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Abstract

Vagueness is ubiquitous in our language and thinking. Reasoning with
vague information therefore is a highly relevant task for information systems
and artificial intelligence. In this thesis, we study non-classical logics for reason-
ing under vagueness.

Supervaluationism is one of several theories of vagueness that are discussed
in analytic philosophy. e idea of supervaluationism is to consider all ways
of making vague statements completely precise. In every su precisification,
formulas are interpreted like in classical logic. Vague situations are modeled by
precisification spaces whi are sets of different precisifications. e supervalu-
ationist’s notion of truth is supertruth, whi is defined as truth in all precisifica-
tions. Due to the similarity to Kripke semantics, the supervaluational approa
results in a modal logic.

Fuzzy logics have a baground in control engineering and are awell-studied
class of many-valued logics. e fuzzy-logic approa has two main features:
the unit interval is taken as the set of truth degrees and formulas are evaluated
according to truth functions. We consider those fuzzy logics in whi the truth
function for conjunction is a continuous t-norm and the truth functions of the
other connectives are also fully determined by the oice of the t-norm. Fuzzy
logics are oen extended by the ▵-operator that indicates whether a formula has
the truth value 1. emost important fuzzy logics for this thesis are Łukasiewicz
logic and Gödel logic. We show that in some natural sense Gödel logic is the only
“logic of comparison”.

We combine supervaluationism and fuzzy logic to a hybrid logic by equip-
ping every precisification space with a measure on its set of precisifications. We
determine the truth value of ea propositional variable by measuring the set of
precisifications of the space in whi it is true. e truth functions of the con-
nectives are determined by a t-norm, like in fuzzy logic. In this way we obtain a
hybrid logic for every continuous t-norm. We also add a modal operator S to the
logic that indicates whether a formula is supertrue in the precisification space.

We obtain a normal form for the hybrid logic in whi nestings of the
S-operator are not necessary. Furthermore, we show that Gödel fuzzy logic
with the ▵-operator can be embedded into Łukasiewicz hybrid logic and that
Łukasiewicz hybrid logic can be embedded into fuzzy Łukasiewicz logic with the
▵-operator. We also consider certain natural restricted versions of precisification
spaces and show the following: Łukasiewicz hybrid logic is the only hybrid logic
in whi truth in all precisification spaces is equivalent to truth in all precisifica-
tion spaces with a measure of strictly positive range. In both Łukasiewicz hybrid
logic and Gödel hybrid logic, truth in all precisification spaces with a measure
of strictly positive range is equivalent to truth in all precisification spaces with
a uniform measure.
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Zusammenfassung

Vagheit ist ein allgegenwärtiges Phänomen unserer Sprae und unseres
Denkens. Das Slussfolgern aus vager Information ist daher äußerst relevant
für Informationssysteme und für Künstlie Intelligenz. Diese Arbeit besäigt
si mit nitklassisen Logiken für das Slussfolgern in vagen Kontexten.

Supervaluationismus ist eine von mehreren eorien der Vagheit, die in der
analytisen Philosophie diskutiert werden. Die Idee dahinter ist, dass alle Mög-
likeiten berüsitigt werden sollen, eine vage Aussage vollständig präzise
zu maen. In jeder Präzisierung werden Formeln wie in der klassisen Logik
interpretiert. Vagheit wird dur Präzisierungsräume, d. h. dur Mengen ver-
siedener Präzisierungen, modelliert. Der supervaluationale Wahrheitsbegriff
ist Superwahrheit, wele als Wahrheit in allen Präzisierungen definiert wird.
Aufgrund der Ähnlikeiten zur Kripke-Semantik, ergibt si aus diesem Ansatz
eine modale Logik.

Fuzzy-Logiken stammen ursprüngli aus der Kontrolltenik und sind ei-
ne Klasse mehrwertiger Logiken. Fuzzy Logik hat zwei Hauptbestandteile: Zum
einen wird das Einheitsintervall als die Menge der möglien Wahrheitswerte
verwendet und zum anderen ergibt si der Wahrheitswert von Formeln dur
Wahrheitsfunktionen. Wir betraten jene Fuzzy-Logiken, bei denen die Wahr-
heitsfunktion der Konjunktion eine stetige T-Norm ist und au die Wahrheits-
funktionen der restlien Konnektive vollständig dur dieWahl der T-Norm be-
stimmt werden. Fuzzy-Logiken werden o um den Operator ▵ erweitert, der an-
gibt, ob eine Formel den Wahrheitswert 1 erhält. Die witigsten Fuzzy-Logiken
für diese Arbeit stellen die Łukasiewicz-Logik und die Gödel-Logik dar. Wir zei-
gen, dass die Gödel-Logik in einem gewissen, natürlien Sinn die einzige “Logik
des Vergleis” ist.

Wir kombinieren Supervaluationismus und Fuzzy-Logik zu einer hybriden
Logik, indemwir jeden Präzisierungsraummit einemMaß auf seiner Menge von
Präzisierungen ausstaen. Wir bestimmen den Wahrheitswert jeder propositio-
nalen Variable dur das Maß jener Präzisierungen, in denen sie als wahr er-
atet wird. Die Wahrheitsfunktionen der Konnektive werden, wie in der Fuzzy-
Logik, dur eine T-Norm bestimmt. Auf diese Art und Weise erhalten wir eine
hybride Logik für jede stetige T-Norm. Weiters fügen wir einen modalen Opera-
tor S hinzu, der angibt, ob eine Formel im Präzisierungsraum superwahr ist.

Wir erhalten eine Normalform für die hybride Logik, bei der S-Operatoren
nit gesatelt werden müssen. Wir zeigen außerdem, dass die Gödel-Logik
mit ▵-Operator in die hybride Łukasiewicz-Logik eingebeet werden kann und
dass die hybride Łukasiewicz-Logik in die Łukasiewicz-Logik mit ▵-Operator
eingebeet werden kann. Darüber hinaus betraten wir bestimmte Einsrän-
kungen für Präzisierungsräume und zeigen Folgendes: Die hybride Łukasiewicz-
Logik ist die einzige hybride Logik, in derWahrheit in allen Präzisierungsräumen
äquivalent ist zu Wahrheit in allen Präzisierungsräumen, bei denen das Maß ei-
nen strikt positivenWerteberei hat. Sowohl in der hybriden Łukasiewicz-Logik
als au in der hybriden Gödel-Logik ist Wahrheit in allen Präzisierungsräumen
mit einem strikt positiven Maß äquivalent zu Wahrheit in allen Präzisierungs-
räumen mit einem uniformen Maß.
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CHAPTER 1
Introduction

1.1 Overview

Consider the following two statements:

(i) A person with a height of 2m or more is tall.

(ii) If a person with a height of 𝑥mm is tall, then also a person with a height of
𝑥 − 1mm is tall.

Although both premises seem to be intuitively correct, we arrive at a conclusion that
is certainly not: Starting with the fact that a person with a height of 2m is tall, we
successively apply the second premise and conclude that even a person with a height
of 40 cm is tall. is line of reasoning leads to the contradictory statement that even
babies, the smallest among all people, are tall. A situation like this is called a sorites
paradox. Sorites paradoxes were first formulated by the ancient Greek. Other variants
of this argument address the property of being young and the age in seconds, the
property of being bald and the number of hairs, or, in its classical formulation, the
property of being a heap and the number of grains of sand.

Strictly speaking, there is of course no contradiction. Nothing is wrong with our
well-known classical logic in this example: the second statement just cannot be true
according to the classical notion of truth. However, this answer seems a bit unsat-
isfactory because, intuitively, the second statement is also not completely false, it is
somewhat true. Even if we accept the second premise as somewhat true, the con-
clusion still seems completely unacceptable. e reason for this complication is that
adjectives like “tall” are not completely precise in the sense that it is always possible to
label every person as tall or small. We call su adjectives vague. As our example in-
dicates, there seems to be a certain style of human reasoning in the presence of vague
information that deviates from classical logic. Adequate formal models of reasoning
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under vagueness would be valuable for many applications. erefore it is natural to
ask: how should we deal with vagueness?

Computer science has an answer to that question: fuzzy logic or related degree-
based approaes are the prevalent logical approa towards vagueness and alterna-
tives are hardly ever discussed. In contrast to that, there is an ongoing debate about
theories of vagueness in analytic philosophy. One of these theories is called supervalu-
ationism and is diametrically opposed to fuzzy approaes. e goal of this thesis is to
bring the two resear fields closer together. Supervaluationism will be presented in
a way that makes it accessible for logicians and computer scientists. Fuzzy logic will
be presented in a way that makes a discussion of its appropriateness for vagueness
possible. Finally, we consider a hybrid logic that combines fuzzy logic and supervalu-
ationism in a specific way. Note that we do not just borrow ideas from philosophy as
a source of inspiration, but also want to point out whi consequences certain design
oices for a theory of vagueness have. is, in turn, might be of particular interest
for philosophers.

To overcome any scepticism concerning the usefulness of philosophical discussions
for computer science in advance, we want to remind the readers that modal logic ini-
tially was developed out of purely philosophical concerns. However, nowadays modal
logics are a central tool for the verification of hardware and soware. Furthermore it
will become apparent that a discussion of logics for vagueness includes many aspects
that are tenically allenging.

is thesis consists of two kinds of contributions: reviews of the key literature and
theoretical results. e organisation is as follows:

• We start with a review of supervaluationism in Chapter 2. Here we consider
Fine’s classical article [40] as well as current resear papers with an emphasis
on tenical results. Furthermore, we show that a certain variant of supervalu-
ationism is not suitable for so-called higher-order vagueness.

• Fuzzy logics based on t-norms, as studied in Chapter 3, are the prevalent man-
ifestation of degree-based reasoning. We give a review of the state of the art
with a focus on aspects that are relevant for the discussion of vagueness.

• Chapter 4 is devoted to Gödel logic, one of the most important fuzzy logics.
e central feature of Gödel logic is that its truth functions only compare truth
values and do not involve any arithmetic operations. In principle there might
be other logics with this behaviour. We prove that, under certain preconditions,
Gödel logic is the only fuzzy logic of comparison.

• In Chapter 5 we consider a hybrid logic that combines supervaluational and
fuzzy reasoning. We slightly generalize the concept introduced by Fermüller
and Kosik [38] and investigate the resulting logics. Our results include a normal
form for formulas and certain embeddings to or from fuzzy logics. Furthermore,
we introduce natural restrictions of the corresponding semantics and show un-
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der whioices of the truth functions for logical connectives these restrictions
affect the notion of validity.

In our presentation we assume that the reader is familiar with the basic notions
of classical logic. We remark that consistency of notation was one of the goals of this
thesis. is entails that cited results are oen formulated in a different manner than
in the original paper.

1.2 eories of vagueness

Before we dig deeper into the subject it seems useful to give a short overview on the
vagueness landscape. We follow the survey by Fermüller [36] for presenting the main
aspects needed to provide some baground.

Vagueness is a highly discussed topic in analytic philosophy that also is of potential
interest to logicians. Several monographs have been published, ea one arguing in
favor of one of the existing approaes on vagueness (see for example [72, 93, 94, 101]).
Unsurprisingly, there is no consensus on how vagueness is to be defined. However, it
seems to be clear that one has to deal with the following phenomena of vagueness [36,
72]:

• Borderline cases: Vague predicates usually admit borderline cases. is means
that there are objects for whi it is “unclear whether or not the predicate ap-
plies” [72]. Note that the existence of borderline cases is not due to a la of
precision. Even if we knew the height of every person accurate to the nanome-
ter, it would still be hard to decide for some people whether they should be
counted as tall or not tall.

• No sharp boundaries: e classical conception says that the extension of a
predicate consists of all objects for whi the predicate applies. If an object is
not in the extension, then it is clear that it is not subsumed by the predicate.
Vague predicates do not have su sharp boundaries in the form of well-defined
extensions. e boundary between the extension and the “anti-extension” of a
vague predicate is “fuzzy”. Note that this concept is in a way very similar to
the existence of borderline cases and it is sometimes argued that both concepts
coincide.

• Sorites paradoxes: A good theory of vagueness should help us to resolve the
sorites paradox described in the introduction: In a line of persons in whi every
person is 1mm smaller than her le neighbor, it seems intuitive to argue as
follows: if a person in the line is considered tall, the right neighbor should be
considered tall, too. If we assume that the first person in the line is tall, repeated
applications of modus ponens lead to the paradoxical conclusion that there can
never be a person in the line that is not tall.

• Higher-order vagueness: “Vague” itself is a vague predicate. Just as there are
borderline cases of vague predicates, one can also think of objects for whi
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one cannot definitely determine whether they are borderline cases or not. us,
there might be borderline cases of borderline cases. is idea can be formulated
up to arbitrarily high levels.

ere are many suggestions how to deal with these phenomena. Among the most
important theories of vagueness proposed by philosophers are the following:

• Gap theories: Two views are subsumed under this notion. e first one is that
in the presence of vagueness there is no way of doing proper reasoning at all.
e second one admits that there are statements that are neither true nor false.
Tenically, this can be modeled with an additional truth value and leads to a
three-valued logic.

• Epistemicism: Epistemic theories consider vagueness as a la of knowledge.
e main idea is that in principle all predicates, also the vague ones, have exact
extensions. However, the exact boundaries of some predicates are not known
to us and therefore appear to be vague.

• Supervaluationism: e baseline of supervaluationism is that a vague state-
ment is definitely true if it is true for all ways of making it completely precise.
e different precisifications correspond to fully classical interpretations of a
vague predicate. A borderline statement then is true in some but not all pre-
cisifications. Obviously, there is a connection between supervaluationism and
Kripke-style semantics for modal logics.

• Degree-based theories: Borderline statements receive truth values between ab-
solute truth and absolute falsehood. Fuzzy logics are onewell-known implemen-
tation of this approa. However, there are also other degree-based approaes.
In a more recent contribution, Smith proposes a degree-based approa where
he takes fuzzy interpretations—as opposed to classical interpretations—as pre-
cisifications [94].

• Pragmatic theories: Some philosophers consider our use of language as the
source of vagueness. Under this view, a language is always completely precise
but its meaning depends on the context. Since it is not always determined whi
language a community of speakers uses, the phenomenon of vagueness arises.

• Contextualism: Contextualism assumes that over time or with context the
meaning of vague terms might ange. Su shis in context might occur qui-
ly, even during the course of a conversation. In particular, contextualism consid-
ers the possibility that in certain situations “a competent speaker of the language
can go either way in the borderline area of a vague predicate” [93].

Philosophers usually end up in defending exactly one theory of vagueness. How-
ever, Fermüller argues that it is adequate to pursue competing approaes because
vagueness is a “complex and multi-faceted phenomenon” [34]. Different applications
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may justify different means of dealing with vagueness. is thesis follows this point
of view. We focus on supervaluationism and fuzzy logics as an instantiation of degree-
based reasoning because the two concepts are complementary to ea other and are
both well-developed in their respective communities.





CHAPTER 2
Supervaluationism

e baseline of supervaluationism is that a vague statement should be considered true
if it is true for all ways of making it completely precise. Although similar ideas have
already been expressed by others, Fine’s seminal article [40] is the standard reference
on supervaluationism. In the following we try to present the canonical supervaluation
theory based on Fine’s article. In particular, we are interested in the logics arising
from the supervaluational concepts. Higher-order vagueness and specification spaces
based on partial interpretations are two topics that deserve special aention and are
discussed separately. Finally, we also give an overview on some newer, more tenical
results that mostly concern different forms of entailment for supervaluational logic.

2.1 Fine’s specification space approa

Fine motivates his approa by his view on vagueness: “I take it [vagueness] to be
a semantic notion. Very roughly, it is deficiency of meaning” [40]. Hence, he ties
vagueness to the existence of truth-value gaps. His central idea is the following: “A
vague sentence can be made more precise; and this operation should preserve truth
value” [40]. One possibility to deal with truth-value gaps is to simply introduce a third
truth value for neither-true-nor-false. Fine dismisses truth-value approaes of that
kind and presents an alternative framework for whi the specification space is the
central notion. As a simplification, he carries out his analysis for vague predicates
only and does not consider vague names or vague quantifiers.

A special requirement that Fine imposes on a theory of vagueness is that it can
deal with penumbral connections. He explains that a penumbral connection is a log-
ical relation that holds among indefinite statements. “Truths that arise, wholly or
in part, from penumbral connection [are called] truths on a penumbra or penumbral
truths” [40]. His example is the following: Assume a blob whose color is on the border
between red and pink. Although both statements “e blob is red” and “e blob is
pink” are indefinite, the statement “e blob is red and pink” is clearly false because

7
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being pink and being red are contraries in this seing. On the other hand, if the blob
is also a borderline case of small, the statement “e blob is small” is indefinite as well
as the statement “e blob is red and small”. Note that this example already indicates
that the resulting logic for vagueness is not truth-functional.

Fine’s approa can be summarized as follows: He considers a space of specifica-
tion points that correspond to ways of making vague statements precise. At a specifica-
tion point, a statement can be true, false, or neither-true-nor-false. Some specification
points are complete, i.e., all vagueness is resolved. At these complete specification
points, every statement is either (classically) true or (classically) false. At incomplete
specification points, statements can also be neither-true-nor-false. Fine introduces a
notion of truth suitable for specification spaces that is central to his approa: a vague
statement is supertrue if it is true for all ways of making it completely precise. In the
following we define Fine’s abstract concepts more formally.

A specification space is a triple𝑺 = ⟨𝑷, ⪰, (‖⋅‖𝑠,𝑺)𝑠∈𝑷 ⟩ that consists of a nonempty
set of specification points 𝑷 , a partial ordering¹ ⪰ on 𝑷 called extension relation and
a function (‖ ⋅ ‖𝑠,𝑺)𝑠∈𝑷 that assigns to every 𝑠 ∈ 𝑷 a partial function ‖ ⋅ ‖𝑠,𝑺 . e
specification points “correspond to the different ways of making the language more
precise” [40]. e intuition behind the expression 𝑡 ⪰ 𝑠, whi should be read as “t
extends s”, is that 𝑡 is a precisification of 𝑠: it resolves some of the vagueness in 𝑡. For
every 𝑠 ∈ 𝑷 , the partial function ‖ ⋅ ‖𝑠,𝑺 assigns a truth value ‖𝜑‖𝑠,𝑺 ∈ {0, 1} to
some statements 𝜑. e function might be undefined for some statements because
their truth value might not be seled at the specification point 𝑠.

Fine imposes the following constraints on every specification space 𝑺 :

• Admissibility: A specification space should be admissible whi means that
the truth value assignment at ea specification point is “in accordance with
the intuitively understood meanings of the predicates” [40]. In particular, ad-
missibility guarantees that penumbral connections are not violated.

• Base point: ere is a base point 𝑏 ∈ 𝑷 su that 𝑠 ⪰ 𝑏 for ea 𝑠 ∈ 𝑷 .

• Completeability: “Any point can be extended to a complete point within the
same space” [40]. For every 𝑠 ∈ 𝑷 there is a complete point 𝑡 ∈ 𝑷 su that
𝑡 ⪰ 𝑠. Fine does not explicitly define what it means for a specification point to
be complete, but it seems reasonable to call a specification point 𝑠 ∈ 𝑷 complete
if there is no 𝑡 ∈ 𝑷 su that 𝑡 ≠ 𝑠 and 𝑡 ⪰ 𝑠.

• Fidelity: “e truth values at a complete point are classical” [40]. If 𝑠 ∈ 𝑷 is
complete then there is a classical interpretation 𝑴𝑠 su that, for every state-
ment 𝜑, ‖𝜑‖𝑠,𝑺 = ‖𝜑‖𝑴𝑠

(where the right hand side denotes the classical in-
terpretation function). erefore the function ‖ ⋅ ‖𝑠,𝑺 is not partial when 𝑠 is a
complete specification point.

¹A partial ordering is a reflexive, transitive and antisymmetric relation.
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• Stability: “Truth values are preserved under extension of points” [40]. If for a
statement 𝜑 we have ‖𝜑‖𝑠,𝑺 ∈ {0, 1} and 𝑡 ⪰ 𝑠, then ‖𝜑‖𝑡,𝑺 = ‖𝜑‖𝑠,𝑺 .

Fine also imposes two further constraints that we will not state formally because
they are rather tenical. In essence, these two conditions state that every specification
point can be identified with the nonempty set of its complete extensions and vice versa.
is means that the function that assigns to every specification point the set of its
complete extensions is a bijective mapping between the set of specification points and
the powerset of the set of complete specification points. e base point, for example,
can be identified with the set of all complete specification points.

Fine’s abstract approa allows several possibilities to define the function ‖ ⋅ ‖𝑠,𝑺
for every 𝑠 ∈ 𝑷 . Due to the fidelity condition, the only freedom in defining ‖ ⋅ ‖𝑠,𝑺
for a complete specification point 𝑠 is to oose a classical interpretation that fully
determines ‖ ⋅ ‖𝑠,𝑺 . us, the interesting case concerns the incomplete specification
points. We present Fine’s standard approa in the following.²

Fine says that the truth value of a statement 𝜑 at an incomplete specification point
𝑠 ∈ 𝑷 depends on the classical interpretations of the statement at all complete exten-
sions of 𝑠 in the following way:

‖𝜑‖𝑠,𝑺 =
๨

1 if ‖𝜑‖𝑡,𝑺 = 1 for every complete point 𝑡 ∈ 𝑷 with 𝑡 ⪰ 𝑠
0 if ‖𝜑‖𝑡,𝑺 = 0 for every complete point 𝑡 ∈ 𝑷 with 𝑡 ⪰ 𝑠 .

Note that this definition makes ‖ ⋅ ‖𝑠,𝑺 a partial function because it might be the case
that there are two complete extensions 𝑡1, 𝑡2 ∈ 𝑷 of 𝑠 su that ‖𝜑‖𝑡1,𝑺 = 1 and
‖𝜑‖𝑡2,𝑺 = 0.

Besides this local notion of truth, Fine also introduces a concept of global truth in a
specification space 𝑺 . A statement 𝜑 is supertrue iff it is true at the base point 𝑏, i.e., if
‖𝜑‖𝑏,𝑺 = 1. With Fine’s local notion of truth, truth at the base point means truth at all
of its complete extensions and since the base point is extended by every specification
point, supertruth can be identified with truth at all complete specification points. For
the remainder of this apter it is a very important observation that this notion of
supertruth in a specification space only depends on the complete specification points
of the space, and not on any incomplete specification point.

Another important aspect of Fine’s paper is the introduction of a “definitely” oper-
ator D. Fine’s definition is that a statement 𝜑 is definitely true iff it is true at the base
point whi is equivalent to being supertrue, i.e., ‖D𝜑‖𝑡,𝑺 = ‖𝜑‖𝑏,𝑺 . Furthermore,
Fine defines an indefinitely operator that indicates that a statement is “borderline” true.
It is neither definitely true nor definitely false: the statement I𝜑 is an abbreviation for
¬D𝜑 ∧ ¬D¬𝜑. Under this definition, the D-operator is not suitable for higher-order
vagueness because it does not admit nontrivial iterations. We discuss Fine’s approa
on higher-order vagueness in Section 2.4.

²As an alternative, Fine offers a “bastard intuitionistic account” [40] that however has not gained the
same perception as Fine’s standard approa. On the bastard intuitionistic approa the truth condition
for implication for example is the following: ‖𝜑 ⊃ 𝜓‖𝑠,𝑺 = 1 if and only if for every 𝑡 ∈ 𝑺 su that
𝑡 ⪰ 𝑠, if ‖𝜑‖𝑡,𝑺 = 1, then ‖𝜓‖𝑡,𝑺 = 1.
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It is interesting to note that Fine modifies the stability condition in presence of the
D-operator. We can associate with ea specification point 𝑠 in a specification space 𝑺
a subspace 𝑺𝑠 with 𝑠 as its base point. e set of complete precisifications of 𝑺𝑠 then
is a subset of the complete precisifications of 𝑺 . e “proper form of stability” [40]
then is:

If ‖𝜑‖𝑠,𝑺 = 1 and 𝑡 ⪰ 𝑠, then ‖𝜑‖𝑡,𝑺𝑡
= 1.

e reasonwhy the original stability conditionmight be violated is that theD-operator
“ignores any improvement in specification that may have taken place” [40]. Consider
a specification space 𝑺 in whi 𝑡 ⪰ 𝑠 and a statement 𝜑 su that ‖𝜑‖𝑠,𝑺 is unde-
fined and ‖𝜑‖𝑡,𝑺 = 1. en, by the definition of the D-operator, ‖D𝜑‖𝑠,𝑺 = 0 and
‖D𝜑‖𝑡,𝑺 = 1 whi would violate the original stability condition.

2.2 Supervaluational logic

We now review some properties of the logic emerging from Fine’s concepts. e lan-
guage of supervaluational logic is that of classical first-order logic together with the
unary D-operator. Our language has predicate symbols, but no constant symbols, no
function symbols and no identity sign. e reason for this oice is that supervalua-
tionists are mainly interested in vague predicates. Sometimes onlyD-free formulas, in
the language of pure classical first-order logic, will be considered. In this case it will
be explicitly mentioned.

2.2.1 e standard approa

From a formal point of view all relevant questions concerning a specification space
can be answered by knowing its set of complete specifications points and their corre-
sponding classical interpretations.

Definition 2.2.1. A precisification space 𝑺 is a triple 𝑺 = ⟨𝑷, 𝑫, (𝑴𝑠)𝑠∈𝑷 ⟩ that con-
sists of a nonempty set 𝑷 of precisifications, a nonempty set 𝑫 , the domain of 𝑺 , and
a function (𝑴𝑠)𝑠∈𝑷 that assigns a classical first-order interpretation 𝑴𝑠 with domain
𝑫 to every precisification 𝑠 ∈ 𝑷 . As a simplification, we may write 𝑠 ∈ 𝑺 instead of
𝑠 ∈ 𝑷 .

Note that we require that all first-order interpretations have the same domain.
e vagueness then comes from different interpretations of predicates in that domain.
is definition corresponds to the definition of interpretation structures for a version
of modal predicate logic, but without an accessibility relation [69]. e set of possible
worlds in modal logic corresponds to the set of precisifications in supervaluational
logic.

e terms specification space and precisification space are usually used synony-
mously. Wewill sti to the following convention: a specification space refers to Fine’s
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approa of modeling vague situations by supervaluation and the precisification space
is the notion of an interpretation structure for supervaluational logic.

We now define how formulas are interpreted in a precisification space. Apart
from the D-operator, this is straightforward. Just like in classical first-order logic, the
interpretation function is defined modulo a variable assignment.

Definition 2.2.2. Let 𝑺 be a precisification space with domain 𝑫 . A function 𝒗 that
assigns to every object variable an element of 𝑫 is called variable assignment of 𝑺 .

Definition 2.2.3. For every precisification 𝑠 ∈ 𝑺 of a precisification space𝑺 and every
variable assignment 𝒗 of 𝑺 , the interpretation of formulas is defined inductively. For
atomic formulas, the defining clause is

‖𝜑‖𝑠,𝒗,𝑺 = ‖𝜑‖𝑴𝑠,𝒗

where ‖𝜑‖𝑴𝑠,𝒗 is the classical interpretation of 𝜑 in 𝑴𝑠 under the variable assign-
ment 𝒗. e classical connectives are defined in their standard way and the interpre-
tation of the D-operator is given by the clause

‖D𝜑‖𝑠,𝒗,𝑺 =
๨

1 if ‖𝜑‖𝑡,𝒗,𝑺 = 1 for every 𝑡 ∈ 𝑺
0 otherwise .

We will at several occasions consider a different semantics of the D-operator, in
particular in our discussion of higher-order vagueness (see Section 2.4). ere, the
formula D𝜑 will be true if 𝜑 is true at all precisifications that are accessible according
to a binary relation on the precisifications. To avoid confusion, we will always men-
tion if we deviate from this original definition. Note that some authors use the term
“determinately” to describe the D-operator.

We now define the standard logical notions for supervaluational logics, i.e., we
define what truth, validity and logical consequence mean in supervaluational logic.
To define these notions we only consider closed formulas where every occurrence of
an object variable is bound by a quantifier. ereforewe omit the index for the variable
assignment in the interpretation function. First we define the supervaluational notion
of truth, namely supertruth.

Definition 2.2.4. A formula 𝜑 is supertrue in a precisification space 𝑺 iff 𝜑 is true at
ea precisification, i.e., ‖𝜑‖𝑠,𝑺 = 1 for every 𝑠 ∈ 𝑺 .

One can also call formulas that are false at every precisification superfalse. A
formula then is superfalse if and only if its negation is supertrue. As these definitions
indicate there might be formulas that are neither supertrue nor superfalse in a given
precisification space. Note that with our above semantics of the D-operator, a formula
D𝜑 is true at some precisification if and only if 𝜑 is supertrue.

Validity in our supervaluational logic is then naturally defined from supertruth.

Definition 2.2.5. A formula 𝜑 is valid iff 𝜑 is supertrue in every precisification space.
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Besides validity, whi is a property of formulas, we also want a notion of logical
consequence, whi is a relation between formulas. Fine takes logical consequence as
preservation of supertruth.

Definition 2.2.6. A set of formulas 𝛤 globally entails a formula 𝜓 (wrien 𝛤 ⊨g 𝜑)
iff for every precisification space 𝑺 the following condition holds: if every premiss
𝜑 ∈ 𝛤 is supertrue in 𝑺 , then the conclusion 𝜓 is supertrue in 𝑺 .

It will become clear later on, why it is called global entailment. Later in this
apter, we will also learn about other entailment relations for supervaluational logic.

We now investigate some simple properties of this logic that have already been
pointed out by Fine [40]. As usual, validity amounts to being a logical consequence of
the empty set of premisses.

Proposition 2.2.7. A formula 𝜑 is valid if and only if ∅ ⊨g 𝜑.

As Fine remarks, there is a strong connection to classical logic.

Proposition 2.2.8. Let 𝛤 be a set of formulas and 𝜑 a formula, both in the language
of classical first-order logic (i.e., without the D-operator). en 𝛤 ⊨g 𝜑 if and only if
𝛤 ⊨CL 𝜑, where ⊨CL is the classical entailment relation.

is means that the classical notions of validity and logical consequence are re-
tained in supervaluational logic. Fine comments that “the supertruth theory makes a
difference to truth, but not to logic” [40]. is fact is seen as one of the main advan-
tages of supervaluationism by its defenders—Keefe [72] for example shares this point
of view.

Note that supervaluational logic does deviate from classical logic for multiple-
conclusion entailment. In this form of logical consequence an argument is valid if
in the case that all premisses are true then at least one of the conclusions is true. For
example, the argument 𝑝 ∨ 𝑞 ⊨ {𝑝, 𝑞}, where 𝑝 and 𝑞 are propositional variables, clas-
sically holds, but does not hold in our supervaluational logic. is deviation from
classical logic is sometimes part of the criticism of supervaluationism [99]. Entailment
relations with multiple conclusions are considered by Kremer and Kremer [77] (see
Section 2.5.2), and Varzi [99] (see Section 2.5.1).

At the level of validity an even stronger connection, namely to modal logic, holds.

Proposition 2.2.9. A formula 𝜑 is valid in supervaluational logic if and only if 𝜑◻ is
valid in S5 where 𝜑◻ denotes the result of replacing every occurrence of the D-operator
in 𝜑 by the necessitation operator ◻.

Remark. We obtain an axiomatization of the valid formulas of supervaluational logic
by adding to a Hilbert-style system for classical first-order logic the S5-axioms

(K) D(𝜑 ⊃ 𝜓) ⊃ (D𝜑 ⊃ D𝜓)

(T) D𝜑 ⊃ 𝜑
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(5) ¬D𝜑 ⊃ D¬D𝜑

and the necessitation rule “From 𝜑, infer D𝜑” [69].

e global entailment relation has a central property: it is always possible to elim-
inate or introduce the D-operator [101].

Proposition 2.2.10. For every formula 𝜑, we have D𝜑 ⊨g 𝜑 and 𝜑 ⊨g D𝜑.

But this does not mean that the D-operator is redundant because, for example, the
formula 𝑝 ⊃ D𝑝, where 𝑝 is a propositional variable, is not valid.

One of Williamson’s objections against supervaluationism is that the following
deductive principles, whi are well-known for classical logic, do not hold in super-
valuational logic in presence of the D-operator [101]:

• Contraposition: From 𝛤, 𝜑 ⊨ 𝜓 , infer 𝛤, ¬𝜓 ⊨ ¬𝜑.
Counterexample: 𝑝 ⊨g D𝑝, but ¬D𝑝 ⊭g ¬𝑝

• Conditional proof: From 𝛤, 𝜑 ⊨ 𝜓 , infer 𝛤 ⊨ 𝜑 ⊃ 𝜓 .

Counterexample: 𝑝 ⊨g D𝑝, but ⊭g𝑝 ⊃ D𝑝

• Argument by cases: From 𝛤, 𝜑 ⊨ 𝜒 and 𝛤, 𝜓 ⊨ 𝜒 , infer 𝛤, 𝜑 ∨ 𝜓 ⊨ 𝜒 .
Counterexample: 𝑝 ⊨g D𝑝 ∨ D¬𝑝 and ¬𝑝 ⊨g D𝑝 ∨ D¬𝑝, but 𝑝 ∨ ¬𝑝 ⊭g D𝑝 ∨ D¬𝑝

• Reductio ad absurdum: From 𝛤, 𝜑 ⊨ 𝜓 and 𝛤, 𝜑 ⊨ ¬𝜓 , infer 𝛤 ⊨ ¬𝜑.
Counterexample: 𝑝 ∧ ¬D𝑝 ⊨g D𝑝 and 𝑝 ∧ ¬D𝑝 ⊨g ¬D𝑝, but ⊭g¬(𝑝 ∧ ¬D𝑝)

e failure of the principle of conditional proof means that the deduction theorem
does not hold.

As a response to Williamson, Keefe suggests to modify these deductive princi-
ples [72]. In presence of the D-operator, the following inference paerns,³ whi hold
in supervaluational logic, should be considered instead of their classical counterparts.

• Contraposition: From 𝛤, 𝜑 ⊨ 𝜓 , infer 𝛤, ¬𝜓 ⊨ ¬D𝜑.

• Conditional proof: From 𝛤, 𝜑 ⊨ 𝜓 , infer 𝛤 ⊨ D𝜑 ⊃ 𝜓 .

• Argument by cases: From 𝛤, 𝜑 ⊨ 𝜒 and 𝛤, 𝜓 ⊨ 𝜒 , infer 𝛤, D𝜑 ∨ D𝜓 ⊨ 𝜒 .

• Reductio ad absurdum: From 𝛤, 𝜑 ⊨ 𝜓 and 𝛤, 𝜑 ⊨ ¬𝜓 , infer 𝛤 ⊨ ¬D𝜑.

³Keefe’s rules have been slightly adapted to mat Williamson’s original rules.
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2.2.2 Local entailment

As seen above, supervaluational logic has many similarities to modal logic. Just as in
modal logic, one can also consider the principle of preservation of truth at every world
in the supervaluation framework. e corresponding consequence relation is usually
called local entailment and it seems that Williamson was the first one who discussed
it in the context of supervaluationism [101].

Definition 2.2.11. A set of formulas 𝛤 locally entails a formula 𝜓 (wrien 𝛤 ⊨l 𝜑)
iff for every precisification space 𝑺 and every precisification 𝑠 ∈ 𝑺 the following
condition holds: if ‖𝜑‖𝑠,𝑺 = 1 for every 𝜑 ∈ 𝛤 , then ‖𝜓‖𝑠,𝑺 = 1.⁴

Note that in modal logics both concepts, global and local entailment, are well-
known. However, the local entailment relation is usually taken as the standard one in
modal logics [9].

By its definition, local entailment does not rely on the notion of supertruth. ere-
fore, Williamson argues that global entailment is the consequence relation of super-
valuationism. However, other authors (see for example Varzi [99], Section 2.5.1, or
Asher, Dever, and Pappas [1], Section 2.5.4) argue that local entailment should indeed
be considered as a suitable consequence relation for supervaluationism.⁵ Furthermore,
due to strong connections between global and local entailment, it might be useful to
develop proof systems for global entailment from proof systems for local entailment
that are very well-studied because local entailment is the standard in modal logics (see
for example Cobreros [23], Section 2.5.3). erefore we review some of the properties
of local entailment that Williamson mentions [101].

Just like in the case of global entailment, validity means being entailed from the
empty set of premisses.

Proposition 2.2.12. A formula 𝜑 is valid if and only if ∅ ⊨l 𝜑.

us, at the level of validity both, the global and the local view, coincide. Also
the connection to classical logic for D-free formulas carries over to local entailment,
whi makes both entailment relations coincide with the classical one.

Proposition 2.2.13. Let 𝛤 be a set of formulas and 𝜑 a formula, both in the language
of classical first-order logic (i.e., without the D-operator). en 𝛤 ⊨l 𝜑 if and only if
𝛤 ⊨CL 𝜑 where ⊨CL is the classical entailment relation.

In general, local entailment is the stronger notion because it implies global entail-
ment.

⁴At this point we could introduce pointed precisification spaces as pairs ⟨𝑺, 𝑠⟩ where 𝑺 is a precisifi-
cation space and 𝑠 is a precisification of 𝑺 . en we could take pointed precisification spaces as our base
notion for interpretation structures and could formulate the local entailment relation as preservation of
truth in pointed precisification spaces.

⁵Some care has to be taken because some authors speak of validity when they mean entailment.
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Proposition 2.2.14. Let 𝜑 be a formula and 𝛤 a set of formulas. en 𝛤 ⊨l 𝜑 implies
𝛤 ⊨g 𝜑.

e converse direction does not hold because 𝑝 ⊨g D𝑝 by Proposition 2.2.10, but
𝑝 ⊭l D𝑝.

2.3 Partial interpretations for specification spaces

As seen above, only the complete specification points are relevant for Fine’s notion
of supertruth. ere are other approaes that also take into account the incomplete
specification points. Su approaes are usually based on the following idea: Just as
we assign a classical interpretation to every complete specification point, we can also
assign a partial interpretation to every incomplete specification point. e idea behind
partial interpretations is to modify classical interpretations in a way that they leave
some things unspecified. e most prominent approa for partial interpretations is
the following one [1, 71, 77, 93].

Definition 2.3.1. A partial (first-order) interpretation is a triple 𝑴 = ⟨𝑫, 𝑰+, 𝑰−⟩
where 𝑫 is a nonempty set, the domain of discourse, and 𝑰+ and 𝑰− are functions
that assign to ea 𝑛-ary predicate symbol a subset of 𝑫𝑛. For every predicate sym-
bol 𝑄, 𝑰+(𝑄) is called the extension of 𝑄 and 𝑰−(𝑄) is called the anti-extension
of 𝑄. We require that the extension and the anti-extension of 𝑄 are disjoint, i.e.,
𝑰+(𝑄) ∩ 𝑰−(𝑄) = ∅. A partial interpretation is complete iff 𝑰+(𝑄) ∪ 𝑰−(𝑄) = 𝑫𝑛 for
every predicate symbol 𝑄 that has some arity 𝑛.

For this definition of partial interpretations there is a very natural way of “making
more precise”.

Definition 2.3.2. Let 𝑴1 = ⟨𝑫1, 𝑰+
1 , 𝑰−

2 ⟩ and 𝑴2 = ⟨𝑫2, 𝑰+
2 , 𝑰−

2 ⟩ be two partial
interpretations. en 𝑴2 extends 𝑴1 (wrien 𝑴2 ≥ 𝑴1) iff

(i) 𝑫1 = 𝑫2

(ii) 𝑰+
1 (𝑄) ⊆ 𝑰+

2 (𝑄) for every predicate symbol 𝑄

(iii) 𝑰−
1 (𝑄) ⊆ 𝑰−

2 (𝑄) for every predicate symbol 𝑄

e symbol ⪰ denotes an extension relation and the symbol ≥ denotes the con-
crete extension relation on partial interpretations. Note that the definition of com-
pleteness for partial interpretations mates the definition of completeness for specifi-
cation points given in Section 2.1 since a partial interpretation that is complete can be
only extended by itself.

In this seing one can take the following view on specification spaces: the base
point of the specification space is a partial interpretation. Other partial interpretations
extend the base point by filling up the gap between extensions and anti-extensions in
various ways, under consideration of the admissibility constraint. e hierary of
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extensions goes on until finally the complete specification points are reaed, where
there are no gaps le between the extensions and anti-extensions.

In his book [93], Shapiro essentially takes this approa, but without demanding
that there is a complete extension for every incomplete specification point. He intro-
duces new operators with sophisticated truth conditions that in particular take into
account the extension relation. Since Shapiro’s agenda mainly is to defend contextu-
alism, we do not treat his approa here.

Note that there is a natural way to assign a partial interpretation to every specifi-
cation point 𝑠 in a specification space 𝑺 . We define the partial interpretation 𝑴𝑠 =
⟨𝑫, 𝑰+, 𝑰−⟩ by seing 𝑫 to the domain of 𝑺 and seing

• (𝑑1, … , 𝑑𝑛) ∈ 𝑰+(𝑄) if and only if ‖𝑄(𝑥1, … , 𝑥𝑛)‖𝑡,𝒗 = 1 every 𝑡 ⪰ 𝑠 su that
𝑡 is complete

• (𝑑1, … , 𝑑𝑛) ∈ 𝑰−(𝑄) if and only if ‖𝑄(𝑥1, … , 𝑥𝑛)‖𝑡,𝒗 = 0 every 𝑡 ⪰ 𝑠 su that
𝑡 is complete

where 𝑄 is a predicate symbol of arity 𝑛 and 𝒗 is a variable assignment on 𝑺 su that
𝒗(𝑥𝑖) = 𝑑𝑖 for every 1 ≤ 𝑖 ≤ 𝑛.

2.3.1 Kleene semantics

Independent from the question of truth at a specification point in a specification space,
for D-free formulas one might also be interested in a notion of truth in a partial in-
terpretation isolated from the other specification points. is is usually done with
a 3-valued Kleene semantics where i denotes the additional truth value ‘indefinite’.
ere are two Kleene semes, the weak and the strong Kleene seme. Both Kleene
semes are truth-functional and their connectives behave classically for the classical
truth values. e weak Kleene seme returns the truth value i whenever some part
of a statement is indefinite. Under the strong Kleene seme, a truth function returns
a definite truth value whenever every assignment of 0 or 1 instead of i would result in
the same truth value. But note that this rule only applies at the level of truth functions
and not at the level of whole formulas. Kleene introduced these 3-valued semantics
in his book on metamathematics [73], but not with any application to vagueness in
mind. Tye gave an example of a theory of vagueness revolving around Kleene’s ap-
proa [98].

In the following, we describe the strong Kleene seme because it is the more
important one. It is used as a semantics for single specification points in a specification
space by Shapiro [93] and in a suggestion of an extended notion of supertruth, truth at
all specification points (including incomplete ones), by Asher, Dever, and Pappas [1].

For the classical connectives, the strong Kleene seme is given by the truth func-
tions of Table 2.1.
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¬
0 1
i i
1 0

∧ 0 i 1
0 0 0 0
i 0 i i
1 0 i 1

∨ 0 i 1
0 0 i 1
i i i 1
1 1 1 1

⊃ 0 i 1
0 1 1 1
i i i 1
1 1 i 0

Table 2.1: Truth functions of the strong Kleene seme

ese principles can also be extended to the first-order case. e interpretation of
a predicate symbol 𝑄 is given by

‖‖𝑄 ධ𝑥1, … , 𝑥𝑛න‖‖𝑴,𝒗 =
⎧⎪
⎨
⎪⎩

0 if ධ𝒗 ධ𝑥1න , … , 𝒗 ධ𝑥𝑛නන ∈ 𝑰−(𝑄)
i if ධ𝒗 ධ𝑥1න , … , 𝒗 ධ𝑥𝑛නන ∉ 𝑰−(𝑄) ∪ 𝑰+(𝑄)
1 if ධ𝒗 ධ𝑥1න , … , 𝒗 ධ𝑥𝑛නන ∈ 𝑰+(𝑄)

where 𝑴 is a partial interpretation in whi 𝑄 has the extension 𝑰+(𝑄) and the anti-
extension 𝑰−(𝑄) and 𝒗 is a variable assignment.

e interpretation of quantified formulas is given by

‖∃𝑥𝜑‖𝑴,𝒗 =
⎧⎪
⎨
⎪⎩

0 if ‖𝜑‖𝑴,𝒗∪{𝑥↦𝑑} = 0 for every 𝑑 ∈ 𝑫
1 if there is some 𝑑 ∈ 𝑫 su that ‖𝜑‖𝑴,𝒗∪{𝑥↦𝑑} = 1
i otherwise

‖∀𝑥𝜑‖𝑴,𝒗 =
⎧⎪
⎨
⎪⎩

0 if there is some 𝑑 ∈ 𝑫 su that ‖𝜑‖𝑴,𝒗∪{𝑥↦𝑑} = 0
1 if ‖𝜑‖𝑴,𝒗∪{𝑥↦𝑑} = 1 for every 𝑑 ∈ 𝑫
i otherwise

where 𝑴 is a partial interpretation with domain 𝑫 and 𝒗 ∪ {𝑥 ↦ 𝑑} is the variable
assignment 𝒗໗ that is defined by

𝒗໗(𝑣) =
๨

𝑑 if 𝑣 = 𝑥
𝒗(𝑣) if 𝑣 ≠ 𝑥 .

A natural way to define validity is to say that a formula 𝜑 is valid iff 𝜑 is always
true, where truth in the Kleene seme amounts to the truth value 1. e formula
𝑝∨¬𝑝 is not valid any of the two Kleene semes, as opposed to classical logic and our
supervaluational logic introduced in Section 2.2. Even more, it can easily be seen that
the set of valid formulas is empty for both Kleene semes. Asher, Dever, and Pappas
therefore dismiss the idea of supertruth as truth in all specification points, including
the incomplete ones [1].

Note that for both Kleene semes the extension relation ≥ for partial interpreta-
tions satisfies the stability condition, i.e., the truth values 0 and 1 are preserved under
extension.
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2.3.2 Definite truth

For specification spaces built from partial interpretations, Asher, Dever, and Pappas [1]
as well as Varzi [99] offer an alternative semantics of the D-operator. Under this se-
mantics, the truth of the statement D𝜑 indicates that 𝜑 is true at the base specification
point, whi resembles Fine’s concept of “truth at the base point”. However, these
ideas are very different from ea other. As explained above, for Fine, truth at the
base point is equivalent to truth at all complete specification points. e other ap-
proa however equates determinate truth with truth at the base partial interpretation
according to a semantics for partial interpretations, as for example Kleene semantics.
is would lead to the following definition of the D-operator:

‖D𝜑‖𝑠,𝒗,𝑺 = ‖𝜑‖𝑴𝑏,𝒗

where ‖ ⋅ ‖𝑴𝑏,𝒗 is the interpretation function of the partial interpretation 𝑴𝑏 assigned
to the base point under the variable assignment 𝒗. is operator captures a notion of
prior truth. It behaves as an actuality operator and leads to a logic at least as strong as
S5 [99]. Asher, Dever, and Pappas as well as Varzi, do not further pursue this reading of
the D-operator and instead go for a necessity-style operator as discussed in Section 2.4.
Still, this idea seems worth mentioning.

2.4 Higher-order vagueness

e concept of higher-order vagueness arises from the observation that vague itself
is a vague predicate [40]. Not only would one like to be able to express statements
like “Kim is borderline tall” but also “Kim is a borderline case of a borderline case of
tallness.” For this purpose, an adequate semantics of the D-operator has to be found.
is of course also affects its counterpart, the indefinitely operator I that is defined as
follows: I𝜑 is an abbreviation for ¬D𝜑 ∧ ¬D¬𝜑, i.e., neither 𝜑 nor its negation are
definitely true.

Up to now we defined definite truth as truth at all specification points, i.e., su-
pertruth. Our first statement can be wrien as I𝑇(𝑘), where 𝑇 is the predicate for “tall”
and 𝑘 stands for Kim, and we can adequately model the situation with the framework
that we have presented so far. However, the second statement II𝑇(𝑘) would always
turn out to be false because I𝑇(𝑘) is either true at all specification points or false at all
specification points.

Similar examples all fail because the axioms (4)D𝜑⊃DD𝜑 and (5)¬D¬𝜑⊃D¬D¬𝜑
are validated under the given semantics of the D-operator. As the formula D𝜑 ∨ ¬D𝜑
is valid, also all formulas of the form D𝑛D𝜑 ∨ D𝑛¬D𝜑 are valid, where D𝑛 denotes 𝑛
iterations of the D-operator. According to Williamson, “[on] this semantics, it cannot
be indefinite whether something is definite” [101].us, our framework so far can deal
with what is called “first-order vagueness” but not with “second-order vagueness” or
any higher levels. But a standard requirement of a proper theory of vagueness is that
it is possible to express 𝑛-th order vagueness for any 𝑛.



2.4. HIGHER-ORDER VAGUENESS 19

2.4.1 Relative admissibility

We will now discuss two approaes towards higher-order vagueness. e first one
was given by Fine and the second one is an abstraction of Fine’s ideas that has become
the standard approa.

Fine’s approa

Fine offers a treatment of higher-order vagueness of whi he admits that it is rather
complicated [40]. In essence, we follow Williamson’s presentation [101] of this frame-
work whi simplifies some ideas of Fine’s original article.

e main idea of the new framework is to generalize the concept of specification
spaces. Instead of just piing a complete specification point in a specification space
one also has to decide in whi one of several possible specification spaces the specifi-
cation point lies, and so on. We define a level-based hierary of interpretations where
ea interpretation at a certain level specifies whi interpretations of those that lie
one level below are admissible.

Fine inductively defines the hierary of interpretations as follows:

• A 0-th level interpretation is a classical interpretation of statements.

• An 𝑛 + 1-th level interpretation is a set of 𝑛-th level interpretations.

• An 𝜔-interpretation is a sequence 𝑠0𝑠1𝑠2 … su that ea 𝑠𝑖 is a 𝑖-th level
interpretation and 𝑠𝑖 ∈ 𝑠𝑖+1, for 𝑖 ≥ 0.

e intuition behind this definition is that an 𝑛 + 1-th level interpretation considers
exactly those 𝑛-th level interpretations admissible that it contains. Note that by our
usual approa we could take a 0-th level interpretation as a complete specification
point and a first level interpretation as the set of complete specification points of a
specification space.

Fine connects these notions to the supervaluational framework by considering
higher-order specification spaces, in whi every complete specification point is an
𝜔-interpretation. In order to obtain a semantics for the D-operator, he first defines
an admissibility relation among 𝜔-interpretations as follows: an 𝜔-interpretation 𝑠 =
𝑠0𝑠1 … admits an 𝜔-interpretation 𝑡 = 𝑡0𝑡1 … iff 𝑡𝑖 ∈ 𝑠𝑖+1 for every 𝑖 ≥ 0. By 𝑹 we
denote the relation corresponding to admissibility: 𝑠 𝑹 𝑡 iff 𝑠 admits 𝑡. Note that by
definition every 𝜔-interpretation admits itself whi means that 𝑹 is reflexive.

We now showhowvague statements are interpreted in a higher-order specification
space 𝑺 in whi every complete specification point is an 𝜔-interpretation. If 𝜑 is an
atomic statement, then the interpretation at an 𝜔-interpretation 𝑠 = 𝑠0𝑠1 … is given
by⁶

‖𝜑‖𝑠,𝑺 = ‖𝜑‖𝑠0

⁶Fine and Williamson do not explicitly define how atomic formulas should be evaluated in this
framework, but the approa that is presented here should be the only one that makes sense.
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where 𝑠0 is the starting point of 𝑠 and ‖ ⋅ ‖𝑠0
denotes the classical 0-th level interpre-

tation according to 𝑠0. e new semantics of the D-operator takes into account the
admissible specifications of the higher-order space:

‖D𝜑‖𝑠,𝑺 =
๨

1 if ‖𝜑‖𝑡,𝑺 = 1 for every 𝑡 ∈ 𝑺 su that 𝑠 𝑹 𝑡
0 otherwise .

e other connectives are interpreted as usual. Note that the clause “truth at all ad-
missible specification points” aracterizes both, the old and the new semantics of
the D-operator. e only difference is that in a seing with higher-order vagueness
admissibility is not global.

In Fine’s framework, the admissibility relation 𝑹 of a higher-order space is given
by the structure of the 𝜔-interpretations. It determines for ea complete specification
point whi other complete specification points are to be regarded as admissible. is
concept is similar to the accessibility relation in Kripke semantics for modal logics.
By its definition 𝑹 is reflexive and the resulting logic is, according to Fine, the modal
logic T. Reflexivity seems very natural because ea specification point should regard
itself as admissible. Fine remarks that one can also think of further restrictions on
𝑹. If for example one would only be interested in at most 𝑛-th order vagueness for a
concrete 𝑛, then one could demand that in every 𝜔-interpretation 𝑠 = 𝑠0𝑠1 … one has
𝑠𝑖+1 = {𝑠𝑖} for every 𝑖 ≥ 𝑛.

To illustrate these definitions, we now investigate a simple example that a theory
of higher-order vagueness should be able to model.

Example. Let us assume a scenario where Kim is a borderline case of definite tallness.
Let 𝑝 denote the propositional variable standing for “Kim is tall” en we want the
formula ID𝑝 to be true. Under a classical interpretation, “Kim is tall” is either true or
false. We denote the classical interpretation in whi “Kim is tall” is true by [𝑝] and
the one in whi “Kim is tall” is false by [¬𝑝].

We model this situation with a higher-order specification space 𝑺 that consists
of the 𝜔-interpretations given in Table 2.2. In this example, we maximally deal with
second-order vagueness. erefore, we “stop” all 𝜔-interpretations aer the second
level, i.e., 𝑠𝑖+1 = {𝑠𝑖}, 𝑡𝑖+1 = {𝑡𝑖} and 𝑢𝑖+1 = {𝑢𝑖} for 𝑖 ≥ 2.

level 0 level 1 level 2
𝑠 [𝑝] {[𝑝]} {{[𝑝]}, {[𝑝], [¬𝑝]}}
𝑡 [𝑝] {[𝑝], [¬𝑝]} {{[𝑝]}, {[𝑝], [¬𝑝]}}
𝑢 [¬𝑝] {[𝑝], [¬𝑝]} {{[𝑝]}, {[𝑝], [¬𝑝]}}

Table 2.2: Higher-order specification space with 𝜔-interpretations

According to Fine’s definitions, the admissibility relation 𝑹 is the one given in
Figure 2.1. We for example have 𝑢 𝑹 𝑠 because the 0-th level interpretation [𝑝] of 𝑠 is
contained in the first level interpretation {[𝑝], [¬𝑝]} of 𝑢 and the first level interpreta-
tion {[𝑝]} of 𝑠 is contained in the second level interpretation {{[𝑝]}, {[𝑝], [¬𝑝]}} of 𝑢.
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We do not have 𝑠𝑹 𝑢 because the 0-th level interpretation [¬𝑝] of 𝑢 is not contained in
the first level interpretation {[𝑝]} of 𝑠. Note that this admissibility relation is neither
symmetric nor transitive.

.. 𝑠.

𝑡

.

𝑢

...

Figure 2.1: Admissibility relation

We now verify that we have found a model of our scenario:

‖𝑝‖𝑠,𝑺 = 1 ‖𝑝‖𝑡,𝑺 = 1 ‖𝑝‖𝑢,𝑺 = 0
‖D𝑝‖𝑠,𝑺 = 1 ‖D𝑝‖𝑡,𝑺 = 0 ‖D𝑝‖𝑢,𝑺 = 0

‖¬D𝑝‖𝑠,𝑺 = 0 ‖¬D𝑝‖𝑡,𝑺 = 1 ‖¬D𝑝‖𝑢,𝑺 = 1
‖DD𝑝‖𝑠,𝑺 = 0 ‖DD𝑝‖𝑡,𝑺 = 0 ‖DD𝑝‖𝑢,𝑺 = 0

‖¬DD𝑝‖𝑠,𝑺 = 1 ‖¬DD𝑝‖𝑡,𝑺 = 1 ‖¬DD𝑝‖𝑢,𝑺 = 1
‖D¬D𝑝‖𝑠,𝑺 = 0 ‖D¬D𝑝‖𝑡,𝑺 = 0 ‖D¬D𝑝‖𝑢,𝑺 = 0

‖¬D¬D𝑝‖𝑠,𝑺 = 1 ‖¬D¬D𝑝‖𝑡,𝑺 = 1 ‖¬D¬D𝑝‖𝑢,𝑺 = 1

Since ID𝑝 is an abbreviation for ¬DD𝑝 ∧ ¬D¬D𝑝, we get ‖ID𝑝‖𝑺 = 1. Note that our
𝜔-interpretations at the second level contain two first level interpretations. e first
one is {[𝑝]}, where Kim is definitely tall, and the second one is {[𝑝], [¬𝑝]} where Kim
is a definite borderline case of tallness. We simply consider all 𝜔-interpretations that
contain this second level interpretation.

Abstract framework

e idea of modeling higher-order vagueness with the concept of relative admissibil-
ity is a very prominent one in the literature on supervaluation. In Fine’s framework
described above the admissibility relation is explicitly defined on 𝜔-interpretations.
In many cases, an abstraction of this framework is considered where one works with
an admissibility relation that is at least reflexive without explicitly specifying it. is
point of view might be taken because Fine stressed the fact that his account on the
D-operator results in the modal logic T. Under the more abstract point of view the
admissibility relation is usually taken directly on the complete specification points [1,
23, 99].
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In the higher-order specification space of 𝜔-interpretations we can assign to every
complete specification point the classical interpretation that it starts with. erefore,
this abstraction is indeed a generalization of Fine’s framework.

e abstract necessity-style D-operator is the standard in the literature on super-
valuation and we therefore modify our definition of a precisification space.

Definition 2.4.1. A precisification space is a quadruple ⟨𝑷, 𝑹, 𝑫, (𝑴𝑠)𝑠∈𝑷 ⟩ that con-
sists of a nonempty set 𝑷 of precisifications, a binary admissibility relation 𝑹 on 𝑷 ,
a nonempty set 𝑫 , the domain of 𝑺 , and a function (𝑴𝑠)𝑠∈𝑷 that assigns a classical
first-order interpretation 𝑴𝑠 with domain 𝑫 to every precisification 𝑠 ∈ 𝑷 .

e interpretation of formulas at precisifications in a precisification space 𝑺 is
standard, with exception of the D-operator:

‖D𝜑‖𝑠,𝒗,𝑺 =
๨

1 if ‖𝜑‖𝑡,𝒗,𝑺 = 1 for every 𝑡 ∈ 𝑷 su that 𝑠 𝑹 𝑡
0 otherwise

where 𝑠 ∈ 𝑺 and 𝒗 is a variable assignment of 𝑺 .

Let us now turn to the logic that results from the new semantics of the D-operator.
e set of valid formulas is just the set of valid formulas of the modal logicK, where D
is taken as the necessity operator ◻. erefore we obtain a Hilbert-style proof system
for this logic by enriing a proof system for classical first-order logic with the axioms

(K) D(𝜑 ⊃ 𝜓) ⊃ (D𝜑 ⊃ D𝜓)

(BF) ∀𝑥D𝜑 ⊃ D∀𝑥𝜑

and the rule of necessitation “From𝜑, infer D𝜑” [1]. Axiom (BF) is the Barcan formula
and combines modal and first-order reasoning [69]. is axiom is needed because we
required that all classical first-order interpretations in the precisification space have
the same domain. Hughes and Cresswell remark that in some modal systems, like for
example S5, the Barcan formula does not have to be included because it can be derived
from the other axioms [69].

It is oen the case that one only considers certain classes of precisification spaces.
Usually one demands that the admissibility relation has to fulfill a certain property.
As explained above one might postulate that the admissibility relation be reflexive.
In su cases, our logical notions are then to be understood as relative to the set of
precisification spaces in whi this property holds. A formula then for example is
called valid iff it is supertrue in all precisification spaces in whi the admissibility
relation fulfills this property. It is well-known from modal logics [12] that in certain
cases a property 𝑃 on the admissibility relation can be aracterized by an axiom 𝐴
in the following sense: for every precisification space 𝑺 , 𝐴 is supertrue in 𝑺 if and
only if 𝑺 has the property 𝑃 . Table 2.3 gives an overview over the most important
aracterizable properties.

⁷e symbols used in the description of these properties should be understood as mere abbreviations
of informal language, e.g., ∀𝑠 stands for “for every precisification 𝑠 of the precisification space”.
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Axiom sema Property of admissibility relation⁷
(T) D𝜑 ⊃ 𝜑 reflexive ∀𝑠 ∶ 𝑠 𝑹 𝑠
(B) 𝜑 ⊃ D¬D¬𝜑 symmetric ∀𝑠∀𝑡 ∶ 𝑠 𝑹 𝑡 ⇒ 𝑡 𝑹 𝑠
(D) D𝜑 ⊃ ¬D¬𝜑 serial ∀𝑠∃𝑡 ∶ 𝑠 𝑹 𝑡
(4) D𝜑 ⊃ DD𝜑 transitive ∀𝑠∀𝑡∀𝑢 ∶ 𝑠 𝑹 𝑡 & 𝑡 𝑹 𝑢 ⇒ 𝑠 𝑹 𝑢
(5) ¬D¬𝜑 ⊃ D¬D¬𝜑 euclidean ∀𝑠∀𝑡∀𝑢 ∶ 𝑠 𝑹 𝑡 & 𝑠 𝑹 𝑢 ⇒ 𝑡 𝑹 𝑢

Table 2.3: Correspondence between axioms and properties of the admissibility relation

One obtains a Hilbert-style proof system for a certain class of precisification spaces
by adding the corresponding axioms to our proof system for the logic K. If for exam-
ple we restrict ourselves to precisification spaces with reflexive admissibility relations,
then the axiom (T) is added. If we demand reflexivity, symmetry and transitivity,
then we arrive at the additional axioms (T), (B), and (4). It can be shown that these
axioms aracterize the logic S5 and therefore, at the level of validity, reflexivity, sym-
metry, and transitivity yield our previous semantics of the D-operator as defined in
Section 2.2.

Concerning global entailment, we remark that the inference 𝜑 ⊨g D𝜑 also holds
for the new semantics of our D-operator. However, the converse inference fromD𝜑 to
𝜑 is only possible if every precisification is admissible for some other precisification, a
principle inverse to seriality. is is for example the case in the class of precisification
spaces with reflexive admissibility relations.

We will at some occasions also consider an operator called D𝑢, where 𝑢 stands
for “universal access”. We want this operator to indicate supertruth whi is truth at
all precisifications. us, this operator ignores the admissibility relation. is corre-
sponds to Fine’s first definition for a definitely operator that, as we have seen, is not
suited for higher-order vagueness (see Definition 2.2.3).

Definition 2.4.2. Let 𝑺 be a precisification space, 𝑠 ∈ 𝑺 a precisification and 𝒗 a
variable assignment of 𝑺 . en the operator D𝑢 is interpreted as follows:

‖‖D𝑢𝜑‖‖𝑠,𝒗,𝑺 =
๨

1 if ‖𝜑‖𝑡,𝒗,𝑺 = 1 for every 𝑡 ∈ 𝑺
0 otherwise .

2.4.2 Inexpressibility of higher-order vagueness under certain
admissibility relations

We now show that certain classes of admissibility relations are not suited for model-
ing higher-order vagueness. In particular, we consider formulas of the form ID𝜑 that
express that it is indefinite whether 𝜑 is definitely true. is is Williamson’s proto-
typical example of second-order vagueness that cannot be expressed with a universal
semantics of the D-operator (see Definition 2.2.3). Williamson mentions that the ad-
missibility relation must be allowed to be non-transitive for modeling higher-order
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vagueness. In the following, we extend Williamson’s analysis by showing with sim-
ple arguments that formulas of the form ID𝜑 are unsatisfiable in certain classes of
precisification spaces.⁸

ere are two types of satisfiability of a formula 𝜑 that one can consider. e
first one is that there is precisification space in whi 𝜑 is supertrue. e second one
is that there is a precisification space and a precisification 𝑠 in that space su that
𝜑 is true at 𝑠. Note that the first notion has a global flavor and the second notion
has a local flavor. e first notion of satisfiability is in some sense stronger than the
second one because it implies the second one. It seems more intuitive that the first
notion of satisfiability should be considered for supervaluation. But, just as one can
argue about global entailment versus local entailment, one could also discuss whi
notion of satisfiability is more suitable. erefore we will in the following always be
precise whi form of (un)satisfiability we mean. What maers for our concerns is
that a formula that is not satisfiable in the second sense is also not satisfiable in the
first sense.

We start with a basic property of the I-operator.

Lemma 2.4.3. If ‖I𝜑‖𝑠,𝑺 = 1 for a precisification 𝑠 in a precisification space 𝑺 and a
formula 𝜑, then there are precisifications 𝑢, 𝑡 ∈ 𝑺 su that 𝑠 𝑹 𝑡, 𝑠 𝑹 𝑢, ‖𝜑‖𝑡,𝑺 = 1,
‖𝜑‖𝑢,𝑺 = 0 and 𝑡 ≠ 𝑢.

Proof. Let 𝑠 ∈ 𝑺 be a precisification su that ‖I𝜑‖𝑠,𝑺 = 1. Suppose that there is no
precisification 𝑢 ∈ 𝑺 su that 𝑠 𝑹 𝑢 and ‖𝜑‖𝑢,𝑺 = 1. en ‖𝜑‖𝑢,𝑺 = 0 for every
precisification 𝑢 that is admissible for 𝑠. erefore we get ‖D¬𝜑‖𝑠,𝑺 = 1 from whi
‖¬D¬𝜑‖𝑠,𝑺 = 0 and therefore, by definition of the I-operator, ‖I𝜑‖𝑠,𝑺 = 0 follows.
is contradicts our initial assumption and therefore we may conclude that there is
some 𝑢 ∈ 𝑺 su that 𝑠 𝑹 𝑢 and ‖𝜑‖𝑢,𝑺 = 1. With the same argument we get that
there is some 𝑡 ∈ 𝑺 su that 𝑠 𝑹 𝑡 and ‖𝜑‖𝑡,𝑺 = 0. Due to ‖𝜑‖𝑢,𝑺 = 1 ≠ 0 = ‖𝜑‖𝑡,𝑺
we can conclude that 𝑡 ≠ 𝑢.

Note that from this proposition, seriality follows for the admissibility relation if a
formula of the form I𝜑 is true at every precisification. We now show unsatisfiability
in the second sense for euclidean admissibility relations.

Proposition 2.4.4. If the admissibility relation 𝑹 is euclidean, then any formula of the
form ID𝜑 cannot be true at any precisification (i.e. ID𝜑 is false at all precisifications).

Proof. Let 𝑺 be a precisification space with a euclidean admissibility relation 𝑹 and
suppose that there is a precisification 𝑠 ∈ 𝑺 su that ‖ID𝜑‖𝑠,𝑺 = 1. en by Lem-
ma 2.4.3 there are two precisifications 𝑡, 𝑢 ∈ 𝑺 su that 𝑠 𝑹 𝑡, 𝑠 𝑹 𝑢, ‖D𝜑‖𝑡,𝑺 = 1
and ‖D𝜑‖𝑢,𝑺 = 0. Due to ‖D𝜑‖𝑢,𝑺 = 0 there must be a precisification 𝑣 ∈ 𝑺 su
that ‖𝜑‖𝑣,𝑺 = 0. Since 𝑹 is euclidean, we know that 𝑢 𝑹 𝑡 and therefore also 𝑡 𝑹 𝑣.
But then ‖𝜑‖𝑣,𝑺 = 1 is a contradiction to ‖D𝜑‖𝑡,𝑺 = 1.

⁸We remark that very similar results can be obtained for formulas of the form II𝜑 that express the
property of being a borderline case of a borderline case. However, the arguments then get longer.
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Note that we could have also argued by assuming that axiom (5) holds, whi is
the axiom corresponding to a euclidean admissibility relation. Our result can easily
be extended to admissibility relations that are symmetric and transitive.

Proposition 2.4.5. If the admissibility relation 𝑹 is symmetric and transitive, then
any formula of the form ID𝜑 cannot be true at any precisification (i.e. ID𝜑 is false at
all precisifications).

Proof. e claim follows from the following property: if a binary relation𝑅 on a set 𝑆
is symmetric and transitive, then it is euclidean. Let 𝑠, 𝑡, 𝑢 ∈ 𝑆 su that 𝑠 𝑅 𝑡 and
𝑠 𝑅 𝑢. Since 𝑅 is symmetric we also have 𝑡 𝑅 𝑠. Due to transitivity, from 𝑡 𝑅 𝑠 and
𝑠 𝑅 𝑢, we conclude 𝑡 𝑅 𝑢.

We now show that the first notion of unsatisfiability is already given if the admis-
sibility relation is symmetric or transitive.

Proposition 2.4.6. If the admissibility relation𝑹 is symmetric, then any formula of the
form ID𝜑 cannot be true at all precisification (i.e. ID𝜑 is false at some precisification).

Proof. Let 𝑺 be a precisification space with a symmetric admissibility relation 𝑹 and
suppose that ‖ID𝜑‖𝑠,𝑺 = 1 for every precisification 𝑠 ∈ 𝑺 . Let 𝑠 ∈ 𝑺 be an arbitrary
precisification. By assumption ‖ID𝜑‖𝑠,𝑺 = 1 holds and therefore by Lemma 2.4.3
there is a precisification 𝑡 ∈ 𝑺 su that ‖D𝜑‖𝑡,𝑺 = 0. By the definition of D-operator
this means that there is a precisification 𝑢 ∈ 𝑺 su that ‖𝜑‖𝑢,𝑺 = 0. Since by as-
sumption ‖ID𝜑‖𝑢,𝑺 = 1 holds, we know by Lemma 2.4.3 that there is a precisification
𝑣 ∈ 𝑺 su that 𝑢 𝑹 𝑣 and ‖D𝜑‖𝑣,𝑺 = 1. Because 𝑹 is symmetric, also 𝑣 𝑹 𝑢 holds.
But then ‖𝜑‖𝑢,𝑺 = 0 is a contradiction to ‖D𝜑‖𝑣,𝑺 = 1.

Proposition 2.4.7. If the admissibility relation 𝑹 is transitive, then any formula of the
form ID𝜑 cannot be true at all precisifications (i.e. ID𝜑 is false at some precisification).

Proof. Let 𝑺 be a precisification space with a transitive admissibility relation 𝑹 and
suppose that ‖ID𝜑‖𝑠,𝑺 = 1 for all precisifications 𝑠 ∈ 𝑺 . Let 𝑠 ∈ 𝑺 be an arbitrary
precisification. Since by assumption ‖ID𝜑‖𝑠,𝑺 = 1 holds, we know by Lemma 2.4.3
that there is a precisification 𝑡 ∈ 𝑺 su that ‖D𝜑‖𝑡,𝑺 = 1. Again, by assumption
‖ID𝜑‖𝑡,𝑺 = 1 holds and by Lemma 2.4.3 there is a precisification 𝑢 ∈ 𝑺 su that 𝑡𝑹𝑢
and ‖D𝜑‖𝑢,𝑺 = 0. By the definition of the D-operator there must be a precisification
𝑣 ∈ 𝑺 su that ‖𝜑‖𝑣,𝑺 = 0 and 𝑢 𝑹 𝑣. Since 𝑹 transitive we conclude 𝑡 𝑹 𝑣. But
then ‖𝜑‖𝑣,𝑺 = 0 is a contradiction to ‖D𝜑‖𝑡,𝑺 = 1.

We remark that the reflexivity of the admissibility was no ingredient in any of our
proofs.

is investigation shows that no precisification space with a symmetric or tran-
sitive admissibility relation can model a situation of higher-order vagueness. is
indicates that the question of the nature of the admissibility relation should be taken
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seriously. e possibility of constraints like symmetry and transitivity on the admis-
sibility relation have been mentioned by Asher, Dever, and Pappas [1] as well as Co-
breros [23]. However, the motivation of introducing a necessity-style D-operator was
the deficiency of the D𝑢-operator to express higher-order vagueness. erefore it can
be questioned whether a necessity-style D-operator based on admissibility relations
with constraints like symmetry or transitivity is then necessary at all.

2.4.3 Fara’s argument

In her 2003 paper [33], Fara raises an objection against theories of vagueness that
admit a gap between definite cases and definite non-cases of a predicate in the context
of higher-order vagueness. In supervaluationism this is the case because only one of
the following conditions can hold: D𝜑, ¬D𝜑 ∨ ¬D¬𝜑, or D¬𝜑.

First of all, Fara argues that the inference rule of D-introduction 𝜑⊨D𝜑 should be
accepted. She gives the reason that in the presence of truth-value gaps the D-operator
means something like “it is true that” and it seems impossible that a statement is true
whereas the statement stating that it is true is not true. e global entailment rela-
tion with a necessity-style D-operator indeed verifies this rule, and Cobreros sees this
argument as an argument in favor of the global entailment relation [23].

Fara assumes the following scenario: Consider a finite sorites series for a vague
predicate 𝑄 and objects 𝑥1, … 𝑥𝑚 in whi the first object 𝑥1 is “definitely 𝑄”, the
last object 𝑥𝑚 is “definitely not 𝑄” and 𝑥𝑖+1 is the successor of 𝑥𝑖, for 1 ≤ 𝑖 ≤ 𝑖 − 1.
Since 𝑄 has borderline cases, there is a gap between those objects that are “definitely
𝑄” and those that are “definitely not 𝑄”. We arrive at the gap principle: if a member
of the series is “definitely 𝑄”, then its successor in the series is “not definitely not 𝑄”.
If the successor were “definitely not 𝑄”, then an object that is “definitely 𝑄” would
be followed by an object that is “definitely not 𝑄” whi would mean that there is
no gap in our sorites series. us the implication D𝑄(𝑥𝑖) ⊃ ¬D¬𝑄(𝑥𝑖+1) should hold
for every 1 ≤ 𝑖 ≤ 𝑚 − 1. In the sorites series there are also borderline cases of
being “definitely 𝑄” and therefore there is also a gap between “definitely definitely
𝑄” and “definitely not definitely 𝑄”. e same idea can be iterated whi leads to the
generalized gap principle: e formula

DD𝑛𝑄(𝑥𝑖) ⊃ ¬D¬D𝑛𝑄(𝑥𝑖+1)

should hold for every 1 ≤ 𝑖 ≤ 𝑚 − 1 and every 𝑛 ≥ 0 where D𝑛 is a concatenation
of 𝑛 D-operators. Fara’s argument uses an equivalent formulation of the generalized
gap principle. the formula

D¬D𝑛𝑄(𝑥𝑖) ⊃ ¬DD𝑛𝑄(𝑥𝑖−1)

should hold for every 2 ≤ 𝑖 ≤ 𝑚 and every 𝑛 ≥ 0 .
Now it is clear that, by first applying D-introduction and then the generalized gap

principle in its second formulation, we get that the inference

¬D𝑖𝑄(𝑥𝑚−𝑖) ⊨ ¬D𝑖+1𝑄(𝑥𝑚−(𝑖+1))
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holds for every 0 ≤ 𝑖 ≤ 𝑚 − 2. us, by iterating this derivation 𝑘 times, we conclude
that the inference

¬D𝑖𝑄(𝑥𝑚−𝑖) ⊨ ¬D𝑖+𝑘𝑄(𝑥𝑚−(𝑖+𝑘))

holds for 𝑖 + 𝑘 ≤ 𝑚 − 1. Finally, we set 𝑖 = 0 and 𝑘 = 𝑚 − 1 and get that

¬𝑄(𝑥𝑚) ⊨ ¬D𝑚−1𝑄(𝑥1)

holds.
On the other hand we get the inference

𝑄(𝑥1) ⊨ D𝑚−1𝑄(𝑥1)

by𝑚−1 applications of theD-introduction rule. Fara concludes that theD-introduction
rule and the generalized gap principle are inconsistent. As she explains, the main rea-
son for this fact is that there cannot be a dense linear order on a finite set. Varzi derives
from this argument the objection that supervaluationism cannot deal with unrestricted
higher-order vagueness [99].

2.5 e discussion on local entailment and miscellaneous
results

In the followingwe take a rather non-systematic look at some interesting recent results
on supervaluational logic. Most of them deal with the question of suitable entailment
relations.

2.5.1 Varzi

e main goal of Varzi’s paper [99] is to argue in favor of local entailment as the
standard notion of logical consequence for supervaluationism because it has two ad-
vantages in comparison to global entailment. First, he shows that supervaluational
logic with local entailment does not suffer from the most common objections against
supervaluationism. Second, he emphasizes that global entailment is definable from
local entailment.

Entailment relations galore

Varzi discusses entailment relations with multiple conclusions that follow variations
of a seme that, in classical logic, can be formulated as follows: “if all of the premisses
on the le hand side are true, then at least one conclusion on the right hand side is
true”. Remember that formulas in a precisification space are one of the following:

• supertrue: true at all precisifications

• superfalse: false at all precisifications
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• neither supertrue nor superfalse: true at some precisifications and false at others

us, in a certain sense, supervaluational logic has three truth values. Varzi considers
a necessity-style D-operator following Definition 2.4.1 with an admissibility relation
that is at least reflexive.

Definition 2.5.1. Four global entailment relations are defined as follows.

• 𝛤 ⊨A 𝛴 iff for every precisification space 𝑺 , if every premiss 𝜑 ∈ 𝛤 is supertrue
in 𝑺 , then some conclusion 𝜓 ∈ 𝛴 is supertrue in 𝑺 .

• 𝛤 ⊨B 𝛴 iff for every precisification space 𝑺 , if every conclusion 𝜓 ∈ 𝛴 is
superfalse in 𝑺 , then some premiss 𝜑 ∈ 𝛤 is superfalse in 𝑺 .

• 𝛤 ⊨C 𝛴 iff for every precisification space 𝑺 , if every premiss 𝜑 ∈ 𝛤 is supertrue
in 𝑺 , then some conclusion 𝜓 ∈ 𝛴 is not superfalse in 𝑺 .

• 𝛤 ⊨D 𝛴 iff for every precisification space 𝑺 , if every conclusion 𝜓 ∈ 𝛴 is not
supertrue in 𝑺 , then some premiss 𝜑 ∈ 𝛤 is superfalse in 𝑺 .

e counterparts of these global entailment relations in classical logic are all equiv-
alent due to the principle of bivalence: true and false are the only possible truth values.
Varzi gives easy examples that prove that none of these four entailment relations co-
incide in the case of supervaluation. For single conclusion arguments, A-entailment
and C-entailment as well asB-entailment andD-entailment coincide in absence of the
D-operator. In the usual notation of this apter,A-entailment refers to the entailment
relation ⊨g.

e same seme can now be applied to local entailment.

Definition 2.5.2. Four local entailment relations are defined as follows.

• 𝛤 ⊨α 𝛴 iff for every precisification space 𝑺 and every 𝑠 ∈ 𝑺 , if ‖𝜑‖𝑠,𝑺 = 1 for
every premiss 𝜑 ∈ 𝛤 , then ‖𝜓‖𝑠,𝑺 = 1 for some conclusion 𝜓 ∈ 𝛴.

• 𝛤 ⊨β 𝛴 iff for every precisification space 𝑺 and every 𝑠 ∈ 𝑺 , if ‖𝜓‖𝑠,𝑺 = 0 for
every conclusion 𝜓 ∈ 𝛴, then ‖𝜑‖𝑠,𝑺 = 0 for some premiss 𝜑 ∈ 𝛤 .

• 𝛤 ⊨γ 𝛴 iff for every precisification space 𝑺 and every 𝑠 ∈ 𝑺 , if ‖𝜑‖𝑠,𝑺 = 1 for
every premiss 𝜑 ∈ 𝛤 , then ‖𝜓‖𝑠,𝑺 ≠ 0 for some conclusion 𝜓 ∈ 𝛴.

• 𝛤 ⊨δ 𝛴 iff for every precisification space 𝑺 and every 𝑠 ∈ 𝑺 , if ‖𝜓‖𝑠,𝑺 ≠ 1 for
every conclusion 𝜓 ∈ 𝛴, then ‖𝜑‖𝑠,𝑺 = 0 for some premiss 𝜑 ∈ 𝛤 .

Due to bivalence of classical interpretations, α-, β-, γ- and δ-entailment are all
equivalent. erefore it is sufficient to restrict the discussion to α-entailment, whi,
in the usual notation of this apter, refers to the entailment relation ⊨l. For D-free,
single conclusion arguments, α-entailment is equivalent to A- and C-entailment. But
in general, α-entailment is different from A-, B-, C- and D-entailment.

Varzi presents another possibility how multiple-conclusion entailment could be
understood in a supervaluational logic.
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Definition 2.5.3. Four collective entailment relations are defined as follows.

• 𝛤 ⊨X𝛴 iff for every precisification space𝑺 , if for every 𝑠 ∈ 𝑺 and every premiss
𝜑 ∈ 𝛤 , ‖𝜑‖𝑠,𝑺 = 1 holds, then for every 𝑠 ∈ 𝑺 there is some conclusion𝜓 ∈ 𝛴
su that ‖𝜓‖𝑠,𝑺 = 1.

• 𝛤 ⊨Y 𝛴 iff for every precisification space 𝑺 , if for every 𝑠 ∈ 𝑺 and every
conclusion 𝜓 ∈ 𝛴, ‖𝜓‖𝑠,𝑺 = 0 holds, then for every 𝑠 ∈ 𝑺 there is some
premiss 𝜑 ∈ 𝛤 su that ‖𝜑‖𝑠,𝑺 = 0.

• 𝛤 ⊨Z𝛴 iff for every precisification space𝑺 , if for every 𝑠 ∈ 𝑺 and every premiss
𝜑 ∈ 𝛤 , ‖𝜑‖𝑠,𝑺 = 1 holds, then for every 𝑠 ∈ 𝑺 there is some conclusion𝜓 ∈ 𝛴
su that ‖𝜓‖𝑠,𝑺 ≠ 0.

• 𝛤 ⊨W 𝛴 iff for every precisification space 𝑺 , if for every 𝑠 ∈ 𝑺 and every
conclusion 𝜓 ∈ 𝛴, ‖𝜓‖𝑠,𝑺 ≠ 1 holds, then for every 𝑠 ∈ 𝑺 there is some
premiss 𝜑 ∈ 𝛤 su that ‖𝜓‖𝑠,𝑺 = 0.

e intuition behind the collective entailment relations is to relate the conjunction
of the premisses to the disjunction of the conclusions. Varzi observes thatZ-entailment
is equivalent to X-entailment and W-entailment is equivalent to Y-entailment. Fur-
thermore, X-entailment and Y-entailment are not equivalent to ea other and are
also not equivalent to any other entailment relation considered by Varzi so far.

In summary, only the following types of entailment are all pairwise distinct: A, B,
C, D, α, X, Y. e following relations hold:

• A-entailment implies C-entailment.

• D-entailment implies B-entailment.

• α-entailment implies X-entailment.

• α-entailment implies Y-entailment.

• For an empty set of premisses𝛤 = ∅ and a singleton set of conclusions𝛴 = {𝜓},
all entailment relations coincide.

• For an empty set of conclusions𝛴 = ∅ and a singleton set of premisses𝛤 = {𝜑},
all entailment relations coincide.

Varzi discusses three popular objections⁹ against the theory of supervaluation and
analyzes for whi entailment relations the objections apply. e result of this analy-
sis is that α- and Y-entailment are the only entailment relations for whi none of the
objections apply. Varzi’s judgement concerning A-entailment, whi is seen as the

⁹Varzi considers the following objections: (1) Non-classicality of multiple-conclusion entailment (see
Section 2.2.1), (2) Williamson’s objections (see Section 2.2.1, (3) Fara’s argument (see Section 2.4.3). Varzi
emphasizes that he does not necessarily share these objections, but only compiled this list of important
objections against supervaluationism.
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standard approa towards supervaluational entailment, is that it “yields a logic that
is both far from classical and far from acceptable in the presence of higher-order vague-
ness” [99]. Moreover, Varzi argues that supervaluationists should prefer α-entailment
over Y-entailment because Y-entailment is merely preservation of non-falsehood and
not preservation of truth.

Reduction to local entailment

In another part of his paper, Varzi introduces two operators T and F that amount to
being supertrue and being superfalse.

Definition 2.5.4. Let 𝑺 be a precisification space, 𝑠 ∈ 𝑺 a precisification, and 𝒗 a
variable assignment of 𝑺 . e interpretation of formulas is extended as follows:

‖T𝜑‖𝑠,𝒗,𝑺 =
๨

1 if ‖𝜑‖𝑡,𝒗,𝑺 = 1 for every 𝑡 ∈ 𝑺
0 otherwise

‖F𝜑‖𝑠,𝒗,𝑺 =
๨

1 if ‖𝜑‖𝑡,𝒗,𝑺 = 0 for every 𝑡 ∈ 𝑺
0 otherwise .

Note that the T-operator has the same semantics as the D𝑢-operator of Defini-
tion 2.4.2. Varzi shows how these operators can be used to reduce the global and the
collective entailment relations to the local one:

• 𝛤 ⊨A 𝛴 if and only if {T𝜑 ∣ 𝜑 ∈ 𝛤} ⊨α {T𝜓 ∣ 𝜓 ∈ 𝛴}

• 𝛤 ⊨B 𝛴 if and only if {F𝜓 ∣ 𝜓 ∈ 𝛴} ⊨α {F𝜑 ∣ 𝜑 ∈ 𝛤}

• 𝛤 ⊨C 𝛴 if and only if {T𝜑 ∣ 𝜑 ∈ 𝛤} ⊨α {¬F𝜓 ∣ 𝜓 ∈ 𝛴}

• 𝛤 ⊨D 𝛴 if and only if {¬T𝜓 ∣ 𝜓 ∈ 𝛴} ⊨α {F𝜑 ∣ 𝜑 ∈ 𝛤}

• 𝛤 ⊨X 𝛴 if and only if {T(𝜑1 ∧ … ∧ 𝜑𝑛) ∣ 𝑛 > 0, 𝜑1, … , 𝜑𝑛 ∈ 𝛤} ⊨α {T(𝜓1 ∨
… ∨ 𝜓𝑛) ∣ 𝑛 > 0, 𝜓1, … , 𝜓𝑛 ∈ 𝛴}

• 𝛤 ⊨Y 𝛴 if and only if {F(𝜓1 ∨ … ∨ 𝜓𝑛) ∣ 𝑛 > 0, 𝜓1, … , 𝜓𝑛 ∈ 𝛴} ⊨α {F(𝜑1 ∧
… ∧ 𝜑𝑛) ∣ 𝑛 > 0, 𝜑1, … , 𝜑𝑛 ∈ 𝛤}

e fact that all other entailment relations become definable from α-entailment
in presence of the two operators T and F is, according to Varzi, a major advantage of
α-entailment.

2.5.2 Kremer and Kremer

Asmentioned above, supervaluational logic deviates from classical logic for a multiple-
conclusion entailment relation also without the D-operator (see Section 2.2.1). In their
work [77], Kremer and Kremer study supervaluational entailment relations with mul-
tiple conclusions for a fully classical language, i.e., without theD-operator. ey make
two basic distinctions:
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• Preservation of supertruth, preservation of superfalsehood and both

• Arbitrary specification spaces and specification spaces without admissibility
constraint

Kremer and Kremer consider a full first-order language with predicate symbols, func-
tion symbols, constants and the identity sign.

Arbitrary precisification spaces.

roughout their paper, Kremer and Kremer consider three types of entailment rela-
tions. Using our terminology from above, we can say that their entailment relations
have a “global” flavor.

Definition 2.5.5. Let 𝛤 and 𝛴 be sets of formulas.

• 𝛤 ⊨1 𝛴 iff for every precisification space 𝑺 the following holds: if every 𝜑 ∈ 𝛤
is supertrue in 𝑺 , then some 𝜓 ∈ 𝛴 is supertrue in 𝑺 .

• 𝛤 ⊨0 𝛴 iff for every precisification space 𝑺 the following holds: if every 𝜓 ∈ 𝛴
is superfalse in 𝑺 , then some 𝜑 ∈ 𝛤 is superfalse in 𝑺 .

• 𝛤 ⊨b 𝛴 iff 𝛤 ⊨0 𝛴 and 𝛤 ⊨1 𝛴.

Kremer and Kremer are especially interested in the axiomatizability of their entail-
ment relations. An entailment relation is axiomatizable iff the relation that it defines
between finite sets of formulas on its le and right hand side is recursively enumerable.
If an entailment relation is not axiomatizable, then it is not possible to find a sound
and complete proof system. ey remark, that for a language without the identity
sign, there is a rather trivial axiomatization by connecting the entailment relations to
classical logic. us, a proof system can be easily obtained for the entailment relations.

eorem 2.5.6 (Axiomatizability). Let 𝛤 and 𝛴 be sets of formulas. If the identity
sign does not occur in any formula of 𝛤 ∪ 𝛴 then

• 𝛤 ⊨1 𝛴 if and only if either 𝛤 ⊨CL 𝜓 for some 𝜓 ∈ 𝛴 or 𝛤 is classically
inconsistent.

• 𝛤 ⊨0 𝛴 if and only if either ∅ ⊨CL 𝛴 or 𝜑 ⊨CL 𝛴 for some 𝜑 ∈ 𝛤 .

• 𝛤 ⊨b 𝛴 if and only if both 𝛤 ⊨CL 𝜓 for some 𝜓 ∈ 𝛴 and 𝜑 ⊨CL 𝛴 for some
𝜑 ∈ 𝛤 .

e symbol ⊨CL denotes the classical multiple-conclusion entailment.

Kremer and Kremer also provide sound and complete proof systems for⊨1 and ⊨0
in the case that the identity sign does occur in the premisses or the conclusions. ese
systems can then be combined to a proof system for ⊨b. e proof system for ⊨1 for
example consists of the following axioms:
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(i) 𝛤 ⊢1 ∅ if 𝛤 is classically inconsistent

(ii) 𝛤 ⊢1 𝜓 if 𝛤 ⊨CL 𝜓

(iii) ∅ ⊢1 𝜓, ¬𝜓

Its rules are weakening, cut, and negation introduction. Kremer and Kremer also ex-
tend this proof system to what they call non-classical relations. A relation is non-
classical iff its interpretation is the same in every precisification of the space.

As usual, compactness follows from the axiomatization.

eorem 2.5.7 (Compactness). e entailment relations ⊨1, ⊨0 and ⊨b are compact:
Let ⊨★ be on of the three consequence relations¹⁰ and let 𝛤 and 𝛴 be sets of formulas
su that 𝛤 ⊨★ 𝛴. en there are finite subsets 𝛤 ໗ ⊆ 𝛤 and 𝛴໗ ⊆ 𝛴 su that
𝛤 ໗ ⊨★ 𝛴໗.

Precisification spaces generated from partial interpretations.

Kremer and Kremer also study their consequence relations when they are restricted
to a certain class of precisification spaces. e idea is to consider a specification space
with a base point and all complete extensions of the base point but without any ad-
missibility constraint. Tenically, this idea is implemented by assuming that the base
point has a partial interpretation that at all complete specifications has to be extended
faithfully. We use the concepts of a partial interpretation and the extension relation ≥
on partial interpretation as introduced in Section 2.3.

Definition 2.5.8. e precisification space 𝑺𝑴 generated from a partial interpreta-
tion 𝑴 has the set of precisifications given by

𝑷𝑴 = බ𝑴 ໗ ∣ 𝑴 ໗ ≥ 𝑴 and 𝑴 ໗ is a classical interpretationභ .

and the same domain as 𝑴 . We say that a precisification space is generated iff it is
generated from some partial interpretation.

For the rest of this short review of the Kremer and Kremer paper, we adapt the
definitions of the entailment relations as follows.

Definition 2.5.9. Let 𝛤 and 𝛴 be sets of formulas.

• 𝛤 ⊨g
1 𝛴 iff for every generated precisification space 𝑺 the following holds: if

every 𝜑 ∈ 𝛤 is supertrue in 𝑺 , then some 𝜓 ∈ 𝛴 is supertrue in 𝑺 .

• 𝛤 ⊨g
0 𝛴 iff for every generated precisification space 𝑺 the following holds: if

every 𝜓 ∈ 𝛴 is superfalse in 𝑺 , then some 𝜑 ∈ 𝛤 is superfalse in 𝑺 .

• 𝛤 ⊨g
b 𝛴 iff 𝛤 ⊨g

0 𝛴 and 𝛤 ⊨g
1 𝛴.

¹⁰e symbol ★ is to be understood as a placeholder.
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As alreadymentioned in Section 2.2, the global entailment relation has very strong
connections to classical logic that can also be seen for these three entailment relations
of Kremer and Kremer.

Proposition 2.5.10. Let 𝛤 and 𝛴 be sets of formulas and let 𝜑 and 𝜓 be formulas.
en the following relations the classical multiple-conclusion entailment relation ⊨CL
hold:

• 𝛤 ⊨g
1 𝜓 if and only if 𝛤 ⊨CL 𝜓

• 𝜑 ⊨g
0 𝛴 if and only if 𝜑 ⊨CL 𝛴

• 𝜑 ⊨g
b 𝜓 if and only if 𝜑 ⊨CL 𝜓

Kremer and Kremer also discuss the question of axiomatizations for these three
entailment relations. In the cases of the previous proposition, the entailment relations
are axiomatizable because their classical counterparts are. In all other relevant cases,
Kremer and Kremer show that an axiomatization is not possible.

eorem 2.5.11 (Non-axiomatizability). If the language contains two two-ary rela-
tions symbols, then the following sets are not recursively enumerable:

• බ⟨𝛤, 𝜓⟩ ∣ 𝛤 is a finite set of formulas, 𝜓 is a formula and 𝛤 ⊨g
0 𝜓භ

• බ⟨𝛤, 𝜓⟩ ∣ 𝛤 is a finite set of formulas, 𝜓 is a formula and 𝛤 ⊨g
𝑏 𝜓භ

• බ⟨𝜑, 𝛴⟩ ∣ 𝜑 is a formula, 𝛴 is a finite set of formulas and 𝜑 ⊨g
1 𝛴භ

• බ⟨𝜑, 𝛴⟩ ∣ 𝜑 is a formula, 𝛴 is a finite set of formulas and 𝜑 ⊨g
𝑏 𝛴භ

• බ⟨𝛤, 𝛴⟩ ∣ 𝛤 and 𝛴 are finite sets of formulas and 𝛤 ⊨g
1 𝛴භ

• බ⟨𝛤, 𝛴⟩ ∣ 𝛤 and 𝛴 are finite sets of formulas and 𝛤 ⊨g
0 𝛴භ

• බ⟨𝛤, 𝛴⟩ ∣ 𝛤 and 𝛴 are finite sets of formulas and 𝛤 ⊨g
𝑏 𝛴භ.

Kremer and Kremer remark that the nonaxiomatizability theorem can be strength-
ened to languages containing only one two-ary predicate symbol, but the proof gets
more difficult.

Besides axiomatizability, Kremer and Kremer are again also interested in the com-
pactness of their entailment relations. ey show that compactness fails for the class
of generated precisification spaces.

eorem 2.5.12 (Non-compactness). e entailment relations ⊨g
1, ⊨g

0 and ⊨g
b are not

compact, i.e., for ea ⊨g
★ of the three entailment relations, there are sets of formulas

𝛤 and 𝛴 su that 𝛤 ⊨g
★ 𝛴 but 𝛤 ໗ ⊭g

★ 𝛴໗ for all finite subsets 𝛤 ໗ ⊆ 𝛤 and 𝛴໗ ⊆ 𝛴 .

Note the divergence between both meta-theorems: although all three multiple-
conclusion entailment relations can be axiomatized and are compact for arbitrary
precisification spaces, neither of the two properties holds for the narrower class of
generated precisification spaces.
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2.5.3 Cobreros

Cobreros’ paper [23] also discusses global and local entailment for supervaluationism.
His main contributions are a tableaux-style proof system for supervaluational logic
and a new entailment relation called regional entailment. Cobreros’ D-operator is the
necessity-style operator of Definition 2.4.1 whose evaluation depends on an admissibil-
ity relation among the specification points where in principle no constraints are put on
the admissibility relation. At some parts he also analyzes the special cases of reflexive
or transitive relations. He also considers the operator D𝑢 as given by Definition 2.4.2.

Proof systems

First, Cobreros points out a connection between global and local entailment. Using
the D𝑢-operator, Cobreros reduces global entailment to local entailment. Varzi made
the same observation with his operator T [99] (see Section 2.5.1).

Proposition 2.5.13. Let 𝛤 be a set of formulas and 𝜑 a formula. en

𝛤 ⊨g 𝜑 if and only if බD𝑢𝜓 ∣ 𝜓 ∈ 𝛤 භ ⊨l 𝜑 .

Cobreros presents a tableaux system for local entailment that considers both op-
erators, D and D𝑢. Su systems are well-known for related modal logics (see for
example [90]). Due to the just mentioned reduction of global entailment to local en-
tailment, this tableaux system can then be used as a proof system for supervaluational
logic with global entailment.

In a related paper [22] uses another well-known relation between global and local
entailment [9].

Proposition 2.5.14. Let 𝛤 be a set of formulas and 𝜑 a formula. en

𝛤 ⊨g 𝜑 if and only if {D𝑛𝜓 ∣ 𝜓 ∈ 𝛤, 𝑛 ∈ ℕ} ⊨l 𝜑 .

Cobreros uses this result to develop a proof system for global entailment in whi
he incorporates Keefe’s suggestion of modified rules for certain deduction principles
(see Section 2.2.1).

Regional entailment

In the second part of his paper, Cobreros introduces a new notion of logical conse-
quence: regional entailment is preservation of truth at precisifications that are rela-
tively admissible.

Definition 2.5.15. A set of formulas 𝛤 regionally entails a formula 𝜑 (wrien 𝛤 ⊨𝑟 𝜑)
iff for every precisification space 𝑺 with admissibility relation 𝑹 and every precisifi-
cation 𝑠 ∈ 𝑺 the following condition holds: if for every premiss 𝜓 ∈ 𝛤 and every
𝑡 ∈ 𝑺 su that 𝑠 𝑹 𝑡, ‖𝜓‖𝑡,𝑺 = 1, then for every 𝑡 ∈ 𝑺 su that 𝑠 𝑹 𝑡, ‖𝜑‖𝑡,𝑺 = 1.
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Cobreros explains that “‘definitely’ is introduced in the object language in order to
express the supervaluationist notion of truth” [23]. He argues that this notion of truth
in relatively admissible precisifications for a necessity-style D-operator should also be
preserved by logical consequence.

By its definition, regional entailment can be reduced to local entailment.

Proposition 2.5.16. Let 𝛤 be a set of formulas and 𝜑 a formula. en

𝛤 ⊨𝑟 𝜑 if and only if {D𝜓 ∣ 𝜓 ∈ 𝛤} ⊨l D𝜑 .

Cobreros’ tableaux system for local entailment therefore also gives a proof system
for regional entailment.

Cobreros also provides some analysis of the regional entailment relation.¹¹ He ex-
plains that regional entailment “oscillates between global and local [entailment]” [23].
Regional entailment is stronger than local entailment and weaker than global entail-
ment. But the concrete strength of the regional entailment relation depends on the con-
straints that are put on the admissibility relation. One might for example only want to
consider the class of precisification spaces with reflexive admissibility relations. If we
want to consider entailment modulo a certain class of precisification spaces, we adapt
the definition of entailment by not quantifying over all precisification spaces but only
over the precisification spaces in that class.

eorem 2.5.17. Let 𝛤 be a set of formulas and 𝜑 a formula.

• In any class of precisification spaces, we have:

𝛤 ⊨l 𝜑 implies 𝛤 ⊨𝑟 𝜑
𝛤 ⊨𝑟 𝜑 implies 𝛤 ⊨g 𝜑 .

• In the class of all precisification spaces, we have

𝛤 ⊨𝑟 𝜑 implies 𝛤 ⊨l 𝜑 .

• In the class of precisification spaces with reflexive and transitive admissibility
relations, we have

𝛤 ⊨g 𝜑 implies 𝛤 ⊨𝑟 𝜑 .

• In the class of precisification spaces with reflexive admissibility relations, there
is a set of formulas 𝛤 and a formula 𝜑 su that 𝛤 ⊨𝑟 𝜑, but 𝛤 ⊭l 𝜑.

• In the class of all precisification spaces, there is a set of formulas 𝛤 and a for-
mula 𝜑 su that 𝛤 ⊨g 𝜑, but 𝛤 ⊭𝑟 𝜑.

¹¹e full analysis can only be found in a dra version of his paper that was available on his website:
Pablo Cobreros. Supervaluations and Logical Consequence: Retrieving the Local Perspective, October
2006.
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Cobreros emphasizes that the rule of D-introduction

𝜑 ⊨ D𝜑

does not hold for regional entailment. However, the related inference rule

{𝜑, ¬D𝜑} ⊨𝑟 ⊥

holds and can be seen as a weak form of D-introduction. He argues that the failure of
D-introduction means that Fara’s argument (see Section 2.4.3) does not apply. How-
ever, just as with global entailment, some classically valid inference paerns do not
hold for regional entailment with a necessity-style D-operator (see also Williamson’s
objections in Section 2.2.1).

Comparing global, local and regional entailment, Cobreros judgement is the fol-
lowing: Local entailment should be dismissed because it preserves truth at every pre-
cisification, and therefore does not allow failures of bivalence, i.e., that a statement is
neither true nor false. “If we want to explain the semantic indeterminacy aracter-
istic of vagueness in terms of truth-value gaps, we cannot be commied to the local
notion” [23]. He also argues that regional entailment is beer suited for supervalua-
tionism than global entailment, because on the one hand Fara’s argument does not
apply to regional entailment and on the other hand the rule of D-introduction is also
available for regional entailment in its weaker form.

2.5.4 Asher, Dever, and Pappas

In their article [1], Asher, Dever, and Pappas criticize the supervaluation theory as
proposed by Fine. ey say that “the central insight of supervaluation theory is that
vagueness is a modal phenomenon” [1]. For this reason they disagree with Fine’s treat-
ment of supertruth as a notion of “simple truth” [1]. Instead it should be treated as a
“mode of truth” [1]. erefore, logical consequence should not be preservation of su-
pertruth as considered by Fine, but instead should be based on a “world-indexed notion
on truth” [1].

First approa

Based on an analysis of the frameworks proposed by Fine and others, Asher, Dever,
and Pappas show whi approa they prefer. ey consider two operators for “def-
initely”. e first one is the operator D𝑢 of Definition 2.4.2. e second one, called
D, is a necessity-style operator like in Definition 2.4.1 with the constraint that the ad-
missibility relation is always assumed to be reflexive. First, they compare the logics
arising from global and local entailment by comparing whi principles from modal
logic hold in these logics. ey distinguish between the “axiomatic logic” as the set
of valid formulas and the “inferential logic” as properties of the entailment relation.
ese two notions might come apart when the deduction theorem fails. Tables 2.4
and 2.5 show whi axioms and inference rules hold in both notions of entailment.
Note that in these tables, the symbol ◻ is either replaced by D𝑢 or by D.
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global ⊨g local ⊨l
axiom D𝑢 D D𝑢 D

(K) ◻(𝜑 ⊃ 𝜓) ⊃ (◻𝜑 ⊃ ◻𝜓) ✓ ✓ ✓ ✓
(T) ◻𝜑 ⊃ 𝜑 ✓ ✓ ✓ ✓
(5) ¬◻𝜑 ⊃ ◻¬◻𝜑 ✓ × ✓ ×
(Tc) 𝜑 ⊃ ◻𝜑 × × × ×

Table 2.4: Comparison of axioms for global and local entailment

global ⊨g local ⊨l
inference rule D𝑢 D D𝑢 D

(K) ◻(𝜑 ⊃ 𝜓) ⊨ (◻𝜑 ⊃ ◻𝜓) ✓ ✓ ✓ ✓
(T) ◻𝜑 ⊨ 𝜑 ✓ ✓ ✓ ✓
(5) ¬◻𝜑 ⊨ ◻¬◻𝜑 ✓ ✓ ✓ ×
(Tc) 𝜑 ⊨ ◻𝜑 ✓ ✓ × ×

Table 2.5: Comparison of inference rules for global and local entailment

e right sides of both tables are obvious because local entailment is the standard
notion of logical consequence in modal logic, whi has the deduction theorem [9]. In
the case of D, the admissibility relation is reflexive and therefore the corresponding
modal logic is KT. In the case of D𝑢, the corresponding modal logic is S5. Furthermore,
as already seen before, the set of valid formulas coincides for global and local entail-
ment. erefore, in Table 2.4, the columns of D and D𝑢 coincide for global and local
entailment. In Table 2.5, the crucial observation for global entailment is that the reflex-
ivity of the admissibility relationmakes the inferenceD𝜑⊨g𝜑 possible. e “triviality”
of global entailment then comes from the fact that both 𝜑 ⊨g D𝜑 and D𝜑 ⊨g 𝜑 hold.

Asher, Dever, and Pappas also consider the case that a partial interpretation is
assigned to every incomplete specification point where partial interpretations have a
Kleene-semantics (as introduced in Section 2.3). However they dismiss this approa
because it does not preserve classical logical truths whi they take as one of the main
features of supervaluationism.

Since theywant to avoid the inference rule (Tc) (usually also calledD-introduction),
their preferred approa for supervaluational logic is local entailment. Due to the cor-
respondence with modal logic, the axiomatization of supervaluational logic with local
entailment depends on the constraints on the admissibility relation. ey remark that
one could e whether principles like reflexivity, symmetry, and transitivity make
sense for specification spaces. However, they want to keep an abstract perspective
and avoid talking about the nature of specification points.¹². erefore they want to
keep their constraints on the admissibility relation minimal. However, they do impose
reflexivity because they “take the move from D𝜑 to 𝜑 to be partly constitutive of the

¹²ey suggest su considerations about the nature of specification points as an “optional extra in
constructing supervaluation theory” [1]
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concept of determinacy” [1]. We discuss constraints on the admissibility relation in a
seing with higher-order vagueness in Section 2.4.2.

A major advantage that they see is that Fara’s argument concerning higher-order
vagueness [33] (see Section 2.4.3) does not apply because their logic does not support
D-introduction. In fact, they manage to give an easy example of a precisification space
in whi all of the “gap principles” are satisfied.

Refined approa

Supertruth does not play any role in the definition of the local entailment relation. e
final suggestion of Asher, Dever, and Pappas is to reintroduce supertruth by adding an
actuality-style operator S that indicates supertruth. e truth function of this operator
is based on a subset of precisifications in the precisification space, the base precisifi-
cations, “supposed to specify the D-free facts” [1]. In the following we redefine our
central notions according to this new framework.

Definition 2.5.18. A precisification space is a quintuple 𝑺 = ⟨𝑷, 𝑨, 𝑹, 𝑫, (𝑴𝑠)𝑠∈𝑷 ⟩
that consists of a nonempty set 𝑷 of precisifications, a nonempty subset 𝑨 ⊆ 𝑷 of
actual precisifications, a binary admissibility relation 𝑹 on 𝑷 , a nonempty set 𝑫 , the
domain of 𝑺 , and a function (𝑴𝑠)𝑠∈𝑷 that assigns a classical first-order interpretation
𝑴𝑠 with domain 𝑫 to every precisification 𝑠 ∈ 𝑷 .

e semantics of the classical connectives and the predicates is standard. e
interpretation of the operators D and S is given by

‖D𝜑‖𝑠,𝒗,𝑺 =
๨

1 if ‖𝜑‖𝑡,𝒗,𝑺 = 1 for all 𝑡 ∈ 𝑷 with 𝑠 𝑹 𝑡
0 otherwise

‖S𝜑‖𝑠,𝒗,𝑺 =
๨

1 if ‖𝜑‖𝑡,𝒗,𝑺 = 1 for all 𝑡 ∈ 𝑨
0 otherwise

where 𝑺 is a precisification space, 𝑠 ∈ 𝑺 and 𝒗 is a variable assignment of 𝑺 .

Note that a formula S𝜑 is true in a precisification if and only if it is true in all
precisification. In this case one can therefore also think of S𝜑 being true in the spec-
ification space. us, a formula is defined to be supertrue iff it is true in all base
precisifications.

Definition 2.5.19. A formula 𝜑 is supertrue in a precisification space 𝑺 with actual
precisifications 𝑨 iff ‖𝜑‖𝑠𝑺 = 1 for every 𝑠 ∈ 𝑨.

An equivalent formulation is that 𝜑 is supertrue if S𝜑 is true at any precisification
in 𝑨.

Local entailment in this framework is defined in the standard way. e global
entailment relation is just defined from the local one, whi is similar to the connec-
tion between global and local entailment in presence of Varzi’s T-operator [99] (see
Section 2.5.1).
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Definition 2.5.20. A set of formulas {𝜑1, … , 𝜑𝑛} globally entails a formula 𝜓 iff
S𝜑1, … , S𝜑𝑛 ⊨l S𝜓 .¹³

In this logic, the following connections hold between the S- and the D-operator:

• S𝜑 ⊃ DS𝜑

• ¬S𝜑 ⊃ D¬S𝜑

e following relation is also desirable for a supervaluational logic:

(SD) S𝜑 ⊃ D𝜑, for D-free 𝜑.

For this principle to hold, the following constraint has to be fulfilled: if a precisifi-
cation 𝑠 ∈ 𝑺 is an admissible precisification, i.e., there is a 𝑡 ∈ 𝑺 su that 𝑡 𝑹 𝑠, then
there is an actual precisification 𝑢 ∈ 𝑨 su that their classical interpretations are the
same, i.e., 𝑴𝑠 = 𝑴𝑢.

e advantage of this logic (including the constraint for the (SD)-principle), as
seen by Asher, Dever, and Pappas, is that Williamson’s examples of failures of classical
inference paerns (compare Section 2.2.1) can easily be fixed.

¹³Asher, Dever, and Pappas give a definition for finite sets, but the extension of the definition to
infinite sets is unproblematic.





CHAPTER 3
Fuzzy logics based on t-norms

is section consists of a review of relevant aspects of mathematical fuzzy logic. We
follow Hájek’s monograph [56] for introducing the basic theory of t-norm based fuzzy
logics. Unless noted otherwise, all results in this section are taken from this book. An-
other valuable source is Gowald’s monograph on many-valued logics [44] that gives
a systematic overview of the knowledge on many-valued logics, including fuzzy log-
ics. e most important facts can also be found in several survey papers by Hájek and
Gowald [45–47, 61]. In a recent survey [20], Cintula and Hájek sum up the knowl-
edge on t-norm based predicate fuzzy logics as of 2009. Another recent paper [19]
summarizes the completeness results for various kinds of semantics.

Concerning proof theory we only present axiomatizations in the form of Hilbert-
style calculi. For a systematic treatment of the proof theory of fuzzy logic, with an
emphasis on Gentzen-style systems, we refer to the book by Metcalfe, Olivei, and
Gabbay [82].

3.1 Motivation of fuzzy logic

A set 𝑆 can be identified with its aracteristic function

𝜒𝑆(𝑥) =
๨

1 if 𝑥 ∈ 𝑆
0 if 𝑥 ∉ 𝑆

that defines for ea object 𝑥 if it is a member of 𝑆 or not. Zadeh introduced fuzzy
sets [104] by allowing the full unit interval [0, 1] as the range of aracteristic func-
tions. Intuitively speaking, fuzzy sets allow infinitely many membership degrees.
Zadeh demonstrated suitable functions on fuzzy sets that generalize set operations
like union, intersection and complement.

e relation of fuzzy sets to logic arises from the usual semantics of logic that
interprets predicates as sets. For example, the set 𝑇 of tall individuals could be the

41
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meaning of the predicate 𝑡𝑎𝑙𝑙. Classically, the statement “Kim is tall” is true if Kim
belongs to 𝑇 and is false otherwise. If 𝑇 is a fuzzy set, the statement might be true
to a certain degree. Fuzziness is introduced to logic by taking [0, 1] as the set of truth
values together with suitable connectives that are inspired by operations on fuzzy sets.
Set intersection, for example, corresponds to conjunction in logic.

e success of fuzzy logic is due to the application of its principles in control engi-
neering. In a nutshell, a fuzzy controller approximates functions with input and out-
put variables about whi partial, imprecise knowledge is given by IF-THEN rules [51].
Zadeh’s idea of linguistic variables enables formulations of rules close to natural lan-
guage, like for example

IF temperature is high THEN heating is low.

e controller associates ea input and output value with a degree of membership to
a linguistic variable. A value of 19∘C for example could be a “high temperature” to
degree 0.7. A process called fuzzy inference computes the membership degrees of the
output values from the membership degrees of the input values.

Fuzzy control is lile concerned with mathematical logic. Zadeh therefore sug-
gests to distinguish between fuzzy logic in a wide sense as a toolkit for approximate
reasoning, and fuzzy logic in a narrow sense as a formal system of many-valued log-
ic in whi traditional logical questions arise [105]. One of the main motivations of
fuzzy logic in a narrow sense is to offer a logical foundation for fuzzy control. A recent
development is to view mathematical fuzzy logic as a degree-theoretic approa for
reasoning under vagueness [36].

As stated in the introduction we follow Hájek’s approa towards mathematical
fuzzy logic because it is the most influential one. Before we present any of his results,
it seems useful to examine Hájek’s “design oices” on formalizing fuzzy logic.

• Truth values: e unit interval [0, 1] is the set of truth values with 1 meaning
absolute truth and 0 meaning absolute falsehood. e usual linear order ≤ on
the real numbers imposes a comparative notion of truth.

• Truth-functionality: e truth value of a compound formula should only de-
pend on the truth values of its parts. For a two-ary connective ⚬, the truth value
of 𝜑 ⚬ 𝜓 is 𝑓⚬(𝑥, 𝑦) where 𝑓⚬ is a function, 𝑥 is the truth value of 𝜑 and 𝑦 is the
truth value of 𝜓 .

• Generalization of classical logic: e truth functions of fuzzy logic behave
classically for the truth values 1 and 0. A conjunction, for example, receives the
truth value 0 if one of its conjuncts does.

• T-norm conjunction: e truth function of conjunction is a continuous t-norm.
T-norm conjunctions are called strong conjunctions. Gowald explains that in
the 1980s the fuzzy community reaed the consensus that set intersection, the
equivalent to conjunction, should be defined from a t-norm [46].
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• Other connectives: e oice of a t-norm determines the whole logic. Other
connectives are defined from the t-norm: implication, negation, disjunction and
also a second connective for conjunction called weak conjunction.

Besides standard semantics with truth functions on the unit interval that are de-
fined from a t-norm, Hájek also studies general semantics with generalized truth func-
tions on abstract truth degree structures. We can compare this situation to classical
logic where Boolean algebras provide a laice semantics. In the following, we focus
on the standard semantics because they are more relevant for fuzzy logic as a degree-
based theory of vagueness.

3.2 Truth functions

In the following, we introduce the connectives that will be used for fuzzy logic. We
also discuss some alternatives to the truth functions proposed by Hájek. For an in-
depth “exploration” of the space of possible truth functions we recommend Gowald’s
monograph on many-valued logics [44].

3.2.1 Conjunction

e main requirement on a truth function of conjunction is formulated by Hájek as
follows: “A large truth degree of [the conjunction “𝜑 and 𝜓”] should indicate that
both the truth degree of 𝜑 and the truth degree of 𝜓 is large, without any preference
between 𝜑 and 𝜓” [56]. By formalizing this requirement, Hájek arrives at the class of
t-norms as good candidates for truth functions of conjunction.

Definition 3.2.1. A binary operation ∗ on the real unit interval [0, 1] is a triangular
norm (short: t-norm) iff it satisfies the following conditions for all 𝑥, 𝑦, 𝑧 ∈ [0, 1]:

(T1) ∗ is associative:

𝑥 ∗ (𝑦 ∗ 𝑧) = (𝑥 ∗ 𝑦) ∗ 𝑧

(T2) ∗ is commutative:

𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥

(T3) ∗ is non-decreasing in both arguments:

𝑥 ≤ 𝑦 implies 𝑥 ∗ 𝑧 ≤ 𝑦 ∗ 𝑧
𝑥 ≤ 𝑦 implies 𝑧 ∗ 𝑥 ≤ 𝑧 ∗ 𝑦

(T4) ∗ has 1 as its neutral element and 0 as its zero element:

1 ∗ 𝑥 = 𝑥
0 ∗ 𝑥 = 0
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Note that in condition (T3) it would be sufficient to demand non-decreasingness in
one argument and in (T4) it would be sufficient to demand that 1 is the neutral element.
Hájek argues that these conditions are quite natural to demand from a truth function
of conjunction and thus the concept of a t-norm offers a very wide generalization
of adequate truth functions of conjunction. Indeed, conditions (T1), (T2) and (T4)
seem to be very intuitive for a truth function of conjunction. Condition (T3) can be
explained as follows: If the truth degree of a conjunct is increased, the truth degree
of the conjunction should not decrease. Consider for example the conjunction “𝜑 and
𝜓” and the statement 𝜒 . Furthermore assume that 𝜒 has a higher truth value than 𝜓 .
en the fuzzy logician’s intuition is that the truth value of the conjunction “𝜑 and 𝜒”
should not be lower than the truth value of “𝜑 and 𝜓”.

Following Hájek’s monograph [56], we will restrict ourselves to t-norms that are
continuous. Informally speaking, continuity means that small anges in the argu-
ments of a function lead only to small anges in the result of the function. is con-
dition is formalized with the usual 𝜀-𝛿-criterion in the two-dimensional space [0, 1]2.
For t-norms, continuity is equivalent to continuity in ea argument [44].

Proposition 3.2.2. A t-norm ∗ is a continuous binary function if and only if for every
𝑎 ∈ [0, 1] the unary function 𝑓𝑎 aracterized by the equation

𝑓𝑎(𝑥) = 𝑥 ∗ 𝑎

is a continuous (unary) function.

Example. e most important continuous t-norms are the following:

(i) Łukasiewicz t-norm: 𝑥 ∗Ł 𝑦 = max(𝑥 + 𝑦 − 1, 0)

(ii) Gödel t-norm: 𝑥 ∗G 𝑦 = min(𝑥, 𝑦)

(iii) Product t-norm: 𝑥 ∗P 𝑦 = 𝑥 ⋅ 𝑦

ese three t-norms are important from a historical point of view. e Łukasiewicz
t-norm generalizes the conjunction used in Łukasiewicz’ system of many-valued log-
ic [79, 80]. Gödel, in his proof that intuitionistic logic is not a finite-valued logic [41],
defined a finitely-valued non-classical logic withminimum conjunction that Dumme
extended to infinitely many truth values [26]. Goguen, in his paper on fuzzy logic [43],
suggested that multiplication and division are adequate truth functions of conjunction
and implication in the unit interval. e concept of a continuous t-norm can be seen
as a generalization of these three truth functions of conjunction.

e second importance of these these three t-norms arises from the fact that ea
continuous t-norm is a combination of these three fundamental t-norms. It can be
shown that for any continuous t-norm ∗ the unit square [0, 1]2 can be decomposed into
a partition of disjoint sets (𝑋𝑖)𝑖∈𝐼 su that, for every 𝑖 ∈ 𝐼 , ∗ restricted to 𝑋𝑖 is either
Łukasiewicz, Gödel or the product t-norm. For a precise formulation of this statement
we have to introduce the concepts of an order isomorphism and a generalized ordinal
sum [44].
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Definition 3.2.3. Let [𝑎1, 𝑏1] ⊆ [0, 1] and [𝑎2, 𝑏2] ⊆ [0, 1] be subintervals of the unit
interval. An order isomorphism between [𝑎1, 𝑏1] and [𝑎2, 𝑏2] is a bijective function
𝑓 ∶ [𝑎1, 𝑏1] → [𝑎2, 𝑏2] su that

𝑥 < 𝑦 if and only if 𝑓(𝑥) < 𝑓(𝑦) .

eorem3.2.4 (Generalized ordinal sum representation). For every continuous t-norm ∗
there is a countable family ([𝑎𝑖, 𝑏𝑖], 𝑓𝑖, ∗𝑖)𝑖∈𝐼 with the following properties:

• For every 𝑖 ∈ 𝐼 , [𝑎𝑖, 𝑏𝑖] is a subinterval of [0, 1] that is not a singleton.

• For all 𝑖, 𝑗 ∈ 𝐼 su that 𝑖 ≠ 𝑗, the intersection [𝑎𝑖, 𝑏𝑖] ∩ [𝑎𝑗 , 𝑏𝑗] is either empty
or a singleton.

• For every 𝑖 ∈ 𝐼 , 𝑓𝑖 is an order isomorphism from [𝑎𝑖, 𝑏𝑖] onto [0, 1].

• For every 𝑖 ∈ 𝐼 , the t-norm ∗𝑖 is either equal to the Łukasiewicz t-norm or to the
product t-norm.

• e t-norm ∗ can be aracterized as follows:

𝑥 ∗ 𝑦 =
๨

𝑓 −1
𝑘 ධ𝑓𝑘(𝑥) ∗𝑘 𝑓𝑘(𝑦)න if 𝑥, 𝑦 ∈ ඳ𝑎𝑘, 𝑏𝑘ප for some 𝑘 ∈ 𝐼

min(𝑥, 𝑦) otherwise

Note that the index set 𝐼 is allowed to be empty

Another important notion that we will need several times are idempotents.

Definition 3.2.5. An element 𝑥 ∈ [0, 1] is an idempotent of a continuous t-norm ∗ iff
𝑥 ∗ 𝑥 = 𝑥.

In the ordinal sum representation of a continuous t-norm, the idempotents are
exactly those points that are end-points of a subinterval or not contained in any subin-
terval at all.

Due to their central role in fuzzy logic and fuzzy control, t-norms themselves have
become a field of study and many properties about them are known. A standard
reference is the monograph by Klement, Mesiar and Pap [74].

3.2.2 Implication

e next preliminary that we have to sele is the truth function of implication. e
standard approa is to take the residuum of a continuous t-norm.

Definition 3.2.6. Let ∗ be a continuous t-norm. en the residuum ⇒∗ of ∗ is defined
by

𝑥 ⇒∗ 𝑦 = max{𝑧 ∈ [0, 1] ∣ 𝑥 ∗ 𝑧 ≤ 𝑦} .
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Hájek spends some time in his book to justify this oice. First he observes that
the residuum has some properties that should be demanded from a truth function of
implication. It behaves classically for 0 and 1 and it is non-increasing in the first
argument, the antecedent, and non-decreasing in the second argument, the succedent.
Intuitively, an increase in the truth value of the antecedent should not yield an increase
in the truth value of the implication because it gets more difficult for the implication
to be applicable. Conversely, an increase in the truth value of the succedent should
make it easier for the implication to be applicable whi means that the truth value
of the implication should not decrease. As Hájek puts it: “A large truth value of [the
implication “𝜑 implies 𝜓”] should indicate that the truth value of 𝜑 is not too mu
larger than the truth value of 𝜓” [56].

He then shows that the residuum is not only suitable but also the best oice.
His main argument is that the truth function of implication should allow a form of
fuzzy modus ponens whi, as he shows, imposes a aracterizing condition. e
argument goes as follows: Let⇒ denote a truth function of implication. Now consider
the following situation for the implication “𝜑 implies 𝜓”, its antecedent 𝜑, and its
succedent 𝜓 . Let 𝑎 be a lower bound of the truth value 𝑥 of 𝜑 and let 𝑏 be a lower
bound of the truth value 𝑥 ⇒ 𝑦 of “𝜑 implies 𝜓”. en we want to find out how true
𝜓 is, i.e., we want to compute a lower bound 𝑐 of the truth value 𝑦 of 𝜓 .

Now the question is how the lower bound 𝑐 should be computed from the lower
bounds 𝑎 and 𝑏. is means that we are searing for a binary operation ⚬ su that
𝑐 = 𝑎 ⚬ 𝑏. Hájek argues that a natural requirement on ⚬ is that it is non-decreasing
in both arguments: e higher 𝑎 is, the more we know that 𝜑 is true and the more
the implication “𝜑 implies 𝜓” should apply whi makes 𝜓 more true and thus also
increases 𝑐. e higher 𝑏 is, the more we know that the implication “𝜑 implies 𝜓” is
true and the more true it should be to conclude 𝜓 from 𝜑 whi again increases 𝑐. As
Hájek notes it is difficult to find arguments why the operation ⚬ should be associative
and commutative. Nevertheless he suggests that it would be useful to take a t-norm
for this operation.

us we get the following condition on ⇒:

If 𝑎 ≤ 𝑥 and 𝑏 ≤ (𝑥 ⇒ 𝑦), then 𝑎 ∗ 𝑏 = 𝑐 ≤ 𝑦 .

By seing 𝑎 = 𝑥 and writing 𝑧 instead of 𝑏 we get

If 𝑧 ≤ (𝑥 ⇒ 𝑦), then 𝑥 ∗ 𝑧 ≤ 𝑦 . (3.1)

A second constraint emerges by the wish to make the implication as powerful as
possible: Hájek demands that whenever in condition (3.1) the conclusion holds also
the premiss should hold. erefore, whenever 𝑥∗𝑧 ≤ 𝑦 holds, 𝑧 is a possible candidate
for the truth value 𝑥 ⇒ 𝑦. us we get a stronger condition:

𝑧 ≤ (𝑥 ⇒ 𝑦) if and only if 𝑥 ∗ 𝑧 ≤ 𝑦 . (3.2)

Hájek then shows that for every continuous t-norm ∗, the residuum, whi computes
the maximal 𝑧 satisfying 𝑥 ∗ 𝑧, is the unique operation that satisfies condition (3.2).
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Proposition 3.2.7. Let ∗ be a continuous t-norm and 𝑥, 𝑦, 𝑧 ∈ [0, 1]. en

(𝑥 ∗ 𝑧) ≤ 𝑦 if and only if 𝑧 ≤ (𝑥 ⇒∗ 𝑦) .

e residuum ⇒∗ is the only operation that has this property.

Gowald explains that due to this property, residua generalize thearacterization
of intuitionistic implication connectives in Heyting algebras [46]. As the discussion
above shows, the principle of fuzzy modus ponens holds for the residuum. is is the
content of the next result.

Proposition 3.2.8. Let ∗ be a continuous t-norm and 𝑥, 𝑦 ∈ [0, 1]. en

𝑥 ∗ (𝑥 ⇒∗ 𝑦) ≤ 𝑦 .

e inequality in this proposition can be made precise: For every continuous
t-norm, the le term in the inequality defines the function that computes the mini-
mum of two values, whi is exactly the Gödel t-norm. In the fuzzy logics that we
will work with, one therefore usually considers two conjunction connectives. e first
one is a strong conjunction given by a continuous t-norm and the second one is aweak
conjunction given by the Gödel t-norm.

Proposition 3.2.9. For every continuous t-norm and all 𝑥, 𝑦 ∈ [0, 1] we have

min(𝑥, 𝑦) = 𝑥 ∗ (𝑥 ⇒∗ 𝑦) .

e main reason why the continuity of the t-norm was demanded is to ensure
that the residuum is well-defined. However this seems to be a rather shallow justi-
fication compared to Hájek’s other design oices. Alternatively one can relax this
constraint to le-continuity and the definition of the residuum would still work, but
le-continuity seems even harder to justify. And still it would leave the problem why
one demands (le)-continuity for the truth function of conjunction but not for the
truth function of implication. Gowald argues that the class of all t-norms is not yet
well understood and therefore the restriction to continuous or le-continuous t-norms
is a reasonable simplification [46].

We close our discussion of residua by stating two simple but important properties.

Proposition 3.2.10. Let ∗ be a continuous t-norm. en we have the following proper-
ties:

(i) 𝑥 ≤ 𝑦 if and only if (𝑥 ⇒∗ 𝑦) = 1.

(ii) (1 ⇒∗ 𝑦) = 𝑦.

According to Gowald [46], an alternative to residua is to introduce implication
using either disjunction and negation or using conjunction and negation. For exam-
ple one could read the implication “𝜑 implies 𝜓” merely as an abbreviation for “not
𝜑 or 𝜓” if the truth functions of negation and disjunction have already been defined
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independently from the truth function of implication. Su truth functions of impli-
cation are called S-implications in the fuzzy community whereas residua are called
R-implications. Gowald argues that this approa has some difficulties with the
main disadvantage being the following: In the residuum-based approa we get a nat-
ural lower bound on the truth degree of the succedent of an implication due to fuzzy
modus ponens, as seen above. A similar property in general fails for S-implications
in many cases. A survey by Klement and Navara [75] mentions as an advantage of
the S-implication based approa that the truth function of implication is continuous
if the other truth functions are continuous, too, whereas a continuous t-norm does
not guarantee a continuous residuum. However, they explain, the residuum-based ap-
proa allows deeper logical results. We will not explicitly deal with S-implications
in the following with the exception of Łukasiewicz logic where the S-implication and
the residuum coincide. For results on S-fuzzy logics, in particular concerning axioma-
tizations, compactness, and comparisons to the residuum-based approa we refer to
the papers [10, 68, 75].

3.2.3 Biimplication

As usual, two statements 𝜑 and 𝜓 are considered equivalent iff both “𝜑 implies 𝜓”
and “𝜓 implies 𝜑” hold

Definition 3.2.11. e truth function of biimplication ⇔∗ of a continuous t-norm ∗ is
given by the relation

𝑥 ⇔∗ 𝑦 = ධ𝑥 ⇒∗ 𝑦න ∗ ධ𝑦 ⇒∗ 𝑥න

One might wonder if it would be beer to define the biimplication with the weak
minimum conjunction instead of the strong conjunction. It turns out that it does not
maer because both approaes are equivalent.

Proposition 3.2.12. For every continuous t-norm ∗ and all 𝑥, 𝑦 ∈ [0, 1] we have

𝑥 ⇔∗ 𝑦 = min ධධ𝑥 ⇒∗ 𝑦න , ධ𝑦 ⇒∗ 𝑥නන .

With Proposition 3.2.10 it is easy to e that the biimplication evaluates to 1
only if the le hand side and the right hand side are equal and thus it is really suited
to capture equivalence of formulas.

Proposition 3.2.13. For every continuous t-norm ∗ and all 𝑥, 𝑦 ∈ [0, 1] we have

𝑥 ⇔∗ 𝑦 = 1 if and only if 𝑥 = 𝑦 .

3.2.4 Negation

Hájek suggests an “implies falsum” negation like in intuitionistic logic, whi means
that its truth function is defined from the residuum and the truth value 0.
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Definition 3.2.14. For every continuous t-norm ∗, the precomplement −∗ of ∗ is the
unary relation on the real unit interval [0, 1] given by

−∗(𝑥) = ධ𝑥 ⇒∗ 0න .

Example. e precomplements of Łukasiewicz and the Gödel t-norm are two impor-
tant examples of truth functions of negation.

• Łukasiewicz negation:

−Ł(𝑥) = 1 − 𝑥

• Gödel negation:

−G(𝑥) =
๨

1 if 𝑥 = 0
0 otherwise

Note that Gödel negation only returns the “crisp” values 0 and 1. is property
could be seen as a disadvantage in applications [75]. It can be shown that several other
t-norms have Gödel negation as its precomplement.

Proposition 3.2.15. If the continuous t-norm ∗ fulfills the condition¹⁴

𝑥 ∗ 𝑦 = 0 implies 𝑥 = 0 or 𝑦 = 0

for all 𝑥, 𝑦 ∈ [0, 1], then its precomplement −∗ is equal to Gödel negation −G.

Due to Proposition 3.2.10 only the negation of falsehood returns truth.

Proposition 3.2.16. Let ∗ be a continuous t-norm. en −∗(𝑥) = 1 if and only if 𝑥 = 0.

Note that this relation does not hold when the roles of 1 and 0 are exanged:
Gödel negation is a counterexample.

It would also be possible to allow negation functions based on other considerations.
Strong negation functions seem to be the most important class of alternative negation
functions [44].

Definition 3.2.17. A unary relation 𝑛 on the unit interval [0, 1] is called strong nega-
tion function iff it satisfies the following conditions for all 𝑥 ∈ [0, 1]:

(N1) 𝑛 is classical negation on {0, 1}:

𝑛(0) = 1
𝑛(1) = 0

¹⁴In algebraic terms, this condition states that ∗ has no nontrivial zero divisors.
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(N2) 𝑛 is strictly decreasing:

𝑥 < 𝑦 implies 𝑛(𝑥) > 𝑛(𝑦)

(N3) 𝑛 is continuous

(N4) 𝑛 is involutive:

𝑛(𝑛(𝑥)) = 𝑥

Esteva, Godo, Hájek, and Navara remark that condition (N3) is redundant [30].

Remark. e Łukasiewicz negation is a strong negation function. Gödel negation is
not a strong negation function.

3.2.5 Disjunction

One possibility to define a truth function of disjunction would be to make similar
considerations as for the truth function of conjunction. Dually to t-norms, one then
arrives at t-conorms as good candidates for su truth functions.

Definition 3.2.18. A binary operation ⊕ on the real unit interval [0, 1] is a triangular
conorm (short: t-conorm) iff it satisfies the following conditions for all 𝑥, 𝑦, 𝑧 ∈ [0, 1]:

(S1) ⊕ is associative:

𝑥 ⊕ (𝑦 ⊕ 𝑧) = (𝑥 ⊕ 𝑦) ⊕ 𝑧

(S2) ⊕ is commutative:

𝑥 ⊕ 𝑦 = 𝑦 ⊕ 𝑥

(S3) ⊕ is non-decreasing in both arguments:

𝑥 ≤ 𝑦 implies 𝑥 ⊕ 𝑧 ≤ 𝑦 ⊕ 𝑧
𝑥 ≤ 𝑦 implies 𝑧 ⊕ 𝑥 ≤ 𝑧 ⊕ 𝑦

(S4) ⊕ has 0 as its neutral element and 1 as its zero element:

0 ⊕ 𝑥 = 𝑥
1 ⊕ 𝑥 = 1

Note that the conditions (S1)–(S3) for t-conorms are exactly the same as (T1)–(T3)
for t-norms.

In the presence of a strong negation function it is possible to define a t-conorm
from a t-norm and vice versa using DeMorgan’s laws [44].
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Proposition 3.2.19. Let 𝑛 be a strong negation function. For every t-norm ∗, the func-
tion given by

𝑥 ⊕ 𝑦 = 𝑛(𝑛(𝑥) ∗ 𝑛(𝑦))

is a t-conorm. For every t-conorm ⊕, the function given by

𝑥 ∗ 𝑦 = 𝑛(𝑛(𝑥) ⊕ 𝑛(𝑦))

is a t-norm.

Although t-conorms seem to be a natural oice for truth functions of disjunction,
and are also used in fuzzy control, Hájek’s approa mostly disregards them. Instead,
only a weak disjunction connective corresponding to the maximum operator is intro-
duced. is maximum disjunction is definable from the continuous t-norm and its
residuum.

Proposition 3.2.20. For every continuous t-norm and all 𝑥, 𝑦 ∈ [0, 1] we have

max(𝑥, 𝑦) = min ධධ𝑥 ⇒∗ 𝑦න ⇒∗ 𝑦, ධ𝑦 ⇒∗ 𝑥න ⇒∗ 𝑥න .

3.3 Logical notions for fuzzy logics

Before we proceed with presenting concrete fuzzy logics, we discuss how the central
logical notions satisfiability, validity and entailment can be defined in a logic based
on the truth value set [0, 1] with the usual order ≤ on the truth values. We compare
different definitions for these concepts as they occur in the literature. Relatedly, we
also discuss some aspects of provability.

In the following, we want to define logical notions for a fuzzy logic X. We assume
that there is a set of formulas and a set of possible interpretations 𝑰 . Ea interpreta-
tion 𝑴 ∈ 𝑰 determines an interpretation function ‖ ⋅ ‖X𝑴 that maps formulas to truth
values in the unit interval [0, 1]. e concrete syntax and semantics of our degree-
theoretic logic will be le unspecified. Instead, an abstract framework will be present-
ed with the idea being that a concrete syntax and semantics can easily be “plugged in”
to define a concrete logic.

Note that we only consider “crisp” approaes towards validity, entailment and
provability. For example we assume that a formula can be either valid or not, but we
do not consider that a formula might be valid to a certain degree. It is of course also
possible to transfer the concept of fuzziness to the outer logical level and to work with
graded notions of validity, entailment and provability. We shortly describe one su
approa called Pavelka logic in Section 3.7.

3.3.1 Designated truth values

e crucial question for amany-valued logic is whi truth value(s) should be regarded
as designated [44].e usual assumption is that 1 should be a designated truth value in
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any case and that 0 should not. e following options for the designated truth values
appear to be quite natural:

(i) 1 is the only designated truth value.

(ii) Every value in (0, 1] is designated, i.e., 0 is the only truth value that is not desig-
nated.

(iii) Every value in [𝜀, 1] is designated for a concrete 𝜀 ∈ [0, 1].

(iv) Every value in [𝜀, 1] is designated, but we abstract from a concrete oice of 𝜀.
Every 𝜀 ∈ [0, 1] should be considered.

Option (i) is the prevalent way of defining satisfiability, validity and entailment. In
the following definitions we will speak of 1-models, 1-satisfiability, 1-validity and
1-entailment, but later we will occasionally omit the 1-prefix because it is standard
to do so. Option (ii) is usually considered only in the scope of the complexity of
satisfiability and validity in fuzzy logics. Option (iii) can be made for every many-
valued logic with a comparative notion of truth [44]: as soon as a certain 𝜀 ∈ [0, 1] is
considered designated, also every 𝛿 ≥ 𝜀 has to be considered designated. e intrinsic
problem seems to be how a concrete oice of 𝜀 can be justified and—to the best of our
knowledge—this approa has only lile relevance for mathematical fuzzy logics. A
further possibility would be to consider the possibility of an arbitrary subset of [0, 1]
being designated, as it is done by Cintula and Navara who studied different forms of
compactness in fuzzy logics [21]. However, this approa does not seem to fit together
with the idea of a comparative notion of truth whi is why we do not pursue it here.
Option (iv) is advocated by Priest [90] and only makes a difference to option (i) when
it comes to entailment relations.

Similar to satisfiability, validity and entailment with regard to truth, one could
also be explicitly interested in the analogous relations for falsehood. In this case it
would be necessary not only to look at the designated truth values, but also at the
anti-designated ones [44], where 0 is usually anti-designated 1 is usually not anti-
designated. However, we omit this discussion because in t-norm based fuzzy logics
the relations for falsehood should in principle be dual to the relations for truth and
therefore no fundamentally new insights can be expected. Furthermore, due to our
oice of truth functions and Proposition 3.2.16, we know that a formula evaluates
to 0 if and only if its negation evaluates to 1. erefore most interesting relations
concerning falsehood should be transformable to their counterparts for truth.

3.3.2 Satisfiability

First, we define a satisfaction relation between interpretations and formulas, or sets of
formulas respectively. is relation denotes whether a formula is true in an interpre-
tation, where the notion of truth depends on the set of designated truth values.

Definition 3.3.1. Let 𝑴 be an interpretation, 𝜑 a set of formulas and 𝜀 ∈ [0, 1].
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• 𝑴 is a 1-model of 𝜑 (𝑴⊨X
1 𝜑) iff ‖𝜑‖X𝑴 = 1.

• 𝑴 is a (>0)-model of 𝜑 (𝑴 ⊨X
>0 𝜑) iff ‖𝜑‖X𝑴 > 0.

• 𝑴 is a (≥𝜀)-model of 𝜑 (𝑴 ⊨X
≥𝜀 𝜑) iff ‖𝜑‖X𝑴 ≥ 𝜀.

• 𝑴 is a α-model of 𝜑 (𝑴 ⊨X
α 𝜑) iff 𝑴⊨X

≥𝛿 for every 𝛿 ∈ [0, 1].

Let ★ be one of the following:¹⁵ 1, (>0), (≥𝜀) or α. We say that 𝜑 is ★-satisfiable
iff it has a ★-model. Let 𝛤 be a set of formulas. en 𝑴 ⊨X

★ 𝛤 iff 𝑴 ⊨X
★ 𝜓 for every

𝜓 ∈ 𝛤 .

Note that α-satisfiability and 1-satisfiability trivially coincide. In the literature,
1-satisfiability and (>0)-satisfiability are the dominant concepts, especially when the
complexity of satisfiability in a propositional fuzzy logic is studied. erefore it is
convenient to define the following sets of satisfiable propositional formulas.

Definition 3.3.2. For every fuzzy logic X we define the following sets:

𝐒𝐀𝐓X
1 = {𝜑 ∣ 𝜑 has a 1-model of X}

𝐒𝐀𝐓X
>0 = {𝜑 ∣ 𝜑 has a (>0)-model of X} .

3.3.3 Validity

As usual we say that a formula is valid iff it is true for every interpretation where the
meaning of truth depends on our notion of satisfaction. is means that a formula 𝜑
is valid iff every interpretation is a model of 𝜑.

Definition 3.3.3. Let 𝜑 be a formula and 𝜀 ∈ [0, 1].

• 𝜑 is 1-valid iff 𝑴 ⊨X
1 𝜑 for every interpretation 𝑴 .

• 𝜑 is (>0)-valid iff 𝑴 ⊨X
>0 𝜑 for every interpretation 𝑴 .

• 𝜑 is (≥𝜀)-valid iff 𝑴 ⊨X
≥𝜀 𝜑 for every interpretation 𝑴 .

• 𝜑 is α-valid iff 𝜑 is (≥𝛿)-valid for every 𝛿 ∈ [0, 1].

Note that α-validity and 1-validity trivially coincide. Again the most important
concepts are 1-validity and (>0)-validity whi is why we make an additional defini-
tion for the corresponding sets of propositional formulas.

Definition 3.3.4. For every fuzzy logic X we define the following sets:

𝐓𝐀𝐔𝐓X
1 = {𝜑 ∣ 𝜑 is 1-valid in X}

𝐓𝐀𝐔𝐓X
>0 = {𝜑 ∣ 𝜑 is (>0)-valid in X}

¹⁵e symbol ★ is to be understood as a placeholder.
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3.3.4 Entailment

Finally, we take a look at the entailment relation. e entailment relation denotes
whether a formula 𝜑, the conclusion, is a logical consequence of a set of formulas 𝛤 ,
the premisses. In this case we also say that 𝛤 entails 𝜑. An entailment relation should
always be truth-preserving whimeans that the conclusion should always be at least
as true as the premisses. We define different entailment relations according to our four
options for the set of designated truth values.

Definition 3.3.5. Let 𝛤 be a (possibly infinite) set of formulas and 𝜑 a formula.

• 𝛤 ⊨X
1 𝜑 iff 𝑴 ⊨X

1 𝛤 implies 𝑴 ⊨X
1 𝛤 for every interpretation 𝑴

• 𝛤 ⊨X
>0 𝜑 iff 𝑴 ⊨X

>0 𝛤 implies 𝑴 ⊨X
>0 𝛤 for every interpretation 𝑴

• 𝛤 ⊨X
𝜀 𝜑 iff 𝑴 ⊨X

𝜀 𝛤 implies 𝑴 ⊨X
𝜀 𝛤 for every interpretation 𝑴

• 𝛤 ⊨X
α 𝜑 iff 𝛤 ⊨X

𝛿 𝜑 for every 𝛿 ∈ [0, 1]

As usual, validity amounts to being a logical consequence of the empty set of
premisses.

Proposition 3.3.6. Let 𝜑 be a formula and ★ one of the following: 1, (>0), (≥𝜀), or α.
en

𝜑 is ★-valid if and only if ∅ ⊨★ 𝜑 .

As Priest points out, there is an easy aracterization of the fourth consequence
relation [90].

Proposition 3.3.7. For every formula 𝜑, 𝛤 ⊨X
α 𝜑 if and only if

inf ධබ‖𝜓‖X𝑴 ∣ 𝜓 ∈ 𝛤 භන ≤ ‖𝜑‖X𝑴 for every interpretation 𝑴 .

e infimum inf(𝑆) of a set 𝑆 is its greatest lower bound.

Following the idea of truth preservation, it would of course be legitimate to define
an entailment relation according to this aracterization in the first place.

Priest also mentions the following reduction to 1-validity. In a finite set, the infi-
mum is equal to the supremum. If we consider a fuzzy logic FL(∗) based on a continu-
ous t-norm ∗, a notion that we make precise in Section 3.4, and a finite set of formulas
𝛤 , then 𝛤 ⊨α 𝜑 if and only if min(‖𝜓1‖X𝑴 , … , ‖𝜓𝑛‖X𝑴 ) ≤ ‖𝜑‖X𝑴 for every interpre-
tation 𝑴 . Define the formula 𝜒 as (𝜓1 ∧ … ∧ 𝜓𝑛) ⊃ 𝜑. en, our truth functions of
fuzzy logic guarantee that for every interpretation 𝑴 , we have ‖𝜒‖FL(∗)

𝑴 if and only if
min(‖𝜓1‖X𝑴 , … , ‖𝜓𝑛‖X𝑴 ) ≤ ‖𝜑‖X𝑴 . us we obtain the following result.

Proposition 3.3.8. Let 𝛤 = {𝜓1, … , 𝜓𝑛} be a finite set of formulas and 𝜑 a formula.
en 𝛤 ⊨FL(∗)

α 𝜑 if and only if the formula (𝜓1 ∧ … ∧ 𝜓𝑛) ⊃ 𝜑 is 1-valid in FL(∗).
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According to Priest, this connection justifies focusing on 1-validity as the cen-
tral notion for studying mathematical fuzzy logic [90]. To the best of our knowledge,
there are no approaes towards fuzzy logic that are based on (>0)-entailment or
(≥𝜀)-entailment.

3.3.5 Provability

Usually one is not only interested in semantic definitions of a logic but also in syntactic
aracterizations in the form of proof systems. A proof system, also called calculus,
determines a set of provable formulas and a provability relation for whi we will use
the symbol ⊢, usually together with an index that indicates for whi logic the proof
system is intended. If 𝛤 is a set of formulas and 𝜑 a formula, then 𝛤 ⊢ 𝜑 means
that 𝜑 is provable from 𝛤 and ⊢𝜑 means that 𝜑 is provable from the empty set of
formulas. We will concentrate on Hilbert-style proof systems that consist of a set of
axiom semata and a set of rules. Furthermore we will identify a proof system with
its provability relation.

When a proof system for a logic is developed, the natural question to ask is whether
it is an adequate syntactic aracterization of the logic under consideration. In su a
case we say that the logic can be axiomatized or has an axiomatization. e first con-
dition one imposes on su a proof system is that its proofs, as syntactic objects, have
finite length. e second condition is that the set of proofs must be recursively enu-
merable, i.e., the question whether an arbitrary syntactic object is a legal proof in the
given proof system is decidable. e two remaining conditions are called soundness
and completeness that we define in the following. Both refer to the set of valid for-
mulas of a logic and its entailment relation. Precisely speaking we will, unless noted
otherwise, always mean 1-validity and 1-entailment as discussed in section 3.3.

Definition 3.3.9. Let⊢ be a provability relation and X a logic (with a notion of validity
and an entailment relation ⊨X).

• ⊢ is sound for X iff for every formula 𝜑

⊢𝜑 implies 𝜑 is valid in X.

• ⊢ is strongly sound for X iff for every set of formulas 𝛤 and every formula 𝜑

𝛤 ⊢ 𝜑 implies 𝛤 ⊨X 𝜑 .

• ⊢ is complete for X iff for every formula 𝜑

𝜑 is valid in X implies ⊢ 𝜑 .

• ⊢ is strongly complete for X iff for every set of formulas 𝛤 and every formula 𝜑

𝛤 ⊨X 𝜑 implies 𝛤 ⊢ 𝜑 .
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• ⊢ is finitely strongly complete for X iff for every finite set of formulas 𝛤 and
every formula 𝜑

𝛤 ⊨X 𝜑 implies 𝛤 ⊢ 𝜑 .

Remark. For the logics that we consider, the set of valid formulas is always equal to
the set of formulas that are entailed by the empty set of formulas. erefore we have
the following relations:

• Strong soundness implies soundness.

• Strong completeness implies finite strong completeness.

• Finite strong completeness implies completeness.

We will only explicitly mention the strongest result known for every logic that we
present.

Soundness proofs are usually a routine maer whereas completeness proofs oen
demand mathematical depth. Usually it makes lile sense to talk about proof systems
that are not sound.

For fuzzy logics, a further distinction has to be made between general complete-
ness and standard completeness. Standard completeness refers to completeness with
regard to standard semantics with their t-norm based truth functions on the unit in-
terval [0, 1] as defined in Section 3.4. General completeness refers to completeness
with regard to algebraic semantics that generalize truth functions and truth degree
structures. In this thesis, we always state standard completeness results because the
standard semantics are more relevant for a logic of vagueness.

Sometimes it is not possible to obtain strong completeness, but only finite strong
completeness. is situation usually occurs when the entailment relation is not com-
pact [90].¹⁶

Definition 3.3.10. An entailment relation ⊨ is compact iff whenever 𝛤 ⊨ 𝜑 for a set
of formulas 𝛤 and a formula 𝜑 there is some finite subset 𝛤 ໗ ⊆ 𝛤 su that 𝛤 ໗ ⊨ 𝜑.

Remark. If an entailment relation ⊨ is not compact, then there is no strongly sound
and complete proof system for ⊨. Every proof can only use finitely many premisses.
If we had a strongly sound and complete proof system we would therefore obtain
compactness.

Furthermore wewill see cases where completeness is not possible for any adequate
proof system. e reason then usually is that the set of valid formulas is not recursively
enumerable. Once we know that completeness is not possible, we also know that
strong completeness and finite strong completeness are not possible.

¹⁶Aention: In most other contexts, compactness refers to compactness of the satisfaction relation
whi we do not discuss in this thesis. Cintula and Navara study this form of compactness [21].
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Remark. ere is no sound and complete proof system with a recursively enumerable
set of legal proofs for a logic where the set of valid formulas is not recursively enu-
merable. If we had su a proof system it would give us a recursive enumeration of
the set of valid formulas

3.4 Propositional fuzzy logics

Aer having seled all preliminaries, we now define some propositional t-norm based
fuzzy logics and present the most important results about them.

3.4.1 Syntax and semantics

First, we define the set of legal formulas.

Definition 3.4.1. e language of fuzzy logic is generated by a set of propositional
variables, the truth constant 0̄, and the two-ary connectives & and ⊃. We use the
following abbreviations:

1̄ abbreviates ¬0̄
𝜑 ∧ 𝜓 abbreviates 𝜑 & (𝜑 ⊃ 𝜓)
𝜑 ∨ 𝜓 abbreviates ((𝜑 ⊃ 𝜓) ⊃ 𝜓) ∧ ((𝜓 ⊃ 𝜑) ⊃ 𝜑)

¬𝜑 abbreviates 𝜑 ⊃ 0̄
𝜑 ≡ 𝜓 abbreviates (𝜑 ⊃ 𝜓) & (𝜓 ⊃ 𝜑)

e connective & is called strong conjunction and the connective ∧ is called weak
conjunction.

ese abbreviations guarantee that the corresponding connectives will receive the
intended semantics as discussed in Section 3.2. While the abbreviations for negation
and biimplication are fairly standard, it would be less clear how the abbreviations
for weak conjunction and weak disjunctions could be justified without the knowledge
that they will be interpreted as the minimum and the maximum operator for every
continuous t-norm.

We now define how formulas of propositional fuzzy logic are interpreted. e idea
is that the truth value of a formula depends on the truth values of the propositional
variables and on the semantics of the connectives, whi is fully determined by the
oice of a continuous t-norm.

Definition 3.4.2. An evaluation of propositional variables is a function 𝒆 that assigns
to ea propositional variable a truth value in [0, 1].
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Definition 3.4.3. Let ∗ be a continuous t-norm and 𝒆 an evaluation of propositional
variables. en the interpretation of formulas is inductively defined as follows:

‖𝑝‖∗
𝒆 = 𝒆(𝑝)

‖0̄‖∗
𝒆 = 0

‖𝜑 & 𝜓‖∗
𝒆 = ‖𝜑‖∗

𝒆 ∗ ‖𝜓‖∗
𝒆

‖𝜑 ⊃ 𝜓‖∗
𝒆 = ‖𝜑‖∗

𝒆 ⇒∗ ‖𝜓‖∗
𝒆

It can now easily be eed that the abbreviated connectives receive their intend-
ed semantics (see the discussion in Section 3.2).

Proposition 3.4.4. Let ∗ be a continuous t-norm and 𝒆 an evaluation of propositional
variables. en for all formulas 𝜑 and 𝜓

‖¬𝜑‖∗
𝒆 = −∗ ධ‖𝜑‖∗

𝒆න
‖𝜑 ∧ 𝜓‖∗

𝒆 = min ධ‖𝜑‖∗
𝒆, ‖𝜓‖∗

𝒆න
‖𝜑 ∨ 𝜓‖∗

𝒆 = max ධ‖𝜑‖∗
𝒆, ‖𝜓‖∗

𝒆න
‖𝜑 ≡ 𝜓‖∗

𝒆 = ‖𝜑‖∗
𝒆 ⇔∗ ‖𝜓‖∗

𝒆

e semantics of a t-norm based fuzzy logic is now defined in the obvious way:
We fix a continuous t-norm ∗ and take all evaluations as possible interpretations. Sat-
isfiability, validity and entailment are then defined as outlined in Section 3.3. e
propositional t-norm based logic defined in this way will be called FL(∗). We use the
following abbreviations:

• Łukasiewicz logic is Ł = FL(∗Ł) where ∗Ł is the Łukasiewicz t-norm.

• Gödel logic is G = FL(∗G) where ∗G is the Gödel t-norm.

• Product logic is P = FL(∗P) where ∗P is the product t-norm.

It is this notion of a t-norm based logic that we are mainly interested in. However
it is also of interest to know whi relations hold for all continuous t-norms. For this
purpose we also define a logic called basic logic BL.

Definition 3.4.5. A BL-interpretation is a pair ⟨∗, 𝒆⟩ that consists of a continuous
t-norm ∗ and an evaluation 𝒆. Every BL-interpretation 𝑴 = ⟨∗, 𝒆⟩ determines an
interpretation function ‖ ⋅ ‖BL𝑴 given by

‖𝜑‖BL𝑴 = ‖𝜑‖∗
𝒆 .

Basic logic BL is the logic emerging from all BL-interpretations together with the
usual definitions of 1-satisfaction, 1-validity and 1-entailment.¹⁷

¹⁷e usual approa to define basic logic is the following: A ∗-tautology is a formula that always
evaluates to 1 for a continuous t-norm ∗. A t-tautology is a formula that is a ∗-tautology for every
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3.4.2 Basic logic

Strictly speaking, basic logic is not a t-norm based logic because it was not defined
from a single t-norm, but the class of all continuous t-norms. Despite this special
status, basic logic is very important as a common theoretical ground for logics based
on continuous t-norms. In particular, we obtain proof systems for our three basic
propositional logics by extending a proof system for basic logic. We define this Hilbert-
style proof system in the following.

Definition 3.4.6. e proof system ⊢BL is given by the axiom semata

(A1) (𝜑 ⊃ 𝜓) ⊃ ((𝜓 ⊃ 𝜒) ⊃ (𝜑 ⊃ 𝜒))

(A4) (𝜑 ∧ 𝜓) ⊃ (𝜓 ∧ 𝜑)

(A5) (𝜑 ⊃ (𝜓 ⊃ 𝜒)) ≡ ((𝜑 & 𝜓) ⊃ 𝜒)

(A6) ((𝜑 ⊃ 𝜓) ⊃ 𝜒) ⊃ (((𝜓 ⊃ 𝜑) ⊃ 𝜒) ⊃ 𝜒)

(A7) 0̄ ⊃ 𝜑

and the deduction rule modus ponens “From 𝜑 and 𝜑 ⊃ 𝜓 , infer 𝜓”.

We remark that aer the publication of Hájek’s monograph [56] two of Hájek’s
original axioms, called (A2) and (A3), have been shown to be redundant, whereas the
remaining axioms are independent [14, 18]. For historical reasons we keep the origi-
nal names of the axioms. Axiom sema (A1) expresses the transitivity of implication.
(A4) is the commutativity of weak conjunction. (A5) expresses residuation and deresid-
uation corresponding to Proposition 3.2.7. (A6) is a variant of the proof by cases. (A7)
says that 0̄ is the boom element, it implies everything (ex falso quodlibet).

It can easily be seen that this deduction system is sound by eing that every
instance of an axiom sema is valid and that if 𝜑 and 𝜑 ⊃ 𝜓 are valid, also 𝜓 is valid.
is soundness does not only hold for basic logic but also for every propositional fuzzy
logic FL(∗) based on a continuous t-norm ∗.

e completeness of this proof systemwith regard to basic logic was not yet known
when Hájek’s monograph [56] was wrien. A proof of this fact was given by Cignoli,
Esteva, Goda, and Torrens [16], building on Hájek’s subsequent work [48]. Montagna
mentions in the introduction of one of his papers [83] that the proof given in [16] also
establishes finite strong completeness.

continuous t-norm and basic logic consists of all t-tautologies. But it makes sense to explicitly define
the interpretation structure for basic logic as above because in our framework also 1-satisfiability and
1-entailment then correspond to satisfiability and entailment as they are usually understood for basic
logic. However, one could be interested in alternative notions of satisfiability for a formula 𝜑 in basic
logic: One could for example demand that for every continuous t-norm there is a 1-evaluation for 𝜑, or
even more, demand that there exists one 1-evaluation that satisfies 𝜑 for every continuous t-norm
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eorem 3.4.7 (Finite strong completeness). For every finite set of formulas 𝛤 and
every formula 𝜑 we have

𝛤 ⊢BL 𝜑 if and only if 𝛤 ⊨BL
1 𝜑 .

Finally, we want to mention that basic logic enjoys a variant of the deduction
theorem.

eorem 3.4.8. Let 𝜑 and 𝜓 be formulas and let 𝛤 be a set of formulas. en 𝛤 ∪
{𝜑} ⊨BL

1 𝜓 if and only if there is an 𝑛 su that 𝛤 ⊨BL
1 𝜑𝑛 ⊃ 𝜓 where 𝜑𝑛 denotes the

formula 𝜑 & … & 𝜑 with 𝑛 factors.

3.4.3 Łukasiewicz logic

Historically, Łukasiewicz logic is the first fuzzy logic. It is also a very important one
because it has many pleasing properties. We start with an overview on its truth func-
tions that are have already been implicitly defined by our previous definitions.

Proposition 3.4.9. e truth functions of Łukasiewicz logic are given by

‖𝜑 & 𝜓‖Ł𝒆 = max ධ‖𝜑‖Ł𝒆 + ‖𝜓‖Ł𝒆 − 1, 0න
‖𝜑 ⊃ 𝜓‖Ł𝒆 = min ධ1 − ‖𝜑‖Ł𝒆 + ‖𝜓‖Ł𝒆, 1න
‖𝜑 ≡ 𝜓‖Ł𝒆 = 1 − ||‖𝜑‖Ł𝒆 − ‖𝜓‖Ł𝒆||

‖¬𝜑‖Ł𝒆 = 1 − ‖𝜑‖Ł𝒆
where 𝜑 and 𝜓 are arbitrary formulas and 𝒆 is an evaluation.

It can be seen that the law of double negation ¬¬𝜑 ⊃ 𝜑 holds in Łukasiewicz logic
because the truth function of negation is a strong one and therefore it is involutive
(see Section 3.2.4). e following completeness result shows that this condition ar-
acterizes Łukasiewicz logic.

Definition 3.4.10. e Hilbert-style proof system ⊢Ł consists of all axiom semata
and rules of ⊢BL together with the additional axiom sema of involution

(INV) ¬¬𝜑 ⊃ 𝜑 .

eorem 3.4.11 (Finite strong completeness). For every finite set of formulas 𝛤 and
every formula 𝜑 we have

𝛤 ⊢Ł 𝜑 if and only if 𝛤 ⊨Ł
1 𝜑 .

Strong completeness is not possible for Łukasiewicz logic because the entailment
relation ⊨Ł

1 is not compact.
Ignoring the relation to basic logic, it is also possible to give a shorter axiomati-

zation of Łukasiewicz logic. We present a list of four axioms that, together with an
additional fih axiom, was initially conjectured by Łukasiewicz [80]. Rose and Ross-
er then proved the completeness of Łukasiewicz’ conjectured axioms [91]. e fih
axiom was then shown to be derivable from the others [13, 81].
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Definition 3.4.12. e Hilbert-style proof system ⊢Ł′
is given by the axiom semata

(Ł1) 𝜑 ⊃ (𝜓 ⊃ 𝜑)

(Ł2) (𝜑 ⊃ 𝜓) ⊃ ((𝜓 ⊃ 𝜒) ⊃ (𝜑 ⊃ 𝜒))

(Ł3) (¬𝜑 ⊃ ¬𝜓) ⊃ (𝜓 ⊃ 𝜑)

(Ł4) ((𝜑 ⊃ 𝜓) ⊃ 𝜓) ⊃ ((𝜓 ⊃ 𝜑) ⊃ 𝜑)

and the deduction rule modus ponens: “From 𝜑 and 𝜑 ⊃ 𝜓 , infer 𝜓”.

Proposition 3.4.13. For every set of formulas 𝛤 and every formula 𝜑 we have

𝛤 ⊢Ł 𝜑 if and only if 𝛤 ⊢Ł′ 𝜑 .

In the following we look at the truth functions of Łukasiewicz logic in more detail.
In Łukasiewicz logic, strong conjunction can be defined from implication and negation
whimeans that every formula is equivalent to a formula containing only implication
and 0̄. Furthermore a shorter definition of minimum conjunction is possible.

Proposition 3.4.14. For all formulas 𝜑 and 𝜓 and every evaluation 𝒆 we have

‖𝜑 & 𝜓‖Ł𝒆 = ‖¬(𝜑 ⊃ ¬𝜓)‖Ł𝒆
‖𝜑 ∨ 𝜓‖Ł𝒆 = ‖(𝜑 ⊃ 𝜓) ⊃ 𝜓‖Ł𝒆 .

One usually introduces a second conjunction connective to Łukasiewicz logic.

Definition 3.4.15. e two-ary connective ⊻ is called strong disjunction. For all for-
mulas 𝜑 and 𝜓 we take 𝜑 ⊻ 𝜓 as an abbreviation for ¬𝜑 ⊃ 𝜓 .

Strong disjunction in Łukasiewicz logic is interesting because it allows the ad-
dition of truth values. Furthermore, DeMorgan’s laws hold for strong conjunction,
strong disjunction and negation. Together with Proposition 3.2.19, this shows that
the truth function of strong disjunction is a t-conorm. Note that, following Hájek’s
approa, Łukasiewicz logic is the only one of the important fuzzy logics where a
t-conorm is relevant. It would also be possible to define the implication from strong
disjunction and negation whi means that Łukasiewicz implication can be seen as
both, an R-implication and an S-implication.

Proposition 3.4.16. For all formulas 𝜑 and 𝜓 and every evaluation 𝒆 we have

‖𝜑 ⊻ 𝜓‖Ł𝒆 = min ධ‖𝜑‖Ł𝒆 + ‖𝜓‖Ł𝒆, 1න
‖𝜑 ⊻ 𝜓‖Ł𝒆 = ‖¬(¬𝜑 & ¬𝜓)‖Ł𝒆
‖𝜑 & 𝜓‖Ł𝒆 = ‖¬(¬𝜑 ⊻ ¬𝜓)‖Ł𝒆
‖𝜑 ⊃ 𝜓‖Ł𝒆 = ‖¬𝜑 ⊻ 𝜓‖Ł𝒆 .
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Another peculiarity of Łukasiewicz logic is that the residuum resulting from the
Łukasiewicz t-norm is continuous. is fact is also aracteristic for Łukasiewicz logic
as has been pointed out, for example, by Fermüller and Kosik [38].

Proposition 3.4.17. e residuum ⇒∗ of a continuous t-norm ∗ is continuous if and
only if ∗ is order isomorphic to the Łukasiewicz t-norm ∗Ł, i.e., there is an order iso-
morphism 𝑓 su that 𝑥 ∗ 𝑦 = 𝑓 −1(𝑓(𝑥) ∗Ł 𝑓(𝑦)) for all 𝑥, 𝑦 ∈ [0, 1].

It must be noted that in our framework order isomorphic t-norms yield the same
logics. us Łukasiewicz logic is the only fuzzy logic based on a continuous t-norm
that has a continuous truth function of implication.¹⁸

3.4.4 Gödel logic

Gödel logic was introduced by Gödel as a by-product of his proof that intuitionistic
logic is not a many-valued logic [41] and later extended to an infinite set of truth
values by Dumme [26].¹⁹ We will see that it has some nice properties and in a way
is “nearer” to classical logic than other fuzzy logics.

We first give an overview on the truth functions of Gödel logic. In particular,
weak and strong conjunction coincide and it would be possible to omit one of these
connectives.

Proposition 3.4.18. e truth functions of Gödel logic are given by

‖𝜑 & 𝜓‖G𝒆 = ‖𝜑 ∧ 𝜓‖G𝒆 = min ධ‖𝜑‖G𝒆 , ‖𝜓‖G𝒆 න

‖𝜑 ⊃ 𝜓‖G𝒆 =
๨

1 if ‖𝜑‖G𝒆 ≤ ‖𝜓‖G𝒆
‖𝜓‖G𝒆 otherwise

‖𝜑 ≡ 𝜓‖G𝒆 =
⎧⎪
⎨
⎪⎩

1 if ‖𝜑‖G𝒆 = ‖𝜓‖G𝒆
‖𝜑‖G𝒆 if ‖𝜑‖G𝒆 < ‖𝜓‖G𝒆
‖𝜓‖G𝒆 if ‖𝜑‖G𝒆 > ‖𝜓‖G𝒆

‖¬𝜑‖G𝒆 =
๨

1 if ‖𝜑‖G𝒆 = 0
0 otherwise

for all formulas 𝜑 and 𝜓 and every evaluation 𝒆.

Note that the truth functions in Gödel logic only take into account the relative
order of the truth values and not their concrete values. In fact, Gödel logic is arac-
terized by this property as we show in Chapter 4. It seems therefore suitable to call

¹⁸e class of Yager t-norms provides examples of continuous t-norms with continuous residua that
are not equal to the Łukasiewicz t-norm. For every 𝑝 > 0, the function ∗ given by 𝑥 ∗ 𝑦 = max(0, 1 −
((1 − 𝑥)𝑝 + (1 − 𝑦)𝑝)1/𝑝) is in the class of Yager t-norms and isomorphic to the Łukasiewicz t-norm [74].

¹⁹Dumme considered the truth value set {1/𝑛 ∣ 𝑛 ≥ 1} ∪ {0} instead of [0, 1]. Due to eorem 4.3.7
this difference does not affect the sets of valid formulas of Gödel logic.
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Gödel logic “the logic of order” [82].is relationship is important if one considers rea-
soning under vagueness [35]: Degree-based approaes are oen criticized because in
many cases it seems not clear how the assignment of particular numbers in the unit
interval as truth values can be justified. Gödel logic avoids this criticism because only
an order on the truth value has to be seled whi seems to be a weaker commitment.

e distinguishing feature of the Gödel t-norm is that every 𝑥 ∈ [0, 1] is idempo-
tent due to 𝑥∗G 𝑥 = min(𝑥, 𝑥) = 𝑥. e aracterizing axiom of Gödel logic expresses
this fact.

Definition 3.4.19. e Hilbert-style proof system ⊢G consists of all axiom semata
and rules of ⊢BL together with the additional axiom sema of contraction

(C) 𝜑 ⊃ 𝜑 & 𝜑.

In Gödel logic, we get a completeness theorem where the finiteness of the set of
premisses is not necessary.

eorem 3.4.20 (Strong completeness). For every set of formulas 𝛤 and every formu-
la 𝜑 we have

𝛤 ⊢G 𝜑 if and only if 𝛤 ⊨G
1 𝜑 .

In contrast to other propositional fuzzy logics, Gödel logic has a classical deduction
theorem.

eorem 3.4.21 (Deduction theorem). Gödel logic is the unique fuzzy logic that has
the deduction theorem:

(i) For every set of formulas 𝛤 and all formulas 𝜑 and 𝜓 we have

𝛤 ∪ {𝜑} ⊨G
1 𝜓 if and only if 𝛤 ⊨G

1 (𝜑 ⊃ 𝜓) .

(ii) If a logic FL(∗) based on a continuous t-norm has the above classical deduction
theorem, then ∗ is the Gödel t-norm.

In Gödel logic, another entailment relation than the standard one is also relevant,
namely α-entailment as defined in Section 3.3.5.

Proposition 3.4.22. For every set of formulas 𝛤 and every formula 𝜑 we have

𝛤 ⊨G
1 𝜑 if and only if 𝛤 ⊨G

α 𝜑 .

As an interesting side note, we remark that propositional Gödel logic, as a set of
valid formulas, is an intermediate logic, i.e., it is a logic that includes intuitionistic
logic and is included in classical logic. A sound and complete Hilbert-style calculus
for Gödel logic is obtained by adding the linearity axiom (𝜑 ⊃ 𝜓) ∨ (𝜓 ⊃ 𝜑) to a
Hilbert-style calculus for intuitionistic logic [26]. Furthermore, the law of excluded
middle 𝜑 ∨ ¬𝜑, whi separates intuitionistic and classical logic, is not valid in Gödel
logic.
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3.4.5 Product logic

In contrast to Łukasiewicz and Gödel logic, product logic was introduced by Hájek, Go-
do, and Esteva not long ago [62], using truth functions of conjunction and implication
that can be traced ba to Goguen [43]. We first give its truth functions.

Proposition 3.4.23. e truth functions of product logic are given by

‖𝜑 & 𝜓‖P𝒆 = ‖𝜑‖P𝒆 ⋅ ‖𝜓‖P𝒆

‖𝜑 ⊃ 𝜓‖P𝒆 =
๨

1 if ‖𝜑‖P𝒆 ≤ ‖𝜓‖P𝒆
‖𝜓‖P𝒆/‖𝜑‖P𝒆 otherwise

‖𝜑 ≡ 𝜓‖P𝒆 =
๨

‖𝜑‖P𝒆/‖𝜓‖P𝒆 if ‖𝜑‖P𝒆 ≤ ‖𝜓‖P
‖𝜓‖P𝒆/‖𝜑‖P𝒆 otherwise

‖¬𝜑‖P𝒆 =
๨

1 if ‖𝜑‖P𝒆 = 0
0 otherwise

for all formulas 𝜑 and 𝜓 and every evaluation 𝒆.

e truth function of implication is also called Goguen implication. Note that the
truth function of negation is Gödel negation.

Also in product logic we get the desired completeness result.

Definition 3.4.24. e Hilbert-style proof system ⊢P consists of all axiom semata
and rules of ⊢BL together with the additional axiom sema

(A) ¬¬𝜑 ⊃ ((𝜑 ⊃ 𝜑 & 𝜓) ⊃ (𝜓 & ¬¬𝜓)) .

eorem 3.4.25 (Finite strong completeness). For every finite set of formulas 𝛤 and
every formula 𝜑 we have

𝛤 ⊢P 𝜑 if and only if 𝛤 ⊨P
1 𝜑 .

e result that only one additional axiom sema is necessary is due to Cintula [17].
Furthermore he showed that it is not possible to find an according axiom sema with
only one variable. In contrast to Łukasiewicz and Gödel logic, it seems to be hard to
find an intuitive interpretation of this additional axiom, or the original two [56], that
does not refer to certain properties of t-norms.

As a side note we remark that Łukasiewicz logic can be embedded into product
logic [4], whi means that many properties of Łukasiewicz logic also hold in product
logic, e.g., the non-compactness of the entailment relation.

eorem 3.4.26. For every formula 𝜑 we can construct a formula 𝜑໗ su that 𝜑 is
valid in Łukasiewicz logic if and only if 𝜑໗ is valid in product logic.
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3.4.6 Relations between logics

In the following, we present some properties that concern relations between the propo-
sitional logics that we have introduced or that hold for all propositional fuzzy logics.
It should mainly be seen as a reference for interesting results.

Combining results from [49, 56, 67] we get some connections between different
sets of satisfiable and valid formulas. Note that these relations imply several results
on the complexity of satisfiability and validity eing. e logic CL is classical
propositional logic.

eorem 3.4.27. e following holds for sets of satisfiable formulas:

𝐒𝐀𝐓BL
1 =

∗ි
𝐒𝐀𝐓FL(∗)

1

𝐒𝐀𝐓BL
>0 =

∗ි
𝐒𝐀𝐓FL(∗)

>0

𝐒𝐀𝐓G
1 = 𝐒𝐀𝐓G

>0 = 𝐒𝐀𝐓P
1 = 𝐒𝐀𝐓P

>0
= 𝐒𝐀𝐓CL ⊂ 𝐒𝐀𝐓Ł

1 = 𝐒𝐀𝐓BL
1 ⊂ 𝐒𝐀𝐓Ł

>0 = 𝐒𝐀𝐓BL
>0

All inclusions are strict.

eorem 3.4.28. e following holds for sets of valid formulas:

𝐓𝐀𝐔𝐓BL
1 =

∗ි
𝐓𝐀𝐔𝐓FL(∗)

1

𝐓𝐀𝐔𝐓BL
>0 =

∗ි
𝐓𝐀𝐔𝐓FL(∗)

>0

𝐓𝐀𝐔𝐓G
1 ≠ 𝐓𝐀𝐔𝐓P

1
𝐓𝐀𝐔𝐓G

1 ⊂ 𝐓𝐀𝐔𝐓CL
1

𝐓𝐀𝐔𝐓P
1 ≠ 𝐓𝐀𝐔𝐓CL

1
𝐓𝐀𝐔𝐓BL

1 ⊂ (𝐓𝐀𝐔𝐓Ł
1 ∩ 𝐓𝐀𝐔𝐓G

1 ∩ 𝐓𝐀𝐔𝐓P
1)

𝐓𝐀𝐔𝐓Ł
1 ⊂ 𝐓𝐀𝐔𝐓Ł

>0 = 𝐓𝐀𝐔𝐓BL
>0 ⊂ 𝐓𝐀𝐔𝐓CL = 𝐓𝐀𝐔𝐓G

>0 = 𝐓𝐀𝐔𝐓P
>0

All inclusions are strict.

3.5 First-order fuzzy logics

e extension of our propositional systems to the first-order case is straightforward
in Hájek’s framework. Instead of fuzzy propositions we now consider fuzzy relations.
e only crucial question is how the quantifiers should be interpreted. e interpreta-
tion of formulas gets a bit more complicated, whi makes some definitions necessary
that are mostly like in classical predicate logic.
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Definition 3.5.1. e language of first-order fuzzy logic consists of a set of object
variables, a set of predicate symbols, and the usual connectives. Formulas are built in
the usual manner.

Definition 3.5.2. A fuzzy predicate on a nonempty set 𝑆 of arity 𝑛 is a function from
the set 𝑆𝑛 to the unit interval [0, 1].

Definition 3.5.3. A variable assignment on a set 𝑆 is a function 𝒗 that assigns to ea
object variable 𝑥 an element 𝒗(𝑥) in 𝑆 .

Definition 3.5.4. A first-order fuzzy interpretation is a pair 𝑴 = ⟨𝑫, 𝑰⟩ where the
domain 𝑫 is a nonempty set, the universe of discourse, and 𝑰 is a function that assigns
a fuzzy predicate 𝑰(𝑄) on 𝑫 of suiting arity to ea predicate symbol 𝑄.

We now define the interpretation of formulas in a first-order fuzzy interpretation.

Definition 3.5.5. Let ∗ be a continuous t-norm, 𝑴 = ⟨𝑫, 𝑰⟩ a first-order fuzzy inter-
pretation and 𝒗 a variable assignment on 𝑫 . e interpretation of formulas is defined
inductively like in the propositional case with the following additions:

‖𝑥‖∗
𝑴,𝒗 = 𝒗(𝑥) for every object variable 𝑥

‖𝑄(𝑥1, … , 𝑥𝑛)‖∗
𝑴,𝒗 = 𝑰(𝑄) ෹‖𝑥1‖∗

𝑴,𝒗, … , ‖𝑥𝑛‖∗
𝑴,𝒗෺ for every predicate symbol 𝑄

‖∀𝑥𝜑‖∗
𝑴,𝒗 = inf ෿‖𝜑‖∗

𝑴,𝒗∪{𝑥↦𝑑} ∣ 𝑑 ∈ 𝑫฀
‖∃𝑥𝜑‖∗

𝑴,𝒗 = sup ෿‖𝜑‖∗
𝑴,𝒗∪{𝑥↦𝑑} ∣ 𝑑 ∈ 𝑫฀

where 𝒗 ∪ {𝑥 ↦ 𝑑} is the variable assignment 𝒗໗ that is defined by

𝒗໗(𝑣) =
๨

𝑑 if 𝑣 = 𝑥
𝒗(𝑣) if 𝑣 ≠ 𝑥 .

is means that for a universally quantified formula ∀𝑥𝜑we compute the infimum
of all interpretations with a concrete value of 𝑥 and for an existential quantification we
compute the supremum. Note that these definitions of the quantifiers behave classical-
ly for the truth values 0 and 1. In classical predicate logic, universal quantification can
be seen as a “possibly infinite conjunction” and existential quantification as a “possibly
infinite disjunction”. is point of view can also be taken in fuzzy logic because the
truth function of weak conjunction is the minimum operator whi generalizes to the
infimum for infinite sets and the truth function of weak conjunction is the maximum
operator whi generalizes to the supremum.

As in the propositional case, our definitions give us a first-order fuzzy logic FL∀(∗)
for every continuous t-norm ∗ with the usual notions of 1-satisfaction, 1-validity and
1-entailment where we only consider closed formulas.

By giving a suitable definition of its interpretations we also get a first-order variant
of basic logic.
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Definition 3.5.6. A BL∀-interpretation is a pair ⟨∗, 𝑴⟩ that consists of a continuous
t-norm ∗ and a first-order fuzzy interpretation 𝑴 .

Unlike in the propositional case, there are no completeness result for the standard
semantics of first-order fuzzy logics in most cases. is situation can occur if the
set of valid formulas is not recursively enumerable whi makes an axiomatization
impossible (see section 3.3.5).

eorem 3.5.7. e following sets are not recursively enumerable:

• e set of formulas valid in first-order basic logic

• e set of formulas valid in first-order Łukasiewicz logic

• e set of formulas valid in first-order product logic

Hájek gave a proof of the first proposition aer his monograph appeared [54]. e
second proposition was proved by Scarpellini in the early 1960s [92]. e third propo-
sition was shown by Baaz, Hájek, Švejda, and Krajíček by finding an embedding of
predicate product logic into predicate Łukasiewicz logic [4]. As this theorem indicates,
an axiomatization exists for Gödel logic.

We present a Hilbert-style proof system for predicate basic logic that although not
complete can at least be shown to be sound.

Definition 3.5.8. e Hilbert-style proof system ⊢BL∀ consists of all axiom semata
and rules of ⊢BL together with the additional axiom semata

(∀1) (∀𝑥𝜑(𝑥)) ⊃ 𝜑(𝑡)

(∃1) 𝜑(𝑡) ⊃ (∃𝑥𝜑(𝑥))

(∀2) (∀𝑥(𝜓 ⊃ 𝜑)) ⊃ (𝜓 ⊃ ∀𝑥𝜑)

(∃2) (∀𝑥(𝜑 ⊃ 𝜓)) ⊃ ((∃𝑥𝜑) ⊃ 𝜓)

(∀3) (∀𝑥(𝜑 ∨ 𝜓)) ⊃ ((∀𝑥𝜑) ∨ 𝜓)

where 𝑥 is not free in 𝜓 and the additional deduction rule of generalization: “From 𝜑,
infer ∀𝑥𝜑”.

Definition 3.5.9. e Hilbert-style proof system ⊢G∀ consists of all axiom semata
and rules of ⊢BL∀ together with the additional axiom sema of contraction

(C) 𝜑 ⊃ 𝜑 & 𝜑 .

eorem 3.5.10 (Strong completeness). For every set of formulas 𝛤 and every formula
𝜑 we have

𝛤 ⊢G∀ 𝜑 if and only if 𝛤 ⊨G∀
1 𝜑

where G∀ refers to first-order Gödel logic.
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3.6 Modalities

Since linguistic modalities are highly relevant for the purpose of reasoning under
vagueness we show some examples of su modalities in fuzzy logic. We consider
both, modalities that are truth-functional and modalities that are not.

3.6.1 Projection modalities

We first introduce two projection modalities that were first studied in the context of
Gödel logic [2]. eir semantics is defined as follows.

Definition 3.6.1. Let ∗ be a continuous t-norm. We extend the language of fuzzy logic
by the two unary connectives▵ and ▿, called projection modalities. e interpretation
of formulas is extended by

‖▵𝜑‖∗
𝒆 = ⌊‖𝜑‖∗

𝒆⌋ =
๨

1 if ‖𝜑‖∗
𝒆 = 1

0 if ‖𝜑‖∗
𝒆 ≠ 1

‖▿𝜑‖∗
𝒆 = ⌈‖𝜑‖∗

𝒆⌉ =
๨

1 if ‖𝜑‖∗
𝒆 ≠ 0

0 if ‖𝜑‖∗
𝒆 = 0

where ⌊⋅⌋ is the floor and ⌈⋅⌉ is the ceiling function. e operator ▵ is also called
globalization.

us ▵𝜑 indicates that the formula 𝜑 is absolutely true and ▿𝜑 indicates that 𝜑
is not absolutely false. erefore the role of the ▵-operator for fuzzy logic is similar
to the role of the D-operator for supervaluational logic (see Section 2.2).

We only have to discuss ▵ because ▿ is definable from ▵ as an abbreviating for-
mula. Furthermore it can be seen that ▵¬𝜑 corresponds to Gödel negation for every
oice of the continuous t-norm and thus ▿ corresponds to double Gödel negation.
Also note that for ea of the operators only the most inner application is relevant.

Proposition 3.6.2. For every formula 𝜑, every continuous t-norm ∗ and every evalua-
tion 𝒆 we have

‖▵¬𝜑‖∗
𝒆 = −G ධ‖𝜑‖∗

𝒆න
‖▿𝜑‖∗

𝒆 = −G ධ−G ධ‖𝜑‖∗
𝒆නන = ‖▵¬▵(¬𝜑)‖∗

𝒆

and

‖▵▵𝜑‖∗
𝒆 = ‖▵𝜑‖∗

𝒆 ‖▿▵𝜑‖∗
𝒆 = ‖▵𝜑‖∗

𝒆
‖▵▿𝜑‖∗

𝒆 = ‖▿𝜑‖∗
𝒆 ‖▿▿𝜑‖∗

𝒆 = ‖▿𝜑‖∗
𝒆 .

Baaz obtained an axiomatization of the ▵-operator [2].

Definition 3.6.3. We denote by ⊢▵ the extension of a Hilbert-style calculus ⊢ with
the axiom semata
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(▵1) ▵𝜑 ⊃ 𝜑

(▵2) ▵𝜑 ⊃ ▵▵𝜑

(▵3) ▵(𝜑 ⊃ 𝜓) ⊃ (▵𝜑 ⊃ ▵𝜓)

(▵4) ▵𝜑 ∨ ¬▵𝜑

(▵5) ▵(𝜑 ∨ 𝜓) ⊃ (▵𝜑 ∨ ▵𝜓)

and the ▵-rule “From 𝜑 infer ▵𝜑”.

Note that the axiom semata (▵1), (▵2), (▵3) and the ▵-rule correspond to the
modal axioms of the logic S4 and its necessitation rule. Hájek comments that in the
axiom sema (▵4) the ▵-operator rather behaves as possibility than necessity.

All the completeness results that we encountered so far also hold in presence of
the ▵-operator [20].

eorem 3.6.4. e completeness results for ⊢BL, ⊢Ł, ⊢G, ⊢G∀ and ⊢P extend to ⊢BL
▵ ,

⊢Ł
▵, ⊢G

▵ , ⊢G∀
▵ and ⊢P

▵.

As a side remark wemention a connection between 1-entailment and 1-validity as
well as between (>0)-entailment and 1-entailment in the presence of the projections
(see Section 3.3.4 for the difference between these notions).

Remark. For every finite set of formulas 𝛤 = {𝜓1, … , 𝜓𝑛}, every formula𝜑 and every
continuous t-norm ∗ we have

𝛤 ⊨∗
1 𝜑 if and only if ධ▵𝜓1 ∧ … ∧ ▵𝜓𝑛න ⊃ ▵𝜑 is 1-valid in FL(∗) .

Remark. For every finite set of formulas 𝛤 = {𝜓1, … , 𝜓𝑛}, every formula𝜑 and every
continuous t-norm ∗ we have

𝛤 ⊨∗
>0 𝜑 if and only if ▿𝛤 ⊨∗

1 ▿𝜑

where ▿𝛤 = {▿𝜓 ∣ 𝜓 ∈ 𝛤}.

3.6.2 Hedges

An early idea of Zadeh was that fuzzy logic should make reasoning with vague modi-
fiers like very true or quite true possible [102, 103]. Lakoff discusses modifiers of that
kind from a linguistic point of view [78]. In the following we shortly discuss some
modalities for this purpose. In the context of fuzzy logics, su modalities are called
hedges and are usually assumed to be truth-functional. Hedges can, according to this
understanding, also be seen as fuzzy truth values [59].

Definition 3.6.5. A hedge is a function from the real unit interval [0, 1] to itself.
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In particular, the globalization operator ▵ is a hedge. We discussed it separately
from other hedges because of its prominence in the literature.

Hájek introduced a modality to fuzzy logic that can be interpreted as “very true”
by defining a class of truth-stressing hedges [59, 61].

Definition 3.6.6. A hedge 𝑣 is ∗-truth-stressing (or: a ∗-truth stresser) for a continu-
ous t-norm ∗ iff it fulfills the following conditions for all 𝑥, 𝑦 ∈ [0, 1]:

𝑣(1) = 1
𝑣(𝑥) ≤ 𝑥 (sub-diagonal)

𝑣(𝑥 ⇒∗ 𝑦) ≤ 𝑣(𝑥) ⇒∗ 𝑣(𝑦) (∗-regular)

Example. e following are some natural examples of truth stressers:

• e identity function 𝑣(𝑥) = 𝑥 is a trivial example of a truth stresser for every
continuous t-norm.

• e function 𝑣(𝑥) = ⌊𝑥⌋ is the truth function of the globalization operator ▵
and a truth stresser for every continuous t-norm, as can be seen from the ax-
iomatization of ▵.

• e function 𝑣(𝑥) = 𝑥 ∗ 𝑥 is a truth stresser for every continuous t-norm ∗.
A corresponding operator vt can be syntactically defined by taking vt𝜑 as an
abbreviation for 𝜑 & 𝜑.

• e function 𝑣(𝑥) = 𝑥2, whi corresponds to 𝑥 ∗P 𝑥 for the product t-norm, is
also a truth stresser for the Łukasiewicz and the Gödel t-norm.

• e function 𝑣(𝑥) = max(2𝑥 − 1, 0), whi corresponds to 𝑥 ∗Ł 𝑥 for the
Łukasiewicz t-norm, is also a truth stresser for the Gödel t-norm but not for
the product t-norm.

e extension of the usual semantics to truth stressers is straightforward. We
define our logical notions with regard to the class of all truth stressers whi creates
a situation similar to basic logic where we quantify over all continuous t-norms.

Definition 3.6.7. Let ∗ be a continuous t-norm. A vt-interpretation for ∗ is a pair
⟨𝒆, 𝑣⟩ where 𝒆 is an evaluation and 𝑣 is a truth stresser for ∗.

We extend the language of fuzzy logic by the unary connective vt. e interpreta-
tion of formulas is defined in the usual way with exception of the vt-operator where
the defining clause is

‖vt𝜑‖∗
⟨𝒆,𝑣⟩ = 𝑣 ෹‖𝜑‖∗

⟨𝒆,𝑣⟩෺ .

e logical consequence relation ⊨∗
vt is defined as usual by 1-truth preservation

(see Section 3.3.4).
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Hájek also suggests an axiomatization of the vt-operator.

Definition 3.6.8. We denote by ⊢vt the extension of a Hilbert-style calculus ⊢ with
the axiom semata

(VE1) vt𝜑 ⊃ 𝜑

(VE2) vt(𝜑 ⊃ 𝜓) ⊃ (vt𝜑 ⊃ vt𝜓)

(VE3) vt(𝜑 ∨ 𝜓) ⊃ (vt𝜑 ∨ vt𝜓)

and the deduction rule of truth confirmation: “From 𝜑 infer vt𝜑.”

e axiom sema (VE1) says that a statement that is very true is also true. e
meaning of (VE2) is the following: if both 𝜑 and 𝜑 ⊃ 𝜓 are very true, then also 𝜓 is
very true. e sema (VE3) states that if a disjunction is very true, then one of its
disjuncts is very true.

e calculi introduced for propositional and first-order basic, Gödel, Łukasiewicz,
and product logic can be shown to be sound for the extension with the vt-operator.
Hájek also proves general strong completeness for these logics. However, it seems
that to date the standard completeness with regard to the class of all truth stressers is
still an open problem for t-norm based fuzzy logics, with exception to Gödel logic.

eorem 3.6.9 (Strong standard completeness). Let 𝛤 be a set of formulas and 𝜑 a
formula. en 𝛤 ⊢G∀

vt 𝜑 if and only if 𝛤 ⊨G∀
vt 𝜑.

In a related investigation, Vyodil studies truth-depressing hedges [100]. Dual to
the interpretation of truth-stressers as “very true”-operators, truth-depressing hedges
can be interpreted as operators for “slightly true”. Vyodil obtains two completeness
results with regard to algebraic semantics: First, he provides an axiomatization of
basic logic together with Hájek’s “very true”-operator and his “slightly true”-operator.
From this result, axiomatizations of the corresponding variants of Łukasiewicz, Gödel
and product logic immediately follow. Second, an axiomatization of the slightly true-
operator for Łukasiewicz, Gödel and product logic is given without adding the very
true-operator.

Besides general truth stressers, Hájek also studied two concrete hedges [60]. For a
truth value 𝑥, the two hedges are defined as

• the (unique) greatest idempotent ≤ 𝑥 (called 𝑙(𝑥)) and

• the (unique) least idempotent ≥ 𝑥 (called 𝑢(𝑥)).

e corresponding connectives are denoted by L and U and may be interpreted as
“very true” and “more or less true”, respectively. Hájek provides an axiomatization
of basic logic together with ▵, L and U with regard to the standard semantics. Note
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that the hedge 𝑙 is a truth stresser for every continuous t-norm [7].²⁰ Hájek’s defini-
tion of 𝑙 corresponds to the storage operator whi was introduced by Montagna [84].
Montagna provides an axiomatization with finite strong standard completeness for
propositional basic, Łukasiewicz, Gödel and product logic with storage operator.

Related work for hedges in fuzzy logic is relatively sparse. A hedge with the mean-
ing “more or less true” was presented for Gödel logic by Hájek and Harmoncová [63].
In a discussion of the sorites paradox, a connective for “almost true” is introduced and
several examples for a possible semantics are given [64]. Truth stressers for extensions
ofMTL, the logic of le-continuous t-norms, are studied by Ciabaoni, Metcalfe, and
Montagna [15], but without explicitly covering basic, Łukasiewicz and product logic.
Esteva, Godo, and Noguera propose definitions of truth-stressers and truth-depressers
that are different from those of Hájek [59] and Vyodil [100] with the advantage that
they can show that the corresponding axiomatizations preserve the standard complete-
ness of the original logic.

3.6.3 Probably and many

In his monograph [56], Hájek presents a framework in whi a modal operator with
the meaning “probably” can be introduced. We summarize the main ideas at this point
because they are related to the hybrid logic for reasoning under vagueness that will
be discussed in Chapter 5.

Hájek suggests to determine the probability of an event by its number of occur-
rences in a Kripke-style set of classical worlds. Events are described by classical propo-
sitional formulas and a modal operator for probability extracts their probability. en
the usual fuzzy logic mainery is applied to the extracted truth values.

Definition 3.6.10. e language of fuzzy probability logic consists of formulas of the
following form:

• Atomic formulas are formulas of the type P𝜑 where P is a unary connective and
𝜑 is a classical propositional formula.

• All formulas are built from atomic formulas using the usual propositional fuzzy
connectives.

Hájek defines an interpretation of this logic as a set of worlds, ea with a classi-
cal interpretation of the propositional variables, and a function that measures sets of
worlds. e truth value of the statement “𝜑 is probable” is then just the measure of
the set of worlds in whi 𝜑 is true.

Definition 3.6.11. An interpretation of fuzzy probability logic PŁ is a triple 𝛱 =
⟨𝑾, (𝑴𝑠)𝑠∈𝑾 , 𝜇⟩ where 𝑾 is a set of worlds, (𝑴𝑠)𝑠∈𝑾 is a function that assigns a
classical propositional interpretation 𝑴𝑤 to every world 𝑤 ∈ 𝑾 and 𝜇 is a finitely

²⁰is can be shown using the following property: for a continuous t-norm ∗, the greatest idempotent
whi is less or or equal to x is the infimum of the set {𝑥, 𝑥 ∗ 𝑥, 𝑥 ∗ 𝑥 ∗ 𝑥, …}.
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additive probability measure on a field of subsets of𝑾 su that for ea propositional
variable 𝑝 the set {𝑤 ∈ 𝑾 ∣ ‖𝑝‖𝑴𝑤

= 1} is measurable, i.e., in the domain of 𝜇.
e interpretation of formulas has the usual inductive definition with P𝜑 for an

atomic formula 𝜑 being interpreted as

‖P𝜑‖∗
𝛱 = 𝜇 ෹෿𝑤 ∈ 𝑾 ∣ ‖𝜑‖𝑴𝑤

= 1฀෺ .

e logical consequence relation ⊨PŁ is defined as usual by 1-truth preservation
(see Section 3.3.4).

Hájek also defines another semantics for whi the P-operator has the meaning
“For many worlds 𝜑 is true”.

Definition 3.6.12. An interpretation of the fuzzy logic of “many” MŁ is a pair 𝛱 =
⟨𝑾, (𝑴𝑠)𝑠∈𝑾 ⟩ where 𝑾 is a finite set of worlds and (𝑴𝑠)𝑠∈𝑾 is a function that
assigns a classical propositional interpretation 𝑴𝑤 to every world 𝑤 ∈ 𝑾 .

e interpretation of formulas has the usual inductive definition with P𝜑 for an
atomic formula 𝜑 being interpreted as

‖P𝜑‖∗
𝛱 =

|
||෿𝑤 ∈ 𝑾 ∣ ‖𝜑‖𝑴𝑤

= 1฀
|
||

|𝑾|

where |𝑾| denotes the cardinality of 𝑾 .
e logical consequence relation ⊨MŁ is defined as usual by 1-truth preservation

(see Section 3.3.4).

Tenically, the fuzzy logic of “many” arises from seing the probabilitymeasure𝜇
to the uniform distribution.

Despite the generality of these definitions, Hájek suggests to use the truth func-
tions determined by the Łukasiewicz t-norm for the “outer” connectives because then
the truth functions are well suited to capture some properties of probability. For this
case he gives an axiomatization.²¹ His proof system combines classical reasoning for
the classical propositional formulas inside the modal operator and fuzzy reasoning in
Łukasiewicz logic.

Definition 3.6.13. e Hilbert-style proof system ⊢PŁ consists of all axiom semata
and rules of ⊢Ł together with the additional axiom semata

(P1) P𝜑 ⊃ (P(𝜑 ⊃ 𝜓) ⊃ P𝜓)

(P2) P(¬𝜑) ≡ ¬P𝜑

(P3) P(𝜑 ∨ 𝜓) ≡ ((P𝜑 ⊃ P(𝜑 ∧ 𝜓)) ⊃ P𝜓)
²¹Precisely speaking, Hájek gives an axiomatization of rational Pavelka logic extended by the P-

operator. Completeness for pure Łukasiewicz logic then immediately follows.
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and the deduction rule of necessitation: “If𝜑 is classically provable, then deduce P𝜑.”²²

eorem 3.6.14 (Finite strong completeness). Let 𝛤 be a finite set of formulas and 𝜑
a formula. en

𝛤 ⊢PŁ 𝜑 if and only if 𝛤 ⊨PŁ 𝜑

and

𝛤 ⊢PŁ 𝜑 if and only if 𝛤 ⊨MŁ 𝜑 .

Note that the completeness result also shows that the two logics coincide for finite
sets of premisses.

Further refinements of this framework include conditional probabilities that can be
treated by introducing product conjunction in addition to Łukasiewicz conjunction. A
related approa is the introduction of a belief operator using Dempster-Shafer belief
functions for whi Godo, Hájek, and Esteva present an axiomatization [42].

3.7 Other topics

Besides the material presented in this apter many other topics have been explored.
In the following we give a short overview on the most important developments.

We presented an axiomatization of Łukasiewicz, Gödel and product logic with
regard to their standard semantics. is can be generalized: Esteva, Godo, and Mon-
tagna gave an algorithm that computes an axiomatization of any fuzzy logic based on
a continuous t-norm and its residuum [31].

Besides the standard semantics one might also be interested in rational semantics,
i.e., allowing only rational numbers between 0 and 1 as the set of truth values. ese
semantics could be of particular importance for applications due to the necessity of
discretization. Concerning the previously introduced logics, we can summarize the
results of the two central papers on this topic [19, 27] as follows:

• Propositional basic, Łukasiewicz, Gödel and product logic enjoy strong com-
pleteness for rational semantics.

• First-order Łukasiewicz, Gödel and product logic enjoy strong completeness for
rational semantics.

• First-order basic logic enjoys strong completeness for rational semantics when
one axiom is added.

²²We could also be more explicit by taking all formulas P𝜑 as axioms where 𝜑 is an axiom of a
Hilbert-style calculus for classical propositional logic, together with an adapted version of classical modus
ponens.
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An idea that goes ba to one of the first treatments of mathematical fuzzy logic
by Pavelka [86–88] is to consider fuzzy sets of formulas for logical deductions instead
of crisp sets where the goal is to “prove partially true conclusions from partially true
premisses” [56]. In this way, one consequently arrives at graded notions of validity
and entailment. A syntactic correspondence to the graded consequence relation in the
form of a suitable calculus for a graded provability relation can be gained by adding
truth value constants to the language: for every real 𝑟 ∈ [0, 1] a constant 𝑟 is de-
fined and, in every evaluation 𝒆, 𝑟 is interpreted by itself, i.e., 𝒆(𝑟) = 𝑟. is concept
can be defined in any fuzzy logic, but in Łukasiewicz logic it has some essential well-
behaving properties due to the aracteristic continuous implication connective. A
logic enjoys strong Pavelka-style completeness iff the degree of provability and the de-
gree of entailment always coincide for every fuzzy set of formulas. is is the case for
propositional and first-order Pavelka Łukasiewicz logic. Hájek’s analysis showed that
this result also holds for the relaxed version of the concept where only rational truth
value constants for 𝑟 ∈ ℚ ∩ [0, 1] are considered, whi keeps the language count-
able [52, 53]. e propositional version of this rational Pavelka Łukasiewicz logic en-
joys finite strong standard completeness [56]. Furthermore, for formulas without truth
value constants validity in usual Łukasiewicz logic and (rational) Pavelka Łukasiewicz
logic coincide [66]. For a more detailed introduction, Gowald’s papers [44, 45] can be
recommended.²³ e standard reference on Pavelka-style fuzzy logic is themonograph
by Novák, Perfilieva, and Močkoř [85].

Another important direction is to consider additional connectives with truth func-
tions obtained from another t-norm. Esteva, Godo, Hájek, and Navara have enried
t-norm based logics with Gödel negation by a strong negation connective (see Defini-
tion 3.2.17) [30]. ey remark that in the presence of a strong negation∼ the following
connectives can be defined as abbreviating formulas:

• A strong disjunction 𝜑 ⊻ 𝜓 can be defined as ∼(∼𝜑 & ∼𝜓) because the function
defined by 𝑛(𝑛(𝑥) ∗ 𝑛(𝑦)) is always a t-conorm for a t-norm ∗ and a strong
negation function 𝑛 (see Proposition 3.2.19).

• A contrapositive implication (also called strong implication) 𝜑 ↪ 𝜓 can be de-
fined as ∼𝜑 ⊻ 𝜓 .

• In the presence of both, an involutive negation ∼ and Gödel negation ¬, the
globalization ▵𝜑 can be defined as ¬∼𝜑.

For propositional and first-order Gödel logic together with the connective ∼ inter-
preted as Łukasiewicz negation, they obtain standard completeness. For propositional

²³As an interesting side note we remark that Gowald distinguishes between t-norm based logics
and fuzzy logic. With the former he refers to the usual approa as presented in this thesis where only
crisp versions of validity, entailment and provability are considered. With the laer he refers to Pavelka-
style versions of t-norm based logics. Relatedly, Hájek writes that Novák considers Pavelka logic, with
graded consequences and truth value constants, as the fuzzy logic and that he (Hájek) does not share this
opinion [61].
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product logic together with the connective ∼ they get semi-standard completeness
meaning that a formula is provable if and only if it is a tautology for all involutive
negation functions of ∼.

A related approa is pursued with the logic ŁP that combines Łukasiewicz and
product logic and was introduced by Esteva, Godo, and Montagna [32]. It consists
of Łukasiewicz implication, product conjunction, product implication and the truth
constant 0̄. For the logic ŁP½ the additional truth value constant ½, whi is always
interpreted as ½, is defined. For both logics, an axiomatization with finite strong stan-
dard completeness can be obtained. Furthermore, the following connectives can be
defined as abbreviating formulas: Łukasiewicz negation, Gödel negation, ▵-operator,
Łukasiewicz conjunction, strong Łukasiewicz disjunction, weak minimum conjunc-
tion, weak maximum disjunction and Gödel implication. Furthermore the rational
numbers are definable in ŁP½. With this in mind it can be shown that most of the
important concrete²⁴ fuzzy logics can be embedded into ŁP½.

ere are several ways to generalize the presented approa towards fuzzy logic.
For example, recall our definition of the residuum ⇒∗ of a t-norm ∗. It is the unique
function that fulfills the condition

𝑥 ⇒∗ 𝑦 = max{𝑧 ∈ [0, 1] ∣ 𝑥 ∗ 𝑧 ≤ 𝑦} .

For the residuum to be well-defined, the t-norm ∗ has to be le-continuous and not
necessarily continuous as we have demanded. Similar to basic logic, it is possible to de-
finemonoidal t-norm logicMTL [28] whi is the logic of le-continuous t-norms [70].
An example of a t-norm that is le-continuous but not continuous is the nilpotent min-
imum t-norm defined by

𝑥 ∗ 𝑦 =
๨

min(𝑥, 𝑦) if 𝑥 + 𝑦 > 1
0 otherwise .

Another generalizations arises when the constant 0̄ is removed from the language
whi allows only a falsehood-free set of truth values, e.g., the half-closed interval
(0, 1]. In this way one arrives at hoop logics [29]. Or one could give up the commu-
tativity of conjunction whi makes sense in certain contexts, e.g., some conjunction
connectives in natural language. T-norms without commutativity are called pseudo
t-norms and the corresponding logic is called pseudo basic logic [55, 57]. If all three
generalizations are considered, i.e. non-commutative le-continuous pseudo t-norms
without falsehood, one gets Hájek’s flea logic [50], whi is a very weak fuzzy logic.

Another generalization of fuzzy logic is to consider intervals of truth-values. In-
stead of assigning a concrete truth value in [0, 1] to a proposition one just gives a
lower bound 𝑎 and an upper bound 𝑏 of its truth value, hence saying that the truth
value is in [𝑎, 𝑏] ⊆ [0, 1]. is framework adds a flavor of imprecision to fuzzy log-
ic. An overview on interval-valued fuzzy logic is given by Cornelis, Desrijver, and

²⁴By a concrete fuzzy logic we mean a fuzzy logic that is based on a single t-norm and not a class of
t-norms. us, Gödel logic with ▵ would be a concrete fuzzy logic and basic logic would not.
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Kerre [24]. A further analysis and some philosophical motivation of this approawas
provided by Fermüller [37].





CHAPTER 4
Gödel logic as the fuzzy logic of

comparison

One of the main criticism of degree-based theories of vagueness is the concern that
the oice of a concrete real number, like for example 1/√2, as the exact truth value of a
vague proposition can usually hardly be justified and might be artificially precise [65,
72, 95]. One can address this criticism by proposing that only the order of the truth
values maers and not the concrete values [35].

Gödel logic as introduced in Section 3.4.4 is su a logic in whi truth values are
only compared and no real arithmetic, as for example in Łukasiewicz and product logic,
has to be carried out. As we see in this apter even more holds: Gödel logic, with
the globalization operator, is in some very natural sense the only logic of comparison
over a set of linearly ordered truth values. To prove this statement we need to sele
our notion of a “logic of comparison”.²⁵ We will understand su a logic as specified
over the theory of a set of linearly ordered truth values. e overall result might not
be completely new (see [5]), but nevertheless a detailed proof seems to be valuable.

4.1 Specified logics

In the following, we define the class of specified logics. Our definitions are slight
generalizations of those for projective logics given by Baaz and Fermüller [3].

We distinguish between the syntax and semantics of an underlying theory and the
logic that is specified by using terms and formulas of this theory. We allow arbitrary,
classical first-order theories with their usual syntax and semantics.

²⁵Our concept of logics of comparison should not be confused with Casari’s comparative logics [11].
Casari introduces his logics in order to formalize certain aspects of comparative reasoning in natural
language. e goal of this apter is a different one: we explore the space of possible logics when the
truth functions of the connectives are defined by conditions on the order of truth values.

79
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Definition 4.1.1. A theory is a set of first-order formulas.

We assume that a theory implicitly determines a first-order language. e theory
is meant to describe the truth values of the specified logic. erefore the domain of a
model of the theory is taken as the set of truth values of the specified logic.

e language of the specified logic consists of a set of variables, a set of truth
constants, and a set of connectives. e set of propositional variables of the specified
logic is equal to the set of object variables of the theory with regard to whi the logic
is specified. Also the set of constants is the same in both languages. e semantics of
the specified logic will mainly be given by special rules that we call specifications.

Definition 4.1.2. A 𝑆-evaluation 𝒆 for a nonempty set 𝑆 is a function that assigns to
ea propositional variable an element in 𝑆 . For a first-order interpretation 𝑴 with
domain 𝑫 we call a 𝑫-evaluation also 𝑴-evaluation.

Note that we take evaluations as both, assignments of object variables in the un-
derlying theory and evaluations of propositional variables in the specified logic.

In this section we use the notation 𝜑[𝑥1, … , 𝑥𝑛] to indicate that the free variables
of the formula 𝜑 are among the set {𝑥1, … , 𝑥𝑛}. e notation 𝜑[𝜓1, … , 𝜓𝑛] should
indicate that ea occurrence of 𝑥𝑖 has been replaced by 𝜓𝑖 for every 1 ≤ 𝑖 ≤ 𝑛.

Definition 4.1.3. A specification of an 𝑛-ary connective ◻ with respect to a theory 𝘛
is a rule of the form

◻(𝑥1, … , 𝑥𝑛) =
⎧⎪
⎨
⎪⎩

𝑡1[𝑥1, … , 𝑥𝑛] if 𝐴1[𝑥1, … , 𝑥𝑛]
⋮ ⋮
𝑡𝑚[𝑥1, … , 𝑥𝑛] if 𝐴𝑚[𝑥1, … , 𝑥𝑛]

where ea 𝑥𝑖 is an object variable, ea 𝑡𝑗 is a term and ea condition 𝐴𝑗 is a
quantifier-free formula of 𝘛 . e free variables of ea 𝑡𝑗 and ea 𝐴𝑗 are among
the set {𝑥1, … , 𝑥𝑛}.

e conditions of the specification have to satisfy the following two properties.

• Totality. At least one condition must hold: 𝘛 ⊨ ∀𝑥1 … ∀𝑥𝑛 ⋁𝑚
𝑖=1 𝐴𝑖.

• Functionality. If two conditions hold simultaneously, then they must yield the
same result. For all models 𝑴 of 𝘛 and every 𝑴-evaluation 𝒆: if 𝑴, 𝒆 ⊨ 𝐴𝑖
and 𝑴, 𝒆 ⊨ 𝐴𝑗 , then ‖𝑡𝑖‖𝑴,𝒆 = ‖𝑡𝑗‖𝑴,𝒆.

e specification is called projective iff ea 𝑡𝑗[𝑥1, … , 𝑥𝑛] is either a constant or
one of the variables in the set {𝑥1, … , 𝑥𝑛}.

Note that we only allow quantifier-free conditions. In Section 4.5 we investigate
what happens if this condition is relaxed. Besides the specifications of connectives we
also need a meanism that specifies the designated truth values and thus the valid
formulas.
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Definition 4.1.4. A designating predicate is a first-order formula 𝐷[𝑥] with exactly
one free variable 𝑥.

We will assume that the variables 𝑥1, …𝑥𝑛 of a specification and the variable 𝑥
of a designating predicate are always fresh. is means that these variables occur
nowhere else. Note that specifications and designating predicates are merely syntactic
objects that should capture a natural way of defining the semantics of a logic. We use
the specifications to define a semantics for a propositional logic by defining the truth
function corresponding to a connective in the obvious way.

Definition 4.1.5. Let ◻ be a connective that has a specification with respect to a the-
ory 𝘛 as in Definition 4.1.3 and 𝑴 a model of 𝘛 with domain 𝑫 . en the truth
function ර◻𝑴 of ◻ is defined by

ර◻𝑴 ධ𝑑1, … , 𝑑𝑛න =
⎧⎪
⎨
⎪⎩

‖‖𝑡1[𝑥1, … , 𝑥𝑛]‖‖𝑴,𝒆 if 𝑴, 𝒆 ⊨ 𝐴1[𝑥1, … , 𝑥𝑛]
⋮ ⋮
‖‖𝑡𝑚[𝑥1, … , 𝑥𝑛]‖‖𝑴,𝒆 if 𝑴, 𝒆 ⊨ 𝐴𝑚[𝑥1, … , 𝑥𝑛]

for all 𝑑𝑖 ∈ 𝑫 and every 𝑫-evaluation 𝒆 su that 𝒆(𝑥𝑖) = 𝑑𝑖, for 1 ≤ 𝑖 ≤ 𝑛. is
means that 𝒆 assigns to ea variable of the specification its corresponding argument
of the truth function.

Remark. Due to the two requirements of totality and functionality in Definition 4.1.3,
the truth function ර◻𝑴 is always well-defined.

Definition 4.1.6. Let {◻1, … , ◻𝑘} be a finite set of connectives, ea with a speci-
fication with regard to a theory 𝘛 as in Definition 4.1.3, 𝑴 a model of 𝘛 , and 𝒆 an
𝑴-evaluation. en the interpretation of formulas in the specified logic S is induc-
tively defined as follows:

‖ ̄𝑐‖S𝑴,𝒆 = ‖ ̄𝑐‖𝑴 for every truth constant ̄𝑐
‖𝑥‖S𝑴,𝒆 = 𝒆(𝑥) for every variable 𝑥

‖‖◻𝑖(𝜑1, … , 𝜑𝑛)‖‖S𝑴,𝒆 = ර◻𝑖,𝑴 ෹‖‖𝜑1‖‖S𝑴,𝒆 , … , ‖‖𝜑𝑛‖‖S𝑴,𝒆෺ for every connective ◻𝑖 .

Now, together with the designating predicate we can define a logic.

Definition 4.1.7. Let {◻1, … , ◻𝑘} be a finite set of connectives, ea with a specifica-
tion with regard to a theory 𝘛 as in Definition 4.1.3, 𝐷[𝑥] a designating predicate, and
𝑴 a model of 𝘛 . A formula 𝜑 is valid in the specified logic S of 𝑴 iff 𝑴, 𝒆໗ ⊨ 𝐷[𝑥],
where 𝒆’ is an 𝑴-evaluation with 𝒆໗(𝑥) = ‖𝜑‖S𝑴,𝒆, for every 𝑴-evaluation 𝒆.

4.2 Linear orders with endpoints

We have to make precise what we mean by comparison of truth values without losing
the generality of the idea of “logics of comparison.” e abstract concept of comparison
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that seems adequate for our situation is the linear order. In a linear order we can
always impose an order on two values that are not equal. As the intended domain
of our theory are truth values, we also include a maximal element for truth and a
minimal element for falsehood.

We consider a language with a two-ary relation symbol < and the constants 1̄
and 0̄. Since this language has no function symbols, every term is either a variable or
a constant.

Definition 4.2.1. e theory 𝖫𝖮𝖤 of linear orders with endpoints is the deductive
closure of the following formulas.

(LOE1) ∀𝑥(¬(𝑥 < 𝑥)) (irreflexive)

(LOE2) ∀𝑥∀𝑦∀𝑧(𝑥 < 𝑦 ∧ 𝑦 < 𝑧) ⊃ 𝑥 < 𝑧 (transitive)

(LOE3) ∀𝑥∀𝑦∀𝑧(𝑥 = 𝑦 ∨ 𝑥 < 𝑦 ∨ 𝑦 < 𝑥) (linear)

(LOE4) ∀𝑥(𝑥 = 0̄ ∨ 0̄ < 𝑥) (minimal element)

(LOE5) ∀𝑥(𝑥 = 1̄ ∨ 𝑥 < 1̄) (maximal element)

(LOE6) ¬(0̄ = 1̄) (distinct)

We use the abbreviation 𝑥 ≤ 𝑦 for 𝑥 < 𝑦 ∨ 𝑥 = 𝑦.

Now we show some minor results that are important for our discussion of Gödel
logic, whi we will define as a certain specified logic over the theory 𝖫𝖮𝖤.

Lemma 4.2.2. e following formulas are equivalent in the theory 𝖫𝖮𝖤.

• ¬(𝑥 ≤ 𝑦) is equivalent to 𝑦 < 𝑥.

• ¬(𝑥 = 0̄) is equivalent to 0̄ < 𝑥.

• ¬(𝑥 = 1̄) is equivalent to 𝑥 < 1̄.

Proof. Let𝑴 be amodel of 𝖫𝖮𝖤 and 𝒆 an𝑴-evaluation. Assume that𝑴, 𝒆⊨¬(𝑥 ≤ 𝑦).
Since 𝑥 ≤ 𝑦 is an abbreviation for 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 we then know that 𝑴, 𝒆 ⊭ 𝑥 < 𝑦 and
𝑴, 𝒆 ⊭ 𝑥 = 𝑦. en, by the axiom of linearity (LOE3), we know that 𝑴, 𝒆 ⊨ 𝑦 < 𝑥.

Now assume that 𝑴, 𝒆 ⊨ 𝑦 < 𝑥. Suppose that 𝑴, 𝒆 ⊨ 𝑥 = 𝑦. en we get
𝑴, 𝒆 ⊨ 𝑥 < 𝑥 whi is not possible due to the axiom of irreflexivity (LOE1). erefore
the opposite holds and we know that 𝑴, 𝒆 ⊨ ¬(𝑥 = 𝑦). Suppose that 𝑴, 𝒆 ⊨ 𝑥 < 𝑦.
en, by the axiom of transitivity (LOE2), we also get the contradiction 𝑴, 𝒆 ⊨ 𝑥 < 𝑥.
erefore the opposite holds and we know that 𝑴, 𝒆 ⊨ ¬(𝑥 < 𝑦). Puing together
both of these results we get 𝑴, 𝒆 ⊨ ¬(𝑥 ≤ 𝑦).

e other two equivalencies directly follow from (LOE4) and (LOE5) respectively
(for the le-to-right direction), and the irreflexivity axiom (LOE1) (for the right-to-le
direction).
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Lemma 4.2.3. e following formulas are theorems of the theory 𝖫𝖮𝖤.

0̄ = 0̄ 0̄ ≤ 0̄
1̄ = 1̄ 1̄ ≤ 1̄

¬(0̄ = 1̄) 0̄ ≤ 1̄
¬(1̄ = 0̄) ¬(1̄ ≤ 0̄)

Proof. e formulas 0̄ = 0̄ and 1̄ = 1̄ are theorems due to the definition of identity
in classical first-order logic. By the definition of ≤ then also 0̄ ≤ 0̄ and 1̄ ≤ 1̄ are
theorems.

e formula ¬(0̄ = 1̄) is axiom (LOE6) of the theory. Since identity, by definition,
is symmetric, the formula ¬(1̄ = 0̄) is also a theorem of the theory.

Since 1̄ is the maximal element by axiom (LOE5), we get the theorem 0̄ = 1̄∨0̄ < 1̄.
Because ¬(0̄ = 1̄) is axiom (LOE6), we conclude that 0̄ < 1̄ is a theorem. By the
definition of ≤ this means that that 0̄ ≤ 1̄ is a theorem. And, by Lemma 4.2.2, 0̄ < 1̄
is equivalent to ¬(1̄ ≤ 0̄) whi is therefore also a theorem.

We will see that for Gödel logic only the cardinality of the truth-degree structure
is relevant. For finite cardinalities this also holds for models of 𝖫𝖮𝖤. We will see that
two models with cardinality 𝑛 are always equivalent up to renaming. To make this
idea precise, we need the notion of an isomorphism.

Definition 4.2.4. Let 𝑴1 and 𝑴2 be two models of 𝖫𝖮𝖤 with domains 𝑫1 and 𝑫2,
respectively. A function 𝑓 ∶ 𝑫1 → 𝑫2 is a homomorphism 𝑓 ∶ 𝑴1 → 𝑴2 iff the
following structure-preserving properties hold:²⁶

• 𝑓 ධ‖0̄‖𝑴1න = ‖0̄‖𝑴2
and 𝑓 ධ‖1̄‖𝑴1න = ‖1̄‖𝑴2

.

• 𝑴1, 𝒆 ⊨ 𝑥 < 𝑦 if and only if 𝑴2, 𝑓 ∘ 𝒆 ⊨ 𝑥 < 𝑦 for every 𝑫1-evaluation 𝒆.

• 𝑴1, 𝒆 ⊨ 𝑥 = 𝑦 if and only if 𝑴2, 𝑓 ∘ 𝒆 ⊨ 𝑥 = 𝑦 for every 𝑫1-evaluation 𝒆.

e symbol ∘ denotes the operator for the composition of functions, i.e., (𝑓 ∘ 𝒆)(𝑥) =
𝑓(𝒆(𝑥)) for every variable 𝑥. A bijective homomorphism is called isomorphism. Two
models are called isomorphic iff there is an isomorphism between them.

We remark that, due to the inclusion of the identity sign, the third condition im-
plies that the homomorphisms that we consider are always injective.

Lemma 4.2.5. Every model 𝑴 of 𝖫𝖮𝖤 with finite cardinality 𝑛 is isomorphic to the
model 𝑴 (𝑛) defined as follows:

• e domain of 𝑴 (𝑛) is 𝑫(𝑛) = {0, … , 𝑛 − 1}.

• ‖0̄‖𝑴 (𝑛) = 0 and ‖1̄‖𝑴 (𝑛) = 𝑛 − 1.
²⁶Precisely speaking, these conditions define strict homomorphisms. However, since we never work

with non-strict homomorphisms, we omit this distinction.
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• For every 𝑫(𝑛)-evaluation 𝒆, 𝑴 (𝑛), 𝒆⊨𝑥 < 𝑦 iff 𝒆(𝑥) < 𝒆(𝑦) where < is the usual
smaller-than relation on the natural numbers.

Proof. First of all it is clear that 𝑴 (𝑛) is indeed a model of 𝖫𝖮𝖤 because natural num-
bers are a prototypical example of a linear order.

Let 𝑫 denote the domain of 𝑴 . We proof our claim by induction on 𝑛. Due to
axiom (LOE6) a model of 𝖫𝖮𝖤 must have at least two distinct elements. erefore we
do not have to care about the case 𝑛 = 1. us, consider the case 𝑛 = 2. en it is
clear that 𝑓 defined by 𝑓(0) = ‖0̄‖𝑴 and 𝑓(1) = ‖1̄‖𝑴 is an isomorphism between
𝑴 (𝑛) and 𝑴 .

Now consider the case 𝑛 > 2. We want to define a restriction of 𝑴 to the domain
𝑫໗ = 𝑫⧵{‖1̄‖𝑴 }. To do this, we just need to find a maximal element for the constant
1̄ in the set 𝑫໗, all other axioms of 𝖫𝖮𝖤 also hold in 𝑫໗. Suppose that the following
formula is true in 𝑴 :

∀𝑥(¬(𝑥 = 1̄) ⊃ ∃𝑦(¬(𝑦 = 1̄) ∧ 𝑥 < 𝑦)) .

en clearly 𝑴 cannot have finite cardinality, because, starting from the minimal
element, we always find a strictly greater element. erefore the formula is false in𝑴
and its negation is true whi means that we find a maximal element in the set 𝑫໗.
Since 𝑫໗ has cardinality at least 2, the maximal element is distinct from the minimal
element. erefore the restriction 𝑴 ໗ of 𝑴 to the domain 𝑫໗ is a model of 𝖫𝖮𝖤.

Because 𝑴 ໗ has cardinality 𝑛−1, we know by our induction hypothesis that there
is an isomorphism 𝑓 ໗ ∶ 𝑴 (𝑛−1) → 𝑴 ໗. Now define the function 𝑓 ∶ 𝑫(𝑛) → 𝑫 by

𝑓(𝑖) =
๨

‖1̄‖𝑴 if 𝑖 = 𝑛 − 1
𝑓 ໗(𝑖) otherwise .

Clearly, 𝑓 is bijective because 𝑓 ໗ is bijective. It is easy to see that 𝑓 is structure-
preserving. We only have to consider the cases that are not already handled by 𝑓 ໗. By
our definition we have 𝑓(‖1̄‖𝑴 (𝑛)) = 𝑓(𝑛−1) = ‖1̄‖𝑴 . It is clear that 𝑴 (𝑛), 𝒆⊨𝑥 = 1̄
if and only if 𝑴, 𝑓 ∘ 𝒆 ⊨ 𝑥 = 1̄ for every 𝑴 (𝑛)-evaluation 𝒆. Since both 𝑴 (𝑛) and
𝑴 are models of 𝖫𝖮𝖤, we have 𝑴 (𝑛), 𝒆 ⊭ 1̄ < 𝑥 and 𝑴, 𝑓 ∘ 𝒆 ⊭ 1̄ < 𝑥 for every
𝑴 (𝑛)-evaluation 𝒆. For the same reason we have 𝑴 (𝑛), 𝒆 ⊨ 𝑥 < 1̄ ∧ ¬(𝑥 = 1̄) and
𝑴, 𝑓 ∘ 𝒆 ⊨ 𝑥 < 1̄ ∧ ¬(𝑥 = 1̄) for every 𝑴 (𝑛)-evaluation 𝒆. erefore 𝑴 (𝑛), 𝒆 ⊨ 𝑥 < 𝑦
if and only if 𝑴, 𝑓 ∘ 𝒆 ⊨ 𝑥 < 𝑦 for every 𝑴 (𝑛)-evaluation 𝒆 with 𝒆(𝑥) = ‖1̄‖𝑴 (𝑛) or
𝒆(𝑦) = ‖1̄‖𝑴 (𝑛) .

Since all models with cardinality 𝑛 are isomorphic to a certain model and the
property of being isomorphic is transitive, it follows as a corollary that all models
with a fixed finite cardinality are isomorphic.

Corollary 4.2.6. For every natural number 𝑛, all models of 𝖫𝖮𝖤 with cardinality 𝑛 are
isomorphic.
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4.3 Gödel logic

In Section 3.4.4 we defined Gödel logic as a fuzzy logic over the truth-value interval
[0, 1]. Now we define Gödel logics for more general truth-degree structures.

Definition 4.3.1. For every model 𝑴 of the theory 𝖫𝖮𝖤, the Gödel logic G of 𝑴 with
globalization is given by the following specifications:

𝑥 ∧ 𝑦 =
๨

𝑥 if 𝑥 ≤ 𝑦
𝑦 if ¬(𝑥 ≤ 𝑦)

𝑥 ∨ 𝑦 =
๨

𝑥 if 𝑦 ≤ 𝑥
𝑦 if ¬(𝑦 ≤ 𝑥)

𝑥 ⊃ 𝑦 =
๨

1̄ if 𝑥 ≤ 𝑦
𝑦 if ¬(𝑥 ≤ 𝑦)

¬𝑥 =
๨

1̄ if 𝑥 = 0̄
0̄ if ¬(𝑥 = 0̄)

▵𝑥 =
๨

1̄ if 𝑥 = 1̄
0̄ if ¬(𝑥 = 1̄)

Its designating predicate is 𝐷G[𝑥] = 1 ≤ 𝑥.

In Gödel logic, disjunction is implemented by the maximum operator and con-
junction is implemented by the minimum operator. An implication is true if and only
if the le argument is smaller than or equal to the right argument. Negation is the
implication of falsehood and the globalization connective ▵ has a definition inverse
to negation. In the following, we always speak of Gödel logic when we mean Gödel
logic with globalization.

Remark. It is obvious that the specifications for Gödel logic fulfill the requirements
of totality and functionality because ea specification consists of two contrary con-
ditions. Furthermore, the negated conditions have their intuitive meanings (compare
Lemma 4.2.2).

Lemma 4.3.2. For every model 𝑴 of 𝖫𝖮𝖤, the connectives of Gödel logic behave clas-
sically for the truth values ‖1̄‖𝑴 and ‖0̄‖𝑴 .

‖0̄ ∧ 0̄‖G𝑴 = ‖0̄‖𝑴 ‖0̄ ∨ 0̄‖G𝑴 = ‖0̄‖𝑴

‖0̄ ∧ 1̄‖G𝑴 = ‖0̄‖𝑴 ‖0̄ ∨ 1̄‖G𝑴 = ‖1̄‖𝑴

‖1̄ ∧ 0̄‖G𝑴 = ‖0̄‖𝑴 ‖1̄ ∨ 0̄‖G𝑴 = ‖1̄‖𝑴

‖1̄ ∧ 1̄‖G𝑴 = ‖1̄‖𝑴 ‖1̄ ∨ 1̄‖G𝑴 = ‖1̄‖𝑴

‖0̄ ⊃ 0̄‖G𝑴 = ‖1̄‖𝑴 ‖¬0̄‖G𝑴 = ‖1̄‖𝑴

‖0̄ ⊃ 1̄‖G𝑴 = ‖1̄‖𝑴 ‖¬1̄‖G𝑴 = ‖0̄‖𝑴

‖1̄ ⊃ 0̄‖G𝑴 = ‖0̄‖𝑴 ‖▵0̄‖G𝑴 = ‖0̄‖𝑴

‖1̄ ⊃ 1̄‖G𝑴 = ‖1̄‖𝑴 ‖▵1̄‖G𝑴 = ‖1̄‖𝑴
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Proof. Let 𝒆 be an evaluation su that 𝒆(𝑥) = ‖ ̄𝑐1‖𝑴 and 𝒆(𝑦) = ‖ ̄𝑐2‖𝑴 where ̄𝑐1
and ̄𝑐2 are two truth constants from the set {0̄, 1̄} and let 𝐴[𝑥, 𝑦] be a formula with at
most two free variables. en 𝑴, 𝒆 ⊨ 𝐴[𝑥, 𝑦] if and only if 𝑴, 𝒆 ⊨ 𝐴[ ̄𝑐1, ̄𝑐2].

erefore it can easily be verified that the truth functions of Gödel logic behave
classically byeing, in the list of Lemma 4.2.3, for ea condition whether it applies.

We now start an investigation with the aim of showing that for Gödel logics only
the cardinality of the truth-degree structure is relevant. All Gödel logics of models
with a fixed finite cardinality coincide. For models with infinite cardinality, even more
holds: their sets of valid formulas all coincide. is result is well-known but to make
the material in this apter self-contained we include our elementary proofs.

We first formulate our central tenical lemma that states that for Gödel logics it
does not maer whether we first apply a homomorphism and evaluate aerwards or
if we first evaluate and then apply the homomorphism.

Lemma 4.3.3. Let 𝑴1 and 𝑴2 be two models of 𝖫𝖮𝖤 su that there is a homomor-
phism 𝑓 ∶ 𝑴1 → 𝑴2. Let 𝜑 be a formula of Gödel logic and 𝒆 an 𝑴1-evaluation.
en

𝑓 ෹‖𝜑‖G𝑴1,𝒆෺ = ‖𝜑‖G𝑴2,𝑓 ∘𝒆 .

Proof. e proof claim is by induction on the complexity of 𝜑.

• 𝜑 = 𝑥 for a variable 𝑥: Trivially, 𝑓(‖𝑥‖G𝑴1,𝒆) = 𝑓(𝒆(𝑥)) = (𝑓 ∘ 𝒆)(𝑥).

• 𝜑 = ̄𝑐 where ̄𝑐 is one of the truth constants 0̄ or 1̄: Since 𝑓 is a homomorphism,
we have 𝑓(‖ ̄𝑐‖G𝑴1,𝒆) = 𝑓(‖ ̄𝑐‖𝑴1

) = ‖ ̄𝑐‖𝑴2
= ‖ ̄𝑐‖G𝑴2,𝑓 ∘𝒆.

• 𝜑 = 𝜓 ∧ 𝜒 : First, define the 𝑴1-evaluation 𝒆1 and the 𝑴2-evaluation 𝒆2 as
follows:

𝒆1(𝑣) =
⎧⎪
⎨
⎪⎩

‖𝜓‖G𝑴1,𝒆 if 𝑣 = 𝑥
‖𝜒‖G𝑴1,𝒆 if 𝑣 = 𝑦
𝒆(𝑣) otherwise

𝒆2(𝑣) =
⎧⎪
⎨
⎪⎩

‖𝜓‖G𝑴2,𝑓 ∘𝒆 if 𝑣 = 𝑥
‖𝜒‖G𝑴2,𝑓 ∘𝒆 if 𝑣 = 𝑦
𝑓 ∘ 𝒆(𝑣) otherwise .

e interpretation of the formula 𝜓 ∧ 𝜑, by the definition of conjunction in
Gödel logic, depends on 𝒆1 and 𝒆2 in the following way:

‖𝜓 ∧ 𝜒‖G𝑴1,𝒆 =
๨

‖𝜓‖G𝑴1,𝒆 if 𝑴1, 𝒆1 ⊨ 𝑥 ≤ 𝑦
‖𝜒‖G𝑴1,𝒆 if 𝑴1, 𝒆1 ⊭ 𝑥 ≤ 𝑦

‖𝜓 ∧ 𝜒‖G𝑴2,𝑓 ∘𝒆 =
๨

‖𝜓‖G𝑴2,𝑓 ∘𝒆 if 𝑴2, 𝒆2 ⊨ 𝑥 ≤ 𝑦
‖𝜒‖G𝑴2,𝑓 ∘𝒆 if 𝑴2, 𝒆2 ⊭ 𝑥 ≤ 𝑦 .
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By the induction hypothesis we get

𝒆2(𝑣) =
⎧
⎪
⎨
⎪
⎩

𝑓 ෹‖𝜓‖G𝑴1,𝒆෺ if 𝑣 = 𝑥
𝑓 ෹‖𝜒‖G𝑴1,𝒆෺ if 𝑣 = 𝑦
𝑓 ∘ 𝒆(𝑣) otherwise .

and therefore 𝒆2 = 𝑓 ∘ 𝒆1.

Since 𝑓 is a homomorphism, the following relations hold:

𝑴1, 𝒆1 ⊨ 𝑥 < 𝑦 if and only if 𝑴2, 𝑓 ∘ 𝒆1 ⊨ 𝑥 < 𝑦
if and only if 𝑴2, 𝒆2 ⊨ 𝑥 < 𝑦

𝑴1, 𝒆1 ⊨ 𝑥 = 𝑦 if and only if 𝑴2, 𝑓 ∘ 𝒆1 ⊨ 𝑥 = 𝑦
if and only if 𝑴2, 𝒆2 ⊨ 𝑥 = 𝑦 .

Since 𝑥 ≤ 𝑦 is an abbreviation for 𝑥 < 𝑦 ∨ 𝑥 = 𝑦, we then know that
𝑴1, 𝒆1 ⊨ 𝑥 ≤ 𝑦 if and only if 𝑴2, 𝒆2 ⊨ 𝑥 ≤ 𝑦.
First, consider the case that 𝑴1, 𝒆1 ⊨ 𝑥 ≤ 𝑦. en also 𝑴2, 𝒆2 ⊨ 𝑥 ≤ 𝑦. By the
definition of conjunction in Gödel logic and the induction hypothesis we then
get

𝑓 ෹‖𝜓 ∧ 𝜒‖G𝑴1,𝒆෺ = 𝑓 ෹‖𝜓‖G𝑴1,𝒆෺ = ‖𝜓‖G𝑴2,𝑓 ∘𝒆 = ‖𝜓 ∧ 𝜒‖G𝑴2,𝑓 ∘𝒆 .

Second, consider the case that 𝑴1, 𝒆1 ⊭ 𝑥 ≤ 𝑦. en also 𝑴2, 𝒆2 ⊭ 𝑥 ≤ 𝑦. By
the definition of conjunction in Gödel logic and the induction hypothesis we
then get

𝑓 ෹‖𝜓 ∧ 𝜒‖G𝑴1,𝒆෺ = 𝑓 ෹‖𝜒‖G𝑴1,𝒆෺ = ‖𝜒‖G𝑴2,𝑓 ∘𝒆 = ‖𝜓 ∧ 𝜒‖G𝑴2,𝑓 ∘𝒆

In both cases, we get 𝑓(‖𝜓 ∧ 𝜒‖G𝑴1,𝒆) = ‖𝜓 ∧ 𝜒‖G𝑴2,𝑓 ∘𝒆.

• e proofs for the other connectives work in the same manner as for ∧.

Now we build upon our results for the theory 𝖫𝖮𝖤 to show that all Gödel logics
of truth-degree structures with a fixed finite cardinality coincide.

Lemma 4.3.4. Let 𝑴1 and 𝑴2 be models of 𝖫𝖮𝖤 su there is an injective homomor-
phism 𝑓 ∶ 𝑴1 → 𝑴2. en every formula that is valid in the Gödel logic of 𝑴2 is
also valid in the Gödel logic of 𝑴1.
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Proof. By Lemma 4.3.3 we know that 𝑓(‖𝜑‖G𝑴1,𝒆) = ‖𝜑‖G𝑴2,𝑓 ∘𝒆. Since 𝜑 is valid in the

Gödel logic of 𝑴2 we have ‖𝜑‖G𝑴2,𝑓 ∘𝒆 = ‖1̄‖𝑴2
. Because 𝑓 is a homomorphism we

also have 𝑓(‖1̄‖𝑴1
) = ‖1̄‖𝑴2

. us, we get 𝑓(‖𝜑‖G𝑴1,𝒆) = 𝑓(‖1̄‖𝑴1
) and since 𝑓 is

injective this means that ‖𝜑‖G𝑴1,𝒆 = ‖1̄‖𝑴1
. Since 𝒆 was an arbitrary 𝑴1-evaluation,

we may conclude that 𝜑 is valid in the Gödel logic of 𝑴1.

Since an isomorphism gives an injective homomorphism in both directions, we
get an easy corollary.

Corollary 4.3.5. Let 𝑴1 and 𝑴2 be two isomorphic models of 𝖫𝖮𝖤. en a formula
𝜑 is valid in the Gödel logic of 𝑴1 if and only if 𝜑 is valid in the Gödel logic of 𝑴2.

Since all models of 𝖫𝖮𝖤 with a fixed finite cardinality are isomorphic (see Corol-
lary 4.2.6), we already get our desired result for finite-valued Gödel logics.

Corollary 4.3.6. For every natural number 𝑛, the set of valid formulas is the same for
all Gödel logics based on a model of 𝖫𝖮𝖤 with cardinality 𝑛.

Remark. e consequences of Lemma 4.3.3 for isomorphic models𝑴1 and𝑴2 of 𝖫𝖮𝖤
are even stronger, namely that 𝜑 has a designated truth value in 𝑴1 if and only if it
has a designated truth value in𝑴2. erefore the two Gödel logics also coincide at the
level of logical consequence. However, we do not consider entailment in this apter
because the overall result we aim at only holds for validity and not for entailment.

Finally, we show that for infinite cardinalities, no distinction can be made between
different Gödel logics in terms of valid formulas. e theorem and its proof idea are
taken from Gowald’s monograph [44].

eorem 4.3.7. For every formula 𝜑 of Gödel logic the following statements are equiv-
alent:

(i) For every model 𝑴 of 𝖫𝖮𝖤 with infinite cardinality, 𝜑 is valid in the Gödel logic
of 𝑴 .

(ii) For some model 𝑴 of 𝖫𝖮𝖤 with infinite cardinality, 𝜑 is valid in the Gödel logic
of 𝑴 .

(iii) For every model 𝑴 of 𝖫𝖮𝖤 with finite cardinality, 𝜑 is valid in the Gödel logic
of 𝑴 .

We are mainly interested in the equivalence between (i) and (ii). e equivalence
to (iii) is just an interesting by-product that is however essential for the proof.

Proof. e step from (i) to (ii) is trivial because amodel of𝖫𝖮𝖤with infinite cardinality
exists.

For the step from (ii) to (iii) we first show that for every model 𝑴1 of 𝖫𝖮𝖤 with
finite domain 𝑫1 and every model 𝑴2 of 𝖫𝖮𝖤 with infinite domain 𝑫2, there is an in-
jective homomorphism from 𝑴1 to 𝑴2. Since 𝑫2 is infinite, there is a subset 𝐴 ⊆ 𝑫2
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su that |𝐴| = |𝑫1|. Clearly, we also find su a set 𝐴 su that ‖0̄‖𝑴2
∈ 𝐴 and

‖1̄‖𝑴2
∈ 𝐴. Now we define 𝑴 ໗ to be the restriction of 𝑴2 to the domain 𝐴. By re-

striction we mean that ‖0̄‖𝑴 ′ = ‖0̄‖𝑴2
∈ 𝐴, ‖1̄‖𝑴 ′ = ‖1̄‖𝑴2

∈ 𝐴 and 𝑴 ໗, 𝒆⊨𝑥 < 𝑦
iff 𝑴2, 𝒆 ⊨ 𝑥 < 𝑦 for every 𝑴 ໗-evaluation 𝒆.²⁷ Clearly, 𝑴 ໗ is a model of 𝐿𝑂𝐸.

Since both 𝑴1 and 𝑴 ໗ have the same finite cardinality, there is an isomorphism 𝑓
between 𝑴1 and 𝑴 ໗ due to Corollary 4.2.6. e function 𝑓 is also an injective ho-
momorphism from 𝑴1 to 𝑴2. Now let 𝒆 be an arbitrary 𝑴1-evaluation. en by
Lemma 4.3.3 we have 𝑓(‖𝜑‖G𝑴1,𝒆) = ‖𝜑‖G𝑴2,𝑓 ∘𝒆. Since 𝜑 is valid in the Gödel logic

of 𝑴2 we know that ‖𝜑‖G𝑴2,𝑓 ∘𝒆 = ‖1̄‖𝑴2
= 𝑓(‖1̄‖𝑴1

). Because 𝑓 is injective, the

identity ‖𝜑‖G𝑴1,𝒆 = ‖1̄‖𝑴1
follows. Since 𝒆 was an arbitrary evaluation, 𝜑 is valid in

the Gödel logic of 𝑴1.
We now show the step from (iii) to (i). Let 𝑥1, … 𝑥𝑛 denote the 𝑛 variables oc-

curring in 𝜑. Suppose that that there is a model 𝑴 of 𝖫𝖮𝖤 with infinite cardinal-
ity su that 𝜑 is not valid. is means that there is an 𝑴-evaluation 𝒆 su that
‖𝜑‖G𝑴,𝒆 ≠ ‖1̄‖𝑴 . Now we define 𝑴 ໗ to be the restriction of 𝑴 to the domain
{‖0̄‖𝑴 , ‖1̄‖𝑴 , 𝒆(𝑥1), … , 𝒆(𝑥𝑛)}, i.e., ‖0̄‖𝑴 ′ = ‖0̄‖𝑴 , ‖1̄‖𝑴 ′ = ‖1̄‖𝑴 and 𝑴 ໗, 𝒆໗ ⊨
𝑥 < 𝑦 iff 𝑴, 𝒆໗ ⊨ 𝑥 < 𝑦 for every 𝑴 ໗-evaluation 𝒆໗. Obviously, 𝑴 ໗ is also a model of
𝖫𝖮𝖤 and has finite cardinality.

Consider the following 𝑴 ໗-evaluation 𝒆໗:

𝒆໗(𝑣) =
๨

𝒆(𝑣) if 𝑣 ∈ {𝑥1, … , 𝑥𝑛}
‖0̄‖𝑴 ′ otherwise .

It can easily be seen that ‖𝜑‖G𝑴,𝒆 = ‖𝜑‖G𝑴 ′,𝒆′ . But ‖𝜑‖G𝑴,𝒆 ≠ ‖1̄‖𝑴 = ‖1̄‖𝑴 ′ then
is a contradiction to the assumption that 𝜑 is valid in every model of 𝖫𝖮𝖤 with finite
cardinality.

Due to this result it makes sense to speak of the 𝑛-valued Gödel logic and the
infinite-valued Gödel logic. Note that 𝑛-valued Gödel logic and infinite-valued Gödel
logic do not coincide. For example, the formula 𝑥 ∨ ¬𝑥 is valid in 2-valued Gödel
logic, whi is just classical propositional logic, but not in any 𝑛-valued Gödel logic
for 𝑛 > 2 nor in infinite-valued Gödel logic.

Another question that one might ask is whether our presentation of Gödel logic
is optimal. Some of our connectives could be defined syntactically from other connec-
tives:

• ¬𝜑 is equivalent 𝜑 ⊃ 0̄

• 𝜑 ∨ 𝜓 is equivalent to ((𝜑 ⊃ 𝜓) ⊃ 𝜓) ∧ ((𝜓 ⊃ 𝜑) ⊃ 𝜑)

• 1̄ is equivalent to 𝑥 ⊃ 𝑥

• 0̄ is equivalent to ¬1̄
²⁷Note that every 𝑴 ′-evaluation is also a 𝑴2-evaluation
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For the other connectives, su syntactic definitions are not possible:

• Conjunction is not definable from implication, disjunction and negation [8].

• Implication is not definable from conjunction, disjunction and negation [96].

• Globalization cannot be defined from the remaining connectives [89].

In the remainder of this apter we will need the globalization operator ▵ very of-
ten. It is therefore interesting to know that this operator is really needed for the full
expressibility of Gödel logic.

4.4 Logics of comparison

In the following, we show that any logic that is specified over the theory of linear
orders is already contained in a Gödel logic. We show that this statement holds in
a very strong sense. Every connective that can be specified with respect to 𝖫𝖮𝖤 is
syntactically definable from the connectives of Gödel logic.

Note that the theory 𝖫𝖮𝖤 is purely relational. erefore every specification over
𝖫𝖮𝖤 is projective.

Lemma 4.4.1. Let 𝜑[𝑥1, … , 𝑥𝑛] be a formula of 𝖫𝖮𝖤 with free variables among the
set {𝑥1, … , 𝑥𝑛}. en we can construct a formula 𝐹𝜑[𝑥1, … , 𝑥𝑛] of Gödel logic su
that for every model 𝑴 of 𝖫𝖮𝖤 and every 𝑴-evaluation 𝒆:

• If 𝑴, 𝒆 ⊨ 𝜑, then ‖𝐹𝜑‖G𝑴,𝒆 = ‖1̄‖𝑴 .

• If 𝑴, 𝒆 ⊭ 𝜑, then ‖𝐹𝜑‖G𝑴,𝒆 = ‖0̄‖𝑴 .

Proof. e proof is by induction on the structure of 𝜑.

• If 𝜑 is a classical truth constant we simply define 𝐹𝜑 = 1̄ if 𝜑 = ⊤ and 𝐹𝜑 = 0̄
if 𝜑 = ⊥. is is correct because 𝑴, 𝒆 ⊨ ⊤ and 𝑴, 𝒆 ⊭ ⊥ in any case.

• If 𝜑 is of the form 𝑡1 < 𝑡2 for two terms 𝑡1 and 𝑡2, then we define 𝐹𝜑 as
▵(𝑡1 ⊃ 𝑡2) ∧ ¬▵(𝑡2 ⊃ 𝑡1). We then arrive at the following evaluations for the
le and the right part of 𝐹𝜑:

‖‖▵(𝑡1 ⊃ 𝑡2)‖‖G𝑴,𝒆 =
๨

‖▵1̄‖G𝑴,𝒆 if 𝑴, 𝒆 ⊨ 𝑡1 ≤ 𝑡2
‖‖▵𝑡2‖‖G𝑴,𝒆 if 𝑴, 𝒆 ⊨ ¬(𝑡1 ≤ 𝑡2)

‖‖¬▵(𝑡2 ⊃ 𝑡1)‖‖G𝑴,𝒆 =
๨

‖¬▵1̄‖G𝑴,𝒆 if 𝑴, 𝒆 ⊨ 𝑡2 ≤ 𝑡1
‖‖¬▵𝑡1‖‖G𝑴,𝒆 if 𝑴, 𝒆 ⊨ ¬(𝑡2 ≤ 𝑡1) .

By the specifications of ▵ and ¬ in Gödel logic, we get ‖▵1̄‖G𝑴,𝒆 = ‖1̄‖𝑴 and

‖¬▵1̄‖G𝑴,𝒆 = ‖0̄‖𝑴 . Now we investigate the second branes of the truth func-
tions. Suppose that 𝑴, 𝒆 ⊨ ¬(𝑡1 ≤ 𝑡2) and that ‖𝑡2‖𝑴,𝒆 = ‖1̄‖𝑴 . Since 1̄ is
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the maximal element by axiom (LOE5) we know that 𝑴, 𝒆 ⊨ 𝑡1 ≤ 𝑡2 whi
contradicts our first assumption. erefore we get ‖𝑡2‖𝑴,𝒆 ≠ ‖1̄‖𝑴 whi
means that ‖▵𝑡2‖G𝑴,𝒆 = ‖0̄‖𝑴 . With the same argument, under the assump-
tion that 𝑴, 𝒆 ⊨ ¬(𝑡2 ≤ 𝑡1), we get that ‖𝑡1‖𝑴,𝒆 ≠ ‖1̄‖𝑴 whi means that
‖¬▵𝑡1‖G𝑴,𝒆 = ‖1̄‖𝑴 .

Finally, we end up with the following truth functions:

‖‖▵(𝑡1 ⊃ 𝑡2)‖‖G𝑴,𝒆 =
๨

‖1̄‖𝑴 if 𝑴, 𝒆 ⊨ 𝑡1 ≤ 𝑡2
‖0̄‖𝑴 if 𝑴, 𝒆 ⊨ 𝑡2 < 𝑡1

‖‖▵¬(𝑡2 ⊃ 𝑡1)‖‖G𝑴,𝒆 =
๨

‖0̄‖𝑴 if 𝑴, 𝒆 ⊨ 𝑡2 ≤ 𝑡1
‖1̄‖𝑴 if 𝑴, 𝒆 ⊨ 𝑡1 < 𝑡2 .

Now it is clear that if 𝑴, 𝒆 ⊨ 𝑡1 < 𝑡2, then ‖𝐹𝜑‖G𝑴,𝒆 = ‖1̄‖𝑴 . If howev-
er 𝑴, 𝒆 ⊭ 𝑡1 < 𝑡2, then by Lemma 4.2.2 𝑴, 𝒆 ⊨ 𝑡2 ≤ 𝑡1 and therefore we get
‖𝐹𝜑‖G𝑴,𝒆 = ‖0̄‖𝑴 .

• If 𝜑 is of the form 𝑡1 = 𝑡2 for two terms 𝑡1 and 𝑡2, then we define 𝐹𝜑 as
▵(𝑡1 ⊃ 𝑡2) ∧ ▵(𝑡2 ⊃ 𝑡1). We omit the proof because it is very similar to proof
of the previous case.

• If 𝜑 is a composed formula, we apply Lemma 4.3.2. If 𝜑 is a negation ¬𝜓 then
we know by the induction hypothesis that there is a formula𝐹𝜓 with the desired
property and we define 𝐹𝜑 as ¬𝐹𝜓 .

– If𝑴, 𝒆⊨¬𝜓 then𝑴, 𝒆⊭𝜓 . e induction hypothesis gives us ‖𝐹𝜓 ‖G𝑴,𝒆 =
‖0̄‖𝑴 . erefore by Lemma 4.3.2 we get ‖𝐹𝜑‖G𝑴,𝒆 = ‖¬𝐹𝜓 ‖G𝑴,𝒆 = ‖1̄‖𝑴 .

– If𝑴, 𝒆⊭¬𝜓 then𝑴, 𝒆⊨𝜓 . By the induction hypothesis we get ‖𝐹𝜓 ‖G𝑴,𝒆 =
‖1̄‖𝑴 . erefore by Lemma 4.3.2 we get ‖𝐹𝜑‖G𝑴,𝒆 = ‖¬𝐹𝜓 ‖G𝑴,𝒆 = ‖0̄‖𝑴 .

If 𝜑 is a conjunction 𝜓∧𝜒 then we know by the induction hypothesis that there
are formulas 𝐹𝜓 and 𝐹𝜒 with the desired property and we define 𝐹𝜑 as 𝐹𝜓 ∧𝐹𝜒 .

– If𝑴, 𝒆⊨𝜓∧𝜒 then𝑴, 𝒆⊨𝜓 and𝑴, 𝒆⊨𝜒 . e induction hypothesis gives
us ‖𝐹𝜓 ‖G𝑴,𝒆 = ‖1̄‖𝑴 and ‖𝐹𝜒 ‖G𝑴,𝒆 = ‖1̄‖𝑴 . erefore by Lemma 4.3.2

we get ‖𝐹𝜑‖G𝑴,𝒆 = ‖𝐹𝜓 ∧ 𝐹𝜒 ‖G𝑴,𝒆 = ‖1̄‖𝑴 .

– If 𝑴, 𝒆 ⊭ 𝜓 ∧ 𝜒 then one of the following three cases applies:

* If𝑴, 𝒆⊭𝜓 and𝑴, 𝒆⊭𝜒 , then, by the induction hypothesis, ‖𝐹𝜓 ‖G𝑴,𝒆 =
‖0̄‖𝑴 and ‖𝐹𝜒 ‖G𝑴,𝒆 = ‖0̄‖𝑴 .

* If𝑴, 𝒆⊨𝜓 and𝑴, 𝒆⊭𝜒 , then, by the induction hypothesis, ‖𝐹𝜓 ‖G𝑴,𝒆 =
‖1̄‖𝑴 and ‖𝐹𝜒 ‖G𝑴,𝒆 = ‖0̄‖𝑴 .

* If𝑴, 𝒆⊭𝜓 and𝑴, 𝒆⊨𝜒 , then, by the induction hypothesis, ‖𝐹𝜓 ‖G𝑴,𝒆 =
‖0̄‖𝑴 and ‖𝐹𝜒 ‖G𝑴,𝒆 = ‖1̄‖𝑴 .
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In either case we get ‖𝐹𝜑‖G𝑴,𝒆 = ‖𝐹𝜓 ∧ 𝐹𝜒 ‖G𝑴,𝒆 = ‖0̄‖𝑴 by Lemma 4.3.2.

e two remaining cases can be handled analogously. If𝜑 is a disjunction 𝜓∧𝜒 ,
then we define 𝐹𝜑 as 𝐹𝜓 ∧ 𝐹𝜒 and if 𝜑 is an implication 𝜓 ⊃ 𝜒 , then we define
𝐹𝜑 as 𝐹𝜓 ⊃ 𝐹𝜒 .

Lemma 4.4.2. Let ◻ be a connective of a logic S that is specified over 𝖫𝖮𝖤 with a truth
function defined by a specification of the form

◻(𝑥1, … , 𝑥𝑛) =
⎧⎪
⎨
⎪⎩

𝑡1[𝑥1, … , 𝑥𝑛] if 𝐴1[𝑥1, … , 𝑥𝑛]
⋮ ⋮
𝑡𝑚[𝑥1, … , 𝑥𝑛] if 𝐴𝑚[𝑥1, … , 𝑥𝑛] .

en we can construct a formula 𝐹◻[𝑥1, … , 𝑥𝑛] of Gödel logic su that

‖‖◻(𝑥1, … , 𝑥𝑛)‖‖S𝑴,𝒆 = ‖‖𝐹◻[𝑥1, … , 𝑥𝑛]‖‖G𝑴,𝒆

for every model 𝑴 of 𝖫𝖮𝖤 and every 𝑴-evaluation 𝒆.

Proof. We define the formula 𝐹◻[𝑥1, … , 𝑥𝑛] as

(𝐹𝐴1
∧ 𝑡1[𝑥1, … , 𝑥𝑛]) ∨ … ∨ (𝐹𝐴𝑚

∧ 𝑡𝑚[𝑥1, … , 𝑥𝑛]) .

where ea 𝐹𝐴𝑗
(1 ≤ 𝑗 ≤ 𝑚) is determined by Lemma 4.4.1.

Note that by Lemma 4.4.1 the following holds for every 1 ≤ 𝑗 ≤ 𝑚:

• If 𝑴, 𝒆 ⊨ 𝐴𝑗 , then ‖𝐹𝐴𝑗
‖G𝑴,𝒆 = ‖1̄‖𝑴 and therefore ‖𝐹𝐴𝑗

∧ 𝑡𝑗‖G𝑴,𝒆 = ‖𝑡𝑗‖𝑴,𝒆.

• If 𝑴, 𝒆 ⊭ 𝐴𝑗 , then ‖𝐹𝐴𝑗
‖G𝑴,𝒆 = ‖0̄‖𝑴 and therefore ‖𝐹𝐴𝑗

∧ 𝑡𝑗‖G𝑴,𝒆 = ‖0̄‖𝑴 .

Now assume that ‖◻(𝑥1, … , 𝑥𝑛)‖S𝑴,𝒆 = ‖𝑡𝑗1
‖𝑴,𝒆 for some 1 ≤ 𝑗1 ≤ 𝑚. en

𝑴, 𝒆 ⊨ 𝐴𝑗1
. Let 1 ≤ 𝑗2 ≤ 𝑚 su that ‖𝐹𝐴𝑗2

‖G𝑴,𝒆 ≠ 0̄. en, as seen above, it must be
the case that 𝑴, 𝒆 ⊨ 𝐴𝑗2

. Due to functionality we get that ‖𝑡𝑗1
‖𝑴,𝒆 = ‖𝑡𝑗2

‖𝑴,𝒆.
erefore, for every 1 ≤ 𝑗 ≤ 𝑚, we have ‖𝐹𝐴𝑗

∧ 𝑡𝑗‖G𝑴,𝒆 = ‖𝑡𝑗1
‖𝑴,𝒆 or ‖𝐹𝐴𝑗

∧
𝑡𝑗‖G𝑴,𝒆 = ‖0̄‖𝑴 . us, by the definition of Gödel disjunction, ‖𝐹◻‖G𝑴,𝒆 = ‖𝑡𝑗1

‖𝑴,𝒆 =
‖◻(𝑥1, … , 𝑥𝑛)‖S𝑴,𝒆.

Lemma 4.4.3. For every formula 𝜑 of a logic S that is specified over the theory 𝖫𝖮𝖤
we can construct a formula 𝐹𝜑 of Gödel logic su that ‖𝜑‖S𝑴,𝒆 = ‖𝐹𝜑‖G𝑴,𝒆 for every
model 𝑴 of 𝖫𝖮𝖤 and every 𝑴-evaluation 𝒆.

Proof. e proof is by induction on the structure of 𝜑.

• If 𝜑 = 0̄, 𝜑 = 1̄ or 𝜑 = 𝑥 for a variable 𝑥, we take 𝐹𝜑 = 𝜑 and the identity
clearly holds.
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• If 𝜑 = ◻𝑖(𝜓1, … , 𝜓𝑛) for one of the connectives ◻𝑖, then we know by the
induction hypothesis that, for every 1 ≤ 𝑗 ≤ 𝑛, there is a formula 𝐹𝜓𝑗

su that

‖𝜓𝑗‖S𝑴,𝒆 = ‖𝐹𝜓𝑗
‖G𝑴,𝒆. Now we take some fresh variables 𝑥1, …, 𝑥𝑛 and define

the evaluation 𝒆໗ by

𝒆໗(𝑣) =
๨

‖𝜓𝑗‖S𝑴,𝒆 if 𝑣 = 𝑥𝑗 for some 1 ≤ 𝑗 ≤ 𝑛
𝑣 otherwise .

Due to truth-functionality we get

‖𝜑‖S𝑴,𝒆 = ‖‖◻𝑖(𝜓1, … , 𝜓𝑛)‖‖S𝑴,𝒆 = ‖‖◻𝑖(𝑥1, … , 𝑥𝑛)‖‖S𝑴,𝒆′ .

Now we apply Lemma 4.4.2 and conclude

‖‖◻𝑖(𝑥1, … , 𝑥𝑛)‖‖S𝑴,𝒆′ = ‖‖𝐹◻𝑖
[𝑥1, … , 𝑥𝑛]‖‖

G

𝑴,𝒆′ = ‖‖𝐹◻𝑖
[𝐹𝜓1

, … , 𝐹𝜓𝑛
]‖‖
G

𝑴,𝒆 .

us, 𝐹◻𝑖
[𝐹𝜓1

, … , 𝐹𝜓𝑛
] is the desired formula 𝐹𝜑.

In the last step we also have to take into account that the status of validity of the
transformed formula depends on the designating predicate of the specified logic.

eorem 4.4.4. For every formula 𝜑 of a logic S that is specified over the theory 𝖫𝖮𝖤
we can construct a formula 𝜑໗ su that for every model 𝑴 of 𝖫𝖮𝖤, 𝜑 is valid in the
specified logic S of 𝑴 if and only if 𝜑໗ is valid in the Gödel logic of 𝑴 .

Proof. Let 𝜑 be a formula of the specified logic S. By 𝐷S[𝑥] we denote the designating
predicate of S and by 𝐷G[𝑥] we denote the designating predicate of Gödel logic.

Now by Lemma 4.4.1 we know that there is a formula 𝐹𝐷S
[𝑥] su that

𝑴, 𝒆 ⊨ 𝐷S[𝑥] if and only if ‖‖𝐹𝐷S
[𝑥]‖‖

G

𝑴,𝒆 = ‖1̄‖𝑴 . (4.1)

for every model 𝑴 of 𝖫𝖮𝖤 and every 𝑴-evaluation 𝒆.
By Lemma 4.4.3 there is a formula 𝐹𝜑 su that ‖𝜑‖S𝑴,𝒆 = ‖𝐹𝜑‖G𝑴,𝒆 for every

model 𝑴 of 𝖫𝖮𝖤 and every 𝑴-evaluation 𝒆.
We denote by 𝐹𝐷S

[𝐹𝜑] the formula where ea occurrence of the free variable 𝑥
in the formula 𝐹𝐷S

[𝑥] is replaced by 𝐹𝜑. We want to take 𝐹𝐷S
[𝐹𝜑] as our 𝜑໗.

Let 𝒆 be an arbitrary evaluation. Now we define the following evaluations:

𝒆໗(𝑣) =
๨

‖𝜑‖S𝑴,𝒆 if 𝑣 = 𝑥
𝒆(𝑣) if 𝑣 ≠ 𝑥

𝒆∗(𝑣) =
๨

‖‖𝐹𝐷S
[𝐹𝜑]‖‖

G

𝑴,𝒆 if 𝑣 = 𝑥
𝒆(𝑣) if 𝑣 ≠ 𝑥

𝒆×(𝑣) =
๨

‖‖𝐹𝜑‖‖G𝑴,𝒆 if 𝑣 = 𝑥
𝒆(𝑣) if 𝑣 ≠ 𝑥
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Since ‖𝜑‖S𝑴,𝒆 = ‖𝐹𝜑‖G𝑴,𝒆, the evaluations 𝒆໗ and 𝒆× are equal. Now we get the
following ain of equivalences:

𝑴, 𝒆∗ ⊨ 𝐷G[𝑥]

is equivalent to

‖‖𝐹𝐷S
[𝐹𝜑]‖‖

G

𝑴,𝒆 = ‖1̄‖𝑴

because the designating predicate of Gödel logic is 𝑥 = 1̄. e last statement is equiv-
alent to

‖‖𝐹𝐷S
[𝑥]‖‖

G

𝑴,𝒆× = ‖1̄‖𝑴

because the connectives are necessarily truth-functional. Due to the equality of 𝒆໗ and
𝒆× this statement is equivalent to

‖‖𝐹𝐷S
[𝑥]‖‖

G

𝑴,𝒆′ = ‖1̄‖𝑴 .

Finally, we may apply (4.1) from above and get that the last statement is equivalent to

𝑴, 𝒆໗ ⊨ 𝐷S[𝑥] .

Now since 𝒆 was an arbitrary evaluation and 𝒆໗ and 𝒆∗ were suitably defined we
may conclude that 𝜑 is valid in the specified logic of 𝑴 if and only if 𝜑໗ is valid in
the Gödel logic of 𝑴 .

is shows that every logic that is specified over a model of 𝖫𝖮𝖤 can be embedded
into the corresponding Gödel logic. Note that our proof is fully constructive whi
means that we can extract an explicit procedure that tells us how the formula 𝜑໗ can
be constructed.

4.5 Dense linear orders with endpoints

So far, the conditions of the specifications were required to be quantifier-free (compare
Definition 4.1.3). e natural question to ask is whether this requirement is necessary
for obtaining the preceding result.

We can easily show that this is indeed the case by introducing the concept of
density. A linear order is dense if between two non-identical points we always find a
third one that lies in between.

Definition 4.5.1. e theory 𝖣𝖫𝖮𝖤 of dense linear orders with endpoints is the de-
ductive closure of the theory 𝖫𝖮𝖤 together with the additional axiom of density

(D) ∀𝑥∀𝑦(𝑥 < 𝑦 ⊃ ∃𝑧(𝑥 < 𝑧 ∧ 𝑧 < 𝑦)) .
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Clearly, 𝖣𝖫𝖮𝖤 only has models with infinite cardinality. A natural example of a
dense, linearly ordered set is the real unit interval [0, 1] with the usual smaller-than
relation on the real numbers. We call this model 𝑴 [0,1]. An example of a model of
𝖫𝖮𝖤 in whi the density axiom does not hold is the set ℕ ∪ {∞} whi is the set
of natural numbers with the usual smaller-than relation together with an artificial
maximal element ∞. We call this model 𝑴 (∞).

We can now specify a connective that simply es whether the density property
holds for two elements.

𝐷(𝑥, 𝑦) =
๨

1̄ if 𝑥 < 𝑦 ⊃ ∃𝑧(𝑥 < 𝑧 ∧ 𝑧 < 𝑥)
0̄ otherwise .

Consider now the specified logic D that only consists of the connective 𝐷 and
has the designating predicate 𝑥 = 1̄. Although this logic is rather meaningless it
serves as a simple counterexample that our theorem can fail for specifications allowing
quantifiers. It is clear that the formula 𝐷(𝑥, 𝑦) is valid in the specified logic D of a
model 𝑴 of 𝖫𝖮𝖤 if and only if 𝑴 fulfills the density axiom.

Suppose, for the sake of contradiction, that eorem 4.4.4 still holds. e formula
𝐷(𝑥, 𝑦) is valid in the logic D of the 𝖫𝖮𝖤-model 𝑴 [0,1] because the set [0, 1] is dense.
By our theorem we therefore know that there is a formula 𝜑໗ su that 𝜑໗ is valid
in the Gödel logic of 𝑴 [0,1]. Since all infinite-valued Gödel logics coincide, we can
apply eorem 4.3.7 and get that 𝜑໗ is valid in the Gödel logic of 𝑴 (∞). Now we go
ba again with eorem 4.4.4 and conclude that the formula 𝐷(𝑥, 𝑦) is valid in the
logic D of the model 𝑴 (∞). But this cannot be the case because the set ℕ ∪ {∞} is
not dense. erefore the connective 𝐷 cannot be defined as an abbreviating formula
with connectives of Gödel logic.

However, there might still be special cases in whi the full generality of our result
is possible. One important case in fact is the theory 𝖣𝖫𝖮𝖤. It is well-known that
𝖣𝖫𝖮𝖤 admits quantifier elimination (see for example the classic book by Kreisel and
Krivine [76])

eorem 4.5.2. For every formula 𝜑 of 𝖣𝖫𝖮𝖤 there is an equivalent quantifier-free
formula 𝜑໗ su that 𝖣𝖫𝖮𝖤 ⊨ 𝜑 if and only if 𝖣𝖫𝖮𝖤 ⊨ 𝜑໗.

Note that the usual proof gives an explicit procedure that puts a formula in its
quantifier-free form. erefore every specification over 𝖣𝖫𝖮𝖤 can be transformed
into a quantifier-free specification and thus our result can still be applied. Since𝖣𝖫𝖮𝖤
only has models with infinite cardinality, every specified logic over𝖣𝖫𝖮𝖤 is subsumed
by infinite-valued Gödel logic.





CHAPTER 5
A hybrid logic

In this apter, we consider, for every continuous t-norm ∗, a logic that we call S∗.
We follow the definitions of [38] where the logic SŁ, obtained from the Łukasiewicz
t-norm, was discussed. We restrict ourselves to the propositional case.

e main idea in this approa is to measure the amount of truth of propositional
variables in a precisification space whi can be aributed to Kamp [71]. is mea-
sure determines the truth values of propositional variables. Complex formulas are
interpreted according to the truth functions given by a continuous t-norm. Further-
more, a supertruth operator is added that expresses truth in all precisifications. is
approa is particularly interesting because it addresses the question how the truth
values of atomic statements should be determined.

Hájek’s “probably” modality [56] has some similarities to our system (compare
Section 3.6.3). e main differences are that Hájek does not include something like the
supertruth modality and does not only measure propositional variables but arbitrary
formulas. Furthermore, the questions studied in the following are of a different nature
than the ones answered by Hájek.

ere is also another way of “plugging together” fuzzy logic and supervaluation-
ism: An approa complementary to ours is Hájek’s generalization of Shapiro’s ma-
inery [93] to interval-based fuzzy logics [58]. In that framework, the interpretation
of a formula at a precisification is not classical, but based on a t-norm, and every
propositional variable receives a set of possible truth values [𝑎, 𝑏]. Precisifying then
means to reduce the set of truth values to a subinterval [𝑐, 𝑑] ⊆ [𝑎, 𝑏]. In a complete-
ly sharp precisification all truth value intervals of propositional variables collapse to
single truth values.

5.1 Definitions and basic properties

As explained above, the basic idea of our hybrid logic is to measure the “amount of
truth” in a precisification space. For this purpose we have to make precise what we

97



98 CHAPTER 5. A HYBRID LOGIC

mean by measuring. We define the measure in a way that allows us to obtain truth
values for propositional variables from it. e concept that is needed here is that of a
probability measure. As a simplification, we restrict ourselves to precisification spaces
with only countably many precisifications.

Definition 5.1.1. A probability measure on a countable set 𝑆 is a function 𝜇 from 𝑆
to the unit interval [0, 1] su that ∑𝑠∈𝑆 𝜇(𝑠) = 1. To simplify notation we extend 𝜇
to subsets of 𝑆 as follows: 𝜇(𝑇 ) = ∑𝑠∈𝑇 𝜇(𝑠) for every 𝑇 ⊆ 𝑆 .

ere are some basic properties of probability measures that we will need quite
oen.

Proposition 5.1.2. Let 𝜇 be a probability measure on a set 𝑆 . en the following holds:

• If 𝑇 ⊆ 𝑆 and 𝑈 ⊆ 𝑆 are two disjoint subsets of 𝑆 , i.e., 𝑇 ∩ 𝑈 = ∅, then
𝜇(𝑇 ∪ 𝑈) = 𝜇(𝑇 ) + 𝜇(𝑈).

• If 𝑇 ⊆ 𝑈 ⊆ 𝑆 , then 𝜇(𝑇 ) ≤ 𝜇(𝑈).

• If 𝑇 ⊆ 𝑈 ⊆ 𝑆 , then 𝜇(𝑈 ⧵ 𝑇 ) = 𝜇(𝑈) − 𝜇(𝑇 ).

Proof. e first property follows directly from the definition. Assume that 𝑇 ∩ 𝑈 = ∅.
en we have

𝜇(𝑇 ∪ 𝑈) = ෌
𝑠∈𝑇 ∪𝑈

𝜇(𝑠) = ෌
𝑠∈𝑇

𝜇(𝑠) + ෌
𝑠∈𝑈

𝜇(𝑠) = 𝜇(𝑇 ) + 𝜇(𝑈) .

If 𝑇 ⊆ 𝑈 , we have

𝜇(𝑈) = ෌
𝑠∈𝑈

𝜇(𝑠) = ෌
𝑠∈𝑇

𝜇(𝑠) + ෌
𝑠∈𝑈 ⧵𝑇

𝜇(𝑠) = 𝜇(𝑇 ) + ෌
𝑠∈𝑈 ⧵𝑇

𝜇(𝑠) .

Since 𝜇(𝑠) ≥ 0 for every 𝑠 ∈ 𝑆 we get ∑𝑠∈𝑈 ⧵𝑇 𝜇(𝑠) ≥ 0 and therefore 𝜇(𝑈) ≥ 𝜇(𝑇 ).
Furthermore we get

𝜇(𝑈 ⧵ 𝑇 ) = ෌
𝑠∈𝑈 ⧵𝑇

𝜇(𝑠) = 𝜇(𝑈) − 𝜇(𝑇 ) .

We now consider precisification spaces that are equipped with a probability mea-
sure on the set of precisifications and give appropriate definitions for the truth values
of formulas in su a structure. We will only work in the simplest possible seing:
we restrict ourselves to propositional variables and do not impose an admissibility re-
lation on the precisifications. As will be seen in the following, already in this simple
seing many interesting questions can be asked.
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Definition 5.1.3. A precisification space𝑺 is a triple𝑺 = ⟨𝑷, (𝑴𝑠)𝑠∈𝑷 , 𝜇⟩ that consists
of a nonempty, countable set 𝑷 of precisifications, a function (𝑴𝑠)𝑠∈𝑷 that assigns a
classical propositional interpretation 𝑴𝑠 to every precisification 𝑠 ∈ 𝑷 , and a prob-
ability measure 𝜇 on 𝑷 . As a simplification, we may write 𝑠 ∈ 𝑺 instead of 𝑠 ∈ 𝑷 .
Furthermore, we define the interpretation of formulas in a precisification space with
an associated continuous t-norm ∗.

e local truth value ‖𝜑‖𝑠,𝑺 of a formula 𝜑 at a precisification 𝑠 ∈ 𝑺 in a precisi-
fication space 𝑺 is inductively defined by:

‖0̄‖𝑠,𝑺 = 0

‖𝑝‖𝑠,𝑺 =
๨

1 if ‖𝑝‖𝑴𝑠
= 1

0 otherwise
for atomic 𝑝

‖𝜑 & 𝜓‖𝑠,𝑺 =
๨

1 if ‖𝜑‖𝑠,𝑺 = 1 and ‖𝜓‖𝑠,𝑺 = 1
0 otherwise

‖𝜑 ⊃ 𝜓‖𝑠,𝑺 =
๨

0 if ‖𝜑‖𝑠,𝑺 = 1 and ‖𝜓‖𝑠,𝑺 = 0
1 otherwise

‖S𝜑‖𝑠,𝑺 =
๨

1 if ‖𝜑‖𝑡,𝑺 = 1 for every 𝑡 ∈ 𝑺
0 otherwise .

e global truth value ‖𝜑‖∗
𝑺 of a formula 𝜑 for a continuous t-norm ∗ and its

residuum ⇒∗ is inductively defined as follows:

‖0̄‖∗
𝑺 = 0

‖𝑝‖∗
𝑺 = 𝜇 ධබ𝑠 ∈ 𝑺 ∣ ‖𝑝‖𝑠,𝑺 = 1භන for atomic 𝑝

‖𝜑 & 𝜓‖∗
𝑺 = ‖𝜑‖∗

𝑺 ∗ ‖𝜓‖∗
𝑺

‖𝜑 ⊃ 𝜓‖∗
𝑺 = ‖𝜑‖∗

𝑺 ⇒∗ ‖𝜓‖∗
𝑺

‖S𝜑‖∗
𝑺 =

๨
1 if ‖𝜑‖𝑠,𝑺 = 1 for every 𝑠 ∈ 𝑺
0 otherwise .

We sometimes omit the superscript in ‖ ⋅ ‖ if the result does not depend on the t-norm.
If a conjunction is in the scope of an S-operator, we usually write 𝜑 ∧ 𝜓 instead of
𝜑 & 𝜓 for convenience. If a conjunction is not in the scope of an S-operator, then
𝜑 & 𝜓 refers to the strong conjunction connective of fuzzy logic and 𝜑 ∧ 𝜓 refers to
the weak conjunction connective of fuzzy logic and is an abbreviation for 𝜑 & (𝜑 ⊃ 𝜓)
(see Sections 3.2.1 and 3.4).

Using precisification spaces as interpretation structures of formulas, we obtain, for
every continuous t-norm ∗, a logic that we call S∗. e notions of truth and validity
in this logic are defined in the standard way.
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Definition 5.1.4. Let ∗ be a continuous t-norm. A formula 𝜑 is true for ∗ in a precisi-
fication space 𝑺 iff ‖𝜑‖∗

𝑺 = 1. A formula 𝜑 is valid in S∗ iff 𝜑 is true for ∗ in every
precisification space 𝑺 .

Furthermore, we introduce some simplifying notation.

Definition 5.1.5. Let 𝑺 be a precisification space with probability measure 𝜇. For a
formula 𝜑, the extension of 𝜑 is

[𝜑]𝑺 = බ𝑠 ∈ 𝑺 ∣ ‖𝜑‖𝑠,𝑺 = 1භ

and the measure of 𝜑 is

⟦𝜑⟧𝑺 = 𝜇 ධ[𝜑]𝑺න .

Note that by definition ‖𝑝‖𝑺 = ⟦𝑝⟧𝑺 for every propositional variable 𝑝 in a pre-
cisification space 𝑺 .

Remark. For every formula 𝜑 and every precisification space 𝑺 with a set of precisifi-
cations 𝑷 , the following statements are equivalent:

(i) ‖S𝜑‖𝑺 = 1

(ii) ‖S𝜑‖𝑠,𝑺 = 1 for some 𝑠 ∈ 𝑷

(iii) ‖S𝜑‖𝑠,𝑺 = 1 for all 𝑠 ∈ 𝑷

(iv) [𝜑]𝑺 = 𝑷

(v) [S𝜑]𝑺 = 𝑷

Example. Consider a precisification space 𝑺 with probability measure 𝜇 consisting of
two precisifications 𝑠1 and 𝑠2. e local truth values for a propositional variable 𝑝 are
given by ‖𝑝‖𝑠1,𝑺 = 1 and ‖𝑝‖𝑠2,𝑺 = 0 and 𝜇 is defined by 𝜇(𝑠1) = 1 and 𝜇(𝑠2) = 0.
en we get ‖𝑝‖𝑺 = 1 and ‖S𝑝‖𝑺 = 0. us, in that precisification space supertruth
and 1-truth come apart for propositional variables.

One possibility to overcome the issue of this example is to forbid precisifications
with measure 0, whi leads to the concept of positive precisification spaces.

Definition 5.1.6. A precisification space 𝑺 with probability measure 𝜇 is positive iff
𝜇(𝑠) > 0 for every 𝑠 ∈ 𝑺 . In su a case, 𝜇 is called a positive probability measure.

One could argue that it makes no sense to give the measure 0 to any precisifica-
tion because in this case the precisification should not be included in the precisification
space anyway. Following this argument, all precisification spaces should be positive.
In positive precisification spaces the notions of truth and falsehood in terms of truth
values and in terms of supertruth and superfalsehood coincide for propositional vari-
ables.
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Proposition 5.1.7. For every positive precisification 𝑺 and every 𝑝 a propositional
variable the following holds:

• ‖𝑝‖𝑺 = 1 if and only if ‖S𝑝‖𝑺 = 1

• ‖𝑝‖𝑺 = 0 if and only if ‖S¬𝑝‖𝑺 = 1

Proof. In both cases, the direction from right to le holds for all precisification spaces
and directly follows from the definitions.

Assume that ‖𝑝‖𝑺 = 1 and suppose that there is an 𝑠 ∈ 𝑺 su that ‖𝑝‖𝑠,𝑺 = 0.
en the sets [𝑝]𝑺 and {𝑠} are disjoint and by Proposition 5.1.2 we have

1 ≥ 𝜇 ධ[𝑝]𝑺 ∪ {𝑠}න = 𝜇 ධ[𝑝]𝑺න + 𝜇(𝑠) = ‖𝑝‖𝑺 + 𝜇(𝑠) = 1 + 𝜇(𝑠) > 1 + 0 = 1

whi is a contradictory statement. erefore ‖𝑝‖𝑠,𝑺 = 1 for all 𝑠 ∈ 𝑺 whi means
that ‖S𝑝‖𝑺 = 1.

Assume that ‖𝑝‖𝑺 = 0 and suppose that there is an 𝑠 ∈ 𝑺 su that ‖¬𝑝‖𝑠,𝑺 = 0.
en ‖𝑝‖𝑠,𝑺 = 1 and therefore {𝑠} ⊆ [𝑝]𝑺 . By Proposition 5.1.2 we then get

0 = ‖𝑝‖𝑺 = 𝜇 ධ[𝑝]𝑺න ≥ 𝜇({𝑠}) = 𝜇(𝑠) > 0

whi is a contradictory statement. erefore ‖¬𝑝‖𝑠,𝑺 = 0 for all 𝑠 ∈ 𝑺 whi means
that ‖S¬𝑝‖𝑺 = 1.

Another basic question that we answer now is to give a simple condition under
whi precisification spaces agree on the truth values of formulas.

Proposition 5.1.8. Let 𝑺1 and 𝑺2 be two precisification spaces, ∗ a continuous t-norm,
and ໭ a set of propositional variables. en ‖𝜑‖∗

𝑺1
= ‖𝜑‖∗

𝑺2
for every formula 𝜑

containing only propositional variables of ໭ if and only if the following two conditions
hold:

(i) ‖𝑝‖𝑺1
= ‖𝑝‖𝑺2

for every propositional variable 𝑝 ∈ ໭.

(ii) ‖S𝜓‖𝑺1
= ‖S𝜓‖𝑺2

for every formula 𝜑.

Proof. e direction from le to right is clear, we simply set 𝜑 = 𝑝 or 𝜑 = S𝜓
respectively. We prove the direction from right to le by induction on the structure
of 𝜑.

• 𝜑 = 0̄: ‖0̄‖𝑺1
= 0 = ‖0̄‖𝑺2

.

• 𝜑 = 𝑝 ∈ ໭: en by condition (i) we have ‖𝑝‖𝑺1
= ‖𝑝‖𝑺2

.

• 𝜑 = S𝜓 : en by condition (ii) we have ‖S𝜓‖𝑺1
= ‖S𝜓‖𝑺2

.

• 𝜑 = 𝜓&𝜒 : By the induction hypothesis we have ‖𝜓‖∗
𝑺1

= ‖𝜓‖∗
𝑺2

and ‖𝜒‖∗
𝑺1

=
‖𝜒‖∗

𝑺2
. erefore we get

‖𝜓 & 𝜒‖∗
𝑺1

= ‖𝜓‖∗
𝑺1

∗ ‖𝜒‖∗
𝑺1

= ‖𝜓‖∗
𝑺2

∗ ‖𝜒‖∗
𝑺2

= ‖𝜓 & 𝜒‖∗
𝑺2
.
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• 𝜑 = 𝜓 ⊃𝜒 : By the induction hypothesis we have ‖𝜓‖∗
𝑺1

= ‖𝜓‖∗
𝑺2

and ‖𝜒‖∗
𝑺1

=
‖𝜒‖∗

𝑺2
. erefore we get

‖𝜓 ⊃ 𝜒‖∗
𝑺1

= ෹‖𝜓‖∗
𝑺1

⇒∗ ‖𝜒‖∗
𝑺1෺ = ෹‖𝜓‖∗

𝑺2
⇒∗ ‖𝜒‖∗

𝑺2෺ = ‖𝜓 ⊃ 𝜒‖∗
𝑺2
.

We can make the second condition in the previous proposition more precise.

Proposition 5.1.9. Let 𝑺1 and 𝑺2 be two precisification spaces and ໭ a set of proposi-
tional variables. en ‖S𝜓‖𝑺1

= ‖S𝜓‖𝑺2
for every formula 𝜑 containing only propo-

sitional variables in ໭ if the following two conditions hold:

(i) For every precisification 𝑠1 ∈ 𝑺1 there is a precisification 𝑠2 ∈ 𝑺2 su that
‖𝑝‖𝑠1,𝑺1

= ‖𝑝‖𝑠2,𝑺2
for every propositional variable 𝑝 ∈ ໭.

(ii) For every precisification 𝑠2 ∈ 𝑺2 there is a precisification 𝑠1 ∈ 𝑺1 su that
‖𝑝‖𝑠2,𝑺2

= ‖𝑝‖𝑠1,𝑺1
for every propositional variable 𝑝 ∈ ໭.

Proof. Assume that conditions (i) and (ii) hold. We first prove the following claim:

(i’) For every precisification 𝑠1 ∈ 𝑺1 there is a precisification 𝑠2 ∈ 𝑺2 su that
‖𝜑‖𝑠1,𝑺1

= ‖𝜑‖𝑠2,𝑺2
for every formula 𝜑.

(ii’) For every precisification 𝑠2 ∈ 𝑺2 there is a precisification 𝑠1 ∈ 𝑺1 su that
‖𝜑‖𝑠2,𝑺2

= ‖𝜑‖𝑠1,𝑺1
for every formula 𝜑.

e proof is by induction on the structure of 𝜑. Let 𝜑 be a formula. We may
assume that (i’) and (ii’) hold for all formulas that are “smaller” than 𝜑. We show that
condition (i’) also holds for 𝜑, the proof of condition (ii’) uses the same arguments.

Let 𝑠1 ∈ 𝑺1. By condition (i) there is an 𝑠2 ∈ 𝑺 su that ‖𝑝‖𝑠1,𝑺1
= ‖𝑝‖𝑠2,𝑺2

for
every propositional variable 𝑝 ∈ ໭. We have to show that ‖𝜑‖𝑠1,𝑺1

= ‖𝜑‖𝑠2,𝑺2
for

every formula 𝜑.

• 𝜑 = 0̄: en ‖0̄‖𝑠1,𝑺1
= 0 = ‖0̄‖𝑠2,𝑺2

.

• 𝜑 = 𝑝 ∈ ໭: ere is nothing to show because ‖𝑝‖𝑠1,𝑺1
= ‖𝑝‖𝑠2,𝑺2

.

• 𝜑 = S𝜓 : We show that ‖S𝜓‖𝑠1,𝑺1
= 1 if and only if ‖S𝜓‖𝑠2,𝑺2

= 1. Since
‖S𝜓‖𝑠1,𝑺1

∈ {0, 1} and ‖S𝜓‖𝑠2,𝑺2
∈ {0, 1} this implies that ‖S𝜓‖𝑠1,𝑺1

=
‖S𝜓‖𝑠2,𝑺2

.

Assume that ‖S𝜓‖𝑠1,𝑺1
= 1 and suppose that ‖S𝜓‖𝑠2,𝑺2

= 0. en there is
some 𝑡2 ∈ 𝑺2 su that ‖𝜓‖𝑡2,𝑺2

= 0. By the induction hypothesis, (ii’) holds
and there is some 𝑡1 ∈ 𝑺1 su that ‖𝜓‖𝑡1,𝑺1

, ‖𝜓‖𝑡2,𝑺2
= 0. en ‖S𝜓‖𝑠1,𝑺1

= 0
whi contradicts our assumption. erefore ‖S𝜓‖𝑠2,𝑺2

= 1. e direction from
right to le can be shown using the same argument.
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• 𝜑 = 𝜓 ∧ 𝜒 : By the induction hypothesis we know that ‖𝜓‖𝑠1,𝑺1
= ‖𝜓‖𝑠2,𝑺2

and
‖𝜓‖𝑠1,𝑺1

= ‖𝜓‖𝑠2,𝑺2
. erefore also ‖𝜓 ∧ 𝜒‖𝑠1,𝑺1

= ‖𝜓 ∧ 𝜒‖𝑠1,𝑺2
.

For the remaining connectives the same argument as for conjunction applies.
We now show that ‖S𝜓‖𝑺1

= 1 if and only if ‖S𝜓‖𝑺2
= 1whi implies ‖S𝜓‖𝑺1

=
‖S𝜓‖𝑺2

= 1. Assume that ‖S𝜓‖𝑺1
. en there is some 𝑠1 ∈ 𝑺1 su that ‖S𝜓‖𝑠1,𝑺1

=
1. By the claim we just proved there is an 𝑠2 ∈ 𝑺2 su that ‖S𝜓‖𝑠2,𝑺2

= 1. en
we know that ‖S𝜓‖𝑺2

= 1. e other direction can be shown using the same argu-
ment.

We also have a certain finite model property, observed in [38] where it is formu-
lated for the logic SŁ.

Proposition 5.1.10. Let 𝑺 be a (positive) precisification space and 𝜑 a formula that
contains 𝑛 different propositional variables. en there is a (positive) precisification
space 𝑺໗ with 2𝑛 precisifications su that ‖𝜑‖𝑺 = ‖𝜑‖𝑺 ′ .

Proof. We prove the proposition in two steps. First, we show that we can reduce the
number of precisifications to some 𝑚 ≤ 2𝑛. In the next step, we show that in the case
𝑚 < 2𝑛 we can also get an equivalent precisification space with 2𝑛 precisifications. By
໭ we denote the set of propositional variables contained in 𝜑.

Let 𝑺 be a precisification space with a set of precisifications 𝑷 and a probability
measure 𝜇. For every subset 𝑆 ⊆ ໭ we define the formula 𝜑𝑆 by

𝜑𝑆 = ැ
𝑝∈𝑆

𝑝 ∧ ැ
𝑝∈໭⧵𝑆

¬𝑝 .

We define a precisification space 𝑺໗ that has certain subsets of ໭ as elements of its set
of precisifications 𝑷 ໗ and a probability measure 𝜇໗ by

𝑷 ໗ = බ𝑆 ⊆ ໭ ∣ [𝜑𝑆]𝑺 ≠ ∅භ
𝜇(𝑆) = 𝜇 ධ[𝜑𝑆]𝑺න

‖𝑝‖𝑆,𝑺 ′ =
๨

1 if 𝑝 ∈ 𝑆
0 otherwise

for all 𝑆 ∈ 𝑷 ໗ and 𝑝 ∈ ໭.
First we show that 𝑺 is well-defined. Due to ‖𝑝‖𝑠,𝑺 ∈ {0, 1} for every 𝑝 ∈ ໭ and

every 𝑠 ∈ 𝑷 it is clear that for every precisification 𝑠 ∈ 𝑷 there is exactly one 𝑆 ∈ 𝑷 ໗

su that ‖𝜑𝑆‖𝑠,𝑺 = 1. erefore we have a disjoint partition 𝑷 = ⋃𝑆∈𝑷 ′[𝜑𝑆]𝑺 and
we get

1 = 𝜇(𝑷 ) = 𝜇
⎛
⎜
⎜
⎝𝑆⊆𝑷 ′

[𝜑𝑆]𝑺
⎞
⎟
⎟
⎠

= ෌
𝑆∈𝑷 ′

𝜇 ධ[𝜑𝑆]𝑺න = ෌
𝑆∈𝑷 ′

𝜇໗(𝑆) = 𝜇໗(𝑷 ໗) .
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Now we show that ‖𝜑‖𝑺 = ‖𝜑‖𝑺 ′ for every formula 𝜑. Note that ‖𝑝‖𝑠,𝑺 = 1 if
and only if there is some 𝑆 ∈ 𝑷 ໗ su that ‖𝜑𝑆‖𝑠,𝑺 = 1 and 𝑝 ∈ 𝑆 . erefore we
have a disjoint partition [𝑝]𝑺 = ⋃𝑆∈𝑷 ′,𝑝∈𝑆[𝜑𝑆]𝑺 and we get

‖𝑝‖𝑺 = 𝜇 ධ[𝑝]𝑺න = 𝜇
⎛
⎜
⎜
⎜
⎝

ී
𝑆∈𝑷 ′
𝑝∈𝑆

[𝜑𝑆]𝑺

⎞
⎟
⎟
⎟
⎠

= ෌
𝑆∈𝑷 ′
𝑝∈𝑆

𝜇 ධ[𝜑𝑆]𝑺න

= ෌
𝑆∈𝑷 ′
𝑝∈𝑆

𝜇໗(𝑆) = 𝜇 ධ[𝑝]𝑺 ′න = ‖𝑝‖𝑺 ′

because ‖𝑝‖𝑆,𝑺 = 1 if and only if 𝑝 ∈ 𝑆 .
For every 𝑠 ∈ 𝑺 , there is some 𝑠໗ ∈ 𝑺໗ su that ‖𝑝‖𝑠,𝑺 = ‖𝑝‖𝑠′,𝑺 ′ for every

𝑝 ∈ ໭: we know that there is some 𝑆 ⊆ 𝑷 ໗ su that ‖𝜑𝑆‖𝑠,𝑺 = 1 and therefore
pi 𝑠໗ = 𝑆 . Also the converse holds: for every 𝑆 ∈ 𝑺໗, there is some 𝑠 ∈ 𝑺 su
that ‖𝑝‖𝑆,𝑺 ′ = ‖𝑝‖𝑠,𝑺 for every 𝑝 ∈ ໭. Since 𝑆 ⊆ 𝑷 ໗, there is some 𝑠 ∈ 𝑺 su that
‖𝜑𝑆‖𝑠,𝑺 = 1.

By Proposition 5.1.8 and Proposition 5.1.9 we then know that ‖𝜑‖𝑺 = ‖𝜑‖𝑺 ′ for
every formula 𝜑. Since the set ໭ has 2|໭| = 2𝑛 subsets, the precisification space 𝑺໗

has at most 2𝑛 precisifications. If 𝑺 was a positive precisification space, then, by the
definitions of 𝜇໗ and 𝑷 ໗, 𝑺໗ clearly is a positive precisification space, too.

We now prove the second part. Assume that 𝑺 is a precisification space with a set
𝑷 of 𝑚 < 2𝑛 precisifications and a probability measure 𝜇. Let 𝑡 ∈ 𝑷 ≠ ∅ be one of the
precisifications of 𝑺 . en we consider a set 𝑆 of 𝑘 = 2𝑛 − 𝑚 new precisifications. We
define the precisification space 𝑺໗ with a set of precisifications 𝑷 ໗ and a probability
measure 𝜇 by seing 𝑷 ໗ = 𝑷 ⧵ {𝑡} ∪ 𝑆 and

𝜇໗(𝑠) =
๨

𝜇(𝑠) if 𝑠 ∈ 𝑷 ⧵ {𝑡}
𝜇(𝑇 )
|𝑆| otherwise

for every 𝑠 ∈ 𝑷 .
en we have 𝜇(𝑆) = ∑𝑠∈𝑆 𝜇(𝑇 )/|𝑆| = |𝑆| ⋅ 𝜇(𝑇 )/|𝑆| = 𝜇(𝑇 ). We now show

that 𝜇 is well-defined:

෌
𝑠∈𝑷 ′

𝜇(𝑠) = ෌
𝑠∈𝑷 ⧵{𝑡}

𝜇(𝑠) + ෌
𝑠∈𝑆

𝜇(𝑠) = (1 − 𝜇(𝑇 )) + 𝜇(𝑇 ) = 1

Now let 𝑝 be a propositional variable. If 𝑡 ∉ [𝑝]𝑺 , then [𝑝]𝑺 ′ = [𝑝]𝑺 ⊆ 𝑷 ⧵ {𝑡}
and therefore ‖𝑝‖𝑺 ′ = 𝜇໗([𝑝]𝑺 ′) = 𝜇([𝑝]𝑺 ′) = 𝜇([𝑝]𝑺) = ‖𝑝‖𝑺 . If 𝑡 ∈ [𝑝]𝑺 , then
[𝑝]𝑺 ′ = [𝑝]𝑺 ⧵ {𝑡} ∪ 𝑆 . Since [𝑝]𝑺 ⧵ {𝑡} and 𝑆 are disjoint we get

‖𝑝‖𝑺 ′ = 𝜇໗ ධ[𝑝]𝑺 ′න = 𝜇໗ ධ[𝑝]𝑺 ⧵ {𝑡}න + 𝜇໗(𝑆)
= 𝜇 ධ[𝑝]𝑺 ⧵ {𝑡}න + 𝜇(𝑇 )
= 𝜇 ධ[𝑝]𝑺න − 𝜇(𝑇 ) + 𝜇(𝑇 )
= 𝜇 ධ[𝑝]𝑺න = ‖𝑝‖𝑺 .



5.1. DEFINITIONS AND BASIC PROPERTIES 105

For every 𝑠 ∈ 𝑺 , there is some 𝑠໗ ∈ 𝑺໗ su that ‖𝑝‖𝑠,𝑺 = ‖𝑝‖𝑠′,𝑺 ′ for every
propositional variable 𝑝: if 𝑠 ≠ 𝑡, then pi 𝑠໗ = 𝑠 and if 𝑠 = 𝑡, then pi any 𝑠໗ ∈ 𝑆 .
Also the converse holds: for every 𝑠໗ ∈ 𝑺໗, there is some 𝑠 ∈ 𝑺 su that ‖𝑝‖𝑠′,𝑺 =
‖𝑝‖𝑠,𝑺 ′ for every propositional variable 𝑝. If 𝑠 ∉ 𝑆 , then pi 𝑠໗ = 𝑠 and if 𝑠 ∈ 𝑆 ,
then pi 𝑠 = 𝑡.

By Proposition 5.1.8 and Proposition 5.1.9 we then know that ‖𝜑‖𝑺 = ‖𝜑‖𝑺 ′ for
every formula 𝜑. If 𝑺 was a positive precisification space, then, by the definition of 𝜇໗,
𝑺໗ clearly is a positive precisification space, too.

Corollary 5.1.11. A formula 𝜑 is valid in S∗ if and only if ‖𝜑‖∗
𝑺 = 1 for every pre-

cisification spaces 𝑺 with a finite set of precisifications.

Note however that a finite precisification space is not necessarily a “finitary object”
because its probability measure allows all the real numbers in the interval [0, 1].

As already discussed in Section 2.2, precisification spaces can also be seen as in-
terpretation structures of the modal logic S5. is connection affects the notion of
validity in S∗ in a certain way that has been pointed out by Fermüller and Kosik [38].

Proposition 5.1.12. For every continuous t-norm ∗, a formula of the form S𝜑 is valid
in S∗, if and only if 𝜑◻ is valid in S5 where 𝜑◻ denotes the following translation of
𝜑 into a formula of modal logic: every occurrence of the S-operator is replaced by
the necessitation operator ◻ and every occurrence of the conjunction connective & is
replaced by ∧.

A similar question is how the two logics S∗ and FL(∗), the fuzzy logic based on
the continuous t-norm ∗, relate.

Proposition 5.1.13. For every continuous t-norm, every precisification space 𝑺 and
every evaluation 𝒆 the following holds:

• ere is an evaluation 𝒆𝑺 su that ‖𝜑‖∗
𝑺 = ‖𝜑‖∗

𝒆𝑺
for every S-free formula 𝜑.

• ere is a precisification space 𝑺𝒆 su that ‖𝜑‖∗
𝒆 = ‖𝜑‖∗

𝑺𝒆
for every S-free

formula 𝜑.

Proof. We show the easy proof of the first claim. e second claim will be covered
by Lemma 5.6.2 in Section 5.6. Define the evaluation 𝒆𝑺 by 𝒆𝑺(𝑝) = ‖𝑝‖𝑺 for every
propositional variable 𝑝. Let 𝜑 be a formula that does not contain any S-operator.
en all connectives and truth constants occurring in 𝜑. are defined in the same way
for S∗ and FL(∗). e truth value of 𝜑 in both cases then only depends on the truth
values of the propositional variables and therefore we get ‖𝜑‖∗

𝑺 = ‖𝜑‖∗
𝒆𝑺
.

A simple corollary of this observation allows us to relate validity in S∗ to validity
in the corresponding fuzzy logic (as pointed out in [38]).

Corollary 5.1.14. For every continuous t-norm ∗ and every S-free formula 𝜑 the fol-
lowing holds: 𝜑 is valid in S∗ if and only if 𝜑 is valid in FL(∗).
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Next, we show that a certain deduction rule, that is usually called necessitation
rule, holds for our logic.

Proposition 5.1.15. For every continuous t-norm ∗ and every formula 𝜑 the following
holds: if 𝜑 is valid in S∗, then also S𝜑 is valid in S∗.

Proof. Assume that𝜑 is valid in S∗ and let𝑺 be an arbitrary precisification space with
a set of precisifications 𝑷 and a probability measure 𝜇. For every 𝑠 ∈ 𝑺 we define the
precisification space 𝑺𝑠 that has 𝑷 as its set of precisifications, the same local truth
values as 𝑺 , and a probability measure 𝜇𝑠 that is given by

𝜇𝑠(𝑡) =
๨

1 if 𝑡 = 𝑠
0 otherwise

for every 𝑡 ∈ 𝑺𝑠.
For every formula of the form S𝜓 we clearly have ‖S𝜓‖𝑠,𝑺 = ‖S𝜓‖𝑺 = ‖S𝜓‖𝑺𝑠

.
Furthermore, ‖𝑝‖𝑠,𝑺 = ‖𝑝‖𝑺𝑠

∈ {0, 1} for every propositional variable 𝑝 whi be-
comes clear by a simple case distinction. If ‖𝑝‖𝑠,𝑺 = 1, then also ‖𝑝‖𝑠,𝑺𝑠

= 1 and
we have ‖𝑝‖𝑺𝑠

= 𝜇([𝑝]𝑺𝑠
) ≥ 𝜇𝑠(𝑠) = 1 whi means that ‖𝑝‖𝑺𝑠

= 1. If ‖𝑝‖𝑠,𝑺 = 0,
then also ‖𝑝‖𝑠,𝑺𝑠

= 0 and we have ‖𝑝‖𝑺𝑠
= 𝜇([𝑝]𝑺𝑠

) = 1 − 𝜇([¬𝑝]𝑺𝑠
) ≤ 1 − 𝜇𝑠(𝑠) =

1 − 1 = 0 whi means that ‖𝑝‖𝑺𝑠
= 0.

Since these two facts hold we have ‖𝜑‖𝑠,𝑺 = ‖𝜑‖∗
𝑺𝑠

because the t-norm based
connectives behave classically for the truth value set {0, 1}. Furthermore we know
that 𝜑 is valid and therefore ‖𝜑‖∗

𝑺𝑠
= 1. Hence, our argument shows that ‖𝜑‖𝑠,𝑺 = 1

for every 𝑠 ∈ 𝑺 and therefore ‖S𝜑‖𝑺 = 1. Since 𝑺 was an arbitrary precisification
space we get that S𝜑 is valid.

Together with Proposition 5.1.12 we get the following corollary.

Corollary 5.1.16. For a continuous t-norm ∗ and every formula 𝜑 the following holds:
If 𝜑 is valid in S∗, then 𝜑◻ is valid in S5 where 𝜑◻ denotes the following translation
of 𝜑 into a formula of modal logic: every occurrence of the S-operator is replaced by
the necessitation operator ◻ and every occurrence of the conjunction connective & is
replaced by ∧.

One way of syntactically aracterizing a logic is giving an axiomatization in the
form a Hilbert-style proof system. Although we do not give a sound and complete
proof system for our hybrid logic, we want to gain some intuition on what an axioma-
tization could look like. Due to the relations shown above we take the axiomatizations
of S5 and ▵FL(∗) as the starting point of our lile investigation, where ▵ is the global-
ization operator that was discussed in Section 3.6.1. We distinguish between two kinds
of axioms: modal axioms (containing one of the operators S, ◻ or ▵) and non-modal
axioms.

Let us first take a look at the non-modal axioms. An axiomatization of▵FL(∗) can
be obtained by adding to an axiomatization of FL(∗) a certain set of modal axioms.
Due to Corollary 5.1.14 it is clear that every axiom of FL(∗) is also valid in S∗. e
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logic S5 also has non-modal axioms whi are exactly those of classical logic. Some
of these axioms, in particular those relating to the law of excluded middle 𝜑 ∨ ¬𝜑 do
not hold in the fuzzy logic FL(∗). However, if 𝜑 is an axiom of S5, then S𝜑 is valid in
S∗ due to Proposition 5.1.12.

e interesting question now is what the axioms for the S-operator might be. In
Tables 5.1 and 5.2 we have listed all modal axioms of S5 and ▵FL(∗). For ea modal
axiom we have eed whether its “translation” to S∗ is valid.

Axioms of S5 translation into S∗ valid?
(K) ◻(𝜑 ⊃ 𝜓) ⊃ (◻𝜑 ⊃ ◻𝜓) S(𝜑 ⊃ 𝜓) ⊃ (S𝜑 ⊃ S𝜓) ✓
(T) ◻𝜑 ⊃ 𝜑 S𝜑 ⊃ 𝜑 ×
(5) ⬦𝜑 ⊃ ◻⬦𝜑 ¬S𝜑 ⊃ S¬S𝜑 ✓

Table 5.1: Validity of S5-axioms in S∗

Axioms of ▵FL(∗) translation into S∗ valid?
(▵1) ▵𝜑 ⊃ 𝜑 S𝜑 ⊃ 𝜑 ×
(▵2) ▵𝜑 ⊃ ▵▵𝜑 S𝜑 ⊃ SS𝜑 ✓
(▵3) ▵(𝜑 ⊃ 𝜓) ⊃ (▵𝜑 ⊃ ▵𝜓) S(𝜑 ⊃ 𝜓) ⊃ (S𝜑 ⊃ S𝜓) ✓
(▵4) ▵𝜑 ∨ ¬▵𝜑 S𝜑 ∨ ¬S𝜑 ✓
(▵5) ▵(𝜑 ∨ 𝜓) ⊃ (▵𝜑 ∨ ▵𝜓) S(𝜑 ∨ 𝜓) ⊃ (S𝜑 ∨ S𝜓) ×

Table 5.2: Validity of ▵FL(∗)-axioms in S∗

For the semata that are not valid in S∗ it might still be the case that there are
certain instances of the semata that are valid in S∗. One can for example ask the
question whi instances of S𝜑 ⊃ 𝜑 are valid in SŁ. We do not give a complete ar-
acterization, but only hint at some formulas of that form that are valid in S∗ for every
continuous t-norm ∗ (𝑝 and 𝑞 are propositional variables, 𝜑 is a formula):

• S𝑝 ⊃ 𝑝

• (S¬𝑝) ⊃ (¬𝑝)

• (S(𝑝 ⊃ 𝑞)) ⊃ (𝑝 ⊃ 𝑞))

• S(𝑝 ∧ 𝑞) ⊃ (𝑝 ∧ 𝑞)

• SS𝜑 ⊃ S𝜑.

Note that, as these considerations indicate, the set of valid formulas in S∗ is not closed
under substitution: S𝑝 ⊃ 𝑝 is valid whereas S(𝑝 ∨ 𝑞) ⊃ (𝑝 ∨ 𝑞) is not valid. ings get
even more difficult because there are instances of the sema S𝜑 ⊃ 𝜑 that are only
valid for particular continuous t-norms.²⁸

²⁸We give an example in Proposition 5.3.5.
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5.2 Normal Form

In the following we show that formulas of S∗ can be put in a certain normal form.
ere are many motivations why normal forms are desired. We expect a simplified
analysis of S∗ with normal forms. Our result will be that every formula of S∗ is
equivalent to a formula with no nested S-operators. Note that the normal form does
not depend on the t-norm. erefore the results in this section hold for every oice
of a continuous t-norm.

e normal form for S∗ is based on well-known normal forms for classical logic
and the modal logic S5. e following definitions show what these normal forms look
like.

Definition 5.2.1. A classical literal is a propositional variable or its negation. A clas-
sical clause is a disjunction of classical literals. A formula is in classical conjunctive
normal form iff it is a conjunction of classical clauses.

A modal literal is an S-free formula or a formula of the form S𝜑 or ¬S𝜑 where 𝜑
is an S-free formula. A modal clause is a disjunction of modal literals. A formula is
in modal conjunctive normal form iff it is a conjunction of modal clauses.

We will base our normal form for S∗ on the modal conjunctive normal form that
is available for the modal logic S5 [69].

eorem 5.2.2. For very formula 𝜑 of S5 there is a formula 𝜑໗ in modal conjunctive
normal form su that 𝜑 ≡ 𝜑໗ is valid in S5.

Proposition 5.2.3. For every formula of the form S𝜑 there is a formula S𝜑໗ where 𝜑໗ is
in modal conjunctive normal form su that ‖S𝜑‖𝑺 = ‖S𝜑໗‖𝑺 for every precisification
space 𝑺 .

Proof. We ignore the syntactic difference between the modalities S and ◻ and use S
instead of the necessity operator ◻ in formulas of S5. Let 𝜑 be a formula and 𝜑໗ the
equivalent formula in modal conjunctive normal form ofeorem 5.2.2. Since 𝜑 ≡ 𝜑໗

is valid in S5 we know by Proposition 5.1.12 that S(𝜑 ≡ 𝜑໗) is valid in S∗. erefore
we get ‖S(𝜑 ≡ 𝜑໗)‖𝑺 = 1 and thus ‖𝜑 ≡ 𝜑໗‖𝑠,𝑺 = 1 for every 𝑠 ∈ 𝑺 . From this we
conclude that ‖𝜑‖𝑠,𝑺 = ‖𝜑໗‖𝑠,𝑺 = 1 for every 𝑠 ∈ 𝑺 .

Assume that ‖S𝜑‖𝑺 = 1 and let 𝑠 ∈ 𝑺 be an arbitrary precisification. en we
know that ‖𝜑‖𝑠,𝑺 = 1 and therefore also ‖𝜑໗‖𝑠,𝑺 = 1 = ‖S𝜑‖𝑺 . Since 𝑠was arbitrary
we then get ‖S𝜑໗‖𝑺 = 1.

Now assume that ‖S𝜑‖𝑺 ≠ 1. en we have ‖S𝜑‖𝑺 = 0 and therefore there is
an 𝑠 ∈ 𝑺 su that ‖𝜑‖𝑠,𝑺 = 0. erefore also ‖𝜑໗‖𝑠,𝑺 = 0 and we get ‖S𝜑໗‖𝑺 =
0 = ‖S𝜑‖𝑺 .

With this proposition we know now that every formula is equivalent to a formula
in whi every nesting of S-operators has at most depth two. e further strategy now
is to show that we can get rid of the remaining inner S-operators. For this purpose
some equivalences will be very helpful.
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Lemma 5.2.4. e following equivalences hold for every precisification space 𝑺 :

‖S(𝜑 ∧ 𝜓)‖𝑺 = ‖S𝜑 ∧ S𝜓‖𝑺
‖S(S𝜑 ∨ 𝜓)‖𝑺 = ‖S𝜑 ∨ S𝜓‖𝑺

‖S(¬S𝜑 ∨ 𝜓)‖𝑺 = ‖¬S𝜑 ∨ S𝜓‖𝑺 .

Proof. e le hand side and right hand side formulas can only have the truth values
0 or 1. us, it is sufficient to prove that the truth value of the le hand side formula
is 1 if and only if the truth value of the right hand side formula is 1. We do this by
showing both directions for every formula. Remember that the truth functions of ∧
and ∨ behave classically for the truth value set {0, 1}.

• ‖S(𝜑 ∧ 𝜓)‖𝑺 = ‖S𝜑 ∧ S𝜓‖𝑺 :

Assume that ‖S(𝜑∧𝜓)‖𝑺 = 1 and let 𝑠 ∈ 𝑺 . en ‖𝜑∧𝜓‖𝑠,𝑺 = 1 and therefore
‖𝜑‖𝑠,𝑺 = 1 and ‖𝜓‖𝑠,𝑺 = 1. Since 𝑠 was an arbitrary precisification we get
‖S𝜑‖𝑺 = 1 and ‖S𝜓‖𝑺 = 1. erefore we may conclude ‖S𝜑 ∧ S𝜓‖𝑺 = 1.
Now assume that ‖S𝜑 ∧ S𝜓‖𝑺 = 1. en ‖S𝜑‖𝑺 = 1 and ‖S𝜓‖𝑺 = 1. Let
𝑠 ∈ 𝑺 . en we get ‖𝜑‖𝑠,𝑺 = 1 and ‖𝜓‖𝑠,𝑺 = 1. erefore we may conclude
‖𝜑∧𝜓‖𝑠,𝑺 = 1. Since 𝑠was an arbitrary precisification we get ‖S(𝜑∧𝜓)‖𝑺 = 1.

• ‖S(S𝜑 ∨ 𝜓)‖𝑺 = ‖S𝜑 ∨ S𝜓‖𝑺 :

Assume that ‖S(S𝜑 ∨ 𝜓)‖𝑺 = 1. If ‖S𝜑‖𝑺 = 1, then trivially ‖S𝜑 ∨ S𝜓‖𝑺 = 1.
Now assume that ‖S𝜑‖𝑺 = 0 and let 𝑠 ∈ 𝑺 . en clearly ‖S𝜑‖𝑠,𝑺 = 0. Since
‖S(S𝜑 ∨ 𝜓)‖𝑺 = 1, we have ‖S𝜑 ∨ 𝜓‖𝑠,𝑺 = 1. erefore ‖𝜓‖𝑠,𝑺 = 1 must
hold. Since 𝑠 was an arbitrary precisification we get ‖S𝜓‖𝑺 = 1 and therefore
‖S𝜑 ∨ S𝜓‖𝑺 = 1.
Assume that ‖S𝜑 ∨ S𝜓‖𝑺 = 1. If ‖S𝜑‖𝑺 = 1, then ‖S𝜑‖𝑠,𝑺 = 1 for every
𝑠 ∈ 𝑺 . erefore also ‖S𝜑 ∨ 𝜓‖𝑠,𝑺 = 1 for every 𝑠 ∈ 𝑺 . is means that
‖S(S𝜑 ∨ 𝜓)‖𝑺 = 1. If ‖S𝜑‖𝑺 = 0, then ‖S𝜓‖𝑺 = 1 must hold because
of ‖S𝜑 ∨ S𝜓‖𝑺 = 1. us, ‖𝜓‖𝑠,𝑺 = 1 for every 𝑠 ∈ 𝑺 and consequently
‖S𝜑 ∨ 𝜓‖𝑠,𝑺 = 1 for every 𝑠 ∈ 𝑺 . erefore we also get ‖S(S𝜑 ∨ 𝜓)‖𝑺 = 1 in
this case.

• ‖S(¬S𝜑 ∨ 𝜓)‖𝑺 = ‖¬S𝜑 ∨ S𝜓‖𝑺 :

Assume that ‖S(¬S𝜑 ∨ 𝜓)‖𝑺 = 1. If ‖S𝜑‖𝑺 = 0, then ‖¬S𝜑‖𝑺 = 1 and
therefore also ‖¬S𝜑 ∨ S𝜓‖𝑺 = 1. Consider now the case ‖S𝜑‖𝑺 = 1 and
let 𝑠 ∈ 𝑺 . en ‖S𝜑‖𝑠,𝑺 = 1 whi means that ‖¬S𝜑‖𝑠,𝑺 = 0. Because of
‖S(¬S𝜑 ∨ 𝜓)‖𝑺 = 1 we have ‖¬S𝜑 ∨ 𝜓‖𝑠,𝑺 = 1. erefore ‖𝜓‖𝑠,𝑺 = 1 must
hold. Since 𝑠 was an arbitrary precisification, we get ‖S𝜓‖𝑺 = 1 and thus
‖¬S𝜑 ∨ S𝜓‖𝑺 = 1.
Assume that ‖¬S𝜑 ∨ S𝜓‖𝑺 = 1. If ‖S𝜓‖𝑺 = 1, we get ‖𝜓‖𝑠,𝑺 = 1 for every
𝑠 ∈ 𝑺 . en also ‖¬S𝜑∨𝜓‖𝑠,𝑺 = 1 for every 𝑠 ∈ 𝑺 whimeans that ‖S(¬S𝜑∨
𝜓)‖𝑺 = 1. If ‖S𝜓‖𝑺 = 0, we have ‖¬S𝜑‖𝑺 = 1 due to ‖¬S𝜑∨S𝜓‖𝑺 = 1. From
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this we get ‖S𝜑‖𝑺 = 0. is means that there is a precisification 𝑡 ∈ 𝑺 su that
‖𝜑‖𝑡 = 0. Now let 𝑠 ∈ 𝑺 . en, due to the existence of 𝑡, we have ‖S𝜑‖𝑠,𝑺 = 0
whi means that ‖¬S𝜑‖𝑠,𝑺 = 1. en we may conclude ‖¬S𝜑 ∨ S𝜓‖𝑠,𝑺 = 1.
Since 𝑠 was an arbitrary precisification, we get ‖S(¬S𝜑 ∨ 𝜓)‖𝑺 = 1.

eorem 5.2.5. For every formula S𝜑 there is a formula𝜑໗ that does not contain nested
S-operators su that ‖𝜑‖𝑺 = ‖𝜑໗‖𝑺 for every precisification space 𝑺 . Furthermore,
there is su a 𝜑໗ su that if 𝜑໗ contains a subformula S𝜓 , then 𝜓 is a disjunction of
classical literals.

Proof. We start with the proof of the first part of the theorem. If𝜑 does not contain an
S-operator, there is nothing to prove. Otherwise, let S𝜓 be a subformula of 𝜑. Again,
if 𝜓 does not contain an S-operator, there is nothing to prove. Otherwise, we know by
Proposition 5.2.3 that there is formula 𝜓 ໗ in modal conjunctive normal form su that
‖S𝜓‖𝑺 = ‖S𝜓 ໗‖𝑺 . e formula𝜓 is a conjunction of modal clauses, i.e.,𝜓 = ⋀𝑛

𝑖=1 𝐶𝑖.
By iterated application of the equivalence for conjunction of Lemma 5.2.4 we get

‖S𝜓‖𝑺 =
‖
‖
‖‖

S
๢

𝑛

ැ
𝑖=1

𝐶𝑖๣
‖
‖
‖‖𝑺

=
‖
‖
‖‖

𝑛

ැ
𝑖=1

S𝐶𝑖
‖
‖
‖‖𝑺

.

Now let 𝐶𝑖 be one of the modal clauses that contains an S-operator and let 𝐿
be one of the modal literals that contains an S-operator. en 𝐶𝑖 is equivalent to a
formula 𝐿 ∨ 𝜒 , i.e. ‖S𝐶𝑖‖𝑺 = ‖S(𝐿 ∨ 𝜒)‖𝑺 , because classical commutativity and
associativity hold and therefore ‖𝐶𝑖‖𝑠,𝑺 = ‖𝐿 ∨ 𝜒‖𝑠,𝑺 for every 𝑠 ∈ 𝑺 . Note that in
the case 𝐶𝑖 = 𝐿 we can set 𝜒 = 0̄. Now we proceed with a case distinction on the
shape of the modal literal 𝐿:

• Case 1: 𝐿 = S𝛼 for an S-free formula 𝛼
Due to Lemma 5.2.4 we get

‖S𝐶𝑖‖𝑺 = ‖S(𝐿 ∨ 𝜒)‖𝑺 = ‖S(S𝛼 ∨ 𝜒)‖𝑺 = ‖S𝛼 ∨ S𝜒‖𝑺 .

• Case 2: 𝐿 = ¬S𝛼 for an S-free formula 𝛼
Due to Lemma 5.2.4 we get

‖S𝐶𝑖‖𝑺 = ‖S(𝐿 ∨ 𝜒)‖𝑺 = ‖S(¬S𝛼 ∨ 𝜒)‖𝑺 = ‖¬S𝛼 ∨ S𝜒‖𝑺 .

e same procedure can now be applied to the smaller formula 𝜒 whi is again a
disjunction of modal literals.

So far we have showed that for every formula 𝜑 there is an equivalent formula 𝜑໗

su that 𝜑໗ does not contain nested S-operators. e second part of the theorem is
easy to show. Let S𝜓 be a subformula of 𝜑໗. en there is a formula 𝜓 ໗ in classical
conjunctive normal form su that ‖𝜓‖𝑠,𝑺 = ‖𝜓 ໗‖𝑠,𝑺 for every 𝑠 ∈ 𝑺 and therefore
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also ‖S𝜓‖𝑺 = ‖S𝜓 ໗‖𝑺 . e formula 𝜓 ໗ is a conjunction of classical clauses, i.e., 𝜓 ໗ =
⋀𝑛

𝑖=1 𝐶𝑖. Again we iteratedly apply the equivalence for conjunction of Lemma 5.2.4
and get

‖‖S𝜓 ໗‖‖𝑺 =
‖
‖
‖‖

S
๢

𝑛

ැ
𝑖=1

𝐶𝑖๣
‖
‖
‖‖𝑺

=
‖
‖
‖‖

𝑛

ැ
𝑖=1

S𝐶𝑖
‖
‖
‖‖𝑺

where ea 𝐶𝑖 is a disjunction of classical literals.

5.3 Bounding measures and truth degrees

In this section, we want to show some relations for the extension [𝜑], the measure
⟦𝜑⟧ and the truth value ‖𝜑‖ of a formula 𝜑.
Proposition 5.3.1. For every precisification space 𝑺 with a set of precisifications 𝑷
and all formulas 𝜑 and 𝜓 the following holds:

∅ ⊆ [𝜑]𝑺 ⊆ 𝑷
[¬𝜑]𝑺 = 𝑷 ⧵ [𝜑]𝑺

[𝜑 ∧ 𝜓]𝑺 = [𝜑]𝑺 ∩ [𝜓]𝑺
[𝜑 ∨ 𝜓]𝑺 = [𝜑]𝑺 ∪ [𝜓]𝑺
[𝜑 ⊃ 𝜓]𝑺 = 𝑷 ⧵ [𝜑]𝑺 ∪ [𝜓]𝑺

[S𝜑]𝑺 =
๨

𝑷 if [𝜑]𝑺 = 𝑷
∅ otherwise .

Proof. e relation ∅ ⊆ [𝜑]𝑺 ⊆ 𝑷 trivially holds because [𝜑]𝑺 by its definition is a
subset of 𝑷 . Furthermore, we have:

[¬𝜑]𝑺 = බ𝑠 ∈ 𝑷 ∣ ‖¬𝜑‖𝑠,𝑺 = 1භ
= බ𝑠 ∈ 𝑷 ∣ ‖𝜑‖𝑠,𝑺 = 0භ
= බ𝑠 ∈ 𝑷 ∣ ‖𝜑‖𝑠,𝑺 ≠ 1භ
= 𝑷 ⧵ බ𝑠 ∈ 𝑷 ∣ ‖𝜑‖𝑠,𝑺 = 1භ
= 𝑷 ⧵ [𝜑]𝑺

[𝜑 ∧ 𝜓]𝑺 = බ𝑠 ∈ 𝑷 ∣ ‖𝜑 ∧ 𝜓‖𝑠,𝑺 = 1භ
= බ𝑠 ∈ 𝑷 ∣ ‖𝜑‖𝑠,𝑺 and ‖𝜓‖𝑠,𝑺 = 1භ
= බ𝑠 ∈ 𝑷 ∣ ‖𝜑‖𝑠,𝑺භ ∩ බ𝑠 ∈ 𝑷 ∣ ‖𝜓‖𝑠,𝑺 = 1භ
= [𝜑]𝑺 ∩ [𝜓]𝑺

[𝜑 ∨ 𝜓]𝑺 = බ𝑠 ∈ 𝑷 ∣ ‖𝜑 ∨ 𝜓‖𝑠,𝑺 = 1භ
= බ𝑠 ∈ 𝑷 ∣ ‖𝜑‖𝑠,𝑺 or ‖𝜓‖𝑠,𝑺 = 1භ
= බ𝑠 ∈ 𝑷 ∣ ‖𝜑‖𝑠,𝑺භ ∪ බ𝑠 ∈ 𝑷 ∣ ‖𝜓‖𝑠,𝑺 = 1භ
= [𝜑]𝑺 ∪ [𝜓]𝑺

[𝜑 ⊃ 𝜓]𝑺 = [¬𝜑 ∨ 𝜓]𝑺 = [¬𝜑] ∪ [𝜓]𝑺 = 𝑷 ⧵ [𝜑]𝑺 ∪ [𝜓]𝑺 .
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We prove the last relation by a case distinction. If [𝜑]𝑺 = 𝑷 , then {𝑠 ∈ 𝑷 ∣ ‖𝜑‖𝑠,𝑺 =
1} = 𝑷 . erefore ‖𝜑‖𝑡,𝑺 = 1 for every 𝑡 ∈ 𝑷 . en it follows that ‖S𝜑‖𝑠,𝑺 = 1 for
every 𝑠 ∈ 𝑷 and we get [S𝜑]𝑺 = {𝑠 ∈ 𝑷 ∣ ‖S𝜑‖𝑠,𝑺 = 1} = 𝑷 .

Now assume that [𝜑]𝑺 ≠ 𝑷 . en we know that [𝜑]𝑺 ⊂ 𝑷 whi means there is
a 𝑡 ∈ 𝑷 su that 𝑡 ∉ [𝜑]𝑺 . is means that ‖𝜑‖𝑡,𝑺 ≠ 1 and therefore ‖S𝜑‖𝑠,𝑺 ≠ 1
for every 𝑠 ∈ 𝑷 . us we get [S𝜑]𝑺 = {𝑠 ∈ 𝑷 ∣ ‖S𝜑‖𝑠,𝑺 = 1} = ∅.

We give some useful bounds on the measure of a formula that partly have been
pointed out by Fermüller and Rosger [39].

Proposition 5.3.2. For every precisification space 𝑺 and every formula 𝜑 the following
holds:

0 ≤ ⟦𝜑⟧𝑺 ≤ 1
⟦¬𝜑⟧𝑺 = 1 − ⟦𝜑⟧𝑺

⟦𝜑 ∨ 𝜓⟧𝑺 = ⟦𝜑⟧𝑺 + ⟦𝜓⟧𝑺 − ⟦𝜑 ∧ 𝜓⟧𝑺
max ධ⟦𝜑⟧𝑺 , ⟦𝜓⟧𝑺න ≤ ⟦𝜑 ∨ 𝜓⟧𝑺 ≤ ⟦𝜑⟧𝑺 + ⟦𝜓⟧𝑺
⟦𝜑⟧𝑺 + ⟦𝜓⟧𝑺 − 1 ≤ ⟦𝜑 ∧ 𝜓⟧𝑺 ≤ min ධ⟦𝜑⟧𝑺 , ⟦𝜓⟧𝑺න

max ධ1 − ⟦𝜑⟧𝑺 , ⟦𝜓⟧𝑺න ≤ ⟦𝜑 ⊃ 𝜓⟧𝑺 ≤ 1 − ⟦𝜑⟧𝑺 + ⟦𝜓⟧𝑺
⟦S𝜑⟧𝑺 ≤ ⌊⟦𝜑⟧𝑺⌋ .

If 𝑺 is a positive precisification space we also have the lower bound

⌊⟦𝜑⟧𝑺⌋ ≤ ⟦S𝜑⟧𝑺 .

e function ⌊⋅⌋ is the floor function.

Before we give a proof of this statement, note the following:

• e identity for negation corresponds to Łukasiewicz negation.

• e upper bound for conjunction corresponds to the Gödel t-norm, whi is the
truth function of weak conjunction in all of our fuzzy logics. e lower bound
for disjunction corresponds to Gödel t-conorm, whi is the truth function of
disjunction in all of our fuzzy logics.

• e lower bound for conjunction corresponds to the Łukasiewicz t-norm and
the upper bound for disjunction corresponds to Łukasiewicz t-conorm, whi is
the truth function of strong disjunction in Łukasiewicz logic.

• e upper bound for implication corresponds to the residuum of the Łukasiewicz
t-norm.

• e bound for the S-operator corresponds to the truth function of the▵-operator
(see Section 3.6.1).
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Proof of Proposition 5.3.2. Let 𝑺 be a precisification space with a set of precisifications
𝑷 and a probability measure 𝜇. Most of the inequalities can be obtained by applying
Proposition 5.3.1.

• 0 ≤ ⟦𝜑⟧𝑺 ≤ 1: Directly follows from the definition of a probability measure
because ⟦𝜑⟧𝑺 = 𝜇([𝜑]𝑺).

• ⟦¬𝜑⟧𝑺 = 1 − ⟦𝜑⟧𝑺 :

By Proposition 5.3.1 and Proposition 5.1.2 we get

⟦¬𝜑⟧𝑺 = 𝜇 ධ[¬𝜑]𝑺න = 𝜇 ධ𝑷 ⧵ [𝜑]𝑺න = 𝜇 (𝑷 ) − 𝜇 ධ[𝜑]𝑺න = 1 − ⟦𝜑⟧𝑺 .

• ⟦𝜑 ∨ 𝜓⟧𝑺 = ⟦𝜑⟧𝑺 + ⟦𝜓⟧𝑺 − ⟦𝜑 ∧ 𝜓⟧𝑺 :

We mainly use Proposition 5.1.2 to prove this part.

⟦𝜑 ∨ 𝜓⟧𝑺 = 𝜇 ධ[𝜑 ∨ 𝜓]𝑺න = 𝜇 ධ[𝜑]𝑺 ∪ [𝜓]𝑺න
= 𝜇 ධ[𝜑]𝑺 ∪ ධ[𝜓]𝑺 ⧵ [𝜑]𝑺නන
= 𝜇 ධ[𝜑]𝑺න + 𝜇 ධ[𝜓]𝑺 ⧵ [𝜑]𝑺න
= 𝜇 ධ[𝜑]𝑺න + 𝜇 ධ[𝜓]𝑺 ⧵ ධ[𝜓]𝑺 ∩ [𝜑]𝑺නන
= 𝜇 ධ[𝜑]𝑺න + 𝜇 ධ[𝜓]𝑺න − 𝜇 ධ[𝜓]𝑺 ∩ [𝜑]𝑺න
= 𝜇 ධ[𝜑]𝑺න + 𝜇 ධ[𝜓]𝑺න − 𝜇 ධ[𝜑 ∧ 𝜓]𝑺න
= ⟦𝜑⟧𝑺 + ⟦𝜓⟧𝑺 − ⟦𝜑 ∧ 𝜓⟧𝑺 .

• max ධ⟦𝜑⟧𝑺 , ⟦𝜓⟧𝑺න ≤ ⟦𝜑 ∨ 𝜓⟧𝑺 ≤ ⟦𝜑⟧𝑺 + ⟦𝜓⟧𝑺 :

Due to

[𝜑]𝑺 ⊆ [𝜑]𝑺 ∪ [𝜓]𝑺 = [𝜑 ∨ 𝜓]𝑺

and

[𝜓]𝑺 ⊆ [𝜑]𝑺 ∪ [𝜓]𝑺 = [𝜑 ∨ 𝜓]𝑺

we have ⟦𝜑⟧𝑺 ≤ ⟦𝜑 ∨ 𝜓⟧𝑺 as well as ⟦𝜓⟧𝑺 ≤ ⟦𝜑 ∨ 𝜓⟧𝑺 by Proposition 5.1.2.
erefore max(⟦𝜑⟧𝑺 , ⟦𝜓⟧𝑺) ≤ ⟦𝜑 ∨ 𝜓⟧𝑺 holds. e second inequality follows
from the previous item:

⟦𝜑 ∨ 𝜓⟧𝑺 = ⟦𝜑⟧𝑺 + ⟦𝜓⟧𝑺 − ⟦𝜑 ∧ 𝜓⟧𝑺 ≤ ⟦𝜑⟧𝑺 + ⟦𝜓⟧𝑺 .

• ⟦𝜑⟧𝑺 + ⟦𝜓⟧𝑺 − 1 ≤ ⟦𝜑 ∧ 𝜓⟧𝑺 ≤ min ධ⟦𝜑⟧𝑺 , ⟦𝜓⟧𝑺න:
We simply apply relations that we have already proved:

⟦𝜑 ∧ 𝜓⟧𝑺 = ⟦¬(¬𝜑 ∨ ¬𝜓)⟧𝑺 = 1 − ⟦¬𝜑 ∨ ¬𝜓⟧𝑺 ≥ 1 − ධ⟦¬𝜑⟧𝑺 + ⟦¬𝜓⟧𝑺න
= 1 − ධ1 − ⟦𝜑⟧𝑺 + 1 − ⟦𝜓⟧𝑺න = ⟦𝜑⟧𝑺 + ⟦𝜓⟧𝑺 − 1

⟦𝜑 ∧ 𝜓⟧𝑺 = 1 − ⟦¬𝜑 ∨ ¬𝜓⟧𝑺 ≤ 1 − max ධ⟦¬𝜑⟧𝑺 , ⟦¬𝜓⟧𝑺න
= 1 − max ධ1 − ⟦𝜑⟧𝑺 , 1 − ⟦𝜓⟧𝑺න = min ධ⟦𝜑⟧𝑺 , ⟦𝜓⟧𝑺න .
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• max ධ1 − ⟦𝜑⟧𝑺 , ⟦𝜓⟧𝑺න ≤ ⟦𝜑 ⊃ 𝜓⟧𝑺 ≤ 1 − ⟦𝜑⟧𝑺 + ⟦𝜓⟧𝑺

Again we apply relations that we already know:

⟦𝜑 ⊃ 𝜓⟧𝑺 = ⟦¬𝜑 ∨ 𝜓⟧𝑺 ≥ max ධ⟦¬𝜑⟧𝑺 , ⟦𝜓⟧𝑺න = max ධ1 − ⟦𝜑⟧𝑺 , ⟦𝜓⟧𝑺න
⟦𝜑 ⊃ 𝜓⟧𝑺 = ⟦¬𝜑 ∨ 𝜓⟧𝑺 ≤ ⟦¬𝜑⟧𝑺 + ⟦𝜓⟧𝑺 = 1 − ⟦𝜑⟧𝑺 + ⟦𝜓⟧𝑺 .

• ⟦S𝜑⟧𝑺 ≤ ⌊⟦𝜑⟧𝑺⌋:
If ⟦S𝜑⟧𝑺 = 0 then the bound holds because in any case ⟦𝜑⟧𝑺 ≥ 0 and therefore
also ⌊⟦𝜑⟧𝑺⌋ ≥ 0. If ⟦S𝜑⟧𝑺 ≠ 0 then we necessarily have ⟦S𝜑⟧𝑺 = 1 whi
means that 𝜇([S𝜑]𝑺) = 1. Since 𝜇(∅) = 0 we know that [S𝜑]𝑺 ≠ ∅. erefore
there is some 𝑡 ∈ 𝑷 su that ‖S𝜑‖𝑡,𝑺 = 𝑷 whi means that ‖𝜑‖𝑠,𝑺 = 1 for
every 𝑠 ∈ 𝑷 . us we get [𝜑]𝑺 = 1 and we conclude

⌊⟦𝜑⟧𝑺⌋ = ⌊𝜇([𝜑]𝑺)⌋ = ⌊𝜇(𝑷 )⌋ = ⌊1⌋ = 1 = ⟦S𝜑⟧𝑺

• ⌊⟦𝜑⟧𝑺⌋ ≤ ⟦S𝜑⟧𝑺 :

Assume now that𝑺 is a positive precisification space. If ⌊⟦𝜑⟧𝑺⌋ = 0, the bound
holds because ⟦S𝜑⟧𝑺 ≥ 0 in any case. If ⌊⟦𝜑⟧𝑺⌋ = 1 we have ⟦𝜑⟧𝑺 = 1. Due
to Proposition 5.1.2 we get

1 = 𝜇(𝑷 ) = 𝜇 ධ[𝜑]𝑺 ∪ 𝑷 ⧵ [𝜑]𝑺න = 𝜇 ධ[𝜑]𝑺න + 𝜇 ධ𝑷 ⧵ [𝜑]𝑺න
= ⟦𝜑⟧𝑺 + 𝜇 ධ𝑷 ⧵ [𝜑]𝑺න = 1 + 𝜇 ධ𝑷 ⧵ [𝜑]𝑺න

and thus 𝜇(𝑷 ⧵ [𝜑]𝑺) = 0. en it must be the case that 𝑷 ⧵ [𝜑]𝑺 = ∅ because
if there were some 𝑠 ∈ 𝑷 ⧵ [𝜑]𝑺 we would, with Proposition 5.1.2, arrive at
the contradictory statement 0 = 𝜇(𝑷 ⧵ [𝜑]𝑺) ≥ 𝜇({𝑠}) = 𝜇(𝑠) > 0 as 𝑺 is a
positive precisification space. is means that [𝜑]𝑺 = 𝑷 and we get ⟦S𝜑⟧𝑺 =
𝜇([𝜑]𝑺) = 𝜇(𝑷 ) = 1 = ⌊⟦𝜑⟧𝑺⌋.

We now try to extend the previous result. e fact that all the bounds are available
as truth functions in Łukasiewicz logic suggests that a stronger property should hold
in SŁ. Due to the normal form of eorem 5.2.5 we concentrate on formulas where
ea subformula inside an S-operator is a disjunction of classical literals.

Definition 5.3.3. For a formula 𝜑 that is a disjunction of classical literals we denote
the formula where all occurrences of the disjunction sign ∨ are replaced by the strong
disjunction sign ⊻ by 𝜑⊻.

Lemma 5.3.4. Let 𝑺 be a precisification space and 𝜑 a formula that is a disjunction of
classical literals. en we have

‖𝜑‖Ł𝑺 ≤ ⟦𝜑⟧𝑺 ≤ ‖𝜑⊻‖Ł𝑺
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Proof. We know that 𝜑 is a disjunction of classical literals, i.e., 𝜑 = 𝑙1 ∨ … ∨ 𝑙𝑛. We
prove the claim by induction on the number of literals 𝑛. We consider two base cases,
𝑛 = 0 and 𝑛 = 1. For 𝑛 = 0, 𝜑 is an empty disjunction that has the truth value 0 in all
three cases. For 𝑛 = 1, we have two cases, either 𝑙1 = 𝑝 or 𝑙1 = ¬𝑝 for a propositional
variable 𝑝, whi are both easy to e:

⟦𝑝⟧𝑺 = ‖𝑝‖Ł𝑺 = ‖𝑝⊻‖Ł𝑺
⟦¬𝑝⟧𝑺 = 1 − ⟦𝑝⟧𝑺 = 1 − ‖𝑝‖Ł𝑺 = ‖¬𝑝‖Ł𝑺 = ‖(¬𝑝)⊻‖Ł𝑺

Now we prove the induction step: Let 𝜑 be a disjunction of 𝑛 + 1 classical literals,
i.e. 𝜑 = 𝑙1 ∨ 𝜓 where 𝜓 is a disjunction of 𝑛 classical literals. For both bounds we
apply the induction hypothesis on 𝑙1 and 𝜓 .

⟦𝜑⟧𝑺 = ⟦𝑙1 ∨ 𝜓⟧𝑺 ≥ max ධ⟦𝑙1⟧𝑺 , ⟦𝜓⟧𝑺න ≥ max ධ‖𝑙1‖Ł𝑺 , ‖𝜓‖Ł𝑺න = ‖𝑙1 ∨ 𝜓‖Ł𝑺
⟦𝜑⟧𝑺 = ⟦𝑙1 ∨ 𝜓⟧𝑺 ≤ ⟦𝑙1⟧𝑺 + ⟦𝜓⟧𝑺 ≤ ‖𝑙⊻

1 ‖Ł𝑺 + ‖𝜓⊻‖Ł𝑺
Since also ⟦𝜑⟧𝑺 ≤ 1 we get

⟦𝜑⟧𝑺 ≤ min ධ‖𝑙⊻
1 ‖Ł𝑺 + ‖𝜓⊻‖Ł𝑺 , 1න = ‖𝑙⊻

1 ⊻ 𝜓⊻‖Ł𝑺 = ‖𝜑⊻‖Ł𝑺

With these bounds we can now easily prove the validity of a certain formula.

Proposition 5.3.5. For all classical literals 𝑙1, … , 𝑙𝑛 the formula

S(𝑙1 ∨ … ∨ 𝑙𝑛) ⊃ (𝑙1 ⊻ … ⊻ 𝑙𝑛)

is valid in SŁ.
is statement does not hold for SG.

Proof. Define 𝜑 as 𝑙1 ∨ … ∨ 𝑙𝑛. Let 𝑺 be an arbitrary precisification space. By com-
bining the bounds of Proposition 5.3.2 and Lemma 5.3.4 we get

‖S𝜑‖𝑺 = ⟦S𝜑⟧𝑺 ≤ ⌊⟦𝜑⟧𝑺⌋ ≤ ⟦𝜑⟧𝑺 ≤ ‖𝜑⊻‖Ł𝑺 = ‖𝑙1 ⊻ … ⊻ 𝑙𝑛‖Ł𝑺
due to whi ‖S(𝑙1 ∨ … ∨ 𝑙𝑛) ⊃ (𝑙1 ⊻ … ⊻ 𝑙𝑛)‖Ł𝑺 = 1.

To prove the second part we construct a simple counterexample. Pi 𝑙1 = ¬𝑝 and
𝑙2 = ¬𝑞 and consider the precisification space 𝑺 with probability measure 𝜇 and two
precisifications 𝑠 and 𝑡 su that

• ‖𝑝‖𝑠,𝑺 = 1, ‖𝑞‖𝑠,𝑺 = 0, and 𝜇(𝑠) = 0.5

• ‖𝑝‖𝑠,𝑺 = 0, ‖𝑞‖𝑠,𝑺 = 1, and 𝜇(𝑠) = 0.5

en clearly ‖S(¬𝑝 ∨ ¬𝑞)‖𝑺 = 1 and ‖𝑝‖𝑺 = ‖𝑞‖𝑺 = 0.5 . e formula ¬𝑝 ⊻ ¬𝑞 is
an abbreviation for ¬(¬¬𝑝 & ¬¬𝑞) and we have

‖¬(¬¬𝑝 & ¬¬𝑞)‖G𝑺 = ‖¬(¬0̄ & ¬0̄)‖G𝑺 = ‖¬(1̄ & 1̄)‖G𝑺 = ‖¬1̄‖G𝑺 = 0

erefore ‖S(¬𝑝 ∨ ¬𝑞) ⊃ (¬𝑝 ∨ ¬𝑞)‖G𝑺 = 0.
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5.4 Validity in positive and uniform precisification spaces

In this section, we consider two very natural restrictions that can be imposed on pre-
cisification spaces. e first one is the restriction to positive precisification spaces that
we have introduced with Definition 5.1.6. Another natural restriction that we consid-
er is giving ea precisification equal weight. Under this restriction, the local truth
value of a propositional variable can be simply determined by counting the number of
precisifications at whi it is true.

Definition 5.4.1. A finite precisification space 𝑺 with probability measure 𝜇 is uni-
form iff 𝜇(𝑠) = 𝜇(𝑇 ) for all 𝑠 ∈ 𝑺 . In su a case, 𝜇 is called a uniform probability
measure.

Proposition 5.4.2. Let 𝑺 be a uniform precisification space with a finite set of precisi-
fications 𝑷 and probability measure 𝜇. en the following holds:

• 𝜇(𝑠) = 1
|𝑷 | for every 𝑠 ∈ 𝑺 .

• ‖𝑝‖𝑺 = |[𝑝]𝑺 |
|𝑷 | for every propositional variable 𝑝.

Proof. By the definition of a probability measure we know that ∑𝑡∈𝑷 𝜇(𝑇 ) = 1. Since
the measures of all precisifications in 𝑷 are equal we know that 𝜇(𝑠) = 𝜇(𝑇 ) for every
𝑡 ∈ 𝑷 and get ∑𝑡∈𝑷 𝜇(𝑠) = 1. Since 𝑷 is a finite set we conclude |𝑷 | ⋅ 𝜇(𝑠) = 1 and
because 𝑷 is nonempty we get 𝜇(𝑠) = 1/|𝑷 |.

e second claim then easily follows:

‖𝑝‖𝑺 = 𝜇 ධ[𝑝]𝑺න = ෌
𝑠∈[𝑝]𝑺

𝜇(𝑠) = ෌
𝑠∈[𝑝]𝑺

1
|𝑷 | = ||[𝑝]𝑺 || ⋅ 1

|𝑷 | .

Based on these concepts we now define two restricted form of validity.

Definition 5.4.3. Let ∗ be a continuous t-norm and 𝜑 a formula. We call 𝜑 p-valid in
S∗ iff ‖𝜑‖∗

𝑺 = 1 for every positive precisification space 𝑺 and we call 𝜑 u-valid in S∗
iff ‖𝜑‖∗

𝑺 = 1 for every uniform precisification space 𝑺 .

In the context of p-validity and u-validity we sometimes refer to our unrestricted
notion of validity (see Definition 5.1.4) as general validity.

Proposition 5.4.4. If a formula is generally valid then it is also p-valid and if it is
p-valid then it is also u-valid.

Proof. is follows just from the definitions and the fact that every uniform probability
measure is positive.

In the rest of this section we study the relationship between validity, p-validity
and u-validity for different logics.
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5.4.1 Equivalence of validity and u-validity in SŁ
e first result that we will see is that in SŁwe can reverse Proposition 5.4.4 Our three
variants of validity then coincide, whi has to do with the fact that the residuum of
the Łukasiewicz t-norm is continuous (see Proposition 3.4.17).

Proposition 5.4.5. If a formula 𝜑 is u-valid in SŁ, then 𝜑 is also generally valid in SŁ.
For the proof of this proposition we need the following tenical lemma whi

will be proved directly aer the proof of Proposition 5.4.5.

Lemma 5.4.6. Let 𝑺 be a finite precisification space with probability measure 𝜇 su
that 𝜇(𝑠) ∈ ℚ>0 for every 𝑠 ∈ 𝑺 . en there is a uniform precisification space 𝑺໗ su
that ‖𝜑‖𝑺 = ‖𝜑‖𝑺 ′ for every formula 𝜑.
Proof of Proposition 5.4.5. e overall structure of the proof is as follows:

• From Lemma 5.4.6 we conclude that u-validity implies truth in all precisification
spaces where the probability measure only gives positive, rational measures to
precisifications.

• With this in mind, we construct a sequence of precisification spaces with posi-
tive rational probability measures in whi 𝜑 is valid su that the limit of the
probability measures approaes an arbitrary real-valued probability measure.

• Finally, we use the fact that the residuum of the Łukasiewicz t-norm is continu-
ous and conclude that if 𝜑 is valid “in the limit”, it is valid.

Let 𝜑 be a formula that is u-valid in SŁ and let 𝑺 be a precisification space with
probability measure 𝜇 and a finite number of precisifications 𝑷 = {𝑠1, … , 𝑠𝑛}, whi
is sufficient due to Corollary 5.1.11. We have to show that ‖𝜑‖Ł𝑺 = 1.

We define the vector 𝜇⃗ = (𝜇1, … , 𝜇𝑛) = (𝜇(𝑠1), … , 𝜇(𝑠𝑛)) whi means that
𝜇1, … , 𝜇𝑛 are real numbers that add up to 1. Since ℚ is dense in ℝ [97], there is a se-
quence of rational numbers 𝑞(1)

𝑖 , 𝑞(2)
𝑖 , … su that lim𝑗→∞ 𝑞(𝑗)

𝑖 = 𝜇𝑖 for every 1 ≤ 𝑖 ≤ 𝑛.
If 𝜇𝑖 = 0, then lim𝑘→∞ 1/𝑘 = 0 = 𝜇𝑖. Without loss of generality we may assume that
𝑞(𝑗)

𝑖 > 0 for 1 ≤ 𝑖 ≤ 𝑛 and 𝑗 ≥ 1. In vector notation, we have lim𝑗→∞ ⃗𝑞 (𝑗) = 𝜇⃗ where

⃗𝑞 (𝑗) = (𝑞(𝑗)
1 , … , 𝑞(𝑗)

𝑛 ) for 𝑗 ≥ 1.
e problem with ⃗𝑞 (𝑗) is that its components need not necessarily add up to 1. We

fix this by defining a sequence 𝑟(1)
𝑖 , 𝑟(2)

𝑖 , … for 1 ≤ 𝑖 ≤ 𝑛 by

𝑟(𝑗)
𝑖 =

𝑞(𝑗)
𝑖

∑𝑛
𝑖=1 𝑞(𝑗)

𝑖

for 𝑗 ≥ 1. en, for 𝑗 ≥ 1, we get that 𝑞(𝑗)
𝑖 is a rational number su that 0 < 𝑟(𝑗)

𝑖 ≤ 1
and

𝑛

෌
𝑖=1

𝑟(𝑗)
𝑖 =

𝑛

෌
𝑖=1

𝑞(𝑗)
𝑖

∑𝑛
𝑖′=1 𝑞(𝑗)

𝑖′

= 1
∑𝑛

𝑖′=1 𝑞(𝑗)
𝑖′

𝑛

෌
𝑖=1

𝑞(𝑗)
𝑖 = 1 .
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We now apply the well-known rules for computing limits of sums and quotients [97]
and get

lim
𝑗→∞

𝑟(𝑗)
𝑖 = lim

𝑗→∞

𝑞(𝑗)
𝑖

∑𝑛
𝑖=1 𝑞(𝑗)

𝑖
=

lim𝑗→∞ 𝑞(𝑗)
𝑖

∑𝑛
𝑖=1 lim𝑗→∞ 𝑞(𝑗)

𝑖
= 𝜇𝑖

∑𝑛
𝑖=1 𝜇𝑖

= 𝜇𝑖
1 = 𝜇𝑖 .

In vector notation, we have lim𝑗→∞ ⃗𝑟(𝑗) = 𝜇⃗ where ⃗𝑟(𝑗) = (𝑟(𝑗)
1 , … , 𝑟(𝑗)

𝑛 ) for 𝑗 ≥ 1.
For every vector of real numbers ⃗𝑥 = (𝑥1, … , 𝑥𝑛) su that 𝑥1 + ⋯ + 𝑥𝑛 = 1 we

define the precisification space 𝑺 ⃗𝑥 as having the same set of precisifications 𝑷 as 𝑺
together with the same local truth values and a probability measure 𝜇 ⃗𝑥 that we define
as 𝜇 ⃗𝑥(𝑠𝑖) = 𝑥𝑖 for ea 𝑠𝑖 ∈ 𝑷 . Furthermore, we want to define a certain evaluation
function 𝑓𝜑( ⃗𝑥) that depends on our initial formula 𝜑. For this purpose, we first define
the following constants for every propositional variable 𝑝 and every formula 𝜓 where
1 ≤ 𝑖 ≤ 𝑛:

𝑚𝑝,𝑖 =
๨

1 if ‖𝑝‖𝑠𝑖,𝑺 = 1
0 otherwise

𝑠𝜓 =
๨

1 if ‖𝜓‖𝑠,𝑺 = 1 for every 𝑠 ∈ 𝑷
0 otherwise .

en we inductively define a function 𝑓𝜑∗( ⃗𝑥) for every formula 𝜑∗ whi also gives
us the desired function 𝑓𝜑( ⃗𝑥):

𝑓0̄ ධ ⃗𝑥න = 0

𝑓𝑝 ධ ⃗𝑥න =
𝑛

෌
𝑖=1

𝑚𝑝,𝑖 ⋅ 𝑥𝑖 for atomic 𝑝

𝑓S𝜓 ධ ⃗𝑥න = 𝑠𝜓
𝑓𝜓&𝜒 ධ ⃗𝑥න = 𝑓𝜓 ධ ⃗𝑥න ∗Ł 𝑓𝜒 ධ ⃗𝑥න
𝑓𝜓⊃𝜒 ධ ⃗𝑥න = 𝑓𝜓 ධ ⃗𝑥න ⇒Ł 𝑓𝜒 ධ ⃗𝑥න .

It is easy to see that

𝑓𝜑 ධ ⃗𝑥න = ‖𝜑‖𝑺 ⃗𝑥
.

Furthermore, 𝑓𝜑 is a continuous function because ∗Ł, ⇒Ł, addition and multiplication
are continuous functions.

By Lemma 5.4.6 we know, for ea 𝑗 ≥ 1, that for the precisification space 𝑺 ⃗𝑟(𝑗)

there is a uniform precisification space 𝑺໗
⃗𝑟(𝑗) su that ‖𝜑‖𝑺 ⃗𝑟(𝑗) = ‖𝜑‖𝑺 ′

⃗𝑟(𝑗)
. Since 𝜑 is

u-valid by assumption we have ‖𝜑‖𝑺 ′
⃗𝑟(𝑗)

= 1.
Plugging together these results and using the fact that 𝑓 is continuous [97], we get

‖𝜑‖𝑺 = ‖𝜑‖𝑺𝜇⃗
= 𝑓𝜑 ධ𝜇⃗න = lim

𝑗→∞
𝑓𝜑 ධ ⃗𝑟(𝑗)න

= lim
𝑗→∞

‖𝜑‖𝑺 ⃗𝑟(𝑗) = lim
𝑗→∞

‖𝜑‖𝑺 ′
⃗𝑟(𝑗)

= lim
𝑗→∞

1 = 1
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Since 𝑺 was an arbitrary finite precisification space we conclude that 𝜑 is valid.

Proof of Lemma 5.4.6. Let 𝑺 be a precisification space with a finite set of precisifica-
tions 𝑷 = {𝑠1, … , 𝑠𝑚} and a probability measure 𝜇 su that 𝜇(𝑠) ∈ ℚ>0 for every
𝑠 ∈ 𝑷 . en for every 1 ≤ 𝑖 ≤ 𝑚, there are natural numbers 𝑘𝑖 and 𝑛𝑖 su that
𝜇(𝑠𝑖) = 𝑘𝑖/𝑛𝑖 and 0 < 𝑘𝑖 ≤ 𝑛𝑖.

Now we define a set of precisifications 𝑷 ໗ that contains 𝑁 = 𝑛1 ⋅ 𝑛2 ⋅ … ⋅ 𝑛𝑚
precisifications by “duplicating” precisifications of 𝑷 . For this purpose we define the
function 𝑑 for duplicating precisifications by

𝑑 ධ𝑠𝑖න = ෿𝑠(1)
𝑖 , … , 𝑠(𝑁⋅𝑘𝑖/𝑛𝑖)

𝑖 ฀
and define the set 𝑷 ໗ as

𝑷 ໗ = ී
1≤𝑖≤𝑚

𝑑 ධ𝑠𝑖න = ෿𝑠(1)
1 , … , 𝑠(𝑁⋅𝑘1/𝑛1)

1 , … , 𝑠(1)
𝑚 , … , 𝑠(𝑁⋅𝑘𝑚/𝑛𝑚)

𝑚 ฀

en we define the uniform precisification space 𝑺໗ as having 𝑷 ໗ as its set of
precisifications and the uniform probability measure 𝜇໗ on 𝑷 ໗. e local truth values
of the precisifications are given by ‖𝑝‖𝑠(𝑗)

𝑖 ,𝑺 ′ = ‖𝑝‖𝑠𝑖,𝑺 for every propositional variable,

1 ≤ 𝑗 ≤ 𝑁 ⋅ 𝑘𝑖/𝑛𝑖 and 1 ≤ 𝑖 ≤ 𝑚. By our definitions, for every precisification in 𝑠 ∈ 𝑺
there is a precisification 𝑠໗ ∈ 𝑺໗ that gives the same local truth values to propositional
variables, and vice versa. Now let 𝑝 be a propositional variable and let 𝑠𝑖1

, … , 𝑠𝑖𝑙
denote the precisifications of 𝑺 at whi the local truth value of 𝑝 is 1, i.e.,

෿𝑠𝑖1
, … 𝑠𝑖𝑙 ฀ = [𝑝]𝑺 .

en we have

‖𝑝‖𝑺 ′ = 𝜇໗ ධබ𝑠 ∈ 𝑺໗ ∣ ‖𝑝‖𝑠,𝑺 = 1භන
= 𝜇໗

෹𝑑 ධ𝑠𝑖1න ∪ … ∪ 𝑑 ෹𝑠𝑖𝑙 ෺෺
= 𝜇໗ ධ𝑑 ධ𝑠𝑖1නන + ⋯ + 𝜇໗

෹𝑑 ෹𝑠𝑖𝑙 ෺෺
= 𝜇໗

෹෿𝑠(1)
𝑖1

, … , 𝑠(𝑁⋅𝑘𝑖1 /𝑛𝑖1 )
𝑖1 ฀෺ + ⋯ + 𝜇໗

෹෿𝑠(1)
𝑖𝑙

, … , 𝑠(𝑁⋅𝑘𝑖𝑙 /𝑛𝑖𝑙 )
𝑖𝑙 ฀෺

=
𝑁 ⋅ 𝑘𝑖1

/𝑛𝑖1

𝑁 + ⋯ +
𝑁 ⋅ 𝑘𝑖𝑙

/𝑛𝑖𝑙

𝑁

=
𝑘𝑖1

𝑛𝑖1

+ ⋯ +
𝑘𝑖𝑙

𝑛𝑖𝑙

= 𝜇 ධ𝑠𝑖1න + ⋯ + 𝜇 ෹𝑠𝑖𝑙 ෺
= 𝜇 ෹෿𝑠𝑖1

, … 𝑠𝑖𝑙 ฀෺
= 𝜇 ධ[𝑝]𝑺න = ‖𝑝‖𝑺 .

us by Proposition 5.1.8 and Proposition 5.1.9, we have ‖𝜑‖𝑺 = ‖𝜑‖𝑺 ′ for every
formula 𝜑.
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eorem 5.4.7. Let 𝜑 be a formula. en the following propositions are equivalent:

(i) 𝜑 is valid in SŁ.

(ii) 𝜑 is p-valid in SŁ.

(iii) 𝜑 is u-valid in SŁ.

Proof. (i) ⇒ (ii) and (ii) ⇒ (iii) are Proposition 5.4.4 and (iii) ⇒ (i) is Proposition 5.4.5.

e equivalence between validity and u-validity in SŁ has the further advantage
that validity has been reduced to a finitary notion because the possibility of real-valued
probability measures has been eliminated.

e natural question to ask now is whether the equivalences of the above theorem
also hold for S∗when ∗ is not isomorphic to the Łukasiewicz t-norm. For every contin-
uous t-norm that is not isomorphic to the Łukasiewicz t-norm, validity and p-validity
in S∗ do not coincide, as we will show next. We also show that p-validity and u-
validity coincide for the Gödel t-norm. e question whether p-validity and u-validity
coincide for continuous t-norms different from the Łukasiewicz t-norm and the Gödel
t-norm remains open.

5.4.2 Characterization of the equivalence of validity and p-validity

For every continuous t-norm ∗ that is not isomorphic to the Łukasiewicz t-norm we
want to find a counterexample formula that is p-valid in S∗ but not valid in S∗. Re-
member that a continuous t-norm is isomorphic to the Łukasiewicz t-norm if and only
if its residuum is continuous (see Proposition 3.4.17). is means that we have to find
a counterexample for every continuous t-norm with a non-continuous residuum. An
important class of continuous t-normswith non-continuous residua are the continuous
t-norms that have Gödel negation as their precomplement, as for example the Gödel
t-norm and the product t-norm (see Proposition 3.2.15). Our strategy is to distinguish
between those continuous t-norms that have Gödel negation as their precomplement
and those that have not. For the first case it is relatively easy to find a counterexample.
e second case needs a more involved analysis. ere we exploit the fact that all su
t-norms “start” with an isomorphic copy of the Łukasiewicz t-norm in the generalized
ordinal sum representation (see eorem 3.2.4).

Lemma 5.4.8. If the precomplement −∗ of a continuous t-norm ∗ is equal to Gödel
negation −G, then general validity and p-validity do not coincide in S∗.

Proof. emain idea is that Gödel negation allows us toewhether the truth value
of a formula is greater than 0. For positive precisification spaces, we can enforce that
a propositional variable 𝑝 receives a truth value greater than 0. Let ∗ be a continuous
t-norm with Gödel negation and define the formula 𝜑 as

(¬S¬𝑝) ⊃ (¬¬𝑝) .
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We refer to ¬S¬𝑝 as the antecedent of 𝜑 and to ¬¬𝑝 as the succedent of 𝜑.
Gödel negation is the unary truth function given by

−G(𝑥) =
๨

1 if 𝑥 = 0
0 otherwise .

A twofold application of this function gives

−G ධ−G(𝑥)න =
๨

0 if 𝑥 = 0
1 otherwise .

us, we can define the projection operator ▿ with the help of Gödel negation (com-
pare Section 3.6.1). is means that

‖¬¬𝑝‖∗
𝑺 = −G ධ−G ධ‖𝑝‖𝑺නන = ⌈‖𝑝‖𝑺⌉

for every precisification space 𝑺 .
We first show that 𝜑 is p-valid. Let 𝑺 be an arbitrary positive precisification space

with probability measure 𝜇. e antecedent of 𝜑 always has the truth value 1 or 0.
If its truth value is 0, then 𝜑 trivially has the truth value 1. Assume now that the
antecedent of 𝜑 has the truth value 1. en due to ‖¬S¬𝑝‖𝑺 = 1 we know that there
is a precisification 𝑠 ∈ 𝑺 su that ‖𝑝‖𝑠,𝑺 = 1. Since 𝜇(𝑠) > 0 and 𝑠 ∈ [𝑝]𝑺 , we get
‖𝑝‖𝑺 = ∑𝑡∈[𝑝]𝑺

𝜇(𝑇 ) ≥ 𝜇(𝑠) > 0. erefore ‖¬¬𝑝‖∗
𝑺 = ⌈‖𝑝‖𝑺⌉ = 1 whi means

that the succedent of 𝜑 is true. Since both the antecedent and the succedent of 𝜑 have
the truth value 1, also 𝜑 has the truth value 1. Because 𝑺 was an arbitrary positive
precisification space, 𝜑 is p-valid.

Finally, we show that𝜑 is not generally valid. Consider the precisification space𝑺
consisting of two precisifications 𝑠1 and 𝑠2 with a probability measure 𝜇 given by
𝜇(𝑠1) = 1 and 𝜇(𝑠2) = 0. We define the interpretation of the propositional variable 𝑝
in the precisifications as follows: ‖𝑝‖𝑠1,𝑺 = 0 and ‖𝑝‖𝑠2,𝑺 = 1. en ‖𝑝‖𝑺 = 0 and
thus we have ‖¬¬𝑝‖∗

𝑺 = ‖¬¬0̄‖∗
𝑺 = 0 for the succedent of 𝜑 because t-norm based

connectives behave classically for the truth value set {0, 1}. Clearly, the antecedent of
𝜑 has the truth value 1 because ‖S¬𝑝‖𝑺 = 0 due to ‖𝑝‖𝑠2,𝑺 = 1. erefore ‖𝜑‖∗

𝑺 = 0
and thus 𝜑 is not generally valid in S∗ for any continuous t-norm ∗.

Due to eorem 3.2.4 every continuous t-norm can be represented by a general-
ized ordinal sum of isomorphic copies of Łukasiewicz or the product t-norm. In the
following we need the property that this representation carries over to the residuum
of the t-norm. We provide a proof of this fact and then go on with finding our coun-
terexample for the remaining cases.

Lemma 5.4.9. If 𝑓 is an order isomorphism between [𝑎1, 𝑎2] ⊆ [0, 1] and [𝑏1, 𝑏2] ⊆
[0, 1], then 𝑓(𝑎1) = 𝑏1 and 𝑓(𝑎2) = 𝑏2.
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Proof. Suppose that 𝑓(𝑎1) > 𝑏1. en by the definition of an order isomorphism we
get 𝑎1 = 𝑓 −1(𝑓(𝑎1)) > 𝑓 −1(𝑏1) ∈ [𝑎1, 𝑎2] whi contradicts the fact that 𝑎1 is the
maximal element of [𝑎1, 𝑎2]. If we suppose that 𝑓(𝑎2) < 𝑏2, then we arrive at the
contradictory statement 𝑎2 = 𝑓 −1(𝑓(𝑎2)) < 𝑓 −1(𝑏2) ∈ [𝑎1, 𝑎2].

Lemma 5.4.10. Let [𝑎, 𝑏] ⊆ [0, 1] be a subinterval of the unit interval, 𝑓 ∶ [𝑎, 𝑏] → [0, 1]
an order isomorphism, and ∗ and ⚬ continuous t-norms su that

𝑥 ∗ 𝑦 =
๨

𝑓 −1(𝑓(𝑥) ⚬ 𝑓(𝑦)) if 𝑥, 𝑦 ∈ [𝑎, 𝑏]
min(𝑥, 𝑦) otherwise .

en for all 𝑥, 𝑦 with 𝑎 ≤ 𝑦 < 𝑥 ≤ 𝑏 we have

ධ𝑥 ⇒∗ 𝑦න = 𝑓 −1 ධ𝑓(𝑥) ⇒⚬ 𝑓(𝑦)න .

holds where ⇒∗ is the residuum of ∗ and ⇒⚬ is the residuum of ⚬.

Proof. We define 𝑤 = (𝑥 ⇒∗ 𝑦), 𝑣 = (𝑓(𝑥) ⇒⚬ 𝑓(𝑦)), and 𝑤໗ = 𝑓 −1(𝑣). By the
definition of residua we have

𝑤 = max{𝑧 ∈ [0, 1] ∣ 𝑥 ∗ 𝑧 ≤ 𝑦}

and

𝑣 = max{𝑧 ∈ [0, 1] ∣ 𝑓(𝑥) ⚬ 𝑧 ≤ 𝑓(𝑦)} .

First of all, we verify that 𝑤໗ is contained in the set {𝑧 ∈ [0, 1] ∣ 𝑥 ∗ 𝑧 ≤ 𝑦}.

𝑥 ∗ 𝑤໗ = 𝑥 ∗ ධ𝑓 −1(𝑣)න
= 𝑓 −1 ධ𝑓(𝑥) ⚬ 𝑓 ධ𝑓 −1(𝑣)නන
= 𝑓 −1(𝑓(𝑥) ⚬ 𝑣)

Since 𝑓(𝑥) ⚬ 𝑣 ≤ 𝑓(𝑦) and 𝑓 is an order isomorphism we get

𝑥 ∗ 𝑤໗ = 𝑓 −1(𝑓(𝑥) ⚬ 𝑣) ≤ 𝑓 −1(𝑓(𝑦)) = 𝑦 .

Now we show that 𝑤 ∈ [𝑎, 𝑏]. Suppose first that 𝑤 > 𝑏. en we get the contra-
dictory inequality

𝑦 ≥ 𝑥 ∗ 𝑤 = min(𝑥, 𝑤) = 𝑥 > 𝑦 .

Now suppose that 𝑤 < 𝑎. en 𝑥 ∗ 𝑤 = min(𝑥, 𝑤) = 𝑤. We also have

𝑥 ∗ 𝑎 = 𝑓 −1(𝑓(𝑥) ⚬ 𝑓(𝑎))
= 𝑓 −1(𝑓(𝑥) ⚬ 0)
= 𝑓 −1(0)
= 𝑎
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en, 𝑥 ∗ 𝑎 = 𝑎 ≤ 𝑦 and furthermore 𝑥 ∗ 𝑎 = 𝑎 > 𝑤 = 𝑥 ∗ 𝑤 whi contradicts the
maximality of 𝑤 as the residuum 𝑥 ⇒∗ 𝑦. us we conclude that 𝑤 ∈ [𝑎, 𝑏].

Suppose that 𝑤 > 𝑤໗ = 𝑓 −1(𝑣). Since 𝑤 ∈ [𝑎, 𝑏] and 𝑓 is an order isomorphism
we get

𝑓(𝑤) > 𝑓 ධ𝑓 −1(𝑣)න = 𝑣 .

Because 𝑤 is the residuum 𝑥 ⇒∗ 𝑦 we have 𝑥 ∗ 𝑤 ≤ 𝑦 and since 𝑓 is an order isomor-
phism we get 𝑓(𝑥 ∗ 𝑤) ≤ 𝑓(𝑦). us, we have

𝑓(𝑥) ⚬ 𝑓(𝑤) = 𝑓(𝑥 ∗ 𝑤) ≤ 𝑓(𝑦) .

But since 𝑓(𝑤) > 𝑣, this statement contradicts the maximality of 𝑣 as the residuum
𝑓(𝑥) ⇒⚬ 𝑓(𝑦). erefore we know that our assumption 𝑤 > 𝑤໗ was wrong whi
means that the residuum candidate 𝑤໗ is in fact the residuum 𝑥 ⇒∗ 𝑦.

Lemma 5.4.11. Let ∗ be a continuous t-norm su that the residuum ⇒∗ is not contin-
uous. If the precomplement −∗ is not Gödel negation, then validity and p-validity do
not coincide in S∗.

Proof. If ∗ were an isomorphic copy of the product t-norm on the first interval [0, 𝑢]
(with 𝑢 ≠ 0) in the generalized ordinal sum representation (see eorem 3.2.4), then
the precomplement −∗ would be Gödel negation. erefore it must be the case that ∗
is an isomorphic copy of the Łukasiewicz t-norm on [0, 𝑢]. Furthermore it must be the
case that 𝑢 < 1 because otherwise ∗ would be isomorphic to the Łukasiewicz t-norm
on the complete unit interval and therefore continuous.

We can now define a formula 𝜑 that is p-valid but not generally valid. As in
the previous proof, the main idea is that for positive precisification spaces there is a
simple way to enforce that 𝑝 receives a truth value greater than 0 that does not work
in general. Define 𝜑 as the following formula:

(¬S¬𝑝) ⊃ (¬¬𝑞 ⊃ (¬𝑝 ⊃ 𝑞)) .

en ¬S¬𝑝 is the antecedent of 𝜑 and ¬¬𝑞 ⊃ (¬𝑝 ⊃ 𝑞) is the succedent of 𝜑.
We first show that 𝜑 is p-valid. Let 𝑺 be an arbitrary positive precisification space.

e antecedent of 𝜑 either has the truth value 0 or to 1 in 𝑺 . If it has the truth value 0,
there is nothing to show because 𝜑 is trivially true. Assume now that the antecedent
of 𝜑 has the truth value 1. en we have ‖¬S¬𝑝‖𝑺 = 1 and furthermore ‖𝑝‖𝑺 > 0
because 𝑺 is a positive precisification space. We now have to show that the succedent
of 𝜑 also has the truth value 1.

Consider first the case that ‖𝑝‖𝑺 > 𝑢. We now want to calculate ‖¬𝑝‖𝑺 . By the
definition of the residuum of ∗ we have

‖¬𝑝‖∗
𝑺 = ‖𝑝 ⊃ 0̄‖∗

𝑺 = ධ‖𝑝‖𝑺 ⇒∗ 0න = max බ𝑧 ∈ [0, 1] ∣ ‖𝑝‖𝑺 ∗ 𝑧 ≤ 0භ .

By the generalized ordinal sum representation, ‖𝑝‖𝑺 lies in an interval [𝑎, 𝑏] su that
the continuous t-norm ∗ restricted to [𝑎, 𝑏] is an isomorphic copy of either Łukasiewicz
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or the product t-norm. Because the intervals of this representation do not overlap and
‖𝑝‖𝑺 > 𝑢 we know that 𝑎 ≥ 𝑢. If 𝑧 ∈ [𝑎, 𝑏], then also ‖𝑝‖𝑺 ∗ 𝑧 ∈ [𝑎, 𝑏] and therefore
‖𝑝‖𝑺 ∗ 𝑧 ≥ 𝑢 > 0. If 𝑧 ∉ [𝑎, 𝑏] and 𝑧 > 0, then ‖𝑝‖𝑺 ∗ 𝑧 = min(‖𝑝‖𝑺 , 𝑧) > 0 because
‖𝑝‖𝑺 > 𝑢 > 0 . is leaves the case 𝑧 = 0 for whi we get ‖𝑝‖𝑺 ∗ 𝑧 = 0. is means
that ‖¬𝑝‖∗

𝑺 = 0 and therefore ‖¬𝑝 ⊃ 𝑞‖∗
𝑺 = 1 and ‖¬¬𝑞 ⊃ (¬𝑝 ⊃ 𝑝)‖∗

𝑺 = 1.
Consider now the case that ‖𝑝‖𝑺 ≤ 𝑢. We have to distinguish two subcases: either

‖𝑞‖𝑺 ≥ 𝑢 or ‖𝑞‖𝑺 < 𝑢. Assume that ‖𝑞‖𝑺 ≥ 𝑢. Since 0 < ‖𝑝‖𝑺 ≤ 𝑢 we know by
Lemma 5.4.10 that ‖¬𝑝‖∗

𝑺 = ‖𝑝 ⊃ 0̄‖∗
𝑺 ∈ [0, 𝑢]. is gives ‖¬𝑝‖∗

𝑺 ≤ 𝑢 ≤ ‖𝑞‖𝑺 .
erefore ‖¬𝑝 ⊃ 𝑞‖∗

𝑺 = 1 and thus ‖¬¬𝑞 ⊃ (¬𝑝 ⊃ 𝑝)‖∗
𝑺 = 1.

Assume that ‖𝑞‖𝑺 < 𝑢. If ‖𝑞‖𝑺 = 0, then ‖¬¬𝑞‖∗
𝑺 = ‖¬¬0̄‖∗

𝑺 = ‖¬1̄‖∗
𝑺 = 0 and

therefore ‖¬¬𝑞 ⊃ (¬𝑝 ⊃ 𝑝)‖∗
𝑺 = 1. us we assume in the following that 𝑞 > 0. If

‖¬𝑝‖∗
𝑺 ≤ ‖𝑞‖𝑺 , then ‖¬𝑝 ⊃ 𝑞‖∗

𝑺 = 1 and therefore ‖¬¬𝑞 ⊃ (¬𝑝 ⊃ 𝑝)‖∗
𝑺 = 1. Hence

we assume in the following that ‖¬𝑝‖∗
𝑺 > ‖𝑞‖𝑺 .

Because 0 ≤ 𝑝 ≤ 𝑢 and 0 ≤ 𝑞 ≤ 𝑢, we now apply Lemma 5.4.10 several times
to calculate the truth value of ¬¬𝑞 ⊃ (¬𝑝 ⊃ 𝑝). Let 𝑓 denote the order isomorphism
between [0, 𝑢] and [0, 1] of the generalized ordinal sum representation. First of all,
since ‖𝑝‖𝑺 > 0, we have

‖¬𝑝‖∗
𝑺 = ‖𝑝 ⊃ 0̄‖∗

𝑺 = 𝑓 −1 ධmin ධ1 − 𝑓 ධ‖𝑝‖𝑺න + 𝑓(0), 1නන
= 𝑓 −1 ධmin ධ1 − 𝑓 ධ‖𝑝‖𝑺න + 0, 1නන
= 𝑓 −1 ධmin ධ1 − 𝑓 ධ‖𝑝‖𝑺න , 1නන
= 𝑓 −1 ධ1 − 𝑓 ධ‖𝑝‖𝑺නන

and since ‖𝑞‖𝑺 > 0 we have

‖¬𝑞‖∗
𝑺 = 𝑓 −1 ධ1 − 𝑓 ධ‖𝑞‖𝑺නන .

Now because ‖¬𝑝‖∗
𝑺 > ‖𝑞‖𝑺 we get

‖¬𝑝 ⊃ 𝑞‖∗
𝑺 = 𝑓 −1 ධmin ධ1 − 𝑓 ධ‖¬𝑝‖∗

𝑺න + 𝑓 ධ‖𝑞‖𝑺න , 1නන
= 𝑓 −1 ධmin ධ1 − 𝑓 ධ𝑓 −1 ධ1 − 𝑓 ධ‖𝑝‖𝑺නනන + 𝑓 ධ‖𝑞‖𝑺න , 1නන
= 𝑓 −1 ධmin ධ1 − ධ1 − 𝑓 ධ‖𝑝‖𝑺නන + 𝑓 ධ‖𝑞‖𝑺න , 1නන
= 𝑓 −1 ධmin ධ𝑓 ධ‖𝑝‖𝑺න + 𝑓 ධ‖𝑞‖𝑺න , 1නන .

Since ‖𝑞‖𝑺 > 0 we get 𝑓(‖𝑞‖𝑺) > 𝑓(0) because 𝑓 is an order isomorphism. erefore
1 − 𝑓(‖𝑞‖𝑺) > 0 and thus ‖¬𝑞‖∗

𝑺 = 𝑓 −1(1 − 𝑓(‖𝑞‖𝑺)) > 𝑓 −1(0) = 0. is means
that we may apply Lemma 5.4.10 again and we get

‖¬¬𝑞‖∗
𝑺 = 𝑓 −1 ධ1 − 𝑓 ධ‖¬𝑞‖∗

𝑺නන
= 𝑓 −1 ධ1 − 𝑓 ධ𝑓 −1 ධ1 − 𝑓 ධ‖𝑞‖𝑺නනනන
= 𝑓 −1 ධ1 − ධ1 − 𝑓 ධ‖𝑞‖𝑺නනන
= 𝑓 −1 ධ𝑓 ධ‖𝑞‖𝑺නන
= ‖𝑞‖𝑺 .
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Since ‖𝑝‖𝑺 > 0 and ‖𝑞‖𝑺 < 𝑢 we have 𝑓(‖𝑝‖𝑺) > 𝑓(0) = 0 and 𝑓(‖𝑞‖𝑺) <
𝑓(𝑢) = 1 because 𝑓 is an order isomorphism. erefore the inequality

𝑓 ධ‖𝑞‖𝑺න < min ධ𝑓 ධ‖𝑝‖𝑺න + 𝑓 ධ‖𝑞‖𝑺න , 1න
holds. Since 𝑓 is an order isomorphism we conclude

‖¬¬𝑞‖∗
𝑺 = 𝑓 −1 ධ𝑓 ධ‖𝑞‖𝑺නන < 𝑓 −1 ධmin ධ𝑓 ධ‖𝑝‖𝑺න + 𝑓 ධ‖𝑞‖𝑺න , 1නන = ‖¬𝑝 ⊃ 𝑞‖∗

𝑺 .

erefore we get ‖¬¬𝑞 ⊃ (¬𝑝 ⊃ 𝑝)‖∗
𝑺 = 1.

We have showed that ‖¬¬𝑞 ⊃(¬𝑝⊃𝑝)‖∗
𝑺 = 1 in all possible cases. is means that

the succedent of 𝜑 is true whi means that 𝜑 is true in 𝑺 . Since 𝑺 was an arbitrary
positive probability space, we conclude that 𝜑 is p-valid.

Finally, we show that 𝜑 is not generally valid. Consider the precisification space
𝑺 consisting of three precisifications 𝑠1, 𝑠2 and 𝑠3 with the probability measure 𝜇
given by 𝜇(𝑠1) = 0 and 𝜇(𝑠2) = 𝑢 and 𝜇(𝑠3) = 1 − 𝑢. e propositional variables are
interpreted at the precisifications as follows:

‖𝑝‖𝑠1,𝑺 = 1 ‖𝑝‖𝑠2,𝑺 = 0 ‖𝑝‖𝑠3,𝑺 = 0
‖𝑞‖𝑠1,𝑺 = 0 ‖𝑞‖𝑠2,𝑺 = 1 ‖𝑞‖𝑠2,𝑺 = 0 .

en we have ‖¬S(¬𝑝)‖∗
𝑺 = 1 because ‖𝑝‖𝑠1,𝑺 = 1. us, the antecedent of 𝜑 is true.

Furthermore, ‖𝑝‖𝑺 = 0 and ‖𝑞‖𝑺 = 𝑢. en ‖¬𝑝‖∗
𝑺 = ‖¬0̄‖∗

𝑺 = 1 and we get

‖¬𝑝 ⊃ 𝑞‖∗
𝑺 = ‖1̄ ⊃ 𝑞‖∗

𝑺 = ‖𝑞‖𝑺 = 𝑢 < 1 .

Since ‖𝑞‖𝑺 = 𝑢 we get ‖¬𝑞‖∗
𝑺 = 0 and ‖¬¬𝑞‖∗

𝑺 = 1. us, we get

‖¬¬𝑞 ⊃ (¬𝑝 ⊃ 𝑞)‖∗
𝑺 = ‖1̄ ⊃ (¬𝑝 ⊃ 𝑞)‖∗

𝑺 = ‖¬𝑝 ⊃ 𝑞‖∗
𝑺 < 1 .

erefore, the succedent of 𝜑 does not have the truth value 1 whimeans that 𝜑 does
not have the truth value 1.

eorem 5.4.7 gave a sufficient condition for the equivalence p-validity and general
validity. Our investigation showed that this condition is also necessary.

eorem 5.4.12. For every continuous t-norm ∗ the equivalence

For every formula 𝜑, 𝜑 is valid in S∗ if and only if 𝜑 is p-valid in S∗.

holds if and only if ∗ is isomorphic to the Łukasiewicz t-norm.

5.4.3 Equivalence of p-validity and u-validity in SG
In the following we give a prove that p-validity and u-validity coincide in SG. e
key idea is that in Gödel logic only the order of evaluations of propositional variables
is relevant. In our seing, the evaluations of propositional variables are sums of mea-
sures of precisifications. We show that every order on sums of measures that can
be expressed with positive precisification spaces can also be expressed with uniform
precisification spaces.
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Lemma 5.4.13. Let 𝑋 be a system set of linear equations and inequalities of the form

𝑛

෌
𝑖=1

𝑎𝑖𝑗 ⋅ 𝑥𝑖 = 0 or
𝑛

෌
𝑖=1

𝑎𝑖𝑗 ⋅ 𝑥𝑖 < 0

where ea 𝑎𝑖𝑗 is a rational number, 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚. en 𝑋 has a positive,²⁹
rational solution if and only if 𝑋 has a positive, real solution.

Proof. Obviously, every rational solution of 𝑋 is also a real solution of 𝑋. e pa-
per [25] describes an algorithm for finding a positive solution of a system 𝑋 of linear
equations if it has one. From the constructions of the algorithm it can be seen that the
found solution is rational if the coefficients of 𝑋 are rational.

We denote by 𝑋໗ the system that is the result of replacing in 𝑋 every inequality
of the form ∑𝑛

𝑖=1 𝑎𝑖𝑗 ⋅ 𝑥𝑖 < 0 by an equation ∑𝑛
𝑖=1 𝑎𝑖 ⋅ 𝑥𝑖 + 𝑡𝑗 = 0 where 𝑡𝑗 is a

fresh sla variable. If 𝑋 has a positive solution 𝑥∗
1, … , 𝑥∗

𝑛, then also 𝑋໗ that has a
positive solution. We simply set every sla variable 𝑡𝑗 that we introduced to 𝑡∗

𝑗 =
− ∑𝑛

𝑖=1 𝑎𝑖𝑗 ⋅ 𝑥∗
𝑖 . We know that 𝑡∗

𝑗 cannot be negative or 0 because then 𝑥∗
1, … , 𝑥∗

𝑛
would violate the original inequality. Since 𝑋໗ only contains linear equations and
all coefficients (including those of the sla variables) are rational, we know by the
algorithm mentioned above that 𝑋໗ has a positive, rational solution. is solution of
𝑋໗ then also is a solution of 𝑋.

Lemma 5.4.14. Let 𝑋 be a system set of linear equations and inequalities of the form

𝑛

෌
𝑖=1

𝑎𝑖𝑗 ⋅ 𝑥𝑖 = 0 or
𝑛

෌
𝑖=1

𝑎𝑖𝑗 ⋅ 𝑥𝑖 < 0

where ea 𝑎𝑖𝑗 is a rational number, 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚. If 𝑋 has a positive,
rational solution, then 𝑋 also has a positive, rational solution su that the constraint
∑𝑛

𝑖=1 𝑎𝑖𝑗 ⋅ 𝑥𝑖 = 1 is fulfilled.

Proof. Let 𝑥∗
1, … , 𝑥∗

𝑛 be a positive, rational solution of 𝑋. We define 𝑏 = ∑𝑛
𝑖=1 𝑥∗

𝑖 .
Since 𝑥∗

𝑖 is rational and 𝑥∗
𝑖 > 0 for every 1 ≤ 𝑖 ≤ 𝑛, also 𝑏 is rational and 𝑏 > 0. Now

we simply define

𝑥×
𝑖 =

𝑥∗
𝑖

𝑏
for every 1 ≤ 𝑖 ≤ 𝑛. Since 𝑥∗

𝑖 is a positive rational number for every 1 ≤ 𝑖 ≤ 𝑛 and 𝑎
is a positive rational, also 𝑥×

𝑖 is a positive rational number. We verify that 𝑥×
1 , … , 𝑥×

𝑛
has the desired property:

𝑛

෌
𝑖=1

𝑥×
𝑖 =

𝑛

෌
𝑖=1

𝑥∗
𝑖

𝑏 = 1
𝑏 ⋅

𝑛

෌
𝑖=1

𝑥∗
𝑖 = 1

𝑏 ⋅ 𝑏 = 1

²⁹A number is positive iff it is strictly greater than 0.
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Now it can easily be eed that 𝑥×
1 , … , 𝑥×

𝑛 is indeed a solution of 𝑋. We clearly
have

𝑛

෌
𝑖=1

𝑎𝑖𝑗 ⋅ 𝑥×
𝑖 =

𝑛

෌
𝑖=1

𝑎𝑖𝑗 ⋅
𝑥∗

𝑖
𝑏 = 1

𝑏 ⋅
𝑛

෌
𝑖=1

𝑎𝑖𝑗 ⋅ 𝑥∗
𝑖 .

If ∑𝑛
𝑖=1 𝑎𝑖𝑗𝑥∗

𝑖 = 0, then ∑𝑛
𝑖=1 𝑎𝑖𝑗 ⋅ 𝑥×

𝑖 = 1
𝑏 ⋅ ∑𝑛

𝑖=1 𝑎𝑖𝑗 ⋅ 𝑥∗
𝑖 = 1

𝑏 ⋅ 0 = 0. If ∑𝑛
𝑖=1 𝑎𝑖𝑗𝑥∗

𝑖 < 0,
then ∑𝑛

𝑖=1 𝑎𝑖𝑗 ⋅𝑥×
𝑖 = 1

𝑏 ⋅∑𝑛
𝑖=1 𝑎𝑖𝑗 ⋅𝑥∗

𝑖 < 1
𝑏 ⋅0 = 0 because 1/𝑏 > 0. erefore 𝑥×

1 , … , 𝑥×
𝑛

is indeed a solution of 𝑋.

We can now construct from a precisification space with real, positive measures a
second precisification space with rational, positive measures su that they are con-
nected by certain conditions. We will subsequently show that these conditions are
strong enough to determine the set of true formulas.

Lemma 5.4.15. Let 𝑺 be a positive precisification space with a finite set of precisifica-
tions and ໭ a set of propositional variables. en there is a precisification space 𝑺໗

with probability measure 𝜇໗ su that 𝜇໗(𝑠) ∈ ℚ>0 for every 𝑠 ∈ 𝑺໗ and the following
conditions hold:

• ‖S𝜑‖𝑺 = ‖S𝜑‖𝑺 ′ for every formula 𝜑

• ‖𝑝‖𝑺 < ‖𝑞‖𝑺 if and only if ‖𝑝‖𝑺 ′ < ‖𝑞‖𝑺 ′ for all 𝑝, 𝑞 ∈ ໭

• ‖𝑝‖𝑺 = 1 if and only if ‖𝑝‖𝑺 ′ = 1 for every 𝑝 ∈ ໭

• ‖𝑝‖𝑺 = 0 if and only if ‖𝑝‖𝑺 ′ = 0 for every 𝑝 ∈ ໭

Proof. Let 𝑺 be a positive precisification space with a finite set of precisifications 𝑷
and a probability measure 𝜇. We consider a variable 𝑥𝑠 for every 𝑠 ∈ 𝑷 . For every
propositional variable 𝑝 ∈ ໭ we define the linear combination 𝐿𝑝 by

𝐿𝑝 = ෌
𝑠∈[𝑝]𝑺

𝑥𝑠

where the sum of the empty set is 0. We define 𝑥∗
𝑠 = 𝜇(𝑠) > 0 for every 𝑠 ∈ 𝑷 . Note

that, for every 𝑝 ∈ ໭ we have ∑𝑠∈[𝑝]𝑺
𝑥∗

𝑠 = ‖𝑝‖𝑺 . We define the following system of
linear equations and inequalities where 𝑝, 𝑞 ∈ ໭ that we call 𝑋:

𝐿𝑝 = 𝐿𝑞 if ‖𝑝‖𝑺 = ‖𝑞‖𝑺
𝐿𝑝 < 𝐿𝑞 if ‖𝑝‖𝑺 < ‖𝑞‖𝑺
𝐿𝑞 < 𝐿𝑝 if ‖𝑝‖𝑺 > ‖𝑞‖𝑺 .

It is clear that, by subtracting the right hand sides, the system 𝑋 is equivalent
to a system 𝑋໗ that fulfills the precondition of Lemma 5.4.13. Note that in 𝑋໗ only
rational coefficients appear. Since (𝑥∗

𝑠 )𝑠∈𝑷 is a real, positive solution of 𝑋໗ we know
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by Lemma 5.4.13 that there exists a rational, positive solution (𝑥×
𝑠 )𝑠∈𝑷 of 𝑋໗. Due to

Lemma 5.4.14 we may assume that ∑𝑠∈𝑷 𝑥×
𝑠 = 1.

We define a precisification space 𝑺໗ that is just like 𝑺 but with a different proba-
bility measure. is means that the set of precisifications of𝑺໗ is 𝑷 and the local truth
value of a propositional variable 𝑝, for every 𝑠 ∈ 𝑷 is ‖𝑝‖𝑠,𝑺 ′ = ‖𝑝‖𝑠,𝑺 . We define
the probability measure 𝜇໗ of 𝑺໗ by seing 𝜇໗(𝑠) = 𝑥×

𝑠 for every 𝑠 ∈ 𝑷 . en 𝜇໗ is
well-defined because

𝜇໗(𝑷 ) = ෌
𝑠∈𝑷

𝜇໗(𝑠) = ෌
𝑠∈𝑷

𝑥×
𝑠 = 1 .

Furthermore 𝑺໗ is a positive precisification space because, for every 𝑠 ∈ 𝑷 , 𝜇໗(𝑠) =
𝑥×

𝑠 > 0 since (𝑥×
𝑠 )𝑠∈𝑷 is a positive solution. We now show that 𝑺໗ has the desired

properties.
Since 𝑺 and 𝑺໗ have the same sets of precisifications with the same sets of truth

values assigned to them we have [𝜑]𝑺 = [𝜑]𝑺 ′ for every formula 𝜑. erefore the
following equivalences hold for every formula 𝜑:

‖S𝜑‖𝑺 = 1 if and only if

[𝜑]𝑺 = 𝑷 if and only if

[𝜑]𝑺 ′ = 𝑷 if and only if

‖S𝜑‖𝑺 ′ = 1

Since, for every formula 𝜑, ‖S𝜑‖𝑺 ∈ {0, 1} and ‖S𝜑‖𝑺 ′ ∈ {0, 1} we may conclude
‖S𝜑‖𝑺 = ‖S𝜑‖𝑺 ′ .

We now apply Proposition 5.1.7 and we get the equivalences

‖𝑝‖𝑺 = 1 if and only if

‖S𝑝‖𝑺 = 1 if and only if

‖S𝑝‖𝑺 ′ = 1 if and only if

‖𝑝‖𝑺 ′ = 1

and

‖𝑝‖𝑺 = 0 if and only if

‖S¬𝑝‖𝑺 = 1 if and only if

‖S¬𝑝‖𝑺 ′ = 1 if and only if

‖𝑝‖𝑺 ′ = 0

Since [𝜑]𝑺 = [𝜑]𝑺 ′ for every formula 𝜑, we in particular have [𝑝]𝑺 = [𝑝]𝑺 ′ for
every 𝑝 ∈ ໭. erefore we get, for every 𝑝 ∈ ໭,

‖𝑝‖𝑺 ′ = ෌
𝑠∈[𝑝]𝑺′

𝜇໗(𝑠) = ෌
𝑠∈[𝑝]𝑺

𝜇໗(𝑠) = ෌
𝑠∈[𝑝]𝑺

𝑥×
𝑠 .
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Now assume that ‖𝑝‖𝑺 < ‖𝑞‖𝑺 . Since ‖𝑝‖𝑺 = ∑𝑠∈[𝑝]𝑺
𝑥∗

𝑠 and ‖𝑞‖𝑺 = ∑𝑠∈[𝑞]𝑺
𝑥∗

𝑠
we then have ∑𝑠∈[𝑝]𝑺

𝑥∗
𝑠 < ∑𝑠∈[𝑞]𝑺

𝑥∗
𝑠 . Since an inequality that is equivalent to 𝐿𝑝 <

𝐿𝑞 is contained in 𝑋໗, we get ∑𝑠∈[𝑝]𝑺
𝑥×

𝑠 < ∑𝑠∈[𝑞]𝑺
𝑥×

𝑠 . Since ‖𝑝‖𝑺 ′ = ∑𝑠∈[𝑝]𝑺
𝑥×

𝑠
and ‖𝑞‖𝑺 ′ = ∑𝑠∈[𝑞]𝑺

𝑥×
𝑠 , we conclude ‖𝑝‖𝑺 ′ < ‖𝑞‖𝑺 ′ .

Now assume that ‖𝑝‖𝑺 ≮ ‖𝑞‖𝑺 . If ‖𝑝‖𝑺 > ‖𝑞‖𝑺 , then the same reasoning as
before applies and we get ‖𝑝‖𝑺 ′ > ‖𝑞‖𝑺 ′ and therefore ‖𝑝‖𝑺 ′ ≮ ‖𝑞‖𝑺 ′ . If ‖𝑝‖𝑺 =
‖𝑞‖𝑺 , then also a similar argument as before will give us ‖𝑝‖𝑺 ′ = ‖𝑞‖𝑺 ′ and therefore
‖𝑝‖𝑺 ′ ≮ ‖𝑞‖𝑺 ′ .

We now show that the conditions of the previous lemma are sufficient for two
precisification spaces to have the same sets of true formulas.

Lemma 5.4.16. Let 𝜑 be a formula, ໭ the set of propositional variables of 𝜑, and 𝑺1
and 𝑺2 precisification spaces su that the following conditions hold:

• ‖S𝜓‖𝑺1
= ‖S𝜓‖𝑺2

for every subformula S𝜓 of 𝜑

• ‖𝑝‖𝑺1
< ‖𝑞‖𝑺1

if and only if ‖𝑝‖𝑺2
< ‖𝑞‖𝑺2

for all 𝑝, 𝑞 ∈ ໭

• ‖𝑝‖𝑺1
= 0 if and only if ‖𝑝‖𝑺2

= 0 for every 𝑝 ∈ ໭

• ‖𝑝‖𝑺1
= 1 if and only if ‖𝑝‖𝑺2

= 1 for every 𝑝 ∈ ໭

en ‖𝜑‖G𝑺1
= 1 if and only if ‖𝜑‖G𝑺2

= 1.

Proof. We first show that ‖𝑝‖𝑺1
= ‖𝑞‖𝑺1

if and only if ‖𝑝‖𝑺2
= ‖𝑞‖𝑺2

for all 𝑝, 𝑞 ∈ ໭.
Assume that ‖𝑝‖𝑺1

= ‖𝑞‖𝑺1
and suppose that ‖𝑝‖𝑺2

≠ ‖𝑞‖𝑺2
. en either

‖𝑝‖𝑺2
< ‖𝑞‖𝑺2

or ‖𝑝‖𝑺2
> ‖𝑞‖𝑺2

. If ‖𝑝‖𝑺2
< ‖𝑞‖𝑺2

, then ‖𝑝‖𝑺1
< ‖𝑞‖𝑺1

and
therefore ‖𝑝‖𝑺1

≠ ‖𝑞‖𝑺1
whi contradicts our assumption. If ‖𝑝‖𝑺2

> ‖𝑞‖𝑺2
, then

‖𝑝‖𝑺1
> ‖𝑞‖𝑺1

and therefore ‖𝑝‖𝑺1
≠ ‖𝑞‖𝑺1

whi contradicts our assumption.
erefore it must be the case that ‖𝑝‖𝑺2

= ‖𝑞‖𝑺2
. e other direction holds due

to the same argument.
We define the following two models 𝑴1 and 𝑴2, with domains 𝑫1 and 𝑫2, of

the theory of linear orders with endpoints 𝖫𝖮𝖤 (see Section 4.2) and two evaluations
𝒆1 and 𝒆2:

𝑫1 = {0, 1} ∪ බ‖𝑝‖𝑺1
∣ 𝑝 ∈ ໭භ 𝑫2 = {0, 1} ∪ බ‖𝑝‖𝑺2

∣ 𝑝 ∈ ໭භ
‖0̄‖𝑴1

= 0 ‖0̄‖𝑴2
= 0

‖1̄‖𝑴1
= 0 ‖1̄‖𝑴2

= 0

We interpret < as the standard strict smaller-than relation on real numbers in both
models. en it is clear that both models satisfy all axioms of the theory 𝖫𝖮𝖤.

We denote by 𝜑໗ the result of replacing every subformula S𝜓 of 𝜑 that is not in
the scope of another S-operator by a new propositional variable 𝑝𝜓 . Furthermore, we
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define the 𝑫1-evaluation 𝒆1 and the 𝑫2-evaluation 𝒆2 as follows:

𝒆1(𝑣) =
๨

‖S𝜓‖𝑺1
if 𝑣 = 𝑝𝜓

‖𝑣‖𝑺1
otherwise

𝒆2(𝑣) =
๨

‖S𝜓‖𝑺1
if 𝑣 = 𝑝𝜓

‖𝑣‖𝑺2
otherwise

Note that 𝒆1 and 𝒆2 are well-defined because ‖S𝜓‖𝑺1
= ‖S𝜓‖𝑺2

∈ {0, 1}. Further-
more, 𝒆1(𝑝) = 𝒆2(𝑝) for every propositional variable 𝑝 ∉ ໭ and we clearly have
‖𝜑‖G𝑺1

= ‖𝜑‖G𝒆1
and ‖𝜑‖G𝑺2

= ‖𝜑‖G𝒆2
.

We define the following function 𝑓 ∶ 𝑫1 → 𝑫2:

𝑓(𝑑) =
⎧⎪
⎨
⎪⎩

0 if 𝑑 = 0
1 if 𝑑 = 1
‖𝑝‖𝑺2

if there is some 𝑝 ∈ ໭ su that 𝑑 = ‖𝑝‖𝑺1

First, we have to show that 𝑓 is well-defined. If ‖𝑝‖𝑺1
= 0, then also ‖𝑝‖𝑺2

= 0 and
therefore 𝑓(‖𝑝‖𝑺1

) = ‖𝑝‖𝑺2
= 0 = 𝑓(0). If ‖𝑝‖𝑺1

= 1, then also ‖𝑝‖𝑺2
= 1 and

therefore 𝑓(‖𝑝‖𝑺1
) = ‖𝑝‖𝑺2

= 1 = 𝑓(1). If ‖𝑝‖𝑺1
= ‖𝑞‖𝑺1

, then also ‖𝑝‖𝑺2
= ‖𝑞‖𝑺2

and therefore 𝑓(‖𝑝‖𝑺1
) = ‖𝑝‖𝑺2

= ‖𝑞‖𝑺2
= 𝑓(‖𝑞‖𝑺1

).
We further show that 𝑓 is a homomorphism 𝑴1 → 𝑴2. We clearly have

𝑓 ධ‖0̄‖𝑴1න = 𝑓(0) = 0 = ‖0̄‖𝑴2

𝑓 ධ‖1̄‖𝑴1න = 𝑓(1) = 1 = ‖1̄‖𝑴2
.

Now let 𝑎, 𝑏 ∈ 𝑫1. We have to show that 𝑎 < 𝑏 if and only if 𝑓(𝑎) < 𝑓(𝑏). We start
with the direction from le to right: Assume that 𝑎 < 𝑏. en it is not possible that
𝑎 = 1 or that 𝑏 = 0. We go through all possible cases:

• Assume that 𝑎 = 0 and 𝑏 = 1. en 𝑓(𝑎) = 𝑓(0) = 0 < 1 = 𝑓(1) = 𝑓(𝑏).

• Assume that 𝑎 = 0 and 0 < 𝑏 < 1. en there must be some 𝑝 ∈ ໭ su that
𝑏 = ‖𝑝‖𝑺1

. Suppose that 𝑓(𝑏) = 0. en 0 = 𝑓(𝑏) = 𝑓(‖𝑝‖𝑺1
) = ‖𝑝‖𝑺2

. We
get 0 = ‖𝑝‖𝑺1

= 𝑏 whi contradicts 𝑏 > 0. erefore 𝑓(𝑏) > 0 and we get
𝑓(𝑎) = 𝑓(0) = 0 < 𝑓(𝑏).

• Assume that 𝑏 = 1 and 0 < 𝑎 < 1. en there must be some 𝑝 ∈ ໭ su that
𝑎 = ‖𝑝‖𝑺1

. Suppose that 𝑓(𝑎) = 1. en 1 = 𝑓(𝑎) = 𝑓(‖𝑝‖𝑺1
) = ‖𝑝‖𝑺2

. We
get 1 = ‖𝑝‖𝑺1

= 𝑎 whi contradicts 𝑎 < 1. erefore 𝑓(𝑎) < 1 and we get
𝑓(𝑎) < 1 = 𝑓(1) = 𝑓(𝑏).

• Assume that 0 < 𝑎 < 1 and 0 < 𝑏 < 1. en it must be the case that 𝑎 = ‖𝑝‖𝑺1
and 𝑏 = ‖𝑞‖𝑺1

for some 𝑝, 𝑞 ∈ ໭, then we have ‖𝑝‖𝑺1
< ‖𝑞‖𝑺1

and therefore

𝑓(𝑎) = 𝑓 ධ‖𝑝‖𝑺1න = ‖𝑝‖𝑺2
< ‖𝑞‖𝑺2

= 𝑓 ධ‖𝑞‖𝑺1න = 𝑓(𝑏) .
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Now we show the direction from right to le indirectly. Assume that 𝑎 ≮ 𝑏. en
we know that 𝑎 ≥ 𝑏. If 𝑎 > 𝑏, then we know, due to the proof of the direction from
le to right, that 𝑓(𝑎) > 𝑓(𝑏) and therefore 𝑓(𝑎) ≮ 𝑓(𝑏). If 𝑎 = 𝑏, then 𝑓(𝑎) = 𝑓(𝑏)
and thus 𝑓(𝑎) ≮ 𝑓(𝑏).

e last thing that we have to show is that 𝑎 = 𝑏 if and only if 𝑓(𝑎) = 𝑓(𝑏). For
the direction from le to right there is nothing to show. We prove the other direction
indirectly. If 𝑎 ≠ 𝑏, then either 𝑎 < 𝑏 or 𝑏 < 𝑎. If 𝑎 < 𝑏, then 𝑓(𝑎) < 𝑓(𝑏) and if 𝑏 < 𝑎,
then 𝑓(𝑏) < 𝑓(𝑎). us, in both cases we have 𝑓(𝑎) ≠ 𝑓(𝑏). Note that this also shows
that 𝑓 is injective.

Now we may apply Lemma 4.3.3 and get 𝑓(‖𝜑‖G𝑴1,𝒆1
) = ‖𝜑‖G𝑴2,𝑓 ∘𝒆1

. Note that
𝑓 ∘ 𝒆1 = 𝒆2: Let 𝑝 be a propositional variable. If 𝑝 ∈ ໭, then 𝑓(𝒆1(𝑝)) = 𝑓(‖𝑝‖𝑺1

) =
‖𝑝‖𝑺2

= 𝒆2(𝑝). If 𝑝 ∉ ໭, then we know that 𝒆1(𝑝) = 𝒆2(𝑝) ∈ {0, 1}. If 𝒆1(𝑝) = 0,
then 𝑓(𝒆1(𝑝)) = 𝑓(0) = 0 = 𝒆2(𝑝) and if 𝒆1(𝑝) = 1, then 𝑓(𝒆1(𝑝)) = 𝑓(1) = 1 = 𝒆2(𝑝).

Now we get

𝑓 ෹‖𝜑‖G𝑺1෺ = 𝑓 ෹‖𝜑‖G𝑴1,𝒆1෺ = ‖𝜑‖G𝑴1,𝑓 ∘𝒆1
= ‖𝜑‖G𝑴2,𝒆2

= ‖𝜑‖G𝑺2

If ‖𝜑‖G𝑺1
= 1, we get

‖𝜑‖G𝑺2
= 𝑓 ෹‖𝜑‖G𝑺1෺ = 𝑓(1) = 1

because 𝑓 is a homomorphism. We can now show the claim of the lemma. If ‖𝜑‖G𝑺2
=

1, then ‖𝜑‖G𝑺1
= 1 for suppose ‖𝜑‖G𝑺1

≠ 1, then 𝑓(‖𝜑‖G𝑺1
) ≠ 1 because 𝑓 is injective

and 𝑓(1) = 1.

eorem 5.4.17. For every formula 𝜑, 𝜑 is u-valid in SG if and only if 𝜑 is p-valid
in SG.

Proof. Assume that 𝜑 is u-valid and let 𝑺 be a positive precisification space with a
set of precisifications 𝑷 and a probability measure 𝜇. By Proposition 5.1.10 we may
assume that 𝑷 is finite. By Lemma 5.4.15 there is a precisification space 𝑺໗ with
probability measure 𝜇໗ su that 𝜇໗(𝑠) ∈ ℚ>0 for every 𝑠 ∈ 𝑷 ໗ and the following
conditions hold:

• ‖S𝜓‖𝑺 = ‖S𝜓‖𝑺 ′ for every subformula S𝜓 of 𝜑

• ‖𝑝‖𝑺 < ‖𝑞‖𝑺 if and only if ‖𝑝‖𝑺 ′ < ‖𝑞‖𝑺 ′ for all 𝑝, 𝑞 ∈ ໭

• ‖𝑝‖𝑺 = 0 if and only if ‖𝑝‖𝑺 ′ = 0 for all 𝑝 ∈ ໭

• ‖𝑝‖𝑺 = 1 if and only if ‖𝑝‖𝑺 ′ = 1 for all 𝑝 ∈ ໭

By Lemma 5.4.16 we then know that ‖𝜑‖G𝑺 = 1 if and only if ‖𝜑‖G𝑺 ′ = 1. By Lem-
ma 5.4.6 there is a uniform precisification space 𝑺𝑢 su that ‖𝜑‖G𝑺 ′ = ‖𝜑‖G𝑺𝑢

. Since

𝜑 is u-valid we know that ‖𝜑‖G𝑺𝑢
= 1. erefore we get ‖𝜑‖G𝑺 ′ = 1 and ‖𝜑‖G𝑺 = 1.

As 𝑺 was an arbitrary positive precisification space we conclude that𝜑 is p-valid.
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5.5 Embedding SŁ into ▵Ł
In the following, we show that SŁ can be embedded in Łukasiewicz logic with ▵-
operator. By embedding we mean that for every formula 𝜑 of SŁ we can construct a
formula 𝜑໗ of ▵Ł su that 𝜑 is valid in SŁ if and only if 𝜑໗ is valid in ▵Ł. For the
construction, all propositional variables that occur in 𝜑 have to be known beforehand.
erefore the translation cannot be defined purely inductively on the complexity of 𝜑.
Furthermore, 𝜑໗ might be exponentially larger than 𝜑, whi means that the embed-
ding cannot be used to obtain complexity results by polynomial-time reductions. For
these reasons, our notion of embedding slightly differs from what is usually implicitly
understood by an embedding of one logic into another one. Nevertheless the embed-
ding that is considered here shows some interesting connections between SŁ and ▵Ł.

e starting point for the embedding is the following observation.

Proposition 5.5.1. For every precisification space 𝑺 with and every propositional vari-
able 𝑝 we have

‖𝑝‖𝑺 = ෌
𝑠∈𝑺

min ධ𝜇(𝑠), ‖𝑝‖𝑠,𝑺න

‖¬𝑝‖𝑺 = ෌
𝑠∈𝑺

min ධ𝜇(𝑠), ‖¬𝑝‖𝑠,𝑺න .

Our main strategy to obtain the embedding is as follows: For every precisification
in the precisification space we create a propositional variable that corresponds to the
measure of the precisification. Furthermore, we create propositional variables that
indicate the truth or falsehood of the classical propositional variables in the precisifi-
cations. Since every formula only has finitely many propositional variables and every
precisification space is equivalent to a space with a finite number of precisifications,
we create only finitely many new propositional variables. By the above proposition,
we can ensure that all of the original propositional variables obtain the truth values
that correspond to their measure in the precisification space. To make our proof go
through we have to restrict ourselves to positive precisification spaces whi is no
problem because validity and p-validity coincide in SŁ. As a simplification we on-
ly consider formulas in normal form. is requirement is not really necessary but
simplifies our proves.

Proof of Proposition 5.5.1. Let 𝑷 denote the set of precisifications of 𝑺 . We show the
first part by the following ain of identities:

‖𝑝‖𝑺 = 𝜇 ධ[𝑝]𝑺න = ෌
𝑠∈[𝑝]𝑺

𝜇(𝑠)

= ෌
𝑠∈[𝑝]𝑺

𝜇(𝑠) ⋅ ‖𝑝‖𝑠,𝑺 + ෌
𝑠∈𝑷 ⧵[𝑝]𝑺

𝜇(𝑠) ⋅ ‖𝑝‖𝑠,𝑺

= ෌
𝑠∈𝑷

𝜇(𝑠) ⋅ ‖𝑝‖𝑠,𝑺
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= ෌
𝑠∈𝑷

min ධ𝜇(𝑠), ‖𝑝‖𝑠,𝑺න .

e second part needs a very similar argument.

In the following, we will always have the following situation: We have a set of
propositional variables ໭ and a set of precisifications 𝑷 and for every precisification
𝑠 ∈ 𝑷 we have a propositional variable ̂𝑠. By abuse of notation we will write 𝑠
instead of ̂𝑠. us 𝑷 is also a set of propositional variables. We assume that ໭ and 𝑷
are disjoint. We also assume that 𝑝𝑠 is a new propositional variable for every 𝑝 ∈ ໭
and every 𝑠 ∈ 𝑷 .

Lemma 5.5.2. Let 𝑺 be a positive precisification space with a set of precisifications
𝑷 = {𝑠1, … 𝑠𝑚} and ໭ a set of propositional variables. en there is an evaluation 𝒆
su that

‖𝑝‖𝑠,𝑺 = 𝒆(𝑝𝑠) for every 𝑝 ∈ ໭ and every 𝑠 ∈ 𝑷
‖𝑝‖𝑺 = 𝒆(𝑝) for every 𝑝 ∈ ໭

and for every 𝑝 ∈ ໭
‖▿𝑠‖Ł𝒆 = 1 for every 𝑠 ∈ 𝑷

‖𝑝𝑠 ∨ ¬𝑝𝑠‖Ł𝒆 = 1 for every 𝑠 ∈ 𝑷
‖𝑝 ≡ ((𝑝𝑠1

∧ 𝑠1) ⊻ … ⊻ (𝑝𝑠𝑚
∧ 𝑠𝑚))‖Ł𝒆 = 1

‖¬𝑝 ≡ ((¬𝑝𝑠1
∧ 𝑠1) ⊻ … ⊻ (¬𝑝𝑠𝑚

∧ 𝑠𝑚))‖Ł𝒆 = 1
Proof. We simply define an evaluation 𝒆 as follows:

𝒆(𝑝) = ‖𝑝‖𝑺 for every 𝑝 ∈ ໭
𝒆(𝑝𝑠) = ‖𝑝‖𝑠,𝑺 for every 𝑝 ∈ ໭ and every 𝑠 ∈ 𝑷
𝒆(𝑠) = 𝜇(𝑠) for every 𝑠 ∈ 𝑷

It is clear that 𝒆 is well-defined because ‖𝑝‖𝑺 , ‖𝑝‖𝑠,𝑺 , 𝜇(𝑠) ∈ [0, 1].
Since 𝑺 is a positive precisification space we have 𝒆(𝑠) = 𝜇(𝑠) > 0 for every

𝑠 ∈ 𝑷 and therefore ‖▿𝑠‖Ł𝒆 = 1. Due to the definition of the local truth value we
know that, for every 𝑝 ∈ ໭ and every 𝑠 ∈ 𝑷 , 𝒆(𝑝𝑠) = ‖𝑝‖𝑠,𝑺 ∈ {0, 1} and therefore
‖𝑝𝑠 ∨ ¬𝑝𝑠‖Ł𝒆 = 1.

Furthermore we have ‖𝑝 ∧ 𝑠‖Ł𝑺 = min(‖𝑝‖Ł𝑺 , ‖𝑠‖Ł𝑺)) for every 𝑝 ∈ ໭ and every
𝑠 ∈ 𝑷 . erefore, for every 𝑝 ∈ ໭, we get

‖(𝑝𝑠1
∧ 𝑠1) ⊻ … ⊻ (𝑝𝑠𝑚

∧ 𝑠𝑚)‖Ł𝒆 = min
๢෌

𝑠∈𝑷
‖𝑝𝑠 ∧ 𝑠‖Ł𝒆, 1

๣

= min
๢෌

𝑠∈𝑷
min ධ‖𝑝𝑠‖Ł𝒆, ‖𝑠‖Ł𝒆න , 1

๣

= min
๢෌

𝑠∈𝑷
min ධ‖𝑝‖𝑠,𝑺 , 𝜇(𝑠)න , 1

๣
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Due to min(‖𝑝‖Ł𝑺 , 𝜇(𝑠)) ≤ 𝜇(𝑠) we get

෌
𝑠∈𝑷

min ධ‖𝑝‖𝑠,𝑺 , 𝜇(𝑠)න ≤ ෌
𝑠∈𝑷

𝜇(𝑠) = 1

and therefore by Proposition 5.5.1 we get

‖(𝑝 ∧ 𝑠1) ⊻ … ⊻ (𝑝 ∧ 𝑠𝑚)‖Ł𝒆 = ෌
𝑠∈𝑷

min ධ‖𝑝‖𝑠,𝑺 , 𝜇(𝑠)න = ‖𝑝‖𝑺 .

us, ‖𝑝 ≡ ((𝑝𝑠1
∧ 𝑠1) ⊻ … ⊻ (𝑝𝑠𝑚

∧ 𝑠𝑚))‖Ł𝒆 = 1. A similar argument shows that
‖¬𝑝 ≡ ((¬𝑝𝑠1

∧ 𝑠1) ⊻ … ⊻ (¬𝑝𝑠𝑚
∧ 𝑠𝑚))‖Ł𝒆 = 1.

Lemma 5.5.3. Let 𝒆 be an evaluation and ໭ and 𝑷 = {𝑠1, … , 𝑠𝑚} sets of propositional
variables su that

‖▿𝑠‖Ł𝒆 = 1 for every 𝑠 ∈ 𝑷
‖𝑝𝑠 ∨ ¬𝑝𝑠‖Ł𝒆 = 1 for every 𝑠 ∈ 𝑷

‖𝑝 ≡ ((𝑝𝑠1
∧ 𝑠1) ⊻ … ⊻ (𝑝𝑠𝑚

∧ 𝑠𝑚))‖Ł𝒆 = 1 for every 𝑝 ∈ ໭
‖¬𝑝 ≡ ((¬𝑝𝑠1

∧ 𝑠1) ⊻ … ⊻ (¬𝑝𝑠𝑚
∧ 𝑠𝑚))‖Ł𝒆 = 1 for every 𝑝 ∈ ໭

en there is a positive precisification space 𝑺 with 𝑷 as its set of precisifications su
that

‖𝑝‖𝑠,𝑺 = 𝒆(𝑝𝑠) for every 𝑝 ∈ ໭ and every 𝑠 ∈ 𝑷
‖𝑝‖𝑺 = 𝒆(𝑝) for every 𝑝 ∈ ໭

Proof. We will define a precisification space 𝑺 with 𝑷 as its set of precisifications and
a probability measure 𝜇. In all cases we have to make sure that 𝑺 is a well-defined.

We define the local truth values by ‖𝑝‖𝑠,𝑺 = 𝒆(𝑝𝑠) for every 𝑝 ∈ ໭ and every
𝑠 ∈ 𝑷 . Since ‖𝑝𝑠 ∨ ¬𝑝𝑠‖Ł𝒆 = 1 we know that 𝒆(𝑝𝑠) ∈ {0, 1}: Suppose that 0 <
𝒆(𝑝𝑠) < 1. en ‖𝑝𝑠‖Ł𝑺 < 1 and ‖¬𝑝𝑠‖Ł𝑺 = 1 − ‖𝑝𝑠‖Ł𝑺 < 1. us, ‖𝑝𝑠 ∨ ¬𝑝𝑠‖Ł𝒆 =
min(‖𝑝𝑠‖Ł𝑺 , ‖¬𝑝𝑠‖Ł𝑺) < 1 whi contradicts our assumptions. erefore, the assign-
ment ‖𝑝‖𝑠,𝑺 = 𝒆(𝑝𝑠) ∈ {0, 1} is a proper definition of the local truth value.

We consider now first the case that for every 𝑝 ∈ ໭ either 𝒆(𝑝) = 0 or 𝒆(𝑝) = 1.
We define 𝜇 by 𝜇(𝑠) = 1/𝑚 for every 𝑠 ∈ 𝑷 . en clearly 𝜇(𝑠) > 0 and ∑𝑠∈𝑷 𝜇(𝑠) =
∑𝑠∈𝑷 1/𝑚 = 𝑚 ⋅ (1/𝑚) = 1. Let 𝑝 ∈ ໭. If 𝒆(𝑝) = 1, then there cannot be an 𝑠໗ ∈ 𝑷
su that 𝒆(𝑝𝑠′) = 0 for the following reason: If 𝒆(𝑝𝑠′) = 0, then ‖¬𝑝𝑠′‖Ł𝒆 = 1 and
therefore min(‖¬𝑝𝑠′‖Ł𝒆, ‖𝑠໗‖Ł𝒆) = ‖𝑠໗‖Ł𝒆 > 0. en we arrive at the contradiction

0 = ‖¬𝑝‖Ł𝒆 = ෌
𝑠∈𝑷

min ධ‖¬𝑝𝑠‖Ł𝒆, ‖𝑠‖Ł𝒆න ≥ min ධ‖¬𝑝𝑠′‖Ł𝒆, ‖𝑠໗‖Ł𝒆න

= min ධ1, ‖𝑠໗‖Ł𝒆න = ‖𝑠໗‖Ł𝒆 > 0 .

erefore we may assume that ‖𝑝‖𝑠,𝑺 = 1 for all 𝑠 ∈ 𝑷 and we get ‖𝑝‖𝑺 = 𝜇([𝑝]𝑺) =
𝜇(𝑷 ) = 1 = 𝒆(𝑝). If 𝒆(𝑝) = 0, then, for a similar reason as before, there cannot be
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an 𝑠 ∈ 𝑷 su that 𝒆(𝑝𝑠) = 1. erefore, ‖𝑝‖𝑠,𝑺 = 0 for all 𝑠 ∈ 𝑷 and we get
‖𝑝‖𝑺 = 𝜇([𝑝]𝑺) = 𝜇(∅) = 0 = 𝒆(𝑝).

e second case that we have to consider is that there is some 𝑝 ∈ ໭ su that
0 < 𝒆(𝑝) < 1. en we simply define 𝜇 by seing 𝜇(𝑠) = 𝒆(𝑠) for every 𝑠 ∈ 𝑷 . We
first show that 𝜇 is well-defined. Since ‖▿𝑠‖Ł𝒆 = 1 we know that 𝜇(𝑠) = 𝒆(𝑠) > 0 and
thus 𝑺 is positive. For well-definedness, we still need to show that ∑𝑠∈𝑷 𝜇(𝑠) = 1.

Since ‖𝑝‖Ł𝒆 = 𝒆(𝑝) < 1 and ‖¬𝑝‖Ł𝒆 = 1 − 𝒆(𝑝) < 1 our assumptions give us

‖𝑝‖Ł𝒆 = min
๢෌

𝑠∈𝑷
min ධ‖𝑝𝑠‖Ł𝒆, ‖𝑠‖Ł𝒆න , 1

๣

= ෌
𝑠∈𝑷

min ධ‖𝑝𝑠‖Ł𝒆, ‖𝑠‖Ł𝒆න

= ෌
𝑠∈𝑷

min ධ‖𝑝𝑠‖𝑠,𝑺 , 𝜇(𝑠)න

and

‖¬𝑝‖Ł𝒆 = min
๢෌

𝑠∈𝑷
min ධ‖¬𝑝𝑠‖Ł𝒆, ‖𝑠‖Ł𝒆න , 1

๣

= ෌
𝑠∈𝑷

min ධ‖¬𝑝𝑠‖Ł𝒆, ‖𝑠‖Ł𝒆න

= ෌
𝑠∈𝑷

min ධ‖¬𝑝𝑠‖𝑠,𝑺 , 𝜇(𝑠)න .

Since ‖𝑝𝑠‖𝑠,𝑺 ∈ {0, 1} and 0 < 𝜇(𝑠) ≤ 1 we get

min ධ‖𝑝𝑠‖𝑠,𝑺 , 𝜇(𝑠)න + min ධ‖¬𝑝𝑠‖𝑠,𝑺 , 𝜇(𝑠)න = 𝜇(𝑠)

and thus we have

1 = ‖𝑝‖Ł𝒆 + 1 − ‖𝑝‖Ł𝒆
= ‖𝑝‖Ł𝒆 + ‖¬𝑝‖Ł𝒆
= ෌

𝑠∈𝑷
min ධ‖𝑝𝑠‖𝑠,𝑺 , 𝜇(𝑠)න + ෌

𝑠∈𝑷
min ධ‖¬𝑝𝑠‖𝑠,𝑺 , 𝜇(𝑠)න

= ෌
𝑠∈𝑷

ධmin ධ‖𝑝𝑠‖𝑠,𝑺 , 𝜇(𝑠)න + min ධ‖¬𝑝𝑠‖𝑠,𝑺 , 𝜇(𝑠)නන

= ෌
𝑠∈𝑷

𝜇(𝑠)

whi we had to show.
Let 𝑝 ∈ ໭. Since min(‖𝑝𝑠‖𝑠,𝑺 , 𝜇(𝑠)) ≤ 𝜇(𝑠) for every 𝑠 ∈ 𝑷 we get

෌
𝑠∈𝑷

min ධ‖𝑝𝑠‖𝑠,𝑺 , 𝜇(𝑠)න ≤ ෌
𝑠∈𝑷

𝜇(𝑠) = 1
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and therefore have

𝒆(𝑝) = ‖𝑝‖Ł𝒆 = min
๢෌

𝑠∈𝑷
min ධ‖𝑝𝑠‖Ł𝒆, ‖𝑠‖Ł𝒆න , 1

๣

= min
๢෌

𝑠∈𝑷
min ධ‖𝑝𝑠‖Ł𝒆, 𝜇(𝑠)න , 1

๣

= ෌
𝑠∈𝑷

min ධ‖𝑝𝑠‖𝑠,𝑺 , 𝜇(𝑠)න .

By Proposition 5.5.1 the right hand side is equal to ‖𝑝‖𝑺 . ereforewe get 𝒆(𝑝) = ‖𝑝‖𝑺
for every 𝑝 ∈ ໭.

Note that in this proof it is really necessary to have the restriction to positive
precisification spaces to show the well-definedness in the first case.

Definition 5.5.4. Let໭ be a set of propositional variables and𝑷 = {𝑠1, … , 𝑠𝑚} a finite
set of propositional variables. For every formula 𝜑 and every 𝑠 ∈ 𝑷 , we define 𝜑(𝑠) as
the result of replacing every occurrence of any propositional variable 𝑝 ∈ ໭ in 𝜑 by
𝑝𝑠. For every formula 𝜑 that only contains propositional variables of ໭ we inductively
define the formula 𝜑໗ as follows:

(S𝜓)໗ = ැ
𝑠∈𝑷

𝜓 (𝑠)

0̄໗ = 0̄
𝑝໗ = 𝑝

(𝜓 & 𝜒)໗ = 𝜓 ໗ & 𝜒 ໗

(𝜓 ⊃ 𝜒)໗ = 𝜓 ໗ ⊃ 𝜒 ໗

Lemma 5.5.5. Let ∗ be a continuous t-norm, 𝑺 a precisification space with a set of
precisifications 𝑷 , 𝒆 an evaluation, and ໭ a set of propositional variables su that

‖𝑝‖𝑠,𝑺 = 𝒆(𝑝𝑠) for every 𝑝 ∈ ໭ and every 𝑠 ∈ 𝑷
‖𝑝‖𝑺 = 𝒆(𝑝) for every 𝑝 ∈ ໭

en, for every formula 𝜑 in normal form, ‖𝜑‖∗
𝑺 = ‖𝜑໗‖∗

𝒆.

Proof. Due to 𝒆(𝑝𝑠) = ‖𝑝‖𝑠,𝑺 ∈ {0, 1} we obviously have, for every formula 𝜓 that
does not contain an S-operator, ‖𝜓‖𝑠,𝑺 = ‖𝜓 (𝑠)‖∗

𝒆 for every 𝑠 ∈ 𝑷 because t-norm
based connectives behave classically for the truth value set {0, 1}. Now consider any
subformula of 𝜑 that is of the form S𝜓 . Since 𝜑 is in normal form, we know that 𝜓
does not contain an S-operator. It is then easy to show that ‖S𝜓‖𝑺 = ‖(S𝜓)໗‖∗

𝒆.
Assume that ‖S𝜓‖𝑺 = 1. en ‖𝜓‖𝑠,𝑺 = 1 for every 𝑠 ∈ 𝑷 . By our argu-

ment above, then also ‖𝜓 (𝑠)‖∗
𝒆 = 1 for every 𝑠 ∈ 𝑷 . us, we get ‖(S𝜓 ໗)‖∗

𝒆 =
‖ ⋀𝑠∈𝑷 𝜓 (𝑠)‖∗

𝒆 = 1 = ‖S𝜓‖𝑺 .
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Assume that ‖S𝜓‖𝑺 = 0. en ‖𝜓‖𝑠,𝑺 = 0 for some 𝑠 ∈ 𝑷 . By our argu-
ment above, we then have ‖𝜓 (𝑠)‖∗

𝒆 = 0 for some 𝑠 ∈ 𝑷 . us, we get ‖(S𝜓 ໗)‖∗
𝒆 =

‖ ⋀𝑠∈𝑷 𝜓 (𝑠)‖∗
𝒆 = 0 = ‖S𝜓‖𝑺 .

A straightforward induction on the structure of 𝜑—similar to the proof of Propo-
sition 5.1.8—then shows that ‖𝜑‖∗

𝑺 = ‖𝜑໗‖∗
𝒆.

Definition 5.5.6. For every formula𝜑, we construct the formula𝐶𝜑 as follows. We de-
fine໭ as the set of propositional variables contained in𝜑,𝑚 = 2|໭|, and𝑷 = {𝑠1, … 𝑠𝑚}.
e formula 𝐶𝜑 is the conjunction of all formulas

▿𝑠
𝑝𝑠 ∨ ¬𝑝𝑠

𝑝 ≡ ((𝑝𝑠1
∧ 𝑠1) ⊻ … ⊻ (𝑝𝑠𝑚

∧ 𝑠𝑚))
¬𝑝 ≡ ((¬𝑝𝑠1

∧ 𝑠1) ⊻ … ⊻ (¬𝑝𝑠𝑚
∧ 𝑠𝑚))

for all 𝑝 ∈ ໭ and all 𝑠 ∈ 𝑷 .

eorem 5.5.7. For every formula 𝜑 in normal form, 𝜑 is p-valid in SŁ if and only if
▵𝐶𝜑 ⊃ 𝜑໗ is valid in ▵Ł.

Proof. Let 𝒆 be an arbitrary evaluation. We know that ‖▵𝐶𝜑‖Ł𝒆 ∈ {0, 1}. In the case
‖▵𝐶𝜑‖Ł𝒆 = 0 we trivially get ‖▵𝐶𝜑 ⊃ 𝜑໗‖Ł𝒆 = 1. If ‖▵𝐶𝜑‖Ł𝒆 = 1, then ‖𝐶𝜑‖Ł𝒆 = 1 and
by Lemma 5.5.3 and Lemma 5.5.5 there is a positive precisification space 𝑺 su that
‖𝜑‖Ł𝑺 = ‖𝜑໗‖Ł𝒆 . Since 𝜑 is p-valid, we have ‖𝜑‖Ł𝑺 = 1 and therefore get ‖𝜑໗‖Ł𝒆 = 1.
Hence, ‖▵𝐶𝜑 ⊃ 𝜑໗‖Ł𝒆 = 1. Since 𝒆 was an arbitrary evaluation, ▵𝐶𝜑 ⊃ 𝜑໗ is valid
in ▵Ł.

Let 𝑺 be an arbitrary positive precisification space. By Proposition 5.1.10 there is
a positive precisification space 𝑺໗ with 𝑚 = 2|໭| precisifications su that ‖𝜑‖Ł𝑺 =
‖𝜑‖Ł𝑺 ′ . en by Lemma 5.5.2 and Lemma 5.5.5, there is an evaluation 𝒆 su that
‖𝜑‖𝑺 ′ = ‖𝜑໗‖𝒆 and ‖𝐶𝜑‖Ł𝒆 = 1. en we also have ‖▵𝐶𝜑‖Ł𝒆 = 1. Since ▵𝐶𝜑 ⊃ 𝜑໗

is valid in ▵Ł, we get ‖▵𝐶𝜑 ⊃ 𝜑໗‖Ł𝒆 = 1. erefore we get ‖𝜑໗‖Ł𝒆 = 1. We then have
‖𝜑‖Ł𝑺 = ‖𝜑‖Ł𝑺 ′ = ‖𝜑໗‖Ł𝒆 = 1. Since 𝑺 was an arbitrary positive precisification space,
we conclude that 𝜑 is p-valid in SŁ.

Since validity and p-validity coincide in SŁ by eorem 5.4.7 and every formula
is valid if and only if its normal form is valid, we have an embedding of SŁ into ▵Ł.

Corollary 5.5.8. For every formula 𝜑, 𝜑 is valid in SŁ if and only if ▵𝐶𝜑 ⊃ 𝜑໗ is valid
in ▵Ł.

Note that our proof was fully constructive: we can give an algorithm to compute
𝜑໗ from 𝜑. Since eing for validity in ▵Ł is decidable, we get a simple decision
procedure for eing whether a formula 𝜑 is valid in SŁ: just e whether 𝜑໗ is
valid in ▵Ł.

Corollary 5.5.9. Cheing for validity in SŁ is decidable.
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5.6 Embedding ▵G into SŁ
e following investigation is concerned with a certain type of precisification spaces.
Remember that in fuzzy logic the truth values of the propositional variables are lin-
early ordered. We can also introduce the concept of linearity to the framework of
precisification spaces.

Definition 5.6.1. A precisification space 𝑺 is linear in a set of propositional vari-
ables ໭ iff for all 𝑝, 𝑞 ∈ ໭, [𝑝]𝑺 ⊆ [𝑞]𝑺 or [𝑞]𝑺 ⊆ [𝑝]𝑺 .

We now show how to construct a precisification space from an evaluation su
that the truth values of propositional variables are preserved. is construction will
give us a linear precisification space, whi is the reason why we include the proof in
this section.

Lemma 5.6.2. Let 𝒆 be an evaluation of propositional variables and ໭ = {𝑝1, … , 𝑝𝑛, }
a finite set of propositional variables. en there is a positive precisification space
𝑺 that is linear in ໭ su that ‖𝑝‖𝑺 = 𝒆(𝑝) for every 𝑝 ∈ ໭. is implies that
‖𝜑‖∗

𝑺 = ‖𝜑‖∗
𝒆 for every S-free formula 𝜑 containing only propositional variables of ໭

and every continuous t-norm ∗.

Proof. Our proof has two parts. First, we prove that a precisification space with the
desired properties exists that is not necessarily positive. Aer that we show how from
su a precisification space we obtain a positive precisification space that has the de-
sired properties. If ‖𝑝‖𝑺 = 𝒆(𝑝) for every 𝑝 ∈ ໭, then ‖𝜑‖∗

𝑺 = ‖𝜑‖∗
𝒆 for every S-free

formula 𝜑 containing only propositional variables of ໭ because the interpretation of
formulas based on the continuous t-norm ∗ is exactly the same in both cases.

Without loss of generality we assume that the truth values of the propositional
variables are linearly ordered, i.e., 𝒆(𝑝1) ≤ … ≤ 𝒆(𝑝𝑛). We define a precisification
space 𝑺 that has a set of precisifications 𝑷 = {𝑠1, … , 𝑠𝑛+1}. e local truth value of a
propositional variable 𝑝𝑖 at the precisification 𝑠𝑗 (with 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑛 − 1)
is defined as follows:

‖𝑝𝑖‖𝑠𝑗
=

๨
1 if 𝑗 ≤ 𝑖
0 if 𝑗 > 𝑖 .

Furthermore, we define the probability measure 𝜇 of 𝑺 as follows:

𝜇 ධ𝑠𝑗න =
⎧⎪
⎨
⎪⎩

𝒆 ධ𝑝1න if 𝑗 = 1
𝒆 ධ𝑝𝑗න − 𝒆 ධ𝑝𝑗−1න if 1 < 𝑗 < 𝑛 + 1
1 − 𝒆 ධ𝑝𝑛න if 𝑗 = 𝑛 + 1 .
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It can easily be verified that 𝜇 is well-defined:

෌
𝑠∈𝑺

𝜇(𝑠) =
𝑛+1

෌
𝑗=1

𝜇 ධ𝑠𝑗න

= 𝜇 ධ𝑠1න +
𝑛

෌
𝑗=2

𝜇 ධ𝑠𝑗න + 𝜇 ධ𝑠𝑛+1න

= 𝒆 ධ𝑝1න +
𝑛

෌
𝑗=2

ධ𝒆 ධ𝑝𝑗න − 𝒆 ධ𝑝𝑗−1නන + 1 − 𝒆 ධ𝑝𝑛න

= 𝒆 ධ𝑝1න +
𝑛

෌
𝑗=2

𝒆 ධ𝑝𝑗න −
𝑛

෌
𝑗=2

𝒆 ධ𝑝𝑗−1න + 1 − 𝒆 ධ𝑝𝑛න

= 𝒆 ධ𝑝1න +
𝑛

෌
𝑗=2

𝒆 ධ𝑝𝑗න −
𝑛−1

෌
𝑗=1

𝒆 ධ𝑝𝑗න + 1 − 𝒆 ධ𝑝𝑛න

=
𝑛

෌
𝑗=1

𝒆 ධ𝑝𝑗න −
𝑛

෌
𝑗=1

𝒆 ධ𝑝𝑗න + 1 = 1 .

Furthermore, the precisification space 𝑺 has the desired properties. For every
propositional variable 𝑝𝑖 ∈ ໭ we have

‖𝑝𝑖‖𝑺 = 𝜇 ධ[𝑝𝑖]𝑺න
= 𝜇 ධබ𝑠𝑗 ∈ 𝑺 ∣ 𝑗 ≤ 𝑖භන

=
𝑖

෌
𝑗=1

𝜇 ධ𝑠𝑗න

= 𝜇 ධ𝑠1න +
𝑖

෌
𝑗=2

𝜇 ධ𝑠𝑗න

= 𝒆 ධ𝑝1න +
𝑖

෌
𝑗=2

ධ𝒆 ධ𝑝𝑗න − 𝒆 ධ𝑝𝑗−1නන

= 𝒆 ධ𝑝1න +
𝑖

෌
𝑗=2

𝒆 ධ𝑝𝑗න −
𝑖

෌
𝑗=2

𝒆 ධ𝑝𝑗−1න

=
𝑖

෌
𝑗=1

𝒆 ධ𝑝𝑗න −
𝑖−1

෌
𝑗=1

𝒆 ධ𝑝𝑗න

= 𝒆 ධ𝑝𝑖න .

We also verify that 𝑺 is linear in ໭. Let 𝑝𝑖1
, 𝑝𝑖2

∈ ໭. en [𝑝𝑖1
]𝑺 = {𝑠𝑗 ∈ 𝑺 ∣ 𝑗 ≤ 𝑖1}

and [𝑝𝑖2
]𝑺 = {𝑠𝑗 ∈ 𝑺 ∣ 𝑗 ≤ 𝑖2}. If 𝑖1 ≤ 𝑖2, then [𝑝𝑖1

]𝑺 ⊆ [𝑝𝑖2
]𝑺 and if 𝑖1 > 𝑖2, then

[𝑝𝑖2
]𝑺 ⊆ [𝑝𝑖1

]𝑺 .



140 CHAPTER 5. A HYBRID LOGIC

We now show that we can also find a positive precisification space with the de-
sired properties. Let 𝑺 be a precisification space with a set of precisifications 𝑷 and a
probability measure 𝜇 that is linear in ໭ su that ‖𝑝‖𝑺 = 𝒆(𝑝) for every 𝑝 ∈ ໭. en
there is a positive precisification space 𝑺໗ that also has these properties. We define 𝑺໗

by giving its set of precisifications 𝑷 ໗, its probability measure 𝜇໗ and its local truth
values:

𝑷 ໗ = {𝑠 ∈ 𝑷 ∣ 𝜇(𝑠) > 0}
𝜇໗(𝑠) = 𝜇(𝑠) for every 𝑠 ∈ 𝑷 ໗

‖𝑝‖𝑠,𝑺 ′ = ‖𝑝‖𝑠,𝑺 for every 𝑠 ∈ 𝑷 ໗ and atomic 𝑝 .

en we have

1 = ෌
𝑠∈𝑷

𝜇(𝑠) = ෌
𝑠∈𝑷 ′

𝜇(𝑠) + ෌
𝑠∈𝑷 ⧵𝑷 ′

𝜇(𝑠) = ෌
𝑠∈𝑷 ′

𝜇(𝑠) + ෌
𝑠∈𝑷 ⧵𝑷 ′

0 = ෌
𝑠∈𝑷 ′

𝜇(𝑠)

and therefore 𝑺 is well-defined. Clearly, 𝑺 is positive by the definitions of 𝜇໗ and 𝑷 ໗.
Now we show that the desired properties still hold. Due to Proposition 5.1.2, for

every 𝑝 ∈ ໭, we have

𝒆(𝑝) = ‖𝑝‖𝑺 = 𝜇 ධ[𝑝]𝑺න = 𝜇 ධධ[𝑝]𝑺 ∩ 𝑷 ໗න ∪ ධ[𝑝]𝑺 ∩ ධ𝑷 ⧵ 𝑷 ໗නනන
= 𝜇 ධ[𝑝]𝑺 ∩ 𝑷 ໗න + 𝜇 ධ[𝑝]𝑺 ∩ ධ𝑷 ⧵ 𝑷 ໗නන
= 𝜇 ධ[𝑝]𝑺 ′න + 0
= 𝜇 ධ[𝑝]𝑺 ′න = ‖𝑝‖𝑺 ′ .

Now let 𝑝, 𝑞 ∈ 𝑷 ໗ and assume that [𝑝]𝑺 ⊆ [𝑞]𝑺 . Since [𝑝]𝑺 ′ = [𝑝]𝑺 ∩ 𝑷 ໗ and
[𝑞]𝑺 ′ = [𝑞]𝑺 ∩ 𝑷 ໗, we have [𝑝]𝑺 ′ ⊆ [𝑞]𝑺 ′ . Since [𝑝]𝑺 ⊆ [𝑞]𝑺 or [𝑞]𝑺 ⊆ [𝑝]𝑺 for all
𝑝, 𝑞 ∈ ໭, we then also have [𝑝]𝑺 ′ ⊆ [𝑞]𝑺 or [𝑞]𝑺 ′ ⊆ [𝑝]𝑺 for all 𝑝, 𝑞 ∈ ໭. us, 𝑺໗ is
linear in ໭.

It is an easy, but crucial, observation that the concept of linearity can be expressed
by a formula.

Lemma 5.6.3. A precisification space 𝑺 is linear in a set of propositional variables
໭ = {𝑝1, … 𝑝𝑛} if and only if there is a permutation 𝜋 of {1, … , 𝑛} su that the
formula S(𝑝𝜋(1) ⊃ 𝑝𝜋(2)) ∧ … ∧ S(𝑝𝜋(𝑛−1) ⊃ 𝑝𝜋(𝑛)) is true in 𝑺 .

Proof. It is clear that for every precisification space 𝑺 and all formulas 𝜑 and 𝜓 we
have ‖S(𝜑 ⊃ 𝜓)‖𝑺 = 1 if and only if [𝜑]𝑺 ⊆ [𝜓]𝑺 .

If 𝑺 is a precisification space that is linear in ໭, then ⊆ is a linear order on the set
{[𝑝]𝑺 ∣ 𝑝 ∈ ໭}. erefore every subset of {[𝑝]𝑺 ∣ 𝑝 ∈ ໭} contains a minimum with
respect to ⊆. is means that we can label the elements of ໭ by a permutation 𝜋 of
{1, … , 𝑛} su that [𝑝𝜋(1)]𝑺 ⊆ … ⊆ [𝑝𝜋(𝑛)]𝑺 . us, that the formula S(𝑝𝜋(1) ⊃ 𝑝𝜋(2)) ∧
… ∧ S(𝑝𝜋(𝑛−1) ⊃ 𝑝𝜋(𝑛)) is true in 𝑺 .

Now assume that there is a permutation 𝜋 of {1, … , 𝑛} su that ‖S(𝑝𝜋(1)⊃𝑝𝜋(2))∧
…∧S(𝑝𝜋(𝑛−1) ⊃𝑝𝜋(𝑛))‖𝑺 = 1. en we know that [𝑝𝜋(1)]𝑺 ⊆ [𝑝𝜋(2)]𝑺 , …, [𝑝𝜋(𝑛−1)]𝑺 ⊆
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[𝑝𝜋(𝑛)]𝑺 . For two propositional variables 𝑝𝜋(𝑖), 𝑝𝜋(𝑗) ∈ ໭ we then get [𝑝𝜋(𝑖)]𝑺 ⊆ [𝑝𝜋(𝑗)]𝑺
if 𝑖 ≤ 𝑗 and [𝑝𝜋(𝑗)]𝑺 ⊆ [𝑝𝜋(𝑖)]𝑺 if 𝑗 ≤ 𝑖. erefore 𝑺 is linear in ໭.

Since ໭ is a finite set, there are only finitely many permutations. We therefore can
aracterize the property of being linear in໭ by transforming the existential statement
of the previous lemma into a disjunctive formula.

Corollary 5.6.4. Let ໭ = {𝑝1, … 𝑝𝑛} be a set of propositional variables and define the
formula 𝜓໭ by

𝜓໭ = ෑ
𝜋∈𝛱{1,…,𝑛}

S ධ𝑝𝜋(1) ⊃ 𝑝𝜋(2)න ∧ … ∧ S ධ𝑝𝜋(𝑛−1) ⊃ 𝑝𝜋(𝑛)න

where 𝛱{1,…,𝑛} denotes the set of all permutations of {1, … , 𝑛}. en a precisification
space 𝑺 is linear in ໭ if and only if 𝜓໭ is true in 𝑺 .

In the following we show tight connections between Gödel logic with ▵-operator
and the logic S∗, for any continuous t-norm ∗, restricted to linear precisification spaces.
We consider all “levels” of our semantics: extensions, measures, and truth values. is
will give us an embedding of ▵G into S∗ in the sense that we discussed at the begin-
ning of Section 5.5. We first define two syntactical translations of formulas of ▵G to
formulas of S∗. As usual we treat formulas of Gödel logic that contain disjunction or
negation symbols as abbreviations for formulas that do not contain them.

Definition 5.6.5. Let 𝜑 be a formula of Gödel logic with ▵-operator. e local S-
translation 𝜑l of 𝜑 inductively defined as follows:

0̄l = 0̄
𝑝l = 𝑝 for atomic 𝑝

(▵𝜓)l = S𝜓 l

(𝜓 ∧ 𝜒)l = 𝜓 l ∧ 𝜒 l

(𝜓 ⊃ 𝜒)l = S ධ𝜓 l ⊃ 𝜒 lන ∨ 𝜒 l .

e global S-translation 𝜑g of 𝜑 is defined as follows: We denote by 𝜑໗ the result
of iteratedly replacing every maximal³⁰ subformula of 𝜑 of the form 𝜓 ⊃ 𝜒 that is
not in the scope of a ▵-operator by (▵(𝜓 ⊃ 𝜒)) ∨ 𝜒 . e global S-translation then is
𝜑g = (𝜑໗)l.

Note that we assume that the formulas of Gödel logic only have one conjunction
sign ∧ and that in the translated formulas ∧ is read as the weak conjunction sign.

Our next observation is that for certain formulas 𝜑, the “value” of [𝜑]𝑺 in a linear
precisification space 𝑺 can be computed according to the truth functions of Gödel
logic.

³⁰Maximality of a subformula 𝜓 ⊃ 𝜒 of 𝜑 means that there is no subformula 𝜓∗ ⊃ 𝜒∗ of 𝜑 su that
𝜓 ⊃ 𝜒 is a subformula of 𝜓∗ or 𝜓 ⊃ 𝜒 is a subformula of 𝜒∗.
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Lemma 5.6.6. Let 𝑺 be a precisification space that is linear in a set of propositional
variables໭ and let𝜑 be a formula of Gödel logic with▵ consisting only of propositional
variables contained in ໭. en the following holds:

(i) One of the following conditions holds:

• ඳ𝜑lප𝑺 = 𝑷
• ඳ𝜑lප𝑺 = ∅
• ere is some 𝑝 ∈ ໭ su that ඳ𝜑lප𝑺 = ඳ𝑝lප𝑺 .

(ii) ඳ𝜑lප𝑺 can be computed as follows:

• If 𝜑 = 𝜓 & 𝜒 , then ඳ𝜑lප𝑺 =
๨

ඳ𝜓 lප𝑺 if ඳ𝜓 lප𝑺 ⊆ ඳ𝜒 lප𝑺
ඳ𝜒 lප𝑺 otherwise .

• If 𝜑 = ▵𝜓 , then ඳ𝜑lප𝑺 =
๨

𝑷 if ඳ𝜓 lප𝑺 = 𝑷
∅ otherwise .

• If 𝜑 = 𝜓 ⊃ 𝜒 , then ඳ𝜑lප𝑺 =
๨

𝑷 if ඳ𝜓 lප𝑺 ⊆ ඳ𝜒 lප𝑺
ඳ𝜒 lප𝑺 otherwise .

Proof. We prove both claims in conjunction by induction on the structure of 𝜑.

• If 𝜑 = 1̄, 𝜑 = 0̄ or 𝜑 = 𝑝 for some propositional variable 𝑝, then the first claim
trivially holds due to [1̄]𝑺 = 𝑷 and [0̄]𝑺 = ∅ and there is nothing to show for
the second claim.

• 𝜑 = 𝜓 & 𝜒 : Note that in any case we have

ඳ𝜑lප𝑺 = ඳ(𝜓 & 𝜒)lප𝑺 = ඳ𝜓 l ∧ 𝜒 lප𝑺 = ඳ𝜓 lප𝑺 ∩ ඳ𝜒 lප𝑺 .

e crucial observation now is that for two sets 𝑆1 and 𝑆2 su that 𝑆1 ⊆ 𝑆2
we get 𝑆1 ∩ 𝑆2 = 𝑆1.

If [𝜓 l]𝑺 ⊆ [𝜒 l]𝑺 , then we get [𝜑l]𝑺 = [𝜓 l]𝑺 ∩[𝜒 l]𝑺 = [𝜓 l]𝑺 . Now assume that
[𝜓 l]𝑺 ⊈ [𝜒 l]𝑺 . en, by the induction hypothesis, [𝜓 l]𝑺 = 𝑷 or [𝜓 l]𝑺 = [𝑝]
for some 𝑝 ∈ ໭ and [𝜒 l]𝑺 = ∅ or [𝜒 l]𝑺 = [𝑞] for some 𝑞 ∈ ໭.³¹ If [𝜓 l]𝑺 = 𝑷 ,
then we get

ඳ𝜑lප𝑺 = ඳ𝜓 lප𝑺 ∩ ඳ𝜒 lප𝑺 = 𝑷 ∩ ඳ𝜒 lප𝑺 = ඳ𝜒 lප𝑺

because [𝜒 l]𝑺 ⊆ 𝑷 . If [𝜒 l]𝑺 = ∅, then we get

ඳ𝜑lප𝑺 = ඳ𝜓 lප𝑺 ∩ ඳ𝜒 lප𝑺 = ඳ𝜓 lප𝑺 ∩ ∅ = ∅ = ඳ𝜒 lප𝑺 .

³¹e cases [𝜓 l]𝑺 = ∅ and [𝜒 l]𝑺 = 𝑷 cannot occur because ∅ ⊆ [𝜓 l]𝑺 ⊆ 𝑷 .
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e remaining case now is that [𝜓 l]𝑺 = [𝑝]𝑺 and [𝜒 l]𝑺 = [𝑞]𝑺 for some propo-
sitional variables 𝑝, 𝑞 ∈ ໭. Since 𝑺 is linear, we know that [𝑝]𝑺 ⊆ [𝑞]𝑺 or
[𝑞]𝑺 ⊆ [𝑝]𝑺 . It cannot be the case that [𝑝]𝑺 ⊆ [𝑞]𝑺 due to [𝑝]𝑺 = [𝜓 l]𝑺 ⊈
[𝜒 l]𝑺 = [𝑞]𝑺 . erefore we know that [𝑞]𝑺 ⊆ [𝑝]𝑺 and get

ඳ𝜑lප𝑺 = ඳ𝜓 lප𝑺 ∩ ඳ𝜒 lප𝑺 = [𝑝]𝑺 ∩ [𝑞]𝑺 = [𝑞]𝑺 = ඳ𝜒 lප𝑺 .

Having considered all cases we conclude the following:

ඳ𝜑lප𝑺 =
๨

ඳ𝜓 lප𝑺 if ඳ𝜓 lප𝑺 ⊆ ඳ𝜒 lප𝑺
ඳ𝜒 lප𝑺 otherwise .

is means that our second claim holds in the case that 𝜑 is a disjunction.

By the induction hypothesis the result of [𝜓 l]𝑺 as well as [𝜒 l]𝑺 is either 𝑷 , ∅
or [𝑝]𝑺 for some propositional variable 𝑝 ∈ ໭. Since the result of [𝜑l]𝑺 is either
[𝜓 l]𝑺 or [𝜒 l]𝑺 , the same property holds for [𝜑l]𝑺 . us, also our first claim
holds in the case that 𝜑 is a disjunction.

• 𝜑 = ▵𝜓 : We prove this case by showing that for every formula 𝜒 we have

[S𝜒]𝑺 =
๨

𝑷 if [𝜒]𝑺 = 𝑷
∅ otherwise .

Note that the induction hypothesis will not be needed to prove this statement.

If [𝜒]𝑺 = 𝑷 , then by the definition of the S-operator the formula S𝜒 is true at
every precisification 𝑠 ∈ 𝑷 and we get [S𝜒]𝑺 = 𝑷 . If [𝜒]𝑺 ≠ 𝑷 , then there is
a precisification 𝑠 ∈ 𝑷 at whi 𝜒 is not true and therefore [S𝜒]𝑺 = ∅. us,
we get

[S𝜒]𝑺 =
๨

𝑷 if [𝜒]𝑺 = 𝑷
∅ otherwise .

Since 𝜑l = (▵𝜓)l = S𝜓 l we can set 𝜒 = 𝜓 l to prove that both claims hold for
this case.

• 𝜑 = 𝜓 ⊃ 𝜒 : We use the observation of the previous case and obtain

ඳS ධ𝜓 l ⊃ 𝜒 lනප𝑺 =
๨

𝑷 if ඳ𝜓 l ⊃ 𝜒 lප𝑺 = 𝑷
∅ otherwise .

It can be easily seen that [𝜓 l ⊃ 𝜒 l]𝑺 = 𝑷 if and only if [𝜓 l]𝑺 ⊆ [𝜒 l]𝑺 and
therefore we get

ඳS ධ𝜓 l ⊃ 𝜒 lනප𝑺 =
๨

𝑷 if ඳ𝜓 lප𝑺 ⊆ ඳ𝜒 lප𝑺
∅ otherwise .
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Now we have

ඳ𝜑lප𝑺 = ඳS ධ𝜓 l ⊃ 𝜒 lන ∨ 𝜒 lප𝑺 = ඳS ධ𝜓 l ⊃ 𝜒 lනප𝑺 ∪ ඳ𝜒 lප𝑺

=
๨

𝑷 ∪ ඳ𝜒 lප𝑺 if ඳ𝜓 lප𝑺 ⊆ ඳ𝜒 lප𝑺
∅ ∪ ඳ𝜒 lප𝑺 otherwise

=
๨

𝑷 if ඳ𝜓 lප𝑺 ⊆ ඳ𝜒 lප𝑺
ඳ𝜒 lප𝑺 otherwise

whi proves the second claim. By the induction hypothesis we know that the
result of [𝜒 l]𝑺 is 𝑷 , ∅ or [𝑝]𝑺 for some 𝑝 ∈ ໭. erefore also the first claim
has been shown.

Note that it was necessary to prove both statements at once because of the con-
junctive case.

e next result states that linearity in a set of propositional variables induces lin-
earity in a certain set of formulas.

Lemma 5.6.7. Let 𝑺 be a positive precisification space that is linear in a set of proposi-
tional variables໭ and𝜑 and𝜓 formulas in the language of Gödel logic with▵-operator
consisting only of propositional variables contained in ໭. en [𝜑l]𝑺 ⊆ [𝜓 l]𝑺 or
[𝜓 l]𝑺 ⊆ [𝜑l]𝑺 .

Proof. Let 𝑷 denote the set of precisifications of 𝑺 . If [𝜑l]𝑺 = ∅, [𝜑l]𝑺 = 𝑷 , [𝜓 l]𝑺 =
∅, or [𝜓 l]𝑺 = 𝑷 , then the claim trivially holds. Otherwise, we know by Lemma 5.6.6
that [𝜑l]𝑺 = [𝑝]𝑺 and [𝜓 l]𝑺 = [𝑞]𝑺 for some propositional variables 𝑝, 𝑞 ∈ ໭. Since
𝑺 is linear in ໭, we have [𝑝]𝑺 ⊆ [𝑞]𝑺 or [𝑞]𝑺 ⊆ [𝑝]𝑺 and therefore [𝜑l]𝑺 ⊆ [𝜓 l]𝑺 or
[𝜓 l]𝑺 ⊆ [𝜑l]𝑺 .

e next step now consists in extending the relation to Gödel logic with ▵ to
the level of measures of formulas. Note that from now on linearity is not the only
requirement, we also demand that the precisification spaces be positive.³²

Lemma 5.6.8. Let 𝑺 be a positive precisification space that is linear in a set of proposi-
tional variables໭ and𝜑 and𝜓 formulas in the language of Gödel logic with▵-operator
consisting only of propositional variables contained in ໭. en ⟦𝜑l⟧𝑺 ≤ ⟦𝜓 l⟧𝑺 if and
only if [𝜑l]𝑺 ⊆ [𝜓 l]𝑺 .

³²It should be possible to weaken the requirement that the precisification space 𝑺 is positive to the
following two conditions that have to hold for every propositional variable 𝑝 ∈ ໭ (see Proposition 5.1.7):

• If ‖𝑝‖𝑺 = 1, then ‖S𝑝‖𝑺 = 1.
• If ‖𝑝‖𝑺 = 0, then ‖S¬𝑝‖𝑺 = 1.

e proof of the case 𝜑 = 𝜓 ∧ 𝜒 for Lemma 5.6.9 will then be more complicated but should still go
through.
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Proof. Let 𝜇 denote the probability measure of 𝑺 . Assume that [𝜑l]𝑺 ⊆ [𝜓 l]𝑺 . en
⟦𝜑l⟧𝑺 = 𝜇([𝜑l]𝑺) ≤ 𝜇([𝜓 l]𝑺) = ⟦𝜓⟧𝑺 by Proposition 5.1.2.

Now assume that [𝜑l]𝑺 ⊈ [𝜓 l]𝑺 . en [𝜓 l]𝑺 ⊆ [𝜑l]𝑺 by Lemma 5.6.8. Since
[𝜓 l]𝑺 ≠ [𝜑l]𝑺 , there is an 𝑠 ∈ [𝜑l]𝑺 su that 𝑠 ∉ [𝜓 l]𝑺 . Since 𝑺 is positive we know
that 𝜇(𝑠) > 0 and therefore ⟦𝜓⟧𝑺 < ⟦𝜑⟧𝑺 . is means that ⟦𝜑⟧𝑺 ≰ ⟦𝜓⟧𝑺 .

Lemma 5.6.9. Let 𝑺 be a positive precisification space that is linear in a set of propo-
sitional variables ໭ and 𝜑 a formula in the language of Gödel logic with ▵-operator
consisting only of propositional variables contained in ໭. en ⟦𝜑l⟧𝑺 = ‖𝜑‖G𝑺 .

Proof. We prove the claim by induction on the structure of 𝜑.

• 𝜑 = 0̄: ⟦𝜑l⟧𝑺 = ⟦0̄⟧𝑺 = 𝜇([0̄]𝑺) = 𝜇(∅) = 0 = ‖0̄‖G𝑺 = ‖𝜑‖G𝑺 .

• 𝜑 = 𝑝 for a propositional variable 𝑝: en by the definition of the truth value
of the propositional variable 𝑝 we have ‖𝜑‖G𝑺 = ‖𝑝‖G𝑺 = ⟦𝑝⟧𝑺 = ⟦𝜑l⟧𝑺 .

• 𝜑 = ▵𝜓 : By Lemma 5.6.6 we get

ඳ𝜑lප𝑺 =
๨

𝑷 if ඳ𝜓 lප𝑺 = 𝑷
∅ otherwise

and the induction hypothesis gives us ‖𝜓‖G𝑺 = ⟦𝜓 l⟧𝑺 . Furthermore, since𝑺 is a
positive precisification space, we know that ⟦𝜓 l⟧𝑺 = 1 if and only if [𝜓 l]𝑺 = 𝑷 .

erefore we get

෢𝜑l෣𝑺 = 𝜇 ධඳ𝜑lප𝑺න =
๨

𝜇 (𝑷 ) if ඳ𝜓 lප𝑺 = 𝑷
𝜇 (∅) otherwise

=
๨

1 if ඳ𝜓 lප𝑺 = 𝑷
0 otherwise

=
๨

1 if ෢𝜓 l෣𝑺 = 1
0 otherwise

=
๨

1 if ‖𝜓‖G𝑺 = 1
0 otherwise

whi is exactly the truth function of the ▵-operator. us, we have ⟦𝜑l⟧𝑺 =
‖▵𝜓‖G𝑺 = ‖𝜑‖G𝑺 .

• 𝜑 = 𝜓 ∧ 𝜒 : By Lemma 5.6.6 we get

ඳ𝜑lප𝑺 =
๨

ඳ𝜓 lප𝑺 if ඳ𝜓 lප𝑺 ⊆ ඳ𝜒 lප𝑺
ඳ𝜒 lප𝑺 otherwise .
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Furthermore, the induction hypothesis gives us ‖𝜓‖G𝑺 = ⟦𝜓 l⟧𝑺 and ‖𝜒‖G𝑺 =
⟦𝜒 l⟧𝑺 . By Lemma 5.6.8, ⟦𝜓 l⟧𝑺 ≤ ⟦𝜒 l⟧𝑺 if and only if [𝜓 l]𝑺 ⊆ [𝜒 l]𝑺 .

erefore we get

෢𝜑l෣𝑺 = 𝜇 ධඳ𝜑lප𝑺න =
๨

𝜇 ධඳ𝜓 lප𝑺න if ඳ𝜓 lප𝑺 ⊆ ඳ𝜒 lප𝑺
𝜇 ධඳ𝜒 lප𝑺න otherwise

=
๨

෢𝜓 l෣𝑺 if ඳ𝜓 lප𝑺 ⊆ ඳ𝜒 lප𝑺
෢𝜒 l෣𝑺 otherwise

=
๨

෢𝜓 l෣𝑺 if ෢𝜓 l෣𝑺 ≤ ෢𝜒 l෣𝑺
෢𝜒 l෣𝑺 otherwise

=
๨

‖𝜓‖G𝑺 if ‖𝜓‖G𝑺 ≤ ‖𝜒‖G𝑺
‖𝜒‖G𝑺 otherwise

whi is exactly the truth function of conjunction in Gödel logic. us, we have
⟦𝜑l⟧𝑺 = ‖𝜓 ∧ 𝜒‖G𝑺 = ‖𝜑‖G𝑺 .

• e case 𝜑 = 𝜓 ⊃ 𝜒 can be proved with exactly the same arguments.

Finally, we get an even stronger result at the level of truth values.

Lemma 5.6.10. Let ∗ be a continuous t-norm, 𝑺 a positive precisification space that is
linear in a set of propositional variables ໭ and 𝜑 a formula in the language of Gödel
logic with ▵-operator consisting only of propositional variables contained in ໭. en
‖𝜑‖G𝑺 = ‖𝜑g‖∗

𝑺 , where 𝜑g is the global S-translation of 𝜑 (see Definition 5.6.5).

Proof. e proof is by induction on the structure of 𝜑.

• 𝜑 = 0̄ or 𝜑 = 𝑝 for a propositional variable 𝑝: en it is clear that ‖𝜑‖G𝑺 =
‖𝜑‖∗

𝑺 = ‖𝜑g‖∗
𝑺 .

• 𝜑 = 𝜓 ∧ 𝜒 : By the induction hypothesis we know that ‖𝜓‖G𝑺 = ‖𝜓g‖∗
𝑺 and

‖𝜒‖G𝑺 = ‖𝜒g‖∗
𝑺 . Since the for any continuous t-norm the truth function of weak

conjunction is exactly the minimum-conjunction in Gödel logic we get

‖𝜑g‖∗
𝑺 = ‖𝜓g ∧ 𝜒g‖∗

𝑺 = min ධ‖𝜓g‖∗
𝑺 , ‖𝜒g‖∗

𝑺න
= min ධ‖𝜓‖G𝑺 , ‖𝜒‖G𝑺න = ‖𝜓 ∧ 𝜒‖G𝑺 = ‖𝜑‖G𝑺

• 𝜑 = ▵𝜓 : en we have 𝜑g = (▵𝜓)g = (▵𝜓)l = S𝜓 l. Since 𝑺 is a positive
precisification space we know that [𝜓 l]𝑺 = 𝑷 if and only if ⟦𝜓 l⟧𝑺 = 1. By
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Lemma 5.6.9 we also know that ⟦𝜓 l⟧𝑺 = ‖𝜓‖G𝑺 . us we get

‖𝜑‖G𝑺 = ‖▵𝜓‖G𝑺 =
๨

1 if ‖𝜓‖G𝑺 = 1
0 otherwise

=
๨

1 if ෢𝜓 l෣𝑺 = 1
0 otherwise

=
๨

1 if ඳ𝜓 lප𝑺 = 𝑷
0 otherwise

= ‖‖S𝜓 l‖‖
∗
𝑺 = ‖𝜑g‖∗

𝑺 .

Note that we do not need the induction hypothesis in this case.

• 𝜑 = 𝜓 ⊃ 𝜒 : By the induction hypothesis we know that ‖𝜒‖G𝑺 = ‖𝜒g‖∗
𝑺 . It

is obvious that ‖𝜑‖G𝑺 = ‖𝜓 ⊃ 𝜒‖G𝑺 = ‖▵(𝜓 ⊃ 𝜒) ∨ 𝜒‖G𝑺 . We use the previous
case, whi needed no induction hypothesis, to obtain ‖▵(𝜓 ⊃𝜒)‖G𝑺 = ‖(▵(𝜓 ⊃
𝜒))g‖∗

𝑺 . Since for all continuous t-norms the truth function of disjunction is the
same, we get

‖𝜑‖G𝑺 = ‖▵(𝜓 ⊃ 𝜒) ∨ 𝜒‖G𝑺 = max ධ‖▵(𝜓 ⊃ 𝜒)‖G𝑺 , ‖𝜒‖G𝑺න
= max ධ‖(▵(𝜓 ⊃ 𝜒))g‖∗

𝑺 , ‖𝜒g‖∗
𝑺න

= ‖(▵(𝜓 ⊃ 𝜒))g ∨ 𝜒g‖∗
𝑺

= ‖𝜑g‖∗
𝑺

It is now possible to embed Gödel logic with ▵ into the logic given by all positive,
linear precisification spaces. Since linearity can be expressed by a formula, we can
embed Gödel logic with ▵ into the logic of all positive precisification spaces, whi
corresponds to the concept of p-validity.

eorem 5.6.11. Let𝜑 be a formula in the language of Gödel logic with▵-operator and
∗ a continuous t-norm. Let ໭ denote the finite set of propositional variables contained
in 𝜑 and let 𝜓໭ denote the aracterizing formula of precisification spaces that are
linear in ໭ as defined in Corollary 5.6.4. en the following holds:

(i) 𝜑 is valid in Gödel logic with ▵ if and only if 𝜓໭ ⊃ 𝜑g is p-valid in S∗.

(ii) 𝜑 is valid in Gödel logic with ▵ if and only if 𝜓໭ ⊃ 𝜑g is valid in SŁ.

Proof. e second statement follows from the first statement due toeorem 5.4.7. To
prove the first statement, assume that 𝜑 is valid in Gödel logic with ▵. Let 𝑺 be an
arbitrary positive precisification space. We want to show that ‖𝜓໭ ⊃ 𝜑S‖∗

𝑺 = 1.
If ‖𝜓໭‖∗

𝑺 = 0, then trivially ‖𝜓໭⊃𝜑S‖∗
𝑺 = 1. Assume now that ‖𝜓໭‖∗

𝑺 ≠ 0. en
it must be the case that ‖𝜓໭‖∗

𝑺 = 1. By Corollary 5.6.4 we then know that 𝑺 is linear
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in ໭. erefore we may apply Lemma 5.6.10 and get ‖𝜑‖G𝑺 = ‖𝜑S‖∗
𝑺 . e formula 𝜑

does not contain any S-operator whi means that its truth value only depends on the
truth values of the propositional variables. erefore we can define an evaluation 𝒆
by 𝒆(𝑝) = ‖𝑝‖G𝑺 for every propositional variable 𝑝 and get ‖𝜑‖G𝑺 = ‖𝜑‖G𝒆 . Since 𝜑
is valid in Gödel logic with ▵ we get ‖𝜑‖G𝒆 = 1. Puing all things together we get
‖𝜑S‖∗

𝑺 = 1 and then also ‖𝜓໭ ⊃ 𝜑S‖∗
𝑺 = 1.

Now assume that 𝜓໭ ⊃ 𝜑S is p-valid in S∗ and let 𝒆 be an arbitrary evaluation.
We want to show that ‖𝜑‖G𝒆 = 1. By Lemma 5.6.2 there is a positive precisification
space 𝑺𝒆 that is linear in ໭ su that ‖𝜑‖G𝒆 = ‖𝜑‖G𝑺𝒆

. Since 𝜓໭ ⊃ 𝜑S is p-valid we

get ‖𝜓໭ ⊃ 𝜑S‖∗
𝑺𝒆

= 1. Because 𝑺𝒆 is linear in ໭ we know that ‖𝜓໭‖∗
𝑺𝒆

= 1 and

therefore also ‖𝜑S‖∗
𝑺𝒆

= 1 must hold. By Lemma 5.6.10 we then get ‖𝜑‖𝒆 = ‖𝜑‖G𝑺𝒆
=

‖𝜑S‖∗
𝑺𝒆

= 1. Since 𝒆 was an arbitrary evaluation we conclude that 𝜑S is valid in
Gödel logic with ▵.



Conclusions

Supervaluationism and fuzzy logic are two concepts that can both be applied to dealing
with vagueness; however the corresponding resear areas greatly differ in their focus.
Resear in supervaluationism primarily compares supervaluationism—or one of its
variants—to other proposed theories of vagueness by arguing about its advantages and
disadvantages. Traditional logical questions, like model theory and proof theory, are
secondary. Fuzzy logics are nowadays highly developed from a logical point of view
due to many tenical contributions in the last two decades. However, fuzzy logic as a
theory of vagueness in the philosophical sense is only a narrow field. erefore, topics
like higher-order vagueness, whi is for example very central in supervaluationism,
are barely discussed in the “mainstream” literature on fuzzy logics.

Many philosophers reject fuzzy logic as a suitable way of modeling vagueness,
mostly due to concerns about the nature of truth values. In some sense, this thesis
has shown two ways of coping with this criticism. e first approa is to relax the
“strength” of the truth values: if only the order of the truth values counts, we arrive
at Gödel logic. e second approa introduced truth values to the supervaluational
model in a natural way.

We outlined a very general approa of specifying propositional logics of compar-
ison and showed that all these specified logics are already captured by Gödel logic.
We defined our logics of comparison using the framework of projective logics as in-
troduced by Baaz and Fermüller [3], for whi they presented analytic Gentzen-style
proof systems. A natural question is how this framework can be extended to first-order
logics. is also leads to the question how quantifiers can be generalized.

By adding a means of measuring truth to precisification spaces we arrived at a
hybrid logic for whi we were concerned with several problems revolving around
the notion of validity. We pointed out connections between some of the hybrid logics
to certain fuzzy logics with globalization operator by studying embeddings between
them. It seems plausible that more embeddings of that kind exist. In another effort,
we related different forms of validity for the hybrid logic arising from restrictions im-
posed on precisification spaces. We showed that p-validity and u-validity coincide for
both the Łukasiewicz and the Gödel variant of our hybrid logic. e arguments for
obtaining this result are very different for those two logics. For the Łukasiewicz vari-
ant even more holds: u-validity and general validity coincide due to the continuity of
all truth functions. e question whether p-validity and u-validity also coincide for
continuous t-norms different from Łukasiewicz and the Gödel t-norm remains open,
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in particular for the product t-norm. It must be noted that some of our arguments
involving positive precisification spaces only need the property of a certain “faithful-
ness” of fuzzy truth with respect to supervaluational truth (see Proposition 5.1.7). It
would therefore make sense to study the class of precisification spaces that have this
property in its own right.

e next important step would be to properly develop the proof theory of the
hybrid logic. A tableaux system based on a dialogue game aracterization for the
logic SŁ was given by Fermüller and Kosik [38]. e fundamental open question is
to find Hilbert- and Gentzen-style proof systems for these logics.³³ We saw that the
variant of the hybrid logic based on the Łukasiewicz t-norm has many properties that
make it interesting. erefore it might be a good idea to focus on this special case first.

Supervaluationism and fuzzy logic are just two starting points for a “logic of vague-
ness”. Further tasks arise from the logical analysis of other theories of vagueness, in
particular the ri frameworks of Shapiro [93] and Smith [94]. Building upon resear
in linguistics it should also be possible to define appropriate logical modalities for
vague modifiers like “very” and “clearly” [6, 39, 71] that follow other ideas than the
fuzzy hedges presented in Section 3.6.2.

³³A Hilbert-style prove system for SŁ was conjectured by Fermüller and Kosik [38].
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