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Abstract

The quantum geometric phase is a fascinating demonstiatrgeometry affects standard
guantum mechanics already on the level of Hilbert spacetsire. A prominent classical
analogue is Foucault’s pendulum proving besides the ostatf the earth also that it is not
flat. After twenty-four hours the plane of oscillation doex return to its initial direction,

a typical geometric effect of the curvature of Earth. In quammechanics a similar effect
causes a phase difference between initial and final statesp$tam depending only on the
evolution path traced out by the state vector in its stateesphiit is not flat, as for instance
a sphere for the neutron spin state, a geometric phase &wiors up. This thesis deals with
the geometric phase in several ways. First, based on theegjgomphase for mixed states,
| will present two definitions of off-diagonal geometric ges for mixed states, which pro-
vide topological information about state space also if theallmixed state geometric phase
is undefined. The second part contains the description olirareinterferometry experi-
ment, where a geometric phase arising from the path degreeasfom in an interferometer
is demonstrated. A double-loop perfect-crystal neutrdarfarometer is used in order to
measure the phase induced in one loop relative to a refeteyara. For particular absorp-
tion and phase shifter parameters this relative phase eypgeometric. Finally, according
to several theoretical investigations the geometric plsasens to be a good candidate to
achieve quantum gates with high reliability. In the thirdtpa possible experimental test of
this feature using ultra-cold neutrons subjected to fluotgamagnetic fields is discussed.
Numerical studies provide insight in the feasibility of Buan experiment and demonstrate
the prospective difficulties.






Kurzfassung

Die geometrische Phase zeigt, wie schon die VorhersageStdadard-Quantenmechanik
von der Geometrie des zugrundeliegenden Hilbertraumemthest werden. Ein an-
schauliches und bekanntes Beispiel aus der klassischeikRtydas Foucaultsche Pendel.
Dieses diente in der Mitte des 19. Jahrhunderts als BeweRatation der Erde, und neben-
her noch als Demonstration ihrer Kugelgestalt. Die Schwnggebene rotiert aus der Sicht
des fix auf der Erde stehenden Beobachters, kehrt aber irerA#ignen nicht nach 24 Stun-
den zu seiner Ausgangslage zurtick. Dieser Effekt beruhtl@uKrimmung der Erdober-
flache. In der Quantenmechanik tritt ein analoger Effekt Bsfkommt zu einer zuséatzlichen
Phasendifferenz zwischen dem Anfangs- und Endzustand guentenmechanischen Sys-
tems, wenn der Zustandsraum eine Krummung aufweist. \Befigngt diese Phase - im
Gegensatz zur dynamischen Phase - nur vom Pfad ab und nichderobendtigten Zeit
oder der Energie des Zustandes. Ein typisches Beispietis$pin-Zustand eines Neutrons,
dessen Zustandsraum als Kugeloberflache dargestellt w&ede, und eine Manipulation
des Spins fuhrt daher zu einer geometrischen Phase. Dieg@nlde Dissertation behandelt
einige Aspekte dieser geometrischen Phase. Zum einen weadenannte nicht-diagonale
geometrische Phasen flr gemischte Zustande definierthevetformation tiber die Topolo-
gie des Zustandsraumes bietet, falls die gewohnliche gemeiee Phase nicht wohldefiniert
ist. Im zweiten Teil taucht die geometrische Phase im Kdrdek Neutroneninterferometrie
auf. Ein Interferometer mit zwei Kreisen wird verwendet, die in einem Kreis gener-
ierte Phase relative zu einem Referenzstrahl zu messenZu3g&ind in diesem Kreis kann
durch geeignete Wahl eines Absorbers und eines Phasebschsn verandert werden, dass
schlussendlich nur eine geometrische Phase gemessenDiask folgt wiederum aus der
Geometrie des spharischen Zustandsraumes. Schliel3lididiei Frage des Einflusses von
auReren Storungen auf die geometrische Phase aufgegHifige theoretische Uberlegun-
gen kommen zum Schluf3, dass diese gut geeignet sei um goeadieanische Schaltungen
zu realisieren. Dieses Verhalten konnte mit ultrakaltemitimen getestet werden. Nu-
merische Simulationen in Hinblick auf ein zukinftiges Evipeent werden prasentiert.
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Preface

Foucault’s pendulum experiment is an important and rentdekdemonstration that the
Earth is rotating beneath our feet from the mid-nineteesethiwry (and also a intriguing
book by Umberto Ecd |[Eco88]). Moreover, not only the rotatibut also that fact the Earth
is a sphere and not a disc is established. Placing the penduia flat rotating earth instead,
one would expect that it lasts 24 hours that the plane oflasicih returns to its original po-
sition. However, this is not the case, depending on theecw€latitude the pendulum lags
behind the rotation and after twenty-four hours there velHn angle difference,f@lonomy
with respect to its original oscillation plane accountingthe curved geometry of the earth.
The underlying geometry of an experiment has an influencdnemteasured results. The
possible oscillation states of the pendulum have to refleetcturvature, an evolution from
one state to another gives rise to an observable holonomsedwer, the angle difference is
the same irrespective of how fast the rotation is - a pendyliamed on Neptune exhibits the
same angle difference although one Neptune day is only dlfohburs.

What is the connection to the geometric phase and in thedoilpto neutron interferom-
etry? Well, what can be learnt from the pendulum is that thgasient state space must not
be neglected. The same is valid in quantum mechanics, wihestdtes of a quantum system
are “living” in a complex vector space, tlhéilbert space and it is the phase of a state that
mirrors the geometry of the system’s Hilbert space. Probtidd most famous effect based
on the topology of the state space is the Aharonov-Bohm tf#&259], where the transport
of a charged patrticle around, but not through, a magnetid fesgjion affects the phase of
the state, although there is no interaction. Earlier, Paratham [[Pan56] investigated the
phase change of light when changing its polarisation by fi$#ers. The phase change is
based on the spherical shape of the polarisation state.spheecatalyst for a vast number
of investigations in the geometry of state space was finadlgrainal paper by Berry [Ber34]
in 1984 demonstrating that the adiabatic and cyclic trarisgfa quantum mechanical sys-
tem involves a phase contribution to the final state thatitheedependent on the evolution
time from the initial to the final state nor on the energie®lwed. A simple example is the
spin of a neutron subjected to a magnetic field which slowbnges its direction. The spin
follows the motion of the field. If the initial spin is pardlle® the magnetic field and the
evolution is cyclic the final state has picked up a phase fa¢tee accumulated phase along
the path of the state can be separated into one term whiclndes the energy-splitting
associated with the magnitude of the magnetic field, the myece phase, and a second term
that depends on the geometry of the Hilbert space represgethie spin degree of freedom.
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Fortunately, in this simple case the state space is equividea sphere and analogous to
Foucault’'s pendulum the geometric phase difference isaltiestcurvature of the sphere and
proportional to the area enclosed by the path of the spia.stat

In Chaptefll the notion of Berry’s phase factor along with s@xtensions to more gen-
eral evolutions will be discussed. For example, the ragtndo adiabatic motion has been
released soon after [AA87], followed by the extension to-ogadlic paths[[SB88]. That the
notion of the geometric phase is not connected to any dyrsaatiall becomes explicit in a
kinematic theorylIMS93] relating the geometric phase tadgsec lines connecting quantum
states.

In view of realistic models of Nature an entirely pure stadsatiption of quantum sys-
tems seems inappropriate. Quantum systems interactihghdtenvironment tend to dissi-
pate energy, exchange phase information and are foundyfinathixed states. Therefore, a
definition of a general geometric phase for mixed state amdumitary evolutions is expedi-
ent. In Chaptel]2 the notion of mixed states is introducedtesadpossible ways towards a
geometric phase associated to the paths of mixed stateeserped - first, an operationally
intuitive definition via interference of states [SP#]] and secondly, a mathematically ap-
pealing approach by representing mixed states as purevetttas in a larger Hilbert space
[UnI84].

The question arises whether the geometric phase can be meddsuall possible paths.
Do particular evolutions exist where nothing can be saiduiatice subjacent geometry? For
pure states such a situation is encountered if initial arad tate are orthogonal [MPO0] and
one has to resort to the off-diagonal geometric phase. Tdrisapt is generalised to mixed
states for the interferometric definition of the mixed sig@@metric phase [FS03b, FSD3a,
SFO03] as well as for purification alternative [F$S05] in Clead.

The canonical example of a geometric phase is definitelyghre 52 patrticle like a neu-
tron in a magnetic field. In Chaptér 4, it is shown that not ah/neutrons’ spin can be used
to play with geometric phases, but also the two possible wagmigh an interferometer
give rise to a non-trivial spatial state space of the neugmah, consequently, to a geomet-
ric phase connected to the spatial degree of freedom. Arriex@et on a cyclic evolution
[HZR9E€] provided first evidence of the spatial geometricgghaFor the recent experiment
[FHLROS50,[FHLRO5AR] the theory has been refined to fully expieon-cyclic paths in order
to refute the criticism on the previous [Wa@99]. The pathth@Bloch sphere, the belonging
state space, have been devised in order to obtain analgtittsgurely from geometric con-
siderations. These are compared with the measured dataafwlad to be fully coherent,
so that one can disprove any critical voices with a clear cense.

Finally, the attention is turned back again to the geometrase in connection with open
quantum systems in Chapfdr 5. It is widely believed that thegy of the geometric phase
lies in its robustness with respect to environmental infb@srand a multitude of studies sup-
port or refute such claims. However, to the best of my knogéedo experiments on this
issue have been performed yet. | will focus particularly ba éffects of perturbations in
the magnetic field driving adiabatically the spin of a nentrdhe perturbations induce a
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statistical spread of the geometric phase, the boundatyeo$urface area enclosed by the
perturbed path looks frayed. Most interestingly, for longlation times the uncertainty in
the geometric phase tends to zero. Besides numerical stud@der to estimate a set of
feasible parameters for a subsequent experimental reatisdetails of a possible measure-
ment scheme involving ultra-cold neutrons are presenterth $eutrons are slow enough
to trap them in an appropriate storage vessel and when agphyagnetic fields their spin
polarisation can be manipulated.

As for the notation a list of symbols used for parameters artkles can be found in
the AppendixXE.
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Chapter 1

Geometric Phase - Introduction

In this section an overview on tlgeometric phaséusiness in general is given. First, we
consider a mathematical analogue from spherical geometcatch a glimpse on the im-
portance of a curved state space, then we move on to Bernyigakpaper([Ber84] about
a quantum phaséaccompanying adiabatic changes” of a system. This is - asned out
later - only a special case of more general concepts. SimomB[} immediately realised
the link between Berry’s phase factor and geometry in terhfibie bundle (gauge) theory,
viz. that Berry’s phase is a holonomy invariant associatéll av particular connection in a
line bundle over the parameter space. Wilczek and Zee cemesichon-abelian holonomy
invariants for Hamiltonians with degenerate eigenvaluscspm, still for cyclic adiabatic
processes. Aharonov and Anandan |AA87] relaxed the canddf adiabaticity and Samuel
and Bhandari|SB&8] formulated the geometric phase for evere general non-cyclic evo-
lutions bringing in Pancharatnam’s ideas from the 1950 B®&]. Without resorting to any
particular dynamics of the system Mukunda and Simon [MS88&ptilated the geometric
phase in a quantum kinematic picture. To give a conceptuaiviaw a sketch of some of
these papers is presented in the following and at the end sppagiments on the geometric
phase are mentioned.

1.1 Mathematical analogue

Let us first consider an example of elementary geometry goaoto thegeometric phasto
clarify what we are talking about. Take a sphere and mounttwento some point on the
sphere pointing in an arbitrary direction and transpos Waictor along a geodesic line to the
equator, then along the equator and back on a geodesic toighmabpoint (see Figure1l.1).
During this transport the vector has to stay tangential &(turved) surface all the time,
it must not change its magnitude and the angle between theneatd the (geodesic) path
must not change, so that there is no rotation about the itastaaus normal to the surface.
This transport is called parallel transport After completing the closed path (i. e. the loop)
we notice that the vector has changed its direction comparde initial one by an angle
¢ although we thoroughly paid attention to keep it parallghu3, we obtained a so called

1



BERRY’S PHASE AND GENERALISATIONS

Figure 1.1: Parallel transport of a vector on a sphere

holonomydistinguishing the vector before and after the transpoly doe to the curvature
of the sphere. This angig equals the solid angl@ enclosed by the loo = 215 = ¢,
where 2tis the solid angle of a half-sphere and by multiplicatior‘rmg;i we get the portion
surrounded by the loop.

This concept can be generalised to any surface using a pdefieition of the parallel
transport. By dealing with such a surface (mostly referpeds amanifoldto ensure that it
is smooth and one can define differentiable coordinate pat®er96| CBDMDB7/7]) with
intrinsic curvature we get a holonomy after a transport okeater around a loop. If the
surface is flat the vector points in the same direction aftdosed path.

Another illustrative example is a path on a cone. A cone cafobeed by taking a
piece of paper shaped like a sector of a circle and joiningotqeer at its edges. During
this process the paper is neither stretched nor compresskaansequently, the cone has
no intrinsic curvature except at its vertex (which can be atined out so that the curvature
is finite everywhere). Therefore, a vector transportedgmpath not enclosing the vertex
acquires no holonomy, there is no difference to a paraléigport on a flat surface. But
a vectorV parallel-transported around a closed curvgt(enclosing the vertex undergoes
a rotation (Figurd_T]2). This is in fact the geometry resguasfor the Aharonov-Bohm
effect,“the curvature at the vertex can be regarded as analogoukeéanagnetic field within
the cylinder in the Aharonov-Bohm experimeni [AB59], witile zero intrinsic curvature
everywhere else corresponds to the vanishing of the magheld outside the cylinder”
[Ana9z]

1.2 Berry’s phase and generalisations

In 1984 Berry published a paper entitl&Quantal phase factors accompanying adiabatic
changes’[Ber84] describing the geometric phase factor acquiredstpyy) transporting a

2



1. GEOMETRIC PHASE - INTRODUCTION

Figure 1.2: Parallel transport on a cone

quantum system governed by the Hamiltori(R) round a circuit by varying its parameters
R This phase is non-integrable, because it depends direntlihe path connecting the
endpoints of the evolution.

1.2.1 Derivation of Berry’s phase

The parameterR of the HamiltoniarH (R) should change slowly in time so that the adia-
batic theorem hold$MesB2]. Then the system will remaimieigenstate dfi (R(t)) at any
timet, if the system is initially in an eigenstatedf If the evolution is cyclic R(0) = R(T))

the Hamiltonian takes on its original form at the final tifieand the system returns to its
initial state. The state has been transported around adadpe [0, T] — |@(t)) in pa-
rameter space withy(t)) denoting the instantaneous state of the system, which is-equ
alent to the eigenstat@(R(t))) of the instantaneous Hamiltonian (Figrel1.3) defined by
H(R(1))|n(R(t))) = En(t)|n(R(1))). En(t) denotes the energy of timeth eigenstate.

Figure 1.3: The curv€ traced out on the spher&? encloses the solid angf@ which is
proportional to the geometric phase. The parameter sfaskthe magnetic field coincides
with the state space of a spin-1/2 particle, if the magnitfdae magnetic field is kept fixed.

In detail, the evolution of the system’s state vedtp(t)) is given by the Schrédinger

3



BERRY’S PHASE AND GENERALISATIONS

equation

H(R®)[w(t) = 'ﬁ—lw( ))- (1.2.)

Let the initial state(0)) = |n(R(0))) be an eigenstate ¢i(R) at timet = 0. Assuming
adiabatic evolution the solution of this equation at tinneads

W) =*YIn(RY))), (1.2.2)
To determined(t) we insert [T Z]R) into equation (1.2.1), obtaining
—iR(id()e®Vn(R(1)) +€°YIAR()) ) = €*VE(R®) In(R1))). (1.2.3)
where a dot denotes the time derivative. MultiplyimgR(t))|e~'®®) from the left yields

—Ro(t) +iRN(R(t))|A(R(t))) = Ea(R(t))
: 1_ . o (1.2.4)
= B(t) = —£Ea(R(M)) +i(n(RM))In(R(1))).

This equation has to be integrated from O to the final timg = T (setting®(0) = 0),
" d, =
/ En(R(t))dt+ |/ (n(R(t))| <t In(R(t) .

We see that the last term does not depend explicitly on the panameter and the chain rule
can be applied,

(R[S In(R)) = T (R Cgin(R))
to find
1/ 2 . _ - _
oM =—¢ En(R(t))dt+|?£dR~(n(R)\Dﬁ\n(R)) (1.2.5)

for a closed patl® in the parameter space with the chojogR(T))) = |n(R(0))). The first
term corresponds to the usual expression of the phase ataaechiby a system in a state
with energyE(t) for a timeT, thedynamical phase

- ——/ En(R(t) (1.2.6)
Thegeometric phases defined by the additional second term
=i j{dR (R)|O5In(R)), (1.2.7)

an integral in parameter space independent of the rate abwhe loopC is traversed and
independent of the energy. Thatis reparametrisation invariant (independent of the rate of



1. GEOMETRIC PHASE - INTRODUCTION

traversal) can be seen by substituting 1(t) anddt — %dr,

2 . () -
@ = i [ RO RO [ R G g IR ) e
= [ (R SRyt = 1.2:8)
T(ty) dr % o

for equal initial and final time (t1) =t; and1(ty) =to.
Normalisation guarantees tha,(C) is purely imaginary: From(n(s)|n(s)) = 1
(while simplifying the notation by skipping th& dependence ofn)) it follows that

dis(<n(s)|n(s)>) = 0 and consequently

(n(s)In(s)) = —(n(s)|A(s)) = — ((A(s)In(s)))".

Hence,

Re(n(s)|A(s)) = 0 (1.2.9)

andgy =i §-(n(s)|n(s)) is purely imaginary.

It is also gauge invariant, i. e. by choosing a different ghakthe eigenvectorg(t))
@ does not change. If this would be the case, this quantity dvoat be physical since the
choice of the phase of the eigenvectors is arbitrary for éastant of time. To proof this
proposition we have a look at the geometric phase after thgegransformatiomn(t)) —

(1)) =€7Vn(t)) :

@ = /dt t)|A(t —|/dt e lalt ( e’in(t)))
_ /dt ) ialt ):%_/O a(t)dt. (1.2.10)

When choosing single valued eigenvalue bases the initthfiaal eigenstates can differ
only by a phase of integer multiples ofi2n’(0)) = €"2|r/(T)) (and same for the unprimed
eigenstatem(t))). Thereforea(T) — a(0) = foT a(t)dt = 2nmrand ¢ = @ modulo 2.

Transformation to a surface integral For simpler evaluation afy the circuit integral can
be transformed into a surface integral over the surface iarpater space whose boundary
isC. This can easily be done in a 3-dimensional parameter ssaicg $tokes’ theorepfor
higher dimensions the theory of differential forrhs [Nak@ak to be applied by transforming
(@CZ1) into the integral of a 2-form over the surfa€ebounded byC (C = dF). In three
dimensions we get by using vector calculus and decompdSimginto the basis statesn)

@(C) = /dS B % (n|Fn) —|/ dS- (Fn| x |Pn)

_ /dS n; (Enm) x (mDnY, (1.2.11)

5



BERRY’S PHASE AND GENERALISATIONS

whereasiSdenotes the area element in parameter space and the i@strigt min the sum
is justified, becausén|ﬁn> is purely imaginary. Therefore the prodL(Eﬂn|n> X (n|ﬁn) is
purely real and must therefore vanish since it would coatalto a real part in the geometric
phase which we have already excluded above. To calculat#liee elements in the sum we
use

O(HI) = (BH) ) + H|Tn) = (B ) [n) + EqlOn)
(m[OH|N) = Ex(m|0n) — (m|H|0n) = (En — Egm) (m|0n)

which finally yields
(m[On) = (m|/OH|n) /(En — En). (1.2.12)

Thus, we have calculatdgerry’s phaseg; as

&= }_dS'Vn( ), (1.2.13)
with . . . . Lo
9B - 1m (n(R[TH (R)|m(R)) x (m(R)ITH(R)In(R)) (1.2.14)
& (Em(R) — En(R))?

Example - Neutron in a magnetic field

To illustrate this idea, we consider a neutron with spin dagoomentunts= g in a mag-
netic fieldB with magnitudeB = |B|. A spin-1/2 state is commonly represented by a complex
vector in a two dimensional Hilbert space. The basis stakes@nmonly denoted by either
{1, D} {lz+),|1z—)} or {|0),|1)} as eigenvectors of the Pauli matax to the eigenval-
ues+1 and—1. In the following either one of these notations will be usédrnatively. The
Pauli spin matrice§ oy, oy, 0;} along with the identity constitute a complete set of gener-
ators of the unitary group (2), i. e. each unitary operator acting on the spin states can be
decomposed in terms of these basis operators. They sdtesfgientities

0i0j = §jj + &k Ok (1.2.15)
0i0j + 0j0; = 24;] (1.2.16)

and have the matrix representation

01 0 i 1 O
ox_(l O)’ oy_(i 0), andaz_(o _1). (1.2.17)

An arbitrary spin state can be parametrised in terms of ther pomd azimuthal anglé and
@, respectively,

0 ) cos?
=cos=| 1) +sin=| |) = ( 2 ), 1.2.18
) =cos,| 1)+ sing | 1) = gooyeo (1.2.18)

6



1. GEOMETRIC PHASE - INTRODUCTION

which is already normalised. This parametrisation suggbst visualisation of a spin state
on a 2-sphere known &och spherer Poincare sphelﬂ (Figurel1.4).

Figure 1.4: Bloch-sphere representation of a spin-1/2estgt) = cos6/2|z+) +
€9sin6/2|z—) by the polar angl® and the azimuthal anglg.

The polarisation vecto® can be obtained by calculating the expectation values of the
Pauli matrices

Triox| ) {Yl] sin@ cosy
S= [ Trioyly)(y@]] | = | sinBsing (1.2.19)
Trioz| ) (Y]] cos6

The Hamiltonian of the magnetic field is given by
Hmag(t) = —n - g(t), (1.2.20)

wherefi, = und denotes the magnetic moment of the neuugr= —9.66 x 10-27J/T.

In the simplest caséimag is static and for further convenience let the direction @& th
magnetic field determine the quantisation axis,

Hmag: —unBaz. (1221)

A neutron initially in the eigenstatgp(0)) = |z+) evolves according to the Schrédinger
equation and we find the state at a later time

W) = e [(0)). (1.2.22)

LPoincak sphere’ is usually used for the representation of lighagsdtion, but since the representation is
same for both these expressions can be used alternatively.
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Utilising the Euler identitye® = cosA+isinA for the exponential we get

+ Ht i IJnBzOzt
Hnzo2

e'n =¢ = cos(%toz) +isin (%taz), (1.2.23)

where we have defined tharmor frequency

2unB
h

(1.2.24)

The propertyo? = 1 makes life particularly simple since the series expamsitthe cosine
contains only even powers of tlig and the sinus only odd powers, so that we end up with

t t ér 0
. 2
e = cos(“2") +igzsin(“F) = < A e—i%t> . (1.2.25)
and the final state T
|@(T)) =€72 |z+). (1.2.26)

The phase factoei%Tt is just the dynamical phase proportional to the Zeeman gnerg
splitting AE = hw_ and the time. Since the Hamiltonian did not vary in time there is no
geometric phasal(dt|n(t)) = 0).

In contrast, for a slow change of the Hamilton operator (aali@ evolution) the neutron
spin direction will be pinned to the direction of the magadigld B(t) at any time and will
acquire in addition a geometric (Berry) phaggindependent of the Larmor frequenay
and time. Let us parametrise the direction of the field by fteesical coordinate8 and g,

cosg(t)sinO(t)
B(t) =Br(t), f(t)= | sing(t)sinb(t) |.
cosO(t)
The eigenvectors to the Hamiltonigdh= —p,Bri(t) - & are given by

COS%

0.0)=| 952 and 0.0)) = sin?y’ 1.2.27
(6, 9)) J0) iy 1) W, (6,9)) o) | - (1.2.27)
2

_do o)
e'cos2

To find for instance the geometric phaﬁ;bassociated to the spin-up state we have to calcu-
late the terms in EqQ[{1.2.7),

J
<4’T|0—9|4’T> =0,
J [
— =-(1- :
(U M\w 5(1—coso(t))
For the sake of simplicity we choose consténi. e. an evolution along a circle of latitude

8



1. GEOMETRIC PHASE - INTRODUCTION

and obtain Berry’s phase by integrating

2ni

@ =i A 5(1—cos(t))dp= —71(1-cosd).

We notice thatg, is proportional to the solid angle enclosed by the patlcpgT =—-Q/2. For
example, if6 = 11/2, a walk along the equatorial IinqngT = —rmand the encompassed solid
angle as seen from the degeneracy pBirt 0 is half of the spher@ = 2. Such a rotation
of B produces a sign changey(= m) of the fermionic wave function, which is equivalent to
the sign change of spinors undergoingla(2) rotation.

The crucial point is that the magnetic field has a singulait$ = 0 which is encircled
by the path of the state. This gives rise to a non-trivial togg of the parameter space and
enables the appearance of a geometric phase.

1.2.2 Non-adiabatic evolution

Aharonov and Anandan [AA87] generalised the Berry’s phasednsidering not only adia-
batic but any cyclic evolution of a quantum system. Startiogn the Schrédinger equation

d
HO[Y(L) =ih[y(t) (1.2.28)
the normalised initial statey(0)) € Ny evolves to the final statey(T)) € Ap such that

(T)) = €%Y(0)), @ real (1.2.29)

N stands for the set of normalised non-zero statés,iNo = {|Y) € H | (Y|Y) = 1}. The
point is that the system does in this general setting notistay eigenstate of the Hamil-
tonian and the geometric phase cannot be associated tordragtar space of the Hamilton
operator’s parameters. The focus is shifted towards spateesthat does not coincide any-
more with parameter space as in the adiabatic case.

In order to obtain a notion of the geometric phase ridne spaceor projective Hilbert
spacehas to be introduced. It is a general property of quantum ar@chl states that these
are only defined modulo B (1) phase factor without physical relevance. All states that
differ merely by a phase factor give rise to the same phy€ice might argue then that the
discussion about the geometric phase is immaterial frosghint of view, but a relative
phase difference between two states in superpositién= ) +€®|y/') gives a different
state. It is only a global phase which can be neglected|%)xand in€?|W) are equivalent.
The projective Hilbert space comprises all statedVinwhere the states differing only by
a phase factor are identified. This is denoted/y- Ny/ ~, where~ is an equivalence
relation. The projection map

m: No— P (1.2.30)

maps all vectors i\ to the projective Hilbert spacB. An equivalence class of states in

9
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ray space is denoted by
Py = W) (Y, (1.2.31)

which is equally well a projection operator to the equivakerlass represented by). A
pathC traced out byy(t)) satisfying [1.2.20) is therefore projected to a closed ednin
P, as|@(0)) and |Y(T)) represent the same point , Py(T) = €®|y(0)) (¢ (0)|e7'® =
|(0))(Y(0)| = Py(0) . For a geometrical interpretation see Figlirel(1.5).

Figure 1.5: Projective Hilbert space (ray spaceMaf The rays denote states differing only
by a U(1) phase factor.

We now have the freedom to add additional phases at any doimg ¢he curve without
changing the curve in projective Hilbert space. If we defirstate|(t)) € Ao such that

lpt)) = TO|yt)) and f(T)- f(0)=o, (1.2.32)

it follows from equation[(T.Z:29) thai(T)) = |@(0)) and from [1.Z.28) that

O = LW M) i) ), (12.39
Having Figure[(1.6) in mind, we can look at the curve tracetbgyg(t)) as another Hilbert
space representative of the cues P, thus the “shadows” of the curves traced out by
|@(t)) and|@(t)) are the same. Indeed, we have the choice among many diffarers in

Np projecting to the same curgee P under the map defined iIn{1.2130). The special choice
(ITZ32) forf(t) has the advantage that the final phase differahcesplit into a dynamical
and a geometrical part. Integration of Hq. (1.2.33) in theriwalt € [0, T] results in

1 /7 T d
HM =10 =-¢ | (Llf(t)|H|Llf(t)>dt+i/o (@) 5| o(t))dt=, (1.2.34)

where the dynamical partis given by the first ter fOT dt(g(t)|H|y(t)) and the geometric

10
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phaseg, stems from the second term [.{1.2.34) and can be defined as
1 /7 (T d
w=o+= [ WOHWOH=1 [ (oO)glomyd (1235

As there are many curvey in ‘H projecting to the samé € P that are generated by
different Hamiltoniang4; and because we can find the saimé)) for eachH; by an appro-
priate choice off (t), the phase fact@% is independent dfl for a given closed cuné e P.

@ is furthermore independent of the choice of the paramegteparametrisation invariance)
and is uniquely defined up tar®, ninteger. In fact, consider two curvé€s, C"” € Ny with
the same imagé € P traced out by the corresponding state vectgrgt)), | (t)) € N re-
lated via|y” (1)) = e '@ |y (1)) with a(T) — a(0) = 2rm. They share the same geometric
phase factoe% due to

@ = i [ Wolgeod= [ (e @olgvo)
_ 2nn+i/OT<w’(t)\%|Lp’(t)>dt. (1.2.36)

Hence all curves it that project to the same (closed) curvefrhave the same geometric
phase modulofZz. Consequentlyy, is only dependent upon the geometry of the cveP.
The geometric phase is a property of ray space only.

1.2.3 Non-cyclic and non-adiabatic evolution

Until now, the curves in the projective Hilbert spaPehave still to be closed in order find

a well-defined relative phase between initial and final st&te= arg(@/(T)|@(0)). For the
further generalisation to open curvegHrit is necessary to find a way to compare the phases
between two non-equivalent states, states that do not hivte@same ray when referring to
FigurdLh. Samuel and Bhandari [SB88] based their invatigs on the work of Pancharat-
nam [Pan56, Sj602] on the interference of polarised lightgeneralised@erry’s phaseo a
non-cyclic and even non-unitary evolution of a quantumesyst

Pancharatnam’s phase difference

Take two (normalised) state vectafs and|B) (either polarisation states of light as consid-
ered by Pancharatnam or state vectors representing a guaypstem) and let them interfere.
Then it is quite natural to ask about their relative phase. If

A) =€®B), (1.2.37)

thus if[A) and|B) describe the same quantum/polarisation state, this phadeiouslyd.
But what to do if{A) # €®|B)? In this case we can nevertheless set up an interferometry
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experiment[[WRFI98] to measure the intensity of the intenfiee betweefA) and|B)
| = |€X|A) +|B)|? = 2+ 2|(A|B)| cogx —arg(A|B)), (1.2.38)

where a U(1) phase shiftis imposed|@y. If |A) is orthogonal taB) (|A) L |B) if |(A|B)| =

0) we do not get any information about the phasdAlf§), but if they are not orthogonal we
can measure the intensity and regard the two state vectirs-plsase” when the intensity
is at maximum. The Pancharatnam relative phd@ss defined asb = arg(A|B) and it is
well-defined (for nonorthogonal states) everlf (1.P.3 fjassatisfied. Two states are called
in-phase if(A|B) is real and positive which is known &ncharatnam’s connection

It is remarkable tha® is non-transitive: ifA) is in phase withB), and|B) is in phase
with a third stateéC), then|C) need not to be in phase with), but to|A') = &®|A):

IA) <|B) <|C) < |A) 4 |A), (1.2.39)

where< denotes the “in-phase” relation.

The phaseb depends again on the subjacent geometry of state spacehdraimam
deduced this result already in 1956 [Pan56] by considetwegrélative phase of two “in
phase” polarisation statéd) and|C) of light both being projected onto a third stadfs.
Their relative phase becomes then

arg (A|B)(B|B) (B|C)] = arg (A|B)(B|C) (C|A)] = A(A,B,C), (1.2.40)

where argA|C) = 0 has been used\(A, B,C) is independent of the choice of Hilbert space
representatives (invariant under transformations/#e— €|A)) and is therefore a property
of the projective Hilbert space. For 2-level systems (spgparticles)A), |B), and|C) can
be visualised as points on the Bloch sphere. Calculdi#gB,C) results then in

1
A(AB,C) = ~A(A.C.B) = —=Qasc. (1.2.41)

with Qapc as the solid angle enclosed by the spherical triaAB€ (Figure[1.6).A(A, B,C)

is intimately related to the geometric phase since it reflatso the properties of the state
space without paying attention to any particular dynamitkeese considerations are also
subject of the kinematic definition of the geometric phasélkunda and Simori [MS93],
where the quantitA(A, B,C) appears as Bargmann invarianfBar64].

Parallel-transport law In SectionCL.ZR we have encountered special paths in Hilber
space for which the dynamical phase vanishes and the ramgghiase difference is purely
geometric. The condition was that the integfél(tp(t)m |@(t)) vanishes which leads natu-
rally to theparallel transportcondition, viz. that the integran@dp(t)|H|y(t)) has to vanish

12
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Figure 1.6: Spherical triangle on the Bloch sphere. If twaiest that arén phaseare pro-
jected to a third one their phase difference depends on ttlesad solid angl€@asc.

for all t. From the Schrédinger equation we obtain

(p(t )I dw®) = (1.2.42)
which denotes the in-phase relation between two adjacatatsst

The other way round one can explicitly construct a stateoresith zero dynamical
phase corresponding to choosing a cutvie Hilbert space for which the dynamical phase
vanishes, a so calleldorizontal lift (or parallel lift) of the curveC € P. Such a state is
|¢(t)) € My associated to the original state vec(t)) € N by

- exp[ﬁ/ "Ndt)|w(t) (1.2.43)

where

h(t) = Re(y(t)|H®)|w()) (Wwb)|w(t) ™ (1.2.44)
With this specific choice di(t), the dynamical phase factor is removed frgpit)) and only
a geometric phase can be left.

From the evolution of¢ (t)) we get back the parallel transport condition: The time evo-
lution of |(t)) is given by the Schrédinger equati@n{1.2.28) and replalgingvith |¢) we
find the time evolution forg(t)),

\¢( ))=[H®) =h®)]|l$(1). (1.2.45)
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Multiplying with (¢ (t)| from the left and using the definition bft) (Eq.[I-Z-2%) we obtain

ih(¢ ()| (e() = (#OHOIS(1)) — (9(U)[h(t)[@ (1))
= <¢'(t)\ @) —ReW®)[HO)[Y(1))
= Im{gO)HO[g(). (1.2.46)

Theparallel-transport conditions therefore given by

m(¢ (>| [19(1)) =0, (1.2.47)

which is also valid for non-HermitiaH. For HermitianH (unitary evolutions) we obtain the
more familiar expression

(o(t )I (1) = (1.2.48)

which follows from the fact tha{¢ (t)|a\¢(t)> is already purely imaginary due to normali-
sation.

Alternative approach to the parallel transport law The parallel transport condition
(I.Z48) can be more intuitively derived in the following waConsider a curve in the
projective Hilbert spac® (see Sectioh’1.2.2) parametrisedshy

C:s€ [s1,%] — [$(9)(9(9), (1.2.49)

of a statd¢ (s)) on the associated ray K. |¢ (s)) varies smoothly above the curdeand is
therefore a Hilbert space representativé?oNatural conditions for a parallel transport are
now that the length di) is preserved, i. e(¢ (s)|¢ (s)) = const., and furthermore thgt(s))
and an infinitesimally displacejg (s+ ds)) have the same phase, i.({@.(S)|¢ (s+ds)) is
real and positive - see Figuile{]L.7). From a series exparaditgy(s)|¢ (s+ ds)) we find

(9(s)|¢(s+ds) = (¢(9)[(s)) + <¢(S)|dgsl¢(5)>d5+ o(ds), (1.2.50)

which is real in first order oflsif

m(¢ ()| J#(s)=0. (1.2.51)

Evidently this is equivalent to the Pancharatnam connedtoinfinitesimally close states.

Cyclic evolution Now we can derive the cyclic geometric phase within this faliram. As
pointed out above any open curve in Hilbert space traced pl s)), s < [s1,S] can be
projected taP and if |¢(s2)) = €9|d(s1)), a € R the curve inP is closed (see Figufel.5).
For the curve in\jp we can write the tangent vector [ags)) = ds| ¢ (s)) and define a quantity
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Figure 1.7: Parallel transport law: Two infinitesimally séostates are called parallel if they
are in-phase, i. e. if al@(s)|@(s+ As)) = 0.

As by
As=Im(¢p(s)|u(s)). (1.2.52)

Going back one step and look at the path traced out by thenatigiatd ((s)) we notice
that if [(s)) is a cyclic solution of the Schrddinger equation, the pridgecof this curve
to P is closed. But we are not interested in the dynamical patefghase factor acquired
during the evolution, thus we have to ask for the cweves — |¢(s)) defined by equation
(TZ2%) which is a horizontal lift of the curve traced out|igys)). cis determined by the
parallel-transport conditiodl {1.Z61), which impliestt#g = 0 (from {I.Z5R)) along the
curve. Note that in the language of fibre bund#gss interpreted as a connection one-form
which defines horizontal lift |Ber96]. Consider now the itz

@ = jq{Asds (1.2.53)

along the curve in A closed by the vertical curve joining (sz)) and|¢(s1)). As vanishes
along the curve@(s)), consequently only this vertical line contributes to tliep integral
andg is therefore given by the phase difference(gne:)|¢ (s2)).

Due to the gauge invariance of the integfal {1.P.53) thislmamnegarded as an integral
in projective Hilbert spac®. We can usé&tokes’ theorerand expres§{1.2Z.b3) as a surface
integral inP,

@y =/SdAs, (1.2.54)

where S is the surface iR bounded by the closed curg€s) anddAs is a two-form ¢1As
denotes the exterior derivative Af, which is equivalent to the curl &s in 3 dimensions).
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Non-cyclic evolution Until now the above was only a new formalism yielding an alsea
known result. Therefore, let us consider now a non-cyclitt &ill unitary) evolution of the
guantum system. The state vector may not return to the linitya thus the curve in P
is not necessarily closed and we need a method to comparé&#se pt two different rays.
Pancharatnam’s connection discussed earlier is the apgi@jool for this!

The most important fact derived by Samuel and Bhandari [$B3Bat one can express
the Pancharatnam phase differenfle= arg(¢1|¢2) (|¢1), |¢2) € No,|d1) L |¢92)) as a line
integral of As along a geodesic. In fact, they proved that, by choosing aego curveg
with respect to the Fubini-Study metric connectigg) and |¢»), the phase difference is
given by

B = arg(¢ul¢z) = /g Agds (1.2.55)

The phasey, of a state vectof¢(s)) achieved by evolving frons=0 tos= T can conse-
quently be expressed as

@=¢ Ads= /Asds+/ASds:/Asds (1.2.56)
G+c c G G
wherec denotes the horizontal curve. Integration alghgields the Pancharatham phase
difference, the integral alongvanishes due to the parallel transport and we end up with the
same expression as in the cyclic cdse (112.%8)= § Asds can again be expressed as the
surface integral{1.2.54) over a 2-form in the projectivébelit space (Figurie-1.8) where the
geodesic connection from the initial to the final point cloee boundary of the surface.

Figure 1.8: Geodesic closure to obtain loofAnFor a non-cyclic path the cunéis closed
by a geodesic.
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1.2.4 Kinematic Approach

A theory of the geometric phase based entirely on kinemed#&as has been presented by
Mukunda and Simor [MS93]. In their approach the geometrasphs decoupled from any
(Hamiltonian) dynamics of the quantum system, but it istedaas a property of curves
connecting state vectors. As before, the state vedtprsare elements of the sét of
normalised vectors which is a subset of the set of nonzernorset” of the Hilbert spacét,
i.e.NgCN CH.

In searching for interesting invariants under the U(1) gangnsformation

@) — @) = €%) € No,

one immediately recognises the importance of the modultiseoinner product of two vec-
tors,
[{W1l@2)] = (] Wz)| = U (1) x U (D)-invariant (1.2.57)

with independent transformations

W) = €% ), |Wh) = €% yy).

Extending this scheme to even more vectors, natudiggmann-invariant§Bar64] of the
form

(Walg) (Yol Ps) - .. (Unlgr) =U (1) xU(1)...U(1) (1.2.58)

g

n—times
come into play. The modulus of the inner proddct {1.P.57) s&naple case of this kind of
invariants:

tprob(yn, ) = [(Y1|W2)|? = (| W) (Wa|yn)

denotes theransition probabilitybetween two stategl;) and |g»). In the following we
will first consider a smooth curve and find its geometric ireatr (geometric phase) and then
derive the same quantity in terms of Bargmann invariantsibigidg the curve into small
segments.

Invariant of a smooth curve A smooth curve’y C Ny is given by the map
Co:S€ [s1,5] — [Y(s)) € No, s1, 2 € R. (1.2.59)

From the constant norm of the statggs)) along the curv&€y we can deduce that the quan-
tity (@(s)|@(s)) is purely imaginary (c. f. Eq._1.2.9), where the dot standsHe derivative
d/ds Moreover(y(s)|(s)) is evidently invariant under global gauge transformation

W(s) — [@)(s) = €71(9)), a €R. (1.2.60)
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Under thelocal gauge transformation

Co Co |W(s)) — |P)(s) = €39 y(s)), (1.2.61)

determined by the smooth real functiafs), it transforms like

<()| JYE) = (Y ()I W) = (W(9)¢(s) +a(s). (1.2.62)

For the definition of a geometric phase we have to find a funatiof the curveCy that is
invariant under the local gauge transformatfon (1.2.6 &), which is the same for differe€ig
andCy. This local gauge transformation corresponds to the chafieadifferent Hamiltonian
projecting to the same curve 7p.

Such a functional is given by

@1Co] = arg( (s (s2) ~Im |~ ds(w(s)|i(s) (1.2.63)

Replacing|y(s)) by |¢/(s)) yields the same expression which can be verified easily by
inserting Eq.[T.2.62) into EC.{T.2163). Consequemly- ¢, and therefore gauge invariant.

It is also reparametrisation invariant by the same argunasnin Eq. [T.Z18) since
[W(s1)) = [U/(sy)) and|y(sz)) = [¥/'())-

The U(1) gauge invariance means that the quamitys independent of the particular
phase factors at each pomand consequently it is a property of ray spdteAs already
discussed previously (Figukel..8) the gauge transformatim be used to project the curve
Co onto the curveé?o inP. The functlonakpb[co] defines the geometric phase associated with
the smooth curve€,. The argumenfy stresses that the geometric phase is a property of the
projective Hilbert space. If, instead 6§, Co is initially given one may choose any it
which projects ta (1(Co) = Co) and calculateg, for the most convenient one.

Note, thatqb[g] is undefined for orthogonal initial and final statggs;)) and |(sp)),
since the transition probability tproiy(s;), @(sp)) = |(Y1|yr)|? vanishes and therefore the
argument argy(s1)|@(sp)) is undefined.

Naturally, the two terms on the right hand side of Eq. (T2 be interpreted as the
total phase

®[Co] = arg(y(sy)|(s2)) (1.2.64)

and the dynamical phase

@lCol =Im [ ds(y(s)|B(s). (1.2.65)

S
These phases depend on the cufyan Hilbert space, it is only their difference, that
depends only on the cund in ray space.
There are several possibilities to choose a lift to make arteeother term vanish. On
the one hand side a curd@ can be found such that the total phaseanishes|((s;)) and
|Y(sp)) are then said to beri-phasé and ¢ = —@. On the other hand the dynamical phase
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can be made to vanish by the requirement that the dynamiealegh vanishes along the
curve, in other words, to choose a so caledizontal liftwhich fulfils the parallel transport
condition,

C horizontal < Im(g(s)|g(s)) =0 < (Y(s)|P(s)) =0 — @ =0. (1.2.66)

Bargmann invariants It is not difficult to derive the geometric phase functiofBlX63)

in terms of Bargmann invariants as introduced in Eq. (T]2.%®r this purpose the arbi-
trary pathCo : s € [s1,] — |@(9)) is divided intoN pieces such that in the liml — o
the original path is recovered. Instead of a continuousgat get a ordered set of states
Co = {|tn). [2).....|n)} € No, where|gn) = i(s1)) and |¢n) = |@(s2)). To make all
dynamical phase contributions vanish the parallel trarispmdition [T.Z.4B) has to hold for
each pair of adjacent states. The discrete version of tmditon is to link adjacent states
by ahorizontal geodesithat is defined as the horizontal Igtof a geodesi@~ in ray space
[MS93] (Figure[L®). In other words, we have to re-gauge edgh— @) = €% |¢;) such

eid)g {

Figure 1.9: Discrete path where adjacent stifes and|y; 1) are connected by geodesics
Orr+1-

that all states in the re-gauged €5t= {|y}), [y5), ..., |gy) } are linked by a horizontal geo-
desic. The geometric phase of a curve is given by the difterer the total phase and the
dynamical phase,

- N-1
®[Co] = P[Co] — @[Co] = arg(n|Un) — > @ilGrr+1]
r=1
using Eq.[1.2.863). Using{1.Z163) once more for the sum emitfht hand side we find
N-1 - _ N-1
Z grr+1 z { grr+1 %[gr,wl]} = z arg(Yr | Pri1),
r=1

r=1 r=1
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where the last equality follows from the fact that the gearogthase vanishes along a geo-
desicG, @[G] = 0. Altogether the geometric phase reads

N N-1
@[Co] = arg(uyn|Un) — > arg(r|dri1) = —arg({ga| o) (Yol Ps) ... (Un-1|Yn) (Un]P),
=1

(1.2.67)
the argument of a Bargmann invariant associated with theetis pathCy. For the special
construction where we have chodgn) and|y; 1) to be “in-phase” (argr |gr+1) = 0) by
choosing a horizontal geodesic

@ = —arg(Yn| Y1)

. In general, the dynamical phase along a lifted geodesi¥groes not vanish, it is the
horizontal property that disposes of the dynamical coatrdns.

Limit of infinitesimally close states In the limit N — c the form [1.Z.6B) is recovered.
@[Col is given by

®lCo) = ,]liinm{—arg<1ﬂ1|4’2><lll2|lll3> U1 ON) (UN )

N
= agy(sly(s) - m 2 (o) w(or)

where we have the following subdivision of the cutgin mind:

1 2 3 r r+1 N—1 N
A‘A .................. |—| .................. |—| .
S =01 O2 03 Or Ori1 ON—-1ON=S

Expanding ¢/(or+1)) = |@(or +As)) yields

~ N
@lCol ~ argy(sy)[P(sz)) — lim arg |1<¢'(0r)W(0r) +0sy(ar)),

N

= argy(sy)|y(s)) — lim arg q(1+AS<¢’(Ur>|¢’(Ur>>

N
~ arg(su) (<)) — im argexe( 3 As(ip(an) d(or))).
r=
Finally, the sum can be converted into an integral in thetldi— c and we obtain

- S .
@[Co) = arg(w(s1)|W(s,)) — argexy /51 ds(w (o) ¢(ar)). (1.2.68)

In summary, the kinematic approach derives the geometasgfor any set of states whether
they belong to a continuous path or not. The latter describegstance measurement
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processes, whereas the former is connected to systemsnghb®ghrodinger equation dy-
namics.

Non-unitary evolution

The kinematic approach is easily extensible to non-ungaojutions by admitting also non-
normalised state vectofg/) € N ¢ Np. Consider the smooth curve

C:s—y(s)eN, se s, 9] CR. (1.2.69)

In the unitary case we have due to the conservation of the tiwatq(s)|(s)) is purely
imaginary, whereas in the non-unitary case this quantitylmareal as well. As usual we
will consider a projectioit of the curveC onto ray spac& = Ap/U (1), but now the curve
C need not comprise only normalised states.

The use of the ray space suggests the use of unnormalisedtpteedensity operators
p(s) = |@(s)){(Y(s)| so that the curvé€ is determined by

C:s—p(s), s€[s1, %] CR. (1.2.70)

The (pure state) density operator has to fulfil the followsogditions:

p(s)T = p(s) (hermitian) (1.2.71)
p(s) > 0 (positive) (1.2.72)
p(s)? = p(s) Trp(s) (modified projection operator conditian) (1.2.73)

The last condition follows fronp? = W) (W) (Y| = |Y) (Y| Tr(|Y) (Y| = pTrp.

In the case of constant norm the definition of the geometrasphielies on the search for
a quantity invariant under locél (1) transformations, i. e. for transformations of the curve
Co— Co: |{n(s)) = €90)|yn(s)), where|yp) € Vo anda(s) € R. Only the phase of the
state is modified. Such a quantity is then a property only eftdth itself in ray space. Here
in contrast the relevant transformation is given by

C—C:1{(s) =a(s)|Y(s)) (1.2.74)

with a complex-valued functioa(s) € C.

According to [MS93] the natural generalisation to the formefinition [T.Z6B) is given
by the complex quantity

el ([ WE()
Y= @) exp( A ds<w<s>|w<s>>)‘ (1.2.75)
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X transforms under the scale transformation in Eq.{112.34) a

S @B (2, D)

v = <w<sZ>|m<sz>>eX'°< o ds<m<s>|w<s>>)
SRR e [ e [0z

S S1
_af(sna(s) (Y(sy)|Y(s)) 2 (P(s)|P(s)) a(%) da(s)
- a*<s2>a<sQ><w<s2>\w<sz>>exp(‘/sl ds<w<s>|w<s>>) exp(‘/a@ a(s)
@A) WEes) (2 WEE)
- a*(sZ>a<sZ><w<sZ>|w<sZ>>eXp( A ds<w<s>|w<s>>)ex'°( Ina(s) +Ina(s.))
_ a(sDals) (@) |¢(s) exp(_ /sz d5<w<s>|w<s>>) a(sy)
2 (32)a(%) (W(%2) | () 5 W) ) als)

Clas)RPusles) (2 (wE)les)
- |a<sZ>|2<w<sz>|w<S2>>eXp< L s eioe;
= X if a(s)) =a(s) =1 (1.2.76)

Figure 1.10: Map of the curve fronV, the state space comprising all vectors Afp the
space of normalised vectors and finally into ray space

two real invariants:

Imx = arg<w(sl)|qJ(sQ)>—lm/:ds%m (1.2.77)
sl = (W(S)|P(9)
Rex = |a<sz>|2<w<sz>|w<sZ>>exp(Re o <w<s>|w<s>>)' (1.2.78)

For normalised vectorgl(s)) € N we obtain the trivial invariant R& = 1.
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The definition of the geometric phase for non-unitary evotufollows from the imagi-
nary part,

@[Col = IMX = ®[C] — @[C] (1.2.79)
®|C] = total phase of = arg(()(s1)|P(2)) (1.2.80)
@[C] = dynamical phase daf = Im/ d% (1.2.81)

Under the scalingy(s)) — r(s)|g(s)) both®[C] andg[C] are separately invariant for real
and positiver(s). Consequently%[go] is also invariant under a scale transformation. By
an appropriate choice af{s) the curveC in A/ can be projected tGy in Np. Afterwards
theU (1) gauge invariance can be used to projagcto the curveCp in ray spaceP so that
the geometric phase is determined again by the projecte@ cuf® as in the unitary case.
“As an example, for two-level systems, whether the evotuisaunitary or not, the geometric
phase can always be analysed on the Poincaré-Bloch sphef®IS93, p. 259].

1.3 Experiments on the geometric phases

The huge amount of experiments on the geometric phase makasdly possible to keep
track of all of them - a thorough listing would go beyond these of this thesis. For
this reason | will just mention a few tests of the geometriagghwith the main focus on
experiments involving neutrons.

The first experimental verification with explicit mention®érry’s phase is due to Tomita
and Chiaol[TC86] using an helically wound optical fibre torakae the polarisation change
of linearly polarised light extending a similar experimégtRoss/[Ros84] to non-uniformly
wound fibres. The entrance and exit direction of the fibre gueaksuch that the path in
momentum space is closed. The rotation of the plane of paléon is attributed to Berry’s
phase proportional to the solid angle enclosed in momenpaoes Note, however, that this
setup is somewhat different to Berry’s phase since it is m@{olarisation vector itself that
is transported around a closed loop by variation of somenpeters of the Hamiltonian, but
the state in momentum space is changed, which can be unaefsity classically [Hal87,
Ber817] and resembles the example given in Sefidn 1.1.

In neutron science, Bitter and Dubbers [BID87] were the filsbwsed the spin degree
of freedom of neutrons to demonstrate the geometric phaséariged neutrons are sent
through an helically wound Helmholtz-like coil (c.f. Semii8, Figurd’5.110) such that their
spin polarisation vector is adiabatically rotated follagithe rotation of the magnetic field
in the neutron’s reference frame. Additional to the dynahghase due to the Larmor
precession they observed Berry’s phase as a constantioffeettotal phase which increases
when the field strength is increased. Soon afterwards stdtexdcold neutrons served as
probes for Berry’s phase factar [RKGL88]. In this setup - evhwill be discussed and
adapted in Sectiolll 5 and in the Appenfix D to test the stghofitthe geometric phase -
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neutrons are stored in an appropriate vessel. Three pagpéandpairs of Helmholtz coils
are arranged around the vessel to produce a magnetic field arkatrary direction and
enables an adiabatic rotation of the neutrons’ spin.

Neutron interferometry has been used first by Allneaal. [JAKW T97] to spot the effects
of the geometric phase. In their experiment the evolutiopmat adiabatic anymore and con-
stitutes already a realisation of the more general nonbati;mgeometric phase. Static coils
have been inserted in the interferometer beam paths to imgplert spin-flip operations in
both arms, whereas the two flipper axes enclose a non-zerongpangleAS. The geomet-
ric phase is a function only & since a change in the opening angle changes the path from
the initial to the flipped state (c.f. Figure5.9).

Further examples of neutron experiments on topologicaicesfcan be found in Refs.
[WB90, WRFI98,Bha99, WBROC,[HZR96| HLB 01,[HLB™02].

A demonstration of Berry’s phase, although highly unwantedhe experiment on the
electric dipole moment of neutrons [HB®S, BDG"06]. The electric dipole moment if it
exists should result in a different phase whether it is atiganti-aligned with the magnetic
field, but since neutrons are moving freely in the magnetid fiegion they experience tem-
poral magnetic field variations in their moving referencanfe. Consequently, their spin
traces out some path which in turn gives rise to geometris@hantributions [PHS04].

A recent experiment in NMR considers the possible appboatif the geometric phase
for quantum computation [JVECDO0]. Using two weakly coup$mins of a heteronuclear
system a conditional Berry phase is applied to one of thesspir. the phase shift of one
system depends on the state of the of the other system, vehicimiperatively necessary for
the implementation of a universal set of quantum gates [JCO00

1.4 Facts to remember

In conclusion, the evolution of a state of a quantum systeacc®@mpanied in general by a
change of the phase of the system. In particular, for an at@bnd cyclic evolution the
initial state is equal to the final state up to a phase factiis phase factor can be separated
into a dynamical and a geometric part, where the former cm@pall the dependence on the
dynamics like the evolution time and the energy of the sysféne latter is only dependent
on the geometry of the state space in which the evolutiorstakece. The curvature of the
subjacent state space determines the geometric phasebeHasiour is not restricted to an
adiabatic process, but can be generalised to all kinds afegses, where the focus is then
shifted to the path in state space rather than in parameseesgs for Berry's phase. This
can also be regarded as a distinction between Berry’s diigiizase and the more general
geometric phase.

The geometric phase is a property of projective Hilbert spahich is constructed by
taking all states differing only by a phase factor as eqeival The purpose in doing so is
that in quantum mechanics a global phase factor does notdiggecal relevance, it is only
relative phases that can be measured. That the geometse jletongs to this projective
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Hilbert space expresses the fact that physically it mustmaiter whether the instantaneous
states along the evolution path are multiplied by an addtigphase factor, that is, gauge
transformed. It is a gauge invariant quantity, otherwisgatild not be measurable. There
exists then a specifigarallel path in Hilbert space for which the dynamical phase vanishes
Along such a path two neighbouring statesiarphase their relative phase difference van-
ishes.

Reparametrisation invariance is another important featfithe geometric phase. Since
we are claiming that it is a property only of the path in thejgectve Hilbert space, or - by
Stokes’s theorem - proportional to the surface area entlog¢he path, a change of the rate
of traversal must be immaterial.

To obtain the enclosed surface area also for an open cunesarpation is needed which
curve has to be employed to connect the final with the initales This turns out to be a
geodesic, i. e. the shortest possible path, which is alwefysetl as long as the states are not
orthogonal to each other. In the latter case there is no ersfartest path and, consequently,
no unique geometric phase. This observation will bothenuke following chapters, where
anoff-diagonal geometric phase discussed that discloses information on the geometoy als
in such situations.

As an outlook to the last chapter, note, that it is believeat the geometric phase is
widely insusceptible to disturbances because of its indegece of the dynamics.
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Chapter 2

Geometric Phase For Mixed States

Is the geometric phase concept only applicable to puresstatéhat happens if the system is
not prepared in a particular pure state but in a mixture o gtettes? In the following, mixed
states are introduced and it will be demonstrated that thiemof the geometric phase can
be extended to include mixed states as well.

2.1 Mixed states

Suppose that we have maximal knowledge of the state of ourtgomasystem, a complete
set of quantum numbers is known. An example of such a situaia neutron beam with
definite momentum and spin polarisation. The represemt&ithen usually by a state - ket,

W) =k ®@]s), (2.1.1)

constructed as a tensor product of the different state sp&gdor the momentum space and
|s) for the internal spin space. For each other degree of freedmther Hilbert space has to
be added, for example to describe the internal quark streidbuit such additional degrees of
freedom will not be considered in the following.

k) is an eigenvector to the momentum operatet Ak, k|k) = k|k), and|s) is an eigen-
vector to some linear combination of Pauli matricess|s) = |s). fi is a unit vector inR3
andd = (o, oy, O'Z)T denotes the vector of the usual Pauli matrices. The statestenids
comprises just a single wave veckrit represents a plane monochromatic wave and one
might question the physical relevance of such an idealigsdription. A real beam always
has a - whatever small but - non-zero momentum spread and alage-length distribution.
To a certain degree one can save the day by introducing aggeon of momenta,

|k>+—>/a(k)|k>dk7 /|a(k)|2dk:1, 2.1.2)

for example to be able to localise the neutron somewhereanesp contrast to the odd
property of a plane wave that it is spread over the whole satttee same time. What we get
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is a superposition state with well defined phase relatiohsd®n the different constituting
partial waves, @oherent superposition

Such states are usually not an adequate description of @niegnt since adverse condi-
tions are always against coherent superpositiciephasingr - more generallgecoherence
- destroys the phase relation among the partial waves. Hhlsibthe system is completely
separated from its environmeitdsed systehthat superpositions can be kept for an arbitrar-
ily long time. In reality, it is only the degree of decohererthat the experimenter can affect
by elaborate techniques, but not its presence. In the rgasttthe quest for the quantum
computer has put forth numerous ideas and techniques hoghtiadiecoherence. For exam-
ple, the possibility to store ions for as long as 20 secan@KH"™05] in a superposition state
has been demonstrated in Innsbruck, or, it has become fe#ésitend entangled photons as
long as 600 meters through the atmosphere as shown in Zaikngroup [UJA 04]. But
sooner or later, decoherence takes over and what is caflateastatas turned into amixed
state Since the experimenter cannot keep track of all the enmemtal interactions, the full
information about the state is lost. Such states deserv@@naotation than pure state, they
are represented lyensity operatorgor density matricesinstead of state vectors in Hilbert
space. The simplest density operator is a pure state piajesgperator |) — |) (Y| = Py
that has the defining projector propeRy = Pl,%. It is an element of the projective Hilbert
space as we have already learnt in Sediionl.2.2. A lineabir@tion of Py’s denotes a
mixed state and can be regarded as mixing several pure sifttedifferent weights,

P=Zpk|lﬂk><4’k|, Zpkzl, (2.1.3)
where| k) are arbitrary vectors in Hilbert space and need not constitget of basis vectors.

p= 3 PVIBW) WMl [ pr)dv=1, 2.1.4)

denotes the continuous version. The sum over all possiiessof the system must be unity
by the laws of probability. Unlike the pure superpositioatstin [Z.1.R), for instance, the
phase relation between the constitutigg) (| is not maintained, it is amcoherentsum
andp # p2.

A proper density matriy has to be Hermitian and positive, otherwise the interpigtat
as a (incoherent) sum of pure states{2.1.3) which occuravithecific probability fails. In
addition normalisation is maintained by demanding theetiaip to be unity. In summary,

p=p' (2.1.5)
p>0 (2.1.6)
Tro=1. (2.1.7)

Example of a mixed state Let us continue with the neutron beam example. The concept
of mixed states is best illustrated by the spin part of theemawnction [ZI1), since the
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finite dimensionality of the spin space allows for a more alggpproach than the in prin-
ciple@ infinite dimension of momentum space. Suppose that you wameasure the spin
polarisation of a beam prepared in tisg-state and you find an apparatus that perfectly en-
ables you to measure the polarisation alongrtais. Since the stats) is an eigenstate to
the polarisation measurement operater fis - & a definite measurement directidgcan be
found, such that all neutrons are in the positive eigensthtlee apparatus can discriminate
between positive and negative polarised neutrons, alfoesitvill be in the positive and no
single one in the negative channel. In practice, such atstuwill not be encountered since
it would require a perfectly polarised neutron beam by eithperfectly polarised source or
a perfect selection mechanism. As example, take a Sterlacheapparatus [GS22] oriented
in directionfis, which spatially separates the neutrons according to guarisation due to
a magnetic field gradient. Dismissing one of these sepalmeanhs, the stats) can be pre-
pared. Unfortunately, it is for instance not possible toedhaeconstant magnetic field gradient
all over the beam cross section and the experimenter is igfttihe maybe dissatisfying sit-
uation of either improving the accuracy of the field grad@nihserting smaller and smaller
apertures. In the former it is (at least in the beginningyr@etand money issue to improve
the homogeneity of the field over the beam cross section agpirkg at the same time the
Cross section, i. e. the intensity, constant. In the latiee, gains better polarisation but loses
drastically intensity. One has to find a trade-off somewlre@tween, but things won’t get
perfect, the resulting state will beraixture of neutrons passing the apparatus at different
places and therefore having slightly different spin di@ts in the end.

The density matrix consists of the differently polarisethstates

p=pi| T){T1+p2 (L], (2.1.8)

with p; + p2 = 1. The eigenvaluep; and p, denote the probability to detect eithef &)
or | |) polarised neutron, respectively. In the following it wik lsometimes convenient to
parametrise the state by tbegree of polarisation,r

o=+ 0 2.0.9)
r = 0 denotes a totally mixed state with eigenvalu¢g.1For a pure statdr| = 1 and we
either have a beam polarised|iff) or | |) direction. The further evolution gb can then
be either unitary so that the degree of polarisation doeslmarige, or non-unitary yielding
finally a totally mixed state.

Coupling to the environment Theoretically, decoherence is explained by the coupling of
the system to its environment and this interaction gengratsuperposition state between
system and environment. Forgetting subsequently thedugdtolution of the environment
and focusing only on the system itself a transformation ftbenformerly pure to a mixed

LCompactifying the state space by introducing periodic ltauy conditions cures this “defect”. The basis
is then again finite and calculations are simpler, but $téltivo dimensions of spin are easier to deal with.
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state is noticed. In the language of quantum mechanicsnitial istate| V) = |¢) ® |Loﬁ is
a product state of the system() and the environmentd)), each of them being puielt
is an element of thextended Hilbert spacelr = Hs® Ha. The advantage of including
the environment into the theoretical description of theeaysis that one can always find a
unitary operator describing the evolution of the systens@aovironment (e. gL INCO0O, p.
357 ff.]),

|¥) — |W) = Ug|W). (2.1.10)

TheUEg can in general not be factorised, i. e. written as a tensatynttJg = Us® Ua with

Us acting only on the system anth only on the environment. Only if the coupling between
system and environment vanishes we Hawe= Us® Up and the system stays in a pure state.
Consequently, in generaly;) cannot be factorised either.

“Forgetting” what happened to the environment amountsaxihg out the environment”
in the quantum mechanical calculus and is denoted bpaingal trace Tra,

Tra [|Wn) (Y| @ |a1) (a2|] = |gn) (Weo| Tr|a) (az]], (2.1.11)

where Tr denotes the usual trace operation. This definisonade complete by demanding
the linearity of Ti in its arguments.

Given a pure state in the total Hilbert space that has evdhead the initial state accord-
ing to the unitary evolution Eq_ZTNO0,

W) =S cijlyn) @ |aj) (2.1.12)
]

the partial trace operation tells us what happens to the sfdahe system if the environment
is neglected,

Tra [|We) (W] = Tra [;l Cij Cia | Y1) (Wi @ larj) {an]
Ip

= Z\Wiﬂll—’k”f [Zcijcmaj)(alﬂ = %W’l)(dfk\Ciijij =p, (21.13)
I J 1

where it has been assumed that the basis vectors of thé(\eﬂl/ironmental) Hilbert space
|aj) are orthonormal.

Ry, the pure state in the total Hilbert spaie, or, more precisely of the operator algebra

2Whether the environment is in a pure state or not is rathecranieal question. Literally, it is inconsistent
to speak of environment and denote its state as a pure statethis implies that we know everything about
it and this is in opposition to the terminus “environment’orfa model environment, however, a pure state
approximation will do.

3“Ancilla” and “environment” will be used on equal footingnse it is not necessary to distinguish between
an ancilla system that is usually a second particle of theeskimd and an environment with lots of other
particles.
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of the extended Hilbert spac®(Hg) [Haa96], is mapped onto a stgte= O(Hs),
Tre : O(Hg) — O(Hs).

p is in general a density operator denoting a mixed sgaté p2). The transition from a pure
to a mixed state represents the loss of information wheretorgy about the environmental
degrees of freedom.

The partial trace can be most easily explained on the exaof@dully entangled state,
W) =1/v/2(]0)s®|0)a+ |1)s® |1)a) € HE, Where both the system and the ancilla are two-
dimensional with basis statd$0), |1)}, also called &Bell-stateafter John S. Bell and his
paper[Bel64] on the Einstein-Podolsky-Rosen paradox [EHPRn density matrix notation
the same state reads

W) (¥ =%(|0><0| ®10){0+ 1) (1 2 [1)(1

+11)(0| ®[1)(0] +|0)(1| ® |0)(1] € O(HE) (2.1.14)

and performing the partial trace over the environmentateteg)of freedom means that we
keep only terms with diagonal elemen® (0| or |1) ® (1| in the ancilla. We are left with
a totally mixed state of the system,

dimHa
p=TIA[W)(W] = Y all®)(W)a=2(0)(0+[1)(1) € Oy,  (21.15)

hence, the namiotally entangled statdt can be regarded as if the system is in the St@jte
with probability one half and with same probability in thatst|1).

Non-unitary evolution More generally, suppose the system is initially in the sfdte=
|yn) ®|ai), or, in density matrix notatiorRy(0) = |W)(W| = |¢n) (Y| ® |a1){aq|. The time
evolution is determined by the unitary operdtly, and therefore

Ry(t) = [Wr) (W] = Ug| W) (WIUL. (2.1.16)
Taking the partial trace we find

P =TraRy(t) = Tra [Ug|W)(WIUL] = Tra [(Uelyn) ® |aa)) ((gn] @ (a1 Ue]
= > (aylUglan)p(as|Ug]ay)
u

= ZM“pMT, (2.1.17)
a
which is called theperator sum representatigRre98] orKraus representatiofKra83].
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P is in general a mixed state,

pr = ZMM\%)(%WZ # of.
I

The operator$/, satisfy the relatiory ,, M“MZ, =1, which follows from the unitarity o).
But given a specific evolution of the system the choice of\hgs is not unique. One can
choose another bases in the ancilla Hilbert spdag)} that is unitarily connected to the
lay), |ay) =Vlay), resulting in different

M, = (a,|Ug|ay,) = (auVTUEV [amy) # (au|U]amy) = My.

2.2 Geometric Phase for Mixed States

A geometric phase for mixed states has to fulfil the samer@ises its pure state analogue.
That is, it has to be gauge invariant such that it is not péssdodispose of it by a different
choice of phases of the eigenstates. Furthermore, it mustdaametrisation invariant in
order to be independent of the rate at which the system isgated. It must be a property of
the path in the state of density matrices only. It is not diftito imagine that things get more
complicated in the mixed state case. Indeed, we will nohie¢there are several possibilities
to define a mixed state geometric phase that are in gene@hjpatible. Furthermore, the
fact that mixed states have to be represented by matricesath®f vectors leads to non-
abelian, matrix-valued “phase factors”.

| will draw a demarcation line, albeit artificial, betweenawifferent kinds of geomet-
ric phases and its connection to mixed states: As indicateétld previous section, when
mentioning mixed states one is automatically lead to qaestabout decoherence and the
stability of quantum systems under influence of perturlmgtiopom the environment. Much
importance is attributed to this issue, especially, wheomes to quantum information tech-
nology and it is augured that the geometric phase may be mbtest compared to e. g. the
dynamical phase. Constructing a quantum gate, say, a pfaaséarmation, one can choose
a unitary operator that yields a particular output statehghat the input state is parallel
transported and the transformation is then callege@metric quantum gatePerturbations
in the gate parameters bring about slightly perturbed patks consequently, different out-
put states dependent on the actual perturbation. The etesahbutput states has to be
described by a mixed state and one is tempted to talk alrdzalyt @ mixed state geometric
phase. However, the measured mixed state phase at the engasearal not a purely geo-
metric phase. It is dependent on the dynamics of the petiarisaand may not fulfil some
kind of parallel transport condition, hence, it is rathegwe to term the resulting quantity a
geometric phase.

In contrast, in this section | will discuss “genuine” defioits of a mixed state geomet-
ric phase in terms of parallel transports in the space ofitleaperators. The role of the
geometric phase in decoherence will be postponed to CHapter
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As in the pure state case, the geometric phase is assoaiated path of a state in its
subjacent state space. The prescription how the state leaslice in order to produce only
a geometric phase is given by tharallel transport law(Eq.[1.Z.4B). The generalisation
of this parallel transport law to the mixed state case is aweaot unique. On the one
hand side one can demand the parallel transport of the ¢ggeaf the mixed state. This
approach is particularly suited for the unitary evolutidrano initially non-degenerate mixed
state in an interferometer [SPHQ]. It has has been generalised later to degenerate mixed
states [STB 03] and finally to non-unitary evolutions by a kinematic apgmh by Tong
et al. [TSKOO04]. Besides, Ericssoet al. [ESB"03] — and independently Peixott al.
[dEdTPNO3] — proposed the extension of the to non-unitapiugions by introducing an
ancilla Hilbert space and replacing the unitary evolutigralikKraus map|[Kra8

On the other hand side, the possibility to represent a mitegd ss a vector in a higher
dimensional Hilbert space suggests the definition of a gédenghase via such purifica-
tion. A rigorous treatise of this approach has been put forwardtdynann [UhI86| UhI9b]
and it works for both for unitary and non-unitary proces8&303]. Another approach taken
by Chaturvedi et al. [CEMO04] uses methods from differential geometry to obtain a chixe
state geometric phase.

We notice, that there is still a large diversity in possibddinition of a mixed state geo-
metric phase, however, with respect to off-diagonal gdisatzons to be presented later |
will mainly focus on the interferometric approach by Sj&MSPE 00] and Uhlmann’s
definition [UhI86].

2.3 Interferometric mixed state geometric phase

In Sectiorl the pure state geometric phase has been defitteal@sase difference between
an initial state|s) and a final statéys) = Ull|ys) for a parallel transporting unitary map
Ul. An obvious way to test such a phase difference is by meamgeférometry, where the
system in one arm is manipulated by the unitary operatiomigehbyU' and leads to the
intensity

I O 1+ [(gi|U'gn)| cogn +arg(gs U [gh)).

A natural extension to mixed states is to replace the puretisiate|) by a mixed input
statepg, for example a neutron beam with a portipnof spin-up polarised andg, spin-
down polarised neutrons, and look once more at the phageosliife interference pattern
(Figure[Z1).

The input statepg = 3 pk| k) (k| describes the internal state of the incident particle,
e. g. the spin state of the neutron; or the polarisation stheelight beam. The internal
Hilbert spaceis is spanned by the vectoig,), k= 1,2, ..., dimHs. ApplyingU' —which
acts only oriH{s like for example a magnetic field interacting with the neng'aspin —in one
path and a phase shift operatdss(x) = €7 in the other path the intensity = Tr[Popout]

4Their approaches have the disadvantage that the Krausegyagion of a particular map is not unique.
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Uwm

Po |O %

Up Ug
gn
Um

Figure 2.1: Mach-Zehnder Interferometer with mixed ingatesoo.

of the output state can be calculated. The output state is
Pout = PoUsUmUps( X )U 'UspoUgU UL XU URPo, (2.3.1)

whereUg represents a beam splittély, is a mirror andPo is the projection to the output
beam, taken to bgD). Consequently, the output intensliyis given by

lp oc 14| Tr(U' po)| codn — arg THU' po]]. (2.3.2)

One arrives at this equation either by calculating expjidite density operator if{2.3.1)
or, more intuitively, by summing up all the contributionstbe different orthogonal state
incoherently,

| = Zlkoc Z P( L+ | (YU | ¢ie) | cos(n — arg(gic|U' ) ). (2.3.3)

(232) and[[Z313) are equivalent which can be seen by tisengarmonic addition theorem
[Wel].

The definition of the mixed state geometric phgpsemust obviously be associated to
the additional shift arg To'pg] of the intensity pattern. Indeed, for parallel transpaytin
unitaritiesU' = Ull, the geometric phase for mixed states is defined by [SPE

@ = argTiUl pg] = arg <Z pkvkeiﬁk> , (2.3.4)

where v, = [(|U |y )| is the visibility factor andB, = arg(yi|Ul|ys) the phase con-
tribution of a single basis stat@). ¢, reduces to the Pancharatnam phase difference

arg(yo|U |yo) for a pure input statpo = o) (Yo|.

What is the parallel transport condition in the mixed statse® Ul has to fulfil the
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parallel transport conditions
(WiuT Uy =0, 1< j<dimp, (2.3.5)

where the dot denotes the derivative with respect to theimomis parametes of U =
U (s). This means that each eigenstate must be parallel traesp@rhich in turn guarantees
vanishing dynamical phase

R _ (e o
W= ﬁ/sl dsTr[p(s)H(s)] |/Sl dsTr[p(s)U'(s)U(9)].

Then, the mixed state geometric phagedoes not depend on the dynamics but merely
on the geometry of the (open) unitary path in the space ofityeogerators traced out by
p(s) =Ul(s)pou(s), s€ [s1,5].

Experimental tests of this concept has been carried oug unsiolear magnetic resonance
[DZST03,[GK06], photons [EABOS] and neutrons [KSHOS].

2.3.1 Parallel transport

Equation [Z315) denotes the parallel transport conditigposed on the basis states of the
Hilbert space on which the density operapgris defined. In contrast to the pure state case
the parallel transport involves the complete set of ortiiad basis vectors. It requires that
the phase difference between two adjacent basis stateshesni To see the connection to
the pure state parallel transport condition (Eq._112.48)$eformulate the parallel transport
condition in terms of the instantaneous bagigs)) = U (s)| k), whereU (s) is a continuous
one-parameter familjU(s),s € [s1,%]|U(s1) = 1} of unitarities. U(s) maps any initial
complete orthonormal bas{$y) } of a Hilbert spacé< of dimensionN to a continuous set
of complete orthonormal baségp(s))} of the same. Inserting|yy) = U ~1(s)|gi(s)) =

|W(0)) into Eq. [Z35b) leads to
(o) (509 'S luns) ~o0. (236

The unitary evolution operattf (s) stems from the according (time-dependent) Schrédinger
equation and has to fulfil
iU(s) =H(s)U(s), (2.3.7)

which entails g
(Uk(9)IH(S)[¢i(9)) = IRk ()| [Yk(9)) = O, Vk. (2.3.8)

The local accumulation of phase along the unitary path haansh for each instantaneous
basis stat@i(s)) in accordance with the pure state parallel transport cmmZ.48). Any
parallel transporting unitarity is denoted by in the following. Moreover, an instantaneous
non-degenerate density operator whose eigenvectorsdemwith the basig|yi(s)) } is said
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to be parallel transported byl if Eq. (ZZ38) is satisfied.

2.3.2 Gauge invariance

With the condition[[Z-315) the parallel transporting uritsaU | is completely specified and
the resulting phase shift in the interference pattern 22 .i3.purely geometric. However, if
U (s) does not fulfil the parallel transport condition additiodghamical phase contributions
are accumulated and arg@r(s)p| is not purely geometric anymore. To construct a gauge
invariant quantity for a general unitary evolution , notegttsuch a unitary can be multiplied

by an element
N

gn(s) = zlé9n<5>|wn><wn| eU(1) xU(1)x...U(1) (2.3.9)

"= N

from the right. Such a transformation leaves the path of teesily matrix invariant
[STBT03],
p(s)=U (s)gN(s)pogL(s)U (s) =U(s)poUT(s), (2.3.10)

sincepg is diagonal in the bas€gyn)}. The 8y's are real time-dependent parameters such
that8,(0) = 0. The unitary

N .
019 =U(9an(9) =U(9) 3 %) 0 2:3.11)

can be used to satisfy the parallel transport condition yosing theB,’s appropriately.
InsertingU (s) into Eq. [Z35) we obtain the condition

6n(s) = 00(5) =1 [ (V)OS gl (23.12)

and

z2

ul(s)=u(s) e.ifssf(wn\U*(S’)U(S’)\wmdg|¢,n><¢,n‘. (2.3.13)
n=1

The total geometric phasg with the parallel transporting unitaky! (s)is
@ =argTr[poUl(s)] = arg{ S Pn(Wn|U (s>|wn>é9n<5>} (2.3.14)
n

which is a gauge invariant property of the path of the dercgigrator forg, = r‘,' Explicitly,
the mixed state geometric phase is

@y =arg{ 3 [pa(UnlU(9)|gn)e # BWLEUEW]] (2.3.15)

as proposed by Singgt al. [STB™03] and constitutes the extension of Hq. (2.3.5) to arhitrar
unitarities.
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2.3.3 Degenerate density matrices

For degenerate systems one has to pay attention that in gemel@ate subspace the unitary
U can be multiplied with an element of the unitary graufK), K being the dimension of
the degenerate subspace, without changing the pathloideed, if the eigenvalugx, k=
1,...,K are degenerate amg, i = K+ 1,...,N are non-degenerate, one can multiply the
unitary evolution operatdd with an additional (unitary) matrix

V(s) = . (2.3.16)
gbBn(s)

V(s) belongs to the product group(K) x U (1) x U(1) x ...U(1) and does not affect the
evolution ofp(s),

p(s) =U(s)poU (5)" =U(s)V(s)poV () U (s)".
This has to be reflected in the parallel transport conditimhia the definition of a func-

tional similar to [Z.3.15). To completely determine a pfairansportingU the parallel
transport condition {Z.3.5) has to be generalised to

<L[li|U|T(S)dESU||LIlJ‘> =0, i,j=1,2,...K, (2.3.17)
(YU lT(s)%ulupm =0, k=K+1,...,N. (2.3.18)

Similar to the non-degenerate case the gauge invariantgteicrphase is defined by
@ =arg Tr[pU (SF[U, s — 51]]. (2.3.19)

The functionalF [U,As] (As= s, — s1) can be written in Block diagonal fornk [U,As| =
Fr @ Frye 1 @ Frye 1 © - - - Fry Where

1 /o b . :
Fr, = <LM|PeXp(_ﬁ/sl dsu(s)'U(s)|yj), i,j=1,2,...,dimHn (2.3.20)

if dimH*,# 1and
1 /= g
Frin=exp{ =& | ds(aU(9)'U(s)]u;)} (2:3.21)

otherwisel[STB 03]. This functional defines the geometric phase even foedegte mixed
states.
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2.3.4 Non-unitary evolution

The generalisation to non-unitary evolution has been adéd in Refs. |[[ESBO3,
dEdTPNO3] in terms of Kraus operators, but it may yield d#éf# values of geometric phase
when using different Kraus representations. Tehgl. [TSKOO04] resolved this ambiguity
by defining a geometric phase based on the path

2

C:se s, %] —p(s) = ) Pk(S)[¢k(8)) (Yi(s)]- (2.3.22)
1

The non-unitary nature of the evolution is expressed byithe-lependent eigenvalupg(s)
of the mixed statg(s). In brief, the geometric phase is found by taking the puriitcaof

p(s),

Z\/iwfk ) ® [a)

to the pure statéd(s)) € Hs® Ha in the extended Hilbert space. The phase difference of
the initial and final purification defines the geometric phiiseV ! parallel transporting the
basis states)

argW(sy) [ W(s, —arg(Z\/ 52)Pe(s2) (s V (52) (s >>>

2.4 Uhlmann Holonomies

Uhlmann’s approach is somewhat different to Sjoqvist'srdedin of a mixed state geometric
phase in that in some way physical intuition is replaced byheraatical rigour. Uhlmann’s
approach is slightly more general, because its basic definifoes not distinguish between
unitary and non-unitary evolution, as opposed to the oaiginterferometric definition in
Eq. (Z3.4), but its operational meaning is not as straggthrd. The main difference is that
Uhimann defines not only a geometric phase factor, but netisabholonomy invariants
represented by matrices instead of complex numbers. I, ldmann [UhI/76, UNI85,
UhI93] proposed a phase holonomy for paths of density opevatitilising a purification
scheme of mixed into pure states obtained via a certainlphiyglcondition. The idea is to
purify each quantum state, either pure or mixed, to a pute Btan extended Hilbert space.
This purification can be represented by an (Hilbert-Schnugerator in the extended space
and is called ammplitude To each path of density operators a corresponding patheof th
amplitudes can be constructed which projects down to thgradi path. The exceptional
choice of a path of amplitudes by imposing the parallel fpaniscondition leads to a unique
path in the extended Hilbert space which is a property onlthefpath of the states and
serves to define olonomy invariant
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2.4.1 Construction of amplitudes

Let us try to construct these amplitudes that representstties as operators in a higher
dimensional Hilbert space starting from pure states andexmurently generalising these to
mixed states.

The elements of projective Hilbert spade)(have the form of projection operatof, =
|W) (Y| € P represents all states|y) € H with reala. Or, the other way roundV =
d%|y) is a possiblamplitudeof the state operatd?y, since a multiplication otV and its
daggered versiow leads back to the state operator,

WW = | y) (]e % = |y)(y].

By relaxing the condition thad®y is a projection operator satisfyiRf = P the state space is
extended to mixed states. These are nothing else than tnezinations of’s,

p= Zaipwi (2.4.1)

with a € R andy;a = 1. We can immediately see that # p and that the amplitude/ of

p is not simply a sum of kets multiplied by an arbitrary phassda The latter can easily be
verified by trying the converse and making the an¥efz= S; bi|s), by € C, and multiply
with its adjointw”’" = 3 ; bt (],

WWT = S bibs ) (] = S i) Fa ol @42)
1) I 17]

If the off-diagonal terms vanished this quantity would rebée the original mixed state.
But the off-diagonal term&p;) (;| vanish in general only if all but onlg vanish and this
is true only for pure states. In this case the choicdof \/a_lei"rO yields the pure state
p = a1Py,. So, this ansatz works only for pure states and their putifios.

To remedy this defect we can choose another form of the amaleljt

W'=Y aly) @ (l. (24.3)

We have simply added another other Hilbert spgeof same dimensionality as the systems
Hilbert spacéHs, theancillaHilbert space, with an orthonormal set of basis vectgys The
amplitudew” is therefore an operator acting on the extended Hilbertespiac= Hs® HAa.
This procedure is callegurification, and it can be shown that every statec Q(H) has
an extension to an operator acting &g which is pure if the dimension df{, is at least
the same as difs. This is the mathematical expression for the fact that am gystem
where the environmental interactions cannot be neglestethbedded into a larger system
comprising also the environment. The subtle differencééousual purification is that here
the density operators are purified again by a operator vajuadtity instead of a pure state
vector, but these descriptions are equivalent as shovinht®b].
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The result justifies this slight complication Ii{Z}¥.3):rfing the quantityV”W" T we
obtain

WWT =S aa) (jun) @ (al) (5] @ o))
1,]

=S aaj|y) (Y| @ (alg)
1] &i
J

=3 lail’|y) (wil- (2.4.4)

The only remaining flaw is the square modulus of the coefftsiernhich can be corrected
by taking the square root of tteg to get an amplitude qb,

W=y valu) e (@l (2.4.5)

Extracting the square root is admissible sincegheave to be real according to the require-
ments on a mixed state (H3._ZJ1.5). Furthermore, a muléftio by a unitary matrix is
admissible since it does not alter the state

wwh =wvviwT.
1

The unitaryV reflects the additionglaugedegree of freedom similar to the total phase factor
€9 from the pure state example. The general form of an amplisidensequently

W= Valy) e @, (2.4.6)

with V denoting a unitary operator. In fadt, is a partial isometry [RS80] defined on the
subspace spanned by tfyg| in the ancilla Hilbert space, but we will assuieo be unitary
unless otherwise noted since we take only density matrit&dloank into account at the
moment.

2.4.2 Parallelity of states

Until now we have just defined an operator purifying the st#ta quantum system. In
previous discussions we have learnt that some kind of ghtadinsport condition is crucial
to obtain a notion for an holonomy invariant like the geonegthase. The freedom which is
left in the amplitude is the unitafy. It can be used to define a parallel transport condition
for the amplitudes by clarifying the question hdWhas to be chosen for two neighbouring
stateso; andp, and their belonging amplitud®&¥; andWa.

The parallel transport condition in Sectibn112.3, Eq._@32 already demonstrated a
possible way in that neighbouring statgs) and|(») are required to ba-phasei. e. their
scalar productys |yr) shall be purely real. For the amplitudésa similar condition can be
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stated which relies on the transition probability of mixéatss. Since we have already seen
that any mixed state can be represented by a pure state igea Brstem the first guess is
to define the transition probability tprgy , 02) = | (@] @)|?, where thd @) are purifications

of the w. In terms of amplitudes this translates (twr[WlTWZ])Z. This number, however,
depends on the choice of the purificatd andW, since

TrIWWa] = Tr[(WaVa) WaVa] = TrWiWaVaV,] 7 Triwg ).

Uhlmann defines the transition probability by the supremwer @ll possible purifications
[UNnI76] Wi, Ws of ps, p2,

tprob(p1, p2) = suptprotiwa, W) (2.4.7)

A parallel purificationis then given by the pair of amplitud®% andW, which purify p;
andp, and for which the supremum in EQ_{Z}4.7) is attained.

An explicit expression is obtained by writing tpelar decompositionf the amplitudes,
W = /piUi. In fact, any (non-singular) operatércan be decomposed uniquely into a Her-
mitian |A| and a unitaryJ factor, A= |A|U. This extends the common polar decomposition
of a complex number = |r|€9" to operator valued quantities. The modulsis defined
by |A| = VAAT [RS80], and the square root operation is defined by takingdjuare roots
of the eigenvalues/A = (3, alai)(ai|)/2 = 5; /alai){ai|, in the diagonal basis. This is
unambiguous sinc@A' is real and positi@possessing real and positive eigenvalues. Using
the polar decomposition the transition probability is
2 2
tprobWa, We) = (Tr[yarvUaUf] ) = (Trlvavealuuuf])’,  (248)
where the polar decompositiqpip1/p2 = |/P1/P2|U has been used. Now the product of
unitary operators is again unitary and can therefore notexk¢he value of one in operator
norm. Consequently, the supremum is reached if

tprob(py, p2) = (Tr|y/P1y/P2l)” = (Tr(v/Paprv/P2)*?)”. (2.4.9)

Demanding that two adjacent states are in-phase, tragstathe requirement that the
product of unitary operators il {2.%.8) is the identity ager. In terms of the amplitudes
this is equivalent (for a proof sele [UhlI76]) to require that fwo amplitudes\y andW, the
producthT\Nz is Hermitian and positive,

WWs = Wiwg > 0. (2.4.10)

SAAT is Hermitian due tdAAT)T = AAT and positive due toy|AAT|@) = (ATg|ATY) = |||Ag) % > 0.
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Example of two parallel amplitudes Given two stateg; and p,, what are the corre-
sponding parallel amplitudes® is purified by the amplitudeé/, = pll 2 , where we have
setU; = 1 without loss of generality. The initial unitary is irrekavt for the question of par-
allelity. For p, the requirement ciﬂUZUT =1 from Eq. [Z.4.B) and the choit& = 1 leads
toU = Ug and eventually

Uz = py°p1/%(v/P2prv/P2) Y2

due topzl/zpll/2 = |\/P1y/P2|U. Consequently, the parallel amplitudeWs = ,/pU, =

p; Y2(/P2p1/P2) Y/ where the unitarity obl, (Uy L = U] — U, = (U])~1) has been used.

2.4.3 Parallel transport

With the help of the instructions how to build parallel anypdies for two given states also a
parallel transport from one state to another along a givéimgen be constructed. Let

C:s€[0,1] — ps (2.4.112)
be a path of density operators.li& of C is a path
C:se0,1] — Ws (2.4.12)

such thatps = WSWSTwith amplitudeWs = psl/ 2VS for eachs. The unitary “phase” factors
Vs serve to define a parallel transport via the pétilm extended Hilbert space. Taken each
amplitude for itself the choice df; is arbitrary since the projection mésiij\/iT is invariant
under a change of th¢. The lifted pathé is not unique, by a local gauge transformation
another path

C': s—WYs, 0<s<1, Ysunitary,

is obtained that is also a valid lift @f. Invoking the parallel transport condition {2.4.10) in
its infinitesimal version,
WJdWg = dWIW, (2.4.13)

the unitaryVs is determined by the adjacent amplitullig 45 for eachs.

The task is to find a quantity that is an invariant propertyha pathC in projective
Hilbert space. Such a quantity is realised by the so c@l@dymann invarian{c. f. Refs.
[Bar64,[MS93] and Sectidn1.2.4) defined via a sequence tdrsgeoducts.

On(Y1, n, ..., Un) = (Wi P2) (Yr|Ws) . .. (Yn| Y1) (2.4.14)

denotes tha@-vertex Bargmann invariant which is a property of the patrayspace since it

®Note the slight abuse of notation sindg = ¥ \/a| k) ® (| is a map from the ancilla Hilbert space to
the system Hilbert space in contras;a%{2 = Sk vax|yk) (Y| which acts only in the system’s space.
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is invariant under an individual U(1) gauge transformatiéeach constituent state) —

|y = €%|ygs). Consider now a subdivisions 6finto m+ 1 fractions by discretising the
parametes, 1 >s; > s, > ... > s, > 0. To each point there is a specific statealong with

its amplitudeWs. Similar to then-vertex Bargmann invariant the product of the amplitudes
can be formed,

with the definition of the scalar product of Hilbert Schmigierators,

(Wi, W) = Tr W Wp). (2.4.16)

The gauge transformatidn— & by W, — W;Y; yields a different path, while for a unique
lift of the original pathC the parallelity condition[{2.4.10) or equivalentlf . 1,W)| =
Tr(pil/ Zpi+1Pil/ 2)1/ 2 from (Z.Z.9) has to be imposed on each scalar product. Thistign
equivalent to find a gauge whefas maximal. The remaining arbitrariness is in a re-gauging
W — gUW by a numberej of modulus one and a global unitady. A gauge invariant
quantity can then be formed by multiplication of a factd, W) to &,

¢ — §(Wo,Wa) = (Wi, Wey ) (Wey, W, ) - - (Wey,, Vo) (Wb, WA ).
Refining the subdivisions one obtains a gauge invarianafifem,
lim & (Wo,Wa). (2.4.17)

In this limit all of the scalar products are real due to theafial transport condition in its
infinitesimal versionW, dW) = (dW,W) and, furthermore, all of them have to attain their
maximum to give maximaf which is unity (for infinitesimally close states). The remag
term defines th&hlmann phase

ve = argWo, W) = arg TrVVJWl =arg Trpé/ Zpll/ 2V1V(;r . (2.4.18)

The quantityvlvc;r generalises the geometric phase difference of pure stdies.former
belongs to the group & (n) matrices whera is the rank of the density matrix whereas the
latter is merely a unimodular number elementdfl).

In terms of the amplitudes th@lonomy invarianis a matrix valued quantity that just
depends on the path of the density matrix,

Xe =W (2.4.19)
and from which the phas& = arg TrA; can be deduced.
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Berry’s phase factor

For a path of pure statgs = |(s) (Y|, Ws is given byWs = |(s) @ (a|é% e H @ H*, where
acan be any element of the dual Hilbert sp&¢eand does not have to be path dependent.
The Hilbert Schmidt scalar product between two adjacentipations

Tr[WT(;j W = Tr[eias|a><¢5|g<|4’$><a|eias)]

dorS

<4Js|_|Lps> (2.4.20)

From the normalisation diJs) it follows that(ws|dis|ws) is purely imaginary. However, the
parallel transport condition states that the trace has tealeand we therefore obtain that
das/ds=i(ys| dis\dws). The phaser; of the amplitude of the final state is determined by the
integral

. d
a1 — |/<ws|d—s|q,ls)ds— a0 (2.4.21)
and yields (withag = 0) the holonomy invariant
X =WW = [yio) (g |& (Ul delus)ds (2.4.22)
The argument of its trace = arg TrWAW] | =i [ (s &| is)dsis equal to Pancharatnam’s

relative phase factor.

2.4.4 Hamiltonian motion

In order to discuss the “all-time highlight”, a spin-1/2 pele in a magnetic field using
Uhlmann’s formalism an evolution governed by Schrodirgiedquation will be examined in
the following [UhI93]. The time evolution of the density apéor is given by the.iouville-
von Neumanmequations with the (in general time-dependent) Hamiltonia

ifp = [H(t),p]. (2.4.23)
As an evolution equation of the lifted path we can write
iAW = H (t)W —WH (t) (2.4.24)
which can be considered as a kind of Schroedinger equation
iAW =H"(tW  with H®(t) = (Ly — Ry), (2.4.25)

whereLyW = HW and RyW = WH. The strange form of the Hamiltonian acting once
from the left and once from the right is due to the use of thel tlibert space for the
representation of the amplitudes#™ = H @ H*, i. e. the Hamiltonian is split into a tensor
productH = H ® H, whereH acts as usual o) € H, butH on (¢| € H*.
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The discussion is simplified by taking a time-independertanianH (t) = H, where
the formal solution reads; = U (t)poU T(t) with U (t) = e it and the corresponding solu-
tion for W(t) reads/[UhI91a]

W(t) = U (t)pd/AV(t) withV(t) = ehtH. (2.4.26)
The gauge invariant quantity of the curve» V\&WJ that depends only op; can be written

as
U (t)ey v (t)py™

The parallelity of the lif\\ demands the hermiticity &f/T4Y,

i i~ i - i
vipd/? [—ﬁH] oV +VTpg {EH} V= {—EH} VAP RGVERVAPRE {EH} Y,
which simplifies to
205 *Hp3/* = poH + Apo. (2.4.27)

If po is non-degenerate, i. e. all of its eigenvalues are non;teimequation defined. For
degenerat@y one may require

(WH|w) =0 if poly)=D0. (2.4.28)
Explicitly, we find for apg = 5 mAm|¥m) (Ym| given in terms of eigenvalues and -vectors

O N/
H :n; Ao (WinlH ) [¢m) (. (2.4.29)

Neutron in magnetic field If the neutron’s spin is initially perpendicular to the statary
magnetic field pointing, e. g., in the positiyalirection, the state is denoted py= \z+h) (z+
| as the eigenstate of the Pauli spin matpxand the Hamiltonian is given byl = —T‘**/ay
(wy = 2unB/h). The evolution operator

. wyt o Wt

i cos—%-  sin<-

U(t)=exp|—=tH| = -z 3
(® p[ h } (—sm‘%t cos%)

is parallel transporting the initial state and we expéct exp[itﬁ/ﬁ] = 1. Indeed we can
calculateH via (Z.4.29) and see that all components are vanishing.eforev = 1.

The holonomy invariantV(t)"W(0) = U(t)pé/zV(t)pé/2 is given by U (t)|z+)(z+
|1|z+)(z+ | and the geometric phase can be calculated by looking at gwrent of the
trace of this expression, i. e.

y=argTiU (t)|z+)(z+ |1|z+)(z+|] = arg(z+ [U (t)|z+),
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which is 0 orrrin this case as expected.

Suppose we have a non-parallel transporting Hamiltoraa —HT‘*ﬁ- G, wheren =
(sin@,0,cosH)" is some unit vector lying in the-z plane. From[ZZ.29) we conclude that
the off-diagonal elements &1 vanish since only\; # 0. From [ZZ2B) we findH,, = 0.
The only element left i$l1, = ﬁT‘*h cosB and therefore,

V= exp{l—ﬁtlfl] —dF 0021y (74|,

The geometric phase follows as above from the functidndl13)

y=ve(l) = argTiu(t)|z+)(z+|V|z+){(z+]|] =

t t . . t
“h cos6 + arg[cos& —icos@ sm&]
2t 2 . 2
= w”? cosO — arctarjtanw”7 coso)| (2.4.30)

and — lo and behold — we end up with the usual expression foge¢benetric phase which
equals minus half of the solid angle= —Q/2, enclosed by the path traced out by the pure
State.

Mixed states Things get more interesting if we take a mixed instead of & siate.
A step further is to look at the Uhlmann holonomy for a nontayi evolution as it has
been carefully worked out by Tidstrom and Sjoqvist [TSO3jhwieference to Hibner
[HUB93]. Here, however, we stick to a simple unitary exampleen the initially mixed
statepp = |z+) (z+ | + L|z—)(z— | evolves topr = U (t)pUT(t). ForU(t) we make
the same choice as above, viz., a magnetic field in some idingtt= (sind,0,cos8)T with
Hamiltonian

H:_ﬁ%ﬁ.az_ﬁ_‘*’h<

cosf@ sin@
5 )

sin@ —cosf

According to Eq.[ZZ29H is

H = (z+|H|z+)|z+)(z+ |+ (z— [H|z=)|z=)(z— |
+vV1-r2((z+H|z-)|z+)(z— |+ (z— |H|z+)|z—)(z+ )
han

— _7{c056(|z+><2+ | —|z—)(z—)

+v/1-r2(sin@|z+)(z— | +sin9\z—)(z+\)}. (2.4.31)
In terms of Pauli matrices
~ h .
H= 7%{\/1—r25|neox+coseoz}. (2.4.32)
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2. GEOMETRIC PHASE FOR MIXED STATES

Introducing the unit vectat’ = (v/1—r2sinf,0,cos0)" /a, a = (/1 —r2sir? 8) we find

o i - aent ., . . awnt
V:e'ﬁHt:e'ﬁTtﬁ"’:]lcosT%Jrlﬁ’-asmTw”.

The holonomy invarianf’ = U(t)pé/ZV(t)pé/2 can then be calculated explicitly although
yielding a rather lengthy expressian [ESBR]. Here we just note that Uhlmann’s phase
argX has a different structure tham, the interferometric mixed state geometric phase, due
to the appearance df(t). Due to the different parallel transport conditions thergetric
phases from Sjoqvist and from Uhlmann are in general diftefer non-degeneraie it is
only in the case whené(t) = 1 that arg TeY reduces tag, = arg Tr[U (t)po]. Its argument

is then equal to the interferometric mixed state geometrassp. Howevel (t) is only the
identity if H = O which implies thaH must be zero, if alA's are non-vanishing and we
have neither an evolution in the ancilla nor in the system.
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Chapter 3

Off-diagonal Geometric Phases

Now that we have discussed different manifestations aneneixins ofBerry’s or rather
Pancharatnam’phase (Sectiol 1) for pure states in different kinds of elahs (adiabatic,
non-adiabatic, noncyclic, non-unitary,...) and also getrio phase definitions for mixed
states (Sectiohl 2) it appears on the agenda to look at thdal pwints. These are points
where the relative phase between two states - either purexedmis not well defined. A
first account on this subject has been given by Bhandal ia®8hBha9l7] for pure states
and by the same author also for the interferometric mixete sfaometric phasg, (Section
[2.3) [Bha02]. Generally speaking, if initial and final state orthogonal to each other no
relative phase can be defined. Naturally, this lead to the adeanoff-diagonal geometric
phaseby Manini and Pistoles[ [MP00] and for non-adiabatic evians by Mukundeet al.
[MACSO01]] which is well-defined for orthogonal states. Irzteit is undefined for a cyclic
evolution, if initial and final state only differ by a phasetfar. The synthesis of the latter
and the mixed state geometric phase leads to a universainnodimprising the pure state
diagonal and off-diagonal as well as the mixed state geatr@tase as limiting cases. We
distinguish between a version based on the Sjoqvist’sfertmmetric approach presented in
Sectior 3P and an extension of Uhimann'’s definition (Se@i3).

3.1 Pure state off-diagonal geometric phase

As it has been pointed out in the discussion of Pancharatainaise difference between two
state vectors akgy|@), this quantity is undefined fd) L |@) (Figure[3.1). For example,

a curve is traced out in parameter space by the initial $tatés;)) under the influence
of the adiabatically changing Hamiltoniath(s) which has (non-degenerate) eigenvectors
|gj(s)), j=1,...,dimH at all values of the parametge [s1,S|. In the particular case where
the jt" eigenstatéy;(s;)) evolves adiabatically to another eigenstatedds, ), | (s1)) —

|Wj(s2)) = €[y(s1)) (i # k), the scalar produciy; (1) |¢j(sz)) vanishes,
(Wi(s)|Wi(s2)) = €° (Wi (s1) | Yi(s1)) = O, (3.1.1)
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PURE STATE OFF-DIAGONAL GEOMETRIC PHASE

Figure 3.1: For orthogonal states the geometric phase isfuredl since the initial state
R = |g) (Y| is orthogonal to the final staté = |Ws)(Ws|. Their scalar productys | ;)
vanishes.

if the eigenstates dfl (s;) are mutually orthogonal (which is true for Hermitigi). The only
phase information left is in the cross scalar produgi(s; )| Yx(sz)) (Jj # k).

Assuming a unitary operatot!l parallel-transportingall | (s1)) to |g(s2)) =
Ull|yi(sy)) along the pathg; : s+— |j(s)) in Hilbert space the phase factors of the off-
diagonal elements & | are given by

Ok =M(Ujk) = M[(@j(s1) U [gh(s1))] = M[(j (s1) [ Y(2))], (3.1.2)

with M(z) = Z. Theoj's are well-defined phase factors wheneja(s;)) = ¢ Yj(s1))
(a real), thus, it | acting on an eigenstate Hfproduces an orthogonal eigenstate multiplied
by a phase factor.

Unfortunately, theojk’s are not invariant underl (1) gauge transformation like

|Wj(9)) — €90 y;(s)). (3.1.3)

They transform like
Ojk — Tjexp [@(s1) — @i (s1)], (3.1.4)
hencegj is arbitrary, i. e. non-measurable. An invariant quantdpsisting ofojx’s can be

found by combining two of them:
Yik = Ojk Okj- (3.1.5)

Yik is determined by the trajectori€s andCy of |(;) and|yk), respectively. Furthermore it
is invariant under the gauge transformation(3.1.3) andeguently measurable.

Geometric interpretation For yjx a nice geometric visualisation can be constructed as
depicted in Figuré312: As already pointed out above the gdaenphase difference can
be build up of the phase difference acquired by the parali@luéion of a statg(s;)) to
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3. OFF-DIAGONAL GEOMETRIC PHASES

Figure 3.2: Geometric interpretation of the off-diagon@bmetric phasgj.

|Y(s2)) and the phase factor achieved by transporting the final jgh@ég)) back to the initial
state|((s;)) on a geodesic line. Consider now two stétes)) and|k(s)) evolving alongC;
andCy (in the projective Hilbert spac®) from s; to s,. Three possibilities to achieve closed
loops consisting of thé’s and geodesic patltsemerge:

() Cj+9ijj,
(i) Cx+ Gk
(i) Cj+ Gk +Cx + Gij-

@ and (i) give the usual geometric phase facthjsand(pg respectively, the third loof{ii)
corresponds to the off-diagonal geometric phggeHaving this picture in mingjx can like
before be computed as a surface integral of a two-form, vasettge surface is bounded by
the loop ().

This approach also explains, why in a two-level system theiagonal geometric phase
has to bert for all U € U(2) parallel-transportingj(s1)) to |j(sz)); a result that has been
experimentally verified in neutron interferometry [HI'B1,IHLB™0Z]. Representing these
states as points on the Bloch sphere, the loop consistidg 6fG« + C« + Gkj encloses a
half-sphere for every unitary rotation. This is obviousttoe simple case of a single rotation
about any axis perpendicular to thaxis (assuming that the initial Bloch vector points in the
positive z-direction) (Figurg_3.3{a)): Independent of th&ational angle the loop is closed
to the orthogonal state, i. e. to the “south”pole of the sphand because the orthogonal
vector evolves exactly in the opposite way the loop encleshkalf-sphere, thus the solid
angleQ = 2mr and the phase ig;| = 12m = . But the same results holds for any path
parallel transportingj(s;)) to |j(sz)) and|k(s1)) to |k(sz)) by the same reasoning (Figure
B:3(D)): the stateg(s)) and|k(s)) behave exactly contrarily, the solid angle enclosed by the
sum of the paths(j + Gk + Cx + Gk;j) does not change and consequently the off-diagonal
geometric phase is always equalto

Generalisation Instead of taking only the evolution of two orthogonal eigates of a
HamiltonianH into consideration the same concept can be generalisadotthonormal
eigenstatesy;(s)) of a HamiltonianH. Any cyclic product ofo’s is then gauge invariant
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ohils.)

i 7L
PR B 0

Figure 3.3: Bloch sphere picture of the off-diagonal gearogthaseyjx for a qubit. yji is
alwaysrt since the evolution of thej(s)) state is always mimicked by thg(s)) state and
vice versa so that the enclosed surface area is always same.

under the transformatioh{3.1.2). The definitibn {3.1.3) ba extended by defining
|
yj(l)j2j3~~jl = 0)1j2052j3 - - 0ji—1j, Oj j1 - (3.1.6)

Forl = 1 this reduces to the diagonal geometric phase fa;ét,dor | =2 we get the quantity
yik (B.1.3) describing the off-diagonal geometric phase.| EoR more complex off-diagonal
phase relations between eigenstates can be described.

3.2 Off-diagonal Geometric Phase for Mixed States - Inter-
ferometric approach

What about the mixed state geometric phase? Is it alwaysdeélhed or are there simi-
lar situations as in the pure state case and is it possiblake dn alternative quantity for
such nodal points to learn something about the subjacetet space. As Bhandari already
noted there are situations where in an interference exp@atithe contrast between the two
sub-beams vanishes also if the input state is mixed [Ehaf@]itais explained in the fol-
lowing how to construct and also how to measure an off-diageersion of the mixed state
geometric phase that is well-defined at these nodal pars836/FS03a, SFD3].

3.2.1 Orthogonality

For pure states the Hilbert space scalar produgfy), is used to define orthogonality. Van-
ishing scalar product denotes orthogonal states, for ebeggrvpo non-overlapping Gaussian
states or two anti-parallel spin states are orthogonahdmitixed state case there is no well-
established notion of orthogonality. It is not clear per $@ats the equivalent to the scalar
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3. OFF-DIAGONAL GEOMETRIC PHASES

product between pure state vector.

Trace distance In a first guess one could take th@ace distancdNCOC] between two
density matrices as a measure for orthogonality. It is ddfine

dr(Py, Pp) = Trlpy —pgl,  [X|=VXTX (3.2.1)

which defines a metric on the space of quantum states withdp < 2 [GLNOEEI. The
maximum distance ai'®(py, pp) = 2 is, however, only reached for orthogonal pure states,
since T{py, py] = 0 must hold. Explicitly, positivity implies that given a certain stafeit

is in general not possible to find a st&evhich is at maximal distance ([&B] = 0):

Tr{AB] = Tr[(% ai|ai><ai‘>(ZBjk|aj><akm = aiBi >0,
T ] T

unless the diagonal entri¢l of the matrixB vanish. But this is impossible B denotes a
valid density matrix with TiB] # 0. Only if A has not full rankB can be chosen such that
Tr[AB] = 0. B must “live” in a different subspace of state space and musbeof full rank
either.

Hilbert-Schmidt distance Another choice could be thdilbert-Schmidt distancewhich
is defined slightly different, viz.

dus(p,p™) = 1/ Trl(p—ph)? = /2—2Tr{pypy), (3.2.2)

where the last equality follows from the normalisation oé this. Furthermore, from the
positivity of the p’s it follows thatdys(py, Pp) is always less or equal than 2, whereas the
maximum is reached again just for orthogonal pure statesaliiee same reasons as above.

Bures distance A third option is theBures distanc¢Bur69] being a worst case measure
of distinguishability betweep andp’ [J6z94]. The distance between two states is in this

metric defined by
ds [Py, Py] :2\/1—Tr\/\/pwp¢\/pw- (3.2.3)

The Bures distance is according to Uhimann [Uhl76] conrtetdehetransition probability
between mixed states. In the previous chapter we have gld=aived (c. f. EquationZ2.4.9)
that the Hilbert- Schmidt-norm in the space of purificatiofglensity operators induces a
norm on the space of density operators itself which is caeteto the Bures distance above.

1The factor 1/2 is skipped in our definition to fit to the subsamjuistance measures.
2From [Py — Po| = (p?Lpr + p(I,p(p — pﬂLpf,, — p;pw)l/_z and noting thapy, andp, are positive we observe
that the last two terms must vanish to achieve a maximum.
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Interferometric orthogonality  All of them have in common that for general density ma-
trices the maximum distan@k"® = 2 is not reached. In order to define an orthogonal state
p+ for a givenp we have to be content with @~ that maximises any of these distance.
We will see later on that this is possible for the qubit case{tlimensional Hilbert space),
however, in higher dimensions this becomes a tedious taglaaimpler definition of or-
thogonality is highly wanted. In the spirit of Pancharatnéma interference between two
states provides the clue to a possible solution: Let us ftll the interferometric setup
where two unitarily connected pure statgg) and|¢) = U|(), are brought to interference.
Assuming further, thatp) is exposed to the variablé(1) shift €, the resulting interference
pattern is determined by the intensity

10 |710) +19)] = 2+2|(w1#)]| cos[n —arg(w(9)]. (3.2.4)

which oscillates as a function gf. The key point here is to note th@tand¢ are orthogonal

if and only if| is independent aff so that the interference oscillations disappear. Thisifeat
translates naturally to the mixed state case. Considerreop&ospectral non-degenerate
density operators

Py = Z)\k|’~l’k><’~l’k| and py = Z/\k|¢k><¢k|a (3.2.5)

where each¢y) = U|yk) for some unitarityd. The physical assumption we make is that
each pair of state vectofgx) and|@y) are coherent, i. e. able to interfere with each other,
while there is no interference between differgpt) and|¢;) (j # k). Each such orthonormal
pure state component of the density operator contributéseanterference according to
Eqg. (3Z%). Thus, the total intensity profile becomes [SBH

| O Z)\k’eka)+|¢k>’2:2+22Ak}<Wk|¢k>}Cos[’7—arg<'~l’k|¢k>}a (3.2.6)

where we have used that the eigenvaldgsum up to unity. Following the above pure
state case, we say thay, andpy are orthogonal if and only if is independent of] for
all eigenstates| i)} and{|¢y)} of py andpy, respectively. It follows thapy andpy are
orthogonal if and only if Yx|¢x) = 0, Vk.

N-dimensional orthogonality For anN dimensional Hilbert spacg{, we may generate
a set ofN mutually orthogonal density operators as follows. Assyme= $ Ax| k) (Y|
is non-degenerate and introduce a unitary opefdgosuch that ) = (Ug)n_l\wl), n=
1,...,N. Thus, we may write

Ug = (W) (UN| + [UN) (UN-1] + - .- [2) (Y] (3.2.7)

and it follows that
n—-1

-1

pn=(Ug)" "p1(Ug)

is a set of mutually orthogonal density operators.
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Explicitly, this entails that

pr = Al (| +A2|@2) (Y| + ...+ AN[UN) (UN],
P2 = Ar|P) (Y| +A2|Ws) (Ws| + ...+ An|Pr) (Y],

.oy

on = AN (UN] A2 d) (Y] + .+ AN[UN-1) (U (3.2.9)

Notice here, that different sets of mutually orthogonal edixstates may be generated by
permuting theyy'’s in Ugy. For clarification take a three-level system specified by

p = A0|0) (0] +A1|1) (1] +A2]2)(2).
Application of [32¥) yields
P = Aol L) (L] +A1|2) (2] +A2[0) (0]

or
P = 20/2)(2] + A1|0) (0] + A| 1) (1].

2-dimensional example In the qubit case it is an easy task to find the set of orthogonal
density matrices, viz. for

2 A O
-5 A —
P k:zl k| Ox) (P ( 0 )\2)

the orthogonal counterpart is
A O
1 2
A (o )\1) '

Furthermore, it is also not difficult to calculate the ortbogl statgp by maximising the
distance. Indeed, for the Hilbert-Schmidt distance in BGZ2) one finds that Tpp+] must
be a minimum. We demand thatandp are unitarily connectegh =UpUT. The general
formofU e U(2) is

cos? —isinfcosa  —isingsinae
U(8,a =éY 2. 9.2 2 : 3.2.10
(6.a.8.v) ( —isingsinae®f cos%ﬂsm%cosa) ( )

The calculation of the trace of the prodyg- = pU pU T yields

Trlppt] = %()\12 +2%) (14 cosh + cos a sir? g) +2A1A;sir? asinzg (3.2.11)
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which is minimal fora = (2n+1)71/2 and6 = (2n+ 1) m, ninteger. A unitaryJg generating
an orthogonal state is therefore,

Ug= ( 2 (1)) (3.2.12)

wheref3 andy are chosen such that the componentspére real. ApplyindJg to p corre-
sponds to an exchange of the eigenvalues like in the intarfetric approach.

Using Bures distance we find the same orthogonal gtat¢he maxima of both distances
are equal:

dhs(p, pt) max < dg(p, pt) max.

due to the fact that we can rewrite the transition probabifitthe Bures distancé {3.2.3)
Tr [( VPPVP) 1/2} to Trlv/A] = TrlVVAVT] = Tr[vVAVT] for unitaryV. The last equality
——

A
follows from
(VXVN2 =vXVIVXVT =vXxvT =vav!

when taking the square root. The square root is defined byv/A if and only if X2 = A.

By a particular choice o¥/, VAV' = D is diagonal and for a diagonal matrix the square
root is found simply by taking the square root of the eigemea)/D = V Sk | dk) (dk| =

Sk \/ 0| dk) (d|. But then Tiv/D] = /&1 + /&, which is minimal if&; 4 &, is minimal,

Tr[v/D] min. < Tr[D] min.

SinceD = VAV', finding a minimum of TfD] amounts to finding a minimum of & =
Tr[y/ppt\/P) = Trlptp] by definition and using the cyclic property of the trace. In
conclusion, we have explicitly shown that a minimum ofgFrp] is also a minimum of
Tr [(\/ﬁpﬂ/ﬁ) /2] /5o that states orthogonal with respect to the Hilbert-Sdhnorm are
also orthogonal in the Bures norm.

This result can be nicely visualised on the Bloch sphere. Renhiqubit state is para-
metrised byp = %(]l +T7-0), where the norm of the vectdrr = ||| indicates the degree of
mixednessr = 0 denotes a totally mixed state,

pr=0= ("7 17,).

whereas for = 1 the state is pure. We can always rotate the coordinatensystethatr
points in thez-direction thug = r; and we get

1+r 1—r
p= T\O><O\+T|1><1|7

i. e. the eigenvalues gf areAg = (1+r)/2 andA; = (1—r)/2. The orthogonal density
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matrix is given by

1 1-r 1+r
J‘—— J‘~_» = — _—
P _2<JI+F’ 0) 5 |0) (0] + 5 11) (1.

The polarisation vectors are relatedfas: — (Figure[3%). For a pure state £ +1)

Figure 3.4: In the qubit case the orthogonal state can bahsga on the Bloch sphere. The
polarisation vectorg andr point in opposite direction

equation [322111) reduces to the Hilbert space scalar ptobijpp] = [(0|1)|?, which
vanishes ag0) | |1). For an arbitrarily mixed stater ¢ 1) equation [(3.211) yields
Tr[ppt] = (1—1r?)/2 for orthonormalised basis statf, |1). It is easy to see that these
states can be associated with Bloch vectors pointing in pipesite direction.

3.2.2 Consistency and normalisation

The final step towards a definition of an off-diagonal mixeatesgeometric phase is to de-
termine how to construct a quantity comprising mutuallypogonal density operators that is
gauge invariant and reduces to the Manini-Pistolesi aifydhal geometric phase in the limit
of pure states.

We first notice that the Manini-Pistolesi expression [MPO®&y be written in terms of
pure state projectol, = ;) (Yj,| as

yé,'jipizmpjl =M[Tr(UlP,UIP,...ulPR})], (3.2.13)

whereM|z] = z/|z| for any complex numbez. Each of these projectors is now replaced by the
function F(')(pjk), where, for reason of permutation symmetry of the indexeg, ..., ji,
the form of the functiorF ') may only depend oh To assure consistency with Ref._ [MP0O]
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we further require tha ) (p;,) — P;, in the pure state limit. We take the simplest nontrivial
choice fulfilling this requirement, which B (p;,) = pj'i/q, p=p(l) andq= q(l) integerB.
Notice thatp!' % is well-defined since;, > 0.

Next, from (F’k)I = B, we obtain the normalisation condition

Tr (UgPUgPii1) modN ---UgPkit) modn) =
Tr((UD)'R) = i, Yk € [1,N], (3.2.14)

where we have used] defined in Eq. (Z217)Pyn) modn = (Ug)nle’l((UJ)”*l and
N
v -1

This normalisation structure shall be preserved also imihed state case: After the

replacemenp;, — pjﬁ’(/q, we similarly have
Tr(UT p/ay T oP/a yfpp/a ) =
9Pk Y9Pk1) modN - YaPk+l) modn) T

Tr((U) oY) = an Tr (0%, ke [1,N], (3.2.15)

where we have used thétlgpU])'® = UgpP/au]. Thus, onlyp(N) = 1 andq(N) = N
assures the desired kind of normalisation in the mixed ste. Sinc@ andg are functions

of | only, it follows thatp = 1 andg = 1. This choice may also be understood from the
following simple convergence arguments in tie- c case.p'P/9 typically involves factors

of the formA'P/4, 0< A < 1. If Ip/q < 1 (Ip/q > 1) then the trace diverges (goes to zero)
whenl — . Thus, only forlp/gq= 1 theN — oo limit is finite and well-defined.

Note, however, that we are only interested in a phase faocenorm of the trace does
not play a fundamental role and we could also skip the nosatdin conditionF(')(p,-k) is
then simply the density matrix itsef,!) (pj,) = pj, -

3.2.3 Off-diagonal mixed state geometric phase

As a consequence of the preceding results the off-diagoixaichstate phase for an ordered
set ofl < N mutually orthogonal non-degenerate density opergigrk = 1,...,1, parallel
transported by | is given by

|
Vo piypy = M[Tr(UlypRU Ry, Ul yp;) . (3.2.16)

3Nothing prevents us to consider more complicaiéd’s. For example, one may add a functi@d) (p)
to pP/9 provided it converges for any andG(") (P) = 0 for any projectoP. Although considerations of such
alternative definitions may have some mathematical intehesn a physical point of view, this is the most
natural, as it turns out to be reducible to the mixed stats@lod Ref. [SPEOC] for | = 1 (see Eq.[(3217))
and it can be realised experimentally, at least fer2 (see Sectioi 3.2.8).
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This is manifestly gauge invariant and independent of cypBrmutations of the indexes
I1,]2,---,]i- The diagonal mixed state geometric phase factor

Vor, =M[Tr (Ullpy,)] (3.:2.17)

may be seen as a natural consequence of this general frakndéwa@ putl = 1. It can be
assigned an operational meaning in terms of a purificatibnhiat can be experimentally
tested using a two-arm Franson-type interferometer. Iti@d8.2Z.8 we propose experimen-
tal realisations of the first & 1) and second ordel £ 2) phases, the latter being defined by

2
Vl(?jipjz =M [Tr (U vajlu H\/ sz)}- (3.2.18)
For p’s characterising pure stated & 1, Aj.; = 0) we automatically fall back to the

pure state off-diagonal geometric phase definitiof 10 8. FFurthermore, it is gauge invari-
ant under th&J (1) transformation of the basis vectdrs),

) — |dr) = €%, (3.2.19)

The nodal point structure, i. e. the distribution of poinmtsparameter space where the
diagonal mixed state geometric phase vanishes, will beusssd for the most important
qubit case. In this case it can be shown explicitly that th@ahpoints of the diagonal and
the off-diagonal phase do not coincide (Secfion-3.2.6).

3.2.4 Computation of off-diagonal mixed state phases

In the qubit cas®&\ = 2, consider the unitarity

Ul =0 ) (| + UL ) (ol + UL i) (| + UL, ) (s (3.2.20)

that parallel transports some orthonormal bdsig,), |(»)}. The matrix elements df |
fulfil U), = (UL)* = ve9/2 anduLu), = —detul +u) Ul = —1+v2 asul € sU(2).
Here,v = \(L,U1|U ”|Lp1)} is the pure state visibility an@ is the solid angle enclosed by the
path traced out by the basis vectdfgs),|y»)} and the shortest geodesic connecting its end
points on the Bloch sphere.

Now, Ul in Eq. [32Z2D) parallel transports the mutually orthodatensity operators
p1 = Ag|@n) (Y| + A2 P2) (W2| andpz = Ax|2) (Y| + A2[Y) (Y], for which we obtain

Tr(Ulpy) = Tr(Ulp)" = v(Ae Y24+ 26%2), (3.2.21)
Tr(ulypulyp) = —1+v2+2v2/Ahac0sQ = —14v2+v2/Fgp1, po] cosQ,

where we have used the Bures fidelitg[p1, p2] = [Tr \/pTlpg\/pTl}z = 4A1A2. Notice
that Fg[p1, p2] = O for pure states an#g[p1, p2] = 1 in the maximally mixed state case.
In the non-degenerate mixed state cAge: Ay, thel = 1 phases are indeterminate only
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for v = 0, for which thel = 2 phase is well-defined since [/, /pUl,/pz) = —1. In the
degenerate cask = A, the density operators; andp, become identical and spherically
symmetric, so that no specific basis is singled out by thedlpateansport condition and the
mixed state geometric phase factg:,‘;@ and y(zl become undefined. Still, there is a unique
notion of relative phase in this case with additional nodahts, as discussed in [Bhg02].
For a generid) = e 9™9 H denoting a unit vector, we obtain for= 1 nodal points at
Tr(Upy) = Tr(Upy) = cosd = 0 at whichd we have T(U,/p1U /p2) = cosD = —1.

This shows that the= 1 andl = 2 phases never become indeterminate simultaneously and
thus provide a complete phase characterisation of the qabd.

.05
Felo.po™] 0.75

Figure 3.5: Nodal surfaces of the off-diagonal mixed staengetric phase for a qubit with
the solid angleQ in steradians. For Bures fidelitfg = [Tr \/pTlpz\/pTl}z > 0 (mixed

states), there are nodes also for paths with pure statelitjsib = \<Lp1|u|\\w1>\2 +£1 at
various solid angles.

The off-diagonal mixed state geometric phase in the qulsié ¢eas a nontrivial nodal
structure that arises due to the nonvanishing Bures fiddlitys can be seen by putting the
left-hand side of EqIT3.2.22) to zero and solving ¥ryielding

= (1+/Falp, p2] cosQ) 7, (3.2.22)

which has solutions at < 1 for Fg[p1, p2] cosQ > 0. Thus, the off-diagonal mixed state
geometric phase factor may change sign across the nodatearin the parameter space
(Fslp1,p2],v,Q) defined by the solutions of EQ.{3.2122), as shown in Figuie Jhus,
the corresponding off-diagonal mixed state geometric pltas take both values 0 amrl
contrary to the corresponding pure state phase, which dgrbermr.

This discussion can be generalised to arbitrary Hilbertspimensionsl. In [ES03a] a
method is introduced that allows for the computation of rdig&ate geometric phases to any
orderl < N for unitarities under which the parallel transported elwgsis{|yx), ..., |Un)}
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of the mutually orthogongb’s is divided into two parts: one part where each basis vector
undergoes cyclic evolution and one part where all basisove@re permuted among each
other.

3.2.5 Projection phase

Since the definition of the off-diagonal geometric mixedesfzhase claims to be reducible to
the pure state off-diagonal geometric phase, the questieesaf there is a connection to the
experimental verification of the latter performed by Hasemet al. [HLBT01,/HLB02].
This has to be answered in the negative, since in this expetithe evolution of the orthog-
onal state is implemented as a projection operator, whibk gefinition equivalent to a pure
state. The resulting intensity is given by

| o« Re U pU TP] + | Tr[U pUP]| cos(arg THU pUP] + 1), (3.2.23)

whereP represents the projection operator to a specific spin statgjas an additional
phase shift.
The shift in the interference pattern given by the additigri@se factor

Yop =M[Tr (UpUP)], M4 = é (3.2.24)
could be used as a definition of the off-diagonal geometricohstate phase, if the unitarity
U describing the evolution inside the interferometer is p@raransporting the eigenvectors
of the non-degenerate. Parallel transport is for example fulfilled in the Hasegawval.
experiment if the incident spinor is polarised in a plangpeadicular to the direction of the
magnetic field.

In the two dimensional case relevant for the Hasegainval. experiment with input

P = A1|¢n) (Yn| + A2gn) (Yn|, A1 > Az, we can write Eq(3.224) as
TrUPUP] = A1(—1+ v?) + Apv2e 29, (3.2.25)

Here,U € SU(2) with the diagonal matrix elements;; = U3, = ve? is not necessarily
fulfilling the parallel transport condition with respect{gp), |)}. In the pure state limit
A1 =1, A2 = 0the off-diagonal phase is alwagssince TiUpUP]) _; = -1+ v2isreal and
negative, irrespective of whether parallel transportsys ), |2) or not. For a mixed input
statep the A>-term does not vanish and we obtain additional geometri¢aardy/namical
phase contributions. These can be considered to origindkeisubjacent geometry only if
U is a parallel transporting unitarity, but not for arbitrary

To show the consistency with the experiment performed byeblasaet al. we calculate
the phaseg,p = arg T{U pUP]. In the left panel of Figure_3.6 we shagyp for a mixed input
state withA; = 0.87,A, = 0.13, in accordance with the experimental degree of polaoisat
in [HLB01,IHLB"02], and the spin polarisation angle= 17/6 relative to the magnetic
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field in the upper arm of the interferometer (see Figure 2 df (LB 702]). The calcu-
lated curve matches with the experimental and theoretsailts presented in Figure 5(d) of
Ref. [HLB™02]. Note that in this cadd is not parallel transporting the incident spinor.

Another interesting fact is that due to the impurity of thpuhstate we expect phase
jumps for 8 = /2 for & = 2arccos/A; and & = 2 — 2arccos/A;, see right panel of
Figure[3.6, wherd is the precession angle of the incident spinor about thetitimre of the
magnetic field. Here, we have a parallel transportihg U, thus these jumps have their
origin in the subjacent geometry of state space.

2 2
S S
" or o
= =
(@2} (@]
@ @
6=1/6 o=n/2
0 0
-2 -7 0 7 27 -2 -7 0 7T 2
e} 5

Figure 3.6: The projection off-diagonal mixed state gesioghase arg TU pU P] in radians
modulus 2t for the Hasegawa setup withh = 0.87,A2 = 0.13 and6 = /6 or 6 = 11/2,
respectively .d is the precession angle in radians of the incident spinoutaihe direction
of the magnetic field.

The projection off-diagonal geometric phase fagig is invariant under phase transfor-
mations of the eigenvectors pf it reduces to the correspondihg= 2 phase factoy; in
the pure state limit, and it has the advantage that it can Berebd in single particle ex-
periments. The drawbacks are that it is less symmetric thainin Eq. [3.2.18), one cannot
easily state a generalisation like in EQ.(3.2.16), and viaesa it cannot be regarded as an
off-diagonal generalisation of the mixed state geomethiase in Ref..[SPEQC] asp and
P are not unitarily connected. These features suggest thaniked state geometric phase
factor in Eq. (32Z.1B) is to be prefered ovgp.

3.2.6 Explicit calculations for a simple path

In this section | present an explicit example of a paralehgported mixed staj® in contrast
to the more general discussion in the previous Sefionl3.2.4
The initial mixed statgy is given by

1/ 14r 0
po_é( 0 1_r) (3.2.26)

in the orthonormal eigenbasj8), |1) of pp andr denotes the degree of polarisation. The
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orthogonal state under the definitign (3.2.11) is then

1/ 1—r 0
L= = . 3.2.27
Po 2( 0 1+r) (3.2.27)

To gain information about the geometric phase we have tosghaainitary operatds such
that it fulfils the parallel transport condition. For the sak simplicity we choose an evolu-
tion that comprises two subsequent rotations, first by arrarp angle3 about they-axis,
and second, by an angjeabout an axigi such that the state vector is again parallel trans-
ported.

The 29 the rotation axisi has to be chosen orthogonal to the Bloch vector after the first
rotation(sinB,0,cosB)", wheref is the angle to the-axis, to guarantee a parallel transport.
The orthogonal plane through the origin is spanned by thevevetors

0 —cosf3
a=| 1 and b= 0 ,
0 sinf

which is evident from Figurd(3.7). The rotational axis iswsingled out by the choice of

=13

Figure 3.7: Rotation of mixed states

the coefficients of the linear sum of these vectors and capéefeed by a single parameter
®:
—sing@cos
fi = cospa-+ singb = cosp . (3.2.28)
singsinf
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A rotation around the axig by an angley on the Bloch sphere is given by

Un(@,y) = e 1210 (3.2.29)
= chos%/— isinggnkak
B Yy oY singsinf —singcosf —icos
N JICOSZ |S|n2 (—sin(pcosﬁ+icosrp —singsing ) ’

The total rotation can now be written as

U(@.y.B) =Un(e,y)Uy(B) =
< cog %) —isin(¥)singsinB isin(¥) [sin(pcosB+icosrp]> <cos(

isin($) [singpcosB —icosg] cog¥)+isin(¥)singsinf sin(

ain®
)) Cz;r(‘;)) (3.2.30

UsingU (y, @, B) guarantees parallel transport throughout the whole eesiuso that one
can be sure to get a geometric phase factor without any dyadoontribution.

NN

Nodal structure of the diagonal geometric phase of mixed stas ¢,

First we look at the nodal structure of the diagonal phaserised statesy, = arg T{U po.
The phase information is lost whefir[U po]| vanishes. Explicit calculation using(3.2130)
yields

— I(cosP cos! - cospsin® sin¥) +irsin? sinY sing|
| TrlUpo]| = |(cos2 Cos; — Cospsin S|n2) +irsin > S|n25|n(p| =
_ B _ vy B V2, ,.oB oV
—\/(cosﬁcosé—cosqosmﬁsmi) +r smzismzésmzqo. (3.2.31)

Mixed and pure statesr #0 For mixed states with+# 0 the expressioi (3.2.31) vanishes
whenever

(B+y)=@n+1)m p=2n"m Vv (3.2.32a)
(B—y)=(2n+1)m o= (20" + D1, (3.2.32b)

forn,n =0,1,2,... (see Figur€ 3.8(R)). In both casds, (3.2132a) And (32.8&ne condi-

tions for a nodal point can be regarded as a rotation of tlgenai Bloch vector to the Bloch
vector pointing in the opposite direction, or o 1 - thus for pure states - as the rotation to
the orthogonal pure state. The difference is only the chofitiee 2" rotational axis between

the positivey-axis in [322.3Za) and the negatiyaxis in [(322.32b).

Totally mixed state r = 0 [Bha02,|/ASP"01] For a totally mixed statd {3.2.31) vanishes
for numerous combinations ¢@&-y-¢ values comprising the values i {3.2.32), but also for
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(a) Nodal points in parameter space (b) Bloch vector representation

Figure 3.8: Nodal structure off'r[U pol|, r # 0

combinations when the single remaining termin (3.P.31)slzas,

B y By Yy
cog 2)009(2) cosgsin( 2)sm(2) =0,
which produces a richer nodal structure thanrfet 0. The nodal points of Tr[U pg|| are

shown in Figure[(319).

Figure 3.9: Nodal structure dffr[Upol|, r = 0. The holes in the plot are only numerical
artifacts.

Nodal structure of the off-diagonal geometric phase for mied statesq, ;.

Let us investigate now the behaviour of the off-diagonal gewic phase for mixed
states@,,. = arg TfU ,/poU poL]. This quantity becomes undefined if the modulus of

TrU/poU /py ] vanishes. Explicit calculation using the unitary transfation [322.3D)

65



OFF-DIAGONAL GEOMETRIC PHASE FOR MIXED STATES

results in the expression

TrlU/poU\/py ] = %(— 1+ cosB cosy — cospsinBsiny+ /1 —r2x

x [cos @(1+ cosB cosy) + sir? gp(cosB + cosy) — cosgsinBsiny] ). (3.2.33)

Pure states Forr = 1, the right hand side of Eq.{3.2133) is negative for all ealof ¢,

B andy, because the term comprisingl —r2 vanishes and the other terms can only be
smaller or equal to zero. Thus, no sign change happegsi-is equal tort for every unitary
evolution - in correspondence to the off-diagonal phas@twe states discussed in [MP0O].

In detail, we get nodal points ¢r[U/poU 4 /poi]| for the following scenarios (see Figure
3.10(C)):

0= (2n+1)m, B—y=2nm, (3.2.34a)
@ = 2nm, B+y=2nm, (3.2.34b)
@ arbitrary, B=y=nrm. (3.2.34¢)

All three cases represent a rotation of the initial (pura)esback to itself.

Mixed states Forr # 1 (3.2.3B) is not a purely negative function anymore - we ¢gt s
changes for different choices of- see Figureq (3-10{a)) and (3.10(b)). In these plots the

nodal points of Tr[U ,/poU 4 /pOL]| are shown and it is remarkable that contrary to the pure
state case the surface indicates also a sign change of ghisssion. For this reasag,,. =

arg T{U ,/poU 1/ py | can take the values 0 or.

@r=0 (b)r=0.5 ©r=1

Figure 3.10: Nodal structure oTr(U/poU /pg )|
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Comparison of the diagonal and the off-diagonal geometric pase

Now we only have to check that the nodal points of the diageps)l and the off-diagonal
geometric phasespf,.) do not coincide, otherwise we would have failed to constauc
expression carrying information about the subjacent géxymnehen the diagonal geometric
phase is undefined in the mixed state case. Comparing th¢ stoaictures ofg, and@, ;.
we can see that both expressions vanish at distinct poirtteiparameter space for=0
(Figure[3.11(g)). For # 0 the nodal structure af, is independent of and by comparing
Figure[3.8(d) with the Figurgs 3.T0(B)-3.10(c) it is obwdhbat the nodal points af, and
Y+ do not coincide (see Figufe 3.13(b)).

(@r=0 (b) r=05

Figure 3.11: Comparison of nodal points betwggn andg,

3.2.7 Kinematic approach to off-diagonal geometric phases

Similar to the extension of the diagonal geometric ph@gséo general not parallel trans-
porting unitarities the same procedure can be applied toffrdiagonal geometric phase.
Essentially by subtracting the dynamical phase from theritmrtion of each eigenstate to
the total phase (c. f. EQ2Z.3115) a gauge invariant quaistitptained. For the off-diagonal
mixed state geometric phase in the non-degenerate caggriiéel transport conditions are
still given by Eq. [Z35) ant Il (t) by Eq. [Z3-IB). Substitutingl(t) into Eq. [321B), we
obtain the kinematic expression for the off-diagonal gemimphase factors for mixed states
with the evolution operatdd (s) (s€ [0,T]) as

N

Vorro =M [ > 1wilh+1---AiN1N+1<wi1|u<T>|wi2><wi2|u<T>|wi3>...<wiN|u<T>|wil>]

il,.“,l|:

|
x exp(— A s <wia|u*<s>u<s>|wia>ds) . (3.2.35)
a=1
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whereA_p = An_p, p=0,...,N—1. One may verify that the phase facto,&lmph are
gauge invariant in that they are independent of the choitksf as long as they transpgot
along the same path.

For degenerate mixed states one has to account for theathiffparallel transport condi-
tions (Eq[2.3.717), but the scheme works similar to the féismafor the diagonal geometric
phase for degenerate mixed states. There is only a subtlplicaicy in that the functional
Fr,, (23.20) guaranteeing the gauge invariance is not the santbd different orthogonal
states, if their degeneracy structure changes. That me&es, the permutation of the basis-
vectors exchanges the basis of different degenerate stdsstres-;,'s are different for each
orthogonal state. For a more detailed examination the readeferred tol[TSF05] where
we also stated an example for further clarification.

3.2.8 Experimental verification

When we consider possible experimental realisations obtidiagonal mixed state phases
we immediately encounter a problem: how do we experimgniadplement thd-th root
of density operators? Fortunately, this may be resolvedhél &= 2 case in the sense of
purification, i.e., by adding an ancilla system in a certaaywHere, we propose a physical
scenario for the qubit case in terms of polarisation-er&htyvo-photon interferometry.

We first show how to realise the= 1 and| = 2 phases via purification. For &
dimensional Hilbert spack, consider the non-degenerate density operator

N
pr="> Altho) (Unl- (3.2.36)
&

A purification of thisp; is any pure statg¥;) obtained by adding an ancilla systerto the
considered systemsuch thap; = Try |W1)(W1|. Thus, we may write

N
Y1) = 5 VAW © (), (3.2.37)
k=1

where{|¢x) } is an orthonormal set of vectors in the ancilla Hilbert spige Consequently,
any orthogonal density operatos = (Ug) " ud) "1 has a purification of the form

W) = (Ug)"™ @ Ua|Wy) (3.2.38)

for any unitarityU, acting onHa. In the following, we assume difd; = N and put|¢x) =
| ko)

LetUs®@Ug|W1) andVs®V,|W1) be two Hilbert space representatives of a pair of purifica-
tions ostplUST anstplvsT. The coincidence interference pattern obtained in susérpo
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is determined by the interference profile

2
| O us®ua|w1)+vs®va|wl>} =2+ 2Re[ Tr (UIVs @ UV, W) (W1)].  (3.2.39)

By choosingJS =€ (U )jl_1 Vs =Ul (Ug) 1171 andU, = Va = I, we obtain thé = 1 phase
factorsyp = () by variation of theJ (1) phasen since

M[Tr (U@ UIVa W) (Wi)] = e M[Tr((U)" "0l (Ug) " a1 |we) (wi))]
e M[Tr(Ulp;)]. (3.2.40)

where we have used thataTii(Ug) =gy g (UgT)jl_l} pj,. Similarly, thel = 2 phase
factorsyf)fipj2 are obtained by lettingls = €' (Ug )12 ve= ull(u )”*1, Ug = (Ug)“*l,

andV, = (U H)T(Ug) 171 T being transpose with respect to the ancilla baijg)}, since

M[Tr (UdVsoUlValwo) (wi))] = e M[Tr((Ud)>ul(ug) ™
@(Ug) " HUI)T (Ug) W) (Wi )]
= e'"m[Trulyppulye;)], (3.2.41)

where the last equality may be obtained by explicit usgtaf in Eq. (32Z3F) with|¢y) =
W), VK

Let us discuss a physical purification scenario forltkel andl = 2 phases in the qubit
case. Consider the two-photon Franson-type [Fra89] setdpgure[3IR. A source that
in the horizontal-verticalh — v) basis produces polarisation-entangled photon statesof th
form

W) = %(1+r)|h>®|h>+ %(l—r)|v)®\v) (3.2.42)

has been demonstrated in Ref. [KW\BE]. Considered as subsystems both photons are in
a mixed linear polarisation staj@ with polarisation degree. The desired superposition
of Us® Ua|W1) andVs @ Vy|W1) is obtained by requiring a sufficiently short coincidence
window so that detection occurs only when the photons todk bither the shorter path or
the longer path [HS00]. A purification of the orthogonal dgnsperatorp, = nglugT may

be achieved by flipping the polarisations of the photondding

W) = UgeUg|Wi) = %(l+r)|v)®\v)+ %(l—r)|h)®\h). (3.2.43)

To demonstrate the= 1 andl = 2 geometric phases in this scenario, it is sufficient to
consider unitarities that rotate linear polarizationesatlong great circles an angeon the
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Ua US
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X —1>

Va V.
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Figure 3.12: Franson setup for polarisation-entangledgrhpairs. In the longer arms, the
system and ancilla photons are exposed to the polarisatiectiag unitaritiesUs andUs,,
respectively, and similarlys andV; in the shorter arms.

Poincaré sphere, see Figlire8.13. This amounts to

u<B,e>:exp(—ig[cos6<|h><v|+|v><h|>+sin9<—i|h><v|+i|v><h|>D, (3.2.44)
which fulfils the parallel transport condition {Z.B.8) withspect to thé — v basis. In prac-
tice, U(3,0) may be implemented by appropriate-plates, the thickness and orientation
of which correspond to the paramet@sind 6, respectively. For examplélg = U (11, 77/2)
acts on the linear polarisation states as a polarisatiorafighthus connecig; and p,. It
is achieved by & /2 plate with half axis making an angle 4t the vertical ) direction.
Furthermoref = 0 andf3 = 11/2, corresponding to & /4 plate oriented along the vertical
direction, take$ andv into the right R) and left ) circular polarisation states, respectively.

The phase factor;x,()? = (@,, N= 1,2, are obtained from the coincidence intensity by
settingUs = € (Uy) "l ve=U (B,0) (Ug)n_l, andU, = V; = |. Explicit calculation for
U(B,0) in Eq. (32Z44) yields Tfo1U (B,0)) = Tr(p2U (B,0)) = cogB/2), which entails
thaty;()}) andyg) are real-valued and changes sigat (2j + 1), j integer, corresponding
to a sequence of phase jumpsofFurthermore, the choidés = €"Ug, Vs =U(3,0),Ua =
Ug, andVa=UT(B,0) =U(B,—0), yields yﬁ()ﬂ)z and we may compute the expected output
as Tr(y/pU (B,6)/pU (B, 0)) = vV1-r2cog (B/2) —sir? (B/2), which is independent
of 8 and can be positive and negative foj 1 depending upoifs. yf)ﬂ)z changes sign at
B =2mj +2arctany/1— r2. Note that 0< arctanv/1 —r2 < 1t/4, modulusrt, which assures
that thel = 1 andl = 2 phases never become indeterminate for the Jauvedue, and thus
provide a complete experimental phase characterisatidgheofjubit case in the sense of
purification.

Off-diagonal geometric phase measurement with a neutron iterferometer Why is it
not possible to use a neutron interferometer to test theliaffonal mixed state geomet-
ric phase? For the pure state case this was possible sinaelén th measur@iyoxj =
M[{y;|U |¢r) (g |U | ;)] the projection operatdiyy) (Y| between the two unitaritidd can
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|h) (Al

Figure 3.13: Effect of the unitarity (3, 0) on the Poincaré sphere. The horizontal polarisa-
tion statelh) at the north pole is taken into a new polarisation state atriqdl polar angles

(B,6).

be implemented by a spin projection measurement. In thedrsxate case this does not
work since it leads to an asymmetric definition of the offgdinal mixed geometric phase
(Eq.[32.2H). Instead of a projective measurement one @isibdthink of using a more gener-
alised measurement, a positive operator-valued measotéP@VM) [NCO0]. But for this
one usually needs an ancilla Hilbert space. Generally spgak POVM behaves analogous
to the purification of a mixed state by means of an extra Hilbgace, or like the possibility
to represent any non-unitary operation as a unitary tramsfbon in an extended Hilbert
space. A normal projective (von Neumann-type) measuremehée extended Hilbert space
yields a POVM in the system’s Hilbert space. But for neutrtirese is no other degree of
freedom than spin for the construction of an extended Hikgeace.

Unfortunately, a scheme similar to the Franson-type ieterheter introduced above
does not work either, although the topology of the intenfieeter could possibly be mimicked
by building a three-loop interferometer as further extengo the two-loop interferometer
utilised in Chaptef]4. But, there are no entangled neutrgagable. The interference of
neutrons is a single-particle effect, each of them interagth itself, and even if there is a
slight probability to find two neutrons in a small time-wirvddhey are totally uncorrelated.
So, it seems that for neutrons there is only the projectiveethistate geometric phase at
hand, which has been measured in [HL(E].
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3.3 Off-diagonal holonomies following Uhimann’s defini-
tion

The Uhlmann holonomy defined in Sectionl2.4 is a further adatdito spot its nodal points
and attempt to find an off-diagonal extension. It is givenhmsy éxpression (c. f. Eq._2.4]119)

Xo =W

and the task is now to find points where this expression besamdefined. In particular,
we say that a point is a nodal point whenever the functiopak Tr A from Eq. [ZZ4.1B)
vanishes. Furthermore, a comparison with previous dedmstiof off-diagonal geometric
phases for pure and mixed states is carried out and, finabynples are given to show the
relevance of this extension.

3.3.1 Nodal points of Uhlmann holonomies

In the pure state limitys has nodal points (i. e., is undefined) for orthogonal indiadl final
states. In general, 18{; © Ho & ... B Hp be an orthogonal sum decomposition of the Hilbert
spaceH of the system, whera < dim’H with equality for the pure state case. Then, if the
initial statep(0) with support inHg (p(0) € O(Hy)) evolves to the state(T) with support

in H; (I #K), vc is undefined since the trace vanishes. If this happg0$ andp(T) are
said to be orthogonal.

3.3.2 Definition of off-diagonal quantum holonomies

Like in the previous sections (ard [ME00, FS03b, F503a]) vl to obtain geometric infor-
mation about the path even in the special case of orthogonmial iand final states. Suppose
we have a set of initial density operat@g0), k=1, ..., n, each of which with supportin the
corresponding Hilbert spadey. Then, we can define thaff-diagonal quantum holonomy
invariantsas [FS0b]

A (Gl = Wi (TIW (Wi, (T)W(0) ... Wi (T)W (0)
Ve a2, (3.3.1)

wherel =1,...,n. Evidently,)(j(kl) [Ci): k=1,...,nis the Uhlmann holonomy invariant for
the path of a single density matrig;, : t € [0, 7] — pj,(t) ,and each¥), [Cj,] comprises a
relative phase fact(fr‘jk depending only on the patf,.

X = Xj(ll-)--jl Cj, --.Cj,] can be decomposed either &s= (X XT)1/24, (right polar de-

composition) or ast’ = U, XTX)l/z (left polar decomposition), where the left (right) sup-
port of the partial isometfyls, (U4.) is required to be equal to the right (left) support of

4Here, the polar decomposition comprises a partial isomestgad of a unitary operator since the density
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the positive Hermitian part of the left (right) polar decamsfiion of X. The holonomies
U, or Uy defined via the left or right polar decomposition, respetyivare Uhlmann ana-
logues to the off-diagonal geometric phase factors defim&ei. [MPO0] for pure states and
Refs. [ESO3K, FS03a] for mixed states.

Orthogonal supports of the positive Hermitian parts of g#fednd right polar decompo-
sition is a sufficient condition for a nodal point of the gealesed functional

v ¢, = arg oW, (TIW OW, (TIWE©).. Wi (TWI(©)].  (332)

This can be seen by noting at first that the left and right stpgfdhe operatort’ is given
by the support oft X1 and XX, respectively, and in addition that the trace¥fvanishes
for non-overlapping left and right support. Singet¥™ and XX appear in the positive
Hermitian parts of the polar decomposition the nodal podlits;lgj)“ch are necessary for
orthogonal left and right supports 4f. s

Let us have a detailed look at the right and left suppo/t'ofl he left support is given by

X1 = ol ATV, (T)e] 200 A(T Wi (T) ..oy 2(TIV,(T)

xpj (OV](T)... o 2OV (T)p/(T) (3.3.3)
and the right support

xtx = pi 2V ()l A(T)...p 20V (T)
%piz (TWVis(T)p3, (0)p3 (T Wip(T) ...y *(T)V;py *(0). (3.3.9)

These are apparently only orthogonal in the case phdl) and p;,(0) have orthogonal
support and this in turn can be avoided by a proper choiceitidlistates. These choices
of the p;, (0), k=1,...,| are evidently not unique, one can take any sggte= O(H;,)
for a givenpj, with the minimal requirement that;, (T) has overlapping support at least
with pj, ,(0) where the indicek have to be considered moduto This is equivalent to
non-vanishing transition probability from, (T) to pj, ,(0) [URIZ6].

To assure that the off-diagonal quantum holonomy mvaa;laftt i [Ciy - Cy,] furfil all
necessary criteria, we note that th’e' [Cj,...Cj,]'s are only dependent upon the paths
Cj, by the same reasoning as for the 1 case. In fact, the final amplitud, (t) of each
initial statep;, (0) is determined by the parallel transport condition in EqZ4(P3) up to a

t-independent partial isomet§ This latter global gauge Ieavéq (ZJl .Cj,] invariant
even for distinct choiceS= §;, for the different constituent initial states

Unitary evolution We now rewrite the parallel transport mechanism in the paldr
case of mixed states undergoing unitary evolution. Thedstahpurification of a mixed
statep(0) = 3 Aj|¢;)(¢;| with ;A5 = 1 and|y;) being a basis diagonalising(0) is

matrix may not have support in the total Hilbert space buy amh subspace.
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W(0) = 5 /Ajlwj) (@], i. e., H is extended by an ancilla Hilbert spaé = H*, where
the (¢;| € H* form a basis in the ancilla part. Subjected to the unitarylugian p(0) —
p(t)=U(t)p(0)UT(t), t € [0, T], the path of the purificatiorts— W(t) has to fulfil the par-
allelity condition [Z4.1B). This latter path can be desed by applying a partial isometry
B(t) € O(H') resulting in

W(t) = U (t)pY?(0)B(t), (3.3.5)
whereB(t) =UT(t)V(t) andU (t) are related via the parallel transport condition EG_{Z}.1
Inserting (3.3b) into[(Z.4.13) we get the parallel traspondition

20"2(0)UT(1)U(1)p™?(0) = B()B'(t)p(0) — p(0)B(t)B' (1), (3.3.6)

where the dot denotes the derivative with respect to thenpetext. If p(0) is pure,p(0) =
W) (@], Eq. [B3B) simplifies to

(yuTOUM|Y) = (g|BT1)B(M)|@). (3.3.7)

To verify that Eq. [3:3]1) is consistent with known results @onsider the pure unitary
case from Section3.1. Having a set of initial pure statgsg, k= 1,...,n, the defining
quantity from Eq.[(3:3]1) can be written as

Wi, (T)W (0w, (T)W] (0) ... W, (T)W] (0)
= U (T)|@i,) (@12 B(T) 91, (w3, |U (T) | @1,) (93, 1B(T) |1,
X (Wi, - - (Wit [U (T)[W5,) (@, IB(T) [ @y, ) (W5, |, (3.3.8)

where we have used the purified stagg) (. If U(t) = Ull(t) is already parallel trans-
porting the basis states, i. éy;|UIT(t)Ull(t)|y;) = 0, B(t) may be chosen to be the identity
and Eq.[(3.318) simplifies to

Wi, (TIW] (0)W,(T)W(0) ... W (T)W(0)

= U g ) (Wi 0T ) (W, - (Wi O T [ (|- (3.3.9)

It is straightforward to write down the off-diagonal phaaetbrs corresponding to this quan-
tity using vgj) ¢ to see the equivalence to the pure state off-diagonal gemnpéiase.
1-Cj,

What is even more noteworthy is the naturally arising gdsation of the latter to non-
parallel transporting unitaritidg(t). A proper choice oB(t) according to Eq[{3.37) yields
a parallel lift and therefore a well-defined invariant of re#hsC; of the amplitude¥\i’s.
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3.3.3 Comparison with the interferometric off-diagonal gemetric
phase

The interferometric off-diagonal geometric phase for mixgase in its simplest form is
given by (recall Section3.2)

Vorrpi,e-p = MTr (U(TW/PRU(T)By,- .- U(T)p;)] (3.3.10)

with M[Z] = z/|z| for any complex numbeg, thep;,'s only differing by permutations of their
eigenstates, and (t), t € [0, T], fulfilling parallel transport for each common eigenstate o
the pj's. Forl =1 this reduces to the geometric mixed state phase_in [8EFthat has
in general been shown to be distinct from the trace of thel holonomy factor [ESBO3].
The question is therefore, how the previously defined aifyjdnal geometric phase definition
for mixed statesy,gj)lpjzmpjI relates to the off-diagonal generalisation of the Uhimahase
factor. Using the same scheme as above to compensate dahaffects in the system by
an appropriate choice of unitary operaBit) € O(H’), we get

W] (0)Wj,(T)WLE(0) ... Wi (T)W ()W, (T)
(

= P} (OU (TP} (O)B(T)p}*(0)..U(T)o} 2(0)B(T)
xp; (U (T)p}, *(0)B(T), (3.3.11)

where thepj, s are those of Eq[{331L0).

In a first guess one could think to obtain a similar form Iué%pjzmph with a unitar-
ity U(t) parallel transporting all eigenstates of thg's, so that theB(t) can be chosen
to be time independent. But this procedure fails since thallghtransport condition be-
hind they,g'j)lpjzmph 's is much weaker than the parallel transport condition in Bg.6). In
the former parallel transport is required for the state eedy) diagonalising the initial
P = S W) (Wi, i e, (WUTOU (1)) = 0, whereas in the latter case puttiB@) con-
stant amounts to vanishing matrix element&)dft)U (t) in the support op(0). This means
that the left hand side of Eq_(3.B.6) can only vanish forantiesU (t) that leave all the
pPj.'s appearing inﬂﬁj(l")“jI [Cj, ---Cj,] unaffected or, in other words that Eq._{3]3.6) is trivially
fulfilled for no evolution at all. However, the two approaslae on equal footing in the limit
of pure states.

3.3.4 Examples

As our first example, let us consider the qubit (two-leveBecéor whichH = H1 & Ho,
dimH,; = dimH, = 1, is the only form of orthogonal sum decomposition of Hitteace.
Let p1(0) = |0)(0| andp2(0) = |1) (1| have support ifi{; andH>, respectively, and consider
the pathg’;,Co: t € [0, T] — pa(t), p2(t) in state space. Assurvg(t), Vx(t) are solutions of
the parallel transport equation EQ.(2.4.13), compute@fample according to the prescrip-
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tion given by Hubner[Hb93]. Thie= 1 holonomy invariants read

x(ey] = pyA(TVA(T)|0)(0),
x57(C2) = Py (T)Va(T) 1) (1] (3.3.12)

with resulting left and right positive parts
2 (2) = pFATVAT)I0) O (T)pHAT),
(A1) 2 = 10)(01(0V (T)pa(TIVA(T) 0},
() = PV LN T)RY AT,
(A9) Y = 101 (T)pa(TIValT) 1. (33.19

The essential point here is that these equations displagl padhts if p1(T) € O(H>) and
p2(T) € O(H1), which is equivalent to say that (T) = |1) (1| andp2(T) = |0)(0|. For this
case we obtain thie= 2 holonomy invariant with its right and left positive parts a

x210100) = 2P (Co) = 11)(1)(LNA(T)|0) (ON(T) 1),

t T - ~ 2
2 (x2) = (43 xf = ma|anmoeNamin| . (3314

Clearly, X2 [C1C,] is well-defined unlessLVy (T)[0) (O[Vo(T)|1) vanishes. If the path@; :
|0)(0| — |1)(1] andCz : |1) (1| — |0)(0| are unitary, then we may choose the corresponding
U (t) to be parallel transporting and pi (t) = U T(t)Vy 2(t) = 1. ThusVy»(T) =U(T) are

- ~ 2
purely off-diagonal and thu%{l\vl(T)|O><O|V2(T)|1>’ = 1. In the non-unitary case, there

might exist exceptional paths for which at least on¥of(T) is diagonal making’(l(? [C1Co]
to vanish. In the worst case, one may envisage situationseniwhVy (T) andV,(T) are
diagonal so that none of the holonomies is defined.

For higher dimensional Hilbert spaces, we may envisageugwol of generally non-
pure states that both start and end in orthogonal subspeadaag dim = 3 an initial pure
state can evolve to a mixed state or vice versa. For a mixéel wigh rank two the states
may have support in different subspaces. Because of thgeharthe rank both cases are
only possible for non-unitary evolutions in general.

However, for the sake of simplicity, we will increase the dimsionality of the Hilbert
space under consideration to four. In a four dimensiondbéttl space we may encounter
evolutions, where the rank of the density matrix represgntine statgp; does not change,
and nonetheless the supports of the initial and the finad sit@ non-overlapping.

Suppose that the Hilbert spagécan be decomposed &= H1 & Ho with dimH1 =
dimH, = 2. The initial statgp; (0) has support exclusively iK1 evolving to a stat@,(T) in
Ho. For this scenario, we may for instance consider the utytakit) causing the transport
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t—Wi(t) =U (t)Wi(0)By(t) = pl/ () 1(t) with the amplitudéVy (0) = pll/z( 0) € O(H;) of

the initial state.U (t) andBy(t) = U T(t)Vi(t) are related via the parallel transport condition
Eqg. (336). If the final amplitud®Vy(T) = U (T)W1(0)B1(T) has support exclusively in
Ho, clearly the functionav(l) = argTr[Wl( W, T(O)] is undefined since the left and right

support of the holonomy mvanan\f [Cl] denoted as |- supJﬁ'fl [Cl] and r- supp’(1 [Cl]
respectively, are orthogonal:

-supp 1Y = suppty? (V)" = suppoy/A(T)Waps (0] py/4(T) = Ha

t 2,7 2
r-suppt;” = supp(x{Y) 'Y = supppyA(0)V] o1 (T)Vapy/?(0) = Ha.
However, the generalisdd= 2 holonomy invariantXl(? [C1C2] can be used to construct a
holonomy invariant of the given evolution by utilisik(t) as the amplitude of another
statep,(t) which has support ift{z att = 0, i. e. supg2(0) = Hz, and supgz(T) = H1 for
the final state. In particular, we have

x2[cica) = Wa(T)W (OWL(T)W (0)
— YT (0)p T Nepl (0). (3.3.15)

The right and left support ofl(? [C1C2] are overlapping and therefore the holonomy invariant
Xl(g) [C1C2] is well-defined in the nodal points dfi(l) [Ci] for the stateg;, i =1,2.
Notwithstanding the conceptual allure of Uhlmann’s holmyanvariants and the con-
sequent off-diagonal holonomies it is doubtful whether ggtal implementation of the
latter by some kind of experiment is possible. An experinteriest the diagonal Uhlmann
holonomy is proposed in [EP®3] where the explicit control over the ancilla Hilbert spac
is essential to ensure the parallel transport of the stdte.ahcilla Hilbert space remains no
longer a theoretical concept, but is also manifest in theerpgent. Even in this proposal it
is only the complex valued functionaél) (Eq.[33:2) that is measured instead of the matrix
valued holonomy invariant' () and it remains an open question how to measure the latter.

3.3.5 Spin Flip Operation on a Mixture of Bell States

One explicit example of an evolution that leads to orthodjoniaal and final mixed states is
a spin plus phase flip operation applied to a mixture of Bellest. For the initial state

1

p1(0) = Te

T (WY e[ W (W), e>0, (3.3.16)

we obtain by spin- and phase-flipping the first qubit, ilés: (|0),|1)) — (]1),—|0)) or
Usi = |PTW W[+ |WT) (P — W) (PT|— | )(WPT|, the final state

1

T (P H@T +el@m) (@), (3.3.17)

p1(T) =
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where we have denoted the Bell states |sy*) = 2-1/2(|01) 4+ |10)) and |®F) =
2-1/2(|00) + [11)). A simple implementation of such an operation is given by the
time-independent HamiltoniaHs = oy ® 1, so that the patlC; : t € [0, T] — pi(t) =
Us(t)p1(0)UJ (1) with Ug(t) = e ™s is traced out in state space. Insertldgt) into Eq.
(3.3.6) yields a vanishing left-hand side, so that we camsbBg (t) = 1; ® 1, to fulfil the

parallel transport condition. Far = 11/2 we obtain the amplitudé (T) = US(T)pll/Z(O) =

Usfpll/ 2(O) and thd = 1 holonomy invariant reads

xVer] = Wi(T)W(0) = Ugtpa(0)
1 _
= — W — Yt 3.1
T g PN —el@r)(wr), (3.3.18)
which has nonoverlapping right and left support and is tieeesundefined. In particular, the
trace functionalvél) = arg T{Ussp1(0)], which in this special case is equal to the diagonal
geometric phase for mixed states (Eq.2.3.4), vanishes.| Eh2 off-diagonal holonomy
invariant can be formed by choosing the reference gat@) = p1(T), which evolves to
p2(T) = p1(0) along the patlt, : t — pa(t) = Us(t)p2(0)UJ (t). Again, we can seBgp(t) =
1; ® 1, and obtaian(l) [Co] = \/\/z(T)WzT(O) = Ustp2(0), which also has nonoverlapping left
and right support. These considerations result in

xX210105) = Wy(T)W (W5 (T)W (0) = Ugt1 (0)Usipo2(0)

= e P @ o) @), (3:3.19)

the left and right support of which are overlapping aﬁr{ﬂ? is therefore well-defined
at this particular nodal point oP(i(l) [Ci]. The HamiltonianHs above is not a unique
choice for a spin-flip implementation, this task can also bgmed, e.g., by the time-
dependent Hamiltonialf, (t) = [u,0; + uxy(0x Coswt + gy sinwt )] @ 1, similar to the Hamil-
tonian for a resonance spin-flipper (on the first particlele Tinitary time evolution oper-
ator corresponding tbl; (t) can be written a; (t) = UroUefr = € 1@%/2g1tHett 1, with
Heff = (U;+ w/2)0; + UyxyOx. By the particular choice of the parameters= —u/2 and

w = —2uxy = —2U,, one can verify that for = I we have the implemented the same spin-
flipping unitary as in the static case, i.&l;(11/w) = Us(11/2) = Ug. InsertingU; on the
left-hand side of EqI{3.3.6) we obtain

Bra(t) = cosy(t)||WH)(WF|+ W) (v

—isiny(t) [|w+> (Wr+[¥7) <“P+|} )

vit) = \ﬁ‘*: (3.3.20)
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This gives us thel = 1 holonomy invariant for the patif; : t € [0, T] — pa(t) =

Ur (1)p1(0)U{ (1) as

xMC) = Wi(T)W (0) = Usip}/?(0)Bra(T)p3 %(0)

— 1Jlr [cosy(T) (O (W™ —g|d)(WT)

FivESInY(T) (=[P )W +]@7) (W) |, (3.3.21)

which has nonoverlapping left and right supports and isefioee undefined. Similarly, by
again taliingoz(O) = p1(T) from Eq. [(3317), thé = 1 holonomy invariant associated with
the pathCy : t € [0, T] — po(t) = U (t)p2(0)U,T (1) becomes

MG = Wo(T)WJ (0) = Usipy 2(0)Bra(T) p3'%(0)

— 11 [cosy(T)(Elw+><q’_|—\q’_><¢+|)

HVESINY(T) (W) (@ |- |w+><cb+|)] (3.3.22)

with nonoverlapping left and right support.
We may use Eqs[(3:3P1) aiid (3.3.22) to obtairl tae2 holonomy invariant

XD[CiC) = Wa(T)W (OWL(T)W (0)
— Ustpy’2(0)Bra(T)p1/%(0)Usipy’ 2(0)Bra(T)py'(0)

- (1718)2 [— (coSy(T) +esinty(T)) (| ) (PF|+|d ) (P |)

+i\/E(1—s)siny(T)cosy(T)(|CD+)(¢‘|—\CD‘)(CD*D], (3.3.23)

which has overlapping right and left support and is theeefeell-defined at this particular
nodal point of)q(l) [Ci]. The difference betweeﬁ’l(g) [C1C2] from the HamiltoniarHs and

Xl(g) [5152] from H, (t) reflects the path dependence of the off-diagonal holonomy.

3.4 Conclusions

Recent investigations in geometric phases in quantumregstave led to cases where the
standard definitions breaks down. In this chapter the cdrafepe off-diagonal geometric
phase by Manini and Pistolesi has been taken up and applig tmixed state case. For
the evolution of density matrices, there are points in patamspace for which the standard
mixed state geometric phagg cannot be defined in the usual way since the initial and final
state are orthogonal to each other leading to a break dowmeoédntrast in the interfero-
metric approach. If this happens there remain still ofigdiaal geometric phases of higher
order which are probably well-defined and which are indepandf the particular dynamics.
Besides a general discussion on possible values also aesex@mhple of a trajectory on the
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Bloch-sphere for a two-level system is presented whichalises the complementarity be-
tween the diagonal and the off-diagonal geometric phasthdmjubit case the off-diagonal
mixed state phase can be fully qualified both from the themaketnd from the experimental
point of view. But it has to be mentioned that the measurersesins to require control and
measurement of one or more ancilla systems although théiaganal mixed state phases
are properties of the system alone, since the constituBh@fsdensity operators pertains
solely to the system. Explicitly, a Franson interferometetup for the qubit case has been
presented illustrating the nontrivial sign change propefthe off-diagonal phase connected
to the mixed state case. The apparent need for control ovencilia system seems to sug-
gest that the proposed concept of off-diagonal mixed statengtric phase is a nonlocal
and/or contextual property of the unitary evolution of amfuan system.

Furthermore, basically motivated by possible nodal pasatsurring in Uhlmann’s con-
cept of relative phase for some particular paths of mixedtjua states we have extended
the original notion to off-diagonal quantum holonomy inaats. Utilizing these generalised
quantities the problem of undefined relative Uhimann phasénitial and final state with
orthogonal supports can be overcome in line with the intetida of off-diagonal geometric
phases for pure states. The definition of the holonomy iawgsiis equivalent to the Manini-
Pistolesi approach in the pure state limit, moreover it es us with a natural extension
of the latter to nonparallel-transporting unitary evadas. Besides other examples, we have
explicitly demonstrated by means of the evolution of a B&dtes mixture the necessity to
resort to off-diagonal quantum holonomies to obtain infation about the geometry of state
space.

When comparing these holonomy invariants with the formédafgonal mixed state
geometric phaseg,,. we have detected a general discrepancy for these two ap@®ac
related to a fundamental difference in the treatment ofllghtaansport of quantum states.
In general, the interferometric off-diagonal geometriagd and the Uhlmann holonomies
are incompatible as long as we are not dealing with puresstaéBeth of them, however,
allow for a further characterisation of the geometry of ttedesspace of density operators in
case of undefined mixed state geometric phase.
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Chapter 4

Spatial Geometric Phase - A Neutron
Interferometry Experiment

The geometric phase manifests itself not only in the spimetesgyof freedom of a neutron. It
is a property of the underlying Hilbert space no matter wipalticular physical property is
represented. Hence, we expect to find a geometric phase lyatamected to the internal
spin angular momentum of a particle but also to its kinensaticordinary space-time. In
one of the earlier experiments on the geometric phase T@md&hiaol[TC86] investigated
the change of the plane of polarisation of linearly polatibght after transmission along a
mono-mode optical fibre wound helically around a cylindetthiis experiment the geometric
phase arises due to the (parallel) transport of the potaisaector along a path in momen-
tum space similar to the situation encountered in the daksixample in the introductory
SectiorI1L.

To examine a quantum geometric phase originating from thpeslbf momentum space
itself independent of internal degrees of freedom like $pimeutrons or the polarisation for
light we use a interferometric setup with totally unpoladsncident neutron$ [RW0O0]. The
possible states are restricted to a two-dimensional sgbspfahe total continuous momen-
tum space. A neutron with a specific momentum incident onfmeaf¢ct) beam splitter has
only the possibility of being either transmitted or refleltéhe subjacent two-dimensional
Hilbert space is spanned by the two possible paths in thefénteneter. The neutron is after
the beam splitter in a superposition state of these alieasaaind the evolution of the state
can be manipulated by phase shifters and absorbers. Duis ®vtiution the state obtains a
phase and by carefully eliminating the dynamical phasedbelting phase is purely geomet-
ric, i. e. it is independent of the particular neutron’s moroen (wavelength). One proposal
to verify the spatial geometric phase is discussed by Sgh81607] using polarised neu-
trons and reversing the réles of the magnetic field and thieedpl@grees of freedom.

An experiment by Hasegaved al. [HZR9€] follows another approach to verify the spe-
cial case of a&yclic spatial geometric phase, where a phase shift of an integiiptawf 27t
is exerted between the transmitted and the reflected pathintérpretation of this experi-
ment, viz. to ascribe a geometric phase to this particulte stvolution, has however met
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severe criticism/ [Wag99]. A more detailed examination isassary to settle this conflict.
In the following the extension tnon-cyclicevolutions proves advantageous to manifest the
correctness of the interpretation of the previous expartrbg means of an explicit calcula-
tion of the non-cyclic geometric phase in terms of paths erBloch-sphere. The theoretical
treatment, which comprises the cyclic geometric phase agaa case, is then confirmed
by an experiment[FHLRO%b, FHLRO5a].

4.1 Neutron Interferometry

Neutron interferometry is now a well established technitpremeasurements of various
guantum mechanical effects. It resembles closely a Madimder widely used in light op-
tics, but the huge difference is that massive particles swvadht to interference. The first
interference fringes have been sighted in 1974 by Rauchméreand Bonse [RTB74]and
the wave-like nature of neutrons — as proposed®Broglie— could therewith be shown.

A neutron interferometer consists of a single silicon perfarystal (Figurd_4l1) cut in
such a way that the incoming neutrons are split by Braggatiffon at the net planes of the
first plate and finally recombined at the last plate.

0cm 5

Figure 4.1: (Skew-symmetric) single crystal neutron ifeiemeter.

Many beautiful experiments on the fundamentals of quantwohanics have been con-
ducted since: Besides showing the existence of coherenitamematter waved |[RTB74],
one year later the verification of thatdbspinor symmetry followed [RZB75]. The influ-
ence of gravitation of the earth on the wavefunction [COWaShe spin superposition law
that the superposition of two coherent beams with (orthaf@pin polarisation results in a
polarised beam agaih [ISBRKE&2, BR$83] are further examitesently, a test of Bell’s in-
equalities/|Bel64, FS04b, FS04a] has been performed ussgdatial degree of freedom in
the interferometer to generatelai-partite’ Bell-State [HLB™03]. Worth mentioning is also
the experiment on a confinement induced phase $hift [RLBuW@#re the neutrons experi-
ence a wall potential when going through narrow channelg tD@nergy conservation their
longitudinal momentum decreases which in turn gives rise phase shift. The geometric
phase associated to the spin evolution has been tested lpf aseeutron interferometer
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4. SPATIAL GEOMETRIC PHASE

where static spin flippers are put in both arms [WRE]. For a more thorough review of
fundamental neutron optics experiments the reader isresféo [RWO0O| RauC4].

In our case the interferometer features a double-loop gagfEBLR0Z]. This particu-
lar shape enables us to measure the spatial geometric pssaaded with the evolution of
neutrons in the second loop giving rise to a phase shiftivelad the reference beam from
the first loop. The same instrument has been used, e. g.,$oaftempts in reconstructing
the neutron state [BRSD3]. Like for all other types of nemtnaterferometers the mono-
lithic property is crucial since the individual beam-sfitig plates have to be arranged with
a precision comparable to the lattice parameter. The basiciple is relatively simple: Be-
fore falling onto the skew-symmetric interferometer, theident neutron beam is collimated
and monochromatised by the 220-Bragg reflection of a Si pede/stal monochromator
placed in the thermal neutron guide. In our case the wavtiemas been tuned to give a
mean value oA = 2.715 A. The interferometer is then aligned such that the rastgsd of
the interferometer plates are parallel to the net plandseofrtonochromator (non-dispersive
arrangement). The surface of the plates is perpendicutheteeflecting net planes which is
called Laue-geometryThe incident beam is split into a transmitted and a reflebtsin, if
the interferometer is aligned with the monochromator, dedé¢ beams have a well-defined
phase relation to each other - otherwise there would be mof@nence. In terms of state
vectors the situation can be described by

|Wi) — t|Wy) +r|¥y), (4.1.2)

where|W;) denotes the incident beaf¥;) and|¥,) the transmitted and the reflected beam,
respectively. The complex factorsndr (|t|?+ |r|?> = 1 for a non-absorptive beam splitter)
describe the ratio of transmissiot) &nd reflection) and the phase relation between the
outgoing beam. In the following we will assume a 50:50 beaiittsr (t = r = 1//2) with
zero phase difference. This can be justified a posteriocesin an interferometer all beam
paths exhibit the same number of reflections and transmissiad, furthermore, the intrinsic
phase shift of the beam splitting slabs remains immatemmalesit is constant throughout
the measurement process. Unfortunately, this last assomigt merely wishful thinking,
temperature gradients and other environmental influeraagses a sometimes non-negligible
phase drift as can be noticed in the final interference fsnge

Putting now several beam splitting plates together sudhttiegpartial waves are finally
recombined behind the interferometer and adding an additislab that produces an ad-
justable phase shift the relative phase difference betweeheams taking different paths in
the apparatus can be monitored (see Figuide 4.2).

Since the number of reflections and transmissions is sambofttr beams the ampli-
tude of the beams is of equal magnitude in the forward (O)atiete The state leaving the
interferometer at the beam splitter BS4 is given by

[Wo) = al|yn) + %Xy )), (4.1.2)
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Figure 4.2: (Skew-symmetric) neutron interferometer wehie incident beamyp) is split
at the first beam splitter BS1 and recombined at BS4 into atnétted (y)) and a reflected
beam (yx)). The phase shifter PS induces a relative phase differegteeelen the two beam
paths which give rise to interference fringes detedas)(in the forward direction.

wherea € C denotes the amplitude of the outgoing wave and comprisesaajgobal phase
factor. This global phase factor is immaterial at first, hsgait does not show up in the
interference fringes of the intensity

| = (Yo|Wo) = 2[al*(1+cosh). (4.1.3)

Later on this phase will be of crucial importance for the nueament of the spatial geomet-
ric phase. By adding another loop to the interferometer wemaasure the phase of the
coefficienta and it will be associated to the geometric phase arising fiteerevolution of
the wave in a single interferometer loop.

Equation[[4.113) is valid only if the statég, ) and |y, ) are fully overlapping and coher-
ent, i. e.(yy|¢n ) = 1, otherwise an additional visibility (or contrast) factoe | (Y | )] €
[0,1] appears that reduces the amplitude of the interferencgeiiiFigurd—4]3). Adding
additionally a sample into one beam path producing a pha#ieosh the intensity finally
reads

| 014 vcogAx +P). (4.1.4)

Neutrons with spin

Neutrons are fermions with spin 1/2. Consequently the stat&r comprises in addition a
factor for the spin degrees of freedom, usually written i of basis states of the Pauli
spin matricesdy, 0y, 0z) discussed in Sectidn_L.2.1. The spin state is represestedector
element of a complex two dimensional Hilbert space and #estormation from one state
to another is state is via a two dimensional unitary matrenednt ofU (2). Evidently, the
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I | 014 vcogAx +P)

| =1+ cosAé

\ S ~

~

\ ~ i

Ax

Figure 4.3: Interference fringes due to rotation of the ptesfter. A shift of the interference
fringes is caused by an additional phase differedsetween the two interferometer paths.
Partial overlap of the states leads to a reduction of therasit.

interference pattern is sensitive to changes of the spia ptavided that these are different
for the different interferometer paths. In terms of equaidhe initial state is given by

|‘1UO> = ) ®|Ys), (4.1.5)

where|yy) denotes the initial translatorial angs) the initial spin part. The beam splitter
acts on the first factor and produces the state

90 B gh) = 1/V2( 1) + ) © | gs).- (4.1.6)

If we switch on some magnetic field (B) in the transmitted bguatin, say, the spin part will
change and we get the state

WY S (w2 = 1/vV2(|gr) @ Usls) + [dr) © | gs)), (4.1.7)

whereUg denotes the interaction between spin and magnetic fields iEhcalled aren-
tangled statdSch3%,[Sch36] since it cannot be written in product formclSstates have
formed in recent years the germ of a vast new branch of phy@igsntum Informatioywith
the sublime aim to build once a quantum computer. Here, we tii$ just in passing and
head on to calculate the interference fringes. Like befar@dd a phase shifter and obtain

2) P2 103 = 1/v/2(|yr) @ Us| Ws) + €2X i) @ |Uss)). (4.1.8)

The recombination of the beams by means of beam-splittels BS3 and BS4 modifies
only the spatial state:

BS

3 =5 [ = 1/2(|gher) — |het)) @Us|Ws) + €3 ([Wht) + [ ) ® [Ys),  (4.1.9)
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where each beam splitter adds a subscript to the state imdj@atransmission (t) or a reflec-
tion (r). We are just interest in the intensity in the O deteeind can therefore skip the parts
which are travelling towards the H detectoti) and |y )). Consequently, the intensity
in the O-detector is given by

| O [ ghr ) @ Ug|Ws) + €K gt ) @ [ @s) 2
= 2+ 2|(tre | et )| {Ws|Ug | )| cOS(AX + D + D) (4.1.10)

when using®y = arg(Wr | Yrrt) and P = arg<ws|ug\ws>. We notice that the interference
fringes are reduced by thesibility factor

V = VieVs = | (Whrr |Gt ) || (WslUgh | ) | (4.1.11)

comprising a translatorialf) and a spin componentd). The former describes the overlap
of the states in phase space, whereas the latter dependsrotihe spin part. However,

for the present setup the spin part of the wave function candggected since there is no
magnetic field interaction involved arv(al/s|ug\ws) = 1. Hence, the spin part of the wave
function will be omitted.

4.1.1 Phase Shifter

As phase shifters we use parallel-sided aluminium slabsiftéreint thicknesses which
have a high transmission rate for neutrons. The phase ghiftNab:Ade s depends on
the wavelengtm = 2.715x 10~1%m, the coherent scattering length of aluminilngy =
3.4495) x 10~°m, the particle density of aluminium, = 6.0264x 1078 atoms per cubic
meter and the effective thickneds +.

Calculation of the phase shift

Let us revise the principles of refraction of a (matter) watvean aluminium slab which
acts dominantly as a phase shifter for neutrons with ndgégbsorptive losses. The time-
independent Schrodinger equation is the starting point:

ﬁZ
(—%AjLV(T’)) W(r=EyY(r), (4.1.12)

where the potentia¥ (T') is given by the sum over all nucleonic scattering centremgiat

fi,

_ 2mhPhep
My

My, is the mass of the neutron. The solution of this equatiorsisa©fdynamical diffraction
theoryand is thoroughly discussed in [RP¥6a, RR76b]. A transfaonaf the Schrodinger

V(F) S 5(F—Ti). (4.1.13)
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equation into its momentum representation yields
15 CHN N o
<—— +V( )) Y(k) =Eyg(Kk), (4.1.14)

whereV (k) is the Fourier transform of (). We take only thé = 0 contribution,

2nh2h,
_ cAl NA

o . (4.1.15)

This is called theEinstrahlndaherundRP764a, p.7] where it is assumed that the neutron-
nucleus interaction is small and that consequently thewrtiffce between the wave vector
within the crystal and the vacuum wave vector is negligidlgher terms have to be kept
to calculate diffraction effects of periodic structurest buch effects do not bother us at the
moment. The Schrédinger equation can now be solved in tleeiontof the phase shifter.
The incident wave has a momentunof magnitudek = ||k| and the wave-vector in the
interior is denoted with magnitudeK = ||K|| (c. f. FigureZ1).

As

7 K
be< 0 /

/4
> | X
/' y | \\
|
yas
|
K ! K

Figure 4.4: Refraction at at the surface

The Schrddinger equation in momentum space in the intezgion reads

(—@wp) W) = EWR),

2m
K2 |
—WW(K) = (E=VF)Y(K),
K2 _ ZHLZT‘[E—VF]ZZ%ZEO—%). (4.1.16)

The reflected bearkl can safely be neglected if the optical potentialis small compared
to the kinetic energy of the incident neutron. Thermal nengrwith wavelength around 2 A
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possess kinetic energy of aboudR eV which is orders of magnitude larger than typical
values ofVE typically in the nano-electronvolts regime (e. g. for alamm Vg ~ 50 neV).
The situation changes drastically for ultra-cold neutraits energies in the same order of
magnitude (e. g~ 130 neV for a neutron velocity of 5 m/s). In such situatiores t&flected
beam cannot be omitted, but it becomes dominant. By virtubeif low energy ultra-cold
neutrons can be stored in bottles made of appropriate raktevith highVg, for example
beryllium withVe = 250 neV. This technique is of potential use for measuringbderence
phenomena as will be discussed later in Sedflon 5.

For the moment we stick to thermal neutrons. When the retldmtam is neglected we
have energy conservation and the Schrodinger equatiohddrede neutron with momentum
k provides a value for the kinetic energy= h2k?/(2m).

K?=k?[1-Ve/E] (4.1.17)

follows from Eq. [41.16). Using agaM: /E << 1 we can extract the root in Eq.(4.1117)
and approximate the right hand side to first ordeviriE to obtain

VE
K~k(l—§E). (4.1.18)

Recalling Eq.[(4.1.75) we can write

VE/(2E) = - P 2mcNaj /K= A o (4.1.19)
and obtain the refractive index
nziwl—f_l—)\ o (4.1.20)

Note, that for most materials used as phase-shifters (dugni@um or silicon)Vg > 0
since the coherent scattering length> O leads to a refractive index slightly smaller than one
(n < 1). Due to the additional potential energy the kinetic epasgowered, 'the neutron
passes the potential more slowly’. An exceptions is for g¥antitanium with a negative
scattering lengtlo. which can therefore be used to compensate the phase slefi pabse
echo[CKW ™ 91].

The direction of the bear is obtained by requiring the continuity of the tangential
componenk; = K, defined by the vanishing scalar product with the surfacenatis - k| =
0. Accordingly, we find with[[Z117

Vi
2 2 2 _ w2 2 12 F
V(0
= k|2+ki—k2% (4.1.21)
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and it follows for the perpendicular componéht that

Ve 1 k% Ve
Kl = (/K -kRZ=~k (1-Z5—
* LT E i( 2K E

B 1 1 W
= kL(l 200§VE)' (4.1.22)

Usingk, = k- fis = kcosar we can finally write

Now it is easy to calculate the phase shifinduced by a phase shifter of thickneks
The phase shift at a poiritrelative to the origin is given bE(- r. A comparison of the phase
difference between the refracted wa¢end the incident wavie at the surface characterised
by fs- = d yields

— LV_Fd — )\ZM
cosa 2E 2rmcosa

Al

X

(k—K)-7 = NajbeaiA d/ cosa. (4.1.24)
N——

deff

It turns out useful to write the phase shift of the wave-paelsethe wave vectdt times a
spatial displacement,

X —A.Kk (4.1.25)

with Nath
Al Mc

n
2 dris

SinceX is wavelength-dependent the phase shifter induces deghiathe incident has non-
vanishing momentum spread. This leads to the concegitegrencavhich will be discussed

in SectioZ.811.

A= (1—n)dAs=A?

4.1.2 Induced phase shift

The adjustable parameter is the effective thickri$s = d/cosa in the forward direction
of the beam which is proportional to the inverse cosine oftidosed angle according to
Eq. (41.2%). It can be changed by a rotation of the phasteshif

The phase shifter is aligned at an anglexgt= 45° and the rotation is about2° so that
the inverse cosine can be approximated by a Taylor expangiom first order atig = 11/4,

1 1 sinag
cofap+&) cosag cofap

E+0(8%) ~V2(1+8). (4.1.26)
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Figure 4.5: Beam incident on a phase shifting slab.

Consequently, the phase shift
X = v2dNybeaiA (1+ &) (4.1.27)
comprises a constant terg? = v/2DNabeaA and a variable terny = v2DNabeaA €, i. €.
X=x"+x. (4.1.28)

The superposition of the transmitted and reflected be@nax |(1) + |Y») after a beam-
splitter is changed by a phase shifter covering both beaigar@Z5) to|y) — €% |y;) +
dXe|yp) = &% <|t,ul) —l—ei(X27X1)|l,Uz>>. The global factoe™ can be neglected as usual and

the rotation anglé€ determines the variable relative phase difference betweetwo beams
AX =Xy — Xq,

AX = Xo—X1
= V2NaibeaA [da(1+&) —dy(1-&)]
= V2NabeaiA [(d — dy) + & (d2 + da)]
= Ax%+Ax(E) (4.1.29)

where the subscripts denote the different beams. The oatdirection has been chosen
counter-clockwise so that increasiggyields an increase (decrease) of the phase ghift
(x1) andd, (d;1) denotes the thickness of the plate in the transmitted (tefi beam.

4.1.3 Absorber

The process of absorption can be described by the imagiratypthecoherent scattering
length b, which defines theotal attenuation cross sectiom = 4% Imb. [Sea89, p.45].c;

is the average number of incident neutrons that are scdtterabsorbed per unit time per
unit incident flux. The complex phase sht= 8’ +iB” of a neutron wave going through a
material slab|yp) — €P|ys), consists therefore of a term including the coherent statte
lengthB’ = X = Nb:Adetf and a term proportional to the total attenuation cross @ecki,
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B” = Noidett/2 [RWOO, p. 67].
The incident wave function obtains an exponential dampaatoir due to the absorption
and the scattering,
W) = & X e ANPer/2]yp)

or in terms of the intensity the beam is attenuated according

| = (Ya| ) = loe™ ONDer.

In the following the exponential absorption term will be desd by theransmission coeffi-
cient T= e %NPett and consequently

) = & VT o).

For aluminiumao; is negligible, 1 mm aluminium absorbs about 1% of the incidesu-
trons. On the other hand gadolinium has a large absorptass&ection and by mixing with
deuterium (almost no absorption) the absorption rate catuited to the desired value by
changing the concentration. Such a solution has been @@l quartz-cuvette and put
into one of the beams.

An interesting issue has been discussed by Summhammer [RI8¢ absorption
process in the form mentioned above involves unpredictatababilities whether the neu-
tron is absorbed or not. It is not possible to predict for gkameutron if it will be absorbed
or not, quantum mechanics just tells us the probability enfthrm of the amplitude of the
state vector. This situation changes drastically if ondaegs the static absorptive mater-
ial by a time-dependent chopper so that it becomes possilalsiiss a certain fraction of
neutrons “manually”. The knowledge of the time of transmaisor absorption results in
a different behaviour of the interference fringes, viz. tdoatrast is either proportional to
the square root of the transmission probability for the ferrsetup, or linearly dependent
thereupon in the latter case.

The difference should also be seen in the geometric phase.réBults presented here
are for the static case, whereas for the latter we would haveetght the geometric phase
contributions stemming either from total absorption ortalttransmission.

4.2 Description of the setup

Being confident that the short introduction to the vast fiéldeutron interferometry will do,
we can proceed to the measurement of the spatial geometrseghat shows up due to the
neutron’s motion through the interferometer loop:

As noticed by Feynmari [FVH57] the description of any twoeleguantum system is
equivalent to the description of a spin-1/2 particle. EXpig this equivalence there is in
principle no difference between manipulations in the spiace of neutrons with the orthog-
onal basig[| 1),| |)} as eigenstates of the Pauli matdxrepresenting a neutron in spin up
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or spin down state, respectively, and momentum space Mkth|k’)} as orthogonal basis
vectors. The latter corresponds to two directions of theémeaubeam in an interferome-
ter. In both cases one can assign a geometric phase to tiheufzarévolution of the initial
state. An even more appropriate description for the intenfetric case for the forthcom-
ing discussion is in terms of “which-way” basis stafgp), |p*)}, namely, if the neutron
is found in the upper beam path after a beam-splitting ptatedaid to be in the statg),

or in the statdp*), if found in the lower beam path. The operators measuringpéik of
the neutrons are denoted By= [p) (p| andP,. = |pt) (p*|, respectively. The complemen-
tary operator which corresponds to measuring the intarerenstead of the path is denoted
by Py = [q) (ol = (1+|p)(P"| +|P")(pl)/2 (andPy. = 1— Py = |g-)(q*]) with eigenvector
la) =1/vV2(|p) +|p") (lat) = 1/v2(|p) — | pt)) as a superposition of the path eigenstates.

Do
‘\l BS4 ‘\l BSG '

) )

Figure 4.6: Double-loop interferometer used for the meas@nt of the spatial geometric
phase.

For testing the spatial geometric phase we use a doublexibeperometer (c. f. Figure
4.8), where the incident unpolarised neutron beemis split up into a diffracted reference
beam|y?) and a transmitted beafyt) by means of the first beam splitting plate BS1. The
double-loop geometry is needed to have a well-defined pledseence at our disposal in or-
der to measure the phase of the state evolution in the secopdlh fact, recalling equation
(13) a global phase factdr of the evolution|y) — t|yn) +r|yp) — €®|y) cannot be
measured in a single loop interferometer, it is only the phdiference betweefy;) and
|Yo) that is measurable. One has to resort to an additional refereeam with respect to
which the phase difference can be measured. Hence, theediooipl geometry is essential.

The reflected beam at the first beam splitter BF#), is used as a reference with ad-
justable phasg relative to| ) from the phase shifter PS1. The latter beam is defined to be
in the statéy®) = |p) before falling onto the beam splitter BS3, since itis chetotalised as
seen from the second loop. Behind BS3 there are two possthiegonal pathgp) and|p)
spanning a two-dimensional Hilbert spa¢g). denotes the state of the transmitted beam and
|p*) the state of the reflected beam, respectively. Having a Sfe&én splittefys) is trans-
formed into a superposition of the basis vect@isand|p*): [¢°) — |a) = (|p) +|pt))/V2.
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The beamy?) is subjected to further evolution in the second loop of therferometer
by use of beam-splitters (BS4 and BS5), an absorber (A) wathsimission coefficient
and the phase shifter (PS2) generating a phase shd®obn the upper andX2 on the
lower beam path, respectively, yielding the final stage) = U|¢P). The unitary matrix
U =U(T, x1, x2) comprises all the manipulations in the second loop:

0 BS 1 A 1
) = 72(|DL>+|F>>)—>E(|PL>+\/T|D>)
Pz %(éxwpmﬁéxzm»zuw«%:|wf>. (4.2.1)

The geometric phase is usually extracted from the arguntetiieocomplex valued scalar
product between the initial and the final state(gsgj ;) (when removing dynamical contri-
butions as will be discussed later). This is where the refadeam comes into playy?)
is not subjected to any further evolution, but is statiorgpgrt from adding a phase factor
&M by use of the phase-shifter B51Y0) — |Pret) = €7|Y0). |yhes) propagates towards
the beam-splitter BS2 from the upper path, thus, we cantdssebe in the state|p). By
varyingn one can measure the shift of the interference fringes raftetite phase difference
between Yrer) and|ys).

The two beamss) and |res) are recombined at the beam-splitter BS2 and finally
detected at the detectopln the forward beam. This step can be described by the apipiica

of the projection operatdg) (q| = 1/2(|p) + |p)) ({p| + (P|) to |@;) as well as tqes):

Wt = |a)(alyr) = K(eX +vTdX2)|g)
[Wet) = la)(aldrer) = K]0, (4.2.2)

whereK is some scaling constant.
The intensityl measured in the detectDy is proportional to the absolute square of the
superpositiony}) + €|y ):

| O (@M +&X+VTeX)q)[* = (We| Wer) + (W W) +
42/ (Yot | W) cOS(N — arg( W W) - (4.2.3)

We notice a phase shift of the interference pattern byyggg| ;). This phase shifts corre-
sponds to the Pancharatnam connection [Pan56] betweetatkéys ) and the statéyy, )
from which we can extract the geometric phase. Explicitlyol&in

® = af9<4!r'ef|tll?>
— w_arctan[ta%%) (1_ﬁ>] , (4.2.4)

1+VT

LIn fact, a phase shift off /2 is — as usual — imposed on the reflected amg/2 on the transmitted beam
yielding a phase difference gf and a neglected overall phase.
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whereAx = x2 — X1.

Note, that in the considerations above we have omitted etphase shifts of the empty
interferometer (without phase shifters and absorber) badonstant phase shift for parallel
phase shifterAx? as defined in EqTZ.L29).

The geometric phase is defined las [MS93]

@ = arg(Yres | Yt) — @, (4.2.5)

wheregy denotes the dynamical part and we have to remove first thewgabphase before
we can claim that the quantity to be measured is purely gamnet

4.3 Dynamical contribution

According to the theory presented in Section 1.2.3 the dycenphase can be made to
vanish by imposing a parallel transport condition on thel@ian, namely, that adjacent
states are in phas@)(&)|@(& +9)) € R. To this end we denote the state in the second loop
with its explicit dependence on the rotation anglef the phase shifter PS2:

@(&)) = en@|phy 4+ yTeXDp), (4.3.1)

where x1(&) = —Cdi€ and x» = Cch€& with C = v/2NabeaiA according to[[Z127). The
constant phase shif is omitted. A rotation of PS2 by the angechanges the state to

W(E+0)) = e 'CHlEro)|ph) 4 /T OR(ET ), (4.3.2)
From the imaginary part of the scalar product between twaiteimally close states
(W(E)|W(E+3)) = (e7°H° + Te*?) (4.3.3)
we obtain the parallel transport condition
—sin(Cd10) + Tsin(Cdd) =0 (4.3.4)

or
dy = Td, for smalld. (4.3.5)

If the parallel transport condition is not fulfilled the igt@l of all the infinitesimal contribu-
tions, divided by the norm of the state, defines the dynanpicate,

: _
P = //2 = dl+Td2) ds= v2NybeaA (T —du)é _ Xt Txe (4.3.6)

§/2 Y(s)) 1+T 14T

The division by the norm is due to the definition of the geomegthase for non-unitary state
vectors in Sectioh T.2.4.
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Up to now we have assumed that there is only absorption irotherlbeam bath. In view
of the experimental realisation the in reality non-zerooapson coefficient of the patip™*
can immediately be taken into account by multiplyohgwith a transmission coefficieft.
With the (obvious) replacemeiit— T, we obtain

_ Tix1+Toxe

4.3.7
Ti+To ( )

The dynamical phase part stemming from the phase shifteisP§@2en by a weighted sum
of the phase shiftg, and x» with the weights depending on the transmission coefficlent
andTy, respectively.

It is now an easy task to adapt the experimental setup sut¢hhthalynamical phase
vanishes. By selecting a phase shifter with unequal thgkirethe beam paths the ratio can
be adjusted to meet the requirement
di T

diTy=dT, or —=-=.
1l =0zl & T

4.4 Paths on Bloch-sphere - A geometrical interpretation

The shift of the interference pattern in EQ._(412.3) with agarly adjusted ratio of1 /T, to
avoid dynamical contributions should be equal to the (dedpsurface area enclosed by the
paths of the state vectors on the Bloch sphere, or, equilglémthe solid angle traced out
by the state vectors as seem from the origin of the sphere.

The two dimensional Hilbert space is here spanned by thegothal paths$p) and|p*)
instead of the spin eigenstatel and| |) as in Figurd_1}4. The north and south pole of the
sphere are identified with states with well-defined path, areeigenstate of the observables
|pt) (p*| and|p)(p|, respectively. All equally weighted superposition of patgenstates
are located on the equatorial line. An excessmf) contributions, i. e. if the neutron is
more likely to take the upper path, displaces the state imtoupper hemisphere and the
lower hemisphere is populated with neutrons taking the tquegh (Figurd 4.7()). Note,
that the particular point on the equator which denotes thte stfter the beam-splitter BS3
is arbitrary due to the arbitrary choice of the phases of th&idovectors. The absorber
changes the weights of the superposed basis states. laypartifor the extremal values of
T parameterised by the angfewith T = tar? /2 we end up either again with an equally
weighted superposition for no absorptioh+ 1 or 8 = 11/2) or the state is situated at the
north pole for total absorptio (= 0 or 8 = 0), since in the latter scenario we know that the
particle has taken the upper path when detecting a neutdg.ifFor T € (0,1) the state is
encoded as a point on the geodesic from the north pole to treg@dgl line.

The phase shifter PS2 generates a relative phase shiftdretive superposing states of
AX = X2— X _
(Ip5) +VTIP) = (Ip") +€VTIp)). (4.4.1)
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This can be depicted as an evolution along a circle of lagitad the Bloch sphere with
periodicity 2rt.

The recombination at BS2 followed by the detection of theveod beam in [g is rep-
resented as a projection to the starting point on the egablioe, i. e. we have to close the
curve associated with the evolution of the state by a geodiesie poiniq)(g| on the sphere
as discussed for non-cyclic paths in Secfion1.2.3. As ferrdference statgl;) we note
that the phase shift af has no impact on the position of the state on the Bloch spltere,
stays at the north pole. Due to the recombination at BS2 amdeltection this state is also
projected taq)(qg| contributing to the forward beam incident to the detecter D

The paths are depicted in Figlirel4.7 in detail for cyclic &vall as non-cyclic evolution
(b). For arelative phase difference greater tiFgR we have to take the direction of the loops
into account. I 4.7(b) the first loop is transversed clodeyiwhereas the second loop is
transversed counter-clockwise yielding a positive or tiggaontribution to the geometric
phase, respectively. We expect that this sign is reflectéideimeasured phase shift as well,
i. e. there should be a change of the behaviour at the pgint 77/2.

(a) Cyclic evolution (b) Non-cyclic evolution

Figure 4.7: Paths on the Bloch-sphere corresponding tovbkiteon of the state in the
split-beam experiment.

4.4.1 Calculation of the surface integrals

From what has been said before about the geometric phaseawetkat it is proportional
to the surface area enclosed by the path traced out by tleeistatate space. In our case
this surface area can be calculated easily since the state gpr better the ray space) is
isomorphic to the two-dimensional sphé&e To obtain the are& enclosed by the cun@
(F = dC) we just have to calculate the integral

Q:/ dQ:/ sinededo, (4.4.2)
F F
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where we denote the polar angle By [0, 1] and the azimuthal angle by € [0,2m1]. To
evaluate the integral {4.4.2) we have to parametetisé/e can immediately identify three
different regions and writ€ = C1 + C, + C3 (Figure[4.8). The first part connects the point
p1 on the equator (whose azimuthal angle can be chosen aillgit|ad can therefore be set
to zero since it just amounts to another equivalent choideasis vectors) to some poipg
on the meridian to the north pole of the sphere and is definazbhgtantyp (C1 : @ const.).
p2 and p3 lie then on the same circle of latitudé(: 8 const.). The curvé€s betweenps
andp; is more involved since it is a geodesic, i. e. the shortestiptespath, between these
points. In the AppendikB (EJ_B.25) an explicit formula fdrig curve is given. We only
have to adapt this equation to the initial values of the c@eve; = (61, 1) = (11/2,0) and
the pointps = (63, ). Inserting these points into Eq._{B]25) we get

7—2T: arctafA™l) — A=0 (4.4.3)
cotbs
65 = arctan(BSin%) — sings B (4.4.4)
and consequently _
0(p) = arctan[% tan6s). (4.4.5)

The surface area can be calculated via the integral
¢ 6s _
Q :/ dqo/ dOsind. (4.4.6)
0 (o)

In general a great circle intersects a circle of latitude®wiThis means that the geodesic
6(@) given in Eq. [(B.Zb) forms either the lower bound or the uppmird in the integration
over @ and we would suspect the necessity to divide the integratiortwo regionsf () <
63 andO(¢@) > 65 to add the absolute values of both surface areas. Howeeagumntity of
interest in our case is the oriented surface area and therétfe sign change inherent to the
different regions reflects exactly the different orierdatof the surface areas.

Integrating first oveP in Eq. (4.4.6) and settings = singstan6s; we get

10 )
Q = /o dQD(_COSG)a::ctar(Ea/Sin@

o2 :
= /0 dqo{—00563+cosarcta(£3/smgo)}
— /O%dcp{—00563+(1+(Eg/sin(p)2)%} (4.4.7)

The last integration ovep can be performed numerically. Fgg > 17 one has to keep in
mind that the geodesic cuné @) from Eqg. [4.4.5) does not represent the correct boundary
of the enclosed surface for values@k 1. In this region it is rather the circle of latitude at
65 that limits the integration. The easiest way to take thisifato account is to calculate the
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Figure 4.8: Integration path to calculate the solid anglelased by the path of the state
vector on the Bloch sphere.

same integral as in the regigs < rrand add the surface of the spherical cap limitedbpy
towards the equator that is given by

21 63
/ d(p/ d05sing — 27(1— coshs), (4.4.8)
0 0

Finally, we obtain the graph shown in Figlirel4.9, where wéeats expected the increase of
the solid angl€ up to the pointp = 17/2 followed by a decrease up gp= 371/2. This nicely
reveals the dependence of the geometric phase on the ¢ivendé the path, i. e. whether
the surface area is enclosed clockwise or anti-clockwise.

Q
N\
%_ﬂ big %ﬂ 2| ?
-0.5¢
-1t
1.5¢
21 /

Figure 4.9: Solid angle of the path shown in Figlré 4.76et 11/4.

The same behaviour we also expect from the spatial geonpdtaise measured with the
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double-loop interferometer. The values derived here oglgdometric means will turn out
to be equal to the values obtained by calculating the intenfee pattern of the three beams.
This manifests the purely geometric character of the medspinase.

Non-unitary evolution The question is definitely justified, whether the use of aeratator

in our setup and therefore the transition from properly redised to non-normalised states
spoils the geometric visualisation of the state path on tletBsphere. However, recalling

the discussion in Sectidn1.2.4, the path of non-unit vectan be mapped onto a path in
No, the space of normalised states, and finally again to thege¢ Hilbert spacé which

is in our case the Bloch-sphere. In conclusion, the geomeliase is determined by the path
on the unit Bloch sphere even for non-unitary evolutions.

4.5 Measurement procedure

The common technique to measure a phase shift in neutroriergmetry is to record the

interference fringes due to the relative phase imposed &ydtation of a phase shifter in
the beam path first for the empty interferometer. After itisarof the sample (or turning

on the magnetic field or quite generally changing the quamitbe measured) again the
interference fringes are measured and a phase shift shoasauphift in the pattern (Figure
43).

As for the double-loop setup we have two phase-shifters iatlisposal both producing
interference fringes if rotated. The geometric phase to basured is adjusted in the second
loop by tuning the transmission coefficient of the absoriperthe phase difference between
the beamsp) and|p). Consequently, by rotating the phase shifter PS1 in theldiogt an
interference pattern is recorded for a particular geomptrase. A change in the second loop
results in a shifted interference pattern and possiblyalgoanother value for the contrast.
It is mainly the phase that is of further interest for the eatrexperiment. In Figuie”4110 the
interference pattern produced by a rotation of PS1 is shomereas the different oscillations
are for different positions of the phase shifter in the sedoop PS2.

In fact the measurement procedure was not to rotate PS1 d¢brpazsition of PS2, but
the other way round. To prevent massive errors due to ungedde phase drifts in the
interferometer one step of PSA)(is followed by a rotation of PS2 for slightly more than
one period. This approach guarantees that relatively sitnmsic phase drifts do not affect
the measurement of the phaBdetween second loop and reference beam. Such phase drifts
are mainly caused by temperature gradients [May03], botalsations and stray magnetic
fields can influence the phase stability of the interferomete

4.6 Experimental results

In the experiment we have used four different settings ottieknesses of the aluminium
slabs of PS2. We have chosen onk dm thick slab in the transmitted beanp)) resulting
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Figure 4.10: Interference pattern produced by a rotatioARf. The shift indicated by the
arrows is the phase shift caused by the different positions of PS2.

in the phase shift, and in the reflected bearfp(")) plates 056 mm, 1 mm, 2 mm and.4 mm

in thickness giving the phase shjfi. The relative phase differendgy is proportional to
these ratios. For all setups the phase shifter in the firgtiootated to give a relative phase
difference of approximately two periods and in the secoog ightly more than one period
has been measured by the rotation of PS2.

4.6.1 Thickness ratiod;/dy~1/8

First we have chosen a phase shifting slab.6frim thickness in patfp") to obtain a ratio
of di/d2 = 0.5/4.1 ~ 0.122 between the thicknesses of PS2. In order to have vagishin
dynamical phase contributions (Equatlon-4.3.6) the atesarbpath|p) has to be chosen
to reduce the neutron intensity to= 0.5/4.1lg (lp is the non attenuated flux in the lower
path). This is achieved by using a gadolinium solution wiprapriate concentration. The
transmission coefficienf§, and T, for beam|p*) and|p), respectively, has been measured
to

T; =0.985+0.004 and T, =0.118+0.005 (4.6.1)

Ty comprises the contribution from.®mm aluminium oriented in an angle of 4With
respect to the forward direction of the beam and the corttabdrom a 5 mm silicon slab
compensating the transversal shift of the beam due to thectefn at the phase shifter (c. f.
Sectiorf4.B). Hence, the transmission ratid;igT, = 0.120+ 0.005.
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Fitting the data

In the general discussion we have found an expression fgttase shift of the second loop
with respect to the reference beag) (Eq.[22Z%),

X1+ X2 Xo—x1\ (1-VT
— A2 A% grctan|tan .
v 2 [ ( 2 )(Hﬁ)]

This equation is valid only for the abstract perfect thebuy, it can be tailored to our needs
by introducing a few more parameters. First the small, butvenishing absorption due to
the aluminium slabs in the beam pagit) is taken into account by insertion of a transmission
coefficientT; for this beam as well. Furthermore, as will be demonstrate8ectiol4.8]1
at length, the phase shift has a bothersome side effectimaha divergent poly-chromatic
beam the interference fringes vanish for large phase shiftee partial waves from each
beam do not overlap anymore. This unfortunately also affén relative phase between the
reference beare¢) and the two sub-beamp) and|p'). In short, this can be shown by
considering the wavefunction at the interferometer oytput

W) O (Ag€ + AgeXt 4 Ae2)|O), (4.6.2)

where the real coefficient; denote any norm reducing influences. For the intenisity
(We|Ws) we get

Z A? 1 2A1 Ay cod X2 — X1)

+2AoA1 cosm Xl) + 2A0A2c08N — X2)

2A0 ZA +—COS(Xz—X1>

+Acogn — Xl) + Azcogn — X2) (4.6.3)

For fixedx; andy> (fixed position of PS2) the intensity consists only of a lin@gperposition
of two oscillations with the same argument

| =C+Ascogn — x1) +Axcosn — X2) (4.6.4)
and can be simplified to
| =C+vcodn +d), (4.6.5)
v = (Af + A5+ 2A1A2cos X2 — X1)) 2 (4.6.6)
® = arctan :ég;iiﬁjﬁi igg(zz . (4.6.7)

From the last equation it becomes apparent that the ame$itatithe superposition of the
cosine functions influence the phase of the resulting sidasmterference fringes. Not fully
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overlapping sub-beams gives a contribution to the measpinede shift, except at points
where the arctan- term vanishes. In fa®t,is equivalent to the expression for the phase
difference in Eq.[{4.2]4). From the latter we can read off #hi¢ghe pointd\x = nr, ninteger,
tan(Ax/2) = 0 and therefor@ is independent of tha coefficients. Here, the overlap of the
sub-beams is immaterial. This result can be appreciateldeimgtaphs of the experimental
data below (FigureS~41L [, 4113, 4.15 4nd ¥.17): The measlatdcurve is flattened with
respect to the theoretical predicted curve which is a carssee of the merely partial overlap
of the different subbeams except at the points wigres an integer multiple oft. From®

in @.&.1) it becomes evident that an additional fit param@te: A; /A is necessary taking
all contrast reducing influences into account. The fit florctieads then

F(&C)= M—arctan[tanm(;$> \/\/%;g\/\/:z] (4.6.8)

But this is still not the whole truth, since we have to inclymessible dynamical phase
contributions as well. It is in the dynamical phase’s nafiate. Eq.[4.3.6) that it depends
linearly on the rotation anglé and for this reason we simply include a linear term in the fit
function,

F(&,C,D)= M —arctan[tanAXZ(E) \/\/I:llg\/\/%} +D¢. (4.6.9)

Figure[Z.T1L shows finally the measured phase shifts fitteld twé function”(&;C, D).

o O A N O N

© o o o

Figure 4.11: Measured phase shift of the intensity pattgrarbinduced phase shift défy
due to rotation of PS2.

The fit results in values d = 0.57+0.02 andD = —0.6 + 0.6. The contributions to
the dynamical phase reflected in non-zBraoefficient are mainly due to a deviation in the
precised; /d, thickness ratio and in a misalignment of the phase shift@: F8is issue will
be discussed below.

Cyclic evolution The foregoing theory predicts that the geometric phas&xat nrt is
not affected by the disturbances subsumed in the fit parar@etence at these points the
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tangent in[[4.6]9) vanishes. The distance between the ittee to the measured data and
the theoretical curve in Figute" 4111 should be zero for thvasges. This provides us with a
further check of the theory. We already see that the difisgsbetween the measured values
and the theoretical results are minimal at these pointsekiewyin order to quantify such a
statement we have to embark on another strategy for fittiagl#tta, because the fit function
in Eqg. (£.6.9) automatically gives us the correct value far geometric phase Ay = nrt.

As already indicated at these pointsfgyy2 = 0 and only the sunix1 (&) + x2(&))/2 along
with the term referring to the dynamical phase téddnis left.

Explicitly, the dynamical phase can be rewritten as

C Tixit+Toxz | Xi+Xetar? 3

_ _ _ XitXxe AX
Ti+T 1+tanzg

2 2

coso,

(4.6.10)
where we have usell = tar? 8/2. Subtracting this term from the fit function ini{416.9) and
bearing in mind that the arctan term is either Orofor a half rotation {x = m) or a full
rotation Ax = 2m), respectively, we find

¢] ., 0
:)(1c:os,2§+)(23|n2E

I =
:{ 2C080 - Ax=m (4.6.11)

m(cosf —1) Ax =2m.

There is by definition ofF no free parameter left to take the measurement results mto a
count, the transmission coefficients determines the fittfancF completely at these points.
So, by design of the fit function at these points when subtrge¢he dynamcical phadeé

we obtain exactly the theoretical result for the geometniage, which is not what we want.
We would rather like to have a more objective approach to #anetric phase also for
Ax =nrt.

Trigonometric fit  To find a remedy we proceed by fitting the data values with a sim o
trigonometric functions plus a linear term

N
F'(&)=A+BéE+ Z}{Cj cog jay, /4, ) + Djsin(jwy, /g,€) }- (4.6.12)
=

Eq. (41.2D) provides the oscillation periogy, /q, = v2NpibeaiA (dq + d), in particular,
(54 = 367.1rad/s. The maximal value ®f is given by the number of data points in that
the number of fit parameters must not exceed the number ofpdatés. Here we have 19
points, henceN < 9. The exact number faX can be found by looking at theducedy-
squarevalue [Le094] of the fit that is given by the sum over the wegghéquared residuals

10 (-
2__ = i
Xr—vizl( - ) (4.6.13)
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wherex; is theit" measured valugy; is the value predicted by the fit functiod;, denotes
the variance and the degrees of freedom of the fit & number of data points - number of
parameters).

If x?~ 1, we can be satisfied with the fit function. Indeed, we takefith@ith N as
small as possible angl?® close to one in order to avoid over-fitting. A reduced chiagu
valuex, = 1.47 is found forN = 1 andv = 15. The probability to obtain a larger chi-square
X2 = vx? than the chi-square from the & P(x? > S), serves also an indicator for the
goodness of the fit. For acceptance it should be greater #tarHere,P(x? > S) = 10%.
Figure[4.IP shows this trigopnometric fit along with the meaduata.

N o N
-

@
o o o o
© o b

N w

AX

Figure 4.12: Trigonometric fit witiN = 1.

At the pointAx = 2 the measured value from the trigonometric fidls= —0.689+
0.015rad. The dynamical phase contribution is determinedheyfit parameteD in
F(&;C,D) from Eq. 68,

B D2
NaibeaiA v/2(dy + dy)

where we have assumed that the wavelength spk@dd ~ 1% and the error in the thick-
nessedd; ~ 0.05 mm. The resulting geometric phase is

@(2m)

— —0.014+0.01rad (4.6.14)

G=P—-@=-068+0.02rad (4.6.15)

which is in good agreement with the theoretical vabgé: —0.671 rad.

Causes of spurious dynamical phase contributions

In the derivation of the geometric phase from the measurketsave have omitted a discus-
sion on the origin of the dynamical phase contributions.

2Note, thatgy cannot be determined froBiof the trigonometric fit7” (€ ), since for this fit we did not make
any assumption on the separation of the dynamical and theefeic phase.
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Ratio mismatch First, there is a small contribution from the mismatch of thtéosd; /do
andT,/Ty1. For the present setup we have fouRdT; ~ 0.120 andd; /d» =~ 0.122 which
adds a dynamical phase component of

(—diT1+doTp) Ay
T]_ + T2 (d]_ + dz)

w(Ax) = ~ —0.002A. (4.6.16)
At Ax = 2rrwe have already accumulated a dynamical phagg of —0.011 which explains
the deviations found above.

Parallel position Secondly, a misalignment of the phase shifter PS2 can gecerae to
a dynamical phase. If the phase shifter is not inserted ggBcparallel the ratio of the
mean effective thicknesses changes as well. Recallingititeigsion in Section4.1.2, the
phase shift of the neutron waveXs= NajbcaiA di/ cosa with d; ¢t = d/ cosa the effective
thickness. For smallr the series expansion of the inverse cosine (¢ts + &)l ag=m/a =
V2(1+ &)) determines the effective thicknedss = dv/2 relating the rotation abou to
the phase shify = NajbcaiA def €. But for an expansion aboab = 11/4+ d, corresponding
to a slight misalignmend we obtain

X; = Naboaid div/2 (1 & + 5 +38& + O(3)2+ O(£)?) (4.6.17)

for smalld and small. Note, that terms proportional §7 are not included although they
are of the same order as the terms proportiondl@ince we just want to estimate the order
of magnitude of the error contributions. The terms of ordecontribute only to a constant
offset for varyingé and are therefore also not included. The variable phaseishiien

Xi = NaibeaiA dv/2(36 £1) E. (4.6.18)
~———
dtlaff

The effective thickness has changed by an am@it- 1) leading to a modified phase shift
ratio

dp df d235+1
Recalling the parallel transport condition from Hg. {4) 3% notice that a misalignment of
the initial position contributes to the dynamical phase imegtitably spoils the ideal parallel
transport even for properly adapted thickness vs. trarsomsatios.
Why does this effect usually not bother in standard neutnterierometry? To answer
this question let us consider again a phase-shifter witteplaf different thickness. The
relative phase shift is according to the above

dp  df ch35-1
9 G101

AX = X2 — X1 = V2NpibeaiA (o€ (35 +1) — d1 £ (36 — 1)
= V2NaibeaiA ((dz+d1) +3(d2— d1)5) &. (4.6.19)
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From the last expression one immediately realises thatetime proportional ta vanishes
for d> = d; which is usually the case. This term becomes only importandifferently
thick slabs in the different beam paths. For the presenpgéeimisalignmend causes an
additional dynamical phase contribution of

(d1(1—30)T1+d2(1+39)Ty) Ax
Ti+To (d1(1—35)+d2(1+35))

@w(Dx) = (4.6.20)
when replacingd; with dj = dj((—1)) +30) in Eq. (6.I6). For an otherwise perfectly
adjusted setupdf /do = T,/ Ty — @ = 0) the additional contribution to the dynamical phase
from a misaligned phase shifter amounts to

6d>T>0
T+ Tz) (dl +dy+ 35(d2 — dl) '

w(Ax) = ( (4.6.21)

For exampled = 1° gives rise togy(Ax) = —0.096Ax in the 41/0.5 setting, i. e. for a
2mrrotation~ —0.05 rad. It becomes evident that the parallel adjustment Vexs more in-
fluence on the dynamical phase as the errors in the adjusthtr@ phase shifter thickness.

4.6.2 Thickness ratiod;/dy~ 1/4

In the next experiment we have chosen a ratio of 1 mm vsmin between the aluminium
slabs of the phase shifter PS2. The transmission rate obdwlaer in the beam denoted by
|p) has again been adjusted to reflect the same ratio betweenténsities inp) and|p*),

T; =0.984+0.010 and T, =0.240+0.011 (4.6.22)

whereT; comprises the absorption of 1 mm aluminium at an angle 6fréftive to the
forward direction plus the 5 mm silicon plate inserted to pemsate for the beam deflection
(Sectio4.B). Altogether, this yields a transmissiororafiT,/ Ty = 0.244+ 0.011 which is

in good agreement with the ratio of the thicknessgl, = 1/4.1 = 0.244 aimed for.

A fit of the data using the function in Eq._{4.5.9) shows ag&ie good qualitative
agreement with the theoretical prediction (Figlre ¥.13)e Tit parameters have values of
C=0.463+0.015 andD = 8.51+0.75 and the deviations from the theoretical curve can be
explained in the same manner as above (Setfionl4.6.1).

Again, we fit the data with a sum of trigonometric function${42) to obtain the geo-
metric phasegy atAx = 2rrwith an oscillation periodv, 4 = 407.0rad/s. HereN = 2 yields
the best fit withS, = 0.35 shown in Figur&Z.14. The confidence leRék? > S) = 96.7%.

Let us here as well identify the cyclic spatial geometricgghatAx = nrt. There is no
deviation from these points stemming from the partial aeslof the sub-beams, but there is
a contribution from the dynamical phase coming mainly friwa tisalignment of the phase
shifter. At the pointAx = 21T we obtain a measured value®f= —1.104+0.013 rad. From
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Figure 4.13: Measured phase shift of the intensity pattgrarbinduced phase shift dfy
due to rotation of PS2 with thickness 1 mm andl \am, respectively. The fit parameters for
the fitted (solid) curve ar€ = 0.463+ 0.015 andD = 8.51+ 0.75. The dotted curve shows
the theoretical curve disregarding the effects of diffecamtrast values, i. e. f& = 1.
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Figure 4.14: Trigonometric fit witiN = 2.

the fit parameteD we can estimate the contribution of the dynamical phase,

D2

@ (2m) = =0.131+0.012 rad (4.6.23)
NabeaiA v2(dy + dy)
and therefore the geometric phase reads
@ =®— @ =—1.230+0.018 rad (4.6.24)

This is to be compared with a theoretical valuegcgﬁz —1.232 rad.

4.6.3 Thickness ratiod; /dy ~ 1/2

For the setting of 2 mm vs..# mm phase shifting slabs at PS2 we have obtained the fol-
lowing results: The transmission coefficients have beeerdehed tol; = 0.97+0.004 and

T, = 0.45+ 0.017 yielding a transmission ratio @b/T; = 0.47+ 0.017 which has to be
compared with the ratio of the thickness of the phase shifllabsd; /d, = 2/4.1 ~ 0.488.
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The measured phase shifts are shown in Figurd 4.15 where gaedimeters for the fit func-
tions areC = 0.68+0.025 andD = 14.3+ 2.5, i. e. there is a quite large dynamical phase
contribution.

Figure 4.15: Measured phase shift of the intensity pattgrarbinduced phase shift défy
due to rotation of PS2 with thickness 2 mm antl ;am, respectively. The fit parameters for
the fitted (solid) curve ar€ = 0.68+0.025 andD = 143+ 2.5.

From a trigonometric fit withw, , = 486.8 rad/s,N = 3 andS = 37.6 we obtain the
value® = —1.876+0.07 rad at 21 (Figure[4.6.B). Note theh is extraordinarily large and
also the confidence level is very IoR(x2 > S) = 8 x 10°%. The fit to the measured data
or even the measured data is questionable. The malfundtithre dit procedure may result
from very large intrinsic phase shifts during the measurdrpeocess that is already visible
in the fits of the interference patterns. They look quiteatisd (Figuré 4.16(b)) - the reason
might be large temperature drifts. Nevertheless we wilspré the data.
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(a) Trigonometric fit withN = 3. (b) Interference fringes in the O-detector
for varyingn.

Figure 4.16: Due to parasitic influences the measured valgesot that great for this setup.

The dynamical phase at the point 2an be estimated from the fit parameleto ¢y =
0.18+0.03 rad and the geometric phase evaluates therefore to

@=P—@=-206+0.08rad (4.6.25)
Despite of the bad data this is quite close to the theoretadake ofrpéh = 2.006 rad.
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4.6.4 Thickness ratiod; /do =1

Finally, we want to discuss the simple situation with no abeo attached and therefore
equally thick phase shifting slabs of PS2. The transmissasfficients in both beam paths
|p) and|pt) are determined only by the absorption cross section of then thick alu-
minium slabsT; = T, = 0.96+0.001, and is moreover irrelevant since they are same in both
beams.

For the fit function shown in Figute' 4117 together with thdexied experimental data the
parameters ar€@ = 0.925+ 0.022 andD = 0.0+ 4.2. Note, that there is one pointin between
the step-like function with a very large error-bar. Thisigdo the vanishing contrast in this
case and can be interpreted also geometrically: At thistpl@initial and the final state on
the equatorial line are exactly opposite and thereforeetlseno unique geodesic connecting
these two points. The geometric phase is therefore undedinéds point.

)
[
! LI
W O N gk g o

Figure 4.17: Measured phase shift of the intensity pattgrarbinduced phase shift dfy
due to rotation of PS2 with thicknessl4mm and 41 mm, respectively. The fit parameters
for the fitted (solid) curve ar€ = 0.9254+0.022 andD = —0.0+4.2.

To obtain an estimate of the measured valud&yt= 217 we forbear from applying a
trigonometric fit to the measured values. We fit the left p&the data points that are close
to zero separately from the right part (close-ta) with the constant functiond, (&) = A
andD, (&) = A;. The relative phase difference is then just the differehce A, — A;. The
parameters turn out to

A =—-0.077+0.016rad and A = —3.11+0.006 rad

resulting in® = —3.04+ 0.02 rad.
The dynamical contribution is estimated@g2rm) = 0. +-0.04 rad forAx = 2 and the
geometric phase is therefore

@ =P — @ = —3.04+0.05 rad (4.6.26)

Clearly, for this setup we expect a geometric phasersince the evolution is along the
equator and therefore half of the enclosed solid angte i§he deviation from the theoret-
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ical value is here not due to dynamical contributions, siweehave already argued that the
misalignment is immaterial for phase shifting slabs of edb@kness. The source of the
discrepancy must be ascribed to the linear fitting procedugeause it does not take into
account the phase shift due to the different contrast vatude different loops of the beams
subsumed in the fit paramet@r Although there is no deflection of the beams due to differ-
ently thick phase shifters, there are still interferometeinsic imperfections that reduce the
contrast and lead 10 # 1.

4.6.5 Cyclic geometric phase

In Figurel4.1B the measured geometric phagese plotted over the solid angieenclosed
by the path on the Bloch sphere. We notice that in comparstmetcyclic spatial geometric
phase recorded in the antecedent experimentin [HZR96]¢kmton from the theoretical
curve is smaller. This is because we have corrected for thardical phase, whereas in the
other experiment additional dynamical contributions aiteiscluded in the plotted phase.

0 7T 27
Q

Figure 4.18: Measured geometric phagevalues over the solid angl@. The theoretical
value ofgy is indicated by the solid line.

The values of the measureg along with the theoretical predictions and the transmissio
ratio is presented in Table4.1.

@ [rad] | ¢ [rad] /Ty dy/d> @ [rad]
—0.684+0.02| —0.671 | 0.120+0.005| 0.5/4.1=0.122| —0.01+0.01

—1.23+0.02 | —1.232 | 0.244+ 0.011| 1/41=0.244 | 0.13+0.01
—2.06+0.08 | —2.006 | 0.47+0.017 | 2/41=0.488 | 0.18+0.03
—3.04+£0.04 —TT 1 1 0.0+0.04

Table 4.1: Measured cyclic spatial geometric phase va%“éalong with the theoretical
predic:tionsgaéh for the various transmission and thickness ratios.
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4.7 Wagh'’s critical comments

In measuring the non-cyclic spatial geometric phase théitgtize and also - when taking
systematic effects into account - quantitative agreemetwéen theory and experiment has
been verified and the way is paved to turn back to the criticedlraents by Wagh [Wag99]
on the antecedent experiment on the cyclic spatial geotngtase. In his comment Wagh
put forward some arguments against a geometrical intefpoatof the experiment. He ar-
gues that the observed phase is only dud {@) evolutions, i. e. it is a scalar phase shift
and therefore cannot be of geometric origin. A comparisah wimeasurement of the geo-
metric phase using the neutron’s spin serves him as indittzbthe observed phase is only
dynamical. His argument relies on the orthogonality of {hi@ gigenstates states, where the
scalar product] | |) vanishes. This is in contrast to the superposition of theriht beams
after the last beam splitter BS6, which are admittedly insdame momentum eigenstate, and
he concludes that placing the statps and|p*) “at opposite poles on the two-sphere ray
space amounts to a conceptual error”. To dismiss suchisntit is essential to stress that
|p) and|p*t) are definitely not in the same state, it is not until their rabmation and their
recombination with the reference bedauc¢) that they differ only in phase. It is immater-
ial whether the final superposed partial beams are in the states the geometric phase is
imprinted in the global phase obtained from the evolutiothssecond loop.

That the “density operator remains stationary in ray splacaighout the evolution” can
be refuted by the same argument: It is evident that the beanieisecond interferometer
loop do not overlap and are therefore orthogonal to eachr.offteerefore, in the simplest
description we have at least a two dimensional Hilbert spAgghase shifter in the second
loop generates different states in this two dimensionates@amd the density operator does
definitely not remain stationary. Otherwise, we would na aechange in the contrast as
shown in Figur€Z.19.

Figure 4.19: Contrast = |(Y/,¢|})| for different values of the phase differentg for the
di/dp = 1 setup.

The results presented endorse this interpretation byattplshowing that the geometric
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phase is observed with “an appropriately reduced interfereontrast due to the noncyclic-
ity” as asked for by Wagh. Therefore, | believe that this expent provides a proper test of
the spatial geometric phase.

4.8 Systematic deviations due to partial overlap

The last point to settle is the origin of the flattening of tx@erimental curves in Figures
HT11,[ZTIB[475 and 4117, which we attributed above to thel@0% overlap of the sub-
beams.

If phase shifters are put into the beam paths in the intemfeter a reduction of the con-
trast will in general be recognised also if these phaseeshifire perfectly transmissive. In
analogy to geometrical optics this effect can be depictesl gsatial translation of the beam
in the same way as a light ray is deflected at the boundary leetiveo media with differ-
ent refractive index. The unaffected and the translatedhtee@ just partially overlapping.
In the argument leading to the correct fitting parameter iati6e[4.6.1 we have already
encountered an additional phase shift due to the imperfeaiap of the three sub-beams
which finally distorts the curve of the geometric phase. Wguhis effect is compensated
by placing the phase shifting slab such that it covers bodnbpaths. Then, each of the
beams is shifted approximately by the same amount and jedrtfall difference in the ef-
fective thickness due to a slight tilt causes the relativasgtshift. However, in our case the
phase shifter PS2 is of unequal thickness and thereforectlw@$ are not fully overlapping
anymore.

4.8.1 Coherence properties

In neutron interferometry single neutrons are counted afteking their way through the
interferometer. The outgoing beams at the two output p@is(d H- beam) are in a super-
position of having taking either one or the other path. lietence fringes are induced by a
phase shifter described above which shifts the wavefumdtimne path by (Eq.[412%).
Theorder of the interferencis determined by the number of interference maxima passing b
when increasing continuously starting from zero. The relative phase betwle contri-
bution from either path sweeps the intensity between then@+& beam. For a plane wave
with a single wave vectdrp the amount of the phase shjftis immaterial, the interference
pattern will be visible for any interference order, yet, aality the beam contains a multi-
tude of wavelengths and each partial wave obtains now aeliffgohase factor. In turn, the
contributions from different monochromatic waves wittyklly different wavelength lead to
different periodicities. The resulting interference pattis the sum over all such contribu-
tions and with increasing phase shift their addition widdeto a less and less well-defined
interference pattern because the maxima will get more ane mat of step. The vanishing
of the interference pattern defines ttw@herence lengtbf the beam. In fact, the phase shift
X produced by a typical phase shifting slab can be denotedéogdalar produck = A-k
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with A = (Ax, Dy, A7) as the spatial displacement vector (EG.Z11.25) and seoveistin-
guish between the coherence lengths in different direstiualitatively A is the amount
of displacement of the wave in directiarfand equally foly andz) for which the interference
pattern vanishes. Theoherence volumf&la63,| RWK™96,[RWO0 [ Petd7] is defined as the
product of these coherence lengths= AfAAS. Specific to neutron interferometry are the
large differences in the coherence lengths due to the e¢tstrs on the wavelength distrib-
ution imposed by the Bragg-diffraction at the perfect aysilicon plates in one direction
Ay > Ay, A, wherey is perpendicular to the reflecting lattice planes of therfatemeter).

As an expedient example we consider an incident Gaussiaa paoket

:/de(R) K)

The momentum distribution functiof(k) can be written as a product of the individual dis-
tribution function, f (k) = f (ky, ky, kz) = f(kx) f(ky) f (kz) with

f(i) = e 1355 (2m(an?) 24

ki denotes the mean momentum a¥id the momentum spread in the corresponding direc-
tion. The superposition of the wave-packgt with a phase shifted copy of itself

g = [ AR

enables the measurement of the autocorrelation functibe.stiperpositiony) + |n) cor-
responds to the output of a neutron interferometer with a@baiﬁE-R in one of the beams.
We assume that the spatial displacem&mioes not depend explicitly on the momentim
which is justified if the momentum spread is small so that the difference in the refractive
index can be neglected. The superposition leads to thesityen

| =[|W)+|¢n)|?
= (Y|Y) + (WalWn) +2[(Y|Yn) | cosargy|Yn). (4.8.1)

Due to the normalisation the first two terms are both unitye €toss producty|ya) can be
calculated to

(@lyn) = (2m(3k)) 1/2ﬂ//dkdl<e (o) (o) sk iy

——
% K

_ik)?
= (23k) 2] [ e ok
_(y0K)? 6k
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and inserting this expression into EQ.{418.1) we obtain

| =2 <1+ez‘<Aiz‘5'“)2 cos Y EAQ), (4.8.3)

I. e. the interference oscillations are damped by an exga@iéerm depending on the wave-
length spreadk.
Looking at the contribution of a single direction a phasdt sifi

A° = /2/5k; (4.8.4)

causes a reduction of the amplitude of the oscillations bgctof 1/e. Equatior{4.8.4)
serves as a possible definition for the coherence leAgthOther definitions differing by
some constant factors can be found as well, for example atii@fiof the coherence length
via the Heisenberg uncertainty relation by Rauch and WERW&O0C],

Aok =1/2. (4.8.5)

In this case the coherence function decays to a value 8 for a displacement of the
wave-packet by,

4.8.2 Correlation Function approach

For the sake of completeness | want to mention that the clsgpproach above is somewhat
outdated today since it does not describe effects on thetguralevel. Photonic and elec-
tronic anti-bunchingare typical effects which cannot be formulated in this ctzdframe-
work. The first experiment on bunching effects has been pagd by Hanbury-Brown and
Twiss [BT57,/BT58]. They looked at the intensity correlatoof two detectors and found
out that photons are more likely to arrive bunched in paitisaiathan separately due to their
bosonic nature. The coincidence rate of clicks in the deteds the interesting quantity in
such experiments, where only events are taken into accduen & particle is found in one
detector andr seconds later another one in the other detector. Varyifeads to the so-
called second-order correlation functiG? (r'1,t;T2,t + 1) as defined by Glauber [Gla63].
This function is different for different types of particles more generally for different types
of quantum states. For fermions one expects to find a diftéremaviour as for bosons since
the Pauli exclusion principlgells that two fermions are not allowed to bunch, but rather
to repel each other. For electrons this anti-bunching has lad¢ready verified [KRH02]
and recently lannuzat al. claim to have measured the corresponding effect for nesitron
[I0ST0€6]. Photons though being bosons can also be found antiRednender special cir-
cumstances [KDM/7] and it is in particular this phenomeniost tan only be described
by quantum electrodynamics, whereas the photon bunchimdgpealescribed classically in
terms of the fluctuations of a classical field [Pur56]. It waslly Glauber who presented a
guantum theory of coherence [Gla63] which accounts for trentum effects of light by use
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of field operators instead of complex valued intensity fiord.

Since the neutron density is usually rather low the neuteambconsists in the mean of
just one neutron at a time and the fermionic nature of nesgtiinterferometry experiments
can safely be neglected for almost all cases. Thereforegh@on beam can also be thought
of a quantum field and its coherence properties describdtiquantum optical framework
[RWOO, RWK™9€].

I will not go into further detail since the results are eqilevd to what we have obtained
in Section4.8]1, since we do not pay attention to particgleantum features of the beam.
However, it is important to note the close analogy betweartroa and general quantum
optics, i. e. between matter and photon waves.

4.8.3 Coherence volume in a neutron interferometer

In neutron interferometry the coherence Ienglﬁs’n different directions (EJ_4.8.4) differ
by some orders of magnitude. This property is due to the Brafjgxion at the perfect crystal
monochromator and the crystal structure of the interfetemiself. The beam incident on
the first interferometer plate which has same coherenceéHeng andy direction (if the
effect of the monochromator is neglected) is depicted infEELZD. The Bragg condition

C
Ay
I
a
Kx
=k >
G y éx éy
Ay
A A
AC

Figure 4.20: Perfect crystal silicon plate of the neutrdariferometerG denotes the recipro-
cal lattice vector perpendicular to the lattice planes. iflcalent beam has equal coherence
length in all spatial directions (neglecting the monochaton), whereas the reflected beam
shows a larger coherence length in the direc@on

K —k=G, (4.8.6)

relates the incident beakito the reflected beafd via the reciprocal lattice vect@ pointing

in the &, direction. The distribution ok is restricted to a narrow interval much smaller than
the distribution ofky (andk;) where the Laue diffraction does not have any influence and
therefore the reflected beam exhibits a larger coherengﬁmﬁ.
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4.8.4 Three Beam superposition

Let us continue with the double-loop interferometer whére¢ beams are interfering. We
can calculate the reduction of the visibility leading to aldidonal phase shift by adapting
Eqg. (£81) to the three beam situation:

2
= 11Wg )+ 1¥g, .x) + 1WA, %)

= (U W )+ (W, x| W, ox) T (W, %, ¥a, 1 x,)

+ 2/ (W Wy, ;) cosardyy (W 5

+ 2/ Wy, ;) cosardyy (W s)

+ 2/, %, W, ox, ) cosardy x|, ,)- (4.8.7)

The tilde in the subscript denotes the spatial displacesnehthe_wave-packets)A{l’z =
21Xy 2/A (and similarly forH, N andy) with the mean wavelength. H.. = /7°+ fj /2 de-
notes the spatial shiff{f4.112?5) of the wave-packet impdseBS1 comprising the constant
term plus the variable positive or negative term (Eq._4JLf@Bthe reflected and the trans-
mitted beam, respectively. The choice of the sign corredpdm an anti-clockwise rotation.
)~(172 = )722+)71’2 are the spatial displacements induced by PS2. InsertindZEg)2) into

Eq. (£8F) we obtain
([+X1)%(3k)2 (71+%2)(3K)
I3 = 3+2|e” R cogn +X1)+e o cogn +Xz)

_ (Xg—%p)%(3K)?

+e 2z cogX1— Xz)] . (4.8.8)

For the moment we skip the transmission coefficigyils and+/T> for the beamzfpwﬁ+ Y
and\wﬁ++)§) to simplify the notation. Since the phase-shifter is aldjperpendicular to the
reflecting net planes (dispersive direction) it is thegitudinal coherence lengtf\$) that
is of importance in our case. It is typically about 200 A, mschaller than théransversal
coherence lengtthy ~ 10um) [RWK™9€].

The amplitudes of the cosine oscillations are damped exji@tly and also to a different
degree. The first two terms describing the oscillations betwthe reference beam and the
two beams from the second loop are reduced proportionaktedhared thicknessd% and
d3, whereas the last term depends on the squared diffef@aced;)? of the thicknesses.
The necessity to introduce an additional compensatingepbhaster in the beam with the
thinner phase shifting slab becomes now more comprehensibl

The quantity of interest is basically the change in the fetence pattern when rotating
the phase shifter PS2, i. e. for changigandX,. However, these oscillations are damped
by the exponential terra~*e=%0)*(8K?/2 For |arge differences iX, andX; there won't be
any oscillations left so we have to insert a compensatingepbhiftg behind BS4 as shown
in Figurel4.Z1L. This silicon phase shifting slab (COMP) isi® im thickness and is tilted by
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an angle between 3@nd 60 from the beam forward direction, depending on the various
phase shifting plates. Also without the explicit calcwatione could already guess from
Figure[4.Z1l that to compensate the phase shift of the thizfe pif PS2 one has to place a
phase shifter of approximately the same thickness in baigrdteam paths in order to induce
roughly the same displacement of the wave packets in all beam

Figure 4.21: Double-loop interferometer setup with an addal silicon phase shifter
COMP placed behind BS4 to compensate for the differencdseimvterall phase shifts ex-
ceeding the transversal coherence length.

The intensity pattern in Eq.{4.8.8) is altered accordingly
(1+%1)2(8K)2 (1+Xo-5)2(8k)2
1§ = 3+2e T codn+tX) e 7 cogn+X-9

(Xg—Xp+9)2(8k)?

+€‘47‘*mqn—m+$] (4.8.9)

If Sis approximately equal the difference of the constant pkages of PS2 §~ Xg —Xf)
we obtain

(Xq3k)2 (X18k)2

I:fz 3+2[e‘T cogn—x1)+€ z cogn+x2 —Xf) +cosA)(] . (4.8.10)

Here we have omitted the contributionsand x » to the exponential terms since these are
the terms originating in the rotation of the phase shiftestaerefore rather smak( x1 > <
Xf,z, n°). This equation demonstrates, that a suitable compensasires us to reduce the
loss of contrast. Only the thinner phase shifter in[the) beam affects now the coherence
of the partial beams.

What effects are to be expected for the phase shift betweestéte in the second loop
and the reference beam? For fixeg Eq. (4.8.1D) has the same structure as EqQ.(4.6.4) with
the identification

(X3K)2

A=A=e 2 . (4.8.11)

From Eq. [£.86]7) we notice that there should not be any awtditiphase changes for
ideally adapted compensator. Nevertheless, the expeta@sults show deviations since
the compensator does not work perfectly. Moreover, thexstt intrinsic phase differences
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across the beam cross section in the two loops, for exam@ealinhomogeneities in the
beam splitting plates, which cannot be compensated for.

Experimental consequences

Just for a qualitative estimate let us insert some numbeostire equations above. The
intensity pattern including again the transmission coieffits T; and T, and omitting the
constant tern)(f reads finally

(A+X1)?(5k)
l3=14+Ti+ Totr2[vTe 7 cosn—x1) (4.8.12)
(X1 —%2)?(3k)?

([+%2)?(3k)2
+vVTe Y cogn — x2) + vV TiTe 2 COsAY

without compensating phase shifter COMP. With compengh®intensity is given by
S (%K)
1S~ 1+T1+T2+2[\/T_1e 2 cosn — x1) (4.8.13)

(X10k

)2
+vTe 2z cogn —x2) +TiT2CcosAX |

S B
In Figure[4.2P the coherence functien(x(dgak) with X(d) = bcajNay ’2\—,2Td for varying thick-

nessd is shown. The curve is in good approximation also valid f& $iicon phase shifter
since the produdbcsiNs; ~ baiNaj -

1
L 0.8
% 0.6
. 0.4
® 0.2
0
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. . . X(d)ok)2 .
Figure 4.22: The exponential damping factor” 2 is plotted over the thickness of an
aluminium phase shifter.

The amplitude of the cosine oscillations is damped by a fabt® approximately for a
slab 5 mm in thickness, where we have assumed that the watlelspread\A /A ~ 1% for
A =2.715x 10719, So one might argue that there should be still contrastfiafieiinsert
one of the phase shifters with thicknegs= 0.5, 1, 2 or 41 mm. However, we must not
neglect the transmission coefficielt which diminishes the contrast in any case. For the
experiments with a small transmission coefficignk 1 and consequentliﬁl — >~<2 > 0 the
compensator has to be utilised in order to obtain the cauttdbs from all the cosine terms.
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In the case where PS2 comprises equally thick slabs in batmbéhere is no need for the
compensator. Although the exponential damping of the fivetdosine terms in EqL{4.8112)
is largest for this setup sinag = d, = 4.1 mm, the transmission coefficienis= T, ~ 1.

4.9 Dephasing effects

Apart from the phase drift due to the finite coherence lengtiisthe consequent spatial dis-
placement of the wave-packets another main contributiomesofrom dephasing processes.
For instance, the surface roughness of the interferom&tgpcauses a modification of the
phase relation between the different beam paths dependitigeoimpinging point. In the
particular case of the double-loop interferometer thetiredgphases between the reference
beam and the beams in stap® and|p") exhibits a position dependence.

Putting this position dependence into the phases of the |giigtin the second interfer-
ometer loop right after BS3 we get (neglecting normalisafaxctors)

| (%)) = €99 pt) 4 %2 ), (4.9.1)

wherea »(X) denote the randomly distributed phases across the beastseoson X is a
vector to a point in the beam cross-section. At the end, th&itoitions to the intensity from
each point have to be added incoherently. Each of these gjaterates an intensity pattern

I O |1 + /TreX1dn® 1 | /TeXed2(X) ?

according to Eq{4.21 3); is independent ot as all relevant information is contained already
in the a1 2(X). A remaining global phase factor is immaterial.

The phase shiftg; and x2 are not taken to be dependent on the position, because these
deviations are also already incorporated into the additiphasesr; and o, respectively.
One might argue that this is not admissible since variations » yield a position dependent
evolution of the state that must be reflected in the apy) — |t ) transporting the state
in the second loop, i. &l — U(X). However, on a closer look we have defined in [Eq.(4]1.28)
X1,2 to comprise only the terms proportional to the rotation arfgland not the constant
offsetsxgz. Consequently) is also to a good approximation only a functionéofind not
of X. The change in the spatial phase distribution when rotatiagohase shifter PS2 can be
neglected with a clear conscience.

The total output intensity has to be understood as an ineokigrweighted average of
the pure state interference profiles,

|:/pa(2>|xd2X.
Pa (X) = Pa, (X) Pa,(X) is the product of the (independent) distributions of thesehia path
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|p*) or|p), respectively, with zero meEnAccording to Equatior{4.2.2),

he= (Wret|Wret) + (WE (X)Wt (R)) + 2 | (Wre | Wt (R))] cos(n — arg(yre | Wr(X))).
— ~ ’

TV
Vx Dy

Averaging over the phase distributions leads to
I OA+ Z/dzxpa(i)vxcos(n —®y) =A+2vcogn — ) (4.9.2)
with the identifications

V= ’/dzxpo,(i)vxei‘bX

, (4.9.3)
®=arg (/ d?xpg (%) vxeiq’X) (4.9.4)

and whereA denotes the terms independentaf,. Inserting vxe® = (Wl (| W} (X)) =
(Wet|U | 4r (%)) we obtain

® — arg [ 2P (%) (Yferl U] g£ (X) (4.9.5)

The integration over the phase distribution across the b&ass-section can be executed
and yields

[ dPxpa (R (%) = [ dxpu () (@449]pt) + €% |p))
=e2ph) +e2p), (4.9.6)

if the a1 » are — for the sake of simplicity — taken to be Gaussian distieidh with zero mean

and g2 variance, henc€;; = —031_2/2. By renaming the basis vectoigy) = |p*) and

|p2) = |p), Eq. [£T5) can be rewritten as

<Z<p|l> Uze‘rﬂpk)]

= arg[;<p| IUe‘rklpk>] =argTiJ [; e " p)(p |] :

D = arg(ye|U Z e " p) = arg

(4.9.7)

Recalling Eq. [ZZ11) for the unitary evolution operator = /Ti€Xt|py)(p1| +

3Actually, an average phase offset can be put into the defindf the basis statégp™) and|p).
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VT2€%|p;) (pel, yields
® = arg(yTieXe T+ Tete 2). (4.9.8)

The phase distribution has the same effects as the spajdddement discussed above. Both
produce an exponential term to the individual beam contiobs. The significant difference
between the discussion on the spatial displacement abavarahthe present discussion is
the use of either of a coherent superposition (pure stateh&former, or an incoherent
superposition (mixed state) for the latter. The visibililgnishes in any case, but the spatial
displacement does not derogate the pure state nature. Henpattial waves of the beams
are still perfectly coherent is demonstrated by lookindpatdtill existent interference fringes
in the momentum spectrum - “[...] interference in phase sges to be considered rather
than the simple wavefunction overlap criterion [...].” [}, p. 141]. In contrast, dephas-
ing reduces the visibility more generally and it is not féésito compensate this effect.
In our stationary experiment, however, we cannot distisiglnietween these fundamentally
different effects, since just neutrons with the same wangdle interfere, cross correlations
between different partial waves of a pure state get washedloen averaging over the mea-
surement time |Gab%6]. Therefore, two quite distinct caugee rise to the same observed
effect, a shift in the measured phase, hence, both are selolsato the single fit coefficient
C for the fits shown in Figurds 21T, 4113,4.15 &ndK.17.

Mixed state geometric phase Can this additional phase shift be associated with the
Sjoqvist’s mixed state geometric phase

@ =argTiU po| = arg% P (kU |k, for po= Z P Whel | Whe) (4.9.9)

as defined in [SPEDQ]?

At least there is a similarity, but certainly not an equivede. This similarity can be
observed by comparing EJ.{4.D.9) with {4]19.7) which areicitmally equal. The term
z|7ke*rk| pk) (pr| in the latter can even be thought of a (not normalised) dgnsittrix since
it is positive and Hermitian, however, the physical meam@&gains unclear. The decisive
difference to the mixed state geometric phase is the finapeoison with the reference state
|Ylo¢) rather than a proper copy of the initial state. Sjoqeisal. defined the mixed state
geometric phase by assuming an interferometer with a miqaat istate and an evolution of
the internal degrees of freedom, whereas here the mixedterss from the path degrees of
freedom. In the former the Hilbert space of the system cosegra spatial as well as a spin
part’H = Hspatial @ Hspin, bUt in the latter the spin part plays no role at all. It is otilg
dimension ofHspatial that is enlarged to difispatial = 3 due to the double-loop geometry in
contrast to the tensor product structure of the former witth¥d = 2 x 2 = 4. It is therefore
not surprising that the comparison fails and that we find arfigrmal equivalence.
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CONCLUSIONS

4.10 Conclusions

In summary, we have shown that one can ascribe a geometrée pitd only to spin evo-
lutions of neutrons, but also to evolutions in the path degi& freedom of neutrons in an
interferometric setup. This equivalence is evident fromdbscription of both cases via state
vectors in a two dimensional Hilbert space. However, therelbeen arguments contra the
experimental verification in[HZR96] which we believe candattled in favour of a geomet-
ric phase appearing in the setup described above. The wvoébtulations of the geometric
either in terms of a shift in the interference fringes or wdace integrals in an abstract state
space allows for a geometric interpretation of the obtaptease shift.

The main difficulty that came up during the experiment wasltiss of contrast when
using differently thick phase shifting plates for PS2. Tather small coherence length im-
peded the measurement of the relative phase differencediffarent spatial displacements
of the different beams together with the attenuator in orerbsuppressed the interference
oscillations and asked for a further compensating phasestturthermore, due to the same
reasons we have found out that the precise parallel alighai¢he phase shifter PS2 in the
second loop is important in order to keep dynamical phasg&ibotions minimal. It is only
for the exact parallel position that the demanded reladigiu, = T,/T; is satisfied and de-
viations will lead to a dynamical phase. Mainly the setupthwdi = 1 mm and 2 mm suffer
from this requirement.

This systematic deviations have been taken into accouhteidata fits leading to a good
agreement of the measured phase with the theoretical predior the spatial geometric
phase. The flattening of the curve fitted to the measured dega@red to the theoretical
predictions is on the one hand side the result of the spasplatement of the poly-chromatic
incident wave which cannot be compensated perfectly. Ontiier hand side there are also
contributions from dephasing due to a non-uniform phaseibligion across the area on the
beam-splitting plates illuminated by the neutron beam.

Apart from the unpleasant discrepancies between theateaiic experimental results the
flattened curve might also be useful in future since it fornssadle “platform”: Around the
pointsAx = /4 and 31/4 a change of the rotation angfedoes not have much effect on
the phase difference and as we have seen the form of thispratfan easily be changed by
willingly modifying the visibility, for instance by addinghase shifters to spatially displace
the wave-packet.
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Chapter 5

Geometric phase and adiabatic
fluctuations

What happens to the geometric phase, if the evolution of téie gets perturbed by some
outer influences? This question has already been addrassethptefR. There, two ap-
proaches to define a mixed state geometric phase have beeduiced that are valid for
unitary as well as non-unitary evolutions. With differemdis of parallel transport laws a
geometric phase or, generally speaking, matrix-valuedriarhy invariants have been de-
fined that are properties of the path of the density matricebeir respective state spaces
only.

In the following, we will turn our attention towards more lisic systems to study the
influence of external influences on the geometric phase. iShisotivated in that in all
realistic situations the system under investigation is wéwer weak — coupled to the en-
vironment. This approach is distinct from the former, manelistic in nature” [KCS04],
in that it uses pure state geometric phases and employ eitheantum trajectory analysis
[CEGSV03/ NSMOR] or solve a Master equation [GWB88, GF89, B4]30 get insight into
the behaviour of the geometric phase influenced by somerpations.

The big “hype” about the geometric phase for open systemsbbas ignited by in-
vestigations in geometric phase gates as basic blockséduthre (or futuristic) quantum
computer([NCOD]. The main aim of investigations in both dem@nce and geometric phases
at present seems to be their amalgamation to form robustguagates. Zanardi and Rasetti
suggested that the Wilczek-Zee non-abelian holonornies3dYZould be of potential use to
implementholonomic quantum computatigdR9¢8]. A conditional Berry (adiabatic) phase
gate has been issue of an NMR-experiment conducted by &ae$JVECO0] and Duaret
al. [DCZ01] proposed a scheme for the implementation of a setivkbusal geometric quan-
tum gates for the manipulation of trapped ions. Fatal. [FEP”0C] suggested a method to
use a superconducting nanocircuit to design gates for gmaobmputation, and Ekeet al.
[EEHT00] showed how to implement a conditional geometric phasedsn two spins.

Intuitively, the geometric phase might be a good candidatelfe implementation of
guantum gates resilient against environmental influersiesg it is not dependent on dy-
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namical quantities, but is based purely on geometry. Thigt$elf clearly does not ensure
its pertinence, but for particular quantum operations anrtiqular noise sources this feature
could be of interest. In the recent past numerous anahdimdinumerical studies have been
conducted with predictions sometimes promising, sometinoe.

To name a few, Carollet al. [CEGSV03] conclude that the geometric phase for a spin-
1/2 particle is stable under dephasing, i. e. when the phiage®pin states makes some
jumps during an otherwise smooth evolution, but not for gaindecoherence processes.
The same authors investigated also the influence of a quan&tead of a classical field
[CEGSV04] reasoning that in the adiabatic case the geotr@tase is more stable than in a
non-adiabatic setup. Zhu and Zanafdi [ZZ05] compared dycelrand geometric quantum
gates and found out that geometric gates are more robusthéather hand side, similar
quantum gates have been investigated by Neizal. [NSMOZ] numerically. They, in con-
trast, conclude that using an (adiabatic) geometric quramfate instead of a dynamical one
does not bring any advantages since in order to ensure &diabthe operation time of
the former is much longer and noise has more time to taketeffdso Blais and Tremblay
[BTO3] pointed out that the cyclic, but non-adiabatic getnaghase is not more robust than
a purely dynamical quantum gate for noise in the controlpatars. However, both of the
latter do not strictly separate dynamical from geometriagghcontributions to decoherence
and their conclusions are only valid if one is not able to cengate the dynamical phase
along with its variations due to the noise. Sarandy and LJ8B0€], in contrast, derived that
the adiabatic geometric is stable both for dephasing anatapeous emission processes and
noted that there is a distinct time-scale for which the ggamphase remains stable.

Eventually, De Chiara and Palma|CP03] calculated the atiiageometric phase along
with its variance of a spin-1/2 particle subjected to fluathgamagnetic fields for weak noise
fluctuations (first-order approximation). Such a situat®ideally suited for an experimen-
tal demonstration of the robustness of Berry’s (adiabgi@gse with neutrons and we will
discuss this example in more detail. Although it is not derehce in the strict sense in
that the quantum system couples to a classical magneticdrednot to a quantum envi-
ronment (modelled preferably as a bath of quantum harmautlators), it is of particular
interest for practical implementations using neutrons agnetic fields. They conclude
with the promising result that for long evolution times thectuations in the magnetic field
(the environment) do not show up as fluctuation of the geameirase, under the restriction
that everything is sufficiently adiabatic. Whitneyal. WWMSGO05] extend these results by
considering higher-order terms giving rise to a shift of gle@metric phase. This behaviour
also appears in numerical simulations on the basis of the libar&Palma setup as will be
pointed out below.

In summary, the geometric phase seems to be robust forcedafigurations, preferably
for adiabatic evolutions. However, up to now there is no expental evidence. To find a
remedy | present in the following considerations to a pdes#axperimental setup that can
be used to test the predictions In_ [CPP03]. First, the theetyirid is set forth and specific
calculations on the spin-evolution of neutrons are preskrtecond, numerical simulations
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5. GEOMETRIC PHASE AND ADIABATIC FLUCTUATIONS

are shown giving a hint of the feasibility of such an expenindhe planned experiment is
finally discussed in Append[XID.

5.1 Spin-1/2 in a fluctuating magnetic field

A spin-1/2 patrticle, say, a neutron is subjected to a staadly fluctuating magnetic field.
The changes in the magnetic field are slow so that one can esalthbatic approximation.
If the particle is in an eigenstate of the Hamiltonian irigiat will stay in an instantaneous
eigenstate for all times - the transition probability to trey state is sufficiently close to zero.
It has been calculated that the geometric phase is moreestahi its dynamical counterpart
since its variance tends to zero proportional to the inveyséution time while the variance
of the latter increases linearly in time. However, it has@anfeentioned that the assumption
of adiabaticity all along the evolution also comprises thisa fluctuations. The calculations
are not valid for arbitrary non-adiabatic noise, but just fioise with a small bandwidth
compared to the Zeeman splitting of the energy levels in tagmatic field.

Let us assume, the spin-1/2 particle is initially polariaéahg the direction of a magnetic
field B(0) = (0,0,B3)" pointing inz-direction. The magnetic field changes adiabatically so
that the spin of the patrticle stays latchedBmver the total evolution time and obtains a
phase relative to the initial state. This phase can be medfyrmeans of interference of the
initial and the final state. The geometric part of this phaseot dependent on the strength
of the magnetic field, but only on the path in parameter sp& far nothing new. Let
us assume an additional noisy component of the magnetic Béljl= By (t) + K(t). K(t)
fluctuates around zero leading to instantaneous modifitmbbthe magnetic field direction
and - recalling that we only allow adiabatic changes - thapsdtion vector as well. In the
following we will assume that the deviations from zero mesn@aussian distributed.

This noise field clearly contributes to the phase observeithe geometric and dynam-
ical part are affected differently: While the variance oé ttiynamical part grows linearly
with the time spent in the magnetic field, the variance of tkengetric part vanishes. The
experimental problem is to separate the two parts. For & gltuation without noise con-
tributions there are several methods available, for exaspih-echo or choosing a particular
Hamiltonian such that the dynamical phase vanishes. Buh#®noisy case neither of these
approaches work out since the Hamiltonian can neither beerheuch that the dynamical
phase vanishes nor does a spin-echo approach guaranteenttedlation of all dynamical
terms in the Hamiltonian if the noise is not same for both trst &volution and its “echo”.

For aproof-of-principleexperiment we can nevertheless resort to the spin-echaijpien
if artificial noise fluctuations are generated, recorded and applieé tctio as well, so that
we have the really exactly the same evolution twice. The dyoal phase and its contribu-
tions to decoherence should vanish and the remaining deyghia®only due to the geometric
phase.
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SPIN-1/2 IN A FLUCTUATING MAGNETIC FIELD

5.1.1 Theoretical considerations

Figure 5.1: Magnetic field vector tracing out a path in parmepace. In the adiabatic
domain the polarisation vector of the neutron stays latdbettie magnetic field direction
throughout the whole evolution.

The Hamiltonian of the magnetic field is given by
H(t)=—[i-B(t), (5.1.1)

whereB(t) = B(t)f(t) with magnitudeB(t) = |B(t)| and the unit vector is parametrised by
fi(t) = (sind (t) cosg (t),sind (t)sing (t),cosd (t))T. i = und is as usual the magnetic mo-
ment iy, times the vector of Pauli matrices (see also Sedfionll.2f1(t) is varied adi-
abatically the spin state follows the instantaneous eneiggnstates of the magnetic field
pointing in directior(t).

To fulfil the adiabaticity condition (c. f. Appendix C) the &man energy splitting of the
neutron in the magnetic field which determines tlaemor frequencyu_ = 2u|B|/h) has to
be much larger than the typical rate of changé{ﬂ). The instantaneous eigenvectors are
given by

) = cos” 1) +e#0sin ) ) (5.1.2)
[ (1)) = sin#ﬁ)—e‘ cos%u).

Note, that the choice of the phases is different compareuktstudies in[CP03]. There, the
eigenstates are multiplied by a faceor?()/2 with the decisive disadvantage that this choice
of eigenvectors is not single-valued and therefore noiqadarly suited for a discussion of
Berry’s phase. Changing the azimuthal angle of the magfietit¢g by 21, the eigenstates
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5. GEOMETRIC PHASE AND ADIABATIC FLUCTUATIONS

should be equal, whereas the eigenstates chosen in|[CPaagetsign. As Berry noted
[Ber84], “any choice of phases can be made, provided [that(t)) is single valuedin a
parameter domain that includes the circuit C.".

As discussed in Secti¢n .2 for a cyclic time evqut(ch(T) = §(O)> the state after the
evolution can be written as o
| Tn (T)) = %] 14 (0)) (5.1.3)

with the dynamical pargy = & fOT B(t)dt. The Berry phase can be expressed in terms of the
Berry connectiong, = § AldA with AT =i (T |D,| Tn). A = A(t) = (3 (1), §(t)) is the set of
control parameters. The componentdbfare easily calculated,

Ab =i(110/06] 1n) = —5(1—cos3 (1) (5.1.2)
A& =i(|n]|d/0]| |n) = —%(1+Cos19(t)) (5.1.5)
Ay = —AL =i(1n]0/08| 1n) = 0. (5.1.6)

Consequently, Berry’s phagg without noise contributions is given by
2n
@ =/ Apdp=-m(1-cosdo)=—@ (5.1.7)
0

for constantd (t) = 99 and varying azimuthal anglé(t) € [0,2r] (c. f. Figure[G.1L). qﬂ
indicates the geometric phase accumulated by the spinatg aimd(pgl for the spin-down
state. It is only dependent on the path traced out by the statate space or, equivalently,
by the magnetic field vector in parameter space in the adatate.

Now we turn our attention to a fluctuating magnetic fiéid) = Bo(t) + K(t) (dashed
line in Figure[5.1L) with Hamiltonian

H(t) = —unB- & = —pn[Bo(t) + K(t)] - 5. (5.1.8)

The components of the fluctuating field are random processes (c. f. Appendix A) with
zero average and small amplitude. To assure adiabaticdydout the operation time also
the fluctuations must not violate the adiabaticity assuompith the same way as the rate of
change ofBy(t) itself. Both the connectioA and the path are changed. L%}, ¢o be the
spherical coordinates denoting the direction of the unpkeed fieldBy andd and¢ stand
for the directions of the perturbed magnetic fiBldA series expansion of the gauge potential
A about the polar anglg yields

IA
Ay(9) :A;(190>+6—;’519 , :%((cosﬁo—l)—sinaoéﬁ). (5.1.9)
0

For the corrections to the path we note that there is no coemidyy, thus we can restrict
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SPIN-1/2 IN A FLUCTUATING MAGNETIC FIELD

our attention to thg component of the line elemeda:

dt= (¢o+ O¢)dt. (5.1.10)

do(t) ;. _ d(¢o+09)
d

dAp = pdt= = -

Here ¢o = 21/ T = « is the angular velocity of the unperturbed fidlg, while 5¢ is
the first order correction due 6. The noise-influenced Berry phagg (omitting in the
following the subscript to simplify the notation) can now be expressed as

B = [ 1A(80)+ Ag](Go+ 50t
T T
a2 [ ongdi+ng(90) [ Sot
= ¢b—%T/OTSinﬁo&?dHA(p(ﬁo)étb(T) (5.1.11)

with @ denoting the mean geometric phase (EQ.5.1.7). We have asisinat there is no
initial deviation, 8¢ (0) = 0, and we have neglected the second-order contributioms fro
0Ay0¢. The last termAy (99)S¢(T) vanishes for a magnetic field returning exactly to its
initial position. In general this is not the case and one basse the definition of Samuel and
Bhandari [SB8B] of the non-cyclic geometric phase. Howgves not difficult to verify that
this contribution is of second-order Ego(T)EI and we neglect this term as well. Finally, we
obtain

. T
@=@—1 | sin9os0dt (5.1.12)

A Taylor series expansion yields
cog o+ 0F) ~ cosdy — SinFpdd = ==+ — — —=Bp-K, (5.1.13)

where the last part follows from expanding

Bz Boz+Ks Bo3+Ks
B [BotKl /B2 K2 28R

for smallK. B, Bo,z andK3 denote thez-components of the respective field components.

Therefore,

. K3 Boz= -
—Slnz905z9=—3— 0’3BQ-K.

Bo B3

1The enclosed surface area determines the geometric pHabke. path does not return to its initial point
but rather ends within agrvicinity off this point the error in the geometric phase fatee order of the area of
the disk with radiug, i. e. the error in the geometric phase is of second-ordéifT ).
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Inserting Eq.[(5.13) intd(5.1.112) we find

~ T L
%Z%Jrg/o [E—z— BBOgsBoK dt (5.1.14)
and we can calculate the probability distributionggfonce that forK; is known. Higher
order terms are neglected here although these become anpéwt stronger noise. They
induce a change of the mean geometric phase as shown inrgSB@EI3.

Assuming, that the componenks(t) are the trajectories of an Ornstein-Uhlenbeck
process (Gaussian, stationary and Markovian - c. f. AppgAli the distribution of@ IS
found out to be Gaussian with mean vaipge Its variancea(ﬁJ is given by

2 o (Tcosdosindo 2 (€72 —1)(M,—wf) =~ T1oT
% = 2P (5.1.15)
* ( Ta a (Mo +awf)? F§2+w2}
msir? 89,2 [3T —1+e 17
+2P( )%[ ; 1,
T rz

which can be derived by use af {A#.3) for taeomponent and by combining{A.4.6) and
(AZ1) for thex andy-component.

['12 denote the bandwidths of the Lorentzian noise spectium /1 is the inverse of
the relaxation time) ix— andy-direction and™ 3 the bandwidth of the noise mdirection.
In order to compare the different energy and time scaledvedp all magnetic fields will
be given by their according Larmor frequency. Thatug,= 2u,Bp/h denotes the rotating
magnetic guide-field, anél, (P?) is the mean power of the noise proc&ss (K3) in radians
per second (Eq_A110). In the following we will often use tignal-to-noise ratio which
we define as

Cja
5 = ’E , (5.1.16)

the ratio between the strength of the guide fiBldand the mean power of the stochastic
process.

For large enought (T >> 1/I') we can approximate the varianceqfby

msifdg. 2 1

2 1 )2
w. 3T

) [MoT

mrcosdpsing
03, = 2P%( 9> 0 +2P3( (5.1.17)
and recognise that it tends to zero {6iT)~* — 0. A typical plot of the variance? is

@
shown in FiguréXh]2.

The geometric phase does not contribute to dephasing ifubleiteon time T is long
enough which leads to the rather paradoxical situationtttea{geometric) phase difference
between final and initial state is more and more exact thedotige spin-1/2 particle is
exposed to the noise. Also, we can observe from Figuie 5t2thieacontribution of the
geometric phase to the dephasing is in general rather skalla perturbation strength one
order of magnitude smaller than the guide-field strengthvlrence is in the order of 0.1
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Figure 5.2: Typical plot of the varianq:%g for a magnetic guide-field with Larmor frequency

w,_ = 10* rad/s & 0.5 Gauss) and an average noise powePpf 10° rad/s corresponding
to a signal-to-noise ratio & = 10. The noise bandwidth IS= 50 rad/s and the field rotates
in the equatorial planep = 11/2).

radians yielding a relative error ef 0.1/2m= 1%.

5.1.2 Region of applicability of the first-order approximation

It is important to know for what parameter ranges the curedtedl in Figurd 512 is valid.
What fluctuations are allowed such that the adiabaticityragsion is not violated? If the
adiabatic condition is not fulfilled the spin state will notlbw the direction of the magnetic
field and the results derived above have to be modified. Onttiex band side, for a strong
noise coupling the first-order approximation and consetijyéme conclusion that the mean
geometric phase is not affected by the noise are clearlyithaa will be exemplified in the
numerical simulations later on.

Time scales There are different time scales involved in this problem-= %’T is associated
to the (mean) Larmor frequency( = 2u,Bo/h) of the magnetic guide-field; = %’T is the
time needed for the execution of one cycle, apd- 1/T is the relaxation time of the noise
associated to the bandwidth of the involved noise frequsndle definitively demand that

T, Tn> T (5.1.18)

to ensure adiabaticity. Furthermore, the fluctuating fikldusd have time enough to make
many uncorrelated oscillations during the cyclic evolntjo, < 1,) so that we end up with

T|_ << Tn << Tr, (5119)

or (with e, = 2m),
W > Wh > W (5.1.20)
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in terms of the angular frequencies.

Low-frequency behaviour For the sake of completeness we can state the behaviour for
low frequency noisety < 1,) where the noise fluctuations do not oscillate during the evo-
lution. In each run of the experiment the noise is approxaiyatonstant and varies only for
the different runs. In this case Eq.{5.1.15) is

1 13T

an’?o)z[E -] (61.21)

5 5 TIC0SIoSindg, 2 [N12T
o, = 4P,
% i W, ) (21)2

to first order inT. The leading term i®2(sir? 8o/B)? is independent ofx, and wx and
the variance ovefF is approximately constant in this range (Figlird 5.3) butlseio zero for
small fluctuations (smaib).

+2P(

0.10 =

0.08 +
0.06 +
0.04 +
0.02 +

Figure 5.3: For much shorter evolution times as in Fiduré B same parameters in all
other respecty, (P3= 10% rad/s, w_ = 10* rad/s, w, = 50rad/s,8q = 11/2) the variance

qub is approximately constant.

How much less than the Larmor frequency? What is left to clarify is the meaning of the
statement ‘much less than the Larmor frequeney’(. As a rule of thumb there should be
approximately one order of magnitude difference. In Figlizd (a)-(d) the polar angi®s of
the magnetic field is plotted along with the angl@y of the instantaneous state of the spin-
1/2 particle parametrised By (t)) = cog8y/2)| 1) +€9sin(8y/2)| |). The signal-to-noise
ratio is fixed & = 1.5 x 10%) and the noise is iz-direction (12 =0). The noise frequency
bandwidth is varied fromu, = 107 rad/s (a) tow, = 10* rad/s (d). We notice that the state
does not follow the magnetic field anymore for higher freaquest The wiggles ir6y, are
due to the Larmor frequency of the guide field with approxiehat 0* /(2m) ~ 1.6 kHz. For
stronger noises ~ 4.5 x 107) the deviations are even more striking (c. f. Figiuré 5.5).

5.1.3 Dynamical Contribution

As shown above, the fluctuations do not influence the geocngiiase in the long run, but
there is still the dynamical phase left which contributeggicantly to the variance of the
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Figure 5.4: The polar angle of the magnetic fidlgl is plotted along with the polar angle
of the statefy,. For higher noise frequencies the state does not follow éhe fidiabatically

anymore.
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Figure 5.5: The polar angle of the magnetic fidiglis plotted along with the polar angle of
the statefy. For stronger noise the deviations from the adiabatic bebacan clearly be
seen above frequencies of 1/10 of the Larmor frequency ajjdiree field.
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relative phase difference between final and initial state.
The dynamical phase difference is given by the integral tvemagnetic field strength

- T
_ “/ dt_l—/ Bo(t) + K (0)]dt ~ @y +i 2 / Bo(t) B Bl KO (5.1.22)
0

where we have neglected contributions proportion#l B and used the fact that the system
IS in an eigenstate of the Hamiltonian at all times, i. e.

[ BOw®)d=p [ B @013 y()d

1

From Eq. [AZB) the integral{5.122) can be calculatedrtd fhe variance ofy,

T a2
o2 Zplzz(usmao) [( 1)(rs, cu,z)Jr M1oT ]
@ (M5, + aw?)? M+ a?
pcosdg 2. M3T —14+e 3T

ey [eT e,

+2P2 (5.1.23)

which is similar toa(fb with the decisive difference that it grows linearly Tnfor largeT.

In passing we note that the variangg of the total phaser = @ + @, is not the sum of the

variancesvéd + a(fb since these are not independent random variables, butes biy

P7 i _ el (M, —af) | TioT
ag _ 2%(7-[(:081908'“80+M_S|n190)2[(e , )( 122 (4) 212 }
o T (Mo + wp) Mo+ of
Pz msin?9 MsT—1+e 'l
1223 (TS0 4 G cosdo) -2 je (5.1.24)
S 3

The origin of this equation is simply the calculation of treriance of the sum of the O. U.
processes in EqL{5.1]14) and (5.1.22). The sum of the cesffecof the single components
from the dynamical and the geometric phase part is squar@dhvs different to a sum of

squares as one would obtain by simply addir@ andoqzh.

5.1.4 Explanation in terms of domains of integration

The key to the understanding of the different behaviour efdinamical and the geometric
phase lies in the fact that the domains of integration arfereift in both cases. As for the
dynamical phase it is given by the integral of the instanbaiseenergyE(t) over time and
therefore its variance grows linear in time as well simitattie uncertainty in the position
of the pollen grain in a suspension in classical BrownianiomojBro6€]. The integration
domain doubles if the evolution time is doubled (Figuré 5.6)

For the geometric phase the domain of integration is not,tbaethe path in parameter
space, parametrised for example by the azimuthal aggte[0,2m1]. Making the evolu-
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Figure 5.6: Domain of integration doubles if the evolutionéd is doubled for the dynamical
phase. The variancm\j grows linearly in time and is doubled as well.

tion timeT for one cycle longer means that the involved frequenciegivel to the angular
frequency of the rotating magnetic fietd are higher, but the integration domain is still
¢ € [0,2m]. The fluctuations have more time to make uncorrelated asicifis (Figuré517).
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Figure 5.7: Domain of integration is the same independetti@évolution timerl . Relative
to the the rotation frequenay. = 211/ T the noise frequencies are higher for largeand the
varianceag tends to vanish.

5.2 Removing the dynamical phase

To measure the geometric phase we definitely need some mswetsato cancel dynamical
phase contributions. There are a few alternatives, namely

(i) to choose a Hamiltonian such that the dynamical phaseskias which amounts to a
parallel transport of the state vector (local compensation

(ii) to transport the state along a geodesic, for examplerbjeption measurements,

(i) to compensate the dynamical phase afterwards by amogpitely chosen Hamil-
tonian (global compensation),

(iv) to choose a system (atom) where two states have samgyeard therefore same
dynamical properties but different other quantum numbgch(6],

(v) to use an interferometer where the evolution is suchtti@tlynamical phase is equal
in both beam paths, but the geometric phase is not,
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(vi) or to make use of a spin-echo method where the transp@tecuted twice but with
opposite magnetic fields (or with flipped spin). Due to theasgie magnetic field the
dynamical phase cancels and due to the same rotation dineti® geometric phase
doubles. This works only in the adiabatic case, otherwidd pbase contributions
vanish.

In the ideal case without fluctuations all of these methodklythe wanted results, how-
ever, if we add noise to the evolution the first three methodsat feasible since the de-
viations from the ideal path give rise to non-negligible dgmcal phase contributions. The
distorted path is not a geodesic or a parallel lift anymooe jsithe exact Hamiltonian known
to compensate for it afterwards. Hence, a separation ofrédeace into a geometric and a
dynamic part is not possible. As for optidnl(iv) there is nogw@do this with neutrons since
they only have a spin degree of freedom.

As for the interferometer optiom(v) the arrangement of thiésqroducing the magnetic
field in the different paths induces a geometric phase as iAKW T97]. Same noise
in both coils gives rise to equal dynamical phases in bothmiseand the relative phase
difference is then purely geometric. This issue will be added below in further details
below (Se€5.411). In the case of the spin echo the noises@sagplied twice, but rather
sequentially than at the same time. Choosing a specific atitadvolution [BDHHO4] both
the dynamical phase and the noise contributions from thamyeal phase are cancelled and
the geometric phase remains. Clearly, one might argue #ratgfinitionem the noise is the
uncontrollable part in the course of the experiment and deoto apply the noise twice it
has to be recorded and is therefore controllable in priecipcontradictio in adiecto If
we can record the noise we can equally well suppress it b&dock and do not have any
problems in any case. However, in order to show the theaiBtipredicted property of
vanishing variance for long exposure times to the noise wesafely neglect this objection
in a proof-of-principle experiment. But we have to keep imchthat this does not resolve
the problem of how to implement a unitary operation basedlgun the geometric phase.

5.3 Spin Echo

In the adiabatic domain the dynamical phase can be remowed @pin-echo approach,
namely, that the neutron is exposed to the same magnetictfiedd, once in the positive
eigenstate and the next time in a negative eigenstate. &higither be achieved by spin-
flipping the neutron after the first magnetic field or by reuggghe direction of the second
magnetic field. It follows immediately that the dynamicabgk cancels IBDHH04] which is
the cornerstone of all our further considerations. It viaesssince it depends on the integral
over the energy and this energy has opposite sign for the tagnetic fields. In contrast,
the geometric phase depends only on the path and its oi@ntdf the path including its
orientation is same in both cycles the geometric phase dsubl

For the spin echo setup we have to continue the calculations &bove to include also
the variance accumulated in the second round. Since justdigaetic field is flipped we can

135



SPIN ECHO

Figure 5.8: Spin-Echo Setup: The dynamical phase vanisiese the spin is first in the
positive and then in the negative eigenstate of the magfietct Hamiltonian. Due to the
equally oriented curve traced out, the geometric phasecisnaglated.

already guess beforehand that the variance after the segol®lis twice the variance after
the first one. But to be on the safe side, we start calculatiagariance explicitly.

The magnetic field is flipped into the opposite direction nowd the geometric phase for
this cycle is given by

2T _ .
@ = /T AL(9")dA. (5.3.1)

The principal direction of the magnetic field is given8y= 9 +m, i. e. B is pointing in the
opposite direction. Furthermore, the spin is now alignetit@arallel to the magnetic field
so that we need the connectih. The components are given by

1
Ay =0 and Ay(8)= —5(1+cos9) (5.3.2)
For small perturbations in the magnetic field we can makeiasekpansion aroungp,

AA
Ay (90+ 839) = Aj(50) id—;&? o= —% ((14 cosdg) Fsinded9) . (5.3.3)
———

AL

The + denotes the possibility to add the noise either in the oppaosiin the same direction
as in the first run. Explicitly we find for the down-spin comjeoi of the connection

1_
BAG . = %5 SIS0 = —5Ay .. (5.3.4)
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The total geometric phasg = @, + @' is then

@ = [ 1A (90)+ 68, (90)](do + 5ot
47 A (90) + 38 (80)) 90+ 0
_ /A}Hao ¢odt+/ 5A},_, (%) ¢odt+/ A} . (90)5dt
+ /T A (95 podt + /T SAY . (94)dodt + /T A (95)5dt+O(82).

and with¢o = 211/ T

2_" /TA;>+ 90) o|t+/T5A},+ 190>dt} + A, (80)(30(T) — 39(0)) +
2"/ A} (95) dt+/ 5A}pi(3o)dt}+A¢i(19o)(5¢(2T) 5¢(T)).

From the relatiomé,i(ﬁ{)) = A;i(ao), sinced’ = 9 + m, and Eq.[5:314) we get

@ = 2%+— / 5y, (So)dt+ [ 6A¢i(190)d

+0¢(T)[Ag . (80) - A¢,¢(190)] +30/(2T)A} - (S0), (5.3.5)

where we have inserted the expressign= ZT" i A},’ +(do)dt for the unperturbed Berry’'s
phase. We have also assumed that initially there is no neigarpation ¢ (0) = 0). Ne-
glecting the terms proportional to the deviation from thalffistated¢ we can analyse the
second term on the right hand side,

=4 /O SA). (9o)dt + /T SAp.(So)dt] = 2 /O BA),. (90)dt
T
_ / sin9,59dt.  (5.3.6)
T Jo
Comparing this result with EQ.{5.1112) we find as alreadgpneed initially that the variance
of the geometric for two cycles is twice the variance aftez aim.

A detailed description of the “spin gymnastics” follows @e&lin Sectiol 55, where a
possible measurement scheme is described to measure idreceanf the geometric phase.
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5.4 Possible Experimental setups

5.4.1 Interferometric setup

Can we use standard neutron interferometric techniquegs&sune the geometric phase fluc-
tuations? Generally speaking, yes, and in contrast to tie siequential spin echo scheme it
is conceptually better suited, but there are numerous teghproblems. The separation of
geometric and dynamical phase is rather a simple issue marierometer. Doing the same
operation in both arms, e. g. using the same magnetic field’t wesult in a shift of the inter-
ference pattern. And this works even in the case of fluctgatiagnetic fields, an apparent
dephasing due to an interaction with a stochastic magnetat¢an be totally compensated
by applying the same field with the same noise in the other. pBlis has been tested for
slow fluctuations in[[BRS03] as shown in Figlirel5.3, and — ftbentheoretical point of view
—the step towards faster fluctuations should not changettiaien significantly. How can a
possible evolution look like such that the dynamics are sarbeth paths, but with different
geometry in order to obtain the same global dynamical phasditferent geometric phase.
For example, a rotation of the magnetic field with same stiebgt with opposite rotation
sense yields a purely geometric phase difference betwedmelims. Another example is an
orange-slice shaped path as depicted in Figulle 5.9. Suckoautien has been implemented

Figure 5.9: Orange-slice shaped path of the neutron spim additive noise. The angle
difference of the magnetic field in the two paths determihesapening angle of the paths
from up to down spin and consequently the geometric phase.

by Allman et al. [AKW 797] in a neutron interferometer experiment. But in this cémee
magnetic field is static and the spin evolution is non-adiabathe neutron spin precess
about the magnetic field direction. As a consequence, thedism described above has
to be altered, but this should not do any harm to the resutisitahe robustness since the
geometric picture is same. The spin traces out a path witle moless wiggles and encloses
a particular surface area that is more or less smeared out.

The technical problems start, however, by trying to geraitae fluctuations. These have
to be faster than the transit time of neutrons through this ppoducing the magnetic field.
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Thermal neutrons have a typical velocity of approximaté€l@@ms . A rotation about 2r
corresponds then to about®:010° rad/s for an assumed coil length®sfl — 10 cm. Such
frequencies in the 10-100 kHz range are not easily achievdbé to the self-inductance
of the coils. An oscillating circuit has to be tuned to meet frequency demands which
restricts in turn the frequency bandwidth to a region arotiredresonance. Besides that,
thermal radiation of a coil producing such a field will defetytlead to a loss of contrast, the
produced heat disturbs heavily the visibility since theirdtomic distances of the perfect
silicon crystal change and one has to cool the coils.

If one is able to overcome these problems and one wants tcem®it an adiabatic
evolution it is tempting to use one of the coils shown in FeJarl0, a cylinder surrounded
by helically wound wire, as used by Bitter and Dubbers [BD8If] its moving frame of
reference the neutrons feels a rotating magnetic field amdpim will follow adiabatically
as long as the coil is long enough and the magnetic field is aigfugh. However, too
long coils do not fit into the interferometer and strong maigrfeelds produce lots of heat.
One could also use radio-frequency spin flippérs |IBRS83]revtiiee spins are flipped at
resonance. The phase between the oscillations of the twoflggping coils corresponds
to the opening angle of the orange slice in Figureé 5.9 rewyiti a geometric phase. The
problems mentioned above remain roughly the same and awlity the calculation of the
behaviour of the polarisation vector when noise is addedbiermvolved.

Common to all the different coil geometries is also that tlaagit time and therefore
the time dependence of the geometric phase variance caasanply changed. Due to the
Bragg condition the available range of wavelengths is rathherow and cannot be changed
easily. Unfortunately, to see the predicted behaviouraegiin Figurd512 the transit time
should be changed. A possible workaround would be to varynthee frequencies such
that its original dependence dnis hidden in the change of the frequencies. However, this
slightly misses the point of the intended experiment.

Summa summarum, the neutron interferometer does not seeapgropriate tool from
the technical point of view. However, conceptually it isteesuited than the concepts based
on spin echo since when the coils are fed from the same scuweaautrent fluctuations will
induce equal dynamical phase fluctuations in both beams, Wwit perfect control over the
noise is not necessary in this case since it is automatitt@ysame noise in both paths, if
the current supply is the same. The reduction of the vigjtaian then only be of geometric
origin and should improve with increasing evolution time, Yonger wavelengths or higher
noise frequencies.

5.4.2 Polarimetric setup

The difficulties with temperature and tunable evolutionggheads automatically to the idea
to switch over to a polarimeter setup as used for example BBE{\WBR™00, KSH"05].
To get rid of dynamical phase contributions the ideaneifitron spin ech¢fMez72] can be
adopted. Polarimetry measures - nomen est omen - the resplblarisation of neutrons
incident in a specific spin state after having carried outes@vwolution. In contrast to the
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interferometric setup there are two coils in series suchahmeeutron passes through both of
them. In brief, the advantages are that the heat producedebgdils does not disturb the

contrast, the dimensioning is not a crucial point and themare freedom in choosing the

wavelength of the neutrons since one is not restricted teamatBragg condition as in the

interferometric case. One can use neutrons with larger keagéh, hence smaller velocity,

to increase the time available for one rotation.

Helical wounded coils

The first option are two helically twisted Helmholtz coil maiarranged in series (Figure
B.10). Spin polarised neutrons enter the first coil and feetating magnetic field due to the
twist of the coils. A full 2T rotation is executed in the first as well as in the second baotl,
in the second coil the magnetic field points in the oppositeation by reversing the polarity
of the coil current. As a consequence the dynamical phasshasand only the geometric
contribution is left. The helix is additionally encircleg b coil producing a magnetic field in
beam direction in order to achieve an evolution path notiramed to the equatorial plane.
An advantage of this setup is that it is wavelength indepehds long as the field can be
made high enough to ensure adiabaticity.

Figure 5.10: Helically twisted Helmholtz coil pairs in a sggcho arrangement.

A few numbers will help us to estimate the results: Supposéentiix generates a field
of 20 Gauss ) ~ 4 x 10° rad/s) in the centre along the beam axis and the unit is about
20 cm in length. Thermal neutrons will traverse this diseairc01 milliseconds and the
angular rotation frequency is then ~ 6 x 10* rad/s. Recalling Eq[15.1.20) we find that
these parameters are fine, if the noise bandwidth is madeindd@tweenw, andew . Also,
one is not restricted to thermal neutrons, one could alsshloser ones and get lower rota-
tion frequencies. That helps a lot since the self-induatasauld prohibit the excitation of
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high-frequency fields and when employing cold (slow) nendrthe rotation frequenay is
automatically reduced.

A major problem is the needed homogeneous magnetic field ifietde longitudinal
as well as in the transversal direction. The geometry makiesrd to calculate the rather
involved shape of the magnetic field in the interior, not tairen at the boundaries.

Cross-coil setup

Another option is to use the type of coils describedlin [WB96lere two perpendicular
coil pairs in Helmholtz-like geometry are placed aroundibam. The magnetic field is also
perpendicular to the forward direction of the beam and bgifegg(phase-delayed) sinusoidal
signals into the coils the resulting field is rotating witle fihequency of the signal.

For a spin echo setup two such cross-coil devices have todoegin sequence (Figure
B.17). The rotation frequency is adjusted such that a negéarised in positive-direction,
say, will be spin-flipped into a polarisation in the negatnaxis in the first coil and back to
the positivez-direction in the second coil. The neutron spin will trace an orange-slice
path on the Bloch-sphere as shown in Figuré 5.9. The off-anxgde towards the forward
direction corresponds to the opening angle of the slicehdfdxes of the cross coils are
aligned with the beam the opening angle is eitlfeo0180 (depending on the phase-delay
between the two cross-coils) and yields a trivial geomethiase of O orr, which cannot be
distinguished in a polarimetric measurement (c. f. Sedfd). Only after arranging the
coils inclined to each other a non-trivial geometric phagkesiiow up.

Figure 5.11: Polarimetric spin-echo setup with a coil agenent in Helmholtz-like geom-
etry. A sinusoidal signal fed into the perpendicular coilrpeads to a rotating magnetic
field.

The problem are as above homogeneous magnetic field, bgueifiects, etc. The latter
might become a bigger problem since one cannot define a prestsance time, and there-
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fore not an exact initial phase. In addition, a time-of-figheasurement method has to be
adopted to correlate the arrival time to the oscillatingguband this setup is not that flexible

in choosing a particular wavelength since the phase bettess® coils has to be adapted
accordingly.

Finally, there is this already mentioned conceptual difficwhether it is allowed to
speak of noise even though it is artificially generated. Rerrhoment, let us put aside this
guestion under the working hypothesis that the artifigiatit the noise does not derogate
the results on the stability of the geometric phase, and maue a similar scheme utilising
stored neutrons.

5.4.3 Ultra cold neutrons

Although the problems in the polarimetric setup do not seefnet insuperable, instead of
utilising a neutron beam there is also the possibility to pskrised ultra cold neutrons
(UCNSs) that can be stored in an appropriate storage vesdetham manipulated by sur-
rounding magnetic fields. One gains flexibility in the chadé¢he magnetic fields, virtually
any evolution can be implemented.

The storage is possible due to the very low speed of such areytapproximately
< 7 m/s corresponding to an energy of less than 250 neV. Foraessiul storage the wall
potential (Fermi potential) has to be larger than typicakknatic energies of the neutrons.
E. g., the Fermi potential of quartz is 91neV [vdGFS] and therefore neutrons slower than
~ 4.2ms ! can be stored. Regardless of the Fermi potential the maxitimenfor the spin
“gymnastics” is given by the lifetime of the neutrons of 8@6snds|[Gro04], but for our pur-
poses this is much larger than the typical evolution timee féutron trap is surrounded by
three pairs of coils in Helmholtz geometry. With the helpla#ge fields the intrinsic neutron
spin can be manipulated as wished and the resulting effactbe analysed by measuring
the polarisation when emptying the storage vessel. Theigemerry phase without noise
fluctuations has already been measured with such a setupchgrdsoret al. [RKGL88] at
the ultra-cold neutron beam-line at the Institute Laue lesmitg Grenoble.

A typical Helmholtz-coil arrangement is shown in Figlire.3.4 One pair of circular
and two pairs or square shaped coils are used, whereas bothegess provide a fairly
homogeneous field at their centre (ApperldixD.1.6).

In the centre of the coil system a cylindrically shaped gjeraessel made of polymer
(POM) (Figurd®.IB) is placed.

Incoming neutrons are polarised by virtue of totally maggeet foils (AppendixXD.114)
which are used both for preparation and later for analynatféhe polarisation. If the density
of neutrons in the storage vessel is in equilibrium with tkagity in the neutron guide the
container is closed. To produce a geometric phgse slowly rotating magnetic field is
then applied so that the spin vector of the neutrons canviati® rotation. After executing
a full spin-echo cycle the final polarisation is measuredhhte magnetised foils in front of
the detector. In the presence of adiabatic fluctuations pivesf eachstored neutron will
follow the field direction and all will end up in the same state dephasing has happened.
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< Mu-metal shield
rectangular Helmholtz coil
circular Helmholtz coil
storage box

shutter

neutron guide

Figure 5.12: Experimental setup with one circular and twbHItz coil pairs perpendicu-
lar to each other surrounding the storage vessel mountegkabshutter.

Figure 5.13: Vessel made of POM coated with Fomblin.

However, for different runs of the experiment the final pmiation will be different and the
average over many runs gives us information about the meamefeic phase@) and its
variance (ng). The conclusion drawn above are valid, viz. for slow eviolus the variance
ag tends to zero and consequently the exponential dampingeopdtferisation becomes
negligible. In other words, the absolute errorggfin each run vanishes.

The advantages of the UCN setup are that the storage timeecahdsen more or less
arbitrarily as long as it is less than the neutron life-tinve,do not have to rely on wavelength
selection. Furthermore, arbitrary paths can be implendethte to the freedom given by the
3D-coil arrangement compared to the polarimetric or iiennetric experiments where one
is rather restricted in the choice of evolution paths.

Unfortunately, all that glitters is not gold. There are adswere disadvantages. For exam-
ple, the magnetic field has to be highly homogeneous inselsttirage box which demands
for relatively large coils and small storage box. Unwantezbnetic field variations occur
also due to the back and forth movements of the neutrons giedeld is not 100% homo-
geneous inside the storage volume. From the neutron’s fadmeference this amounts to
time-dependent fluctuations which cannot be cancelledtélaid of a spin-echo procedure
and if the magnetic field is strong the — unwanted — phaseti@rg&from these fluctuations
are big . The use of weaker magnetic field might cure this defed, on the other hand
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side, weak fields makes the experiment vulnerable to enviesrtal non-artificial magnetic

field fluctuations. These have to be shielded - for instancenésns of mu-metal. Further-
more, the self-inductance of the coils prevents us to use thegjuencies for the noise and
the rotation sequence. A more detailed description alorig &n analysis of these potential
pitfalls and difficulties of the UCN setup is discussed in Apdix[0. It turns out that one

can probably find a suitable set of parameters to get it going.

5.5 Spin gymnastics

In view of the potential experiment, what exactly could tipensevolution look like? In
brief, the neutron spin vector points first in the positaéirection. Then, the direction of
the magnetic field is changed adiabatically such that the epctor follows its direction.
After a full circle back to the initial direction the spin @olsation is again in the positie
direction, but with an additional phase factor. This phasxdr comprises both dynamical
and geometric contributions. The dynamical part can beatbttby spin-echo: The field is
reversed to point in the opposite direction, fast enougindoice a non-adiabatic transition.
A further evolution cycle in the same direction doubles thergetric phase since the surface
area enclosed by the path on the Bloch sphere doubles, vehibieedynamical part cancels,
because the neutron spin is in the eigenstate with negatgwedsiring the second cycle
gathering exactly the dynamical phase with reversed sigme fihal state has therefore a
phase difference relative to the initial state which is pugeometric.

Where is the noise part? To test the predictions of the thaiskythe noise influence on
the dynamical part has to vanish. If there are independertutitions in the first and in the
second cycle the dynamical phase will cancel only in the mieainits variance will double.
However, since the quantity to be measured is in fact themae of the total phase one can
not conclude from such a measurement to the variance of dreejeic phase, there are still
contributions of dynamical origin. The noise must therefbe equal in both cycles which
guarantees vanishing uncertainty in the dynamical phasevaat is left is just contributions
from the geometric phase.

Extensive description

(i) By use of magnetised foils a ultra cold neutron beam ipared in the statgd;,) =
|z+), i. e. itis polarised in the positivedirection. The magnetic field points initially in
the same directiorB, = (0,0,B,)T (Figure[5.TH). Its strength is arbitrary, but should
be strong enough to prevent dephasing due to environmaefitatnces, e. B; ~ 1G.

(i) In the second step the magnetic field direction is sudidewitched to an axis per-
pendicular to the former polarisation direction (Figlirdd). This operation has
to be fast enough in order to keep the polarisation of therosuspins,|¥,) —
W) = %(|x+) +|x—)) where |x+) and |x—) denote the eigenstates of the field
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Figure 5.14: Initial spin statg¥,) = |z+).

By, = (Bx,0,0"). Fast enough means that the time interval for the fieldAtip is
shorter than the Larmor frequency of the neutron spin in &id ﬁtl. Quantitatively,
the Larmor frequency is)y. ~ 1.8 x 10* rad/s (1 Gauss) corresponding to a frequency
of f = w /2~ 3kHz and therefore\t;, ~ 10°s. To meet these demands the rise
time of the Helmholtz coils must not be neglected, but adogrtb the test performed
on a Helmholtz coil setup problems do not arise until freguesof about 5-10 kHz
(SectiodD.Zb).

y X

Figure 5.15: Sudden switch of the magnetic field to a diregtierpendicular to the original
one.

(iii) Now comes the rotation part (Figute 5]116). The direntiof the magnetic field is
varied slowly (up to an angular frequency of abawt~ 10° — 10* rad/s) to stay
in the adiabatic domain. The state after the rotation isrgive |W,) — |Wi,) =
% (]x+) +€2?|x—)) where ¢ = @ + @ comprises a dynamicaly) as well as a
geometric part). In the simplest case the rotation is in the plane with no
y-componentB, (t) = (Bxcog a (t —t2)),0,Bysin(aw (t —12)))T. The solid angleQ
subtended after a full cycle is thé€h= 27T and consequently the geometric phase is
.. This by itself does not cause troubles, but unfortunatety leigenstates+) and
|x—) obtain the same phase with opposite sign such that the piféerenke is twice
the accumulated phase and having the spin-echo setup in thantinal phase differ-
ence is given byA = 4¢, which amounts to a trivial phase difference o= nm/2, n
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integer. Although the main focus lies on the variance , a tnwtal mean geometric
phase is a more striking outcome. Adding a magnetic fieldtpagnn they-direction,

e. g.By,(t) = (Bxcog a (t —t2)), By, Bysin(ax (t —t2)))7, yields g # nrr/2.

During the evolution artificial fluctuations of the magndtetd both in amplitude and

in direction will be added. The average power of the noiseikhbe less thafB| and
the bandwidth of the fluctuations, less than the Larmor frequency corresponding to
|B| (wh << @). The special shape of the noise is discussed in SeCcfioR. 5.6.

V4

V4
y %;/\’ yz\‘g X

Figure 5.16: Adiabatic cyclic change of the magnetic fiel@clion results in a relative phase
difference of the constituting statest-) and|x—), respectively.

(iv)

v)

It follows a sudden change of the magnetic field directioto its oppositeB — —B
(Figurel2.1V¥). Before, maybe the amplitude of the f&lchas to be reduced in order to
accomplish a sudden flip taking the finite rise time of thesaiid the power supplies
into account, e. @B, ~ 0.1 — 1G+ By, = —Byy,, and finallyBy, = (—B,0,0)".
The state thereafter igby,) — |Wy,) = % (]x—) +€2¢|x+)) where the basis states
have changed place.

Figure 5.17: Non-adiabatic flip of the magnetic field direnti

The implementation of the spin-echo scheme necessittirther rotation of the
magnetic field in the same sense with the same rotation spekdha same fluc-
tuations (Figurd 5.18)E = (—Bycoscx (t —ts)), —By, —Bxsin(ax (t —tg) )T, r =

tszTnu = tngntz If these criteria can be satisfied the spin of the neutron heé state
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W) = % (Ix—) +€*®|x+)). Note, that the phase difference is now only given by
the geometric parfy due to the cancellation effect. The neutron spin has spdahgs

in the positive eigenstate as in the negative eigenstatesiacd also the fluctuations
have been the same there is actually no reason to expect ffenedce between the
initial state|W,) cycles and the statéy,). The phase difference is a geometric effect.

But why does is not vanish?

The point is, that the geometric phase is the same for bo#tioos. In the present
scenario the magnetic field changes in between the twoeataéquences, but neither
the state is changed nor the sense of rotation. Before, we ddeady clarified that
the energy does not play a role for the value of the geomelvas@ and therefore it
Is immaterial if the state is in the positive or negative agjate of the magnetic field.
Consequently, the geometric phase doubles. In detail téte after the first rotation

is
_ 1 e o)y
|Wt4)_\f2(e' IX+) +€e 7 |x—)) (5.5.1)
and maps to L
Iy = (dOy_ —ip
|‘4Jt4)_\f2(e' IX—) +€7'?|x+)) (5.5.2)

after the field flip due to the swap of the basis states. Aftestrtond rotation each of
the basis states accumulates a phgse

O P R T e 1
|wt5>_\f2(e €9x—) +€%%7'?x+)). (5.5.3)

@ and @ comprise a dynamical as well as a geometric part, but in ashto ¢ =
@ + @, there is an additional minus sign n= @ — @, reflecting the constant sense
of direction. Consequentlyﬁ)— ®) = —2q@y and the final state is equivalent to

W) = %(IX—) + (@O xpy) = iz(|x—> +eM|x 1)), (5.5.4)

Figure 5.18: Second cycle of the spin-echo scheme where dgaatic field is reversed but
not the sense of the rotation.
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(vi) Evidently the final state is different from the origir@mie and this difference manifests
itself in a different polarisation. An additional “pulse’ithr a small magnetic field in
x-direction I§t6 = (Bg,0, 0)T is applied to rotate the spin fdr = 2y Bst/h about the
x-axis. The meaning of this operation will be clear in a mome#,) is transformed
to the state

i€
W) = é2"x\4’t>

_ (éz|x—>+e—i%e4i%|x+>)

(Jx=) +@h=8) x4 ).

%\H%\

(vii) Switching back to initial guide field iz-direction changes the basis of the state (Figure
5.19),

W) = [Wyy) =
= 55 (20 =12 + 84O (z4) < 2-)))
- 7<1+el4¢g6 )z — (1_ei<4¢g—£>>|z_>>
- 7(@ 20-3) [(e712m—3) + dCR=3))|z)
_(e12n%) _ d2m—3))|2— >])
1

~ . '3
= 75 <cos(2(ng 2)|z+> +isin(2qy 2)|z >) :
It can immediately be seen that for vanishing geometric @laasl vanishing -pulse

the original polarisation is retained. If not, the polatiga vector lies somewhere in
thez—y plane depending ogy and oné.

V4

y X

Figure 5.19: Switching the magnetic field back to the inidiaéction.

(viii) Inthe last step the bottle is emptied and the final @egef polarisation along theaxis
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represented by the Pauli matiwy is measured.

P = <L|Jt6|o-z‘lpt6>
= co§(%—2¢b)—sin2(%—2¢b)
= cog¢ —4g).

Now the relevance of the extéapulse becomes more obvious. To determine the value
of @ precisely, a sinusoidal pattern is generated by variatidnand compared to the
case whergy, = 0 like for interferometric measurements.

Noise contributions

But where is the contribution of the noise in the final resuitZourse of the derivation of
Equation[5.515) we have tacitly ignored the fluctuationthefmagnetic field which should
manifest itself in the degree of polarisation. In courseh# experiment all the stored,
manipulated and finally detected neutrons have had the setoeyhwhen neglecting envi-
ronmental influences and therefore will show the same piaas®/ithout artificial noise it
is precisely half of the solid angle enclosed by the unpbeadrmpath. Turning on the noise
source leads to a different geometric phggeor each run of the experiment (but not for
each neutron since all neutrons experience the same ndisia whavoidable experimental
shortcomings). Averaging over many realisations we mesgumean degree of polarisation

(P) = (cog& —4gy)), (5.5.5)

with a mean square deviation or variarag= (P?) — (P)2. The variances3 depends on the
variance of the geometric phagg For a Gaussian distributeg with meang, and variance

og we can calculate the average degree of polarisation

P@) = [P@)ig(e)dp

= /oo cog& —4ple ¥ do (5.5.6)

with the probability density function of the geometric padg, = \/217T7e(""f79)/(20§>_
Using the integral relation ’

co 2
/ cog A+ bx)e‘az(X‘XO)zdx = %T cog A+ b)@)e_ztb? (5.5.7)
we obtain 3
(P) = &89 cog £ — 4q). (5.5.8)
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An exponential damping factor

2
v=e 8%

due to the additional noise shows up. Intuitively one woulégs that fluctuations distort-
ing the ideal path yield vanishing mean polarisatid?), = 0, i. e. a total loss of contrast,
provided that the fluctuations are strong enough and thearespends a sufficiently long
time in the fluctuating magnetic field. But we have alreadygussed that in the case of the
geometric phase, however, this is just valid with respethéonoise strength but not to the
time: a slow evolution preserves the original degree of isadéion. For large variance:%
the average degree of polarisation vanishes-(0 — (P,) = 0), however, for slow evolu-
tions the variancerg tends to zero and consequently the exponential damping 1) of the
polarisation becomes negligible.

Thus, the variance of the geometric phase is seen as a r@dwdtthe visibility and is
recovered for longer evolution times as depicted in Figu?€ for several noise amplitudes.
Note, that it is not possible to improve the visibility connga to its initial value. For in-
stance, an unpolarised beam with vanishing visibility carire polarised just by executing
some cyclic evolution, but the degree of polarisation daschange during the evolution
cycle.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Figure 5.20: Visibility factorv = e_gag2 at @ = 10*rad/s,w, = 50 rad/s,9 = m/2. The
signal-to-noise ratis; = w_/03 is set to 2 10Y/2 (green), 1&/2 (black) and 18 (red line).

5.5.1 Time Sequence

To gain a better understanding of the time scales for theaagpion given above the currents
of the different coil pairs are shown in Figure 3.21. The soidal changes in thedirection
and the additional noise fluctuationzrdirection can be observed.

5.6 Numerical Simulations

The numerical simulation consists of two parts. On the omelis&de the evolution of the spin
state has to be simulated by solving the time-dependent8iciger equation numerically
for the time-dependent Hamiltonian. On the other hand sitifecaal noise that alters the
original Hamiltonian must be generated by a specific nurakalgorithm.
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Figure 5.21: Time sequence for the different coil pairs foe experimental run.
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Why is a numerical simulation needed? The considerations above have certain deficien-
cies when trying to construct an experiment. First of alk just a first order approximation
which we expect to break down for strong noise influencesufleigio. 4 an@5l5). Further-
more, the adiabaticity condition has to be met for all pgytiting frequencies, i.e. the band-
width of the artificial noise contributions, the rotatioeduency, and also the changes of the
magnetic field as seen from the inertial frame of the neutduresto the inhomogeneities in
the storage box have to bee smaller than the Larmor frequenajl times. The transition to
strong noise and to non-adiabatic regions is not includedertheory and have to be tested
by means of numerical simulations since the exact solutidheoproblem does not seem to
be feasible. Of course not all effects (like all environnamfluences) can be simulated,
but at least the spin-trajectories of one particle subgetdea rotating noisy magnetic field
can be found. Averaging over many realisations sheds liglthe average geometric phase
for a particular configuration and on the variance of the getoimphase as well and we can
conclude on the possible parameter settings for a futued™experiment (AppendikD).

5.6.1 Evolution algorithm for the spin state

Generally speaking, we would have to solve the time-deparsiehrodinger equation

i%w(i,t) =Hy(Xt), (5.6.1)
where(X,t) € Hx ® Hs is a tensor product state with a spatial part representéd;iand

a spin angular momentum part elementtd. For the situation discussed above we can
safely neglect the spatial part due to the differences irtteegy scales of up to a factor£0
(thermal neutrons) between the Zeeman energy splittindgh@fspin levels (for magnetic
fields in the Gauss region ) and the kinetic energy of neutréuen for ultra-cold neutrons a
factor 1@ is left so that there is de facto no influence of the magnetidsien the trajectories
of the neutrons. The solution of Eq.(5J6.1) simplifies thensiderably also with respect to
the finite dimension of Hilbert spacey(t) is then a two dimensional normalised complex
vector representing the spin state of the neutron.

Implicit Crank-Nicholson scheme The numerical solution of stochastic differential equa-
tions usually requires slightly different methods thanedeitinistic differential equation
[KP9E]. Examples can be found for instance in the book by Breund Petruccioné [BPD2,
p. 370] where an improveHuler scheméor Heun Methodlis used as a particular instance
of a predictor - correctormethod. However, for our purposes a standard solution rdetho
is appropriated since the fluctuations are sufficiently sldie entire evolution is treated
fully deterministic for each realisation and the stoclaséture enters when averaging over
different noise realisations.

In order to approximate Schrodinger’s equation Iipite difference quotients
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(e. g. [Hea0R]) a formal solution is exploited numerically,

w(t) = e tHY(0). (5.6.2)

An explicit scheme would be the approximation of the above/fy 1) = (1 —iHAtL) Y (ty),
i. e. to calculate the wave functiap at timet,;1 directly from the wave functio(t,) one
time step before. But this is unstable, meaning that theisoldepends on the choice of the
time incrementAt. A method to solve Schrédinger's equation numerically melegant is
provided by theCrank-Nicholson schemehich relies on th€ayley formof the exponential
operatoreflﬁHt [GSSET]. In detail the Cayley transforvh of an Hermitian operatoA is
defined by[]AG93]

A=i(1+V)(1-V)? (5.6.3)

whereV is unitary. The latter property allows for a norm-presegvimite difference equa-
tion approximating[{5.612). Explicitly, the exponentigleyator can be written as

1-SHT

e—iHr — ,
1+4HT

(5.6.4)

This approximation is accurate to second-order in time aggdssts an evolution of the form
i i
(1+ EHAt)Lp(th) = (1—§HAt)Lp(tn). (5.6.5)

The Hamilton operator itself is evaluated at the intermeediianet,, + At /2.

The disadvantage of the Crank-Nicholson scheme is its anglharacter, i. e. a linear
system of a equations has to be solved for each time-stephéatiher hand, the advantage
of this scheme is that it is unitary and stable, in other wotttls norm of the wavefunction is
unchanged in each time step and roundoff and discretisatrons are bounded from above.

For the Hamiltonian we insert the expression from Eq._ (5, mich is cyclic in the
parameterp, the azimuthal angle of the magnetic field. According to thesig angular
frequency of the rotationy = 271/T the state vector is iterategfs: times. If all the adiabatic
constraints are satisfied by the specific choice of the pammthe polarisation of the final
state should be equal to the polarisation of the initialestatit there is a difference of the
relative phase. Before discussing the obtained resultsave to discuss the modelling of
the artificial noise.

5.6.2 Noise model

As for the numerical simulation of the noise fluctuations wsart to a Fourier series rep-
resentation (EJ_A.BL1) to model the Ornstein-Uhlenbedsenprocess with given power
spectrum. The power spectrum is given by a Lorentzian cuitle vandwidth proportional
to the inverse of the relaxation time, = 211/ 1,. The sumin Eq[{A.5]1) has to be terminated
at some point where all significantly contributing frequiesare included, e. @J'®= 7.
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Division of the frequency

Still, we have to bother about the discretisation of thediestcy rangeo € [0, 7wy| into small
incrementdw. The frequency intervadlw in the Fourier representation of the noise process

in Eq. (AL1),

K

X(t) = 2 [Accosut + Bysinat],  w = kAw, (5.6.6)
K=1

sets a natural limit to the total tim of the process without repetitions. The lowest angular
frequencywmin = Aw determines the period

T =2n/Aw (5.6.7)

of subsequent repetitions of the time sefxg$). As a consequence, the number of terms
K = af"®/Aw has to be chosen such thsd is small enough in order to avoid repetitions
of the noise pattern during the evolution timie ¥ T). The periodicity of the noise pattern
can be seen in the correlation functioft) (Eq.[A138) shown in Figure 5. 22. Here, spikes
appear at integer multiples of the peridd

t

Figure 5.22: Using too low a division of the frequency ran@&Aw]| in the Fourier rep-
resentation of the noise proceXst) leads to repetitions of the same process. The cor-
relation function for a process with diffusion constant 1/7 x 10-2, relaxation time

Tn = 27T/ @h = 141 x 1072 s, K = 100 and, thereforedw = w"®/K = 7w /K = 1. The
period isT = 2mrand 20 realisations each for 20 seconds have been performed.

Does this have an influence on the results for the variandeag¢ometric phase? We test
the influence with the following parametews; = 10 rad/s, T = 1 second ¢ = 2mrrad/s),
wh = 50 rad/sc =1 x 1 rad/s P = 10° rad/s) and a polar angle 6= 11/2, i. e. a rotation
along the equatorial line. The time increments Arre= 2 x 10~° s. The critical value for a
total angular frequency range of 7is at

‘ wnmax_ wnmax-’l: _ 7o

Aw 21 21T ~ 55
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Hence, we start aK = 10 and watch the behaviour of the variance for increasinigy
computing 100 realisations for each value. If we run the &wmon with differentK for the
same frequency bandwidth we can see (Figure 5.23) that tleea seems to be stable after
a certain frequency division higher thgn= 55.

9g

\\ }
\

\

\

0.6

H
0.3 }\E + #\%% §W\§ §§§£

40 60 80 100 120

Figure 5.23: Variance for differemt when constructing the stochastic process for the noise.

Noise envelope function

Since we want the spin to end up in the same state as the st we have to model an
adiabatic switch on and off of the noise field. If the tramsitto the static, non-fluctuating
field is adiabatic the spin will point in the direction of thretial state at the end and only the
phase carries the memory of the foregoing evolution.

We choose a smeared out rectangular envelope functionifoptipose (Figure5.24).
Its mathematical form is given by

B 1 1
T 14ect-d 14ect—(T-d)’

e(t) (5.6.8)
whereT is the total evolution time] is the position where(t) = 0.5 andc is responsible for
the smoothing of the edges of the function. More precisaking a value og =9 | _ ~
—10~* as criterion that the function has approached unity reasgneell, we find

4In10

cd=-In10* — c= i (5.6.9)

The value ofd depends on the Larmor frequenay of the magnetic guide field, so we set
d =5 x 21/ w_ to guarantee adiabaticity.

Size of time increments

Similar precautions have to be taken by choosing the sizheofitne incrementat in the
simulations. The sampling theorem tells us that for a pémeoonstruction of a continu-
ous signal the sampling frequency has to be at least twicéahdwidth of its frequency
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" T t

Figure 5.24: Envelope functicg(t) for c= 90 andd = 0.05 for T = 1.

bandwidth. The other way round with a given sampling freqyehe maximum frequency
that can be generated without side-effects (aliasing) lisdighe sampling. This critical
frequency is also calletllyquist’s frequency In our case the highest frequency involved
is the Larmor frequency determined by the magnetic guidd,fial = 2uB/h and is typi-
cally of the order 10 rad/s corresponding to a frequencywpf~ 1.7 kHz. The largest time
incrementAtyax is determined bytnax= 1/2v| ~ 3 x 104 s. We choose a constaat
throughout the simulations since a adaptive time incremeakes sense only if the driving
Hamiltonian shows changes of different time scales in tBfiedomains. Here, howeveo,

is constant throughout the evolution.

To test the dependency on the size of the time increments weaucted the follow-
ing experiments: For a given Larmor frequenay = 10 rad/s, given noise bandwidth
wnh = 100 rad/s and power; = /5 x 10°2 rad/s we measured the variance as a function
of the angular frequencyy by changing time increments. From the Figures1s.25 one re-
alises that the simulated phase and its variance do not degpggmificantly on the time steps
chosen up to the largest time incremAhfax= 3 x 10 %s.

dg Og

Al 1 1 1 1 1 1 1 1 1 1 T
0.2 0.5 1. 2. 5. 10. 0.2 0.5 1. 2. 5. 10.

(a) Geometric phasg, (b) Root Mean square deviatiary

Figure 5.25: Geometric phase and its variance for diffeseres of the time-increments
At € [2x107°,3 x 10~4. The dotted line indicates the theoretical value.
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Choice of the mean geometric phase

In order to see the influences of the noise fluctuations ondahamnce of the geometric phase

best we want to maximiserég in Equation [B.1.T5) with respect to the polar angle We

notice that the variance scales with the geometric factmrsdsand sind cosd, respec-
tively. Clearly, the first term is maximal & = 11/4, whereas the second term is maximal
atd = /2. The noise fluctuations in the components in the equatplaale have maximal
effect if the magnetic field is inclined by 45and the fluctuations along the z-direction per-
turb the geometric phase maximal for a field circulating i@ dguatorial plane. The latter
property becomes clear by considering the other extremeentwh noise fluctuations and
magnetic field are both pointing in tlzedirection B9 = Bz andP = P3). Then the fluctuations
change only the dynamical phase but not the path, wheregsfpendicular fluctuations the
modification of the path is maximal. Without loss of genayalve will consider only noise
either in z-direction or along the instantaneous magnetid filirection. Although for the
noise in z-direction = 11/2 would be optimal to examine the fluctuations, the mean geo-
metric phase is in this case justand cannot be deduced from polarimetric data [EQ.15.5.5).
In conclusion, we select a polar angle closettdor instanced = 9711/20 for the following
simulations.

5.6.3 Numerical results for different parameter settings

The main purpose of doing numerical simulations is to chkekéange of applicability of the

expression[(5.1.15) for the variance of the geometric phAtbough we can derive some
rough estimations of the allowed parameter ranges, thésliofiiadiabaticity have to be ex-
amined more carefully via computer numerics since we do ae¢ fan analytical expression
valid for all cases.

Fluctuating magnetic field strength

In Figure[5.26 the geometric phase and its standard deniatidepicted for weak noise in
the instantaneouslirection of the magnetic field, that is, only the strengthted magnetic
field changes. In the ideal case the geometric phase musendisturbed at all since all
contributions are due to the dynamical phase since the pathmbt change. This simulation
provides a test for the quality of the simulations, sincetbgcally only in the non-adiabatic
region non-vanishing variance is allowed. Heta, = 10*rad/s,s = @ /P = 200 and
o = 100 rad/s. Only for times smaller than the inverse noisaueegy range &/, ~ 0.06

S we can observe deviations indicating that the noise doeilsave time make many uncor-
related fluctuations anymore.

Noise fluctuations in fixed direction

In the second scenario we choose noise added only tsg¢bmponent of the magnetic field.
In contrast to the former where the noise was along the itest@ous axis and did not perturb
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(a) Geometric phase (b) Standard deviation

Figure 5.26: Noise along the instantaneous magnetic fiektton does not disturb the
geometric phase. Here the noise is two orders of magnitud#lenthan the magnetic field
(signal-to-noise ratig, = 200)

the path of the state, we expect now a deviation of the pathtearéfore a contribution to
the standard deviation of the geometric phase due to thisdinoise.

Varying noise strength (w, = 50rad/s) Clearly, the variance of the geometric phase de-
pends on the amplitude of the noise fluctuations, but for Egution time T the variance
vanishes in either case. It is interesting that even fomgtnaoise inz-direction (signal-
to-noise ratios; ~ 1) the variance vanishes, but the evolution time must bedaitg. In
Figures[[5.2I7) the theoretical predicted standard deviaif the geometric phase along with
the results from numerical simulations are shown for déferamplitudes of the noise (at
w_ = 10% rad/s,w, = 50 rad/sAt = 10~* s andd = 971/20 rad). In the right figure the ex-
ponential damping factor (visibilityy = e 8% of the polarisation[{5.518) is shown from
which we can estimate whether any difference will be notiiced real experiment. In the
last figure (c) the average geometric phase is depicted.

The theoretical predictions are different to the numerresblts for fast cycles which
can be explained by bearing in mind that under such circumetathe noise does not have
enough time to make uncorrelated fluctuations, hence tlsepoocess is not an O.U process
anymore and the analytical expression in Eg. (5]1.15) doesawve to be valid. A second
property is that the numerical results are further away ftbenanalytical curve for strong
noise which is also no surprise due to the use of a first-ong@oximation. For weak noise
and long times the computed values are in agreement witlmtheo

In order to get a feeling for the allowed noise strength tlwg-roean-squarey is plotted
for increasing noise powd?; for a fixed cycle lengthil in Figure[5.2B. According to the
findings in Sectiofi’5. 112 on the domain of validity of the &diic approximation, deviations
from the theoretical curve start gt~ 10.

Broader noise bandwidth (@, = 250rad/s) Let us have a look at other noise frequencies.
Setting the bandwidtly, = 250 rad/s we notice that the theoretical curve is approxaipat
met already at a cycle time ~ 0.1 s compared td@ ~ 0.5 s above (c. f. Figure 5.29). The

158



5. GEOMETRIC PHASE AND ADIABATIC FLUCTUATIONS

T~ T
- PR &
i i Jeay o B A R
1.2k s~11 N 08_'“”» e S~25- v ]
| L S S S 5% SR
1 B . SeLlia] 5 Sr~‘
e N 0.6 . 7]
& 0.8 Y 1 = & L Ak
© Qb - X P w2
0.6 SRR B 0.4 -
R N
04 Te-low Sy e .
i Yew G 02F . A R
0.2 7$§77$;¢7 e SN . ~Y ' .
0 I I P s e e SO 0 aia A Lo !
0.1 02 03 05 1 2 3 5 0.1 02 03 05 1 2 3 5
T Tl
(a) Standard deviatiogy (b) Expected visibilityv
T4 T T T
S theory - - - - -
62F [ % Shea i
.- . IR
! v . &
; . S~35:0
6 ,\-’, x A\‘ S . Sf'»:fl.l"—:‘ —
58'1 ®, B w ot i
& %
@ o
56} . O . <>: .
: o o N R
3 . . - >
. s NIV SN S S5 i G i dalet
5.2 1 1 1 1 1 1
0.1 02 03 05 1 2 3 5
Tl

(c) Geometric Phasg,

Figure 5.27: Variation of the noise amplituBg The (a) standard deviation, the (b) expected
visibility and (c) the mean geometric phase are shows,ferc10? ~ 35,5 = c10%2 ~ 11,

s =c10' ~ 3.5 ands = c10Y2 ~ 1.1 (c = 1/+/8). The noise bandwidth is kept fixed at
wh = 50 rad/s = 10% rad/s and%y = 971/20.
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Figure 5.28: Root-mean-square of the geometric plogséor varying mean noise powé
atT =1.57 s (@ = 4 rad/s),an = 50 rad/s. The guide-field is ai = 10* rad/s and accord-
ingly we notice deviations from the adiabatic approximaiioPs is about one order below

w_ (s < 10).
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noise has more time to fluctuate during one cycle and the a@ased by the path on the
Bloch sphere is better approximated. The decrease of tlenear compared to the former
setting withwy, = 50 rad/s is due to the weaker noise.
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Figure 5.29: Variation of the noise amplituBegfor a noise bandwidtly, = 250 rad/s. The
(a) standard deviation, the (b) expected visibility andtie geometric phase are shown for
s =cl(P~ 72,5 =cl10¥2~ 25,5 =cl10' ~ 8 ands, = c10Y2~ 2.5 (c=1/,/8/5).

Even broader bandwidth (w, = 500rad/s) For w, = 500 rad/s we obtain similar figures
(&.30). For the whole range df the agreement with the theoretical values is very good.
Looking at the visibility plot we notice, that for the setujitivs, = 10%/2/2/2 ~ 11, i. e.
one order in magnitude difference between the Larmor frequef the guide-field and the
noise strength, it should be possible to observe the inerieassibility (= average degree of
polarisation) also in an experiment for cycles with dunati@tween about.Q - 10 seconds.

Modification of the mean geometric phase

If one looks at the mean geometric phase in the simulatioowsiabove, there is definitely
one issue left to clarify. According to the first order dewatof De Chiara and Palma
the mean geometric phase should not be affected by the noiadtions. However, this
is valid only in the weak coupling limit for low noise ampldas, for stronger noise one
can immediately see that the mean geometric phase does inotdeowith the noise-free
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Figure 5.30: For a noise bandwidth @f = 500 rad/s the noise amplitudR is varied. The
(a) standard deviation, the (b) expected visibility andtie) geometric phase are shown for
s =cl10P2~ 112, =c1(P~ 35,5 = c10¥2~ 11 ands, = c10~ 3.5 (c= 1//8).

geometric phase. In Figures5.31 the mean geometric phasitsastandard deviation are
plotted for different settings of < [0, 1] with large noise amplitude (signal-to-noise ratio
s = 2.5 for w_ = 10* rad/s and® = 4 x 10° rad/s). The difference between the zero-noise
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Figure 5.31: Difference between zero-noise and strongenmisan geometric phagg (a)
and its root-mean-square valag (b) for strong noise for different polar anglés

and the strong noise mean geometric phase follows evidarglpusoidal law, a fit of the
data yieldd@y(3) = 0.47sin29).
Can this deviations be explained by geometrical consiggrs® Since the geometric
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NUMERICAL SIMULATIONS

phase depends only on the solid angle enclosed by the pdile pbtarisation vector on the
Bloch sphere these deviations must result from averagehagiges in the solid angle due to
the fluctuations. The calculation of the geometric boils daavthe calculation of a surface
integral and we will recognise that the curvature of theaefis the reason why the average
@ is modified.

Map onto a sphere As an illustration, take for example a rectangle on a plamkeraodify
the upper boundary by adding or subtracting rectangulasgféguré 5.32). If the amount of
added space is equal to the subtracted one, the area wone&hdowever, if the rectangle
is mapped onto a sphere the appended and the removed argast afesame magnitude
anymore, unless the upper boundary coincides with the eguat

T
L

Figure 5.32: Non area-preserving map of the noise fluctnatimmR? to theS?.

The geometric phase is determined by the area enclosed ipathen the sphere along
the line of latitude specified b, @ = (1 — cosdp). Adding noise fluctuations;, in the
zdirection modifies? to 3o+ 9 (@), wheredy (@) depends on the instantaneous azimuthal
angleg on the path. A calculation of the resulting geometric phatke moisef[b requires to
solve the integral

- 2m (o)
%:/ d(p/ 49 sing. (5.6.10)
0 0

Performing theS integration yields

- 2
4’92/0 do(1—cosd (). (5.6.11)

For noise fluctuations iz-direction, 3 (@) describes a stochastic process which is a func-
tional of the stochastic proce8s= Zy -+ z(t), of the noise of the magnetic field in Cartesian
coordinates. To solve this integral the statistical propsrofZ; have to be translated to the
statical properties of the polar andg¥ @) in spherical coordinates. This, however, is rather
involved and | will stick to a simpler procedure in order tadah at least qualitative results,
whether our conjecture holds that the deviation from the@diee geometric phase is an
artifact of geometry itself.

The distribution functiorpy (@) of 3 at a specific azimuthal angiecan already provide
insight into the behaviour of the mean geometric phase. Wdghhelp of the distribution
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5. GEOMETRIC PHASE AND ADIABATIC FLUCTUATIONS

function ps (¢) the mean valué? can be calculated. If it does not coincide with the noise-
free polar angleé9g also the geometric phase as the integral ovepathlues will be shifted.
It is not difficult to find the distribution functiopy of 3. 9 is determined by

Z Z
d = arccos- = arccos————
B VBE+22
- 1 _ B
_ T arccosw rh; arctans forZ <0 5:6.12)
- ! - , .6.
arccosm arctans forz>0

whereZ denotes the magnetic field componentzidirection andB; = (BZ + BZ)Y/2 the
magnetic field in the equatorial plane. In other words, we wate down the mapf that
transforms th& component of the magnetic field to the polar angle

_ _ Br
: Z ¢ (—»,0) — & = m+arctan € (11, 11/2) (5.6.13)
Z € (0,00) +— & = arctan?: € (11/2,0)
The distribution functiorpg can be written in terms of the distributigr of Z by
_ df—1(3
ps — pz(12(9)) | L) (5.6.14)
dd
which follows from the substitution rule of calculus. Theanse of the may is
Z=h19)= Br (5.6.15)
tand e
and its derivative d B
—h 1) =-—= 5.6.16
dd (3) Sirt 9 ( )
Plugging this into[(5.6.14) yields
B By
P (F) = st ™2 <tan19) . (5.6.17)

If we assume an Ornstein-Uhlenbeck random process (AppBn8), Z is Gaussian distrib-

uted with mean valug,
1 (2P
e 207 (5.6.18)

Z) =
Pz(2) 2102

This leads finally to the distribution function &f:

2
1 B [_Brz(ﬁ—taﬁs())]
= Vanozsitd " 202 '

pg is not Gaussian anymore and it is therefore not surprisiagttie mearf = [ pg (t)tdt

Ps (9) (5.6.19)
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is not necessarily the same as the noise-less azimutha dggince the distribution is not
symmetric aroundy. Only aroundrr/2, an evolution along the equator, theng) 2 factor

is symmetric and therefor®y = 3. Generally speaking, if (at least) quadratic contribusion
are included the mean value is shifted. In Figure 5.33(ajlifierenced — 9 is shown for
different anglesdy denoting the unperturbed polar andle = arctarBy/Zy. This is quali-
tatively in good agreement to the data from numerical sitiwta plotted alongside (Figure
£.33(b)). The negative offset fé > 717/2 and the positive offset fa? < 717/2 corresponds to
an evolution path below or above the equatorial line, rebpey. For 39 = 11/2 the fluctua-
tions average out as predicted since the distribution iswsginc at this point. Unfortunately,
there is still a mismatch to the numerical data which propat#éms from the particular fea-
tures of the noise process itself. Here, we have only takemgtantaneous distribution of
the fluctuations into account, but not that the magnetic fielactually a random process.
The correlations at different times have been totally netghd

[rad]

6-60

3r m
4

ks 7

I
[N

2
6p [rad]

(a) Theory without taking the noise process pr@p- Numerical simulations show about the same
erties into account. behaviour.

Figure 5.33: The differenc@ — 9o between the mean valu® of the polar angléd and the
Zero noise meafi.

Nevertheless, this is a beautiful demonstration of the ggoonature of the geometric
phase. In the previous derivation only geometry has playedeawithout any reference to
guantum mechanical states and their phases. A future issoeobtain a better analytical
approximation to the numerical data. Also, it has to be fiéatihow this relates to the studies
of Whitney et al. [WMSGO05] who have calculated a non-vanishing shift of thergetric
phase from fluctuating fields.

5.6.4 More spin flips

In the end, | want to shortly comment on the possibility to getof the dynamical phase
if one does not know anything about the noise fluctuationghéncurrent scheme the dy-
namical phase is removed by changing the polarity of the midgfield and apply theame
noise twice. This is good enough for a computer simulatioth fom a proof-of-principle
experiment, however, if one is eager to benefit from the rolass of the geometric phase in
a real life experiment or even in a real life appliance these@annot be copied. Otherwise,
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5. GEOMETRIC PHASE AND ADIABATIC FLUCTUATIONS

one could compensate all influences anyway without needeofittometric phase. How to
solve this problem is still an open issue. Maybeefcusing schemeould put things right
[Ved05]: By performing not just one reversal of the magnéetd one can make many of
them in the hope that the variance of the dynamical phasesivasiin the limit of many
(but not infinitely many) flips. As in the spin-echo the georntephase is not affected by
reversing the magnetic field.

With the simulation program at hand this can be implementetithe results are shown
in Figure5.3%. There is definitely an improvement in the déad deviation of the final phase
difference, although an lower bound of the variance seerhg t@ached for large numbers

of flips.
] 1
E H [T T B
o . e
(a) Phase difference (b) Root-mean-square value

Figure 5.34: Mean and root-mean-square value of the ph#ieeetiice after one rotation for
an increasing number of flips of the magnetic field.

5.7 Conclusions

There is hope that the geometric phase is more stable thagyttemical phase, meaning
that for certain perturbative influences from the environtrtee error (or uncertainty) in
the accumulated phase is smaller in comparison. Theorgateh that this is the case for
an adiabatic evolution of a neutron in a magnetic field wittneaot too fast perturbations
such that the adiabatic approximation is still valid. Hoe®an experiment is needed that
can show the validity of this approximative result and aftesicussing other alternatives we
ended up with a proposal of an experiment with stored ulbid-neutrons. In order to get
rid of the dynamical noise influences a spin-echo scheme earséd, with the drawback
that the noisy fluctuations have to be artificially constedctOtherwise, there is no chance
to get rid of dynamical contributions. After two similar exsions of the spins there is
only the geometric phase left which is spread about some w&ae due to the different
stochastic noise contributions in each experimental rurs predicted that the mean value
stays constant and, furthermore, that the variance tenzir¢o if the evolution time is long
enough.
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In view of a potential experimental realisation it is noviai to adjust the different pa-
rameters to make a verification of this feature feasible. thbogblematic are the different
restrictions on the involved frequency ranges in order &y & the adiabatic domain and
we have to resort to numerical simulations helping us tovesttd and explore the suitable
parameter range for an experiment. The theoretical piedgti. e. the claimed stability
of the geometric phase could been verified numerically folous parameter settings and it
seems likely that such an experiment is possible so thattédity of the geometric phase
can be tested also experimentally.

A subtle issue showing up in the simulations remains to befield: For stronger noise
perturbations the mean geometric phase is not a constamb@ggr since the noise process
assumed to have zero mean is mapped onto the spherical peram&ce (which is equal to
state space in the adiabatic case). This map from a flat toveadunanifold yields a noise
process which is not centred anymore and a mean geometse et is not identical to the
noiseless one anymore.

In the AppendiXD further details on the planned setup arsepried.
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Chapter 6

Conclusions and Outlook

The geometric phase in quantum mechanics is the main issihésithesis. In particular,

three manifestations have been explored, off-diagonaingéac phases for general mixed
states, a non-cyclic spatial geometric phase in a doulole-h@utron interferometer exper-
iment and a noisy geometric phase emerging from the spirugonlof a neutron. These
different topics demanded for different methods. The adigdnal mixed state geometric
phase has been studied theoretically, there has been arnegpton the spatial geometric
phase at the neutron reactor at the Institute Laue Lang@vemoble, and the connection of
noise perturbations and the geometric phase has beenigatestby means of numerical
simulations.

As for the former, a definition of an off-diagonal geometriape has been found which
generalises the mixed state geometric phase concept aftéréerometric type as well as
the Uhlmann holonomies. The geometric phase, in generas@ hint on the topological
structure of the subjacent Hilbert space, but there arelpmiliats, i. e. points in state space
where it is undefined, and nothing can be said about the yndgrjeometry. To have a
measurable expression at hand that also works in suchisitaabff-diagonal extensions
are needed. They share the property of reducing on the ortedida to the pure state off-
diagonal geometric phase and on the other hand side ingdadiso their diagonal analogue
as a special case. Furthermore, they are, as is right andmi@pa geometric phase, gauge
and reparametrisation invariant. In other words, they goeoaerty only of paths of mixed
states, while dynamical quantities like energy and timarareaterial. Clearly, one can also
find physical examples where such phases come in useful. dwpled Mach-Zehnder-
interferometers with an entangled photon pair as inpuestan be used to measure the
interferometric off-diagonal geometric phase for mixeates.

Next, it has been substantiated that a geometric phase caschbibed to the paths of
neutrons through an interferometer. A previous experingdemonstrated the cyclic case,
but there was harsh criticism denying the correct measureofea geometric phase. With
the present experiment it has become clear that the measufeih the interference fringes
can be ascribed to a geometric phase of the non-cyclic cas#, the paths in state space,
that is, on the Bloch-sphere, have been devised and thesencémlid angle proportional to
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the geometric phase has been calculated. Secondly, oneasdy @lculate the expected
phase shift in a neutron interferometer without fallinghbanto any kind of geometric argu-
ment by merely superposing all the possible beam pathstni$ tout that these descriptions
are equivalent resulting in the same phase shift wheneweiroposes a parallel transport
condition on the transport of the neutron state, i. e. forisking dynamical phase. Fi-
nally, these prediction have been verified experimentaing neutrons travelling through
a double-loop perfect-crystal interferometer. The resaie coherent with theory to a high
degree. Qualitatively, the data plots show the same betaamexpected, for example, that
the sign of the enclosed surface area matters, which dementhge orientation of the sur-
rounding path. Or, if the endpoint of the evolution is opp®$0 the starting point on the
Bloch-sphere one cannot ascribe a certain path since therafaitely many alternatives
to connect these points via a geodesic. This manifests itseanishing interference con-
trast and therefore undefined phase. However, quantitgtmee must admit that there are
discrepancies between theory and experiment. The intafgidifferent contrasts of the
interferometer loops and differently sized phase shifstalps give rise to additional phase
contributions. These systematic effects have been expiarerder to quantify the devia-
tions from theory. Altogether, the results substantiategbometric nature of the measured
phase shift.

In the third part, the canonical example of Berry’s phaseafaatic geometric phase),
namely a spin-1/2 particle subjected to an adiabaticaltyimg magnetic fields is reviewed
for stochastically fluctuating magnetic fields. Recenttyhas been shown theoretically
[CPO3] that the geometric phase stays robust for long eenldimes in a classically fluc-
tuating magnetic field, the spread in the measured phasensathly caused by dynamical
contributions. The basic idea was to verify this behavidso &xperimentally and neutrons
seemed to be particularly suited. We have discussed thatiteoneinterferometry experi-
ment is conceptually best suited, but unfortunately theeesaund counter-arguments, like
the difficulties in implementing appropriate magnetic feeld an interferometer by coils
which produce heat that destroys the contrast. Or, the émgyurange for the noise is band-
limited by the inductance of the coils and high-frequenciesded for rather fast thermal
neutrons are not implementable. The final idea is to use isethultra-cold neutrons that
can be stored in a box due to their low kinetic energy and byppireg Helmholtz coils
around, their spin can be manipulated. Numerical studige baen made in order to find
suitable parameters for the guide-field strength, the ¢evlspeed, the noise strength and
the noise bandwidth that can be used to demonstrate théitgtabthe geometric phase ex-
perimentally. These simulations are crucial for spotthggdemarcation line to non-adiabatic
behaviour. This, in turn, is important since the parametesse to be chosen quite close to
the non-adiabaticity regime in order to be able to observasmeble modification of the
geometric phase variance also in an experiment. It turnghatithere is a set of parameters
suited for an experiment. Furthermore, it turns out thaffiis¢ order approximation of the
theory may not be sufficient. At least for stronger noise gbuations, an unpredicted devi-
ation of the mean geometric phase is visible as well. Thisniegly be visualised again by
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means of the spherical shape of state space. A noise prdtessgh having zero mean that
is mapped onto a sphere yields a shift in the mean geometa®eph

At the end, a detailed description of the ultra-cold neugxperiment is presented in the
Appendix[D along with some difficulties one has to face wheiding a real-life experi-
ment. For example, inhomogeneities and external fluctngatad the magnetic field cannot
be neglected. To have negligible external influences agwarde field is needed, but this in
turn gives larger phase differences among the differepptd neutrons with different paths
in the slightly inhomogeneous magnetic field. The plan iswercome this and suchlike
problems and measure the stability of the geometric phaseoaitest. The first experiments
are scheduled for the end of the year 2006 and will hopefdlalbong the lines of the theo-
retical and numerical predictions.
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Appendix A

About Noise

Stochastic processes appear at every turn, financial nsatket spreading of diseases, the
travelling of dollar banknote5§ [BHGD6], etc. are nowadayslelled using random processes
or noise processesSuch descriptions go back to the well known example ofBt@vnian
motionof a grain particle suspended in fluld [Bro66]. Since we tduete this huge field only
peripherally I will just give a short sketch of the basic pipies without raising the claim of
mathematical rigour. The latter can be found for exampl©iksD3 [ Bil9%]. A collection of
seminal papers of stochastic processes relevant in phyaicbe found in[[Wax54]. In the
following short introduction we will adopt the presentatio [REf04].

A.1 Definition of a stochastic process

The notion of a stochastic process is basedamalom variablesvhich are variables that are
determined by a random experiment. A simultaneous measumteofi say, the temperature
with different apparati does not yield one precise valué,abdistribution of values used to
determine the average value that we accept then as the ttereperature. This distribu-
tion makes up a random variable. A (temporal) sequence dforarvariables constitutes a
stochastic process, i. e. if one thermometer is called mamgstin succession the sequence
of values is a singleealisationof a random process. Taking the whole ensemble of ther-
mometers at each time step we can determine the instantdesitibution of values and
characterise the stochastic process itself, instead cglynene realisation arajectory.

More abstractly, a random variableis a map from some abstract sample sp@deto
the real numbersX : Q — R. For the sake of simplicity, let us stick to a discrete valued
example like throwing a die. The sample space is given by ithéases of the dieQ =
{¢,%e, %0 0,88}. When performing an experiment, i. e. throwing the die weiassthat
one face shows up. The result of an experiment is calleevantA € Q. Apparently the
simplest example of a random variable is to count the numbéots,Xf‘ =1.X4=2...
Another example is the random variab{§dd =0, XRen= 1 if just the parity is of interest
for the experimenter.

Each time the die is thrown we get a realisationXotienoted byx = X(A) with x €
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{1,2,3,4,5,6} for the first example ang € {0,1} for the second. So for each throw (each
measurement) we get the outcorpgd. e. the random variabl¥ takes on the valug.

Now, to each everni; out of the sample spac@ we can assign a probabilify = P(A;)
that A; is realised in the experiment. It is not difficult to guessttfa the die example
pi = 1/6, if the die is sufficiently “healthy”. In the second examfihe sample spac@ is
partitioned into the subsets..: 243} and{. . %:}. The probability for an event belonging
to one of these subsetsps=1/2.

A stochastic process is then a family of random variablgd) wheret usually denotes
the time parameter. The dependencet arflects the possible changes of the stochastic
properties ofX, (t) in time. In a formal definition a stochastic process is defiagd map

X:QxR— R.

X, (t) associates with eadhe R andA € Q a real numbex; = X, (t), one can think of it
as a function in two variables: Giventhe possible values of, (t) are calledstatesof the
process at. Keeping all the eventd = A’ fixed and varying, X,/(t) is a deterministic
function, sat — X)/(t), is called arealisationor trajectoryor sample pattof the stochastic
process. In other words, we look at one possible process dysaig a particular outcome
of the experiment at each time as depicted in Figuré A.1. mbkanof a random variable

X
X2

30 e - + >

N
-
-

PN W A o

Figure A.1: Three different realisations of the random pssc‘Throwing a die”

X, (t1) is denoted by

Bx(0) = (% () = TXPO) or px() = [ xh(xtdx (A1)

where fx (x,t) is the probability distribution oK) (t) andx; are the possible outcomes, if
X, (1) is a discrete map as in the dice example. For continuous nandoiablesX, (t) the
sum is converted into an integral over all possible values &imilarly, other moments are
defined (X} ) = ¥ X pi), especially the second moment is needed to define the earian

0F() = (00 (10— ix(1)? = [ KO- x(xdx  (AL2)

Examining two random variabl& andY correlations between them can be grasped by
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calculating thecovariancefunction

Gxv(ty,t2) = (X3 (t2) — px (t2)) (Va (t2) — kv (t2))) = (X3 (t1)Ya (t2)) + pix (ta) bty (t2).
(A.1.3)
It is common to use theorrelation coefficienpxy(t1,t2) = Gxy(t1,t2)/0x (t1) oy (t2) taking
values between-1 and+1. Itis equal to 1 if two random variables are perfectly clarted
and O if they are independent. For a stochastic process theaion function between the
noise process at different timésandt, is of particular importance. Qualitatively, it tells
us something about the memory loss, since if the randomhiasX, (t;) and X, (t2) are
correlated after a finite timét =t, —t; #~ 0, it means that the processaknows something
about its past at timg. If there is no correlation what has happened in the pastnsaterial
for the present status. The vanishing of correlations detess a specific time scale, the
relaxation time

A process is calledtationary if the meanux (t) is independent df and if the covariance
function depends only on the time differerfste For such a process the covariance simplifies
to

Gxx(t1,t2) = Gxx(At) = (X3 (0)X) (At)) + . (A.1.4)

For a stochastic proces (t) we can define also the time average for fixed

/ "y, (t)dt] , (A.1.5)

where the limits are taken to ensure that the time average rtadepend on the integration
limits. Similarly, the(auto)correlation functions defined by the time average

. 1 T
Cx (At) = X, ()%, (t - At) = Tl'ﬁnm[ — TZX)\(t)X)\(ttht)dt}, (A.1.6)
To—o 1

If Cx(At) does not depend oh it is calledergodic the time averaging removes the depen-
dence on, i. e. on the particular trajectory over which the time agerss taken. For a
stationary and ergodic process the time average is equbétavierage at fixed timte(en-
semble averagefx (At) = Gxx(At) (X, ()X, (t +At)), a property widely used in statistical
physics [Réf04].

As for the discussion about coherence in Sedfion}4.8.1 tiwethe correlation functions
used there are analogous to the definitionGgfx in Eq. (A13). In classical optics the
electrical field of lightE, (T, t) is considered as a (complex) random variable. The covagianc
function

G(r1,t1;T2,t2) = (B} (M1, 1) Ex (T2, 12)) — (B (T1,11)) (B (T2, 12))

is used to define the coherence properties of the beam. Theefsamalism can be adopted
to neutron optics [RWK 96,[RW00].

The importance of the autocorrelation function is basedeliener-Khinchineéheorem

173



DEFINITION OF A STOCHASTIC PROCESS

that relates it to theower spectral densitfunction via a Fourier transform,
&(v):/ Cx(T)e 2 idr (A.L7)

for a stationary stochastic process(t). Vice versa, the autocorrelation functi@g (t) can
be found via the inverse Fourier transformation ,

:/m Sk (v)€2™dy. (A.1.8)

The instantaneous power of the fluctuations is defined by the

P (t) = (Xa ()X (1)

which is in the stationary case independent of tinaed thus equal to themean power ,%
It can be associated to the covariaf@ex (t) = (X, (0)X, (t)) by

PZ = Gxx(0). (A.1.9)

From the Wiener-Khinchine theorem the mean power can beeegpd in terms of the power
spectral density

= [ s, (A.1.10)

in other wordsSx (V) gives the portion of the mean power in the frequency rdage-+dv].

White noise Take aGaussian white noise proceas an example: This process comprises
all possible frequencies (and is therefore strictly spegust a theoretical construct that
cannot be realised in reality) with a uniform power disttibo over all frequencies. It is
defined to have zero meanVN(t) = 0, at all timest andX), () is Gaussian distributed. Its
correlation function is proportional to the delta functi@}’N(t) O PZ5(1). It follows that

its power spectral density is constast(v) = PZ according to[AL7).

X C™(z)

| Hlll”} ,;HH,M“M lxh l!m /H Lm C
M'HW '! )10

1073
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0. 05 g oMs5 0.2

(a) White noise (b) Correlation Functiole}N(1) (average
over 1000 trajectories)

Figure A.2: White noise process
The white noise process is a typical instance Markovian processvhich is basically
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a process with no memory. The value at timéepends only on the value at tinhe- At
(At...time increment) but not on the total history. The cotietafunction in Figurg A.2(B)
shows thed-peak at zero time difference.

A.2 Langevin equation

In physics differential equations are essential to deedtile dynamical behaviour of a sys-
tem. The most prominent example is the equation of motioihdégermines the acceleration
a =V of a particle of massn, mv = —bV+ j(t), wherefj(t) describes the a conservative
force acting on the particle armtheviscousforce proportional to the velocity.

Consider now a particle surrounded by many other partitiasare much smaller. Due
to the collision with these smaller particles the big péetexperiences a series of stochastic
changes of its velocity. This has been examined alreadyeolgdbanist Brown |Bro66] and is
nowadays known aBrownian motion He looked at grain pollens under the microscope and
found them moving around without apparent cause. To acdourthis in a mathematical
formula the stochastic changes of the velocity can be subdumthe force vectorj which
comprises a deterministic terfjyet and the stochastic fluctuationigiocr We end up with
the Langevinequation,

dv S
ma = —bV+ Nstocr(t) (A.2.1)

by assuming vanishing deterministic forces (e. g. grawoitat

Such examinations may not sound that spectacular and omged to say: “But it was
clear beforehand that the grain pollen will be kicked andefoge it will move around.” But
atomic theory was not well established until the end of theet@enth century, it was not
clear at all that there exists an atom per se without being @glbnvenient picture in mind.
“Haben’s eins gesehen?” (“Have you seen one?”) is the sgiluote attributed to Ernst
Mach in discussions on the existence of atoms. It was nometies Albert Einstein who
established with his theory on diffusion the atomistic viEnO0ES].

Another form of writing down thé.angevinequation is[[G1I95]

X(t+dt) = X(t) + A(X(t),t)dt-+DY2(X(t),t)N(0, 1) (dt)>2, (A.2.2)

where the velocity and the viscositp have been replaced by a general random varisfie
and thedrift function AX(t),t), respectively. The stochastic driving forgét) is split into

the diffusion function B/2(X(t),t) > 0 and the reduced Gaussian random varia{l@, 1)
with zero mean and unit variance. The occurrence of thegtréoking square root of the
differentialdt can be justified if we have a look a the mean square displadesharBrown-

ian particle. If we takeX(t) as the vertical displacement of a particle suspended inchifkui
mean value will be zerdX(t)) = 0 neglecting the influence of gravity. Furthermore, the ob-
servable mean square displacement is proportional tortree[EIn05 [ Perds](X2(t)) = a’t

and the root mean square deviation is therefore propottioriae square root of the tinte

AX (1) = /(X2(1)) = avi.
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A.3 Ornstein-Uhlenbeck process

We consider as one of the simplest stochastic processesrtisted-Uhlenbeck (O. U.)
process which describe the velocity of a particle in Brommaotion [UO30] and can also
be used to model Johnson (thermal) noise in electrical itsr¢@1I00]. In contrast to the
white noise process it does not have a flat, but a Lorentziarepspectrum and is therefore
calledcoloured noisen general, oBrown noisan particular.

SettingA(X,t) = —T—lnx andD(X,t) = c with the relaxation timet, and thediffusion
constant dn the Langevin equatiofh{A.2.2) defines the Ornstein Uhdekiprocess.

X(t+dt) = X(t) — %X(t)dt+ c'/2N(0,1)(dt)Y/?, (A.3.1)
n
From Eq. [AZ1) we easily see that the O. U. process Maakov processsince the
knowledge ofX(t) is sufficient to calculate its valug(t -+ dt) at an infinitesimal timedt
later. It is also a Gaussian process (4llt) are Gaussian random variables) with mean
(X(t)) = xpe~t=1)/™ for the initial condition(X(t)) = xo. The variance at time can be
calculated to

0 (1) = (X2(1)) — (X(1))2 = (1 -t 0)/m) (A32)

and its covariance
Gxx(t1,t2) = (X(t1)X(t2)) = %e*(bftl)/m (]_— efz(tlftO)/Tn) (to<t; <ty) (A.3.3)
sincepux = 0. The characteristics of the process are subsumed in tdemawariable

X(t) = N(xge (- 0)/ 10, (1 — g 2t 10)/m)) (A3.4)

and in the limittg — —oo,
CTn
2

The nomenclature for, as therelaxation timeis now justified since it characterises the
time scale over which the mean and varianc& f) relax to their asymptotic values 0 and
CTn/2, respectively. In its relaxed form the O.U. process is atstionary, the probability
density function ofX(t) does not change anymore in time. For the relaxed form theleorr
tion function is given by

X(t) = N(0, =1). (A.3.5)

Cou(t) = C—;”e*t'/ Tn, (A.3.6)

This implies (EqCALY) that the noise has a Lorentzian papectrum

2c1?

1 [ -
S((J)) - E_[/OOC(t,)e_th dt, - m (A37)

The integral over all frequencies = w/(2m), [dvS(v) = infde(w) gives the mean
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power

The bandwidthw, of the power spectrum is given lay, = 271/ 1,

S(w

n =211/ Ty W

Figure A.3: Lorentzian shape of the spectral distribu®m) of the O.U.-process

A.4 Integral of an O.U. process

Since Brownian motion describes the velocity of a particla suspension the integral of this
process results in the particle position and is therefotaunattractive to calculate. Indeed,
one can also find for the position an analytic expressionstfomean and variance. The
mean value of the random variable

t
Y(t)=Y(0)+ [ X(t")dt (A.4.1)
to
is given by
ty =(Y(t))=0 (A.4.2)
since(Y(t)) =Y(0) + (fttOX(t’)dt’) =Y(0)+ LE)(X(t’))dt’ =Y(0) = 0 when exchanging the
time and the ensemble averageibini’s theoren), assuming that the initial positiof(0) is
zero and taking the relaxed form ¥{t) (top — —). Its variance is given by [D00#2]

_t t
n

or

_t t
o¢(t) = 213P4y[e ™ — 1+ T—} (A.4.3)
n
in terms of the mean pow&g, = c1n/2.
It is instructive to explicitly derive the formula for the n'vancea%(t) in EquatioA4.B.

Inserting [AZ1L) intoc2(t) = (Y?(t)) and using[[A31) in its relaxed fornGx (t1,tp) =
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GENERATION OF AN O. U.-PROCESS BY ITS SPECTRAL REPRESENTAN

e~ (t=t)/m) t follows that

(Y2(t)) = // t”))dt'dt”

_ CTn// e "—t/Tag' gt (A.4.4)

This can be simplified to

"

t ! "
<Y2(t)> 2CTn (/ e (t t)/Tndt)d 1"

2
_crn/ /Tn/ e /gt dt”
=crd <ern — 14— ) (A.4.5)
Tn

as in Eq.[AZ4B).
In Sectior 2. 111 a slightly modified form has to be calculateinely the integral of an
O. U. proces¥(t) times a cosinefoT coswtX(t). Similarly to the above the integral

CTh\ 2 T " t’ /
2<7n> / coswt” g /T / coswt’e !/ Tndt'dt”
0 0

which is already a more tedious task. At the final tie- 2711/w a simple form can be
obtained,

2 o222 e T/h_1 T/Tq
oy .= 2PT] (((1/Tn)2—|—0)2)2 + (1/Tn)2+w2> . (A.4.6)

Similarly, for fOT sinwtX(t) the variance can be calculated to

2 op2,2 w?(e /M —1) T/t
GYS_ZPXT”(((1/rn>2+w2>2+<1/rn>2+w2 | (A4D)

A.5 Generation of an O. U.-process by its spectral repre-
sentation

An approximation to the O. U.-process is obtained by decaimgpoit into a Fourier sum of
trigonometric functions with random amplitudes and/orggs]|Ric444d, Ric44b],

K

X(t) = Z [Accosut + By sinadt] . (A.5.1)
K=1
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A. ABOUT NOISE

The coefficients are independent zero-mean random vasialblieh are taken to be Gaussian
and their variances are determined by the spectral densittibn of the process,

o = 08, = S(fi)Af, (A.5.2)

with the relationsfy = w/(2m) and fy = kAf. The spectral representation of the noise
process in EqLTAB]1) can be used for different kind of naisaracterised by their spectral
density. Thus, the O. U. process is obtained by chodSjfig according to Equatioi{A.3.7).
The properties of the random variablsandBy determine these characteristics and in the
limit of K tending to infinity the approximation to the desired noisecpsss is exact.

An alternative representation makes use of random phlgsesformly distributed in the
interval[0, 2],

K
X(t)= > Cccogwd — @) (A.5.3)
K=1

with fixed amplitudeCy = /S(w)Aw/ 1T (or C = +/2S( fx)Af). This is the form we have

used for the numerical simulations since it is “cheaperhimtay that just one uniform dis-
tributed random variable has to be generated instead of bnoal distributed ones. Sample
trajectory of an O. U. process generated in such a way arersholigure A.4(d). The cor-
relation function shows the exponential characterislicgt) = P3,e~2/™ of the memory

of the process (Figufe A 4{b).

4 1

2 — -
= 3
= OF A = 0.5 -
< ] &

21 4

-4 0

t At
(a) Sample trajectory. (b) Correlation function averaged over 100 trajecto-

ries.

Figure A.4: Sample Ornstein-Uhlenbeck process with patarse = 2, 1, = 1 and there-
fore P3,, = 1/2. The red solid line shows the fitted correlation funct@(At) with the fit
parametergs = 2.02+0.006 andr; = 0.984 0.003 in accordance to the input parameters
values.

A.6 Example: Current noise in an electric circuits

A resistance at nonzero temperature in an electric ciraodiyces current noisdghnson
noise that can be described by an O. U. procéss [Gil00]. For exanplan electric circuit
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EXAMPLE: CURRENT NOISE IN AN ELECTRIC CIRCUITS

comprising aresistance R and self-inductance L — for exapagHelmholtz coil arrangement
as described in AppendixID — one can estimate the Lorenthiapes power spectrum at a
temperaturd . The equation describing this circuit is

dg?>:—tﬁi %wa% (A.6.1)

wherel;(t) is the fluctuating electrical current and the randomly flating voltageV;(t).
The connection to the O. U. process is establishet byL /R andVJE) = Lc%2r(t), where
[(t) denotes Gaussian white noise with zero mean g \tariancé. Furthermore, it can

be shown([GII0D] that
o 2eTR

L2
with the Boltzmann constaig = 1.3806x 10231 /K. The frequency spectrum has a band-
width of I = 1/1, = R/L and the mean square currenti$) = ctn/2 = kgT/L. At room
temperature and fat = 10>, the value found for the Helmholtz coils used for the UCN
storage experiment below (Appendix D) a mean noise curife2® oA is found.

170 see the equivalence with EE{AR.2) writh (t) = 13(t +dt) — I3(t) and usexr + BN(m, 02) = N(a +
Bm, B2a?) for the normal random variabl(m, g2) with meanm and variances?.
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Appendix B

Calculation of a geodesic on a sphere

For the following derivation of a geodesic we refer to Refak3] or any other book on
(differential) geometry will probably do as well. The meton theS? embedded iR3 is
induced by the Riemann metric defined B given by [Nak03, p. 245]

Op = guv(p)dx¥' @dx’, (B.1)

where in our Euclidean geometgy,, = o,y andu,v =1,2,3,1i. e.

gp = A @ dxt +dx¥ @ d>xé +dxC @ dxC. (B.2)
Using the transformation property of the dual babi§ = %dy" we can write
gp = dx¥'@dx
= Z;Zdy“ ® g?ﬁ dyP (B.3)
_ %%dy“@dyp (B.4)

In general [[Nak03, p. 246] let M be an-dimensional sub-manifold of amdimensional
Riemannian manifoldN with the metricgy. If f : M — N is the embedding which induces
the sub-manifold structure &, the pullback mag* induces the natural metrgg; = f*gn
onM. The components ajy are given by

01 o1
OxH gxVv

Omuv (X) = Onap(f(X) (B.5)

wheref? denote the coordinatedgx).

In particular the metric of the unit sphere embeddedis provided by the coordi-
nate transformatiori from (8, @), the polar coordinates & to the coordinatex,y, z) in
Euclidean space. It is defined by

f:(6,) — (sinBcosyp,sin@sing,cos), (B.6)
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from which we obtain the induced metric

gt 5 — 33p 210 g IO
Evaluating‘%‘j ‘3,;3
00.,:: 0;.,:: = o;f; o;fea = cog cos 6 + s’ pcos 6 +sif 6 = 1, (B.7)
Z;Z ‘;Z = ‘;f; ‘;f; = sir? @sir’ 6 + cos @sirt 6 = sirt 6, (B.8)
a 5a a ga
ao"'il ‘Ziz = (Z;fe dﬁf(p =0, (8.9)
a Hfa a Hfa
5 o = 7 98 =° ©.10)
(B.11)
finally yields
OgijdX ®dX = d6 ® do +sir? 6de® de. (B.12)

Now we want to derive the geodesic connecting two poipts (6, @) € & andp =
(61, 1) € S. The geodesic is per definition the straightest possibieschetween these two
points which can be derived by minimising the lenbtfi) along a curve : s— X(s) on the

sphere,
: , dx dxi
/Cds /c\/dsz /c,/g.,dmdx /C\/g., —ods  (B.13)

parametrised by the distanseThe minimisation of (C) leads to the Euler-Lagrange equa-
tion
d, oL oL

ds(dx") ox
with X' = dx/dsandL = /g;jdxX'dx). Note thatL =1 from f,ds= J,Ldsand therefore
dL/ds= 0 along the curve. In order to circumvent difficulties argsfnom the square root

solving Eq. [B:I#) can be shown to be equivalent to solvirgEhler-Lagrange equations
for the functionF = L?/2 = g;;X"x.

=0 (B.14)

Doing so we obtain

d : 169.

A iy

Fo(%ix) =5 ™ XX (B.15)
= —.x’ X'+ Okj d32 ~5 0ka’x’ (B.16)

d2x] 1,0k 0Joi 09 dxl dx
o -

axi XK )EE =0 (B.17)
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B. CALCULATION OF A GEODESIC ON A SPHERE

Multiplying the last line byg'® we obtain the geodesic equation

d2x¢ | dx dx
a2 Nidsds — (8.18)
by use of theChristoffel symbols

}|k(09kj I0ki 0gij).

rl'i = 2 —

]

oxi  Oxi gxk

In our particular examplé = %9’2 +sir? 8¢/ and the Euler-Lagrange equations are

d2e . do, 2
P schosQ(&) =0 (B.19)
d?¢ dedo

which define the Christoffel symbolg), = —sin6cos6 andr g = I'g, = cot6. To finally
obtain the geodesic curdgy : s— (6(¢), ) we insert

do_dode o0 do) 4O
ds dpds’ d¥ dg2'd®’ ' ded<

into the first equation of (B.19) and get

d20 dp., dOd2p do, 2
W(E) +%@—smecose(g) =0. (B.21)
Plugging the second equation bf{B.19) into Eq. (B.21) itssal
d2e do.> .
A ZCOte(Ep) —sinBcosh = 0. (B.22)

Defining a functionf (8) = cot@ by explicit calculations one finds that

OI2—f+f—o (B.23)
dg? N '

is sufficient for Equatiolfl B.22 to hold. The general solutisrf (8) = cotd = Acosg +
Bsing or
Asinfcosp+ Bsinf@sing — cos = 0, (B.24)

the equation of a great circle which lies in a plane whose abuector is(A,B,—1). Aand
B have to be determined by the initial conditiog ) is therefore

6(¢) = arctan(Acosp+ Bsing) *]. (B.25)

183



Appendix C

Adiabatic Theorem

The adiabatic theorem says that if the system is initiallgnreigenstate of a time-dependent
Hamiltonian it will stay in an eigenstate at each instantiofet under the condition that
the Hamilton operator is changing slowly enough. Can we glsantify this condition?
Following Messiah[[Mes€2] let us assume a system initiallyhe statg(0)) which is
also an eigenstate of the Hamiltoniag,0)) = |ng) with H(t)|ny) = En(t)|ny). For allt =

0 we therefore have a complete set of basis sti@gdelonging to the respective energy
eigenvalues,(t), which are taken to be non-degenerate. We also assume éhHiiltiert
space spanned by the basis vectors is compact, hence, theenofrbasis states is finite.
The time evolution is given by the Schrodinger equation

.0
HOIY) =i [Y(t).
At any time the statép(t)) can be written as a superposition of the,

(1) = T ca(t)e ROECI ) (C.1)

by absorbing the time dependency into the coefficients) € C. Inserting [C1L) into the
Schrédinger equation we obtain

S Ca(t)H (1) RO ) —iR'S [en(t)e A HERTI my)
n m

R Em(DIm) +cm(t)en HEO% ).

+ Cm(t)(
Multiplying this equation from the right with the instantsous eigenvectat;| we obtain

e JoEi(t)dt ¢ (H)E (t)
= ifig (1) RRE MM ¢ (t)E (t)e R OB | iny Cm(t) e~ OEm®)AY 111y
m
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C. ADIABATIC THEOREM

from which
== 3 cm(t)e bl vy (€2)

follows. We have assumed thHif(t) is Hermitian so that its eigenvectors are orthogonal

({m|ne) = Smn).
The expressiofl;|m) can be found from the time derivative of the eigenvector &qona

@t ] ()|m) = Em(t)|my)
(| A©)IM)+HOIm) = En(®)m) +En(®lm),  1#m
(le[H[my) -+ Ei (£)(le|rv) = Em(t)
o (l]H|my)
(le[rm) = m (C.3)
Inserting Eq.[[CRB) intd{Cl2) we finally obtain
S 1) — LI i [ Em(t)—En(t)jar_ (kIHIMY)
&(0) =~ (k) + 5 em(t)e JolEm(t)=En(t")Jdt Em(tt)—a(t)' (C.4)

The state will remain in an eigenstate of the instantane@umsiltbnian if the eigenstates do
not mix, i. e. if the matrix element

t|H|mt>

’Em—EI() <1 (C5)

The rate of change of the Hamiltonian must be smaller thartieegy splitting in order to
stay in the adiabatic region. In terms of a spin-1/2 partcibjected to a magnetic field the
Larmor frequencyw_ corresponding to the Zeeman energy level splitiiag- E| must be
smaller than the rotation frequency of the magnetic fieldmirically, it is shown in Section
that they should differ by approximately one order agmitude.
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Appendix D

Stability of the geometric phase - UCN
measurement in details

A possible test of the robustness of the geometric phaser uhdanfluence of classical
fluctuations can be designed using ultra cold neutrons. ibf,lppolarised UCNs have to
be stored in the storage volume for a certain time intervel @ppropriate magnetic fields
are applied to manipulate their spin degree of freedom. rAfte controlled spin evolution
the resulting polarisation is measured by both countindroes with spin up and neutrons
with spin down and the ratio of the count rates provides thargation. The apparatus
Is constructed in such a way that both the preparation andrtblyzation is accomplished
by use of a totally magnetised foil which transmits neutrawith parallel spin polarisation
and reflects anti-parallel polarised ones. To get this gaisgitch has to be attached to the
neutron guide. The complete setup is shown in Figdre D.
In detail, the measurement scheme is as follows:

(i) First the shutter is open and the switch directs neutfoma the source to the storage
volume.

(i) The magnetised foil blocks neutrons with spin aligneti-garallel to the applied guide
field surrounding the neutron guide between the polarisdtid and the storage box.

(i) The hereby polarised neutrons go straight into theaie volume and if density equi-
librium is established the shutter of the box is closed. THesRin flipper is not
operating.

(iv) The evolution cycle is started as described in Sediidh Beanwhile the switch is
toggled to prevent “fresh” neutrons entering the apparatusto connect the storage
vessel to the detector.

(v) After finishing the spin gymnastics the shutter is operad here we have to pay
attention that all neutrons lingering in the area betweersthitch and the shutter have
already hit the detector.
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D. DETAILS OF UCN MEASUREMENT

jelmholtz coils
" shutter

Mu metal -- spin flipper

s ~ -~ pol. foil

&
from turbine 9@'\@

Figure D.1: Complete setup for the UCN measurement of Bepliase stability. Neutrons
coming from the turbine are directed into a storage volunotosed by Helmholtz coils and
released after some spin evolution in order to hit the detect

(vi) Before arriving at the detector all neutrons have tarsaunt the magnetised foil once
again with the effect that in the first place only neutrongwgpin pointing again in the
initial direction can pass.

(vii) To measure also neutrons with opposite spin the rasomapin flipper attached to the
apparatus is switched on after a specific time delay so thgiheutrons with opposite
spin can pass through the magnetised foils.

(viii) After the detection the shutter is opened, the swikctoggled again, and the next run
can be started.

D.1 Description of the components

The basic apparatus consists of the neutron guide, a shaiiberam switch, a polarisation
foil, a storage vessel attached directly to the (second}eshall surrounded by three pairs of
mutually orthogonal Helmholtz coils. The latter parts (atge vessel, shutter and coils) have
to be placed inside a magnetically shielding chamber, famgle a mu-metal box.

D.1.1 Neutron guides

We do not make any special demands on the neutron guideqtéiatin the region between
the polarisation foil and the storage bottle non-magneatemal should be used in order to
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preserve the spin polarisation. PVC tubes coated with acibyper layer in the interior will
be used.

D.1.2 Shutter

There are no particular requirements neither on the switclon the first shutter redirecting
neutrons either from the source to the storage bottle or frantottle to the detector.

As for the second shutter it is of highest priority to avoid/ &mnd of magnetic stray
fields either by using magnetic materials or electro-medahmechanisms. Tests have
shown that already a few millimetre thick aluminium platduees the higher frequencies of
the magnetic field considerably. Thus, it is unfortunatedyenough to build a shutter using
only non-magnetic metal like aluminium, but the shutter tlnesmade of insulating material
as well to prevent spurious absorption effects due to indleckly currents. At present the
plans are to build a shutter made of some kind of polymer (P®dlyoxymethylen) which
is rigid enough to sustain mechanical stress (Figuré D.3).

Figure D.2: Picture of a non-magnetic shutter that cannatdeel to seal the storage vessel
since for fluctuating magnetic fields eddy currents shiettidistort them. The fingers belong
to Dr. Plonka.

D.1.3 Switch

The switch is nothing special, just a piece of neutron gundé tan be toggled between two
possible positions to redirect the beam.

D.1.4 Polarisation foil

The UCNs are to be prepared in a spin-polarised state byntiaa®n through a totally
magnetised foil. As already pointed out by Blo¢h [BIb36] theex of refraction of the
magnetised foil is different for different spin polarisais due to the interaction between
the magnetic fiel® and the neutron magnetic moment The optical potential{Z1.15) is
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D. DETAILS OF UCN MEASUREMENT

Figure D.3: A new shutter has to be design that lacks metaltiterials as far as possible in
order to avoid stray magnetic fields.

modified by a magnetic term[i - B and therefore neutrons are either reflected or transmitted
for large enouglB. With this method a degree of polarisation close to 100% esachieved.

D.1.5 Storage volume

In the centre of the coil system a cylindrically shaped giengessel out of the polymer POM
(FigurelD.4) is placed. Its inner surface is coated with Flamdil [MAB_"89] which totally
reflects UCNs of energies below its Fermi potential (106\6o@responding to a maximum
velocity of 455ms™! and loss probability 2 3 x 10~°/bounce at 20C). Furthermore, by
using this non conductive material the problem of inducedyecurrents can be tackled.
The effective storage volume is 100 mm in height and 120 mnieimdter corresponding to
~ 1.1 litre. The wall thickness is 15 mm.

The storage volume must be sufficiently small to fit into thenbgeneous region of the
magnetic field (c. f. Section’D.2.1). Compared to the botHeduin the EDM experiment
[BDGT08] our volume is rather small. They reported a UCN countoates.000 counts per
charge for storage volume of 21 litres. By comparison we sgeet maximally around 700
counts per charge which may not be ideal.

D.1.6 Helmholtz colls

Finally, the Helmholtz coils constitute the central partled apparatus. Three perpendicular
pairs of coils in Helmholtz geometry (c. f. for instance Inr@98]) are placed such that
the storage vessel sits in their centre. In order to achiamevamally homogeneous field,
the distance between the coils has to be equal to the radiugrémlar coils. For square
shaped coils the ratio of the distance of the coils to theie $&ngth has been determined
numerically tory ~ 1.84. In order to achieve a magnetic field as homogeneous aiblgoss
two square shaped coils are combined with an innermostlaircoil. In Figure[D.Tb this
construction is shown. The dimensions have to be chosencim gway that the coils fit
inside the Mu-metal shielding which is 950 mm in diameter ahthe same time maximise
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Figure D.4: Vessel made of POM coated with Fomblin.

Mu-metal shield
rectangular Helmholtz coil
circular Helmholtz coil
storage box

shutter

neutron guide

Figure D.5: Apparatus with two square shaped and a circudémHoltz coil pairs surround-
ing the storage vessel mounted above a shutter.

the homogeneous region in the centre. The material useddamail frame is aluminium. To
reduce eddy currents each coil frame has a insulating iaseérthe joints between the coil
frames are also insulated.

Circular coil

The outer diameter of the circular coil is 634 mm correspogdo a standard 28bicycle
rim (Mavic A119). The cross section of the wire duct is about® x 20 mm~ 160 mnt
(Figure[D.®). Wire of 0.9 mm in diameter is used = 100 windings.

A 119

Figure D.6: Profile of the Mavic A119 rim.
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D. DETAILS OF UCN MEASUREMENT

Square shape

The (outer) side lengths for the rectangular coils are 660anch 620 mm. In the setup
depicted in Figuré€D.JI16 the innermost and the middle coflegendicular to the axis of
the cylindrical storage vessel. The third (largest) coasallel to the axis of the cylindrical
storage box. The material of the coil frame is aluminium. @ag to cut the profiles to avoid
the formation of eddy-currents that could disturb the messents. The cross section of the
wire duct is 20x 20 mn? (Figure[ID.T) and as in for the circular coils 100 windings afev
0.9 mm in diameter are attached.

2mm  2mm

20mm

20mm

Figure D.7: Coil cross section and dimensions of the wird.duc

Heat issues For the following calculations we are always using an averdigmeter (or
side lengths for the square shaped coils) since the changes different layers of the coils
are negligible compared to the dimension of the coil. Forcthmular coil we need &ir x N =
198m meters wire ( = 315 mm,N = 100). For a rectangular coil we need 4 N meters
wire, for the largest cod 260 m @ = 650 mm,N = 100) and for the intermediate ced 244

m (a= 610 mm). For a resistance of27.9 Q/km we can calculate the power consumption
according toP = I2R. For a coil current of 2 it is about 50V, so altogether: 150 W
(Figure[D.B). This could be a problem if the whole setup i€pthinside a vacuum chamber
as originally planed, but otherwise this should be fine. Afsoan intended magnetic field
of one Gauss we just need circa 0.35 A (Fidure D.9) resultimgétty low power ok 5 W
which is definitely acceptable.

Field homogeneity Even more interesting is a discussion about the achievaitkifi the
centre of the coil arrangement along with the theoreticahdgeneity of the field. In Figure
[0.9 the calculated magnetic fields in the centre of the difieHelmholtz coils is shown.
To avoid excessive numerical integrations the particudamgetry of the wire duct has been
neglected, that is, a single infinitesimally (and nonphsiéyg thin wire models the square
shaped actual current distribution. We will see later thatdeviations from the real setup is
negligible (Figuré D.113). Calculations of the magneticdief a Helmholtz coils 315 mm in
radius show that about 100 windings will be enough to produrtagnetic field ofc 5 Gauss
at a current of 2 A. With 100 windings around the inner coilivada current ot~ 0.35 A
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50 1+

a0 1 circ.r =315mm
........ rect.a=615mm

30 + rect.a=650mm_z."

20 + :

10 +

Figure D.8: Power consumption of a Helmholtz colil pair wib0lwindings and a 0.9 mm
wire diameter.

circ. r=315mm
45 I e rect.a=615mm T
rect.a=650 mm-<-~

Figure D.9: Magnetic Field at the centre of a square Helnzhawil with 100 windings.
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D. DETAILS OF UCN MEASUREMENT

yields approximately a magnetic field of 1 Gauss in the ceoittee coil arrangement. The
current values for one Gauss for the other coils can be fouddbldD1. In Figur€ D11 a

coil | current [A] |
circ. (315 mm) 0.35
rect. (610 mm) 0.38
rect. (650 mm) 0.40

Table D.1: Currents of the Helmholtz coils to generate 1 Ghafcentre.

cut in thex-z-plane (FiguréD.T0) shows tlrecomponent of the field for the different coils.
The box in the middle indicates the storage volume of 120 miemgth and 100 mm in
height. The contour lines indicate deviations of 0.1 % ofrttegnetic field at the coil centre,
thus, the field seems to be fairly homogeneous — at leastetiealty. In Figurd D.IP the

Figure D.10: Choice of coordinates for a Helmholtz coil pair
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(a) Circular coil (r=315mm) (b) Rectangular coil (a=610 mm) (c) Rectangular coil (a=650 mm)

Figure D.11: Cut in the-z-plane. The contours indicate a magnetic field deviation b0
of the magnetic field at the centre of the Helmholtz coil pairs

storage cylinder (red) is shown along with the contoursdating 01% deviation of the z-
component of the magnetic field at the centre of the setup.y&hew surface indicates the
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field of the generated by the circular Helmholtz coil pairdts mm) and the green surface
the +£0.1% contour of the the smaller square Helmholtz coil pair hgwa side length of
610 mm. If one can build perfectly aligned coils the field dddoe fairly homogeneous
around the centre. For a discussion whether the degree afdemeity is sufficient for our
purposes the reader is referred to Sedfion1.2.1.

Figure D.12: Deviations from the maximal magnetic field a¢ @entre of a circular
Helmholtz coil with radius 315 mm and a square shaped Heltnlooll (a=610 mm). Inside
the storage vessel (red) the field is homogeneous up to asatmaller than @%. The
green surfaces denote th#®.1% contour of the rectangular and the yellow surface the field
of the circular coll.

What we did not clarify yet is the error we introduce by neglegthe finite dimensions
of the wire duct. The deviation from a more realistic caltolais shown in FiguréD.13.
The plotis for a coil with 315 mm radius and the wire duct iumssd to have a cross section
of 16 x 18 mm comprising 100 windings at a current of 2 A. The relatliegiations are of
order 104, one order of magnitude less than the inhomogeneities imtgnetic field, and
can therefore be safely neglected.

D.1.7 Mu-metal shielding chamber

Additional to the inhomogeneities in the magnetic fieldsy arfluences of environmental
fields will result in unwanted depolarisation effects aslwé&b minimise these disturbing
effects the whole setup is to be placed in a magneticallyidihg chamber. A cylindrical

box made of Mu-metal, a soft magnetic alloy, 950 mm in diamwik be utilised to provide

sufficient shielding - c. f. Sectidn D.2.2.

D.1.8 Detector

A standard detector will do.
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-150 -100 -50 0 50 100 150
z [mm]

Figure D.13: Deviation induced by approximating the geaynet the wire by an infinites-
imally thin one. The absolute ratio of the real magnetic figlith finitely thick wire duct)
over the ideal B-field (with an infinitesimally thin wire) idqited (1— |B? /Bldeal))

D.1.9 Control units

For the control of the experiment one controllable powempsus needed for each of the
coils. The expected frequencies involved are up to 1-5 klzltiag in a required rise time of
the electrical circuits in the 10 kHz region. The signal df tioise fluctuations is modelled
on a personal computer in order to easily simulate diffetgpés of noise. The standard
audio output of the PC will be sufficient as the noise freqieshased will be small enough
and therefore not distorted by the low sampling rate of sucle\ace. The noise signal
superposed with the unperturbed coil currents is then fiedtive amplifier.

Furthermore, a static power supply for the guide field is rdethd another one for the
polarisation foil, if one does not use a permanent magnet#adh a resonant spin flipper
to flip the spin instead of the analyzation direction. In ttese a high-frequency amplifier
and signal generator is needed.

D.2 Unavoidable influences

What we have neglected so far are unavoidable decoherdiecesdfy stray magnetic fields,
inhomogeneities, improper reconstruction of the noisa;mero switching times of the mag-
netic fields, a.s.0. These effects will modify the polaimatregardless of whether there is
a rotation or not. The final answer, whether these problemsbeaovercome have to be
answered by experiments, however, theoretical estimatesravide first insights.

D.2.1 Inhomogeneities of the magnetic field of the coils

One of the main problems is as already indicated the inhomames magnetic field. Let
us assume that the magnitude of the field is about 1 Gauss wbrobsponds to a Larmor
frequencycw of about 2x 10* rad/s, and therefore an additional phage. This means
that the spin of a neutron spending one second in this fiemtasty /27~ 3000 times.
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To measure the geometric phase the averaged phase of threld@sdé stored neutrons is
observable. By allowing for inhomogeneities of the fieldhe storage volume of 0.1 % we
induce fluctuations of the phase of individual neutrons, sbthe same order of magnitude.
But this is already a phase difference larger tharad the phase difference we wanted to
measure will be totally smeared out. Note, that this is theenthat we cannot circumvent.
This is not the noise we intend to apply at will but an intraasburce of error. A more
optimistic way of thinking is to assume that the majority @utrons will stay in a more
homogeneous region at the centre than in the regions of ingeneity near to the surface
of the vessel.

Induced frequency of inhomogeneities

What about the frequency of this kind of noise as seen frometgron’s frame of reference.
The mean free path length /s = 4 xVolume Sur facexx 80mm [MAB™89], so that we
expect approx. $5ms /A s~ 56 bounces per second. This means that for one second
storage in the bottle the neutron will traverse the storagigwe about 50 times and therefore
the frequency of this noise is of the order of 50 Hz, in the sémguency domain as the
artificial noise, but much weaker. The adiabaticity comuditis still fulfilled.

Flight of a neutron through the vessel

The deviation in the accumulated dynamical phase is thgnakever the magnetic potential
experienced during this flight. | have tried to estimate tgance to be expected if a neutron
travels through inhomogeneous magnetic fields. A simpleghiedo simulate not a cylinder,
but a cuboid shaped neutron storage container and implgreentlic boundary conditions,
B(xi + L) = B(x) for the functionB(x) describing the magnetic field at the poiatL is the
side length of the cuboid. For the simulation we chobse50 mm corresponding roughly
to the size of the projected vessel. The magnetic field skeall b Gauss in the middle of the
coil. The magnetic field along possible neutron trajectoiseshow in FigureED.14, on the
left for neutrons having only velocity components in the y plane and on the right for an
additionalz-component, where the calculated magnetic field distriougis shown in Figures
D11 has been used.

The integration along a pat@, [-B(x)ds yields the total magnetic field the neu-
tron has experienced and therefore the total phase shith ts= ﬁ‘lfCuB(x)d§ =
A1 uB(x(t))|ds/dt|dt. We assume now a slightly collimated beam, i.vg.> v, Vv, and
generate trajectories with random velocity componentsxample uniform distributed ran-
dom variables taken out of the interval

e [0,1], wel[0,02, v,€]0,0.2.

The velocity is afterwards normalised to the typical vetpaf 4.4 m/s. From the ensemble
of generated stochastic trajectories the mean and thenearizan be calculated.
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Figure D.14: Magnetic field along neutron trajectory (akmeted to thex —y plane § =
(3.1,3.1,0)7) and with a small velocity component in tealirection ¢ = (3.08,3.08,0.6)T).
The modulus of the velocity| = 4.4 m/s.
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Figure D.15: Variancejiﬁh of the accumulated phase of neutrons (solid line) propagati
through the storage vessel with inhomogeneous magnetidigiribution. 2000 realisations
have been computed for a mean field of 1 Gauss. On the rightrexigsibility reduction
Vinh = € %n/4 is plotted (dotted line).

What is the influence on the visibility of such fluctuationsa &dditional random phase
shift has to be added to the average polarisation (c. T_BEgg)6to obtain

(P) = & 8% cog( £ — 4@+ @nh)- (D.2.1)

We assume for convenience thggy, is Gaussian distributed with zero mean and variance
oiﬁh. The latter can be read off from FigulesD.15. Accordinglg,fimd the second average

according to Eq[[2.57)

2
%inh
%inh

((P)) = e 8% cog(& — 4qy)e” (D.2.2)

and notice, that the influence is much weaker due to the fagtarMaybe this can save the
experiment. However, it depends on the time spent in the bdxzay cause additional com-
plications for longer cycle times. In the experiment onetbgsay attention to this additional
time-dependent contribution since it antagonises theagdancrease of the visibility.

197



UNAVOIDABLE INFLUENCES

D.2.2 Fluctuating stray magnetic fields

One might argue that the effect of spurious inhomogeneitiade dimished by using weaker
magnetic fields. However, another problem in connectior wiagnetic fields are stray
fields of the environment which are disturbing the measurgsmore seriously the weaker
the magnetic guide field is. In the section above we have negkihat the magnetic field has
to be fairly homogeneous up to Milligauss deviations. But wae provide a shielding that
guarantees that there are not even larger unwanted inflsiéroee other sources?

In passing we note also that there is a subtle differencedsstvthe inhomogeneities
of the artificial magnetic field and the magnetic fluctuatiohshe environment in that the
former affect individual neutrons depending on their p&ttotigh the box. In contrast the
external fluctuations act on the ensemble of stored neutte@swhole. It is an interesting
guestion whether this makes a difference in the decohetsitaviour.

Magnetic Shielding

In order to maintain the homogeneous magnetic field the magstgelding should be large
enough to keep the influences from the exterior as low as lpessie. in our case at least
less than L% of the coil fields which corresponds to less thah Milligauss. Mu-metﬂ
shielding should be sufficient to fulfil these requiremeritu-metal is a nickel-iron alloy
with high magnetic permeability, = /g ~ 10° relative to the vacuum permeabilify.
To calculate the effect of an external field inside a shigjdue use the equations

14 4Ne!
Sa % and (D.2.3)
g — Hrd (D.2.4)

D

for the axial and the transverse shielding fa@et B./B; [PKS00] of a cylindrically shaped
magnetic shield B andB; denote the external and the resultant internal magnetit, fiel
the wall thicknessD the diameter antl the axial length of the shielding cylinded®" is the
demagnetising factor of an equivalent ellipsaid [Osb45].

The expected fluctuations in the magnetic field are abdubGaussas was measured in
the course of examining the properties of a Helmholtz cobpefully these are less in the
vicinity of the PF2, the ultra-cold-neutrons beam line & thlL in Grenoble, France, since
for a 1 mm thick Mu-metal sheet the transverse attenuatiotorfas St = 125 (u, = 10°,

D = 800 mm) and the axial attenuation factoSsapproximately same since the length-to-
diameter-ratid_/D is close to 1 in our cas& [PKS00]. The external fluctuatioeslaerefore
damped tox 0.005G for a closed cylinder. Simulations show that a cylinder withthe base
caps has an attenuation factor of ab8pt= 10. To see if this is sufficient for our purposes
we have to measure the magnetic field fluctuations at the U@rhHme itself.

see e. g. http://en.wikipedia.org/wiki/Mu-metal
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D.2.3 Vessel too small

Besides reducing the flux, hence increasing the measuramaat the small size of the
storage volume influences also the loss-rate and in turmdgaicount rate. The loss rate
a can be estimated [MAB8S] from the UCN reflection-loss probability af= 2 — 3 x
10°/bounce at the Fomblin surface (SectionD.1.5), the mearpféielengttd ~ 80 mm
(SectiorlID.Z11), the neutron’s velocity & 4.5ms 1) and the storage time< 10 seconds,

a~rvs/A ~1x103 (D.2.5)

which is rather small for the short storage times assessethéoexperiment. The major
obstacle, however, remains probably the size itself inttthumber of particles in each run
is rather low.

D.2.4 Insufficient rise & fall time of the electrical components

The typical rise and fall time of the amplifiers to be used iis texperimelﬁ is about
20— 30us (10%— 90%) equivalent toex 30— 50 kHz. Non-adiabatic switching has to be
considerably faster than the maximal frequency presenthwk the Larmor frequencyn.

of about 3 kHz for 1 Gauss. If stronger magnetic fields are tisext is also the possibility
to reduce the magnetic field in strength just before the sudtlange to guarantee a non-
adiabatic transition. Moreover, the timing of the signajsence in Section’5.3.1 has to be
precise enough to assure no unpredictable phase accumnslaifithe evolution is slightly
longer or shorter from one run to another. The argument is&nee as before, the Larmor
frequency is the benchmark and the precision has to be oneadi@le much lower than
21/ ~ 0.3 ms.

D.2.5 Inductance of Helmholtz coil could spoil high frequey noise

Another problem might be that the coils act as a low-pass fittethe noise current due to
their inductance.. To estimate the influence from this source an already egisfelmholtz
coil pair similar to the projected coils (530 mm inner and %M outer diameter, 100
windings, wire 1 mm in diameter) has been tested. The crad#oreof the wire duct is
17 x 12 mn¥ and its specific electrical resistance is D9
From the equation
U (t) = Uge R/ (D.2.6)

the inductancé. can be derived by applying for example a periodic rectanguldése and
read off the exponential term at the falling edge (c. f. FeDCL6).

The fit yields the exponential functiof(t) = —3.5+ 6.5e 26x10% Inserting the resis-
tivity R= 7.9Q along with the damping coefficient2.6 x 10° into Eq. [D.2.6) we get for

2KEPCO BOP 20-5M - http://www.kepco.com/bopdyn.htm
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Figure D.16: A periodic rectangular signal is fed into thdscoThe non-vanishing induc-
tance of the coil distorts the shape of the rectangle.

the inductancé ~ 3 x 10-°H. From the complex resistivity
1Z| = |R+iwL| = 1/R2+ (wL)?

(neglecting the capacity of the circuit) we find that at fregcies whereol ~ 1 the resis-
tivity due to the self-inductance becomes non-negligible, for w ~ 3.3 x 10* rad/s or
V=w/2m~5kHz.

The maximal frequency we can apply is therefore about 5 kHzfoh the noise this is
not alarming , we just want to use up to 1 kHz. However, the adiabatic reversal of the
magnetic field is more critical. The problems can be circumee by ramping down the
magnetic guide field before flipping.

D.3 How to measure?

In the measurement scheme unavoidable decoherence medesse to be taken into ac-
count. Therefore, we have to quantify the dephasing bothaltiee field inhomogeneities
(SectionD.Z1) and due to the external fluctuations (Se@@®.2). The sinusoidal oscil-
lations of the average polarisatidR) (Eq.[5.5.5) as a function of the additional phdse
reveal the influence of these factors. A more disperse galion manifests itself in a lower
contrast.

(i) First of all, stored neutrons are merely exposed to acstaagnetic guide field. The
polarisation changes sinusoidally as a function of stotage T and linearly with the
strength of the magnetic field. Both inhomogeneous field distribution and exter-
nal fluctuations derogate the visibility for increasifg but increasing affects the
visibility only via the inhomogeneous field distribution.

How can we separate the inhomogeneity influence from theredtuctuation influence?

(i) For constantT the field strengtlB can be varied. The amount of dephasing due to
inhomogeneities depends linearly 8nso for B = 0 there should be no dephasing
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under ideal circumstances. However, the external flucnatire present nevertheless,

hence the limit of the contrast valuBs— O provides evidence of this kind of dephasing
mechanism.

To find the effective unavoidable decoherence contributidhe contrast reduction the spin-
echo scheme has to be implemented.

(i) Reversing the polarisation of the magnetic field sg#mexactly at half storage time
(T /2) the dynamical phase is cancelled (spin-echo). For astagnetic field there
should be no phase shift in the interference pattern, byt @méduction of contrast.
The hereby found contrast value is the maximal contrasnattée (Figurd D.17(8))

(P) (P)

\. ./. .\- } / N0 / N //
J/ J/ g ¢

(a) The contrast (signal-to-noise ratio) is re- (b) The oscillations are shifted as a function
duced by unavoidable noise fields and non- of the geometric phase.
uniformity of the magnetic field.

Figure D.17: Average degree of polarisation.

By virtue of these preliminary measurements one must stove find a compromise be-
tween a strong magnetic guide field to mask the external fitictus and a weak field to
avoid decoherence due to the non-uniform magnetic fields iBhthe main aim of the pre-
liminary measurements scheduled in autumn 2006 at the flvke ucceed to spot a suitable
set of parameters, the changeover to a rotating magnetictel be attempted.

(iv) The magnetic field is now rotated according to the timgussnce described in Section
B.3, but still without artificial noise. By adjusting the &fkis angled with the coil pair
surrounding the-axis the opening angle of the cone traced out by the magfeitic
vector and consequently the expected geometric phase iteetnterference pattern
is shifted, but the contrast stays constant (Fiure D.)}7(b)

(v) Finally, artificial noise is added to test the predicsaf theory [CP0O3] and numerical
simulations (Sectioh 3.6).
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Appendix E

Notation

my, neutron mass (6749271613) x 10-2’kg)
U, neutron magnetic moment-0.6623x 10-27JT-1)
Oy, Oy, 0, Pauli matrices
® total phaseb = arg(s | )
@,y pure state geometric phase
@y pure state dynamical phase
® noisy phase
yj... off-diagonal geometric phase
@ mixed state geometric phase
Yoip;... Off-diagonal mixed state geometric phase
v visibility, contrast
n usually used for the phaseshift responsible for interfegdringes
n refraction indexii = n' +in”)
A wavelength
k wavevector with magnitudie= |k| = 27/
X; total phaseshift in theth beam in the second interferometer loop
X; spatial displacemenk; = X; /k
k mean momentum

Xio phaseshift at parallel position (25
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E. NOTATION

Xi phaseshift due to rotatiogi(= X — x°)
Ax relative phase shifhy = x2 — X1
A% coherence lenght in direction
d thickness of phaseshifter
defs effective thickness
d, A-thickness
b. coherent scattering length
Ny particle density (of aluminium)
‘H complex Hilbert space
P projective Hilbert space (Ray space)
N set of nonzero vectors in Hilbert spake
Nop set of unit vector in\V (Vo C NV C 'H)
Py ray space representative|gf) € H, projection operator
Hs system Hilbert space
Ha ancilla (environmental) Hilbert space
He extended Hilbert spacéfs = Hs® Ha)
O(H) operator algebra of Hilbert spage
N dimension of Hilbert space, diti = N
C curve in Hilbert space
Co curve of unit vectors in Hilbert space

C curve in projective Hilbert space
C curve in extended Hilbert space
c parallel lifted curve

G geodesic path in Hilbert space

U (K) unitary group of dimensioK

Tra partial trace over the envionment
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total evolution time
angular Larmor frequency
angular frequency of the magnetic field rotation

angular frequency bandwidth of noise

i frequency bandwidth of noise (in directigh(w, = 2m)

mean of the random variabl}¢

variance of the random variahie
ensemble average of the random variable
time average oY

covariance of the random variabMsandZ

autocorrelation function of the stochastic prockss

power spectral density of the stochastic proce$s. . . frequency)

mean power of the stochastic process

signal-to-noise ratioy_ /P
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