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Kurzfassung

Wir untersuchen die Approximationen von skalaren Resonanzproblemen durch radiale kom-
plexe Skalierungsmethoden. Die Methoden basieren auf einer komplexen Skalierung der
radialen Variable, so dass die Resonanzfunktionen exponentiell gedämpft werden und sich
dadurch die Resonanzprobleme zu Eigenwertproblemen transformieren. Als Approximation
wird das unbeschränkte Gebiet durch ein Endliches ersetzt und eine homogene Dirichlet
Randbedingung am künstlichen Rand gefordert. Wegen des starken Abklingens der Eigen-
funktionen wird erwartet, dass der begangene Fehler gering ist. Das entstandene Problem
kann weiters mit gebräuchlichen numerischen Verfahren, wie zum Beispiel Finite Elemente
Methoden, diskretisiert werden. Die Analysis des Letzteren kann auf ähnliche Weise wie
für klassische auf endlichen Gebieten gestellte Eigenwertprobleme durchgeführt werden,
während die Analyis der Gebietsstutzung typischer Weise spezielle Techniken erfordert.

Wir stellen ein neues Konzept basierend auf einigen Kernideen vor, um die Approxima-
tionen zu untersuchen. Zuallererst fassen wir die Gebietsstutzung als konforme Galerki-
napproximation auf. Weiters greifen wir auf Literatur über die Analysis von Approximatio-
nen holomorpher Eigenwertprobleme zurück. Mittels Multiplikationsoperatoren konstru-
ieren wir sogenannte T-Operatoren, um die untersuchten Probleme in die Form kompakter
Störungen koerziver Operatoren zu bringen. Wir stellen ein Rahmenwerk vor, um die
Approximationen von schwach T-koerziven Operaten zu untersuchen. Wir finden eine Be-
dingung an die Galerkinräume, sogenannte T-Kompatibilität, um die spektrale Konvergenz
zu garantieren (inklusive Konvergenzraten von Eigenwerten und Eigenräumen, etc.). Wir
wenden diese Theorie an, um Konvergenzresultate für Approximationen (basierend auf
radialer komplexer Skalierung) von skalaren Resonanzproblemen zu erhalten.
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Abstract

We consider the approximation of scalar resonance problems by means of radial complex
scaling methods. The methods are based on a complex scaling of the radial variable so that
resonance functions become exponentially damped and the resonance problems transform
to linear eigenvalue problems. As an approximation the unbounded domain is truncated
to a finite domain and a homogeneous Dirichlet boundary condition is imposed on the ar-
tificial boundary. Due to the rapid decay of eigenfunctions the error generated is expected
to be small. Consequently the resulting eigenvalue problem can be discretized by standard
numerical schemes such as finite element methods. The analysis of the latter can be per-
formed similarly to that of classical eigenvalue problems posed on bounded domains, while
the analysis of the domain truncation is typically more laborious.

We propose a new framework to analyze the domain truncation based on several ideas.
At first we interpret the domain truncation as a conform Galerkin approximation. Secondly
we apply theories of holomorphic operator function eigenvalue approximation. We further
construct so called T-operators by means of multiplication operators to transform the
investigated problems into the setup of compact perturbations of coercive operators. At last
we establish a condition on the Galerkin spaces, which we call T-compatibility, sufficient to
ensure spectral convergence (including convergence rates of eigenvalues and eigenfunctions,
etc.). We apply this framework to obtain convergence results for approximations (based on
radial complex scaling) of scalar resonance problems.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Contents

1 Introduction 1
1.1 Transparent boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Perfectly matched layer methods . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Time-harmonic equations . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Time-dependent equations . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Main ideas of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Helmholtz resonance problems 13
2.1 Separation of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Spherical Hankel functions . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Resonance problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Complex scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 The complex scaled eigenvalue problem . . . . . . . . . . . . . . . . 24
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1 Introduction

We consider differential operator eigenvalue problems posed on unbounded domains. Such
problems are usually referred to as resonance problems. They are relevant in various fields
of physics and engineering [Zwo99]. We are interested in the numerical approximation of
those. We focus on acoustic and electromagnetic problems. Standard numerical schemes
such as finite element or finite difference methods require a bounded domain and hence
cannot be applied directly to discretize resonance problems.

1.1 Transparent boundary conditions

Common numerical methods require a bounded domain. There are several ways to over-
come the numerical obstacle of unbounded domains. The common approach is to consider
a truncated domain and impose either explicitly or implicitly a suitable boundary con-
dition at the artificial boundary. The artificial boundary condition has to be chosen so
that solutions to the new problem equal solutions to the original problem in the truncated
domain. Such boundary conditions are referred to as transparent, non-reflecting or radia-
tion boundary conditions. As a second step one has to construct a numerically realizable
approximation to the exact transparent boundary condition. There are different ideas to
construct such transparent boundary conditions. In this section we will briefly review these
methods.

Boundary element methods A classical approach is the reformulation of resonance prob-
lems as boundary integral equations (BIE) [CK98], [Kre99] which only involve the traces
of functions. If the medium is homogeneous the problem can be formulated solely on the
boundary, while a non-homogeneous medium requires the coupling with a volume equation
[HM06]. If the boundary is finite standard Galerkin discretizations can be used to approx-
imate the integral equations. We refer to [SS11] for so-called boundary element methods
(BEM). One drawback of those is that the fundamental solution depends on the eigen-
value parameter and hence non-linear/holomorphic (matrix) eigenvalue problems have to
be solved. Another drawback is that the arising system matrices are dense, which poses
numerical difficulties to matrix eigenvalue solvers. To overcome the latter special matrix
approximation techniques have been developed, see e.g. [Hac09]. Since [AST+09], [Bey12]
there exist very efficient holomorphic matrix eigenvalue solvers. We refer to [SU09], [WX13]
for numerical experiments for scalar and electromagnetic resonance problems. We refer to
[Ung09], [SU12] for a convergence analysis for scalar problems and to [Ung17] for a conver-
gence analysis for electromagnetic problems.

1
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1 Introduction

Dirichlet-to-Neumann operators A more ad hoc technique is to truncate the domain and
introduce a Dirichlet-to-Neumann (DtN) operator at the artificial boundary, which is based
on an explicit formula of solutions. Dirichlet-to-Neumann operators are also referred to as
Calderon operator [Ces96], boundary component map [CK13] or Poincaré- Steklov operator
[Hip02]). Again the DtN operator depends holomorphicly on the eigenvalue parameter
and therefore the linear structure is lost. Consequently discrete approximations to the
DtN operator can be constructed as in [Mas87], [Giv92], [LVLH92]. While classical DtN
operator approximations are based on a series representation, a rather new approach based
on the Fourier transform has been used in [Ton15], [DFT18], [BBDFT18].

Infinite element methods Another ad hoc technique are infinite element (IE) methods
[DG98], [Ihl98], [DI01], [DS06]. They are based on a representation of solutions in terms
of Hankel functions. As the eigenvalue parameter enters the argument of the Hankel func-
tions the arising system matrices are non-linear/holomorphic with respect to the eigenvalue
parameter.

Absorbing layers A very simple technique are absorbing layers (AL) [CL08], [FLCB08].
Thereby the material coefficients are replaced by complex valued ones resulting in damped
solutions. Consequently the domain is truncated and a homogeneous boundary condition
is imposed at the artificial boundary. The method features the advantage that it preserves
the linear eigenvalue problem structure. However, very large layers have to be used to
achieve meaningful results. Moreover, there exists no mathematical justification for this
approach.

Complex scaling/perfectly matched layer methods Since the 1970s a popular method
has been used to compute resonances in molecular physics [Sim78], [Moi98]. This method is
referred to by various names, e.g. complex scaling (CS), analytic dilation (AD) and spectral
deformation (SD). As absorbing layer methods the complex scaling technique preserves the
linear eigenvalue problem structure. In contrast to absorbing layer methods, this method
offers a profound mathematical framework with the Aguilar-Balslev-Combes-Simon Theo-
rem at its core. We refer to the book of Hislop and Sigal [HS96]. In the 1990s Bérenger
introduced his perfectly matched layer (PML) method [Bér94], [Bér96b], [Bér96a] which be-
came very popular for all kinds of wave propagation problems. In [CW94], [TC97], [CM98b]
the PML method was recognized to be a complex scaling technique. We refer to [HHK04],
[HHKS07] for resonance computations with PML/CS methods and to [Kim09], [KP09],
[Kim14], [HN15b] for numerical analysis of PML/CS methods for resonance problems.

Hardy space infinite element methods A rather new method which also preserves the lin-
ear eigenvalue problem structure are Hardy space infinite element (HSIE) methods [HN09],
[NHSS13], [RSS13], [HN15b], [Hal16], [HN18]. Despite the name, Hardy space infinite el-
ement methods are actually closer to PML/CS methods than to classical infinite element
methods. They are of special interest for backward wave phenomena [HN15a], [HHNS16].
The connection between complex scaling methods and Hardy space infinite element meth-
ods is elaborated on in [NW19].
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1.2 Perfectly matched layer methods

Absorbing boundary conditions At last we mention absorbing boundary conditions (ABC)
[EM77], [GK95], [Giv04] which work fine for time-dependent and time-harmonic scatter-
ing problems. However, they are not meaningful to formulate or approximate resonance
problems due to the exponential growth of resonance functions.

Inverted finite element methods For the same reason so-called inverted finite elements
[Bou05], [BMBB15] fail. Therein the unbounded domain is deformed to a bounded domain
and suitably weighted Sobolev spaces are employed.

1.2 Perfectly matched layer methods

Perfectly matched layer methods are based on a continuous complex coordinate transfor-
mation x 7→ x̃(x), the complex scaling, so that x̃(x) = x in the domain of interest. For
resonances in a suitable region of the complex plane the corresponding resonance functions
become exponentially damped by the transformation ũ = u ◦ x̃. Consequently a set of
equations is derived for ũ and due to the decay of ũ the resonance problem transforms to
an eigenvalue problem in a suitable standard Sobolev space. Furthermore the domain is
truncated and a homogeneous boundary condition imposed at the artificial boundary. Due
to the rapid decay of ũ the committed error is expected to be small. The derived problem
can consequently be discretized with standard numerical schemes such as finite element and
finite difference methods. The literature on perfectly matched layer methods is extremely
extensive. Nevertheless we try to give at least a rough survey and apologize to all authors
who do not find their work listed herein.

History and applications Since the 1970s the method of complex scaling/analytic dila-
tion/spectral deformation has been used in molecular physics [Sim73], [Sim78], [RS78],
[Sim79], [CFKS87], [HS96], [Moi98], but did not attract much attention from scientists
in other fields. In the 1990s Bérenger introduced his perfectly matched layer method for
electromagnetic problems [Bér94], [Bér96b], [Bér96a], which is often described as a reflec-
tionless sponge layer. In [CW94] the method was recognized to be a kind of complex
scaling technique. The work of Bérenger had huge impact and PML methods were soon
applied to all kinds of wave equations such as time-harmonic acoustics [QG98], [TY98],
[HST00], advective acoustics [Hu96], [Hes98], [AGH99], [Hu01], linearized shallow water
equations [NNH04], elastodynamics [CT01], [BC03], poroelastic media [ZHL01], heat and
advection-diffusion equations [LN10], Schrödinger equations [NK11] and also non-linear
wave equations [DH07], [AK07] to name but a few references from engineering literature.
We mention the book [Bér07] of Bérenger. Recently PML methods have been applied to
other kinds of problems as well. E.g. problems which are posed in bounded domains, but
admit black hole phenomena [BBCCC16]. A further application of PMLs can be found in
domain decomposition methods [EY11], [LY16].

Physically correct and stable PMLs We note that despite their popularity the construc-
tion of physically correct and stable PML methods has to be executed with care. In
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1 Introduction

general PMLs have to be designed so that evanescent waves stay evanescent and propaga-
tive waves with positive group velocity become evanescent. While for some equations this
poses no problem at all it can lead to serious difficulties for PML methods if the equation
is anisotropic, advective or dispersive. Also heterogeneous domains like waveguides can
generate such difficulties since they cause dispersive effects (although the equation may
be dispersionless itself). While an unphysical PML for a time-dependent equation will
result in temporally growing solutions and hence be conspicuous, an unphysical PML for
a time-harmonic equation will result in unphysical solutions which may not look quali-
tatively differently to physical solutions. We refer to [Hu96], [Hu01], [Hes98], [TAC98],
[AGH99], [Hag03], [DJ03], [BFJ03], [BBBL06], [Nat06] for advective acoustics/linearized
Euler equations and to [BFJ03] for anisotropic elastodynamics. For the equations of those
references a geometric stability condition is presented by Bécache, Fauqueux and Joly in
[BFJ03]. We further refer to [Cum04] and the work of Kachanovska et. al. on dispersive
materials [BJKV15], [BJV18], [BJK17], [BK17], [CJK17]. Analysis of PMLs for cylindrical
waveguides is discussed in [BBBL04], [BBBL06], [SAC07], [BBCL14] and [HN15b].

Parameter optimization The application of a PML method involves the choice of many
different parameters such as the profile of the absorption function, the scaling of the ab-
sorption function, the layer thickness and the kind of discretization. Attempts to find
optimized parameters were made in [CM98a]. Druskin et. al. report [ADGK03], [DGK16]
optimal finite difference grids for PML, while [MDKP07] proposes an automatic hp-adaptive
discretization to improve the performance of the PML. Zschiedrich [Zsc09] proposes an al-
gorithm which automatically determines the layer thickness and mesh width. On the other
hand Bermudez et. al. use an absorption profile with blow up for their so-called exact PML
[BHNPR04], [BHNPR06], [BHNPR07], [BHNPR08]. A different kind of absorption profile
with blow up was also proposed in [HL05]. A blow up of the profile function leads to a
formulation posed on a bounded domain and has the advantage that no domain truncation
is necessary at the cost of fabricating singular coefficients. A performance comparison of
different profiles and different discretization methods is reported in [MDG14]. The conclu-
sion of this reference is that the proposed profiles by Bermudez et. al. admit an optimal
scaling of the absorption function and are hence favorable. The performance of exact PMLs
is also investigated in [CMH15]. An interpretation of Hardy space infinite element meth-
ods [Nan08] as composition of complex scaling and a “standard” infinite element method
was proposed in [NW19]. These methods decrease the number of method parameters as
well.

Comparison with other kinds of transparent boundary conditions We refer to [RGB10]
for a performing comparison between PML and absorbing boundary conditions in the time-
harmonic regime. The outcome of this reference is that these two methods perform quite
similarly.

Multiple scattering objects Following [GK04] an efficient realization of PML for multiple
very distant scattering objects is presented in [JZ12].
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1.2 Perfectly matched layer methods

Coordinate systems In [CW94] it was recognized that the PML method proposed by
Bérenger [Bér94] could be derived by a complex coordinate stretching. While the method
of Bérenger is based on a Cartesian coordinate stretching, [TC97] and [CM98b] proposed
coordinate stretchings based on cylindrical and spherical coordinate systems. The latter
is also the approach taken in the molecular physics literature [HS96]. Generalizations of
spherical scalings of the form

x̃(r, x̂) = r̃(r)n(x̂) + γ(x̂).

are possible. Thereby r is the variable which is complex stretched to r̃(r), x̂ runs through
the unit sphere, n is the direction of the scaling and γ describes the inner boundary of the
complex layer. Since only the variable r is stretched we refer to scalings of this form as radial
scalings. Two reasons call for such radial scalings. The first reason is due to inhomogeneous
materials, e.g. open waveguide structures [BBGH11]. For these the direction n of the
scaling has to be altered to ensure that the PML implies a physically meaningful radiation
condition. The second reason is that spherical scalings for elongated scattering objects
lead to unnecessary large computational domains which poses a performance loss. For such
geometries the inner boundary of the complex layer, i.e. the manifold described by γ, can be
adapted to a suitable hull containing the scatterer. We emphasize that these two variations
of spherical scaling can be performed (almost) independently of each other, although they
are commonly presented in a coupled form. For further reading on this topic we refer to
[LS01], [KM97], [ZKSS06], [Tre10] and to the more recent papers [CLX13] and [CCZ13].

Surprisingly the mathematical properties of the derived formulations can be quite differ-
ent depending on the choice of radial or Cartesian scaling.

We also mention [TC99], [LLS01] for derivation of PMLs via abstract differential forms.

1.2.1 Time-harmonic equations

For time-harmonic wave equations there exist two common problems of interest. For scat-
tering problems a solution to the partial differential equation with given frequency and
right hand side is sought. Differently for resonance problems a resonance frequency (also
referred to as scattering pole) together with a non-trivial solution of the homogeneous
partial differential equation is sought.

The formulation of any PML method to such problems starts with the derivation of a
complex scaling formulation of the underlying problem. For a sufficient analysis the next
step is to prove Fredholmness of the underlying operators. Further the domain is truncated
to a bounded one and the convergence of solutions for increasing layer size and/or scaling
parameter has to be established. At last the approximation of the truncated problem by
a numerical scheme, e.g. finite element or finite difference methods, needs to be ensured.
While the latter can be performed with standard techniques and does not need to be
discussed in great detail, the approximation of the untruncated problem by the truncated
problems is more intricate. The references given in this subsection are mostly concerned
with the latter topic. We note that to our knowledge there exist no results on this issue in
molecular physics research, i.e. on complex scaling/analytic dilation/spectral deformation
(in contrast to perfectly matched layers).

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

1 Introduction

Radial PML The first convergence analysis of spherical PML was conducted by Lassas
and Somersalo in [LS98] for acoustic scattering problems. Therein the artificial boundaries
are assumed to be spherical with increasing radii. The authors continued their work in
[LS01] wherein they considered also more general radial scalings. Hohage et. al. analyzed
radiation conditions for acoustic scattering problems with non-local radial symmetric po-
tentials [HSZ03a] and extended the results of [LS98] to those equations in [HSZ03b]. Bao
and Wu [BW05] established convergence for electromagnetic scattering problems. They
considered spherical artificial boundaries and convergence with respect to increasing radii
and/or profile scaling parameter. The analysis of [LS98], [HSZ03b], [BW05] indeed re-
lies on a spherical truncation boundary and employs a series or integral representation of
operators.

Bramble and Pasciak extended converge results for acoustic and electromagnetic scatter-
ing [BP07], [BP08] to non-spherical domain truncations. In [Kim09], [KP09] Kim and Pas-
ciak established convergence for acoustic resonance problems with non-spherical layer trun-
cations and increasing domains. Convergence of a PML formulation with a non-standard
integration by parts is achieved in [BPT10] for constant coefficient elastic scattering prob-
lems. While the discretization analysis of the truncated PML equations is usually uncon-
ditionally covered by standard techniques, [BPT10] requires a smallness assumption on
the profile scaling. The analysis of Pasciak et. al. is partially based on a reformulation of
equations to satisfy a G̊arding inequality. We note that all mentioned references require
a smooth profile function for their analysis, although this condition seems unnecessary in
practice. Apart from [LS01], [BW05] all former references require the scaling to be linear
after a permissible transition zone. Hence scalings based on power functions are not covered
by those.

Chen et. al. [CL05] proposed a scheme to match the errors committed by truncation
and discretization for two dimensional Helmholtz scattering problems. They choose PML
parameters based on an a priori estimate to obtain a neglectable error relative to the dis-
cretization error and apply an adaptive h-refinement lowest order finite element method.
The authors consider scalings based on power functions, radial domain truncations, a fixed
layer width, an increasing absorption and provide an analysis for their method. The scheme
is expanded to electromagnetic scattering problems in [CC08]. The analysis however, re-
quires a major assumption which is not proved. Generalizations to more general radial
scalings by Chen et. al. can be found in [CLX13] and [CCZ13].

Cartesian PML For time-harmonic equations a major difference between radial and Carte-
sian scalings is that for the latter an explicit reformulation satisfying a G̊arding inequality
is difficult and not known. Hence different analysis techniques have to be employed. Carte-
sian PML methods for time-harmonic equations were mainly investigated by Chen et. al.
and Pasciak, Bramble and Kim.

Chen and Wu proposed in [CW08] a scheme to match the errors committed by trunca-
tion and discretization for two dimensional Helmholtz scattering problems. They choose
PML parameters based on an a priori estimate to obtain a neglectable error relative to
the discretization error and apply an adaptive h-refinement lowest order finite element
method. The authors consider scalings based on power functions and equal absorption
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1.2 Perfectly matched layer methods

strength in both directions. They further provide an analysis of their scheme whereby
they consider a fixed layer width and an increasing absorption. However, to succeed they
require a major assumption which is not proved. In [CGX09] the work is extended to high
order discretizations and with their proposed refinement strategy the authors experience
exponential convergence w.r.t. the number of degrees of freedom. Chen and Zheng con-
sider in [CZ10] acoustic two dimensional scattering problems in two layered media. The
authors consider affine scalings with equal absorption strength in both directions. They
indeed prove a result which was merely assumed in the previous two works. For absorption
larger than an explicitly known bound the authors achieve convergence with respect to the
absorption scaling and/or the layer width.

Independently Kim and Pasciak undertook in [KP10b] a preliminary analysis for Carte-
sian PML for acoustic scattering problems in two dimensions. For such problems they
achieved convergence with respect to the thickness of the layer in [Kim09], [KP10a]. The
analysis therein requires the scaling to be smooth and linear after a permissible transi-
tion zone. The technique of Kim and Pasciak is different to that of Chen and Zheng and
employs an iteration argument. Other kinds of scalings for acoustic scattering problems
in two and three dimensions are considered by Bramble and Pasciak in [BP13] where the
authors prove convergence with respect to the layer width and/or the profile scaling. For
a certain profile form and increasing layer width convergence is proven in [BP12b] for elec-
tromagnetic scattering problems. By means of a special truncation boundary condition the
reflection argument of Bramble and Pasciak is extended by Chen et. al. [CXZ16] to elastic
scattering problems and convergence is obtained for a certain profile form and increasing
layer width. Note that for elastic systems convergence of discretizations to the truncated
problems cannot be obtained in a straightforward way. This is due to the “non-diagonal”
nature of the differential operator involved. We further refer to [Kim14] for a convergence
analysis of resonances for two-dimensional acoustic problems. Therein convergence is ana-
lyzed with respect to increasing layers under the assumption of a smooth scaling which is
linear after a permissible transition zone.

Waveguides The following references deal with closed isotropic (asymptotic) cylindrical
waveguides. Hence complex coordinate scaling has to be applied only in one direction.
Differently to homogeneous domains solutions in waveguides admit a modal representation
whereby each wave mode admits a different wavenumber. To treat the evanescent modes
correctly the complex scaling has to be asymptotically linear.

Bécache, Bonnet-BenDhia and Legendre established convergence of PMLs with increas-
ing layer width for scattering problems governed by convected Helmholtz [BBBL04] and
linearized Galbrun equations with uniform flow [BBBL06]. To deal with the advective
character of the equations the authors constructed problem adapted PMLs. Their analysis
is based on the explicit computation of the Dirichlet-to-Neumann operator (in series form)
generated by the truncated PML.

Hohage and Nannen considered Helmholtz scattering and resonance problems (without
advection). They applied PMLs with Dirichlet layer termination as well as Hardy space
infinite elements and achieved convergence with a unified framework for both methods
[HN15b]. Their analysis is based on a reformulation of the equation to comply a G̊arding
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1 Introduction

inequality. For the analysis of the PML, they apply the interesting approach to consider the
finite element space as subspaces of H1 of the unbounded domain to avoid the introduction
of a truncation analysis. This is the only work known to us which analyzes the domain
truncation and the finite element discretization simultaneously.

In general, PMLs applied to elastic waveguides lead to unphysical solutions due to the
existence of backward modes, which feature different signs of group and phase velocity. In
order to overcome this obstacle, hybrid modal-PML methods were introduced by Skelton,
Adams and Craster [SAC07] and Bonnet-BenDhia, Chambeyron and Legendre [BBCL14].
Generalized Hardy space infinite elements which do not rely on modal hybridization were
developed by Halla, Nannen et. al. [HN15a], [HHNS16].

Kalvin considered Helmholtz scattering problems in waveguides which are only asymp-
totic cylindrical and established convergence of PMLs in [Kal12]. In [Kal13] he generalized
his results to manifolds, i.e. the waveguide of interest consists only of an asymptotic cylin-
drical shell.

Gratings (Waveguides with periodic boundary conditions) PMLs can also serve as ap-
proximative transparent boundary condition for so called gratings, which are nothing but
waveguides equipped with periodic boundary conditions. PMLs for such configurations
have been studied by Wu, Chen, Bao et. al. [CW03], [BCW05], [CWW09] [BLW10] for
Helmholtz as well as for Maxwell scattering problems with specific focus on a posteriori
error estimates and adaptive refinement strategies. The properties of gratings and waveg-
uides with natural/essential boundary conditions are very similar, compare the analysis
of [BBBL04] and [BLW10]. The case of non-constant refractive index which stabilizes at
infinity has been investigated by Kalvin [Kal11] who proves convergence for increasing layer
sizes also in this more sophisticated case.

Resonance problems Due to the focus of this thesis we emphasize that the only literature
on convergence analysis of PML methods for resonance problems known to us is [Kim09],
[KP09], [Kim14], [HN15b].

1.2.2 Time-dependent equations

To gain basic insight of PML in the time-domain we refer to the instructive paper [Jol12] by
Joly. The construction of PMLs for time-dependent equations starts in the time-harmonic
regime. The derivation is performed similarly whereby the complex scaling is chosen fre-
quency dependent to ensure a damping of waves independent of their frequency. Thereafter
terms −iω (ω denotes the frequency) are replaced by a time derivative. To avoid convo-
lution terms and to obtain a partial differential equation system one usually introduces
auxiliary fields. There is a lot of freedom in the choice of the auxiliary variables and hence
lots of different formulations are possible. Note that in literature on complex scaling the
scaling is classically chosen to be frequency independent and hence not equivalent to PML
formulations as pointed out in [SSM14].

The analysis of PMLs for time-dependent equations includes different steps. The first
one is to ensure the well-posedness [KL04] of the system. Well-posedness thereby means
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1.2 Perfectly matched layer methods

that the system admits a unique solution the norm in space of which can be bounded by a
time-dependent constant times the norm of the data.

However the notation of well-posedness still allows for temporally exponentially growing
solutions which is of course not desirable. The next step is therefore the derivation of
stability. Strong stability means that the norm of solutions in space can be bounded by
a temporally uniform constant times the norm of the data. The notion of weak stability
allows for temporally algebraic growing constants and measures the data in a stronger
norm.

Further similar results for the systems on the truncated domains need to be established
and convergence of the truncated to the untruncated solutions proven. Finally one aims to
derive convergence results also for the discretizations of the truncated problems.

Cartesian PML Bérenger constructed his PML [Bér94] with two steps. First he in-
troduced auxiliary variables and reformulated Maxwells equation with them. Secondly
he added a zero order absorption term to the equations. PML formulations related to
Bérengers choice of auxiliary variables are usually referred to as split-field PML. Abar-
banel and Gottlieb noted in [AG97] that Bérengers choice of auxiliary variables doesn’t
constitute a strongly well-posed system and hence the added absorption might lead to an
ill-posed system, although numerical experiments did not indicate such. This gave rise to
PMLs with different choices of auxiliary variables than Bérengers to allow the construction
of well-posed systems. Such PMLs are usually referred to as unsplit PML, see the reviews
by Turkel and Yefet [TY98] and Teixeira and Chew [TC01]. Bécache and Joly [BJ02] argued
that although Bérengers auxiliary variables constitute only a weakly well-posed system, the
added absorption term is not a perturbation exciting ill-posedness. Indeed they considered
the problem solely posed in one layer with constant absorption and obtained stability of
the physical fields therein.

A key remark to understand the vast literature on well-posedness and stability of PML
systems is that for strongly hyperbolic systems with varying coefficients the question of well-
posedness can be reduced to the corresponding frozen coefficient problems [KL04]. Hence
for such systems it suffices to investigate well-posedness in each subdomain separately, i.e.
the physical domain and the different parts of the layer. However, a similar conclusion
is not valid concerning stability. Thus a derived stability result for the Cauchy problem
solely posed in one layer can only be considered as a minimum requirement, but is by no
means sufficient for a rigorous analysis. Well-posedness and stability analysis for separate
parts of the PMlayer are reported e.g. by Bécache and Joly [BJ02], Bécache, Fauqueux,
and Joly [BFJ03], Appelö and Hagstrom [AH06], [AH06], [AH09], Appelö, Hagstrom and
Kreiss [AHK06] and Duru [Dur14].

The question of stable PML simulations is tricky and different kinds of instability can
be introduced by various reasons. Abarbanel, Gottlieb and Hesthaven [AGH02] explain
so-called long time instabilities with a wrong low frequency limit of equations in the layer.
Bécache, Petropoulos and Gedney [BPG04] give further insight into this issue and propose
as so-called complex frequency shift (CFS) PML as a cure. Also Bécache and Prieto
[BP12a] report corner instabilities depending on the time discretization of auxiliary fields
which can deteriorate the Courant-Friedrichs-Lewy stability condition. Duru, Kozdon and
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1 Introduction

Kreiss [DKK15] and Duru [Dur16] report instabilities due to the numerical treatment of
boundary conditions.

We also mention the work of Kreiss et. al. [AK06], [DK12a], [KD13], [DK14a], [DKM14]
on PML in elastic materials. Amongst others they suggest that coarse discretizations
of PMLs which violate the geometric stability condition of Bécache, Fauqueux and Joly
[BFJ03] may still produce acceptable results.

Chen and Wu [CW12] analyze PMLs for the scalar wave equation by a forth and back
transformation of equations into the Laplace domain. Though the paper claims to report
a convergence result its main Theorem 5.2 does not suffice. Indeed the right-hand-side of
the theorem’s inequality is not independent of the truncated PML solution û.

At last we mention the few works which report actual stability and convergence re-
sults. By means of the Cagniard-de Hoop technique de Hoop, van den Berg and Remis
[dHvdBR02] and Diaz and Joly [Dia05], [DJ06] achieve convergence in the case of a point-
source for the scalar wave equation. In their analysis they explicitly construct the truncated
and untruncated PML solution.

Radial PML Differently to time-harmonic equations radial PML have attracted only little
attention of numerical analysts for time-dependent problems so far. For the latter PMLs
in spherical and cylindrical coordinates were proposed by Collino and Monk [CM98b],
Petropoulos [Pet00] and Teixeira and Chew [TC01]. Chen [Che09] performs an analysis of
PML for the scalar wave equation, but although the paper claims to report a convergence
result its main Theorem 5.3 does not suffice. Indeed the right-hand-side of the theorem’s
inequality is not independent of the truncated PML solution û.

Waveguides Duru and Kreiss consider PMLs for isotropic acoustic waveguides [DK12b].
They conclude that the choice of auxiliary variables is essential to obtain a stable method.
The authors continue their work in [DK14b] for elastic waveguides.

1.3 Main ideas of the thesis

In this thesis we propose a new framework to understand spherical perfectly matched layer
approximations to time-harmonic wave propagation problems. The analysis is based on
the following four main ideas.

1. We interpret the domain truncation as Galerkin approximation.

2. We apply literature on holomorphic Fredholm operator eigenvalue approximation
theory to linear eigenvalue problems.

3. We ensure the regularity/stability of Galerkin approximations through the notion of
weak T-coercivity and T-compatible approximations.

4. We construct T-operators through suitable multiplication and projection operators.

The first main idea goes back to Hohage and Nannen [HN15b]. Therein geometrically
aligned finite element spaces are considered directly as subspaces of H1 on the unbounded

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

1.3 Main ideas of the thesis

domain and the discretization is interpreted as Galerkin approximation. The imposed
Dirichlet condition at the artificial boundary is thereby essential to ensure a conform ap-
proximation scheme. We consider two approaches for the approximation analysis: A direct
one as in [HN15b] whereby the truncation and discretization are considered simultaneously.
And a split one whereby we first analyze the domain truncation and secondly analyze the
discretization. For the second approach, we adapt the idea of Hohage and Nannen and
interpret the domain truncation as Galerkin approximation as well.

The standard approximation theory for linear eigenvalue problems is based on norm
convergence of operators [BO91], [Bof10]. However in our case we approximate a non-
compact operator with compact operators and hence norm convergence cannot hold true.
Analysis techniques for such problems have been developed in [DNR78a], [DNR78b] aimed
to magnetohydrodynamic problems [Rap77]. Non-compact operators are also encountered
in electromagnetism where a vast progress has taken place [CFR00], [Buf05], [AFW06],
[AFW10], [CW13]. Though different to electromagnetism the essential spectra of our in-
vestigated operators consist not only of a single point but of a continuum. Hence we cannot
hope to reuse the techniques of the former references.

The second major idea to apply approximation theory on holomorphic Fredholm op-
erator eigenvalue problems [Kar96a], [Kar96b] to the one in this thesis investigated linear
eigenvalue problems is taken from our earlier work [Hal16] on Hardy space infinite elements.

Since we apply conform Galerkin approximations the assumptions of [Kar96a], [Kar96b]
are reduced to the regularity of the approximations. We introduce an abstract framework to
ensure the regularity. This framework is more restrictive than the regularity condition, but
it serves useful for many applications. The analysis is based on the weak T-coercivity of the
operator function associated to the eigenvalue problem. Thereby we say that an operator
A ∈ L(X) is weakly T -coercive, if T ∈ L(X) is bijective and there exists a compact operator
K ∈ L(X) so that

|〈Au, Tu〉 + 〈Ku, u〉| & 〈u, u〉

for all u ∈ X. The previous inequality can also be interpreted as generalized G̊arding
inequality and the operator T as an “inf-sup operator up to a compact perturbation”.
With T -compatibility of Galerkin approximations An ∈ L(Xn) to A we mean the existence
of linear bounded operators Tn ∈ L(Xn) so that they converge to T in the discrete norm:

‖T − Tn‖n := sup
un∈Xn\{0}

‖(T − Tn)un‖X/‖un‖X → 0 as n → ∞.

A major result of this thesis is that T-compatible Galerkin approximations to weakly T-
coercive operators are regular.

The notion of T -coercivity originates from [BBCZ10], [BBCC12], [BBCC14] and was
introduced to analyze differential operators with sign-changing coefficients in the principle
part. Such operators arise from wave propagation problems in composite materials consist-
ing of classical and negative index materials. The discrete norm ‖ · ‖n previously appeared
in [DNR78a], [DNR78b] and independently in [HN15b] and [Car15].
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1 Introduction

For our eigenvalue problem at hand (the radial complex scaled formulation of a Helmholtz
resonance problem) the construction of a suitable T operator can be realized with a mul-
tiplication operator. For restricted kinds of scaling profiles this observation goes back to
Bramble and Pasciak [BP07].

If we separate the approximation due to domain truncation and the approximation due
to (finite element) approximations, the analysis becomes extremely simple: Since a multi-
plication operator does not increase the support of function, the Galerkin spaces (i.e. the
Sobolev space on the truncated domains) are T -invariant. The approximation analysis of
the truncated problems by finite element methods on the other hand is straight forward.

If we consider the approximation simultaneously, the Galerkin spaces are no longer T -
invariant. We construct operators Tn by composition of T and a projection. By means of
the discrete commutator property of Bertoluzza [Ber99], we obtain convergence of Tn to T
in discrete norm ‖ · ‖n.

1.4 Outline of the thesis

The remaining part of the thesis is structured as follows. In Chapter 2 we consider the
Helmholtz equation and following [CK98] we derive in Section 2.1 well known solutions
in terms of spherical Hankel functions and spherical harmonics. In Section 2.2 we specify
the radiation condition and the resonance problem under consideration. In Section 2.3 we
introduce the complex scaling. We attain that the complex scaled solution ũ is well defined,
derive a variational equation for it and show the correspondence to the original equation.
In Section 2.4 we explain how domain truncation can be understood as a conform Galerkin
approximation. We discuss that standard theory for approximations to linear eigenvalue
problems [BO91] is not admissible.

In Chapter 3 we give a brief introduction into holomorphic Fredholm operator functions
and holomorphic Fredholm operator eigenvalue problems. We introduce the notions of
(weak) T(·)-coercivity of operator functions and T(·)-compatible Galerkin approximations.
We derive that T(·)-compatible Galerkin approximations to weakly T(·)-coercive operator
functions are always regular approximations in the sense of [Kar96a], [Kar96b]. Hence our
introduced notions open the door to apply the powerful convergence results of [Kar96a],
[Kar96b].

In Chapter 4 we continue the discussion of Chapter 2 and apply the framework of Chap-
ter 3 to obtain convergence results for perfectly matched layer methods. In Section 4.1 we
construct an appropriate T-operator. We prove weak T-coercivity on the admissible set of
frequencies and characterize the essential spectrum. In Section 4.2 we discuss the approxi-
mation by domain truncation. In Section 4.3 we discuss the approximation by a subsequent
discretization. In Section 4.4 we discuss the approximation by simulations domain trun-
cation and discretization. In Section 4.5 we consider formulations which involve only a
bounded domain and discuss the approximations. In Section 4.6 we give some remarks on
how our theory extends to more involved situations.
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2 Helmholtz resonance problems

In this chapter we discuss the framework of Helmholtz resonance problems in homogeneous
(exterior) domains. We derive a formulation via the complex scaling method, establish its
relation to the original problem and discuss the framework to analyze its PML approxima-
tions gained from domain truncations.

More specifically, in Section 2.1 we follow [CK98] and recall well known facts on spheri-
cal harmonics and Bessel functions. Since in [CK98] mostly only real arguments for Bessel
functions are considered we pay attention to allow also complex arguments. In Lemma 2.2
we give a version of a less known estimate on spherical Hankel functions from [CL05]. In
Section 2.2 we motivate and define the radiation condition in terms of spherical Hankel
functions and specify the Helmholtz resonance problem under consideration. We recall
standard results on the absence of resonances with non-negative imaginary part. In Sec-
tion 2.3 we follow e.g. [CM98b], [LS98], [HSZ03b], [BP07] to define a complex scaling of
the radial variable and obtain a variational formulation, whereby we adopt the notation
of [BP07]. Differently to most works we allow complex scalings of rather general forms.
In Lemma 2.12 we derive that solutions admit a representation in spherical harmonics
and Hankel functions. In Lemma 2.13 we prove that the intuitive definition of the com-
plex scaled solution is indeed proper and has common properties. In Lemma 2.14 and
Lemma 2.15 we establish that complex scaled resonance functions are certainly solutions
to the derived variational equation and vice-versa. In the proofs we proceed via the sep-
arated spherical Bessel equations (in contrast to argue with fundamental solutions). In
Section 2.4 we present our new interpretation of domain truncation as Galerkin method
and discuss why standard theory on eigenvalue approximation [BO91], [Bof10] cannot be
applied. The former serves as motivation for Chapter 3.

For a Lipschitz domain D ⊂ R
l, l = 1, 2, 3 denote ν the unit outward normal vector

at ∂D. For s > 0 denote L2(D), Hs(D) the standard Sobolev spaces of complex scalar
valued functions with hermitian scalar products 〈·, ·〉L2(D), 〈·, ·〉Hs(D) as defined e.g. in
[Mon03]. Denote H−s(D) the dual space of Hs(D). Further for k ≥ 0 and p ∈ [1,∞]
let W k,p(D) be the standard Sobolev space of scalar complex valued functions with norm
‖ · ‖W k,p(D) the definition of which can also be found in [Mon03]. Let ∂D be the boundary

of D. For Lipschitz domains D with finite boundary and s ∈ [0, 1] let L2(∂D) and Hs(∂D)
be the respective standard boundary spaces with hermitian scalar products 〈·, ·〉L2(∂D)

and 〈·, ·〉Hs(∂D) as defined e.g. in [Mon03]. Further let H−s(∂D) be the dual space of
Hs(∂D). Let H1

0 (D) be the subspace of H1(D) whose functions have vanishing Dirichlet
traces at ∂D. Let H1

loc(D) be the space of functions whose restrictions are in H1(D̃) for
every Lipschitz domain D̃ which is compact in D. Let C∞(D) be the space of infinitely
many times differentiable complex valued functions and C∞

0 (D) be the subspace of C∞(D)
whose functions have compact support in D. If D ⊂ R is an interval (r1, r2) we write
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2 Helmholtz resonance problems

L2(r1, r2) := L2((r1, r2)), etc.. We denote the (partial) derivative of a function u with
respect to a scalar variable x by ∂xu. We denote the gradient, divergence, Laplacian and
Jacobian as ∇, div, ∆ and D.

2.1 Separation of variables

Let S2
r := {x ∈ R

3 : |x| = r} be the sphere with radius r > 0 and S2 := S2
1 be the unit

sphere. Consider the standard parametrization

ŷ(θ, φ) := (sin θ cosφ, sin θ sinφ, cos θ)⊤ (2.1)

of S2 and

Q(r, x̂) := rx̂, r > 0, x̂ ∈ S2. (2.2)

For a frequency ω ∈ C \ {0} we seek solutions u : D ⊂ R
3 → C to the Helmholtz equation

−∆u− ω2u = 0. (2.3)

In polar coordinates it holds

0 = −∆u ◦Q− ω2u ◦Q = −r−2∂r(r
2∂ru ◦Q)− r−2∆S2u ◦Q− ω2u ◦Q. (2.4)

Thus it is meaningful to discuss the spherical Laplacian ∆S2 .

2.1.1 Spherical harmonics

With the associated Legendre functions p
|m|
n [CK98, Equation (2.27)] it is known [CK98,

Section 2.3] that the spherical harmonics

Y m
n ◦ ŷ(θ, φ) :=

√

2n+ 1

4π

(n− |m|)!
(n+ |m|)!p

|m|
n (cos θ)eimφ, m = −n, . . . , n; n =, 1, . . .

(2.5)

form a L2(S2)-orthonormal basis of eigenfunctions to ∆S2 with eigenvalues −n(n + 1). It
holds further [FGS98, § 5.1] after [Nan08, Page 34]

‖u‖2Hs(S2) is equivalent to
∞
∑

n=0

n
∑

m=−n

(n(n+ 1))s|amn |2 for s ∈ R, u =
∞
∑

n=0

n
∑

m=−n

amn Y m
n .

(2.6)

In addition the functions

Um
n (x̂) :=

1
√

n(n+ 1)
∇S2Y m

n (x̂), Zm
n (x̂) := x̂× Um

n (x̂), m = −n, . . . , n; n =, 1, . . .

(2.7)

form an orthonormal basis of L2
t (S

2) [CK98, Theorem 6.25].
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2.1 Separation of variables

Lemma 2.1. Let f be a scalar differentiable function. Let

v00,Y ◦Q(r, x̂) := f(r)Y 0
0 (x̂)x̂, vmn,Y ◦Q(r, x̂) := f(r)Y m

n (x̂)x̂, (2.8a)

vmn,U ◦Q(r, x̂) := f(r)Um
n (x̂), vmn,Z ◦Q(r, x̂) := f(r)Zm

n (x̂) (2.8b)

for m = −n, . . . , n and n =, 1, . . . . Then

curl v0Y,0 ◦Q(r, x̂) = 0, (2.9a)

curl vmn,Y ◦Q(r, x̂) = −
√

n(n+ 1)f(r)

r
Zm
n (x̂), (2.9b)

curl vmn,U ◦Q(r, x̂) =
∂r(rf(r))

r
Zm
n (x̂), (2.9c)

curl vmn,Z ◦Q(r, x̂) = −
√

n(n+ 1)f(r)

r
Y m
n (x̂)x̂− ∂r(rf(r))

r
Um
n (x̂). (2.9d)

for m = −n, . . . , n and n =, 1, . . . .

Proof. For the following computations we employ r(x) := |x|, x̂(x) := |x|−1x, x̂ × x̂ = 0,
curlx = 0, curl∇ = 0 and the product rule

curl(gG) = ∇g ×G+ g curlG

for a scalar function g and a vectorial function G. We compute

curl vmn,Y = ∇(fr−1Y m
n )× x+ fr−1Y m

n curlx

= ∂r(fr
−1Y m

n )x̂× rx̂+ r−1∇S2(fr−1Y m
n )× rx̂

= −fr−1x̂×∇S2Y m
n .

Since Y 0
0 is constant the first two claims follow. We compute further

curl vmn,U = ∇f × Um
n + f curlUm

n

= ∂rfx̂× Um
n + f curl

(

r
(

n(n+ 1)
)−1/2∇Y m

n

)

= ∂rfZ
m
n + f

(

(∇r)
(

n(n+ 1)
)−1/2

)

×∇Y m
n

)

+ fr
(

n(n+ 1)
)−1/2

curl∇Y m
n

= ∂rfZ
m
n + f

(

n(n+ 1)
)−1/2

x̂×∇Y m
n

= ∂rfZ
m
n + fr−1

(

n(n+ 1)
)−1/2

x̂×∇S2Y m
n

= ∂rfZ
m
n + fr−1Zm

n .

We compute further

curl vmn,Z = ∇f × Zm
n + f curlZm

n

= ∂rfx̂× Zm
n + f curl(x̂× Um

n )

= −∂rfU
m
n + f

(

n(n+ 1)
)−1/2

curl(x̂×∇S2Y m
n ).
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2 Helmholtz resonance problems

We compute further

curl(x̂×∇S2Y m
n ) = −r−1∇S2Y m

n + r−1(∆S2Y m
n )x̂

= −r−1∇S2Y m
n − r−1n(n+ 1)Y m

n x̂.

Hence

curl vmn,Z = −∂rfU
m
n − r−1fUm

n − r−1f
(

n(n+ 1)
)1/2

Y m
n x̂.

2.1.2 Spherical Hankel functions

Due to Subsection 2.1.1 it is meaningful to look for solutions to (2.4) of the form

u ◦Q(r, x̂) = f(ωr)Y m
n (x̂). (2.10)

It follows that f has to satisfy the spherical Bessel equation

−r−2∂r(r
2∂rf) + n(n+ 1)r−2f − f = 0, r > 0. (2.11)

From the quotient criterion it follows that the functions

jn(z) :=

∞
∑

l=0

zn+2l (−1)l2n+l(n+ l)!

2ll!(2n + 2l + 1)!
, (2.12a)

yn(z) := −(2n)!

2nn!

(

z−n−1 +

∞
∑

l=1

z2l−n−1 (−1)l+1(2n − 2l)!

2ll!(2n − 1)!

)

(2.12b)

are well defined and holomorphic for z ∈ C \R−
0 . By examining the behavior at zero it can

be seen that for each n = 0, 1, . . . the functions jn and yn are linearly independent. By
direct computation it can be seen that jn and yn solve the spherical Bessel equation. They
are called spherical Bessel and spherical Neumann functions of the order n, respectively.
The functions

h1n := jn + iyn, h2n := jn − iyn (2.13)

are called spherical Hankel functions of the order n of first and second kind, respectively.
Examining the definition of j0 and y0 shows that the first spherical Hankel functions are

h10(z) =
eiz

iz
, h20(z) =

e−iz

−iz
. (2.14)

From the definition of jn, yn and the Stirling formula n! =
√
2πn(n/e)n(1 + o(1)) follow

jn(z) = O

(

(

2n

ez

)−n
)

, n → ∞, (2.15a)

yn(z) = O

((

2n

ez

)n)

, n → ∞, (2.15b)
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2.2 Resonance problem

and thus

h1,2n (z) = O

((

2n

ez

)n)

, n → ∞ (2.15c)

uniformly on compact subsets of C\R−
0 . Direct computations lead for any fn = jn, yn, h

1
n, h

2
n

to the formulas

fn(z) =
z

2n + 1
(fn+1(z) + fn−1(z)), n = 1, 2, . . . , (2.16a)

∂zfn(z) = nz−1fn(z)− fn+1(z), n = 0, 1, . . . . (2.16b)

From (2.16) and (2.14) follows

h1n(z) = (−i)n
eiz

iz

(

1 +

n
∑

m=1

an,mz−m

)

, h2n(z) = in
e−iz

−iz

(

1 +

n
∑

m=1

an,mz−m

)

(2.17)

for n = 0, 1, . . . with coefficients an,m ∈ C, m = 1, . . . , n.

Lemma 2.2. Let z ∈ {z′ ∈ C : ℑ(z′) > 0} ∪ R
+
0 and 0 < z0 ≤ |z|. Then the following

estimates hold

|h1n(z)| ≤ e−ℑ(z)
√

1−z20/|z|
2 |h1n(z0)|, n = 0, 1, . . . , (2.18a)

|∂zh1n(z)| ≤
n+ 2

|z| |h1n(z)|, n = 0, 1, . . . . (2.18b)

Proof. The first claim (2.18a) follows from Lemma 2.2 of [CL05] and the relation

h1n(z) =

√

π

2z
H1

n+1/2(z)

between cylindrical and spherical Hankel functions. Actually, the cited lemma is formulated
only for z ∈ {z′ ∈ C : ℜ(z′),ℑ(z′) > 0}. However its proof works for z ∈ {z′ ∈ C : ℑ(z′) >
0} ∪ R

+
0 as well. Equation (2.18) of [CL05] holds for any positive index greater equal one

as the proof [CL05, Page 651] does so. Again, from the relation between cylindrical and
spherical Hankel functions it follows |h1n−1(r)| ≤ |h1n(r)| for all r > 0, n ≥ 1. The second
claim (2.18b) follows now from (2.16).

2.2 Resonance problem

Let Br ⊂ R
3 be the open ball with radius r > 0 centered at the origin, Br(x0) ⊂ R

3 be the
open ball with radius r > 0 centered at x0 and Ar1,r2 ⊂ R

3 be the open annulus Br2 \Br1

with radii r2 > r1 > 0:

Br := {x ∈ R
3 : |x| < r}, (2.19a)

Br(x0) := {x ∈ R
3 : |x− x0| < r}, (2.19b)

Ar1,r2 := {x ∈ R
3 : r1 < |x| < r2}. (2.19c)
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2 Helmholtz resonance problems

For a Lipschitz domain D ⊂ R
3 let

H̃1
loc(D) := {u ∈ H1

loc(D) : u|D∩Br ∈ H1(D ∩Br) for all r > 0 with D ∩Br 6= ∅}. (2.20)

For a Lipschitz domain D ⊂ R
3 with finite boundary ∂D and u ∈ H1

loc(D) the trace
u|∂D ∈ H1/2(∂D) is well defined. Hence let

H̃1
0,loc(D) := {u ∈ H̃1

loc(D) : u|∂D = 0}. (2.21)

Let Ω ⊂ R
3 be a Lipschitz domain so that the complement Ωc is compact and non-empty.

We seek non-trivial solutions (ω, u) to

−∆u− ω2u = 0 in Ω, (2.22a)

u = 0 at ∂Ω, (2.22b)

together with the abstract radiation condition (which will be specified in Definition 2.5)

u is outgoing (2.22c)

in the distributional sense. That is (ω, u) solves

find (ω, u) ∈ C \ {0} × H̃1
0,loc(Ω) \ {0} such that

〈∇u,∇u′〉L2(Ω) − ω2〈u, u′〉L2(Ω) = 0 for all u′ ∈ C∞
00 (Ω), (2.23a)

u is outgoing. (2.23b)

We note that all our forthcoming theory extends to

− div ς∇u− ω2̺u = 0 in Ω, (2.24a)

u = 0 at (∂Ω)D, (2.24b)

∂nu = 0 at (∂Ω)N , (2.24c)

whereby ς is a real symmetric, measurable matrix function which is uniformly bounded,
uniformly bounded from below and equal to the identity times a positive constant outside
some bounded domain, ̺ is a real scalar measurable uniformly bounded function which is
equal to a positive constant outside a bounded domain, ∂n denotes the normal derivative
and (∂Ω)D, (∂Ω)N is a decomposition of ∂Ω. We stick to (2.22) to ensure a convenient
presentation.

We present the next two lemmata to motivate Radiation Condition 2.5. Lemma 2.3 is of
a very general nature. It shows that the expansion in a suitable Fourier series is compatible
with the derivative operators. The proof of Lemma 2.3 exploits the structure

H1((r1, r2)× S2) =
(

H1(r1, r2)⊗ L2(S2)
)

∩
(

L2(r1, r2)⊗H1(S2)
)

. (2.25)

Lemma 2.4 on the other hand explicitly reports the Fourier coefficients for solutions to the
Helmholtz equation.
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2.2 Resonance problem

Lemma 2.3. Let 0 < r1 < r2 and u ∈ H1(Ar1,r2). Let

fm
n (r) := 〈u ◦Q(r, ·), Y m

n 〉L2(S2), r ∈ (r1, r2); n = 0, 1, . . . ; m = −n, . . . , n. (2.26)

Then fm
n ∈ H1(r1, r2) for all n = 0, 1, . . . and m = −n, . . . , n and

u ◦Q(r, x̂) =

∞
∑

n=0

n
∑

m=−n

fm
n (r)Y m

n (x̂) in L2(r1, r2)× L2(S2), (2.27a)

∂ru ◦Q(r, x̂) =

∞
∑

n=0

n
∑

m=−n

∂rf
m
n (r)Y m

n (x̂) in L2(r1, r2)× L2(S2), (2.27b)

∇S2u ◦Q(r, x̂) =
∞
∑

n=0

n
∑

m=−n

fm
n (r)∇S2Y m

n (x̂) in L2(r1, r2)×
(

L2(S2)
)3
. (2.27c)

Proof. 1. Step: Due to u ∈ L2(Ar1,r2) and the transformation rule it holds u ◦ Q ∈
L2(r2; (r1, r2)×S2). We will repeatedly use the fact that the scalar products of L2(r2; r1, r2)
and L2(r1, r2) are equivalent. Due to Fubini’s Theorem there hold the tensor product struc-
ture L2((r1, r2)×S2) = L2(r1, r2)×L2(S2) and u◦Q(r, ·) ∈ L2(S2) for almost all r ∈ (r1, r2).
Since Y m

n with n = 0, 1, . . . and m = −n, . . . , n form an orthonormal basis of L2(S2) it
follows with standard Hilbert space theory that u ◦Q(r, ·) =∑∞

n=0

∑n
m=−n f

m
n (r)Y m

n (·) in
L2(S2) almost everywhere in (r1, r2). (2.27a) follows from Fubini’s Theorem.

2. Step: Since u ∈ H1(Ar1,r2) it holds by means of the chain and transformation rule
∂ru ◦ Q = x̂ · ∇u ◦Q ∈ L2(Ar1,r2) and hence 〈∂ru ◦Q(r, ·), Y m

n 〉L2(S2) ∈ L2(r1, r2). Again
by Fubini’s Theorem and standard Hilbert space theory we can expand

∂ru ◦Q(r, x̂) =

∞
∑

n=0

n
∑

m=−n

〈∂ru ◦Q(r, ·), Y m
n 〉L2(S2)Y

m
n (x̂) in L2(r1, r2)× L2(S2).

For g ∈ C∞
00 (r1, r2) it follows with Fubini’s Theorem and integration by parts

〈fm
n , ∂rg〉L2(r1,r2) = 〈〈u ◦Q,Y m

n 〉L2(S2), ∂rg〉L2(r1,r2)

= 〈〈u ◦Q, ∂rg〉L2(r1,r2), Y
m
n 〉L2(S2)

= −〈〈∂ru ◦Q, g〉L2(r1,r2), Y
m
n 〉L2(S2)

= −〈〈∂ru ◦Q,Y m
n 〉L2(S2), g〉L2(r1,r2).

Hence fm
n ∈ H1(r1, r2) and ∂rf

m
n = 〈∂ru ◦Q,Y m

n 〉L2(S2), i.e. (2.27b) holds.

3. Step: Since u ∈ H1(Ar1,r2) it holds by means of the chain and transformation rule

∇S2u ◦ Q = r−1(I−Px̂)∇u ◦ Q ∈ L2(r1, r2) ×
(

L2(S2)
)3

and hence by Fubini’s Theorem

∇S2u◦Q(r, ·) ∈
(

L2(S2)
)3

almost every where in r ∈ (r1, r2). Since x̂ · (I−Px̂) = 0 it holds
even ∇S2u ◦Q(r, ·) ∈ L2

t (S
2) and thus we can expand

∇S2u ◦Q(r, x̂) =

∞
∑

n=0

n
∑

m=−n

〈∇S2u ◦Q(r, ·), Um
n 〉L2(S2)U

m
n (x̂) + 〈∇S2u ◦Q(r, ·), Zm

n 〉L2(S2)Z
m
n (x̂)
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2 Helmholtz resonance problems

in L2
t (S

2). Since 〈∇S2u ◦ Q(r, ·), Zm
n 〉L2(S2) = −〈u ◦ Q(r, ·),divS2 Zm

n 〉L2(S2), we compute
further

〈∇S2u ◦Q(r, ·), Um
n 〉L2(S2) = 〈∇S2u ◦Q(r, ·), (n(n + 1))−1/2∇S2Y m

n 〉L2(S2)

= 〈u ◦Q(r, ·),−∆S2(n(n+ 1))−1/2Y m
n 〉L2(S2)

= 〈u ◦Q(r, ·), (n(n + 1))1/2Y m
n 〉L2(S2)

= (n(n+ 1))1/2fm
n (r),

i.e. (2.27c) holds.

Lemma 2.4. Let 0 < r1 < r2 and (ω, u) ∈ C \ {0} ×H1(Ar1,r2) solve

〈∇u,∇u′〉L2(Ar1,r2)
− ω2〈u, u′〉L2(Ar1,r2)

= 0 for all u′ ∈ C∞
0 (Ar1,r2). (2.28)

Let fm
n be as in Lemma 2.3. Then

fm
n (r) = amn h1n(ωr) + bmn h2n(ωr) (2.29)

with coefficients amn , bmn ∈ C for all n = 0, 1, . . . and m = −n, . . . , n.

Proof. 1. Step: We apply the coordinate transformation Q to the integrals in (2.28),
apply Lemma 2.3, test with u′ ◦ Q(r, x̂) = g(r)Y m

n (x̂) whereby g ∈ C∞
0 (r1, r2), to obtain

that fm
n solves

−∂r(r
2∂rf

m
n (r))− n(n+ 1)fm

n (r) + ω2r2fm
n (r) = 0, r ∈ (r1, r2).

2. Step: It follows fm
n ∈ H2(r1, r2). Due to the continuous embedding H1(r1, r2) →֒

C(r1, r2), ∂r∂rf
m
n is even continuous. It follows that fm

n is twice continuously differentiable.
3. Step: fm

n is a classical solution to a second order ordinary linear differential equation.
The solution space of this equation is two dimensional and h1n(ω·), h2n(ω·) are linearly
independent solutions. Hence the claim follows.

Mathematically speaking we need to equip (2.23a) with a condition describing the be-
havior of u at infinity to obtain a well posed problem. We recall that for a solution u to
−∆u − ω2u = 0 a time-harmonic acoustic wave with frequency ω > 0 in a material with
constant unit velocity is described by the pressure p(x, t) = ℜ(u(x)e−iωt) and the velocity
v(x, t) = 1

ω∇p. Hence for a source at the origin, the average energy flux through the sphere
S2
r with r > 0 which is given by

J(r) :=
2π

ω

∫ ω
2π

0

∫

S2
r

ν · pv dx̂dt (2.30)

should be positive. A computation shows that J(r) > 0 for u◦Q(r, x̂) = h1n(ωr)Y
m
n (x̂) and

J(r) < 0 for u◦Q(r, x̂) = h2n(ωr)Y
m
n (x̂) for any n,m. This motivates Definition 2.5 for real

values ω. It is canonical to extend this condition in a continuous way to complex values of
ω.
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2.2 Resonance problem

Definition 2.5 (Radiation condition). Let (ω, u) ∈ C \ {0} × H̃1
0,loc(Ω) \ {0} be a solution

to (2.23a). We call u to be outgoing if it admits a representation

u ◦Q(r, x̂) =

∞
∑

n=0

n
∑

m=−n

amn h1n(ωr)Y
m
n (x̂) (2.31)

in L2(Ar1,r2) for all 0 < r1 < r2 with Ωc ⊂ Br1 .

Remark 2.6. It is known [Lig65] that the energy flux of waves is closely related to their
group velocity and outgoing waves can be characterized by a positive group velocity. In
our case group velocity and phase velocity coincide and hence outgoing waves have a posi-
tive phase velocity. However, for other kinds of partial differential equations and geometries
waves with opposite signs of group and phase velocity can exist, see e.g. [SAC07], [BBCL14],
[HN15a], [HHNS16] for guided elastic waves and [Cum04], [BJKV15], [BJV18] for disper-
sive materials. Hence for such problems a radiation condition which demands positive phase
velocity of waves is physically not meaningful.

Remark 2.7. The limiting absorption principle [RT15] is another notion to derive radi-
ation conditions rather than with energy flux arguments is. This principle introduces an
artificial absorption, i.e. ω is replaced by ω + iǫ with ǫ > 0, and attains well-posedness of
scattering problems. Thereafter the existence and properties of the limit of those solutions
u0 = limǫ→0 uǫ is investigated in suitable function spaces. This limit function u0 is then
defined to be the outgoing solution of the original problem.

We close this section with a standard result on the absence of resonances with non-
negative imaginary part.

Theorem 2.8. There exist no solutions (ω, u) to (2.23) with ℑ(ω) = 0.

Proof. Let (ω, u) be a solution to (2.23) with ℑ(ω) = 0 and r > 0 so that Ωc ⊂ Br. It
follows

〈∇u,∇u〉L2(Ω∩Br) − ω2〈u, u〉L2(Ω∩Br) − 〈ν · ∇u, u〉H−1/2(∂Br)×H1/2(∂Br)
= 0.

Since u ◦Q(r, x̂) =
∑∞

n=0

∑n
m=−n a

m
n h1n(ωr)Y

m
n (x̂) in Bc

r0 with Ωc ⊂ Br0 it follows

〈ν · ∇u, u〉H−1/2(∂Br)×H1/2(∂Br) =

∞
∑

n=0

n
∑

m=−n

|amn h1n(ωr)|2zn(ωr)/r

with zn(r) := r ∂rh1
n(r)

h1
n(r)

. The functions zn have been analyzed in [Néd01, Theorem 2.6.1]

where it is shown that ℑ(zn) > 0. (Actually [Néd01, Theorem 2.6.1] only states ℑ(zn) ≥ 0.
As noted in [MS11] the strict inequality follows from the positivity of the function ql
in [Néd01, Equation (2.6.34)].) Since

0 = ℑ
(

〈∇u,∇u〉L2(Ω∩Br) − ω2〈u, u〉L2(Ω∩Br) − 〈ν · ∇u, u〉H−1/2(∂Br)×H1/2(∂Br)

)

=

∞
∑

n=0

n
∑

m=−n

|amn h1n(ωr)|2ℑ(zn(ωr))/r

it follows amn = 0 for all n = 0, 1, . . . and m = −n, . . . , n. Hence u = 0 in Bc
r. By the

unique continuation principle [LRL12] it follows u = 0 in Ω.
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2 Helmholtz resonance problems

Theorem 2.9. There exist no solutions (ω, u) to (2.23) with ℑ(ω) > 0.

Proof. Let (ω, u) be a solution to (2.23) with ℑ(ω) > 0. From Radiation Condition 2.5 and
Lemma 2.2 it follows that u ∈ H1

0 (Ω). Since C∞
0 (Ω) is dense in H1

0 (Ω) it follows that u
solves

〈∇u,∇u′〉L2(Ω) − ω2〈u, u′〉L2(Ω) = 0

for all u′ ∈ H1
0 (Ω). Since the sesquilinear form 〈∇·,∇·〉L2(Ω) − ω2〈·, ·〉L2(Ω) is coercive on

H1
0 (Ω)×H1

0 (Ω) it follows u = 0.

2.3 Complex scaling

We will define a complex change of the radial coordinate r̃(r) = (1 + iα̃(r))r in terms of a
profile function α̃. We make assumptions on this profile function as follows.

Assumption 2.10. Let r∗1 > 0 be such that Ωc is contained in the ball Br∗1
and α̃ : R+

0 → R
+
0

be such that

1. α̃(r) = 0 for r ≤ r∗1,

2. α̃ is continuous,

3. α̃(r) > 0 for r > r∗1,

4. α̃ is non-decreasing,

5. α̃ is twice continuously differentiable in (r∗1,+∞) with continuous extensions of α̃,
∂rα̃, ∂r∂rα̃ to [r∗1 ,+∞).

We will comment in detail on the reasons for the particular items of Assumption 2.10 in
Remark 2.17.

Assumption 2.10 is very general. Later on in Chapter 4 we will require an additional
Assumption 4.1 for the analysis therein. In particular Assumptions 2.10 and 4.1 are satisfied
by profiles of the following kinds. The probably simplest complex scaling is

r̃(r) = r + iα0(r − r∗1), r ≥ r∗1 (2.32a)

with a constant α0 > 0. It corresponds to

α̃affin(r) := α0(1− r∗1/r), r ≥ r∗1. (2.32b)

A popular choice of complex scalings are power functions

r̃(r) = r + iα0(r − r∗1)
m, r ≥ r∗1 (2.33a)

with a constant α0 > 0 and m ∈ N. They correspond to

α̃power(r) := α0(r − r∗1)
m/r, r ≥ r∗1 (2.33b)
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2.3 Complex scaling

with a constant α0 > 0. A profile which is more or less motivated by the aim to simplify
analysis is

α̃smooth non-decreasing and twice continuous differentiable in R
+,

α̃smooth(r) := 0 for r ≤ r∗1 and α̃smooth(r) := α0 for r ≥ r2,
(2.34)

with constants α0 > 0, r2 > r∗1. In particular, many authors (e.g. [LS98], [HSZ03b], [BP07],
[KP09]) only consider profiles of the last kind for their analysis. An infinitely many times
differentiable example of Kind (2.34) is

α̃∞(r) := α0χ2(r − r∗1) (2.35)

with constant α0 > 0, r2 = r∗1 + 1 and

χ1(r) :=

{

0, for r ≤ 0,
exp(−1/r), for r > 0,

(2.36a)

χ2(r) :=











0, for r ≤ 0,
χ1(r)

χ1(r)+χ1(1−r) , for 0 < r < 1,

1, for r ≥ 1,

(2.36b)

χ3(r) :=























0, for r ≤ −1,
χ2

(

2(r + 1)
)

, for − 1 < r < −1/2,
1, for − 1/2 ≤ r ≤ 1/2,

χ2

(

2(1− r)
)

, for 1/2 < r < 1,
0, for r ≥ 1.

. (2.36c)

It can easily be checked that χ1, χ2, χ3 and α̃∞ are infinitely many times differentiable
and additionally ∂rα̃∞ ≥ 0.

In the following we introduce additional functions which will all depend on α̃. These
auxiliary functions will be necessary to formulate the forthcoming theory. We adopt the
notation of Bramble and Pasciak [BP07]. Hence let

d̃(r) := 1 + iα̃(r), (2.37a)

r̃(r) := d̃(r)r, (2.37b)

α(r) := r∂rα̃(r) + α̃(r), (2.37c)

d(r) := 1 + iα(r), (2.37d)

d0 := lim
r→+∞

(d̃(r)/|d̃(r)|), (2.37e)

Px(x) := |x|−2xx⊤, x ∈ R
3, (2.37f)

whereby xx⊤ denotes the dyadic product. The definitions of α and d have to be understood
piece-wise. We note that the limes in (2.37e) exists in C due to Assumption 2.10. The
function d is chosen such that ∂r r̃(r) = d(r). For f = α̃, α, d̃, d, r̃ we adopt the overloaded
notation

f(x) := f(|x|), x ∈ R
3. (2.37g)

Hence we write e.g. f ◦Q(r, x̂) = f(r).
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2 Helmholtz resonance problems

Remark 2.11. For time-dependent partial differential equations a frequency dependency
of the complex scaling is essential to derive a real valued system of equations. For such
the common ansatz and notation for the scaling is r̃(r) = r + 1

−iω

∫ r
0 σ(ρ) dρ, i.e. α̃(r) =

1
ωr

∫ r
0 σ(ρ) dρ, with a suitable function σ.

For scattering problems the complex scaling is usually chosen frequency dependent too of
the form r̃(r) = r(1 + i

ω α̃(r)) to achieve an effective damping of solutions independent of
the frequency.

For resonance problems the complex scaling is commonly kept independent of the fre-
quency to preserve the linear structure of the resonance problem. This allows to apply a
linear eigenvalue solver for the matrix eigenvalue problem which is obtained by the domain
truncation and the discretization. Nevertheless, at our suggestion a frequency dependent
complex scaling for resonance problems was studied in [NW18]. The extensive numerical
experiments therein show an improved preasymptotic behavior of approximate eigenvalues
for such scalings.

2.3.1 The complex scaled eigenvalue problem

Consider a solution (ω, u) to (2.23). Formally we can define ũ ◦Q(r, x̂) := u ◦ Q(r̃(r), x̂).
Due to Assumption 2.10 and Lemma 2.2 we expect that ũ is exponentially decreasing
with respect to |x|. By means of the chain rule we can formally deduce that (ω, ũ) solves
−∆̃ũ− ω2ũ = 0 whereby

∆̃u ◦Q := (d̃r)−2d−1∂r(d̃
2r2d−1∂ru ◦Q) + (d̃r)−2∆S2u ◦Q, (2.38)

i.e.

∆̃u = (d̃2d)−1 div
(

(d̃2d−1 Px +d(I−Px))∇u
)

, (2.39)

whereby I denotes the three by three identity matrix. Vice-versa we expect that for a
solution (ω, ũ) to −∆̃ũ − ω2ũ = 0 we can define u in reversal of ũ and expect that (ω, u)
solves −∆u−ω2u = 0. However, since our coordinate transformation is complex valued we
have to take utmost care to perform the above analysis in a mathematically proper way. In
the remainder of this subsection we define the variational setting and formulate Eigenvalue
Problem (2.43). In Subsection 2.3.2 we prove that for solutions (ω, u) to (2.23) ũ(u) is well
defined and solves (2.43). In Subsection 2.3.3 we prove the reverse, i.e. that for solutions
(ω, ũ) to (2.43) u(ũ) is well defined and solves (2.23).

For a Lipschitz domain D ⊂ Ω let

X(D) := {u ∈ H̃1
0,loc(D) : 〈u, u〉X(D) < ∞}, (2.40a)

〈u, u′〉X(D) := 〈(|d̃2d−1|Px +|d|(I−Px))∇u,∇u′〉L2(D) + 〈|d̃2d|u, u′〉L2(D). (2.40b)

and

aD(ω;u, u
′) := 〈(d̃2d−1 Px +d(I−Px))∇u,∇u′〉L2(D) − ω2〈d̃2du, u′〉L2(D) (2.41)
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2.3 Complex scaling

for ω ∈ C and u, u′ ∈ X(D). By definition of X(D) the sesquilinearform aD(ω; ·, ·) is
bounded on X(D)×X(D). For D = Ω we set

X := X(Ω), 〈·, ·〉X := 〈·, ·〉X(Ω), a(·; ·, ·) := aΩ(·; ·, ·). (2.42)

Consider the eigenvalue problem to

find (ω, ũ) ∈ C×X \ {0} such that a(ω; ũ, u′) = 0 for all u′ ∈ X. (2.43)

We derive in the next lemmata the relation between (2.23) and (2.43). Note that the
introduced space X is of importance only for profile functions with α̃, α 6∈ L∞(R+) whereas
X is reduced to the standard Sobolev space H1

0 (Ω) (equipped with an equivalent inner
product) else wise.

2.3.2 The transformation u 7→ ũ(u)

Lemma 2.12. Let (ω, u) be a solution to (2.23). Then

u ◦Q(r, x̂) =

∞
∑

n=0

n
∑

m=−n

amn h1n(ωr)Y
m
n (x̂), (2.44)

absolutely and uniformly for compact subsets of (r1,+∞) × S2 provided Ωc ⊂ Br1 . The
same holds for any derivative of u and the sum over the term by term derivatives in (2.44).

Proof. Due to Lemma 2.3, Radiation Condition 2.5 and the continuity of the trace map
it follows (2.44) in L2(S2

r1) for all r1 > 0 so that Ωc ⊂ Br1 . We proceed similar to the
proof of [CK98, Theorem 2.14]. Let r1 > 0 be so that Ωc ⊂ Br1 and (2.44) in L2(S2

r1) and
r1 < r2 < r3. By Parseval’s Equality

∞
∑

n=0

n
∑

m=−n

|amn h1n(ωr1)|2 < ∞.

First we show that (2.44) holds absolutely in L2(S2
r̂ ) uniformly in r2 ≤ r̂ ≤ r3. From the

asymptotic behavior (2.15c) follows the existence of n0 so that h1n(ωr1) 6= 0 for all n > n0.
Let n1 > n0. Using the orthonormality of Y m

n and the Schwarz inequality we obtain

(

∞
∑

n=n1

n
∑

m=−n

‖amn h1n(ωr)Y
m
n (x̂)‖2L2(S2

r̂ )

)2
= r̂2

(

∞
∑

n=n1

n
∑

m=−n

|amn h1n(ωr̂)|2
)2

≤ r̂2
∞
∑

n=n1

n
∑

m=−n

∣

∣

∣

∣

h1n(ωr̂)

h1n(ωr1)

∣

∣

∣

∣

2 ∞
∑

n=n1

n
∑

m=−n

|amn h1n(ωr1)|2.

From the asymptotic behavior (2.15c) follows the existence of a constant C(r1, r2, r3) > 0
so that

∞
∑

n=n1

n
∑

m=−n

∣

∣

∣

∣

h1n(ωr̂)

h1n(ωr1)

∣

∣

∣

∣

2

≤ C
∑

n=n1

(2n + 1)
(r1
r̂

)2n

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2 Helmholtz resonance problems

which yields (2.44) absolutely in L2(S2
r̂ ) uniformly in r2 ≤ r̂ ≤ r3. From the asymptotic

behavior (2.15c) follows h1n+1(z)/h
1
n(z) = O(n) uniformly on compact subsets of C\R−

0 . By
using (2.16b) and reusing the previously used arguments the claim follows any derivative
with respect to r. For derivatives with respect to x̂ we apply (2.6)

∞
∑

n=n1

n
∑

m=−n

‖amn h1n(ωr)Y
m
n (x̂)‖2Hs(S2

r̂ )
≤ Csr̂

2
∞
∑

n=n1

n
∑

m=−n

(n(n+ 1))s|amn h1n(ωr̂)|2

with a constant Cs only depending on s > 0. The previous used arguments can be reused
to show that the former sum converges uniformly in r2 ≤ r̂ ≤ r3. Hence (2.44) holds in
Hs(Ar2,r3)) for any s > 0. Finally, the claim follows by the Sobolev embedding.

Lemma 2.13. For a solution (ω, u) to (2.23) with ℜ(iωd0) < 0 and the expansion

u ◦Q(r, x̂) =

∞
∑

n=0

n
∑

m=−n

amn h1n(ωr)Y
m
n (x̂), r ≥ r∗1, x̂ ∈ S2 (2.45)

as in Lemma 2.12 let

ũ(x) :=

{

u(x), for x ∈ Ω ∩Br∗1
,

∑∞
n=0

∑n
m=−n a

m
n h1n(ωr̃(|x|))Y m

n (|x|−1x), for x ∈ Bc
r∗1
,

(2.46)

The sum in (2.46) converges absolutely and uniformly on bounded subsets of Bc
r∗1
. The same

holds for derivatives of u with respect to r up to order two and for derivatives with respect
to x̂ of arbitrary order and the sum over the term by term derivatives. Moreover, for any
ǫ > 0 there exists a constant C(ũ) > 0 so that

‖ũ‖2X(Bc
r)

≤ C(ũ)

∫ +∞

r
e2(ℜ(iωd0)+ǫ)

√
1+α̃(t)2tdt for all r ≥ r∗1. (2.47)

In particular it holds ũ ∈ X. We write ũ = ũ(u) to emphasize that ũ is defined by means
of u.

Proof. The uniform and absolute convergence of the sum and the sums over the term by
term derivatives follows similarly to the proof of Lemma 2.12. Since ũ|Ω∩Br∗

1
∈ H1(Ω∩Br∗1

),

ũ|Bc
r∗
1

∈ H̃1
loc(B

c
r∗1
) and due to the continuity of d̃, it follows ũ ∈ H̃1

0,loc(Ω). From the

definition of ũ, Lemma 2.2 and the techniques of the proof of Lemma 2.12 we obtain the
estimates

‖|d̃2d|1/2ũ ◦Q‖2L2(S2
r )

≤ C̃(ũ)r2|d̃(r)2d(r)|e2ℜ(iωd̃(r)/|d̃(r)|)
√

1−r∗1
2/|r̃(r)|2

√
1+α̃(r)2r,

‖|d|1/2∇S2ũ ◦Q‖2L2(S2
r )

≤ C̃(ũ)r2|d(r)|e2ℜ(iωd̃(r)/|d̃(r)|)
√

1−r∗1
2/|r̃(r)|2

√
1+α̃(r)2r,

‖|d̃2/d|1/2∂rũ ◦Q‖2L2(S2
r )

≤ C̃(ũ)r2|d̃(r)2/d(r)|e2ℜ(iωd̃(r)/|d̃(r)|)
√

1−r∗1
2/|r̃(r)|2

√
1+α̃(r)2r

with a constant C̃(ũ) > 0 for all r ≥ r∗1. We note that

lim
r→+∞

ℜ(iωd̃(r)/|d̃(r)|)
√

1− r∗1
2/|r̃(r)|2 = ℜ(iωd0).
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2.3 Complex scaling

The former estimates, the former limit, the domain transformation ρ(r) := α̃(r)r on
(r∗1,+∞) and the basic estimate supx>0(1 + xl)e−δx < +∞ for any l, δ > 0 and Assump-
tion 2.10 allow to derive Estimate (2.47). In particular it follows ‖ũ‖X < ∞ and hence
ũ ∈ X.

Lemma 2.14. For a solution (ω, u) to (2.23) with ℜ(iωd0) < 0 the pair (ω, ũ(u)) with ũ(u)
as in Lemma 2.13 solves (2.43).

Proof. Due to the chain rule it holds

− 1

r̃2
1

d
∂r

(

r̃2
1

d
∂rf
)

− 1

r̃2
∆S2f − ω2f = 0

for any f ◦ Q(r, x̂) = h1n(ωr̃(r))Y
m
n (x̂). Due to Lemma 2.13 we can exchange sums and

differentials and obtain

−∆̃ũ = −(d̃2d)−1 div
(

(d̃2d−1 Px+d(I−Px))∇ũ
)

= 0

in Bc
r∗1
. Let u′ ∈ C∞

0 (Ω). We multiply −∆ũ = 0 with u′, integrate over Ω ∩ Br∗1
and

integrate by parts to obtain

aΩ∩Br∗
1
(ũ, u′) = −〈ν · ∇ũ, u′〉H−1/2(∂Br∗1

)×H1/2(∂Br∗1
).

We multiply −∆̃ũ = 0 with d̃2du′, integrate over Bc
r∗1

and integrate by parts to obtain

aBc
r∗1

(ũ, u′) = −〈ν · d̃2d−1∇ũ, u′〉H−1/2(∂Bc
r∗
1
)×H1/2(∂Bc

r∗
1
).

The boundary terms cancel each other out due to d−1∂rũ ◦Q = ∂ru ◦Q on r = r∗1 and the
continuity of d̃. Hence a(ω;u, u′) = 0. Since C∞

0 (Ω) is dense in X, the claim follows.

2.3.3 The transformation ũ 7→ u(ũ)

Lemma 2.15. Let (ω, ũ) be a solution to (2.43) with ℜ(iωd0) < 0. Then

ũ ◦Q(r, x̂) =

∞
∑

n=0

n
∑

m=−n

anh
1
n(ωr̃(r))Y

m
n (x̂), r ≥ r∗1, x̂ ∈ S2 (2.48)

and the function

u(x) :=

{

ũ(x), for x ∈ Ω ∩Br∗1
,

∑∞
n=0

∑n
m=−n anh

1
n(ω|x|)Y m

n (|x|−1x), for x ∈ Bc
r∗1
,

(2.49)

is well defined in H̃1
0,loc(Ω) and (ω, u) solves (2.23). We write u = u(ũ) to emphasize that

u is defined by means of ũ.

Proof. Follows similarly to the proofs of Lemmata 2.3, 2.12, 2.13 and 2.14. We note that
in the previous direction Radiation Condition 2.5 ensured that the coefficients bn in (2.26)
vanish. For the reverse direction, this condition is ensured by the integrability of ũ ∈ X
and fm

n respectively.
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2 Helmholtz resonance problems

We collect the previous Lemmata in the next theorem.

Theorem 2.16. Let (ω, u) be a solution to (2.23) with ℜ(iωd0) < 0. Then (ω, ũ(u)) with
ũ(u) given by (2.46) solves (2.43) and Decay Estimate 2.47 holds. Vice-versa if (ω, ũ) is a
solution to (2.43) with ℜ(iωd0) < 0, then (ω, u(ũ)) with u(ũ) given by (2.49) solves (2.23).

Proof. Follows from Lemmata 2.12, 2.13, 2.14, 2.15.

Remark 2.17. We comment in the following on the reasons for the particular items of
Assumption 2.10. We consider for solutions u to (2.23) their transformations ũ(u) defined
by Lemma 2.13. Item 1 of Assumption 2.10 ensures that ũ coincides with u in Ω ∩ Br∗1

.

Item 2 and Item 5 of Assumption 2.10 ensure that ũ is in H̃1
loc(Ω). In particular, Item 5

of Assumption 2.10 ensures that ũ is twice continuously differentiable in Bc
r∗1

and it is
necessary for the proofs of Lemma 2.14 and Lemma 2.15. To be precise, we only require α̃ to
be twice continuously differentiable in (r∗1,+∞) in this chapter. The continuous extensions
of ∂rα̃ and ∂rα̃ will be necessary in Chapter 4. Item 4 of Assumption 2.10 ensures that the
limit in (2.37e) exists and will be necessary for the proof of Lemma 4.2. Items 4 and 3 of
Assumption 2.10 ensure an exponential decay of ‖ũ‖2L2(S2

r )
and yield that ũ is contained in

the appropriate space X. In particular, they ensure a convenient decay and error bound,
see (2.47).

2.4 Domain truncation

For a solution (ω, ũ) to (2.43) with ℜ(iωd0) < 0 it follows from Theorem 2.16 that ũ
decays exponentially to zero as x → ∞. Thus it seems natural to approximate (2.43) by
replacing the domain Ω with a bounded subdomain Ωn and pose a homogeneous Dirichlet
or Neumann boundary condition at the artificial boundary ∂Ωn \ ∂Ω. As most authors
we stick to Dirichlet boundary conditions. The resulting equation can then be discretized
with a standard numerical scheme such as finite element methods. The question arises
if and also how fast the solutions to this approximation converge to the solutions of the
original Equation (2.43). It is a classical approach to separate the analysis into a truncation
analysis and a discretization analysis whereby the latter can be performed similarly to
classical problems posed on bounded domains. In the following we will introduce a new
notion to perform the truncation analysis. To this end, we make our Assumptions on Ωn

more precise.

Assumption 2.18. The sequence of subdomains (Ωn)n∈N is such that for each n ∈ N

1. Ωn is a bounded Lipschitz domain,

2. Ωn ⊂ Ω,

3. ∂Ω ⊂ ∂Ωn,

4. ∂Ωn \ ∂Ω splits Ω into two connected parts,

and for any R > 0 exists an index n0 ∈ N such that (Ω ∩BR) ⊂ Ωn for all n > n0.
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2.4 Domain truncation

The PML approximation to (2.43) reads

find (ω, un) ∈ C×X(Ωn) \ {0} so that aΩn(ω;un, u
′
n) = 0 for all u′n ∈ X(Ωn). (2.50)

We note that ‖ · ‖X(Ωn) is an equivalent norm to ‖ · ‖H1(Ωn) and hence X(Ωn) = H1
0 (Ωn).

Let

Xn := {u ∈ X : u = 0 in Ω \ Ωn} (2.51)

and consider the problem to

find (ω, un) ∈ C×Xn \ {0} so that a(ω;un, u
′
n) = 0 for all u′n ∈ Xn. (2.52)

It is obvious that for every solution (ω, un) to (2.50) the extension ûn of un to Ω \ Ωn

by zero is in Xn and (ω, ûn) solves (2.52). Vice-versa for every solution (ω, u) to (2.52)
(ω, u|Ωn) solves (2.50). However as Xn is a subspace of X we recognize (2.52) as conform
Galerkin approximation to (2.43), which restores a common setup for numerical analysts.
The former notion is an enhancement of [HN15b] where certain finite element spaces are
considered directly as subspaces of X. Though as we will see the analysis simplifies if we
perform the truncation analysis and the discretization analysis separately. We note that
the choice of Dirichlet boundary condition at the artificial boundary is essential to ensure
a conform approximation. Indeed an approximation with Neumann boundary condition
could be analyzed as non-conform approximation to (2.43). We will not continue further
in this direction as the analysis would be more intricate with barely additional gain.

Through our notion we can investigate the truncation error as Galerkin error. A classical
way [BO91], [Bof10] to analyze Galerkin approximations to linear eigenvalue problems (such
as ours) is to introduce solution operators

S : X → X, Sn : Xn → Xn (2.53)

defined by

a(1;Su, u′) = 〈d̃2du, u′〉L2(Ω) for all u′ ∈ X, (2.54a)

a(1;Snun, u
′
n) = 〈d̃2dun, u′n〉L2(Ωn) for all u′n ∈ Xn. (2.54b)

Of course it has to be ensured that S and Sn are well defined continuous operators (for
sufficiently large n) through Equation (2.54). The spectra of (2.43) and (2.52) are connected
to the spectra of S and Sn respectively by the transformation

ω 7→ 1

ω2 − 1
. (2.55)

If S is a compact operator it can be deduced that Sn converges to S in operator norm
which yields spectral convergence [BO91]. However, the essential spectrum of S equals
{ 1
z2−1 : z ∈ C,ℜ(izd0) = 0} as we will see under an additional Assumption 4.1 on α̃ in

Proposition 4.7. Since the spectrum of a compact operator is discrete we deduce that S is
not compact. Thus the standard theory [BO91] does not apply.
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2 Helmholtz resonance problems

Differential operators with non-compact resolvent S occur e.g. in electromagnetism where
sufficient conditions on the Galerkin spaces to ensure spectral convergence have been ob-
tained e.g. in [CFR00], [Buf05]. The analysis therein is based on [DNR78a], [DNR78b],
which state that

‖S − Sn‖n := sup
un∈Xn\{0}

‖(S − Sn)un‖X/‖un‖X → 0 as n → ∞ (2.56)

is sufficient to ensure spectral convergence. See also the very comprehensive works [AFW06],
[AFW10], [CW13] for semi-definite operators. However, in the previous references the es-
sential spectrum consists only of one isolated eigenvalue with infinite dimensional eigenspace
whereas in our case it consists of a continuum. Thus the techniques of [DNR78a], [DNR78b],
[AFW06], [AFW10], [CW13] cannot be applied for our analysis. Roughly speaking we can-
not hope to approximate an operator with a non-discrete essential spectrum by operators
with discrete spectrum in a uniform way. All we can hope for is that we obtain locally (with
respect to the spectral parameter) converging approximations. Indeed local analysis tech-
niques are the core of the holomorphic Fredholm operator approximation theory [Kar96a],
[Kar96b] which is the topic of the forthcoming Chapter 3. We will apply this theory in
Chapter 4 to obtain convergence results for PML truncations.
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3 Holomorphic Fredholm theory

Holomorphic Fredholm operator theory serves as a suitable mathematical framework for
many non-linear eigenvalue problems which dependent holomorphically on the eigenvalue
parameter. In this chapter we briefly discuss how Chapter 2 relates to this framework and
give a short introduction to holomorphic Fredholm operator theory in Section 3.1. The
analysis of approximations for holomorphic Fredholm operator eigenvalue problems has a
long history [GJ73], [VK74], [Vai76], [JW78], [Kar96a], [Kar96b] and is usually performed
in the framework of discrete approximation schemes [Stu71] and regular approximations
of operator functions [Gri73], [AT85]. In this framework a complete convergence analysis
and asymptotic error estimates for eigenvalues are given by Karma in [Kar96a], [Kar96b].
If the discrete approximation scheme is chosen as a Galerkin scheme, then the assump-
tions of [Kar96a], [Kar96b] are reduced to a single non-trivial assumption: The Regular
Approximation Property (see Definition 3.13 for the meaning of regularity). If the operator
values are of the form “coercive+compact”, then the regularity of Galerkin approximations
is unconditionally satisfied. However, if the operator values are not of this kind the ques-
tion of spectrally converging approximations is very delicate. This can already be observed
for linear eigenvalue problems, see e.g. [BBG00], [AFW10]. Moreover the regularity con-
dition is rather abstract and does not come with a toolbox to verify it. In Lemma 3.14
of Section 3.2 we establish a new condition on the Galerkin spaces to ensure the regular-
ity of Galerkin approximations so that [Kar96a], [Kar96b] can be applied. This condition
is stronger than the classical regularity condition, however it suffices for a wide variety
of applications. Moreover in Lemma 3.16 we prove new asymptotic error estimates on
eigenspaces for Galerkin approximations (which are not provided by [Kar96a], [Kar96b]).
The latter is an improvement of [Ung09, Theorem 4.3.7]. At last we collect our new results
in Theorem 3.17.

As preparation for the forthcoming concept of weakly T-coercive operators/operator
functions we remind the reader how well-posedness of problems, i.e. Fredholmness of op-
erators in our sense of the term, is usually established. In the case of coercive operators
Fredholmness is trivial. The same holds for weakly coercive operators, i.e. A is a compact
perturbation of a coercive operator. (If the compact perturbation is involves an embedding
(usually from H1 to L2), the related estimate is commonly referred to as G̊arding inequal-
ity.) Else we may construct an isomorphism T so that T ∗A is weakly coercive (T ∗ denotes
the adjoint operator of T ), which yields the Fredholmness of A. The notion of T-coercivity
originates from [BBCZ10], [BBCC12], [Cia12], [BBCC14] and was introduced to analyze
differential operators with sign-changing coefficients in the principal part. For an opera-
tor A to be (weakly) T -coercive means that T ∗A is already (weakly) coercive. However,
the operator values will generally not be bijective in eigenvalue problems (precisely at the
eigenvalues). Thus the nomenclature of T-coercivity is not meaningful for our purposes
and we will rely on the term weak T-coercivity. In general, the Galerkin spaces will not
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3 Holomorphic Fredholm theory

be T -invariant and hence one cannot reproduce the above on the approximation level. An
invariance condition is indeed not necessary, but can be relaxed. We will explain in which
sense the Galerkin spaces have to interact with the operator T to ensure regularity. It will
turn out that the existence of bounded linear operators Tn from the Galerkin spaces to
themselves so that

lim
n→∞

‖T − Tn‖n = 0, (3.1)

whereby

‖T − Tn‖n := sup
un∈Xn\{0}

‖(T − Tn)un‖X/‖un‖X . (3.2)

with Galerkin spaces Xn is sufficient. Note that the discrete norm (3.2) was already em-
ployed in [DNR78a], [DNR78b] and implicitly in [HN15b], [Car15], [BBCC18].

The original motivation for this chapter was to provide a framework for the convergence
analysis of boundary element discretizations of boundary integral formulations of Maxwell
eigenvalue problems [Ung17], see also [WX13] for further computational experiments. Al-
though the Maxwell eigenvalue problem is of a linear nature, its formulation as boundary
integral equation becomes non-linear due to the dependency of the fundamental solution
on the frequency. We note that to understand the structure of Maxwell equations the clear
presentation [Buf05] was most helpful to us. A further possible application of this work
is the finite element error analysis for partial differential equations with sign-changing co-
efficients in the principal part of the differential operator. Therein the sign-change of the
coefficient destroys the coercivity structure. Such problems occur if negative materials are
coupled with classical ones [BBCZ10], [BBCC12], [BBCC14]. Note that the negative coef-
ficients in these references stem from prefactors of the kind (1− 1/ω2)−1 with ω2 being the
eigenvalue parameter. Hence eigenvalue problems for such configurations are indeed non-
linear. Also, the presented analysis suits as framework for [HN15b] wherein a T-operator
(therein denoted S) is constructed and analyzed for PML and Hardy space infinite element
(HSIE) approximations to cylindrical waveguide problems. Casually, this chapter can serve
as an intermediate reference for colleagues in the numerical analysis community who want
to apply [Kar96a], [Kar96b] to conform Galerkin schemes, but want to avoid getting in
touch with the extensive generality of the concept of discrete approximation schemes and
its intricate notation.

In this chapter let X, Y be generic Hilbert spaces and let L(X,Y ) be the space of bounded
linear operators from X to Y with norm ‖A‖L(X,Y ) := supu∈X\{0} ‖Au‖Y /‖u‖X for A ∈
L(X,Y ). ForX = Y we write L(X) := L(X,X). Similarly for a closed subspaceXn ofX let
L(Xn) be the space of bounded linear operators from Xn to Xn with norm ‖An‖L(Xn) :=
supun∈Xn\{0} ‖Anun‖X/‖un‖X for An ∈ L(Xn). In the previous chapter we obtained a
variational formulation of Helmholtz resonance problems in terms of a Hilbert space X
and a ω-dependent bounded sesquilinearform a(ω; ·, ·) : X ×X → C. For the forthcoming
analysis it will be more suitable to work with operators instead of sesquilinearforms. Thus
for a bounded ω-dependent sesquilinearform a(ω; ·, ·) : X × X → C we associate with the
Riesz representation theorem a ω-dependent operator A(ω) ∈ L(X) defined through

〈A(ω)u, u′〉X = a(ω;u, u′) for all u, u′ ∈ X. (3.3)
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3.1 Holomorphic Fredholm operator functions

Eigenvalue Problem (2.43) can now be expressed as

find (ω, u) ∈ C×X \ {0} so that A(ω)u = 0. (3.4)

If X is approximated by a closed subspace Xn we can associate a ω-dependent operator
An(ω) ∈ L(Xn) through

〈An(ω)un, u
′
n〉X = a(ω;un, u

′
n) for all un, u

′
n ∈ Xn. (3.5)

Similarly (2.52) can now be expressed as

find (ω, un) ∈ C×Xn \ {0} so that An(ω)un = 0. (3.6)

The operators A(ω) and An(ω) are related through An(ω) = PnA(ω)|Xn whereby Pn de-
notes the orthogonal projection from X to Xn. In this chapter we assume that (Xn)n∈N
is a sequence of closed subspaces of X so that Pn converges point-wise to the identity,
i.e. limn→∞ ‖u − Pnu‖X = 0 for all u ∈ X. In Lemma 3.14/Theorem 3.17 we establish
a sufficient condition on the Galerkin spaces Xn to ensure convergence of eigenvalues and
eigenspaces of (3.6) to (3.4).

3.1 Holomorphic Fredholm operator functions

We refer to the appendix of [KM99], [GGK90, Chapter XI] and [GL09, Chapter 1] for
the theory on Fredholm operators and holomorphic operator functions. For A ∈ L(X) we
denote by A∗ ∈ L(X) the adjoint operator of A defined by

〈u,A∗u′〉X = 〈Au, u′〉X for all u, u′ ∈ X. (3.7)

Definition 3.1. An operator A ∈ L(X) is called Fredholm or Fredholm operator if

1. kerA := {u ∈ X : Au = 0} is finite dimensional,

2. ranA := {Au : u ∈ X} is closed and has a finite codimension (i.e. the dimension of
the factor space X/ ranA).

For a Fredholm operator A we define its index as indA := dimkerA− dim(X/ ranA).

Every invertible operator is Fredholm with index zero. Moreover if A,B ∈ L(X) are
Fredholm then [GGK90, Theorem 3.2, Theorem 4.2, Theorem 5.1]

1. AB is Fredholm and ind(AB) = indA+ indB,

2. A + K is a Fredholm operator for every compact operator K ∈ L(X) and indA =
ind(A+K),

3. there exists an operator T ∈ L(X) so that Id−TA, Id−AT are compact operators.

Next we discuss a criteron for the Fredholmness of operators with the existence of so-
called singular sequences. Although the knowledge of the following Theorem 3.3 seems
widely spread, we are not aware of an appropriate literature reference. A discussion of
Weyl and Zhislin sequences can be found in [HS96, Chapters 6 and 10].
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3 Holomorphic Fredholm theory

Definition 3.2. Let X be a Hilbert space and A ∈ L(X). A sequence (un)n∈N ∈ XN is
called singular for A if

1. ‖un‖X = 1 for all n ∈ N,

2. limn∈NAun = 0,

3. there exists no converging subsequence of (un)n∈N.

Theorem 3.3. Let X be a Hilbert space and A ∈ L(X). If there exists a singular sequence
for A, then A is not Fredholm.

Proof. Let A be Fredholm and (un)n∈N ∈ XN be a normalized sequence with limn∈NAun =
0. With [GGK90, Theorem 2.1] it follows limn∈N infv∈kerA ‖un − v‖X = 0. Since kerA is
finite dimensional we can choose vn ∈ kerA with ‖un − vn‖X = infv∈kerA ‖un − v‖X . Since
kerA is finite dimensional we can choose a subsequence (vn′(n))n∈N which converges to some

v ∈ kerA. It follows limn∈N un′(n) = v, i.e. (un)n∈N ∈ XN is not singular for A.

Definition 3.4. Let A,T ∈ L(X) and T be bijective. The operator A is called

1. coercive, if infu∈X\{0} |〈Au, u〉X |/〈u, u〉X > 0,

2. weakly coercive, if there exists a compact operator K ∈ L(X) so that A+K is coercive,

3. T -coercive if T ∗A is coercive,

4. weakly T -coercive if T ∗A is weakly coercive.

We say that a sesquilinear form a(·, ·) is (weakly) (T -)coercive, if the associated operator
A defined through 〈A·, ·〉X = a(·, ·) admits the corresponding property. Due to the Lemma
of Lax-Milgram every coercive operator is invertible. Also every coercive operator is weakly
coercive and every weakly coercive operator is Id-weakly coercive. Every weakly T -coercive
operator is Fredholm with index zero. However, for a (weakly) coercive operator A it is
true that the Galerkin approximations An = PnA|Xn ∈ L(Xn) inherit the (weak) coercivity,
while for (weakly) T -coercive operators it is in general wrong. In the next section we will
establish a criterion on the subspaces Xn to cope with this fact. But before we do that, we
discuss an exceptional case in which the weak T -coercivity of A ∈ L(X) can be inherited
by its Galerkin approximation An.

We note that if T ∗A is weakly coercive, then AT−1 is so too. Vice-versa if AT is weakly
coercive, then so is T−∗A. Hence we could alternatively define A to be (weakly) right
T -coercive, if AT is (weakly) coercive. However, we stick to the former variant because it
is more convenient.

Lemma 3.5. Let X be a Hilbert space and A ∈ L(X) be weakly T -coercive. Let Xn be
T -invariant and T−1-invariant, i.e. Tun, T

−1un ∈ Xn for all un ∈ Xn. Let Tn := T |Xn ∈
L(Xn). Then An is weakly Tn-coercive.
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3.1 Holomorphic Fredholm operator functions

Proof. Tn ∈ L(Xn) is bijective by assumption. For un, u
′
n ∈ Xn we compute

〈T ∗
nAnun, u

′
n〉Xn = 〈Anun, Tnu

′
n〉Xn

= 〈Aun, Tu′n〉X
= 〈T ∗Aun, u

′
n〉X .

Hence T ∗
nAn = PnT

∗A|Xn . Since T
∗A is weakly coercive, so is PnT

∗A|Xn . Hence the claim
is proven.

For the remainder of this chapter let Λ ⊂ C be open and connected, and A(·) : Λ → L(X)
be an operator function.

Definition 3.6. An operator function A(·) is called holomorphic, if it is complex differen-
tiable, i.e.

lim
ω→ω0

1

ω0 − ω

(

A(ω0)−A(ω)
)

(3.8)

exists in L(X) for all ω0 ∈ Λ. An operator function A(·) is called Fredholm, if A(ω) is
Fredholm for all ω ∈ Λ.

The spectrum and resolvent set of an operator function A(·) are defined as

ρ
(

A(·)
)

:= {ω ∈ Λ: A(ω) is invertible}, σ
(

A(·)
)

:= Λ \ ρ
(

A(·)
)

. (3.9)

For an operator function A(·) we denote by A∗(ω) the operator function defined by A∗(ω) :=
A(ω)∗ for all ω ∈ Λ and by A−1(ω) : ρ

(

A(·)
)

→ L(X) the operator function defined by
A−1(ω) := A(ω)−1 for all ω ∈ ρ

(

A(·)
)

. Note that for a holomorphic operator function the
operator function defined by ω 7→ A∗(ω) is holomorphic as well. Some basic properties of
holomorphic operator functions are the following [GL09, Theorem 1.6.1, Theorem 1.7.1,
1.1.2, Corollary 1.5.3, Theorem 1.8.5].

1. A(·) is holomorphic if and only if the scalar valued function 〈A(·)u, u′〉X is holomor-
phic for all u, u′ ∈ X,

2. A−1(·) is holomorphic on ρ
(

A(·)
)

,

3. A(·) is infinitely many times complex differentiable,

4. for ω0 ∈ Λ and r > 0 so that {z ∈ C : |z − k0| < r} ⊂ Λ it holds

A(ω) =

∞
∑

n=0

(ω − ω0)
n/n!A(n)(ω0)

for ω ∈ {z ∈ C : |z−ω0| < r} whereby the sum converges absolutely and A(n) denotes
the nth derivative.
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3 Holomorphic Fredholm theory

For holomorphic Fredholm operator functions A(·) it further holds [GGK90, Theorem 8.2]
that if A(ω) is bijective for at least one ω ∈ Λ then σ

(

A(·)
)

is discrete, has no accumulation
points in Λ and every ω ∈ σ

(

A(·)
)

is an eigenvalue, i.e. there exists u ∈ X so that A(ω)u = 0.
In this case we call u an eigenelement. An ordered collection of elements (u0, u1, . . . , um−1)
in X is called a Jordan chain of ω if u0 is an eigenelement corresponding to ω and if

l
∑

j=0

1

j!
A(j)(ω)ul−j = 0 for l = 0, 1, . . . ,m− 1. (3.10)

The elements of a Jordan chain are called generalized eigenelements and the closed lin-
ear hull of all generalized eigenelements of A(·) at ω is called the generalized eigenspace
G(A(·), ω) for A(·) at ω. For an eigenelement u ∈ kerA(ω)\{0} we denote by κ(A(·), ω, u)
the maximal length of a Jordan chain of ω beginning with u and

κ(A(·), ω) := max
u∈kerA(ω)\{0}

κ(A(·), ω, u). (3.11)

The length of a Jordan chain is always finite, see e.g. [KM99, Lemma A.8.3]. Next, we
extend the definition of weakly T -coercive operators to operator functions.

Definition 3.7. Let T (·) : Λ → L(X) be an operator function so that T (ω) is invertible
for all ω ∈ Λ. An operator function A(·) is called weakly T (·)-coercive, if there exists an
operator function K(·) : Λ → L(X) so that T ∗(ω)A(ω) + K(ω) is coercive and K(ω) is
compact for all ω ∈ Λ.

We say that a ω-dependent sesquilinear form a(ω; ·, ·) is weakly T (·)-coercive, if the
associated operator function A(·) defined through 〈A(ω)·, ·〉X = a(ω; ·, ·) is so.

3.2 T-compatible approximations

We define

‖T‖n := sup
xn∈Xn\{0}

‖Txn‖X
‖xn‖X

. (3.12)

for an operator T ∈ L(X) or T ∈ L(Xn), n ∈ N or a sum of such.

Definition 3.8. Let T ∈ L(X) and (Tn)n∈N be a sequence of operators with Tn ∈ L(Xn).
We say that Tn converges to T in discrete norm, if

lim
n→∞

‖T − Tn‖n = 0. (3.13)

Let us collect some basic facts, which immediately follow from the definition of conver-
gence in discrete norm.

1. Let Xn be T ∈ L(X) invariant for all n ∈ N, i.e. Tun ∈ Xn for all un ∈ Xn and all
n ∈ N. Let Tn := PnT |Xn . Then ‖T − Tn‖n = 0 for all n ∈ N.
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3.2 T-compatible approximations

2. Let K ∈ L(X) be compact and set Kn := PnK|Xn . Then Kn converges to K in
discrete norm.

3. For i = 1, 2 let T i ∈ L(X), (T i
n)n∈N be sequences with T i

n ∈ L(Xn) so that T i
n

converges to T i in discrete norm. Then for any c ∈ C, T 1
n +cT 2

n converges to T 1+cT 2

in discrete norm.

In preparation of our forthcoming analysis we formulate the next lemma.

Lemma 3.9. Let T ∈ L(X) \{0} and (Tn)n∈N be a sequence of operators with Tn ∈ L(Xn)
and limn→∞ ‖T −Tn‖n = 0. Then there exist a constant c > 0 and an index n0 ∈ N so that

‖Tn‖L(Xn), ‖Tn‖−1
L(Xn)

≤ c (3.14)

for all n > n0. If T is bijective, and Tn, n ∈ N are Fredholm operators with index zero, then
there exist a constant c > 0 and an index n0 ∈ N so that Tn is also bijective for all n > n0

and

‖(Tn)
−1‖L(Xn) ≤ c. (3.15)

Proof. Let un ∈ Xn. With the triangle inequality we deduce

‖Tnun‖X ≤ ‖Tun‖X + ‖(T − Tn)un‖X
and hence

‖Tn‖L(Xn) ≤ ‖T‖L(X) + ‖T − Tn‖n.

Since limn∈N ‖T − Tn‖n = 0 the right hand side of the previous inequality is bounded.
Similarly, with the inverse triangle inequality we deduce

‖Tnun‖X ≥ ‖Tun‖X − ‖(T − Tn)un‖X
and hence

‖Tn‖L(Xn) ≥ ‖T‖n − ‖T − Tn‖n.

It hold limn∈N ‖T‖n → ‖T‖L(X) > 0 and limn∈N ‖T −Tn‖n = 0. Thus let n0 > 0 be so that
|‖T‖n − ‖T‖L(X)| < ‖T‖L(X)/3 and ‖T − Tn‖n < ‖T‖L(X)/3 for all n > n0. It follows

‖Tn‖L(Xn) ≥ ‖T‖L(X)/3 > 0.

For the last claim let n0 > 0 be so that ‖T −Tn‖n < 1/(2‖T−1‖L(X)) for all n > n0. Again
with the inverse triangle inequality and infx∈X,‖x‖X=1 ‖Tx‖X = 1/‖T−1‖L(X) > 0 it follows

inf
xn∈Xn,‖xn‖X=1

‖Tnxn‖X ≥ inf
x∈X,‖x‖X=1

‖Tx‖X − ‖T − Tn‖n

≥ 1/(2‖T−1‖L(X))

for all n > n0. We deduce that Tn is injective. Since Tn is Fredholm with index zero its bijec-
tivity follows. The norm estimate holds due to infxn∈Xn,‖xn‖X=1 ‖Tnxn‖X = 1/‖T−1

n ‖L(Xn).
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3 Holomorphic Fredholm theory

We define in the following what we mean by T (·)-compatible approximations of weakly
T (·)-coercive operator functions.

Definition 3.10. Let A(·) be a weakly T (·)-coercive operator function. Then we call the
sequence of Galerkin approximations

(An(·) := PnA(·)|Xn : Λ → L(Xn))n∈N (3.16)

a T (·)-compatible approximation of A(·), if (An(·))n∈N is a sequence of index zero Fredholm
operator functions and there exists a sequence of index zero Fredholm operator functions
(Tn(·))n∈N with Tn(·) : Λ → L(Xn) for each n ∈ N, so that

lim
n→∞

‖T (ω)− Tn(ω)‖n = 0 (3.17)

for all ω ∈ Λ.

Lemma 3.11. Let A(·) be a weakly T (·)-coercive operator function with K(·) as in Def-
inition 3.7. Let (An(·))n∈N be a T (·)-compatible approximation of A(·) and let K̃(ω) :=
(T (ω)∗)−1K(ω) for ω ∈ Λ. Then for every ω ∈ Λ there exist n0 ∈ N and c > 0, so that
An(ω) + PnK̃(ω)|Xn is invertible and

‖
(

An(ω) + PnK̃(ω)|Xn

)−1‖L(Xn) ≤ c (3.18)

for all n > n0.

Proof. Let n be large enough so that Tn(ω) is bijective (see Lemma 3.9). We compute

inf
un∈Xn\{0}

sup
u′
n∈Xn\{0}

|〈(A(ω) + K̃(ω))un, u
′
n〉X |

‖un‖X‖u′n‖X

≥ inf
un∈Xn\{0}

sup
u′
n∈Xn\{0}

|〈(A(ω) + K̃(ω))un, Tn(ω)u
′
n〉X |

‖Tn(ω)‖L(Xn)‖un‖X‖u′n‖X

≥ inf
un∈Xn\{0}

sup
u′
n∈Xn\{0}

|〈((A(ω) + K̃(ω))un, T (ω)u
′
n〉X |

‖Tn(ω)‖L(Xn)‖un‖X‖u′n‖X

−
‖A(ω) + K̃(ω)‖L(X)

‖Tn(ω)‖L(Xn)
‖T (ω)− Tn(ω)‖n

= inf
un∈Xn\{0}

sup
u′
n∈Xn\{0}

|〈T (ω)∗(A(ω) + K̃(ω))un, u
′
n〉X |

‖Tn(ω)‖L(Xn)‖un‖X‖u′n‖X

− ‖A(ω) + K̃(ω)‖L(X)

‖Tn(ω)‖L(Xn)
‖T (ω)− Tn(ω)‖n

= inf
un∈Xn\{0}

sup
u′
n∈Xn\{0}

|〈(T (ω)∗A(ω) +K(ω))un, u
′
n〉X |

‖Tn(ω)‖L(Xn)‖un‖X‖u′n‖X

− ‖A(ω) + K̃(ω)‖L(X)

‖Tn(ω)‖L(Xn)
‖T (ω)− Tn(ω)‖n

≥ c(ω)‖Tn(ω)‖−1
L(Xn)

−
‖A(ω) + K̃(ω)‖L(X)

‖Tn(ω)‖L(Xn)
‖T (ω)− Tn(ω)‖n
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3.2 T-compatible approximations

with coercivity constant

c(ω) := inf
u∈X\{0}

|〈(T (ω)∗A(ω) +K(ω))u, u〉X |/‖u‖2X > 0.

Since ‖Tn(ω)‖L(Xn) is uniformly bounded from above and below (see Lemma 3.9) and Tn(ω)
converges to T (ω) in discrete norm by assumption, the existence of n0 ∈ N and c̃ > 0 follows
so that

inf
un∈Xn\{0}

sup
u′
n∈Xn\{0}

|〈(A(ω) + K̃(ω))un, u
′
n〉X |

‖un‖X‖u′n‖X
≥ c̃

for all n > n0. Since An(ω) is Fredholm with index zero and K(ω) is compact, K̃(ω) is
compact too and thus An(ω) + PnK̃(ω)|Xn is Fredholm with index zero too. The claim
follows now from the Banach-Nec̆as-Babus̆ka Theorem [EG04, Theorem 2.6].

Definition 3.12. A sequence (un)n∈N with un ∈ X is said to be compact, if a converging
subsubsequence exists for every subsequence exists in turn.

Definition 3.13. Let A ∈ L(X) and (An)n∈N be its Galerkin approximation. The sequence
(An)n∈N is called regular if for every bounded sequence (un)n∈N with un ∈ Xn, n ∈ N the
compactness of (Anun)n∈N already implies the compactness of (un)n∈N.

Lemma 3.14. Let A(·) be a weakly T (·)-coercive operator function and (An(·))n∈N be a
T (·)-compatible approximation. Then for every ω ∈ Λ, (An(ω))n∈N is regular.

Proof. Let ω ∈ Λ be given. W.l.o.g. let
(

An(ω)un
)

n∈N
and u′ ∈ X be so that An(ω)un → u′

in X for n → ∞. Let K(·) be as in Definition 3.7 and let K̃(ω) := (T (ω)∗)−1K(ω). Let
Ã(ω) := A(ω) + K̃(ω) and Ãn(ω) := PnÃ(ω)|Xn . Since K̃(ω) is compact and ‖un‖X ≤ 1
for all n ∈ N, there exist a subsequence (un(m))m∈N and u′′ ∈ X so that K̃(ω)un(m) → u′′

in X as m → ∞. It follows

lim
m→∞

‖Ãn(m)(ω)un(m) − (u′ + u′′)‖X = 0.

Due to Lemma 3.11 there exist c > 0 and m0 ∈ N, so that for all m > m0 the operator
Ãn(m)(ω) is invertible and ‖Ãn(m)(ω)

−1‖L(Xn(m)) ≤ c. For m > m0 we compute

‖un(m)−Ã(ω)−1(u′ + u′′)‖X
≤ ‖un(m) − Pn(m)Ã(ω)

−1(u′ + u′′)‖X + ‖(Id−Pn(m))Ã(ω)
−1(u′ + u′′)‖X

≤ c‖Ãn(m)(ω)un(m) − Ãn(m)(ω)Pn(m)Ã(ω)
−1(u′ + u′′)‖X

+ ‖(Id−Pn(m))Ã(ω)
−1(u′ + u′′)‖X .

Since Pn(m) converge point-wise to the identity and due to the definition of Ãn(ω), the
claim follows.

Lemma 3.15. Let A(·) : Λ → L(X) be a holomorphic operator function and let (Xn)n∈N
be a sequence of closed subspaces of X with orthogonal projections Pn onto Xn, so that
(Pn)n∈N converges point-wise to the identity. Then the Galerkin scheme

(

PnA(·)|Xn)n∈N is
a discrete approximation scheme in the sense of [Kar96a].
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3 Holomorphic Fredholm theory

Proof. For a Galerkin scheme it holds with the notation of [Kar96a]

U = V = X, Xn = Yn = Xn, An(·) = PnA(·)Pn|Xn , pn = qn = Pn.

Assumptions a1)-a4) of [Kar96a] follow all from the point-wise convergence of Pn.

Lemma 3.16. Let Λ ⊂ C be open, X be a Hilbert space and L(X) be the space of bounded
linear operators from X to X. Let A(·) : Λ → L(X) be a holomorphic operator function
with non-empty resolvent set and (Xn)n∈N be a sequence of closed subspaces of X with
orthogonal projections Pn onto Xn, so that (Pn)n∈N converges point-wise to the identity,
i.e. limn→∞ ‖u − Pnu‖X = 0 for all u ∈ X. Let An(·) : Λ → L(Xn) be the Galerkin
approximation of A(·) defined by An(ω) := PnA(ω)|Xn for every ω ∈ Λ. Let the assumptions
of [Kar96a, Theorem 2, Theorem 3] and [Kar96b, Theorem 2, Theorem 3] be satisfied. Let
Λ̃ ⊂ Λ be a compact set with boundary ∂Λ̃ ⊂ ρ

(

A(·)
)

and Λ̃ ∩ σ
(

A(·)
)

= {ω0}. Then there
exist n0 ∈ N and c > 0 so that for all n > n0

inf
u0∈kerA(ω0)

‖un − u0‖X ≤ c
(

|ωn − ω0|+ max
u′

0∈kerA(ω0)
‖u′

0‖X≤1

inf
u′
n∈Xn

‖u′0 − u′n‖X
)

(3.19)

for all ωn ∈ σ
(

An(·)
)

∩ Λ̃ and all un ∈ kerAn(ωn) with ‖un‖X = 1.

Proof. We proceed as in [Ung09]: Theorem 4.3.7 of [Ung09] requires a special form of the
operator function A(·). However its proof uses this assumption only to apply Lemma 4.2.1
of [Ung09]. Hence we prove [Ung09, Lemma 4.2.1] without the assumption on the special
form of A(·). Again the proof of [Ung09, Lemma 4.2.1] does not need the special form of
A(·) to establish [Ung09, Equation (4.25)]. We continue the proof of [Ung09, Lemma 4.2.1]
at this point.

Let {yn} now be an orthonormal basis of
(

ranA(ω0)
)⊥

and {zn} be an orthonormal basis

of kerA(ω0). Let K ∈ L(X) be defined as Ku :=
∑

n yn〈u, zn〉X , u ∈ X and Ã : Λ → L(X)
be defined as Ã(ω)u := A(ω)u + Ku. Then K is compact and Ã(·) is bijective at ω0.
Since A(·), An(·) := PnA(·)Pn fulfill the assumptions of [Kar96a, Theorem 2] so do Ã(·),
Ãn(·) := PnÃ(·)Pn, see e.g. [Kar96a, page 367] for the regularity of Ãn(·). Since the
resolvent set of a holomorphic Fredholm operator function is open, [Kar96a, Theorem 2
(3)] yields ‖Ãn(ω)

−1‖ ≤ c for a c > 0 and all ω in a neighborhood of ω0. Thus for sufficiently
large n ∈ N it holds

‖x0 − xnl
‖X ≤ ‖(Id−Pnl

)x0‖X + ‖Pnl
(x0 − xnl

)‖X
≤ ‖(Id−Pnl

)x0‖X + c‖Ãnl
(ωnl

)Pnl
(x0 − xnl

)‖X
≤ ‖(Id−Pnl

)x0‖X + c‖Pnl
A(ωnl

)Pnl
(x0 − xnl

)‖X
+ c‖Pnl

KPnl
(x0 − xnl

)‖X .

The first term ‖(Id−Pnl
)x0‖X converges to zero due to the point-wise convergence of Pnl

.
For the second term c‖Pnl

A(ωnl
)Pnl

(x0 − xnl
)‖X it holds

‖Pnl
A(ωnl

)Pnl
(x0 − xnl

)‖X ≤ ‖Pnl
A(ωnl

)Pnl
x0‖X + ‖Pnl

A(ωnl
)xnl

‖X .
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3.2 T-compatible approximations

Since x0 ∈ kerA(ω0) and due to the point-wise convergence of Pnl
it follows

‖Pnl
A(ωnl

)Pnl
x0‖X → as l → ∞.

Further ‖Pnl
A(ωnl

)xnl
‖X → 0 by assumption of [Ung09, Lemma 4.2.1]. The third term

c‖Pnl
KPnl

(x0 − xnl
)‖X can be estimated as follows

‖Pnl
KPnl

(x0 − xnl
)‖X ≤ ‖KPnl

(x0 − xnl
)‖X

≤ ‖K(Id−Pnl
)x0‖X + ‖K(x0 − xnl

)‖X .

Due to the point-wise convergence of Pnl
it holds ‖K(Id−Pnl

)x0‖X → 0. Since K is
compact ‖K(x0 − xnl

)‖X → 0 follows from the weak convergence of xnl
⇀ x0. Hence the

claim is proven.

Theorem 3.17. Let Λ ⊂ C be open and connected, X be a Hilbert space and L(X) be the
space of bounded linear operators from X to X. Let A(·) : Λ → L(X) be a holomorphic
weakly T (·)-coercive operator function (see Definition 3.7) with non-empty resolvent set
ρ
(

A(·)
)

6= ∅. Let (Xn)n∈N be a sequence of closed subspaces of X with orthogonal projections
Pn onto Xn, so that (Pn)n∈N converges point-wise to the identity, i.e. limn→∞ ‖u−Pnu‖X =
0 for all u ∈ X. Let An(·) : Λ → L(Xn) be the Galerkin approximation of A(·) defined
by An(ω) := PnA(ω)|Xn for every ω ∈ Λ. Assume that (An(·))n∈N is a T (·)-compatible
approximation of A(·) (see Definition 3.10). Then the following results hold.

i) For every eigenvalue ω0 of A(·) exists a sequence (ωn)n∈N converging to ω0 with ωn

being an eigenvalue of An(·) for almost all n ∈ N.

ii) Let (ωn, un)n∈N be a sequence of normalized eigenpairs of An(·), i.e. An(ωn)un = 0
and ‖un‖X = 1, so that ωn → ω0 ∈ Λ, then

a) ω0 is an eigenvalue of A(·),
b) (un)n∈N is a compact sequence and its cluster points are normalized eigenelements

of A(ω0).

iii) For every compact Λ̃ ⊂ ρ(A) the sequence (An(·))n∈N is stable on Λ̃, i.e. there exist
n0 ∈ N and c > 0 so that ‖An(ω)

−1‖L(Xn) ≤ c for all n > n0 and all ω ∈ Λ̃.

iv) For every compact Λ̃ ⊂ Λ with boundary ∂Λ̃ ⊂ ρ
(

A(·)
)

exists an index n0 ∈ N so that

dimG(A(·), ω0) =
∑

ωn∈σ(An(·))∩Λ̃

dimG(An(·), ωn). (3.20)

for all n > n0, whereby G(B(·), ω) denotes the generalized eigenspace of an operator
function B(·) at ω ∈ Λ.

Let Λ̃ ⊂ Λ be a compact set with boundary ∂Λ̃ ⊂ ρ
(

A(·)
)

, Λ̃ ∩ σ
(

A(·)
)

= {ω0} and

δn := max
u0∈G(A(·),ω0)

‖u0‖X≤1

inf
un∈Xn

‖u0 − un‖X ,

δ∗n := max
u0∈G(A∗(·),ω0)

‖u0‖X≤1

inf
un∈Xn

‖u0 − un‖X ,
(3.21)
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3 Holomorphic Fredholm theory

whereby ω0 denotes the complex conjugate of ω0 and A∗(·) the adjoint operator function of
A(·) defined by A∗(ω) := A(ω)∗ for all ω ∈ Λ. Then there exist n ∈ N and c > 0 so that
for all n > n0

v)

|ω0 − ωn| ≤ c(δnδ
∗
n)

1/κ(A(·),ω0) (3.22)

for all ωn ∈ σ
(

An(·)
)

∩ Λ̃, where κ (A(·), ω0) denotes the maximal length of a Jordan
chain of A(·) at the eigenvalue ω0,

vi)

|ω0 − ωmean
n | ≤ cδnδ

∗
n (3.23)

whereby ωmean
n is the weighted mean of all the eigenvalues of An(·) in Λ̃

ωmean
n :=

∑

ω∈σ(An(·))∩Λ̃

ω
dimG(An(·), ω)
dimG(A(·), ω0)

, (3.24)

vii)

inf
u0∈kerA(ω0)

‖un − u0‖X ≤ c
(

|ωn − ω0|+ max
u′

0∈kerA(ω0)
‖u′

0‖X≤1

inf
u′
n∈Xn

‖u′0 − u′n‖X
)

(3.25)

for all ωn ∈ σ
(

An(·)
)

∩ Λ̃ and all un ∈ kerAn(ωn) with ‖un‖X = 1.

Proof. The first three claims follow with [Kar96a, Theorem 2], if we can prove that the
required assumptions are satisfied. First of all a Galerkin scheme is a discrete approximation
scheme due to Lemma 3.15. The operator function A(·) is holomorphic by assumption. It
follows that An(·) := PnA(·)Pn|Xn is also holomorphic. Since A(·) is weakly T (·)-coercive, it
is Fredholm valued. An(·) is Fredholm valued by assumption (see Def. 3.10). Assumption b1
ρ
(

A(·)
)

6= ∅ is also an assumption of this theorem. Assumption b2 follows from Lemma 3.11
(at least for sufficiently large n). Assumption b3 follows from ‖An(ω)‖L(Xn) ≤ ‖A(ω)‖L(X).
Assumption b4 follows from the point-wise convergence of the projections Pn. Assumption
b5 follows from Lemma 3.14.

The fourth claim follows with [Kar96a, Theorem 3], if we can prove the required assump-
tion (R). We can choose rn as injection, i.e. rnxn := xn. Hence ‖rn‖ = 1. Since pn = Pn

ii) follows from the point-wise convergence of the projections Pn.
The fifth and sixth claim follow with [Kar96b, Theorem 2, Theorem 3], if we can

prove their required assumptions. Assumption a1-a4 are canonically satisfied by Galerkin
schemes. We already have proved that Assumptions b1-b5 are satisfied. We can chose
p′n = pn = q′n = qn = Pn. For [Kar96b, Theorem 3] we can choose the same rn as before.

For the proof of the seventh claim we actually do not need the notion of this chapter and
only require the assumptions of [Kar96a, Theorem 2, Theorem 3], [Kar96b, Theorem 2,
Theorem 3] plus the Galerkin setting. Thus we refer to Lemma 3.16.
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4 Continuation of Chapter 2

In this chapter we continue the discussion of Chapter 2 and show how to apply the frame-
work of Chapter 3. In Section 4.1 we introduce an additional Assumption 4.1 on the profile
function α̃. In Lemma 4.4 we construct a suitable ω-dependent multiplication operator
T (ω) ∈ L(X) and prove in Theorem 4.5 that A(ω) is weakly T (ω)-coercive if ℜ(iωd0) 6= 0.
The construction of T (·) is based on an observation from [BP07]. In Theorem 4.6 we prove
that the essential spectrum of A(·) equals {z ∈ C : ℜ(izd0) = 0)}.

In Section 4.2 we continue the discussion of Section 2.4. In particular we prove in
Lemma 4.8 that the Galerkin spaces (2.51) are T (ω)-invariant. Hence in Theorem 4.9 we
conclude that Theorem 3.17 applies. In Lemma 4.10 we prove that the best approximation
error infun∈Xn ‖u− un‖X can be estimated by a constant times ‖u‖X(Bc

rn
) which itself can

be estimated as in (2.47). Our convergence results extend [KP09] in the sense that we allow
profile functions α̃ of very general form and obtain convergence of eigenspaces as well as
convergence rates.

In Section 4.3 we discuss the subsequent approximation of truncated PML approxima-
tions, which requires no extravagant ingredients.

In Section 4.4 we perform a direct approximation analysis in preparation for Section 4.5.
The main difficulty hereby is that we consider Galerkin spaces which are not necessarily
T (ω)-invariant. We overcome this obstacle by means of the discrete commutator prop-
erty [Ber99]. In Section 4.5 we consider reformulations of the resonance problem which
involve only a bounded domain but unbounded coefficients. We consider the “exact PML”
method of Bermudez et. al. [BHNPR08] and a newly introduced similar method. We per-
form an approximation analysis for both.

In Section 4.6 we show that our techniques can easily be adapted to variations of (2.22)
such as radial symmetric potentials whose PML approximations for scattering problems
were studied in [HSZ03a], [HSZ03b].

Since we have the framework of Chapter 3 at hand, we continue the discussion of
Chapter 2 for Helmholtz Resonance Problem (2.43) and its Truncated PML Approxima-
tion (2.52) at this point. Thus let Ω, α̃, α, d̃, d, r̃, a, X, Ωn, Xn be as in Chapter 2
and let α̃ suffice Assumption 2.10. As in Chapter 2 we adopt the overloaded notation
f(x) := f(|x|), x ∈ Ω for f = α̃, α, d̃, d, r̃.

4.1 Weak T (·)-coercivity and the essential spectrum

The key ingredient for our analysis is that weak T (·)-coercivity of a(·; ·, ·) can be obtained
with T (ω) being simple multiplication operators. For specific profiles of the Kind (2.34) this
was already exploited implicitly in [BP07] from wherein the ansatz is taken and extended.
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4 Continuation of Chapter 2

For our forthcoming analysis we additionally require the following assumption.

Assumption 4.1. Let α̃ and r∗1 be as is Assumption 2.10 and d̃, d be as in (2.37). Let

1. lim
r→+∞

d̃(r)|d(r)|/
(

|d̃(r)|d(r)
)

= 1,

2. lim
r→+∞

(

∂r(d̃/|d̃|)
)

(r) = lim
r→∞

(

∂r(d/|d|)
)

(r) = 0.

Assumption 4.1.1 is necessary for Lemma 4.2 which will yield the essential argument to
prove the “coercivity part” in Theorem 4.5. Assumption 4.1.2 on the other hand will be
necessary to prove the “compactness part” in Theorem 4.5.

It can easily be seen that any α̃ of the Kind (2.32b), (2.33b) and (2.34) suffices As-
sumption 4.1. In general, any reasonable profile function that comes to our mind suffices
Assumption 4.1.

Next we introduce two lemmata which will be essential for our analysis. Let

arg z : C \ {0} → [−π, π), z = |z| exp(i arg z). (4.1)

Lemma 4.2. Let Assumptions 2.10 and 4.1 hold. Then there exists τ ∈ (0, π/2) so that
arg
(

d(r)/d̃(r)
)

∈ [0, τ ] for all r > r∗1.

Proof. Let r > r∗1. Due α̃(r) ≥ 0, the definition of d̃, d and Assumption 2.10.4 it holds
arg d̃(r) ≤ arg d(r). Since arg

(

d(r)/d̃(r)
)

= arg d(r)− arg d̃(r) it follows arg
(

d(r)/d̃(r)
)

∈
[0, π/2). Due to Assumption 2.10.5 d̃/d is continuous. Together with Assumption 4.1.1 it
follows supr>r∗1

arg
(

d(r)/d̃(r)
)

< π/2. Hence the claim is proven.

Lemma 4.3. Let η1 : Ω → C be measurable so that η1|Ω∩Bn ∈ L∞(Ω ∩ Bn) for all n ∈ N.
Let Y ⊂ L2(Ω) be a Hilbert space so that ‖η1u‖L2(Ω) ≤ C‖u‖Y for a constant C > 0 and all
u ∈ Y and so that the embedding and restriction operator Kn : Y → L2(Ω∩Bn) : u 7→ u|Ω∩Bn

is compact for each n ∈ N. Let η2 ∈ L∞(Ω) be so that limr→∞ ‖η2‖L∞(Bc
r)

= 0. Then the
multiplication and embedding operator Kη1η2 : Y → L2(Ω): u 7→ η1η2u is compact.

Proof. Consider a sequence (un)n∈N with un ∈ Y, ‖un‖Y ≤ 1. We construct a Cauchy
subsequence as follows. We choose a subsequence N1 : N → N so that (K1uN1(n))n∈N con-
verges. Iteratively for m ∈ N we choose subsequences Nm : N → N so that (KmuNm(n))n∈N
converges. Via diagonalization we construct a subsequence N(n) := Nn(n). Let ǫ > 0
and n1 > 0 be so that ‖η2‖L∞(Bc

n1
) < ǫ/(4C). Let n2 > 0 be so that ‖Kn1(uN(n) −

uN(n′))‖L2(Ω∩Bn1 )
< ǫ/(2‖η1η2‖L∞(Ω∩Bn1 )

) for all n, n′ > n2. It follows

‖η1η2(uN(n) − uN(n′))‖L2(Ω) ≤ ‖η1η2‖L∞(Ω)‖uN(n) − uN(n′)‖L2(Ω∩Bn1 )
+ 2‖η2‖L∞(Bc

n1
) < ǫ.

Hence the claim is proven.

Our analysis will further require the following functions.

α̂(r) :=

{

limρ→r∗1+
α(ρ) for 0 ≤ r ≤ r∗1,

α(r) for r > r∗1,
(4.2a)

d̂(r) := 1 + iα̂(r), r ≥ 0. (4.2b)

Again, we adopt the overloaded notation f(x) := f(|x|), x ∈ Ω for f = α̂, d̂.
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4.1 Weak T (·)-coercivity and the essential spectrum

Lemma 4.4. Let Assumptions 2.10 and 4.1 hold. For all ω ∈ C \ {0} and all u ∈ X let

T (ω)u :=















|d̂|

d̂
u for arg(−ω2d20) ∈ [−π, 0),

d̂
d̃2

|d̃|2

|d̂|
u for arg(−ω2d0) ∈ [0, π).

(4.3)

Then T (ω) ∈ L(X) is bijective for all ω ∈ C \ {0}.

Proof. For any η ∈ W 1,∞(Ω) and u ∈ X it holds

‖ηu‖2X = 〈(|d̃2d−1|Px +|d|(I−Px))(η∇u+ u∇η), η∇u+ u∇η〉L2(Ω) + 〈|d̃2d|ηu, ηu〉L2(Ω)

≤ 3‖η‖2W 1,∞(Ω)‖u‖2X .

Thus multiplication with η is bounded from X → X. If |η| = 1 it follows 1/η ∈ W 1,∞(Ω)
as well. Hence the inverse of multiplication with η, which is multiplication with 1/η, is
bounded from X → X as well.

Let η = |d̂|

d̂
or η = d̂

d̃2
|d̃|2

|d̂|
. It follows |η| = 1. Due to the definition of d̂ (4.2) and As-

sumption 2.10, η is weakly differentiable. Due to Assumption 2.10.5 and Assumption 4.1.2
it follows ∇η ∈ L∞(Ω) and hence η ∈ W 1,∞(Ω). Thus the claim is proven.

Theorem 4.5. Let Assumptions 2.10 and 4.1 hold. Let a(·; ·, ·) and X be as in (2.42),
A(·) be as in (3.3), T (·) be as in (4.3), d0 be as in (2.37e) and

Λd0 := {z ∈ C : ℜ(izd0) 6= 0}. (4.4)

Then A(·) : Λd0 → L(X) is weakly T (·)-coercive.

Proof. We consider the two cases arg(−ω2d20) ∈ (−π, 0) and arg(−ω2d20) ∈ [0, π) separately.
We split the sesquilinear form a(ω; ·, T (ω)·) into a coercive part a1(·, ·) and a compact part
a2(·, ·).
First case ω ∈ Λd0 with arg(−ω2d20) ∈ (−π, 0): A direct computation yields

a(ω;u, T (ω)u′) = a1(u, u
′) + a2(u, u

′)

with

a1(u, u
′) :=

〈(

d̃2|d̂|
dd̂

Px+
d|d̂|
d̂

(I−Px)

)

∇u,∇u′
〉

L2(Ω)

− ω2d20〈|d̃2d|u, u′〉L2(Ω),

a2(u, u
′) :=

〈

d̃2

d
∂ru, u

′∂r

(

|d̂|
d̂

)

〉

L2(Ω)

− ω2

〈(

d̃2d|d̂|
|d̃2d|d̂

− d20

)

|d̃2d|u, u′
〉

L2(Ω)

.

Recall that d̂(r) = d(r) for r > r∗1 and d̂(r) = 1 + i limr→r∗1+
α(r) for r ≤ r∗1. Due to

Assumptions 2.10.4 and 2.10.5 it holds arg d̂(r∗1) ∈ [0, π/2). Let τ ∈ (0, π/2) be as in
Lemma 4.2 and

τ1 := min{−2τ,− arg d̂(r∗1), arg(−ω2d20)}.
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4 Continuation of Chapter 2

It follows that τ1 ∈ (−π, 0) and

arg

(

d̃2|d̂|
dd̂

)

(r), arg

(

d|d̂|
d̂

)

(r), arg(−ω2d20) ∈ [τ1, 0]

for all r ≥ 0. Thus ℜ(ie−i(π+τ1)/2a1(u, u)) ≥ cos(τ1/2)min{1, |ω2|}‖u‖2X for all u ∈ X, i.e.
a1(·, ·) is coercive. Further a2(u, u′) = 〈(K∗

1L1 − ω2K∗
2L2)u, u

′〉X with bounded operators

L1 : X → L2(Ω): u 7→ d̃

d1/2
∂ru,

K1 : X → L2(Ω): u 7→



∂r

(

|d̂|
d̂

)





d̃

d1/2
u,

L2 : X → L2(Ω): u 7→ |d̃d1/2|u,

K2 : X → L2(Ω): u 7→
(

d̃2d|d̂|
|d̃2d|d̂

− d20

)

|d̃d1/2|u.

From the definitions of d0 and d̂ it follows
(

d̃2d|d̂|

|d̃2d|d̂
− d20

)

(r) → 0 as r → +∞. From As-

sumption 4.1.2 follows

(

∂r

(

|d̂|

d̂

)

)

(r) → 0 as r → +∞. Lemma 4.3, 1/|d| ≤ 1 and the

compact Sobolev embedding H1(D) → L2(D) for bounded Lipschitz domains D yield that
K1 and K2 are compact. Hence A2 (〈A2u, u

′〉X = a2(u, u
′)) is compact too.

Second case ω ∈ Λd0 with arg(−ω2d20) ∈ [0, π): A direct computation yields a(ω;u, T (ω)u′) =
a1(u, u

′) + a2(u, u
′) with

a1(u, u
′) :=

〈(

d̂|d̃2|
d|d̂|

Px+
dd̂|d̃2|
d̃2|d̂|

(I−Px)

)

∇u,∇u′
〉

L2(Ω)

− ω2d20〈|d̃2d|u, u′〉L2(Ω),

a2(u, u
′) :=

〈

d̃2

d
∂ru, u

′∂r

(

d̂|d̃2|
d̃2|d̂|

)

〉

L2(Ω)

− ω2

〈(

d̂|d̃2|d̃2d
d̃2|d̂||d̃2d|

− d20

)

|d̃2d|u, u′
〉

L2(Ω)

.

As in the previous case we find that

arg

(

d̂|d̃2|
d|d̂|

)

(r), arg

(

dd̂|d̃2|
d̃2|d̂|

)

(r), arg(−ω2d20) ∈ [0, τ1]

for all r ≥ 0 with τ1 := max{2τ, arg d̂(r∗1), arg(−ω2d20)} ∈ [0, π). It follows

ℜ(−iei(π−τ2)/2a1(u, u)) ≥ cos(τ1/2)min{1, |ω2|}‖u‖2X

for all u ∈ X, i.e. a1(·, ·) is coercive. Further a2(u, u
′) = 〈(K∗

1L1 − ω2K∗
2L2)u, u

′〉X with
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4.1 Weak T (·)-coercivity and the essential spectrum

bounded operators

L1 : X → L2(Ω): u 7→ d̃

d1/2
∂ru,

K1 : X → L2(Ω): u 7→



∂r

(

d̂|d̃2|
d̃2|d̂|

)





d̃

d1/2
u,

L2 : X → L2(Ω): u 7→ |d̃d1/2|u,

K2 : X → L2(Ω): u 7→
(

d̂|d̃2|d̃2d
d̃2|d̂||d̃2d|

− d20

)

|d̃d1/2|u.

From the definitions of d0, d̂ and Assumption 4.1.1 follows
(

d̂|d̃2|d̃2d

d̃2|d̂||d̃2d|
− d20

)

(r) → 0 as

r → +∞. From Assumption 4.1.2 it follows

(

∂r

(

d̂|d̃2|

d̃2|d̂|

)

)

(r) → 0 as r → +∞. Again,

Lemma 4.3, 1/|d| ≤ 1 and the compact Sobolev embedding H1(D) → L2(D) for bounded
Lipschitz domains D yield that K1 and K2 are compact. Hence A2 (〈A2u, u

′〉X = a2(u, u
′))

is compact too.

It is less intuitive why we need to employ the multiplication operator T (ω). The matrix
of the principle part of a(ω; ·, ·) is d̃2d−1 Px+d(I−Px). The coefficients are bounded away
from zero and only take values in the closed salient sector spanned by (1 + iα(r))±1.
However, as the domain is unbounded the (asymptotic) complex sign of the mass term
−ω2d30 also has to be taken into account. Although there is no way to estimate 1 + iα(r)
in terms of d0 without further assumptions on α̃. Nonetheless the asymptotic complex
sign of the matrix coefficients is d0. Thus it is meaningful to suitably rotate the complex
sign of the principle part especially in the preasymptotic regime of the coefficients. The
rotation for the mass term in the preasymptotic regime can be neglected as mass integrals
on bounded sets lead to compact operators. In [BP07] it was noted that a rotation by d−1

yields the desired properties. Be aware that for different dimensions and different equations
other rotations are necessary. A choice leading to coefficients 1 and d̃2/d2 or 1 and d2/d̃2

(depending on the complex sign of −ω2d20) in the principle part of the equation usually
does the job.

Theorem 4.6. Let Assumptions 2.10 and 4.1 hold. Assume additionally that there exists
a constant Cd > 0 so that

|d| ≤ Cd|d̃| (4.5)

for all r > 0. Let a(·; ·, ·) be as in (2.42), A(·) be as in (3.3), Λd0 be as in (4.4) and
ω ∈ C \ Λd0 = {ω ∈ C : ℜ(−iωd0) = 0}. Then A(ω) is not Fredholm, i.e. C \ Λd0 is part of
the essential spectrum of A(·).

Proof. We construct a singular sequence for A(ω) (see Definition 3.2) and employ Theo-
rem 3.3.
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4 Continuation of Chapter 2

1. step (definition of u): Consider ω 6= 0 and let

u(r) := h10(ωd0|d̃(r)|r).

A computation yields ∂r(|d̃(r)|r) = ď with

ď := d0|d̃|
(

1 +
α̃r∂rα̃

|d̃2|

)

.

Since h10 solves Bessel equation (2.11) with index n = 0

〈(d20|d̃2|ď−1 Px∇u,∇u′〉L2(Ω) − ω2〈d20|d̃2|ďu, u′〉L2(Ω) = 0

for all u′ ∈ C∞
0 (Ω) with suppu′ ∈ Bc

r∗1
.

2. step (computation of coefficients): We compute

d̃2

d
− d20|d̃2|

ď
=

d̃2

d

(

1− d

ď

d20|d̃2|
d̃2

)

Recall d0 := limr→+∞ d̃/|d̃| and hence limr→+∞
d20|d̃

2|

d̃2
= 1. Next we compute limr→+∞

d
ď
. If

α̃ is bounded, Assumption 4.1.1 yields that limr→+∞ r∂rα̃(r) = 0 and hence limr→+∞
d
ď
= 1.

If α̃ is unbounded, we compute

d

ď
=

α̃

|d̃|
1 + r∂rα̃

α̃ + 1
iα̃

1 + α̃2

|d̃2|
r∂rα̃
α̃

.

and hence it holds limr→+∞
d
ď
= 1 too. Thus it holds limr→+∞

(

1− d
ď

d20|d̃
2|

d̃2

)

= 0. Similarly

we compute

d̃2d− d20|d̃2|ď = d̃2d

(

1− d20|d̃2|
d̃2

ď

d

)

and limr→+∞

(

1− d20|d̃
2|

d̃2
ď
d

)

= 0.

3. step (definition of ũn): For the last part of the proof we proceed as in in the proof
of [BBCP18, Theorem 4.1]. Let χ be a smooth cut-off function defined on R so that
χ(r) = 0 for |r| > 1 and ‖χ‖L2(R) = 1. Let

χn(r) := n−1/2χ

(

r − n2

n

)

|d̃(r)|−1/2 and ũn(r) := χn(r)u(r).

Due to h10(z) = eiz/(iz) and ω ∈ C \ Λd0 we compute

〈|d̃2d|ũn, ũn〉L2(Ω) ∈
[

|ω|−2, |ω|−2Cd|
]

.
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4.1 Weak T (·)-coercivity and the essential spectrum

We note that it would be more natural to replace d̃ by d in the definition of χn. However,
this way ∂rũn would contain second derivatives of α̃ which we could bind only by means of
additional assumptions. Instead we impose (4.5) and employ χn as previously defined.

4. step (computation of integrals): We compute

∂rũn(r) = u∂rχn + χn∂ru(r) = u(r)f1(r) + u(r)f2(r) + χn(r)f3(r)

with

f1(r) := n−3/2∂rχ

(

r − n2

n

)

|d̃(r)|−1/2,

f2(r) := r−1n−1/2χ

(

r − n2

n

) −1

2
|d̃(r)|−3/2α̃(r)r∂rα̃(r),

f3(r) := ωd0ď(r)∂rh
1
0(ωd0|d̃(r)|r).

Lemma 2.2 and a direct computation show the existence of C > 0 independent of n ∈ N so
that

〈

|d̃2/d|uf1, uf1
〉

L2(Ω)
≤ C/n2,

〈

|d̃2/d|uf2, uf2
〉

L2(Ω)
≤ C/n2,

〈

|d̃2/d|χnf3, χnf3

〉

L2(Ω)
≤ C,

〈

|d̃2/d|f1f3, f1f3
〉

L2(Ω)
≤ C/n2,

〈|1/d|f2f3, f2f3〉L2(Ω) ≤ C/n2.

5. step (final part): It follows that there exists c > 0 independent of n ∈ N so that
‖ũn‖X ∈ [1/c, c] for all n ∈ N. We now employ

∇(χnu) · ∇u′ = ∇u · ∇(χnu′) + u∇χn · ∇u′ − (∇u · ∇χn)u′
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4 Continuation of Chapter 2

to compute

〈A(ω)ũn, u′〉X =

〈

d̃2

d
Px∇u,∇(χnu

′)

〉

L2(Ω)

− ω2
〈

|d̃2d|u, χnu
′
〉

L2(Ω)

+

〈

d̃2

d
Px u∇χn,∇u′

〉

L2(Ω)

−
〈

d̃2

d
∇u · ∇χn, u

′

〉

L2(Ω)

=

〈

d̃2

d

(

1− d

ď

d20|d̃2|
d̃2

)

Px∇u,∇(χnu
′)

〉

L2(Ω)

− ω2

〈

d̃2d

(

1− d20|d̃2|
d̃2

ď

d

)

u, χnu
′

〉

L2(Ω)

+

〈

d̃2

d
Px u∇χn,∇u′

〉

L2(Ω)

−
〈

d̃2

d
∇u · ∇χn, u

′

〉

L2(Ω)

=

〈

d̃2

d

(

1− d

ď

d20|d̃2|
d̃2

)

Px∇(χnu),∇u′

〉

L2(Ω)

− ω2

〈

d̃2d

(

1− d20|d̃2|
d̃2

ď

d

)

χnu, u
′

〉

L2(Ω)

+

〈

d20|d̃2|
ď

Px u∇χn,∇u′

〉

L2(Ω)

−
〈

d20|d̃2|
ď

∇u · ∇χn, u
′

〉

L2(Ω)

for u′ ∈ X. The existence of (ǫn)n∈N with ǫn > 0 for n ∈ N and limn∈N ǫn = 0 so that

|〈A(ω)ũn, u′〉X | ≤ ǫn‖u′‖X
follows. Let un := ũn/‖ũn‖X . Since the supports of un and um are disjoint for n 6= m
and ‖un‖X = 1 there exists no converging subsequence of (un)n∈N. Altogether we have
constructed a singular sequence (un)n∈N for A(ω) and hence the claim is proven for ω 6= 0.
For ω = 0 we can consider u(r) = 1/(d0|d̃(r)|r) and repeat the proof.

Proposition 4.7. Let Assumptions 2.10 and 4.1 and (4.5) hold. Let a(·; ·, ·) be as in (2.42),
A(·) be as in (3.3) and Λd0 be as in (4.4). Then A(ω) with ω ∈ C is Fredholm if and only
if ω ∈ Λd0 . For ω ∈ Λd0 , A(ω) has index zero. A(ω) is bijective for ω ∈ C \ {0} with
argω ∈ [−π,− arg d0) ∪ [0, π − arg d0).

Proof. Follows from Theorems 4.5, 4.6, 2.16, 2.9 and 2.8.

Our approach to compute the essential spectrum of A(·) : C → L(X) is quite direct.
Instead one could also employ the theory of spectral deformation [HS96]. We refrain from
this approach for two reasons. On the one hand we consider more general complex scalings
than in [HS96] and hence the theory therein does not cover all our considered scalings. On
the other hand the theory of [HS96] is quite intricate and we prefer to give a selfcontained
presentation.
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4.2 Approximation by domain truncation

4.2 Approximation by domain truncation

We consider a sequence of finite subdomains (Ωn)n∈N which suffices Assumption 2.18,
corresponding subspaces Xn defined by (2.51) and corresponding operator functions An(·)
defined by (3.5). We investigate the approximation of A(·) by An(·).

Lemma 4.8. Let Assumptions 2.10, 4.1 and 2.18 hold. Let Xn be as in (2.51) and T (·) be
as in (4.3). Then Xn is T (ω)-invariant and T−1(ω)-invariant for all n ∈ N, ω ∈ C \ {0},
i.e. T (ω)un, T

−1(ω)un ∈ Xn for all un ∈ Xn, n ∈ N, ω ∈ C \ {0}.

Proof. A multiplication operator does not increase the support of a function.

Theorem 4.9 (Spectral convergence). Let Assumptions 2.10 and 4.1 hold. Let X and
a(·; ·, ·) be as in (2.42), A(·) be as in (3.3), T (·) be as in (4.3) and

Λ±
d0

:= {z ∈ C : ±ℜ(izd0) < 0}. (4.6)

Let Assumption 2.18 hold. Let Xn be as in (2.51) and An(·) be as in (3.5).

Then A(·) : Λ±
d0

→ L(X) is a weakly T (·)-coercive holomorphic Fredholm operator func-

tion with non-empty resolvent set ρ
(

A(·)
)

and An(·) : Λ±
d0

→ L(Xn) is a T (·)-compatible
approximation, i.e. Theorem 3.17 applies.

Proof. Since A(ω) is a polynomial in ω it is holomorphic. Due to Theorems 4.5, 2.16,
2.9 and 2.8 A(·) : Λ±

d0
→ L(X) is a weakly T (·)-coercive holomorphic Fredholm operator

function with non-empty resolvent set ρ
(

A(·)
)

. Due to Lemma 4.8 Xn is T (ω)-invariant
for all n ∈ N, ω ∈ Λ±

d0
. Hence with Tn(ω) := T (ω)|Xn it hold Tn(ω), T

−1
n (ω) ∈ L(Xn) and

‖T (ω)−Tn(ω)‖n = 0 for all n ∈ N, ω ∈ Λ±
d0

and An(ω) and Tn(ω) are Fredholm with index

zero for all ω ∈ Λ±
d0

due to Lemma 3.5.

Theorem 4.9 yields via Theorem 3.17 convergence rates with respect to the best approx-
imation errors (3.21). To estimate these we introduce the next Lemma 4.10.

Lemma 4.10. Let Assumptions 2.10, 4.1 and 2.18 hold. Let X be as in (2.42) and Xn be
as in (2.51). Let rn > 0 be so that Ω ∩ Brn+1 ⊂ Ωn. Then there exists a constant C > 0
independent of n so that

inf
un∈Xn

‖u− un‖X ≤ C‖u‖X(Bc
rn ) (4.7)

for all u ∈ X.

Proof. We choose un(x) := χ2(1 + rn − |x|)u(x) ∈ Xn with χ2 as in (2.36b) and compute

‖u− un‖X = ‖u− un‖X(Ω\Brn ) ≤ ‖u‖X(Ω\Brn ) + C‖u‖X(Arn,rn+1)

with a constant C > 0 independent of u and n.
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4 Continuation of Chapter 2

Due to Theorem 2.16 ‖u‖X(Bc
rn

) can be estimated to decay exponentially for eigenfunc-
tions u, i.e. A(ω)u = 0. For generalized eigenfunctions (also called root functions) ‖u‖X(Bc

rn )

can also be estimated to decay exponentially due to Lemma 6.1 of [KP09].
For solutions (ω, u) to A(ω)u = 0 the quantity of interest is actually only (ω, u|Ω∩Br∗1

)

where as u|Bc
r∗
1

could be called an auxiliary variable. It is indeed possible to improve the

error estimate obtained by Theorem 4.9 and Lemma 4.10 for the eigenspaces if the error
is only measured in ‖ · ‖X(Ω∩Br∗

1
). A hand waving explanation is that An(·) differs from

A(·) only by a distortion at Bc
r∗2

and as “the error propagates” towards Ω ∩Br∗1
“the error

decays”. This argumentation can be made rigorous by a comparison of the Dirichlet-to-
Neumann operators generated by the complex scaling in the (un)truncated domains. For
details see e.g. [HN18, Section 4.3].

4.3 Approximation by subsequent discretization

In the previous section we considered a sequence of bounded subdomains (Ωn)n∈N and
approximation of (2.43) by (2.52). In this section we consider for a fixed index n ∈ N a
subsequent approximation of (2.52) by the following. We consider a sequence of subspaces
(

X
h(m)
n

)

m∈N
, X

h(m)
n ⊂ Xn, m ∈ N, so that the orthogonal projections P

h(m)
n : Xn → X

h(m)
n

converge point-wise to the identity in Xn and eigenvalue problem

find (ω, uh(m)) ∈ C×Xh(m)
n \ {0} so that a(ω;uh(m), u

′
h(m)) = 0 for all u′h(m) ∈ Xh(m)

n .

(4.8)

We note that restricted to Xn the norm ‖ · ‖X is equivalent to ‖ · ‖H1(Ω) and hence Xn =
{u ∈ H1

0 (Ω): u = 0 in Ω \ Ωn}. It holds further that An(ω) ∈ L(Xn) is already weakly
coercive as Lemma 4.11 shows. Altogether the approximation of (2.52) by (4.8) can already
be performed with common techniques [BO91]. Of course our framework can be applied
as well, which we formulate in the following.

Lemma 4.11. Let Assumptions 2.10, 4.1 and 2.18 hold. Let X and a(·; ·, ·) be as in (2.42),
A(·) be as in (3.3), n ∈ N, Xn be as in (2.51) and An(·) be as in (3.5). Then An(ω) ∈ L(Xn)
is weakly coercive for all ω ∈ C.

Proof. It holds An(ω) = B −K with

〈Bun, u
′
n〉Xn = 〈(d̃2d−1 Px+d(I−Px))∇un,∇u′n〉L2(Ωn) + 〈|d̃2d|un, u′n〉L2(Ωn),

〈Kun, u
′
n〉Xn = 〈(ω2d̃2d+ |d̃2d|)un, u′n〉L2(Ωn)

for all un, u
′
n ∈ Xn. It follows that ℜ(〈Bun, un〉Xn) ≥ c‖un‖2X for all un ∈ Xn and c :=

cos(τ), τ := maxx∈Ωn arg d(x). Due to Assumptions 2.10, 4.1 and 2.18 it holds τ ∈ [0, π/2)
and hence c > 0. Further K = K∗

1L1K1 with bounded operators

K1 : Xn → L2(Ωn) : u 7→ u,

L1 : L
2(Ωn) → L2(Ωn) : u 7→ (ω2d̃2d+ |d̃2d|)u.

K1 is compact due to the compact Sobolev embedding H1(D) → L2(D) for bounded
Lipschitz domains D.
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4.4 Approximation by simultaneous truncation and discretization

Lemma 4.12 (Spectral convergence). Let Assumptions 2.10, 4.1 and 2.18 hold. Let X
and a(·; ·, ·) be as in (2.42), A(·) be as in (3.3), n ∈ N, Xn be as in (2.51) and An(·) be as

in (3.5). Let
(

X
h(m)
n

)

m∈N
, X

h(m)
n ⊂ Xn, m ∈ N, be a sequence of subspaces of Xn so that

the orthogonal projections P
h(m)
n : Xn → X

h(m)
n converge point-wise to the identity and let

A
h(m)
n (·) be defined by (3.5).
Then An(·) : C → L(Xn) is a weakly id-coercive holomorphic Fredholm operator function

with non-empty resolvent set ρ
(

An(·)
)

and A
h(m)
n (·) : C → L(X

h(m)
n ) is a id-compatible

approximation, i.e. Theorem 3.17 applies.

Proof. An(·) is weakly coercive due to Lemma 4.11. Since An(·) is polynomial in k, it is
holomorphic. An(0) is injective and hence 0 ∈ ρ

(

An(·)
)

. Since An(·) is weakly coercive so

is A
h(m)
n (·).

The profile function α̃ limits the regularity of solutions. However, to achieve optimal
approximations rates of solutions by general finite element spaces smooth solutions are
necessary. Yet, if α̃ is piece-wise smooth optimal rates can be restored if the meshes of
the finite element spaces are aligned to the jumps in the derivatives of α̃. If this is not
possible, e.g. because the finite element code is limited to polytopial meshes, it is desirable
to chose a globally smooth profile function. Of course for finite element spaces with fixed
maximal polynomial degree one can construct α̃ with appropriate smoothness as piece-wise
polynomial. However, in this case it seems more natural to us to construct α̃ ∈ C∞(R+)
in the first place, e.g. as in (2.35).

4.4 Approximation by simultaneous truncation and discretization

In the previous two sections we considered a sequence of bounded subdomains (Ωn)n∈N as
in Assumption 2.18, an approximation of (2.43) by (2.52) and subsequent a sequence of

subspaces
(

X
h(m)
n

)

m∈N
, X

h(m)
n ⊂ Xn and an approximation of (2.52) by (4.8). The two key

ingredients which allowed a pretty simple analysis were the T (·)-invariance of Xn and the
weak coercivity of An(·). This way we avoided to discuss the issue of the non-T (·)-invariance
of X

h(m)
n and the construction of an appropriate T

h(m)
n (·) operator function.

In this section we consider a direct approximation of (2.43) through non-T (·)-invariant
subspaces of X, e.g. the diagonal sequence

(

X
h(n)
n

)

n∈N
. The reason for this is twofold. On

the one hand we want to foster that this approach which originates from [HN15b] is indeed
a legit one. On the other hand we provide some new ideas and techniques which can serve
for more intricate situations as e.g. in Section 4.5.

To conduct our analysis we introduce an operator function Tǫ(·) which is a slight modifi-
cation of (4.3) in Lemmata 4.13 and 4.14. This new operator function has some favorable
properties and is so that A(·) is still weakly Tǫ(·)-coercive. We consider finite dimensional
Galerkin spaces Xh(m) ⊂ X which suffice two Assumptions 4.15 and 4.16. In Theorem 4.17
we prove that under such assumptions we can construct appropriate operator functions

T
h(m)
ǫ (·) : C → L(Xh(m)) which converge to Tǫ(·) in discrete norm at each ω ∈ C, i.e. the

Approximation
(

Ah(m)(·) : Λd0 → L(Xh(m))
)

m∈N
is Tǫ(·)-compatible. A key ingredient for

the analysis is a variant of the discrete commutator property of Bertoluzza [Ber99]. Finally
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4 Continuation of Chapter 2

in Theorem 4.18 we once again state that under the previous assumptions Theorem 3.17
applies.

Lemma 4.13. Let r1 ∈ R and r2 ∈ R∪ {+∞} with r1 < r2. Let η : [r1, r2) → C be contin-
uous so that limr→r2− η(r) =: η(r2) exists in C. Then for each ǫ > 0 exist ηǫ : [r1, r2) → C

and r̂1, r̂2 ∈ (r1, r2) so that

1. ‖η − ηǫ‖L∞(r1,r2) < ǫ,

2. ηǫ(r) = η(r1) for r ≤ r̂1,

3. ηǫ(r) = η(r2) for r ≥ r̂2,

4. ηǫ is infinitely many times differentiable.

Proof. Since η is continuous and limr→r2− η(r) exists we can choose ř1, ř2 ∈ (r1, r2) so that
‖η − η(r1)‖L∞(r1,ř1) < ǫ/2 and ‖η − η(r2)‖L∞(ř2,r2) < ǫ/2. Since C∞(r1, r2) is dense in
L∞(r1, r2) we can choose η̂ ∈ C∞(r1, r2) with ‖η − η̂‖L∞(r1,r2) < ǫ/2. Let r̂1 ∈ (r1, ř1),
r̂2 ∈ (ř2, r2) and

ηǫ :=























η(r1), r ≤ r̂1,
(

1− χ2(
r−r̂1
ř1−r̂1

)
)

η(r1) + χ2(
r−r̂1
ř1−r̂1

)η̂(r), r̂1 < r ≤ ř1,

η̂(r), ř1 < r < ř2,
(

1− χ2(
r−ř1
r̂2−ř2

)
)

η̂(r) + χ2(
r−ř1
r̂2−ř2

)η(r2), r̂2 < r ≤ ř2,

η(r2), r ≥ r̂2,

with χ2 as in (2.36b). From the triangle inequality and χ2(r) ∈ [0, 1] for all r ∈ R it follows
‖η − ηǫ‖L∞(r1,r2) < ǫ. By construction ηǫ suffices also the last three criteria.

Lemma 4.14. Let Assumptions 2.10 and 4.1 hold. Let X and a(·; ·, ·) be as in (2.42) and
A(·) be as in (3.3). For ǫ > 0 and ω ∈ C \ {0} let

Tǫ(ω)u := ηǫu with η :=















|d̂|

d̂
for arg(−ω2d20) ∈ [−π, 0),

d̂
d̃2

|d̃|2

|d̂|
for arg(−ω2d20) ∈ [0, π)

(4.9)

and ηǫ|(r∗1 ,+∞) as in Lemma 4.13 with r1 = r∗1, r2 = +∞ and ηǫ|[0,r∗1 ] := ηǫ(r
∗
1).

For each ω ∈ C \ {0} there exists ǫ0(ω) > 0 so that for each ǫ ≤ ǫ0(ω), Tǫ(ω) ∈ L(X) is
bijective and A(ω) : Λd0 → L(X) is weakly Tǫ(ω)-coercive.

Proof. Tǫ(ω) ∈ L(X) and its bijectivity can be proven for a sufficiently small ǫ as in the
proof of Lemma 4.4. Similarly the weak Tǫ(ω)-coercivity of A(ω) can be proven for a
sufficiently small ǫ as in the proof of Theorem 4.5.

Assumption 4.15. There exists a sequence
(

h(n)
)

n∈N
∈ (R+)N with limn∈N h(n) = 0.

There exist bounded linear projection operators Πh(n) : X → Xh(n), n ∈ N that act locally in
the following sense: there exist constants C1, R

∗ > 1 so that for n ∈ N, s ∈ {1, 2}, x0 ∈ Ω,
if BR∗h(n)(x0) ⊂ Ω, u ∈ X and u|BR∗h(n)(x0) ∈ Hs(BR∗h(n)(x0)), then

‖u−Πh(n)u‖H1(Bh(n)(x0)) ≤ C1h(n)
s−1‖u‖Hs(BR∗h(n)(x0)). (4.10)
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4.4 Approximation by simultaneous truncation and discretization

Assumption 4.16. For any D ⊂ Ω which is compact in Ω exists n0 > 0 so that for each
n ∈ N, n > n0 there exists uD,n ∈ Xh(n) with uD,n|D = 1.

Theorem 4.17. Let Assumptions 2.10 and 4.1 hold. Let X be as in (2.42),
(

Xh(n)
)

n∈N

be sequence of finite dimensional subspaces Xh(n) ⊂ X so that the orthogonal projections
from X onto Xh(n) converge point-wise to the identity in X and so that Assumptions 4.15
and 4.16 hold. Let ǫ0(ω) be as in Lemma 4.14, Tǫ0(ω) := Tǫ0(ω)(ω) be as in (4.9) and ‖ · ‖n
be as in (3.2). For n ∈ N let Πh(n) be as in Assumptions 4.15 and

T h(n)
ǫ0 (ω) := Πh(n)Tǫ0(ω)|Xh(n) (4.11)

for ω ∈ C \ {0}. Then T
h(n)
ǫ0 (ω) ∈ L(Xh(n)) is Fredholm with index zero and

lim
n∈N

‖Tǫ0(ω)− T h(n)
ǫ0 (ω)‖n = 0 (4.12)

for all ω ∈ C \ {0}.

Proof. Let ω ∈ C \ {0}. It is straightforward to see T
h(n)
ǫ0 (ω) ∈ L(Xh(n)). Since Xh(n)

is finite dimensional, T
h(n)
ǫ0 (ω) is Fredholm with index zero. Further, we note that if n ∈

N, x0 ∈ Ω, BR∗h(n)(x0) ⊂ Ω and u, û ∈ X with u|BR∗h(n)(x0) = û|BR∗h(n)(x0), then also

(T
h(n)
ǫ0 (ω)u)|Bh(n)(x0) = (T

h(n)
ǫ0 (ω)û)|Bh(n)(x0). Indeed from Assumption 4.15 follows

‖Πh(n)(ηǫ0(u− û))‖H1(Bh(n)(x0)) = ‖ηǫ0(u− û)−Πh(ηǫ0(u− û))‖H1(Bh(n)(x0))

≤ C1‖ηǫ0(u− û)‖H1(BC1h(n)(x0)) = 0.

So let r̂1, r̂2 be as in Lemma 4.13. Let r∗2 > r̂2, h0 > 0 with h0 < min{r̂1 − r∗1, r
∗
2 − r̂2}/C1

and n0 > 0 be so that h(n) < h0 for all n > n0. Let n > n0 and un ∈ Xh(n). Since Πh(n) is
linear and a projection it follows

(T h(n)
ǫ0 (ω)un)|Ω∩Br∗

1
=
(

Πh(n)(ηǫ0un)
)

|Ω∩Br∗
1
=
(

Πh(n)(ηǫ0(r
∗
1)un)

)

|Ω∩Br∗
1

= (ηǫ0(r
∗
1)Πh(n)un)|Ω∩Br∗1

= (ηǫ0(r
∗
1)un)|Ω∩Br∗

1

= (ηǫ0un)|Ω∩Br∗
1
= (Tǫ0(ω)un)|Ω∩Br∗

1
.

Likewise (T
h(n)
ǫ0 (ω)un)|Ω∩Bc

r∗2

= (Tǫ0(ω)un)|Ω∩Bc
r∗2

. Hence

‖(Tǫ0(ω)− T h(n)
ǫ0 (ω))un‖2X

= 〈(|d̃2d−1|Px +|d|(I−Px))∇(Tǫ0(ω)− T h(n)
ǫ0 (ω))un,∇(Tǫ0(ω)− T h(n)

ǫ0 (ω))un〉L2(Ω)

+ 〈|d̃2d|(Tǫ0(ω)− T h(n)
ǫ0 (ω))un, (Tǫ0(ω)− T h(n)

ǫ0 (ω))un〉L2(Ω)

= 〈(|d̃2d−1|Px +|d|(I−Px))∇(Tǫ0(ω)− T h(n)
ǫ0 (ω))un,∇(Tǫ0(ω)− T h(n)

ǫ0 (ω))un〉L2(Ar∗1 ,r
∗
2
)

+ 〈|d̃2d|(Tǫ0(ω)− T h(n)
ǫ0 (ω))un, (Tǫ0(ω)− T h(n)

ǫ0 (ω))un〉L2(Ar∗
1
,r∗
2
)

≤ C2‖(Tǫ0(ω)− T h(n)
ǫ0 (ω))un‖2H1(Ar∗1 ,r

∗
2
)
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4 Continuation of Chapter 2

with C2 := supx∈Ar∗1 ,r
∗
2

max{|d̃2d−1|, |d|, |d̃2d|} < ∞. Now we are in the position to apply

the analysis of Bertoluzza [Ber99]. Although we cannot apply [Ber99, Theorem 2.1] directly
since neither has ηǫ0 compact support in Ω nor is the constant function included in Xh(n)

(due to the incorporated homogeneous Dirichlet boundary condition). Nevertheless, we
can repeat the proof of [Ber99, Theorem 2.1] line by line as follows.

Let h0 > 0 be so that Ar∗1−R∗h0,r∗2+R∗h0 ⊂ Ω (with R∗ as in Assumption 4.15) and let
n0 > 0 be so that h(n) < h0 for all n > n0. For each n ∈ N, n > n0 we consider a collection
of balls {Bh(n)(x), x ∈ Z} with Z ⊂ Ar∗1 ,r

∗

2
so that Ar∗1 ,r

∗

2
⊂ ⋃x∈Z Bh(n)(x) and so that any

point y ∈ Ω belongs to at most m ∈ N (with m independent of n ∈ N, n > n0) balls of the
collection {BR∗h(n)(x), x ∈ Z}. This implies the existence of a constant C̃1 > 0 so that

∑

x∈Z

‖u‖2Hs(Bh(n)(x))
≤ C̃1‖u‖2Hs(

⋃
x∈Z Bh(n)(x))

for s ∈ {0, 1, 2} and all u ∈ Hs(
⋃

x∈Z Bh(n)(x)), n ∈ N, n > n0. Hence for un ∈ Xh(n) we
estimate

‖(Tǫ0(ω)− T h(n)
ǫ0 (ω))un‖2H1(Ar∗1 ,r∗2

) = ‖(1 −Πh(n))ηǫ0un‖2H1(Ar∗1 ,r∗2
)

≤
∑

x∈Z

‖(1−Πh(n))ηǫ0un‖2H1(Bh(n)(x))
.

For each x ∈ Z Assumption 4.16 allows us to appropriately choose ux,n ∈ Xh(n) so that
ux,n|BR∗h(n)(x)

is constant,

‖ux,n‖L2(BR∗h(n)(x))
≤ ‖un‖L2(BR∗h(n)(x))

and

‖un − ux,n‖H1(BR∗h(n)(x))
≤ C̃2R

∗h(n)‖un‖H1(BR∗h(n)(x))

with a constant C̃2 > 0 independent of un ∈ Xh(n) and n ∈ N, n > n0. Thus we estimate
further

‖(1 −Πh(n))ηǫ0un‖H1(Bh(n)(x)) ≤ ‖(1 −Πh(n))ηǫ0(un − ux,n)‖H1(Bh(n)(x))

+ ‖(1 −Πh(n))ηǫ0ux,n‖H1(Bh(n)(x)).

Since ux,n|BR∗h(n)(x)
is constant it follows with Assumption 4.15

‖(1 −Πh(n))ηǫ0ux,n‖H1(Bh(n)(x))
≤ C1h(n)‖ηǫ0ux,n‖H2(BR∗h(n)(x))

≤ C1h(n)‖ηǫ0‖W 2,∞(BR∗h(n)(x))
‖ux,n‖L2(BR∗h(n)(x))

.

On the other hand, since (un−ux,n) ∈ Xh(n) and Πh(n) is a projection onto Xh(n) it follows
that (1−Πh(n))ηǫ0(x)(un − ux,n) = 0. Together with Assumption 4.15 we estimate

‖(1−Πh(n))ηǫ0(un − ux,n)‖H1(Bh(n)(x))
= ‖(1−Πh(n))(ηǫ0 − ηǫ0(x))(un − ux,n)‖H1(Bh(n)(x))

≤ C1‖(ηǫ0 − ηǫ0(x))(un − ux,n)‖H1(BR∗h(n)(x))
.
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4.5 Approximation by truncationless discretizations

We compute

‖(ηǫ0 − ηǫ0(x))(un − ux,n)‖2H1(BR∗h(n)(x))
≤ ‖(ηǫ0 − ηǫ0(x))(un − ux,n)‖2L2(BR∗h(n)(x))

+ 2‖(ηǫ0 − ηǫ0(x))∇un)‖2L2(BR∗h(n)(x))

+ 2‖(∇ηǫ0)(un − ux,n)‖2L2(BR∗h(n)(x))

and estimate

‖(ηǫ0 − ηǫ0(x))(un − ux,n)‖L2(BR∗h(n)(x))
≤ R∗h(n)‖ηǫ0‖W 1,∞(Ω)‖un‖L2(BR∗h(n)(x))

,

‖(ηǫ0 − ηǫ0(x))∇un‖L2(BR∗h(n)(x))
≤ R∗h(n)‖ηǫ0‖W 1,∞(Ω)‖un‖H1(BR∗h(n)(x))

,

‖(∇ηǫ0)(un − ux,n)‖L2(BR∗h(n)(x))
≤ C̃2R

∗h(n)‖ηǫ0‖W 1,∞(Ω)‖un‖H1(BR∗h(n)(x))
.

Altogether we obtain

‖(Tǫ0(ω)− T h(n)
ǫ0 (ω))un‖H1(Ar∗

1
,r∗
2
) ≤ C̃3h(n)‖un‖H1(Ar∗

1
−R∗h0,r

∗
2
+R∗h0

)

with a constant C̃3 > 0 independent of n ∈ N, n > n0, un ∈ Xh(n). It remains to note

‖un‖H1(Ar∗
1
−R∗h0,r

∗
2
+R∗h0

) ≤ C̃4‖un‖X

for a constant C̃4 > 0 independent of n ∈ N, n > n0, un ∈ Xh(n).

Theorem 4.18 (Spectral convergence). Let Assumptions 2.10 and 4.1 hold. Let X and
a(·; ·, ·) be as in (2.42), A(·) be as in (3.3) and Λ±

d0
be as in (4.6). Let

(

Xh(n)
)

n∈N
be

sequence of finite dimensional subspaces Xh(n) ⊂ X so that the orthogonal projections
from X onto Xh(n) converge point-wise to the identity in X and so that Assumptions 4.15
and 4.16 hold. Let Ah(n)(·) be defined by (3.5) and Tǫ0(·) be as in Theorem 4.17.

Then A(·) : Λ±
d0

→ L(X) is a weakly Tǫ0(·)-coercive holomorphic Fredholm operator

function with non-empty resolvent set ρ
(

A(·)
)

and Ah(n)(·) : Λ±
d0

→ L(Xh(n)) is a Tǫ0(·)-
compatible approximation, i.e. Theorem 3.17 applies.

Proof. Follows from Theorem 4.9 and Theorem 4.17.

All three assumptions are fulfilled by common finite element spaces, see e.g. [BS08].

4.5 Approximation by truncationless discretizations

As previously discussed, the classical approach to approximate (2.43) is to first choose a
bounded subdomain Ωn ⊂ Ω and secondly to choose a convenient Galerkin space Xh ⊂
H1

0 (Ωn), e.g. a finite element space. However, if the approximation is not satisfactory
enough and a better approximation is desired, it is in general not enough to increase the
dimension of the finite element space, but also the size of the domain Ωn needs to be
increased. The latter involves a new domain and the generation of a new mesh. This may
be undesirable for some people who would prefer to work with a fixed domain and solely
increase discretization parameters. There are at least two concepts to achieve this goal.
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4 Continuation of Chapter 2

One is the implementation of infinite elements into the code. I.e. the fixed domain is
Ω ∩Br∗1

and the exterior domain Ω \Br∗1
is not explicitly meshed. Instead tensor product

(finite element) functions with respect to polar coordinates can be used. This can indeed
be implemented without the explicit generation of a mesh for Ωn \ Br∗1

. Of course it is
possible to also use non-classical basis functions with respect to the radial variable, e.g. as
exp(−r)p(r) with polynomials p. We mention the recent work [NW19] wherein the Hardy
space infinite element method introduced in [HN09] is framed as a complex scaling infinite
element method. We note that the analysis thereof is already covered by [Hal16].

A different approach is to derive a formulation of the eigenvalue problem which involves
only a bounded domain (but singular coefficients) and subsequently to apply a classical
finite element discretization. To our knowledge Bermúdez et. al. were the first to con-
sider a variant of this idea in [BHNPR04] and subsequently in [BHNPR06], [BHNPR07],
[BHNPR08]. Their idea is to use a profile function α̃ which is unbounded on (0, r∗2) with
r∗2 > r∗1. This leads to a formulation of the eigenvalue problem on the bounded domain
Ω ∩ Br∗2

. Since in this case the formulation (and subsequently the discretization) is posed
on a bounded domain without committing a truncation error, Bermúdez et. al. coined
their method “exact PML”. We will discuss their method in Subsection 4.5.2. Another
variant is to consider the formulation derived in Chapter 2 and subsequently apply a real
domain transformation Bc

r∗1
→ Ar∗1 ,r

∗

2
[HL05], [Nan16]. We will discuss this second method

in Subsection 4.5.1.

There is a noteworthy alternative interpretation to both methods [Nan16]. Namely the
formulation can be transformed (back) to the unbounded domain Ω. If this happens after
the discretization one obtains a discretization of the problem posed in Ω. This way one
implicitly applies basis functions with unbounded support. Thus these mentioned “exact”
methods could also validly be called “infinite element” methods. However, we will stick to
the formulations on bounded domains for convenience.

A difference between these two methods is that the method of Subsection 4.5.1 still allows
the choice of d0 and hence a control of the essential spectrum {d−1

0 x : x ∈ R}, while for the
method of Subsection 4.5.2 the essential spectrum is implicitly set to {−ix : x ∈ R}. This is
of importance if one seeks to apply these techniques to problems which involve evanescent
waves which occur e.g. for waveguide geometries. The technique of Subsection 4.5.1 can be
applied successfully to such problems, while the technique of Subsection 4.5.2 fails.

We perform an approximation analysis for both methods in the following subsections.
The analysis involves no new concepts but only slightly adapts the techniques of the pre-
vious sections, in particular the technique of Section 4.4.

4.5.1 Reparametrization of Bc
r∗1

We derive from Eigenvalue Problem (2.43) by means of a real domain transformation xe1
(see (4.13a) and Assumption 4.19) the related Eigenvalue Problem (4.17) [HL05], [Nan16].
We discuss how the results of Sections 4.1 and 4.4 easily translate to the new setting. Fi-
nally we discuss how appropriate finite element spaces fit the derived theory.

We consider real domain transformations re1 of the following kind.
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4.5 Approximation by truncationless discretizations

Assumption 4.19. Let r∗1 be as in Assumption 2.10 and r∗2 > r∗1. Let re1 : (0, r
∗
2) → R

+

be bijective, continuous, re1 |(r∗1, r∗2) be continuously differentiable and so that re1(r) = r for
r ≤ r∗1.

Let α̃ suffice Assumption 2.10 and Assumption 4.1. Let re1 suffice Assumption 4.19, d̃,
r̃, α, d be as in (2.37), d̂ be as in (4.2b) and

xe1(x) := re1(|x|)/|x|x, (4.13a)

γe1(x) := (∂rre1)(|x|), (4.13b)

γ̃e1(x) := re1(|x|)/|x|, (4.13c)

α̃e1 := α̃ ◦ re1 , (4.13d)

d̃e1 := d̃ ◦ re1 , (4.13e)

r̃e1 := r̃ ◦ re1 , (4.13f)

αe1 := α ◦ re1 , (4.13g)

de1 := d ◦ re1 , (4.13h)

d̂e1 := d̂ ◦ re1 . (4.13i)

As hitherto we adopt the overloaded notation (2.37g) also for the new quantities re1 , r̃e1 ,
γe1 , γ̃e1 , α̃e1 , αe1 , d̃e1 , de1 , d̂e1 . We compute

Dxe1 = γe1 Px+γ̃e1(I−Px), (4.14a)

(D xe1)
−1 = γ−1

e1 Px+γ̃−1
e1 (I−Px), (4.14b)

detDxe1 = γe1 γ̃
2
e1 . (4.14c)

We consider the bounded domain

Ωe1 := Ω ∩Br∗2
, (4.15)

subsequently set

ae1(ω;u, u
′) := 〈γ̃2e1γ−1

e1 d̃2e1d
−1
e1 Px+γe1de1(I−Px))∇u,∇u′〉L2(Ωe1 )

− ω2〈γ̃2e1γe1 d̃2e1de1u, u′〉L2(Ωe1 )
,

(4.16a)

Xe1 := {u ∈ H1
loc(Ωe1) : 〈u, u〉Xe1

< ∞, u|∂Ω = 0}, (4.16b)

〈u, u′〉Xe1
:= 〈u, u′〉Xe1 (Ωe1 )

, (4.16c)

and

〈u, u′〉Xe1 (D) := 〈(γ̃2e1γ−1
e1 |d̃2e1d−1

e1 |Px +γe1 |de1 |(I−Px))∇u,∇u′〉L2(D)

+ 〈γ̃2e1γe1 |d̃2e1de1 |u, u′〉L2(D),
(4.16d)

for ω ∈ C, u, u′ ∈ Xe2 and D ⊂ Ωe1 and consider the eigenvalue problem to

find (ω, u) ∈ C×Xe1 \ {0} so that ae1(ω;u, u
′) = 0 for all u′ ∈ Xe1 . (4.17)
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4 Continuation of Chapter 2

Due to the transformation rule and the chain rule it is clear that

Fe1u := u ◦ xe1 (4.18)

is a linear bijective Hilbert space isomorphism, i.e. Fe1 ∈ L(X,Xe1), Fe1 is bijective and

〈u, u′〉X = 〈Fe1u, Fe1u
′〉Xe1

(4.19)

for all u, u′ ∈ X (with X as in (2.42)). Further it holds

a(ω;u, u′) = ae1(ω;Fe1u, Fe1u
′) (4.20)

for all u, u′ ∈ X. Thus we can simply deduce the properties of Ae1(·) (defined through (3.3))
from A(·). In particular it holds that (ω, u) ∈ C×X \{0} is a solution to A(ω)u = 0 if and
only if Ae1(ω)Fe1u = 0. Ae1(ω) is Fredholm if and only if ω ∈ Λd0 (with Λd0 as in (4.4)).
Further Ae1(·)|Λd0

is weakly Te1(·)-coercive with

Te1(ω)u = Fe1T (ω)F
−1
e1 u = (η ◦ xe1)u (4.21)

for u ∈ Xe1 and η being the symbol of T (ω) as in (4.3). Further Ae1(ω) is bijective for all
ω ∈ C \ {0} with argω ∈ [−π,− arg d0) ∪ [0, π − arg d0).

It remains to discuss the approximation of (4.17). Hence we first adapt Lemma 4.3 to
our current setting in Lemma 4.20. Then we proceed as in Section 4.4 and construct an
operator function Te1,ǫ(·) with appropriate properties.

Lemma 4.20. Let (rn)n∈N with rn ∈ (r∗1, r
∗
2) for all n ∈ N be a monotonically increasing

sequence with limes r∗2. Let η1 : Ωe1 → C be mesuarable so that η1|Ωe1∩Brn
∈ L∞(Ωe1 ∩

Brn) for all n ∈ N. Let Y ⊂ L2(Ωe1) be a Hilbert space so that ‖η1u‖L2(Ωe1 )
≤ C‖u‖Y

with C > 0 for all u ∈ Y and so that the embedding and restriction operator Kn : Y →
L2(Ωe1 ∩ Brn) : u 7→ u|Ωe1∩Brn

is compact for each n ∈ N. Let η2 ∈ L∞(Ωe1) be so that
limr→r∗2−

‖η2‖L∞(Ωe1\Br) = 0. Then the multiplication and embedding operator Kη1η2 : Y →
L2(Ωe1) : u 7→ η1η2u is compact.

Proof. Proceed as in the proof of Lemma 4.3.

Lemma 4.21. Let Assumptions 2.10, 4.1 and 4.19 hold. Let Xe1 be as in (4.16b), ae1(·; ·, ·)
be as in (4.16a) and Ae1(·) be as in (3.3). For ǫ > 0 and ω ∈ C \ {0} let

Te1,ǫ(ω)u := ηe1,ǫu with ηe1 =



















|d̂e1 |

d̂e1
for arg(−ω2d20) ∈ [−π, 0),

d̂e1
d̃2e1

|d̃e1 |
2

|d̂e1 |
for arg(−ω2d20) ∈ [0, π).

(4.22)

with ηe1,ǫ|(r∗1 ,r∗2) as in Lemma 4.13 with r1 = r∗1, r2 = r∗2 and ηe1,ǫ|[0,r∗1 ] := ηe1,ǫ(r
∗
1).

There exists ǫ0(ω) > 0 so that for each ǫ ≤ ǫ0(ω), Te1,ǫ(ω) ∈ L(Xe1) is bijective for all
ω ∈ C \ {0} and Ae1(·) : Λd0 → L(Xe1) is weakly Te1,ǫ(·)-coercive.
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4.5 Approximation by truncationless discretizations

Proof. Proceed as in the proof of Lemma 4.14 with Lemma 4.3 replaced by Lemma 4.20.

Next we consider a sequence of finite dimensional subspaces (X
h(n)
e1 )n∈N, X

h(n)
e1 ⊂ Xe1 ,

n ∈ N so that the orthogonal projections onto X
h(n)
e1 converge point-wise to the identity in

Xe1 . Further let

find (ω, u) ∈ C×Xh(n)
e1 \ {0} so that ae1(ω;u, u

′) = 0 for all u′ ∈ Xh(n)
e1 (4.23)

be the Galerkin approximation to (4.17). As in Section 4.4 we make two additional as-

sumptions on the Galerkin spaces X
h(n)
e1 .

Assumption 4.22. There exists a sequence
(

h(n)
)

n∈N
∈ (R+)N with limn∈N h(n) = 0.

There exist bounded linear projection operators Πe1
h(n) : Xe1 → X

h(n)
e1 , n ∈ N that act locally

in the following sense: there exist constants C1, R
∗ > 1 so that for n ∈ N, s ∈ {1, 2},

x0 ∈ Ωe1, if BR∗h(n)(x0) ⊂ Ωe1, u ∈ Xe1 and u|BR∗h(n)(x0) ∈ Hs(BR∗h(n)(x0)), then

‖u−Πe1
h(n)u‖H1(Bh(n)(x0)) ≤ C1h(n)

s−1‖u‖Hs(BR∗h(n)(x0)). (4.24)

Assumption 4.23. For any D ⊂ Ωe1 which is compact in Ωe1 exists n0 > 0 so that for

each n ∈ N, n > n0 there exists uD,n ∈ X
h(n)
e1 with uD,n|D = 1.

Theorem 4.24. Let Assumptions 2.10, 4.1 and 4.19 hold. Let Xe1 be as in (4.16b),
(

X
h(n)
e1 )n∈N be a sequence of finite dimensional subspaces X

h(n)
e1 ⊂ Xe1 so that the orthogonal

projections onto X
h(n)
e1 converge point-wise to the identity and so that Assumptions 4.22

and 4.23 hold. Let Te1,ǫ0(ω) := Te1,ǫ0(ω)(ω) be as in Lemma 4.21 and ‖ · ‖n be as in (3.2).
For n ∈ N let Πe1

h(n)
be as in Assumptions 4.22 and

T h(n)
e1,ǫ0(ω) := Πe1

h(n)Te1,ǫ0(ω)|Xh(n)
e1

(4.25)

for ω ∈ C \ {0}. Then T
h(n)
e1,ǫ0(ω) ∈ L(X

h(n)
e1 ) is Fredholm with index zero and

lim
n∈N

‖Te1,ǫ0(ω)− T h(n)
e1,ǫ0(ω)‖n = 0 (4.26)

for all ω ∈ C \ {0}.
Proof. Proceed as in the proof of Theorem 4.24.

Theorem 4.25 (Spectral convergence). Let Assumptions 2.10 and 4.1 hold. Let re1 fulfill
Assumption 4.19 and Xe1 , ae1(·; ·, ·) be as defined in (4.16). Let Ae1(·) : Λ → L(Xe1) be

defined through (3.3), Te1,ǫ0(·) as in Theorem 4.24 and Λ±
d0

be as in (4.6). Let
(

X
h(n)
e1

)

n∈N

be a sequence of finite dimensional subspaces X
h(n)
e1 ⊂ Xe1 so that the orthogonal pro-

jections from Xe1 onto X
h(n)
e1 converge point-wise to the identity in Xe1 and so that As-

sumptions 4.22 and 4.23 hold. Let Ae1,h(n)(·) be defined by (3.5) and Te1,ǫ0(·) be as in
Theorem 4.40.

Then Ae1(·) : Λ±
d0

→ L(Xe1) is a weakly Te1,ǫ0(·)-coercive holomorphic Fredholm opera-

tor function with non-empty resolvent set ρ
(

Ae1(·)
)

and Ae1,h(n)(·) : Λ±
d0

→ L(X
h(n)
e1 ) is a

Te1,ǫ0(·)-compatible approximation, i.e. Theorem 3.17 applies.
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4 Continuation of Chapter 2

Proof. Proceed as in the proof of Theorem 4.18.

Finally we discuss how to choose appropriate parameters α̃, re1 and an appropriate

sequence of subspaces (X
h(n)
e1 )n∈N, X

h(n)
e1 ⊂ Xe1 . To this end we introduce two lemmata.

Lemma 4.26. Assume that

sup
x∈Ωe1

1

(r∗2 − |x|)γe1(x)|de1(x)|
< +∞. (4.27)

Let (X
h(n)
e1 )n∈N, X

h(n)
e1 ⊂ Xe1 be so that for any δ > 0 and u ∈ Xe1 with u|Ar∗2−δ,r∗2

= 0 it

holds

lim
n∈N

inf
u′∈X

h(n)
e1

‖u− u′‖Xe1
= 0. (4.28)

Then (4.28) holds for any u ∈ Xe1 .

Proof. For δ > 0 consider

gδ(x) := χ2

(

|x|/δ − (r∗2 − 2δ)/δ
)

with χ2 as in (2.36b). Let u ∈ Xe1 and ǫ > 0 be given. By means of the product rule, the
triangle inequality, the properties of gδ and the chain rule we compute

‖gδu‖Xe1
≤ 2〈γ̃2e1γ−1

e1 |d̃2e1d−1
e1 |Px u∇gδ, u∇gδ〉L2(Ωe1 )

+ 2〈γ̃2e1γ−1
e1 |d̃2e1d−1

e1 |g2δ Px∇u,∇u〉L2(Ωe1 )

+ 〈γe1 |de1 |g2δ (I−Px))∇u,∇u〉L2(Ωe1 )

+ 〈γ̃2e1γe1 |d̃2e1de1 |g2δu, u〉L2(Ωe1 )

≤ 2
(

1 +
(

sup
x∈Ar∗2−2δ,r∗2−δ

|∇gδ|2(γe1de1)−2
)

)

‖u‖2Xe1 (Ar∗
2
−2δ,r∗

2
)

≤ 2
(

1 + ‖∂rχ2‖2L∞(0,1)

(

sup
x∈Ar∗2−2δ,r∗2−δ

(δγe1de1)
−2
)

)

‖u‖2Xe1 (Ar∗
2
−2δ,r∗

2
)

≤ 2
(

1 + ‖∂rχ2‖2L∞(0,1)

(

sup
x∈Ar∗2−2δ,r∗2−δ

((r∗2 − | · |)γe1de1)−2
)

)

‖u‖2Xe1 (Ar∗
2
−2δ,r∗

2
)

≤ 2
(

1 + ‖∂rχ2‖2L∞(0,1)

(

sup
x∈Ωe1

((r∗2 − | · |)γe1de1)−2
)

)

‖u‖2Xe1 (Ar∗2−2δ,r∗2
)

=: C‖u‖2Xe1 (Ar∗2−2δ,r∗2
).

Due to limδ→0+ ‖u‖2Xe1 (Ar∗
2
−2δ,r∗

2
) = 0 we can choose δ > 0 so that C‖u‖2Xe1 (Ar∗

2
−2δ,r∗

2
) < ǫ/2.

Since 1− gδ(x) = 0 for x ≥ r∗2 − δ we can choose n0 ∈ N be so that

inf
u′∈X

h(n)
e1

‖(1− gδ)u− u′‖Xe1
< ǫ/2

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.5 Approximation by truncationless discretizations

for all n > n0. It follows for all n > n0

inf
u′∈X

h(n)
e1

‖u− u′‖Xe1
≤ ‖gδu‖Xe1

+ inf
u′∈X

h(n)
e1

‖(1 − gδ)u− u′‖Xe1

≤ ǫ/2 + ǫ/2 = ǫ.

Since ǫ > 0 was chosen arbitrarily it follows that limn∈N inf
u′∈X

h(n)
e1

‖u− u′‖Xe1
= 0.

Lemma 4.27. Let α̃ be of Kind (2.32b) or (2.34). Let re1 be so that for r ∈ (r∗1, r
∗
2) either

re1(r) = −(ln(r∗2 − r)− ln(r∗2 − r∗1)) + r∗1 (4.29a)

or

re1(r) = (r∗2 − r)β − (r∗2 − r∗1)
β + r∗1 (4.29b)

with β ∈ (−2/3, 0). Then (4.27) holds. If u ∈ H1
0 (Ωe1) is so that |u(x)| ≤ C(r∗2 − |x|) for

a constant C > 0 and all x ∈ Ωe1 , then u ∈ Xe1 .

Proof. For re1 as in (4.29a) it holds γe1(x) = (r∗2 − |x|)−1. For re1 as in (4.29b) it holds
γe1(x) = −β(r∗2 − 1)β−1. Since |de1 | ≥ 1 it easiliy follows (4.27) in both cases. Due to
the choice of α̃ the coefficients |d̃2e1/de1 |, |de1 |, |d̃2e1de1 | are uniformly bounded. For re1 as
in (4.29a) we compute

γ̃e1(x)
2/γe1(x) =

(

− (ln(r∗2 − |x|) − ln(r∗2 − r∗1)) + r∗1
)2|x|−2(r∗2 − |x|), (4.30a)

γe1(x)(r
∗
2 − |x|)2 = (r∗2 − |x|), (4.30b)

γ̃e1(x)
2γe1(x)(r

∗
2 − |x|)2 =

(

− (ln(r∗2 − |x|) − ln(r∗2 − r∗1)) + r∗1
)2|x|−2(r∗2 − |x|). (4.30c)

For re1 as in (4.29b) we compute

γ̃e1(x)
2/γe1(x) =

(

(r∗2 − |x|)β − (r∗2 − r∗1)
β + r∗1

)2|x|−2(−β)−1(r∗2 − |x|)−β+1,
(4.31a)

γe1(x)(r
∗
2 − |x|)2 = −β(r∗2 − |x|)β+1, (4.31b)

γ̃e1(x)
2γe1(x)(r

∗
2 − |x|)2 =

(

(r∗2 − |x|)β − (r∗2 − r∗1)
β + r∗1

)2|x|−2(−β)(r∗2 − |x|)β+1. (4.31c)

It follows that each function in (4.30) and (4.31) is uniformly bounded in x ∈ Ar∗1 ,r
∗

2
. It

follows ‖u‖Xe1
< +∞.

Consider re1 and α̃ as in Lemma 4.27. Due to Lemma 4.27 common finite element spaces

are indeed subspaces of Xe1 . Due to Lemma 4.26 (X
h(n)
e1 )n∈N is asymptotically dense in

Xe1 if it is so in H1
0 (Ωe1). Hence with the stated choice of parameters α̃, re1 a reliable

discretization of (4.17) can be constructed straightforwardly.
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4 Continuation of Chapter 2

4.5.2 Profile function with blow up

In [BHNPR04], [BHNPR08] a so-called exact PML method with profile function α̃ so
that α̃(r) → ∞ as r → r∗2 > r∗1 was proposed and similar Cartesian variants published
in [BHNPR06], [BHNPR07]. In [BHNPR08] the authors proved the equivalence between
the derived formulation and the original problem by means of integral representations of
solutions. As the method of Subsection 4.5.1 this method has the advantage that no do-
main truncation is necessary with the cost of fabricating singular coefficients.

First we formulate the method and argue its relation to (2.43) as in Chapter 2. Next we
derive weak T (·)-coercivity results as in Section 4.1. Then we perform an approximation
analysis as in Section 4.4 and Subsection 4.5.1. At last we comment on the choice of ap-
propriate parameters and appropriate subspaces.

We consider a domain Ω as in Chapter 2 and make an assumption on α̃e2 similar to
Assumption 2.10.

Assumption 4.28. Let r∗1 > 0 be so that Ωc is contained in the ball Br∗1
, r∗2 > r∗1 and

α̃e2 : (0, r
∗
2) → R

+
0 be so that

1. α̃e2(r) = 0 for r ≤ r∗1,

2. α̃e2 is continuous,

3. α̃e2(r) > 0 for r > r∗1,

4. α̃e2 is non-decreasing,

5. α̃e2 is twice continuous differentiable in (r∗1 , r
∗
2) with continuous extensions to [r∗1, r

∗
2),

6. limr→r∗2−
α̃e2(r) = +∞.

Subsequently we consider the bounded domain

Ωe2 := Ω ∩Br∗2
(4.32)

and set

d̃e2(r) := 1 + iα̃e2(r), (4.33a)

r̃e2(r) := d̃e2(r)r, (4.33b)

αe2(r) := r∂rα̃e2(r) + α̃e2(r), (4.33c)

de2(r) := 1 + iαe2(r), (4.33d)

and

α̂e2(r) :=

{

limr→r∗1+
αe2(r) for 0 ≤ r ≤ r∗1,

αe2(r) for r > r∗1,
(4.34a)

d̂e2(r) := 1 + iα̂e2(r), r ≥ 0. (4.34b)
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4.5 Approximation by truncationless discretizations

Again, we adopt the overloaded notation f(x) := f(|x|), x ∈ Ω for f = α̃e2 , d̃e2 , r̃e2 , αe2 ,
α̂e2 , d̂e2 . Let

ae2(ω;u, u
′) := 〈d̃2e2d−1

e2 Px +de2(I−Px))∇u,∇u′〉L2(Ωe2 )
− ω2〈d̃2e2de2u, u′〉L2(Ωe2 )

, (4.35a)

Xe2 := {u ∈ H1
loc(Ωe2) : 〈u, u〉Xe2

< ∞, u|∂Ω = 0}, (4.35b)

〈u, u′〉Xe2
:= 〈u, u′〉Xe2 (Ωe2 )

, (4.35c)

〈u, u′〉Xe2 (D) := 〈(|d̃2e2d−1
e2 |Px+|de2 |(I−Px))∇u,∇u′〉L2(D) + 〈|d̃2e2de2 |u, u′〉L2(D), (4.35d)

for ω ∈ C, u, u′ ∈ Xe2 and D ⊂ Ωe2 . Consider the eigenvalue problem to

find (ω, ũ) ∈ C×Xe2 \ {0} so that ae2(ω; ũ, u
′) = 0 for all u′ ∈ Xe2 . (4.36)

The relation between (2.23) and (4.36) is as follows.

Lemma 4.29. For a solution (ω, u) to (2.23) with ℜ(ω) > 0 and the expansion

u ◦Q(r, x̂) =

∞
∑

n=0

n
∑

m=−n

amn h1n(ωr)Y
m
n (x̂), r ≥ r∗1, x̂ ∈ S2 (4.37)

as in Lemma 2.12 let

ũ(x) :=

{

u(x), for x ∈ Ωe2 ∩Br∗1
,

∑∞
n=0

∑n
m=−n a

m
n h1n(ωr̃e2(|x|))Y m

n (|x|−1x), for x ∈ Ar∗1 ,r
∗

2
,

(4.38)

The sum in (4.38) converges absolutely and uniformly on compact subsets of Ar∗1 ,r
∗

2
. The

same hold for derivatives of u with respect to r up to order two and for derivatives with
respect to x̂ of arbitrary order and the sum over the term by term derivatives. Moreover it
holds ũ ∈ Xe2 . We write ũ = ũ(u) to emphasize that ũ is defined through u.

Proof. For the first part we proceed as in the proof of Lemma 2.13. It remains to show
that ‖ũ‖Xe2 (Ar∗

1
,r∗
2
) < +∞. To this end we estimate as in the proof of Lemma 2.13

‖|d̃2e2 d̃e2 |1/2ũ ◦Q‖2L2(S2
r )

≤ C̃(ũ)r2|d̃e2(r)2de2(r)|e2ℜ(iωd̃e2 (r)/|d̃e2 (r)|)
√

1−r∗1
2/|r̃e2 (r)|

2
√

1+α̃e2 (r)
2r,

‖|d̃e2 |1/2∇S2ũ ◦Q‖2L2(S2
r )

≤ C̃(ũ)r2|de2(r)|e2ℜ(iωd̃e2 (r)/|d̃e2 (r)|)
√

1−r∗1
2/|r̃e2 (r)|

2
√

1+α̃e2 (r)
2r,

‖|d̃2e2/d̃e2 |1/2∂rũ ◦Q‖2L2(S2
r )

≤ C̃(ũ)r2|d̃e2(r)2de2(r)|e2ℜ(iωd̃e2 (r)/|d̃e2 (r)|)
√

1−r∗1
2/|r̃e2 (r)|

2
√

1+α̃e2 (r)
2r

with a constant C̃(ũ) > 0 for all r ∈ (r∗1 , r
∗
2). We note that

lim
r→+∞

ℜ(iωd̃e2(r)/|d̃e2(r)|)
√

1− r∗1
2/|r̃e2(r)|2 = −ℜ(ω).
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4 Continuation of Chapter 2

The former estimates, the former limit, the domain transformation ρ(r) := α̃(r)r on (r∗1, r
∗
2),

the basic estimate supx>0(1+xl)e−δx < +∞ for any l, δ > 0 and Assumption 4.28 allow to
bound

‖|d̃2e2 d̃e2 |1/2ũ ◦Q‖2L2(S2
r )

+ ‖|d̃e2 |1/2∇S2ũ ◦Q‖2L2(S2
r )
+ ‖|d̃2e2/d̃e2 |1/2∂rũ ◦Q‖2L2(S2

r )

by a constant C < +∞ uniformly in r ∈ (r∗1, r
∗
2). Hence ‖ũ‖Xe2

< +∞.

Lemma 4.30. For a solution (ω, u) to (2.23) with ℜ(ω) > 0 the pair (ω, ũ(u)) with ũ(u)
as in Lemma 4.29 solves (4.36).

Proof. Proceed as in the proof of Lemma 2.14.

Lemma 4.31. Let (ω, ũ) be a solution to (4.36) with ℜ(ω) > 0. Then

ũ ◦Q(r, x̂) =

∞
∑

n=0

n
∑

m=−n

anh
1
n(ωr̃e2(r))Y

m
n (x̂), r ∈ (r∗1, r

∗
2), x̂ ∈ S2 (4.39)

and the function

u(x) :=

{

ũ(x), for x ∈ Ωe2 ∩Br∗1
,

∑∞
n=0

∑n
m=−n anh

1
n(ω|x|)Y m

n (|x|−1x), for x ∈ Bc
r∗1
,

(4.40)

is well defined in H̃1
0,loc(Ω) and (ω, u) solves (2.23). We write u = u(ũ) to emphasize that

u is defined through ũ.

Proof. Proceed as in the proof of Lemma 2.15.

Theorem 4.32. Let (ω, u) be a solution to (2.23) with ℜ(ω) > 0. Then (ω, ũ(u)) with ũ(u)
given by (4.38) solves (4.36). Vice-versa if (ω, ũ) is a solution to (4.36) with ℜ(ω) > 0,
then (ω, u(ũ)) with u(ũ) given by (4.40) solves (2.23).

Proof. Follows from Lemmata 4.29, 4.30, 4.31.

Assumption 4.33. Let α̃, r∗1 and r∗2 be as is Assumption 4.28. Let

1. lim
r→r∗2−

d̃e2(r)|de2(r)|/
(

|d̃e2(r)|de2(r)
)

= 1,

2. lim
r→r∗2−

(

∂r(d̃e2/|d̃e2 |)
)

(r) = lim
r→r∗2−

(

∂r(de2/|de2 |)
)

(r) = 0.

Lemma 4.34. Let Assumptions 4.28 and 4.33 hold. Then there exists τ ∈ (0, π/2) so that
arg
(

de2(r)/d̃e2(r)
)

∈ [0, τ ] for all r ∈ (r∗1, r
∗
2).

Proof. Proceed as in the proof of Lemma 4.2.

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.5 Approximation by truncationless discretizations

Lemma 4.35. Let Assumptions 4.28 and 4.33 hold. For ω ∈ C \ {0} let

Te2(ω)u :=



















|d̂e2 |

d̂e2
u for arg(ω2) ∈ [−π, 0),

d̂e2
d̃2e2

|d̃e2 |
2

|d̂e2 |
u for arg(ω2) ∈ [0, π).

(4.41)

Then Te2(ω) ∈ L(X) is bijective for all ω ∈ C \ {0}.

Proof. Proceed as in the proof of Lemma 4.4.

Theorem 4.36. Let Assumptions 4.28 and 4.33 hold. Let ae2(·; ·, ·) and Xe2 be as in (4.35b),
Ae2(·) be as in (3.3), Te2(·) be as in (4.41) and Λd0 be as in (4.4). Then Ae2(·) : Λi → L(Xe2)
is weakly Te2(·)-coercive.

Proof. Proceed as in the proof of Theorem 4.5 with Lemma 4.20 instead of Lemma 4.3.

Lemma 4.37. Let Assumptions 4.28, 4.33 hold. Let ae2(·; ·, ·) and Xe2 be as in (4.35b)
and Ae2(·) be as in (3.3). For ǫ > 0 and ω ∈ C \ {0} let

Te2,ǫ(ω)u := ηe2,ǫu with ηe2 =



















|d̂e2 |

d̂e2
for arg(ω2) ∈ [−π, 0),

d̂e2
d̃2e2

|d̃e2 |
2

|d̂e2 |
for arg(ω2) ∈ [0, π).

(4.42)

with ηe2,ǫ|(r∗1 ,r∗2) as in Lemma 4.13 with r1 = r∗1, r2 = r∗2 and ηe2,ǫ|[0,r∗1 ] := ηe1,ǫ(r
∗
1).

There exists ǫ0(ω) > 0 so that for each ǫ ≤ ǫ0(ω), Te2,ǫ(ω) ∈ L(Xe2) is bijective for all
ω ∈ C \ {0} and Ae2(·) : Λi → L(Xe2) is weakly Te2,ǫ(·)-coercive.

Proof. Proceed as in the proof of Lemma 4.21.

Next we consider a sequence of finite dimensional subspaces (X
h(n)
e2 )n∈N, X

h(n)
e2 ⊂ Xe2 ,

n ∈ N so that the orthogonal projections onto X
h(n)
e2 converge point-wise to the identity in

Xe2 . Let

find (ω, u) ∈ C×Xh(n)
e2 \ {0} so that ae2(ω;u, u

′) = 0 for all u′ ∈ Xh(n)
e2 (4.43)

be the Galerkin approximation to (4.36). As in Section 4.4 and Subsection 4.5.1 we make

two additional assumptions on the Galerkin spaces X
h(n)
e2 .

Assumption 4.38. There exists a sequence
(

h(n)
)

n∈N
∈ (R+)N with limn∈N h(n) = 0.

There exist bounded linear projection operators Πe2
h(n) : Xe2 → X

h(n)
e2 , n ∈ N that act locally

in the following sense: there exist constants C1, R
∗ > 1 so that for n ∈ N, s ∈ {1, 2},

x0 ∈ Ωe2, if BR∗h(n)(x0) ⊂ Ωe1, u ∈ Xe2 and u|BR∗h(n)(x0) ∈ Hs(BR∗h(n)(x0)), then

‖u−Πe2
h(n)u‖H1(Bh(n)(x0)) ≤ C1h(n)

s−1‖u‖Hs(BR∗h(n)(x0)). (4.44)
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4 Continuation of Chapter 2

Assumption 4.39. For any D ⊂ Ωe2 which is compact in Ωe2 exists n0 > 0 so that for

each n ∈ N, n > n0 there exists uD,n ∈ X
h(n)
e2 with uD,n|D = 1.

Theorem 4.40. Let Assumptions 4.28 and 4.33 hold. Let Xe2 be as in (4.35b),
(

X
h(n)
e2 )n∈N

be a sequence of finite dimensional subspaces X
h(n)
e2 ⊂ Xe2 so that the orthogonal projections

onto X
h(n)
e2 converge point-wise to the identity and so that Assumptions 4.38 and 4.39 hold.

Let Te2,ǫ0(ω) := Te2,ǫ0(ω)(ω) be as in Lemma 4.37 and ‖ · ‖n be as in (3.2). For n ∈ N let
Πe2

h(n) be as in Assumptions 4.22 and

T h(n)
e2,ǫ0(ω) := Πe2

h(n)Te2,ǫ0(ω)|Xh(n)
e2

(4.45)

for ω ∈ C \ {0}. Then T
h(n)
e2,ǫ0(ω) ∈ L(X

h(n)
e2 ) is Fredholm with index zero and

lim
n∈N

‖Te2,ǫ0(ω)− T h(n)
e2,ǫ0(ω)‖n = 0 (4.46)

for all ω ∈ C \ {0}.

Proof. Proceed as in the proof of Theorem 4.24.

Theorem 4.41 (Spectral convergence). Let Assumptions 4.28 and 4.33 hold. Let Xe2 ,
ae2(·; ·, ·) be as defined in (4.35). Let Ae2(·) : Λ → L(Xe2) be defined through (3.3), Te2,ǫ0

be as in Lemma 4.37 and Λ±
d0

be as in (4.6). Let
(

X
h(n)
e2

)

n∈N
be a sequence of finite

dimensional subspaces X
h(n)
e2 ⊂ Xe2 so that the orthogonal projections from Xe2 onto X

h(n)
e2

converge point-wise to the identity in Xe2 and so that Assumptions 4.38 and 4.39 hold. Let
Ae2,h(n)(·) be defined by (3.5) and Te2,ǫ0(·) be as in Theorem 4.40.

Then Ae2(·) : Λ±
d0

→ L(Xe2) is a weakly Te2,ǫ0(·)-coercive holomorphic Fredholm opera-

tor function with non-empty resolvent set ρ
(

Ae2(·)
)

and Ae2,h(n)(·) : Λ±
d0

→ L(X
h(n)
e2 ) is a

Te2,ǫ0(·)-compatible approximation, i.e. Theorem 3.17 applies.

Proof. Proceed as in the proof of Theorem 4.25.

Finally we discuss how to choose an appropriate parameter α̃e2 and an appropriate

sequence of subspaces (X
h(n)
e2 )n∈N, X

h(n)
e2 ⊂ Xe2 . As in the previous subsection we state

two lemmata to this end.

Lemma 4.42. Assume that

sup
x∈Ωe2

1

(r∗2 − |x|)|de2(x)|
< +∞. (4.47)

Let (X
h(n)
e2 )n∈N, X

h(n)
e2 ⊂ Xe2 be so that for any δ > 0 and u ∈ Xe2 with u|Ar∗

2
−δ,r∗

2
= 0 it

holds

lim
n∈N

inf
u′∈X

h(n)
e2

‖u− u′‖Xe2
= 0. (4.48)

Then (4.48) holds for any u ∈ Xe2 .
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4.6 Asymptotically constant potentials

Proof. Proceed as in Lemma 4.26.

Lemma 4.43. Let α̃e2 be so that for r ∈ (r∗1 , r
∗
2) either

α̃e2(r) = −(ln(r∗2 − r)− ln(r∗2 − r∗1)) + r∗1 (4.49a)

or

α̃e2(r) = (r∗2 − r)β − (r∗2 − r∗1)
β + r∗1 (4.49b)

with β ∈ (−2/3, 0). Then (4.47) holds. If u ∈ H1
0 (Ωe2) is so that |u(x)| ≤ C(r∗2 − |x|) for

a constant C > 0 and all x ∈ Ωe2 , then u ∈ Xe2 .

Proof. Proceed as in Lemma 4.27.

Hence the situation is as in Subsection 4.5.1. Consider α̃e2 as in Lemma 4.43. Due to
Lemma 4.43 common finite element spaces are indeed subspaces of Xe2 . Due to Lemma 4.42

(X
h(n)
e2 )n∈N is asymptotically dense inXe2 if it is so inH1

0 (Ωe2). Hence with the stated choice
of parameter α̃e2 a reliable discretization of (4.36) can be constructed straightforwardly.

4.6 Asymptotically constant potentials

In this section we discuss which of our results still hold if we include a potential in Differ-
ential Equation (2.22a). I.e. we consider the problem to find (ω, u) ∈ C\{0}×H1

loc(Ω)\{0}
so that

−∆u− ω2(1 + p)u = 0 in Ω, (4.50a)

u = 0 at ∂Ω, (4.50b)

u is outgoing. (4.50c)

We assume 0 ∈ Ωc and that the potential p is of the form p(x) = q(|x|) with q being a real
analytic function of the form q(r) =

∑∞
n=2 qnr

−n so that q(r−1) has convergence radius
1/ap with ap ∈ (0,∞]. In this case the formulation and study of meaningful radiation con-
ditions are more intricate. For ω > 0 radiation conditions for this equation were studied
in [HSZ03a]. More specifically, in [HSZ03a] Hohage, Schmidt and Zschiedrich prove the
equivalence of the Sommerfeld’s Condition to a pole condition. In [HSZ03b] they continue
their work and prove the equivalence to a complex scaling radiation condition as well as
the convergence of a PML method for scattering problems. We also mention [Hei18] which
studies a one-dimensional problem and allows q to be even meromorphic. Since the func-
tional framework for the derivation of the radiation conditions is quite intricate, we do not
intend to elaborate in this direction. It seems reasonable that a similar result as stated in
Theorem 2.16 holds, though. We content ourselves with a discussion of the application of
our theory as developed in this chapter.

Let p̃(x) := q◦ r̃(|x|). With notation as hitherto the complex scaled formulation of (4.50)
reads

find (ω, ũ) ∈ C×X \ {0} so that ap(k; ũ, u
′) = 0 for all u′ ∈ X, (4.51)
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4 Continuation of Chapter 2

with sesquilinear form

ap(ω;u, u
′) := 〈(d̃2d−1 Px +d(I−Px))∇u,∇u′〉L2(Ω) − ω2〈d̃2d(1 + p̃)u, u′〉L2(Ω) (4.52)

and associated operator function Ap(·) defined through (3.3). In our new setting Lemma 4.4
remains true since T (·) is independent of A(·). Since

a(ω;u, u′)− ap(ω;u, u
′) = ω2〈d̃2dp̃u, u′〉L2(Ω) (4.53)

and due to Lemma 4.3, Ap(ω) is a compact distortion of A(ω). As in [HSZ03b, Lemma 4.1]
it follows that the resolvent set of Ap(·) is non-empty. Hence Theorem 4.5 and Theorem 4.6
still apply to Ap(·). Lemma 4.8 is independent of A(·) and Ap(·) and hence remains true.
Theorem 4.9 holds for Ap(·) too. Lemma 4.10 remains true too. However to obtain an
exponential decay one would need to extend the results from [HSZ03b] to hold also for
complex valued ω. The approximation results from Sections 4.3 and 4.4 remain true.
There are no obstacles to successfully apply the techniques of Section 4.5 either.
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Nomenclature

Domains

Ω 18

Ωe1 59

Ωe2 64

Ωn 28

Functions (general)

arg 44

χ1 23

χ2 23

χ3 23

h1n 16

h2n 16

I 24

jn 16

ν 13

Px 23

p
|m|
n 14

Q 14

Um
n 14

yn 16

Y m
n 14

ŷ 14

Zm
n 14

Functions (PML related)

α 23

αe1 59

αe2 64

α̂ 44

α̃ 22, 44

α̃e1 59

α̃e2 64

α̃affin 22

α̃∞ 23

α̃power 22

α̃smooth 23

d 23

d0 23
de1 59
de2 64
d̂ 44
d̂e1 59
d̂e2 64
d̃ 23
d̃e1 59
d̃e2 64
γe1 59
γ̃e1 59
re1 59
r̃ 23
r̃e1 59
r̃e2 64
xe1 59

Norms
‖ · ‖n 36

Numbers
κ(A(·), ω, u) 36
κ(A(·), ω) 36
ρ
(

A(·)
)

35
σ
(

A(·)
)

35

Operators
A(ω) 32
Ae1(ω) 61
Ae2(ω) 67
Ah(n)(ω) 57
Ae1,h(n)(ω) 61
Ae2,h(n)(ω) 68
A−1(ω) 35
An(ω) 33
Ap(ω) 70
A∗ 33
A∗(ω) 35
Fe1 60
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Nomenclature

Πh(n) 54
Πe1

h(n) 61

Πe2
h(n)

67
Pn 33
T (ω) 45
Te1(ω) 60
Te2(ω) 67
Tǫ(ω) 54
Te1,ǫ(ω) 60
Te2,ǫ(ω) 67

T
h(n)
ǫ0 (ω) 55

T
h(n)
e1,ǫ0(ω) 61

T
h(n)
e2,ǫ0(ω) 68

Properties
coercive 34
compact 39
regular 39
T -coercive 34
T (·)-compatible 38
weakly coercive 34
weakly T -coercive 34
weakly T (·)-coercive 36

Sesquilinear forms
a(ω; ·, ·) 25
aD(ω; ·, ·) 24
ae1(ω; ·, ·) 59
ae2(ω; ·, ·) 65
ap(ω; ·, ·) 70
〈·, ·〉Xe1 (D) 59
〈·, ·〉Xe2 (D) 65

Sets

Ar1,r2 17

Br 17

Br(x0) 17

Λd0 45

Λ±
d0

51

S2 14

S2
r 14

Spaces

C∞(D) 13

C∞
0 (D) 13

G(A(·), ω) 36

H1
0 (D) 13

H1
loc(D) 13

H̃1
loc(D) 18

H̃1
0,loc(D) 18

Hs(D) 13

Hs(∂D) 13

H−s(∂D) 13

L2(D) 13

L2(∂D) 13

L(X) 32

L(X,Y ) 32

W k,p(D) 13

X 25, 32

X(D) 24

Xe1 59

Xe2 65

Xh(n) 53–55

X
h(n)
e1 61

X
h(n)
e2 67, 68

Xn 29, 32

X
h(m)
n 52
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[BK17] Bécache, Éliane and Kachanovska, Maryna. Stable perfectly matched layers
for a class of anisotropic dispersive models. part i: necessary and sufficient
conditions of stability. ESAIM: M2AN, 51(6):2399–2434, 2017.

[BLW10] Gang Bao, Peijun Li, and Haijun Wu. An adaptive edge element method
with perfectly matched absorbing layers for wave scattering by biperiodic
structures. Math. Comp., 79(269):1–34, 2010.

[BMBB15] T. Z. Boulmezaoud, S. Mziou, B. Boudjedaa, and M. M. Babatin. Inverted
finite elements for degenerate and radial elliptic problems in unbounded do-
mains. Jpn. J. Ind. Appl. Math., 32(1):237–261, 2015.
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[VK74] G. M. Văınikko and O. O. Karma. The rate of convergence of approximation
methods for an eigenvalue problem in which the parameter occurs nonlinearly.
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