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Abstract

Intelligent agents must learn coherent representations of their world, from high-dimensional sen-
sory information, and utilize them to generalize well in unseen situations. Although contemporary
deep learning algorithms have achieved noteworthy successes in variform of high-dimensional
tasks, their learned causal structure, interpretability, and robustness were largely overlooked. This
dissertation presents methods to address interpretation, stability and the overlooked properties of
a class of intelligent algorithms, namely recurrent neural networks (RNNs), in continuous-time
environments. Accordingly, the contributions of the work lie into two major frameworks:

I) Designing interpretable RNN architectures — We first introduce a novel RNN instance that
is formulated by computational models originally developed to explain the nervous system of
small species. We call these RNNs liquid time-constant (LTCs) because they possess nonlinear
compartments that regulate the state of a neuron through a variable time-constant. LTCs form a
dynamic causal model capable of learning causal relationships between the input, their neural
state, and the output dynamics directly from supervised training data. Moreover, we demonstrate
that LTCs are universal approximators and can be advantageously used in continuous-time control
domains. We then combine LTCs with contemporary scalable deep neural network architectures
and structural inspirations from the C. elegans connectome, to develop novel neural processing
units, that can learn to map multidimensional inputs to control commands by sparse, causal,
interpretable and robust neural representations. We extensively evaluate the performance of
LTC-based neural network instances in a large category of simulated and real-world applications
ranging from time-series classification and prediction to autonomous robot and vehicle control.

II) Designing interpretation methods for trained RNN instances — In this framework, we develop
a quantitative method to interpret the dynamics of modern RNN architectures. As opposed to the
existing methods that are proactively constructed by empirical feature visualization algorithms,
we propose a systematic pipeline for interpreting individual hidden state dynamics within the
network using response characterization methods. Our method is able to uniquely identify
neurons with insightful dynamics, quantify relationships between dynamical properties and test
accuracy through ablation analysis, and interpret the impact of network capacity on a network’s
dynamical distribution. Finally, we demonstrate the scalability of our method by evaluating a
series of different benchmark sequential datasets.

The findings of this dissertation notably improves our understanding of neural information
processing systems in continuous-time environments.
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CHAPTER

Introduction

Deep learning algorithms have demonstrated outstanding performance in variety of representation
learning applications and end-to-end information processing of high-dimensional spaces [Mnih
et al., 2015, Silver et al., 2016b, Bojarski et al., 2016, Silver et al., 2017, Schrittwieser et al.,
2019, Vinyals et al., 2019]. Despite mastering the ability to learn representations with supreme
performances, the study of a series of critical attributes of such learning systems was proportion-
ally, largely overlooked. For instance, how a neural network agent comes up with decisions?
Can we explain/interpret its internal state? Has the true causal structure of the task been learned
by the agent? are the learned representations fair? And how robust are such networks under
environmental perturbations? Questions of such become more vital where the domain under
which the learning system operates, is safety-critical such as controlling robots and autonomous
driving. This dissertation aims to investigate the interpretability, stability, and robustness of a
class of machine learning algorithms that are spatiotemporal information processing systems,
namely recurrent neural networks (RNNs).

1.1 Motivation and Problem Statement

RNNs are artificial neural networks that maintain the history of their input data as an internal
state vector. This property makes them highly expressive, and as a result, enables them to achieve
non-trivial performance on complex sequential tasks.

However, interpretation of the dynamics of the internal state of RNNs similar to many other
modern neural network architectures is difficult [Melis and Jaakkola, 2018, Karpathy et al.,
2015]. This mainly raises concerns when the RNN agent is deployed in safety-critical application
domains such as robot control [Brooks, 1986, Mayer et al., 2008, Latombe, 2012a, Duan et al.,
2016, Heess et al., 2017], in which at every stage of agent’s autonomy (perception [Elfes,
1989, Beetz et al., 2015], reasoning [Georgeff and Lansky, 1987, Bekey, 2005], and control
[Levine et al., 2016]), their underlying mechanisms and structure ideally have to be interpretable
to ensure the safety of the system. First, let us define our notion of interpretability:
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1.

INTRODUCTION

1.1.1 What do we mean by Interpretability?

Interpretation is the process of providing explanations to human. There is no formal and mathe-
matical definition for interpretability [Molnar, 2019]. However, here we argue that a model is
better interpretable than another if its internal dynamics, as well as its decision-making process
and its output predictions, are more comprehensible to humans. To delve more rigorously into
defining interpretability, we can take advantage of many well-defined machine learning desiderata.

Causality — considers how changes in parameters and elements of the agent (i.e., a neural
network’s building blocks) alter its decision making process [Pearl, 2009]. Causality has been
subjected to rigorous formalization in the research community. When intelligent agents establish
a causal structure, our understanding of their dynamics significantly increases. In Chapter 3, we
discuss this property for recurrent neural networks, quantitatively.

Fairness — implies that the decisions made by an intelligent agent are not biased and are inde-
pendent of a selected group of sensitive features (i.e., gender, ethnicity, and image backgrounds)
[Hardt et al., 2016, Barocas et al., 2017]. Fairness in machine learning is well-characterized and
is closely discussed together with accountability and transparency [Hardt, 2020]. In Chapter 6,
we discuss how to design neural processing units which perform fair decision making.

Robustness and Reliability — ascertain the functionality of the agent under input or parameters
perturbations [Doshi-Velez and Kim, 2017]. In Chapters 4, 5, 6, we perform a series of robustness
analysis of intelligent agents in safety critical domains such as robotics and autonomous driving.

Usability — provides users with information eases their task accomplishment process [Doshi-Velez
and Kim, 2017]. For instance, how a neural network architecture has to be designed enhances the
usability of the machine learning model. In Chapters 5 and 6 we introduce task-specific design
principles to build expressive and performant neural network architectures.

Trust — enhances user’s confidence in the deployment process of the intelligent agent (e.g., in
lane-keeping with self-driving cars) [Huang et al., 2017]. Any form of stability and convergence
guarantees for a learning system raises trust. Moreover, trust can be achieved by methodologies
that result in a better understanding of the underlying dynamics of the learning system. In
Chapters 2 to 7, we develop theoretical, experimental, and quantitative methods to elevate our
understanding of a recurrent neural network system to enhance trust.

Conclusively, we determine inferpretability as the method that investigates whether dis-
cussed machine learning desiderata such as causality, fairness, robustness, reliability, us-
ability, and trust are achieved. Throughout this thesis, we use interpretability and auditability
interchangeably.

1.1.2 Why and when do we need Interpretability?

[Doshi-Velez and Kim, 2017] stated that interpretability is required when any form of incomplete-
ness is present in the problem’s formalization, optimization, or in the evaluation process. For
instance, an end-to-end learning system cannot be tested for all possible risk-element combina-
tions. This means that it is computationally infeasible to assess the output of the system for all
possible inputs. Therefore, interpretability could help in safety analysis of a learning system.
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1.1. Motivation and Problem Statement

Furthermore, the selection of decision criteria and inductive biases cannot be done completely
for a learning system. For instance, certain kinds of discrimination (such as gender or ethnicity)
towards users should be avoided during a social study. However, the selection of such criteria is
non-trivial in the general case. Therefore, interpretability can be helpful in ethical and fairness
analysis of algorithms.

Mismatched objectives can also be improved by the use of interpretability methods [Doshi-Velez
and Kim, 2017]. For instance, a learning algorithm with an ill-defined (incomplete) objective can
give rise to locally optimal agents. For example, an end-to-end lane-keeping self-driving agent
can learn to drive based on the side roads and off-road features, while it ignores a road’s horizon.
We discuss this phenomenon further in Chapter 6.

Moreover, performance-robustness trade-off always exists for a decision making algorithm.
Where one requires to maximize this trade-off, interpretability can be helpful. We discuss this
matter further in Chapters 4,5, and 6.

1.1.3 How to interpret?

Interpretability methods have largely been categorized into two major groups: 1. Human-in-the-
loop methods, 2. Proxy Methods. The first category includes machine learning models with their
application domain being determined by a human expert, such as a doctor diagnosing diseases,
or designing an integrated circuit. An ML model, based on human knowledge, is created; thus,
its dynamics can be interpreted by the human himself. Several attempts on human-in-the-loop
interpretability have been conducted [Suissa-Peleg et al., 2016, Williams et al., 2016, Dong
et al., 2017, Lage et al., 2018, Zanzotto, 2019]. While this approach demonstrated promise in
task-specific problems, their deployment in large-scale machine learning models such as neural
networks is highly laborious and challenging.

The second category, which is scalable to significantly larger machine learning models, focuses on
the development of algorithms that interpret a learning system’s dynamics by means of a quality
measure (proxy). In particular, for the interpretability of neural network models, a large body of
work focused on post-training feature visualization to qualitatively understand the dynamics of
the neural networks [Erhan et al., 2009, Zeiler and Fergus, 2014, Yosinski et al., 2015, Karpathy
et al., 2015, Strobelt et al., 2018, Bilal et al., 2018, Olah et al., 2018]. Alternatively, evaluating
input-feature attributions by computing saliency maps [Simonyan et al., 2013, Fong and Vedaldi,
2017, Kindermans et al., 2017, Sundararajan et al., 2017], were effectively deployed for the
interpretability of neural networks.

Beyond feature visualization, the choice of the proxy and measures can be arbitrary and challeng-
ing [Doshi-Velez and Kim, 2017]. For instance, dimensionality reduction methods [Bishop and
Tipping, 1998, Gulrajani et al., 2016, Maaten and Hinton, 2008], recursive dynamical patterns
inference inside a network [Strobelt et al., 2018], and robust statistics [Koh and Liang, 2017]
were proposed for post-training interpretation of the network dynamics.

More systematic interpretability approaches suggested the design of neural network architectures
that, either throughout their optimization process or by nature, are more auditable. Examples
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INTRODUCTION

include neural arithmetic logic units (NALU) [Trask et al., 2018] and the attention networks
[Vaswani et al., 2017]. However, fundamentally, as the dimensionality of the neural network
model increases our understanding of the kinetics of the network’s elements drops. Therefore, the
interpretability of large-scale machine learning models such as deep neural networks is difficult.
This challenge becomes even more severe when the network architectures possess feedback
mechanisms such as recurrent neural networks, which are the predominant choice in sequential
data processing tasks.

1.1.4 Why interpretability of neural networks, specifically RNNs is difficult?

The difficulty in interpreting the dynamics of deep learning architectures, and more specifically,
RNNSs, the core models of the current study, have the following fundamental reasons:

1. Network’s size (number of neurons, synapses, and trainable parameters) — As the network
size grows, understanding individual neurons’ contribution to the output decision becomes
challenging and, in many cases, irrelevant. It has been recently shown that there exist
sub-networks within a fully-connected large-scale neural network, that when trained in
isolation, achieves comparable performance to that of the original network [Frankle and
Carbin, 2018]. This finding suggests that knowledge representation distributed within a
dense network more likely arises from groups of neurons in arbitrary-configurations rather
than single neurons.

2. Input features are typically of high-dimensions (i.e., a sequence of images) — In many
application domains such as robotic navigation, autonomous cars, and medicine, the input
domain consists of high-dimensional image data realizing an enormous space. Each input
dimension (each pixel) maps to the nodes of the first layer of the system. Making sense of
the resulting connectome, at the pixel-level, becomes computationally hard and irrelevant
[Melis and Jaakkola, 2018].

3. In addition to the difficulty of interpretation of individual input-features, the parameters
of a neural network are highly interleaved to those high-dimensional features. Therefore
their contributions to a network decision cannot be explicitly quantified.

4. The aggregation of the input features and the network’s parameters are highly nonlinear
with conflating of interpretation of impact [Melis and Jaakkola, 2018, Tan et al., 2018].
Therefore, local explanations become non-trivially difficult to extract.

5. RNN’s feedback loop results in higher-order dynamics. This feature appends another degree
of complexity to its internal dynamics interpretation.

There is a high demand for approaching interpretability of neural networks, specially RNNs,
which are actively deployed in safety-critical domains. In the present study, we take two primary
paths to rigorously understand and interpret the dynamics of recurrent neural network architectures
in continuous-time domains: 1) Designing interpretable network architectures. 2) Designing
interpretation methods for trained neural networks.
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1.2. Research Questions and Thesis Contributions
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Figure 1.1: Thesis topics and contributions map.

1.2 Research Questions and Thesis Contributions

We aim to take a rigorous computational approach to improve the interpretability challenges of
recurrent neural networks, stated in the previous section. The diagram presented in Fig. 1.1,
graphically illustrates the structure of the thesis contributions and its relations to the published
work.

Our Vision — is to improve our understanding of how RNNs come up with their decisions in
continuous sequential data-processing environments, such as robotics. For this purpose, we aim
to approach the interpretability of RNNs by designing novel architectures that satisfy many of
the machine learning desiderata such as robustness and reliability, usability, causality, and trust.
Furthermore, we develop techniques to shed more light on the internal dynamics of contemporary
RNN architectures.

Technical insights for getting to the vision — We set out to combine insights from dynamical
systems and neural computations, into designing novel neural information processing systems
with enhanced interpretability skills, in continuous-time domains. To achieve this, we divide the
work into two main frameworks: 1) Designing interpretable network architectures. 2) Designing
interpretation methods for trained neural networks.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.
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1.2.1 Designing interpretable neural network architectures

One can design novel architectures equipped with regularization schemes, or computational
elements, that naturally address interpretability. The attention mechanism [Vaswani et al., 2017]
introduced a novel network architecture that enhances the interpretation of a network’s decision-
making process. It forces the network to attend to specific cues in the input stream when assigning
labels. RNNs equipped with an attention mechanism have been successfully applied in image
captioning [You et al., 2016], the fine-alignment in machine translation [Luong et al., 2015],
and text extraction from documents [Hermann et al., 2015]. Hidden-state visualization is a
shared property of these approaches in order to understand the internal dynamics of the network
effectively.

In this thesis, we aim to take a neuroscience-inspired approach to design more transparent
learning systems. The architecture of many contemporary neural information processing systems
is inspired by what we know about neural computations in biological systems [Hassabis et al.,
2017]. Their semantics, however, have diverged dramatically from their biologically plausible
roots to reduce complexity and enable scalability. This, however, reduces their ability to express
the range of complex dynamical properties of real neural and synaptic models. In this thesis, we
aim to bridge this gap by showing that a biophysical neural model, originally developed to explain
the nervous system of small species such as Ascaris and C. elegans can be advantageously used as
a performant recurrent neural network (RNN) instance. We call these RNNs liquid time-constant
(LTCs) because they possess, like their biological counterparts, nonlinear compartments that
regulate the state of a neuron through a variable time-constant. LTCs form a dynamic causal
model [Friston et al., 2003] capable of learning causal relationships between the input, their
neural state, and the output dynamics directly from supervised training data. In Chapter 3, we
show that LTCs also possess universal approximation capabilities as they can learn arbitrary
input/output mappings of a given dynamical system with any precision. Moreover, we show
that their dynamics are bounded to a finite range and demonstrate LTC’s superior performance
in a series of real-life time-series prediction and classification tasks compared to other RNN
architectures.

We then design neural computational units by the LTC model, in control of the safety-critical
domains. More specifically, in Chapter 4 we design an LTC-based neural network, which is
obtained by re-purposing the function of a biological neural circuit model to govern simulated
and real-world control tasks. Inspired by the structure of the nervous system of the soil-worm, C.
elegans, we introduce ordinary neural circuits (ONCs), defined as the model of biological neural
circuits reparameterized for the control of alternative tasks. We first demonstrate that ONCs
realize networks with higher maximum flow compared to arbitrary wired networks. We then
learn instances of ONCs to control a series of robotic tasks, including the autonomous parking
of a real-world rover robot. For reconfiguration of the purpose of the neural circuit, we adopt a
search-based optimization algorithm. Ordinary neural circuits perform on par and, in some cases,
significantly surpass the performance of contemporary deep learning models. ONC networks are
compact, 77% sparser than their counterpart neural controllers, and their neural dynamics are
fully interpretable at the cell-level.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.2. Research Questions and Thesis Contributions

We then introduce an ad-hoc network design algorithm to develop networks of LTC neurons for a
particular control task; in Chapter 5, we identify neuron-pair communication motifs as design
operators and use them to configure compact LTC-based neuronal network structures to govern
sequential robotic tasks. The networks are systematically designed to map the environmental
observations to motor actions, by their hierarchical topology from sensory neurons, through
recurrently-wired interneurons, to motor neurons. The networks are then parametrized in a
supervised-learning scheme by a search-based algorithm. We demonstrate that obtained networks
realize interpretable dynamics. We evaluate their performance in controlling mobile and arm
robots and compare their attributes to other artificial neural network-based control agents. Finally,
we experimentally show their superior resiliency to environmental noise, compared to that of
existing machine learning methods.

The success of the DO-based on rather simple robotic applications described in Chapter 5, moti-
vated us to expand the use of the LTC-based model into complex high-dimensional environments
such as autonomous driving.

In Chapter 6 we combine the LTC-based neural models, scalable deep neural network architec-
tures citelecun1989backpropagation,funahashil993approximation,chen2018neural, and structural
inspirations from the C. elegans connectome, to develop a novel neural processing unit, termed
a neural circuit policy, that can learn to map multidimensional inputs to control commands
by sparse, causal, interpretable, and robust neural representations. We test the agent on the
safety-critical and real-world domain of end-to-end autonomous control of a self-driving vehi-
cle. We demonstrate that a neural circuit policy with a control-network consisting of only 19
sparsely connected neurons, surpasses the driving performance of significantly larger contempo-
rary deep learning [LeCun et al., 2015a] models, while expressing superior stability, causality,
interpretability, and robustness.

1.2.2 Designing interpretation methods for trained neural networks

Designing post-training methods to interpret the dynamics of a trained neural network, is another
approach to take. This method has been explored by a large body of work, mainly focused on
feature visualization methods to empirically understand the dynamics of the network [Erhan et al.,
2009, Zeiler and Fergus, 2014, Yosinski et al., 2015, Karpathy et al., 2015, Strobelt et al., 2018,
Bilal et al., 2018, Olah et al., 2018]. Alternatively, evaluating attributions by computing saliency
maps [Simonyan et al., 2013, Fong and Vedaldi, 2017, Kindermans et al., 2017, Sundararajan
et al., 2017], dimensionality reduction method [Bishop and Tipping, 1998, Gulrajani et al.,
2016, Maaten and Hinton, 2008], finding recursive dynamical patterns inside a network [Strobelt
et al., 2018], robust statistics [Koh and Liang, 2017], information theoretic approaches [Shwartz-
Ziv and Tishby, 2017], and gradients in correlation-domain [Hasani et al., 2018c] were effectively
proposed.

While these techniques provide rich insight into the dynamics of learned networks, the interpreta-
tion of the network often requires detailed prior knowledge about the data content (i.e., in the
natural language processing domain). Therefore, such methods may face difficulties in terms
of generalization to other forms of sequential data such as time-series forecasting as well as
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INTRODUCTION

vision-based classification. Moreover, there is a substantial need for a quantitative approach to
measuring interpretation of the dynamics of neural networks, as opposed to the referred empirical
qualitative methods.

In Chapter 7, we introduce a novel method to interpret recurrent neural networks (RNNs),
particularly their modern gated-variant, long short-term memory networks (LSTMs) at the
cellular level. We propose a systematic pipeline for interpreting individual hidden state dynamics
within the system using response characterization methods. The ranked contribution of individual
cells to the network’s output is computed by analyzing a set of interpretable metrics of their
decoupled step and sinusoidal responses. As a result, our method is able to uniquely identify
neurons with insightful dynamics, quantify relationships between dynamical properties and test
accuracy through ablation analysis, and interpret the impact of network capacity on a network’s
dynamical distribution. Finally, we demonstrate the generalizability and scalability of our method
by evaluating a series of different benchmark sequential datasets.

Finally, in Chapter 8, for a real-life application setting, we introduce CompNN, a compositional
method for the construction of an interpretable neural-network architecture capturing the dynami-
cal properties of a complex analog multiple-input multiple-output (MIMO) system. CompNN first
learns for each input/output pair (i, j), a small-sized nonlinear autoregressive neural network with
exogenous input (NARX) [Lin et al., 1996] representing the transfer-function 4ij . The training
dataset is generated by varying input i of the MIMO, only. Then, for each output j, the transfer
functions hij are combined by a time-delayed neural network (TDNN) layer, f;. The training
dataset for f; is generated by varying all MIMO inputs. The final output is f = (fi,..., f,). The
neural network’s parameters are learned in a supervised learning fashion. We demonstrate the
performance of our learned NN in the transient simulation of analog circuits by reducing the
simulation time by a factor of seventeen compared to the transistor-level simulations. CompNN
allows us to map particular parts of the NN to specific behavioral features of the circuit ergo,
enhancing the interpretability of the model. To the best of our knowledge, CompNN is the
first method to learn the NN of an analog integrated circuit (MIMO system) in a compositional
fashion.

1.2.3 Summary of Contributions

A summary of the dissertation’s contributions is provided in the following:

e Development of the Liquid time-constant (LTC) recurrent neural networks as a brain-
inspired neural information processing system with continuous-time semantics.

e Theoretical stability and universality analysis of LTCs

o [llustration of the LTC’s superior expressivity compared to other types of RNNs in modeling
time-series.

e Demonstration of the performance of a compact ordinary neural circuit (ONC) built by
the LTC neural model, as an interpretable controller in a series of control tasks and the
indication of its superiority compared to similarly structured networks and contemporary
deep learning models.
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1.2. Research Questions and Thesis Contributions

Experiments with LTC-based ONCs in simulated and physical robot control tasks, including
the autonomous parking of a real mobile robot. This is performed by equipping ONCs with
a search-based RL optimization scheme.

Interpretation of the internal dynamics of the learned ONC policies. We introduce a novel
computational method to understand continuous-time network dynamics. The technique
determines the relation between the kinetics of input neurons and an output decision. We
compute the magnitude of a neuron’s contribution, of these hidden nodes to the output
dynamics in determinable phases of activity, during the simulation.

We introduce novel network-design principles for the LTC neuronal models, and equipping
the designed network with a search-based learning algorithm, to control robotic tasks.

We deploy Design Operator (DO) based networks in experiments with real and simulated
robotic environments. We then Experimentally demonstrate the superiority of DO-based
networks in terms of their compactness, robustness to noise, and their interpretable dynam-
ics, compared to contemporary RNNs.

A central goal of artificial intelligence is to design a single algorithm that simultaneously:
1. expresses attractive generalizability by learning coherent representations of their world,
2. is computationally efficient, 3. realizes robustness to environmental perturbations, and 4.
demonstrates interpretability skills to provide sensible and understandable explanations of
its learned dynamics, to humans. We combine LTC neural model and scalable deep learning
architectures to design an exceedingly compact neural controller for the end-to-end control
of the autonomous vehicle.

We discover that a single algorithm (with a control-network consisting of 19 sparsely
connected neurons) learns to map high-dimensional inputs into control commands by
superior generalizability, interpretability, and robustness, compared to orders-of-magnitude
larger contemporary deep learning models. Such intelligent agents enable high-fidelity
autonomy in safety-critical applications.

We design and implement a novel and lightweight dynamical systems-based algorithm for
systematic interpretation of RNNs based on response characterization.

We Evaluate our interpretation method on a series of sequential datasets, including classifi-
cation and regression tasks, and perform a detailed interpretation of the trained RNNs on a
single cell scale via distribution and ablation analysis as well as on the network scale via
network capacity analysis.

Finally, we discuss an application-oriented method to design compositional recurrent neural
networks to model integrated circuits’ behavior with enhanced interpretability.
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CHAPTER

Background

This chapter discusses the necessary background on fundamental principles about dynamical
systems and machine learning with the purpose of making the thesis relatively self-contained.

2.1 Math Definitions

In this section, we introduce mathematical principles that have been deployed in the discussions
of the thesis.

Differentiability Class. defines the existence of the derivatives of a function. Formally, let
k € 77", the function F : § — R, where S is an open subset on R, is of class Ck, or smooth, or
Ck-continuous, if f/, f", ...,and f®) exist and are continuous.

Lipschitz. The mapping F : § — R”", where S is an open subset of R”", is called Lipschitz on S, if
there exist a constant L (Lipschitz constant), such that:

[F(x) = F(y)| < Llx—y|, forallx,y€S. 2.1

Locally Lipschitz. If every point of S has neighborhood Sy in S, such that the restriction F | Sy
is Lipschitz, then F is locally Lipschitz.

i.i.d.: Independent and identically distributed random variables. Determines Random vari-
ables that are drawn from the same distribution and are mutually independent of each other.

2.2 Supervised Learning

Let D be a dataset that includes (input,output) pairs, from X input space to Y output space.
Supervised learning is the process of finding a function f : X — Y, from a training set containing
ni.id. samples drawn from D; {(x;,y;) }{_; ~ D", such that the test error e = E(, ) .p[L(f(x);y)],
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is minimal. (L is a loss function measuring the error between a predicted output and a labeled
output). The learning process terminates once we obtain an f whose test error is minimal enough
for a problem’s requirement.

2.3 Optimization

Given a set of functions ., from which we choose f € .%, with a low training error e;i4,, the
optimization problem can be formulated as finding the best minimizer of the training error as
follows:

£ = argmineg,aing () 22)
feF

Now if f is parametrized by 6 number of parameters, and fy € .# is differentiable, given a
differentiable loss function L, then the function

€Traing(0) = €Traing(fo) = Exy)~s[L(fo (x);¥)], (2.3)

is also differentiable. One can use the gradient descent method, which is a function minimization
algorithm applicable to differentiable functions, to solve the optimization problem. Given the
function fy, the algorithm operates, as shown below:
for epoch do
01 <N fo
t—t+1
end for

Here, the parameter 1) represents the learning rate, which is problem-dependent and tunes
the speed of the optimization steps. A line of work demonstrated improved performance of
the gradient descent learning algorithm by adaptive learning rate methods [Duchi et al., 2011,
Tieleman and Hinton, 2012, Zeiler, 2012].

Stochastic gradient descent (SGD) is an effective variant of the gradient descent algorithm, in
which each optimization step operates on a batch, s, randomly selected from the training data, S.
SGD computational steps are considerably faster than gradient descent, especially in the case
of large models and large datasets. This property makes SGD to be attractive in contemporary
machine learning algorithms. Equipping an SGD optimizer with the Momentum method [Hinton,
1977, Nesterov, 1983] forces the optimizer to take gradient steps in the most effective direction
instead of the steepest direction [Goh, 2017].

During the last years, a series of fundamental works have been proposed to improve the perfor-
mance of the Momentum-based SGD algorithms by introducing adaptive momentum strategies,
such as Adam [Kingma and Ba, 2014], AdaMax [Kingma and Ba, 2014], Nadam [Dozat, 2016]
and AMSGrad [Reddi et al., 2019].
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2.4. Feedforward Neural Networks

Input layer  Hidden layer

Y1, W1

——

utput layer

Figure 2.1: The feedforward neural network.

2.4 Feedforward Neural Networks

A Feedforward neural network (FNN) is defined as the configuration of a series of layers composed
of artificial neurons (activation functions), as shown in Fig. 2.1. FNNs have successfully been
used widely in perceptual problems such as speech recognition and achieved the state-of-the-art
compared to the hand-tuned models [Mohamed et al., 2011].

Formally, Given an input x, the output state ,y, of a FFN with / hidden layer, parameterized by
weight matrices Wy, ... , W; and bias vectors by, ... ,b;41 is computed as follows:
Yo X
for ifrom 1 to/+ 1 do
Xi Wi xyi1+b;
yi < f(x)
end for
output y <y,

f(.) is typically a sigmoidal activation function (e.g., f(x) = 1/(1+e™*), and is applied element-
wise. In a supervised-learning setting, FNNs (up to hundreds of layers) can be trained by gradient
methods to minimize a loss function with respect to their parameters, thanks to the significant
improvements achieved by the development of novel learning algorithms and regularization
methods [Hinton and Salakhutdinov, 2006, Hinton et al., 2006, Kingma and Ba, 2014, Srivastava
et al., 2014, Ioffe and Szegedy, 2015], architectures [Krizhevsky et al., 2012, Simonyan and
Zisserman, 2014, Szegedy et al., 2015, He et al., 2016], and tool-kits [Abadi et al., 2016, Paszke
et al., 2017] proposed during the last 2 decades.

2.5 Universal Approximation Capabilities of Neural Networks
In this section, we briefly introduce how neural networks are universal approximators [Cybenko,

1989]. The fundamental universal approximation theorem [Hornik et al., 1989] suggests that three-
layer feedforward neural networks (input layer, one hidden layer, output layer) can approximate
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Time

Figure 2.2: A standard recurrent neural network resembles a very deep feedforward network with
a hidden layer at every time-step. Note that the weights of the network are preserved across time.

any continuous mapping f : R” — R™ on a compact set. More precisely [Hornik et al., 1989]:

Theorem 1. (The fundamental approximation theorem) [Funahashi, 1989]. Let x = xtox,
be the n-dimensional Euclidean space R". Let ¢(x) be a sigmoid function (a non-constant,
monotonically increasing and bounded continous function in R). Let K be a compact subset of
R", and f(x1,...,x,) be a continuous function on K. Then, for an arbitrary € > 0, there exist an
integer N, real constants ¢;, 0;(i=1,...,N) and w;j(i=1,...,N; j = 1,...,n), such that

lzcwx|f X1yeonr X Zc, Z wijxj—6;)| <€ 2.4)
holds.

Theorem 1 illustrates that three-layer feedforward neural networks (Input-hidden layer-output),
can approximate any continuous mapping f : R” — R™ on a compact set. We utilize this theorem
in Chapter 3, to prove the universal approximation capability of a newly introduced neural
network instance.

2.6 Recurrent Neural Networks

A recurrent neural network (RNN) is a class of artificial neural networks which computes the
sequential dependencies presented in data, by a state-dependent feedback (memory) mechanism.
Therefore, they are a suitable choice for modeling sequential data. RNN variants have achieved
state-of-the-art performance in a large variety of applications, ranging from speech recognition
[Robinson et al., 1996, Graves et al., 2013, Graves and Jaitly, 2014, Sak et al., 2014], autonomous
robot control [OpenAl, 2018, Lechner et al., 2019], to natural language processing (NLP)
[Mikolov et al., 2011, Sutskever et al., 2011, Liu et al., 2014, Sutskever et al., 2014].


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.6. Recurrent Neural Networks

2.6.1 Standard RNNs

Formally, given an input sequence, /i, ... , I, with the length T, the network calculates a
sequence of hidden states x, ..., x7, and their corresponding outputs, yy, ... ,yr, as follows:

for ¢ from 1 to 7 do
U < Wy x I + Wk x,_1 + by,
X < fw)
0y < Wy xx,+b,
yi < g(or)
end for

Here, weight matrices Wy, Wy, Wy,, and bias vectors by, b,, are the network parameters and are
preserved at every sequence-step as depicted in Fig. 2.2. f(.) and g(.) are the nonlinearities of
the RNN for their hidden state and the output state, respectively. Note that at the very first step of
the computation, the hidden state of an RNN, a vector Xy, is also an input parameter to the system.

The loss function for RNNs in a supervised learning setting can be determined as the sum of
losses computed at every time-steps L(Y, Yiaper) = Zl-Tzl L(Yi, Yiaber;), and their parameters can be
learned by the backpropagation through time (BPTT) algorithm with their derivatives computed
as follows [Rumelhart et al., 1986, Werbos et al., 1990]:
for t from T downto 1 do
do; < g'(0i) dL(Y1,Yiabel,) /di
db, < db,+ do,
AWy, + dW,, + a'o,x,T
dx; < dx, + fo)do,
dy; + f'(u)dx,
AWy < dWi + du, T
dby < db,+ du;
AWy < dWye + dugx!” |
dx;_1 +— Wxgdu,
end for
Return d6 = [dW,,,dWj,,dWy,dby,db,,dx,).

2.6.2 RNNs are Difficult to train

The computation of the derivatives for a recurrent network is pretty straight forward. However,
the feedback loop mechanism can naturally result in difficulties to learn long-term dependencies
[Bengio et al., 1994, Martens and Sutskever, 2011]. As the gradients of the hidden state at later
time-steps are sensitively dependent on the ones at initial time-steps, their values can exponentially

grow and lead to an unstable learning process (This is known as the exploding gradient problem).

Similarly, if the hidden state gradients at earlier steps are smaller than one, the resulting next step
gradient can converge to zero. This phenomenon is known as the vanishing gradient problem
[Hochreiter, 1991, Bengio et al., 1994], and is the main reason for an RNN failure to capture
long-term temporal structures.
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The likelihood of the vanishing gradient problem can be reduced by proper initialization of
the network weights. The choice of an activation function with a larger gradient (such as the
rectified linear units (ReL.U) [Nair and Hinton, 2010], or tanh can also enhance the quality of
the learning long-term temporal dependencies. Moreover, careful considerations on the growth
or the shrinking of the gradient during the learning process by means of regularization methods
could also significantly give rise to a performance. Methods include adding noise to the gradient
[Neelakantan et al., 2015], clipping the gradients specifically to avoid the exploding gradient
problem [Pascanu et al., 2012] and stabilizing the activation functions [Krueger and Memisevic,
2015].

Moreover, many variants of the standard RNN structure have been proposed to tackle the
exploding and the vanishing gradient problems fundamentally and to achieve better performance
on data with temporal dependencies. We will introduce them briefly in the following sections.

2.6.3 RNNs with Skip connections

To avoid the infinite feedback loop in standard RNN structures, and as a result, preventing the
vanishing gradient problem, one can unfold the RNN loop and directly provide a finite number of
past states to perform inference of the current state. This process can be seen as the use of skip
connections to make the temporal dependencies of the gradients less deep and, therefore, easier
to train.

Time-Delayed Neural Networks

The first version of these forms of networks was introduced as the time-delayed neural networks
(TDNN) [Waibel et al., 1989]. The output state of a TDNN is computed as follows:

y(t) = f(x(t—1),x(t —2),....,x(t —n)). (2.5)

Here, f(.) is the network’s nonlinearity and n stands for the number of delayed versions of input
signal x(r). The structure of a TDNN is presented in Fig. 2.3. Although this architecture can
reduce the likelihood of the vanishing gradient problem for the learning of sequential data with
short-term temporal dependencies, they would still suffer from higher-order nonlinearities as n
increases. Moreover, TDNNs are not recurrent architectures and do not possess a mechanism to
take into account the historical output state at the inference time. Therefore, their ability to learn
dynamics with output-temporal dependencies are limited.

Nonlinear Auto-regressive Network with Exogenous Input

An improved variant of the TDNNs was introduced as the nonlinear autoregressive network with
exogenous input (NARX)[Lin et al., 1996], where in addition to the skipped connections from
the input signal, a finite number of historical output steps are used to define the current output
state of the network. Such an output state is then computed as follows:

y(it)=fx(t—1),x(t=2),...,x(t —n),y(t — 1),...,y(t —m)). (2.6)


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.6. Recurrent Neural Networks

o0 | =Y

Figure 2.3: Time-delayed neural network structure. D blocks represent delay elements.
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Figure 2.4: NARX network architecture. D blocks represent delay elements.

Here, f(.) represents the network’s nonlinearity, n is the number of input signal delays, and m
is the number of output signal delays. Fig. 2.4, schematically shows the structure of a NARX
network. Recently, variants of this auto-regressive architecture achieved great performance in
modeling text-to-speech tasks, phoneme recognition, music generation [Oord et al., 2016], and
speech denoising [Rethage et al., 2018]. The architecture is called Wavenet, and at its core,
it utilizes dilated causal convolutional layers, where a convolutional filter is applied with a
pre-defined input skip-length.

Recurrent Identity Networks

A standard RNN can be equipped with skip connections at their hidden state in order to overcome
the vanishing gradient problem, as follows [Hu et al., 2018]:

x; = f(Wiey + (Wi + Identity)x,—1 +b), 2.7)

where Identity is a non-trainable identity weight matrix that stands for a surrogate memory
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Figure 2.5: Long short-term memory (LSTM) cell structure

component. This representation, which is inspired by the successful feedforward network
architecture with skip connections (Residual networks) [He et al., 2016], outperformed modern
variants of RNNs in a series of sequential data processing tasks [Hu et al., 2018].

2.6.4 Long Short-term Memory

Long short term Memory (LSTM) [Hochreiter and Schmidhuber, 1997], are gated-recurrent
neural networks architectures specifically designed to tackle the training challenges of RNNs
such as the vanishing gradient problem. In addition to memorizing the state representation, they
realize three gating mechanisms to read from input (i), write to output (o) and forget what the cell
has stored (f). Activity of the cell can be formulated as follows [Greff et al., 2017]:

d=z0i+focd_, (2.8)

yl = 0@ tanh(c}) (2.9)
Z tanh
: -1
l 9 N B

- W (2.10)

i c <y§1>
o o

where ¢! is layer I’s cell state at time t, W*"*2" is the weight matrix, z stands for the input block,
and y! denotes the cell’s output state.

LSTM networks enhance the learning capability of RNNs by separating their hidden dynam-
ics from their output and by having an additive state temporal dependencies, compared to a
multiplicative mechanism in standard RNNs. Moreover, the differentiable gating mechanisms
allow LSTM cells to learn temporal dependencies automatically throughout the training process.
LSTMs have shown remarkable performance in sequential data processing tasks; accordingly,
they are the predominant choice of networks in such application domains. Their complex dynam-
ics, however, makes their interpretability to be challenging and limited to empirical methods such
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2.7. Dynamical Systems

as feature visualizations [Karpathy et al., 2015, Strobelt et al., 2018]. In Chapter 7, we introduce
a quantitative method to gain more insights into the dynamics of LSTM networks.

2.7 Dynamical Systems

Dynamical systems can be defined as the time-evolution of a particular phenomenon, given the
environment and the circumstance under which it operates. The evolution of dynamical systems
is typically formulated by differential equations. In our context, for instance, a time-continuous
neural network’s state is the phenomenon with its time-evolution expressed by Eq. 2.14. This

particular dynamical system is represented by the flow of an input-dependent differential equation.

2.7.1 Ordinary Differential Equations

Given F, a function of input, / and state x and its derivatives, the following equation,

O :F(I,x,x(l),x(z),...,x("fl)) (2.11)
is an explicit representation of an ordinary differential equation (ODE) and
F(Ix,xD x2)_ x=1 xy = (2.12)

is an implicit representation of an ODE [Teschl, 2012].

Autonomous ODE

An ODE which has no dependency on its inputs, /, and its F' is solely a function if its states and
its derivatives.

Linear ODE

An ODE is considered to be linear if F' can be formatted as the linear combination of the state’s
derivatives as:

n—1
2 =Y a;(2)x +r(z), (2.13)
i=0

where a;(z) is a differentiable function of the variable z and is one coefficient of the ODE, which
can be nonlinear. r(z) is a function of z, and it defines the homogeneity of the ODE.

Homogeneous ODE

An ODE is considered to be homogeneous when r(z) = 0. This property induces one trivial
solution of x = 0. When r(z) # 0, the equation is called inhomogeneous.
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Nonlinear ODE

If F cannot be separated into a linear combination of its derivatives, the ODE is nonlinear.

2.8 Time-Continuous Networks

RNNs and their gated variants such as LSTMs are successfully deployed in sequential data
processing tasks, and continuous-time environments, with a discretized computational modality.
The hidden neural state of a neural network can also be determined in continuous time, by linear
ODE:s as follows:

x(t) = f(1,x(1),0), (2.14)

where the continuous variables x(z) determine the hidden state, f(.) is a nonlinear function of
inputs /, hidden states x, and parameters 6. Such representation can make the resulting neural
network express certain computational benefits over discretized RNN models [Mozer et al.,
2017, Chen et al., 2018]. For instance, they express adaptive computation with the use of various
ODE solvers [Runge, 1895, Kutta, 1901, Deuflhard et al., 1987] make them suitable for sequential
events sampled irregularly in time [Rubanova et al., 2019]. They possess parameter efficiency
and are inherently capable of modeling continuous time-series [Rubanova et al., 2019], given a
proper learning setting.

2.8.1 Neural ODEs

One can enable infinite computational steps for a neural network f(.) in the limit, by adopting
an Euler numerical discretization [Lu et al., 2017] of Eq. 3.3, [Lu et al., 2017, Chen et al.,
2018]. The architecture is called Neural ordinary differential equations (Neural ODE) and is
effectively utilized in the sequential data processing. Neural ODEs can bring several advantages,
compared to discretized RNN models, such as parameter efficiency and superior capability of
learning continuous-time dynamics, which arrive at arbitrary time-step [Mozer et al., 2017]. The
representation of such models, however, is limited to that of deep learning models since f in Eq.
3.3, is a multi-layer perceptron.

2.8.2 Continuous-time RNNs

In contrast, a rather old variant of neural networks known as the continuous-time (CT) RNN
defines its neural state, differently. Its output neural state, x;(¢), is described as the solution of the
initial-value problem shown below [Funahashi and Nakamura, 1993]:

(1) = —xi(t) [T+ Y wijo(Aixj(1) + Bi), (2.15)
=1

where 7; is the time-constant (equivalent to the self-connectivity matrix or self-coupling) of the
hidden node, A;; and B; are the weights and bias, respectively.
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2.8. Time-Continuous Networks

CT-RNN were shown to be universal approximators (can approximate arbitrary chosen input-
output mappings to an epsilon level of precision) [Funahashi and Nakamura, 1993]:

Theorem 2. (Approximation of dynamical systems by continuous-time recurrent neural networks)
[Funahashi and Nakamura, 1993]. Let D C R" and F : D — R" be an autonomous ordinary
differential equation and C'-mapping, and let x = F (x) determine a dynamical system on D. Let
K denote a compact subset of D and we consider the trajectories of the system on the interval
I =0, T). Then, for an arbitrary positive &€, there exist an integer N and a recurrent neural
network with N hidden units, n output units, and an output internal state u(t) = (U (1), ...,Uy(1)),
expressed as:

du,-(t) . M,‘(l) i N . :
B +j:le,JG(uJ(t))+I,(t), (2.16)

where T; is the time constant, w;j are the weights, I;(t) is the input, and o is a C L_sigmoid function
(o(x) =1/(1+exp(—x)), such that for any trajectory {x(t);t € I} of the system with initial value
x(0) € K, and a proper initial condition of the network the statement below holds:

t)—ult) <Eé&.
max|x(0) — u(r)

Theorem 2 was proved for the case where the time constants, T, were kept constant for all hidden
states, and the RNN was without inputs (/;(¢) = 0) [Funahashi and Nakamura, 1993].

CT-RNNs have been comprehensively evaluated in regard to their stability properties [Funahashi
and Nakamura, 1993, Beer, 1995, Zhang et al., 2014], as they are able to forget the neural state
with speed 7. The model can capture the temporal kinetics of a dynamical system.

Recently, a number of useful features of such integrator models in the context of Neural ODEs
were introduced [Chen et al., 2018]. In fact, many deep learning architectures have been shown
to be an approximation of Neural ODEs [Lu et al., 2017]. Integrator models come with many
advantages such as adaptive computation where various ODE solvers [Runge, 1895, Kutta,
1901, Deuflhard et al., 1987] can be utilized to model continuous time-series. For a CT-RNN
architecture, for instance, the connectivity matrix, T;, is kept fixed to ensure stability and improve
the quality of the learning process [Funahashi and Nakamura, 1993], while restraining the
expressivity of the model from capturing higher-order dynamics given a fixed network size. In
Chapter 3, we describe how to overcome the limitations imposed by the CT-RNN and Neural
ODE models, by introducing a novel bio-inspired RNN architecture.

2.8.3 Stability of CT-RNNs in Learning Systems

(This Section is entirely reprinted from [Lechner et al., 2020] - © 2020 IEEE) — RNNSs are of
nonlinear sequential models that have shown great success in modeling sequences in a broad
range of application domains, specifically in robotics learning tasks such as maximum likelihood
estimation of dynamical systems [Levine and Koltun, 2013], continuous control [Lillicrap et al.,
2015, Zhang et al., 2016, Lechner et al., 2019] and simulation to real-world, end-to-end reinforce-
ment learning [Rusu et al., 2016, Hasani et al., 2018c]. Despite their empirically represented
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effectiveness, their nonlinear dynamical properties are yet to be discovered. It has been recently
shown that linear dynamical systems can be learned through gradient descent with polynomial
sample complexity [Hardt et al., 2018], in contrast to the prior works [Vidyasagar and Karandikar,
2006], which suggested an exponential complexity. To take a step forward towards the under-
standing of RNNs in continuous-time spaces, in this section, we remove the nonlinearity of an
RNN’s internal state and express its dynamics by the state transition of a time-invariant linear
dynamical system (LDS).

The Backpropagation-Through-Time (BPTT) algorithm [Werbos et al., 1990] used for training
RNNSs, does not scale well with increasing sequence length, due to the sequential workload that
cannot be parallelized [Rodgers, 1985]. As discussed, In order to utilize parallel computing
hardware effectively, training sequences are usually split into fixed-length sub-sequences. Though
this technique significantly improves training efficiency, it creates a training-testing discrepancy
when learned RNNs are deployed on arbitrary-length environments. An example of such an issue
observed in practice is the explosion of the RNN’s internal memory, caused by test episodes that
are much longer than the training sequences. Contemporary nonlinear RNN architectures tackle
this problem by contracting the RNN state, e.g., the LSTM implementation of TensorFlow has an
optional clipping operation applied to the memory variables'.

In the context of LDS, such nonlinear state-contractors are inapplicable, as they would interfere
with the linearity of the system. In this section, we illustrate that careful stability considerations
have to be taken into account when an LDS model is learned over fixed-length sequences. For
instance, we show that an LDS trained to make a mobile robot avoid obstacles from short episodes
of imitation can easily go unstable. To avoid such divergent behavior, we equip a gradient descent-
based learning platform with a new regularization loss component-driven from the Gershgorin
circle theorm [Golub and Van Loan, 1996]. We prove that the resulting loss function ensures the
stability of the autonomous LDS by pushing all its eigenvalues to be negative real numbers.

The learning scheme enables end-to-end training of stacked convolutional neural networks (CNN)s
or multilayer perceptron (MLP)s kernels, together with the LDS, in simulated and real-life robotic
control environments. A video of the performance of the algorithm compared to others in the
obstacle avoidance experiment can be viewed at https://youtu.be/mhEsCoNao5E and
on the Half-Cheetah experiment at https://youtu.be/MIUGKGPxCAY.

Learning from Demonstration

Learning from demonstration is a method in which robots learn and generalize well from a
set of observations of represented tasks [Atkeson and Schaal, 1997, Biggs and MacDonald,
2003]. Let f(x): RN — RY, be a mapping function from the observations to actions, and
% = f(x) with x € R¥ be the state variable of the robotic system, f(x) can be estimated from
data formulated as a regression problem [Figueroa and Billard, 2018, Ravichandar et al., 2017].
Several machine learning methods have been introduced for the approximation of f(x) such as
Gaussian Mixture Regression [Calinon et al., 2007], Gaussian Processes [Shon et al., 2005],
Bayesian Non-Parametric Mixture Models [Figueroa and Billard, 2018], and Neural Networks

Mttps://www.tensorflow.org/api_docs/python/tf/nn/rnn_cell/LSTMCell
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2.8. Time-Continuous Networks

[Lemme et al., 2014]. While these approaches, employing Learning from Demonstrations, often
learn only a single component of the entire control stack, i.e., usually, the trajectory controller
[Khansari-Zadeh and Billard, 2011, Khansari-Zadeh and Billard, 2014, Singh et al., 2017], the
successes of Deep Learning has made it possible to learn the complete control suit in an end-to-
end fashion [Zhang et al., 2016, Finn et al., 2017, Zeng et al., 2017, Hardt et al., 2018]. Here,
we extend the existing end-to-end imitation learning scheme to the context of linear dynamical
systems.

Learning stable Dynamical Systems

Learning a provably stable system is a desired property for most control environments. Naive
approaches for learning a stable system formulate the learning task as a Constrained Optimization
problem, where a stability condition is added as a constraint to the main objective. For instance,
[Khansari-Zadeh and Billard, 2011, Khansari-Zadeh and Billard, 2014] proposed to stabilize a
trajectory controller realized by a Gaussian mixture regression by introducing a stability condition
based on a Lyapunov function. The concept of Lyapunov functions was also employed by
[Lemme et al., 2014, Richards et al., 2018] to learn stable dynamics by Neural Network models.
[Blocher et al., 2017, Singh et al., 2017] derived a stability condition from contraction theory,
which is then used as a constraint.

For such approaches to work, the stability constraint must imply the stability of the system.
However, this implication does not necessarily hold in the other direction; in order to employ a
gradient-based optimization, the stability condition must be continuous and differentiable and
is therefore often a bound to the true stability condition of the system. The learning algorithm
distinguishes between the differentiable stability condition and the true stability property of the
autonomous LDS. The constraint is only optimized when the system is non-stable.

An alternative approach was introduced by [Ijspeert et al., 2013], which leverages linear system
theory to learn a stable system. [Ijspeert et al., 2013] employs fixed nonlinear basis functions
to enhance the expressiveness of the learned controller. One way to generalize this method is
to stack up an LDS model with more flexible nonlinearity modules such as deep learning layers
equipped with convolutional and fully-connected layers).

RNNs for Modeling Dynamical Systems

RNN s presented great performance in robotic control environments; examples include the max-
imum likelihood estimation of a dynamical system [Levine and Koltun, 2013, Hasani et al.,
2019], continuous control [Lillicrap et al., 2015, Zhang et al., 2016] and simulation to real-world
reinforcement learning [Rusu et al., 2016]. Fully-connected LSTM networks have been used for
the learning of unsupervised video representations [Srivastava et al., 2015]. [Long et al., 2018a]
proposed the combination of data-driven and model-based learning to predict the behavior of
dynamical systems; Authors stacked a convolutional LSTM [Xingjian et al., 2015], an architec-
ture which performs the convolution operation as the input-to-state transitions instead of dense
connections, to a Cellular Neural Networks [Chua and Yang, 1988], an algorithm for solving
partial differential equations (PDE) computationally efficient. They achieved state-of-the-art
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performance on two dynamical systems test-beds. Here, we propose a novel learning scheme to
learn structures by CNNs or MLPs and to learn the temporal dependencies by continuous-time
dynamical systems (RNNs) in an end-to-end fashion.

Learning Stable Linear Dynamical Systems

The hidden state transition x(¢), and the output dynamics y(¢) of a time-invariant linear dynamical
system (LDS) can be determined as follows:

1) = Cx(t) 2.17)

, where u(t) is the input, A € R"™" B € R"™k and C € R™*" are linear transformation matrices
which are denoted as the parameters of the LDS to be learned.

Properties of LDS systems of the form Eq. (2.17), specifically their stability, have been studied
for decades within the Control Theory comrnuni.ty [Hardt et al., 2018]. For instance, the closed-

form solution of the autonomous sub-system x(z) = Ax(¢) is a linear combination of complex
exponential functions [Teschl, 2012]. The stability of such autonomous sub-system, i.e. limx(z) <
X—>o0

oo, can be identified by computing the eigenvalues of A. The system is considered stable if all
eigenvalues of A are negative [Teschl, 2012].

In this section, we aim at modeling the input and output of an RNN with standard nonlinear
functions, but simplifying the state-transition representation (sequential dependencies as a result of
the recurrent connections), as a linear dynamical system. The motivation is to discover unknown
dynamical system properties of RNNs, which might be identifiable by the simplification.

In order to efficiently apply gradient-descent to the ODE solution, we discretize the ODE using
Euler’s explicit method [Press et al., 2007a]:

x(t+A) =x(1) + Ax(t), (2.18)

which essentially translates the LDS into an RNN.

As we discussed earlier, many RNN architecture suffer from the vanishing and exploding gradient
problems [Bengio et al., 1994, Hochreiter et al., 2001, Pascanu et al., 2013]. Learning long-
term dependencies becomes challenging with the vanishing gradient effect. In this case, the
RNN can solely learn to correlate events that happen close in time. On the other hand, the
explosion of the gradient results in an unstable learning process. Truncated back-propagation
through time [Williams and Zipser, 1989, Pascanu et al., 2013] is a commonly used method
to ease the exploding gradient problem. Despite the choice of the ODE solver, in case of the
Euler discretization of the LDS, the described challenges of the gradient computations become
a stability issue of the linear dynamical system. The learned dynamical system, post-training,
operates in a continuous loop, therefore assuring its stability is vital. Accordingly, we introduce
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2.8. Time-Continuous Networks

the Gershgorin circle loss as follows [Golub and Van Loan, 1996]:

n
Lye(A) =Y max{0,4;;+ Y |Ai;| +€},  €>0 (2.19)
i=1 J#i

Where A is the state transition matrix of the LDS, in the following, we prove that by minimizing
the Gershgorin circle loss, eigenvalues of the matrix A are forced to be negative real numbers,
Therefore, if the Gershgorin circle loss is zero, all eigenvalues must have a negative real part.

Lemma 1 (Gershgorin circle theorem). Every eigenvalue of A lies within at least one of the
Gershgorin discs D(A;;,R;), with Ri =Y. j4;|A; j| and D(a,b) := {x € C | |x—a| < b}

Proof. See [GERSCHGORIN, 1931]. O

Theorem 3 (Gershgorin circle loss ensures stability). Let A € R™" and

Zye(A) ==Y max{0,A;; +R; + ¢}, (2.20)
i=1

with R; =} ‘A,-7j| and € > 0. If £,4(A) <0 then all eigenvalues of A have negative real part.

Proof. Given the definition of D, for every x € D(A;;,R;) C C it holds that

Re(x) < Aj;+R;+ ¢ for arbitrary i = 1,...n. We assumed .Z,.(A) <0, ergoA;; +R;+€ <0
for every i = 1,...n. Using the triangular inequality, it follows that for every x € D(A;;,R;)
Re(x) < —¢ for every Gershgorin disc D(A;;,R;). According to Lemma 1, every eigenvalue of A
must lie within at least one Gershgorin disc; therefore, every eigenvalue must have a negative real
part. O

Note that a learned linear dynamical system can be stable even if the Gershgorin circle loss is
greater than zero. Consequently, it does not make sense to use the Gershgorin circle loss as
regularizer during every optimization step. Therefore, we introduce Algorithm 1, which checks if
at least one eigenvalue has a non-negative real part and only then perform a gradient update step
with respect to the Gershgorin circle loss. Algorithm 1 declares a stable learning process for LDS
equipped with the Gershgorin loss.

LDS as a Continuous-Time RNNs

The representation of the described discretization of ODEs as recurrent neural networks highly
resembles the state-space dynamics of CT-RNNs. More specifically, a CT-RNN can be formulated
as the Euler simulation of an ODE of the form:

x:fG(xau)_x) (2.21)

where f: R" x R¥ — R" is a neural net parametrized by 6. The major difference between the
state-space variable dynamics of a linear dynamical system and a CT-RNN’s state representation
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Algorithm 1 Training algorithm for linear dynamical systems where all eigenvalues are guaran-
teed to be negative - Entirely reprinted from [Lechner et al., 2020] © 2020 IEEE.

Input Maximum number of training epochs N, Training loss -%},4in, Validation loss %, 44,
Gershgorin circle loss .Z;., parameter 8 with A € 0, learning rate @
while at least one eigenvalue of A has non-negative real part do
0+—0—-a 8,5%,2(A)
end while
ebest 0
Vbest < gvalid(e)
for1...Ndo
00— a8$éagl(6)
while at least one eigenvalue of A has positive real part do
9L (4)
0« 0—oa—5;
end while
v <= Laia(0)
if v < vp.sr then
Vbest <V
6best +— 0
end if
end for

return 0Oy,

is in the nonlinearity introduced by the neural network f in equation (2.21). This difference
makes CT-RNNs arguably more expressive but simultaneously increases the complexity of the
system, and correspondingly reduces the provability of a system’s characteristics such as stability
and the closed-form solution.

Note that the transition state-stability of any recurrent model can be feasibly enforced by clipping
the RNN state to a bounded range (e.g., between -10 and 10), after every update. However, this
approach introduces nonlinearity into the feedback operation, which is non-permissible for linear
dynamical systems.

2.8.4 Biologically-inspired Networks

The way nervous systems of living creatures process information has been extensively used
in continuous control spaces (i.e., robotic control) as a source of inspiration [Brabazon et al.,
2015, LeCun et al., 2015b, Folgheraiter et al., 2006, Capuozzo and Livingston, 2011].

From the computational units’ perspective, biologically plausible instances were of time-continuous
models predominantly utilized to explain the mechanisms underlying computations in natural
nervous systems [Szigeti et al., 2014, Sarma et al., 2018]. Such models are typically constructed
by ODEs that mimic the electrophysiological mechanism of ion channels, which form the mem-
brane potential dynamics of a neuron [Koch and Segev, 1998, Hasani et al., 2017a]. Note that
in this thesis, we target bio-inspired neural models that realize differentiable dynamics and
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2.8. Time-Continuous Networks

are non-spiking, such as the patterns observed in the nervous system of small species (i.e., C.
elegans and Ascaris). The motivation behind this choice is two-fold: 1) we aim to formulate core
bio-inspired computational units which are analogous to the activation functions in contemporary
deep learning topologies, to be able to compare performances. 2) The principles of neural compu-
tation in spiking neural networks (SNNs) [Maass, 1997], and their adaptive dynamics are yet to
be understood from the biological perspective. Therefore, we aim to avoid speculations on their
essence, and alternatively, will focus on what is better known, which are the analog dynamics of
neurons as membrane models in primary nervous systems [Kaplan et al., 2019]. In Chapter 3, we
formulate such semantics and rigorously investigate their computational benefits compare to their
state-of-the-art deep learning counterparts.

From the network architecture perspective, networks of biophysically modelled neurons [Hasani
et al., 2017a, Gleeson et al., 2018] are deployed in applications such as navigation of mobile
robots [Folgheraiter et al., 2006, Hagras et al., 2004], control of unmanned aerial vehicles (UAV)
[Westphal et al., 2013] and legged robots [Beer et al., 1992, Szczecinski et al., 2015, Szczecinski
et al., 2017]. Obtained networks can be topologically divided into two categories: 1) Networks
that are put together by hand in a piece-by-piece and trial-and-error fashion [Beer et al., 1992,
Szczecinski et al., 2017, Folgheraiter et al., 2006, Westphal et al., 2013]. These approaches lack
fundamental design principles. 2) Networks that deploy fully-connected structures and rely purely
on the learning phase to determine functions. Similar to Deep learning models, interpreting
the dynamics of these networks becomes a challenge [Olah et al., 2018, Hasani et al., 2018a].
In Chapter 5 and Chapter 6, we address both challenges by incorporating systematic design
principles together with a set of rules that improve interpretability and the generalizability of
biophysical models.
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CHAPTER

Liquid Time-Constant Recurrent
Neural Networks

3.1 Motivation

Deep learning architectures are constructed by progressive composition of layers of activation
functions, which at a high level of abstraction, are believed to emulate the dynamics of biological
neurons. The representation of the activation function, however, has been drastically simplified
compared to the computational models of neural and synaptic interactions. The reason for such
simplification is to reduce the algorithm’s complexity and scale the size of the computational
graph. Additionally, from an engineering standpoint, strict biological plausibility is not necessary
to build up a functional artificial intelligence (AI) system [Hassabis et al., 2017]. However,
building greater computational capabilities with increased biological plausibility remains an open
research question. For instance, communication between two neurons in biological neural circuits
occurs by nonlinear synaptic modulators, where a neuron can adapt its dynamics as a function
of the input stimulation it receives. In contrast, inter-neuron connections in contemporary deep
learning models are fixed static functions after training. Would a better performance be achievable
if we enable more extensive calculations inside a neuron?

Neural information processing in the brain of small species such as Ascaris [Davis and Stretton,
1989], Leech [Lockery and Sejnowski, 1992], and C. elegans [Wicks et al., 1996, Hasani et al.,
2017b], is continuous, happens electrotonically (graded charge propagation, Non-spiking neurons)
[Kato et al., 2015a], and can be modeled by nonlinear ordinary differential equations (ODESs)
[Gleeson et al., 2018]. The equivalent counterparts of such models in the deep learning field are
arguably recurrent neural networks (RNNs) which are of suitable algorithms for spatiotemporal
information processing. RNNs and their gated variants i.e., long short-term memory (LSTM)
[Hochreiter and Schmidhuber, 1997], are successfully deployed in sequential data processing
tasks, and continuous-time environments, with a discretized computational modality. The neural
state of the neural networks can also be determined by ODEs (i.e. continuous-time (CT) RNNs
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[Funahashi and Nakamura, 1993] and Neural ODEs [Chen et al., 2018]), which can make the
resulting neural network express certain computational benefits over discretized RNN models
[Mozer et al., 2017, Chen et al., 2018]. For instance, they express adaptive computation with the
use of various ODE solvers [Runge, 1895, Kutta, 1901, Deuflhard et al., 1987], are parameter
efficient, and are naturally capable of modeling continuous time-series [Rubanova et al., 2019].
In contrast to Neural ODEs [Chen et al., 2018], standard CT-RNNs [Funahashi and Nakamura,
1993] possess a fixed time-constant (intrinsic self-coupling of a neuron), which allows them
to control (i.e. forget) the neural state. This is an essential property not only for learning but
also for their dynamical stability. However, in biological neural circuits, the nonlinear synaptic
propagation model enforces an additional input-dependent, variable time-constant (i.e., liquid
time-constant) for every neuron. Moreover, this form of the synaptic transmission mechanism
equips the network with regulatory excitation and inhibition operators, in addition to weighted
communications.

These properties result in a learning system that supports efficient learning of neural computational
units while capturing nonlinear transformations of input to output signals I) accurately and II)
succinctly as possible. Accuracy is important, for example, in a supervised learning context, or
equivalently in a teacher-based setting. Succinctness increases the interpretability of the resulting
learning system.

We demonstrate that activating these operators yields a more expressive machine learning model
and originates more compact representations (e.g., in continuous robotic control settings [Lechner
et al., 2019]), thus allowing for greater interpretability of the learned parameters and overall
network dynamics.

Furthermore, these properties give rise to a rich set of dynamical systems whose characteristics
can be formulated in a dynamic causal modeling (DCM) [Friston et al., 2003, Penny et al., 2004]
framework. More precisely, the resulting dynamical system can be identified by the following
parameter sets: I) parameters that moderate the influence of the exogenous inputs on the neural
state, II) parameters that control the internal interaction of the neural states, and III) parameters
that enable input stimulation influence the coupling state of the neuron.

Here we show that a biophysical model, originally developed to describe the neural interactions
in the brain of small species such as Ascaris and C. elegans provides a more compact and more
expressive platform for learning the dynamics of complex nonlinear systems. We call this model
liquid time-constant (LTC) RNNs. We demonstrate several desirable properties of these models
including the incorporation of a natural causal structure in their semantics in which the set of
parameters II and III are linked nonlinearly. This feature enriches an LTC network to realize a
range of dynamics not possible to be reached by Neural ODEs and CT-RNNs, given an equivalent
experimental condition, with the same inputs and the same parameter setting, (See i.e., Fig. 3.3).
Moreover, we demonstrate the expressive representation-learning ability of the LTC bio-inspired
neural models in continuous time-series domains and thoroughly characterize their attributes as
an alternative recurrent neural network instance. We accomplish this by designing an end-to-end
learning platform using gradient descent for such models. We prove that any arbitrary-chosen
continuous mapping of a dynamical system can be approximated with any precision by the
neural state of an LTC network. We formulate upper and lower bounds on their neural state and
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3.2. Defining LTC’s Semantics

the reaction-speed of individual LTC neurons. We show how LTCs can effectively be used in
time-series prediction and classification tasks, and perform better than existing RNN models.
Finally, we discuss an exciting property of LTCs, that we observed empirically, on their capability
to explore beyond their training regime, namely their ability to perform fair and symmetrical
extrapolation.

3.2 Defining LTC’s Semantics

We design a biologically plausible neural network that is equipped with synaptic regulatory
compartments and possess a varying coupling sensitivity for learning continuous-time tempo-
ral relationships, inspired by the nervous system of small species. To formally express their
representations, we discuss the evolution of the neural networks, from discretized models to
time-continuous models.

3.2.1 Perceptron Models

Given a multi-layer perceptron (MLP), f, with sigmoidal activation functions, the neural state
of a recurrent neural network, x(¢), is constructed by a discretized sequence of transformations
defined as follows [Rumelhart et al., 1988]:

x(t+1)=f(x(2),0), (3.1)

where 0 are the weights of the MLP. Using this update-state equation, the neural state of
the RNN is determined by a finite set of unfolded layers (transformations), enabling back-
propagation through time algorithm to be applied as a learning scheme. Discretized RNNs and
their variants have been predominantly successful in sequential data processing tasks [Hochreiter
and Schmidhuber, 1997, Mikolov et al., 2010, Graves et al., 2013, Pascanu et al., 2013, Chung
et al., 2014]. The finite discretization of their neural state, however, limits their expressivity
[Chen et al., 2018]. Moreover, as the number of the unfolding steps or the number of layers of the
underlying MLP grows (deep network), the degradation problem (i.e., inability of the perceptron
to accurately learn the identity function) arises [He et al., 2016]. This problem gave rise to a
successful class of deep neural networks known as residual neural networks (ResNets) [He et al.,
2016], where the neural state can be computed by [He et al., 2016]:

x(t+1)=x(t)+ f(x(z),0). (3.2)

This representation, gave rise to the next generation of (recurrent) neural networks, the so called
Neural ODEs [Chen et al., 2018].

3.2.2 Integrator Models

One can enable infinite computational steps in the limit, if we determine Eq. 3.2, as an Euler
neumerical discretization [Lu et al., 2017] of an ODE, of the form:

x(t)=f(x(t),t,0). (3.3)
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Figure 3.1: Schematic view of a membrane neural model. Postsynaptic neural state x;(t) is
determined by the sum of all inward (f;n, I;;) and outward currents (leakage j.q). Synaptic
strength from neuron j to i is adaptable and is a nonlinear function of the presynaptic neural state,
x;j(t), as depicted in Eq. 3.5.

In this ODE, x(¢) is the hidden layers’ state at time 7 and f is the hidden neuron nonlinearity with
parameters 6 [Lu et al., 2017, Chen et al., 2018].

The architecture was called Neural ordinary differential equations (Neural ODE) and was ef-
fectively utilized in the sequential data processing. Neural ODEs can bring several advantages,
compared to discretized RNN models, such as parameter efficiency and superior capability of
learning continuous-time dynamics, which arrive at arbitrary time-step [Mozer et al., 2017]. The
representation of such models, however, is limited to that of deep learning models since f in Eq.
3.3, is a multi-layer perceptron.

In contrast, a rather old variant of neural networks known as the continuous-time (CT) RNN
[Funahashi and Nakamura, 1993] defines its neural state, differently. Its output neural state, x;(z),
is described as the solution of the initial-value problem shown in Eq. 2.15. CT-RNN were shown
to be universal approximators (can approximate arbitrary chosen input-output mappings to an
epsilon level of precision) [Funahashi and Nakamura, 1993]. CT-RNNs have been comprehen-
sively evaluated in regard to their stability properties [Funahashi and Nakamura, 1993, Beer,
1995, Zhang et al., 2014], as they are able to forget the neural state with the speed 7. The model
can capture the temporal kinetics of a dynamical system. Recently, a number of useful features of
integrator models in the context of Neural ODEs were introduced [Chen et al., 2018]. In fact,
many deep learning architectures have been shown to be an approximation of Neural ODEs [Lu
et al., 2017]. Integrator models come with many advantages such as adaptive computation where
various ODE solvers [Runge, 1895, Kutta, 1901, Deuflhard et al., 1987] can be utilized to model
continuous time-series. For a CT-RNN architecture, for instance, the connectivity matrix, 7;, is
kept fixed to ensure stability and improve the quality of the learning process [Funahashi and
Nakamura, 1993], while restraining the expressivity of the model from capturing higher-order
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3.3. LTCs: Liquid Time-constant Recurrent Neural Networks

A Neural state of a CT-RNN Neuron Equivalent parameters are
shown by same colors
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Figure 3.2: T-RNN vs LTC architecture. A) Semantics of a CT-RNN neuron taken from Eq. 2.15,
compared to B) an LTC neuron taken from Eq. 3.7, when they are exposed to an input /().

dynamics given a fixed network size.

3.2.3 Membrane Models

In the following, we introduce a biophysical neural network model that comes with natural

regulatory elements and relaxes model limitations imposed by neural ODEs and CT-RNNs.

Liquid time-constant networks form a causal structure amongst its rich set of control parameters
which can notably enhance the expressivity of the neural model.

3.3 LTCs: Liquid Time-constant Recurrent Neural Networks

We formulate LTCs whose neural dynamics are inspired by the kinetics of neurons and synapses
in small species. Fig. 3.1 symbolically illustrates how the neural state of a postsynaptic neuron i
is determined.

Neurons: the state of the i’th neuron, x;(¢), can be modeled as a membrane integrator with the
following ordinary differential equation (ODE) [Koch and Segev, 1998]:

n .
Conki = 81 (wak,. - xi<t)) + Y 1, (3.4)
j=1
with neuronal parameters C,,;, g, and Xzeq, - Ii(,ij ) representing the external currents to the cell.

Synapses: synaptic transmission from neuron j to i, is modeled by a sigmoidal nonlinearity
(uij,7%;), which is a function of the presynaptic node’s state, x;(¢), and has a maximum weight of
w;; [Koch and Segev, 1998, Wicks et al., 1996]:

Iy, = wij(Eij = xi(t)) /(14 ¢ T 44)), (3.5)
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The synaptic current, I, then linearly depends on the state of the neuron i. The value of Ej,
determines the sign of I;; making the synapse either excitatory or inhibitory. Such synaptic
transmission mechanism allows a post-synaptic neuron to regulate its state based on an intrinsic
signed dynamics, and not just a scalar synaptic weight. More precisely, the state dynamics of a
neuron i, x;(¢), receiving one synapse from neuron j, can be written as:

Xi = g, (xLeak,- —Xi(f)> /Cm; +wijoi(x;(t))(Eij — xi)/Cn;, (3.6)

where 6;(x;(t)) = 1/(1+e 1% +Hi)) If we set the time-constant of the neuron i to be 7; =Cy, /gi;»
we can reform this equation as follows:
. L owy ) (xleak' Wij
i=—|—+ =—0;(x; i — + —0;(x; E,) 3.7
i (r,-+cm,. ()it (F o Gl o (3.7)

Equation 3.7 presents the ODE as a system with a nonlinearly varying time-constant (coupling
sensitivity) defined by Tsysrem = , and it is therefore named as Liguid Time-constant

RNN (LTC).

S S
I/Ti+W,‘j/CmiG,'(Xj)

To build up an intuitive understanding of LTC models, we conduct a series of simple experiments
as follows: A single CT-RNN neuron and an LTC neuron are stimulated by a cosine input signal
I(t), as shown in Fig. 3.3A and 3.3B and their corresponding semantics are represented in Fig.
3.2.

We then alter their equivalent parameters (shown by colors in Fig. 3.2 in both systems, and
compare their generated output states. For both systems, we also present their time-constant
(coupling sensitivity) evolution over time, in order to illustrate their differences, empirically. In
the experiments shown in Fig. 3.3C to 3.3F, we observe that changing a coupling sensitivity
parameter, w, results in a drastic alternation of the output dynamics of the LTC neuron, whereas
it minimally changes the shape of the amplified output signal for the CT-RNN neuron. The
reason is that the parameter w in LTCs explicitly influences the system’s time-constant (coupling
sensitivity), Tyygem, as well as the neuron’s state, simultaneously, resulting in the development of
an inherent causal structure between neuron’s input, its liquid time-constant, and its output state.

Such causal effect can further be illustrated, when the inherent neural time-constant C,,/g; and T
in LTC and CT-RNN, respectively, varies while w is kept fixed. We observe a range of nonlinear
behaviors realized by the LTC neuron as its inherent neural time-constant rises. The effect of such
change is represented in terms of the neuron’s overall coupling sensitivity, Tyygen. This attribute
for the CT-RNN networks is stationary, which imposes a limitation on the range of possible
dynamics the neuron can realize. To elaborate further, we conduct an experiment in which
CT-RNN networks with different network sizes are trained to map a cosine input time-series
to one of the outputs generated by the LTC neuron presented in Fig. 3.3F). This output signal
is highly nonlinear; it is phase-shifted, it includes cosine-wave distortion on the uphill and is
asymmetric. Fig. 3.3G indicates that a CT-RNN network requires at least ten neurons to learn the
target output generated by a single LTC neuron. Therefore, while CT-RNNs are universal, one
pays a dear price in the number of neurons to produce complex dynamics making the resulting
network less auditable.
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3.3. LTCs: Liquid Time-constant Recurrent Neural Networks
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Flgure 3.3: Howa liquid time-constant (coupling sensitivity) results in a more expressive dynamics? A) A CT-RNN neuron’s schematic exposed
to an input signal /(7). The schematic stands for Eq. 2.15. The color in all plots corresponds to the amplitude of the input signal which is shown by
the color bar. B) An LTC neuron’s symbolic representation exposed to the same input stimulus. The schematic stands for Eq. 3.7. C to F illustrate two
experiments performed on a CT-RNN neuron (C-D) and an LTC neuron (E-F), in a comparable parametrization setting, when they are both stimulated
by I(t). Each subsection presents the projection of the neuron’s output response (the top plot) and its coupling sensitivity (time constant) (the bottom
plot) over time. The objective of these experiments is to demonstrate the expressivity of the LTC dynamics compared to the CT-RNN when we alter
an equivalent parameter in both architectures. C) Parameter w, is set to a low value, and ten output trajectories corresponding to 10 different input
coupling parameter A varying in the specified range, for the CT-RNN neuron. D) In the second configuration, w is set to a higher value, and the
same ten trajectories are plotted. The only observable change in the output response of the CT-RNN compared to case C is the amplification of the
signal. E) When parameter w is set to a low value equivalently for an LTC neuron, similar dynamics to that of CT-RNN is observed since the effect
of the coupling sensitivity is weakened by a low w. F) The dynamics of the LTC undergo significant alternations when w is large; LTC’s dynamics
are directly caused by its varying coupling sensitivity (Tyysem), Whereas the shape of the signal for a CT-RNN neuron (case D) stays intact with an
amplified output. Note the change in the coupling sensitivity kinetics for the LTC neuron from case E to Case F. G) An experiment demonstrating the
fitting performance of a CT-RNN (stimulated by (r), and with different network sizes, N), which is trained to generate a particular output of a single
LTC neuron (shown in part F). One can observe that a CT-RNN requires at least ten neurons to realize the desired dynamics produced by only one
LTC cell. From this set of experiments, we can intuitively infer how the coupling sensitivity (time-constant) of the LTC neuron is varied (is liquid)
over time, and how its semantics result in an increased expressivity of dynamics, compared to standard CT-RNNs.

From these set of experiments, we can intuitively take away how the coupling sensitivity (time-
constant) of the LTC neuron is varied (is liquid) over time, and how its semantics results in an
increased expressivity of its output dynamics, compared to standard CT-RNNs. Moreover, having
a liquid time-constant allows the neuron to determine its reaction speed at various neural states,
to enhance its output (decision) more flexibly.
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Flgure 3.4: A-B) The influence of the alternation of the inherent neural time-constant C,,/g; and 7 in LTC and CT-RNN, respectively when w
is set to a constant value for both networks. The nonlinear behavior of the LTC neuron is originated as a result of its input dependent liquid coupling
sensitivity, while this attribute for the CT-RNN cell is stationary, limiting its range of realizable dynamics. C) Training of a CT-RNN network with
size N to reproduce one of the outputs generated by one LTC neuron shown in part A. D-E) The influence of the regulatory parameter E in LTCs. By
setting E < X4k, the neuron naturally originates an inhibitory effect on its output. We also observe that the modification of the dynamics of the LTC
neuron is explicitly caused by its coupling sensitivity parameters expressed in Eq. 3.7 as Tyyem. F) Training of a CT-RNN network with size N to
reproduce one of the outputs generated by one LTC neuron shown in part D. G) The mean squared error corresponding to the output traces of part C.
H) The mean squared error corresponding to the output traces of part F.

In the experiments shown in Fig. 3.3 and Fig. 3.4, one neuron receives an input signal /() =
cos(2t) with ¢ € [0,10]s sampled at f = 1000Hz. We introduced a scaling parameter c;, in the
CT-RNN semantics, and set it to be equal to ¢, in LTCs, in order to make the range of the
parameters in both models comparable. Correspondingly, the intrinsic coupling parameter 7 in
CT-RNN is defined by %, and is set to be equal to the ;—’7 term in LTCs. Table 3.1 represent the
parameters used in each experiment presented in Fig. 3.3, and Fig. 3.4.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.4. LTCs and DCMs

Table 3.1: Full list of parameter setting in the experiments of Fig. 3.3 and Fig. 3.4

Model Param Fig. 3.3C Fig. 3.3D Fig. 3.4A Fig. 3.4D
Fig. 3.3E Fig. 3.3F Fig. 3.4B Fig. 3.4E
8 1 1 (0.01,2) 1
Cm 0.01 0.01 0.01 0.01
w 0.1 20 5 7
LTC b4 (0,5) (0,5) 3 0,3)
u 0 0 0 0
Xleak 0 0 0 0
E 1 1 1 -1
& 1 1 (0.01,2) 1
c, 0.01 0.01 0.01 0.01
CT-RNN w 0.1 20 5 7
A (0,5) (0,5) 3 0,3)
B 0 0 0 0

This feature distinguishes the dynamics of LTC cells from the standard CT-RNN and Neural
ODEs, and make them fit into a dynamic causal modeling framework;

3.4 LTCs and DCMs

Dynamic causal modeling (DCM) describes a framework to identify models in continuous-time
and fit them to data by statistical learning methods [Friston et al., 2003]. DCMs were effectively
used in modeling fMRI time-series where the nature of the identification problem matches that of
the used bilinear system [Penny et al., 2004]. When describing neural states, x = [x1,x2, ..., X,
by a DCM, their standard form can be written as follows [Friston et al., 2003]:

i=f(x1,6), (3.8)

f is a nonlinear function, / is the set of inputs to the system and 0 are the system’s parameters.
The DCM’s bilinear approximation [Penny et al., 2005] can be expanded as follows [Friston et al.,
2003]:

X~ Ax+ Y IiB/x+CI = (A+Y I;B/)x+CI (3.9)

with:
_8f_8x i 82f_88x _8f

A= ox o P oo oo T ar

(3.10)

The resulting three sets of parameters, A, B;, and C, determine a natural and useful medium for
modeling dynamics of continuous time-series. A mediates the coupling of the nodes of the system
in the absence of inputs. B; induced by the jth input, varies the states’ coupling behavior, and
correspondingly the time-constant of the system. C controls the direct input influence over the
network’s dynamics.

Interestingly, the overall network dynamics of the LTCs with x(¢) =[x (¢), ..., x,+n/(¢)] represent-
ing the internal states of N hidden units and n output units, realizes dynamics akin to the bilinear
DCM sketched in Eq. 3.9. LTCs can be written in matrix format as follows:

i(t) = —(1/7+ Wo(x()))x(r) + A+ Wo(x(1))B, G.11)
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Liquid time-constant RNN Dynamic causal model

T ald

ﬂn g
It

1(t)
1/ intrinsic coupling A intrinsic coupling
Wo (.) liquidity modulator B  dynamic modulator
B input regulator C input regulator

Figure 3.5: LTC vs DCM. Schematic representation of the similarities of LTC model to the
dynamical causal models. In both modeling frameworks, three sets of parameters are deployed to
identify a proper model, Intrinsic coupling, dynamic modulator (liquid time-constant) and the
input control parameters.

in which o(x) is a C'-sigmoid functions and is applied element-wise. """ >0 includes all
neuronal time-constants, A is an n+ N vector of resting states, B depicts an n+ N vector of
synaptic reversals, and W is a n+ N vector produced by the matrix multiplication of a weight
matrix of shape (n+N) x (n+N) and an n+ N vector containing the reversed value of all C,,s.
Both A and B entries are bound to a range [— o, ] for 0 < & < 40, and 0 < B < +o0. A contains
all Xjear,/Cp; and B presents all E;;s.

Fig. 3.5 schematically depicts the similarities of both modeling frameworks. The set of Liquid
parameters which control the coupling sensitivity of the neuron results in a more expressive
form of a dynamical system with a causal structure. In order to demonstrate the performance
of the model, we first theoretically prove that they possess universal approximation capabilities.
We then show that LTCs realize a more compelling performance in many real-life time-series
prediction and classification tasks.

3.5 LTCs are Universal Approximators

Universal approximation theory suggests that any finite set of a continuous mapping can be
realized by three-layer feed-forward neural networks with any precision [Hornik et al., 1989,
Funahashi, 1989, Cybenko, 1989]. Such global approximation capability has also been extended
to the standard recurrent neural networks (RNN)s [Funahashi, 1989], and continuous-time RNNs
[Funahashi and Nakamura, 1993] on their ability to fit arbitrarily spatiotemporal dynamics.

In this section, we prove that any given finite trajectory of an n-dimensional dynamical system
can be approximated by the internal and output states of an LTC RNN, with # outputs, N hidden
nodes, and a proper initial condition. Let x = [x1,...,x,]7 be the n-dimensional Euclidean space
on R".

Theorem 4. Let S C R" and let X = F(x) be an autonomous ordinary differential equation
defining a dynamical system, where F : S — R" is a C'-mapping on S. Let D denote a compact
subset of S and assume the simulation of the system is bounded in the interval I = [0, T|. Then,
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3.5. LTCs are Universal Approximators

for a positive g, there exist an integer N and an LTC RNN with N hidden units, n output units,
and an output internal state u(t) = (Uy(t),...,U,(t))?, described as in Equation (8.1):

i(t) = —(1/7+Wo(u(t)))u(t) + A+ WBo (u(t)), (3.12)

such that for any rollout {x(t)|t €I} of the system with initial value x(0) €D, and a proper
initial condition of the network, max c 1|x(t) —u(t)| <. In (8.1) o (x) is a C'-sigmoid function
(bounded, non-constant, continuous and monotonically increasing), T> 0 is the time constant, A
is an n+ N vector of resting states, B is an n+ N vector of synaptic reversal values, and W is an
(n+N) x (n+ N) weight matrix, The entries of A and B are bounded in [—a., B] for 0 < a <o
and 0< B <o,

Proof sketch — We base the proof on the fundamental universal approximation theorem [Hornik
et al., 1989] on feedforward neural networks [Funahashi, 1989, Cybenko, 1989, Hornik et al.,
1989], recurrent neural networks (RNN) [Funahashi, 1989, Schifer and Zimmermann, 2006]
and continuous-time RNNs [Funahashi and Nakamura, 1993]. Moreover, we utilize additional
concepts such as Lipschitzness, locally Lipschitzness, uniqueness of the solution of CT-RNN
models, and Lemma 6, to prove the universality of LTCs.

Lemma 2. Let a mapping F : S — R" be C'. Then F is locally Lipschitz. Also, if D C S is
compact, then the restriction F | D is Lipschitz. (Proof in [Hirsch and Smale, 1973], chapter 8,
section 3).

Lemma 3. Let F : S — R" be a C'-mapping and xo € S. There exists a positive a and a unique
solution x : (—a,a) — S of the differential equation

i=F(x), (3.13)

which satisfies the initial condition x(0) = xo. (Proof in [Hirsch and Smale, 1973], chapter 8,
section 2, Theorem 1.)

Lemma 4. Let S be an open subset of R" and F : S — R" be a C'-mapping. On a maximal
interval J = (o, ) C R, let x(t) be a solution. Then for any compact subset D C S, there exists
somet € (a,B), for which x(t) ¢ D. (Proof in [Hirsch and Smale, 1973], Chapter 8, section 5,
Theorem).

Lemma 5. For an F : R" — R" which is a bound C'-mapping, the differential equation
x:—%-f—F(x), (3.14)

where T > 0 has a unique solution on [0,0). (Proof in [Funahashi and Nakamura, 1993], Section
4, Lemma 4).

Lemma 6. For an F : R" — R™" which is a bounded C'-mapping, the differential equation
x=—(1/t+F(x))x+A+BF(x), (3.15)

in which T is a positive constant, and A and B are constants coefficients bound to a range [—a., ]
for0 < o < 4o, and 0 < B < oo, has a unique solution on [0,).

39


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3. LIQUID TIME-CONSTANT RECURRENT NEURAL NETWORKS

40

Proof. Based on the assumptions, we can take a positive M, such that
0<F(x)<M(\Vi=1,..,n) (3.16)

by looking at the solutions of the following differential equation:

y=—(1/t+M)y+A+BM, (3.17)
we can show that
i T(A+BM T(A+ BM
min{|x;(0)], (l—i-’LM)} < xi(t) < max{]x;(0)], (l—i—’L'M)}’ (3.18)

if we set the output of the max to C,,y, and the output of the min to Cy;,, and also set C; =
min{Cpin, } and C = max{Cpyay, }, then the solution x(¢) satisfies

VG < x(t) < VnCy. (3.19)

Based on Lemma 3 and Lemma 4 a unique solution exists on the interval [0, +co). U

Lemma 6 demonstrates that an LTC-RNN defined by Eq. 3.15, has a unique solution on [0, o),
since the output function is bound and C'.

Lemma 7. Let two continuous mapping F,F : S — R" be Lipschitz, and L be a Lipschitz constant
of F. ifVx €,

|F(x)—F(x)| <&, (3.20)

holds, if x(t) and y(t) are solutions to
i=F(x), 3.21)
y=F(x), (3.22)

on some interval J, such that x(ty) = y(to), then
(1) = (1) < % (eH ol — 1), (3.23)
(Proof in [Hirsch and Smale, 1973], chapter 15, section 1, Theorem 3).

3.5.1 Proof of the Theorem 4

Proof. Using the above definitions and lemmas, we prove that LTC-RNNs are universal approxi-
mators. For proving Theorem 4, we adopt similar steps to that of Funahashi and Nakamura on
the approximation ability of continuous-time RNNs [Funahashi and Nakamura, 1993], to define
a dynamical system and try to approximate it with a larger dynamical system. The second one
is an LTC RNN. The fundamental difference of the proof of LTC’s universal approximation to
that of CT RNN:G lies in the distinction of the semantics of both systems where the LTC network
contains a nonlinear input term in its coupling sensitivity module represented in Eq. 3.12.
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3.5. LTCs are Universal Approximators

Part 1. We choose an i which is in range (0,min{€,A}), for € > 0, and A the distance between
D and boundary &S of S. Dy, is set:

Dp={xeR"%3zeD,|x—z <n} (3.24)

Dy, stands for a compact subset of S, because D is compact. Thus, F is Lipschitz on Dy, by
Lemma 2. Let Ly be the Lipschitz constant of F ]Dn, then, we can choose an & > 0, such that

nLr

& < 72(8141“7‘*1) .

(3.25)

Based on the universal approximation theorem, there is an integer N, and an n X N matrix B, and
an N x n matrix C and an N-dimensional vector u such that

max|F (x) —Bo(Cx+ )| < % (3.26)
We define a C!-mapping F : R” — R” as:
F(x)=—(1/t1+W;0(Cx+u))x+A+BW,;0(Cx+p), (3.27)

with parameters matching that of Eq. 3.12 with W, =W.

We set system’s time constant (coupling sensitivity), Ty, as:

1
= . 3.28
Boys 1/T+W,6(Cx+ ) (3.25)

We chose a large 7y, conditioned with the following:

X &
(a) Vx€Dy; |—|< = (3.29)

Tsys 2

H nLe L, _Lg

b) | —| < —=—="—= and < =2, 3.30
) 11 < ey nd 1< (3.30)

where L /2 is a lipschitz constant for the mapping W;o : R™™ — R"™V which we will determine
later. To satisfy conditions (a) and (b), TW; << 1 should hold true.

Then by Eq. 3.26 and 3.27, we can prove:

;’Zé%)ﬁF(x) —Fx)|<g (3.31)

Let’s set x(¢) and %(¢) with initial state x(0) = %(0) = xo € D, as the solutions of equations below:

i=F(x), (3.32)
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3. LIQUID TIME-CONSTANT RECURRENT NEURAL NETWORKS

i =F(x).
Based on Lemma 7 for any ¢ € I,
£
x(6) = ()] < - = 1)
F
€ LeT
< (et 1
< (T )

Thus, based on the conditions on €,

n}glx\x(t) —x(1)] <

(S

Part 2. Let’s Considering the following dynamical system defined by F in Part 1:

. 1
¥=——%+A; +WBo(Ci+p).

Tsys
Suppose we set § = Cx+ u; then:

1
J+Ec(y)+Ar+ K ;

Tsys Tsys

where E = CW;B, an N x N matrix. We define

§=Ci=—

Z= ()fl, ...,)Zn,fl,...,yn),

and we set a mapping G : RN — RN gq:

3 1
G(Z)=——z4+Wo(z) +A+ L,

Tsys SYyS

where;

(ntN)x(ntn) _ [ O B

0 A
n+N _ An+N — 1 )

Now using Lemma 3, we can show that solutions of the following dynamical system:

£=G(3), 3(0)=Cx(0) +p,
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(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)
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3.5. LTCs are Universal Approximators

are equivalent to the solutions of the Eq. 3.37.
Let’s define a new dynamical system G : RN — R"*N a5 follows:

1
2+ Wo(z) +A, (3.44)

Tsys

G(z)=—

where z = (x1,...,X;, Y1, -..,¥»). Then the dynamical system below

1
1+ Wo(z)+A, (3.45)

SYS

==

can be realized by an LTC-RNN, if we set h(f) = (h;(t),...,hn()) as the hidden states, and
u(t) = (Ui(t),...,Us(t)) as the output states of the system. Since G and G are both C'-mapping
and o’ (x) is bound, therefore, the mapping 7 — W o (%) + A is Lipschitz on RV, with a Lipschitz
constant L /2. As L /2 is lipschitz constant for —Z/ Ty, by condition (b) on Ty, L is a Lipschitz

constant of G.

From Eq. 3.40, Eq. 3.44, and condition (b) of 7y, we can derive the following:

~ L~
66) - 6@ =11 < 3y (3.46)
SYys

Accordingly, we can set Z(¢) and z(¢), solutions of the dynamical systems:

.~ ¥(0)=xp €D
t2 Gy, (T =0 (3.47)
¥(0) =Cxo+ 1
0)=x0€eD
i= Gz, M0 =x0 (3.48)
h(0) =Cxp+ 1
By Lemma 7, we achieve
5(r) _ n
n}ealx|z(t) z(1)] < > (3.49)
and therefore we have: .
ngealx\x(t) —u(t)] < > (3.50)

Part3. Now by using Eq. 3.36 and Eq. 3.50, for a positive &, we can design an LTC-RNN with
internal dynamical state z(), with 7., and W. For x(t) satisfying x = F(x), if we initialize the
network by u(0) = x(0) and h(0) = Cx(0) + u, we obtain:

n.n

n}glx]x(t) —u(t)] < ) + S =N<Ee (3.51)

O]
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REMARKS. LTC-RNNs allow the elements of the hidden layer to have recurrent connections to
each other. However, it assumes a feed-forward connection stream from hidden nodes to output
units. We assumed no inputs to the system and principally showed that the hidden nodes’ together
with output units, could approximate any finite trajectory of an autonomous dynamical system.

Theorem 4 proves the universal approximation capability of LTC networks. In the following
sections, we determine the stability of their hidden state and the bounded dynamics of their
varying time-constant.

3.6 Bounds on the time-constant and the neural state of LTCs

We prove that the liquid time-constant and the state of neurons in an LTC-RNN are bounded to a
finite range, as described in Lemmas 8 and 9, respectively.

Lemma 8. Let x; denote the state of a neuron i, receiving N synaptic connections as in Eq. 3.5
from the other neurons of an LTC network G. If Eq. 3.4 determines the dynamics of each neuron’s
state, then the time constant of the activity of the neuron, T;, is bounded to the following range:

N
Ci/(gi+ Y wij) <t <Ci/gi, (3.52)
Jj=1

Proof. The sigmoidal nonlinearity in Eq. 3.6, is a monotonically increasing function, bound to a
range 0 and 1:
0<S(Yj,6jj,,uij,Eij) <1 (353)

By replacing the upper-bound of S, in Eq. 3.6 and then substituting the synaptic current of Eq.
3.5, we will have:

dx,' N
Gy = 8i-(eak — i) + Y wii(Eij—xi), (3.54)
j=1
dx; N
iditl = (8iXteak + Z W,‘jE,'j) (3.55)
j=1
A
N
—\&i Wij)Xi, .
(&1 + ) (3.56)
j=1
~—
B
d .
Ci% —A—Bx.. (3.57)

Eq. 3.57 is an ordinary differential equation with solution of the form:

5, A
(1) = kie 5I+E. (3.58)
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3.6. Bounds on the time-constant and the neural state of LTCs

From this solution, one can derive the lower bound of the system’s time constant, ’L’i’"i":

¢ G
B g+ ZIJ\'/:]Wij'

min
Ti =

(3.59)

By replacing the lower-bound of S, in Eq. 3.54, the term Z]]VZI wij(Eij — x;) becomes zero,
therefore:

dx;
i?l:gixleak_ 8 Xi. (3.60)
t —— ~—
A B

Thus, we can derive the upper-bound of the time constant, 7;"**:

T = Q 3.61)
8i

O

Having a stable varying time-constant significantly enhances the expressiveness of this form of
CT-RNNs. Next, we show that the neural state of LTCs is bounded to a finite range.

Lemma 9. Let x; denote the state of a neuron i, receiving N synaptic connections as in Eq. 3.5
Jfrom the other nodes of a network G. If the dynamics of each neuron is determined by Eq. 3.4,
then the hidden state of the neurons on a finite trajectory, = [0,T](0 < T < +o0), is bounded as

Sfollows:
min(Xieak, Eij") < xi(t) < max(Xieak, Efj™), (3.62)

Proof. Let us insert M = max{xleaki,E{;’“x } as the membrane potential x;(z) into Eq. 3.54:

. N
Ci— = 8i(Xteak — M) + Y wijo (x;)(Eij — M). (3.63)
—

The right-hand side of Eq. 3.63, is negative based on the conditions on M, positive weights and
conductances, and the fact that o (x;) is also positive in RY. Therefore, the left-hand-side must
also be negative and if we conduct an approximation on the derivative term:

dx; dx;  x(tr+6t) —x(t)
Ci— <0, —~—_-——=-<0, 3.64
dt — dt ot (.64
holds. by Substituting x(¢) with M, we have the following:
t+6t)—M
X(Jr&) <0 — x(t+8) <M (3.65)

45


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3. LIQUID TIME-CONSTANT RECURRENT NEURAL NETWORKS

46

and therefore:
xi(t) < malx(xleak,.,Ei’;’”"). (3.66)
te

Now if we substitute the membrane potential, X(i) with m = min{xleaki,E;;?i”}, following the same
methodology used for the proof of the upper bound, we can derive

x(t+0t)—m

5 <0 — x(t+06r) <m, (3.67)
and therefore:
xi(t) > min(xleaki,E,-”J?i"). (3.68)
tel

O

Lemma 9 illustrates a fundamental property of LTC-RNNs, namely state stability by which we
mean that the output of an LTC will never explode as its input rises to infinity. Next, we design a
learning platform to train and evaluate LTC instances on real-life examples.

3.7 A learning platform for training LTCs by gradient descent

LTCs’ model represented by Eq. 3.11, describes an initial value problem. Solving Eq. 3.11,
analytically, is non-trivial due to the nonlinearity of the LTC semantics. The neuronal states of the
ODE, however, at any time point 7', can be computed by a numerical ODE solver that simulates
the system starting from a trajectory x(0), to x(T').

3.7.1 LTC cell-update by a Hybrid ODE Solver

The ODE solver breaks down the continuous simulation interval [0, T] to a temporal discretization,
[to,11,...1,]. As a result, a solver’s step involves only the update of the neuronal states from ¢; to

Lit1.

The explicit Euler method computes the neuronal state at time #; . by interpreting the right-hand
side of Eq 3.3 as the slope of x, i.e.,

x(l‘i+1) = (l‘,'+1 —l‘l‘)f(x(l,‘)) —i—x(ti). (3.69)

While this approach is guaranteed to converge to the true solution when deploying an infinitely
fine discretization [Gerald, 2012], in practice it is often inaccurate on a finite trajectory of
timestamps. Alternatively, more complex approximation methods such as Runge-Kutta [Runge,
1895] provide a better approximation of the system, by the weighted averaging of neuronal state
at points between [t;,¢;+1]. In practice, the Runge-Kutta method achieves a decent precision
on many initial value problems and is considered a standard choice for an ODE solver [Press
et al., 2007b]. Described methods struggle with stiff ODE instances [Press et al., 2007b], a
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3.7. A learning platform for training LTCs by gradient descent

Algorithm 2 LTC Cell Update by the Hybrid ODE Solver

Parameters: 6 = (W, v, U, E, Cy, 1> Xieak)s
k = Number of unfolding steps, A = time step, N = Number of Neurons
Inputs: Current inputs /(), Current LTC neurons’ state x()

Output: Next LTC neuron state x(f + A) = Xpey
Function: ODEsolverStep(x(z), I(z), A, 6)

X1 (t)Cony | A+81y Xteaky +Ljer, W1j O1 Ylj(x_/(f)—ﬂlj> Eyj

Cny /A+81, + X jer, W1j O <Ylj(xj(f)ﬂlj)>

Xi(t)Cn; [ A+81,X10ak; + L jer, Wij Oi <Yij (x;( ).uij> Eij

Xnext =

Con; [ D+81,+ Y jer,, Wij Oi (Yu‘ (xj( )-w))

XN (6)Cny [ A+ 81y Xteary +Ljer, Whj On | Ywj(xi ()=t | Enj

in

Coni /Aty +Y jer, WNj ON <7Nj(xj(t)ﬂ1vj)>

Xnext = x(t)

fori=1...kdo
Xnext = ODEsolverStep(x(t), I(z), A, 0)

end for

return X,

numerical phenomenon that can occur when several variables mutually influence each other. In
such situations, both methods either become unstable or require a very fine discretization to
compute an accurate solution, ergo exponentially increase the complexity of the algorithm.

On the contrary, the family of implicit ODE solvers provide stable solutions even on stiff ODE
instances [Press et al., 2007b]. The implicit Euler method modifies Eq. 3.69 by substituting
f(x(#)) by f(x(ti+1)). The resulting equation

X(tiv1) = (tier — 1) f (x(ti1)) + x(80), (3.70)

describes the solution for x(#;41) in an implicit format.

We design a new ODE solver that combines the explicit and the implicit Euler method. To this end,
we substitute f(x(t;)) in Eq 3.69 by f(x(#),x(ti+1)), which results in the following expression:

X(tivr) = (tier — 1) f (x(ti), x(ti41)) +x(8i).- (3.71)

47


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r
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Figure 3.6: A) LTC cell realized by a Hybrid ODE solver. Note that for each input connection
there exists an activation function associated to it. This feature implies that the nonlinearity of a
neuron is chiefly resulted by the nonlinear synaptic transmissions. B) An LTC network realized
by a Hybrid ODE solver. Note that for each input connection there exists an activation function
associated to it. One can add arbitrary synaptic connections to this networks, (e.g. recurrent
connection between cells), by passing the output of a cell i through a synaptic nonlinearity of the

form ZjEx W;’Jejcurrenl o; (,),ly’]gcurrent (xi (l‘) _ uirjecurrent ) ) .

we refer to this approach as the hybrid Euler method. In particular, we replace only the x(#;) that
occur linearly in f by x(#;41). As aresult, Eq 3.71 can be solved for x(#; ), symbolically.

Based on Eq. 3.71, given a system of ordinary differential equations of LTC neurons, the hybrid
solver computes an update for the next state of each neuron i, by the following expression:

Xi(t)Con; | A+ 81 X1eak; + L jer, Wij O (%‘j (xj () — j)) E;j
(3.72)

xi(t+A) =
Con,/A+ g1, + Y jer, Wij Oi (Yz’j (x;(t) — .uij)>
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3.7. A learning platform for training LTCs by gradient descent

ayl(t) _
ot Numerical Recursive x(£)
9:2(t) _  ODE Solver y(t) = f(y(t — A), Folding y(t)
ot — > x(t) —— P ' >
: y(t —A4)
6y5(t) _
ot o
System of Discrete Time Recurrent
Differential Equations Solution Neural Network

Figure 3.7: ODE to recurrent cell. Each hidden neuron’s state dynamics has been discretized by
an ODE solver, and then unfolded in a recursive fashion to build a recurrent network cell.

In this expression, the set [, represents the set of inputs that are presynaptic to neuron i, and A
accounts for the solver’s step. Algorithm 2 represents how to implement an LTC network, given
the parameter space 6.

The time complexity of the algorithm is O(N? x k), where N is the number of neurons and k the
number of unfolding steps. N is usually much larger than k, which can be neglected (e.g. in our
experiments k = 6). Intuitively, a dense version of an LTC network with N neurons, and a dense
version of an LSTM network with N cells, would be of the same complexity degree.

Accordingly, the structure of a single LTC neuron realized by the hybrid ODE solver introduced,
can be sketched as shown in Fig. 3.6A. This cell can be utilized to structure networks of LTCs,
with a fully connected network representation. An implementation note for having cells of a
network recurrently synapse into each other is to consider that every additional synapse to the
architecture comes with its own activation function as illustrated in Fig. 3.6B. For instance, in
order to add recurrent connection between neurons, one can pass the output of a cell i through a
synaptic nonlinearity of the form Y. ;c, wis"" o; (y/7""™ (xi(t) — /™).

3.7.2 Training LTC networks by backpropagation through time

We aim to train the LTC models realized by ODE solvers, by the backpropagation through
time algorithm. Therefore, it is vital to investigate how well a solver enables backward error
propagation. It has been previously shown that the magnitude of the error backpropagating from
one time-step to the previous time-step significantly influences the learnability of RNNs [Pascanu
et al., 2013, Hochreiter and Schmidhuber, 1997].

We investigate this property, experimentally, by comparing the performance of LTC models
realized by the introduced hybrid solver, to the vanilla explicit and the Runge-Kutta solvers in a
group of time-series classification tasks. The solver’s output which corresponds to a vector of
neural states can be recursively folded to build up a recurrent neural network instance, as depicted
in Fig. 3.7. Back-propagation through time learning algorithm is deployed to train the resulting
LTC-RNN network. The corresponding learning algorithm is then summarized in Algorithm 3.

Algorithm 3 uses a vanilla Stochastic gradient decent (SGD), to obtain network parameters. One
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Algorithm 3 LTC Training Algorithm for time-step sequence classification and regression tasks

Inputs: Dataset of traces [/(z),y(¢)] of length T, RNN = f(/,x)
Parameter: Loss function L(6), initial parameters 6y, learning rate ¢, Output weights = W,
output bias = b,
Output: Training parameters 6
for i =1... number of training steps do
(Ip,yp) = Sample training batch
x = All zeros initial neural state
for j=1...T do
x= f(I(1),)
)7(1) = Wour X+ bous
Lioat = X1 Ly, (1), 5;(0))
VL(6) = Yo
0=6—aVL(0)
end for
end for
return 6

can easily substitute this with a more performant variant of the SGD algorithm such as Adam
[Kingma and Ba, 2014], which we use for our experimentation. Correspondingly, the training
algorithm has a complexity of O(N? x k x t), with N neurons, k ODE steps, and a sequence length
of r.

3.8 LTCs performance in time-series prediction compared to other
RNNs

We evaluate the performance of LTCs modeled by different ODE solvers against the state-of-
the-art discretized RNN, the LSTM networks, and CT-RNNSs, in a series of real-life time-series
processing tasks from the UCI Machine Learning Repository [Dua and Graff, 2017]. The results
of our experimentation are summarized in Table 3.2. Here, we first briefly describe the objective
of each task and discuss results subsequently.

The first test-case concerns the temporal segmentation of hand gestures. The dataset consists
of seven recordings of individuals performing a sequence of hand gesticulations [Wagner et al.,
2014]. The input features at each time step are comprised of 32 data points recorded from
a motion detection sensor. The output, at each time step, represents one of the five possible
hand gestures; rest position, preparation, stroke, hold, and retraction. The objective is to train a
classifier to detect hand gestures from the motion data.

The objective of the second task is to detect whether a room is occupied by observations recorded
from five physical sensor streams, such as temperature, humidity, and CO2 concentration sensors
[Candanedo and Feldheim, 2016]. Input data and labels are sampled in a one-minute interval.
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3.9. Experimental Setup

Table 3.2: Test performance of RNN models. Numbers depict the mean + standard deviation
of the validation set performance of RNN models with the dedicated metric in each experiment.
n=5.

Dataset Metric LSTM CT-RNN (hybr];ggdllg?ours)
Hand gesture segmentation (accuracy) 64.57% + 0.59 59.01% + 1.22 68.04% + 2.35
Room occupancy detection (accuracy) 93.18% + 1.66 94.54% + 0.54 94.47% + 0.53
Human activity recognition (accuracy) 95.85% + 0.29 95.73% + 0.47 95.67% + 0.57
Traffic volume prediction (squared error) 0.169 + 0.004 0.224 + 0.008 0.099 + 0.009
Ozone level forecasting (F1-score) 0.284 + 0.025 0.236 + 0.011 0.302 + 0.015

The third task involves the recognition of human activities, such as walking, sitting, and standing,
from inertial measurements of the user’s smartphone [Anguita et al., 2013]. Data consists of
recordings from 30 volunteers performing activities form six possible categories. Input variables
are filtered and are pre-processed to obtain a feature column of 561 items at each time step.

The goal of the fourth experiment is to predict the hourly westbound traffic volume at the US
Interstate 94 highway between Minneapolis and St. Paul. Input features consist of weather data
and date information such as local time and flags indicating the presence of weekends, national, or
regional holidays. The output variable represents the hourly traffic volume, which we normalized
by its annual mean and standard deviation.

The objective of the final task is to forecast ozone days, i.e., days when the local ozone concentra-
tion exceeds a critical level. Input features consist of wind, weather, and solar radiation readings.
The dataset is imbalanced with a 1:15 ratio, due to the low number of ozone days present in the
dataset. Consequently, we assign an importance rate of 15 times more substantial for the ozone
day samples compared to the other samples. Moreover, we report the Fj-score instead of standard
accuracy ( higher score is better). Read more about the experimental setup in the Supporting
Information.

As it is illustrated in Table 3.2, we quantify the improvement of the LTCs implemented by the
hybrid solver, in three test-cases and their highly competitive performance to the other RNNs
compared to the other two tasks. In these real-life test-cases, a performance improvement between
5% to 70% is achieved by the LTC networks compared to the best performing state-of-the-art
LSTM architecture.

3.9 Experimental Setup

In this section, we provide a detailed description of the experimental setup.

3.9.1 Gesture segmentation task

The dataset consists of seven recordings of humans performing hand gestures [Wagner et al.,
2014]. The input features at each time step consist of 32 items, and the output represents one
of the five mutually exclusive categories. We use the categorical classification accuracy as our
performance metric. We cut each of the seven recordings into overlapping sub-sequences of
exactly 32 time-steps. We randomly separate all sub-sequences into non-overlapping training
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(75%), validation (10%), and test (15%) set. Input features are normalized to have zero mean and
unit standard deviation.

3.9.2 Room occupancy detection

The original dataset consists of a pre-defined training and test set [Candanedo and Feldheim,
2016]. Input data and binary labels are given in a one-minute interval. We use the binary
classification accuracy as our performance metric. We cut the sequences of each of the two sets
into a training and test set of overlapping sub-sequences of exactly 32 time-steps. Note that no
item from the test set is leaking into the training set during this process. Input features of all data
are normalized by the mean and standard deviation of the training set, such that the training set
has zero mean and unit standard deviation. We select 10% of the training set as the validation set.

3.9.3 Human activity recognition

Like with the occupancy experiment, the dataset is split into a training and test set [Anguita et al.,
2013]. The output variable represents one of six activity categories at each time step. We employ
the categorical classification accuracy as our performance metric. The original data is already
preprocessed by temporal filters. The accelerometer and gyroscope sensor data were transformed
into 561 features in total at each time step. We cut the sequences of the training and test set into
overlapping sub-sequences of exactly 32 time-steps. We select 10% of the training set as the
validation set.

3.9.4 Traffic volume prediction

The original data consists of hourly recordings between October 2012 and October 2018, provided
by the Minnesota Department of Transportation and OpenWeatherMap. We select the seven
columns of the data as input features: 1. Flag indicating whether the current day is a holiday,
2. The temperature in Kelvin normalized by annual mean, 3. Amount of rainfall, 4. Amount of
snowfall, 5. Cloud coverage in percent, 6. Flag indicating whether the current day is a weekday,
and 7. time of the day preprocessed by a sine function to avoid the discontinuity at midnight.
The output variable was normalized to have zero mean and unit standard deviation. We used the
mean-squared-error as training loss and evaluation metric. We split the data into overlapping
sequences lasting 32 hours. We randomly separate all sequences into non-overlapping training
(75%), validation (10%), and test (15%) set.

3.9.5 Ozone level forecasting

The original dataset consists of daily data points collected by the Texas Commission on Envi-
ronmental Quality (TCEQ). We split the 6-years period into overlapping sequences of 32 days.
A day was labeled as ozone day if, for at least 8 hours, the exposure to ozone exceeded 80
parts per billion. Inputs consist of 73 features, including wind, temperature, and solar radiation
data. The binary predictor variable has a prior of 6.31%, i.e., expresses a 1:15 imbalance. For
the training procedure, we weighted the cross-entropy loss at each day, depending on the label.
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3.10. Extrapolation with LTCs

Labels representing an ozone day were assigned 15 times the weight of a non-ozone day. In
roughly 27% of all samples, some of the input features were missing. To not disrupt the conti-
nuity of the collected data, we set all missing features to zero. Note that such zeroing of some
input features potentially negatively affects the performance of our RNN models compared to
non-recurrent approaches and filtering out the missing data. Consequently, ensemble methods
and model-based approaches, i.e., methods that leverage domain knowledge [Zhang and Fan,
2008], can outperform the end-to-end RNNs studied in our experiment. We randomly split all
sub-sequences into training (75%), validation (10%), and test (15%) set.

3.9.6 Model selection procedure

Each training procedure consists of 200 training epochs. At each training epoch, we create a
backup of the model weights and evaluate the score of the model on the validation set. At the end
of the training process, we restore the model weights that scored the best validation score and
evaluated this model on the test set. We repeat the experiment above five times for each model
with different weight initialization.

3.9.7 Model size

In order to have a fair comparison between different RNN model, the size of all RNN hidden
state is fixed to 32 units.

3.9.8 ODE solvers setting

We compared the explicit Euler, Runge-Kutta with four intermediate evaluations (RK4), and
our hybrid Euler method. For our UCI benchmark, we simulated our LTC ODE at a temporal
discretization that is three times finer than the input and output sampling frequency. In essence,
each RNN time-step consists of exactly three ODE solver steps.

3.10 Extrapolation with LTCs

Throughout our experimentation, we also observed that LTCs possess special skills in learning the
underlying dynamics of a system beyond the domains and ranges they have been trained over. In
order to quantify this, we took the first steps towards investigating their extrapolation capabilities
in the classification of unseen input time-series to unseen domains. We designed a novel experi-
ment to assess how well RNNs can classify a new time-series with unseen frequency properties
to unseen classes. The motivation behind performing the experiment is that neural networks have
been typically shown to successfully generalize to new data drawn from their original training
distribution [Novak et al., 2018, Keskar et al., 2016, Kawaguchi et al., 2017]. However, they often
have difficulty with extrapolation or modeling data from outside of the training distribution [Haley
and Soloway, 1992]. Typically, since these networks are trained to be consistent with a given
dataset, there are no guarantees of their behavior outside of that dataset. While this variability
is useful for specific applications, such as epistemic uncertainty estimation [Lakshminarayanan
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et al., 2017, Pearce et al., 2018], learning to successfully extrapolate also presents the promise of
temporal forecasting into the future as well as increased sample efficiency.

In this experiment, as shown in Fig. 3.8, a neural network with two inputs, one output, and k
hidden nodes, successively receives the elements x; () and x;(¢) of two time series of length
N, generated from two sinusoidal signals, xi(¢) = sin(f *t) and x»(¢) = sin(f2 *t). The time
increment is dt, the time horizon is T, and N = T/dt. For a given geometric shape as a
classification boundary (e.g., a half disc in the f|-f> coordinate system), the neural network has
to first learn the frequencies f; and f, from x; and x;, and than output class one if (f1,f>) is a
point within the geometric shape, and class 0 if it is not. For training, the frequency f; is chosen
in the domain [0,5,2.25]Hz and f, from [0.5,4]Hz. We then train LTCs, discretized (LSTM) and
continuous-time RNNSs to fit the input sequences to their corresponding class-domain.

The trained networks are then evaluated on time series x; and x, generated as before from the
sinusoidal input signals, respectively, but this time with frequencies both inside and outside the
range of their training domain; that is, f; now ranges in [0.5,4]Hz and f, in [0.5,7.5]Hz. The
question aimed to be elucidated, is how these networks classify the unseen time series in unseen
classification domains. A human observer that would be able to learn the frequencies of the
sinusoidal signals from their respective time series x; and x; would intuitively predict symmetry
for classifying the signals. In other words, one would guess that the hidden part of the geometric
shape is symmetric to the one used for training. Hence, one classifies the time series whose
frequencies (f1, f>) lie within the symmetric geometric shape as class 1, and the other as class 0.

Now for the trained networks, the result of their predictions is presented in Fig. 3.8. While
LSTM and CT-RNN can perfectly fit the training data, predictions in the unseen domain appear
arbitrary. The predictive output of the LTC-RNNSs, on the other hand, appears to be symmetric
and in most cases and is closer to what a human observer would expect. This is a surprising
observation about the extrapolation performance of LTCs which opens up prospective research
questions to be addressed. In the context of the extrapolation capability of neural networks,
a recent line of work [Martius and Lampert, 2016, Sahoo et al., 2018] reformulates the deep
network outputs to instead model analytical equations governing the output variables, in order to
perform extrapolation in the output space. Additionally, similar approaches have been used to
learn analytical partial differential equations directly from data [Long et al., 2018b]. LTCs can
presumably leverage the extrapolation capability of neural networks not only to the time-series
beyond range values but also to time-series classification of unseen data to unseen domains.
Moreover, in comparison to the other methods which alter the network’s computational units
[Martius and Lampert, 2016, Sahoo et al., 2018, Trask et al., 2018], LTCs suggests a brain-
inspired universal approximator model for governing novel scenarios, without the need to varying
the network’s fundamental units.

For each model, we empirically set the number of training epochs to achieve a training loss lower
than 0.05. For instance, while larger LSTM models reach such threshold after 1000 iterations,
the LTC networks require up to 50,000 training steps. For each configuration, i.e., (model, size,
and shape) tuple, we created ten figures starting from random initial parameters and selected an
appropriate model, as shown in Figure 3.8. Furthermore, for each configuration, we generated
five figures starting from different random initialization without applying any filtering.
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Figure 3.8: Frequency extrapolation experiment. A) Two sinusoidal inputs with two different
frequencies are applied to LSTM, CT-RNN, and LTC networks. The target is composed of
the frequencies of the two inputs, and the class domain distribution is structured in 2 different
scenarios. B) The objective is to see the extrapolation performance of RNNs after training. C)
Each column represents the output class prediction of a trained recurrent network with k hidden
nodes. The columns also show the network’s extended predictions in the domains they have not
been explored during training. The predictions of the LTCs in the unseen domain appear closer to
the expectations of a human observer, compared to that of other networks.

3.11 Conclusions

We formulated a new brain-inspired RNN instance, namely the liquid-time constant networks

(LTC). We analyzed their properties and found activity bounds on their neural state dynamics.

We illustrated how their dynamics are more expressive than CT-RNNs. We showed their superior
performance compared to the other RNNs in time-series processing tasks and experimentally
demonstrated that LTCs possess compelling generalization capabilities, due to their biologically
plausible dynamical representation, which resembles a dynamic causal model.

Due to their expressive dynamics and their causal semantics, we speculate that LTCs might
be able to learn dynamics beyond the range and distribution they have been trained over. To
investigate this phenomenon further, we took the first steps and conducted a toy experiment,
in which we evaluate the extrapolation capability of different RNN models compared to that
of LTCs. The experiment demonstrates that symmetrical extrapolation was achievable by LTC
models. This property demands more rigorous attention, which is going to be the focus of our
prospective research on LTCs.

We believe that the LTCs establish a step forward towards the realization of creative neural
information processing systems, with computational models closer to that of natural learning
systems. Next, we explore their ability to control dynamical systems.
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CHAPTER

Ordinary Neural Circuits with LTCs

4.1 Motivation

In this chapter, we wish to deploy LTC neural model into the development of a new class of ma-
chine learning algorithms for robot control!. Through natural evolution, the subnetworks within
the nervous system of the nematode, C. elegans, structured a near-optimal wiring diagram from
the wiring economy principle® perspective [White et al., 1986, Pérez-Escudero and de Polavieja,
2007]. Its stereotypic brain composed of 302 neurons connected through approximately 8000
chemical and electrical synapses [Chen et al., 2006]. The wiring diagram therefore, establishes
a 91% sparsity level and outstandingly gives rise to high-degrees of controllability, to process
complex chemical stimulations [Bargmann, 2006], express adaptive behavior [Ardiel and Rankin,
2010], and to control muscles [Wen et al., 2012].

This property is particularly attractive to the machine learning community that aims at reducing
the size of fully-connected neural networks to sparser representations while maintaining the great
output performance [LeCun et al., 1990b, Hassibi and Stork, 1993, Han et al., 2015, Hinton
et al., 2015, Frankle and Carbin, 2018]. In this regard, the lottery ticket hypothesis [Frankle
and Carbin, 2018], suggested an algorithm to find sparse subnetworks (winning tickets) within
a dense, randomly initialized feedforward neural network, which can achieve comparable (and
sometimes greater) performance to the original network, when trained separately [Frankle and
Carbin, 2018, Zhou et al., 2019, Morcos et al., 2019]. The lottery ticket hypothesis motivated
us to investigate whether subnetworks (neural circuits) within the natural nervous systems are
already formulation of winning tickets originated from the natural evolution?

To study this question fundamentally, we take a computational approach to analyze neural
circuit models from the nervous system of the worm. The reason is that the function of many

ISupplementary materials and code for all experiments of this chapter is available online at: https://github.
com/raminmh/ordinary-neural-circuits

2Under proper functionality of a network, the wiring economy principle proposes that its morphology is organized
such that the cost of wiring its elements is minimal [Pérez-Escudero and de Polavieja, 2007].
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circuits within its nervous system have been identified [Wicks and Rankin, 1995, Chalfie et al.,
1985a, Li et al., 2012, Nichols et al., 2017, Kaplan et al., 2019], and simulated [Islam et al.,
2016, Sarma et al., 2018, Gleeson et al., 2018], which makes it a suitable model organism for
further computational investigations.

The general network architecture in C. elegans establishes a hierarchical topology from sensory
neurons (source nodes) through upper interneuron and command interneurons down to motor
neurons, sink nodes, (See Fig. 4.1A). In these neuronal circuits, typically, interneurons establish
highly recurrent wiring diagrams with each other while sensors and command neurons mostly
realize feedforward connections to their downstream neurons. An example of such a structure
is a neural circuit shown in Fig. 4.1B, the Tap-withdrawal (TW) [Rankin et al., 1990], which is
responsible for inducing a forward/backward locomotion reflex when the worm is mechanically
exposed to touch stimulus on its body. The circuit has been characterized in terms of its neuronal
dynamics [Chalfie et al., 1985a]. It comprises eleven neuron classes which are wired by thirty
chemical and electrical synapses. Is TW a Winning Ticket compared to networks of the same size,
from any perspective?

4.1.1 TW graph realizes the highest maximum flow rate

Let us first define the maximum flow problem [Shiloach and Vishkin, 1982]:

Definition 5. For a given graph G(V,E), with s,t € V source and sink nodes, respectively:

o The capacity (weight) of an edge is the mapping c : E — R, declared by c,,

e A Flow is a mapping f : E — R™, denoted by f,, from node u to v, if: 1) f, < c. for each
e € E. 2) Yinputs to vSe = Loutpur from vJe for all v €V except source and sink nodes,

e The flow rate is denoted by |f| = ¥_,, fsv, where s is the source of G. This value depicts
the amount of flow passing from a source node to a chosen sink node.

e The maximum flow problem is to maximize |f|.

The maximum flow problem is typically used for sparse directed networks in order to assess
their input/output propagation performance. The TW circuit is a sparse directed network, and
therefore, we chose to evaluate its propagation properties by computing the maximum flow rate.

The TW neural circuit realizes a higher maximum flow rate from arbitrary chosen source to
sink node, compared to randomly wired networks of the same size. Formally, given a directed
weighted graph G(V,E), with V vertices, E < V2 edges and:

e SCV,S={sy,...,5} source (sensory neurons),
e T CV,T={t,...,tn} sink (motor neurons),
o I CV,I={ii,...,in,} interneurons,

e CCV,I={ci,...,cn, } command neurons,
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Figure 4.1: Left: C. elegans’ general neuronal circuit structure. Right: Tap-Withdrawal (TW)
neural circuit schematic. Total number of interneurons = N; + N¢. We preserve the TW circuit
wiring topology, model its dynamics by computational models, and deploy a search-based
reinforcement learning algorithm to control robots.

then, the highest maximum flow rate is achievable for randomly-weighted and -wired networks
(with E edges, when the architecture of the network approaches that of randomly-weighted TW.
To demonstrate this claim quantitatively, we construct 40000 randomly-wired networks and
compare their max-flow rate to randomly-weighted TW. We witnessed an enhanced max-flow
rate between 1% and 17% when a network is constrained to be wired similar to TW. (See details
in Section 4.2). Accordingly, this finding motivated us to explore the dynamics of the TW circuit
from a control theory perspective.

4.1.2 TW can be trained to govern standard control tasks

The behavior of the TW reflexive response is substantially similar to the control agent’s reaction
in standard control settings such as a controller acting on driving an underpowered car, to go up
on a steep hill, known as the Mountain Car [Singh and Sutton, 1996], or a controller operating on
the navigation of a rover robot that plans to go from point A to B.

As discussed in Chapter 3, the biophysical neuronal and synaptic models such as LTC express
useful properties: I) In addition to the nonlinearities expressed by the neurons’ hidden state,
synapses possess additional nonlinearity. This property results in realizing complex dynamics
with a fewer number of neurons [Hasani et al., 2018b]. II) Their dynamics are set by grounded
biophysical properties, which ease the interpretation of the network’s hidden dynamics.

We construct instances of the TW network obtained by learning its parameters and define these

59


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4. ORDINARY NEURAL CIRCUITS WITH LTCS
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learning systems as ordinary neural circuits (ONC). We experimentally investigate ONC’s prop-
erties in terms of their learning performance, their ability to solve tasks in different reinforcement
learning domains, and introduce ways to interpret their internal dynamics. For this purpose, we
preserve the wiring structure of an example ONC (the TW circuit) and adopt a search-based
optimization algorithm for learning the neuronal and synaptic parameters of the network. We
discover that sparse ONCs (Natural lottery winners) not only establish a higher maximum flow
rate from any arbitrary source to sink node but also when trained in isolation for control tasks, sig-
nificantly outperform randomly wired networks of the same size and in many cases contemporary
deep learning models with larger capacities.

A - No wiring constraints B - No wiring constraints C - No multiple connections D - No multiple connections
- Sensory only to inter - Sensory to inter and From a source node to From a source node to
neurons command neurons the same target node the same target node

- No self-connection

oy, e [ 95 Iy o o . ° y
Ty 2 o . 0 Ay Ay 4
A AN e S Tavy Ay NS o X py ™ A . ° iy Ay 25

e = ‘ Y Yy

Network Hubs - Importance

o, \ Y
Oy ®rupy 4 A 05

g e, L LA 0, ! !
Fup Rey o

Sparse, randomly-wired networks approaching TW circuit -> realizing higher maximum flow rate

Figure 4.2: Sparse and randomly wired network samples. A to D indicate random neural circuits
with the same number of elements as in TW, wired with modified constraints in Algorithm 4:
A) In Step 1, target = Rand(’P) B) In Step 1, target = Rand(¢CP;) C) In Step 1 and Step 2,
if the tuple (source,,target,) is repeated, remove and loop again. D) In Step 1 and Step 2, if
(source,,target,) is repeated, remove and loop again. In Step 2, if source, = target,, remove the
selection, and loop again. The colorbar represents network hubs — nodes with highest number of
inward/outward edges.

4.1.3 Contributions of this chapter

o Quantitative illustration of achieving the highest maximum flow rate for randomly wired
sparse networks, when their architecture gets closer to an instance of ONCs, the TW.

e Demonstration of the performance of a compact ONC as an interpretable controller in a
series of control tasks and the indication of its superiority compared to similarly structured
networks and contemporary deep learning models.

e Experiments with ONCs in simulated and physical robot control tasks, including the
autonomous parking of a reak mobile robot. This is performed by equipping ONCs with a
search-based RL optimization scheme.

e Interpretation of the internal dynamics of the learned policies. We introduce a novel
computational method to understand continuous-time network dynamics. The technique
(Definition 6) determines the relation between the kinetics of sensory/interneurons and a
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4.2. Design Ordinary Neural Circuits

motor neuron’s decision. We compute the magnitude of a neuron’s contribution (positive or
negative), of these hidden nodes to the output dynamics in determinable phases of activity,
during the simulation.

4.2 Design Ordinary Neural Circuits

In this section, we first briefly describe the structure and dynamics of the tap-withdrawal neural
circuit as an instance of ONCs. We then delve into the graph theory properties of the network to
motivate the choice of the TW circuit as the natural lottery winner for control. We then introduce
the mathematical neuron and synapse models utilized to build up the circuit, as an instance of
ordinary neural circuits.

4.2.1 Tap-Withdrawal Neural Circuit

A mechanically exposed stimulus (i.e., tap) to the petri dish in which the worm inhabits, results
in the animal’s reflexive response in the form of a forward or backward movement. This response
has been named as the tap-withdrawal reflex, and the circuit identified to underlay such behavior
is known as the tap-withdrawal (TW) neural circuit [Rankin et al., 1990]. The circuit is shown in
Fig. 4.1. It is composed of four sensory neurons, PVD and PLM (posterior touch sensors), AVM
and ALM (anterior touch sensors), five interneuron classes (AVD, PVC, AVA and AVB, DVA),
and two subgroups of motor neurons which are abstracted as forward-locomotory neurons, FWD,
and backward locomotory neurons, REV. Interneurons recurrently synapse into each other with
excitatory and inhibitory synaptic links. TW consists of 28 synapses connecting 11 neurons.

4.2.2 Maximum Flow Rate in ONCs versus Other Networks

The TW neural circuit, is wired with a set of network-design constraints. Formally, given
V vertices and E edges,l) it realizes a 77% network sparsity. II) The structure exclusively
determines four distinct layers of neurons: S C V, S = {sy,...,s¢} source (sensory neurons),
T CV,T =A{t,...,tn} sink (motor neurons), I C V, I ={I,,...,Iy,} interneurons, and C C V,
I ={C,...,Cy.} command neurons. III) Sensory nodes unidirectionally synapse into upper
interneurons with 40% of the total number of connections. IV) interneurons and command
neurons recurrently synapse into each other (without any self-connections) by 53% of the total
number of connections. V) Command neurons exclusively synapse into motor neurons by the
rest of the synapses.

We discovered that with the construction of randomly-wired sparse networks while applying the

aforementioned TW constraints, we can achieve the highest maximum flow rate for such networks.

To demonstrate this quantitatively, we developed Algorithm 4 to design random networks with
a series of assumptions gradually increased to satisfy TW constraints. We then compute the
ratio of the average maximum flow (computed by a tree-search max-flow algorithm [Boykov and
Kolmogorov, 2004]) from sensory nodes to motor neurons of the TW circuit, to the obtained
networks and report results in Table 4.1. The ratio approaches 1, which indicates that networks
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Algorithm 4 Design ONC-like random networks

S =sensory, T =motor, / =interneuron, C =command, £ =No. of synapses
Generate E synapse weights, W ~ Binomial (E,p)
Step 1
for e in range [1,40%E] do
source = Rand(°Py), target = Rand(‘4¢P))
end for
connect source and target
Step 2
Ei. = 53%E selected from the remainder of the synapses
for ¢ in E;. do
source = Rand(‘4¢p)), target = Rand(‘4€p))
connect source and target
end for
Step 3
Connect C = {cy,...,cn, }, one-to-one to T = {¢t1,...,1, }
Return Randomrw Graph

Table 4.1: Ratio of the average maximum flow rate of TW compared to variations of other
random networks shown in Fig. 4.2. The ratio of the max flow of the Random networks of each
subcategory to the max flow of TW has been simulated for 10000 times. Total No. of networks
tested = 40000.

Average Average
MaxFl Lo
Networks Ml nelo
of FWD neuron of REV neuron
Fig. 4.2A 1.15+0.01 1.14+0.01

Fig. 4.2B 1.124+0.005 1.10+0.01
Fig. 4.2C 1.03+0.003 1.04 +£0.005
Fig. 4.2D 1.01+£0.001 1.01 +£0.001

designed based on the TW constraints would benefit from a better max-flow rate, compared to
less-constrained randomly connected networks.

4.3 Sensory inputs and Motor outputs for LTCs

For interacting with the environment, We introduced sensory and motor neuron models. A sensory
component consists of two neurons S, S,, and an input variable, x. S, gets activated when x has a
positive value, whereas S, fires when x is negative. The potential of the neurons §,, and §,,, as
a function of x, are defined by an affine function that maps the region [Xin,Xmay] Of the system
variable x, to a membrane potential range of [—70mV, —20mV]. Mathematically, the potential of
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4.4, Search-based Optimization Algorithm

the neurons S, and S,,, as a function of x, can be expressed as

—70mV ifx <0
Sp(x) = 77OmV+5x(1mex if 0 <x < Xpax 4.1)
\ —20mV if X > Xpax
—70mV ifx>0
Sn(x) 1= =70mV + 2 x if 0> x > Xpin (4.2)
—20mV if x < Xipin.-

This maps the region [X,n, Xmax] Of system variable x, to a membrane potential range of [—70mV, —20mV]|.

Note that the potential range is selected to be close to the biophysics of the nerve cells, where the
resting potential is usually set around -70 mV, and a neuron can be considered to be active when
it has a potential around -20 mV [Hasani et al., 2017b].

Similar to sensory neurons, a motor component is composed of two neurons M,, M, and a
controllable motor variable y. Values of y is computed by y :=y, +y, and an affine mapping
links the neuron potentials M, and M, to the range [Ymin, Ymax), as follows:

¢

Ymax, lfMp > —-20mV

Vp(My) 1= { 2B T0mV) i g e (70, —20)mV (4.3)
0, if M, < —70mV
(Vi if M, > —20mV

V(M) = § Yot TOmYV) g g € (70, —20)mV (4.4)
0, if M, < —70mV

\

FWD and REV motor classes (Output units) in Fig. 4.1B, are modeled in this fashion.

We use the hybrid ODE solver to simulate the ONCs realized by the LTC model. The solver’s
complexity for each time step A, is & (|# neurons| + |# synapses]).

In the next section, we introduce the optimization algorithm used to re-parametrize the tap-
withdrawal circuit.

4.4 Search-based Optimization Algorithm

In this section we formulate a Reinforcement learning (RL) setting for tuning the parameters of a
given neural circuit to control robots. The behavior of a neural circuit can be expressed as a policy
7o (0i,8i) — (ait1,8i+1), that maps an observation o;, and an internal state s; of the circuit, to an
action a;41, and a new internal state s;1 1. This policy acts upon a possible stochastic environment
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Algorithm 5 Adaptive Random Search

Input: A stochastic objective indicator f and a starting parameter 8, noise scale o, adaption rate o > 1
Output: Optimized parameter 6
fo < f(6)
for k <— 1 to maximum iterations do
0’ < 0 +rand(0); fo < f(0');
if for < fo then 6 < 0'; fg <« fg; i+ 0; 0+ 0-else o+ o/ end if
i—i+1
if i> N then fy < f(6) endif;
end for
return 6

Env(aiy1), that provides an observation 0,1, and a reward, r; ;. The stochastic return is given
by R(0) := Y.L, r,. The objective of the RL is to find a 6 that maximizes E(R(G)) .

Simple search based RL [Spall, 2005], as suggested in [Salimans et al., 2017], in [Duan et al.,
2016], and very recently in [Mania et al., 2018], can scale and perform competitively with gradient-
based approaches, and in some cases even surpass their performance, with clear advantages such
as skipping gradient scaling issues. Accordingly, we adopted a simple search-based algorithm to
train ONCs. Our approach combines a Adaptive Random Search (ARS) optimization [Rastrigin,
1963], with an Objective Estimate (OE) function f : 6 — R™. The OE generates N rollouts with
Ty on the environment and computes an estimate of E(Rg) based on a filtering mechanism on
these N samples. We compared two filtering strategies in this context; 1) taking the average of
the N samples, and 2) taking the average of the worst k samples out of N samples. The first
strategy is equivalent to the Sample Mean estimator [Salimans et al., 2017], whereas the second
strategy aims to avoid getting misled by outlying high samples of E(Ry). The objective for
realizing the second strategy was the fact that a suitable parameter 0 enforces the policy 7y
control the environment in a reasonable way even in challenging situations (i.e., rollouts with
the lowest return). The algorithm is outlined in Algorithm 5. We treat the filtering strategy as a
hyperparameter.

4.5 Experiments

The goal of our experimentation is to answer the following questions: 1) How would an ONC
with a preserved biological connectome, perform in basic standard control settings, compared to
that of a randomly-wired circuit? Are ONCs natural lottery ticket winners? 2) When possible,
how would the performance of our learned circuit compare to the other methods? 3) Can we
transfer a policy from a simulated environment to a real environment? 4) How can we interpret
the behavior of the neural circuit policies?

We use four benchmarks for measuring and calibrating the performance of this approach, including
one robot application to parking for the TW sensory/motor neurons and then deployed our RL
algorithm to learn the parameters of the TW circuit and optimize the control objective. The
environments include I) Inverted pendulum of Roboschool [Schulman et al., 2017], II) Mountain
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4.5. Experiments
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Figure 4.3: Mapping the environments to the TW circuit in A) Parking task, B) mapping for the
parking. C) half-cheetah, and C) mapping for the half-cheetah experiment. See Table S3 in the
Supplementary Material for more details.

car of OpenAl Gym, III) Half-CHeetah from Mujoco, and IV) Parking a real rover robot with a
transferred policy from a simulated environment. The code is available online. The TW neural
circuit (cf. Fig. 4.1B) allows us to incorporate four input observations and to take two output
control actions. We evaluate our ONC in environments of different toolkits on a variety of
dynamics, interactions, and reward settings.

4.5.1 How to map ONCs to environments?

The TW neural circuit is shown in Fig. 4.1B, contains four sensory neurons. It, therefore, allows
us to map the circuit to four input variables. Let us assume we have an inverted pendulum
environment which provides four observation variables The position of the cart x, together with
its velocity x, the angle of the pendulum ¢.> along with its angular velocity ¢. Since the main
objective of the controller is to balance the pendulum in an upward position and make the car stay
within the horizontal borders, we can feed ¢ (positive and negative values), and x (positive and
negative), as the inputs to the sensors of the TW circuit. Control commands can be obtained from
the motor neuron classes, FWD and REV. Likewise, any other control problem can be feasibly
mapped to an ONC. We set up the search-based RL algorithm to optimize neurons’ and synapses’
parameters @, ®, ¢,Cy,, E; and G, within their corresponding range, shown in Table S2. A video
of different stages of the learned ordinary neural circuit for the inverted pendulum can be viewed
athttps://youtu.be/cobEtIJVw3A4

In a simulated Mountaincar experiment, the environmental variables are the car’s horizontal
position, x, together with its linear velocity. The control signal applies force to the car to build up
momentum until finally reaching the top of the hill. The TW circuit can then be learned by the

3Remark: The environment further splits ¢ into sin(¢) and cos(¢) to avoid the 2zt — 0 discontinuity
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search-based RL algorithm. A video illustrating the control of the car at various episodes during
the optimization process can be viewed at https://youtu.be/J7vXFsZz7EM.

4.5.2 Scale the functionality of ONCs to environments with larger observation
spaces

We extend the application of the TW circuit as an instance of ordinary neural circuits, to handle
tasks with more observation variables. We choose the HalfCheetah-v2 test-bed of Mujoco. The
environment consists of 17 input and six output variables. We add a linear layer that maps an
arbitrary number of input variables to two continuous variables that are then fed into the four
sensory neurons of the TW circuit, as shown in Fig. 4.3D. Similarly, we add a linear layer that
maps the neuron potentials of the two motor neurons to the control outputs. A video of this
experiment can be viewed at https://youtu.be/zG_L4JGOMbU.

4.5.3 Transfer learned ONCs to control real robot

In this experiment, we generalized our TW ordinary neural circuit to a real-world control test-bed.
We let the TW circuit learn to park a rover robot on a determined spot, given a set of checkpoints
form a trajectory, in a deterministic simulated environment. We then deploy the learned policy on
a mobile robot in a real environment shown in Fig. 4.3A. The key objective here is to show the
capability of the method to perform well in a transformation from a simulated environment to
a real setting. For doing this, we developed a custom deterministic simulated RL environment.
The rover robot provides four observational variables (start signal, position (x, ¥) and angular
orientation ), together with two motor actions (linear and angular velocity, v and w). We
mapped all four observatory variables, as illustrated in Fig. 4.3B, to the sensors of the TW. Note
that here the geometric reference of the surrounding space is set at the initial position of the
robot. Therefore, observation variables are positive. We mapped the linear velocity (which is
a positive variable throughout the parking task) to one motor neuron and the same variable to
another motor neuron. We determined two motor neurons for the positive and negative angular
velocity. (See Table S3 in Supplementary for mapping details). This configuration implies that
the command neuron, AVA, controls two motor neurons responsible for the turn-right and forward
motion-primitives, and AVB to control the turn-left and also forward motor neurons.

Optimization setup for the parking task — A set of checkpoints on a pre-defined parking
trajectory were determined in the custom simulated environment. For every checkpoint, a
deadline was assigned. At each deadline, a reward was given as the negative distance of the
rover to the current checkpoint. The checkpoints are placed to resemble a real parking trajectory
composed of a sequence of motion primitives: Forward, turn left, forward, turn right, forward,
and stop. We then learned the TW circuit by the RL algorithm. The learned policy has been
mounted on a Pioneer AT-3 mobile robot and performed a reasonable parking performance. The
Video of the performance of the TW ordinary neural circuit on the parking task can be viewed at
https://youtu.be/p0GgKE0VOEwW.
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4.6. Experimental Evaluation

Table 4.2: ONC versus random circuits. Results are computed for 10 random circuits, and 10
weight initialization runs of the TW circuit - High standard deviations are due to the inclusion of
unsuccessful attempts of each type of network.

Env / Method Random Circuit ONC
Inverted Pendulum 138.14263.2 866.4 418

Mountain car 54 +44.6 91.5+6.6

Half-Cheetah 1742.9+642.3  2891.4+1016
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Figure 4.4: Learning curves for the TW circuit in standard RL tasks. A) Inverted pendulum B)
Mountain car (OpenAl Gym) C) Half-Cheetah D) The parking task. The shadows around the
learning curves represent the standard deviation in learning each task for 10-times repetitions.

4.6 Experimental Evaluation

In this section, we thoroughly assess the results of our experimentation. We qualitatively and
quantitatively explain the performance of our ordinary neural circuits. We then benchmark
our results where possible, with the existing methods, and describe the main attributes of our
methodology. Finally, we quantitatively interpret the dynamics of the learned policies.

4.6.1 Do ONCs perform better than equivalent random circuits?

We conducted an experiment in which we designed circuits with randomly wired connectomes,
with the same number of neurons and synapses used in the TW circuit. The initial polarity of
the synapses is set randomly (excitatory, inhibitory, or electrical synapse) with a simple rule that
no synapse can be fed into a sensory neuron, which is a property of ONCs as well. The random
circuits were then trained over a series of control tasks described earlier, and their performance
is reported in Table 4.2. We observe that ONCs significantly outperform the randomly wired
networks, which is empirical evidence for ONCs being the lottery ticket winners.

Performance. The training algorithm was able to solve all the tasks, after a reasonable number
of iterations, as shown in the learning curves in Fig. 4.4A-D. Jumps in the learning curves of the
mountain car (Fig. 4.4B) are the consequence of the sparse reward. For the deterministic parking
trajectory, the learning curve converges in less than 5000 iterations.
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Table 4.3: Comparison of ONC to artificial neural networks with policy gradient algorithms

Method Inverted Pendulum MountainCar
MLP + PPO 1187.4+51.7 94.6+1.3
[Schulman et al., 2017]
MLP + A2C 1191.2+45.2 86.4+18.3
[Mnih et al., 2016]
ONC + RS (ours) 1168.5+£21.7 91.5+6.6

Table 4.4: Compare ONC with deep learning models. numbers show the Mean, standard deviation,
and success rate for 10 runs. N = 10

Agent Inverted Pendulum Mountaincar HalfCheetah Sparsity
LSTM 629.01 +453.1 (40.0%)  97.5 + 1.25 (100.0%) 1588.9 4+ 353.8 (10.0%) | 0% (fully connected)
MLP 1177.49 £+ 31.8 (100.0%) 95.9 £ 1.86 (100.0%)  1271.8 £ 634.4 (0.0%) | 0% (fully connected)

ONC (ours) 1168.5+ 21.7 (90.0%) 91.5 £+ 6.6 (80.0%) 2587.4 + 846.8 (72.7%) | 77% (28 synapses)
Random circuit | 138.10 £ 263.2 (10.00%) 54.014 44.63 (50.0%) 1743.0 4 642.3 (50.0%) | 77% (28 synapses)

4.6.2 How does ONC + random search compares with policy gradient based RL
algorithms?

ONC:s + Random search algorithm demonstrates comparable performance to the state-of-the-art
policy gradient RL algorithms such as Proximal Policy optimization (PPO) [Schulman et al.,
2017], and advantage actor critic (A2C) [Mnih et al., 2016]. Table 4.3 reports the performance of
the mentioned algorithms compared to NPC+RS.

4.6.3 How does ONC compare to deep learning models?

The final return values for the basic standard RL tasks (provided in Table 4.4), matches that of
conventional policies [Heidrich-Meisner and Igel, 2008], and the state-of-the-art deep neural
network policies learned by many RL algorithms [Schulman et al., 2017, Berkenkamp et al.,
2017]. We compared the performance of the learned TW circuit to long short-term memory
(LSTM) recurrent neural networks [Hochreiter and Schmidhuber, 1997], multi-layer peceptrons
(MLP), and random circuits. We select the same number of cells (neurons) for the LSTM and
MLP networks, equal to size of the tap-withdrawal circuit. LSTM and MLP networks are fully
connected while the TW circuit realizes a 77% network sparsity. In simple tasks experiments
the TW circuit performs in par with the MLP and LSTM networks, while in HalfCheetah, it
significantly achieves a better performance. Results are summarized in Table 4.4.

4.6.4 Interpretability of the ordinary neural circuits

In this section, we introduce a systematic method for interpreting the internal dynamics of an
ONC. The technique determines how the kinetics of sensory neurons and interneurons relate
to a motor neuron’s decision. Fig. 4.5B illustrates how various adaptive time-constants are
realized in the parking environment. Interneurons (particularly PVC and AVA) change their
time-constants significantly compared to the other nodes. This corresponds to their contribution
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4.7. Conclusions

to various dynamical modes and their ability to toggle between dynamic phases of an output
decision. Fig. 4.5C visualizes the activity of individual TW neurons (lighter colors correspond to
a more activation phase) over the parking trajectory. It becomes qualitatively explainable how
individual neurons learned to contribute to performing autonomous parking. For instance, AVA,
which is the command neuron for turning the robot to the right-hand-side (Motor neuron RGT)
while it is moving, gets highly activated during a right-turn. Similarly, AVB and LFT neurons are
excited during a left-turning phase. (See Fig. 4.5C). Next, we formalize a quantitative measure of
an ONC element’s contribution to its output decision.

Definition 6. Let I = [0, T be a finite simulation time of an ONC with k input neurons, N interneu-
rons and n motor neurons, (Shown in Fig. 4.1), acting in an RL environment. For every neuron-
pair (Ny,nj), (N;, Nj) and (k;, nj), in a cross-correlation space, let S = {s,....sy_1} be the set of

the gradients amongst every consecutive simulation time-points, and Q = {arctan(s;), ..., arctan(sy_ }

be the set of all corresponding geometrical angles, bounded to a range [—7%, Z|. Given the input
dynamics, we quantify the way sensory neurons and interneurons contribute to motor neurons’
dynamics, by computing the histogram of all Qs, with a bin-size equal to [ (i.e. Fig 4.5D), as
Sfollows:

o [f sum of bin-counts of all Q2 > 0, is more than half of the sum of bin-counts in the Q < 0,
the overall contribution of N; to n;j is positive.

o [f sum of bin-counts of all Q < 0, is more than half of the sum of bin-counts in the Q > 0,
the overall contribution of N; to n; is negative,

e Otherwise, N; contributes in phases (switching between antagonistic and phase-alighted)
activity of nj, on determinable distinct periods in I.

To exemplify the use of the proposed interpretability method, let us consider the neuronal activity
of a learned circuit driving a rover robot autonomously on a parking trajectory. Fig. 4.5D presents
the histograms computed by using Definition 1 for the RGT motor neuron dynamics (i.e., the
neuron responsible for turning the robot to the right) with respect to that of other neurons. Based
on Definition 1, we mark AVM, AVD, AVA as positive contributors to the dynamics of the RGT
motor neuron. We determine PVD, PLM, and PVC as antagonistic contributors. Neurons such as
DVA and AVB realized phase-changing dynamics where their activity toggles between positive
and negative correlations, periodically. (For the analysis of the full networks’ activities visit
Supplementary Materials Section 6). Such study is generalizable to the other environments too.
(See Supplementary Materials Section 6). In that case, the algorithm determines principal neurons
in terms of neuron’s contribution to a network’s output decision in computable intervals within a
finite simulation time.

4.7 Conclusions

We showed the performance of ONCs in control environments as the natural lottery winner
networks. We quantitatively demonstrated that the sub-networks taken directly from the nervous
system of the small species realize an attractive max-flow rate and, when trained in isolation,

69


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4. ORDINARY NEURAL CIRCUITS WITH LTCS

70

c PVD s PLM s AVA s
g 40 E -55 E < 40 £
50 5 60 5 5
60 & 65 & 60 £
(¢} o o
AVD s PVC s AVB =
’ 40 B /- £ V a -40 E
50 = 4 -40 = &
5 5 60 3
B 60 2 60 & =3
- 3 - 3 - 80 3
¢} <] o
AVM s ALM 5 15 DVA <
E — “E /- E
40 = Z 40 T 4 60 =
2 p H H
c @ v = 3 Tt “f -
LFT s RGT S FWD s
o) 0 E 0 T — o E
40 T -40 < =
60 & S/ 0 & g
= 3 3 e 80 3
A A : Output neurons’ activity H
..................................................................................................................
D
RGT-PVD RGT-PLM RGT-AVM RGT-ALM RGT-AVD RGT-PVC RGT-DVA RGT-AVB RGT-AVA RGT-LFT RGT-RGT RGT-FWD
@ 500 500 400 500 400 400 200 500 200 1000 100
S PN PR TR E W R e R T YR AE Y S (T
© o 0 0 0 0 0 0 0 0 0 0 0
1.0 1 1.0 1 -1.0 1 1.0 10 1 -0 1 -1.0 1 1.0 1 1.0 1 10 1 10 1 -0 1
Angle (rad) Angle (rad) Angle (rad) Angle (rad) Angle (rad) Angle (rad) Angle (rad) Angle (rad) Angle (rad) Angle (rad) Angle (rad) Angle (rad)

Figure 4.5: Interpretability analysis of the parking task. A) The parking trajectory. B) TW circuit
drawn with the range of possible variations of the individual neuron’s time-constants; the radius
of the darker color circle for each neuron corresponds to the range within which the time-constant
varies between T,,;, and T, while the robot performs the parking. (Values in Supplementary
Materials, Table S7). C) Projection of individual neuron’s output over the parking trajectory. The
plots demonstrate when neurons get activated while the rover is performing the parking task. D)
Histogram of the slopes in manifolds’ point-pair angles for a motor neuron in the parking task.
(See Supplementary Materials Section 6, for full circuit’s analyses, in other experiments.)

perform significantly better than randomly-wired circuits, as well as contemporary deep learning
models in simulated and real-life tasks. We experimentally demonstrated the interpretable control
performance of the learned circuits in action and introduced a quantitative method to explain
networks’ dynamics. The proposed method can also be utilized as a building block for the
interpretability of recurrent neural networks, which despite a couple of fundamental studies
[Karpathy et al., 2015, Chen et al., 2016, Olah et al., 2018, Hasani et al., 2019], is still a grand
challenge to be addressed. The next research question arises on what if we set priors in designing
NCPs. In particular, can we design a specialized neural network and train it to perform the desired
task? We will discuss this in the next chapter.
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CHAPTER

Rule-based Design of LTC Networks
for Interpretable Robot Control

5.1 Motivation

© [A5-Chapter5, 2019] — The C. elegans nematode, with a rather simple nervous system com-
posed of 302 neurons and 8000 synapses [Chen et al., 2006], exhibits remarkable controllability in
it’s surroundings; it expresses behaviors such as processing complex chemical input stimulations
[Bargmann, 2006], sleeping [Nichols et al., 2017], realizing adaptive behavior [Ardiel and Rankin,
2010, Hasani et al., 2017c], performing mechano-sensation [Chalfie et al., 1985b], and controlling
96 muscles [Wen et al., 2012]. How does C. elegans perform so much with so little? What are the
underlying computational principles to gain such high degrees of controllability? And how can
we design worm-like artificial intelligent (Al) systems based on these principles to obtain better
Al controllers? To answer these questions, we take a computational approach in this chapter.

As shown in Chapter 3, LTCs can capture complex dynamics with a few number of neurons, due
to the existence of nonlinearities on their synaptic information processing mechanisms which
enable neurons to express varying time-constants. In Chapter 4, we took a network architecture
directly from the brain of the worm and demonstrated its compelling performance in robot control.
The main open question is now on how to build such network topologies systematically in robotic
control domains while enhancing the interpretability of the system?

In this chapter, we propose a network design methodology that utilizes the LTC neural model
to create interpretable neural controllers in robotic tasks. The method proposes a set of rules
to construct hierarchical architectures, from sensory neurons, through an interleaved set of
interneurons, to motor neurons, by means of binary relational structures named design operators
(DO), illustrated in Fig. 5.1. This design procedure induces a high degree of sparsity (around
80%) and builds up an attention mechanism through distinct network pathways that enhance
interpretability. Along with the recent successes of the search-based learning techniques for
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Figure 5.1: We design compact, interpretable and noise-robust neural controllers inspired by the
relational structures of the worm’s brain, to control robots.

neural networks in control environments [Salimans et al., 2017, Duan et al., 2016, Mania et al.,
2018], we adopt a random-search memetic algorithm to parametrize the synaptic weights.

The chapter aims to contribute the following:

1. Introducing novel network-design principles for the LTC neural models, and equipping the
designed network with a search-based learning algorithm, to govern robotic tasks.

2. Deploying DO-based networks in experiments with real and simulated robotic environ-
ments.

3. Experimental demonstrations of the superiority of the performance of DO-based networks
in terms of their compactness, robustness to noise, and their interpretable dynamics,
compared to contemporary RNN architectures.
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5.2. Related Works

5.2 Related Works

Brain-inspired Robotic Control. The way nervous systems of living creatures process infor-
mation has been extensively used in robotic control as a source of inspiration [Brabazon et al.,
2015, LeCun et al., 2015b, Folgheraiter et al., 2006, Capuozzo and Livingston, 2011]. In particu-
lar, networks of biophysically modelled neurons [Hasani et al., 2017a, Gleeson et al., 2018] are
deployed in applications such as navigation of mobile robots [Folgheraiter et al., 2006, Hagras
et al., 2004], control of unmanned aerial vehicles (UAV) [Westphal et al., 2013] and legged robots
[Beer et al., 1992, Szczecinski et al., 2015, Szczecinski et al., 2017]. Obtained networks can
be topologically divided into two categories: 1) Networks that are put together by hand in a
piece-by-piece and trial-and-error fashion [Beer et al., 1992, Szczecinski et al., 2017, Folgheraiter
et al., 2006, Westphal et al., 2013]. These approaches lack fundamental design principles. 2) Net-
works that deploy fully-connected structures and rely purely on the learning phase to determine
functions. Similar to Deep learning models, interpreting the dynamics of these networks becomes
a challenge [Olah et al., 2018, Hasani et al., 2018a]. Our networks address both challenges by
incorporating a systematic design together with a set of rules that improves interpretability.

Motion Planning. to (optimally) solve the motion-planning problem, various model driven
techniques have been proposed, such as rapidly-exploring random trees [LaValle, 1998, Kavraki
and LaValle, 2008, Pokorny et al., 2016], cell decomposition [Kavraki and LaValle, 2008,
Latombe, 2012b, Masehian and Sedighizadeh, 2007], potential fields [Kavraki and LaValle,
2008, Stavridis et al., 2017, Latombe, 2012b, Masehian and Sedighizadeh, 2007], satisfiability
modulo theories (SMT) [Dantam et al., 2016, Nedunuri et al., 2014, Hung et al., 2014] and
model predictive control (MPC) [Cardoso et al., 2017, Camacho and Alba, 2013]. These
approaches are often human expert labor-intensive, to distill task-specific solutions. We aim
to ease the effort by introducing a combination of systematic design equipped with machine
learning techniques. In parallel to model-driven control systems, deep reinforcement learning
(RL) has achieved significant successes in agent control [Zhang et al., 2017, Gu et al., 2016, Peng
et al., 2017, Salimans et al., 2017]. In a deep RL setting, parameters of the neural network are
tuned by a learning algorithm for the control agent to take actions that maximize the total reward.
While they perform as good or surpass the performance of the manually designed agents, their
explainability becomes a challenge, which is not desirable in safety-critical applications. Our
methodology overcomes this challenge by imposing sparse network connectivity and by using an
interpretable neuronal model [M. Hasani et al., 2018].

5.3 Network Simulation Environment

We use the LTC neural model described in Chapter 3 to obtain design operator based networks. In

order to solve the ODEs in real-time efficiently, we used a fixed step solver [Press et al., 2007b].

The simulator (Algorithm 6) runs with &'(|# neurons| + |# synapses|) time complexity for each
time step A;.
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Algorithm 6 Network simulator

Input: Network V, Sensory neurons S, Motor neurons M
v[0...n] < Vieak
while True do
v[s € §] < read_sensor_values()
I[0...n] <0
for ¢ = (pre,post) € E do
I[post] < I[post] + (Ee (€e) — v[post])w(e) - o(v]pre])
end for
foric0,...ndo
v[i] +— ODE_update(v, )
end for
set_output(v[m € M])
end while

5.4 Design Operators

In this section, we characterize a set of relational components with which we construct DO-based
networks. The wiring patterns among two neurons, discovered in C. elegans, are called binary
motifs [Alon, 2006, Milo et al., 2002, Milo et al., 2004]. Equipping these motifs with the
neuronal model of Eq. 3.7, results in six design operators (DO)s: Excitation, inhibition, coupling,
sequencing, conservation, and selection, presented in Fig. 5.2.

Definition 7. Given the neurons in circuit G = {Ny,N,,...N, }, a Design Operator is a relation
formed among the activation state of neurons, based on their distinct connectivity structure and
their synaptic parametrization.

DOs are fundamentally different compared to network motifs. Motifs [Alon, 2007], are frequently
repeated structural patterns in biological networks, whereas DOs are both structural and relational
dependencies of neurons. Motifs’ significance is mainly limited due to the lack of information
about the synaptic polarities in biological networks [Alon, 2006]. However, we adopted the
concept of DOs from the functional dynamics of neurons, captured by investigating calcium
imaging of the neuronal activity of the C. elegans’ brain [Kato et al., 2015b]. More importantly,
the general goal of network motifs is to explain the mechanisms underlying the behavior of
a biological network through the interaction of basic building blocks [Alon, 2007]. A design
operator, in contrast, may result in the emergence of many behaviors for a given structure due to
its output dependencies on the alternation of the synaptic parameters.

We quantify this dependence by performing cross-correlation and bifurcation analyses. A short
simulation for each DO is depicted in Fig. 5.2A. An excitation/inhibition DO occurs through one
excitatory/inhibitory chemical synapse and leads to the stimulation/inhibition of the postsynaptic
neuron. A coupling DO occurs through one electrical synapse and establishes the coupling of the
activity of the two neurons. A sequencing DO imposes a sequential activation of the neurons. A
conservation/selection realizes a synchronizing/antagonizing activity.
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Figure 5.2: Design Operators. (A) Time series of the activity of DOs. (B) Sampling process used
in the correlation analysis. (C-J) Cross-correlation. (I-J) Cross-correlation of the conservation DO
with strong and weak synaptic weights, respectively. (K) Bifurcation analysis of self-conservation
(unary) DO (at most three stationary points). (L) Bifurcation analysis for conservation DO
with strong synaptic weights. The isolines for dX (¢)/dt =0 and dY (t) /dt =0, of the membrane
potential of neurons X and Y, plotted on the base plane have three intersections (stationary points).
(M) Bifurcation analysis for conservation DO with weak synaptic weights. The isolines plotted
on the base plane have only one intersection (stationary point).

The correlation analysis of the DOs given in Fig. 5.2C-J, was obtained by subjecting the neurons
to independent random-pulse generators, as in Fig. 5.2B, and collecting their outputs. In an
excitation/inhibition DO, the neurons are phase-aligned with a positive/negative correlation at
the main diagonal, (Fig. 5.2D, 5.2E). This means that excitation/inhibition does not introduce
delay or memory. In a Coupling DO, the neurons are also phase-aligned Fig. 5.2F. In a selection
DO, the dynamics are antagonistic, and result in a competition for being active, (Fig. 5.2G).
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In a sequencing DO, a positive/negative correlation appears above/below the main diagonal
(Fig. 5.2H). Finally, in a conservation DO, the activity is correlated, independently of phase
differences. It thus introduces a memory element (Fig. 5.2I), which vanishes at low synaptic
weights, (Fig. 5.27).

To understand the dependencies of a DO to its parameters, let us take the memory effect realized
by the conservation DO and perform a bifurcation analysis, to explore the number of fixed points,
for different synaptic weights [Poincaré, 1885]. In Fig. 5.2K, The bifurcation plot represents
how a self-excited neuron, as a special case of conservation, determines the dynamics. For large
weights (purple line), the neuron has three fixed-points as follows: Stable (left), meta-stable
(middle), and stable (right). The stable fixed-points are able to robustly preserve the membrane
potential values, as being intuitively inactive (resting) at around —70mV and active at around
—20mV. This ability vanishes for a low synaptic weight (green line), as the only fixed-point
corresponds to the resting potential. In Fig. 5.2L-M, we show the same analyses for two neurons.
For large synaptic weights, the leftmost and rightmost fixed-points of the isolines plotted on
the base plane, robustly preserve the potential. For low synaptic weights, this ability of the DO
demolishes. In the next section, we describe how to design neural controllers based on DOs.

5.5 Design a DO-based Neural Network

In this section, we introduce our methodology for designing DO-based neural networks. For a
sequential robot control task with identifiable finite action primitives, a network can be designed
to fit the given behavior. Given a robotic environment with p sequential action primitives, we
design a DO-based network by the principles described below:

Rule 1. Add p command neurons for p motion primitive. - If two primitives have direct temporal
dependencies, add a Sequencing DO between their underlying command neurons. - If two
primitives function in parallel, add Conservation DO. - If two action primitives are mutually
exclusive, add a Selection DO between their corresponding command neurons. - If a single action
primitive should persist over a certain time, add a Self-Conservation DO.

Rule 2. Identify trigger conditions of primitives; add an Upper interneuron for each of the
conditions and connect the interneuron to the command neurons by Excitation DOs.

Rule 3. For each of the Upper interneurons, identify the signals on which its condition triggers.
These signals can come from other neural circuit modules or be defined based on the characteris-
tics of the environment. Signals link their activity to their downstream interneurons by Coupling
DOs.

To clarify Rules 2 and 3, consider the neural circuit of Fig. 5.3 which is designed for parallel
parking of a mobile robot. five motion primitives including (going backward, turn, backward,
turn, stop) has to happen. Each action primitive has to be triggered and the decision has to be
propagated to the command neurons. This is done by an upper interneurons.
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5.5. Design a DO-based Neural Network
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Figure 5.3: Npark. (A) Rover searches for a spot and performs the parking. (B-E) The architecture
of the DO-based network designed parking. (B) Parking-trajectory circuit. (C) Six motion
primitives for parking controlled by six command neurons. (D) The spot-locator circuit (E) The

rear-side collision-avoidance circuit. (F-K) Input noise resilience. (F) Noise injection analysis.

The increasing noise (from left to right) is directly applied to the sensory neurons. (G) The
effect of noisy input data on the function of the network. (H) The variance of the linear-velocity
output error while increasing the variance of the input noise. (I) The same analysis for the
angular-velocity output. (J) The response of the network in the presence of noisy input. (K) The
response of the TDNN 10D—100 100N RNN (10D = 10 delay elements and 100 100N = 2 layer
each with 100 neurons), to the same noisy input. TDNN = time-delayed neural network [Waibel

et al., 1989]. NARX = nonlinear autoregressive network with exogenous input [Billings, 2013].

LSTM = long short term memory [Hochreiter and Schmidhuber, 1997].

Rule 4. k Sensory neurons are deployed for k observation variables. Sensory neurons are coupled
with their downstream upper interneurons, by coupling DOs. Their connections are established
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such that particular pathways from the input to output, direct the attention [Vaswani et al., 2017]
of the network towards specific actions.

Rule 5. Devote n motor neurons corresponding to n control action. Command neurons positively
correlating with the control action, synapse into the motor neurons by Excitation DO, and inhibit
their negatively correlating downstream motor neurons, by inhibitory DOs.

Described rules enable us to design highly sparse neural networks with auditable internal dynam-
ics. By learning the parameters of these networks, we can guide the architecture to perform and
generalize well in the control of robots.

5.6 Synaptic Parametrization

To optimize the parameters of a DO-based network, we adopted a Random-search memetic
learning algorithm. Recently it has been shown that random search optimization strategies [Spall,
2005], can perform as good as gradient-based approaches, with additional advantages such as
skipping the gradient issues [Salimans et al., 2017, Duan et al., 2016, Mania et al., 2018].

Our learning algorithm uses a population of (synaptic) parameter particles and repeats the
following two steps until convergence: Generate a new population by randomly perturbing the
current one. Resample the obtained population according to the cost of the particles (Network
behavior deviation for this particle, from the desired behavior). Algorithm 7 outlines the working
principles of the learning system.

5.7 Autonomous Parking of a Mobile Robot

In this section, we design DO-based neural networks to perform an autonomous parking procedure
with a Pioneer P3-AT robot [OMRON ADEPT MOBILEROBOTS, 2011], by the design rules
introduced in Sec. 5.5. The task includes three control procedures as finding a parking spot,
performing a parking trajectory, and simultaneously avoiding possible obstacles. For each task, a
DO-based network is designed and presented in Fig. 5.3D, 5.3B, and 5.3E, respectively. The core
circuit (the parking trajectory), in Fig. 5.3B, follows Rule 1 to include six command neurons for
six motion primitives shown in Fig. 5.3C second column and configures sequencing DO amongst
them. Upper interneurons establish coupling DO with the Parameter neurons which condition
their activation, based on Rule 2 and 3. (See Fig. 5.3B top side box). Based on Rule 4, sensory
neurons only synapse into their downstream pathways on which they impose a high impact. For
instance, the angular position (6) sensor, connects to interneuron pathways that are involved in
the control of the robot’s turns. Three motor neurons are set to control right turning, left turning,
and moving backward, then Rule 5 is applied for their connectivity.

The spot locator neural circuit, shown in Fig. 5.3D, designed to move the robot forward until
a filtered Light Detection and Ranging (LIDAR) signal flags a proper parking location. We
pre-processed the LIDAR signal with a non-linear Finite-Impulse-Response (FIR) filter before
feeding it into the network [Moshchuk and Chen, 2009]. Once the spot is found, the circuit
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5.8. Manipulating a Robotic Arm

Algorithm 7 Random-Search Memetic Algorithm

Input: A cost function f to minimize, Population size n
Output: Parameter 6 such that 8 is a minimum of f
P + random Population of size n
Opess < rand()
while New 0, found recently do
for i< 1tondo
Local-random-search(f,P[i])
if f(P[i]) < f(Opes) then
Obest «—P [l]
end if
end for
fori< 1tondo
q < select best parameters from P
Qli] - g+ rand()
end for
P+ Q
end while
return 0O,

activates the Parking trajectory agent to initiate the parking process. While the parking is in
action, a rear-side collision avoiding circuit (Fig. 5.3E), translates the Sonar sensory inputs to
preventive signals to the motor neurons by the inhibition DO. A parking reference trajectory
is provided as a set of points T'={(x,y,,6,) | r€{0,...,M}}. Correspondingly, we set a cost
(objective) function as:

R=Y (i(r)x— s(t).x)? 4 (i(t).y — s(2).y)* + (i(r).0 — 5(1).6)?, (5.1
ieT
where s5(¢) is the state (x;,yr, 6;) of the rover at time 7. We then call the learning algorithm, to
minimize this function with respect to the synaptic weights. A video of the resulting neural
network’s performance can be viewed at https://youtu.be/z0OngvaSl9nM.

5.8 Manipulating a Robotic Arm

In this section, we extend our experimentation to the design of a DO-based network to move a
Cyton-Epsilon-300 robotic arm with eight degrees of freedom (seven joints and a gripper) [Cor-
poration, 2015] in Fig. 5.4C, to a certain location, grab an object, move the object to a second
location, and then release the object (Fig. 5.4A). Action primitives are divided into five tasks
schematically explained in Fig. 5.4A right box, and based on Rule 1, 5 command neurons are
wired together to control each action. Upper Interneurons in this setting, adopt a fully connected
topology to translate 14 sensory observations to trigger commands for the command interneurons
while respecting Rules 2 and 3. Each sensory neuron that corresponds to the angle of individual
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Figure 5.4: Manipulating a robotic arm. (A) Grasping and releasing an object at distinct positions.
(B) Arm controller neural network (C) Command neurons’ sequential activation (D) Illustration
of the controlled end-effector composted of 7 joints and one gripper. (E) Indented cooperation of
the command neurons.

joints (see the setting in Fig. 5.4D), forms coupling DO with two downstream interneurons
randomly. This sparsity imposes an attention mechanism on the network and makes the interpre-
tation of the decision pathways easier. Command neurons controlling the joints densely synapse
into their 14 downstream motor neurons by Excitation DOs. The designed neural circuit is
presented in Fig. 5.4B. The learning process of the network has been performed hierarchically.
First, the sub-circuit, including sensory neurons to upper interneurons, was trained in a separate
environment with the objective to activate when the arm reached the desired position. Then the
motor neuron network is optimized in isolation with a supervised setting that with an objective of
moving the arm to the desired position if the corresponding command neuron is activated. After
stacking up the entire network, we fine-tuned all synaptic weights with Algorithm 7. A video
demonstrating the performance of the neural controller on the arm in Gazebo can be viewed at
https://youtu.be/p8D3JTb8gLM.
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5.9. Experimental evaluation

Table 5.1: Comparing parking performance of DO-based networks in terms of their network size
with standard RNNs. RMSD = root mean squared deviation, v = linear velocity output, ® =
angular velocity output and E = termination output

RNN Neurons Params A 0] E
Type Per-Layer  Total RMSD RMSD RMSD
TDNN-10D 10-3 943  89-103 4.1-10° 7.7-1073

TDNN-10D  100-100-3 19503 7.0-1073 421073 9.4-1073
TDNN-10D 50-50-50-3 9803  6.2:1073 3.3-107° 8.4-1073
NARX-50D 50-50-50-3 13153 3.5-1073 2.6-1073 481073

LSTM 10-3 968  3.5-107% 3.51073 3.5-1073
LSTM 100-3 45248 2.0-1073 2.0-1073 2.0-10°3
LSTM 100-80-3 102928 1.6-1073 1.6-1073 1.6:1073
DO-based 39 49 Ground-truth

5.9 Experimental evaluation

In this section, we point out the distinctions of DO-based networks compared to that of artificial
recurrent neural networks and assess their performance. The parking network shown in Fig. 5.3B,
comprises 39 neurons together with 49 trainable parameters. Compared to standard artificial
neural networks generating similar dynamics, they are significantly smaller. We conducted an
experiment to compare the parking performance of standard RNNs in generating the outputs of a
DO-based network, given the sensory inputs. Table 5.1, summaries the performance of various
RNN topologies.

5.9.1 Emergence of complex dynamics from compact networks

DO-based nets are 19 times smaller in terms of their trainable parameters than the smallest RNN
(time-delayed neural network (TDNN) with ten delay elements). The reason for the capability of
realizing complex dynamics with a fewer number of elements lies in their neuronal and synaptic
model (Eq. 3.7). The model realizes liquid time constant dynamics, meaning that each neuron
varies its time constant based on its presynaptic inputs. This is due to the synaptic model’s
nonlinearity, which becomes a rich resource for fitting complex dynamics with a fewer number of
neurons.

5.9.2 DO-based networks are interpretable

Designing neural networks based on DOs, allows us to establish neuronal pathways with certain
functionality, inside the network. For instance, in the parking network, the function of every node
is known given their underlying design rules. In a more general case, such as the arm neural
controller, the layer-wise design principles (Rules 1 to 5) increases the level of transparency of
the network. In fact, the design principles realize an empirical attention mechanism, to govern
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interpretable dynamics, where every input to the output pathway, contains interneurons with
dedicated actions.

5.9.3 DO-based networks are highly resilient to noise

For the parking network, we performed two white Gaussian noise-injection experiments. The
first exposes all sensory neurons to increasing internal noise and observes how the robot parks
and how the noise propagates through the network to the output (Fig. 5.3F). The second watches
how environmental input noise affects the performance of the network compared to other types
of RNNs (Fig. 5.3G-I),

Fig. 5.3F-1, show the gradual worsening of the parking behavior. Fig. 5.3F and 5.3J, expose a
remarkable property of the DO-based networks: The noise is filtered out as it propagates from the
sensory-neurons layer to the motor-neurons layer. A phase shift occurs on the output. However,
the network can still perform a decent parking trajectory even at a noise-level as large as the
output signal itself. The capacitive nature of neurons in the neuronal model acting as a filter
presumably explains this robustness. A video of the parking performance in the presence of input
noise can be viewed at https://youtu.be/tMIxBQF zBks.

As illustrated in Fig. 5.3H and 5.31, DO-based Networks considerably outperformed other RNN
structures in terms of expressing noise-resilient output dynamics. The figures further demonstrate
the sensitivity of the RNNs to noise attacks. While the input noise in DO-based networks causes
a slight phase-shift in the output, as shown in Fig. 5.3J, the noise passes unhindered through
all the layers of an RNN, and resulted in the distortion of the outputs, as shown in Fig. 5.3K.
Hence, DO-based neural networks enhance their performance in terms of robustness to input
noise, compared to other recurrent neural network topologies.

5.10 Conclusions and Discussions

We introduced a novel methodology for constructing compact, interpretable, and noise-resilient
neural networks for controlling robots, inspired by the relational structures (Design Operators) of
the nervous system of C. elegans. We experimentally illustrated the superiority of the performance
of our compact DO-based neural networks in terms of robustness to noise, compared to standard
RNN .

DO-based networks construct a hierarchical network structure from sensory neurons, through
an interleaved set of interneurons, to motor neurons. Their wiring structure is realized by a
systematic set of rules, at multi-scale network resolutions. Furthermore, the synaptic and neuronal
model constructs a sigmoidal nonlinearity on each synaptic link, resulting in the creation of
varying time-constants of the network’s nodes. This property enables DO-based networks to
construct complex dynamics with a few number of elements.

Synaptic parameters of DO-based networks are then learned in a supervised fashion, utilizing
a search-based optimization algorithm. The learning process enhances the scalability of the
DO-based networks. The application of this type of circuits is broad in fitting the finite-time
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5.10. Conclusions and Discussions

horizon of n-dimensional continuous dynamical systems since their neuronal semantics realize
universal approximation capabilities.

Many alternative approaches to the construction of DO-based networks can be taken. Model
reduction methods on a densely connected network can be applied to obtain automatically gener-
ated neural networks while respecting Rules 1 to 5. DO-based neural networks are biophysically
realistic artificial RNNs. We believe that their working principles presumably results in the
development of better and safer Al systems, specifically in safety-critical robotic applications.

So far, we investigated robotic environments with rather small parameter spaces. How can we
take advantage of the LTC model into the development of general-purpose intelligent agents with
high-dimensional environmental characteristics? We will discuss this in the next chapter.
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CHAPTER

Learning High-Fidelity Autonomous
Driving agents by LTCs

6.1 Motivation

We set out to design an LTC-based intelligent agent that realizes a series of distinct competencies
in learning to directly control an autonomous car from camera inputs. This domain raises
important representation learning [Bengio et al., 2013] challenges; it is highly safety-critical
[Knight, 2002], ergo demanding for intelligent controllers whose dynamics are immensely
interpretable. Furthermore, although learned agents manifest great performance often in offline
testing and in simulations, the performance degrades drastically during live driving. Additionally,
the agents are desired to learn the true causal structure [Pearl, 2009, Peters et al., 2017] between
the observed driving scenes and their corresponding optimal steering commands; ideally, we wish
for the agent to implicitly learn to attend to the road’s horizon when taking a current steering
decision while maintaining an attractive performance. However, in practice, performant models
have shown to learn a variety of unfair [Joseph et al., 2016] and sub-optimal [Peters et al., 2017]
input-output causal structures [Fish et al., 2016, Vaswani et al., 2017]. Moreover, alongside a
processing pipeline for the high-dimensional incoming input images, the agent has to incorporate
a short-term memory mechanism to capture temporal dependencies.

Successful existing approaches [Bojarski et al., 2016, Xu et al., 2017, Amini et al., 2018a, Fridman
et al., 2019], rely solely on deep convolutional neural networks architectures [LeCun et al., 1990a],
that steer a car at a time ¢, based on the most recent camera frame [Amini et al., 2019] (Fig. 6.1a).
While such feedforward models can drive the car on ideal input data, they fail to exploit the
temporal nature of the task that would enable them to filter out transient disturbances. As a result,
temporary corruptions of the input stream lead to unstable predictions.

Contrarily, recurrent neural networks (RNNs) [Hochreiter, 1991, Bengio et al., 1994], a class of
artificial neural networks that take into account past observations at a current output decision
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Figure 6.1: Recurrent neural networks’ essence for lane-keeping tasks. a. A feedforward
CNN network computes its output, P(y;|I;) by relying solely on the current observation, I,.
Consequently, inputs that are corrupted by transient perturbations (bottom), will result in high
output variance, and faulty decisions b. An RNN has access to past observations at a current
driving step, enabling it to filter out transient corruptions that are present in the input stream c.
Training RNNs by unrolling their state in time d. Then, applying back-propagation through time
in an unfolded RNN. Purple derivatives indicate the dependency of the loss function’s derivative
in-respect-to an RNN'’s state-weights, to the evolution of the RNN’s state, x(¢) in time. Blurred
images depict weaker attention of the RNN, when computing a current decision.

through a feedback mechanism — principally would lead to a more robust end-to-end driving
controller (Fig. 6.1b). RNNs are trained over finite-length labelled training sequences by
the backpropagation algorithm [Rumelhart et al., 1986] applied to their unfolded feedforward
representation [Bengio et al., 1994] (Figs. 6.1c, 6.1d). Historically, training RNNs has been
challenging due to their elevated or diminished gradients during the learning phase [Hochreiter,
1991, Bengio et al., 1994]. Thanks to the development of the advanced gated RNNs, such as the
long-short term memory (LSTM) [Hochreiter and Schmidhuber, 1997], the challenge is tackled,
by enforcing a constant error flow through fixation of the recurrent weights to 1, and removing
non-linearities within the feedback path [Hochreiter, 1991].

From a time-series modeling viewpoint, having a constant error flow is a desirable property as
arbitrary data sequences may express long-term relations (Fig. 6.1d right). However, in the
case of end-to-end autonomous driving, learning long-term dependencies can be detrimental due
to the short-term causality of the underlying task. When driving a vehicle to follow the lane,
humans do not recall images of the road from more than a few seconds ago to operate the steering
wheel. Consequently, LSTM networks may capture spurious long-term dependencies present
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6.2. Design and Learn Neural Circuit Policies

Algorithm 8 Create NCP architecture

Require: Set of sensory neurons Nj, set of inter neurons ;, set of command neuron N, set of motor
neurons N,,, density parameters k;, k;, k. and k.
Allocate graph (V,E) with V = NJUN;UN,UN,, and E = {}
call subroutine Connect sensory to inter neurons
call subroutine Connect intern to command neurons
call subroutine Recurrently connect command neurons
call subroutine Connect command to motor neurons
return (V,E)

Algorithm 9 Subroutine: Connect sensory to inter neurons

for all s € N; do
T is random permutation of the set N;
fori=1...k;do
p is random variable of distribution {50% — 1,50% — —1}
Add synapse (s — T;) to E with polarity p
end for
end for
Win ﬁ Yien [{sl(s = 1) € E} V Compute mean fan-in of neurons N;
for all r € N; such that fis : (s — 1) € E do
S is random permutation of the set N
fori=1...u; do
p is random variable of distribution {50% — 1,50% — —1}
Add synapse (S; — t) to E with polarity p
end for
end for

in the training data and learn inadequate causal models [Pearl, 2009]. Besides, an exploding
gradient phenomenon makes the learning process unstable and should be avoided (Fig. 6.1d
right). Vanishing of the gradient prevents the RNN from learning correlations of events with long
time-lags. This property enhances the real-world control performance of a learned RNN agent
as it places a prior on the temporal attention span of the network to the most recent few input
observations. We, therefore, design a novel model to carefully denoted this assumption.

6.2 Design and Learn Neural Circuit Policies

Conclusively, to address the representation learning challenges and the complexity of autonomous
lane-keeping, we design a new end-to-end learning system that perceives the inputs by a sequel of
convolutional layers, to capture image structures, and performs control by a novel RNN structure,
termed a neural circuit policy (NCP). Neural dynamics in NCPs are represented by LTC neurons
(Fig. 6.2a). An NCP network comprises four layers; sensory neurons, interneurons, command

neurons, and motor neurons, similar to the Ordinary neural circuits described in Chapter 4.

Command neurons recurrently synapse into each other, whereas the other layers deploy forward
wiring diagram. This specific network topology is unique to the wiring diagram of the nematode
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6. LEARNING HIGH-FIDELITY AUTONOMOUS DRIVING AGENTS BY LTCs

Algorithm 10 Subroutine: Connect inter to command neurons

for all s € N; do
T is random permutation of the set N,
fori=1...k;do
p is random variable of distribution {50% — 1,50% — —1}
Add synapse (s — T;) to E with polarity p
end for
end for
Win le\ Yien, Hsl(s —1) € E}| V Compute mean fan-in of neurons N,
for all t € N, such that Bs: (s — 1) € E do
S is random permutation of the set N;
fori=1...u;,do
p is random variable of distribution {50% — 1,50% — —1}
Add synapse (S; — t) to E with polarity p
end for
end for

Algorithm 11 Subroutine: Recurrently connect command neurons

fori=1...k.do
s is random element from N,
t is random element from N,
p is random variable of distribution {50% +— 1,50% — —1}
Add synapse (s — r) to E with polarity p
end for

Algorithm 12 Subroutine: Connect command to motor neurons

for allt € N, do
S is random permutation of the set N,
fori=1...k,do
p is random variable of distribution {50% — 1,50% — —1}
Add synapse (S; — t) to E with polarity p
end for
end for

C. elegans and was shown to bring attractive computational advantages [Yan et al., 2017, Kaplan
et al., 2019, Lechner et al., 2019], as described in Chapter 4. At their representation core,
they possess a nonlinear time-varying synaptic transmission mechanism that results in their
significantly enhanced expressivity in time-series modeling, compared to their deep learning
counterparts (Chapter 3). Neural circuit policies’ main distinctions to ordinary neural circuits
(Chapter 4) are three-folds; I) they are human-designed networks based on a novel generalized
design principles, II) their wiring diagram is not taken directly from natural neural circuits. III),
they are equipped with convolutional heads to be able to process high-dimensional input data
(such as images), whereas ordinary neural circuits (Chapter 4) were limited in this regard.
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6.2. Design and Learn Neural Circuit Policies
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Figure 6.2: Designing NCP networks with LTC neural model. a. Representation of the neural
state, x;(), of a postsynaptic LTC neuron i receiving input currents from presynaptic neuron,
Jj- b. Representation of an NCP end-to-end network; it perceives the camera inputs by a set of
convolutional layers, then delivers a latent representation to the sensory neurons of a designed
NCP (based on the steps described in c to f), to command control orders ¢. NCP design step I d.
NCP design step II e. NCP design step III f. NCP design step IV.

6.2.1 Design NCPs

The architecture of an NCP network is determined by the design principles introduced in Figs.
6.2b to 6.2f. The design phase includes four steps to map inputs from the last convolutional layer
to a steering control command. The architecture of an NCP is designed by procedurally calling
subroutines given by Algorithm 8. The NCP design principles induce considerably compact and
highly sparse networks of LTC neurons. The entire learning system consists of the convolutional
head stacked with the NCP network (Fig. 6.2b) and is trained end-to-end by supervised learning.
Given a designed NCP network, we apply a semi-implicit ODE-solver to obtain a numerically
computable and stable representation of the system (Chapter 3). We then recursively fold the
ODE-solver call into an RNN cell and prepare the system’s training pipeline.

6.2.2 Numerical implementation of the NCP networks

To learn the parameters of an NCP circuit, we transform it into a differentiable representation.
After modeling the circuit as a system of ordinary differential equations of LTC neurons, we
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employ a numerical ODE solver to obtain a computable form of it. A solving method suitable
for our purpose has to comply with the following three constraints: Firstly, the solver is applied
to a real-time system that puts a hard limit on worst-case executing time. Hence, the solver
uses a fixed step-size [Press et al., 2007a]. Secondly, the ODE model of an NCP is stiff [Press
et al., 2007a, Hasani et al., 2020]. Consequently, to avoid numerical instabilities, we adopt a
semi-implicit method [Press et al., 2007a]. Lastly, during the training phase, we compute partial
derivatives by back-propagating through the solver. Similar to the stability arguments in the
forward path, we need to monitor the error magnitude in the backward phase. In particular, a
suitable solving method must not result in an exploding or a rapidly vanishing gradient. To
comply with these constraints, we employed a simple Euler approach. As a result, in summary,
for each neuron, we adopt a semi-implicit Euler approach with a fixed step-size of the form:

Xi(t)Cn [ A+ &1:X1eak; L jer,, Wij Oi <%’j (x(t) — Hi) Ej

xi(t+A) = (6.1)

Con:/A+ 81+ Ljer, Wij O (Yij(xj(f) - .uij>

The set [;, represents the set of neurons that are presynaptic to neuron i. This equation was derived
from the basic Euler formula [Press et al., 2007a]:

x(t+A) :zx(t)—I—Af(x(t—l—T),u(t—l—l)) (6.2)

by setting T = A for all x(¢ + 7) that appear linear in £, and setting T = 0 for all other occurrences.

Note that the well-known explicit (forward) Euler method can be obtained from equation 6.2
by setting T = 0. Likewise, the implicit (backward) Euler method is realized by equation 6.2 if
setting T = A and solving the resulting non-linear equation for x(z + A). RNNs usually process
their incoming input stream at a fixed sampling frequency (e.g., 30 Hz in the described end-to-end
driving tasks). To achieve a decent precision - a computation complexity trade-off, we simulated
the ODE at a frequency, six times higher than the input sampling rate; we packed 6 ODE solver
steps into one RNN step. In both the training and testing phases, we initialized states of the
ODE/RNN by zeros.

6.2.3 Training Procedure

Here we describe the training procedure of the models. If not stated otherwise, this description
applies to the passive and active test scenarios. We formulated the end-to-end autonomous
driving as a regression task. Hence, we adopted the square-error as the training loss function. As
recordings of curves and turns are underrepresented in the training data, we multiplied a weighting
factor to the loss value of each sample. This weighting factor w(y) := exp(|y| ) depends on the
target curvature y exponentially, thus assigns a higher priority to samples containing road-curves
and turns. As the test track is located in a forest area where trees cast shadows with variable
profiles on the road, we implemented a shadow augmentation data technique during training. In
essence, we draw a semi-transparent black or white line over each training image. The location,
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6.2. Design and Learn Neural Circuit Policies

Algorithm 13 Training NCP networks with gradient descent

Require: Training set (X,Y), validation set (X, ¥), neural network f(x,w) +— y, loss L(y,§) — R,
minibatch size k
Initialise weights w
lpest := o0
for e = 1...maxepochs do
fori=1...||X|/k] do
(x,y) is random batch of size k from (X,Y)

wi=w— aw V stochastic gradient descent
end for
1 —
l, = ] Z(x,y)e()?,f/) L(y, f(x,w)) V validation loss
if [, < lpes then
lbest = le
Whest +— W
end if
end for

return wy,g

orientation, and width of lines are randomly sampled from uniform distributions. We trained all
models, except the feedforward CNN, on sub-sequences of 16 time-steps, which correspond to
0.53 real-time seconds. The neural state of standard CT-RNN and LSTM implementations are
unbounded, which may lead to instabilities during closed-loop testing, as they are only trained
on finite sequences. To avoid the internal states of the controller to grow indefinitely, i.e., a
phenomenon known in control-theory as wind-up [Bohn and Atherton, 1995], we apply a clipping
operation to the states of the CT-RNN and LSTM to keep the values within the range [—5,5]. We
used Adam [Kingma and Ba, 2014] as the optimization algorithm with parameters shown in Table
6.2.

The convolutional layers’ architecture for all RNN models are listed in Table 6.4. After the last
convolutional layer, we applied four per-channel linear layers to obtain 8 x 4 = 32 latent features
serving as sensory inputs to the RNN compartment. We empirically tuned the learning rates
and the convolutional layers’ hyperparameters and evaluated them on the passive dataset. We
observed that NCP took advantage of a lower learning rate for the convolutional layers and a
higher learning rate for the RNN compartment. We apply a per-image whitening filter to the
images before feeding them into the networks.

From the gradient propagation perspective, our approach gave rise to a vanishing gradient
phenomenon, which, as described in Fig. 6.1d is the preferable setting for learning a real-world
autonomous vehicle control.".
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6.3 Experimental setup

End-to-end driving is a feedback control problem, where control actuated by the agent propriocep-
tively affects future observations. However, during the supervised training phase, this feedback
mechanism is utterly disregarded. We observed that such a train-test discrepancy led to situations
where a trained neural network model that performs exceptionally well on the labeled sequences
in an offline testing environment (See Table 6.1) fails to steer the car safely in a real testing case.
Modern RNNs are particularly vulnerable in the described scenarios, as their decision-making
process heavily relies on past observations. Hence, to properly assess the performance of the
models, we chose the architectures that performed well during an offline test and evaluated
them actively on a real car. We ran a 10-fold cross-testing [Bengio and Grandvalet, 2004] on
ninety-four minutes of labeled sequences recorded in the Boston metropolitan area.

6.3.1 Vehicle setup

All data used to train networks was collected on a Toyota Prius 2015 V retrofitted with perception
sensors (a forward-facing Leopard Imaging LI-AR0231-GMSL camera), inertial measurement
unit (Xsens MTi 100-series IMU), GPS, and drive-by-wire steering [Naser et al., 2017]. All
data logging was done directly on an NVIDIA Drive PX2, which is the in-car high-performance
computing platform. The IMU was used to record rotation of the vehicle’s rigid body frame
and thus compute the curvature of the vehicle’s traversed path. Specifically, given a yaw rate ¥,
(rads/sec), and the speed of the vehicle, v; (m/sec), we compute the curvature of the path as:
=1 (63)
e W
where 7, is the radius of the traversing circle. Ultimately, for the networks learned, we consider
the problem of directly learning a control command from the human traversed road curvature
(yy) instead of the steering wheel angle (¢;). This is because ¢, is a nonlinear function of
both y; and v; and depends on the tire slip angle, road surface, weather conditions, and vehicle
dynamics. This results in the notion that simply learning the steering wheel angle (i.e., what
the human commanded) is not sufficient for autonomous navigation, and instead, we require
knowledge of the traversed road curvature (i.e., where the human actually drove). For controlling
the car at inference time, we can compute the steering wheel angle online using a bicycle model
approximation:
o; = Karctan(Ly,) (6.4)

where K is the steering ratio (i.e., the ratio between steering and tire angle), and L is the length of
the vehicle.

6.3.2 Passive test dataset

For the passive evaluation, we collected approximately five hours of driving data throughout
diverse regions of the Boston metropolitan area during dry, wet, and snowy weather conditions
on the highway, local, and residential roads. We processed the data by removing ambiguous
segments such as lane switches, crossings, and congestion, from the recordings. We split the
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6.3. Experimental setup

Table 6.1: Results of the passive lane-keeping 10-fold cross-testing evaluation. As the squared
errors on the test set are determined by large outliers, we reported squared and absolute error.
Sparse LSTM models are trained with projected gradient descent to enforce a 95% sparsity level.
All tested NCP architectures are composed of 19 neurons.

Model Training square error ~ Test squared error
CNN 1.41 +0.30 4.28 +4.63
Vanilla RNN 0.14 + 0.05 3.39 +£4.39
CT-GRU 0.19 +£0.05 3.63 £ 4.61
CT-RNN (19 units) 0.44 +0.14 3.62+435
CT-RNN (64 units) 0.23 +0.09 343 +4.55
Sparse CT-RNN (19 units) 0.77 £ 0.35 4.03 +4.80
Sparse CT-RNN (64 units) 0.40 £ 043 372 +£4.71
GRU 1.25 £ 1.02 5.06 £ 6.64
LSTM (64 units) 0.19 + 0.05 3.17 £3.85
LSTM (19 units) 0.16 + 0.06 3.38 +4.48
Sparse LSTM (19 units) 1.05 £ 0.57 3.68 £5.21
Sparse LSTM (64 units) 0.29 +0.14 3.25+3.93
NCP 0.43 +£0.26 3.22+392
NCP (randomly wired) 2.124+293 5.19 £ 543
NCP (fully-connected) 241 +£3.44 5.18 +£4.19

data into ten non-overlapping sets of equally sized chunks for the cross-testing procedure. For
every ten sets, we trained a model on the union of the remaining nine sets, then evaluated the
performance of the model on the withhold test set. The number of training epochs was optimized
based on a validation set, which we separated from the union of the nine sets before training. In
Table 6.1, we reported the mean and standard deviation over these ten test iterations.

6.3.3 Active test setup.

We conducted the active driving experiments on a private road system. To prepare the models, we
collected approximately 94 minutes of data by maneuvering the vehicle through the test track.
We split the data into a training and a validation set of ratio 3:1. The number of training epochs
was selected based on the lowest error on the validation set achieved during training. See a list of
full training parameters in Table 6.2. We tested each trained model 5 times around the test-track,
without input perturbations, and two times while the input was disrupted by a zero-mean Gaussian
distribution with variances 0.1, 0.2, and 0.3. Each evaluation consists of driving the car around
one cycle of the outermost path of the track, in the counterclockwise direction. We started an
evaluation by placing the vehicle at a designated initial location, accelerating the vehicle up to a
constant speed of 4.47 m/s, and delegating the control of the steering system to the neural network.
Every time the vehicle was maneuvered off the road, we manually steered the car back on track
and reported a crash (Fig. 6.4a). For testing a model under noise, we connected a random number
generator to the input stream, which added zero-mean Gaussian noise to the camera images. The
variance of the Gaussian noise distribution was determined by the noise intensity level, i.e., level
1: 0.1, level 2, 0:2, and level 3: 0.3. The input images were scaled to the range [0,1] before the
addition of the noise. To have the same noise pattern for all models, we fixed the initial seed of
the random number generator to a constant value.

To perform a fair comparison, we equipped all RNN models with the same convolutional head
that reduces the dimensionality of the input image to a more compact latent representation to be
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Table 6.2: Models’ training hyperparameters. The values of all the hyperparameters were selected
informally through empirical evaluation over the passive training dataset. We did not search
through the hyper-parameters space exhaustively, due to the computational cost. However, the
use of a systematic meta-learning algorithm over these parameter spaces can presumably result in
achieving better performances.

Variable Value Comment
Input resolution 200-by-78 Pixels
Input channels 3 8-bit RGB color space

Learning rate 5.1074 CNN, LSTM, CT-RNN
Learning-rate 1-1073 NCP (RNN compartment)
Learning-rate 2.5-1073 NCP (convolutional head)

B 0.9 Parameter of Adam

B 0.999 Parameter of Adam
Minibatch-size 20

Training sequences length 16 time-steps
a 0.1 Parameter in the weighting factor
Max. number of training epochs 100 Validation set determines actual epochs

)] 0.5 Dropout-rate of the CNN

1) 0.5 Dropout-rate of the CNN

1o 0.3 Dropout-rate of the CNN

Table 6.3: Layers of the feedforward CNN, adapted from [Bojarski et al., 2016]. Conv2D refers
to a convolutional layer, F to the number of filters, K to the kernel size, S to the strides, U to the
number of units in a fully-connected layer. The values of the dropout-rates d;,5,, and §; were
optimized on the passive benchmark and reported in Table 6.2

Layer Type Hyperparameters
1 Conv2D F:24,K:5,S:2
2 Conv2D F:36,K:5,S:2
3 Conv2D F:48,K:3,S:2
4 Conv2D F:64,K:3,S:1
5 Conv2D F:64,K:3,S: 1
6 Flatten
7 Dropout o1
8 Fully-connected U: 1000, ReLU
9 Dropout 153
10 Fully-connected U: 100, ReLU
11 Dropout 1o

12 Fully-connected U: 1, Identity

fed into the RNN compartments (See the layer structures in Table 6.4).

We trained and evaluated the networks with the following RNN structure: 64-neuron LSTM and
a 64-neuron CT-RNN, a 19-neuron NCP, and a feedforward CNN with 1100 neurons in its fully
connected layers on a real driving scenario. Moreover, we compared these recurrent agents to the
feedforward convolutional network tested in [Bojarski et al., 2016]. The learning curves and their
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6.4. Results

Table 6.4: Convolutional head

Layer Filters Kernel size Strides
1 24 5 2
36
48
64
8
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Figure 6.3: Learning curves of the models tested in the active driving experiments. Early stopping
[Girosi et al., 1995, Smale and Zhou, 2007] is deployed as a regularization mechanism to obtain
better generalization. The terminating epoch for each experiment, is reported in Table 6.5

corresponding termination phase are reported in Fig. 6.3 and Table 6.5

6.4 Results

6.4.1 Learning a compact neural representation"

Table 6.6 illustrates the compactness of the obtained NCP network compared to the other models.
NCP is 1.8 orders of magnitude more compact compared to the CNN network that established
the state-of-the-art of end-to-end driving [Bojarski et al., 2016]. Its control-network is 85 times
sparser than that of LSTM and 24 times than CT-RNN networks, with 24 times smaller trainable
parameter space compared to that of LSTMs.
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Table 6.5: The learning termination shown in Fig. 6.3. Training and validation metrics of the
models tested in the active driving experiment. As discussed thoroughly (Fig. 6.4), LSTM model
achieves the best performance in the passive test but fails to express proper driving behaviour
under environmental disturbances.

Model Stopping epoch Training loss Validation loss

CNN 12 5.58 6.44
CT-RNN 34 1.77 4.62
LSTM 12 5.58 3.70
NCP 55 1.15 5.09

Table 6.6: Network size comparison

Model Conv layers Param  RNN neurons  RNN synapses ~ RNN trainable param
CNN 5,068,900 - - -
CT-RNN 79,420 64 6112 6273
LSTM 79,420 64 24640 24897
NCP 79,420 19 253 1065

The results achieved by such a compact neural network is impressive in multiple aspects of an
ideal autonomous mobile robot controller, described as follows:

6.4.2 Divergence from the road by the increasing input noise

Compared to all learning systems under-test, NCPs are significantly more resilient to the rising
pixel-wise input perturbations, to go off-road — to crash (Fig. 6.4a).

6.4.3 Robustness of the output decisions in the presence of input noise

Figs. 6.4d and 6.4e depict examples of crash incidents, happened at the locations spotted on
the map when the inputs to the networks were heavily perturbed by an input noise. Figs. 6.4d
and 6.4e¢ illustrate how the attention of each intact network is disrupted by the input noise and
caused LSTM and CNN networks to drive the vehicle off-road. We quantified the influence of
the input perturbations on the attention maps (the learned causal structure), by computing their
structural similarity index (SSIM), represented in Fig. 6.4b. The figure indicates the performance
domination of NCPs over other networks, in preserving the learned causal structure (SSIM closer
to 1) as a result of input noise

Computing saliency maps of convolutional layers

Saliency maps are interpretation methods to visualize the inner workings of a trained neural
network by highlighting parts of the input image that contributed most to the decision of a network.
We employ saliency maps to analyze what our networks have learned to attend qualitatively. In
particular, we are interested in how layers that are common to all tested architectures evolve
differently during training. Consequently, we narrow our analysis to the convolutional layers
at the beginning of the network. We adopted a technique named VisualBackProp [Bojarski
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6.4. Results

Algorithm 14 Compute saliency maps

Inputs: Convolutional feature maps hy,hy,...hy
s := average-over-channel-dimension(/y)
for i from N-1 to 1 do
7 := average-over-channel-dimension(/;)
s := z ® deconvolution-to-size-of(s,z)
end for
return s.

et al., 2018] that has been developed deliberately for autonomous driving research, to compute
the saliency maps presented. This method leverages the property of the ReLLU activation that
the value of each neuron in the feature map is either positive or zero. Where © represents the
element-wise multiplication and the deconvolution-to-size-of function scales the first argument to
the dimension of the second argument by applying a de-convolution operation.

Structural Similarity Index

SSIM is a method to compare quality of given images [Wang et al., 2004]. It is composed of
multiplication of three comparison criteria, the luminance /, contrast ¢ and structure s for given
images x and y as follows [Wang et al., 2004]:

SSIM (x,y) = [1(x, )% [c(x,)]P [s(x,y)]7, (6.5)
where:
2,ux,uvy + Cl ZGxGy + C2 ny + C3
=22 0 T2 2 » §= ‘ (6.6)
My 4 1y +C o; + 05 +C 0,0, +C3

Here, C,(,, and C;5 are the regularization constants, i, and (1, are the means of x and y, o, and
o, are standard deviations, and 0, is the cross-covariance of x and y. In the analysis provided
in Fig. 6.4b, We computed the SSIM for pair saliency maps at each time-frame (overall 200
frames), between a noise-free version as reference and a perturbed one resulted from input noise
injections. we set the exponents & = 8 = y = 1, the regularization components C; = (0.01L)?,
C> = (0.03L)2, and C3 = C>/2, with L = 255 corresponding to the dynamics range of the input
image values.

6.4.4 Driving with smooth neural activity

We also quantitatively measured the maximum steepness of the neural dynamics derivative
(maximum local Lipschitz constant) for all neurons and reported the results in Fig. 6.4c top. We
observed that the local decision-making process in NCPs is remarkably smoother than those of
other network types (Fig. 6.4c bottom).

Lipschitz Continuity Computation

The limitation on the speed of change of a function can be computed by the Lipschitz continuity
criteria (| f(2) — f(t1)| < L|ta —t1|). The smaller is the Lipschitz constant (L), transitions on
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Algorithm 15 Compute Maximum Lipschitz Constants
(NXT)

Inputs: X n = number of neurons, 7' = length of the test episode
for n from 1 to N do

for s from 1 to 7 — 1 do

L(n,t) =% ~X(n,t+1)—X(n,t)/At, At = 1

end for
end for
L,%,fl) = max (LN
Return L,y .., =S0rt(Linqy).

function f, are smoother. The following algorithm computes the maximum lipschitz constants
for neural state activity of RNNs X (7), for an episode of active testing for all RNN types reported
in Fig. 6.4c:

6.4.5 Comparing learned causal structures

Figs. 6.5b to 6.5e represent instances of learned networks’ attention maps during live testing. We
observed that the desirable causal structure of autonomous lane-keeping — learning to drive by
attending to a road’s horizon) was concisely learned by the NCP network only. LSTM learned to
attend to the roadsides in most scenarios; however, lighting conditions, as well as road profiles,
can significantly affect the network’s attention portfolio (Fig. 6.5b). CT-RNN’s attention is
inconsistent and is heavily influenced by the variations of the road’s lighting conditions (Fig.
6.5¢). CNN learned to drive by focusing on the side roads and ignoring the road itself (Fig. 6.5d).
(See the entire saliency maps collected during live driving at https://pub.ist.ac.at/
~mlechner/driving/saliency_widget/saliency_maps.html

6.4.6 Global network dynamics

To measure how concisely the networks learned the primitives of driving (straight roads, handling
curves, and road jitters), we conducted a principle component analysis (PCA) and reported their
variance explained in Figs. 6.5f to 6.5i.

PCA

For the analysis provided in Fig. 6.5f to 6.5n, we computed the principle components of the
activity of individual neurons in every RNN network, collected from episodes of active driving
tests. The output trajectory (Steering command) is not included in the PCA analysis, to investigate
how the global purpose of the network is expressed by the main PCs of a network’s neurons,
standalone.

The PCA analysis demonstrated that a single principle component (PC) of NCP’s neural dynamics
could explain 92% (Fig. 6.5j) of the entire driving profile. To motivate this phenomenon further,
we plotted the first and the second PC scores over the driving trajectory for all networks (Figs.
6.5k to 6.5n). NCP is the only model amongst the others that allocated different PC1 values to
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Figure 6.4: Robustness analysis. a, Number of crashes (steering commands with tendency to
drive the vehicle off-road) for four RNN types, as the input noise variance increases, in active
driving test (n=3) b, Variation of the structural sensitivity index of the saliency maps for four
RNN topologies as the input noise variance increases, A higher value of SSIM is preferable (n=3)
¢, Maximum Lipschitz constant (an indicator of smoothness and stable dynamics) of the activity
of every single neuron (sorted by the amplitude of the max Lipschitz constant on the horizontal
axis) (n=5), Lower values are preferable. d, Example of the saliency maps before a crash event
caused by LSTM and CNN, in the presence of input perturbations, and how it was handled by
CT-RNN and NCP. e, A second example of a crash incident caused by LSTM and CNN. Watch

videos of the driving performance with no input perturbations: NCP, LSTM, CT-RNN and CNN.

And with a 62 = 0.3 input perturbation: NCP, LSTM, CT-RNN and CNN.

the curves and driving straight, while fine-grained control has been largely captured by its second
PC. Other baseline networks require at least two to three PCs to capture the details of the driving
profile up to 90% (6.5f to 6.51).

Cell-level interpretability. Neural state (the amplitude of a neuron’s output) and the coupling
sensitivity (how a neuron adjusts its reaction speed when interacting with the environment) of
LTC cells comprising an NCP network (Fig. 6.6a), can skillfully help understand how an LTC
network’s decision is made. Figs. 6.6b to 6.6d illustrates the activity of five selected neurons
from the NCP driving agent, projected over the driving trajectory. The motor neuron’s activity

illustrates how main motion primitives are delivered to various driving situations (Fig. 6.6b left).

Its coupling sensitivity demonstrates that the neuron tends to become more cautious during turns
(setting smoother dynamics) while keeping its reaction speed at a relatively constant-rate during
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Figure 6.5: Global network dynamics. a, A sequence of input camera images during the
active testing. b to e present a sequel of saliency maps computed to obtain the attention of
the convolutional layers of the trained networks while driving. b, LSTM learned to attend to
the roadsides in most scenarios; however, lighting conditions significantly affect its attention
portfolio. ¢, CT-RNN’s attention is inconsistent and is heavily influenced by the variations
of the road’s lighting conditions. d, CNN learned to drive by focusing on the side roads e,
NCP learned to attend to the road’s horizon when taking a driving decision. f to i represent
the variance explained by first eight principle components of the activity of all neurons of
f, LSTM, g, CT-RNN, h, CNN, and i, NCP, (n=5). The black line indicates the cumulative
variance explained. j, First PC’s variance-explained for all models. k to n shows the projection
of the first (top) and the second (bottom) PC’s score (The score of the n'" PC is computed by
PCS(?,gre = out put vector X weightpq ), over the driving trajectory for k, LSTM, 1, CT-RNN, m,
CNN, and n, NCP.

straight motions. Interneuron I learned to light up during left-turns (Fig. 6.6¢ top-left) while
adjusting its dynamics to react faster at left-turning events Fig. 6.6¢ top-right). Interneuron 2, on
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Figure 6.6: Intuitive comprehension of NCP’s cells activity while driving. a, An NCP network
trained end-to-end for autonomous lane-keeping. b to d depict examples of neural activities
projected over the road-trajectory on which the car was driven. The neural state (representing
the amplitude of a neuron’s dynamics) and the coupling sensitivity (representing how a neuron

adjusts its reaction speed) are plotted in each subsection. b, Neural activity of the motor neuron.

¢, Neural activity of two interneurons 1 and 2. d, Neural activity of two command neurons 1 and
2. An immediate explanation of the cell-level dynamics for the NCP network is achieved and is
expandable to every internal element of the network. See more in Figs. 6.7 and 6.8.

the other hand, learned to rapidly get more activated during right-turns (Fig. 6.6¢ bottom).

Command neurons 1 is consistently activated during straight driving with a sensitive reaction
speed while it is switched off on left-turns (Fig. 6.6d top). Command neuron 2 is biased at lower

membrane potentials and tunes the road jitters when the vehicle drives on a straight path (Fig.

6.6d bottom). This degree of immediate interpretation of dynamics is generalisable to every
single cell within an NCP (Figs. 6.7 and 6.8). Such an attribute of NCPs, for the first time, opens
the neural networks’ black-box nature and significantly enhances our confidence to deploy them
in safety-critical applications such as autonomous driving.

6.5 Conclusions

Neural Circuit policies are the smallest neural network agent that can proficiently control a

vehicle on previously unseen environments, while demonstrating robustness to input artifacts,

deploy causality, and realize interpretable dynamics. Real-world domains such as autonomous
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Figure 6.8: Coupling sensitivity of all NCP neurons presented in Fig. 6.6

driving, robotics, health, and medicine, are surrounded by environmental artifacts and uncertainty,
and demands for robust real-time decision making. Moreover, similar to autonomous driving,
many applications deal with complex high-dimensional input-output spaces that, when deployed
in the real world, become safety-critical. The success of neural circuit policies in autonomous
driving indicates that tackling the complexity of real-world problems does not necessarily require
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6.5. Conclusions

complex deep neural network architectures.

Furthermore, we witnessed that in safety-critical domains, achieving great performance is not the
only criteria to take into account when designing intelligent agents. It is of utmost importance to
have a notion for the interpretation of the system. Such explanations of the network dynamics
were achievable for networks consisting of LTC neurons. Videos of the driving performance
of all learning algorithms can be viewed by the links provided in Table 6.7. Now the question
is, how can we understand network dynamics of successful modern RNNs? In the next chapter,
we introduce a generic method to obtain more understanding of other RNN types of network

dynamics.
Table 6.7: Videos of the driving performance of all algorithms

Model Perturbation profile Link
CNN no noise https://youtu.be/5rwuF8dv3QM
CNN noise with 6> =0.1 https://youtu.be/bBgK2D34Ta8
CNN noise with 62 =0.2 https://youtu.be/UR-1w7kCbhU
CNN noise with 62 =0.3 https://youtu.be/en35asvYYtI
CT-RNN no noise https://youtu.be/5-1xpXQpJDg
CT-RNN  noise with 62 =0.1 https://youtu.be/kMXXNmzJ1u8
CT-RNN  noise with 62=0.2 https://youtu.be/0D504u6JINh4
CT-RNN  noise with 62 =0.3 https://youtu.be/_JdZpP0zx7k
LSTM no noise https://youtu.be/g_cosCKkHWc
LSTM noise with 62 =0.1 https://youtu.be/Z7Y3TXzTOyU
LSTM noise with 62 =0.2 https://youtu.be/JYVaUdc7iYI
LSTM noise with 6> =0.3 https://youtu.be/B6ITsPre2fU
NCP no noise https://youtu.be/_ejdrdUé8os
NCP noise with 62 =0.1 https://youtu.be/KBS8KWZQ6Iyg
NCP noise with 62 =0.2 https://youtu.be/lanjh-WnuR8
NCP noise with 62 =0.3 https://youtu.be/6ns9jteF£MQ
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CHAPTER

Interpretability of Recurrent Neural
Networks

7.1 Motivation

© [A7-Chapter7, 2019] — A key challenge for modern deep learning architectures is that of
robust interpretation of the hidden dynamics and how they contribute to the system’s decision-
making ability as a whole. Many safety-critical applications of deep neural networks (NNs), such
as robotic control and autonomous driving [Amini et al., 2018a, Bojarski et al., 2016, Levine
et al., 2016, Mnih et al., 2015, Pomerleau, 1989], require metrics of explainability before they
are deployed into the real world. In particular, interpreting the dynamics of recurrent neural
networks (RNNs), which can process sequential data and are vastly used in such safety-critical
domains, requires careful engineering of the network architecture [Karpathy et al., 2015]. This is
because investigating their behavior enables us to reason about their hidden state-dynamics and
thus design better learning models.

The hidden state representations of long short-term memory (LSTM) networks [Hochreiter and
Schmidhuber, 1997], a subset of RNNs with explicit gating mechanisms, have been evaluated
by gate-ablation analysis [Chung et al., 2014, Greff et al., 2017] and feature visualization
techniques in linguistics [Karpathy et al., 2015, Strobelt et al., 2018]. While these studies provide
criteria for networks with interpretable cells, they are empirically limited to feature visualization
techniques, focus on hidden state dynamics in networks for text analysis, and thus suffer from
poor generalizability to other domains. A robust, systematic method for assessing RNN dynamics
across all sequential data modalities has yet to be developed.

In this chapter, we introduce a novel methodology to predict and interpret the hidden dynamics
of LSTMs at the individual cell and global network level. We utilize response characterization
techniques [Oppenheim and Young, 1983], wherein a dynamical system is exposed to a controlled
set of input signals, and the associated outputs are systematically characterized. Concretely, we
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present a systematic testbench to interpret the relative contributions, response speed, and even
the phase-shifted nature of learned LSTM models. To analyze hidden state dynamics, we isolate
individual LSTM cells from trained networks and expose them to defined input signals such as
step and sinusoid functions. Through the evaluation of output attributes, such as response settling
time, phase-shift, and amplitude, we demonstrate that it is possible to predict sub-regions of the
network dynamics, rank cells based on their relative contribution to network output, and thus
produce reproducible metrics of network interpretability.

For example, step response settling time delineates cells with fast and slow response dynamics.
In addition, by considering the steady-state value of the cellular step response and the amplitude
of the sinusoid response, we are able to identify cells that significantly contribute to a network’s
decision. We evaluate our methodology on a range of sequential datasets and demonstrate that
our algorithms scale to large LSTM networks with millions of parameters.

The key contributions of this chapter can be summarized as follows:

1. Design and implementation of a novel and lightweight algorithm for systematic LSTM
interpretation based on response characterization; and

2. Evaluation of our interpretation method on four sequential datasets including classification
and regression tasks; and

3. Detailed interpretation of our trained LSTMs on the single-cell scale via distribution and
ablation analysis as well as on the network scale via network capacity analysis.

First, we discuss related work in Sec. 7.2 and introduce the notion of RNNs as dynamic systems
in Sec. 7.3. Sec. 7.4 presents our algorithm for response characterization and defines the extracted
interpretable definitions. Finally, we discuss the interpretations enabled by this analysis in Sec.
7.5 through a series of experiments, and provide conclusions of our results in Sec. 7.6.

7.2 Related Works

Deep Neural Networks Interpretability - A number of impactful attempts have been proposed
for interpreting deep networks through feature visualization [Erhan et al., 2009, Zeiler and
Fergus, 2014, Yosinski et al., 2015, Karpathy et al., 2015, Strobelt et al., 2018, Bilal et al.,
2018]. Feature maps can be empirically interpreted at various scales using neural activation
analysis [Olah et al., 2018], where the activations of hidden neurons or the hidden-state of these
neurons are computed and visualized. Additional approaches try to understand feature maps
by evaluating attributions [Simonyan et al., 2013, Fong and Vedaldi, 2017, Kindermans et al.,
2017, Sundararajan et al., 2017]. Feature attribution is commonly performed by computing
saliency maps (a linear/nonlinear heatmap that quantifies the contribution of every input feature
to the final output decision). The contributions of hidden neurons, depending on the desired level
of interpretability, can be highlighted at various scales ranging from individual cell level to the
channel and spatial filter space, or even to arbitrary groups of specific neurons [Olah et al., 2018].
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7.2. Related Works

A dimensionality reduction method can also be used to abstract from high dimensional feature
maps into a low dimensional latent space representation to qualitatively interpret the most
important underlying features that maximally describe the input [Bishop and Tipping, 1998,
Gulrajani et al., 2016, Maaten and Hinton, 2008] or contribute towards the overall learning task
[Amini et al., 2018b]. However, these methods often come with the cost of decreasing cell-level
audibility.

Richer infrastructures have been recently developed to reason about the network’s intrinsic
kinetics. LSTMVis [Strobelt et al., 2018], relates the hidden state dynamics patterns of the
LSTM networks to similar patterns observed in larger networks to explain an individual cell’s
functionality. A systematic framework has also been introduced that combines interpretability
methodologies across multiple network scales [Olah et al., 2018]. This enables exploration
over various levels of interpretability for deep NNs; however, there is still space to incorporate
more techniques, such as robust statistics [Koh and Liang, 2017], information theory approaches
[Shwartz-Ziv and Tishby, 2017], gradients in correlation-domain [Hasani et al., 2018c] and
response characterization methods which we address here.

Recurrent Neural Networks Interpretability - Visualization of the hidden-state of a fixed-
structure RNNSs on text and linguistic datasets identifies interpretable cells that have learned to
detect certain language syntaxes and semantics [Karpathy et al., 2015, Strobelt et al., 2018].
RNNSs have also been shown to learn input-sensitive grammatical functions when their hidden
activation patterns were visualized [K4d4r et al., 2015, K4dar et al., 2017]. Moreover, gradient-
based attribution evaluation methods were used to understand the RNN functionality in localizing
keywords in the text. While these techniques provide rich insight into the dynamics of learned
linguistics networks, the interpretation of the network often requires detailed prior knowledge
about the data content and language. Therefore, such methods may face difficulties in terms
of generalization to other forms of sequential data such as time-series forecasting as well as
vision-based classification, which we focus on in our study.

Another way to build interpretability for RNNs is using the attention mechanism where the
network architecture is constrained to attend to a particular part of the input space. RNNs
equipped with an attention mechanism have been successfully applied in image captioning [You
et al., 2016], the fine-alignment in machine translation [Luong et al., 2015], and text extraction
from documents [Hermann et al., 2015]. Hidden-state visualization is a frequently shared property
of all of these approaches in order to effectively understand the internals of the network. Hudson
et al. [Hudson and Manning, 2018] also introduced Memory, Attention, and Composition (MAC)
cells which can be used to design interpretable machine reasoning engines in an end-to-end
fashion. MAC is able to perform highly accurate reasoning, directly from the data. However,
application of these modifications to arbitrary network architectures is not always possible, and
in the case of LSTM specifically, the extension is not possible in the current scope of MAC.

Recurrent Neural Networks Dynamics- Rigorous studies of the dynamical systems properties
of RNNS, such as their activation function’s independence property (IP) [Albertini and Sontag,
1994], state distinguishability [Albertini and Dai Pra, 1995], and observability [Garzon and
Botelho, 1994, Garzon and Botelho, 1999] date back to more than two decades. Thorough
analyses of how the long term dynamics are learned by the LSTM networks have been conducted
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in [Hochreiter and Schmidhuber, 1997]. Gate ablation analysis on the LSTM networks has been
performed to understand cell dynamics [Greff et al., 2017, Chung et al., 2014]. We introduce the
response characterization method, as a novel, additional building block to understand and reason
about LSTM hidden state dynamics.

7.3 Dynamics of Recurrent Neural Networks

RNNs described in Chapter 2, can be formulated as dynamical systems in the form of the
following differential equation (For the sake of notation simplicity, we omit the time argument, ¢):

h=o(Rh+Wx), y=Cx, (7.1)

where h denotes its internal state (' * " illustrates time-shift or time derivative for the discrete and
continuous-time systems, respectively), x stands for the input to the system, and R"*"], wln<m]
and C17*" are real-valued matrices representing recurrent weights, input weights and the output
gains, respectively. ¢ : R — R indicates the non-linearactivation function. In the continuous
setting, ¢ should be locally Lipschitz (see [Albertini and Sontag, 1993] for a more detailed
discussion).

For the analytical interpretation of a dynamical system, the first necessary condition is to check
its observability property. A dynamical system is observable if there is some input sequence
that gives rise to distinct outputs for two different initial states at which the system is started
[Sontag, 2013]. Observable systems realize unique internal parameter settings [Albertini and
Sontag, 1994]. One can then reason about that parameter setting to interpret the network for
a particular input profile. Information flow in LSTM networks carries on by the composition
of static and time-varying dynamical behavior. This interleaving of building blocks makes a
complex partially-dependent set of nonlinear dynamics that are hard to analytically formulate and
to verify their observability properties As an alternative, here, we propose a novel technique for
identifying and quantifying hidden sub-regions of internal dynamics within the network with a
quantitative and systematic approach by using response characterization.

7.4 Methodology for Response Characterization of LSTM cells

In this section, we explore how response characterization techniques can be utilized to perform
systematic, quantitative, and interpretable understanding of LSTM networks on both a macro-
network and micro-cell scale. By observing the output of the system when fed various baseline
inputs, we enable a computational pipeline for reasoning about the dynamics of these hidden
units. Figure 7.1 provides a schematic for our response characterization pipeline. From a trained
LSTM network, comprising of M LSTM units, we isolate individual LSTM cells and characterize
their output responses based on a series of interpretable response metrics. We formalize the
method as follows:

Definition 8. Let G, be a trained LSTM network with M hidden LSTM units. Given the dynamics
of the training dataset (number of input/output channels, the main frequency components, the
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Figure 7.1: Response characterization method for LSTM cells. We take individual LSTM cells
from a trained network and characterize their step and sinusoidal response. These responses
predict quantitative and interpretable measures for the dynamics of the single units within the
network. We then validate the predictions by performing a neuronal ablation analysis.

amplitude range of the inputs), we design specific step and sinusoidal inputs to the network, and
get the following insights about the dynamics of the network at multi-scale resolutions:

o the relative strength or contribution of components within the network;
o the reactiveness of components to sudden changes in input; and

e the phase alignment of the hidden outputs with respect to the input.

Specifically, we analyze the responses of (1) the step input and (2) the sinusoidal input. We use
the classic formulations for each of these input signals wherein (1) step: x; = [[t > gH ;and (2)
sinusoid: x, = sin (27 f1); where [[-]] represents the mathematical indicator function.

Across a network of LSTM units, we can approximate sub-regions of the dynamics of a single cell,
u, by extracting the input and recurrent weights corresponding to that individual cell. We then
define a subsystem consisting of just that single cell and subsequently feed one of our baseline
input signals, x; V;c (1.7} to observe the corresponding output response, y;. In the following, we
define the interpretable response metrics for the given basis input used in this study:

Definition 9. The initial and final response of the step response signal is the starting and steady-
state responses of the system respectively, while the response output change represents their
relative difference.

Response output change or the delta response for short determines the strength of the LSTM unit
with a particular parameter setting, in terms of output amplitude. This metric can presumably
detect significant contributor units to the network’s decision.

Definition 10. The settling time of the step response is elapsed time from the instantaneous input
change to when the output lies within a 90% threshold window of its final response.

Computing the settling time for individual LSTM units enables us to discover “fast units” and
“slow units”. This leads to the prediction of active cells when responding to a particular input
profile.
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Definition 11. The amplitude and frequency of a cyclic response signal is the difference in output
and rate at which the response output periodically cycles. The response frequency, f, is computed
by evaluating the highest energy component of the power spectral density: f = Argmax Sy (f).

The amplitude metric enables us to rank LSTM cells in terms of significant contributions to the
output. This criterion is specifically effective in the case of trained RNNs on datasets with a
cyclic nature. Given a sinusoidal input phase-shifts and phase variations expressed at the unit’s
output can be captured by evaluating the frequency attribute.

Definition 12. The correlation of the output response with respect to the input signal is the dot
product between the unbiased signals: Y (x; — E[x]) - (v, — E[y]).

The correlation metric corresponds to the phase-alignment between input and output of the LSTM
unit.

Systematic computation of each of the above response metrics for a given LSTM enables reasoning
on the internal kinetics of that system. Specifically, a given LSTM network can be decomposed
into its individual cell components, thus creating many smaller dynamical systems, which can be
analyzed according to their individual response characterization metrics. Repeating this process
for each of the cells in the entire network creates two scales of dynamic interpretability. Firstly,
on the individual cell level within the network to identify those which are inherently exhibiting
fast vs. slow responses to their input, quantify their relative contribution towards the system
as a whole and even interpret their underlying phase-shift and alignment properties. Secondly,
in addition to characterizing responses on the cell level, we also analyze the effect of network
capacity on the dynamics of the network as a whole. Interpreting hidden model dynamics is not
only interesting as a deployment tool but also as a debugging tool to pinpoint possible sources of
undesired dynamics within the network.

While one can use these response characterization techniques to interpret individual cell dynamics,
this analysis can also be performed on the aggregate network scale. After computing our response
metrics for all decoupled cells independently, we then build full distributions over the set of all
individual pieces of the network to gain an understanding of the dynamics of the network as a
whole. This study of the response metric distributions presents another rich representation for
reasoning about the dynamics, no longer at a local cellular scale, but now, on the global network
scale.

7.5 Experimental Results

In the following section, we provide concrete results of our system in practice to interpret the
dynamics of trained LSTMs for various sequence modeling tasks. We present our computed
metric response characteristics both on the decoupled cellular level as well as the network scale
and provide detailed and interpretable reasoning for these observed dynamics. We chose four
benchmark sequential datasets and trained on various sized LSTM networks ranging from 32
to 320 LSTM cell networks. The results and analysis presented in this section demonstrate the
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Figure 7.2: Cell-level interpretation of sequential MNIST. A) An example sequence for digit
6 together with the network dynamics for a 64-neuron LSTM network. B) One slice sequence
from digit 6 and its underlying network dynamics sorted for the settling time attribute. (C-G) The
distribution of hidden cells according to various response characterized distributions including (C)
settling time distribution; (D) delta response distribution; (E) sine-wave amplitude distribution;
(F) correlation distribution; and (G) sine-frequency distribution.

applicability of our algorithms to a wide range of temporal sequence problems and scalability
towards deeper network structures.

We start by reasoning how our response characterization method can explain the hidden-state
dynamics of learned LSTM networks for a sequential MNIST dataset and extend our findings
to three additional datasets. The sequential MNIST dataset is a derivative of the classical
MNIST dataset [LeCun et al., 2010] but instead where input images are flattened and treated as
sequential time-series of brightness values. In this experiment, we perform an ablation analysis
and demonstrate how some of our metrics find cells with significant contributions to the network’s
decision, across all datasets.

7.5.1 Response characterization metrics predict insightful dynamics for
individual cells

Table 7.1: Hidden dynamic distributions by dataset. Systematic interpretation of internal dynamics
distributions (mean and variance) of 128 cell LSTMs trained on various different benchmark
datasets. The table shows the global speed and amplitude of the activity of the network in terms
of dynamical properties of the response characterization metrics.

Step Response Sinusoidal Response
Dataset Settle Time  Output Change  Amplitude Correlation  Frequency
Sequential-MNIST 6.96+4.08 —0.04+0.58 0.73+£0.30  0.174+0.08 9.831+0.46
S&P 500 Stock 5.62+1.73 0.02+0.16 0.31+£0.05  0.034+0.02 2.86+2.19
CO, Concentrations ~ 5.65+1.64 0.01£0.12 0.27+£0.04  0.03£0.01 9.83+£0.08
Protein Sequencing 7.96 £6.65 0.08 £0.54 0.68+0.22 2.07+1.21 10.36 £1.65

We start by training an LSTM network with 64 hidden LSTM cells to classify a sequential MNIST
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dataset. Inputs to the cells are sequences of length 784 generated by stacking the pixels of the
28 x 28 hand-writing digits, row-wise (cf. Fig. 7.2A) and the output is the digit classification.

Individual LSTM cells were then isolated, and their step and sine-response were computed for the
attributes defined formerly (cf. Fig. 7.4). Fig. 7.2C-G represent the distribution of cell activities,
ranked by the specific metrics. The distribution of the settling time of the individual LSTM
cells from a trained network, predicts low time-constant, (fast) cells (the first 20 neurons), and
high-time constant (slow) cells (neurons 55-64) (Fig. 7.2C).

This interpretation allows us to indicate fast-activated/deactivated neurons at fast and slow phases
of a particular input sequence. This is validated in Fig. 7.2B, where the output state of individual
LSTM cells are visually demonstrated when the network receives a sequence of the digit 6. The
figure is sorted with respect to the predicted settling time distribution. We observe that fast-cells
react to fast-input dynamics almost immediately while slow-cells act in a slightly later phase.
This effect becomes clear as you move down the heatmap in Fig. 7.2B and observe the time
difference from the original activation.

The distribution of the delta-response indicates inhibitory and excitatory dynamics expressed by a
50% ratio (see Fig. 7.2D). This is confirmed by the input-output correlation criteria, where almost
half of the neurons express antagonistic behavior to their respective sine-wave input (Fig. 7.2F).
The sine-frequency distribution depicts that almost 90% of the LSTM cells kept the phase, nearly
aligned to their respective sine-input, which indicates the existence of a linear transformation. A
few cells learned to establish faster frequencies than their inputs, thereby realizing phase-shifting
dynamics (Fig. 7.2G). The sine-amplitude distribution in Fig. 7.2E demonstrates that the learned
LSTM cells realized various amplitudes that are almost linearly increasing. The ones with high
amplitude can be interpreted as those maximally contributing to the network’s decision. In the
following sections, we investigate the generalization of these effects on other datasets.

7.5.2 Generalization of response metrics to other sequential datasets

We trained LSTM networks with 128 hidden cells, for four different temporal datasets: sequential
MNIST [LeCun et al., 1998], S&P 500 stock prices [finance yahoo, 4 13] and CO, concentration
for the Mauna Laua volcano [R. F. Keeling and S. J. Walker, 3 17] forecasting, and classification
of protein secondary structure [Qian and Sejnowski, 1988]. Learned networks for each dataset are
denoted seq-MNIST, Stock-Net, CO,-Net, and Protein-Net. Table 7.1 summarizes the statistics
for all five metrics with the network size of 128. The results represent the average cell response
metric attributes for various datasets and demonstrate the global speed and amplitude of the
activity of the network in terms of dynamical properties of the response characterization metrics.

Fig 7.3A-E, represents the distributions for the metrics sorted by the value of their specific
attribute across all datasets. Cells in Protein-Net realized the fastest dynamics (i.e., smallest
settling time) compared to the other networks while realizing a similar trend to the seq-MNIST
(Fig. 7.3A). The settling time distribution for the LSTM units of CO; and Stock-Net depicts
cell-groups with similar speed profiles. For instance, neurons 52 to 70 in Stock-Net, share the
same settling time (Fig. 7.3A). Sine frequency stays constant for all networks except some
outliers, which tend to modify their input-frequency (Fig. 7.3D). The delta response and the
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Figure 7.3: Cell level response distributions. (A-E) Response characterization metrics for
networks with 128 individually ranked LSTM cells. The analyses predict A) cells with fast-
dynamics and slow dynamic, (B and C) cells that are significantly contributing to the network
decision, D) cells that realize phase shifting dynamics, and E) cells that are excitatory or inhibitory.
The various line styles correspond to the different datasets used.
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Figure 7.4: Cell level ablation analysis. Ablation of individual cells inside trained 128 cell LSTM
networks across all four datasets (left to right). Changes in the predictive error are visualized
against the ranked delta response (top) and sine amplitude (bottom) of the ablated cell. The Gray
solid line represents the predictions of our method (right side vertical axis) as a function of the
particular response metric. The solid blue line shows the mean, and the shadows represent the
standard deviation of a moving average filter on the 23 ablated impact of individual neurons. This
is done to highlight the trend of the ablation impact with respect to the sorted particular metric.

correlation metrics (Fig. 7.3B and Fig. 7.3E) both indicate the distribution of the inhibitory
and excitatory behavior of individual cells within the network. Except for the Seq-MNIST net,

neurons in all networks approximately keep a rate of 44% excitatory and 56% inhibitory dynamics.

The high absolute amplitude neurons (at the two tails of Fig. 7.3C) are foreseen as the significant

contributors to the output’s decision. We validate this with an ablation analysis subsequently.

Moreover, most neurons realize a low absolute delta-response value, for all datasets except for
MNIST (Fig. 7.3B). This is an indication for cells with an equivalent influence on the output
accuracy. Sine-amplitude stays invariant for most neurons in Stock and CO,-Nets (Fig. 7.3C). For
the seq-MNIST net and Protein-net, this distribution has a gradually increasing trend with weak

113


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7. INTERPRETABILITY OF RECURRENT NEURAL NETWORKS

114

>
@
(o]

@

0.075

0.050

o

0.025

Mean
delta response

Mean
settling time

0.000

-

Mean
sine amplitude

-0.025

-0.050 02
32 64 96 128 160 192 224 256 288 320 32 64 96 128 160 192 224 256 288 320 32 64 96 128 160 192 224 256 288 320
Number of units Number of units Number of units

D E

~

MNIST

5

Stock

Mean
sine frequency
@
[P
=S

o
o

Co2

o

IS
Mean
absolute correlation

Protein

o
>

32 64 96 128 160 192 224 256 288 320 32 64 96 128 160 192 224 256 288 320
Number of units Number of units

Figure 7.5: Network capacity analysis. (A-E) Response metrics as a function of the network’s
capacity. The analyses illustrate how response metrics provide insights on the global network
scale in terms of settling time (A), delta response (B), sine amplitude (C), sine frequency (D),
and correlation (E).

values. This predicts that individual cells are globally equivalently, contributing to the output.

7.5.3 Prediction of cell importance using response metrics

To assess the quality of the predictions and interpretations of the provided response characteriza-
tion metrics, we performed individual cell-ablation analysis on LSTM networks and evaluated
the cell-impact on the output accuracy (misclassification rate), for the classification problems and
on the output performance (mean absolute error), for the regression problems. We knocked out
neurons from trained LSTM networks with 128 neurons. Fig. 7.4A-H illustrate the performance
of the network for individual cell ablations for all four datasets. The solid gray line in each subplot
denotes for the predictions of the response metrics. For CO;-Net, this confirms that neurons
with higher sine amplitude tend to disrupt the output more (Fig 7.4D). For the same network, the
delta response predicted that neurons with a high negative or positive value, are more significant
in output’s prediction. This is clearly illustrated in Fig. 7.4C. For seq-MNIST-Net, the same
conclusions held true; neurons with a high absolute value of delta response or sine-amplitude
reduce the accuracy at the output dramatically (Fig. 7.4A-B). By analyzing the sine-amplitude
and delta-response of Protein-Net, we observe that neurons are equivalently valued and tend to
contribute equivalently to the output accuracy. This is verified in the ablation analysis, shown
in Fig. 7.4G and 7.4H, where the mean-misclassification error rate stays constant for all neural
ablations. The absolute value for Stock-Net was also weak in terms of these two metrics, though
there were some outliers at the tails of their distribution that predicted dominant neurons. This is
clearly notable when comparing the neurons 120 to 128 of Fig. 7.4F to their prediction (gray line)
where the amplitude of the response is maximal. In Fig. 7.4E ablation experiments for neurons 1
to 40 and 100 to 128 impose a higher impact on the overall output. This was also observed in the
delta response prediction shown in 7.4B, since neurons with stronger output response was present
at the two tails of the distribution.
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7.6. Conclusion

7.5.4 Network-level Interpretability for Trained LSTMs

While we analyzed the response characterization distributions on a cellular level above, in this
subsection, we focus on the effect of network capacity on observed hidden dynamics of the system
on a global scale. Reasoning on this scale allows us to draw conclusions on how increasing the
expressive capacity of LSTM networks trained on the same dataset can result in vastly different
learned dynamics.

We experimentally vary the capacity by simply adding hidden LSTM cells to our network
and retraining on the respective dataset from scratch. The relationship between each response
characteristic metric and the network capacity is visualized in Fig. 7.5A-E. The trends across
datasets are visualized in a single subplot to compare respective trends. One especially interesting
result of this analysis is the capacity relationship with response amplitude (cf. Fig. 7.5C). Here
we can see that the amplitude response decays roughly proportionally to % for all datasets, where
N is the number of LSTM cells. In other words, we get the intuitive finding that as we increase
the number of LSTM cells, the magnitude of each cell’s relative contribution needed to make a
prediction will subsequently decrease.

Another key finding of this analysis is that the distribution of settling time is relatively constant
across network capacity (cf. Fig. 7.5A). Intuitively, this means that the network is able to learn

the underlying time delay constants represented in the dataset irrespective of the network capacity.

One particularly interesting point comes for Protein-Net which exhibits vastly different behavior

for both settling time (Fig. 7.5A) and correlation (Fig. 7.5E) than the remainder of the datasets.
Upon closer inspection, we found that Protein-Net was heavily overfitting with increased capacity.

This can be seen as an explanation for the rapid decay in its settling time as the addition of LSTM
cells would increase the specificity of particular cells and exhibit dynamical properties aligning
with effectively memorizing pieces of the training set.

7.6 Conclusion

In this chapter, we proposed a method of response characterization for LSTM networks to predict
cell-contributions to the overall decision of a learned network on both the cell and network-level
resolution. We further verified and validated our predictions by performing an ablation analysis
to identify cell’s, which contributed heavily to the network’s output decision with our simple
response characterization method. The resulting method establishes a novel building block for
interpreting LSTM networks. The LSTM network’s dynamic-space is broad and cannot be fully
captured by fundamental input sequences. However, our methodology demonstrates that practical
sub-regions of dynamics are reachable by response metrics, which we use to build a systematic
testbench for LSTM interpretability. We have open-sourced our algorithm to encourage other
researchers to further explore the dynamics of LSTM cells and interpret the kinetics of their
sequential models. In the future, we aim to extend our approach to even more data modalities
and analyze the training phase of LSTMs to interpret the learning of the converged dynamics
presented in this work.
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CHAPTER

Designing Interpretable RNNs for
modeling Analog Integrated Circuits

8.1 Motivation

© [A8-Chapter8, 2017] — One challenging issue in the pre-silicon verification process of recently
produced analog integrated circuits (IC)s is the development of high-performance models for
carrying out time-efficient simulations. Transistor-level fault simulations of a single analog IC
can take up to one or two weeks to be completed. As a result, over the past years, several attempts
to develop fast behavioral models of the analog ICs have been investigated. Examples include
SystemC, Verilog HDL, Verilog AMS, and Verilog-A models, which in principle, can realize very
accurate models [Narayanan et al., 2008, Shokrolah-Shirazi and Miremadi, 2008, Pécheux et al.,
2005, Zhao and Cao, 2006]. However, the development of such models is not automated, and
the associated human effort is considerable [Narayanan et al., 2008]. Moreover, this approach
is unlikely to scale up to large libraries of existing analog components. Another example is
the real number of modeling (RNM). In this method, analog parts of a mixed-signal IC are
functionally modeled by real values, and they are used in the top-level system on chip verification
[Balasubramanian and Hardee, 2013]. RNMs are fast and cover a large range of circuits. However,
for analog circuits, including continuous-time feedbacks or detailed RC filter effects, it is not
recommended [Balasubramanian and Hardee, 2013]. Moreover, RNM is not appropriate to be
employed for circuits that are sensitive to nonlinear input-output (I/O) impedance interaction.

Here we propose an alternative machine-learning approach for automatically deriving neural
network (NN) abstractions of integrated circuits, up to a prescribed tolerance of the behavioral
features. NN modeling of the electronic circuits has been used in electromagnetic compatibility
(EMC) testing, where the authors modeled a band-gap reference circuit (BGR) by utilizing
an echo-state neural network [Magerl et al., 2015]. The developed NN model has shown a
reasonable time performance in transient simulations; however, since the model is coded in
Verilog-A, simulation speed-up is limited. In [Hasani et al., 2016], authors used a nonlinear
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autoregressive neural network with exogenous input (NARX) for modeling the power-up behavior
of a BGR. They demonstrated attractive improvements in the time performance of the transient
simulations of the analog circuit within the Cadence AMS simulator by using this NARX model.

In this chapter, we take a compositional approach for learning the Overall time-domain behavior
of a complex multiple-input multiple-output (MIMO) system, CompNN. CompNN learns in a
first step, for each input i and each output j a small-sized nonlinear auto-regressive NNs with
exogenous inputs (NARX) representing the transfer-function f;; from i to j. The learning dataset
for h;; is generated by varying only input i of the MIMO system and keeping all the other inputs
constant. In a second step, for each output j, the transfer functions 4;; learned in Step 1, one for
each input i, are combined by a (possibly nonlinear) function f;, which is learned by employing
another NN layer. The training dataset, in this case, is generated by applying all the inputs
at the same time to the MIMO system. Once we constructed f; for each output j, the overall
output function is obtained as f=(fi,...,f). We evaluate our approach by modeling the main
time-domain behavioral features of a CMOS band-gap voltage reference circuit. We initially
extract such features from the BGR circuit by using our I/O decomposition method. Consequently,
we define trimming, load jump and line jump as the main behavioral features of the circuit to be
modeled. Individual small-sized NARX networks are designed and trained in order to model the
BGR output responses. We recompose the trained models by stacking a second layer network in
a time-delayed neural network (TDNN) structure. The second layer is then trained in order to
reproduce the output of the BGR. Such implementation provides us with an observable model
where one can define a one-to-one mapping from specific behavioral features of the system to
certain parts of the model. Finally, we employ our neural network model in transient simulation
of the BGR and evaluate its performance. This is done by utilizing a co-simulation approach
between MATLAB and Cadence AMS Designer environment [Cadence, 2017]. We demonstrate
that by using such a 2-layer neural network structure, we can achieve one order of magnitude
speed-up in the transient simulations.

The rest of the paper is organized as follows. In section II, we introduce our compositional
approach to developing neural network models and define the case study. In Section III, we
describe the NARX neural network architecture and identify the optimal quantity of components
to be used in the neural network for each behavioral response. In Section IV, we explain the
training process performed on the network and explore the performance of the designed models.
Subsequently, in Section V, we train the second layer with the aim of merging the behavioral
models into a single block. Finally, in Section VI, we employ a co-simulation approach for
simulating our MATLAB/Simulink neural network model into Cadence Design environment and
illustrate the performance of the network.

8.2 CompNN for MIMO system modeling

LetI ={ij,iy,...,i,} be the vector of the defined inputs to a MIMO system, and H = {hy,h,, ..., hy }
be the vector of nonlinear transfer functions delivering the corresponding output for each input
exclusively, each output of the system is then constructed as O = f(0y, 03, ...,0,,) where f,
depending on the device under test (DUT), can be a linear or nonlinear function. As a result, we
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8.3. Narx Neural-network architecture

train small-sized neural networks for modeling each component of vector H, and subsequently,
we estimate the function f for merging such components by a second layer NN. We call such a
compositional approach CompNN. CompNN provides us with the ability of mapping particular
parts of the neural network model to specific behavioral features of the DUT and therefore having
an observable model.

We demonstrate the performance of our method by developing a NN behavioral model of an analog
integrated circuit: CMOS band-gap voltage reference circuit (BGR). A BGR outputs constant
voltages (in our case 1V and 0.49V) regardless of possible variations caused by temperature
change, power supply and load properties. Figure 8.1A depicts a symbolic representation of our
BGR. The circuit is constructed from 50 transistors. We define the inputs to the system to be
the power supply (Vpp) and three digital trimming inputs. A load-profile can be applied to the
output-pin of the circuit (1V-Out). We, therefore, consider the load-profile as an input signal as
well. Thus, the circuit realizes a multi-input single-output (MISO) dynamic system, which is a
particular case of a MIMO system.

Figure 8.1B shows the BGR behavioral representation where the circuit comprises several
behavioral features such as:

Power-up —, which is the activation of the power supply with several slopes and voltage levels.

Trimming inputs —, which enables the circuit to generate eight different stable outputs between
0.9 and 1.1 on its 1V-output pin. There are three digital trimming inputs.

Load jump — demonstrates the variations that occurred on the output voltage when a current load
is applied.

Line jump — models the response of the BGR when there is a line jump on the power supply of
the circuit.

Features are consequently recomposed by the function f and create the output of the circuit.

In [Hasani et al., 2016], authors employed a NARX NN for modeling the power-up behavior
of the BGR. In this chapter, we model the rest of the decomposed features and thus complete
the behavioral modeling of the circuit. We merge the behavioral features by approximating the
function f using a second layer, time-delayed neural network.

8.3 Narx Neural-network architecture

Although the transfer function of a BGR is in principle constant, this is in practice highly
nonlinear. As a consequence, modeling of the time-domain features requires powerful nonlinear
system identification techniques and solutions. A nonlinear autoregressive neural network with
exogenous input (NARX NN) appears to be a suitable framework for deriving approximations,
up to a prescribed, maximum error, of the BGR. It has been previously demonstrated that a
recurrent nature of the NARX NN topology consisting of only seven neurons and three three-time
input-and-output delay components is able to precisely reproduce the turn-on behavior of the
circuit [Hasani et al., 2016].
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Figure 8.1: CMOS band-gap voltage reference circuit (BGR) A) Symbolic representation of the
circuit schematic. B) Behavioral representation of the circuit.

In this chapter, we use the NARX architecture for modeling, in addition, the trimming, load
jump and line jump behaviors of the BGR. The output of the network is constructed from the
time-delayed components of the input signal X (7) and output signal Y (¢), (see, for example,
[Siegelmann et al., 1997]):

Y(Z) :f(X(tf 1)7X(t72)7“-7x(t*nx)7

Y(t—1),Y(t—2),..Y(t—ny)). @1

The n, and the n, factors, define the input and output delays, that is, the number of discrete time
steps within the input and the output histories that the component has to remember, in order to
properly predict the next value of the output[Billings, 2013]. n = n, +n, is the number of input
nodes.

The size of the hidden layer is highly dependent on the number of input nodes. There are several
ad-hoc approaches for defining the appropriate number of hidden neurons. For instance, one of
the popular methods prescribes that the number of neurons within the hidden layer should be
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8.3. Narx Neural-network architecture

Table 8.1: NARX network architecture for each of the BGR behavioral features

Features { of delay components # of hidden neurons

Trimming 3 10
Load Jump 3 7
Line Jump 3

Exogenous Input

Output

Bias

Sum

Figure 8.2: NARX neural network architecture. Note that the network realizes a recurrent
topology where the output is fed-back into the input layer and causes further refinements on the
predicted output signal Y1.

Table 8.2: Transient simulations performed for the training data collection purposes

Simulation  Simulation Time  CPU time Input Output  { of samples
Trimming 100 us 145 Trimming inputs Vouty 695
Load Jump 540 us 1.3s Load Profile Vouty 433
Line Jump 200 ps ls Vop Vouty 501

between the number of input nodes [Heaton, 2008] and output nodes. We perform a grid search
for choosing the optimal number of the delay components and hidden layer neurons [Hsu et al.,
2003]. A hyperparameter space (d,h), consists of two parameters representing the quantity of
delay components d, and the number of hidden-layer neurons 4. Parameter d is chosen from
aset D={1,2,...,7} and h from the set H = {1,2,...,15}. The Levenberg-Marquardt back
propagation is performing a parameter optimization where the error of the validation dataset for
each architecture pair (d,h), is calculated in the course of the training process. We ultimately
select the architecture pair which results in the least validation error. Table 8.1 depicts the optimal
number of delay components and hidden neurons chosen for realization of individual BGR
features. As the output layer is a regressor, it comprises only one node.

The NARX architecture, therefore, is designed for each behavioral task, as shown in Figure
8.2. In this architecture, weighted input components synapse into the hidden layer nodes with
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an all-to-all connection topology. We evaluated different activation functions such as (Elliot,
logistic sigmoid, and tanh) and achieved the best performance by using a hyperbolic-tangent
activation-function:

N
H = tanh( Z (wijXi) +bj), (3.2)

i,j=1

where H is the output of the hidden layer, w;; represents the synaptic weight of the input X, from
input node i to hidden node j and b; depicts the bias weight applied to the hidden neuron j. The
output of the NARX network is constructed as a linear sum of the weighted Hidden layer outputs.
The network is designed in MATLAB[Demuth et al., 2015].

8.4 Training process and network performance

In order to collect adequate training datasets for teaching the NARX networks for the three
behavioral features of the BGR that is, trimming, load jump, and line jump, we perform three
transient simulations on the BGR by using the AMS simulator within the Cadence environment.
Table 8.2 shows the details of the performed simulations and the collected datasets.

We aim to train a specific NARX network for each of the behavioral features where we use the
input data as the exogenous input to the neural network and the output data as the target values
to be learned. In order to gain high precision in the training process, we use the network in
a feedforward topology in which the input of this topology consists of the original inputs and
outputs, plus all the delayed inputs and outputs, up to their maximum input and output delays,
respectively [Hasani et al., 2016]. A Levenberg-Marquardt (LM) back-propagation algorithm
is employed for training each network [Marquardt, 1963]. The LM learning method, which is
a modified version of the Gauss-Newton training algorithm, results in fast convergence of the
gradient to its minimum since it is unaccompanied by calculation of the Hessian matrix. We
initially define a cost function as follows:

E(w.b) = % Y (FOw b= 17, (83)

kek

where E (w, D) stands for the error rate as a function of the weight w, and bias values b, f(w,b);
is the output generated by the neural network and # is the target outputs. We then try to minimize
the error function for each training iteration with respect to the synaptic weights. Aw which is
calculated by the LM method and it is given by:

Aw = [T (w)I(w) + 1]~ (w)(f (w) —1), (84)
Accordingly, the updated value of the weights is computed as:
Whew = W+ Aw. 8.5)

where J(w) is the Jacobian matrix comprising the first-order derivatives of the error function
with respect to weight values. Parameter 1 is the key to the fast convergence [Hagan and
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Figure 8.3: Network performance of the trimming, load jump, and line jump NARX behavioral
models. A, B and C display the performance of the NARX neural network model of trimming,
load jump and line jump, respectively, throughout the training process. The MSE is reduced
drastically by each training step. In all three cases, the process terminated as soon as the
validation dataset error stopped descending after six consequent epochs. D, E, and F show the
error histogram of training samples for the NARX model of trimming, load jump, and line jump
behavior, respectively. Note that most of the instances’ error are close to the zero error line for
each case. G, H, and I represent the output of the band-gap circuit together with its neural network
response for trimming, load jump, and line jump behaviors, respectively. They also show the
generated output error per sample.

Menhaj, 1994]. When this parameter is zero, the LM method realizes the common Gauss-Newton
algorithm. If 1 increases throughout the training process, it is multiplied by an Ni;creqse Value. On
the contrary, when a training step results in a decrease of the value of 1), its value gets reduced by
a Nyecrease Value. As a result, the cost function moves in a fast way towards the error reduction
within each training epoch. The parameters’ initial values and descriptions employed within the
LM training algorithm are summarized in the Table 8.3.
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Figure 8.4: Linear regression and error auto-correlation function (ACF) representation of the
NARX behavioral models. A, B, and C show the regression analysis, which is performed on
the behavioral features, respectively, for the trimming, load jump, and the line jump. On the
left-hand side axes of each regression plot, the fitting line function of the NARX output and the
selected target values is computed. Note that R stands for the regression coefficient. D, E, and F
demonstrate the error ACF calculated for our NARX models. Blue bars represent the correlation
distribution of the lagged errors, and the red lines are the 95% confidence bounds (limit lines are
located at an error correlation correspond to +2 X standard error (SE)). For an ideal model, the
error ACF will be a single bar at the lag zero while for a reliable model most of the lagged error
components are located within the confidence boundaries.

Table 8.3: LM training algorithm parameters

Parameter Name Initial Value Description

max_epochs 1000 Maximum number of training iterations
ideal_error_value 0 Ideal error rate

max_re finement 6 Maximum validation error descending failure
min_cost_function 1077 Cost function minimum Value

eta 0.001 7 initial value

eta_decrease 0.1 1N decrease factor

eta_increase 10 7 increase factor

max_eta 1010 1 Maximum 7

max_time inf Maximum training time

For starting the training process, the collected samples are randomly divided into three data
subsets consisting of:

e Training set (70%): This dataset is employed during the training process.

e Validation set (15%): This dataset is used for generalization and validation purposes. It
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8.4. Training process and network performance

also plays a role in the termination of the training process.

o Test set (15%): This dataset provides an additional evaluation test after the training phase.
It is not deployed during the learning process.

The training process terminates as soon as one of the conditions mentioned below occurs:

e No further refinement of the validation-dataset error-function is observed after max_re finement

consequent training epochs.

The cost function is minimized to ideal error_value.

1 goes higher than max_n.

The maximum number of training iterations is reached.

e The time of the training exceeds its maximum value.

The Error function drops below min_cost_function.

Figure 8.3 illustrates the training performance of the three NARX networks, together with their
corresponding error histogram. In all cases, the training process is concluded when no further
reduction on the validation dataset error is noticed after six sequential training iteration. Moreover,
it is observed that within trimming, load jump, and line jump, over 95% of the training samples
have an average error of 7 x 1073, 5.6 x 1073 and 1.4 x 1073, respectively. The time-series
responses of the trimming, load jump, and line jump models, during the training process, are
plotted in Figure 8.3 G, H and I, correspondingly. Note that the NARX networks precisely follow
their target values.

In the case of the Trimming network, an input consisting of various trimming sets is applied as
the training dataset network. The output varies around 1V whenever the trimming values toggle
to a different configuration. Note that the 1V output of the BGR is modeled in this work. In
the case of the load-jump network, two different current load profiles are separately applied to
the 1V and 0.49V output of the BGR. Since the 0.49V output of the BGR is constructed from a
resistor division on the 1V output pin, we expect to observe the voltage change caused by the
load applied to the 0.49V output on the 1V pin. Therefore, as input to the load jump network,
we take both load profiles into account. Finally, for the line jump, small variations on the power
supply of the circuit are considered. In the ideal situation, we expect to see no change in the
output. However, the output slightly varies, as it is shown in Figure 8.31. The figure shows small
fluctuations around 1V in the order of 10~ due to a power supply variation of 10%. We notice
that the line jump network imitates the behavior of the target values with decent accuracy.

Furthermore, linear regression is performed at the output layer of the neural network. The
regression performance of the NARX network for each individual behavioral feature is shown in
Figures 8.4A-C. The regression coefficients R are calculated to be close enough to R = 1, which
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is the case of an ideal model. Moreover, the fitting-line function between the output of the NARX
and target values are computed for each network.

In order to assess the efficiency of the network and the training process, we calculate the error auto-
correlation function (ACF) in each case. The ACF explains how the output errors are correlated
in time [Box et al., 2015]. Let the output error time-series, e(¢), be the difference between the
generated output of the NARX network, Y (7), and the target values, T'(¢), e(t) =Y (1) — T(¢). The
error correlation rate for the lag i, f;, is computed as follows:

5 ZtT:i+1 (e —&)(e—i— @)

l Y (e —2)?
where T is the number of lags in time, which in our case is set to 20 and ¢ stands for the average
of the output error time-series. Ideally, the AFC comprises a single bar at the lag zero and the
correlation rates of the other lagged-error components are zero. For a reliable model we set a 95%
confidence limit equal to +2SE,,, where SE is the standard error for checking the importance of
the i’ lag for the autocorrelation, f;, and it is roughly calculated as follows:

) (8.6)

(1+257) p2)

T 8.7

SE, =
Figures 8.4D-F show the error ACF plots for our trimming, load jump, and line jump networks,
respectively. The horizontal red lines are the 95% confidence bounds. Note that in all cases, most
of the error autocorrelation samples are within the confidence limits. This underlines the accuracy
of the model.

Furthermore, in order to observe the behavior of the trained NARX models after the training
process, we perform validation simulations by applying training datasets and datasets different
from the training sets to the network. Figures 8.5A-F show the applied input profiles together
with the time response of the networks, trimming, load jump, and the line jump. We observe
that the neural network’s output reasonably follows its target values in all cases. Based on the
specification of our BGR, the acceptable error-rate at the 1V-output is 5%. Our neural network
models generate a response in the case of different input datasets (Figures 8.5D-F), which satisfy
such a condition.

Note that once the training process is terminated, the simulation time of the trained neural network
is very fast. The CPU time recorded by MATLAB to perform our validation simulations is, on
average, in the range of some milliseconds. Our learned models show improvements in the time
performance by a factor of 17 when compared to their analog counterparts, during transient
simulations. We experimentally verify such results in the following.

8.5 Recomposition function: A time-delayed neural network layer

In this section, we select a recomposition function f for combining behavioral models of the
BGR, including the power-up behavior. By using the LM back-propagation algorithm, we train a
time-delayed neural network (TDNN) comprised of three input delay elements and 200 hidden-
layer neurons to be able to take the generated output of the four pre-trained NARX models and to
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8.6. Co-simulation of Matlab/Simulink models and analog design environment

predict the correct 1V-output pin of the BGR. The structure is selected with the same approach
as that of NARX models. Figure 8.6A represents the structure of the two-layer network. The
network response to the training and test dataset is shown in Figure 8.6B and 8.6C, respectively.
Matlab CPU time for executing the simulation of the network is approximately 50ms.

8.6 Co-simulation of Matlab/Simulink models and analog design
environment

Here we utilize the Cadence AMS Designer/MATLAB co-simulation interface in order to evaluate
the performance of the designed neural network model within the Analog Design Environment
(ADE) of Cadence software, where we execute analog IC’s fault simulations [Cadence, 2017].
Inside the co-simulation platform, a coupling module is provided in order to link Simulink and
Cadence schematics environments. Figure 8.6A and 8.6B show the simulation environments in
Simulink and Cadence schematics, respectively. We apply inputs to the neural network block in
Simulink and simultaneously run a transient simulation in the Cadence ADE. Figure 8.6C and
8.6D depict the results of the co-simulation in case of training input dataset and test input dataset,
correspondingly. The total CPU time for such transient simulations is calculated as 1.07s, while
the same simulation of the transistor-level BGR takes 17.8s to be completed. As a result, we gain
a simulation speed-up by a factor of 17.

8.7 Conclusions

We employed a new neural network modeling approach for complex MIMO systems (CompNN).
We modeled individual I/O behavioral functions of the system by training NARX neural networks.
We then merged the overall behavioral features by training a second layer TDNN. CompNN
enabled us to define a one-to-one mapping from specific behavioral features of the system to
certain parts of the model. We illustrated the performance of our modeling approach by designing
behavioral NN models for a CMOS band-gap voltage reference circuit. Individual, small-sized
NARX networks were designed and trained to imitate the trimming, load jump, and line jump
responses of the BGR. Such pre-trained networks, together with the power-up behavior, were fed
into a second time-delayed network in order to generate a single block representing the BGR.

The performance of the instructed networks was qualitatively and quantitatively analyzed by
carrying out linear regression analysis, computing the error auto-correlation function, and cal-
culating the error histogram for each model. We confirmed the level of generalization and the
accuracy of such predictive neural networks by illustrating the output response of the models
to various input patterns different from the training patterns. We subsequently created a single
neural network block by adding the second layer for merging the behavioral features and training
the network. Finally, we employed the designed network in a transient simulation and achieved
sensible enhancement in the time performance of the simulation.

For future work, we intend to exploit our NARX models in the verification of analog integrated
circuits, where the instantaneous response of the network, together with its high level of accuracy,
results in significant improvements in the performance of the pre-silicon analog fault simulations.
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Figure 8.5: Time-response of the trained neural networks. A, B and C represent the input and
output response of the NARX networks resembling trimming, load jump and line jump, after
the training process where a simulink block of the network is generated. Training input data
is applied to the network and its corresponding output is recorded. In B, we applied two load
profiles, one to the 0.49V output and the other one to the 1V output. Since the 0.49V output of
the BGR is created by using a resistor devision on the 1V output pin, at the output of the 1V pin
we see the effect of the load connected to the 0.49V, as well. D and E depict two different input
sets that are applied to the trained trimming neural network, in order to check the behavior of the
NARX network in case of input patterns unalike the training input pattern. The same is checked
for the load jump network in F. Note that the network generated a reasonable response in case of
dissimilar input patterns in both cases.
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Figure 8.6: Two-layer neural network structure. A) Four NARX behavioral models are fed into the
second layer network. B) Cadence schematic environment prepared to perform the co-simulation
of Simulink model in Cadence AMS Designer C) Response of the BGR (solid red line) and its
model (dashed blue line) to the training data. D) The response of the circuit and the model to the

test pattern.
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CHAPTER

Conclusions

The goal of this thesis was to delve into the properties of recurrent neural networks in continuous-
time control spaces, to build more transparent RNN agents. In the following, we present our
conclusions of the methods proposed in the thesis based on the order of chapters and pursue on
discussing more formal critiques.

9.1 Summary Notes on Chapter 2

In Chapter 2, we motivated the advantages of using continuous-time (CT) neural network models
and introduced a regularization method for learning state-stable CT-RNNs. In this regard, we
determined a novel loss regularization method that, based on the Gershgorin circle theorem,
forces the eigenvalues of the weight transition matrix of a linear CT-RNN to be strictly negative,
thus ensuring its stability.

Note that this loss does not mathematically prove the stability of the closed control-loop system.
We aimed to improve the stability of a deployed linear dynamical system (LDS) that is learned in
an end-to-end fashion on fixed-length sequences. Rigorously proofing the stability of any closed
control-loop system requires detailed knowledge and strong assumptions about the dynamics
of the control environment. This prerequisite is antagonistic to the idea of end-to-end learning,
which demands only minimal prior knowledge and assumptions.

An immediately related alternative to the Gershgorin regularization technique we proposed here,
would be the use of the well-established Routh-Hurwitz stability criterion [Hurwitz, 1895] from
control theory. This method suggests that an LDS is stable if all roots of the characteristic
equation fall strictly on the right side of the s-plane. This is equivalent to the condition imposed
by the Gershgorin loss on the weight matrix of an LDS to having negative eigenvalues.

Furthermore, we illustrated that our approach could be stacked with complex architectures such
as multilayer perceptrons and convolutional neural networks. We showed that LDS could match
and even surpass the generalization ability of the existing nonlinear RNN models. Studying the
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Figure 9.1: The latent representation of the Trajectory length of the output of a single layer LTC,
ODE-RNN and CT-RNN exposed to a circular trajectory input.

stability properties of the resulting stacked nonlinear models and the stable-LDS is undoubtedly
a possible research direction to take to develop end-to-end deep learning systems with safety
guarantees.

9.2 Summary Notes on Chapter 3

In Chapter 3, we formulated a new brain-inspired instance of CT-RNNs, namely the liquid-time
constant networks (LTC). We analyzed their properties and found activity bounds on their neural
state dynamics. We illustrated how their dynamics are more expressive than standard CT-RNNs.
We showed their superior performance compared to the other RNNs in time-series processing
tasks. We experimentally demonstrated that LTCs possess compelling generalization capabilities,
due to their biologically plausible dynamical representation, which resembles a dynamic causal
model.

The universal approximation theory broadly explores the expressive power of a neural network
model. A more rigorous measure of expressivity is demanding to compare models, specifically
those networks specialized in spatiotemporal data processing, such as LTCs. Perhaps, the advances
made on the expressive power of static deep learning models could be helpful to theoretically and
quantitatively support our experimental evidence on the superiority of LTC models in terms of
their expressivity to that of standard ODE-RNNs and CT-RNNs.

For instance, one can construct networks of the same size for LTCs, CT-RNNs, and ODE-RNNSs,
and compare the exponential growth in the number of linear regions of these models [Montufar
et al., 2014]. Alternatively, another measure of expressivity, such as the trajectory length growth
[Raghu et al., 2017], can be used to evaluate how a neural network model transforms a given input
trajectory (e.g., a circular 2-dimensional input), by passing through its layers. Then, by measuring
the length of the output trajectory, projected back in the input space, one can quantitatively define
this method as a measure for the expressiveness of a given neural model.

More precisely, the trajectory length is defined as the arc length of a given trajectory I(z), (e.g. a
circle in 2D space), by the following equation [Raghu et al., 2017]:
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9.2. Summary Notes on Chapter 3
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To elaborate on this further, we have designed an experiment, to measure the trajectory length of a
single hidden layer (layer width (N)=100 Neurons) LTC, CT-RNN and ODE-RNN. We initialized
the weights by .#'(0,02/N), and biases by .4 (0, 67). The weights corresponding to the similar
computational compartments of each model set to be the same. We perform one forward-pass to
| Ii(t) = sin(t)
| L(t) = cos(t)
which corresponds to a circular trajectory in 2D, shown by red in Fig. 9.1. Our preliminary
observations suggest a much longer transformation of the length for the LTC model, when we
projecting its 100-Dimensional output to a 2D latent space.

dI(t)
dr

ar

these networks by exposing them to an input of the form 7(z) , fort € [0,27],

A simulation instance of a forward-pass of the network, with randomized weights, is shown in Fig.

9.1. We delved deeper into this to see how would a trajectory length grow for a continuous-time
recurrent neural network by increasing its width (N). Fig. 9.2A represents an exponential growth
in the trajectory length by increasing the network size and demonstrates a steady one to two

orders of magnitude elevated growth for the LTC models compared to ODE-RNN and CT-RNN.

This is an interesting elementary observation as it suggests a fundamental difference between
time-continuous models and static deep learning architectures in terms of the dependency of
their trajectory length to their width. [Raghu et al., 2017] showed that the dependency of the
network-width for a static deep model (by ReLLU activation function) is only appearing in the base

d
of the exponential bounds on the growth of the trajectory as: E [l (z9) (t))} >0 ( i‘)}%ﬁ) 1(I(1)),

where z(9) (t)) is the projection of the trajectory of layer d of the network in the input space, N
is a layer’s width, and o,, is the standard deviation of the weights’ associated distribution. We
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observed, however, that a layer’s size for LTC-like models contributes to the exponent of the
trajectory length bound.

Moreover, the trajectory length bound proposed in [Raghu et al., 2017] for deep networks,
demonstrates that the scale (c2) of the weight’s distribution also contributes to the growth but
linearly as a base. However, we witnessed a different pattern for time-continuous models in
which the weights-scaling parameter, appears to contribute to the exponent, and in the case of
LTCs, having even a faster impact o< ¢*V4, as shown in Fig. 9.2B. This paramilitary investigation
confirms our experimental results, discussed in Chapter 3, by providing a quantitative measure
for expressivity. Moreover, crafting such theoretical bounds for the continuous-time networks
would be a great next step, and is part of our continued effort. Evidently, one can explore deeper
into this; for instance, we can ask how the change of the solver would affect the trajectory
length for models? What would be the outcome if we have more than a layer of ODEs as a
model? What is the notion of depth in the analysis of more sophisticated solvers with adaptive
time-step? To answer such questions, this thesis served as a base to start exploring the properties
of time-continuous neural network models.

9.3 Summary Notes on Chapter 4 and 5

In Chapters 4 and 5, we designed networks of LTC neurons and explored their performance in
many simulated and real-life robotic settings. The experiments proposed in these chapters are
rather small, which is a direct result of the nature of the networks we approached. The field of
connectome analysis is still in its infancy [Cook et al., 2019]. Up to a very recent discovery
of the mapping of the nervous system of adult fruit fly [Xu et al., 2020], humans had only
discovered the complete connectome of the adult C. elegans [White et al., 1986, Cook et al.,
2019]. Moreover, the most published connectomes were that of larva stage animals. Besides the
issue of obtaining a connectome, functional sub-circuits need to be identified by neuroscience
researchers. Accordingly, we believe that at this current stage, performing RL with an entire
Sfunctionally ambiguous connectome makes not much sense. Due to these two limitations, our
experimental evaluation may appear limited in terms of network size.

Furthermore, instead of scaling our experiments to the state-of-the-art in terms of size, we aimed
to diversify the nature of the tasks into standard RL tasks, Simulation to real-world applications,
and higher dimensional action and observational spaces to the degree that a neural circuit naturally
would allow.

As the field of connectome analysis is steadily growing, we are confident that our proposed
approach emerges as a significant viewpoint casting on network-design paradigms in RL and
Deep Learning, in more general application domains. Evidence of this analogy (though in a
supervised learning setting) was later proposed in Chapter 6.

In the context of Chapter 4, we also discovered an intriguing property of small and sparse
networks directly originated from nature, such as the Tap-withdrawal neural circuit of C. elegans.
We hypothesized that the network could be a natural lottery ticket winner [Frankle and Carbin,
2018], as a network to be trained and deployed in control environments. It is worth noting that
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9.4. Summary Notes on Chapter 6

a lottery ticket comprises a sub-circuit and its corresponding weight initialization. The TW
circuit realizes such a sub-circuit with 77% sparsity level and governs many aspects of the weight
initialization as well. For instance, in ordinary neural circuits (ONCs), the weight of a synapse
is determined not only by its scalar strength value but also by its type and polarity (excitatory,
inhibitory, or gap-junction). The type and polarity of all synapses were initialized to values
observed in the neuroscience literature, thus stood as a base for our claim of having lottery ticket
winners, provided by nature. This study offers a new perspective for many neurological-inspired
future pieces of research for machine learning, especially network structure optimization.

9.4 Summary Notes on Chapter 6

We then scaled the application of LTC-based networks in Chapter 6, to enable high-dimensional
information processing by a novel network design algorithm. LTC-based neural networks realize
compact autonomous control agents, while being robust to input artifacts, deploy causality, and
realize interpretable dynamics.

Black-box artificial intelligence algorithms are actively being used for sensitive and safety-critical
applications throughout society, resulting in consequential challenges in autonomy, healthcare,
and other domains. A large body of active research focuses on designing methodologies to explain
the black-box, hoping for alleviating some of these limitations. These approaches, however, are
likely to cause widespread confusion and bring about societal harms, such as fatal interactions of
machines and humans [Rudin, 2019]. We believe that the key is to instead, design novel machine
learning algorithms that possess interpretable skills inherently.

The work presented in Chapter 3 presented a novel methodology to design interpretable learning
systems in high-stakes decision making, such as autonomous driving, while achieving superior
performance compared to contemporary black-box machine learning models. To achieve this, we
configured a combination of scalable deep learning topologies with significantly small-sized LTC
networks to drive a car autonomously, with the following supremacy criteria. The control-network
of the intelligent agent consists of only 19 neurons wired by 253 synapses. For the same task, the
state-of-the-art black-box machine learning models are constructed from 1100 fully-connected
neurons with 4.94M synapses. Besides, our NCPs demonstrated between 200% — 1200% more
robustness to increasing input perturbations while driving, compared to state-of-the-art black-box
learning models that crash (tend to steer the car off-road) often by the increase of the input
noise. Nevertheless, we observed that our agents learned the actual causal structure of the
task; they attended to a road horizon consistently, throughout live driving tests, even when their
high-dimensional inputs are perturbed by noise, networks’ attention showed significantly better
robustness compared to other methods. More formally, the LTC compartment of an end-to-
end driving network with convolutional heads enforced a causal prior during training, over the
convolutional filters, so that their main attention be on the road’s horizon while driving. This
attribute became more sensible when we compare the attention maps of similarly designed end-to-
end networks that were equipped with other RNN compartments. The reason for this phenomenon
and the computational mechanism behind it is still an open question to be investigated.

The global network’s activity and the individual cells’ activity of our intelligent agents are
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interpretable, meaning that we could identify the function of every control neuron. This process is
practically infeasible for large-scale models, make their deployment in real-world decision-critical
applications challenging.

Additionally, it is worth noting that the recent breakthrough lines of research in Al, which
tackled the high-dimensional environments (e.g., Chess, Go, Atari, Starcraft II), took advantage
of tremendously large-scale learning systems and algorithms [Mnih et al., 2015, Silver et al.,
20164, Silver et al., 2017, Silver et al., 2018, Vinyals et al., 2019, Dabney et al., 2020]. The
real-world applications of equivalently large-scale environments, such as autonomous driving,
inevitably require high degrees of explainability to ensure humans’ safety. Achieving this
property is hard if not practically infeasible for such large-scale networks. In this chapter, we
identified outstandingly small neural networks that not only outperform the driving performance
of large-scale black-box deep learning models but also come with superior explainability and
robustness.

Real-world domains such as autonomous driving, robotics, health, and medicine, are surrounded
by environmental uncertainties, and demand for robust real-time decision making. Moreover,
similar to autonomous robot control, many applications deal with complex high-dimensional
input-output spaces that, when deployed in the real world, become safety-critical. The success of
LTC-based networks in autonomous control indicates that tackling the complexity of real-world
problems does not necessarily require complex deep neural network architectures.

9.5 Summary Notes on Chapter 7 and 8

In Chapter 7, We further investigated methods for interpreting modern RNN architectures. We
developed a novel dynamical system’s approach to reason about the internal dynamics of a
neural network. We showed the generalizability and scalability in a sequel of sequential data
processing applications. Finally, in Chapter 8, we demonstrated a real-life application of recurrent
networks and developed a compositional method to design them, to enhance interpretability while
conducting effectively integrated circuit modeling.

9.6 Future Directions

The findings of this dissertation open up prospective research opportunities. The study of more
detailed biophysical neural computation principles may lead to the development of better Al
systems. Several attempts have been initiated in this direction; an example is the OpenWorm
project [Sarma et al., 2018], in which we developed computational tools to investigate how the
nervous system of the nematode C. elegans gives rise to its behavior.

Moreover, we observed that sparse and purposely designed networks of LTC neurons (similar
to that of nervous systems) result in achieving better performances rather than densely wired
networks. We have empirically quantified this phenomenon by the notion of the maximum flow
rate. However, the fundamental reason for this phenomenon is yet to be studied.
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9.6. Future Directions

Extrapolation with continuous-time neural network models. An attractive yet unsolved re-
search question in the field of deep learning is how to encode extrapolation capabilities inside a
neural network? Our observations interestingly indicated that LTC-based networks could perform
extrapolation beyond the range over which they have been trained on. The foundation of the
existence of such skills has to be thoroughly investigated.

Closed-form solutions for Neural ODEs. The time-continuous models introduced in this
paper were all simulated and solved by numerical approximators (solvers). An attractive research
question would be whether a closed-form solution for such neural ODE:s is analytically achievable.
A potential closed-form solution would arguably enhance the algorithmic complexity of neural
ODEs.

Perceptron++ The LTC RNN model can inspire novel neural network architectures with nonlin-
ear synaptic propagation schemes as well. For instance, a perceptron model could be updated to
the following format:

¥(1) = Gwf(x) +b(x)),

where G is a sigmoidal function, f(x) and b(x) are arbitrary-chosen continuous functions, to
be investigated. Very recent evidence of existence of functional properties at the dendrites of
neurons [Gidon et al., 2020], supports the idea of Perceptron++, to think about building richer
neural representations.
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