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Abstract 

 

 

In this thesis, the design and implementation of a control system for a humanoid robot is 

presented. The control system is implemented for a teen sized humanoid robot, named Archie. 

Project Archie started at the Institute of Handling Robots and Technology from Vienna 

University of Technology in the year 2004. The aim of this project is to construct a robot that 

can imitate human movements such as walking. 

The control system is designed based on distributed computer architecture, which means that 

the entire control system consist of multiple individual motion control units which in turn 

control the joints (i.e., each joint has a motion controller) and communicate through a data 

network with the central controller. The central controller is designed on a system-on-chip, 

based on embedded systems. In this system, an embedded processor and some peripheral 

hardware result a minimum system to execute a standard operating system (Real time Linux). 

The joint controllers of the robot face different load properties based on the overall pose of the 

robot. Since the design of the motion controllers are based on the load specification, tuning the 

motion controller parameters is a necessary task. This task can be simplified by using a 

simulation of the robot. The simulation will anticipate the operation of the motion controllers 

in the real robot. 

Finally, the control system of the real robot is tested and evaluated by the traversed 

trajectories and they are compared with the simulation of the robot. The trajectories of the real 

robot are taken using image processing from a video stream of the robot’s movement. The 

evaluation is done by comparing the simulation errors and the error obtained from the data of 

the real robot on the same test.  
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Problem Formulation 
 

This thesis will establish a control system for a humanoid robot. Humanoid robots are 

sophisticated machines, because of the high degree of freedom. Controlling a humanoid robot 

requires mechanical, electrical, control and software knowledge. The control system entails 

mechanical perception of the system (humanoid robot). 

The control system which includes the hardware (mostly electronic based hardware) and the 

software algorithm should provide the robot the ability to imitate human walking. Furthermore 

the hardware should give appropriate processing resource and performance for the control 

algorithm used in the robot. In addition, the hardware should be optimized to reduce the 

power consumption of the system which is important in mobile robots (due to the energy 

source limitations). 

As a result of the high processing load on the control system of the robot, appropriate system 

architecture should be selected in order to enhance the processing performance. The selected 

Architecture should provide enough reliability and durability. By using a distributed system with 

a central controller, the robot could have the flexibility and the ability for further developments 

and extensions. 

Since a humanoid robot is a complex machine, its development is a fairly difficult task. A 

simulator can be used to ease the development task. Moreover, using a simulator could reduce 

the development time as well as cost (e.g., reducing system impairments caused during 

development failures). 

To evaluate the robot’s performance in real world; for instance, the movement trajectories a 

solution should be taken such that it provides enough accuracy and reliability. Image processing 

could be the simple and reliable method as an approach for solving this problem.      

By adding sole pressure sensors to the robot’s feet, it should have the possibility to imitate 

natural human walk, and the ability to walk on non-even terrains in future works.  
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Chapter 1 

1. Introduction 
 

“We can’t solve problems by using the same kind of thinking we used when we created them.” 

- Albert Einstein 

Many aspects of modern life involve the use of intelligent machines capable of operating under 

dynamic interaction with their environment. In view of this, the field of biped locomotion is of 

special interest when human-like robot is concerned.  Currently, research on humanoid robots 

and biped locomotion is one of the most exciting topics in the field of robotics. The field of 

robotics is one of the most innovative in the last decade (D. Katic and M. Vukobratovic, 2004).   

A humanoid robot is a robot with its overall appearance based on that of the human body, 

allowing interaction with made-for-human tools or environments. In general, humanoid robots 

have a torso with a head, two arms and two legs, although some types of humanoid robots may 

model only part of the body, for instance, from the waist up. Some humanoid robots may also 

have a face, with eyes and mouth. Androids are humanoid robots built to aesthetically 

resemble a human. 

Nowadays, humanoid robots are often shown in science fiction movies (e.g. I-robot, Ironman 

and AI), although those robots are far from being able to use in reality. There are a wide range 

of applications which can be carried out by humanoid robots and not only the ones that are 

commonly presented by the motion picture industry. For example, humanoid robots can also 

be used in detecting land mines (A. Byagowi & P. Kopacek, 2009).  

In this work, implementation of a relatively low cost control system for a humanoid robot with 

lower energy consumption is presented. Moreover, this project introduces novel methods 

which are a combination of mechanics and electronics. The robot’s control system is based on 

distributed computer architecture. A distributed computer consists of multiple computers 

(controller units) that communicate through a data network with a central controller. The 

computers interact with each other in order to achieve a common goal (Andrews, Gregory R. 

2000). 

Using a distributed computer system gives the robot the ability to have real time reactions. In 

this approach, the control system is divided into levels to break down the heavy processing load 

besides of increasing the flexibility and reliability of the system. In a distributed computer a 

problem is divided into many tasks, each of which is solved by one computer (Godfrey C., 2002). 
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Each joint controller of the robot entails an individual micro controller (Infineon, XC164, 2001). 

The controller will monitor the motion of the joint (e.g. torque, velocity and the position). Using 

the data network of the robot, all the individual controllers communicate with the central 

controller which in turn collects all the data from the joints and makes the calculations that are 

used to balance the robot. Then, it sends back the appropriate commands to the joint 

controllers. The central controller (spinal board) is similar to the brain’s cerebellum (parts of the 

vertebrate’s brain that controls the balance).  

Humanoid walking algorithms can be distinguished as being either static or dynamic. The 

distinction is made depending on the location of the centre of mass during motion. For static 

walking, the centre of mass is always located above a polygon created by external boundaries 

of the leg base. The robot will remain statically stable if it is paused at any time during its 

motion.  

Dynamic walking is generally much faster than static walking. In dynamic walking, inertia effects 

are considered, and it is possible for the Centre of Mass (CM) to be outside the supporting area. 

Human walking patterns are considered to be dynamic. Traditionally, robots have maintained 

stability throughout their motion by maintaining at least three points of contact with the 

ground at all time. Since humanoid robots have only up to two points of contact with the 

ground, they must maintain stability through alternative means. 

The center of mass for a rigid body is a fixed point which is located near or inside the object. 

When two objects are connected to each other using a hinge, the total CM will be the resultant 

of the location, the mass and the angle between (angle of the hinge) the CM of those two 

objects. The following criterion can be extended to multiple objects and joints.  A humanoid 

robot can be aimed as multiple rigid bodies (links) connected to each other using some hinges 

(joints).  

To find the total center of mass in a humanoid, first the center of mass for each link of the 

robot has to be relocated in a Base Coordinate System (BSC). The direct kinematics model of 

the robot is used for this purpose. This model yields a series of transformation matrices which 

convert relative positions from one coordinate system to another coordinate system and finally 

to the BCS. To formulate the following conversion chain, the Denavit–Hartenberg (DH) notation 

is used. This one provides the mathematical calculations for the relocation positions from one 

coordinate system to the other from multiple conversion matrixes. 

A commonly used convention to select the frames of reference in robotics applications is the 

Denavit-Hartenberg convention (Jaques Denavit, Richard S. Hartenberg, 1989). In this 

convention, each homogeneous transformation is represented as a product of four basic 
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transformations. The common normal between two lines was the main geometric concept that 

allowed Denavit-Hartenberg to find a minimal representation. 

The ground projection of the CM (which is resembled using center of pressure) should be above 

a supporting polygon in order to save the balance for the robot in static walk. The support 

polygon changes when the points in touch with the ground are modified. During walking, the 

points in touch of the robot are changing based on the walking phases. Walking consists of two 

major phases, Single Support Phase (SSP) and Double Support Phase (DSP).  

The central controller generates the movements using interpolation and controls the balance of 

the robot. To maintain the balance in the robot, the center of mass has to be calculated. 

Furthermore, the joints have to be moved in a suitable way to shift the ground projection of the 

CM in the support polygon. This one is in turn related to the phase that the robot is in at some 

specific time.  

In a mobile robot like a humanoid, using optimized hardware that has minimal energy 

consumption is a critical requirement. The main reason to optimize the hardware’s energy 

consumption is that the battery is a limited energy source. One of the other issues that should 

be in mind in the design of a humanoid robot is the physical space limit for the control 

hardware and other possible accessories.   

Communication with all the entire individual controllers is a time consuming task that needs 

processing resources. Using a custom hardware design improves the performance of the 

system. In this work, a customized hardware, named Data Acquisition Unit (DAU) is presented. 

The DAU sends data to the individual controllers on the data network. After that, the data from 

the individual controllers will be captured and collected by the DAU in order to be used by the 

central controller. The entire process will be executed by the first controller consequentially 

(i.e., one by one until the last one). All the sent and received data will be exchanged using a 

Dual-Port RAM (DPRAM) with the main controller (main controller bus), to prevent any 

interference with the main system (the central controller’s processor).  

The DAU is implemented on a Fundamental Programmable Gate Array (FPGA) using Very high 

integrated Hardware Description Language (VHDL). The FPGA contains a hardcore embedded 

processor (Xilinx Virtex 4, PowerPC 405) which is also used to run the operating system 

(Embedded real time Linux) to control the entire robot.  

 

  



 5 

1.1. Purpose of this thesis 

 

The purpose of this project is to design and implement a control system for Archie, a tall 

humanoid robot. The control system which is presented in this project is designed based on 

embedded systems. Using an embedded system to control a humanoid robot can be beneficial 

from different aspects. Reducing energy consumption, decreasing the hardware price and 

increasing the reliability of the control system are some of the benefits of using an embedded 

system. In this work the algorithms used to balance a humanoid robot during walking are 

described, then a derivation of the algorithms are provided for the robot that is used in this 

project (Archie). In addition to the robot, as simulator is performed such that predicts the 

movement of the real robot in a simulation environment. The simulation can be either reduced 

or extended based on certain tests.  

Finally, some practical tests are performed on the real robot as well as its simulation. The 

results obtained from the test on the real robot are compared with the simulation of the robot 

in order to perform a system evaluation. 

 

 

1.2. Chapter outline  

 

This thesis is divided into seven chapters. A brief description of the contents of each chapter is 

as follows: 

Chapter 1 – Introduction of the work and the control algorithms used in this robot. 

Chapter 2 – Introduces relevant information within the field of study. The previous works on 

other humanoids around the world are introduced. 

Chapter 3 –Brief introduction about the humanoid robot Archie and some specifications of the 

robot; the height, the weight, minimum operation time that the robot can have per each full 

charging, walking speed and the degree of freedom.   
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Chapter 4 – Presents the control algorithms used in robot in order to give the ability to walk by 

saving the balance of the robot. It also talks about the control system used in the joints of the 

robot and the motion generator algorithm for imitating human like walking. 

Chapter 5 – Describes the hardware implementation of the control system designed for the 

robot. Also it described the communication protocol used in the data bus of the robot beside 

the physical layer specification. At the end the simulator used for the robot is introduced. 

Chapter 6 – Shows the test results for the control system of the robot in three levels; first one 

joint controller is tested individually, then the joint controllers are combined for a single leg and 

are tested as the second level and finally in the third level the whole robot is tested for walking. 

Chapter 7 – Discusses the conclusion of the work and some ideas for the future developments 

on the robot. The suggestions are presented for each part of the robot separately. 

Appendix A – Matlab codes (Direct Kinematics, Inverse Kinematics and Trajectory planner), 

Image processing code for patch detection and the Embedded Development Kit (EDK) code for 

the spinal board. 

Appendix B – Schematics of the DC motor driver, Brushless motor driver and the spinal board 
circuits.   
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Chapter 2 
 

2. State of the art and literature review 
 

This chapter introduces a background on the development of humanoid robots and the 

methods used in their control systems. To begin with, some famous humanoid robots will be 

introduced, and then the control systems used in this type of robots will be briefly described. 

 

2.1. Selected examples of humanoid robots 

 

Humanoid robot development is a relatively new field in robotics research and few results are 

publicly recognized. The most publicized humanoid robots are Honda’s ASIMO, Sony’s QRIO 

“SDR-6X”, GuRoo, Nao, and Android. 

Honda’s ASIMO robot (figure 2-1) is 120cm in height and was originally conceived to function in 

an actual living environment. It has the ability to walk continuously and smoothly while 

changing direction, and can travel up to 0.44m/s. By predicting its next movement in real time, 

ASIMO shifts its centre of gravity in anticipation of its path. For balance control, ASIMO uses 

gyroscopic and accelerative sensors in the torso, as well as 6-axis foot area sensors. 

 

Figure 2-1: Latest generation of ASIMO (Honda, 2005) 
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Sony’s QRIO “SDR-6X” (figure 2-2) is a small biped robot that measures 50 cm in height. It is 

able to walk at a velocity of 0.33m/s as well as to demonstrate basic movements such as 

walking and changing direction, standing up, balancing on one leg, kicking a ball and dancing. 

Their movements allow it to walk on non-even surfaces and in the presence of external forces. 

To get feedback regarding posture and position control, it uses acceleration sensors in the torso 

and four pressure sensors on each foot. 

 

 

Figure 2-2: Sony‟s QIRO “SDR-6X” (2003) 

 

GuRoo (figure 2-3a) is 120cm in height and it is completely autonomous. It is used for research 

in different areas including dynamic stability, human-robot interaction and machine learning.  

Nao (shown in figure 2-3b) is an autonomous, programmable and medium-sized humanoid 

robot, created for companionship. Nao RoboCup Edition has 21 Degree of Freedom (DOF) while 

Nao Academics Edition has 25 DOF since is built with two hands with gripping abilities. Nao 

features a powerful multimedia system (four microphones, two amplified speakers, two 

cameras) for text-to-speech synthesis, sound localization or facial and shape recognition 

amongst various other abilities.   

GuRoo and Nao both compete in the annual RoboCup contest. The goal of this competition is to 

foster the development of robotics through an annual soccer competition. The main goal of the 

RoboCup federation is to develop a team composed only by autonomous humanoid robots to 

play against and beat the human team that wins the World Cup in the year 2050. 
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Figure 2-3: a) GuRoo robot, b) Nao robot, c) ARMAR III 

 

An Android is a robot or synthetic organism designed to look and act like a human. Androids 

have been mainly an element of science fiction, yet they have increasingly become a reality in 

Japan and South Korea. The two countries are in a heated competition to make them 

commercial success in the global market and have developed a handful of successful androids 

so far. In figure 2-4 some examples of android robots are depicted. 

 

 

Figure 2-4: From left to right: Android, DER 01 and DATA from Star Trek 

 

 

2.2. Control systems used in humanoid robots 

 

Most of the humanoid robots are based on hierarchical distributed control systems. In this type 

of controlling, the system (robot) is organized and divided into local parts controlled using 
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individual controllers. All of the individual controllers are communicated with the main 

controller to unify their functionality in order to reach a certain purpose for the whole robot.  

All the control systems in the humanoid robots are designed with the purpose of saving the 

balance of the robot and giving the robot the ability to walk and to be standing stable on two 

legs (sometimes only on one leg). The control algorithms used in this type of robots have some 

varieties, although they are based on the same principles. In all the control algorithms used in 

different humanoid robots, a direct kinematics model is used to find the total center of mass 

and moment of inertia of the robot. Furthermore, the inverse kinematics model is used to apply 

the changes on the robot. In chapter 4, these models are described with more detail. 

For instance, in the robot ARMAR III (T. Asfour et al., 2008) the control architecture consists of 

three levels: the micro-controller level, the PC level and the PC-network level. The micro-

controllers are used to control the motors and establish the communication with a standard PC 

as a central controller. The central controller uses RT-Linux as operating system. The 

communication between the micro-controllers and the central controller uses a standard CAN-

Bus. The motors (joints) are controlled by PID controller, where it is done independently for 

each joint. 

In the robot ARMAR III, a fuzzy-like module is implemented which sets the parameters of a 

classical position joint controller depending on the configuration of the overall pose of the 

robot. Figure 2-5 shows the block diagram of the control system for the ARMAR III. 
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Some of the biped robots use Reinforcement learning to control the joints of the robot (Shouyi 

Wang et al., 2006). This approach relies on the concept of dynamic walking. Dynamic walk is 

simpler than the static walk. Moreover, dynamic walk can achieve a more natural gait and less 

energy consumption. Figure 2-6 shows the block diagram for the control system based on 

reinforcement learning.     

 

More advanced control systems for humanoid robots attempt to reproduce and execute the 

same posture control operation carried out by real humans (T. Takenaka, 2006). One of these 

robots is the ASIMO from Honda. 

The robot ASIMO uses macro stabilization control to avoid tipping over either during walking or 

in standing position. The macro stabilization control system tries to realize the same posture 

control operation undertaken by a human being. The resultant force of gravity and inertia force 

are called the total inertia force. The point where the line of action of the total inertia force 

intersects with the ground surface is called the Zero Moment Point (ZMP). The point where the 

ground reaction force acts is known as the Center of Pressure (CP).  
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Figure 2-6: The learning control scheme of the biped robot 
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The Model ZMP Control uses shifting the desired ZMP to an appropriate position to prevent the 

robot from tipping over. For example, in case that the robot is in danger of falling forward the 

model ZMP control accelerates the robot’s upper body trajectory more strongly to forward 

than the supposed acceleration. This reaction results the ZMP to shift backward from the 

original desired ZMP to an appropriate point behind the actual CP and recovers the moment of 

the robot (i.e., the Model ZMP Control restores the posture of the robot by intentionally 

unbalancing the desired walking pattern) (T. Takenaka, 2006).  

  

Desired ZMP 
Actual CP Controlled angle of rotation 

Restoring 

moment 

Figure 2-7: Feet rotation around ZMP 
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Chapter 3 
 

3. The humanoid robot Archie 
 

At the Institute of Handling Robotics and Technology (IHRT) of Vienna University of Technology 

a humanoid robot project is running since 2004. The main purpose is developing and 

implementing a human like robot (platform). The platform is thought to be of human size, low 

cost, modular and to perform a natural looking straight gait with the following features: 

Height: 1500 mm 

Weight: less than 20kg 

Operating time: minimum 60 minutes 

Walking speed: minimum 0.5 m/s 

Degrees of freedom:  29 

On board intelligence 

Dynamic Walking (ZMP) 

Hierarchical, decentralized control structure 

Reasonable low price – try to use commercially available standard components. 

 

Figure 3-1: Archie‟s mechanical simulator overview  
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Figure 3-2: Design of Archie 

 

 

 

Figure 3-3: Foot design and simulation for the prototyping of the foot 
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Archie has 29 servo motors in its body that move its torso, arms, hands, legs, feet, ankles and 
other moving parts. Archie manages a series of servo motors to control each kind of movement. 

Archie is powered by a rechargeable, 29.4 volt lithium ion (Li-ION) battery that lasts for 
about one and half hour on a single charge. The battery is stored in Archie's flank (left and right) 
and weighs about three kilograms. Archie's battery takes around three hours to fully charge. 
Users can charge the battery onboard Archie through a power. During battery charging the 
robot cannot be used. 

The simulator used for the robot is based on the SimMechanics toolbox of Matlab-Simulink. 

Figure 3-5 illustrates a screen shot of the simulator of the lower body of the robot. 

 

Figure 3-5: Archie‟s simulator (simulation of the Archie‟s lower body) 
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Chapter 4 

4. The control concept of Archie 
 

4.1. Introduction 

 

This chapter presents a description of the control system of Archie. The control system in 

Archie is designed based on the purposes discussed in this chapter. Since in all robotic control 

systems, mechanical analysis is an important topic, a part of this chapter is about the 

mechanical analysis of Archie. Archie’s control system is based on the distributed architecture. 

The control system consists of two levels, joint controllers in low level and a central controller 

in high level. The joint controllers are used to control the motion of each joint and are 

connected with the central controller through a data network. The central controller 

synchronizes all the joint controllers, calculates the center of mass and tries to locate it in a 

position above the supporting polygon to keep the balance of the robot.  

In the torso of the robot, an Inertial Measurement Unit (IMU) is mounted to provide a better 

control performance. Other instruments such as Sole Pressure Sensor Array (SPSA) may also be 

used in the feet of the robot to provide sufficient control and ability to walk in non-even 

terrains.  

 

4.2. Control system architecture 

 

The control system used in this robot is based on the distributed architecture. In this structure, 

each joint is controlled individually by a motion controller which in turn communicates with the 

central controller via a data network. The central controller is responsible for doing the 

following tasks: 

 

 Energy management 

 Multitask management  

 System failure detection 
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 Performing received commands  

 Synchronizing the joint controllers 

 Saving the overall balance of the robot 

 Calculating the location of the supporting polygon 

 Preventing mechanical collision in manual movements 

 Updating the desired positions resulted from calculation with the joints 

 Splitting general commands into joint commands (for combinational movements) 

 

 

 
 

In figure 4-1 the block diagram of the control system is illustrated. Due to the system demands, 

the control system should provide appropriate control capabilities. First of all, the control 

system should have comprehensive information about the mechanical structure such as mass, 

length and moment of inertia tensor for each link of the robot. The control system uses that 

information to make a direct kinematics model (figure 4-2) of the robot. The model is then used 

by the central controller to calculate the total center of mass before issuing appropriate 

commands and performing movements. 
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Figure 4-1: Control system block diagram  
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The direct kinematics provides some parameters such as moment of inertia, position of the 

joints and links, Euler angles (roll, pitch and yaw) and the position of center of mass. In order to 

control the humanoid robot, these parameters should be controlled. Base on the control 

method of the parameters (i.e., simple control loops or complex control method) the output 

should be applied appropriately to move the parameter to the desired value. The output of the 

control loop can be applied using several methods one of which is the inverse kinematics. 

Figure 4-3 shows a block diagram for the inverse kinematics and the data exchange. 

 

 

 
 

The humanoid robot is a rigid multi-body system consists of a set of rigid object, called joints 
and links.  
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Figure 4-3: Inverse kinematics input and output data 
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4.3. Mechanical analysis of the humanoid robot 

 

To resemble the links of the robot in the space, the representation of position and orientation is 

necessary. Resembling a revolute joint with a single Degree of Freedom (DOF) can be done by 

using a single real number that is the angle of the rotation on that link, relative to an arbitrary 

zero point (Homing point). 

Mechanical analysis for the humanoid robot involves finding the direct kinematics and finding 

the total center of mass as well as the moment of inertia for the joints. To find the total center 

of mass in the robot, first the center of mass of each joint is considered. Then the angle of 

rotation in the joints and the mass of each link is used to calculate the total center of mass. The 

center of inertia for each joint in the robot is calculated based on the mathematical methods 

that are presented in this chapter. Following methods and calculations are derived for the 

humanoid robot and are used in the control system in the robot. 
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4.3.1. Homogeneous transformation 

 

Regarding a 3D coordinate system {A}, any link L can be located by a [3 x 1] matrix named 

position vector. To find the orientation of a link, a coordinate system {B} is attached to the link 

in a known way. The orientation of {B} relative to the reference frame {A} is a linear 

transformation which is called the rotation matrix or direct cosine matrix (DCM). The rotation 

matrix transforming from {B} coordinates to {A} coordinates is written as 𝑅𝐵
𝐴  (J.J Craig, 2003):   

𝑅𝐵
𝐴:𝐴 ← 𝐵            Equation 4-1 

𝐿𝐴 =  𝑅𝐵
𝐴 .𝑃𝐵      Equation 4-2 

𝑃𝐵  is the link vector L seen from frame {B} and 𝑃𝐴  is the link vector L seen from frame {A}.  

If the three principal axes of {B} are described by a set of orthogonal unit vectors 𝒊 , 𝑗  and 𝒌   , 

then the rotation matrix 𝑅𝐵
𝐴 can be written as: 

𝑅𝐵
𝐴 = [𝑖 𝐴   𝑗 𝐴   𝑘  𝐴]          Equation 4-3 

By using the rotation matrix presented in equation 4-1, the origins of the frame {A} and {B} 

coincide as illustrated in figure 4-5a, where the frames {A} and {B} are attached to the same 

link. To attach the frame {B} to the other link (i.e. {c}), two pieces of information are required to 

define its relative coordinates to the frame {A}; the rotation matrix  𝑅𝐵
𝐴 and the vector 𝐿𝐵(𝑜𝑟𝑔 )

𝐴  

pointing to the origin of {b} from frame {A} (J.J Craig, 2003): 

𝐿𝐴 = 𝑅𝐵
𝐴 . 𝐿𝐵 +  𝐿𝐵(𝑜𝑟𝑔 )

𝐴
     Equation 4-4 

Figure 4-5b shows, how this transformation can be applied to several frames. 

 

Figure 4-5: a) The origin of {A} and {B} coincides as they are defined relative to each other by a rotation 
matrix. B) Both a rotation matrix and an offset vector are required to define {B}.  

In figure 4-5 the frame {A} is defined relative to {B}, while frame {B} is defined relative to {C}. 
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For the sake of simplicity, Equation (4.3) is written as a single matrix operation. 

 

⋮
𝐿𝐴

⋮
1

 =  

⋯ ⋮ ⋯
⋯ 𝑅𝐵

𝐴 ⋯
⋯ ⋮ …

⋮
𝐿𝐵(𝑜𝑟𝑔 )
𝐴

⋮
0 0 0 1

           Equation 4-5     

The 4 x 4 matrix in Equation (4.4) is called a homogeneous transform. This transformation 

matrix T includes all the necessary information about the position and orientation of the 

reference frame with respect to another frame. An abbreviation of equation 4-4 can be written 

as it is shown in equation 4-6.  

𝐴𝑝 =  𝑇𝐵
𝐴 .𝐵𝑝            Equation 4-6 

Without indicating p is a [4 x 1] vector. 

 

 

4.3.2. The Denavit-Hartenberg convention 
 

The Denavit-Hartenberg notation is for describing a chain of limbs in a robot. This notation 

states that the kinematics of a robot can be represented by four parameters for each link: two 

to describe the link itself and two to describe its connections to the next link. A link is defined as 

a rigid body which defines the relationship of joint axes of the robot. A joint axis {i} is a vector 

direction in space, which rotates relative to the link {i-1}. The relative location of two joint axes 

can be specified by two parameters; the distance and the angle (or twist) between them. A 

convention is given for affixing frames to the links of the robot or manipulator which consists of 

a single chain of links attached to some fixed base: 

The third axis zi of the frame {i} is coincident with the joint axis {i}. 

The origin of the frame {i} is located in the place where link length ai intersects the joint axis {i}. 

The first axis xi points the length of the link ai in the direction from the joint {i} to {i+1}. 

The second axis yi is formed by the right-hand rule to complete a right-handed coordinate 

system. 
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The first link of the chain is the base of the robot, called link {0}. The attached frame is called 

frame {0} and is stationary. Thus, all other link’s positions may be described in terms of this 

frame. The coordinate system is attached is such way that coincides with frame {1} when the 

joint angle θ1 is zero. As a result, the link parameters d0, a0 and α0 are always zero. Using the 

described frame attachment procedure, the link parameters and joint variable can be found as: 

ai  : Distance from zi to zi+1 measured along xi. 

αi  : Angle between zi to zi+1 measured about xi. 

di  : Distance from xi-1 1 to xi measured along zi. 

θi  : Angle between xi to xi+1 about zi. 

 

The transformation matrix from frame {i} to {i - 1} is found by using from the four link 

parameters ai, αi, di and θ𝑖  as it is illustrated in equation 4-7. 

𝑇𝑖
𝑖−1 =  

𝑐𝑜𝑠𝜃𝑖 −𝑠𝑖𝑛𝜃𝑖
𝑠𝑖𝑛𝜃𝑖 . 𝑐𝑜𝑠𝛼𝑖−1 𝑐𝑜𝑠𝜃𝑖 . 𝑐𝑜𝑠𝛼𝑖−1

𝑠𝑖𝑛𝜃𝑖 . 𝑠𝑖𝑛𝛼𝑖−1

0
𝑐𝑜𝑠𝜃𝑖 . 𝑠𝑖𝑛𝛼𝑖−1

0

     

0 𝑎𝑖−1

−𝑠𝑖𝑛𝛼𝑖−1 −𝑠𝑖𝑛𝛼𝑖−1.𝑑𝑖
𝑐𝑜𝑠𝛼𝑖−1

0
𝑐𝑜𝑠𝛼𝑖−1.𝑑𝑖

1

  

Equation 4-7: Transformation matrix based on Denavit-Hartenberg convention 

The four mentioned parameters are generally called: link length, link twist, link offset, and joint 

angle, respectively. These names are derived from specific aspects of the geometric relationship 

between the two coordinate frames. Since the matrix Ai is a function of a single variable, three 

of the above-mentioned four parameters are constant for a given link, while the fourth one 

(i.e., θi, for a revolute joint and di for a prismatic joint) is variable.  

Joint axis i-1 
Joint axis i 

Link i 
Joint axis i+1 

Joint axis i-1 

Link i-1 

Link i-1 

Link i 

Joint axis i-1 

Joint axis i+1 

Joint axis i 

𝑎𝑖−1 

𝑎𝑖−1 

𝑎𝑖  

𝑎𝑖  

𝑎𝑖+1 

Joint axis i+1 

𝑧 𝑖−1 

𝑦 𝑖−1 

𝑥 𝑖−1 

𝑧 𝑖+1 

𝑥 𝑖+1 

𝑦 𝑖+1 
𝑧 𝑖  𝑦 𝑖  

𝑥 𝑖  

𝛼𝑖−1 

𝜃𝑖  

a) The frames are attached using the 

convention defined in above.  

b) The link twist parameter is 

illustrated for link {i-1}. 

c) The joint angle for joint {i} is 

illustrated. 

 (b) 

(a) 

(c) 

Figure 4-6: Link length and link displacement parameters (Xu WL, 1990) 

 

𝑑𝑖  
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4.3.3. Mechanical design of Archie 
 

In figure 4-4 the mechanical design of Archie based on the Denavit-Hartenberg vector assigning 

method is presented. The figure is depicting the lower body of the robot (two legs and the hip). 

The based coordinate system which is used from unifying the other coordinate systems is 

located on the hip plane of the robot. The main reason for choosing the hip plane as the base 

coordinate system is its location because it is in the centre of the robot. Moreover, the inertial 

measurement unit (IMU) is connected to hip of the robot which can provide the information 

about the angle of the roll and pitch of the robot to the control system. 

The distribution of the mass for the links is considered to be solely concentrated in the centre 

point of the mass. With this approximation, a link is defined as a rigid connection between 

coordinate frames and a point mass located somewhere between these frames. The reference 

frame for each link is located at the centre of the proximal joint. 

The transformation matrix from any frame {i-1} to {i} can be found by inserting the Denavit-

Hartenberg parameters (form table 4-1) into the matrix which is shown (equation 4.7). For 

example, the transformation matrix from the frame {5} to the frame {6} is: 

𝑇6
5 =  

1 0
0
0
0

1
0
0

     

0 0
0
1
0

0
7
1

           Equation 4-8 

Given these matrixes it is possible to compute the position and orientation of all frames relative 

to each other.  

𝑇𝑖
𝑗

=  𝑇𝑛−1
𝑛𝑗

𝑛=𝑖    Equation 4-9 

For instance, the transformation matrix is used to calculate the position of a point in the arm 

frame {5} in the base frame {1} can be found as: 

𝑇5
1 = 𝑇2

1 × 𝑇3
2 × 𝑇4

3 × 𝑇5
4

              Equation 4-10 
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Figure 4-7: Description of the mechanical design of Archie (only lower body) 
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4.3.4. Deriving the kinematics of Archie  
 

Deriving the kinematics of Archie is carried out in three steps. The first step is to affix frames to 

the links of the robot. The second step is to identify the four link parameters for each link, and 

the third is finding the transformation matrixes. The following resulted parameters are called 

Denavit-Hartenberg (M. Spong, M. Vidyasagar, 1989) 

 

 

 

Denavit-Hartenberg (D-H) parameters for Archie are shown in table 4-1. These parameters are 

captured from the mechanical design of the robot. 

  

Base coordinate system 

Pelvis 

Figure 4-8: Hirarchical graph or Archie‟s joints 

Torso 

Right hip Left hip 

Left Knee Right Knee 

Right Ankle Left Ankle 

Right Toe Left Toe 

Neck 

Head 

Right Shoulder 

Left Elbow Right Elbow 

Left Shoulder 
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Joint a (cm) d (cm) α (degree) Θ (degree) 

1 36 0 -90 -90 

2' 0 0 90 90 

2 0 5 -180 0 

3' 11 0 0 -90 

3 4.5 0 0 90 

4 0 5 90 0 

5' 0 0 -90 -90 

5 0 7 0 0 

6 31 0 0 0 

7 26 0 0 0 

8 5.5 0 90 0 

9 0 8.4 -90 0 

10' 3 0 0 0 

10 4 0 180 -90 

11 -4.5 0 0 90 

12 0 5 90 0 

13' 0 0 -90 -90 

13 0 -7 0 0 

14 31 0 0 0 

15 26 0 0 0 

16 5.5 0 90 0 

17 0 8.4 -90 0 

18' 3 0 0 0 

18 4 0 180 -90 

Table 4-1: Denavit-Hartenberg parameters for Archie 

  



 27 

4.3.5. Calculation of the total center of mass  
 

The coordinates of the center of mass for the individual links of the robot are known in their 

respective joint frames. Thus, the total center of mass of the robot can be found by finding the 

position of the center of mass for each individual link in the base coordinate system frame can 

be applied using the following formula: 

 

𝐶𝑀𝑡𝑜𝑡𝑎𝑙 =
1

𝑚𝑡𝑜𝑡𝑎𝑙
 𝑚𝑖𝐶𝑀𝑖   Equation 4-11 

𝑚𝑡𝑜𝑡𝑎𝑙 =  𝑚𝑖          Equation 4-12 

 

The positions of the center of mass for the individual links in base coordinate system are 

calculated by applying the transformation matrixes to the centre of mass for each link. Figure 4-

10 shows the diagram for the total center of mass calculation. 
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Θ3 
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Θi 
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Convention 

Center 

of mass 
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center of 
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Center of mass 

Calculator 

Mass of 

each joint 

Total 

Center 

of mass 

Figure 4-9 : Center of mass calculation  
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The following calculation is optimized in order to reduce the load of the processing in the 

central controller.  
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Reading real time  including bus delay from 16 clients  One by one 

 
 Reading delay + Bus delay  × 16 

  

 
Calculating trigonometric parameters for 16 diffent angles (Sin 𝑎𝑛𝑑 𝐶𝑜𝑠)

 
 Sine Calculation + Cosine Calculation  × 16 

  

 

Find transformation matrixes for 11 (16 − 5) joints (1 DOF and 2 DOF)
 

  3 + 2 + 2 + 2 + 3 + 2 multiplications  +  (25 times [4x4] multiply)

  

 
Relocating the center of mass for 11 links on Base coordinate system

 
11 times  4 × 4  in  4 × 1 multiplication

  

 
Multiplying the weight in the coordinate of  center of mass for 11 links

 
11 ×   3 times multiplication

  

 
Adding the multiplication results for 11 links

 
                                        11 ×   3 times addition

  

 
Dividing the addition result in the total mass for each component

 
 3 times division

  

Figure 4-10 : Center of mass calculation with the traditional method  
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Regarding the structure of Archie, the links are named as it is shown in figure 4-11. Table 4-2 

shows the weight and the position of the center of mass for each link based on their coordinate 

system. 

 

Figure 4-11: Sagittal and frontal view of the links and joints of Archie 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-2: Link‟s masses and position of center of mass for each joint based on its coordinate 

Link Name Mass Center of mass X Center of mass Y Center of mass Z 

L1 0.125kg 0mm -53mm -4mm 

L2 0.111kg 0mm -4mm -26mm 

L3 0.008kg 0mm 0mm -5mm 

L4 0.075kg 28mm 0mm -130mm 

L5 0.131kg 98mm 0mm -155mm 

L6 0.048kg 58mm 23mm 0mm 

L7 0.049kg 0mm 0mm 25mm 

L8 0.346kg 75mm 70mm -15mm 

L9 0.049kg 0mm 0mm 22mm 

L10 2.992kg 0mm 33mm 249mm 



 30 

4.3.6. Moment of inertia calculation 
 

Moment of inertia is the rotational analog of the mass. According to the mechanical structure 

of a humanoid robot, all the movements are based on revolute joints. Thus, finding the 

moment of inertia is necessary for modeling the joints. For a rigid object of N point masses mi, 

the moment of inertia tensor is given by: 

𝐼 =  

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

          Equation 4-13 

Where the elements defined for Cartesian coordinates (𝑥𝑖 ,𝑦𝑖 , 𝑧𝑖) with the origin at the center 

of the mass are: 

 

𝐼𝑥𝑥 =  𝑚𝑖 𝑦𝑖
2 + 𝑧𝑖

2 𝑁
𝑖=1     Equation 4-14 

𝐼𝑦𝑦 =  𝑚𝑖 𝑥𝑖
2 + 𝑧𝑖

2 𝑁
𝑖=1    Equation 4-15 

𝐼𝑧𝑧 =  𝑚𝑖 𝑥𝑖
2 + 𝑦𝑖

2 𝑁
𝑖=1    Equation 4-16 

𝐼𝑥𝑦 = 𝐼𝑦𝑥 = − 𝑚𝑖𝑥𝑖𝑦𝑖
𝑁
𝑖=1    Equation 4-17 

𝐼𝑥𝑧 = 𝐼𝑧𝑥 = − 𝑚𝑖𝑥𝑖𝑧𝑖
𝑁
𝑖=1    Equation 4-18 

𝐼𝑦𝑧 = 𝐼𝑧𝑦 = − 𝑚𝑖𝑦𝑖𝑧𝑖
𝑁
𝑖=1    Equation 4-19 

 

The diagonal elements in the inertia tensors (𝐼𝑥𝑥 , 𝐼𝑦𝑦 , 𝐼𝑧𝑧 ) are called the moments of inertia 

while the rest of the elements are called the products of inertia. xxI relates to the moment of 

inertia around the x-axis when the objects are rotated around the x-axis, 
xyI  relates to the 

moment of inertia around the y-axis when the objects are rotated around the x-axis, etc. 

The inertia tensor has only six independent coordinates, three diagonal elements and three off-

diagonal. There are also three other elements which are dependent on the location and 

orientation of the local reference frame. It is always possible for a rigid body, to align a local 

reference frame in which the mass of the body is evenly distributed around the axes. In that 

case, the inertia tensor becomes purely diagonal: 

𝐼 =  

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

              Equation 4-20 
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These coordinate’s axes are called the principal axes. Information about the values of inertia for 

every link is derived from equations 4-14, 4-15 and 4-16 which are given in Table 4-3: 

 

Link  Inertia Matrix Ixx Inertia Matrix Iyy Inertia Matrix Izz 

L1 7.086e-005kgm2 1.345e-004kgm2 1.694e-004kgm2 

L2 1.601e-004kgm2 1.107e-004kgm2 8.256e-005kgm2 

L3 4.044e-006kgm2 1.251e-006kgm2 4.937e-006kgm2 

L4 5.608e-004kgm2 5.857e-004kgm2 7.182e-005kgm2 

L5 0.002kgm2 0.002kgm2 7.166e-005kgm2 

L6 3.679e-005kgm2 6.507e-005kgm2 8.396e-005kgm2 

L7 4.577e-005kgm2 5.084e-005kgm2 2.541e-005kgm2 

L8 9.895e-004kgm2 9.418e-004kgm2 0.001kgm2 

L9 4.577e-005kgm2 5.084e-005kgm2 2.541e-005kgm2 

L10 0.028kgm2 0.038kgm2 0.017kgm2 

 

Table 4-3: Values of principal axes corresponding to every link of the robot 

 

The perpendicular distance of the axes can be found by unifying the coordinate system of the 

joints using the based coordinate system.  

 

To calculate the moment of inertia for each link in a specific point (around a specific axis), the 

parallel axis theorem (Huygens-Steiner Theorem) is used. Regarding the parallel axis theorem, 

the moment of inertia of an object about any axis can be found using the moment of inertia 

about a parallel axis (parallel to the aimed axis) through the object’s center of mass and the 

perpendicular distance between the axes. Figure 4-12 shows the following theorem.  
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The parallel axis theorem can be generalized to calculate the new displaced tensor of inertia (Jij) 

as in equation 4-21. 

𝐽𝑖𝑗 = 𝐼𝑖𝑗 + 𝑚 𝑟2𝛿𝑖𝑗 + 𝑟𝑖𝑟𝑗      Equation 4-21 

 

Where: Iij is the principal moment of inertia, calculated over the object’s center of mass. 

 

Using the following theorem the moment of inertia reflected on each joint can be calculated 

based on the position and situation of the other links and joints of the robot. 

Using the Denavit-Hartenberg model, the central controller can find the rotation and the 

distance of each link (the center of mass of each link) to each joint and can calculate the 

reflected moment of inertia from that link. An accumulation of all the links on a certain joint 

(based on the situation of the links) gives the reflected moment of inertia to that joint.  

The reflected moment of inertia calculation for an arbitrary joint on a specific joint is based on 

two parameters. The first parameter is the distance between the center of mass of the link and 

the desired axis (which is used in the parallel axis theorem), and the second is the rotation of 

the link (described using Euler angles). The rotation parameters are used to calculate the 

moment of inertia for a specific object (link) about an arbitrary axis.  

Regarding to table 4-3 the principal moment of inertia is calculated over the Cartesian axes, the 

moment of inertia for and arbitrary axis is calculated using the following equation: 

 

𝐼𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 = 𝐼𝑥𝑥 .  cos 𝜓 . cos 𝜃  + 𝐼𝑦𝑦 .  sin 𝜓 . cos 𝜃  + 𝐼𝑧𝑧 .  sin(𝜃)   Equation 4-22 

Where: 

𝜓: Angle between the reflection of the arbitrary axis in XY plane and the X axis.  

Θ: Angle between the arbitrary axis and XY plane. 

r 

CM 

ICenter IDisplaced = ICenter + m.r2 

Figure 4-12: Parallel axis theorim 

m 
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4.4. Joint’s motion controller 

 

In this section the joint controllers used in the robot are described. The model is based on 

considering the load (links connected to the joints) as a constant point mass (Center of mass of 

each link) at a specific distance from the joint; the distance increases on the worst case angle 

related to each joint. The worst case angle arises from the gravity effect that affects the links 

differently on diverse angles.  

 

 

4.4.1. Modeling and controlling the joints 
 

The controller used for controlling the joints of the robot is based on a velocity controller. The 

velocity controller is commanded using a velocity trajectory planner in order to control the 

position of the joint.  

 

 

The controller calculates a velocity trajectory to achieve the desired position for the output 

shaft. The velocity trajectory is the trapezoidal shown in figure 4-14. 
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V 

Velocity control loop 

1

𝑠
 

Velocity trajectory 

Planner    v (s) 
PI + + 

Input 

Joint 

plant 

Feed Forward 

θ 

Velocity        

Ʃ Ʃ Ʃ 



 34 

  

 

4.4.2. Model of the joint plant 
 

The joints in Archie are based on a DC motor (i.e., either brushed or brushless). The following is 

an electrical schematic of a DC motor and the mechanical load attached to it. 

 

Figure 4-15: Simplified schematic of a DC motor 

The effect of the harmonic gear can be modeled as follows. Although it has the same effect as a 

simple gear, the actual robot joint is based on harmonic gear.  

Using Newton’s law and Kirchhoff’s law we will have the following equations: 

 

From Newton‟s law: 𝜏𝑚 −
𝜏𝑙

𝑁
= 𝐽𝜃𝑚 + 𝑏𝜃𝑚    →    𝐾. 𝑖 −

𝜏𝑙

𝑁
= 𝐽𝜃𝑚 + 𝑏𝜃𝑚   Equation 4-23 

From Kirchhoff‟s law: 𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝑉 − 𝑒   →   𝐿

𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝑉 − 𝐾𝜃𝑚       Equation 4-24 
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Figure 4-14: Velocity trajectory and position 
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The J is the combination of the moment of inertia of the motor’s rotor and the moment of 

inertia reflected from the load on the gear’s input:  

𝐽 = 𝐽𝑟𝑜𝑡𝑜𝑟 + 𝐽𝑔𝑒𝑎𝑟𝑏𝑜𝑥 + 𝐽𝑙𝑜𝑎𝑑 .  
1

𝑁
 

2

   Equation 4-25 

The friction on the load can be calculated using the following formula: 

𝑏 = 𝑏𝑟𝑜𝑡𝑜𝑟 + 𝑏𝑙𝑜𝑎𝑑 .  
1

𝑁
 

2

    Equation 4-26 

Where J is the moment of inertia and b is for the friction losses. 

Using Laplace transformation the above equations can be expressed as: 

 𝑠. 𝐿 + 𝑅 . 𝐼 𝑠 = 𝐸 𝑠 − 𝑠.𝐾.𝜃𝑚 (𝑠)  Equation 4-27 

 𝐽. 𝑆2 + 𝑏. 𝑠 .𝜃𝑚  𝑠 = 𝐾. 𝐼 𝑠 −
𝜏𝑙(𝑠)

𝑁
  Equation 4-28 

The transfer function, between the input voltage 𝐸(𝑠)and the motor’s rotor position 𝜃𝑚 (𝑠)is: 

𝜃𝑚 (𝑠)

𝐸(𝑠)
=

𝐾

𝑠  𝑠. 𝐿 + 𝑅  𝐽. 𝑠 + 𝑏 + 𝐾2 
=

𝐾

𝑠3𝐽. 𝐿 + 𝑠2 𝐽.𝑅 + 𝑏. 𝐿 + 𝑠(𝑅. 𝑏 + 𝐾2)
 

Equation 4-29 

In addition the transfer function, between the load torque 𝜏𝑙(𝑠) and motor position 𝜃𝑚 (𝑠) is: 

𝜃𝑚 (𝑠)

𝜏𝑙(𝑠)
= −

1

𝑁

(𝑠.𝐿+𝑅)

𝑠  𝑠.𝐿+𝑅  𝐽 .𝑠+𝑏 +𝐾2 
  Equation 4-30 

 

The links are affected by the gravity force which is related to the angles of the links of the 

robot. 

 

Figure 4-16: Motor gear and the link model  
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4.4.3. Inclusion of gravity force 
 

The gravity is affecting all the links depending on their angles of slant. Therefore, the following 

forces are not constant. The following force is reflected as a negative torque in the system and 

it is decreasing from the motor output torque.   

 

Thus, the following equations can be written as equation 4-31. 

𝜏 = 𝐽𝜃𝑙 + 𝑏𝜃𝑙 + 𝑚.𝑔.
𝐿1

2
. sin(𝜃𝑙)   Equation 4-31 

The term sin(𝜃𝑙) causes non-linearity in the above equation; therefore linearization about the 

maximum angle, 𝜃𝑚𝑎𝑥  using Taylor series can be applied. The linearization function is: 

𝑓 𝜃𝑙 = 𝑓 𝜃𝑚𝑎𝑥  +
𝑑𝑓

𝑑𝜃
  𝜃=𝜃𝑚𝑎𝑥

 𝜃𝑙 − 𝜃𝑚𝑎𝑥  

1!
+
𝑑2𝑓

𝑑𝜃2
  𝜃=𝜃𝑚𝑎𝑥

 𝜃𝑙 − 𝜃𝑚𝑎𝑥  
2

2!
+ ⋯  

Equation 4-32 

Regarding the small effect of 𝜃𝑙  about 𝜃𝑚𝑎𝑥  , only the first two terms will be considered. 

𝑓 𝜃𝑙 − 𝑓 𝜃𝑚𝑎𝑥  =
𝑑𝑓

𝑑𝜃
  𝜃=𝜃𝑚𝑎𝑥

 𝜃𝑙−𝜃𝑚𝑎𝑥  

1!
  Equation 4-33 

𝛿𝑓 𝜃𝑙 = 𝑝  𝜃=𝜃𝑚𝑎𝑥 𝛿𝜃𝑙     Equation 4-34 

The following equation is the linear approximation where p is the slope at the 𝜃𝑚𝑎𝑥 . 

Using the above equation the sin(𝜃𝑙) can be substituted as following: 

sin 𝜃𝑙 − sin 𝜃𝑚𝑎𝑥  = cos 𝜃𝑚𝑎𝑥  . (𝜃𝑙 − 𝜃𝑚𝑎𝑥 ) Equation 4-35 

sin 𝜃𝑙 = sin 𝜃𝑚𝑎𝑥  + cos 𝜃𝑚𝑎𝑥  . 𝛿𝜃𝑙   Equation 4-36 

Using the equations 4-35 and 4-36 the gravity effect can be written as in equation 4-37. 

𝜏𝐺 = 𝐽. 𝛿𝜃𝑙 + 𝑏. 𝛿𝜃𝑙 + 𝑚.𝑔.
𝐿1

2
 sin(𝜃𝑚𝑎𝑥  + cos 𝜃𝑚𝑎𝑥  . 𝛿𝜃𝑙)  Equation 4-37 

m1g 

m1g sin(θl) 

τ 

Figure 4-17: Gravity effect on a link 
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Using Laplace transformation of equation 4-37: 

𝜏 𝑠 = 𝐽. 𝑆2𝛿𝜃𝑙 + 𝑏. 𝑆. 𝛿𝜃𝑙 + 𝑚.𝑔.
𝐿1

2
sin 𝜃𝑚𝑎𝑥  + 𝑚.𝑔.

𝐿1

2
. cos 𝜃𝑚𝑎𝑥  . 𝛿𝜃𝑙  Equation 4-38 

Using substitution the equation 4-38 in the equation 4-29: 

𝐸 𝑠 =
𝑅

𝐾
𝐽𝑆2. 𝛿𝜃𝑚 +

𝑅

𝐾
𝑏𝑆. 𝛿𝜃𝑚 +

𝑅

𝐾
𝑚𝑔

𝐿1

2
sin 𝜃𝑚𝑎𝑥  +

𝑅

𝐾
𝑚𝑔.

𝐿1

2
. cos 𝜃𝑚𝑎𝑥  . 𝛿𝜃𝑚 + 𝐾. 𝑆. 𝛿𝑚  

Equation 4-39 

The equation 4-39 contains a constant term 
𝑅

𝐾
𝑚𝑔

𝐿1

2
sin 𝜃𝑚𝑎𝑥   which represents the gravitation 

effect. The plant model is shown in block diagram figure 4-18.  

 

 

 

4.4.4. Model order reduction 
 

The resulted transfer function shown above is a second order, type zero system. The system 

includes a mechanical pole and an electrical pole. The mechanical pole is slower than the 

electrical pole, which means the time constant of the mechanical pole is larger than the time 

constant of the electrical pole. In an open loop the electrical pole moves greatly to the left side 

of the S-Plane. Using this outcome the transfer function can be reduced to the first order 

system with the dominant mechanical pole. Regarding the real values from the actual design in 

Archie’s joints:  

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑝𝑜𝑙𝑒 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  
𝐿

𝑅
=

0.573×10−3

0.978
= 5.85 × 10−4   Equation 4-40 

 𝑀𝑒𝑐𝑎𝑛𝑖𝑐𝑎𝑙 𝑝𝑜𝑙𝑒 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  
𝐽

𝑏
=

0.0078

30.46×10−3 = 2.56 × 10−1 Equation 4-41 

𝜃𝑚  𝜃𝑚  

𝜏𝑙
𝑁

 

𝜏𝑚  
I E(s) 

E(s) 

1

𝐿. 𝑠 + 𝑅
 

K 1

𝐽. 𝑠 + 𝑏
 

1

𝑠
 

Figure 4-18: Model of the joint plant 

K 

Ʃ Ʃ 
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The following comparison shows the large difference between the time constant of the 

Electrical pole and the Mechanical pole. The transfer function between the link’s angle and the 

motor’s voltage can be simplified as follows: 

𝜃𝑚 (𝑠)

𝐸(𝑠)
=

1

𝑠

𝐾

( 𝐿. 𝑠 + 𝑅 (𝐽. 𝑠 + 𝑏)) + 𝐾2
=

1

𝑠

𝐾
𝑅

𝐿
𝑅 𝐽𝑠

2 +
𝐿
𝑅 𝑏𝑠 + 𝐽𝑠 + 𝑏 +

𝐾2

𝑅

=
1

𝑠

𝐾
𝑅

𝐽𝑠 + 𝑏 +
𝐾2

𝑅

 

Equation 4-42 

The simplified model can be described in a block diagram as follows: 

 

 

 

4.4.5. Controlling the joint 

 

The model of the joint controller is presented above. The controller can move the joint to a 

desired position based on the requested traversing velocity. The position and traversing 

velocity are issued by the central controllers and sent to the individual controllers to achieve 

the overall control. Controlling the joints is accomplished by using a proportional-integral (PI) 

controller with a feed forward cancellation.  

 
Figure 4-20: The control scheme of one joint 

+ + 

Feed forward 

Output 
Input 

E(s) 

Joint plant PI 
Ʃ Ʃ 

𝜃𝑚  𝑠. 𝜃𝑚  

𝜏𝑙
𝑁

 

E(s) 

E(s) 

1

𝐽. 𝑠 + 𝑏
 

1

𝑠
 

Figure 4-19: Simplified model of the joint plant 
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The PI compensator is used to eliminating the steady state error by adding a pole in the origin 

of the s-plan. Adding this pole will increase the type of the system. The output of the PI block is 

the summation of the coefficient of the error and a coefficient of the integral of the error over 

time.  

𝑓 𝑡 = 𝐾𝑝𝑒 𝑡 +
𝐾𝑝

𝑇
 𝑒(𝑡)
𝑡

0
𝑑𝑡   Equation 4-43 

Where 𝐾𝑝 , is the proportional gain and 𝐾𝑖 =
𝐾𝑝

𝑇
 is the integral gain, which the T is the control 

loop period. The following equation with Laplace transformation is: 

𝐹 𝑠 = 𝐾𝑝𝐸 𝑠 +
𝐾𝑝

𝑇

𝐸(𝑠)

𝑠
    Equation 4-44 

From which: 

𝐹(𝑠)

𝐸(𝑠)
= 𝐾𝑝  1 +

1

𝑇𝑠
 = 𝐾𝑝  

𝑇𝑠+1

𝑇𝑠
 = 𝐾𝑝  

𝑠+
1

𝑇

𝑠
   Equation 4-45 

Using root locus technique the position of the PI zero can be replaced adequately close to the PI 

pole that is located in the origin of the s-plan. Using the following technique the order of the 

system will be increased while the root locus will remain unaffected. Since the zero is located 

at  −
1

𝑇
 , the first order mechanical pole will move the left side of the s-plane for different values 

of 𝐾𝑝 . 

According to the first order approximation, 𝐾𝑝  can move the first order pole to infinity. The 

maximum value that 𝐾𝑝can take in order for the response of the system to still be over-damped 

is the length from the first order pole to the breakaway point between the electrical and 

mechanical poles. Furthermore the closed loop pole enters the complex plane and the response 

becomes under damped with an overshoot. 

The feed forward path is an inverse model of the joint model. Regarding to the resulting 

transfer function for the joint:  

𝜃𝑚 (𝑠)

𝐸(𝑠)
=

𝐾

𝑠2 .𝐽 .𝐿+𝑠. 𝐽 .𝑅+𝑏 .𝐿 +(𝑅.𝑏+𝐾2)
    Equation 4-46 

The inverse of the function above is: 

𝐸(𝑠)

𝜃𝑚 (𝑠)
=

𝑠2 .𝐽 .𝐿+𝑠 𝐽 .𝑅+𝑏 .𝐿 +(𝑅.𝑏+𝐾2)

𝐾
    Equation 4-47 
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The block diagram description of the feed forward block is shown in figure 4-21: 

 

The main problem of the joint controllers is the instability in the model of the joint. The 

instability is rooted in the variable moment of inertia (J) reflected in the joint from the links and 

the gravity effect. To deal with this issue, the controller parameters can be set on a value to 

achieve stability in the controller. The second option is using pre-calculated parameters from 

the central controller that are taken from the kinematics model of the system. The gravity 

effect is calculated based on the hip on the horizontal position. Each deflection in the hip 

position is sensed using the inertial measurement unit (IMU) in order to make it possible for the 

robot to walk on non-even terrains still without sole pressure sensors. 

 

 

4.4.6. Derivation of the joint controller  
 

In this section, the resulted motion controller is prepared for one of the joints of the robot. For 

instance, the lateral hip joint is modeled during the single support phase for the swinging leg. 

The following calculations can be extended for the other joints of the robot using the same 

method. Figure 4-22 shows the swinging leg attached to the trunk using the hip joint which is 

acting like the classic pendulum problem. 

 

Supporting leg 

Swinging leg  

Figure 4-22: Single support phase 

Figure 4-21: Feed forward block diagram 

+ 

+ + Output Input 

E(s) 
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s 𝐽. 𝐿 

𝐽.𝑅 + 𝑏𝐿 

𝑅. 𝑏 + 𝐾2 
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In figure 4-23 the description of the swinging leg is shown by the mass points connected to each 

other using weightless links.  

 

Regarding to the motor (EC-45, Maxon-motor, 2002) datasheet and mechanical system 

specifications, the constant parameters of each joint in Archie are as follows: 

L=0.573mH    R=0.978Ω    K=33.5 mNm/A   Jmotor=135gcm2/s2   Jgear=320gcm2/s2   b=0.28mNms 

 

 

4.4.7. Range of the moment of inertia deviation  
 

For instance, the moment of inertia for the lateral hip in swinging phase is obtained from the 

equation 4-51. 

 

Θ1 

Θ2 

L1 

L2 

m1, J1 

m2, J2 

Joint1 

Figure 4-24: Swinging leg model 
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Figure 4-23: Double pendulum model 
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𝐽 =  𝐽𝑖 ,1 = 𝐽1,1 + 𝐽1,2      Equation 4-48 

𝐽1,1 = 𝐽1,𝑦𝑦 + 𝑚1. (
𝑙1

2
)2      Equation 4-49 

𝐽1,2 = 𝐽2,𝑦𝑦 + 𝑚2. 
 𝑙1

2+ 
𝑙2
2
 

2
−2.𝑙1 .

𝑙2
2

.𝑐𝑜𝑠𝜃

2
  

2

   Equation 4-50 

𝐽 = 𝐽1,𝑦𝑦 + 𝐽2,𝑦𝑦 + 𝑚1.  
𝑙1

2
 

2
+

𝑚2 . 𝑙1
2+ 

𝑙2
2
 

2
−𝑙1 .𝑙2 .𝑐𝑜𝑠𝜃  

4
 Equation 4-51 

 

The value of the moment of inertia (J) is different for each joint and is described in a range. As a 

result, the value of 𝐾𝑝  should be chosen appropriately. The suitable values of 𝐾𝑝  can be found 

by either tuning the control loop, or modeling the joint and finding the value using simulation 

and classical tuning methods.  

A derivation from the moment of Inertia for the swinging leg of Archie is calculated as follows. 

𝐽1𝑦𝑦=0.000857𝑘𝑔𝑚2  ,     𝐽2𝑦𝑦=0.002𝑘𝑔𝑚2 

𝐽 = 0.0677 + 0.014𝑐𝑜𝑠𝜃   Equation 4-52 

 

 

Figure 4-25: Moment of inertia in lateral hip joint on knee angle change for swinging leg 
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In order to provide stability for the system and by using the resulted range for the moment of 

inertia, the parameters of the control loop can be chosen. To calculating the moment of inertia 

for each joint the situation of the joint should be considered. For instance, the knee joint faces 

different reflection of moment of inertia from the attached load by switching from the swinging 

phase to the supporting phase. The same calculation should be derived for all joints of the 

robot. Table 4-4 shows the range of the moment of inertia for each joint of the robot. 

 

Joint  Minimum reflected 

moment of inertia 

(swinging) [Kgm2] 

Maximum reflected 

moment of inertia 

(swinging) [Kgm2] 

Minimum reflected 

moment of inertia 

(supporting) [Kgm2] 

Maximum reflected 

moment of inertia 

(supporting) [Kgm2] 

J1 (toe) 1.3452e-004 1.3452e-004 1.8541e-001 1.8648e-001 

J2 (F Ankle) 3.1321e-004 3.1849e-004 2.2336e-001 2.7624e-001 

J3 (L Ankle) 1.0413e-003 1.0466e-003 1.8385e-001 1.5083e-001 

J4 (Knee) 1.1414e-002 1.2789e-002 1.0879e-001 1.3151e-001 

J5 (L Hip) 5.3704e-002 8.1630e-002 2.6586e-001 2.8691e-001 

J6 (F Hip) 6.1736e-002 1.0158e-001 1.7406e-001 1.9636e-001 

J7 (T Hip) 5.0974e-004 1.3661e-001 1.9005e-001 3.2689e-001 

J8 (T Torso) 3.8050e-002 6.2286e-002 3.8050e-002 6.2286e-002 

J9 (F Torso) 1.2494e-001 1.2494e-001 1.2494e-001 1.2494e-001 

Table 4-4: Reflected moment of inertia range for each joint during swinging and supporting phase 

 

 

4.4.8. Range of the gravity effect deviation  
 

The gravity effect should be calculated for each joint in the same way. The result from the 

gravity effect calculation can be represented by the representative mass and the length of the 

lever. The mass reflected in each joint is constant for each phase; however, the length of the 

lever changes on different poses of the other joints. For instance, in this section the calculations 

for the gravitational effect that is reflected to the hip joint are presented. 
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𝜏𝐺 = 𝜏𝑔 ,1 + 𝜏𝑔 ,2      Equation 4-53 

𝜏𝑔 ,1 = 𝑚1.𝑔.
𝑙1

2
. 𝑐𝑜𝑠𝜃1     Equation 4-54 

𝜏𝑔 ,2 = 𝑚2.𝑔. 𝑐𝑜𝑠𝜃𝑡 𝑙1
2 +  

𝑙2

2
 

2
− 2. 𝑙1 .

𝑙2

2
𝑐𝑜𝑠𝜃 Equation 4-55 

𝜃𝑡 = 𝜃1 − 𝜃𝑑       Equation 4-56 

Regarding to law of cosines 𝜃𝑑  is calculated as equation 4-57. 

𝜃𝑑 = 𝐴𝑟𝑐𝑐𝑜𝑠  
2.𝑙1−𝑙2 .𝑐𝑜𝑠𝜃

2 𝑙1
2+ 

𝑙2
2
 

2
−𝑙1 .𝑙2 .𝑐𝑜𝑠𝜃

     Equation 4-57 

 

After further calculations, the effect of gravity is factored into the equation as described in 

equation 4-58: 

𝜏𝐺 =

𝑚1.𝑔.
𝑙1

2
. 𝑐𝑜𝑠𝜃1 + 𝑚2.𝑔. 𝑐𝑜𝑠  𝜃1 − 𝐴𝑟𝑐𝑐𝑜𝑠  

2.𝑙1+𝑙2 .𝑐𝑜𝑠𝜃

2 𝑙1
2+ 

𝑙2
2
 

2
−𝑙1 .𝑙2 .𝑐𝑜𝑠𝜃

   𝑙1
2 +  

𝑙2

2
 

2

− 𝑙1. 𝑙2. 𝑐𝑜𝑠𝜃  

          Equation 4-58 
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m1, J1 

m2, J2 

Joint1 

Figure 4-26: Gravity effect in the double pendulum 
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For Archie, the gravitational effect would be as in equation 4-59. 

𝑚1 = 0.131𝑘𝑔,𝑚2 = 0.075𝑘𝑔, 𝑙1 = 0.30𝑚, 𝑙2 = 0.26𝑚,𝑔 = 9.8    

𝜏𝐺 =  . 193 . 𝑐𝑜𝑠𝜃1

+ (.735)𝑐𝑜𝑠  𝜃1 − 𝐴𝑟𝑐𝑐𝑜𝑠  
. 30 −  . 13 . 𝑐𝑜𝑠𝜃

  . 107 − (.078). 𝑐𝑜𝑠𝜃
   . 107 − (.078). 𝑐𝑜𝑠𝜃 

Equation 4-59 

 

Figure 4-27: Gravity force for swinging leg on knee and hip angle changing 
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4.5. Digital controller 

 

The digital controller is a type of controller that uses a digital computer (processor) to act as a 

system controller. Since a digital computer is a discrete system, the Laplace transformation 

cannot be used, and the Z-transformation is used instead of it. 

Using a digital controller brings some benefits to the system. Some of these benefits are vital 

for a humanoid robot. An example of such benefit is the opportunity to change the parameters 

of the controllers during operation using software methods. Since in a humanoid robot, the 

reflected load and the moment of inertia for the joints are variable, the new information should 

be returned to the controllers in order to adapt to the system for the new load properties.   

The first step in designing the digital controller system is converting the continuous transfer 

function to a discrete transfer function. The continuous transfer function for the joint is: 

𝜃𝑚 (𝑠)

𝐸(𝑠)
=

𝐾

𝑠2 .𝐽 .𝐿+𝑠. 𝐽 .𝑅+𝑏 .𝐿 +(𝑅.𝑏+𝐾2)
    Equation 4-60 

Where the values described for the motor are as following: 

L=0.573mH R=0.978Ω K=33.5 mNm/A Jmotor=135 gcm2 b=30.46mNms  

Regarding table 4-4 and the total reflected moment of inertia on the joint (Equation 4-51) the 
range is: 

               𝐽𝑚𝑎𝑥 = 1.35 × 10−5 + 8.16 × 10−2.  
1

160
 

2

= 5.235 × 10−4  Equation 4-61 

𝐽𝑚𝑖𝑛 = 1.35 × 10−5 + 5.37 × 10−2.  
1

160
 

2

= 3.491 × 10−4 Equation 4-62 

𝐽𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐽𝑚𝑎𝑥 +𝐽𝑚𝑖𝑛

2
=

5.235×10−4+3.491×10−4

2
= 4.363 × 10−4 Equation 4-63 

 

Because of the instability of the system (variable load parameters) the average of the moment 
of inertia, reflected on the joint is used for the calibration. The transfer function is: 

𝐻(𝑠) =
𝜃𝑚 (𝑠)

𝐸(𝑠)
=

3.35

(7.907×10−7)𝑠2+ 1.366×10−3 𝑠+0.1396
  Equation 4-64 

With respect to the control loop time period (𝑇𝑠 =
1

350𝐻𝑧
= 0.00285𝑚𝑠) the continuous 

transfer function can be transformed to discrete transfer function (Z-transform) which is: 

𝐻(𝑧) =
𝜃𝑚 (𝑧)

𝐸(𝑧)
=

 5.174 𝑧+1.19

𝑧2− 0.742 𝑧+7.194×10−3
    Equation 4-65 
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The following transfer function has the step response shown in figure 4.28: 

 

Figure 4-28: Step response of the control loop without compensator (simulation) 

 

The system is unstable and starts to resonance after 1.38 seconds. Figure 4-29 shows the Root 

locus diagram of the following system.  

 

Figure 4-29: Root locus diagram of the control loop without compensator (simulation) 
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In the Root locus diagram shown in figure 4-29, one pole is placed outside of the unique circle 

which causes the instability in the system.  

As shown in figure 4-13 and the controller scheme, the velocity of the joint is affected by a 

Proportional-integral (PI) compensator. Since the controller is based on discrete time system; 

the compensator should be transformed from continuous to discrete time system.   

𝐾𝑃 +
𝐾𝐼

𝑠
      Equation 4-66 

Using the Bilinear Transformation (Tustin method which uses (𝑠 =
2

𝑇𝑠
.
𝑧−1

𝑧+1
) substitution): 

𝐾𝑃 + 𝐾𝐼 .
𝑇𝑠

2
.
𝑧+1

𝑧−1
     Equation 4-67 

After using the tuning algorithm the values of KP and KI were found 39 and 4578 respectively. As 

shown in the root locus diagram of the control system (including the PI compensator) the gain 

(KP) has an utmost. By crossing the KP utmost, one or more poles will move to the right side of 

the s-plan which causes instability for the control loop (shown in figure 4-30). 

 

Figure 4-30: Root locus diagram for tuned compensated control loop (simulation) 
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4-31 depicts the step response used to test the control loop by regarding the maximum value of 

the used motor (500rad/s). 

 

Figure 4-31: Step response (maximum step size) for the PI compensator included control system 

(simulation)    

 

The following tuned control loop has a transfer function which is illustrated in equation 4-68: 

𝐻(𝑧) =
𝜃𝑚 (𝑧)

𝐸(𝑧)
=

 5.174 𝑧+1.19

𝑧2− 4.432 𝑧+1.198
  Equation 4-68 

Although the controller should control the position and the pose of the joint, the following 

transfer function is used for the velocity controller. 

 

 

4.5.1. Position controller 
 

The position controller in the joints is the outer control loop cascaded to the velocity controller. 

The control loop is based on a proportional (P) compensator, which is illustrated in figure 4-32.  
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The transfer function of the velocity controller block should be converted to the continuous 

time space (Laplace). The outcome is the velocity controller combined to the joint plant (motor, 

and gear) transfer function, which gives the velocity of the joint. The velocity controller block is 

maintained by an integral block (multiplication by 𝑠−1 in the Laplace space). Since the integral 

over time of the velocity is the position. 

The resulted transfer function should be converted to the discrete time space using the control 

loop time period. The value for the controller used in Archie is 𝑇𝑠 =
1

80𝐻𝑧
= 0.0125𝑚𝑠. 

The position controller loop uses a proportional compensator that drives a velocity scheduler. 

Since one of the zeros is located outside of the unique circle. The Value of the KP has an utmost 

(in the following system the value 131 is the border for instability). By passing the KP utmost the 

control loop will be unstable.  

 

 

Figure 4-33: Step response and root locus diagram of utmost value for KP of the position controller 

(simulation) 
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Figure 4-34: Ramp response of the position controller (with KP = 131) in simulation 

 

Using a low value decreases the response time of the system, and causes steady state error, 

which is shown in figure 4-35. 

 

Figure 4-35: Ramp response of the position controller (with KP = 10) in simulation 
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 In both simulation and the real joint the KP= 56 is chosen. 

  

Figure 4-36: Step response and root locus diagram of chosen value for KP of the position controller 

(simulation) 

 

Figure 4-37: Ramp response of the position controller (with KP = 56) in simulation 
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The read joint controller is tested with the following KP to verify the similarity between the 

simulation model and the real joint controller. Figure 4-38 shows the ramp response for the real 

controller. 

 

Figure 4-38: Ramp response of the real joint position controller (with KP = 56) 

Figure 4-39 shows the position command in comparison with the output of the position 
controller. The velocity and current of the motor respectively in figures 4-40 and 4-41 for 
moving from angle 0 to 30 are shown.  
 

 
Figure 4-39: Position controller output in compare with position command 
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Figure 4-40: Velocity compare with the velocity command in position controller 

 
Figure 4-41: Motor current during the joints movement  
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4.6. Walking sequence  

 

Biped walking algorithms can be distinguished as being either static or dynamic. The distinction 

is made depending on the location of the centre of mass during motion. For static walking, the 

centre of mass is always located above a polygon created by external boundaries of the leg 

base. The biped will remain statically stable if it is paused at any time during its motion. 

Dynamic walking is generally much faster than static walking. In dynamic walking, inertia effects 

are considered, and it is possible for the centre of gravity to be outside the supporting area. 

Human walking patterns are considered to be dynamic (Ian Joseph Marshall, 2002). 

 

 

4.6.1. Gait analysis 
 

Gait analysis is the study of animal locomotion, including locomotion of humans. Describing 

human gait requires some specific terms, which are defined in this section. 

The gait cycle begins when one foot contacts the ground and ends when that foot contacts the 

ground again. Thus, each cycle begins at initial contact with a stance phase and proceeds 

through a swing phase until the cycle ends with the limb’s next initial contact. Hence, the 

human walking step is composed of two different phases: 

 

The first phase is the swing phase or single support phase. This term is used for situations 

where the body has only one leg on contact surface with the ground. The second phase is called 

the double support phase; which is used for situations where the body has two isolated 

contacts surfaces with the ground. In human gait, this situation occurs when the person is 

supported by both feet. The gait phases of normal dynamic walk consists of eight steps but only 

DSP DSP SSP (Left leg swinging) SSP (Right leg swinging) 

Figure 4-42: Human gait cycle 
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four of them are different as the right and left leg execute the same motion mirrored in the 

median plane delayed by a half gait cycle. 

The following phases are split in more detailed phases. Following is the description for the 

detailed phases: 

1. Release Phase: The infinitesimal period of time when the toes of the rear foot breaks contact 

with the ground. 

2. Single Support Phase (SSP): The phase where only one foot has contact with the ground and 

the other foot swings. Also the SSP is divided into two phases: one is where the right foot is in 

contact with the ground (SSP-R) and the other is where the left foot is in contact with the 

ground (SSP-L). 

3. Impact Phase: The infinitesimal period of the time when the heel of one swinging foot strikes 

the ground. 

4. Double Support Phase (DSP): The phase where both feet have contact with the ground. The 

DSP is divided in two phases: one is where the weight is shifted from the left to right foot (DSP-

L) and the other is where the weight is shifted from the right to the left foot (DSP-R). 

Thus, human walk can be described as a heel-strike-toe-off gait cycle. The four phases are 

depicted in Fig. 2.4.3:   

 

DSP with left leg 

in front 

Putting the left 

leg on ground 

      SSP-left 

(right leg swing) 

     Lifting the 

left leg 

    Lifting the 

right leg 

       SSP-left 

(right leg swing) 

Putting the right 

leg on ground 

DSP with right 

leg in front 

Left 

step 

Right 

step 

Figure 4-43 : Walking sequence diagram  
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In the description of the joint controller the system which is described need the values of the 

feed forward loop such is moment of inertia. The moment of inertia is calculated for a range 

and it is based on swinging or supporting phase. The feed forward values should be changed 

based on the phase where the joint is.  

 

4.6.2. Motion planning 
 

As mentioned above, bipedal walking consists of two main phases. Each phase consists of a 

group of motions. Each motion should be planned for a specific joint of the robot individually. 

For instance, for the single support phase both the planning of the hip and the planning of the 

floating leg as well as the supporting leg, allows the robot to move forward. 

Figure 4-44 shows a complete semi-cycle walk, which distinguishes the trajectories generated in 

the lateral plane: 

 
Figure 4-44 outlines the initial state (A1) and the final state (A2) of a walking semi-cycle in the 

lateral plane. In figure 4-45 the simplified model (only lower body) is shown. 
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Figure 4-45: Simplified model of swinging leg trajectory (lateral view) 
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Figure 4-44: Swinging leg gait trajectory (lateral view)  
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Where: 

TP: time for a single step 

LP: length of the step 

LPH: length of hip movement 

h: height of the hip 

hhip: utmost height of the hip twisting 

hf: utmost height of the gait 
 

In figure 4-45 the trajectory of the hip in the lateral plane is depicted by the blue curve while 

the trajectory of the swinging leg is shown by the red curve. In the semi-cycle shown in figure 4-

45, the fixed point of reference is the point D (the planning is related to this point which is the 

supporting leg’s ankle joint). For the next semi-cycle, the reference point is the point A2 in 

respect with the change of the swinging leg to the supporting leg. As the robot moves the 

reference point changes. 

In order to save the balance of the robot, the motion is applied to the frontal joints of the robot 

as well. Figure 4-46 illustrates the frontal view for the single support phase. 

 

The movement of the joints should conclude a trajectory of the movement for the end effector 

(the swinging ankle) which provides some desired properties for the robot. Some of these 

properties are described in following: 

 Obstacle passing: Providing certain height and length for the swinging leg trajectory 

 Smoothness: Less vibration in the robot during running the gait imitation. 

 Stability: Less deviation from the balance poses of the robot. 

Providing the following property is related to choosing an appropriate trajectory for the 

movement of the robot.  
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Figure 4-46: Simplified model of swinging leg trajectory (frontal view) 
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4.6.3. Obstacle passing  

 
The obstacles are supposed to have a certain height and length. The trajectory planner decides 

the appropriate trajectory to cross the obstacles without bumping them. The robot has an 

utmost for the height and length of the gait. The following restrictions are derived from the 

direct kinematics and the joints domain restrictions.  

Figure 4-47 shows the obstacle with the maximum height, on passing by the swinging leg of the 

robot. 

 
The maximum height that the swinging leg can take is calculated using equation 4-69: 

𝑚𝑎𝑥 = 𝑃 − 𝑙𝑇𝑖𝑔 . cos 𝜃𝐻𝐿,𝑚𝑎𝑥  − 𝑙𝑇𝑖𝑏𝑎 . cos(𝜃𝑆𝐾,𝑚𝑎𝑥 − 𝜃𝐻𝐿 ,𝑚𝑎𝑥 ) Equation 4-69 

 

Where: 

𝑃  :        is the height of the hip 

𝑚𝑎𝑥  :         is the utmost of the height for the swinging leg trajectory in the lateral plane. 

𝜃𝐻𝐿 ,𝑚𝑎𝑥 ,𝜃𝑆𝐾 ,𝑚𝑎𝑥  :  are the maximum angles of twisting for the lateral hip and knee joints 

respectively  

The length of the gait is restricted by a limit, which is related to the length of the limbs (lower 

body) of the robot. Figure 4-48 shows the trajectory of the swinging leg on crossing the obstacle 

in the lateral plane. 
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Figure 4-47: Utmost of the gait height 
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The maximum length that can be taken is calculated using the equation 4-70: 

𝐿𝑃,𝑚𝑎𝑥 = 𝐿𝑃𝐻𝑦 + 2.  𝑙𝑇𝑖𝑔 + 𝑙𝑇𝑖𝑏𝑎  
2
− 𝑃

2
  Equation 4-70 

Where: 

𝐿𝑃𝐻𝑦  : is the horizontal movement of the hip in the lateral plane during one step. 

Regarding to the parameters of Archie the maximum height and length of the gait are 

calculated as equations 4-71 and 4-72: 

𝑚𝑎𝑥 = 54 − 26. cos  
𝜋

2
 − 30. cos  

4.𝜋

6
−

𝜋

2
 = 28𝑐𝑚    Equation 4-71 

𝐿𝑃,𝑚𝑎𝑥 = 19 + 2. (26 + 30)2 − 542 = 33.83cm    Equation 4-72 

The following calculations are used for Archie’s trajectory planner, as the maximum height and 

length of obstacle that is passable for the robot. 

 

 

4.6.4. Gait trajectory planning 
 

There are different variants for planning the trajectory of the swinging leg of a humanoid robot 

for gait imitation. In this thesis, two of them (elliptical and trapezoidal) are studied and 
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implemented on the robot. Figure 4-49 shows these two trajectories with the related 

parameters.  

 
 

Each trajectory has some properties which are: 
h:  Maximum height 
2Lp: Gait length 
α: Angle of climbing (as well as descending) 
The Elliptical trajectory can be generated using the equations 4-73 and 4-74: 
 

𝑦 𝑡 = 𝐿𝑃 . cos  
𝑡 .𝜋

𝑇𝑃
    Equation 4-73 

𝑧 𝑡 = . sin  
𝑡 .𝜋

𝑇𝑃
    Equation 4-74 

 
Where TP is the gait time when the swinging phase is executed. 

The Trapezoidal trajectory can be generated using the equations 4-75 and 4-76: 

 

𝑦 𝑡 = 𝑡        Equation 4-75 

  

𝑧 𝑡 =  
𝑡.𝐴𝑟𝑐𝐶𝑜𝑡 𝛼              ∶ 𝑡 < . cos(𝛼)

                  ∶ 𝑜.𝑤.
 𝑇𝑃 − 𝑡 .𝐴𝑟𝑐𝐶𝑜𝑡 𝛼           ∶ 𝑡 > 𝑇𝑃 − . cos(𝛼)

        Equation 4-76 

 
Figure 4-50 and 4-51 shows the generated trajectory of Elliptical, and Trapezoidal form 
respectively, with h=10, Lp=15 and α=30 .̊ 
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Figure 4-49: Gait‟s ankle trajectory in lateral plan  
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Figure 4-50: Elliptical trajectory 

 

Figure 4-51: Trapezoidal trajectory 

 

The following trajectory should be traversed using the swinging ankle of the robot. For this task 

five joints are involved. Each joint controller should obey a specific trajectory (in time). The 

trajectory for each joint is calculated using the inverse kinematics model of the robot. 
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4.6.5. Inverse kinematics 
 

The goal of inverse kinematics is to compute the vector of the joints of the robot that will cause 

the end effector to reach the desired point. The following operation is used to find the vectors 

to approach the end effector to the desired point. To move the end effector on a desired 

trajectory, the following operation (inverse kinematics) should be applied on the constructive 

points of the trajectory consequentially. The result of the following process is the trajectory for 

the joints on the limb. 

The robot is controlled indirectly, from the movement of the joints. 

Since direct kinematics is: 

𝑋 = 𝑓(𝜣)    Equation 4-77 

Where: 

 X: is the vector of position of the end effector. 

𝛩: is the vector of joints (degrees of freedom) of the kinematics chain. 

Inverse kinematics, determines the configuration that a robot must take to obtain a certain 

position and orientation of the end effector. 

𝛩 = 𝑓−1(𝑋)    Equation 4-78 

The inverse kinematics problem can be approached from many points of view; however, a few 

are applicable to this case. Usually solving the inverse kinematics problem for the joints of a 

robot using analytical methods is not possible, because the analytical methods cannot 

mathematically solve an exact solution by directly inverting the forward kinematics equations, 

which is only possible on relatively simple kinematics chains. Numerical methods use 

approximation and iteration to converge on a solution. However, they tend to be more 

expensive in processing load, but they have far more general purpose to use (Steve Rotenberg, 

2005). One of the popular methods is the gradient descent. The gradient descent is based on 

finding the values of a function for a certain point by knowing the value of the function and the 

value of the derivative of the function for a near point.  

   

∆𝑓

∆𝑥
≈

𝑑𝑓

𝑑𝑥
      Equation 4-79 

∆𝑓 ≈ ∆𝑥.
𝑑𝑓

𝑑𝑥
      Equation 4-80 

𝑓 𝑥 + ∆𝑥 ≈ 𝑓 𝑥 + ∆𝑥.
𝑑𝑓

𝑑𝑥
   Equation 4-81 
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To extend the following methods to the vectors, the Jacobian matrix is used. The Jacobian 

matrix contains all of the information necessary to relate a change in any component of 𝛩 to 

change in any component of X. 

𝐽 𝛩 =  
𝜕𝑋𝑖

𝜕𝛩𝑗
 
𝑖 ,𝑗

    Equation 4-82 

Since the gradient descent formula can be extended to the vector form using the Jacobian 

matrix.  

∆𝑋 ≈ 𝐽 𝛩 .∆𝛩    Equation 4-83 

That the X and 𝛩 vectors are: 

 

𝑋 =  
𝑦𝑆𝐴
𝑧𝑆𝐴

    ,   𝛩 =  
𝜃𝐻𝐿
𝜃𝑆𝐾

    Equation 4-84 

 

Where: 

𝑦𝑆𝐴  , 𝑧𝑆𝐴  : are the positions of the swinging ankle in the lateral plane respectively. 

𝜃𝐻𝐿  , 𝜃𝑆𝐾 : are the angle of the swinging hip and the swinging knee respectively.  

 

For instance the inverse kinematics problem is applied to the swinging leg of the robot in order 

to find the trajectory of the lateral hip and the knee joint for moving the ankle on desired 

trajectory. Figure 4-52 shows the swinging leg moving on a desired trajectory. 
 

 
 

From the direct kinematics chain the position of the end effector is resulted from the equations 

4-85 and 4-86: 

𝑦𝑆𝐴 = 𝑦0 + 𝑙𝑇𝑖𝑔 . sin 𝜃𝐻𝐿 − 𝑙𝑇𝑖𝑏𝑎 . sin 𝜃𝑆𝐾 − 𝜃𝐻𝐿  Equation 4-85 

𝑧𝑆𝐴 = 𝑧0 − 𝑙𝑇𝑖𝑔 . sin 𝜃𝐻𝐿 − 𝑙𝑇𝑖𝑏𝑎 . sin 𝜃𝑆𝐾 − 𝜃𝐻𝐿   Equation 4-86 

𝑙𝑇𝑖𝑔  

𝜃𝑆𝐾  

𝑦0 , 𝑧0 

𝑦𝑆𝐴 , 𝑧𝑆𝐴  

𝑙𝑇𝑖𝑏𝑎  

Desired 

trajectory 

Figure 4-52: Swinging leg and the desired trajectory 
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Since the Jacobian matrix  𝐽 𝛩  for this problem is: 

 

𝐽 𝛩 =

 
 
 
 
 
𝜕𝑦𝑆𝐴
𝜕𝜃𝐻𝐿

𝜕𝑦𝑆𝐴
𝜕𝜃𝑆𝐾

𝜕𝑧𝑆𝐴
𝜕𝜃𝐻𝐿

𝜕𝑧𝑆𝐴
𝜕𝜃𝑆𝐾 

 
 
 
 

=  
𝑙𝑇𝑖𝑔 . cos 𝜃𝐻𝐿 + 𝑙𝑇𝑖𝑏𝑎 . cos 𝜃𝐻𝐿 − 𝜃𝑆𝐾 −𝑙𝑇𝑖𝑏𝑎 . cos 𝜃𝑆𝐾 − 𝜃𝐻𝐿 

𝑙𝑇𝑖𝑔 . sin 𝜃𝐻𝐿 + 𝑙𝑇𝑖𝑏𝑎 . sin 𝜃𝐻𝐿 − 𝜃𝑆𝐾 𝑙𝑇𝑖𝑏𝑎 . sin 𝜃𝑆𝐾 − 𝜃𝐻𝐿 
  

Equation 4-87 

 

The Δ𝚯 vector is calculated from the equation 4-88. 

 

∆𝛩 ≈ 𝐽−1 𝛩 .∆𝑋     Equation 4-88 

 

Where the 𝐽−1 𝛩  is the inverse of the Jacobian matrix and is found using the equation 4-89. 

𝐽−1 𝛩 =
1

 
𝜕𝑦𝑆𝐴
𝜕𝜃 𝐻𝐿

.
𝜕𝑧𝑆𝐴
𝜕𝜃 𝑆𝐾

 − 
𝜕𝑧𝑆𝐴
𝜕𝜃 𝐻𝐿

.
𝜕𝑦𝑆𝐴
𝜕𝜃 𝑆𝐾

 
 

𝜕𝑧𝑆𝐴

𝜕𝜃𝑆𝐾
−

𝜕𝑦𝑆𝐴

𝜕𝜃𝑆𝐾

−
𝜕𝑧𝑆𝐴

𝜕𝜃𝐻𝐿

𝜕𝑦𝑆𝐴

𝜕𝜃𝐻𝐿

    Equation 4-89 

 

Since the inverse Jacobian matrix consists of the inverse determinant fraction, there are 

positions which the inverse Jacobian matrix cannot be calculated (causes infinity). Moreover, in 

the cases that the Jacobian matrix is not square (number of joint DOF is not equal to number of 

DOF for the end effector) the inverse Jacobian matrix cannot be calculated. To use a more 

global method the pseudo-inverse is used for inverting the Jacobian matrix (equation 4-90). 

 

𝐽∗ =  𝐽𝑇𝐽 −1𝐽𝑇   Equation 4-90 

 

By using the pseudo-inverse method a non-square matrix will be invertible. 

For instance, the calculations that are used to find the trajectory of the joints are implemented. 
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Figure 4-53: Desired trajectory and the traversed trajectory resulted from inverse kinematics for the ankle 

(simulation) 
 

In figure 4-53 the desired trajectory is shown and compared with the traversed trajectory of the 

ankle joint. The traversed trajectory is resulted from the inverse kinematics calculations for the 

swinging leg. The trajectory which should be traversed by the lateral hip joint and the knee joint 

in order to result the desired ankle trajectory are shown in figure 4-54 and figure 4-55. 

 

Figure 4-54: Hip lateral joint desired trajectory on time 
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Figure 4-55: Knee joint desired trajectory on time  

The trajectory error resulted from the movement of the swinging leg’s ankle is illustrated in 

figure 4-56.  

 

Figure 4-56: Trajectory error of the swinging leg„s ankle (simulation) 

Figure 4-56 depicts the magnitude of the error which is less than 0.25 cm (in worst case) and is 

acceptable for the robot. 
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4.6.6. Pre-calculated inverse kinematics 

 

In this method, using the inverse kinematics of the robot’s leg, the pose of the lateral hip joint 

and the knee joint is calculated to move the end effector (the ankle joint) on all its possible 

points. By using the following pre-calculations, the robot could move the end effector without 

calculating the inverse kinematics during the normal operation. The outcomes of this method 

are 2D arrays per each joint (i.e., for the lateral hip joint one 2D array and for the knee another 

2D array). These 2D arrays are storing the angle values of the joint based on the desired end 

effector position (from the direct kinematics calculation). In addition, by using this method the 

prohibited values of the joints are restricted. Moreover, the movement of the end effector 

caused by the motion of the joints is more predictable than using the inverse kinematics 

directly on the robot. Figures 4-57 and 5-58 are the 3D illustrations of the lateral hip and knee 

joint respectively.  

 

Figure 4-57: Pre-calculated inverse kinematics of the lateral hip joint 
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Figure 4-58: Pre-calculated inverse kinematics of the knee joint 
 

Using the pre-calculated inverse kinematics reduces the processing load on the central 

controller processor; however it requires higher memory usage to store the pre-calculated 

inverse kinematics values for each joint of the robot (10Kbyte memory per joint).  
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Chapter 5 

5. Realization and Implementation  
 

5.1. Introduction 

 

In this chapter the implementation of the control system designed for Archie is presented. The 

control system in Archie is designed on the distributed computer architecture basis. A central 

controller sends commands to the individual controllers through a data network. Each 

individual controller is intended to control a single joint in the robot and is connected to the 

central controller. Controlling a joint includes controlling the position and velocity. 

Communication process management is time consuming, and it imposes a heavy load on the 

central processor. Therefore, in this thesis, the communication process management is 

implemented on a Fundamental Programmable Gate Array (FPGA). By using this approach, the 

power consumption in the system can be reduced significantly and as a result, the central 

processor can run other tasks in acceptable times.   

There are three type of motors used in the joints of Archie (i.e., RC servo, Brushed DC and 

Brushless DC motor). The types of the motors have been selected, based on the joint and the 

torque. Consequentially, the design of the controllers is based on the motor type.    

 

 

5.2. Joints with RC servo motors 

 

In Archie’s upper body (i.e., head, neck and hands) miniature servo motors, which contain built-

in controllers (i.e., Dynamixel, RX-64), have been used. A servo motor is shown in figure 5-1. 

Although it is small, a servo motor’s performance is remarkable. 
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Figure 5-1: RX-64 servo motor used in Archie 

 

Specification Value unit 

Weight 125 g 

Dimension 40x61x41 mm 

Gear ratio 1:200  

Supply voltage 18 v 

Current (Full load) 1200 mA 

Output torque 6 Nm 

Speed (No load) 490 Deg/s 

Communication speed 1  Mbps 

Protocol RS485 (8bit+1stp)  

Table 5-1: Specification table of RX-64 

 

The RX-64’s controller uses EIA-485 communication bus. The central controller sends 

appropriate data to the motors through a specified hardware based data sequencer. This 

hardware is integrated to the Data Acquisition Unit (DAU).  

Each motor controller uses a specific number (i.e., ID) over the shared bus (i.e., data network) 

to distinguish itself from the other motor controllers. The protocol used by these motors is 

shown in figure 5-3. 
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5.3. Brushed DC motor based joints 

 

Archie’s Toes, Ankle (i.e., frontal movement of the Ankle) and Hip (i.e., transversal movement 

of the hip) are based on brushed DC motors (i.e., Faulhaber, 2342 series). The main reason for 

choosing brushed DC motors in these joints is the mechanical space restrictions. The motors 

can provide 16mNm torque on the output shaft without gear. Using a harmonic drive (Type of 

Gear head) with the ratio of 1:100, 1.6Nm the maximum torque can be provided on the joints. 

 

Figure 5-3: DC motor controller 

To control the DC motors a velocity controller is used that runs cascaded to a position 

controller. The following control loop (shown in chapter 4 in figure 4-13) is based on the 

embedded controller XC164 (Infineon, 2001) which runs at 40MHz. The power stage is based on 

the ATA6824 (Atmel, 2008) which uses four external power MOSFET (i.e., SUD50N04, Vishay, 

2006) for driving the motor.   

0xFF 0xFF ID Length Instruction Parameter 1 Parameter 1 Check sum … 

0x01: Ping  
0x02: Read data 
0x03: Write data 
0x04: Standby 
0x05: Activate 
0x06: Reset 
0x83: Synchronous  

Length of the data packet 

ID for the motors from 0 to 253 

Figure 5-2: Servo motors command packet structure  
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The current sensor is based on the current shunt monitor chip (INA139, Texas Instruments, 

2001). The sensor measures the current passing through the shunt resistor. The current passing 

through the shunt resistor comes from the motor and is affected with noise and Pulse Width 

Modulation (PWM), and therefore, it needs to be filtered for the measurement. The filter 

output is measured using an internal digital to analog converter in the microcontroller that is 

used to controlling the torque loop.  

In the DC motor controller, the torque control loop is used to protect the system from possible 

crashes in feasible collisions, which may occur during a normal operation. The velocity control 

loop moves the joint to the desired position with a constant velocity. This control loop is 

important to have synchronization on multi-joint-combinational movements. The outer position 

control loop is used mostly to correct the position of the joint. 

 

 

5.4. Brushless DC motor based joints 

 

Archie’s Knee, Ankle (i.e., lateral movement of the Ankle) and Hip (i.e., lateral and frontal 

movement of the hip) are made of DC brushless motors (i.e., Maxon-Motors, EC45). The reason 
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for using DC brushless motors is the necessity of high mechanical torque in these joints. Here, 

the brushless motors are combined with a harmonic gear (i.e., Harmonic Drives Systems Inc., 

20-160-874405-6) to provide more output torque. 

In this section, the mechanical construction has been explained. 

The motor controller used to control the brushless based joint and the modular motor-

harmonic gear combination is shown in figure 5-5.  

 

Figure 5-5: Brushless motor controller connected to the joint module 

 

The specifications of the joints have been described in table 5-2. 

 

Parameter Calculations Value Unit 

Assigned Power Rating 50(motor power) x 77%(total efficiency)  38.5 Watt 

Max. Speed (No load) 6800 (Motor Max. Speed) / 160 (Gear ratio) 42.5 rpm 

Stall torque 780 (Motor stall torque) x 160 (Gear ratio) 124.8 Nm 

Max. Continuous torque 81.4(Motor cont. Torque) x 160 (Gear ratio) 13.02 Nm 

Table 5-2: Output parameters resulted from the constructed joint 
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5.4.1. Brushless motor advanced controller 
 

The brushless motor based joints use an advanced motion controller (i.e., Whistle, Elmo Motion 

Control, 2006) as a power stage. The controller block diagram is shown in figure 5-6. 

 

The controller consists of three cascaded controllers to control the position, velocity and the 

torque of the motor. The torque controller block is illustrated in figure 5-7 (Elmo Motor 

Controller, 2009). 
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To prevent windup in the integral component of the torque control, the following subsystem is 

added to the system which is shown in figure 5-8 (Elmo Motion Control, 2009).  

 

 

The velocity controller’s block diagram is depicted in Figure 5-9 (Elmo Motion Control, 2009). 
 

 

 

+ 

Figure 5-9: Velocity controller used for the burhsless motors 
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The figure 5-10 shows how the speed controller gets the commands from the position 

controller (Elmo Motion Control, 2009). 

 

 
The controller bandwidth is shown in figure 5-11 (Elmo Motion Control, 2009). 
 

 
 

 

 

 

Figure 5-11: Brushless motor‟s motion controller bandwidth 
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5.4.2. Absolute positioning 
 

In the brushless based joints, a novel method has been used in this thesis to find the absolute 

position. The harmonic drive consists of three parts that are shown in figure 5-12. These three 

parts are wave generator spline, flexible spline and circular spline. The wave generator spline is 

used as the input to reduce the velocity and to get higher torque in the output. This is coupled 

to the rotor of the brushless motor. Moreover the flexible spline is the output and it is coupled 

to the moving link (not to the link that is coupled to the joint frame) and the circular spline is 

fixed on the frame.  

 

           

Figure 5-12: Components of the harmonic drive gear 

 

As it is described in the block diagram of the magnetic rotary encoder (i.e., Austrian Micro 

Electronics, AS5134), different types of outputs are available. A and B outputs are the 

emulations of the incremental encoder and have been used to giving more accuracy to the 

brushless controller to generate sinusoidal output for the brushless motor windings. The 

absolute position output of the chip is used to calculate the absolute position of the joint (i.e., 

the moving joint). 
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Figure 5-13: AS5134 magnetic rotary encoder with the magnet on the top (Datasheet of AS5134) 

 

The rotor shaft crosses the flexible spline from its center and it is coupled directly to the wave 

generator spline as well as the rotor. A cylindrical magnet is attached in the end of the shaft 

which is sensed by the magnetic rotary encoder (shown in figure 5-13). The magnetic rotary 

encoder is then connected to the output of the harmonic gear that is actually the flexible spline. 

The result of this configuration will cause drifting by sensing the position of the magnet for each 

turn in the harmonic gear output. 

 

Figure 5-14: Block diagram of AS5134 magnetic rotary encoder (from datasheet of AS5134) 

 

By rotating the rotor shaft in a direction, the output will rotate in the opposite direction with a 

certain ratio (specified for the harmonic drive, e.g., 1:160). Regarding the described mechanism 

of placing the encoder on the output and sensing the position of the magnet coupled to the 

rotor of the brushless motor, there is 362.25: degrees per revolution.  

𝜃 = 360° +
360°

160
= 360° + 2.25° = 362.25°  Equation 5-1 
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There is a magnet on the rotor generating a pulse in the hall sensor attached to the frame. 

When a pulse is received, the absolute value of the magnetic rotary encoder is captured. This 

value will change with each revolution and it is used for calculate the position of the moving 

link in the joints. Figure 5-15 depicts the magnet in the center and the output of the joint that is 

coupled to the moving link. 

 

 

Figure 5-15: The brushless motor based joint and the position of the encoder 

 

To calculate the absolute position of the joint, there is a calibration which relates the resulted 

value to the real position of the moving link. This calibration is valid until the next change 

happens in the position of the moving link and the situation of the attachment between the 

two magnets (one magnet is used for the magnetic rotary encoder and the other is placed on 

the rotor and generates a pulse in the hall sensor). 

Indeed, once the rotor reaches the point where the hall sensor is, the position between the 

output of the harmonic drive and the input (i.e., the rotor) is measured. Because of the position 

of the magnetic rotary encoder on the output, in each revolution, it rotates by 2.25: degrees 

(360:/160). This motion generates unique values for each position which are used for the 

absolute position calculation. 

In the start of operation, the rotor moves one turn that equals 2.25: degrees movement in the 

gear output (joint). During this rotation the hall sensor perceives the magnet attached to the 

rotor which the controller uses to calculate the absolute position of the joint. Figure 5-16 shows 

the construction parts of the joint. 
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Figure 5-16: Attached magnet of the rotor and hall sensor attached of the frame  

 

 

5.4.1. Data communication bus 
 

To provide control data for synchronizing the joints, a data communication bus (network) has 

been used. This network provides a robust data communication with a proper speed and 

reliability (e.g., SPI1, CAN2, LIN3 or LAN4).  

An appropriate physical layer for reliable data communication is also necessary. From 

experience, current loop based physical layers like EIA-422 and EIA-485 are a great choice in 

this type of applications.  

 

 

5.5. Processing improvements 

 

The center of mass should be calculated in every control cycle in the robot. This task is time 

consuming and imposes a heavy load on the central processor. As a result, the central 

processor cannot be used for other tasks simultaneously. Increasing the speed of the central 

processor or using a second processor to assist the main processor, are the possible solutions 
                                                           
1
 - Acronym of Serial Peripheral Interface 

2
 - Acronym of Control Area Network 

3
 - Acronym of Local Interconnect Network 

4
 - Acronym of Local Area Network 
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which cause more energy consumption. Using FPGA for an Application-Specific Integrated 

Circuit (ASIC) is one of the best solutions for this kind of tasks. In this thesis, the calculation of 

the center of mass is partially implemented on the FPGA. The main processor puts the data 

received from the DAU in the specific memory addresses and triggers a signal. After some 

cycles the ASIC will finish the CM calculation.  

 

Calculating the trigonometric parameters (i.e., Sin (θ) and Cos (θ)) decreases the processing 

load to find the center of mass in the central controller. Using the parallel processing 

architecture, individual controllers process the trigonometric parameters in parallel and send it 

into the central controller. However, in the traditional method, the central controller has to find 

the trigonometric parameters, for all the joints (i.e., the calculation is not done in parallel). 

Moreover, using the following method reduces the complexity of the algorithm and makes it 

possible to be implemented in hardware using Very high integrated Hardware Description 

Language (VHDL). 

 

 

 

5.6. Communication bus interface  

 

Data Acquisition unit regularly exchanges data with the nodes (i.e., joint controllers) in the 

robot. This communication is broadcasted. In other words, the master (Data Acquisition Unit) 

writes a message on the bus, and all the nodes receive this message. The nodes analyze the 
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received data and check the unique ID. If it matches with their ID, they will write the data on 

the bus (Master Input Slave Output (MISO) line) on the next time frame5 assigned for data flow 

from client to the master (Data Acquisition Unit). During this communication only one node 

writes the data on the bus and the other nodes are in tri-state (otherwise data collision could 

be happen). Figure 5-18 shows a block diagram of the communication bus based on SPI used in 

the robot. 

 

5.6.1. Physical layer 
 

In Archie, like any other tall humanoid robot, the distance between the clients and the Spinal 

Board (Data Acquisition Unit) is fairly long. Hence, the data can be affected by the noise coming 

from the environment or the motors of the robot. The high speed communication can also 

cause some influences in the system and data buses. Thus, a protected communication physical 

layer is necessary. For this reason, an EIA-422 physical layer is used as the physical layer. The 

EIA-422 is based on current loop. Figure 5-19 shows a detailed schematic of the EIA-422 bus. 

                                                           
5
 - The time frame consists form 16 clock 
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Figure 5-18: Distributed SPI bus used to control the motors  
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Figure 5-19: Schematic of EIA-422 (from datasheet of SN75ALS180D) 

 

The physical layer should provide the following properties: 

 High fan-out: Because of the distributed structure (at least for 16 clients). 

 Tri-state mode: Because of the shared bus in receiving data from the clients. 

 Robustness, durability and high reliability: Because of the necessity for Real-Time control. 

 High speed: To reach a high refresh time (up to 1ms). 

The standard category five (Cat-5) cable with twisted pair wires and a shield around the whole 

cable has been used. Also, the standard Local Area Network (LAN) connectors have been used 

to connect the cables to the boards (i.e., joint controllers and central controller).  

Figure 5-20 illustrates the pin-out for the eight cables that are used in the robot. 

Pin description: 

1- Master Input slave output (MISO) D+ 

2- Master Input slave output (MISO) D- 

3- Master output slave input (MOSI) D+ 

4- Master output slave input (MOSI) D- 

5- Serial Clock (SCLK) D+ 

6- Serial Clock (SCLK) D- 

7- VCC (9Volt, supply for the controllers) 

8- GND 

 

Figure 5-20: The pin-out of the Cat-5 cable used in the robot 
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The communication bus cables are used in the robot to connect the boards to each other (i.e., 

daisy chain). Figure 5-21 shows some of the boards that are connected to each other using the 

daisy chain network. 

 

Figure 5-21: Daisy chain network for spreading the communication bus in the robot 

 

5.6.2. Packet structure 
 

A special packet structure has been used to exchange data in the communication bus. The 

packet structure contains: the unique ID of the node, the type of the data, a command for 

disabling or enabling the controller and 8-bit data. The packet structure is also able to recognize 

the noise influence that can change the data bits by using the Cyclic Redundancy Check (CRC). 

The packet structure uses a 16-bit frame and is depicted in Figure 5-22. 
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Figure 5-22: SPI communication packet structure 

 

Data flow direction 
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After sending data to a node (e.g., joint controller), the data acquisition unit waits for the same 

type of data from the specific node in the next time frame. The exchanging operations are 

implemented in the hardware of the data acquisition unit. It refreshes the entire system in 1ms. 

In other words, taking the necessary data from the joints, writing on the dual-port RAM, 

sending the appropriate commands to the joints, is all done in 1ms.  

 

5.6.3. Bit rate calculation 
 

To achieve the 1ms refresh time for the whole robot, the bit rate has to be calculated, in order 

to select an appropriate physical layer and system design. In general, the bus has the following 

specifications: 

 Total data exchanging time (refresh time): 1ms  

 SPI buses: 3  

 Maximum clients per bus: 7 

 Bits per data packet: 16 

 Necessary data packets for data exchanging with one client: 1 send + 1 receive  

Therefore:  2 x 7 x 16 x (bit rate) = 1 ms         bit rate = 4.46 µs  Equation 5-2 
 

The bit rate is set as the frequency of the serial clock generator (SCLK) for the SPI bus. In 

addition, this bit rate should be considered to select the physical layer and the clock skew 

calculation. 

 

5.7. Central controller or spinal board 

 

5.7.1. Control system architecture 
 

The spinal board works as the cerebellum for the humanoid robot and has the following tasks: 
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 Acquisition of data from the individual joint controllers and sending the calculated 

information in a constant time. 

 Acquisition of data from the inertial measurement unit in a constant time. 

 Balancing the whole robot by using the data received from the joints and the IMU. 

 Monitoring and handling the failures and errors of the system. 

 Sending and receiving data and commands to the higher lever computation system 

using LAN and wireless communication. 

 Supplying power and controlling the energy of the robot. 

 Providing Rapid reactions in the robot (like unconscious reactions in Human). 

 

To realize the mentioned tasks for the spinal board, an FPGA with a hardcore implemented 

PowerPC 405 is used (i.e., Xilinx Virtex 4 FX, XC4VFX12). The chip is implemented with a 

16Mbyte SDRAM, USB 2.0 interface, an IrDA6 interface, and an SD card reader. It also has some 

other hardware components and ports, all on a small PCB7 as a daughter board (shown in figure 

5-23). It is connected to the Spinal board by a standard DIP40 footprint.  

 

 

Figure 5-23: Virtex 4 daughter board 

 

                                                           
6
 - Acronym of Infrared Data Association 

7
 - Acronym of Printed Circuit Board 
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The block diagram of the daughter board is shown in figure 5-24. 

 

Figure 5-24: Block diagram of the Virtex 4 daughter board 

 

Figure 5-26 shows the daughter board that is mounted on the spinal. 

 

 

Figure 5-25: Spinal board 
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Virtex 4 contains the PowerPC 405 and some peripherals, shown in figure 5-26 and 5-27. 

 

 

Figure 5-26: Table of peripherals embedded in the central controller‟s main processor  



 90 

 

Figure 5-27: The hardware design of the Virtex 4 FPGA used in the central controller (in EDK 
8
 10.1) 

                                                           
8
 - Acronym of Embedded Development Kit (Software from Xilinx) 



 91 

5.7.2. Data acquisition unit 
 

In distributed processing systems, communication between the nodes and the central 

controller is very important. The communication includes sending and receiving data to and 

from the nodes. The management of the communication (reading and writing data) imposes a 

high load on the main processor. As a result, the main processor cannot run the other tasks 

simultaneously.  

Nonetheless, reading and writing data is a repetitively simple task that should be done quickly. 

This task is similar to the graphic card’s RAMDAC9 which sends the data stored on the graphical 

RAM to the VGA’s analog output sequentially (introduced for the first time by IBM, 1987).  

Using software methods to manage the communication will slow down the main processor and 

may result in losing the constant time to run the communication process. In this thesis, a 

hardware method has been used to address this problem. The repetitive reading and writing 

tasks for the communication with the clients is implemented on a piece of hardware. The 

implementation consists of two parts; the dual ports memory and the stream sequencer. The 

hardware called Data Acquisition Unit (DAU) is implemented in VHDL10 language on a part of 

the FPGA containing the PowerPC 405 hardcore. 

The dual-port memory is connected to the main processor via PLB11 bus. In the other side of the 

dual-port memory, the stream sequencer is placed. The data stream sequencer is based on the 

communication packet structure (protocol) and generates an appropriate bit stream which 

contains all the necessary data. The generated bit stream is transmitted along the 

communication bus through the physical layer. The data is received by all the nodes and 

checked by their unique ID. 

 
                                                           
9
 - Acronym of Random Access Memory Digital-to-Analog Converter 

10
 - Acronym of Very high integrated Hardware Description Language  

11
 - Acronym of Processor Local Bus 
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Figure 5-28: Data acquisition unit 
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5.7.3. Operation system 
 

Archie’s central controller uses the Linux operating system (OS) based on the 2.6 kernel12 

version. This OS provides all the time management for the tasks and balancing computations. 

The Linux operating system used in Archie (called Archie Linux) is a standard 2.6 kernel ported 

on the PowerPC 405 processor (Embedded Processor inside the FPGA).  

 

 

Figure 5-29: Memory map of the central controller‟s main processor  
 

Running the Linux operating system requires minimum peripherals (i.e., at least an interrupt 

controller, system timer and etc.). All the peripherals are placed in a unified memory map that 

is shown in figure 5-29. Following configurations are part of the Device Tree Blob (DTB). The 

device tree blob is used to compile the kernel of the operating system (Linux). In the end the 

firmware (the FPGA hardware configuration file), the kernel image (the image file of the 

compiled Linux kernel) and the device tree blob are used to execute the operating system. 

  

                                                           
12

 - The latest Linux kernel was released on 23 December 2003 
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Figure 5-30: Prepared files for running the operationg system 
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5.7.4. Booting up mechanism of the FPGA and the Linux 
 

The SD memory card inserted in the memory card reader on the Virtex 4 daughter board, 

includes, two files. One of them is a hardware set bit stream and the other is an image file. The 

first file contains all the configurations of the FPGA (includes hardware design) and a loader 

program. This stream is programmed on the FPGA using a microcontroller. The microcontroller 

is used as the BIOS13 and starts up on the power up once the power is plugged to the system. 

The microcontroller starts to read the bit stream from the Secured Digital (SD) memory card 

and pumps it into the FPGA using the JTAG14 bus. After finishing programming the bit stream 

into the FPGA, the created design executes the loader program. The loader program is pre-

programmed by the hardware configuration bit stream inside the program memory of the 

processor. The loader program reads the image file and decompresses it into the SDRAM15. 

During this operation, the display on the spinal shows a progress bar. After decompressing the 

kernel, the Memory Management Unit (MMU) is turned on. In this moment, the kernel starts to 

manage the hardware and executes the robot’s control software. The flow diagram in figure 5-

31 shows the entire process. 

 

                                                           
13

 -Acronym of Basic Input Output System 

14
 -Acronym of Joint Test Action Group which is a type of programming interfaces 

15
 -Acronym of Synchronous Dynamic Random Access Memory 
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Figure 5-31: Booting the embedded system on chip and Linux flow 
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5.8. Energy management 

 

One of the most important operational factors in mobile robots is energy. Archie is a mobile 

robot and it should operate for at least one hour per each full-charged battery.  

To get a better result, the efficiency should be well considered. The design should consider 

minimizing the energy which is lost in the electronic and mechanical components. The power 

supply plays a big role in this criterion. In addition, the battery charger circuit should be 

designed for the minimum necessary time to fully charge the battery. Table 5-3 shows all the 

components in the robot, the required voltage and the maximum wattage of them.  

 

Component Voltage  Maximum wattage 

Brushless motors 28 volt 50 watt x (4+4+1) = 450 watt 

DC motors 24 ~ 28 volt 19 watt x (2+2+3) = 133 watt 

Brushless based joint Controller 7 ~ 12 volt 1~2 watt x (4+4+1) = 9 ~ 18 watt 

DC based joint Controller 7 ~ 12 volt 1 watt (2+2+3) = 7 watt 

Spinal Board + FPGA 9 volt 2 watt + 3 watt = 5 watt  

Servo Motors (RX 64) 18 volt 21.6 watt x 13 = 280 wall 

Total wattage: 450 + 133 + 18 + 7 + 5 + 280 = 893 watt 

Table 5-3: Components in the robot and the required voltage and maximum wattage  

 

What is described in table 5-3 is for the worst case situation which hardly happens. 
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5.8.1. Batteries 
 

There are two Battery packs in the robot as the energy sources. The battery pack has the 

following specifications (also shown in figure 5-32): 

Chemical type: Lithium Ion 

Voltage: (4.2 v ~ 3.6 v) x 7 cell = 29.4 v ~ 25.2 v    Equation 5-3 

Amperage per hour: 6.1 A/hour 

 

     

Figure 5-32: Battery pack used in Archie 

 

The stored energy in the power source is: 

   2 x 4 x 7 x 6.1 = 341.6 watt/hour    Equation 5-4 

A humanoid robot rarely uses all the motors with the maximum power. There are some 

experimental founded relations that say that only a quarter of the motors are usually under full 

power work. By using this assumption, the quarter of the maximum power used by the motors 

plus the energy of the other control equipments in the robot is: 

(450 + 133 + 280) / 4 + (18 + 7 + 5) = 215.5 + 30 = 245.5 watt  Equation 5-5 

Therefore, the expected operation time for the robot with a full-charged battery is: 

341.6 / 245.5 = 1.4 hour = 1:24 that means 1 hour and 24 minutes  Equation 5-6 
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5.8.2. Power supply 
 

The Power supply is an electronic unit that provides different voltages for the components of 

the system. The batteries that are used in the robot are designed to supply 29 to 25 volts (29.4 

in full charge and it decreases to 25 during using the battery). The motors used in the robot 

(expect the servo motors) work on the same voltage range; Hence, there is no need for 

additional voltage regulating circuit. 

The servo motor (RX 64) uses switching power supply with 300 watts maximum output power 

this converts a voltage range of 20 to 30 to a regulated 18 volt output. 

For the control equipments, there is a second switching power supply with 50 watt maximum 

output power that converts a voltage range of 20 to 30 to a regulated 8 volt output. This power 

rail is used for the whole control equipments in the robot. 

The Spinal board uses a linear voltage regulator to convert the 8 volt input to the 5 volt output. 

The 5 volt rail is used to supply other peripherals on the spinal board. The FPGA uses a 

miniature switching power supply on the spinal board that converts the 5 volt input to the     

3.3 volt output which is also used in the wireless communication module and the OLED16 

display (μOLED-160-G1, 4D systems 2008) on the spinal board. 

The 8 volt rail goes directly in the communication bus cables that are based on standard Cat-5 

cables and are used on the joint controllers. The joint controllers have a linear regulator which 

converts the 8 volt to the regulated 5 volt. The 5 volt is used for the joint controller processors 

and the encoders.  

  

                                                           
16

 - Acronym of Organic Light Emitted Diode  
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5.9. Normal operation flowchart 

Figure 5-33 illustrates the operation flowchart for a normal operation of the robot. 
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5.10. Applications on the robot 

 

5.10.1. Motion planner   
 

After running the balancing operation in the spinal board, the robot is ready to execute higher 

level commands. The higher level commands can be issued by different motion planners. 

For example, a motion planner can be used for playing soccer or other purposes.  

The Motion Development Planner (MDP) is a type of motion planner that is used for motion 

development and finding motions in the robot.  

Archie uses a motion development planner written with C++ in Linux. Figure 5-34 shows a 

screen shot of this motion planner. 

 

 

Figure 5-34: Screen shot of the motion planner configuration tab 
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In the configuration tab of the motion planner, there are some parameters that can be set 

(figure 5-34): 

 Communication device: It can be either serial port or LAN. 

 Baud rate: The desired speed for sending data to the spinal board. 

 Initial settings: The initial current limit for the joint controllers. 

 Offset setting: Setting the offset for the joints in order to calibrate. 

 Testing the joints: Testing the Joints individually and monitoring their data. 

The second tab in the motion planner is used to develop the positions. Figure 5-35 shows a 

screen shot of this tab. 

 

   

Figure 5-35: Position development tab screen shot 

 



 100 

The Position development tab develops motions and stores them in the robot. After storing the 

positions, the robot is able to go to a specific position by calling that position. When the robot 

stays in a position, the spinal board tries to hold the balance by processing the data received 

from the feedback data from the Inertial Measurement Unit (IMU) and the positions of the 

other joints. 

In other words, when a movement is applied to a joint, and the balancing is enabled, the spinal 

board issues appropriate commands to the other joints to hold the overall balance of the whole 

robot. 

The resulting positions are stored as commands for the robot. By executing a sequence of 

positions to the robot, motion is performed. Figure 5-36 shows a screen shot of a tab that 

provides this ability in the robot. 

 

 

Figure 5-36: Motion development tab screen shot 
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For example, using three different positions and issuing them sequentially, the robot is able to 

have a dynamic walk which is considered as a motion of the robot. 

The last tab is for logging all the data which is send from the motion development planner to 

the robot (Figure 5-37). 

 

 

Figure 5-37: Motion development planner logging tab screen shot 
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5.10.2. Joint offset assignment 
 

Each joint has a certain point as zero. When all the joints are replaced on the zero position, the 

robot stands in a ‘T’ form (Figure 5-38). 

 

 

Figure 5-38: Simulation of Archie standing in „T‟ form 

 

The T form position is used for calibration. To do so, all joints move to the proper position to 

have the whole robot standing in the ‘T’ form. Then, all settings are stored in the joint 

controllers.  
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Calibration is not always necessary and is only required after mechanical reassembling. 

However, after a long time of operation it is necessary for the robot to be recalibrated again. 

 

 

5.11. Robot simulator 

 

The simulator used for the robot is developed in the SimMechanics toolbox of Matlab-Simulink. 

The simulator is prepared in order to develop the motions and predict the real results of the 

robot before applying them to the real robot. 

 

 

Figure 5-39: Simulation of Archie‟s lower body 

 

One of the main benefits of using a simulator is the possibility of monitoring the trajectories 

caused by the movements of the robot. Figure 5-40 shows the block diagram in the Matlab 

Simulink of the robot simulator. 
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Figure 5-40: Archie‟s lower body simulation in Simulink 
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Chapter 6 

6. Tests and Results 
 

In this chapter the results of the practical tests on the robot are presented. The tests are 

performed in three different levels. In the first level a single joint controller is tested. The joint 

controller test consists of testing the performance of the velocity controller and the position 

controller (more description in section 6.1). In the second level which is an expansion of the 

first level, a combination of two joints (knee and lateral hip joint) is used to test the robot’s leg. 

In the Third level the robot’s legs (left leg and right leg) are attached to the torso of the robot 

and the robot is tested for basic walking sequence.  

The trajectories obtained from the tests on the robot are compared with the trajectories 

acquired from the robot’s simulator.  The comparison is used for testing the prediction 

capability of the robot’s simulator and performance of the robot’s control system. 

 

6.1. Joint controller test 

 

In this section, a single joint of the robot is tested separately. For this test, the standard Motion 

Monitor Toolset (Elmo MC Composer, ver. 2.19 July 2008) is used. The joint controller is tested 

in a situation that is counted as the worst case of system instability. In this situation the lateral 

hip joint is used to move the robot’s leg from 0° to 45° (Figure 6-1).  

    

Figure 6-1: Robot‟s leg used for joint controller test 
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In the first movement (0° to 45°), the joint controller is affected by the gravitational forces of 

the leg that increase gradually by the growth of the lateral hip joint’s angle 

(𝑚𝑙𝑒𝑔𝑔. 𝑆𝑖𝑛𝜃𝐿𝑎𝑡𝑒𝑟𝑎𝑙  𝐻𝑖𝑝 ). 

The test is performed on different velocities from the trajectory planner. Figure 6-2 shows the 

Simulink block diagram for the single joint test simulation. In this simulation, one leg of the 

robot is performed in swinging phase which means that the leg is attached from the hip to the 

simulation environment root. The joint that is on evaluation is the lateral hip joint (Right leg 

lateral hip joint). Any other joints of the leg in the simulation are supposed to be fixed without 

movement (welded joints). 

 

 

Figure 6-2: Simulink block diagram for single joint test 

 

The simulation block diagram (shown in figure 6-2) contains a joint controller block which is 

extracted from the right lateral hip controller block and it is shown in figure 6-3. The block 

diagram of the controller includes the gravity effect that causes non-linearity in the system 

model. The gravitational effect is applied by adding the vertical component of the leg multiplied 

by the weight and divided by the joint’s gear ratio. The system plant is thought as a continuous-

time model. Thus, the input and output of the system plant model is connected by zero-order 

hold blocks to the other parts of the simulation (the other parts of the simulation are based on 

the discrete-time model). 
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Figure 6-3: Extraction of the joint controller 

 

The extraction of the system plant block is shown in figure 6-4. The model contains all the 

simulation parameters for the electric motor used in the joint as actuator. The model starts 

with the rotor voltage as input and converts it into current by the first integrator. The motor is 

designed for an allowed current range which is applied to the simulator by a limiter block. The 

result (and limited) rotor current is multiplied by the electromotive force constant (𝐾𝑡) of the 

motor and resembles the generated torque of motor. By adding the gravitational force and the 

damping ratio caused by friction of the mechanical plant, the actuator torque is resembled. By 

multiplying the total inverse of the moment of inertia to the actuator torque, the result is the 

angular acceleration of the joint. The angular acceleration is then converted to angular velocity 

by using the second integrator. The motor’s mechanical construction restricts the angular 

velocity of the motor in a definite range, which is resembled by the second limiter block. Finally, 

the angular velocity is turned into the motor’s angle by the third integrator.  

 

 

Figure 6-4: Continuous-time system plant model 
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In figure 6-5 the robot’s right leg is illustrated in SimMechanics Simulator output. 

    

Figure 6-5: Simulation of the robot„s leg used for joint controller test 

 

In this test, the swinging robot’s leg moves from vertical stationary position to 45° angle 

position. During the test, the gravitational effect is reflected to the joint’s actuator gradually 

which causes non-linearity of the system plant model. The test is executed on the real robot 

and the robot’s simulator. 

The joint controller limits the velocity of the motor on the desired value, in order to control the 

necessary time used for the movement. Controlling the traversing time gives the possibility to 

synchronize the joints for combinational movements (e.g., human gait imitation). 

 

Figure 6-6: Traversed angle trajectory by the real robot with different movement velocities 
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The angular trajectory error caused by the real robot from the movement of the hip joint with 

different traversing velocities is depicted in figure 6-7. 

  

Figure 6-7: Angular trajectory error caused by the real robot tested with different traversing velocities 

 

Figure 6-8: Traversed angle trajectory by the robot simulator, with different movement velocities 
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Figure 6-9: Angular trajectory error caused by the robot simulation tested with different traversing 

velocities 

Figure 6-7 illustrates how in the 0° to 45° test, the error arises in the beginning of the motion 

and it gradually decreases on time. When increasing the velocity, the error is proportionally 

increased. This is shown by the purple-color line that has the highest traversing velocity, this 

trajectory showed the highest error of all. In addition, for this velocity the error stays during the 

whole period of movement on a fairly constant range. On the other hand, when using smaller 

values for the traversing velocity the controller has enough time to correct the position error 

during the traversing phase. Subsequently, the same analysis is performed on the robot 

simulator (shown in figure 6-8) on the same experiment. However, in the simulation the height 

of the error is similar to the one from the real test, but the duration of the error is increased. 

The cause of this phenomenon could be from the fact of the non-reality of the simulation.  

The angular trajectory error caused in the simulation by the movement of the hip joint with 

different traversing velocities is shown in figure 6-9. The error acquired from the simulation 

shows similarity to real robot test. This circumstance shows the capability of the simulator to 

anticipate the system’s behavior caused in the reality.  
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6.2. Multi-joint test 

 

In this test, one leg of the robot is evaluated. Each leg consists from seven degree of freedom 

(i.e., each leg has one transversal, two frontal and tree lateral joints plus the toes joints); 

although in this test the evaluation is performed for two of the lateral joints (i.e., hip lateral and 

Knee joint). The evaluation is done by comparing the traversed trajectory of the robot’s leg with 

the trajectory command. The comparison is also prepared for the actual robot’s leg and the 

simulation of the leg.  

Capturing the traversed trajectory of the robot’s leg is provided using Image Processing 

technique. In this technique, a high frame rate camera (BASLER A302bc, 60 frames per second) 

is used to track some patches which are glued to the robot. The patches used for this technique 

are shown in figure 6-10. 

 

Figure 6-10: The patch used for tracking the traversed trajectory 

The camera is placed in a lateral distance of one meter from the robot to track the patches 

glued to the robot’s leg (as it is shown in figure 6-11). Using the video stream taken from the leg 

during the test by the camera and the image processing software (written in Visual Studio 2008 

and is shown in Appendix A), the trajectory of the robot is extracted (as it is shown in Figure 6-

13). 

 

Figure 6-11: Camera placed in one meter lateral distance of the robot‟s leg for patch tracking 
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To distinguish between the patches, the software uses a low pass filter on the position of the 

patches. By using this method, the patches are tracked and distinguished from each other.  

 

Figure 6-12: Patch detection result used for finding the traversed trajectory 

Figure 6-13 shows the extracted trajectory of the patches during a half gait. The traversed 

trajectory is stored in a spreadsheet 17 which can be used in Microsoft Excel or in Matlab for 

further analysis. 

 

Figure 6-13: Traversed trajectories resulted from image processing patch detection 

                                                           
17

 - Spreadsheet is a computer data format which consists from rows and columns of data cells. 
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Figure 6-14: Detected coordinates from the patches tracking row data (consists from X and Y, repeatedly) 

 

In this level of the test (evaluating a single leg), the simulator of the robot is reduced to a single 

leg. In this simulation, the hip of the robot is attached to the root weld of the simulation 

environment. The trajectory command is given to the joints of the leg. By using the Body Sensor 

(a component from Matlab Simulink SimMechanics) the traversed trajectory of the leg’s ankle is 

extracted. The extracted trajectory is used for comparison with the real robot. 
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Figure 6-15: Simulink diagram of Archie‟s swinging leg 
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Figure 6-16 shows the reduced simulation for the single leg.  

 

Figure 6-16: Single leg simulation 

The test for the leg is applied for a half gait, full gait and a trapezoidal movement. 

 

6.2.1. Half gait test 
 

In this test the robot’s leg is evaluated for a half gait (swinging phase) movement. The 

trajectory commands (the joints trajectory command) are calculated by the central controller 

using the inverse kinematics model of the robot (leg). Figure 6-17 shows the traversed 

trajectory of the swinging leg’s ankle during the test.  

 

Figure 6-17: Swinging leg‟s ankle traversed trajectory from lateral view 
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Figures 6-18 and 6-19 show the traversed trajectory vs. the trajectory command and the 

position error during the movement, respectively for the half gait (swinging leg) test. 

 

Figure 6-18: Traversed trajectory by the real robot, simulation vs. the trajectory command for the half gait 

 

Figure 6-19: Position error of the traversed trajectory by the real robot and the simulation for half gait 
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The error obtained from the half gait test on the real robot is limited under 0.6cm, which is an 

acceptable value. In addition, the error escalation in around the 15th second (in graph 6-19) is 

also predicted by the simulator. The main reason for the occurred error is the changes of the 

load specification (i.e., the gravitational force changes the direction because the leg is not 

climbing anymore and the end effector movement direction is facing downward). The following 

error results from the hip joint. The hip joint (as it is shown in figure 6-20) gets relatively higher 

error around the 15th second (figure 6-21) because the main effect from the gravitational force 

is applied to the hip joint.  

In the simulation results, it shows the same effect in the error around the 15th second, which 

shows that the gravity effect is properly implemented to the simulator. 

The angle trajectory for the knee joint, the error resulted from the simulation and the real 

robot, the velocity command versus the joint velocity in the simulation and the robot are shown 

in figures 6-20, 6-21 and 6-22 respectively. 

 

 

Figure 6-20: Hip joint angle trajectory command, simulation and the real robot for half gait test 
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Figure 6-21: Angle error resulted from simulation and real robot in the hip joint during the half gait test 

 

Figure 6-22: The velocity command compared with the simulation and real robot of the hip joint during 

the half gait test 
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The angle trajectory for the knee joint, the error resulted from the simulation and the real 

robot are shown in figures 6-23 and 6-24 respectively.  

 

Figure 6-23: Knee angle trajectory command vs. the simulation and the real robot trajectory for half gait 

 

 

Figure 6-24: Angle error resulted from simulation and real robot in the knee joint during the half gait test 
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The knee joint shows fairly moderate error rate compared with the hip joint, the reason might 

be the lower mass of the tibia (i.e., the tibia is lighter than the whole leg). In the beginning of 

the motion, the error is in a higher range which is caused because the motion controller is 

overcoming the static inertia of the tibia. In addition, the error rises again because of the end 

effector movement direction that is facing downward.  

The angular velocity command for the knee joint versus its angular velocity in the simulation is 

shown in figure 6-25. The real robot shows more instability in the velocity compared to the 

simulation. However, the velocity variation in the real robot is in an acceptable range.  

 

 

Figure 6-25: The angular velocity command compared with the simulation and real robot of the knee joint 

during half gait test 
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6.2.2. Full gait test 
 

The full gait test is an extended version of the half gait (swinging) test. The full gate test 

includes the supporting phase. The full gait movement moves the robot one step further. Figure 

6-26 shows the right leg of the robot and the traversed trajectory for a full gait movement. In 

figure 6-27 the traversed trajectory of the robot, the traversed trajectory in the simulation and 

the trajectory command are shown for comparison. 

 

Figure 6-26: Full gait traversed trajectory resulted from patch tracking 

 

 

Figure 6-27: Trajectory command, traversed trajectory of the robot and the simulator for the full gait 
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The resulted error from the real robot and the simulation of the robot are shown in figure 6-28. 

 

Figure 6-28: Position error of the robot‟s traversed trajectory and the simulator trajectory of the full gait 

The position error obtained from the real robot around the 35th second increased significantly; 

however, the simulation error decreased to a minimum level during the test. The reason for the 

following phenomenon could be from the coincidence of the center of mass of the robot with 

the direction of the robot’s leg which causes the maximum gravitational force on the robot’s 

joints. The angle trajectory for the hip joint is compared with the angle trajectory of the 

simulation and the real robot (figure 6-29).  

 

Figure 6-29: Hip joint angle command vs. the simulation and the real robot for the full gait movement  
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Figure 6-30: Angle error resulted from simulation and real robot in the hip joint during the full gait test 

 

The error that results from the real robot’s hip joint and its simulation during the full gait is 

shown in figure 6-30. The hip joint error increases around the 25th second which is where the 

control system changes the motion phase from swinging to supporting. Similar to the half gait 

test the error increases in the beginning and in the end of the swinging gait (which comes from 

the coincidence of the gravitational force and end effector movement direction).  

The angular velocity command of the hip joint is compared to the velocity of the real test and 

the simulation of it (figure 6-31).  

 

Figure 6-31: The angular velocity command compared with the simulation and real robot of the hip joint 

during the full gait test 
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The angle trajectory command for the knee in the full gait movement, beside the trajectory 

resulted from the real robot and the simulation are shown in figure 6-32. 

 

Figure 6-32: Knee joint angle trajectory command, simulation and the real robot for the full gait 

 

The resultant angle error from the real robot and the simulation are shown in figure 6-33.  

 

Figure 6-33: Angle error resulted from simulation and real robot in the knee joint during the full gait test 
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For the knee joint, the same condition is happening (figure 6-32) during the changing from the 

swinging phase to the support phases the error increases swiftly. During the support phase, the 

error rate is fairly steady and that happens because of the constant height of the robot’s leg 

(i.e., the gravitational force is constant for the leg). 

The angular velocity applied to the knee joint during the full gait test is compared to the angular 

velocity of the real robot and its simulation which is shown in figure 6-34. 

 

Figure 6-34: The angular velocity command compared with the simulation and real robot of the hip joint 

during the full gait test 

 

The velocity trajectory of the real robot (shown in 6-34), shows a good response to the velocity 

command, despite the instability which is an acceptable range for the real robot test. 
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6.2.3. Trapezoidal test 
 

Using a trapezoidal trajectory in the gait imitation of the robot causes vibration and instability. 

The trapezoidal trajectory is not used in the robot for walking (the elliptical movement is 

preferred to it); however, it is used for the multi joint test. The evaluation is made by 

comparing the simulation and the real robot (as the same for the elliptical trajectory tests). 

Using a trapezoidal trajectory can be useful for an accurate evaluation of the control system 

and the system response. For instance, the response to the edged corners and the flat part of 

the trajectory are showing the ability of the control system and the joint controllers. 

In figure 6-35 the traversed trajectory of the Ankle joint of the robot is shown during the 

trapezoidal test.  

 

 

Figure 6-35: Trapezoidal traversed trajectory resulted from patch tracking 

 

The comparison of the traversed trajectory in the real robot and the simulator with the 

trajectory command is shown in figure 6-36. 



 127 

 

Figure 6-36: Trajectory command, traversed trajectory of the robot and the simulator for the trapezoidal 

 

The error comparison between the traversed trajectory of the real robot and the simulation is 

shown in figure 6-37.  

 

Figure 6-37: Position error of the robot traversed trajectory and the simulator trajectory by trapezoidal test 
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The position error from the end effector during the trapezoidal motion test shows two spikes 

around the 5th and the 20th second. The main reason for these error spikes is the high edge of 

the trajectory of the command (during switching the direction from vertical to horizontal and 

vice versa, in the trapezoidal trajectory motion). Moreover, the error increases in a fairly high 

rate during the vertical movement which comes from the gravitational effect that coincides 

with the end effectors motion direction. In addition, the error increased significantly around the 

35th second which could be caused by the gravitational force which also occurs in the full gait 

test at the same time.  

The angle of the hip joints for the trapezoidal test is compared with the simulation result and 

the data obtained from the real robot which is shown in the figure 6-38. Also, the error 

occurred from the real robot and the simulation of the robot is shown in figure 6-39. The angle 

trajectory of the hip shows two relative high edges in the 20th and the 25th second (as well as in 

the error comparison graph shown in figure 6-39). During the 20th second that was also 

explained before, the high edge of the trajectory is the main cause. The error increases around 

the 25th second because of the phase change (i.e., phase exchange from swinging to support 

phase). 

 

 

Figure 6-38: Hip joint angle trajectory command, simulation and the real robot for the trapezoidal test 
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Figure 6-39: Angle error resulted from simulation and real robot in the hip joint during the trapezoidal test 

 

The Velocity command applied to the hip joint is compared with the velocity of the real robot’s 

joint and the simulation in figure 6-40. 

 

Figure 6-40: The angular velocity command compared with the simulation and real robot of the hip joint 

during the trapezoidal test 
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In figure 6-41, the knee joint’s trajectory command is compared with the traversed trajectory of 

the real robot and the simulation. 

 

Figure 6-41: Knee angle trajectory command vs. the simulation and the real robot trajectory for the 

trapezoidal test 

 

The error caused by the real robot and the simulator is shown in figure 6-42. 

 

Figure 6-42: Angle error resulted from simulation and real robot in the knee joint during the trapezoidal 

test 
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The knee joint shows similar error spikes (regarding to figures 6-41 and 6-42) which are also 

caused by the high edges (in 5th and 20th second) from the trajectory command. Also, the error 

during switching the phases (i.e., switching from swinging to support phase in the 25th second) 

is shown in the error diagram. 

The velocity command of the knee joint is compared with the velocity of the real robot and the 

simulator and is shown in figure 6-43. 

 

Figure 6-43: The angular velocity command, compared with the simulation and real robot of the knee 

joint during the trapezoidal test 
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6.3. Walking test 

 

In this test, the walking sequence of the robot is provided from three static poses. The poses of 

the robot are, crouch center, crouch left and crouch right. Running sequentially the crouch left 

and the crouch right and putting the center crouch in between causes a basic dynamic 

movement (walking) in the robot. After executing of each movement, the robot should delay a 

minimum time to stabilize and get the overall stationary pose of the robot. The real test shows 

the delay time with 200ms minimum (i.e., the delay time should be supposed more than 200ms 

in order of robot’s stability). 

Table 6-1 shows the joint angle values for the three poses that the robot control system should 

execute for the basic dynamic walk. The values shown in the table 6-1 are only the desired 

angles. The control system generates more detailed angles values by using interpolation (i.e., 

the angle trajectories for the joints are calculated by the control system of robot using 

interpolation).  

The angles of the joints are set by using table 6-2 (angles are relative to T-form): 

Joints Crouch left Crouch center Crouch right 

Left Right Left Right Left Right 

Hip transversal 0 0 0 0 0 0 

Hip frontal 5 -5 0 0 -5 5 

Hip lateral 30 30 25 25 30 30 

Knee lateral 10 25 25 25 25 10 

Ankle lateral 0 15 15 15 15 0 

Ankle frontal -5 5 0 0 5 -5 

Toe lateral 0 0 0 0 0 0 

Backbone frontal -5 0 5 

Backbone transversal 0 0 0 

Table 6-1: Situation of the angles of individual joints for dynamic walk 
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The crouch steps are shown in figure 6-44: 

     
 (a)                                                    (b)                                                      (c) 

Figure 6-44: Basic dynamic walk: (a) crouch left, (b) crouch center, (c) crouch right 

This type of walking requires more time for the robot to move from one point to another point, 

in comparison with human gait imitation movement. The basic dynamic walk movement is easy 

to implement, and it is also useful to evaluate the control system performance of the robot. 

The more advanced test in the robot is the human gait imitation. In this test, the robot tries to 

imitate the human gait based walking. For this imitation the robot control system uses two 

movement phases, one for left step and one for the right step. The positions between these 

two steps are calculated using the interpolation. The desired angles are shown in table 6-2.   

Joints Step left Step right 

Left Right Left Right 

Hip transversal 5 5 -5 -5 

Hip frontal 5 -20 -20 5 

Hip lateral 20 -5 -5 20 

Knee lateral 20 10 10 20 

Ankle lateral 10 15 15 15 

Ankle frontal 10 -10 -10 10 

Toe lateral 0 0 0 0 

Backbone frontal -5 5 

Backbone transversal 5 -5 

Table 6-2: Situation of angles of individual joints for human like gait 
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Figure 6-45 shows the two movement phases for the robot during human gait imitation.  

        

(a)                                                                             (b) 

Figure 6-45: Human gait imitation: (a) Step right, (b) Step left 

 
 
The walking motion (Human gait imitation) that is shown in figure 6-45 is fairly acceptable, 

despite the fact it needs more development and improvement in further works. Although a real 

human walking trajectory can be obtained by using the presented technique in this thesis (i.e., 

using image processing technique) and applied to the robot in order to have a more natural and 

stable human walking imitation. Further improvement suggestions are presented in the next 

chapter.    
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Chapter 7 
 

7. Summary and Outlook 
 

In this thesis, a new control system has been designed for a humanoid robot. The control 

system is split in individual joint controllers that communicate with the central controller 

trough a data network. Using an embedded system, the central controller is built on a system 

on chip (i.e., the system is implemented on a Virtex 4 FPGA from Xilinx which contains an 

embedded PowerPC hardware core) platform. In mobile robots, the ratio between the energy 

consumption of the robot (Robot’s wattage) and the energy resource capacity is an important 

factor. Increasing the energy resource capacity (batteries) causes more weight on the robot 

which will also increase the energy consumption of the robot. Decreasing the energy 

consumption in the robot can be performed by using embedded systems. By using embedded 

systems (e.g., SOC) in the robot, the necessary energy for data processing that a general 

purpose computer provides (i.e., personal computer) can be afforded by lowering the energy 

consumption. In addition, the reliability of the system is increased by using embedded systems 

instead of general purpose computers. 

Using the simulator for the robot is beneficial from different aspects. For example, the 

simulator eases the development and the motion analysis for the robot by creating a virtual 

robot. Many of the physical parameters (e.g., position, velocity and acceleration, total center of 

mass and moment of inertia) of the robot can be monitored during the movement of the robot.    

Comparing the results from the real robot with the simulation of the robot can be a way to 

distinguish the system failures from the algorithm failures. For instance, an error caused from 

the inverse kinematics model in the robot can cause error in the real robot’s movement 

trajectories. By using a simulation the same error will be shown. Then, by comparing the results 

and the error from the real robot and the simulation of the robot the error source can be 

differentiated. This circumstance will accelerate the development and improvement of the 

robot and the control algorithms used on it.  
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7.1. Future work 

 

Since the developed control system for the robot is a new work, some improvements can be 

applied to achieve a better performance. In this section some of these improvements and 

suggestions are presented for the future work on the control system of the robot. The 

suggestions for the improvements of the control system are presented based on the units that 

they should be applied (i.e., the suggested improvements for each unit are presented in a 

certain part).  

 

 

7.1.1. Central controller improvements 
 

This section talks about the proposed suggestions to improve the performance of the central 

controller of the robot: 

 The central controller is a busy unit in the robot. Since all the data from the units are 

collected and processed in this unit, the load of process is high. Therefore, any 

improvement in this unit is critical and remarkable. 

 The Data Acquisition Unit (DAU) takes a major load off from the main processor 

(described in chapter 5). This unit can be extended to interpret and combine the data 

received from the joint controllers. The extension could be based on hardware to 

reduce the processing load on the central processor.  

 Repeatedly operation like “the robot’s total center of mass” calculation can be 

implemented on the hardware 

 The robot motion planner is based on off-line Zero Moment Point (ZMP) (i.e., all the 

motions are preprocessed by the simulation of the robot, and are later applied to the 

robot statically). The robot cannot operate in non-ideal environments such as non-even 

terrains. To achieve this ability in the robot, using pressure sensors in the sole of the 

robot can be useful. 

 More advanced dynamic walk can be developed on the robot using the feedback data 

from the Inertial Measurement Unit (IMU), based on the “moment of inertia” of the 

“center of mass” of the robot. 

 The walking trajectory can be switched to the natural human walking trajectory. By 

using a natural human walking trajectory, the robot can walk naturally like a human.  
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7.1.2. Joint controller improvements 
 

In this section, the proposed suggestions to improve the joint controller of the robot are 

presented: 

 

 The joint controllers in the robot are working with constant controller compensator 

parameters (PID gain values). These values are extracted from tuning the joint 

controller. Since the load specification reflected to the joints is related to the overall 

pose of the robot (discussed in chapter 4); the tuning of the joint controller is very 

difficult. In this work, the values are chosen in a way to cover the maximum load 

specification variation. The control compensator parameters can be set dynamically by 

the central controller for a better performance. 

 The data bus used in the robot is based on a Serial Peripheral Interface (SPI), that can be 

switched to a standard Control Area Network (CAN 2.0A). The following change can 

provide more reliability of the data network and more robustness in the robot. Also the 

data network protocol can be switched to the standard CANopen communication 

protocol.  

 Using 3D accelerometers and axis gyro rate sensors in the joint controllers, that are 

spread in the robot can be useful for more advanced control algorithms for the robot. 

 The frontal ankle joint is based on a DC motor with maximum torque of 1Nm (using gear 

ratio). Using a stronger motor can improve the performance and the stability of the 

robot during frontal side swinging.   
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Appendix A 
 

Matlab code for Trajectory planner, direct kinematics and Inverse Kinematics calculator for one leg: 

-------------------- Trajectory planner (Elliptical trajectory) -------------------- 

Lp=20; 
Hp=16; 

  
for t=1:100 
    x(t)=Lp*cos(pi+((t-1)*pi/99)); 
    y(t)=Hp*sin((t-1)*pi/99)-52.45; 
end 

  
plot(x,y); 
xlabel('Y-Axis (cm)'); 
ylabel('Z-Axis (cm)'); 
title('Elliptical Ankle desired trajectory'); 

 

-------------------- Trajectory planner (Trapezoidal trajectory) -------------------- 

Lp=20; 
Hp=16; 
alpha=pi/6;  
for t=1:100 
    x(t)=t-1; 
    if x(t) < Hp*cos(alpha)  
       y(t)=x(t)*acot(alpha)-52.45; 
    else 
        if x(t) > 99-Hp*cos(alpha) 
            y(t)=((99-x(t))*acot(alpha))-52.45; 
        else     
            y(t)=Hp-52.45; 
        end     
    end     
end 
x=(x*Lp*2/100)-Lp; 
plot(x,y); 
%legend('Desired Ankle trajectory'); 
xlabel('Y-Axis (cm)'); 
ylabel('Z-Axis (cm)'); 
title('Trapezoidal Ankle trajectory'); 

 

-------------------- Direct kinematics function -------------------- 

function [xe,ye] = endeffector(stheta1,stheta2) 
TibiaLength = 26; 
ThighLength = 31; 

 
xe=(ThighLength*sin(stheta1))-(TibiaLength*sin(stheta2-stheta1)); 
ye=-1*((ThighLength*cos(stheta1))+(TibiaLength*cos(stheta2-stheta1))); 
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-------------------- Inverse kinematics calculator -------------------- 

TibiaLength = 26; 
ThighLength = 31; 
theta1=[1:100]; 
theta2=[1:100]; 

 
for i=1:100 
    theta1(i)=0; 
    theta2(i)=0; 
end 

 
theta1(1)=-10*(pi/180); 
theta2(1)=20*(pi/180);  

 
for i=2:100  
            theta1(i)=theta1(i-1); 
            theta2(i)=theta2(i-1); 
            J_a=ThighLength*cos(theta1(i))+TibiaLength*cos(theta1(i)-

theta2(i)); 
            J_b=-TibiaLength*cos(theta2(i)-theta1(i)); 
            J_c=-ThighLength*sin(theta1(i))-TibiaLength*sin(theta1(i)-

theta2(i)); 
            J_d=-TibiaLength*sin(theta2(i)-theta1(i)); 
            J=[J_a J_b;J_c J_d]; 
            J_inv=inv(J); 
            delta_theta=[0 0]'; 
            delta_pos=[0 0]'; 
            [xef(i),yef(i)]=endeffector(theta1(i),theta2(i)); 
            delta_pos(1) = x(i)-xef(i); 
            delta_pos(2) = yef(i)-y(i); 
            delta_theta=J_inv*delta_pos; 
            theta1(i)=theta1(i)+delta_theta(1); 
            theta2(i)=theta2(i)+delta_theta(2);           
end 

  
for i= 1:100 
    [xf(i),yf(i)]=endeffector(theta1(i),theta2(i)); 
    errx(i)=xf(i)-x(i); 
    erry(i)=yf(i)-y(i); 
    err(i)=sqrt((errx(i)^2)+(erry(i)^2)); 
end 

 
ttt=0:.05:4.95; 
plot(ttt,err); 
ylabel('Trajectory error (cm)'); 
xlabel('Time (sec)'); 
title('Swinging Ankle Trajectory error'); 
%break 

  
plot(ttt,theta1); 
ylabel('Hip Lateral joint (rad)'); 
xlabel('Time (sec)'); 
title('Hip Lateral joint time trajectory'); 
%break 
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plot(ttt,theta2); 
ylabel('Swinging knee joint (rad)'); 
xlabel('Time (sec)'); 
title('Swinging joint time trajectory'); 
%break 

  
plot(x,y,xf,yf,'r'); 
xlabel('Y-Axis (cm)'); 
ylabel('Z-Axis (cm)'); 
title('Desired and traversed trajectory'); 
legend('Desired Trajectory', 'Traversed Trajectory'); 

 

---------------------------------------------------------------------------------------------------- 
 
Image processing code used to track the patches (for finding the Traversed Trajectory) in Visual Studio 

2008 and OpenCV 2.0 library: 

#ifdef _CH_ 

#pragma package <opencv> 

#endif 

 

#ifndef _EiC 

#include "cv.h" 

#include "cxcore.h" 

#include "highgui.h" 

#include <ctype.h> 

#include <stdio.h> 

#include <math.h> 

#endif 

 

IplImage *gray=0,*img=0,*tra=0,*imgout=0; 

CvMemStorage* storage; 

IplImage *r_bin=0,*g_bin=0,*b_bin=0,*r_tr=0,*g_tr=0,*b_tr=0; 

CvSeq* circles; 

CvCapture *capture = 0; 

CvVideoWriter *cvVideoWriter; 

int temp[2][7]; 

int tempo[2][7]; 

int last_temp[2][7]; 

int dist,new_dist; 

double fps; 

 

int i,fl=1,ini=1,inw=1; 

 

int main(int argc, char** argv) 

{ 
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   capture = cvCaptureFromAVI("video.avi"); 

 

   if( !capture ) 

    { 

        fprintf(stderr,"Could not initialize capturing...\n"); 

        return -1; 

    } 

 

   img = cvQueryFrame( capture ); 

       

   fps = cvGetCaptureProperty(capture, CV_CAP_PROP_FPS); 

 

   cvVideoWriter = 

cvCreateVideoWriter("out.avi",CV_FOURCC('I','Y','U','V') 

,fps,cvSize(img->width,img->height),1); 

 

   tra = cvCreateImage(cvSize(img->width,img->height), 8, 3); 

 

   gray = cvCreateImage(cvSize(img->width,img->height), IPL_DEPTH_8U, 

1); 

 

   storage = cvCreateMemStorage(0); 

 

   r_bin = cvCreateImage( cvSize(img->width,img->height),IPL_DEPTH_8U, 

1 ); 

   g_bin = cvCreateImage( cvSize(img->width,img->height),IPL_DEPTH_8U, 

1 ); 

   b_bin = cvCreateImage( cvSize(img->width,img->height),IPL_DEPTH_8U, 

1 ); 

   r_tr = cvCreateImage( cvSize(img->width,img->height),IPL_DEPTH_8U, 

1 ); 

   g_tr = cvCreateImage( cvSize(img->width,img->height),IPL_DEPTH_8U, 

1 ); 

   b_tr = cvCreateImage( cvSize(img->width,img->height),IPL_DEPTH_8U, 

1 ); 

   imgout = cvCreateImage( cvSize(img->width,img-

>height),IPL_DEPTH_8U, img->nChannels ); 

 

   cvSplit(tra,r_tr,g_tr,b_tr,0); 

 

   cvThreshold(r_tr,r_tr,254,255,CV_THRESH_BINARY); 

   cvThreshold(g_tr,g_tr,254,255,CV_THRESH_BINARY); 

   cvThreshold(b_tr,b_tr,254,255,CV_THRESH_BINARY); 

 

   cvMerge(r_tr,g_tr,b_tr,0,tra); 
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for(;;) 

{    

   img = cvQueryFrame( capture ); 

 

   if(!img) break; 

    

   cvCvtColor(img, imgout, CV_BGR2HSV); 

   cvCvtColor(imgout, gray, CV_BGR2GRAY); 

 

   cvThreshold(gray,gray,180,255,CV_THRESH_BINARY); 

 

   cvSmooth(gray, gray, CV_GAUSSIAN, 9, 9, 0, 0); 

 

   circles = cvHoughCircles(gray, storage, CV_HOUGH_GRADIENT, 1, 20, 

200, 1, 10, 20); 

 

    for (i = 0; i < circles->total; i++)  

    { 

         float* p = (float*)cvGetSeqElem( circles, i ); 

         cvCircle( img, cvPoint(cvRound(p[0]),cvRound(p[1])),  

             3, CV_RGB(0,255,0), -1, 8, 0 ); 

       cvCircle( tra, cvPoint(cvRound(p[0]),cvRound(p[1])),  

             1, CV_RGB(0,255,0), -1, 8, 0 ); 

        

         cvCircle( img, cvPoint(cvRound(p[0]),cvRound(p[1])),  

             cvRound(p[2]), CV_RGB(255,255,0), 3, 8, 0 ); 

       printf("%d,%d\n",cvRound(p[0]),cvRound(p[1]));    

          

    } 

 

      cvSplit(img,r_bin,g_bin,b_bin,0); 

      cvSplit(tra,r_tr,g_tr,b_tr,0); 

 

      cvOr(r_bin,r_tr,r_bin,0); 

      cvOr(g_bin,g_tr,g_bin,0); 

      cvOr(b_bin,b_tr,b_bin,0); 

 

      cvMerge(r_bin,g_bin,b_bin,0,img); 

 

      cvNamedWindow( "Image", 1 ); 

      cvShowImage( "Image", img ); 

 

 

      cvWriteFrame(cvVideoWriter, img); 
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      if( cvWaitKey( 10 ) >= 0 ) 

                break; 

   } 

    

   cvReleaseCapture( &capture );    

 

   cvReleaseVideoWriter(&cvVideoWriter); 

 

   return 0; 

}  

 

 

PowerPC startup code used to upload the Linux kernel to the RAM memory written in EDK 10.1. 

 

#include "xparameters.h" 

#include "stdio.h" 

#include "xutil.h" 

#include "xgpio.h" 

#include "xuartns550_l.h" 

#include "xuartns550.h" 

#include "mmc-bitbang_ll.h" 

#include "mmc_load_image.h" 

 

 

#include "xexception_l.h" 

#include "xintc.h" 

#include "xtmrctr.h" 

 

 

#include "mii-bitbang.h" 

#include "marvell_88e1111.h" 

 

#define PHY_ADDR   1 

 

#define PHY_IDO_REG  0 

#define PHY_ID1_REG  1 

#define PHY_ID2_REG  2 

#define PHY_ID3_REG  3 

#define PHY_ID4_REG  4 
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#define PHY_ID16_REG  16 

 

#define UART_BASEADDR XPAR_UARTNS550_0_BASEADDR 

#define UART_CLOCK    XPAR_CPU_PPC405_CORE_CLOCK_FREQ_HZ 

#define UART_BAUDRATE 19200                      /* real hardware */ 

#define uOLED_DEVICE_ID  XPAR_UOLED_BASEADDR 

 

 

XGpio mii_gpio;     

XUartNs550 uoled;       /* The instance of the UART Driver */ 

typedef void (*void_fn)(void *); 

void_fn kernel_start; 

char cmdline[256]; 

 

#define TMRCTR_DEVICE_ID  XPAR_TMRCTR_0_DEVICE_ID 

#define TIMER_COUNTER_0     0 

 

XTmrCtr TimerCounter; /* The instance of the timer counter */ 

 

void progress_bar(char left){ 

   XUartNs550_SendByte(uOLED_DEVICE_ID, 0x4c); 

   XUartNs550_SendByte(uOLED_DEVICE_ID, 15+left); 

   XUartNs550_SendByte(uOLED_DEVICE_ID, 75); 

   XUartNs550_SendByte(uOLED_DEVICE_ID, 15+left); 

   XUartNs550_SendByte(uOLED_DEVICE_ID, 105); 

   XUartNs550_SendByte(uOLED_DEVICE_ID, 0); 

   XUartNs550_SendByte(uOLED_DEVICE_ID, 0x1F); 

//   while(0x06==XUartLite_RecvByte(uOLED_DEVICE_ID)); 

//   for (Delay = 0; Delay < 100000; Delay++); 

} 

 

void percent_bar(char val) 

{ 

    

   uoled_send(0x73);  

   if(val==100) 

      uoled_send(8); 

   else    
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      uoled_send(9); 

   uoled_send(7); 

   uoled_send(2); 

   uoled_send(0xBB);  

   uoled_send(0xBB); 

   if(val==100) 

      uoled_send(49);    

   if(val>9)    

      uoled_send(48+((val/10)%10)); 

   uoled_send(48+(val%10)); 

   uoled_send('%'); 

   uoled_send(0x00); 

} 

 

 

#define XPAR_SDRAM_8MX32_1_BASEADDR 0x00400000 

unsigned int *mem_start = (unsigned int *) 0x00400000; 

 

 

void dump() { 

   Xuint8 temp; 

   Xuint32 temp32; 

   int i,j,k; 

   k = 0; 

   for (i=0;i<16;i++) { 

      for (j=0;j<8;j++) { 

         temp32 = XIo_In32(XPAR_SDRAM_8MX32_1_BASEADDR+k+0x0000);  

         k+=4; 

      } 

   } 

} 

 

 

int docrc(int n) { 

   Xuint32 temp; 

   unsigned int len; 

   unsigned int *dst; 

   unsigned int *src; 
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   XTmrCtr *TmrCtrInstancePtr ; 

 

   src = (unsigned int *)XPAR_SDRAM_8MX32_1_BASEADDR; 

   temp = 0; 

   len = n<<7; 

   while(len--) 

   { 

      temp ^= *src++; 

   } 

   return temp; 

} 

 

 

 

void jump() { 

   cmdline[0]='\0'; 

   kernel_start = (void_fn)mem_start; 

   kernel_start(cmdline); 

} 

 

 

 

//void uoled_wait 

// 

void uoled_send(char uoled_dat){ 

   XUartNs550_SendByte(uOLED_DEVICE_ID, uoled_dat); 

//   while(0x06==XUartLite_RecvByte(uOLED_DEVICE_ID)); 

//   for (Delay = 0; Delay < 100000; Delay++); 

} 

 

int main (void) { 

   XStatus status; 

   static XIntc intc; 

   Xuint32 temp; 

   Xuint32 temp2; 

   u16   val, phy_id; 

   XTmrCtr *TmrCtrInstancePtr = &TimerCounter; 

   int i,j,k; 
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   unsigned int arg32; 

   unsigned int RCA; 

   int p; 

   volatile int Delay,d; 

 

   XUartNs550_SetBaud(XPAR_RS232_BASEADDR, XPAR_UARTNS550_0_CLOCK_FREQ_HZ, 

19200); 

   XUartNs550_mSetLineControlReg(XPAR_RS232_BASEADDR, XUN_LCR_8_DATA_BITS); 

    

   MiiGpio_Init(&mii_gpio); 

   marvell_phy_setvectors((PhyRead_t*)MiiGpio_PhyRead, 

                          (PhyWrite_t*)MiiGpio_PhyWrite); 

                           

   XUartNs550_SetBaud(XPAR_IMU_UNIT_BASEADDR, XPAR_UARTNS550_0_CLOCK_FREQ_HZ, 

115200); 

   XUartNs550_mSetLineControlReg(XPAR_IMU_UNIT_BASEADDR, XUN_LCR_8_DATA_BITS); 

                              

   XUartNs550_SetBaud(uOLED_DEVICE_ID, XPAR_UARTNS550_0_CLOCK_FREQ_HZ, 115200); 

   XUartNs550_mSetLineControlReg(uOLED_DEVICE_ID, XUN_LCR_8_DATA_BITS); 

   status = XUartNs550_Initialize(&uoled, uOLED_DEVICE_ID); 

   if (status != XST_SUCCESS) 

   { 

       xil_printf("\n\r uOLED Device Failed...\n\r"); 

   }       

    

   XIo_Out32(uOLED_DEVICE_ID + 0x1010,XUN_OPTION_ASSERT_RTS);  

    

   for(d=0;d<2;d++) 

   { 

      *((volatile unsigned int *) XPAR_LEDS_BASEADDR) = 0x00000001<<d; 

      for (Delay = 0; Delay < 300000; Delay++); 

   } 

    

   XUartNs550_SendByte(uOLED_DEVICE_ID, 0x55); 

   for (Delay = 0; Delay < 300000; Delay++); 

 

   XUartNs550_SendByte(uOLED_DEVICE_ID, 0x45); 

   for (Delay = 0; Delay < 300000; Delay++); 
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   uoled_send(0x53);  

   uoled_send(0x00);  

   uoled_send(0x00); 

   uoled_send(0x02); 

   uoled_send(0xBB);  

   uoled_send(0xBB); 

   uoled_send(0x01);  

   uoled_send(0x01); 

   uoled_send('S'); 

   uoled_send('t'); 

   uoled_send('a'); 

   uoled_send('r'); 

   uoled_send('t'); 

   uoled_send('i'); 

   uoled_send('n'); 

   uoled_send('g'); 

   uoled_send('.'); 

   uoled_send('.'); 

   uoled_send('.'); 

   uoled_send(0x00);  

   for (Delay = 0; Delay < 200000; Delay++); 

    

   for(d=2;d<4;d++) 

   { 

      *((volatile unsigned int *) XPAR_LEDS_BASEADDR) = 0x00000001<<d; 

      for (Delay = 0; Delay < 300000; Delay++); 

   } 

 

   xil_printf("\n\r ARCHIE O/S Loader v1.5\n\r");     

    

   uoled_send(0x53);  

   uoled_send(0x13);  

   uoled_send(0x20); 

   uoled_send(0x02); 

   uoled_send(0xAB);  

   uoled_send(0xAB); 

   uoled_send(0x01);  
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   uoled_send(0x02); 

   uoled_send('A'); 

   uoled_send('r'); 

   uoled_send('c'); 

   uoled_send('h'); 

   uoled_send('i'); 

   uoled_send('e'); 

   uoled_send('L'); 

   uoled_send('i'); 

   uoled_send('n'); 

   uoled_send('u'); 

   uoled_send('x'); 

   uoled_send(' '); 

   uoled_send('2'); 

   uoled_send('.'); 

   uoled_send('6'); 

   uoled_send(0x00);  

   for (Delay = 0; Delay < 200000; Delay++); 

    

   uoled_send(0x72);  

   uoled_send(13);  

   uoled_send(73); 

   uoled_send(145); 

   uoled_send(107);  

   uoled_send(0xC8); 

   uoled_send(0x00);  

    

   for (Delay = 0; Delay < 2000; Delay++); 

    

   uoled_send(0x4f);  

   uoled_send(1);  

   

   val = marvell_phy_detected(&mii_gpio, PHY_ADDR); 

   if (val == XFALSE) {  

       print("Mii Device not detected.\n\r"); 

   } 
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   XIo_Out32(XPAR_LEDS_BASEADDR, 0x00000001);    //init value for LED 

 

   *((volatile unsigned int *) XPAR_LEDS_BASEADDR) = 0x00; 

    

   while (1) { 

      if (CardSense()) { 

         print("\n\rCard inserted"); 

         mmc_init(); 

          

         load_boot_image(0, XPAR_SDRAM_8MX32_1_BASEADDR); 

 

         dump(); 

 

         mmc_send_command(12, 0);  

         Init_80_Clocks(); 

         print("\n\rStarting image from Memory\n\r"); 

         jump();    

         print("PANIC: Kernel returned!"); 

      } else { 

         print("Card missing...\n\r"); 

         while (!CardSense()) {} 

      } 

   }    

   

   return 0; 

} 

  

 

The Embedded system developed for the central controller main processing system in EDK. 

 
PARAMETER VERSION = 2.1.0 

 

 

 PORT RXD_0 = fpga_0_RS232_sin, DIR = I 

 PORT TXD_0 = fpga_0_RS232_sout, DIR = O 

 PORT SD_IO = fpga_0_Generic_GPIO_GPIO_IO, DIR = IO, VEC = [0:3] 

 PORT LEDs_pin = fpga_0_LEDS_GPIO_d_out, DIR = O, VEC = [0:3] 

 PORT PHY_tx_clk = fpga_0_Generic_Ethernet_10_100_PHY_tx_clk, DIR = I 

 PORT PHY_rx_clk = fpga_0_Generic_Ethernet_10_100_PHY_rx_clk, DIR = I 

 PORT PHY_crs = fpga_0_Generic_Ethernet_10_100_PHY_crs, DIR = I 

 PORT PHY_dv = fpga_0_Generic_Ethernet_10_100_PHY_dv, DIR = I 
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 PORT PHY_rx_data = fpga_0_Generic_Ethernet_10_100_PHY_rx_data, DIR = 

I, VEC = [3:0] 

 PORT PHY_col = fpga_0_Generic_Ethernet_10_100_PHY_col, DIR = I 

 PORT PHY_rx_er = fpga_0_Generic_Ethernet_10_100_PHY_rx_er, DIR = I 

 PORT PHY_tx_en = fpga_0_Generic_Ethernet_10_100_PHY_tx_en, DIR = O 

 PORT PHY_tx_data = fpga_0_Generic_Ethernet_10_100_PHY_tx_data, DIR = 

O, VEC = [3:0] 

 PORT PHY_rst_n = fpga_0_Generic_Ethernet_10_100_PHY_rst_n, DIR = O 

 PORT I2C_SCL = fpga_0_Generic_IIC_Bus_Scl, DIR = IO 

 PORT I2C_SDA = fpga_0_Generic_IIC_Bus_Sda, DIR = IO 

 PORT SPI_FLASH_SCK = fpga_0_Generic_SPI_SCK, DIR = IO 

 PORT SPI_FLASH_MOSI = fpga_0_Generic_SPI_MOSI, DIR = IO 

 PORT SPI_FLASH_MISO = fpga_0_Generic_SPI_MISO, DIR = IO 

 PORT SDRAM_A = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_Addr, DIR = O, VEC = 

[11:0] 

 PORT SDRAM_BA = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_BankAddr, DIR = O, VEC 

= [1:0] 

 PORT SDRAM_CASn = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_CAS_n, DIR = O 

 PORT SDRAM_RASn = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_RAS_n, DIR = O 

 PORT SDRAM_WEn = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_WE_n, DIR = O 

 PORT SDRAM_CKE = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_CE, DIR = O 

 PORT SDRAM_CSn = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_CS_n, DIR = O 

 PORT SDRAM_Clk = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_Clk, DIR = O 

 PORT SDRAM_DQM = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_DM, DIR = O, VEC = 

[3:0] 

 PORT SDRAM_DQ = SDRAM_DQ, DIR = IO, VEC = [31:0] 

 PORT sys_clk = dcm_clk_s, DIR = I, SIGIS = CLK, CLK_FREQ = 12000000 

 PORT sys_rst = sys_rst_s, DIR = I, RST_POLARITY = 0, SIGIS = RST 

 PORT SDRAM_A12 = net_vcc, DIR = O 

 PORT PBs = fpga_0_Push_Buttons_GPIO_in, DIR = I, VEC = [0:4] 

 PORT MII_MDC_MDIO_PIN = MII_MDC_MDIO_GPIO_GPIO_IO, DIR = IO, VEC = 

[0:1] 

 PORT PHY_tx_er = net_gnd, DIR = O 

 PORT TXOLED = uOLED_TX, DIR = O 

 PORT RXOLED = uOLED_RX, DIR = I 

 PORT MOSI1 = SPI_1_MOSI, DIR = IO 

 PORT MISO1 = SPI_1_MISO, DIR = IO 

 PORT SCLK1 = SPI_1_SCK, DIR = IO 

 PORT MOSI2 = SPI_2_MOSI, DIR = IO 

 PORT MISO2 = SPI_2_MISO, DIR = IO 

 PORT SCLK2 = SPI_2_SCK, DIR = IO 

 PORT MOSI3 = SPI_3_MOSI, DIR = IO 

 PORT MISO3 = SPI_3_MISO, DIR = IO 

 PORT SCLK3 = SPI_3_SCK, DIR = IO 

 PORT IMU_sout = IMU_unit_sout, DIR = O 

 PORT IMU_sin = IMU_unit_sin, DIR = I 

 PORT uOLED_rts = not_gate_Res, DIR = O, VEC = [0:0] 

 

 

BEGIN ppc405_virtex4 

 PARAMETER INSTANCE = ppc405_0 

 PARAMETER HW_VER = 2.01.a 



 155 

 PARAMETER C_FASTEST_PLB_CLOCK = DPLB1 

 PARAMETER C_IDCR_BASEADDR = 0b0100000000 

 PARAMETER C_IDCR_HIGHADDR = 0b0111111111 

 BUS_INTERFACE JTAGPPC = jtagppc_0_0 

 BUS_INTERFACE IPLB0 = plb 

 BUS_INTERFACE DPLB0 = plb 

 BUS_INTERFACE IPLB1 = ppc405_0_iplb1 

 BUS_INTERFACE DPLB1 = ppc405_0_dplb1 

 BUS_INTERFACE RESETPPC = ppc_reset_bus 

 PORT CPMC405CLOCK = sys_clk_s 

 PORT EICC405EXTINPUTIRQ = EICC405EXTINPUTIRQ 

END 

 

BEGIN jtagppc_cntlr 

 PARAMETER INSTANCE = jtagppc_0 

 PARAMETER HW_VER = 2.01.c 

 BUS_INTERFACE JTAGPPC0 = jtagppc_0_0 

END 

 

BEGIN plb_v46 

 PARAMETER INSTANCE = plb 

 PARAMETER C_DCR_INTFCE = 0 

 PARAMETER C_NUM_CLK_PLB2OPB_REARB = 100 

 PARAMETER HW_VER = 1.03.a 

 PORT PLB_Clk = sys_clk_s 

 PORT SYS_Rst = sys_bus_reset 

END 

 

BEGIN xps_bram_if_cntlr 

 PARAMETER INSTANCE = xps_bram_if_cntlr_1 

 PARAMETER HW_VER = 1.00.a 

 PARAMETER C_SPLB_NATIVE_DWIDTH = 64 

 PARAMETER C_BASEADDR = 0xffff8000 

 PARAMETER C_HIGHADDR = 0xffffffff 

 BUS_INTERFACE SPLB = plb 

 BUS_INTERFACE PORTA = xps_bram_if_cntlr_1_port 

END 

 

BEGIN bram_block 

 PARAMETER INSTANCE = plb_bram_if_cntlr_1_bram 

 PARAMETER HW_VER = 1.00.a 

 BUS_INTERFACE PORTA = xps_bram_if_cntlr_1_port 

END 

 

BEGIN xps_ethernetlite 

 PARAMETER INSTANCE = Generic_Ethernet_10_100 

 PARAMETER HW_VER = 2.00.b 

 PARAMETER C_SPLB_CLK_PERIOD_PS = 13888 

 PARAMETER C_BASEADDR = 0x81000000 

 PARAMETER C_HIGHADDR = 0x8100ffff 

 BUS_INTERFACE SPLB = plb 

 PORT PHY_tx_clk = fpga_0_Generic_Ethernet_10_100_PHY_tx_clk 
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 PORT PHY_rx_clk = fpga_0_Generic_Ethernet_10_100_PHY_rx_clk 

 PORT PHY_crs = fpga_0_Generic_Ethernet_10_100_PHY_crs 

 PORT PHY_dv = fpga_0_Generic_Ethernet_10_100_PHY_dv 

 PORT PHY_rx_data = fpga_0_Generic_Ethernet_10_100_PHY_rx_data 

 PORT PHY_col = fpga_0_Generic_Ethernet_10_100_PHY_col 

 PORT PHY_rx_er = fpga_0_Generic_Ethernet_10_100_PHY_rx_er 

 PORT PHY_tx_en = fpga_0_Generic_Ethernet_10_100_PHY_tx_en 

 PORT PHY_tx_data = fpga_0_Generic_Ethernet_10_100_PHY_tx_data 

 PORT PHY_rst_n = fpga_0_Generic_Ethernet_10_100_PHY_rst_n 

 PORT IP2INTC_Irpt = Generic_Ethernet_10_100_IP2INTC_Irpt 

END 

 

BEGIN xps_gpio 

 PARAMETER INSTANCE = SD 

 PARAMETER HW_VER = 1.00.a 

 PARAMETER C_ALL_INPUTS = 0 

 PARAMETER C_GPIO_WIDTH = 4 

 PARAMETER C_IS_BIDIR = 1 

 PARAMETER C_IS_DUAL = 0 

 PARAMETER C_BASEADDR = 0x81400000 

 PARAMETER C_HIGHADDR = 0x8140ffff 

 BUS_INTERFACE SPLB = plb 

 PORT GPIO_IO = fpga_0_Generic_GPIO_GPIO_IO 

END 

 

BEGIN xps_gpio 

 PARAMETER INSTANCE = LEDS 

 PARAMETER HW_VER = 1.00.a 

 PARAMETER C_GPIO_WIDTH = 4 

 PARAMETER C_IS_DUAL = 0 

 PARAMETER C_ALL_INPUTS = 0 

 PARAMETER C_IS_BIDIR = 0 

 PARAMETER C_BASEADDR = 0x81460000 

 PARAMETER C_HIGHADDR = 0x8146ffff 

 BUS_INTERFACE SPLB = plb 

 PORT GPIO_d_out = fpga_0_LEDS_GPIO_d_out 

END 

 

BEGIN xps_gpio 

 PARAMETER INSTANCE = Push_Buttons 

 PARAMETER HW_VER = 1.00.a 

 PARAMETER C_GPIO_WIDTH = 5 

 PARAMETER C_IS_DUAL = 0 

 PARAMETER C_ALL_INPUTS = 1 

 PARAMETER C_IS_BIDIR = 0 

 PARAMETER C_BASEADDR = 0x81420000 

 PARAMETER C_HIGHADDR = 0x8142ffff 

 BUS_INTERFACE SPLB = plb 

 PORT GPIO_in = fpga_0_Push_Buttons_GPIO_in 

END 

 

BEGIN xps_iic 
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 PARAMETER INSTANCE = Generic_IIC_Bus 

 PARAMETER HW_VER = 2.00.a 

 PARAMETER C_CLK_FREQ = 72000000 

 PARAMETER C_BASEADDR = 0x81600000 

 PARAMETER C_HIGHADDR = 0x8160ffff 

 BUS_INTERFACE SPLB = plb 

 PORT Scl = fpga_0_Generic_IIC_Bus_Scl 

 PORT Sda = fpga_0_Generic_IIC_Bus_Sda 

 PORT IIC2INTC_Irpt = Generic_IIC_Bus_IIC2INTC_Irpt 

END 

 

BEGIN mpmc 

 PARAMETER INSTANCE = SDR_SDRAM_CUSTOM 

 PARAMETER HW_VER = 4.03.a 

 PARAMETER C_NUM_PORTS = 2 

 PARAMETER C_MEM_PARTNO = CUSTOM 

 PARAMETER C_MEM_TYPE = SDRAM 

 PARAMETER C_MEM_CE_WIDTH = 1 

 PARAMETER C_MEM_CS_N_WIDTH = 1 

 PARAMETER C_MEM_CLK_WIDTH = 1 

 PARAMETER C_MEM_NUM_RANKS = 1 

 PARAMETER C_MEM_DATA_WIDTH = 32 

 PARAMETER C_PIM1_BASETYPE = 2 

 PARAMETER C_MPMC_CLK0_PERIOD_PS = 13888 

 PARAMETER C_MEM_PART_DATA_DEPTH = 128 

 PARAMETER C_MEM_PART_DATA_WIDTH = 32 

 PARAMETER C_MEM_PART_NUM_BANK_BITS = 2 

 PARAMETER C_MEM_PART_NUM_ROW_BITS = 12 

 PARAMETER C_MEM_PART_NUM_COL_BITS = 8 

 PARAMETER C_MEM_PART_CAS_A_FMAX = 105 

 PARAMETER C_MEM_PART_CAS_A = 3 

 PARAMETER C_MEM_PART_TRAS = 60000 

 PARAMETER C_MEM_PART_TRASMAX = 100000000 

 PARAMETER C_MEM_PART_TRC = 84000 

 PARAMETER C_MEM_PART_CAS_B_FMAX = 83 

 PARAMETER C_MEM_PART_CAS_B = 2 

 PARAMETER C_MEM_PART_TWR = 15000 

 PARAMETER C_MEM_PART_CAS_C_FMAX = 35 

 PARAMETER C_MEM_PART_CAS_C = 1 

 PARAMETER C_MEM_PART_TRRD = 19000 

 PARAMETER C_MEM_PART_TRCD = 24000 

 PARAMETER C_MEM_PART_TREFI = 7800000 

 PARAMETER C_MEM_PART_TRFC = 75000 

 PARAMETER C_MEM_PART_TRP = 24000 

 PARAMETER C_MPMC_BASEADDR = 0x00000000 

 PARAMETER C_MPMC_HIGHADDR = 0x00ffffff 

 BUS_INTERFACE SPLB0 = ppc405_0_iplb1 

 BUS_INTERFACE SPLB1 = ppc405_0_dplb1 

 PORT SDRAM_Addr = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_Addr 

 PORT SDRAM_BankAddr = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_BankAddr 

 PORT SDRAM_CAS_n = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_CAS_n 

 PORT SDRAM_RAS_n = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_RAS_n 
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 PORT SDRAM_WE_n = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_WE_n 

 PORT SDRAM_CE = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_CE 

 PORT SDRAM_CS_n = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_CS_n 

 PORT SDRAM_Clk = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_Clk 

 PORT SDRAM_DM = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_DM 

 PORT SDRAM_DQ = SDRAM_DQ 

 PORT MPMC_Clk0 = sys_clk_s 

 PORT MPMC_Clk90 = SDR_SDRAM_CUSTOM_mpmc_clk_90_s 

 PORT MPMC_Rst = sys_periph_reset 

END 

 

BEGIN xps_spi 

 PARAMETER INSTANCE = Generic_SPI 

 PARAMETER HW_VER = 2.00.b 

 PARAMETER C_FIFO_EXIST = 1 

 PARAMETER C_NUM_SS_BITS = 1 

 PARAMETER C_NUM_TRANSFER_BITS = 8 

 PARAMETER C_SCK_RATIO = 128 

 PARAMETER C_BASEADDR = 0x83c12000 

 PARAMETER C_HIGHADDR = 0x83c1207f 

 BUS_INTERFACE SPLB = plb 

 PORT SCK = fpga_0_Generic_SPI_SCK 

 PORT MOSI = fpga_0_Generic_SPI_MOSI 

 PORT MISO = fpga_0_Generic_SPI_MISO 

 PORT IP2INTC_Irpt = Generic_SPI_IP2INTC_Irpt 

END 

 

BEGIN xps_uart16550 

 PARAMETER INSTANCE = RS232 

 PARAMETER HW_VER = 2.00.b 

 PARAMETER C_IS_A_16550 = 1 

 PARAMETER C_BASEADDR = 0x83e20000 

 PARAMETER C_HIGHADDR = 0x83e2ffff 

 BUS_INTERFACE SPLB = plb 

 PORT sin = fpga_0_RS232_sin 

 PORT sout = fpga_0_RS232_sout 

 PORT ctsN = net_gnd 

 PORT IP2INTC_Irpt = RS232_IP2INTC_Irpt 

END 

 

BEGIN xps_timer 

 PARAMETER INSTANCE = xps_timer_1 

 PARAMETER HW_VER = 1.00.a 

 PARAMETER C_COUNT_WIDTH = 32 

 PARAMETER C_ONE_TIMER_ONLY = 1 

 PARAMETER C_BASEADDR = 0x83c00000 

 PARAMETER C_HIGHADDR = 0x83c0ffff 

 BUS_INTERFACE SPLB = plb 

 PORT Interrupt = xps_timer_1_Interrupt 

END 

 

BEGIN plb_v46 
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 PARAMETER INSTANCE = ppc405_0_iplb1 

 PARAMETER HW_VER = 1.03.a 

 PORT PLB_Clk = sys_clk_s 

 PORT SYS_Rst = sys_bus_reset 

END 

 

BEGIN plb_v46 

 PARAMETER INSTANCE = ppc405_0_dplb1 

 PARAMETER HW_VER = 1.03.a 

 PORT PLB_Clk = sys_clk_s 

 PORT SYS_Rst = sys_bus_reset 

END 

 

BEGIN proc_sys_reset 

 PARAMETER INSTANCE = proc_sys_reset_0 

 PARAMETER HW_VER = 2.00.a 

 PARAMETER C_EXT_RESET_HIGH = 0 

 BUS_INTERFACE RESETPPC0 = ppc_reset_bus 

 PORT Slowest_sync_clk = sys_clk_s 

 PORT Dcm_locked = net_vcc 

 PORT Ext_Reset_In = sys_rst_s 

 PORT Bus_Struct_Reset = sys_bus_reset 

 PORT Peripheral_Reset = sys_periph_reset 

END 

 

BEGIN xps_intc 

 PARAMETER INSTANCE = xps_intc_0 

 PARAMETER HW_VER = 1.00.a 

 PARAMETER C_BASEADDR = 0x81800000 

 PARAMETER C_HIGHADDR = 0x8180ffff 

 BUS_INTERFACE SPLB = plb 

 PORT Irq = EICC405EXTINPUTIRQ 

 PORT Intr = 

xps_timer_1_Interrupt&Generic_Ethernet_10_100_IP2INTC_Irpt&RS232_IP2IN

TC_Irpt&SPI_1_IP2INTC_Irpt&SPI_2_IP2INTC_Irpt&SPI_3_IP2INTC_Irpt&IMU_u

nit_IP2INTC_Irpt&uOLED_IP2INTC_Irpt&Generic_IIC_Bus_IIC2INTC_Irpt&Gene

ric_SPI_IP2INTC_Irpt 

END 

 

BEGIN dcm_module 

 PARAMETER INSTANCE = clock_72Mhz 

 PARAMETER HW_VER = 1.00.d 

 PARAMETER C_CLKOUT_PHASE_SHIFT = FIXED 

 PARAMETER C_STARTUP_WAIT = TRUE 

 PARAMETER C_CLKFX_MULTIPLY = 6 

 PARAMETER C_CLKIN_PERIOD = 83.0 

 PARAMETER C_EXT_RESET_HIGH = 0 

 PORT CLKFX = sys_clk_s 

 PORT RST = sys_rst_s 

 PORT CLKIN = dcm_clk_s 

 PORT CLKFB = clock_72Mhz_90ph_CLK270 

END 
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BEGIN dcm_module 

 PARAMETER INSTANCE = clock_72Mhz_90ph 

 PARAMETER HW_VER = 1.00.d 

 PARAMETER C_CLKOUT_PHASE_SHIFT = FIXED 

 PARAMETER C_STARTUP_WAIT = TRUE 

 PARAMETER C_PHASE_SHIFT = 90 

 PARAMETER C_CLKFX_MULTIPLY = 6 

 PARAMETER C_CLKIN_PERIOD = 83.0 

 PARAMETER C_EXT_RESET_HIGH = 0 

 PORT RST = sys_rst_s 

 PORT CLKIN = dcm_clk_s 

 PORT CLK270 = clock_72Mhz_90ph_CLK270 

 PORT CLKFX = SDR_SDRAM_CUSTOM_mpmc_clk_90_s 

END 

 

BEGIN xps_gpio 

 PARAMETER INSTANCE = MII_MDC_MDIO_GPIO 

 PARAMETER HW_VER = 1.00.a 

 PARAMETER C_GPIO_WIDTH = 2 

 PARAMETER C_BASEADDR = 0x81440000 

 PARAMETER C_HIGHADDR = 0x8144ffff 

 BUS_INTERFACE SPLB = plb 

 PORT GPIO_IO = MII_MDC_MDIO_GPIO_GPIO_IO 

END 

 

BEGIN xps_spi 

 PARAMETER INSTANCE = SPI_1 

 PARAMETER HW_VER = 2.00.b 

 PARAMETER C_NUM_TRANSFER_BITS = 16 

 PARAMETER C_FIFO_EXIST = 0 

 PARAMETER C_BASEADDR = 0x83c1c080 

 PARAMETER C_HIGHADDR = 0x83c1c0ff 

 BUS_INTERFACE SPLB = plb 

 PORT MOSI = SPI_1_MOSI 

 PORT MISO = SPI_1_MISO 

 PORT SCK = SPI_1_SCK 

 PORT IP2INTC_Irpt = SPI_1_IP2INTC_Irpt 

END 

 

BEGIN xps_spi 

 PARAMETER INSTANCE = SPI_2 

 PARAMETER HW_VER = 2.00.b 

 PARAMETER C_NUM_TRANSFER_BITS = 16 

 PARAMETER C_FIFO_EXIST = 0 

 PARAMETER C_BASEADDR = 0x83c14000 

 PARAMETER C_HIGHADDR = 0x83c1407f 

 BUS_INTERFACE SPLB = plb 

 PORT MOSI = SPI_2_MOSI 

 PORT MISO = SPI_2_MISO 

 PORT SCK = SPI_2_SCK 

 PORT IP2INTC_Irpt = SPI_2_IP2INTC_Irpt 
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END 

 

BEGIN xps_spi 

 PARAMETER INSTANCE = SPI_3 

 PARAMETER HW_VER = 2.00.b 

 PARAMETER C_NUM_TRANSFER_BITS = 16 

 PARAMETER C_FIFO_EXIST = 0 

 PARAMETER C_BASEADDR = 0x83c18000 

 PARAMETER C_HIGHADDR = 0x83c1807f 

 BUS_INTERFACE SPLB = plb 

 PORT MOSI = SPI_3_MOSI 

 PORT MISO = SPI_3_MISO 

 PORT SCK = SPI_3_SCK 

 PORT IP2INTC_Irpt = SPI_3_IP2INTC_Irpt 

END 

 

BEGIN xps_uart16550 

 PARAMETER INSTANCE = IMU_unit 

 PARAMETER HW_VER = 2.00.b 

 PARAMETER C_BASEADDR = 0x83e40000 

 PARAMETER C_HIGHADDR = 0x83e4ffff 

 BUS_INTERFACE SPLB = plb 

 PORT ctsN = net_gnd 

 PORT IP2INTC_Irpt = IMU_unit_IP2INTC_Irpt 

 PORT sout = IMU_unit_sout 

 PORT sin = IMU_unit_sin 

END 

 

BEGIN xps_uart16550 

 PARAMETER INSTANCE = uOLED 

 PARAMETER HW_VER = 2.00.b 

 PARAMETER C_BASEADDR = 0x83e00000 

 PARAMETER C_HIGHADDR = 0x83e0ffff 

 BUS_INTERFACE SPLB = plb 

 PORT ctsN = net_gnd 

 PORT sout = uOLED_TX 

 PORT sin = uOLED_RX 

 PORT IP2INTC_Irpt = uOLED_IP2INTC_Irpt 

 PORT rtsN = uOLED_rtsN 

END 

 

BEGIN util_vector_logic 

 PARAMETER INSTANCE = not_gate 

 PARAMETER HW_VER = 1.00.a 

 PARAMETER C_OPERATION = not 

 PARAMETER C_SIZE = 1 

 PORT Res = not_gate_Res 

 PORT Op1 = uOLED_rtsN 

END   
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Appendix B 
Schematic of the designed circuits in project 

The main board’s schematic 
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The Brushless motor controller’s schematic: 
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The DC motor controller’s schematic: 

 


