
T H E S I S

The development of
homomorphic cryptography
From RSA to Gentry’s privacy homomorphism

presented to the Institute of

Discrete Mathematics and Geometry
Vienna University of Technology

Supervisor

Univ.Prof. Dipl.-Ing. Dr.techn. Michael Drmota

by

Sigrun Goluch
Taborstraße 71/3

1020 Wien

Date Signature

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Contents

1 Introduction 1

2 Preliminaries 3

2.1 Algebraic and Number-Theoretic Foundation 3

2.1.1 Groups . 3

2.1.2 Homomorphisms . 5

2.1.3 Congruences . 6

2.1.4 Primes . 8

2.1.5 Fermat’s little and Euler’s theorem 9

2.1.6 Rings . 12

2.1.7 Lattices . 15

2.2 Complexity theory . 21

2.2.1 Computational Problems . 22

2.2.2 The Integer Factorization problem 25

2.2.3 The Composite Residuosity Problem 26

2.2.4 Lattice Problems . 26

2.3 Measure Theoretic Probability . 28

3 Public-key Systems 31

3.1 Modern Encryption . 32

3.2 Probabilistic and Deterministic Encryption 33

3.3 Definition of a Public-Key Cryptosystem 35

3.4 Notions of Security . 36

4 Homomorphic Encryption 39

4.1 Definition of a homomorphic encryption scheme 39

4.2 Example of an additively homomorphic scheme 43

5 RSA - A Multiplicatively Homomorphic Scheme 47

5.1 The Definition of the RSA Cryptosystem 47

5.2 Multiplicative Homomorphic Property 49

5.3 Security of RSA . 50

5.4 A Worked Example . 51

5.4.1 Encoding a real message with RSA 53

i

Contents

6 Paillier - An Additively Homomorphic Scheme 57
6.1 The Definition of Paillier’s Cryptosystem 57
6.2 Additive Homomorphic Property . 58
6.3 The nth Residue . 59
6.4 Paillier’s Encryption Function . 61
6.5 The nth Residue Class . 62
6.6 The Intractability of the Scheme . 64

6.6.1 CLASS[n, g] . 65
6.6.2 The Computational Hierarchy of Paillier’s Encryption Scheme 66

6.7 A Worked Example . 68

7 Gentry - An Algebraically Homomorphic Scheme 71
7.1 The Somewhat Homomorphic Scheme 72

7.1.1 Correctness of the SHS . 74
7.1.2 Maximizing Circuit Depth . 77
7.1.3 Improving the Decryption Procedure 78
7.1.4 Security of the SHS . 80
7.1.5 Decryption Complexity . 81

7.2 Squashing the Decryption Circuit . 82
7.2.1 The Squashing Transformation 83
7.2.2 Security . 86

7.3 The Fully Homomorphic Encryption Scheme 87
7.3.1 Bootstrappability and its Prospects 87
7.3.2 From Leveled Fully Homomorphic to Fully Homomorphic . . 90

Appendix 92

A Instantiation of Recrypt 95

List of Symbols 97

List of Tables, List of Figures 99

Index 101

Bibliography 104

ii

1. Introduction

Ever since the discovery of public-key cryptography by Diffie and Hellman [12] in
the year 1976, the necessity for total privacy of digital data has become stronger
and stronger, especially since the internet has become an indispensable part of both
our private and work lives. Naturally, the question for more and more secure en-
cryption schemes arose in the past few decades. One way to achieve confidentiality
in applications, such as online banking, electronic voting, virtual networks etc. are
homomorphic and especially fully homomorphic cryptographic schemes.

Fully homomorphic cryptosystems or privacy homomorphisms were introduced by
Rivest, Adleman, and Dertouzous in 1978 [37]. In their paper they asked for a way
to allow a third, untrusted party to carry out extensive computation on encrypted
data, without having to decrypt first. Unfortunately, shortly after its publication,
major security flaws were found in the original proposed schemes of Rivest et al.
The search for fully homomorphic cryptosystems began.

The aim of homomorphic cryptography is to ensure privacy of data in communica-
tion and storage processes, such as the ability to delegate computations to untrusted
parties. If a user could take a problem defined in one algebraic system and encode
it into a problem in a different algebraic system in a way that decoding back to the
original algebraic system is hard, then the user could encode expensive computations
and send them to the untrusted party. This untrusted party then performs the cor-
responding computation in the second algebraic system, returning the result to the
user. Upon receiving the result, the user can decode it into a solution in the original
algebraic system, while the untrusted party learns nothing of which computation
was actually performed.

Over the years a lot of either additively (Paillier [35] 1999, Goldwasser-Micali [23]
1984, Naccache-Stern [34] 1998) or multiplicatively (El Gamal [14] 1984, RSA [37]
1978) homomorphic schemes have been introduced to the world. The demand for
a fully homomorphic cryptosystem rose again in 1991 when Feigenbaum et al. [15]
asked: ”Is there an encryption function Enc() such that both Enc(x+y) and Enc(x·y)
are easy to compute from Enc(x) and Enc(y)?” and was answered in 2009. Craig
Gentry published his fully homomorphic cryptosystem [19] in the summer of 2009.
Although not yet useful for practical applications, it ended the long search for the
in 1978 emerged question about the existence of privacy homomorphisms.

This thesis provides an overview of three cryptographic systems, starting with the

1

1 Introduction

first ever published partial homomorphic encryption scheme. This is followed by an
additively homomorphic one and ends with the first ever published fully homomor-
phic system. Prior to that of course the needed mathematic background necessary
to understand the schemes.

Chapter 2 presents an overview of the schemes underlying mathematic foundations,
such as groups, rings, primes and lattices. It is split into three sections: algebraic
and number theoretic foundation (Section 2.1), complexity theory (Section 2.2) and
a short introduction of measure theoretic probability (Section 2.3).

The central subject of chapter 3 are public key cryptosystems, which build the
computational foundation for this thesis, and the consequential notions of security.

The following chapter 4 provides the definition for homomorphic public key cryp-
tosystems and especially fully homomorphic schemes, as well as some examples of
the range of application for homomorphic cryptography.

Chapters 5, 6 and 7 each describe a (fully) homomorphic encryption scheme in de-
tail.
Starting with RSA (chapter 5) since this was actually the first discovered homomor-
phic scheme, representing the branch of multiplicatively homomorphic cryptosystem.
The second scheme is Paillier’s cryptosystem (chapter 6). It is a homomorphic en-
cryption scheme with respect to addition, which can be used to realize such things
as electronic voting. An example of this usage can be found in section 4.2.
The last scheme is the most compelling one. Gentry’s scheme (chapter 7) is the first
ever published fully homomorphic cryptosystem, meaning under both multiplica-
tion and addition, and opened the doors for an ample amount of fully homomorphic
schemes which followed Gentry’s progress. They all have one thing in common, they
use something called bootstrapping to achieve the state of an fully homomorphic
encryption scheme. Unfortunately for now the system is far too extensive to be used
in realistic applications.

[...]Visions of a fully homomorphic cryptosystem have been dancing in
cryptographers’ heads for thirty years. I never expected to see one. It
will be years before a sufficient number of cryptographers examine the
algorithm that we can have any confidence that the scheme is secure,
but – practicality be damned – this is an amazing piece of work. (Bruce
Schneier)

2

2. Preliminaries

This chapter is a collection of basic mathematical material from the mathematical
fields number theory and abstract algebra as well as some fundamental statements
on computational theory, especially complexity. The therein contained definitions
and theorems will be used throughout this thesis. As the main focus of this thesis
lies on the description of homomorphic public key cryptosystems, this chapter states
the most important definitions for the comprehension of the schemes and definitions
described in the chapters 3 to 7. For a more elaborate study of cryptographic
foundations see the referenced publications.

2.1. Algebraic and Number-Theoretic Foundation

This section will give an algebraic and number theoretic basis for the homomorphic
cryptosystems described in chapter 5, 6 and 7. The needed material is taken from the
standard works [9, 13, 17, 24, 30]. If not stated otherwise, most theorems and proofs
can be found there. The following definitions are well known and basic constructs
for mathematicians. For the sake of completeness they shall be outlined in this
section.

2.1.1. Groups

Definition 2.1. A group (G, ∗) is a nonempty set G together with a binary oper-
ation ∗ : G×G→ G, (a, b) 7→ a ∗ b such that the following conditions hold:

• Associativity :

∀ a, b, c ∈ G : a ∗ (b ∗ c) = (a ∗ b) ∗ c

• Existence of an identity element e:

∃ e ∈ G ∀ a ∈ G : a ∗ e = e ∗ a = a

• Existence of an inverse element a′:

∀ a ∈ G ∃ a′ ∈ G : a ∗ a′ = a′ ∗ a = e

3

2 Preliminaries

If the operation a ∗ b is commutative, that is, if a ∗ b = b ∗ a then the group is said
to be abelian.

A finite group G is a group which (as a set) is finite. The order of a finite group
(denoted as |G|) is the number of elements in it.
Let a ∈ G. If there exists a positive integer n so that an = e, then a is said to
have finite order, and the smallest such positive integer n is called the order of
a, denoted |a| = n..

Subgroups are subsets of groups which are groups of their own right, in the following
sense:
A subset H of a group G is said to be a subgroup if, with the same operation (∗)
and identity element (e), (H, ∗) is a group.

Definition 2.2. Let G be a group, and let a be any element of G. The set
〈a〉 = {x ∈ G | x = an for some n ∈ Z} is called a cyclic subgroup generated by
a.
The group G is called cyclic group if there exists an element a ∈ G so that G = 〈a〉.
In this case a is called a generator of G.

Theorem 2.3 (Lagrange). Let G be a finite group. Let H be a subgroup of G.
Then the order of H divides the order of G.
Particularly, the order of an element x ∈ G divides the order of G itself.

Proof. The left coset of H by g ∈ G is per definition

gH = {gh : h ∈ H}

Likewise, the right coset of H by g is Hg. Then the collection of all left cosets of H
forms a partition of G, which means that every element of G lies in some left coset
of H and the all the left cosets are pairwise disjoint. The first statement obviously
holds because x = x · e ∈ xH. As for the second, suppose xH ∩ yH 6= ∅ for x, y ∈ G.
Then there exists some h1, h2 ∈ H with xh1 = yh2 multiplying both sides with h−1

2

yields

(xh1)h−1
2 = (yh2)h−1

2

= y(h2h
−1
2) = y · e = y

Since H is a group itself h1h
−1
2 ∈ H. Then with h1h

−1
2 = z:

yH = {yh : h ∈ H} = {(xz)h : h ∈ H} = {x(zh) : h ∈ H}

Thus, yH = xH, since the relationship between x and y is symmetrical. Therefore
the left cosets of H in G form a partition of G.

4

2.1 Algebraic and Number-Theoretic Foundation

The next step is to show that the order of the left cosets are identical, by demon-
strating a bijection from H to xH for any x ∈ G. Now, define the map

f : H → xH

g 7→ xg

If f(g) = f(g′), then by definition xg = xg′, multiplying both sides with x−1 yields
g = g′. What is left to be shown is the surjectivity of the above map. That is again
directly deduced from the definition of f , since f(h) = xh. Thus, all the left cosets
of H have the same cardinality as H itself.
Since G is the disjoint union of the left cosets of H, |H| divides |G|.

2.1.2. Homomorphisms

Group homomorphisms are the maps of interest among groups and the basis of
homomorphic cryptosystems.

Definition 2.4. A function f : G −→ H from one group G to another H is a
(group) homomorphism if the group operation is preserved in the sense that

f(g1 ∗G g2) = f(g1) ∗H f(g2)

for all g1, g2 ∈ G. Let eG be the identity in G and eH the identity in H. A group
homomorphism f maps eG to eH : f(eG) = f(eH).
Note that f must preserve the inverse map due to:

f(g)f(g−1) = f(gg−1) = f(eG) , therefore: f(g)−1 = f(g−1).

The kernel of a homomorphism f is

ker f = {g ∈ G : f(g) = eh}

The image of f is like the image of any function

im f = {h ∈ H : ∃g ∈ G such that f(g) = h}

If a group homomorphism f : G → H is surjective, then H is said to be a homo-
morphic image of G.
If a group homomorphism f : G→ H has an inverse homomorphism, then f is said
to be an isomorphism, and G and H are said to be isomorphic, denoted as

G ∼= H

If a group homomorphism is a bijection, then it has an inverse which is a group
homomorphism, so it is an isomorphism.

Example (Exponential functions for groups). Let G be any group, and let a be
any element of G. Define f : Z −→ G by f(n) = an, for all n ∈ Z. This is a group
homomorphism from Z to G.

5

2 Preliminaries

2.1.3. Congruences

For the study of almost any public key cryptosystem the theory of congruences is of
crucial importance. Recall that a relation R on a set S is a subset of the Cartesian
product S × S, denoted as x R y, if the ordered pair (x, y) lies in the subset R of
S × S. Now:

Definition 2.5. Let A be a set and ∼ be a binary relation on A. ∼ is called an
equivalence relation if and only if for all a, b, c ∈ A, all the following holds true:

1. Reflexivity: a ∼ a
2. Symmetry: if a ∼ b then b ∼ a
3. Transitivity: if a ∼ b and b ∼ c then a ∼ c

The equivalence class of a under ∼, denoted [a] or a, is defined as a = {b ∈ A | a ∼
b}. Because of the reflexivity it holds that a is in a. It also holds that any two
equivalence classes, a, b are either equal or disjoint. It follows that the set of all
equivalence classes of A (or any other basic set) forms a partition of A.

Definition 2.6. Let n be a fixed positive integer. Two integers a and b are said
to be congruent modulo n symbolized by a ≡ b (mod n), if n|(a − b); that is,
provided that a− b = kn for some integer k.

Proposition 2.7. For a fixed modulus n equality modulo n is an equivalence relation:

1. Reflexivity: a ≡ a mod n
2. Symmetry: if a ≡ b mod n then b ≡ a mod n
3. Transitivity: if a ≡ b mod n and b ≡ c mod n then a ≡ c mod n

The congruence class or residue class of an integer x mod n denoted x, is the
set of all integers equal to x mod n:

x = {y ∈ Z | y ≡ x mod n} = x+ nZ

The integers mod n, denoted Zn, is the set of all congruence classes modulo n.

Zn = {0, ..., n− 1}

for n 6= 0 then |Zn| = n.

Corollary 2.8. Congruences inherit many basic properties from ordinary arith-
metics, simply because x = y implies x = y mod n:

• Distributivity: x(y + z) mod n = xy + xz mod n
• Associativity of addition: (x+ y) + z mod n = x+ (y + z) mod n
• Associativity of multiplication: (xy)z mod n = x(yz) mod n
• Property of 1: 1 · x mod n = x · 1 mod n = x mod n

6

2.1 Algebraic and Number-Theoretic Foundation

• Property of 0: 0 + x mod n = x+ 0 mod n = x mod n

Definition 2.9. The greatest common divisor of two non-zero integers, written
as gcd(a,b), is the largest positive integer that divides a and b without remainder.
The least common multiple of two integers, written as lcm(a,b) is the smallest
positive integer that is a multiple of both.

With the above stated properties it is possible to define addition and multiplication
on congruence classes as follows:

a+ b = a+ b, a · b = a · b.

In this context there are two special cases, taken from group theory.
A multiplicative inverse mod n to an integer a is an integer b (if it exists) so
that

a · b = 1 mod n

The multiplicative order mod n to an integer a is the smallest positive integer
k so that

ak = 1 mod n

it is denoted ordn(a).

Proposition 2.10. An integer a has a multiplicative inverse modulo n, if and only
if gcd(a, n) = 1

Proof. From gcd(a, n) = 1 follows that here are integers r, s so that ra + sn = 1,
and

ra = 1− sn = 1 mod n

The other implication is trivial.

It makes sense to define a specified notation for the elements of Zn which are invert-
ible for reasons which will become obvious later on. Thus,

Z∗n = {x ∈ Zn : gcd(x, n) = 1}

The set Z∗n satisfies all group requirements under the ring-multiplication, (Z∗n, ·)(see
Def. 2.1) and is therefore called the multiplicative group or group of units of
Zn.

Definition 2.11. For a positive integer n, the Euler totient-function ϕ(n) is
the number of integers b so that 1 ≤ b ≤ n and gcd(b, n) = 1. For example,
ϕ(1) = 1, ϕ(2) = 1, ϕ(3) = 2 and ϕ(4) = 2. Note that

ϕ(n) = |Z∗n|

7

2 Preliminaries

2.1.4. Primes

As prime numbers are an essential topic concerning almost every cryptographic
topic, this section gives a short introduction to prime numbers. There are countless
numbers of books which specialize in prime number theory, e.g. [9, 17], they are
referred for further information.

Definition 2.12. An integer p > 1 is called a prime number if its only positive
divisors are 1 and p

There is a very interesting theorem concerning the existence of prime numbers in
a special interval. This turns out to be useful when searching for prime number
factors of a composite number.

Theorem 2.13. A positive integer n is prime, if and only if it is not divisible by
any of the integers d with 1 < d ≤

√
n

Proof. Suppose n has a proper factorization n = d · e, where d ≤ e. Then

d =
n

e
≤ n

d

hence d2 ≤ n, so d ≤
√
n.

The previous theorem suggests a procedure for primality testing called trial divi-
sion. Instead of trying to divide a composite number n by all integers d = 1, 2, ..., n
it suffices to try only those in the range of d = 1, 2, ...,

√
n.

The following theorem shows the importance of prime numbers in the mathematical
world.

Theorem 2.14 (Fundamental Theorem of Arithmetic). Every positive integer n
can be expressed as a unique product of primes, apart from the order in which the
factors occur.

n = pk11 p
a2
2 ...p

ki
i

where for i = 1, 2..., r, each ki is a positive integer and each pi is a prime, with
p1 < p2 < ... < pk.

There are multiple ways of proving the correctness of this theorem. It is up to the
reader to study those in literature (e.g. [9, 17]), referenced in the introduction of
this chapter.

Definition 2.15. Two integers a and b are said to be coprime or relatively prime,
if they have no common positive factor other than 1 or, equivalently, if gcd(a, b) = 1.

8

2.1 Algebraic and Number-Theoretic Foundation

Theorem 2.16. A prime p divides a product a · b if and only if either p|a or p|b.

Proof. If p|a the proof is complete, otherwise since p is prime, and gcd(p, a) 6= p, it
must be that gcd(p, a) = 1. Then let r, s be integers so that 1 = rp + sa and let
ab = kp. Then

b = b · 1 = b(rp+ sa) = p · (rb+ sk)

so b is a multiple of p.

2.1.5. Fermat’s little and Euler’s theorem

This section provides two very significant theorems of the field cryptography. First
Fermat’s little theorem which was first stated 370 years ago in 1640 by Pierre de
Fermat will be presented. Its first published proof by Leonard Euler can be found
in the 1736 published paper ”Theorematum Quorundam ad Numeros Primos Spec-
tantium Demonstratio”. Euler himself found a generalization of Fermat’s theorem
in the same year. Fermat’s little theorem is the basis of the self-referential primality
test : Fermat primality test.

Theorem 2.17 (Fermat’s little theorem). For any prime p, and any integer a 6≡
0 mod p, we have ap−1 ≡ 1 mod p. Moreover, for any integer a, we have ap ≡
a mod p.

Proof. It is easily shown that the set Z∗p = {1, 2, . . . , p − 1}, with the operation
of multiplication forms a group. Assume that 1 ≤ a ≤ p − 1, k = |a|, so that
ak ≡ 1 mod p. Using Lagrange’s theorem (2.3), k divides the order of Z∗p, which is
p− 1. Then

ap−1 ≡ akm ≡ (ak)m ≡ 1m ≡ 1 mod p

The next theorem is very useful in various ways. It will later be used to prove the
well known Euler theorem (see Theorem 2.20). It is also very useful when solving
a system of equations. In computer science it is used to make time-consuming
computations much faster.

Theorem 2.18 (Chinese remainder theorem). Let n1, ..., nk be pairwise relatively
prime, positive integers, and let a1, ..., ak be arbitrary integers. Then there exists
an integer z so that

z ≡ ai mod ni (i = 1, ..., k)

Moreover, any other integer z′ is also a solution of these congruences, if and only if
z ≡ z′ mod n, where n :=

∏k
i=1 ni.

9

2 Preliminaries

Proof. Let n :=
∏k
i=1 ni and n′i := n

ni
(i = 1, ..., k). Due to the fact that the ni’s are

pairwise prime, it follows that gcd(ni, n
′
i) = 1 for i = 1, ..., k. Therefore, let

mi := (n′i)
−1 mod ni and wi := n′imi (i = 1, ..., k)

By construction it holds wi ≡ 1 mod ni for i = 1, ..., k and wi ≡ 0 mod nj for
j = 1, ..., k and j 6= i. Therefore wi ≡ δij mod nj

with δij :=

{
1 if i = j
0 if i 6= j

Now, let z :=
∑k

i=1wiai. Obviously

z ≡
k∑
i=1

wiai ≡
k∑
i=1

δijai ≡ aj mod nj for j = 1, ..., k.

Then z is the solution of the given system of congruences.
Moreover, if z′ ≡ z mod n, then since ni|n for i = 1, ..., k, we see that z′ ≡ z ≡
ai mod ni for i = 1, ..., k, then z′ also solves the system of congruences.
Finally, if z′ solves the system, then z′ ≡ z mod ni for i = 1, ..., k. That is, ni|(z′ −
z) for i = 1, ..., k. Since n1, ..., nk are pairwise relatively prime, this implies that
n|(z′ − z), or equivalently, z′ ≡ z mod n.

Remark. In many books we find the Chinese remainder theorem in the following
form:
Let n be the product of two relatively prime integers p and q, then Zn ∼= Zp × Zq
and Z∗n ∼= Z∗p × Z∗q .
Moreover, let f be the function that maps elements x ∈ 0, ..., n− 1 to pairs (xp, xq)
with xp ∈ 0, ..., p− 1 and xq ∈ 0, ..., q − 1 defined by f(x) = ([x mod p], [x mod q]).
Then f is an isomorphism from Zn to Zp × Zq as well as an isomorphism from Z∗n
to Z∗p × Z∗q

The Chinese remainder theorem is very useful when computing products (or even ex-
ponentiations) modulo n, when n is the product of distinct primes p, q. It shows that
multiplication and addition can be ”transformed” to analogous operations modulo
p and q, thus making those computations less time consuming. For better under-
standing see the next example.

Example. We wish to compute the product 11 · 8 mod 15 in Z∗15. As a result of the
Chinese remainder theorem it holds that Z∗15

∼= Z∗5 × Z∗3 We map 11↔ (1, 2), since
11 mod 5 = 1 and 11 mod 3 = 2, respectively 8↔ (3, 2). Then,

[11 · 8 mod 15]↔ (1, 2) · (3, 2) = ([1 · 3 mod 5], [2 · 2 mod 3]) = (3, 1).

Now, it is easy to show that (3, 1)↔ 13, which is the solution of 11 · 8 = 13 mod 15.

Before stating the next theorem, some useful properties of ϕ(n) are listed.

10

2.1 Algebraic and Number-Theoretic Foundation

Corollary 2.19. Let ϕ(n) be the Euler totient function and n be an integer. Then
ϕ(n) has the following properties:

1. ϕ is a multiplicative function: if m and n are coprime then ϕ(mn) = ϕ(m)ϕ(n).
2. For p is prime and k ≥ 1 : ϕ(pa) = (p− 1)pa−1.
3. ϕ(nk) = nk−1ϕ(n).

Proof. (1) Consider

ρ :Zmn → Zm × Zn (2.1)

[a]mn 7→ ([a]m, [a]n) (2.2)

First, note that the definition 2.19 of ρ is distinct, since a ≡ a′ mod mn implies a ≡
a′ mod m and a ≡ a′ mod n. Second according to the Chinese remainder theorem
(2.18), the map ρ is bijective. Moreover, it is easy to see that gcd(a,mn) = 1, if and
only if gcd(a,m) = 1 and gcd(a, n) = 1. Therefore, ρ carries Z∗mn injectively onto
Z∗m × Z∗n. Hence it holds that |Z∗mn| = |Z∗m × Z∗n|.

(2) Let m = pa be a power of a prime, the numbers that have a common factor with
m are

1 · p, 2 · p, ..., pa−1 · p

of which there are precisely pa−1. Thus, ϕ(pa) = pa − pa−1 = pa−1(p− 1).

(3) follows directly from (1) and (2) and the Fundamental Theorem of Arithmetic.

The next theorem is a generalization of Fermat’s little theorem:

Theorem 2.20 (Euler’s theorem). For x relatively prime to a positive integer n
(gcd(x, n) = 1),

xϕ(n) = 1 mod n

The special case that n is a prime is Fermat’s little theorem 2.17.

Proof. The numbers a which are relatively prime to n form a group under multi-
plication mod n (Z∗n). The order of Z∗n is ϕ(n). Let a ∈ Z∗n, then the order of a
must have a multiple equal the size of Z∗n. |a| = k is the size of the subgroup of Z∗n
generated by a, and Lagrange’s theorem (2.3) states that the size of any subgroup
of Z∗n divides ϕ(n).
Thus for some integer m > 0 : m · k = ϕ(n). Therefore

aϕ(n) = am·k = (ak)m = 1m = 1 mod n

11

2 Preliminaries

Definition 2.21. For a positive integer n, λ(n) denotes the least positive integer t
such that xt ≡ 1 (mod n) for all integers x with gcd(x, n) = 1. λ(n) is the so-called
Carmichael Function

Again there are some interesting properties to that function [10]:

1. For p is prime: λ(p) = ϕ(p) = (p− 1)
2. Let n = pa11 p

a2
2 ...p

ak
k be the prime factorization of n, then

λ(n) = lcm(λ(pa11), λ(pa22), ..., λ(pakk))

with: λ(paii) =

{
2ai−2 for pi = 2, a > 2

(pi − 1)pai−1
i otherwise

Theorem 2.22 (Carmichael’s Theorem). For two primes p, q > 2 and n = pq. For
each x ∈ Z∗n2 :

xλ(n) = 1 mod n (2.3)

xnλ(n) = 1 mod n2 (2.4)

Proof. Assume that e be the smallest integer so that xe = 1 mod n for all x ∈ Z∗n2 ,
then e is a multiple of the element order of all x in Z∗n2 . In equation (2.3) e = λ(n) =
lcm(p− 1, q − 1), due to the fact that the group order of Z∗n is per definition

|Z∗n| = ϕ(n) = ϕ(p · q) = ϕ(p) · ϕ(q) = (p− 1) · (q − 1)

and Lagrange’s theorem (2.3) tells us that the order of x is a divisor of the group
order ϕ(n) = (p− 1)(q − 1).
The same argument applies to equation (2.4). The only difference lies in the group
order of Z∗n2 being ∣∣Z∗n2

∣∣ = ϕ(n2) = n · ϕ(n) = n · (p− 1) · (q − 1) (2.5)

and the fact that the order of a group element x ∈ Z∗n2 divides the order in equation
(2.5). Hence the exponent is n · λ(n).

2.1.6. Rings

Definition 2.23. Let R be a set on which two binary operations are defined, called
addition and multiplication, and denoted by + : G × G → G, (a, b) 7→ a + b and
· : G × G → G, (a, b) 7→ a · b. Then (R,+, ·) is called a commutative ring with
respect to these operations, if the following properties hold:

12

2.1 Algebraic and Number-Theoretic Foundation

• Associative laws:

∀a, b, c ∈ R : a+ (b+ c) = (a+ b) + c

∀a, b, c ∈ R : a · (b · c) = (a · b) · c

• Commutative laws:

∀a, b ∈ R : a+ b = b+ a

∀a, b ∈ R : a · b = b · a

• Distributive laws:

∀a, b, c ∈ R : a · (b+ c) = a · b+ a · c
(a+ b) · c = a · c+ b · c

• Additive identity:
∃0 ∈ R ∀a ∈ R : a+ 0 = 0 + a = a

• Additive inverses:

∀a ∈ R ∃(−a) ∈ R : a+ (−a) = (−a) + a = 0

The commutative ring R is called a commutative ring with identity if it contains
an element 1, assumed to be different from 0, so that for all a ∈ R, a · 1 = 1 · a = a.
In this case, 1 is called a multiplicative identity element or the unit.
A nonzero element a ∈ R is called a zero divisor if there exists an element b 6= 0
so that a · b = 0 or b · a = 0.
An integral domain is a commutative ring with identity so that for any two ele-
ments a, b ∈ R, a · b = 0 implies either a = 0 or b = 0.

Example. The integers mod m, denoted Zm, form a commutative ring with identity.

Definition 2.24. For a ring (R,+, ·), let (R,+) be the underlying additive group.
A subset I is called an ideal of R, I ER, if the following conditions hold:

• (I,+) is a subgroup of (R,+)
• for all x ∈ I and for all r ∈ R, x · r and r · x are in I.

The sum and product of two ideals I and J are {i + j : i ∈ I, j ∈ J} and the
additive closure of {i · j : i ∈ I, j ∈ J} respectively.
A principal ideal is an ideal I E R that is generated by a single element a of R,
i.e. (a) = I.
Two ideals I, J in the commutative ring R are called coprime or relatively prime
if I + J = R.

Next, a construction very similar to the factor groups of group theory follows. It is
called a quotient ring:

13

2 Preliminaries

Definition 2.25. Let R be a commutative ring with unit 1. Let I be an ideal in
R, I E R. The quotient ring R/I is the set of cosets

r + I = {r + i : i ∈ I}

with operations of addition and multiplication on R/I defined by

(r + I) + (s+ I) = = (r + s) + I

(r + I) · (s+ I) = (r · s) + I

Example. The zero in the quotient ring is 0R/I = 0+I, and the unit is 1R/I = 1+I.
Let R = Z and I = 8Z (the multiples of 8), then the quotient ring is Z8 = Z/8Z.

Definition 2.26. Let R be a commutative ring. The set of all polynomials

cnx
n + cn−1x

n−q + ...+ c1x+ c0

in an indeterminate x with coefficients c0, c1, ..., cn in the ring R themselves consti-
tute a ring, which will be denoted R[x].

Let p(x) ∈ R[x] be a monic polynomial of degree n

p(x) = xn + pn−1x
n−1 + ...+ p0.

Of special interest will be the ring of all polynomials modulo p(x) denoted as

Rp := R[x]/p(x)

The following definition concerns a generalization of an ideal, namely a fractional
ideal in a number field. Before it is possible to define those fractional ideals, it is
necessary to remember some basic structures.

Definition 2.27. Let R be an integral domain. We can define addition and multi-
plication for fractions a

b (a, b ∈ R, b 6= 0) as follows

a

b
+
c

d
=
a · d+ b · c

b · c
a

b
· c
d

=
a · c
b · d

.

Two fractions
a

b
,
c

d
are said to be equivalent if a · d = b · c. This equivalence

relation is compatible with the operations +, ·. The quotient set by the above
defined equivalence relation is the field of fractions of R. It is also the smallest
field in which R can be embedded.

Example. The field of fractions of the ring of integers Z is the field of rationals Q.

Definition 2.28. Let R ⊆ K be an integral domain and K a field. M ⊆ K is called
a R-module, if following conditions hold:

14

2.1 Algebraic and Number-Theoretic Foundation

• (M,+) forms a group,
• for all a ∈M and for all r ∈ R, r · a is in M .

Now let R again be an integral domain, but now K be its field of fractions. A
R-module I 6= 0, I ⊆ K is called a fractional ideal if there exists an a ∈ R, a 6= 0
such that a · I ⊆ R is an ideal.

Example. For a given n ∈ N the set I := { an |a ∈ Z} of all rational numbers with
denominator n is a fractional ideal in Q.

Definition 2.29. If R is an integral domain with quotient field K, then the set of
all fractional ideals of R forms a commutative monoid, with identity R and multi-
plication

I · J =

{
n∑
i=1

aibi | ai ∈ I; bi ∈ J, n ∈ N

}
.

A fractional ideal I E R is said to be invertible if I · J = R for some fractional
ideal J E R. The inverse of an invertible fractional ideal is unique.

I−1 = {a ∈ K | aI ⊂ R}.

Example. Every principal ideal I = (a) with a 6= 0 in an integral domain R is
invertible. Let K be the quotient field of R, then I−1 = Rb ⊂ K with b = 1R/a

2.1.7. Lattices

Lattices play a very important role in modern cryptography, especially since the so
called post-quantum cryptography is of great interest to the cryptographers of this
time. Despite their apparent simplicity, lattices hide a rich combinatorial structure.
It is believed that lattice-based cryptography and therefore their underlying hard
problems are secure against large quantum computer attacks, unlike the factoring
problem which was discovered to be solvable in polynomial time on a quantum
computer by Shor in 1994 [40].
In this thesis lattices are the fundament of the first ever published fully homomorphic
encryption scheme [19]. The basic definitions needed to understand lattice based
cryptography are taken from [5, 32], as are the proofs unless stated otherwise.

Notation: In the following, vectors are written in column form using bold lower-case
letters, e.g. ~v; matrices are written as bold capital letters, e.g., B; ~bi is the ith

column. ‖~v‖ denotes the Euclidean length of a vector ~v. For matrix B, ‖B‖ denotes
the length of the longest column vector in B.

15

2 Preliminaries

Definition 2.30. Let Rm be the m-dimensional Euclidean space. A lattice in Rm
is the set

L(~b1, ...,~bn) =

{
n∑
i=1

xi~bi : xi ∈ Z

}
= {B~x : ~x ∈ Zn} ⊂ span(B) = {B~x : ~x ∈ Rn}

of all the integer linear combinations of n linearly independent vectors {~b1, ...,~bn}
in Rm (m ≥ n). n is called the rank and m the dimension of the lattice. The
sequence of vectors {~b1, ...,~bn} is called a lattice basis. It is represented as the
following matrix:

B = [~b1, ...,~bn] ∈ Rm×n, m ≥ n

If n = m, the lattice is called full-dimensional or full rank. Note that a lattice
has many different bases. Thus, lattices can be characterized without reference to
any basis.

Example.

~b1 =

[
1

2

]
~b∗1 =

[
2

1

]
~b2 =

[
1

−1

]
~b∗2 =

[
3

3

]
are 2 bases for the 2-dimensional lattice shown in Fig 2.1.

~b1

~b2

~b∗2

~b∗1

Figure 2.1.: Example of two different bases of the same lattice

16

2.1 Algebraic and Number-Theoretic Foundation

A lattice can be defined as a non-empty set Λ of Rn which is closed under subtraction
(if ~x ∈ Λ and ~y ∈ Λ, then also ~x − ~y ∈ Λ) and discrete (there exists a positive real
Λ > 0 so that the distance between any two lattice vectors is at least Λ). Notice
that Λ always contains ~0 = ~x − ~x and is closed under complement (if ~x ∈ Λ then
−~x = ~0 − ~x ∈ Λ) and addition (if ~x, ~y ∈ Λ then ~x + ~y ∈ Λ). Therefore, it is an
additive subgroup of Rn. In fact, an alternative formulation of the definition of
lattice is a discrete additive subgroup of Rn.

Definition 2.31. A basis B = (~bi, ...,~bn) ∈ Zn×n is said to be in Hermite Normal
Form (HNF) if

bi,j =

{
0 for i > j
0 ≤ bi,j ≤ bi,i otherwise

(2.6)

The HNF of a lattice is unique and can be computed in polynomial time given any
basis which makes it a worst-case basis.

An example of n-dimensional lattice is given by the set Zn of all integer vectors. A
possible basis are the standard unit vectors ~ei = [0, .., ., 1, 0, ..., 0]T .

It is easy to see that span(B) does not depend on a particular basis, i.e., if B and
B̃ generate the same lattice then span(B) = span(B̃), so for any lattice Λ = L(B),
it is possible to define the linear span, span(Λ) without reference to any basis. The
following statements hold:

• B is a basis of span(B) as a vector space.
• The rank of lattice L(B) equals the dimension of span(B) as a vector space over

R.
• The rank of lattice L(B) is a lattice invariant.

It is obvious that any set of n linearly independent lattice vectors ~c1, ...,~cn ∈ L(B)
is a basis of span(B), but not necessarily a lattice basis for L(B).

Example.

~c1 = ~b1 +~b2 =

[
2

1

]
~c2 = ~b1 −~b2 =

[
0

3

]

C is a basis of the plane R2 = span(~b1,~b2) since ~c1,~c2 are linearly independent. It
is not a basis of the lattice L(B). For this see fig.2.2

17

2 Preliminaries

~b1

~b2

~c2

~c1

Figure 2.2.: (~c1,~c2) is not a basis for L(B)

There is a simple geometric characterization for linearly independent lattice vectors
that generate the whole lattice:

Definition 2.32. Associated to n linearly independent lattice vectors C = [~c1, ..., cn], ci ∈
L(B) ⊂ Rm for all i = 1, ..., n, is the half open fundamental parallelepiped

P(C) =

{
C~x : xi ∈

(
−1

2
,
1

2

]}
.

Then, C is a lattice basis for L(B), if and only if P(C) does not contain any lattice
vectors other than the origin.

For a vector ~v ∈ Rn, ~v mod B is the unique vector ~̃v ∈ P(B) so that ~v − ~̃v ∈ L.
Given ~v and B, ~v mod B can be computed efficiently as

~v mod B = ~v −B ·
⌊
B−1 · ~v

⌉
= B ·

[
B−1 · ~v

]
,

where b·e rounds the coefficients of a vector to the nearest integers, and [·] denotes
the distance between the coefficients of a vector and the nearest integers.

Example. ~q =

13/5
18/7
7/3

 ; [~q] =

−2/5
−3/7
1/3

 ; b~qe =

3
3
2

18

2.1 Algebraic and Number-Theoretic Foundation

Let dist(L,~t) = min~v∈L{||~t − ~v||} denote the minimum distance from the target
vector ~t to the lattice L. Then for any basis B is holds that

||~t mod B|| ≥ dist(L,~t).

Definition 2.33. The determinant of a lattice Λ, denoted det(Λ), is the n−dimensional
volume of the fundamental parallelepiped P(B).
The determinant is a lattice invariant.

In the context of lattice based cryptography there are ”good” and ”bad” bases to a
lattice. A Basis B is said to be good, if the vectors~bi are short and nearly orthogonal.
For any basis B it holds that

n∏
i=1

||bi|| ≥ det(Λ) (Hadamard’s inequality)

So, good bases come closer to equality.

Definition 2.34. The dual lattice of L, denoted L∗, is defined as

L∗ := {~x ∈ span(B) : ∀~v ∈ L, 〈~x,~v〉 ∈ Z},

where 〈·, ·〉 denotes an inner product.

Example. The dual lattice of (Zn)∗ is (Zn) itself. For (2Zn)∗ = 1
2Z

n, this is because
one possible lattice basis is Id = [~e1, ..., ~en] then for any ~x ∈ L∗ it must hold that
〈~x, 2~ei〉 ∈ Z. That is the reason why it is sometimes called the reciprocal lattice.

Theorem 2.35. For a full-rank basis B for the lattice L, (B−1)T is a basis for its
dual lattice L∗.

Proof. Let us denote the lattice generated by the inverse transpose of B as L′ =
L((B−1)T).
For any ~y ∈ L((B−1)T) it holds that ~y ∈ (L(B))∗. Since, for any ~v ∈ Zn,

((B−1)T~y)TB~v = ~yTB−1B~v = 〈~y,~v〉 ∈ Z.

This proves L′ ⊆ L∗. On the other hand, for any ~y ∈ (L(B))∗, set ~sT = ~yTB then per
definition ~s ∈ Zn. Observing that ~yT = ~sTB−1, ~y is an integer linear combination
of the rows of B−1, this proves L′ ⊇ L∗

Let Bm(~0, r) = {~x ∈ Rm : ‖~x‖ < r} be the m−dimensional open ball of radius r
centered in ~0. Fundamental constants associated with any rank n lattice Λ are its
successive minima λ1, ..., λn:

19

2 Preliminaries

Definition 2.36. The ith minimum λi(Λ) is the radius of the smallest sphere cen-
tered in the origin containing i linearly independent lattice vectors

λi(Λ) = inf{r : dim
[
span

(
Λ ∩ B

(
~0, r
))]
≥ i}.

Note that successive minima can be defined with respect to any norm.

For p ≥ 1, the lp norm of a vector ~x ∈ Rn is ‖~x‖p = (
∑n

i=1 x
p
i)

1
p . Special cases are

• the l1-norm ‖~x‖1 =
∑n

i=1 |xi|,
• the euclidean norm l2 = ‖~x‖2 =

√
〈x, x〉 =

√∑n
i=1 x

2
i ,

• the max-norm l∞ = ‖~x‖∞ = limp→∞ ‖~x‖p = maxni=1 |xi|.

λ1
λ2

Figure 2.3.: The first two successive minima λ1, λ2

In his 1910 published book Geometrie der Zahlen[33] Hermann Minkowski provided
the fundamental convex body theorem, from which an upper bound of the product
of successive minima can be derived.

Theorem 2.37 (Convex body theorem). For any lattice Λ of rank n and any convex
set S ⊂ span(Λ) symmetric about the origin, if vol(S) > 2n det(Λ), then S contains
a nonzero lattice point ~v ∈ S ∩ Λ \ {0}.

This statement can be used to bound the length of the shortest nonzero vector of
an n-ranked lattice Λ. Let S be the open ball centered in the origin with radius√
n det(Λ)

1
n in span(λ). The n-dimensional hypercube that fits into the ball with

radius r =
√
n det(Λ)

1
n has edges of length a = 2·r√

n
= 2 det(Λ)

1
n . The volume of

20

2.2 Complexity theory

the hypercube is an = 2n det(Λ). Therefore the volume of S is strictly bigger than
2n det(Λ). By theorem 2.37 there exists a non-zero lattice vector ~v such that ~v ∈ S,

hence ‖~v‖ <
√
n det(Λ)

1
n . This proves that for any rank n lattice Λ, the length of

the shortest nonzero vector (in the l2-norm) satisfies

λ1 <
√
n det(Λ)

1
n

However, the value of the λi, and the lattice vectors achieving them depend on the
norm being used.
There always exist vectors achieving the successive minima:

Theorem 2.38. There are n linearly independent vectors ~x1, ..., ~xn ∈ Λ, such that
‖~xi‖ = λi, for all i = 1, ..., n.
The proof of this theorem can be found in [32], page 9.

In particular, λ1 is the length of the shortest nonzero lattice vector and equals the
minimum distance between any two distinct lattice points

λ1(Λ) = min
~x6=~y∈Λ

‖~x− ~y‖ = min
~x∈Λ\{0}

‖~x‖.

Let f(x) ∈ Z[x] be a monic irreducible polynomial of degree n, e.g. f(x) = xn − 1
where n is a power of 2. R denotes the polynomial ring Z[x]/(f(x)) of integer
polynomials modulo f(x), e.g. with f(x) = xn−1, an element g ∈ R is a polynomial
of degree at most n−1. This polynomial is naturally associated to a coefficient vector
in Zn, thus each element of R can be seen as a polynomial and a vector.
Let I ER be an ideal. Since I is additively closed, the coefficient vectors associated
to elements of I form a lattice. I is called an ideal lattice to emphasize this objects
dual nature as an algebraic ideal and a lattice.

Definition 2.39. Let R = Z[x]/(f(x)) be the ring of integer polynomials modulo
some monic polynomial f(x) of degree n. Since R is isomorphic to Zn as an addi-
tive group and ideals in R are by definition subgroups, they correspond to lattices.
Lattices of this form are called ideal lattices with respect to f .

2.2. Complexity theory

Computational complexity theory focuses on classifying computational problems ac-
cording to their computational hardness. Similar to the following theory of public
key systems, the field of computational complexity theory has developed rapidly in
the past three decades, due to the fact that all cryptographic systems rely on the
intractability of an infeasible underlying computational problem. The central task
of computational complexity theory is whether tasks can be performed efficiently

21

2 Preliminaries

or not. The needed tools for this theory were provided by the computability the-
ory, which emerged in the 1930s. This theory focuses on computational tasks and
algorithms, and considers automated procedures that may solve such tasks. To un-
ravel the complete theory of computational complexity, computability and problems
would go beyond the scope of this thesis. An elaborate study on computational
complexity theory can be found in [38]. In the following section a short introduction
of the most necessary notions of complexity can be found.

2.2.1. Computational Problems

The purpose of complexity theory is to determine the amount of computational re-
sources required to solve computational problems and to classify problems according
to their difficulty. There are different options available on which resource should be
focused on. The resource most often used is time. Another possible computational
resource is memory (space). In the following, the resource focused on is time, since
the complexity classes used for cryptographic purposes are almost always time de-
pendent.
Before defining complexity classes, it is crucial to understand the fundamental ob-
jects of computational complexity theory:

A computational problem is a mathematical object representing a collection of
questions that computers might want to solve. The input string for a computational
problem is referred to as an instance. Respectively the output string is called the
solution. A computational problem consists of an infinite amount of tuples which
are composed of instances and the according solution.

There are two major fields which deal with computational problems. First, there
is the field of algorithm research which is the study of methods for solving the
problems efficiently. Second, there is the field of complexity theory which explains
why a problem is believed to be unsolvable or intractable even if a great deal or
infinite computational resources are available.

There are different types of computational problems of which the two most common
will be further explained:

Search problem: A search problem consists of an infinite set of instances and a
concise specification of valid solutions.

Example. Factoring a composite number is a search problem where the instance
is a number n and the valid solution is a set of prime numbers p1, ..., pn which are
the prime factors to the number.

Decision problem: A decision problem consists of an infinite set of instances and
a concise specification of YES-instances.

22

2.2 Complexity theory

Example. Primality testing is a decision problem where the instance is a positive
integer n and the problem is to determine if n is a prime number or not.

Another needed subject is the model of computation. Informally speaking it is
a scientific model of computers which are used to determine the intractability of a
computational problem. Each model differs in the number of computations which
can be carried out by itself and the respective costs. In terms of cryptographic
systems the used model of computation is the Turning machine. It is affiliated to
the group of infinite automaton, which simple means infinite memory. Concerning
the timeliness of the 1935 described machine, a very important thesis was formed
in the first half of the 20th century: The Church-Turing Thesis states that any
real-world computation can be translated into an equivalent computation involving a
Turing machine. There exists no proof for that thesis although every realistic model
of computation discovered so far has been shown to be equivalent. A device which
could answer questions beyond those that a Turing machine can answer would be
called an oracle.

For the definition of the two complexity classes P and NP the differentiation between
deterministic and nondeterministic Turing machines is needed.
Informally speaking a nondeterministic Turing machine (NTM) is a Turing
machine which, no matter what state it is in, can take any action selecting from
a set of specified actions. This is opposed to a deterministic Turing machine
(DTM) which takes one predetermined action for each state it is in. So a NTM may
take different actions at different times even if in the same situation.

Complexity Classes

The time complexity of a problem is the number of steps that it takes to solve an
instance of the problem using the most efficient algorithm. In order to measure the
time efficiency of a function the Big-O Notation is used. It is used to describe an
asymptotic upper bound for the magnitude of a function in terms of another, usually
simpler, function.

Definition 2.40 (Big-O Notation). Suppose f(x) and g(x) are two functions defined
on some subset M of the real numbers R. Then
f(x) = O(g(x)) as x → ∞ if and only if there exist real numbers x0 and a positive
real number k such that |f(x)| ≤ k · |g(x)| for x > x0.

Computational problems fall into sets of comparable complexity, called complexity
classes. A complexity class is a set of functions that can be computed within a given
time (formal resource). It is defined by the following 3 factors:

1. The computational problem. Oftentimes these are decisional problems but

23

2 Preliminaries

they are also defined based on other computational problems like search prob-
lems or optimization problems, etc.

2. The model of computation. Mostly this is a Turing machine, but like above
there are numerous complexity classes based on other models like Boolean
circuits etc.

3. The resource. There are two most common types of resources, time and
space. Throughout this thesis the used resource will be time.

The following table shows some complexity classes for decision problems:

Complexity class Model of Computation Time constraint

DTIME(f(n)) Deterministic Turing machine f(n)

NTIME(f(n)) Non-deterministic Turing machine f(n)

P = DTIME(nO(1)) Deterministic Turing machine nk, polynomial time

NP = NTIME(nO(1)) Non-deterministic Turing machine nk

EXP = DTIME(2n
O(1)

) Deterministic Turing machine 2(nk), exponential time

Table 2.1.: Important complexity classes of decision problems in respect to the re-
source Time

The class P consists of all decision problems that can be solved on a deterministic
machine in an amount of time that is polynomial in the size of the input.
The class NP on the other hand consists of all decision problems whose positive
solutions can be checked in polynomial time, given the right information. Clearly,
it holds that P ⊆ NP but it stays an open question whether

P = NP

There are two other classes which should be introduced when talking about crypto-
graphic security.
The complexity class NP-hard and NP−complete. But first it is necessary to define
another complexity class function.

Definition 2.41. Let A and B be two decision problems. A reduction from A to
B is a polynomial time computable function f : Σ∗ → Σ∗, where Σ∗ is the set of all
possible input strings, such that x ∈ A if and only if f(x) ∈ B. If A reduces to B
and B can be solved in polynomial time, then A can also be solved in polynomial
time.
A decision problem A is NP-hard if any other NP problem B reduces to A. If A
is also in NP, then A is NP-complete. Clearly, if a problem A is NP-hard, then A
cannot be solved in polynomial time unless P = NP.

24

2.2 Complexity theory

NP

NP-Hard

P

NP-Complete

Figure 2.4.: The complexity classes: P, NP, NP-hard, NP-complete

2.2.2. The Integer Factorization problem

It is a fact that the security of many public-key cryptosystems relies on the apparent
intractability of computational problems. This section presents the oldest and most
famous of such problems, the integer factorization problem:
The integer factorization problem has been the subject of intense research, especially
in the years since the invention of RSA in 1978. The problem was first described
by Carl Friedrich Gauß in 1801 in [18] as: ”The problem of distinguishing prime
numbers from composite numbers, and of resolving the latter into their prime factors,
is known to be one of the most important and useful in arithmetic [...]”. The problem
itself can be described as [8]:

Definition 2.42. Let N be a composite integer. Find the integers u, v such that
N = u · v and such that both u, v > 1. u and v are called factors.

Factoring a composite integer is believed to be a hard problem. The general number
field sieve is the best known algorithm for factoring large n. For a b-bit number

n the running time of the general number field sieve is about O(e(64
9
b)

1
3 (log b)

2
3), i.e.

sub exponential.
In 1994, Peter Shor discovered a quantum algorithm [40] which solves the factoriza-
tion problem in polynomial time, namely O(b3).

When thinking about the complexity class the factorization problem is in, it is
necessary to define the computational problem which is equivalent to the integer
factorization problem stated above. The according decision problem version is:

Definition 2.43 (Computational Integer Factorization Problem, FACT). Given
an integer N and an integer M with 1 ≤ M ≤ N , does N have a factor d with
1 < d < M?

25

2 Preliminaries

The exact class in which this problem falls into is not known yet, however it is known
that it lies in NP because the YES and NO answers can be easily verified given the
prime factors. Furthermore, it is suspected to be outside of the class P.
When mastering this problem, the prime factorization of a composite integer can
be obtained recursively!

Remark. On December 12, 2009, a group of researchers from various countries
factored a 768-bit, 232-digit number RSA-768 with the number field sieve [27]!

2.2.3. The Composite Residuosity Problem

The next problem that is introduced, focuses on nth residues modulo a square num-
ber. It is the basis for the Paillier cryptosystem described in Chapter 6. It will be
shown that the hardness of the computational problem of deciding nth-residues is
even stronger than the before defined integer factorization problem (see ch. 6, sec.
refPaillier:intract, page 64).

Definition 2.44. A number z is said to be a nth residue modulo n2, if there
exists a number y ∈ Z∗n2 such that

z = yn mod n2

The problem of deciding nth residuosity, i.e., distinguishing nth-residues from non
nth-residues will be denoted by CR[n]:

Definition 2.45 (Decisional Composite Residuosity problem, CR[n]). Given a com-
posite n and an integer z, decide whether z is a nth-residue modulo n2, i.e., if there
exists an integer y such that z = yn mod n2.

At the time of writing this thesis, there exists no polynomial time distinguisher for
nth-residues modulo n2, i.e., CR[n] is intractable.

2.2.4. Lattice Problems

Minkowski’s convex body theorem (Theorem 2.37) provides a simple but not con-
structive way to bound the length of λ1 of the shortest nonzero vector in a lattice
Λ, λ1 <

√
n det(Λ)

1
n . The convex body theorem is asymptotically tight in the worst

case, i.e. there exist lattices such that λ1 < c
√
n det(Λ)

1
n for some constant c inde-

pendent of n. In general, λ1 can be much smaller than the convex body theorem
bound.
The most classical and most studied problem on lattices is the problem of finding a
lattice vector of length λ1: the well known fundamental algorithmic Shortest Vector
Problem.

26

2.2 Complexity theory

Definition 2.46 (Shortest Vector Problem, SVP). Given a basis B ∈ Zm×n, find
a nonzero lattice vector B~x (with ~x ∈ Zn \ {0}) such that ‖B~x‖ ≤ ‖B~y‖ for any
other ~y ∈ Zn \ 0.

Till the day of writing this thesis, there is no known polynomial time algorithm to
solve SVP. In fact, it is not even known how to find nonzero lattice vectors of length
within the Minkowskis bound.
In order to study the computational complexity of this problem we need another
formulation of the SVP.

Definition 2.47 (Decisional Shortest Vector Problem, DSVP). Given a rational
r > 0, decide whether there is a (nonzero) lattice vector ~x such that ‖~x‖ ≤ r.

Another related problem for which no polynomial time solution is known is the
Closest Vector Problem.

Definition 2.48 (Closest Vector Problem, CVP). Given a lattice basis B ∈ Zm×n
and a target vector ~t ∈ Zm, find a lattice vector B~x closest to the target ~t, i.e., find
an integer vector ~x ∈ Zn such that

∥∥B~x− ~t∥∥ ≤ ∥∥B~y − ~t∥∥ for any other ~y ∈ Zn.

And the associated computational problem:

Definition 2.49 (Decisional Closest Vector Problem, DCVP). Given a rational
r > 0, decide whether there is a (nonzero) lattice vector ~x such that

∥∥~x− ~t∥∥ ≤ r.
The hardness of solving SVP and CVP has led scientists to consider approximation
versions of these problems. Approximation algorithms return solutions that are only
guaranteed to be within some specified factor α from the optimum. Approximation
versions for the SVP and CVP can be found in [32].
Regarding the complexity of the SVP Micciancio proved that SVP is NP-hard to
solve even approximately, for any approximation factor up to

√
2 [31]. The decision

problem associated to CVP is NP-complete, and therefore no algorithm can solve
CVP in deterministic polynomial time, provided that P 6= NP.

The γ-bounded distance decoding problem(γ-BDDP) which is related to the CVP is
more more important for our purpose. In fact, it is the same as the CVP with the
promise that there is indeed a unique solution.

Definition 2.50 (γ-Bounded Distance Decoding Problem). Given a basis B
for a lattice L of dimension n and a vector ~t ∈ Rn such that dist(L,~t) · γ ≤ λ1(L),
find the nonzero vector ~v ∈ L closest to ~t

||~t− ~v|| ≤ γ · dist(L,~t).

27

2 Preliminaries

Liu et al. [29] showed that the γ-BDDP is NP-hard for any constant factor γ > 1/
√

2
in general lattices, they also showed that it can be solved in polynomial time for
γ = O(

√
(log(n)/n)).

In general, the best known polynomial-time approximation algorithms are variants
of the lattice reduction algorithm LLL [28], or two algorithms invented by L. Babai
[2] (nearest plane, rounding off). These algorithms only work for exponential ap-
proximation factors. In fact, the following conjecture drawn from [39] holds

Conjecture 2.51. Approximating these lattice problems to within a factor of 2k

takes time about 2n/k.

2.3. Measure Theoretic Probability

This section will give a very short introduction to measure theory with special focus
on the consequential notions for probability theory. It is kept rather short due to
the fact that this thesis only requires the basic definitions to understand the usage
of probability measures in Chapter 3. The definitions are taken from [25].

This section starts with some general notions and later show how these are used in
the context of probability.

Definition 2.52. Let F be a collection of subsets of Ω, F ⊂ 2Ω. F is called a field
(algebra) if Ω ∈ F and F is closed under complementation and finite union. That
is,

1. It holds that Ω ∈ F
2. For every A ∈ F it holds that Ac ∈ F
3. For every sequence A1, A2, ..., An ∈ F it holds that

⋃n
i=1Ai ∈ F .

In addition, if the sequence in 3 can be enhanced by countable unions, that is if

3’ For every sequence A1, ..., An, ... ∈ F it holds that
⋃∞
i=1Ai ∈ F ,

then F is called a σ − algebra .
If F is a σ − algebra on Ω, then (Ω,F) is called a measurable space and the
elements of F are called measurable sets.

Example. Consider the following examples:

i. The family of trivial sets F = {∅,Ω} is a σ − algebra on Ω,
ii. The power set of a set Ω is a σ − algebra on Ω, F = {2Ω},
iii. The family of sets F =

{
A ∈ 2Ω |A or Ac is countable

}
is a σ − algebra on Ω

Definition 2.53. Let (Ω,F) be a measurable space. A measure on this space is a
function µ : F → [0,∞] with the properties

28

2.3 Measure Theoretic Probability

1. µ(∅) = 0,
2. if Ai ∈ F are disjoint then

µ

(∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

The triple (Ω,F , µ) is called a measure space. If µ(Ω) = 1 it is called a probabil-
ity measure, often denoted as P, and the according triple (Ω,F , P) a probability
space.

P : F → [0, 1]

A measure τ is called the counting measure if it satisfies the following property:
τ(A) = |A|, the cardinality of A, hence the counting measure is only really very
useful in finite measure spaces.
Ω is often called the set of outcomes and an element ω ∈ Ω is called outcome. The
elements of F are called events. So, by definition, an event is a measurable subset
of the set of all outcomes and P(A) with A ∈ F is called the probability of A.

Example (1). The following experiment consists of tossing three coins. Each coin
has individual outcomes 0 and 1. The set Ω can be written as
Ω = {000, 001, 010, 100, 011, 101, 110, 111}, in this case we take F = 2Ω and a choice
of P could be such that P assigns probability 1

8 to all singletons, i.e., (010) = 1
8 .

In general, when having a finite set of outcomes Ω = {ω1, ω2, ..., ωn} the usual choice
of F is the power set of Ω, 2Ω and a possible measure would be the counting measure
µ(A) = |A|. Furthermore, using the following probability measure P(A) = µ(A)/|Ω|,
the counting probability measure gives us the discrete uniform distribution.

Example (2). Let us consider an infinite sequence of coin tosses. In this case
Ω = {0, 1}N and an element ω ∈ Ω is an infinite sequence (ω1, ω2, ...) with ωn ∈
{0, 1}. Let us say that one would like to have that sets like ”the 4th outcome is
0” are events. To achieve this, let us consider C to be the collection of all such
sets, C = {{ω ∈ Ω : ωn = s}, n ∈ N, s ∈ {0, 1}}. We take F = σ(C) and all
sets {ω ∈ Ω : ωn = s} are then events. One can show that there indeed exists a
probability measure P on this F with the nice property that for instance the set
{ω ∈ Ω : ω1 = ω2 = ω3 = 1} has probability 1

8 (in the previous example it would
have been denoted by {111}).

29

3. Public-key Systems

This chapter presents the basic definitions for a public key cryptosystem. There
are many formal definitions for public key cryptosystems which can be found in
[22, 24, 30]. This chapter is a compendium of the most important definitions taken
from the three books mentioned.

A different term for public-key cryptography is asymmetric cryptography, due to the
asymmetric setting concerning the key information held by the participants. Namely
one participant has a secret key, while the others have access to the public key that
matches the secret key. This is in contrast to the symmetric setting, where there is
only one key which must be handled with total secrecy by the two communicators.
Whilst in the asymmetric setting there is only one secret key holder which makes
it less vulnerable. Due to the more complex systems underlying the schemes, the
computation of public key systems tend to be more time consuming. That is the
reason why symmetric systems like AES are still in wide use.

The basic idea of a public-key encryption scheme was first proposed by Diffie and
Hellman [12] in 1976 at Stanford University. Their idea was to enable secure mes-
sage exchange between parties without ever having to meet in reality to agree on
a common secret. They proposed the concept of a trapdoor function and outlined
how it can be used to achieve such a secure cryptosystem. Shortly thereafter, Rivest,
Shamir and Adelman proposed their method which enables secure message exchange.
The scheme is called RSA after the names of its inventors (see Chapter 5).

Notation: When describing the assignment/outcome of an algorithm, the notation
”b ← A(x)” is used throughout this thesis - in this case the algorithm A outputs b
on input x. An algorithm is denoted in sans serif form, e.g., A,B,C....

A polynomial-time algorithm (PT) is an algorithm which runs in polynomial
time, that is, if the number of steps required to complete the algorithm for a given
input is O(nk), where n is the input size and k is a nonnegative integer. Any
algorithm whose running time cannot be bound this way is called an exponential-
time algorithm.
Roughly speaking, polynomial-time algorithms can be equated with good or efficient
algorithms, while exponential-time algorithms are considered inefficient.

31

3 Public-key Systems

3.1. Modern Encryption

In modern cryptography the assumption that an adversary has infinite computation
resources available is discarded, it is instead assumed that the adversary has bounded
computation resources in some reasonable way. Therefore, the focus lies on hard
computational problems rather than provable secure schemes, like one-time-pads.
As a consequence, the term infeasibility of breaking a system is used instead of
impossibility of breaking it.
In the majority of publications of the last decade it is assumed that the algorithms
used are of probabilistic nature (see Section 3.2) and run in polynomial time (PPT).
The running time of the encryption, decryption and the adversary algorithms are
all measured as a function of the security parameter k.

As modern cryptography needs to combine efficient algorithms with computational
infeasibility of decryption for the adversary, it requires that one has available prim-
itives with certain special kinds of computational hardness properties. Of these,
perhaps the most fundamental one is a one-way function.

Definition 3.1. A negligible function is a function f : X → Y , if for every
positive polynomial p(·) ∈ Z[k] there exists an ε so that for all integers n > ε it
holds that f(n) < 1

p(n) .

A function f : {0, 1}n → {0, 1}n is called one-way function, if the following two
conditions hold:

1. (Easy to compute:) There exists a polynomial-time algorithm A computing
f ; that is, A(x) = f(x) = y for all x;

2. (Hard to invert:) For every polynomial-time algorithm B, there is a negligi-
ble function νB(k) so that for sufficiently large k,

P [B (f(x)) = x] ≤ νB(k) (negligible probability), (3.1)

where in Equation (3.1) the probability is defined as in Example (1) on page
29. The set of outcomes Ω is the set of all possible n-long 0, 1 stings. With an
adequate σ-algebra, the event in question would be the set {ωj ∈ Ω : ωj = x}
with ωj = B (f(x)) and x ∈ Ω.

In Goldwasser and Bellare’s words [22] the definition above considers the success
probability of an algorithm to be negligible if, as a function of the input length, the
success probability is bounded by any polynomial fraction.

Informally spoken, a function is one-way if it is easy to compute but hard to invert.
In a public key setting such one-way functions are called trapdoor functions. The
key holder possesses some trapdoor information, which makes it possible to invert

32

3.2 Probabilistic and Deterministic Encryption

the function. Thus (1) and (2) of definition 3.1 holds true for everyone but the key
holder, who can invert efficiently with the knowledge of the trapdoor information.
Based on such primitives, it is possible to build secure encryption schemes.

However, it remains unknown if there exist any (true) one-way functions. No one has
yet definitively proved the existence of such functions under reasonable definitions of
”easy” and ”computationally infeasible”. The question of existence of such one-way
functions leads deep into the field of complexity theory and in fact even further. If
the existence of such functions would be proven, it would imply P 6= NP.
Of course, the same applies to trapdoor one-way functions. But there are a number
of good candidates.

A List of Candidate One Way Functions

As mentioned above, it is crucial for a secure public key system to have functions
which are easy to compute but hard to invert. Easy means that the function can
be computed by a probabilistic polynomial time algorithm, denoted PPT. Hard
means that any PPT attempting to invert the function will succeed with negligible
probability. There are several candidates which seem to posses the needed properties.
See [22, 24] for more than the following three candidates.

1. Factoring. The function f : (x, y) 7→ xy is conjectured to be a one way
function. There are various algorithms for factoring numbers, but all of them
run in at best expected time. The fastest known algorithm is the number field
sieve.

2. Discrete logarithm. Let p be a prime. Then Z∗p is cyclic, that means
Z∗p = {gi mod p|1 ≤ i ≤ p − 1} for some generator g ∈ Z∗p. The function
f : (p, g, x) 7→ (gx mod p) is conjectured to be a one-way function. Comput-
ing f(p, g, x) can be done in polynomial time using repeated squaring. The
best known algorithm for computing the discrete logarithm is called the index
calculus algorithm and runs in sub exponential time.

3. RSA. Let n = pq be a product of primes. It is believed that such an n is
hard to factor. The function f(x) = xe mod n where e is relatively prime to
ϕ(n). The trapdoor information is the knowledge of p, q which allows to invert
f efficiently.

3.2. Probabilistic and Deterministic Encryption

A public-key encryption scheme is said to be deterministic if its encryption algo-
rithm is deterministic. The notion ”deterministic encryption” was introduced by
Bellare et al. in [3]. Given a particular input, a deterministic algorithm will always

33

3 Public-key Systems

produce the same output and it will always proceed in the same way.

Deterministic encryption cannot achieve the classical notions of security of proba-
bilistic encryption, but [3] formalized a semantic security style notion PRIV that
captures the best possible privacy achievable when encryption is deterministic. Bel-
lare et al. [4] defined seven notions of privacy for deterministic encryption. This
thesis will not give an overview of those notions, instead it will focus on probabilis-
tic encryption for following reasons.
Goldwasser and Bellare summarized three major problems when using a determin-
istic encryption algorithm in [22]:

1. Special Message Spaces. The fact that f is a deterministic function does not
imply that inverting f(m), when m is special, is hard. Suppose that the set
of messages that one would like to send is drawn from a highly structured
message space such as the English language, or more simply M = {0, 1}, it
may be easy to invert f(m). In fact, it is always easy to distinguish between
f(0) and f(1).

2. Partial Information. The fact that f is a one-way or trapdoor function does
not necessarily imply that f(m) hides all information about m. Even a bit of
leakage may be too much for some applications. Moreover, in fact, for any one-
way function f , information such as ”the parity of f(m)” about m is always
easy to compute from f(m).

3. Relationship between Encrypted Messages. Clearly, one may be sending mes-
sages which are related to each other in the course of a communication. It is
thus desirable and sometimes essential that such dependencies remain secret.
In the deterministic encryption model, it is trivial to see that sending the same
message twice is always detectable.

Algorithm
Input Output

Figure 3.1.: Schematic representation of a deterministic algorithm

For example, the original RSA scheme (see Chapter 5) is of deterministic nature.

Probabilistic Encryption

Probabilistic encryption algorithms were first mentioned in [23]. Their presented
scheme is based on computational complexity theory and therefore the intractabil-
ity of some problems in number theory, such as factoring or deciding quadratic
residuosity with respect to composite moduli.

34

3.3 Definition of a Public-Key Cryptosystem

The basic idea is to endow an algorithm with the ability to generate random num-
bers1. As pointed out in the previous section, there are certain drawbacks of de-
terministic encryption, which all arise from the fact that a specific plaintext m will
always be encoded in one specific ciphertext cm. To avoid this, probabilistic en-
cryption schemes utilize randomness within the encryption process itself, so that
for one specific plaintext m there are many possible ciphertexts, c1, c2, ..., cr. With
the right secret key every possible ciphertext c1, c2, ...cr of a message will be decoded
to the original message m!

Algorithm
Input Output

R
an

d
om

N
u

m
b

er
s

Figure 3.2.: Schematic representation of a probabilistic algorithm

It is however possible to convert a deterministic scheme into a randomized scheme by
extending each plaintext with a randomly generated bit-string of a predefined length
l, where l should be chosen sufficiently large. But note that the resulting randomized
encryption scheme is generally not as secure as the probabilistic schemes.

3.3. Definition of a Public-Key Cryptosystem

For the definition and the setting of a public-key cryptosystem this thesis closely
follows Katz and Bellares definition in [24]. Before stating the actual definition it is
necessary to explain one very important variable, the security parameter.

The running time of the encryption, decryption, and the adversary algorithms are all
measured as a function of a security parameter k which is a parameter that is fixed
at the time the cryptosystem is setup. Thus, when it is stated that the adversary’s
algorithm runs in polynomial time, it means time bounded by some polynomial
function in k. The security parameter k is usually expressed as a k-long string of
bits 1.

An asymmetric cryptosystem is a method for secure communication between parties

1I don’t want to pursue the issue where these random numbers actually come from. There a
numerous authors who discuss that issue in more detail that I can make room here in this thesis

35

3 Public-key Systems

who have never met before. More precisely, a public key cryptosystem is composed
of the following algorithms [24]:

Definition 3.2. A public-key encryption scheme E is a tuple, (KeyGen,Enc,Dec) of
probabilistic polynomial-time algorithms

(1) The key generation algorithm (KeyGen) takes the security parameter k as
input and outputs a pair of keys (pk, sk). I refer to the first of these as the
public key and the second as the private key or secret key. I assume that
pk and sk each have length at least k, and that k can be determined from pk, sk.

(2) The encryption algorithm (Enc) takes a public-key pk and a string m called
the message from some underlying message space (M) as input. It produces a
ciphertext c from an underlying ciphertext space (C), denoted as c← Encpk(m)
or simple Enc(m), if it is obvious which public key is in use.

(3) The decryption algorithm (Dec) takes a private-key sk and a ciphertext c
as input, and produces an output message m. Without loss of generality we
assume that Dec is deterministic, and write this as m := Decsk(c).

Remark. The definition above (Def. 3.2) states the encryption algorithm to be
probabilistic. Some schemes, for the most part the older schemes, use encryption
algorithms that are deterministic, i.e., RSA (see Ch. 5).

3.4. Notions of Security

When talking about cryptography, security is an inevitable subject. Menezes et al.
state five models for evaluating security in [30]: Unconditional security, complexity-
theoretic security, provable security, computational security and ad hoc security.
Furthermore, they believe that the most practical security metrics are computa-
tional, provable and ad hoc security.

1. Computational : the amount of computational effort required,
2. Provable: the difficulty of defeating a cryptographic method can be shown

to be essentially as difficult as solving a well-known and supposedly difficult
(typically number-theoretic) problem,

3. ad hoc: convincing arguments which show that every successful attack requires
a resource level (e.g., time and space) greater than the fixed resources of a
perceived adversary.

Remark. Since this thesis focuses on the development of homomorphic cryptogra-
phy the above mentioned security definitions will not be described in detail. The
interested reader is referred to Menezes et al.: Handbook of applied cryptography
[30].

36

3.4 Notions of Security

The basic idea of computational security

Kerckhoffs’ principle [26] consists of six design principles for military ciphers. One
of which is very relevant to this thesis:

A [cipher] must be practically, if not mathematically, indecipherable.

Katz and Lindell [24] interpret this principle as follows: ”...,this principle of Ker-
ckhoffs essentially says that it is not necessary to use a perfectly-secure encryption
scheme, but it instead suffices to use a scheme that cannot be broken in ”reasonable
time” with any ”reasonable probability of success”,...”.
The computational approach incorporates two relaxations of the notion of perfect
security:

1. Security is only breached when adversary’s algorithms run in a feasible amount
of time.

2. Adversaries can potentially succeed with some very small probability.

Katz and Lindell state two common approaches to precisely define what is meant
by the above. I will only write about the more important one, the asymptotic
approach.
In this approach the running time of the adversary’s algorithm, as well as its success
probability, are considered to be functions of the security parameter k.
The notion of efficient algorithms are equated with probabilistic algorithms running
in time polynomial in k. The notion of small probability of success is equated with
success probabilities smaller than an inverse polynomial in k. This means for any
constant c the adversary’s success probability is smaller than k−c for large enough
values of k. A function that grows more slowly than any inverse polynomial is called
negligible.
It is now possible to define asymptotic security.

Definition 3.3. A scheme is secure if every PPT adversary succeeds in breaking
the scheme with only negligible probability.

Security of an encryption scheme, symmetric or asymmetric, reflects the inability of
an adversary, given ciphertexts and any public information such as a public key or the
security parameter, to get non-trivial information about the underlying plaintexts.
Several desirable properties can be found throughout the various books concerning
security of encryption schemes. The following paragraph will present three of the
most common such properties.

1. The private key should not be recoverable from seeing the public key.
2. No useful information can be computed about messages from their encrypted

form.

37

3 Public-key Systems

3. It should be hard to detect simple but useful facts about traffic of messages,
such as when the same message is sent twice.

There are plenty of definitions proposed so far and most of them have been shown
to be equivalent. For further information see [22, 23]. Under the above stated
assumptions, consider a communication between Alice and Bob, schematically shown
in Figure 3.3.

Plaintext
Source

Encryption
Encpk(m) = c

Destination

Decryption
Decsk(c) = m

Key Source

Adversary

Alice Bob

Untrusted Channels

m

cipher

sk

m

public key

Figure 3.3.: Diagram of a communication using public-key techniques

38

4. Homomorphic Encryption

The security requirements for data and algorithms have become very strong in the
last few years. Due to the vast growth of technology, a great variety of attacks
on digital goods and technical devices are enabled. For storing and reading data
securely there exist several possibilities such as secure data encryption. The problem
becomes more complex when asking for the possibility to compute (publicly) with
encrypted data or to modify functions in such a way that they are still executable
while our privacy is ensured. That is where homomorphic cryptosystems can be
used.

The notion and idea of fully homomorphic schemes was introduced by Rivest, Adle-
man and Dertouzos in [36] shortly after the invention of RSA [37]. They asked
for an encryption function that permits encrypted data to be operated on without
preliminary decryption of the operands, and they called those schemes privacy ho-
momorphisms. Even in 1978 this was a highly important matter, it is even more
important nowadays.
While the partially homomorphic properties of schemes like RSA, Paillier, ElGamal,
etc. have been acknowledged ever since, it was not before 2009 when a young IBM
researcher published the first working fully homomorphic cryptosystem, based on
lattices.

4.1. Definition of a homomorphic encryption scheme

Chapter 3 focused on the formal definition (defn. 3.2) of a public key cryptosystem
and the related definitions and notions. Now, in order to perform operations on
ciphertexts, a partially or fully homomorphic system requires a fourth algorithm
[24].

Definition 4.1. A public-key encryption scheme E = (KeyGen,Enc,Dec) is homo-
morphic if for all k and all (pk, sk) output from KeyGen(k), it is possible to define
groups M,C so that:

• The plaintext space M, and all ciphertexts output by Encpk are elements of C.
• For any m1,m2 ∈M and c1, c2 ∈ C with m1 = Decsk(c1) and m2 = Decsk(c2) it

holds that:
Decsk(c1 ∗ c2) = m1 ∗m2

39

4 Homomorphic Encryption

where the group operations ∗ are carried out in C and M, respectively.

In other words, a homomorphic cryptosystem is a PKS with the additional property
that there exists an efficient algorithm (Eval) to compute an encryption of the sum
or/and the product, of two messages given the public key and the encryptions of the
messages, but not the messages themselves.
Moreover, a fully homomorphic scheme is able to output a ciphertext that en-
crypts f(m1, ...,mt), where f is any desired function, which of course must be effi-
ciently computable. No information about m1, ...,mt or f(m1, ...,mt), or any inter-
mediate plaintext values should leak. The inputs, outputs and intermediate values
are always encrypted and therefore useless for an adversary. Before we take a closer
look on fully homomorphic encryption schemes, we will need another important
notion from information theory.

Circuits

Informally speaking, circuits are directed, acyclic graphs where nodes are called
gates and edges are called wires. Depending on the nature of the circuit the
input values are integers, boolean values etc. and the corresponding gates are set
operations and arithmetic operations or logic gates (AND, OR, NOR, NAND, ...). In
order to evaluate a function f , express f as a circuit and topologically arrange its
gates into levels which will be executed sequentially.

Example. Assume the function f outputs the expression A ·B+B ·C · (B+C) on
input (A,B,C). Then the following circuit represents the function f , with the logic
gates AND and OR.

A

AND

B OR

OR

C AND

AND

O = A ·B +B · C · (B + C)

Level 3Level 2Level 1Level 0

Figure 4.1.: Example for circuit representation

Two important complexity measures for circuits are size and depth.

40

4.1 Definition of a homomorphic encryption scheme

Definition 4.2. The size of a circuit C is the number of its non-input gates.
The depth of a circuit C is the length of its longest path, from an input gate to the
output gate, of its underlying directed graph.

This yields to another definition of fully homomorphic encryption [20]:

Definition 4.3 (fully homomorphic encryption). A public key encryption scheme
(KeyGen,Enc,Dec) is fully homomorphic if there exists an additional efficient al-
gorithm Eval that, for a valid public key pk, a permitted circuit C and a set of
ciphertexts Ψ = {c1, ..., ct} where ci ← Encpk(mi), outputs

c← Evalpk(C,Ψ)

under pk.

There is another way to construct fully homomorphic encryption schemes which will
be discussed later in this thesis. To understand how this transformation works, we
need the following definitions and corollaries.

Definition 4.4 (correct). A homomorphic encryption scheme E is said to be cor-
rect for a family CE of circuits if for any pair (sk, pk) output by KeyGenE(λ) any
circuit C ∈ CE , any plaintext m1, ...,mt, and any ciphertexts Ψ = 〈c1, ..., ct〉 with
ci ← Encpk(mi), it is the case that:

if c← EvalE(pk,C,Ψ), then DecE(sk, c)→ C(m1, ...,mt)

except with negligible probability over the random coins in EvalE .

Gentry, the author of the fully homomorphic encryption scheme described in Chapter
7, additionally demands for a fully homomorphic encryption scheme to be compact,
to exclude trivial schemes.

Definition 4.5 (compact). A homomorphic encryption scheme E is compact, if
there is a polynomial f so that, for every value of the security parameter λ, E ’s
decryption algorithm can be expressed as a circuit DE of size at most f(λ).
A homomorphic encryption scheme E compactly evaluates circuits in CE if E is
compact and also correct for circuits in CE .

Corollary 4.6. A homomorphic encryption scheme E is fully homomorphic if it
compactly evaluates all circuits.

This demand is considered to be almost too strong for practical purposes, hence he
uses a certain relaxation to include leveled schemes, which only evaluate circuits of
depth up to some d, and whose public key length may be poly(d).

41

4 Homomorphic Encryption

Definition 4.7 (leveled fully homomorphic). A family of homomorphic encryp-
tion schemes {E(d) : d ∈ Z+} is said leveled fully homomorphic if, for all d ∈ Z+,
they all use the same decryption circuit, E(d) compactly evaluates all circuits of depth
at most d (that use some specified set of gates), and the computational complexity
of E(d)’s algorithms is polynomial in λ, d, and (in the case of EvalE) the size of the
circuit C.

An encryption scheme which supports both addition and multiplication (a fully
homomorphic scheme) thereby preserves the ring structure of the plaintext space,
and is therefore far more powerful. Using such a scheme makes it possible to let
an untrusted party do the computations without ever decrypting it and therefore
preserving the privacy of the data.
As an application they suggested private data banks. A subject which would exceed
this work, therefore I refer the interested reader to the paper itself [36].

A widely esteemed application of homomorphic encryption schemes is cloud com-
puting. Presently, the need for cloud computing is increasing fast, as the data we
are processing and computing on is getting bigger and bigger every day, with the
effect that a single person’s computation power does not suffice anymore. Hence, it
is favorable to use someone else’s power without losing the privacy we seek.

Say, Alice wants to store a sensitive file m ∈ {0, 1}n on Bob’s server. So she sends
Bob Enc(m1), ...,Enc(mn). Assume that the file is a database (a list of people with
specific informations about them) and Alice wants to find out how many of them are
22 years old. Instead of retrieving the data from Bob, decrypting it and searching
for the wanted information, she will ask Bob to do the computations, without him
knowing what or who he is computing on. The answer from Bob comes in form of
a ciphertext which only she can decrypt with her secret key.

m1

m2

...

mn

Enc
pk

Enc
pk

...

Enc
pk

c1

c2

...

cn

Ψ C pk

Eval

c Dec

sk

m

m1

m2

...

mn

Alice Bob Alice

Figure 4.2.: Diagram of a homomorphic encryption scheme

42

4.2 Example of an additively homomorphic scheme

4.2. Example of an additively homomorphic scheme

The Paillier encryption scheme, which will be described in detail in Chapter 6, is
an example of a homomorphic encryption scheme over an additive group taking
M = (Zn,+) and C = (Z∗n2 , ·).

One may ask why this is a useful feature. One practical application of Paillier’s
additive homomorphic property can be found in cryptographic voting schemes like
the following. How to obtain the encryptions and decryptions will be shown in
section 6.7 with the exact same numbers. The focus of this example shall be the
practical usefulness of the additive homomorphic property of Paillier’s scheme.

Let us assume the election will take place with

Nv = 9 . . . Number of voters

Nr = 5 . . . Number of candidates

Vote messages for candidates will be denoted with the use of an appropriate base
b:

1st candidate: b0

2nd candidate: b1

...
N th
r candidate: bNr−1

Now let us imagine the following outcome of a small election, where the Vi’s, i =
1, ..., 9, are the voters and the Ri’s, i = 1, ..., 5, are the candidates. For each voter it
is possible to vote 0 to 2 candidates with only one vote for each candidate.

R1 R2 R3 R4 R5 message to be
100 101 102 103 104 encrypted

V1 X m = 101 = 10
V2 X X m = 102 + 104 = 10100
V3 m = 0
V4 X m = 103 = 1000
V5 X X m = 100 + 103 = 1001
V6 X X m = 101 + 103 = 1010
V7 X X m = 102 + 103 = 1100
V8 X X m = 101 + 103 = 1010
V9 X m = 100 = 1

Total 2 3 2 5 1

Table 4.1.: A simple voting example with Nv = 9 voters and Nr = 5 candidates.
The base used is b = 10

43

4 Homomorphic Encryption

The maximum possible number representing a voter’s single vote mmax can exceed
to

mmax =

Nr∑
i=1

bi−1.

Hence, the possible maximum tally of all votes can exceed to:

Tmax = Nv ·mmax.

Concerning the public key generation, n must satisfy the following condition to be
able to encrypt the maximum tally:

n ≥ Tmax + 1, where n = pq

Assume the voting authority chooses p = 293 and q = 433, then n = 126869 is the
public key visible to everyone. Paillier’s encryption function uses a random number
r ∈ Z∗n which can be chosen randomly by the voter itself. The detailed encryption
process will be described in Chapter 6.

vote random ciphertext
only known by the voter number ∈ Z∗n ci

V1 10 369 4946672768
V2 10100 6498 3355936313
V3 0 1354 4336831183
V4 1000 6957 7446214290
V5 1001 265 3283050915
V6 1010 34 4821154392
V7 1100 659 4760329430
V8 1010 1312 5720727730
V9 1 444 11626554097

Tally T =

Nv∏
i=1

ci mod n2 10631213431

Table 4.2.: The encrypted votes of table 4.1. Note that although voter V6 and V8

have voted the same, the encryption of their votes are different.

As seen in the table above the tally is the product of all ciphertexts, T =
∏Nv
i=1 ci mod

n2. This computation should be done by an external observer. This guarantees that
the authority will not decipher each encrypted vote to see for which candidate he
or she voted. Since the external observer only handles encrypted data without the
knowledge of the secret key, the computation can be done publicly.
Now the tally will be sent back to the authority, the only one who can decipher the

44

4.2 Example of an additively homomorphic scheme

encrypted version of all votes.

Dec(T) = 15232

which is indeed =

Nv∑
i=1

mi mod n

Now the election authority wants to know who has won the election. This will be
done by converting the tally, which is now in decimal form, to a number with the
base chosen in the beginning (b = 10)1

15232 = 1 · 104 + 5 · 103 + 2 · 102 + 3 · 101 + 2 · 100

Candidate R4 is the winner.

In a nutshell, the additive homomorphic property which made the election above
perfectly secret is

Nv∏
i=1

ci mod n2

︸ ︷︷ ︸
∈(Z∗

n2
,·)

=

Nv∑
i=1

mi mod n︸ ︷︷ ︸
∈(Zn,·)

.

1As we used the base 10 there is no conversion needed. Nevertheless it is stated in case a different
base is used.

45

5. RSA - A Multiplicatively
Homomorphic Scheme

In 1978, Rivest, Shamir, and Adleman published their public-key cryptosystem,
which only uses elementary ideas from number theory, in their paper ”A Method
for Obtaining Digital signatures and Public-Key Cryptosystems” [37]. It was one
of the first homomorphic cryptosystem. The RSA cryptosystem is the most widely
used public-key cryptosystem. It may be used to provide both secrecy and digital
signatures and its security is based on the intractability of the integer factorization
problem (see Section 2.2.2).
The following section describes the RSA encryption scheme and its security. The
original RSA paper [37] can be seen as the foundation to this chapter. Further
occurring statements will be cited directly.

5.1. The Definition of the RSA Cryptosystem

In this section the scheme itself is described. The key generation procedure out-
puts a public and a secret key. The public-key consists of two integers e and n,
where n is a composite of two large primes p, q chosen by the secret key holder. The
second integer e has to be chosen such that the greatest common divisor of e and
ϕ(pq) is gcd(e, ϕ(pq)) = 1, namely e is invertible mod ϕ(n). Here ϕ(n) denotes the
Euler totient function (see Definition 2.11). Hence with the knowledge of p and q
the Euler function can be easily computed as ϕ(n) = (p− 1)(q − 1). The secret key
is the tuple (d, n), where d is determined such that d is the inverse of e. This can
be done by using the extended euclidean algorithm. A detailed description of this
specific algorithm can be found in [41, chap 3].

The encryption algorithm takes as input a message m from the plaintext space Zn
and computes the according ciphertext c = me mod n. This integer c ∈ Zn can not
be traced back to the original message without the knowledge of p and q, which will
be proved later in this section.

Decryption takes as input the ciphertext c and the secret key (d, n) and computes
m = cd mod n. Since d is the inverse of e in Zn this is indeed the original message.

47

5 RSA - A Multiplicatively Homomorphic Scheme

The three steps (key generation, encryption and decryption) can be found in table
5.1

Key Generation: KeyGen(p, q)

Input: p, q ∈ P
Compute n = p · q

ϕ(n) = (p− 1)(q − 1)
Choose e such that gcd(e, ϕ(n)) = 1
Determine d such that e · d ≡ 1 mod ϕ(n)

Output: (pk, sk)
public key: pk = (e, n)
secret key: sk = (d)

Encryption: Enc(m, pk)

Input: m ∈ Zn
Compute c = me mod n

Output: c ∈ Zn

Decryption: Dec(c, sk)

Input: c ∈ Zn
Compute m = cd mod n

Output: m ∈ Zn

Figure 5.1.: The RSA Cryptosystem

In order to see that the scheme above deciphers correctly it is necessary to prove
that decryption really outputs the original message m.

Proof. Since e · d ≡ 1 mod ϕ(pq), there exists an integer k such that

e · d = 1 + k · ϕ(pq).

The greatest common divisor of m and p is either gcd(m, p) = 1 or gcd(m, p) = p
itself. In the former case (gcd(m, p) = 1) Fermats Theorem (theorem 2.17) yields

mp−1 ≡ 1 mod p

Raising both sides to the power k · (q − 1) and then multiplying both sides with m

48

5.2 Multiplicative Homomorphic Property

results

m

e·d︷ ︸︸ ︷
1 + k(p− 1)(q − 1) ≡ m mod p (5.1)

Hence we have me·d ≡ m mod p.
If gcd(m, p) = p, then congruence (5.1) is valid since each side is congruent to 0
modulo p.
Therefore it holds for all messages m ∈ Zn

me·d ≡ m mod p

The same applies to q.
Finally, since p and q are distinct primes and n is the product of p and q, it follows
that

me·d ≡ m mod n

cd =(me)d ≡ m mod n

which completes the proof.

5.2. Multiplicative Homomorphic Property

As said before the RSA scheme has a multiplicative homomorphic property. This
means it is possible to perform multiplications with the encryptions of messages
without losing or tampering with their underlying information. This is possible
since the operation ”multiplication” in the ciphertext space (Zn, ·) can be compared
with the operation ”multiplication” in the plaintext space (Zn, ·).

Given ci = Enc(mi) = me
i mod n then following properties hold

c1 = me
1 mod n

c2 = me
2 mod n

c1 · c2 = me
1 ·me

2 mod n = (m1 ·m2)e mod n

Table 5.1.: The homomorphic property of the RSA Cryptosystem

Example. Assume the following RSA keys

pk = (5437, 189781)
sk = (49269)

and messages m1 = 56947 and m2 = 64413. Now encrypting the messages using the

49

5 RSA - A Multiplicatively Homomorphic Scheme

public key yields

c1 =569475437 mod 189781 = 96068

c2 =644135437 mod 189781 = 149380

c1 · c2 =96068 · 149380 mod 189781 = 157744 .

This is the same as

m1 ·m2 =56947 · 64413 mod 189781 = 39943

Enc(m1 ·m2) =399435437 mod 189781 = 157744 .

5.3. Security of RSA

The security of the RSA scheme is strongly related to the well studied Integer Fac-
torization Problem (see Section 2.2.2). In general for every public key cryptosystem
there are different approaches on ”breaking” a scheme’s security. Breaking it can
for example mean

• Deciphering the ciphertext without knowing sk.
• Computing the secret key from the public key only.
• Partially deciphering a ciphertext.

The first approach would be the task of taking eth roots modulo n. This computa-
tional task is also called the RSA Problem.

Definition 5.1 (RSA Problem). Given n, an integer e > 0 that is relatively
prime to ϕ(n), and an element y ∈ Z∗n. Compute y1/e mod n, i.e., find x such that
xe = y mod n.

At the time of writing the most promising approach is to factor n and compute the
inverse of e, namely d. This approach asks one to solve an instance of the integer
factorization problem, which is known to be computationally hard. In the list above,
this approach reflects the second item: computing sk from pk.

In 1994 the American mathematician Peter Shor developed a quantum algorithm for
integer factorization [40] simply called Shor’s algorithm, which runs in polynomial
time. Until quantum computers are possible, the fastest known classical algorithm
for solving an instance of the integer factorization problem is the general number
field sieve. However, for now it is a safe bet to rely on the security of RSA as long
as

• n is chosen sufficiently large (i.e., > 768-bit).
• e is sufficiently large.

50

5.4 A Worked Example

• m is chosen such that me > n.

The requirements above are only a short list of means to avoid attacks on an RSA
communication. Imagine the following scenario:
Alice sends the message m = 5 to 3 different receivers and uses e = 3 as the exponent
used to encrypt. The adversary intercepts the three different ciphertexts

ci = 53 mod ni

Using the Chinese Remainder Theorem to solve

z = ci mod ni in Zn1·n2·n3

gives the adversary the original message by computing

m = 3
√
z.

5.4. A Worked Example

For better understanding an example is given below. Note that the numbers used
are rather small. In reality these numbers are much bigger, i.e. n ≥ 768 bit, 232
digits. Assume Alice wants to send the message mA = 1275 to Bob. The two of
them have provided their public keys somewhere publicly and stored their private
keys at home (safely).

Alice

pkA = (907, 186101)
skA = (2851)

Bob

pkB = (5437, 189781)
skB = (49269)

Figure 5.2.: The RSA keys of Alice and Bob

Only Alice resp. Bob can compute their secret keys, due to the assumption that
factoring n is hard. But in this example we will calculate the secret key step by
step.
Alice chooses two primes prior to publicizing her private key.

p = 149 and q = 1249, hence n = p · q = 186101.

Then she computes ϕ(n) which is easy since she knows the prime factors of n.

ϕ(pq) = (149− 1) · (1249− 1) = 184704.

51

5 RSA - A Multiplicatively Homomorphic Scheme

Following that she chooses an e such that

gcd(e, 184704) = 1.

We clearly see that eA = 907 fulfills this property. To get the secret key d she has
to solve

907 · d = 1 mod 184704.

She can quickly do this using the extended Euclidean algorithm:

184704 = 203 · 907 + 583 ⇔ 583 = 1 · 184704− 203 · 907

907 = 1 · 583 + 324 ⇔ 324 = 1 · 907− 1 · 583

583 = 1 · 324 + 259 ⇔ 259 = 1 · 583 − 1 · 324

324 = 1 · 259 + 65 ⇔ 65 = 1 · 324 − 1 · 259

259 = 3 · 65 + 64 ⇔ 64 = 1 · 259 − 3 · 65

65 = 1 · 64 + 1 ⇔ 1 = 1 · 65 − 1 · 64 = 2851 · 907− 14 · 184704

64 = 64 · 1 + 0

Table 5.2.: Extended Euclidean algorithm

and therefore skA = (2851, 186101).

Bob does the same and computes his secret key, skB = (49269, 189781). Now Alice is
able to send Bob her secret message mA = 1275, additionally she signs her message
with her secret key. She does this by taking her secret key and using it on her private
message mA

cA = 12752851 mod 186101 = 127296

followed by encoding cA with Bob’s public key (49269, 189781)

cAB = 1272965437 mod 189781 = 182522.

This is the ciphertext she can send via unsecured channels to Bob.

Bob himself uses his secret key (49269) to decode Alice’s message

mAB = 18252249269 mod 189781 = 127296

and further deciphers it with Alice’s public key (907, 186101)

mA = 127296907 mod 186101 = 1275.

Bob has obtained Alice’s secret message and will also know that it was Alice who
encoded the message, since she is the only one who knows how to transform 1275
into 127296.

52

5.4 A Worked Example

5.4.1. Encoding a real message with RSA

In the previous example the prime numbers used are rather small so it is easily
possible to recalculate the computations.
What would it look like if Alice wanted to send Bob a real message not just any
integer?

First of all a standard character-encoding scheme is necessary. There are numerous
such schemes of which one of the most common ones is the 8-bit extended ASCII
table or ISO 8859 [1]. It consists of 256 different characters which cover most
languages that use the Latin alphabet. So if we want to convert a text message
into a computable string we have to convert each character into the according string
specified by the encoding standard used. There are different ways to combine these
strings into one distinguishable string dependent on the numeral system used. For
example the integer a = 196 with the use of either one of the following systems is
represented as

• a = 196 with the decimal system, using integers 0, ..., 9 and b = 10,
• a = 11000100 with the use of the binary system, which uses the integers 0, 1

and therefore b = 2,
• a = C4 with the hexadecimal system, using the symbols 0, ...9, A, ..., F with a

base b = 16.

Here we want to use the decimal system.

The message which shall be encoded is:

Adi Shamir

The first step is to encode this message into the according decimal number in the
ISO8859 standard in the decimal system.

character: A d i S h a m i r
decimal ISO representation: 65 100 105 173 83 104 97 109 105 114
digit position: 9 8 7 6 5 4 3 2 1 0

It is necessary to combine the used decimal representations to yield an integer that
can be used in the already known RSA encryption scheme. As the ISO8859 standard
has 256 distinguished characters, the basis for the integer representation is b =
256:

m =
n∑
i=0

ISOrep(ai) ∗ 256lp(ai)

where ai is the ISO8859 character, ISOrep(ai) its corresponding ISO representation
and lp(ai) the digit position number. This method is also called the positional

53

5 RSA - A Multiplicatively Homomorphic Scheme

notation. Applied to this example

m =65 · 2569 + 100 · 2568 + 105 · 2567 + 173 · 2566 + 83 · 2565 + 104 · 2564+

97 · 2563 + 109 · 2562 + 105 · 2561 + 114 · 2560 = 308806070940178907490674.

In order to usefully encrypt the message, n must exceed m. To achieve this the two
prime factors p and q will be chosen rather big.

p = 464327924040839 and q = 545626836709961⇒
n = 253349776390506035635362097279

choose encryption exponent e relatively prime to ϕ(pq)

e = 231 and d = 231319361052200240838809925047

Now to encrypt the message compute

c = me mod n

= 30880607094017890749067423 mod 253349776390506035635362097279.

The integers in this example are much bigger than in the prior example but still
smaller than in reality. Either way exponentiating is a very expensive operation.
Fortunately there are methods for faster computation with less time consuming
ways. For example binary exponentiation or square-and-multiply.

The general idea behind this method is the following observation

xn =

x ·
(
x
n−1
2

)2
if n is odd

1, if n = 0(
x
n
2

)2
if n is even

With this observation it is possible to create a recursive algorithm using only squar-
ing and multiplying. In this example the exponent is e = 23. Using this idea, x23

can be broken down to

x23 =x · x22 = x ·
(
x11
)2

= x ·
(
x · x10

)2
= x ·

(
x ·
(
x5
)2)2

=x ·
(
x ·
(
x · x4

)2)2
= x ·

(
x ·
(
x ·
(
x2
)2)2

)2

(5.2)

In equation (5.2) we need to multiply 3 times and square 4 times in contrast to
naively multiplying the base with itself 23 times. In words, the calculation sequence
is: square, square, multiply, square, multiply, square and finally multiply. This yields
the following computation

1In reality it is wise to choose a bigger e, since there are various attacks on small encryption
exponents.

54

5.4 A Worked Example

c = m23 mod n

Step 1 Square
m1 = m2 mod n

= 116817648318621128495369899557

Step 2 Square
m2 = m2

1 mod n
= 13912521649153264981780032372

Step 3 Multiply
m3 = m2 ·m mod n

= 125300342823104533089446554622

Step 4 Square
m4 = m2

3 mod n
= 134664074173794183149523451861

Step 5 Multiply
m5 = m4 ·m mod n

= 90112057062247261321919636105

Step 6 Square
m6 = m2

5 mod n
= 247331899466514929976873542756

Step 7 Multiply c = m6 ·m mod n

c = 163270259402702795275875214006

Figure 5.3.: Square and Multiply

This ciphertext can be sent to Bob using unsecured channels. To decipher he simply
exponentiates the ciphertext with the secret exponent d = 231319361052200240838809925047

c231319361052200240838809925047 mod 253349776390506035635362097279 = m

With the knowledge of the used encryption standard he is able to convert

m = 308806070940178907490674 = Adi Shamir.

55

6. Paillier - An Additively Homomorphic
Scheme

Pascal Paillier introduced his cryptosystem in the 1999 published paper ”Public-Key
Cryptosystems Based on Composite Degree Residuosity Classes” [35]. The proposed
technique is based on composite residuosity classes, whose computation is believed
to be computationally difficult. It is a probabilistic asymmetric algorithm for public
key cryptography and inherits additive homomorphic properties.

6.1. The Definition of Paillier’s Cryptosystem

This section introduces the scheme itself. The key generation algorithm takes as
input two large primes p and q. It then computes the composite n = p·q and chooses
an integer g ∈ Z∗n2 (i.e., g in invertible modulo n2) such that n and L(gλ mod n2)
are coprime, where L denotes the function

L : Z∗n2 → Zn

u 7→ u− 1

n

and λ denotes the Carmichael function λ(p · q) = lcm(p− 1, q − 1). The public key
is the tuple (n, g) and the secret key are the two prime factors (p, q).

The encryption procedure takes as input a message m ∈ Zn and randomly chooses
an integer r in Z∗n, this random number is used to fulfill the probabilistic algorithm’s
property, that one plaintext can have many ciphertexts (see Section 3.2).It is later
shown that this random variable does not impede the correct decryption, but has
the effect of changing the corresponding ciphertext.
The output is a ciphertext in Zn2 , which has the following form

c = gm · rn mod n2

Decryption takes as input the ciphertext c and the secret key p and q. The message
is retrieved by

m =
L(cλ mod n2)

L(gλ mod n2)
mod n

57

6 Paillier - An Additively Homomorphic Scheme

Note that due to the requirement that n and L(gλ mod n2) are coprime it is possible
to find the inverse of L(gλ mod n2) mod n.

Key Generation: KeyGen(p, q)

Input: p, q ∈ P
Compute n = pq
Choose g ∈ Z∗n2 such that

gcd(L(gλ mod n2), n) = 1 with L(u) =
u− 1

n

Output: (pk, sk)
public key: pk = (n, g)
secret key: sk = (p, q)

Encryption: Enc(m, pk)

Input: m ∈ Zn
Choose r ∈ Z∗n
Compute c = gm · rn mod n2

Output: c ∈ Zn2

Decryption: Dec(c, sk)

Input: c ∈ Zn2

Compute m =
L(cλ mod n2)

L(gλ mod n2)
mod n

Output: m ∈ Zn

Figure 6.1.: Probabilistic encryption scheme based on composite residuosity

6.2. Additive Homomorphic Property

The Paillier scheme is known to be additivly homomorphic (see Chapter 4). What
might seem confusing at first is the fact that the two group operations are different,
namely the product of two ciphertexts will decrypt to the sum of their plaintexts.
In comparison to that, the product of two RSA ciphertexts decrypt to the product
of their plaintexts. Hence the Paillier scheme is additivly homomorphic and RSA
multiplicatively.

The given ciphertexts ci are valid encryptions of plaintexts mi, ci = Enc(mi) =

58

6.3 The nth Residue

gmirni mod n2. The following properties hold

c1 = gm1xn1 mod n2

c2 = gm2xn2 mod n2

c1 · c2 = gm1xn1 · gm2xn2 mod n2 = gm1+m2(x1x2)n mod n2

Table 6.1.: The homomorphic property of the Paillier Cryptosystem

This means that the encryption of the addition of two plaintexts m1 and m2 is
exactly the multiplication of the associated ciphertexts c1 and c2. This property is
applied to ,i.e., voting schemes (see Section 4).

Example. For the example we use the following Paillier public key

(n, g) = (2501, 92)

and say we want to encrypt the two messages m1 = 34 and m2 = 16. The according
ciphertexts are

c1 =9234 · 5︸︷︷︸
r1

2501 mod n2 = 1129735

c2 =9216 · 7︸︷︷︸
r2

2501 mod n2 = 5140305

c1 · c2 =2010769

On the other hand, adding the two ciphertexts and encrypting them, with the ran-
dom number being r1+2 = 35 yields

m1 +m2 =50

c1+2 =9250 · 352501 mod n2 = 2010769

In the calculations above the random number r1+2 is exactly chosen to be the product
of r1 and r2. In reality the entity which handles the computations, has of course no
knowledge of the random number picked by the encrypter. But remember that the
random number is not important anymore when we decrypt the ciphertexts, so it
is actually possible to use another random number and get the correct sum of the
original messages. However, in this example the exact value for the random number
is used, so it is possible to compare the ciphertexts themselves.

6.3. The nth Residue

As the scheme’s security relies on the intractability of distinguishing nth residues
modulo n2 from non nth residues, a detailed study of these numbers is more than
useful. In the following chapter, n denotes a composition of two primes p and q.

59

6 Paillier - An Additively Homomorphic Scheme

Definition 6.1. A number z ∈ Z∗n2 is said to be a nth residue modulo n2 if there
exists a number y ∈ Z∗n2 so that

z = yn mod n2

y is called an nth-root.

The set of nth residues, denoted Rn, is a multiplicative subgroup of Z∗n2 , since n
divides the order of Z∗n2 , i.e. |Z∗n2 | = ϕ(n2) = n · ϕ(n). Moreover the cardinality of
Rn is |Rn| = ϕ(n).

There are several interesting properties within the structure of Z∗n2 and Rn, which
will be used later when proving correctness of the scheme. The first one concerns
the amount of different nth-roots of an nth-residue.

Theorem 6.2. Each nth residue z ∈ Z∗n2 has exactly n distinct nth roots in Z∗n2

Proof. In a finite cyclic group G it holds that the equation yn = z has gcd(n, |G|)
solutions [9]. This fact can be applied to the cyclic groups Z∗p2 and Z∗q2 . The order

of Z∗p2 is |Z∗p2 | = p(p− 1) respectively the order of Z∗q2 is |Z∗q2 | = q(q − 1). Then the
following equation

z = yn mod p2 (6.1)

has gcd(n, p(p−1)) = p distinct solutions, respectively equation 6.1 with q instead of
p has gcd(n, q(q− 1)) = q different solutions. Using the Chinese remainder theorem
(thm. 2.18, p. 9) gives us pq = n different solutions modulo n2.

These roots have a special form

Lemma 6.3. For any x ∈ Zn,

(1 + n)x = 1 + xn mod n2

These are the roots of unity in (Z∗n2 , ·).

Proof. This will be proved by induction over x. For x = 0 it is obviously true.
Inductive step x→ x+ 1:

(1 + n)x = (1 + x · n) mod n2

(1 + n)x+1 = (1 + n)x(1 + n) mod n2

= (1 + x · n)(1 + n) = (1 + (x+ 1) · n) mod n2

These are indeed roots of unity since raising them to the power n yields

(1 + n)x·n = 1 + (xn)n mod n2

= 1 mod n2

60

6.4 Paillier’s Encryption Function

Also, (1 + n)x ∈ Z∗n2 since gcd(1 + n, n2) = gcd(1 + n, n) = 1.

Note that there is exactly one root of unity which is smaller than n, namely 1, which
can easily be verified with Lemma (6.3).

Example. Lets choose n = 33 then n2 = 1089. For example 269 is an nth residue
modulo 1089, because 1433 ≡ 269 mod 1225. Hence 14 is an nth root of 269 in Z1089.
More nth roots of 269 are 47, 80, 113,
For the following table remember y ∈ Z∗n2 and there is exactly one root strictly
smaller than n.

y yn mod n2 y yn mod n2 y yn mod n2 y yn mod n2

1 1 8 215 17 161 26 251

2 602 10 604 19 820 28 766

4 856 13 118 20 971 29 233

5 323 14 269 23 485 31 487

7 838 16 928 25 874 32 1088

Table 6.2.: The nth residues of n = 33

6.4. Paillier’s Encryption Function

In this section we will take a closer look at the encryption function Encg. Let g be
some element of Z∗n2 and Encg is the integer-valued function defined by

Encg : Zn × Z∗n −→ Z∗n2

Encg(m, r) = gm · rn mod n2 (6.2)

Depending on g, Encg may have some interesting properties.

Lemma 6.4. If the order of g mod n2 is a nonzero multiple of n, then Encg is
bijective.

Proof. Since the two sets Zn × Z∗n and Z∗n2 have the same cardinality,

|Zn × Z∗n| = n · ϕ(n) = ϕ(n2) =
∣∣Z∗n2

∣∣
it is only necessary to prove injectivity.
Assume that m1,m2 ∈ Zn and r1, r2 ∈ Z∗n with

gm1rn1 = gm2r2 mod n2. (6.3)

61

6 Paillier - An Additively Homomorphic Scheme

Multiplying (6.3) with g−m2 and r−n1 and raising it to the power λ(n) yields

(gm1−m2)λ(n) =

(
r2

r1

)n·λ(n)

mod n2

Due to equation (2.4) it holds that (r2/r1)nλ(n) = 1 mod n2 and therefore

g(m1−m2)λ(n) = 1 mod n2 (6.4)

On basis of the prerequisite that the order of g is a multiple of n, we have

ord(g)|(m1 −m2)λ(n)

⇒ n|(m1 −m2)λ(n)

⇒ n|(m1 −m2),

since gcd(λ(n), n) = 1. It follows that gλ(n) has order n and therefore is a root of
unity. Consequently it can be written as gλ(n) = (1 + zn) for some z ∈ Zn, z 6= 0.
Therefore equation (6.4) can be written as

(1 + zn)m1 = (1 + zn)m2 mod n2

This implies that m1 = m2 mod n. Equation (6.3) simplifies to

rn1 = rn2 mod n2(
r1

r2

)n
= 1 mod n2

which leads to the unique solution r1/r2 = 1 in Z∗n, hence r1 = r2 mod n. This
completes the proof.

This theorem demonstrates how to choose g such that we can exactly retrace a
ciphertext to its original plaintext. How to construct such a g is demonstrated in
the following section.

6.5. The nth Residue Class

How hard is it to compute the inverse of Paillier’s encryption function (see Equa-
tion6.2)?
To get a useful scheme we need the order of g be a nonzero multiple of n (see Lemma
6.4). Therefore the following set is constructed:

Let Bα ⊂ Z∗n2 be the set of elements of order nα

Bα := {g ∈ Z∗n2 | ord(g) = n · α, α ∈ {1, ..., λ}}

and by B their disjoint union for α = 1, ..., λ.

62

6.5 The nth Residue Class

Lemma 6.5. The order of g ∈ Z∗n2 is a multiple of n, i.e. g ∈ B, if and only if

gcd(L(gλ(n) mod n2), n) = 1

Proof. Due to equation (2.4) it holds that

gλ(n) = 1 mod n for all g ∈ Z∗n2 .

Therefore there exists a k ∈ Zn such that1

gλ(n) = 1 + kn mod n2.

This equation is raised to the power a ∈ N, it follows that

gaλ(n) ≡ (1 + kn)a ≡ 1 + a · kn mod n2 (6.5)

If gcd(k, n) = b > 1, then there is an a < n for which the equivalence in Equation
(6.5) is 1. Hence aλ(n) = ord(g) and since a is strictly smaller than n, it follows
that g /∈ B.

Conversely, gcd(L(gλ(n) mod n2), n) = 1. To get the order of g, it is necessary to
check when the equivalence in equation (6.5) becomes 1. This is the case only if a
is chosen such that a · k is a multiple of n, therefore since gcd(k, n) = 1, a has to be
a multiple of n. Hence, the order of g is a multiple of n.

Definition 6.6. Assume that g ∈ B. For c ∈ Z∗n2 , we call the nth residuosity
class of c with respect to g the unique integer m ∈ Zn for which there exists r ∈ Z∗n
such that

Encg(m, r) = c = gmrn mod n2.

The class of c is denoted JcKg = m

There are some essential properties of the class JcKg.

Lemma 6.7. The residuosity class JcKg = 0 if and only if c is an nth residue modulo
n2

Proof. If JcKg = 0, then there exists a r ∈ Z∗n2 , such that c = g0rn mod n2. Hence c
is an nth residue modulo n2.
Conversely, if c is an nth residue modulo n2, it has the form c = rn mod n2. So for
every g ∈ B the following condition holds

c = rn mod n2 = g0rn mod n2

Hence JcKg = 0 since Encg is injective.

1The function L on input gλ(n) mod n2 provides this k.

63

6 Paillier - An Additively Homomorphic Scheme

Lemma 6.8. The function c 7→ JcKg is a homomorphism from (Z∗n2 , ·) to (Zn,+) for
any g ∈ B. That means for all ci ∈ Z∗n2 following condition holds

Jc1 · c2Kg = Jc1Kg + Jc2Kg mod n

Proof. Assume that for every mi there exists a ri ∈ Z∗n2 with

ci = gmirni mod n2 for i ∈ {1, 2}

then for c = c1 · c2 there exists a r = r1 · r2 with

c1 · c2 ≡ gm1rn1 · gm2rn2 ≡ gm1+m2(r1 · r2)n mod n.

which completes the proof

To be a useful cryptographic scheme the encryption function has to be easily com-
putable but hard to invert. Obviously the first contraint is fulfilled, but how hard
is it to compute JcKg?

6.6. The Intractability of the Scheme

The security of Paillier’s scheme relies on two computational problems. First there
is the Composite Residuosity Class Problem which is described as

Definition 6.9. (CLASS[n, g]). Given c ∈ Z∗n2 and g, compute JcKg.

The second problem is the Composite Residuosity Problem, informally it asks to
decide nth residuosity, i.e., distinguishing nth residues from non nth residues. It will
be denoted as CR[n].

Definition 6.10. (CR[n]). Given c ∈ Z∗n2 decide whether c is an nth residue or a
random element in Z∗n2 .

Note that like the well studied problems of deciding quadratic or higher degree
residuosity [34], deciding nth residuosity is believed to be computationally hard.
Therefore, we assume

Conjecture 6.11. (Decisional Composite Residuosity Assumption (DCRA)). There
exists no polynomial time distinguisher for nth residues modulo n2, i.e., CR[n] is
intractable.

Before we can analyze the intractability of CLASS[n], further propositions about
this problem are needed.

64

6.6 The Intractability of the Scheme

6.6.1. CLASS[n, g]

First it will be shown that the complexity of CLASS[n, g] is actually independent of
g, therefore CLASS[n, g] becomes CLASS[n]. Additionally that CLASS[n] is equally
hard for all c ∈ Z∗n2 , i.e. random self reducible over c.

Lemma 6.12. Class[n, g] is random self reducible over c ∈ Z∗n2

Proof. Any c ∈ Z∗n2 can be transformed into a random instance c̃ ∈ Z∗n2 of CLASS[n]
simply by randomly choosing a ∈ Zn, a > 0 and b ∈ Z∗n

c̃ = c · gabn mod n2

Assume we can solve CLASS[n, g] for c̃, i.e. Jc̃Kg = m̃, then there exists a x̃ ∈ Z∗n
such that

c̃ = gm̃x̃n mod n2

= c · gabn mod n2

which yields

c = gm̃−a
(
x̃

b

)n
mod n2

and therefore

JcKg = m̃− a = Jc̃Kg − a mod n.

which completes the proof.

So it is equally hard to compute the nth residuosity class for each ciphertext, even
independently of g:

Lemma 6.13. Class[n, g] is random self reducible over g ∈ B

Proof. The lemma basically means that

∀gi ∈ B it holds that Class[n, g1] ≡ Class[n, g2].

Now assume that for any c ∈ Z∗n and g1, g2 ∈ B there exist r1, r2 ∈ Z∗n such that

c = gm1
1 rn1 mod n2 with m1 := JcKg1

c = gm2
2 rn2 mod n2 with m2 := JcKg2 (6.6)

Say that for Jg2Kg1 there exists a x ∈ Z∗n such that

g2 = gm3
1 xn mod n2 with m3 := Jg2Kg1 (6.7)

65

6 Paillier - An Additively Homomorphic Scheme

Now we combine (6.6) and (6.7):

c = (gm3
1 xn)m2rn2 mod n2

= gm2·m3
1 (xm2 · r2)n mod n2

⇒ gm1
1 rn1 = gm2·m3

1 (xm2 · r2)n mod n2

⇒ m1 = m2 ·m3

Therefore, we have

JcKg1 = JcKg2Jg2Kg1 mod n (6.8)

resp. JcKg2 = JcKg1Jg2K−1
g1 mod n

Now assume that we are able to compute JcKg1 then from lemma (6.13) we know we
can substitute c with any other element in Z∗n2 , this yields

Jg1Kg2 = Jg1Kg1Jg2K−1
g1 mod n

since for each g ∈ Z∗n2 it holds that JgKg = 1, we get:

Jg1Kg2 = Jg2K−1
g1 mod n (6.9)

thus Jg1Kg2 is invertible modulo n and we can compute

JcKg2 = JcKg1Jg2K−1
g1 mod n

which completes the proof.

The lemmas in the previous sections essentially mean that the complexity of CLASS[n, g]
is independent of g and c. This enables us to analyze it as a computational problem
which purely relies on n.

6.6.2. The Computational Hierarchy of Paillier’s Encryption Scheme

The first connection we will establish is between the Composite Residuosity Class
Problem and a standard number-theoretic problem, namely Factoring. For this
purpose the next Lemma is helpful.

Lemma 6.14. For any c ∈ Z∗n2 , L(cλ mod n2) = λJcK1+n mod n.

Proof. Since (1 + n) ∈ B, there exists a unique pair (a, b) ∈ Zn × Z∗n such that
c = (1 + n)abn mod n2. By definition, a = JcK1+n and therefore

cλ = (1 + n)aλbnλ = (1 + n)aλ = 1 + aλn mod n2

which yields

L(cλ mod n2) = L(1 + aλn mod n2) = λa mod n = λJcK1+n mod n.

66

6.6 The Intractability of the Scheme

As said before it is believed that solving an instance of CLASS[n] is computationally
infeasible, which is shown in the following theorem.

Theorem 6.15. The problem of computing the nth residuosity class is as hard as
factoring a composite number n.

CLASS[n]⇐ Fact[n]

Proof. Due to equation (6.9) the JgK1+n = J1 + nK−1
g mod n is invertible, and as a

consequence of Lemma (6.14), L(gλ mod n2) is invertible modulo n. Now, factoring
n leads to the knowledge of λ = lcm(p − 1, q − 1). Due to equation (6.8) it holds
that for any g ∈ B and c ∈ Z∗n2 ,

L(cλ mod n2)

L(gλ mod n2)
=
λJcK1+n

λJgK1+n
=

JcK1+n

JgK1+n
= JcKg mod n (6.10)

That means that JcKg mod n is easily computable with the knowledge of p, q.
Note that this theorem also proves correctness of decryption.

To connect the Composite Residuosity Problem with the Composite Residuosity
Class Problem we will first show the equivalence of the decisional version of CLASS[n]
and CR[n]

Theorem 6.16. Let D-CLASS[n] be the decisional problem linked to CLASS[n],
i.e.,

Given c ∈ Z∗n2 , g ∈ B and m ∈ Zn, decide whether m = JcKg or not.

Then
CR[n] ≡ D-CLASS[n].

Proof. Assume there is an oracle solving CR[n], then we could submit c·g−m mod n2

to the oracle. Due to Lemma (6.7), in case of nth residuosity, it holds

Jc · g−mKg = 0

which implies

c · g−m = gJcKgrn · g−m mod n2

= gJcKg−mrn mod n2

hence Jc · g−mKg = 0 only if JcKg = m.
Conversely, there is an oracle solving D-CLASS[n]. Randomly choose g ∈ B and
submit the triple (c, g, 0) to the oracle. Due to Lemma (6.7), if the answer is Y ES
so is the answer to CR[n].

67

6 Paillier - An Additively Homomorphic Scheme

Above we see the computational hierarchy, where D-CLASS[n]⇐ CLASS[n] comes
from the general fact that it is easier to verify a solution than to compute it.

CR[n] ≡ D-CLASS[n]⇐ CLASS[n]⇐ FACT[n]

This leads to the second intractability hypothesis

Conjecture 6.17. (Computational Composite Residuosity Assumption (CCRA)).
There exists no probabilistic polynomial time algorithm solving the Composite Resid-
uosity Class Problem, i.e., Class[n] is intractable.

6.7. A Worked Example

For better understanding and to show the probabilistic property of the scheme see
the following example. Like in the example of the RSA scheme (see Section 5.4,
page 51) the numbers used are much smaller than in reality.

The following example uses two messages from the voting example in Section 4.2.
The two voters V6 and V8 will be named Alice and Bob. Alice’s and Bob’s votes
are the same, they want either R2 or R4 to win the proposed election. As the votes
need to be converted to numbers each candidate gets a different number. According
to the example on page 43, R2 = 101 and R4 = 103. The message which shall be
encrypted is the vote m = 1010. This message is the same for both Alice and Bob,
since they voted the same candidates.
Now, the authority picks two primes p = 293 and q = 433 secretly and calculates
the public key n = p · q = 126869 and n2 = 16095743161. Only the authority can
compute the Carmichael function, since it knows the prime factors of n, λ(n) =

lcm(p − 1, q − 1) = (p−1)(q−1)
gcd(p−1,q−1) = 31536. For the completion of the public key the

authority chooses an integer g ∈ Z∗16095743161 with the property that L(gλ mod n2)
is coprime to n (gcd(L(gλ(n) mod n2), n) = 1). As the authority knows what λ(n)
is it can easily check if a random g satisfies the mentioned property. It chooses
g = 6497955158. Then:

Voting Authority

pk = (126869, 6497955158)
sk = (293, 433)

Figure 6.2.: The Paillier keys of the election authority

For the encryption of the plaintext m = 1010 Alice has to choose a random number
r ∈ Z∗16095743161. This random number realizes the probabilistic property, where

68

6.7 A Worked Example

one plaintext can have many ciphertexts, which will be shown in the next couple of
lines.

Encryption

Alice Bob

m = 1010 m = 1010

r = 34 r = 1312

n = 126869, g = 6497955158, n2 = 16095743161

c = gm · rn mod n2

cA = 4821154392 cB = 5720727730

Decryption

m = L(cλ(n) mod n2)

L(gλ(n) mod n2)
mod n with λ(n) = 31536

L(cλA mod n2) = L(15249400063) = L(cλB mod n2) = L(15249400063) =

120198 120198

L(gλ mod n2) = L(649795515831536 mod 16095743161) = L(3967320500) = 31271

L(gλ mod n2)−1 mod n = 53022

⇒m = 120198 · 53022 mod 126869 = 1010

Table 6.3.: The Paillier encryption and decryption of Alice, Bob and the election
authority

In the table above there are some calculations which should be stated in more
detail:

cA = 4821154392⇒ uA = cλA mod n2

= 482115439231536 mod 16095743161 = 15249400063

the same applies to:

cB = 5720727730⇒ uB = c31536
B mod 16095743161 = 15249400063

These cA, cB are the input numbers for the function L. Now it is possible to
compute

L(cλA,B mod n2) =
uA,B − 1

n
=

15249400062

126869
= 120198

69

6 Paillier - An Additively Homomorphic Scheme

For decryption we also need to compute L(gλ mod n2)−1, therefore we calculate

g = 6497955158⇒ v = g31536 mod 16095743161 = 3967320500

L(gλ mod n2) =
v − 1

n
=

3967320499

126869
= 31271

Like in the table above the message is

m =
L(cλA,B mod n2)

L(gλ mod n2)
mod n = 120798 · 53022 mod 126869.

70

7. Gentry - An Algebraically
Homomorphic Scheme

In the decades before Gentry discovered his novel method to gain homomorphic
encryption, many researchers worldwide tried to find more powerful and therefore
more complex schemes to achieve the fully homomorphic property. Gentry uses
a method which no other researcher tried before. Instead of directly creating a
superior scheme, he would build one from a ”somewhat” homomorphic scheme, if
its decryption circuit is sufficiently simple. He realized that he could build a fully
homomorphic scheme from any scheme that is bootstrappable, i.e., could homomor-
phically compute a slightly augmented version of its own decryption circuit.

The benefit of fully homomorphic encryption has long been recognized. The question
for constructing such a scheme arose within a year of the development of RSA [36].
For more than 30 years, it was unclear whether fully homomorphic encryption was
even achievable. During this period, the best encryption system was the Boneh-
Goh-Nissim cryptosystem [7] which supports evaluation of an unlimited number of
addition operations but one multiplication at the most.

A common reason why a scheme cannot compute circuits of a certain depth is that
after a certain amount of computations too much error accumulates, which causes
the decryption to obtain a wrong value. The decryption usually is able to handle
small amounts of error within a certain range and bootstrappable encryption enables
”refreshing” after some time.

The basic idea of ”refreshing” is to encrypt under a first key. Compute until right
before the error grows too large. Encrypt under a second key. Compute the de-
cryption circuit, which since it stopped before the error grew too large, gives the
correct value encrypted under the second key. The first key is no longer required.
Continue computation under the second key, and repeat with a new key as often
as needed. When the computation has finished, decrypting with the last used key
gives the original plaintext.

Gentry’s method can be broken down into three major steps:

Step 1: Constructing an encryption scheme using ideal lattices that is somewhat
homomorphic, which means it is limited to evaluating low-degree polyno-
mials over encrypted data. This scheme is very similar to the Goldreich-

71

7 Gentry - An Algebraically Homomorphic Scheme

Goldwasser-Halevi scheme published in 1997 [21] which is based on lattice
problems as well.

Step 2: ”Squashing” the decryption circuit of the original somewhat homomorphic
scheme to make it bootstrappable.

Step 3: Bootstrapping the slightly augmented original scheme of step 2 to yield the
fully homomorphic encryption scheme. This will be done with a ”refreshing”
procedure.

The innovative idea of Gentry’s method of creating a fully homomorphic scheme
out of a somewhat homomorphic scheme is the method of squashing and boot-
strapping. Mathematically the most appealing step is the first step.

7.1. The Somewhat Homomorphic Scheme

The aim of this somewhat homomorphic scheme (SHS) is to construct an encryption
scheme that is ”almost” bootstrappable with respect to a universal set of gates Γ.
The reason why ideal lattices are the perfect choice is the fact that the complexity of
the decryption algorithms in lattice based encryption schemes are very low, especially
compared to schemes like RSA or ElGamal, which rely on exponentiation.

The key generation algorithm of Gentry’s scheme takes as input a fixed ring R as
well as a basis BI of a small ideal I E R, which is used to embed the message into
an error vector, e.g., I = (2). Additionally an algorithm IdealGen(R,BI) is used to
output the public key and the secret key. The public key consists of a ”bad” basis
Bpk of the ideal lattice J , e.g., the HNF of the secret key basis Bsk. The secret key
consists of a ”good” basis of J denoted as Bsk with short and nearly orthogonal
vectors. The ideal lattice J is chosen such that I+J = R, i.e., I and J are relatively
prime.
Also remember that if ~v ∈ R and BJ is a basis for an ideal J E R, then the value
~v mod BJ is unique and can be computed efficiently (see Section 2.1.7 on page 18),
i.e., the coset ~v+J has a unique, efficiently-computable distinguished representative
with respect to the basis BJ . Also R mod BJ denotes the set of distinguished
representatives of ~r + J over ~r ∈ R, with respect to the particular basis BJ of J .

The encryption algorithm takes as input the message ~m as well as the public key
Bpk. The plaintext space P is a subset of R mod BI . It uses an additional algorithm
Samp(~m,BI) to sample a ”short” vector from the coset ~m+ I, this result is further
reduced modulo the public basis Bpk:

~c = ~m+~i︸ ︷︷ ︸
~e

modBpk. (7.1)

Geometrically speaking, a ciphertext is a vector ~c close to a J-point, and the en-
crypted message is encoded in the distance to the nearest lattice point.

72

7.1 The Somewhat Homomorphic Scheme

The homomorphic property is reflected in the evaluation algorithm. Eval takes as
input a circuit C of some permitted set CE whose gates perform operations modulo
BI , the public key Bpk and a set of input ciphertexts Ψ = {~c1, ...,~cm}.
It performs AddBI and MultBI in the proper sequence to compute the output ci-
phertext ~c.

Add(Bpk,~c1,~c2) outputs ~c1 + ~c2 mod Bpk

Mult(Bpk,~c1,~c2) outputs ~c1 · ~c2 mod Bpk.

The reason why this scheme is only somewhat homomorphic is due to the fact that
the error vectors grows with each operation. Imagine for two ciphertexts ~c1 = ~j1+ ~e1

and ~c2 = ~j2 + ~e2

~c+ = ~j+ + ~e+ : ~j+ = ~j1 + ~j2 ∈ J
~e+ = ~e1 + ~e2 is small

~c× = ~j× + ~e× : ~j× = ~j1 × ~j2 + ~j1 × ~e2 + ~e1 × ~j2 ∈ J
~e× = ~e1 × ~e2 is small

Especially the error originating from multiplications tend to grow very fast, im-
pairing the decryption to decipher incorrectly. This problem will be solved by an
additional algorithm that refreshes the ciphertext after each operation. This pro-
cedure transforms the so-called somewhat homomorphic scheme into the powerful
fully homomorphic scheme.

Now the decryption algorithm takes as input the ciphertext and of course the
secret key Bsk and outputs the original message

~m = (~c mod Bsk) mod BI . (7.2)

The reason decryption works is that, if the parameters are chosen correctly, then the
parallelepiped P(Bsk) of the secret key will be a plump parallelepiped that contains
a sphere of radius bigger than ||~e||, so that ~e is indeed the unique point inside P(Bsk)
that equals ~c mod Bsk. On the other hand, the parallelepiped P(Bpk) of the public
key will be very skewed, and will not contain a sphere of large radius, making it
useless for solving BDDP (def 2.50.).

73

7 Gentry - An Algebraically Homomorphic Scheme

Key Generation: KeyGen(R,BI)

Input: R and basis BI of I ER.

Run IdealGen(R,BI)
(Bpk,Bsk)← IdealGen(R,BI), where I + J = R.
(Bpk,Bsk) are bases of J

Output: (pk, sk)
public key: pk = (R,BI ,Bpk,Samp)
secret key: sk = Bsk

Encryption: Enc(~m, pk)

Input: ~m ∈ P and pk.

Run Samp(~m,BI)
~e← Samp(~m,BI)

Compute ~c = ~e mod Bpk

Output: ~c ∈ R mod Bpk

Evaluation: Eval(Bpk, C,Ψ)

Input: pk = Bpk, a circuit C ∈ CE and Ψ = {~c1, ...,~ct}

Compute ~c = g(C)(Ψ) mod Bpk

g(C) denotes the generalized circuit

Output: ~c ∈ R mod Bpk

Decryption: Dec(~c, sk)

Input: ~c ∈ R mod Bpk

Compute ~m = (~c mod Bsk) mod BI

Output: ~m ∈ P

Figure 7.1.: The somewhat homomorphic scheme using ideal lattices

7.1.1. Correctness of the SHS

The proof of correctness is split into two parts. Part 1 shows that the decryption
works for one ciphertext. Part 2 shows the correctness of the evaluation algorithm.

74

7.1 The Somewhat Homomorphic Scheme

Decryption

Informally speaking, as already mentioned before, decryption works as long as the
secret key Bsk generates a parallelepiped PBsk that is plump enough to solve the
BDDP in reasonable time. We will later see that this is the case if the columns
of Bsk

−1 have Euclidean length smaller than 1/2||~e||, where ~e is the error vector
~e = ~m+~i.
A ciphertext in the above described scheme has form ~c = ~e+~j for some ~j ∈ J . Since
Bsk is a basis of the ideal lattice J , ~j ∈ J can be written as ~j = Bsk · ~α for some
integer coefficient vector ~α and therefore

~c = Bsk · ~α+ ~e.

The decryption procedure needs to reduce ~c mod Bsk. This is done by computing

~c mod Bsk = ~c−Bsk ·
⌊
Bsk

−1 · ~c
⌉

= Bsk ·
[
Bsk

−1 · ~c
]

= Bsk

[
Bsk

−1(Bsk · ~α+ ~e)
]

= Bsk

[
~α+ Bsk

−1 · ~e
]

(7.3)

Since the coefficients of ~α are integers and [·] means taking only the fractional part
equation (7.3) can be further simplified

Bsk

[
~α+ Bsk

−1 · ~e
]

= Bsk

[
Bsk

−1 · ~e
]

(7.4)

Remember that we assumed the Euclidean length of the columns of Bsk
−1 to be

smaller than 1/2||~e||, hence each entry of Bsk
−1 · ~e is smaller than 1/2 in absolute

value, since these entries are all inner products of ~e and columns of Bsk
−1. It follows

that the fractional part
[
Bsk

−1 · ~e
]

equals Bsk
−1 ·~e and equation (7.4) simplifies even

further

~c mod Bsk = Bsk

[
Bsk

−1 · ~e
]

= Bsk ·Bsk
−1 · ~e = ~e.

From ~e it is easy to extract the original message by reducing it modulo BI , since
~e = ~m +~i with ~i ∈ I. So the decryption algorithm is correct if the secret key is
chosen correctly.

Evaluation

Considering correctness of the evaluation procedure, some structural definitions
will be needed. The definitions are directly taken from Gentry’s thesis [20]. Before
we can state them, the following observation is useful to understand the definitions.
The Eval-Algorithm actually uses two different circuits. First, it applies a (mod BI)
circuit C to the plaintexts. Second, it applies a circuit related to C to the ciphertexts
which uses ring operations - not (mod I). This circuit is called the generalized
circuit.

75

7 Gentry - An Algebraically Homomorphic Scheme

Definition 7.1. (generalized Circuit). Let C be a (mod BI) circuit. The gen-
eralized circuit g(C) of C is the circuit formed by replacing C’s AddBI and MultBI
operations with the ring operations addition + and multiplication · in the ring R.

Definition 7.2. (XEnc, XDec) Let XEnc be the image of Samp. Then all ciphertexts
output by Enc are in XEnc + J .
Let XDec equal R mod Bsk, the set of distinguished representatives of cosets of J
with respect to the secret basis Bsk.

Definition 7.3. (permitted Circuit). Let

CE ′ =
{
C | ∀(~x1, ..., ~xt) ∈ Xt

Enc : g(C)(~x1, ..., ~xt) ∈ XDec

}
Informally, CE ′ is the set of (mod BI) circuits that, when generalized, the output
is always in XDec if the inputs are in XEnc. That is when the error g(C)(~e1, ..., ~et)
of the output ciphertexts is small. If CE ⊆ CE ′ then it is called a set of permitted
circuits.

A different way of looking at those circuits would be that they are permitted as long
as the error, i.e., g(C)(~e1, ..., ~et), of the output ciphertext lies inside XDec, when the
input ciphertexts are in the image of Enc which is XEnc + J .

Definition 7.4. (valid ciphertext). ~c is called a valid ciphertext with respect to
E , the public key pk and permitted circuits CE if it equals Eval(pk,C,Ψ) for some
C ∈ CE , where each ~c ∈ Ψ is in the image of Enc. The circuit C may be the identity
circuit, in which case the output of Eval is simply an output of Enc.

The following theorem proves correctness of the decryption procedure of a valid
ciphertext.

Theorem 7.5. Assume CE is a set of permitted circuits containing the identity
circuit. Dec correctly decrypts valid ciphertexts ~c.

Proof. For a set of ciphertexts Ψ = {~c1, ...,~ct} where a ciphertext is per definition

~ck
def
= ~mk +~ik +~jk with ~mk ∈ P , ~ik ∈ I, ~jk ∈ J and finally ~mk +~ik ∈ XEnc. When

evaluating a circuit C we obtain

~c = Eval(Bpk, C,Ψ) = g(C)(Ψ) mod Bpk ∈ g(C)(~m1 +~i1, ..., ~mt +~it) + J

Since C is a permitted circuit, i.e. C ∈ CE , and the (~mk + ~ik)’s are in XEnc it
holds per definition (7.3) that g(C)(~m1 +~i1, ..., ~mt +~it) ∈ XDec and therefore in
R mod Bsk. Now decryption proceeds as follows

Dec(~c,Bsk) = (g(C)(~m1 +~i1, ..., ~mt +~it) + J mod Bsk) mod BI

= g(C)(~m1 +~i1, ..., ~mt +~it) mod BI

= C(~m1, ..., ~mt).

Which completes the proof.

76

7.1 The Somewhat Homomorphic Scheme

The above theorem proves that the SHS is correct for permitted circuits. Hence the
scheme is already fully homomorphic for some set. Now the natural next step is
to maximize this set of permitted circuits such that the SHS can evaluate as many
polynomials as possible.

7.1.2. Maximizing Circuit Depth

In the section above we saw that the scheme correctly evaluates the gates AddBI
and MultBI if XEnc +XEnc ⊆ XDec and XEnc ·XEnc ⊆ XDec respectively.
In fact due to using ideal lattices these sets have a geometric interpretation. The
sets XEnc and XDec become subsets of Zn in the following way:

Definition 7.6. (rEnc, rDec). Let rEnc be the smallest value such that XEnc ⊆
B(rEnc), and
rDec be the largest value such that XDec ⊇ B(rDec).
Now the set of permitted circuits can be defined as

CE = {C | ∀{~x1, ..., ~xt} ∈ B(rEnc)
t : g(C)(~x1, ..., ~xt) ∈ B(rDec)}

With this interpretation the question of maximizing the set of permitted circuits be-
comes a geometric problem. In the following || · || denotes the Euclidean length.
In order to maximize the set CE it is necessary to bound the Euclidean length
||g(C)(~e1, ..., ~et)||. Since g(C) is the generalized circuit this can be done by bounding
the length of ||~ei + ~ej || and ||~ei × ~ej || in terms of ||~ei|| and ||~ej ||.

Theorem 7.7. For a generalized circuit g(C) of a permitted circuit C and lattice
vectors ~ei, i = 1, ..., t the Euclidean norm of ||g(C)(~e1, ..., ~et)|| can be bound in terms
of ||~ei|| and ||~ej ||. It holds that

||~ei + ~ej || ≤||~ei||+ ||~ej || (7.5)

||~ei × ~ej || ≤γ(R) · ||~ei|| · ||~ej || (7.6)

γ(R) is called the expansion factor.

Proof. Equation (7.5): Using the triangle inequality immediately yields the result.
Equation (7.6): Since × denotes the polynomial multiplication,

u(x)× v(x) =
n∑
k=0

k∑
j=0

ujvk−jx
k+j : n = deg(u(x)) + deg(v(x))

it is a bilinear map and its operator norm can be defined as

γ(R) = sup
u,v 6=0

||u(x)× v(x)||
||u(x)|| · ||v(x)||

which completes the proof.

77

7 Gentry - An Algebraically Homomorphic Scheme

Gentry uses this bounds to prove ([20], thm. 7.3.2) that the somewhat homomorphic
encryption scheme, described in this section, can correctly evaluate circuits of depth
up to

log log rDec − log log(γ(R) · rEnc).

Hence in order to maximize the depth of circuits that can be correctly evaluated,
the expansion factor γ(R) and rEnc have to be minimized while rDec should be
maximized.

Example. Since γ(R) only depends on the ring itself it directly affects the choice
of f(x). There are many possible choices of f(x) for which the expansion factor is
only polynomial in n. One where γ(R) is particularly small is f(x) = xn + 1.

Let f(x) = xn + 1 and R = Z[x]/(xn + 1). Then

||~u× ~v|| ≤
√
n · ||~u|| · ||~v||

For ~u,~v ∈ R, × denotes the polynomial multiplication of the unique associated
polynomials with coefficient vector ~u resp. ~v in R. Let z(x) = u(x) × v(x) be the
degree (2n − 2) product polynomial not yet reduced by (xn + 1). Then in holds
that z(x) = q(x)f(x) + r(x) with r(x) = z(x) mod f(x) and deg(r(x)) = n − 1.
Then ||~u × ~v|| = ||~r|| where ||~z|| denotes the Euclidean norm of the vector formed
by the coefficients of r(x). Since each coefficient of r(x) is an inner product of
some coefficients of u(x) and v(x), it holds that |ri| ≤ ||u|| · ||v|| (Cauchy-Schwarz
inequality).

||r(x)||2 = |r0|2 + ...+ |rn−1|2

≤ ||u(x)||2 · ||v(x)||2 + ...+ ||u(x)||2 · ||v(x)||2︸ ︷︷ ︸
n times

= n · ||u(x)||2 · ||v(x)||2.

This finally yields ||u(x)× v(x)|| ≤
√
n · ||u(x)|| · ||v(x)||. Hence the expansion factor

of R = Z[x]/(xn + 1) is γ(R) =
√
n.

7.1.3. Improving the Decryption Procedure

In order to understand the improvement we have to describe the specific relation
between the dual lattice L∗ and the inverse of an ideal I−1. Let J be an ideal lattice
in the ring R = Z[x]/f(x) with f(x) irreducible, recall the following definitions :

J∗ = {~x ∈ Rn | ∀~v ∈ J : 〈~x,~v〉 ∈ Z} (dual lattice),

J−1 = {~x ∈ Q[x]/f(x) | ∀~v ∈ J : ~v × ~x ∈ R} (inverse of an ideal).

For a ~v ∈ R the rotation basis V is given by the vectors ~v × xi mod f(x).

78

7.1 The Somewhat Homomorphic Scheme

Example. Let f(x) = xn+1 with n a power of 2. Then R = Z[x]/(xn+1) is closed
under rotation negation. For

~v = (v0, ..., vn−1) = v0 + v1x+ ...+ vn−1x
n−1 ∈ R then,

x~v = x×
n−1∑
i=0

vix
i = v0x+ v1x

2 + ...+ vn−2x
n−1 − vn−1 ∈ R.

Hence the rotation basis of ~v can be written as

V =

~v
x~v
...

xn−1~v

 =

v0 v1 · · · vn−1

−vn−1 v0 · · · vn−1
...

...
. . .

...
−v1 −v2 · · · v0

For the next paragraphs let J be a principal ideal generated by ~v.

Remark. The ideal J = (v) naturally corresponds to the lattice generated by the
rotation basis of ~v, denoted as L(Br).

Proof. Any w ∈ (v) has per definition the form w = a×R v for some a ∈ R and ×R
being the ring multiplication. Associating these ring elements with their coefficient
vectors yields w =

∑
i aivi ∈ L(Br). Conversely, let ~w ∈ L(Br) then it has the form

~w =
∑

i aivi for some integer ai. For a =
∑

i ai · xi this implies w = v × a in the
ring.

Let J = (~v) and BJ denotes the rotation basis of ~v, then J = L(BJ). Then the
inverse ideal is generated by 1/~v, J−1 = (1/~v). Also the rotation basis of (1/~v) is
BJ
−1, hence with the remark from above, J−1 = L(BJ

−1).
The dual of J , denoted J∗, is generated by the inverse transpose of BJ (theorem
2.35), J∗ = L((B−1J)T). Here we see a clear connection between the dual J∗ and the
inverse J−1, since the bases are just transposes of each other.

Since the product of the rotation basis of some ~v with a vector ~a ∈ Q[x]/f(x) can
be simply described as ~v × ~a, the decryption function can be simplified to

~m = (~c mod Bsk) mod BI = ~c−Bsk ·
⌊
Bsk

−1 · ~c
⌉

mod BI

= ~c− ~wsk × b~xsk × ~ce mod BI, (7.7)

where Bsk is the rotation basis of some ~wsk ∈ Z[x]/f(x), and ~xsk = 1/~wsk ∈
Q[x]/f(x). Since the rotation basis of ~xsk is Bsk

−1 the above holds.

Gentry shows that the equation (7.7) can be further simplified to

~m = ~c− ~v−1
sk × b~vsk × ~ce mod BI (7.8)

= ~c− b~vsk × ~ce mod BI (7.9)

79

7 Gentry - An Algebraically Homomorphic Scheme

where Bsk is a secret key which correctly decrypts for rDec (see Definition 7.6),
the vector is taken from the inverse ideal, ~vsk ∈ J−1, such that the rotation basis
of 1/~vsk = ~v−1

sk circumscribes a ball of radius r′Dec
1, ~c be a valid ciphertext, i.e.,

~c = ~m+~i+~j with ~i ∈ I, ~j ∈ J and ~m+~i ∈ B(r′Dec).
In equation (7.9) Gentry simply institutes a new requirement for the choice of ~vsk in
order to make it possible to drop the term ~v−1

sk . This requirement is that ~vsk ∈ J−1

is also contained in 1 + J−1I.2

Since I and J are relatively prime, there is a vector ~j ∈ J ∩ (1 + I). Let ~r denote
the product ~r = ~j × ~vsk, which is in R since ~vsk ∈ J−1. Furthermore for ~vsk ∈
1 + J−1I the vector ~r is in 1 + I. Since decryption is correct for r′Dec it holds that
~v−1
sk × b~vsk × ~ce ∈ R and therefore

~v−1
sk × b~vsk × ~ce = ~r × ~v−1

sk × b~vsk × ~ce mod I

= ~j × b~vsk × ~ce mod I

= b~vsk × ~ce .

which completes the simplification.

7.1.4. Security of the SHS

The security of the somewhat homomorphic scheme relies on the hardness of the
decisional bounded distance decoding problem (Decision BDDP). Remember the
shortest nonzero vector in a lattice Λ is denoted λ1(Λ) (def. 2.36), and the convex
body theorem (thm. 2.37) gives us an upper bound on the shortest vector of any

n-dimensional lattice Λ: λ1(Λ) <
√
n det(Λ)

1
n .

In the bounded distance decoding problem (BDDP), one is given a basis B of some
lattice Λ, and a vector ~c that is very close to some Λ-lattice point. The goal is to
find the point in Λ nearest to ~c.
In the promise problem γ-BDDP, there is an additional parameter γ > 1 and the
promise that the target vector ~c is within a distance γ to the nearest lattice point,
dist(Λ,~c) ≤ n

√
det(Λ)/γ.

Extensive experiments with different lattice dimensions and algorithms [16] led re-
searchers to assume that for any k and large n, it takes time 2k to approximate
BDDP in n-dimensional lattices to within a factor of α = 2µ·n/(k/ log k).

For better understanding of how these security assumptions work the scheme, de-
scribed in the previous section, the following short description on Babai’s rounding
off method and its application in the decryption procedure should help.

1Gentry showed that the exact value of r′Dec = rDec
n2.5·||f ||·||BI||

. I don’t want to pursue this issue any

further but refer the interested reader to [19, chap. 8.3].
2This choice directly affects the value r′Dec.

80

7.1 The Somewhat Homomorphic Scheme

Babai’s Rounding Technique

First of all it should be highlighted that the vector ~v output by the algorithm is not
guaranteed to solve γ-BDDP but to approximate it. The idea is rather simple.
Let B = {~b1, ... ~bn} be a basis of the lattice Λ, ~c ∈ Rn and ~e ∈ Λ be the nearest
lattice point. The idea is to solve the system of linear equations

B~z = ~c, ~z ∈ Rn

and then round the coefficients of ~z = (z1, ..., zn) to the nearest integer.

~v = B b~ze .

This is a possibly good approximation of ~u. This procedure can be performed using
any basis for the lattice, but Babai proved that ||~c − ~v|| is within an exponential
factor of the minimal value if the basis is LLL-reduced [cf. 28].
So, Babai’s Rounding Technique outputs a lattice point ~v such that ~c−~v =

∑n
i=1mi

~bi,
with |mi| ≤ 1/2. In other words, the output vector lies within the parallelepiped
centered in ~c defined by the basis vectors.

~e
~c

~v ~v = ~e
~c

Figure 7.2.: Left: Parallelepiped centered at ~x = (−0.4, 0.4) corresponding to the
lattice basis {(3,2);(2,1)}. Right: Parallelepiped centered at ~x =
(−0.4, 0.4) corresponding to the lattice basis {(1,0);(0,1)}

Hence having the good (nearly orthogonal, and therefore very reduced) secret key
basis Bsk allows the key holder to obtain ~e from the ciphertext ~c, but with the
knowledge of the bad basis Bpk the adversary cannot retrieve the closest lattice
point.

7.1.5. Decryption Complexity

The aim of this initial construction of a somewhat homomorphic encryption scheme
was to obtain a scheme that is bootstrappable. Up to now we do not know what boot-
strappability even means and why it is a necessary prerequisite. This question will

81

7 Gentry - An Algebraically Homomorphic Scheme

be answered in the following sections. Informally speaking a scheme is bootstrap-
pable if it can homomorphically evaluate its own decryption circuit. Unfortunately
this is not the case in this initial scheme [20, chap. 9]. In order to obtain a scheme
that can be transformed into a fully homomorphic encryption scheme it is crucial to
lower the complexity of the decryption circuit.

7.2. Squashing the Decryption Circuit

Before describing the technique Gentry used to lower the complexity of his initial
scheme, I want to recall the scheme with the improvements described in section
(7.1.3). Lets denote the ”new” scheme E∗ = (KeyGen∗,Enc∗,Dec∗,Eval∗)

Key Generation: KeyGen∗(R,BI)

Input: R and basis BI of I ER.

Run IdealGen(R,BI)
(Bpk,Bsk)← IdealGen(R,BI)

Compute ~vsk ∈ J−1 such that
P(rot(~v−1

sk)) ⊃ B(rDec/(2 · n2.5||f || · ||BI|||))

Output: (pk, sk)
public key: pk = (R,BI ,Bpk,Samp)
secret key: sk = ~vsk

Encryption: Enc∗(~m, pk) = Enc(~m, pk)

Evaluation: Eval∗(Bpk, C,Ψ) = Eval(Bpk, C,Ψ)

Decryption: Dec∗(~c, sk)

Input: ~c ∈ R mod Bpk

Compute ~m = (~c− b~vsk × ~ce) mod BI

Output: ~m ∈ P

Figure 7.3.: The improved somewhat homomorphic scheme

The reason this r′Dec differs from that used in the proof of Equation (7.9) on page 79
by the factor 1/2, is due to reducing the complexity of the rounding step in Dec∗.
It uses B(rDec/2) instead of B(rDec) to ensure that the ciphertexts are closer to the

82

7.2 Squashing the Decryption Circuit

lattice. Although this helps to simplify the decryption circuit, it does not lower it
enough to make it bootstrappable.

In order to squash the decryption circuit without losing some of its evaluative capac-
ity, Gentry moved some of the decryption computation to the encryption stage, by
providing additional information about the secret key in the public key. Of course
that by itself weakens the security of the initial scheme.
The transformation works by splitting the decryption algorithm Dec∗ into two phases.

1. Phase 1: An initial computationally intensive preprocessing phase performed
by the encrypter without the secret key.

2. Phase 2: A computationally lightweight phase performed by the decrypter
using the secret key.

The squashed scheme therefore introduces three new parameters (τ, r, s) and two
new algorithms SplitKey,ExpandCT which will be described in detail in the following
sections.

7.2.1. The Squashing Transformation

The basic idea behind the transformation is to place a hint about the secret key
~vsk inside the public key pk. We will see that this hint is a big set of vectors
S = {~ti : i = 1, 2, ..., S} that has a hidden sparse subset τ that adds up to ~vsk.
In doing so the security of the initial scheme is weakened. To strengthen it a new
computationally hard problem is used, namely the Sparse Subset Sum Problem
(SSSP).

The scheme E∗(see Figure 7.3) will be altered into a new scheme E with two ad-
ditional algorithms, SplitKey, ExpandCT and the subsequently changed decryption
algorithm Dec.

SplitKey

The SplitKey procedure is used to place the hint about the secret key in the public
key. It is a part of the Key Generation procedure KeyGen. The hint consists of a
random set of vectors τ = {~t1, ...,~tr} ∈ J−1 and a secret subset of vectors which
sum up to the original secret key

~vsk∗ =
∑
i∈S

~ti mod I.

S denotes the distinguished subset of indices S ⊆ {1, ..., r} for which the previous
equation holds. It takes as input the public and secret key produced by the original

83

7 Gentry - An Algebraically Homomorphic Scheme

Enc∗ and outputs a tuple (sk, τ). The new secret key is a matrix of 0′s and 1′s
encoding the subset S.

sk = SK, skij =

{
1, iff j is the ith member of S
0, else

τ is added to the original public key yielding the new pk.

ExpandCT

The ExpandCT algorithm is used to prepare the ciphertext for the new shallower
decryption circuit. It is done by the encrypter himself in the encryption procedure
in order to lower the computational complexity of decryption. ExpandCT computes
the products

~xi = ~ti × ~c mod BI, i = 1, ..., r

where ~c is output by the original Enc∗ algorithm. The new ciphertext is the tuple

ψ = {~c; ~x1, ..., ~xr}.

Dec

The decryption algorithm Dec takes as input the new secret key SK as well as the
new ciphertext ψ. With the knowledge of SK the decrypter is able to extract the
relevant {~xi} and then decrypt using the following equation

~m = ~c− b
∑
i∈S

~xie mod BI. (7.10)

Proof. Regarding the extraction of the relevant ~xi’s the decryptor computes a set of
vectors {~wij} with i = 1, ..., s and j = 1, ..., r with

~wij = skij · ~cj .

A vector ~wij is 6= ~0 if and only if skij 6= 0. This gives us the needed ~xi’s namely the
ones for which i ∈ S.
Now remember the original decryption equation (eq. 7.9)

~m = ~c− b~vsk × ~ce mod BI (7.9)

= ~c− b(
∑
i∈S

~ti)× ~ce mod BI = ~c− b
∑
i∈S

~ti × ~ce mod BI

= ~c− b
∑
i∈S

~xie mod BI. (7.10)

84

7.2 Squashing the Decryption Circuit

(pk, sk)← KeyGen(R,BI) with I ER

run IdealGen(R,BI)

⇒ (Bpk,Bsk) are two bases of J ER

compute ~vsk ∈ J−1 such that P(rot(~v−1
sk)) ⊃ B(rDec/(2n

2.5||f || · ||BI|||))
pk∗ = (R,BI,Bpk)
sk∗ = ~vsk

run SplitKey(sk∗, pk∗)

extract ~vsk∗ from sk∗

τ = {~t1, ...,~tr}
S ⊆ {1, ..., r} such that

∑
i∈S ~ti ∈ ~vsk∗ + I

⇒ (sk, τ)

pk = (R,BI,Bpk, τ)
sk = SK with skij = 1 iff j is the ith member of S or skij = 0 else.

ψ ← Enc(~m, pk)

run Samp(~m,BI)

⇒ ~e = ~m+ i with i ∈ I

~c = ~e mod Bpk

run ExpandCT(~c, pk)

~xi = ti × ~c mod BI for i ∈ [1, r].

ψ = (~c; ~x1, ..., ~xr)

ψ ← Eval(Bpk, C,Ψ)
extract ~c1, ~c2 from ψ1, ψ2 ∈ Ψ and perform

Add(pk,~c1,~c2) = ~c1 + ~c2 mod Bpk = ~c1+2

Mult(pk,~c1,~c2) = ~c1 × ~c2 mod Bpk = ~c1×2

output ψ to include ~c1+2 resp ~c1×2 and the output
{~xi} ← ExpandCT(~c1+2, pk) resp. ExpandCT(~c1×2, pk).

~m← Dec(ψ, sk)
set ~wij = skij · ~xj
⇒W = {~wij} with ~wij 6= ~0
compute ~m = ~c− b

∑
~xi∈W ~xie mod BI.

Figure 7.4.: The squashed and improved scheme

85

7 Gentry - An Algebraically Homomorphic Scheme

In Figure (7.4) we see the resulting scheme, using the above described changes.

Gentry showed that this scheme can homomorphically evaluate its decryption circuit
and therefore can be tagged bootstrappable [20, chap. 10.3].

7.2.2. Security

As mentioned before, the introduction of τ in the public key requires a second
hard computational problem besides the BDDP to assure secure communication.
This problem will be called the sparse vector subset sum problem (SVSSP) which
is closely related to the well studied sparse subset sum problem (SSSP), which is
known to be NP-complete [11].

Definition 7.8 (SVSSP). An instance of the SVSSP is a pair (S,~t), where S is a
set of vectors {~x1, ..., ~xn}. The decision problem asks whether there exists a subset
T of S that adds up exactly to the target vector ~t.

The search version of the SVSSP has been studied in the context of server aided
cryptography. Now it is essential to choose the sets big enough. Obviously if the
subset T is too small the problem is vulnerable to brute force attacks. Also if |S|
is too small, namely if the subset sum solution is unique, then there are numerous
lattice reduction attacks similar to those in the field of low-density knapsacks.

Remark. For the interested reader the proof of the reduction

SVSSP⇐ SSSP

can be found in [20, chap. 11].

86

7.3 The Fully Homomorphic Encryption Scheme

7.3. The Fully Homomorphic Encryption Scheme

This section will merely outline the final step towards a fully homomorphic encryp-
tion scheme, since as mentioned in the introduction of this chapter the first step
was the - mathematically speaking - more appealing one. Therefore the following
paragraphs are abstract from the scheme described in the previous sections.

It will be shown that bootstrappability implies leveled fully homomorphic (LFH)
encryption from which a fully homomorphic scheme (FH) is derived. The critical
property of a soon-to-be fully homomorphic encryption scheme E is the ability to
compactly evaluate slight augmentations of its own decryption circuit DE (Boot-
strappability).

Notation: For the rest of this chapter following notation is used: aij denotes the
jth bit of ai. If a bit aij is encrypted under a public key pkz it is denoted as z[aij].

7.3.1. Bootstrappability and its Prospects

There is a natural question to this property ”bootstrappability”: Why is this feature
so important? Informally speaking, the reason is that bootstrappability allows the
scheme to periodically refresh ciphertexts to avoid the error growing to vast. Hence,
if it is possible to compactly evaluate circuits of depth d, then refresh and evaluate
again up to the circuit depth d and so on, it is possible to evaluate circuits of
arbitrary depth.

Refreshing could be done by decrypting the ciphertext right before the error grows
beyond decryption capability and encrypt it again under a new key. Obviously this
would be a major security breach since the plaintext is decrypted at one point in
the process. It is desired to refresh without the knowledge of the secret key.

Example. To refresh a ciphertext c that encrypts m under a public key pk1, we re
encrypt under another public key pk2, then homomorphically apply the decryption
circuit DE to the result, using the encryption of the first secret key sk1 under pk2.
Therefore we obtain an encryption of m under pk2 which can be encrypted with the
corresponding secret key sk2.
Homomorphically applying DE means decrypting the inner ciphertext under pk1

within homomorphic encryption under pk2.

More formally, consider a bootstrappable scheme E with plaintext space P= {0, 1}.
Let (pk1, sk1) and (pk2, sk2) be two pairs of keys from E . Suppose

c1(pk1) = Enc(pk1,m)
2[sk1j] = Enc(pk2, [sk1j]).

87

7 Gentry - An Algebraically Homomorphic Scheme

The vector consisting of all (under pk2) encrypted secret key bits is denoted by
2sk1 = 〈2[sk11] ... 2[sk1d]〉.
Consider the following Recrypt algorithm

Refreshing: Recrypt(pk2, DE , 2sk1, c1(pk1))

Input: The second public key pk2, the decryption circuit DE ,
the vector 2sk1 and the ciphertext c1 under pk1.

Compute 2c1 = 〈2[c1j] = Enc(pk2, c1j)〉j∈[1,..,d]

c2 = Eval(pk2, DE ,Ψ) with Ψ = (2sk1, 2c1)

Output: c2

Figure 7.5.: Example for the Recrypt algorithm for two ciphertexts.

As long as E can handle the decryption circuit DE , the output c2 is obviously an
encryption under pk2 of DecE(sk1, c1) = m. Hence Recrypt outputs a new encryption
of m under pk2. The fascinating thing about Recrypt is that the Eval algorithm is
used to remove the inner encryption.

In the context of the initial scheme the Recrypt procedure removes the noise asso-
ciated to the first ciphertext c1 under pk1, due to the fact that decryption removes
noise. But Eval simultaneously introduces new noise while evaluating the ciphertexts
under pk2. But as long as the new noise is less than the old noise the refreshing
procedure has made progress.

This technique is of course useless if it is only applied to the decryption circuit DE .
The goal is to perform arbitrary operations on the underlying messages rather than
re-encrypting the same message.
Suppose E can handle the decryption circuit DE augmented by some gate, e.g., Add
(see Fig. 4.1). This circuit is denoted DAdd. The two ciphertexts,

c1(pk1) = Enc(m1, pk1)

c2(pk1) = Enc(m2, pk1)

both encrypted under the first public key pk1, are used to compute

2c1(pk1) = 〈2[c1(pk1)j] = Enc(pk2, c1(pk1)j)〉j∈[1,..,d]

2c2(pk1) = 〈2[c2(pk1)j] = Enc(pk2, c2(pk1)j)〉j∈[1,..,d],

as above. Then it holds that

c← Eval(pk2, DAdd, 2sk1, 2c1(pk1), 2c2(pk2)) (7.11)

88

7.3 The Fully Homomorphic Encryption Scheme

is an encryption of (m1 +m2) under pk2.

Example. Imagine an Add gate at level i+ 1.
It takes as input the encrypted secret key i+1ski and a tuple of ciphertexts associated
to output wires at level i that are encrypted under pki. The procedure from above
homomorphically evaluates DAdd to get a ciphertext under pki+1 associated to a
wire at level i+ 1.

ic1

ic2

ic3

...

ick

icl

Add
Eval(DAdd)

Mult

i+1ski

i+1cα

i+1cβ

Level i+ 1

Figure 7.6.: An Add-gate at level i+ 1

Hence, to be bootstrappable E has to be able to compactly evaluate not only its
decryption circuit but also slightly augmented versions of it.

Definition 7.9. (Augmented Decryption Circuit). Let DE be E ’s decryption
circuit, which takes a secret key sk and ciphertext c as input, each formatted as an
element of Pl(λ)3, where P is the plaintext space. Let Γ be a set of gates with inputs
and output in P, which includes the trivial gate4. A circuit composed of multiple
copies of DE connected by a single g gate (the number of copies equals the number
of inputs to g) is called a g-augmented decryption circuit. We denote the set
of g-augmented decryption circuits with g ∈ Γ by DE(Γ).

With this notion of an augmented decryption circuit, bootstrappable encryption
becomes

Definition 7.10. (Bootstrappable Encryption) Let CE denote the set of circuits
that E can compactly evaluate. E is said to be bootstrappable with respect to Γ if

DE(Γ) ⊆ CE .
3l denotes the bit-size of sk.
4Meaning input and output are the same.

89

7 Gentry - An Algebraically Homomorphic Scheme

The above described procedure yields a leveled fully homomorphic encryption scheme.
The public key in the new scheme E(d) consists of a sequence of public keys together
with a set of encrypted secret keys

pk(d) =
{
pk0, ..., pkd; 1sk0, ..., dskd−1

}
,

where ski is encrypted under pki+1. The resulting secret key is sk(d) = skd. This
scheme can be considered as secure as the original scheme E [20, Thm. 4.2.3.].

Unfortunately the key size of the new scheme grows with the depth of the circuit
(d). This fact is represented in the following Theorem taken from [20].

Theorem 7.11. If E is bootstrappable, then, for any integer d, one can construct
a scheme E(d) that can evaluate any circuit of depth d. The decryption circuit for
E(d) is the same as for E , and the complexity of encryption is also the same. E(d)’s
public key size is O(d) times that of E(d)’s.

Due to this dependence on d the resulting scheme is called leveled rather than fully
homomorphic. See the appendix for an instantiation of the described process (Fig.
A.1 and Fig. A.2).

7.3.2. From Leveled Fully Homomorphic to Fully Homomorphic

In order to construct a fully homomorphic scheme out of a LFH scheme, it is neces-
sary to lose the circuit depth dependency. If it is possible to derive a scheme E† out
of E(d), for which the public key size is independent of the circuit depth d,then we
have achieved our goal.
The obvious way to reduce the public key size is to use only one public key, i.e., for
an E key pair (pk, sk)

pk† =
{
pk; sk

}
sk† = sk,

where sk is the vector containing the encrypted bits of sk under pk.

The new scheme E† is still correct since the Recrypt algorithm works as before,
except that the refreshed ciphertexts are under the same public key rather than
d + 1 different ones. Hence, the new scheme uses a cycle of encrypted secret keys
not an acyclic chain.

However, this procedure has a drawback. Changing to a cycle of encrypted secret
keys requires another security assumption for E , namely key-dependent message
(KDM) security, since the security proof [20, Thm. 4.2.3.] breaks when using a
cycle of secret keys.

90

7.3 The Fully Homomorphic Encryption Scheme

This security concept is a rather novel approach. It was first mentioned in 2002 by
Black et al. [6], where they constitute that semantic security is not sufficient when
dealing with messages that depend on the underlying secret key, which is exactly the
case in the above described scheme. Unfortunately in general, a semantically secure
encryption scheme is not guaranteed to be KDM-secure. On top of that, there is
actually no proof that the scheme described so far is, or is not, KDM-secure. In the
words on Craig Gentry himself:

Absent proof of KDM-security in the plain model, one way to obtain fully
homomorphic encryption from bootstrappable encryption is simply to as-
sume that the underlying bootstrappable encryption scheme is also KDM-
secure. This assumption, though unsatisfying, does not seem completely
outlandish. While an encrypted secret key is very useful in a bootstrap-
pable encryption scheme - indeed, one may view this as the essence of
bootstrappability - we do not see any actual attack on a bootstrappable
encryption scheme that provides a self-encrypted key.

Although it stays an open question how secure this proposed scheme really is, it is
a groundbreaking scientific work for cryptographers all around the world.

91

Appendix

A. Instantiation of Recrypt

The following two Figures show how a scheme E that is bootstrappable can be used
to construct a leveled fully homomorphic scheme E(d). The procedure is instantiated
recursive.

KeyGenE(d)(λ, d)

Input: λ denotes the security parameter and d ∈ Z+.
for l = l(λ) it computes

(ski, pki)← KeyGenE(λ) for i ∈ [0, d]
i−1[skij]← EncE(pki−1, [skij] for i ∈ [1, d], j ∈ [1, l]

Output: Secret and public key.

sk(d) ← sk0 ; pk(d) ←
{
pk0, ..., pkd;

0sk1, ...,
d−1skd

}
EncE(d)(pk

(d),m)

Input: a public key pk(d) and a plaintext m ∈ P.

Output: a ciphertext
c← EncE(pkd,m)

EvalE(d)(pk
(d), Cd,Ψd) see Figure A.2

DecE(d)(sk
(d), c)

Input: a secret key sk(d) and a ciphertext c (which should be encrypted
under pk0).

Output: m← DecE(sk0, c)

Figure A.1.: From bootstrappable to leveled fully homomorphic.
Part I: (KeyGenE(d) ,EncE(d) ,DecE(d))

For the description of the new Eval algorithm lets set E(δ) to be the subsystem that

95

Instantiation of Recrypt

uses sk(δ) ← sk0 and pk(δ) ← (〈pki〉i∈[0,δ], 〈ŝkii∈[1,δ]) for δ ≤ d.

EvalE(δ)(pk
(δ), Cδ,Ψδ)

Input: a public key pk(δ) and a circuit Cδ of depth δ with gates in Γ
and a set of input ciphertexts Ψδ where each ciphertext is encrypted
under pkδ.
If δ = 0 it outputs Ψ0 = c and terminates, otherwise

set (C#
δ−1,Ψ

#
δ−1)← AugmentE(δ)(pk

(δ), Cδ,Ψδ)

AugmentE(δ)(pk
(δ), Cδ,Ψδ)

Input: the same as in EvalE(δ)

C#
δ−1 denotes the augmented circuit Cδ +DE

Ψ#
δ−1 denotes the set of ciphertexts where each cm1 ∈ Ψδ is replaced by

(ŝkδ, ĉj), with ĉj ← EncE(δ−1)(pk(δ−1), cj), and cj is the jth of cm1

Output: the tuple (C#
δ−1,Ψ

#
δ−1)

set (Cδ−1,Ψδ−1)← ReduceE(δ−1)(pk(δ−1), C#
δ−1,Ψ

#
δ−1)

ReduceE(δ−1)(pk(δ−1), C#
δ−1,Ψ

#
δ−1)

Input: the public key pk(δ−1) and the tuple (Cδ−1,Ψδ−1) output by
AugmentE(δ) , with Cδ−1 ∈ DE(Γ, δ).
Set Cδ−1 to be the sub-circuit of C#

δ−1 consisting of the first δ − 1 levels.
Set Ψδ−1 to be the induced input ciphertexts of Cδ−1, where the ciphertext

c
(w)
δ−1 associated to the wire w at level δ − 1 is set to

c
(w)
δ−1 ← EvalE(pkδ−1, C

(w)
δ−1,Ψ

(w)
δ−1)

and C
(w)
δ−1 denotes the sub-circuit of C#

δ−1 with output wire w, and Ψ
(w)
δ−1 are

the input ciphertexts.

Output: the tuple (Cδ−1,Ψδ−1)

run EvalE(δ−1)(pk(δ−1), Cδ−1,Ψδ−1)

Output: A ciphertext c which is encrypted under pk0.

Figure A.2.: From bootstrappable to leveled fully homomorphic. Part 2: EvalE(δ)

96

List of Symbols

2S the power set of S

Rm m-dimensional euclidean space

Zn set of congruence classes modulo n

Z∗n multiplicative group of Zn
R[x] set of all polynomials in x with coefficients in the ring R

Bm(~0, r) m−dimensional open ball of radius r centered in ~0

L(B) lattice generated by the columns of the basis matrix B

L∗ dual lattice

P(M) half open fundamental parallelepiped to the basis matrix M

dist(L,~t) minimum distance from vector ~t to lattice L

Λ a lattice defined as a nonempty set without any respect to a specific basis

γ(R) expansion factor of the ring R

λi(Λ) ith successive minimum of lattice Λ

ϕ(·) Euler totient function

λ(·) Carmichael function

gcd(a, b) greatest common divisor of two non-zero integers a, b

lcm(a, b) least common multiple of two non-zero integers a, b

ordn(a) multiplicative order modulo n of an integer a

HNF Hermite Normal Form

im f image of a function f

ker f kernel of a function f

FACT integer factorization problem

CR composite residuosity problem

BDDP bounded distance decoding problem

CVP closest vector problem

SVP shortest vector problem

97

List of Symbols

SSSP sparse subset sum problem

[a]∼ equivalence class of an element a under a relation ∼
〈∗〉 set generated by the element ∗
E is used to denote an ideal, I ER

∼= is used to denote the isomorphic relation between two sets

b·e rounds the coefficients of a vector to the nearest integer

∼ binary relation

98

List of Tables

2.1 Important complexity classes of decision problems in respect to the
resource Time . 24

4.1 A simple voting example with Nv = 9 voters and Nr = 5 candidates.
The base used is b = 10 . 43

4.2 The encrypted votes of table 4.1. Note that although voter V6 and V8

have voted the same, the encryption of their votes are different. . . . 44

5.1 The homomorphic property of the RSA Cryptosystem 49

5.2 Extended Euclidean algorithm . 52

6.1 The homomorphic property of the Paillier Cryptosystem 59

6.2 The nth residues of n = 33 . 61

6.3 The Paillier encryption and decryption of Alice, Bob and the election
authority . 69

List of Figures

2.1 Example of two different bases of the same lattice 16

2.2 (~c1,~c2) is not a basis for L(B) . 18

2.3 The first two successive minima λ1, λ2 20

2.4 The complexity classes: P, NP, NP-hard, NP-complete 25

3.1 Schematic representation of a deterministic algorithm 34

3.2 Schematic representation of a probabilistic algorithm 35

3.3 Diagram of a communication using public-key techniques 38

4.1 Example for circuit representation 40

4.2 Diagram of a homomorphic encryption scheme 42

5.1 The RSA Cryptosystem . 48

99

List of Figures

5.2 The RSA keys of Alice and Bob . 51
5.3 Square and Multiply . 55

6.1 Probabilistic encryption scheme based on composite residuosity . . . 58
6.2 The Paillier keys of the election authority 68

7.1 The somewhat homomorphic scheme using ideal lattices 74
7.2 Left: Parallelepiped centered at ~x = (−0.4, 0.4) corresponding to the

lattice basis {(3,2);(2,1)}. Right: Parallelepiped centered at ~x =
(−0.4, 0.4) corresponding to the lattice basis {(1,0);(0,1)} 81

7.3 The improved somewhat homomorphic scheme 82
7.4 The squashed and improved scheme 85
7.5 Example for the Recrypt algorithm for two ciphertexts. 88
7.6 An Add-gate at level i+ 1 . 89

A.1 From bootstrappable to leveled fully homomorphic.
Part I: (KeyGenE(d) ,EncE(d) ,DecE(d)) 95

A.2 From bootstrappable to leveled fully homomorphic. Part 2: EvalE(δ) 96

100

Index

algebra, 28

σ-, 28

algorithm

decryption, 36

deterministic, 33

problems, 34

efficient, 31, 37

encryption, 36

key generation, 36

probabilistic, 34

Babai’s rounding technique, 81

BDDP, 27

Big-O, 23

binary exponentiation, 54

Carmichael

function, 12

theorem, 12

Chinese remainder theorem, 9

Church-Turing thesis, 23

ciphertext

valid-, 76

circuit, 40

generalized-, 76

permitted-, 76

CLASS[n, g], 64

closest vector problem, 27

cloud computing, 42

complexity class, 23

reduction, 24

computation resource

bounded, 32

infinite, 32

computational problem, 22

congruence class, 6
congruent modulo n, 6

properties, 6
Convex Body Theorem, 26
convex body theorem, 20
coprime, 8
CR[n], 64
cryptographic primitives, 32
cryptosystem

asymmetric, 35
fully homomorphic, 41
homomorphic, 39
public key, 36

D-CLASS[n], 67
decision problem, 22
DTM, 23

equivalence class, 6
equivalence relation, 6
euclidean norm, 20
Euler totient function, 7
euler totient function

properties, 10
Euler’s theorem, 11
ExpandCT, 84
expansion factor, 77, 78
extended Euclidean algorithm, 52

Fermat’s little theorem, 9
field of fractions, 14
fundamental parallelepiped, 18, 73
fundamental theorem of arithmetic, 8

gate, 40
gcd, 7

101

Index

group
cyclic, 4
definition, 3
element-order, 4
generator, 4
of units, 7
order, 4

Hermite Normal Form, 17, 72
homomorphism, 5

Ideal
inverse-, 78

ideal, 13
coprime, 13
fractional-, 15
invertible, 15
principal-, 13

infeasibility, 32
integer factorization problem, 25
integral domain, 13
isomorphism, 5

Kerckhoffs principle, 37

l1 norm, 20
Lagrange theorem, 4
Lattice

Dual-, 78
lattice, 16

basis, 16
determinant, 19
dual-, 19
minimum distance, 19
successive minima, 19

lcm, 7

maximum norm, 20
measurable, 28
measure, 28

probability-, 29
model of computation, 23
multiplicative

group, 7
inverse mod n, 7

order mod n, 7

nth residue, 60
negligible, 32
NP, 24
NP-complete, 24
NP-hard, 24
nth residue, 26
nth residuosity class, 63
NTM, 23

one-way function, 32
discrete log, 33
factoring, 33

oracle, 23

P, 24
Paillier

homomorphic property, 59
scheme, 57
voting scheme, 43

ϕ(n), 7
polynomial ring, 14
PPT, 32, 33
prime number, 8
probability space, 29

quotient ring, 14

R-module, 14
rDec, 77
relatively prime, see coprime
rEnc, 77
residue class, see congruence class
ring

commutative ... with identity, 13
definition, 12
unit, 13

RSA
homomorphic property, 49
problem, 50
scheme, 48

search problem, 22
security

102

Index

ad hoc, 36
asymptotic, 37
computational, 36
provable, 36

security parameter, 35
Shor’s algorithm, 50
shortest vector problem, 27
SplitKey, 83
square-and-multiply, 54
SSSP, 83, 86
subgroup, 4

cyclic, 4
SVSSP, 86

trapdoor function, 32
RSA, 33

Turing machine, 23

wire, 40

XDec, 76
XEnc, 76

zero divisor, 13

103

Bibliography

[1] ISO/IEC 8859. URL http://www.iso.org.

[2] L. Babai. On Lovsz’ lattice reduction and the nearest lattice point problem.
Combinatorica, 6:1–13, 1986.

[3] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently search-
able encryption. In Proceedings of 28th Annual International Cryptology Con-
ference - CRYPTO 2008, volume 4622/2007 of LNCS, pages 535–552. Springer
Berlin / Heidelberg, 2007.

[4] M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart. Deterministic encryp-
tion: Definitional equivalences and constructions without random oracles. In
Proceedings of 28th Annual International Cryptology Conference - CRYPTO
2008, volume 5157/2008 of LNCS, pages 360–378. Springer Berlin / Heidel-
berg, 2008.

[5] D. J. Bernstein, J. Buchmann, and E. Dahmen. Post-Quantum Cryptography.
Springer Berlin / Heidelberg, 2009.

[6] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the
presence of key-dependent messages. In Selected Areas in Cryptography, volume
2595 of Lecture Notes in Computer Science, pages 62–75. Springer Berlin /
Heidelberg, 2003.

[7] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-dnf formulas on ciphertexts. In
Proceedings of Theory of Cryptography (TCC) ’05, LNCS 3378, pages 325–341,
2005.

[8] D. M. Bressoud. Factorization and Primality Testing. Springer-Verlag GmbH,
Heidelberg, 1989.

[9] D. M. Burton. Elementary Number Theory. McGraw-Hill, 6 edition, 2007.

[10] R. D. Carmichael. On composite numbers p which satisfy the fermat congruence
aP−1 ≡ 1 mod p. The American Mathematical Monthly, 19(2):22–27, 1912.

[11] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, 2nd edition edition, 2001.

105

http://www.iso.org

Bibliography

[12] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

[13] M. Drmota. Lecture Notes on Lineare Algebra 1. Technische Universität Wien,
2005.

[14] T. El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Proceedings of CRYPTO 84 on Advances in cryptology,
pages 10–18. Springer-Verlag New York, 1984.

[15] J. Feigenbaum and M. Merritt. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, volume 2, chapter Open Questions, Talk Ab-
stracts, and Summary of Discussions, pages 1–45. ACM, 1991.

[16] N. Gama and P. Q. Nguyen. Predicting lattice reduction. In Proceedings of the
theory and applications of cryptographic techniques 27th annual international
conference on Advances in cryptology, EUROCRYPT’08, pages 31–51, Berlin,
Heidelberg, 2008. Springer-Verlag.

[17] P. B. Garrett. Abstract Algebra. Chapman & Hall/CRC, 2008.

[18] C. F. Gauß. Disquisitiones Arithmeticae. Gerhard Fleischer, Lipsiae, 1801.

[19] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings
of the 41st annual ACM symposium on Theory of computing, pages 169–178.
ACM, 2009.

[20] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Department
of Computer Science - Stanford University, 2009.

[21] O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from
lattice reduction problems. In Proceedings of the 17th Annual International
Cryptology Conference on Advances in Cryptology, pages 112–131. Springer-
Verlag, 1997.

[22] S. Goldwasser and M. Bellare. Lecture Notes on Cryptography. Mas-
sachusetts Institute of Technology, 2008. URL http://cseweb.ucsd.edu/

~mihir/papers/gb.html.

[23] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28:270–297, 1984.

[24] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman &
Hall/CRC Press, 2008.

[25] R. W. Keener and R. W. Keener. Probability and measure. In Theoretical
Statistics, Springer Texts in Statistics, pages 1–24. Springer New York, 2010.

106

http://cseweb.ucsd.edu/~mihir/papers/gb.html
http://cseweb.ucsd.edu/~mihir/papers/gb.html

Bibliography

[26] A. Kerckhoffs. La cryptographie militaire. Journal des sciences militaires, IX:
5–83, 1883.

[27] T. Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thom, J. Bos, P. Gaudry,
A. Kruppa, P. Montgomery, D. A. Osvik, H. t. Riele, A. Timofeev, and P. Zim-
mermann. Factorization of a 768-bit rsa modulus. Cryptology ePrint Archive,
Report, 2010/006:1, 2010.

[28] A. K. Lenstra, H. W. Lenstra, and L. Lovsz. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261:515–534, 1982.

[29] Y.-K. Liu, V. Lyubashevsky, and D. Micciancio. On bounded distance decod-
ing for general lattices. In Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques, volume 4110 of Lecture Notes in
Computer Science, pages 450–461. Springer Berlin / Heidelberg, 2006.

[30] A. J. Menezes, S. A. Vanstone, and P. C. Van Oorschot. Handbook of Applied
Cryptography. Discrete Mathematics and Its Applications. CRC Press, Inc.,
1996.

[31] D. Micciancio. The shortest vector problem is NP-hard to approximate to
within some constant. SIAM Journal on Computing, 30(6):2008–2035, March
2001.

[32] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a crypto-
graphic perspective, volume 671 of The Kluwer International Series in Engi-
neering and Computer Science. Kluwer Academic Publishers, Boston, Mas-
sachusetts, Mar. 2002.

[33] H. Minkowski. Geometrie der Zahlen. Teubner, 1910.

[34] D. Naccache and J. Stern. A new public key cryptosystem based on higher
residues. In ACM Conference on Computer and Communications Security,
pages 59 – 66, 1998.

[35] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. Advances in Cryptology Eurocrypt, 1592:223–238, 1999.

[36] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homo-
morphisms. In Foundations of Secure Computation, pages 169–180, 1978.

[37] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):
120–126, 1978.

[38] A. Sanjeev and B. Boaz. Computational Complexity, A Modern Approach.
Cambridge University Press, New York, 2009.

107

Bibliography

[39] C. P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theoretical Computer Science, 53:201–224, 1987.

[40] P. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. In Proceedings of the 35th Annual Symposium
on Foundations of Computer Science, 1994.

[41] W. Trappe and L. Washington. Introduction to Cryptography with Coding The-
ory. Prentice Hall, 2nd edition, 2005.

108

	Introduction
	Preliminaries
	Algebraic and Number-Theoretic Foundation
	Groups
	Homomorphisms
	Congruences
	Primes
	Fermat's little and Euler's theorem
	Rings
	Lattices

	Complexity theory
	Computational Problems
	The Integer Factorization problem
	The Composite Residuosity Problem
	Lattice Problems

	Measure Theoretic Probability

	Public-key Systems
	Modern Encryption
	Probabilistic and Deterministic Encryption
	Definition of a Public-Key Cryptosystem
	Notions of Security

	Homomorphic Encryption
	Definition of a homomorphic encryption scheme
	Example of an additively homomorphic scheme

	RSA - A Multiplicatively Homomorphic Scheme
	The Definition of the RSA Cryptosystem
	Multiplicative Homomorphic Property
	Security of RSA
	A Worked Example
	Encoding a real message with RSA

	Paillier - An Additively Homomorphic Scheme
	The Definition of Paillier's Cryptosystem
	Additive Homomorphic Property
	The nth Residue
	Paillier's Encryption Function
	The nth Residue Class
	The Intractability of the Scheme
	CLASS[n,g]
	The Computational Hierarchy of Paillier's Encryption Scheme

	A Worked Example

	Gentry - An Algebraically Homomorphic Scheme
	The Somewhat Homomorphic Scheme
	Correctness of the SHS
	Maximizing Circuit Depth
	Improving the Decryption Procedure
	Security of the SHS
	Decryption Complexity

	Squashing the Decryption Circuit
	The Squashing Transformation
	Security

	The Fully Homomorphic Encryption Scheme
	Bootstrappability and its Prospects
	From Leveled Fully Homomorphic to Fully Homomorphic

	Appendix
	Instantiation of Recrypt
	List of Symbols
	List of Tables, List of Figures
	Index
	Bibliography

