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Kurzfassung

Abflußdaten für 325 österreichische Einzugsgebiete mit einer Gebietsfläche von 7 bis 963

km2 werden zur Analyse der Genauigkeit (Kreuzvalidierung) mehrerer Methoden zur

Ermittlung von Niederwasserabflüssen Q95 an Stellen ohne Abflußbeobachtungen verwendet.

Q95 entspricht jener Abflußmenge, die an 95% aller Tage der Meßperiode überschritten

wurde. Der erste Vergleich zeigt, daß die Verwendung der Niederwassersaisonalität zur

Klassifikation der Einzugsgebiete in Regionen eine Verbesserung der Genauigkeit eines

Regressionsmodells zwischen Niederwasserabflußspenden qgs und Gebietskenngrößen

gegenüber einem globalen Modell bewirkt, wenn für jede Region ein getrenntes

Regressionsmodell erstellt wird. Der zweite Vergleich zeigt, daß ein regionaler

Regressionsansatz, der auf einer Gruppierung der Einzugsgebiete in acht

Saisonalitätsregionen basiert, mit einer erklärten räumlichen Varianz von 70% für qgs eine

wesentlich höhere Genauigkeit erzielt als Regressionsansätze, die auf alternativen

Gruppierungen basieren (Residuenmustermethode, gewichtete Clusteranalyse,

Regressionsbaum). Eine dritte Analyse erschließt die Information kurzer Abflußreihen für die

Schätzung von Q95. Kontinuierliche Abflussbeobachtungen über ein Jahr übertreffen das beste

Regionalisierungsverfahren, während Einzelmessungen deutlich ungenauere Werte als das

beste Regionalisierungsverfahren ergeben. Die Analysen zeigen, daß Prozeßverständnis

jedenfalls zur Regionalisierung von Niederwasserkenngrößen beitragen kann, und damit eine

genauere Ermittlung der Niederwasserabflüsse als mittels existierender Standardverfahren

möglich ist.



Abstract

Stream flow data from 325 Austrian catchments, ranging in area from 7 to 963 km2, are used

for exploring the predictive (cross validation) Performance of a number of methods for

estimating Q95 low flows in ungauged catchments. Q95 is the discharge exceeded on 95% of

all days of the measurement period. The first comparison suggests that the use of low flow

seasonality indices to group catchments into regions improves the predictive Performance of a

regression model between low flows and catchment characteristics over a global model,

provided separate regressions are used in each region. The second comparison suggests that a

regional regression approach based on a catchment grouping of eight seasonality regions

outperforms regressions based on other catchment groupings including the residual pattern

approach, weighted cluster analysis and regression trees, and explains 70% of the spatial

variance of q95 specific low flow discharges. A third analysis exploits the information from

short stream flow records for estimating Q95. One year of continuous stream flow data

outperforms the best regionalisation method but one spot gauging does not outperform the

best regionalisation method. The analyses suggest that process understanding can indeed

assist in regionalising low flow characteristics more accurately than existing Standard

methods.



Zusammenfassung

Zahlreiche wasserwirtschaftliche und wasserbauliche Fragestellungen erfordern eine genaue

Kenntnis von Niederwasserkenngrößen. Dazu zählen die optimale Nutzung von

Wasserressourcen, der qualitative und quantitative Schutz von Gewässern und der Betrieb von

Wasserkraftwerken. Für Gewässerstellen, an denen keine ausreichend langen

Abflußbeobachtung vorliegen, können Niederwasserkennwerte mittels hydrologischer

Regionalisierungsverfahren aus Einzugsgebieten mit Abflussmessungen übertragen werden.

Die dieser Dissertation zugrundeliegende These ist, daß Prozeßverständnis, auch in

vereinfachtem Maße, zur Regionalisierung von Niederwasserkenngrößen beitragen kann, und

hierdurch eine genauere Ermittlung dieser Werte als mittels existierender Standardverfahren

möglich ist. Die Arbeit verfolgt zwei Stoßrichtungen - die Analyse niederwasserrelevanter

Prozesse auf der regionalen Skale und Vergleiche von Regionalisierungsverfahren zur

Ermittlung der für österreichische Verhältnisse am besten geeigneten Methoden. Ein

umfangreicher Datensatz wird verwendet, der Österreich zum großen Teil abdeckt. Er besteht

aus 325 Einzugsgebieten mit Gebietsflächen zwischen 7 und 963 km2. Für alle Gebiete liegen

kontinuierliche Abflußbeobachtungen über den Zeitraum 1977 bis 1996 vor. Die betrachtete

Niederwasserkenngröße ist das 5% Quantil der Dauerlinie Q95. Sie entspricht jener

Abflußmenge, die an 95% aller Tage der Meßperiode überschritten wurde.

In Abschnitt 2 werden drei Saisonalitätsindizes in Hinblick auf ihr Potential für die

Regionalisierung von Niederwasserkennwerten untersucht. Die betrachteten Indizes sind das

Saisonalitätshistogramm (SH), welches die monatliche Verteilung von Niederwässern

beschreibt, ein zyklischer Saisonalitätsindex (SI), welcher das mittlere Auftreten und die

Variabilität des Auftretens von Niederwässern beschreibt, sowie die Saisonalitätsrate (SR),

die als Quotient aus Sommer- und Winterniederwasserabfluß definiert wird. Die

Saisonalitätsanalyse fußt auf der Überlegung, daß Sommer- und Winterniederwässer durch

grundlegend unterschiedliche hydrologische Prozesse hervorgerufen werden. In einem ersten

Schritt werden die drei Saisonalitätsindizes für das Untersuchungsgebiet verglichen. Ihre

räumlichen Muster lassen sich hydrologisch gut interpretieren. In einem zweiten Schritt

werden verschiedene Kombinationen der Indizes für eine Klassifikation in zwei, drei und acht

Regionen herangezogen. In einem dritten Schritt wird der Wert der Saisonalitätsindizes für

die Niederwasserregionalisierung untersucht, indem die drei saisonalitätsbasierten

Klassifikationen in die Regionalisierung einbezogen werden. Als Vergleichsmaß dient die

mittels Kreuzvalidierung ermittelte Modellgüte der Mehrfachregressionsmodelle zwischen



mittels Kreuzvalidierung ermittelte Modellgüte der Mehrfachregressionsmodelle zwischen

Niederwässern und Einzugsgebietsmerkmalen. Die Klassifikation des Untersuchungsgebietes

in drei Regionen mit getrennten Regressionen für jede Region erweist sich als am besten

geeignet, gefolgt von der Klassifikation des Untersuchungsgebietes in zwei Regionen mit

getrennten Regressionen für jede Region. Ein globales Regressionsmodell erzielt die geringste

Modellgüte, und ein globales Regressionsmodell mit unterschiedlichen

Kalibrierungskoeffizienten für jede der acht Regionen erzielt nur geringfügig bessere

Resultate. Die Ergebnisse belegen die Vorteile einer getrennten Regionalisierung in

Teilgebieten gegenüber einem globalen Modell, die mit einer besseren Wiedergabe der

Beziehungen zwischen Niederwasserabfluß und Einzugsgebietsmerkmalen zusammenhängen.

Um den Wert der Saisonalitätsindizes einzuordnen und die getrennte Regionalisierung

von Einzelregionen mittels regionaler Mehrfachregression zu erweitern, werden in Abschnitt

3 vier Methoden zur Gruppenbildung von Einzugsgebieten in Hinblick auf ihren Wert für die

Bestimmung von Niederwasserabflußspenden q95 in unbeobachteten Gebieten untersucht. Die

betrachteten Gruppierungsmethoden sind die Residuenmustermethode, die gewichtete

Clusteranalyse, der Regressionsbaum und die Gruppierung in acht Saisonalitätsregionen. Die

Regression zwischen q95 und Gebietskennwerten erfolgt getrennt für jede Gruppe. Die Güte

der einzelnen Methoden wird mittels Kreuzvalidierung verglichen, wodurch eine zuverlässige

Angabe der Genauigkeit für Gebiete ohne Abflußmessungen möglich ist. Die Gruppierung

auf Basis von Saisonalitätsregionen erweist sich als die beste Methode. Das darauf basierende

regionale Regressionsmodell erklärt 70% der räumlichen Varianz von q^. Die hohe Güte

dieser Methode dürfte mit den markanten Unterschieden der Niederwasserprozesse im

Untersuchungsgebiet zusammenhängen. Winterniederwässer sind eine Folge der Retention

von Niederschlägen in der saisonalen Sclmeedecke, wälircüd Söffliiieniieuerwässer eine Folge

des relativ großen Bodenfeuchtedefizits in Einzugsgebieten des Flachlands im Sommer sind.

Die Gruppierung mittels R.egressionsbaum erweist sich als zweitbeste Methode (64% erklärte

Varianz), die Güte der Residuenmustermethode ist ähnlich (63% erklärte Varianz). Die

Gruppierung mittels gewichteter Clusteranalyse erklärt nur 59% der räumlichen Varianz von

q95 und erzielt somit nur eine geringe Verbesserung gegenüber dem globalen

Regressionsmodell, das keinerlei Gruppierung einbezieht (57% erklärte Varianz). Eine

Analyse der Residueneigenschaften aller Methoden belegt ebenfalls die Vorteile der

Gruppierung auf der Basis von Saisonalitätsregionen, zeigt aber auch, dass alle Methoden zur

Unterschätzung der Niederwasserspenden qgs in sehr nassen Einzugsgebieten neigen.



Abschnitt 4 untersucht Methoden der Niederwasserregionalisierung bei Vorliegen von

kurzen Abflußreihen an der betrachteten Stelle. Verschiedene Methoden zur Korrektur der

durch Klimaschwankungen eingetragen Fehler bei der Bestimmung des

Niederwasserabflusses Q95 mittels kurzer Abflußreihen werden verglichen. Die Methoden zur

Klimakorrektur bestehen aus zwei Schritten, Wahl des Referenzpegels und

Kennwertkorrektur (engl.: record augmentation), und verwenden Information naheliegender

Pegel mit längeren Abflußbeobachtungen. Die Genauigkeit der Methoden wird durch den

Vergleich der korrigierten Abflusskennwerte hypothetisch verkürzter Reihen mit den

Schätzungen aus den vollständigen 20 jährigen Abflußbeobachtungen am selben Pegel

bestimmt. Die Ergebnisse zeigen, dass eine Methode, welche den stromabwärts liegenden

Pegel am selben Gewässer verwendet, die genauesten Werte liefert. Die Wahl des

Referenzpegels aufgrund ähnlicher Einzugsgebietsmerkmale oder aufgrund der

Kreuzkorrelation von Jahresniederwässern führt zu deutlich ungenaueren Ergebnissen. Die

Wahl der Korrekturmethode bei einem bestimmten Referenzpegel beeinflusst zwar das

Ergebnis, fällt insgesamt aber weniger ins Gewicht als die Wahl des Referenzpegels. Die

Genauigkeit der geschätzten Niederwasserkennwerte kann durch die Klimakorrekturmethoden

für Abflußreihenlängen unter fünf Jahren drastisch erhöht werden. Das Bestimmtheitsmaß der

Schätzung von q95 steigt von 63 auf 89% für ein Jahr Abflußbeobachtung und von 86 auf 93%

für drei Jahre Abflußbeobachtung wenn die Klimakorrektur mittels stromabliegenden

Referenzpegel erfolgt. Für eine Beobachtungsdauer von fünf Jahren oder mehr ist der Wert

der Klimakorrektur wesentlich geringer. Ein Verfahren, das Einzelmessungen des Abflusses

während Niederwasserperioden verwendet, besitzt nur eine geringfügig größere Genauigkeit

bei der Ermittlung von q95 als ein einfaches Regionalisierungsverfahren. Vergleiche mit

einem in Abschnitt 3 analysierten dctäillici'icii RcgiüiiäliSicrüiigsvci'fähren zeigen, daß, irn

Durchschnitt über das gesamte Untersuchungsgebiet, kontinuierliche Abflussbeobachtungen

über ein Jahr selbst das detaillierte Regionalisierungsverfahren klar übertreffen, während

Einzelmessungen deutlich ungenauere Werte als das detaillierte Regionalisierungsverfahren

ergeben.

Die Analyse von Niederwasserprozessen und der Vergleich von

Regionalisierungsverfahren im Rahmen dieser Dissertation belegen, daß Prozeßverständnis

jedenfalls zur Regionalisierung von Niederwasserkenngrößen beitragen kann, und damit eine

genauere Ermittlung der Niederwasserabflüsse als mittels existierender Standardverfahren

möglich ist.



Summary

Accurate estimates of low flow characteristics are needed for a ränge of purposes in water

resources management and engineering including environmental flow requirements, water

uses and discharges into streams, and hydropower Operation. For sites where no long term

stream flow records are available, regionalisation techniques can be used to infer the low flow

characteristics from other catchments where stream flow data have been collected. The

hypothesis put forward in this thesis is that process understanding, if in a simplified way, can

assist in regionalising low flow characteristics to provide more accurate estimates than

existing Standard methods. The analyses proceed along two main Strands, unravelling the

processes that drive low flows at the regional scale, and comparing regionalisation methods in

order to identify the most suitable method for a setting such as Austria. The comparisons are

made on a comprehensive Austrian data set, including 325 sub-catchments that ränge in area

from 7 to 963 km2. The data set Covers a continuous period from 1977 to 1996 for all stream

flow records. The low flow characteristic chosen here is the Q95 low flow which is the

discharge that is exceeded on 95% of all days of the measurement period.

In section 2, three seasonality indices are examined for their potential in regionalising

low flows. The indices are seasonality histograms (SH) that represent the monthly distribution

of low flows, a cyclic seasonality index (SI) that represents the average timing of low flows

within a year, and the seasonality ratio (SR) which is the ratio of summer and winter low

flows. The rationale of examining these indices is the recognition that summer and winter low

flows are subject to important differences in the underlying hydrological processes. In a first

step, the three seasonality indices are compared for the study region. Their spatial patterns can

be interpreted well on hydrological grounds. In a second step, the indices are used to classify

the catchments into two, three, and eight regions based on different combinations of the

indices. In a third step, the value of the seasonality indices for low flow regionalisation is

examined by comparing the cross validation Performance of multiple regressions between low

flows and catchments characteristics. The regressions make use of the three seasonality based

classifications. The results indicate that grouping the study domain into three regions using

separate regressions in each region gives the best Performance, followed by grouping the

study area into two regions and separate regressions in each region. A global regression model

yields the lowest Performance and a global regression model that uses different calibration

coefficients in each of the eight regions only performs slightly better. This suggests that



separate regression modeis in each of the regions are to be preferred over a global model in

order to represent differences in the way catchment characteristics are related to low flows.

To put the predictive power of the seasonality indices into context and to extend the

analysis to the case of separate regression modeis in each of the regions, four catchment

grouping methods are compared in Section 3 in terms of their Performance in predicting

specific low flow discharges q95. The grouping methods are the residual pattern approach,

weighted cluster analysis, regression trees and the grouping into eight seasonality regions. For

each group, a regression model between catchment characteristics and q95 is fitted

independently. The Performance of the methods is assessed by leave-one-out cross-validation

of the regression estimates which emulates the case of ungauged catchments. Results indicate

that the grouping based on seasonality regions performs best and explains 70% of the spatial

variance of qgs. The favourable Performance of this grouping method is likely related to the

striking differences in seasonal low flow processes in the study domain. Winter low flows are

associated with the retention of solid precipitation in the seasonal snow pack while summer

low flows are related to the relatively large moisture deficits in the lowland catchments during

summer. The regression tree grouping performs second best (explained variance of 64%) and

the Performance of the residual pattern approach is similar (explained variance of 63%). The

weighted cluster analysis only explains 59% of the spatial variance of q95 which is only a

minor improvement over the global regression model, i.e. without using any grouping

(explained variance of 57%). An analysis of the sample characteristics of all methods suggests

that, again, the grouping method based on the seasonality regions has the most favourable

characteristics although all methods tend to underestimate specific low flow discharges in the

very wet catchments.

Section 4 explores the low flow regionaiisaiion case where a shüii sticäm flow recüfd

is available at the site of interest. A number of methods of adjusting Q95 estimates from short

stream flow records for climate variability are compared. The climate adjustment methods

consist of two steps, donor site selection and record augmentation, and use information from

nearby sites with longer stream flow records. The accuracy of the methods is assessed by

comparing the adjusted estimates from hypothetically shortened records with estimates from

the füll 20 year record at the same site. The results indicate that the downstream donor

selection method performs best on all scores. The catchment similarity and correlation donor

selection methods do not perform as well. The relative Performance of the record

augmentation methods depends on the donor selection method but, overall, the choice of

record augmentation method is less important than the choice of the donor site. The value of



the climate adjustment methods is very significant for record lengths shorter than 5 years. The

coefficient of determination of q95 specific low flows increases from 63 to 89% for one year

records, and from 86 to 93% for three year records when adjusting the estimates by the

downstream site method. For five years or more, the value of the climate adjustment methods

is much smaller. A method that uses spot gaugings of stream flow during a low flow period

only performs slightly better than a simple regionalisation procedure in terms of predicting

Q95 at an otherwise ungauged site. Comparisons with more sophisticated regionalisation

procedures from Section 3 suggest that, on average over the study region, one year of

continuous stream flow data clearly outperforms the more sophisticated regionalisation

method while the spot gauging method provides less accurate low flow estimates than the

sophisticated regionalisation method.
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1. Introduction

Accurate estimates of low flow charactenstics are needed for a ränge of purposes in water

resources management and engineering. They are used in water quality management

applications including discharge permits, and in siting treatment plants. Low flow estimates

are also used in water supply planning to determine allowable water transfers and

withdrawals. Other applications of low flow estimates ine lüde determination of minimum

downstream release requirements from hydropower (Stedinger et al, 1992; Gustard et al.,

2004). Low flow charactenstics are best estimated from long-term stream flow data but for

sites where these data are unavailable hydrological regionalisation techniques can be used to

infer them from other catchments where stream flow data have been collected.

The regionalisation of low flow charactenstics is usually based on some sort of

regression model between the low flow characteristic of interest and catchment charactenstics

that are available for ungauged sites (e.g., Vogel and Kroll, 1992; Gustard et al., 1992;

Schreiber and Demuth, 1997; Skop and Loaiciga, 1998). If the study domain is large, different

low flow processes may prevail in different parts of the domain. It has therefore been

suggested to use some representation of the driving processes, if in a simplified way, in

regionalising low flows. There are numerous ways of making use of various types of

information on the hydrological processes at the regional scale. A number of authors have

proposed to split the domain into regions and apply a regression relationship to each of the

regions independently (e.g., Gustard and Irving 1994; Clausen and Pearson 1995;

Aschwanden and Kan, 1999). In some instances it is clear how to group a domain into regions

of approximately uniform low flow processes but, more often, the choiee is far from obvious.

A number of methods of identifying homogeneous regions have therefore been put forward in

the literature in the context of low flow regionalisation (e.g. Hayes, 1992; Nathan and

McMahon, 1999; Laaha, 2002). All of these methods use low flow data and most of them use

catchment charactenstics as well. Among the various indicators to low flow processes, low

flow seasonality appears to be particularly promising in a country such as Austria, given that

the hydrologic regimes exhibit very apparent spatial patterns (Merz et al.,1999; Piock-Ellena

et al., 2000). If stream flow records do exist at the site of interest, but are too short for

obtaining reliable local estimates, the regionalisation methods can be extended to make use of

these records. While these short records are unlikely to provide the füll information of long

records it is clear that they do provide some information which may be used in estimating the

long term low flow charactenstics for these stream gauge locations (Vogel and Kroll, 1991).
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Due to climatic variability and other sources of variability that occur over short time scales,

low flow characteristics estimated from a few years of stream flow data deviate from the long-

term average, and some adjustment for climate variability is needed to make them compatible

with low flow characteristics obtained from longer records. These adjustment methods can be

thought of as a combination of low flow regionalisation methods with short stream flow

records at the site of interest.

While much work has been done in the literature on low flow regionalisation,

comprehensive comparisons of process based regionalisation methods in a hydrological

setting such as Austria, to the best of my knowledge, do not exist. The thesis put forward here

is that process understanding, if in a simplified way, can assist in regionalising low flow

characteristics to provide more accurate estimates than existing Standard methods. The

analyses proceed in two main Strands, unravelling the processes that drive low flows at the

regional scale, and comparing regionalisation methods in order to identify the most suitable

method for a setting such as Austria.

The comparisons will be made on a comprehensive Austrian data set, including 325

catchments with close to natural flow conditions. The data set Covers a continuous period

from 1977 to 1996 for all stream flow records. The low flow charac.teristic chosen here is the

Q95 low flow which is the discharge that is exceeded on 95% of all days of the measurement

period. This low flow characteristic is widely used in Europe and was chosen because of its

relevance to multiple topics of water resources management (see, e.g., Kresser et al., 1985;

Gustard et al., 1992; Smakhtin, 2001).

This thesis consists of three main parts. The seasonality of low flows is analysed in

Section 2, in order to gain insights into the most relevant low flow processes and their spatial

distribution in Austria. This section also exarnines the pctential cf three seascr.aüty indices in

low flow regionalisation. Section 3 consists of a comparison of a number of catchment

grouping methods that represent the regional heterogeneity of low flow processes. One the

groupings makes use of seasonality indices. The predictive Performance of the various

grouping and regionalisation methods is examined by cross validation which provides a

faithful measure of the predictive Performance of the methods for the case of ungauged

catchments. Section 4 finally explores the case where short stream flow records are available

at the site of interest. Various methods of climate adjustment that make use of some of the

regionalisation concepts of the previous sections are compared, again, in terms of their

predicitive Performance in a cross validation mode.



2 Seasonality indices for regionalising low flows

2.1 Introduction

Many branches of water resources management need accurate estimates of low flows. If

suitable measurements are not available, the low flow characteristics need to be estimated

from regional information by some sort of hydrological regionalisation technique. A

classification of possible approaches is given in Smakhtin (2001). Regional regression is

probably the most widely used technique in low flow estimation at ungauged sites (e.g., Vogel

and Kroll, 1992; Dingman and Lawlor, 1995; Schreiber and Demuth, 1997). Examples also

include the development of national low flow estimation procedures for the United Kingdom

(Institute of Hydrology, 1980; Gustard et al., 1992) and for Switzerland (Aschwanden and

Kan, 1999). The modeis usually consist of regression relationships between some

characteristic low flow discharge and physical catchment characteristics. Process

understanding can be introduced in the modeis in a number of ways. One frequently used

approach to introduce process understanding is to fit separate regression modeis to

hydrologically homogeneous sub-regions. Nathan and McMahon (1990) compared several

multivariate statistical approaches based on physical catchment characteristics to obtain

possible groupings of hydrologically similar stations which can serve as a basis for fitting

separate regionalisation modeis to data. However, they stated that "... groupings obtained are

very sensitive to the initial choice of predictor variables" and hence are highly subjective.

Seasonality has attracted a lot of attention in the literature recently to assist in the

regionalisation of hydrological quantities. Burn (1997) suggested a method that uses the

seasonality of flood response as the basis for a similarity measure within the region of

influence approach to flood regionalisation. The regionalisation technique was applied to a set

of catchments from the Canadian prairies and was shown to be effective in estimating extreme

flow quantiles. Merz et al. (1999) and Piock-Ellena et al. (2000) have illustrated that the

seasonality approach is indeed useful in the context of flood frequency regionalisation in

Austria. They used a cluster analysis based on circular statistics of flood occurrence within the

year to identify homogeneous regions and plotted vector maps to visualise the spatial patterns

of the seasonalities of floods and other hydrologic variables. The interpretation of these

seasonality patterns led to an assessment of the main climate driven flood producing processes

in Austria. Seasonality appears to be a useful indicator of catchment similarity in terms of

hydrological processes, and I believe that the analysis of low flow seasonality should be

useful for low flow regionalisation. An application of a low flow seasonality index in the UK
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(Young et al., 2000) suggested that, if the spatial variability of low flow seasonality was

rather weak, there is little discriminatory power in this index. It is clear that the usefulness of

this method hinges on the existence of clear spatial patterns in low flow seasonality. Laaha

(2002) compared two seasonality measures for low flows monitored at 57 stream gauges in

Upper Austria and found that both measures were capable of classifying catchments into

summer and winter low flow dominated sub-regions.

The natural factors that influence the various aspects of the low-flow regime of the

river include the infiltration characteristics of soils, the hydraulic characteristics and extent of

the aquifers, the rate, frequency and amount of recharge, the evapotranspiration rates from the

basin, distribution of Vegetation types, topography and climate. These factors and processes

may be grouped into those affecting gains and losses of streamflow during the dry season of

the year (Smakhtin, 2001). In highly seasonal climates, such as an Alpine climate, low flows

in different dry seasons (summer and winter) may be generated by different processes, and

rivers will have two distinct low-flow seasons in winter and summer, controlled by different

processes. In Austria, summer low flows occur during long-term persistent dry periods when

evaporation exceeds precipitation. The consequence is a slow depletion of the soil reservoir in

accordance with the recession of discharges. Important low flow generating factors are the

distribution of precipitation during the summer season and the storage properties of soil.

Winter low flows are affected by freezing processes. Persistent frost leads to the storage to

precipitation in the snow cover and to ice-formation in the topsoil. Thus, catchment altitude,

which is highly correlated with temperature, and aquifer thickness, which affects the fraction

of retarded water as well as the recession of stream flow, seem to be important factors of

winter low flows. Because of the fundamental differences of summer and winter processes,

regionaiisation may take advaniage üf a Separation of summer and winter Icw flcws

(Tallaksen and Hisdal, 1997; Laaha, 2000). Because of the same reasons, seasonality is also

potentially useful for regionalising annual low flows. There are different ways of

incorporating seasonality in regionalisation modeis, e.g., by fitting separate modeis for

homogeneous groups, or by adjusting the model to different group means of the low flow

characteristic by separate coefficients.

The aim of this section is to investigate the value of seasonality indices for

regionalising low flows. As a regionalisation model, I use stepwise multiple regressions based

on physical catchment characteristics and seasonality indices. The value of different modeis

that incorporate seasonality by different approaches is assessed by cross-validation which

emulates the prediction of low flows at ungauged catchments. I compare the modeis for the



95% quantile of specific discharges (q95) and I also examine the specific low flow discharge

of the summer and winter periods (q95s, q95w).

This section is organised as follows: Section 2.2 summarises the data and the

disaggregation method used in this study for calculating specific low flow discharges for

residual catchments. Section 2.3 presents different seasonality measures and shows how sub-

regions of similar seasonality can be isolated. The value of these seasonality measures for

regionalisation is investigated in sections 2.4 and 2.5. Section 2.4 presents the method of

regionalisation and cross-validation used in this study and describes how seasonality measures

have been considered in regression modelling. The results are given in section 2.5, followed

by a discussion and conclusions in sections 2.6 and 2.7, respectively.

2.2 Data

2.2.1 Study area

The study has been carried out in Austria which is physiographically quite diverse. There are

three main zones in terms of the landscape classification, high Alps in the west, lowlands in

the east, and there is hilly terrain in the north (foothills of the Alps and Bohemian Massif)

(Fig. 2.1). Elevations ränge from 117 to 3798 m a.s.l.. Geological formations vary

significantly, too. Austria has a varied climate with mean annual precipitation ranging from

500 mm in the eastern lowlands up to about 2800 mm in the western Alpine regions. Runoff

depths ränge from less than 50 mm per year in the eastern part of the country to about 2000

mm per year in the Alps. Potential evapotranspiration ranges from about 730 mm per year in

the lowlands to about 200 mm per year in the high alpine regions. This diversity is reflected in

a variety of hydrologic regimes (Kresser, 1965) and low flows exhibit important regional

differences in terms of their quantity and their seasonal occurrence (Laaha and Blöschl, 2003).

2.2.2 Discharge data

Discharge data used in this study are daily discharge series from 325 stream gauges. These

data represent a complete set of gauges for which discharges have been continuously

monitored from 1977 to 1996 and where hydrographs have not been seriously affected by

abstractions and karst effects during low flow periods (Laaha and Blöschl, 2003). Catchments

for which a significant part of the catchment area lies outside Austria have not been included

as no füll set of physiographic data was available for them. The catchments used here cover a

total area of 49 404 km2, which is about 60% of the national territory of Austria. Although a



larger number of catchments are monitored in Austria, I have chosen to give priority to a

consistent observation period to make all records comparable in terms of climatic variability.

AMtude (m a.s.1.)

I | ((7-300

| | 500-(000

| | 1000- tXO

I I (MO- 2000

\ | 2000- 2300

Fig. 2.1. Topography and stream gauging network in Austria. Points indicate location of

gauges used in this study.

2.2.3 Disaggregation of nested catchments

Nested catchments were split into sub-catchments between subsequent stream gauges based

on the hierarchical ordering of gauges presented in Laaha and Blöschl (2003). The advantage

of using sub-catchments rather than complete catchments is that the application of

regionalisation techniques to small ungauged catchments is more straightforward. Also,

discharge characteristics of nested catchments are statistically not independent and

disaggregation into sub-catchments between subsequent stream gauges makes them more

independent. The disadvantage of the disaggregation is that errors may be somewhat larger, as

the low flow characteristics are estimated from differences of the stream flow records at two

gauges.

2.2.4 Low flow characteristics

Low flows were quantified by the Q95 flow quantile [Pr(Q>Q95) = 0.95], i.e. the discharge that

is exceeded on 95% of all days of the measurement period. This low flow characteristic is

widely used in Europe and was chosen because of its relevance for multiple topics of water
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resources management (see, e.g., Kresser et al., 1985; Gustard et al., 1992; Smakhtin, 2001).

For gauged catchments without an upstream gauge I calculated the Q95 low flow quantile

directly from the stream flow data. For sub-catchments I calculated Q95 from the differences

of stream fl.ows at the two gauges. To make the low flow characteristic more comparable

across scales I standardised Q95 by the catchment area. The resulting specific low flow

discharges q95 ( l s ' k m 2 ) were considered to be representative of the characteristic unit runoff

from the catchment area during sustained dry periods.

A map of specific low flow discharge q95 in Austria is presented in Fig. 2.2. The

pattern of calculated low flow characteristics q95 appears rather smooth and homogeneous

over geographically similar regions. The low flows are obviously related to terrain since the

Alpine region shows higher values and stronger spatial variability. Here, typical values of q95

appear to ränge from 6 to 20 l.s'.km"2 whereas regions situated in the Southern Alps indicate

lower discharges because of drier climatic conditions. On the other hand, typical values of

q95 for hilly terrain and the lowlands ränge from 0 to 8 l.s'.km2.

q95 (l/(s.km*))

I I 0-1

Fig. 2.2: Specific low flow discharge q95 [Ls^-km2] from runoff data observed in 325

sub-catchments in Austria. Alpine catchments show higher values and a larger

variability.



2.2.5 Catchment characteristics

I used 31 physiographic catchment characteristics in the low flow regionalisation in this

section (Table 2.1). They relate to catchment area (A), topographic elevation (H), topographic

slope (S), precipitation (P), geology (G), land use (L), and drainage density (D). All percent

values with the except of mean slope (SM) relate to the area covered by a class relative to the

total catchment area. Some of the catchment characteristics had to be adapted from the

original sources to make them more useful for regionalisation. For instance, the original

classification of the metallurgic map used here distinguishes 670 geological classes from

which I derived 9 hydrogeological classes I deemed relevant for low flow regionalisation.

One of them is termed source region which is the percent area where the density of Springs is

large. In a similar vein, I Condensed the original Corine Landcover classification (Aubrecht,

1998) into nine land-use classes. The average stream density (i.e. length of a stream by unit

area (m/km2)) of sub-basins was calculated from the stream density map of the Hydrological

Atlas of Austria (Fürst, 2003) which is based on the digital drainage network of Austria at the

1:50000 scale (Behr, 1989). Because of its relationship with infiltration rates of different

geological units (e.g. Grayson and Blöschl, 2002) this index may be a useful alternative to

geological characteristics in low flow regionalisation. Three precipitation characteristics of

average annual, summer and winter precipitation from 1977 to 1996 estimated by the

regionalisation model of Lorenz and Skoda (1999) were used. A number of topographical

characteristics were derived from a digital elevation model at a 250 m grid resolution. All

characteristics were first compiled on a regulär grid and then combined with the sub-

catchment boundaries of Laaha and Blöschl (2003) and Behr (1989) to obtain the

characteristics for each catchment. A statistical summary of the catchment characteristics is



Table 2.1. Statistical summary of the characteristics of the 325 sub-catchments used in

this section. Units were chosen in a way to give similar ranges for all characteristics.

Acronym

A

Ho

H+

HR

H„

s„
SSL

SMO

SST

P

Ps

Pw

GB

GQ

GF

GL

Gc

GGs

GGD

Gso

Lo

LA

Lc

LG

LF

LR

LWE

LWA

LGL

D

Variable description

Sub-catchment area

Altitude of streamgauge

Maximum altitude

Range of altitude

Mean altitude

Mean slope

Slight slope

Moderate slope

Steep slope

Average annual precipitation

Average summer precipitation

Average winter precipitation

Bohemian Massif

Quaternary Sediments

Tertiary Sediments

Flysch

Limestone

Crystalline rock

Shallow groundwater table

Deep groundwater table

Source region

Urban

Agriculture

Permanent crop

Grassland

Forest

Wasteland (ro.c.ks)

Wetland

Water surfaces

Glacier

Stream network density

ünits

101 km2

102 m

102 m

102 m

102 m

%

%

%

%

102 mm

102 mm

102 mm

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

102 m/km2

Min.

0.70

1.59

2.98

0.81

2.32

2.70

0.00

0.00

0.00

4.67

2.94

1.55

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.18

Mean

15.22

5.93

17.48

11.56

10.53

24.34

28.06

46.18

25.78

10.71

6.47

4.24

9.70

6.22

15.91

6.90

25.21

25.44

1.74

7.51

1.23

0.67

21.37

0.12

20.10

47.25

8.45

0.10

0.42

1.37

8.01

Max.

96.30

22.15

37.70

30.06

29.45

56.00

100.00

93.00

80.00

21.03

12.08

8.95

100.00

94.50

100.00

100.00

100.00

100.00

48.00

79.80

35.20

14.50

97.30

20.30

71.70

100.00

81.20

16.40

18.20

43.80

13.98



2.3 Seasonality analysis

2.3.1 Seasonality measures

2.3.1.1 Seasonality ratio (SR)

The first approach addressing low flow seasonality presented in this study is based on the

recognition that summer and winter low flows are subject to important differences in the

underlying hydrological processes. Thus, I expect that summer and winter low flows exhibit

different spatial patterns caused by the variability of physical catchment properties. This topic

can best be addressed by a separate mapping of summer and winter low flows. Daily

discharge time series have been stratified into summer discharge series (from April lst to

November 30th) and winter discharge series (December lst to March 31st) and characteristic

values for summer low flows (q95s) and winter low flows (q95w) were calculated for each

sub-catchment. From this, the ratio SR of q95s and q95w was calculated:

A map of SR for Austria is presented in Fig. 2.3. Values of SR > 1 indicate the presence of a

winter low flow regime and values of SR < 1 indicate the presence of a summer low flow

regime. The map demonstrates a clear and ordered classification of low flow seasonalities in

Austria. Alpine regions are dominated by winter low flows whereas lowlands and hilly terrain

in the north and east of Austria are dominated by summer low flows. In between, a transition

zone characterised by weak seasonality appears. The plot appears to be useful for visualising

the patterns of summer and winter low tlows.
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Seasonality rat'o

^ B <0-5

[~^1 0.5-0.8
| | 08-0.9
| | 0.9-1.1
| | ).1 - 1.25
^ B '-25-2
• I >2

Fig. 2.3: Ratio of summer and winter low flow discharges (SR) for 235 sub-catchments

in Austria. SR > 1 indicates a winter low flow regime, SR < 1 indicates a summer low

flow regime.

2.3.1.2 Seasonality index (Sl)

I use an index similar to Burn (1997) and Young et al. (2000) to represent the seasonal

distribution of low flow occurrence. The index is based on two parameters, 0 and r, which are

calculated from the Julian dates of all days of the observation period when discharges are

equal or below Q95, by means of circular statistics (Mardia, 1972). The first parameter, 9, is

the mean day of occurrence, measured in radians, and is a measure of the average seasonality

of low flows. 9 takes values between 0 to 2TC; 0 relating to January ist, nl'2 reiating to April is!,

7t relating to July lst, and 3n/2 relating to October lst. The second parameter, r, is the mean

resultant of days of occurrence, which is a dimensionless measure of the variability of low

flow seasonality. Possible values of r ränge from zero to unity with r = 1 corresponding to

strong seasonality (all low flow events occurred on exactly the same day of the year) and 0

corresponding to no seasonality (low flow events are uniformly distributed over the year).

For each sub-catchment, the days on which discharge was smaller than Q95 were

extracted over the period of record and transformed into Julian Dates D}•••(i.e.- the day of the

year ranging from 1 to 365 in ordinary years and 1 to 366 in leap years). Dy represents a cyclic

variable which can be displayed as a vector on the unit circle. Its directional angle, in radians,

is given by:
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i
The arithmetic mean of Cartesian coordinates xg and ye of the single days/ is defined as:

) (3)

From this, the directional angle of the mean vector was derived by:

0 = arctan ^ - lst and 4th quadrant: x>0 (4)

6 = arctan — + n 2nd and 3rd quadrant: x<0

The mean day of occurrence is obtained by back-transforming the mean angle to a Julian

Date:

^ (5)
In

The length r of the mean vector is as a measure of the variability of low flow days:

(6)

Seasonality indices for each sub-basin were displayed by a vector map (Fig. 2.4) which gives

a synoptical representation of the mean day of occurrence and the intensity of seasonality for

a large number of catchments. The vector map provides a nice overview of the regional

patterns of low flow seasonality in Austria.

t.o.i.o oeasunaiuy msiuQrciiii (onj

The seasonality histogram (Laaha, 2002) allows a more detailed description of the seasonal

distribution of low flows than the seasonality index. Again, this description is based on the

Julian date of all days when the discharge of a catchment (or the differential dischaige of a

sub-catchment) falls below the threshold Q95. Histograms based on monthly classes were

plotted from these data. Hence, the seasonality histogram illustrates the occurrence of low

flows in each month and provides supplemental information to the seasonality index. In

- particular, it illustrates which- rnonths. are affected _.b_y.-low„flo.w.s_ and _it_pro.vides a _good

representation of the shape of the seasonal distribution including multimodal and skewed

distributions.
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Fig. 2.4: Seasonality index of 325 sub-catchments in Austria. Long arrows indicate

strong seasonality and their direction represents the mean day of occurrence of specific

low flow discharges less than q95.

2.3.2 Delineation of homogeneous regions

2.3.2.1 Cluster analysis of SH

Saisonality histograms may be regarded as a multidimensional measure of low flow

seasonality consisting of 12 variables, each of them representing the monthly occurrence

frequency of low flows (Laaha, 2002). To delineate regions that are homogeneous in terms of

seasonality, partitive cJnste-r analysis PAM (partitioning around medoids. see Kaufmann and

Rousseeuw, 1990) was applied to classify seasonality histograms automatically. PAM is an

exhaustive partitioning method by which the ensemble of catchments is classified into several

exclusive subsets. Compared to the classical k-means approach to exhaustive partitioning

(Hartigan, 1975), PAM has the following useful features: (a) cluster centres (medoids) are

automatically chosen by the algorithm; (b) it is also adapted to more robust distance metrics

than Euclidean distances; (c) it provides a novel graphical display, the Silhouette plot. This is

an ordered representation of the Silhouette width (Kaufman and Rousseeuw, 1990) of each

histogram, which gives a relative measure of the similarity of each histogram to the cluster

centre with respect to the similarity to the next suitable cluster centre. The Silhouette plot can
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be applied to select the Optimum number of clusters, which is related to the maximum average

Silhouette width among classifications into different numbers of clusters.

The analysis led to an optimal number of two clusters. The graphical representation of

catchments by the first two principal components of seasonality histograms (Fig. 2.5 left)

indicates that the clusters correspond to two very distinct groups of catchments in terms of

seasonality. The first principal component separates catchments into winter and summer

types. The second principal component further distinguishes between the timing of low flows

within the regime types; negative values correspond to occurrence near spring and positive

values correspond to occurrence in autumn. The overlap of clusters in autumn corresponds to

a group of catchments that exhibit no clear summer or winter seasonality.

Two possible classifications of catchments have been derived from the cluster analysis

of SH. The first classification corresponds to the two clusters obtained by the cluster analysis

by which catchments are classified into summer and winter regime types. The second

classification further distinguishes a third group containing 33 catchments that exhibit mixed

seasonality. These catchments were identified by using Silhouette width < 0.2 as a criterion

(Fig. 2.5 right).

Mixed • Clear regime

o
o

Summer Winter

Component I
These two components explain 68.25 % of the point variability.

0.2 0.4 0.6
Silhouette width

Average Silhouette width : 0.43

0.8 1.0

Fig. 2.5: Left panel: graphical representation of cluster membership of catchments

(points) by the first two principal components of seasonality histograms. The big ellipse

contains catchments of the summer type cluster, the smaller ellipse contains catchments

of the winter type cluster. Right panel: Determination of catchments that exhibit weak

or mixed low flovv regimes by Silhouette width, illustrated by the Silhouette plot.
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The location of summer and winter type catchments can be seen from Fig. 2.6, indicating two

contiguous regions of different seasonality. Winter low flows typically occur in higher

altitudes of the Alps, summer low flows typically occur in the lower parts of Austria. The

alternative classification into three regime types is shown in Fig. 2.7. Mixed seasonality

typically appears in the transition zone from the high Alps to the foothills of the Alps. Both

classifications are generally in accordance with the spatial pattern of the seasonality ratio (Fig.

2.3), but instead of the gradual representation of seasonality by the seasonality ratio, the

cluster analysis results in a mutually exclusive classification of catchments. Cluster analysis

of SH appears to be an appropriate basis for regionalising low flows separately for catchments

that exhibit typical summer and winter regimes.

Dominant seasonality

BSSBI summer
| [ vtinter

Fig. 2.6: Classification of 325 sub-catchments in Austria into two regime types (summer

regime and winter regime).
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Fig. 2.7: Classification of 325 sub-catchments in Austria into three regime types

(summer regime, winter regime, mixed regime).

2.3.2.2 Visual grouping based on different seasonality measures

Based on an Interpretation of the seasonality index and seasonality histograms, regions of

approximately homogeneous seasonality have been identified visually. This approach is more

subjective than automatic classification, but allows me to take additional information, such as

breaklines of the relief, into account. Moreover, hydrological expert knowledge may be

introduced into the classification, e.g., in the interpretation of local anomalies and outliers.

This is probably a major advantage over the cluster analysis. The Visual grouping approach

consists of two Steps. In a first Step, preliminary regions were detected bv svnoDtical maoDing

of the SI. In a second step, close inspection of seasonality histograms led to a correction and

refinement of preliminary regions. Where boundaries of regions appeared unclear, the digital

terrain model was inspected for close-by topographic breaklines to assist in the choice of the

boundaries.

Fig. 2.8 presents the seasonality regions so obtained, which correspond to the types of

seasonality histograms presented in Fig. 2.9. Results indicate significant regional differences

of low flow seasonalities in Austria. Two zones of clearly contrasting seasonalities exist. One

zone represents winter dominated low flows (seasonality types A-C) which is the Alpine

region from Vorarlberg to the Wechselregion with a north-south extent from the Northern

Calcerous Alps to Upper Carinthia. The intensity and mean seasonality vary with the
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elevation of catchments. Catchments of Type A (West-Styria) exhibit mean seasonalities in

January, Type B (Salzburg and Upper Carinthia) in February and Type C (large parts of

Tyrol) at the beginning of March. The other zone represents summer dominated low flows

(seasonality types 1-2) and comprises catchments north and east of the Alps (lowlands and

hilly terrain with elevations from 117 to about 600 m, in the Mühlviertel region to about

1000 m). Similarly, the regions of Type 3 (Innviertel) and Type 4 (foothills of the Alps) are

summer dominated although this effect is less clear. The same is true of the regions of Type D

(Eastern Styria) and Type E (northern part of Vorarlberg), which are winter dominated but

also exhibit minor summer influences. Finally, Lower Carinthia (Type 5) exhibits a very weak

seasonality. This seems to be caused by the particular climate of this region. Overall, the

classification corresponds well with the patterns of the seasonality ratio and can be considered

a refined classification compared to that obtained by cluster analysis. Since regions appear

well interpretable in terms of low flow processes, there is likely some potential for

regionalisation in the approach.

Fig. 2.8: Regions of approximately homogeneous seasonality in Austria. Letters refer to

winter low flow types, numbers to summer low flow types (see Fig. 2.9).
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Fig. 2.9: Seasonality histograms: Non-exceedance frequencies of Q95 for each month for

a typical catchment in each region. Letters relate to winter low flows, numbers relate to

summer low flows (see Fig. 2.8).

2.4 Method of regionalisation and cross-validation

2.4.1 Multiple regression

The regionalisation methods used in this study are multiple linear regression modeis

between specific low flow discharge q95 and physical catchment characteristics. Physical

catchment properties are represented by 31 catchment characteristics - a number which is

relatively large compared to other regionalisation studies reported in the literature. These

catchment characteristics are subject to inter-correlations and multicollinearity as mentioned

above. Rather than performing a selection of the most important variables prior to

regionalisation, I used a stepwise regression approach. The stepwise regression procedure

used Mallöw's Cp (Weisberg, 1985, p. 216) as the criterion of optimality, which was

calculated as:

RSS,
2/7-« (7)
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The first term is the residual sum of Squares of one considered model (RSSP) with p

coefficients divided by the residual error variance &2 of the füll model and corresponds to the

relative optimality in terms of model error. Complexity of modeis is penalised by the second

term which adds the number of coefficients p minus the number of catchments n. Cp is

therefore a penalised selection criterion which takes the gain of explained variance as well as

the parsimony of modeis into account and yields modeis that are optimal in terms of

prediction errors. Variable selection Starts with one arbitrarily chosen catchment characteristic

and subsequently adds variables that minimise the Cp criterion. After each step it is tested if

replacing one of the variables by any remaining catchment characteristic will further decrease

the criterion. The selection procedure continues until Cp reaches a minimum. The catchment

characteristics obtained by the stepwise regression can hence be interpreted as important

controls of low flows.

Fitting regression modeis is often complicated by Single extreme values. Elimination

of such outliers may apparently improve statistical measures of model quality leading to

overly optimistic results. On the other hand, extreme values may act as leverage points. The

effect of such points is to force the fitted model close to the observed value of q 95 leading to

a small residual for this point. Therefore, regression parameters and residual statistics may be

strongly influenced by single values and may not represent the bulk of data. My approach to

this problem is an iterative robustified regression technique. Initial modeis fitted by stepwise

regression were checked for leverage points using Cook's distance (e.g. Weisberg, 1985).

These leverage points were left out and again stepwise regression was performed until no

leverage points remained. Finally, residual diagnostics including the root mean squared error

and the coefficient of determination were calculated for all data including leverage points.

The regression modeis so obtained were checked for numerical siability of ccniputaticn.

Since numerical stability is sensitive to different scales of predictors, all catchment

characteristics had been scaled by integer powers often to give similar magnitudes in terms of

their ranges (see Table 2.1). Since linear regression is scale invariant (Weisberg, 1985, p.185)

the regression modeis, including their residual statistics, remain unaffected by the rescaling

but the numerical stability is improved.

2.4.2 Regionalisation methods examined

2.4.2.1 4.2.1 Regionalisation of q95 low flows

2.4.2.1.1 Global regression
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In a first approach, one global regression model was fitted to all 325 catchments, using the

robustified stepwise regression technique. The global model does not account for seasonality,

hence it is a bench mark case against which to test the seasonality based regionalisation

methods.

2.4.2.1.2 Grouping into two regions and separate regressions in each region

In the second approach, two regionally restricted regression modeis were separately fitted for

two contiguous regions consisting of summer-dominated and winter-dominated catchments,

respectively. This corresponds to the original classification of catchments obtained by the

cluster analysis of seasonality histograms (Fig. 2.6).

2.4.2.1.3 Grouping into three regions and separate regressions in each region

Similarly to the latter approach, regionally restricted regression modeis were separately fitted

for three groups of catchments, corresponding to summer regime, winter regime and mixed

seasonality. This grouping corresponds to the second classification of catchments obtained by

the cluster analysis of seasonality histograms (Fig. 2.7). As opposed to the classification into

two regions, these regions are spatially discontiguous, and prediction of ungauged sites would

require some decision rule based on data that are available at both gauged and ungauged sites.

2.4.2.1.4 Global regression with different Z parameters in eight regions

In the fourth approach, a global regression model is fitted to the data that explicitly represents

group membership of catchments in one of the eight seasonality regions by a coefficient

termed Z. The linear model so obtained (a generalisation of the multiple regression model for

numeric and factor variables) fits a separate coefficient (Z) to each seasonality region. This

cöcfficiciit accounts for differences in the average low flov/s between seasonality zones Tbis

approach is more parsimonious than fitting separate linear regression modeis for each region

which may be an advantage if a large number of sub-regions is used. Regression parameters

for catchment characteristics, however, are fitted global ly and the model is therefore not

suitable for non-linear relationships between low flows and catchment characteristics.

2.4.2.2 Regionalisation of summer period (q95s) and winter period (q95w) low

flows

2.4.2.2.1 Global regression

As a side issue, specific low flows of the summer period (q95s) and the winter period (q95w)

were fitted by two separate global regression modeis. Since summer and winter low flows are
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related to different processes, one would expect that representing them separately provides a

more realistic representation of spatial low flow variability. Although it is not straightforward

to derive annual low flows from the summer and winter low flows, I can expect further

insights into the value of accounting for seasonality in the regionalisation.

2.4.2.2.2 Grouping into two regions and separate regressions in each region

The last approach is a combination of spatial grouping into summer and winter regions (Fig.

2.6) and the separate regionalisation of the summer period and the winter period low flows.

Models were separately fitted for summer and winter low flows and separately in the summer

and winter low flow dominated regions, leading to four temporally and regionally restricted

sub-models. This approach was used to get a more precise Separation of summer and winter

processes than by any of the two underlying methods alone.

2.4.3 Cross-validation

The error of prediction at ungauged sites can be assessed by the average residual squared

error. However, this will tend to be too optimistic, as the same data are used for assessing the

model as to fit it, so parameter estimates may be fine-tuned to the particular data set. In order

to get a more realistic estimate of prediction error, I used leave-one-out cross-validation. The

cross-validation estimate of prediction error is given by:

(9^95i} (8)
n i=\

where q95i is the observed specific low flow discharge qgs for catchment / and 495|~
0 is the

model prediction without using observed low flows from catchment /. The root mean squared

error based on cross-validation is therefore
(9)

and the coefficient of determination based on cross-validation is:

V -V

where Vq is the spatial variance of the observed specific low flow discharges qgs. Note that

most of the leveraging points (section 2.4.1) are included in the cross validation with the

exception of one or two outliers in case they were too far from the bulk of the data.

The advantage of cross-validation over other techniques of assessing predictive errors is

its robustness and its general applicability to all regionalisation modeis. This is because cross-

validation works well even if the regionalisation modeis are far from correct (Efron and

Tibshirani, 1993). Cross-validation is hence a füll emulation of the case of ungauged sites.
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2.5 Results

2.5.1 Examining model assumptions

The multiple regression approach is based on two main assumptions, unbiasedness (E[resj]=O)

and homoscedasticity (Var[resj]=constant), where resj is the residual of catchment i.

Normality of residuals is a desirable property if one is interested in inteipretable estimates of

model Performance. In this study, model assumptions are carefully checked by scatterplots of

observed vs. predicted values and histograms of residuals.

Scatter plots of observed vs. predicted specific low flow discharges qgs [l.s'1.km"2] in

the cross-validation mode are presented in Fig. 2.10. Each panel corresponds to one regional

regression model and each point corresponds to one catchment. The scatter plots allow a

detailed examination of the Performance of individual catchments including the existence of

outliers and a potential heteroscedasticity of the observations and the predictions. For all

modeis, the outliers tend to increase with q95, which suggests that the predictions are

heteroscedastic. One would usually apply a variance-stabilising transformation in this case,

such as taking the logarithms of qg5, but preliminary analyses showed that this transformation

improved the heteroscedasticity of the transformed data but did not improve the

heteroscedasticity of the residuals of the back-transformed predictions. The global regression

model exhibits the widest scatter among all modeis. No extreme outliers appear. Grouping

into two regions and separate regressions in each region exhibits a somewhat narrower scatter

for the bulk of data. Model fitting was complicated by a larger number of leverage points,

which clearly appear as outliers of prediction. Model fitting without leverage points obviously

led to a stronger selectivity between well represented catchments and outliers, which might

correspond to typical and atypical catchment conditions. Grouping into three regions and

separate regressions in each region appears similar to grouping into two regions, but leverage

points appear as even stronger outliers. The global regression using different Z parameters in

each of the eight regions appears to give a similar Performance as the global model without Z

Parameters.

One apparent deficiency of all modeis is the large scatter and clear bias for very wet

catchments. In catchments where observed specificlow~flöw~discharges are more than about

12 ls"'km"2 the low flows are consistently underestimated, and the random prediction error is

also rather large. It appears that none of the modeis can cope very well with these large

discharges. Part of the errors may be related to biases in the observed values. A specific
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discharge of 12 ls"'km"2 corresponds to 378 mm of low flow depth per year which is a

relatively large value for Austrian conditions. It should also be noted that it is not uncommon

for regionalisation modeis to have a tendency for underestimating large values. For example,

the flood regionalisation analysis of Merz and Blöschl (2004a) showed that flood quantiles in

the same study area were consistently underestimated by their method for catchments with

above-average specific flood discharges.

Histograms of cross-validated residuals (l.s'.km"2) are presented in Fig. 2.11. For all

regionalisation modeis, residuals appear similar and approximately normally distributed.

Single extreme outliers (typically one or two per model) appear. Since such outliers exert a

strong influence on second-order statistics, such as sum of squared residuals, they will not be

used in the calculation of Performance measures in order to get estimates for the bulk of the

catchments.

2.5.2 Relative importance of predictor variables

The regression model equations of the four resulting modeis are presented in Table 2.2.

Positive signs indicate higher discharges, negative signs indicate lower discharges with

increasing values of each catchment characteristic. The catchment characteristics have been

automatically selected by the stepwise regression algorithm. The order of the catchment

characteristics in the regression equation therefore corresponds to the relative importance of

catchment characteristics in terms of predictive Performance. However, the importance for

predictive Performance may not be seen as a straightforward evaluation of process controls,

because of inter-correlations between catchment characteristics, different accuracy of

catchment characteristics and influences of single values.

The global regre.ssion model consists of eight catchment characteristics. Range of

altitude (HR) is of prime importance and has a positive effect on low flows. The proportion of

rocks (LR), which is large in mountainous areas, has a negative effect on low flows. From

three precipitation characteristics, winter precipitation Pw was selected and has a positive

effect. Catchment geology is represented by four parameters; quaternary Sediments (GQ) and

deep ground water tables (GGD) have a positive effect, Flysch (GF) and Crystalline rocks (Gc)

have a negative effect on low flows.

Grouping into two regions and separate regressions in each region results in two

regression equations. The summer model consists of eight parameters and appears similar to

the global regression model. Four catchment characteristics (SST, GGD, LR, GF) are again

represented and exhibit even the same coefficients, but the order of the selection is changed.

Other parameters are only slightly modified (HR is replaced by H+, and the coefficient of Pw is
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changed which is due to different precipitation sums in the summer region and the entire

region). Gc is missing in the selection, because Crystalline rocks do not occur in the summer-

dominated region. The winter model consists of six parameters. Negative effects on low flows

exhibit Gc and GT (both indicate low permeability aquifer conditions) and HM (correlates with

temperature and appears to be an important control for winter low flows). GQ (high

permeability aquifer conditions), Pw and SST all exhibit positive effects on the low flows.

Grouping into three regions and separate regressions in each region leads to three

significantly more parsimonious regression equations. The summer model consists of only

two parameters, annual precipitation (P) and ränge of altitude (HR), both indicating a positive

effect on low flows. The winter model exhibits five parameters. Positive effects on low flows

exhibit, again, P and SST- Negative effects on low flows exhibit LA (landuse agriculture) and

two landuse characteristics that indicate high-mountainous conditions (proportion of glaciers

LGL and proportion of rocks LR). The model for the transition zone (mixed regimes) exhibits

three characteristics HM, GT and Lp, which all have a negative effect on low flows.

Global regression but different Z parameters in each of the eight regions exhibits a

regression equation that is very similar to the bench mark global regression model. HR, LR, GQ

are represented by the same regression coefficients, and Pw, GF and Gc are represented by

slightly modified coefficients. Percentage of steep slope SST is changed to mean slope SM and

proportion of tertiary Sediments GT replaces the proportion of deep groundwater tables (GGD)-

2.5.3 Relative Performance of modeis

Table 2.2 presents two measures of model Performance, the coefficient of determination

R2
CV and the root mean squared error rmsecv. Both are obtained from cross-validated residuals

and, therefore, are represeriiaüvc of the prediction of low flows in ungauged catchrr.ents.

Global regression exhibits a relative Performance of R2
CV = 57%, corresponding to rmse =

2.62 l.s'Vkm"2. Grouping catchments into two regions and separate regressions in each region

improves the overall model Performance to R2
CV = 59%, rmse=2.56 l.s'Vkm'2. The summer

low flow dominated region exhibits better Performance (R2
CV = 60%) than the winter-

dominated region {R^v = 51%). Grouping catchments into three regions and separate

regressions in each region-yields a further slight improvement of RcV
= 60%, rmse=2.55 l.s"

'.km"2. Again, the sub-model for summer-dominated catchments exhibits a better Performance

{R2
CV- 66%) than the sub-model for winter-dominated catchments (Rlv = 51%). The sub-

model for mixed regimes indicates the poorest Performance {R^v= 35%). The global
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regression using different Z parameters in each of the eight regions exhibits a moderate

Performance of R2
CV = 58%, corresponding to rmse = 2.61 l.s'.km"2 , i.e. it is very similar to

the global regression model. Overall the cross-validated coefficients of determination

correspond well with the relative scatter of the methods (Fig. 2.10). Regional regressions

based on sub-regions tend to increase model Performance, although the overall gain of

Performance is slim. One significant effect of seasonality based regional regression is that

modeis for summer-dominated regions clearly perform better than modeis for winter-

dominated regions.

A similar effect was observed for the summer period low flows q95s and winter period

low flows q95w (Tab. 4). The global model for summer period low flows {R^v- 65%)

performs clearly better than the global model for winter period low flows {R2
CV= 49%).

However, this is not generally true if a grouping into two regions and separate regressions in

each region is performed for summer period (q95s) and winter period (q95w) low flows.

Here, the model for q95w in the summer region {R2
CV = 43%) performs better than the model

for q95w in the winter region {R^v = 37%), but the model for q95s in the summer region

(R^v= 46%) exhibits a poorer Performance than the model for q95s in the winter region

(R^v= 58%). The finding that all of these four regionally restricted modeis for the summer

and winter periods perform poorer than the global modeis for the summer and winter periods

indicates that the grouping into summer- and winter-dominated regions is not suitable for

summer and winter period low flows.
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Table 2.2: Performance and coefficients of regional regression modeis for q95 low flows.

Units of q95 are (l.s'.km2), units of catchment characteristics see Table 2.1.

Group

Global

2 regions total

summer

winter

3 regions total

summer

winter

mixed

8 regions

N

325

325

215

110

325

210

82

33

325

Kcv

57

59

60

51

60

66

51

35

58

rmsecv

2.62

2.56

2.74

2.16

2.55

2.43

2.60

2.93

2.61

Model

q95 = -2.04 + 0.23*HR - 0.08*LR - 0.04*GF + 1.29*PW + 0.04*GQ +

0.04*SST + 0.03*GGD - 0.01 *GC

<795= -3.08 + 0.04*SST - 0.04*GF + 0.03*GGD + 1.53*PW + 0.03*GQ -

0.08*LR + 0.14*H+

qg5 = 9.66 - 0.02*Gc + 0.14*GQ + 0.43*Pw + 0.05*SST - 0.36*HM -

0.41*GT

4 9 5 =-6 .56+1 .16*P + 0.12*HR

qg5 = -0.72 + 0.62*P - 0.03*LA - 0.07*LGL + 0.05*SST - 0.04*LR

<795= 38.28 - 1.29*HM - 0.22*GT - 0.21 *LF

qg5 = -2.17 + Z + 1.18*PW + 0.23*HR - 0.08*LR + 0.04*GQ + 0.07*SM

- 0.03*GF - 0.02*Gc - 0.02*GT

-2Table 2.3: Z-parameters (l.s .km ) for each of the 8 regions. p is the significance level.

Group

A-C

1

2

3

4

5

D

E

Region

Alps

Flatland & hilly terrain (N,E of Austria)

Foothills of Alps (Upper Austria)

Flyschzone

Lower Carinthia

Pre-Alps (Styria)

Pre-Alps (Vorarlberg)

Z

+0.437

+0.378

-0.317

+2.260

+0.222

-1.327

-0.417

-1.235

p-value

0.52

0.95

0.26

<0.01

0.39

0.07

0.33

0.22
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Table 2.4: Performance of regional regression modeis for summer period low flows

(q95s) and winter period low flows (q95w). Units of q95 are (l.s'.km'2), units of

catchment characteristics see Table 2.2.

Group

Summer period global

Winter period global

Summer period | summer region

Summer period | winter region

Winter period | summer region

Winter period | winter region

N '

325

325

215

110

215

110

65

49

46

58

43

37

rmsecv

3.05

2.87

2.71

3.20

3.08

2.15

Model

q95s = -3.94 + 0.18*SM + 0.48*P - 0.16*LGL +

0.03*GGD + 0.04*GQ - 0.04*GF + 0.25*H+ - 0.08*LR

- 0.02*Gc - 0.02*LF

^95w = -0.54 + 0.91 *PW + 0.07*GQ - 0.07*LR -

0.04*GF + 0.04*GD + 0.14*SM - 0.02*Gc

q95s = -3.56 + 0.63*P + 0.07*SST + 0.03*GGD +

0.14*H+

q95s = 5.90 - 0.02*Gc + 0.12*SST - 0.34*HM +

0.74*Ps + 0.18*GQ

q95w = -2.21+2.01*Pw

q95w = 7.37 - 0.02*Gc + 0.17*GQ - 0.21*H0 -

0.34*GT + 0.34*Pw
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2.6 Discussion

2.6.1 Performance of regionalisation methods as compared to the literature

The global regression model obtained in this study uses seven catchment characteristics as

predictors. These are HR (ränge of altitude), LR (fraction of wasteland or rocks), GF (fraction

of Flysch) and Pw (average winter precipitation), GQ (quaternary Sediments), SST (fraction of

steep slope) GGD (fraction of aquifers with deep groundwater table) and Gc (fraction of

crystalline rocks). The global model exhibits a cross-validated coefficient of determination of

R2
CV = 57%, and explains 60% of the variance in qgs (goodness-of-fit R2). It is interesting to

compare this result to studies in the literature that used a similar number of catchments as in

this section (325 catchments) and examined q95 specific discharges as in this section, rather

than discharges. I generally used cross-validated coefficients of determination in this study

since they appear more appropriate for comparisons among modeis that differ in both the

number of catchments and the number of model parameters. Since the cross-validated

coefficients is not generally used in the literature, comparisons with the literature will be

based on the goodness-of-fit coefficient of determination obtained here. Gustard et al. (1992)

obtained R2= 57% between Q95 standardised by the mean flow and portion of hydrologically

defined soil classes for 694 catchments in the UK. Schreiber and Demuth (1997) obtained

R2=56% between specific mean annual 10-day minimum discharge MAM(IO) and a number

of catchment characteristics for 169 catchments in south-west Germany, and Aschwanden and

Kan (1999) obtained R2=51% between specific discharge (q95) and a number of catchment

characteristics for 143 headwater catchments in Switzerland. The R2 values obtained in this

study are slightly larger than those from the literature. It is likely that the difference is related

to the hydrological heterogeneity of Austria with clear regional differences in low flows. The

better goodness-of-fit in this study may also be related to using sub-catchments rather than

complete catclinients which may make the catchment characteristics more relevant to low

flow regionalisation.

Most other studies in the literature used discharge rather than specific discharge and so

are not directly comparable to the results in this section. As catchment size usually explains

around 80%-90% of the variability of low flow discharges (see, e.g., Dingman and Lawlor,

1995; Vogel and Kroll, 1992) it is clear that the R2 values for discharges würbe much larger

than the R2 values for specific discharges, particularly if there are significant variations in

catchment size within the sample. Dingman and Lawlor (1995) and Vogel and Kroll (1992),

for example, reported R2 values of more than 90%.
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2.6.2 Relative Performance of regionalisation methods

In a first step I compared the overall Performance of the modeis. The coefficients of

determination in the cross-validation mode and scatter-plots of observed vs. predicted low

flows q95 indicate only slight differences among the modeis (section 2.5.1 and 2.5.3).

Grouping into three regions and separate regressions in each region performed best, followed

by grouping into two regions and separate regressions in each region. Global regression

performed worse, and the effect of incorporating different Z parameters in each of the eight

regions in the global regression model was very small.

In a second step I compared the Performance of sub-models for catchments that

represent summer- and winter low flow dominated regimes. As can be seen from the cross-

validated coefficients of determination of the sub-models, modeis for summer-dominated

catchments exhibit a better Performance than the modeis for the winter-dominated catchments

(Table 2.2), and the modeis for the summer period low flows perform better than the modeis

for the winter period low flows (Table 2.4). Summer-dominated catchments correspond to

lowlands where the hydrologic Situation is relatively simple and winter-dominated catchments

correspond to alpine catchments where the hydrologic Situation tends to be complex.

However, it is not quite clear whether the different Performances are due to different

complexities of the processes or different complexities of the regions. Separate global modeis

for summer period low flows and winter period low flows, however, clearly represent

different seasonal processes (summer and winter processes) occurring in the catchments. The

relatively poor Performance of the model for the winter period low flows hence indicates that

winter processes are not represented as well as the summer processes. This might point to

both a higher complexity of winter processes as well as a poorer representation of winter

processes by the avaüable catchment characteristics.

Overall, modeis for summer-dominated catchments exhibit a better Performance than

modeis for winter-dominated catchments and modeis fpr summer period low flows are better

than modeis for winter-period low flows. Hence, the grouping based on seasonality has a clear

effect on the relative Performance of the modeis, which one would expect to translate into a

more accurate regionalisation. As this effect was not apparent in the Performance measures

discussed above, it appears that a more detailed assessment of residuals is needed.

In-athirdstep, I thereforexomparedmapsof residuals_between.predicted_and_observ_ed_

values of specific low flow discharge q95 (l.s'Vkm"2) for each sub-catchment (Fig. 2.12). In

this figure, each panel corresponds to one model. Positive residuals indicate overestimation by

the model, negative residuals indicate underestimation. Overall, the residual maps show a
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much stronger differentiation of modeis than the scatter plots or coefficients of determination.

The global model, which serves as the bench mark against which to test the modeis that

account for seasonality, generally exhibits a rather random residual pattern, indicating that the

model performs equally well for a ränge of hydrological conditions in Austria. Closer

inspection, however, indicates that the model fits somewhat better for the northern part of

Austria than for the remaining area. Large negative residuals occur in the Northern

Calcareous Alps, which corresponds to the bias of very wet catchments as described in section

2.5.1. Large residuals occur in the southern part of Upper Austria which indicates a specific

hydrological Situation that would require a separate regionalisation model.

Compared to the global model, both regional regression modeis that fit separate

modeis for 2 and 3 regions obtained from seasonality analysis indicate clearly different

residual patterns. The grouping into two regions and separate regressions in each region leads

to an improved model Performance in the south-east of Austria most of which is part of the

summer-dominated region. Alpine catchments that correspond to the winter region are

unchanged. The model exhibits a higher selectivity between well represented and poorly

represented situations, apparently corresponding to the hydrological complexity of

catchments. The model, therefore, is clearly more suitable than the global model which does

not represent these situations well. A similar, albeit even stronger effect may be observed for

the regional regression based on the grouping into three regions. Regionalisation is clearly

improved for a large area from the east (Wechsel region) to the south-west of Austria (East-

Tyrol). This means that there is a clear improvement in summer- and winter dominated

regions. On the other hand, the number of outliers increases, and these outliers exhibit clearly

larger residuals. Both effects correspond to a higher selectivity of the regionalisation model

between well represented and pooriy represented siiuaüoiis, indicating the best Performance

for predicting low flows among all considered modeis.

The global regression using different Z parameters in each of the eight regions exhibits

a pattern of cross-validated residuals very similar to the global model which is in aecordance

with the small change of both the regression coefficients and the coefficient of determination.

Average low flows for each region are practically identical (see Table 2.3) and seasonality has

no significant influence on the quantity of low flows. An alternative consideration of these

eight regions in a complex regional regression model which fits separate modeis for each

region similar to the more successful modeis for two and three zones may therefore be a

promising approach and will be examined in section 3.
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Fig. 2.12: Residuals of predicted minus observed specific low flows q95 (l.s*

cross validation mode. Each panel corresponds to one regionalisation model.

.km"2) in

Overall, the assessment of modeis by maps of cross-validated residuals resulted in a

somewhat different assessment from that of the coefficient of determination of cross-validated

residuals. I believe that the main reason for this deviation of results is caused by the high

sensitivity of the coefficient of determination to outliers. Regional regression performed for

two and three regions led to a better representation for the bulk of catchments but increased

the number of outliers at the same time, particularly within the winter-dominated region. This

effect has not been apparent from the scatter plots and residual histograms for the ensemble of

catchments due to the iarge number of points but is evident in the residual maps. As the

coefficient of determination is very sensitive to outliers, it does not capture such a Situation

very well. From the residual maps, however, one can see the better Performance of methods

that incorporate seasonality by separate modelling of different zones of homogeneous

seasonality, and residual patterns of the model based on three regions would even indicate a

further Separation of regions which would, finally, lead to the classification of zones that are

homogeneous in terms of low flow seasonality (section 2.3.2.2).
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2.6.3 Relative Performance of approaches to seasonality analysis

I used different approaches to seasonality analysis in this section. I first compared three

seasonality measures, the seasonality ratio (SR), the seasonality index (SI) and the seasonality

histogram (SH), which use a different number of parameters for representing the seasonal

distribution of low flows. SR consists of one parameter, which is the ratio of summer period

low flow characteristic q95s and winter period low flow characteristic q95w. SI consists of

two parameters, the mean and the variability of days when discharges fall below Q95. SH

consists of 12 parameters which represent the monthly frequency of days when discharges fall

below Q95. SH therefore provides the most detailed information about low flow seasonality,

SI contains less information, and SR contains the least information. However, one drawback

is that the synoptical interpretation of seasonality measures from a large number of

catchments becomes more difficult with an increasing number of parameters. While general

patterns are best visible for SR, the determination of patterns by the SI requires closer

inspection. There is too much information in the SH for a synoptic interpretation at the

regional scale, so some classification technique is needed to exploit the higher information

content.

I hence compared two classification techniques in order to exploit the information of

the SH in the best possible way. The first technique, a partitioning approach to cluster analysis

which also provides information about the optimal number of clusters, led to a classification

of Austrian catchments into two contiguous regions which correspond to summer and winter

low flow regimes. An alternative classification was obtained by allocating catchments that

exhibit strong dissimilarities to both clusters to a third group which hence corresponds to

weak seasonality or a mixed low flow regime. Both clusters correspond well with patterns of

SR and are plausible since they are consistent with iandscape regions in Austria. Aithough the

effect on the overall model Performance was small, closer inspection of the Performance of

sub-models. for the regions and the residual pattern maps showed that the classification

increases the Performance of regionalisation and there is some value in the seasonality

grouping. The second technique is the visual grouping of SH, which uses the large scale

pattern of the SI to obtain a preliminary classification which is then refmed by supplemental

information provided by the SH. Topographie information was further used to infer

boundaries of the regions. The contiguous-regions so- obtained-are homogeneous in terms of

seasonality and correspond generally well with patterns of SR and both groupings obtained

from cluster analysis, and exhibit a finer classification than the regions obtained by cluster

analysis and a visual inspection of the patterns of SR and SI alone. Aithough this
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classification did not give a significant improvement over the global model I believe there is

some potential in this classification provided more sophisticated regionalisation modeis are

used.

2.6.4 Most important controls in comparison with controls in the literature

2.6.4.1 Controls of Iow flow seasonality

The results of the seasonality analysis allow an Interpretation of processes of Iow flow

generation in Austria at the regional scale. Catchment altitude exerts a very important

influence on seasonality. Essentially by altitude, Austria is divided into the Alpine region

where Iow flows are dominated by winter processes and in flatlands and hilly terrain where

Iow flows are dominated by summer processes. The changeover between these two regions is

restricted to rather small transition zones (Flyschzone along the foothills of the Alps, Eastern

Styria and Lower Carinthia). Smaller differences of mean seasonality between sub-regions

may be explained by different climatic influences, such as influences of atlantic, continental,

pannonic and interalpine climate and, perhaps, foehn effects. The seasonality patterns appear

independent of the patterns of q95. This suggests that seasonality is an indicator of processes

rather than an indicator of the magnitude of specific Iow flows.

2.6.4.2 Controls of specific Iow flow discharge

Further insights in important controls of Iow flows were gained from a comparison of the

different regional regression modeis (Table 2.2). Although a large number of catchment

characteristics were supplied to the stepwise variable selection algorithm, only 14 catchment

characteristics have been selected. Most of them occur in several modeis. Many regression

modeis contain similar parameters although the modeis for the summer and the winter regions

differ significantly. Overall, most of the regression coefficients are plausible as their signs and

some of the catchment characteristics can be interpreted on hydrological grounds. I therefore

believe that the interpretation of the regression coefficients provides useful insights into the

important process controls of Iow flows in Austria.

Catchment relief is represented in all equations, generally by one altitude parameter

(HM, H+ or HR) and by one slope parameter (mainly SST, also SM)- Altitude has a positive

effect on summer Iow flows (less evaporation) and a negative effect on winter, Iow flows

(lower temperature). Slope generally has a positive effect on Iow flows, it is possibly

correlated with storage volume in high mountains. Also, the fact that one of the topographic

characteristics is frequently selected first by the stepwise regression algorithm supports the
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finding that catchment topography (altitude and slope) is one of the most important controls

of low flows in Austria.

Apart from the model for the heterogeneous group of catchments that exhibit mixed

seasonality (a small band along the Alps exhibiting low variability of precipitation),

precipitation is significant for all modeis and is also frequently selected first by the stepwise

regression algorithm. Hence, precipitation is an equally important control of low flows in

Austria as catchment topography. Precipitation has a positive effect for summer and winter

low flows as one would expect. The positive effect on winter low flows may be related to a

tendency of precipitation periods to be generally warmer than dry winter periods. This may be

a result of different atmospheric circulation patterns in cold and wet winter periods.

Catchment geology is represented in many regression modeis, generally by multiple

Parameters, but usually selected after topographical or precipitation characteristics. Hence, it

represents the third important control of low flows in Austria. Seven out of nine geological

characteristics are significant in explaining low flows in Austria. Three geological classes that

represent low permeability aquifer conditions, i.e., proportion of Crystalline rock (Gc),

Tertiary Sediments (GT) and Flysch (GF), exhibit negative effects on low flows. Two

geological classes that indicate high permeability aquifers, i.e., proportion of Quaternary

Sediments (GQ) and deep groundwater table aquifers (GGD) exhibit positive effects on low

flows. The large number of geological characteristics is probably due to the use of geological

classes separately instead of one geological index as sometimes used in the literature.

Land use plays a minor role and appears not to be an important control. There are only

two land use characteristics that appear frequently (LR, LGL), but they are associated with high

mountain conditions rather than independent indicators of landuse.

Stream density (D) never occurred in the regression equations and appears not to be a

significant indicator of low flows. Similarly, sub-catchment area (A) was never selected by

the stepwise regression algorithm, so there appears to exist very little influence of catchment

scale on specific low flows. This is likely due to the large spatial scales of drought events

which exceed the spatial scale of the sub-catchments used in this study.

In the final step, I compare process controls of Austria with those recorded in the

literature. Smakhtin (2001) provided a comprehensive overview of catchment descriptors used

in regional estimation modeis. Basin and climate characteristics that are most commonly

related to low-flow indices include: catchment area, mean annual precipitation, Channel and/or

catchment slope, stream frequency and/or density, percentage of lakes and forested areas,

various soil and geology indices, length of the main stream, catchment shape and watershed
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perimeter and mean catchment elevation. The frequency of different categories of catchment

descriptors in 120 low flow estimation modeis was assessed in Demuth (2004). 73% of all

catchment characteristics used are physiographic descriptors, 22% are climatic descriptors and

5% are hydrologic descriptors. Among the physiographic descriptors, morphometric

descriptors make up the highest proportion (46%), followed by surface cover (17%), geology

and soil (10% each). However, I believe that the frequency of the catchment characteristics

used largely depends on the availability and quality of the data, so a general assessment of the

importance of catchment characteristics from this comparison is difficult. Such an assessment

is only meaningful among studies that exhibit similar hydrological conditions and similar

study designs.

The regionalisation study of Switzerland presented by Aschwanden and Kan (1999) is

similar to this study in both respects. The regionalisation of q95 specific low flows in

Switzerland resulted in seven regional regression modeis for different regions in Switzerland.

From all regression equations, catchment topography and precipitation appeared as the most

important control of low flows. This is fully consistent with the results of this study. A

number of pedologic and hydrogeologic parameters were also significant in Aschwanden and

Kan (1999). Landuse played an important role but the characteristics were proportion of

horticulture and vineyards, and proportion of pre-alpine farming structures. These

characteristics are representative of typical landscapes rather than land cover per se. Overall,

the results obtained in this study are therefore in line with the regionalisation study of

Switzerland. Relief, precipitation and hydrogeological conditions appear to be the most

important controls of low flows in both countries. The way these controls are related to low

flows, however, depends on whether a summer or winter low flow regime is present.

2.7 Conclusion

The objective of this study was to examine the value of different seasonality indices for low

flow regionalisation. In a first Step, three seasonality indices were compared. The main

difference between the indices is the information content of low flow seasonality. Seasonality

histograms (SH) are the most detailed indices, but classification techniques are needed to

compare seasonality among a large number of catchments. The cyclic seasonality index (SI) is

a more compact index and the spatial patterns can be delineated by visual inspection of a

vector map of SI. The seasonality ratio (SR) is the most Condensed index and the spatial

patterns are clearly discernable when plotted on a map. The patterns of the indices obtained

for Austria correspond well with the main landscape units of Alps, low lands and hilly
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landscapes. In a second step, three catchment classification methods that are based on

seasonality have been examined. Cluster analyses of seasonality histograms resulted in a first

classification into two regions corresponding to summer low flow dominated and winter low

flow dominated regimes. The second classification into three regions Singles out an additional

zone of mixed seasonality. The third classification consists of eight zones that correspond to

catchments that exhibit similar typical seasonal distributions of low flows. In a third step, the

value of seasonality indices for low flow regionalisation was examined by comparing three

multiple regression approaches which include the seasonality classifications in different ways,

to the global regression model which does not include seasonality. The overall coefficient of

determination in cross-validation mode does not change much between the seasonality

approaches. Fitting separate modeis to three regions (summer, winter and mixed seasonality)

performs best (R2
CV = 60%), followed by separate modeis fitted to two regions {R^y

= 59%).

Including different calibration coefficients in each of the eight seasonality regions resulted in

R2
CV = 58% and hence performs only slightly better than the global regression model (R^v -

57%). The modeis for the summer regions {R2
CV- 66% and 60%), however, clearly perform

better than the modeis for the winter regions (R^v= 51%). The model for the catchments of

the mixed seasonality type (R2
CV = 35%) does not nearly perform as well. The residual maps

of predicted minus observes q95 low flows indicates a clearer difference between modeis than

suggested by the overall coefficients of determination. They allow a better discrimination

between well represented situations and outliers that occur in hydrologically complex parts of

the study area. Separate regressions for three and two regions give smaller residuals than the

global model. Including different calibration coefficients for each of the eight seasonality

regions did not reduce the residuals significantly. This suggests that using separaie regression

modeis in different seasonality zones may be a promising approach. This will be examined in

section3. .

38



3 A comparison of Iow flow regionalisation methods - catchment

grouping

3.1 Introduction

Accurate estimates of Iow flow characteristics are needed for a ränge of purposes in water

resources management and engineering including environmental flow requirements, water

uses and discharges into streams, and hydropower Operation (Smakhtin, 2001; Gustard et al.,

2004). Low flow characteristics are best estimated from observed stream flow data but for

sites where these data are unavailable hydrological regionalisation techniques can be used to

infer them from other catchments where stream flow data have been collected.

The regionalisation of low flow characteristics is usually based on some sort of

regression between the low flow characteristic of interest and catchment characteristics that

are available for ungauged sites (e.g., Vogel and Kroll, 1992; Gustard et al., 1992; Schreiber

and Demuth, 1997; Skop and Loaiciga, 1998). If the study domain is large or very

heterogeneous in terms of the low flow processes a number of authors have suggested to split

the domain into regions and apply a regression relationship to each of the regions

independently. This is termed the regional regression approach. Gustard and Irving (1994), for

example, tested a number of regression modeis between standardised Q95 low flows (the

discharge that is exceeded on 95% of all days) and different soil group indices for 1530

catchments in Europe. Their global regression model of nine soil classes explained 29% of the

spatial low flow variance while a regional regression model explained between 17% and 47%

of the variance, depending on the region. In their study, the entire domain was subdivided into

seven geographic regions, Tn a smaller scale study of 44 catchments in New Zealand, Clausen

and Pearson (1995) showed that the variance of a drought index explained by catchment

characteristics increased from 64% to between 68% and 91% if the domain is split into three

geographically defined regions.

In some instances it is clear how to group a domain into regions of approximately

uniform low flow behaviour but, more often, the choice is far from obvious. A number of

methods of identifying homogeneous regions have therefore been proposed in the literature in

the context of low flow regionalisation. All of these methods use low flow data and most of

them use catchment characteristics as well. In the first technique, termed residual pattern

approach, residuals from an initial, global regression model between flow characteristics and

catchment characteristics are plotted, from which geographically contiguous regions are

obtained by manual generalisation on a map (e.g. Hayes, 1992; Aschwanden and Kan, 1999).
39



This is an obvious method of improving on a global regression model. A drawback of the

residual pattern approach, however, is that the initial model may be far from correct as it

extends over the entire domain of interest. The shapes of the regions so obtained may then be

artefacts of an inadequate model and the regional regression model will have little physical

significance. Once the regions have been identified, the ungauged site of interest needs to be

allocated to one of the regions. As the regions in this approach are spatially contiguous, the

ungauged site can be allocated by its geographical location. As a final step, the low flow value

for the site of interest is estimated from multiple regressions between observed low flows and

catchment characteristics fitted to each of these regions independently.

In the second technique, multivariate statistics such as cluster analyses are used to

delineate regions. In the multivariate analyses, both low flow data and catchment

characteristics are used. They are usually standardised and/or weighted to enhance the

discriminatory power of the methods. The use of multivariate statistics in the context of low

flow regionalisation has been explored in detail by Nathan and McMahon (1990). They tested

a number of approaches based on a combination of different techniques of cluster analysis,

multiple regression and principal component analysis. They used Andrews curves (Andrews,

1972) for visualising similarity in catchment characteristics which allowed them to fine-tune

the catchment grouping. Based on data from 184 catchments in South-east Australia, Nathan

and McMahon (1990) found that the relative Performance of the methods depended on the

low flow characteristic examined. Their overall assessment suggested that the weighted

cluster analysis (Ward's method based on a Euclidean distance measure) using weights

according to the coefficients of an initial stepwise regression model performed best. Since

regions obtained by the cluster analysis approach are generally discontiguous in Space, the

allocation of ungauged sites to the most similar group rcquires decision criteria which are

usually based on catchment characteristics. Nathan and McMahon (1990) assumed in their

analysis that the catchment allocation was known and proposed to use Andrews curves for

assigning ungauged catchments. Possible alternative methods are discriminant analyses and

classification trees (Haines et al., 1988). As a final step, again, the low flow value for the site

of interest is estimated from multiple regressions between observed low flows and catchment

characteristics fitted to each of the regions independently.

A-third technique are Classification And Regression Tree (CART) modeis (Breiman et

al., 1984) which, to my knowledge, have not yet been used in low flow regionalisation.

However, there do exist a number of interesting applications in hydrology, including the

classification of satellite images of snow cover and the interpolation of ground snow
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measurement (e.g. Rosenthal & Dozier, 1996; Eider, 1995) and a first attempt of using the

regression trees for regionalizing low flows is given in Laaha (2002). In the context of low

flow regionalisation, the independent variables in the regressions trees are the catchment

characteristics and the dependent variables are the low flows. Regression trees then divide a

heterogeneous domain into a number of more homogeneous regions by maximising the

homogeneity of low flows and catchment characteristics within each group simultaneously.

Regression trees have a number of advantages over other modeis. Their structure is non-

parametric, small trees are readily interpretable, there is no global sensitivity to outliers and

they are able to handle non-linear relationships well. However; big trees are difficult to

interpret, there is a lack of smoothness and there are potential problems with overfitting the

data, so some method for pruning the tree is needed (Breiman et al., 1984). Once the

regression tree is fitted to the data, it can be used to allocate ungauged sites to the regions

obtained by the regression tree. Alternatively, classification trees can be used to allocate

group names to catchment characteristics. Classification trees operate on categorical variables

while regression trees operate on continuous variables. The final Step of estimating low flows

for the ungauged site of interest is a regional regression as in the other grouping methods.

In a fourth technique, the seasonality of low flows is used to delineate homogeneous

regions. The rationale of this approach is that differences in the occurrence of low flows

within a year are a reflection of differences in the hydrologic processes and are hence likely to

be useful for finding homogeneous regions. Merz et al. (1999) and Piock-Ellena et al. (2000)

have illustrated that the seasonality approach is indeed useful in the context of flood

frequency regionalisation in Austria. They used a cluster analysis based on circular statistics

of flood occurrence within the year to identify homogeneous regions and plotted vector maps

to visuaiise the spatiai paüerns öf the seasonalitics cf flocds and other hydrologic variables. In

contrast, an application of a low flow seasonality index in the UK (Young et al., 2000)

suggested there is little discriminatory power in this index because the spatiai variability of

low flow seasonality was rather weak. It is clear that the usefulness of this method hinges on

the existence of clear spatiai patterns in low flow seasonality. Laaha (2002) compared two

seasonality measures in Upper Austria and found that both measures were capable of

classifying catchments into summer and winter low flow dominated sub-regions. An

extension of this work is presented in section 2, where homogenous regions with respect to

low flow seasonality were visually delineated from a number of seasonality measures. The

results indicated that, in a humid, mountainous country such as Austria, the spatiai variations

in low flow seasonality are indeed enormous. There is likely some potential in this approach.
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If the regions are spatially contiguous such as those presented in section 2, the ungauged site

can be allocated by its geographical location. The final step of estimating low flows for the

ungauged site of interest is an analogous regional regression to the other groupmg methods.

While much work has been done in the literature on catchment grouping in the context

of low flow regionalisation I am unaware of any comprehensive comparison of the grouping

methods for the same data set to assess their relative merits. The aim of this section therefore

is to examine the relative Performance of different grouping techniques to investigate what is

the optimum grouping method for regionalising low flows. The comparison will be made on

the same data set as it was used in section 2, i.e., 325 sub-catchments and catchments without

an upstream gauge, respectively, and the low flow characteristic chosen is, again, the q^

specific low flow quantile, i.e. the specific discharge that is exceeded on 95% of all days.
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3.2 Method

3.2.1 Classification of catchments

3.2.1.1 Residual pattern approach

The residual pattern approach to catchment grouping consisted of three steps:

(1) Perform stepwise regression to obtain a global regression model;

(2) Plot the residuals from the global regression model in geographic Space;

(3) If residual patterns are apparent, delineate contiguous regions of similar sign and

magnitude of residuals.

Stepwise regression may lead to over-fitted modeis where omission of a single catchment

characteristic only slightly reduces the global model quality. When choosing the number of

catchment characteristics in the global regression I therefore tended to use the more

parsimonious model as it produced clearer residual patterns.

3.2.1.2 Weighted cluster analysis

Weighted cluster analysis has been recommended by Nathan and McMahon (1990) as the

optimal technique to identify homogeneous regions and I used their method consisting of the

following steps:

(1) Identify the catchment characteristics most relevant to the problem at hand by

performing an overall stepwise regression analysis;

(2) Weight the selected catchment characteristics according to their relative importance,

as determined by the magnitude of their ß-coefficients which are the coefficients of the

stepwise regression model based on standardised catchment characteristics:

(3) Perform a number of cluster analyses on the weighted catchment characteristics using

different measures of similarity and linkage methods;

(4) Prepare plots of Andrews curves for each of the groupings derived in (3), and identify

the set of clusters exhibiting the least within-group Variation. This will give the

optimal classification of catchments into homogeneous groups;

(5) Remove outliers in the optimum grouping based on the Andrews plots, if needed.

Derive a set of mean catchment characteristics for each homogeneous group;

(6) Refine the Optimum grouping derived by the cluster analysis by comparing the

catchment characteristics of each catchment with the group mean and reclassify the

catchment in case the catchment characteristics are too different.
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In the spirit of Nathan and McMahon (1990), I compared several cluster analysis techniques

of the S-Plus statistics package. These were two hierarchical cluster analysis methods, hclust

(Hartigan, 1975) and agnes (Kaufrnan and Rousseeuw, 1990), which are similar to the

algorithm used by Nathan and McMahon, as well as the pam partitioning method (Kaufman

and Rousseeuw, 1990). Several combinations of linkage methods (single linkage, average

linkage and complete linkage) and distance measures (Euclidean distance and Manhattan

distance) were evaluated for different numbers of clusters. The most appropriate method was

selected by a visual assessment of Andrews plots. In Andrews plots, a point in multi-

dimensional space x = [xi, x2, .... xn] is represented by a function of the form:

F(t) = xxl42+x2 sin(» + xi cos(t) + x4 sin(2/) + x5 cos(2/) + • • • (1)

plotted over the ränge of -n < t < +n. A set of multivariate observations can be displayed as a

collectiön of these plots and those functions that remain close together for all values of t

correspond to observations that are close to one another in terms of their Euclidean distance.

This property implies that these plots can be used to both detect groups of similar

observations and identify outliers in multivariate data.

Since the regions obtained by weighted cluster analysis, generally, are not contiguous,

the prediction of low flow characteristics at ungauged sites requires a decision rule based on

catchment characteristics in order to allocate the site of interest to the most appropriate region.

Nathan and McMahon proposed a procedure similar to step (6), i.e. comparing the Andrews

curve of an ungauged catchment with the mean curve of each cluster. Because of the

subjectivity of a visual assessment, this method is not suitable for automatic cross-validation

of the regional regression model. I therefore adopted an alternative approach and used

classification trees for automatically allocating ungauged catchments to the most appropriate

cluster. Similarly to the regression trees (see below), the classification tree was fitted based on

10-fold cross-validation to determine the Optimum tree size for prediction.

3.2.1.3 Regression tree

In this section, I propose regression trees for obtaining homogeneous regions to be used in a

regional regression approach. Regression trees are an exploratory technique for finding

homogeneous regions among predictor variables (i.e. catchment characteristics) with respect

to a target variable (i.e. qgs.low flow). The regression tree is constructed by an algorithm

known as binary recursive partitioning (Clark and Pregibon, 1991). By this algorithm, groups

of catchments are subsequently subdivided by binary conditions (e.g. IF Ps<534mm THEN

sub-group x ELSE sub-group y), starting from the most important catchment characteristics
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and proceeding to the less important ones. Each condition yields the optimal subdivision of a

group which minimises the sum of squared differences between observed values of q95 and

the group mean, a measure that is termed the deviance of the node. The algorithm identifies

the most important catchment characteristics, and potential interactions between catchment

characteristics are handled implicitly (Venables and Ripley, 1999).

Tree construction can be carried out until each terminal node consists of one Single

catchment but this leads to a model with little significance for prediction or classification

Problems. To avoid such over-fitting, trees need to be pruned back, and the optimal number of

nodes is best determined by an independent validation data set. If no such validation data set

is available, I can split the data set into 10 (roughly) equally sized parts, subsequently use nine

parts for calibration and one part for validation, and calculate the average prediction error

(total deviance of a tree) for several tree sizes. This procedure, termed 10-fold cross-

validation, is part of the S-Plus /ree-package and was used in this study.

Regression trees have the convenient property of invariance against monotone

transformation of predictor variables (i.e. catchment characteristics). However, the dependent

variable (i.e. q9s) needs to be normally distributed for optimal tree construction. I examined

the distribution of q95 in the data set of this section and found that a square-root

transformation of q95 yields a distribution that is close to normal. Since the regression tree is

used for classification but not for prediction, no retransformation is needed which may be

non-unique if the transformed variable changes sign.

The regression tree approach to catchment grouping consisted of the following steps:

(1) Perform transformation to normality;

(2) Fit an initial regression tree to the data;

(3) Deterrninc the optimal tree size by 10-fold cross-validation:

(4) Prune the initial tree back to the tree size derived in (3).

While regression trees are suitable for allocating unobserved catchments to the most

appropriate clusters, they are not suitable for cross-validation of the resulting regional

regression model as the names of the clusters may change when modeis are refitted for

subsets of the data. I therefore fitted a classification tree to the group names of the regression

tree as (categorical) dependent variable which exhibited an identical structure to the

regression tree, but had the advantage of producing the same group names for various data

subsets. This allowed me to assign each ungauged catchment to one of the clusters of the

regression tree in the cross-validation.
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3.2.1.4 Regions of similar low flow seasonality

Regions of similar low flow seasonality as defined by Laaha and Blöschl (2003) were used as

the final scheme for catchment grouping. Laaha and Blöschl (2003) classified Austria into

eight contiguous regions based on a visual assessment of two seasonality measures. The first

seasonality measure was a seasonality index based on circular statistics (Young et al., 2000)

that represented the mean and the variance of the days of low flow occurrence. The second

seasonality measure were seasonality histograms (Laaha, 2002) which were used to refine the

information from the seasonal statistics. Catchment elevation was used to assist in the

delineation of the regions as, in Austria, topographic elevation is one of the main controls of

hydrologic regimes. The method consisted of the following Steps:

(1) Determine the Julian dates (i.e. days from 1 to 365) of days of low flow occurrence for

each sub-catchment by selecting all days when daily discharge was below Q95;

(2) Calculate the seasonality index from the dates for each sub-catchment and plot the

seasonality indices as a vector-map in geographical space;

(3) Delineate preliminary regions on the vector map;

(4) Plot monthly histograms of low flow occurrence for each sub-catchment and use them

to refine the preliminary classification;

(5) Use topographic elevation to refine the exact position of the region boundaries.

3.2.2 Regional regression approach

For each group identified by the classification methods, a multiple regression model was

fitted independently with specific low flow discharge q95 as the dependent variable and a set

of catchment characteristics as the independent variables. Catchment characteristics are often

subject to inter-correlaticns and multicollinearity. Rather than performing a selection of the

most important variables prior to regionalisation, I used a stepwise regression approach. The

stepwise regression procedure used Mallow's Cp (Weisberg, 1985, p. 216) as the criterion of

optimality, which was calculated as:

RSS
C P o /o\

P = ——T + 2p-n (2)
a

The first term is the residual sum of Squares of one considered model (RSSP) with p

coefficients divided by the residual error variance a1 of the füll model and corresponds to the

relative optimality in terms of model error. Complexity of modeis is penalised by the second

term which adds the number of coefficients p minus the number of catchments n. Cp is

therefore a penalised selection criterion which takes the gain of explained variance as well as
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the parsimony of modeis into account and yields modeis that are optimal in terms of

prediction errors. Variable selection Starts with one arbitrarily chosen catchment characteristic

and subsequently adds variables that minimise the Cp criterion. After each step it is tested if

replacing one of the variables by any remaining catchment characteristic will further decrease

the criterion. The selection procedure continues until Cp reaches a minimum. The catchment

characteristics obtained by the stepwise regression can hence be interpreted as important

controls of low flows.

Fitting regression modeis in hydrology is often complicated by single extreme values or

outliers. Eliminating outliers may improve the goodness-of-fit but this does not necessarily

entail an increase in the predictive power of the model. On the other hand, extreme values

may act as leverage points and force the fitted model close to them, particularly if the

regression model is fitted by the least Squares method, which increases the magnitude of the

residuals of the remaining points. I therefore adopted an iterative robustified regression

technique in this section. Initial modeis were fitted by stepwise regression and then checked

for leverage points using Cook's distance (e.g. Weisberg, 1985). These leverage points were

removed from the sample and the regression model was refitted iteratively until no leverage

points remained. The final model quality was assessed for all data including leverage points.

q95 was used in all regional regressions without transformation, as exploratory analyses of the

data suggested that transformations did not increase the predictive Performance.

The regression modeis so obtained were checked for numerical stability of computation.

Since numerical stability is sensitive to different scales of predictors, all catchment

characteristics had been scaled by integer powers often to give similar magnitudes in terms of

their ranges (see Table 2.1). Since linear regression is scale invariant (Weisberg, 1985, p.185)

the regression models, including their residual statistics, rernain unaffected by the rescaling

but the numerical stability is improved.

3.2.3 Analysis of predictive Performance

3.2.3.1 Analysis of variance

In a first step, I was interested in how well the classification into homogeneous regions may

explain the spatial variability of specific low flow discharges, qgs. A widely used measure of

the explanatory power of'groupirigs is the one-factorial analysis of variance-(ANOVA) which-

was used here with q95 as the dependent variable and the classification number as the

independent variable. The ANOVA may be interpreted as an assessment of a simple

regionalisation model, where predicted q$s is simply the average low flow discharge in each
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group of a classification. The coefficient of determination (R2) of this model, i.e. the ratio of

the variance explained by the classification and the total variance of low flows, is a measure

of the goodness-of-fit of this simple model. R2 values close to 100% indicate an excellent

goodness-of-fit while smaller values indicate a poorer goodness-of-fit.

3.2.3.2 Goodness-of-fit of component regressions

In a second step I examined how well the regression modeis in each of the regions fitted the

data. I assessed the goodness-of-fit by the coefficient of determination of the regressions

separately in each of the regions.

3.2.3.3 Cross-validation of regional regression

The value of the classification methods for the ultimate purpose of estimating low flow

characteristics at ungauged sites can not be fully assessed by goodness-of-fit statistics. A

more appropriate measure of the prediction errors are the error statistics from leave-one-out

cross-validation. In this section, the cross-validation procedure consisted of the following

steps:

(1) Remove catchment i from the data set;

(2) Update the catchment classification (if appropriate) for the remaining n-\ catchments;

(3) Assign catchment i to one of the regions obtained in (2);

(4) Estimate the coefficients of the regression equation for this region using all

catchments in this region apart from catchment /;

(5) Apply the regression equation obtained in (4) to predict the low flow characteristic qgs

at site i;

(6) Repeat steps (1) to (5) for all n catchments;

(7) Calculate the predictive error for each catchment i as q95 estimated in (5) minus

observed q95 and analyse the error statistics.

In some of the classification methods the catchment classification was updated during the

cross-validation procedure while in others it was not. In the weighted cluster analysis and the

regression tree approaches the regions are discontiguous, and will hence significantly change

if a single catchment is added. In these methods the classification was updated. In the residual

pattern and the seasonality region approaches, however, the regions are contiguous and will

therefore not change much if a single catchment is~added. In these methods the classification

was not updated.

From this prediction vector, the cross-validation prediction error Vcv was then estimated

by:
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( 9 ^ q 9 5 i J (3)
n /=i

where q95i is the observed specific low flow discharge q^5 for catchment i and q95^
l) is the

model prediction without using observed low flows from catchment i. The root mean squared

error based on cross-validation is therefore

rmse = J7^ (4)

and the coefficient of determination based on cross-validation is:

V -V

where Vq is the spatial variance of the observed specific low flow discharges qgs.

The advantage of cross-validation over other techniques of assessing predictive errors is

its robustness and its generäl äpplicability to all regionalisation modeis. This is because cross-

validation works well even if the regionalisation modeis are far from correct (Efron and

Tibshirani, 1993). Cross-validation is hence a füll emulation of the case of ungauged sites.

3.3 Results

3.3.1 Residual pattern approach

A preliminary global regression model was fitted to the data by stepwise regression. Since the

primary purpose of the global model was to calculate a meaningful residual pattern, the

residuals were carefully checked for the general assumptions underlying multiple regression,

unbiasedness (E[resj]=0) and homoscedasticity (Var[resj]=constant), where resj is the residual

cf catchment ;'. The analysis indicated slight heteroscedasticity which appeared to bc a

consequence of a significant skew of the distribution of q95. I therefore transformed q95 by a

square-root transformation which resulted in approximate normality. The global regression

model was then fitted to the transformed data. The retransformation is non-unique if the

variable changes sign but since all predictions were positive this was not a problem.
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Residuais (l/s/km

Fig. 3.1. Residual pattern of the global regression model (goodness-of-fit residuals).

Positive residuals indicate an overestimation by the model.

Stepwise regression resulted in seven catchment characteristics used as predictors. This

equation was manually revised and three of the predictors were removed to avoid overfitting.

There was only a slightly loss in the goodness-of-fit when removing these predictors (R2

decreased from 66% to 62%). The remaining predictors were HR (ränge of altitude), LR

(fraction of wasteland or rocks), GF (fraction of Flysch) and Pw (average winter precipitation).

The more parsimonious model indicated a clearer residual pattern than the füll model based

on seven predictors and hence seemed to be more suitable for detecting homogeneous regions.

The residual map is presented in Fig. 3.1. The residual pattern suggests that Austria can be

classified into two main units. The first unit consists of the Bohemian massif in the North,

lowlands and the foothills of the Alps in the East and South, and some of the Alpine

catchments of West- and East-Tyrol. In this unit, the magnitude of the residuals is generally

low (< 1 l-s^-km"2 for most catchments, except for East-Tyrol) and the pattern of the residuals

is random, so the global model seems to work well in this unit. The second unit consists of the

Alpine catchments and the Molassezone in the North. In this unit, the magnitude of the

residuals is larger although there are no clear patterns. I chose to subdivide the second unit

into four regions based on the geology. This gave me a total of five regions as shown in Fig.

3.2. These are (0) the Bohemian massif, lowlands and the foothills of the Alps, (1) Central-

Alps and Pre-Alps, (2) parts of the Northern Calcerous Alps, (3) parts of Carinthia and (4) the
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Bregenzerwald (Vorarlberg). Region 0 relates to small residuals, region 1 relates to negative

residuals, and the remaining regions 2 - 4 relate to positive residuals.

Group number

0

Fig. 3.2. Classification of catchments based on the residual pattern of Fig. 3.1.

The coefficient of determination of this classification calculated by one-way ANOVA

was R2=25% which means that this classification explains 25% of the total spatial variance of

the specific low flow discharges q95. Although this is not much, the delineated regions were

used as a basis for a regional regression model. The model consisted of five independent

regionally restricted modeis. A statistical summary of these component modeis is presented in

Table 3.1. Three out of the five regions are well represented by the regional modeis (regions

0, 1, and 3). However, the regression modeis for region 2 (Northern Calcerous Alps) and

region 4 (Bregenzerwald) indicate very poor model Performance which suggests that there

may be significant heterogeneity of low processes within these regions. Note that R2

represents the model goodness-of-fit coefficient of determination and hence does not fully

capture the predictive Performance for ungauged sites.
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Table 3.1. Components of the regional regression model based on the residual pattern

approach. R2 denotes the goodness-of-fit coefficient of determination. Group numbers

are as of Fig. 3.2. q95 are the estimated specific low discharges in l-s"1-km"2 and the units

of the catchment characteristics are given in Table 2.1.

Group

0

1

2

3

4

Region

N,E,SE of Austria, E-Tyrol, W-

Tyrol

Central-Alps and Pre-Alps

Part of the Northern Calcerous Alps

Carinthia

Bregenzerwald (Vorarlberg)

R2

87%

60%

15%

82%

32%

Model

q95 = -3.46 + 0.67*P - 0.19*LGL - 0.03*GF + 0.10*SM

q95 = -0.81 + 0.69*P + 0.41*HR - 0.52*HM + 0.08*SM

q95 =7 .66 + 0.12*GQ

q9S =1 .51 + 1.02*D-0.08*SMO

q95 =14.49 -0.12*SM O

The predictive Performance of the complete regional regression model was finally

checked by cross-validation. Ungauged catchments were assigned based on the regions in Fig.

3.2. The overall predictive Performance was found as Ä^v=63%. This is significantly better

than the coefficient of determination of the classification (goodness-of-fit R2=25%). This

improvement is also apparent when comparing the residual pattern of the global regression

model (Fig. 3.1) with that of the regional regression model (Fig. 3.3). The latter pattern is

more random and the magnitudes of the residuals are significantly smaller. This means that

there is a lot of value in using regionally restricted regression modeis over one Single, global

regression model.
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Residuals (l/s/km2)

Fig. 3.3. Residual pattern (cross-validation residuals) of the regional regression model

based on the classification presented in Fig. 3.2. Positive residuals indicate an

overestimation by the model.

3.3.2 Weighted cluster analysis

For the weighted cluster analysis, all catchment characteristics were standardised to zero

mean and unit variance. A stepwise regression was then conducted between q95 and the

standardised catchment characteristics in order to identify the most relevant catchment

characteristics. The catchment characteristics so obtained and the respective ß-coefficients of

the regression are presented in Table 3.2. From this analysis, winter precipitation Pw appeared

as the most important characteristic. The positive ß-coefficient indicates that the low flows

increase with winter precipitation which is plausible. Low flows also increase with the mean

topographic slope, SM, but they decrease with the portion of rock, LR. LR is highly correlated

with altitude and it is likely that it is an indicator of catchment altitude rather than a physical-

consequence of rock cover per se. These ß-coefficients were used as weights in the weighted

cluster analysis.
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Table 3.2. Catchment characteristics and associated weights obtained by a preliminary

stepwise regression. For Symbols see Table 2.1.

Catchment characteristic

Weight (ß-coefficient)

HR

0.22

LR

-0.27

GF

-0.12

Pw

0.42

GGD

0.13

SM

0.33

GQ

0.11

A number of cluster analyses were carried out, combining different distance measures

and linkage methods for a ränge of numbers of clusters. In each case, the homogeneity of the

groups was assessed by a visual examination of Andrews plots. This comparison suggested

that the hierarchical cluster analysis (agnes) that combines Ward's method and a Euclidean

distance metric (using 10 clusters) was preferable to other methods and slightly preferable to

the pam partitioning method (10 clusters, Euclidean metric). Fig. 3.4 shows the Andrews

curves for the optimum classification method (agnes, 10 clusters). Each panel represents a

cluster and each line corresponds to one catchment. The Xj of Eq. 1 are the catchment

characteristics in Table 3.2 from left to right, standardised to zero mean and unit variance, and

weighted by the ß-coefficients. I now examined the Andrews curves for homogeneity.

Overall, the between-group variability is much larger than the within-group variability,

although in groups 4 and 5 individual catchments appear to be different from the rest.

However, given that I used a robustified regression technique which gives little weight to

single outliers, I deemed the groups sufficiently homogeneous for the further analysis. I was

hence able to avoid any subjective Steps of manual re-classsification of outliers. The

coefficient of determination of the classification by the weighted cluster analysis alone (i.e.

without regional regressions) was R2=56% which means that this classification explains 56%

of the total spatial variance of the specific low flow discharges q95. This is significantly more

than that of the residual patterns approach.
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Fig. 3.4. Graphical representation of weighted catchment characteristics by Andrews

curves. Each panel represents a cluster and each Iine corresponds to one sub-catchment.

In a next step, the clusters were plotted on a map (Fig. 3.5). Even though the cluster

analysis did not use any information on the geographical location of catchments, most of the

clusters are contiguous and there are only some of the Alpine catchments that are scattered in

terms of their location. This result gives additional credence to the weighted cluster analysis

approach. The spatial contiguity of the regions is apparently related to the spatial dependence

of the weighted catchment characteristics.
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Fig. 3.5. Classification of catchments based on the weighted cluster analysis. Group

numbers correspond to Fig. 3.4.

Regression modeis were then fitted to each of the regions independently. They are

shown in Table 3.3. Most regions are represented rather poorly by the respective multiple

regression modeis. For some regions (regions 8, 6, 4, 3), however, the model Performance is

very good. These differences may be related to the weights of the catchment characteristics.

Constant weights have been used across the entire study domain which may be more

appropriate in some parts of the domain than in others, as local deviations from the average

behaviour may exist. The catchment characteristics used in the context of a weighted cluster

analysis are hence not able to fully represent regional anomalies in the low flow patterns.
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Table 3.3. Components of the regional regression model based on the weighted cluster

analysis. R2 denotes the goodness-of-fit coefficient of determination. Group numbers are

as of Fig. 3.5. q95 are the estimated specific low discharges in ls'km"2 and the units of

the catchment characteristics are given in Table 2.1.

Group

1

2

3

4

5

6

7

8

9

10

Region

Upper Austria

Central Alps

Northern Calcerous Alps I

Flatland and hilly terrain (N,E of Austria)

High Alps I (Tyrol, Carinthia)

High Alps II (Tyrol, Carinthia)

Low Alps (Styria and Carinthia)

Flyschzone (Upper- and Lower Austria)

Northern Calcerous Alps II

Pre-alps (Bregenzerwald)

R2

35%

32%

66%

67%

44%

70%

41%

75%

32%

0%

Model

q95 = 8.30 + 5.45*HO + 2.01*A - 1.08*LF + 1.37*PS

q95 =8.20 + 2.07*GQ + 3.62*PW + 0.91 *A

q95 =9.36-2.10*SMO + 2.60*GF

q95 = 4.66 + 2.45*P - 0.30*GF

q95 =7.75+3.26*Ps

q95 =-1.67 + 4.24*SM

q9S =5.89 + 1.69*H+ - 0.87*SMO

q95 =17.35- 1.98*GF+11.04*A

q95 = 10.65-1.87*D + 3.55*GQ

<?95=8.45

Even though most of the clusters in Fig. 3.5 were coherent I did not judge them to be

sufficiently contiguous for allocating ungauged catchments to regions in a unique way. I

therefore approximated the grouping of Fig. 3.5 by a classification tree. The classification tree

is shown in Fig. 3.6. The quality of approximation was assessed by the misclassification error

which is the ratio of misclassified catchments and all classified catchments. The overall

misclassification error is 21 out of 325 catchments (i.e. 21/325 = 0.06) which represents an

excellent approximation to the grouping from the weighted cluster analysis. Fig. 3.6 shows in

detail what catchment characteristics are most significant in representing the clusters.

Precipitation {Pw) and topography (SM, H+, Ho, SST) are the most important catchment

characteristics. This result is similar to the weights found by the regressions using

standardised catchment characteristics in Table 3.2. Note that region 10 does not appear in the

classification tree as the number of catchments is very small in this region. Also note that

some of the catchment groups appear in two nodes (e.g. group 4) whichTmeans that this group"

consists of both terminal nodes in the classification tree.

The predictive Performance of the complete regional regression model was finally

examined by cross-validation, using the classification tree of Fig. 3.6 for assigning ungauged
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catchments to the regions. The cross-validation gave a predictive Performance of R2^ =59%.

Although the variance explained by the grouping alone was relatively large, the weighted

cluster analysis does not appear to be as useful for delineating regions for the regional

regressions.

! 2 | ! 9 |
0/7 ~Ü723~

Fig. 3.6. Approximation of the classiflcation based on the weighted cluster analysis by

the classiflcation tree. Ellipses indicate interior nodes, rectangles indicate terminal nodes

(groups of catchments). Numbers within nodes represent group number (see Table 3.3),

numbers below nodes represent misclassification error rate (misclassified catchments /

classified catchments).

3.3.3 Regression tree

In the regression tree approach, the target variable was the specific low flow discharge q95

transformed by a square-root transformation. As descriptive variables, the complete set of

non-standardised catchment characteristics was used. From an initial regression tree that was

completely fitted to data, the optimal tree size was determined by 10-fold cross-validation.
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Fig. 3.7 shows the cross-validated total deviance of trees of different sizes. Since the cross-

validated deviance is a measure of the prediction error of the model, the Optimum size of the

regression tree is where the prediction error is at a minimum. Fig. 3.7 indicates that the

optimum size is seven nodes. The initial regression tree was then pruned back to seven nodes

using cost-complexity pruning (Clark and Pregibon, 1991).

2 4 6 8 10 12 14 16 18

Size

Fig. 3.7. Cross-validated deviance of regression trees as a function of number of splits.

The minimum prediction error (cross-validated deviance) is obtained by a tree size of

seven terminal nodes.

The regression tree so obtained is shown in Fig. 3.8 and divides Austria into seven regions.

The structure of the regression tree indicates that the precipitation characteristics (Ps and Pw)

are the most important factors for explaining the spatial variability of low flows. The second

most important factors are three topographical indices, the ränge of altitude (HR), mean

aititude (HM) and the fraction of catchmenl area exhiuiüng nioderate slopes (SM<_>)- This result

is similar to the weights of catchment characteristics (Table 3.2) used in the weighted cluster

analysis, although geological characteristics do not appear in the regression tree of Fig. 3.8.

The classification obtained from the regression tree hence partitions the landscape into

regions of similar relief and similar seasonal precipitation. The variance explained by the

grouping, calculated by one-way ANOVA, is 62%. This is the largest value of all

classification approaches. This means that the regression tree is an excellent classification

method if one is interested in finding groups that are most distinct in terms of both catchment

characteristics and catchment response.
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1.20 1.88
10.1

(T) SMn<57.95
HR>13.52

18.4

SUO>57.95

3.28 2.77

11.6

(T)

Fig. 3.8. Regression tree model. Ellipses indicate interior nodes, rectangles indicate

terminal nodes (groups of catchments), circles represent group numbers. Nutnbers

within nodes represent node means of Square root-transformed specific discharge

numbers be!oi.v nodes represent node deviances in terms of sauare root-transformed

specific discharge.

Fig. 3.9 shows the catchment groups plotted on a map. Overall, the regions are consistent with

both the geographical classification of Austria and the main geological units. Some of the

regions are contiguous while others are not. For instance, a mountain ränge consisting of

limestone formations (Calcerous Alps) is divided into two regions (regions 6 and 7) by the

-strength of the relief- and these are scattered in space. Similarly, region 3 (foothills of the

Alps) consists of a thin band around the main Alps which is broken up into pieces in the south

of Austria.
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Group numtoer

Fig. 3.9. Classification of catchments based on the regression tree approach. Group

numbers correspond to Fig. 3.8 and Table 3.4.

Regression equations were now fitted to each region independently (Table 3.4). Two regions

(regions 1 and 5) are well represented by the regression models, three regions (regions 2, 4, 7)

exhibit a moderate model fit, and two regions (regions 2, 6) are poorly represented by the

models. In the main, the goodness-of-fit of the regional regression model is similar to that of

the weighted cluster analysis (Table 3.3).
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Table 3.4. Components of the regional regression model based on the regression tree. R2

denotes the goodness-of-fit coefficient of determination. Group numbers are as of Fig.

3.9. q95 are the estimated specific low discharges in Is'km"2 and the units of the

catchment characteristics are given in Table 2.1.

Group

1

2

3

4

5

6

7

Region

Fiatland and hilly terrain (N,E of Austria)

Mühlviertel and Pre-alps (Lower Austria)

Foothills of Alps

Central Alps

High Alps (Tyrol)

Calcerous Alps I (SMG < 57.95%)

Calcerous Alps IT (SMG < 57.95%)

R2

70%

51%

25%

54%

67%

13%

47%

Model

q95 = -2.28 + 0.33*P + 0.04*GGS + 0.25*HM + 0.40*SST

q95 = 2.25 - 0.60*D - 0.08*LGL + 1.91*PW

q9S =-0.19 + 0.57*D + 0.03*GGD - 0.10*GGS

q95 = -1.99 + 0.90*P - 0.20*GT '+ 0.11 *GQ

q95 =-9.57 + 0.30*SM

q95 = 14.68+ 0.19*LA-0.56*D

q95 = 10.51 +0 .05*G L - 1.47*PW +0.15*LG

As the regions are not sufficiently contiguous to permit a unique allocation of ungauged

catchments (Fig. 3.9) I allocated them by a classification tree. The cross-validation of regional

regression estimates based on the regression tree approach was found as R]v = 64%. This is

significantly better than the estimates from the weighted cluster analysis where the

Performance was only i?c
2
v= 59%. The main difference in terms of predictive Performance of

the two methods seems to be related to the allocation of ungauged catchments. The

classification tree for the grouping in the weighted cluster analysis method exhibited a

significantly larger misclassification rate than the classifications in the regression tree

approach. It appears that one advantage of the regression tree method is a very efficient

classification and allocation of ungauged catchments.

3.3.4 Regions of similar low flow seasonality

The last approach to.catchment grouping considered in this study is based on types of low

flow seasonality as defined by Laaha and Blöschl (2003). Most regions of the grouping of

Laaha and Blöschl (2003) are contiguous with the exceptionof three sub-types of winter low

flows (types A, B, C), which are scattered within the winter low flow dominated Alpine

region. Since I focused in this approach on contiguous regions, these three types were merged

into one Single type of winter low flows. The resulting classification, consisting of eight
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regions of approximately homogeneous seasonality, is presented in Fig. 3.10. Since all

regions are contiguous, the allocation of ungauged sites is well defined by their location and

no re-classification was needed in the cross-validation procedure. Examples of the seasonal

distribution of low flows for each of the regions are given in Fig. 3.11. From Fig. 3.11 it is

quite clear that the seasonality of low flows shows major differences in the study domain, so

one would expect seasonality to possess significant predictive power for delineating regions

of similar low flow processes.

Regional regressions were now fitted independently to each of the regions. The results

are summarised in Table 3.5. In most regions, the modeis fit well, with coefficients of

determination ranging from 60% to 70%. The regression modeis for the Pre-Alps of Styria

and Lower Carinthia (regions 3 and 4) exhibit even better coefficients of determinations of

89% and 83%, respectively. The exception is the Alpine, winter low flow dominated region

(A-C), where the goodness-of-fit is only R2=51.%. This low coefficient is not surprising as

three types of seasonality have been lumped into a single region.

In a final step, the predictive Performance for the case of ungauged catchments was

assessed by cross-validation. The cross-validated coefficient of determination for the

approach based on seasonality regions was R2^ =70%. This is a better predictive Performance

than the other grouping methods. It appears that the stream flow characteristics as illustrated

in Fig. 3.11 contain a lot of information highly relevant to low flow regionalisation.

Seasonality recrons

TypeA-C

TypeD

TypeE

Typet

Fig. 3.10. Regions of similar seasonality in Austria. The labeis of the regions correspond

to the seasonality types in Fig. 3.11. Letters relate to winter low flows, numbers relate to

summer low flows.
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Type A

g- J
0 2 4 6 8 10 12

6001069

Type C

0 2 4 6 8 10 12

7001136

Type E

0 2 4 6 8 10 12
8001028

Type B

I
0 2 4 6 8 10 12

2001013

Type D

0 2 4 6 8 10 12

6001050

8-,

8-

Type 1

0 2 4 6 8 10 12
3001027

8-

Type 3

I lllllll.
0 2 4 6 8 10 12

4001094

Type 5

8-

0 2 4 6 8 10 12
2001061

Type 2

0 2 4 6 8 10 12
4001056

§ ,
Type 4

0 2 4 6 8 10 12

4001070

Fig. 3.11. Seasonality types of Iow flows in Austria illustrated by the non-exceedance

frequencies of Q<>5 for each month for a typical catchment in each region. Letters relate

to winter Iow flows, numbers relate to summer Iow flows (see Fig. 3.10).

64



Table 3.5. Components of the regional regression model based on regions of similar low

flow seasonality. Group numbers are as of Fig. 3.10. q95 are the estimated specific low

discharges in ls'km"2 and the units of the catchment characteristics are given in Table

2.1.

Group

A-C

1

2

3

4

5

D

E

Region

Alps

Flatland & hilly terrain (N,E of Austria)

Bohemian Massif

Foothills of Alps (Upper Austria)

Flyschzone

Lower Carinthia

Pre-Alps (Styria)

Pre-Alps (Vorarlberg)

R2

51%

71%

64%

68%

63%

83%

89%

60%

Model

q95 = 0.67 + 0.40*P + 0.17*GQ - 0.01*Gc +

6.43*LWE + 0.14*SM - 0.04*SR - 0.20*H0

q95 = -0.12 + 0.11*SM + 0.05*GGS + 0.02*Gc

q95 =-3.31 + 1.96*Pw

q95 = -10.04 - 0.76*D + 3.27*P - 2.22*H0

q9S = -6.17 + 0.06*GL + 2.07*Ps - 0.06*Gw

q95 = -17.48 + 3.56*D + 20.06*LWE

qgs = -7.99 + 1.08*P + 0.04*LF

q9S = 18.20-0.18*SMO

3.4 Discussion

3.4.1 Variance explained by grouping alone (ANOVA)

In a first step of comparing the methods of catchment grouping I examined the pari of the

variance (R2) of specific low flows qg5 that can be explained by the grouping alone without

using regressiuns. The R2 valües are lärge if the vanability betvveen the estimated group

means of q95 (SSG) are large relative to the variability of the residuals (observed q95 minus

group mean) within each group (SSR). R2 is a goodness-of-fit measure.

The regression tree approach performs best. Out of the total sum of squared specific low

flow discharges of 5246 l2-s"2-km"4 the regressions tree explains 3244 l2-s~2-km'4, i.e., the

variance explained by the grouping, calculated by one-way ANOVA, is 62%. This means that

the regression tree is an excellent classification method if one is interested in finding groups

-that are most distinct in terms of both catchment characteristics and low flow catchment

response. I believe that the reason for the good Performance is that the Splitting algorithm

simultaneously maximises group homogeneity in terms of catchment characteristics and low

flows. The regression tree is flexible in that it can choose the locally most relevant catchment
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charactenstics, as each group can be subdivided by different decision criteria. This means that

there is no need to select global similarity measures. This is an advantage for low flow

regionalisation where global similarity measures may not exist. Application of the regression

tree is straightforward and it provides an objective and robust classification. The most

relevant catchment characteristics are apparent in the structure of the fitted regression tree. In

contrast to the weighted cluster analysis, the regression tree is suitable for non-linear

relationships between low flows and catchment characteristics which is an additional

advantage. Using regression trees prior to linear regressions is therefore an attractive approach

of combining the merits of non-linear and linear modeis.

The weighted cluster analysis approach performs second best and explains 56% of the

variance of q95. The weighting of the catchment characteristics by the coefficients of a

regression model between q95 and catchment characteristics transfers Information on low flow

discharges to the distance measures used in the cluster analysis which seems to be a rather

efficient approach. However, it should be noted that the weighted cluster analysis consists of

10 groups so one would expect a better goodness-of-fit than for the other methods. The

seasonality regions and residual pattern approaches yield low R2 values of 34% and 25%,

respectively. It is clear that these two methods give little weight to finding regions that are

most homogeneous in terms of low flows. It is also interesting that even though there are large

differences in the goodness-of-fit between the groupings, they are all significant at the 95%

level(Table3.6).

Table 3.6. Variance explained by the groupings alone without using regressions. SSG is

the sum of Squares of the mean group specific low flows q95, SSR is the sum of Squares of

the residuals of group mean minus observed q9S and SST is the total sum of Squares of

the observed q95. Units of SS are l2s'2km"4. R2 is the coefficient of determination of the

group mean and the p-values are the empirical significance levels of F-tests of the group

means.

Classification method

Residual pattern approach

Weighted cluster analysis

Regression tree

Seasonality regions

# of Groups

5

10

7

8

SSG

1319.1

2911.8

3244.4

1787.0

ssR
3927.1

2334.4

2001.9

3459.3

SST

5246.3

5246.2

5246.3

5246.2

R2

25%

56%

62%

34%

p-value

O.001

O.001

<0.001

O.001
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3.4.2 Goodness-of-fit of regression modeis

In a second step I compared the goodness-of-fit of the regressions modeis for each of the

groups identified by the various grouping methods. I also compared these goodness-of-fit

values to the global regression model.

The global regression model uses four catchment characteristics as predictors. These are

HR (ränge of altitude), LR (fraction of wasteland or rocks), GF (fraction of Flysch) and Pw

(average winter precipitation). The global model explains 62% of the variance in q95. This is

the same value as the best grouping method without regressions. It is interesting to compare

this result to studies in the literature that used a similar number of catchments as in this

section (325 catchments) and examined specific discharges as in this section, rather than

discharges. Gustard et al. (1992) obtained R2= 57% between Q95 standardised by the mean

flow and portion of hydrologically defined soil classes for 694 catchments in the UK.

Schreiber and Demuth (1997) obtained R2=56% between specific mean annual 10-day

minimum discharge MAM(IO) and a number of catchment characteristics for 169 catchments

in south-west Germany, and Aschwanden and Kan (1999) obtained R2=51% between specific

discharge (q95) and a number of catchment characteristics for 143 headwater catchments in

Switzerland. The R2 obtained in this study are hence somewhat larger than those from the

literature. It is likely that the difference is related to the hydrological heterogeneity of Austria

with clear regional differences in low flows. The better goodness-of-fit in this study may also

be related to using sub-catchments rather than complete catchments which may make the

catchment characteristics more relevant to low flow regionalisation.

The R2 values of the component modeis vary vastly depending on the grouping method

and the region (Tables 3.1, 3.3, 3.4, and 3.5). For the residual pattern approach, the R2 values

vary from 15-87%, for the weighted düster analysis they vary from 0-75%, for the regression

tree they vary from 13-70% and for the seasonality regions they vary from 51-89%. Overall

the seasonality regions provide the best goodness-of-fit of the component regression modeis.

Aschwanden and Kan (1999) obtained R2 values between 59% and 84% using the

residual pattern approach and regional regressions of q95 in a very similar analysis to this

section. This R2 ränge is a similar order of magnitude found for the residual patterns approach

in this study. The low goodness-of-fit for one of the regions of 15% in this study (region 2,

see_Table 3.1) may be related to karstic effects as this is a limestone area of the Pre-alps. It is

possible that the specific discharges derived from the observations are inaccurate as the

hydrologic catchment areas in these regions may differ from the topographic catchment areas

but are not well known. Most other studies in the literature used discharge rather than specific
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discharge and so are not directly comparable to the results in this section. As catchment size

usually explains around 80-90% of the variability of low flow discharges (see, e.g., Dingman

and Lawlor, 1995; Vogel and Kroll, 1992) it is clear that the R2 values for discharges will be

much larger than the R2 values for specific discharges, particularly if there are significant

variations in catchment size within the sample. Dingman and Lawlor (1995) and Vogel and

Kroll (1992), for example, reported R2 values of more than 90%.

3.4.3 Predictive Performance of regional regressions for various grouping

methods

The global regression model, i.e., without using any grouping, gives an R2
CV - 57% in the

cross-validation mode (Table 3.7). This is a significantly lower value than the goodness-of-fit

R2 of the global model (R2 = 62%). Part of the difference may be related to an overfitting of

the global regression model although this is unlikely to explain the füll difference as only four

catchment characteristics have been used as predictors. A more important reason for the

difference may be heteroscedasticity of the sample and the existence of outliers which

contribute significantly to the estimation error. This issue is discussed later in this section.

In the regional regression modeis, the grouping based on seasonality regions performs

best (Table 3.7). The explained variance, in a cross-validation mode, is R2
CV = 70%. This is

significantly more than for the global model (ÄC
2
V = 57%). It appears that delineating regions

based on the seasonality of low flows provides information on the hydrological regimes not

captured by the catchment characteristics and the low flow discharges. Note that all four

grouping methods use information on the low flow discharge q95, albeit in different ways, and

all grouping methods, with the exception of the seasonality regions approach, use catchment

characteristics as well.

It is interesting that this Performance is significantly better than that of an alternative

model proposed in section 2 which gave R2
CV =58% for the same data set. The model of section

2 is a global regression model that uses a region index as a predictor variable in addition to

the catchment characteristics. This index value differs by the region and has been calibrated.

It appears that the seasonality types are not mainly related to the magnitude of the low flows,

so they are not very efficient as a predictor variable. However, the relationship between

catchment characteristics and low flöws appears" to be" significantly different for different

seasonality regions. Various processes may combine in different ways in different seasonality

regions, as a result of differences in the hydrologic and climatic regime. The seasonality
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grouping is hence very efficient in the context of the regional regression approach of using

separate regressions in each of the groups.

The favourable Performance of the grouping method based on seasonality regions may

be related to the striking differences in low flow seasonalities in the study domain (Fig. 3.11).

These differences are clearly related to different processes. Winter low flows are a result of

the retention of solid precipitation in the seasonal snow pack of the catchment and of freezing

processes in the soils. In contrast, summer low flows are related to the relatively large

moisture deficits in the lowland regions of Austria during summer. It appears that grouping

the domain according to low flow seasonalities does capture some of the effects of these

processes.

The regression tree grouping performs second best (ÄC
2
V =64%) and the Performance of

the residual pattern approach is similar (ÄC
2
V=63%). As compared to the global regression

model (R*v =57%) there is some improvement in the Performance although it is not large. The

weighted cluster analysis, only yields a minor improvement (Ä2
V=59%) over the global

model. The improvement of the regional regression modeis (including grouping) over the

global model (without grouping) is related to the degree of non-linearity that can be captured

by the grouping method. In the weighted cluster analysis method, the Performance is similar

to the fully linear global model, so does poorly in representing any non-linearity. The other

two methods do capture some of the non-linearity.

It is interesting that the relative Performance of the grouping methods combined with

regional regressions differs from the relative goodness-of-fit of the grouping methods alone.

While for the grouping methods alone the regression tree approach performed best, it is the

grouping based on seasonality regions that performs best when combine the erouping with

regional regressions. It is clear that in the latter case, the important feature the catchment

groupings need to capture is the way the catchment characteristics are related to low flows

rather than the low flows themselves. Within group homogeneity and between group

heterogeneity in terms of low flow discharges are hence not a good indicator for the predictive

Performance of low flow regional regressions. Cross-validation of the regression estimates is

certainly a preferable way of measuring the Performance of regionalisation methods.

It should be noted that in the residual pattern and the seasonality region approaches the

regions were not updated in the cross-validation procedure. This was because the regions

were deemed sufficiently contiguous not to change much if a single catchment is added. It is

possible that the cross-validation Performance of these two methods may very slightly

decrease if the regions were updated but given the relative magnitude of the cross-validated
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coefficients of determinations it is unlikely that this will change the ranking of the predictive

Performance of the methods.

Table 3.7. Predictive Performance of regional regression models based on different

grouping methods. R2
CV is the coefficient of determination of cross-validated estimates.

Catchment grouping

Residual pattern approach

Weighted cluster analysis

Regression tree

Seasonality regions

No grouping

Allocation of ungauged site via

Geographie location

Classification tree

Classification tree

Geographie location

-

63%

59%

64%

70%

57%

3.4.4 Heteroscedasticity, outliers and bias

As a final Step of assessing the methods of catchment grouping I examined scatter plots of

predicted vs. observed specific low flow discharges q95 (Fig. 3.12). The scatter plots allow a

detailed examination of the Performance of individual catchments including the existence of

outliers and a potential heteroscedasticity of the observations and the predictions. Overall the

relative scatter of the methods (Fig. 3.12) corresponds well with the cross-validated

coefficients of determination in Table 3.7 and it is clear that the seasonality regions approach

performs best and the weighted cluster analysis approach performs poorest. The weighted

cluster analysis approach overestimates low flows significantly for three catchments and the

magnitude of the estimation error is relatively large for a number of catchments. The outliers

tend to increase with q95, which suggests that the predictions are heteroscedastic. One would

usually apply a variance-stabilising transformation in this case, such as taking the logarithms

of qgs, but preliminary analyses showed that this transformation improved the

heteroscedasticity of the transformed data but did not improve the heteroscedasticity of the

residuals of the back-transformed predictions. The residual pattern approach generally

performs quite well although it gives negative predictions of q95 for two catchments and a few

outliers. The regression tree approach performs equally well for the bulk of the catchments,

but appears slightly superior to the residual pattern approach as far as outliers are concerned.

The approach based on seasonality regions performs best. The points are scattered around the
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1:1 line indicating low prediction errors for a broad ränge of discharges. The scatter is almost

homoscedastic and there are only a few minor outliers.

One apparent deficiency of all modeis is the large scatter and clear bias for very wet

catchments. In catchments where observed specific low flow discharges are more than about

12 l-s^-km'2 the low flows are consistently underestimated, and the random prediction error is

also rather large. It appears that none of the modeis can cope very well with these large

discharges. Part of the errors may be related to biases in the observed values. A specific

discharge of 12 l-s^-km'2 corresponds to 378 mm of low flow depth per year which is a

relatively large value for Austrian conditions. In all catchments in the q95>12 ls"'-km'2 ränge,

with the exception of two catchments, limestone is the main geologic formation (75% of the

catchment area on average) so karst effects are likely to occur. It is possible that the specific

discharges derived from the observations are inaccurate as the hydrologic catchment areas in

these regions may differ from the topographic catchment areas. A more detailed analysis is

needed to ascertain the extent to which the low flow observations in these catchments are

actually biased. It should also be noted that it is not uncommon for regionalisation modeis to

have a tendency for underestimating large values. For example, the flood regionalisation

analysis of Merz and Blöschl (2004a) showed that flood quantiles in the same study area were

consistently underestimated by their method for catchments with above-average specific flood

discharges.
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Fig. 3.12. Scatter plots of predicted vs. observed specific low flow discharges qss fl-s" km"
2) in the cross-validation mode. Each panel corresponds to one regional regression model

and each point corresponds to one catchment.

3.5 Conclusion

I compared four catchment grouping methods in terms of their Performance in

predicting specific low flow discharges qg5. These methods are the residual pattern approach,

weighted cluster analysis, regression trees and an approach based on seasonality regions. In a

first Step I examined the part of the variance (R2) of specific low flows q95 that can be

explained by the grouping alone without using regressions. In this comparison, the regression
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tree approach performs best and explains 62% of the spatial variance. This means that the

regression tree is an excellent classification method if one is interested in finding groups that

are most distinct in terms of both catchment characteristics and low flow catchment response.

In a second step I compared the goodness-of-fit of the regressions between catchment

characteristics and qgs for each of the groups identified by the various grouping methods.

Here, the seasonality regions approach provides the best goodness-of-fit of the component

regression modeis and explains between 51 and 89% of the spatial variance of qgs, depending

on the region. A global regression model explains 57% of the variance in qgs. It uses ränge of

altitude, fraction of rock, fraction of Flysch, and average winter precipitation as the predictor

variables. In a third step I examined the predictive power of the regional regressions based on

each of the grouping methods using leave-one-out cross-validation. The cross-validation

represents the regionalisation error of the low flows one has to expect for the case of

ungauged sites. Among the grouping methods tested here, the grouping based on seasonality

regions performs best and explains 70% of the variance in a cross-validation mode. The

favourable Performance of this grouping method is likely related to the striking differences in

seasonal low flow processes in the study domain. Winter low flows are a result of the

retention of solid precipitation in the seasonal snow pack of the catchments and of freezing

processes in the soils while summer low flows are related to the relatively large moisture

deficits in the lowland regions of Austria during summer. The regression tree grouping

performs second best (explained variance of 64%) and the Performance of the residual pattern

approach is similar (explained variance of 63%). The weighted cluster analysis only explains

59% of the spatial variance of q95 which is only a minor improvement over the global

regression model, i.e. without using any grouping, in a cross-validation mode (explained

variance of 57%). An analysis öf the sample characteristics of all methods suggests that,

again, the grouping method based on the seasonality regions has the most favourable

characteristics although all methods tend to underestimate specific low flow discharges in the

very wet catchments.

This study has examined a Single low flow characteristic (qgs) and it would be interesting to

see whether the relative Performance of the grouping methods remains the same if different

characteristics are examined. There is also some potential in using short discharge series in

Jhejow flow regionalis_atipn. Short series and, perhaps, snapshot discharge measurements may

be available in a much larger number of catchments. The value of short time series for low

flow regionalisation will be examined in section 4.
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4 The value of short stream flow records in regional low flow

estimation

4.1 Introduction

Characteristic values of low flow discharge are needed for a number of purposes in

water resources management and engineering including environmental flow requirements,

water uses and discharges into streams, and hydropower Operation (Smakhtin, 2001). The

interest usually resides in characteristic low flow values that represent the long-term average

behaviour of low flows, commensurate with the life time of a structure or the design period of

a management measure. Due to climatic variability and other sources of variability that occur

over short time scales, low flow characteristics estimated from a few years of stream flow

data deviate from the long-term average. Because of this, it is usually recommended to use

stream flow records of 20 years or more for low flow estimation (Tallaksen and van Lanen,

2004). However, in many countries, for a significant part of the gauged catchments the

records are shorter than the recommended period. While these short records are unlikely to

provide the füll information of long records it is clear that they do provide some information

which may be used in estimating the long term low flow characteristics for these stream gauge

locations.

A number of methods exist for inferring the long-term low flow characteristics from

short records. These methods all account for climatic variability, in some way, and are

therefore referred to as climate adjustment methods. They are used to estimate the low flow

characteristics for the site of interest (which I term the subject site) where a short stream flow

record is available, based on stream flow data from other catchments (which I term donor

sites) where long records are available. The climate adjustment is usually limited to random

effects (e.g. random climate variability and measurement errors) and cyclic effects (e.g.

climatic Variation), while systematic effects such as trends caused by climatic change or

changes of the catchment response characteristics as a result of human activities are often

treated in an explicit way rather than by climate adjustment procedures (e.g. Kundzewicz and

Robson, 2000).

Climate adjustment methods consist of three main steps, (a) selecting donors, (b)

calculating adjusted low flow characteristics at the subject site for each donor by record

augmentation techniques, and (c) combining the adjusted values associated with each donor to

obtain an estimate of the long-term low flow characteristic at the subject site (Robson, 1999).
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Donor-sites are often selected by expert judgement based on the hydrogeology and

climate in the study region. More formal procedures of selecting donor sites make use of

spatially contiguous regions, spatial distance, catchment characteristics, or a combination

thereof. In a number of countries, mapped regions exist that are spatially homogeneous with

respect to low flows or other flow characteristics (e.g. NERC, 1975; section 3) and one Option

is to select the donor from the region where the subject site is located. Spatial patterns of the

seasonal occurrence of low flows can be used to assist in the identifications of homogeneous

regions (section 2; Merz et al., 1999). Spatial proximity, i.e. using the nearest stream gauge is

also a widely used method of donor selection (Stedinger et al., 1992) which is particularly

useful if the donor site is downstream of the subject site and the catchment area is not much

larger. An alternative is the use of catchment characteristics such as geology and mean annual

precipitation. Catchment characteristics play an important role in a ränge of hydrologic

regionalisation methods (e.g. Nathan and McMahon, 1990; Holmes et al., 2002; section 2 and

3). There are numerous ways of formulating similarity measures based on catchment

characteristics. The most straightforward way is a Euclidean distance measure, i.e. a linear

combination of the squared differences of the catchment characteristics of the subject and

donor sites. The catchment characteristics can be scaled to unit variance and they can be

weighted, and here again, there exist a ränge of possibilities (Nathan and McMahon, 1990).

Methods for visualising similarity in catchment characteristics can assist in the expert

assessment of choosing a suitable donor catchment (Andrews, 1972). If the flow record at the

subject site is not too short, the donor selection can also be based on the correlation of annual

low flows between the subject and donor sites. The catchment that exhibits the largest

correlation with the subject site can then be used as a donor. An example in the context of

diii'iäie adjustment of flood records is Robscn (1999) who used rank correlation coefficients

between annual values of subject and donor sites. More details of various measures for

assessing the similarity of catchments in the context of low flow regionalisation are given in

section 3).

Once one or more donors have been identified, some sort of record augmentation

technique is needed to take advantage of the climate variability signal in the longer record of

the donor for estimating the flow characteristics for the subject site. Fiering (1963) and

Matalas and Jacobs (1964) propqsed a theoretical framework of minimum variance stream

flow record augmentation procedures. The basic idea of these methods is to employ the cross-

correlations between a long record and a short record to estimate the mean and the variance of

flow at the (short record) subject site. Vogel and Stedinger (1985) improved on these
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estimators and assessed them by Monte-Carlo experiments for annual flood peaks and

monthly stream flows. They found very significant gains of Information provided the

correlations were large and the record length of the donor was much larger than that of the

subject site. However, they also stated that the estimates are likely to be poor if the stream

flow record of the subject site is too short. Using this method, Vogel and Kroll (1991)

examined the value of stream flow record augmentation procedures in low-flow and flood-

flow frequency analysis for 23 catchments in Massachusetts. They defined an effective record

length as the length of an unadjusted record that gives the same estimation error as a shorter

record that is adjusted. They found that the record augmentation increased the effective record

length but the presence of serial correlations in the flow data decreased the effective record

length. The net effect of these two components was a gain in information for subject site

records shorter than 30 years only. The value of the record augmentation procedure also

depended on the flow characteristics examined and slightly increased with the return period of

the low flow characteristics.

In case of multiple donors, low flow characteristics adjusted by each donor are usually

combined by some statistical average to obtain the low flow estimate at the subject site.

Robson (1999) combined adjusted values from multiple donors by a weighted geometric

average. The weights were calculated from the distance between subject site and donor, the

length of the overlap period and the additional years of data provided by the donor based on a

rank correlation coefficient of annual values.

When a number of base flow measurements can be obtained at an otherwise ungauged

site they can be correlated with concurrent stream flows at a nearby gauged site for which a

long flow record is available. This is sometimes termed the base flow correlation procedure

(Hayes, 1992; Stedinger et ai., 1992). The base flow spoi gaugings can be ihüught of as the

limiting case as the record length approaches zero. In this method, parameters of a linear

„regression rnqdel estimated from concurrent stream flows are used to infer the low flow

characteristic at the subject site from that of the donor site. This is typically done for Qdj low

flows (d-day low flow discharge for a return period of T years, Demuth et al., 2004) but the

method can be subject to considerable error if only a few discharge measurements are used

(Stedinger et al., 1992). If base flow measurements are only available for a single point in

-time_one .cannoLestimate.regression.parameters but _one__can.assume that the spot gauging is

representative of the low flow characteristic of interest, provided the flow conditions of the

streams in the region on the day of measurement are similar to the low flow characteristic of

interest. Kroiß et al. (1996), for example, were interested in finding the low flow
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characteristic Q95 (i.e. the discharge that is exceeded on 95% of all days) for numerous sites

in the Lainsitz region, Northern Austria, to assist in the siting of wastewater treatment plants.

They conducted stream flow spot measurements during a few days of a low flow autumn

period and adjusted the discharge values so obtained by scaling them by Q95 observations

from gauged catchments in the region. Although they did not test the estimates against longer

records, they were able to interpret the regional patterns of Q95 based on the hydrological

heterogeneity in the region.

The climate adjustment techniques in the literature for estimating stream flow

characteristics from short records have, to my knowledge, never been compared in a

comprehensive way for the case of low flows and it is so far unclear which of the methods

performs best. The aim of this section therefore is to examine the relative Performance of

different climate adjustment techniques for estimating low flow characteristics from short

stream flow records. I will address the following questions: (i) How accurate are low flow

characteristics estimated from short records and what is the role of the record length? (ii)

What is a suitable donor selection method? (iii) What are the relative merits of various

methods of exploiting the information of a donor? (iv) What is the value of using short stream

flow records at the subject site over using data from neighbouring sites only (i.e.

regionalisation)? The analyses will be made for a comprehensive data set in Austria and the

low flow characteristic chosen is the Q95 flow quantile which is the discharge that is

exceeded on 95% of all days for one particular site. The value of each technique is assessed

by using hypothetically shortened stream flow records and comparing the Q95 estimated from

the shortened records with the Q95 estimated from the füll record.

The section is organised as follows: Section 4.2 summarises the data used. Section 4.3

details the methods of climate aduistment examined in this section which consist of three

donor selection techniques and two record augmentation techniques. The evaluation

procedure based on hypothetically shortened records is presented in section 4.4. Results of the

comparisons are presented in section 4.5 and discussed in section 4.6. Section 4.7 gives

conclusions.

4.2 Data

4.2.1 Studyarea

The study has been carried out in Austria which is physiographically quite diverse. There are

three main zones in terms of the geographical classification, high Alps in the west, lowlands
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in the east, and there is hilly terrain in the north (foothills of the Alps and Bohemian Massif).

Elevations ränge from 117 to 3798 m a.s.L Austria has a varied climate with mean annual

precipitation ranging from 500 mm in the eastern lowlands to about 2800 mm in the western

Alpine regions. Runoff depths ränge from less than 50 mm per year in the eastern part of the

country to about 2000 mm per year in the Alps. Potential evapotranspiration ranges from

about 730 mm per year in the lowlands to about 200 mm per year in the high alpine regions.

This diversity is reflected in a variety of hydrologic regimes (Kresser, 1965) and low flows

exhibit important regional differences in terms of their quantity and their seasonal occurrence

(Laaha and Blöschl, 2003).

4.2.2 Discharge data and selection of gauges

Discharge data used in this study are daily discharge series from 325 stream gauges. These

data represent a complete set of gauges for which discharges have been continuously

monitored from 1977 to 1996 and where hydrographs have not been seriously affected by

abstractions and karst effects during low flow periods (section 2). Catchments for which a

significant part of the catchment area lies outside Austria have not been included as no füll set

of physiographic data was available for them. The catchments used here cover a total area of

49 404 km2, which is about 60% of the national territory of Austria. Although a larger number

of catchments are monitored in Austria, I have chosen to give priority to a consistent

observation period to make all records comparable in terms of climatic variability. I use all of

these 325 catchments as possible donor sites.

For the subject sites, i.e. the sites where I test the value of short stream flow records, I

have chosen to only use those catchments that do not have an upstream neighbouring gauged

catchment. I did this for ease of comparison with regionalisation studies in the study area

which were based on discharges of catchments without upstream gauges and on discharges of

residual catchments between subsequent gauges (section 3). Also, this tends to be a set of

relatively small catchments which are usually of most interest in estimating low flows from

short records. One of the donor selection techniques requires the availability of downstream

flow data and I therefore excluded those catchments that did not have a downstream

neighbour. What remained was a set of 132 gauged catchments which I used as subject sites

in this section. These are the sites for which I analyse the effects of record length and climate

adjustment method on estimating low flow characteristics.
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4.2.3 Low flow characteristics

The low flow characteristic chosen in this section is the flow quantile Q95, i.e. the discharge

equalled or exceeded during 95% of the observation period (Pr(Q>Q95=0.95)). Values of Q95

have been calculated for all 325 gauges from continuous daily discharge records between

1977 and 1996 and are assumed to represent the long-term averages of Q95. The statistical

characteristics of the Q95 discharges of the 132 catchments used as subject sites are given in

Table 2 along with those of the specific discharges q95 and the catchment areas.

Table 4.1. Characteristics of the 132 catchments used as subject sites. Q95 are low flow

discharges, q95 are specific low flow discharges, area is the catchment area. The percent

values are the quantiles.

Q95 (m7s)

q95 (l/(s.km2))

Area (km2)

Minimum

0.013

0.65

8.7

25%

0.194

3.32

40.7

50%

0.449

5.93

77.9

75%

0.927

8.81

145.0

Maximum

3.890

16.76

479.0

Mean

0.692

6.24

114.8

4.2.4 Catchment characteristics

One of the investigated donor selection techniques is based on hydrological similarity of

catchments. To define the similarity measures, I used 31 catchment characteristics (Table 2).

They relate to catchment area (A), topographic elevation (H), topographic slope (S),

precipitation (P), geology (G), land use (L), and drainage density (D). All percent values with

the except of mean slope (SM) relate to the area covered by a class relative to the total

catchment area. Some of the catchment characteristics had to be adapted from the original

sources to make them more useful for regionalisation. For instance, the original classification

of the metallurgic map used here distinguishes 670 geological classes from which I derived 9

hydrogeological classes I deemed relevant for low flow regionalisation. One of them is

termed source region which is the percent area where the density of Springs is large. In a

similar vein, I Condensed the original Corine Landcover classification (Aubrecht, 1998) into

nine land-use classes. Three precipitation characteristics of average annual, summer and

winter precipitation from 1977 to 1996 estimated by the regionalisation model of Lorenz and

Skoda (1999) were used. A number of topographical characteristics were derived from a

digital elevation model at a 250 m grid resolution. All characteristics were first compiled on a

regulär grid and then combined with the catchment boundaries of Laaha and Blöschl (2003)
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and Behr (1989) to obtain the characteristics for each catchment. A statistical summary of the

catchment characteristics is given in Table 2.

Table 4.2. Statistical summary of the characteristics of the 325 catchments used in this

section.

Acronym

A

Ho

H+

HR

HM

SM

SSL

SMO

SST

P

Ps

Pw

GB

GQ

GT

GP

GL

Gc

GGS

GGD

Gso

Lu

LA

Lc

LG

LP

LR

LWE

LWA

LGL - -

D

Variable description

Catchment area

Altitude of streamgauge

Maximum altitude

Range of altitude

Mean altitude

Mean slope

Slight slope

Moderate slope

Steep slope

Average annual precipitation

Average summer precipitation

Average winter precipitation

Bohemian Massif

Quaternary Sediments

Tertiary Sediments

Flysch

Limestone

Crystalline rock

Shallow groundwater table

Seep groundwater table

Source region

Urban

Agriculture

Permanent crop

Grassland

Forest

Wasteland (rocks)

Wetland

Water surfaces

Glacier .

Stream network density

Units

km1

m

m

m

m

%

%

%

%

mm

mm

mm

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

m/km2

Min.

7.00

159.00

298.00

82.00

231.90

0.03

0.00

0.00

0.00

467.06

293.75

155.33

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

160

Mean

313.31

591.38

1862.29

1270.91

1103.56

0.25

25.99

47.30

26.62

1082.31

652.20

430.09

10.09

5.88

15.05

6.87

26.04

26.97

1.29

6.06

1.35

0.53

19.62

0.12

20.60

47.45

0.07

9.05

0.39

1.78

790

Max.

7012.10

2215.00

3770.00

3324.00

2944.70

0.56

100.00

93.00

80.00

2103.40

1208.10

895.30

100.00

93.00

100.00

100.00

100 .00

100.00

18.30

76.10

35.20

7.79

97.30

20.30

71.70

100 .00

9.61

81.20

14.60

43.80

1320
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4.3 Climate adjustment techniques

4.3.1 General concept

My approach to climate adjustment consists of three steps: (a) selection of appropriate donors

for each subject site, (b) calculation of adjusted low flow characteristics for the subject site

from data of each donor (i.e. record augmentation), and (c) combination of adjusted values

associated with each donor in the case of multiple donors. I examine three donor selection

techniques plus the case of no donor (i.e. no adjustment), and two record augmentation

methods. The techniques are presented below.

4.3.2 Donor selection

4.3.2.1 No donor

In the first technique, no donor is selected which corresponds to the case of calculating low

flow characteristics from short records without any adjustment for climatic variability. The

estimation error of this technique will be a benchmark against which the other methods are to

be tested. Any of the other methods should improve on this benchmark case.

4.3.2.2 Downstream site

The second technique uses the nearest gauge at the same stream as the subject site. The

rationale of this technique is that the nearest down stream gauge is usually close to the subject

site and there will be some overlap in catchment area, so they should have^ similar

hydrological and climatic catchment characteristics. One drawback of the downstream site

technique is that only one gauge is considered as a donor. Because of this, the method is

probably less robust than the methods that use more than one donor, particularly for

catchments where land use changes have occurred and/or some constructions have taken place

at the stream. The procedure consists of a single step:

(a) Select adjacent downstream gauge at the same stream as a donor;

4.3.2.3 Catchment similarity

hi the third technique, donors are selected according to the similarity of physiographic

catchment characteristics. The basic assumption of this method is that hydrological processes

are related to catchment physiography, so discharges from physiographically similar

catchments should experience similar effects of climatic variability. The difficulty with this

approach is that information on catchment similarity is probably contained in a large number

of catchment characteristics and it is not straightforward to find a similarity measure that uses
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the Information of the most relevant characteristics. Following the idea of Nathan and

McMahon (1990), I selected relevant catchment characteristics by a stepwise multiple

regression analysis between Q95 and the catchment characteristics and weighted them

according to the coefficients in the regression model. I then assessed physiographic similarity

of subject sites and possible donors by the Euclidean distance in the space of the weighted

catchment characteristics.

In addition to physiographic catchment similarity, one can expect that similar

catchments should lie in the same climatic region for similar impacts of climatic Variation to

occur. I adopted the classification of Austria into eight regions of section 2. These are regions

that exhibit similar low flow seasonality, so one can assume that they are also suitable for

identifying catchment similarity in terms of climatic impact. The selection of

physiographically similar donors was then limited to gauges located in the same seasonality

zone as the subject site. The stepwise regression mentioned above was performed

independently for each of these regions. The procedure consists of the following Steps:

(a) Select all gauges within the seasonality zone of the subject site as possible donors;

(b) Perform a stepwise regression between Q95 and catchment characteristics to determine the

most relevant catchment characteristics for assessing physiographic similarity;

(c) Weight the selected catchment characteristics by the coefficients of the regression model;

(d) Calculate Euclidean distances between subject site and all possible donors in the space of

weighted catchment characteristics;

(e) Select the most similar site (i.e. the site that exhibits the shortest Euclidean distance) as a

donor.

4.3.2.4 Correlation of annual low flows

The fourth technique is based on the procedure of Robson (1999). Although the procedure of

Robson (1999) was designed for adjusting flood characteristics there may be some similarity

of clirnate väriäbility effects with low flows. I therefore think it is worth applying the methöd

of Robson (1999) to the case of low flows. The selection of donors proceeds in two main

steps. The first step identifies potentially useful sites on the basis of spatial proximity and the

possible gain of information from each donor. The second step refines the selection on the

basis of the correlations of annual low flows between the subject and donor sites. Because of

this, I term it the correlation technique. Among all donor selection techniques, the correlation

technique appears to be most straightforward, since observed climatic variations of low flows

are directly used for donor selection. However, one drawback of the method is that the

estimation of correlation coefficients requires a sufficient number of years of concurrent
82



observations at the subject site and possible donors. Hence, the application of this method is

restricted to a minimum of 5 years of overlapping data (Robson, 1999). Correlations are

estimated by the Spearman's rank correlation coefficient as a sample of only 5 values is still

very small for a parametric estimation of correlations. The selection procedure uses the

following quantities:

• The weight w of a possible donor which takes into account the distance d in kilometres

between the subject site and donor, the length of the overlap period n0 in years between

subject and donor sites and the additional years of data available for the donor {na - n0,

where n^ is the length of the donor site record):

The similarity of climatic Variation of low flows at the subject and donor sites is assessed

by the Spearman's rank correlation coefficient r between annual low flows Q95(yr.) at the

subject and donor sites.

The value v of a possible donor is based on the weight w and the Spearman's rank

correlation r simply as:

v — wr (2)

The 95% lower confidence limit r\ of the correlation coefficient r is calculated as:

2
2z

r,=- \ where z = 0.5-In 1 + r™* (3)

e v ° +1

The procedure consists of the following steps:

(a) Select all gauges within a distance of 60 km from the subject site as possible donors that

have longer records than the subject site and overlap with the subject site record;

(b) Calculate weight w, correlation coefficient r and the value v of each possible donor;

(c) Limit pool of possible donors by the following criteria:

i) r > 0 (positive correlation),

ii) v > vmax / 2 (where vmax is the maximum donor value amongst the candidate sites),

iii) a maximum of 30 donors (otherwise drop donors with lowest values v),

(d) Determine highest correlation rmax amongst all the candidate sites;

(e) Calculate the 95%""lower cohfidence limit>/of>max; - . - . . — .

(f) Remove all sites that have correlations smaller than rf,
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(g) Classify the remaining sites according to the correlation significance level (p-value) using

the following classes: (l)p <0.01, (2) 0.01 >p >0.05, (3) 0.05 >p>0.1, (4) 0.1 >p

>0.2, (5) any positive correlation

(h) Final selection of donors: Select either all sites significant at the same, highest possible

level or single sites that are clearly better correlated than all other sites. Starting with

the highest level, the level of significance is gradually reduced until either there are at

least three donor sites significant at the selected level, or there is at least one site that is

significant two levels above.

4.3.3 Record augmentation

Once a suitable donor or suitable donors have been identified, the second step of climate

adjustment consists of calculating adjusted values of flow characteristics for the subject site

by using information from the donor or donors. Two methods are examined here. The first

method adjusts the low flow characteristic at the subject site by scaling it by the ratio of Q95

calculated from the entire observations period and Q95 calculated from the overlap period

(e.g. Kroiß et al., 1996)

where QSpred is the adjusted value of Q95 at the subject site, QS0 is Q95 at the subject site

calculated from the overlap period, QD0 is Q95 at the donor site calculated from the overlap

period and QD is Q95 at the donor site calculated from the entire observation period. In this

study there is no need to introduce a minimum overlap period as, for all subject site - donor

combinations, the overlap period is identical with the record length of the subject site. I term

tViic m&tVir\r\ tVi<=» unufpioVitpH rprr\rr{ piiomentntinn metVinH

The second method uses the same principle, but includes a weighting coefficient to

account for the strength of correlation between subject site and donors. A large adjustment is

made for subject site - donor combinations that are highly correlated and no adjustment is

made for combinations that are uncorrelated (Robson, 1999). The formula of Robson (1999)

for the case of a complete overlapping of subject site record and donor-site record is used:

M(r)

J
which is similar to the augmentation method proposed by Vogel and Stedinger (1985). The

difference is that Vogel and Stedinger (1985) used M(r) as a multiplicative factor while
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Robson (1999) used it as an exponent as is Eq. 5. The weighting coefficient M(r) is estimated

by:

— (6)

M(r) takes into account the degree of correlation of annual low flows as well as the length of

the overlap period of the records. I term this method the weighted record augmentation

method. The limitation of this method is that, for short overlap periods, the correlation

coefficients can not be estimated very reliably.

4.3.4 Combining adjusted values from multiple donors

In case of the correlation technique, more than one donor is selected, so the adjusted values

for each of the donors need to be combined into a single adjusted value. The adjusted values

can be combined by a weighted arithmetic average but Robson (1999) recommended a

weighted geometric average which appears to be more robust to the presence of outliers in the

adjusted values than an arithmetic average. The weights w are calculated from the distance

between subject site and donor, the length of the overlap period and the additional years of

data provided by the donor by using Eq. 1. The weighting formula then is:

$ (7)

where w, is a weight for the i'h donor and QS^red is Q95 at the subject site adjusted by the i'h

donor.

4.4 Evaluation method

4.4.1 Variation of record length

For each technique, the value of different record lengths is assessed by using hypothetically

shortened records. This emulates the case of only short records being available at the subject

site. However, in this study I have the füll record length for all subject sites, so I can compare

the adjusted low flow characteristic Q95pred for hypothetically shortened records with the low

flow characteristic Q950bs estimated from the complete records, which gives me a measure of

the estimation error introduced by a record length that is shorter than the füll period. To obtain

shortened records of 15, 10, 5, 3 and 1 years of observation I sub-sampled the füll observation

period of 20 years. All shortened records were continuous, i.e. no gaps were allowed. The

beginning of the shortened records was chosen at random to make the assessment of the

techniques independent of the climatic variations during the 20 years Standard period.

85



Two additional cases were considered, spot gaugings and the case of no local data

which are the limiting cases as the record length approaches zero. Spot gaugings for

determining some low flow characteristic are most efficient if taken during a low flow period

or, more specifically, when the discharge measured at a close-by gauge at the same stream

equals the characteristic low flow discharge. In a practical study, a hydrologist could monitor

daily discharges of a stream gauge near the subject site, and once the discharge is close to

Q95 he/she could go out into the field and measure the discharge at the subject site on the

next day. I represent this setup in this study by choosing the daily discharge Q(S) from the

stream flow time series of the subject site on the day after the occurrence of a discharge value

close to Q95 at the nearest downstream gauge. The daily discharge Q(S) is then interpreted as

a Single measurement at the subject site.

For the spot gaugings, the same donor selection procedures were used as for the

shortened records, whenever possible. The methods are downstream site and catchment

similarity. The no donor Option is not possible to apply as the spot gauging method needs an

index stream gauge to identify the appropriate day to make the measurements. Similarly, it is

not possible to calculate an annual correlation coefficient, so the correlation technique could

not be used in the case of spot gaugings. By the same token, only the unweighted record

augmentation method (Eq. 4) could be used. For the case of no stream flow data available at

the subject site, only regional information can be used to estimate low flow characteristics.

Two out of the four donor selection techniques transform into simple regionalisation methods

as the record length approaches zero (i.e. no local data): The downstream site method

corresponds to a regional transposition of specific discharges from the downstream gauge to

the subject site, and the catchment similarity method corresponds to the regional transposition

of specific discharges from üic Site that is physiögraplucally niöst sirnilär to the subject sits.

In both cases the assumption is that the specific low flow discharge at the subject site is the

same asjit the donor site. This is a method sometimes termed the drainage area ratio method

(e.g. Stedinger et al., 1992). The errors of this simple regionalisation technique will be

compared to errors of the various climate adjustment techniques for varying record lengths to

assess the value of short stream flow records relative to regionalisation for estimating low

flow characteristics.

4.4.2 Statistical Performance measures

To assess the Performance of the various techniques, several statistical measures are

calculated from the differences between adjusted low flow characteristics (Q95pred) estimated

from hypothetically shortened records and low flow characteristics (Q950bs) estimated from
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the entire observation period of 20 years. Scatterplots of Q95prerj vs. Q95ObS are used for a

visual assessment of the techniques and the role of record length. To facilitate the comparison,

scatterplots for different techniques are grouped together for a given record length. The

absolute errors for each technique and record length are assessed by the root mean squared

error (RMSE):

n

RMSE = -JMSE (9)

where n is the number of subject sites. Absolute errors are calculated both for low flow

discharges Q95pre(t (m
3/s) and for specific low flow discharges q95pred = Q95pred/ A (ls"'km"2)

where A is the catchment area. The error of specific discharges gives more weight to smaller

catchments. Note that the catchment areas of the subject sites ränge from 8.7 to 479 km2. The

mean squared error MSE generally constitutes an unbiased estimate of the expected error of

one technique, except for the case that outliers (single sites that deviate from the bulk of the

sites) are present. If one removes outliers manually, one obtains error estimates that are

representative of the bulk of the data but this involves a subjective element. To obtain an

objective and robust estimate of mean squared errors, I use the 5% trimmed RMSE instead.

This means that 5% of the catchments (in my case six catchments) are disregarded in

estimating RMSE. These are the catchments that exhibit the largest magnitudes of the

differences Q95pre(i - Q950bs. In an exploratory analysis I compared all results in this section

obtained from trimmed error statistics with untrimmed error statistics and the results only

changed slightly but were less robust as indicated by somewhat more erratic error patterns.

The relative errors are estimated by dividing the absolute errors of Q95pred by the long

term values Q950bs- Since errors are expected to depend on ihe magnitude of low flow

discharge, relative errors (rec) are calculated for different classes of Q950bs:

rec=RMSEclmc(Q950bs) (10)

where mc is the class mean. The class limits have been set to the quartiles of Q950bs to give the

same number of catchments in each class. The class limits and class means consistent with the

quartiles are given in Table 3. rec, again, is a 5% trimmed statistic.

Table 4.3. Class limits and class means for estimating relative errors (nrVs).

Class limits of Q95pred

Class means mc(Q950bs)

0.0 - 0.2

0.10

0.2 - 0.4

0.30

0.4-0.9

0.65

0.9 - 4.0

1.70
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For ease of comparison with other low flow studies I also estimated the coefficient of

determination R2. Preliminary analysis indicated that R2 of Q95 discharges are close to 100%

for all techniques and all record lengths. I therefore only evaluated R2 of q95 specific low

flow discharges:

s2{q950bs)-MSE{q95pred)
K = (1 V)

s (q95obs)

where s2 is the variance of specific low flow discharges q950bs at all subject sites using the füll

record length and MSE is the mean squared error.

Following Vogel and Kroll (1991), I finally estimated the effective record length

which is defined as the length of an unadjusted record that gives the same estimation error as

a shorter record that is adjusted. From this I estimated the gain in information by

\2

—\ 100 =
[RMSE no donor

I RMSEadjmled
-1 100 (12)

where neff is the effective record length and n is the record length of the subject site. Eq. 12 is

based on equation 8 of Vogel and Kroll (1991) and assumes that the bias is small. A

preliminary analysis of the data showed that the biases were indeed small as compared to

RMSE. The gain provides an intuitive measure of the value of various climate adjustment

procedures. If, say, an adjusted record of 10 years gives the same estimation error as an

unadjusted record of 15 years the gain is 50 % in terms of the effective record length.

4.5 Results

4.5.1 Errors of unadjusted low flow characteristics

As a starting point I examined the errors of Q95 estimates from short stream flow records

without applying any climate adjustment. This is the benchmark case against which the

climate adjustment techniques are to be tested. All climate adjustment techniques should

improve on this benchmark case. Fig. 4.1 shows the relative errors (Eq. 10) of Q95 for this

case as a function of low flow discharge Q95Obs- For all record lengths there is a trend of

relative errors to decrease with the_Q95 discharge. Quite clearly, the errors also decrease with

increasing record length from 1 to 15 years as would be expected. For the catchments with

Q95 discharges larger than the median (two classes on the right hand side of Fig. 4.1), the

errors decrease from 30% to 16, 12, 5 and 3% as one moves from 1 year to 3, 5, 10 and 15
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years. For a record length of 20 years the error would be zero as this is the Standard period the

shortened records are compared with to estimate the errors. These changes of the errors with

record length are a reflection of the effect of climatic vanability on the low flow estimates.

0%
0.2 0.4 0.6 0.8 1

Q95 [mJ/s]

1.2 1.4 1.6 1.8

Fig. 4.1. Relative errors rec of low flow discharge Q95pred estimated from records of less

than 20 years as compared to 20 year records, plotted versus the Q95 low flow

discharge. No climate adjustment. Numbers in boxes are the record lengths in years.

4.5.2 Relative Performance of donor selection techniques

Three dcmor selection techniques were applied to records of variable lengths and the

estimation errors were analysed by comparison with the füll 20 year period. For less than 5

years the unweighted record augmentation method (Eq. 4) was used while for 5 years and

more the weighted record augmentation method (Eq. 5) was used.

Three error measures are shown. Fig. 4.2 gives the absolute errors (RMSE) for

discharges Q95 (mVs), Fig. 4.3 gives the absolute errors (RMSE) for specific discharge q95

(ls''kni~2) and Fig. 4.4 gives the coefficients of determination (R2) for specific discharges q95.

Each line represents one of the climate adjustment techniques. The line labelled "no donor"

relates to the errors of unadjusted low flows as per Fig. 4.1. The minimum record length that

can be used for the correlation method is 5 years. The downstream site technique and the

catchment similarity technique can be used both for the case of a spot gauging (labelled S on
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the horizontal axis of Fig. 4.2) and the case of no local stream flow data where Q95 is

estimated from the donors alone (labelled 0 on the horizontal axis of Fig. 4.2).

Figs. 2, 3, and 4 show similar results in terms of the relative Performance of the

methods although the magnitudes of the errors are different. The difference between the

climate adjustment techniques is somewhat smaller in the case of specific low flows (Figs. 3

and 4) than for low flow discharges (Fig. 4.2). This is the result of a relatively better

Performance of large catchments in the downstream site method. The large catchments get

more weight in RMSE calculated from Q95 than in RMSE calculated from q95. All three

figures suggest that the downstream catchment method performs best. This is the case for all

record lengths including spot gaugings and no data. The absolute errors of discharges

decrease from 0.24 mVs to 0.19, 0.10, 0.08, 0.08, 0.03, 0.02 nvVs as one moves from no data

to spot gaugings, 1, 3, 5, 10 and 15 years. The absolute errors of specific discharges decrease

from 2.3 ls"'km"2 to 2.1, 1.1, 0.9, 0.7, 0.4 and 0.3 ls"]km"2 and the coefficients of determination

of specific discharges increase from 56% to 62, 89, 93, 96, 99 and 99%. The catchment

similarity method, where the donors are physiographically similar catchments, performs

second best. For no data, spot gaugings, 1 and 3 years of record there is a significant

difference between the catchment similarity method and the downstream site method for all

error measures. For record lengths of 5 years and more the two methods are more similar

although, for the absolute errors of Q95 (Fig. 4.2), the downstream method still performs

clearly better. The correlation method performs similar to the other methods in terms of the

error measures based on specific low flows (Fig. 4.3 and 4.4) and it is slightly poorer for the

error measure based on low flow discharges (Fig. 4.2). As compared to the benchmark case of

no climate adjustment (no donor) the downstream site and the catchment similarity methods

perform cieariy better for record lengths öf less than 5 years. For a 1 year record length the

absolute errors of the down stream site method and the no donor case are 0.10 and 0.22 m3/s,

respectively, 1.1 and 2.1 ls^km"2, respectively, and the coefficients of determinations of q95

are 89% and 63%, respectively. However, for 5 years and more the merits of using climate

adjustments are relatively slim. In terms of the absolute errors of Q95, the downstream

method does seem to improve the estimates while the other two methods don't. In terms of the

absolute errors and the coefficient of determination, all methods exhibit some very minor

improvement with the downstream method performing somewhat better than the others. It

appears that climate adjustments are particularly usefül for stream flow records shorter than

five years but for longer records the gain of using these adjustment techniques is relatively

modest.
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Fig. 4.2. Absolute errors RMSE (m3/s) of Iow flow discharge Q95pred estimated from

records of less than 20 years as compared to 20 year records. Various climate

adjustment techniques are used. 0 = no local stream flow data, S = spot gaugings.
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Fig. 4.3. Absolute errors RMSE (ls'km'2) of specific low flow discharge q95pred estimated

from records of less than 20 years as compared to 20 year records. Various climate

adjustment techniques are used. 0 = no local stream flow data, S = spot gaugings.
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Fig. 4.4. Coefficient of determination R2 (%) of specific low flow discharge q95pr£d

estimated from records of less than 20 years as compared to 20 year records. Various

climate adjustment techniques are used. 0 = no local stream flow data, S = spot

gaugings.

4.5.3 Relative Performance of record augmentation techniques

I now compare the Performance of the two record augmentation techniques for each of the

donor selection methods. The first method (Eq. 4) is an unweighted scaling of the Q95 at the

subject site using the low flows from the donor while the second method (Eq. 5) is a weighted

scaling where the weights are related to the correlation between the annual low flows at the

subject and donor sites. The results are shown in Fig. 4.5.

For the downstream site method the two record augmentation techniques give very

similar results. For the correlation method there is a slight improvement when using the

weighted -augmentation procedure and for- the catchment similarity method there .is a

significant improvement. This is interesting as the weighting moves the catchment similarity

method from the poorest rank to an above average rank. It appears that the value of record

augmentation significantly depends on the donor selection procedure. It should be noted,

92



however, that the choice of the donor selection method is the more important part in using

climate adjustment procedures given that the differences between the donor selection methods

are larger than the differences between the record augmentation methods.

It is also of interest to examine the relative gain in effective record length for each

donor selection - record augmentation combination as per Eq. 12. Table 4 shows the gain (%)

in effective record length based on estimated low flow discharges Q95pred and Table 5 shows

the corresponding values for specific low flow discharges q95pred. This comparison clearly

highlights that the downstream site method yields the largest gain of all combinations both

when examining discharges and specific discharges. When expressed in terms of effective

record length for q95, the gain is 236% for the one year record and 91% for the three year

record. For five years, the gain is either 17 or 40%, depending on the augmentation method,

which means that the adjusted 5 year record is equivalent to an unadjusted 5.9 year or 7 year

record. The downstream method gains 53% for a ten year record, as compared to the 20 year

reference period if measured in terms of Q95 discharge, and 40% if measured in terms of q95

specific discharge. The downstream method gains 0% for a fifteen year record, as compared

to the 20 year reference period if measured in terms of Q95 discharge, and 24% if measured

in terms of q95 specific discharge. For 5 years and more, some of the other methods yield

negative gains when using the unweighted augmentation method. This means that the

estimation errors are larger than those of the unadjusted estimates. The weighting significantly

reduces the occurrence of negative gains. This would be expected as poorly correlated donors

get less weight than well correlated donors. Clearly, donors need to be selected with much

care if they are to improve low flow estimates at the subject site.
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Fig. 4.5. Absolute errors RMSE (m3/s) of low flow discharge Q95pred estimated from

records of less than 20 years as compared to 20 year records. Three donor selection

techniques are combined with two record augmentation methods (weighted: Eq. 5;

unweighted: Eq.4).

Table 4.4. Gain (%) in effective record length by various climate adjustment methods

based on estimated low flow discharges Q95pred . See Eq. 12. Negative gains imply that

the climate adjustment procedure is poorer than the case without adjustment. See Eq.

12. (w=weighted: Eq. 5; uw=unweighted: Eq.4).

Record length (yrs)

Downstream site (w)

Similarity (w)

Correlation (w)

Downstream site (uw)

Similarity (uw)

Correlation (uw)

1

403%

32%

3

200%

33%

5

20%

-4%

-17%

36%

-27%

-10%

10

53%

16%

-5%

53%

-29%

• " " • -17%

15

0%

-23%

-16%

0%

-53%

-34%
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Table 4.5. Gain (%) in effective record length by various climate adjustment methods

based on estimated specific low flow discharges q95pred • See Eq. 12. Negative gains

imply that the climate adjustment procedure is poorer than the case without

adjustment. (w=weighted: Eq. 5; uw=unweighted: Eq.4).

Record length (yrs)

Downstream site (w)

Similarity (w)

Correlation (w)

Downstream site (uw)

Similarity (uw)

Correlation (uw)

1

236%

27%

3

91%

30%

5

17%

1%

15%

40%

-23%

18%

10

40%

16%

16%

40%

-14%

-10%

15

24%

-15%

-2%

24%

-43%

-21%

4.5.4 Heteroscedasticity and outliers

The error measures examined in the previous sections are 5% trimmed error statistics, i.e. they

reflect the Performance of the various methods for the bulk of the catchments. However, it is

also of interest to analyse outliers and the Performance of individual catchments. I therefore

plotted the low flow discharges estimated for various record lengths (Q95pred) against the low

flow discharges estimated for the füll record length of 20 years (Q95Obs) in Figs. 6 to 10.

These scatter plots also allow me to examine the estimates for heteroscedasticity, i.e. whether

the variance of the differences Q95pred - Q950bs changes with the magnitude of Q950bs- Again,

for less than 5 years the unweighted record augmentation method (Eq. 4) was used while for 5

years and more the weighted record augmentation method (Eq. 5) was used.

Fig. 4.6 suggests that the 15 year estimates for all methods are very similar to the 20

year estimates. The errors are very small and there is essentially no difference between the

methods discernable in Fig. 4.6. There are two or three catchments in all methods that are not

exactly on the 1:1 line most of which are the same catchments in all methods. Scatter plots for

the five year records (Fig. 4.7) still indicate very high correlations for all techniques, although

there is some decrease in the Performance relative to 15 years as one would expect. Again, all

methods are rather similar although the correlation technique produces slightly more outliers

"than the other methods, particularly for the large -low flow- disehargesv-For-one year of

observation (Fig. 4.8), only three techniques remain to be compared. Both climate adjustment

techniques (downstream site and catchment similarity) improve the accuracy of low flow

estimates over the case without adjustment (no donor). For the downstream method, the
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increase in Performance is very significant while for the catchment similarity method it is not.

There appear to exist two groups of catchments, catchments with Q95 of less than 1.5 m3/s

and those with Q95 of more than 1.5 m3/s. For the former group the catchment similarity

method gives almost the same scatter as the no donor case, so there is no improvement, while

the downstream site method gives significantly less scatter. For the latter group, the catchment

similarity method does seem to slightly decrease some of the scatter over the no donor

benchmarking case but the downstream method is clearly better.

For the case of using spot gaugings for estimating low flows (Fig. 4.9) there are again

two groups of catchments. In the lower discharge group the scatter is relatively small,

particularly for the downstream site method although there are a few outliers. The scatter of

this group is similar to that of the one year case in Fig. 4.8, with the exception of the outliers.

For the upper discharge group the scatter is larger and, again, the downstream site method

performs better than the similarity method.

In the final case of no local information, i.e. regionalisation of Q95 (Fig. 4.10), the

scatter of the low discharge group increases significantly, particularly for the downstream site

method. For the upper discharge group, there is a slight increase in the scatter. It is interesting

that the catchment similarity method tends to underestimate low flows in the upper discharge

group for the no data case while there was consistent overestimation for the spot gauging

case. This explains the larger RMSE in Fig. 4.2 for the spot gauging case than for the no data

case. From a visual comparison of Figs. 10 and 9 it appears that the spot gauging does

improve the Performance of both methods over the no data case. This is not fully borne out by

the error statistics in Figs. 2, 3 and 4 that only showed a slight improvement. It is therefore

interesting to examine what is the reason of the lack of significant improvement by the spot

gaugings which will be done in the foiiowing seciion.
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Fig. 4.6. Adjusted low flows Q95pred (m3/s) estimated from 15 year records plotted versus

low flows Q950bs (m3/s) estimated from the füll 20 year period. Each point represents a

catchment and the panels relate to different donor selection methods.

Fig. 4.7. Adjusted low flows Q95pred (m3/s) estimated from 5 year records plotted versus

low flows Q95Obs (m3/s) estimated from the füll 20 year period. Each point represents a

catchment and the panels relate to different donor selection methods.

97



Fig. 4.8. Adjusted low flows Q95pred (m3/s) estimated from 1 year records plotted versus

low flows Q95„bs (m3/s) estimated from the füll 20 year period. Each point represents a

catchment and the panels relate to different donor selection methods.

Catchment similarity

o q.-

Fig. 4.9. Low flows Q95pred (mVs) estimated from spot gaugings plotted versus low flows

Q95Obs (m3/s) estimated from the füll 20 year period. Each point represents a catchment

and the panels relate to different donor selection methods.
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Fig. 4.10. Low flows Q95prcd (m3/s) estimated from a simple regionalisation model (i.e. no

local stream flow data) plotted versus low flows Q95Obs (nrVs) estimated from the füll 20

year period. Each point represents a catchment and the panels relate to different donor

selection methods.
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4.5.5 Spotgaugings

To analyse the error sources of the spot gauging and no donor (regionalisation) cases I

calculated ratios of specific discharges at the subject and donor sites. In this comparison

q95(S) is the specific low flow discharge exceeded 95 of all days at the subject site estimated

from the 20 year record at the subject site. q95(D) is the analogous value for the donor site,

and q(S) is the specific discharge "measured" by the spot gauging at the subject site.

The ratio q95(S)/q95(D) is a measure of the spatial variability of low flows in the

region. A unit ratio represents spatially uniform low flows and values lower or larger than one

reflect spatial variability. The no data (regionalisation) case is consistent with assuming

q95(S)/q95(D) = 1, values much larger or smaller than one indicate large errors in the simple

regionalisation procedure. The ratio q(S)/q95(S) is a measure of how well the spot gauging

captures the q95 at the subject site. A unit ratio indicates that the spot gauging perfectly

captures the q95 at the subject site and values lower or larger than one indicate that the spot

gauging was not performed on a suitable day. The ratio q(S)/q95(D) can be thought of as the

climate adjustment in the case of the spot gaugings, i.e. it reflects how different the spot

gaugings are from the q95 at the donor site. This ratio can also be thought of as a reflection of

the combined sources of variability or uncertainty, spatial variability (expressed as

q95(S)/q95(D)) and unsuitable timing of the spot gaugings (expressed as q(S)/q95(S)).

Fig. 4.11 shows the cumulative distribution functions of these three ratios for both

donor selection methods. The slope of the cumulative distribution functions at a ratio of one is

an indication of the spread of the distribution and hence a measure of uncertainty. Fig. 4.11

top (downstream site method) indicates that the uncertainty introduced by the spatial

variability (dashed line) is about the same as the uncertainty introduced by the timing of the

spot gaugings (dashed dotted line). The combined effect of the two (solid iine) shows a still

larger spread and hence larger uncertainty. The interesting thing in this figure is that the

additional information gained by a spot gauging is small as it tends not to be very

representative of the Q95 low flow. Because of this, the spot gauging method does not

improve the Q95 estimate much over the case of no data (regionalisation). On closer

examination, the q(S)/q95(S) distribution shows a slightly smaller spread or random

variability as indicated by the slope of the cumulative distribution function around the mean

but it shows a significant bias as indicated by the location of. the_ cumulatiye distribution

function. The procedure emulated here of taking base flow measurements the day after the

discharge at a nearby gauged site is close to q95 is clearly a biased procedure.
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It is also interesting to compare the catchment similarity method (Fig. 4.11 bottom)

with the downstream site method of donor selection (Fig. 4.11 top). The catchment similarity

method is associated with a wider spread in the q95(S)/q95(D) distribution (dashed dotted

line) indicating the donors are less similar than for the down stream case. There is also a

larger spread in the q(S)/q95(S) distribution indicating that the spot gaugings are less

representative of q95 as the timing of the gaugings is not picked well. The combined effect of

the two (solid line) shows a still larger spread, pointing to the larger uncertainties of the

catchment similarity method than the downstream site method.
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Fig: 4.11. Cumulative frequency distribution of specific discharge ratios. q95(S) is the

specific low flow discharge exceeded on 95% of all days at the subject site, q95(D) is the

analogous value for the donor site, and q(S) is the specific discharge measured by spot

gauging at the subject site. --., _ .
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4.5.6 Effect of discharges

A final assessment in this section (Fig. 4.12) examines the Performance of the best method,

i.e., downstream site donor selection, as a function of the magnitudes of the Q95 discharges at

the subject site. For all record lengths, there is a trend of relative errors to decrease with the

Q95 discharge. Quite clearly, the errors decrease with increasing record length from no data

to spot gaugings, 1, 3, 5, 10 and 15 years as would be expected. For the largest Q95 class the

errors decrease from 28 to 22, 14, 10, 13, 4 and 4%. For the lowest Q95 class the errors

decrease from 98 to 64, 25, 20, 22, 12 and 8%. The five year curve slightly crosses over some

of the other curves which likely is an random artefact of the data and not a significant pattern.

Fig. 4.12 is a similar representation as Fig. 4.1 but the difference is that Fig. 4.1 is

without climate adjustment while Fig. 4.12 is with climate adjustment based on the nearest

downstream site. The degree to which the errors in Fig. 4.12 are smaller than those in Fig. 4.1

is a measure of the value of the climate adjustment procedure as a function of low flow

discharge. The error pattern in Fig. 4.12 is similar to that in Fig. 4.1 but all errors are

significantly smaller indicating that this climate adjustment method significantly enhances the

accuracy of the Q95 estimates for short stream flow records.

100%

90% -

80% •

er 70% •
in
O

° 60% -

£ 50% -
9

| 40% •
41
u>
t 3 0 % •
>

20% •

10% •

0%

Simple
regionalisation

ITfil

0.2 0.4 0.6 0.8 1

095 [mVs]

1.2 1.4 1.6 1.8

Fig. 4.12. Relative errors rec of low flow disebarge Q95pred estimäted from records of less

than 20 years as compared to 20 year records, plotted versus the Q95 low flow

discharge. Climate adjustment based on the downstream site donor selection technique.

Numbers in boxes are the record lengths in years.
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4.6 Discussion

4.6.1 Assessment of climate adjustment methods

The comparisons have shown that the downstream donor selection method performs

best on all scores. Part of the strength of using the nearest gauge at the same stream as a donor

is probably related to the spatial proximity which, apparently, is associated with a significant

similarity in the response to climate Variation. Another, perhaps more important, reason of the

good Performance of this method is that the subject site catchment is a part of the donor

catchment, so the subject site catchment actually drains to the donor site. If the ratio of donor

and subject site catchment areas is not too large, the downstream site donor selection method

is certainly the preferred choice. The catchment similarity method performs somewhat poorer.

hi this case, the donor selection is based on physiographic similarity and location in the same

seasonality region. There are two possible reasons for the relatively poorer Performance. The

first may be that the physiographic catchment characteristics are not very representative of the

climate impacts on low flows dynamics. The second reason may be related to the way the

similarity measure was defined in this study. It is possible that a hydrologically more relevant

combination of the catchment characteristics than the Euclidean distance used in this section

will enhance the Performance of the method. More work is needed along these lines. One

possibility is the use of regression trees that have been shown to be promising in the context

of regionalising low flow characteristics (section 3).

The Performance of the correlation technique of donor selection, overall, is similar to

the catchment similarity method. This is counterintuitive as one would expect annual

correlations of low flows to be the most efficient similarity measure of climatic Variation

irnpacts bcth in the donor selection and record augmentation procedures. There may be a

number of reasons for the somewhat lower Performance than that of the downstream site

method. It appears that the correlation coefficients cannot be estimated very well for short

overlap periods. Indeed, the record lengths used in this section are significantly shorter than

most of the record lengths examined in Vogel and Kroll (1991). It is likely that, if I compared

the value of, say, 20 years of record relative to 40 years of record or more, the relative

Performance of the correlation method increased as the correlation coefficients can be

estimated more reliably from larger samples. It should also be noted that, while the original

development of the correlation method applies to both low flows and floods (Vogel and

Stedinger, 1985; Vogel and Kroll, 1991), the refined Version used here was specifically
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geared towards floods (Robson, 1999) which may also explain part of the lower than expected

Performance.

It is interesting that the comparison indicated that the weighted record augmentation

procedure that uses Information on the correlations of annual low flows significantly

improved the estimates for the case of the catchment similarity donor selection procedure,

slightly improved the correlation donor selection procedure, but hardly made any difference

for the down stream site procedure. The combination of catchment similarity and weighted

augmentation, however, does not give significantly better results than the unadjusted case.

This means that, for the record lengths examined here, there is little practical value in this

combination. It appears that the value of record augmentation significantly depends on the

donor selection procedure. It should be noted, however, that the choice of donor selection

method is the more important part of climate adjustments given that the differences between

the donor selection methods found here were larger than the differences between the record

augmentation methods. In a region that is hydrologically as diverse as the study area, the

suitable choice of donor sites clearly is of utmost importance. Donors need to be selected with

care if they are to improve low flow estimates at the subject site.

Both the unadjusted low flows (Fig. 4.1) and the low flows adjusted by the best method

(downstream method, Fig. 4.12) have shown a trend of relative errors to decrease with the

Q95 discharge. This may be due to a number of reasons. A first obvious reason may be

measurement errors which are relatively more important for small low flow discharges. For

the case of unadjusted low flows this trend may also suggest that climate variability is more

important in small and/or dry catchments than it is in large catchments. For adjusted low

flows this may also be the case although there is probably an additional scale effect. The large

discharges tend to stem from iarge catchmenl areas. This can be seen frorn Table 1, as the

relative ränge of discharges is significantly larger than the relative ränge of specific

discharges. An examination of the distribution of the catchment areas for the case of the

downstream site method (not shown here) indicates that for large subject catchments, the ratio

of donor and subject catchment areas tends to be somewhat smaller than for small subject

catchments. There is therefore a tendency for the downstream site method to perform better

for the large catchments than for the small catchments which tends to give smaller errors for

the larger Q95 classes. An additional Interpretation offered here for the trend of errors to

decrease with Q95 is that the regional transposition from donor to subject site may be more

accurate in the wet catchments (large q95) than in dry catchments (small q95). Merz and

Blöschl (2004a), for example, found significantly smaller regionalisation errors in wet
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catchments (large specific flood discharges) than in dry catchments (small specific flood

discharges) for the case of flood frequencies.

4.6.2 Effect of record lengths

The comparisons show that the value of climate adjustment methods is very significant

for record lengths shorter than 5 years. For the downstream site method, the coefficient of

determination of q95 specific low flows increases from 63 to 89% for the one year record, and

from 86 to 93 % for the three year record but the increase is much smaller for five years (from

95 to 96%) and still smaller for larger record lengths. When expressed in terms of effective

record length for q95, the gain is 236% for the one year record and 91% for the three year

record. For five years the gain is either 17 or 40%, depending on the augmentation method

which means that the adjusted 5 year record is equivalent to an unadjusted 5.9 year or 7 year

record.

Overall, the root mean squared errors RMSE, approximately, decrease with the inverse

of the square root of the record length as one would expect for the mean of an uncorrelated

sample. Correlations are likely present in the discharge times series but do not appear to have

a significant effect. It should be noted that the RMSE is calculated from a regional comparison

of a large number of catchments rather than from the statistical characteristics of a single site

which may be part of the reason of the small effect of correlations.

It is now of interest to compare the results of the value of short records to the literature.

Vogel and Kroll (1991), based on 23 catchments in Massachusetts suggested that the gain in

effective record length depends on both the actual record length and the low flow quantity

examined. They also noted that the serial correlations present in the discharge series may

decrease the effective record length. They then examined the net effect of record

augmentation and serial correlations for various low flow characteristics Qa.io which are the

low flow values over d days associated with a return period of 10 years. For their set of six

catchments with record lengths of about 18 years, the gain in effective record length was +7%

for Qi,io , +18% for Qjt\o , and +34% for Qjo.io • In this section, the downstream method gains

53% for a ten year record, as compared to the 20 year reference period if measured in terms of

Q95 discharge, and 40% if measured in terms of q95 specific discharge (Tables 4 and 5). The

downstream method gains 0% for a fifteen year record, as compared to the 20 year reference

period if measured in terms of Q95 discharge, and 24% if measured in terms of q95 specific

discharge. The Q95 low flow characteristic examined in this section has a similar order of

magnitude as Q7,io for the study region (Kresser et al., 1985). The reference record length of

Vogel and Kroll (1991) was longer than in this section andihey had significantly fewer
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catchments than in this section, so the results are not strictly comparable. However, they do

indicate that the order of magnitude of the gains in effective record length obtained by climate

adjustments in the two studies are similar.

4.6.3 Value of Short time series compared to regionalisation

In a practical application, there are two alternative ways of estimating low flow

characteristics at sites without long-term observations, either from short records with or

without record augmentation procedure or from regional information alone without making

use of the local stream flow data. In this section, adjustment techniques for short records have

been compared to simple regionalisation approaches. Overall, the results indicate that the spot

gaugings slightly improve the low flow estimates over the simple regionalisation method and

the one year record significantly improves the estimates over the spot gaugings. However, this

comparison is based on a simple regionalisation method of assuming that the specific low

flow discharge at the subject site is the same as at the donor site. More accurate low flow

regionalisation methods exist.

In section 3, for example, I have compared a number of low flow regionalisation

methods in the same study area. This analysis was based on discharges of catchments without

upstream gauges, as in this section, but there I also included discharges of residual catchments

between subsequent gauges with a total of 325 catchments rather than 132 catchments as in

this section. I assessed the regionalisation errors, among other measures, by the cross

validated coefficient of determination. This is similar to the coefficient of determination in

this section although I did not trim the statistics in section 3, so the coefficients of

determination of section 3 likely are a little lower than trimmed coefficients of determination

as used in this section. The global regression model of section 3 included eight variables

representing topography, precipitation and catchment geology, yielded a coefficient of

determination of R2=57% which is similar to the best simple regionalisation model of this

section (R2=56%, Fig. 4.4). The optimal regionalisation model of section 3, however, yielded

R2=70%. This model was based on separate regressions in eight seasonality zones. If I

compare this to the results of this section I can see from Fig. 4.4 that one year of observations

gives an R2=89% while the spot gauging gives R2=62% if the downstream site method is

used. This means that one year of stream flow data clearly outperforms the regionalisation

method while the regionalisation of section 3 performs better than the spot gauging method. It

should also be noted that the Performance of the regionalisation method of section 3 varied

significantly between the zones, ranging from R2=51% to R2=89%. For the zones associated

with the lower Performance it is likely that even the spot gauging will improve on the
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regionalisation estimate while for the zones associated with the higher Performance the

climate adjustment based on one year of continuous data will give similar results as the

regionalisation.

The spot gaugings perform somewhat better than the simple regionalisation procedure

on all scores. However, the difference is not very large. The analysis in Fig. 4.11 has indicated

that the uncertainty introduced by the timing of the spot gaugings is about the same as the

uncertainty introduced by the spatial variability. This is the case for both the downstream site

and the catchment similarity methods. This means that the additional information gained by a

spot gauging is small as it tends not to be very representative of the Q95 low flow. Because of

this, the spot gauging method does not improve the Q95 estimate much over the case of no

data (regionalisation). Also, the procedure emulated here of taking base flow measurements

the day after the discharge at a nearby gauged site is close to q95 is clearly a biased

procedure. This may be related to the temporal dynamics of stream flow. Increases in

discharge tend to be steeper than the recessions which may bias the spot gaugings if

performed on the day after the occurrence of Q95. Based on the experience of the case study

of Kroiß et al. (1996), my expectation was that the spot gauging significantly improves over

the simple regionalisation but this is apparently not the case when examined on a larger data

base. It should also be noted that the relative Performance of the spot gauging method

depends on the uncertainty introduced by the timing of the spot gaugings relative to the spatial

low flow variability. The study area of Kroiß et al. (1996) was in the north of Austria where

the low flows are very heterogeneous over a small region. It is likely that in a very

heterogeneous region, the value of spot gaugings increases. The error statistics provided in

this section are averages over 132 catchments in a large region and the relative Performance in

consistent with an assessment of the use of individual measurements for estimating low flows

in other climate regions which suggests that the method can be subject to considerable error

when only a few discharge measurements are used (Stedinger et al., 1992). It is likely that the

Performance of this method increased if I extended the sampling to a number of spot gaugings

during more than one low flow period.

4.7 Conclusions

The comparisons have shown that the downstream donor selection method performs best on

all scores. This method yields the smallest root mean Square errors, the largest coefficients of

determination, and the fewest outliers if the adjusted Q95 and q95 low flow estimates from

shortened records are compared to estimates from the füll 20 year record. The catchment
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similanty and correlation donor selection methods yield larger errors on most scores. The

Performance of these two methods is similar.

The relative Performance of the record augmentation methods depends on the donor

selection method. The more sophisticated augmentation method that uses correlations of

annual low flows increases the Performance in the case of catchment similarity donor

selection. This Performance, however, is not significantly better than the unadjusted case. For

the other donor selection methods the two record augmentation methods yield similar

Performances. Overall, the choice of donor site appears to be more important than the choice

of record augmentation method.

The value of the climate adjustment methods is very significant for record lengths

shorter than 5 years. For the downstream site method, the coefficient of determination of q95

specific low flows increases from 63 to 89% for one year records, and from 86 to 93% for

three year records. When expressed in terms of effective record lengths of q95, the gain is

236% for the one year record and 91% for the three year record. The value of the climate

adjustment methods is much smaller for records of five years and more. For five years, using

the downstream site donor selection, the gain is either 17 or 40%, depending on the

augmentation method, and is smaller or non-existent for other donor selection methods.

The method that uses spot gaugings of stream flow during a low flow period performs

slightly better than a simple regionalisation procedure in terms of predicting Q95 at an

otherwise ungauged site. The additional information gained by spot gaugings is small mainly

because they are not very representative in terms of their timing. This uncertainty has a

similar magnitude as the uncertainty introduced by the spatial variability of low flows.

Comparisons of the accuracy of q95 specific discharge estimates from short stream flow
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suggest that, on average over the study region, one year of continuous stream flow data

clearly outperforms the more sophisticated regionalisation method but the spot gauging

method provides less accurate low flow estimates than the sophisticated regionalisation

method.
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5. Overall conclusions

The objective of Section 2 was to examine the value of different seasonality indices for low

flow regionalisation. In a first step, three seasonality indices were compared. Seasonality

histograms are the most detailed indices, but classification techniques are needed to compare

seasonality among a large number of catchments. The cyclic seasonality index is a more

compact index and the spatial patterns can be delineated by visual inspection of a vector map.

The seasonality ratio is the most Condensed index and the spatial patterns are clearly

discernable when plotted on a map. The patterns of the indices obtained for Austria

correspond well with the main landscape units of Alps, low lands and hilly landscapes. In a

second step, three catchment classification methods that are based on seasonality have been

examined. Cluster analyses of seasonality histograms resulted in a first classification into two

regions corresponding to summer low flow dominated and winter low flow dominated

regimes. The second classification into three regions Singles out an additional zone of mixed

seasonality. The third classification consists of eight zones that correspond to catchments that

exhibit similar typical seasonal distributions of low flows. In a third step, the value of

seasonality indices for low flow regionalisation was examined by comparing three multiple

regression approaches which include the seasonality classifications in different ways, to the

global regression model which does not include seasonality. The overall coefficient of

determination of specific low flow discharges, q95, in cross-validation mode does not change

much between the seasonality approaches. Fitting separate modeis to three regions (summer,

winter and mixed seasonality) performs best (R2
CV = 60%), followed by separate modeis fitted

to two regions {R2
CV= 59%). Including different calibration coefficients in each of the eight

seasonality regions resulted in R^y = 58% and hence performs only slightly better than the

global regression model {R2
cy= 57%). The modeis for the summer regions (R^v= 66% and

60%), however, clearly perform better than the modeis for the winter regions {R2
CV= 51%).

The model for the catchments of the mixed seasonality type (R2
CV= 35%) does not nearly

perform as well. The residual maps of predicted minus observes q95 low flows indicates a

clearer difference between modeis than suggested by the overall coefficients of determination.

They allow a better discriminatiön between well represented situations and outliers that occur

in hydrologically complex parts of the study area. Separate regressions for three and two

regions give smaller residuals than the global model. Including different calibration

coefficients for each of the eight seasonality regions did not reduce the residuals significantly.
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This suggests that using separate regression models in different seasonality zones may be a

promising approach. This is one of the issues explored in Section 3.

In Section 3, the value of catchment grouping for low flow regionalisation has been

assessed. Four catchment grouping methods are evaluated in terms of their Performance in

predicting specific low flow discharges q95. These methods are the residual pattern approach,

weighted cluster analysis, regression trees and an approach based on the eight seasonality

regions identified in Section 2. In a first step the part of the variance (R2) of specific low

flows q95 is examined that can be explained by the grouping alone without using regressions.

In this comparison, the regression tree approach performs best and explains 62% of the spatial

variance. This means that the regression tree is an excellent classification method if one is

interested in finding groups that are most distinct in terms of both catchment charactenstics

and low flow catchment response. In a second step the goodness-of-fit of the regressions

between catchment characteristics and qgs for each of the groups identified by the various

grouping methods is compared. Here, the seasonality regions approach provides the best

goodness-of-fit of the component regression models and explains between 51 and 89% of the

spatial variance of q95, depending on the region. A global regression model explains 62% of

the variance in qg^. It uses ränge of altitude, fraction of rock, fraction of Flysch, and average

winter precipitation as the predictor variables. In a third step the predictive power of the

regional regressions based on each of the grouping methods using leave-one-out cross-

validation is examined. The cross-validation represents the regionalisation error of the low

flows one has to expect for the case of ungauged sites. Among the grouping methods tested

here, the grouping based on seasonality regions performs best and explains 70% of the

variance in a cross-validation mode. The favourable Performance of this grouping method is

iikeiy reiated to the siriking diiferences in seasonal low flcw prccesses in the study domain.

Winter low flows are a result of the retention of solid precipitation in the seasonal snow pack

of the catchments and of freezmg processes in the soils while summer low flows are related to

the relatively large moisture deficits in the lowland regions of Austria during summer. The

regression tree grouping performs second best (explained variance of 64%) and the

Performance of the residual pattern approach is similar (explained variance of 63%). The

weighted cluster analysis only explains 59% of the spatial variance of qgs which is only a

-minor improvement. over the global regression model, i.e. without using any grouping, in a

cross-validation mode (explained variance of 57%). An analysis of the sample characteristics

of all methods suggests that, again, the grouping method based on the seasonality regions has
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the most favourable characteristics although all methods tend to underestimate specific low

flow discharges in the very wet catchments.

In section 4, the value of short stream flow records in regional low flow estimation is

explored. A number of methods of adjusting Q95 estimates from short stream flow records for

climate variability are compared. The comparisons have shown that the downstream donor

selection method performs best on all scores. This method yields the smallest root mean

squared errors, the largest coefficients of determination, and the fewest outliers if the adjusted

Q95 and q95 low flow estimates from shortened records are compared to estimates from the

füll 20 year record. The catchment similarity and correlation donor selection methods yield

larger errors on most scores. The Performance of these two methods is similar. The relative

Performance of the record augmentation methods depends on the donor selection method. The

more sophisticated augmentation method that uses correlations of annual low flows increases

the Performance in the case of catchment similarity donor selection. This Performance,

however, is not significantly better than the unadjusted case. For the other donor selection

methods the two record augmentation methods yield similar Performances. Overall, the choice

of donor site appears to be more important than the choice of record augmentation method.

The value of the climate adjustment methods is very significant for record lengths shorter than

5 years. For the downstream site method, the coefficient of determination of q95 specific low

flows increases from 63 to 89% for one year records, and from 86 to 93% for three year

records. When expressed in terms of effective record lengths of q95, the gain is 236% for the

one year record and 91% for the three year record. The value of the climate adjustment

methods is much smaller for records of five years and more. For five years, using the

downstream site donor selection, the gain is either 17 or 40%, depending on the augmentation

method, and is smailer or non-existent for other doncr selecticn methods. The method that

uses spot gaugings of stream flow during a low flow period performs slightly better than a

simple regionalisation procedure in terms of predicting Q95 at an otherwise ungauged site.

The additional information gained by spot gaugmgs is small mainly because they are not very

representative in terms of their timing. This uncertainty has a similar magnitude as the

uncertainty introduced by the spatial variability of low flows. Comparisons of the accuracy of

q95 specific discharge estimates from short stream flow records in this section with more

sophisticated regionalisation procedures from Section 3 suggest that, on average over the

study region, one year of continuous stream flow data clearly outperforms the more

sophisticated regionalisation method but the spot gauging method provides less accurate low

flow estimates than the sophisticated regionalisation method.
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The analyses of the regional low flow processes and the comparisons of the

regionalisation methods in this thesis suggest that process understanding can indeed assist in

regionalising low flow characteristics to provide more accurate estimates than existing

Standard methods. There are a number of logical extensions of the work of this thesis. The

most obvious, and perhaps most important, extension is to examine regionalisation methods

for other low flow characteristics. While this thesis has examined low flows associated with a

certain exceedance probability, Q95, low flow characteristics associated with a certain

duration and characteristics representing the stream flow dynamics are also of interest in

water resources management and engineering. It is likely that the process based methods of

this thesis can be profitably used in these extensions.
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