy
- - se'l §9°0 ov'6v ST ST'8ST 9Vl 6'80¢ 8¢€°€01 99°v¢ STE0S S€0 [450)! 01-01-01-§-2-§-0¢-SuLI-9[MPOy
- o 0L°09 6L'ST 06906 0S¥8E OF'LIV6 0S066¢ 068918 0S'LO¥E LOTY L910C1 170 LI'ST ST-01-01-01-C-S-0T-3UL-9[NPOIy
- - €10 €C0 8¢€C 00°¢ 9061 IL6€ 10v1 £V'9¢ 6L°¢l LS¥S6 000 00'0C 0T-01-01-01-T-S-0T-3uL-9[NPOIN
- - 61°0 LT0 6£°S 00 8T'eY 6T6¢ 16°LE 60°9¢ YL'LE Y1ITCL 000 00°s1 S1-01-01-01-C-$-07-3UL-9[NPOIN
- - 600 600 §SC sTe L0 8¢'1C L1'81 croc el 00°S8¥ 000 0001 01-01-01-01-C-§-0Z-Suu-o[pojy
- N 100 200 8¢'0 Il LTC 989 681 L9 6V'LT LSTVT 000 00°S S-01-01-01-C-S-07-3uL-9[NPON
- - 6£°0 il 0¢'s 88'C €0°eS SL'6T eLLY 88'LT £v'061 0s'98cc 000 0001 01-01-01-01-C-0F-0T-3ul-d[poy
- - 000 L0°0 000 001 000 00° 1T 000 0011 LTTCl SLY6CT 000 0001 01-01-01-01-2-0¢-0T-3ut-d[Mpojy
- - €00 LO0 901 w1 WL STSl LE9 [£N4! Y65 00°9%L 000 0001 01-01-01-01-2-01-0C-SulI-3[MPOy
- o ¥0°0 LOO €r'l el L9'S yIel 1494 1.ct 81°0S ILTLS 000 0001 01-01-01-01-C-§-0F-3ul-d[NPOIy
- o 16°1 80 Svvy SL'8I 60°00% SLOLT 79°66¢ 00°¢sT 69'1¢C 0599 000 0001 01-01-01-01-C-§-0g-Sul-d[pojy
- - 600 600 §S¢ §TC Loe 8¢1C L1'81 croc el 00°S8¥ 000 0001 01-01-01-01-C-$-0Z-8ul-d[pojy
- - 10°0 ¥0°0 S€0 'l £8'C 00l e SL1IT €861 05°86¢ 000 0001 01-01-01-01-C-§-01-8uL-0[NPON
- - €70 6v°0 000 00°1 000 00° 1T 000 0011 I¥'9L0C sL'16CC 000 0001 01-0%-0-01-1-$-0T-3uLI-d[MPOy
- - 10°0 900 000 00'1 000 0011 000 0011 67'8C °9°8I¢ 000 0001 01-02-0-01-1-$-0g-3uLI-d[Mpoy
- - 100 ¥0°0 000 001 000 00°TT 000 00°TT LO9€E cresy 000 0001 01-01-0-01-1-$-0C-SuLI-3[NPOA
- - 000 €00 000 001 000 0011 000 0011 Ev've 88'ILY 000 0001 01-§-0-01-1-S-07-3UL-9[NPOIN
- - 000 SO0 000 001 000 00°TT 000 00°TT 0¥'€C 00°8s¥ 000 0001 01-01-0-0T-1-§-0T-3u-d[MPOy
- - 000 SO0 000 001 000 00°TT 000 00°TT weT 0S8 000 0001 01-01-0-S1-1-§-0T-3uLI-d[Mpoy
- - 100 ¥0°0 000 00°1 000 00° 1T 000 00°TT L09¢ cresy 000 0001 01-01-0-01-1-§-0Z-SuLI-d[Mpoy
- - 10°0 ¥0°0 000 001 000 0011 000 0011 8TCE 0S°L6Y 000 0001 01-01-0-§-1-§-07-3UL-3[NPOIN
- - w0 S1'o 000 001 000 009C 000 00'9¢ wLe sc9ct - 000 00'ST ST-01-0-01-1-S-0T-3UL-a[MPO
- - 10°0 110 000 00°1 000 00'1C 000 00'1¢ 8608 007Ce0l 000 000C 0T-01-0-01-1-S-0g-3uL-a[MPOA
- - 100 L00 000 001 000 0091 000 0091 YO'I¢ 0S'8TL 000 00°ST S1-01-0-01-1-S-0C-3uL-a[MPOIA
- - 100 ¥0°0 000 001 000 00°TT 000 00°TT L09¢ cresy 000 0001 01-01-0-01-1-§-0T-Suti-d[Mpojy
- - 000 00 000 001 000 009 000 009 Ll SL'€TT 000 00°s S-01-0-01-1-6-0C-SUL-9NPON
- - 100 600 000 001 000 0011 000 00°TT 9L'961 sceore 000 0001 01-01-0-01-1-0%-0¢-8ul-d[POjy
- - 100 LO0 000 001 000 00° 11T 000 00°TT 60Tyl ggerer - 000 0001 01-01-0-01-1-0T-0T-3uL-3[NPOIN
- - 000 SO0 000 001 000 0011 000 0011 88'C9 SL'6IL 000 0001 01-01-0-01-1-01-0Z-Suu-o[NPON
- - 100 900 000 00°1 000 00°T1T 000 0011 LO'8L SL'Y98 000 0001 01-01-0-01-1-$-0-8uLI-d[POy
- - 10°0 SO0 000 00'1 000 0011 000 0011 LS9¢ 05°959 000 0001 01-01-0-01-1-G-0¢-SuLI-d[Mmpoy
- - 100 ¥0°0 000 001 000 00°TT 000 00°TT LO9€E cresy 000 0001 01-01-0-01-1-$-0C-3uLI-2[NPOA
- - 000 ¥0°0 000 001 000 0011 000 0011 0cel 0S°€le 000 0001 01-01-0-01-1-S-0-SuLI-3[MPOy
JNO-WIAW JnO-0WI} AP'PIS 3Ae AJD'PIS 3Ae AJDPPIS 3Ae AJP'PIS 3Ae AJDPPIS 3ae AP'PIS 3Ae srduex

90In0SY SwiL], SV [®10L ATQ woly SV ATd oL 11BD Al (WD Tod)A ! q

Sumids uonenueisur noym uraned Sury €'V AqeL,

94

[sapnpouig |- sapnag]-[10uay, |- [poqy |-[ppay# - [sa10o1paidy |- [1upisuod |- Suri-ampop

o 1’0 LT°0 (4] 1S°¢ (3% 4 sel 00°0¢ 1091 L9'9C SELY 00'80S 000 0001 0T-07-01-01-C-S-0C-3uL-a[POIA
- - 09°01 999 67905 0S°68CT PL'88¥1 8€7796 6£°¢S8 8€°ELS (4413 00861 000 00°0T1 01-02-01-01-C-S-0C-3uL-a[npOIA
- - Cro 600 ST ST Lot 8¢€'1T LT'81 croc 0Tl 00°68% 000 0001 01-01-01-01-C-$-0C-3uLI-o[nNPOIA
- - 000 €00 000 001 000 0011 000 0011 SL'LT 88°79Y 000 0001 01-6-01-01-2-$-0Z-3UL-MPON
10 - 200 00 610 6C'1 6C°¢ 98°CI 8T LSTI 60°1C 98°CLY 000 0001 01-01-01-0C-C-S-0T-3uL-a[npOIA
- - S1'o cro Sy'e ILe 08°0C €Y'€T 80°81 1L°0T 66'9¢ 67861 000 0001 01-01-01-S[-C-S-0T-3uLI-a[npOIA
- - ro 600 ST STt Lot 8¢'1T L1'81 c1roc 20Tl 008 000 0001 01-01-01-01-C-S-0T-SuLI-3[NPOIA
- - 991 SL'0 9 6% §TTT ST'8ST a4 6'80T 8¢€°€01 99'v¢ ST €0S Se0 cror 01-01-01-6-C-$-07-SUL-3[NpoN
- 1’0 6769 LE6T 0E¥69 L9’L6T OF'LIV6 0S066€ 068918 0S'L9¥E LOCTY L9°10T1 170 LI'ST ST-01-01-01-T-$-0C-3UL-3[npojA
- - 61°0 90 8¢€T 00°¢ 90°61 1L°6€ 10%1 £7'9¢ 6L €T LS¥S6 000 000C 0T-0T-0T-01-T-$-0T-SUL-AMPOIN
- - 8C°0 o 6¢°S 00y 8TeY 67°6¢ 16°LE 6C7°9¢ YLLE YITiL 000 00°ST ST-01-01-01-C-S-0C-3UL-[MpojN
- - cro 600 S ST Lot 8¢€'1T LT'81 croc 0TI 00°68% 000 0001 01-01-01-01--$-0T-3uL-o[NPOIA
- - 100 200 8€°0 j4! LTT 989 681 L9 6v'LT LSTYT 000 00°¢ S-01-01-01-2-$-0T-SuL-3[PON
- - 1€°0 61°0 0¢'s 88'C €0'€S SL'6T EL'LY 88°LT €7°061 0$98¢cC 000 0001 01-01-01-01-C-0F-0T-SUL-3[NPOIN
- - 100 900 000 00'1 000 0011 000 00T LT1T1 SLY6T1 000 0001 01-01-01-01-C-0Z-0T-SuL-3[NPOIN
- - €00 900 90'1 91 L TSl LE9 91 YT 68 00°9%L 000 00°0T1 01-01-01-01-C-01-0-SULI-3[NPOIN
- 0 S0'0 900 €'l &'l L9'S Il 1494 1L'C1 81°0S IL'TL8 000 0001 01-01-01-01-C-S-0p-3uL-[NPOI
- 10 08C 4! SYvy SL81 60°00% SL'OLT 79°6S¢ 00°€sT 69°1C 0S'%99 000 0001 0T-0T-0T-01-C-S-0€-3uLI-a[npOIA
- - ro 600 (S ST Lot 8¢€'1T LT'81 croc 0Tl 00°68% 000 0001 01-01-01-01-C-$-0C-3uLI-a[nNPOIA
- - 100 €00 €0 48! €8'C 00°Cl1 44 SL'TIT €861 05°86C 000 00°01 01-01-01-01-Z-§-01-3UL-9[NPOA
- - 920 €0 000 00T 000 0011 000 0011 1¥'9L0C SL'T6CC 000 0001 01-04-0-01-1-$-0Z-3UL-[MPOIN
- - 100 00 000 00'1 000 0011 000 0011 6C'8C 981§ 000 0001 01-02-0-01-1-$-0Z-3uL-MPON
- - 000 €00 000 00'1 000 00°11 000 00T LO9¢ cresy 000 0001 01-01-0-01-1-$-0T-SuL-MpoN
- - 000 €00 000 001 000 0011 000 0011 eV ¥C 88'ILY 000 00°0T1 01-6-0-01-1-$-0C-3UL-a[NPO
- - 000 €00 000 00°1 000 0011 000 0011 0r'€c 0085t 000 0001 01-01-0-02- 1-$-0C-3uLI-3[NPO
- - 000 €00 000 001 000 0011 000 0011 et 05181 000 0001 0T-0T-0-ST-T-$-0T-SUL-3[POIy
- - 000 €00 000 00T 000 0011 000 0011 LO9¢ cresy 000 0001 01-01-0-01-T-$-0Z-SUL-[MPOIN
- - 000 €00 000 001 000 0011 000 0011 8CTE 0S°L6Y 000 0001 01-01-0-6-1-$-0C-3UL-3[NPON
- - 100 1°0 000 00T 000 009¢ 000 009¢ °0°L6 ST19T1 000 00T ST-01-0-01-1-S-0C-3uL-o[NpOA
- - 100 0r'o 000 00'1 000 00°1C 000 00'1C 86'08 00C€01 000 000C 0T-01-0-01-1-S-0C-SuL-o[npoA
- - 000 900 000 001 000 0091 000 0091 Y0'I€ 08'8CL 000 00°SI S1-01-0-01-1-$-0C-SuL-3[poy
- - 000 €00 000 00'1 000 0011 000 0011 LO9¢ (4414 000 00°0T1 01-01-0-01-T-$-0¢-SuL-2[NPOIA
- - 000 100 000 001 000 009 000 009 LT SL'€TT 000 00°¢ S-01-0-01-1-G-0C-3UL-o[NPON
- - 100 800 000 00'1 000 0011 000 0011 9L°961 sTeore 0000 0001 0T-0T-0-0T-T-0-0C-3uLI-a[NPOIA
- - 000 S00 000 00T 000 0011 000 0011 60°Cr1 [Saaral 000 0001 01-01-0-0T-T-02-0C-3uLI-o[nPOIA
- - 000 700 000 001 000 0011 000 0011 8879 SL6IL 000 0001 01-01-0-01-1-01-0Z-3UL-9[NPOA
- - 100 ¥0°0 000 00T 000 0011 000 0011 LO'8L SL'Y98 000 0001 01-01-0-01-T-$-0p-SUL-MPOIN
- - 000 €00 000 00°1 000 0011 000 0011 LS9€ 05959 000 0001 01-01-0-01-1-$-0¢-3UL-MPON
- - 000 €00 000 001 000 00°11 000 00T LO9¢ cresy 000 0001 01-01-0-01-1-$-0T-SuL-[MpoN
- - 000 €00 000 001 000 0011 000 00 1T 0cel 0S°€1¢ 000 00°0T1 01-01-0-01-1-$-01-SUL-3[MPON
IN0-WoWw Jno-own AJD'PIS 3ae AJD'PIS 3ae AJP'PIS 3ae AJD'PIS Sae AJP'PIS 3ae AJD'PIS Sae arduwey

90In0SY SwiL], SV [®10L ATQ woly SV ATd oL 11BD Il (M 7100)A 1

Sumds uonenueisur Yim wraned Sury 'V qeL

95

[s2]npouy]-[sajnig]-[10% |-[§pog]-[Pray]-[2ioipaidy]-[1upisuody |-puonip-ajnpoyy

10 €0 60°SE 65°¢€C 01°'8¢ 00'89 P 1101 00°€66 01°L86 00926 £€98¢C €€0L6 148 LYLT 01-0¥-01-01-C-S-0C-puowieIp-a[npoN
- 0 176 969 8Y°SL €IS IS°LIv1 L1°L66 LETYEL £€8'9Y6 90°1¥ €8°LIS 171 €E Tl 01-02-01-01-C-S-0C-puotieIp-a[npojN
- 10 geee orel €081 §T'99 €508 79°Ce8l 1€°¢L8Y 8€°LOLI €79 ross L0 [t 01-01-01-01-C-S-0C-puotieIp-a[npojN
- 1'0 600 S0 e e L8l 8¢’ 1Y 9691 STor YT'8Y crors 660 8811 01-6-01-01-C-S-0C-puotieIp-a[npoN
- - LO'0 0c0 90 STl 2011 00°S¢ LSOl SLYE 0T'se 08°'SLS €60 0scl 01-01-01-0C-C-S-0C-puotielp-a[npojN
- - 620 ¥T0 Ly'c 88’1 081 STLY LSSV 8¢9Y £8'CS 00'8SS L0 STl 01-01-01-S1-C-S-0C-puoweIp-a[npoN
- 10 ceee orer €081 ST99 '€c08 79Ce8l 1€°¢L8Y 8€°LOLT €79 cross L0 [t 01-01-01-01-C-S-0C-puowieIp-a[npoN
10 - £€6'C LT €8'LY LS61 11°sce 00°0¥C CELLY eV 1TT w09 1L°L9¢ el LSTL 01-01-01-5-C-S-0C-puotieIp-a[npoN
- 10 €0'C 88’1 96y Irs Is61¢ 00°10€ 67°96C 1T°8¢ vIvrel €51 00°6C SC-01-01-01-C-S-0¢-puowrelp-s[npojN
- 10 8L9 197 0L9T €T 9L'T0TT LTvvL €8'¢CL SLYEE LILETT 8I'L 09T 0C-01-01-01-C-S-0C-puotieIp-a[npojN
- 10 L9°6C L0l YO'LLY 8¢9 P LI9Y 051891 18191 L6°08 8¢€9I8 69°1 9Ll SI1-01-01-01-C-S-0C-puowelp-a[npojN
- I'0 geee 01°ct €108l 99 €508 79°Ce8l 8€°LIL1 €79 Cross L0 911 01-01-01-01-C-S-0C-puowe1p-a[npoN
- - €00 €00 90 STl 1ce 0091 SLCT eIve ST1LT 9°0 88°¢ S-01-01-01-C-S-0¢-puowelp-s[npoy
- 1’0 8901 L'y €6'976 88°0LE €0°L08Y SLTLTT 8877061 6'67¢ gT616C 1L°0 STel 01-01-01-01-C-0%-0C-puoteIp-a[npoN
- - 600 ST0 90 ST1 0c0o1 0S'LE STLE 8¢S €L 8¢LECT [8¢°¢l 01-01-01-01-C-0C-0C-puoteIp-a[npoJAl
10 - ¥0'0 S0 8¢0 48! 879 PI'le 00°T¢ 17'89 98918 060 PICl 01-01-01-01-C-01-0C-puotieIp-a[npoN
- €0 €6°LET 01'9L 9¥°¢9¢ 00°60¢ 8Y'LILIT STeles STY09S SOIEl 79°0L01 0Tl 00°¢l 01-01-01-01-C-S-0y-puowieIp-a[npoN
- 10 ce's S0'C 8L'LE (41 0L7998 crrece °9°sTe cLle °9'sSL 1€1 00Tl 01-01-01-01-C-S-0¢-puotieIp-a[npojN
- 10 goee orel €081 §T'99 €508 79°Ce8l 8€°LOLI €79 ross L0 [t 01-01-01-01-C-S-0C-puotieIp-a[npojN
- - 00 600 8¢€°0 vl €9¢ 00°6C 98°'8¢C LO'1T 6T°STe 690 9811 01-01-01-01-C-S-0[-puowelp-a[npoN
- - 'l 80°1 000 00°1 09°1 8¢'LT 8¢'LT TTT981 8€°L60C 90 SL'TIT 01-0¥-0-01-1-S-0C-puoteIp-a[npoN
- - ¥0°0 SI'o 000 001 €&'e SL'8C SL'8C 88°¢CII 0S'v€9 LO'T 0s'Cl 01-02-0-01-1-S-0C-puoteIp-a[npoN
- - 200 cro 000 001 96°1 (4814 (4814 80S STTYS 9L'0 00Tl 01-01-0-01-1-S-0C-puowIeIp-a[npoNl
- - 100 600 000 001 ILT STLT STLT €SIy 9 ¢I¢ STl 88'11 01-6-0-01-1-S-0C-puoweIp-a[npoN
- - 200 cro 000 001 €8'1 ST6T ST6T S0'6¢ crise 9L'0 0s'Cl 01-01-0-0C-1-S-0C-puotIeIp-a[npojN
- - 200 1o 000 001 9¢'l 88'CC 88°CC YL'E€T 8¢€1€ES 90 STIL 01-01-0-S1-1-S-0C-puotreIp-a[npoN
- - 200 cro 000 001 96'1 (4814 (4814 808 STTYS 9L'0 00Tl 01-01-0-01-1-S-0C-puoteIp-a[npojN
- - 200 01ro 000 001 8T T8¢ T8¢ °8'Cs eL'9¢¢ el crel 01-01-0-S-1-S-0C-puowelp-a[npoN
- - 900 90 000 00°1 [X0h4 8¢€'0L 8¢€'0L 0€'SLE 79°'1¢91 LL'T 79°'6C SCT-01-0-01-1-S-0C-puowelp-s[npoN
- - 200 00 000 001 €6'¢ 9%S 9%S €€'¢9 0SCITI 09'1 0S°¢T 0C-01-0-01-1-S-0C-puoweIp-a[npoN
- - 200 0T0 000 001 00°¢ 88'Cy 88'Cy £€6'¢9 88018 el I8l SI1-01-0-01-1-S-0¢-puowelp-s[npoN
- - 200 cro 000 001 96°1 I8¢ I8¢ 80s STTYS 9L'0 00Tl 01-01-0-01-1-S-0C-puotieIp-a[npoN
- - 000 €00 000 001 €60 0S¢l 0S¢l clee 8¢°08¢C 90 T9 S-01-0-01-1-S-0C-pUoweip-3[NpojN
- - €0°0 10 000 001 691 0s'Ie 691 0s'1e 86°66¢ 00°0€8C ¥LO 8¢'€l 01-01-0-01-1-0%-0C-puotieIp-a[npojN
- - €0'0 81°0 000 001 S8l 8¢'0¢ S8l 8¢€°0¢ 96'20C [RA44! €8°0 88°CI 01-01-0-01-1-0T-0C-puotieIp-a[npojN
- - €00 [4%0} 000 001 L0'T 8¢€'6C LO0'T 8€'6C 0c6r ClLLL L0 9l 01-01-0-01-1-01-QC-puoweIp-a[npoN
- - 200 710 000 00°1 L1'T 88'GC L1'C 88'GC 9€YL 05°¢€26 €8°0 [4u 01-01-0-01-1-S-0F-puoteIp-a[npoN
- - €00 Y10 000 001 L1'T 18T L1'T 18T L99¥1 T1'898 €8°0 el 01-01-0-01-1-S-0¢-puoteIp-a[npoN
- - 200 cro 000 001 96°1 (4814 96°1 (4814 80S STTYS 9L'0 00Tl 01-01-0-01-1-S-0C-puowreIp-a[npoN
- - €00 010 000 001 LO'T 059¢ LO'T 089¢ cL0E 88°1¢¢ 0 8¢11 01-01-0-01-1-S-Q[-puotreIp-a[npoN
JNO-WoW JNo-owrny AJP'PIS e AJP'PIS 3ae AJP'PIS 3ae AJDP'PIS 3ae AP'PIS 3ae AJP'PIS 3ae rduwex

901083y sy, SV [e0L ATQ WoL] SV ATd OL 1®D [l (W 7490)A ! d

Sumids uonenueisur Jnoym ureyed puowrel(] SV dqeL

96

[sapnpog |- sapnig]-[10uay, [-[Kpoqy |-[ppay# - sa1p01paady |- [1upisuod# |-puownip-anpo

o €0 SL'ce 0T 01'8s 00°89 Py 1v0l1 00°€66 01°L86 00926 66'€€€ L9666 67’6 €81 0T1-0%-01-01-T-S-0¢-puoweIp-a[npoN
- o 6£9 vy 8¥'SL €els IS°LIvl L1'L66 LeTrel £8'9v6 901y €8°LIS 11 €ell 01-02-01-01-¢-$-0¢-puoWeIp-9[NpON
- o L6'ST €6 €1°081 §2°99 Py eS0S 9Cesl 1€°€L8Y 8€LOLT ¥ETY cross L0 9l 01-01-01-01-C-S-0C-puoweIp-9[npoN
- 1'0 L00 o we e L8l 8’1y 9¢91 SToy Y8y cLrovs 660 8811 01-6-01-01-¢-S-0C-PUOWeIp-9[NpON
- - 900 cro 90 STl 'l 00°s¢ LS 01 SLYE 0T°Se 0S°CLS €50 0s°¢Cl 01-01-01-02-¢-$-0¢-PuoWeIp-o[npoJA
- - IT0 L1°0 Ly'C 88'I ¥0'8y STLY LS'SY 8¢9V €8'CS 00°85S IL°0 sTel 01-01-01-ST1-¢-S-0¢-PuOWeIp-o[NPOJA
- 10 L6'ST €6 €1°081 ST99 Yy €S0 9cesl 1€°€L8Y 8E'LILT €9 Cross L0 (SN 01-01-01-0T-C-S-0C-PUOWeIp-o[NPOJA
10 - e 860 €8'LY LS61 11°6cs 00°0¥¢ CELLY £v1CT w09 1L°L9¢ el'l LST1 01-01-01-6-¢-6-0¢-PUOWeIp-9[NpON
- o 9¢'1 1 96y ILs Is'61¢ 00°T0€ 99¥1€ 67'96C 1T8S 148447 €51 006T ST-01-01-01-C-S-0C-PUOWRIP-I[NPOIN
- 1o ore Sv'e 0L9T €e'1e 9L’ 1011 LI'vvL €C9L01 €8°¢€CL SLyEE LrLeet SI'L 0$9C 0T-01-01-01-C-S-0C-puoweIp-9a[npON
- o elrve I8 YO'LLL 8€¥9 Yy’ L19Y 0S'I891 08'6¢vY 8ol L6'08 8€918 691 WLl S1-01-01-01-C-S-0C-PUOWEBIP-3[NPOIN
- 10 L6'ST €6 €1°081 §T99 Py es0S 9'Cesl 1€°€L8Y 8€'LILI €9 cross L0 ol 01-01-01-01-¢-S-0¢-PuoWeIp-o[NPOJA
- - 10°0 €00 90 STl Ic¢ 0091 LLY SLSI €Ive STILT ¥9'0 88'¢ §-01-01-01-¢-S-OT-PUOWBIP-9[NPOJA
- [qu 88101 8v'1v 17’896 0S'8LE OV'¥CCS SLLeve 0881ty 88'9C0C v6'6vE §T616C IL°0 sTel 01-01-01-01-¢-0%-0C-PUOWBIP-o[NPOJA
- - L00 61°0 90 STl 0201 0S'Le 8L°6 STLE 8S°€L 8€°LEST wo 8¢'El 01-01-01-01-C-0T-0T-PUOWEIP-ANPOIN
10 - ¥0°0 0ro 8¢0 4! 8¢9 4N (45 00°T¢ 17'89 98918 060 144! 01-01-01-01-¢-01-0¢-PuoweIp-s[npoN
- [4Y 60°8€1 L8SL TO'86S 00°STE CTOILVCI STIPCY S8°L68II STLI6S S9'Iel °90L01 0TI 00°€T 0T1-01-01-01-C-S-0f-puoweIp-o[npoN
- o vy L9'1 8LLE 0svl 0L7998 crete 76'8C8 (243 cLlE °9°SSL 1e1 00Tl 01-01-01-01-¢-S-0¢-pPuoWeIp-9[NPON
- o L6'ST €6 €1°081 §2°99 Py ES0S 9Cesl 1€°€L8Y 8€L9LT ¥ETY cross L0 9l 01-01-01-01-C-S-0C-puoweIp-9[npoN
- - 100 S0°0 8¢0 'l §9¢ 00°6¢ e 98'8¢ LO'IT 60°6TE 69°0 9811 01-01-01-01-¢-S-01-PUOWeIp-9[NPOJA
- - LLO w90 000 00°1 091 8¢€LT 091 8¢€LT o8l 8€°L60C 9¥'0 SLTI 01-0%-0-01-1-$-0C-puoWeIp-aMpoN
- - €00 cro 000 00'1 v SL'8C v SL'8C 88°¢l1 0S'1€9 L0l 0s°Cl 01-02-0-01-1-$-0C-puowelp-anpoN
- - 100 800 000 001 96'1 [:4 96'1 (414 808 STTYS 9L'0 00Tl 01-01-0-01-1-$-0T-puoweIp-anpoN
- - 100 900 000 001 IL¢T STLT IL¢T STLe €SIy 9°¢CIs STl 8811 01-6-0-01-1-$-0C-PUOWEIp-9[NPON
- - 00 600 000 001 €81 ST6C €81 ST6C S0'6€ CrIss L0 0S¢t 01-01-0-0T-1-S-0T-puoweIp-a[npoN
- - 100 LO0 000 001 9¢'l 88'6C 9¢'l 88'6C YL'€T 8€IES 90 ST 01-01-0-S1-1-$-0C-puoWeIp-a[NpoN
- - 100 80°0 000 001 96’1 [4:14 96’1 (414 8°08 sTews 9L'0 00Cl 01-01-0-01-1-S-0C-puoOWEIp-9[MPON
- - 100 800 000 001 8T ST'8C 8T ST'8C 8°Cs SL9SS el'l [4%4! 01-01-0-5-1-5-0C-PUOWeIp-9[NpON
- - S0°0 €0 000 001 €0y 8€0L €0y 8€°0L 0€°GLE w91e9l1 LL'T 79'6C ST-01-0-01-1-S-0C-puoWeIp-9[MpON
- - [} €20 000 001 €6'¢ s €6'¢ s €€°¢9 0sCILI 09'1 0S°€C 0T-01-0-01-1-S-0C-pUOWEIP-9[NPON
- - 00 910 000 001 00°¢ 88'Ch 00°¢ 88'Ch £6'¢€9 88018 el'l 4R S1-01-0-01-1-S-OT-PUOWEIP-o[NPOJA
- - 100 80°0 000 001 96'1 (414 96'1 (414 808 STTYS 9L'0 00Tl 01-01-0-01-1-$-0C-puowelp-a[NpoN
- - 000 €00 000 001 €60 0S¢l €60 0S¢l elee 8¢°08¢ 9v'0 §T9 §-01-0-01-1-S-0¢-PUOWeIp-9[NPON
- - ¥0°0 S10 000 001 691 0S'Ie 691 0S'TE 85°66¢ 000€8C ¥L'0 8¢l 01-01-0-01-1-0¥-0¢-puoWeIp-o[MpON
- - w00 Iro 000 001 S8l 8€°0¢ S8l 8€°0¢ 96720¢ welvl €80 88°Cl 0I-01-0-01-1-0¢-0¢-puoWeIp-o[NpOJA
- - 000 900 000 001 L0C 8¢€°6¢ L0'C 8¢€°6¢ 0C’6y Cl'LLL L0 9l 01-01-0-01-1-01-0-PUoWeIp-o[NPOJ\
- - w0 800 000 001 L1C 88°GC L1'C 88°'6C 9EVL 0S°€C6 €80 CU'll 01-01-0-01-1-S-OF-puowWeIp-9[MpON
- - [} oro 000 001 LI [4%:14 LI [4%:14 L99V1 C1'898 £8°0 cI'cl 01-01-0-01-1-S-0¢-pUOWEIP-9[MPON
- - 100 800 000 00'1 96’1 (4814 96’1 [4R:14 8°08 sTevs 9L'0 00Tl 01-01-0-01-1-$-0C-puoweIp-a[npoN
- - 100 €00 000 001 LO'T 05°9¢ LO'T 05°9¢ L0 88'1¢€ (40} 8¢l 01-01-0-01-1-S-01-PUoWeIp-a[NpON
JNO-WIAW JNO-0W} AP'PIS 3Ae AJP'PIS 3Ae AJD'PIS 3Ae AJD'PIS 3Ae AJDP'PIS 3Ae AP'P)S 3Ae opdurexg

90In0sAY Swi], SV [®10L ATQ woly SV ATd oL 11BD (D ™d)A 1w

Sumrds uonenueisur Yim urened puowrel(:9°Y IR

97

[sampouwiy]-[sapnig]-[10ugy, |- [Kpoqy]-[ppayy |- [sainoipaidy |- [upisuody |-1vis-anpop

- €0 860 10°1 S 00y 0926 0TSl 90°06 0ceel 'Ly 00°LS9 ¥8°0 08¢l 0I-0¥-01-01-C-S-0C-1eIS-9[NpON
- 0 10091 65°8C1 CL'869 98'8SS L6T9EIC ¥I'TSE9I 81°9890C 6C¥6E9T OLVII £V°C69 el'l €791 01-02-01-01-C-S-0T-TeIS-9[NPOIN
- o 06'8 g 0€°L8 889 LLscel 0S°LE9 YCorlLl (AN L9Vl SL'669 €e'e STLT 01-01-01-01-C-S-0C-Te1s-9[NpON
- - L0 LY'0 ws e 19°6¢1 196 0v'0¢l 0016 Icey 88'CC9 9’0 §T91 01-6-01-01-C-5-0C-TeIs-9[npON
- - w0 17’0 €8¢ 00T LSC6 00°IL LTL8 <69 or'vs SL'88S 8Tl STST 01-01-01-0C-C-S-0T-Te1s-9[NpON
- - €00 0’0 000 00'1 6v'C SL'LE 6v'C SLLE SO'Sy 8€CLS 60 (224! 01-01-01-ST1-C-S-0C-TeIs-o[npoIA
- ro 068 8v'y 0€°L8 88°9% LLscel 0S°LE9 YCOorlLl 9165 9L9Y1 SL'669 €ee STLL OI-0T-01-01-C-$-0C-TeIs-9[MpON
10 - 0801 €99 (9543} 008 86°6CLI 719901 810191 1'€86 Yovel LS9EL or'l €91 01-01-01-S-C-S-0C-TeIS-9[NPON
- o ST'¥01 9T 69729 SL'88CT £VCILIT §T919¢ L6'6ETTT 0S'8TES LY'891 00'866T e8¢ STOr ST-0I-01-01-C-S-0C-TeIS-3[NpOIN
- o 66'S ¥8'¢ w0y SLel °S8Y6 88°68S 057906 CrILS 6v'101 SL90€ET el'l cree 0¢-01-01-01-¢-S-0T-1e1s-9[npoN
o 0 6v'ClLl 909¢ 88°96¢ yI'6sT 0TPCes 62°906¥ 10°1L08 YI'8yLYy £6°50C LS'1SO1 61°C Y1°6C S1-01-01-01-C-S-0C-181s-9[NpoJA
- 1’0 06'8 g 0¢°L8 889 LL'STTI 0S°LE9 Yooyl w'16s 9L'9v1 SL'669 €e'e STLL 01-01-01-01-C-S-0C-TeIs-o[npoJA
10 - <80 LEO LIl 134 08¢l 1L°L9 0€911 6T°€9 9Ty 6T°6C¢ S6'0 ILL S-01-01-01-C-6-0T-TeIS-9[NPOIN
- - 8! 90°1 6'9 SLY 86'¢LI SLYEL €TL91 00'1¢l S8Ivy 00'6LEE OC'1 9Ll 01-01-01-01-C-0%-0C-1eIs-9[NPOJAL
- - 88'S or'e £€CCC 006 09°SeL SL'SOE LEECIL SL’L6T vyl CLOLLT 9L'0 0091 01-01-01-01-C-0¢-0C-1e1S-3[NpOIN
- - 9CLL §¢9 €789 9'Le S1'8¥CC 1'698 6L'8S1C 00°¢8 19'1L 9'Ly6 60 8¢Sl 0I-0I-01-01-C-01-0¢-1¥IS-3[NPON
o o 8C0 LEO §9¢ 00T £6'7¢ 98°CS 8TCE 98'I¢ €L°89 LSTOLT 8¢l 6291 0I-0T-01-01-C-S-0-18IS-9[NPON
- o 988 ey Ly 98'I¢ 69°LLTT IL°L6S CLOETT 98°9LS w'IL 1’616 060 Y191 01-01-01-01-C-S-0€-181S-9[npOJA
- o 06'8 vy 0€°L8 889 LLscel 0S°LE9 YCorlLl '1e6s 9L'9v1 SL'669 €e'e STLT 01-01-01-01-C-S-0T-Te1s-9[NpON
- - 8LC ol 8081 00'8 1908 LS'6TC £C'88Y LS'TTT 99°'¢¢ 00°89¢ 860 LSY1 01-01-01-01-C-S-01-TeIs-9[NPOIN
- - 9¢°0 6L°0 000 00'1 €8C 00°8¢ €8C 00°8¢ 130439 seevel 'l 00°ST OI-0¥-0-01-1-S-0C-1eIs-9[npoN
- - w00 wo 000 00'1 wc 00°LE (44 00°LE £eorl Cl'L89 Ie'l 0S¥l 01-02-0-01-1-S-0C-TeIs-anpoN
- - €00 LT0 000 001 €8T 00°6€ €8C 00'6¢ €98 8€°LS9 'l 0s°Cl 01-01-0-01-1-S-0T-TeIs-apoN
- - 00 S1o 000 001 8€C ST6¢ 8¢C ST6e S0°€S 88'96¢ 6Ll 2961 01-S-0-01-1-S-0C-TeIS-9[NPON
- - SO0 €C0 000 001 e 05°8¢ ee 05°8¢ wiis creL9 L9'1 STST 01-01-0-0C-T-$-0C-TeIs-a[mpoN
- - €00 0C0 000 001 LL'T 0S°LE LL'T 0S°LE LO91 SL'1TY 68°0 SLYL 0I-01-0-ST-1-S-0C-TeIs-9[npoN
- - €00 L1°0 000 00'1 €8C 00°6¢ €8C 00°6¢ £v'9¢ 8€°LS9 'l 0S°ST 01-01-0-01-1-S-0C-TeIS-9[NPOIN
- - 10°0 910 000 001 6¢£C 00°8¢ 6£C 00°8¢ £9°6¢ 00°C9 0Tl 00761 01-01-0-5-1-5-0C-Te1s-9[npON
- - 900 L9°0 000 001 S99 8€°€01 S5 8€°¢01 007CsT 0S'8YLI L8'C STor ST01-0-01-1-S-0C-Te1s-9[NpOJA
- - L0°0 050 000 00'1 sTe 818 sTe 8¢I8 €L'S6 greeel L9'1 SL'TE 0C-01-0-01-1-S-0C-TeIs-anpoN
- - S0'0 €0 000 001 86'C 0565 86'C 05°6S €TOIT 0S'8L6 6’1 STET SI-01-0-01-1-S-0C-TeIs-9[poN
- - €00 LT°0 000 001 £€8C 00°6¢ €8C 00°6¢ £v'9¢ 8€°LS9 'l 0S°ST 01-01-0-01-1-S-0C-TeIS-9[NPOIN
- - 100 900 000 001 0’1 SL'LY 0’1 SLLY §6'0C crele 50 8€L S-01-0-01-1-5-0C-1eIS-9[NPOJN
- - 700 0€0 000 001 11 00y ISl 001 LL'SIE 8€9¥ce 9L°0 0081 0OI-0T-0-01-1-0%-0C-1eIS-9[NPOJN
- - €00 9C0 000 001 11 00°1¥ ISl 00° 1+ L6°061 STer9l - 9L0 0S91 01-01-0-01-1-0C-0C-1e15-9[NpOJA
- - 10°0 o 000 001 S8l 00°0¥ S8l 00°0% 68'¢S 00'8¢6 €60 0091 01-01-0-01-1-01-0C-TeIs-9[NPOIN
- - €00 €C0 000 00'1 l6’¢ clee e’ cree €0vIl gceell LOC 29°ST 01-01-0-01-1-S-0-1eIs-o[npoN
- - w00 i\ 000 00'1 €8l SLOY €8'1 SLov G198 §T'996 60 8¢91 01-01-0-01-1-S-0¢-TeIs-a[npoN
- - €00 LT0 000 001 €8T 00°6€ €8'C 00°6¢ £1'9¢ 8€°LS9 1! Uy 01-01-0-01-1-S-0C-TeIs-apoN
- - 00 L0 000 001 96T 05°6¢ 98T 05°6¢ 05°S¢ 88°00% 8C'1 SL'ST 01-01-0-01-T-S-OI-T®IS-9[NPON
JNO-WIAW JnO-OWI} AP'PlS FAe AJD'PIS 3ae AJP'PIS 3Ae AJDPPIS 3Ae AP'PIS 3Ae AJDP'PIS 3Ae ordwex

90In0SY owiL], SV I®IoL A1Q Wwoly SV ATd OL 11BD Il (@ ™00)A 1

Sumids uonenueisur Jnoyrm wrened 1e1S 1LV dqeL

98

[Sapnpog]-[sapnig]-[10u9y, |- [Kpoqy |-[pay# |- [sa1001paidy |- [1uDISUOI# |-1D)S-2InPO N

- €0 8T°0 €50 §ST 00y 09°C6 0T sel 90°06 0Teel 'Ly 00°LS9 ¥8°0 08'v1 01-0-01-01-C-S-0T-Te1s-3[NPOIN
- 70 1091 86°8C1 66’976 LS8PL 98°0108C 6T°6TYCT 98°S60LT IL1891C OLVIT £7'C69 el €791 01-02-01-01-C-S-0T-Te1s-9[NPON
- 1’0 019 60°¢ 0¢'L8 88°91 LL'STTT 0S°LE9 j4Vi28! 79'16S 9L 9V SL'669 €e'e STLI 01-01-01-01-C-S-0T-Te1S-3[NPOIN
- - 19°0 LEO s cre 19°6€1 196 0r'0€l 0076 1cey 88'C79 9t°0 ST91 01-6-01-01-C-S-0C-1eIS-3[MPOJAL
- - 0 620 €8T 00T LS'T6 00°1L LTL8 cre9 I ¥S SL'88S 8T'1 STSI 01-01-01-0C-C-S-0C-Te1S-9[NPOIN
- - €00 cro 000 00T 6¥'C SL'LE 6v'C SL'LE SO'Sy 8€'TLS 260 971 01-01-01-S1-C-S-0C-Te1s-9[npON
- 1’0 019 60°¢ 0€'L8 889 LLSTT 0S°'LE9 YTOoril 29°'16S 9L9¥1 SL'669 €e'e STLI 01-01-01-01-C-G-0C-TeIs-a[npoN
10 - 89'8 9I's TLYET 0078 86°6CLI 71°9901 81°0191 ¥1°€86 R4 LS9EL or'1 €791 01-01-01-5-T-S-0T-Te1S-3[NPOIA
- 0 €ey01 sy 91°¢8S (48754 182011 88'1rES 68' 171701 SL'TLOS L¥'891 008651 e8¢ STOr ST-01-01-01-T-S-0T-Te1s-3[NpON
- 10 YLy ¥6'C W0y SL'61 75816 88'68S 05906 CI'ILS 67101 SL90ET €'l cIee 0T-01-01-01-T-S-0T-1e3s-9[NpOJN
10 0 6L 111 yTes ¥1°00€ V€91 0°S6L8 LS’ SIS TT° IS8 y1°€861 £6'S0C LS 1501 61'C Y1I°6T S1-01-01-01-C-S-0T-1e3s-9[NpOoJN
- 1’0 019 60°€ 0€'L8 8891 LL'STTT 0S°LE9 YTorIl 29'16S 9L 91 SL'669 €e'e STLI 01-01-01-01-C-S-0C-Te1S-9[NpOIN
1’0 - S0 ST0 LI ev's 08Tl 1L°L9 0€'911 6C°€9 9Tty 6C°6C¢ €60 ILL S-01-01-01-C-S-0T-1eIS-9[NPON
- - 91°L ¢80 69 SLY 86°¢LI SLYEL €TLI1 00°1€T S8'Ivy 00'6LEE 0C'T 9Ll 01-01-01-01-C-0-0C-1e1s-3[MpOA
- - 9% S8l €CTT 006 09°6€L SLS0E LECIL SL'L6T (AR 44! CrorLy 9L0 0091 01-01-01-01-C-0C-0C-1e1s-9[npoN
- - €eTl 89t €089 w9'LT ST'84TT 1698 6L8S1C 00°6¢€8 19°'1L °9'LY6 260 8¢€°CT1 01-01-01-01-C-01-0T-TeI8-2[NPOIA
1’0 1’0 0T0 ST0 §9T 00T €6'1vE 98°CS 8T'TE 98'1¢ €L'89 LSTITT 8¢'1 6C91 01-01-01-01-C-S-0p-Te1s-9[NPOIN
- 1’0 €9 01°¢ 1LYy 98'1C 69°LLTT 1L°L6S TLOETT 98'9LS wo'1L y1'616 060 7191 01-0T-01-01-C-S-0¢-Te1s-3[NPOIN
- 1’0 019 60°¢ 0¢'L8 88°91 LL'STTT 0S°LE9 j740i28! 79'16S 9L9Y1 SL'669 €e'e STLI 01-01-01-01-C-S-0C-Te1S-9[NPOIN
- - 90°C 68°0 80°81 00'8 14908 LS'6TT €€'88Y LS'TTT 99'6T 00°89¢ 860 LSPI 01-01-01-01-C-S-01-1eIS-9[NPOIN
- - 20 €0 000 00T €8T 00'8¢ €8T 00'8¢ €5¥SS STTYEL 71 00°ST 01-0%-0-01-1-S-0C-1e1S-MPOJA
- - €00 €10 000 00T 9T 00°LE 9T 00°LE €EPI CI'L89 1€l 0S¥l 01-02-0-01-1-S-0C-1e1S-3[MpOJA
- - 00 1°0 000 00°1 €8T 00'6€ €8'C 00'6¢ €798 8€LS9 171 08°S1 01-01-0-01-1-S-0C-1eIs-9[npoN
- - 100 1o 000 001 8¢€'C ST6¢ 8€'T ST6¢ S0'es 88'965 611 °9°¢1 01-6-0-01-1-6-0T-TeIS-3[NPOIN
- - 00 S1'0 000 00'1 e 05°8¢ yee 05'8¢ wis r'ee9 L9'1 STS1 01-01-0-0T-1-S-0T-Te1s-3[MpOA
- - 10°0 1o 000 00T LL'T 0S°LE LLT 0S'LE L091 SL'TT9 68°0 SLY1 01-01-0-ST-1-S-0C-Te1s-[NpOA
- - 00 ¥1°0 000 00T €8T 00°6¢ €8T 00°6€ £v'9S 8€°LS9 71 0S°S1 01-01-0-01-1-S-0C-1e1S-NPOA
- - 200 1o 000 001 6€°C 00'8¢ 6€°C 00°8¢ £9°6¢ 00°C¥9 o'l 00°ST 01-01-0-S-1-6-0T-TeIS-9[NPON
- - S00 6¥°0 000 00T S 8€°¢€01 [SSY 8¢€°€01 00°CST 0S'8¥LT L8T STOv ST01-0-01-1-S-0C-1eIs-aMpOoA
- - 00 9¢°0 000 00T sTe 8€'I8 sTe 8¢'18 €L'S6 gTseel L9'1 SLTE 0T01-0-01-1-S-0C-1e1s-3pOoA
- - 00 20 000 00°1 86'C 05°6S 86T 05°6S €T9I1 05°8L6 6yl STET S1-01-0-01-1-S-0C-1e1s-3MpOoN
- - 200 Y10 000 00T €8T 00°6¢ €8T 00°6¢€ €798 8¢€°LS9 71 0S°ST 01-01-0-01-1-S-0C-Te1s-3[NpOIA
- - 10°0 700 000 00T 0'1 SL'LT 0'1 SL'LT §6'0T crele 60 8€°L S-01-0-01-1-S-0T-TeIs-9[NPON
- - ¥0°0 €0 000 00T 1S°1 001 ST 00'v¥ LL'BTE 8€°9¥TE 9L0 0081 01-01-0-01-1-0%-0C-TeIS-3[NPOIN
- - €00 61°0 000 00T 1S°1 00 1Y ST 001 L6061 STTHI1 9L'0 0891 01-01-0-01-1-0C-0C-Te1S-3[NPOIN
- - 100 910 000 001 o8l 000t e8'1 00°0% 68'6S 00°8€6 €60 0091 01-01-0-01-1-01-0C-TeIS-9[NPON
- - 00 91°0 000 00T 16°¢ cree 16°¢ cree €0PIT eIl L0T °9°61 01-01-0-01-1-S-0-1e1S-NPOJA
- - 00 91°0 000 00T €81 SLOY €81 SLoY S1°98 §T'996 260 8€91 01-01-0-01-1-S-0¢-1e1S-3MpOJA
- - 200 1°0 000 00°1 €8T 00°6€ €8T 00°6€ £v'9S 8¢€°LS9 Il (Y 01-01-0-01-1-S-0C-1e1S-3[MPOA
- - 200 110 000 00°1 96°C 05°6¢ 96T 05°6¢ 05°6¢ 88°001 8C1 SL'ST 01-01-0-01-1-S-01-TeIS-3[NPOIA
JNO-WW Jno-ourn AJD'PIS Sae AQDP'PIS Sae ASP'PIS 3ae AJD'PIS Sae AQP'PIS Sae AJD'PIS 3ae Srdwex

90In0SY Swit, SV I®IoL A1Q Wwoly SV ATd oL 118D Il (W 7100)A 1o

Sumyrds uonenueisur Ym woned IelS Q'Y IqRL

99

[youv.aqy]q-[sanpouig |-[Sapnig |- [1ouay, |- [Kpoqy |- [ppayys |- [Sa10o1paidy |- [1upiSu0d4 | -2241-2 PO

- o 6°Cl 9L 69°LL SLYvE 19°8LIC 88°LE0I ¥0'101¢ <L'v001 81°¢9¢ SLTIL PETL 0061 €4-01-01-01-01-C-S-0C-9°N-3[NPOJA
- 1'0 00 61°0 Se0 48! S6'S 796 €9°¢ 0s°'s¢ 9LYT 00°¢8S 60 8¢¢l €9-01-01-01-01-C-5-0C-9N-9[NPOJA
1’0 - S1°0 00 STl IL1 ¥0'€T vi'vy 6S8°1¢ 6Tey 0I'LT 00°65S $6°0 1Ll 29-01-01-01-01-C-6-0T-2°0-9[NPON
- S0 LESEL STOIT L6'8YL §T6S9 90'IvEST 00'6CeC SE'S06¢l 0S¥8CI1 SY'18 00°L99 9Tl SLY1 €9-01-0%-01-01-C-S-0C-9a1-3[NPOIA
10 €0 09'1¥1 vl €0°'80CT 09°0S6 86'6LIOI 00°E¥91 Ov'¥8LY1 08'v1EST 0T°69 0T'€S9 ¥9'1 0TSl €9-01-0C-01-01-C-S-0C-9on-9[NPOA
- o 00 61°0 Se0 1y} S6'S 796 €9°¢ 0s°s¢ 9LvC 00°¢8¢ 60 8¢l €9-01-01-01-01-C-5-0C-9N-9[MPON
- - 100 <o 000 001 8¢€C SLTE 8¢C SLTE ¥0°ST STYvs 0’1 STEl €9-01-5-01-01-C-6-0-9N-9[NPON
- - w00 170 000 001 L9T SLse L9'1 SLse L6°0¢ 0$°S19 L0 [hd! €9-01-01-01-0C-C-5-0C-9N-9[MPON
- o LO0 0c0 §9C 00T €L 98°LE YLy 98°9¢ L9'6S 6C'18¢ 060 98¢l €4-01-01-01-S1-C-S-0C-9°N-3[NPOJA
- 1'0 00 61°0 Se0 48! S6'S 96 €9°¢ 0s°'s¢ 9LYT 00°¢8¢ 60 8¢¢l €9-01-01-01-01-C-5-0C-9aN-9[NPOA
1'0 - WLy 81°6C 6£¥TC 1191 ¥6'8119 LS'LTIY 96°€068 £v'L96¢ 986 98'1¢9 LL'T 191 £€9-01-01-01-5-CT-6-0T-92N-9[NPON
- 1'0 SI'I8 09°LE €6°CIL SL'96T IT8cstl 00°ST8S LL9I8II §T6CSS Seco 0S°LTST 00T 05°9¢ €9-6T-01-01-01-C-S-0C-9N-3[NPOIA
10 [y 19°LL 67°SE I24Y4Y L9'€TC 6£78€0CTT E£EV8YS (4228981 L919TS LLYE €Y1l €'l €8'LT €9-0C-01-01-01-C-S-0T-991-2[NPON
- o 0¢°LTT 1oL YSILL 8€9Cy 98°601ILI 88'LLTOT LT LYE91 0$°CS86 €609 9€L8 0’1 §T0C €4-ST1-01-01-01-C-$-0C-99N-9[MPON
- o 00 610 Se0 49! S6°S 96 £9°¢ 0s°s¢ 9L¥C 00°¢8¢ 60 8€¢l €4-01-01-01-01-C-S-0C-9°N-3[NpOJA
- - (4 %0} Y0 Iy 0s'e s ST8Y 98y SL'SY 66 C1'90¢ ell L €9-6-01-01-01-C-6-0C-99N-9[NPOJN
o o 1o 1€°0 8¢€°0 48! 8801 ev'ey 0s0l 60ty 8¥°0¢E gr'eoce €50 vl €4-01-01-01-01-C-01-0¢-9N-9[NPON
- - 8¥°0 050 €6'1 00C 0L€9 88°69 LL'T9 88'89 €TSSl 8€°LT91 60 8€°¢Cl €4-01-01-01-01-C-0C-0C-9N-9[MPON
- €0 S68¢l SISL 98'SYL 0S¢0y LE6E6SI §T°6598 L096161 SL'95T8 1L°0L SLY16 660 [4%4! €9-01-01-01-01-C-01-0C-9°1-3[NPOJA
- 1'0 LL'SOT €8°LE 8€'L86 8€CEE SY'6SSL 00°1¥Le 80°CLSY 79'68¢€C 69°LC1 056811 €80 st €9-01-01-01-01-C-S-0-9n-9[NPOJA
- [y Iyl 96'8C 88'9L9 00'6ST €CT°€9T6 1L°68S€ 9€°0678 £V'S6CE SveL P1'L88 1Tl 484! €9-01-01-01-01-C-S-0¢-9on-9[NPOIA
- o 00 61°0 Se0 [1%! S6'S 796 €9°¢ 0s°s¢ 9LvC 00°¢8¢ 60 8¢l €9-01-01-01-01-C-5-0C-9N-9[MPON
- 1o 19v 06°C 96°Sy 8¢°LT YL8LL 00°50¢ 1E€YEL 98LY 89°¢81 88’67y 86'L 8¢8I €9-01-01-01-01-C-S-01-991-9[NPOJA
- - €00 91’0 000 001 96T 05°9¢ 96T 0$°9¢ LOCS (4818 8Tl SLY1 §4-01-01-0-01-1-S-0C-9N-3[MPON
- - €00 S1°0 000 001 €€ 0Sv¢ €€C 0S¥ Sy 8¢'619 or't STyl €4-01-01-0-01-1-S-0-9N-3[MPON
- - w00 €10 000 001 L91 SL'6C L9'1 SL6C §9°0¢ SLYTS €80 88CI 29-01-01-0-01-1-S-0C-91-3[NPON
- - 9°¢ S6C 000 00°1 8Tl STre 8Tl STyve Ly'yeee sT991e ¥9°0 (404! €4-01-0%-0-01-1-S-0¢-9N-9[MPON
- - €00 il 000 001 8€C sTse 8¢'C sTse LT 0S°¢6L 6Ll (224! €9-01-0C-0-01-1-5-0C-92N-9MpON
- - €00 S1'o 000 001 €€'T 0Sve €€'T 0S've SS'6S 8¢'619 o'l STyl €9-01-01-0-01-1-S-0C-92N-9MpON
- - 100 110 000 001 11 00v¢ 1S 00'¥¢ 10°0¥ 88'69¢ 9L0 00v1 €9-01-6-0-01-1-6-0¢-290-9[NPON
- - €00 81°0 000 001 S8l 00v€ S8l 00v€ T8¢ 9765 €60 001 €9-01-01-0-0C-1-S-0C-991-9MPON
- - 700 10 000 001 8LC 0s°€e 8LC 0S¢ 1186 88'99¢ 61 SLET €4-01-01-0-ST-1-S-0¢-9N-3[NPON
- - €00 S1°0 000 00°1 (14 0Sv¢ €eC 0S¥ Sy 8¢'619 o't STyl €4-01-01-0-01-1-S-0-9N-9[MPON
- - 100 1'0 000 001 €€°C 0s°¢e £€C 08¢ 08°C8 05°€09 o'l SLEL €9-01-01-0-S-1-5-0C-991-9[NPOJA
- - 700 €50 000 001 9l'e 0S°L8 or'e 0S°L8 9709 0S'CsLI 8S°1 SL'SE €9-ST-01-0-01-1-S-0C-991-3[NpOJA
- - 00 8¢€°0 000 001 Ice 00°89 Ice 0089 CLLL el 091 008C €9-0C-01-0-01-1-S-0C-92N-9MpPON
- - S0'0 9T0 000 001 €8T 0008 €8¢ 0008 seevl 0$°€06 7'l 0$°0C €9-G1-01-0-01-1-S-0C-92n-9MpON
- N €00 S1o 000 001 24 0Sv¢e €eC 0S¥ Sy 8¢'619 or'l STyl €9-01-01-0-01-1-S-0T-21-3[MpPON
- - 100 ¥0°0 000 001 861 ST91 86'1 ST91 €666 0S'I1E 660 <L €94-6-01-0-01-1-5-0¢-991-9[NPOJA
- - 00 8C0 000 001 6v'l SL'8E 6’1 SL'8E 69'78¢ gceece vLO 8€91 €9-01-01-0-01-1-0%-0C-9oN-9[MPON
- - €00 0 000 001 96T 05°9¢ 96T 0$°9¢ Se8rl crseol 8Tl TSl €4-01-01-0-01-1-0C-0C-9°N-3[NPOJA
- - w00 00 000 001 w'C SL'SE wT SLSE YL 19 00°0£6 o'l 881 €9-01-01-0-01-1-01-0T-991-9[NPOJA
- - w00 61°0 000 001 11 00°¢e sl 00°¢e 18°8L 99901 9L'0 0S¢l €4-01-01-0-01-1-S-0t-9N-9[MPON
- - w00 L1°0 000 001 1671 00°S¢ 1671 00°s¢ YEY9 w9'0r8 9L’0 0sv1 €9-01-01-0-01-1-S-0¢-92N-9MpON
- - €00 S1°0 000 00'1 €eC 0S'v¢ €eT 0S'v¢ S91Y 8¢'619 o'l STyl €9-01-01-0-01-1-S-0C-92n-9MpON
- - €00 €10 000 001 e STyE e STYe 1¥'8C 05°69¢ Sl (454! £9-01-01-0-01-1-6-01-9°N-9[MPON
JNO-WIAW JnO-oWl} AP'Pls 3Ae AJD'PIS 3Ae AJD'PIS 3ae AJDPPIS 3Ae AJD'PIS 3Ae AJD'PIS 3Ae opduwexg

90In0SY Qi SV I®IoL A1Q Woly SV ATd oL 11BD Il (@D T10D)A e

Sumuids uonenueisur Inoyim uraned 991], 16"V dqEL

100

[4ouD1G4]q-[s21pous [-[Sajnig]-[1009, |-[{pogy]-[praty]-[a1oipasdy]-[unisuodg]-2au-a1npoyy

- 10 98°11 9IS 69°LL SLYE 19°8L1T 88°LE0T 0" 101C CI'v001 81°€9C SL'TIL PETT 0061 §4-0T-01-01-01-C-S-0T-9°N-3[NPOJA
- 10 €00 o (SN [M! S6'S 79°6¢ €9°¢ 0S°s¢ IL'YT 00°€8S [8¢°€l €9-01-01-01-01-C-§-0T-991-3[NpON
1’0 - 110 [0 STl L1 +0'€C Yy 6S°1T [Y&%4 0I'LT 00°6SS €60 1LCl 29-01-01-01-01-CT-6-0T-9N-3[NPON
- S0 86'8¢1 S¥'S6 79°€011 §T998 LT'T0691 00 191€1 $9°0T€ST 0S°0v0C1 SY'I8 00°L99 9Tl SLYI €9-01-0¥-01-01-C-5-0C-990-3[NpON
1’0 €0 65°8€1 S0'LTI Py TeTt 008001 8S°6YL61 0T'6¥S61 LY'80181 00°LET81 0T'69 0C°€S9 Y9°1 0T'S1 €4-01-02-01-01-C-S-0T-991-3[NPON
- 1’0 €00 cro SNV [MN! S6'S 79°6¢ €9°¢ 0S°s¢ 9L'¥T 00'¢8S °6°0 8¢°¢l €9-01-01-01-01-C-S-0T-2°N-3[NPOJA
- - 200 600 000 00T 8¢€'C SL'TE 8€'T SL'TE 0S¢ STY¥S 01 STel €9-01-5-01-01-C-5-0T-9°N-3[NPON
- - 200 €10 000 00'1 L9'1 SL'SE L91 SL'SE L6°0€ 0S°S19 L0 (24! €4-01-01-01-0T-T-S-0T-9°N-3[NPOJA
- 10 700 €10 9T 00C €r'L 98°LE LY 98'9¢ L9°6S 67185 060 98°¢l €9-0T-01-01-S1-C-S-0T-92N-3[NPOJN
- 10 €00 o (SN [MN! S6'S 79°6¢ €9°¢ 0S°S¢ IL'¥T 00°€8S [8¢°€l €9-01-01-01-01-C-S-0T-9910-3[NpON
1’0 - 8v' St 98'9¢ 6€¥TT PI191 68119 LS'LTIY 95°€068 €7'L96€ 29'86 98'159 LL1 Y191 €4-01-01-01-6-C-G-0T-991-9[NPON
- 10 8S°L9 SeIe €6°CIL SL'96T 17°8¢TsTl 00°678¢ LL9TSIT §T'6CSS SN 0S°LTST 00T 059¢ €4-6T-01-01-01-C-§-0T-990-3[NpOoN
1’0 0 $0°6S LT [34Y4Y L9°€TT 6£'8¢€0C1 €EP8YS CEEISTI L9°19TS LLYE €EPIIL €e'l €8°LT €9-0T-01-01-01-C-S-0T-991-3[NpOoN
- 1’0 LEOTT S¥'C9 LL'6101 crees TrSEVIT 8ETLOTI 11°0620C CTI'L6VIl €5°09 79'€L8 ¥0'1 ST0T €9-S1-01-01-01-C-S-0T-9°1-3[NpOJA
- 10 €00 1o [SA] [MN! S6'S 798¢ €9°¢ 05°s¢ IL'¥T 00°¢8S °6°0 8¢’€l €9-0T-01-01-01-C-S-0T-9°N-3[NPOJA
- - ST0 81°0 Ty 0S¢ Ces ST8Y 29°8Y SL'SY °6'6¢ 1'90¢ (3! crL €9-6-01-01-01-C-S-0T-99N-3[NPON
1’0 10 800 €00 8¢€°0 140! 88°01 (394 0501 (Y434 8¥°0€¢€ er'eece €570 €9l €94-0T-01-01-0T1-C-0%-0C-9°N-3[MPON
- - 540 8¢€°0 €6'1 00C 0L°€9 88'69 LL'T9 88'89 €TSS 8¢€°LT91 260 8¢Sl €9-01-01-01-01-C-0C-0T-9310-3[NpoN
- €0 €9'8¢1 01°SL 65°9€6 05908 €0'8€00C 001,801 €9'10161 05°69¢€01 1L°0L SLYI6 66°0 eIyl €4-01-01-01-01-2-01-0T-991-9[NPON
- 0 8°601 LLe e 1201 8€19¢ 99°618L 00°€€8¢ SE'86L9 79°69tC 69°LT1 056811 €8°0 crsl €9-01-01-01-01-C-S-0t-9310-3[NpON
- 0 €809 69°€C 88'CLL 6C°S6C €C°€9T6 1L°68S¢ 9¢°0618 £7'S6TE SY'eEL P1°L88 171 484! €4-01-01-01-01-C-S-0€-99N-3[NPON
- 1’0o €00 cro SN [MN! S6'S 79S¢ €9°¢ 0S°s¢ 9L'¥T 00°¢8S 260 8¢°¢l €9-01-01-01-01-C-S-0T-2°M-3[NPOJA
- 10 79°¢ 8CT 96°St 8€°LT VL8LL 00°608 1€vEL 79'8LY 89°681 88'611 86'L 8¢°81 €9-01-01-01-01-C-S-01-991-3[NPOJA
- - 100 cro 000 00'1 96T 05°9¢ 96T 05'9¢ LOTS 919 8T'1 SLY1 §4-01-01-0-01-1-S-0T-9N-3[NPON
- - 200 1o 000 001 €€°T 0S've €€T 0S've §S'6S 8€°619 9Tl STyl €9-01-01-0-01-1-S-0C-231-3[NPON
- - 200 800 000 001 L9'1 SL'6T L9'1 SL'6T §9°0¢ SL'YTS £€8°0 88°CI 29-01-01-0-01-1-S-0T-91-3[NPON
- - 8L'1 LT'1 000 00'1 8T'1 STYE 8C'1 STYE LY'vEET ST99IE ¥9°0 [484! €9-01-0%-0-01-1-S-0C-991-3[NPON
- - ¥0°0 Y10 000 00'1 8¢€T STse 8¢€T §TSe °ELTT 0S°€6L 61l 4! €9-01-02-0-01-1-5-0C-991-3[NPON
- - 200 cro 000 00'1 €€'T 0S¢ €€T 0S'tve SS9 8€°619 9I'l [Sad! €4-01-01-0-01-1-$-0C-991-3[MPOJA
- - 100 600 000 001 161 00'v€ 161 00'v¢ 10°0% 88'69S 9L°0 00'%1 €9-01-5-0-01-1-5-0T-2°1-3[NPOJN
- - €00 1o 000 00'1 S 00'€ S8l 00t€ T8¢ 29165 €60 00'¥1 €4-01-01-0-0T-[-$-0T-91-3[NPOJA
- - 200 01’0 000 00'1 8LT 0s°€e 8LT 0s'¢ee 11°8¢ 88'99¢ [SLET €4-01-01-0-S1-1-S-0C-9N-3[NPON
- - 200 1o 000 00'1 €€T 0S've €€T 0S¢ S 8€°619 9Tl STyl €9-01-01-0-01-1-S-0C-231-3[NpON
- - 100 01°0 000 001 €€°T 0S°€€ €€°T 0S°€€ 0878 0S°€09 91"l SLEL £€9-01-01-0-S-1-5-0T-99N-3[NPON
- - 00 10 000 00'1 91°¢ 0S°L8 9T'e 0S°L8 9709 0S°TSLY 8S'1 SL'SE €9-ST-01-0-01-1-S-0T-91-[NPOA
- - 200 0¢€0 000 00'1 1T°¢ 0089 1ce 0089 CLLL 79°T611 091 008C €94-0C-01-0-01-1-S-0C-9N-9[MPO
- - €00 00 000 00'1 €8T 000§ €8T 0008 SSevl 0S°€06 171 0S°0C €94-SI-01-0-01-1-S-0T-9N-3[MPOJA
- - 200 cro 000 00'1 €e'T 0S've €€T 0S've §S'6S 8¢€°619 9I'l STyl €4-01-01-0-01-1-S-0C-9N-3[NPON
- - 100 €00 000 001 86'1 ST91 86’1 ST91 £€°SS 0S'11¢ 660 L €4-6-01-0-01-1-S-0T-9°1-3[NPOIN
- - €00 €00 000 00'1 6v'1 SL'8E 67’1 SL'8E 69'178¢ §TToce vLO 8€91 €94-01-01-0-01-1-0%-0T-2°N-3[NPOJA
- - €00 91°0 000 001 96T 05°9¢ 96T 05°9¢ SS8¥1 [M4EYAI 8C'1 STS1 €9-0T-01-0-01-1-0C-0T-2°N-3[NPOJA
- - 200 ¥1°0 000 001 6T SL'SE 6T SL'SE YL19 00°0€6 o'l 881 £€9-01-01-0-01-T-01-0T-9910-3[NPON
- - 100 €10 000 00'1 1S°1 00°€€ ST 00°€E 18°8L 799901 9L0 0s¢el €9-01-01-0-01-1-S-0-991-3[NPOIN
- - 100 ¥1°0 000 00'1 1S°1 00°S¢ 11 00°S€ YEY9 29°0t8 9L'0 (4! €9-01-01-0-01-1-S-0€-99N-3[NPON
- - 200 cro 000 00'1 €€'T 0S¢ €€T 0S'tve SS'6S 8€°619 9I'l STyl €4-01-01-0-01-1-S-0C-991-3[NPOJA
- - 200 600 000 001 e STye e STYe 1¥'8C 0S°69¢ Se'1 ayl €9-01-01-0-01-1-S-01-991-3[NPON
JNO-WAW Jno-own AJP'PIS Sae AJD'PIS Sae AJD'PIS Sae AJP'PIS Sae AJD'PIS Sae AJD'PIS Sae S

901n0SoY QWi SV B0l AT WoL] SV AT OL [1®D Al (W) 7190)A R

Sumrds uonenueisur yim wraed 991, 01V dqBL

101

[&nisuapoy, [p-[sapnpouig - [sapnig|-[10u9y, |- [Kpoqy |-[ppay# - [$21001paady |- [1upiSU0d# |-utopun.a-a1npo

- - s e 00T 886 8078y 79'65C 6C°097 SL0ST LTI STELY Ire 00°St SCP-01-01-01-01-C-S-0¢-WOpURI-3[NPON
- 10 88ty 18°CC 65081 8876 1€€L0F TYLBIC 9r'e68c SL'E60T 8YLEL 00°S6S 00y 00€l 0CP-01-01-01-01-C-S-0¢-topueI-o[npoA
- - 81°0 €ro 901 8¢l 90¥¢C SL'IT 0°€C 8¢IC §9°66 wety LL'E SLL SIP-01-01-01-01-C-S-0¢-WopueI-o[npojA
- - 100 10°0 000 001 e ay e iy 98'6C 8€'86C Il 8€C 0IP-01-01-01-01-¢-S-0¢-WOpUeI-9[NpON
- 10 we SeET 8'8¢ ILce TTlsl 98 vl 09°Csl vIEll ov'C8 YICLE LET vy 0IP-01-0¥-01-01-¢-S-0¢-WopueI-9[npoN
- - S0°0 €00 000 00'1 8CT'S SLY 8T'S SLY 6v'18 00°60¢ 06C (45 01P-01-02-01-01-C-S-0¢-WopueI-9[npoy
- - 10°0 10°0 000 001 e (484 e cry 98'6C 8€'86C vl 8€'C OIP-01-01-01-01-C-S-0C-WOpUBI-a[NPOIN
- - 00 00 000 001 ¥6'¢ [4W3 'y §T9 €ELTL (45153 9T 88'¢ 0IP-01-6-01-01-¢-S-0¢-WOopueI-9[NPON
- - ¥0°0 Y00 Se0 49! YO'T1 crol L0l 0001 0L8L STo9ee 0'€ 'y 0IP-01-01-01-0C-C-S-0C-WOpUEI-aNPOIN
- - 000 000 000 001 €60 0s'T £6°0 0s'1 €8°0¢ SL'LST 90 STl 0IP-0T-01-01-S1-¢-S-0¢-WOpUeI-9[NPON
- - 100 100 000 00'1 we (484 e iy 98°6C 8€'86C [8€C 0IP-01-01-01-01-¢-S-0¢-WopueI-9[NpON
- - 100 100 000 001 £e'e SLY £e'e SLY £6°¢¢ 05°28¢ ov'l SLT 0IP-01-01-01-§-C-5-0¢-WOopueI-o[npojA
- 10 0L’LT €871 §8°0¢ 6yl S'686 1°9¢9 L6'VS6 98°CC9 LTV L2991 0¢'L IL6€ 0IP-ST-01-01-01-C-S-0¢-wopueI-o[npoJA
- - So'Ic 8v'11 61°¢6 wcs TeBYye 00°Scel ceLSET 8EELT YLIST 0S7CE8 18 88Cl 01P-02-01-01-01-¢-S-0¢-WopueI-9[npoN
- - SO0 900 000 001 ¥$'8 crel S8 el SRR 8CTIS 99°¢ 05’9 0IP-S1-01-01-01-C-S-0T-WOopueI-o[npoy
- - 100 100 000 001 we (484 e (4584 98'6C 8€°86C [l 8€C 0IP-0T-01-01-01-¢-S-0¢-WopueI-9[NPON
- - 100 100 000 001 00T (X4 00T [4°X4 Svve §T991 680 SL'1 0IP-5-01-01-01-¢-S-0¢-WopueI-9[NPojA
- - ¥0°0 Y00 €0 1y} 4% 8¢9 §T9 §T9 96'CSE 88'8LS1 £€6'C (U3 0IP-0T-01-01-01-¢-0t-0C-WOpURI-9[NPO]N
- - 600 00 Se0 49! 61°Cl 99 811 059 Svvee 8€°CC8 voe SLC 0IP-01-01-01-01-¢-0¢-0C-WOpUBI-9[NPO]N
- - 00 100 000 001 LSS (459 LSS s ¥0'¥8 0s'19% 0T (454 0IP-01-01-01-01-C-01-0C-WOpUBI-9[NPOIN
- - 000 100 000 001 €60 0s°'l €60 0s'1 68°6C 8EVLY 90 STl 0IP-01-01-01-01-¢-S-O-WopueI-9[npoN
- I'0 SI°0 LO'0 LY'C 88'I 00°Lt 15! 9§vC STyl 1169 Y4 S0C sTe 0IP-01-01-01-01-C-S-0¢-WOopueI-9[npoN
- - 10°0 10°0 000 001 e (484 e cry 98'6T 8€'86C vl 8¢€'C 0IP-01-01-01-01-C-S-0T-WOopUueI-o[npoy
- - ¥0°0 700 S€0 [N} 199 8¢'8 699 §T'8 £9°9¢ Cre61c 1423 (4 0IP-01-01-01-01-¢-S-0[-WOpUBI-9[NPOIN
- - 0€0 6£0 000 001 e SLTE e SLece 16°LLT 0S'LYS L9 (4R STP-01-01-0-01-1-S-0C-WOpULI-AMPON
- - 1o 434 000 001 4NN 8861 4! 8861 08 %L1 SToLy (44 cre 0ZP-01-01-0-01-1-$-0¢-WwopueI-s[npoA
- - 600 LO0 000 001 6801 88°CI 6801 88°CI creel creoy €9 8¢9 S1P-01-01-0-01-1-S-0C-WOpUEI-9MPON
- - 100 100 000 001 09°¢ 88'¢ 09'¢ 88'¢ 06°Ce §T06C 691 8€C 0IP-01-01-0-01-1-S-0¢-WOopueI-o[npojA
- - S0°0 SO0 000 001 €L'T (483 €L'T (45 1eevl 0S'ILE 9L'0 00T 0IP-01-0¥-0-01-1-$-0¢-WwopueI-s[npojA
- - w00 w00 000 001 y6'¢ 881 ¥6'¢ 88 0ros 88'76C L0C 00°¢ 0IP-01-02-0-01-1-$-0C-WwopueI-o[npojA
- - 10°0 10°0 000 001 09°¢ 88'¢ 09°¢ 88'¢ 06'ce §T06C 69'1 8€'C 0IP-01-01-0-01-1-S-0T-WOpURI-9[NPOIN
- - 100 00 000 001 s¢'¢ 059 S 059 85°6¢ 0S°0I¢ €81 SL'E 0IP-01-6-0-01-I-5-0C-WOpULI-9[NPON
- - 100 10°0 000 001 wT 88'C wT 88'C 9T0¢ STSLT (A 881 0IP-01-01-0-0C-[-$-0T-WWOpUBI-9[NPOIN
- - 100 w00 000 001 1ce 00°S Ice 00°¢ 88CE SLY0E 9’1 88°C 0IP-0T-01-0-ST-1-S-0¢-WwopueI-s[npoA
- - 100 100 000 001 09°¢ 88'¢ 09°¢ 88'¢ 06'CE §T06C 691 8€C 0IP-01-01-0-01-1-$-0¢-WwopueI-s[npojA
- - 100 00 000 001 S09 0S'L S09 0S'L 1€vL 0s°eee 9LT STy 0IP-01-01-0-S-[-5-0C-WOpULI-9[NPOJN
- - 80°I 06'1 000 001 9691 0078 9691 0018 orole 8EVY91 L'y 9ee 0IP-ST-01-0-01-1-S-0¢-Wwopuel-o[mpojA
- - SI°0 €ro 000 001 9181 8¢8I 918l 8¢8I [44 8€CEL 00°6 886 01P-02-01-0-01-1-$-0C-WopueI-o[npojA
- - €00 00 000 001 9T'L 889 9T'L 889 1688 00'99% 8v'¢ 88'¢ 0IP-S1-01-0-01-1-S-0C-WwopueI-o[npojA
- - 100 100 000 00°1 09°¢ 88'¢ 09°¢ 88'¢ 06'ce §T06C 69'1 8€T 0IP-0T-01-0-01-1-$-0¢-WwopueI-9[npoA
- - 000 100 000 001 6Ll 8¢C 61l 8¢C SOl 00°0s1 50 o'l 0IP-6-01-0-01-[-5-0¢-WOpULI-9[NPON
- - 00 w00 000 001 we 0S¢ we 0s'e 0c96C 0STSPL 9¢1 [4%4 0IP-0T-01-0-01-1-0¥-0¢-WopueI-9[poN
- - €00 €00 000 001 EL'S [€L'S ws 0L720¢ §T9¢8 L8'C sTe 0IP-01-01-0-01-1-0¢-0¢-WopueI-9[npoN
- - 100 100 000 001 85y ay 8SY iy S6'6L ey ¥1'C 0s'C 0IP-01-01-0-01-1-01-0¢-WOopUueI-9[npoN
- - €00 €00 000 00'1 19 0S°L 9 0s’L S6'611 8¢€'196 €6'C 00y 0IP-01-01-0-01-1-S-Op-Wwopuel-s[npojA
- - S0°0 00 000 00°1 09'6 ST6 09°6 §T6 18161 8€°60S L0y (24 0IP-01-01-0-01-1-S-0¢-WopueI-o[npojA
- - 10°0 100 000 00'1 09°¢ 88'¢ 09°¢ 88'¢ 06'Ce §T06T 69'1 8¢€C 0IP-01-01-0-01-1-$-0C-WopueI-o[npojA
- - 100 100 000 001 ¥e'e SL'E ¥S'e SL'E €l'Le 88'8LI1 LLT 8€C 0IP-01-01-0-01-1-S-0]-WOpURI-3[NPON
JNO-WIAW JNO-0Wl AJP'PIS 3Ae AJD'PIS 3ae AJD'PIS 3ae AP'PIS 3ae AJP'PIS 3Ae AD'PIS 3ae oduexg

901n0SoY owiL], SV [®10L, ATQ wol SV ATd OL 11BD (@D "0d)A e

Sumids uonenueisur oYM urned wopuey [TV dqeL

102

[£nisuapoy, [p-[sapnpouig]-[sapnig]-[10u9y, |- [£poq |-[ppay#]-[s21001paady |- [1upisuod# |-uiopuna-anpo

- - 9TV 9¢'C 00CC 88'6 80°C8Y 79'6ST 6C°097 SL'0ST 9L'TI1 STELY 91°¢ 00°S1 STP-01-01-01-01-C-G-0C-WOpUueI-3[NPOA
- 10 L8'1¢ 9691 65081 8876 1€€LOy TYLBIT 9F'e68c SL'E€60T 8 'LET 00°56S 00 00°€T 0TP-01-01-01-01-C-S-0C-tWopueI-oa[npoJA
- - 81°0 1o 901 8¢€'T 90¥¢C SL'TT ¥0°€T 8¢€1C $9°66 ety LL'E SLL SIP-01-01-01-01-C-S-0C-topueI-a[npoJA
- - 100 100 000 001 e ay e ay 98'6C 8¢€'86C 7l 8€C 0IP-01-01-01-01-C-$-0T-WopueI-o[nNpoA
- 10 L8T 681 8'8¢ 1.2 TT181 98'7¢l 09°CST VIElT ov'C8 YI'CLE LET ey 01P-01-0%-01-01-C-S-0C-WopueI-o[npojy
- - w00 w00 000 001 8T’ SL'Y 8C'S SLY 6718 00'60€ 06T e 01P-01-02-01-01-C-S-0C-WopueI-o[npojA
- - 100 100 000 00°1 e vy e 484 98'6C 8€'86C 171 8¢€C 01P-01-01-01-01-C-S-0C-WopueI-9[npoN
- - 100 200 000 001 ¥6'¢ L o'y ST9 ELTL roge ¥9'C 88'¢ 0IP-01-$-01-01-C-§-0C-WopueI-o[npojA
- - €00 €00 Se0 40! PO 11 cror L0l 0001 0L'8L §T9¢ee 0'¢ (484 01P-01-01-01-0T-C-S-0C-Wopuel-o[npoN
- - 000 000 000 001 €60 0S'1 €60 0s'1 £8°0C SL'LST 90 ST 01P-01-01-0T-ST-C-S-0T-WOopUeI-o[npoy
- - 100 100 000 001 e (484 e ay 98'6C 8¢'86C 71 8¢T 0TP-01-01-0T-0T-C-S-0C-WopueI-o[npojy
- - 100 100 000 001 €e¢ SLY €e'¢ SLY £6°¢€¢ 09°28¢ 6v'1 SLT 0IP-01-01-01-S-C-S-0C-WopueI-o[npoj
- 10 LOTT ST'L 68°0¢ 6T Y1 St'686 ¥1°9€9 L6756 98'C79 LTV IL°L99T 0¢'L IL°6€ 0IP-ST-01-01-01-C-S-0C-topueI-a[npoJA
- - 86°S1 SL'8 61°¢6 °9TS TSBYYC 00°STEl TELSET BEELTI YLIST 0STE8 7’8 88°Cl 0IP-0C-01-01-01-C-S-0C-WopueI-o[npojA
- - ¥0°0 SO0 000 001 $$'8 crel S8 el SRR 8CTIS 99°¢ 0s'9 0IP-ST-01-01-01-C-S-0T-WopueI-o[npoy
- - 10°0 100 000 00'1 e ay e vy 98'6C 8¢£'86C vl 8¢€C 0IP-01-01-0T-0T-C-S-0T-WOopUueI-o[npoN
- N 000 10°0 000 00T 00T 9T 00T [4°X4 Sv've §T991 680 SL'T 0IP-S-01-01-01-C-S-0C-WopueI-o[npojN
- - 00 00 Se0 49! 1’9 8¢9 ST9 §T9 96'CSE 88'8LST €6C 0s'e 0IP-01-01-0T-0T-C-0%-0T-WOPUBI-9[NPOIN
- - 900 €00 S (4! 61°CI 99 7811 09 SY'vcTc 8€Tl8 yoe SLT 0TP-01-01-0T-0T-C-0C-0C-WOpUBI-9[NPOIN
- - 100 100 000 001 LSS s LSS (489 0'¥8 0S'19% 0T (42N 0IP-01-01-01-01-C-01-0T-WOpUBI-9[NPOIN
- - 000 100 000 001 €60 0S'T €60 0s'1 68°6C 8E VLY 9’0 ST 0TP-01-01-0T-0T-C-S-0t-WopueI-o[npoy
- 10 170 S0°0 LY'C 881 00°LT st 9$vC STyl 1169 STsty S0C sTe 0IP-01-01-01-01-C-S-0€-WopueI-o[npojA
- - 10°0 10°0 000 00'1 e 484 e y 98'6¢C 8€'86C 11 8€C 01P-01-01-01-01-C-S-0C-WopueI-o[npojA
- - 200 200 S€0 'l 199 8¢'8 699 ST'8 €999 Cr6lc e'e [4°h4 0IP-01-01-01-01-¢-S-0-WOpUeI-o[NPON
- - 81°0 o 000 00'1 crie SL'TE e SL'TE 16°LLI 0S°LYS L9 w11 STP-01-01-0-01-1-S-0C-topueI-aNpOA
- - 800 600 000 00'1 401! 8861 YTl 8861 08 %11 SToLy (44 e 0TP-01-01-0-0T-1-$-0C-WopueI-o[npoJA
- - 90°0 00 000 00T 68°01 88°CI 6801 88CI creel creoy €97 8¢9 STP-01-01-0-01-1-S-0C-WOPURI-AMPON
- - 100 100 000 001 09'¢ 88'¢ 09°¢ 88'¢ 06'Ce §T06C 691 8€C 0IP-01-01-0-01-1-S-0C-WopueI-o[nPOJ
- - S0°0 700 000 001 €LT e €L'T e Teerl 0S'TLE 9L'0 00T 0TP-01-0%-0-01-1-S-0C-WopueI-o[npojA
- - 100 100 000 001 ¥6'¢ 881 ¥6'¢ 88¥ 0108 88'76C L0C 00°¢ 0IP-01-02-0-01-1-S-0C-WwopueI-o[npojA
- - 10°0 100 000 00'1 09°¢ 88°¢ 09°¢ 88'¢ 06'Ce §T 06T 69'1 8€C 0IP-01-01-0-01-1-S-0C-WopueI-o[npojA
- - 10°0 10°0 000 001 s¢'¢ 0s'9 S¢e 059 85°6¢ 05°01¢ €8'1 SL'E 0IP-01-6-0-01-[-S-0C-tWOpuLI-o[NPOJA
- - 10°0 100 000 00'1 we 88'C we 88°C 9T°0¢ STSLT el 881 01P-01-01-0-0C-1-S-0C-WopueI-3[NpON
- - 100 100 000 00'1 Ice 00°¢ 1ce 00°¢ 88C¢ SL'Y0E o1 88'C 01P-01-01-0-ST-1-S-0T-WwopueI-o[npojA
- - 100 100 000 00T 09°¢ 838'¢ 09°¢ 88'¢ 06'CE ST 06T 69'1 8¢€C 0TP-01-01-0-0T-T-S-0C-WopueI-o[nNpoJ
- - 100 200 000 001 S09 0S’L S09 0S’L 1€vL 09°¢e€ 9LT STy 0IP-01-01-0-S-1-S-0C-tOpueI-a[NPOJA
- - 9¢'0 L80 000 001 9691 0078 9691 0018 orore 8E€¥O1 LV 79'ee 0IP-ST-01-0-01-1-S-0C-WwopueI-o[npoj
- - 170 01’0 000 001 9181 8¢'81 9181 8¢8I ¢S'STC 8ETTEL 00'6 886 01P-02-01-0-01-1-S-0C-WwopueI-o[npojA
- - w00 00 000 00'1 9T'L 889 9L 889 1688 0099 8¢ 88'¢ 0IP-S1-01-0-01-1-S-0C-WopueI-o[npojA
- - 10°0 100 000 00'1 09°¢ 88'¢ 09°¢ 88'¢ 06'CE §T06T 69'1 8¢€C 0IP-01-01-0-01-1-$-0T-WwopueI-o[npojA
- N 000 100 000 001 611 8¢'C 611 8¢C SOl 00°0ST €0 w1 0IP-S-01-0-01-1-S-0C-tWOopueI-o[NPOJA
- - 100 w00 000 00'1 we 0S¢ e 0s'e 0T96C 0STSHT 9¢'1 (4% 01P-01-01-0-0T-1-0%-0T-WopueI-o[npojy
- - w00 w00 000 001 €L'S (3 €L'S ws 0L'T0C ST9S8 L8T sTe 0TP-01-01-0-0T-1-0C-0C-WopueI-o[npojy
- - 100 100 000 001 3y ay 8S¥ iy S6°6L ey 1T 0sT 0IP-01-01-0-01-1-01-0C-WopueI-o[npojA
- - €00 €00 000 001 179 0S’L 179 0s’L S6'611 8¢€'19¢ €6'C 001 0TP-01-01-0-0T-T-S-0f-WwopueI-o[npo
- - ¥0°0 €00 000 001 09'6 ST6 09'6 ST6 187161 8¢€°60S L0y (424 0IP-01-01-0-01-1-S-0€-WopueI-o[npojA
- - 10°0 100 000 00'1 09°¢ 88°¢ 09°¢ 88'¢ 06'Ce ST 06T 69'1 8€C 0IP-01-01-0-01-1-S-0C-WopueI-o[npojA
- - 100 100 000 001 ¥S'¢ SL'E ¥s'e SL'E €1'Le 88'8L1 LLT 8¢€C 01P-01-01-0-01-1-S-0[-WOpueI-o[nPOJA
JNO-WAW Jno-owWl) AIP'PIS FAe AQP'PIS 3ae AJD'PIS Sae AJP'PIS 3ae AD'PIS 3AE ASP'PIS SAe S

92IN0SAY s, SV [e10], ATQ Wol] SV ATd oL 11BD (W 7400)A 1o

Sumids uonenueisur yim wred wopuey IV dqeL

103

APPENDIX

Encoding

B.1 Hanoi Tower

B.1.1 Ordinary ASP

%---- Initial fact

succ(0,1). succ(l,2). succ(2,3). succ(3,4).
succ(4,5). succ(5,6). succ(6,7). succ(7,8).
succ(8,9). succ(9,10). succ(10,11). succ(11,12).
succ(12,13). succ(13,14). succ(14,15).

ndisk(4).
pathlength(15).

disk(1).
disk(X1) :- disk(X), succ(X,X1), X1<=Y, ndisk(Y).

peg(a) .
peg(b) .
peg(c).

situation(®).
situation(X1) :- situation(X), succ(X,X1), X1<=Y, pathlength(Y).

transition(0).
transition(X1):- transition(X), succ(X,X1), X1<Y, pathlength(Y).

location(Peg) :- peg(Peg).
location(Disk) :- disk(Disk).

%---- Initial situation
on(X,a,0) :- ndisk(X).
on(X,X1,0) :- X<Y, disk(X), X1=X+1, ndisk(Y).

%---- Inertial fluent: on(X,L,I) = disk X is on location L at time I

% inertia

on(X,L,T1) :- on(X,L,T), not otherloc(X,L,T1), location(L), transition(T), disk(X), T1=T+1.
otherloc(X,L,I) :- on(X,L1,I), L1!=L, situation(I), location(L), location(L1), disk(X).

% on unique location

:- on(X,L,I), on(X,L1,I), L!=L1, situation(I), location(L), location(L1l), disk(X).

%---- Defined fluents

% inpeg(L,P,I) = location L is in peg P at time I

% top(P,X,I) = location L is the top of peg P. If empty, the top is P
inpeg(P,P,I) :- situation(I), peg(P).

105

inpeg(X,P,I) :- on(X,L,I), inpeg(L,P,I), situation(I), location(L), disk(X), peg(P).
top(P,L,I) :- inpeg(L,P,I), not covered(L,I), situation(I), location(L), peg(P).
covered(L,I) :- on(X,L,I), situation(I), location(L), disk(X).

%---- Generating actions
% pick one at each transition T
move(a,b,T) v move(a,c,T) v move(b,c,T) v move(b,a,T) v move(c,b,T) v move(c,a,T) :- transition(T).

%---- Effect axiom
on(X,L,T1) :- move(P1,P2,T), top(Pl,X,T), top(P2,L,T), location(L), transition(T), disk(X), peg(Pl), peg(P2), T1=T+1.

%---- State constraint: no disk X on a smaller one
:- on(X,Y,I), X>Y, situation(I), disk(X), disk(Y).

%---- Executability constraint
% the source peg cannot be empty
:- move(P1,P2,T), top(P1,P1,T), transition(T), peg(Pl), peg(P2).

%---- Goal: at last situation, all disks in peg c
onewrong :- not inpeg(X,c,Y), disk(X), pathlength(Y).
1~ onewrong.

B.1.2 MLP

#module (mainProgram, []).

succ(0,1). succ(l,2). succ(2,3). succ(3,4).
succ(4,5). succ(5,6). succ(6,7). succ(7,8).
succ(8,9). succ(9,10). succ(10,11). succ(l1,12).
succ(12,13). succ(13,14). succ(14,15).

pathlength(15).

ndisk(4).
ok :- @solveHanoi[succ, ndisk, pathlength]::ok.

#module(solveHanoi, [succ/2, ndisk/1, pathlength/1]).

%---- Initial condition

disk(X) :- @init[succ, ndisk, pathlength]::disk(X).

peg(X) - @init[succ, ndisk, pathlength]::peg(X).
situation(X) :- @init[succ, ndisk, pathlength]::situation(X).
transition(X) :- @init[succ, ndisk, pathlength]::transition(X).
location(X) :- @init[succ, ndisk, pathlength]::location(X).
on(X,Y,Z) :- @init[succ, ndisk, pathlength]::on(X,Y,Z).

%---- Inertial fluent: on(X,L,I) = disk X is on location L at time I
% inertia

on(X,L,T1) :- on(X,L,T), not otherloc(X,L,T1), location(L), transition(T), disk(X), T1=T+1.
otherloc(X,L,I) :- on(X,L1,I), L1!=L, situation(I), location(L), location(L1l), disk(X).

% on unique location

:- on(X,L,I), on(X,L1,I), L!=L1, situation(I), location(L), location(L1l), disk(X).

%---- Defined fluents

% inpeg(L,P,I) = location L is in peg P at time I

% top(P,X,I) = location L is the top of peg P. If empty, the top is P

inpeg(P,P,I) :- situation(I), peg(P).

inpeg(X,P,I) :- on(X,L,I), inpeg(L,P,I), situation(I), location(L), disk(X), peg(P).
top(P,L,I) :- inpeg(L,P,I), not covered(L,I), situation(I), location(L), peg(P).
covered(L,I) :- on(X,L,I), situation(I), location(L), disk(X).

%---- Generating actions
% pick one at each transition T

move(a,b,T) v move(a,c,T) v move(b,c,T) v move(b,a,T) v move(c,b,T) v move(c,a,T) :- transition(T).

%---- Effect axiom
on(X,L,T1) :- move(P1l,P2,T), top(P1,X,T), top(P2,L,T), location(L), transition(T), disk(X), peg(P1l), peg(P2), T1=T+1.

%---- State constraint: no disk X on a smaller one
- on(X,Y,I), X>Y, situation(I), disk(X), disk(Y).

%---- Executability constraint
% the source peg cannot be empty

106

:- move(P1,P2,T), top(P1,P1,T), transition(T), peg(Pl), peg(P2).

%---- Goal: at last situation, all disks in peg c
onewrong :- not inpeg(X,c,Y), disk(X), pathlength(Y).
:- onewrong.

ok :- not onewrong.

#module(init, [succ/2, ndisk/1, pathlength/1]).
%---- Initial fact

disk(1).

disk(X1) :- disk(X), succ(X,X1), X1<=Y, ndisk(Y).

peg(a).
peg(b) .
peg(c).

situation(0).
situation(X1) :- situation(X), succ(X,X1), X1<=Y, pathlength(Y).

transition(0).
transition(X1):- transition(X), succ(X,X1), X1<Y, pathlength(Y).

location(Peg) :- peg(Peg).
location(Disk) :- disk(Disk).

%---- Initial situation
on(X,a,0) :- ndisk(X).
on(X,X1,0) :- X<Y, disk(X), X1=X+1, ndisk(Y).

B.2 Packing

B.2.1 Ordinary ASP

area(6,4).
max_square_num(3) .
square(1,4). square(2,2). square(3,2).

int(®). int(1). int(2). int(3).
int(4). int(5). int(6).

pos(I,X,Y) v npos(I,X,Y) :-
square(I,D), area(W,H), int(X), int(Y),
X>0, Y>>0, X1=X+D, Y1 =Y+ D, W>= X1, H>= Yl.

:- pos(I,X,Y), pos(I,X1,Y1), X1 !=X.
:- pos(I,X,Y), pos(I,X1,Y1), Y1 I=1Y.

pos_square(I) :- pos(IL,X,Y).

:- square(I,D), not pos_square(I).

%top left

overl(I1,I2) :-

pos(I1,X1,Y1), square(Il,D1), pos(I2,X2,Y2), square(I2,D2), Il != I2,

W1l = X1+D1, H1 = Y1+4D1, X2 >= X1, X2 < W1, Y2 >= Y1, Y2 < HI.

%bottom left

overl(I1,I2) :-

pos(I1,X1,Y1), square(Il,D1), pos(I2,X2,Y2), square(I2,D2), Il != I2,

W1l = X1+D1, H1 = Y1+4D1, H2 = Y2+D2, X2 >= X1, X2 < W1, H2 > Y1, H2 <= H1.

:- overl(I1,I2).

B.2.2 MLP: Encoding 1

#module(main, [1).

107

area(6,4).
max_square_num(3) .
square(1,4). square(2,2). square(3,2).

int(®). int(1). int(2). int(3).
int(4). int(5). int(6).

pos(X,Y,Z) :- @solvePacking[int, square, area]::pos(X,Y,Z).

#module(solvePacking, [int/1, square/2, area/2]).
pos(I,X,Y) v npos(I,X,Y) :-

square(I,D), area(W,H), int(X), int(Y),

X>0, Y>>0, X1=X+D, YI1=Y+D, W>= X1, H>= Yl.

:- pos(I,X,Y), pos(I,X1,Y1), X1 != X.
:- pos(I,X,Y), pos(I,X1,Y1l), Y1 !=1Y.

pos_square(I) :- pos(I,X,Y).
:- square(I,D), not pos_square(I).

%top left

overl(Il,I2) :-

pos(I1,X1,Y1), square(Il,D1), pos(I2,X2,Y2), square(I2,D2),

I1 !=I2, Wl = X1+D1, H1 = Y1+D1, X2 >= X1, X2 < W1, Y2 >= Y1, Y2 < HI.

%bottom left

overl(Il1,I2) :-

pos(I1,X1,Y1), square(Il,D1), pos(I2,X2,Y2), square(I2,D2), Il != I2,

Wl = X1+D1, H1 = Y1+D1, H2 = Y2+D2, X2 >= X1, X2 < W1, H2 > Y1, H2 <= HI.

:- overl(Il,I2).

B.2.3 MLP: Encoding 2
#module(main, []).

area(6,4).
max_square_num(3).
square(1l,4). square(2,2). square(3,2).

int(®). int(1). int(2). int(3).
int(4). int(5). int(6).

pos(X,Y,Z) :- @solvePacking[int, square, area]::pos(X,Y,Z).

#module(solvePacking, [int/1, square/2, area/2]).
pos(X,Y,Z) :- @generatePos[int, square, area]::pos(X,Y,Z).

%top left

overl(I1,I2) :-

pos(I1,X1,Y1), square(Il,D1), pos(I2,X2,Y2), square(I2,D2),

I1 !=I2, W1 = X1+D1, H1 = Y1+D1, X2 >= X1, X2 < W1, Y2 >= Y1, Y2 < HIl.

%bottom left

overl(I1l,I2) :-

pos(I1,X1,Y1), square(Il,D1), pos(I2,X2,Y2), square(I2,D2), Il != I2,

W1l = X1+D1, H1 = Y1+D1, H2 = Y2+D2, X2 >= X1, X2 < W1, H2 > Y1, H2 <= HI1.

:- overl(Il,I2).

#module(generatePos, [int/1l, square/2, area/2]).
pos(I,X,Y) v npos(I,X,Y) :-

square(I,D), area(W,H), int(X), int(Y),

X>0, Y>>0, X1=X+D, YI1=Y+ D, W>= X1, H>= Yl.

:- pos(I,X,Y), pos(I,X1,Y1), X1 !=X.
:- pos(I,X,Y), pos(I,X1,Y1), Y1 I=Y.

pos_square(I) :- pos(I,X,Y).
:- square(I,D), not pos_square(I).

108

B.3 Even-Odd

B.3.1 MLP

#module(pl,[1).

% put q here: q(a). q(b). q(c).
even :- @p2[q]::even.

odd :- not even.

#module(p2,[q2/1]).

q2i(X) v q2i(Y) :- gq2(X), q2(Y), X!=Y.
skip2 :- q2(X), not q2i(X).

even :- not skip2.

even :- skip2, @3[q2i]::odd.

#module(p3,[q3/1]).

q3i(X) v q3i(Y) :- q3(X), q3(Y), X!=Y.
skip3 :- q3(X), not g3i(X).

odd :- skip3, @p2[g3i]::even.

B.3.2 Ordinary ASP - Labeling Solution
% put q here: q(a). q(b). q(c).
% put successor relation here: succ(l,2). succ(2,3). succ(3,4).

% get id (elements of succ)
id(X) :- succ(X,Y).
id(Y) :- succ(X,Y).

% less than relation
lessthan(X,Y) :- succ(X,Y).
lessthan(X,Z) :- succ(X,Y), lessthan(Y,Z).

% guess an ordering
pid(X,Y) v opid(X,Y) :- qX), id(Y).

% cannot be two elements assigned to the same number
:- pid(X,Y), pid(X,2), Y!=Z.

% cannot be two number assigned to the same elements
:- pid(Y,X), pid(Z,X), Y!=Z.

% get to know who is in
qin(X) :- pid(X,Y).
idin(Y):- pid(X,Y).

% every q must be in
- q(X), not qin(X).

% the least id should be in
:- id(X), id(Y), lessthan(X,Y), idin(Y), not idin(X).

% get the smallest in the ordering,

% assume the smallest number always in pid
nsmallest(Y) :- succ(X,Y).

smallest(X) :- not nsmallest(X), id(X).

% get the largest in the ordering,

% considering ids that occur in the set only
nlargest(X) :- succ(X,Y), idin(X), idin(Y).
largest(X) :- not nlargest(X), idin(X).

% toggle between even-odd

oddP(X) :- pid(X,Y), smallest(Y), qX).

evenP(X) :- pid(X,Y), oddP(Z), pid(Z,PrevY), succ(PrevY,Y).
oddP(X) :- pid(X,Y), evenP(Z), pid(Z,PrevY), succ(PrevY,Y).

% get the end result

odd :- oddP(X), pid(X,Y), largest(Y).
even :- not odd.

109

110

	Introduction
	Answer Set Programming
	Modularity in Logic Programs
	Thesis Contribution
	Organization of the Chapters

	Preliminaries
	Answer Set Programming
	Modular Nonmonotonic Logic Programs
	Syntax of MLPs
	Semantics of MLPs

	Top-Down Approach for MLPs
	Splitting Sets
	Splitting for input-call-stratified MLPs
	Global splitting
	Local splitting

	Top-Down Evaluation Algorithm

	Instantiation Splitting for Input-Call-Stratified MLPs
	Intuition
	Instantiation Splitting

	Evaluating Input-Call-Stratified MLPs with Instantiation Splitting
	Evaluation Algorithm
	Sub-Algorithms
	Stratified Checking
	Rewriting
	Splitting Set Preparation
	Value Call Preparation

	Soundness and Completeness of Algorithm solveMLP
	Soundness
	Completeness

	Implementation
	System Architecture
	Main Architecture
	Syntax Checking
	Evaluator

	Input/Output Format
	Input
	Output

	Parameters
	Usage

	Experiments
	Random Programs
	Experiment Characteristics
	Experiment Results

	Hanoi Tower
	Packing Problem
	Even-Odd
	Summary

	Conclusion and Further Work
	Conclusion
	Further Works

	Bibliography
	Experiment Results
	Encoding
	Hanoi Tower
	Ordinary ASP
	MLP

	Packing
	Ordinary ASP
	MLP: Encoding 1
	MLP: Encoding 2

	Even-Odd
	MLP
	Ordinary ASP - Labeling Solution

