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Abstract

In this diploma thesis we investigate a portfolio of d integer-valued risks and
calculate the distribution of the aggregate loss S, which is the sum of these. To
generalize the popular assumption of independence used in practice, we model
the dependency structure of the individual risks using copulas, allowing for a
wide range of flexibility. After a rather detailed introduction to copula theory, the
main part of this thesis starts with a formula for the distribution function of S.
In addition, a recursion formula for the probability mass function of S is provided.
Bounds on the distribution of S determined by the Rearrangement Algorithm
serve to quantify the model risk caused by feasible scenarios of dependency. To
illustrate the theoretical considerations, the final chapter contains a multitude
of numerical examples in which, besides the distribution and probability mass
function, common risk measures such as Value-at-Risk and Expected Shortfall
for S are calculated under various dependency structures.

Keywords: Copula, Dependent Random Variables, Sum of Random Variables,
Discrete Risk Aggregation, Value-at-Risk, Expected Shortfall, Rearrangement
Algorithm.





Zusammenfassung

In der vorliegenden Diplomarbeit betrachten wir ein Portfolio d ganzzahliger
Risiken und berechnen die Verteilung des aggregierten Schadens S, welcher die
Summe dieser ist. Um die in der Praxis gängige Annahme unabhängiger Risiken
zu verallgemeinern, modellieren wir die Abhängigkeitsstruktur der einzelnen
Risiken mittels Copulas, wodurch wir erheblich an Flexibilität gewinnen. Nach
einer Einführung in die Copula-Theorie beweisen wir im Hauptteil dieser Ar-
beit eine Formel zur Berechnung der Verteilungsfunktion des Gesamtschadens
S. Darüber hinaus wird eine Rekursionsformel für die Wahrscheinlichkeits-
funktion von S aufgestellt. Die mittels Rearrangement Algorithm errechneten
Schranken für die Verteilung von S dienen der Quantifizierung des Modell-
risikos, welches durch unterschiedliche Abhängigkeitsszenarien verursacht wird.
Um die theoretischen Aspekte dieser Arbeit zu veranschaulichen, enthält das
letzte Kapitel eine Vielzahl numerischer Beispiele, in denen neben der Verteilung
und Wahrscheinlichkeitsfunktion auch Risikomaße wie Value-at-Risk und
Expected Shortfall für S unter verschiedenen Abhängigkeitsstrukturen berechnet
werden.

Schlagworte: Copula, Abhängige Zufallsvariablen, Summe von Zufallsvariablen,
Diskrete Risikoaggregation, Value-at-Risk, Expected Shortfall, Rearrangement
Algorithm.
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Chapter 1

Introduction

Risk aggregation is becoming increasingly important in the banking and insurance
sector for the calculation of the total economic capital. The solvency capital
requirement for insurance companies under the regulation framework Solvency II
is calculated using a standard formula that corresponds to the Value-at-Risk of an
insurance company’s total own funds at a confidence level of 99.5%, for example.
The overall risk to which an insurance company is exposed is subdivided into
individual risk modules and a capital requirement is calculated for each module.
To determine the total solvency capital requirement, the capital requirements
of the individual risks are aggregated using correlation matrices assuming a
multivariate normal distribution.1

Let d ∈ N, d ≥ 2 and consider a portfolio of d N0-valued risks (X1, . . . , Xd).
In this diploma thesis we investigate the distribution of the aggregate loss
S = X1 + · · ·+ Xd. If the individual risks are independent of each other, the
distribution of S can be calculated by means of convolution. Since independence
rarely corresponds to reality in practice, we will model the dependence structure
of (X1, . . . , Xd) by an arbitrary copula C, allowing for more flexibility.

The structure of this thesis is as follows: Chapter 2 summarizes copula theory
in a rather detailed manner. The focus is on Sklar’s theorem, which can be seen
as the main theorem of copula theory and which we will prove in its general
form. It is worth mentioning that beside well-known copulas we will also briefly
introduce the less widespread concept of asymmetric copulas. Chapter 3 discusses
measures of dependency, mainly linear correlation and rank correlation measures
like Kendall’s tau or Spearman’s rho. In the main part of this thesis, Chapter 4,
we prove a formula for the distribution of the sum of N0-valued random variables
with copula-induced dependency structure in arbitrary dimension. In addition,
we provide a recursion formula for the calculation of the probability mass function
of the aggregate loss S. As the concept of copulas linking discrete marginal

1Details on the underlying assumptions on the standard formula in Solvency II can be
found in [11].
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2 Chapter 1. Introduction

distributions is slightly less natural than for continuous margins2, the obtained
results can be seen as a generalization of [17, Section 2]. Pointwise sharp bounds
on the distribution of S, which serve to quantify the model risk caused by feasible
scenarios of dependency, are computed using the Rearrangement Algorithm,
which we will briefly present. Chapter 5 introduces common risk measures of the
financial industry, Value-at-Risk and Expected Shortfall. Bounds on these are
calculated by slight adaptation of the Rearrangement Algorithm. To illustrate the
theoretical considerations, numerical results for specified marginal distributions –
mainly Poisson and negative binomial distribution – and copulas are presented
in Chapter 6. Besides the distribution and probability mass function, we will
also calculate Value-at-Risk and Expected Shortfall under several dependence
scenarios. As we will see, the comonotonicity copula maximizes the Expected
Shortfall, whereas this statement cannot be made in the case of Value-at-Risk.
From the examples it can be further concluded that the model risk increases
with increasing confidence level.

All calculations in this diploma thesis were performed using R version 3.5.1 on
a 64-bit machine running Windows 10 with 16 GB RAM. The respective scripts
can be found in the appendix to this thesis.

2cf. [16]



Chapter 2

Elementary
Copula Theory

In this chapter we will deal with the fundamentals of copula theory. In the first
section we will commit ourselves to an appropriate notation which we shall use
throughout this thesis. Subsequently, we will give essential results of probability
theory with a focus on (multivariate) distribution functions. Copulas are defined
in the third section and their most important properties are listed. At the heart
of this chapter is Sklar’s theorem, which can be seen as one of the main results
of copula theory. Furthermore, bounds are specified between which each copula
moves. To conclude the first part of this master thesis, we will provide examples
of copulas.

2.1 Notational Conventions

At first, we will specify some basic notational conventions that will be convenient
throughout this thesis.

• A probability space is a triplet (Ω,F ,P), where Ω is nonempty, F is a
σ-algebra of subsets of Ω and P denotes a probability measure on F .

• By N we denote the set of natural numbers {1, 2, . . . } and we define
N0 = N ∪ {0}. R is the set of real numbers. In addition, let R :=
R∪ {−∞,+∞} = [−∞,+∞] be the extended real numbers. Moreover, for
d ∈ N, Rd (respectively, Rd) denotes the set of all d-dimensional column
vectors with entries in R (respectively, R).

• For all pairs of points x = (x1, . . . , xd)>, y = (y1, . . . , yd)> ∈ Rd (respec-

3



4 Chapter 2. Elementary Copula Theory

tively, Rd) we define a partial order by

x < y ⇐⇒ xi < yi ∀i = 1, . . . , d.

Analogously, x ≤ y is defined.

• Given x, y ∈ Rd (respectively, Rd) with x < y, we define a d-dimensional
left-open rectangle (x, y] by the Cartesian product

(x, y] =
d×
i=1

(xi, yi].

Similar definitions can be given for d-dimensional closed, open or right-open
rectangles.

2.2 Preliminaries on (Multidimensional)
Distribution Functions

Definition 2.1. Given a random vector (X1, . . . , Xd)> : Ω → Rd on a prob-
ability space (Ω,F ,P), its d-dimensional (multivariate) distribution function
F : Rd → [0, 1] is defined by3

F (x1, . . . , xd) = P[X1 ≤ x1, . . . , Xd ≤ xd ], x1, . . . , xd ∈ R.

By setting the values at infinity as the corresponding limits, the domain of F
can be uniquely extended to Rd.

Each (multivariate) distribution function F has the following properties:4

(DF1) F is a non-decreasing function, i.e. F (x) ≤ F (y) for all x, y ∈ Rd with
x ≤ y.

(DF2) F is right-continuous in each argument, i.e. for all points
(x1, . . . , xi−1, xi+1, . . . , xd) ∈ Rd−1 the function
R 3 t 7→ F (x1, . . . , xi−1, t, xi+1, . . . , xd) is continuous on the right.

(DF3) lim
x1,...,xd→∞

F (x1, . . . , xd) = 1.

(DF4) For i = 1, . . . , d and x1, . . . , xi−1, xi+1, . . . , xd ∈ R it holds that
lim

xi→−∞
F (x1, . . . , xd) = 0.

(DF5) For points a = (a1, . . . , ad) and b = (b1, . . . , bd) in Rd with a ≤ b and
j = 1, . . . , d,

2∑
i1=1
· · ·

2∑
id=1

(−1)i1+···+idF (x1,i1 , . . . , xd,id) ≥ 0, xj,1 = aj , xj,2 = bj .

3cf. [10, Definition 1.2.9]
4cf. [9, Theorem 1.2.1, Definition 1.2.2] and [20, p. 27]



Chapter 2. Elementary Copula Theory 5

Remark 2.2. Note that by [22, Lemma 6.59], characteristics (DF1) and (DF2)
imply that F is a right-continuous function on Rd.

Conversely, for every function F : Rd → [0, 1] satisfying conditions (DF1)–
(DF5), there exists a probability space (Ω,F ,P) and a random vector X defined
on it, such that F is the distribution function of X.5

Definition 2.3. Let d ≥ 2 and let F be the d-dimensional distribution function of
a random vector (X1, . . . , Xd)>. For a subset κ = {i1, . . . , ik} of I = {1, . . . , d}
of size k, k = 1, . . . , d − 1, we define the κ-marginal distribution function
Fκ : Rk → [0, 1] of the random vector (Xi1 , . . . , Xik)> by6

Fκ(xi1 , . . . , xik) = lim
xi→∞∀i∈I\κ

F (x1, . . . , xd), (xi1 , . . . , xik) ∈ Rk,

where xi` = xj for i` = j (` = 1, . . . , k and j ∈ κ). If κ = {i}, for i ∈ I we call
Fi(xi) := Fκ(xi) a univariate marginal distribution function of F .

A generalized inverse distribution function can be assigned to each univariate
distribution function. Under additional conditions (compare for Remark 2.5),
this generalized inverse agrees with the standard inverse.

Definition 2.4. For a univariate distribution function F : R → [0, 1], its
generalized inverse function (respectively, lower quantile function) F← : [0, 1]→
R is given by7

F←(y) := inf{x ∈ R : F (x) ≥ y}, y ∈ [0, 1].

By convention, inf ∅ = +∞ and inf R = −∞.

Remark 2.5. In the case of a continuous and strictly increasing distribution
function F , the generalized inverse F← coincides with the ordinary inverse F−1

on Ran(F ), where Ran(F ) := {F (x) : x ∈ R} denotes the image (range) of F .8

In the following lemma we will list important properties of the generalized
inverse function. For a proof, interested readers are referred to [12], where the
authors explain numerous facts about generalized inverses and deal with various
fallacies.

Lemma 2.6. Let F be a univariate distribution function on R with limits
F (−∞) := limx→−∞ F (x) = 0 and F (+∞) := limx→+∞ = 1. Further, let F←
denote the generalized inverse function of F . Then for all x ∈ R and y ∈ [0, 1]:9

(GI1) F← is increasing.

(GI2) F←(y) ∈ R ⇒ F← is left-continuous at y and permits a limit from the
right.

5cf. [10, Theorem 1.2.13]
6following closely [10, Definition 1.2.15]
7cf. [12, Definition 2.1]
8cf. [12, Remark 2.2(1)]
9cf. [12, Proposition 2.3]



6 Chapter 2. Elementary Copula Theory

(GI3) F is continuous ⇐⇒ F← is strictly increasing.

(GI4) F (x) ≥ y ⇐⇒ F←(y) ≤ x.

(GI5) F←(F (x)) ≤ x. If F is strictly increasing ⇒ F←(F (x)) = x.

(GI6) F←(y) <∞ ⇒ F (F←(y)) ≥ y.

(GI7) If y ∈ Ran(F ) ∪ {inf Ran(F ), sup Ran(F )} ⇒ F (F←(y)) = y.

The subsequent lemma can be useful when working with generalized inverse
functions. It states that for a given univariate distribution function F , {x ∈
R : F←(F (x)) 6= x} is a null set with respect to the corresponding probability
measure:10

Lemma 2.7. For a random variable X on (Ω,F ,P) with univariate distribution
function F ,

F←(F (X)) = X P-a.s. (2.1)

Theorem 2.8. Let F be a univariate distribution function and let F← denote
its generalized inverse function. Then the following statements apply:11

(a) Quantile Transformation: If U is a standard uniformly distributed ran-
dom variable, then P[F←(U) ≤ x] = F (x) holds for all x in R.

(b) Distributional Transform: If F is continuous and a random variable X
has distribution function F , then F (X) is standard uniformly distributed.

Proof. For proving part (a) we use property (GI4) and obtain

P[F←(U) ≤ x] = P[U ≤ F (x)] = F (x), x ∈ R,

as U is standard uniformly distributed.

For part (b) let u ∈ (0, 1). We infer

P[F (X) ≤ u] (GI3)= P[F←(F (X)) ≤ F←(u)] (2.1)= P[X ≤ F←(u)] = F (F←(u))
(GI7)= u,

which completes the proof. q

Among other results, Theorem 2.8 will be used for a proof of the first part of
Sklar’s theorem in the case of continuous univariate marginal distributions. It
describes how to generate random samples from any given probability distribution
with known generalized inverse function and is usually used for Monte Carlo
methods.

10cf. [25, Proposition A.4]
11cf. [25, Proposition 5.2]
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2.3 Definition and Basic Properties

Broadly speaking, the multivariate distribution function F of a random vector
X = (X1, . . . , Xd)> contains two kinds of information:12

(i) the univariate marginal distributions F1, . . . , Fd and

(ii) the dependency structure among the components.

In most cases, knowing the univariate marginal distributions F1, . . . , Fd is not
enough in order to determine F . Additional understanding of how the margins
are coupled is required. This information can be obtained by means of a copula
of X. In general, it can be said that it is sufficient to know the copula and
the marginal distributions to specify the underlying multivariate distribution
function.13 This leads us to the definition of copulas:14

Definition 2.9. Let d ∈ N, d ≥ 2 and let (U1, . . . , Ud)> denote a random
vector on a probability space (Ω,F ,P), such that the random variable Ui is
standard uniformly distributed for all i = 1, . . . , d. A d-dimensional copula
C is a multivariate distribution function on the d-dimensional unit cube with
univariate standard uniform marginals,

C : [0, 1]d → [0, 1]
(u1, . . . , ud) 7→ P[U1 ≤ u1, . . . , Ud ≤ ud ].

The following key characteristics can be concluded from the definition above,
as C is a multivariate distribution function:15

(C1) Each copula C is increasing in each component:

C(u) ≤ C(v) ∀u, v ∈ [0, 1]d, u ≤ v.

(C2) Each copula C is grounded, meaning that for all (u1, . . . , ud) ∈ [0, 1]d:

C(u1, . . . , ud) = 0, if ui = 0 for at least one i = 1, . . . , d.

(C3) Each copula C has standard uniform marginal distributions:

C(1, . . . , 1, ui, 1, . . . , 1) = ui ∀ui ∈ [0, 1], i = 1, . . . , d.

(C4) Each copula C is d-increasing, meaning that for a = (a1, . . . , ad) and
b = (b1, . . . , bd) with 0 ≤ aj < bj ≤ 1 we have that for all j = 1, . . . , d:

2∑
i1=1
· · ·

2∑
id=1

(−1)i1+···+idC(u1,i1 , . . . , ud,id) ≥ 0, uj,1 = aj , uj,2 = bj .

12cf. [25, p. 184]
13cf. [24, p. 4]
14cf. [24, Definition 1.1]
15cf. [25, p. 185]
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Remark 2.10. At first glance, the last condition seems very abstract. Property
(C4) stems from the inclusion–exclusion principle and guarantees that for a
random vector (U1, . . . , Ud)> with distribution function C, the probability P[a1 <
U1 ≤ b1, . . . , ad < Ud ≤ bd] is not negative.16

Any function C : [0, 1]d → [0, 1] fulfilling (C1)–(C4) is a copula.17 The conti-
nuity – and thus the right-continuity – results from the uniformly distributed
marginal distributions. More generally, one can also conclude that every copula
C is a Lipschitz continuous function. To confirm this assertion, we will first
prove the following lemma:18

Lemma 2.11. Let F denote a multivariate distribution function with univariate
marginal distributions F1, . . . , Fd. Then for all pairs of points (x1, . . . , xd) and
(y1, . . . , yd) in Rd,

|F (x1, . . . , xd)− F (y1, . . . , yd)| ≤
d∑
i=1
|Fi(xi)− Fi(yi)| . (2.2)

Proof. Let F be the multivariate distribution function of a random vector X
on a probability space (Ω,F ,P) with univariate marginals F1, . . . , Fd and let
(x1, . . . , xd) and (y1, . . . , yd) denote arbitrary points in Rd. Using the triangle
inequality, it follows that

|F (x1, . . . , xd)− F (y1, . . . , yd)| ≤ |F (x1, . . . , xd)− F (y1, x2, . . . , xd)|
+ |F (y1, x2, . . . , xd)− F (y1, y2, x3, . . . , xd)|
+ . . .

+ |F (y1, . . . , yd−1, xd)− F (y1, . . . , yd)| .

For any i = 1, . . . , d we can now consider the term

F (y1, . . . , yi, xi+1, . . . , xd)− F (y1, . . . , yi−1, xi, . . . , xd).

Assuming xi < yi, property (DF1) yields

F (y1, . . . , yi, xi+1, . . . , xd)− F (y1, . . . , yi−1, xi, . . . , xd) ≥ 0.

Further,

F (y1, . . . , yi, xi+1, . . . , xd)− F (y1, . . . , yi−1, xi, . . . , xd)
= P[X1 ≤ y1, . . . , Xi ≤ yi, Xi+1 ≤ xi+1, . . . , Xd ≤ xd]
− P[X1 ≤ y1, . . . , Xi−1 ≤ yi−1, Xi ≤ xi, . . . , Xd ≤ xd]

= P[X1 ≤ y1, . . . , xi < Xi ≤ yi, . . . , Xd ≤ xd]
≤ P[xi < Xi ≤ yi] = Fi(yi)− Fi(xi).

In the opposite case xi ≥ yi the signs turn around and in total we have that

|F (y1, . . . , yi, xi+1, . . . , xd)− F (y1, . . . , yi−1, xi, . . . , xd)| ≤ |Fi(yi)− Fi(xi)| .

Applying this partial result for all i = 1, . . . , d, we obtain (2.2). q
16cf. [24, p. 8]
17cf. [10, Theorem 1.4.1]
18cf. [20, Lemma 8.2]
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As a direct consequence of the preceding lemma, we receive the following:19

Theorem 2.12. A function C : [0, 1]d → [0, 1] satisfying (C1)– (C4) (in partic-
ular, each copula) is globally Lipschitz-continuous with Lipschitz constant 1 with
respect to the `1-norm,

|C(u1, . . . , ud)− C(v1, . . . , vd)| ≤
d∑
i=1
|ui − vi| , u, v ∈ [0, 1]d.

Proof. As each copula has standard uniform marginal distributions, the statement
follows directly by application of Lemma 2.11. q

2.4 Sklar’s Theorem

In this section, we shall deal with the theorem of Sklar20, which can be seen as
the main theorem of copula theory. In essence, it states that any dependency
structure – however complicated – can be described by means of a copula, which
provides a better understanding of dependency. Furthermore, Sklar’s theorem
permits a flexible modelling of dependence, since a multivariate distribution can
be constructed from arbitrary univariate marginal distributions and copulas.21

Theorem 2.13 (Sklar22). Let F denote a multivariate distribution function
with univariate marginals F1, . . . , Fd. Then there exists a d-dimensional copula
C : [0, 1]d → [0, 1], such that for all x1, . . . , xd ∈ R it holds that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (2.3)

If F1, . . . , Fd are continuous, then C is unique. Conversely, if C is a copula
and F1, . . . , Fd are univariate distribution functions, then the function F defined
via (2.3) is a d-dimensional distribution function with one-dimensional margins
F1, . . . , Fd.

Remark 2.14. As the concept of copulas is slightly different for multivariate
discrete or mixed distributions, we will prove the first part of the previous
theorem – existence and uniqueness of copulas – for the case of continuous
marginal distributions first. Afterwards, we will return to the general case.

Proof of Theorem 2.13. Let F be the distribution function of a random vector
(X1, . . . , Xd)> on the probability space (Ω,F ,P) with continuous univariate
marginals F1, . . . , Fd. For i = 1, . . . , d we define

Ui = Fi(Xi).
19cf. [10, Theorem 1.5.1]
20cf. [34]
21cf. [25, p. 186]
22cf. [24, Theorem 1.2]
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From Theorem 2.8(b) we already know that Ui ∼ U(0, 1) for all i = 1, . . . , d.
Define C to be the distribution function of the random vector (U1, . . . , Ud)>.
For x1, . . . , xd ∈ R,

F (x1, . . . , xd) = P[X1 ≤ x1, . . . , Xd ≤ xd ]
= P[F←1 (F1(X1)) ≤ x1, . . . , F

←
d (Fd(Xd)) ≤ xd ] Lemma 2.7

= P[F1(X1) ≤ F1(x1), . . . , Fd(Xd) ≤ Fd(xd)] (GI3),(GI5)

= P[U1 ≤ F1(x1), . . . , Ud ≤ Fd(xd)]
= C(F1(x1), . . . , Fd(xd)).

Then, by construction, C is a copula, as it is the distribution function of a
random vector with standard uniform marginal distributions. Under the use of
(GI7) and ui := Fi(xi) ∈ (0, 1) for xi ∈ R, i = 1, . . . , d,

C(u1, . . . , ud) = F (F←1 (u1), . . . , F←d (ud)),

which enables us to express C explicitly by F and the margins F1, . . . , Fd and
thus proves uniqueness on [0, 1]d, since the boundary values of C are uniquely
determined by (C2) and (C3).

For the reverse statement let C be a copula and let F1, . . . , Fd denote arbitrary
univariate distribution functions that do not necessarily have to be continuous.
Then there exists a random vector (U1, . . . , Ud) ∼ C such that Ui ∼ U(0, 1) for
all i = 1, . . . , d. Applying Theorem 2.8(a) yields that the random variable

Xi := F←i (Ui)

has distribution function Fi for i = 1, . . . , d. Let x1, . . . , xd take values in R.
Using (GI4),

P[X1 ≤ x1, . . . , Xd ≤ xd ] = P[F←1 (U1) ≤ x1, . . . , F
←
d (Ud) ≤ xd ]

= P[U1 ≤ F1(x1), . . . , Ud ≤ Fd(xd)]
= C(F1(x1), . . . , Fd(xd))
= F (x1, . . . , xd),

which proves the theorem, as we have constructed a random vector (X1, . . . , Xd)
with multivariate distribution function F and one-dimensional marginals
F1, . . . , Fd. q

As a direct consequence of the proof of Sklar’s theorem we can infer the follow-
ing corollary, which allows us to determine the copula for a given multivariate
distribution function with known marginals.23

Corollary 2.15. Let F be a d-dimensional distribution function on Rd with
continuous univariate margins F1, . . . , Fd. Then for all u1, . . . , ud in (0, 1),

C(u1, . . . , ud) = F (F←1 (u1), . . . , F←d (ud))

is the copula of F . The boundary values of C are uniquely determined by
properties (C2) and (C3).

23cf. [25, p. 187]
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Example 2.16 shows how to find a bivariate distribution function for a pair of
random variables with given marginals and copula. Contrariwise, Example 2.17
demonstrates how to construct a copula for a given 2-dimensional distribution
function of a random vector:

Example 2.16. Let X1, X2 denote exponentially distributed random variables
with expectations E[X1] = 1

a and E[X2] = 1
b , a, b > 0. It is standard knowledge

that the univariate marginal distributions of X1 and X2 are given by

F1(x1) =
{

1− e−ax1 for x1 ≥ 0,
0 otherwise,

F2(x2) =
{

1− e−bx2 for x2 ≥ 0,
0 otherwise.

Suppose that the dependency structure of (X1, X2) is given by a bivariate
copula24

C(u1, u2) = u1u2, u1, u2 ∈ [0, 1].
From Sklar’s theorem it follows that the 2-dimensional distribution function F
of the random vector (X1, X2) is given by

F (x1, x2) = C(F1(x1), F2(x2)) =
{

(1− e−ax1)(1− e−bx2) for x1, x2 ≥ 0,
0 otherwise.

Example 2.17. Let

F (x1, x2) =
(
1 + e−x1 + e−x2

)−1
, x1, x2 ∈ R,

denote the bivariate distribution function of a random vector (X1, X2).25 Its
margins are given by

F1(x1) = lim
x2→+∞

F (x1, x2) =
(
1 + e−x1

)−1
,

F2(x2) = lim
x1→+∞

F (x1, x2) =
(
1 + e−x2

)−1
.

Obviously, F1 and F2 are continuous on R as compositions of continuous functions.
As they are also strictly increasing on R, the generalized inverse function coincides
with the standard inverse and for u1, u2 in (0, 1) we have26

F−1
1 (u1) = ln

(
u1

1− u1

)
,

F−1
2 (u2) = ln

(
u2

1− u2

)
.

Corollary 2.15 states that

C(u1, u2) = F (F−1
1 (u1), F−1

2 (u2))
24Details on examples of copulas will be discussed in Section 2.7.
25A proof that F is a bivariate distribution function is given in the appendix (Lemma A1).
26Here, ln(·) denotes the natural logarithm.



12 Chapter 2. Elementary Copula Theory

=
(

1 + 1− u1

u1
+ 1− u2

u2

)−1
, u1, u2 ∈ (0, 1),

is the copula of F . By Theorem 2.12 and properties (C2) and (C3) we can
conclude that C is unique and well defined on [0, 1]2.

Remark 2.18. A noteworthy characteristic for copulas of random vectors is,
that in the case of continuous univariate marginal distributions of the vector-
components, the copula is invariant under strictly increasing transformations.
Evidence of this claim can be found in [25, Proposition 5.6.], among others.

2.4.1 Generalization of the Distributional Transform

For the purpose to prove the remainder of Sklar’s theorem for non-continuous
univariate margins we will deal with a generalization of Theorem 2.8(b). To this
end, let (Ω,F ,P) denote a suitable probability space.

Definition 2.19. Let F denote the one-dimensional distribution function of
a real-valued random variable X on (Ω,F ,P). In addition, let V denote a
standard uniformly distributed random variable on the same probability space,
such that V is independent of X. For27 v ∈ (0, 1) and x ∈ R we define a modified
distribution function by28

F (x; v) = P[X < x] + vP[X = x]. (2.4)

The generalized distributional transform of the random variable X is then given
by

U := F (X;V ). (2.5)

For ease of notation let

F (x−) := lim
y↗x

F (y) = P[X < x]

denote the left-sided limit at x ∈ R of a univariate distribution function F . For
x ∈ R and v ∈ (0, 1), (2.4) can then be rewritten as

F (x; v) = F (x−) + v (F (x)− F (x−)).

Remark 2.20. In the case of a continuous distribution function F , F (x; v) = F (x)
is valid for all v ∈ (0, 1) and Theorem 2.8(b) holds, meaning that the random
varible U as given in (2.5) is standard uniformly distributed.29 The aim will
be to show that this statement can be adapted to the case of discrete or mixed
distributions as well.

27Note that v = 1 would be admissibly, but the modified distribution function would then
coincide with the ordinary distribution function which does not require generalization.

28cf. [33, Definition 1.2]
29cf. [32, p. 2]



Chapter 2. Elementary Copula Theory 13

Lemma 2.21. Let V and X denote independent random variables on (Ω,F ,P)
with V ∼ U(0, 1) and X ∼ F , where F denotes an arbitrary univariate distribu-
tion function on R. Fix u ∈ (0, 1) and let qu := inf{x ∈ R : F (x) ≥ u}. Then
for (x, v) ∈ (qu,∞)× (0, 1) the following holds:30

F (x; v) ≤ u ⇐⇒ F (x) = F (qu) = u. (2.6)

Proof. Fix u ∈ (0, 1) and let qu := inf{x ∈ R : F (x) ≥ u} denote the lower
u-quantile of F .

For the implication ”⇒ ” notice that

u ≥ F (x; v) = vF (x) + (1− v)F (x−)
(DF1)
≥ F (x−)

(DF1)
≥ F (qu)

(DF2)
≥ u.

Consequently,
F (qu) = F (x−) = u

and together with

F (x−) = F (x−) + v(F (x)− F (x−)) ⇐⇒ F (x)− F (x−) = 0

the statement is proved.

For the reverse implication ”⇐ ” let x > qu and F (x) = F (qu) = u. As F is
a non-decreasing function we infer that

F (x) = F (x−) = u.

Hence,

F (x; v) = F (x−) + v(F (x)− F (x−)) = u+ v(u− u) = u ≤ u

which proves (2.6). q

Proposition 2.22 (Generalized Distributional Transform31). As defined
in (2.5) let U denote the generalized distributional transform of a random variable
X with univariate distribution function F . Then the following statements hold:

(a) U ∼ U(0, 1).

(b) P[F←(U) = X] = 1.

Proof. In order to prove part (a) let (Ω,F ,P) denote a probability space sup-
porting two independent random variables X ∼ F and V ∼ U(0, 1) fulfilling the
requirements of Definition 2.19. Further, we set U := F (X;V ). For a fixed u in
(0, 1) let

qu := inf{x ∈ R : F (x) ≥ u}
30cf. [24, p. 14]
31cf. [32, Proposition 2.1] and [24, Lemma 1.4]
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be the lower u-quantile of F . To prove that U is a standard uniformly distributed
random variable we need to show that P[U ≤ u] = u holds.

As F (x; v) ≤ F (x) for all x ∈ R and v ∈ (0, 1) we can infer that

(−∞, qu)× (0, 1) ⊆ {(x, v) ∈ R× (0, 1) : F (x; v) < u}. (2.7)

As a result of (2.6) and (2.7) the following applies:

{F (X;V ) ≤ u} = {F (X;V ) ≤ u,X < qu}
∪ {F (X;V ) ≤ u,X = qu}
∪ {F (X;V ) ≤ u,X > qu}

= {X < qu}
∪ {F (X;V ) ≤ u,X = qu}
∪ {F (X) = F (qu) = u,X > qu}.

Obviously {F (X) = F (qu) = u,X > qu} corresponds to flat pieces of the
distribution function F and thus

P[F (X) = F (qu) = u,X > qu] = 0.

Therefore we can conclude that

P[U ≤ u] = P[X < qu] + P[F (X;V ) ≤ u,X = qu]
= P[X < qu] + P[F (qu;V ) ≤ u]P[X = qu]
= F (qu−) + P[F (qu−) + V (F (qu)− F (qu−)) ≤ u]P[X = qu].

• Case 1: P[X = qu] = 0.
It holds that

P[U ≤ u] = F (qu−) = F (qu) = P[X ≤ qu] = u.

• Case 2: P[X = qu] > 0.
As V is standard uniformly distributed it follows that

P[U ≤ u] = F (qu−) + P
[
V ≤

u− F (qu−)
F (qu)− F (qu−)

]
(F (qu)− F (qu−)) = u.

In summary, it follows that U is a standard uniformly distributed random
variable.

For part (b) we use the definition of U = F (X;V ) and can conclude that
F (X−) ≤ U ≤ F (X) holds P-a.s. Moreover, we know that for x ∈ R with
F (x) 6= F (x−) and u ∈ (F (x−), F (x)] we have that F←(u) = x. Thus by
Lemma 2.7 we have that

P[F←(U) = X] = 1,

which finalizes the proof. q
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2.4.2 Completion of the Proof of Sklar’s Theorem

Proposition 2.22 allows us to generalize the proof of the first part of Theorem
2.13 for arbitrary univariate marginal distributions:32

Let F denote the multidimensional distribution function of a random vector
X = (X1, . . . , Xd)> on a probability space (Ω,F ,P) with univariate margins
F1, . . . , Fd. In addition, let V denote a standard uniformly distributed random
variable on the same probability space such that V is independent of X. For
i = 1, . . . , d we set

Ui := F (Xi;V ).

Proposition 2.22 states that for i = 1, . . . , d the random variables Ui are standard
uniformly distributed and Xi = F←i (Ui) holds P-a.s. If we define C to be the
d-dimensional distribution function of the random vector (U1, . . . , Ud) we can
infer that

F (x1, . . . , xd) = P[X1 ≤ x1, . . . , Xd ≤ xd ]
= P[F←1 (U1) ≤ x1, . . . , F

←
d (Ud) ≤ xd ] Proposition 2.22(b)

= P[U1 ≤ F1(x1), . . . , Ud ≤ Fd(xd)] (GI4)

= C(F1(x1), . . . , Fd(xd)).

Thus, (2.3) holds and C is the copula of F and consequently Theorem 2.13 is
proven in its general form.

Remark 2.23. It should be noted that there are also other ways to prove Sklar’s
theorem in the case of non-continuous marginal distributions. Hence, interested
readers are referred to [10, Section 2.3] where the authors present three proofs
which make use of different properties of copulas.

2.4.3 Lack of Uniqueness of Copulas in the Case of
Non-Continuous Univariate Marginals

To see that there is lack of uniqueness of the underlying copula in the case
of discrete or mixed marginals, we will give an example in this subsection.33

Furthermore, we will show that even in the case of non-continuous univariate
marginal distributions we have unambiguousness, at least on the image of the
one-dimensional margins.

Example 2.24. Consider a bivariate random vector (X,Y ) on a probability
space (Ω,F ,P) with distribution as given in Table 2.1. For i = 1, 2 and j = 1, 2, 3,
the entries pij correspond to the probabilities P[X = xi, Y = yj ].

32cf. [32, Theorem 2.2]
33cf. [25, Example 5.5]
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X

Y
y1 = 0 y2 = 1 y3 = 2

x1 = 0 p11 = 1
6 p12 = 1

3 p13 = 1
6

x2 = 1 p21 = 0 p22 = 1
6 p23 = 1

6

Table 2.1

The probability mass functions are thus given by

P[X = 0] = 2
3 , P[X = 1] = 1

3 and

P[Y = 0] = 1
6 , P[Y = 1] = 1

2 , P[Y = 2] = 1
3 .

The univariate distribution functions of X and Y can be specified as follows:

FX(x) =


0 for x ∈ (−∞, 0),
2
3 for x ∈ [0, 1),
1 for x ∈ [1,∞)

and FY (y) =


0 for y ∈ (−∞, 0),
1
6 for y ∈ [0, 1),
2
3 for y ∈ [1, 2),
1 for y ∈ [2,∞).

From Sklar’s theorem 2.13 it follows that the 2-variate joint distribution F of
(X,Y ) is of the form

F (x, y) = C(FX(x), FY (y)), x, y ∈ R,

for some copula C. As Ran(FX) = {0, 2
3 , 1},Ran(FY ) = {0, 1

6 ,
2
3 , 1}, due to

characteristics (C2) and (C3), the only restrictions we have for C are

C

(
2
3 ,

1
6

)
= 1

6 and C

(
2
3 ,

2
3

)
= 1

2 . (2.8)

Therefore, the copula C is not unique on [0, 1]2, since each bivariate copula
fulfilling (2.8) is suitable for representing the 2-dimensional distribution of the
random vector (X,Y ).

The subsequent theorem guarantees uniqueness of copulas on the image of
the univariate distribution functions when they are not all continuous:34

Theorem 2.25. Let F denote the multivariate distribution function of a random
vector X = (X1, . . . , Xd)> on Rd with univariate marginals F1, . . . , Fd. Then a
copula C of X is uniquely determined on Ran(F1)× · · · × Ran(Fd).

Proof. Let F denote a d-variate joint distribution function of a random vector
X = (X1, . . . , Xd)> on Rd and let F1, . . . , Fd denote its univariate marginals.
For x1, . . . , xd ∈ R we define

yi = Fi(xi), i = 1, . . . , d.
34cf. [10, Lemma 2.2.9]
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Further, let C denote a copula of X. By Sklar’s theorem 2.13 it holds that

F (x1, . . . , xd) = C(y1, . . . , yd), x1, . . . , xd ∈ R.

If we now assume that there exists a second copula C̃ of X, then the following
applies for x1, . . . , xd ∈ R:

|C(y1, . . . , yd)− C̃(y1, . . . , yd)| = |F (x1, . . . , xd)− F (x1, . . . , xd)| = 0.

Hence, C is unique on Ran(F1)× · · · × Ran(Fd). q

2.5 Fréchet–Hoeffding Bounds

In this section we will give bounds on copulas. While we will see that the upper
bound is itself a copula, the lower one is a copula only in dimension d = 2.

Definition 2.26. We define multivariate functions W,M : [0, 1]d → [0, 1] by

W (u1, . . . , ud) = max
{

d∑
i=1

ui + 1− d, 0
}
, (2.9)

M(u1, . . . , ud) = min {u1, . . . , ud} , (2.10)

where u1, . . . , ud ∈ [0, 1].

Theorem 2.27 (Fréchet–Hoeffding Bounds35). For every copula C we have
the bounds

W (u1, . . . , ud) ≤ C(u1, . . . , ud) ≤M(u1, . . . , ud), u1, . . . , ud ∈ [0, 1].

Proof. To prove the first inequality let u1, . . . , ud ∈ [0, 1] and notice that for a
random vector (U1, . . . , Ud) with univariate standard uniform marginal distribu-
tions,

C(u1, . . . , ud) = P[U1 ≤ u1, . . . , Ud ≤ ud ]

≥ 1−
d∑
i=1

P[Ui > ui ]

= 1−
d∑
i=1

(1− P[Ui ≤ ui ])

= 1− d+
d∑
i=1

ui.

Since C(u1, . . . , ud) ≥ 0 by definition, we have that

C(u1, . . . , ud) ≥W (u1, . . . , ud).
35cf. [25, Theorem 5.7]
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An alternative way to prove the first inequality would be to use Theorem 2.12:
we know that for u1, . . . , ud ∈ [0, 1],

|C(1, . . . , 1)− C(u1, . . . , ud)|= 1− C(u1, . . . , ud) ≤
d∑
i=1

(1− ui) = d−
d∑
i=1

ui,

which can be rewritten as

1− d+
d∑
i=1

ui ≤ C(u1, . . . , ud).

The second inequality follows from combining characteristics (C1) and (C3),
as for u1, . . . , ud ∈ [0, 1] we have

C(u1, . . . , ud) ≤ C(1, . . . , 1, ui, 1, . . . , 1) = ui

for all i = 1, . . . , d. q

In a similar way we come to a comparable result for multivariate distribution
functions:36

Corollary 2.28. Every multivariate distribution function F on Rd with uni-
variate marginal distributions F1, . . . , Fd fulfils

max
{

d∑
i=1

Fi(xi) + 1− d, 0
}
≤ F (x1, . . . , xd) ≤ min {F1(x1), . . . , Fd(xd)} ,

for x1, . . . , xd ∈ R.

As mentioned at the beginning of this section we will now provide a proof
that the upper bound in Theorem 2.27 is a copula for all d ∈ N, d ≥ 2, while the
lower bound is a copula only for dimension d = 2. For this purpose we consider
the subsequent proposition:37

Proposition 2.29. Consider the functions M and W from Definition 2.26.
Then the following statements hold:

(a) M is a copula on [0, 1]d for all d ∈ N, d ≥ 2.

(b) W is a copula only on [0, 1]2.

Proof. In intention of proving part (a), let U denote a univariate standard
uniformly distributed random variable on a suitable probability space (Ω,F ,P)
and consider the random vector (U, . . . , U) of length d ≥ 2. For u1, . . . , ud ∈ [0, 1],

P[U ≤ u1, . . . , U ≤ ud ] = P[U ≤ min{u1, . . . , ud}] = min{u1, . . . , ud}.
36cf. [25, Remark 5.8]
37cf. [10, Example 1.3.3, Example 1.3.5]
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Consequently, M(u1, . . . , ud) = min{u1, . . . , ud} is a copula, as it is the distribu-
tion function of a random vector with univariate standard uniform marginals.

To see that W is a copula for dimension d = 2 we consider the random vector
(U, 1− U) where U denotes a standard uniformly distributed random variable.38

We observe that for u1, u2 ∈ [0, 1],

P[U ≤ u1, 1− U ≤ u2] = P[1− u2 ≤ U ≤ u1] = max{u1 + u2 − 1, 0}.

Thus W is a copula for dimension d = 2.

We will show explicitly39 that W is not a copula for d ≥ 3, since the d-
increasing property is not met. Let d be arbitrary in N, d ≥ 3 and consider the
hypercube [ 1

2 , 1]d ⊂ [0, 1]d. Further, let ui,1 = 1
2 , ui,2 = 1 for i = 1, . . . , d. We

can infer that

2∑
i1=1

. . .

2∑
id=1

(−1)i1+···+id (u1,i1 + · · ·+ ud,id + 1− d)+ = 1− d

2 ,

since the summand is differing from 0 exactly when
∑d
k=1 ik ≥ 2d−1. Evidently,

1− d
2 < 0 for d ≥ 3 and thus W can not be a copula for dimensions greater than

2, as characteristic (C4) would be not fulfilled. q

2.6 Comonotonicity and Countermonotonicity

This brief section is dedicated to perfect dependence (not to be confused with
perfect linear dependence) between random variables.

Comonotonicity between random variables means that they are perfectly
positively dependent on each other:40

Definition 2.30. Random variables X1, . . . , Xd on a probability space (Ω,F ,P)
are called comonotonic if they can be coupled by means of the Fréchet–Hoeffding
upper bound copula as given in (2.10).

Let X1, . . . , Xd denote arbitrary random variables on a probability space
with univariate marginals F1, . . . , Fd. The above definition states that we can
represent the joint distribution function F of (X1, . . . , Xd) according to the
theorem of Sklar as M(F1(x1), . . . , Fd(xd)), x1, . . . , xd ∈ R.

The proof of the subsequent lemma is omitted. Instead, interested readers are
referred to [25, Proposition 5.16].

38A more analytical proof of W being a copula for d = 2, where the properties (C1)–(C4)
are verified, can be found in the appendix (cf. Lemma A2).

39cf. [10, p. 27]
40cf. [25, Definition 5.15]
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Lemma 2.31. Let f1, . . . , fd denote monotonically increasing functions. Then
random variables X1, . . . , Xd are comonotonic if and only if (X1, . . . , Xd)

d=
(f1(Z), . . . , fd(Z)) holds for some random variable Z.41

Similarly, contramonotonicity is defined by the lower Fréchet–Hoeffding barrier.
Since this is a copula only for dimension d = 2 (c.f. proof of Proposition 2.29(b))
the following applies:42

Definition 2.32. Two random variables X and Y are called countermonotonic
if they allow the lower Fréchet–Hoeffding bound W as copula.

As in the case of comonotonicity the following characterization holds:43

Lemma 2.33. Let f1 denote a monotonically increasing function and let f2
be a monotonically decreasing function. Then random variables X and Y are
countermonotonic if and only if (X,Y ) d= (f1(Z), f2(Z)) holds for some random
variable Z.

Remark 2.34. For random variables with continuous marginal distributions, there
are further characterizations of co- and contramonotonicity, which we will not
discuss in this master thesis. Interested readers are referred to [25, Section 5.1.6].

2.7 Examples of Copulas

In this section, we will give some examples of copulas. We distinguish be-
tween:44

(i) Fundamental Copulas, which describe fundamental dependency structures,

(ii) Implicit Copulas, which are determined from known multivariate distribu-
tions under the use of Sklar’s theorem,

(iii) Explicit Copulas, which are given by simple and explicit formulas, mostly
according to a mathematical principle of construction.

In addition, we will briefly introduce the concept of asymmetric multivariate
copulas.

Remark 2.35. For a detailed description of all common and not yet so well-known
copulas we can refer to the work of Joe [20, Chapter 3 and 4], where the author
also addresses the interesting theory of vine copulas.

41Here, d= denotes equality in distribution.
42cf. [25, Definition 5.18]
43cf. [25, Proposition 5.19]
44cf. [25, p. 189]
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2.7.1 Fundamental Copulas

As already stated above, fundamental copulas describe essential dependence
structures. These include comonotonicity (perfect positive dependency), counter-
monotonicity (perfect negative dependency) and independence (no dependency).

Definition 2.36. The independence copula Π : [0, 1]d → [0, 1] is given by45

Π(u1, . . . , ud) :=
d∏
i=1

ui, u1, . . . , ud ∈ [0, 1].

Clearly, Π is actually a copula, as for independent and standard uniformly
distributed random variables U1, . . . , Ud on a probability space (Ω,F ,P) it holds
that

P[U1 ≤ u1, . . . , Ud ≤ ud] =
d∏
i=1

P[Ui ≤ ui] =
d∏
i=1

ui, u1, . . . , ud ∈ [0, 1].

Thus, Π is a copula in the sense of Definition 2.9.

Definition 2.37. The comonotonicity copula M : [0, 1]d → [0, 1] is given by the
Fréchet–Hoeffding upper bound (2.10):46

M(u1, . . . , ud) := min{u1, . . . , ud}, u1, . . . , ud ∈ [0, 1].

That M is actually a copula has been already proved in Proposition 2.29(a).
If we consider a standard uniformly distributed random variable U and set
U1 = U, . . . , Ud = U , then M is the distribution function of the random vector
(U1, . . . , Ud).

Definition 2.38. The countermonotonicity copula W : [0, 1]2 → [0, 1] is given
by the Fréchet–Hoeffding lower bound (2.9) for dimension d = 2:47

W (u1, u2) := max{u1 + u2 − 1, 0}, u1, u2 ∈ [0, 1].

Proposition 2.29(b) states that W is a copula for d = 2. For a standard
uniformly distributed random variable U , W is the distribution function of the
random vector (U, 1− U).

2.7.2 Implicit Copulas

Implicit copulas are obtained from known multivariate distributions using
Sklar’s theorem. In the following we will define the Gaussian and the t-copula,

45cf. [24, Example 1.1]
46cf. [24, Example 1.2]
47cf. [24, Example 1.3]
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which are certainly two of the most well-known implicit copulas:

Definition 2.39. Let Φ denote the distribution function of a univariate standard
normal distribution and let ΦdP be the distribution function of a d-variate normal
distribution with correlation matrix48 P and mean 0.49 Then the d-dimensional
Gaussian copula CGa

P : [0, 1]d → [0, 1] is given as50

CGa
P (u1, . . . , ud) := ΦdP (Φ−1(u1), . . . ,Φ−1(ud)), u1, . . . , ud ∈ [0, 1].

There are the following special cases for the Gaussian copula CGa
P :51

(i) If P = Id, where Id denotes the d-dimensional identity matrix, then CGa
Id

coincides with the independence copula Π.

(ii) If P = Jd, where Jd denotes a d × d matrix consisting entirely of ones,
then CGa

Jd
coincides with the comonotonicity copula M .

(iii) If d = 2 and P =
(

1 −1
−1 1

)
, then CGa

P coincides with the countermono-

tonicity copula W . Especially in the bivariate case the Gaussian copula
interpolates between countermonotonicity, independence and comonotonic-
ity.

Definition 2.40. Let tν be the distribution function of a univariate standard t-
distribution with ν degrees of freedom, ν > 0. By tν,P we denote the multivariate
distribution function of a d-variate t-distribution with correlation matrix P and
ν > 0 degrees of freedom.52 Then the d-dimensional t-copula Ctν,P : [0, 1]d →
[0, 1] is given as53

Ctν,P (u1, . . . , ud) := tν,P (t−1
ν (u1), . . . , t−1

ν (ud)), u1, . . . , ud ∈ [0, 1].

As a special case, P = Jd corresponds to comonotonicity. Unlike to the
Gaussian copula, for P = Id we do not obtain independence.

Remark 2.41. Note that both, the multidimensional normal and t-distribution
are described in detail in [25, Chapter 3]. For the implementation of the Gauss-
ian and the t-copula in R, in particular for the evaluation of the multivariate
distribution functions, we refer interested readers to [3] and [4] at this point.

48A correlation matrix is a symmetric and positive semi-definite matrix with entries 1 in the
diagonal.

49Here, 0 denotes the origin in Rd.
50cf. [20, p. 163]
51cf. [25, p. 191]
52cf. [25, Example 3.7]
53cf. [25, p. 191]
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2.7.3 Explicit Copulas

We will define common explicit copulas for the general d-dimensional case:

Definition 2.42. For a real-valued parameter α > 0, the d-variate Clayton
copula CCl

α : [0, 1]d → [0, 1] is defined as54

CCl
α (u1, . . . , ud) = max


(

d∑
i=1

u−αi − d+ 1
)−1/α

, 0

 , u1, . . . , ud ∈ (0, 1].

By taking the limit α↘ 0, the resulting Clayton copula coincides with the
independence copula. For α↗ +∞ one obtains the comonotonicity copula.55

Definition 2.43. For a real-valued parameter α ≥ 1 the d-dimensional Gumbel
copula CGu

α : [0, 1]d → [0, 1] is given by56

CGu
α (u1, . . . , ud) := exp

−( d∑
i=1

(− ln ui)α
)1/α , u1, . . . , ud ∈ (0, 1].

Special cases of the Gumbel copula are for α = 1 independence and for
α↗ +∞ comonotonicity.57

Definition 2.44. For a real-valued parameter α > 0 the d-dimensional Frank
copula CFr

α : [0, 1]d → [0, 1] is given by58

CFr
α (u1, . . . , ud) := − 1

α
ln
(

1− (1− e−α)1−d
d∏
i=1

(1− e−αui)
)
,

where u1, . . . , ud ∈ (0, 1].

For α↘ 0 one obtains independence as a special case.59

All listed copulas in this subsection belong to the family of Archimedean
copulas, for whose concept we refer interested readers to [24, Chapter 2] and [25,
Section 5.4], for instance.

2.7.4 Asymmetric Copulas

All copulas presented in the previous Subsection 2.7.3 are symmetric, i.e.
C(u1, . . . , ud) = C(uπ(1), . . . , uπ(d)) for all u1 . . . , ud ∈ [0, 1] and permutations

54cf. [10, Example 6.5.17]
55cf. [10, Example 6.5.17]
56cf. [10, Example 6.5.16]
57cf. [10, Example 6.5.16]
58cf. [23, Example 2]
59cf. [10, Example 6.5.18]
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π : {1, . . . , d} → {1, . . . , d}. Thus, in this subsection we will briefly introduce
the concept of asymmetric copulas. We will mainly get our information from
[23], thus we will avoid explicit references to this paper.

Although copulas offer the possibility of flexible dependence-modelling, most
known copulas usually only have one or two parameters and consequently a
limited variety of shapes. In [23] the author addresses this problem by introducing
a methodology of obtaining parametric families of copulas with a flexible number
of parameters. As the author states, the main advantage over known copulas is
that asymmetric copulas can – in many cases – be better fitted to data since they
can be used to model a large number of feasible dependence structures.

One of the main results in [23] is as follows:

Theorem 2.45. For k ∈ N, i = 1, . . . , d and j = 1, . . . , k let gj,i : [0, 1] →
[0, 1] denote strictly increasing functions with the exception that gj,i can also
correspond to the 1-function. Suppose that

∏k
j=1 gj,i(v) = v for all v ∈ [0, 1] and

i = 1, . . . , d. Further, let gj,i(0) = limv↘0 gj,i(v) for j = 1, . . . , k and i = 1, . . . , d.
If C1, . . . , Ck : [0, 1]d → [0, 1] are d-variate copulas, then the function

C̃ : [0, 1]d → [0, 1]

(u1, . . . , ud) 7→
k∏
j=1

Cj(gj,1(u1), . . . , gj,d(ud))

is a d-dimensional copula as well.

For the choice of the functions gj,i the author gives four examples which meet
the requirements of the theorem above.

Example 2.46. The copula C̃Cl
θ,α : [0, 1]d → [0, 1] given as

C̃Cl
θ,α(u1, . . . , ud) = max


(

d∑
i=1

u−αθii − d+ 1
)−1/α

, 0


d∏
i=1

u1−θi
i ,

where u1, . . . , ud ∈ (0, 1], is an extension of the Clayton copula with d + 1
parameters α > 0 and θ = (θ1, . . . , θd) ∈ [0, 1]d.

Remark 2.47. The aim of this subsection was to give a brief and concise intro-
duction to the theory of asymmetric copulas. In [23] further generalizations of
the copulas presented in Subsection 2.7.3 can be found. Interested readers may
turn to this paper for further information.



Chapter 3

Measures of Dependency

As we have already seen in Chapter 2, the dependence structure between random
variables is described by means of copulas. Since these are multi-dimensional
mathematical objects and therefore not easily explainable (especially to non-
mathematicians), the idea would be to depict dependency by a single number in
the interval [−1, 1], although this inevitably leads to a massive loss of information.
Consequently, we will deal with classical dependency measures in this chapter.
Amongst others, these include linear correlations and rank correlation measures.
On the following pages we will discuss advantages and disadvantages of the
respective approach and give examples.

Let (Ω,F ,P) be a probability space.

3.1 Covariance and
Pearson’s Correlation Coefficient

The content of the following definition is one of the foundations of probability
theory and can be found in many textbooks:60

Definition 3.1. Let X and Y denote arbitrary random variables on (Ω,F ,P)
such that E[X2] <∞ and E[Y 2] <∞. We define the covariance between X and
Y as

Cov[X,Y ] = E [(X − E[X]) (Y − E[Y ])]
= E [XY ]− E [X]E [Y ] .

Further, we denote the variance of the random variable X as

Var[X] := Cov[X,X].
60cf. [22, Definition 15.7]

25
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Provided that additionally Var[X],Var[Y ] ∈ (0,+∞), the Pearson correlation
coefficient between X and Y is given by

Corr[X,Y ] := Cov[X,Y ]√
Var[X]Var[Y ]

. (3.1)

We will say that X and Y are uncorrelated if Cov[X,Y ] = 0 holds.

Remark 3.2. In the literature, the correlation operator is often referred to as ρ.
To counteract confusion with Spearman’s Rho, we leave it at the notation given
in the definition above.

Pearson’s correlation measures linear dependence and takes values in [−1, 1]
which can be easily verified using the Cauchy–Schwarz inequality61: Let X and
Y denote square integrable random variables and define

X̃ = X − E[X], Ỹ = Y − E[Y ].

Then it obviously holds that X̃ and Ỹ are square integrable and

Cov[X,Y ] = E[X̃ Ỹ ] ≤
√

E[X̃2]
√
E[Ỹ 2] =

√
Var[X]

√
Var[Y ].

For independent square integrable random variables X and Y it holds that
Cov[X,Y ] = 0. The inverse of this statement generally does not apply. Further,
Corr[X,Y ] takes one of the boundary values −1 or 1 if and only if X and Y
are perfectly linearly dependent, i.e. Y = a + bX almost surely for arbitrary
a ∈ R and b 6= 0. Another important property is that the correlation coefficient
as defined in (3.1) is invariant under strictly increasing linear transformations.
However, it should be noted that this does in general not apply to non-linear
transformations.62

A useful formula for calculating the covariance is given by Hoeffding’s Covari-
ance Identity, which we will use in this thesis without proof. Interested readers
are referred to [25, Lemma 5.24].

Lemma 3.3 (Hoeffding’s Covariance Identity). Let X and Y denote square
integrable random variables with joint distribution function F and let FX and
FY denote the univariate distribution functions of X and Y , respectively. Then
the following formula applies:

Cov[X,Y ] =
∫
R

∫
R

(F (x, y)− FX(x)FY (y)) dxdy.

3.1.1 Pitfalls in the Use of Linear Correlations

We will now turn to two known pitfalls in the use of linear correlations. For each
we will give a counterexample and correct the statement.

61For the Cauchy–Schwarz inequality we refer the reader to [22, Theorem 13.4].
62cf. [25, p. 202]
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Pitfall I: The multidimensional distribution of a random vector can be described
through univariate marginal distributions and pairwise correlations.63

Counterexample to Pitfall I: Let U1 and U2 denote standard uniformly
distributed random variables and let Corr[U1, U2] = ρ ∈ [−1, 1]. For λ ∈ [0, 1]
let64

Fλ(u1, u2) := λM(u1, u2) + (1− λ)W (u1, u2), u1, u2 ∈ [0, 1]

denote a possible 2-dimensional distribution function of the random vector
(U1, U2). For the calculation of the correlation between U1 and U2 we use Lemma
3.3 to calculate Cov[U1, U2], as Var[U1] = Var[U2] = 1

12 is generally known. By
simple calculation:

Cov[U1, U2] =
∫ 1

0

∫ 1

0
λM(u1, u2) + (1− λ)W (u1, u2)− u1u2 du1 du2

= λ

∫ 1

0

∫ 1

0
min{u1, u2} du1 du2

+ (1− λ)
∫ 1

0

∫ 1

0
max{u1 + u2 − 1, 0} du1 du2 −

1
4

= 2λ
∫ 1

0

∫ 1

u2

u2 du1 du2 + (1− λ)
∫ 1

0

∫ 1

1−u2

u1 + u2 − 1 du1 du2 −
1
4

= λ

3 + 1− λ
6 − 1

4
= 1

12(2λ− 1).

Consequently, the following applies:

Corr[U1, U2] = 2λ− 1 != ρ ⇐⇒ λ = 1 + ρ

2 .

Thus F
1+ρ

2 (u1, u2) is a joint distribution of (U1, U2) with given marginals and
correlation.

In order to show that Pitfall I is not correct, we will construct a second two-
dimensional distribution function with standard uniformly distributed margins
and correlation ρ. For this, let u1, u2, λ ∈ [0, 1] and let

Gλ1 (u1, u2) := λM(u1, u2) + (1− λ)Π(u1, u2),
Gλ2 (u1, u2) := λW (u1, u2) + (1− λ)Π(u1, u2)

denote bivariate distribution functions of (U1, U2). Then, similarly to the above
considerations,

Gρ(u1, u2) :=
{
Gρ1(u1, u2) for ρ ∈ [0, 1],
G−ρ2 (u1, u2) for ρ ∈ [−1, 0)

63cf. [25, Fallacy 1]
64That F is actually a multivariate distribution function follows by simple recalculation. It

even applies that convex combinations between distribution functions on R (respectively, Rd)
are again distribution functions, cf. [10, p. 16].
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is a multivariate distribution function with given marginals and correlation.
Obviously, F

1+ρ
2 and Gρ do not match65, showing that multidimensional distri-

butions can not be determined solely by marginal distributions and correlations
in general.

Correction of Pitfall I: As we already discussed at the beginning of Section 2.3,
multivariate distribution functions are determined by one-dimensional marginal
distributions and copulas. It should also be noted that different dependency
structures can give the same linear correlation.66

In the following we will see that the set of attainable linear correlations
between random variables does not necessarily coincide with the whole interval
[−1, 1]. Especially in risk management it is therefore important to have a deeper
knowledge of dependence that is going beyond simple linear correlations.

Pitfall II: Given two random variables X and Y with marginals F1 and F2 and
ρ ∈ [−1, 1], there always exists a possibility to construct a bivariate distribution
function F with the given margins F1 and F2 and linear correlation ρ.67

The next counterexample can be found in a similar form in [13, Example 4].

Counterexample to Pitfall II: Let X and Y denote two square integrable
random variables on the probability space (Ω,F ,P) with univariate distribution
functions FX and FY respectively. For x, y ∈ (−∞, 0) let

FX(x) = FY (y) = 0 (3.2)

and
sup{x ∈ R : FX(x) < 1} = sup{y ∈ R : FY (y) < 1} = +∞. (3.3)

If we additionally assume that Corr[X,Y ] = −1, then Y = a+ bX P-a.s. for
some a ∈ R and b < 0. Hence, for y < 0 it holds that

FY (y) = P[Y ≤ y] = P[a+ bX ≤ y] = P
[
X ≥ y − a

b

]
≥ P

[
X >

y − a
b

]
= 1− FX

(
y − a
b

)
(3.3)
> 0,

which contradicts condition (3.2). Consequently, a negative linear correlation of
−1 between X and Y is impossible to achieve.

The question that arises now is how Pitfall II can be corrected to a valid
statement. To this end we first need the following definition:68

65For instance, for ρ ∈ [0, 1] we have that F
1+ρ

2 ( 1
3 ,

1
3 ) = 1+ρ

6 and Gρ1( 1
3 ,

1
3 ) = 2ρ−1

9 .
66cf. [25, p. 203]
67cf. [25, Fallacy 2]
68cf. [25, Definition A.1]
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Definition 3.4. Two random variables X and Y on the probability space
(Ω,F ,P) are of the same type if there exist constants a ∈ R and b > 0 such that

Y
d= a+ bX

holds.

The following result provides information on the maximum possible interval
for linear correlations between pairs of random variables. A proof of this theorem
is not given in this master thesis, interested readers are referred to [25, Theorem
5.25] and [13, Theorem 4], respectively.

Theorem 3.5 (Attainable linear correlations69). Let X and Y denote
square integrable random variables on a probability space (Ω,F ,P), i.e. E[X2] <
∞ and E[Y 2] <∞. Further, let Var[X] > 0 and Var[Y ] > 0. Then the following
statements apply:

(a) The attainable linear correlations form a closed interval [ρmin, ρmax], such
that ρmin ∈ [−1, 0) and ρmax ∈ (0, 1].

(b) The minimum correlation ρmin is reached if and only if the random variables
X and Y are countermonotonic. The maximum correlation ρmax is reached
if and only if the random variables X and Y are comonotonic.

(c) ρmin = −1 if and only if X and −Y are of the same type. Analogously,
ρmax = 1 if and only if X and Y are of the same type.

Correction of Pitfall II: Pitfall II is corrected by the theorem of attainable
linear correlations.

The subsequent example is in a similar way widely used in the literature
because of the closed formulas for the linear correlation barriers ρmin and ρmax:70

Example 3.6. Let X and Y denote log-normal distributed random variables,
i.e. ln(X) ∼ N (0, σ2

X) and ln(Y ) ∼ N (0, σ2
Y ), where σX , σY > 0. Further, let

Z be a standard normally distributed random variable, i.e. Z ∼ N (0, 1). Then
X = eσXZ and Y = eσY Z hold. From Section 2.6 we know that X and Y are
comonotonic as the exponential function is strictly increasing. Thus, by Theorem
3.5(b) we can infer that

ρmax = Corr[eσXZ , eσY Z ].

The variance of X and Y can be calculated as follows:

Var[X] = E[X2]− E[X]2 = eσ
2
X (eσ

2
X − 1), Var[Y ] = eσ

2
Y (eσ

2
Y − 1).

For the covariance between X and Y follows:

Cov[X,Y ] = E[XY ]− E[X]E[Y ] = e
σ2
X
σ2
Y

2 (eσXσY − 1).
69cf. [25, Theorem 5.25]
70cf. [13, Example 5]
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Thus, the maximum attainable linear correlation between X and Y is given by

ρmax = eσXσY − 1√
(eσ2

X − 1)(eσ2
Y − 1)

, σX , σY > 0.

For calculating ρmin we use the fact that X = eσXZ and Y = e−σY Z are
countermonotonic and obtain in an analogous way as above

ρmin = e−σXσY − 1√
(eσ2

X − 1)(eσ2
Y − 1)

, σX , σY > 0.

3.2 Rank Correlation Measures

In this section we will get to know rank correlation measures, which – assuming
continuous marginal distributions – depend only on the underlying copula. As
the name suggests, rank correlations are calculated based on the rank of the
data.71

3.2.1 Kendall’s Tau ρτ

Before starting with a definition of Kendall’s tau we need the two fundamentals
below:

Definition 3.7. Let p = (x, y) and p̃ = (x̃, ỹ) denote arbitrary points in R2. We
call p and p̃ concordant if (x− x̃)(y− ỹ) > 0. Otherwise, if (x− x̃)(y− ỹ) < 0, p
and p̃ will be called discordant.72

Definition 3.8. LetX and Y denote arbitrary random variables on a probability
space (Ω,F ,P) with distribution functions FX and FY . We call Y an independent
copy of X if X and Y are independent and FX = FY holds.73

Literally, for a pair (X,Y ) of random variables with an independent copy
(X̃, Ỹ ), Kendall’s tau can be described as the probability of concordance minus
the probability of discordance between these pairs:74

Definition 3.9. Let X and Y denote random variables on a probability space
(Ω,F ,P) and let (X̃, Ỹ ) denote an independent copy of (X,Y ). Kendall’s tau
ρτ between X and Y is then defined as

ρτ (X,Y ) = P[(X − X̃)(Y − Ỹ ) > 0]− P[(X − X̃)(Y − Ỹ ) < 0]
= E[sign((X − X̃)(Y − Ỹ ))],

where sign(·) denotes the sign-function.
71cf. [25, p. 206]
72cf. [20, p. 55]
73cf. [21, p. 369]
74cf. [25, Definition 5.27]
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As already mentioned in the introduction to this section, we are now looking
at a representation of Kendall’s tau ρτ by the means of copulas. A detailed proof
of this statement can be found in [27, Theorem 5.1.1]:

Theorem 3.10. Let X and Y denote random variables with continuous uni-
variate marginal distributions, coupled by a copula C. Then Kendall’s tau can
be expressed as

ρτ (X,Y ) = 4
∫ 1

0

∫ 1

0
C(u1, u2) dC(u1, u2)− 1.

Example 3.11. For two random variables X and Y , coupled by a bivariate
Clayton copula with parameter α ≥ −1, α 6= 0, we have that75

ρτ (X,Y ) = α

α+ 2 .

For two random variables X and Y , coupled by a bivariate Gumbel copula with
parameter α ≥ 1 we have that

ρτ (X,Y ) = 1− 1
α
.

3.2.2 Spearman’s Rho ρS

As can be inferred from the definition below, Spearman’s rho corresponds to
the ordinary linear correlation between the probability-transformed random
variables.

Definition 3.12. Let X and Y denote arbitrary random variables on (Ω,F ,P)
with one-dimensional distribution functions FX and FY . Spearman’s rho ρS
between X and Y is given by76

ρS(X,Y ) = Corr[FX(X), FY (Y )].

The equivalent of Theorem 3.10 for Spearman’s rho is as follows:77

Theorem 3.13. Let X and Y denote random variables with continuous univari-
ate marginal distributions, coupled by a copula C. Then the integral representation
of Spearman’s rho is given by

ρS(X,Y ) = 12
∫ 1

0

∫ 1

0
(C(u1, u2)− u1u2) du1du2.

75cf. [25, p. 222]
76cf. [25, Definition 5.28]
77cf. [13, Theorem 3]





Chapter 4

Sum of N0-Valued
Dependent Random
Variables

In this chapter we investigate the distribution of the aggregate financial loss
S = X1, . . . , Xd of N0-valued risks. We assume that the dependence structure
of (X1, . . . , Xd) is modelled by copulas and prove a formula for the distribution
of S. In addition, we provide a recursion formula for the computation of the
probability mass function of S, which could be used in the recursion formula of
Panjer for the calculation of the total loss amount, for example. Pointwise sharp
bounds on the distribution of S are obtained by application of the Rearrangement
Algorithm, which will be introduced briefly. These bounds serve to quantify the
model risk caused by feasible scenarios of dependency.

Let (Ω,F ,P) denote a probability space.

4.1 Setting

Let d ∈ N, d ≥ 2 and let X1, . . . , Xd denote N0-valued random variables such
that Xi ∼ Fi for given univariate distribution functions Fi, i = 1, . . . , d. For
example, one can think about the random variables Xi representing claim sizes
in an insurer’s portfolio or credit losses in banking. Suppose further, that the
dependency structure of the portfolio (X1, . . . , Xd) is given by a d-dimensional
copula C.

The main objective of this chapter will be to examine the distribution and

33
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probability mass function of the aggregated portfolio

S :=
d∑
i=1

Xi. (4.1)

4.2 Distribution Function of the Sum S

For ease of notation we define

J dn = {j = (j1, . . . , jd) ∈ Nd0 : j1 + · · ·+ jd ≤ n}, n ∈ N0

and
Id = {i = (i1, . . . , id) ∈ {0, 1}d}.

For i ∈ Id let
sign(i) := (−1)

∑d

k=1
ik .

From the properties of copulas we already know that for any n1, . . . , nd ∈ N0
and N0-valued random variables X1, . . . , Xd with univariate distribution func-
tions F1, . . . , Fd such that Xi ∼ Fi for i = 1, . . . , d the following applies:78

P[X1 = n1, . . . , Xd = nd] =
∑
i∈Id

sign(i) C(F1(n1 − i1), . . . , Fd(nd − id)).

For the distribution function of the aggregate loss S we can thus infer the
following:79

Lemma 4.1. Let n ∈ N0 and J dn , Id as given above. Let X1, . . . , Xd denote N0-
valued random variables on (Ω,F ,P) such that Xi ∼ Fi for univariate distribution
functions F1, . . . , Fd and i = 1, . . . , d. For every copula C of the random vector
(X1, . . . , Xd) it holds for S as defined in (4.1):

P[S ≤ n] =
∑
j∈J dn

∑
i∈Id

sign(i)C(F1(j1 − i1), . . . , Fd(jd − id)). (4.2)

It should be taken into account that for an evaluation of (4.2) with arbitrary
n ∈ N0,

2d
n∑
k=0

(
k + d− 1
d− 1

)
terms have to be summed up.80

In this section we will focus on finding more efficient formulas for the distri-
bution function of S. We will start with a reformulation of [17, Theorem 2.2] to
the case of N0-valued random variables:

78cf. [6, p. 5]
79This approach is due to the definition of the multivariate discrete distribution function.
80This follows immediately using (4.6) below.
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Proposition 4.2. Let n ∈ N0 and J dn , Id as given above. Let X1, . . . , Xd

denote N0-valued random variables on (Ω,F ,P) such that Xi ∼ Fi for univariate
distribution functions F1, . . . , Fd and i = 1, . . . , d. For every copula C of the
random vector (X1, . . . , Xd) it holds for S as defined in (4.1):81

P[S ≤ n] =∑
j∈J d−1

n

∑
i∈Id−1

sign(i) C
(
F1(j1 − i1), . . . , Fd−1(jd−1 − id−1), Fd

(
n−

d−1∑
k=1

jk

))
.

(4.3)

Proof. Let n1, . . . , nd−1 ∈ N0. Under the prerequisites of Proposition 4.2 it holds
that

P[X1 ≤ n1, . . . , Xd−1 ≤ nd−1, S ≤ n]

=
n1∑
j1=0

P[X1 = j1, X2 ≤ n2, . . . , Xd−1 ≤ nd−1, X2 + · · ·+Xd ≤ n− j1]

=
n1∑
j1=0

(
P[X1 ≤ j1, X2 ≤ n2, . . . , Xd−1 ≤ nd−1, X2 + · · ·+Xd ≤ n− j1]

− P[X1 ≤ j1 − 1, X2 ≤ n2, . . . , Xd−1 ≤ nd−1, X2 + · · ·+Xd ≤ n− j1]
)

=
n1∑
j1=0

1∑
i1=0

(−1)i1P[X1 ≤ j1 − i1, X2 ≤ n2, . . . , Xd−1 ≤ nd−1,

X2 + · · ·+Xd ≤ n− j1]

=
n1∑
j1=0

n2∑
j2=0

1∑
i1=0

(−1)i1P[X1 ≤ j1 − i1, X2 = j2, X3 ≤ n3, . . . , Xd−1 ≤ nd−1,

X3 + · · ·+Xd ≤ n− j1 − j2]

=
n1∑
j1=0

n2∑
j2=0

1∑
i1=0

1∑
i2=0

(−1)i1+i2P[X1 ≤ j1 − i1, X2 ≤ j2 − i2, X3 ≤ n3, . . . ,

Xd−1 ≤ nd−1, X3 + · · ·+Xd ≤ n− j1 − j2]

= . . .

=
n1∑
j1=0

. . .

nd−1∑
jd−1=0

∑
i∈Id−1

sign(i)P[X1 ≤ j1 − i1, . . . , Xd−1 ≤ jd−1 − id−1,

Xd ≤ n− j1 − · · · − jd−1]. (4.4)

As Xd is a N0-valued random variable and only takes values greater than or
equal to zero we can set n1, . . . , nd−1 = n in (4.4) and subsequently we get the
distribution of S:

81For dimension d = 2 the proof is following closely [5, Proposition 4.1].
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P[S ≤ n]

=
n∑

j1=0
. . .

n∑
jd−1=0

∑
i∈Id−1

sign(i)P[X1 ≤ j1 − i1, . . . , Xd−1 ≤ jd−1 − id−1,

Xd ≤ n− j1 − · · · − jd−1]

=
∑
j∈J dn

∑
i∈Id−1

sign(i)P[X1 ≤ j1 − i1, . . . , Xd−1 ≤ jd−1 − id−1,

Xd ≤ n− j1 − · · · − jd−1], (4.5)

where the last equality follows again from the fact that for j ∈ {0, 1, . . . , n}d \J dn
we have that

P[Xd ≤ n− j1 − · · · − jd−1] = 0,
since the random variable Xd does not take negative values.

From Sklar’s theorem 2.13 we know that we can rewrite the probability in
(4.5) as follows:

P[X1 ≤ j1 − i1, . . . , Xd−1 ≤ jd−1 − id−1, Xd ≤ n− j1 − · · · − jd−1]

= C

(
F1(j1 − i1), . . . , Fd−1(jd−1 − id−1), Fd

(
n−

d−1∑
k=1

jk

))
,

which completes the proof. q

The major advantage of (4.3) over (4.2) is that for the calculation of the
distribution function of S using (4.3) fewer terms, namely

2d−1
n∑
k=0

(
k + d− 2
d− 2

)
,

have to be summed up. Especially for large portfolios, this conclusion can make
a big difference in the runtime of the numerical calculation.

In the proposition below we will now prove that the computational effort can
be reduced even further.82 To this end we first define

J dn = {j = (j1, . . . , jd) ∈ Nd0 : j1 + · · ·+ jd = n}, n ∈ N0.

Obviously,

J dn =
n⋃
k=0
J dk , n ∈ N0. (4.6)

To ease notation, we set

cn :=
∑
j∈J dn

C(F1(j1), . . . , Fd(jd)), n ∈ N0, (4.7)

82I am grateful to my supervisor Dr. Uwe Schmock for providing me with a direct proof of
Proposition 4.3. An earlier version of the proof can be found in the appendix to this thesis.
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with the convention that cn = 0 if n < 0.

Proposition 4.3. Let X1, . . . , Xd denote N0-valued random variables with uni-
variate distribution functions F1, . . . , Fd, respectively. Then for all n ∈ N0 and
every copula C of the random vector (X1, . . . , Xd) it holds that

P[S ≤ n] =
min{d−1,n}∑

k=0
(−1)k

(
d− 1
k

)
cn−k. (4.8)

Proof. Let

Idl := {i = (i1, . . . , id) ∈ Id : i1 + · · ·+ id = l}, l ∈ N0, l ≤ d.

Using the representation from Lemma 4.1, we have that

P[S ≤ n] =
∑
j∈J dn

∑
i∈Id

sign(i)C(F1(j1 − i1), . . . , Fd(jd − id))

=
d∑
k=0

n∑
l=0

(−1)k
∑
j∈J d

l

∑
i∈Id

k

C(F1(j1 − i1), . . . , Fd(jd − id))

=
d∑
k=0

n∑
l=0

(−1)k
(
d

k

)
cl−k,

where the last equality can be justified as follows: For every pair (i, j̃) ∈ Idk×J dl−k
there exists j := j̃ + i such that (i, j) ∈ Idk × J dl . Conversely, for every pair
(i, j) ∈ Idk × J dl there exists j̃ := j − i such that (i, j̃) ∈ Idk × J dl−k or at least
one component of j̃ is negative, hence C(F1(j̃1), . . . , Fd(j̃d)) = 0. Furthermore,
Idk contains

(
d
k

)
elements.

An index inversion in the first step and an index shift in the second step
further results in

d∑
k=0

n∑
l=0

(−1)k
(
d

k

)
cl−k =

d∑
k=0

n∑
l=0

(−1)k
(
d

k

)
cn−(k+l)

=
d∑
k=0

n∑
l=k

(−1)k
(
d

k

)
cn−l.

By interchanging the sums we obtain

d∑
k=0

n∑
l=k

(−1)k
(
d

k

)
cn−l =

n∑
l=0

min{d,l}∑
k=0

(−1)k
(
d

k

)
cn−l.

Using the algebraic identity
min{d,l}∑
k=0

(−1)k
(
d

k

)
=
{

0 for l ≥ d,
(−1)l

(
d−1
l

)
otherwise
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we can conclude that

P[S ≤ n] =
min{d−1,n}∑

l=0
(−1)l

(
d− 1
l

)
cn−l,

which completes the proof. q

Regarding numerical efficiency, for an evaluation of (4.8)
n∑

k=n−min{d−1,n}

(
k + d− 1
d− 1

)
terms have to be summed up.

Remark 4.4. For the special case of the distribution of the sum of comonotonic
random variables, i.e. C = M , we refer interested readers to [7].

4.3 Calculation of Sharp Bounds on the
Distribution Function of S83

In this section we provide an algorithm – the Rearrangement Algorithm – for
the calculation of pointwise sharp bounds on the distribution function of S. The
underlying theoretical framework was developed by Puccetti and Rüschendorf
in 2011 in [29], to which interested readers are referred. Compared to existing
bounds in the literature, such as those described in [8], for example, they are
more accurate and relatively straightforward to determine.

Let d ∈ N, d ≥ 2 and let X1, . . . , Xd denote N0-valued random variables
with univariate distributions F1, . . . , Fd. By S we denote the sum of this d
random variables. The main objective in [29] was to obtain sharp bounds on the
probability

P[S ≥ n], n ∈ N0.

Due to the relationship

P[S ≥ n] = 1− P[S < n], n ∈ N0,

we can relate the results of Puccetti and Rüschendorf to our specific problem of
finding bounds on the distribution of S.

If we define

m(n) = inf {P[S > n] : Xi ∼ Fi, i = 1, . . . , d} ,

M(n) = sup {P[S ≥ n] : Xi ∼ Fi, i = 1, . . . , d} ,
83This section is mainly based on the results from [29], thus we will avoid explicit references

to this paper. Only the results taken from other sources will be marked as such.
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then for n ∈ N0 we can observe that:

m(n) ≤ P[S > n] ⇐⇒ m(n) ≤ 1− P[S ≤ n] ⇐⇒ 1−m(n) ≥ P[S ≤ n]

and

M(n) ≥ P[S ≥ n] ⇐⇒ 1−M(n) ≤ P[S < n] ⇐⇒ 1−M(n+ 1) ≤ P[S ≤ n]

holds.

For ease of notation we set

pL
n := 1−M(n+ 1) (4.9)

and

pU
n := 1−m(n), (4.10)

such that pL
n ≤ P[S ≤ n] ≤ pU

n .

We will now state exemplary the algorithm to compute the lower bound pL
n of

the distribution of S. For a detailed proof on the functionality we refer interested
readers to the original paper [29].

Definition 4.5. For N ∈ N two vectors a = (a1, . . . , aN ), b = (b1, . . . , bN ) ∈ RN
are oppositely ordered, if (aj − ak)(bj − bk) ≤ 0 holds for all j, k = 1, . . . , N .

Definition 4.6. Let N ∈ N. For a (N × d)-matrix Y = (yi,j), i = 1, . . . , N, j =
1, . . . , d, with entries in R we define the minimum, respectively maximum, row
sum as

minRS(Y ) = min
i=1,...,N

d∑
j=1

yi,j ,

maxRS(Y ) = max
i=1,...,N

d∑
j=1

yi,j .

Algorithm 4.7 (Computation of pL
n).

Step 1: a: Fix n ∈ N0, N ∈ N, a tolerance level ε > 0 and d univariate distribu-
tions F1, . . . , Fd of random variables X1, . . . , Xd.

b: Set L = 0 and R = 1.

Step 2: Repeat the following:

a: Set α = L+R

2

b: For i = 1, . . . , N and j = 1, . . . , d define a matrix X = (xi,j) as

xi,j = F←j

(
α+ (1− α)(i− 1)

N

)
.
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c: For j = 1, . . . , d, rearrange the j-th column of X to make it oppositely
ordered to the row sums of the other columns. This gives a matrix Y .

d: Repeat c. until
|minRS(Y )−minRS(X)|= 0

and set ñ = minRS(Y ).

e: If |ñ− n− 1|= 0 or |L−R|< ε then break and return α. Otherwise
do the following:

ea: If ñ < n+ 1 then set

R = 2α− L,
L = α.

eb: Else set

L = 2α−R,
R = α.

ec: Return to Step 2a.

In the course of this master thesis the algorithm above was implemented in R.
The program can be found in the appendix (cf. Program R5).

4.4 Recursion for the
Probability Mass Function of S

In this section we provide a recursion formula for calculating the probability
mass function of the sum of N0-valued random variables whose dependence
is described by an arbitrary copula. In the given setting (see Section 4.1) we
define

pn = P[S = n], n ∈ N0,

with the convention that pn = 0 if n < 0. Together with cn as given in (4.7) we
obtain the subsequent result:84

Theorem 4.8. The following recursion formula applies for all n ∈ N0:

pn = cn −
n∑
k=1

(
k + d− 1
d− 1

)
pn−k, p0 = c0. (4.11)

84I am grateful to my supervisor Dr. Uwe Schmock for providing me with an abbreviated
proof of Theorem 4.8. An earlier version of the proof can be found in the appendix to this
thesis.
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Proof. From Sklar’s Theorem 2.13 we know that

C(F1(j1), . . . , Fd(jd)) = P(X1 ≤ j1, . . . , Xd ≤ jd)

=
n∑
k=0

∑
i∈J dn−k
i≤j

P(X1 = i1, . . . , Xd = id), j ∈ J dn .

Note that given an i ∈ J dn−k, every j ∈ J dn with i ≤ j determines a unique
l := j − i ∈ J dk and vice versa. Furthermore, J dk contains

(
k+d−1
d−1

)
elements.

Hence, using these results,

cn =
∑
j∈J dn

n∑
k=0

∑
i∈J dn−k
i≤j

P(X1 = i1, . . . , Xd = id)

=
n∑
k=0

∑
i∈J d

n−k

∑
j∈J dn
i≤j

P(X1 = i1, . . . , Xd = id)

=
n∑
k=0

(
k + d− 1
d− 1

)
pn−k.

Rearranging the above equality proves the claim. q

4.5 Numerical Speed-Up for the Calculation of
the Probability Mass Function of S

Although the recursion formula for the calculation of the probability mass
function of S as given in (4.11) is straightforward to implement, there could be
numerical difficulties regarding stability and efficiency – especially for sparse
univariate marginal distributions or large dimensions d combined with large n.
The aim of this section is to provide the reader with two additional computation
methods for the probability mass function of S, which in many cases turn out
to outperform the recursion from Theorem 4.8.85 The first one can be derived
from Proposition 4.3:86

Proposition 4.9. Let X1, . . . , Xd denote N0-valued random variables with uni-
variate distribution functions F1, . . . , Fd, respectively. Then for all n ∈ N0 and
every copula C of the random vector (X1, . . . , Xd) it holds that

P[S = n] =
min{d,n}∑
k=0

(−1)k
(
d

k

)
cn−k. (4.12)

85It should be taken into account that this statement is made on the basis of an implemen-
tation in R.

86Special thanks to my supervisor Dr. Uwe Schmock for pointing out this result to me.
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Proof. For n = 0, (4.12) reduces to P[S = 0] = c0, which is a true statement.
For arbitrary n ∈ N we have87

P[S = n] = P[S ≤ n]− P[S ≤ n− 1]

=
min{d−1,n}∑

k=0
(−1)k

(
d− 1
k

)
cn−k −

min{d,n}−1∑
k=0

(−1)k
(
d− 1
k

)
cn−1−k

=
min{d−1,n}∑

k=0
(−1)k

(
d− 1
k

)
cn−k +

min{d,n}∑
k=1

(−1)k
(
d− 1
k − 1

)
cn−k

= cn +
min{d−1,n}∑

k=1
(−1)k

[(
d− 1
k

)
+
(
d− 1
k − 1

)]
cn−k + (−1)dcn−d1n≥d

= cn +
min{d−1,n}∑

k=1
(−1)k

(
d

k

)
cn−k + (−1)dcn−d1n≥d

=
min{d,n}∑
k=0

(−1)k
(
d

k

)
cn−k,

which completes the proof. q

In the course of this master thesis, formula (4.12) was implemented in R and
can be found in the appendix (Program R2).

For the second method we need the concept of copula densities:88

Definition 4.10. If the probability measure associated with a copula C is
absolutely continuous with respect to the Lebesgue measure on [0, 1]d, then by
Radon–Nikodým there exists an almost everywhere unique function c : [0, 1]d →
[0,∞) such that

C(u1, . . . , ud) =
∫ u1

0
. . .

∫ ud

0
c(v1, . . . , vd) dvd . . . dv1,

where u1, . . . , ud ∈ [0, 1]. In this case C is called absolutely continuous with
copula density c.

Given that we have a copula that meets the requirements of Definition 4.10,
i.e. we have a copula C with density c, we can conclude that

P[S = n] =
∑
j∈J dn

P[X1 = j1, . . . , Xd = jd]

=
∑
j∈J dn

∑
i∈Id

sign(i)C(F1(j1 − i1), . . . , Fd(jd − id))

87Here, 1 denotes the indicator function.
88cf. [24, p. 12]
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=
∑
j∈J dn

∫ F1(j1)

F1(j1−1)
. . .

∫ Fd(jd)

Fd(jd−1)
c(v1, . . . , vd) dvd . . . dv1. (4.13)

For an implementation of (4.13) in R we refer to [2] and Program R4. For
copula densities of Archimedean copulas interested readers may turn to [26] for
further information.

To conclude this section, we present a brief runtime comparison for random
variables Xi ∼ Poi(5), i = 1, . . . , 3, between (4.11), (4.12) and (4.13) for a
Gaussian copula with correlation matrix

P =

1 1
2

1
2

1
2 1 1

2
1
2

1
2 1


for various n ∈ N0 in R. In order to have a reasonable comparison, we challenge
the recursive formula for P [S = n] with a calculation of P[S = 0], . . . ,P[S = n]
using (4.12) and (4.13), respectively.89 The results are presented in Table 4.1
below:

89The reason for this is that for n ∈ N an evaluation of P [S = n] using (4.11) also returns
the probabilities P[S = k] for k = 0, . . . , n− 1, which is due to the recursive representation.
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n
evaluation of (4.12)

in seconds
(cummulative)

evaluation of (4.13)
in seconds

(cummulative)

evaluation of (4.11)
in seconds

0 0.01 0.01 0.01
1 0.02 0.05 0.01
2 0.03 0.09 0.02
3 0.04 0.13 0.03
4 0.07 0.19 0.05
5 0.10 0.28 0.07
6 0.16 0.41 0.15
7 0.24 0.56 0.30
8 0.33 0.76 0.63
9 0.43 1.01 1.27
10 0.56 1.30 1.39
11 0.71 1.63 2.43
12 0.89 2.02 3.07
13 1.09 2.47 4.95
14 1.33 2.98 6.57
15 1.58 3.56 10.07
16 1.88 4.21 13.08
17 2.21 5.06 21.14
18 2.59 5.92 24.30
19 3.01 6.88 41.26
20 3.48 7.94 73.10

Table 4.1: Runtime comparison between (4.11), (4.12) and (4.13) for a Gaussian
copula in seconds using R



Chapter 5

Risk Measures for an
Aggregated Portfolio

The fifth chapter focuses on common risk measures of the financial industry –
Value-at-Risk and Expected Shortfall. These are defined first and a connection
to the calculation of these for an aggregated portfolio S is given. Finally, we
deal with a slight adapted Rearrangement Algorithm to calculate sharp bounds
on Value-at-Risk and Expected Shortfall. The results are then presented in the
next Chapter 6.

5.1 Value-at-Risk

Despite its known shortcomings, the Value-at-Risk is one of the most widely
used risk measures in the financial industry and is also applied in the Basel II
and Solvency II framework.90 The idea is to calculate the maximum possible
portfolio loss which, given a certain confidence level, is not exceeded:91

Definition 5.1. At a given confidence level α ∈ (0, 1), the Value-at-Risk (VaR)
of a random variable S is the smallest value s ∈ R where the distribution function
FS of S reaches or exceeds the value α for the first time:

VaRα(S) := inf{s ∈ R : FS(s) ≥ α}.

By convention, we can set inf ∅ = +∞ and inf R = −∞, so that the VaR is even
well-defined for α ∈ [0, 1].

Remark 5.2. In other words, the VaR can simply be described as the quantile of
a distribution function, cf. Definition 2.4.

90cf. [25, p. 37]
91cf. [25, Definition 2.10]
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Remark 5.3. Typically, in risk management one works with losses, i.e. the right
tails of the distribution. Common levels for α thus are for example α = 0.95 or
α = 0.995, as required under Solvency II.

The key shortcoming of the VaR is that it is not a subadditive risk measure.92

This means that for a portfolio of d risks X1, . . . , Xd,

VaRα(X1 + · · ·+Xd) > VaRα(X1) + · · ·+ VaRα(Xd)

is possible, which contradicts the economic idea of portfolio diversification.

5.2 Bounds on the Value-at-Risk93

We will dedicate this section to bounds on VaR. For this purpose we consider a
portfolio of d N0-valued risks X = (XC

1 , . . . , X
C
d ) which are coupled by an arbi-

trary copula C. Furthermore, we assume that we know the marginal distributions
F1, . . . , Fd of XC

1 , . . . , X
C
d . By

S :=
d∑
i=1

XC
i

we denote the sum of the individual risks.

The lower and upper bounds of the VaR can be defined as follows:

Definition 5.4. Denote by Cd the set of all d-dimensional copulas. Then we
have that the lower, respectively upper, bound on the VaR at a given confidence
level α ∈ (0, 1) for S is given by:

VaRL
α(S) = inf{VaRα(XC

1 + · · ·+XC
d ) : C ∈ Cd}, (5.1)

VaRU
α (S) = sup{VaRα(XC

1 + · · ·+XC
d ) : C ∈ Cd}. (5.2)

In practice, it is difficult to explicitly determine the barriers defined above,
which is mainly due to the non-subadditivity of the VaR. In general, the comono-
tonicity copula M is not a solution for (5.2). Also, for d = 2 the countermono-
tonicity copula W does not solve (5.1). For interested readers, counterexamples
related to these deceiving problems are provided in [15, Section 1.3].

In order to calculate the VaR-bounds, the rearrangement algorithm (RA)
originally introduced in [29] was slightly adapted by Embrechts, Puccetti and
Rüschendorf in [15]. This algorithm, which we will describe below, calculates
VaRL

α and VaRU
α for arbitrary one-dimensional distribution functions F1, . . . , Fd

and α ∈ (0, 1). The pseudo-code for the calculation of (5.1) is as follows:

92cf. [15, p. 2]
93This section is mainly based on the results in [15], thus we will avoid explicit references to

this paper. Only the results taken from other sources will be marked as such.



Chapter 5. Risk Measures for an Aggregated Portfolio 47

Algorithm 5.5 (Computation of VaRL
α).

Step 1: Fix N ∈ N, a tolerance level ε > 0, a confidence level α ∈ (0, 1) and d
univariate distributions F1, . . . , Fd of random variables X1, . . . , Xd.

Step 2: For i = 1, . . . , N and j = 1, . . . , d define matrices X = (xi,j) and
X = (xi,j) as:

xi,j = F←j

(
α(i− 1)
N

)
, xi,j = F←j

(
αi

N

)
.

Step 3: Randomly permutate the columns of X and X.

Step 4: For j = 1, . . . , d, rearrange the j-th column of X to make it oppositely
ordered to the sum of the other columns. This results in a matrix Y .

Step 5: Repeat step 4. until

|maxRS(X)−maxRS(Y )|= 0.

Set X∗ = Y .

Step 6: Apply steps 4 and 5 to the matrix X until a matrix X∗ is found.

Step 7: It holds that

maxRS(X∗) ≤ VaRL
α(X1 + · · ·+Xd) ≤ maxRS(X∗).

For demonstration purposes the algorithms for the computation of VaRL
α and

VaRU
α are implemented in R (cf. Program R6). Numerical results for concrete

examples are presented in Chapter 6.

5.3 Expected Shortfall

Closely related to the Value-at-Risk is the Expected Shortfall , which is defined
as follows:94

Definition 5.6. For a random variable S with E[|S|] <∞ the Expected Shortfall
(ES) at a confidence level α ∈ (0, 1) is given as

ESα(S) := 1
1− α

∫ 1

α

VaRu(S) du.

The definition above means that the Expected Shortfall at a confidence
level α ∈ (0, 1) corresponds to an average over all values of Value-at-Risk

94cf. [25, Definition 2.15]
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with confidence levels greater than α. Thus, for a random variable S fulfilling
the requirements of the prior definition it immediately follows that ESα(S) ≥
VaRα(S) holds for all α ∈ (0, 1).

The main advantage of ES over VaR is that ES is a subadditive risk measure,
i.e. for random variables X1, . . . , Xd it holds that

ESα(X1 + · · ·+Xd) ≤ ESα(X1) + · · ·+ ES(Xd). (5.3)

5.4 Bounds on the Expected Shortfall95

In this section we provide an algorithm for the computation of sharp bounds on
the Expected Shortfall for a sum of random variables. We refer keen readers to
[28] for details and a proof of the functionality.

We are interested in determining

ESLα(S) = inf{ESα(X1 + · · ·+Xd) : Xi ∼ Fi, i = 1, . . . , d}, (5.4)

ESUα (S) = sup{ESα(X1 + · · ·+Xd) : Xi ∼ Fi, i = 1, . . . , d}. (5.5)

From the subadditivity of the Expected Shortfall (5.3) the upper bound follows
instantly: For random variables X1, . . . , Xd we have that the upper bound (5.5)
is given by

ESUα (X1 + · · ·+Xd) = 1
1− α

d∑
i=1

∫ 1

α

VaRu(Xi) du.

For the rest of this section we will thus concentrate on the calculation of a
lower bound. The algorithm for this problem is based on the Rearrangement
Algorithm and works as follows:

Algorithm 5.7 (Computation of ESLα).

Step 1: Fix N ∈ N and a confidence level α ∈ (0, 1) such that αN ∈ N, a
tolerance level ε > 0 and d univariate distributions F1, . . . , Fd of random
variables X1, . . . , Xd.

Step 2: For i = 1, . . . , N and j = 1, . . . , d define matrices X = (xi,j) and
X = (xi,j) as:

xi,j = F←j

(
i− 1
N

)
, xi,j = F←j

(
i

N

)
.

95This section is based on the results in [28], thus we will avoid explicit references to this
paper.
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Step 3: Randomly permutate the columns of X and X.

Step 4: For j = 1, . . . , d, rearrange the j-th column of X to make it oppositely
ordered to the sum of the other columns. This results in a matrix
Y = (y)i,j .

Step 5: Repeat Step 4. until

1
(1− α)N

 N∑
i=αN+1

d∑
j=1

∣∣∣xi,j − yi,j∣∣∣
 < ε.

Set X∗ = (x∗i,j) = Y .

Step 6: Apply steps 4 and 5 to the matrix X until a matrix X∗ = (x∗i,j) is found.

Step 7: It holds that ESLα(X1 + · · ·+Xd) is between

1
(1− α)N

N∑
i=αN+1

d∑
j=1

x∗i,j and 1
(1− α)N

N∑
i=αN+1

d∑
j=1

x∗i,j .

For demonstration purposes the algorithms for the computation of ESLα and
ESUα are implemented in R (cf. Program R6). Numerical results for concrete
examples are given in the next Chapter 6.





Chapter 6

Examples

In this section we will specify discrete univariate margins and then calculate the
distribution, probability mass function and risk measures for S. The focus will
be on the Poisson and negative binomial distribution, although the Bernoulli,
the binomial and an arbitrary distribution on N0 will also be covered.

6.1 Distribution and
Probability Mass Functions of S

The lower and upper bounds on the distribution of S are calculated according to
the results in Section 4.3 using N = 105 and tolerance ε = 10−8. Note, that by a
Gaussian copula with parameter ρ, i.e. CGa

ρ , we denote a Gaussian copula with
correlation matrix such that all pairwise correlations coincide to ρ ∈ [−1, 1]. The
same holds for the t-copula with ν > 0 degrees of freedom, Ct

ν,ρ. If we consider
correlation matrices P of another form, this will be denoted by CGa

P and Ct
ν,P ,

respectively.

6.1.1 Bernoulli-Distributed Margins

Definition 6.1. A random variable X on a probability space (Ω,F ,P) follows
a Bernoulli distribution with parameter p ∈ [0, 1], X ∼ Ber(p), if96

P[X = 0] = 1− p, P[X = 1] = p.

96cf. [22, Example 6.29]
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Example 6.2. Let d = 2 and consider Bernoulli-distributed random variables
X1 ∼ Ber(0.2) and X2 ∼ Ber(0.7). Considering the three fundamental copulas
and a convex combination of these we obtain the following results:
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Figure 6.1: Distribution function of S for X1 ∼ Ber(0.2) and X2 ∼ Ber(0.7) coupled
by fundamental copulas. Green: W , Black: Π, Red: 0.5M + 0.5Π, Blue: M
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Figure 6.2: Probability mass function of S for X1 ∼ Ber(0.2) and X2 ∼ Ber(0.7)
coupled by fundamental copulas. Green: W , Black: Π, Red: 0.5M + 0.5Π, Blue: M
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Example 6.3. Let d = 2 and consider Bernoulli-distributed random variables
X1 ∼ Ber(0.2) and X2 ∼ Ber(0.7). We assume that the dependence structure is
given by a bivariate Gaussian copula CGa

ρ and obtain the subsequent results:
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Figure 6.3: Distribution function of S for X1 ∼ Ber(0.2) and X2 ∼ Ber(0.7) coupled
by a Gaussian copula. Green: CGa

−1 , Red: CGa
−0.5, Black: CGa

0 , Cyan: CGa
0.5 , Blue: CGa
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Figure 6.4: Probability mass function of S for X1 ∼ Ber(0.2) and X2 ∼ Ber(0.7)
coupled by a Gaussian copula. Green: CGa
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At the end of this subsection we will deal with the Clayton copula CCl
α :

Example 6.4. Let d = 2 and consider Bernoulli-distributed random variables
X1 ∼ Ber(0.2) and X2 ∼ Ber(0.7). Assume that the random variables are
coupled by a Clayton copula CCl

α . We will chose the parameter α in such a way,
that Kendall’s tau ρτ takes the following values (cf. Example 3.11):

α ρτ (X1, X2)
−1 −1
− 2

3 − 1
2

2 1
2

20 10
11

As can be seen from the graphics below, the distribution of (X1, X2) under
a Clayton copula with parameter α = −1 corresponds to countermonotonicity.
For α→ +∞ we observe comonotonicity.
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Figure 6.5: Distribution function of S for X1 ∼ Ber(0.2) and X2 ∼ Ber(0.7) coupled
by a Clayton copula. Green: CCl
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Figure 6.6: Probability mass function of S for X1 ∼ Ber(0.2) and X2 ∼ Ber(0.7)
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6.1.2 Binomial-Distributed Margins

Definition 6.5. A random variable X on a probability space (Ω,F ,P) is said
to follow a binomial distribution with parameters n ∈ N and p ∈ [0, 1], X ∼
Bin(n, p), if97

P[X = k] =
(
n

k

)
pk(1− p)n−k, k = 0, . . . , n.

For n = 1 we get a Bernoulli distribution with parameter p as a special case.

Example 6.6. Let d = 4 and consider binomial-distributed random variables
Xi ∼ Bin(ni, pi), where ni = 10 and pi = i

20 , i = 1, . . . , 4. If we assume that
(X1, . . . , X4) is coupled by fundamental copulas we obtain the following results:
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Figure 6.7: Distribution function of S for Xi ∼ Bin(ni, pi), where ni = 10 and
pi = i

20 , i = 1, . . . , 4, coupled by fundamental copulas. Green: lower bound, Black: Π,
Red: 0.5M + 0.5Π, Blue: M , Cyan: upper bound

97cf. [22, Example 6.31]
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Figure 6.8: Probability mass function of S for Xi ∼ Bin(ni, pi), where ni = 10 and
pi = i

20 , i = 1, . . . , 4, coupled by fundamental copulas. Black: Π, Red: 0.5M + 0.5Π,
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Example 6.7. Let d = 4 and consider binomial-distributed random variables
Xi ∼ Bin(ni, pi), where ni = 10 and pi = i

20 , i = 1, . . . , 4. If we assume that
(X1, . . . , X4) is coupled by a Gaussian copula we obtain the subsequent results:
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6.1.3 Poisson-Distributed Margins

Definition 6.8. A random variable X on a probability space (Ω,F ,P) follows
a Poisson distribution with parameter λ > 0, X ∼ Poi(λ), if98

P(X = n) = e−λλ
n

n! , n ∈ N0.

For independent random variables Xi ∼ Poi(λi), i = 1, . . . , d, it follows
immediately using generating functions that

X1 + · · ·+Xd ∼ Poi(λ1 + · · ·+ λd), λ1, . . . , λd > 0,

holds, which we also observe when considering the random variables coupled by
the independence copula.

Example 6.9. Let d = 3 and consider Poisson-distributed random variables
X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼ Poi(8). We obtain the following results for
fundamental copulas:
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Figure 6.11: Distribution function of S forX1 ∼ Poi(3), X2 ∼ Poi(5) andX3 ∼ Poi(8)
coupled by fundamental copulas. Green: lower bound, Black: Π, Red: 0.5M + 0.5Π,
Blue: M , Cyan: upper bound

98cf. [22, Example 6.32]
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Figure 6.12: Probability mass function of S for X1 ∼ Poi(3), X2 ∼ Poi(5) and
X3 ∼ Poi(8) coupled by fundamental copulas. Black: Π, Red: 0.5M + 0.5Π, Blue: M
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Example 6.10. Let d = 3 and consider Poisson-distributed random variables
X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼ Poi(8).

For independent random variables X1 and X2 it holds that X1 + X2
d= X3.

So if we try to minimize the variance of the sum X1 +X2 +X3 we can use

V =


1 0 −

√
3
8

0 1 −
√

5
8

−
√

3
8 −

√
5
8 1

 ,

where the entries of the correlation matrix V are obtained by simple calculation
under positive semi-definite constraints.

We obtain the following results for a Gaussian copula:
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Figure 6.13: Distribution function of S forX1 ∼ Poi(3), X2 ∼ Poi(5) andX3 ∼ Poi(8)
coupled by a Gaussian copula. Green: lower bound, Orange: CGa

−0.5, Black: CGa
0 , Red:

CGa
0.5 , Blue: CGa

1 , Grey: CGa
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Figure 6.14: Probability mass function of S for X1 ∼ Poi(3), X2 ∼ Poi(5) and
X3 ∼ Poi(8) coupled by a Gaussian copula. Orange: CGa
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Example 6.11. Let d = 3 and consider Poisson-distributed random variables
X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼ Poi(8). Using the same correlation matrices
as in Example 6.10, we obtain the following results for a t-copula with ν = 1:
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Figure 6.15: Distribution function of S forX1 ∼ Poi(3), X2 ∼ Poi(5) andX3 ∼ Poi(8)
coupled by a t-copula with ν = 1. Green: lower bound, Orange: Ct

1,−0.5, Black: Ct
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Red: Ct
1,0.5, Blue: Ct

1,1, Grey: Ct
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Figure 6.16: Probability mass function S for X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼
Poi(8) coupled by a t-copula with ν = 1. Orange: Ct
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Example 6.12. Let d = 3 and consider Poisson-distributed random variables
X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼ Poi(8). Using the same correlation matrices
as in Example 6.10, we obtain the following results for a t-copula with ν = 3:
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Figure 6.17: Distribution function of S forX1 ∼ Poi(3), X2 ∼ Poi(5) andX3 ∼ Poi(8)
coupled by a t-copula with ν = 3. Green: lower bound, Orange: Ct

3,−0.5, Black: Ct
3,0,

Red: Ct
3,0.5, Blue: Ct

3,1, Grey: Ct
3,V , Cyan: upper bound



Chapter 6. Examples 69

0 4 8 12 16 20 24 28 32

0.
00

0.
08

0.
16

0.
24

0.
32

0.
40

0.
48

P[
X

1
+
X

2
+

X
3
=

n
]

n

Figure 6.18: Probability mass function S for X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼
Poi(8) coupled by a t-copula with ν = 3. Orange: Ct

3,−0.5, Black: Ct
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Example 6.13. Let d = 3 and consider Poisson-distributed random variables
X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼ Poi(8). For a Gumbel copula we obtain the
following results:
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Figure 6.19: Distribution function of S forX1 ∼ Poi(3), X2 ∼ Poi(5) andX3 ∼ Poi(8)
coupled by a Gumbel copula. Green: lower bound, Black: CGu
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Figure 6.20: Probability function of S for X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼ Poi(8)
coupled by a Gumbel copula. Black: CGu
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Example 6.14. Let d = 3 and consider Poisson-distributed random variables
X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼ Poi(8). For a Frank copula we obtain the
following results:
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Figure 6.21: Distribution function of S forX1 ∼ Poi(3), X2 ∼ Poi(5) andX3 ∼ Poi(8)
coupled by a Frank copula. Green: lower bound, Black: CFr

0.01, Orange: CFr
0.5, Red: CFr
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Figure 6.22: Probability mass function of S for X1 ∼ Poi(3), X2 ∼ Poi(5) and
X3 ∼ Poi(8) coupled by a Frank copula. Black: CFr
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6.1.4 Negative Binomial-Distributed Margins

Definition 6.15. A random variable X on a probability space (Ω,F ,P) follows
a negative binomial distribution with parameters n ∈ N and p ∈ (0, 1], X ∼
NB(n, p), if99

P[X = k] =
(
n+ k − 1
n− 1

)
pn(1− p)k, k ∈ N0,

holds.

Example 6.16. Let d = 3 and consider negative binomial-distributed random
variables X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and X3 ∼ NB(0.3). For fundamental
copulas we obtain the following results:
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Figure 6.23: Distribution function of S for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and
X3 ∼ NB(5, 0.3) coupled by fundamental copulas. Green: lower bound, Black: Π, Red:
0.5M + 0.5Π, Blue: M , Cyan: upper bound

99cf. [21, Example 1.105]
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Figure 6.24: Probability mass function of S for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7)
and X3 ∼ NB(5, 0.3) coupled by fundamental copulas. Black: Π, Red: 0.5M + 0.5Π,
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Example 6.17. Let d = 3 and consider negative binomial-distributed random
variables X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and X3 ∼ NB(5, 0.3). We obtain
the following results using a Gaussian copula:
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Figure 6.25: Distribution function of S for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and
X3 ∼ NB(5, 0.3) coupled by a Gaussian copula. Green: lower bound, Orange: CGa
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Black: CGa
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0.5 , Blue: CGa

1 , Cyan: upper bound
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Figure 6.26: Probability mass function of S for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7)
and X3 ∼ NB(5, 0.3) coupled by a Gaussian copula. Orange: CGa
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Example 6.18. Let d = 3 and consider negative binomial-distributed random
variables X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and X3 ∼ NB(5, 0.3). Considering a
t-copula with ν = 1 we obtain the following results when considering the same
correlation matrices as in Example 6.17:
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Figure 6.27: Distribution function of S for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and
X3 ∼ NB(5, 0.3) coupled by a t-copula with ν = 1. Green: lower bound, Orange:
Ct

1,−0.5, Black: Ct
1,0, Red: Ct

1,0.5, Blue: Ct
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Figure 6.28: Probability mass function of S for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7)
and X3 ∼ NB(5, 0.3) coupled by a t-copula with ν = 1. Orange: Ct
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Example 6.19. Let d = 3 and consider negative binomial-distributed random
variables X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and X3 ∼ NB(5, 0.3). For a Gumbel
copula we obtain the following results:
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Figure 6.29: Distribution function of S for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and
X3 ∼ NB(5, 0.3) coupled by a Gumbel copula. Green: lower bound, Black: CGu

1 ,
Orange: CGu

1.25, Red: CGu
1.5 , Grey: CGu

3 , Blue: CGu
10 , Cyan: upper bound
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Figure 6.30: Probability mass function of S for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7)
and X3 ∼ NB(5, 0.3) coupled by a Gumbel copula. Black: CGu
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Example 6.20. Let d = 3 and consider negative binomial-distributed random
variables X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and X3 ∼ NB(5, 0.3). For a Frank
copula we obtain the following results:
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Figure 6.31: Distribution function of S for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and
X3 ∼ NB(5, 0.3) coupled by a Frank copula. Green: lower bound, Black: CFr

0.01, Orange:
CFr

0.5, Red: CFr
1 , Grey: CFr

2 , Blue: CFr
10 , Cyan: upper bound
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Figure 6.32: Probability mass function of S for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7)
and X3 ∼ NB(5, 0.3) coupled by a Frank copula. Black: CFr
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6.1.5 Arbitrary Distribution on N0

Consider an insurance company with a portfolio of d = 4 policies. By random
variables Xi we denote the individual claim size in millions of Euro, i = 1, . . . , 4.
We are interested in modelling the aggregate claim amount, which is given by
S = X1 + · · ·+X4, under various dependence scenarios. For this we assume that
we know the marginal distributions F1, . . . , F4 of X1, . . . , X4, which are given as
follows:

P[X1 = 0] = 0.90, P[X1 = 1] = 0.05, P[X1 = 3] = 0.03, P[X1 = 5] = 0.02

P[X2 = 0] = 0.80, P[X2 = 2] = 0.16, P[X2 = 4] = 0.04

P[X3 = 0] = 0.65, P[X3 = 1] = 0.20, P[X3 = 2] = 0.10, P[X3 = 6] = 0.05

P[X4 = 0] = 0.70, P[X4 = 1] = 0.15, P[X4 = 4] = 0.05, P[X4 = 5] = 0.10

If we consider the dependency described by fundamental copulas (i.e. inde-
pendence, comonotonicity and a convex combination of these), we obtain the
subsequent results:
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Figure 6.33: Distribution function of S for Xi as defined above, i = 1, . . . , 4, coupled
by fundamental copulas. Green: lower bound, Black: Π, Red: 0.5M + 0.5Π, Blue: M ,
Cyan: upper bound
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Figure 6.34: Probability mass function of S for Xi as defined above, i = 1, . . . , 4,
coupled by fundamental copulas. Black: Π, Red: 0.5M + 0.5Π, Blue: M
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For the next illustration we apply a Gaussian copula to the insurance portfolio
described above. We obtain the following results:100
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Figure 6.35: Distribution function of S for Xi as defined above, i = 1, . . . , 4, coupled
by a Gaussian copula. Green: lower bound, Orange: CGa

− 1
3
, Black: CGa

0 , Red: CGa
0.5 ,

Blue: CGa
1

100Note that since the upper bound on the distribution function of S already reaches values
close to 1 for n = 1, a plot of it is omitted.
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Figure 6.36: Probability mass function of S for Xi as defined above, i = 1, . . . , 4,
coupled by a Gaussian copula. Orange: CGa
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6.2 Risk Measures for S

The bounds on Value-at-Risk and Expected Shortfall are calculated according to
the methodologies described in Chapter 5 using N = 105 and tolerance ε = 10−8.

Example 6.21. Let d = 3 and consider Poisson-distributed random variables
X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼ Poi(8). For fundamental copulas follows:
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Figure 6.37: VaRα(S) for X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼ Poi(8) coupled by
fundamental copulas. Green: lower bound, Black: Π, Red: 0.5Π + 0.5M , Blue: M ,
Cyan: upper bound
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Figure 6.38: ESα(S) for X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼ Poi(8) coupled by
fundamental copulas. Green: lower bound, Black: Π, Red: 0.5Π + 0.5M , Cyan: upper
bound
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For the subsequent illustrations based on the Gaussian copula we used the
same correlation matrices as in Example 6.10.
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Figure 6.39: VaRα(S) for X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼ Poi(8) coupled by a
Gaussian copula. Green: lower bound, Grey: CGa

V , Orange: CGa
−0.5, Black: CGa

0 , Blue:
CGa

1 , Cyan: upper bound
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Figure 6.40: ESα(S) for X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼ Poi(8) coupled by a
Gaussian copula. Green: lower bound, Grey: CGa

V , Orange: CGa
−0.5, Black: CGa

0 , Cyan:
upper bound
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For the subsequent illustrations based on the t-copula with ν = 1 we used the
same correlation matrices as in Example 6.10.
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Figure 6.41: VaRα(S) for X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼ Poi(8) coupled by a
t-copula with ν = 1. Green: lower bound, Grey: Ct

1,V , Orange: Ct
1,−0.5, Black: Ct

1,0,
Blue: Ct

1,1, Cyan: upper bound
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Figure 6.42: ESα(S) for X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼ Poi(8) coupled by a
t-copula with ν = 1. Green: lower bound, Grey: Ct

1,V , Orange: Ct
1,−0.5, Black: Ct

1,0,
Cyan: upper bound
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The following illustrations are based on a Gumbel copula with various param-
eters:
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Figure 6.43: VaRα(S) for X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼ Poi(8) coupled by a
Gumbel copula. Green: lower bound, Black: CGu

1 , Orange: CGu
1.25, Red: CGu

1.5 , Blue:
CGu

10 , Cyan: upper bound
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Figure 6.44: ESα(S) for X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼ Poi(8) coupled by a
Gumbel copula. Green: lower bound, Black: CGu

1 , Orange: CGu
1.25, Red: CGu

1.5 , Blue:
CGu

10 , Cyan: upper bound
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The illustrations below are based on a Frank copula with various parame-
ters:
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Figure 6.45: VaRα(S) for X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼ Poi(8) coupled by a
Frank copula. Green: lower bound, Black: CFr

0.01, Red: CFr
1 , Blue: CFr

10 , Cyan: upper
bound
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Figure 6.46: ESα(S) for X1 ∼ Poi(3), X2 ∼ Poi(5) and X3 ∼ Poi(8) coupled by a
Frank copula. Green: lower bound, Black: CFr

0.01, Red: CFr
1 , Blue: CFr

10 , Cyan: upper
bound
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Example 6.22. Let d = 3 and consider negative binomial-distributed ran-
dom variables X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and X3 ∼ NB(5, 0.3). For
fundamental copulas follows:
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Figure 6.47: VaRα(S) for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and X3 ∼ NB(5, 0.3)
coupled by fundamental copulas. Green: lower bound, Black: Π, Red: 0.5Π + 0.5M ,
Blue: M , Cyan: upper bound
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Figure 6.48: ESα(S) for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and X3 ∼ NB(5, 0.3)
coupled by fundamental copulas. Green: lower bound, Black: Π, Red: 0.5Π + 0.5M ,
Cyan: upper bound
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For the subsequent illustrations based on the Gaussian copula we used the
same correlation matrices as in Example 6.17.
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Figure 6.49: VaRα(S) for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and X3 ∼ NB(5, 0.3)
coupled by a Gaussian copula. Green: lower bound, Orange: CGa

−0.5, Black: CGa
0 , Red:

CGa
0.5 , Blue: CGa

1 , Cyan: upper bound
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Figure 6.50: ESα(S) for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and X3 ∼ NB(5, 0.3)
coupled by a Gaussian copula. Green: lower bound, Orange: CGa

−0.5, Black: CGa
0 , Red:

CGa
0.5 , Cyan: upper bound
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For the subsequent illustrations based on the t-copula with ν = 1 we used the
same correlation matrices as in Example 6.17.
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Figure 6.51: VaRα(S) for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and X3 ∼ NB(5, 0.3)
coupled by a t-copula with ν = 1. Green: lower bound, Orange: Ct

1,−0.5, Black: Ct
1,0,

Red: Ct
1,0.5, Blue: Ct

1,1, Cyan: upper bound
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Figure 6.52: ESα(S) for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and X3 ∼ NB(5, 0.3)
coupled by a t-copula with ν = 1. Green: lower bound, Orange: Ct

1,−0.5, Black: Ct
1,0,

Red: Ct
1,0.5, Cyan: upper bound



96 Chapter 6. Examples

The following illustrations are based on a Gumbel copula with various param-
eters:
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Figure 6.53: VaRα(S) for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and X3 ∼ NB(5, 0.3)
coupled by a Gumbel copula. Green: lower bound, Black: CGu

1 , Orange: CGu
1.25, Red:

CGu
1.5 , Blue: CGu

10 , Cyan: upper bound
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Figure 6.54: ESα(S) for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and X3 ∼ NB(5, 0.3)
coupled by a Gumbel copula. Green: lower bound, Black: CGu

1 , Orange: CGu
1.25, Red:

CGu
1.5 , Blue: CGu

10 , Cyan: upper bound
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The subsequent illustrations are based on a Frank copula with various param-
eters:
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Figure 6.55: VaRα(S) for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and X3 ∼ NB(5, 0.3)
coupled by a Frank copula. Green: lower bound, Black: CFr

0.01, Red: CFr
1 , Blue: CFr

10 ,
Cyan: upper bound
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Figure 6.56: ESα(S) for X1 ∼ NB(5, 0.9), X2 ∼ NB(5, 0.7) and X3 ∼ NB(5, 0.3)
coupled by a Frank copula. Green: lower bound, Black: CFr

0.01, Red: CFr
1 , Blue: CFr

10 ,
Cyan: upper bound
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Appendix

Lemma A1. The function F defined by

F : R2 → [0, 1]

(x, y) 7→ 1
1 + e−x + e−y

(6.1)

is a 2-dimensional distribution function.

Proof. To verify that F is a bivariate distribution function, we will validate
properties (DF1)–(DF5). At first it is obvious that F is a monotonously increasing
function. Furthermore, F as a composition of continuous functions is continuous
and therefore right-continuous. It is also generally known that F fulfils properties
(DF3) and (DF4). This leaves property (DF5) to prove. For this purpose we
observe that F as defined in (6.1) has a bivariate density function

f(x, y) = 2e−xe−y

(1 + e−x + e−y)3 , x, y ∈ R.

As one easily verifies, f ≥ 0 holds for all x, y ∈ R, such that property (DF5)
applies. q

Lemma A2. The function W as defined in (2.9) is a copula in dimension d = 2.

Proof. To confirm that W is a copula for d = 2 we will verify properties
(C1)–(C4). Obviously, W is increasing and for u1, u2 ∈ [0, 1] it holds that
W (u1, 0) = W (0, u2) = 0. Additionally, W (u1, 1) = u1 and W (1, u2) = u2. For
characteristic (C4) take a = (a1, a2), b = (b1, b2) ∈ [0, 1]2 with a < b. We have
to show that101

VW ((a, b]) = W (a1, a2)−W (a1, b2)−W (b1, a2) +W (b1, b2)
= (a1 + a2 − 1)+ − (a1 + b2 − 1)+︸ ︷︷ ︸

:=A

− (a2 + b1 − 1)+︸ ︷︷ ︸
:=B

+(b1 + b2 − 1)+

(6.2)
≥ 0.

101(·)+ := max{·, 0}
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Evidently, VW ((a, b]) ≥ 0 if A = 0 and B = 0. For the other possibilities of A
and B we make a case distinction:

• Case 1: A > 0 and B = 0.
As ai < bi, i = 1, 2, formula (6.2) reduces to

(a1 + a2 − 1)+ − (a1 + b2 − 1) + (b1 + b2 − 1)+ > (a1 + a2 − 1)+ ≥ 0.

• Case 2: A = 0 and B > 0.
Analogous to case 1.

• Case 3: A > 0 and B > 0.
Substituting the given conditions in (6.2) shortens the formula to:

(a1 + a2 − 1)+ − (a1 + a2 − 1) =
{

0 for a1 + a2 ≥ 1,
1− (a1 + a2) for a1 + a2 < 1.

Thus, we have proved property (C4) and can conclude that W is a copula for
d = 2. q

Below we present an alternative proof for Proposition 4.3:

Alternative proof for Proposition 4.3. Let d be arbitrary in N such that d ≥ 2.
We will prove that the formula given in (4.2) coincides with (4.8) by mathematical
induction on n ∈ N0:

Base case: The statement holds for n = 0.

It is obvious that both (4.2) and (4.8) reduce to

c0 = C(F1(0), . . . , Fd(0))

and thus the base induction assertion is proven.

Induction hypothesis (IH): The statement holds for general n ∈ N0.

Inductive step: Given that the statement holds for general n ∈ N0 it holds for
n+ 1.

We have to show that∑
j∈J dn+1

∑
i∈Id

sign(i)C(F1(j1 − i1), . . . , Fd(jd − id))

=
min{d−1,n+1}∑

k=0
(−1)k

(
d− 1
k

)
cn+1−k (6.3)
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holds. To achieve this, we use the fact that

J dn+1 = J dn ∪ J dn+1

and rewrite the left-hand side of the above equation as follows:∑
j∈J dn+1

∑
i∈Id

sign(i)C(F1(j1 − i1), . . . , Fd(jd − id))

=
∑
j∈J dn

∑
i∈Id

sign(i)C(F1(j1 − i1), . . . , Fd(jd − id))

+
∑

j∈J dn+1

∑
i∈Id

sign(i)C(F1(j1 − i1), . . . , Fd(jd − id))

(IH)=
min{d−1,n}∑

k=0
(−1)k

(
d− 1
k

)
cn−k

+
∑

j∈J dn+1

∑
i∈Id

sign(i)C(F1(j1 − i1), . . . , Fd(jd − id)).

Consequently, we can rewrite (6.3) as∑
j∈J dn+1

∑
i∈Id

sign(i)C(F1(j1 − i1), . . . , Fd(jd − id))

=
min{d−1,n+1}∑

k=0
(−1)k

(
d− 1
k

)
cn+1−k −

min{d−1,n}∑
k=0

(−1)k
(
d− 1
k

)
cn−k.

The right-hand side of the above equation can now be rewritten as follows:102

min{d−1,n+1}∑
k=0

(−1)k
(
d− 1
k

)
cn+1−k −

min{d−1,n}∑
k=0

(−1)k
(
d− 1
k

)
cn−k

=
min{d−1,n+1}∑

k=0
(−1)k

(
d− 1
k

)
cn+1−k −

min{d−1,n}+1∑
k=1

(−1)k−1
(
d− 1
k − 1

)
cn+1−k

=
min{d−1,n+1}∑

k=0
(−1)k

(
d− 1
k

)
cn+1−k −

min{d−1,n}+1∑
k=0

(−1)k−1
(
d− 1
k − 1

)
cn+1−k

=
min{d−1,n+1}∑

k=0
(−1)k

(
d− 1
k

)
cn+1−k −

min{d−1,n}∑
k=0

(−1)k−1
(
d− 1
k − 1

)
cn+1−k

− (−1)min{d−1,n}
(

d− 1
min{d− 1, n}

)
cn−min{d−1,n}. (6.4)

102Note that for n, k ∈ N0 such that n < k we have that
(
n
k

)
= 0.
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Without loss of generality we can assume that d ≤ n+ 1, as in the opposite
case we can still set the upper limits of the outer sums to d− 1, as the sums are
simply extended by 0-terms. As a result, we can transform (6.4) as follows:

=
min{d−1,n+1}∑

k=0
(−1)k

(
d− 1
k

)
cn+1−k −

min{d−1,n}∑
k=0

(−1)k−1
(
d− 1
k − 1

)
cn+1−k

− (−1)min{d−1,n}
(

d− 1
min{d− 1, n}

)
cn−min{d−1,n}

=
d−1∑
k=0

(−1)k
[(

d− 1
k

)
+
(
d− 1
k − 1

)]
cn+1−k + (−1)d cn+1−d

=
d∑
k=0

(−1)k
(
d

k

)
cn+1−k.

It remains to be shown that∑
j∈J dn+1

∑
i∈Id

sign(i)C(F1(j1 − i1), . . . , Fd(jd − id))

=
d∑
k=0

(−1)k
(
d

k

)
cn+1−k

holds. For this purpose we define

Idl = {i = (i1, . . . , id) ∈ Id : i1 + · · ·+ id = l}, l ∈ N0, l ≤ d.

Then we have that∑
j∈J dn+1

∑
i∈Id

sign(i)C(F1(j1 − i1), . . . , Fd(jd − id))

=
d∑
k=0

(−1)k
∑
i∈Id

k

∑
j∈J dn+1

C(F1(j1 − i1), . . . , Fd(jd − id))

=
d∑
k=0

(−1)k
(
d

k

)
cn+1−k,

which proves the induction claim. q

Below we present an alternative proof for Theorem 4.8:

Alternative proof for Theorem 4.8. Assuming that (4.11) holds, the following
applies for l ∈ N0, l ≤ n:

cn−l = pn−l +
n−l∑
k=1

(
k + d− 1
d− 1

)
pn−l−k
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=
n−l∑
k=0

(
k + d− 1
d− 1

)
pn−l−k

=
n∑
k=l

(
k − l + d− 1

d− 1

)
pn−k

=
n∑
k=0

(
k − l + d− 1

d− 1

)
pn−k, (6.5)

where the last step can be justified by the fact that the sum is extended by 0,
since the binomial coefficient is 0 for k < l. This allows us to observe further:

cn−l − cn−1−l =
n∑
k=0

(
k − l + d− 1

d− 1

)
pn−k −

n−1∑
k=0

(
k − l + d− 1

d− 1

)
pn−1−k

=
n∑
k=0

(
k − l + d− 1

d− 1

)
pn−k −

n∑
k=1

(
k − l + d− 2

d− 1

)
pn−k

=
n∑
k=0

(
k − l + d− 1

d− 1

)
pn−k −

n∑
k=0

(
k − l + d− 2

d− 1

)
pn−k

=
n∑
k=0

(
k − l + d− 2

d− 2

)
pn−k. (6.6)

Given that (4.11) holds, with the results from (6.5) and (6.6) we get the
following:

pn = cn −
n∑
k=1

(
k + d− 1
d− 1

)
pn−k

= cn −
n∑
k=1

(
k + d− 1
d− 1

)
pn−k −

(
cn−1 − pn−1 −

n−1∑
k=1

(
k + d− 1
d− 1

)
pn−1−k

)
︸ ︷︷ ︸

=0

= cn − cn−1 −
n∑
k=1

(
k + d− 1
d− 1

)
pn−k + pn−1 +

n∑
k=2

(
k + d− 2
d− 1

)
pn−k

= cn − cn−1 −
n∑
k=1

(
k + d− 1
d− 1

)
pn−k +

n∑
k=1

(
k + d− 2
d− 1

)
pn−k

= cn − cn−1 −
n∑
k=1

(
k + d− 2
d− 2

)
pn−k

= cn − cn−1 −
n∑
k=1

(
k + d− 2
d− 2

)
pn−k

+
d−2∑
l=1

(−1)l
(
d− 2
l

)(
cn−l − cn−1−l −

n∑
k=1

(
k − l + d− 2

d− 2

)
pn−k

)
︸ ︷︷ ︸

=0
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= cn − cn−1 +
d−2∑
l=1

(−1)l
(
d− 2
l

)
(cn−l − cn−1−l)

−
n∑
k=1

(
k + d− 2
d− 2

)
pn−k −

d−2∑
l=1

(−1)l
(
d− 2
l

) n∑
k=1

(
k − l + d− 2

d− 2

)
pn−k

=
d−2∑
l=0

(−1)l
(
d− 2
l

)
(cn−l − cn−1−l)

−
n∑
k=1

[
d−2∑
l=0

(−1)l
(
d− 2
l

)(
k − l + d− 2

d− 2

)]
pn−k.

We will now prove that for any k, d ∈ N, d ≥ 2, the following applies:

d−2∑
l=0

(−1)l
(
d− 2
l

)(
k − l + d− 2

d− 2

)
= 1.

We have that103

d−2∑
l=0

(−1)l
(
d− 2
l

)(
k − l + d− 2

d− 2

)

=
d−2∑
l=0

(−1)l
(
d− 2
l

)
[xd−2](1 + x)k−l+d−2

= [xd−2](1 + x)k
d−2∑
l=0

(−1)l
(
d− 2
l

)
(1 + x)d−2−l

= [xd−2](1 + x)kxd−2

= 1.

Therefore it holds that:

=
d−2∑
l=0

(−1)l
(
d− 2
l

)
(cn−l − cn−1−l)

−
n∑
k=1

[
d−2∑
l=0

(−1)l
(
d− 2
l

)(
k − l + d− 2

d− 2

)]
pn−k

=
d−2∑
l=0

(−1)l
(
d− 2
l

)
cn−l −

d−2∑
l=0

(−1)l
(
d− 2
l

)
cn−1−l −

n∑
k=1

pn−k

=
d−2∑
l=0

(−1)l
(
d− 2
l

)
cn−l −

d−1∑
l=1

(−1)l
(
d− 2
l − 1

)
cn−l −

n∑
k=1

pn−k

=
d−2∑
l=0

(−1)l
[(
d− 2
l

)
+
(
d− 2
l − 1

)]
cn−l + (−1)d−1cn−d+1 −

n∑
k=1

pn−k

103Here, [xn] denotes the reading of the coefficient of xn.
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=
d−1∑
l=0

(−1)l
(
d− 1
l

)
cn−l −

n∑
k=1

pn−k.

To summarize, we have that

pn =
d−1∑
l=0

(−1)l
(
d− 1
l

)
cn−l −

n∑
k=1

pn−k

⇐⇒
n∑
k=0

pn−k =
d−1∑
l=0

(−1)l
(
d− 1
l

)
cn−l

=
min{d−1,n}∑

l=0
(−1)l

(
d− 1
l

)
cn−l,

which by Proposition 4.3 is a true statement and thus completes the proof. q
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R: Calculation of the Distribution of S

1 ## Calculation of the distribution function of S as in (4.8)
2 ## with given copula C and univariate margins F1, . . . , Fd.
3 ##
4 ## Required input:
5 ## o) Dimension d ∈ N, d ≥ 2
6 ## o) n ∈ N0
7 ## o) Copula C
8 ## o) List of univariate marginal distributions
9 ## F1, . . . , Fd

10 ##
11 ## Output: P[S ≤ n]
12 ## ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
13

14 helper.evalCopula=function(j,copula ,margins) {
15 valMargins=numeric(length(j))
16 for (i in 1: length(valMargins)) {
17 valMargins[i]= margins [[i]](j[i])
18 }
19 return(copula(valMargins))
20 }
21

22 helper.setNextCombination=function(j,target) {
23 for (i in 1: length(j)) {
24 j[i]=j[i]+1
25 if (j[i]<=target&&sum(j) <=target) {
26 break
27 } else {
28 j[i]=0
29 }
30 }
31 return(j)
32 }
33

34 S.distribution=function(d,n,copula ,margins) {
35 if (n<0) {
36 return (0)
37 }
38 n=floor(n)
39 j=numeric(d)
40 result =0
41 for (k in 0:min(d-1,n)) {
42 j=numeric(d)
43 if (sum(j)==n-k) {
44 result=result +((-1)^k)*choose(d-1,k)*helper.

evalCopula(j,copula ,margins)
45 }
46 repeat {
47 j=helper.setNextCombination(j,n-k)
48 if (sum(j)==0) {
49 break
50 } else if (sum(j)==n-k) {
51 result=result +((-1)^k)*choose(d-1,k)*helper.

evalCopula(j,copula ,margins)
52 }
53 }
54 }
55 return(result)
56 }

Program R1: Calculation of the distribution of S as in (4.8)
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R: Calculation of the
Probability Mass Function of S as in (4.12)

1 ## Calculation of the probability mass function of S as
2 ## in (4.12) with given copula C and univariate margins
3 ## F1, . . . , Fd.
4 ##
5 ## Required input:
6 ## o) Dimension d ∈ N, d ≥ 2
7 ## o) n ∈ N0
8 ## o) Copula C
9 ## o) List of univariate marginal distributions

10 ## F1, . . . , Fd
11 ##
12 ## Output: P[S = n]
13 ## ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
14

15 helper.evalCopula=function(j,copula ,margins) {
16 valMargins=numeric(length(j))
17 for (i in 1: length(valMargins)) {
18 valMargins[i]= margins [[i]](j[i])
19 }
20 return(copula(valMargins))
21 }
22

23 helper.setNextCombination=function(j,target) {
24 for (i in 1: length(j)) {
25 j[i]=j[i]+1
26 if (j[i]<=target&&sum(j) <=target) {
27 break
28 } else {
29 j[i]=0
30 }
31 }
32 return(j)
33 }
34

35 S.probabilityMassFunction=function(d,n,copula ,margins) {
36 if (n<0) {return (0)}
37 j=numeric(d)
38 result =0
39 for (k in 0:min(d,n)) {
40 j=numeric(d)
41 if (sum(j)==n-k) {
42 result=result +((-1)^k)*choose(d,k)*helper.evalCopula

(j,copula ,margins)
43 }
44 repeat {
45 j=helper.setNextCombination(j,n-k)
46 if (sum(j)==0) {
47 break
48 } else if (sum(j)==n-k) {
49 result=result +((-1)^k)*choose(d,k)*helper.

evalCopula(j,copula ,margins)
50 }
51 }
52 }
53 return(result)
54 }

Program R2: Calculation of the probability mass function of S as in (4.12)



112 Appendix

R: Recursion for the
Probability Mass Function of S

1 ## Recursion for the calculation of the probability mass
2 ## function of S with given copula C and univariate
3 ## discrete marginal distributions F1, . . . , Fd.
4 ##
5 ## Required input:
6 ## o) Dimension d ∈ N, d ≥ 2
7 ## o) n ∈ N0
8 ## o) Copula C
9 ## o) List of univariate marginal distributions

10 ## F1, . . . , Fd
11 ## o) Support of the univariate marginals
12 ##
13 ## Output: P[S = n]
14 ## ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
15

16 helper.setNextIndex=function(ind ,maxValues) {
17 for (i in 1: length(ind)) {
18 ind[i]=ind[i]+1
19 if (ind[i]<= maxValues[i]) {
20 break
21 } else {
22 ind[i]=1
23 }
24 }
25 return(ind)
26 }
27

28 helper.calcCombinations=function(d,n,support) {
29 j=numeric(d)
30 ind=rep(1,d)
31 number =1
32 maxValues=numeric(d)
33 combinations=list()
34 for (i in 1:d) {
35 maxValues[i]= length(support [[i]])
36 }
37 repeat {
38 for (i in 1:d) {
39 j[i]= support [[i]][ind[i]]
40 }
41 if (sum(j) <=n) {
42 combinations [[ number ]]=c(sum(j),j)
43 number=number +1
44 }
45 ind=helper.setNextIndex(ind ,maxValues)
46 if (sum(ind)==d) {
47 break
48 }
49 }
50 return(combinations)
51 }
52

53 S.probabilityMassFunctionRecursion=function(d,n,copula ,margins ,
support ,combinations=list(),firstRun=TRUE) {

54 result=NULL
55 valMargins=numeric(d)
56 combinationsN = list()
57 ind=1
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58 if(firstRun ==TRUE) {
59 combinations=helper.calcCombinations(d,n,support)
60 }
61 uniqueComb=NULL
62 for (i in 1: length(combinations)) {
63 uniqueComb[i]= combinations [[i]][1]
64 }
65 if (sum(uniqueComb ==n)==0) {
66 return (0)
67 }
68 if (n==0) {
69 for (i in 1:d) {
70 valMargins[i]= margins [[i]](0)
71 }
72 result=copula(valMargins)
73 return(result)
74 } else {
75 for (i in 1: length(combinations)) {
76 if(combinations [[i]][1]==n) {
77 combinationsN [[ind ]]= combinations [[i]][2:(d+1)]
78 ind=ind+1
79 }
80 }
81 if (length(combinationsN)==0) {
82 return (0)
83 } else {
84 tmpCopula =0
85 tmpSum =0
86 for (i in 1: length(combinationsN)) {
87 for (k in 1:d) {
88 valMargins[k]= margins [[k]]( combinationsN [[i

]][k])
89 }
90 tmpCopula=tmpCopula+copula(valMargins)
91 }
92 for (k in 1:n) {
93 tmpSum=tmpSum+choose(k+d-1,d-1)*S.

probabilityMassFunctionRecursion(d,n-k,
copula ,margins ,support ,combinations ,FALSE)

94 }
95 result=tmpCopula -tmpSum
96 return(result)
97 }
98 }
99 }

Program R3: Recursion for the probability mass function of S as in (4.11)



114 Appendix

R: Calculation of the Probability Mass Function
of S by Integration over Copula Densities

1 ## Calculation of the probability mass function of S by
2 ## integration of the copula density as described in
3 ## Section 4.5.
4 ##
5 ## Required input:
6 ## o) Dimension d ∈ N, d ≥ 2
7 ## o) n ∈ N0
8 ## o) Copula density c
9 ## o) List of univariate marginal distributions

10 ## F1, . . . , Fd
11 ## o) Support of the univariate marginals
12 ##
13 ## Output: P[S = n]
14 ## ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
15

16 ## . "cubature" is a R-package for multidimensional
17 ## integration over hypercubes , c.f. [2].
18

19 library("cubature")
20

21 helper.setNextIndex=function(ind ,maxValues) {
22 for (i in 1: length(ind)) {
23 ind[i]=ind[i]+1
24 if (ind[i]<= maxValues[i]) {
25 break
26 } else {
27 ind[i]=1
28 }
29 }
30 return(ind)
31 }
32

33 helper.calcCombinations=function(d,n,support) {
34 j=numeric(d)
35 ind=rep(1,d)
36 number =1
37 maxValues=numeric(d)
38 combinations=list()
39 for (i in 1:d) {
40 maxValues[i]= length(support [[i]])
41 }
42 repeat {
43 for (i in 1:d) {
44 j[i]= support [[i]][ind[i]]
45 }
46 if (sum(j)==n) {
47 combinations [[ number ]]=j
48 number=number +1
49 }
50 ind=helper.setNextIndex(ind ,maxValues)
51 if (sum(ind)==d) {
52 break
53 }
54 }
55 return(combinations)
56 }
57
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58 S.probabilityMassFunctionIntegration=function(d,n,copulaDensity ,
margins ,support) {

59 J=helper.calcCombinations(d,n,support)
60 result =0
61 for (j in J) {
62 limUpper=NULL
63 limLower=NULL
64 for (i in 1: length(j)) {
65 limUpper[i]= margins [[i]](j[i])
66 limLower[i]= margins [[i]](j[i]-1)
67 }
68 int=adaptIntegrate(copulaDensity ,lowerLimit=limLower ,

upperLimit=limUpper)
69 result=result+int$integral
70 }
71 return(result)
72 }

Program R4: Calculation of the probability mass function of S by integration
over copula densities as described in Section 4.5
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R: Rearrangement Algorithm for the Calculation
of Sharp Bounds on the Distribution of S

1 ## Rearrangement Algorithm for the calculation of pointwise
2 ## sharp bounds on the distribution function of S as
3 ## described in Section 4.3.
4 ##
5 ## . For an R-Package and additional information about the
6 ## Rearrangement Algorithm in R we refer interested readers
7 ## to [14].
8 ##
9 ## Required input:

10 ## o) Dimension d ∈ N, d ≥ 2
11 ## o) n ∈ N0
12 ## o) N ∈ N
13 ## o) Tolerance ε > 0
14 ## o) List of univariate quantile functions
15 ## F←1 , . . . , F←d
16 ##
17 ## Output: lower and upper bound on P[S ≤ n]
18 ## ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
19

20 helper.rearrangeMatrix=function(d,M,tolerance ,func) {
21 M=apply(M,2,sample)
22 absDiff=Inf
23 result=Inf
24 while(absDiff >tolerance) {
25 tmp=result
26 for (j in 1:d) {
27 rankBy=rowSums(M[,(1:d)[-j]])
28 M[,j]=sort(M[,j],decreasing=TRUE)[rank(rankBy)]
29 }
30 result=func(rowSums(M))
31 absDiff=abs(result -tmp)
32 }
33 return(result)
34 }
35

36 S.upperBound=function(d,n,quantiles ,tolerance ,N) {
37 left=0
38 right=1
39 repeat {
40 result =(left+right)/2
41 X=matrix(ncol=d,nrow=N)
42 for (i in 1:N) {
43 for (j in 1:d) {
44 X[i,j]= quantiles [[j]]( result*(i-1)/N)
45 }
46 }
47 nApprox=helper.rearrangeMatrix(d,X,tolerance ,max)
48 if (abs(n+1-nApprox)<tolerance ||abs(left -right)<

tolerance) {
49 break
50 }
51 if (nApprox >n+1) {
52 left=result*2-right
53 right=result
54 } else {
55 right=result*2-left
56 left=result
57 }
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58 }
59 return(result)
60 }
61

62 S.lowerBound=function(d,n,quantiles ,tolerance ,N) {
63 left=0
64 right=1
65 repeat {
66 result =(left+right)/2
67 X = matrix(ncol=d,nrow=N)
68 for (i in 1:N) {
69 for (j in 1:d) {
70 X[i,j]= quantiles [[j]]( result +(1- result)*(i-1)/N)
71 }
72 }
73 nApprox=helper.rearrangeMatrix(d,X,tolerance ,min)
74 if (abs(n+1-nApprox)<tolerance ||abs(left -right)<

tolerance) {
75 break
76 }
77 if (nApprox <n+1) {
78 right=result*2-left
79 left=result
80 } else {
81 left=result*2-right
82 right=result
83 }
84 }
85 return(result)
86 }

Program R5: Rearrangement Algorithm for the calculation of sharp bounds
on the distribution of S as described in Section 4.3
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R: Calculation of Sharp Bounds on Value-at-Risk
and Expected Shortfall

1 ## Rearrangement Algorithm for the calculation of sharp
2 ## bounds on risk measures VaRα(S) and ESα(S).
3 ##
4 ## . For an R-Package and additional information about the
5 ## Rearrangement Algorithm in R we refer interested readers
6 ## to [14].
7 ##
8 ## Required input:
9 ## o) Dimension d ∈ N, d ≥ 2

10 ## o) α ∈ (0, 1)
11 ## o) N ∈ N
12 ## o) Tolerance ε > 0
13 ## o) List of univariate quantile functions
14 ## F←1 , . . . , F←d
15 ##
16 ## Output: lower and upper bound on VaRα(S) and ESα(S)
17 ## ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
18

19 VaR.lowerBound=function(quantiles ,tolerance ,alpha ,N,d) {
20 iterations =1e2
21 X=matrix(0,nrow=N,ncol=d)
22 for (j in 1:d) {
23 for (i in 1:N) {
24 X[i,j]= quantiles [[j]](( alpha*(i-1))/N)
25 }
26 }
27 X=apply(X,2,sample)
28 VaR_L=-Inf
29 for (i in 1: iterations) {
30 for (j in 1:d) {
31 rankBy=rowSums(X[,(1:d)[-j]])
32 X[,j]=sort(X[,j],decreasing=TRUE)[rank(rankBy)]
33 }
34 tmp=max(rowSums(X))
35 if (tmp >VaR_L) {
36 VaR_L=tmp
37 }
38 }
39 return(VaR_L)
40 }
41

42 VaR.upperBound=function(quantiles ,tolerance ,alpha ,N,d) {
43 iterations =1e2
44 X=matrix(0,nrow=N,ncol=d)
45 for (j in 1:d) {
46 for (i in 1:N) {
47 X[i,j]= quantiles [[j]](( alpha)+((1- alpha)*i)/N)
48 }
49 }
50 X=apply(X,2,sample)
51 VaR_U=Inf
52 for (i in 1: iterations) {
53 for (j in 1:d) {
54 rankBy=rowSums(X[,(1:d)[-j]])
55 X[,j]=sort(X[,j],decreasing=TRUE)[rank(rankBy)]
56 }
57 tmp=min(rowSums(X))
58 if (tmp <VaR_U) {
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59 VaR_U=tmp
60 }
61 }
62 return(VaR_U)
63 }
64

65 ES.lowerBound=function(quantiles ,tolerance ,alpha ,N,d) {
66 iterations =1e2
67 X=matrix(0,nrow=N,ncol=d)
68 for (j in 1:d) {
69 for (i in 1:N) {
70 X[i,j]= quantiles [[j]]((i-1)/N)
71 }
72 }
73 X=apply(X,2,sample)
74 ES_L=-Inf
75 for (i in 1: iterations) {
76 for (j in 1:d) {
77 rankBy=rowSums(X[,(1:d)[-j]])
78 X[,j]=sort(X[,j],decreasing=TRUE)[rank(rankBy)]
79 }
80 Y=sort(rowSums(X))
81 tmp=sum(Y[(floor(N*alpha)+1):N])/(N*(1-alpha))
82 if (tmp >ES_L) {
83 ES_L=tmp
84 }
85 }
86 return(ES_L)
87 }
88

89 ES.upperBound=function(quantiles ,alpha ,N,d) {
90 helper.univariateES=function(qDist ,N,alpha) {
91 X=matrix(0,nrow=N)
92 for (i in 1:N) {
93 X[i]=qDist(alpha +((1- alpha)*(i-1))/N)
94 }
95 return(sum(X)/N)
96 }
97 tmp=numeric(d)
98 for (j in 1:d) {
99 tmp[j]= helper.univariateES(quantiles [[j]],N,alpha)

100 }
101 ES_U=sum(tmp)
102 return(ES_U)
103 }

Program R6: Adapted Rearrangement Algorithm for the calculation of sharp
bounds on risk measures VaRα(S) and ESα(S) as described in Chapter 5
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