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Superstrings in General Backgrounds

In der vorliegenden Arbeit werden einige Aspekte des Superstrings im allgemeinen Hintergrund betrachtet.
Die Arbeit unterteilt sich in drei Teile: Der erste studiert die Vorraussetzungen, unter denen man bosonische
Strukturgleichungen in graduierte (z.B. im Superraum) iibertragen kann und formuliert diese in einem Satz.
Auf diesen Betrachtungen basierend werden Konventionen verwendet, die graduierungsabhingige Vorzeichen
absorbieren und die als Grundlage der Rechnungen des zweiten Teils dienen.

Der zweite Teil beschreibt den Typ II Superstring mithilfe von Berkovits’ “pure spinor” Formalismus. Die
darin u.a. enthaltene Einbettung in einen Target-Superraum ermdglicht im Gegensatz zum iiblichen Ramond-
Neveu-Schwarz Formalismus eine direkte Kopplung des Strings an Ramond-Ramod-Felder. Er eignet sich damit
gut fiir ein Studium des Superstrings in allgemeinen Hintergriinden. In der Arbeit wird der Formalismus fiir
eine sorgfiltige Rekapitulierung der “Supergravity Constraints’-Herleitung aus der klassischen BRST-Invarianz
verwendet. Diese wurde vor einigen Jahren von Berkovits und Howe beschrieben. Die Herleitung in der vor-
liegenden Arbeit wird sich jedoch in einigen Punkten unterscheiden. So bleibt die Betrachtung im Unterschied
zur urspriinglichen Rechnung vollsténdig im Lagrange Formalismus und zur besseren Strukturierung der Vari-
ationsrechung wird ein kovariantes Variationsprinzip eingesetzt. Hinzu kommt die Anwendung des im ersten
Teil formulierten Satzes. Auch die Reihenfolge, in der die Constraints erzielt werden, weicht von Berkovits und
Howe ab. Als neues Resultat werden die BRST Transformationen aller Weltflachen-Felder hergeleitet, die bisher
nur fiir den heterotischen Fall bekannt waren. Ein entscheidender neuer Schritt ist schlieflich die Herleitung
der lokalen Supersymmetrie-Transformation der fermionischen Targetraum-Komponenten-Felder.

Dies liefert einen Ankniipfungspunkt zur sogenannten verallgemeinerten komplexen Geometrie (GCQ), die
Bestandteil des letzten Teiles der Arbeit ist. Die vierdimensionale effektive Supersymmetrie innerhalb einer
zehndimensionalen Typ-II Supergravitation bedingt eine “verallgemeinerte Calabi Yau Mannigfaltigkeit” als
Kompalktifizierungsraum, welche wiederum mit Methoden der GCG beschrieben werden kann. In der vorliegen-
den Arbeit wird gezeigt, dass Poisson- oder Antiklammern in Sigmamodellen auf natiirliche Weise sogenannte
“derived brackets” im Targetraum induzieren, darunter auch die Courant Klammer der GCG. Weiters wird
gezeigt, dass der verallgemeinerte Nijenhuis Tensor der GCG bis auf einen de-Rham geschlossenen Term mit
der “derived bracket” der verallgemeinerten Struktur mit sich selbst iibereinstimmt, und eine neuartige Koor-
dinatenform dieses Tensors wird prasentiert. Der Nutzen der gewonnenen Erkenntnisse wird dann anhand von
zwel Anwendungen zur Integrabilitit verallgemeinerter komplexer Strukturen demonstriert.

Der Anhang der Arbeit enthilt eine Einfiilhrung in einige Aspekte von GCG und “derived brackets”. Des-
weiteren werden u.a. das Noether Theorem, Bianchi Identitdten, WZ-Eichung und I'-Matrizen in zehn Dimen-
sionen besprochen.
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Superstrings in General Backgrounds

In the present thesis, some aspects of superstrings in general backgrounds are studied. The thesis divides
into three parts. The first is devoted to a careful study of very convenient superspace conventions which are a
basic tool for the second part. We will formulate a theorem that gives a clear statement about when the signs
of a superspace calculation can be omitted. The second part describes the type II superstring using Berkovits’
pure spinor formalism. Being effectively an embedding into superspace, target space supersymmetry is manifest
in the formulation and coupling to general backgrounds (including Ramond-Ramond fields) is treatable. We
will present a detailed derivation of the supergravity constraints as it was given already by Berkovits and Howe
some years ago. The derivation will at several points differ from the original one and will use new techniques like
a covariant variation principle. In addition, we will stay throughout in the Lagrangian formalism in contrast to
Berkovits and Howe. Also the order in which we obtain the constraints and at some points the logic will differ.
As a new result we present the explicit form of the BRST transformation of the worldsheet fields, which was
before given only for the heterotic case. Having obtained all the constraints, we go one step further and derive
the form of local supersymmetry transformations of the fermionic fields. This provides a contact point of the
Berkovits string in general background to those supergravity calculations which derive generalized Calabi Yau
conditions from effective four-dimensional supersymmetry. The mathematical background for this setting is the
so-called generalized complex geometry (GCG) which is in turn the motivation for the last part.

The third and last part is based on the author’s recent paper on derived brackets from sigma models which
was motivated by the study of GCG. It is shown in there, how derived brackets naturally arise in sigma-
models via Poisson- or antibrackets, generalizing an observation by Alekseev and Strobl. On the way to a
precise formulation of this relation, an explicit coordinate expression for the derived bracket is obtained. The
generalized Nijenhuis tensor of generalized complex geometry is shown to coincide up to a de-Rham closed term
with the derived bracket of the structure with itself and a new coordinate expression for this tensor is presented.
The insight is applied to two-dimensional sigma models in a background with generalized complex structure.

The appendix contains introductions to geometric brackets and to aspects of generalized complex geome-
try. It further contains detailed reviews on aspects of Noether’s theorem, on the Bianchi identities (including
Dragon’s theorem), on supergauge transformations and the WZ gauge and on important relations for I'-matrices
(especially in ten dimensions). A further appendix is devoted to the determination of the (super)connection
starting from different torsion- or invariance constraints.
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Some remarks in advance

e The part about the superspace conventions is interesting in itself and was a significant part of my research
work. This is why it was not put into the appendix. However, you can read the other parts without this
one. Only if you want to follow some calculations in detail, you might miss some signs. Latest at this
point you should study the part about the superspace conventions before you assume that you have found
a mistake.

e Capital indices M in the part about derived brackets and generalized geometry contain tangent and
cotangent indices, while in the context of superspace they contain bosonic and fermionic indices. In the
latter case we have M = {m, u, 1}. The two fermionic indices are sometimes collected in a capital curly

index M = {p, 1}.

e The thesis-index at the end contains also a list of most of the used symbols. So in case you start somewhere
in the middle of the document and would like to know, where some symbols or notations were introduced,
have a try to look at the index.

e There are a couple of propositions contained in this thesis. They simply contain more or less clear
statements that one could have given in the continuous text as well. In particular, their formulations
and proofs are mostly not of the same rigorousness as one would expect it in mathematical literature. In
addition, there is no clear rule which statements are given as proposition and which are only given in the
text. The ones in propositions are important, but the ones in the text can also be ...

e Everything in this thesis has to be understood as graded. Graded antisymmetrization will just be called
"antisymmetrization’ and the square brackets [...] will be used to denote this, no matter if the graded
antisymmetrized objects are bosonic or fermionic. Likewise, the supervielbein will often just be called
’vielbein’. Only at some points the terms 'graded’ or ’super’ will be explicitly used.

e It is a somewhat strange habit to desperately avoid the word “I” in articles, in order to express ones
own modesty. Writing instead “the author” seems unnecessary long and writing instead “we” resembles
the pluralis majestatis, and T don’t see how this can possibly express modesty (although one then calls
it pluralis auctoris or even pluralis modestiae). In spite of this, I got used myself to use frequently (and
without thinking) the word “we”. Understanding it as pluralis modestiae is probably only possible if one
can replace “we” with “the reader and myself”, for example in “we will see in the following ...”. However,
you, the reader, would probably loudly protest when I write things like “we think ...” or “we have no
idea why...” and claim that the reader is included. Nevertheless, I am afraid that sentences like this will
appear quite frequently and in order to avoid inconsistencies, they have to be understood as the pluralis
magestatis ...

e The symbol ¢ marks the end of a footnote. If this mark is missing, it means that the footnote is continued
on the next page or that I simply forgot to put it . (This remark was simply copied from my diploma
thesis, but at least I have changed the footnote symbol and the language)

e This document was created with IyX which is based on ETEX.

vi
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This thesis is devoted to superstrings in general backgrounds, but it will of course restrict to only some
aspects, leaving out many important areas.

Apart from a few other simple cases, the quantized superstring is well understood only in a flat background
where the worldsheet fields have basically free-field equations of motion. The physical spectrum of a string in flat
background, however, contains itself fluctuations around this background. A huge number of strings therefore
can sum up to a non-vanishing mean background field, for example a curved metric or even Ramond-Ramond
bispinor-fields. The worldsheet dynamics for the individual strings then has to be adjusted. In other words,
it is very natural to study the superstring in the most general background. Consistency conditions from the
worldsheet point of view implement constraints and /or equations of motion on the background fields. On the
worldsheet level, the form of the consistency conditions depends very much on the formalism one is using to
describe the superstring. In general, the gauge symmetries or alternatively BRST symmetries of the action in
flat background should be present in some form also for the deformed action (string in general background),
especially after quantization. For the Ramond-Neveu-Schwarz (RNS) string, with worldsheet fermions, this
boils down to the quantum Weyl invariance of the action, which also yields the critical dimension. For the
Green Schwarz (GS) string and for the Berkovits pure spinor string (to be explained later), there are instead
additional conditions. For the Green Schwarz string, the so called x gauge symmetry has to be preserved, while
for the Berkovits pure spinor string one has to guarantee the existence of a BRST operator which has the form
Q = §dzA%d,o in the flat case. In fact, in the latter two cases, the BRST symmetry and the x-symmetry
are already strong enough to implement the background field equations of motion at lowest order in o/, i.e.
supergravity, such that quantum Weyl invariance does not give additional constraints at this order.

There are of course backgrounds which are more interesting than others for phenomenological reasons. First
of all, as we are observing four spacetime dimensions, we expect to live in a solution to the background field
equations where 6 of the 10 dimensions are compactified on a small radius, such that they are effectively not
visible. This compactification has to be compatible with the supergravity equations, but without restrictive
boundary conditions there are infinitely many possibilities. For a long time, people where hoping that there is
a dynamical mechanism, preferring precisely the compactification (or 'vacuum’) that corresponds to our world.
By now it seems more and more likely that there is no such mechanism or at least not such a strong one.
Instead, the picture might be that we are simply sitting in a huge ’landscape’ of possible vacua, where some of
them are more probable than others. As there is such a huge number of effective four dimensional theories, it
seems improbable that ’our world’ is not contained in them. Of course, being able to derive the real world from
string theory is a necessary requirement, if this theory is supposed to be more than just interesting mathematics.
By now there exists a huge model building machinery. People are considering orbi- and orientifolds and are
putting intersecting D-branes into the compactification manifold. The number of possibilities is huge. Quite
a lot of models come reasonably close to the standard model, but none of them really matches. But even if
there might be a lot of justified criticism to string theory, this particular problem of finding the real world is
rather a matter of time. So far, only a very tiny, mathematically treatable subset of solutions has been studied
and it would have been a lucky coincidence to find a suitable vacuum in a simple setting. The bigger problem
might show up only after finding a vacuum which effectively reproduces the standard model: there might be
a still big number of different models which likewise reproduce the standard model. Without knowing all of
them and their common properties, one cannot really make predictions about so far unknown physics. This is,
however, not an argument against string theory. If there is another theory, unrelated to string theory, which
also describes correctly the standard model and gravity, then this model simply has to be added to the set of all
models which describe the so far observable physics consistently. There is no reason to throw out the ones that
might have been obtained from string theory. Any approach that can consistently describe the so far observable
physics is of course admissible.

It is not the immediate aim of this thesis, however, to describe observable physics, but to study the string
in a general background in ten dimensions. As argued above, one can be optimistic that someone will find real
physics within string theory. But sometimes it is easier to recognize simplifying structures in the general setting
and not in some particular cases. Moreover, considerations like this should survive changes in the communities
opinion of what is an interesting model to look at. This was the idea, but in the end, not everything in this
thesis is as general as it should be. First of all, mainly classical closed strings in a type II background are
considered. At some places we keep boundary terms for later studies of open strings. Secondly a whole part
of the thesis is inspired by generalized complex geometry. This in turn is related to a not very special but still
special type of compactifications. Let us recall this in the following lines:

Again for phenomenological reasons, in particular the hierarchy problem, it is reasonable to expect that the
four dimensional effective theory resulting from compactification is N = 1 supersymmetric. For that reason,
Candelas, Horowitz, Strominger and Witten introduced in 1985 [I] Calabi Yau manifolds into string theory.
These manifolds are Ricci flat and obey therefore the Einstein field equations in vacuum. The supersymmetry
constraint then corresponds to the existence of a covariantly conserved (w.r.t. Levi Civita) Spin(6)-spinor.
Soon after, Strominger realized in [2] that a background B-field, in combination with a non-constant dilaton, is
also consistent with supersymmetric compactification. Nevertheless, there has been very little activity on this
more general case while the Calabi-Yau case was intensively studied. This intensive study lead to invaluable
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insights concerning dualities and the form of the landscape in the Calabi-Yau case.

Only quite recently the importance of the general case including fluxes was properly noticed. It was realized
that the Calabi-Yau condition gets replaced by a “generalized Calabi-Yau” condition, which brings the so-called
generalized complex geometry into the game. See the introduction to part on page for the relevant
references. The derivation of this is mainly based on supergravity calculations. Starting from ten dimensional
type II supergravity one demands effective N = 1 supersymmetry in four dimensions after compactification
[3, 4]. The results could in general be modified by string corrections. In order to study this, one has to set up
the problem in the worldsheet language. In other words, the superstring has to be placed into a general type I1
background.

The first, striking fact is that there is so far no treatable way to couple the RNS string to Ramond-Ramond
fields. Ramond-Ramond fields can be either seen as bispinors (fields with two spinorial indices) or equivalently
(expanding in I-matrices) as a collection of differential p-forms. Pullbacks of p-forms with p bigger than two
vanish on the worldsheet. Likewise we do not have elementary fields with spacetime spinor indices in the RNS
description. This is in short the reason why coupling to the RR-fields is an open issue in the RNS formalism.
The natural alternative is the GS string which is basically an embedding of the string into a target superspace.
The fermionic superspace coordinates or their momenta provide natural candidates for the coupling to the
RR-bispinor-fields. This formalism, however, happens to have a fermionic gauge symmetry whose constraints
are infinitely reducible and would require an infinite tower of ghosts for ghosts in the standard BRST covariant
quantization procedure. It can be quantized in flat space in the light cone gauge and shown to be equivalent to
RNS, but higher loop calculations are difficult because of the lack of manifest covariance.

The problem of covariant quantization of the GS superstring was bothering people for many painful years
without real progress until Berkovits came up in 2000 with an alternative formalism [5], based on commuting
pure spinor ghost variables, which can be covariantly quantized in the flat background. It is similar to the GS
string in that the target space is a supermanifold, but the origin of the pure spinor ghost is still a bit mysterious.
This ghost field and the corresponding BRST operator are related to the k-symmetry of the GS string, but the
relation is not very transparent. In addition, the pure spinor condition is a quadratic constraint on the spinorial
ghosts, which seemed in the beginning not very attractive. For this reason there where several attempts to get
rid of this constraint or at least to explain its occurrence. The beginning of my PhD research was devoted to
a promising approach by Grassi, Porrati, Policastro and van Nieuwenhuizen[6, [7, 8, @] and T will give a few
remarks about this at a later point. By now the need for an alternative formalism has decreased, as Berkovits
managed to give a consistent multiloop picture in [I0]. In any case the pure spinor formalism seems to provide
the adequate tool to study the superstring in curved background. On the classical level this has already been
done in [II]. It was shown that classical BRST invariance of the pure spinor string in general background
already implies the supergravity constraints on the background fields.

One major subject of the thesis is to rederive this important result with different techniques. All steps will
be carefully motivated and the calculations given in detail. Most importantly the calculation given in this thesis
can be seen as an independent check, as it is done entirely in the Lagrangian formalism in contrast to [I1].
Moreover, a covariant variational principle will be established and used to calculate the worldsheet equations
of motion. Some results are obtained in a different order but match in the end. One new result is the explicit
form for the BRST transformations of the worldsheet fields of the type II string in general background, which
where so far only presented for the heterotic string in [12]. After the derivation of the constraints, we go one
step further and derive the supergravity transformations of the fermionic fields. The transformations are in
principle well known, but the idea is to obtain them in the parametrization of the fields in which they enter
the pure spinor string. The supersymmetry transformations of the fermionic fields are the starting point for
the derivation of the generalized complex Calabi-Yau conditions for supersymmetric compactifications. Having
a closed logical line from the pure spinor string to generalized geometry hopefully opens the door for the study
of quantum or string corrections to this geometry. There is still a part missing in this line from the Berkovits
string to generalized complex geometry, as we will end with the presentation of the supergravity transformations
and not proceed with the derivation of the generalized Calabi-Yau conditions. Again, this calculation would
not deliver new results (following [3], 4]), but it would be important to have everything in the same setting and
with the same conventions. One might expect in addition that the superspace formulation will give additional
insight to the geometrical role of the RR-fields. They are so far only spectators in generalized geometry. A
bispinor is from the superspace point of view just a part of a rank two tensor, and it seems natural to include it
into geometry by establishing some version of generalized supergeometry. See also in the conclusions for other
possible extensions.

Another new feature of the re-derivation of the supergravity constraints from the pure spinor string is
the rigorous (and in some sense very unusual) application of some powerful superspace conventions. To be
more precise, we are going to use conventions where all the signs which depend on the grading are absorbed
via the use of a graded summation convention and a graded equal sign. This a not a completely new idea and
northwest-southeast conventions (NW) or northeast-southwest conventions (NE) already reflect this philosophy.
Nevertheless most of the authors still write the signs and take the rules of NW and NE only as a check. Only
in [I3], T have found an example where the signs where likewise absorbed. However, a careful study, under
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which circumstances this is possible seemed to be missing. This is the subject of part [ on page [6] This
part is more than just the declaration of the used conventions. The upshot is the formulation of a theorem
about when the grading dependent signs may be dropped. The application to supermatrices shows that the
underlying ideas lead to slightly different definitions of e.g. supertraces or some matrix operations. Using these
definitions, all equations take exactly the form they have for bosonic matrices. In particular the equation for
the superdeterminant reduces to an equation which holds in the very same form for purely bosonic matrices.

Applying this philosophy to the Berkovits string calculation has some strange effects. Most importantly,
the commuting pure spinor ghosts are treated as anticommuting objects. And likewise confusing, the chiral
blocks vg of the 10-dimensional I'-matrices are treated as antisymmetric objects although they are in fact
symmetric. This nevertheless makes perfect sense and the confusion is not, because the conventions themselves
are confusing, but because of the difference to what one is used to. It is therefore a very nice confirmation
of the consistency of the conventions that the quite lengthy calculation with the pure spinor string in general
background went through and led to the same results as the original calculation. No single grading dependent
sign had to be used. The part about the superspace conventions — although very interesting in itself — is not
needed to understand the basic steps and ideas of the other parts. Finally it should be mentioned that the
appendix about I'-matrices in ten dimensions is written in ordinary conventions for ’historical reasons’. It is,
however, simple to translate the equations to the other convention where needed.

There is finally part [[IT]on page[7§|of the thesis, which is dealing basically with so called derived brackets and
how they arise in sigma models. This part is based on my paper [14]. The efforts to understand some aspects of
the integrability of generalized complex structures have led to the observation that super Poisson brackets and
super anti-brackets of worldsheet-supersymmetric or topological sigma models induce quite naturally derived
brackets in the target space. A more detailed introduction and motivation for this part is given at its beginning.

The structure of the thesis is as follows: We start in part [[ on page [ with the discussion of the superspace
conventions. In part [IIl on page [24] we will consider Berkovits pure spinor string. After a short motivation for
the formalism — coming from the Green Schwarz string — the derivation of the supergravity constraints will
be given and the supergravity transformations of the fermionic fields will be derived. In part [[Il] on page
the appearance of derived brackets in sigma models and the relation to integrability of generalized complex
structures is discussed. All parts contain their own small introduction. After the Conclusions on page [104] there
are a number of more or less useful appendices. It starts with notations and conventions in appendix [A] on
page This appendix does of course not contain the superspace conventions which are treated in part[l} Note
also that there is an index at the end of the thesis (page which should contain most of the used symbols.
Appendices[B|on page[109|and [Clon page[I1§ give introductions to some aspects of generalized complex geometry
and derived brackets, respectively. Appendix [D] on page [126] summarizes some important facts and equations
for I'-matrices with an emphasis on the ten-dimensional case. In particular the explicit representation is given
and the Fierz identities for the chiral submatrices are derived. Appendix[E|on page[134] presents the Lagrangian
version of the Noether theorem and the Noether identities. Additional statements which are important for
our BRST invariance calculations of the pure spinor string are likewise given. Appendix [F]on page [140] recalls
the general deflinitions of torsion, curvature and H-field (valid as well in superspace) . It likewise recalls the
derivation of the Bianchi identities and gives the proof for a slightly modified version of Dragon’s theorem [13]
about the relation of second and first Bianchi identities. Appendix [G]on page [149] contains a general discussion
on how the connection is determined by invariance conditions and certain constraints on torsion components.
The simplest example is of course the Levi Civita connection which is given by invariance of the metric and
vanishing torsion. In ten dimensional superspace there is no canonically given superspace metric. In this
appendix it will be discussed how the connection is reconstructed from more general constraints, like a given
non-metricity or preserved structure constants. In addition the Levi Civita Connection will be extracted from
a given general superspace metric. And finally, in appendix [H] on page the Wess Zumino gauge will be
reviewed in a general setting. This gauge is useful and natural to eliminate auxiliary gauge degrees of freedom.
By fixing part of the superdiffeomorphism invariance, one recovers ordinary diffeomorphism invariance and local
supersymmetry. This will be used in part [Tl on page 24] to determine the supergravity transformations of the
fermionic background fields of the pure spinor string.
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Convenient Superspace Conventions



Chapter 1

The general idea and setting

Most bosonic definitions or equations have a natural generalization to superspace. There are, however, always
sign ambiguities in the super-extensions of the definitions. For this reason, bosonic structural equations only
hold up to signs in the superspace or graded case. The information that they hold up to signs is already a useful
qualitative statement, but it can be very cumbersome to determine the correct signs. Rules like northwest-
southeast or northeast-southwest where introduced to fix the sign ambiguities. These rules in principle allow to
reconstruct the grading dependent signs from the structure of the equation. It is then a natural step to drop
all the signs during the calculations and reintroduce them only at the very end. Or in other words, simply take
over the results from a bosonic calculation and decorate it with the appropriate signs. But as usual, there exist
some subtle cases in which a strict application of the sign rules compromises some other philosophy or is simply
not possible. For this reason a large majority of people working in that field prefer to carry along all the signs
and leave them away only in intermediate steps where it is obvious that no problems will occur. A paper by
Dragon [13] is the only example I know, where the parity-dependent signs are left away completely. Nevertheless
a precise formulation of the conditions under which this is possible still seems to be missing. Statements like
“everything works basically the same in the fermionic case, but one has to be careful with the signs” are used
frequently in talks. This is the reason, why we want to find out the precise form of the above conditions. In
addition, this idea can probably be applied to much more applications than it was done so far. In this first part
of the thesis, we try to fill part of this gap.

1.1 Leading principle, graded Einstein summation convention

The leading principle of our conventions is that every abstract calculation looks formally excatly the same as in
the bosonic case. All modifications (signs etc) which are due to the fact that there are anticommuting variables
involved should be assigned only in the very end, to the result of a purely bosonic calculation.

The conventions will be based on either northwest-southeast (NW for short) or northeast-southwest (NE
for short) conventions, which we will explain a bit below. The NW convention is used for example in standard
references as [I5] [16]. It is important, however, that we will in the end have a formalism which looks exactly
the same for NW and NE.

Our considerations will mainly treat objects with indices, for example - but not necessarily - coordinates
or tensor components. We assume that there is an associative product among the objects being distributive
over a likewise present abelian group structure (the sum). Sometimes we have even several of such products
(tensor product or wedge product, product of components, ... ), which all will be treated in the same way. The
described setting simply forms a general associative algebra. But let us start with the motivating example.

Let 2™ Dbe the coordinates in a local patch of a supermanifold. Assume that the first components are bosonic
and the following are fermionic (anticommuting).

M = (@™ ™M) = (™, M) (1.1)

The somewhat unusual choice of a curley capital letter for the fermionic indices will be convenient for part [l on
page There we have two different spinorial indices that we combine in the capital curled one: zM = (z#, 2#).
As usual, we assign a grading to the indices according to the split into bosonic and fermionic variables.

Mo _ 0 for M =m
|z™ |=| M| = {1f0rJVIM (1.2)

For grading-dependent signs we use the shorthand notation

(M = ()M (1.3)
(—)EM+N) = () IEI(MIFIND (1.4)
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A general object of interest is an object with r, upper and r; lower indices (e.g. a rank (r,,r;)-tensor, but
our conventions should also extend to non-tensorial objects like connection-coefficients). The overall grading of
such an object is

[T | = 1T+ M| e | M |4+ N4t | NG (15)

where a nonvanishing grading | T | of the “body” of the object (let us call it the rumpf, in order not to mix it
up with the body of a supernumber) makes sense when there are ghosts involved, i.e. objects, with the same
index-structure as the coordinates, but opposite grading.

1 for M =m
0for M =p

c is a ghost

M =le|+| M| =t 1+|M|:{ (1.6)
Also forms will have a nonvanishing grading without indices.

Before we come to our conventions, let us quickly remind the existing ones which already have the basic
idea inherent. The generalization of definitions from the commuting (bosonic) case to the graded commuting
case is not unique. A very simple example is the interior product which has in local coordinates the form
LW = Zm V"W, = Zm wmv™. If one wants to extend this definition to vectors and forms that have graded
components as well, the order makes a difference. In the northwest-southeast convention (NW for short)
the extension is chosen in such a way that there is no additional sign if the contraction of the indices is from the
upper left (northwest) to the lower right (southeast), i.e. w,w = >, vMwy = 3 ,,(—)Mwpo™. Within the
northeast-southwest convention (NE for short) instead, there is no sign when contracting from the lower
left to the upper right: 1,w = > ,, wpnv™ =3, ()M vMw)y,.

It is also possible and sometimes very convenient to use a mixed convention with different summation
conventions for different index subsets. One could for example define 1,w = 3", (V™wp, + vHwy, + (=) Pvfwg).

The above definitions are ’definitions by examples’. There will be additional examples in what follows. In
any case, the philosophy of NW and NE is that for every new definition, possible ambiguities are fixed by the
contraction directions. This should give a unique way of generalizing bosonic equations and already implies
the possibility that one can calculate purely bosonic and reconstruct the signs at the very end, at least under
certain conditions.

In our convention, we will completely omit those signs which are encoded in the structure of the terms. NW,
NE or mixed conventions then formally look the same, and there is no reason to decide a priori for one of them.
During the derivation and motivation we will always give the signs for NW and only in important cases for NE.

One of the main ingredients of our conventions will be what we call the graded Einstein summation
convention: repeated indices in opposite positions (upper-lower) are summed over their complete range, taking
into account additional signs corresponding to either NW, NE or mixed conventions.

My = > (=) MaMbyy for NW v_ [ (=) aMby for NW
e { S (=)PMFEMgMpy for NE baa™ = S (—)PMEM M for NE (1.7)

Or in a more complicated case which should clarify the general treatment:

M M. N3N LNy

A NN, AN BT v, = (1.8)

Z (,)1\41(K+N2+A12+B)+IV12(B+N1)+N1(1+N2+B)+N2(1+B+L)+N3(1+B)A1Wl 3N LN,
My,M2,N1,N2,N3

Mo BN
K NNy N3 My Mo
(_)Ml(1+K+N2+J\42+B)+IWQ(1+B+N1)+N1(N2+B)+N2(B+L)+N:SBA1\41 IWQN BNsN1 LN»
3

My ,M2,N1,N2,N3 KNiN» My M

The terrible signs in the lower line of are exactly those which we want to omit during calculations. So
we will define every calculational operation in such a way that it is consistent with this graded summation
convention, s.th. one can calculate only with expressions as in the upper line of and assign the signs only
in the end of all the calculations.

There are by definition two important properties of the graded summation:

e The result is independent of the order of the summations

e The sum is compatible with graded commutation in the sense that signs, depending on the grading of the
dummy-indices, disappear in the equations. From (1.7) it simply follows

a™byr = (=)bara™ (1.9)

a+M)(

This is in contrast to naked indices, where we have a™by = (—)( b+N)pya™. The same simplification

occurs for terms with several contracted indices, like in (1.8):

M- N3N
zNgB 31,

’thLNQ — (_)(A+K)(B+L)BN3N1 M1A12LN2AM1 M, (1.10)

M,
AM kNN, KNiN2  ~Nj

Using ordinary summation conventions, we would have obtained instead the full
sign factor (_)(A+M1+K+N1+N2+]\/[2+N3)(B+N3+N1+1W1+]\/[2+L+N2)_
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1.2 Graded equal sign

The graded summation convention takes care of all dummy indices. But we can still be left with naked indices
and/or graded rumpfs, which likewise produce inconvenient signs. Also the summation convention on its own
might be dangerous. To show this, look at the following example: Consider graded commutative variables
aM bM M and dM with bosonic rumpfs. Then the following equations, which are obviously correct (using our
graded summation convention)

a]ubNCNd]\,{—azubNd]\,[CN = 0 (1.11)

= aMbN (CNdM — d]\,[CN) = 0 (1.12)

could lead to the — in general — wrong assumption
endy —dyey = 0 (not true in general!) (1.13)

We therefore introduce a graded equal sign =,, which states that the equality holds if for each summand a
mismatch in some common ordering of the indices is taken care of by an appropriate sign factor:

endy — dyen =g 0 <= endy — (—)JWNdMCN =0 (114)

If we imagine objects like in , the graded equal sign allows one to write down quickly correct equations
without bothering all the involved signs. And it will also lead as a guiding line for all definitions of new objects,
which should all be writable in terms of the graded equal sign, in order to make them compatible with the
graded summation convention.

The idea of how to define the graded equal sign should be clear from , but in order to be able to write
down a definition for the general case, we have to be a little more careful. For practical purposes it should be
enough to have a look at the examples following the general definition, to convince yourself that everything is
very natural and intuitive.

Let us introduce the graded equal-sign for the most general case in two steps. At first we look at equations
with only bosonic rumpfs, like in (1.8).

Graded equal sign for bosonic rumpfs

Any term T(;y of the equation (which can be a product of a lot of objects with indices) has some nonnegative
integer number k of naked indices (the vertical position of the indices does not play a role for this definition,
so we write them all upstairs, but the very same definition holds for any position). We take the first term
in the equation, call it (1)~ as reference term. Any other term in the equation has to have the same
index set but perhaps with a different order or permutation P(; of the indices. A permutation of an index set
{M,..., M} is defined via a permutation of the set {1,...,k}

P(i)(Ml,...,]ka) = (AIP(,)(I)a"'aMP(,)(k)) (1.15)

We assign a signature to this permutation in the following wayﬂ For any index M; we define a graded commu-

tative object 0™ which carries the grading of the index
oMiogMi = (—)MiM; o M; o Mi (1.16)
and define signP;) (M, ..., My) via
oMrw@ L Mra ) . sign Py (Mq, . .., My)o™ -+ oM (1.17)

If M; are just supercoordinate-indices, then the supercoordinates 2 themselves can be taken instead of defining
new variables o™
Using this definition of the signature of a permutation of indices, we now define the graded equal sign for

an equation with general terms (but still bosonic rumpfs) as

ZT(i)Mp(i)(l)...Mp(i)w) =, 0 C e Z(_)sign(Pm(Ml,.,,,Mk))T(i)Mp(i)(l)...Mp(i)(k) =0 (1.18)

In the following sections we will always give definitions and important equations with the graded equal sign and
with the ordinary one. This somewhat long-winded definition should therefore become obvious in the further
sections. But let us first complete our definition to the case involving graded rumpfs. One could get rid of all
graded rumpfs by shifting the grading to the indices (if present), or create a new index with only one possible
value. As this would be notationally not very nice, we stay with graded rumpfs, but we keep in mind that a
graded rumpf is similar to a naked index. Problems for including the rumpfs in the definition of the graded
equal sign appear, when the same rumpf appears several times in one term, which is thus similar to to having
coinciding naked indices:

INote that this signature of the permutation of some given indices does not coincide with the signature of the permuation itself,
which is given by minus one to the number of switches one needs to build the permutation. o
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Problem of coinciding indices:

The graded equal sign above is only well defined if all naked indices can be distinguished. In general
calculations one usually uses different letters for each index, even if they are allowed to coincide, and then there
is no problem. What, however, if one looks at some special case with two coinciding indices. Consider the
following equivalent relations

(a) T(I)J\lN =, T(Q)NM — T(l)MN _ (_)N]\IT(2)NM (1.19)
(b) T(l)MN =g T(Q)JMN — T(l)MN = T(Q)MN (1.20)

For M = N (no sum) this reads

(a) T(l)MM =4 T(Q)MM = T(l)MM = (—)MT(Q)MM no sum over M (1.21)

1 P = 2" <~ 1 T =T no sum over .
b T )MM o T )MM T )]\/IM T )MM M 1.92

Now (a) and (b) obviously contradict themselves. There are two options to solve this notational problem. The
first is to always rewrite the equation with an ordinary equal sign before looking at any special case. The second is
to make apparent the original name of the index in the following way (this is also useful to suppress summation
over repeated indices if it is not wanted)

(@) TayMWV=M =) Ty V=AM ey ) MVEM) — ()M (N=ADM (1.23)

(b) T(l)M(N:M) =, T(2)M(N:M) — T(l)M(N:M) _ T(z)M(N:M) (1.24)

Graded rumpfs

A grading of a rumpf is like a naked index grading at the position of the rumpf. The lesson from above is,
that we can only include the rumpfs completely into the definition of the graded equal sign, if in each term all
rumpfs are different. As we can’t rely that this is the case in all equations of interest, we will include the rumpfs
only partially in the definition of the graded equal sign. Namely, the graded equal sign will not compare the
order of the rumpfs, but the position of the indices with respect to the rumpfs. This is again necessary to stay
consistent with the graded summation convention. Consider therefore the same trivial example as in ,
however, now with graded rumpfs

aMchNdM - (—)CdaMbNdMCN = 0 (125)
= aZV[bN (CNdk[ — (—)CddMCN) = (1.26)

We now want to simply read off
CNdM - (7)CddMCN =g 0 (127)

In order for this to be correct, we have to define =, appropriately. Let us therefore write out the summation
convention in ([1.26) explicitely (in NW-conventions):

Z aMpN <(_)M(b+c+d)+1vchdM _ (_)1\4(b+N)+J\4d+Nd+Nc(_)cddMCN> — 0 (1.28)
M,N
= (_)MchdM _ (_)]LIN—&-Nd(_)cdd]ch = 0 (1.29)
= (_)NdCNdILI o (_)IV[N+]\/IC(_)cddMCN = 0 (130)

Comparing the last line with (1.27)) we get

CNdM — (—)CddMCN =g 0 :<— (—)NdCNdz\/[ — (—)MN+MC(—)CddMCN =0 (131)
The graded equal sign therefore takes care of the order of the naked indices via (=)™ and of the order of
the indices with respect to the rumpfs, i.e. it puts their grading to the very right of all rumpfs via (—)V? and
(—)Me¢. Only the order of the rumpfs is taken care of by hand via (—)°?. As stated before, the correct order

cannot a posteriori be figured out, when rumpfes coincide. For d = ¢, the equation is still correct and reads
enem — (—)emeny =40 <= (—)NdCNCM - (—)AINJFAIC(—)CC]wCN =0 (1.32)

The (—)¢ cannot any longer be deduced from the order of the rumpfs and that’s why we did not include it in
the definition of the graded equal sign. However, we got rid of all index-dependent signs! We will in particular
use the graded equal sign to define composite objects of the form

AMN =, BNKCKM — A]\/IN = (_)CN+MNBNKCKM _ (_)CN-HV[N Z(_)KCBNKCKM (133)
K
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This makes sure that the notation AM? is consistent with the position of the gradings. This is again necessary

to guarantee consistency with the graded summation convention. I.e. for every Dy;y we have (ordinary equal
sign, all indices contracted)

AMNDy N = BNECkMDyn (1.34)

AMN = BNE M without the graded equal sign or the appropriate

which would not be true for the definition
signs in front.

For a more general definition of the graded equal sign in the case of graded rumpfs, we can again introduce
graded commuting objects o and define something which we call a grading structure, namely a product of

those objects o with abstract indices of the grading of all involved indices and rumpfs. E.g.

gS(C CNTKL P) = OLOJU'O/(,ONOTOKOLO.LOP ( )(JU—&-T(]\/I—&-N)—&-L(M—&-N—&-K-‘,—L)0(,0/( OTO'L OJ\/IONOKOLOP(I 35)
gS( KAMPNCL) = O:L’OKOAOMOPONOCOL ( )AKJrc K+M+P+N)O:L’OAOC OKOMOPONOL (136)
(_)AK+C(K+JU+P+N ( ) MK o% A o¢ OMONOKOLOP (137)

(note that we have to introduce a new graded commuting object (here o’) for every rumpf which appears twice
in a term, as 00 = 0 for | ¢ |=1). In the grading structure, we can rearrange the objects until all the rumpfs
are in the front (with unchanged relative position) and the naked indices have some common order. We call the
resulting sign the relative sign of the grading structures

SigHgMCNTKpr (JJKAMPNCL) — (_)CJVI+T(M+N)+QU(M+N+K+L)(_)AK+C(K+I\1+P+N)(_)J\4K (138)
In order to write down the general definition for the graded equal sign, allowing graded rumpfs, we consider
once some composite onjects T(;) (all terms in an equation of interest) which can contain a lot of naked indices.

Then we define
ign? ;
Y Ty =0 = Y ()" T O, =0 (1.39)

which specializes to (1.18) in the case of bosonic rumpfs. In our example of above, this reads

CMCNTKLJ?P—IKAMPNCL :go ; CMCNTKLIP

KAMPNCL) 2K AMPN L _
(1.40)

Remark: Of course the so defined graded equal sign obeys transitivity (X =, Y, Y =, Z = X =, 7) as
well as reflexivity (X =, X) and symmetry (X =, Y =Y =, X) and is therefore an equivalence relation.

In cases where we have a clear notion of what we consider to be elementary objects and composite objects
(e.g. elementary and composite fields in field theory), we can also go further and a big graded equal sign =¢
which also takes care of the order of as many (elementary) rumpfs as possible. As (in contrast to naked indices)
elementary rumpfs are not visible any longer as soon as one defines composite objects, one has to remember the
definitions of the composite objects, when one wants to resolve the big graded equal sign. Alternatively one can
obey some reference order of rumpfs in all definitions of composite objects. Objects like the energy momentum
tensor, however, in which every summand contains different elementary fields, e.g.

— SigHCM cNTKL P (I

Tzz = 8:EM8:I:M—80Mb2M (1.41)

make it impossible to compare the ordering of the rumpfs in the different terms. A graded equal sign therefore
only can take care of a maximum of common (in each term) an distinguishable (among themselves) terms.
Writing down a general definition of this idea is hard, but let us show some simple examples:

a]\chaNdL = CAIaKaLdN (_)acakIcKaNdL =, (_)Qad—l-dchL[aKaLcN : (149

(c+a+d)+K (a+d)+Nd M K N gL _ (_)dC(_)Mc+K(a+c)+Lc+NLdMakaz(&{%o

(AB)T =¢ BTAT «— (AB)T = (-)ABBTAT (1.42)
(AB)' =¢ BTAT <« (AB)' = (—)4BBTAT (1.43)
(ab)* =g a*b* <= (ab)* =a"d* (1.44)
A=abc, B=cab: A=gB <= A= (-)p (1.45)
AB=¢ BA <<= AB=(-)"PBA <« abccab = (—)@H0+) a0+ capape (1.46)
ab=gecd <+ ab=cd (1.47)
abed =g dc <= abed = (—)*de (1.48)
— )
)M )

= (=)
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1.3 Calculating with fermions as with bosons - a theorem

Definition 1 (Gradifiable) We call a naked index or rumpf of an algebra element gradifiable in a given
equation iff it either appears in every term of this equation exactly once or it does not appear in the equation at
all. We call it gradifiable in a set of equations iff it is gradifiable in each of them.

Definition 2 (Gradification) The gradification of an index 'K’ or rumpf ’a’ assigns an undetermined parity
| K| or| a| to it which will enter the graded summation convention and the graded equal sign. The gradification
of a given set of algebraic equations is defined to be a new set of equations with all gradifiable objects gradified,
the equal sign replaced by the big graded equal sign and the sum over dummy indices replaced by the graded sum
(using an arbitrary but well-defined sign rule like NW or NE) over graded dummy indices.

More or less by definition, the following theorem holds:

Theorem 1 If a set of algebraic equations implies a second set of algebraic equations, then the same holds true
for the gradification of the whole system.
Remarks:

e This theorem makes it possible to use existing tensor manipulation packages for e.g. mathematica also
for the graded case!

e It is not excluded a priori that the original equation was fermionic and is made bosonic. However, one
has to make sure that equations like

6-6 = 0 (1.51)
are not contained in the set of equations that where needed to derive something. In the above equation,
0 obviously appears twice in one term and is thus not gradifiable.
e The definitions where chosen excatly in such a way that the theorem holds. A more rigorous proof will
not be provided here.
Counterexamples

In the rest of this part of the thesis we will give a lot of examples and applications of the theorem. There will,
however, also be some rather subtle examples which seem to be counterexamples at first sight. One of those
“counterexamples” is the graded inverse of a matrix with graded rumpf, treated in subsection on page
Another “counterexample” is the derivative with respect to Grassmann variables: the bosonic equation

0

—xz=1 1.52

p (1.52)
suggests to define

o, 9

%9 =1 (1.53)

for fermionic variables. This definition makes perfect sense, but results using this derivative cannot be derived
via the theorem from the bosonic case, as the rumpf theta does not appear excatly once in every term. This
problem can be omitted, if one introduces a new index and puts the grading into the index. We treat such
derivatives in subsection [3.I] on page



Chapter 2

Graded matrices (supermatrices) and

graded matrix operations

Supermatrices are the perfect objects to study the effects of our considerations. We will drop the word ’super’
or 'graded’ in every definition, since everything in has to be understood as graded. The equations of this section
will all be written in two ways: once in the left column with the help of the graded equal sign and the implicit
graded summation conventions and once on the righthand side with ordinary equal sign, and the sum written

out explicitely (in NW conventions), in order to make the reader familiar with the new conventions.

Within this chapter, we will always consider four different kinds of matrices, which differ in their index-

positions:

2.1 Transpose and hermitean conjugate

MN M N
A 7B NaCM 7DIWN

(2.1)

Let us start with the definition of a transposed matrix and a hermitean conjugate matrix in each of the four

cases. The simple rule is to take the bosonic definition and replace the equal sign by a graded one:

(ATYMN = = gNM
g
(BT)MN :g BNM
(CT)MN :g CN]\/[
(DYun =, Dnum
(AT)MN _g (ANJ\I)*
BHYMY = (BVu)*
(CHMy =, (CyM)
(DYun =, (Dyum)*

Clearly we have

for all matrices M, which is a simple confirmation of the theorem.

2.2 Matrix multiplication

(7"

o o Lo N
N NSNS AN

© o N o
Lx2Jd2

We meet a first deviation from usual definitions when we consider matrix multiplications. The definition of the
matrix multiplication will depend on the index structure of the matrix. Both, graded equal sign and the graded

summation convention have an influence now:

12
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(AC)]VIN =, A]VIKCKN (AC)MN = (_)]MCAMKCKN _
N:VV (_)I\IC Z(—)KCAMKOKN (2.12)
K
(AD)MN =, AMKDKN (AD)I\/IN = (_)IVIDAJVIKDKN —
N:VV (7)1\/ID Z(*)KDAMKDKN (213)
K
(ABT)MN =, AMK(BT)KN (ABT)MN = (_)MBAJ\IK(BT)KN _
—  AMKRBN —  ()MBAMKBN
N:VV (_)A{B Z(_)K(B+N)AA1KBNK (2.14)
K
(BA)MN =, BM AKN (BA)MN = (_)MABJ\IKAKN _
N:VV (7)ILIA Z(*)KJrKABMKAKN (215)
K
(B1B2)]\4N =, Bll\/IKBQKN (BlB2)MN = (_)MB2BlMKBQKN —
_ (7)1\/132 Z(*)K+KBzBlMKBQKN (216)
K
Associativity

Up to now, we have used the graded equality and summation mainly for definitions (appart from (2.10) and
(2.11)). Now we can apply our theorem by stating that the (graded) matrix multiplication as defined above is
associative

((BiB2)B3)Y v = Bi(BaB3)My (2.17)
(C1C2)Ca) ¥ = Ci(CaCa) ™ (2.18)
This is guaranteed by the theorem, because the bosonic equation is true and all conditions to replace indices and
rumpfs by graded naked indices and rumpfs are fulfilled, namely every naked index and every rumpf appears

excatly once in each term and the graded matrix multiplication could be defined with the same conditions
fulfilled. For this example it is still quite simple to check the validity explicitly, e.g. in NW

(_)M33 Z(_)LBg—i—L ((_)MBQ Z(_)KB2+KBlMKBQKL> B3LN —

L K
= (_)M(Bg—‘rBs) Z(_)K(32+B3)+KBlMK ((_)KBg Z(_)L33+LB2KLB3LN> (2.19)
K L

Unit matrix

The definition of the unit matrix is
M1 = M (2.20)

which implies via associativity for the matrices of type B and C
1M = M (2.21)

For the different types of matricies A, B,C and D, we have in fact different types of unit matrices:

(ALY = MG N L gy (ALY LS g N Ly ()
K
y ! y NW !
(B)My =  BM65y L BM (BI)M y "2 Z(i)KBMK(SKN LoBMy (2.23)
K
CcnuN = CuforN = o (cn) ™ NEWZC'MK(sKN = o (2.24)
K

!
(D)yn = Durd® N = Dun (D) N NEWZ(—)KDMKéKN L Dun (2.25)
K



CHAPTER 2. GRADED MATRICES (SUPERMATRICES) AND GRADED MATRIX OPERATIONS 14

From the righthand side we can see

53 for NW
N M
o = { (—)MN g, for NE (2:26)

with §3 being the numerical Kronecker delta, and

oMy =4 oM (2.27) My = (=) MNgyM (2.28)
This graded Kronecker (the lefthand side shows that both versions are graded equal anyway) of course also fullfils
its task for vectors and arbitrary rank tensors{l]

aMoyN = aV (2.29)
Tatyont, k05N = Tanon, N (2.30
2.3 Transpose and hermitean conjugate of matrix products

2.3.1 Transpose of matrix products

Another simple application of the theorem are the transpose and the hermitean conjugate of a matrix product:

(A =¢ (AT (2.31) (A = (o)A (€T ATYMY (2.34)
(AD))YY v =¢ (DTATMy  (2.32) (AD)YY v = ()AP(DTATYM y (2.35)
(BATY™ =¢ (ATBT)MN  (2.33) (BT = ()ABATBT)MN (2.36)

Let us again verify explicitl}; that this is indeed true for e.g. the first line (in NW conventions):

((AC)T)MN _ (7)MN(AC)NM _

_ (_)MN(_)NC Z(_)CKANKCKM —
K
— (o)MN+NC Z(_)CK+(C+K+M)(A+N+K)CKMANK _
K

_ Z(_)CA+KA+KN+K+MA+MKCKMANK _

— (_)AC(_)MA Z(_)KA+K(CT)IVIK(AT)KN —

_ (_)AC(_)MA(CT)]WK(AT)KN _

= ()¢ (CcTamy"™™ (2.37)

2.3.2 Complex conjugation of products of (graded) commuting variables

Before we come to the hermitean conjugate, we will have a short look at complex conjugation of graded
commuting variables (we will often call it graded number, or just number) and products of them. The reason
to do so, is that the complex conjugate of a product of two Grassmann variables is often defined differently
to our way, and we therefore want to motivate it carefully. Consider the (graded) commuting variable a and
decompose it into its real part R(a) and its imaginary part S(a), defined by (use of a graded equal sign makes

LIf the capital index combines two subsets of (small) indices with different position, we might insist on NW (or any other
convention) for the small indices which leads to different definitions for the Kronecker delta:

aA/I = (am7 a.U«)
a]\/IJA/IN — amémN 4 a#(;HN —
mixed conv. !
= am e N 4+ 3 () apet N = o
m w
™ = s

N
o1 = (—)Hs o
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no difference here)

R = (2.38)
S(a) = a;i“* (2.39)

Both are real
Ry = R@), S@)* =) (2.40)

and we have
0 = Ra)+ i) (2.41)
@ = R(a)-iSa) (2.42)

We thus can seperate any number in a real and imaginary part, and complex conjugation flips (as usual) the
sign of the imaginary part. Consider now the complex conjugation of the product of two graded numbers

(ab)* = [R()R(D) - I(a)I(D)) +i(R(a)I(b) + I(a)R(D))]" =
= (R(a)R(D) — S(a)S(b)) — i(R(a)I(b) + S(a)R(b)) (2.43)
a'b* = (R(a) — i) (R(a) — iS(b)) =
= (R@RO) — 3(@)SO)) — i(R(a)I(b) + S(a)R(b)) (2.44)
= (ab)* = a"b* 2.45)

From our definitions of real and imaginary part in and , which are just graded versions of the
bosonic case, we could have deduced as well via our theorem. We just want to stress that in our context
this is the only natural complex conjugation, while in the literature one can often find a complex conjugation
with the property (ab)* = b*a* = (—)%a*b* which would not fit at all into the philosophy. The same is true
for the hermitean conjugation of the product of graded matrices in the next subsection (as well as of graded
operators in the infinitedimensional case).

2.3.3 Hermitean conjugate of matrix products

From our definition of a hermitean conjugate and of complex conjugation of products of numbers, we get via
the theorem the natural rules for complex conjugation of (graded) matrix products:

(A" =5 (ctAD™ (246 (Ao = (oA (ctan™™  (2.49)
(ADYY § =g (DTADMy  (247) (AD)YY x = (9)AP(DTADNMy  (2.50)
(BN =5 (ATBHMN  (248) (BAHY = ()ABATBHYMN  (251)

Similarly we expect for opellétors in the infinite dimensional case
(AB)I =g BFAf (2.52) (ABYf = (—)APBTAT (2.53)

It is simply a matter of redefining the operator product, in order to make contact to the usual definition without
sign.
2.4 Graded inverse - a nice “counterexample” to the theorem
Consider for the beginning matrices with even rumpf only
|Al=|B|=[C|=|D[=0 (2.54)

We say A is the (graded) inverse of D, By the inverse of B; and C? the inverse of C! iff

Dy AKN = 5N (2.55)
AMEDE Ny = My (2.56)
BMgBENy = My (2.57)
ey e = o (2.58)
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with
sy = (9)MVeNy (2.59)

The so defined inverses in general do not coincide with the naive inverses[]
From our theorem we can e.g. deduce that for matrices M N of any type (with even rumpf) we have

(]\/fN)_l - (N—lM—l) (260)
|M|=IN|=0 (MN)™' = (N“'MY (2.61)

This is easily directly verified using associativity of our graded matrix multiplication.

Counterexample

If we however take the rumpfs arbitrarily graded, then we still havdﬂ

(MN)™* = (N'M™'), forany|M |and | N | (2.62)
as (MN)(N7'M~Y) "2 M(NN-HM™'=1 (2.63)
There is no expected prefactor (—)™% in the upper line! This looks strange in terms of the big graded equal

sign, which should swallow the rumpf-dependend signs, but produces one here:
(MN)™' =¢ (9)MN(NTTMTY) (2.64)
The theorem thus is not applicable here! What went wrong? Our definition of the inverse
(MM~ = 1 (2.65)

is a non-valid gradification of the bosonic one: The theorem allows us to assign a grading only to rumpfs which
appear excatly once in each term. The rumpf M appears twice on the lefthand side and not at all on the
righthand side. Thus, the theorem does not allow to give M a grading. If we do so nevertheless, we can’t derive
known rules from the bosonic case.

The naked indices in to , however, appear excactly once in each term and can therefore be generalized
to graded indices. We thus cannot base our theorem on definitions like this. As the definition itself is of course
ok, we thus should better give it a new name, like special graded inverse , in order to make clear that the
definition is not simply a gradification of a bosonic one!

2.5 (Super) trace

We know come to another important deviation from usual supermatrix-definitions which will enter an interesting
result for superdeterminants. The trace is the sum of the diagonal entries and makes sense for matrices of type

2To verify this statement, write out the equations 1}1} in NW-conventions, using §y;V = 6]]&:

Y. Dur()FARY = &
S AMEDen (Y = o
Y. BYk()VBI N = &Y
oo ooufckN = oy

Only in the last case C? is the naive inverse of C1. o
3Note that although a Grassmann-variable has no inverse, a matrix with fermionic rumpf can have an inverse. Take e.g. z,y # 0

bosonic and ¢ fermionic, then we have
o 1 10
c =z
y _
(y 0><1 C> B (0 1) #)
T Ty

The matrix multiplication above, however, is not according to our graded matrix multiplication rules, which are

(cch N o= oS HEN =4 0u"
S (00T, N M S RARMAG, K (O N = 5y Y
K

The following choice of matrices therefore correspond to the equation (#):

o= (5 7)o (

gl= O
l@\

o -

@‘“

N———
<&
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C and B only (matrices with one upper and one lower index, i.e. endomorphisms)
SuBMy NW
Su(HMBMy NE

M M
trC = C'MMZ{ ZAi(M)CJ\fAAj NgW (2.67)

trB = BMM{ (2.66)

The (—)M is familiar from usual definitions. We have it here, however, either only for NW or for NE. The
reason is that for B-type matrices in NW (where the trace has no sign factor) the (—)* is implemented in the
matrix multiplication of two matrices. In any case, the graded cyclicity property of the trace holds:

tr BlBQ = B{MKBQK]\/[ = (—)BQBltr BQBl (268)
< tr [By,Bs] 0 (2.69)

For matrices of type A and D, we need a metric, in order to define a meaningful trace:

trdA = AMNGJWN (270)
trD = DMNGMN (2.71)

2.6 (Super) determinant

We finally come to the most interesting demonstration of the use of our conventions. Namely the definition of
the superdeterminant. As usual, we start from the definition via the exponential:

detC = etrnC (2.72)

Remember that for a matrix of type C, the definition of the trace matches the usual definition, while the
definition of the matrix product differs. For NE the situation is just the other way round. In any case, our
definition will differ from the usual one.

Consider now the decomposition of C' in bosonic and fermionic blocks:

Omn Cwny anzn bmy
(CMN) = ( C#n C#y ) = ( C'un d'“l/ ) ’ | m |: 07 ‘ o |: 1 (273)

Assuming that the matrix (a) is invertible (implies that a (and thus the rumpf of C) is bosonic, as a matrix with
purely fermionic entries cannot be inverted), one can seperate C in a product of two block-triangular matrices

C = 10y (2.74)
G = < . ) ( 0 (—a;:i)lb > (2.75)
Now we will use two facts. One is that the trace of In factorizes:
(oG BCH  F+G+3[F.Gl+.. (2.76)
10y _ eI C1+n C2 43 [In C1,In Ca . (2.77)
= tr In(C1Cy) 222 trInCy + tr nCy (2.78)

And the other fact is that an arbitrary power of a block-triangular matrix stays a blocktriangular matrix with
the powers of the diagonal blocks in the block diagonal:

(10) - (% 2)

a " a™  x
(O > = < 0 d”) Ya,b,c,d (2.80)

(C,—1)" = < (e —1)" 8 ) (2.81)

(=1 = ( . (d—ca—olb— 1) ) (2:82)

o Q
[SUES N O )

In particular
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Now we use the power series for the logarithm

=1 > "
_ L 1a(n) no_ _\n—1%
In(1 + ) ; — ™ (1) ;( ) (2.83)
R S (C e D
tr In(Cy) = ;( ) ~ = (2.84)
R N N VN
- Zl ——tr . 0 )= (2.85)
= i (_)n_ltr (a—1)" = (2.86)
n=1 n
= trlna (2.87)
trIn(Cy) = trln(d—ca™'b) (2.88)
We thus get
detC = detC-detCy = (2.89)
= deta-det(d — ca™'b) (2.90)

This result is true for every block-decomposition. a,d do not necessarily have to be bosonic as well as b and
¢ do not have to be fermionic. It differs, however, from what one usually finds in the literature, namely
det C' = det a/ det(d — ca™'b).

The reason for this mismatch lies simply in the definition of matrix multiplication (or trace) and thus
of the determinant of a bosonic matrix with two fermionic indices. For NE-conventions, the trace of the
submatrix (d*,) gives an extra minus, which produces the 1/d, if one refers to the naive trace when defining
the determinant. The same is true, if we consider the corresponding submatrices of a matrix of type B in
NW-conventions. For the determinant of a matrix of type C' in NW (or likewise type B in NE), however, the
comparison between our and the usual convention is a bit more subtle. In the following we write terms in the
usual convention in quotation marks. At first, let us define the dimension of a matrix as the trace of the
corresponding unit-matrix:

dim(C) = ™) =7 dim(a) — dim(d)” (2.91)
dim(d) = 7 —dim(d)” (2.92)

I.e., fermionic dimensions are negative dimensions!

d*", = d\d>, = (2.93)
NW > dtadr,(-) (2.94)
A
=d" = ?(=1)""'d" = —(—d)™” naive matrix mult in quot (2.95)
o0
(=)t 1="-17
In(d = d-1)" = 2.96
(d) > - (2.96)
5w X \n-—1
]l:: 1 » Z ( ) (*d . ]l)nn (297)
and 1 n
= ” —In(—d)” naive matrix mult in quot (2.98)
det(d) = 1/ det(—d) = (=1)4™D1/det d” (2.99)
ail:”afl” .
det(d — ca™'b) e ?(=1)3m( D1/ det(d — ca™b)” (2.100)
det C = ?(—=1)4m(D) det o/ det(d — ca™'b)” naive matrix mult in quot (2.101)

For matrices of type B in NW-convention, the situation is the same as for matrices of type C in NE-convention:

dn — b2 d"l?? ( )

]ld ” ]ld” ( )
Ind = "Ind” (2.104)
trlnd = 7 —trlnd” ( )
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We thus get
B _ iy (=14 det a/ det(d — ca'b)” NW
det C = deta - det(d —ca™"b) = { " det a/ det(d — ca-1b)" NE (2.106)
a b\"
for CM = ( ¢ d ) . (2.107)
and
- " deta/det(d — ca™1b)” NW
p— . J— 1 _= .
det B = deta - det(d — ca™"b) { 7(—1)4m(@ det a/ det(d — ca—'b)” NE (2.108)
a b N
for By N = ( , ) (2.109)
c d ),
al T al T
As a check, let us take B = CT = =7 7 | 7. Then we expect, following our theorem:
bT dT I —d
det C' = det CT (2.110)
Indeed, in naive matrix-notations this reads
7 (—=1)3m@ det(d — ca™b)” = 7 det(—dT — b7 (a"1)T Ty = (2.111)
= 7det (—d” — (—)%cab) 7 = (2.112)
= 7det(—d+ca'b)” = (2.113)
= 7 (=1)4 det(d — ca'b)” (2.114)



Chapter 3

Other Applications and Some Subtleties

There are many natural applications. One is the study of supergroups under the aspect of gradification. Another
is the calculus with differential forms. There is more to say about that, but for the moment it should be enough
to say that we put the form grading on equal footing to the fermion or ghost grading. A two form e.g. looks as
follows: w = wMNd):M ANdeN = Z(*)]WNJFNWMNCIL'M AdeV.

Yet another natural application is the whole business of defining conjugate momenta, making a Legendre
transform in order to switch the Hamiltonian formalism, and of defining the Poisson bracket. Subtleties arise
only when graded rumpfs are involved, especially for the definition of derivatives.

3.1 Left and right derivative

Bosonic rumpfs

In the bosonic case we have for a variation of some function

«—

of(x) = &Cmaximf = fajm ox™ (3.1)
af |oxm
0 = ™ (8f - 8f/8x"”> (3.2)
ox™
0 = if —of jox™ (3.3)
ox™

There is no difference between left and right derivative here, except that we write it either on the left or on the
right of the function. For the graded case with bosonic rumpfs, the situation is very similar. We define (using
graded summation; no need for graded equal in the beginning, as there are no naked indices, but in the third
equation it is essential)

5f(x) =4 oM an f =, 0f/0xMsz™M (3.4)
= 0 =, oM <85Mfaf/axM> (3.5)
= 0 = %j’—@j’/@x”f (3.6)
= 0 = %f—(—)fMaf/axM (3.7)
For f = 2™ we have
oxM = 5xK&CinM:axM/axK(sxK (3.8)
:»8%:51” = oxM (3.9)
oxM joz K = My (3.10)

20
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In the case of coordinates with bosonic rumpf, we will also use the following symbols for derivatives

of 0

ouf = 5odT = afo (3.11)

F]
T]WN,K = TMN(%—KE(?TMN/amK (312)
= Tunkx = (—)FTMNG Ty N (3.13)

We will not use the notation 0y for derivatives with respect to ghosts or objects with undetermined grading,
as the rumpf becomes invisible.

Graded rumpfs

For fermionic indices a the above equations imply

0

88?375 = —02°/0x* =46, (3.15)

This would for fermionic objects without indices also suggest to define

9 2
26 = —0c/Oc (3.16)

We prefer however the following definition of left derivative and right derivative

§F(c) = 56%F(C)E@F(C)/ac5c (3.17)
Dre) = ()R (3.18)
Dre) =t (ror/o (3.19)
%C = 9c/oc=1 (3.20)
%c =7 (—)°Dc/dc (3:21)

Although (3.17) and (3.20) seem to be quite intuitive, (3.18) unfortunately is less intuitive. The factor (—)F*
is expected, because we interchange the order of F' and the derivative with respect to ¢. The extra factor (—)¢,

however, stems from the fact that in (3.17) the order of 9/0c and dc is exchanged. Thus for graded rumpfs,
left and right derivative are not the same operation (just written in a different order), but they differ by a sign
depending on the grading of the rumpf. The generalization to the case with indices, however, is straight-forward
again

o
o’ = o (3.22)

ocM jocN =, sM (3.23)

The generalization to the case with general indizes is again straightforward:

0

0F(c) = 5cKaC—K (c) = OF(c)/0ck 6c (3.24)

0
5xF(©) =g (2)(=)"0F(c)/0c" (3.25)

0
(VFEDR(E) = () TOR(e) e (3.26)

0 0

OcM o=y o — (_)CMWCN =om™ (N:W 5113[1) (3.27)
ocM jocN =, My =, = (—)MIM/ocN =My (3.28)
oM jocN =, icM = (2)MacM/ocN = (—)CNJFNMicMaz/Z (3.29)

ocN OcN
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3.2 Remark on the pure spinor ghosts

In part [[I} we will make frequent use of the presented conventions. In particular, we will always use the graded
summation convention and the small graded equal sign without denoting it explicitely! There are some effects
that one needs to get used to. The formalism contains among others the variables ™, 0%, 0" and a commuting
ghost variable \*. When we want to describe the first three as just components of a supercoodinate ™, we
have to assign all the grading to the indices: 8% — 0 = z#*. We call that a “rumpf-index grading shift”. The
fermionic variable 8% = ¥ can be treated in both ways, either as odd rumpf with even index or as even rumpf
with odd index. The boldface notation should serve as a reminder, which point of view we take. When we are
considering the combining object 2, we have no choice, because all entries share the same rumpf 'x’. Therefore
we have to assign the grading to the index and have to do the same for the ghost index, because it simply is

the same index:
M — \H (3.30)

When we leave away in calculations all index-dependent signs, the pure spinor ghost will effectively be treated
as an anticommuting variable, because the rumpf is anticommuting! Another similar effect is the switch of the
symmetry properties of bispinors. E.g. the chiral v-matrices

Vas) = Vs (3.31)

which are symmetric before the grading shift, become effectively antisymmetric afterwards. As an example,
consider the following term

(MDN) = A*p 0N = 0NN = (OX°N) (3.32)

The calculation goes through in the same way after the shift, because the antisymmetry of the y-matrix is
compensated by the “anticommutativity” of the ghosts.

AN = A%, 50N = OAT g A = 0N A (3.33)

Nevertheless, in NW as well as in NE, we get an overall minus sign from the switch, due to the graded summation

convention:
AYEON = —Ay°0A (3.34)



Part 11

Berkovits’ Pure Spinor String in General
Background
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Chapter 4

Motivation of the Pure Spinor String in
Flat background

4.1 From Green-Schwarz to Berkovits

The classical type II Green Schwarz (GS) superstring describes the embedding of a string worldsheet into a
target type II superspace with coordinates 2 = (2™, 8", é“) The bosonic coordinates ™ locally parametrize

the ten-dimensional spacetime manifold, while the fermionic coordinates 8% and 6" have the dimension of
Majorana Weyl spinors and thus have each 16 real components. The Lorentz transformation of spinors is from
the supermanifold point of view a structure group transformation in the tangent space of the supermanifold. In
the flat case, where one can identify the manifold with its tangent space, the 8’s are clearly spinors themselves.
In the context of a curved supermanifold that we will treat later on, this will not be the case a priori. The @’s
then only transform under super-diffeomorphisms and not under structure group transformations. However, the
supergravity constraints will allow to choose a gauge (WZ-gauge) in which the two transformations are coupled
and the 0's likewise transform under a structure group transformation. This is just a remark on the use of
the “curved index” p. Objects that transform a priori under the structure group carry the flat index A or in
particular a.

The cases type ITA and TIB will be treated at the same time via the choice 8 = 6, for TTA and 6" = 6"
for IIB. The supersymmetry transformation in flat superspace reads

56" = et 50" =¢” (4.1)

0z™ = ey"0+ey"o (4.2)
The small y-matrices are discussed in the appendix[D] In order to build a supersymmetric theory, it is reasonable
to consider supersymmetric building blocks, in particular supersymmetric one-forms (vielbeins)

~ &

Er=dMEy” = (& + B0+ B0 , B , B) (4.3)

IIe

Its pullback to the worldsheet will be denoted by
2, =0.:aMEy? (4.4)

We do not distinguish notationally between the coordinates of the superspace and the embedding functions.
The bosonic components II¢ are known as the supersymmetric momentum

2/2 = az/ixa+az/20’7a0+az/ié’7aé (45)

The introduction to the Green Schwarz string and the motivation for the pure spinor formalism will be
rather quick and sketchy. We will be much more careful when we start to discuss the pure spinor string in
general background.

The classical Green Schwarz superstring in flat background consists of the square of this momentum plus a
Wess-Zumino term which establishes a fermionic gauge symmetry. This gauge symmetry, called x-symmetry,
guarantees the matching of the physical fermionic and bosonic degrees of freedom. The GS action has in
conformal gauge the following form:

1
SGS = /d2z iﬂgv)abﬂg +Lwz (46)

Lwy = fénzm (owée - éwéé) + %(ewae)(éyméé) —(z < 2) (4.7)
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It is covariant and almost manifestly spacetime supersymmetric. In this last feature it differs from the RNS
string, where space time supersymmetry only comes in after GSO projection. The problem for the Green
Schwarz string on the other hand is that a covariant quantization with the standard BRST procedure does
not work. The reason for this misery is a set of 16 mixed first and second class constraints d,, that cannot
be split easily into first and second class type in a covariant manner. The conjugate momentum p,, of 6
can be entirely expressed in terms of other phase space variables and the corresponding fermionic phase space
constraint is just d,,. It has the following explicit form (the form of conjugate momentum to ™ was already
plugged in)

1 1. o
dio = Do — (Va0)a (895“ - 507“80 — 207“’80) (4.8)

Half of these constraints are first class and correspond to the above mentioned fermionic x gauge symietry.
The fact that they have a second-class part can be seen in a non-closure of the Poisson-algebra, which has the
following schematica form:

{d.a(0),d.5(c")} o QVgﬂHm(S(UfJ') (4.9)

Siegel [17] had the idea to make d., part of a closed algebra by just adding the generators that arise via the
Poisson bracket, which leads to a (centrally extended), but otherwise closed algebra

{dza, 0} x 279, (w@@ﬁ(s(a —o’) (4.10)
{Hza7 sz} X nab(sl(a - 0'/) (411)
{d.q,00°} o 688 (0c— o) (4.12)

The important observation is now that the same chiral algebra can be obtained from a free-field Lagrangian,
where the variable p,, is independent and cannot be integrated out:

1 = ~ ~ &
Stree = /d2Z iﬁxmnmnax" +006%p,, + 00 Ii)m = (4.13)
1 ~ G
_ / Po TG + Ly +00° o + 00"z (4.14)
Las

In the second line we have used the original definition for d,,. Remarkably, this action coincides with the
Green Schwarz action for do = ds = 0. In the above free theory, however, d., is a priori not a Hamiltonian
constraint, but still a generator of a chiral (not local) symmetry. In any case, the reformulation does not remove
the mixed first-second class property of d,,, but it provides a simple free-field Lagrangian. Berkovits [5] had
the idea to implement the constraints cohomologically with a BRST operator disregarding its non-closure. The
corresponding current (Q = § dzj ) for the left-moving and the right-moving sector take respectively the simple
form

jz = )‘adzou .2 =0 (415)
J: = Ndea, 3.=0 (4.16)
where A% is a commuting ghost. For first class constraints the BRST cohomology can be built, because the
BRST operator is nilpotent due to the closure of the algebra. For second class constraints, however, the non-

closure implies a lack of nilpotency of the BRST operator. To overcome this problem, Berkovits put a constraint
on the ghost field A and A, the so called pure spinor constraint

MA=0, M°A=0 (4.17)

This enforces nilpotency of the BRST operator and provides a well-defined theory. The pure spinor constraint
and the ghost kinetic term have to be added to the original free action:

Spe = / 2z %&cmnnmgx" +00%p., + 00" pos + Lon (4.18)
- / d?z %Hgnabng 4 Lz +00°d.0 + 00 dea + Lo (4.19)

¢ = 9z 4 96+°0 + 069 (4.20)
de = P.o— (mB)a (83;7" - %077”60 — ;é’ym(?é) (4.21)
Lwz = —%Hm (oymée — éyméé) + %(owae)(é%ﬁé) — (2 %) (4.22)
Lo = Nu+0N0 5+ %nga(wx) + %im(w&) (4.23)
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The pure spinor constraints seem like a replacement of one problem by another. The constraints turn now out
to be first class but infinitely reducible. They generate antighost gauge symmetries of the form

5(;1,)Wzoc = Hza (p)/a)\)aa 6(u)w2d = ﬂia(’}/aA)a (424)

accompanied by some transformation of the Lagrange multipliers. We will discuss this in more detail in the
general background-case. In spite of this, the pure spinor constraint can be better handled than the original
constraint. One can solve the pure spinor constraint explicitely in a U(5)-parametrization and calculate operator
products. Although the U(5) coordinates break manifest ten-dimensional Lorentz-covariance, the resulting
gauge-invariant OPE’s all have a Lorentz covariant form and the quantization is effectively Lorentz covariant.
Berkovits showed in the above cited papers the equivalence to the ordinary string. In [10] he presented a
consistent description for the calculation of higher loop amplitudes. There are still many conceptual problems.
The pure spinor formalism starts in the conformal gauge and does not have worldsheet diffeomorphism invariance
any longer. Attempts to construct a composite b-ghost (as homotopy for the energy momentum tensor) always
involved inverse powers of the gost field. In [I8], Berkovits recovered a N = 2 algebra by the introduction of
additional worldsheet fields, which is now known as “non-minimal formalism”. Multiloop calculations where
described or performed by Berkovits, Mafra, Nekrasov and Stahn in [19, 20, 2], 22]. However, there is still a
clear picture of the origin of the pure spinor constraint missing. Attempts to relate the pure spinor string to
the Green Schwarz string via similarity transformations and redefinitions where successful in [23], but not very
enlightening. An additional task is the resolving of the tip-singularity of the pure-spinor-cone. These questions
were adressed in [24] and [25].

We should finally mention that the pure spinor approach of Berkovits differs significantly from the hybrid
formalism[26], which was developped by the same author and shares only some of the properties of the pure
spinor approach. Two recent presentations of this formalism including the numerous relevant references can be
found in [27][28].

4.2 Efforts to remove or explain the pure spinor constraint

There where plenty of efforts to get rid of the pure spinor constraint in the years after Berkovits presented
his approach the first time. A quite natural ansatz was followed by Chesterman|29] 80], who implemented the
first-class pure spinor constraint cohomologically, via a second BRST operator. Due to the infinite reducibility
of this constraint, there arises an infinite number of ghost for ghosts. Nevertheless he was able to extract the
most important information and avoided solving the pure spinor constraint explicitly.

Somehow related are the considerations of Aisaka and Kazama[31l 32, [33]. They were able to construct a
BRST operator with five additional ghost fields and no pure spinor constraint, using however U(5) parametriza-
tion and breaking manifest Lorentz invariance. The relation to Chesterman’s approach can be established
as follows: The infinitely reducible pure spinor constraint can be replaced by an irreducible one in an U(5)
parametrization. This constraint can be implemented cohomologically via a second BRST operator in a relative
cohomology, and via homological perturbation theory one can replace the two operators by a single one. Within
their ’doubled spinor formalism’, they provided in [34] a derivation of the pure spinor string from the Green
Schwarz String on the quantum level.

Another enlightening approach by Oda, Tonin et al.[36] was the interpretation of the pure spinor formalism as
a twisted and gauge fixed version of the superembedding formalism. This led to a slightly modified version of the
pure spinior formalism, the Y-formalism, and to new insight about the missing antighost b-field[37, 38| 39, [40].

There was finally yet another approach by Grassi, Policastro, Porrati and van Nieuwenhuizen, at that time
most of them in Stony Brook, which we will discuss shortly in a seperate section, as it was subject of my early
PhD studies.

4.3 Some more words on the Stony-Brook-approach

In a series of papers [6, 43, 44} [7], 8] [45] 46] Grassi, Policastro, Porrati and van Nieuwenhuizen have removed
the pure spinor constraint by adding additional ghost variables. They realized in [8] that their theory has the
stucture of a gauged WZNW model with the complete diagonal subgroup gauged. It is based on the chiral
algebra above. A current can be set to zero by gauging the corresponding symmetry and thus making it a first
class constraint. However, d,, does not form a subalgebra and thus cannot be gauged on its own. So if one
starts gauging d., and tries to make the resulting BRST-operator nilpotent by adding further ghosts,
one automatically arrives at a BRST operator that corresponds to a theory where also I1,,, and 00% are gauged
(see e.g. [T, p.7] or [8, p.4]; this fact was later also used to describe a topological model in [47]). In the gauged
WZNW description this means that the complete diagonal subgroup is gauged. Therefore a grading or filtration
had to be introduced, in order to obtain the correct cohomology. In [46] it was argued that for any (simple)
Lie algebra one can in general gauge a coset (in our case the algebra that corresponds to d.,, modding out
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the subalgebra) by gauging the complete algebra and later undo the gauging of the subalgebra by building the
relative cohomology with respect to a second BRST operator. This corresponds to the former grading. Despite
its elegance there are some puzzling points about the WZNW action:

o For the heterotic string one starts with a chiral algebra and gets from the WZNW model a chiral as well
as an antichiral algebra. Somehow one has to get rid of the antichiral one.

e For the type II string one starts with a chiral and antichiral algebra. Both of them double and the Jacobi
identity forces one to mix those algebras. Thus it has not been possible yet to produce a WZNW model
for the type II string.

e The classical WZNW theory is not a free field theory which might cause problems for calculating OPEs.

For those reasons, we avoided in [9] the WZNW action. Although the cited paper contains the work of the early
stage of my PhD, it will not be presented in this thesis in detail. The reason is that it would open yet another
field, whereas the presented parts share some common aim. Let me therefore just sketch the results: We started
in [9] with the free field action of above, discussed its off-shell symmetry algebra generated by the current d.
and gauged it, in order to turn d,, into a constraint. Before actually gauging the algebra via the Noether
procedure, we had to make it close off-shell. To this aim we introduced auxiliary fields P,,, and Ps,,. There
still remained double poles in the current algebra, which caused trouble in the gauging procedure. They were
be eliminated by doubling all fields as it was done in []], in order to establish nilpotent BRST transformations.
Gauge fixing leads to the BRST-transformations as they are given in [§].

Finally, we had a closer look at the final BRST operator proposed in [§], which includes diffeomorphism
invariance by adding a topological ghost quartet. We came to the conclusion that this operator has to be
modified via a second quartett of ghost fields in order to become nilpotent.

A last major progress was achieved in [48] by establishing an N = 4 algebra in this formalism.



Chapter 5

Closed Pure Spinor Superstring in general
type 11 background

The pure spinor string in general background was first studied by Berkovits in [II]. The one-loop conformal
invariance of the heterotic version was studied in [49]. The classical worldsheet BRST transformations of the
heterotic string in general background were derived in [I2]. The one-loop conformal invariance of the type II
string finally was shown in [50] where also the derivation of the supergravity constraints was reviewed. In the
following we will present again the derivation of the supergravity constraints as it was done in [I1],[50] but we
will explain in more detail several steps and also we will use a different method to derive the constraints. In
particular we will not go to the Hamiltonian formalism in order to derive the BRST transformations as generated
via charge and Poisson bracket but we will stay in the Lagrangian formalism and will use what we call “inverse
Noether”. In addition we will use a spacetime covariant variation in order to derive the classical equations of
motion in a spacetime covariant manner and we will present the BRST transformations of all the worldsheet
fields for the type II string in general background. This has so far been done only for the heterotic string in [12].
Having derived the Supergravity constraints we will finally go to the Wess Zumino gauge and derive the local
supersymmetry transformations of at least the fermionic fields in order to make contact to generalized complex
geometry.

Note that there was a carefull study in [51] of how to construct type II vertex operators in the pure spinor
formalism. This is at least for massless fields directly related to the deformations of the action that we are going
to study now.

5.1 Ansatz for action and BRST operators and some EOM’s

In the following we will consider the closed pure spinor string coupled to general background fields. One
can either add small perturbations (integrated vertex operators) to the action or simply consider the most
general classically conformally invariant action with the given field content and the same antighost gauge
symmetry (generated by the pure spinor constraint). The action, however, is not enough to specify the string
completely. In addition, we need two (one left-moving and one right-moving) BRST operators in the general
background. The existence of two such BRST operators which have to be nilpotent and conserved (holomorphic
and antiholomorphic respectively) turns out to be equivalent to supergravity constraints on the background
fields. The important steps of this calculation will be carefully motivated in the following.

The idea is to start from the most general renormalizable action with the given field content. It is convenient
to throw away immediately the tachyon term which is allowed by renormalizability, but which is not even BRST
invariant for the undeformed BRST transformations, at least for a non-constant tachyon field. The starting
point then reduces to the most general classically conformally invariant action. In order to write down a
classically conformally invariant action (ghost number zero in each sector), we have to combine elementary
fields to terms with conformal weight (1,1). There are no fields with negative conformal weight. The a priory
possible elementary building blocks of ghost number (0,0) are thus

weight (0,0) M
1

(
(1,0 0xM Ay A*w .3
(
(

weight )
weight (0,1) dxM (igd, 5\0‘(;)2,3
)

?

weight (1,1)  902™, OA*w.5,0A @4, 0d.c, Ddza
We now can combine an arbitrary function of 2 (background field) with either a (1,1)-building block or with

one (1,0) combined with one (0,1) building block. Via partial integration, a 90z -term with an arbitrary z-

28



CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE Il BACKGROUND 29

dependent coefficient can always be rewritten as a 9z™ 0z —ter Before writing down the resulting action, let
us note that we will immediately absorb the z-dependent coefficient coming with OA®w,g in a reparametrization
of w,g so that we simply get the free ghost kinetic term OA*w .. Likewise for the hatted variables.

The most general classically conformally invariant (or renormalizable, adding Tachyon term) action with the
same field content (including the pure spinor constraint on the ghosts) with independently conserved left and
right ghost number now reads

1 - —\\ & = - y Ay A
S = /dzz §8TM(GMN($) + BMN(.TJ))(?J?N —|—8$]\1EMQ(.T) dra —|—(9l‘ME]\,ja(x) dze +

EO]WN(E»)
+deaPP(T) d_g + A*CoP(T) wepdes + A% CaP(7) & + ACAY S 0aPB () W, 5 +

+ (5)\'6 + Aangwﬂjuaﬁ(i;» w.g + <35\'6 + j\daTMQMdB(E(‘»)) (.:15[3 +

=V:AP =V.AB

Lza(AyA) (5.1)

N |

1
+§in(z (A’yak) +

Note that we denote with z the complete set ™ of superspace coordinates, while z will only denote the
bosonic subset 2™. As stated already above, the kinetic ghost term OAP w.3 can always be brought to this
simple form by a redefinition of w. We will discuss this and other worldsheet reparametrizations below in detail.
The motivation for the definition of the covariant derivative VAP will also be given at a later point. For
the moment, Q7o () is just an arbitrary coefficient function or background field. Like in the flat case, we
implement the pure spinor constraints via two Lagrange multipliers.

In order to complete the theory, we need two BRST operators which reduce to the well known ones in the flat
case. Their nilpotency and (anti)holomorphicity will be checked later and lead to the supergravity constraints.
For the moment, let us just write down the most general ansatz of their currents, which have to be of conformal
weight (1,0) and (0,1) and ghost number (1,0) and (0,1) respectively

j. = A® (dm + Y () 2™ + mr<3>a7ﬂ(z)wzﬁ) , 3:=0 (5.2)
. 17 : — SH(B) By = .
. = A (dm + T2 (7) 0:2M + A TS}f(x)wzia) . 3.=0 (5.3)

Like for the ghost kinetic term, we have immediately absorbed any z-dependent coefficient Y1) ,#(z) coming
with A*d.3 and its hatted version in a redefinition of d.g and dZB Of course one can further redefine d., and

cfgd, such that we arrive at the standard form j, = A%d,, and j; = j\adgd. This does not change the general
form of the action. We will discuss the reparametrizations more carefully in the next section.
The following observation is important to reduce the computations one has to do. Let us first define

OMN = ONM; (G=G7B=—B,H:—H) (54)
PV = P (5.5)
Sd Bﬂ = Sad’gé (5.6)

Then — rather obviously — the following statement holds

Proposition 1 (left-right symmetry) The complete theory (action +BRST operators) is invariant under
the exchange of hatted and unhatted objects if at the same time their indices are flipped from hatted to unhatted
and from z to Z and vice verse, and O is exchanged with O:

dodAoAweoo, Lo L,0o0,P—P,S—5Co0,0-0VoV,TOoTO j43

0« 0, indices: o — &,z < 2 (5.7)
In particular the replacement O — O implies due to that
Beo-B,  GoG (5.8)

1 This, however, contributes to the surface term. In the case of open strings, adding a 0z -term is therefore equivalent to the
modification of the boundary part of the action. o

21f one wants to study degenerate limits of the theory, one should remember and reintroduce the coefficients Y, T(1 and the
one coming with the ghost kinetic terms. ¢
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Simple eom’s Before we close this section, let us quickly give the equations of motion of those worldsheet
variables (all but 2%) which can be seen from the target superspace point of view as tangent or cotangent
vectors. This refers to the form of their reparametrizations that will be discussed on page Their equations
of motion are comparatively simple:

08

e = M Ew P ey + NP6, (5.9)
2y
0 ; N .
A—S = 0zMENY + d.AP77 + )\O‘C’aﬁ'ywzﬁ (5.10)
5d=,
) 5 & 5
- _ \B o BY .. — BB . =_D.)\°
oy = (VZ)\ +A (Ca dzq — A" Sua wm)) = _D.X (5.11)
5w53
08 ~
o _ o o I . N _ a — 7 B a
o (Vowsa = (CaMdzy = A"Saa.5) wep) + Laza(r*Na = ~Dswia + Leza(1"Nae (5.13)
1) N A - R A -
= (Vibia— (CaPdy — A"9000.5) 6.5 ) + Ly Ve = Dot + Lzalr" N (5.14)
oA
38 1, ., 55 1 .
SL.sa - §(>‘7 )‘)7 (5.Z/z§a - 5()‘7 )‘) (515)

In 1}1} we have introduced yet two other “covariant derivatives” Dz and D.:

DA = ONP 4 ALY, AP = 05M e + OuPVds — S\dsadﬁ%gﬁ (5.16)

1525\5 = 85\5 +Azdi’5\d, Azd'é = axMQMdB + éd37d27 — )\aSa&ﬁszﬁ (5.17)

These covariant derivatives are introduced simply for calculational convenience and we do not give a geometric
interpretation — although this might be interesting. For the covariant derivatives V3 and V. defined in
instead, there exists a simple geometric interpretation. They are pullbacks of the covariant target super tangent
space derivatives with connection coefficients Q2 e and QO ma? to the worldsheet. The reason why these two
background fields can be seen as connections will be given in the following.

Note that the derivation of the still missing variational derivative with respect to ¥ is quite involved and
will only be given in section on page [38] using a covariant variational principle.

5.2 Vielbeins, worldsheet reparametrizations and target space sym-
metries

There are several ways to reparametrize the worldsheet fields in the above action and the BRST currents. One
can use such reparametrizations to simplify the form of the action (as we did already implicitly in order to get
a simple ghost kinetic term) or of the BRST currents.

Before we come to the first convenient reparametrization, let us observe the following: The two background
fields Ey® and Ejp®, combined to a 42 x 32 matrix EpA,A € {a, &} have maximal rank 32 in a small
perturbation around the string in flat background. Or in other words, the quadratic block Eaq* is invertibl
It can thus be completed by some Ej;® to an invertible 42 x 42 matrix which we can interpret as (super)vielbein.
The only requirement for Fy;® to be a valid completion is that its bosonic sub-matrix F,,* is invertibleﬂ The
“background field” Ej;® does not appear in the action and nothing should depend on it. Let us from now on
use the completed vielbein Ej# and its inverse E4™ to switch from curved to flat indices and vice verse. In
particular we define

Gap = EAMGunEpY (5.18)

For later usage we denote the components of the pullback of the vielbein E4 to the worldsheet as
md = 02MEy? (5.19)
2 = 02MEyA (5.20)

In flat space, I1¢ /5 will just be the supersymmetric momentum and the fermionic component will reduce to the

worldsheet derivative of the fermionic coordinates: H;‘tz fag 0, /20’4.

Let us now study the possible reparametrizations of the worldsheet variables systematically.

3 Again it might be interesting to study also degenerate limits. o
Ep®  Em*

4T'he bosonic supermatrix ( Ep®  EmA

) is invertible, iff its bosonic blocks (Ep, %) and (EMA) are invertible. o
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Possible reparametrizations We denote by ¢Z, the collection of all worldsheet fields. If we make some
reparametrization ¢Z; = f[¢Z,], the Jacobi matrix has to be invertible in order to lead to equivalent equations

of motion:
gS _ /d26' 5¢a]l( ) ) (521)
Sy (o) ooy (o) <Z5au( )
The following reparametrizations are the most general ones which respect the conformal weight as well as the
left and right-moving ghost numbers (note that the Lagrange multipliers have ghost number (—2,0) and (0, —2)
respectively):

M= pM(F) (5.22)
AT =A@, AT = R%(E)A] (5.23)
La = ZEWP(2)d.g+EP am(7)02M + 20 0 % () A w.s (5.24)
o = EWP(F)d5+E0(7)02N + 285()N @ (5.25)

Do = EVP(Flwsp, Gra=EPP(7)0 4 (5.26)

Ezia == E<5)ab( E)inba iiza = éf)b( E)ﬁizb (527)

fM has to be an invertible function and A, 2 =®* =) and their hatted equivalents have to be invertible
matrices. For a general reparametrization, Ao” can be a general invertible matrix, but if we want to leave the
form of the action invariant, it has to be an element of the spin group or a simple scaling. We will discuss that
below. Note also, that we have already used Z*) and Z() and their hatted versions to get a simple ghost-kinetic
term in the action and a simple first term of the BRST operator.

Shift reparametrization Let us first study the effect of the shift-reparametrizations

doo = doo —EPom(2)02™M — 20 L 0(2) N w,s,  EW P =5, (5.28)
dia = dea —E2 ()02 —E80 ()N 0, EDA = 5,P (5.29)

on the form of the action. Plugging the above reparametrization into (5.1)-(5.3), the form of the action and the
BRST currents does not change if the background fields are redefined accordingly. The shift-reparametrization
thus induces an effective transformation of the background fields:

ExY = ExT—P1ERLENE, By = By — E® o uEy AP (5.30)
Qua® = Qua® —Cao ﬁa” ) L En? — Ep7EB) P+ EG), ﬁpya"(z) Ey? (5.31)
Oua? = Qual - CaPe E( JaaBar? — ExESP + 2@ 4 By APevEE)B (5.32)

CuPY = OB — 20 Bp7, (4P = G4 — paﬁégo}tﬁ (5.33)
5.aPP = 5.4PP+ @dﬁvgw)wﬁ + Oamé%é _ E@)prﬁp"/’Yéﬁ%B (5.34)
T, = Ty —EPay, Ty =18, -2} (5.35)
TEA = 1B, P26, 8 ~}<3>MB — ng/fa _ ggé (5.36)

Finally we have the transformation of Oy, n = Gy + By which we split after the transformation again into
its symmetric and antisymmetric part:

Gun = Eu"En®x (5.37)
(2 = =(2) L _ &2 = 5=(2)
Gan + 223 PTYER, o Gap — E@ gy + 253 PYTES e Cab ~ %5, Té)ﬂ(z%(a'mw“ﬂap(z)
Gap — &l () ) ab 2=(2) ~(a "P‘Y‘Y s )‘ ) Gaﬁ —2=22 >(aﬂ)( -;— QH(2)7(OL|'P7‘Y |ﬂ()) Gaé — E<2>0<B< )— Eﬁa + 25(2)7(0“7)‘17)3‘?\3)
(2 - (2 - (2 (2 - L 2(2
Gap — +2=(2) (a‘pwwm‘b) Gap — :(Z)ﬁa -Ea5+ 2=(2) ~(a ‘pw S18) Gaé —92= . +2=(2) ~(a|PYYED,
(& ﬁ) ¥18)
BJMN = E]\/[AENB X (5.38)
= ( = ( '—'(2) [l ':(2)
Bap + 2E®) 1 PYVEL) N Bag —E@ g, +2E@ [ PYVEY 'f] B . +2 Jr(z)_@ [ |7’“~7|ﬁJ .(2)
Bay +5<2(>?b +2E) |7>'W: b Bap + 22, m(+)2_< ) yla PYVEL m(}) B,z +E® 4 ( ) +E, +220), [,,‘PV(V)EW]
(2 —_ = 2 —_ (2 2
Bap —Z4; +222 [d"P'W_A‘b] Bap 72(2)5.& Y +223) [d|73"7'7_A| 8] Ba,B — 2= (8] +2 =(2) ~+a|P77E 4181

Interestingly, lookmg at ( -, one can bring Gap to the block diagonal form G 45 = diag (Gap, 0,0) at least
for vanishing PYY. For general P77, this is less clear because the equations become at first sight quadratll

5Note that the matrices in 1} and 5.38 do not_yet correspond to Gap and Bag given by Gun = EpAENBGap and the
equivalent equation for Bpsn, as we have expressed Gy and Bjsn in terms of the untransformed vielbeins. Due to 1} the

AB

AB
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in the transformation parameters. It is thus more convenient to use the shift reparametrization to bring the
BRST-currents to their standard form, i.e. simply shift T(2), T®) and their hatted counterparts to zero. From
now on we will thus use the simple BRST-currents:

j. = A%.a, j.=0 (5.39)
dsay J. = (5.40)

In [II] the authors start with both, the simple form of the BRST currents as well as the above mentioned
special form of Gap and thus a reduced rank of Gj;n. As we cannot reach both at the same time with the
shift reparametrizations, the simplified form of the symmetric two-tensor has to be a result of BRST invariance
or likewise on-shell holomorphicity of the BRST-current. We will discover this result soon. Only then we will
use the freedom of the choice of the auxiliary vielbein components Fj® (which do not appear in the action),
in order to fix Ggp t0 M4, Or at least proportional to it. For the moment, however, we do not assume any
restrictions on Gy, Ep® and G ap apart from the invertability of E,,°.

Local target space symmetries There are still many reparametrizations left and we could try to further
simplify the form of the action. It is, however, convenient not to fix all freedom. As we do not want to destroy
the form of action and BRST currents that we have already obtained, the freedom consists of ’stabilizing’
reparametrizations. I.e. we have to restrict to those reparametrizations out of — which leave the form
of the action and the simple BRST currents and invariant if one transforms the background
fields accordingly. These reparametrizations are in general not symmetries from the worldsheet point of view as
the compensating transformation of the background fields corresponds to a change of the coupling constants.
However, as the action remains formally invariant, all the constraints on the background fields which will be
derived later will also remain formally invariant. From the target space point of view the transformations of the
background fields (going along with the z-dependent reparametrizations) thus correspond to local symmetries
of the target space effective theory. What we have done so far by e.g. eliminating the coefficient fields T in
the BRST operator, corresponds to a target space gauge fixing of auxiliary background fields.

Residual shift symmetry Any further shift reparametrization of d,, and dsa changes off-shell the form
of the BRST currents and . But we may still allow changes of the current up to the pure spinor
constraint. The pure spinor constraint generates a gauge transformation as we will see in the next section. Any
change of the BRST currents proportional to the pure spinor constraint thus can be compensated by a gauge
transformation. Under the reparametrizations

doa = doa —EP0(2)(X)awzs, = E,0 =45,20),° (5.41)
dia = dia —EP%(E)1 A)absg = EDP = 45,50 (5.42)
the BRST currents change to
j. = A%ia —EP(2) M A)w.s, j.=0 (5.43)
3 = Adea —EP¥H (AP M@ 5. =0 (5.44)

Global symmetries like the BRST transformation can always be redefined by a gauge transformation without
changing their physical meaning. Doing this brings us back to the simple form of the BRST currents. The
transformation of the background fields under this reparametrization is

Qe = Qua® — Ex"5,E®,P (5.45)
Qe = Ol - EM:W.%égS)B (5.46)
CoPY = CoPY =L ZOBPYY (B = (P _paiy) 298 (5.47)
5.aP8 = 5.4°8 + Cfdﬁ'r,yf;ag(&bﬁ + Camwg/dé}()sm _ 7$a5<3>aﬁpwvgdél<)3>ﬁ (5.48)

This target space gauge symmetry will be fixed at a later point in section on page

vielbeins transformation has the form

5. _fPaS é((”;i) _E<2)5C’P‘Sé‘
Ey? = (EMC, En7, Ehﬂ) 0 6y — ’Paséf;) —5(2)57P5d
0 —Padsl) 5,0 =g poe

For non-vanishing 777’:/,~ the inverse of this matrix would enter the final form of Gap and make the problem of finding a
reparametrization with Gap = diag (Ggp, 0,0) more complicated. o
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Superdiffeomorphisms  Let us now consider the general reparametrizations (5.22) of the superspace-
embedding functions ™ which correspond to target space super-diffeomorphisms.

M= M) (5.49)
The worldsheet derivatives of the embedding functions transform like target space vectors
oM = 9zM JogN - OxN (5.50)

For the action and the BRST-operators to remain form-invariant, the background fields have to transform

tensorial according to the appearance of the curved index M, e.g. Qua?(x) = Qna?(z) 02N /0zM. All
objects with only flat indices or no indices have to transform like scalars. In this way we observe that the
resulting effective equations for the background fields will be superdiffeomorphism invariant.

Gauge transformation of the B-field One of the gauge transformations of the background fields is a bit
special, as it is not related to a worldsheet reparametrization. It is the shift B — B + dA with some one-form
A. This does not change the action at all, as the total derivative term simply drops out (for closed strings). It
is, however, again not a worldsheet symmetry, as we do not transform the worldsheet fields but the coupling
constants. The background field-constraints will in the end be the same for the transformed B and we thus
have again a gauge symmetry from the target space point of view.

Local Lorentz transformations and local scale transformations Next we consider reparametrizations
of the ghost A®. An admissible reparametrizations (5.23) of A® turns the pure spinor term L.z(A7~4%A) into

~T ~
L.zo(A A='2AT =1X). In order to obtain the old pure spinor term also in the new variables, the reparametriza-

tion of the ghosts has to be accompanied by an appropriate reparametrization L.z, = Ay®(x) - L.z, of the
Lagrange multiplier L.s,. The condition for the invariance of the pure spinor term under the reparametrization
then readd’]

!

Yas = MATHaThs(ATY6° (5.51)
For infinitesimal reparametrizations we can rewrite it as

2ia’ Vg = Li'he  (infini) (5.52)
with Ao® = 0P +LaP, AL =60+L,° (5.53)

6The fact that we use the index structure Ag® instead of A%g is only for later notational convenience. It is not necessarily
related to using NW-conventions, although A = XBAﬁO‘ contains a nice NW-contraction. For us the reason is simply that the
alternative index position would be very inconvenient for the associated connection. The symbol Q8% is just much simpler to
type (and looks better) than Q% 3. o
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To obey this, both reparametrizations are restricted to local Lorentz transformations and local scale transfor-
mationﬂ The infinitesimal generators thus have the following explicit form:

Lo = LB LWe b (Db b (5.54)
1 1
1P = SLW6f LQP = LS, Ly = L) (5:55)
L) ¢lc L L
JACOLINE JCOF LR (COL Y JCU VL LR AR JCO (5.56)

The reparametrization so far reads

Ag®N\P (5.57)
ALz (5.58)

~
N
N
2

Note that in our notation A contains both, Lorentz transformations and scale transformations (dilatations).
In order to maintain the special form of the ghost kinetic term and of the BRST-operator, we likewise have
to transform

doo = (A HaPd.p (5.59)
Goa = (A HoPw.s (5.60)

with infinitesimally (A™1)o? = 6o — La®. The background fields can again be reparametrized in a way that
the complete action plus the BRST operators remain form-invariant: Just transform every background field
with unhatted spinorial indices accordingly. E.g.

CoPY = (A H"AsPC%Y, .. (5.61)

Only the field Q572 must not transform like a tensor, but like a connection, in order to keep the form-invariance
of the action

Qia® = —0uASP + (A1) AP0 (5.62)

This is exactly the reason why we have combined it to a covariant derivative in the ghost kinetic term right
from the beginning. For the effective field equations all this means that they will be invariant under a local
Lorentz transformation and dilatation acting on all the indices of the background fields which are coupled to
the ghosts, the ghost-momenta and the variables d., or in other words, acting on all unhatted flat spinorial
indices.

"The 32 x 32 unity and the antisymmetrized [-matrices T%1-%» (see appendix@]on page ) form a basis of the vector space
of all 32 x 32 matrices. The 16 x 16 sub-matrices 6%, 719249, ..., 4%1:-10,% in the block-diagonal (they vanish for an odd
number p of bosonic antisymmetrized indices, see on page therefore span all the 16 x 16 matrices. And due to the
relations — on page i.e. 'y[p] o y[n=PT already the matrices 0%, 7919249 and %1% 4% form a complete basis of
all 16 x 16-matrices. We thus can expand the infinitesimal generator La? of the reparametrization matrix (i.e. Aad =609 + La‘s)
as follows:

1 1
La® = S’ + L0, "1 %0’ 4 Lay a7 0
Plugging this expansion into the condition (5.52)) yields
! 1 @
Lba’ygﬁ = 2L[a|67:51‘,5] = L(D),th;ﬁ + 5[/((11()12 'YalaQ [a‘a’\/gw] +2La1...a4 "Yalma4 [a\67g|/3] (*)
N——— ——— N—— ———

1 8 [3] 5]

Vst g *Vap] s
—— ——
0 0

Below the curly bracket, we have indicated the schematic expansion of pagem Due to 1j all the v3]’s vanish because

of the graded antisymmetrization. We can thus concentrate on the !/ and 7[5]—part:
(O
yaraz [a|6’\/g‘ﬁ] = 2yl gnazle
(O
,Yal...a4[a|6,yg‘ﬁ] <zl ,yal...a4aaﬁ

The righthand side of (*) has to be a linear combination of v%’s which is not true with a remaining 'y[‘r’]—term Laq...ag¥®%%,3.
We thus have to demand

!
Lﬂtl.“a4 = O
With this condition, (*) and therefore (5.52)) are fulfilled and the relation between the reparametrization of the ghosts and of the
Lagrange multipliers is given by

1 1
La5 = 5L<D)5a5 + ZL((llllt)lz,yalagats
Lba = LSV?)(S;JI _,’_Lgél)bc,r]ca o>
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We get an equivalent but in the beginning completely independent local Lorentz transformation and scaling
Adﬁ acting on the hatted indices. In addition we may redefine the bosonic vielbein E* = &M Ey®, which we
introduced by hand. Remember, it is related to Gap via Guy = Ev*GapEn? and we did not yet restrict
G ap. The matrices Ep® (of maximal rank 10) can thus be redefined by an arbitrary GL(10) transformation
on the index a, accompanied by a compensating transformation of G 4p5. At a later point, we will obtain a
restriction on G4 which then allows only Lorentz and scale transformations Aab acting on the index a of Fj;®.
This transformation, acting on bosonic flat indices only, is again independent of the other two local structure
group transformations (acting on the spinorial indices). The relation of the three transformations will in the end
be fixed by a convenient gauge fixing of some torsion components. In contrast to the fermionic transformations,
the bosonic local Lorentz transformation is not coupled to a reparametrization of an elementary field (from the
worldsheet point of view), but only to the transformation of G ;:

En® = AlEn® (5.63)
Gab = (Ail)achd(Ail)bd (564)
The transformation of the background fields is determined by their flat indices. Combining the bosonic and

fermionic flat indices to A = (a, o, &), we have a block diagonal structure group transformation acting on
the target super tangent space:

Al 0 0
A = 0 AP 0 (5.65)
0 0 AgP

All three blocks are independent. A,° instead, which is acting on the Lagrange multiplier (but on no background
field!), was induced by Ao”? via the invariance of Yap- Also keep in mind that A,b is so far not restricted to
Lorentz transformations or scalings. It will be so at a later point.

5.3 Connection

We have seen in equation on the preceding page that 2 Ml and 0 maP transform like connections under
structure group transformations. Let us introduce some auxiliary target space field Q5" which transforms like
a connection under the transformation A,° of the bosonic tangent space. As the field Q,7,% does not appear
in the worldsheet action, nothing should depend on it in the end. We can now combine the three objects to a
structure group connection on the target super tangent space (let’s call it the mixed connection)

Qural 0 0
Qua®? = 0 Qe 0 (5.66)
0 0 Qma”

The underline will help us later to distinguish this connection from alternative choices. This underline will
decorate all objects referring to this connection. The corresponding superspace connection coefficients I, n %
are now given via

0 = VyEn?=0uEn? —Tyn"Ex?+ Q5 En® (5.67)

Due to the block-diagonal form of the connection, the curvature R, % = d2,2 — Q,¢ A Q. is block diagonal
as well

R, 0 0
R,? = 0 R” 0 (5.68)
0 0 RaP

and the upper index of the torsion T4 = dEA — EC A QCA tells us by which block of the connection it is
determined:

T4 = (T°,7%,17%) (5.69)
Remark Although the connection coefficients which act on the spinorial indices have the correct transforma-
tion properties, we did not yet check that they are Lie algebra valued, i.e. that the matrices Q;." and Q,;." are

not general matrices, but are restricted to the structure group algebra of Lorentz and scale transformations. We
will show this partwise below in section when we discuss the antighost gauge symmetry and will complete
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the argument when we study the holomorphicity of the BRST current in section Let us already here give
the result for completeness:

Ora? = 793? 3P + QMGIMWQK Onra’ fQ 548 + QMalaﬂalazdi’ (5.70)
The labels (D) and (L) distinguish the dilatation (or scaling) part from the Lorentz part. The major part of

the covariant derivation of the last equation of motion in section does not refer to a special form of the
connection. Only the variation of the pure spinor term will be affected and this will be discussed carefully.

5.4 Antighost gauge symmetry

The pure spinor constraints Ay*A = 5\7“5\ = 0 are first class constraints at least in the flat case and thus
generate gauge symmetries. The same should be true in the curved case. We can see this fact, however, without
referring to the Hamiltonian language, simply as a consistency condition on the equations of motion.

For the ghost field we have two equations of motion which have to be consistent in order to allow any
solutions:

525 = = (0N 2 (M + CaPrdzy deadﬁ%gﬁ)) = _D.\? (5.71)
23

58 I
il (LSO (5.72)

Every linear combination of the second line, Ee(Ay*X), obviously is still on-shell zero for any set of local
parameters p,. When we act with 0 on this expression, the result still has to vanish on-shell. L.e. for any u,,
we need to have:

! Ha _
= 0 AV Ve (z,z
on-shell ( 2 ) Ha(22)
G1o) = 1 o o « 5 5 L& B~ a
= Ot 0N +1a(AN*)p DA A (1€ Qi) + Clay ™oy = A Sjaia?0.5) 151 A° (5.73)
H—/ 58
ST bwzp Azl

The first two terms in the last line vanish on-shell, so we may concentrate on the rest. Following footnote [7] on
page |34 (with Ag[a|‘5 taking the role of L[a|‘s) we can expand AZM‘S in antisymmetrized y-matrices and obtain

for the last term in (5.73))

— MaAaAg[ala’yglﬁ]Aﬁ = _,U/a>\a ( A(D) + A(za)ulz’y[ ag]u + A5a1~~~a4’yalma4aarﬁ> AB =
= — (A8 + A8 - §(>w“’/\) ~HaAz a4y, (A7 1N) (5.74)
—_——
=Az,° 2

Tt is natural to view A:,’ as the connection coefﬁcients corresponding to Dz when acting on bosonic indices.
It is built from the expansion coefficients of Azq B which are in turn built from the exiansmn coefficients of

Qura?, CoPY and Saaﬁﬁ (all seen as matrices in « and 3 — compare again to footnote [7| on page

Detta = Opta— Asltiy,  Aza® = 02MQr? 10V dog — A% Suat? @5 (5.75)
Hcha 4
: D L 1 o 1 (1
with Qun’ = Q0+ 0" < Qe = 008 + 100016 + Quraray e (5.76)
——
=0 (later)
. . ) 1 1 . .
Cab7 = C‘Y(Sg + Cﬁyac’f]Cb = Ca'B‘Y = 56’75aﬁ + Zc‘yab’yaba'@ + C‘Yal...a4 ,yal...a4aﬁ (577)
———
=0 (later)
; R ; ‘ . 1 ; 1 . .
Sadbﬁ = S&'B(SZ + Saﬁacn(‘b = Sadﬂﬁ = §S&ﬁ5aﬁ + stﬁac'yabals + S&'Ba1ma4 ,yal...a4aﬁ (578)
———
=0 (later)
8The coefficients Q¢ I> and ngzl Lay CAN be extracted from the given Q742 using §o,® = —16 and 1 “2aﬂ%2b1 g% = 326;11;22

(graded version of (D.88) on page[132)

1
Qyp = *gQMaa

1

Q]\/I(Llﬁ'lQ = 757(11(12 ﬁaQI\/IaB <o
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The coefficient Qazq, .4, and the other y[4-coefficients do not enter the definitions of Qy7,%, C,*Y and S.atP.
At a later point we will find that the y[*-coefficients actually have to vanish, which then implies D:vap = 0.
This is the actual motivation for this choice of bosonic connection. It is tempting to argue that

A,Eal..‘a4 = HECQC'al...a4 + JE'"YC;Yal...a4 + Xasétﬁal...GA('agé (5‘79)

has to vanish already at this point, in order for all the terms in (5.73) to vanish on-shell. But the condition
will be a bit weaker, as there is yet another equation of motion applicableﬂ We can replace II] (appearing in
((6.79)) and (5.75), and defined in (5.20)) with the equation of motion (5.9):I17 = % — 77'7“7625:, — XQC‘&B'VGJEE
. Putting now all the last equations together, we arrive at

58 55
- — = f1aSvay ag (AN ——
5L Sy Hathaa Ny J5a, *

—Ha [ch,’?}ﬂ{cﬁ}al...aéi + CZZ'AY (C;Yalu.a4 - ,PW;YQ'yal...tm) +

3 (%MGA) — Dipg- f1a (A7)

+5\é‘ (Sdéal...(m _ CﬁﬁVQ‘mlmw) aiﬁ} (Anyar--asay) (5.80)

The dummy indices in curly brackets {c,4} in the second line simply should indicate a sum over ¢ and 4
only, and not over «. The first line on the righthand side vanishes on-shell. The next two lines also have to
vanish for every u,, because the left-hand side vanishes on-shell. At this point we cannot make use of further
equations of motion. In particular the equation of motion for ¥, which we have not yet derived, would be of
conformal weight (1,1) (containing terms like 92) and would therefore not be applicable. For consistency of
the equations of motion, we thus get the following restrictions on the background fields

Qcal...a4 = Q‘/al...a4 =0 (581)
C‘Yal...a4 - ,P‘YWQ'yal...aél (582)
Sdléal...cu = éd[-]’yQ'yal...(M (583)

This condition is weaker as the one given in [11] (see footnote (9)). It coincides exactly iff we impose in addition
Qya;..as = 0 (see the remark at the end of this section). This additional restriction will, however, only be a
result of BRST invariance.

According to Noether, every symmetry transformation corresponds to a divergence free current and vice
verse. For a given current j¢, we can calculate the corresponding transformations by reading of the coefficients
of the variational derivatives of S in the off-shell divergence of the current (see (E.7)):

; 08

all < 7 5.84
11 59253111 ( )

¢ _
ad(p) = —0(p)®
If we take j. = #52(Ay*A), jz =0, the condition (5.73)) tells that the current is on-shell divergence free. We

have chosen a parameter of weight (1,0), in order to get a current of correct weight. From (5.80) we can now
read off the corresponding symmetry transformations:

SpWea = Hza(AY")a (5.85)
5(#)L22a = _Diﬂza (586)
ey = fzallyar...an(AYH-49N) (5.87)

The current is divergence free for arbitrary (local) u., and we therefore have a gauge symmetry. This is
the antighost gauge symmetry generated by the pure spinor constraint. For a flat background we have
Qy4,...a, = 0 and the transformation reduces to the usual form. As stated several times already, we will obtain
Qy4,...a, = 0 also in the curved background, but only later as a result of BRST invariance.

With the same reasoning we get a gauge transformation corresponding to the pure spinor constraint on the
hatted ghost fields. This leads to equivalent restrictions on the hatted connection 374” and also on (PP

(seen as matrix in & and ,fi) The background field S’adﬁﬁ’ is special, because the hatted version of (5.83)) is
again a condition on S. Once it is seen as matrix in « and 3 and once as matrix in & and (3. This is better
treatable in the special case considered in the remark.

9n the original derivation of the supergravity constraints from Berkovits’ pure spinor string in [I1] it is argued that the action
has to be invariant under the gauge transformation dwa = pa(7*X)a (the gauge symmetry generated by the pure spinor constraint
in flat space). In our notation this implies exactly Aza,...ay = 0. However, there is no reason a priory, why the form of the gauge
symmetry should not be modified in curved space, as long as this modification vanishes for the flat case. We will indeed discover
such a modification in the following, and with this modification the restriction on the background fields is weaker. Nevertheless we
will obtain the same result in the end, as Azq4;...a, = 0 Will be a consequence of BRST invariance later. o
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Remark on Q4. .4, = Q,:,al__,,m = 0: Although we will discover these two additional constraints only later

in (5.148) on page it is nice to have everything at one place. So let us continue the discussion of SadﬁB in
this case. As indicated above, we can expand it in two steps:

N 1 N 1 -
SadﬂB = 5564,850/6 + stﬁa1a27ala2aﬁ =
1/1 5 1 2
= 3 (255645 + 4Sa1a2’7a1a2dﬁ> Sa +
L (14 B 1 bibs B ajaz B
+1 §Sa1a26& + Zsalagbll&’y & ly [ (588)
Let us summarize the result for all the involved fields:
A x 1a R
Qua? = Q(D)5 B4 QS\Z)HGQ araz B Oval = 7Q(D)5 B + QMalag'Yalazdﬁ (5.89)
CoP? = 5075 oy cgm maz B CaPY = fcns Py cgm maz B (5.90)
; 1
Sadﬁla = 15504'8564'8 + gSalag(saﬁ’yalthdﬁ +

aiaz B b1b2&3 (591)

1. R
+§Sa1a27ula2aﬁ5dﬂ + Sa1a2b1b27 a7

16
Seen as a matrix in « and B (or & and B respectively), they are sums of generators of Lorentz and scale
transformations. Remembering the definition of Dz given in (5.16) and its extension to bosonic indices in

(5.75)), it leaves invariant the y-matrices{l|

D:yig = 0, D =0 (5.92)

The expressions A®w.o and A*y?192,Pw 5 are the only gauge invariant quantities (on the constraint
surface Ay*X = 0) which are linear in ghost and antighost. The reasoning is as follows: the most general
combination is A®* XoPw.g with some general matrix X, which can be expanded in A0~ and 4. Upon
acting with a gauge transformation on this term, we get the products vy = A0 4RIy o A1 4 4B]and
A o A1 4 401 As 48] does not vanish when contracted with two ghosts, the 7[4]—part of the expansion
has to vanish and we have shown the above statement. The gauge invariant expression A*w ., is nothing but
the ghost current , while /\0‘7“1“20‘54%5 is part of the Lorentz current, which is discussed in Berkovits’
papers.

5.5 Covariant variational principle & EOM’s

Remember the form of the action (5.1):

1 N N
S = /d2Z 51_[? (GAB + BAB) HgB + HgdZ’y + szify + dqu’yﬁydify +
~—_—
=0asm

A CaPTw.pdey + A CaP@_gdoy + XX S0aPPwpi g +

1

iina()"ya)\)
In order to check if the BRST currents (5.39) and (5.40) are on-shell conserved (holomorphic and antiholomorphic
respectively), it is first of all necessary to calculate the remaining classical equation of motion, the variation
with respect to 2. Remember, the other equations of motion where given already in (5.9)-(5.15) on page

za(A°X) (5.93)

b
s 238 . L;
+V:Aw.g+ VA W:s + 3

Covariant variation Deriving the variational derivative with respect to % is quite involved if we do not
organize it properly. In the end we want to have equations which transform covariantly under superdiffeomor-
phisms and local structure group transformations. We therefore want to introduce a method where we stay

10

Divap = Oap+ (0™ + Codsy — X S16Pa,5) vhe — 2 (02M Qurfa)® + Cla PV dog = A S(a1a®@.5) s ©
——r
=0
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covariant right from the beginning, e.g. a target space covariant variation of the action. In order to motivate the
following definitions, let us consider only the variation of one simple term of the Lagrangian, e.g. the RR-term:

6 (g PTY()dos ) =
= 0dur P Vdoy + don 0™ Oy PV oy + don PV Sdlg = (5.94)
= (0 = 00 Quiy o) PPVt + dary 00V 3 PV iy + doy P78y — 02 Qrs i) (5.95)

=dcovdany =0covPYY =0espdzs

In order to arrive at the target space covariant expression V,,P77, it is thus convenient to group part of the
xX -variation to the variation of d. or dz4 as done above. Of course we could have chosen any connection for
the above rewriting, as long as we use for each contracted index pair the same connection. For the variation of
the complete action, however, it is most convenient to choose the mixed connection, defined in ,

Qua® 0 0
QZVIAB = 0 Q]\Ia's . 0 . (596)
0 0 Qe

Like for the structure group transformation, the connection Qo acts on the unhatted fermionic indices and
(1) on L,z,, while QMdﬁ acts on the hatted indices and (!) on L;.,. The third independent block Q,7,° acts
only on the bosonic indices that appear via the bosonic vielbein and not on elementary fields.

Similar considerations as for the RR-term hold for the other terms of the action. This motivates the definition
of the covariant variation of the elementary fields in the above spirit:

Seood™ = A+ 02MQa N, GeoWiea = 0w.a — 02 QpraPuw.s (5.97)
Scovlza = 0dea — 03 Quraldp,  Gcovlzza = 6Lzza — 62 Qo Liz (5.98)
SeonA™ = OAT 4 02MQ, é*J\A Seonirza = 0wz — 0xM QyraPio_, (5.99)
Seovdza = Odza — 51'MQMB 26> ScovLzza = 0Lz2q — 62 QaraLissy (5.100)
Seont™ = 02K (5.101)

Unfortunately this idea is not completely new. Similar versions of covariant variations have been presented in
[62, B3] which in turn refer to [64, B5]. As already indicated in (5.95), we understand the covariant variation

acting on arbitrary background tensor fields Ty % (z) as

e Tira(x) = 628V Tis = (5.102)
= Tk +0x" (EKLNT]\L/[% + QTS — " TEA — Qi a TMC) (5.103)

In the last line we discover that the covariant variation acts on background fields in the same way as it acts on
elementary fields if the index structure is the same. Note that the covariant variation cannot be understood as
a variation (of e.g. 2€) in the ordinary sense. The covariant variation is simply a derivation which only reduces
to an ordinary variation when acting on target space scalars, e.g. on the Lagrangian.

From the target space point of view, also objects like \S (target space covariant worldsheet derivatives
of worldsheet variables) transform tensorial under structure group transformations and diffeomorphisms. The
covariant variation is then simply defined according to their target space transformation properties:

5(301) v z AB

OV:AP 4+ 02K Qg o PV A (5.104)
5o VAT = 0VAT 46250 PVAT (5.105)
This is also the reason why the Lagrange multiplier is varied with help of the connection Qara® (defined in 1)
on page which is induced by Qao, and not with the independent Q;,° that we have introduced to act
on the bosonic vielbein indices: In the reparametrization corresponding to the structure group transformations,
the transformation of the Lagrange multiplier is directly coupled to the transformation of the ghost.

Next we define the covariant variational derivatives 55‘:;“5 via
all
OcovS
5S = / A’z Bopdly(2,2) —— (5.106)
> ol S (2, 2)

We will soon give a statement about the relation to the ordinary variational derivative. But let us first collect
some tools to calculate it. In order to arrive at the righthand side of (5.106), we need to extract the covariant
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variations of the elementary fields. In expressions like 5COUV5X6 in this would require to commute
e.g. the covariant variation d.,, with the covariant derivative V; and then do some partial integration. It
was probably already noticed by the reader that the covariant variation resembles very much the target space
covariant worldsheet derivative V., ; anyway. In fact the latter can be seen as a special case of it, namely when
we have §¢Z;, = 0, /Zgbfu. Let us therefore consider the commutators of two arbitrary covariant variations which
will contain the desired commutator [d.ey, V| in the mentioned special case:

i) = 50,07 S .
|:5£(1)2175c52)2):| B = {5(1)75(2)} <)0AMB+
4260 K 5(2) 4L (RKLCA()DCJ\IB F R MpAN 5 - RKLBCQOAMC> (5.108)

Here o2M 5 is just a representative example for some elementary or composite field which transforms tensorial
under the target space transformations (super-diffeomorphisms and local structure group transformations).

The covariant variation of the complete action coincides with the ordinary one as all indices are contracted.
However, the covariant variational derivative defined in (5.106)), differs from the ordinary variational derivatives.
The important thing is, that nevertheless they define a set of equations of motion which is equivalent the usual
one — and target space covariant. Let us see the equivalence explicitly and reformulate the ordinary variation
into the covariant one:

- 1)
0SS = /d2z 5d27575 + 0dz4 05 — + 5)\'1—5& + 5)\ 5S — + 5w25573 + 0w (?S +
0d.~ 5dz,y oA 5}\ 0w,z B 5o 5
éS A 0S 08
L. —= 4§51 - 1
+0Lzzas I 0Lzza s +ort g (5.109)
- / P2 Deoullm oo + ooy + Bgu A oty + B A o b B = Doty = +
5d.y Sdor oA . bw.g 56
08 0S ) 6S P ) )
5(‘01;Lzza 5(‘01;Lzza - Q 6dz 5 9772 5d—A ~ - Q a)\ﬂi
" 5L22a " 5L22a <6 K - v 56dZ’Y * ry Teb 6d2;7 o oA
A ) 1) A - )
—Q a)\ 575 + QK,B Woa— 05 + QK,@ Wsag —— 5 + QKabLZZb 5 + QKubngbAis) (5.110)
(5)\ 6(.035 6w2,@ 6L22a zZa

cov

. . . . .. 68 .
We can now read off the covariant variational derivative —7%= w.r.t. ¥ as the coefficient of 5z

OconS oS 08 A~ 55 0S8 08 ~ B OS
LD = Oy ldas o + QP — QN - a
ok sz dz‘sédm e 24 M oie Q™ e
08 6S A A 6S
+QK['3 wza(s + Q wza 50)2[3 + QKabLzzb 6L22a + QKabinbZ (5111)

All the other variational derivatives (5.9)-(5.15) remain untouched:

5001; 600’”
5dza 5dza 6L22a 6L22a

According to (5.111), §c0uS/d2% coincides with §5/62% when all the other equations of motion are fulfilled.
This leads to the following obvious but important statement:

Proposition 2 Setting the covariant variational derivatives defined via (5.111) and (5.119) to zero, leads to a
set of equations which is equivalent to the equations of motion obtained by the ordinary variational derivatives:

5CO'US
cov =0 < o =0

s <& A & .

d (xdezaaAavwzodeémA vwédaLzéavLEza) o (xK7dzaaAavwza7 7w2d7L22a7LEza
(5.113)
The covariant variational derivatives in tum are obtained by using the covariant variation defined in -

5.104) and the commutators (m) and (5.108
H'Note the analogy to the tangent space covariant derivative of some multivector valued form

K(z,6,8) = Kqq...q, V0 (z) - €91 --- %% &, 8,

EémA

written in the following way

VK = amK(x,e,é)fe“ﬂmabiK+éanb“iK ©
Oeb ey
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The last equation of motion We are now ready to calculate the last equation of motion, the variation with
respect to 2. Admittedly introducing a new tool like the covariant variation for just one equation seems a bit
of overkill. However, in any case we would have been forced during the calculation to organize the result into
covariant expressions and the covariant variation gives a general recipe how to do that. Although we described
the covariant variation for the Berkovits string, it is a tool which is very useful in any other nonlinear sigma
model. In addition it should be noted that the above concept works for an arbitrary connection and not only
for the connection Q,, 47 or the corresponding I';, 5. The calculation just simplifies at some points, if one
restricts to connections with special properties, or to connections which are already present in the action. E.g.
only because we are choosing Q,, 47, we can make use of and in order to commute the covariant
variation with the target space covariant worldsheet derivative. In addition we will make use of the fact that
the covariant variation annihilates the vielbein:

Seon Bt () =0 (5.114)
Note also how the antisymmetrized covariant derivative of the B-field can be written in terms of its exterior
derivative H and the torsion:

VB=YVyBvm=dB — 1B =Hymn — 2L va™ Brem (5.115)

The important contributions to the (covariant) variation of the action come from the covariant variation of the
(spacetime covariant) worldsheet derivatives of the elementary fields, like §.0, VzA™ and 6MH?/2' For the latter
we have (compare to the equation before (2.12) in [50])

(5@1_[?/2 5MaZ/E$K - Bg4 = (5.116)
Yz/zfsxK B 4 202MT 3 0. s (5.117)

For the ghost terms we obtain curvature expressions instead of torsion expressions:

Seon VAP V000N + 260590 Ry LA (5.118)
6oV AT B 5 8P L 250K 02 By paPAS (5.119)

As alast ingredient, before we vary the action, we should note a specialty of the pure spinor term. The covariant
variation on the Lagrange multiplier is chosen in such a way that the covariant variation of 75,4 is almost zero.
But as we discussed at length in section on page |36 the structure group is not yet for all components of
the connection reduced to Lorentz plus scale transformations and we have in general a non-vanishing v*-part
Qya,...aq- At least formally we therefore obtain a non-vanishing covariant derivative on y& 8 (with ma” acting

on the spinorial indices and Q,7,° of (5.76)) acting on the bosonic one):

a aj...a a -D'71 ajl...aqa
VuvYag = —2Em"Qyay. 07" 4[04575\;3] = —2Em"Qvyay..as 7" ap (5.120)

Due to (5.111) and (5.112) we know already that only the variational derivative with respect to z gets
modified while the others remain untouched. We therefore collect the terms which are proportional to the z-
variation only. In particular we do not need to consider the first term respectively of the above two equations.
For completeness, however, we keep the total derivatives coming from the corresponding partial integration.
A

z/z’

Apart from the variation of IT V:AP and @25\5 we only have covariant variations of the background fields.
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The (covariant) variation of the action (5.93) thus takes the following form
1 . 4
5S = / d?z 6z [§H32K0A3H5 + doy NV PV Vd 54 +

1 1
+3 (V.02 - Eg? +262M T y20.2N) O4pTIZ + 5H;‘OAB (Vo025 - BxcB +262™T ), yPOs2™) +

dcou Il ScouIl?

+ (V02" - Bx” +262™M Ty 70:0") domy + (V025 - B ¥ +262M T 5 70.2Y) dzsq +

. .
dcon Il Scoull?

+ 2(5.%‘1{(E).%‘LRKLOLB)\Ot w.3 + 25$K6$LRK[J&BXQ ngﬁ +

Seon VaAP =V zbeos A2 0 LR I
—§xKEK7Q., ar.as AV - Loz — 6;1:KEK'AVQ:Y a1...a4 (S\*yal'”‘“a}\) . Egza +
65 s~ 08 0S <& 08 0S 05

5covdz <7 6cévd2dA7 5COUAQ7 565’UA A (Scov oo ¢ 6061} A Z& oA

+ aédza + 5d2a + 3G + & + w a(;wza + w (5(4}2& +
5 .58 B

5cosz2a7 5cévL2zaA7 z (61201))\'3 z ) z 5c6vA V2 d21

+ 6Loma 5i O we) O “zb (5.121)

We finally make a partial integration for the terms in the third and fourth line (keeping again the total derivatives
as a reference for future studies of the open string) and arrive at

5S = /d% 6xKEKC{— %OCBZZHEB — %LH;‘OAC +

1
+§Hf (VeOup —VO0cp —VOac + 2T 4POpp + 2OADICBD) 2 +
*60722@7 - 50:722&5.7 + QICBVHEdZ'r + QICA:YH?‘ZE‘Y +
+2HEBRCBaﬂ)\awZ@ + QHIZARCA&BS\QGJE@ +
+doy NPV dzg + AV o CoTwopdzg + A Vo Ca 0 5dy +

+Aaxazcsadﬁﬁwzﬁa}5ﬁ - 6C’YQ'y ay...aq (A,ya,l...(ua,A) . Lzéa - 6(];)1(2‘} aj...aq (X,ya,l...(uaX) . i/zza +

) s 08 oS ca 08 oS 4S
5covdza <7 5cfmd26z I — 5cov)\a TN 5c6v)\ 4 6001} zoo s 5061} A Z& T A
H sy T Sdm T oA T Ity PNt PR
6S A )
+6C()1)sz(l@ + 6661)L22a§ +

1
+0; <5COU)\Bw25 + §H?OAK5$K + 02’ EK’Ydm> +
~ 1 PN
10, <5Cm,>f’ @5+ 559:KOKBH§ + oz’ EK“de;,> (5.122)

Now we can read off the covariant variational derivative with respect to 2. But let us note two further relations
first:

VcOup — NV, O0cp —VpOac =
G119
e 3Hcap — 2T 45" Bpe — 2L 4" Bpp — 2L 3" Bpa + N oGap — Y 4Gop — VpGac (5.123)

and
v.a? =0 vl ottt ,” (5.124)
In addition we define
Tape = Tap”Gpe (5.125)

Note that we use the symmetric rank two tensor G 45 only to pull indices down. Pulling them up again is in
general not possible as G4p might be degenerate. In fact we will learn soon that it has to be degenerate.
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The final result of the variation now reads

OconS 68 P
0 = d2 o K== (scovdzai 5c[)vd2dA7
5 / T S S
+5cov>\aé—75¢; + 5561}&&5751 + 5covwza£ + (Scév":’édfjg
oA A& 0W.a dw:za
oA
6S - 6S
+6covL22a@ + 5cévL22aZ +

1
+03 (6coux\ﬁwz5 + QH?OAK(S.IK + 625 - EK"'dm) +
0. (8.A% L5 O pTIB + 625 - Ex7d
+0, cov w5@+§x kplls +ox™ - ik zy

with the following covariant variational derivatives or equations of motion (remember (5.9)-(5.15)):
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(5.126)

OconS 3 1
soE ExC|-V.11P Gpe + 112 <2HCAB —Tapc+2Leap + ichAB — V(AGB)C> s +
——
~V nP 2l T, 5
—507V5dz.7 — 50:7626%,:/ + 2TCB‘YHEBdZ.7 + QTCA:YH‘SJEA/ =+
+dy Y P oy + AV CaTw.pdzy + A"V CaP0_gdoy +
+)\a5\azcsadﬁéwzﬁajgﬁ - 66’797 ay...aq (A,yal...a4aA) : ina - 50;19'? ay...aq (X,fu...(ua&) : Liza +
+2HZBRCBaB)\ang + QH?RCA{,BS\&G)Z@} (5.127)
08 N A A B
0d 12+ Pdzs + A Caio g (5.128)
68 N N B4
(Sdg,:,
05 _ _ (VoA 4 A% (CaPYdes - S\dsadﬁ’%;)) = _D.\P (5.130)
5w2ﬁ zZB
5S PN . N
o = <vz,\ﬁ +A (Caﬂ oy — )\O‘Saa'gngﬁ)> = —DZ)\ﬁ (5.131)
@.5
oS - - & R
= - (Vewsa = (CaPdsy = A"Saa@.5) wep) + Liza(r"Na = ~Dswea + Leza(1" N (5.132)
35S . . . . <
- _ A _Za B AL _ a - A _ a
55‘d ( 2Wza (Ca dz A Saa wzﬁ) wgg) + Lzza('y A)a = Dzwza + Lzza(’y A)a (5133)
) 1 35S 1«
I Y 02— Z(MA 5.134
S = N =50y (5134)

Note that we used for the covariant variation an independent connection Qura? for the bosonic subspace. This
connection is a priory not a background field of the string metric. We are free to choose it in a convenient way.

5.6 Ghost current

Let us assign ghost numbers (1,0) and (—1,0) to the fields A* and w,q. The corresponding transformation

(with some global transformation parameter p) is
AT = pA%, Woq = —pWoa
For the action to remain unchanged, we also need to transform the Lagrange multiplier
0L.z0 = —2pL 24

which therefore has ghost number —2. Varying the action with a local parameter, we arrive at

0SS = /dQZ dp - (ANPw._g) + bdry-terms
by

(5.135)

(5.136)

(5.137)
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According to (E.42) and footnote [4 on page [139] we can read off the ghost current as
jgh =A"w.a (5138)

It has the same form as in flat space.

In section[5.7] we will derive the BRST transformations of the worldsheet fields from the given BRST current
via “inverse Noether” (see ) The idea is to calculate the divergence of the current and try to express it
in terms of the equations of motion. The transformations of the worldsheet fields can then be read off as
coefficients. This avoids switching to the Hamiltonian formalism and using the Poisson bracket to generate the
transformations. It might be instructive to see, how “inverse Noether” works for the simple example of the ghost
current before we come to the BRST current later:

oS 1 =
—5¢Z = 0 )\awza =
i & %)
= DZ)\Q cWea T }\apiwza =
58 of 0S8 o )
= _mwza“‘)\ <—W+La(7 /\)a) =
5S ., 08 5S
= wza@ - A W + QLZZQQ (5139)

From this one can read off the transformations with which we had begun.
The ghost current and the corresponding transformations for the hatted variables are obtained via proposi-

tion [I] on page

5.7 Holomorphic BRST current

We now come to the main part of the derivation of the supergravity constraints from the pure spinor string.
The pure spinor string in flat background had two (graded) commuting and nilpotent BRST differentials which
defined the physical spectrum. Putting the string in a curved background is a matter of consistent deformation.
Ie., gauge symmetries and BRST symmetries have to survive. They may be deformed, but the number of
physical degrees of worldsheet variables cannot simply change as soon as there is a backreaction from the back-
ground that was produced by the strings themselves. This is a similar consistency like the demand for vanishing
quantum anomalies. It is therefore legitimate to demand (apart from the two antighost gauge symmetrles ) also
two (graded) commuting BRST symmetries. Remember, we already have simplified in ) and ( - ) the
general ansatz for the BRST currents by reparametrizations to the simple form

J. = XNd.y, ;=0 (5.140)
4: = XNds, §.=0 (5.141)
Instead of deriving the corresponding BRST transformations in the Hamiltonian formalism using the Poisson
bracket, we stay in the Lagrangian formalism and apply Noether’s theorem (see (E.15)) inversely in the sense

that we try to express the divergence of the given currents as linear combinations of the equations of motion in
order to derive the corresponding transformations:

_ 55 SeonS
dj. = —sbf; = — S L — 5.142
"5oT, 5¢all el (S(ball ( )

! 58 Sz00S
9): = - = &0} 5.143
5oL, 5¢all el 6¢a11 ( )

Here ¢Z, is the collection of all the worldsheet fields. BRST invariance of the action is according to Noether
equivalent to having this special form of the divergences of the currents. These two equations thus do three
things at the same time: The possibility to write the divergence of the currents as linear combinations of the
equations of motion fixes the precise form of the BRST current. At the same time it puts constraints on the
background fields: all terms not proportional to equations of motion have to vanish. And finally it determines
the form of the (covariant) BRST transformations.

After determining the BRST transformation, the nilpotency conditions & = 0,[s§ = 0 and ¢ =0 put
further constraints on the background fields including the torsion. Some torsion components can then be
further simplified by using two of the three local Lorentz transformations and scale transformations which leads
to only one remaining local Lorentz transformation and one local scale transformation. Putting these restrictions
on some torsion components induces via the Bianchi identities further constraints on other components. All
the constraints on the torsion and other functionals of the background fields combine finally to the target space
supergravity equations of motion. Note that our approach differs from the one in [11] in two major points.
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First of all we stay in the Lagrangian formalism throughout. Second, we first check the holomorphicity and
then the nilpotency. In fact, we need to do so, because only in the first step we can determine the BRST
transformations of the worldsheet fields which we need in the Lagrangian formalism to check nilpotency. The
BRST transformations have so far been given only for the heterotic string in [12], so that the transformations
in the type II case are a new result.

Let us now perform in more detail the program sketched above:

9j. = D:XNVdey+ADzd.y = (5.144)
58
= —d.y S + A"Dzd., (5.145)

In the following we will replace all occurrences of Dzd.~, 7, 102, DA, f)zj\a, D:w.a, ﬁzu}gd, A% and 5\7‘15\
by the equations of motion —. In the end, all terms which are not proportional to the equations of
motion have to vanish which leads to some of the supergravity constraints while the terms proportional to the
equations of motion tell us the BRST transformation of the elementary fields. In order to extract Dzd.~ from

the 2% -equation of motion (5.127)), let us project (5.127) to a flat spinorial index o using some index relabeling:
K OcovS

Didea = —Ea' 20— VP Gpa +
C 3 1 D
+I1I7 §HaCD —T'epja+2L0cip) + §YQGCD —VcGpya | 117 +

12T p TP d oy + 2T T d2s +

+dz7 (2,173'7'7 - Ca'y‘y) Cig»:/ + )\QQZQCQQ’B;YWZﬁCZgrY + j\a (zaé&’67 + Sadﬁy’é) &"EBdZ"/ +

+}\az XQZQSQQ&,@@“)Z,&L&EB . Qa _— ()‘,yal‘..(uaA) . nga +

+2H5DRQDQ2’6)\QQWZQ + ZHZCRQCd’éS\aGJEﬁ (5.146)

Already at this point we can determine some constraints on the background fields. The divergence of the BRST
current given in has to become a linear combination of the equations of motion. The term ygnf’ Gpa
in cannot be compensated by any other term and it also cannot be replaced by a further equation of
motion. The same is true for our beloved Q4 a, .. .ay (AY**4%X) - L,5,. Using in addition proposition |1 for the
constraints from the antiholomorphicity of the right-mover BRST current, we can demand

Gag = 0 (only Ga #0) (5.147)
Qa ai...aq = 07 Qd ay...aq ; 0 (5148)

With we have finally obtained the missing ingredient for the reduction of the spinorial connection
coefficients to Lorentz plus scale transformations as it was summarized already in the remark on page [38| at the
end of the section about the antighost gauge symmetry.

Equation allows us to choose a frame where Gy, = 2%, such that we reduce also the bosonic
structure group to Lorentz plus scale transformations. Let us discuss this in more detail in the following
intermezzo.

Intermezzo about the reduced bosonic structure group

Due to (5.147) we know that G ap is of the block-diagonal form Gap = diag (Gup,0,0). This means that the
symmetric rank two tensor is of the form

Gun = Ex®GapEn® (5.149)

In particular we have Gp = En®GepEnb. As the Ej® where introduced by hand, we may choose E,,*
orthonormal as usual, i.e. such that G, becomes the Minkowski metric. This is at least for the leading

component G, () (i.e. 6= 0) a familiar thing to do, but it holds_also in the 6-dependent case:
{z,0
- q
Proposition 3 For all symmetric rank two tensor fields Gpn( x ) whose real body (0 = 0-part) has signature

(1,9), there exists locally a frame E,,*(x), such that

Gmn(\m_:_/) = Ema(c_g)nabEnb(E) (5150)
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Note: In contrast to the ordinary bosonic version, the entries of the matrices are supernumbers.

Proof Due to usual linear algebra, there is an orthonormal basis with respect to the real symmetric matrix
Gmn(7), i.e. we can always find locally E,,%( ), s.t. (5.150) is fulfilled for & = 0. In order to prove the same
for 6 # 0, we will make a @-expansion of (5.150) and show that we can always construct a solution E,,%(z, )

for arbitrary 6 from the bosonic solution E,,%(z). Remember the notations 2™ = ™M and Gmnl = Gmnlg_o-

The é—expansion of (5.150|) then reads
1 !
S MM (O, - Oan, Gonn) | £

n>0
! 1 w1
; gl”cl ~~~:L'K:k (87C1 --~81CkEm )|77abﬁ1'£1 -~~I£'L (851 ...8£lEnb)| =
k>0 ’
1 - n a
_ ZO MM Z_o ( " ) (Ors - Ortn B s Oy - - Ort, B (5.151)

At n = 0 we have the solvable bosonic equation G, (7) = E,,* (7 )nap Enb(7) to start with. At higher orders
n we have

(Onm, - - Onn, Con) é]

Z ( :@ ) (8_/\,11 . 6MmEm”’)| Nab (8M'm,+1 - 6M,,LEnb)] =
m=0

n—1

= 25, OO B4 X () Ot O B it Ot -0 B (3152

m=1

We thus have the iterative explicit expression for the n-th @-derivative of the vielbein in terms of the (n— 1)-th
and all lower derivatives.

(O, -+ Om, En?) :{ (5.153)
n—1
1 C m n a
= 5”/ ¢ E.™| |: (OMm, -+ OMm, Gn)| — Zl ( m ) (Omy -+ Omm,, Ern®)| Mab (3Mm/+1 aMﬂEnb)”
m=
This completes the proof of the proposition. a

In gpite of the above proposition, we will not fix G, to 745, but only up to a conformal factor. This is of
course possible by a redefinition of Ej;% with the square root of this conformal factor. The reason for us to
do this is the fact that we have for the spinorial indices not only Lorentz-, but also scale transformations. It
seems natural to keep this scale invariance also for the bosonic indices, as long as we do not fix the fermionic
one (in particular if we aim at structure group invariant ~y-matrices vgﬂ). We thus introduce an auxiliary

compensator field ®(z) and choose E,,% such that
Gab = € 1ap (5.154)

As soon as E,,*(x) is chosen appropriately, the remaining vielbein components Eaq® are uniquely determined
via:

! a a n a
Gmn = EmanEn° = Em® = Gan By (5.155)

In summary this means that there is locally always a choice for the bosonic 1-form E® = de™ Ey;, such that
Gun = En®e®®naEn® or Gun = Ea®napEn®, if one does not introduce the compensator field. The latter
form of G n was the starting point in [11], probably motivated by the integrated vertex operator of the flat
space.

With the compensator field included, the bosonic structure group with infinitesimal generator L,” (compare
to page [35| with A,? = 6% + L") is — like the fermionic ones — restricted to Lorentz plus scale transformations.

We should of course also restrict the auxiliary connection accordingly.

L® = LWPIgb 4 LD Lab = Loney = —Lpa (5.156)
Qe = 95\5)52 + Qe Qntab = Q1N = — Qs (5.157)

The compensator field is a scalar with respect to superdiffeomorphisms. With respect to the structure group,
however, it has to transform in a special way, in order to make G, transforming covariantly. The infinitesimal
transformation of G, under structure group transformations is 0Gap = —2L(q|“Gep) = —2LP)G (see 1)
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on page . This transformation results in a simple shift of the compensator field. For the same reason, also
the covariant derivative contains a shift of ®:

60 = —LW (5.158)
Vud = oy - (5.159)
VuGap = 2Vu®Gap (= 0uGap — 224 Geyn)) (5.160)

Let us return to the calculation of the divergence of the BRST current and let us finally replace Dzd,nin

(5.145) by the ¥ equation of motion given in (5.146) (already using (5.147) and 5.148)

5. 08 a K(Scovs

z

3 .
+AaHg <2HQ¢CD + 2Ia(C\D) + vaq)GCD> H? +

EYvozCD
F2A T p TP dry + 22T IS d2sy +
FA ey (To P = Ca™) diy + A*X® Vg Ca,Pwopdy + XA (Vo CaP7 4 Saa™?) G ey +

+)\°‘)\°‘2)\ V. Sasa” wzngﬁ+

+2X°TI? Rapa, P A% w.p + 23T RacaP A 0 g (5.161)

Before we plug in further equations of motion (replacing I1Z and IT7) we should notice that we can already read
off some more constraints. Namely Yocq = Y, .5 = Yaya = Y5 = 0. The first constraint Y,.q = 0 can be
separated into symmetric and antisymmetric part of the indices ¢ and d. In addition, we already add everywhere

the constraints coming from the right-moving BRST current , using proposition Ion pageR|(H — —H,T — T,
vV - V)

12The comparison of the rewritten bosonic z¥-equation

1 1
izz(HEGea) + §zz (HgGea) =

K OcovS
sx K

+d4 VY, Pde—k)\ V,Co? wzgdz.y-f—)\ V.Ca ﬁw ey +

3 . s
= —E, +n¢ <5HGCD +2T o1y + Va<I>GCD> 08 + 2T, p P d.y + 2T, T dzs, +

IS\ WSaa” wzﬁw,ﬁ+2n PRupaPA*w,g + 211€ R0l A @5

K 6(:0115
SxkK

Fdany Vo PV desy + A%2Y, Coy PV w.gdzs + AV, CaPY T, 5day +

B

. 3 . PN N
with  Vidia = —Fa +1¢ (QHQCD +2Lq(cip) + vacbccp) 2 + 2T p Ml doy + 2T M dog +

a3y oSayal? wzﬂw +2mnL Rapazﬁ)\o‘sz,a+2H2Rac,i6>\a<b2é

and with V.dss suggests the introduction of

1
~II$Gea, dza =

1
dza 27 2

13 At first we should remember that IACB = diag (TAC ,TacP, TAC ) As Gpq are the only non-vanishing components of Ggp,
the contraction of the upper torsion index with Gpp projects out the first block-diagonal and we can write

Tscip = Tacip

The next important observation is that the constraints are independent of the choice of the auxiliary bosonic connection Qp/,°, as
it should be . The only condition is that it obeys QM(W,) = ng?)Gab which we used during the derivation by taking VMGAB =

2V ®G ap (see (5.160)). Remember also that Vo ® = Eo ™83, ® — Q(D) 1} Qpr4? enters the terms Yoo p (defined in

and containing the constraints) only in the combination QTQ(C‘D) - a )GCD7 where it completely cancels:
- = (D = = = (D
2T (c|p) — oPGep = 2(dE") o (c|Gop) + Qa(c1D) — QclalD) —oPaep =
N——

=0
M N b
= 2Ea" Ec|" O EN) GyD)
In particular the connection does not enter at all the following torsion component:

= (dEd)angc

adle
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Haww = 0 (5.162)
. 1.
TA(c|a) 5 VaPGe (5.163)
3H_ s+T = 0 y

2 acd a5|c = H . =T = 5.164
_% acs +Ta5|(, — 0 ad at§|(' ( )

3 . 3 .
§Ha7d +Toya = 0, *iHa:yd +Taq1a =10 (5.165)
Hos = 0, Hay=0 (5.166)

So far we have used only the equations of motion obtained by the variational derivative with respect to the
antighosts and with respect to €. There still remain the ones with respect to the ghosts, with respect to the
Lagrange multipliers and with respect to d.o and dzg. The first ones simply will not enter the calculation and
the pure spinor constraints (coming from the Lagrange multipliers) will be used at the very end. So let us
remind ourselves the variational derivatives with respect to d,o and dsa ( and ):

)

n o= o — Py — ACsP00
28

m =25 g - A, (5.167)
z 5d Y B8
=

ﬁ)

Together with the new constraints ((5.162))-(5.166) we plug them into the divergence ({5.161)) of the BRST current
In a last effort we sort all the terms with respect to the appearance of the elementary fields and finally arrive at

) 55 5
. _ 7d7 - AaEaK cov
93 = dw 2y oxkK S+
o/3 . 58
A ( 1Y Hoys + 2T a5V dory — 22A% Royy50Pwig + 118 BHQC(;) =+
2
2T0s)c
o c&n 2 55
1A (2T,,5d; + 2>\"RaAd%,A>A—
2 et vy zZB 5d2‘y

FAXTIE ( ~3Hacs PoY + 2T;ﬂ)c25.7 + ATy <2Taﬁ - ‘;’HM(;P‘W) dzy +
2T 05
Ay (2Tg?) T 4 20%d.y (T, 57) TIE +
FA ey (o P = Ca = 2 P = 21,5 7P ) doy +
AT (- 8Hacs Ca + 2Raca P)iro + XA (2Rana - ‘;’Hawé&m) O+
2T o 5)c
IBLOY d,.,( WCaP 4 Saa™ 2T s7CaP® — 2R, f’PW) G FAVAS N g0, (5.168)
where we defined an extra symbol for the terms coming quadratic in the ghost A*:
Xajo, = 2 (R[al‘d‘m]ﬁ) ngzg + 21'[‘;,E (R[a1|8|a2]ﬂ) w.g +
+ (Yo Cant® = 2 57 Clac™ — 2,510 PP ) dzgerzg +
3% (Via, Sarla + 2Rjas 46 Clat™ + 2Ria 610 Ca? ) w205 (5.169)

Summarizing, we observe that we managed — with the help of the equations of motion — to turn the simple
equation (5.145) into a quite lengthy one ... We are not going to copy the whole long equation again for the
next step. The only equation of motion that we may still apply, is the pure spinor constraint

is 1
5Lz§a B 2

(AY*A) (5.170)

We therefore can concentrate on the term A% Xy, o,A*?, where the pure spinor combination Ay*A might
appear. As discussed in footnote [7| on page [34] (see also the appendix-subsection on page [132)), all graded

The constraints are therefore independent of the choice of Qas.P. In particular, we can choose Qasq° (defined by
Qe P via VM“/aﬁ = 0) or QMa (defined by QMO/’ via VM'y =0). o
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antisymmetric 16 x 16 matrices can be expanded in v!) and ~!:

Xalaz = X@Vglaz + Xa1 a5'7a1a35 (5.171)
1 1
Xo = 16v"2"1Xa1a2 < 16v°‘1"2Xa1a2> (5.172)
(D37 1
Xaras =7 g g lasm Kanas (5.173)
We can use this to rewrite the quadratic ghost term as follows:
o a2 1 (e 5¥e %) 55 1 (e DYe 31 aij...as
A" Xaias A = _87(1 Xauxz@ + 16. 5!7a1...a5Xa1a2 (}\’y )\) (5174)

This was the last ingredient to determine all remaining constraints on the background fields and also to be able
to read off all BRST transformations (including the one for the Lagrange multiplier). Let us start with the
constraints. In addition to (5.162)-(5.166)), we get the following constraints on the background fields:

’f‘ac’? = Ta&\c 7)5'?’ Tdcﬂy = aﬁ\c ,P’Ya (5175)
S—~— ——
3 Hocs —$Hscs
foA 3 54 y__3 ~b
Ta’)’ = Z a’yép ) TEx‘y = 4Ha'7673 (5176)
Tad? = 0, Tad? =0 (5.177)
Ta37 = 0, T&J;Y =0, = IadK =0 (5178)
Ca = Y PV —2T"P% —2 T 7 P (5.179)
——
=0 (B.178)
Ca¥ = VaPYY —2T, P (5.180)
- 5 3 3
Rac&'@ = 5 acd C&'@O‘v ]%tﬁzcot'6 = _2 acé C o (5181)
— —
; 3 5 po p__3 ps
Raya” = HaysCa™, Raza” = =7 Hs55Ca (5.182)
Sas™® = -V, CaP +2T0s7CaP? + 2R 0 PP (5.183)
ydp-vﬁifgj“dgﬁp-yd
Sad®? = -V, CaPY 42T, Y Co P + 2Rama P (5.184)
\4 'pB*r_QTm;ﬁ'pé"v
Vol Riaya” = 0, V84% Riana,” =0 (5.185)
Yo Rsgan” = 0, V2192 Rsaan” =0 (5.186)
Yerle (W azcoufeﬁl) = 29%, Resa, PP%Y — TAalfsA? Ca253 , plus hatted version ... (5.187)
——
=0
Var oo (V Sala ) = 2y;raz (Rala,a'@Cazﬁ;Y — Ra25alﬁé’d'@5) , plus hatted version ... (5.188)

Note that on the constraint surface the condition 7' %2 X4, o, = 0 is equivalent to the vanishing of Xa,a,
when contracted with two ghost fields:

(5.171)—(5.173) (AY*A)=0

Yorta Xaja, =0 A X g0 A =0

(5.189)
The above equivalences hold for general bispinors, not only for the one defined in . It is not necessary to
memorize the constraints ([5.187) and ([5.188) as they will be implemented by other constraints anyway. We
will show this fact at the end of section on page
Let us now devote a new section to the BRST transformations that we can likewise read off from (5.168).

X[O‘la2] 1 (7a4 JXO‘3°‘4)’Y?11¢12

6

5.8 The covariant BRST transformations

Remember that we started on page 4] with the demand 5jz = —So®ly 5“;; The covariant BRST transfor-

mations s.,,¢%; have to be understood in the sense of the covariant variation defined in (5.97)-(5.101)). We have



CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE Il BACKGROUND 50

N &

for example sﬂj\a = S0\ = 5% —‘erMQA]BdS\B. When the constraints of the end of last section are fulfilled,
we can read off the covariant BRST transformations s.,,¢%,; from equation (5.168) together with :5.174). Again
we give at the same time (using proposition [1| on page the results for the right-mover BRST-symmetry §

: P dcovS
defined v1 97: = —%oud?y S

aM = AEM, &M =X"EM (5.190)
SJU'UAQ = 0= AS;ovAaa Seov . =0= Scévj\a (5191)
SovWzaa — dzaa AS?m)wza - 0, AS?&U‘:JEd = dAZda S"fmwid =0 (5192)
3
Sovdes = —ATI 3Hucs — S ATIY Horys — 2X%TasVdon + 2A%A%? R 502w 5 (5.193)
~—— 2
2T s
o e 3.a_4 PSPPI cE LAy A ;
Sovdzy = A TE3Hg5 +0A T Hggs = 20 Tas7day + 20 X7 Ry 557w (5.194)
——
727—‘&8\6
Sovdzy = —22%Tas®ds — 2X°A" RasaPo s (5.195)
——
=0
Sovlday = —2X"Tay?dos — 20 A%Ranalw.p (5.196)
~——
=0
1 (s 3 D) - - T 1 dldg % T
S:()ULZZ(L = g’ya Xa1a27 S’:O’I)LZEH, = O; S:é?;LZza = g’Ya Xd1d27 S’!é’l)LEZ =0 (5197)

The composite object Xq,a, is given in (5.169). Let us for completeness also give the BRST transformation of
the supersymmetric momentum

(5.117)

sl = VA% 20151, 5" (5.198)
I b-117) VA 05" + 23718 T, 57 (5.199)

All these BRST transformations are similar to those for the heterotic string, given in [12]. There it was also noted
that the BRST transformations always contain a Lorentz transformation (multiplication with the connection).
We have absorbed this term into the definition of the covariant variation. The advantage is that we then have
expressions all the time that are covariant with respect to the target space structure group. Although the
ordinary BRST differential sis needed to calculate the cohomology (as it squares to zero), the calculations are
simpler if they are performed with s.,, and only in the end transferred to s When acting on a target space
scalar, the two coincide anyway.

14 Another way to write down the BRST transformations for d,s and d}ﬁ is the following

3
Sovdzs = 7§Aanic’7}Ha{cn}s — X 5 1 Geall? | 2dery } + 2X* X2 Ry 50 P w
4 3 d,é 5 5 G 5 5 -
Sovdzy = —Ekaﬂé ’ He(a,yq = A" Iaﬁ{d’é}{Gdcng s 2d,5} — 22 AaR(x’?dﬁwg[a
—_———
-0 =0

In the second line for the first two terms, we have just used a complicated way to write zero. The reason was to bring it to a form
similar to the one in the first line. In any case, at least the first line suggests again the introduction of the variables

1 1
dze = SGally,  dze = Geglls
that we already proposed in footnote on page [f7} Indeed, their BRST transformation takes the form
3 .
Sovdze = _EAQH?H(XﬁC _ZAaTacddzd

Using Hyge = Teoe® = 0 and at (least for Ay*X = 0) A A“QRa2da/3 = 0, the transformation of d, . takes the same form as the
one of d,s5 and we can write

3 ‘)
sovdarasy = AT Ho ooy (as) = 23 Ta a5y O dgeny — 22X A R siaza, Pwap for (Ay"X) =0

We suggest to introduce d.4 as an independent variable into the action, with an on-shell value d,. = %chng. Doing this, one
would arrive at a formalism where the G sy term is replaced by a first order term, while the Bp;n term remains. This would
therefore be a mixed first-second order formalism which would be suitable to couple it to e.g. the components of a generalized
complex structure. o
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5.9 Graded commutation of left- and right-moving BRST differential

We have started in flat background with two independent BRST symmetries, the left-moving and the right-
moving one, which both squared to zero and graded commuted. As they define the physical spectrum and
identify physically equivalent states, these facts should not change in a consistent theory, at least on-shell. This
is similar to the fact that gauge symmetries should not be broken. We have already derived the constraints
coming from a vanishing divergence of the BRST currents. The ansatz for the currents was such that this
corresponds to holomorphicity for 7, and antiholomorphicity for j;. Having on-shell a holomorphic 7, and an
antiholomorphic j; is in a conformal theory already enough to make the corresponding symmetries commute.
For example on the level of operators, the operator product between a holomorphic and an antiholomorphic
current always vanishes on-shell. The same is true for the charges which generate the symmetry. The on-shell
vanishing of the commutators is all that we can demand for consistency. Therefore we do not expect any
additional information from the graded commutation of left- and right-moving BRST differential. Nevertheless
it is instructive to calculate the graded commutators and consider it as a further check. In particular it is
interesting to see the terms which prevent an off-shell commutation of the differentials. The starting point is
the request that we have

n !
8960 = 6(ubmn + 0 ban + StrivPmn (5.200)

where 6triv¢aIL11 is a trivial and thus on-shell vanishing gauge transformation (see page in the appendix).
Spelled out in words, means that the graded commutator [§ has to vanish on shell up to antighost
gauge transformations. There are at least two ways to check this. Either we calculate the commutator of the
transformations on each worldsheet field or we calculate the transformations of the Noether currents. This is
directly related to calculating the Poisson brackets of the generating charges in the Hamiltonian formalism.

Determining [s§ via the transformation of the currents Let us see, how the reasoning goes in the
Lagrangian formalism. We start with the defining equations of the BRST currents

; 68

0j., = —spt—r 5.201

J -~ S¢a11 5%111 ( )
0S

93, = —spf—— 5.202

VE all 5%1]1 ( )

If we consider the combination §5.201)) + s5.202)), we discover the Noether current for the graded commutator
s §:

_ ; 68

0y.)+09:) = —[Qﬂ(ﬁall% (5.203)

In order to calculate the lefthand side, remember the form of the BRST current j, = A%d.o (6.39) and also
note that it is a target space scalar. The BRST differential can be replaced by the covariant one:

~& B 1l.a
Y. = —Noudoy = 20 AN A" RaralPw.g =2 A"V Re P (A°N) (5.204)
G189 8 —
25252

Using the left-right-symmetry of proposition [1| on page we get the corresponding expression for sj;. Both
vanish on the pure spinor constraint surface (Ay?A) = (Ay®A) = 0 and as they are the components of the
Noether current belonging to [§d, this is again a sign that this commutator will vanish on-shell up to gauge

transformations. Indeed, if we take ji., = —j\a73‘7Rd7a5wzg and [iz correspondingly and remember the
antighost gauge transformations (5.85) and (5.86) with corresponding current (5.73)), we arrive at
= S S
(8] 0(8;) = —praMYNa—— +Dspirg—— 5.205
(¥.) +0(9:) frza(AY?) S T Pebeagy— (5.205)

Having a current that coincides with the one of a gauge transformation, the form of [s§ can only differ by a
trivial gauge transformation. In any case we have obtained the result that the commutator vanishes up to gauge
transformations. A safe way to figure out potentially appearing trivial gauge transformations in the commutator
is to calculate it on each single worldsheet field separately.

Acting on each field separately Although this method would lead to the precise off-shell form of all the
commutators, we are for now satisfied with the result we already obtained and give the explicit commutator only
for the most simple cases. Starting with the covariant BRST transformations of the elementary fields (given in

(15.190))-(5.197) on page , we will first calculate the commutator [§.00, S0v] and only after that determine the
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ordinary commutator via the relations (IS.lO?I) and (I5.108|). For the embedding functions x%, the ghosts A, A7
and the antighosts w,o and wzg the calculation is very simple and we immediately obtain

[Rov, 8o0] 2% = 0 (5.206)
Sovs o] AT = 0, [sou8a] AT =0 (5.207)
[Gov Sou] Woy = Bovday = 28 A%Rayalw.op,  [Son foo] @24 = —22%A" Ranyal@_5 (5.208)

The transformations of the remaining fields are much more complicated and we prefer not to study them. Let
us now derive the ordinary commutators:

g2 B2 [5,, 50,] K —22° I&?_K/ A% =0 (5.209)
=0 =0(5.178)
58, A B2 5 80 AT -2 A% A Raap A = 0 (5.210)
=0 =0 1|
[8 8o wary &9 (800, Seou | Wy +2)‘a5‘dRad'rﬁ“’Zﬁ =
=—2A%A*RaraBuw.p
= 45\d>\"Rd[aﬂﬁwzﬁ (5.211)

Again we get the corresponding equations for A% and wz4. The last line corresponds excactly to the gauge

transformation with gauge parameter p,, = —i;\a%‘f"Rd.yaﬁwz,@ that we found already above. It is interesting
to see in (5.209), that some holomorphicity constraints like T5,% = 0 are needed for the commutation. In
fact, in [50] this constraint was derived by demanding a vanishing Poisson bracket between the two genera-
tors of the BRST symmetries. The constraint T4, % = 0 did not appear in our derivation via the currents
above. The reason is that we already started the derivation in from an equation which assumes on-shell
holomorphicity.

5.10 Nilpotency of the BRST differentials

While the last section was rather a check than bringing much new information, the nilpotency of the BRST
differentials will give us additional constraints on the background fields. The nilpotency is essential to define
the physical spectrum as in the flat case via the cohomology. It would be inconsistent if this prescription brakes
down, as soon as a nonvanishing background is generated by the strings. Demanding nilpotency at least on-shell
and up to gauge transformations is thus legitimate.

Nilpotency constraints from the BRST transformation of the current In the same way as in the
previous section, we can examine the BRST-transformation of the BRST-current instead of studying nilpotency
on every single worldsheet field. Start from the defining equation of the BRST current

= 0S
dj. = —spl—r 5.212
11 6¢azdl ( )
and act with sfor a second time
= oS 528
. _ 24T T T 921
5(si.) s e (5.213)
—_———

=0

The BRST transformation of the BRST current is therefore the Noether current for the transformation . As
the BRST current is a target space scalar, we can replace the BRST differential with the covariant one when
calculating g7,

. = Sov (Xsdzé) = *Xssﬂdz& =

: .3
= XXX 3H . 11 — 5/\5)\"‘Ha,,5HZ — 2NN T s oy + 2XOAA* Ryy0Pw.p (5.214)

2To¢6|c

We want to demand that &, whose current is sj ., vanishes up to gauge transformations. Due to propositionon
page in the appendix, every gauge transformation has (up to trivially conserved terms) an on-shell vanishing
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Noether current. Instead of deriving the form of & on the fields by taking the divergence of this current, we
can simply demand that it vanishes on-shell. This is a necessary condition[] Also due to proposition [4] it is a
sufficient condition, as we know already that sj, is a Noether current for a symmetry transformation and if this
current vanishes on-shell, the transformation can be extended to a local one, i.e. it is a gauge transformation.
The only equations of motion, which can make sj, vanish on-shell are the pure spinor constraints Ay*A = 0.
We therefore get the following conditions on the background fields

= N HacsA* = 0,  ANATa5" =0,  AAMA™R4.50,° =0,  (onshell)  (5.215)

Remembering that we have the constraints Ta5|c = %Hacg (15.165)) and Tms:y = % a(;gP'@:*, we can extend the
above condition on the torsion on all indices

AT € =0 (on-shell) (5.216)

All these on-shell conditions can be formulated in an off-shell version with the help of y-matrices by using
(15.189) on page Either we write that the terms are linear combinations of v’s, or equivalently we can
write that the 7[5 -part vanishes. In particular the constraint on H,cs can then be further simplified. We have

1
HCoc,B = HC(I’YZB for HCOLE_E 065726 (5.217)

In particular for C' = =, due to the (graded) total antisymmetry of Hyag, this should at the same time be
proportional to 75, and 73, :

a 1 d.a 1 b d.a 1 a
Hrap ™= Hpadap) = 5Hmee1a ap) = gHe0 V670 Vap) g 510a7an (5-218)

In the last step we used the Clifford algebra for the first two 7’s and then the Fierz identity
to throw away one of the resulting terms. Remember that the appendix about I'-matrices doesn’t use the
graded summation convention. For the Fierz identity we thus have a (graded) antisymmetrization, instead of
the symmetrization and for the Clifford algebra we get an extra minus sign because of the NW-definition of the
Kronecker-delta.

The second and the last term of the above equation contradict each other if they do not vanish and
thus Heqp has to vanish. The components Heog where constraint to be zero already before. Of the components
in (5.217), we thus have only H.qp nonvanishing.

Heap =0, Heap = HeaVap (5.219)

H;np is a linear combination of Yap and in flat space the two indeed coincide up to a constant factor. We
can now analyze in a similar way the constraint on the curvature in (5.215). As the pure spinor constraint is
quadratic it can be equivalently written as )\alx\azR[a25al]ﬁ = 0 (on-shell). For this expression, one can do
the same reasoning as above with H.og and arrives at

Riaysey)® = 0 (5.220)

We will get the same constraint from the Bianchi identities later in case one feels uncomfortable with that line
of arguments.

Of course we get all the constraints also in the hatted version from the right-mover BRST current. We will
explicitely write them when we are collecting all constraints in section [5.13| on page

Nilpotency on the single fields Just to get a flavour of how the calculation would work if we act on each
field twice with the BRST differential, we perform this for the simplest cases. One discovers immediately that

acting on ¥ and A twice with the covariant BRST transformation yields zero. The reformulation of &,, in

terms of the square of the ordinary differential & gives a torsion or a curvature term respectively. These terms
have to vanish on-shell in order to have an on-shell vanishing &*:

0 = sﬁﬁaﬁK =g —|—2/\°‘IaﬁK)\ﬁ = )\O‘IaﬁK/\B 20 (on — shell) (5.221)
20 (on — shell)
0 = oA = (F)eovA® F2AT N R 55% NP = AR 552 20 (on — shell) (5.222)

~——
=0 (on — shell)

15 There are no trivially conserved parts in sj,. A trivially conserved part is of the form 845[45] for some rank two tensor S¢¢.
In the conformal gauge this would take the form 9.S|z,; which is of conformal weight (2,1). Such a term is certainly not present
in our current. <
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On the antighosts we have szcovwm = Sovdza Which will not vanish, but which will correspond to a gauge
transformation. The same should be true for L,z,. The calculation of sgdm is quite involved to calculate and

will probably contain also constraints that follow from the earlier ones via Bianchi identities. We will calculate
the identities anyway in sections on page [62] and on page

5.11 Residual shift-reparametrization

Before we are going to collect all the constraints on the background fields which we have obtained so far, let us
eventually make use of the residual shift-symmetry discussed in the paragraph on page [32| (which in turn refers
to the paragraph about shift-reparametrization on page . It is a target space symmetry that is based on a
residual shift reparametrization of the fermionic momenta:

o = doa —ED0(2)VA)aw:s (5.223)

The BRST current gets changed under this reparametrization by a linear combination of the pure spinor
constraints , but this change can be undone by a redefinition of the BRST transformations with the
corresponding antighost gauge transformations. This does of course not change the on-shell holomorphicity of
the BRST current, as the pure spinor term vanishes on-shell.

Apart from the change of the BRST current, we have the following induced transformations of the background
fields coming along with this reparametrization:

e = Qua® — Ex",E®,P (5.224)
Gl = P AP 20, S (5.225)
a6 = SaaP +CaPTh B0 (5.226)

Note that the transformations of Co,®Y and Saa? are in agreement with the holomorphicity constraints 1)
and 1) relating them to Q7. It is thus enough to memorize the transformation of the connection Qp;4°.
Remember now the definition of the torsion as T4 = dEA— EBAQ BA. This implies the following transformation
of the corresponding torsion component (see also in the appendix on page :

Tores® = Togas® =780, B0 (5.227)
Due to the nilpotency constraints we have T, o,” o 75 4,- In addition, the left-right symmetry of proposition

on page induces the same statements for ledgﬁ and the second residual shift symmetry related to the
reparametrization of ds. We can therefore completely fix the two residual gauge symmetries by choosing the
(obviously accessible) gauge

Tag? = 0, T.37=0 (5.228)

We can now immediately take advantage of this additional (conventional) constraint and check the validity of
the constraints (5.187) and (5.188)) on page

5.12 Further discussion of some selected constraints

There are some constraints which deserve further examination, before we move on to study the Bianchi identities.
First, the four constraints (5.187), and their hatted versions on page [49] do not look very useful as they
stand. We will show that they are actually consequences of other constraints. Second, with and
we have two equations for Sqs”? and it is interesting to know whether they are equivalent or not. Let us start
with this last problem:

Consistency of (5.183) and (5.184)) In the following we will (actually just for convenience) frequently use
{ 8 -5

the new conventional constraint Tog” = 0 = Tdﬁﬁ 5.228)). Starting with (5.183), the tensor of interest is given
by

% 5.183 3 ~ % 2
Saa Vo Vs PP 4 2naP PP =

B2 v v PP 2T, P VPP — 2RaasP PO — 2R PP + 2RasaPPPY (5.229)
—
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In order for this to be compatible with (5.184), i.e. with

Saa® B2y v pBB | oR, . AprB (5.230)
(5-180)
the curvature has to obey
o8P PP — R, ﬁpﬁ‘s =0 (5.231)

In fact, this condition will be a simple consequence of the torsion Bianchi identities that we will obtain in (5.428)

and (5.429).

Check of (5.187) The constraint (5.187)) contains the covariant derivative of C,®Y for which we can use in
turn the constraint (5.179) together with our new constraint (5.228)).

Via:Car)® = 2Rjas 510, " P?Y =

(5.179)) 2 54
= Yja,Ya, P77~ 2R(ay 600, P77 =
F.28] N N
= T PPV 4 3 Rigyas)® PO+ R, 57 PP (5.232)
0 E220) ~0 ET52) . E20)

Only the first term remains, but recalling the nilpotency constraint in combination with (5.189), we
observe that also this term vanishes, when contracted with 7§12 . The constraint therefore does not
give new information and will be omitted in future listings. The same is true of course for its hatted version
due to the left-right symmetry.

Relating (5.188)) to a Bianchi identity For the constraint (5.188) we have to consider the following
combination

YiasSarla™ = 2R(a, 156" Cla,)?T + 2R (e 510)*Ca™® =

5._183
.28 5 . S N .
= L0, “YoVaP? + Rasana” V5P — Rasais® TaPPY +
— ——
-0 E) 629 =0 EIsD).(E2)
+22[a2|R‘a1]:yd’67)ﬁ;7 + 2R[a25a1]’32&7)55 =
=0 (5:220)
= OV, VY, PPB + 2V 0y Ric 154 BpBY (5.233)

112&1

~Via (z\al]zd?ﬁ" - 21%\%]»9@[37’%) = 2R, 156" Yoy PPY + 2R(as 5] Vo PP =

The first term vanishes again when contracted with yg1%2_ ((5.216)) and (5.189)) and the constraint (5.188)
reduces to R .
V2192 Vg Blan15a” PP =0 (5.234)

as—

We will see in a second that this equation is automatically fulfilled when the Bianchi identity for the curvature
is fulfilled. We will study the Bianchi identities at a later point, but not all of those for the curvature, because
we intend to make use of Dragon’s theorem, relating second to first Bianchi identity. Let us therefore write
down at this point the Bianchi identity that we have in mind (see on page :

! ; : DA ;
0 = YigRlasia® + 2 ama, " Boigia” =
2 R N B 5 4 R ) .4
= §y[az|R\a1Hdﬁ+§y‘r Ra2a1d6+gzﬂa2\DRD|a1]a’3+gIaQalDRDﬁdﬁ (5.235)

N——
~0 BT 620, (5I7S)

Once again the last torsion term vanishes when contracted with vz | so that the above Bianchi identity

implies ) ’
caae 7 RseP =0 (5.236)
,}/Ufl [az] Y ou]yé

a5 —

which is even stronger than (5.234]). Of course we also get a hatted version of this constraint.
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5.13 BI’s & Collected constraints

The next step ist to study all the Bianchi identities. The logic is as follows: We have obtained certain constraints
on the H-field, on the torsion and on the curvature. As these objects are defined in terms of B-field, vielbein
and connection, the constraints can be seen as differential equations for the elementary fields. If one solved
these equations and calculated again H-field, torsion and curvature, one would observe additional constraints
that one had not seen in the beginning. Being too lazy to solve for the elementary fields, one studies instead the
Bianchi identities which deliver the additional constraints as consistency conditions. Depending on the point of
view, they are a direct consequence of either the nilpotency of the de Rham differential d® = 0 (see appendix
on page or of the Jacobi identity for the commutator. Their explicit form, using the schematic index
notation of reads:

VaHaaa+3044“Heaa = 0 (5.237)
ZAIAAD + 2IAACICAD = EAAAD (5.238)
VaBaapC +2Taa Rpap® = 0 (5.239)

Repeated bold indices at the same altitude are simply antisymmetrized ones. Dragon’s theorem (see page [147)
tells us that — when the torsion Bianchi identity is fulfilled — we can replace the curvature Bianchi identity by
the weaker condition

RBoos?Toc®? =
Leep Lec
= [V, Vel Toe® + Tec”YpToc” +2 (Veloe” + 2LecTpe”) Tpc™ (5.240)

We will anyway concentrate on the Bianchi identities for H-field and torsion, because they provide new algebraic
constraints. The corresponding calculations are lengthy but not very elluminating and we put them into the
local appendices, at the end of this part of the thesis.

We will now collect all the constraints on the background fields that we have obtained so far plus the ones
that we will obtain from the Bianchi identities. We label those by (BI). If we later make use of some explicit
form of one of the background fields without giving the explicit equation number, the corresponding equation
should be among the following ones.

Not all equations we write are independent. It is sometimes convenient to have them in different versions.
In particular, some constraints for H are at the same time constraints for the torsion and will be listed in both
paragraphs.

Restricted structure group constraints The first set of constraints is related to the restriction of the
structure group (of the supermanifold) to a a block diagonal form with three copies of Lorentz and scale
transformations. This was discussed in a paragraph on pages in the remark on page and in the
intermezzo on page The following equations are taken from (5.89)-(5.91), (5.147) or (5.149) and (5.154)

1 1 - 5 14 53 14 5
Qa® = 595{?5& + Zagﬁglaﬂwzaﬂ, QuraP = 5955,”5&3 + Zﬂgﬁlaﬂam&ﬂ (5.241)
N 1 - 1 . aia A 2 1 -~ . 1 4 aras [
Caﬁ')‘ = 507606’8 + chlazly ! 2(13’ Cétgpy = §C‘Ygdﬁ + 10;110,2,7 lea (5242)
g BB _ 1550‘3&3_’_151 LG Byeraz B
oo 4 « 8 aila (a2
1 Q 2 3 1 ala o 3
+§Sa1an“1“'za"5dﬂ + g Sareatnta?"! 2P0 4P (5.243)
Gun = Eun"GaEN, Gab = € nap (5.244)

Constraints on H Due to (5.162)-(5.166)), (5.219) and the total antisymmetry of H, its only nonvanishing
components are

Hype # 0 (in general) (5.245)
=—3Hac
2. 2 . A=
Hape = —3Tape="3%p fa (5:246)
Hy = g =2n"4f 4
ape = 3lapc= gvcmfac (5.247)

The vanishing components are thus (written a bit redundantly)

Hype = Haﬁc = Hd,@C = Ha,@C’ = H.ABC =0 (5248)
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The only additional algebraic constraint that we get from the Bianchi identities for the components of H is that
fa© and fac have to be Lorentz plus scale transformations respectively. This is a very important point, because
it finally provides a possibility to gauge fix two of the three local structure group transformations by fixing
fa© and fac to the Kronecker delta.

(BI) + g-fix.:  faoe = fac=Gac (5.249)

This has, however, also other important consequences: the mixed connection that we used is not a suitable
connection any longer, as it would not preserve this gauge. We will discuss this issue at the beginning of
section [5.14] on page

The derivative Binachi identities on H read:

(BI) : V[;Habc = _4T[ab|é7|c]é3 (5250)
VeHare = AT\ab*V|cles (5.251)

9
v[a]:Ibcd] = iH[ab|eHe|cd] (5252)

Constraints on the torsion Let us now collect the information of the constraints (5.163)-(5.165)), (5.175)-

(5.178) and (5.216). The only (a priori) nonvanishing components of the torsion T 45 are
. 1.
Ta(lay = _§VA<I)ch (5.253)
-~ 3 d ~ 3 d N
Taple = —5Hape=%ap Jic >  Tape=5Hap. =5 Ja (5.254)
Gac (BI) Gac (BI)
Tacﬁy = Ta5|cP6:y = Vié fdc Pé:va Tdc’y = aé|cp75 - 7 ad fdc P75 (5255)
Gae (BI) Gae (BI)
T.,C # 0 (in general) (5.256)
With the help of the Bianchi identities, the first and the last line become more precise:
1 1
(BI) : Tor® = —5Va®0) - ﬁbcaﬂvg@ (5.257)
A 1.
Tapt = 2v &P — % aﬂv ) (5.258)
T, = (v PY 4 8V50P7) 5,57 (5.259)
T = E (Y, PV + 8V, 2PY) Yy 67 (5.260)
3 . 3
T’ = SHp®  Tw'=—"Hpy" 5.261
b 5 Htab b o Hab ( )
The remaining components do vanish already without BI’s; which can be written (again a bit redundantly) as
T’ = Toal =Tad? =Tad? =0 (5.262)

We are finally able to write down explicitely the antisymmetrized difference tensor between left and right-mover
connection

—3Hu® —Tup¢ T,5°

af
(BI) A[AB]C = - b’ 0 0 (5.263)
Ten© 0 0

Constraints on C and S and others The constraints on C' and S can be regarded as defining equations.
We have already shown in that the two equations for S are equivalent up to Bianchi identities.

C = Y P (5.264)

Ca¥7 = v, P (5.265)

Saa® = =V, CaPY +2R0sa”P7Y (5.266)
Y, PB

SaaPt = -V, CPY +2Rd7aﬁp7ﬁ (5.267)

v, POV
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In addition we have from the Bianchi identities

(BI) 0 = Vad=Vad — Q, =0, = E,M9),® (5.268)
= AP = 0 (5.269)
NI (5.270)

AP = Va9 (5.271)

YV Po% = 8P%aV,a (5.272)

v P = 8Py, (5.273)

Constraints on the curvature Induced by the restricted structure group constraints on the connection, we
have such constraints likewise for the curvature (see (5.68) on page [35 and (F.77),(F.79) and (F.81) on page
The curvature is blockdiagonal and each part decays into a scale part and a Lorentz part:

Rapc? = diag(Rap?, Rapy® Raps®) (5.274)
Rand = EQot+ B FY) = S Rane (5.275)
Rapy’ = %Fi%)%‘s+%Rff§a1bnban“1“2~,5, F,E;DB):*éRAB'y‘Y (5.276)
Rapy? = %F(D)%B-FiR(ALéalbnbag’Yalaza'B, AIE;%):_%RAB'?;Y (5.277)

with the scale field strength
FO =do®) ) =g D) = 40P (5.278)

Finallly we had a couple of holomorphicity and nilpotency constraints:

f%ac&'é = Taé\c Cdﬁé ) Rdcaﬁ = Td3|c Caﬁ8 (5279)

SN— T \,_/\/'/h

:Yc ad (BI) zd’l)ﬁﬁ '~)’c &8 za'Pﬂé
Rava® = 0, Rasa® =0 (5.280)
Y Rigias” = 0, 72%2 Riaa.” =0 (5.281)
,Y:Lxlla;s 5a1a2ﬁ = O’ ’Yﬁl.?55]%5d1d26 =0 (5.282)
R[a10¢2a3]'3 = 0, R[&ldzdg]ﬁ =0 (5.283)

Taking the trace of the first two curvature constraints gives further informations on Dilatation-Field-strength
and Lorentz curvature

1 1

Ft&?) = _g va5|cyd7j6&7 Fél?) = —gTd;;‘CyaPms (5284)
D =0, F2=0 (5.285)

The Bianchi identities provide more information about the third and the fourth curvature constraint
(BI) Rc[a,@]’y = ’YiﬂTdc’ya R 5 = UAl ATdc’A7 (5286)
Rn‘y[a,@]é = _’y(exﬁﬁ/e :7/87)56; R’Y[dB] = _’72)@"?5 767)66 (5287)

Remaining differential BI’s

Rico’ = YaTue’|o g+ 40 ayP %) e5P%° (5.288)
Biea® = Valbe’|_ +4701axP Y esP” (5.289)
VaToe® = —27345V1gP? = 3Hpee15 5P (5.290)
Valbe® = =296V P + 3Hpee o PP (5.291)
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ViaToe)® = —3Hap Tei® — 2T1ab %, 05P>° (5.292)
ViaTh® = 3HiapTei® — 2T1ap ") es P*° (5.293)
¢ L T + 3785 Hoo® + AT 101 Tl 1
Raﬁc - 2v[OL Blc + 3704,6 ec + [a]e |Ble (529 )
A~ ! ~ N . N o
Rap! = VT =37 50" + 4T1a) T 5. (5.295)
Rop' = VaTa = ZeagPP vy + 27, 55P00L, (5.296)
Rapt = ?gfcad - 27, dﬁPEB'ygﬁ + 29. 85 P67, (equivalent) (5.297)
R 3. 3 .
Rapg® = —Zvaﬂbcd+27[b‘a5735€Té|0]d+Tb:yga (5.298)
3 5 5 o
Rd[bc]d . ZVdecd + 29, dsPe‘sTs‘c]d + TpeEvey, (5.299)
. 1 e A
RiL," = Y5 P bee Ve (5.300)
1 €~ c
Rilfi)bd = gy'yfpsar}/bcsﬂ/'}/éd (5.301)
3 9
Riapg? = §V[aHbc]d + §H[ab|eHe|c]d + 2T(ap) *Tej ) (5.302)
~ 3 9 ) P
Rigpy? = —§V[aHbc]d + §H[ab\6He\c]d + 28700 T (5.303)
L 3
- Rgl[a)b]d = ZVdHabd = Tap "V @ + 2T Ty (5.304)
L 3. . .
7R£l[a)b]d = *ZVdHabd* abvvﬁ¢+2Td[a‘eT€‘b]d (5.305)

5.14 Local SUSY-transformation of the fermionic fields

In order to make contact to generalized complex geometry, we are interested in the local supersymmetry trans-
formations of the fermionic fields, i.e. the gravitino and the gauge field. In the appendix [H] on page we
carefully derive the supergravity transformations in Wess-Zumino gauge in general, following roughly [15]. The
fermionic fields are the gravitino and the dilatino.

5.14.1 Connection to choose

Al =

In the appendix [H| on page I@‘ we describe the ususal procedure of going to the Wess Zumino gauge Eaq
SamA and Qaqa®| =0 (see (]H.IOO[) and (]H.127[)). This gauge fixing is possible with any connection as long as
it takes the same values (in the Lie algebra) as the gauge transformations (Remember, a connection is a Lie
algebra valued one form). However, the present case is a bit special in the following sense: We have derived the
supergravity constraints using the connection

Qua® 0 0
0 B = 0 Q]w B 0 (5 306)
2enrA = e A . .
0 0 Qe

After that we have coupled the independent structure group transformations of the three blocks by a gauge fixing
s.t. Tap® =75 and Ty 5° = Ve 5 The remaining gauge symmetry has to leave this gauge fixing invariant which
reduces the structure group to only one copy of the Lorentz group plus one scale group. The above connection
however does not leave the gauge fixing invariant (the covariant derivatives do not vanish in general). In order
to be consistent, we thus have to reformulate the equations in terms of a connection which leaves Yop and
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72[3 invariant. Possible choices are either Q47 (defined by Qpe” and VM’YZ;,B = VMW;L; =0) or by Qnra®

(defined by QMdB) or by the average connection
1 A 1
Q B;f(Q B4 Qy, B):Q B4 ~Apa® ,
oma 5 (ara” +8ra MA” + 5 AMA (5.307)

We will study the choices Q47 and (Q) mAB. The first has the advantage that at least the left mover equations
stay simple while the second has the advantage that the symmetry between left and right movers is preserved.
Corresponding to the the first choice the connection part of the WZ gauge simply reads

Qpa®| =0| (gaugel) <= Qpe4 = diag (0,0, Aaca?|) (5.308)

o |Q:Q,0:0

In this gauge all the equations derived in appendix[H|on page[I54]hold literally. The average connection becomes
1
(Q)MAB’ =5 Ara®| (gauge 1) (5.309)

Alternatively to gauge-I we could put O AB‘ = 0 or equivalently £ aq A8 = f% AMAB’ which would be

the same type of gauge with simply the role of hatted and unhatted variables interchanged.
However, a different natural gauge fixing (being symmetric in hatted and unhatted variables) is

<Q)A,MB =0| (gauge ) <= Qr4” |Q Q,6=0 = diag (— AMa, AMa , AMa ) (5.310)

In this gauge we have to replace in all equations of appendix [H|on page Quraf with Qu 42 and Ty n“by

A
L un*.

5.14.2 The dilatino transformation
The dilatino is part of the dilaton-superfield ®(,;,). We define it as

A = 0uPin)| (5.311)

Ao = u®en)| (5.312)

In [T1] and in [50] there are quantum arguments that Vo ®(,n) = 4Qa and Va®n) = 4Q4. Because of the
introduction of our compensator field ®, the relations modify in our case to
Eo™Oon(@pny +49) = 4Qq = —4Vo® = Vo @, (5.313)
EdeaM(‘l)(ph) +49) = 4(25, <= —4@&@ = @d(b(ph) (5.314)

Let us summarize the covariant derivatives of the compensator field using the different connections

Va® =0 Va® =0 V=0
Va® = —1Va®pn - Va®=0 Va® =5V a®un (5.315)
Val =0 Va®=—{Vabun Ya®=-{Talyn

The dilatino therefore is also related to the é—component of the compensator field ¢ and the leading component
of the scaling connections [T

5.14.2.1 Gauge I

In gauge I we can take the equations literally. We can dlrectly plug in the torsion constraints in the first and
the last line. For the second line we need Tea® = Tepm® — Ajeamy® which implies

T d| A d| ( 0 i T"/de| Vdelld ) (5 316)
¢ = - = e & 7 e & .
M e —1 Tud®[7%e5®  —3T15107 el

According to (H.237) and (H.193 L(f)B’ £ ¢€$e we have

1
dda =€ VeValyn)| — 55%50/\,4 (5.317)

16
1
Q, = ¢u+1)\“+zN Nl + ...

O

1 .
i ¢ﬂ+z)\ﬂ+$Naj\/‘Qﬂ‘+... o
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5.14.2.2 Gauge II
In gauge II we have to replace everywhere 7' with T = (T + T). We have

a — - a a _ ’7’%;}, 0
Lem®| = <TCM +Tem ) = < 0 2, ) (5.318)
1 e d « 17 e d e %
o 1 —1 Tyia®| 1 %ei®  —5 Tad ‘7 ey
Lem = 5 Acm| = L J (5.319)
2 § T5a%| 7%en® 0
1 el od &
e 1 6 0 5 Ty ep
Lem®| = =5 Aem®| = e d G - & 5.320
. 2 M | ( —5 Tua[ 795 ™ =3 T[*/\d"'yde\ﬂ] ( )

These transformations are invariant under the exchange of hatted and unhatted indices if at the same time T’
is replaced by T and ¢ by €.
According to (H.237) and (H.193 L(E)B‘ = € $c we have

1
da=e€ VeV a®pn| — iacgbc)\A (5.321)

Remember from footnotethat (E}gﬁ)\, = %(E[M"‘X)N]A&D) —(Z}MN"‘AEXD) —E[Mdz)N]AfiD) —i-(z}MNdAdD))
and that V ,® = %A(QD), Va®= f%A(ﬁD), so that we get
> — [e 2

£,59D3 =05V, )V AP — T g™V 4® (5.322)

D A
) = —LptYa0

o _ 1 A _
Eioew = 50N L™ V4% =

1 1
= —iEbm(Zm(Zc(I) — iEszMXC(I) — (l)bCAXAq)

(D) _ A 1 “

Fre = —VBVc®— T Va? = —gch V.a®pn)

-2
The second equation is of particular interest to extract information about the 6 -part of the dilaton ®

EMY MNP = —E"NnNVed-2F 0 —2T,cAYV 40
Alternatively
_ A (D)
VieYo® = ~ZLpct Tad- Ef (5.323
Fi = —TweYa®— VY@ (5.324)
Now we make use of V ,® =0 and NV oa® = *%XA‘I'(ph)
(D) L. a4 L(m M
Efe = (Lt Ta®on + ¢ (B Yon Te® + B T a1 Vc®) (5.325)
or
D m
~EMYMYc® = —16FD 42TV a®pn + By Y 0 YV c® (5.326)

At 8 = 0 we thus can write

WMImA Y aVcd| = 16 g)}@‘ —9 gbcA‘ A — ™ YA (5.327)
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5.14.3 The gravitino transformation

For the gravitino we have according to (H.211)),(H.212)) and (H.193)

= X)nﬁa +2e%e,,? (ana‘ + 2%, P g)'yﬁa‘ + 2571/;m5 gwg‘*’ =

= Ve + e’ T,yba‘ +eVen” qua‘ + Evl/zmé T'yéa‘ =

= Vme*+ %6”6mb Hpa®| 7 en®™ — %EWJmﬁ Ti1a€| V2 e18™ +
%Ew%ﬁ Toat| 1er™ =

3 _ 1
= Vme™+ éf"embe 2P hpa ey ™ — 157¢m67d6[7|6)\67de|3]a +
1 G 53 a
—§€"¢m’aweggé)\ﬂdew (5.328)

We can then make use of equation (G.47)), which relates the superspace connection to the Levi Civita connection
and other objects:

Q| = W(;fﬁc)s + ieka [eamebn Ton®| Nac + €™ €a™ Ton®| N
e T i+ 0l ea — Ol ma |10 + a6 (5.329)
Qk,éé _ (kLéC)é T ieka [eamebn Tm”d} Nde + € eq™ Tmnd| b
—e"ec” Tonn®| Naa + Q| Nea — ol nba] 5% + %eka Q| 5° (5.330)
with
Tn®| = em®en’ Tup?| + 2608 Tun®| + Y00 Tan| (5.331)

When we plug (5.329)-(5.331)) into (5.328), the gravitino transformation is completely determined. In particular,
our efforts to extract the Levi-Civita connection allows a comparison to the existing literature. Unfortunately
the obtained expression is very long, especially when we plug in the results for T,5% and T 45¢, so that a direct
comparison is not yet accessible.

5.A Bianchi identities for H

In this local appendix we will study explicitly all the Bianchi identities for the H-field. Note that in this section
all the underbars are replaced by a tilde, which was my former notation for the mixed connection.
Qb 0 0
0,7 =08 = 0 Q%7 0 |, Tap®=Tus"Tap",Tas") (5.332)
0 0 Q4°

Another change is that in this and the next local appendix, the symbol V 4@ is used with the meaning E,™ 9,,®
(as if ® would be a scalar field). As it is a compensator field, the definition V4® = E4M (0p,® — Q) makes
more sense, and we use this in the main text. The change was of course considered, when taking over the results
into our “collected constraints’-section.

The Bianchi identity of interest has the form

0 = VaHaaa+3Taa“Hcan (5.333)

The equations are independent on the precise form of €2, s.th. sometimes it is convenient to calculate with
the left-mover connection Q," = Q," (the latter defined via Vay2g = 0, see appendix |G| on page [149) and

sometimes we set ,° = €, (defined via V MYy = 0) The difference one-form between the left-mover

17Tet us show that the equations with different Q are equivalent:
VaHaaa + 3TAACHCAA‘Q_Q - <@AHAAA + 3TAACHCAA)’

= —3A4a°Hcaa +3A4a°Hcpaa =0

G-

where AABCEQABC,QABC <&
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and the rightmover connection is denoted by A,°, or more generally for all connection components (see again

appendix [G] on page [149):
Apva®? = Qua® — Qua® (5.334)

Every index A of the Bianchi identity can be either a, o or &. As all indices are antisymmetrized, we can
distinguish the cases by specifying how often each type of index appears. We denote in brackets first the number
of bosonic indices, then the number of unhatted fermionic indices and finally the number of hatted fermionic
indices:(#a,#a,#&). The sum has to add up to four: #a+#a+4#& = 4. Each number is in {0,...,4} which
has five elements. If #a is 0 there are five possibilities left for #a and #¢ is fixed. If #a is 1, there are four
possibilities left for #a, and so on. Altogether there are 5+4+ 3+ 2+ 1 = 15 distinct cases. However, some of
them are related by the symmetry between hatted and unhatted indices: (#a,#a,#&)—(#a,#&,#a). This
map has “fixed points” only for (#&,#a)e {(0,0),(1,1),(2,2)}. The effective number of equations we have
to calculate is thus 152—_3 +3 = 9. In the following we go through all these cases. We will frequently make
use of constraints on the background fields without refering to the corresponding equation numbers. All these
constraints are taken from the collected constraints in section on page Of course we will not make use
of those constraints which are marked as coming from the Bianchi identities and which we are just about to
derive (except when we have obtained it already).

o (0,4.0)aB~8 —((0,0,4)&B56):

0 = V[ang;] +3T[a,@‘CHC‘75]= (5.335)
=0

= 3Tap|“Hepys) = (5.336)

= 2o fa Yiysfec (5.337)

The last line can only reduce to the Fierz identity 'Y[dagﬂdl'r]é =0 fo

fdcgcbfeb = (f *g- fT)de Ol( Gge x Nde (5338)

The same for f: ) )
(f -9 ")ab o Gap (5.339)

That means, f and f are proportional to a Lorentz transformation. If nonzero, we can thus use the local Lorentz
transformation (acting only on the unhatted spinor indices) and the local scale transformation (likewise acting
only on the unhatted spinor indices) to fix f to unity and likewise use the hatted transformations to fix f to
unity:

> c Ale =0 .~ c
Tpp® = ap=Tap" (5.341)
2 2
= Hope = —§Vi5Gdc = —562(1)72577@ (5.342)
_ 2 d _ 2 20 _d
Hype = 375G = 3¢ Vapiec (5.343)

This constraint for Tog® is a constraint on the vielbein only. However, now it makes sense to relate Qare? to
Qpel via Vmes = 0. This implies on the other hand VM’Y:;B = *AMb“fygB!

18

0 L .8

5
= % v Fa s fee =

5 > - 5 3 - [ 0 e J
= 'Y(/LM'YZﬁ'Yb’Y'Y;&defEC + 'Yga'yil/a'Yb’y'Y,géfdpfec + 'VQO“/g—be’Y’Y;gdefec =

= (16)2 " fue + 2 (6065 + 7297, ) (8567 + 17 ) Fu Fec =
= (16)%fa"foc + 326405 fa®fec + 2+ 32008 f4° £6 =

= 16-18fu" fre — 32Gap e S + 32f1° fac =

= 16'20'facfbc_32cabfecfi

= facfbc (Tl()fecfec)Gab <
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o (0.3.1)aB~é <—((0,1.3)aB38):

!
0 = ViaHg,5 +3Tap Hepys =0 (5.344)
o (0.22)aB4:
!
0 = ViaHgss +3T1as “Hepes = (5.345)
X T Hc’yé + TQSCHcaﬁ = (5346)
X ’Yaﬁfa '7;,/[;fbc - ’Yg[gfbcvgﬁfac = (5347)
= '72,6'72,3 (facfbc - fbcfac) =0 (5348)
o (1.3.0)aB~d —((1,0.3)aB84d){|
!
0 = v[aHﬁ—yd] +3T[a,6\CHC|—yd] = (5.349)
3 3
= ;VieHpya + 5Tip1a" Hepya) = (5.350)
1 C C
= —§V[a(7;‘aﬂch) — Tig1d|cY fya) = (5.351)
= gy ((8a]<1> — Qa))Ged + Tcx]d|c ) = (5.352)
H/—/
aldle] 3 (Qa—0a®)Gac=—Tqjc|a+(Qa—0aP)Gac
= Ygylajeld (5.353)
Let us try to solve this constraint by contracting with v&7:
I « C (0% C « C
0 = Ya BW&BT’ydd + ’Yaﬁ’%yaTﬂC\d + Ya nyﬁ'yTadd = (5354)
= 16Tyqq + 2 (0567 +7ar") Thepa = (5.355)
= 18T, 410+ 27%a~"Tpela (5.356)
Taking the symmetric part in a, d yields
! c
0 = 9(Qy — V@) Gaa + 27 (a+" Thelja) (5.357)

Knowing already the symmetric par Ts(clay = %(Qg — 03®)Gq the above equation can be written in terms
of the yet unknown antisymmetric part of Tjg.|q (let’s call it Tﬁcd = Tpeja)):

0 = 9(Q — Vy®) Gaa + Y ar"Thela + 1 ar"Thela = (5.358)
9(2y -V ‘I’) ad + 7 ar"Toea +7°ar"Ta(ely + Y°ar"Tp(clay + 7 ar"Tpea = (5.359)
= 9 ) ad + Yea 'yﬂTﬁcd + ’ch’yﬁTﬂCa (5360)

9Remember Te(eld) = E(Qa — 0a®)Gcq. This can be reformulated as a condition only on the vielbein:

Tacla = (dEacGed +Qac“Ged
—_———
=Qac)|d

1
—Q =
2 a(cld)

1
= (dEe)oz(ch)e + iﬂach

Ta(c\d) = (dEe)a(ch)e +

1
= (dEe)a(ch)ﬁ = 75611(1) Gea
1
= (dE)a(c\d) = 75611(1) Gead
EA{A = eéE]\/[A
- 1
(dE)a(C\d) = a[a(beéGc]d - 56@80[@ Gea =0, ¢
20Note that taking the trace in a,d above, using
ch(a\ ’yﬁ’?dd)ﬁ(s = —2G [déc] s —9Gad5‘;

yields

!

0 = 9:5(Qy = Vy®) +7% 4 T5.% o
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By contracting with 7v*®,” and using

7ab7ca = 0, bc - 52 Yo — 0 ba + 5Z5g]l - 5Z6Z]I = (5.361)
= 87’ +9821 (5.362)

ab _ ab b_.a a_ b b_a a_ b a b a cb
Y Yed = 7 (;d+55’y d+5d’y c _6d’y c _(SC,Y d+6d561 _666d]1' (5.363)
77t = AP+ 0% — 830+ P40 4 Neay?® — 02601 + negntll (5.364)
=% = =" + 2007 e — 0y e — 6¢9%a — 1" Yae — meay™ + (20307 — 6805 — nean”®) 1 (5.365)

we arrive at (using —7.% T5% = 45 (Qa — Va®))

0 = 99,7 (Q = Vy @) Gag + (87°ca” +90565) T +
+ (_deb'Yca + 25;71)0 - 537(10 - 537bd - nba7d(: - ncdfyba + (25263 - 6553 - ncdnba) ll)a ﬁTﬁca (5366)
= g’mba’Y (QW — VW(I)) + S’chaﬁTgcd + 9Tabd +
+4574%" (s — V@) + 290 T5% — 4505 (R — Va®) — 420 T +
=0
—Yde aﬁTBCb - ’YbaaﬁTﬁda + 2Tabd - 52 Tacc _Tadb = (5367)
=0
= —54705,7 () — V@) — 4504 (Qy — Vo @) + 127,% +
+10’ybcaﬁTBcd + fybcaﬁTBcd — Yde aBTBCb (5368)

The antisymmetric part (in b,d) of this equation reads

0 = —547%4.7(Qy — Vo @) + 12T, + 1291 .. P T (5.369)

Taking now the antisymmetric part in a,d of (5.356)) yields

0 = 18Tfyad + '-Yca 'yﬁTﬁc\d - ’7cd’yﬁTﬁc\a = (5370)
= 18T’yad + fyca '\/BTﬁcd + Vca’yﬁTﬁ(dd) - fycd'yBTBca - ’ycd'yﬁTﬂ(c\a) = (5371)
= 18T 0 + 1 ar"Tped — Voar " Toea + Vaa~" (5 — 03®) = (5.372)
= 18T0a = 2Valer T5°|a) + Vdar" (25 — 05 ®) (5.373)
= 127[2|a:3j“ﬂ0|d] = 6X 18Tabd + 6’ydbaﬁ(95 — 854)) (5.374)
=0 = —607"4a" (2 — EyMON®) +6 x 20T, (5.375)
. 1
T, q = §’ybda7 (Q, — E,Mon®) (5.376)
-V, ®
or combined with the symmetric part:
1 1
Tg.* = —§Vg<1>56“ — 5%“57V7<I> (5.377)
and equivalently
™ooa 1 a 1 a ¢
TBC = —ivéfbéc — i’yc IB‘YV,?(I) (5378)
o (1.2.)aB%d —((1,1.2)&Bvd):
1 ~ ~
0 = ViaHgsa +3Tap " Hpjqa = (5.379)
1 1. . 1
= ZvﬁHa,Bd + §Tag€Héryd + §TfydeHeaﬁ = (5.380)
1 C 1 e_c
= —5Valapfed) = 3Taa"Vapfee = (5.381)
ce=Gee 1 ¢
Jeefee _—qe (V4@ = 5)Gea + Tyayc) (5.382)

3

—T5cla
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B2V a0, Qy=vs0 (5.383)
Likewise we have
Tep® =0, Qy,=V,® (5.384)
According to (5.285) and (5.284) or footnote ?? on page [?7, we now get in addition]]|
]Qa =0, = vacb\ (5.385)
and
VaP®e = 8PP (V0 - 05) (5.386)
Vo P = 8P (9, ® — Q) (5.387)
o (22.0)abaB —((2.0.2)abaB)P?
!
0 = Vg + 37w Hojag) = (5.388)
1 1 1
= §V[aHb]aﬁ + ETabCHcaB + §TaBCHcab = (5.389)
1 2 . 1 2 .
= 7v[a|(_77aﬁfc|b]) - 772,8 4 fdc - fd Hegp | = (5390)
2 3 2 3
fer=G. 1 3
= e (Tava = 5 Haa = 2 (0@ = ) Gyja) (5.391)
—_———
0 (5-389)
Using {575575P = 04 we get
3
Tab\d = §Habd (5392)
Likewise we have®)]
. 3
Topla = —5Haba (5.393)

21Tet us study in more detail the consequences of (|5.383)-(5.385). Remember the difference tensor Ag\? = QM — Qps. Using it,
we can seperate the connection in a tensorial part and a total derivative.

QE\?) = om® — Ey2 A, Q}?) =0u®+ Ez»fdA;D)7 gﬁj’) =0u® - %EM“AEID) + %EM‘S‘A,(QD)
or equivalently
D D - D D
AP =V, AP = Ve, Vae=1aY vie=-1aP
Only the mixed connection has a different dilatation for each block:

olD)sp 0 0
(D)B  _ D
Q4 = 0 %QSM)‘SQB (g) A
1A
0 0 105, 76aP
where Qg\?) can be either Qs\?), Qgg> or (Q)gb?). The scaling curvatures (field strengths) built from these scaling connections read
F(D> = BV A(D) T QA(D) F(D) - _FE d@ A(D) T dA(D)
MN = ZMT VN Aa MN“YAa 7, MN = MTVNAg T TuNTAL 7,
E)R?I)V = %(E[MaVN]ASxD) - T]\/INOLAExD)_E[MavN]A(dD> + TMN“AE,D))
D D D 5 D & A (D
ESD =3 (Bor Zna&” = Zaunead~Bp® Inad + Lun*a”) o
22Combinatorically [ab][o/3] arises 4 times in all 24 possibilities=> - = % S
23 As a consitency check, we compute ab&/3 explicitely with T’ (not T):
! le}
0 = ViaHygp) + 3Tab) Hejap) =
1 1, . 1. .
= Ev[aHb]dﬁ + ETab Hcd,@ + §Td3 Heap =
1 2 IS 1 2 A ~
= 3 Vial (375 eim) + Q’Yig (gTabCfdc + deHcab) =
fer=Gep 1 1 3
=T 3 Vial(Vg5Gepe) + g”iﬁ (Tab\d+ inab) =
1 . 1y, 3
= gv[a\ (vap)Gelo] + 37ap Tapja + 5 Haab + 2(0[a® — Qq)Gyja ) =

1 3
= g“’iﬁa (Tabld + EHdab +2(0[a® — Qa)Grja —Dla)d]|b] ) =
—_——

+Ab)|a =28 Gpld

1 " 3 ¢
= 572[3 (Tab|d + 5Hdab + 2(8[aq> - Q[a)Gb]d) ¢
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Both equations give for the difference

Agyla = —3Hapa (5.394)
o (2.1.1)abaf3:
! S 5
0 = V[aHbam + ST[ab| Hc‘am = (5.395)
5 C e
= Taa Hepg = Typ Hejala = (5.396)
fac:Gac 2~ 0~ ~ 2~ 5»«
= *57[a|a57’ e R gv[b‘g;ﬂﬂ Va]va = (5.397)
2. ~ 56 56
= 57[a|a67‘b] 53 (*,P +P ) =0 (5398)
o (3.1.0)abcd —((3,0,1)abcd):
! ~ -
0 = VieH,s + 3T "Hy 5 = (5.399)
1. 3~ & 3~ &
= —EVSHabC + iT[ab‘ HE|¢]3 — §T8[a\ HE|bc] = (5400)
O=0 1 3~ 2 3 e
= _ZVSHabC - iT[ab‘EH‘c]és - iTS[a\ He\bc] = (5401)
fab=Ga 1 - & 3 e
=T _ivsHabc - T[ab\e’)/‘c]é[s - 5 TS[(L‘ He\bc] (5402)
——
=0 (5.383)
VsHape = _4T[ab|é7‘c]és (5.403)
likewise VsHope = AT1pV|ces (5.404)
Contracting with 749 yields
56 4. . ja A4 e sa A4 e 56
ngabc7d6 = _g ab670557d6 - § caE’YbéS'YdS - gTbc€7a557d6 = (5'405)
4. - N 4 . . N .
= 75 abE (5;15‘? +70déa) - chas (555? +7bdéa) - (5406)
4 . . N N
3 be (535? + ’Yadéa) (5.407)
54 32~ 4. . - 4o~ .
Cc = d . ngabc,ycéa = 73 aba — g Cae,ybcéa — gTbca,yacéa 7‘? (5408)
e (4,0,0)abcd :
0= ViaHyeq) + 3T(ap)“Heleq) (5.409)
Define the bosonic vielbein as
em’® = Ep® (5.410)
and its inverse as
Ene” = 6. ea" # E" (5.411)
compare to E,,*E," + E,2*E4" = & (5.412)

Acting with the bosonic vielbeins on the above BI leads to the fact that

d{H' = 0 (5.413)
H! = B En™En™H, a0 = 5.414

mmm 1a2a3
= Em"Epn™E,"E, M E,ME,, N Hy, N,N, (5.415)

5.B The Bianchi identities for the torsion

The Bianchi identity for the torsion reads
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! ~ ~ ~ ~ ~ ~
OZVATAAD-"-QTAACTCAD—RAAAD = IAAAD (5416)

Again, depending on what is more convenient, the bosonic part of the connection ,° will be chosen to be either
Q,° or Qab Again A can be either a, a or &. For fixed upper index the numbers of their appearance as lower
index are #a, #a, #& € {0,1,2,3}. In analogy to the Bianchi identities for H, we have for each fixed upper
index 4 4+ 3 4+ 2 4+ 1 = 10 possibilities and thus altogether 30 possibilities. The symmetry between hatted and
unhatted indices relates the 10 with upper index & to the ten with upper index §. The remaining 10 have again
an internal symmetry with fixed points (#a, #&) € {(0,0), (1,1)}, so that there remain effectively 12242 =6
of those 10. Altogether we have thus effectively 16 equations to study.
o (delta]0,3.0)np,° < ((hdeltal0,0.3) 5. °).dim1:

!

0 = ViaTpy’ + 2Tjag “Trpy)” — Riapy’ = (5.417)
= 2o Loy’ ~Riaps’ (5:418)
=0
Riagy® = 0 (5.419)
Riaps)® = 0 (5.420)
Taking the trace yields
0 ; Rag,y’y + ZR.Y[QI@]'Y = (5.421)
= —9F. g +2Rr() (5.422)
(D) _ c g L2pWw
F. 3 = V[aﬂg] + "/QBQC = §R7[a5]7 (5.423)
and
D) & & e L 2pm) 4
FLY) = ViaQa +1550 = 5By, (5.424)
o (deltal0.2.1)0p5° —((hdeltal0.1,2), 5 %)dim1:
| . .
0 = ViaTpy® +2Tap " Ti15° — Riaps’ = (5.425)
2 2
= 3Tap Tes’ — gRa,[am" = (5.426)
fe=6¢ 2 on s 2
=" =3%8"%55P" — S Ralap’ (5.427)
24Let us show that both are equivalent. Remember first
Tarnm? bt Taena® aub_qr Apm
Ryma® b, Ryna® G, b, VAo + T Aca® — Ana“Anrc” G.b_q,b
fAAAD‘Qab:Qah - iAAAD b=yt =

= Va(Taa®+2aa%) —284a° (Tea® + Bpa)?) + dac? (Taa®+ Baa®) +
+2 (Taa® +24a°) (Tea® + Ajca)?) +
~(Vadaa+Tan"8ca® — DaaBact) +
~ (VaTan® +2TanTea®)| =
= Vadaa® 2844 (Tea® + D)) + Bac? (Tan® +Daa®) +
+2844° (Tea® + Aea?) +2TaaBjoa” +

- (614 Apa? +Tan“Acad - AAACAAcd) =0 o

Qab:ﬂub



CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE Il BACKGROUND

é ~ 56
R50p” = —7VaB87.45P

é o~ 56
Ryap” = —aplersP

Again taking the trace gives additional information on the Dilatation part

R’YQSJ_R‘YJOLE = 2’711567366:)/65‘7
(D) (D) _ pL) s _ o8
—8F, 2F7a Rise” = 27a5P°°7, 54
70 _ 4 855 (L) s
'ya v[’YQO‘] 7015,P Yedy — 7R76a
~(D) _ g ¢ 4 55~ 2 A1) 5
Y& _v['YQé‘] _ﬁ7 5P Yedy — 17 '7504
o (deltal0,1.2),5.% —((hdelta]0.2,1)5p.)dim1:
LG o 5 B 8§ R
0 = ViaTay +2T[aﬂ\ Te)” — Riapsy
2 e )
316 \Tmf Rasa® =0
=0 -0
o (delta0,0,3),5.% —((hdelta0.3.0)0p,)dim1:
& 8 5 FE & 6 _
0 = ViaTpy" +2Tap Tom" ~ fapy” =
=0
e )
2Tiap Teis)
. 56 Flerz
= 2% Te 5P 0

o (delta|1,2.0)0a." < ((hdelta]1.0,2), 5,5 dim3:

0

Taking the trace yields

= 5 2 5 5
ViaTpd® + 2T1ap " T’ — Riapa’ =

9 4 9
Tap"Te’ + 3 Tej)” Trip’® —5Rejap)” =
3 3 83

=0
9

7ﬁYaﬁETec5 -

2
7R(‘ (% d
3 foef]

3

Rc[aﬁ]6 ’Yozﬁejjec(S

> 5 e )
Roap” = Yap Tec

0 = Rcaéé - R05a6 -

Q’YcuseTec(s =

(L) &
Rcéa

17
= _?Fc(g) - - 27&561—’606

2 4
= VieQa) + Toa P = ——RE) 0 — ks

17 cda TEC

v[cQéz] + TcdD

e

2 pys 4
R _1777&31—'60

D:_ﬁ coé

ol

R

69

(5.428)
(5.429)

(5.430)

(5.431)

(5.432)

(5.433)

(5.434)

(5.435)

(5.436)

(5.437)

(5.438)

(5.439)
(5.440)

(5.441)

(5.442)
(5.443)

(5.444)
(5.445)

(5.446)

(5.447)
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o (delta1.11) 5 % —((hdeltal1.1,1)54.%)dim 3 P

! = 5 E 5 5
0 = V[OLTﬁC] + 2T[a,3| TE\c] - R[aﬁlc] = (5.448)
a=0 1l s 2 s 24 o s 1 5
= §Va T[ﬂc +§Tca€ TEB +§ Tca Teﬁ - g Rﬁca - (5449)
~—~— ~ ——
ﬁ,céspéé =0 - ,Ycﬁéc 58
1= /. 5 1. = 5
= 3Va (%@37755) - g%g;;vapé‘s = (5.450)
1 - _ R
= 3Va (.5) P* = (5.451)
= .z (%é - Qa) P = (5.452)
o (delta|1,0.2),5.% < ((hdelta]1.2,0)na.5)dim3;
L9 B 8 _
0 = V[aTﬁc] + QT[ ‘ TE\c] — R[dﬁc] = (5.453)
2¢ § e 8 4 - e 5
= 3V T +§ng T + 3Tea Top” = (5.454)
~——
FemsPoY
a=0 4, - A 84 85 5 4. ez 86 _
= 3(Vial® = Q) 55 P77 + V aP a4 + 37 3Tec’ + 3Tl 5P = (5.455)
4 v e T e 54 v o9 se | 2 e S
= <3 ((V[d@ — Q[d\)(Sc + Tac ) PoY + fva ’Y§c> Ve85 + g%mTec = (5.456)
2 . . - .
= g( - QT[d‘e|C PJ‘Y + v[d‘PévGeC)WTB],Y + 3'7 7—120¢s (5457)
——
Alalele
Contracting the above with v%8 (using wf‘@yiﬁ = —*yf‘éyéa —e 7 = —1661), we get
1 /= 5 .
5 58 aB _
Tec TG (V[d\P ch - 2T[d\d:c7) ) r}/lﬁ]&’)/e b - (5458)
1 5 &
- = <2Tad|c7?55 VdP“ch) 5P (5.459)
1 ~ A - N o
T606 = E (QTdd|cP55 - vdpdach) ’Yg@’YSB (5460)
L 1 £ - .
T = 15 (2ad PP = VaPGea) vigre? (5.461)
The product of y-matrices can be further expanded.
1 5 & &
L = o (anP™ = VaPGea) (5205% +4",5%) = (5.462)
1 ~ R . . (O . A
= (2T 46 P°* = VaP?%Gee + 2T a7, 5% P20 — VaP%y %) = (5.463)
——
—18T5,, (5-356)

Sele

25

VMAeas )Q:Q 2985 (Vi ® — Qur) Gae = eap (Vi ® — Qr)

VMAeas ‘Q:Q 29c 0 (Var® — Qr) — Anre®Faap =
= 725 [2(VM® = Qun) Gae — Aprea] =
5 L
= s [((VM‘I’ — Q) + <VM‘I> - QM)) Gge — Aﬁwid]
And equivalently
ﬁM’YCd@‘QZQ = V.48 (ﬁM‘P - QM)

Vneas| g, s [(Fme =)+ (Yue —0u)) Gae + A5, o
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The result should be antisymmetric in e and c¢. Remember now

VaPPeG,, = 8PP (V3 - O;) Geo = —16P%T
and we get
1 R . .. - 5 .
T = 1o (<16T5,,P% +16P% Ty, — VaP®y, ;%) =
1 s 86 & Db &

Using Té[e\c] = %’yec{’ (Q,\, — @a,q)) leads to

T..’ = % (%Pés -8 (Qﬁ - ﬁ,yq)) pa;s) 5.5
T..° = %6 (@77353 —8(Q — V) 7353) foes”

o (deltal2.1,0)nn.® < ((hdeltal2,0,1))gn.®)dim4:

L .
0 = ViaTig® + 2T b "Tel’ — Riavg’ =
1o s 4= B s 1 5
= gvaTbc + g b TE\C] - gRbca =
1o i, 4. . 1
= gvaTbca + 3 Tap T, + 3 alp)“Te’ — gRbca(s =
1. 4 . 4 . ;1
= gvozjjbcts + g Ta[b| T'e|c](s + g’y[b\ a')/lp’ye’ﬂc] é[sp66 - E}Bbca(s
——
=ofor O=0
Rbca(s = @aTbc(s 00 + 4;}d’[b| a’yP’Yé’?‘c] é3P56
Ria® = Vah’ oo T 431 65 P77 es P2

71

(5.464)

(5.465)

(5.466)

(5.467)

(5.468)

(5.469)
(5.470)

(5.471)

(5.472)

(5.473)

(5.474)
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lugging in Tp,.% = %6 (@:,7353 +8 (@.ﬂ) — Q:,) 77‘33> :ch";;yields

Rpea® = %6@(, (%,7?55 +8 (%,@ - Qﬁ) 7:5?5) Fpe Vs +
+1—16 (%P"Zs +8 (@.@ —~ Q.A,) 7353) 2(Vad — Qo) e 75 +

=0
+4716] an P 5P =
Lo o g5 8e (o o~ Noss . 8 (e o Ne s\ . s
- (wvav.ﬂ?“ + 76V (wb - Qﬁ) PP+ o (v@@ - Qﬁ) %P“) e Vg +
+470] ay P g 5P =

1o = 1 A
(1—6V:,Va7>‘” — $Ryac® PP 4 CRas PO 4
LB L (G 60 ) a5, +

Ao 5 \V7 v ) Ve Voc "5
+430) 2y P 6P
Taking the trace yields

1o = s 1 i1 5o
Y (Tﬁvﬁ VaP*  —2Ryac®P™ + SRase"P¢ +
8P8 (95D —s)
. S . - 3 .
FERIPS 4 2 (950 - 05) TaP ) ATy
8P (95D—s)

40 ay P77 5P

o (delta)2.0.1)45.° <> (hdeltal2.1 O)ah,.s,dim%:

0 = 6o’ + 2T " Tr1® — Riave)’ =

R

R

v ~ 5 4. e 2 e
B (Vc] d;ﬂ’”) + gTa[m T, 0% + gTbc T.a’ =
2

- s 4. ;
N 85 e 8 L |, e i
3TpasVaP? + 3 TapTel” + Hoc 3oap P

VaTpl

Wl Wl wl—= <

I
Q=0

26Taking at this point the trace leads to

0 = 8FP) 4 VsTy°

- &~ 85 _
@ + 49| 5‘77)%7@] P =
if Qa=0a® 1 & = 5~ 4 - é ~ 5
b Evsvﬁp&s’%c73 + 41 54 P7 ¥ g 26 P00 =
1 - = 5. 4 1 5. 4 1. 5856~ A 5 5. 5
= EV—?VGP&S’ch73 + §R5ﬁ557’€67bc73 + gRMéJP'SEWbc75 + 41 54 P7 5 26 P00

if Qq=0a®

Remember now Rv[dB]S = —"/ZA’ye.wsP‘ss and R,:,[am‘s = —A/gﬁfyeﬁspas and Vg P% = 877“8(8a‘1> —Qa) = 0.

B

! L 6pebs 4 o Llp  boses 4 - - 55
foone gl P e T 5 + g RaseP “Yoe 5 + AV 54 PV e8P0 =

1 5. 4 1 5. 4 1. 5856~ A 5 e~ 5
= —gRﬁsa‘spsa%c"g - ZRﬁ[ss]‘spsa%c"g + gRa—yéBP‘ss’ch73 + 4 5y P 7 26 P00 =

72

(5.475)

(5.476)

(5.477)

(5.478)

(5.479)
(5.480)

(5.481)

(5.482)

b S s a1 s . ;
= F;SE) POV 5 + —V§eTe4e PIEP 4. V5 + gRa—yé‘sP‘sE%cvg + 415y P7 g P00 =

—— 4

LV (Qe—0:®)

2

if Q=00 1 P P 15 .66~ 4 ~ 5. 5

S es 17557’557355 Foes Hexe  +=Ro5e PP F0c T 5 + 4 69 P7F) es P00 =
— 8

VocetGeeVb—GreVe

gr.sym
1 §——"—. sz 1 5 s 14 566~ A - - 5
= 17966 P% e PO 45 0e1se P05 P70 + g Ro3e PO 0e 75 + 431 6y P71 5P 7 0
—_———

=0
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or
o= 1 = P 2 4 . A 85
= 3 Vali®|,  ~3%s [( (Vie® — Qpep) + (VM‘I’ - Q[b\) )Gaig + Apaa |P*° +
= —_——— NI N——
=0 (5.385)) -0 " —3Hpeq
2. - 5 o 53
+§7[b‘ OAL[§V|C]IP&s - Hbce'y&[;lp&s = (5483)
1 2. - 5 R
= ngTbc(s + 37 a5 V1P + Hyeero P20 (5.484)
VaTo? = =2%345VId P — 3Hpee15 5P (5.485)
VaThe? = =293 asVigP® + 3Hpeer s PO (5.486)
o (delta]3,0,0),0.0 < ((hdelta]3.0,0) 5.0 )dim5:
0 X @[aTbC]é + 2T[ab|ETE‘C]5 — R[abc]6 = (5.487)
= ViaTog® + 2T “Tet) + 201009, 5P (5.488)
VieTot® = =3Hw|Teg® — 2Ta 75257 (5.489)
Vielvg® = 3HaupTeg® — 2T0ap ") s P° (5.490)
o (d|0,3.0)apy? <((d]0.0.3), 5" dim?:
0 = ViaToy® + 2Tjag Tom” ~ Riapy” = (5.491)
0
= Via (v fe?) + 29fnp fe T = (5.492)
fcd:5f d c d
=" Via (V1) ~27apTrie (5.493)
—_——— ——
-0 =0 (5.353)
o (d0.1.2) 5. <((d]0 2.1)5a,%)dim?:
! & 4. d 5 O d__p d
0 = V[QTB;A + 2T[a[3| TCH] — R[a,@‘y] = (5.494)
1e T d 2,- cr d
= g aT,@:Y + gT,@’AY Tca = (5495)
2 N
= gV@acTcad =0 (5496)
o (d1.2.0)0p." =((d[1.0.2) 5, dim1:
! S pod n d_ p d
0 = ViaTpg® + 20Lap " Trg? — Riapg” = (5.497)
2= T d 1 d 2~ Eq d 4 ErF d 1 d 2 d
= 7v[aTﬁ]c + 7cha[3 + 7Taﬁ TEC + 7Tc[a| TE\ﬁ} - 7Raﬁc - 7Rc[a,8] = (5498)
3 3 3 3 3 33 ,
=0
fel=s¢ 2 a1 i 2 . a4 e d_ 4 d 1 d
Q::Q gV[aTﬁ]c + g&’EJFg’Yaﬁ z}:’ +§T[a|c T|ﬂ]e + ggﬁ’ys‘m — gRaﬂc (5.499)
=0 SHec? =0
I € €
Rape’ = 2T’ + 395gHe + ATja) Tig). (5.500)
> d ! S mod e d & e d
Rape” = 2Vialp," =375 5He" + 41101 ). (5.501)
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taking the trace (using Rarnra” = =fF® Mol + RMMa ) yields

D !
10F) = 10V (2 — V@) (5.502)
ViaQs + TapQ = Via (@ - Vg®),  true (5.503)
o (d[1.1.1) g “diml:
0 = Vials +2T 2 ETwa— R 5 ¢ (5.504)
- [ee®Be] [aB| *Elc] [afBc] '
S O ST 30 I 020 JINC I =) S - S (5.505)
- 3 atge 3 B+ ca 3 ca EB 3 Bec Fa 3 afBc — .
QiQ 1 d 2 - P d 2 e d 2 d ]. d __
= gV@Tca + g caeTé,fi + gTﬁc e T §T[§C€T€a — gRaﬁic = (5.506)
1 2 . 2 . 1
= gv@Tcad - g'ycaﬁpﬂe’yzﬁ + gpycﬁdlpea’yga - gRa,@cd (5507)
Rop.! = VT = 29capP®vly + 27, 55P1ia (5.508)
Rape’ = VpTea” =27, 45P 18 + 29.85P°1la  (equivalent) (5.509)
1 1 ) ) ) .
Ralécd = —§VB(QQ - 8a(I))5g - 5’76da‘yvﬁ(9"/ - a’Y(I)) - Q’Vcaﬁpﬁe’ygﬁ + 2’7C@S,P€5’yga (5510)
Taking the trace of (5.508)) yields
IOF(D) Vs (Va® ~ Qa) — 2capP?7Z; + 2%337"'237& = (5.511)
= 5V5(Va®— Q) (5.512)
Va Q5 V5 = V3Va®— V50, (5.513)
~—~
Vﬁé
VaVa®—V3Vad = 27,5Ved =0 (5.514)

and does not give new information?’|

27From the untraced equation, we can also derive a further constraint on some spinorial components. Remember, we have

1 1
R 5 F(D) 5 (L) doec, 6 _
apy = ofap O TR e =

_ (D)s & o 1 d_ p(D)gd) e & _
- 2Faﬂ 'y (Rape’ -~ F17 56)” dv =
1 1 .
= ng(aaq’ - Qa)‘swd + N ( aBe 4+ V (Qa - 8a<1>)5‘ci) v d‘75 =

1

= Zva(aaé_aa)avu
1 d ~ e d ~ é.d 1 d\.c 6
+Z (**V (Q )5 - 5’7 aEV ( € *aafp) *Q’ycaB'PBs’}’éB +2’YCB87DE Yea 5Vﬁ(ﬂa 76a<1>)6C Y dy =
1 1 1 .
= ZVB(‘%‘I’ —0a)6,% — ng(Qa — 90 @)y g4 — 3 Yelat7%a° V5(Qe — 0:@) +

Fierz:]1+’y[4]’y[4]
1 < e d 5 §.d 1 d 5
+Z (‘2"/ca,673ﬁ6’7é3 + 276[937)5 Yea T 5V[3(Qa — 00 ®)d¢ ) Y any
Is this consistent with R4 [aﬁ]‘s = —YaB, _?37?53 ? At least for Qq = 0o ® we have
1 -
5 _ ~ d ~ d 5 ped
Rplay)” = 5 ('Yc leleV55 — %[a[s%w) TCaly) " P

which suggests an identity of the form

L. d _ = d 5 2 . s
5(’Yc[a\e’YgB_'Yciasﬂ/g[ao'ycdh] = —Yav9,ps% ©
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o (d|2.1.0)0n." <((d]2.0.1)4p.")dim3:

0 = ?[a vbc]d + QT[ab‘ETE‘C]d — R[abc]d = (5.515)
leg 74, 2¢ nood 4= Br a4, 27 B 4 27 d
= 3 aTpc” + gV[b Tya +§Ta[b| Tr)q” + gTbc Tea" — gRa[bC] = (5.516)
=ofor O=0
=0 1. 4. L. 2 2 .
= —§VaHbcd - gir(,([bf:r@_.Md + gTbﬁga —~ gRa[bC]d (5.517)
. 3. ~ .
Ra[bc]d = 71vaHbcd + 27[1)\ QSPJETﬂc]d + Tbc€7£la (5518)
3 - 5 .
Rapg® = Zvdecd + 2y, asP Tl + Tt e (5.519)
Taking the trace yields
9 . 1. P o ,
§Fz§£))) - §R51€.¢)bd = AasPPTe — FeasPPTe + T in = (5.520)
= 5YasP® (Qé - 8@‘5) ~ Feas PO Tep" + The*7in (5.521)
with Fo(zi)) = @[a(’)b]d) + TabCQC = Tabc (QC — 8C(I)) =M aﬁ’PB'AY (Q:y — 8.9(1))
1 B85 (A ~ Séq ¢ e c 1A(L)d
0= SAapP (95— 05®) = FoasP™Teas” + The e + S B, (5.522)
Use now the explicit expressions for the remaining torsion components
1. VN 1._ & /A 1. e o B
0 = §7ba,87)&y (ny - 3—9@) - 5%«;5735 (e — 0:2) — 5%‘157’5 %% (Q5 — 05) +
1 (o e oo N 4. o lag
35 (V4P = 8(Qy — 052)P%2) Foee M7 + 3 Rty =
1o wer 5o , 1z
= 15 VAP e e + nglLd)bd
. 1~ . .
R, = gvﬁpee%cépyﬁa (5.523)
1 €~ c
Rfiz)bd = gv'ypss%ce'y%&d (5.524)
o (d]3,0.0)4n.%dim2:
, L . y .
0 = VTig®+ 27w " Trg® — Rapg® = (5.525)
0=0 .
=" VieTog® + 2T Tejg® + 2T1ab) T2 — Riave” = (5.526)
3 d 9 e d € d d
= §V[aHbc] +§H[ab\ He g% + 2T10p* T ) — Riabe) (5.527)
R = SV uHyg + 2 Hiy) Hop® + 2T 0" Topr® 5.528
labe] = 5 Viato] + 5 Hlabl Helc) + 210ab| Ll (5.528)
A 3a 9 PO
d d d d
Riapg® = —§V[aHbC] + §H[ab\€He\c] + 2T[ab‘€Té‘c] (5.529)
Taking the trace yields
ro 1 d e d 20 ep d
0 = §VdHab + 3 Hyja| " Hepy) +§Tab Ted” +
—_——
=0
4 8 (D), 2 &
5 ol e — 5Fa ) + 3R = (5.530)
1 10 4 8
- 5vdHa,,d + 5 T (2 — 0:2) + gTd[afTE“,]d - §F55> (5.531)
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with ') = V1, V@ + T Q0 = Ty (2 — 0,®)

H(L)
Rd

[ad]

4 likewise...

BEE
~ Rl = 7 VaHa" + TuY (g = 0 ®) + 2 Ty

76

(5.532)



Part 111

Derived Brackets in Sigma-Models

"Don’t make a break, make a bracket" (Kathi S.)
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Introduction to the Bracket Part

This part of the thesis describes the content of [14]. See also [56] for a short article which contains some of the
basic ideas.

There are quite a lot of different geometric brackets floating around in the literature, like Schouten bracket,
Nijenhuis bracket or in generalized complex geometry the Dorfman bracket and Courant bracket, to list just
some of them. They are often related to integrability conditions for some structures on manifolds. The vanishing
of the Nijenhuis bracket of a complex structure with itself, for example, is equivalent to its integrability. The
same is true for the Schouten bracket and a Poisson structure. The above brackets can be unified with the
concept of derived brackets [57]. Within this concept, they are all just natural extensions of the Lie-bracket of
vector fields to higher rank tensor fields.

It is well known that the antibracket appearing in the Lagrangian formalism for sigma models is closely
related to the Schouten-bracket in target space. In addition it was recently observed by Alekseev and Strobl
that the Dorfman bracket for sums of vectors and one-forms appears naturally in two dimensional sigma modelaﬂ
[58]. This was generalized by Bonelli and Zabzine [60] to a derived bracket for sums of vectors and p-forms
on a p—braneﬂ These observations lead to the natural question whether there is a general relation between
the sigma-model Poisson bracket or antibracket and derived brackets in target space. Working out the precise
relation for sigma models with a special field content but undetermined dimension and dynamics, is the major
subject of the present part of the thesis.

One of the motivations for this part of the thesis was the application to generalized complex geometry. The
importance of the latter in string theory is due to the observation that effective spacetime supersymmetry after
compactification requires the compactification manifold to be a generalized Calabi-Yau manifold [61] 59| 4 [3
62, [63]. Deviations from an ordinary Calabi Yau manifold are due to fluxes and also the concept of mirror
symmetry can be generalized in this context. There are numerous other important articles on the subject, like
e.g. [64, 65 [66] 67, 68 [69] [70, [T, [72], 73] and many more. A more complete list of references can be found
in [63]. A major part of the considerations so far was done from the supergravity point of view. Target space
supersymmetry is, however, related to an N = 2 supersymmetry on the worldsheet. For this reason the relation
between an extended worldsheet supersymmetry and the presence of an integrable generalized complex structure
(GCS) was studied in [74] (the reviews [75], [76] on generalized complex geometry have this relation in mind).
Zabzine clarified in [77] the relation in a model independent way in a Hamiltonian description and showed that
the existence of a second non-manifest worldsheet supersymmetry @, in an N = 1 sigma-model is equivalent to
the existence of an integrable GCS 7. It is the observation that the integrability of the GCS J can be written
as the vanishing of a generalized bracket [7,J]z = 0 which leads to the natural question, whether there is a
direct mapping between [J, J]5z = 0& J? = —1 on the one side and {Q,, @,} = 2P on the other side. This
will be a natural application in subsection of the more general preceding considerations about the relation
between (super-)Poisson brackets in sigma models with special field content and derived brackets in the target
space.

A second interesting application is Zucchini’s Hitchin-sigma-model [78]. There are up to now three more
papers on that subject [79), 80, 81], but the present discussion refers only to the first one. Zucchini’s model is a
two dimensional sigma-model in a target space with a generalized complex structure (GCS). The sigma-model
is topological when the GCS is integrable, while the inverse does not hold. The condition for the sigma model
to be topological is the master equation (S5,S) = 0. Again we might wonder whether there is a direct mapping
between the antibracket and S on the one hand and the geometric bracket and 7 on the other hand and it will
be shown in subsection [7.I] how this mapping works as an application of the considerations in subsection In
order to understand more about geometric brackets in general, however, it was necessary to dive into Kosmann-
Schwarzbach’s review on derived brackets [57] which led to observations that go beyond the application to the
integrability of a GCS .

The structure of this part of the thesis is as follows: The general relation between sigma models and derived
brackets in target space will be studied in the next section. The necessary geometric setup will be established
in Although there are no new deep insights in the unconventional idea to extend the exterior derivative
on forms to multivector valued forms (see and ) will provide a tool to write down a coordinate
expression for the general derived bracket between multivector valued forms which to my knowledge does
not yet exist in literature. The main results in section [6] however, are the propositions 1 on page and 1b
on page for the relation between the Poisson-bracket in a sigma-model with special field content and the
derived bracket in the target space, and the proposition 3b on page [94] for the relation between the antibracket
in a sigma-model and the derived bracket in target space. Proposition 2 on page is just a short quantum
consideration which only works for the particle case. In section [7] the propositions 1b and 3b are finally applied
to the two examples which were mentioned above.

Another result is the relation between the generalized Nijenhuis tensor and the derived bracket of J with

!n [58], the non-symmetric bracket is called ’Courant bracket’. Following e.g. Gualtieri [59] or [57], it will be called "Dorfman
bracket’ in this thesis, while *Courant bracket’ is reserved for its antisymmetrization (see (B.31) and (B.38)). ¢
2The Vinogradov bracket appearing in [60] is just the antisymmetrization of a derived bracket (see footnoteon page . o
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itself, given in . The derivation of this can be found in the appendix on page In addition to this,
there is a new coordinate form of the generalized Nijenhuis tensor presented in on page which might
be easier to memorize than the known ones. There is also a short comment in footnote [3| on page on a
possible relation to Hull’s doubled geometry.

This part of the thesis makes use of only three of the appendices. Appendix[A]on page summarizes the
used conventions, while appendix [C] on page [I18)is an introduction to geometric brackets. Finally, appendix [B]
on page provides some aspects of generalized complex geometry which might be necessary to understand
the two applications of above.



Chapter 6

Sigma-model-induced brackets

6.1 Geometric brackets in phase space formulation

In the following some basic geometric ingredients which are necessary to formulate derived brackets will be given.
Although there is no sigma model and no physics explicitly involved in this first subsection, the presentation
and the techniques will be very suggestive, s.th. there is visually no big change when we proceed after that with
considerations on sigma-models.

6.1.1 Algebraic brackets

Consider a real differentiable manifold M. The interior product with a vector field v = v*8; (in a local
coordinate basis) acting on a differential form p is a differential operator in the sense that it differentiates with
respect to the basis elements of the cotangent space

va(T) = T ”kﬂgll...m,‘_l (:,C) ™A™ = vk a(ik) (pml...mrdxml e dEmT) (6'1)
Let us rename?]
c" = & (6.2)
b, = 0, (6.3)
The vector v takes locally the form v = v™b,, and when we introduce a canonical graded Poisson bracket
between ¢ and by, via {b,,,c"} =7 , we get
wp = {v,p} (6.4)

Extending also the local x-coordinate-space to a phase space by introducing the conjugate momentum p,,
(whose geometric interpretation we will discover soon), we have altogether the (graded) Poisson bracket

{bm, Cn} = 61771'7, = {Cn7 bm} (65)
{pm, 2™}y = o5 =—{2",pm} (6.6)
) ER w9 0 )

and can write the exterior derivative acting on forms as generated via the Poigson-bracket, by an odd phase-space
function o(e, p)

o o(c,p) = c*py (6.8)

{00} = & {prs pmym, (@)} €™ e = Gl (6.9)

The variables ¢™,b,,, 2™ and p,, can be seen as coordinates of T*(IIT' M), the cotangent bundle of the tangent
bundle with parity inversed fiber.

INote, that a convention is used, were the prefactor % which usually comes along with an r-form is absorbed into the definition

of the wedge-product. The common conventions can for all equations easily be recovered by redefining all coefficients appropriately,
€.8. Pmy..m, — FTPmy..mg - <&

2The similarity with ghosts is of course no accident. Tt is well known (see e.g. [82]) that ghosts in a gauge theory can be seen
as 1-forms dual to the gauge-vector fields and the BRST differential as the sum of the Koszul-Tate differential (whose homology
implements the restriction to the constraint surface) and the longitudinal exterior derivative along the constraint surface. In that
sense the present description corresponds to a topological theory, where all degrees of freedom are gauged away. But we will not
necessarily always view ¢ as ghosts in the following. So let us in the beginning see ¢™ just as another name for de”. We do not
yet assume an underlying sigma-model, i.e. b,, and ¢™ do not necessarily depend on a worldsheet variable. <

80



CHAPTER 6. SIGMA-MODEL-INDUCED BRACKETS 81

Interior product and “quantization”

Given a multivector valued form K®**) of form degree k and multivector degree k', it reads in the local
coordinate patch with the new symbols

K(k,k’) — K(kﬁk/)(l’, c, b) — Kmlmmknl...n,k/ (.I') ... cmkbnl . bnk/ = Kmmmn...n (610)

The notation K(z,c,b) should stress, that K is locally a (smooth on a C* manifold) function of the phase
space variables which will later be used for analytic continuation (z will be allowed to take c-number values of
a superfunction). The last expression in the above equation introduces a schematic index notation which is
useful to write down the explicit coordinate form for lengthy expressions. See in the appendix [A]at page [10§ for
a more detailed description of its definition. It should, however, be self-explanatory enough for a first reading
of the thesis

One can define a natural generalization of the interior product with a vector :, to an interior product
with a multivector valued form 15 acting on some r-form (in fact, it is more like a combination of an interior
and an exterior product — see footnote [6| on page [122] -, but we will stick to this name)

T — r ’
ZK(k,k/)p( ) (k/)! ( L ) -Krm...ml1 i plk/.“llm...m = (6.11)
—_———

r

= —Kvmlv..mknlmnk/Cm1 s {bnw { ) {bnkl ) p(,)}}} (612)

n Nyr M m 8 a T
Km0 €M S gl (6.13)

It is a derivative of order k' and thus not a derivative in the usual sense like 1,,. The third line shows the reason
for the normalization of the first line, while the second line is added for later convenience. The interior product
is commonly used as an embedding of the multivector valued forms in the space of differential operators acting
on forms, i.e. K — 1, s.th. structures of the latter can be induced on the space of multivector valued forms.
In the interior product 15 can be seen, up to a factor of 7/i, as the quantum operator corresponding
to K, where the form p plays the role of a wave function. The natural ordering is here to put the conjugate

momenta to the right. We can therefore fix the following “quantization” rule (corresponding to b = %%)
o "
KFE) = (2) LR (k') (6'14)
_ s
Wlth ZK(k,k’) — Km...mrn.“nk/ (615)

acnl e acnk'

The (graded) commutator of two interior products induces an algebraic bracket due to Buttin [83], which is
defined via

[rcennstpaan] = Yk, (6.16)

A short calculation, using the obvious generalization of 97 (f(z)g(x)) = >, < Z ) O f(2)07Pg(x) leads to

KL = ZZZ(;>L =tkAL T Zzz;f)L (617)

p=>0 p>1

where we introduced the interior product of order p

/ P
O L T (6.18)

bty = p dcnt - - - e
1 L v
= —K 6.19
L 9b, -0y, e - Dt (6.19)
’ ’ g
= Zggk,k’)L(l’l) — (_)(k? 7p)(l7p)p! ( ]; ) ( Zl) >Kmmm'n...'nll...llepmllmmmn.,.n (620)

which contracts only p of all k' upper indices and therefore coincides with the interior product of above when
acting on forms for p = k&’ and with the wedge product for p = 0.

Z&?(,)cyk,)p = Upehi) P, z(Ig)L =KAL (6.21)
Using (6.17) the algebraic bracket [, | defined in (6.16)) can thus be written as
[K(k,k/)’L(lJ’)]A _ ZZ%)L _ (_)(kfk’)(l—l’)Z(LP)K (6.22)
p=t =[K.L]A
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(6.20) provides the explicit coordinate form of this algebraic bracket. From (6.19) we recover the known fact
that the p = 1 term of the algebraic bracket is induced by the Poisson-bracket and therefore is itself an algebraic
bracket, called the big bracket [57] or Buttin’s algebraic bracket [83]

1 k) (1=1") (1 (6.19)
KOf = WL (e mg D gy L (6.23)
(7)(]6',1)([71)]{:/1 Km,,,mn.“nllLllm...mn“.n + (624)

_(_)(kfk’)(lfl’) (_)(l/,l)Ucfl)l/k Lm...mnmnllKllm...mnmn

For k' = 1" = 1 it reduces to the Richardson-Nijenhuis bracket for vector valued forms. In [57] the big
bracket is described as the canonical Poisson structure on A*(T @ T*) which matches with the observation in
. The bracket takes an especially pleasant coordinate form for generalized multivectors as is presented in
equation on page m

The multivector-degree of the p-th term of the complete algebraic bracket is (' +1' — p), so that we
can rewrite in terms of “quantum”-operators in the following way:

{K’(k,k’)’ﬁ(l,l/)} _ Z(Z‘)p[m): (6.25)
- (Eneg ()

The Poisson bracket is, as it should be, the leading order of the quantum bracket.

6.1.2 Extended exterior derivative and the derived bracket of the commutator

In the previous subsection the commutator of differential operators induced (via the interior product as em-
bedding) an algebraic bracket on the embedded tensors. Also other structures from the operator space can be
induced on the tensors. Having the commutator at hand, one can build the derived bracket (see footnote
on page of the commutator by additionally commuting the first argument with the exterior derivative.
Being interested in the induced structure on multivector valued forms, we consider as arguments only interior
products with those multivector valued forms

rcsare] = [[or,d] L] (6.27)

One can likewise use other differentials to build a derived bracket, e.g. the twisted differential [d+ H,...] with
an odd closed form H, which leads to so called twisted brackets. Let us restrict to dfor the moment. The derived
bracket is in general not skew-symmetric but it obeys a graded Jacobi-identity and is therefore what one calls
a Loday bracket. When looking for new brackets, the Jacobi identity is the property which is hardest to check.
A mechanism like above, which automatically provides it is therefore very powerful. The above derived bracket
will induce brackets like the Schouten bracket or even the Dorfman bracket of generalized complex geometry
on the tensors. In general, however, the interior products are not closed under its action, i.e. the result of
the bracket cannot necessarily be written as 25 for some K. An expression for a general bracket on the tensor
level, which reduces in the corresponding cases to the well known brackets therefore does not exist. Instead
one normally has to derive the brackets in the special cases separately. In the following, however, a natural
approach is discussed including the new variable p,,, introduced in , which leads to an explicit coordinate
expression for the general bracket. This expression is of course tensorial only in the mentioned special cases,
that is when terms with p,, vanish. This is not an artificial procedure, as the conjugate variable p,, to z is
always present in sigma-models, and it will in turn explain the geometric meaning of p,,.

The exterior derivative dacting on forms is usually not defined acting on multivector valued forms (otherwise
we could build the derived bracket of the algebraic bracket by d without lifting everything to operators via
the interior product). But via {o, K (k’k/)} we can, at least formally, define a differential on multivector valued
forms. The result, however, contains the variable p, which we have not yet interpreted geometrically. After
extending the definition of the interior product to objects containing p,,, we will get the relation [d, 1x] = 1{6 K},
i.e. {o0,...} can be seen as an induced differential from the space of operators. For forms w(@, this simply reads
[d, 2] = td,. The definition dK = {0, K} thus seems to be a reasonable extension of the exterior derivative to
multivector valued forms. Let us first provide the necessary definitions.

Consider a phase space function, which is of arbitrary order in the variable py

TGO (@ e,b,p) = Ty ™ 1R (2) €1 €™l b, DRy - DRy (6.28)

T is symmetrized in k; ... kys ,while it is antisymmetrized in the remaining indices. Using the usual quantization

rules b — %% and p — %8% with the indicated ordering (conjugate momenta to the right) while still insisting
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on (6.14) as the relation between quantum operator and interior product, we get an extended definition of the

interior product (6.12}6.13):

i t/+t// . , .

(et ') = (ﬁ) T(t7t ) = (629)
at/ at//
= er m nl...nt/kl...ktu mi o, Mt — 6.30
1...M¢ c c Ocnt ... acnt/ axkrl . 63&’%” ( )
ZT(t,t/,t”)p(r) = Tml‘..mtnlmntlkllllkt” ¢ g™ {bn17 { T {bnt/ ’ {pkla { ) {pkt” ) P(T)}}}}}} = (631)
r 1 Nyt R1...Kyrr at” s

= (t/>| ( t/ ) Tm...mnl.“ (" k k't mpgl,)/nlmm (632)

The operator 17 will serve us as an embedding of T' (a phase space function, which lies in the extension of the
space of multivector valued forms by the basis element py) into the space of differential operators acting on
forms. Because of the partial derivatives with respect to x, the last line is not a tensor and 7T in that sense not a
well defined geometric object. Nevertheless it can be a building block of a geometrically well defined object, for
example in the definition of the exterior derivative on multivector valued forms which we suggested above.

Namely, if we deﬁn
) = fo K] (6.33)
== 8'rn[(rnmnn - (*)kik,k/ : Kmmnnkpk (634)

We get via our extended embedding (6.32) the nice relation [

acp = [d,u] p = (2 L (6.35)
with  Lrp = (k’)!(k,r_1 )Kmmmll“'lk/(i)lk,plk,1mllmmm+
() O 1 i (6.36)

L i p is the natural generalization of the Lie derivative with respect to vectors acting on forms, which is given
similarly £,p = [ty,d]p. As 1k is a higher order derivative, also Lk is a higher order derivative. Nevertheless, it
will be called Lie derivative with respect to K in this thesis. Let us again recall this fact: if p; appears in a
combination like dK, there is a well defined geometric meaning and dK is up to a sign nothing else than the Lie
derivative with respect to K, when embedded in the space of differential operators on forms. The commutator
with the exterior derivative is a natural differential in the space of differential operators acting on forms, and
via the embedding it induces the differential d on K. It should perhaps be stressed that the above definition
of dK corresponds to an extended action of the exterior derivative which acts also on the basis elements of the
tangent space

d(am) = Pm (637)

This approach will enable us to give explicit coordinate expressions for the derived bracket of multivector valued
forms even in the general case where the result is not a tensor: In the space of differential operators on forms,
we have the commutator [1,7r] and its derived bracket [15c,a2n] = [[1x,d], 2], while on the space of
multivector valued forms we have the algebraic bracket [K, L]~ and want to define its derived bracket up to
a sign as [dK, L]®. To this end we also have to extend the definition of +(P) which appears in the

3This can of course be seen as a BRST differential, which is well known to be the sum of the longitudinal exterior derivate plus
the Koszul Tate differential. However, as the constraint surface in our case corresponds to the configuration space (px would be the
first class constraint generating the BRST-transformation), it is reasonable to regard the BRST differential as a natural extension
of the exterior derivative of the configuration space. ¢
4The exterior derivative on forms has already earlier been seen to coincide with the Poisson bracket with o, which can be
used to demonstrate (6.35]):
daxlp = d(xp) — (—)Flg(dp) =
= {0} — (1) ¥l {00} =

-6.12
— 67n1 K7IL2...TTLk+1n1'.'nk/ ¢l MR {b’VL17 {bn27 { ) {bnk/ ) p(T>}}} +

+(7)kk'l . Kml..-mknlmnkl cmt... Mk { {O’ bnl}» {bn2’ { o ’{bnk' ’p(T)}}} } P °

Pny
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explicit expression of the algebraic bracket in (6.22) to objects that contain pg. This is done in a way that the
old equations for the algebraic bracket remain formally the same. So let us define]

(p)

ZT(t,t',t”) =
u t t" o ke ke or
= Tm mn...nzl...zq s g1 UpRL Ryl g - . , _ _ _ 6‘38
;( q > ( p—q > Phv Phurpia i Gndmin L O (0o
1 P P 31’ oP
> < g ) L op op.. 0b,. ...0b;, dci .. 0c 0wt ... 0w (6.39)
o ip + - ODigr 0 o Obyy

For p =t/ +t” it coincides with the full interior product 1} zgf(:ﬁ,t),/) = 1p,er 0y . In addition we have with

this definition (after some calculation) zg‘}) = [d,zg,? )} and in particular
1 = [d, 2] (6.40)

and the equations for the algebraic bracket (6.16)-(6.22)) indeed remain formally the same for objects containing
p”’l/

[opceramy, bp@irim] = Z[T,T]A (6.41)
Ty = Z Lo (6.42)
p=>0
[11()57t/125//)7 T({,El,{”)]A _ Z ’Lg‘?)T _ (_)(t—t’)(f—f’)zg)T (643)
p>1 g
E[T,T](Ap)
1,718, = {TT} (6.44)
which we can again rewrite in terms of “quantum”-operators (6.14) as
- ’ =< ’ P /.,\A
[T(k,k ), T )} — Z E [T, T} = (6.45)
po1 \¢ (p)
A {/T AN? 1 1A
- (- T,T} n () {T, T} 6.46
( 7 ) Z 7 (p) ( )

p>2

It should be stressed that — although very useful — +(P) is unfortunately NOT a geometric operation any longer
in general, in the sense that zfﬁgL and also z(Lp)dK do not have a well defined geometric meaning, although dK

and L have. 1gxp and z&?)L are in contrast well defined. zg;gL, for example, should rather be understood as a

building block of a coordinate calculation which combines only in certain combinations (e.g. the bracket [, ]2)
to s.th. geometrically meaningful.
We are now ready to define the derived bracket of the algebraic bracket for multivector valued forms (see

footnote |3 on page [121))

[KE9,L00) = [KaD)® = ~(0) ¥ 4K, 1 - (647
= S ()L 4 ()RR R ) g — (6.48)

p>1
_ Z _(_)kfk zfﬁgl} + (_)(k—k +1)(1—1 +1)(_)lfl Zgi)K + (_)(kfk VA=) +k—k d(z(f)K) (6.49)

p>1

The result is geometrical in the sense that after embedding via the interior product it is a well defined operator
acting on forms. This is the case, because due to our extended definitions we have for all multivector valued
forms the relation

[['LKad]vZL] = Z[K(k,k’)’L(l.l’)] (6.50)

and the lefthand side is certainly a well defined geometric object. A considerable effort went into getting a
correct coordinate form for the general derived bracket and for that reason, let us quickly have a glance at the

! 1 ! 1
5Notethatzj§:0<tq><pt_q):<t;t ) o
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final result, although it is kind of uglyﬁ

1/ ’r_ _ l k/ n...n n...n
K,L] = Z_(_)k k (_)(k p)(l p)p! ( » ) ( )amemm ll“'llep‘..llm...m ey

p>1

+()k:+k'lJrk'+p+pl+pk'p!( k ) < I >ame.Mkpmkln.,,anmmkl..Jcpn...nJr

’ ,/ ’ k l/ n..n n...n
—(_)k B p' ( p— 1 > ( ) 8le...mkp71..4k1 Lm...mklmkp_ll 4

N —p)(I—p+1) .y l k' K n.nlilp kg T n.n
+( ) b p— 1 m..m ktl,_1...lim..m +

, ’
_"_(_)(k —1—P)(Z—P)p!(k/ _p) ( Zl) > ( ]; )Kmmmn...nll...lpkLlpmllmmmn...npk +

lA
7(7)’6 l+1+pk +lpk/ pl ( ]]j > < ; >Km...mkp...klnmnkLm...mklmkpnmnpk- (651)

The result is only a tensor, when both terms with p; on the righthand side vanish, although the complete
expression is in general geometrically well-defined when considered to be a differential operator acting on forms
via 2, 7) as this equals per definition the well-defined [[1x,d,2z]. The above coordinate form reduces in the
appropriate cases to vector Lie-bracket, Schouten-bracket, and (up to a total derivative) to the (Frohlicher)-
Nijenhuis-bracket. If one allows as well sums of a vector and a 1-form, we get the Dorfman bracket, and also
the sum of a vector and a general form gives a result without p.

Due to our extended definition of the exterior derivative, we can also define the derived bracket of the
big bracket (the Poisson bracket) via

’ ’ A !
K(k,k )7d L(l,l ) 0 = _( )k k [dK L](l) _ (652)
= ()" {ax 1} (6.53)
which is just the p = 1 term of the full derived bracket with the explicit coordinate expression
[K;d L}(Al) — k— k-’ )(k —1)(l— 1)lk 8 Km mn nllLllm mn n +
k+k' l+lkl 8 Km mklnanm...mklnmn +

kl+ll (%K ...mnanm...mlnmn‘F

—(=)
—(=)
—(=)
(=)
(=)
—(=)

+ (k _1)lk Km‘“mn...nkakmemn...n_|_
+ k'(1-1) k’/ )lk_/Km mn...nllk’Lllm mn...npk_|_
MR LR Ko e, ™ ™ L™ ™ ™ i (6.54)
A _ !’
[K,L] = [KaLlg — (=) [dr, L], (6.55)
p>2

Like the big bracket itself, also its derived bracket takes a very pleasant coordinate form for generalized multi-
vectors (see (B.79) on page[115). In contrast to the full derived bracket, we have no guarantee for this derived
bracket to be geometrical itself.

6The building blocks are

’ /! . .
74552[/ = (,)(k —P)(Z—P)p! ( ]; ) < }l) ) amemmn.“n'Ll.“zpLipmilmmmnmn +
_K S _1— _ k' l i1
_(_)Ic k (_)(k 1—p)(l p)(p+ 1)!( 1 ) ( » )Kmmmn“.nzl“,zpqu_/pmilmmmnmnpk +
_(_)kfk’(_)(k’,P)(l P+1) ( ) < ) mnmnilmipilipaz'pLip,l...ilm...mnmn
, ’
Z(;’)dK — (_)(l —P)(k+l—P)+Pp!( ) ( l ) m™ .mnkq.. kpakapmklm.”mnmn +
1%
) m™ kL pfllalKkp,l4.Ak1mmm"”'” +

p

)t =p)(k+1-p)
H (E ) (
k
p

p
,(7)k7k’( )(l —p)(k=p) ' . pl< ) < )Lm ™ anlmkpKkp...klm...mnmnkpk o
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Let us eventually note how one can easily adjust the extended exterior derivative to the twisted case:
[d+ HA s ZK] = ldyK (656)
dgK = dK +[H,K]® =dK — (—)*" Y PH (6.57)

p>1

with H being an odd closed differential form. It should be stressed that d+ HA is not a differential, but on
the operator level its commutator [d+ HA,...] is a differential and thus the above defined dy is a differential
as well.

6.2 Sigma-Models

A sigma model is a field theory whose fields are embedding functions from a world-volume X into a target
space M, like in string theory. So far there was no sigma-model explicitly involved into our considerations.
One can understand the previous subsection simply as a convenient way to formulate some geometry. The
phase space introduced there, however, is like the phase space of a (point particle) sigma model with only one
world-volume dimension — the time — which is not showing up in the off-shell phase-space. Let us now naively
consider the same setting like before as a sigma model with the coordinates " depending on some worldsheet
coordinatesE] ot. The resulting model has a very special field content, because its anticommuting fields ¢™ (o)
have the same index structure as the embedding coordinate ™ (c). In one and two worldvolume-dimensions,
c™ can be regarded as worldvolume-fermions, and this will be used in the stringy application in In general
worldvolume dimensions, ¢™ could be seen as ghosts, leading to a topological theory. In any case the dimension
of the worldvolume will not yet be fixed, as the described mechanism does not depend on it.

A multivector valued form on a C'*°-manifold M can locally be regarded as an analytic function of 2™, de™ =
c¢™ and 8,, = b,

K& (2 de,8) = Ky ™™ (2)de™ A AdE™ A8y A--- A Dy, = (6.58)
= Km,l...mk LT (J:)le e cME bn] e bnk/ = K(kﬁk/) (.TJ, C, b) (659)

m

For sigma models, 2™ — 2™(0),pm — pm(c),c™ — ¢™(o) and b,, — b,,(c) become dependent on the
worldvolume variables o#. They are, however, for every o valid arguments of the function K. Frequently only
the worldvolume coordinate o will then be denoted as new argument of K, which has to be understood in the
following sense

K®) (o) = K&F) (2(0),¢(0),b(0)) = Ky, ™ (2(0)) - €™ (0) - €™ (0)bn, (0) -+ by, () (6.60)

Also functions depending on p,,, like dK (x, ¢, b, p) in (6.34), or more general a function Tt*")(z, ¢, b, p) as in
(6.28)) are denoted in this way

T (6) = TE) (2(0), e(0), b(o), p(o))  (see (6.28)) (6.61)
eg. dK(0) = dK (z(0),c(0),b(0),p(0)) (see (6.34)) (6.62)

oro(o) = o(c(0),p(0)) =c"(o)pm(0) (see (6.8)) (6.63)

The expression dK (o) should NOT be mixed up with the world-volume exterior derivative of K which will be
denoted by d"K (U) Every operation of the previous section, like Z(If)L or the algebraic or derived brackets

leads again to functions of x, ¢, b and sometimes p. Let us use for all of them the notation as above, e.g. for the
derived bracket of the big bracket (6.52}6.54)
’ ’ A L/ / (A)
K04 100] (o) = [KE,L00] (o), e(0),b(0), p(o) (6.64)
1 1

And even d&™ = ¢™ and db,,, = p,, will be seen as a function (identity) of ¢™ or b,,, s.th. we denote

&c™ (o) = (o) (6.65)

db,, (o) = pm(o) (6.66)
Although dacts only in the target space on z, b, ¢ and p, the above obviously suggests to introduce a differential
— say s— in the new phase space, which is compatible with the target space differential in the sense

s(z™(0)) = &™(0)=c"(0) (6.67)

s(bm(0)) = dby(o) = pm(o) (6.68)

"The index g will not include the worldvolume time, when considering the phase space, but it will contain the time in the
Lagrangian formalism. As this should be clear from the context, there will be no notational distinction. o

8 It is much better to mix it up with a BRST transformation or with something similar to a worldsheet supersymmetry
transformation. We will come to that later in subsection To make confusion perfect, it should be added that in contrast it is
not completely wrong in subsection to mix up the target space exterior derivative with the worldsheet exterior derivative... 3
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We can generate s with the Poisson bracket in almost the same way as d before in :

Q = /zd "o o(o) = /d "o c™(0)pm(0), s(...)={9Q,...} (6.69)

The Poisson bracket between the conjugate fields gets of course an additional delta function compared to
(6.5}6.6).
{pm(d’),z"(0)} = on6% (o' —0) (6.70)
{b(c'),c" (o)} = "6 o' —0) (6.71)

The first important (but rather trivial) observation is then that for K (o) being a function of z(o), ¢(o), b(o) as
in (and not a functional, which could contain derivatives on or integrations over o) we have

o) —2 o _9 z(0),¢c(0),b(o)) = o
) = () 5y + P ) K (0)cl) o) =) (672)

The same is true for more general objects of the form of 7" in . Because of this fact the distinction between
dand sis not very essential, but in subsection the replacement of the arguments as in will be different
and the distinction very essential in order not to get confused.

The relation between Poisson bracket and big bracket gets obviously modified by a delta function

’ !’ ! ! A
{KE0), L (@0)} = [K(k’k),L(l’l)]()(a)édw*l(alfa) (6.73)
1

or more general {T(t’t/’t”)(a’), T(f’fl’fu)(a)} = [T(t’t/’t”), T(E’E,’EI/>} (Al) (o) 010" — o) (6.74)
The relation between the derived bracket (using s) on the lefthand side and the derived bracket (using d) on
the righthand side is (omitting the overall sign in the definition of the derived bracket)

{arc40 (o), L0 (o)} B2 L) o1), 10 ()} [dK(’“’“'),L(“')](Al) (o) 6m (o — ) (6.75)
The worldvolume coordinates o remain so far more or less only spectators. In the subsection the world-
volume coordinates play a more active part and already in the following subsection a similar role is taken by an
anticommuting extension of the worldsheet.

Before we proceed, it should be stressed that the replacement of x, ¢, b and p by z(0), (o), b(o) and p(o)
was just the most naive replacement to do, and it will be a bit extended in the following section until it can
serve as a useful tool in an application in But in principle, one can replace those variables by any fields with
matching index structure and parity (even composite ones) and study the resulting relations between Poisson
bracket on the one side and geometric bracket on the other side. Also the differential s can be replaced for
example by the twisted differential or by more general BRST-like transformations. In this way it should be
possible to implement other derived brackets, for example those built with the Poisson-Lichnerowicz-differential
(see [57]), in a sigma-model description. In a different (but also quite canonical) replacement is performed
and we will see that the different replacement corresponds to a change of the role of ¢ and an anticommuting
worldvolume coordinate @ which will be introduced in the following.

6.3 Natural appearance of derived brackets in Poisson brackets of
superfields

In the application to worldsheet theories in section [7] there appear superfields, either in the sense of worldsheet
supersymmetry or in the sense of de-Rham superfields (see e.g. [84] [78]). Let us view a superfield in general
as a method to implement a fermionic transformation of the fields via a shift in a fermionic parameter 8 which
can be regarded as fermionic extension of the worldvolume. In our case the fermionic transformation is just
the spacetime de-Rham-differential d, or more precisely s, and is not necessarily connected to worldvolume
supersymmetry. In fact, in worldvolumes of dimension higher than two, supersymmetry requires more than one
fermionic parameter while a single 0 is enough for our purpose to implement s In two dimensions, however, this
single theta can really be seen as a worldsheet fermion (see[7.2). But let us neglect this knowledge for a while,
in order to clearly see the mechanism, which will be a bit hidden again, when applied to the supersymmetric
case in

As just said above, we want to implement with superfields the fermionic transformation s and not yet a
supersymmetry. So let us define in this section a superfield as a function of the phase space fields with
additional dependence on 0, Y =Y (z(0),p(c), c(c), b(c), 8), which obeys []

& (2(0), p(0), ¢(0),b(0),0) = oY (2(0),p(0), c(c), b(c),6) (6.76)
with st™(0) = c™(0),Dm(0) = pm(c) (H=0) (6.77)

91If this seems unfamiliar, compare with the case of worldsheet supersymmetry, where one introduces a differential operator

1
= 09 + 600, and the definition of a superfield is, in contrast to here, 0c Y = €QgY, where J. is the supersymmetry transformation
[ ]
of the component fields (compare |7.2)). o



CHAPTER 6. SIGMA-MODEL-INDUCED BRACKETS 88

With our given field content it is possible to define two basic conjugat superfields ®™ and S,,
which build up a super—phase—spaceE]

<I>m(a7 0) = 2™(0)+0c™(0)=2"(0)+ 0" (0) (6.78)
Sn(0,0) = bu(0) +Opm(o) = ( >+ O, () (6.79)
{Sn(0,0),2"(c",0)} = {b,,,( ), 0’ c"( ’} {pm(0),2"(0")} = (6.80)
(0 —6")6( a)or, (6.81)
———
=5(0—0")
® and S are obviously superfields in the above sense
0p®™(0,0) = sx"(0)+0<™(0) = D™ (0,0) (6.82)
\\,_/\WO_/
Cm(o-) =
0SSy = Sbm(a') +0$m(0) = Ssm(a'v 0) (683)
——
pm (o) 0

as well as sP(0,0) = c(0) and sS(o, 0) = p(o) are superfields, and every analytic function of those fields will be
a superfield again.

We will convince ourselves in this subsection that in the Poisson brackets of general superfields, the derived
brackets come with the complete d-function (of o and @) while the corresponding algebraic brackets come with
a derivative of the delta-function. The introduction of worldsheet coordinates o was not yet really necessary for
this discussion, but it will be useful for the comparison with the subsequent subsection. Indeed, we do not specify
the dimension d,, of the worldsheet yet. An argument sigma is representing several worldsheet coordinates o#. It
should be stressed again that the differential dshould NOT be mixed up with the worldsheet exterior derivative
d”, which does not show up in this subsection.

Similar as in equations (6.60)-(6.66]),we will view all geometric objects as functions of local coordinates
and replace the arguments not by phase space fields but by the just defined super-phase fields which reduces
for 8 = 0 to the previous case.

T (5,0) = TG (9(0,0),80(0, 0), S(0,0),55(c,0)) °=° T ) (5)  (see (6.61))  (6.84)
10The superfields ® and S are conjugate with respect to the following super-Poisson-bracket
dw =1 ~ ~ ) - k)
F(o',0"),G(0,0 = d"& [ do 6F(c’,0')/68,(5,0)————G(0,0) — 6F(c’,0') /60" (5,0) ———G(0,0)) =
(P 0)Ga0} = [dVF [ (r@ )8, )55 g O 0) —OF (01,0 /004(5.8) co (o, 0)

= dwtifl 0 o', 0 6~La — (m)FC o, 6 6~LJ
= /d /dO ((SF( ,0')/8Sk( 70)6@“(&,@)(;( ,0) — ()" %8G(0’,0")/6Sk( ,9)5¢k(&7é)F( 70))

which, however, boils down to taking the ordinary graded Poisson bracket between the component fields (as can be seen in ([6.80))).
The functional derivatives from the left and from the right are defined as usual via

65Az/ddw51/dé 5A/5S4(5,0) - 5S(5,0) = / /d9 55k(5,0) -

(& 5)
and similarly for ®, which leads to
Fy _ ~
————Su(0,0) = (O —0)" (o —5)=—-65,.(0,0)/Sm (5,0
55,(5.0) (0,0) ( ) ( ) (0,0)/Sm(5,6)
5 ~ ~
—®"(0,0) = 4 (0—0)§" o —5)=68"(c,0)/60™ (5,0
557 (5.9) (0,0) ( ) (0 —6)=69"(c,0)/59™(5,0)
The functional derivatives can also be split in those with respect to the component fields
0 1) ~ -
_ % 1) . 1) o 1) - 1) _ o
58m(5,8)  dpm(F) obm (G) §om(5,0) 6c™(5) dx™ (&)

HFor Grassmann variables §(8’ — 8) = 6’ — 0 in the following sense

/dB’ 0 —0)FO) = /dH’(G’ — ) (F(0) + (6/ — 0)3p F(6)) =

/ & O'F(0) — 000 F(6) — 069y F(6) —

F(6)
We have as usual
05(0’' — 9) 60 —0)=600 =060 —-06)=

0'5(0' — 0)

Pay attention to the antisymmetry
50 —-6) = -506-90) o
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For example for a multivector valued form we write
K®(50) = K& (0™ (0,0),55™(0,0),8,,(0,0)) = (6.85)
———
Cnl(g)
= Koy, (9(0,60)) D™ (0,0) ... D™ (0,0)8,,(5,6) ... S, (0,0) °=" K**) (o) (6.86)
N—— (16.60)

c™1 (o)

Likewise for all the other examples of

eg. dK(0,0) = dK (2(0,0),52(0,0),5(0,0),55(0,0)) (6.87)
or o(c,0) = o(sP(0,0),sS(o, 0)) " (0)pm(o) = o(o) (6.88)

’ ’ A ’ ’ ( = ! ! (A)

KEFD) G L) 0) = |[K®F) LG ®(0,0),50(c,0 0 0)) °=° [ K+ L1 :
aLlt0](0,0) L] (0(0,0).5(0.0). 5(0.0).55(5.0) e [KERLLE0] o) (689
&c™(0,0) = D™ (0,0) =c"(0) (6.90)
db,,(0,0) = sSi(0,0) =pm(0) (6.91)
For functions of the type T ") (5, 0) we clearly have

a0 (s,0) = (10" (0,0)) (6.92)
in particular dK**) (0, 0) = S(K(k’k/)(()', 0)) (6.93)

As all those analytic functions of the basic superfields are superfields (in the sense of [6.76)) themselves, Jp can
be replaced by s in a @-expansion, so that we get the important relation

’

T (6,0) = TG (0) 4 0dTH ) (o) (6.94)
K®)(5.0) = K®) () +0dK ) (o) (6.95)
This also implies that dI'(c,0) and in particular dK (o, 0) do actually not depend on 6:
dK*F) (g, 0) = AKFF) () (6.96)
Now comes the nice part:

Proposition 1  For all multivector valued forms K(k’k/), LU on the target space manifold, in a local coordi-
nate patch seen as functions of ™ ,de™ and 8,, as in , the following equation holds for the corresponding

superfields

{K(k’k/)(a’, 9'), L(l’l/)(a, 0)} =6(6" —0)é(c —0o') - [dK, L}(Al)(g, 0) +0p6(0 —0") (0 — o) [K, L](l)(a, 0)| (6.97)
N , —_——
— (=) M [KaLlf,

=1

where K, L](1)
being true now up to a §(o — ') only after setting @ = 0') and [K,dL](Al) is the derived bracket of the big bracket

:

Proof  Using (6.95)), we can simply plug K(o’,8') = K(¢') + 6'dK (¢') and L(c,0) = L(c) + 6dL(c) into
the lefthand side:

is the big bracket (Buttin’s algebraic bracket, which was previously just the Poisson bracket,

{K(c',0'),L(0,0)} =
= {K(0').L(0)} + 0/ {dK (o). L(0)} + (-)* O (K (0"),dL(0)} + (—)* ' 00’ {dK (o), dL(0)} = (6.98)
= {K(0)),L(0)} + (6 — 6) {dK ("), L(0)} + 6A{K (o), L(0)} — 00'd{dK (0"), L(0)} = (6.99)
B2 50— o) (K, LI (0) + 0dIK, LI (0)) + (6 = 0)6(0 — ') ([dK, LI () + 6d[dK, LI} (7)) = (6.100)
€20 50— o) (K. L3 (0.0) + (6' — 0)3(0 — ') [dK, L]} (0,0) O (6.101)

There is yet another way to see that the bracket at the plain delta functions is the derived bracket of the
one at the derivative of the delta-function, which will be useful later: Denote the coefficients in front of the
delta-functions by A(K, L) and B(K, L):

{K(¢',0"),L(c,0)} = A(K,L)-6(0" — 0)d(c — ') + B(K,L)(0,0) 996(0 — 8") §(c — o) (6.102)
T
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In order to hit the delta-functions, it is enough to integrate over a patch U (o) containing the point parametrized
by 0. We can thus extract A and B via

A(K,L)(0,0) = /dH’/U( )ddw}l’{K(a’,B’),L(o, 0)) = (6.103)
_ /de’ /ddw}]’{K(a’)+0’dK(a’),L(a, 6)} = (6.104)

= /ddw}]’{ dK (o) ,L(c,0)} (6.105)

——
€29 g (07,0

B(K,L)(s,0) = /dB’/U( )ddw?j]’(O'—0){K(U’,0’),L(a, 0)} = (6.106)
- /ddwf}]’ (K(0',0),L(5,0)} |or=0 (6.107)

= A(K,L) = B(dK,L) (6.108)

It is thus enough to collect in a direct calculation the terms at the derivative of the delta-function and verify
that it leads to the big bracket. O

6.4 Comment on the quantum case

In (6.14) the embedding via the interior product into the space of operators acting on forms was interpreted as
quantization . In the presence of world-volume dimensions, the partial derivative as Schroedinger representation
for conjugate momenta is no longer appropriate and one has to switch to the functional derivative. Remember

O™ (0,0) (o) +6c™ (o), do™(0,0) = " (o)

x™ (o) (6.109)
Sm(Ua 0) = bm (U) + 9p7rn(g)7 dS7rL(U; 0) = p'rn(a)

do
ds(o) (6.110)

The quantization of the superfields in the Schroedinger representation (conjugate momenta as super functional
derivatives) is consistent with the quantization of the component fields (see also footnote

. hoo$ hoo6 ho
Sm(0,0) = gétbm(ma):Zécm(U) i 62 () (6.111)
= [5n0.0, 900 = F (G o) ) O = (6:112)
= ?5;;(0—0’)5(0—0’) (6.113)

The quantization of a multivector valued form, containing several operators S at the same worldvolume-point,
however, leads to powers of delta functions with the same argument when acting on some wave functional. This
is the usual problem in quantum field theory and requires a model dependent regularization and renormalization.
We will stay model independent here and therefore will not treat the quantum case for a present worldvolume
coordinate o. Nevertheless it is instructive to study it for absent o, but keeping 6 and considering “worldline-
superfields” of the form

(I)m(e) = ™4 acm7 dq)m(a) — ™ (6114)

)
3
2

I

Quantum operator and commutator simplify to

. ho6 ho hoo

Sm(0) = T5emie) = ioem %7 aam (6.116)
= Sm(e)yé”(e’)} = 7775;;(9—9’) (6.117)
(5,0 8" (9)] = éam (6.118)

In contrast to o, products of 8-delta functions are no problem.
The important relation K(0) = K + 0dK (6.95) can be extended to the quantum case as seen when acting
on some r-form.

(6.94)

et p7(8) 1kp+ 0d(i p) = (6.119)
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6.35) K
£ 1kp+ 6 (sz,o + (—)kF )dep) = (6.120)
= wx(0)(p(9)) (6.121)
with1x(0) = 1x +0][d, k] (6.122)
In that sense we have (remember K = (%)kl 1K)
K®K@g) = K& 4 edK (6.123)
with dK 4. k] (6.124)

where the explicit form of this quantized multivector valued form reads

k
k(k,k:’)(e) = (?) Kml.“mkm"”w ((1)(0)) dq)ml(e) ...de™m* (9) 5@2 (0) 5@nfl (0)

c™1

(6.125)

In the derivation of (6.122)), 15 and p both were evaluated at the same 6. Let us eventually consider the general
case:

KR (950 (0) = <K + e/d’f() (p+ 0dp) = (6.126)
= Kp+0dKp+ (=) "oKdp+ (—)F+06'dkdp = (6.127)
- Rp+ ed(f(p) (6 —0) (d/l\(p +od (d/f\{p)) (6.128)

The relation between quantum operators acting on forms and the interior product therefore becomes modified
in comparison to (6.14)) and reads

k/
K®F) ()M (0) = (’Z) (mp(e) + (0" —0) 1axp(0) ) (6.129)
(=)= Lxp

Proposition 2  For all multivector valued forms K(k”“/), LEY) on the target space manifold, in a local coordi-
nate patch seen as functions of z™.de™ and 0, as in , the following equations holds for the corresponding
quantized worldline-superfields (6.125) K(0) and L(0):

A ’ N ’ I b / S /
(R (97, L0 ()] = ;(Z) (9006 — 8)[K. LI} (6) +6(6' — O)[dK, L]} (6))  (6.130)

[KE)(6"), L01(0)]p(8) =
A k4 ~ ~ ~
- <> (Z[K,L]AP(T) (0) + 6(0 — G)Zd[K,L]Ap(T) (0) +

+5(6" — ) (z[dK’L]A P (0) +5(0 — 01y p<f'>(é)) ) (6.131)

Again the algebraic bracket comes with the derivative of the delta function while the derived bracket
comes with the plain delta functions. But this time the algebraic bracket is not only the big bracket [, ](Al), but
the full one.

Proof Let us just plug in (6.123)) into the lefthand side:

[K(0'),L(8)) = [K+6dK,L+6dl] = (6.132)
= KL+ 0[dK, L]+ (=) Fe[K, dL] — (=) e'e[dK, dL] =  (6.133)
C2D 1k ij+e [d, K, i]} (0 —9) ([d?(, i+ [d, [dx L]D = (6.134)
= [K,L)(6)+ (6 —0)[dK , L] (6.135)
Remember now the algebraic bracket
[tcenn s tpaan] = YK, LA = ZZ[K,L}(AP) (6.136)

p>1
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with [K, L) = &P L~ (—)FE0=0,P g (6.137)
or likewise written in terms of K and L

BN Rl A N—
[KEHR) L] = Z <Z> (K, L], (6.25-6.138)

p>1

Due to 1’ we have exactly the same equation for [d/l\(, ﬁ] Plugging this back into (6.135)) completes the
proof of (6.130). The second equation in the proposition is just a simple rewriting, when acting on a form,
which enables to combine the p-th terms of algebraic and derived bracket to the complete ones. O

6.5 Analogy for the antibracket

In the previous subsection the target space exterior derivative d (realized in the o-model phase-space by s) was
induced by the the derivative Jy with respect to the anticommuting coordinate. But thinking of the pullback of
forms in the target space to worldvolume-forms, dcan of course also be induced to some extend by the derivative
with respect to the bosonic worldvolume coordinates o* (including the time, because we are in the Lagrangian
formalism now) or better by the worldvolume exterior derivative d”. To this end, however, we have to make a
different identification of the basis elements in tangent- and cotangent-space of the target space with the fields
on the worldvolume than before, namel

& — d"z™ (o) =d"0"0,2™(0), Oy — xt (o) (6.139)
where ;. is the antifield of ™, i.e. the conjugate field to ™ with respect to the antibracke Let us rename
0" = d" (6.140)
For a target space r-form
P (@™ &™) = pym, ()™ (6.141)
we define (in analogy to , but indicating that we allow in the beginning only a variation in o)
Py (@) = P (@™(0),d" ™ () = pumy...m, (2(0))d" 2™ (o) - - d¥z"™ (o) (6.142)

Attention: this vanishes identically for r > dy, (worldvolume dimension).
The worldvolume exterior derivative then induces the target space exterior derivative in the following sense

a0y’ (0) = (d)e(o) (6.143)

Again both sides vanish identically for now r + 1 > d, which means that in this way one can calculate with

target space fields of form degree not bigger than the worldvolume dimension. If we want to have the same

relation for Kék"k/)(a) (defined in the analogous way), we have to extend the identification in (6.139)) by

pm — d'z (o) (6.144)

m

I2This identification resembles the one in [58] with 8., — pm(z) and &™ — 92™(z), or de™ -.-dt™» —
etrbp gy ™ (o) - Op,a™P (o) in [60]. It is observed in [58] that the Poisson bracket induces the Dorfman bracket between
sums of vectors and 1-forms (in generalized geometry) and in [60] more generally that the Poisson-bracket for the p-brane induces
the corresponding bracket between sums of vectors and p-forms (which is called, Vinogradov bracket in [60]). As dz™ and p.,, are
commuting phase space variables, higher rank tensors would automatically be symmetrized (only volume forms, i.e. p-forms on a
p-brane, can be implemented, using the epsilon-tensor). Symmetrized tensors and brackets inbetween (e.g. the Schouten bracket
for symmetric multivectors) make sense and one could transfer the present analysis to this setting, but in general a natural exterior
derivative is missing. Therefore the analysis for the above identifications is done in the antifield-formalism. The appearing derived
brackets will also contain the Dorfman bracket and the corresponding bracket for sums of vectors and p-forms and in that sense
the present approach is a generalization of the observations above. o

13The antibracket looks similar to the Poisson-bracket, but their conjugate fields have opposite parity, which leads to a different
symmetry (namely that of a Lie-bracket of degree +1 (or -1), i.e. the one in a Gerstenhaber algebra or Schouten-algebra, see
footnote [1)

= ?}W +(5 9 z* (& 0 =
(A,B) = /d (A /52 5557 B — 34/60" )@ B)
_ /d%w (6A/:cz(&)6x%(&)B7(7)(A+1)(B+1)§B/mz(&)ﬁs(&)x4)
(A’B) = _(_)(A+1)(B+1) (BvA)
@h)E) = i B =~ (Baho)
5

(™(0),B) = - B= ()P (Ba™(0) o

st (o)
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and get
Ak () = (dKEF)o(0) (6.145)
with
K§ (o) = K& (2m(0),d"™ (o), &1, (0)) (6.146)
(dE " g(0) = dEEF) (a(0), d"2™ (o), @}, (0), &} (0) (6.147)

The analysis is thus very similar to that of the previous section.

Proposition 3a For all multivector valued forms K(k’*"’,), LU on the target space manifold, in a local coordi-
nate patch seen as functions of ™ . dc™ and 8,,, the following equation holds for the corresponding sigma-model

realizations

(Ko(0"),Le(0)) = ([K.aLl§) ) (0)0% (0 — 0") = (=) 0#0,6% (0 — o') ([K, L]} ) o(0) (6.148)
N——

—(—)F M [dK, L),

Proof The proof is very similar to that one of proposition 3b (6.168]) and is therefore omitted at this
place. O

Conjugate Superfields With 8" = d"c* we have introduced anticommuting coordinates and it would be nice
to extend the anti-bracket of the fields 2™ and . to a super-antibracket of conjugate superfields. Remember,
in the previous subsection we had the superfields " = ™ + 6¢™ and its conjugate S,,. There we had one 6
and two component fields. In general the number of component fields has to exceed the worldvolume dimension
dy (the number of 0’s) by one, s.th. we have to introduce a lot of new fields to realize conjugate superfields.
But before, let us define the fermionic integration measure p(0) via

[ 10110 = e 2 f(0) = e o F(6) (6,149
The corresponding d,-dimensional J-function is

o0 —-0) = (0" -6 (/% —0%) = (6.150)
= diw!em,_iudw(e”“ —0M) . (g — GHa) = (6.151)
= i kl(d = 1 ot 017 ORI (6.152)

k=0 w )
[uerste - o)) = 16 (6.153)
(0 —0) = (=)~ (0—8) (6.154)

For the two conjugate superfields, call them ®™ and @' we want to have the canonical super anti bracket

(@) (0',0"),2"(0,0)) = 07,0% (o' — )54 (0" — 8) = — (2"(0,0), B} (c',0)) (6.155)
From the above considerations about the fermionic delta function it is now clear, how these superfields can
be defined (they are known as de Rham superfields, because of the interpretation of 8" as d"o*; see e.g.

[84, 178]):

" (0,0) = z™(0)+x), (0)0"™ + i

Py Pdy —1Hdy

(0)@Hdw=1QFdw T

Pl Mdyy
1

m%...udw

(0)6"1 - - - 9"=(6.156)

1
@, (01,0") = e pa, 0" O () +

1
m%...ww

gz THdw =1 ot Hdy (57
g'Hr...Q"H4 lxmlld (U)+

e () s @hiba (o) (6.157)

d 'eﬂlmﬂdw m
we

+

The component fields with the matching number of worldsheet indices are conjugate to each other, e.g.

(@72 (0)00,,(0)) = G 0020™ (0 = o) (6.158)

m Yrivg mYvivg
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For the notation with boldface symbols for anticommuting variables, the worldvolume was assumed to be even-
dimensional. In this case, one can analytically continue the coordinate form of multivector-valued forms of the

form
K& (2 de,8) = Ky ™™ de™ A Ade™ A By Ao Ay, (6.159)

to functions of superfields (in odd worldvolume dimension one would get a symmetrization of the multivector-
indices) and redefine K (o, 0) of (6.85) to

K& (50) = K& (9(0,0),d"®(0,0), 8" (0,0)) = (6.160)
= Km,l...mk.nlmnkl((I))dwq)ml : dw(bmk (I’Jr : q)Jr (6161)

ni Nyt

All other geometric quantities have to be understood in this new sense now:

Tt (5,9) = T (0(0,8),58(0,0), S(0,0),55(0,0)) =" TH ) (5)  (see (6.61)) (6.162)
To stay with the examples used in (6.84)-(6.91):

eg. dK(0,0) = dK (®(0,0),d"®(0,0),S(0,0),d"S(0,0)) (compare (6.34)) (6.163)

oro(c,0) = o(d"®(0,0),d"S(0,0)) =d"®™"(0,0)d"S,,(c,0) (compare o=c"p,)6.164)

K&K L) i) (0,0) = {K(’“’k,),L(l*l,)} Ei) (®(0,0),d"®(c,8),S(c,0),d"S(c,0)) (6.165)
d&c™(0,0) = d70™(0,0) (6.166)

(dd,,)(0,0) = (dby,)(0,0) = d“S,,(0,0) (6.167)

Note that the former relation K(o,0) = K(o) 4+ 0dK (o) does NOT hold any longer with those new definitions!
Nevertheless we get a very similar statement as compared to propositions 2 on page

Proposition 3b  For all multivector valued forms K(k’k,),L(l*l/> on the target space manifold, in a local coor-
dinate patch seen as functions of ™ ,dx™ and 8., the following equation holds for even worldvolume-dimension

dy, for the corresponding superfields (6.160):

(K(0',6'),L(0,0)) = 6% (0’ — 0)6™(0' — 0) [K.aL](}(0,0) — ()" 6"0,6% (0 — 0')5"(6' - 0) [K, L]} (0, 0)
A,_/

— (=) [aK, LG,

(6.168)
where [K, L](Al) is the big bracket and [K,dL](Al) is the derived bracket of the big bracket

Note that o and @ have switched their roles compared to the previous subsection , where the algebraic
bracket came together with the derivative with respect to @ of the delta-functions, while now it comes along with
0, of the delta-functions.

Proof Let us use again the second idea in the proof of proposition 2, i.e. first collect the terms with
derivatives of the delta function, only to show that one gets the algebraic bracket, and after that argue that the
term with plain delta functions is its derived bracket. In doing this, however, we will need to prove an extension
of the above proposition to objects like dK (or more general an object (') as in (6.28)) that contain the
basis element p,,, which is then replaced by d"S,, as e.g. in (6.163).

(i) The antibracket between two such objects T' and T gets contributions to the derivative of the delta-function
only from the antibrackets between d"®™ and ®, and between ®™ and d"®, (compare )

(@} (0,6'),d"@"(0,0)) = 610"9,6% (0" —o)5™ (0" —0) (6.169)
(dch" 0,0),8%(0,0)) = 6.6"0,6™ (0" —0)5™ (6 —0) (6.170)
(d"®} (0/,6'),2"(0,0)) = —0616"0,0% (o' —o)5™ (0" — ) (6.171)
(2"(0’,0),d"®} (0,0)) = —6"(2"(c",0),0,®}(0,0)) =6.6"0,6™(o/ — 0)5™ (6 — 0) (6.172)

The last case is the only one where we had to take care of an extra sign stemming from 6 jumping over the
graded comma. Comparing this to (6.5)), where we had

{bp,c"} = & (6.173)
(", by} = & (6.174)
{pm,z"} = o (6.175)
{a",pn} = -0y, (6.176)
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one recognizes that the only difference is an overall odd factor 6"9,,6% (¢’ — o)d% (6" — 6) (the delta-function
for 0 is an even object for even worldvolume dimension dy,) and an additional minus sign for the lower two
lines, but the corresponding indices just get contracted like for the Poisson bracket. After such a bracket of
basis elements has been calculated (which happens just between the remaining factors of T (at o’) on the
left and the remaining factors of 7' (at ¢) on the right) this overall odd factor has to be pulled to the very
left which gives an additional factor of (=)' (in the notation of ) plus an additional minus sign for
the upper two lines which compensates the relative minus sign of before and we get just an overall factor of
—(—)10"9,6% (0) — 0)d% (6" — @) in all cases at the very left as compared to the Poisson-bracket. The
remaining terms are still partly at o and partly at ¢’, but using

A(0)B(0")0,0(0 — 0') = A(0)d,B(0)é(0c — o) + A(0)B(0)9,6(c — ') VA,B (6.177)

we can take all remaining factors in T(o’,8’) at o, while 8’ is set to  anyway by the é-function. We have thus
verified one of the coefficients of the complete antibracket:

(T(c',0),T(0,0)) = —(=)'""0"0,0% (0 —')d% (6 — 0) [T, T] i) (0,0) +

5% (o — 0")6% (0 — 8) A(0, 0) (6.178)

with A(o, 0) yet to be determined.
1A
(ii) Tt remains to show that A(o, @) is a derived expression of [T, TL ; A hint to this fact is already given in
1

(6.177), but this is not enough, as there is also a contribution from the (®™, & )-brackets. In order to get a
1A
precise relation between A(o,8) and [T, T} (0,0), let us see how one can extract them from the complete
1
antibracket. In order to hit the delta functions with the integration, it is enough to integrate over the patch
U(o) containing the point which is parametrized by o#. The last term in (6.178) is the only one contributing
when integrating over ¢’ and 0

A(o,0) = o )ddWo’/u(B’) (T(c,0'),T(c,8)) (6.179)

That the first term on the righthand side of (6.178) does not contribute is not obvious as U(c) might have a
boundary. However, for this term one ends up integrating a d.-dimensional delta-function over a boundary of
dimension not higher than d,, — 1, so that one is left with an at least one-dimensional delta-function on the
boundary which vanishes as the boundary of the open neighbourhood U(o) of ¢ of course nowhere hits o.
1A
Extracting the algebraic bracket [T, TL : is a bit more tricky. One can do it via
1

2N

for any fixed . [T, T}A (0‘, 0) _ _(_)t—t/ " )ddwa’/,u(H’) (ea — 1) i(T(OJ,B,)aT(O',O)) (6-180)

index A (1) e o0*

80/)\

The boundary term proportional to ( pre i 1) 8% (o — o') appearing above on the righthand side after partial

integration vanishes as ¢’ in the prefactor is set to o via the delta function.
, 1A
The claim is now that A(c,0) = —(—)t* [dT, T} " (0,0). So let us calculate the righthand side via (6.180):

—~
S~—
Il

eO'

[dr,:f}A ,0 ()t 5 )ddWo’/u(O’) (PU - 1) %(d’f(a’,e’),f(a, 9)) = (6.181)

e

= —(—)t / d o’ / 11(6") (e(, —1) %0’“8L(T(0’,0'),T(0,0)) (6.182)

(T,T) contains in both terms a plain é-function for the fermionic variables €, so that we can replace 8’ by 6.
Integration by parts of GI’L (where possible boundary terms again do not contribute because of the vanishing of
the delta function and its derivative on the boundary) delivers the desired result

[dr, TLAU (0,0) = —(—)" / d o’ / W@ (T(c',0),1(0,0)) = —(—)'~" A(0,0) (6.183)

This completes the proof of proposition 3b. (]



Chapter 7

Applications in string theory or 2d CFT

In the previous section the dimension of the worldvolume was arbitrary or even dimensional. The appearance
of derived brackets (including e.g. the Dorfman bracket) is thus not a special feature of a 2-dimensional sigma-
model like string theory. There are, however, special features in string theory. Currents in string theory
(which have conformal weight one) naturally are sums of 1-forms and vectors, if one takes the identification
O™ (o) < ™ and p,,(0) < B, as in [58] (see footnote , e.g. 0™ = O™ — Qpx=d™ — """, .
This is closely related to the identification in our previous section in the antifield formalism. In addition, only
in two dimensions a single 6 can be interpreted as a worldsheet Weyl spinor (in 1 dimension it can be seen as
a Dirac-spinor, but in higher dimensions the interpretation of 8 as worldvolume spinor breaks down). As we
ended the last section with the antifield formalism, which therefore is perhaps still more present, let us start
this section in the reversed order, beginning with the application in the antifield formalism.

7.1 Poisson sigma-model and Zucchini’s “Hitchin sigma-model”

Remember for a moment the Poisson-c-model [85] ®4]. It is a two-dimensional sigma-model (dy, = 2) of the
form

1
So Z/ Ny d' ™ + §Pmn(x)7lm7ln (7.1)
5

where 7, is a worldsheet one-form. This model is topological if and only if the Poisson-structure P™"(z) is
integrable, i.e. the Schouten-bracket of P with itself vanishes

Sp topological <«— [P,P]=0 (7.2)

It gives on the one hand a field theoretic implementation of Kontsevich’s star product [84] and is on the other
hand related to string theory via a topological limit (big antisymmetric part in the open string metric), which
leads to the relation between string theory and noncommutative geometry.

The necessary ghost fields for the action can be introduced by extending = and 7 to de Rham superfields as

in (6.156]16.157)

" (0,0) = 2™(0)+ (o) 0"+ 2, (7) 616" (7.3)
——
6“,,71+”" _%5“1“2 5+ m
1 1
q):L(OJv 0/) = 56,1"1#2 x:z#ntz (U/) +0,M1 elhltz m;#z (OJ) +§€/t1u2 0/,“ 9’#2 m:;(o-/) (74)

=B,,(c") K

One can use Hodge-duality to rename some component fields as indicated. 3,,, is then the ghost field related
to the gauge symmetry. The action including ghost fields and antifields simply reads
1
S = / d*o / w(@) & d7e™ + ipmn(@)cpjncb: (7.5)
The expression under the integral corresponds to the tensor —d,,"dc™ A9, + %Pmnam A8, and the antibracket
in the master-equation (S, .5) implements the Schoutenbracket on P, which is a well known relation. Therefore

we will concentrate on a second example, which is very similar, but less known.
Zucchini suggested in [78] a 2-dimensional sigma-model which is topological if a generalized complex structure

in the target space is integrable (see subsection on page and on page to learn more about
generalized complex structures). His model is of the form

5 = / d*o / w(O) (&) dd™+) %Pmn(cb)@;@; - %an@)dwwd%n—J”de@m@; (7.6)

96
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where P™" Qumy, and J™,, are the building blocks of the generalized complex structure (B.22)

M B Jmn pmn
j N ( 7Q7nn *Jnm ) (77)

The first term of (7.6) can be absorbed by a field redefinition as already observed in [79]. Ignoring thus the first
term and using our notations of before, S' can be rewritten as

/d2 / o, d", ) (7.8)

Calculating the master equation explicitely and collecting the terms which combine to the lengthy tensors for
the integrability condition (see (B.60)-(B.63))) is quite cumbersome, so we can enjoy using instead proposition
3b on page For a worldsheet without boundary its integrated version reads

(/ddwal/u(al)K(a’,O/L/ddwa/u(a ) /dd / KaLl5 ) (0,0) (7.9)

which leads to the relation
(5,8 =0 = /d2 / ,dj(l (0,0)=0 (7.10)

The derived bracket of the big bracket of J with itself contains already the generalized Nijenhuis tensor (see in
the appendix in equation (B.81)) and in the discussion around)

[jadj]ﬁ) = Nty a0 8M26Ms — 4 770 7704 p ;= (7.11)
2 _

T=Z70 Nanoan 8245 4 4o (7.12)

t = (dtma am)v by = (pja 0) (7.13)

o(dv,p) = &"pn (7.14)

For J2 = —1 the last term is proportional to the generator o (remember (6.8)). In (7.10), however, it appears
with dr and p replaced by the superfields as in (6.164)

0(0,0) = d*®"(0,0)d S (0,0) = —d" (d"™(5,0)S,n (0, 6)) (7.15)

which is a total worldsheet derivative and therefore drops during the integration. We are left with the generalized
Nijenhuis tensor as a function of superfields

N(0,0) = Nt a,nr, (9112410 (7.16)
with Y = (d"o™ @) (7.17)
Written in small indices
N(0,0) = Npimoms(®) d* @™ d"®™ d"®™ 43N, m, (®) B d"®™ d"P™2 +
=0
+3N, ™2 (D) d PP B 4+ N (D)D) B B (7.18)

One realizes that the first term vanishes identically (as mentioned in [78]) and only the remaining three tensors
are required to vanish in order to satisfy (7.10).

7.2 Relation between a second worldsheet supercharge and general-
ized complex geometry

In [74] the relation between an extended worldsheet supersymmetry in string theory and the presence of an
integrable generalized complex structure was explored. Zabzine clarified in [77] the relation in an model in-
dependent way in a Hamiltonian description. The structures appearing there are almost the same that we
have discussed before although we have to modify the procedure a little bit due to the interpretation of 8 as a
worldsheet spinor.

Consider a sigma-model with 2-dimensional worldvolume (worldsheet) with manifest N = 1 supersymmetry
on the worldsheet. In the phase space there is only one o-coordinate left. Let us denote the corresponding
superfields, following loosely [77], by

™(5,0) = 2™(0)+OA" (o) (7.19)
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Sn(0,0) = (o) +Opu(0) (7.20)

In comparison to section there is a change of notation from ¢™ — A™ and b,,, — p,,, as b and ¢ suggest the
interpretation as ghosts which is not true in this case, where A and p are worldsheet fermions. Introduce now,
following Zabzine, the generator Qy of the manifest SUSY and the corresponding covariant derivative Dg

Qo = 0o +00, (7.21)
Do = 0¢—00, (7.22)
with the SUSY algebra
[Qo, Qo] = 205 =—[Deg,Ds] (7.23)
[Qg,De] = 0 (7.24)

Qg is the sum of two nilpotent differential operators, namely Jp and 09,. Acting on the Superfields ®™ and
S™, they induce the differentials s and §on the component fields, which are in turn generated via the Poisson
M»

bracket by phase space functions € (the same as ) and Q.
Q = /da P (7.25)
Q = —/da Dox” py. (7.26)
" ={Q,z"} = A" ed™, s, ={Q p,}=pn o dOn), (7.27)
R — {Q,)\m} = 0,2, Pp=—0,p, = {fl,pk} , (7.28)
D" = 9p®™, S, = JpSm (7.29)
2" = 60,9, sS,, = 00,8, (7.30)

The Poisson-generator for the SUSY transformations of the component fields induced byE] Qg is thus the sum
of the generators of sand s

Q = Q+Q= /da Nepy, — 0p2F py, = —/da/d@Q(;(I)k’Sk (7.31)

In superfields were defined via JgY = sY in order to implement the exterior derivative directly with Jg.
In that sense ®, S, d®, dS and all analytic functions of them were superfields. In the context of worldsheet
supersymmetry, one prefers of course a supersymmetric covariant formulation. Let us therefore define in this
subsection proper superfields via

Y is a superfiled <= QuY = {Q,Y} =(s+9Y (7.32)

which holds for ®, S, Dg®, DgS, all analytic functions of them (like our analytically continued multivector
valued forms) and worldsheet spatial derivatives 9, thereof (but not for e.g. Qo®. This means that although we
have Qu® = (s+ 8 ® this does not hold for a second action, i.e. Qa® # (s+ 8)2®, which explains the somewhat
confusing fact that the Poisson-generator @ has the opposite sign in the algebra than Qg

{QQy = -—2pP (7.33)
where we introduced the phase-space generator P for the worldsheet translation induced by 0,

P = /da dsxFp + 0, X p), = /da/de Dy D S, (7.34)

The same phenomenon appears for the differentials s and 8 The graded commutator of J9 and 60, is the
worldsheet derivative [0, 00,] = J,, while the algebra for sand §has the opposite sign

53Y(0,8) = —8,Y(0,0) (7.35)
1We have
Qe(bm = A"+ 600,z™, QB Sm = pm + eao'pm
Dg®™ = A" (0) — 609,2™, Do Sm = pm — 005p,,
bex™ = e, 0e A" = —e0x™

0ePmy = EDPm, Oepm = —€00 P, <
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sfz:{n,ﬁ} - _P=%) (7.36)

One major statement in [77] is as follows: Making a general ansatz for a generator of a second, non-manifest
supersymmetry, of the form (some signs are adopted to our conventions)

Q, = %/da/d@ (P (9)S1 S0 — Quun (P)Dg®™Dg®™ + 2™ ,(®)S,,, D®") (7.37)

and requiring the same algebra as for @ in ([7.33)

{Q2,Q,} = —2P (7.38)
(1@.@ = 0) (7.39)

is equivalent to
Ty = <_J57:n _P ij’) (7.40)

being an integrable generalized complex structure (see in the appendix[B.2Jon page[110]and [B.4]on page[l14). On
a worldsheet without boundary, the second condition is actually superfluous, because it is already implemented

via the ansatz: The expression in the integral is an analytic function of superfields and therefore a superfield
itself. According to (7.32)) we can replace at this point the commutator with @ with the action of Q, and get

{Q,QQ}:/da/da Qpl...) :/da 8y(..) =0 (7.41)

For the other condition, the actual supersymmetry algebra (7.38)), the aim of the present considerations should
now be clear. The generalized complex structure J itself is a sum of multivector valued forms

J = jMN(x)tMtN = P (2)0m A Oy — Quun (x)de™de™ + 2T™, ()8, A 2™ (7.42)
which can be seen as a function of x and the basis elements
J=J(z,dx,9) (7.43)

In[6.3] we replaced the arguments of functions like this with “superfields” z™ — @™, &&t™ — 9g®™ and 8,,, — Sp,.
The name superfield might have been misleading, as 0p® is only a superfield in the sense that it implements
the target-space exterior derivative via Og, but it is not a superfield in the sense of worldsheet supersymmetry.
In a supersymmetric theory one prefers a supersymmetric covariant formulation. Working with dg® as before
is therefore not desirable and we replace Jp® by D@, leading directly to Q5 which now can be written
as

Q, — %/da/d@j(@(a,e),Dgfb(a,G),S(U,O)) (7.44)

Apart from the change Jg® — DgP we expect from the previous section that the Poisson bracket of Q. with itself
induces some algebraic and some derived bracket of J with itself which then corresponds to the integrability
condition for J. This is indeed the case, but we first have to study the changes coming from Jg® — Dg®. In
other words, we need a new formulation of proposition 1 in the case of two-dimensional supersymmetry
(Proposition 1 is of course still valid, but it is not formulated in a supersymmetric covariant way. It should,
however, be applicable to e.g. BRST symmetries ). Let us redefine the meaning of K(o,0) in for a
multivector valued form K (k-5

K(k’k/)(g’ 0) = K(k’k,)(q)m(a, 6),De®"(c,0), Sy (o, 9)) = (7.45)
0=0

K(k"k,) (O’) (7.46)

= Ky om0 (2(0,0)) Dg®@™ (0,80)...Dgd™*(0,0)8,,(0,0)...5,,,(0,0)

Likewise for all the other examples in (6.84)-(6.91):
Tt (5.0) = TG (0(0,0),De®(,8), S(0,8),DeS(0,0)) °=" T ¥ (5) (see (6.61)) (7.47)

eg. dK(0,0) = dK (9(0,0),Dg®P(0,0),S(0,0),DeS(0,0)) (7.48)

_ m 6=0
or 0(0,0) = 0(DgP(0,0),DgS(0,0)) = De? (O,B)DgSm(o,B)o(a) (7.49)
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(K q LI (0,0) = [KE9,LEO)() (8(0,0), Dg(0,0). S(0,6), DoS(0.0) e (KM, L] (5) (7.50)
™ (0,0) = Dg®™(0,0) = A" (o) — 09,2™ (o) (7.51)
dd,,(0,0) = DgS,,(0,0) = pn(c)—00,p,,(c) (7.52)

Expanding K in 0 yields

K(’W’)(U,G) — K(k,k/)<0) +0 (89,]((1«,/4)(0’ 0/) ” 0) = (7.53)
K®) (o) + 0 (QO/K(]‘“I“,)(U, 9') ) (7.54)
6'=0
As K is a superfield, we can replace Qg by s+ 5§
K®)(g.0) = K*)(0)+0(s+9KHF) (o) = (7.55)

= KE(0) 40 ((d+ 1) K@) (o)

(7.56)

vk ——0,xk

This is the analogue to the non-supersymmetric and delivers the exterior derivative which will lead to the
appearance of the derived bracket. The relation between sand the inner product with a vector should perhaps
be clarified. Remember that all multivector forms at 8 = 0, K (k’kl)(a), are analytic functions of the component
fields 2™, A™ and p,,, . But among those fields, Sacts only on A™ and we can express it with partial derivatives
(instead of functional ones) when acting on K:

~S[(( ) = —0pa™ (LA,P) = ZUK(O'NUk:_@ka (757)

0
O™
in the Poisson bracket of 8K with another multivector valued form L at @ = 0, nothing acts on v* = —d,2*

(which would produce a derivative of a delta function), as L does not contain py. Therefore we have
{8K(0"), L(0)} = [0, LY(0)] o= _g, 10 0(0 — &) (7.58)
which we will need below. For superfields we have Y (0,0) = Y (o) 4+ 0(s+8Y (o). Applying the same to v yields

v*(0) + 0(s+3vf(0) = —0,2" —0(s+80,2"(0) = (7.59)
= —0,2" — 00, \F(0) = -0, D" (7.60)

Proposition 1b  For all multivector valued forms K(k’k/), LU on the target space manifold, in a local coor-

dinate patch seen as functions of x™ ,dx™ and 8,,, the following equation holds for the corresponding worldsheet-

superfields (7.45)

(K®) (o".0'), L) (0,0)y = De (5(0 —0')6(0 — ")) [K,L]5, (0,0) +

(1)
+3(0 — 0)8(c — o) ( [dK, L14(0,0) + [1,K, L] (0,6)

) (7.61)

vk =—8, ok

_(_)k_k’ [K,dL](Al) _(_)k—k (K., L]

where e.g. [dK, L](l)(O',O) [dK, L](1) (®(0,0), Deg®(0,0),S(0,0),DeS(0,0)).
The integrated version for a worldsheet without boundary reads

{/da /de K®F) (o /da/deL“” o, 0 (s+§)/da ([K,dL]ﬁ) — ()" K, L),

e ,) @)
(7.62)

Proof Let us use (7.55) for both multivector valued fields and plug into the lefthand side of ((7.61))

{K(c',0"),L(c,0)} =

= {K( "N+ 0'(s+39K(co'), L(o) + 0(s+ 3 L( 0)} = (7.63)
= {K(0'),L(0)} + 0’ {(s+9K(d"),L(0)} + (=) MO {K (o), (s+3L(o)} +
+(=)F k09’{(s+s) ("), (s+9L(0)} = (7.64)
0)

);
{K(0'), L(0)} + (8" = 0) {(s+§K(0"), L(0)} + O(s+ 8 {K(0"), L(0)} +
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+0'0(s+9 {(s+9K(c'),L(0)} — 00 {(s+(s+ 9K ('), L(o)} = (7.65)
= (1+6(s+9) {K( "), L(0)} + (6 — 0) (1 + 0(s+9) {(s+§K(c), L(0)} +
-0'6{ s,q K(o'),L(0)} = (7.66)
78 /
= (o—0")(1+6(s+8)[K, LG}, (0) + (' — 0) (1 + 0(s+9) {(s+9K(0'), L(0)} +
—(0' — 0)00,6(c — o') [K, LI}, (o) (7.67)

Now let us make use of (7.58) and (7.60) to arrive at

{K(c',0"),L(c,0)} =

= Dy (5(6 - 0')5(c — o)) [K, L], (,60) +5(6' — 8)3(0 — o) [(d+ 0,) K, L], (0,0) e (T68)

which is the first equation of the proposition. Integrating over 8’ and ¢’ results in
= 7.69
vk=—0, Pk ( )

+0(s+8 [(d+1,)K, LI, (0)]  (7.70)

vk=—0,aF

/dg’/da’{K(g'70/)7L(a,0)} = (4 w)K L3 (0,6)

= [(d+w)K. L]}, (o)

vk=—0,ak
A second integration picks out the linear part in € and adjusting the order of the integrations gives the additional
sign in (7.62). O

Application to the second supercharge Q,

We are now ready to apply the proposition in the integrated form (7.62)) to the question of the existence of
a second worldsheet supersymmetry @Q,. Remember, we want {Q,, @5} = —2P. Due to the proposition, the
lefthand side can be written as

1
Q@) = 649 [do (Tadlh - LT IR, L )@ (771
For J2 = —1, the second term under the integral simplifies significantly
1
- Z/da[zvj,J](Al) —/daijKLjLMtM /d08 xp, =Q (7.72)
v=—0,zkp,, v=—0,xk pk
Recalling that
(s+90 = N=0=(s+9Q=-P (7.73)
and Q@ = /da o(o) (see (6.63)) (7.74)
we can rewrite ((7.71) as
1 .
(@) = 643 ([0l +10) - (7.75)
- sty (fa 4y —4 0
= J6+9( [ do (7)) —40) (@) +2 (7.76)
-P
The righthand side clearly equals —2P for
[J.aJl3)—40 = 0 (7.77)

which is again (according to (B.113))) just the integrability condition for the generalized almost complex structure
J.

Conclusions to the Bracket Part

We have seen two closely related mechanisms in sigma-models with a special field content which lead to the
derived bracket of the target space algebraic bracket by the target space exterior derivative. This exterior
derivative is implemented in the sigma model in one case via the derivative with respect to a (worldvolume-)
Grassmann coordinate and in the other case via the derivative with respect to the worldvolume coordinate
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itself. In the latter case this derivative has to be contracted with (worldvolume-) Grassmann coordinates in
order to be an odd differential. This leads to the problem that higher powers of the basis elements vanish, as
soon as the power exceeds the worldvolume dimension as it happens in Zucchini’s application. A big number of
Grassmann-variables is therefore advantageous in that approach. For the other mechanism one rather prefers
to have only one single Grassmann variable as there is no need for any contraction. There is one worldvolume
dimension more in the Lagrangian formalism and for that reason it was preferable to apply there the mechanism
with worldvolume derivatives and use the other one in the Hamiltonian formalism.

If one does not consider antisymmetric tensors of higher rank, but only vectors or one-forms (or forms of
worldvolume-dimension), the partial worldvolume derivative without a Grassmann-coordinate is enough. There
is either no need for antisymmetrization or it can be performed with the worldvolume epsilon tensor. The
nature of the mechanism remains the same and leads to the observations in [58], [60] that the Poisson bracket
implements the Dorfman bracket for sums of vectors and one-forms and the corresponding derived bracket for
sums of vectors and p-forms on a p-brane [60]. In that sense, the present part of the thesis is a generalization
of those observations.

There remain a couple of things to do. It should be possible to implement in the same manner by e.g.
a BRST differential other target space differentials which can depend on some extra-structure and repeat
the same analysis. Symmetric tensors then become more interesting as well, because they need such an extra-
structure anyway for a meaningful differential. From the string theory point of view, the application of extended
worldsheet supersymmetry corresponds to applications in the RNS string. But generalized complex geometry
contains the tools to allow RR-fluxes, which are hard to treat in RNS. It would therefore be nice to find some
topological limit in a string theory formalism which is extendable to RR-fields, like the Berkovits-string [10],
leading to a topological sigma model like Zucchini’s, in order to learn more about the correspondence between
string theory and generalized complex geometry.



Conclusion
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After the conclusions on the bracket part, we would like to recall the general idea of what we did. The result
of the supergravity-constraint calculations from Berkovits’ pure spinor string in part [[I]is not new in itself. It
is, however, a very important result and our contribution can be seen as an independent check. This is true
in particular, as we used different techniques at several points. We established a covariant variation in this
setting and derived everything in the Lagrangian formalism, using “inverse Noether”. The argumentation and
calculation was done in detail, in order to allow checks by others, and also some subtle points like the antighost
gauge symmetry where discussed carefully. Also our starting point was more general. Last but not least, the
ingight from the first part about superspace conventions served as a very powerful tool throughout. The aim
of the calculation in part |[I| was to make contact to generalized geometry. The derivation of the generalized
Calabi Yau condition has been done so far from the supergravity point of view, and possible quantum or
string corrections to this geometry require a worldsheet calculation. We have therefore derived the supergravity
transformations of the fermionic background fields which serve as the starting point of these considerations. We
did not yet calculate any string corrections, but it could already be of big advantage to know the natural form of
the supergravity transformations as they come out from the string and not from old supergravity considerations.
In particular we expect to obtain more insight about the geometric role of the RR-fields in the super-geometrical
setting. Non-commutativity considerations for the open superstring (e.g. [86] 87, [88]), for example, assign a
similar role to the RR-fields in superspace as the B-field has in bosonic space. And the geometry of the latter
(with the field strength H either seen as a twist or a torsion), are understood much better.

There are several directions ahead. One could try to establish the tools of generalized (not necessarily com-
plex) geometry already in ten dimensions, before compactification. Having the superstring in mind (embedded
in superspace), it would be even more appealing to consider some generalized supergeometry, i.e. structures on
T & T* of the supermanifold. String statements should simplify if one uses a formulation where the structures
of interest appear manifestly. In this context it seems also reasonable to switch to a probably mixed first-second
order formalism of the pure spinor string in general background. Topological limits of this formalism might
lead to something like the Hitchin sigma-model [78] or some supersymmetric version of it. This again could
shed light on the geometric role of RR-fields. Similar to the last point would be the introduction of doubled
coordinates as suggested by Hull[89, [90, @I, 02]. Generalized complex geometry and this doubled geometry
seem to be very closely related. Deriving the first via supersymmetry conditions in a formalism with doubled
coordinates certainly could clarify this relation.

For all these considerations, our insight about brackets and sigma-models and the relation to the integrability
of generalized complex geometry that we obtained in the last part of this thesis will be very useful. What we
learned about superspace conventions should even be useful for everybody working with superspace.
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Appendix A

Notations and Conventions

Within the thesis, a lot of different types of tensors have to be denoted. The choices and sometimes some logic
behind, will be presented here.

The bracket part (including appendices [B|and [C)) differs a bit in the notation from the rest, as it does
not treat a superspace. In any case we denote bosonic target space coordinates via . In the bracket part,
however, world-volume-coordinates are denoted by ¢*, while in the worldsheet coordinates in the rest are most
often chosen to be complex (z,Z). At some places we write the real coordinates ¢¢ with an worldsheet index
& or ¢, in order to distinguish it from the curved spinorial indices u,v,.... Our metric signature is 'mostly
plus’:ng, = diag (—-1,1,...,1).

Superspace In the superspace parts we have 2™ = (2™, 8", 9#), where 6 and 0 are anticommuting coordi-
nates with the dimension 16 of a Majorana Weyl spinor in ten dimensions. The hatted index should include

both versions of superspace: ITA (with 6" = éu) and ITB (with 6" = 9“). The grading of the coordinate 2
depends on the index. We therefore prefer to write 2™ = (2™, 2#, z#). Writing the fermionic indices boldface
is just a reminder and will not be substantial. A vielbein E v will transform curved indices (from the middle
of the alphabet) into flat indices (from the beginning of the alphabet) and vice verse, e.g. for the pullbacks
of the supersymmetric invariant form 112 = 9x™ E3;4. The entries then have a corresponding index structure
with letters from the beginning of the alphabet: 12 = (T12,11%,11%). When we want to combine the spinorial

(6*,0") or A = (I, T1%). If we want to omit the indices,

(e.g. in functions of the coordinates) we write z for M, 7 for 2™, 6 for 6™, 6 for 6* and @ for 8"

indices only, we write 2™ = (z#,2") or M

v

Notation for tensors in the bracket part In the bracket-part, we mainly denote target space vector-
fields by a,b,... or v,w,..., 1-forms by small Greek letters a, 3, ... and generalized T' & T*-vectors by a,b,...
or v,t,... . For an explicit split in vector and 1-form, the letters from the beginning of the alphabet are
better suited, as there is a better correspondence between Latin and Greek symbols or one can visually better
distinguish between Latin and Greek symbols. Compare e.g. a = a+ « and v = v + (7).

Higher order forms will be in general denoted by a® B or w®), 7](‘1), p(’“), .... There will be exceptions,
however , for specific forms like the B-field B = B,,,d&™ A d&e”. Following this logic, we will also denote
multivectors (tensors with antisymmetric upper indices) by small letters, indicating their multivector-degree
in brackets: a® b@ . or v w(@ . There are again exceptions, e.g. a Poisson structure will often be
denoted by P = P™"9,, A 0,. The most horrible exception is the one of the beta-transformation, which is

mn

denoted by a large beta 5 in , in order to distinguish it from forms.

Tensors of mixed type will be denoted by capital letters where we denote in brackets first the number of
lower indices and then the number of upper indices, e.g. T, Most of the time, we treat multivector valued
forms, e.g. the lower indices as well as the upper indices are antisymmetrized. The letters denoting form degree
and multivector degree will often be adapted to the letter of the tensor, e.g. K*®+) L&

Attention: k and [ are also used as dummy indices! Sometimes (I'm sorry for that) the same letter appears
with different meanings. However, in those situations the dummy indices will carry indices which might even
be one of the degrees k or k', e.g. K___kl“'kk’ka,“_kl_.”'.

Working all the time with graded algebras with a graded symmetric product (the wedge product), everything
in this thesis has to be understood as graded. l.e. with commutator we mean the graded commutator and
with the Poisson bracket the graded Poisson bracket. They will not be denoted differently than the non-graded
operations. Relevant for the sign rules is the total degree which we define to be form degree minus the
multivector degree. In the field language, it corresponds to the total ghost number which is the pure ghost
number minus the antighost number. It will be denoted in the bracket part by

| K®HF) | = k- F (A1)
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In the rest of the thesis, | ... | will only denote the parity, i.e. +1 for commuting and —1 for anticommuting
variables. As only degrees or parities appear in the exponent of a minus sign, a simplified notation is used there

()4 = (<M, (B = ()MARIEL (A8 = ()AIBL yA B (A2

Poisson bracket and derivatives For the Poisson bracket, the following (less common) sign convention is
chosen:

{bm, c" = 0y = _(_)bc {Cnv bm } (A.4)

Derivatives with respect to ™ are denoted by % f=0nf = fm. Forgraded variables left and right derivatives
are denoted respectively by

A =t ofe)foe = ]

Oc ~ Oc (A-5)

The corresponding notations are used for functional derivatives %.

Boldface philosophy and antisymmetrizations With respect to the wedge product, the basis element
9., is an odd object (8,, A 8,, = —0,, A 8,,). The partial derivative Jy acting on some coefficient function,
however, is an even operator (it does not change the parity as long as it is not contracted with a basis element
dr*). That is why we denote the odd basis element 8,, and dc™ as well as the odd exterior derivative d with
boldface symbols. The interior product itself does not carry a grading in the sense that | ixp |=| K | + | p |,
while for the Lie derivative Ly = [1x,d] the £ carries a grading in the sense | Lxp |=| K | + | p | +1. That is
why the Lie derivative is denoted with a boldface £ which is also very good to distinguish it from generalized
multivectors IC, L, .. .. The philosophy of writing odd objects in boldface style is also extended to the combined
basis element

ty = (O, ™), M = (&, 0;) (A.6)

and to the comma in the derived bracket [,] in contrast to the commutator [, ]. This should be, however, just a
reminder. It will be obvious for other reasons, which bracket is meant. But we do not extend this philosophy to
vectors and 1-forms, where it would be consistent (but too much effort) to write the vectors and basis elements
in boldface style and the coefficients in standard style. We will instead write the vector in the same style as the
coefficient a = a,,dx™.

A square bracket is used as usual to denote the antisymmetrization of, say p, indices (including a normaliza-
tion factor 171,) A vertical line is used to exclude some indices from antisymmetrization. An extreme example

would be
Alablcdle|fglhi] (A7)

where A is antisymmetrized only in a,b, e, h and i, but not in ¢, d, f and g. Normally we use only expressions

like Alebledlefal where a,b, e, f and g are antisymmetrized.

Wedge product A significant difference from usual conventions is that for multivectors, forms and general-
ized multivectors we include the normalization of the factor already in the definition of the wedge product

1
&™ ™ =™ AL AT = dB[ml ®...® dL'm"] = Z *'dEm’P(l) ®...0 d&"mPm (AS)
n.
P
. . . 1
Om,  Om, =0m, N NOpyy, = Opp, @ @0, = Z ﬁam% @ @ Ompyy (A.9)
-
1
ty, - tu, =t ANy, = t[ju1 ®...0 t]\[n] = Z EtMP(l) ®...0 t]\,[P(n) (A.lO)
-

(where we sum over all permutations P), such that we omit the usual factor of % in the coordinate expression

p!
of a p-form, or a p-vector

a(p) = amlmmpdr;ml NN Ckap = amlmmp(h,ml . dxm,p (All)
o) = gMiemeg A LA Om, (A.12)
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Readers who prefer the %, can easily reintroduce it in every equation by replacing e.g. the coefficient functions
YL %vml“'mp. The equation for the Schouten bracket ( , for example, would change as follows:

[v(p),w(q)}ml...m.pﬁ—q—l _ pv[ml...mpfl|k‘8kw\mp...’m,p+q,1] _ qv[ml...'rnp\ kwk\mp+1...mp+q,1] (Al?))
(p+ 1 D! e ( 11)'l,v[’”l'“mp*l‘kakw'mp“'mm*” +
p—qg—1) p—1)-q
1 1
- [m1...myp| klmpt1..mprq—1]
v KW (A.14)
pHg—1)! ’

Schematic index notation For longer calculations in coordinate form it is useful to introduce the following
notation, where every boldface index is assumed to be contracted with the corresponding basis element (at the
same position of the index), s.th. the indices are automatically antisymmetrized.

W = o dE™ ™ = W (A.15)
a® = a™ "y AL Oy, =a™ " (A.16)
kP = Ky ™ 8 =Ko = (A.17)

= KM Mgy gy = MM (A.18)

or for products of tensors e.g.

Wm..mMm..m = w[ml...mpnmp_H...an+q](:kU7n1 coedprte = (Alg)

= Wml...m,,Tlmp+1...mp+qdrm1 coederte = (_)pqnm...mwm...m (A20)

A boldface index might be hard to distinguish from an ordinary one, but this notation is nevertheless easy to
recognize, as normally several coinciding indices appear (which are not summed over as they are at the same
position). Similarly, for multivector valued forms we deﬁn

Kp.ok™™ = Kpjom," "W de™ AL AT @ Oy Ao A Oy, (A.21)
Kmmmn...anpmmmn...n = Kml...mknlmnk/flprml.A.ml,lnlmnl, de™ ... dz:m’”'“*l@Bml .. (A22)

My 41/ -1

Upper and lower signs are thus treated independently. For calculational reasons this is not the best way to do. We can interpret
every boldface index on the lefthand side of as a basis element sitting at the position of the index, so that the order of the
basis elements on the lefthand side is first k& x dz™, (k' — 1)8m, (I — 1) X d&™ and I’ X 8., s.th., in order to get the order of the
righthand side, we have to interchange (k' — 1)8,, with (I — 1) x dz™, which gives a sign factor of (—)(k/*l)(l*”. This is a natural
sign factor which appears all the way in the equations, which could be easily absorbed into the definition. However, we wanted
to keep the sign factors explicitly in the equations in order to keep the notation as self-explaining as possible and not confuse the
reader too much. o



Appendix B

Generalized Complex Geometry

For introductions into Hitchin’s [6I] generalized complex geometry (GCG) see e.g. Zabzine’s review [75] or
Gualtieri’s thesis [59]. In the appendix of [93] there is another nice introduction with emphasis on the pure
spinor formulation of GCG. For a survey of compactification with fluxes and its relation to GCG see Grana’s
review [63].

B.1 Basics

In generalized geometry one is looking at structures (e.g. a complex structure) on the direct sum of tangent
and cotangent bundle T@®T*. Let us call a section of this bundle a generalized vector (field) or synonymously
generalized 1-form, which is the sum of a vector field and a 1-form

a = at+a= (B.1)
= a"0, + a, ™ (B.2)
Using the combined basis elements
ty = (Op, ™) (B.3)
a generalized vector a can be written as
a = aMiy, (B.4)
a = (@™, o) (B.5)
There is a canonical metric G on T ® T*
(a,b) = a(b) +f(a) = (B.6)
= apb™+ Bpa™ = (B.7)
= ClMgA/[NbN (B8)

with

0 6TL
Gun = <6:zn 6") (B.9)

which has signature (d,-d) (if d is the dimension of the base manifold). The above definition differs by a factor
of 2 from the most common one. We prefer, however, to have an inverse metric of the same form

GMN = (g—l)MN _ ( 69L 5§L ) (B.10)

As it is constant, we can always pull it through partial derivatives. Using this metric to lower and raise indices
just interchanges vector and form component. We can equally rewrite a in (B.4)) with a basis with upper capital
indices and the vector coefficients with lower indices

M = (&™) (B.11)
a = ayt" (B.12)
ay = (am,am) (B13)
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Note that in the present text there is no existence of any metric on the tangent bundle assumed. Therefore we
cannot raise or lower small indices. In cases where 1-form and vector have a similar symbol, the position of the
small index therefore uniquely determines which is which (e.g. w;,, and w™).

In addition to the canonical metric Gy there is also a canonical antisymmetric 2-form B, s.th. «(b) —
B(a) = aM By b with coordinate form

0 =&
Bun = ( 5m 0’” ) (B.14)
Raising the indices with GM¥ yields
, om0
M n _  p M
s = (F 0 )= m w15
MN  _ 0 o
B = ( 50 (B.16)
We can thus use B and G to construct projection operators Pr and Pr to tangent and cotangent space
]_ . ) é"rn 0
M Lem M\ _ n
Py = L(My 4B N)(O 0) (B.17)
1 0 0
M _— LM o pM _y_
Py = 5 (6" n — BMy) ( 0 o > (B.18)
Pra = a, Pr+a =« (B.19)

B.2 Generalized almost complex structure

A generalized almost complex structure is a linear map from T & T™ to itself which squares to minus the
identity-map, i.e. in components

TMeTEy = o) (B.20)

Tt is called a generalized complex structure if it is integrable (see subsection [B.4). Tt should be compatible
with our canonical metric G which means that it should behave like multiplication with ¢ in a Hermitian scalar
product of a complex vector spaceﬂ

(0,Jw) = —(Jo,w) = (GJ)" =-6T <= Jun=-Inu (B.21)
This property is also known as antihermiticity of J. Because of (B.21), J can be written as
, J"L, pmm —Wmn _Jnn
oo (5 B aee(f ER) we

where P™" and @, are antisymmetric matrices, and (B.20) translates into

JP—PQ = -1 (B.23)
JP—-PJT = 0 (B.24)
-QJ+J'Q = 0 (B.25)

Here it becomes obvious that the generalized complex structure contains the case of an ordinary almost complex
structure J with J? = —1 for Q = P = 0 as well as the case of an almost symplectic structure of a non-degenerate
2-form ) with existing inverse PQ = 1 for J = 0. In addition to those algebraic constraints, the integrability
of the generalized almost complex structure gives further differential conditions (see subsection which boil
down in the two special cases to the integrability of the ordinary complex structure or to the integrability of
the symplectic structure.

Because of J2 = —1, J has eigenvalues +i. The corresponding eigenvectors span the space of generalized
holomorphic vectors L or generalized antiholomorphic vectors L respectively. This provides a natural splitting
of the complexified bundle

TeT*)®C=LaL (B.26)
The projector II to the space of eigenvalue +i (namely L) can be be written as
1
o= S(1-iJ) (B.27)

I In a complex vector space with Hermitian scalar product (a,b) = (b, a) we have (a,ib) = —{ia,b). ©
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while the projector to L is just the complex conjugate IT = % (1 +4J) = G T G. Indeed, for any generalized
vector field v we have

Jlv = illv (B.28)
L and L are what one calls maximally isotropic subspaces, i.e. spaces which are isotropic
(o,r0) = 0 VYo,wel (B.29)

(this is because IT7 GII = GIIII = 0) and which have half the dimension of the complete bundle. As the canonical
metric (---) is nondegenerate, this is the maximal possible dimension for isotropic subbundles.

B.3 Dorfman and Courant bracket
Something which seems to be a bit unnatural in this whole business in the beginning is the introduction of the

Courant bracket, which is the antisymmetrization of the so-called Dorfman-bracket. The Dorfman bracket
in turn is the natural generalization of the Lie bracket from the point of view of derived brackets (C.51)F]

[[2a,d], 6] = Ya,b] (B.30)
where [a,b] = [a,b]+ L0 — Ly +d(na) = (B.31)
= [a,b] + Lo0 — w(da) = (B.32)

= L.b—u(d) (B.33)

To get a homogeneous coordinate expression, we define

6M = (8m7 0) = 82\/1 = (07 8m) (B34)

2 The twisted Dorfman bracket is defined similarly via
[[ta,d+ HA] 3] = 7

a,bl gy

Remembering that HA = 1y and using [iq,15] = Ya,H]A = V,(1) fpr W get

[a,b]y = [a,b] — 2w H o
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The Dorfman bracket can then be written as’

ab]” = a®0xb™M + (0Max — Oxa™) bX (B.35)
or [a,b]M = ClKaKbM + 28[MaK]bK (B.36)
Apart from the term in the middle 0™ ay, (B.35)) looks formally the same as the Lie bracket of vector fields

(C.1). The Dorfman bracket is in general not antisymmetric but it obeys a Jacobi-identity (Leibniz from the
left) of the form

[Cl, [b?c“ = [[aab] ,C] + [ba [Cl,t” (B-?’?)

Although the Dorfman bracket is all we need, most of the literature on generalized complex geometry so far
works with its antisymmetrization, which is called Courant bracket

1
[a,6] . = [ab]+ LB — Lpa+ id(zba —143) (B.38)
[Cl,b]_M = aKé)KbM — 8KC1MbK + % (aMCleK — ClKaMbK) (B.39)

and which does not obey any Jacobi identity. As it is much simpler to go from Dorfman to Courant, than the
other way round, we will only work with the Dorfman bracket. On any isotropic subspace (a0 + 1,8 = 0) the
two coincide anyway, i.e. they become a Lie bracket, obeying Jacobi and being antisymmetric.

We call a transformation a symmetry of the bracket when the bracket of two vectors transforms in the
same way as the vectors

[(b+0b),(c+dc)] = [by]+d[b,] (B.40)

0[b,c] = [db,c] + [b,d¢] + [0b,0¢] (B.41)

I.e. infinitesimal symmetry transformations (where the last term drops) have to obey a product rule. Similar
as for the Lie-bracket of vector fields, infinitesimal transformations are generated by the bracket itself. Let us

call the corresponding derivative, in analogy to the Lie derivative, the Dorfman derivative of a generalized
vector with respect to a generalized vector.

b =D,b = [a,b] (B.42)

These transformations are therefore, due to the Jacobi-identity (B.37)) always symmetries of the bracket. From
(B-33) we can see that the Dorfman derivative consists of a usual Lie derivative and second part which acts
only on the vector part of b by contracting it with the exact 2-form do

Db = L,b (B.43)
Db = —u(da) =™ (O — Opay,)de™ (B.44)

In fact, it is enough for the 2-form to be closed, in order to get a symmetry. If we replace —da by a closed
2-form B, the transformation is known as B-transform

5Bb = ZbB (B45)

3Tt is perhaps interesting to note that this notation of the partial derivative with capital index suggests the extension to a

derivative with respect to some dual coordinate

oM = 657”
We could understand this as coordinates of a dual manifold whose tangent space coincides in some sense with the cotangent space
of the original space and vice versa. This might be connected to Hull’'s doubled geometry [92] [90], 9T}, [89], [94].

To see that such an ad-hoc extension of the Dorfman bracket is not completely unfounded, note that there is a more general
notion of a Dorfman bracket (or Courant bracket) in the context of Lie-bialgebroids (for a definition see e.g. [59} p.32,20]). There
we have two Lie algebroids L and L* which are dual with respect to some inner product and which both carry some Lie bracket.
(For T and T™, only T carries a Lie bracket in the beginning. For a non-trivial Lie bracket of forms on T* we need some extra
structure like e.g. a Poisson structure which would lead to the Koszul bracket on forms.) The Lie bracket on L induces a differential
don L* and the Lie bracket on L* induces a differential d* on L. The definition for the Dorfman bracket on the Lie bialgebroid
L & L* is then

[a,6] = [ab] + Lo — Lpa + d(rpar) +
+[a,8] + Lab— Lga + d (15a)

The first line is the part we are used to from our usual Dorfman bracket on 7' @ 7™, while second line is the corresponding part
coming from the nontrivial structure on L*. Taking now L =T, L* = T* and assuming that [a,8] and L, and d* are a Lie bracket,
Lie derivative and exterior derivative built in the ordinary way, but with the new partial derivative w.r.t. the dual coordinates
O™, the coordinate form of the Dorfman bracket remains exactly the one of , but with 9y = (Om,0) replaced by
8]\/1 = (8m,8m) <&
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Finally, we should note that the B-transform is part of the O(d, d)-transformations, i.e. the transformations
which leave the canonical metric invariant. As usual for orthogonal groups the infinitesimal generators are
antisymmetric when the second index is pulled down with the corresponding metric. The generators of an
O(d, d)-transformation can therefore be written as [59] p.6]

Bon —AR™
MN ( A, m ﬁ ) (B.46)
oM. _ A B B.4
N ( an _Amn ( 7)

In addition to the B-transform, acting with £ on a generalized vector induces the so-called beta-transform on
the 1-form componemﬂ as well as Gl(d)-transformations of vector and 1-form component via A. For constant
tensors, the Lie-derivative is just a GI(d) transformation. Therefore both symmetries of the Dorfman bracket
are symmetries of the canonical metric G as well. For this reason the canonical metric is invariant under the
Dorfman derivative D,with respect to a generalized vector v, which we define on generalized rank p tensors
using in a way that it acts via Leibniz on tensor products (like the Lie derivative) and as a directional
derivative on scalars

(DeT)MiMy = oK™y 4 37 (Mot e — OppMs M Mioa KMo My (B.48)
Dy(A®B) = D,AwB+AcD,B (B.49)
Do(¢) = 050k¢ =0 0o (B.50)

Acting on the canonical metric, one recovers the fact, that the Dorfman derivative contains the isometries of
the metric

DG = 2(0Muog — ogo?)gEM2 — (B.51)

Comparing the role of Lie-derivative and Dorfman-derivative, the B-transform should be understood as an
extension of diffeomorphisms. In string theory it shows up in the Buscher-rules for T-duality (|95, 96]) and
can perhaps be better understood geometrically via Hull’s doubled geometry [92), 00, [91] (compare to footnote
. The beta-transform is not a symmetry of the Dorfman bracket as it stands. However, if we introduce dual
coordinates as suggested in footnote [3] the beta-transform would show up in the symmetry-transformations of
the extended Dorfman bracket generated by itself

On an isotropic subspace L (e.g. the generalized holomorphic subspace) Courant- and Dorfman-bracket
coincide and have the properties of a Lie bracket. It is therefore possible to define a Schouten bracket on
generalized multivectors on A\* L which have e.g. only generalized holomorphic indices (compare [59, p.21]). If
we use again the notation with repeated boldface indices

AP = Aps ar = Ay g, BV 2 (B.52)
we get as coordinate form for this Dorfman-Schouten bracket

[A(p),B(q)} = pAM-MEg MM | o (5oM g, MM _ g, A\M..M) GKM...M (B.53)

In the first term in the bracket on the righthand side, the O™ can as well be shifted with a minus sign to B,
because in A® L we have only isotropic indices in the sense that

AM-M pKM.M  _ (B.54)

For this reason, the Dorfman-Schouten bracket has really the required skew-symmetry of a Schouten-bracket
[ A<p>,3<q>] S [Bm), A(p)} (B.55)

On A°® L this bracket coincides with the derived bracket of the big bracket, as the extra term with pys in (B.79)
vanishes because of (B.54).

4The letter 8 for the beta-transformations does not really fit into the philosophy of the present notations, where we use small
Greek letters for 1-forms (or sometimes p-forms) only, but not for multivectors. As the transformation is, however, commonly

known as beta-transformation, we use a large , in order to distinguish it from the one-forms 3, which are floating around. <
5Taking the Dorfman bracket of footnote |3} we get as Dorfman derivative of a generalized vector ¢ instead of (B.43|[B.44) the
extended transformation

D,
D¢

Lyc— 1y (da)
—(teda) + Lac

Ie. the first line is extended by a beta-transformation of v with ﬁ = —d*a and the B-transform of o (B = —da) in the second line
is extended by a Lie derivative with respect to a. o
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B.4 Integrability

Integrability for an ordinary complex structure means that there exist in any chart dimp, /2 holomorphic vector
fields (with respect to the almost complex structure) which can be integrated to holomorphic coordinates z*
in this chart of the manifold and make it a complex manifold. Those vector fields are then just 9/92z%. Those
coordinate differentials have vanishing Lie bracket among each other (partial derivatives commute). In turn,
every set of vectors with vanishing Lie bracket can be integrated to coordinates. The existence of such a set
of integrable holomorphic vector fields is guaranteed when the holomorphic subbundle is closed under the Lie
bracket, i.e. the Lie bracket of two holomorphic vector fields is again a holomorphic vector field.

As the Dorfman bracket restricted to the generalized holomorphic subbundle L C (T @ T*) ® C has the
properties of a Lie bracket, we can demand exactly the same for generalized holomorphic vectors as above
for holomorphic ones. The condition for the generalized complex structure to be integrable is thus that the
generalized holomorphic subbundle L is closed under the Dorfman bracket, i.e. in terms of the projectors

II[o,IIw] = 0 (B.56)
— [U’m] - [jn,jm] +J [jn,m] +J [Uajm} =0 (B'57)

In the following two sub-subsections we will show that this is equivalent to the vanishing of a generalized
Nijenhuis-tensor [59, p.25] of the coordinate formﬂ[]

iNMlI\bI\/IS = JMlK g, 7IMaMs] | 7[MiIK 7 |M2,Ms] L (B.58)

Recalling that

g (B0 ) = (e ) 0 @

we can rewrite this condition in ordinary tensor components, just to compare it with the conditions given in
literature (for the antisymmetrization of the capital indices we take into account that in the last term of (B.58)

the indices M; and M, are automatically antisymmetrized because of J2 = —1):
i Nmamams - plmilkg, plmams] L) (B.60)
i T = é (—Jknakp[mlmﬂ + 2plmalky, glmal - plmalk jima], J[mllkP’fimﬂ,n) =0 (B.61)
N s = (PO + 27 06T ) + 27T ) — 2P Qu ) 20 (B62)
ilemm = T s 1Ok Qlmams) + T | Qutmasins) — Qo5 masina) = 0 (B.63)

If we compare those expressions with the tensors A, B,C and D given in (2.16) of [78, p.7], we recognize
(replacing @ by —@Q) that our first line is just %A, the second line is f%B (using ), the third %C and the
fourth line is —%D. There, in turn, it is claimed that the expressions are equivalent to those originally given in
(3.16)-(3.19) of [74, p.7].

6This looks formally like the generalized Schouten bracket (e.g. [59, p.21]) on A® L (with L being the generalized holomorphic
bundle) of J with itself (see also the statement below (B.79))), but it is not, as J has neither holomorphic nor antiholomorphic
indices

ngy = {d#J
ng = —ill#J
In fact, we get zero if we contract both indices with the holomorphic projector
v Mgkt = ngn? =il =0

The same happens for two antiholomorphic projectors. But we can project one index with an holomorphic projector and the other
one with an antiholomorphic one. This yields

oV 1M e 7KL = TIJI =411

Up to a constant prefactor the bracket of IT with II coincides with the bracket of J with 7. And like for the ordinary complex
structure, where we have the Nijenhuis bracket of the complex structure with itself, which has one index in 7" and the second in
T, we could here take IT with one index in L and the other in L and regard the bracket as generalized Nijenhuis bracket of IT with
itself. ¢

If instead the twisted Dorfman bracket (see footnote [2)) is used, one gets the integrability condition for a twisted generalized
complex structure with a twisted generalized Nijenhuis tensor. Consider the closed three form H = Hp, ar, 0y M1 M2 (M3 with
Himymoms the only nonvanishing components. The twisted generalized Nijenhuis tensor then reads

Nﬁl MoMs = Namomg +6Ha vyvs — 18Ty KHucary 1. T g
Like (B.60)-(B.63) this twisted generalized Nijenhuis tensor as well matches with the tensors given in [78] if one redefines H,,p —
1

37 Hpnk- <
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B.4.1 Coordinate based way to derive the generalized Nijenhuis-tensor

In this sub-subsection we will see that calculations with capital-index notation is rather convenient. So we
simply calculate (B.57) brute force by using the explicit coordinate formula for the Dorfman-bracket

lo,10]" = 0590 4 (0™ — 0™ o’ (B35-B.64)
The brackets of interest are:

[0, 7" = 0X0r TN Lo + TN oX 0kl + (0N — o) (Tro)E (B.65)
(T [o,T))™ = o TM ok TNt — 05 0gw™ + TM N (0Vok — Ox0™) (Tw)* (B.66)
(To,]Y = TEpolagn®™ + (N Tk — 0x TN 1) oF X + (T b0 o — TV L0kol) 0 (B.67)

(T [To,o)M = TMN(T0) 0xr™ + TMy (0N Tk — 0k TV L) o' +
—(jm)LjMNéNnL + 8KUJWTUK (B.GS)

(To, T = TEN 0N TM gt + TE noN TM Lokt +

(M T noN — 0 TM no™) TH ot + (Trn ™o — TM nOo™) TF L = (B.69)
= (J0) T Loxw" — TV NOko™ (Tw)" +
+(TE LM Ty + 2T 5 (30 TM 1)) 0V 0 4+ 0M o 0" (B.70)

The underlined terms sum up in the complete expression to the generalized Nijenhuis tensor, while the rest
cancels

0 = [o]" = [Jo,T10]" + (T [To,w])™ + (T [0, w0])M = (B.71)
IM kONT 1) = TH LM Ty + TR0k Ty — 2T % 30k TM 1)) 0V ot = (B.72)

= oy (37T RIEN 4 37 NIK gy 7MH ) 1o, = (B.73)

_ %UNNNMLmL (B.74)

B.4.2 Derivation via derived brackets

Eventually we want to see directly how the generalized Nijenhuis tensor is connected to derived brackets. We
will use our insight from the subsections and Remember, our basis t¥ = (d™, 8,,) was identified
with the conjugate (ghost-)variables t¥ = (¢, b,,). One can define generalized multi-vector fields of the form

KW' = Karoan =Ko M M (B.75)

They are in fact just sums of multivector valued forms:

K

_ - K n.n _ (k,k—k)
Kntoar =3 ( . ) Ko™ = S K (B.76)
k=0

k  x—k k=0
The big bracket, or Buttin’s algebraic bracket is then just the canonical Poisson bracket

[’fo]ﬁ) = KLKm..m'Liv.v ={K, L} (B.77)
{tastn} = Gun (B.78)

The coordinate expression for its derived bracket (compare to (6.52)6.54))) reads

A

(=)<t {d’C(K), E(L)} W = K-Knar.aa'0iLarar — ()DL Lo il 0rKne ar +

+(=)*"KLOMK s ma Linava + K (K — 1) Ly v Long..aaps (BU79)
with p; = (p;,0) and 9; = (0;,0). In the case were both K and £ only have generalized holomorphic indices,
the p-term drops and this expression should coincide with the Schouten-bracket on A® L for the holomorphic

Lie-algebroid L (see e.g. [59, p.21] and footnote @) For two rank-two objects, like the generalized complex
structure 7, this reduces to

[IC,d ,C](Al) = 2. ICMI&[,MM +2- ﬁMIa[ICMM — 48M’CMI£[M + 4/CIJL:]MP,] (B.80)
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which reads for two coinciding tensors J

[T a4 j](Al) = 4-Im' 01T — 40 I Tine — AT Tiaps = (B.81)
N+ 4pprtM (B.82)
TJ?*=-1 N——
=o

where o = de*pp = —d(de® A 8;). We will verify this relation between the generalized Nijenhuis tensor and
the derived bracket in the following calculation, where we calculate A using the big bracket all the
time. This bracket is like a matrix multiplication if one of the objects has only one index. We will use this fact
frequently for the multiplication of J with a vector

Jo = JMyoNty = % {J, v} (B.83)
> {T AT, 0}} = 4J% =—-40={{0,J},J} (B.84)
{0, T}, {T,w}} = —40%wr =—4{v,w} (B.85)

If both objects are of higher rank, however, antisymmetrization of the remaining indices modifies the result.
We thus have to be careful with the following examples

(7,TY = 4Tu®Txkn = —4Gnim = 0 (! because of antisymmetrization) (B.86)
{T AT, d}} = Tm" Tk (do)ping # —4cdb (B.87)

As mentioned earlier, the Dorfman bracket (B.31) used in our integrability condition is just the derived bracket
of the algebraic bracket. L.e. we have

o] = [dbo,w]" = (B.88)
= [do,w]y) + D [db, ]G, = (B.89)

p>2 -
= {dv,w} . (B.90)

where the differential d has to be understood in the extended sense of (6.916.33), namely as Poisson-bracket
with the BRST-like generator

o = tMpy=c"pn tocally dz"pym) = —d(c"by,) (B.91)
pv = (Pm,0) (B.92)
do = {O, U} = Opung + UKpK (B93)

where p,,, is the conjugate variable to . We can now rewrite the integrability condition (B.57) as

(do, 10} — i{d{‘?,n} {Two)) 4 i (7.{d{T 0} w0}} + i (T Ad {70l £ 0 (B.o4)

Remember that the Poisson bracket is a graded one, and v, and d are odd, while 7 is even.
Let us now start with applying Jacobi to the second term of (B.94)

S AT (T el = ) ({70}, ) ) - | {7 {d(7.0) )} (B.95
so that we get
0 L {d.w} - ({A(T.0}. 7)1} + 1 17 (@, (T, w}}} = (8.96)
= (.m0}~ {{{d70),7) 0}~ ({({T &), T} om} + (T (Tood}h = (B9
— {dum) (0.7} T} w4 ({{@.0), T} o) 4 T (@ (Te))) (B9Y)

It would be nice to separate to completely by moving it for the last term into the last bracket like in the first
three terms. We thus consider only the last term for a moment and calculate it in two different ways (first using
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Jacobi for second and third bracket and after that using Jacobi for first and second bracket):

T @ AT 0 B T (@, T w4 (T (T ()} = (B.99)
= (T {{d. 7}, w}) — {d,w) (B.100)
= %{{J7db},{57m}}+%{dn,{],{f,m}}}: (B.101)
= (T T ) )} + ] ({17, T} ) — (b, o} = (B.102)

= fi{j,{{db,j}vm}}Jr{dn,m}72{dn,m}+i{{{j,dp},j},m} (B.103)

Comparing both calculations yields

LT Ad T = ({717, b}, o} — {db, ) (B.104

We can plug this back in and leave away the outer bracket with to:
0 L b {{0.d7}, T+ b T T} (T AT b - b = (8105
= ({07} T+ g (T}, T} = (B.100
— {047}, T) 4 (Ao T} T} - (B.107)
= S {7}, T+ S0, T}, T+ S ({6, T}, 4T} = (B.103
= _é {0,{d7,T}} — %dn = (B.109)
_ %({ Tl 0} —4d) = (B.110)
_ é{[jdj]ﬁ)—zm,n} (B.111)

where we used

& = {o,v} (B.112)

The integrability condition is thus (explaining the normalization of N of above) as promised in (B.82)

N =[T.a710) —40=0 (B.113)

The derived bracket [J,aJ ](Al) indeed contains the term 40 = 4tMp); which therefore is exactly cancelled.

Precisely the same calculation can be performed by calculating with the complete algebraic bracket [, ]A
instead of the Poisson-bracket, its first order part. Similarly to above, we have

Ju = %[j,n]A (B.114)
= [7,[7,02% = 4J% = —4v (B.115)

In combination with (B.88]) this is enough to redo the same calculation and get as integrability condition (using
(T,J] = —[d7, J|*)

N=[7,7]—40=0 (B.116)

which also proves that the derived bracket bracket of the big bracket (which is not necessarily geometrically
well defined) coincides in this case with the complete derived bracket

(Tadlhy, = (7,7 (B.117)

As discussed in (C.53) and (C.55)), throwing away the d-closed part corresponds to taking Buttin’s bracket
instead of the derived one. Remember that o = de*p;, = —d(de” A 8%), s.th. do = 0. We can thus equally write

N = 7.7z (B.118)



Appendix C

Derived Brackets

Mathematics in this section is based on the review article on derived brackets by Kosmann-Schwarzbach [57].
The presentation, however, will be somewhat different and in addition to (or sometimes instead of) the abstract
definitions coordinate expressions will be given.

C.1 Lie bracket of vector fields, Lie derivative and Schouten bracket

This first subsection is intended to give a feeling, why the Schouten bracket is a very natural extension of the
Lie bracket of vector fields. It is a good example to become more familiar with the subject, before we become
more general in the subsequent subsections, but it can be skipped without any harm (note however the notation

introduced before (C.13))).

Consider the ordinary Lie-bracket of vector fields which turns the tangent space of a manifold into a Lie
algebra or the tangent bundle into a Lie algebroid and which takes in a local coordinate basis the familiar form

[vw]™ = VFoW™ — whou™ (C.1)

We will convince ourselves in the following that numerous other common differential brackets are just natural
extensions of this bracket and can be regarded as one and the same bracket. Such a generalized bracket is
e.g. useful to formulate integrability conditions and it can serve via the Jacobi identity as a powerful tool
in otherwise lengthy calculations . In addition it shows up naturally in some sigma-models as is discussed in
section [6l

Given the Lie-bracket of vector fields, it seems natural to extend it to higher rank tensor fields by demanding
a Leibniz rule on tensor products of the form [v,w; ® ws] = [v,w1] ® wa + w1 ® [v,wz]. Remembering that the
Lie-bracket of two vector fields is just the Lie derivative of one vector field with respect to the other

o] = Low (C2)

the Lie derivative of a general tensor T' = Tf,'fl:;‘{p MR R, ®---Q Bnqwith respect to a vector
field v can be seen as a first extension of the Lie bracket:

[v,T] = L,T (C.3)
[U’T]nl...nq _ Ukaanl,,ﬂq N Z 8kvniTn1mni71k’ni+1.“nq + Z aijanl...nq (04)
i J

mi...myp mi...Mp mi..Mmyp mi..mj_1kmjpi...mp

The Lie derivative obeys (as a derivative should) the Leibniz rule
[’U,Tl X TQ} = [’U,Tl] X T2 + Tl X [U,TQ} (05)

In fact, giving as input only the Lie derivative of a scalar ¢, namely the directional derivative [v,¢] = v*9)¢,
and the Lie bracket of vector fields (C.1), the Lie derivative of general tensors (C.4) is determined by the
Leibniz-rule. Insisting on antisymmetry of the bracket, we have to define

Tw] = —[v,T) (C.6)
Indeed, it can be checked that the above definitions lead to a valid Jacobi-identity of the form
vy [w,T]] = [[vyw],T]+ [w,[v,T]] for arbitrary tensors T (C.7)
which is perhaps better known in the form

[L"U?‘Cw] T = ‘C’[v,w]T (08)

118
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We have now vectors acting via the bracket on general tensors, but tensors only acting on vectors via .
It is thus natural to use Leibniz again to define the action of tensors on tensors. To make a long story short,
this is not possible for general tensors. It is possible, however, for tensors with only upper indices which are
either antisymmetrized (multivectors) or symmetrized (symmetric multivectors). We will concentrate in
this paper on tensors with antisymmetrized indices (the reason being the natural given differential for forms
which also have antisymmetrized indices), but the symmetric case makes perfect sense and at some points we
will give short comments. (See e.g. [97] for more information on the Schouten bracket of symmetric tensor
fields.)
Given two multivector fields (note that the prefactor 1/p! is intentionally missing (see page [107).

o = Mg AL A, w D =™, AL A B, (C.9)

their Schouten(-Nijenhuis) bracket, or Schouten bracket for short, is given in a local coordinate basis by

{v(p)’w(q)}m1...7np+q—1 B py[ml'“mf’*l‘kﬁkwlm""'m”*qfl] . qv[ml,,‘mp|7kwk|mp+1‘..mp+q,1] (C.lO)

Realizing that the Lie-derivative 1} of a multivector field w(? with respect to a vector vV is
[v,w(q)}nL..nq _ Ukak,wnl...nq _ qakv[nl\wk\ng...nq] (C.ll)

one recognizes that is a natural extension of this, obeying a Leibniz rule, which we will write down below
in . However, as the coordinate form of generalized brackets will become very lengthy at some point, we
will first introduce some notation which is more schematic, although still exact. Namely we imagine that every
boldface index m is an ordinary index m contracted with the corresponding basis vector 8,, at the position
of the index:

o) = el A LA Om, =0 ™ (C.12)

This saves us the writing of the basis vectors as well as the enumeration or manual antisymmetrization of the
indices. As a boldface index might be hard to distinguish from an ordinary one, we will use this notation only for
several indices, s.th. we get repeated indices m ... m which are easily to recognize (and are not summed over,
as they are at the same vertical position). See in the appendix [A| on page for a more detailed explanation.
The Schouten bracket then reads

[v(p),w(q)} _ pvm...mkakwm“.m _ qvm...m;kwkm...m _ (Cl?))
= ™R G™ e ()Pl gk e mymenm (C.14)
= pu™mk ™™ _ (—)P=D(aD) gyymemk g gym..m (C.15)

In the last line it becomes obvious that the bracket is skew-symmetric in the sense of a Lie algebra of degre
—1:

{v(p),w(‘”} = (—)P-DG-D {ww),v(m} (C.16)

!A Lie bracket [,(,) | of degree n in a graded algebra increases the degree (which we denote by | ... [) by n

It can be understood as an ordinary graded Lie-bracket, when we redefine the grading || ... || =| ... | +n, such that the Lie bracket
itself does not carry a grading any longer

I[Am Bl = llAl+ 1B
The symmetry properties are thus (skew symmetry of degree n)
[A,(") B} = _(_)(lA\+n)(\A\+n) [37(71) A]
and it obeys the usual graded Jacobi-identity (with shifted degrees)
[y By €11 = [[Asgm) B] smy C] + (1) (AHEWUAED B, ) [,y €]

In addition there might be a Poisson-relation with respect to some other product which respects the original grading. To be
consistent with both gradings, this relation has to read

[AmyB-Cl = [AB]-C+ ()IAHFMIBIB. [4,,, 0]

This is consistent with B-C = (=)IBIICIC . B on the one hand and the skew symmetry of the bracket on the other hand. One can
imagine the grading of the bracket to sit at the position of the comma.

For the bracket of multivectors we have as degree the vector degree. Later, when we will have tensors of mixed type (vector
and form), we will use the form degree minus the vector degree as total degree. Then the Schouten-bracket is of degree +1, which
should not confuse the reader. o
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It obeys the corresponding Jacobi identity
[U%pl), [Uépz),véps)ﬂ _ vapl),vépz)} ’U:()’m)} + (_)(P1—1)(P2—1) {Uém), {Uipl)’véps)ﬂ (0.17)

Our starting point was to extend the bracket in a way that it acts via Leibniz on the wedge product. A Lie
algebra which has a second product on which the bracket acts via Leibniz is known as Poisson algebra. However,
here the bracket has degree —1 (it reduces the multivector degree by one) while the wedge product has no degree
(the degree of the wedge product of multivectors is just the sum of the degrees). According to footnote |1} we
have to adjust the Leibniz rule. The resulting algebra for Lie brackets of degree -1 is known as Gerstenhaber
algebra or in this special case Schouten algebra (which is the standard example for a Gerstenhaber algebra).
The Leibniz rule is

vgpl),uém) /\Uéps)} _ [,Ugvl),vépz)} Avéps) + (_)(m—l)pzvém) A {v§p1),v§m)} (C.18)

The standard example in field theory for a Poisson algebra is the phase space equipped with the Poisson bracket
or the commutator of operators or matrices The Schouten algebra is naturally realized by the antibracket
of the BV antifield formalism (see subsection [6.5)).

C.2 Embedding of vectors into the space of differential operators

The Leibniz rule is not the only concept to generalize the vector Lie bracket to higher rank tensors. The major
difficulty in the definition of brackets between higher rank tensors is the Jacobi-identity, which should hold for
them. It is therefore extremely useful to have a mechanism which automatically guarantees the Jacobi identity.
A way to get such a mechanism is to embed the tensors into some space of differential operators, as for the
operators we have the commutator as natural Lie bracket which might in turn induce some bracket on the
tensors we started with. Vector fields e.g. naturally act on differential forms via the interior product

1w® = P 0km. m (C.19)

This can be seen as the embedding of vector fields in the space of differential operators acting on forms, because
the interior product with respect to a vector is a graded derivative with the grading -1 of the vector (we take
as total degree the form degree minus the multivector degree, which for a vector is just -1)

Ty (w(p) A n(q)) = 2,w? An@ 4 (=)1u®) A 4,n@ (C.20)

Taking the idea of above we can take the commutator of two interior products. We note, however, that it only
induces a trivial (always vanishing) bracket on the vectorfields

[ty,20] = 0=19 (C.21)

As the interior product (C.19) does not include any partial derivative on the vector-coefficient, it was clear from
the beginning that this ansatz does not lead to the Lie bracket of vector fields or any generalization of it. We
have to bring the exterior derivative into the game, in our notation

A'?) = 9w, m (C.22)
There are two ways to do this

e Change the embedding: Instead of embedding the vectors via the interior product acting on forms, we
can embed them via the Lie-derivative acting on forms. When acting on forms, the Lie derivative can be
written as the (graded) commutator of interior product and exterior derivative

£1J = [21)7 d] (023)
va(p) = Ukakwm...m +p- amvkwk m..m (024)

Indeed, using the Lie derivative as embedding v +— L,, the commutator of Lie derivatives induces the Lie
bracket of vector fields (a special case of (C.8§)

[‘["’1)7 ‘C’w} = ‘C’[v,w] (025)

2In fact, working with totally symmetric multivector fields would have lead to a Poisson algebra instead of a Gerstenhaber
algebra. o
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e Change the bracket: In the space of differential operators acting on forms, the commutator is the most
natural Lie bracket. However, the existence of a nilpotent odd operator acting on our algebra, namely the
commutator with the exterior derivative, enables the construction of what is called a derived bracketf]

[1osatw] = ([0, d] ;%] (C.26)

This derived bracket (which is in this case a Lie bracket again, as we are considering the abelian subalgebra
of interior products of vector fields) indeed induces the Lie bracket of vector fields when we use the interior
product as embedding

[Z’z)adzw} = Z[U,w] (027)

The above equations plus two additional ones are the well known Cartan formulae

[Z’ua Zw} = 0= [d, d} (028)
L, = [w,d] (C.29)
£,,d] = 0 (C.30)
[‘C’lh L’w} = ‘C[U,w] (031)
H%}»d 77wa = Z[v,w] (032)

——

L,
(C.25) can be rewritten, using Jacobi’s identity and [d,d] = 0, as

([[tv,d] ;0] ,d] = [z[v)w],d} (C.33)

Starting from (C.27)), one thus arrives at by simply taking the commutator with d. We will therefore
concentrate in the following on the second possibility, using the derived bracket, as the first one can be deduced
from it. Let us just mention that the generalization in the spirit of the derived bracket (or more precise
its skew-symmetrization) is known as Vinogradov bracket [100, 101] (see footnote[8), while the generalization
in the spirit of is known as Buttin’s bracket [83].

C.3 Derived bracket for multivector valued forms

Let us now consider a much more general case, namely the space of multivector valued forms, i.e. tensors
which are antisymmetric in the upper as well as in the lower indices. With the Schouten bracket we have
a bracket for multivectors, which are antisymmetric in all (upper) indices. There exists as well a bracket
for vector valued forms, namely tensors with one upper index and arbitrary many antisymmetrized lower
indices. This bracket (which we have not yet discussed) is the (Frohlicher-) Nijenhuis bracket (see (C.67)),
which shows up in the integrability condition for almost complex structures. Multivector valued forms have
arbitrary many antisymmetrized upper and arbitrary antisymmetrized lower indices and thus contain both cases.
The antisymmetrization appears quite naturally in field theory (we give only a few remarks about completely
symmetric indices, which appear as well, but which will not be subject of this paper). It makes also sense to
define brackets on sums of tensors of different type (e.g. the Dorfman bracket for generalized complex geometry).
Those brackets are then simply given by linearity.

3Given a bracket [,(n) ] of degree n (not necessarily a Lie bracket. It can be as well a Loday bracket where the skew-symmetry
property as compared to footnote [1| is missing, but the Jacobi identity still holds) and a differential D (derivation of degree 1 and
square 0), its derived bracket [98] [99] 57| (which is of degree n + 1) is defined by

[a,(py 0] = (=) [Day(n) b]

We put the subscript (D) at the position of the comma, to indicate that the grading of D is sitting there. The strange sign is just
to make the definition nicer for the most frequent case of an interior derivation, where Da = [d,(n> a} with d some element of the
algebra with degree | d|=1—n and [d,(n) d] =0, s.th. we have

[a,q 8] = [[a(n) d] ,(n) b]

The derived bracket is then again a Loday bracket (of degree n + 1) and obeys the corresponding Jacobi-identity (that is always
the nontrivial part). If a,b are elements of a commuting subalgebra ([a,(,) b] = 0), the derived bracket even is skew-symmetric and
thus a Lie bracket of degree n + 1.

In the case at hand we start with a Lie bracket of degree 0 (the commutator) and take as interior derivation the commutator with
the exterior derivative [d,...]. Note that the exterior derivative itself is a derivative on forms, but not on the space of differential
operators on forms. Therefore we need the commutator. o
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So let us consider two multivector valued forms (we denote the number of lower indices and the number of
upper indices in this order via superscripts)[ﬂ

K(k:,k/) = Km...mnmn = Kmlmmknl...nk/ ™ ™ ® anl . 8nk/ (034)
L = . nen (C.35)
"~

Note the use of the schematic index notation, which we used for upper indices already in subsection and
which is explained in the appendix [A] on page Following the ideas of above, we want to embed those
vector valued forms in some space of differential operators. As we have upper as well as lower indices now, it is
less clear why we should choose the space of operators acting on forms and not on some other tensors for the
embedding. However, the space of forms is the only one where we have a natural exterior derivative without
using any extra structur Therefore we will define again a natural embedding into the space of differential
operators acting on forms as a generalization of the interior product. Namely, we will act with a multivector
valued form K on a form p by just contracting all upper indices with form-indices and antisymmetrizing the
remaining lower indices s.th. we get again a form as result. The formal definition goes in two steps. First one
defines the interior product with multivectors. For a decomposable multivector v(?) = v; A ... A vp set

Z1)1/\.../\1)17/)(7“) = ;e vap(r) (036)
This fixes the interior product for a generic multivector uniquely (contracting all indices with form-indices).
The next step is to define for a multivector valued form K®*+) = p(k) A v(¥) which is decomposable in a form
and a multivector, that it acts on a form by first acting with the multivector as above and then wedging the
result with the form

’

o potn = 18 Aryap = (=) Fr 0 0000 (C.37)

It is kind of a normal ordering that ¢, acts first:

’

Ity = Tty apk') = (*)kk Ly A (k) # yly (038)

For a generic multivector valued form, the above definitions fix the following coordinate form of the interior
product] with a multivector valued form

T J— r weibgr
'LK(k,k’)/}( ) = (k/)' ( i ) [(m,...mll b Plys...lim...m (039)
—_——

r

So we are just contracting all the upper indices of K with an appropriate number of indices of the form and
are wedging the remaining lower indices. The origin of the combinatorial prefactor is perhaps more transparent
in the phase space formulation in subsection For multivectors v® and w(® the operator product of
1, and 1, induces, due to simply the wedge product of the multivectors

Ly Ly(@0) = L) A(@) (C.40)

But for general multivector-valued forms we have instead’]

k' k'
Lk ip ) = E Zzgf)L =IgaL + E Zzgf)L (041)
p=0 p=1

40ne can certainly map a tensor K,,"de" ® 95, to one where the basis elements are antisymmetrized K,,"dc™ A 8y, see paEge 7
%Km”drm ROy, — %Km”8n®drm and vice versa. In the field theory applications we will always get a complete antisymmetrization.
This mapping is the reason why we take care for the horizontal positions of the indices. It should just indicate the order of the
basis elements which was chosen for the mapping. <

50ne can define an exterior derivative — the Lichnerowicz-Poisson differential — on the space of multivectors as well (via
the Schouten bracket), but for this we need an integrable Poisson structure: dp N(9) = [P(2),N(@)], with [P(?),P()] =0 o

6The name ’*interior product’ is misleading in the sense that the operation is (for decomposable tensors) a composition of interior
and exterior wedge product. It will, however, in the generalizations of Cartan’s formulae play the role of the interior product. We
will therefore stick to this name. We can also see it as a short name for ’interior product of maximal order’ in the sense that all
upper indices are contracted as opposed to an interior ’product of order p’, where we contract only p upper indices. ’Order’ is in
the sense of the order of a derivative. While 1, is a derivative for any vector v, the general interior product acts like a higher order
derivative. 3

"The product of interior products in induces a noncommutative product (star product) for the multivector-valued forms,
whose commutator is the algebraic bracket, namely

K+«L = > L
p20

[K,L]* = K+L— (=)t per o
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with

! f— - k' l n..n n..n
Zgzk’k/)L(l,l) = (7)(16 p)(l P)pl( ) ) ( » >Kmm llmlle,,...llm...m (042)

For p = K/, z%’) reduces to the interior product . Both are in general not a derivative any longer. o(*)
is, however, a p-th order derivative, as contracting p indices means taking the p-th derivative with respect to p
basis elements (seein subsection. Our embedding ;- x.»/) in is therefore a k’-th order derivative.
For p = 0 on the other hand, Z(I?) is just a wedge product with K

While for vectors the commutator of two interior products did only induce a trivial bracket on vectors,
which is the same for multivectors due to (C.40), this is different for multivector-valued forms.

[tonnstpaan] = g s (C.43)
(K, L) = Y PL— (—)Een P = (C.44)
p=t =[K.L]&
V(- K l no.m n.n
— Z (_)(k‘ p)(l ;U)pl( » ) ( » )Kmm ll.“llep‘.,llm,,.m L
p>1
’ ’ ’ /
_(_)(k—k (-1 )(_)(l —P)(k—P)p! ( ; > ( ]k; ) Lm...mnmnllMlpKlp.,.llm...mnmn (045)

where we introduced an algebraic bracket K, L]A in the second line, which is is due to Buttin [83], and
which is a generalization of the Nijenhuis-Richardson bracket for vector-valued forms . As it was induced
via the embedding from the graded commutator, it has the same properties, i.e. it is graded antisymmetric
and obeys the graded Jacobi identity. Actually, the term with lowest p, so [K, L](Ap:l), is itself an algebraic
bracket, which appears in subsection as canonical Poisson bracket. It is known under the name Buttin’s

algebraic bracket ([83], denoted in [57] by [, }OB) or as big bracket

(K, L)) = WL — (=)0, = (C.46)
= (_)(’f’—l)(l—l)k/l ) Km___mn-..nllLllmmmn...n I
_(_)(k—k/)(l—l’)(_)(l/_l)(k—l)l/k . memn...nll Kllm...mnmn (047)

But as for the vector fields in subsection , we are rather interested in the derived bracket of [K, L]A, or
at the bracket induced via an embedding based on the Lie derivative. An obvious generalization of the Lie
derivative is the commutator [ix,d], which will be a derivative of the same order as 15 and therefore is not a
derivative in the sense that it obeys the Leibniz rule. Although it is common to use this generalization, I am
not aware of an appropriate name for it. Let us just call it the Lie derivative with respect to K (being a
derivative of order k')

ﬁK(k,k/) = [ZK(k,k/)’d] (048)
r+1 ,
‘CK(kwk')p = (k/)' ( k' > Km,..mllmlk a[lk/plk/_l...llm“.m] +
() o (o 1t1mm) = (.19

= (k/)| ( Y1 )Km...mllmlk/alk/plk/_l,..llm...m 4
_(_)k_k/(k/)! ( ]:/ >ame...mllullk/plkz...llm...m (C50)

The Lie derivative above is an ingredient to calculate the derived bracket (remember footnote [3[on page[121)
which is given byf¥|

[ZKdeL] = [[ZK, d] s ZL] = Z[K,L] if possible (051)

8 The Vinogradov bracket [T0T] [T00] (see also [57]) is a bracket in the space of all graded endomorphisms in the space of
differential forms Q°® (M)

1
fably = 5 (.t~ ()’ [a[b.d]])  VabeQt(d)
It is the skew symmetrization of a derived bracket. The embedding of the multivector valued forms into the endomorphisms Q® (M)

via the interior product which we consider is neither closed under the Vinogradov bracket nor under the derived bracket in the
general case. ©
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One should distinguish the derived bracket on the level of operators on the left from the derived bracket on the
tensors [K,L] on the right. Only in special cases the result of the commutator on the left can be written as the
interior product of another tensorial object which then can be considered as the derived bracket with respect to
the algebraic bracket [, ]A. Therefore one normally does not find an explicit general expression for this derived
bracket in literature. In however, the meaning of exterior derivative and interior product are extended in
order to be able to write down an explicit general coordinate expression which reduces in the mentioned

special cases to the well known results (see e.g. |C.4.2).
Closely related to the derived bracket in (C.51)) of above is Buttin’s differential bracket, given by

[Lk,L1] = Lk, if possible (C.52)

Because of [d,d] = 0 and Lx = [1x,d we have (using Jacobi)

[L:K.,L:L] = [[2K7d2L]a d} = [['LKadZL] 5 d] = [Z[K,L]Ba d] (053)

Comparing with (C.51) s.th. in cases where [K,L] exists, the brackets have to coincide up to a closed term, or
locally a total derivative

uk.r = Y.z, +[d,. ] (C.54)

Using again the extended definition of exterior derivative and interior product of [6.1.2] this relation can be
rewritten as

K,I) = [K,Ll,+d(.) (C.55)

The Nijenhuis bracket (C.74) is the major example for this relation.

C.4 Examples
C.4.1 Schouten(-Nijenhuis) bracket

Let us shortly review the Schouten bracket under the new aspects. For multivectors v(®),w(? the algebraic
bracket vanishes

(1) 1] = 0 (C.56)

The Schouten bracket [v(?),w(?] coincides with the derived bracket as well as with Buttin’s differential
bracket, i.e. we have

([tvw, d] s @] = Yo®,w@] (C.57)
[L’U(P) 9 cw(q)} == L:[,U(p) ,w(‘I)] (C58)
Its coordinate form — given already before in (C.15) — is

[U(p),w(q)} _ pvm.“mkakwm“.m _ (_)(p*1)(q71)qwm...mkakvm.i.m (C.59)

The vector Lie bracket is a special case of the Schouten bracket as well as of the Nijenhuis bracket.

C.4.2 (Frohlicher-)Nijenhuis bracket and its relation to the Richardson-Nijenhuis
bracket

Consider vector valued forms, i.e. tensors of the form
K& = Koo o P A A A By X Ky, AT A A ™ ® 8, (C.60)
The algebraic bracket of two such tensors, defined via the graded commutator (note that |1k |=| K |=k — 1)
[uc,2n] = o pa (C.61)
consists only of the first term in the expansion, because we have only one upper index to contract.
A A
[K(m)’L(z,l)] _ {K(k,1)7L(l,l)} _ ZE)L _ (_)(k—l)(l—l)Z(Ll)K — (C.62)
1)

oD lem7ijmn - (_)(k_l)(l_l)k Lm...mjij...mn (C63)
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It is thus just the big bracket or Buttin’s algebraic bracket but in this case it is known as Richardson-
Nijenhuis-bracket.

The Lie derivative of a form with respect to K (in the sense of (C.48)) is because of k' = 1 really a (first
order) derivative and takes the form

Ly = [ZKUC,I) , d] (C.64)
‘C’K(k’l)p(r) = Kmmlalpmm + (_)k7amemlplmm (065)

The (Froehlicher-)Nijenhuis bracket is defined as the unique tensor [K,L],, s.th.
[Lr, L] = Lik,0)y (C.66)

It is therefore an example of Buttin’s differential bracket. Its explicit coordinate form reads

[KaL]N = Kmmj8]men + (_)klamemijmmn +
_(_)lem.A.mjaiju-mn - (_)kl(_)lkamLm.“mjij“.mn (0.67)
_ ”cKL _ (_)le:LKn (068)

A different point of view on the Nijenhuis bracket is via the derived bracket on the level of the differential
operators acting on forms:

[txc,arn] = [k, d oz ] (C.69)

Tt induces the Nijenhuis-bracket only up to a total derivative (the Lie-derivative-term)

kaw] = ko, — (DML, K (C.70)

Using the extended definition of the exterior derivative in the sense of (6.37) and of the interior product (6.32)),

one can write the Lie derivative as an interior product (see [6.35) L., x = —(—)"*uq(,, k) and [[ix,d 0] =
(—)* [raxc, 2] = (f)kz[deL]A, so that we can rewrite 1} as

KL = KLy + ()% (k) (c.1)

with [K,L] = (—)"[dK,L]* (C.72)

In that sense, [K,L] is the derived bracket of the Richardson Nijenhuis bracket while the Nijenhuis bracket
differs by a total derivative. The explicit coordinate form can be read off from (6.49}6.51)) (with only the p =1
term surviving)

KL = (—)MGL+ ()M ()G K+ (—) Ve K) = (C.73)
= Km.m?0iLm. m™+ () 10mKm m’Lim..m™ +
() L 05 K™ — (=) (=) kO L. K o™ +
(=) (b Lmy..cm? K jm...m™) (C.74)

ZLK

where the last part is non-tensorial due to the appearance of the basis element p; (see subsection [6.1.2):
d(ZLK) = d<kmeJKJmmn) = kOm (Lm..Amjij“.mn) - (_)l_‘—kLm...mjij.“mipi (075)

The remaining part coincides with the coordinate form of the Nijenhuis bracket as given in (C.67).
One can nicely summarize the algebra of graded derivations on forms as

[LKikl) +ZL(11,1) , ﬁKékQ) JrZLézz)} =

= L:[Kl,Kz]N—HLlKQ—(_)(lQ—l)kl 115 K1 + Z[KI,LQ]Ni(,)(qu)kQ [KQ,L1]N+[L1,L2]A (C.76)



Appendix D

Gamma-Matrices in 10 Dimensions

D.1 Clifford algebra, Fierz identity and more for the Dirac matrices

In the following we will collect some general relations for Dirac-I'-matrices in d dimensions. In contrast to
the rest of this document, we are not using graded conventions in most of this appendix. In other words,
the spinorial indices are not understood to carry a grading and we are thus using neither graded summation
conventions nor the graded equal sign. The reason is that a lot of people (me included) are used to calculate
with I'-matrices in ordinary conventions, and it therefore seemed to be simpler for me to translate only the
results into the graded conventions, which will be done in the last section of this appendix. This does not mean,
however, that calculating in the graded conventions would be more complicated.
Remember the form of the Clifford algebra

{re.rty = 21 — 1Y = yotq (D.1)

Define as ususal ['*1+% = Tlo1...P%l  The set {I''} = {1,'*, [ T@0} then builds a basis of
G1(209/21) where 2[9/2] is the dimension of the representation space.

Product of antisymmetrized products of I'-matrices One can in particular expand any product of
antisymmetrized gamma matrices in the basis {I'/}:

min{p,q}
ra-appbibe - — Z k!( i ) ( Z )n[%[b1'n%1'b2 ...n\%+1—k\'bk‘]_"I“1~--“pfk]‘bk+1“'bq] (D.2)
k=0

The antisymmetrization brackets on the righthand side shall indicate that all the a;’s and all the b;’s are
independently antisymmetrized. The expressions become quite lengthy, if one spells out the antisymmetrization
explicitely. Let us write down the first terms only, using the notation where a hat on an index means that this
index is omitted{T]

Fal...akrbl...bl - T .apby.. bz+§ E k i+j—1 abjl—\al .4ji...apby.. b bl+
i=1 j=1

i1—1  j1—1

4 E E E ( E k i1+j1—14+k—1—is+ja2— na‘ilbjlnai2bj2ra1”'é‘i2”'ai1"'akbl"'bj2"'bjl"'bl 4

11=1j1=142=1 jo=1

,(,)2k+71+i2+j1+12

+ E k i1+j1—14+k—1—is+ja— 277a71 ]1,',](1.,2 721‘\0,1 4ﬁ./1...akb1...lv7jl...5‘72...1)1) _"_... (Ds)
J2—J1+1

(_)2k+’i1+i2+j1+J2

For some applications the precise coefficients are not important, and a schematic version is enough. Let us
denote T'%1% schematically simply by T'l¥l. Neglecting all coefficients, we can write

TFETE o plie=U] f plik=t+2] 4 ple+l) (D.4)

Some simpler cases are of particular interest for us:

IFor the proof of (D.2) one can simply study independently the cases of how many indices a; and b; coincide. For a nonvanishing
lefthand side all the a’s are different and all the b’s are different. If even none of the a’s coincides with one of the b’s, we have simply
roi--apbi-be = par..arbi-bi f g; = by and all others are different, we have [0tk T01--b1 = (_)k=lparbiaz..akbz.-br [f two
indices coincide, e.g. a1 = by, as = ba, then we have I'%1--@k01---bi = (_)k—1+k—2pa1bipasbapas...axbs...bi And so on... o

126
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paipbibe — pabiebe g 7]a1[b11"b2~~-bz] (D.5)
raazpbibe — parazbibe g Ual[bllrazle”‘b’] +1- Uaz[bl‘ralle”‘bl] -1l - 1)nal[bl‘na2|b2rb3"'bl} (D.6)

F“1Q2Fblb2 _ Fa1a2b1b2 + na2blra1b2 + naleFagbl _ nalblrazbz _ nazbzrmbl +
+na1b2na2b1 _ 77(111111 na2b2 (D?)

Contracting (D.5) with T'y, from the left yields
(d—Z)Fbl“'bl _ Fall—\alb1...bl (DS)
Acting instead from the righthand side yields

Fal—\bl...bzra _ Fubl...bll—\a + lna[bll—\bg...bl]l—\a —
— ()l(d—21)- T (0.9

In particular for [ = 0 and [ = 1, we have

rr, = d (D.10)
rr’r, = —(d-2)-1° (D.11)

For even dimensions the righthand side of vanishes for [ = d/2. We will need this fact for ten dimensions:

rerh -, = 0| for d = 10 (D.12)

Chirality matrix as a “Hodge star” Remember the definition and the basic properties of the chirality
matrix in even dimensions:

_ 1 e . €01...(d—1) =1

# _ 0 d—1 __ c1...c

7 = el T = Ge@eer..c,[ 7, with { e = FiTHAA-D/2 420 4 (D.13)
T#)2 = 1 (D.14)

{r*,7#} = 0 Vaec{0,1,...,d— 1}, for even d (D.15)

There is a natural isomorphism between the antisymmetrized product of I'-matrices I'* % and the wedge
product of the cotangent basis elements (vielbeins) €** A ... Ae%. The multiplication with the chirality matrix
on the one side then corresponds to Hodge duality on the other. It maps p-forms to (d—p)-forms in the following
sense:

1
Ee(d) ecd,,_cl ch"'cl Fal...ap _

%E(d)ecd...clp! ( g ) < Z )nclm .. .ncpapl—\c(icd,l...c,JJrl —

1
(d=p)"

F#Fal,..ap

||E

F(!d...cp+1

ap...a1 (D.16)

€cq...cp+1

Up to a sign the same result is obtained when acting from the right, s.t. we can summarize

r#roa = 1

=d >|(—)P(P+1>/26(d)e“1-~~“Pc1...cd_pr°‘1~-cw = (—)Pro e r# (D.17)
)

In particular we have

[#To - g Fap...alr# = (—)PT#I9% @ F#Fap...al =

P () T 6 1y T s
Usin
€ ey, b, = —dloyle (D.19)
Coarcysr T M ebybpiraray, = —(=)PPT2PUA — pY ey ey babyn (D.20)
With Tey . cpi1.ba.bprs = NMeabal = Mepia|bpsn] (D.21)

2Remember the definition of the antisymmetrized Kronecker symbols

C1...Cn — C1 ... 8Cn
6d1 dn - 5[‘11 dn]
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we get

01..a P! dyir
r#roe ”®Fa,,4..a1r# — _(_)p(m—l)/?e%d)prdmdpﬂ®de dp+ (D.22)

Reversing the order of the indices of one of the I''s, we arrive aff]

o1...0 P! ba
F#F 1:0p Fap...alrl# — (_)dpmrln ba—p ®de,p...b1 (D23)
In particular in ten dimensions, we get for p = 5:
T#r-% @, o T# =Ty 4, @T"%  ford=10 (D.24)

Trace The trace of all antisymmetrized products of Gamma-matrices vanishes in even dimensions:

fr @Gzttt = gp PO aakn PHPH VR pyp o cazn# o otz =
trTo 02k — fpr om0t 0261 o r 42k = ()

Vp>1 forevend (D.25)

Fierz identity The Fierz identity is simply a completeness relation. Given a basis {|e* >} of a vector space,
define its dual basis via < ey||e! >= .. The completeness relation then reads

> leF ><en|=1 (D.26)
k

In our case the vector space is the space of all 2[4/2] x 2l4/2_matrices and the antisymmetrized products of
I-matrices form a basis of it: {1Il,I'¢,T@@2 . T2} = {1} Tts dual basis is simply given by 2[4/ .
{1,T,Tasays---sTayar b = {T'r} (acting on the original basis by contracting all spinor indices). One can
convince oneself that we have indeed (using tr 't = ()

2-l4/25555 = 1 (D.27)

—[d/2
MF o PhibaB = gaghieby = gagh gt
Ap...a1 ﬁ o e 2 %1

p| prai...ap ap]

(D.28)

The completeness relation or Fierz identity thus reads

S 27[d/2] a ap o 0% a Y
1...Gp & _ saeT
> e L) DT (D.29)
=0 n
If we contract one index pair, we arrive at
6C1<--Cn—1cn o d— (7’L - 1)6(:1“1:”,1
di..dp_1¢n n dy...dp 1
Contracting several indices leads to
d—n+p
6014.4Cn_pa1.4.ap _ p Cl...Cp—p
dy...dp_pai...ap n dy...dp_—p
p

In particular, if all indices are contracted (p = n) or if the original number of indices matches the dimension (n = d), we end up

with
6a1map _ d 6‘31'“Cd7pa1-”c"p _ d _1561'”Cd7p
ai...ap — p 4 di...dqg_pai...ap P di..dq_p
(see also [102], p.456]) o

3To verify the sign in (D.23), remember first that

E(Qd) _ (_)1+d(d—1)/2

In addition we have reversed the order of (d — p) indices which gives another sign factor with exponent

(d=p)d-p-1) _ dd-1) pp-1)
2 B A

Collecting all signs, we get
even even

—— ——
(_)p(pf 1)+d(d* 1) +dp — (_)dp o
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In even dimension we can use (D.23)) to rewrite the identity as

d/2—1 2—d/2 2—d/2

(d/2)!

T T N e e e MO

p!

p=0

(D.30)

D.2 Explicit 10d-representation

In the following we will give an explicit representation of the Dirac-I'-matrices in 10 dimensions which we are
using throughout this document. The presentation is based on the one given in the appendix of [7].

D.2.1 D=(2,0): Pauli-matrices (2x2)
We start with the 3 Pauli matrices

1_ (01 2
T:(lo),T

Il
N
. O
o |
S
~_
\]
w
1l
N
O =
|
HO
~~_
~—~
o
w
=

R L N U (D.32)
[Ti, Tj] —  9jidk Lk (D33)
(ri, 7}y = 2591 (D.34)
trrt = 0, det(c’)=-1 (D.35)
(Ti)T = 7 (D.36)

D.2.2 D=(3,1), 4x4

Define ¥ = 7" ® 72, v = 1 ® 7' ¥° = 1 ® 7. The tensor product can be understood in different ways when
writing down the resulting matrices. We understand it as plugging the lefthand matrix into the righthand one:

k 0 —iTk 4 _ 0 1 — .0 5 1 0
{’y“m”} — 925" (D.38)
tr(v4) = 0 (D.39)
(Mt = (D.40)
1.2.3 4 _ 0 7'L'7'17'27'3 O ]1 _ ]1 O _ 5
Y - ( iTlT2T3 0 1 0 - 0 —1 =7 (D41)

~v2,v* and 7° are real and symmetric, while 4! and 3 are imaginary and antisymmetric.

D.2.3 D=(7,0), 8x8
We can define seven purely imaginary 8 x 8 matrices A\* as follows:
Xo= {Yer e ety e Ly e Ly e vty © %) (D.42)

with iv2y4y° =ir? @ 2l =2 e 1 = < 7(-)2 3 )
2

AN = 2591 (D.43)
tr(\) = 0 (D.44)
AHT = X (D.45)

)

)\1 . .)\6 — (’7274757173i727475> ®7_27_1 — _(7173) ®T3 — (Z'TQ ® Il) ®T3 — ,L'Z',)/Q,y4,y5 ®73 — Z)\ZD46
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D.2.4 D=(8,0), 16x16

Now we can define 8 real symmetric 16 x 16 matrices o = {N' @ 72, 1 @ 7'}

i 0 —iN ] 0 1
ce (%) (0 ) D
{o", 0"} = 261 (D.48)
(e = ot (D.49)
tr (o) 0 (D.50)
x=o--0® = )\1-~-/\7®7‘27'1:Il®7‘3:(0 O]1> (D.51)

D.2.5 D=(9,1),32x32

Finally we define the real Dirac-matrices for 10-dimensional Minkowski-space as I'* = {]1 ®ir?, ot @1, X ® 7'1}

0 _ 0 I \_ .10 no— 0 ot o_( 0 x
r = ( 1 0 )= i, It = o0 N X 0 (D.52)
a o — 0 ,yaaﬁ : aafl — af _pa «@ a po @
ree; = " 0 ,  with ~ ={6"",0" %3, X%}, Yap =1{-0ap, 0" 5, x5} (D.53)
The small v* (chiral gamma matrices) are thus all real and symmetric! The Dirac matrices obey
{re,r’y = 21 (D.54)
I#* = FO---ngifl---Fw:al---08x®i72(71)9:]1®7'3:(]é _0]1> (D.55)
(I#)? = 1, TI#r*=_ra# (D.56)
Tyt = 1o, (T#) =1% (D.57)
trT* = 0, trI% =0 (D.58)

Intertwiners The unitary intertwiners A, B and C are defined via

(Tt = AreAf, —(I'*)* = B'I“B, — (1T = cirec (D.59)
We can choose
0 o8
_ _170p# _ a
Aoy = -I'I7 = ( 55 0 ) (D.60)
B = T# (D.61)
C = BA'=-T#11# =19 (D.62)

The Dirac conjugate is v = ¥TA. In the Lorentz-covariant expression ¢ I"™¢, there appears therefore the
combination

(AT™),5 = ( Tes vaoaﬁ ) 72, sym and real (D.63)

The other conjugate is the charge conjugate spinor )¢ = Cyp” = CATY* = By* = I'#q)*.

D.3 Clifford algebra, Fierz identity and more for the chiral blocks in
10 dimensions

Above we have defined

0 ,Ya af )
ree,=( D.64
& ( 7(16 0 ( )

The Clifford algebra for the I''s reads in terms of the smallo v's:
yllery ) b (D.65)

a| @ b a
el B'ygo)é = 169 (D.66)
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D.3.1 Product of antisymmetrized products of gamma-matrices

Antisymmetrized products of I'Vs are block-diagonal for even number of factors and block-offdiagonal for odd
number of factord’l The chiral blocks read:

,yal...agk aﬁ = ,y[a1| a’yby’\yaﬁyt ,y"gik]lﬁ _ ( )k,}/al...agkﬂa (D67)
2,18...(121@+1 — (_)k’yg; (12k+1, ,ya, ..agp4+1 af _ (_)kfyal---a2k+1 Ba (DGS)

The schematic expansion of antisymmetrized products of I'-matrices given in (D.4) has the same form for the
chiral blocks, if we suppress the index structure:

’ AL o AR o Ik=t42) k] ‘ (D.69)

Indeed, without the spinorial indices, even the exact equations (including the correct prefactors) look identically
for the small ~'s:

min{p,q}
A1 ap bty Z k!( z ) ( z )n[ap[b1lnap1|b2 _..n\apﬂfm|bk‘,y‘a1...ap,k]‘bkﬂ...bq] (D.70)
k=0

In particular we have
’}/al’Yblmbl — ,yalbl...bl +1. ,r]al[ln,.be...ln]7 ,Ybl...bl,yal — ,ybl...blal +1- ,y[b1...b17177bl]a1 (D?l)
ulag,ybl...bl ,yalazb]...bl l- nul[b1| as|bs...b] +1- nag[b1|,ya,1\b2..4bl] +

—U(1 = 1)@ lorlyazlbaba. b (D.72)
a1a2b1b2 o nal[bll’yaﬂbz] + 27)a2[b1")/a1|b2] _ 2,,701[!71‘77(12“72] —

Y
ala2,>/b1b2 = ¥
_ ,-yala2blb2 4 77a2b1’}/a1b2 + ,r]lllb2,yﬂ2b1 _ nalbl,-ya2b2 _ na2b2,-yalbl 4
+na1b2na2b1 _ ,r]a1b1 nazbz (D73)
Reintroducing the spinorial indices for the last line yields (remember that we do not use our graded conventions
in this part of the appendix):
111112( ¥ blbz’yﬁ — ,ya102b152aﬁ + ,r]a2b1,-yalb2uﬁ + nalb2,ya2b1aﬁ _ nalbl,yaQanﬁ _ 77112172,}/111710/5 4

vy v Y
+na1b2 ,'7(12b1 55 _ na1b1 77a2b2 5(/5 (D.74)

D.3.2 Hodge duality

Remember
_ p0.9a _ (1 O
r# =T aﬁ< 0 —1 ) (D.75)
1 1
F#Fal...ap — _ p(p+1)/2€a1...ap [erCcio-p — [C10+Cot1c ’ ap...a1 D.76
(10 _ p)'( ) C1..-C10—p (10 _ p)| C10---Cp+1 ( )
This means for the chiral matrices
1 .
fy#aﬁ = 70'“90‘5 = 05 = €0V s with €g1. 9 =1 (D.77)
10!
1
— . 0..9
=008 = 8= s et (D.78)
And ~"! is therefore always equal (not only “Hodge-dual”) to a ~[10~7l:
yOLa2E O 7(10 — 2k)!(_) MOk L CL0-2k ¥ 4(10 — 21@)!7610 CRRHLC e gy “2F O (D.79)
1 k ‘ . 1
—’Yal"'azkozﬁ — q0= zk)!(_) O A2h Y cwfzkaﬂ — G- Qk)!,yclo c2k+1aﬁ€cm...c2k+1a% ay (D.80)
1 . 1
7a14..a2k+1 af (9 — Qk)' (7)( +1)€a1ma2k+1614.469,2k7cl"'c972k af _ (9 — 2k)' €10---C2k 42 aﬁeﬂlo-»-62k+2 Af41---@1 (Dgl)
ay...asy 1 k aow cp...c 1 €10 C2h 49 T
— ag 2k+1 (9—2k)!(_)( ot azyr i zk’Ya,@ 9-2k (9_2k)!7alﬁﬁ 2k+26010“£2k+2a2k+1 ay (D.82)
4
raeze, = l"[al‘g'yr‘lalllﬁ —
_ ,y[a1| aw,YJYag] 0 _ ~a1az aﬁ 0
0 a1 a2 98 = _qlar] By )a2] 0 7919200
,Yalag aﬁ — 7,ya1a25a

A0 *3=0% = 63% (no index-grading here!) o
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For the five-form we had T#I'%-% I‘asmall—‘# =14 4 ® I‘dl"'df’, which turns into —~® % aﬂygjmal =

af dy...ds~o ai...as _ dy...d
Vy..as VT and Vo Vas..arv6 = Vdi...ds aﬁ'y,y(lg 5 and thus

s aﬁ’ya-; ay T Pyorﬂ “Yas...ar v =0 (D.83)

D.3.3 Vanishing of gamma-traces and projectors for the gamma-matrix expansion
For any even p (2 < p < 8) we have

Aot =0, 2<p<8§, peven (D.84)

The reason is that there is no invariant constant tensor with p antisymmetrized indices apart from the e-tensor
for p = 10 and the Kronecker delta for p = 0:

,Yal...am aa — 7166(11"'0’10, 7[0]04(1 = 52‘ =16 (D85)
With the same argument we get ygm? #x 0y and fixing the proportionality by taking the trace yields
Vs = 1668 (D.86)

In the same manner we get for all other forms (using (D.70))

Vo ap’ﬁ?f..bl = 16pld,, 7 for podd (D-87)
Y e, by P = 16play !y for p even (D88)

This can be used to project to the coeflicients of some y-matrix expansion:

aijaz2a ay...a 1 o
Aaﬁ = Aa'yaﬁ +Aa1a2a3’7 B +Aa1<..a57a,13 % Aa1...ap = @7gp...a1Aaﬁ (DSQ)
o o aias o ai1aa3a4 o 1 o
B 8 = B[O]éﬁ' +Ba1a2’y : '5+Ba102a3a4ry et B Bal“'“P = Kplrya”“ﬂlﬂaB B (DQO)
D.3.4 Chiral Fierz
Remember
10 1
ST an, % = 036 (D.91)
! Pl
= 32p!
or
L
ay...ap @ a ai...as gl
Z@(Fl POl ay s + (TFTU02)2 (T, 0 T#)2s )+32 L] P als = 0565 (D.92)
p=0

We want to make a distinction of the different cases corresponding to the chiral indices:

1 a ap & (0%
S g O ) = (099
p€{0,2,4} '
1 ai...ap af Y4 1 as af3 )
Z Fp'V P Yap..ar T+ 395! s Yas...a1 =0 (D.94)
pe{1,3} ’ =0
1 a a 1 al...as
0- Z lﬁple te PaBVap...a1~8 + 325! U “apVas..a1vs = 0 (D95)
pe{1,3} ' R
1 aj...ap af3 1 al...as af asf
Z @’7 r Vap...a1 v5 + 39. 5| Yas...a1v§ = 65 57 (D96)
pe{1,3} =
Ounly the first and the last give nontrivial information.
a &Y 1 aias ¥ 1 ailasazayg o v a g
6ﬂ6§ + 57 ﬁ’yazal 4 + 57 ﬁ’ya4a3a2a1 ) = 1666 6ﬁ (D97)
ao 1 aiasas o 1 ai...as o a
vy [3’70«75 + ?’Y 248 67{13112(11 Yo + 275'7 e ﬁ7a5.“a1 S 165565 (DQS)
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Contracting ~, 4 in 1} yields 1604 = 1645, contracting v, 3 instead, yield

1 1

5:51 + §,ya1a2 a“/'yazal’yis + E,yalazagtm a7704asa2a1’y5 = (16)261? (D99)
1 1
Py, gs +§’Ya1“2a3 By sazar 85 + 2.75,’}’“1"'@5 Pearps = (16)%5§ (D.100)
1069
We can also contract (D.97) with 45,750 to arrive at
b 1 aias « b o 1 ai1asa3ay o b v b

0 = 73 Woo+ 57 8 Vap PoroVazar 6 + 7 7 3Vap VoroVasazazar 6 —167s,7 50 (D.101)

18] £y 111 Vi8] 0] A15] 418] Vis] T8]

Now we use that [?lis antisymmetric in 3p and that 7[5]7[5} = 0 (mixed terms like ’)/[5]’)/[3] also vanish, because

some 7 are contracted with antisymmetric indices of 7[5]). Symmetrizing the above equation in [p yields

[a1 . az2]

0 = Vgﬂb 5o + 21" Vo MolazVar] 05 — 16V§(p|%|ﬁ)a =

= Yoo + W13 Y 05— 1695110 =
= Voo + a3V Var o5 — 0a2phYar a5 — 16730, W )0 =
= W’gp% so +VpgYaos — 107p5Yas 05 — 167?(#\7“[5)” -

= *8%,;%50 - 16%?(,,\%\5)0 (D.102)

Yo V18 = O (D.103)

5 As a consitency check we can in addition contract o, d and get for the first Fierz

1 1
16+1652!5Z%Z§+1654!63i:_‘j22 = (16)3
1+< 120 >+( 140 ) = (16)% =256
N e e,
45 210

and for the second one

1
10+(130)+5(150):256 o
~—— ~——
120 252



Appendix E

Noether

E.1 Noether’s theorem and the inverse Noether method

Most of the following presentation is based on [82] p.67f, p.95], although somewhat modified. Consider an action
of the quite general form

S[d)azdl} = /dna [’(¢31L11’ 8M¢3IL11’ aul au2 (szm:lb c ) (El)

In most of the applications there appear no higher derivatives than 5ﬂ¢§n. Let us treat global and local sym-
metries at the same time and consider a symmetry transformation with infinitesimal transformation parameter
p(0).The transformation can be expanded in derivatives of the transformation parameter:

S(pbmn = P 0ty + 0up® St oty + Ou, O p 2 ol + . .. (E.2)
——
8oy ®an 8oy P2 8o $au

In order to define properly the variational derivatives for this more general case, consider first the variation of
the Lagrangianﬂ

oL oL oL
oL = 5¢§< -0 + 0,04, = — )+
"Nooh,  MO0ueTy) T 0(0,,04,00))

oL oL

oL
+a/1« (6¢Ill v e Ll (6(aﬂ ¢Ill) a7 a T\ 5¢1—11 ’ 8N > +.. ) (E3)
' * 8(8H1 gll) e a(amauz gll) * 25(8;“8;@91%1)
Tn we have reformulated the variations containing derivatives of the fields ‘;%11 using
oL

8(Bpuy - Oy bt) - m =
b1 - - Oug Pall

or oL
238 [ ( (2] 1223 a‘ll) (9(8”,1 . auk‘?gu) ( K2 HE—1 all) e 8(8#1 “e ap,k ¢§11)
) oL or
ot (00 s O s [ () 0 B - D s
1 - Oy b L TRE Tl

The indices of the partial derivatives are all contracted and symmetrized, such that this relation can be considered as a special case
of the following schematic relation of iterated ’partial integration’:

a-b = 8<6k’1a~b> — 9 lq. b=
= 8<6k_1a-b) 78<8k‘2a-8b> 1882492 =
= 90" Tab— 0" Ob+ . (—)F e 9P 0] 4 (—)Fa- R =
1

fo—
9 [Z(_)iak—l—i(l . azb

=0

+ (a0 o

134
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The total derivative term reduces to a boundary term in the variation of the action, while the remaining term
defines the variational derivativef]

5S = /d“a 5¢§1(8§ P +amau2aa£)—...>+
b))

a(Zsall ! a(aﬂqsazdl) (all/l altz (bg]l
—=_0S8
T oom
oL oL oL
+/ 5% <23,,2+35' 2‘0,,3...>><
ox '\t T 0(0,0u,0%) T 0(00, 00 03)
(k)7
1
UV Vg . cet Yn-1 E4
X(TL—]_)!GM 1---Un 1(17 A /\dj ( )
A general variation §¢%, determines via §S = 0 the equations of motion 5(;75(0) = 0 (and the boundary conditions

n, (k)% = 0 with n, the normal one form), while for a symmetry transformation &, ¢Z, the variation of the
action has to vanish off-shell. Then the variation of the Lagrangian has to be a total derivative independent
from the equations of motion:

Sl = 9,K"  with n,K (E-5)

12 —
» )]s =

Let us define

oL oL oL

ir= S ———+ (6 L) — Ly Oy ...— K" (E.
](ﬂ) (p)¢all 8(aﬂ¢§—ll) + < (p)(a#2¢all) 8(8M6M2¢azdl) (p)¢all aﬂz a(a}taﬂz(bgll)) + (p) ( 6)
Note that K"

() is determined only up to off-shell divergence free terms. The same is of course true for the
current. Using this definition, we can deduce from the above (E.3) that

08

L E.7
e (E.7)

8ujf;) = _5(/))‘?%11

This equation shows one direction of Noether’s theorem:

Theorem 2 (Noether) To every transformation &, ¢%,, which leaves the action S invariant, there is an on-
shell divergence-free current jé‘p) whose explicit form is given in , Its off-shell divergence is given in .

The such defined Noether current is unique up to trivially conserved terms of the form 9, Sml,
In turn, for any given on-shell divergence-free current j* (see ), which is furthermore itself on-shell
neither vanishing nor trivial, there is a corresponding nonzero symmetry transformation ¢, of the form given

2Stokes’ theorem reads

Lot =
=(n) o)

For any ¥ that can be covered by one single coordinate patch, we can write

/Edg“l A Adotn oy = WAL A oy,

n1%po..pn)
%

where on the righthand side the coordinate differentials do* have to be understood as pulbacks drid;c*(7) on the boundary.
For the integral of a divergence term like

/ d"o ot = / A ADT oM
) b
we can use the fact that
AL AT Ot = dw
with 1
w= e 1)'1}“6;,,#1“‘“”/_1&#1 A...Adotn—1

Applying Stokes then leads to

1
/E d"o oot = /az‘ m“”eummunadam A...ANdotn-1 o
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Remark: The equation for the off-shell divergence can serve for reconstructing the symmetry transfor-
mations for a given current. In the Hamiltonian formalism , the current (or better the charge) generates the
transformations via the Poisson bracket. In the Lagrangian formalism one can simply calculate all functional
derivatives 53‘%1 (i.e. the equations of motion) and try to express the divergence of the current as a linear
combination of them. This method — let’s call it inverse Noether — determines the transformations up to
trivial gauge transformations (see e.g. [82, p.69]) and we are using it frequently in the main part, in particular

to derive the BRST transformations.

Proof of the theorem: We have already shown the first part (every symmetry transformation induces a
conserved current) by deriving (E.7). The uniqueness up to trivial terms follows from the algebraic Poincaré
lemma. This does not yet show the inverse. For a given on-shell divergence-free current j* we do not necessarily
have the form , but its off-shell divergence can also depend on derivatives of the equations of motion:

~ 05 05 05
; z Ty ZUN -1
A" Yo 57 367, Z/(f; m% T (ﬁ) O, Oy 51 3oL, (E.8)

However, one can always redefine the current such that we get the form (E.7). This is achieved by performing
the iterated ’partial integration’ of footnote [1] on page We have schematically

k—1
08 o 58 59
A k _ 19t, T k—1—1 kqk, T
Y9 5oL T = 0 lg (=)' 0"y - O rbzu + (=) 0"y - ST, - (E.9)
1=0 a a.

We can then rewrite schematically the divergence of the current as follows

- 65
gt = _Zyk)a’f =
all
N k-1 N 5S
i9t, T k—1—1
= -9 [ZZ(—)ay(m.a 1- 1 S (=) s (E.10)
k=1 i=0 all =0 all

To summarize, if we define

N
. ~ i T . 55
3= Y)Y () O Oy Oy O Y (E.11)
k=1 =0 all
N
Tu
Sy = Z(_)kam . aﬂky(;;)l (E.12)
k=0
we get JjH = —5¢au 3 ¢I and thus discover that the above defined d¢%, is a symmetry transformation. We

assumed that the current was on-shell neither vanishing nor trivial, while we redefined it with on-shell zero
terms only. Therefore the new current will not be trivial and its divergence is off-shell non-zero. The symmetry
transformations constructed above are therefore (at least off-shell) non-zero as well. This completes the proof.
O

We should add that an on-shell vanishing current does not in general imply vanishing transformations. In
fact all Noether currents of gauge transformations are vanishing on-shell. The gauge transformations will be
discussed in the following, where one discovers that the equations of motion are not independent but are related
via the Noether identities. Going back to our construction of the transformations from an arbitrarily conserved
current one can make use of these dependencies instead of only redefining the current. This avoids ending up
with an identically vanishing current after the redefinitions.

E.2 Noether identities and on-shell vanishing gauge currents

Equation is valid for any symmetry transformation, global as well as local ones. For local ones, however, the
relation has to hold for any local parameter p® which is much more restrictive and allows to extract additional
information. Let us assume that there is some hlghest component j5¥ N1 H or in other words 3N, s.t.
ghERE=T-EY — g Yk > N. The expansion of j(p) in derivatives of the transformation parameter p takes the

form

jé‘p) = PG+ 0 p M 0, O UGN (E.13)



APPENDIX E. NOETHER 137

Now we plug this expansion and the one of 5(p)¢§11 1) into the equation for the current-divergence 1)

o pjff+3mpa( +5ﬂ Mn)Jramamp ( i(n2) 4 9 jumuz) 4. =

0S )
= 0.7 — Oy, pUOM ph —— — D, 0, 02T —— — (E.14)

all ¢ 7 5¢311 I8 all ¢ 7 5¢311 w1 Opa P all 5925311

Depending on whether we have a local or global symmetry, we get a number of recursive relations:
M1 05 3 a
aI~¢1ja = ¢a115 if p*#0 (E.15)
¢all
aﬂzjgzul = _jgl - Hl(ball if 8M1pa 7& 0 (E]-G)
6¢a11
Dy jlorzin = _J'{SAQI—LI) gHat ¢§ (;;S if 0, 0,,0" # 0 (E.17)
all
SN AN —1--- A1 (UN—1 N —2...p1) UN—1-pt1 g T 05 : a
Oun Jh = —j — oM all 547 i 0, ...0u . p*#0 (E.18)
all
(N UN—1---p1) BN o1 p T ) : a
0 = —j; — o0k ball = e if Opy ... Oupp™ #0 (E.19)
all

The first equation is present already for a global symmetry and corresponds to the Noether’s theorem
for global symmetries. If the transformation parameters are instead local and arbitrary, the complete set of
equations is forced. Taking then the divergence of the second equation, the double divergence of the third and
so on, and adding them with appropriate signs, we can remove all currents from the equations and arrive at a
version of the Noether’s identities:

o5 Ll 59
Saba — O (551 A ) o (N0 O, (65%1'““1 A
e 7 6¢311 / e 7T 6¢311 ( ) / KUN+ e 7T 5¢311

From the recursive equations above, one can also obtain an interesting statement about the current of a gauge
symmetry (compare [82, p.95]):

) = 0 (E.20)

Proposition 4 : The Noether current of a gauge symmetry vanishes on-shell up to trivially conserved terms
(see ). In turn, if a given global symmetry transformation has an on-shell vanishing current (see ),
then one can extend the transformation to a local one (see ).

Proof Start with a given gauge symmetry d p)qbfn and its corresponding current j(“p) with the expansion given

in (E.13), which defines the number N of the highest derivative on p. We want to show that the current of a
local symmetry is of the form

N
)
T —_ ML ik
](P) - Z )\(P) aﬂl .- aﬂk 5¢I + t () (E.21)
k=0
for some coefficients )\é‘pz)”l‘“”’“ and with a term ¢* whose divergence vanishes off-shell: 9, t“ () = 0. (Due to the

algebraic Poicaré lemma, this means that there is some antisymmetric tensor S([Z ) such that £ = 0,5/ [ V] )
In order to reduce the length of the equations, define ﬁrs

; 08

Bl = gheeemgl T2 5¢ Bl — E{(}M-nm) (E.22)
all
APt e = Gl e ](S#k+1 kaw-/lfl)7 AHIL Hie B — ARk (,Lbzs-,mul)7 Agﬂk+l HEeepi1) — () (E23)
3Note that from
k- j((ll"k Hk—1--p1) jgk O (k- 1)]4((1#1%1 H—2---H1)HE

one can deduce

i p—1---21 (BE BE—1--01) Nk“ﬂc 1o lpi]pa
Ja —Ja =
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The first object is symmetric in all indices and the second is symmetric in the last k indices and vanishes when
symmetrized in all indices. Using this notation, we can rewrite the recursive equations (E.16)-(E.19) in the
following form

]'51 — _E(Illl _ 8#23'52/1'1 (E24)

j52 H1 — AZZ H1 E{l;zlh _ am;jém#zlh (E25)

jgN_l N -2 b1 _ AZLN_l IN—2.fl1 ELlLLN_L.»lLl _ althéLLN HUN—1---H1 (E26)
jgN KN —1---[1 — AZN MN—1---[1 __ E(,;LN..-IM (EQ?)

This set of equations can now formally be solved for all components of the current, starting from the N-th
equation. We end up with

1 — H2 H1 M3 H2 1 Ha 321
Ja = —OwAP" + 04,00, 4 — Oy 01y 0, AG ..ot
_ FH1 M2 13 H2 1 Ha L3H2141
Eft 4+ 9,,E" Oy O BN, + 0,013 Oy, BV . (E.28)
Sp2 f1 — M2 H1 M3 K2 1 M4 L3201
i = A )y AL + 0y Oy AV "
_ FH2H1 U3 21 4 321
Eh2m 19, BV )5 Oy B +... (E.29)
Uk Hk—1- 1 Hi Pk—1--- 41 _ k41 Bk 1 _\N-k UN HN—1---H1
Ja ! - Aa, altk+1Aa i .o+ ( ) altk+1 e a/"NA(I, +
_ FHE--B1 Hi41---H1 _ _ (_\N-k M- J1
E¥ + Oy, Blr o= (NG L Oy B (E.30)
YHN -1 UN—2..-} — HN—1 UN—2--- [ HN UN—1---[ HUN—1---}b KN -
GENSLENzefl o ARN-LEN =2l g AN Lol EEN—Le Ly g BN i (E.31)
AN N —1 .-+ 41 _ UN UN—1--- b1 __ N -1
Jk = A E* (E.32)

In order to obtain the complete current j(‘;l) we have to contract the k-th term j#1#+-F2 (with interchanged

w1 > pg!) with 0, ... Oy, p® and then add all the terms. Interchanging pj and p, for the k-th equation affects
(because of the symmetries) only the term AL* =" s AMv#k-k2 We will sort the A,-terms with respect
to the number of indices on A, and the F,-terms with respect to the number of derivatives on p“:

N (k=2
jzlp) = Z <Z _(_)k_zauz o O 1P Oy - O AGE IR H 4 Oy Oy p" AR M”.W) !

k=2 \i=0
— M1
=tk
N N—k
_ a _)¢ Hhfi 1Pk
D Oy 0™ D () Oy - Oy Bl bt (E.33)
=1 =0

The second line vanishes on-shell, but it remains to show that the first line t‘(”pl) = szzg t‘(ipl) has trivially
vanishing divergence. The second term in the first line is written seperately (not in the sum over i), because
in contrast to the other terms it has the p; index at the first position (which is not symmetrized like the other
positions). This difference in treatment disappears in the divergence with contracted p;. We use this fact to
show the trivial vanishing (without the use of equations of motion) of the divergence of for every single /"

(pk)
Ourtipmy =
k—1 k—1
= Z(_)kiwrlalu L altwrlpaalbwz ce 8HkAgk b=t — Z(_)kilﬁlm s al‘2+i—1pa8,112+i te altkalh Agl Hibe
=0 =0
k—1 k—1
S (T Oy e B0 Dy D AL ST (T, 9, 0y Dy Al
=1 =1
() Ty Oy p AL r ) (R0, LDy, Alreeer) (E.34)
[ — —_———
=0 =0

This completes the proof of (E.21)) or of one direction of the proposition.
Now consider that we have a global transformation (constant parameter p,) 5?pc)¢§u = p%0,¢L, with Noether

H2
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current jé‘ )= p%jt  which itself vanishes on-shell

Pc
N
o=y Agzm...ukamm%(sii (E.35)
k=0 5¢all
5
N R (E.36)
" 3¢y

If we plug (E.35) into (E.36) we already discover relations between the equations of motion, which look like
the Noether identities for local symmetries. Indeed, if j# vanishes on-shell, also p®j# vanishes on-shell, even
for local p®. For consistent equations of motion (some which have solutions at all) certainly also its derivative
vanishes on-shell. The combination j?p) = p®j# therefore corresponds to a symmetry transformation with a
local parameter, i.e. a gauge symmetry, although this current is in general not yet in the standard form of
a Noether current (where its divergence does not contain derivatives of 25~ but only the plain equations of

597,
motion):
N(p®jt) = Oup® - Ji + p"Oujll = (E.37)
N
ayuTp... 05 a a 05
= Z aﬂp )\gz'u #kaul PN 6% WIH — (p 6a¢31-,11 — 8Hp AgI) WZH (E38)
k=1 a a

In order to get a proper Noether current (where the righthand side does not contain any derivatives of the
equations of motion) we can use our insights from the proof of Noether’s theorem, i.e. equations (E.8)-(E.12)).
We learn that if we define the whole current to be

N k-1

Gy = P =YY () Oy O D p N G, ---%1(;;2 (E.39)
k=1i=0 all
we get a proper Noether current with corresponding symmetry transformations
N
Span = patan = Oup MeT D () 10y o Oy (Dup™ NT 1) (E.40)
k=1

The transformation (E.40) is a local symmetry transformation which completes the proof of the proposition. O

Theorem 3 FEvery on-shell vanishing symmetry transformation is a trivial gauge transformation as defined
below:

5¢£” on—:shell 0, 6§=0 = 5¢)§” — /ddO' AZJ(O', U/)(MJ(SS(',) with AIJ(U7 0_/) _ —AJI(J’,J) (E41)
al\?

See in [82] (theorem 17.3 on page 414 or theorem 3.1 on page 17) for a proof of this theorem. See [82, p.69]
for a discussion of trivial gauge transformations.

E.3 Shortcut to calculate the Noether current

There is a nice shortcut to calculate the current: multiply both sides of (E.7) with some local parameter n(o),
integrate over the worldvolume 3 and perform a partial integration to arrive at

/ 0 0 31y + / () = 6y)S (B.42)
p [

where &, ,) oL, =n- 3(p) ¢Z,. One thus obtains the current by multiplying the variation with an independent
local parameter 1 and reading off the coefficient of 9,n. This trick is better known for global symmetriesﬂ
calculating just j~.

41f one is just interested in j& one can consider a variation not with the full variation 6(p)¢afu, but only with its derivative free

part 6?p)¢:§11 = p“ﬁaqﬁgu (see 1} and allow local p® even in the case of a global symmetry. Multiplying both sides of 1) with

p® we get p®Oujk = —5?p)¢§u. Integrating over ¥ and partially integrating finally yields
all

5?p>5=/ "o c’hp“j%/ ()
b %

The (conserved) Noether current thus can be read off from the derivative-free variation of the action as the coefficient of 9, p%*. We
could then proceed with a variation §! | ¢Z, = 9,p%5h %, to derive j4#! from the coefficient of 9,,0,,p%, and so on. All this is
(p) 7all 5 all 1O

done at the same time in 1} o



Appendix F

Torsion, Curvature H-field and their
Bianchi identities

In the following we are frequently making use of the (super)vielbein and its inverse, i.e. a local frame in
(co)tangent space different from the coordinate basis. We denote it via

E4Y = &MEy? (F.1)
EAKEKB = (SAB (FQ)
Es = E.50g (F.3)

The one forms E4 are chosen in such a way that they obey nice properties, i.e. in a Riemannian space it is natural
to choose an orthonormal frame, while if no metric is present, it can be replaced by other requirements like e.g.
invariance under supersymmetry for flat superspace. The structure group is then the set of transformations of
the vielbein which do not change these properties.

To be a useful concept, the frame should be invariant under the covariant derivative.

0 = VJMENA = 8MENA + QMBAENB — F]\/[NKEKA (F4)

This relates the spacetime connection to the structure group connection.

F.1 Definition of torsion and curvature and H-field

F.1.1 Torsion

There are at least three ways to define the torsion. Let us start with the component based one and derive
from this the more geometric (coordinate independent) definintion. So at first we define the (super) torsion
components simply as the antisymmetric part of the connection coefficients

Tun™ =T ™ (F.5)

The structure group connection Q47 is given by demanding that the covariant derivative of the vielbein
vanishes

!
0=VyEN" = OuEn" —Tun"Ex" + Qup*En" (F.6)
Antisymmetrizing in (M, N) and comparing with (F.5) yieldd]]

(74 = B — BP £ Q] (F.7)

This can be used as an alternative definition to (F.5)). Consider now the commutator of two covariant derivatives
on a scalar (super) field (with Vgo = 0k p)

[V, Vinle = 2V0np = (F.8)
= 20N Ok (F.9)

INote that in the present text form components are defined as e.g. T4 = Ty v Ade™ A de™N with no (1) factor % in front which
corresponds to a definition of the wedge product as deM N = deM A eV = &M @ &N = % (drM Q&N —d&etM @ drN). You
will thus usually find in literature a factor of 2 on the righthand side of and a factor % in . To go from one convention
to the other, simply replace Thyn % by 2T~ % in all equations in component form. (For a p-form the factor is of course p!).
Coordinate independent equations like remain untouched because of the compensating redefinition of the wedge product and
the resulting redefinition of the exterior product. o

140



APPENDIX F. TORSION, CURVATURE H-FIELD AND THEIR BIANCHI IDENTITIES 141

or simply

ViV = —Tun"Vie (F.10)

which is yet an alternative and equivalent definition of the torsion.

F.1.2 Curvature

For the curvature, let us start with the definition via the commutator of covariant derivatives acting on vector
fields

V[]WVN]UA = —T]L[NKVK’UA + RMNBAUB (F.ll)

This is not only a definition, but also a proposition that the commutator takes this form. Let us check this and
by doing this get a definition of the curvature in component form

V[MVN]UA =
= O (Onv? + Qnp*v?) + Qari e (080 + Qv p“v?) — Ten S (O v + Qxp?P) = (F.12)
6[MQN]BAUB + Q[N|BA6\M]'UB + Q[M\CA(a\N]UC + Q\N]BCUB) - T[MN]KVKUA = (F.13)
= —T[MN]KVKUA + (3[MQN]BA + Q[M|CAQ\N]BC) v (F.14)

We can thus read off
Rune® = o — QusCnc? (F.15)

which in form language reads

’RABZ@AB—QAC/\QCA (F.16)
We finally can rewrite this in terms of I" by using (F.6) in the simplified form

Qup? =Typ? — EgRoyEr? (F.17)
=
Runs® = 0 (Ovs” — Es"OnMER™) — (T — Es"0u Er) (Tine? — Ec®OnEs®)  (F.18)
Runk®™ = 0T inx" + Ex 00 Es"T\nr" + Ea0unEs T \vx® — ExPEa" 0 Es" 0\ Er® +
— (T € = 0 Ex ) (Twjc™ — Ec®9\nmEs*Ea") = (F.19)
= O Ly = Dpagyc Ty p” (F.20)
Runk®™ = opr T inx™ = Tiane T v e (F.21)

The same expression can be derived (even simpler) by acting with the commutator of covariant deriavtives on
a vector v™ with a curved index instead of the flat index.

F.1.3 Summary, including H-field-strength
Let us add the field strength H of the antisymmetric tensor field B to our considerations. We then have

H = dB (F.22)
T4 = dE* - E° A Q? (F.23)
RAP = d4% - Q%N Q8 (F.24)

In coordinate basis ("curved indices’) we have

Hynk = 9Bk (F.25)
Tun®™ = Tpum™ (F.26)
Runk®™ = 0T inx” =T T inec” (F.27)

The commutator of covariant derivatives on an arbitrary rank (p,q)-tensor fields (as a generalization of (F.10)

and (F.11))) reads
LA

Vin Vs 5 =

q q

B K Ar. Ay Ay AL A1 C Ay Ay CL AL A,

= —Tun"Vktp B + E Rune 'B,..B, _E Ryuns, ", Bl ,cBisr...B, (F.28)
i1 i=1
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Using the definition of the torsion, exterior derivatives of p-forms 7®) can be rewritten with covariant derivatives,
thus allowing to switch to flat coordinates

a[Ml771\/[2...1v1p+1] = V[M17]M2...Mp+1]+pT[MlMg|K7]K\M3...pr+1] (F.29)

In particular
H = 0nBning = VaBaa +2Taa%Beoa (F.30)

F.2 The Bianchi identities

Bianchi identities all base on the nilpotency of the exterior derivative & = 0. The objects H, T4 and R4Z are
all defined using the exterior derivative. Acting a second time with the exterior derivative (using & = 0) yields
consitency conditions (the Bianchi identities) which have to be fulfilled by any valid H, T%or R,”. While these
identities are trivially fulfilled, if the original definitions for these objects are used, the imposure of constraints
on them makes a check necessaryF]

F.2.1 BI for HABC
The most simple Bianchi identity is the one of the H-field H = dB (F.22). It just reads

dH = 0 (F.31)

The supergravity constraints on H that we will obtain, however, are all in flat coordinates, so that it is convenient
to rewrite the Bianchi identity (using (F.29))) with covariant derivatives and then contract with vielbeins in order
to turn the curved indices into flat ones:

VaHaaa = —3TaaHoaa (F.32)

Regarding the torsion as a vector valued 2-form and using the generalized definition of the interior product, this
can also be written as

VH = dH —wwH= 1 H (F.33)

F.2.2 BI for T4
Remember T4 = dE4 — EY A Qc? (F.7). Acting on this equation with the exterior derivative yields

dr*t = —dECAQA+EC A A = (F.34)
O e, Qe —EPAQpY AQeA+EC ARA + EC AQP AQpA = (F.35)
= —T9ANQc*+E°ARcA (F.36)

The Bianchi identity for the torsion (sometimes also called the first Bianchi identity) thus reads
dr* + T AQc? = EC AR (F.37)
Again we want to rewrite it in terms of the covariant derivative. The “exterior” covariant derivative of T reads

VmTrm® = OmTarne® — 2Taana™ Tens ™ + Qs Tnana® (F.38)

VT4 = drr+ TP AQpd — 0 TA (F.39)

The above Bianchi-identity can thus be rewritten as

!
VaTaa? +2TaaTca® = Raaa® (F.40)

VTP +1:TP £ RP = EC ARAP (F.41)

2Let us look at an example to make this point clear: one of the supergravity constraints that we get is Hyapy = 0. As H was
defined via H = dB in the beginning, this is actually a differential equation for B of the form Eq™ EgN Ey ¥ (83, Byk]) = 0. One
could try to calculate the general solution for this equation (which might be quite hard) and then calculate the H-field via H = dB
which will of course trivially obey the Bianchi identities. However, one prefers not to solve for B, but to calculate additional
constraints on H using the Bianchi identities. The idea is to get the full information about H without solving for B. The same
story holds for the other objects. o
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F.2.3 BI for R4”
Remember RaZ = d24% — Q4% A QP (F.16). Acting on it with the exterior derivative yields

dRAP? = -9 AQE + Q4% A P = (F.42)
= —RANQE - QP AQDY AQP + QU ARCE + QA A QP A QT = (F.43)
= —RAC AN QCB + QAC N RCB (F.44)

The Bianchi identity for the curvature (also called second Bianchi identity) thus reads

dRAB + RaCAQcB — Qi ARE £ 0 (F.45)

[R,Q]aC

Again we want to rewrite this in terms of covariant derivatives and flat indices and therefore consider the
antisymmetrized covariant derivative

VmBmaa®? = OmBRmma® — 2Taana™ Renea® — Qara®Raanec® + Qaic® Rynaa®  (F.46)
VRAZ = dRA® —Qu° ARCP + RA® ANQcP — 17 RAP (F.47)

We thus can rewrite the above Bianchi-identity as

VmRyvna® + 2Tt  Renea® = 0 (F.48)

VRA® +17R4% = 0 (F.49)

If the structure group is restricted to e.g. Lorentz plus scale transformations (see section on the next page),
we get

Ry’ = FPsb 4 pD b (F.50)

1 1
and Rayno® = SF76P + ZR%\JM“’)QB (F.51)

The above Bianchi identity then has to hold seperately for Lorentz and Dilatation part. In particular we have

VM + 2Tnand F ) = 0 (F.52)

F.3 Shifting the connection

Some expressions might look simpler if one changes the connection 48 to some new connection Q mal. As
usual, the difference .
Ana? = Qura®? — Qura® (F.53)

transforms as a tensor (the inhomogenous term in the transformation cancels). The new torsion looks as follows:

T4 = dEA - E°AQet = (F.54)
= TA—E°ANAA = (F.55)

Or simply

Taene™ = Tvane™ + Aneae™® (F.56)
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The expression for the new curvature is a bit more involved and read{’|

RAB = dQAB — QAC AN QCB = (F57)
= RAB-I—C]AAB—AAC/\QCB—QAC/\ACB—AAC/\ACB: (F.58)

= RaAP+VAAP + TEARAE — AL ANAE (F.59)
Ranea® = Raenaa® + VarAnga® + Tnana  Axa? — Appa®Anec® (F.60)

Proposition 5 The Bianchi identities for T* and Ra5 on the one hand and T and R4® on the other hand

are equivalent if the objects are related via and .

Proof Remember the first Bianchi identity (F.40) for which we temporarily introduce the symbol J:

JaanP =VATan® +2Tan"Tea” — Raaa® 20 (F.61)
The transformed J reads
Jaaa® Jaaa® +Vataa® + Aac®(Tan® + 2aa) — 2844 (Tca® + Ajca)®) +
+2844%(Tea® + Aca)®) +2Taa“Ajca)” +
~VaAaa® —Taa®Aca” + Apa“Aac® = (F.62)
= Jaaa® (F.63)

This proves the proposition for the first Bianchi identity. The proof for the second is left to the reader as an
exercise ;-) O

F.4 Restricted structure group

As we discussed earlier, the (infinitesimal) local structure group transformations in the type II supergravity con-

text are block-diagonal A4? = diag (A,’, A, AgP) and are in addition restricted to Lorentz transformations
and scale transformations in order to leave invariant the supersymmetry structure constants vgg:

Al = AP AP (F.64)
1 1
A = IAPE 4 I e o (765
: 1 5 1 A
AP = §A(D)5dﬁ + ZA((zi)lz,yala‘zéf’ (F.66)

Also the connection is a sum of a scaling connection and a Lorentz connection which makes perfect sense as it
is supposed to be a Lie algebra valued one form:

D L) q-
O = Q88+l e (F.67)
1 1
Ura” = 006 + 197,07 e (F.68)
. 1 . 1 .
QMdﬁ = iﬁg\g)tsdﬁﬁLZQgé)al@’yalazd’a (F.69)
with . w .
Qg\l)alaZ = ijfalch‘lZ = _Qg\/[)agal (F‘70)

30f similar interest is a change in the definition of the vielbein. Note that local structure group transformations of the vielbein
which go along with a structure group transformation of torsion and curvature also include a corresponding transformation of
the connection. Instead we want to look at an independent transformation of the vielbein and consider general local Gl(n)
transformations. ~
EA = EB A
with @MEA = 0. For the new torsion, we get
T4 = dE? - E°AQc? =
= dEBJgA —EB AdIg? —EBJIEC AQcA =
= TBjp? —EB AVIEA

or

’TMMB =Trae BIp? + VarJar? ‘

Alternatively one might be interested in shifts of the vielbein (resulting in T = T+d(AE)A —(AE)C AQc#) or linear transformations
of the connection of the form Q = JQJ ! o

The curvature remains untouched
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F.4.1 Curvature

It is well known that the curvature is a Lie algebra valued two form. Let us quickly recall the reason. The
curvature is defined to be

RAPZ = d4% — Q.9 A QP (F.71)

If Q48 is Lie algebra valued, d247 is still Lie algebra valued, as the exterior derivative acts only on the
coefficient functions and not on the Lie algebra generator. In addition, the term Q4 A Q¢ can be written as
%[Q, )47, and the commutator of two Lie algebra elements is again a Lie algebra element.

Let us now see how the structure group reduces into irreducible parts or in particular how the curvature
decays into the Lorentz part and the scaling part. First of all, the result is clearly block diagonal if the connection
is of this type

RaB = diag(R.", Ra®, Ra?) (F.72)

such that the curvature definition (F.71) decays into the three blocks

R, = d.'-Q.,°rAQ.0 (F.73)
R = d.P - Q7 A QP (F.74)
R&’é = dﬂdﬁ — Qdfy A Q:y’é (F75)

For the bosonic part of the curvature the seperation of scaling part and Lorentz part is quite obvious

RS = d(Q(D)cSZ + Q%“’) - (mD)ag + QQPC) A (Q<D>53 + Q<§>b) - (F.76)
_ (D) b (L)b _ o(L)c (L)b
- @ 5a+(an Qe p QU ) (F.77)
=F(D)
R(C{u)b

Where the Lorentz curvature R(aL )b i antisymmetric if we pull down the index b with the Minkowski metric.
We can thus extract from the complete curvature the scale part and the Lorentz part (here for 10 spacetime
dimensions)

1
FP) = _—_R.o F.
10 (F.78)

For the fermionic parts we get similarly (§o* = —16 in our conventions)ﬁ

1 1 .
Raﬁ = §F(D)6QB+ZR(L)mbnbaz'yalazaﬁ (F.79)

1
p) _ S Ra® (F.80)

:B — F(E)6 é (L) b aiaz IBA E
Ri & R aq ”baz / e% ( 81)

1 N
FO = —3Ra” (F.82)

4In order to see how the curvature decays into Lorentz and scale part, let us first consider the building blocks seperately:

1 1
ImOma” = §8MQM5aﬁ+18MQMa1a2'Yala2aﬁ

1 1 1 1
QMDL-YQM"{B = (§QM(5a‘Y + ZQMalag'Yal(ua‘Y) <5QM57ﬁ + ZQMblbg’Ybllw-yﬁ) =

1 .

- 16 QMaya 2Mbib, ’yalazo“y’ybll&"fﬁ =
N——

antisym in (aiaz)«<(b1bz)

1
ZQM{LI chdQMdag Y19z aB

The curvature thus takes the form
B 1, (Dil) B 1 (Lor) (Lor) d(Lor) Je]
éRMMo = 72dMQn[ 5(1 +*4 (aMQI‘TalaQ _Q"Talcnc Qn[daz)"falaga =

1 ; 1
EF(DZU(SOL'B + ZR(Lor)albnbaQ,Yalagaﬁ o
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F.4.2 Alternative version of the first Bianchi identity

The ordinary Riemannian curvature (without torsion) obeys Raped = —Rbacd = —Rabde; Rjapea = 0 and
Rubed = Redap (The last is a consequence of the others). For the bosonic components of our curvature we have

(using Gop = €*®ngy with Vi Gap = 2(0p® — Qg\?m)Gab to pull down bosonic indices)

Rapea = —Rpacds Riapyea =0 (F.83)
Raupea = —Rapac+ 2F(§(?il)cha Rab(cd) = F(E(?il)ch (F84)
Rigpa = ViaTpeja — 2(0. P — foil))Tbc\d + 2Ty " Ty gja (F.85)

Let us write down the antisymmetrization of the indices in Rj4;¢)q explicitely and several times, with permuted
indices:

Riabega = Rabed + Reabd + Rocad (F.86)
Rigape = Rdabe + Rbdac + Rabde (F.87)
Ricaay = Redab + Racab + Rdach (F.88)
Ripedqla =  Rbcda + Ravea + Redba (F.89)

From this we learn, how we can express the difference Rypeq — Redap (Which vanishes in the Riemannian case),
in terms of antisymmetrized and symmetrized terms. Consider the sum (F.86)-(F.87)-(F.88)+(F.89):

R[abc}d - R[dab]c - R[cda]b + R[bcd]a =
2Raped — 2Rap(cd) — 2Redab + 2Red(ab) + 2R(cayvd — 2Rac(ap) + 2Rbe(da) — 2Rda(ve) — 2Rpd(ac) + 2B (dbyca =
= 2 (Rabcd - Rcdab) + 2 (*Fachd + FCdGab - Fachb + Fchda - FdaGbc - deGac) (Fgo)

The identity corresponding to Rgpeq = Redap in the Riemannian case thus reads

2 (Rabcd - Rcdab) = (Fgl)
= 2 (Fachd - chGab + Fachb - Fchda + FdaGbc + deGac) + R[abc]d - R[dab]c - R[cda]b + R[bcd]a

with Riapeja = ViaThelja = 200u® — ") Thera + 2Tiar " T

F.4.3 Scaling-curvature

A covariant way to calculate the scaling field strength F' ]gf ]\), is as follows: Consider the covariant derivative
Vu® =0y® — QE\?) of a compensator field ® (a field transforming with a shift under scaling transformations
§® = —AP)). We can calculate F J(\Z\), via the ususal commutator of covariant derivative
ViuVn® = —Tun"Vg® —F0) (F.92)
——
R(Fifa)®

Note that the curvature (or field strength) appears “naked” in difference to any action on tensor fields. The
above equation will be particularly useful when we have constraints on Vj;® which then determine the scaling
curvature via

Fzﬁfz\)r =-ViuVn® - Tun®Vi® (F.93)

F.5 Dragon’s theorem

In the following we will need the commutator of two covariant derivatives acting on the torsion with afterwards
all lower indices antisymmetrized. Due to (F.28)), it is given byﬁ]

Var, V| T = ~Toaesa " Ve Taane® — 2Raanane Tt + Raana s Taana ® (F.94)
5Let us check explicitely the validity of :
ViuVN® = OuVN® TN V@ =
= Om(ON® - Qﬁ\?) — TN SV ® =
= —FP) - TunSvge o
60f course implies a more general relation than , namely one of the form [V, VN]TKLA = .... However, the

lower indices are intentionally antisymmetrized in (F.94)), in order to get the weakest possible condition that we need to proof the
theorem later on. You’ll see... o
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and can, using the first Bianchi identity (F.40), be rewritten as

A B
RyvMm ™ TvmMm” =

= [Var, V] T + Tvand Ve Tnane ™ + 2 (Ve Taene™ + 20 “Tond™) Tene® (F.95)
It is convenient to introduce a new symbol for the terms of the curvature Bianchi identity

147 =Iccca® =VeRooa® +2Tcc” Rpoa® (F.96)

so that the Bianchi identity 1) simply reads 42 2 0. Then the following theorem holds (originally due to
Dragon in [13]; slightly modified in order to include dilatations):

Theorem 4 (Dragon) Given a block diagonal structure group consisting of Lorentz transformation and dilata-
tion in a type II superspace, the torsion Bianchi identity together with the algebra or equivalently
imply the curvature Bianchi identities 148 =0 up to one remaining equation for the scale part,
namely I,(Ygi 20 o0r equivalently
(D) D (D) L
v[“/nyc] + 2714 FD\C] =0 (F.97)

D) (D)
M-

where FJ&N is the field strength of the scale connection )

It is natural to proof this theorem in two steps, the first being useful enough to write it as a seperate
proposition. Let us include one more index into the antisymmetrization of I4? and define

I” = Iccec® =VeRooc® +2Tcc” Rpec®? (F.98)

so that we can make direct use of the torsion-Bianchi-identity (F.40) due to the appearance of Rccc?. Clearly

IBL0isa consequence of 148 <0 and is in general a weaker condition. The following proposition treats this
weaker condition:

Proposition 6 In any dimension and for any structure group, the equation I° ) (with TP given by )
is implied by the first Bianchi identity and the algebra or equivalently (F.95).

Proof of the proposition:

I = VamRumm® +2Tvnm™ Revm® = (F.99)
(740}
= Vi (VMTMMB -+ QTMMCTCMB) -+ QTMMKRKMMB = (F.lOO)
)
Tt VeTam® — 2Rmnent©Ton® + Raanaec® Toaana© + (F.101)
+2Var T S Tonme® + 2Tt E VarTonme® + 2T Reaina ® = (F.102)
= 3TumC (R[CMM]B - V[CTMM]B) -2 (RMMMC - VMTMMC) Tem®? = (F.103)
(740}
= 6T Tiont " Topn® — 4T " Tom “Tem® = (F.104)
= 2TvumCTrvmPToc® =0 (F.105

Indeed I® = 0 is a consequence of the torsion Bianchi identity 1} Raenanmt® = VarTaane B +2Tnine € Toae B

and (F.94). O

Proof of the theorem: Let us now show that in the case of the type II superspace the antisymmetrized
version already implies (up to one term) the complete one. Remember the object Iccca®? = VeRccoa®? +
2TccP Rpara® introduced in (F.96). It is Lie algebra valued and thus has (for our block diagonal structure
group) no mixed components in A, B:

Iccca® = diag (Icccd” Iccca” Iccca®) (F.106)
In addition it splits into dilatation and Lorentz part
D L
ICCCAB = I(C(;C(SAB + Ié)’c)’CAB (F.107)

with the latter term being antisymmetric in A, B for bosonic a,b. The complete object is fixed by determingﬂ
Iccce?. Given the equation Icccc® = 0, we want to show that Iccca® = 0. Consider first B = b:

0 = 4leccq” = Iecea’ (F.108)

"The following proof is based on a block-diagonal connection of the form Q4 F = diag (QMab7 Qe QMdB) where the three
entries are related by wmgﬁ = VM’YZ[a = 0 which in turn is equivalent to Qp7a? = iQMQb'yabaﬂ and Q4P = %QM{L’W% &P

The Bianchi identity for its torsion T4 = (T'%, T, T%) is equivalent to the one for the Torsion T4 = (T2, T, Té‘) when information
about the connection-difference Ap; 4P is available. 3
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Similarly, for B = 3:

This implies

Equivalently we get from the equations for B

Hi3501” = L1550 = 0
41e550)” = Legga” = 0
4Icc'7a]ﬂ Ic’ya =0
4Iccca]ﬂ I('ca =0
Isa” = 0

Icc‘ya,b = 0

Icccab =0

=B

Icv'va =0

Iccwa =0

There is thus only one component of I.,.:,CH,Z’ left to determine. For this we get

0

Taking the trace in (a,b) yields

S (O

b
Iy5cal

cal

'r'r[f

0 = QI(D)+I(L) a

In order that they vanish independently, it is thus enough to check only one equation, namely

reads explicitely

Yye T “ydac

v[’y

(D) L
FD‘C] =0

] + 2T['r'r\

Y
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F.109
F.110
F.111
F.112

—_ — — —

(F.113)
(F.114)
(F.115)

(F.116)
(F.117)

(F.118)
(F.119)

(F.120)

12) L ) which

(F.121)



Appendix G

About the Connection

Let us refer to both, spacetime and structure group connection, simply as “the connection”. Properties of the
one are translated to the other via the condition of covariantly constant vielbeins V,Ex4 = 0:

Tun® = OuEN+Qun? (G.1)

We will use symbols without any decoration (like hats or whatever) to describe a general connection and objects
derived from it. In our application to the Berkovits string, however, we use the undecorated symbol Qy/4”
for the leftmoving connection only, which hopefully does not lead to confusions. To be more explicit, in the
application we work with several different connections which are all blockdiagonal. In the action there appear

only Qi and Qu74P. The spinorial Qp702 induces via V MY5p @ connection Q wma” for the bosonic subspace

which in turn induces a connection Md’é via VM’Y;B = 0. The collection of those will be denoted by Qas4?

(left-mover connection). The same can be done for 0 Mdf" leading to a connection Q2748 which we call the
right-mover connection.

QMab 0 0 QMQb 0 0
QMAB = 0 Q]\/Iaﬁ 0 . , QMAB = 0 QMaB 0 (GQ)
0 0 QMd'B 0 0 QMdB
The supergravity constraints are derived from the Berkovits string using a mixed connection
Quma® 0 0
QMAB = 0 QMoz'6 0 A (G?))
0 0 Qua”

where Qpq° is an a priori independent connection for the bosonic part which is only at some parts of the
calculation set to either the right or the left mover connection. In order to have covariant constant structure
constants (fygﬁ, Vs [3) the latter connection is inadequate and we need to use either one of the first two or s.th.

inbetween, an average connection, which we denote by
1 ~
Qua® = 3 (QMAB + QMAB) (G4)

Please note again that the considerations in the following sections are for a general connection and not specific
to the leftmoving one. In particular the block diagonality and also Vavgg =V Mg 5= 0 are only used if this

is explicitely mentioned.

G.1 Connection in terms of torsion and vielbein (or metric)

A given torsion and vielbein do not determine yet the connection completely. It can be determined by having
additional structures (like metric or some group structure constants) that one wants to be covariantly constant.
In the case where a metric is present, the connection is uniquely determined by the torsion and the (non)metricity
of the metric. Remember the form of the torsion:

T4 = dE* — E° A QA (G.5)

Tvm® = OmEm™ + Qne? (G.6)
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Assume that there is some given symmetric tensor field G 4p (call it metric, although it might be degenerate).
In flat indices, (non)metricity (metricity for Mapc = 0) reads

Mapc = VaGpc = (G.7)
= EaM (0MGpc — 295" Gpic)) = (G.8)
= EAZM (GMGBC - 291\,{(3‘0)) (Gg)

Here we used G 4p to pull down indices, although there might be no inverse to pull indices up. Nonmetricity
is thus part of the symmetric part (in the last two indices) of Q5/p|c only. Turning to flat indices and pulling
down one index with G 4p in (G.6) and solving (G.9) for the connection term yields

1
Qamie)y = 5 (EaM0mGpe — Mapce) (G.10)
Quaic = Tapic — EaAMEpY0uEn”Gpe (G.11)
(dEP)aBGpC

From those two equations we can derive the 4 p|c without any symmetrization. To this end, write down the
antisymmetrized connection three times with permuted indices

Qapic —Qpajc = 2Quap)c (G.12)
Qpoja — Qepla = 2QBc)a (G.13)
Qoap — Qacip = 2Qc4)B (G.14)
Note that
Qapic = —Qaci +2Q4B0) (G.15)

and consider 3 ((G-12) + (G-14) — (G-13)):

Qapic — QaciB) + Qemsla) — Ueeclay = Qanje + Qeoays — Lseya (G.16)

or

’ Qapic = Qap)ic + Qeays — Qpoyja + Lacci) + Lscja)y — Lesla) ‘ (G.17)

with Qupjc = EaMQup”Gpe. Now one can plug in (G.10) and (G.11), in order to get the relation to non-
metricity and torsion. For our purpose it is, however, more convenient to use only the torsion (G.11)) and leave
Qa(B|c) instead of replacing it by nonmetricity.

Qupc = Tapic+Toas —Toeja — (AEP)apGpe — (AEP)caGpp + (AEP ) pcGpa +
+QacciB) + QB(cla) — QoBla) (G.18)

Some readers might be more familiar with the derivation in curved indices (defining I'y/nx = T'is NEGLK):

PNy = Tunik (G.19)
1
PNy = §<8KGMN*VKGMN) (G.20)
=MgKkmN

Equation (G.17) of course holds likewise for the spacetime connection

’FMN\K =Ty g + Uiy — Uivegive + Carvyy + Uviee vy — T vy ‘ (G.21)

This time we replace not only the terms antisymmetrized in the first two indices with the torsion (G.19) but
also the terms symmetrized in the last two indices with the (non)metricity (G.20):

1 1
Paunix =5 (OMGNK +ONGrM — OkGuN) + Tunix + Temiy — Tvgm — 3 (Mynk + My — Mgyn)

(G.22)

If the metric Gy is nondegenerate, one can raise the index and the connection is completely determined.

In ten-dimensional superspace, however, the situation is different as we have a nondegenerate metric only in the
bosonic subspace.
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Consider finally a second connection

Qi = Qua? + Aya® (G.23)
Due to , we also have
T = Tux"+Aux” (G.24)
= Tux® = Tuxl+ A[MK]L (G.25)
The equations and certainly also hold for A:
’ Aapic = Aa)c + Aca)s — Apejja + Aacip) + Ap(cla) — Ac(s|a) ‘ (G.26)

The vielbein part of (G.18) drops out in the difference of two connections and we get with 1}

Aapic = (T =T)apc + (T —T)cap — (T = T)pcia + Aacip) + Apcja) — Ac(sla) (G.27)

G.2 Connection in Superspace

At least in the ten dimensional type II superspace, there is no natural nondegenerate superspace metric. Only
the bosonic part G;n can be inverted and the remaining undetermined connection coefficients have to be
fixed by additional conditions. The expression for the structure group connection in flat indices is more
appropriate than , because in flat indeces we have a clear split of the bosonic and fermionic subspace
of the tangent space and the only nonvanishing components of the metric G 45 is the bosonic (and invertible)
metric G,5. The connection is from now on block diagonal of the form Qy4” = diag (Qara”, Qma?, Vma’)-
Equation can thus be rewritten as

Qavje = Tapje + Toapy — Toeja — (AEY) 4pGae — (AE?)caGap + (AEY)pcGaa + QaGep + 0Gea — QUGoa (G.28)

or
Qab\c = Tab\c + Tca|b - Tbc|a - (d-Ed)abGdc - (dEd)caGdb + (dEd)chda + QaGcb + Qcha - QcGlch’QQ)
Qozb\c = Tab\c + Tca\b - (dEd)abGdc - (dEd)caGdb + QaGep (GSO)
Qapie = Tave + Teap — (AEYarGac — (dEY)caGap + QaGeb (G.31)

which determines Q7,° via
Qura’ = BEn©QoqaG™  with GG = 67 (G.32)

In order to determine the remaining components € me? and Q Mdﬁ , we have to give additional information
on what our properties we want our connection to have. In supergravity it is a reasonable demand that the
structure constants of the supersymmetry algebra, i.e. the gamma matrices, are covariantly constant:

Vs L (G.33)

VM'}/ZB = 0 (G34)

This does not only fix uniquely the form of Q02 and Qasa? in terms of Qy7.°, but it also restricts the latter
to be the sum of a Lorentz connection and a scale (or dilatation) connectionﬂ

1 1 p
QI\JQ'B = EQMabﬂyabaB + 595\/1)504'6 (G35)
; 1 ; 1 (p N
Qs = ZQMab'Yabdﬁ + 595\4)5dﬁ (G.36)
1Some of our supergravity constraints will determine Apblle = —3Habe,; Alab)le = —Tables Dlab)le = Adb‘m Agpley = 0,

Agble) = (Oa® — Qa)Gpe and Ag plc) = (Qa — 04 P)Gpe, so that the difference tensor reads

Aa,b\c = —3Hape (= _2Tab\c = 2Talf)|c)
Acub\c = _2Ta[b|c] + (801(1) - Qa)Gbc = _2Tab\c
Asple = 2Taplg + Qa — 0a®)Goe = 2Tap.  ©

2Let us give at this point only a short argument for this. According to — we have schematically TR o TlE=11 4
1 v, if TR denotes a term proportional to a completely antisymmetrized product of k gamma matrices. Let us restrict now
to ten dimensions. The same schematic equation then holds for the chiral submatrices y[*]. The connection can due to its index
structure be expanded in even antisymmetrized products:

Onia® o A0 42y 0
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with
Wi’ = QG+ (G.37)
——
=@

Ma

Let us in the following calculate ,,,” more explicitely in the WZ gauge in order to extract the Levi Civita
connection of the bosonic subspace.

G.3 Extracting Levi Civita from whole superspace connection (in
WZ-gauge)

Remember our definition Gy ny = Ep® qu)nab En? and the Wess Zumino gauge (H.1314H.132):
——

Gab
em®  Ym® ijd
Ex?| = 0 6, 0 (G.38)
0 6@
We define the metric of the bosonic subspace as
Imn = enLaTIabenb (G39)

which is by construction covariantly conserved (in contrast to Gy because of ®). We want to write the
superspace connection at 6 = 0 as the Levi Civita connection w.r.t. Imn Plus additional terms.

The superspace connection was derived above starting from or (G.28), arriving at the equations
(G-291G.31)) for Qupc, Qapjc and Qgp|c in terms of the torsion and the exterior derivative of the supervielbein
dE“. We can also use the general equation , in order to determine the form of the Levi Civita connection
in terms of the bosonic vielbein. We just have to set the torsion and symmetric part (in the last two indices)
to zero. However, as we already use the supervielbein in order to switch from flat to curved indices and vice
versa, we have to write the bosonic vielbeins explicitely in the resulting equation:

eamwglgdndc = _eamebn((kd)mnndc - ecmean((kd)mnndb + ebmecn(d?d)mnnda (G40)

It is now clear that the Levi Civita connection is hidden in the terms with d&¢ in 1 ) at 6 = 0. Indeed
one can write]

(dE“)mn| = (d%)mn (G.41)

(AE“)mn| = Tran®| (G.42)

When this connection acts on another gamma matrix, we get schematically

Qe V7S x (7[0] +~2 +7[4]),y[1] oc v 4 (7[1] [ ]) + (7[3] +7[5])
18] N

+'y3
~~
0 0

The 'y[3]—parts vanish due to the graded antisymmetrization of the indices. The ~[1 parts are fine because they can be absorbed
by acting with the bosonic connection on the bosonic index. Only the ~15] part remains and cannot be removed. As it stems from
the 7[4]—part in QP , we conclude that the corresponding coefficient has to vanish and only scale and Lorentz connection remain.
The sketched argumentation can be done rigorously which leads to the stated results for the relation between bosonic and fermionic
connection. o

3In the Wess Zumino gauge we can express dE?| by de® plus torsion terms as we will see in the following. Remember the

definition of the torsion T4 = dEA — EB A Qg4 which reads for fermionic form indices at 6 = 0 in the Wess-Zumino gauge

(H.131§H.132):

: ([F132)
d[MEN]A‘ = TMNA‘_Q[MN]A‘ = TMJ\/A’

Similarly we have
(H139) 1
8[MEn]A) = TMnA) - Q[Mn]A‘ = TMn,A‘ + 55/\45 QnBA‘
For A = a, we can thus write in summary

(@EYmNl = Tamn
(dE“)mn|l = (€)mn ©
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With these relations, Qab‘c| and de|c| as given in 1) and 1) vanish. This was clear already directly
from the Wess-Zumino gauge QMAB| = 0. In order to calculate Qab|c| as given in 1’ we need the above
equations with flat bosonic indices:

(dEd)ab| = eamebn (((kd)mn - Trrmd‘) + Tabd| (G43)

Pluging this into (G.29) yields

Qabe‘ Nee = _eamebn (((kd)mn - mnd}) Nde — ecmean ((ded)mn - Tmnd’) Ndb +
_|'ebm€cn (((kd)mn - Tmnd‘) Nda +
+ Qa| Teb + Qb| Nea — Qc‘ Tha (G44)

As we have in the Wess-Zumino gauge Q,,1¢] = en® Qup€|, the obtained equation is simply the bosonic version
of . Taking €,,,,¢| as bosonic connection, however, would not be a good choice, as the terms in the last
line show the nonmetricity with respect to the flat metric 7,,. It is reasonable to leave such structure constants
covariantly constant. The remaining connection (without the last line) would instead be a better choice with
induced bosonic torsion

Tn®| = em®en’ Tup?| + 2,0, Tus®| + ¥ ™00 Tan| (G.45)

In any case we can now express 2,,,¢| completely in terms of the Levi Civita connection plus torsion terms
plus scale part

C
U’ = (L Je +n“ex [eamebn Tmnd| Nde + €. eq" Tmnd| Ndb — €p"" e Tmnd Nda +
+ Qa‘ Tlcb + Qb‘ Tea — Qc| nbai| (G46)

The components with fermionic group indices, finally, have the following form

LC 1
Qkﬂ€| = w(kﬁ e + 1€ka [eamebn Tmnd} Nde + ecmean T7rmd| Tldb
1
—epel” Tmnd‘ Nda + Qb‘ Nea — Qc| nba] ’chﬂe + 2eka Qa| 6,86 (G47)
. |
leée = w(kL@ ) + ieka [en,mebn Tmnd’ Nde + eceq"” Tmnd| Tdb

_eb'rnecn mnd‘ Nda + Qb‘ Nea — Qc' nbai| ,yb('ﬁe + ek Q |6 é (G48)



Appendix H

Supergauge Transformations, their
Algebra and the Wess Zumino Gauge

The supergravity transformation (local supersymmetry) is in some sense a special class of superdiffeomorphism
transformations. If the general superdiffeomorphisms are parametrized by a vector field £4(z) = ¢4 (x, 5), the
local supersymmetry will be parametrized by only £%(z,0). Likewise, general coordinate transformations in
10d-Minkowski are parametrized by £*(z,0), while all the higher é—components of €4 correspond to additional
auxiliary gauge degrees of freedom. Similarly, the local Lorentz-transformations L.;( ) and local dilatations
w(z) have auxiliary gauge degrees in the higher 6-parts. Following roughly [15], p.127-144], we want to bring e.g.
the vielbein into a particular form, using (and thereby fixing) some of those shift symmetries, and identify the
10d diffeomorphisms and the local supersymmetry transformations with the bosonic and fermionic stabilizers
of this (Wess-Zumino-like) gauge respectively. But let us at first have a look at the general transformation
properties of all the superfields.

H.1 Supergauge transformations of the superfields

H.1.1 Infinitesimal form

In the following, we make frequent use of some structure group connection Q3,47 and the corresponding
covariant derivative Vj;. As long as nothing else is announced, the equations are valid for any connection (in
particular, it is not meant to be the left-moving connection only). At some points, however, we plug in the

Ona® 0 0
“mixed connection” Q,,,7 = 0 Qnra” 0 ], asit is this connection that we need most frequently
0 0 Qnra”

in the text. The corresponding covariant derivative, curvature and torsion are obviously denoted by V ;T y;n
and Ryrya”

Transformation of a general tensor field We are interested in a combination of an infinitesimal su-
perdiffeomorphism transformation (or better the corresponding Lie derivative) and a local structure group
transformation. For an object with only curved indices, the transformation reduces to the Lie derivative. The
Lie derivative of a vector field v = v™ ), e.g. reads as usual

EgvM = (ACE.U)M = (H.1)
= Hogo™M — oMo (H.2)

It can be rewritten in terms of covariant derivatives as

L',E»UM = BVgoM - VMoK — 268 Ty Myl (H.3)

For one-forms the covariant expression of the Lie derivative contains a torsion term with opposite sign:

LZE.wM = (L:E.(deL‘N))M (H.4)
= Fogwn + 0uEFwk = (H.5)
= 8 Viwn + VuFwor + 265 Te ' wr, (H.6)
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In contrast to the above, it is convenient for objects with flat indices, not to consider them as being contracted
with basis elements, when acting with the Lie derivative, but to really only act on the component functions,
which transform like scalars under diffeomorphismsﬂ

L',gvA = Kogvt = (H.7)

fKVK’UA —EKQKBA’UB (HS)

This is a covariant object from the diffeomorphism point of view, but the connection transforms inhomogenously
under the structure group transformations. The entire gauge transformation of v, however, contains also a
local structure group transformation:

ovt = LZUA + Lp?oP (H.9)

As the structure group connection itself is Lie algebra valued, the second term in (H.8) can be absorbed in the
structure group transformation: R
Lp? = Lp* — ¢5QrpA (H.10)

The combined diffeomorphism and local structure group transformation can thus be written as

vt = BVt + LptoP (H.11)

The first term is a covariantized (w.r.t. the structure group) version of the Lie derivative (H.7]
therefore denote it by

), and we will

£leyA = 8V vt (H.12)
3

In general E(_C»'OV) will be defined as the L2 = 0 part of the complete transformation, i.e. a Lie derivative w.r.t.
§

¢, accompanied by a structure group transformation with L5 = ¢KQp 4 B:

c%ﬁ‘)v) = Lo+ R(EF ) (H.13)

On one forms we thus have £°Vw, = €5V w4, while on objects with curved index the structure group

&
transformation has no effect and the covariantized Lie derivative reduces to the ordinary Lie derivative. When

acting on a more general tensor with curved and flat indices, E(_C,,OV) thus takes the following form:

3

INote the (common) convention used in {) to define £_vM as the M-th component of the Lie derivative of v and not the

3
Lie derivative of the M-th component function! This convention is extended to objects with an arbitrary number of curved indices,

ie.
Ni..Nq _ Li..Lq 4 Ky X Ni...Ng
‘C’”’tJ\ll.A.]bI = Eﬂ'(tKl___K dr R...Qde"P ®8L1 ®"'®8Lq)
¢ ! J i M;y...M
1 P

In cases where we want to act explicitely on e.g. the component functions, we can denote it with e.g. £ _.(vM) = K9 vM. This is
of course not the component of a tensor, but it makes sense in calculations like £ _.(v™8ys) = L_.(vM)-8pr +vM L _(8ps). From

the Lie derivatives for general vectors (H.2) and one forms (H.5) we can in turn read off the transformation of the basis elements
52»(31%) = —omeN an

Eg»(drl\/f) — 6N§IM thN
For flat indices, however, we use just the opposite convention, i.e. we do not regard the flat index to be contracted with any basis
element when acting with the Lie derivative. The action on an object with both, flat and curved indices will thus be defined as
follows
N
et = (eaEakwoy)
13 13 M
In cases where we want to calculate something different we will use a more explicit notation like on the righthand side in the above
equation.
Let us finally give the Lie derivative of the local vielbein and its inverse (using (H.3) and ) which will also be discussed in
the equations and following:

[—E»(EA) = (EKQKAB — V€8~ QEKTKAB) Ep

L_(EY) = <—§KQKBA + Vpeh + QEKTKBA) EB ©
3
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c%‘;“)tﬁi = Rortyh — oA + om0 + €K PING — X QAN = | (H14)
= BVt — (Vi + 265 T ) 5P+ (Vs + 265 Tien™) 115 (H.15)

This transformation is usually called a supergauge transformation [I5, chapter XVI]. As it reduces for
curved indices to the ordinary Lie derivative, its action on tensor components (given above) is determined by
the Lie derivative, the Leibniz rule and the transformation of the supervielbein. In addition the transformation
of the structure group connection will be of interest, as it transforms inhomogenously under the structure group
transformation. For completeness (even if the given information will be a bit redundant), let us write down
explicitely the transformations (supergauge + structure group) for all the type II supergravity superfields of
our interest:

Supervielbein A general infinitesimal gauge transformation (a Lie derivative corresponding to a superdiffeo-
morphism plus a local structure group transformation) of the supervielbein Ej;* looks as follows:

SEv? = RoxEn? + 00X Ex? + EyPLp? (H.16)

Redefining the local structure group transformation parameter, this can be written in terms of covariant deriva-
tives

Ev? = EVrkEu +Vu B + €5 (Trm® —Tuk") EL* +BEn® (szA - fKQKBA) = (H.17)
0 2Tk 4 LgA
= Vué +26Ton” +Lp* Ex” (H.18)

EL‘,(_C»OV) EpnA
3

For some purposes, also the explicit form with partial derivatives (but in the new parametrization) will be
useful:

Vamgd
0Bm" = On€" + Q€ +26“Ton” + L Bt (H.19)
——
£699 R(L) B A
€
For the inverse vielbein we get likewise (or via 6E~! = —E~1F - E~1)
SEAM = KoxEAM — 0 eMEN® — LyPEgM (H.20)

or SEAM = VM 26T M — LpAEAN (H.21)
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The structure group connection transforms tensorial with respect to the superdiffeomorphisms but of
course not like a tensor (but inhomogenous) with respect to the structure group transformationﬂ

0Qma”® = 50k Qua® + 0N Qe a®” — 31\1&4;;—[3 Qula®? = (H.22)

LaP+efQra®

= ROk Qua® + 0m& QU a” — O La® — 00" U a® — X0k A” +
—[L + 5Q, Qu]a® = (H.23)
= 2650 k1A — 5[, Qn)a® — O La® — [L, Q) a” (H.24)
=

6Qa? = 265 Rieara® =0 La® — (L, Qur)a® (H.25)

£ B R(L)Qnra®

3

The scale connection in principle is the trace part of the connection. In our case, however, we seperate the
super tangent space in three parts (bosonic, left-moving fermionic and right-moving fermionic) and each has its
own (a priori independent) trace part. In detail we have

O 0 0
Qi = 0 Qe 0 |= (H.26)
0 0 Qe
QPsp 0 0 Ol 0 0
= 0 305" o |+| 0o joiPate? 0 (H.27)
0 0 10§D 54P 0 0 1OGD 40P
F{P)sb 0 0 R, 0 0
Ryna” = 0 L1FPs,B 0 + 0 1R{) ~ab,B 0 (H.28)
o TN LR 0 Y T
The scale connection (or dilatation connection) simply transforms as
50D = K9P 1 9y eK Q) — oy L) 50D = 89,00 4 9y, eKOP) 9, [P H.29)
SN = 2K ED) 5, L), SN — 2K D) 5, L(P) (H.30)

The superspace connection We will not need the superspace connection I'j;n* as frequently as the
structure group connection, but let us discuss its transformation for completeness. As it is inert under structure
group transformations, the supergauge transformation reduces to the Lie derivative. Remember the relation

Tun™ = Qun™ +0uEN? - EAX (H.32)

which is a direct consequence of Va;Ea® = 0. The Lie derivative of Ty can thus be derived from the
Lie derivative (or alternatively from the supergauge transformation) of the structure group transformation and
the vielbein. Both, vielbein and structure group transformation are tensorial with respect to diffeomorphisms

2Let us quickly rederive the correct structure group transformation of the connection via the transformation property of the

covariant derivative:
89 v vBLp4

5(L)VMUA = ) (3MWA JFQ]bIBAUB) =

= Om (UBLBA) + 6,048 + QupleL o =

= OB Lp +0PoyLp? + 60 vE + Qup?vC Lo =

= <8MvB + QMcBUC> SLp? 40 <8MLCA +0r0mc? + LePQup? — QMCBLBA>
For Vs v? to transform covariantly, we need to have

SyQmc? = —0uLc® —LcPQup® + QuePLs? =

=—[L.Qnmlc?

—V]\/[LCA <&
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and thus the inhomogenity in the transformation of I'y;x* can only result from the inhomogenity of the Lie
derivative of 9y En, which is (using commutativity of partial and Lie derivative’) drdn&" Er#. The Lie
derivative of the connection thus reads

L:E»FMNK = fLaLFMNK + 8MfLFLNK + aNfLFMLK — 8L£KFMNL + 8MaN£K (H33)

(06, T )N L 4+0n (0E) N K

The first two terms are just the Lie derivative of a matrix valued one form de™T' 3,5, while the last three
terms are the usual inhomogenous transformation of a structure group connection (compare ), here with
the Gl(n)-matrix MyE = —0On&X. The same transformation can be derived by comparing e.g. the tensorial
transformation of £V 9% on the one side with 0y (L ZvK) —&—LZEI‘MNK K +FMNK£ZUK on the other side

(using again that Lie and partial derivative commute). The Lie derivative of the connection is in some sense the
difference of two connections and is therefore a tensor. This can be seen by expressing the partial derivatives
on &M in terms of covariant ones and discover that the remaining connection terms combine to curvature and

3For a scalar field @ (pn), whose partial derivative becomes the component of a vector field, it is quite obvious that partial and
Lie derivative commute:

Cg»anlq)(ph) = RO0rOMP () + OMER IR P () = O (E5 O P (1)) = DM P (pn)

.Ng
My
on it. However, it will be very convenient to do so, and we will simply take the definition coming from infinitesimal diffeomorphisms

(with o' =z +£). Note that 9}ty "7 (x')‘ = Ont! 317 (@), which leads to

For a nontensorial object like 8MtMll' (or also the connection) it is less clear whether it makes sense to define a Lie derivative

z/=

Np...N /N1...Ng

_ Ni...N, Ni...N,
c'?aMtMlmM?p (z) = 6MtMl‘.‘1v?p (z) — Ot My...Mp, (=") H

= 8M(£?tMlmMp (=)

z/=x

We can likewise extend the definition of L',(_C»OV) =L, +R(£XQk ") to nontensorial objects by defining e.g.
13 13

R(L) opthf = op (R(L) 1)

The structure group transformation R(L) thus commutes with the partial derivative by definition and we thus have the same
property for the covariantized Lie derivative

£ opth = op (£ V1)

Note that this is also consistent with a proper transformation property of the covariant derivative:

LT = £ (opt + i~ Doa R + RO ) =
3 3
= O0p ([,(_C»ov)t%3;‘> =+ ([,(_C»OV)FPKN> tﬁg + FPKNK,(_C»OV)tﬁg — (L',(_C»OV)FPMK> t%ﬁ — FPI\/IKE(_C»OV)t%g +
3 1S 3 3 1S

+R <£(£»°V)Qp ) tNE +R(Qp.) L(&_C»‘”)t%ﬁ -

= Vp (z:(j"v)tANﬁ) + (L:JPKN) tKB (z:JPMK> tNB +R<£§°V)QP:> (VB =
£ 3 3 3
- v (é-Kv (NB | (V eK 4 oelT K) (NB _ (V eN 4ol N) tKB) +
P Klpyra M LM KA K LK MA
+ (2§LRLPKN +Vp(VreN + 2§LTLKN)> tKEB — (2€LRLPMK +Vp (Ve + 2§LTLMK)> tNE 4
+R<2£LRLP.‘) tNB
= ¥ VrVith + (VaeS + 265 T ™) VptE — (ViceN + 265 TV ) Vpthif +
~—_———
Vi VptNB —oTp by tNB+2Rp e Nth B, — 2Rprp Tt B + R(2Rpr ) th A
VRVt + Vi (Vare™ + 265 Tun ™) 0 = Vi (Vice™ + 26570 ) 55
+ (2§LRLPKN +Vp(VireN + 2§LTLKN)) thB — (2§LRLPJ\/IK + Ve (VX + 2ELTLMK)> tNE 4
+R<2£LRLP.‘> tNB =

= 5VEVptyE + (VPEK + QELTLPK) Virthi + (VMEK + 2§LTLMK) VptRE — <VK5N + 2§LTLKN> vpthA
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torsion[]

LE»FMNK =26"Roun™ + Vi (VneX + 265 T8 5) (H.34)

E*]VINK

Remember that above we have seen the Lie derivative of the superspace connection as a combination of a Lie
derivative on its form index (the first lower index) plus a Gl(n) structure group transformation with transfor-
mation matrix My = —9n&K. Equivalently it can be seen as a combination of a supergauge transformation
(regarding only the first index as curved one) plus a modified Gl(n) transformation with the matrix (compare

(H.10))

MyE = —oneE —efIpy® = (H.35)
= —Vne" —26"Tpn "™ (H.36)

Indeed the above Lie transformation can be written as

L:ZFMNK = 2LRp N —Ou MN® — [M, TN (H.37)

=—VuMyE

which perfectly agrees with the form of a gauge transformation of a structure group connection given in (H.25).
Let us finally note that

[ACZ,VM}UK = (L:ZF]\{NK)’UN (H38)

which provides another way to calculate the Lie derivative of the connection. For the Levi Civita connection

this equation implies that the Lie derivative commutes with the covariant derivative, if £ is a killing vector.

Compensator field and dilaton The compensator field ® — as we introduced it — is a compensator field
and in the beginning independent from the physical dilaton. It is not invariant under scale transformations.
Instead we have?]

60 = Kogd—LP) = (H.39)
-
——~
= ¢k (aKq> - Qﬁ?) —LD) (H.40)
£

3

In contrast, the “physical” dilaton transforms just as a scalar
3®(pn) = €5 O P(pn) = " Vi Ppn) (H.41)

A possible gauge fixing of ® would be to simply set it to ®,,) which was the original motivation to choose a

similar name. However, other gauge fixings like ® = 0 or Qﬁ) = 0 turn out to be more useful.

The derivative Oas® of the compensator field transforms in the same way as the scale connection:

Ou® = O (E8K0K®) — Oy L) = (H.42)
K K 7 (D
X0k (Om®) + O (0 ®) — Opy L) (H.43)
4 Alternatively we can use the covariant expressions of the supergauge transformation of Qprra®f and Ep? and write
LTyun® = £QuaPENAE™) + oy (L En) - EA® 1oy En? - £V ELK
£ 3 3 ¢
which leads to the same result. 3

5In order to understand the transformation of the compensator field, consider the transformation of the conformally flat metric
Gap = e2®nyp under scale transformations

60Gap = —2La“Geipy =
= —2LP)g,up =
= —20P)e**n p
- _(D®
=Gap = mp (1 - 2L<D)) ~ 2O g

=60 = -—LD) o
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Or in terms of L(P) :

50® = X0k0n® — 50D 4 0p K (0D — QD)) — 0 L) = (H.44)
= 2N P+ 650k (0@ - Q7)) + 0nEX (0K @ — ) — On L) (H.45)

Local scale transformations thus cannot (!) be used to fix at least some @-components of Qg\?) to Oapr® or s.th.
similar. Instead only one of them can be related to e.g. the physical dilaton as mentioned above.

The RR-bispinors (containing the RR field strength forms) transform as

§PE = Ko 4 [yopha [ apeB — (H.46)
~——
‘C(_C:’V)fpao”t

3
The H-field finally transforms as

§Hape = &5ViHapc+R(L)Hape (H.48)
~——

[:(_C»OV)HABC
3

H.1.2 Algebra of Lie derivatives and supergauge transformations
H.1.2.1 Commutator of Lie derivatives

The SUSY algebra on scalar fields and tensors with curved indices should be entirely implemented in the su-
perdiffeomorphisms (independent from any accompanying local structure group transformation which appeared
above). The commutator of two diffeomorphisms yields the vector Lie bracket of the transformation parameters

[Le, Le)] = Lig, g0 (H.49)

where the vector Lie bracket reads
6" = ffoned - fokel! = (H.50)
= VG - VR -2 T M (H.51)

If we plug in the local basis elements 4 = F 4M 8y, the covariant derivative acts only on the curved index so
that we do not only get the torsion term, as one would naively expect, but instead

—

[Ea, Eg] = (2Qap“ —2Tus") Ec = (H.52)
= —2(dEC)up Ec (H.53)
For objects with flat indices it is thus convenient to extend the Lie derivative to the supergauge transformation,
which is covariantized with respect to the structure group.
H.1.2.2 Algebra of covariant Lie derivative and structure group action

Let us restrict our considerations for a moment to a structure group vector v*. We first want to study the
commutator of two covariantized Lie derivatives.

[ciﬁ‘”), ci;?”w = VL (5 Vo) = (o) = (H.54)
= (EVn® =t VLeF) Vot + 5K [V, V] v = (H.55)
= (eEVin® — Pl — 26t T p K0P Vv + 265K Rpep®o® = (H.56)
EE;V_)»]DA + 265K Ry p 0P (H.57)
]

For a one form we arrive likewise at

e £y = £ wy — 2659 K RygeaPug (H.58)

—».

3 n [&.m]
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On curved indices, however, the super gauge transformation reduces to the Lie derivative

{dﬁ"”,ﬁ(ﬁw)] oM = [z:q,, cﬁ} oM =g oM =gl M (H.59)

€ 7 & [&,n] [£,7]

|:£(§,OV), AC(E,OV)} Whnr = E(Cfv_)» Whar (H.GO)
€ 1 [¢,7]

On a more general tensor t}/5 we therefore have the following commutator of supergauge transformations
(remember footnote (1)

[ﬁ%‘i‘”%d;:”)] B = £ tNE 4 2K P Ry 1o PING — 2650 R aC )2, (H.61)
M

R =11 (R )JtNE
< 257"( )> MA

In particular we have for supergauge transformations along the coordinate basis
[l:gzv),l:gsv)]t]]\v/[z = QRKLthé\Vf:; — QRKLACt]\A/[[% = R(—ZaKlaL (RCD)) tﬁi (H.62)

The algebra of two infinitesimal structure group transformations is rather simple{ﬂ

[[R(L1) , R(L)] = —R([Ly, La]) | (H.63)

The commutator between supergauge transformation and structure group transformation finally reads

{c%ﬁ‘”’,n(g] = R((E(EC,OV)L)> (H.64)

which is easily checked by acting e.g. on a vector v, The complete algebra can be written in one single equation
as

£ 4 R(Ly) , £ + R(L2)} — L 4R (gKnLRKL: + Ly — £ — (L, Lz})) (H.65)
U] 13 n

3 [¢.7]

H.1.2.3 Commutator of covariantized Lie derivative (supergauge) and covariant derivative

In Riemannian geometry the commutator of Lie derivative and covariant derivative vanishes, if the vector along
which the Lie derivative is taken is a killing vector. We want to see what relation there is for a more general
connection. Let us first consider the commutator of the Lie derivative and the covariant derivative with curved
index on a superspace vector

[EZ,VM} ok = {cg,aM} uK+cngNK-vN (H.66)

According to footnote [3] the first term vanishes and we have

{[/Z, VM:| =0 <« 0= LZFJ\INK " 26 Rpun™ + Var (VaeX + 2§LTLNK)) (H.67)

In the case of a Levi Civita connection, the Lie derivative of the connection vanishes, if the Lie derivative of the

metric vanishes, i.e. if £ is a killing vecto In general, however, we have the condition that the Lie derivative

6The minus sign comes from our definition how the structure group matrix acts on vectors and forms. E.g. on a vector we have
R(L1) R(L2) vA = R(L1) (La gAvP) = L1 c*La g€vP = (LaL1)gAvP = R(L2L1) vA= [R(L1),R(L2)|jv* = —R([L1, La]) v*.

Similarly for one forms R(L1)R(L2)wa = R(L1)(=LaaBwp) = L1 a°LacBwp = (L1La)aPwp = —R(Li1L2)wa=
[R(L1) ,R(L2)]Jwa = —R([L1,L2])wa. If one prefers, one can get rid of the minus sign by either redefining the action of
R(L) with a minus sign or with a transposed L (not only for antisymmetric L). This is because [LT,LL)T = —[L1, L2] and
—[—Ll7 —LQ} = —[Ll, LQ]. <&

"This is quite natural, as the Levi Civita connection is built only out of the metric. Nevertheless, let us check this statement
explicitly with the derived formula, in order to see whether it is consistent. In the Riemannian case we have

££—rmnk = 2£ZRZ’"L7Lk + vangk

and the killing vector condition reads (pulling down the indices with the covariantly conserved metric gmn)

V(m£n) =0
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of the connection has to vanish. How does this condition modify for a flat index of the covariant derivative
(using the covariantized Lie derivative)?

{ﬁ%"”,w} (.) = [ciﬁ“v),EAMvM] (..)= (H.68)

= (gKVKEAM — (VKfjw + 2§LTLKAI) EAK) VM(. . ) +
+ELM [E(f;OV),VM] (..)) (H.69)
13

Let us introduce just for the moment the symbol R to denote the action of a Gl(n) matrix (like the superspace
action I'pr.") on the curved indices, and allow for an additional structure group transformation:

z:;ov) +R(L) , Va| = (—(Val? +26Teca”) — LaP)Vp +

(£ EAMYE P
£

+R (26" Rpa. +Va (V& +265T1.)) + R(26°Rea.” — V4L.) |(H.70)

EAMIZ?FJW.' EANIE(_C»OV)Qj\f.'
3

When acting on scalar fields, only the first term remains.

H.1.2.4 Algebra of the gauge transformations

The algebra in the previous section was assuming that the variation acts on all objects, including the transfor-
mation parameter of the first transformation. This is not true for field-independent transformation parameters.
Having a local symmetry, the transformation parameters may or may not depend on the varied fields. We thus

have to treat their variation seperately. A general gauge variation has the form 6tJ/5 = [,(gov)tf\\ﬁ +R(L - ) tYA,

where £ and the structure group matrix L are local and may or may not depend on the fields of the theory.
Acting a second time with such a variation yields

6105(...) =
= & (ﬁgv)—f—R(Lz.‘)) = (H.71)
= & <L§_2» +R(§§<QK.'+L2:)> (...)= (H.72)

- (le  + R(GEE Qe + €55, Qe +61L2.')> (.)+ <L§ +R(EX QK +L2.')> 51(..)= (H.73)

&2

- (c(“‘)i? +R(§§< (dg“)gK; —OxLy. — [Ll,QK}.) +61L2.‘>> (.)+

61 &2 &1
+ (diﬁ”’ +R(Ls ;)) (c@” + R(L1)> (.)= (H.74)
&2 &1

— [L;Ej +R(2EEE R — XV KLy + 611y ) + (dg’” + R(LQ:)> (Ltj”) +R(Ls .')) ] (...)(H.75)

‘We can rewrite the above Lie derivative as
‘Cg—rmnﬂe = 2£1lenk + vanﬁk =
! 1 1 1

= 2§ Rimnk + Evm,vnfk + ivnvmgk — Rpnk & =
1 1

= 2 Rimnk = 5 VmVién = 5 VnViém = Rmnk'6 =
1 1

= 26 Rimnk = 5ViVmén + Rokn'€ = 5 ViVabm + Rokm '€ = Bmnk'&

= 261 Rimnk 7kanl£l + Rnkmlél - Rmnklgl =
——
—Rpkmi

= - <Rnkml + Rk'm.nl + Rmnkl) gl =0 <o
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Finally we take the commutator and use the commutation relation (H.65) of above

[01,00] = R Rk + & VLo — & VL1 +61Ly - — 62L1) +
4L+ R(zggf EERpp + £y — £ Ly — (Lo, Ll]) (H.76)
[§2,€1]+01 62 —d261 P &
61,60) = £+ R(2F€ERkL. + L1, La) 4+ 61Ly. — 3L, ) (H.77)
[€2,€1 140162 =026

If E and L are field dependent and transform like all the other fields, we have d; g; = [5_; , 5_; | and 01 Ly =
E(iOV)LQ —[L1, L2] and the above equation is the same as (H.65)), while if both parameters do not transform we

havle a similar, but still different algebra with some different signs and some terms missing.

Let us now consider transformation vector fields of the form f?/g = Ef‘/zq AM Oy, with ¢4 being inert under
variations, while g4 is built from the fields and transforms in the way its indices indicate. The transformation
of E then reads

& = &8 (L',(gfv)qBM - L BCqCM) = (H.78)
1
= eF (etaa®Vias™ — (Vi(eftga™) + 2 qa " T ™) g™ — L1 5%c™) (H.79)
516" —66™ = 2e1'e (a4 Vkas™ — 48" Vi0ga™ = 204" Tk 1M q5") — 25" Vietiga™ +
—e8 L1 g%qc™ + e Lap%qc™ (H.80)

On the other hand we have

M
[a , 52} KV M Ve 26K Ty Meb = (H.81)

e1qa Vi (eFqs™) — e5ap" Vi (61 qa™) — 2615 g " T LM g™ = (H.82)
= efes (aa"Vias™ — 8" Vkaa™ —2¢a" T, qp") + 2¢(1qa* Veziqp™  (H.83)
which means that

5168 — 5™ =

M
2 [51 ; 52} — 26019 Viegqp™ — b L1 g™ + e Ly g0 = (H.84)

M
[51 ; 52] +eted (04" Vras™ — a5¥Vikaa™ — 24" Tre M qp") + 2€€L2] p%ac™  (H.85)

The gauge algebra thus becomes

[51’ 62] — L(COV) +

Efﬁg(QAKVKQBM—QBKVKQAM—QQAKTKLMQBL)aM-i-QEﬁLm 8€ ac

+R (21 ePqa qp™ Ri. + [L1, Lo]. + 61La. — 2Ly ") (H.86)

In particular for £§ = 6§ and 2 = 65 and g4 = E4™ (corresponding to &1 = Ea, & = Ep) we get

[(5,4,(53] = L:(COV) N —|—R(2RAB.' + [L17L2}.. 4+ 01Lo. —(Sng.') (HS?)
(=2TaB®+L24¢—L15°) Ec

which is for L1 = Ly = 0 (at least when acting on objects with flat indices) the algebra of covariant derivatives.

H.1.3 Finite gauge transformations

In order to choose an explicit gauge it is useful to know the finite form of the gauge transformations (only
then you can decide whether a particular gauge is accessible or not). For superdiffeomorphisms, Lorentz
transformations and dilatations, we know the finite form anyway. Let us denote the transformed fields by
a prime (for superdiffeomorphisms) and by a tilde (for structure group transformations).

1A 6$N At
B (&) = 5o B (@) (H.88)
Ey*(7) = Ex"(2)Ap™(Z) (H.89)

BAGE) = o (BxP(006M(3) = (BB (3)) M3 (1.90)
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Likewise we have for the other superfield{|

A By DN B -1\ D cr= B

wa”(F) = o (<o Aa” + (M)A O (F)AC") (H.91)
<, ozV - -

O (3) = W(QN(:U)—BNA(:U)) (H.92)
POy = PYV(F)A, AL (H.93)
- . . . — N
$(F) = 0(F)-AD(F), B (F) = P (F) (H.94)
. oxN - - — OxN -

o' (7)) = W(E)N@(x)—aNA(x)>, On®m (F') = S On @y (F)  (H95)

For the RR-superfield pos (where the indices do not have the full superspace range), we replaced the general
structure group transformation A 42 by the blockdiagonal A 42, consisting of Lorentz and scale transformations:

AL 00 AP)gh 0 0 AP 0 0

A= 0 AP 0 )= 0 1AD)§,P 0 )+ 0 2ADqer 8 0
0 0 A&” 0 0 1ADP)§,P 0 0 LA yab B
(H.96)

How are A and A connected? They should respect the gaugings Tag® = 75, and Tafsc = 72[3'

0Tup’ = 0= 0T0s° (H.97)

which means that A = A = A. That does not mean the same for the corresponding connections (they are not
equal), but in fact — if the gauge fixings should remain the same under parallel transport — it tells us that one
should take only one of the connections as the one which defines parallel transport and rewrite the other in
terms of this one plus a difference tensor. The equations written in terms of the mixed connection are still valid,
but should be taken as an abbreviation for the interpretation that we just have given.

H.2 Wess-Zumino gauge

H.2.1 WZ gauge for the vielbein

. . y — in — . — - ~ .
Superdiffeomorphisms /M = FM(z) oMy EM(z) with * = (z,6,0) parametrise many more gauge
. . . . —\ in - 2 .
degrees of freedom than just the bosonic diffeomorphisms /™ = f™(xz) = 2™ + £™(x,0 = 0). Let us write
z’ as
M M~ w oM = o oM/~ -2
x = o'y (x)+a" o, () + a2t o'y () +0(0) (H.98)
o+ 0"
We have
9z'™ ox'™ ox'™ Bazmon m x/m
M ox™ Oz Br . " v )
Oz _ IO T 0=0 oz’ 7 R (H.99)
orN oz oz oz” - oz v 17 :
oz'H ox'H ox'# ozt 10 i
ox™ oxY Ox? Dan T, T,

In the following we will see that it is possible to fix the vielbein for vanishing 6 to

em®  Ym™ '&md
Ex?| = 0§~ 0 (H.100)
0 0 (5,10‘

8Defining Qs = ﬁQMaa and A = dilm Aq® yields the transformation 1} in the second line. However, having in mind the
definitions 1} and 1) yields the same transformation for each of the scale connections Qs (with A), QO (with A) and Qs
(with A) respectively.

The dilaton was introduced as a compensating field for the scale transformation of Gop = ?24)%1:- It thus transforms under the
bosonic scale transformations A. The distinction, however, is not important, as A, A and A get coupled by the gauge fixing of

Tap® = 'chxﬁ and TdBC = ’Y;B anyway. ©
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with inverse
6am *wa“ *J)aﬂ
EAM = 0 dua* 0 (H.101)
0 0 Sat
where Y ,* = e, 0" (H.102)
waﬂ = eamwmdadﬂ (H103)
emes” = O (H.104)
Multiplying from the left with the transposed (6 = 0)-Jacobian without ordinary diffeos (0322 = o) yields
op Se Lz en® Um® P
1,/:7/1 1‘/5 Jilﬁ 0 6”11 0 _
AL Ly 0 0 0
et (a4 EE) (D + o)
= e (2 V™ + 2 6,%) &' b & + x’fjéﬁo‘ =X (H.105)
x'mem (l‘/zlwma + xlgéua) JJ/ZLJ)md + xlgéﬂd
1 ENA| (H.106)
This fixes some of the auxiliary gauge parameters:
o= eam E,°| (H.107)
YT = ™ By (H.108)
wo= ( o x’mwm ) dat (H.109)
2y = (Bo® =2/ S ™) 0o (H.110)
o = (E *—a'y m"‘) & (H.111)
7 = (E & — 2 )6a“ (H.112)

So all the z/pr are fixed which likewise fixes all 2/3,. In contrast, o’y () are still free and they parametrize
bosonic diffeomorphisms and local supersymmietry.

H.2.2 Calculus with the gauge fixed vielbein

Before we proceed with the gauge fixing of the connection, let us have a look at some consequences of the special
vielbein gauge. The new bosonic vielbein e,,*(z) = E,,%(z,0) offers a second possibility to switch from curved
to flat indices and one has to be careful, in order not to mix up things.

Define
Gmn = €m Napen’ (H.113)
so that we have
We are thus in the Einstein frame for ¢ = ¢(,,) and in the string frame for ¢ = 0.
The inverse of the supervielbein behaves differently than the inverse of the bosonic vielbein:
EJWAEBM = 6AB = EMA| EBM| = 5AB (H.115)
Ema,‘ ™ = 6% (H.116)
Therefore we have for any supervector Vj;:
Viledm = VoEn“|e" = (H.117)
= V.Epfles™ + VeEpC|e” (H.118)
or
Vinl €a™ = Va| + Vel ¥mSe,™ (H.119)
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For the metric in particular, this means

Gmb| (:’am = Gab| (H.120)
Likewise
vtle, N = UNEN“’ e, = (H.121)
= V"E, e + UNENa e, = (H.122)
= o™ (H.123)
Define
GMN = EMEN 72%yab (H.124)
——
Gab
Then we have in particular
Gmn‘ _ Eaml Eb”| e—2</>nab — eamebne—ngnab _ e—2<bgmn (H.125)
G e,V = G™" (H.126)

H.2.3 WZ gauge for the connection

Similar to the supervielbein-case it is likewise possible to reach a special gauge for the connection componets
with fermionic form-index, where the @ = 0 is set to zero

Qma”|=0 (H.127)

Let us show that this gauge fixing is really accessible. We would like to reach the gauge (H.127)) using the higher
order @ local Lorentz transformations (with A4% | = 047). Remember the structure group transformation of
the connection

QMAB(.I‘) = —6MAAB + (A_l)ADQ]uDC(Z‘)ACB (H.128)
Reaching the gauge fixing condition (H.127) is thus possible by simply choosing
AMAB = 8MAAB] = (H.129)

!

= Qma®(2)] (H.130)

H.2.4 Gauge fixing the remaining auxiliary gauge freedom
In addition to the ordinary Wess Zumino gauge
Ep?tl = om? (H.131)
Qama”®] = 0 (H.132)

we can demand the gauge fixing condition 0 MEN)A’ 20 using the gauge parameter aMaNgA]. Indeed all
the other higher components of ¢4 and La® can be fixed by imposing’|

Oy - O, Epm, oy = 0 (H.133)
O, - Orm, Qpa,a?| = 0 Vnefl,...,31) (H.134)

Actually the above equations even hold for n = 32 (the highest components of E and ), but then trivially, as the
total graded symmetrization of 33 fermionic indices (which is an antisymmetrization in fact) in 32 dimensions
always vanishes. For n > 32 even the derivative without graded symmetrization vanishes trivially as usual. The

9Looking at the infinitesimal transformations
4 <8M1 "'8MnEMn+1A)’ = 8M1 aMn (8Mn,+1§A+QM71,+1BA§B+2ECTCIWA>‘ =
4 <8M1...8M”QMH+1AB)‘ = —6M1...8M” (8Mn+1LAB+[L7QMn+1])’

it seems quite obvious that the parameters 8M1...8M7L+15A‘ and 8M1..ABM7L+1LAB‘ can be used to shift

Om, - Om,, EMn+1)A‘ and O aq, ---OM, QMn,H)AB‘ to whatever value one likes. A rigorous proof that (H.133) and (H.134)

are accessible, however, should consider the finite transformations. <
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second equation is even true for n = 0 (due to (H.132))) while the first is modified for n = 0 to EMA| =omA
(T.131).

This gauge is useful to calculate explicitely higher orders in the é—expansion of the vielbein or the connection
in terms of torsion and curvature. Let us consider at first the connection. For the n-th partial derivative of the
component with fermionic form index we can write

B
aMl .. ~8M,,LQM,L+1A ’ =

= OMmy - Onm, Um0y’ | = > 0rMmy O Om, Va4 = (H.135)
=0 (H.134) =t
2 n
— i Z OM, - - aMiflaMm ... .0m,, (RMiMnHAB + Q[Mi|ACQ|Mn+1]CB)‘ = (H.136)
i=1
n
= o Omy - Onmr| CRIM Mo A" + Uty a® - Qa0 = Qa4 - Qan,) o) (H137)
(H.134) 2n
8M1---6MnQMn+1AB| = ] 8(M1...8Mn71RMn)Mn+1AB Vn >1 (H.138)

It is tempting to think that in the Taylor expansion of Qaqa® these terms sum up to 2V Raraqa® which is,
however, not the caseET] The calculation for the components of the vielbein is very similar

8./\/11 et aMnEMnJrlA‘ =
2 n
N A
= Om, - -OMm. B, +m Z M, - Oipi] - OM Elp, | = (H.139)
=0 (H133) =
2 n
_ — Z O, - - 8M1-,18Mi+1 ...O0m,, (TMierlA + E[MiBQMn‘Fl]BA)’ = (H.140)
=1
n

- n —+ 1 a(Ml e a-A/"nfll (2ﬂMvt)M7L+1A + EIMH)BQMTHHBA - EM7L+1BQ‘MIL)BA)| (H141)

For the second and third term in the bracket we can use (H.133) and (H.134) again, so that the third term
will vanish while from the second term we get a contribution only when all derivatives act on the connection,

because Eaq, | = 0aq,”. Using (H.138), we arrive at

M,y - O, Bam, | = Vn > 1
2n 2(n—1)
= o1 O Oy T man |+ ﬁ&MlB OM; -+ O s Ratym,, 87| | (H.142)
In particular we get for n =1
OMEN?| = Taan?|
IMmONA"| = Rawa®|

The higher é—components of the vielbein and connection parts with bosonic form index (EmA and Q48 )
can likewise be expressed in terms of torsion and curvature:

2 n
8M1...8M7,/QMAB = %ZaMla[Ml‘ﬁMan]Aﬂ + Om 8(M1...8Mn_1QMn)AB‘ = (H.143)
= =0 (H139)

1 1
= 20Mm, - Om,_,y (RIMn)mAB + §Q\Mn)ACQmC’B — 2QmACQ|Mn)CB)

H.144)

10The Taylor expansion of Qaq 4P reads

oo _ 1 )
Qma®(@,0) = Qua®(@,0)+ 30 —a™Mta™Mron, o Opm, Qma®| =
'rLZln‘
— 1 2n
= QMAB(w,O)‘i’Z*' +1.’EM1---IEM" 8M1~-~8M.,L,1RM71MAB):
n>1n‘n

- 1
= QMAB(QT,U)-i-QmeMl-HxM" 6M1...8Mn(xNRNMAB)’ o
>1 :
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[H.134
(l?]) 8/\,11 ...8ManAB} =2 8(M1 . ..8M"71‘R|M")mAB‘ Vn>1 (H145)

2 n
8M1"'6M.,LE’I’LA‘ = gZ@Mla[M1|aM”E|m]A’ + O G(Ml...aM"flEMn)A‘ = (H.146)
= Y aE: YizaEn)

1 1
= 20my - Om, <T|Mn)mA + §E\M,,L)BQmBA - 2EmBQMn)BA>’ = (H.147)

79 A A
I(M, -- '8Mn,71TM,L)m | + 5(M"B aMl - OMTHI)QMB ‘ (H148)

In particular for n = 1 we get

8./\/1 EmA’ =2 TMmA| + 5MB QmBA| (H149)

while for n > 1 we can use (H.145) to arrive at

OMy - OML B =20a, - Or s Tty | + 200, % OMy - OM_ B yms™ | [¥0 > 2 (H.150)

In practice we are given constraints on torsion and curvature components with only flat indices. Rewriting
the equations (H.138),(H.142),(H.145),(H.149) and (H.150) with flat components yields the following rekursion
realtions

2n

My - OM, Qmm, a5 = 1 S, SOMy - Onm, ) (Eam,.,PRepa®)| W¥n>1 (H.151)
2n

O, O, Em, | = ———] S, COm, - Opm, ) (Epm,, "Tep™)| + (Yn>1)
2(n—1

+%§(M7L_105M’5 O, O, _o)(Em, P Reps®)|  (H.152)

8M1...8M7LQmAB‘ = 26(Mnc 8./\/11 ...8Mn71)(EmDRCDAB)’ Vnz 1 (H153)

a./\/l EmA| = 26MC EmDTCDA| + 6MB QmBA’ (H154)

OM, --- 8M7LEHA‘ = 25(Mnc OM, - - 8Mn_1)(EmDTCDA)| +
+2(5(MHB(5M"71C OM, -- .8Mn72)(EmDRCDBA)’ Vn > 2 (H.155)

H.3 Stabilizer

H.3.1 Stabilizer of the Wess Zumino gauge

In order to recover the supergravity transformations, we need to determine those supergauge transformations
which leave the Wess-Zumino-gauge untouched. Let us start with the vielbein which was fixed to E MA| =omA
(H.100), and remember the general transformation (H.19)

SEv® = 0mé? + Que?eC +26°Teon® + L Ex® (H.156)

VuéA

The 6 =0 component of Exq? in the present WZ gauge thus transforms as

SEm?| = &t Qmac?| & +26 Tom| + Los™  Em®| = (H.157)
=0 (H.127) SmPB (H.100)
= U+ 2 Tom™| + Lo 5 m® (H.158)

In order to preserve the gauge of the vielbein, we thus need that the above variation vanishes

Eag = —265 Tom™| — mPBLos? (H.159)

This can be made more explicit by splitting the index A in (a, , &). The vector £4 can then be written as
-2
¢ = &5 —22™MEE Tom |+ 0(6) (H.160)
o~ —2
3 &5 — a* (265 Top™| + 0uPLog™) — 2075 Top®| + 0(60") (H.161)

A A A ~ ~ A ~ -2
¢ & — 22M¢G T, ™| — o (2500 Tep®| +0.°L, [,a) +0(6) (H.162)
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So far we have not made use of any torsion constraints.
The gauge fixing condition of the connection was Qg AB| = 0, while its general gauge transformation reads

(F.25)

6Qa®” =265 Ricnra® — OmLa® — (L, Qur)a” (H.163)
The gauge is thus preserved if
!
Laa® =265 Ricaa”| (H.164)
or
— = — =2
LaP(2.,0) = Loa®(7)+22™ME Reama®| +0(0") (H.165)

H.3.2 Stabilizer of the additional gauge fixing conditions

Remember the additional gauge fixing conditions (H.133)) and (H.134)

! !
Oy - OMuEr )| =0, Omy - OM, Qmm,)a®] =0 Yn>1 (H.166)
Stabilizing the first condition

0 Om, ...8MHEMH+1)A| =

= OMm,---Om,) <8|Mn+l)€A+Q|M,1+1)CA£C+2§CTC|M”+1)A +LBAE\MH+1)B)’ —  (H.167)
= Oy Omy) (Oamu €t +26Toipm, 07| (H.168)

implies
OMy - OMy 8 = —200am, - Opm,) (E9Teipm,, )| Y21 (H.169)

Stabilizing finally the second additional condition (the one on the connection)

0 Om, - ..GMHQMHH)AB| =

= O, - Onm, ) (265 Rpm, )a” = Om o La® = [L,Qa, ]a”)| = (H.170)
= Omy - Onm,| (265 Riiam, )" — O, La”))| (H.171)

implies
8M1...8MHHLAB} :28(M1~--6Mn| (fKRK‘Mn_H)AB)’ Vn >1 (H.172)

The two conditions (]H.169[) and (]H.172[) affect only terms of order 2 and higher in 6 of the transformation
parameters £4 and La” and therefore do not affect our earlier result (H.160)-(H.162) and (H.165) for the
stabilizer of the WZ gauge.

H.3.3 Local Lorentz transformations as part of the stabilizer

For a reasonable gauge fixing we should still have local Lorentz invariance and the bosonic diffeomorphism as
part of the stabilizer group. We recover the local structure group transformations, if we set

& =0 (H.173)
which leads to
- . -2
LaB(2,0) = LoAi2(z)+0(0) (H.174)
-2
& = 00) (H.175)
-2
¢ = —2#6,PLog*+0(8) (H.176)
~ ~ P ~ -2
£ = —aP5PLy >+ 0(0) (H.177)
Acting with such a transformation for example on a scalar superfield like the dilaton @, yields
6(I)(ph) = ECVC(I)(ph) = —l‘”(SHﬁLog’yv,yq)(ph) (H.178)
That means for the 8-component A,,, that it transforms, as if u was a spinor index.
Ny = 0ub(Ppn)) = (H.179)
= —5”’811057 V.Y(I)(ph)’ = (H.180)
= —0,°PLog"0, "\ (H.181)

Although this might seem intuitive, it is important to note that this is only due to the WZ-gauge, which couples
part of the superdiffeomorphisms to the local structure group transformations. Originally, the curved index p
does not transform under structure group transformations.
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H.3.4 Bosonic diffeomorphisms as part of the stabilizer

The equations for the stabilizer are given in flat indices £4. We will need this to extract the local supersymmetry
transformations. But in order to see whether the transformation with parameter ¢M(z) = (¢5'(x),0,0),
corresponding to bosonic diffeomorphisms, is contained in the stabilizer, a change to curved indices preferable.
Instead of using the vielbein to switch from flat to curved index, we check this directly. The transformation of
the vielbein components with this parameter is

§ Em?| = &0k Em?| + omé"| Ex?| =0 (H.182)
N—_—— N——
SaA =0
80 My - OMu Epto )] = Oy - O] (EFOREin, ) + O pm ) EFELY)| = (H.183)
= 0O m, - Onm Epmm,, )t =0 (H.184)

The same is true for the connection

5 Qaa”| &0k Qama’| + 0mE™| Qra®| =0 (H.185)
=0

50my - OMm, Qpm, A" = ...=0 (H.186)

H.4 Local SUSY-transformation

H.4.1 The transformation parameter

This section could actually be another subsection of the “stabilizer” section. But as we have special interest in
the local SUSY transformations, we make it a seperate section. The supersymmetry transformations are defined
to be the set of transformations within the stabilizer with

SUSY: €5=LoaP =0, 0#& =", 046 =&Y (H.187)

From (H.159) and (H.164) we thus get

Em? = =265 Team™, Laaa® =265 Reana®| (H.188)

Or more explicitely (compare (H.160)-(H.162)) and (H.165)):

€0 = 2k (7 Ty, o + €V Ty, %) — 207 (67 Typ®| + €7 Ty%|) + O(8°) (H.189)
€ = 2% 2k (27 Ty, 4+ Y T ®)) — 2P (7 T + &Y Ty®) + O(8) (H.190)
€5 = &% g (&7 Ty % | + 6V Ty ®|) — 207 (67 Typ®| + 67 Typ®|) + 0(8) (H.191)
LA = 20" (&7 Rypa®| + & Rypa®|) + 207 (27 Rypa®| + &7 Rypa®|) + 0(8°)  (H.192)

Note that Lo a® = 0 as part of the stabilizer of the gauge fixing is not possible any longer if (part of) the local
structure group transformation (e.g. the local scale transformation) is fixed. In the case where we fix for example

D =0or o = ® (1|, we get the additional stabilizer condition (97 V®” — L(P)| < 0 or equivalently

L5 = S e (H.193)

H.4.2 The supersymmetry algebra
In order to read of the algebra of the local supersymmetry transformations from (H.77), we need the transfor-

mation of € itself under a supersymmetry transformation

0,64 = —22ME 6y Team”| = (H.194)
= —Q.IMfg(SMB L:(_C»OV)TCBA = (H.195)

n
= —20MimPEEnE VeTep| (H.196)

sEM| = ot EaM + &0EM (H.197)
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and also the transformation of L 4® under supersymmetry:

SLAP = 2aME§ SReama®| = (H.198)
= 2$M€g5MD L:(_C»OV)RCDAB = (H.199)

n
= 20MEE5Mm® ¥ VeRepa®” | (H.200)

The algebra (H.77)) then becomes
61,00) = £ +R(2eFEE Ry + L1, Lo). 4+ 61Ly. — 2L, ) (H.201)
[€2,8&1]401 &2 =261
The Lie bracket of the vector fields reads

—

(.01 = Vent Vet - 26 Topn” (H.202)
(&1 = &net —ngés? — 266 Tes® | 16 = (H.203)
= —25nF Tec?| + 2085 Tes™| — 26§ Tes” | 0 = (H.204)
= 2§ Tes™| 0§ (H.205)
(&, 7] + 056" = ben™ = 266 (Tes™ | — a™6m® VeTen™|) 16 (H.206)

H.4.3 Transformation of the fields
The supersymmetry transformation of the fields is simply given by
5. = £ + R(L(e).")
£ (e)

where ¢4(¢) and LoB(e) are of the special form given in (H.187)-(H.192). Let us derive the transformations
of all the fields that we will need. In order to extract the transformation of the (leading) components, we will

again make frequent use of the Wess Zumino gauge (H.100) and (H.127) (using E,.%| = e, EmA| = wmA).

In any supergravity theory we have a vielbein and a structure group connection which we will consider first.

H.4.3.1 Vielbein (bosonic vielbein and gravitino)

Remember, the vielbein transforms according to as
SEv? = Om&* + QueeC +26Toy™ + L Ey® (H.207)

VagA
Using and the transformation of the nonvanishing leading vielbein components (the bosonic
vielbein and the gravitino) becomes

Sem® = 268 Tem| (H.208)
™ = Ome + Qnc?| €€ + 26 T A (H.209)

In practice, we will be given constraints on torsion components with flat indices, s.t. it is useful to rewrite the
equations in those components:

5ema = 27 (emb T‘yba| + @[}mﬁ T’yﬂa| + '&mﬁ T.),[;a

) +
1287 (emb Ts| + o Typ%| + b T, 5° ) (H.210)
Sm® = O™ + Q| 7 +

257 (em® Typ®| + 0 Tog®| + P T,5°|) +

1257 (em® T + Yn® Ty®| + b Ty5% ) (H211)

& +

Omé* + Qs ®

+257 (emb T'ybd‘ + wm'@ T’yﬁd‘ + /lﬁm'é Tvﬁd‘) +

5™

+2é;7 (emb T,:,bd| + ’l/Jmﬁ T’:/ﬁd| + ’lZJm[a T;’ﬁd‘) (H.212)
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For the transformation of the gravitinos we need additional information about the connection. So far, we
assumed in the derivation only that the connection is blockdiagonal and did not make use of any torsion
constraints or something similar. Right now, let us assume that we have a connection with

!

. ! c !
Viuvas = Vmrgs =0 (H.213)

which relates the three blocks of Qp;4f and restricts the structure group to local Lorentz and local scale
transformations. We can then make use of equation (G.47), which relates the superspace connection to the Levi
Civita connection and other objects:

Qp®| = w(kL@C)s + %ek“ [ea"”eb” Ton| Nde + €™ €a™ T | nav
—ep" ™ Tonn”| Naa + Q| Nea — Ll nba} 7"6° + %@k"’ Q| 6p° (H.214)
05| = w(,fﬁ,c)é + ieka [eamebn Ton®| Nac + €™ €a”™ Ton®| N
—er™ €™ Ty Mo+ ea — Dl ] 17%5° + %eka ] 8,2 (H.215)
with
Ton?| = em®en’ Tup?| + 260 00 Tun®| + 0" Tan’| (H.216)

H.4.3.2 Connection
Remember the general gauge transformation of the structure group connection (H.25)
6Quma® = 265 Ryna® —0mLa® — [L,Qu)a" (H.217)
In the case where a scale part of the connection is present, this transforms accordingly as (see )
SO — 2¢CFD) 9, L) (H.218)

For the stabilizer of WZ-gauge with QMAB| =0 and § QMAB| = 0 and for the choice £§ = Lo a® (corre-
sponding to local supersymmetry (H.187) and (H.188)) the nontrivial part of the above equations becomes (for

—

0 =0):

§ Qma®| = 26§ Rema®| (H.219)
5955)‘ = 26 FP (H.220)

More explicitely (replacing e¥ = &7, &Y = ¢]) this reads

g Q"mb| = 27 (emd R‘yda,b| + ¢m5 R—yéab| + 12)7”3 R‘y&ab ) +
+2€;7 (emd R‘S‘dab‘ +wm5 R’y&ab’ 4 @mfs Rﬁy[sab ) (H221)
(D) — d (D) § (D) ~ 5 (D)
0 Qu ‘ = 25'Y<em F,yd ‘—i—l/)m F’y& ‘—f—q/)m F75 D+
y d (D s (D 7§ (D
oe7 (e F%d)’ + P F%)’ + F*(rS)D (H.223)

H.4.3.3 Compensator field

A compensator field is not necessarily present in a supergravity theory. In our context such a field @ is used to
allow a scale transformation of the metric in flat indices:

Gap = e*nas (H.223)

Where nap is some constant metric which is invariant under the orthogonal transformations. In our case, its
bosonic part is just the Minkowski metric and the rest is zero. There is no way, how a constant metric can
scale. Therefore the compensator field ® takes over the scaling of G4p under scale transformation by simply
getting shifted with the scale parameter

R(L)® =& — [P (H.224)
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Similarly, the covariant derivative will be defined to act only on ® (and not on n4p) in such a way that the
covariant derivative of GG 4 has the form that is indicated by its indices.

VuGap = 200u®—QuM)Gag (H.225)
="Vud = 2(8]y[‘1) — QM) (H.226)

The general gauge transformation of the compensator field thus reads (H.40)
5o = €K (aK@ - Qﬁ?)) —L®D) (H.227)

S
N -
Define

6 = I (H.228)
b = OO (H.229)

For the lowest component , this implies the following local SUSY transformation in the WZ gauge

56 = ¥y + EV 4 (H.230)

The transformation is zero, if we combine it with an additional scale stabilizer transformation (H.193)

L) = ¢S o (H.231)

H.4.3.4 Scalar field (e.g. Dilaton and dilatino)

The Dilaton field is a scalar and thus has the simple transformation

8Py =E7 Vedpn = LD (H.232)
——— 3
EcMonm®pn)
Define now the dilatino to be

Aa = VaPun| =6a™ 0mPn)) (H.233)

A = 0P| (H.234)

PR 1
= @upn) = Ppn + AL+ TN+ §xMa:N OMOND| + ... (H.235)

For the transformation of the dilaton we use the fact that the variation of a covariant derivative is simply the
covariantized Lie derivative (supergauge transformation) plus the structure group transformation of the new
tensor according to the new index structure (see footnote [3|on page and (H.15)). We thus have

§(VaQupn) = E9VeVa®un — La®Ve®pn (H.236)

For the fermionic components at 6= 0, this reads simply

oq = € VcV_A@(ph)‘ (H.237)

Apparently, we need some equations of motion at this point, in order to say more. We can, however, relate this

—2
expression explicitely to the & component 8M6N<I)(ph)| of the dilaton:

da = €6c™ OM(EAS Ok P pn)| = (H.238)
= %M (OMEAN| Ok P(pn)| + 64" OMmIP(pn)|) (H.239)
Now we can use that

OMEA"| = —EaA"| OMEL"| Eg"| = (H.240)
= — EA®| OMEL"| Ep"| = (H.241)

—

OrmBe®|
= 064" Trmc"| Es"| (H.242)

Sda = —€Tea’| e Oudpn) + €€ Tea| v/ A — €€ Tea®| As +

+£€0e™M 64" OpOKP ()| (H.243)
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H.4.3.5 Bispinor fields (RR-fields)

Apart from that we will be interested in the transformation of RR-fields
§PB = OV PP 4 [ 2PYB 4 [ Bper (H.244)

The leading component transforms as

5paﬁ — 67 p’yaﬁ
~——

>
cy P

H.4.3.6 Three form (e.g. H-field)

Finally we consider the transformation of a three form field, the H-field Hapc or Hyni

§Hape = &¢°VpHape —3Lia"Hpise (H.245)
SHynk = E°VpHunk +3(Vné" + 26T ") He v (H.246)

It makes some difference whether we consider the H-field with flat coordinates or the one with curved ones.
The difference lies in the transformation of the vielbeins. Physically, we are interested in the transformation of
the bosonic H-field.

1 Hmnk| = 5D a’DHmnk| + (V[nL\chCMk] + 2€PTP[7rL|CHC\7Lk]) (H247)
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