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Kurzfassung 

Die Verfügbarkeit von genauen Hochwasservorhersagen, bis zu Prognosefristen von 

mehreren Tagen, wird in zunehmendem Maß auch für kleinere Einzugsgebiete ge-

wünscht. Die Änderung des Anforderungsprofils macht die methodische Weiter-

entwicklung von Hochwasservorhersagesystemen zu einem wichtigen, interdiszi-

plinären Betätigungsfeld in der Hydrologie, Meteorologie und Fernerkundung. Ziel 

dieser Arbeit ist die Entwicklung und Analyse von Methoden zur Beschreibung bzw. 

Reduktion von Unsicherheiten bei der Messung und Modellierung der abflussrelevan-

ten hydrometeorologischen Prozesse. Die Analysen in dieser Arbeit basieren auf Si-

mulationen mit einem flächendetaillierten hydrologischen Niederschlags-Abfluss-

Modell zur Beschreibung von Schneeakkumulation und -schmelze, des Bodenfeuch-

tehaushaltes und des Abflusses am Hang und im Gerinne. 

Der erste Teil der Arbeit beschäftigt sich mit der Quantifizierung der Größenordnung 

der Vorhersageunsicherheit durch die Verwendung von Ensembleprognosen, welche 

maßgebend durch die vorherrschenden meteorologischen und hydrologischen 

Randbedingungen bestimmt wird. Die Beurteilung der Prognosen erfolgt dabei durch 

die Analyse der Warncharakteristik, welche durch die Häufigkeit von Fehlwarnungen 

und zutreffenden Warnungen beschrieben wird. Die Ergebnisse dieser Arbeit zeigen, 

dass der abgeleitete Unsicherheitsbereich eine wertvolle Zusatzinformation für die 

Risikoabschätzung im Rahmen der Entscheidungsfindung beim Hochwassermana-

gement darstellt. 

Der zweite Teil der Arbeit beschäftigt sich mit der Reduktion von hydrologischen Un-

sicherheiten durch die Einbeziehung von aktuell verfügbaren Abflussmessungen. Die 

Zielsetzung, den Prognosefehler so klein als möglich zu halten, kann durch die Ver-

bindung der Modellergebnisse mit den Messdaten unter Abwägung der jeweils einge-

tragenen Unsicherheiten erreicht werden. Diese Vorgangsweise wird als Modellnach-

führung bezeichnet, und erfolgt in dieser Arbeit durch die Implementierung eines En-

semble-Kalman-Filters in die Modellstruktur. Zusätzlich erfolgt, abhängig von der je-

weils vorherrschenden hydrometeorologischen Situation, eine Korrektur der Abfluss-

vorhersagen durch ein Fehlermodell auf der Basis der zeitlichen Korrelationen. Durch 

das Fehlermodell können die Unsicherheiten während der ersten Stunden der 
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Prognosefrist deutlich reduziert werden. Die Wirkung des Ensemble-Kalman-Filters 

ist zwar geringer, erstreckt sich allerdings über die gesamte Vorhersagefrist. 

Das Hauptaugenmerk im dritten Teil der Arbeit liegt auf der Beurteilung des Potenti-

als der satellitenbasierten Messung von Bodenfeuchtemustern als zusätzliche Infor-

mationsquelle bei der Identifikation einer realistischen Modellstruktur und geeigneter 

Parameter. Der Problematik von geringen Eindringtiefen bei der satellitenbasierten 

Bodenfeuchtemessung, wird durch wird die Erweiterung des bestehenden hydrologi-

schen Modells um eine dünne, oberflächennahe Bodenschichte Rechnung getragen. 

Der Vergleich von modellierter Bodenfeuchte und Bodenfeuchte aus der Fernerkun-

dung zeigt eine gute Übereinstimmung beider Methoden hinsichtlich der räumlichen 

und zeitlichen Bodenfeuchtedynamik. Weiters zeigen die Auswertungen, dass die 

Maskierung der Satellitenbodenfeuchte für Zeitpunkte mit Schneebedeckung oder 

gefrorenem Boden zu einer deutlichen Verbesserung der Übereinstimmung beider 

Methoden während der Wintermonate führt.  

Generell zeigen die Ergebnisse dieser Arbeit, dass die zusätzliche Verwendung von 

aktuellen Messdaten, in dieser Arbeit Abflussmessungen und Bodenfeuchtemuster 

aus der Fernerkundung, einen wertvollen Beitrag zur Reduktion von Unsicherheiten 

bei der hydrologischen Modellierung leistet. Damit werden operationelle Hochwas-

servorhersagen auf eine solide methodische Basis gestellt, und die Anwendbarkeit 

für außerordentliche hydrometeorologische Situation erhöht. 
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Abstract 

Flood forecasting is becoming increasingly important for small catchments where the 

forecast uncertainties tend to be larger than in large catchments. In addition, also the 

increase of the forecast lead time is associated with larger uncertainties. These is-

sues make the development of flood forecasting systems an important interdiscipli-

nary task in hydrology, meteorology and remote sensing. In this study, the aim is the 

development and the analysis of methods to describe and reduce uncertainties in 

measurement and modelling of hydrometeorological processes. The analyses are 

based on simulations with a distributed hydrological rainfall-runoff-model which de-

scribes snow accumulation and melt, the changes in soil moisture and catchment 

and stream routing functions. 

The quantification of the forecast uncertainty is in the focus of the first part of the 

study. The uncertainty is quantified using a set of equally probalbe forecasts (an en-

semble) which are affected by the meteorological and hydrological boundary condi-

tions. The assessment of the ensemble forecasts is based on the analysis of the fre-

quency of false and correct alarms. The results indicate that the ensemble forecasts 

are a valuable and important source of information for flood forecasting. Even though 

the ensemble characteristics do not exactly match the forecast errors, they do pro-

vide information about the expected forecast errors. 

In the second part of the study the hydrological uncertainties are reduced by using 

online available runoff measurements. To increase forecast accuracy, two real-time 

updating procedures are used in this study. The first procedure assimilates runoff 

data to update the catchment soil moisture state based on Ensemble Kalman filter-

ing. The second procedure consists of an additive error model that updates runoff 

directly. This error model exploits the autocorrelation of the forecast error and in-

volves an exponential decay of the correction. The error model clearly reduces the 

forecast uncertainties in the first hours of the forecast lead time. The impact of the 

Ensemble Kalman filter is smaller, but it affects the entire forecast lead time. 

Remotly sensed soil moisture data are used in the third part of the study as additional 

source of information to identify a realistic model structure and parameters. To ac-

count for the shallow penetration depth of the remote sensing data the hydrological 
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model is extended by a skin soil layer which represents only the first centimetres of 

the landsurface. A comparison of simulated soil moisture and soil moisture derived 

from remote sensing data shows excellent consistency between the spatial patterns 

of soil moisture. Analyses indicate that the masking of remote sensing data with in-

formation about snow covered areas significantly improves the correlation between 

the simulated and remotely sensed soil moisture data. 

The results of this study show that observed runoff data and remote sensing data are 

a valuable source of information to reduce uncertainties in hydrological modelling. 

They allow for a solid methodical basis of operational flood forecasts and guarantee 

the applicability of the flood forecasting system in extraordinary hydrometeorological 

situations.

http://dict.leo.org/ende?lp=ende&p=ziiQA&search=guarantee&trestr=0x8002�
http://dict.leo.org/ende?lp=ende&p=ziiQA&search=applicability&trestr=0x8001�
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1 Introduction 

Every year severe flood events cause fatalities and enormous economic damage 

around the globe. The major flood event in 2002 in the Danube and Elbe catchments 

affected large parts in central Europe. As a consequence, the revision and adaption 

of flood management strategies has recently been an important issue. The flood 

framework directive of the European Union (European Union, 2007) engages the 

member states to develop flood risk management plans by December 2015. These 

plans include structural flood protection measures, such as retention basins and 

levee systems, as well as non-structural measures, such as flood warning systems. 

Flood warning is an important non-structural instrument to enhance preparedness 

immediately before a flood event (Blöschl, 2008). 

Accurate flood forecasts rely on two important requirements. Firstly, the current hy-

drological situation at the time of the forecast has to be estimated appropriately. Sec-

ondly, mathematical description of the flood generation processes is necessary to 

predict future runoff. Recently, the trend in flood forecasting has been towards runoff 

predictions for longer lead times. For lead times longer than the response time of the 

catchment, meteorological forecasts are required.  

Due to highly non-linear and variable hydro-meteorological processes the develop-

ment of reliable flood forecasting systems is very challenging for the scientific com-

munity. The imperfect description of physical processes introduces a high amount of 

uncertainty to the system. Main sources of uncertainty can be attributed to the pre-

cipitation forecast (e.g., parameters, structure and initial conditions of the atmos-

pheric model) and the hydrologic simulation (e.g., parameters and structure of the 

runoff model).  

Quantifying the uncertainty of flood forecasts is becoming increasingly important for 

operational purposes. The uncertainties for longer lead times are dominated by the 

precipitation forecast uncertainty, due to propagation of small errors in the initial con-

ditions of the atmospheric models (Buizza, 2003). The standard method of estimating 

this uncertainty is the generation of an ensemble (or set) of different forecasts of at-

mospheric processes that differ by their initial conditions (Taylor and Buizza, 2003) in 
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addition to the main (deterministic) forecast. The ensemble spread for different hy-

dro-meteorological situations can be used as an indicator for the expected forecast 

error. 

For shorter lead times erroneous initial conditions dominate the uncertainty of the 

flood forecasts. As it plays an important role in partitioning rainfall into runoff and infil-

tration, soil moisture is probably one of the key variables in flood forecasting models. 

The simulation of appropriate initial conditions, particularly soil moisture, relies on the 

accurate knowledge of the recent meteorological history.  

A recent development in operational flood forecasting is to include data assimilation 

techniques for the reduction of uncertain initial soil moisture states caused by erro-

neous model inputs or inadequate parameters. Widely used updating methodologies 

are based on sequential assimilation of actual discharge measurements into hydro-

logic models. Specifically, Monte Carlo methods, e.g. Ensemble-Kalman-Filtering, 

are appealing because of their flexibility, ease of use and operational robustness 

(Madsen and Skotner, 2005).  

However, appropriate model structure and parameters are a pre-requisite for the im-

plementation of updating routines (Reefsgaard, 1997). This puts emphasis on the 

identification of appropriate model structure and parameters. As hydrological models 

are usually calibrated against runoff only, the benefit of additional information about 

internal model states, particularly soil moisture, may help to constrain uncertainties in 

model structure and parameters. Knowledge of the characteristics of the spatial and 

temporal dynamics of soil moisture, which are highly variable (Western et al., 2003), 

is of key importance. An alternative approach to estimate spatial patterns of soil 

moisture is through the use of satellite data. In a hydrologic context, the main advan-

tage of using spaceborne sensors for soil moisture retrieval is that they provide an 

integral value over an area and are available at a global scale. The main limitation is 

the penetration depth, which is limited to the top few centimetres of the surface. 

Some assumptions hence need to be made on the vertical distribution of soil mois-

ture in the soil profile to retrieve root zone soil moisture from surface soil moisture. 

Given the spatial scales and data limitations, more parsimonious approaches, like 

simple multi layer models, are more appealing than the more sophisticated ones. 

(Georgakakos and Baumer, 1996; Houser et al., 2000). Existing studies indicate that 
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satellite based surface soil moisture estimates do have the potential to improve simu-

lated soil moisture states (Francois et al., 2003; Heathman et al., 2003)  

These issues make the development of flood forecasting systems an important inter-

disciplinary task in hydrology, meteorology and remote sensing.  

This study consists of three main parts. The quantification of the forecast uncertainty 

is the focus of the first part of the study (Chapter 2). The main aspects of investiga-

tion are (a) how the ensemble distribution of precipitation forecasts propagates in the 

catchment system, and (b) to interpret the flood forecast probabilities relative to the 

forecast errors. The second part of the study (Chapter 3) deals with data assimilation 

in an operational flood forecasting system. The benefit of Ensemble Kalman-Filter 

updating in forecasting large flood events is evaluated. Using actual runoff measure-

ments, the soil moisture state of the catchment is updated which is then used as an 

initial condition for the forecasts. The analysis in Chapters 2 and 3 are based on a 

distributed rainfall-runoff model in the Kamp catchment in Austria that is part of an 

operational flood forecasting system. A comprehensive data set, including large 

floods, is available from this catchment. Remotely sensed soil moisture data is com-

pared to simulated soil moisture and in-situ measurements in the third part of the 

study (Chapter 4). The main focus is to evaluate how realistic the spatial and tempo-

ral dynamics of soil moisture are estimated by the different methodologies. To ac-

count for the shallow penetration depth of the remote sensing data, an additional skin 

soil layer is introduced to the model structure, as used in Chapters 2 and 3. 
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2 Ensemble prediction of floods – catchment non-
linearity and forecast probabilities  

Abstract 

Quantifying the uncertainty of flood forecasts by ensemble methods is becoming in-

creasingly important for operational purposes. The aim of this paper is to examine 

how the ensemble distribution of precipitation forecasts propagates in the catchment 

system, and to interpret the flood forecast probabilities relative to the forecast errors. 

We use the 622 km² Kamp catchment in Austria as an example where a comprehen-

sive data set, including a 500 yr and a 1000 yr flood, is available. A spatially-

distributed continuous rainfall-runoff model is used along with ensemble and deter-

ministic precipitation forecasts that combine rain gauge data, radar data and the 

forecast fields of the ALADIN and ECMWF numerical weather prediction models. The 

analyses indicate that, for long lead times, the variability of the precipitation ensem-

ble is amplified as it propagates through the catchment system as a result of non-

linear catchment response. In contrast, for lead times shorter than the catchment lag 

time (e.g. 12 hours and less), the variability of the precipitation ensemble is de-

creased as the forecasts are mainly controlled by observed upstream runoff and ob-

served precipitation. Assuming that all ensemble members are equally likely, the sta-

tistical analyses for five flood events at the Kamp showed that the ensemble spread 

of the flood forecasts is always narrower than the distribution of the forecast errors. 

This is because the ensemble forecasts focus on the uncertainty in forecast precipita-

tion as the dominant source of uncertainty, and other sources of uncertainty are not 

accounted for. However, a number of analyses, including Relative Operating Charac-

teristic diagrams, indicate that the ensemble spread is a useful indicator to assess 

potential forecast errors for lead times larger than 12 hours.  

2.1 Introduction 

Quantifying the uncertainty of flood forecasts is becoming increasingly important for 

operational purposes. This is due to a number of reasons. First, the awareness of the 
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value of uncertainty bounds in flood management has increased. Indeed, it is the un-

certainty bounds that will assist flood managers in the trade-off between alternative 

decisions as they provide information on the likelihood of making less than optimal 

decisions as a result of forecast errors. Second, flood forecasts are increasingly used 

for small catchments where the forecast uncertainties tend to be larger than in large 

catchments. Third, there is a tendency for making forecasts over longer lead times 

which are associated with larger uncertainties. The most accurate forecasts can be 

achieved by using observed runoff along with routing models but the forecast lead 

times are limited to the travel times in the streams. For, say, a 1000 km² catchment 

these are on the order of 2 hours (Figure 2.1). The values in Table 2.1 are based on 

simulation results and hydrograph analyses for various Austrian catchments. Runoff 

models that use observed precipitation allow to extend the lead times but at the cost 

of increased uncertainty. Precipitation forecasts allow to further extend the lead times 

but the uncertainties are still larger.  

Table 2.1 Uncertainties and typical forecast lead times for a 1000 km² catchment. 

 forecast lead time forecast uncertainty 

River routing using observed runoff 2 hours small 

Runoff model using observed precipitation  6 hours medium 

Runoff model using precipitation forecasts 48 hours large 

 

As the magnitude of the precipitation forecast uncertainty can be large it has been 

the topic of much recent research. Most of the uncertainty in precipitation forecasts 

stems from the propagation of small errors in the initial conditions of the atmospheric 

models (Buizza, 2003). The standard method of estimating this uncertainty is hence 

to generate an ensemble (or set) of different forecasts of atmospheric processes that 

differ by their initial conditions (Taylor and Buizza, 2003) in addition to the main (de-

terministic) forecast. Ensemble forecasts have been operationally issued by the US 

National Center for Environmental Predictions (NCEP) and the European Centre for 

Medium Range Weather Forecasts (ECMWF) for more than a decade. Each of the 

realisations (or members) of the ensemble is a possible trajectory of atmospheric 

processes over the lead time. By examining the distribution of the ensemble one then 



 6 

gets a statistical measure of the forecast uncertainty. The value of making ensemble 

forecasts lies in the fact that the forecast error changes with time. For some meteoro-

logical situations, the likelihood of heavy precipitation will be nil while for others it 

may be large even though the deterministic forecast does not predict precipitation. 

More generally speaking, the more the ensemble spread deviates from its clima-

tological mean, the more additional information is provided by the ensemble 

(Whitaker and Loughe, 1998). Often, the members of the ensemble are assumed to 

be equally likely and the ensemble spread is assumed to represent the distribution of 

the forecast errors. However, the statistical interpretation of the ensemble spread is 

not straightforward. For example, Schaake et al. (2004) analysed the statistical prop-

erties of NCEP ensemble precipitation forecasts from 1997-1999 and compared them 

with measured precipitation. He found that the ensemble forecasts were biased and 

that the ensemble spread was much smaller than the spread of the error distribution. 

He proposed methods for bias removal and adjusting the ensemble spread.  

Calculating flood runoff from predicted precipitation will modulate the uncertainty of 

precipitation in two ways. First, additional sources of uncertainty will come in. These 

include uncertainties in estimating catchment precipitation and the spatial distribution 

of precipitation (Siccardi et al., 2005), uncertainties in the soil moisture state of the 

catchment, as well as uncertainties in the model structure and in the model parame-

ters. Krzystofowicz (2001) presented a formal method of combining the hydrological 

uncertainties with those of the precipitation forecasts. Second, even when neglecting 

the hydrological uncertainties, the uncertainty in the flood forecasts will be different 

from those of precipitation because of the non-linearity of the catchment system. 

Small inaccuracies can amplify if the system shows strongly non-linear behaviour, for 

example, if threshold processes are present (Blöschl and Zehe, 2005). However, 

very little is known on exactly how the uncertainty of precipitation forecasts propa-

gates in the catchment system. Part of the problem is that operational flood man-

agement is interested in large floods that tend to exhibit different characteristics from 

smaller floods, but they are – by definition – rare, so statistical analyses are notori-

ously limited by small sample sizes.  

Given the current issue with ensemble forecasting methods, the aim of this paper is 

(a) to examine how the ensemble distribution of precipitation forecasts propagates in 
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the catchment system, and (b) to interpret the flood forecast probabilities relative to 

the forecast errors. We use the Kamp catchment in Austria as an example where an 

operational flood forecasting system has recently been implemented and a compre-

hensive data set, including two large floods, is available.  

2.2 Data and methods 

Study area and data 

The Kamp catchment is located in northern Austria, approximately 120 km north-west 

of Vienna. At the Zwettl stream gauge the catchment size is 622 km² and elevations 

range from 500 to 1000 m a.s.l. (Figure 2.1).  

 

Figure 2.1 Kamp catchment (622 km²) with telemetered rain gauges (circles) and stream 

gauge (triangle) shown. Black lines represent the subcatchments, blue lines the river net-

work. The figure in the lower left corner gives reference about the catchment location in Aus-

tria. 

The higher parts of the catchment in the Southwest are hilly with deeply incised 

channels. Towards the catchment outlet in the Northeast the terrain is flatter and 

swampy areas exist along the streams. The geology of the catchment is mainly gran-

ite and gneiss. Weathering has produced sandy soils with a large storage capacity 

throughout the catchment. 50 % of the catchment is forested. Mean annual precipita-

tion is about 900 mm of which about 300 mm become runoff (Parajka et. al., 2005a). 
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Figure 2.2 Event precipitation and direct runoff depths for the largest events on record. 

Kamp at Zwettl, 622 km². Events marked by asterisks are analysed in this paper. 

To illustrate the nature of hydrologic response of the Kamp catchment the largest 

flood events on record and the associated rain events have been analysed using the 

telemetered rain gauges shown in Figure 2.1 and a number of additional rain gauges. 

Figure 2.2 shows the event precipitation of these events along with the direct runoff 

depths. The direct runoff depths were estimated by subtracting baseflow from the 

event hydrographs that was assumed constant during each event. The events have 

been ranked according to precipitation. There are two interesting findings. First, for 

the smallest events only around 10% of rainfall become runoff while the percentage 

can be much higher for the larger events. During the dry summer months large pre-

cipitation depths are necessary to exceed the soil capacity and produce any sizeable 

runoff as was the case for the extreme event of Aug. 8, 2002 (Aug. 2002a). Clearly, 

runoff generation is a non-linear process and as the magnitude of the event in-

creases so does the proportion of runoff that is generated. Second, for the same pre-

cipitation depth, runoff can vary significantly. As a result of prior snow melt, antece-

dent soil moisture of the May 1996 event was high which produced a large proportion 

of runoff. On the other hand, the two July 1997 events had almost the same rainfall 
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as the May 1996 event but much less runoff. There was significant rainfall prior to the 

Aug. 13, 2002 (Aug. 2002b) event (namely the extreme Aug. 2002a event) which 

produced more than twice the runoff of the July 1999 event that had similar precipita-

tion but very little antecedent rainfall. It is clear that soil moisture exerts a strong con-

trol on runoff response in the Kamp catchment.  

Table 2.2 Characteristics of the events for which flood forecasts are analysed in this paper. 

Kamp at Zwettl, 622 km². 

 Aug. 2002a Aug. 2002b July 2005 Aug. 2005a Aug. 2005b 

Precipitation (mm) 212 114 88 70 50 

Direct runoff depth 

(mm) 
82 56 27 13 13 

Runoff coefficient (-) 0.39 0.49 0.30 0.18 0.26 

Initial moisture state Dry Very wet  Wet Dry Wet 

Peak discharge (m³/s) 459 367 95 68 65 

Return period (yrs) ~ 1000  ~ 500 5 3 3 

Beginning of event  Aug. 6 0h Aug. 11 0h Jul. 5 0h Aug. 14 0h Aug. 20 0h 

End of event Aug. 10 21h Aug. 15 21h Jul. 15 0h Aug. 19 21h Aug. 26 21h 

Beginning of rising limb Aug. 6 12h Aug. 11 12h Jul. 10 12h Aug. 16 0h Aug. 21 12h 

End of rising limb Aug. 8 6h Aug. 13 18h Jul. 11 6h Aug. 17 21h Aug. 22 12h 

Time to peak (hrs) 36 48 30 18 24 

 

In this paper, the analyses of the ensemble forecasts are based on five flood events 

for which complete data sets of precipitation forecasts were available. These are 

marked by asterisks in Figure 2.2. Details of these events are given in Table 2.2. The 

initial moisture state was assessed by examining antecedent rainfall. Both August 

2002 events were indeed extraordinary. More details of these events are given in 

Gutknecht et al. (2002). 
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Hydrological model 

The model used in this paper is a spatially-distributed continuous rainfall-runoff 

model (Reszler et al., 2006). The model runs on a 15 minute time step and consists 

of a snow routine, a soil moisture routine and a flow routing routine. The snow routine 

represents snow accumulation and melt by the degree-day concept. The soil mois-

ture routine represents runoff generation and changes in the soil moisture state of the 

catchment and involves three parameters: the maximum soil moisture storage FC, a 

parameter representing the soil moisture state above which evaporation is at its po-

tential rate, termed the limit for potential evaporation LP, and a parameter in the non-

linear function relating runoff generation to the soil moisture state, termed the non-

linearity parameter ß. The details of the soil moisture routine are given in Appendix A. 

Runoff routing on the hillslopes is represented by an upper and two lower soil reser-

voirs. Excess rainfall enters the upper zone reservoir and leaves this reservoir 

through three paths, outflow from the reservoir based on a fast storage coefficient K1; 

percolation to the lower zone with a percolation rate CP; and, if a threshold of the 

storage state LSUZ is exceeded, through an additional outlet based on a very fast 

storage coefficient K0. Water leaves the lower zones based on the slow storage coef-

ficients K2 and K3. Bypass flow dQby is accounted for by recharging the lower zone 

reservoir directly by a fraction of the excess rainfall. K1 and K2 as well as CP have 

been related to the soil moisture state in a linear way. The outflow from the reservoirs 

represents the total runoff Qg on the hillslope scale. These processes are repre-

sented on a 1 km x 1 km grid. The model structure and the model parameters have 

been identified by a five step procedure using field data, comprehensive hydro-

graphic data as well as qualitative evidence during floods (Reszler et al., 2006). 

Runoff routing in the stream network is represented by cascades of linear reservoirs 

with parameters n (number of reservoirs) and k (storage coefficient) that are a func-

tion of runoff. Decreasing travel times with increasing flood levels are represented by 

linearly decreasing k with runoff over a certain range but as the flood water exceeds 

bank full discharge, k is decreased to represent flood attenuation on the flood plains. 

The parameters have been found by calibration against observed hydrographs and 

results of hydro-dynamic simulation models. In the context of this study it is important 

that the model represents the catchment non-linearities well. Comprehensive tests 
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have shown that this is indeed the case (Blöschl et al., 2006). Of particular value 

have been the extreme flood events in August 2002 as they allowed to test the model 

over a wide range of event magnitudes, from small to extreme, along with the smaller 

events on record (Figure 2.2).  

To increase forecast accuracy, two real-time updating procedures are used in the 

Kamp flood forecasting system. The first procedure assimilates runoff data to update 

the catchment soil moisture state based on Ensemble Kalman filtering (EnKF) (Even-

sen, 1994). The strength of the EnKF is that it can accommodate model non-linearity. 

The model variance represents the errors in the precipitation and evaporation inputs 

that control the soil moisture state of the catchments and was set to a constant value 

of 0.005 (mm/15min)² based on sensitivity analyses. The model update is performed 

for every timestep and the updating is uniform within each gauged catchment. The 

observation variance represents the discharge measurement errors and is assumed 

to increase with runoff. The observation variance of runoff was set to 2
iQ⋅ξ  where 

ξ  = 0.0025 was obtained from sensitivity analyses and Qi denotes the observed run-

off at timestep i. The soil moisture state of the catchment estimated by the EnKF is 

used as the initial condition of all forecast runs. The second procedure consists of an 

additive error model (termed MOS or model output statistics) that updates runoff di-

rectly. This error model exploits the autocorrelation of the forecast error and involves 

an exponential decay of the correction. The autocorrelation lag was found from error 

analyses of events as 4 hours. 

Generating ensemble forecasts  

At each time step, precipitation observed at the telemetered rain gauges (Figure 2.1) 

over the past 15 minutes is interpolated on the 1 km grid using climatologically scaled 

radar information (Haiden et al., 2007). The climatological scaling is derived from a 

comparison of monthly totals of the radar and raingauge data at the station locations 

and varies with location and season. The scaled radar field is linearly combined with 

the field derived by station interpolation, the weights of this combination depending 

on the climatological scaling factor. In regions where this factor is large (i.e., the visi-

bility by the radar network is low), most of the weight is with the station interpolation. 

Where the factor is close to unity, the scaled radar field dominates the final estimate. 
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The final precipitation analysis reproduces the observed values at the raingauge lo-

cations.  

Additionally, at each time step, deterministic precipitation forecasts are made at 15 

min temporal resolution over a lead time of 48 hrs. The forecasts consist of two com-

ponents. The first component is an observation-based extrapolation or nowcast of the 

interpolated precipitation field using motion vectors. They are determined from con-

secutive analyses by searching for the spatial shift which gives the best match (low-

est root mean square difference) of precipitation patterns (Steinheimer and Haiden, 

2007). The second component is a weighted mean of the forecast fields of the ALA-

DIN (Wang et al., 2006) and ECMWF numerical weather prediction (NWP) models. 

The weighting function to estimate the optimised precipitation forecast Popt can be 

written as 

ECMECMALAALAopt PwPwP ⋅+⋅=  (2.1) 

were wALA and wECM are the weights for the ALADIN and the ECMWF precipitation 

forecasts PALA and PECM, respectively. The weights wALA and wECM have been derived 

from several years of comparisons of ALADIN and ECMWF forecasts with observed 

precipitation by minimising  

BM eee ⋅+= 5.0*  (2.2) 

where Me  is the mean absolute error and Be  is the absolute value of the bias. This 

optimisation has been performed separately for moderate (>5mm/24 hrs) and heavy 

(>10mm/24 hrs) precipitation events. The sum of the optimized weights wALA and 

wECM can differ from unity to account for biases. The mean error of the combined 

precipitation forecasts in that period was 20-25% smaller than that of the individual 

ALADIN and ECMWF forecasts (Haiden et al., 2007) and the biases were negligible. 

Another weighting function is used for a smooth transition between the two compo-

nents (nowcast and NWP forecast) (Golding, 1998). Analyses of the forecast per-

formance indicated that, in most cases, over the first 2-6 hours of the forecast the 

nowcast had smaller errors than the NWP forecast combination. A weighting function 

was hence chosen that gives full weight to the nowcast during the first 2 hours, de-

creases linearly to zero at 6 hours, and remains at zero for larger lead times. 
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It should be noted that beyond the nowcasting range, the 15 min temporal resolution 

of the precipitation forecast does not reflect the actual information content of the me-

teorological models. ALADIN provides output for every hour, and ECMWF provides 

6-hourly totals, both of which are linearly interpolated to a uniform 15 min resolution. 

Similarly, the spatial grid scale of ALADIN (9.6 km) and ECMWF (~25 km) is much 

larger than the 1 km grid of the hydrological model. Although the scales of the mete-

orological models and the hydrological model do not match, sensitivity analyses indi-

cated that the first order effect of precipitation uncertainty on runoff is related to (av-

erage) catchment precipitation, while the uncertainty resulting from a lack of knowl-

edge of the spatial detail of precipitation is a second order effect.  

In order to quantify the uncertainty of the precipitation forecasts, ensemble forecasts 

are generated. They are constructed, in a similar way as the deterministic forecasts. 

The ECMWF model provides, at each run, a set of 50 ensemble forecasts in addition 

to the main (deterministic) run. The ALADIN model currently does not produce en-

semble forecasts operationally, so a set of 25 pseudo-ensembles is generated by 

spatially shifting the ALADIN forecast in both the x and y directions by a random 

space lag of up to 40 km. This spatial lag has been introduced to account for some of 

the small-scale uncertainty in the position of the precipitation forecasts. Each of the 

ECMWF members is then randomly combined with one of the ALADIN pseudo-

ensemble members, and with the nowcast. No uncertainty has been assigned to the 

nowcasts. This means that, up to 2 hours lead time, all ensemble members are iden-

tical (zero spread) and the spread increases at longer lead times. We use the 

pseudo-ensembles of the ALADIN model in the construction of the ensembles be-

cause they provide small-scale variance and spread not present in the ECMWF fore-

casts.  

In the case of air temperature, station data are interpolated. The forecasts are based 

on a combination of the station data with the ALADIN forecasts. No temperature en-

sembles are computed as their effect on the flood forecasting uncertainty is deemed 

to be small.  

The interpolated precipitation and air temperature fields are used to estimate the 

state variables of the runoff model such as soil moisture, reservoir storages and 

snow water equivalent at each time step allowing for EnKF updating. These state 
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variables are used as the initial conditions for the flood forecasts. All members of the 

ensemble forecasts use the same initial conditions as the deterministic forecast with-

out any perturbation.  

The deterministic forecast fields (both precipitation and temperature) are used as an 

input to the runoff model to compute deterministic flood forecasts. The 50 members 

of the ensemble forecasts of precipitation along with the deterministic temperature 

forecasts are used to compute the ensemble flood forecasts, i.e., 50 realisations of 

runoff over a lead time of 48 hrs. These are analysed in this paper. Each member of 

the ensemble forecasts is updated by the additive error model in the same way which 

means that the error model does not affect the ensemble spread.  

2.3 Results and discussion 

Model performance and deterministic forecasts 

To get an appreciation of the performance of the components of the flood forecasting 

system, the forecast errors je  were examined for the five flood events of Table 2.2:  
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where je  is the mean absolute normalized error in percent for lead time j, ijQ̂  is run-

off at time step i that is forecast with a lead time of j, iQ  is the observed runoff at time 

step i, and 1i  and 2i  are the beginning and the end of the analysis interval, respec-

tively. The error analyses were performed separately for the entire flood events (i.e. 

between the beginning and the end of the flood event as in Table 2.2) and the rising 

limbs only (as in Table 2.2). The rising limb of a flood hydrograph is the period that is 

of most interest for the users of real-time flood prediction system. For a given lead 

time j, the errors of the five events were averaged and are shown in Figure 2.3. Four 

cases were considered.  
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Figure 2.3 Average forecast errors ej of the five flood events of Table 2.2. Entire flood event 

(left), rising limb only (right). Kamp at Zwettl, 622 km². 

In the first case (blue lines in Figure 2.3) we assumed that future precipitation and 

temperature were known and used their observed interpolated fields as inputs to the 

runoff model without any updating. Figure 2.3 indicates that, for this case, the errors 

do not depend on the forecast lead time. This would be expected as this is the simu-

lation mode. The model errors for the entire flood events are about 15% (Figure 2.3 – 

left) while they are about 30% if the rising limb alone is analysed (Figure 2.3 – right). 

The better model accuracy for the entire flood events results from including the time 

periods with no rainfall, i.e. the recession. In these periods the errors are small as no 

uncertainties about the amount and the spatial distribution of the input rainfall fields 

are propagated through the rainfall-runoff model. In contrast, the rising limbs are 

more difficult to simulate.  

In the second case we ran the model in a similar way as in case 1, however, allowed 

for the EnKF updating to estimate the initial conditions of the forecasts (termed up-

dated initial conditions, red lines in Figure 2.3). Updating the initial conditions reduces 

the errors for both analysis periods. During the rising limbs the updating reduces the 

errors from about 30% to about 20%. For the entire events the updating reduces the 

errors from about 15% to about 12%. There is a slight dependence of the error on the 
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lead time with smaller errors for short lead times. This dependence is related to the 

memory of the hydrological system which is taken advantage of by the updating.  

The third case was as case 2 but, in addition, allowed for updating by the additive 

error model (termed updated initial conditions - MOS, green lines in Figure 2.3). The 

benefit of the additive error model is limited to the first eight hours of the forecasts 

which is the interval over which the errors are correlated. For larger lead times the 

additive error model has no effect on the forecasts, so the errors are identical with 

those of case 2. The fourth case was as case 3 but used forecast precipitation and 

temperatures rather than the observations (termed forecast - updated initial condi-

tions MOS, purple lines Figure 2.3). The fourth case represents the operational real 

time configuration, where both updating procedures are used along with the determi-

nistic precipitation and temperature forecasts. In this case, the forecast performance 

shows a clear dependence on the forecast lead time. In the first 8 hours the forecast, 

errors are less than 30% (rising limb alone) and about 18% (entire flood events). For 

lead times of 48 hours the errors are 75% (rising limb alone) and about 50% (entire 

flood events). This is much larger than the errors of case 3 where observed precipita-

tion has been used as an input. This clearly demonstrates that the main error source 

for lead times larger than the travel times is the uncertainty in the precipitation fore-

casts. The difference between the errors of the two analysis periods is particularly 

large in case 4, as would be expected, as the precipitation forecasts will be most sig-

nificant in the rising limb where the rainfall occurs.  

Ensemble forecasting and propagation of non linearity 

Depending on the soil moisture state, a change in precipitation input can be amplified 

(wet conditions) or dampened (dry conditions) by the catchment system. In the Kamp 

catchment the occurrence of big floods is associated with wet catchment conditions 

or very large rainfall depths that wet up the catchment during the event. In the case 

of the flood events examined here, one would hence expect that the precipitation 

forecast errors will be amplified as they are propagated through the hydrological 

model. To illustrate the propagation characteristics ensemble forecasts for the flood 

event of July 2005 are shown in Figure 2.4, Figure 2.5 and Figure 2.6. The plotted 

time window ranges from July 9, 2005 0h to July 12, 2005 0h in all three figures. The 

thick red lines represent observed runoff, the black lines represent the deterministic 
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forecasts and the thin blue lines represent the 50 ensemble members. The light blue 

shading represents the confidence interval between the 10% and 90% quantiles of 

the ensemble forecasts.  

 

Figure 2.4 Ensemble forecasts (top: cumulative catchment precipitation, bottom: runoff) on 

July 9, 2005 at 0h (time 0 in the figure). Kamp at Zwettl, 622 km². 

Figure 2.4 shows the forecasts on July 9, 2005 0h. In the first 24 hours of the fore-

cast lead time only 5 mm of precipitation have been observed. The deterministic pre-

cipitation forecast is very accurate but most of the ensemble members predict more 

than that. In the second 24 hours of the forecast lead time about 50 mm of precipita-

tion have been observed. Again, the deterministic forecast is accurate. However, 

most of the ensemble forecasts underestimate precipitation slightly. The deterministic 

flood forecast matches the observed hydrograph closely. During the first 12 hours of 

the forecast lead time, the ensemble members are very similar to each other. This is 

because the forecasts are controlled by observed upstream runoff and observed pre-

cipitation through the routing and runoff model components, respectively. In both 

model components no uncertainty was introduced, i.e. the same data and parame-

ters were used for all members of the ensemble. For lead times of 30 hours and 
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more, some of the ensemble members indicate a sudden increase in discharge with 

a maximum flood peak of 100 m³/s. As compared to precipitation, the ensemble 

spread for these lead times is much larger. This is where the uncertainty in forecast 

precipitation becomes important.  

 

Figure 2.5 Ensemble forecasts (top: cumulative catchment precipitation, bottom: runoff) on 

July 10, 2005 at 0h (time 24 in the figure). Kamp at Zwettl, 622 km². 

The results of the forecast run on July 10, 2005 0h are plotted in Figure 2.5. The total 

observed precipitation during the forecast lead time is about 75 mm while the deter-

ministic forecast predicts about 60 mm. This relatively moderate underestimation of 

15% translates into a larger underestimation of runoff with an estimated peak of 57 

m³/s as compared to an observed peak of 95 m³/s, i.e., an underestimation of 40%, 

and the rising limb is almost completely missed. The main reason is the missing pre-

cipitation block at time 36 hours. Most ensemble members underestimate precipita-

tion and the ensemble spread is very small up to a lead time of 24 hours. Similarly, 

the spread of the runoff forecasts is small during the first 24 hours but in the last 24 

hours of the forecasts the spread increases significantly. Clearly, this increase is re-
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lated to the non-linearity of the catchment system that translates the somewhat larger 

spread of precipitation at the end of the forecast period in a much larger spread in 

runoff. While the observed hydrograph is never within the confidence interval, at the 

end of the forecast some of the ensemble members do indicate the possibility of a 

flood on the order of 100 m³/s. Twelve hours later, the forecasts are much more ac-

curate (Figure 2.6). The deterministic precipitation forecast estimates the observed 

precipitation very well over the entire lead time. The runoff forecasts are very good 

for the first 12 hrs but do underestimate runoff for larger lead times. In this case, the 

underestimation is not a result of precipitation errors but is related to the initial condi-

tions of the hydrologic model that are somewhat too dry.  

 

Figure 2.6 Ensemble forecasts (top: cumulative catchment precipitation, bottom: runoff) on 

July 10, 2005 at 12h (time 36 in the figure). Kamp at Zwettl, 622 km². 

To illustrate how the spread of the precipitation ensemble, representing the uncer-

tainties in the precipitation forecasts, is propagated through the hydrologic model we 

analysed the probability distributions of the precipitation ensembles (model input) and 

the runoff ensemble (model output). In both cases it was assumed that all ensemble 

members are equally likely. As an example, Figure 2.7 shows the probability distribu-
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tions of the forecast on July 10, 2005 at 0h as in Figure 2.5. For a lead time of 24 

hours the distributions of the precipitation and runoff ensemble are similar. They ex-

hibit a narrow spread and are symmetric. For a lead time of 36 hours the two distribu-

tions are somewhat different. While the precipitation ensemble spread remains small, 

the runoff ensemble spread is larger and skewed to the right. This effect is even 

stronger for a lead time of 48 hours and the largest 20% of the runoff ensemble 

members have increased their spread dramatically. The total range of the precipita-

tion uncertainty at 48 hours is 40 mm or 70% of the median precipitation while the 

total range of the runoff uncertainty at 48 hours is 90 m³/s or 200% of the median 

runoff. Small errors in rainfall may translate into larger errors in runoff. The example 

of Figure 2.7 has been extended to all the 232 forecasts examined in this paper. For 

each of these forecasts, the coefficient of variation of the ensemble members of pre-

cipitation and runoff has been calculated. The results for a lead time of 48 hours are 

shown in Figure 2.8, stratified by the mean cumulative precipitation.  

 

 

Figure 2.7 Mapping of the precipitation uncertainties to runoff uncertainties for forecast lead 

times of 24, 36 and 48 hours. cdf is the cumulative distribution functions assuming all en-

semble members are equally likely. Forecast on July 10, 2005 at 0h as in Figure 2.5. Kamp 

at Zwettl, 622 km². 
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Figure 2.8 Mapping of the precipitation uncertainties to runoff uncertainties for forecast lead 

times of 48 hours in terms of the coefficient of variation of the ensemble spread of cumulative 

precipitation CVP and runoff CVQ. Five flood events of Table 2.2, Kamp at Zwettl, 622 km². 

Arrow indicates 48hr forecasts of Figure 2.7. Largest dots relate to forecasts with mean cu-

mulative precipitation P  > 50mm, and the medium and smallest dots relate to forecasts with 

50 > P > 30mm and 30 > P  > 10mm, respectively. Clearly, this kind of mapping of precipita-

tion uncertainties to runoff uncertainties for large forecast lead times is related to the non-

linear nature of catchment response. Non-linearity in runoff response has been observed at 

all space time scales. Often, the non-linearity is more pronounced in dry climates than in wet 

ones (Chiew et al., 2006). With 300 mm of annual runoff the Kamp is a rather dry catchment 

in an Austrian context. 

The largest dots in Figure 2.8 relate to forecasts with mean cumulative precipitation 

P  > 50mm, and the medium and smallest dots relate to forecasts with 50 > P > 

30mm and 30 > P  > 10mm, respectively. For small precipitation depths, the uncer-

tainty in precipitation may or may not matter for runoff. Indeed, if precipitation is very 

small, runoff will be controlled by groundwater response, so any uncertainty in pre-

cipitation will not appear in the runoff forecasts. In contrast, for the instances when 

the forecasted precipitation was large (largest dots in Figure 2.8), the coefficients of 

variations may more than double when moving from precipitation to runoff. In the ex-
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ample of Figure 2.7, the coefficient of variation increases from 0.16 to 0.34 when 

moving from precipitation to runoff (arrow in Figure 2.8).  

Ensemble spread and forecast error 

Ideally, the ensemble spread should be an estimator of the distribution of the forecast 

errors. However, in the present study not all sources of uncertainty have been repre-

sented in the ensembles. Rain gauge measurement errors, small scale precipitation 

variability between the raingauges, uncertainty in the routing and runoff models as 

well as uncertainties in initial soil moisture have not been represented in the ensem-

bles. Also, it is unclear whether the ECMWF ensemble forecasts and the ALADIN 

pseudo-ensembles are equally probable forecasts in the study region. The obvious 

method of examining to what degree the ensemble spread actually captures the dis-

tribution of the forecast errors is a comparison of the two, based on an analysis of 

observed flood events. However, the forecast error distribution changes with time. 

Typically, the forecast errors are large during the rising limbs of floods and small dur-

ing the recession and low flow periods. Most importantly, one is interested in the 

forecast errors of large flood events but large events are always rare, so statistical 

analyses are limited by small sample sizes. As a simplification we assumed here that 

the forecast errors of all 232 time steps of the five flood events of Table 2.2 can be 

combined into a single distribution function for each forecast lead time. It should be 

noted, however, that not all of the 232 forecasts are completely independent from 

each other. We calculated the forecast errors as the difference between the determi-

nistic forecast and the observed runoff (positive error for overestimation) from which 

we derived the distribution function. In a similar vein, we calculated the deviations 

between the ensemble forecasts and the deterministic forecast (positive deviation if 

ensemble forecast is larger than the deterministic forecast), and calculated the distri-

bution function for the same time steps as in the case of the errors, assuming that all 

ensemble members are equally probable.  
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Figure 2.9 Comparison of the distribution functions of the average ensemble spread around 

the deterministic forecast (solid red lines) and forecast errors of the deterministic forecasts 

(dotted blue lines) for lead times of 6, 12, 24 and 48 hours for the five flood events of Table 

2.2. Kamp at Zwettl, 622 km². 

Figure 2.9 shows the results of this comparison. The solid red lines represent the av-

erage ensemble spread around the deterministic forecasts and the dotted blue lines 

show the error distributions of the deterministic forecasts. For a forecast lead time of 

6 hours, about 90% of the ensemble members hardly differ from the deterministic 

discharge forecast (upper left panel). The remaining members show a slight ten-

dency of being smaller than the deterministic forecast. The forecast errors for this 

lead time exhibit a slightly wider distribution than that of the ensemble members. For 

a forecast lead time of 12 hours, the spread of the ensemble members increases as 

would be expected but the forecast errors increase even more. In particular, there 

are a number of time steps where runoff was significantly underestimated (i.e. nega-

tive errors). This tendency continues as one moves to 24 and 48 hour lead times. For 

48 hours, the ensemble spread is larger than that of the other lead times and so are 

the forecast errors. In about half the time steps, the deterministic forecasts underes-

timate runoff by more than 30 m³/s while less than 10% of the ensemble forecasts 

indicate deviations of less than -30 m³/s.  



 24 

The median forecast errors of the 6, 12 and 24 hour lead times are close to zero but 

the large negative errors are more frequent than the large positive errors, i.e., there 

exists a negative skew. This is even more the case for a lead time of 48 hours. This 

means that the deterministic forecasts underestimate runoff more often than they 

overestimate runoff in the case of the five flood events. This effect can be potentially 

related to the tendency of the deterministic precipitation forecast to underestimate 

extremely high amounts of precipitation during the five flood events. Although a bias 

correction is used in preparing the forecasts it is based on the analysis of moderate 

(>5mm/24hrs, >10mm/24hrs) precipitation events. What is of most interest in a flood 

forecasting context are the very large precipitation events but such extreme events 

are rare, so sample size is very small. It is likely that the forecast errors and biases of 

the extreme events will differ from those of the moderate events as one would as-

sume that the error characteristics are heteroscedastic. However, accounting for 

such biases in practice is very difficult. 

The ensemble forecasts are almost symmetric although the 48 hr lead times do indi-

cate a slight negative skew. Also, the ensemble spread is always narrower than the 

distribution of the forecast errors. This would be expected as not all error sources 

have been represented in the ensembles. However, the ensemble spread increases 

with lead time in a similar way as the forecast errors. This means that the ensemble 

spread does provide an indicator to assess potential forecast errors over a range of 

lead times. Also, one would expect that the most significant changes in the forecast 

errors as a function of time are captured in the ensembles as they are related to pre-

cipitation.  

As another possibility of assessing the ability of the ensemble flood forecasts to cap-

ture the forecast errors we analysed what we term "range hit rates". A range hit is 

counted when the observed discharge value is within the range of a certain number 

of discharge ensemble members. How many of the 50 ensemble members are used 

to define the upper and lower range is described by the quantile. For the entire fore-

cast ensemble the quantile is 100%. A quantile of 60% means that the highest 20% 

and the lowest 20% of the ensemble forecast values are not taken into account, i.e., 

a range hit is counted if the observed runoff is within the range covered by the re-

maining 60% of the ensemble. A quantile of 0% relates here to the deterministic fore-
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cast alone, i.e., a range hit is counted if the observed runoff is identical with the de-

terministic forecast within the numerical accuracy of 2 digits used here. With this 

definition, the range hit rate indicates in how many cases, relative to the total number 

of forecasts, the observed discharge value lies within the range of the ensemble 

quantiles. The range hit rates were calculated for the same forecasts as used for 

Figure 2.9.  

 

Figure 2.10 Range hit rates for lead times of 6, 12, 24 and 48 hours for the five flood events 

of Table 2.2. Kamp at Zwettl, 622 km². The range hit rate indicates in how many cases, rela-

tive to the total number of forecasts, the observed discharge value lies within the rnage of the 

ensemble quantiles. 

Figure 2.10 shows the results of this analysis for different forecast lead times. For all 

lead times, the range hit rate increases with the quantiles. Clearly, the wider the un-

certainty range the easier it is to capture the observed runoff. For quantiles larger 

than 60% the range hit rate increases more strongly which is related to the influence 

of the hydrologic non-linearity combined with the growing deviation from the ensem-

ble mean for the peripheral ensemble members. For a lead time of 3 hours, the range 

hit rates are always very small. This is because most of the forecast error is due to 

the routing model and the discharge measurements and both error sources have not 

been included in the ensemble forecasts. However, as the lead time increases, the 



 26 

precipitation forecast error becomes more important and the range hit rates increase. 

The range hit rates are still much smaller than the quantiles. In fact, if the ensemble 

forecasts captured all the forecast errors one would expect the range hit rates to lie 

on the 1:1 line. Clearly, this is not the case as the ensemble forecasts focus on the 

dominant source of uncertainty, i.e., uncertainty in forecast precipitation. The range 

hit rates are similar for the 12 hour and the 48 hour lead times (as well as for 24 and 

36 hours not shown here) which suggests, again, that the ensemble spread does 

provide an indicator to assess potential forecast errors over a range of lead times, 

provided the lead times are 12 hours or larger. 

Relative Operating Characteristics 

Flood management decisions are often based on discharge thresholds, i.e., if a 

threshold will be exceeded some kind of alarm is triggered. Depending on the con-

text, the warning may result in an alert as is usually the case in early warning, or it 

may result in flood mitigation action for shorter lead times. When ensemble forecasts 

are available, any of the ensemble quantiles could be used to trigger an alarm. There 

is a tradeoff between the ensemble quantile that is used and the usefulness of the 

alarm. Ensemble members at the upper end (100% quantile) will more likely trigger 

an alarm but there will also be more false alarms. The opposite is true of the ensem-

ble members at the lower end (0% quantiles). In meteorology, the method of ROC 

(Relative Operating Characteristic) - diagrams based on threshold analysis are a 

common method for assessing this tradeoff and hence the performance of probabilis-

tic forecasting systems (Mason and Graham, 1999, Buizza et al., 1999). In analogy, 

ROC-diagrams are used here to illustrate the alert characteristic of the ensemble 

flood forecasts for predefined discharge thresholds. 

As a first step, hit rates and false alarm rates are defined. The hit rate HR is the ratio 

of the number of correct alarms H and the total number of observed events defined 

by the sum of correct alarms H and missed alarms M, i.e.  

MH
HHR
+

=  (2.4) 

where a correct alarm is counted if both the observed and forecast hydrograph ex-

ceed the threshold within the forecast lead time, and an observed event is counted if 
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the observed hydrograph exceeds the threshold within the forecast lead time. In 

analogy, the false alarm rate FAR is the ratio of the number of false alarms F and the 

total number of no-events defined by the sum of false alarms F and correct rejections 

C (neither the observed hydrograph nor the forecast exceeds the threshold), i.e.  

CF
FFAR
+

=  (2.5) 

where a false alarm is counted if the forecast hydrograph exceeds the threshold 

within the forecast lead time but the observed hydrograph does not, and a no-event 

is counted if the observed hydrograph does not exceed the threshold within the fore-

cast lead time. H+M+F+C is 232 in this paper as this is the total number of time steps 

for which forecasts have been analysed. The hit rate and the false alarm rate of the 

deterministic forecasts can be plotted as a single point on a hit/false alarm rate 

graph. The same procedure is then repeated for each quantile of the ensemble fore-

casts separately which gives a set of points in the hit/false alarm rate graph known as 

relative operating characteristic (ROC). A perfect forecasting system gives a hit rate 

of 100% and a false alarm rate of 0%, i.e. the point plots in the top left corner of the 

ROC diagram. Systems with no skill result in a ROC curve on the 1:1 line.   

The relative operation characteristics were calculated for the same forecasts as used 

for Figure 2.9 with a forecast lead time of 48 hours and are shown in Figure 2.11. 

Four thresholds were selected. The discharge thresholds of 50 and 100 m³/s are 

relevant values for flood warning at the Kamp (see Table 2.2), the smaller thresholds 

of 10 and 30 m³/s were examined for illustrative purposes. The dots represent the 

ensemble forecasts at intervals of 5%, the crosses represent the deterministic fore-

casts. A hit rate of 100% is reached for a threshold of 10 m³/s and the 100% quantile 

of the ensemble forecast (i.e. the largest of the ensemble members). This perfect hit 

rate is associated with a false alarm rate of more than 80%. With decreasing ensem-

ble quantiles the false alarm rate decreases to less than 20% while the hit rate is 

greater than 50% for all ensemble quantiles. For a threshold of 30 m³/s, the hit rate 

ranges from about 80% (100% quantile) to 15%, while the false alarm rate ranges 

from 20% to nil. The false alarm rates are even smaller for the 50 and 100 m³/s 

thresholds with similar hit rates. For the 100 m³/s threshold the forecasts of the 100% 

quantile produce only 10% false alarms with a hit rate of about 80%.  
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Figure 2.11 Relative Operating Characteristic (ROC) curves for the probabilistic (dots) and 

deterministic (crosses) 48 hour flood forecasts for discharge thresholds of 10, 30, 50 and 100 

m³/s for the five flood events of Table 2. Kamp at Zwettl, 622 km². 5% quantile (upward point-

ing triangle), 50% quantile (square) and 100% quantile (downward pointing triangle). 

For all discharge thresholds, the hit rates of the 100% quantiles of the ensemble 

forecasts are larger than those of the deterministic forecasts as would be expected. 

This is the main reason of using ensemble forecasts in flood management. In gen-

eral, the ROC curves show that the deterministic and probabilistic forecasts at the 

Kamp produce only few false alarms and the percentage of false alarms decreases 

with the magnitude of the discharge threshold. The hit rate is limited to about 80% for 

the 50 and 100 m³/s thresholds. The tendency of very small false alarm rates and 
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maximum hit rates below 100% in the ROC curves indicate that the flood forecasts 

tend to underestimate the observed discharges, particularly for the 50 and 100 m³/s 

thresholds. This tendency is consistent with results of meteorological analyses, which 

have shown that meteorological model forecasts tend to overestimate small precipita-

tion values and underestimate large precipitation values (Buizza, 1999). The analysis 

in this paper is based on five big flood events with heavy precipitation, so some un-

derestimation of precipitation would be expected. The tendency towards underesti-

mating precipitation during the floods is amplified through the non-linearity of the hy-

drologic response at the Kamp. Therefore, the flood quantile of choice for flood alarm 

purposes would be a high ensemble quantile, for example the 90% quantile. There is 

another argument for using a large quantile which are the relative costs of false 

alarms and missed alarms. If false alarms are inexpensive it may pay to choose 

higher flood quantiles as if false alarms were as expensive as missed alarms. How-

ever, decisions on alarms are often made based on maximising the credibility of the 

forecasts rather than cost arguments. 

The area under the ROC curve is sometimes used as a measure for the forecast skill 

(Stanski et al., 1989). The area under the curve decreases from 1 for a perfect pre-

diction system to 0.5 for a prediction system with no skill. Fitting a cubic spline to the 

ROC curves in Figure 2.11 gives areas of 0.90, 0.85, 0.85 and 0.90 for the 10, 30, 50 

and 100 m³/s thresholds, respectively. As compared to precipitation forecasts in the 

literature, this is a favourable skill. For example, Buizza et al. (1999) found skills in 

the range of 0.70 and 0.83, depending on precipitation thresholds and for a maximum 

forecast lead time of 3 days.  

2.4 Conclusions 

The real-time flood forecasting system of the Kamp catchment in Austria has been 

operational since January 2006. It is used in this paper to examine how the ensemble 

distribution of precipitation forecasts propagates in the catchment system, and to in-

terpret the flood forecast probabilities relative to the forecast errors. The model was 

tested on five large flood events including a 500 yr flood and a 1000 yr flood.  

The analyses indicated that, for long lead times (e.g. 48 hours), the variability of the 

precipitation ensemble is amplified as it propagates through the catchment system. 
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For the example examined, the total range of the precipitation uncertainty is 70% of 

the median precipitation while the total range of the runoff uncertainty is 200% of the 

median runoff. Small errors in rainfall may translate into larger errors in runoff. An 

analysis of the coefficients of variation of the ensemble members of precipitation and 

runoff suggests that, for small precipitation depths, the uncertainty in precipitation 

may or may not matter for runoff. In contrast, for the instances when future precipita-

tion is large, the coefficients of variations may more than double when moving from 

precipitation to runoff. Also, the ensemble distribution of precipitation is symmetric 

while that of the flood forecasts is skewed to the right. Clearly, this kind of mapping of 

precipitation uncertainties to runoff uncertainties for large forecast lead times is re-

lated to the non-linear nature of catchment response. In contrast, for short lead times 

(e.g. 12 hours and less), the variability of the precipitation ensemble is decreased as 

it propagates through the catchment system. This is because the forecasts are 

mainly controlled by observed upstream runoff and observed precipitation through 

the routing and runoff model components, as the forecasting system is operated in a 

real-time mode. The ensemble forecasts focus on the dominant source of uncer-

tainty, i.e., uncertainty in forecast precipitation. For lead times of 12 hours and less 

the ensemble spread is very narrow as other sources uncertainty such as rain gauge 

measurement errors, small scale precipitation variability between the raingauges, 

uncertainty in the routing and runoff models as well as uncertainties in the initial soil 

moisture have not been represented in the ensembles. More generally speaking, it 

can be expected that the lead time where the uncertainty of the precipitation fore-

casts starts to amplify will depend on the catchment response characteristics, such 

as travel times in the river reaches and runoff concentration. In small and flashy 

catchments this will be a short lead time while for large catchments it will be longer. 

The paper also examined the ability of the probabilistic forecasts to capture the dis-

tribution of the flood forecast errors. Assuming that all ensemble members are 

equally likely, the statistical analyses of the ensemble forecasts for five flood events 

at the Kamp showed that the ensemble spread is always narrower than the distribu-

tion of the forecast errors. This would be expected as not all error sources have been 

represented in the ensembles. Although two updating procedures based on observed 

runoff have been used to improve the flood forecasts over the simulation mode, there 

always remains a certain amount of hydrologic uncertainty in the forecasting system. 
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It is also likely, that the precipitation ensembles do not fully represent the precipita-

tion forecast errors (Schaake et al., 2004). However, the ensemble spread increases 

with lead time in a similar way as the forecast errors. This means that the ensemble 

spread does provide an indicator to assess potential forecast errors over a range of 

lead times. Also, one would expect that the most significant changes in the forecast 

errors as a function of time are captured in the ensembles as they are related to pre-

cipitation. A "range hit rate" was defined as the number of cases, relative to the total 

number of forecasts, in which the observed discharge value lies within the range of 

the ensemble quantiles. Analyses of the range hit rates indicate that they are small 

for short lead times but increase with lead time. The range hit rates are similar for 

lead time of 12 hours and more which suggests, again, that the ensemble spread 

does provide an indicator to assess potential forecast errors over a range of lead 

times, provided the lead times are 12 hours or larger. Finally, the forecast skill of the 

48 hour ensemble forecasts was tested by ROC (Relative Operating Characteristic) 

diagrams based on threshold analyses. For all discharge thresholds, the hit rates of 

the 100% quantiles of the ensemble forecasts are larger than those of the determinis-

tic forecasts. This is the main reason of using ensemble forecasts in flood manage-

ment. For the largest discharge threshold examined here (100 m³/s) the forecasts of 

the 100% quantile produce only 10% false alarms with a hit rate of about 80%. The 

flood quantile of choice for flood alarm purposes would be a high ensemble quantile, 

for example the 90% quantile.  

Even though the ensemble characteristics do not exactly match the forecast errors, 

they do provide information about the expected forecast errors. The comparisons 

indicated that, for lead times larger than 12 hours in the case of the 622 km² Kamp 

catchment, the ensemble spread is a useful indicator to the forecast errors. While 

additional error sources could be included in estimating the flood ensembles it may 

not be necessary for operational flood forecasting purposes as the uncertainty in 

forecast precipitation is the dominant source of flood forecast uncertainty for lead 

times of more than 12 hours in catchments such as the Kamp.  
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3 Soil moisture updating by Ensemble Kalman  
Filtering in real-time flood forecasting 

Abstract 

The aim of this paper is to examine the benefits of updating model soil moisture in 

forecasting large floods. The soil moisture of a distributed rainfall runoff model is up-

dated by the Ensemble Kalman Filter based on observed runoff in a real-time mode, 

and is then used as an initial condition for the flood forecasts. The case study is set 

in the 622 km² Kamp catchment, Austria. The results indicate that the Ensemble 

Kalman Filter indeed improves the forecasts substantially. The mean absolute nor-

malised error of the peak flows of six large floods decreases from 25 to 12% (3 hour 

lead time), and from 25 to 19% (48 hour lead time). The Nash-Sutcliffe efficiency of 

forecasting runoff for these flood events increases from 0.79 to 0.92 (3 hour lead 

time), and from 0.79 to 0.88 (48 hour lead time). The flood forecasting system has 

been in operational use since early 2006.  

3.1 Introduction 

Updating methods in real-time flood forecasting have enjoyed wide popularity in the 

late 1970s and early 1980s with the increasing use of telemetry in the control of wa-

ter resource systems (Wood, 1980). While numerous national flood forecasting sys-

tems have indeed implemented updating procedures (e.g. Gutknecht, 1991), scien-

tific interest soon ebbed off. The reasons may well be as O'Connell and Clarke 

(1981, pp. 202-203) noted: "The above discussion suggests that there are still con-

siderable unsolved estimation problems in real-time forecasting, but it is not clear to 

what extent their solution would result in improved forecasts. It may be more benefi-

cial to seek a better representation of the spatial variation in rainfall and its effect on 

streamflow response, and in improving the structure of real-time forecasting models 

than to expend effort in solving estimation problems. Information on where efforts will 

be best rewarded can only be obtained by feedback from case studies." Indeed, dis-

tributed modelling and use of radar rainfall have been key topics in hydrologic re-
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search in the 1990s (e.g. Grayson and Blöschl, 2000). In the mean time, updating 

methods have been developed along a separate avenue where the interest resided 

in how to best use soil moisture satellite data in hydrological models to improve cli-

mate forecasts (McLaughlin, 1995). In this context, updating is usually referred to as 

data assimilation. Methods have been gleaned from oceanography and atmospheric 

sciences (Reichle et al., 2002) rather than from control theory as had been the case 

in the earlier flood forecasting research. The availability of new methods has kindled 

renewed interest in the updating problem of flood forecasting. Specifically, Monte 

Carlo methods are appealing because of their flexibility, ease of use and operational 

robustness (Madsen and Skotner, 2005). The Ensemble Kalman Filter (Evensen, 

1994) extends the traditional Kalman Filter (Kalman, 1960) concept by Monte Carlo 

techniques and is able to deal with non-linear model dynamics in a natural way with-

out linearised model equations. Moradkhani et al. (2005) found that the Ensemble 

Kalman Filter improved runoff forecasts of a conceptual hydrologic model when using 

on-line measured runoff. Weerts and Serafy (2006) compared the performance of 

three methods of updating a conceptual runoff model - Ensemble Kalman Filtering, 

Particle Filtering and Residual Resampling. They suggested that the Ensemble Kal-

man Filter technique was the most efficient method in case of a small number of re-

alisations, and was generally more robust than the other methods. The Ensemble 

Kalman Filter is hence an obvious choice for updating flood forecasts. 

The aim of this paper is to examine the benefit of Ensemble Kalman Filter updating in 

forecasting large floods. Using observed runoff, the soil moisture state of the catch-

ment is updated which is then used as an initial condition for the forecasts. The 

analysis is based on a distributed rainfall-runoff model in the Kamp catchment in Aus-

tria that is part of a flood forecasting system that has been in operational use since 

early 2006.  

3.2 Data and methods 

Study catchment and data 

The Kamp catchment is located in northern Austria, approximately 120 km north-west 

of Vienna. At the Zwettl stream gauge the catchment size is 622 km² and elevations 

range from 500 to 1000 m a.s.l. The higher parts of the catchment in the Southwest 



 34 

are hilly with deeply incised channels. Towards the catchment outlet in the Northeast 

the terrain is flatter and swampy areas exist along the streams. Typical flow travel 

times in the river system range from 2 to 4 hours. The geology of the catchment is 

mainly granite and gneiss. Weathering has produced sandy soils with a large storage 

capacity throughout the catchment. A catchment fraction of 50 % is forested. Mean 

annual precipitation is about 900 mm of which about 300 mm becomes runoff (Para-

jka et al., 2005c). During flood events, only a small proportion of rainfall contributes to 

runoff. Typically, the event runoff coefficients are 10% or less (Merz and Blöschl, 

2005). As rainfall increases in magnitude, the runoff response characteristics change 

fundamentally because of the soil moisture changes in the catchment and the runoff 

coefficients can easily exceed 50%. The catchment is hence highly non-linear in its 

rainfall-runoff response. Representing catchment soil moisture well is hence of ut-

most importance for producing accurate flood forecasts.  

 

Figure 3.1 Kamp catchment (622 km²) with telemetered rain gauges and stream gauge 

shown. Thick line represents the catchment boundary, thin lines the river network. 

For the development of the distributed model, data from a total of 16 rain gauges 

were used. Out of these, 10 rain gauges recorded at a time interval of 15 minutes, 

the others were daily gauges. Eight of the recording rain gauges are telemetered 

(Figure 3.1) and are used for the operational forecasting. At each time step, the rain 

gauge data are spatially interpolated to a 1 km grid, supported by climatologically 

scaled radar information. While the operational system uses rainfall forecasts, all 
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analyses in this paper are based on the assumption that future rainfall were known 

from the rain gauge data to focus on the value of the updating procedure in reducing 

forecasting errors.  

Hydrologic model 

The model used in this paper is a spatially-distributed continuous rainfall-runoff 

model (Reszler et al., 2006 and Blöschl et al., 2008). The model runs on a 15 minute 

time step and consists of a snow routine, a soil moisture routine and a flow routing 

routine. The snow routine represents snow accumulation and melt by the degree-day 

concept. The soil moisture routine represents runoff generation and changes in the 

soil moisture state of the catchment and involves three parameters: the maximum 

soil moisture storage sL , a parameter representing the soil moisture state above 

which evaporation is at its potential rate, termed the limit for potential evaporation PL , 

and a parameter in the non-linear function relating runoff generation to the soil mois-

ture state, termed the non-linearity parameter ß. The details of the soil moisture rou-

tine are given in Appendix A. Runoff routing on the hillslopes is represented by an 

upper and two lower soil reservoirs. Excess rainfall pQ  enters the upper zone reser-

voir and leaves this reservoir through three paths, outflow from the reservoir based 

on a fast storage coefficient k1; percolation to the lower zones with a percolation rate 

cP; and, if a threshold of the storage state L1 is exceeded, through an additional outlet 

based on a very fast storage coefficient k0. Water leaves the lower zones based on 

the slow storage coefficients k2 and k3. Bypass flow Qby is accounted for by recharg-

ing the lower zone reservoir (k2) directly by a fraction of the excess rainfall. k1 and k2 

as well as cP have been related to the soil moisture state in a linear way. The outflow 

from the reservoirs represents the total runoff Qt on the hillslope scale. These proc-

esses are represented on a 1 km x 1 km grid. The model states for each grid element 

are the snow water equivalent, soil moisture sS  of the top soil layer, the storage of 

the soil reservoirs 321 ,, SSS  associated with the storage coefficients 321 ,, kkk , with 

321 kkk << . The model parameters for each grid element were identified based on the 

'dominant processes concept' of Grayson and Blöschl (2000) which suggests that, at 

different locations and different points in time, a small number of processes will 

dominate over the rest. Land use, soil type, landscape morphology (e.g. the degree 
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of incision of streams) and information on soil moisture and water logging based on 

field surveys were used. Discussions with locals provided information on flow path-

ways during past floods. Runoff simulations, stratified by time scale and hydrological 

situations, were then compared with runoff data, and the simulated subsurface dy-

namics were compared with piezometric head data. The various pieces of informa-

tion were finally combined in an iterative way to construct a coherent picture of the 

functioning of the catchment system, on the basis of which plausible parameters for 

each grid element were chosen. The model was extensively tested against inde-

pendent runoff data both at the seasonal and event scales. Data from 1993-2003 

were used for model identification and parameter calibration. Data from 2004-2006 

were used for model verification.  

Runoff routing in the stream network is represented by cascades of linear reservoirs 

with parameters n (number of reservoirs) and k (storage coefficient) that are a func-

tion of runoff. Decreasing travel times with increasing flood levels are represented by 

linearly decreasing k with runoff over a certain range but as the flood water exceeds 

bank full runoff, k is decreased to represent flood attenuation on the flood plains. The 

model parameters for each reach have been found by calibration against observed 

hydrographs and results of hydro-dynamic simulation models. The effect of stream 

routing on the runoff hydrograph is relatively small as compared to runoff generation 

within the catchment, so most of the effort was devoted to obtaining a realistic repre-

sentation of catchment processes. All model equations have been implemented in 

state-space notation to facilitate use of the Ensemble Kalman Filter. 

Ensemble Kalman Filter 

The idea of the Kalman Filter is to provide an estimate of a state vector based on 

model information and measurement information, balancing out the errors of the two. 

It is a sequential algorithm for minimising the state error variance. The Kalman filter is 

optimal for linear systems. In this paper, runoff has been chosen as the state vector. 

For consistency with the usual notation (e.g. Madsen et al., 2003) it is denoted by x 

here. The measurement error is attributed to the error in runoff measurements, the 

model error to the error in precipitation and evaporation input. In the Ensemble Kal-

man Filter, the model (.)Φ  is now applied to each of the M members of the ensemble 

to estimate the runoff: 
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where imx ,  is the runoff of ensemble member m at time step i, 1, −imx  is the runoff at 
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which is randomly drawn from a normal distribution with zero mean and model error 
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The error covariance matrix f
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where f
ims ,  is the m - th column of f

iS . In a next step, the measurements iz  of runoff 

are contaminated by a measurement error im,η  to generate an ensemble of M possi-

ble measurements:  
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where im,η  is randomly drawn from a normal distribution with zero mean and covari-

ance iW . Each ensemble member f
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and iC  is a matrix that relates the measurements and the state vector. Based on the 

updated ensemble members, the updated a posteriori estimates of the state vector 
a
ix  and the error covariance matrix a

iP  are calculated analogously to Equations (3.2) 

and (3.3).  

 

Figure 3.2 State variable (i.e. runoff) and estimation variance for the recession from a linear 

reservoir estimated by the Kalman Filter (KF) and the Ensemble-Kalman-Filter (EnKF) mak-

ing use of runoff data at intervals of 7 time steps. M is the ensemble size (i.e. the number of 

realisations).  

To illustrate the dynamics of the Ensemble Kalman Filter for a simple case, Figure 

3.2 shows a comparison of updated outflows from a linear reservoir using the original 

Kalman Filter (KF) and the Ensemble Kalman Filter (EnKF) with ensemble sizes of 

M = 10 and 100. The model equation is 1−⋅= ii xx κ  with the recession parameter cho-

sen as 9.0=κ , the measurement error variance W and the model error variance V 

both chosen as 0.5 (m³/s)² and the initial flow chosen as 0x =1 m³/s. The example can 

be interpreted as the recession of a flood hydrograph. Again for illustrative purposes, 

it was assumed that runoff measurements are available every seventh time step. As 
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the measurements become available, the estimation variance of the Kalman Filter 

decreases to about 0.4 and increases as the system loses the memory of that infor-

mation. The degree to which the Ensemble Kalman Filter matches the pattern of the 

estimation variance depends on the size M of the ensemble. While for M = 10 the 

patterns is not represented well, for M = 100 the match is much closer. Of course, in 

the limit of ∞→M , the results of the Ensemble Kalman Filter should approach those 

of the Kalman Filter for this simple linear case. The estimated state variable (i.e. run-

off) is adjusted as the runoff measurements become available (lower panel of Figure 

3.2). In contrast to the estimation variance, the estimated state variable is repre-

sented well for an ensemble size as small as 10. This is hardly surprising in the light 

of the efficiency of the method pointed out by Weerts and Serafy (2006), but never-

theless satisfying for the purposes of flood forecasting. While the flood forecasting 

model is non-linear, so the efficiency of the estimates will be different, the simple 

comparison does point to an order of magnitude of the ensemble size needed of 

M = 10, if the main interest lies in representing the state variable (i.e. runoff) well. 

There are a number of possibilities for implementing the Ensemble Kalman Filter with 

a flood forecasting model that are related to formulating the errors and the states. 

One can separately represent different sources of the model error by different error 

terms. The advantage of doing this is that the physical basis of individual error 

sources remains clear. For example, one can separately represent errors in precipita-

tion estimation, evaporation, as well as errors in model structure and model parame-

ters. While the separate representation of many error sources is conceptually appeal-

ing it may be difficult in a practical application to specify the error distribution for each 

of the sources in a reliable way. If the model error assumptions are inappropriate, the 

updating may degrade the model performance as compared to the case without up-

dating, as illustrated by Crow and Van Loon (2006) for the case of assimilating re-

motely sensed surface soil moisture. Also, some of the errors are likely correlated 

and, if the approach of separately representing component errors were adopted one 

would also have to account for these interrelationship. In this paper we have hence 

chosen to represent the errors in precipitation and evaporation input as the model 

error in an aggregate way, both for simplicity and parsimony.  
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In terms of formulating the states one possibility is a dual-state scheme where both 

runoff and soil moisture are treated as states with runoff observed but both states 

estimated. However, dual-state schemes may, potentially, give rise to identifiability 

issues. For example, Crow and Van Loon (2006) found that it was difficult to estimate 

two states (surface soil moisture and root zone soil moisture) from remote sensing 

data of surface soil moisture alone. As a remedy they recommended dual assimila-

tion of both runoff observations and surface soil moisture observations (from re-

motely sensed data) that may allow more robust estimates of the two states. Dual 

assimilation of runoff observations and surface soil moisture observations would also 

be a possibility here but Parajka et al. (2005b) demonstrated that very little can be 

gained in terms of runoff prediction capabilities when assimilating remotely sensed 

soil moisture in Austria. While in this paper the suitability of a dual-state scheme has 

not been tested, a single-state scheme was hence considered a robust choice. The 

main idea of the approach chosen here is hence that the state vector is the runoff at 

the catchment outlet which is estimated according to Equation (3.6). The updated a 

posteriori runoff a
ix  represents the best estimate of the current runoff considering un-

certainties of the model results and the runoff measurements. Therefore the updated 

runoff a
ix  provides a logical basis for the real-time flood forecast at the current time 

step i. However, the catchment soil moisture sS , and the storage of the soil reservoirs 

321 ,, SSS  of each grid element associated with a
ix  are unknown as they are propa-

gated forward in time according to the non-linear model equations while a
ix  is esti-

mated directly from Equation (3.6). To run the model in a forecast mode from the up-

dated initial conditions, soil moisture and the storage of the soil reservoirs are re-

quired. They are also required for the forward propagation of the estimation covari-

ance derived from the runoff ensemble. A simple similarity approach is hence 

adopted here to find soil moisture and the storage of the soil reservoirs of each pixel 

that is consistent with the a posteriori runoff a
ix . For each ensemble member m, a set 

of N additional realisations is generated by forward propagation of the hydrologic 

model Φ which is the runoff model as presented in Blöschl et al. (2008): 

Nnuxx ini
f

imn
f

imn ,...,2,1          ),,( ,1,,,, =+Φ= − ε   (3.13) 
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adding random errors in,ε  of precipitation and evaporation that are spatially uniform. 

These realisations are termed auxiliary realisations while the ensemble of m = 1, M 

contains the main realisations. The auxiliary realisations start from a time step where 

soil moisture and the storage of the soil reservoirs are known. At time step j the auxil-

iary realisations f
imnx ,,  differ because of the random errors. One of the auxiliary reali-

sations f
imnx ,,  is closest to the a posteriori runoff a

imx , . This realisation f
imnx ,,  is assumed 

to be consistent with a
imx , , i.e. 

min,,, →− f
imn

a
im xx  (3.14) 

which gives the soil moisture and the storage of the soil reservoirs for all grid ele-

ments at time i for each realisation m. As the initial conditions of the real-time fore-

casts the realisation m is selected that is closest to the mean value of all realisations 

in terms of runoff, i.e. min, →− a
im

a
i xx with 

∑
=

=
M

m

a
im

a
i x

M
x

1
,

1  (3.15) 

A schematic overview of the real-time model update with Ensemble Kalman Filter 

and similarity approach is given in Figure 3.3. The current time step is labelled i and 

the time increment is 1. Tests with the procedure suggested that it is useful to start 

the realisations at u time intervals before time step i for numerical reasons. Figure 

3.3a shows three ensemble members of the Ensemble Kalman Filter with their re-

spective values f
ix ,1 , f

ix ,2 , and f
ix ,3  at time step i. They approximate the probability 

density function (pdf) of the a priori estimates (dashed dotted line in Figure 3.3a). The 

perturbed observations iz ,1 , iz ,2 and iz ,3  that approximate the pdf of the observation 

errors (dotted line in Figure 3.3a) are combined with the f
ix ,1 , f

ix ,2 , f
ix ,3  by Equation (3.6) 

to obtain the a
ix ,1 , a

ix ,2 , a
ix ,3  which approximate the pdf of the a posteriori estimates 

(solid line in Figure 3.3a). In the schematic of Figure 3.3, the Kalman gain has been 

chosen as Ki = 0.6. To obtain the soil moisture and the storage of the soil reservoirs 

of each pixel, auxiliary realisations are started at time step i-u .  
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Figure 3.3 (a) Schematic of the Ensemble Kalman Filter approach. (b) Schematic of the simi-

larity approach. For symbols see text. 
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In Figure 3.3b, N = 3 auxiliary realisations are shown for the main realisation m = 1 

which produce f
ix ,1,1 , f

ix ,1,2 and f
ix ,1,3 . In the schematic, the auxiliary realisation n = 3 is 

the one that is closest to the a posteriori estimate of realisation m = 1 as f
i

a
i xx ,1,3,1 −  is 

small. The soil moisture and the storage of the soil reservoirs of each pixel associ-

ated with the auxiliary realisation n = 3 is hence used to represent the a posteriori 

estimate of realisation m = 1. For the example in Figure 3.3 the initial conditions for 

the a posteriori estimate a
ix ,2  are used for the forecasts according to Equation (3.10).  

Application of the Ensemble Kalman Filter to the Kamp catchment 

The soil moisture and the storage of the soil reservoirs of the grid elements of the 

hydrologic model at the beginning of a flood event are clearly important for reliable 

flood forecasts. If the initial system state deviates from the optimal state, the flood 

forecasts will also be less than perfect. An overestimation of soil moisture at the be-

ginning of a flood event would be expected to lead to an overestimation of the ob-

served flood peak and, in a similar way, an underestimation of soil moisture would 

cause an underestimation of flood peaks. Biases in the soil moisture may be the re-

sult of small biases in the input, i.e. precipitation and evapotranspiration, that may 

accumulate over weeks and months. It is these biases the updating procedure of this 

papers aims to correct. While updating methods commonly used in real-time flood 

forecasting (e.g. Gutknecht, 1991) update runoff generation during events, the pro-

cedure presented here updates the evolution of soil moisture between events by at-

tributing the model uncertainty to rainfall and evapotranspiration inputs. This means, 

it is the slow component of soil moisture change in the catchment that is adjusted. 

The model error variance must hence be set to reflect the slow processes. As there 

is a single stream gauge, the covariances simplify to scalar variances.  

In order to find suitable parameters for the Ensemble Kalman Filter we performed 

extensive test calculations with different sets of parameters and different error mod-

els (white and red noise) for time periods including floods and low flow conditions. 

Based on the results of these calculations, the model variances for the ensemble of 

main and auxiliary realisations are set to iV = 0.005 (mm/15min)². As the variance of 

the sum of independent random variables scales with the number of aggregation 

steps, this value is equivalent to an error standard deviation of 1.8 mm/week (with a 
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time step of 0.25 hours). This is the order of magnitude one would expect for the un-

certainty of the precipitation measurements and estimation of evaporation, although it 

is difficult to separate the individual effects. It is clear that this magnitude relates to 

the small biases over a relatively long time period rather than to precipitation errors 

during a flood event which could be much larger. The small model variance updates 

the system states between the flood events to improve the initial conditions for the 

forecasts of future flood events.  

The accuracy of runoff measurements tends to decrease with increasing runoff. Typi-

cally, the error standard deviation is set to a fixed percentage of runoff. The meas-

urement error variance of runoff was hence formulated as 2
ii zW ⋅= ξ . Again based on 

test simulations, ξ  was set to ξ  = 0.0025. Runoff measurement errors depend on 

the sampling method and on the local stream geometry but, typically, the error stan-

dard deviations are on the order of 5% of the runoff (Herschy, 2002). This means that 

the measurement error variance used here is the order of magnitude one would ex-

pect for the uncertainty of the runoff measurements.  

One of the advantages of the Ensemble Kalman Filter is its flexibility with regards to 

the statistical characteristics of the model and measurement errors. During the 

parameterisation of the update procedure test calculations with red noise (i.e. tempo-

rally correlated) model errors were carried out. The test calculations indicated that for 

the red noise case, larger ensemble sizes M are needed than in the white noise case 

to get similar results. White noise error terms without a correlation in time were hence 

used for the model and measurement errors. As there is a single stream gauge, 

1== ii CC . 

Test simulations were performed to determine a suitable ensemble size. For a given 

time period the Ensemble Kalman Filter was run with a large ensemble size and the 

ensemble size was gradually reduced, similar to Figure 3.2. These comparisons sug-

gested that an ensemble size of M = 10 gives very similar estimates of runoff to the 

case of large ensemble sizes with less than 1% difference. M = 10 was hence 

adopted in this case study. N was set to N = 10 in a similar comparison. The update 

interval was set to u = 12. With a time step of t∆  = 0.25 hours the update interval ut∆  

is hence 3 hours. This lag is needed because of the non-linearity – any additional 
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rainfall will not immediately produce a response at the catchment outlet as there is 

some time lag within the catchment. Table 3.1 summarises the parameters of the 

Ensemble Kalman Filter used in this paper. 

Table 3.1 Parameters of the Ensemble Kalman Filter. iz  is measured runoff. 

Parameter Symbol Unit value 

Time step t∆  hrs 0.25 

Updating time step 
ut∆  

hrs 3 

Measurement error variance of runoff Wi (m³/s)² 2
iz⋅ξ , ξ =0.0025 

Model error variance  
iV  

(mm/15min)² 0.005 

Ensemble size M  10 

Auxiliary ensemble size N  10 

 

Sensitivity to soil moisture 

The way the Ensemble Kalman Filter operates in the Kamp model is illustrated in two 

scenarios (Figure 3.4 and Figure 3.5). To emulate the situation in real-time flood 

forecasting, the update of the system states is only performed during the low flow 

period before the first rise of the hydrograph on October 20, which would be the past 

in a forecast situation. From October 20 (which would be the future), the simulation is 

performed without any updating and observed precipitation from rain gauges is used 

as a model input for clarity. In Figure 3.4, the initial soil moisture at the beginning of 

the calculation period was set to 0%, i.e. the top soil was assumed to be perfectly 

dry. Shown in the graphs is the mean value of the relative soil moisture within the 

catchment  
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where 
ksS and 

ksL are the simulated soil moisture and their limit at grid element k . pn  

is the number of grid elements with pn  = 622. In a simulation mode without updating 

(dashed lines) the model consistently underestimates soil moisture and hence runoff. 
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When updating is allowed (thin solid lines) the model adjusts the perceived errors in 

precipitation and evaporation and hence increases soil moisture more quickly than in 

the simulation case. The updating of the model input affects the entire hydrologic 

system including the storage of the soil reservoirs not shown. The updated runoff 

hence reaches the level of the observed hydrograph after a short time period. In case 

of the simulation without updating, the flood peak on October 23 is clearly underesti-

mated while the forecast that uses updated initial conditions (thin solid lines) is much 

closer to the observed hydrograph. As noted above, it is antecedent soil moisture 

that is aimed to be improved on by the updating procedure. 

 

Figure 3.4 Scenario with initial soil moisture set to an arbitrary low value to illustrate the ef-

fect of updating by the Ensemble Kalman Filter on mean relative soil moisture and runoff. 

October 1996, stream gauge Zwettl/Kamp. 

A similar scenario, but with very wet initial conditions is shown in Figure 3.5. The ef-

fect of the updating is similar in that it adjusts the soil moisture to a reasonable value. 

Without updating the flood peak is vastly overestimated as a consequence of the 

overestimated soil moisture at the beginning of the flood event. A comparison of Fig-

ure 3.4 and Figure 3.5 indicates that, in both cases, updated soil moisture converges 

to a value that is consistent with runoff. On Oct. 20 (i.e. the hypothetical time of the 
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forecast) soil moisture in both Figure 3.4 and Figure 3.5 was 38%, while without up-

dating, it was 23% and 79%, respectively.  

 

 

Figure 3.5 Scenario with initial soil moisture set to an arbitrary large value to illustrate the 

effect of updating by the Ensemble Kalman Filter on mean relative soil moisture and runoff. 

October 1996, stream gauge Zwettl/Kamp. 

The scenarios illustrate that accurate estimates of antecedent soil moisture are in-

deed of utmost importance for producing accurate forecasts. Inadequate initial mois-

ture can be corrected and suitable moisture conditions can be estimated by updating 

the model input during the dry period before the flood event on October 23. 

3.3 Results 

Updating soil moisture in a simulation mode 

Figure 3.6 shows the results of simulation runs with and without model update from 

May to September 2005. The calculation results with model update are simply the 

analysed state estimates a
ix . During this period, the simulation without updating per-

forms very well. Both the shape and the peaks of the simulated flood hydrographs 

are close to the observations. The cumulative errors (lower part of Figure 3.6) are 
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very small. The cumulative error never exceeds 7*106 m³ within this period which is 

small as compared to the total flow volume of 140*106 m³. This is because of the fa-

vourable model performance. There is a slight improvement in the May event and the 

August events, but overall there is hardly any difference between the simulations with 

and without updating. This example is the ideal case for real-time flood forecasting, 

where the model performs well in the simulation mode, so one would also expect the 

model to work well in the forecasts. 

 

Figure 3.6 Simulations without updating (dashed lines) and updating (thin solid lines) of run-

off (top) and cumulative errors (bottom) at Zwettl/Kamp from May to September 2005. Exam-

ple of excellent model performance where the benefits of updating are small. 

An alternative example is shown in Figure 3.7 for the period from November to April 

2006. Until the end of December the simulated hydrograph is slightly lower than the 

data. This is most likely due to uncertain precipitation and evaporation inputs during 

this relatively dry period. From January until the end of March the differences be-

tween simulation and observation increases which is reflected in a progressive in-

crease in the negative cumulative errors. During this period the likely reason for this 

underestimation are the uncertainties in simulating snow accumulation and snow 

melt. The effect of these biases is the underestimation of the soil moisture at the be-

ginning of the flood event in April 2006. As a result, the entire flood event in April is 

substantially underestimated. In contrast, the simulation with updating performs much 
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better during the low flow period until the end of March. The antecedent soil moisture 

at the beginning of the flood event in April is larger than for the simulation case with-

out updating and the flood event is represented much more accurately. For this ex-

ample, the advantage of the updating during the low flow period is obvious.  

 

 

Figure 3.7 Simulations without updating (dashed lines) and updating (thin solid lines) of run-

off (top) and cumulative errors (bottom) at Zwettl/Kamp from November 2005 to April 2006. 

Example of poor model performance where the benefits of updating are significant. 

Updating soil moisture in a forecast mode 

The examples in Figure 3.6 and Figure 3.7 were illustrative of the merits of updating, 

depending on the performance of the simulation per se. In a forecast situation, how-

ever, the updating is for the past only. The forecast starts with the updated initial 

conditions but, of course, with no additional updating of the forecast as future runoff 

data are not available. This situation is illustrated in Figure 3.8 and Figure 3.9. Up to 

the time the forecast is made (vertical lines in Figure 3.8 and Figure 3.9), the updat-

ing is as in Figure 3.6 and Figure 3.7 but beyond that point in time no more updating 

is allowed although future precipitation is assumed to be known. The difference be-

tween the updating and no updating (simulation) cases in Figure 3.8 and Figure 3.9 
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for the points in time later than the forecast time is hence only related to the differ-

ence in the initial conditions at the forecast time.  

 

Figure 3.8 Effect of updating soil moisture in the forecast mode. The forecast was started 

from simulated and updated initial conditions on 18 July 1997 at 0 h. Future precipitation is 

assumed to be known but no updating is performed beyond the forecast time (vertical line). 

Zwettl/Bahnbrücke (622 km²).  

The upper panel of Figure 3.8 shows simulated and updated mean relative soil mois-

ture ss LS , the lower panel shows the associated hydrographs. During July 16 and 

17 before the start of the event, runoff is overestimated in the simulation (no updat-

ing) case because soil moisture and the storage of the soil reservoirs are overesti-

mated as a result of biases accumulated over the previous months. The updating 

brings soil moisture and the storage of the soil reservoirs as well as runoff down, so 

that runoff is very similar to the data. At the time the forecast is made, relative soil 

moisture is 62% and 51% in the simulation and updating cases, respectively. These 

are the initial conditions for the forecasts along with the storage of the soil reservoirs 

321 ,, SSS  not shown. The forecast based on the simulated initial conditions overesti-

mates the observed hydrograph during most of the forecast lead time (19-22 July). 

The forecast based on the updated initial conditions does underestimate the first 

peak but performs substantially better for the remaining forecast lead time.  
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Figure 3.9 Effect of updating soil moisture in the forecast mode. The forecast was started 

from simulated and updated initial conditions on 15 August 2005 at 21 h. Future precipitation 

is assumed to be known but no updating is performed beyond the forecast time (vertical line). 

Zwettl/Bahnbrücke (622 km²). 

Figure 3.8 is an example where soil moisture (without updating) is overestimated 

prior to the event which is quite apparent in the overestimation of runoff. Figure 3.9 

shows the converse example where soil moisture (without updating) is underesti-

mated prior to the event but this is not so obvious in the hydrograph. In fact, the 

simulated initial runoff is only slightly lower than the measurement but the flood peak 

of the following event is clearly underestimated by the simulation. In this example, the 

updated initial soil moisture improves the forecast accuracy very substantially which 

is due to the updating of soil moisture during the dry period before the flood event. It 

is interesting that the non linearity of the rainfall-runoff model amplifies the small dif-

ferences in runoff prior to the event. This means that small differences between simu-

lated and observed hydrographs can have a great effect on the runoff forecast. Con-

versely, these small differences can be exploited to improve the forecasts. It is also 

interesting that the difference in soil moisture of the updated and simulated forecast 

runs decreases during the forecast period. This is due to the formulation of the soil 

moisture accounting scheme (Equation A.1) which is a stable dynamic system where 

small perturbations in the initial conditions vanish over time. For the second event, 



 52 

hence, the difference between the two runoff forecasts (with and without updating) is 

much smaller than for the first event in Figure 3.9.  

 

Figure 3.10 Spatial distributions of simulated and updated relative soil moisture Ss/Ls and 

soil storage S2 on 15 August 2005 at 21 h at Zwettl/Bahnbrücke (622 km²) used as initial 

conditions for the forecasts in Figure 3.9. 

The previous figures have illustrated the temporal evolution of mean relative soil 

moisture. The model used is a distributed model where the model parameters are 

non-uniform in space and the inputs also differ spatially. The soil moisture is hence 

variable within the catchment. It is of interest to see how this spatial distribution 

changes with the updating. Figure 3.10a shows a comparison of the spatial distribu-

tion of relative soil moisture within the catchment at the start of the forecast run on 15 

August 2005 at 21 h (vertical line in Figure 3.9). In this example, the updating in-

creases mean relative soil moisture from 0.54 to 0.60 (Figure 3.9) which is also ap-

parent in Figure 3.10a. It is mainly the mean that increases while the shape of the 

distribution does not change much. This spatial distribution indicates that most of the 

runoff stems from a relatively small portion of the catchment with above soil moisture 

(Equation A.1) and this spatial distribution is maintained in the updating. Indeed, the 
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assumptions involve spatially uniform random errors in,ε  of precipitation and evapo-

ration. Figure 3.10b shows the corresponding spatial distribution of the storage of the 

soil reservoir S2. This soil reservoir has a storage parameter k2 that ranges between 

6 and 17 days within the catchment, so represents an intermediate component in 

terms of the timing of runoff response. It is interesting that it is mainly the wetter parts 

of the catchment where the updating increases the soil storage, while the relatively 

dry parts remain almost unaffected. The wetter parts (larger S2) are those that are 

hydrologically more active, and are also those that are more affected by the updating 

as one would expect.  

Performance for large flood events 

Most of the time, updating soil moisture leads to an improvement of the forecast ac-

curacy. In particular, during low flow and average flow conditions the forecasts are 

very close to the data. However, the main interest in this paper is on flood forecast-

ing, and in particular on the forecasting of large floods. The six largest flood events 

on record at the Kamp have hence been examined in more detail (Table 3.2). Some 

of these events are indeed extraordinary events. Flood records at the Kamp have 

been available since, 1977, and flood marks and archive information from the early 

19th century. Based on this information, the largest flood on record (first event in Au-

gust 2002) was assessed to be on the order of a 1000 year flood (Blöschl and Zehe, 

2005). Some of the other floods are also large (second event in August 2002, about 

500 years; March 2006 about ten years return period). The data set is hence particu-

larly well suited to address the science question of whether the updating prior to 

events will actually improve the forecasts of large floods.  

As in the previous analyses, two cases were examined, with and without updating 

soil moisture. In a first step the ability of the updating procedure to improve on the 

forecast of the flood peaks is examined. To this end, the forecasts are analysed that 

have been made 3 hours before each flood peak occurred. For example, for the first 

event in August 2002, the flood peak occurred on August 8 at 0 hrs, so the forecast 

made on August 7, 21 hrs is analysed. Future precipitation was assumed to be 

known as in all the previous analyses, but no updating beyond the forecast time was 

allowed.  
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Table 3.2 Flood peaks, return periods and evaluation periods for the statistical error analysis 

of the six largest flood events on record at Zwettl/Bahnbrücke (622 km²). 

 Aug 2002a Aug 2002b July 2005 Aug 2005a Aug 2005b Mar 2006 

Observed flood 

peak (m³/s) 
459 367 95 68 65 112 

Return period of 

peak (yrs) 
~ 1000 ~ 500 5 3 3 10 

Peak time 8 Aug, 0h 13 Aug, 13h 11 Jul, 10h 16 Aug, 17h 22 Aug, 8h 31 Mar, 23h 

Beginning of  

entire event 
6 Aug, 0h 11 Aug, 0h 5 Jul, 0h 14 Aug, 0h 20 Aug, 0h 25 Mar, 0h 

End of entire  

event 
10 Aug, 21h 15 Aug, 21h 15 Jul, 0h 19 Aug, 21h 26 Aug, 21h 5 Apr, 12h 

Beginning of  

rising limb 
6 Aug, 12h 11 Aug, 12h 10 Jul, 12h 16 Aug, 0h 21 Aug, 12h 26 Mar, 6h 

End of rising limb 8 Aug, 6h 13 Aug, 18h 11 Jul, 6h 17 Aug, 21h 22 Aug, 12h 2 Apr, 3h 

 

The results of the comparison are shown in Figure 3.11. For five out of the six flood 

events, the flood peaks are indeed improved. For example, the peak flow of the larg-

est event was observed as 459 m³/s while the forecast without and with updating soil 

moisture gives 508 and 470 m³/s, respectively. The improvement of updating is larger 

for those events that are not represented so well in the simulation case. For the 

smallest event, the peak flow is slightly deteriorated (65 m³/s observed and 56 and 

53 m³/s, respectively, without and with updating). The mean normalised absolute er-

ror of the peaks  
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was evaluated where kQ  are the observed flood peaks and kQ̂  are the flood peak 

forecasts and p = 6. For the six peaks in Figure 3.11 the mean normalised absolute 

error of the peaks is 25% without updating and decreases to 12% with updating. This 

is for a lead time of 3 hours. For a lead time of 48 hours the mean normalised abso-
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lute error of the peaks is 25% without updating and decreases to 19% with updating. 

It is clear, that overall, there are significant merits of the updating in terms of forecast-

ing peak flows. 

 

Figure 3.11 Comparison of the forecasted peak flows with and without updated initial condi-

tions for the six largest flood events on record as of Table 2. Both forecast runs (updated and 

simulated) were started three hours before the observed flood peaks (forecast lead time of 

three hours) based on observed precipitation inputs. 

In a second step, the forecast accuracy of the two cases is analysed for the entire 

events rather than the peaks only. Two error measures are used, the mean normal-

ised absolute error je  (Equation 3.13) and the Nash-Sutcliffe efficiency jE  (Equation 

3.14): 
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where j is the forecast lead time, ijQ̂  is runoff at time step i that is forecasted with a 

lead time of j, iQ  is the observed runoff at time step i, and 1i and 2i  are the beginning 
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and the end of the analysis interval, respectively (Table 3.2). In this analysis, the 

forecasts were made at three hour intervals and different lead times of up to 48 hours 

were analysed. We analysed two evaluation periods ( 1i  to 2i ); entire flood events, 

and the rising limbs only (see Table 3.2). The forecast errors for the entire events 

and the risings limbs are shown in Figure 3.12 a) and b) respectively. In all instances, 

the updating of soil moisture reduces the forecast errors. For a lead time of 3 hours, 

for example, the errors decrease from 20 to 12% in the case of the entire events, and 

33 to 15% in the case of analysing the rising limbs only. For the case of simulated 

initial conditions, the forecast errors do not change with lead time as would be ex-

pected, as this is a simulation case where the forecast time does not come into play. 

In contrast, for the case of updated initial conditions, the errors are smallest for the 

short lead times, which again would be intuitively expected. At the time of the fore-

cast, observed runoff at the time of the forecast captures some of the hydrological 

process dynamics that continue over the following hours. As the memory fades away 

with time, the improvement in forecast accuracy is largest for the short lead times. It 

is interesting that even after a forecast lead time of 48 hours the updated initial condi-

tions improve the forecasts substantially. Quite clearly, it is not only the fast runoff 

components that contribute to a given forecast accuracy. 

The errors for the rising limbs (Figure 3.12a) are generally larger than those for the 

entire flood events (Figure 3.12b). This is because the forecast errors during the ris-

ing flood limbs are larger than those during the falling limbs due to rainfall uncer-

tainty. During the falling limb rainfall is zero or very small, so rainfall uncertainty is 

small too. It is also possible, that the fast components of runoff are more uncertain 

than the slow components. Generally speaking, the rising limbs are more difficult to 

predict than the falling limbs but it are the former that are of most interest to flood 

management. Figure 3.13 shows the results of the Nash-Sutcliffe efficiency. This er-

ror measure involves squared errors (Equation 3.14), so the large deviations from the 

data are weighted more strongly than in the case of the mean absolute error.  
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Figure 3.12 Forecast errors (Equation 3.13) for the six largest flood events on record (Table 

3.2) assuming future precipitation is known. Dashed lines relate to the forecasts with simu-

lated soil moisture (no-updating), solid lines to the forecasts with updated soil moisture. (a) 

Entire flood events; (b) rising limbs only.  

 

Figure 3.13 Nash-Sutcliffe model efficiency of the forecasts (Equation 3.14) for the six larg-

est flood events on record (Table 3.2) assuming future precipitation is known. Dashed lines 

relate to the forecasts with simulated soil moisture (no-updating), solid lines to the forecasts 

with updated soil moisture. (a) Entire flood events; (b) rising limbs only. 

The error pattern of the Nash-Sutcliffe efficiency is similar to that of the mean abso-

lute error. In both evaluation periods, rising limbs and entire flood events, the model 

efficiency is improved by the updating. For the entire flood events, the Nash-Sutcliffe 
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efficiency at a forecast lead time of 48 hours increases from 0.79 to 0.88 by the up-

dating, and it increases from 0.79 to 0.92 at a lead time of 3 hours. For the rising 

limbs, the Nash-Sutcliffe efficiency at a forecast lead time of 48 hours increases from 

0.68 to 0.82 by the updating, and it increases from 0.68 to 0.88 at a lead time of 3 

hours. 

3.4 Discussion and Conclusions 

Renewed interest in updating methods in hydrology has come from the availability of 

Monte Carlo methods because of their flexibility, ease of use and operational robust-

ness. The Ensemble Kalman Filter extends the traditional Kalman Filter concept by 

Monte Carlo techniques and is able to deal with non-linear model dynamics in a natu-

ral way. The aim of this paper is to examine the benefit of Ensemble Kalman Filter 

updating in forecasting large floods. The soil moisture of a distributed runoff model is 

updated based on observed runoff. The updated soil moisture is then used as an ini-

tial condition for the forecasts. The ensemble size was set to M = 10 with N = 10 aux-

iliary realisations. Hardly any improvement in forecast accuracy was obtained when 

increasing the ensemble size in test simulations. A typical ensemble size used in the 

updating of hydrological models is 50 (Moradkhani et al., 2005). The main interest of 

this paper was, however, not in the particular formulation of the Ensemble Kalman 

Filter but in the degree it will actually improve the forecasts for a real world case. The 

value of updating is obvious because of the long time scales associated with the hy-

drological processes during low and average flows. For large flood flows, the difficulty 

with updating runoff during an event is that phase errors usually cannot be handled 

well. There can be overshooting of the forecasts if phase errors are interpreted as 

volume errors. The procedure examined here mainly updates the slow runoff compo-

nents, i.e., soil moisture between events which is then used as an initial condition for 

the flood forecasts. Sensitivity analyses and comparisons of individual events sug-

gest that the concept of updating the slow component is plausible and robust. It is 

interesting that the non linearity of the rainfall-runoff model amplifies the small differ-

ences in runoff prior to the event. This means that small differences between simu-

lated and observed hydrographs can have a great effect on the runoff forecast (Zehe 

and Blöschl, 2004). Conversely, these small differences can be exploited to improve 

the forecasts. The updating mainly changes the mean value of the catchment soil 
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moisture, while the spatial structure of the moisture distribution is preserved during 

the update. Therefore, increasing catchment soil moisture leads to an increasing 

fraction of runoff contributing areas within the catchment. Analyses of six large flood 

events at the Kamp indicate that the updating indeed reduces forecast errors sub-

stantially during the flood events. It is considered a strength of this case study that 

data on a number of large floods (including two extreme floods) were available which 

is not usually the case in practical applications. This is important as one of the main 

motivations of implementing flood forecasting systems is to improve on the forecast-

ing of extreme events where the damage potential is largest (Apel et al., 2006).  

Nash-Sutcliffe efficiencies of runoff models without updating reported in the literature 

are, typically, on the order of 0.7 to 0.9 (e.g. Parajka et al, 2005a). The efficiencies 

without updating found in this paper are at the lower end of this range (Figure 3.13). 

It should be noted that low flow and average flow conditions can usually be simulated 

much more accurately than flood flows. For comparison, the Nash-Sutcliffe forecast 

efficiency at the Kamp was evaluated for entire years (as opposed to events) follow-

ing an analogous procedure. The efficiencies without updating were always larger 

than 0.85 and increased to more than 0.98 if updating of soil moisture was allowed. 

Clearly, the updating is most efficient for low and medium flows, but from a practical 

perspective the flood flows are usually of much more interest. However, these tend to 

be more difficult to predict and errors are usually much larger. For example, a model 

comparison of Reed et al. (2004, their Figure 18b) gave mean normalised absolute 

errors of peak flows in a typical range of 20 to 50%, depending on the model and the 

catchment analysed. Based on the results of this study, one would expect that such 

errors could be substantially reduced if soil moisture were updated. In the present 

paper, the peak flow errors for 3 hour forecasts were reduced from 25% to 12% by 

the updating procedure, and from 25% to 19% for 48 hours forecasts. It should be 

noted that the forecast lead time of 48 hours is much larger than typical flow travel 

time in the streams within the catchment which are less than 2 hours. It is hence the 

water in the landscape rather than that in the stream that needs to be adjusted in this 

case study. 

Remotely sensed soil moisture is sometimes used for updating the soil moisture of 

hydrological models. The significant increase in forecast accuracy found here sug-
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gests that use of runoff data to infer catchment soil moisture may be an efficient al-

terative to remote sensing data. In fact, in the study area examined here it appears 

that updating soil moisture through observed runoff is a better choice than to directly 

use remotely sensed soil moisture data for updating (Parajka et al., 2005b).  

The model parameters and structure were chosen very carefully in this case study. 

The model identification procedure went substantially beyond the calibration to run-

off. Piezometric head data, and information from local surveys and other sources 

(such as snow data, Parajka and Blöschl, 2006) were used and combined by hydro-

logical reasoning. This means that the model can be expected to represent the hy-

drological processes in the Kamp catchment reasonably well. We believe it is impor-

tant to very carefully adjust the model to the local conditions (going beyond calibra-

tion to runoff) for the updating procedure to work efficiently. The events in 2005 and 

2006 (Table 3.2) were not used for calibration but retained for model validation. In the 

current procedure, the main error source is attributed to the inputs (rainfall, evapora-

tion) and their effect on soil moisture, so model parameters are not updated. A plau-

sible model structure and carefully adjusted model parameters are hence the basis 

for a good performance of the updating routine. This is important as it then avoids the 

"flogging a dead horse" syndrome, i.e. attempting to update models that do not rep-

resent the processes well. Also, the availability of input data (16 rain gauges for 

model development, 8 telemetered rain gauges in a 622 km² catchment) along with 

radar data in this study is probably more than what one usually encounters in opera-

tional applications. With these caveats, it is suggested that updating procedures such 

as the one proposed in this paper can indeed substantially improve the forecasting of 

large floods at the catchment scale examined here.  
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4 A comparison of in-situ, ASCAT and model esti-
mates of soil moisture in Austria 

Abstract 

Soil moisture is a key variable in both the land energy balance and the generation of 

runoff from catchments. Unfortunately, soil moisture is very difficult to measure at the 

scales of hydrologic interest. The aim of this paper is to examine the spatial and tem-

poral dynamics of soil moisture estimates from model simulations, in-situ measure-

ments and remote sensing. Ground based measurements in a soil depth of 10 cm at 

three field sites, remotely sensed surface soil moisture estimates from the Advanced 

Scatterometer (ASCAT), on board the Meteorological Operational (METOP) satellite 

series and simulated soil moisture from a spatially distributed hydrological model 

based on a dual layer soil moisture accounting scheme were used in this study. The 

evaluation is based on a three year period from 2007 to 2010. The study area at the 

Kamp river (1550 km²) and the in-situ field sites are located in the north-eastern part 

of Austria The comparison of the different soil moisture products gives correlations R 

of 0.68, 0.38 (0.61) and 0.51 (0.8) for ASCAT SSM and modelled skin layer, in-situ 

and ASCAT SSM (SWI) and in-situ and modelled skin (main) layer for period from 

April to September. An important issue in such cold regions is how to deal with peri-

ods of snow and frozen ground as microwaves can only detect liquid water. In this 

paper the benefit of a number of dynamic masking criteria is examined. The compari-

son of simulated and TDR measurements to ASCAT soil moisture estimates during 

the winter period indicates a significant improvement of the consistency between the 

data sets is indicated. The greatest improvement, with correlations from October to 

March rising from -0.12 to 0.71, was observed for the coldest region, the Kamp 

catchment. 

4.1  Introduction 

Soil moisture is a key variable in both the land energy balance and the generation of 

runoff from catchments. Unfortunately, soil moisture is very difficult to measure at the 
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scales of hydrologic interest. Ground based (or in-situ) measurements of soil mois-

ture are usually performed for individual soil profiles at a number of locations within a 

catchment (Western et al., 2002). With appropriate sensors and measurement setups 

the accuracies can be very good and the temporal resolution can be on the order of 

minutes and less. However, it is difficult to cover large areas by the sensors due to 

logistic constraints, and the spatial support or foot print of one measurement is usu-

ally only a few centimetres (Grayson and Blöschl, 2000). This makes it very difficult 

to estimate meaningful spatial averages over catchments. While methods for estimat-

ing catchment average soil moisture from limited point measurements have been de-

veloped (Grayson and Western, 1998), identification of representative points in a par-

ticular catchment remains a challenge. 

An alternative to ground based soil moisture measurements is the use of remote 

sensing methods. Spaceborne microwave sensors have been widely used for soil 

moisture retrieval because of their large sensitivity of the microwave response to wa-

ter content in the soil surface layer (Ulaby et al., 1982; Wagner et al., 2007). The 

main advantage of spaceborne sensors is that they provide an integral value over an 

area rather than point values and most of the data are available at a global scale. 

However, the scale problem in the case of spaceborne sensors are relatively large 

footprints (or pixel sizes) relative to the hydrological processes of interest, relatively 

low repeat cycles (typically one or a few days) relative to the soil moisture dynamics 

and, perhaps most importantly, limited penetration depths of the microwave signal 

into the ground of a few centimetres or less. When comparing spaceborne micro-

wave data with in-situ measurements to assess their relative accuracy these scale 

incompatibilities need to be accounted for in some way. To account for the scale dif-

ferences in the footprints, often, relative soil moisture values (scaled by the minimum 

and maximum over a long record) are compared with the scaled in-situ data. To ac-

count for the low repeat cycles, comparisons use the exact time of the satellite over-

pass. To account for limited penetration depths Wagner et al. (1999) proposed a soil 

water index, SWI, which represents satellite based soil moisture time series for a 

pixel filtered by an exponential kernel with a set time constant T found from calibra-

tion. Similar scale inconsistencies apply when comparing space borne data with hy-

drological models but limited penetration depth are usually dealt with by using a skin 

layer soil moisture model (e.g., Georgakakos and Baumer, 1996). There is also an 
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issue with the interpretation of the microwave response for snow covered areas and 

frozen soils (Bartalis et al., 2008), as the microwave response can only detect liquid 

water while it is insensitive to water in the solid phase.  

Because of the scale incompatibility, comparisons of ground based (in-situ), space-

borne and modelled soil moisture usually give larger discrepancies than would result 

from the sensor characteristics (and modelling uncertainties alone). Also, because of 

the effect of snow and ice one would expect that the consistency of the different 

methods depends on the climate of the catchment under study. However, compari-

sons are very useful to understand the uncertainties involved in the measuring or 

modelling soil moisture by the three methods.  

Anguela et al. (2008) compared the three methods in a catchment near Paris, 

France. In situ measurements were collected at 6 locations at depths of 5 cm to 

155 cm, ERS-Scatterometer surface soil moisture and SWI were used, and the soil 

moisture was simulated by the SIM model that involves a skin layer and parameters 

from a global soil data base. The comparison for the skin layer gave coefficients of 

determination (r²) of 0.47 (in-situ and simulation), 0.44 (simulation and ERS) and 0.53 

(in-situ and ERS surface soil moisture) and the correlations increased to 0.90, 0.78 

and 0.66, respectively, when the root zone was compared instead of the skin layer. 

Albergel et al. (2010) compared the same model with ASCAT surface soil moisture 

and in-situ measurements at depths of 5 cm at 11 field sites in south-western France 

during 2007 and 2008. The comparison gave correlations R of 0.7 (in-situ and simu-

lation), 0.65 (simulation and ASCAT) and 0.59 (in-situ and ASCAT surface soil mois-

ture). The correlations increased in winter which was related to more consistent rain-

storms in winter. Because of the Mediterranean climate, minimum snow and soil 

freezing effects were observed. A similar study in a warm climate (the Tiber catch-

ment in Italy) was performed by Brocca et al. (2010) with correlations around 0.67 

(in-situ and ASCAT surface soil moisture), around 0.93 (in-situ and ASCAT SWI) and 

above 0.74 (simulation and ASCAT surface soil moisture). When snow and freezing 

processes are important one would expect lower correlations. For a catchment in 

Luxembourg, Matgen et al. (2011) post-processed the ASCAT data to obtain the 

same distribution function as those of the in situ-data at 16 sites. With this distribution 
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matching they obtained a mean correlation R 0.82 but with the unprocessed ASCAT 

surface soil moisture product the mean correlation was 0.50.  

While a number of comparisons of in-situ, space-borne and modelled soil moisture in 

warm climates have been published in the literature, much less is known about com-

parisons in climates where snow and frozen ground play a significant role in winter. 

Also, masking methods for dealing with snow and frozen ground have not been fully 

evaluated for such comparisons. The aim of this paper therefore is to compare 

space-borne (ASCAT) soil moisture with in-situ and modelled soil moisture in Austria 

where winters can be cold, and to test the value of masking criteria.  

4.2 Field sites and data 

Four sites are used in this study, which are all located in northern Austria (Figure 

4.1). The Kamp catchment has a total catchment area of 1550 km² and is located in 

the north-west of Austria. The geology of the catchment is mainly granite and gneiss. 

Weathering has produced sandy soils with a large storage capacity throughout the 

catchment. 40% of the catchment is forested and the rest is mainly cropland and 

grassland. For the Kamp catchment ASCAT soil moisture was compared with model 

simulations. The model was driven by rainfall interpolated from eight rain gauges 

were combined with radar information as well as air temperature from 8 stations. 

Runoff data were collected at a number of locations to test the hydrological model. 

For the remaining three sites ASCAT soil moisture was compared with model simula-

tions and TDR soil moisture measurements.  

The Petzenkirchen site is located in Lower Austria south of the Danube (Figure 4.1). 

The soil in the upper horizon (0-20 cm) is sandy loam and the land use is grassland 

(Figure 4.2). The TDR sensors (TRASE-System, SOIL MOISTURE EQUIPMENT, 

California) were horizontally installed from a pit at different soil depths from 10 cm to 

180 cm. The data were recorded at 3 hour intervals by a data logger at the site. Rain-

fall and air temperature data used in the modelling were recorded at the site with a 

temporal resolution of 10 minutes.  
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Figure 4.1 Location of the study area and the field sites (red circles) equipped with TDR 

sensors at different soil depths. The thick red line represents the catchment boundaries of 

the Kamp catchment (1550 km²). The Zwettl subcatchment (gauged; 622 km²) is indicated by 

a thin red line. The crosses represent the grid points of the ASCAT data. 

The Obersiebenbrunn site is located in Lower Austria 25 km east of Vienna (Figure 

4.1). The soil in the upper horizon (0-30 cm) is loamy sand and the land use is grass-

land (Figure 4.2). The TDR sensors (TRASE-System, SOIL MOISTURE EQUIP-

MENT, USA) were horizontally installed from a pit at different soil depths from 10 cm 

to 160 cm. The data were recorded at hourly intervals by a data logger at the site. 

Rainfall and air temperature data used in the modelling were recorded at the site with 

a temporal resolution of 10 minutes. An example of the data is shown in Figure 4.3. 

The decreasing dynamics of the soil moisture with increasing depth is indicating of 

the movement of the wetting front through the soil profile. Since the focus of this 

study is on the comparison with ASCAT data on the records at a depth of 10 cm are 

used here. Rainfall and air temperature data used in the modelling were recorded at 

a weather station close to the site. 

The Ollersdorf site is located close to Obersiebenbrunn in a reforestation area 

(Figure 4.1). The soil in the upper horizon (0-20 cm) is loamy silt (Figure 4.2). The 

TDR sensors (TRASE-System, TDR-IAPAS Devices, Poland) were horizontally in-

stalled from a pit at different soil depths from 10 cm to 240 cm. The data were re-

corded at hourly intervals by a data logger at the site. Rainfall and air temperature 
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data used in the modelling were recorded at the site with a temporal resolution of 10 

minutes.  

Table 4.1 Characteristics of the field site. Meteorological data relate to the period 2002-2011. 

  Kamp  
catchment 

Petzenkirchen Obersieben-
brunn 

Ollersdorf 

Elevation (m a.s.l.) 300 -1000 258 151 154 

Soils (general) Orthic Podzol  
Dystric cambisol 

Calcaric Fluvisol 
Orthic Luvisol 

Calcic 
Chernozern 

Calcic 
Chernozern 

Soils (upper layer) sandy sandy loam loamy sand loamy silt 

Landuse Forest, crop-
land, grassland Grassland Grassland Reforestation 

area 

Mean annual 
precipitation (mm) 900 / 600 1050 560 560 

Average winter  
temperature  

(Dec-Feb) (°C) 
-2.1 / -0.7 -0.3 0.3 0.3 

Average duration of  
snow cover period 

(days) 
66 / 37 48 27 27 
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Figure 4.2 TDR-Field measurement sites in Petzenkirchen (a), Obersiebenbrunn (b) and 

Ollersdorf (c). Left panels: Landscape at the field site. Right panels: Sensor electronics (a) 

and soil profiles (b, c). Photos: © BAW/IKT 

For all four sites, space-borne soil moisture data from the Advanced Scatterometer 

(ASCAT), on board the Meteorological Operational (METOP) satellite series were 

used (Bartalis et al., 2007). The period of the data is from January 2007 to January 

2010. On average, 1.0 measurements per day were available. The ASCAT sampling 

nodes (12.5 km x 12.5 km) over the study region are indicated by crosses in Figure 

4.1. Soil moisture was estimated from the ASCAT data by a detection method (Wag-

ner et al., 1999) that rescales the instantaneous backscatter with the lowest and 

highest backscatter coefficients observed in the entire period. Under the assumption 

that within this period each pixel had been completely dry (lowest backscatter coeffi-
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cient) and wet (highest backscatter coefficient), the soil moisture so obtained, SSM is 

equivalent to the degree of saturation in relative units (ranging between 0 and 100%). 

The penetration depth of ASCAT is about 0.5 cm to 2 cm, depending on soil charac-

teristics and soil moisture. The ASCAT data therefore represent the top 2 cm of the 

soil. In order to make the dynamics of the ASCAT data more consistent with the root 

zone soil moisture an attempt is made to estimate root zone soil moisture from the 

surface values. The main idea is that surface soil moisture tends to fluctuate much 

more rapidly than root zone soil moisture. Rather than solving the flow equations the 

dampening effect is represented by a linear, exponential filter in the time domain. The 

filtered values are termed the Soil Water Index, SWI. The time parameter of the filter 

was set to 10 days based on a qualitative comparison to the temporal dynamics of in-

situ soil moisture measurements in a depth of 10 cm. Parajka et al. (2006) give a dis-

cussion of the filter parameter.  

 

Figure 4.3 Soil moisture measured at different depths at the Obersiebenbrunn site for the 

year 2008. Top: precipitation intensities (black impulses) and air temperature (gray line). Bot-

tom Soil moisture at 10, 30 and 60 cm depths. 
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4.3 Hydrologic model 

The model used in this paper is a spatially-distributed continuous rainfall-runoff 

model based on a dual layer soil moisture accounting scheme (Parajka et al., 2009). 

The model runs on an hourly time step and combines a snow routine, a dual layer 

soil moisture routine and a flow routing routine. The snow routine represents snow 

accumulation and melt by a degree-day concept. The soil moisture routine repre-

sents runoff generation and changes in the soil moisture states, and the interaction 

between the skin soil layer and the main soil layer. The main soil layer is represented 

by three parameters: the maximum soil moisture storage of the main layer LS, a pa-

rameter representing the soil moisture state above which evaporation is at its poten-

tial rate, termed the limit for potential evaporation LP, a parameter in the non-linear 

function relating runoff generation to the soil moisture state, termed the non-linearity 

parameter ß. The skin layer is represented by the maximum soil moisture storage of 

the skin soil reservoir LSkin, a parameter subdividing the evaporation from the main 

layer and the skin soil layer termed φ, and the flux gradient αs that describes the ex-

change between the skin and the main soil layer. Runoff routing on the hillslopes and 

the channels is also represented by reservoirs.  

For the Kamp catchment these processes modelled on a 1 km x 1 km grid. The 

model parameters of the main layer and the routing were identified by a five step 

procedure using field data, comprehensive hydrographic data as well as qualitative 

evidence during floods (Blöschl et al., 2009). The parameters of the skin layer were 

selected on the basis of literature values. Following Houser et al. (2000) and Ottle 

and Vidal-Madjar (1994) the storage capacity of the skin soil layer is only a small 

fraction of the main storage of the order of 5-10%. With a typical storage capacity of 

the main layer of 70 mm a storage capacity of the skin layer Lskin of 5 mm was cho-

sen. This is also consistent with the penetration depth of the microwaves (Wagner et 

al., 1999). During the summer month evaporation rates up to 4 mm per day are pos-

sible in the study area. From field experience it is known that, typically, the soil sur-

face turns from saturated to dry conditions within less then two days. This is consis-

tent with an evaporation subdivision parameter of φ= 15% indicating that 15% of the 

soil water directly evaporated from the root zone layer. To keep the numbers of pa-

rameters small φ was assumed to be uniform within the catchment although some 
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dependence on vegetation would be expected. The vertical exchange flux between 

the skin and the main soil layer is limited by a maximum flux gradient of αm =10 mm 

per day based on the maximal rates for capillary rise and infiltration used by Houser 

et al. (2000) and Ottle and Vidal-Madjar (1994) respectively. As the internal moisture 

flux is driven by the moisture difference in the two soil layers, the maximum flux rate 

is not very likely to occur. 

For the Petzenkirchen, Obersiebenbrunn and Ollersdorf sites the same skin layer 

parameters as in the Kamp were used. The parameter of the main layers were also 

transferred from the Kamp from model units that were similar to the three sites in 

terms of soils and vegetation. This parameter transfers were made in an attempt to 

make the comparison representative of the regional case were no local soil charac-

teristics are available but data from regional sources need to be used such as in the 

study of Anguela et al. (2008). This makes the comparison more generally applicable 

for large areas were soil characteristics need to be inferred from regionally available 

data such as soil texture. No routing was used for the three sites. 

Figure 4.4 shows simulations of the Kamp during summer 2009 which is part of the 

validation period of the model. The runoff simulations closely match the observations 

in terms of the temporal structure and the magnitude of the flood peak during the 

event in June. However, the peak in early August is missed which is due to a local, 

convective precipitation event which was not captured in the rainfall data, even 

though radar data were used in to spatially distribute the raingauge data. The tempo-

ral evolution of the simulated soil moisture highlights the much faster dynamics of the 

skin layer. While the remotely sensed ASCAT surface soil moisture is not an exact 

match to the simulations that dynamics are surprisingly similar to those modelled. 

Estimates show a similar temporal behaviour like the simulated skin soil moisture. 

Both simulations and ASCAT indicate saturation of the skin layer after heavy rainfall 

events and a dry down during the following few days between 40 and 60%. 
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Figure 4.4 Simulations for summer 2009 at the stream gauge Zwettl/Kamp (622 km²). Top 

panel: catchment average precipitation. Centre panel: simulated mean catchment soil mois-

ture of the skin (red line) and main layer (black line) and mean catchment ASCAT soil mois-

ture (circles). Lower panel: simulated (red line) and observed (black line) runoff hydrographs. 

Figure 4.5 shows the spatial soil moisture patterns of ASCAT and the simulations for 

the same flood event on 23 June 2009. On June 22 in the morning (left panels in Fig. 

5) there was hardly any antecedent precipitation. The simulations of skin soil mois-

ture and the remotely sensed (ASCAT) surface soil moisture give very similar pat-

terns. Soil moisture varies from 25% in the East to 55% in the West. The East has 

lower catchment elevations and therefore higher evaporation. Also, the soils tend to 

be coarser than in the west. 34 hours later, on June 23 in the evening most of the 

event precipitation had already fallen. There is a rainfall gradient from west to east. 

Again, simulations and ASCAT soil moisture give vary similar patterns. While on 
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June 22 the patterns are controlled by evaporation, on June 23 the patterns are con-

trolled by the spatial rainfall distribution. Also the effect of the coarse soils in the west 

is apparent in the simulations as lower soil moisture which is also reflected, albeit 

with lower resolution, in the ASCAT data. 

 

Figure 4.5 Top: Antecedent rainfall during the past 12 hours, Centre: remotely sensed AS-

CAT surface soil moisture, Bottom: Simulated skin soil moisture in the Kamp catchment 

(1550 km²). Left: 22 June 2009 immediately before a 5 year flood. Right: 23 June 2009 dur-

ing the flood. 

4.4 Results 

ASCAT Satellite soil moisture vs. model simulations  

An important issue of space-borne soil moisture estimation is how to deal with peri-

ods of snow and frozen ground as microwaves can only detect liquid water while for 

hydrological purposes one is interested in the total water stored in the soil. The stan-

dard approach is to mask the satellite scenes that are affected by snow and frozen 
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ground based on various criteria. Usually a static masking method is chose that de-

pends on the location and the day of the year (Bartalis, 2007) but this is unable to 

account for specific hydrometeorological situations that can be critically important for 

snow and frozen ground is present. In this paper a number of dynamic masking crite-

ria are examined (Table 4.2). In a first masking scenario, the ASCAT pixels are 

masked if 50% of the pixel area is covered by snow. To identify snow cover MODIS 

satellite data are used. MODIS data from Aqua and Terra are combined to minimise 

the shading effects due to clouds based on the method of Parajka and Blöschl 

(2008). In a second masking scenario, ASCAT pixels are additionally masked if the 

average snow water equivalent in the pixel exceeds 2 mm. Estimates of snow water 

equivalent are obtained from the hydrological simulations. In a third masking sce-

nario, ASCAT pixels are additionally masked if the average air temperature over the 

past 12 hours exceeded 0 °C to reflect the effects of frozen ground. The fourth mask-

ing scenario masks the ASCAT pixels if the air temperatures exceed 2°C in order to 

assess the effect of changing the threshold temperature. For comparison scenario 0 

relates to the ASCAT data without masking. 

Table 4.2 Definition of criteria for the masking ASCAT surface soil moisture estimates due to 

snow and frozen ground. A pixel is masked if at least one of the criteria applies.  

Masking scenario 0 1 2 3 4 

MODIS snow cover - > 50% > 50% > 50% > 50% 

Simulated snow water equivalent - - > 2mm > 2mm > 2mm 

Air temperature (12h average) - - - < 0 °C < 2 °C 

 

Each of the masking scenarios are applied to the ASCAT data of the Kamp catch-

ment and the three field sites. Pearson correlation between the remaining ASCAT 

pixels and the simulated skin are calculated separately for the summer and winter 

months. The biases of ASCAT relative to the simulations are also analysed. For the 

Kamp catchment the correlations and biases have been calculated from catchment 

average soil moisture. The correlations (Table 4.3) in the summer months range from 

0.64 (Ollersdorf) to 0.71 (Petzenkirchen) which is a similar order of magnitude as 

other studies (e.g., Albergel et al., 2010). As would be expected the correlations do 
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not change with the scenario as the masking only applies do cold conditions. The 

correlations in the winter months strongly depend on the masking method. Without 

masking the correlations range from -0.12 (Kamp) to 0.43 (Obersiebenbrunn). These 

differences are closely related to the different climates of the two locations. The 

mean annual winter temperatures of the Kamp are -1.3 °C while they are +0.3 °C at 

Obersiebenbrunn (Table 4.1). Also there are major differences between the two sites 

in terms of snow cover durations. Masking scenario 1 based on snow cover signifi-

cantly increases the winter correlations for Kamp, but it does not change the correla-

tions for the other sites much. Because Kamp is the locations with the longest snow 

durations one would expect the effect of this masking scenario to be largest. If simu-

lated snow water equivalent is also considered (masking scenario 2) the correlations 

increase and range from 0.41 (Kamp) to =0.56 (Petzenkirchen and Ollersdorf). A fur-

ther substantial increase of correlations is achieved for all study sites, if air tempera-

ture is used to mask frozen soils (masking scenarios 3 and 4). For the Kamp selec-

tion of a threshold air temperature from 2°C instead of 0°C increases the winter cor-

relations from 0.49 to 0.71. Clearly, there are long periods during winter with tem-

peratures around freezing where the ground is still frozen, so the increase in the 

threshold temperature substantially improves the correlations.  

A similar effect of the masking scenarios can be observed for the biases, i.e. the dif-

ferences between ASCAT soil moisture and the simulated skin soil moisture. While 

the biases are always small for the summer, substantial biases occur during winter if 

no masking is applied. The biases range from 11% (Obersiebenbrunn, Ollersdorf) to 

34% (Kamp). Clearly, the differences in the climates have a major affect on the AS-

CAT soil moisture interpretation as the ASCAT readings appear too low due to snow 

and frozen ground. As the various masking variants are applied, the biases decrease 

to between 1% (Ollersdorf) and 3% (Kamp). The exception is Petzenkirchen where 

significant biases remain for masking scenario 4. Maybe this is related to the sea-

sonal tendency of very low surface soil moisture estimates during the winter season 

at this specific ASCAT grid element.  
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Table 4.3 Correlation coefficients between monthly mean ASCAT surface soil moisture and 

simulated skin layer soil moisture at the four field sites for the five masking sce-narios of Ta-

ble 4.1. First number relates to summer (April to September), second number relates to win-

ter (October to March). 

 Masking 0 Masking 1 Masking 2 Masking 3 Masking 4 

Kamp catchment 0.68 / -0.12 0.68 / 0.33 0.68 / 0.41 0.68 / 0.49 0.68 / 0.71 

Petzenkirchen 0.71 / 0.28 0.71 / 0.31 0.71 / 0.56 0.71 / 0.62 0.71 / 0.69 

Obersiebenbrunn 0.68 / 0.43 0.68 / 0.45 0.68 / 0.55 0.68 / 0.69 0.68 / 0.72 

Ollersdorf 0.64 / 0.38 0.64 / 0.40 0.64 / 0.56 0.64 / 0.69 0.64 / 0.72 

 

Table 4.4 Bias (%) of monthly mean ASCAT surface soil moisture relative to simulated skin 

layer soil moisture at the four field sites and for the five masking scenarios of Table 4.1. First 

number relates to summer (April to September), second number relates to winter (October to 

March). 

 Masking 0 Masking 1 Masking 2 Masking 3 Masking 4 

Kamp catchment -1 / 34 -1 / 13 -1 / 9 -1 / 6 -1 / 3 

Petzenkirchen 9 / 28 9 / 26 9 / 20 9 / 17 9 / 14 

Obersiebenbrunn -2 / 11 -2 / 10 -2 / 7 -2 / 3 -2 / 2 

Ollersdorf 1 / 11 1 / 10 1 / 6 1 / 3 1 / 1 

 

As would be expected the highest correlations and smallest biases are obtained if the 

remotely sensed soil moisture data set is masked based on snow cover, simulated 

snow water equivalents and the mean air temperature with a threshold of 2°C (mask-

ing scenario 4). However, this is also the scenario that removes the largest number 

of pixels. To understand the tradeoff between the strictness of the masking method 

and the accuracy of the ASCAT soil moisture the number of ASCAT Level 2 images 

was analyses for the four sites. Without masking there are a total of about 450 AS-

CAT images in the Kamp and at Petzenkirchen in the four winters which is equivalent 

to 0.83 ASCAT images per day. For the Kamp, occasionally, only part of the catch-

ment was covered, so the number of scenes was calculated as the catchment aver-



 76 

age. Figure 4.6 shows that, as the masking get stricter, the correlations of ASCAT 

soil moisture and simulations increase but the number of scenes decreases. For the 

strictest masking (scenario 4) the number of scenes ranges between 95 (Kamp) and 

280 (Ollersdof) which is equivalent to 0.18 and 0.52 ASCAT images per day, respec-

tively. If the ASCAT data are to be assimilated into a hydrological model one would 

probably use the strictest masking, particularly in the Kamp. At the other three sites, 

however, there seems to be little extra benefit of using a 2°C threshold (scenario 4) 

over the 0°C threshold (scenario 3).  

 

Figure 4.6 Trade-off between accuracy of winter (October to March) surface soil moisture of 

ASCAT and number of scenes available. Each point relates to one filter scenario (Table 2). 

As the masking get stricter, the correlations of ASCAT soil moisture and simulations increase 

but the number of scenes decreases 

To illustrate the seasonal fluctuations of the correlations and biases Figure 4.7 shows 

the monthly values for Obersiebenbrunn as an example. The inconsistency of the 

correlations and biases mainly occurs in December, January and February which are 

the months with frequent frost and snow. For the Kamp (not shown here), the period 

of inconsistency is longer and ranges from November do March (with particularly low 

values from January to March) as would be expected from the longer snow cover 

period at the Kamp.  
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Figure 4.7 Seasonality of simulated skin soil moisture (red line) and ASCAT surface soil 

moisture (black line, upper panels) and correlation coefficients (lower panels) at Obersieben-

brunn. Left: without masking. Right: with masking (scenario 4, as of table 2) 

 For the case of the Kamp, spatially distributed soil moisture simulations are avail-

able, so it is of interest to examine the spatial patterns of the correlations and biases. 

For the case without masking these are shown in Figure 4.8. During the summer 

months (April to October) the correlations coefficients are around 0.7. In contrast 

from January to March parts of the catchment have negative correlations. This is par-

ticularly the case for the western part of the Kamp catchment which has higher eleva-

tions and therefore more snow and more extended periods of frozen soil can be ex-

pected. In the eastern (lower) parts of the catchment the correlations remain positive. 

The better correlations in the lower part of the catchment are also apparent in the 

correlations evaluated over the entire years annual (bottom right panel). If the mask-

ing is applied (Figure 4.9) the correlations improve in all winter months. Interestingly, 

the correlations in the eastern parts of catchment are particularly high during the win-

ter months (eg. in February, November), if not masked. However, the effect on the 

number of scenes is also apparent in February and December as, for some pixels, 

there were fewer than 3 scenes, so no correlation coefficients were calculated (white 

areas in Figure 4.9). 
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Figure 4.8 Monthly coefficients R for the Kamp catchment for the period 2007 to 2010 with-

out masking (12 panels). The top right panel shows the mean annual ASCAT surface soil 

moisture, the panel below the simulated skin soil moisture. The bottom right panel shows the 

correlations over the entire period 

 

Figure 4.9 Same as Figure 4.8 but with masking scenario 4 (Table 2). 
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ASCAT Satellite soil moisture vs. in-situ data  

In a comparison of space-borne and in-situ soil moisture measurements one would 

expect particularly large differences resulting from scale inconsistencies due to vastly 

support volumes (footprints). To account for limited penetration depths, in addition to 

ASCAT surface moisture SSM the soil water index SWI derived from the ASCAT 

data is compared to the in-situ measurements of the TDR-sensors in a soil depth of 

10 cm. However, a scale inconsistency of the spatial footprint of about 10 orders of 

magnitude (108 m² for ASCAT as opposed to 10-2 m² for the TDR) remains. 

During the summer months the correlations of ASCAT surface soil moisture with the 

TDR at 10 cm depth ranges around 0.4 for all stations (Table 4.5). During the winter 

months the correlations range from 0.22 to 0.44. As different masking methods are 

applied there is a slight increase in the correlations to a range of 0.27 (Ollersdorf) to 

0.51 (Petzenkirchen). It is interesting that the winter correlations are higher than the 

summer correlations which is likely due to the spatially and temporally more consis-

tent rainfall regime in winter than in summer. However, it is clear that correlations 

compares soil moisture at very different scales, both horizontally and vertically. The 

SWI assists in accounting for a deeper penetration depth, so should be more compa-

rable with the TDR measurements. Indeed, the correlations during the summer 

months range between 0.52 and 0.67 which is almost twice the correlations coeffi-

cient of surface soil moisture. In winter the correlations are lower and here the mask-

ing makes a difference. Without masking the correlations range between 0.33 and 

0.51 while with masking (masking scenario 4) the correlations range from 0.45 to 

0.61. However, the spatial scale inconsistency remains. 

The biases (Table 4.6) in summer range from –8 to – 15 (i.e. ASCAT tends to give 

lower values then the TDR). Maybe this is due to fact that the in-situ measurements 

indicate wetter soil conditions than the ASCAT surface soil moisture during hot and 

dry periods in summer, when the surface is drier than the deeper soil layers. The bi-

ases winter range between -14 and -19 without masking and are slightly reduced for 

if masking is applied (range of -8 to -18 for masking scenario 4). There is very little 

difference between ASCAT SWI and ASCAT surface soil moisture since the SWI is a 

linear aggregation so should not affect biases. The differences that do occur are 

probably due to smaller effect of extreme dry soil moisture estimates after applying 
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the filter. For all of the three field sites the masking scenario 4 performs best but, 

again, there is a trade-off between the ASCAT accuracy and the number of images.  

Table 4.5 Correlation coefficients between monthly mean ASCAT surface soil moisture and 

in-situ soil moisture at the three field sites and for the five masking scenarios of Table 4.1. 

First number relates to summer (April to September), second number relates to winter (Octo-

ber to March). SSM relates to surface soil moisture from ASCAT, SWI is the soil water index 

obtained by filtering SSM with a time parameter of T = 10 days 

 Masking 0 Masking 1 Masking 2 Masking 3 Masking 4 

Petzenkirchen - SSM 0.44 / 0.38 0.44 / 0.39 0.44 / 0.42 0.44 / 0.49 0.44 / 0.51 

Obersiebenbrunn - SSM 0.39 / 0.44 0.39 / 0.45 0.39 / 0.48 0.39 / 0.55 0.39 / 0.58 

Ollersdorf - SSM 0.31 / 0.22 0.31 / 0.21 0.31 / 0.24 0.31 / 0.26 0.31 / 0.27 

Petzenkirchen - SWI 0.62 / 0.43 0.62 / 0.46 0.62 / 0.51 0.62 / 0.56 0.62 / 0.61 

Obersiebenbrunn - SWI 0.67 / 0.51 0.67 / 0.52 0.67 / 0.57 0.67 / 0.59 0.67 / 0.61 

Ollersdorf - SWI 0.52 / 0.33 0.52 / 0.33 0.52 / 0.36 0.52 / 0.42 0.52 / 0.45 

 

Table 4.6 Bias (%) of monthly mean ASCAT surface soil moisture (SSM) and ASCAT Soil 

Water Index (SWI) relative to in-situ soil moisture at the three field sites and for the five 

masking scenarios of Table 4.1. First number relates to summer (April to September), sec-

ond number relates to winter (October to March). SSM relates to surface soil moisture from 

ASCAT, SWI is the soil water index obtained by filtering SSM with a time parameter of T = 10 

days 

 Masking 0 Masking 1 Masking 2 Masking 3 Masking 4 

Petzenkirchen - SSM -9 / -19 -9 / -19 -9 / -17 -9 / -15 -9 / -13 

Obersiebenbrunn - SSM -12 / -18 -12 / -16 -12 / -14 -12 / -13 -12 / -13 

Ollersdorf - SSM -15 / -19 -15 / -19 -15 / -19 -15 / -19 -15 / -18 

Petzenkirchen - SWI -8 / -14 -8 / -13 -8 / -12 -8 / -10 -8 / -9 

Obersiebenbrunn - SWI -7 / -13 -7 / -12 -7 / -12 -7 / -11 -7 / -9 

Ollersdorf - SWI -13 / -16 -13 / -14 -13 / -13 -13 / -12 -13 / -12 
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To illustrate the seasonal fluctuations of the correlations and biases Figure 4.10 

shows the monthly values for Obersiebenbrunn as an example. The seasonal pat-

terns of soil moisture with drier conditions during the summer from May to September 

and wet conditions during winter are remarkably similar (top panels). The high AS-

CAT soil moisture estimates for the winter months, even if no masking is applied, 

maybe related to the minor importance of snow cover and frozen soils at Obersie-

benbrunn. The masking slightly increases the ASCAT data in January. For the corre-

lation coefficients between ASCAT surface soil moisture and the in-situ data, no sea-

sonal patterns (lower panels). The correlations of the SWI based on ASCAT and the 

in-situ data are higher, particularly in summer. The masking produces a moderate 

increase of the correlations in winter but, again, the scale inconsistencies seem to 

dominate in all months.  

 

Figure 4.10 Seasonality of TDR measured soil moisture (red line) and ASCAT surface soil 

moisture SSM (black line, upper panels) and correlation coefficients (lower panels) between 

TDR and SSM (solid line) and between TDR and SWI (dashed line) at Obersiebenbrunn. 

Left: without masking. Right: with masking (scenario 4, as of Table 4.2). TDR readings repre-

sent relative saturation. 
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Model simulations vs. in-situ data of soil moisture  

To complete the inter-comparison of hydrologic modelling, remote sensing and in-situ 

measurements, this section compares the simulation results with the TDR measure-

ments. The correlations between the soil moisture simulated in the skin layer and the 

TDR measurements gives correlations ranging from 0.39 to 0.65 (summer) and rang-

ing from 0.65 to 0.68 (winter). While one would the skin layer not expect to closely 

represent the TDR at 10 cm depth it is interesting that the correlations are large in 

winter at all three sites. This is because of differences in the dynamics in summer 

and winter. In summer there are frequent short rainstorms producing a highly dynam-

ics soil moisture response while in winter there are fewer and longer storms. For the 

more dampened dynamics the scale mismatch is less important, so the correlations 

are higher. The correlations for the main layer – which is more consistent with the 

TDR measurements – range from 0.71 to 0.86 (summer) and ranging from 0.69 to 

0.79 (winter). Clearly, if the scales are consistent one can expect much more consis-

tent soil moisture dynamics of the model and the TDR measurements.  

At all sites negative biases indicate the tendency of the model to underestimate the 

in-situ measurements of soil moisture. When using the main layer the biases are 

smaller than when using the skin layer, once again pointing to the role of the scale 

mismatch.  

Table 4.7 Correlation coefficients and biases (%) between monthly mean simulated soil 

moisture (skin and main layer) and in-situ soil moisture at the three field sites. First number 

relates to summer (April to September), second number relates to winter (October to March). 

 Correlation Bias 

Petzenkirchen - Skin Layer 0.65 / 0.68 -9 / -4 

Obersiebenbrunn - Skin Layer 0.50 / 0.65 -8 / -1 

Ollersdorf - Skin Layer 0.39 / 0.65 -18 / -13 

Petzenkirchen - Main Layer 0.82 / 0.69 -6 / -3 

Obersiebenbrunn - Main Layer 0.86 / 0.79 -2 / 4 

Ollersdorf - Main Layer 0.71 / 0.72 -13 / -11 
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Figure 4.11 Seasonality of TDR measured soil moisture (red line) and simulated soil mois-

ture (black line, upper panels) and correlation coefficients (lower panels) at Obersieben-

brunn. Left: comparison with the skin layer simulations. Right: Comparison with the main 

layer simulations. TDR readings represent relative saturation. 

The monthly correlations and biases are shown in more detail in Figure 4.11 for the 

Obersiebenbrunn site. During December, January and February the model gives 

near saturation conditions while the TDR gives somewhat smaller relative soil mois-

tures of around 80%. From July to September the skin model underestimates soil 

moisture relative to the TDR while the simulated soil moisture of the main layer is 

very similar to the TDR. The correlations of skin layer soil moisture and TDR meas-

urements vary between 0.3 and 0.8 with the largest values from September to No-

vember. As indicated above this is a period with fewer convective storms than in 

summer. The comparison of the simulated main layer soil moisture and the TDR-soil 

moisture measurements show a very good agreement, particularly from April to No-

vember. During this period the correlation coefficients are around 0.9 or larger, with 

the exception of August with a correlation of 0.7. Somewhat lower correlations during 

the winter period from December to March are consistently large soil moisture values 

with less temporal variability so any differences are more apparent. This is illustrated 

in Figure 4.12 for the year 2009. While the fluctuations of the simulated skin layer soil 

moisture are much faster than those indicated by the TDR-measurement, the tempo-
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ral dynamic of the simulated main layer soil moisture shows excellent agreement with 

the in-situ measurement in terms of the slope of the fluctuations. The different tempo-

ral dynamics are very pronounced during the warm period May to September. The 

high temporal variability is induced by intensive rainfalls and high evaporation rates 

during the summer. The agreement in terms of the dynamics indicates that the pa-

rameters of the soil moisture model indeed describe snow melt processes and the 

drying of soils in spring in a realistic way. The other two field sites show similar pat-

terns with a similar consistency of the model and the TDR measurements.  

 

Figure 4.12 Temporal evolution of the simulated skin (red line) and main layer (black line) 

soil moisture and TDR measurements at 10 cm depth (green line) at Obersiebenbrunn for 

the year 2009. 

4.5 Discussion and Conclusions 

Soil moisture plays an important role in hydrologic forecasting models. As soil moisu-

tre is difficult to measure across the spatial scales, combining available informaiton 

from different sources seems to be an obvious strategy. The inter-comparison of re-

motely sensed soil moisture products with in situ measurements and simulated soil 

moisture to assess the potential of satellite based surface soil moisture estimates to 

reduce uncertaintys in hydrologic applications has recently been an important issue 

in the hydrologic and remote sensing sciences.  

The comparison of the spatial surface soil moisture patterns from remote sensing 

(ASCAT SSM) and hydrologic modelling (Skin layer SM) indicated very good consis-

tency for the Kamp catchment (1550 km²) in northern Austria. It is difficult to relate 

these results directly to the findings of recent studies. Most studies mainly focus on 

evaluations of different soil moisture estimates at the plot scale (in-situ measurement 
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networks) or for lumped hydrologic models (Albergel et al., 2010; Brocca et al., 2010; 

Matgen et al., 2011). For illustration purposes Anguela et al. (2008) plot soil moisture 

patterns from the SIM model and ERS-Scatterometer for a catchment in France for 

three different days (winter, summer and autumn). However, no specific statements 

about the accordance of the spatial patterns are given. The results at the Kamp 

catchment are very promising, as both data soil moisture estimates predict wet soils 

in the higher western part of the catchment (figure 4.9). The realistic representation 

of soil moisture patterns is from utmost importance for the simulation of appropriate 

initial conditions for flood forecasts, as they play an important role in the highly non-

linear process of runoff generation. As this study focuses on the assessment of the 

spatial and temporal dynamics of the surface soil layer, no comparison of the spatial 

patterns of the derived soil water indices and simulated main layer soil moisture were 

analysed. However, the positve impact of surface soil moisture products on the pre-

diction of root zone soil moisture is support by the results of several studies (Ottlé 

and Vidal-Madjar, 1994; Georgakakos and Baumer, 1996; Heathman et al., 2003, 

Draper et al., 2011). 

The evaluation results based on the comparison at the Kamp catchment and three 

field site locations (plot scale) showed the highest correlations for the comparison of 

TDR measurements and simulated main layer soil moisture. We have included the 

simulated main layer soil moisture, because the lower temporal dynamics in a soil 

depth of 10 cm show a much better consistency with the main layer of the model, 

representing the root zone (Figure 4.12). The correlations are much better compared 

to those obtained when using the skin layer soil moisture. This finding is not very 

surprising and generally supported by the results obtained by Anguela (2010) and 

Brocca et al. (2010). However, at the Austrian field sites the seasonality of the mis-

match in temporal dynamics between simulated skin layer soil moisture and TDR 

measurements seems to be more pronounced. In the light of previous studies the 

correlation coefficients and biases for the Austrian field sites between skin and main 

layer soil moisture and in-situ soil moisture measurements in a soil depth of 10 cm 

are slightly lower than obtained at in-situ field sites in France and Italy. The reason 

therefore maybe found in the fact that at the Austrian field sites the model parame-

ters for the parsimnious soil moisture accounting schemes were transferred from 
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comparable hydrologic response units at the Kamp catchment without any further 

calibration.  

Similar to the results obtained by Aguela et al. (2008), Albergel et al. (2009) and 

Brocca et al. (2010), the correlations and biases between in-situ measurements in a 

soil depth of 10 cm and the remotely sensed soil moisture estimates are much better 

if the ASCAT SWI, instead of the ASCAT SSM product, is used for the comparison at 

the three field sites in Austria. The correlation coefficients are in the order of magni-

tude of the correlations obtained at the French in-situ measurement network. The 

correlations in the Tiber region are higher, particularly for the SWI comparison. A 

reason therefore maybe can be found in the extensive calibration of the time parme-

ter T for the Italian field sites. However, the resutls at the Austrian field sites indicate 

slightly higher correlations for the summer periods from April to September. No dis-

tinct seasonality has been found for the Italian and French studies. 

Looking at the comparison of ASCAT surface soil moisture and simulated surface soil 

moisture the results at the Kamp catchment and the three field sites in Austria the 

correlations and biases are quite good and show consistency with the results found 

in a previous studies in France (Albergel et al., 2010). The results from the Tiber 

catchment in central Italy indicate slightly higher correlations (Brocca et al., 2010). 

While in Austria very distinct seasonality effects are observed, the Italian and French 

analysis do not indicate seasonal differences of the correlation coefficients. The sea-

sonal differnces are obviously related to the climatic conditions at the different loca-

tions, as the greatest seasonal differnces are obtained for the study area with the 

coldest mean winter temperature. According to Parajka and Blöschl (2008), the re-

motely sensed measurements are invalid for situations affected by snow cover or 

frozen soils during the winter season in wide parts of Austria. However, the good re-

sults during summer are very promising, as the high temporal soil moisture dynamics 

during this period, dominated by convective rainfall events and high evaporation 

rates, seem to be well captured by the ASCAT surface soil moisture product. The 

ASCAT soil moisture product is potentially valuable to reduce uncertainties of initial 

soil moisture conditions for flood forecasting, particularly because they also provide 

valueable information about the spatial distribution of soil moisture.  
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The results for the winter periods raise the question, how to deal with the influence of 

snow cover and frozen soils on the remotely sensed soil moisture estimates, as mi-

crowaves can only detect liquid water. Usually a static masking method is chosen 

that depends on the location and the day of the year (Bartalis, 2007), but this is un-

able to account for specific hydrometeorological situations that can be critically im-

portant. Parajka and Blöschl (2008) analysed the effect of different masking criteria 

on the number of valid scatterometer images. Based on the results from the compari-

son of ASCAT surface soil moisture to simulated skin layer soil moisture and to 

ground based measurements a clear improvement in terms of biases and Pearson 

correlation coefficients for the cases with masking is evident. The correlations in the 

winter months strongly depend on the masking method. Without masking the correla-

tions range from -0.12 (Kamp) to 0.43 (Obersiebenbrunn). This is closely related to 

the different climates of the two locations. The mean annual winter temperatures of 

the Kamp are -1.3°C while they are +0.3°C at Obersiebenbrunn (Table 4.1). Clearly, 

the differences in the climates have a major affect on the ASCAT soil moisture inter-

pretation as the ASCAT readings appear too low due to snow and frozen ground. As 

would be expected the highest correlations and smallest biases are obtained if the 

remotely sensed soil moisture data set is masked based on snow cover, simulated 

snow water equivalents and the mean air temperature with a threshold of 2°C. How-

ever, this is also the scenario that removes the largest number of pixels. To under-

stand the tradeoff between the strictness of the masking method and the accuracy of 

the ASCAT soil moisture the number of ASCAT Level 2 images was analyses for the 

four sites. As the masking gets stricter, the correlations of ASCAT soil moisture and 

simulations increase but the number of scenes decreases. If the ASCAT data are to 

be assimilated into a hydrological model one would probably use the strictest mask-

ing, particularly in the Kamp. 

The results of this study are very promising in terms of the capability of ASCAT sur-

face soil moisture estimates to adequately describe the large scale organisation of 

spatial soil moisture patterns, as well as the temporal dynamics in the skin soil layer. 

Hence, ASCAT surface soil moisture estimates are potentially valuable to identify 

appropriate model structure and parameters, as well as to decrease uncertainties of 

initial soil moisture conditions as a basis for accurate flood forecasts.    
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5 Summary and conclusions 

The aim of this study is the development and the analysis of methods to quantify and 

reduce uncertainties in modelling and measuring hydrometeorological processes en-

volved in operational flood predictions. There are large forecasting uncertainties re-

lated to the meteorological model inputs, model structure and model parameters. 

This study discusses different methodolgies to deal with the predictive uncertainties. 

The different strategies are to quantive the the forecast uncertainties depending on 

the actual hydrometeorological situation, to reduce the uncertainty of simulated initial 

conditions by the use of actual runoff measurements and to validate the spatial and 

temporal dynamics of the simulated soil moisture, based on the comparison to re-

motely sensed soil moisture data. The main part of the study is carried out at the 

Kamp catchment, with a total catchment size of 1550 km², in the north eastern part of 

Austria. A spatially distributed conceptual hydrologic model, including a snow routine, 

a soil moisture accounting scheme and runoff routing at the hillslopes and in the river 

reaches, is used in all parts of this study. The model runs on a 15 minute or hourly 

timestep and the spatial resolution is 1km x 1km and is part of an operational flood 

forecasting system at the Kamp. On model input combined measurements from rain 

gauges and information from weather radar is used to simulate appropriate initial 

conditions. Quantitative precipitation forecast up to lead times of 48 hours are the 

basis for the flood forecasts. The model parameters and structure were chosen very 

carefully in this case study. The model identification procedure went substantially be-

yond the calibration to runoff. This means that the model can be expected to repre-

sent the hydrological processes in the Kamp catchment reasonably well. 

The quantification of the forecast uncertainty is the focus of the first part of the study 

(Chapter 2). The main aspects of investigation are (a) how the ensemble distribution 

of precipitation forecasts propagates in the catchment system, and (b) to interpret the 

flood forecast probabilities relative to the forecast errors. The analyses indicated that, 

for long lead times (e.g. 48 hours), the variability of the precipitation ensemble is am-

plified as it propagates through the catchment system. Small errors in rainfall may 

translate into larger errors in runoff. The ensemble distribution of precipitation is 

symmetric while that of the flood forecasts is skewed to the right. Clearly, this kind of 
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mapping of precipitation uncertainties to runoff uncertainties for large forecast lead 

times is related to the non-linear nature of catchment response. In contrast, for short 

lead times (e.g. 12 hours and less), the variability of the precipitation ensemble is 

decreased as it propagates through the catchment system. This is because the fore-

casts are mainly controlled by observed upstream runoff and observed precipitation 

through the routing and runoff model components, as the forecasting system is oper-

ated in a real-time mode. The ensemble forecasts focus on the dominant source of 

uncertainty, i.e., uncertainty in forecast precipitation. It can be expected that the lead 

time where the uncertainty of the precipitation forecasts starts to amplify will depend 

on the catchment response characteristics, such as travel times in the river reaches 

and runoff concentration. In small and flashy catchments this will be a short lead time 

while for large catchments it will be longer.  

The paper also examined the ability of the probabilistic forecasts to capture the dis-

tribution of the flood forecast errors. The statistical analyses of the ensemble fore-

casts for five flood events at the Kamp showed that the ensemble spread is always 

narrower than the distribution of the forecast errors. This would be expected as not 

all error sources have been represented in the ensembles. However, the ensemble 

spread increases with lead time in a similar way as the forecast errors. This means 

that the ensemble spread does provide an indicator to assess potential forecast er-

rors over a range of lead times. A "range hit rate" was defined as the number of 

cases, relative to the total number of forecasts, in which the observed discharge 

value lies within the range of the ensemble quantiles. Analyses of the range hit rates 

indicate that they are small for short lead times but increase with lead time. The 

range hit rates are similar for lead time of 12 hours and more which suggests, again, 

that the ensemble spread does provide an indicator to assess potential forecast er-

rors over a range of lead times, provided the lead times are 12 hours or larger. Even 

though the ensemble characteristics do not exactly match the forecast errors, they do 

provide information about the expected forecast errors. The comparisons indicated 

that, for lead times larger than 12 hours in the case of the 622 km² Kamp catchment, 

the ensemble spread is a useful indicator to the forecast errors. While additional error 

sources could be included in estimating the flood ensembles it may not be necessary 

for operational flood forecasting purposes as the uncertainty in forecast precipitation 
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is the dominant source of flood forecast uncertainty for lead times of more than 12 

hours in catchments such as the Kamp.  

The second part of the study (Chapter 3) deals with data assimilation in an opera-

tional flood forecasting system. The benefit of Ensemble Kalman-Filter updating in 

forecasting large flood events is evaluated. The aim of this paper is to examine the 

benefit of Ensemble Kalman Filter updating in forecasting large floods. The soil mois-

ture of a distributed runoff model is updated based on observed runoff. The updated 

soil moisture is then used as an initial condition for the forecasts. The value of updat-

ing is obvious because of the long time scales associated with the hydrological proc-

esses during low and average flows. For large flood flows, the difficulty with updating 

runoff during an event is that phase errors usually cannot be handled well. There can 

be overshooting of the forecasts if phase errors are interpreted as volume errors. The 

procedure examined here mainly updates the slow runoff components, i.e., soil mois-

ture between events which is then used as an initial condition for the flood forecasts. 

Analyses of six large flood events at the Kamp indicate that the updating indeed re-

duces forecast errors substantially during the flood events. It is considered a strength 

of this case study that data on a number of large floods (including two extreme 

floods) were available which is not usually the case in practical applications. This is 

important as one of the main motivations of implementing flood forecasting systems 

is to improve on the forecasting of extreme events where the damage potential is 

largest (Apel et al., 2006).  

It should be noted that low flow and average flow conditions can usually be simulated 

much more accurately than flood flows. Clearly, the updating is most efficient for low 

and medium flows, but from a practical perspective the flood flows are usually of 

much more interest. However, these tend to be more difficult to predict and errors are 

usually much larger. In the present paper, the peak flow errors for 3 hour forecasts 

were reduced from 25% to 12% by the updating procedure, and from 25% to 19% for 

48 hours forecasts. It should be noted that the forecast lead time of 48 hours is much 

larger than typical flow travel time in the streams within the catchment which are less 

than 2 hours. It is hence the water in the landscape rather than that in the stream that 

needs to be adjusted in this case study. 
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We believe it is important to very carefully adjust the model to the local conditions 

(going beyond calibration to runoff) for the updating procedure to work efficiently. In 

the current procedure, the main error source is attributed to the inputs and their effect 

on soil moisture, so model parameters are not updated. A plausible model structure 

and carefully adjusted model parameters are hence the basis for a good performance 

of the updating routine. Also, the availability of input data (16 rain gauges for model 

development, 8 telemetered rain gauges in a 622 km² catchment) along with radar 

data in this study is probably more than what one usually encounters in operational 

applications. With these caveats, it is suggested that updating procedures such as 

the one proposed in this paper can indeed substantially improve the forecasting of 

large floods at the catchment scale examined here. 

Remotly sensed soil moisture data are used in the third part of the study as additional 

source of information to identify a realistic model structure and parameters. As soil 

moisutre is difficult to measure across the spatial scales, combining available infor-

maiton from different sources seems to be an obvious strategy. The inter-comparison 

of remotely sensed soil moisture products with in situ measurements and simulated 

soil moisture to assess the potential of satellite based surface soil moisture estimates 

to reduce uncertaintys in hydrologic applications has recently been an important is-

sue in the hydrologic and remote sensing sciences.  

The comparison of the spatial surface soil moisture patterns from remote sensing 

(ASCAT SSM) and hydrologic modelling (Skin layer SM) indicated very good consis-

tency for the Kamp catchment (1550 km²) in northern Austria. The realistic represen-

tation of soil moisture patterns is from utmost importance for the simulation of appro-

priate initial conditions for flood forecasts, as they play an important role in the highly 

non-linear process of runoff generation. However, the positve impact of surface soil 

moisture products on the prediction of root zone soil moisture is support by the re-

sults of several studies (Ottlé and Vidal-Madjar, 1994; Georgakakos and Baumer, 

1996; Heathman et al., 2003, Draper et al., 2011). 

The evaluation results based on the comparison at the Kamp catchment and three 

field site locations (plot scale) showed the highest correlations for the comparison of 

TDR measurements and simulated main layer soil moisture. Similar to the results 

obtained by Aguela et al. (2008), Albergel et al. (2009) and Brocca et al. (2010), the 
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correlations and biases between in-situ measurements in a soil depth of 10 cm and 

the remotely sensed soil moisture estimates are much better if the ASCAT SWI, in-

stead of the ASCAT SSM product, is used for the comparison at the three field sites 

in Austria. The correlation coefficients are in the order of magnitude of the correla-

tions obtained at the French in-situ measurement network. However, the resutls at 

the Austrian field sites indicate slightly higher correlations for the summer periods 

from April to September. This can be related to the lower accuracy of the ASCAT sur-

face soil moisture estimates for the winter period. 

Looking at the comparison of ASCAT surface soil moisture and simulated surface soil 

moisture the results at the Kamp catchment and the three field sites in Austria the 

correlations and biases are quite good and show consistency with the results found 

in a previous studies in France (Albergel et al., 2010). The seasonal differnces are 

obviously related to the climatic conditions at the different locations, as the greatest 

seasonal differnces are obtained for the study area with the coldest mean winter 

temperature. The results for the winter periods raise the question, how to deal with 

the influence of snow cover and frozen soils on the remotely sensed soil moisture 

estimates, as microwaves can only detect liquid water. Usually a static masking 

method is chosen that depends on the location and the day of the year (Bartalis, 

2007), but this is unable to account for specific hydrometeorological situations that 

can be critically important. Parajka and Blöschl (2008) analysed the effect of different 

masking criteria on the number of valid scatterometer images. Based on the results 

from the comparison of ASCAT surface soil moisture to simulated skin layer soil 

moisture and to ground based measurements a clear improvement in terms of biases 

and Pearson correlation coefficients for the cases with masking is evident. The corre-

lations in the winter months strongly depend on the masking method. Without mask-

ing the correlations range from –0.12 (Kamp) to 0.43 (Obersiebenbrunn). This is 

closely related to the different climates of the two locations. The mean annual winter 

temperatures of the Kamp are -1.3°C while they are +0.3°C at Obersiebenbrunn (Ta-

ble 4.1). Clearly, the differences in the climates have a major affect on the ASCAT 

soil moisture interpretation as the ASCAT readings appear too low due to snow and 

frozen ground. As would be expected the highest correlations and smallest biases 

are obtained if the remotely sensed soil moisture data set is masked based on snow 

cover, simulated snow water equivalents and the mean air temperature with a 
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threshold of 2°C. However, this is also the scenario that removes the largest number 

of pixels. To understand the tradeoff between the strictness of the masking method 

and the accuracy of the ASCAT soil moisture the number of ASCAT Level 2 images 

was analyses for the four sites. As the masking gets stricter, the correlations of AS-

CAT soil moisture and simulations increase but the number of scenes decreases. If 

the ASCAT data are to be assimilated into a hydrological model one would probably 

use the strictest masking, particularly in the Kamp. 

The results of this study are very promising in terms of the capability of ASCAT sur-

face soil moisture estimates to adequately describe the large scale organisation of 

spatial soil moisture patterns, as well as the temporal dynamics in the skin soil layer. 

Hence, ASCAT surface soil moisture estimates are potentially valuable to identify 

appropriate model structure and parameters, as well as to decrease uncertainties of 

initial soil moisture conditions as a basis for accurate flood forecasts.    
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Appendix A 

Structure of the soil moisture model 

A conceptual soil moisture accounting scheme is used at the model grid scale. The 

sum of rain and melt, MPr + , is split into a component dS  that increases soil mois-

ture of a top layer, sS , and a component pQ  that contributes to runoff. The compo-

nents are split as a function of sS :  

)( MP
L
SQ r

s

s
p +⋅








=

β

 (A.1) 

sL  is the maximum soil moisture storage. β  controls the characteristics of runoff 

generation and is termed the non-linearity parameter. If the top soil layer is saturated, 

i.e., ss LS = , all rainfall and snowmelt contributes to runoff and dS  is 0. If the top soil 

layer is not saturated, i.e., ss LS < , rainfall and snowmelt contribute to runoff as well 

as to increasing sS  through 0>dS : 

otherwise                                              0
0     if                  

=

>−−+−−+=

dS
QQMPQQMPdS byprbypr  (A.2) 

where, additionally, bypass flow byQ  is accounted for. Analysis of the runoff data at 

the Kamp indicated that flow that bypasses the soil matrix and directly contributes to 

the storage of the lower soil zone is important for intermediate soil moisture states 

sS . For sss LSL ⋅<<⋅ 21 ξξ  (with 1ξ =0.4, 2ξ =0.9) bypass flow was assumed to occur 

as   

otherwise                                          
 )(     if                         )(

byby

byrbyrbyby

LQ
LMPMPQ

=

<+⋅+⋅= αα
 (A.3) 

while no by pass flow was assumed to occur for dry and very wet soils. Changes in 

the soil moisture of the top soil layer sS  from time step i – 1 to i are accounted for by  

( ) tEdSSS Aisis ∆⋅−+= −1,,  (A.4) 
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The only process that decreases sS  is evaporation AE  which is calculated from po-

tential evaporation, PE , by a piecewise linear function of the soil moisture of the top 

layer:  

otherwise                 

 if                   

PA

ps
P

s
PA

EE

LS
L
SEE

=

<⋅=
 (A.5) 

where pL  is a parameter termed the limit for potential evaporation. Potential evapora-

tion was estimated by the modified Blaney-Criddle method (DVWK, 1996) as a func-

tion of air temperature. This representation of potential evaporation was compared to 

other methods in Parajka et al. (2003) suggesting that it gives plausible results in 

Austria. 



 96 

References 

Albergel, C., Rüdiger, C., Carrer, D., Calvet, J.-C., Fritz, N., Naeimi, V., Bartalis, Z., 

Hasenauer, S. (2010). An evaluation of ASCAT surface soil moisture products 

with in-situ observations in Southwestern France, Hydrol. Earth Syst. Sci., 13, 

115-124. 

Albergel, C., Calvet, J.-C., de Rosnay, T., Balsamo, G., Wagner, W., Hasenauer, S., 

Naeimi, V., Martin, E., Bazile, E., Bouyssel, F. and Mahfouf, J.-F. (2010). Cross-

evaluation of modelled and remotely sensed surface soil moisture with in situ data 

in southwestern France, Hydrol. Earth Syst. Sci., 14, 2177–2191. 

Apel, H., Thieken, A.H. , Merz, B. and Blöschl, G. (2006). A probabilistic modelling 

system for assessing flood risks. Nat. Hazards, 38, pp. 79-100. 

Blöschl, G. and Zehe, E. (2005). On hydrological predictability. INVITED commen-

tary. Hydrol. Process., 19 (19), pp. 3923-3929. 

Blöschl, G., Reszler, Ch. and Komma, J. (2006). Hochwasservorhersage Kamp - 

Hydrologie (Kamp flood forecasting system - hydrology). Final Report to the 

Lower Austria State Government and EVN Energy Supply, Feb. 2006. Institute of 

Hydraulic and Water Resources Engineering, Vienna University of Technology. 

Blöschl, G., Reszler, C. and Komma, J. (2008). A spatially distributed flash flood 

forecasting model. Environ. Modell. Softw., 23 (4), pp. 464-478.  

Brocca, L., Melone, F., Moramarco, T., Wagner, W., and Hasenauer, S. (2010). AS-

CAT soil wetness index validation through in situ and modeled soil moisture data 

in central Italy, Remote Sens. Environ. 114, 2745–2755. 

Buizza, R., Hollingsworth, A., Lalaurette, F. and Ghelli, A. (1999). Probabilistic Pre-

dictions of Precipitation Using the ECMWF Ensemble Prediction System. Weather 

Forecast., 14, pp. 168-189. 

Buizza, R. (2003). Weather Prediction: Ensemble Prediction. Encyclopaedia of At-

mospheric Sciences, Academic Press, London, pp. 2546-2557. 

Chiew, F.H.S., Peel, M.C., McMahon, T.A. and Siriwardena, L.W. (2006). Precipita-

tion elasticity of streamflow in catchments across the world. Climate Variability 



 97 

and Change-Hydrological Impacts. Proceedings of the Fifth FRIEND World Con-

ference held at Havana, Cuba, November 2006, IAHS Publ. 308, pp. 256-262. 

Crow, W.T. and Van Loon, E. (2006). Impact of incorrect model error assumptions on 

the sequential assimilation of remotely sensed surface soil moisture. J. Hydrome-

teorol. 7 (3),pp. 421-432. 

Das N.N., Mohanty, B.P., Cosh, M.H., and Jackson, T.J. (2008). Modeling and as-

similation of root zone soil moisture using remote sensing observations in Walnut 

Gulch Watershed during SMEX04. Remote Sens. Environ. 112, 415-429. 

DVWK (1996). Ermittlung der Verdunstung von Land- und Wasserflächen, DVWK-

Merkblätter, Heft 238, Bonn. 

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic 

model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 

99 (C5), pp. 10,143-10,162.  

Francois C., Quesney A. and Ottle, C. (2003). Sequential Assimilation of ERS-1 SAR 

Data into a Coupled Land Surface-Hydrological Model Using an Extended Kal-

man Filter. American Meteorological Society. 

Georgakakos, K.P. and Baumer, O.W. (1996). Measurement and utilization of on-site 

soil moisture data. J. Hydrol. 184, 131-152. 

Golding, B.W. (1998). Nimrod: A system for generating automated very short range 

forecasts. Meteorol. Appl., 5, pp. 1-16. 

Grayson, R. and Blöschl G. (2000). Spatial modelling of catchment dynamics. Chap-

ter 3 in R. Grayson and G. Blöschl (Eds.).Spatial Patterns in Catchment Hydrol-

ogy: Observations and Modelling. Cambridge University Press, Cambridge, pp. 

51-81. 

Grayson, R., Blöschl, G., Western A. and McMahon, T. (2002). Advances in the use 

of observed spatial patterns of catchment hydrological response. Adv. Water Re-

sour. 25, pp. 1313-1334.  

Gutknecht, D. (1991). On the development of „applicable“ models for flood forecast-

ing. In: Hydrology for the Water Management of Large River Basins (ed. by 



 98 

F.H.M. van de Ven, D. Gutknecht, D.P. Loucks & K. A. Salewicz), (Proc. Vienna 

Symp., August 1991), pp. 337 - 345. IAHS Publ. no. 201 

Gutknecht, D., Reszler, Ch. and Blöschl, G. (2002). Das Katastrophenhochwasser 

vom 7. August 2002 am Kamp - eine erste Einschätzung (The August 7, 2002 - 

flood of the Kamp - a first assessment), Elektrotechnik und Informationstechnik, 

119 (12), pp. 411-413. 

Haiden, T., Kann, A., Stadlbacher, K., Steinheimer, M. and Wittmann, C. (2007). In-

tegrated Nowcasting through Comprehensive Analysis (INCA).- System overview. 

ZAMG report, 49p. http://www.zamg.ac.at/fix/INCA_system.doc accessed March 

26, 2007. 

Hall, D.K., Riggs, G.A., Salomonson, V.V., DiGirolamo, N.E., and Bayr, K. J. (2002). 

MODIS snow-cover products, Remote Sens. Environ., Volume 83, Issues 1-2, 

Pages 181-194. 

Heathman, G.C., Starks, P.J., Ahuja, L.R., Jackson, T.J. (2003). Assimilation of sur-

face soil moisture to estimate profile soil water content. J. Hydrol. 279, 1-17. 

Herschy, R.W. (2002). The uncertainty in a current meter measurement. Flow Meas. 

Instrum. 13, pp. 281–284.  

Houser P., Goodrich, D. and Syed, K. (2000).Runoff, precipitation, and soil moisture 

at Walnut Gulch. Chapter 6 in R. Grayson and G. Blöschl (Eds.).Spatial Patterns 

in Catchment Hydrology: Observations and Modelling. Cambridge University 

Press, Cambridge, pp. 125-157. 

Jackson, T.C., Schmugge, T.J., Nicks, A.D., Coleman, G.A. and Engman E.T. 

(1981). Soil moisture updating and microwave remote sensing for hydrological 

simulations, Hydrol. Sci. Bull. 26 (3).203-319. 

Kalman, R.E. (1960). A New Approach to Linear Filtering and Prediction Problems. J. 

Basic Eng.-T ASME, 82 (D), pp. 35-45. 

Kann, A. and Haiden, T. (2005). The August 2002 flood in Austria: sensitivity of pre-

cipitation forecast skill to area size and duration. Meteorol. Z., 14, pp. 369-377. 

Krzysztofowicz, R. (2001). Integrator of uncertainties for probabilistic river stage fore-

casting: precipitation-dependent model. J. Hydrol., 249, pp. 69-85. 



 99 

Madsen, H. and Skotner, C. (2005). Adaptive state updating in real-time river flow 

forecasting – a combined filtering and error forecasting procedure. J. Hydrol., 308, 

pp. 302-312.  

Madsen, H., Rosbjerg, D., Damgard, J. and Hansen, F.S. (2003). Data assimilation in 

the MIKE 11 Flood Forecasting system using Kalman Filtering. In: Water re-

sources systems, Blöschl, G. (ed.), IAHS publication, no 281, pp. 75-81. 

Mason, S.J. and Graham, N.E. (1999). Conditional Probabilities, Relative Operating 

Characteristics, and Relative Operating Levels. Weather Forecast., 14(5), pp. 

713-725. 

Matgen, P., Heitz, S., Hasenauer, S., Hissler, C., Brocca, L., Hoffmann, L., Wagner 

W. and Savenije, H.H.G. (2011). On the potential of METOP ASCAT-derived soil 

wetness indices as a new aperture for hydrological monitoring and prediction: a 

field evaluation over Luxembourg, Hydrol. Process., Accepted Article, doi: 

10.1002/hyp.8316 

McLaughlin, D. (1994). Recent advances in hydrologic data assimilation, In U.S. Na-

tional Report to the IUGG (1991-1994), Rev. Geophys., Supplement, pp. 977-984.  

Merz, R. and Blöschl, G. (2005). Flood Frequency Regionalisation - spatial proximity 

vs. catchment attributes, J. Hydrol., 302 (1-4), pp. 283-306. 

Moradkhani, H., Sorooshian, S., Gupta, H.V. and Houser, P.R. (2005). Dual state-

parameter estimation of hydrological models using ensemble Kalman Filter. Adv. 

Water Res., 28, pp. 135-147. 

O'Connell, P.E. and Clarke, R.T. (1981). Adaptive hydrological forecasting - a review. 

Hydrological Sciences-Bulletin-des Sciences Hydrologiques, 26, pp. 179-205.  

Ottlé, C., and Vidal-Madjar, D. (1994). Assimilation of Soil Moisture Inferred from In-

frared Remote Sensing in a Hydrological Model Over the HAPEX-MOBILHY Re-

gion. J. Hydrol., 158, 241-264. 

Parajka, J. and Blöschl, G. (2006). Validation of MODIS snow cover images over 

Austria. Hydrol. Earth Syst. Sc, 10, pp. 679-689.  

Parajka J. and Blöschl, G. (2008). Spatio-temporal combination of MODIS images – 

potential for snow cover mapping. Water Resour. Res., VOL. 44, W03406, 13 PP. 

http://web.mit.edu/dennism/www/Publications/pubpdfs/M21_1995_McL_RevGeophys.pdf�


 100 

Parajka, J., Merz, R. and Blöschl, G. (2003). Estimation of daily potential evapotran-

spiration for regional water balance modeling in Austria. In: 11th. International 

Poster Day and Institute of Hydrology Open Day "Transport of Water, Chemicals 

and Energy in the Soil - Crop Canopy - Atmosphere System", 20. November 

2003, Bratislava, Slovakia. Published on CD-ROM, Slovak Academy of Sciences, 

ISBN 80 - 89139 -02- 7, pp. 299-306.  

Parajka, J., Merz, R. and Blöschl, G. (2005a). A comparison of regionalisation meth-

ods for catchment model parameters. Hydrol. Earth Syst. Sc., 9, pp. 157-171.  

Parajka, J., Merz, R. and Blöschl, G., (2005c). Regionale Wasserbilanzkomponenten 

für Österreich auf Tagesbasis (Regional water balance components in Austria on 

a daily basis). Österreichische Wasser- und Abfallwirtschaft, 57, H 3/4. pp. 43-56. 

Parajka, J., Naeimi, F., Blöschl, G. and Komma, J. (2009). Matching ERS scat-

terometer based soil moisture patterns with simulations of a conceptual dual layer 

hydrologic model over Austria, Hydrol. Earth Syst. Sci., 13, 259-271, 2009. 

Parajka, J., Naeimi, V., Blöschl, G., Wagner, W., Merz, R. and Scipal, K. (2005b). 

Assimilating scatterometer soil moisture data into conceptual hydrologic models 

at the regional scale. Hydrol. Earth Syst. Sc., 10, pp. 353-368.  

Reed, S., Koren, V., Smith M., Zhang Z., Moreda F. and Seo D.J. (2004). Overall dis-

tributed model intercomparison project results. J. Hydrol., 298, pp. 27-60.  

Reichle, R., McLaughlin, D.B. and Entekhabi, D. (2002). Hydrologic Data Assimilation 

with the Ensemble Kalman Filter. Mon. Weather Rev., 130, 1, pp. 103-114.  

Reszler, Ch., Komma, J., Blöschl, G. and Gutknecht, D. (2006). Ein Ansatz zur Iden-

tifikation flächendetaillierter Abflussmodelle für die Hochwasservorhersage (An 

approach to identifying spatially distributed runoff models for flood forecasting). 

Hydrol. Wasserbewirts., 50 (5), pp. 220-232. 

Schaake, J., Perica, S., Mullusky, M., Demargne J., Welles, E. and Wu, L. (2004). 

Pre-processing of Atmospheric Forcing for Ensemble Streamflow Prediction. Pro-

ceedings of the the 84th AMS Annual Meeting held in Seattle, USA, January 

2004, 5p. http://ams.confex.com/ams/pdfpapers/72172.pdf, accessed Dec. 18, 

2006. 

http://www.hydro.tuwien.ac.at/fileadmin/mediapool-hydro/Publikationen/bloeschl/2009-Parajka-HESS.pdf�
http://ams.confex.com/ams/pdfpapers/72172.pdf�


 101 

Siccardi F., Boni, G., Ferraris L. and Rudari, R. (2005). A hydro-meteorological ap-

proach for probabilistic flood forecast, J. Geophys. Res, 110, No. D5, 

10.1029/2004JD005314.  

Sinclair, S. and Pegram, G.G.S. (2010).A comparison of ASCAT and modelled soil 

moisture over South Africa, using TOPKAPI in land surface mode, Hydrol. Earth 

Syst. Sci., 14, 613–626. 

Steinheimer, M. and Haiden, T. (2007). Improved nowcasting of precipitation based 

on convective analysis fields. Adv. Geosci., 10:125-131. 

Taylor, J.W. and Buizza, R. (2003). Using weather ensemble predictions in electricity 

demand forecasting. Int. J. Forecasting, 19, pp. 57-70. 

Ulaby F.T., R.K. Moore and A.K. Fung (1982)."Radar Remote Sensing and Surface 

Scattering and Emission Theory", Vol. II, Microwave Remote Sensing, Active and 

Passive, Addison-Wesley Publishing Company, Reading, MA, 1069 pages 

Vischel, T., Pegram, G.G.S., Sinclair, S., Wagner, W. and Bartsch, A. (2008). Com-

parison of soil moisture fields estimated by catchment modelling and remote 

sensing: a case study in South Africa, Hydrol. Earth Syst. Sci., 12, 751–767, 2008 

Wagner, W., Lemoine, G., and Rott, H. (1999). A method for estimating soil moisture 

from ERS scatterometer and soil data, Remote Sens. Environ., 70, 191-207. 

Wagner, W., Lemoine, G., Borgeaud, M., and Rott, H.(1999). A Study of Vegetation 

Cover Effects on ERS Scatterometer Data, IEEE Trans. Geosci. Remote Sensing, 

Vol. 37, No. 2, pp. 938-948. 

Wagner, W., Blöschl, G., Pampaloni, P., Calvet, J.-C., Bizzarri, B., Wigneron, J.-P. 

and Kerr, Y. (2007).Operational readiness of microwave remote sensing of soil 

moisture for hydrologic applications. Nordic Hydrology, 38 (1), pp. 1-20. 

Walker J.P., Willgoose, G.R. and Kalma, J.D. (2001). One-Dimensional Soil Moisture 

Profile Retrieval by Assimilation of Near-Surface Measurements: A Simplified Soil 

Moisture Model and Field Application. J. Hydrometeorol., 2. 

Wang, Y., Haiden, T. and Kann, A. (2006). The operational limited area modelling 

system at ZAMG: ALADIN-AUSTRIA, Österr. Beiträge zu Meteorologie und Geo-

physik, 37, 33p. 



 102 

Weerts, A.H. and Serafy, Y.H., (2006). Particle filtering and ensemble Kalman filter-

ing for state updating with hydrological conceptual rainfall-runoff models. Water 

Resour. Res., 42, doi:10.1029/2005WR004093.  

Western, A.W. and Blöschl, G. (1999). On the spatial scaling of soil moisture. J. Hy-

drol., 217, pp. 203-224. 

Western, A., Grayson, R. and Blöschl, G. (2002).Scaling of soil moisture: a hydro-

logic perspective. Ann. Rev. Earth and Planetary Sci., 30, pp. 149-180. 

Whitaker, J.S. and Loughe, A.F. (1998). The relationship between ensemble spread 

and ensemble mean skill. Mon. Weather Rev., 126, pp. 3292–3302. 

Wood, E.F. (1980). Real-Time Forecasting/Control of Water Resources Systems – 

selected papers from an IIASA Workshop. IIASA Proceedings Series, 8, pp. 37-

46. 

Zehe, E. and Blöschl, G. (2004). Predictability of hydrologic response at the plot and 

catchment scales – the role of initial conditions. Water Resour. Res., 40: W10202. 

 


	TITELBLATT_JK
	DISS_JK_gesamt_20111209_final.pdf
	1 Introduction
	2 Ensemble prediction of floods – catchment non-linearity and forecast probabilities 
	2.1 Introduction
	2.2 Data and methods
	Study area and data
	Hydrological model
	Generating ensemble forecasts 

	2.3 Results and discussion
	Model performance and deterministic forecasts
	Ensemble forecasting and propagation of non linearity
	Ensemble spread and forecast error
	Relative Operating Characteristics

	2.4 Conclusions

	3 Soil moisture updating by Ensemble Kalman Filtering in real-time flood forecasting
	3.1 Introduction
	3.2 Data and methods
	Study catchment and data
	Hydrologic model
	Ensemble Kalman Filter
	Application of the Ensemble Kalman Filter to the Kamp catchment
	Sensitivity to soil moisture

	3.3 Results
	Updating soil moisture in a simulation mode
	Updating soil moisture in a forecast mode
	Performance for large flood events

	3.4 Discussion and Conclusions

	4 A comparison of in-situ, ASCAT and model estimates of soil moisture in Austria
	4.1  Introduction
	4.2 Field sites and data
	4.3 Hydrologic model
	4.4 Results
	ASCAT Satellite soil moisture vs. model simulations 
	ASCAT Satellite soil moisture vs. in-situ data 
	Model simulations vs. in-situ data of soil moisture 

	4.5 Discussion and Conclusions

	5 Summary and conclusions
	Structure of the soil moisture model



