

Dissertation

Control System for a Humanoid Robot

A dissertation submitted in partial satisfaction of the

Requirements for the degree of

Doctor of Science

In

Electrical Engineering

Advisor:

Univ. Prof. Dr.techn. Dr. h. c. mult. Peter Kopacek

Faculty of Electrical Engineering and Information Technology

In the

Vienna University of Technology (Austria)

By:

Ahmad Byagowi

Student Number: e0727851

Vienna, March 2010

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

II

Abstract

In this thesis, the design and implementation of a control system for a humanoid robot is

presented. The control system is implemented for a teen sized humanoid robot, named Archie.

Project Archie started at the Institute of Handling Robots and Technology from Vienna

University of Technology in the year 2004. The aim of this project is to construct a robot that

can imitate human movements such as walking.

The control system is designed based on distributed computer architecture, which means that

the entire control system consist of multiple individual motion control units which in turn

control the joints (i.e., each joint has a motion controller) and communicate through a data

network with the central controller. The central controller is designed on a system-on-chip,

based on embedded systems. In this system, an embedded processor and some peripheral

hardware result a minimum system to execute a standard operating system (Real time Linux).

The joint controllers of the robot face different load properties based on the overall pose of the

robot. Since the design of the motion controllers are based on the load specification, tuning the

motion controller parameters is a necessary task. This task can be simplified by using a

simulation of the robot. The simulation will anticipate the operation of the motion controllers

in the real robot.

Finally, the control system of the real robot is tested and evaluated by the traversed

trajectories and they are compared with the simulation of the robot. The trajectories of the real

robot are taken using image processing from a video stream of the robot’s movement. The

evaluation is done by comparing the simulation errors and the error obtained from the data of

the real robot on the same test.

III

Acknowledgments

Hereby I would like to thank my supervisor, Professor Peter Kopacek, for his exceptional

patience and understanding with my questions and for giving me the opportunity to explore

one of the most interesting fields of robotics (humanoid robots). His experiences helped me to

overcome the obstacles that arose in this research, in a constructive and positive way.

In addition, I would like to thank other members of IHRT, namely Dr. Bernhard Putz and Mr.

Peter Unterkreuter for their willingness to help me.

I would also like to thank and appreciate all the students of artificial agent lab (AALAB) and

Professor Baltes from University of Manitoba (Canada) for their great help and advice during

the project. Also, I would like to thank Ms. Ureña Ramírez for helping me during the time of

writing my thesis.

Finally, my most profound thanks are to my father, Professor Zaki Byagowi who is the

inspiration for my life and my mother, Asma Hosseini who has always given me her infinite love

and devotion. I also want to thank my sister, Shima Byagowi and my brother, Ebrahim Byagowi

for their love and understanding, support and trust that they all showed me all my life.

Ahmad Byagowi

IV

Table of Contents

Abstract ... II

Acknowledgments .. III

Table of Contents ... IV

List of Acronyms .. XV

Problem Formulation .. 1

Chapter 1 ... 2

1. Introduction ... 2

1.1. Purpose of this thesis .. 5

1.2. Chapter outline .. 5

Chapter 2 ... 7

2. State of the art and literature review ... 7

2.1. Selected examples of humanoid robots ... 7

2.2. Control systems used in humanoid robots .. 9

Chapter 3 ... 13

3. The humanoid robot Archie ... 13

Chapter 4 ... 16

4. The control concept of Archie .. 16

4.1. Introduction ... 16

4.2. Control system architecture ... 16

4.3. Mechanical analysis of the humanoid robot .. 19

4.3.1. Homogeneous transformation ... 20

4.3.2. The Denavit-Hartenberg convention ... 21

4.3.3. Mechanical design of Archie ... 23

4.3.4. Deriving the kinematics of Archie .. 25

4.3.5. Calculation of the total center of mass ... 27

4.3.6. Moment of inertia calculation .. 30

4.4. Joint’s motion controller ... 33

4.4.1. Modeling and controlling the joints ... 33

V

4.4.2. Model of the joint plant ... 34

4.4.3. Inclusion of gravity force .. 36

4.4.4. Model order reduction .. 37

4.4.5. Controlling the joint .. 38

4.4.6. Derivation of the joint controller ... 40

4.4.7. Range of the moment of inertia deviation ... 41

4.4.8. Range of the gravity effect deviation ... 43

4.5. Digital controller ... 46

4.5.1. Position controller ... 49

4.6. Walking sequence .. 55

4.6.1. Gait analysis ... 55

4.6.2. Motion planning .. 57

4.6.3. Obstacle passing .. 59

4.6.4. Gait trajectory planning .. 60

4.6.5. Inverse kinematics .. 63

4.6.6. Pre-calculated inverse kinematics ... 68

Chapter 5 ... 70

5. Realization and Implementation .. 70

5.1. Introduction ... 70

5.2. Joints with RC servo motors ... 70

5.3. Brushed DC motor based joints .. 72

5.4. Brushless DC motor based joints ... 73

5.4.1. Brushless motor advanced controller ... 75

5.4.2. Absolute positioning ... 78

5.4.1. Data communication bus .. 81

5.5. Processing improvements .. 81

5.6. Communication bus interface .. 82

5.6.1. Physical layer ... 83

5.6.2. Packet structure .. 85

5.6.3. Bit rate calculation .. 86

5.7. Central controller or spinal board ... 86

VI

5.7.1. Control system architecture ... 86

5.7.2. Data acquisition unit ... 91

5.7.3. Operation system .. 92

5.7.4. Booting up mechanism of the FPGA and the Linux ... 93

5.8. Energy management ... 94

5.8.1. Batteries ... 95

5.8.2. Power supply ... 96

5.9. Normal operation flowchart ... 97

5.10. Applications on the robot ... 98

5.10.1. Motion planner .. 98

5.10.2. Joint offset assignment .. 102

5.11. Robot simulator ... 103

Chapter 6 ... 105

6. Tests and Results ... 105

6.1. Joint controller test ... 105

6.2. Multi-joint test ... 111

6.2.1. Half gait test ... 115

6.2.2. Full gait test.. 121

6.2.3. Trapezoidal test ... 126

6.3. Walking test ... 132

Chapter 7 ... 135

7. Summary and Outlook .. 135

7.1. Future work ... 136

7.1.1. Central controller improvements .. 136

7.1.2. Joint controller improvements ... 137

References .. 138

Appendix A .. 141

Appendix B .. 162

VII

Table of Figures

Figure 2-1: Latest generation of ASIMO (Honda, 2005) .. 7

Figure 2-2: Sony’s QIRO “SDR-6X” (2003) ... 8

Figure 2-3: a) GuRoo robot, b) Nao robot, c) ARMAR III ... 9

Figure 2-4: From left to right: Android, DER 01 and DATA from Star Trek ... 9

Figure 2-5: ARMAR III‘s control system... 10

Figure 2-6: The learning control scheme of the biped robot .. 11

Figure 2-7: Feet rotation around ZMP .. 12

Figure 3-1: Archie’s mechanical simulator overview .. 13

Figure 3-2: Design of Archie .. 14

Figure 3-3: Foot design and simulation for the prototyping of the foot .. 14

Figure 3-5: Archie’s simulator (simulation of the Archie’s lower body) ... 15

Figure 3-4: Denavit-Hartenberg model for the prototyping of the foot ... 15

Figure 4-1: Control system block diagram .. 17

Figure 4-2: Direct kinematics input and output data .. 18

Figure 4-3: Inverse kinematics input and output data .. 18

Figure 4-4: Humanoid control system structure ... 19

Figure 4-5: a) The origin of {A} and {B} coincides as they are defined relative to each other by a rotation

matrix. B) Both a rotation matrix and an offset vector are required to define {B}. 20

Figure 4-6: Link length and link displacement parameters (Xu WL, 1990) ... 22

Figure 4-7: Description of the mechanical design of Archie (only lower body) .. 24

Figure 4-8: Hirarchical graph or Archie’s joints ... 25

Figure 4-9 : Center of mass calculation ... 27

Figure 4-10 : Center of mass calculation with the traditional method ... 28

file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157452
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157453
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157454
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157459
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157460
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157461
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157462
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157463
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157465
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157466
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157467
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157468
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157469

VIII

Figure 4-11: Sagittal and frontal view of the links and joints of Archie .. 29

Figure 4-12: Parallel axis theorim ... 32

Figure 4-13: Control loop used for the joints .. 33

Figure 4-15: Simplified schematic of a DC motor ... 34

Figure 4-14: Velocity trajectory and position ... 34

Figure 4-16: Motor gear and the link model ... 35

Figure 4-17: Gravity effect on a link .. 36

Figure 4-18: Model of the joint plant .. 37

Figure 4-19: Simplified model of the joint plant ... 38

Figure 4-20: The control scheme of one joint ... 38

Figure 4-21: Feed forward block diagram ... 40

Figure 4-22: Single support phase .. 40

Figure 4-23: Double pendulum model .. 41

Figure 4-24: Swinging leg model ... 41

Figure 4-25: Moment of inertia in lateral hip joint on knee angle change for swinging leg 42

Figure 4-26: Gravity effect in the double pendulum .. 44

Figure 4-27: Gravity force for swinging leg on knee and hip angle changing ... 45

Figure 4-28: Step response of the control loop without compensator (simulation) 47

Figure 4-29: Root locus diagram of the control loop without compensator (simulation) 47

Figure 4-30: Root locus diagram for tuned compensated control loop (simulation) 48

Figure 4-31: Step response (maximum step size) for the PI compensator included control system

(simulation) ... 49

Figure 4-33: Step response and root locus diagram of utmost value for KP of the position controller

(simulation) ... 50

Figure 4-32: Position controller coupled to the velocity controller.. 50

Figure 4-34: Ramp response of the position controller (with KP = 131) in simulation 51

file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157471
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157472
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157474
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157475
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157476
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157477
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157478
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157479
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157480
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157481
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157482
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157483
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157485
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157492

IX

Figure 4-35: Ramp response of the position controller (with KP = 10) in simulation 51

Figure 4-36: Step response and root locus diagram of chosen value for KP of the position controller

(simulation) ... 52

Figure 4-37: Ramp response of the position controller (with KP = 56) in simulation 52

Figure 4-38: Ramp response of the real joint position controller (with KP = 56) .. 53

Figure 4-39: Position controller output in compare with position command .. 53

Figure 4-40: Velocity compare with the velocity command in position controller 54

Figure 4-41: Motor current during the joints movement ... 54

Figure 4-42: Human gait cycle... 55

Figure 4-43 : Walking sequence diagram .. 56

Figure 4-44: Swinging leg gait trajectory (lateral view) .. 57

Figure 4-45: Simplified model of swinging leg trajectory (lateral view) ... 57

Figure 4-46: Simplified model of swinging leg trajectory (frontal view) .. 58

Figure 4-47: Utmost of the gait height ... 59

Figure 4-48: Utmost of the gait length ... 60

Figure 4-49: Gait’s ankle trajectory in lateral plan ... 61

Figure 4-50: Elliptical trajectory .. 62

Figure 4-51: Trapezoidal trajectory ... 62

Figure 4-52: Swinging leg and the desired trajectory ... 64

Figure 4-53: Desired trajectory and the traversed trajectory resulted from inverse kinematics for the

ankle (simulation) ... 66

Figure 4-54: Hip lateral joint desired trajectory on time .. 66

Figure 4-55: Knee joint desired trajectory on time ... 67

Figure 4-56: Trajectory error of the swinging leg‘s ankle (simulation) ... 67

Figure 4-57: Pre-calculated inverse kinematics of the lateral hip joint .. 68

Figure 4-58: Pre-calculated inverse kinematics of the knee joint... 69

file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157501
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157502
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157503
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157504
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157505
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157506
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157507
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157508
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157511

X

Figure 5-1: RX-64 servo motor used in Archie .. 71

Figure 5-3: DC motor controller .. 72

Figure 5-2: Servo motors command packet structure .. 72

Figure 5-4: DC motor controller hardware ... 73

Figure 5-5: Brushless motor controller connected to the joint module ... 74

Figure 5-6: Elmo Whistle motion controller ... 75

Figure 5-7: Torque controller (inner loop) .. 75

Figure 5-8: Torque controller with anti windup (inner loop) .. 76

Figure 5-9: Velocity controller used for the burhsless motors ... 76

Figure 5-10: Brushless motor position controller (outer loop) ... 77

Figure 5-11: Brushless motor’s motion controller bandwidth ... 77

Figure 5-12: Components of the harmonic drive gear .. 78

Figure 5-13: AS5134 magnetic rotary encoder with the magnet on the top (Datasheet of AS5134) 79

Figure 5-14: Block diagram of AS5134 magnetic rotary encoder (from datasheet of AS5134) 79

Figure 5-15: The brushless motor based joint and the position of the encoder .. 80

Figure 5-16: Attached magnet of the rotor and hall sensor attached of the frame 81

Figure 5-17 : Data flow in optimized control process ... 82

Figure 5-18: Distributed SPI bus used to control the motors ... 83

Figure 5-19: Schematic of EIA-422 (from datasheet of SN75ALS180D) .. 84

Figure 5-20: The pin-out of the Cat-5 cable used in the robot ... 84

Figure 5-21: Daisy chain network for spreading the communication bus in the robot 85

Figure 5-22: SPI communication packet structure .. 85

Figure 5-23: Virtex 4 daughter board ... 87

Figure 5-24: Block diagram of the Virtex 4 daughter board ... 88

Figure 5-25: Spinal board .. 88

file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157520
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157521
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157523
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157524
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157525
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157526
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157527
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157528
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157534
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157535
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157539

XI

Figure 5-26: Table of peripherals embedded in the central controller’s main processor 89

Figure 5-27: The hardware design of the Virtex 4 FPGA used in the central controller (in EDK 10.1) 90

Figure 5-28: Data acquisition unit ... 91

Figure 5-29: Memory map of the central controller’s main processor .. 92

Figure 5-30: Prepared files for running the operationg system ... 92

Figure 5-31: Booting the embedded system on chip and Linux flow ... 93

Figure 5-32: Battery pack used in Archie .. 95

Figure 5-33: Flow chart for notmal operation .. 97

Figure 5-34: Screen shot of the motion planner configuration tab .. 98

Figure 5-35: Position development tab screen shot ... 99

Figure 5-36: Motion development tab screen shot .. 100

Figure 5-37: Motion development planner logging tab screen shot .. 101

Figure 5-38: Simulation of Archie standing in ‘T’ form ... 102

Figure 5-39: Simulation of Archie’s lower body .. 103

Figure 5-40: Archie’s lower body simulation in Simulink .. 104

Figure 6-1: Robot’s leg used for joint controller test .. 105

Figure 6-2: Simulink block diagram for single joint test.. 106

Figure 6-3: Extraction of the joint controller .. 107

Figure 6-4: Continuous-time system plant model .. 107

Figure 6-5: Simulation of the robot‘s leg used for joint controller test .. 108

Figure 6-6: Traversed angle trajectory by the real robot with different movement velocities 108

Figure 6-7: Angular trajectory error caused by the real robot tested with different traversing velocities

 .. 109

Figure 6-8: Traversed angle trajectory by the robot simulator, with different movement velocities 109

Figure 6-9: Angular trajectory error caused by the robot simulation tested with different traversing

velocities ... 110

file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157545
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157547
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157548
file:///C:/Users/Ahmad/Desktop/Dissertation%20.docx%23_Toc255157550

XII

Figure 6-10: The patch used for tracking the traversed trajectory ... 111

Figure 6-11: Camera placed in one meter lateral distance of the robot’s leg for patch tracking 111

Figure 6-12: Patch detection result used for finding the traversed trajectory ... 112

Figure 6-13: Traversed trajectories resulted from image processing patch detection 112

Figure 6-14: Detected coordinates from the patches tracking row data (consists from X and Y,

repeatedly) .. 113

Figure 6-15: Simulink diagram of Archie’s swinging leg ... 114

Figure 6-16: Single leg simulation ... 115

Figure 6-17: Swinging leg’s ankle traversed trajectory from lateral view .. 115

Figure 6-18: Traversed trajectory by the real robot, simulation vs. the trajectory command for the half

gait .. 116

Figure 6-19: Position error of the traversed trajectory by the real robot and the simulation for half gait

 .. 116

Figure 6-20: Hip joint angle trajectory command, simulation and the real robot for half gait test 117

Figure 6-21: Angle error resulted from simulation and real robot in the hip joint during the half gait test

 .. 118

Figure 6-22: The velocity command compared with the simulation and real robot of the hip joint during

the half gait test .. 118

Figure 6-23: Knee angle trajectory command vs. the simulation and the real robot trajectory for half gait

 .. 119

Figure 6-24: Angle error resulted from simulation and real robot in the knee joint during the half gait

test .. 119

Figure 6-25: The angular velocity command compared with the simulation and real robot of the knee

joint during half gait test ... 120

Figure 6-26: Full gait traversed trajectory resulted from patch tracking ... 121

Figure 6-27: Trajectory command, traversed trajectory of the robot and the simulator for the full gait 121

Figure 6-28: Position error of the robot’s traversed trajectory and the simulator trajectory of the full gait

 .. 122

XIII

Figure 6-29: Hip joint angle command vs. the simulation and the real robot for the full gait movement

 .. 122

Figure 6-30: Angle error resulted from simulation and real robot in the hip joint during the full gait test

 .. 123

Figure 6-31: The angular velocity command compared with the simulation and real robot of the hip joint

during the full gait test .. 123

Figure 6-32: Knee joint angle trajectory command, simulation and the real robot for the full gait 124

Figure 6-33: Angle error resulted from simulation and real robot in the knee joint during the full gait test

 .. 124

Figure 6-34: The angular velocity command compared with the simulation and real robot of the hip joint

during the full gait test .. 125

Figure 6-35: Trapezoidal traversed trajectory resulted from patch tracking ... 126

Figure 6-36: Trajectory command, traversed trajectory of the robot and the simulator for the trapezoidal

 .. 127

Figure 6-37: Position error of the robot traversed trajectory and the simulator trajectory by trapezoidal

test .. 127

Figure 6-38: Hip joint angle trajectory command, simulation and the real robot for the trapezoidal test

 .. 128

Figure 6-39: Angle error resulted from simulation and real robot in the hip joint during the trapezoidal

test .. 129

Figure 6-40: The angular velocity command compared with the simulation and real robot of the hip joint

during the trapezoidal test ... 129

Figure 6-41: Knee angle trajectory command vs. the simulation and the real robot trajectory for the

trapezoidal test ... 130

Figure 6-42: Angle error resulted from simulation and real robot in the knee joint during the trapezoidal

test .. 130

Figure 6-43: The angular velocity command, compared with the simulation and real robot of the knee

joint during the trapezoidal test ... 131

Figure 6-44: Basic dynamic walk: (a) crouch left, (b) crouch center, (c) crouch right 133

Figure 6-45: Human gait imitation: (a) Step right, (b) Step left .. 134

XIV

List of Tables

Table 4-1: Denavit-Hartenberg parameters for Archie ... 26

Table 4-2: Link’s masses and position of center of mass for each joint based on its coordinate 29

Table 4-3: Values of principal axes corresponding to every link of the robot .. 31

Table 4-4: Reflected moment of inertia range for each joint during swinging and supporting phase 43

Table 5-1: Specification table of RX-64 ... 71

Table 5-2: Output parameters resulted from the constructed joint .. 74

Table 5-3: Components in the robot and the required voltage and maximum wattage 94

Table 6-1: Situation of the angles of individual joints for dynamic walk .. 132

Table 6-2: Situation of angles of individual joints for human like gait ... 133

XV

List of Acronyms

ASIC -Application specific integrated circuit
ASIMO -Advanced step in innovation mobility
BCS -Base coordinate system
BLDC -Brushless direct current motor
CM -Center of mass
CP -Center of pressure
CG -Center of gravity
DAU -Data acquisition unit
DH -Denavit Hartenberg
DOF -Degrees of freedom
DPRAM -Dual port random access memory
DSP -Digital signal processor
DSP -Double support phase
EDK -Embedded development kit
ENC -Encoder
FPGA -Fundamental programmable gate array
GCM -Ground projection of center of mass
GuRoo -Grossly underfunded Roo
SPSA -Sole pressure sensor array
HT -Homogeneous transformation
IHRT -Institute of handling robotics and technology
IMU -Inertial measurement unit
IrDA -Infrared Data Association
LAN -Local area network
MOSFET -Metal oxide semiconductor field effect transistor
OS -Operating system
PCB -Printed circuit board
PLB -Processor local bus
PWM -Pulse width modulation
RAM -Random access memory
RAMDAC -Random access memory digital-to-analog converter
RT-OS -Real time operating system
SD -Secured digital
SDR -Sony dream robot
SPI -Serial peripheral interface
SSP -Single support phase
USB -Universal serial bus
VGA -Video graphic adapter
VHDL -Very high integrated hardware description language
ZMP -Zero moment point

XVI

 1

Problem Formulation

This thesis will establish a control system for a humanoid robot. Humanoid robots are

sophisticated machines, because of the high degree of freedom. Controlling a humanoid robot

requires mechanical, electrical, control and software knowledge. The control system entails

mechanical perception of the system (humanoid robot).

The control system which includes the hardware (mostly electronic based hardware) and the

software algorithm should provide the robot the ability to imitate human walking. Furthermore

the hardware should give appropriate processing resource and performance for the control

algorithm used in the robot. In addition, the hardware should be optimized to reduce the

power consumption of the system which is important in mobile robots (due to the energy

source limitations).

As a result of the high processing load on the control system of the robot, appropriate system

architecture should be selected in order to enhance the processing performance. The selected

Architecture should provide enough reliability and durability. By using a distributed system with

a central controller, the robot could have the flexibility and the ability for further developments

and extensions.

Since a humanoid robot is a complex machine, its development is a fairly difficult task. A

simulator can be used to ease the development task. Moreover, using a simulator could reduce

the development time as well as cost (e.g., reducing system impairments caused during

development failures).

To evaluate the robot’s performance in real world; for instance, the movement trajectories a

solution should be taken such that it provides enough accuracy and reliability. Image processing

could be the simple and reliable method as an approach for solving this problem.

By adding sole pressure sensors to the robot’s feet, it should have the possibility to imitate

natural human walk, and the ability to walk on non-even terrains in future works.

 2

Chapter 1

1. Introduction

“We can’t solve problems by using the same kind of thinking we used when we created them.”

- Albert Einstein

Many aspects of modern life involve the use of intelligent machines capable of operating under

dynamic interaction with their environment. In view of this, the field of biped locomotion is of

special interest when human-like robot is concerned. Currently, research on humanoid robots

and biped locomotion is one of the most exciting topics in the field of robotics. The field of

robotics is one of the most innovative in the last decade (D. Katic and M. Vukobratovic, 2004).

A humanoid robot is a robot with its overall appearance based on that of the human body,

allowing interaction with made-for-human tools or environments. In general, humanoid robots

have a torso with a head, two arms and two legs, although some types of humanoid robots may

model only part of the body, for instance, from the waist up. Some humanoid robots may also

have a face, with eyes and mouth. Androids are humanoid robots built to aesthetically

resemble a human.

Nowadays, humanoid robots are often shown in science fiction movies (e.g. I-robot, Ironman

and AI), although those robots are far from being able to use in reality. There are a wide range

of applications which can be carried out by humanoid robots and not only the ones that are

commonly presented by the motion picture industry. For example, humanoid robots can also

be used in detecting land mines (A. Byagowi & P. Kopacek, 2009).

In this work, implementation of a relatively low cost control system for a humanoid robot with

lower energy consumption is presented. Moreover, this project introduces novel methods

which are a combination of mechanics and electronics. The robot’s control system is based on

distributed computer architecture. A distributed computer consists of multiple computers

(controller units) that communicate through a data network with a central controller. The

computers interact with each other in order to achieve a common goal (Andrews, Gregory R.

2000).

Using a distributed computer system gives the robot the ability to have real time reactions. In

this approach, the control system is divided into levels to break down the heavy processing load

besides of increasing the flexibility and reliability of the system. In a distributed computer a

problem is divided into many tasks, each of which is solved by one computer (Godfrey C., 2002).

 3

Each joint controller of the robot entails an individual micro controller (Infineon, XC164, 2001).

The controller will monitor the motion of the joint (e.g. torque, velocity and the position). Using

the data network of the robot, all the individual controllers communicate with the central

controller which in turn collects all the data from the joints and makes the calculations that are

used to balance the robot. Then, it sends back the appropriate commands to the joint

controllers. The central controller (spinal board) is similar to the brain’s cerebellum (parts of the

vertebrate’s brain that controls the balance).

Humanoid walking algorithms can be distinguished as being either static or dynamic. The

distinction is made depending on the location of the centre of mass during motion. For static

walking, the centre of mass is always located above a polygon created by external boundaries

of the leg base. The robot will remain statically stable if it is paused at any time during its

motion.

Dynamic walking is generally much faster than static walking. In dynamic walking, inertia effects

are considered, and it is possible for the Centre of Mass (CM) to be outside the supporting area.

Human walking patterns are considered to be dynamic. Traditionally, robots have maintained

stability throughout their motion by maintaining at least three points of contact with the

ground at all time. Since humanoid robots have only up to two points of contact with the

ground, they must maintain stability through alternative means.

The center of mass for a rigid body is a fixed point which is located near or inside the object.

When two objects are connected to each other using a hinge, the total CM will be the resultant

of the location, the mass and the angle between (angle of the hinge) the CM of those two

objects. The following criterion can be extended to multiple objects and joints. A humanoid

robot can be aimed as multiple rigid bodies (links) connected to each other using some hinges

(joints).

To find the total center of mass in a humanoid, first the center of mass for each link of the

robot has to be relocated in a Base Coordinate System (BSC). The direct kinematics model of

the robot is used for this purpose. This model yields a series of transformation matrices which

convert relative positions from one coordinate system to another coordinate system and finally

to the BCS. To formulate the following conversion chain, the Denavit–Hartenberg (DH) notation

is used. This one provides the mathematical calculations for the relocation positions from one

coordinate system to the other from multiple conversion matrixes.

A commonly used convention to select the frames of reference in robotics applications is the

Denavit-Hartenberg convention (Jaques Denavit, Richard S. Hartenberg, 1989). In this

convention, each homogeneous transformation is represented as a product of four basic

 4

transformations. The common normal between two lines was the main geometric concept that

allowed Denavit-Hartenberg to find a minimal representation.

The ground projection of the CM (which is resembled using center of pressure) should be above

a supporting polygon in order to save the balance for the robot in static walk. The support

polygon changes when the points in touch with the ground are modified. During walking, the

points in touch of the robot are changing based on the walking phases. Walking consists of two

major phases, Single Support Phase (SSP) and Double Support Phase (DSP).

The central controller generates the movements using interpolation and controls the balance of

the robot. To maintain the balance in the robot, the center of mass has to be calculated.

Furthermore, the joints have to be moved in a suitable way to shift the ground projection of the

CM in the support polygon. This one is in turn related to the phase that the robot is in at some

specific time.

In a mobile robot like a humanoid, using optimized hardware that has minimal energy

consumption is a critical requirement. The main reason to optimize the hardware’s energy

consumption is that the battery is a limited energy source. One of the other issues that should

be in mind in the design of a humanoid robot is the physical space limit for the control

hardware and other possible accessories.

Communication with all the entire individual controllers is a time consuming task that needs

processing resources. Using a custom hardware design improves the performance of the

system. In this work, a customized hardware, named Data Acquisition Unit (DAU) is presented.

The DAU sends data to the individual controllers on the data network. After that, the data from

the individual controllers will be captured and collected by the DAU in order to be used by the

central controller. The entire process will be executed by the first controller consequentially

(i.e., one by one until the last one). All the sent and received data will be exchanged using a

Dual-Port RAM (DPRAM) with the main controller (main controller bus), to prevent any

interference with the main system (the central controller’s processor).

The DAU is implemented on a Fundamental Programmable Gate Array (FPGA) using Very high

integrated Hardware Description Language (VHDL). The FPGA contains a hardcore embedded

processor (Xilinx Virtex 4, PowerPC 405) which is also used to run the operating system

(Embedded real time Linux) to control the entire robot.

 5

1.1. Purpose of this thesis

The purpose of this project is to design and implement a control system for Archie, a tall

humanoid robot. The control system which is presented in this project is designed based on

embedded systems. Using an embedded system to control a humanoid robot can be beneficial

from different aspects. Reducing energy consumption, decreasing the hardware price and

increasing the reliability of the control system are some of the benefits of using an embedded

system. In this work the algorithms used to balance a humanoid robot during walking are

described, then a derivation of the algorithms are provided for the robot that is used in this

project (Archie). In addition to the robot, as simulator is performed such that predicts the

movement of the real robot in a simulation environment. The simulation can be either reduced

or extended based on certain tests.

Finally, some practical tests are performed on the real robot as well as its simulation. The

results obtained from the test on the real robot are compared with the simulation of the robot

in order to perform a system evaluation.

1.2. Chapter outline

This thesis is divided into seven chapters. A brief description of the contents of each chapter is

as follows:

Chapter 1 – Introduction of the work and the control algorithms used in this robot.

Chapter 2 – Introduces relevant information within the field of study. The previous works on

other humanoids around the world are introduced.

Chapter 3 –Brief introduction about the humanoid robot Archie and some specifications of the

robot; the height, the weight, minimum operation time that the robot can have per each full

charging, walking speed and the degree of freedom.

 6

Chapter 4 – Presents the control algorithms used in robot in order to give the ability to walk by

saving the balance of the robot. It also talks about the control system used in the joints of the

robot and the motion generator algorithm for imitating human like walking.

Chapter 5 – Describes the hardware implementation of the control system designed for the

robot. Also it described the communication protocol used in the data bus of the robot beside

the physical layer specification. At the end the simulator used for the robot is introduced.

Chapter 6 – Shows the test results for the control system of the robot in three levels; first one

joint controller is tested individually, then the joint controllers are combined for a single leg and

are tested as the second level and finally in the third level the whole robot is tested for walking.

Chapter 7 – Discusses the conclusion of the work and some ideas for the future developments

on the robot. The suggestions are presented for each part of the robot separately.

Appendix A – Matlab codes (Direct Kinematics, Inverse Kinematics and Trajectory planner),

Image processing code for patch detection and the Embedded Development Kit (EDK) code for

the spinal board.

Appendix B – Schematics of the DC motor driver, Brushless motor driver and the spinal board
circuits.

 7

Chapter 2

2. State of the art and literature review

This chapter introduces a background on the development of humanoid robots and the

methods used in their control systems. To begin with, some famous humanoid robots will be

introduced, and then the control systems used in this type of robots will be briefly described.

2.1. Selected examples of humanoid robots

Humanoid robot development is a relatively new field in robotics research and few results are

publicly recognized. The most publicized humanoid robots are Honda’s ASIMO, Sony’s QRIO

“SDR-6X”, GuRoo, Nao, and Android.

Honda’s ASIMO robot (figure 2-1) is 120cm in height and was originally conceived to function in

an actual living environment. It has the ability to walk continuously and smoothly while

changing direction, and can travel up to 0.44m/s. By predicting its next movement in real time,

ASIMO shifts its centre of gravity in anticipation of its path. For balance control, ASIMO uses

gyroscopic and accelerative sensors in the torso, as well as 6-axis foot area sensors.

Figure 2-1: Latest generation of ASIMO (Honda, 2005)

 8

Sony’s QRIO “SDR-6X” (figure 2-2) is a small biped robot that measures 50 cm in height. It is

able to walk at a velocity of 0.33m/s as well as to demonstrate basic movements such as

walking and changing direction, standing up, balancing on one leg, kicking a ball and dancing.

Their movements allow it to walk on non-even surfaces and in the presence of external forces.

To get feedback regarding posture and position control, it uses acceleration sensors in the torso

and four pressure sensors on each foot.

Figure 2-2: Sony‟s QIRO “SDR-6X” (2003)

GuRoo (figure 2-3a) is 120cm in height and it is completely autonomous. It is used for research

in different areas including dynamic stability, human-robot interaction and machine learning.

Nao (shown in figure 2-3b) is an autonomous, programmable and medium-sized humanoid

robot, created for companionship. Nao RoboCup Edition has 21 Degree of Freedom (DOF) while

Nao Academics Edition has 25 DOF since is built with two hands with gripping abilities. Nao

features a powerful multimedia system (four microphones, two amplified speakers, two

cameras) for text-to-speech synthesis, sound localization or facial and shape recognition

amongst various other abilities.

GuRoo and Nao both compete in the annual RoboCup contest. The goal of this competition is to

foster the development of robotics through an annual soccer competition. The main goal of the

RoboCup federation is to develop a team composed only by autonomous humanoid robots to

play against and beat the human team that wins the World Cup in the year 2050.

 9

Figure 2-3: a) GuRoo robot, b) Nao robot, c) ARMAR III

An Android is a robot or synthetic organism designed to look and act like a human. Androids

have been mainly an element of science fiction, yet they have increasingly become a reality in

Japan and South Korea. The two countries are in a heated competition to make them

commercial success in the global market and have developed a handful of successful androids

so far. In figure 2-4 some examples of android robots are depicted.

Figure 2-4: From left to right: Android, DER 01 and DATA from Star Trek

2.2. Control systems used in humanoid robots

Most of the humanoid robots are based on hierarchical distributed control systems. In this type

of controlling, the system (robot) is organized and divided into local parts controlled using

 10

individual controllers. All of the individual controllers are communicated with the main

controller to unify their functionality in order to reach a certain purpose for the whole robot.

All the control systems in the humanoid robots are designed with the purpose of saving the

balance of the robot and giving the robot the ability to walk and to be standing stable on two

legs (sometimes only on one leg). The control algorithms used in this type of robots have some

varieties, although they are based on the same principles. In all the control algorithms used in

different humanoid robots, a direct kinematics model is used to find the total center of mass

and moment of inertia of the robot. Furthermore, the inverse kinematics model is used to apply

the changes on the robot. In chapter 4, these models are described with more detail.

For instance, in the robot ARMAR III (T. Asfour et al., 2008) the control architecture consists of

three levels: the micro-controller level, the PC level and the PC-network level. The micro-

controllers are used to control the motors and establish the communication with a standard PC

as a central controller. The central controller uses RT-Linux as operating system. The

communication between the micro-controllers and the central controller uses a standard CAN-

Bus. The motors (joints) are controlled by PID controller, where it is done independently for

each joint.

In the robot ARMAR III, a fuzzy-like module is implemented which sets the parameters of a

classical position joint controller depending on the configuration of the overall pose of the

robot. Figure 2-5 shows the block diagram of the control system for the ARMAR III.

Inverse Kinematics

Desired

position
Ʃ Set of Parameter 1

Position Controller

Set of Parameter n

Robot

Arm

Fuzzy

Module

Index

Disturbance

Position sensors

Figure 2-5: ARMAR III„s control system

-

+

Output

position

 11

Some of the biped robots use Reinforcement learning to control the joints of the robot (Shouyi

Wang et al., 2006). This approach relies on the concept of dynamic walking. Dynamic walk is

simpler than the static walk. Moreover, dynamic walk can achieve a more natural gait and less

energy consumption. Figure 2-6 shows the block diagram for the control system based on

reinforcement learning.

More advanced control systems for humanoid robots attempt to reproduce and execute the

same posture control operation carried out by real humans (T. Takenaka, 2006). One of these

robots is the ASIMO from Honda.

The robot ASIMO uses macro stabilization control to avoid tipping over either during walking or

in standing position. The macro stabilization control system tries to realize the same posture

control operation undertaken by a human being. The resultant force of gravity and inertia force

are called the total inertia force. The point where the line of action of the total inertia force

intersects with the ground surface is called the Zero Moment Point (ZMP). The point where the

ground reaction force acts is known as the Center of Pressure (CP).

State Machine Ʃ

Learning controller

Failure detection

PD controller Biped robot

𝜙𝑎𝑐𝑡

𝜙𝑑

+

+

+

𝜙𝑟

𝜙 𝑟

𝜙𝑠𝑡

𝜏

𝜔𝑠𝑡𝑜

Foot contact signal Foot contact signal

Figure 2-6: The learning control scheme of the biped robot

 12

The Model ZMP Control uses shifting the desired ZMP to an appropriate position to prevent the

robot from tipping over. For example, in case that the robot is in danger of falling forward the

model ZMP control accelerates the robot’s upper body trajectory more strongly to forward

than the supposed acceleration. This reaction results the ZMP to shift backward from the

original desired ZMP to an appropriate point behind the actual CP and recovers the moment of

the robot (i.e., the Model ZMP Control restores the posture of the robot by intentionally

unbalancing the desired walking pattern) (T. Takenaka, 2006).

Desired ZMP
Actual CP Controlled angle of rotation

Restoring

moment

Figure 2-7: Feet rotation around ZMP

 13

Chapter 3

3. The humanoid robot Archie

At the Institute of Handling Robotics and Technology (IHRT) of Vienna University of Technology

a humanoid robot project is running since 2004. The main purpose is developing and

implementing a human like robot (platform). The platform is thought to be of human size, low

cost, modular and to perform a natural looking straight gait with the following features:

Height: 1500 mm

Weight: less than 20kg

Operating time: minimum 60 minutes

Walking speed: minimum 0.5 m/s

Degrees of freedom: 29

On board intelligence

Dynamic Walking (ZMP)

Hierarchical, decentralized control structure

Reasonable low price – try to use commercially available standard components.

Figure 3-1: Archie‟s mechanical simulator overview

 14

Figure 3-2: Design of Archie

Figure 3-3: Foot design and simulation for the prototyping of the foot

 15

Archie has 29 servo motors in its body that move its torso, arms, hands, legs, feet, ankles and
other moving parts. Archie manages a series of servo motors to control each kind of movement.

Archie is powered by a rechargeable, 29.4 volt lithium ion (Li-ION) battery that lasts for
about one and half hour on a single charge. The battery is stored in Archie's flank (left and right)
and weighs about three kilograms. Archie's battery takes around three hours to fully charge.
Users can charge the battery onboard Archie through a power. During battery charging the
robot cannot be used.

The simulator used for the robot is based on the SimMechanics toolbox of Matlab-Simulink.

Figure 3-5 illustrates a screen shot of the simulator of the lower body of the robot.

Figure 3-5: Archie‟s simulator (simulation of the Archie‟s lower body)

𝑦2 , 𝑥2

𝑧1 ,𝑦2
𝑥1 , 𝑧2

𝑧0

𝑥0

𝑦0

𝑑2

𝑑6

𝑙

𝑦3

𝑥1

𝑧3

𝑥3

𝑡

𝑎3

𝑧4

𝑦4

𝑥4

𝑑1 𝑥5

𝑦5

𝑧5

𝑧6

𝑥6 𝑦6

Figure 3-4: Denavit-Hartenberg model for the prototyping of the foot

http://electronics.howstuffworks.com/lithium-ion-battery.htm

 16

Chapter 4

4. The control concept of Archie

4.1. Introduction

This chapter presents a description of the control system of Archie. The control system in

Archie is designed based on the purposes discussed in this chapter. Since in all robotic control

systems, mechanical analysis is an important topic, a part of this chapter is about the

mechanical analysis of Archie. Archie’s control system is based on the distributed architecture.

The control system consists of two levels, joint controllers in low level and a central controller

in high level. The joint controllers are used to control the motion of each joint and are

connected with the central controller through a data network. The central controller

synchronizes all the joint controllers, calculates the center of mass and tries to locate it in a

position above the supporting polygon to keep the balance of the robot.

In the torso of the robot, an Inertial Measurement Unit (IMU) is mounted to provide a better

control performance. Other instruments such as Sole Pressure Sensor Array (SPSA) may also be

used in the feet of the robot to provide sufficient control and ability to walk in non-even

terrains.

4.2. Control system architecture

The control system used in this robot is based on the distributed architecture. In this structure,

each joint is controlled individually by a motion controller which in turn communicates with the

central controller via a data network. The central controller is responsible for doing the

following tasks:

 Energy management

 Multitask management

 System failure detection

 17

 Performing received commands

 Synchronizing the joint controllers

 Saving the overall balance of the robot

 Calculating the location of the supporting polygon

 Preventing mechanical collision in manual movements

 Updating the desired positions resulted from calculation with the joints

 Splitting general commands into joint commands (for combinational movements)

In figure 4-1 the block diagram of the control system is illustrated. Due to the system demands,

the control system should provide appropriate control capabilities. First of all, the control

system should have comprehensive information about the mechanical structure such as mass,

length and moment of inertia tensor for each link of the robot. The control system uses that

information to make a direct kinematics model (figure 4-2) of the robot. The model is then used

by the central controller to calculate the total center of mass before issuing appropriate

commands and performing movements.

Power Management

RS 485
RS232

LAN

Serial Peripheral interface (SPI)

Central controller

Lower body

Joint #1

Controller

Motor Enc

Joint #2

Controller

s

Motor Enc

Joint #16

Controller

s

Motor Enc

Sole Pressure

sensor array

Upper body
Servo #1 Servo #2 Servo #14

High level control

Figure 4-1: Control system block diagram

Left Right

IMU

Battery

 18

The direct kinematics provides some parameters such as moment of inertia, position of the

joints and links, Euler angles (roll, pitch and yaw) and the position of center of mass. In order to

control the humanoid robot, these parameters should be controlled. Base on the control

method of the parameters (i.e., simple control loops or complex control method) the output

should be applied appropriately to move the parameter to the desired value. The output of the

control loop can be applied using several methods one of which is the inverse kinematics.

Figure 4-3 shows a block diagram for the inverse kinematics and the data exchange.

The humanoid robot is a rigid multi-body system consists of a set of rigid object, called joints
and links.

Resultant positions

from Direct Kinematics

Roll, Pitch and

Yaw angles

Quaternion Jacobian

matrix

Joint

constraints

Output

Input
Inverse kinematics model of the robot

Desired position

and orientation

Joints angles

Figure 4-3: Inverse kinematics input and output data

Output

Input

Length of

the link

Initial theta

angles

Mass of

the link

Center of mass

for each link

Moment of

inertia tensor

Direct kinematics model of the robot

Roll, Pitch and

Yaw angles

Position of the

links and joints

Position of

center of mass

Moment of

inertia

Figure 4-2: Direct kinematics input and output data

 19

4.3. Mechanical analysis of the humanoid robot

To resemble the links of the robot in the space, the representation of position and orientation is

necessary. Resembling a revolute joint with a single Degree of Freedom (DOF) can be done by

using a single real number that is the angle of the rotation on that link, relative to an arbitrary

zero point (Homing point).

Mechanical analysis for the humanoid robot involves finding the direct kinematics and finding

the total center of mass as well as the moment of inertia for the joints. To find the total center

of mass in the robot, first the center of mass of each joint is considered. Then the angle of

rotation in the joints and the mass of each link is used to calculate the total center of mass. The

center of inertia for each joint in the robot is calculated based on the mathematical methods

that are presented in this chapter. Following methods and calculations are derived for the

humanoid robot and are used in the control system in the robot.

Path planning

Gait planning Robot Database

Inverse kinematics

Direct kinematic Real robot

Center of

mass

Moment of

inertia

Center of

pressure

Roll, pitch and yaw

(from the IMU)

Roll, pitch and yaw

(from kinematic)

Control unit

Figure 4-4: Humanoid control system structure

Ʃ

 20

4.3.1. Homogeneous transformation

Regarding a 3D coordinate system {A}, any link L can be located by a [3 x 1] matrix named

position vector. To find the orientation of a link, a coordinate system {B} is attached to the link

in a known way. The orientation of {B} relative to the reference frame {A} is a linear

transformation which is called the rotation matrix or direct cosine matrix (DCM). The rotation

matrix transforming from {B} coordinates to {A} coordinates is written as 𝑅𝐵
𝐴 (J.J Craig, 2003):

𝑅𝐵
𝐴:𝐴 ← 𝐵 Equation 4-1

𝐿𝐴 = 𝑅𝐵
𝐴 .𝑃𝐵 Equation 4-2

𝑃𝐵 is the link vector L seen from frame {B} and 𝑃𝐴 is the link vector L seen from frame {A}.

If the three principal axes of {B} are described by a set of orthogonal unit vectors 𝒊 , 𝑗 and 𝒌 ,

then the rotation matrix 𝑅𝐵
𝐴 can be written as:

𝑅𝐵
𝐴 = [𝑖 𝐴 𝑗 𝐴 𝑘 𝐴] Equation 4-3

By using the rotation matrix presented in equation 4-1, the origins of the frame {A} and {B}

coincide as illustrated in figure 4-5a, where the frames {A} and {B} are attached to the same

link. To attach the frame {B} to the other link (i.e. {c}), two pieces of information are required to

define its relative coordinates to the frame {A}; the rotation matrix 𝑅𝐵
𝐴 and the vector 𝐿𝐵(𝑜𝑟𝑔)

𝐴

pointing to the origin of {b} from frame {A} (J.J Craig, 2003):

𝐿𝐴 = 𝑅𝐵
𝐴 . 𝐿𝐵 + 𝐿𝐵(𝑜𝑟𝑔)

𝐴
 Equation 4-4

Figure 4-5b shows, how this transformation can be applied to several frames.

Figure 4-5: a) The origin of {A} and {B} coincides as they are defined relative to each other by a rotation
matrix. B) Both a rotation matrix and an offset vector are required to define {B}.

In figure 4-5 the frame {A} is defined relative to {B}, while frame {B} is defined relative to {C}.

 21

For the sake of simplicity, Equation (4.3) is written as a single matrix operation.

⋮
𝐿𝐴

⋮
1

 =

⋯ ⋮ ⋯
⋯ 𝑅𝐵

𝐴 ⋯
⋯ ⋮ …

⋮
𝐿𝐵(𝑜𝑟𝑔)
𝐴

⋮
0 0 0 1

 Equation 4-5

The 4 x 4 matrix in Equation (4.4) is called a homogeneous transform. This transformation

matrix T includes all the necessary information about the position and orientation of the

reference frame with respect to another frame. An abbreviation of equation 4-4 can be written

as it is shown in equation 4-6.

𝐴𝑝 = 𝑇𝐵
𝐴 .𝐵𝑝 Equation 4-6

Without indicating p is a [4 x 1] vector.

4.3.2. The Denavit-Hartenberg convention

The Denavit-Hartenberg notation is for describing a chain of limbs in a robot. This notation

states that the kinematics of a robot can be represented by four parameters for each link: two

to describe the link itself and two to describe its connections to the next link. A link is defined as

a rigid body which defines the relationship of joint axes of the robot. A joint axis {i} is a vector

direction in space, which rotates relative to the link {i-1}. The relative location of two joint axes

can be specified by two parameters; the distance and the angle (or twist) between them. A

convention is given for affixing frames to the links of the robot or manipulator which consists of

a single chain of links attached to some fixed base:

The third axis zi of the frame {i} is coincident with the joint axis {i}.

The origin of the frame {i} is located in the place where link length ai intersects the joint axis {i}.

The first axis xi points the length of the link ai in the direction from the joint {i} to {i+1}.

The second axis yi is formed by the right-hand rule to complete a right-handed coordinate

system.

 22

The first link of the chain is the base of the robot, called link {0}. The attached frame is called

frame {0} and is stationary. Thus, all other link’s positions may be described in terms of this

frame. The coordinate system is attached is such way that coincides with frame {1} when the

joint angle θ1 is zero. As a result, the link parameters d0, a0 and α0 are always zero. Using the

described frame attachment procedure, the link parameters and joint variable can be found as:

ai : Distance from zi to zi+1 measured along xi.

αi : Angle between zi to zi+1 measured about xi.

di : Distance from xi-1 1 to xi measured along zi.

θi : Angle between xi to xi+1 about zi.

The transformation matrix from frame {i} to {i - 1} is found by using from the four link

parameters ai, αi, di and θ𝑖 as it is illustrated in equation 4-7.

𝑇𝑖
𝑖−1 =

𝑐𝑜𝑠𝜃𝑖 −𝑠𝑖𝑛𝜃𝑖
𝑠𝑖𝑛𝜃𝑖 . 𝑐𝑜𝑠𝛼𝑖−1 𝑐𝑜𝑠𝜃𝑖 . 𝑐𝑜𝑠𝛼𝑖−1

𝑠𝑖𝑛𝜃𝑖 . 𝑠𝑖𝑛𝛼𝑖−1

0
𝑐𝑜𝑠𝜃𝑖 . 𝑠𝑖𝑛𝛼𝑖−1

0

0 𝑎𝑖−1

−𝑠𝑖𝑛𝛼𝑖−1 −𝑠𝑖𝑛𝛼𝑖−1.𝑑𝑖
𝑐𝑜𝑠𝛼𝑖−1

0
𝑐𝑜𝑠𝛼𝑖−1.𝑑𝑖

1

Equation 4-7: Transformation matrix based on Denavit-Hartenberg convention

The four mentioned parameters are generally called: link length, link twist, link offset, and joint

angle, respectively. These names are derived from specific aspects of the geometric relationship

between the two coordinate frames. Since the matrix Ai is a function of a single variable, three

of the above-mentioned four parameters are constant for a given link, while the fourth one

(i.e., θi, for a revolute joint and di for a prismatic joint) is variable.

Joint axis i-1
Joint axis i

Link i
Joint axis i+1

Joint axis i-1

Link i-1

Link i-1

Link i

Joint axis i-1

Joint axis i+1

Joint axis i

𝑎𝑖−1

𝑎𝑖−1

𝑎𝑖

𝑎𝑖

𝑎𝑖+1

Joint axis i+1

𝑧 𝑖−1

𝑦 𝑖−1

𝑥 𝑖−1

𝑧 𝑖+1

𝑥 𝑖+1

𝑦 𝑖+1
𝑧 𝑖 𝑦 𝑖

𝑥 𝑖

𝛼𝑖−1

𝜃𝑖

a) The frames are attached using the

convention defined in above.

b) The link twist parameter is

illustrated for link {i-1}.

c) The joint angle for joint {i} is

illustrated.

 (b)

(a)

(c)

Figure 4-6: Link length and link displacement parameters (Xu WL, 1990)

𝑑𝑖

 23

4.3.3. Mechanical design of Archie

In figure 4-4 the mechanical design of Archie based on the Denavit-Hartenberg vector assigning

method is presented. The figure is depicting the lower body of the robot (two legs and the hip).

The based coordinate system which is used from unifying the other coordinate systems is

located on the hip plane of the robot. The main reason for choosing the hip plane as the base

coordinate system is its location because it is in the centre of the robot. Moreover, the inertial

measurement unit (IMU) is connected to hip of the robot which can provide the information

about the angle of the roll and pitch of the robot to the control system.

The distribution of the mass for the links is considered to be solely concentrated in the centre

point of the mass. With this approximation, a link is defined as a rigid connection between

coordinate frames and a point mass located somewhere between these frames. The reference

frame for each link is located at the centre of the proximal joint.

The transformation matrix from any frame {i-1} to {i} can be found by inserting the Denavit-

Hartenberg parameters (form table 4-1) into the matrix which is shown (equation 4.7). For

example, the transformation matrix from the frame {5} to the frame {6} is:

𝑇6
5 =

1 0
0
0
0

1
0
0

0 0
0
1
0

0
7
1

 Equation 4-8

Given these matrixes it is possible to compute the position and orientation of all frames relative

to each other.

𝑇𝑖
𝑗

= 𝑇𝑛−1
𝑛𝑗

𝑛=𝑖 Equation 4-9

For instance, the transformation matrix is used to calculate the position of a point in the arm

frame {5} in the base frame {1} can be found as:

𝑇5
1 = 𝑇2

1 × 𝑇3
2 × 𝑇4

3 × 𝑇5
4

 Equation 4-10

 24

X1’

z2

 x2

z1

y1

 z3

y3

x3

z4

x4

y4

x5

 z5

z6

x6

x7

 z7

 z8

y8

x8

x9

 z9

z10’

x10’

z11

x11

y11

y12

x12

z14

z15

x15

z17

x17

z18

x18’

Figure 4-7: Description of the mechanical design of Archie (only lower body)

x1

z5’

x5’

z10

y10

x10

z13’

x13’

z16

x16

z18’

Z0

Y0

X0

y5

y6

y7

y9

y10’

y18’

y17

a1

d2

a3’

a3 a11

d4

d5

a6

a7

a8

d9

a10’ a10
a18’

a18

d17

a16

a15

a14

d13

d12

y13

y14

y15

Base Coordinate System

Y1’

x2’

y2

z12

y16

y18

x18

Z1’

z13

x13

x14

 25

4.3.4. Deriving the kinematics of Archie

Deriving the kinematics of Archie is carried out in three steps. The first step is to affix frames to

the links of the robot. The second step is to identify the four link parameters for each link, and

the third is finding the transformation matrixes. The following resulted parameters are called

Denavit-Hartenberg (M. Spong, M. Vidyasagar, 1989)

Denavit-Hartenberg (D-H) parameters for Archie are shown in table 4-1. These parameters are

captured from the mechanical design of the robot.

Base coordinate system

Pelvis

Figure 4-8: Hirarchical graph or Archie‟s joints

Torso

Right hip Left hip

Left Knee Right Knee

Right Ankle Left Ankle

Right Toe Left Toe

Neck

Head

Right Shoulder

Left Elbow Right Elbow

Left Shoulder

 26

Joint a (cm) d (cm) α (degree) Θ (degree)

1 36 0 -90 -90

2' 0 0 90 90

2 0 5 -180 0

3' 11 0 0 -90

3 4.5 0 0 90

4 0 5 90 0

5' 0 0 -90 -90

5 0 7 0 0

6 31 0 0 0

7 26 0 0 0

8 5.5 0 90 0

9 0 8.4 -90 0

10' 3 0 0 0

10 4 0 180 -90

11 -4.5 0 0 90

12 0 5 90 0

13' 0 0 -90 -90

13 0 -7 0 0

14 31 0 0 0

15 26 0 0 0

16 5.5 0 90 0

17 0 8.4 -90 0

18' 3 0 0 0

18 4 0 180 -90

Table 4-1: Denavit-Hartenberg parameters for Archie

 27

4.3.5. Calculation of the total center of mass

The coordinates of the center of mass for the individual links of the robot are known in their

respective joint frames. Thus, the total center of mass of the robot can be found by finding the

position of the center of mass for each individual link in the base coordinate system frame can

be applied using the following formula:

𝐶𝑀𝑡𝑜𝑡𝑎𝑙 =
1

𝑚𝑡𝑜𝑡𝑎𝑙
 𝑚𝑖𝐶𝑀𝑖 Equation 4-11

𝑚𝑡𝑜𝑡𝑎𝑙 = 𝑚𝑖 Equation 4-12

The positions of the center of mass for the individual links in base coordinate system are

calculated by applying the transformation matrixes to the centre of mass for each link. Figure 4-

10 shows the diagram for the total center of mass calculation.

Joint (3)

Θ3

Joint (i)

Θi

Network

Database of Robot

parameters: Center of mass

and the mass for each link

Denavit-Hartenberg

Convention

Center

of mass

Relocated

center of

mass based

on BCS

Center of mass

Calculator

Mass of

each joint

Total

Center

of mass

Figure 4-9 : Center of mass calculation

 28

The following calculation is optimized in order to reduce the load of the processing in the

central controller.

Data

colle

ction

Trigo

nom

etry

Tran

sfor

mati

on

Relo

cate

CMi

Mult

iplica

tion

Addi

tion

Divisi

on

P

r

o

c

e

s

s

F

l

o

w

Reading real time including bus delay from 16 clients One by one

 Reading delay + Bus delay × 16

Calculating trigonometric parameters for 16 diffent angles (Sin 𝑎𝑛𝑑 𝐶𝑜𝑠)

 Sine Calculation + Cosine Calculation × 16

Find transformation matrixes for 11 (16 − 5) joints (1 DOF and 2 DOF)

 3 + 2 + 2 + 2 + 3 + 2 multiplications + (25 times [4x4] multiply)

Relocating the center of mass for 11 links on Base coordinate system

11 times 4 × 4 in 4 × 1 multiplication

Multiplying the weight in the coordinate of center of mass for 11 links

11 × 3 times multiplication

Adding the multiplication results for 11 links

 11 × 3 times addition

Dividing the addition result in the total mass for each component

 3 times division

Figure 4-10 : Center of mass calculation with the traditional method

 29

Regarding the structure of Archie, the links are named as it is shown in figure 4-11. Table 4-2

shows the weight and the position of the center of mass for each link based on their coordinate

system.

Figure 4-11: Sagittal and frontal view of the links and joints of Archie

Table 4-2: Link‟s masses and position of center of mass for each joint based on its coordinate

Link Name Mass Center of mass X Center of mass Y Center of mass Z

L1 0.125kg 0mm -53mm -4mm

L2 0.111kg 0mm -4mm -26mm

L3 0.008kg 0mm 0mm -5mm

L4 0.075kg 28mm 0mm -130mm

L5 0.131kg 98mm 0mm -155mm

L6 0.048kg 58mm 23mm 0mm

L7 0.049kg 0mm 0mm 25mm

L8 0.346kg 75mm 70mm -15mm

L9 0.049kg 0mm 0mm 22mm

L10 2.992kg 0mm 33mm 249mm

 30

4.3.6. Moment of inertia calculation

Moment of inertia is the rotational analog of the mass. According to the mechanical structure

of a humanoid robot, all the movements are based on revolute joints. Thus, finding the

moment of inertia is necessary for modeling the joints. For a rigid object of N point masses mi,

the moment of inertia tensor is given by:

𝐼 =

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

 Equation 4-13

Where the elements defined for Cartesian coordinates (𝑥𝑖 ,𝑦𝑖 , 𝑧𝑖) with the origin at the center

of the mass are:

𝐼𝑥𝑥 = 𝑚𝑖 𝑦𝑖
2 + 𝑧𝑖

2 𝑁
𝑖=1 Equation 4-14

𝐼𝑦𝑦 = 𝑚𝑖 𝑥𝑖
2 + 𝑧𝑖

2 𝑁
𝑖=1 Equation 4-15

𝐼𝑧𝑧 = 𝑚𝑖 𝑥𝑖
2 + 𝑦𝑖

2 𝑁
𝑖=1 Equation 4-16

𝐼𝑥𝑦 = 𝐼𝑦𝑥 = − 𝑚𝑖𝑥𝑖𝑦𝑖
𝑁
𝑖=1 Equation 4-17

𝐼𝑥𝑧 = 𝐼𝑧𝑥 = − 𝑚𝑖𝑥𝑖𝑧𝑖
𝑁
𝑖=1 Equation 4-18

𝐼𝑦𝑧 = 𝐼𝑧𝑦 = − 𝑚𝑖𝑦𝑖𝑧𝑖
𝑁
𝑖=1 Equation 4-19

The diagonal elements in the inertia tensors (𝐼𝑥𝑥 , 𝐼𝑦𝑦 , 𝐼𝑧𝑧) are called the moments of inertia

while the rest of the elements are called the products of inertia. xxI relates to the moment of

inertia around the x-axis when the objects are rotated around the x-axis,
xyI relates to the

moment of inertia around the y-axis when the objects are rotated around the x-axis, etc.

The inertia tensor has only six independent coordinates, three diagonal elements and three off-

diagonal. There are also three other elements which are dependent on the location and

orientation of the local reference frame. It is always possible for a rigid body, to align a local

reference frame in which the mass of the body is evenly distributed around the axes. In that

case, the inertia tensor becomes purely diagonal:

𝐼 =

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

 Equation 4-20

 31

These coordinate’s axes are called the principal axes. Information about the values of inertia for

every link is derived from equations 4-14, 4-15 and 4-16 which are given in Table 4-3:

Link Inertia Matrix Ixx Inertia Matrix Iyy Inertia Matrix Izz

L1 7.086e-005kgm2 1.345e-004kgm2 1.694e-004kgm2

L2 1.601e-004kgm2 1.107e-004kgm2 8.256e-005kgm2

L3 4.044e-006kgm2 1.251e-006kgm2 4.937e-006kgm2

L4 5.608e-004kgm2 5.857e-004kgm2 7.182e-005kgm2

L5 0.002kgm2 0.002kgm2 7.166e-005kgm2

L6 3.679e-005kgm2 6.507e-005kgm2 8.396e-005kgm2

L7 4.577e-005kgm2 5.084e-005kgm2 2.541e-005kgm2

L8 9.895e-004kgm2 9.418e-004kgm2 0.001kgm2

L9 4.577e-005kgm2 5.084e-005kgm2 2.541e-005kgm2

L10 0.028kgm2 0.038kgm2 0.017kgm2

Table 4-3: Values of principal axes corresponding to every link of the robot

The perpendicular distance of the axes can be found by unifying the coordinate system of the

joints using the based coordinate system.

To calculate the moment of inertia for each link in a specific point (around a specific axis), the

parallel axis theorem (Huygens-Steiner Theorem) is used. Regarding the parallel axis theorem,

the moment of inertia of an object about any axis can be found using the moment of inertia

about a parallel axis (parallel to the aimed axis) through the object’s center of mass and the

perpendicular distance between the axes. Figure 4-12 shows the following theorem.

 32

The parallel axis theorem can be generalized to calculate the new displaced tensor of inertia (Jij)

as in equation 4-21.

𝐽𝑖𝑗 = 𝐼𝑖𝑗 + 𝑚 𝑟2𝛿𝑖𝑗 + 𝑟𝑖𝑟𝑗 Equation 4-21

Where: Iij is the principal moment of inertia, calculated over the object’s center of mass.

Using the following theorem the moment of inertia reflected on each joint can be calculated

based on the position and situation of the other links and joints of the robot.

Using the Denavit-Hartenberg model, the central controller can find the rotation and the

distance of each link (the center of mass of each link) to each joint and can calculate the

reflected moment of inertia from that link. An accumulation of all the links on a certain joint

(based on the situation of the links) gives the reflected moment of inertia to that joint.

The reflected moment of inertia calculation for an arbitrary joint on a specific joint is based on

two parameters. The first parameter is the distance between the center of mass of the link and

the desired axis (which is used in the parallel axis theorem), and the second is the rotation of

the link (described using Euler angles). The rotation parameters are used to calculate the

moment of inertia for a specific object (link) about an arbitrary axis.

Regarding to table 4-3 the principal moment of inertia is calculated over the Cartesian axes, the

moment of inertia for and arbitrary axis is calculated using the following equation:

𝐼𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 = 𝐼𝑥𝑥 . cos 𝜓 . cos 𝜃 + 𝐼𝑦𝑦 . sin 𝜓 . cos 𝜃 + 𝐼𝑧𝑧 . sin(𝜃) Equation 4-22

Where:

𝜓: Angle between the reflection of the arbitrary axis in XY plane and the X axis.

Θ: Angle between the arbitrary axis and XY plane.

r

CM

ICenter IDisplaced = ICenter + m.r2

Figure 4-12: Parallel axis theorim

m

 33

4.4. Joint’s motion controller

In this section the joint controllers used in the robot are described. The model is based on

considering the load (links connected to the joints) as a constant point mass (Center of mass of

each link) at a specific distance from the joint; the distance increases on the worst case angle

related to each joint. The worst case angle arises from the gravity effect that affects the links

differently on diverse angles.

4.4.1. Modeling and controlling the joints

The controller used for controlling the joints of the robot is based on a velocity controller. The

velocity controller is commanded using a velocity trajectory planner in order to control the

position of the joint.

The controller calculates a velocity trajectory to achieve the desired position for the output

shaft. The velocity trajectory is the trapezoidal shown in figure 4-14.

Velocity controller

s.θ

Position feedback

Position

command
+

Position

Figure 4-13: Control loop used for the joints

V

Velocity control loop

1

𝑠

Velocity trajectory

Planner v (s)
PI + +

Input

Joint

plant

Feed Forward

θ

Velocity

Ʃ Ʃ Ʃ

 34

4.4.2. Model of the joint plant

The joints in Archie are based on a DC motor (i.e., either brushed or brushless). The following is

an electrical schematic of a DC motor and the mechanical load attached to it.

Figure 4-15: Simplified schematic of a DC motor

The effect of the harmonic gear can be modeled as follows. Although it has the same effect as a

simple gear, the actual robot joint is based on harmonic gear.

Using Newton’s law and Kirchhoff’s law we will have the following equations:

From Newton‟s law: 𝜏𝑚 −
𝜏𝑙

𝑁
= 𝐽𝜃𝑚 + 𝑏𝜃𝑚 → 𝐾. 𝑖 −

𝜏𝑙

𝑁
= 𝐽𝜃𝑚 + 𝑏𝜃𝑚 Equation 4-23

From Kirchhoff‟s law: 𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝑉 − 𝑒 → 𝐿

𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝑉 − 𝐾𝜃𝑚 Equation 4-24

θ τ

b J

Maximum

Velocity

Time

Velocity

Constant velocity Deceleration Acceleration

Figure 4-14: Velocity trajectory and position

Traversed distance (area)

 35

The J is the combination of the moment of inertia of the motor’s rotor and the moment of

inertia reflected from the load on the gear’s input:

𝐽 = 𝐽𝑟𝑜𝑡𝑜𝑟 + 𝐽𝑔𝑒𝑎𝑟𝑏𝑜𝑥 + 𝐽𝑙𝑜𝑎𝑑 .
1

𝑁

2

 Equation 4-25

The friction on the load can be calculated using the following formula:

𝑏 = 𝑏𝑟𝑜𝑡𝑜𝑟 + 𝑏𝑙𝑜𝑎𝑑 .
1

𝑁

2

 Equation 4-26

Where J is the moment of inertia and b is for the friction losses.

Using Laplace transformation the above equations can be expressed as:

 𝑠. 𝐿 + 𝑅 . 𝐼 𝑠 = 𝐸 𝑠 − 𝑠.𝐾.𝜃𝑚 (𝑠) Equation 4-27

 𝐽. 𝑆2 + 𝑏. 𝑠 .𝜃𝑚 𝑠 = 𝐾. 𝐼 𝑠 −
𝜏𝑙(𝑠)

𝑁
 Equation 4-28

The transfer function, between the input voltage 𝐸(𝑠)and the motor’s rotor position 𝜃𝑚 (𝑠)is:

𝜃𝑚 (𝑠)

𝐸(𝑠)
=

𝐾

𝑠 𝑠. 𝐿 + 𝑅 𝐽. 𝑠 + 𝑏 + 𝐾2
=

𝐾

𝑠3𝐽. 𝐿 + 𝑠2 𝐽.𝑅 + 𝑏. 𝐿 + 𝑠(𝑅. 𝑏 + 𝐾2)

Equation 4-29

In addition the transfer function, between the load torque 𝜏𝑙(𝑠) and motor position 𝜃𝑚 (𝑠) is:

𝜃𝑚 (𝑠)

𝜏𝑙(𝑠)
= −

1

𝑁

(𝑠.𝐿+𝑅)

𝑠 𝑠.𝐿+𝑅 𝐽 .𝑠+𝑏 +𝐾2
 Equation 4-30

The links are affected by the gravity force which is related to the angles of the links of the

robot.

Figure 4-16: Motor gear and the link model

N=160
Motor

L

i

n

k
τm ,θm

τl ,θl

 36

4.4.3. Inclusion of gravity force

The gravity is affecting all the links depending on their angles of slant. Therefore, the following

forces are not constant. The following force is reflected as a negative torque in the system and

it is decreasing from the motor output torque.

Thus, the following equations can be written as equation 4-31.

𝜏 = 𝐽𝜃𝑙 + 𝑏𝜃𝑙 + 𝑚.𝑔.
𝐿1

2
. sin(𝜃𝑙) Equation 4-31

The term sin(𝜃𝑙) causes non-linearity in the above equation; therefore linearization about the

maximum angle, 𝜃𝑚𝑎𝑥 using Taylor series can be applied. The linearization function is:

𝑓 𝜃𝑙 = 𝑓 𝜃𝑚𝑎𝑥 +
𝑑𝑓

𝑑𝜃
 𝜃=𝜃𝑚𝑎𝑥

 𝜃𝑙 − 𝜃𝑚𝑎𝑥

1!
+
𝑑2𝑓

𝑑𝜃2
 𝜃=𝜃𝑚𝑎𝑥

 𝜃𝑙 − 𝜃𝑚𝑎𝑥
2

2!
+ ⋯

Equation 4-32

Regarding the small effect of 𝜃𝑙 about 𝜃𝑚𝑎𝑥 , only the first two terms will be considered.

𝑓 𝜃𝑙 − 𝑓 𝜃𝑚𝑎𝑥 =
𝑑𝑓

𝑑𝜃
 𝜃=𝜃𝑚𝑎𝑥

 𝜃𝑙−𝜃𝑚𝑎𝑥

1!
 Equation 4-33

𝛿𝑓 𝜃𝑙 = 𝑝 𝜃=𝜃𝑚𝑎𝑥 𝛿𝜃𝑙 Equation 4-34

The following equation is the linear approximation where p is the slope at the 𝜃𝑚𝑎𝑥 .

Using the above equation the sin(𝜃𝑙) can be substituted as following:

sin 𝜃𝑙 − sin 𝜃𝑚𝑎𝑥 = cos 𝜃𝑚𝑎𝑥 . (𝜃𝑙 − 𝜃𝑚𝑎𝑥) Equation 4-35

sin 𝜃𝑙 = sin 𝜃𝑚𝑎𝑥 + cos 𝜃𝑚𝑎𝑥 . 𝛿𝜃𝑙 Equation 4-36

Using the equations 4-35 and 4-36 the gravity effect can be written as in equation 4-37.

𝜏𝐺 = 𝐽. 𝛿𝜃𝑙 + 𝑏. 𝛿𝜃𝑙 + 𝑚.𝑔.
𝐿1

2
 sin(𝜃𝑚𝑎𝑥 + cos 𝜃𝑚𝑎𝑥 . 𝛿𝜃𝑙) Equation 4-37

m1g

m1g sin(θl)

τ

Figure 4-17: Gravity effect on a link

L1

CM

Joint1

Joint2

Θl

𝐿1

2

 37

Using Laplace transformation of equation 4-37:

𝜏 𝑠 = 𝐽. 𝑆2𝛿𝜃𝑙 + 𝑏. 𝑆. 𝛿𝜃𝑙 + 𝑚.𝑔.
𝐿1

2
sin 𝜃𝑚𝑎𝑥 + 𝑚.𝑔.

𝐿1

2
. cos 𝜃𝑚𝑎𝑥 . 𝛿𝜃𝑙 Equation 4-38

Using substitution the equation 4-38 in the equation 4-29:

𝐸 𝑠 =
𝑅

𝐾
𝐽𝑆2. 𝛿𝜃𝑚 +

𝑅

𝐾
𝑏𝑆. 𝛿𝜃𝑚 +

𝑅

𝐾
𝑚𝑔

𝐿1

2
sin 𝜃𝑚𝑎𝑥 +

𝑅

𝐾
𝑚𝑔.

𝐿1

2
. cos 𝜃𝑚𝑎𝑥 . 𝛿𝜃𝑚 + 𝐾. 𝑆. 𝛿𝑚

Equation 4-39

The equation 4-39 contains a constant term
𝑅

𝐾
𝑚𝑔

𝐿1

2
sin 𝜃𝑚𝑎𝑥 which represents the gravitation

effect. The plant model is shown in block diagram figure 4-18.

4.4.4. Model order reduction

The resulted transfer function shown above is a second order, type zero system. The system

includes a mechanical pole and an electrical pole. The mechanical pole is slower than the

electrical pole, which means the time constant of the mechanical pole is larger than the time

constant of the electrical pole. In an open loop the electrical pole moves greatly to the left side

of the S-Plane. Using this outcome the transfer function can be reduced to the first order

system with the dominant mechanical pole. Regarding the real values from the actual design in

Archie’s joints:

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑝𝑜𝑙𝑒 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =
𝐿

𝑅
=

0.573×10−3

0.978
= 5.85 × 10−4 Equation 4-40

 𝑀𝑒𝑐𝑎𝑛𝑖𝑐𝑎𝑙 𝑝𝑜𝑙𝑒 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =
𝐽

𝑏
=

0.0078

30.46×10−3 = 2.56 × 10−1 Equation 4-41

𝜃𝑚 𝜃𝑚

𝜏𝑙
𝑁

𝜏𝑚
I E(s)

E(s)

1

𝐿. 𝑠 + 𝑅

K 1

𝐽. 𝑠 + 𝑏

1

𝑠

Figure 4-18: Model of the joint plant

K

Ʃ Ʃ

 38

The following comparison shows the large difference between the time constant of the

Electrical pole and the Mechanical pole. The transfer function between the link’s angle and the

motor’s voltage can be simplified as follows:

𝜃𝑚 (𝑠)

𝐸(𝑠)
=

1

𝑠

𝐾

(𝐿. 𝑠 + 𝑅 (𝐽. 𝑠 + 𝑏)) + 𝐾2
=

1

𝑠

𝐾
𝑅

𝐿
𝑅 𝐽𝑠

2 +
𝐿
𝑅 𝑏𝑠 + 𝐽𝑠 + 𝑏 +

𝐾2

𝑅

=
1

𝑠

𝐾
𝑅

𝐽𝑠 + 𝑏 +
𝐾2

𝑅

Equation 4-42

The simplified model can be described in a block diagram as follows:

4.4.5. Controlling the joint

The model of the joint controller is presented above. The controller can move the joint to a

desired position based on the requested traversing velocity. The position and traversing

velocity are issued by the central controllers and sent to the individual controllers to achieve

the overall control. Controlling the joints is accomplished by using a proportional-integral (PI)

controller with a feed forward cancellation.

Figure 4-20: The control scheme of one joint

+ +

Feed forward

Output
Input

E(s)

Joint plant PI
Ʃ Ʃ

𝜃𝑚 𝑠. 𝜃𝑚

𝜏𝑙
𝑁

E(s)

E(s)

1

𝐽. 𝑠 + 𝑏

1

𝑠

Figure 4-19: Simplified model of the joint plant

𝐾

𝑅

K

Ʃ Ʃ

 39

The PI compensator is used to eliminating the steady state error by adding a pole in the origin

of the s-plan. Adding this pole will increase the type of the system. The output of the PI block is

the summation of the coefficient of the error and a coefficient of the integral of the error over

time.

𝑓 𝑡 = 𝐾𝑝𝑒 𝑡 +
𝐾𝑝

𝑇
 𝑒(𝑡)
𝑡

0
𝑑𝑡 Equation 4-43

Where 𝐾𝑝 , is the proportional gain and 𝐾𝑖 =
𝐾𝑝

𝑇
 is the integral gain, which the T is the control

loop period. The following equation with Laplace transformation is:

𝐹 𝑠 = 𝐾𝑝𝐸 𝑠 +
𝐾𝑝

𝑇

𝐸(𝑠)

𝑠
 Equation 4-44

From which:

𝐹(𝑠)

𝐸(𝑠)
= 𝐾𝑝 1 +

1

𝑇𝑠
 = 𝐾𝑝

𝑇𝑠+1

𝑇𝑠
 = 𝐾𝑝

𝑠+
1

𝑇

𝑠
 Equation 4-45

Using root locus technique the position of the PI zero can be replaced adequately close to the PI

pole that is located in the origin of the s-plan. Using the following technique the order of the

system will be increased while the root locus will remain unaffected. Since the zero is located

at −
1

𝑇
 , the first order mechanical pole will move the left side of the s-plane for different values

of 𝐾𝑝 .

According to the first order approximation, 𝐾𝑝 can move the first order pole to infinity. The

maximum value that 𝐾𝑝can take in order for the response of the system to still be over-damped

is the length from the first order pole to the breakaway point between the electrical and

mechanical poles. Furthermore the closed loop pole enters the complex plane and the response

becomes under damped with an overshoot.

The feed forward path is an inverse model of the joint model. Regarding to the resulting

transfer function for the joint:

𝜃𝑚 (𝑠)

𝐸(𝑠)
=

𝐾

𝑠2 .𝐽 .𝐿+𝑠. 𝐽 .𝑅+𝑏 .𝐿 +(𝑅.𝑏+𝐾2)
 Equation 4-46

The inverse of the function above is:

𝐸(𝑠)

𝜃𝑚 (𝑠)
=

𝑠2 .𝐽 .𝐿+𝑠 𝐽 .𝑅+𝑏 .𝐿 +(𝑅.𝑏+𝐾2)

𝐾
 Equation 4-47

 40

The block diagram description of the feed forward block is shown in figure 4-21:

The main problem of the joint controllers is the instability in the model of the joint. The

instability is rooted in the variable moment of inertia (J) reflected in the joint from the links and

the gravity effect. To deal with this issue, the controller parameters can be set on a value to

achieve stability in the controller. The second option is using pre-calculated parameters from

the central controller that are taken from the kinematics model of the system. The gravity

effect is calculated based on the hip on the horizontal position. Each deflection in the hip

position is sensed using the inertial measurement unit (IMU) in order to make it possible for the

robot to walk on non-even terrains still without sole pressure sensors.

4.4.6. Derivation of the joint controller

In this section, the resulted motion controller is prepared for one of the joints of the robot. For

instance, the lateral hip joint is modeled during the single support phase for the swinging leg.

The following calculations can be extended for the other joints of the robot using the same

method. Figure 4-22 shows the swinging leg attached to the trunk using the hip joint which is

acting like the classic pendulum problem.

Supporting leg

Swinging leg

Figure 4-22: Single support phase

Figure 4-21: Feed forward block diagram

+

+ + Output Input

E(s)

s

s 𝐽. 𝐿

𝐽.𝑅 + 𝑏𝐿

𝑅. 𝑏 + 𝐾2

Ʃ

 41

In figure 4-23 the description of the swinging leg is shown by the mass points connected to each

other using weightless links.

Regarding to the motor (EC-45, Maxon-motor, 2002) datasheet and mechanical system

specifications, the constant parameters of each joint in Archie are as follows:

L=0.573mH R=0.978Ω K=33.5 mNm/A Jmotor=135gcm2/s2 Jgear=320gcm2/s2 b=0.28mNms

4.4.7. Range of the moment of inertia deviation

For instance, the moment of inertia for the lateral hip in swinging phase is obtained from the

equation 4-51.

Θ1

Θ2

L1

L2

m1, J1

m2, J2

Joint1

Figure 4-24: Swinging leg model

Joint2 Θ

m2, J2

Θ1

Θ2

L1

L2

m1, J1

Joint1

Figure 4-23: Double pendulum model

Joint2

 42

𝐽 = 𝐽𝑖 ,1 = 𝐽1,1 + 𝐽1,2 Equation 4-48

𝐽1,1 = 𝐽1,𝑦𝑦 + 𝑚1. (
𝑙1

2
)2 Equation 4-49

𝐽1,2 = 𝐽2,𝑦𝑦 + 𝑚2.
 𝑙1

2+
𝑙2
2

2
−2.𝑙1 .

𝑙2
2

.𝑐𝑜𝑠𝜃

2

2

 Equation 4-50

𝐽 = 𝐽1,𝑦𝑦 + 𝐽2,𝑦𝑦 + 𝑚1.
𝑙1

2

2
+

𝑚2 . 𝑙1
2+

𝑙2
2

2
−𝑙1 .𝑙2 .𝑐𝑜𝑠𝜃

4
 Equation 4-51

The value of the moment of inertia (J) is different for each joint and is described in a range. As a

result, the value of 𝐾𝑝 should be chosen appropriately. The suitable values of 𝐾𝑝 can be found

by either tuning the control loop, or modeling the joint and finding the value using simulation

and classical tuning methods.

A derivation from the moment of Inertia for the swinging leg of Archie is calculated as follows.

𝐽1𝑦𝑦=0.000857𝑘𝑔𝑚2 , 𝐽2𝑦𝑦=0.002𝑘𝑔𝑚2

𝐽 = 0.0677 + 0.014𝑐𝑜𝑠𝜃 Equation 4-52

Figure 4-25: Moment of inertia in lateral hip joint on knee angle change for swinging leg

0 0.5 1 1.5 2

7

7.5

8

8.5

9

9.5

10

x 10
-3

Knee angle [rad]

L
e
g
 m

o
m

e
n
t

o
f

in
e
rt

ia
 [

k
g
.m

2
]

 43

In order to provide stability for the system and by using the resulted range for the moment of

inertia, the parameters of the control loop can be chosen. To calculating the moment of inertia

for each joint the situation of the joint should be considered. For instance, the knee joint faces

different reflection of moment of inertia from the attached load by switching from the swinging

phase to the supporting phase. The same calculation should be derived for all joints of the

robot. Table 4-4 shows the range of the moment of inertia for each joint of the robot.

Joint Minimum reflected

moment of inertia

(swinging) [Kgm2]

Maximum reflected

moment of inertia

(swinging) [Kgm2]

Minimum reflected

moment of inertia

(supporting) [Kgm2]

Maximum reflected

moment of inertia

(supporting) [Kgm2]

J1 (toe) 1.3452e-004 1.3452e-004 1.8541e-001 1.8648e-001

J2 (F Ankle) 3.1321e-004 3.1849e-004 2.2336e-001 2.7624e-001

J3 (L Ankle) 1.0413e-003 1.0466e-003 1.8385e-001 1.5083e-001

J4 (Knee) 1.1414e-002 1.2789e-002 1.0879e-001 1.3151e-001

J5 (L Hip) 5.3704e-002 8.1630e-002 2.6586e-001 2.8691e-001

J6 (F Hip) 6.1736e-002 1.0158e-001 1.7406e-001 1.9636e-001

J7 (T Hip) 5.0974e-004 1.3661e-001 1.9005e-001 3.2689e-001

J8 (T Torso) 3.8050e-002 6.2286e-002 3.8050e-002 6.2286e-002

J9 (F Torso) 1.2494e-001 1.2494e-001 1.2494e-001 1.2494e-001

Table 4-4: Reflected moment of inertia range for each joint during swinging and supporting phase

4.4.8. Range of the gravity effect deviation

The gravity effect should be calculated for each joint in the same way. The result from the

gravity effect calculation can be represented by the representative mass and the length of the

lever. The mass reflected in each joint is constant for each phase; however, the length of the

lever changes on different poses of the other joints. For instance, in this section the calculations

for the gravitational effect that is reflected to the hip joint are presented.

 44

𝜏𝐺 = 𝜏𝑔 ,1 + 𝜏𝑔 ,2 Equation 4-53

𝜏𝑔 ,1 = 𝑚1.𝑔.
𝑙1

2
. 𝑐𝑜𝑠𝜃1 Equation 4-54

𝜏𝑔 ,2 = 𝑚2.𝑔. 𝑐𝑜𝑠𝜃𝑡 𝑙1
2 +

𝑙2

2

2
− 2. 𝑙1 .

𝑙2

2
𝑐𝑜𝑠𝜃 Equation 4-55

𝜃𝑡 = 𝜃1 − 𝜃𝑑 Equation 4-56

Regarding to law of cosines 𝜃𝑑 is calculated as equation 4-57.

𝜃𝑑 = 𝐴𝑟𝑐𝑐𝑜𝑠
2.𝑙1−𝑙2 .𝑐𝑜𝑠𝜃

2 𝑙1
2+

𝑙2
2

2
−𝑙1 .𝑙2 .𝑐𝑜𝑠𝜃

 Equation 4-57

After further calculations, the effect of gravity is factored into the equation as described in

equation 4-58:

𝜏𝐺 =

𝑚1.𝑔.
𝑙1

2
. 𝑐𝑜𝑠𝜃1 + 𝑚2.𝑔. 𝑐𝑜𝑠 𝜃1 − 𝐴𝑟𝑐𝑐𝑜𝑠

2.𝑙1+𝑙2 .𝑐𝑜𝑠𝜃

2 𝑙1
2+

𝑙2
2

2
−𝑙1 .𝑙2 .𝑐𝑜𝑠𝜃

 𝑙1
2 +

𝑙2

2

2

− 𝑙1. 𝑙2. 𝑐𝑜𝑠𝜃

 Equation 4-58

Θ1

Θ2

L1

L2

m1, J1

m2, J2

Joint1

Figure 4-26: Gravity effect in the double pendulum

Joint2
Θ

r

Θd

Θt

Θ1

 45

For Archie, the gravitational effect would be as in equation 4-59.

𝑚1 = 0.131𝑘𝑔,𝑚2 = 0.075𝑘𝑔, 𝑙1 = 0.30𝑚, 𝑙2 = 0.26𝑚,𝑔 = 9.8

𝜏𝐺 = . 193 . 𝑐𝑜𝑠𝜃1

+ (.735)𝑐𝑜𝑠 𝜃1 − 𝐴𝑟𝑐𝑐𝑜𝑠
. 30 − . 13 . 𝑐𝑜𝑠𝜃

 . 107 − (.078). 𝑐𝑜𝑠𝜃
 . 107 − (.078). 𝑐𝑜𝑠𝜃

Equation 4-59

Figure 4-27: Gravity force for swinging leg on knee and hip angle changing

-1
-0.5

0
0.5

1
1.5 0

0.5

1

1.5
0

0.1

0.2

0.3

0.4

0.5

Knee angle [rad]

Hip angle [rad]

G
ra

v
it
y
 f

o
rc

e
 [

N
m

]

 46

4.5. Digital controller

The digital controller is a type of controller that uses a digital computer (processor) to act as a

system controller. Since a digital computer is a discrete system, the Laplace transformation

cannot be used, and the Z-transformation is used instead of it.

Using a digital controller brings some benefits to the system. Some of these benefits are vital

for a humanoid robot. An example of such benefit is the opportunity to change the parameters

of the controllers during operation using software methods. Since in a humanoid robot, the

reflected load and the moment of inertia for the joints are variable, the new information should

be returned to the controllers in order to adapt to the system for the new load properties.

The first step in designing the digital controller system is converting the continuous transfer

function to a discrete transfer function. The continuous transfer function for the joint is:

𝜃𝑚 (𝑠)

𝐸(𝑠)
=

𝐾

𝑠2 .𝐽 .𝐿+𝑠. 𝐽 .𝑅+𝑏 .𝐿 +(𝑅.𝑏+𝐾2)
 Equation 4-60

Where the values described for the motor are as following:

L=0.573mH R=0.978Ω K=33.5 mNm/A Jmotor=135 gcm2 b=30.46mNms

Regarding table 4-4 and the total reflected moment of inertia on the joint (Equation 4-51) the
range is:

 𝐽𝑚𝑎𝑥 = 1.35 × 10−5 + 8.16 × 10−2.
1

160

2

= 5.235 × 10−4 Equation 4-61

𝐽𝑚𝑖𝑛 = 1.35 × 10−5 + 5.37 × 10−2.
1

160

2

= 3.491 × 10−4 Equation 4-62

𝐽𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐽𝑚𝑎𝑥 +𝐽𝑚𝑖𝑛

2
=

5.235×10−4+3.491×10−4

2
= 4.363 × 10−4 Equation 4-63

Because of the instability of the system (variable load parameters) the average of the moment
of inertia, reflected on the joint is used for the calibration. The transfer function is:

𝐻(𝑠) =
𝜃𝑚 (𝑠)

𝐸(𝑠)
=

3.35

(7.907×10−7)𝑠2+ 1.366×10−3 𝑠+0.1396
 Equation 4-64

With respect to the control loop time period (𝑇𝑠 =
1

350𝐻𝑧
= 0.00285𝑚𝑠) the continuous

transfer function can be transformed to discrete transfer function (Z-transform) which is:

𝐻(𝑧) =
𝜃𝑚 (𝑧)

𝐸(𝑧)
=

 5.174 𝑧+1.19

𝑧2− 0.742 𝑧+7.194×10−3
 Equation 4-65

 47

The following transfer function has the step response shown in figure 4.28:

Figure 4-28: Step response of the control loop without compensator (simulation)

The system is unstable and starts to resonance after 1.38 seconds. Figure 4-29 shows the Root

locus diagram of the following system.

Figure 4-29: Root locus diagram of the control loop without compensator (simulation)

1.25 1.3 1.35 1.4

-1.5

-1

-0.5

0

0.5

1

1.5
x 10

301

Time (s)

V
e
lo

c
it
y
 (

ra
d
/s

)

Step Response (without compensator)

-5 -4 -3 -2 -1 0 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Root Locus

Real Axis

Im
a
g
in

a
ry

 A
x
is

 48

In the Root locus diagram shown in figure 4-29, one pole is placed outside of the unique circle

which causes the instability in the system.

As shown in figure 4-13 and the controller scheme, the velocity of the joint is affected by a

Proportional-integral (PI) compensator. Since the controller is based on discrete time system;

the compensator should be transformed from continuous to discrete time system.

𝐾𝑃 +
𝐾𝐼

𝑠
 Equation 4-66

Using the Bilinear Transformation (Tustin method which uses (𝑠 =
2

𝑇𝑠
.
𝑧−1

𝑧+1
) substitution):

𝐾𝑃 + 𝐾𝐼 .
𝑇𝑠

2
.
𝑧+1

𝑧−1
 Equation 4-67

After using the tuning algorithm the values of KP and KI were found 39 and 4578 respectively. As

shown in the root locus diagram of the control system (including the PI compensator) the gain

(KP) has an utmost. By crossing the KP utmost, one or more poles will move to the right side of

the s-plan which causes instability for the control loop (shown in figure 4-30).

Figure 4-30: Root locus diagram for tuned compensated control loop (simulation)

Figure 4-30 shows the location of the pole inside the unique circuit, although two imaginary

poles are applying an utmost value for the loop gain to be located in the unique circuit. Figure

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Root Locus

Real Axis

Im
a
g
in

a
ry

 A
x
is

 49

4-31 depicts the step response used to test the control loop by regarding the maximum value of

the used motor (500rad/s).

Figure 4-31: Step response (maximum step size) for the PI compensator included control system

(simulation)

The following tuned control loop has a transfer function which is illustrated in equation 4-68:

𝐻(𝑧) =
𝜃𝑚 (𝑧)

𝐸(𝑧)
=

 5.174 𝑧+1.19

𝑧2− 4.432 𝑧+1.198
 Equation 4-68

Although the controller should control the position and the pose of the joint, the following

transfer function is used for the velocity controller.

4.5.1. Position controller

The position controller in the joints is the outer control loop cascaded to the velocity controller.

The control loop is based on a proportional (P) compensator, which is illustrated in figure 4-32.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

100

200

300

400

500

600

Time (seconds)

V
e
lo

c
it
y
 (

ra
d
/s

)

Step Response (with tuned PI compensator)

 50

The transfer function of the velocity controller block should be converted to the continuous

time space (Laplace). The outcome is the velocity controller combined to the joint plant (motor,

and gear) transfer function, which gives the velocity of the joint. The velocity controller block is

maintained by an integral block (multiplication by 𝑠−1 in the Laplace space). Since the integral

over time of the velocity is the position.

The resulted transfer function should be converted to the discrete time space using the control

loop time period. The value for the controller used in Archie is 𝑇𝑠 =
1

80𝐻𝑧
= 0.0125𝑚𝑠.

The position controller loop uses a proportional compensator that drives a velocity scheduler.

Since one of the zeros is located outside of the unique circle. The Value of the KP has an utmost

(in the following system the value 131 is the border for instability). By passing the KP utmost the

control loop will be unstable.

Figure 4-33: Step response and root locus diagram of utmost value for KP of the position controller

(simulation)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (seconds)

P
o
s
it
io

n
 (

ra
d
)

Step Response (with Position loop Kp = 131)

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

Root Locus of Position controller (w ith Position loop Kp = 131)

Real Axis

Im
a
g
in

a
ry

 A
x
is

Velocity controller

s θ

Position feedback

Position

command
+

Position

Figure 4-32: Position controller coupled to the velocity controller

V

Velocity control loop

1

𝑠
 PI + +

Input

Joint

plant

Feed Forward

θ

Velocity

Ʃ Ʃ Ʃ P Velocity

Scheduler

 51

Figure 4-34: Ramp response of the position controller (with KP = 131) in simulation

Using a low value decreases the response time of the system, and causes steady state error,

which is shown in figure 4-35.

Figure 4-35: Ramp response of the position controller (with KP = 10) in simulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (seconds)

P
o
s
it
io

n
 (

ra
d
)

Ramp Response (with Position loop Kp = 131)

Position command

Position

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (seconds)

P
o
s
it
io

n
 (

ra
d
)

Ramp Response (with Position loop Kp = 10)

Position command

Position

 52

 In both simulation and the real joint the KP= 56 is chosen.

Figure 4-36: Step response and root locus diagram of chosen value for KP of the position controller

(simulation)

Figure 4-37: Ramp response of the position controller (with KP = 56) in simulation

The velocity scheduler described before is used to move the joint with certain velocity to the

desired position. This scheduling consists of acceleration, declaration and a maximum speed to

synchronize the motion of the joints in combinational movements of the robot.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (seconds)

P
o
s
it
io

n
 (

ra
d
)

Step Response (with Position loop Kp = 56)

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Root Locus of Position controller (w ith Position loop Kp = 56)

Real Axis

Im
a
g
in

a
ry

 A
x
is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (seconds)

P
o
s
it
io

n
 (

ra
d
)

Ramp Response (with Position loop Kp = 56)

Position command

Position

 53

The read joint controller is tested with the following KP to verify the similarity between the

simulation model and the real joint controller. Figure 4-38 shows the ramp response for the real

controller.

Figure 4-38: Ramp response of the real joint position controller (with KP = 56)

Figure 4-39 shows the position command in comparison with the output of the position
controller. The velocity and current of the motor respectively in figures 4-40 and 4-41 for
moving from angle 0 to 30 are shown.

Figure 4-39: Position controller output in compare with position command

0 1 2 3 4

x 10
-4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (seconds)

P
o
s
it
io

n
 (

D
e
g
re

e
)

Real joint controller Step Response

Position command

Position

0 0.5 1 1.5 2 2.5 3 3.5

x 10
-3

0

5

10

15

20

25

30

35

Time (seconds)

P
o
s
it
io

n
 (

D
e
g
re

e
)

Real joint controller Step Response

Position command

Position

 54

Figure 4-40: Velocity compare with the velocity command in position controller

Figure 4-41: Motor current during the joints movement

0 0.5 1 1.5 2 2.5 3 3.5

x 10
-3

-100

0

100

200

300

400

500

Time (seconds)

V
e
lo

c
it
y
 (

ra
d
/s

e
c
)

Real joint controller Step Response

Velocity command

Velocity

0 0.5 1 1.5 2 2.5 3 3.5

x 10
-3

-6

-4

-2

0

2

4

6

8

Time (seconds)

A
c
ti
v
e
 C

u
rr

e
n
t

(A
)

Real joint controller Step Response

Motor Current

 55

4.6. Walking sequence

Biped walking algorithms can be distinguished as being either static or dynamic. The distinction

is made depending on the location of the centre of mass during motion. For static walking, the

centre of mass is always located above a polygon created by external boundaries of the leg

base. The biped will remain statically stable if it is paused at any time during its motion.

Dynamic walking is generally much faster than static walking. In dynamic walking, inertia effects

are considered, and it is possible for the centre of gravity to be outside the supporting area.

Human walking patterns are considered to be dynamic (Ian Joseph Marshall, 2002).

4.6.1. Gait analysis

Gait analysis is the study of animal locomotion, including locomotion of humans. Describing

human gait requires some specific terms, which are defined in this section.

The gait cycle begins when one foot contacts the ground and ends when that foot contacts the

ground again. Thus, each cycle begins at initial contact with a stance phase and proceeds

through a swing phase until the cycle ends with the limb’s next initial contact. Hence, the

human walking step is composed of two different phases:

The first phase is the swing phase or single support phase. This term is used for situations

where the body has only one leg on contact surface with the ground. The second phase is called

the double support phase; which is used for situations where the body has two isolated

contacts surfaces with the ground. In human gait, this situation occurs when the person is

supported by both feet. The gait phases of normal dynamic walk consists of eight steps but only

DSP DSP SSP (Left leg swinging) SSP (Right leg swinging)

Figure 4-42: Human gait cycle

 56

four of them are different as the right and left leg execute the same motion mirrored in the

median plane delayed by a half gait cycle.

The following phases are split in more detailed phases. Following is the description for the

detailed phases:

1. Release Phase: The infinitesimal period of time when the toes of the rear foot breaks contact

with the ground.

2. Single Support Phase (SSP): The phase where only one foot has contact with the ground and

the other foot swings. Also the SSP is divided into two phases: one is where the right foot is in

contact with the ground (SSP-R) and the other is where the left foot is in contact with the

ground (SSP-L).

3. Impact Phase: The infinitesimal period of the time when the heel of one swinging foot strikes

the ground.

4. Double Support Phase (DSP): The phase where both feet have contact with the ground. The

DSP is divided in two phases: one is where the weight is shifted from the left to right foot (DSP-

L) and the other is where the weight is shifted from the right to the left foot (DSP-R).

Thus, human walk can be described as a heel-strike-toe-off gait cycle. The four phases are

depicted in Fig. 2.4.3:

DSP with left leg

in front

Putting the left

leg on ground

 SSP-left

(right leg swing)

 Lifting the

left leg

 Lifting the

right leg

 SSP-left

(right leg swing)

Putting the right

leg on ground

DSP with right

leg in front

Left

step

Right

step

Figure 4-43 : Walking sequence diagram

 57

In the description of the joint controller the system which is described need the values of the

feed forward loop such is moment of inertia. The moment of inertia is calculated for a range

and it is based on swinging or supporting phase. The feed forward values should be changed

based on the phase where the joint is.

4.6.2. Motion planning

As mentioned above, bipedal walking consists of two main phases. Each phase consists of a

group of motions. Each motion should be planned for a specific joint of the robot individually.

For instance, for the single support phase both the planning of the hip and the planning of the

floating leg as well as the supporting leg, allows the robot to move forward.

Figure 4-44 shows a complete semi-cycle walk, which distinguishes the trajectories generated in

the lateral plane:

Figure 4-44 outlines the initial state (A1) and the final state (A2) of a walking semi-cycle in the

lateral plane. In figure 4-45 the simplified model (only lower body) is shown.

A1 A2

H2
H1

D

K1 K2 Q1 Q2

t=0 t=TP
𝐿𝑃𝐻𝑦

2

LPy LPy

hfl

h

hhip

z

 y

x

Figure 4-45: Simplified model of swinging leg trajectory (lateral view)

𝐿𝑃𝐻𝑦

2

Figure 4-44: Swinging leg gait trajectory (lateral view)

A1 A2

H2 H1

D

K1
K2

Q1 Q2

t=TP

z

 y

x

t=0

 58

Where:

TP: time for a single step

LP: length of the step

LPH: length of hip movement

h: height of the hip

hhip: utmost height of the hip twisting

hf: utmost height of the gait

In figure 4-45 the trajectory of the hip in the lateral plane is depicted by the blue curve while

the trajectory of the swinging leg is shown by the red curve. In the semi-cycle shown in figure 4-

45, the fixed point of reference is the point D (the planning is related to this point which is the

supporting leg’s ankle joint). For the next semi-cycle, the reference point is the point A2 in

respect with the change of the swinging leg to the supporting leg. As the robot moves the

reference point changes.

In order to save the balance of the robot, the motion is applied to the frontal joints of the robot

as well. Figure 4-46 illustrates the frontal view for the single support phase.

The movement of the joints should conclude a trajectory of the movement for the end effector

(the swinging ankle) which provides some desired properties for the robot. Some of these

properties are described in following:

 Obstacle passing: Providing certain height and length for the swinging leg trajectory

 Smoothness: Less vibration in the robot during running the gait imitation.

 Stability: Less deviation from the balance poses of the robot.

Providing the following property is related to choosing an appropriate trajectory for the

movement of the robot.

A1

H2

H1

D

t=0

𝑡 =
𝑇𝑃
2

LPSx LPHx

hf

h

hhip

z

 x

y

Figure 4-46: Simplified model of swinging leg trajectory (frontal view)

ΘS

 59

4.6.3. Obstacle passing

The obstacles are supposed to have a certain height and length. The trajectory planner decides

the appropriate trajectory to cross the obstacles without bumping them. The robot has an

utmost for the height and length of the gait. The following restrictions are derived from the

direct kinematics and the joints domain restrictions.

Figure 4-47 shows the obstacle with the maximum height, on passing by the swinging leg of the

robot.

The maximum height that the swinging leg can take is calculated using equation 4-69:

𝑚𝑎𝑥 = 𝑃 − 𝑙𝑇𝑖𝑔 . cos 𝜃𝐻𝐿,𝑚𝑎𝑥 − 𝑙𝑇𝑖𝑏𝑎 . cos(𝜃𝑆𝐾,𝑚𝑎𝑥 − 𝜃𝐻𝐿 ,𝑚𝑎𝑥) Equation 4-69

Where:

𝑃 : is the height of the hip

𝑚𝑎𝑥 : is the utmost of the height for the swinging leg trajectory in the lateral plane.

𝜃𝐻𝐿 ,𝑚𝑎𝑥 ,𝜃𝑆𝐾 ,𝑚𝑎𝑥 : are the maximum angles of twisting for the lateral hip and knee joints

respectively

The length of the gait is restricted by a limit, which is related to the length of the limbs (lower

body) of the robot. Figure 4-48 shows the trajectory of the swinging leg on crossing the obstacle

in the lateral plane.

𝑙𝑇𝑖𝑔

𝜃𝐻𝐿,𝑚𝑎𝑥
𝑦0 , 𝑧0

𝑦𝑆𝐴 , 𝑧𝑆𝐴
𝑙𝑇𝑖𝑏𝑎

Figure 4-47: Utmost of the gait height

𝜃𝑆𝐾 ,𝑚𝑎𝑥

z

 y

x

Obstacle 𝑚𝑎𝑥

𝑃

 60

The maximum length that can be taken is calculated using the equation 4-70:

𝐿𝑃,𝑚𝑎𝑥 = 𝐿𝑃𝐻𝑦 + 2. 𝑙𝑇𝑖𝑔 + 𝑙𝑇𝑖𝑏𝑎
2
− 𝑃

2
 Equation 4-70

Where:

𝐿𝑃𝐻𝑦 : is the horizontal movement of the hip in the lateral plane during one step.

Regarding to the parameters of Archie the maximum height and length of the gait are

calculated as equations 4-71 and 4-72:

𝑚𝑎𝑥 = 54 − 26. cos
𝜋

2
 − 30. cos

4.𝜋

6
−

𝜋

2
 = 28𝑐𝑚 Equation 4-71

𝐿𝑃,𝑚𝑎𝑥 = 19 + 2. (26 + 30)2 − 542 = 33.83cm Equation 4-72

The following calculations are used for Archie’s trajectory planner, as the maximum height and

length of obstacle that is passable for the robot.

4.6.4. Gait trajectory planning

There are different variants for planning the trajectory of the swinging leg of a humanoid robot

for gait imitation. In this thesis, two of them (elliptical and trapezoidal) are studied and

𝑦2 , 𝑧2

𝑦𝑒𝑛𝑑 , 𝑧𝑒𝑛𝑑

Figure 4-48: Utmost of the gait length

z

 y

x

Obstacle

𝐿𝑃,𝑚𝑎𝑥

𝜃𝐻𝐿,𝐹𝐿

𝐿𝑃𝐻𝑦

𝜃𝐻𝐿,𝐵𝐿

t=TP

𝑦𝑠𝑡𝑎𝑟𝑡 , 𝑧𝑠𝑡𝑎𝑟𝑡

t=0

𝑃

𝐴1 𝐴2

𝑦1 , 𝑧1

𝑙𝑇𝑖𝑏𝑎

𝑙𝑇𝑖𝑔

 61

implemented on the robot. Figure 4-49 shows these two trajectories with the related

parameters.

Each trajectory has some properties which are:
h: Maximum height
2Lp: Gait length
α: Angle of climbing (as well as descending)
The Elliptical trajectory can be generated using the equations 4-73 and 4-74:

𝑦 𝑡 = 𝐿𝑃 . cos
𝑡 .𝜋

𝑇𝑃
 Equation 4-73

𝑧 𝑡 = . sin
𝑡 .𝜋

𝑇𝑃
 Equation 4-74

Where TP is the gait time when the swinging phase is executed.

The Trapezoidal trajectory can be generated using the equations 4-75 and 4-76:

𝑦 𝑡 = 𝑡 Equation 4-75

𝑧 𝑡 =
𝑡.𝐴𝑟𝑐𝐶𝑜𝑡 𝛼 ∶ 𝑡 < . cos(𝛼)

 ∶ 𝑜.𝑤.
 𝑇𝑃 − 𝑡 .𝐴𝑟𝑐𝐶𝑜𝑡 𝛼 ∶ 𝑡 > 𝑇𝑃 − . cos(𝛼)

 Equation 4-76

Figure 4-50 and 4-51 shows the generated trajectory of Elliptical, and Trapezoidal form
respectively, with h=10, Lp=15 and α=30 .̊

h h

(0,0)

2LP

α

Elliptical trajectory

z

 y

x

Trapezoidal trajectory

Figure 4-49: Gait‟s ankle trajectory in lateral plan

(0,0)

2LP

α

 62

Figure 4-50: Elliptical trajectory

Figure 4-51: Trapezoidal trajectory

The following trajectory should be traversed using the swinging ankle of the robot. For this task

five joints are involved. Each joint controller should obey a specific trajectory (in time). The

trajectory for each joint is calculated using the inverse kinematics model of the robot.

-15 -10 -5 0 5 10 15

0

1

2

3

4

5

6

7

8

9

10

Y-Axis (cm)

Z
-A

xi
s

(c
m

)

Elliptical Ankle trajectory

-15 -10 -5 0 5 10 15

0

1

2

3

4

5

6

7

8

9

10

Y-Axis (cm)

Z
-A

x
is

 (
c
m

)

Trapezoidal Ankle trajectory

 63

4.6.5. Inverse kinematics

The goal of inverse kinematics is to compute the vector of the joints of the robot that will cause

the end effector to reach the desired point. The following operation is used to find the vectors

to approach the end effector to the desired point. To move the end effector on a desired

trajectory, the following operation (inverse kinematics) should be applied on the constructive

points of the trajectory consequentially. The result of the following process is the trajectory for

the joints on the limb.

The robot is controlled indirectly, from the movement of the joints.

Since direct kinematics is:

𝑋 = 𝑓(𝜣) Equation 4-77

Where:

 X: is the vector of position of the end effector.

𝛩: is the vector of joints (degrees of freedom) of the kinematics chain.

Inverse kinematics, determines the configuration that a robot must take to obtain a certain

position and orientation of the end effector.

𝛩 = 𝑓−1(𝑋) Equation 4-78

The inverse kinematics problem can be approached from many points of view; however, a few

are applicable to this case. Usually solving the inverse kinematics problem for the joints of a

robot using analytical methods is not possible, because the analytical methods cannot

mathematically solve an exact solution by directly inverting the forward kinematics equations,

which is only possible on relatively simple kinematics chains. Numerical methods use

approximation and iteration to converge on a solution. However, they tend to be more

expensive in processing load, but they have far more general purpose to use (Steve Rotenberg,

2005). One of the popular methods is the gradient descent. The gradient descent is based on

finding the values of a function for a certain point by knowing the value of the function and the

value of the derivative of the function for a near point.

∆𝑓

∆𝑥
≈

𝑑𝑓

𝑑𝑥
 Equation 4-79

∆𝑓 ≈ ∆𝑥.
𝑑𝑓

𝑑𝑥
 Equation 4-80

𝑓 𝑥 + ∆𝑥 ≈ 𝑓 𝑥 + ∆𝑥.
𝑑𝑓

𝑑𝑥
 Equation 4-81

 64

To extend the following methods to the vectors, the Jacobian matrix is used. The Jacobian

matrix contains all of the information necessary to relate a change in any component of 𝛩 to

change in any component of X.

𝐽 𝛩 =
𝜕𝑋𝑖

𝜕𝛩𝑗

𝑖 ,𝑗

 Equation 4-82

Since the gradient descent formula can be extended to the vector form using the Jacobian

matrix.

∆𝑋 ≈ 𝐽 𝛩 .∆𝛩 Equation 4-83

That the X and 𝛩 vectors are:

𝑋 =
𝑦𝑆𝐴
𝑧𝑆𝐴

 , 𝛩 =
𝜃𝐻𝐿
𝜃𝑆𝐾

 Equation 4-84

Where:

𝑦𝑆𝐴 , 𝑧𝑆𝐴 : are the positions of the swinging ankle in the lateral plane respectively.

𝜃𝐻𝐿 , 𝜃𝑆𝐾 : are the angle of the swinging hip and the swinging knee respectively.

For instance the inverse kinematics problem is applied to the swinging leg of the robot in order

to find the trajectory of the lateral hip and the knee joint for moving the ankle on desired

trajectory. Figure 4-52 shows the swinging leg moving on a desired trajectory.

From the direct kinematics chain the position of the end effector is resulted from the equations

4-85 and 4-86:

𝑦𝑆𝐴 = 𝑦0 + 𝑙𝑇𝑖𝑔 . sin 𝜃𝐻𝐿 − 𝑙𝑇𝑖𝑏𝑎 . sin 𝜃𝑆𝐾 − 𝜃𝐻𝐿 Equation 4-85

𝑧𝑆𝐴 = 𝑧0 − 𝑙𝑇𝑖𝑔 . sin 𝜃𝐻𝐿 − 𝑙𝑇𝑖𝑏𝑎 . sin 𝜃𝑆𝐾 − 𝜃𝐻𝐿 Equation 4-86

𝑙𝑇𝑖𝑔

𝜃𝑆𝐾

𝑦0 , 𝑧0

𝑦𝑆𝐴 , 𝑧𝑆𝐴

𝑙𝑇𝑖𝑏𝑎

Desired

trajectory

Figure 4-52: Swinging leg and the desired trajectory

z

 y

x

 65

Since the Jacobian matrix 𝐽 𝛩 for this problem is:

𝐽 𝛩 =

𝜕𝑦𝑆𝐴
𝜕𝜃𝐻𝐿

𝜕𝑦𝑆𝐴
𝜕𝜃𝑆𝐾

𝜕𝑧𝑆𝐴
𝜕𝜃𝐻𝐿

𝜕𝑧𝑆𝐴
𝜕𝜃𝑆𝐾

=
𝑙𝑇𝑖𝑔 . cos 𝜃𝐻𝐿 + 𝑙𝑇𝑖𝑏𝑎 . cos 𝜃𝐻𝐿 − 𝜃𝑆𝐾 −𝑙𝑇𝑖𝑏𝑎 . cos 𝜃𝑆𝐾 − 𝜃𝐻𝐿

𝑙𝑇𝑖𝑔 . sin 𝜃𝐻𝐿 + 𝑙𝑇𝑖𝑏𝑎 . sin 𝜃𝐻𝐿 − 𝜃𝑆𝐾 𝑙𝑇𝑖𝑏𝑎 . sin 𝜃𝑆𝐾 − 𝜃𝐻𝐿

Equation 4-87

The Δ𝚯 vector is calculated from the equation 4-88.

∆𝛩 ≈ 𝐽−1 𝛩 .∆𝑋 Equation 4-88

Where the 𝐽−1 𝛩 is the inverse of the Jacobian matrix and is found using the equation 4-89.

𝐽−1 𝛩 =
1

𝜕𝑦𝑆𝐴
𝜕𝜃 𝐻𝐿

.
𝜕𝑧𝑆𝐴
𝜕𝜃 𝑆𝐾

 −
𝜕𝑧𝑆𝐴
𝜕𝜃 𝐻𝐿

.
𝜕𝑦𝑆𝐴
𝜕𝜃 𝑆𝐾

𝜕𝑧𝑆𝐴

𝜕𝜃𝑆𝐾
−

𝜕𝑦𝑆𝐴

𝜕𝜃𝑆𝐾

−
𝜕𝑧𝑆𝐴

𝜕𝜃𝐻𝐿

𝜕𝑦𝑆𝐴

𝜕𝜃𝐻𝐿

 Equation 4-89

Since the inverse Jacobian matrix consists of the inverse determinant fraction, there are

positions which the inverse Jacobian matrix cannot be calculated (causes infinity). Moreover, in

the cases that the Jacobian matrix is not square (number of joint DOF is not equal to number of

DOF for the end effector) the inverse Jacobian matrix cannot be calculated. To use a more

global method the pseudo-inverse is used for inverting the Jacobian matrix (equation 4-90).

𝐽∗ = 𝐽𝑇𝐽 −1𝐽𝑇 Equation 4-90

By using the pseudo-inverse method a non-square matrix will be invertible.

For instance, the calculations that are used to find the trajectory of the joints are implemented.

 66

Figure 4-53: Desired trajectory and the traversed trajectory resulted from inverse kinematics for the ankle

(simulation)

In figure 4-53 the desired trajectory is shown and compared with the traversed trajectory of the

ankle joint. The traversed trajectory is resulted from the inverse kinematics calculations for the

swinging leg. The trajectory which should be traversed by the lateral hip joint and the knee joint

in order to result the desired ankle trajectory are shown in figure 4-54 and figure 4-55.

Figure 4-54: Hip lateral joint desired trajectory on time

-15 -10 -5 0 5 10 15

0

5

10

15

20

25

Y-Axis (cm)

Z
-A

x
is

 (
c
m

)

Desired and traversed trajectory

Desired Trajectory

Traversed Trajectory

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

H
ip

 L
a
te

ra
l
jo

in
t

(r
a
d
)

Time (sec)

Hip Lateral joint time trajectory

 67

Figure 4-55: Knee joint desired trajectory on time

The trajectory error resulted from the movement of the swinging leg’s ankle is illustrated in

figure 4-56.

Figure 4-56: Trajectory error of the swinging leg„s ankle (simulation)

Figure 4-56 depicts the magnitude of the error which is less than 0.25 cm (in worst case) and is

acceptable for the robot.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
w

in
g
in

g
 k

n
e
e
 j
o
in

t
(r

a
d
)

Time (sec)

Swinging joint time trajectory

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
ra

je
c
to

ry
 e

rr
o
r

(c
m

)

Time (sec)

Swinging Ankle Trajectory error

 68

4.6.6. Pre-calculated inverse kinematics

In this method, using the inverse kinematics of the robot’s leg, the pose of the lateral hip joint

and the knee joint is calculated to move the end effector (the ankle joint) on all its possible

points. By using the following pre-calculations, the robot could move the end effector without

calculating the inverse kinematics during the normal operation. The outcomes of this method

are 2D arrays per each joint (i.e., for the lateral hip joint one 2D array and for the knee another

2D array). These 2D arrays are storing the angle values of the joint based on the desired end

effector position (from the direct kinematics calculation). In addition, by using this method the

prohibited values of the joints are restricted. Moreover, the movement of the end effector

caused by the motion of the joints is more predictable than using the inverse kinematics

directly on the robot. Figures 4-57 and 5-58 are the 3D illustrations of the lateral hip and knee

joint respectively.

Figure 4-57: Pre-calculated inverse kinematics of the lateral hip joint

-36
-38.5

-41
-43.5

-46
-48.5

-51

-20
-15

-10
-5

0
5

10
15

20
-20

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Z-Axis of the end effector [cm]Y-Axis of the end effector [cm]

H
ip

 a
n
g
le

 [
ra

d
]

 69

Figure 4-58: Pre-calculated inverse kinematics of the knee joint

Using the pre-calculated inverse kinematics reduces the processing load on the central

controller processor; however it requires higher memory usage to store the pre-calculated

inverse kinematics values for each joint of the robot (10Kbyte memory per joint).

-36
-38.5-41

-43.5-46
-48.5

-51

-20-15-10-505101520-20

0.5

1

1.5

2

Z-Axis of the end effector [cm]Y-Axis of the end effector [cm]

K
n
e
e
 a

n
g
le

 [
ra

d
]

 70

Chapter 5

5. Realization and Implementation

5.1. Introduction

In this chapter the implementation of the control system designed for Archie is presented. The

control system in Archie is designed on the distributed computer architecture basis. A central

controller sends commands to the individual controllers through a data network. Each

individual controller is intended to control a single joint in the robot and is connected to the

central controller. Controlling a joint includes controlling the position and velocity.

Communication process management is time consuming, and it imposes a heavy load on the

central processor. Therefore, in this thesis, the communication process management is

implemented on a Fundamental Programmable Gate Array (FPGA). By using this approach, the

power consumption in the system can be reduced significantly and as a result, the central

processor can run other tasks in acceptable times.

There are three type of motors used in the joints of Archie (i.e., RC servo, Brushed DC and

Brushless DC motor). The types of the motors have been selected, based on the joint and the

torque. Consequentially, the design of the controllers is based on the motor type.

5.2. Joints with RC servo motors

In Archie’s upper body (i.e., head, neck and hands) miniature servo motors, which contain built-

in controllers (i.e., Dynamixel, RX-64), have been used. A servo motor is shown in figure 5-1.

Although it is small, a servo motor’s performance is remarkable.

 71

Figure 5-1: RX-64 servo motor used in Archie

Specification Value unit

Weight 125 g

Dimension 40x61x41 mm

Gear ratio 1:200

Supply voltage 18 v

Current (Full load) 1200 mA

Output torque 6 Nm

Speed (No load) 490 Deg/s

Communication speed 1 Mbps

Protocol RS485 (8bit+1stp)

Table 5-1: Specification table of RX-64

The RX-64’s controller uses EIA-485 communication bus. The central controller sends

appropriate data to the motors through a specified hardware based data sequencer. This

hardware is integrated to the Data Acquisition Unit (DAU).

Each motor controller uses a specific number (i.e., ID) over the shared bus (i.e., data network)

to distinguish itself from the other motor controllers. The protocol used by these motors is

shown in figure 5-3.

 72

5.3. Brushed DC motor based joints

Archie’s Toes, Ankle (i.e., frontal movement of the Ankle) and Hip (i.e., transversal movement

of the hip) are based on brushed DC motors (i.e., Faulhaber, 2342 series). The main reason for

choosing brushed DC motors in these joints is the mechanical space restrictions. The motors

can provide 16mNm torque on the output shaft without gear. Using a harmonic drive (Type of

Gear head) with the ratio of 1:100, 1.6Nm the maximum torque can be provided on the joints.

Figure 5-3: DC motor controller

To control the DC motors a velocity controller is used that runs cascaded to a position

controller. The following control loop (shown in chapter 4 in figure 4-13) is based on the

embedded controller XC164 (Infineon, 2001) which runs at 40MHz. The power stage is based on

the ATA6824 (Atmel, 2008) which uses four external power MOSFET (i.e., SUD50N04, Vishay,

2006) for driving the motor.

0xFF 0xFF ID Length Instruction Parameter 1 Parameter 1 Check sum …

0x01: Ping
0x02: Read data
0x03: Write data
0x04: Standby
0x05: Activate
0x06: Reset
0x83: Synchronous

Length of the data packet

ID for the motors from 0 to 253

Figure 5-2: Servo motors command packet structure

 73

The current sensor is based on the current shunt monitor chip (INA139, Texas Instruments,

2001). The sensor measures the current passing through the shunt resistor. The current passing

through the shunt resistor comes from the motor and is affected with noise and Pulse Width

Modulation (PWM), and therefore, it needs to be filtered for the measurement. The filter

output is measured using an internal digital to analog converter in the microcontroller that is

used to controlling the torque loop.

In the DC motor controller, the torque control loop is used to protect the system from possible

crashes in feasible collisions, which may occur during a normal operation. The velocity control

loop moves the joint to the desired position with a constant velocity. This control loop is

important to have synchronization on multi-joint-combinational movements. The outer position

control loop is used mostly to correct the position of the joint.

5.4. Brushless DC motor based joints

Archie’s Knee, Ankle (i.e., lateral movement of the Ankle) and Hip (i.e., lateral and frontal

movement of the hip) are made of DC brushless motors (i.e., Maxon-Motors, EC45). The reason

Motor

ATA6824

Bridge

logic

circuit

2 High

Drivers

2 Low

Drivers

Current

Sensor

XC164CM

16bit

Micro

controller

N

e

t

w

o

r

k

ENC

Absolute

Position

sensor

Figure 5-4: DC motor controller hardware

Low-pass filter

Vmotor

 74

for using DC brushless motors is the necessity of high mechanical torque in these joints. Here,

the brushless motors are combined with a harmonic gear (i.e., Harmonic Drives Systems Inc.,

20-160-874405-6) to provide more output torque.

In this section, the mechanical construction has been explained.

The motor controller used to control the brushless based joint and the modular motor-

harmonic gear combination is shown in figure 5-5.

Figure 5-5: Brushless motor controller connected to the joint module

The specifications of the joints have been described in table 5-2.

Parameter Calculations Value Unit

Assigned Power Rating 50(motor power) x 77%(total efficiency) 38.5 Watt

Max. Speed (No load) 6800 (Motor Max. Speed) / 160 (Gear ratio) 42.5 rpm

Stall torque 780 (Motor stall torque) x 160 (Gear ratio) 124.8 Nm

Max. Continuous torque 81.4(Motor cont. Torque) x 160 (Gear ratio) 13.02 Nm

Table 5-2: Output parameters resulted from the constructed joint

 75

5.4.1. Brushless motor advanced controller

The brushless motor based joints use an advanced motion controller (i.e., Whistle, Elmo Motion

Control, 2006) as a power stage. The controller block diagram is shown in figure 5-6.

The controller consists of three cascaded controllers to control the position, velocity and the

torque of the motor. The torque controller block is illustrated in figure 5-7 (Elmo Motor

Controller, 2009).

Reactive

current (=0)

 ID

Torque

Command

Figure 5-7: Torque controller (inner loop)

Peak/Continues

current

saturation

Commutation

Angle

Pre-filter PI

compensato

r for Active Output

coordinate

transform

VQ

Power

stage

and

Motor

Input

coordinate

transform

IQ

PI

compensato

r for

Reactive

VO

Ʃ

Ʃ

Position

Figure 5-6: Elmo Whistle motion controller

Power

stage
Position

Controller

KP

Velocity

Controller

KP, KI

Torque

Controller

KP, KI

A
Motor

Enc Velocity

Estimation

Velocity

feedback

Gain scheduling

algorithm sets

KP and KI

𝐹𝐹
𝑑

𝑑𝑡

Ʃ Ʃ Ʃ

 76

To prevent windup in the integral component of the torque control, the following subsystem is

added to the system which is shown in figure 5-8 (Elmo Motion Control, 2009).

The velocity controller’s block diagram is depicted in Figure 5-9 (Elmo Motion Control, 2009).

+

Figure 5-9: Velocity controller used for the burhsless motors

Encoder pulse

timer

Position sensor

Speed

command

Torque

command

Automatic

controller

selector

Feed forward 𝑑

𝑑𝑡

PI

compensator

High order

filter

Speed

estimator

Gain

schedule

Ʃ Ʃ

Anti windup

Current feedback

Torque Command

Bus voltage Bus voltage

low-pass filter

𝐾𝑃
𝑉𝐵

𝐾𝐼
𝑉𝐵

 𝑔𝑘
𝑖

Current output

Figure 5-8: Torque controller with anti windup (inner loop)

Ʃ
Ʃ

 77

The figure 5-10 shows how the speed controller gets the commands from the position

controller (Elmo Motion Control, 2009).

The controller bandwidth is shown in figure 5-11 (Elmo Motion Control, 2009).

Figure 5-11: Brushless motor‟s motion controller bandwidth

;

θ

PF

Position Controller Velocity Controller

VC IC IF

PF

PE PC
KP

VF

VE 𝐾𝐼
𝑠

+

PE +
KP

s

Current loop +

commutation
KP

1

𝐽𝑠2

Torque Controller

Ʃ Ʃ Ʃ

> 2 KHz

> 350 Hz

> 80 Hz

Figure 5-10: Brushless motor position controller (outer loop)

+

Position Command

Position sensor

Speed

command

P

compensator

Automatic

controller

selector

Feed

forward

𝑑

𝑑𝑡

Ʃ Ʃ

 78

5.4.2. Absolute positioning

In the brushless based joints, a novel method has been used in this thesis to find the absolute

position. The harmonic drive consists of three parts that are shown in figure 5-12. These three

parts are wave generator spline, flexible spline and circular spline. The wave generator spline is

used as the input to reduce the velocity and to get higher torque in the output. This is coupled

to the rotor of the brushless motor. Moreover the flexible spline is the output and it is coupled

to the moving link (not to the link that is coupled to the joint frame) and the circular spline is

fixed on the frame.

Figure 5-12: Components of the harmonic drive gear

As it is described in the block diagram of the magnetic rotary encoder (i.e., Austrian Micro

Electronics, AS5134), different types of outputs are available. A and B outputs are the

emulations of the incremental encoder and have been used to giving more accuracy to the

brushless controller to generate sinusoidal output for the brushless motor windings. The

absolute position output of the chip is used to calculate the absolute position of the joint (i.e.,

the moving joint).

 79

Figure 5-13: AS5134 magnetic rotary encoder with the magnet on the top (Datasheet of AS5134)

The rotor shaft crosses the flexible spline from its center and it is coupled directly to the wave

generator spline as well as the rotor. A cylindrical magnet is attached in the end of the shaft

which is sensed by the magnetic rotary encoder (shown in figure 5-13). The magnetic rotary

encoder is then connected to the output of the harmonic gear that is actually the flexible spline.

The result of this configuration will cause drifting by sensing the position of the magnet for each

turn in the harmonic gear output.

Figure 5-14: Block diagram of AS5134 magnetic rotary encoder (from datasheet of AS5134)

By rotating the rotor shaft in a direction, the output will rotate in the opposite direction with a

certain ratio (specified for the harmonic drive, e.g., 1:160). Regarding the described mechanism

of placing the encoder on the output and sensing the position of the magnet coupled to the

rotor of the brushless motor, there is 362.25: degrees per revolution.

𝜃 = 360° +
360°

160
= 360° + 2.25° = 362.25° Equation 5-1

 80

There is a magnet on the rotor generating a pulse in the hall sensor attached to the frame.

When a pulse is received, the absolute value of the magnetic rotary encoder is captured. This

value will change with each revolution and it is used for calculate the position of the moving

link in the joints. Figure 5-15 depicts the magnet in the center and the output of the joint that is

coupled to the moving link.

Figure 5-15: The brushless motor based joint and the position of the encoder

To calculate the absolute position of the joint, there is a calibration which relates the resulted

value to the real position of the moving link. This calibration is valid until the next change

happens in the position of the moving link and the situation of the attachment between the

two magnets (one magnet is used for the magnetic rotary encoder and the other is placed on

the rotor and generates a pulse in the hall sensor).

Indeed, once the rotor reaches the point where the hall sensor is, the position between the

output of the harmonic drive and the input (i.e., the rotor) is measured. Because of the position

of the magnetic rotary encoder on the output, in each revolution, it rotates by 2.25: degrees

(360:/160). This motion generates unique values for each position which are used for the

absolute position calculation.

In the start of operation, the rotor moves one turn that equals 2.25: degrees movement in the

gear output (joint). During this rotation the hall sensor perceives the magnet attached to the

rotor which the controller uses to calculate the absolute position of the joint. Figure 5-16 shows

the construction parts of the joint.

 81

Figure 5-16: Attached magnet of the rotor and hall sensor attached of the frame

5.4.1. Data communication bus

To provide control data for synchronizing the joints, a data communication bus (network) has

been used. This network provides a robust data communication with a proper speed and

reliability (e.g., SPI1, CAN2, LIN3 or LAN4).

An appropriate physical layer for reliable data communication is also necessary. From

experience, current loop based physical layers like EIA-422 and EIA-485 are a great choice in

this type of applications.

5.5. Processing improvements

The center of mass should be calculated in every control cycle in the robot. This task is time

consuming and imposes a heavy load on the central processor. As a result, the central

processor cannot be used for other tasks simultaneously. Increasing the speed of the central

processor or using a second processor to assist the main processor, are the possible solutions

1
 - Acronym of Serial Peripheral Interface

2
 - Acronym of Control Area Network

3
 - Acronym of Local Interconnect Network

4
 - Acronym of Local Area Network

 82

which cause more energy consumption. Using FPGA for an Application-Specific Integrated

Circuit (ASIC) is one of the best solutions for this kind of tasks. In this thesis, the calculation of

the center of mass is partially implemented on the FPGA. The main processor puts the data

received from the DAU in the specific memory addresses and triggers a signal. After some

cycles the ASIC will finish the CM calculation.

Calculating the trigonometric parameters (i.e., Sin (θ) and Cos (θ)) decreases the processing

load to find the center of mass in the central controller. Using the parallel processing

architecture, individual controllers process the trigonometric parameters in parallel and send it

into the central controller. However, in the traditional method, the central controller has to find

the trigonometric parameters, for all the joints (i.e., the calculation is not done in parallel).

Moreover, using the following method reduces the complexity of the algorithm and makes it

possible to be implemented in hardware using Very high integrated Hardware Description

Language (VHDL).

5.6. Communication bus interface

Data Acquisition unit regularly exchanges data with the nodes (i.e., joint controllers) in the

robot. This communication is broadcasted. In other words, the master (Data Acquisition Unit)

writes a message on the bus, and all the nodes receive this message. The nodes analyze the

Data

acquisition

hardware

Center of

mass

Calculator

Central

Processor

Joint (3)

Θ3, Sin(Θ3),

Cos(Θ3)

Joint (i)

Θi, Sin(Θi),

Cos(Θi)

Network

Figure 5-17 : Data flow in optimized control process

 83

received data and check the unique ID. If it matches with their ID, they will write the data on

the bus (Master Input Slave Output (MISO) line) on the next time frame5 assigned for data flow

from client to the master (Data Acquisition Unit). During this communication only one node

writes the data on the bus and the other nodes are in tri-state (otherwise data collision could

be happen). Figure 5-18 shows a block diagram of the communication bus based on SPI used in

the robot.

5.6.1. Physical layer

In Archie, like any other tall humanoid robot, the distance between the clients and the Spinal

Board (Data Acquisition Unit) is fairly long. Hence, the data can be affected by the noise coming

from the environment or the motors of the robot. The high speed communication can also

cause some influences in the system and data buses. Thus, a protected communication physical

layer is necessary. For this reason, an EIA-422 physical layer is used as the physical layer. The

EIA-422 is based on current loop. Figure 5-19 shows a detailed schematic of the EIA-422 bus.

5
 - The time frame consists form 16 clock

MOSI

MISO

SCLK

Master

MOSI

MISO

SCLK

Slave #1

MOSI

MISO

SCLK

Slave #2

MOSI

MISO

SCLK

Slave #n

Figure 5-18: Distributed SPI bus used to control the motors

 84

Figure 5-19: Schematic of EIA-422 (from datasheet of SN75ALS180D)

The physical layer should provide the following properties:

 High fan-out: Because of the distributed structure (at least for 16 clients).

 Tri-state mode: Because of the shared bus in receiving data from the clients.

 Robustness, durability and high reliability: Because of the necessity for Real-Time control.

 High speed: To reach a high refresh time (up to 1ms).

The standard category five (Cat-5) cable with twisted pair wires and a shield around the whole

cable has been used. Also, the standard Local Area Network (LAN) connectors have been used

to connect the cables to the boards (i.e., joint controllers and central controller).

Figure 5-20 illustrates the pin-out for the eight cables that are used in the robot.

Pin description:

1- Master Input slave output (MISO) D+

2- Master Input slave output (MISO) D-

3- Master output slave input (MOSI) D+

4- Master output slave input (MOSI) D-

5- Serial Clock (SCLK) D+

6- Serial Clock (SCLK) D-

7- VCC (9Volt, supply for the controllers)

8- GND

Figure 5-20: The pin-out of the Cat-5 cable used in the robot

 85

The communication bus cables are used in the robot to connect the boards to each other (i.e.,

daisy chain). Figure 5-21 shows some of the boards that are connected to each other using the

daisy chain network.

Figure 5-21: Daisy chain network for spreading the communication bus in the robot

5.6.2. Packet structure

A special packet structure has been used to exchange data in the communication bus. The

packet structure contains: the unique ID of the node, the type of the data, a command for

disabling or enabling the controller and 8-bit data. The packet structure is also able to recognize

the noise influence that can change the data bits by using the Cyclic Redundancy Check (CRC).

The packet structure uses a 16-bit frame and is depicted in Figure 5-22.

15 14 13 12 11

1

10 9 8 7 6 5 4 3 2 1 0

MSB LSB

8-bit data packet Client ID

Meaning of the data

0 0 : Torque

0 1 : Velocity

1 0 : Position

1 1 : Trigonometry

Enabling
0: Activating the controller

1: Deactivating the controller

Cyclic Redundancy Check (CRC)

Figure 5-22: SPI communication packet structure

Data flow direction

 86

After sending data to a node (e.g., joint controller), the data acquisition unit waits for the same

type of data from the specific node in the next time frame. The exchanging operations are

implemented in the hardware of the data acquisition unit. It refreshes the entire system in 1ms.

In other words, taking the necessary data from the joints, writing on the dual-port RAM,

sending the appropriate commands to the joints, is all done in 1ms.

5.6.3. Bit rate calculation

To achieve the 1ms refresh time for the whole robot, the bit rate has to be calculated, in order

to select an appropriate physical layer and system design. In general, the bus has the following

specifications:

 Total data exchanging time (refresh time): 1ms

 SPI buses: 3

 Maximum clients per bus: 7

 Bits per data packet: 16

 Necessary data packets for data exchanging with one client: 1 send + 1 receive

Therefore: 2 x 7 x 16 x (bit rate) = 1 ms bit rate = 4.46 µs Equation 5-2

The bit rate is set as the frequency of the serial clock generator (SCLK) for the SPI bus. In

addition, this bit rate should be considered to select the physical layer and the clock skew

calculation.

5.7. Central controller or spinal board

5.7.1. Control system architecture

The spinal board works as the cerebellum for the humanoid robot and has the following tasks:

 87

 Acquisition of data from the individual joint controllers and sending the calculated

information in a constant time.

 Acquisition of data from the inertial measurement unit in a constant time.

 Balancing the whole robot by using the data received from the joints and the IMU.

 Monitoring and handling the failures and errors of the system.

 Sending and receiving data and commands to the higher lever computation system

using LAN and wireless communication.

 Supplying power and controlling the energy of the robot.

 Providing Rapid reactions in the robot (like unconscious reactions in Human).

To realize the mentioned tasks for the spinal board, an FPGA with a hardcore implemented

PowerPC 405 is used (i.e., Xilinx Virtex 4 FX, XC4VFX12). The chip is implemented with a

16Mbyte SDRAM, USB 2.0 interface, an IrDA6 interface, and an SD card reader. It also has some

other hardware components and ports, all on a small PCB7 as a daughter board (shown in figure

5-23). It is connected to the Spinal board by a standard DIP40 footprint.

Figure 5-23: Virtex 4 daughter board

6
 - Acronym of Infrared Data Association

7
 - Acronym of Printed Circuit Board

 88

The block diagram of the daughter board is shown in figure 5-24.

Figure 5-24: Block diagram of the Virtex 4 daughter board

Figure 5-26 shows the daughter board that is mounted on the spinal.

Figure 5-25: Spinal board

 89

Virtex 4 contains the PowerPC 405 and some peripherals, shown in figure 5-26 and 5-27.

Figure 5-26: Table of peripherals embedded in the central controller‟s main processor

 90

Figure 5-27: The hardware design of the Virtex 4 FPGA used in the central controller (in EDK
8
 10.1)

8
 - Acronym of Embedded Development Kit (Software from Xilinx)

 91

5.7.2. Data acquisition unit

In distributed processing systems, communication between the nodes and the central

controller is very important. The communication includes sending and receiving data to and

from the nodes. The management of the communication (reading and writing data) imposes a

high load on the main processor. As a result, the main processor cannot run the other tasks

simultaneously.

Nonetheless, reading and writing data is a repetitively simple task that should be done quickly.

This task is similar to the graphic card’s RAMDAC9 which sends the data stored on the graphical

RAM to the VGA’s analog output sequentially (introduced for the first time by IBM, 1987).

Using software methods to manage the communication will slow down the main processor and

may result in losing the constant time to run the communication process. In this thesis, a

hardware method has been used to address this problem. The repetitive reading and writing

tasks for the communication with the clients is implemented on a piece of hardware. The

implementation consists of two parts; the dual ports memory and the stream sequencer. The

hardware called Data Acquisition Unit (DAU) is implemented in VHDL10 language on a part of

the FPGA containing the PowerPC 405 hardcore.

The dual-port memory is connected to the main processor via PLB11 bus. In the other side of the

dual-port memory, the stream sequencer is placed. The data stream sequencer is based on the

communication packet structure (protocol) and generates an appropriate bit stream which

contains all the necessary data. The generated bit stream is transmitted along the

communication bus through the physical layer. The data is received by all the nodes and

checked by their unique ID.

9
 - Acronym of Random Access Memory Digital-to-Analog Converter

10
 - Acronym of Very high integrated Hardware Description Language

11
 - Acronym of Processor Local Bus

P

L

B

B

u

s

Dual-port RAM

cell matrix

Bit stream

sequencer

(read/write

from nodes)

S

P

I

B

U

S
Port 0 Port 1

Figure 5-28: Data acquisition unit

 92

5.7.3. Operation system

Archie’s central controller uses the Linux operating system (OS) based on the 2.6 kernel12

version. This OS provides all the time management for the tasks and balancing computations.

The Linux operating system used in Archie (called Archie Linux) is a standard 2.6 kernel ported

on the PowerPC 405 processor (Embedded Processor inside the FPGA).

Figure 5-29: Memory map of the central controller‟s main processor

Running the Linux operating system requires minimum peripherals (i.e., at least an interrupt

controller, system timer and etc.). All the peripherals are placed in a unified memory map that

is shown in figure 5-29. Following configurations are part of the Device Tree Blob (DTB). The

device tree blob is used to compile the kernel of the operating system (Linux). In the end the

firmware (the FPGA hardware configuration file), the kernel image (the image file of the

compiled Linux kernel) and the device tree blob are used to execute the operating system.

12

 - The latest Linux kernel was released on 23 December 2003

Firmware

Image

Executed on

reset

Kernel

Image

(UImage for

U-Boot)

Flattened

Device Tree

Blob

(DTB)

Root File system (Ram disk)

including the robot

application

Figure 5-30: Prepared files for running the operationg system

 93

5.7.4. Booting up mechanism of the FPGA and the Linux

The SD memory card inserted in the memory card reader on the Virtex 4 daughter board,

includes, two files. One of them is a hardware set bit stream and the other is an image file. The

first file contains all the configurations of the FPGA (includes hardware design) and a loader

program. This stream is programmed on the FPGA using a microcontroller. The microcontroller

is used as the BIOS13 and starts up on the power up once the power is plugged to the system.

The microcontroller starts to read the bit stream from the Secured Digital (SD) memory card

and pumps it into the FPGA using the JTAG14 bus. After finishing programming the bit stream

into the FPGA, the created design executes the loader program. The loader program is pre-

programmed by the hardware configuration bit stream inside the program memory of the

processor. The loader program reads the image file and decompresses it into the SDRAM15.

During this operation, the display on the spinal shows a progress bar. After decompressing the

kernel, the Memory Management Unit (MMU) is turned on. In this moment, the kernel starts to

manage the hardware and executes the robot’s control software. The flow diagram in figure 5-

31 shows the entire process.

13

 -Acronym of Basic Input Output System

14
 -Acronym of Joint Test Action Group which is a type of programming interfaces

15
 -Acronym of Synchronous Dynamic Random Access Memory

Power up

(Reset)

Setup

Hardware

Load

Images

Starting

the Kernel

-Kernel

-Ram disk

Probe

Drivers

Mount Root

File system

Init

Firmware Kernel

User space

Using BIOS (μC)

Using PowerPC

Figure 5-31: Booting the embedded system on chip and Linux flow

 94

5.8. Energy management

One of the most important operational factors in mobile robots is energy. Archie is a mobile

robot and it should operate for at least one hour per each full-charged battery.

To get a better result, the efficiency should be well considered. The design should consider

minimizing the energy which is lost in the electronic and mechanical components. The power

supply plays a big role in this criterion. In addition, the battery charger circuit should be

designed for the minimum necessary time to fully charge the battery. Table 5-3 shows all the

components in the robot, the required voltage and the maximum wattage of them.

Component Voltage Maximum wattage

Brushless motors 28 volt 50 watt x (4+4+1) = 450 watt

DC motors 24 ~ 28 volt 19 watt x (2+2+3) = 133 watt

Brushless based joint Controller 7 ~ 12 volt 1~2 watt x (4+4+1) = 9 ~ 18 watt

DC based joint Controller 7 ~ 12 volt 1 watt (2+2+3) = 7 watt

Spinal Board + FPGA 9 volt 2 watt + 3 watt = 5 watt

Servo Motors (RX 64) 18 volt 21.6 watt x 13 = 280 wall

Total wattage: 450 + 133 + 18 + 7 + 5 + 280 = 893 watt

Table 5-3: Components in the robot and the required voltage and maximum wattage

What is described in table 5-3 is for the worst case situation which hardly happens.

 95

5.8.1. Batteries

There are two Battery packs in the robot as the energy sources. The battery pack has the

following specifications (also shown in figure 5-32):

Chemical type: Lithium Ion

Voltage: (4.2 v ~ 3.6 v) x 7 cell = 29.4 v ~ 25.2 v Equation 5-3

Amperage per hour: 6.1 A/hour

Figure 5-32: Battery pack used in Archie

The stored energy in the power source is:

 2 x 4 x 7 x 6.1 = 341.6 watt/hour Equation 5-4

A humanoid robot rarely uses all the motors with the maximum power. There are some

experimental founded relations that say that only a quarter of the motors are usually under full

power work. By using this assumption, the quarter of the maximum power used by the motors

plus the energy of the other control equipments in the robot is:

(450 + 133 + 280) / 4 + (18 + 7 + 5) = 215.5 + 30 = 245.5 watt Equation 5-5

Therefore, the expected operation time for the robot with a full-charged battery is:

341.6 / 245.5 = 1.4 hour = 1:24 that means 1 hour and 24 minutes Equation 5-6

 96

5.8.2. Power supply

The Power supply is an electronic unit that provides different voltages for the components of

the system. The batteries that are used in the robot are designed to supply 29 to 25 volts (29.4

in full charge and it decreases to 25 during using the battery). The motors used in the robot

(expect the servo motors) work on the same voltage range; Hence, there is no need for

additional voltage regulating circuit.

The servo motor (RX 64) uses switching power supply with 300 watts maximum output power

this converts a voltage range of 20 to 30 to a regulated 18 volt output.

For the control equipments, there is a second switching power supply with 50 watt maximum

output power that converts a voltage range of 20 to 30 to a regulated 8 volt output. This power

rail is used for the whole control equipments in the robot.

The Spinal board uses a linear voltage regulator to convert the 8 volt input to the 5 volt output.

The 5 volt rail is used to supply other peripherals on the spinal board. The FPGA uses a

miniature switching power supply on the spinal board that converts the 5 volt input to the

3.3 volt output which is also used in the wireless communication module and the OLED16

display (μOLED-160-G1, 4D systems 2008) on the spinal board.

The 8 volt rail goes directly in the communication bus cables that are based on standard Cat-5

cables and are used on the joint controllers. The joint controllers have a linear regulator which

converts the 8 volt to the regulated 5 volt. The 5 volt is used for the joint controller processors

and the encoders.

16

 - Acronym of Organic Light Emitted Diode

 97

5.9. Normal operation flowchart

Figure 5-33 illustrates the operation flowchart for a normal operation of the robot.

No

Yes

Yes

No

Power up

Power up joints

motors individually

Absolute position

Calibration

Joint ready

to work?

FPGA

configuration

Linux kernel extraction

Power on self

test (POST)
Error

Message

Waiting for

Spinal board
System

ready to

work?

Display

system failure

Executing the robot

overall controller

program

Waiting for

Commands

System

Halt

Commands

Figure 5-33: Flow chart for notmal operation

 98

5.10. Applications on the robot

5.10.1. Motion planner

After running the balancing operation in the spinal board, the robot is ready to execute higher

level commands. The higher level commands can be issued by different motion planners.

For example, a motion planner can be used for playing soccer or other purposes.

The Motion Development Planner (MDP) is a type of motion planner that is used for motion

development and finding motions in the robot.

Archie uses a motion development planner written with C++ in Linux. Figure 5-34 shows a

screen shot of this motion planner.

Figure 5-34: Screen shot of the motion planner configuration tab

 99

In the configuration tab of the motion planner, there are some parameters that can be set

(figure 5-34):

 Communication device: It can be either serial port or LAN.

 Baud rate: The desired speed for sending data to the spinal board.

 Initial settings: The initial current limit for the joint controllers.

 Offset setting: Setting the offset for the joints in order to calibrate.

 Testing the joints: Testing the Joints individually and monitoring their data.

The second tab in the motion planner is used to develop the positions. Figure 5-35 shows a

screen shot of this tab.

Figure 5-35: Position development tab screen shot

 100

The Position development tab develops motions and stores them in the robot. After storing the

positions, the robot is able to go to a specific position by calling that position. When the robot

stays in a position, the spinal board tries to hold the balance by processing the data received

from the feedback data from the Inertial Measurement Unit (IMU) and the positions of the

other joints.

In other words, when a movement is applied to a joint, and the balancing is enabled, the spinal

board issues appropriate commands to the other joints to hold the overall balance of the whole

robot.

The resulting positions are stored as commands for the robot. By executing a sequence of

positions to the robot, motion is performed. Figure 5-36 shows a screen shot of a tab that

provides this ability in the robot.

Figure 5-36: Motion development tab screen shot

 101

For example, using three different positions and issuing them sequentially, the robot is able to

have a dynamic walk which is considered as a motion of the robot.

The last tab is for logging all the data which is send from the motion development planner to

the robot (Figure 5-37).

Figure 5-37: Motion development planner logging tab screen shot

 102

5.10.2. Joint offset assignment

Each joint has a certain point as zero. When all the joints are replaced on the zero position, the

robot stands in a ‘T’ form (Figure 5-38).

Figure 5-38: Simulation of Archie standing in „T‟ form

The T form position is used for calibration. To do so, all joints move to the proper position to

have the whole robot standing in the ‘T’ form. Then, all settings are stored in the joint

controllers.

 103

Calibration is not always necessary and is only required after mechanical reassembling.

However, after a long time of operation it is necessary for the robot to be recalibrated again.

5.11. Robot simulator

The simulator used for the robot is developed in the SimMechanics toolbox of Matlab-Simulink.

The simulator is prepared in order to develop the motions and predict the real results of the

robot before applying them to the real robot.

Figure 5-39: Simulation of Archie‟s lower body

One of the main benefits of using a simulator is the possibility of monitoring the trajectories

caused by the movements of the robot. Figure 5-40 shows the block diagram in the Matlab

Simulink of the robot simulator.

 104

Figure 5-40: Archie‟s lower body simulation in Simulink

 105

Chapter 6

6. Tests and Results

In this chapter the results of the practical tests on the robot are presented. The tests are

performed in three different levels. In the first level a single joint controller is tested. The joint

controller test consists of testing the performance of the velocity controller and the position

controller (more description in section 6.1). In the second level which is an expansion of the

first level, a combination of two joints (knee and lateral hip joint) is used to test the robot’s leg.

In the Third level the robot’s legs (left leg and right leg) are attached to the torso of the robot

and the robot is tested for basic walking sequence.

The trajectories obtained from the tests on the robot are compared with the trajectories

acquired from the robot’s simulator. The comparison is used for testing the prediction

capability of the robot’s simulator and performance of the robot’s control system.

6.1. Joint controller test

In this section, a single joint of the robot is tested separately. For this test, the standard Motion

Monitor Toolset (Elmo MC Composer, ver. 2.19 July 2008) is used. The joint controller is tested

in a situation that is counted as the worst case of system instability. In this situation the lateral

hip joint is used to move the robot’s leg from 0° to 45° (Figure 6-1).

Figure 6-1: Robot‟s leg used for joint controller test

 106

In the first movement (0° to 45°), the joint controller is affected by the gravitational forces of

the leg that increase gradually by the growth of the lateral hip joint’s angle

(𝑚𝑙𝑒𝑔𝑔. 𝑆𝑖𝑛𝜃𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝐻𝑖𝑝).

The test is performed on different velocities from the trajectory planner. Figure 6-2 shows the

Simulink block diagram for the single joint test simulation. In this simulation, one leg of the

robot is performed in swinging phase which means that the leg is attached from the hip to the

simulation environment root. The joint that is on evaluation is the lateral hip joint (Right leg

lateral hip joint). Any other joints of the leg in the simulation are supposed to be fixed without

movement (welded joints).

Figure 6-2: Simulink block diagram for single joint test

The simulation block diagram (shown in figure 6-2) contains a joint controller block which is

extracted from the right lateral hip controller block and it is shown in figure 6-3. The block

diagram of the controller includes the gravity effect that causes non-linearity in the system

model. The gravitational effect is applied by adding the vertical component of the leg multiplied

by the weight and divided by the joint’s gear ratio. The system plant is thought as a continuous-

time model. Thus, the input and output of the system plant model is connected by zero-order

hold blocks to the other parts of the simulation (the other parts of the simulation are based on

the discrete-time model).

 107

Figure 6-3: Extraction of the joint controller

The extraction of the system plant block is shown in figure 6-4. The model contains all the

simulation parameters for the electric motor used in the joint as actuator. The model starts

with the rotor voltage as input and converts it into current by the first integrator. The motor is

designed for an allowed current range which is applied to the simulator by a limiter block. The

result (and limited) rotor current is multiplied by the electromotive force constant (𝐾𝑡) of the

motor and resembles the generated torque of motor. By adding the gravitational force and the

damping ratio caused by friction of the mechanical plant, the actuator torque is resembled. By

multiplying the total inverse of the moment of inertia to the actuator torque, the result is the

angular acceleration of the joint. The angular acceleration is then converted to angular velocity

by using the second integrator. The motor’s mechanical construction restricts the angular

velocity of the motor in a definite range, which is resembled by the second limiter block. Finally,

the angular velocity is turned into the motor’s angle by the third integrator.

Figure 6-4: Continuous-time system plant model

 108

In figure 6-5 the robot’s right leg is illustrated in SimMechanics Simulator output.

Figure 6-5: Simulation of the robot„s leg used for joint controller test

In this test, the swinging robot’s leg moves from vertical stationary position to 45° angle

position. During the test, the gravitational effect is reflected to the joint’s actuator gradually

which causes non-linearity of the system plant model. The test is executed on the real robot

and the robot’s simulator.

The joint controller limits the velocity of the motor on the desired value, in order to control the

necessary time used for the movement. Controlling the traversing time gives the possibility to

synchronize the joints for combinational movements (e.g., human gait imitation).

Figure 6-6: Traversed angle trajectory by the real robot with different movement velocities

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (sec)

L
a
te

ra
l
h
ip

 j
o
in

t
a
n
g
le

 (
ra

d
)

Robot's traversed angle trajectory

with 2356 rad/s Velocity

with 4712 rad/s Velocity

with 7068 rad/s Velocity

with 9424 rad/s Velocity

with 11780 rad/s Velocity

 109

The angular trajectory error caused by the real robot from the movement of the hip joint with

different traversing velocities is depicted in figure 6-7.

Figure 6-7: Angular trajectory error caused by the real robot tested with different traversing velocities

Figure 6-8: Traversed angle trajectory by the robot simulator, with different movement velocities

0 0.5 1 1.5 2 2.5 3
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

Time (sec)

L
a
te

ra
l
h
ip

 j
o
in

t
a
n
g
le

 (
ra

d
)

Robot's angle error

with 2356 rad/s Velocity

with 4712 rad/s Velocity

with 7068 rad/s Velocity

with 9424 rad/s Velocity

with 11780 rad/s Velocity

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (sec)

L
a
te

ra
l
h
ip

 j
o
in

t
a
n
g
le

 (
ra

d
)

Robot's traversed angle trajectory

with 2356 rad/s Velocity

with 4712 rad/s Velocity

with 7068 rad/s Velocity

with 9424 rad/s Velocity

with 11780 rad/s Velocity

 110

Figure 6-9: Angular trajectory error caused by the robot simulation tested with different traversing

velocities

Figure 6-7 illustrates how in the 0° to 45° test, the error arises in the beginning of the motion

and it gradually decreases on time. When increasing the velocity, the error is proportionally

increased. This is shown by the purple-color line that has the highest traversing velocity, this

trajectory showed the highest error of all. In addition, for this velocity the error stays during the

whole period of movement on a fairly constant range. On the other hand, when using smaller

values for the traversing velocity the controller has enough time to correct the position error

during the traversing phase. Subsequently, the same analysis is performed on the robot

simulator (shown in figure 6-8) on the same experiment. However, in the simulation the height

of the error is similar to the one from the real test, but the duration of the error is increased.

The cause of this phenomenon could be from the fact of the non-reality of the simulation.

The angular trajectory error caused in the simulation by the movement of the hip joint with

different traversing velocities is shown in figure 6-9. The error acquired from the simulation

shows similarity to real robot test. This circumstance shows the capability of the simulator to

anticipate the system’s behavior caused in the reality.

0 0.5 1 1.5 2 2.5 3
-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

Time (sec)

L
a
te

ra
l
h
ip

 j
o
in

t
a
n
g
le

 (
ra

d
)

Robot's Simulation angle error

with 2356 rad/s Velocity

with 4712 rad/s Velocity

with 7068 rad/s Velocity

with 9424 rad/s Velocity

with 11780 rad/s Velocity

 111

6.2. Multi-joint test

In this test, one leg of the robot is evaluated. Each leg consists from seven degree of freedom

(i.e., each leg has one transversal, two frontal and tree lateral joints plus the toes joints);

although in this test the evaluation is performed for two of the lateral joints (i.e., hip lateral and

Knee joint). The evaluation is done by comparing the traversed trajectory of the robot’s leg with

the trajectory command. The comparison is also prepared for the actual robot’s leg and the

simulation of the leg.

Capturing the traversed trajectory of the robot’s leg is provided using Image Processing

technique. In this technique, a high frame rate camera (BASLER A302bc, 60 frames per second)

is used to track some patches which are glued to the robot. The patches used for this technique

are shown in figure 6-10.

Figure 6-10: The patch used for tracking the traversed trajectory

The camera is placed in a lateral distance of one meter from the robot to track the patches

glued to the robot’s leg (as it is shown in figure 6-11). Using the video stream taken from the leg

during the test by the camera and the image processing software (written in Visual Studio 2008

and is shown in Appendix A), the trajectory of the robot is extracted (as it is shown in Figure 6-

13).

Figure 6-11: Camera placed in one meter lateral distance of the robot‟s leg for patch tracking

 112

To distinguish between the patches, the software uses a low pass filter on the position of the

patches. By using this method, the patches are tracked and distinguished from each other.

Figure 6-12: Patch detection result used for finding the traversed trajectory

Figure 6-13 shows the extracted trajectory of the patches during a half gait. The traversed

trajectory is stored in a spreadsheet 17 which can be used in Microsoft Excel or in Matlab for

further analysis.

Figure 6-13: Traversed trajectories resulted from image processing patch detection

17

 - Spreadsheet is a computer data format which consists from rows and columns of data cells.

 113

Figure 6-14: Detected coordinates from the patches tracking row data (consists from X and Y, repeatedly)

In this level of the test (evaluating a single leg), the simulator of the robot is reduced to a single

leg. In this simulation, the hip of the robot is attached to the root weld of the simulation

environment. The trajectory command is given to the joints of the leg. By using the Body Sensor

(a component from Matlab Simulink SimMechanics) the traversed trajectory of the leg’s ankle is

extracted. The extracted trajectory is used for comparison with the real robot.

 114

Figure 6-15: Simulink diagram of Archie‟s swinging leg

 115

Figure 6-16 shows the reduced simulation for the single leg.

Figure 6-16: Single leg simulation

The test for the leg is applied for a half gait, full gait and a trapezoidal movement.

6.2.1. Half gait test

In this test the robot’s leg is evaluated for a half gait (swinging phase) movement. The

trajectory commands (the joints trajectory command) are calculated by the central controller

using the inverse kinematics model of the robot (leg). Figure 6-17 shows the traversed

trajectory of the swinging leg’s ankle during the test.

Figure 6-17: Swinging leg‟s ankle traversed trajectory from lateral view

 116

Figures 6-18 and 6-19 show the traversed trajectory vs. the trajectory command and the

position error during the movement, respectively for the half gait (swinging leg) test.

Figure 6-18: Traversed trajectory by the real robot, simulation vs. the trajectory command for the half gait

Figure 6-19: Position error of the traversed trajectory by the real robot and the simulation for half gait

-20 -15 -10 -5 0 5 10 15 20

0

2

4

6

8

10

12

14

16

18

20

Y-Axis (cm)

Z
-A

x
is

 (
c
m

)

Trajectory command, Simulation Trajectory and the Traversed Trajectory of the robot

Trajectory command

Simulation Trajectory

Traversed Trajectory by the robot

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

P
o
s
it
io

n
 e

rr
o
r

(c
m

)

Robot's traversed trajectory and Simulation Trajectory error

Simulation trajectory error

Real Robot trajectory error

 117

The error obtained from the half gait test on the real robot is limited under 0.6cm, which is an

acceptable value. In addition, the error escalation in around the 15th second (in graph 6-19) is

also predicted by the simulator. The main reason for the occurred error is the changes of the

load specification (i.e., the gravitational force changes the direction because the leg is not

climbing anymore and the end effector movement direction is facing downward). The following

error results from the hip joint. The hip joint (as it is shown in figure 6-20) gets relatively higher

error around the 15th second (figure 6-21) because the main effect from the gravitational force

is applied to the hip joint.

In the simulation results, it shows the same effect in the error around the 15th second, which

shows that the gravity effect is properly implemented to the simulator.

The angle trajectory for the knee joint, the error resulted from the simulation and the real

robot, the velocity command versus the joint velocity in the simulation and the robot are shown

in figures 6-20, 6-21 and 6-22 respectively.

Figure 6-20: Hip joint angle trajectory command, simulation and the real robot for half gait test

0 5 10 15 20 25
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

H
ip

 A
n
g
le

 (
ra

d
)

Hip Joint Trajectory command, Simulation Trajectory and the Traversed Trajectory of the robot

Hip Joint Trajectory command

Hip Joint Simulation Trajectory

Hip Joint Traversed Trajectory by the robot

 118

Figure 6-21: Angle error resulted from simulation and real robot in the hip joint during the half gait test

Figure 6-22: The velocity command compared with the simulation and real robot of the hip joint during

the half gait test

0 5 10 15 20 25

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Time (sec)

A
n
g
le

 e
rr

o
r

(r
a
d
)

Hip Joints's traversed trajectory and Simulation Trajectory error

Hip Joint Simulation trajectory error

Hip Joint Real Robot trajectory error

0 5 10 15 20 25
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time (sec)

H
ip

 V
e
lo

c
it
y
 (

ra
d
/s

)

Hip Joint Velocity command, Simulation Velocity and the Velocity of the Robot's Hip joint

Hip Joint Velocity command

Hip Joint Simulation Velocity

Hip Joint Velocity of the Robot

 119

The angle trajectory for the knee joint, the error resulted from the simulation and the real

robot are shown in figures 6-23 and 6-24 respectively.

Figure 6-23: Knee angle trajectory command vs. the simulation and the real robot trajectory for half gait

Figure 6-24: Angle error resulted from simulation and real robot in the knee joint during the half gait test

0 5 10 15 20 25

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (sec)

H
ip

 A
n
g
le

 (
ra

d
)

Knee Joint Trajectory command, Simulation Trajectory and the Traversed Trajectory of the robot

Knee Joint Trajectory command

Knee Joint Simulation Trajectory

Knee Joint Traversed Trajectory by the robot

0 5 10 15 20 25

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time (sec)

A
n
g
le

 e
rr

o
r

(r
a
d
)

Knee Joints's traversed trajectory and Simulation Trajectory error

Knee Joint Simulation trajectory error

Knee Joint Real Robot trajectory error

 120

The knee joint shows fairly moderate error rate compared with the hip joint, the reason might

be the lower mass of the tibia (i.e., the tibia is lighter than the whole leg). In the beginning of

the motion, the error is in a higher range which is caused because the motion controller is

overcoming the static inertia of the tibia. In addition, the error rises again because of the end

effector movement direction that is facing downward.

The angular velocity command for the knee joint versus its angular velocity in the simulation is

shown in figure 6-25. The real robot shows more instability in the velocity compared to the

simulation. However, the velocity variation in the real robot is in an acceptable range.

Figure 6-25: The angular velocity command compared with the simulation and real robot of the knee joint

during half gait test

0 5 10 15 20 25
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (sec)

K
n
e
e
 V

e
lo

c
it
y
 (

ra
d
/s

)

Knee Joint Velocity command, Simulation Velocity and the Velocity of the Robot's Knee joint

Knee Joint Velocity command

Knee Joint Simulation Velocity

Knee Joint Velocity of the Robot

 121

6.2.2. Full gait test

The full gait test is an extended version of the half gait (swinging) test. The full gate test

includes the supporting phase. The full gait movement moves the robot one step further. Figure

6-26 shows the right leg of the robot and the traversed trajectory for a full gait movement. In

figure 6-27 the traversed trajectory of the robot, the traversed trajectory in the simulation and

the trajectory command are shown for comparison.

Figure 6-26: Full gait traversed trajectory resulted from patch tracking

Figure 6-27: Trajectory command, traversed trajectory of the robot and the simulator for the full gait

-20 -15 -10 -5 0 5 10 15 20

0

2

4

6

8

10

12

14

16

18

20

Y-Axis (cm)

Z
-A

x
is

 (
c
m

)

Trajectory command, Simulation Trajectory and the Traversed Trajectory of the robot

Trajectory command

Simulation Trajectory

Traversed Trajectory by the robot

 122

The resulted error from the real robot and the simulation of the robot are shown in figure 6-28.

Figure 6-28: Position error of the robot‟s traversed trajectory and the simulator trajectory of the full gait

The position error obtained from the real robot around the 35th second increased significantly;

however, the simulation error decreased to a minimum level during the test. The reason for the

following phenomenon could be from the coincidence of the center of mass of the robot with

the direction of the robot’s leg which causes the maximum gravitational force on the robot’s

joints. The angle trajectory for the hip joint is compared with the angle trajectory of the

simulation and the real robot (figure 6-29).

Figure 6-29: Hip joint angle command vs. the simulation and the real robot for the full gait movement

0 5 10 15 20 25 30 35 40 45 50

0.5

1

1.5

2

2.5

3

3.5

Time (sec)

P
o
s
it
io

n
 e

rr
o
r

(c
m

)

Robot's traversed trajectory and Simulation Trajectory error

Simulation trajectory error

Real Robot trajectory error

0 5 10 15 20 25 30 35 40 45 50

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

H
ip

 A
n
g
le

 (
ra

d
)

Hip Joint Trajectory command, Simulation Trajectory and the Traversed Trajectory of the robot

Hip Joint Trajectory command

Hip Joint Simulation Trajectory

Hip Joint Traversed Trajectory by the robot

 123

Figure 6-30: Angle error resulted from simulation and real robot in the hip joint during the full gait test

The error that results from the real robot’s hip joint and its simulation during the full gait is

shown in figure 6-30. The hip joint error increases around the 25th second which is where the

control system changes the motion phase from swinging to supporting. Similar to the half gait

test the error increases in the beginning and in the end of the swinging gait (which comes from

the coincidence of the gravitational force and end effector movement direction).

The angular velocity command of the hip joint is compared to the velocity of the real test and

the simulation of it (figure 6-31).

Figure 6-31: The angular velocity command compared with the simulation and real robot of the hip joint

during the full gait test

0 5 10 15 20 25 30 35 40 45 50

0

0.05

0.1

0.15

0.2

Time (sec)

A
n
g
le

 e
rr

o
r

(r
a
d
)

Hip Joints's traversed trajectory and Simulation Trajectory error

Hip Joint Simulation trajectory error

Hip Joint Real Robot trajectory error

0 5 10 15 20 25 30 35 40 45 50
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time (sec)

H
ip

 V
e
lo

c
it
y
 (

ra
d
/s

)

Hip Joint Velocity command, Simulation Velocity and the Velocity of the Robot's Hip joint

Hip Joint Velocity command

Hip Joint Simulation Velocity

Hip Joint Velocity of the Robot

 124

The angle trajectory command for the knee in the full gait movement, beside the trajectory

resulted from the real robot and the simulation are shown in figure 6-32.

Figure 6-32: Knee joint angle trajectory command, simulation and the real robot for the full gait

The resultant angle error from the real robot and the simulation are shown in figure 6-33.

Figure 6-33: Angle error resulted from simulation and real robot in the knee joint during the full gait test

0 5 10 15 20 25 30 35 40 45 50

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (sec)

K
n
e
e
 A

n
g
le

 (
ra

d
)

Knee Joint Trajectory command, Simulation Trajectory and the Traversed Trajectory of the robot

Knee Joint Trajectory command

Knee Joint Simulation Trajectory

Knee Joint Traversed Trajectory by the robot

0 5 10 15 20 25 30 35 40 45 50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (sec)

A
n
g
le

 e
rr

o
r

(r
a
d
)

Knee Joints's traversed trajectory and Simulation Trajectory error

Knee Joint Simulation trajectory error

Knee Joint Real Robot trajectory error

 125

For the knee joint, the same condition is happening (figure 6-32) during the changing from the

swinging phase to the support phases the error increases swiftly. During the support phase, the

error rate is fairly steady and that happens because of the constant height of the robot’s leg

(i.e., the gravitational force is constant for the leg).

The angular velocity applied to the knee joint during the full gait test is compared to the angular

velocity of the real robot and its simulation which is shown in figure 6-34.

Figure 6-34: The angular velocity command compared with the simulation and real robot of the hip joint

during the full gait test

The velocity trajectory of the real robot (shown in 6-34), shows a good response to the velocity

command, despite the instability which is an acceptable range for the real robot test.

0 5 10 15 20 25 30 35 40 45 50
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

K
n
e
e
 V

e
lo

c
it
y
 (

ra
d
/s

)

Knee Joint Velocity command, Simulation Velocity and the Velocity of the Robot's Knee joint

Knee Joint Velocity command

Knee Joint Simulation Velocity

Knee Joint Velocity of the Robot

 126

6.2.3. Trapezoidal test

Using a trapezoidal trajectory in the gait imitation of the robot causes vibration and instability.

The trapezoidal trajectory is not used in the robot for walking (the elliptical movement is

preferred to it); however, it is used for the multi joint test. The evaluation is made by

comparing the simulation and the real robot (as the same for the elliptical trajectory tests).

Using a trapezoidal trajectory can be useful for an accurate evaluation of the control system

and the system response. For instance, the response to the edged corners and the flat part of

the trajectory are showing the ability of the control system and the joint controllers.

In figure 6-35 the traversed trajectory of the Ankle joint of the robot is shown during the

trapezoidal test.

Figure 6-35: Trapezoidal traversed trajectory resulted from patch tracking

The comparison of the traversed trajectory in the real robot and the simulator with the

trajectory command is shown in figure 6-36.

 127

Figure 6-36: Trajectory command, traversed trajectory of the robot and the simulator for the trapezoidal

The error comparison between the traversed trajectory of the real robot and the simulation is

shown in figure 6-37.

Figure 6-37: Position error of the robot traversed trajectory and the simulator trajectory by trapezoidal test

-20 -15 -10 -5 0 5 10 15 20

0

2

4

6

8

10

12

14

16

18

20

Y-Axis (cm)

Z
-A

x
is

 (
c
m

)

Trajectory command, Simulation Trajectory and the Traversed Trajectory of the robot

Trajectory command

Simulation Trajectory

Traversed Trajectory by the robot

0 5 10 15 20 25 30 35 40 45 50

0.5

1

1.5

2

2.5

3

3.5

Time (sec)

P
o
s
it
io

n
 e

rr
o
r

(c
m

)

Robot's traversed trajectory and Simulation Trajectory error

Simulation trajectory error

Real Robot trajectory error

 128

The position error from the end effector during the trapezoidal motion test shows two spikes

around the 5th and the 20th second. The main reason for these error spikes is the high edge of

the trajectory of the command (during switching the direction from vertical to horizontal and

vice versa, in the trapezoidal trajectory motion). Moreover, the error increases in a fairly high

rate during the vertical movement which comes from the gravitational effect that coincides

with the end effectors motion direction. In addition, the error increased significantly around the

35th second which could be caused by the gravitational force which also occurs in the full gait

test at the same time.

The angle of the hip joints for the trapezoidal test is compared with the simulation result and

the data obtained from the real robot which is shown in the figure 6-38. Also, the error

occurred from the real robot and the simulation of the robot is shown in figure 6-39. The angle

trajectory of the hip shows two relative high edges in the 20th and the 25th second (as well as in

the error comparison graph shown in figure 6-39). During the 20th second that was also

explained before, the high edge of the trajectory is the main cause. The error increases around

the 25th second because of the phase change (i.e., phase exchange from swinging to support

phase).

Figure 6-38: Hip joint angle trajectory command, simulation and the real robot for the trapezoidal test

0 5 10 15 20 25 30 35 40 45 50

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

H
ip

 A
n
g
le

 (
ra

d
)

Hip Joint Trajectory command, Simulation Trajectory and the Traversed Trajectory of the robot

Hip Joint Trajectory command

Hip Joint Simulation Trajectory

Hip Joint Traversed Trajectory by the robot

 129

Figure 6-39: Angle error resulted from simulation and real robot in the hip joint during the trapezoidal test

The Velocity command applied to the hip joint is compared with the velocity of the real robot’s

joint and the simulation in figure 6-40.

Figure 6-40: The angular velocity command compared with the simulation and real robot of the hip joint

during the trapezoidal test

0 5 10 15 20 25 30 35 40 45 50

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time (sec)

A
n
g
le

 e
rr

o
r

(r
a
d
)

Hip Joints's traversed trajectory and Simulation Trajectory error

Hip Joint Simulation trajectory error

Hip Joint Real Robot trajectory error

0 5 10 15 20 25 30 35 40 45 50
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (sec)

H
ip

 V
e
lo

c
it
y
 (

ra
d
/s

)

Hip Joint Velocity command, Simulation Velocity and the Velocity of the Robot's Hip joint

Hip Joint Velocity command

Hip Joint Simulation Velocity

Hip Joint Velocity of the Robot

 130

In figure 6-41, the knee joint’s trajectory command is compared with the traversed trajectory of

the real robot and the simulation.

Figure 6-41: Knee angle trajectory command vs. the simulation and the real robot trajectory for the

trapezoidal test

The error caused by the real robot and the simulator is shown in figure 6-42.

Figure 6-42: Angle error resulted from simulation and real robot in the knee joint during the trapezoidal

test

0 5 10 15 20 25 30 35 40 45 50

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (sec)

K
n
e
e
 A

n
g
le

 (
ra

d
)

Knee Joint Trajectory command, Simulation Trajectory and the Traversed Trajectory of the robot

Knee Joint Trajectory command

Knee Joint Simulation Trajectory

Knee Joint Traversed Trajectory by the robot

0 5 10 15 20 25 30 35 40 45 50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (sec)

A
n
g
le

 e
rr

o
r

(r
a
d
)

Knee Joints's traversed trajectory and Simulation Trajectory error

Knee Joint Simulation trajectory error

Knee Joint Real Robot trajectory error

 131

The knee joint shows similar error spikes (regarding to figures 6-41 and 6-42) which are also

caused by the high edges (in 5th and 20th second) from the trajectory command. Also, the error

during switching the phases (i.e., switching from swinging to support phase in the 25th second)

is shown in the error diagram.

The velocity command of the knee joint is compared with the velocity of the real robot and the

simulator and is shown in figure 6-43.

Figure 6-43: The angular velocity command, compared with the simulation and real robot of the knee

joint during the trapezoidal test

0 5 10 15 20 25 30 35 40 45 50
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time (sec)

K
n
e
e
 V

e
lo

c
it
y
 (

ra
d
/s

)

Knee Joint Velocity command, Simulation Velocity and the Velocity of the Robot's Knee joint

Knee Joint Velocity command

Knee Joint Simulation Velocity

Knee Joint Velocity of the Robot

 132

6.3. Walking test

In this test, the walking sequence of the robot is provided from three static poses. The poses of

the robot are, crouch center, crouch left and crouch right. Running sequentially the crouch left

and the crouch right and putting the center crouch in between causes a basic dynamic

movement (walking) in the robot. After executing of each movement, the robot should delay a

minimum time to stabilize and get the overall stationary pose of the robot. The real test shows

the delay time with 200ms minimum (i.e., the delay time should be supposed more than 200ms

in order of robot’s stability).

Table 6-1 shows the joint angle values for the three poses that the robot control system should

execute for the basic dynamic walk. The values shown in the table 6-1 are only the desired

angles. The control system generates more detailed angles values by using interpolation (i.e.,

the angle trajectories for the joints are calculated by the control system of robot using

interpolation).

The angles of the joints are set by using table 6-2 (angles are relative to T-form):

Joints Crouch left Crouch center Crouch right

Left Right Left Right Left Right

Hip transversal 0 0 0 0 0 0

Hip frontal 5 -5 0 0 -5 5

Hip lateral 30 30 25 25 30 30

Knee lateral 10 25 25 25 25 10

Ankle lateral 0 15 15 15 15 0

Ankle frontal -5 5 0 0 5 -5

Toe lateral 0 0 0 0 0 0

Backbone frontal -5 0 5

Backbone transversal 0 0 0

Table 6-1: Situation of the angles of individual joints for dynamic walk

 133

The crouch steps are shown in figure 6-44:

 (a) (b) (c)

Figure 6-44: Basic dynamic walk: (a) crouch left, (b) crouch center, (c) crouch right

This type of walking requires more time for the robot to move from one point to another point,

in comparison with human gait imitation movement. The basic dynamic walk movement is easy

to implement, and it is also useful to evaluate the control system performance of the robot.

The more advanced test in the robot is the human gait imitation. In this test, the robot tries to

imitate the human gait based walking. For this imitation the robot control system uses two

movement phases, one for left step and one for the right step. The positions between these

two steps are calculated using the interpolation. The desired angles are shown in table 6-2.

Joints Step left Step right

Left Right Left Right

Hip transversal 5 5 -5 -5

Hip frontal 5 -20 -20 5

Hip lateral 20 -5 -5 20

Knee lateral 20 10 10 20

Ankle lateral 10 15 15 15

Ankle frontal 10 -10 -10 10

Toe lateral 0 0 0 0

Backbone frontal -5 5

Backbone transversal 5 -5

Table 6-2: Situation of angles of individual joints for human like gait

 134

Figure 6-45 shows the two movement phases for the robot during human gait imitation.

(a) (b)

Figure 6-45: Human gait imitation: (a) Step right, (b) Step left

The walking motion (Human gait imitation) that is shown in figure 6-45 is fairly acceptable,

despite the fact it needs more development and improvement in further works. Although a real

human walking trajectory can be obtained by using the presented technique in this thesis (i.e.,

using image processing technique) and applied to the robot in order to have a more natural and

stable human walking imitation. Further improvement suggestions are presented in the next

chapter.

 135

Chapter 7

7. Summary and Outlook

In this thesis, a new control system has been designed for a humanoid robot. The control

system is split in individual joint controllers that communicate with the central controller

trough a data network. Using an embedded system, the central controller is built on a system

on chip (i.e., the system is implemented on a Virtex 4 FPGA from Xilinx which contains an

embedded PowerPC hardware core) platform. In mobile robots, the ratio between the energy

consumption of the robot (Robot’s wattage) and the energy resource capacity is an important

factor. Increasing the energy resource capacity (batteries) causes more weight on the robot

which will also increase the energy consumption of the robot. Decreasing the energy

consumption in the robot can be performed by using embedded systems. By using embedded

systems (e.g., SOC) in the robot, the necessary energy for data processing that a general

purpose computer provides (i.e., personal computer) can be afforded by lowering the energy

consumption. In addition, the reliability of the system is increased by using embedded systems

instead of general purpose computers.

Using the simulator for the robot is beneficial from different aspects. For example, the

simulator eases the development and the motion analysis for the robot by creating a virtual

robot. Many of the physical parameters (e.g., position, velocity and acceleration, total center of

mass and moment of inertia) of the robot can be monitored during the movement of the robot.

Comparing the results from the real robot with the simulation of the robot can be a way to

distinguish the system failures from the algorithm failures. For instance, an error caused from

the inverse kinematics model in the robot can cause error in the real robot’s movement

trajectories. By using a simulation the same error will be shown. Then, by comparing the results

and the error from the real robot and the simulation of the robot the error source can be

differentiated. This circumstance will accelerate the development and improvement of the

robot and the control algorithms used on it.

 136

7.1. Future work

Since the developed control system for the robot is a new work, some improvements can be

applied to achieve a better performance. In this section some of these improvements and

suggestions are presented for the future work on the control system of the robot. The

suggestions for the improvements of the control system are presented based on the units that

they should be applied (i.e., the suggested improvements for each unit are presented in a

certain part).

7.1.1. Central controller improvements

This section talks about the proposed suggestions to improve the performance of the central

controller of the robot:

 The central controller is a busy unit in the robot. Since all the data from the units are

collected and processed in this unit, the load of process is high. Therefore, any

improvement in this unit is critical and remarkable.

 The Data Acquisition Unit (DAU) takes a major load off from the main processor

(described in chapter 5). This unit can be extended to interpret and combine the data

received from the joint controllers. The extension could be based on hardware to

reduce the processing load on the central processor.

 Repeatedly operation like “the robot’s total center of mass” calculation can be

implemented on the hardware

 The robot motion planner is based on off-line Zero Moment Point (ZMP) (i.e., all the

motions are preprocessed by the simulation of the robot, and are later applied to the

robot statically). The robot cannot operate in non-ideal environments such as non-even

terrains. To achieve this ability in the robot, using pressure sensors in the sole of the

robot can be useful.

 More advanced dynamic walk can be developed on the robot using the feedback data

from the Inertial Measurement Unit (IMU), based on the “moment of inertia” of the

“center of mass” of the robot.

 The walking trajectory can be switched to the natural human walking trajectory. By

using a natural human walking trajectory, the robot can walk naturally like a human.

 137

7.1.2. Joint controller improvements

In this section, the proposed suggestions to improve the joint controller of the robot are

presented:

 The joint controllers in the robot are working with constant controller compensator

parameters (PID gain values). These values are extracted from tuning the joint

controller. Since the load specification reflected to the joints is related to the overall

pose of the robot (discussed in chapter 4); the tuning of the joint controller is very

difficult. In this work, the values are chosen in a way to cover the maximum load

specification variation. The control compensator parameters can be set dynamically by

the central controller for a better performance.

 The data bus used in the robot is based on a Serial Peripheral Interface (SPI), that can be

switched to a standard Control Area Network (CAN 2.0A). The following change can

provide more reliability of the data network and more robustness in the robot. Also the

data network protocol can be switched to the standard CANopen communication

protocol.

 Using 3D accelerometers and axis gyro rate sensors in the joint controllers, that are

spread in the robot can be useful for more advanced control algorithms for the robot.

 The frontal ankle joint is based on a DC motor with maximum torque of 1Nm (using gear

ratio). Using a stronger motor can improve the performance and the stability of the

robot during frontal side swinging.

 138

References

Andrews, G. R. (2000), Foundations of Multithreaded, Parallel, and Distributed Programming, Addison–
Wesley, pp. 10.

Asada, H., I. Slotine, E. Jean-Jacques (1986), Robot Analysis and Control, Wiley.

Asama, H., H. Kurokawa, J. Ota, K. Sekiyama (2009), Distributed Autonomous Robotic Systems, Springer.

Asfour, T., F. Gyarfas, P. Azad, R. Dillmann (2006), an Integrated Humanoid Plattfrom for Sensory-Motor
Control. In IEEE-RAS International Conference on Humanoid Robots (Humanoids 2006), Genoa, Italy.

Astroem, K., T. Haegglund (1995), PID Controller: Theory, Design, Tuning (2nd Edition), Instrument
Society of America, North Carolina.

Austrian Micro System (2009), 360 Steps Programmable High Speed Magnetic Encoder AS5134.

Baltes, J., A. Byagowi, P. Kopacek, J. Anderson (2009), Teen Sized Humanoid Robot: Archie, Progress in
Robotics, SpringerLink, FIRA RoboWorld Congress, Incheon, Korea.

Bill, G. (2002), a primer on distributed computing.

Bose, B.K. (2006), Power Electronics and Motor Drives: Advances and Trends, Elsevier Science Ltd.

Boulic, R., R. Mas, D. Thalmann (1996), A Robust Approach for the control of the center of mass with
inverse kinematics, Elsevier Science Ltd.

Bradski, G., A. Kaehler (2008), Learning OpenCV: Computer Vision with the OpenCV Library, O’Reilly
Media Inc.

Brown, S. (2004), Fundamentals of Digital Logic with VHDL Design (2nd edition), McGraw Hill.

Byagowi, A., P. Kopacek (2009), Using a humanoid robot for demining land mines, Supplementary Ways
for Improving International Stability (SWIIS 2009), Politehnica University of Bucharest, Bucharest,
Romania.

Chiasson, J. (2005), Modeling and High-Performance Control of Electric Machines, Wiley-IEEE press.

Chu, P. P. (2008), FPGA Prototyping by VHDL Examples, Wiley-Interscience.

Craig, J. (2005), Introduction to Robotics: Mechanics and Control (3rd Edition), Pearson Prentice Hall.

Denavit, J., R.S. Hartenberg (1955), a kinematic notation for lower-pair mechanisms based on matrices,
Trans ASME J. Appl. Mech.

ELMO Motion Control (2009)., ELMO Web-based Motion Control Training course.

 139

Emadi, A., A. Khaligh, Z. Nie, Y. J. Lee (2009), Integrated Power Electronic Converters and Digital Control,
Taylor and Francis Group LLC, CRC Press.

Fadali, M. S. (2009), Digital Control Engineering: Analysis and Design, Elsevier Science Ltd.

Goldstein, H. (1980), Classical Mechanics (2nd edition), Addison-Wesley.

Gonzalez, R. C., R. E. Woods (2002), Digital Image Processing (2nd edition), Pearson Prentice Hall.

Hallinan, C. (2006), Embedded Linux Primer, Pearson Prentice Hall.

Honda (2002), Introducing a New ASIMO Featuring Intelligence Technology, Honda Motor Co., Ltd.

Ibrahim, D. (2006), Microcontroller Based Applied Digital Control, Department of Computer Engineering
Near East University, John Wiley and Sons Ltd, Cyprus.

James, T. I., C. H. Lai (2006), Design and Control of a Humanoid Robot, IEEE/RSJ International Conference
on Intelligent Robots and Systems, Beijing, China.

Katic, D., M. Vukobratovic (2004), Survey of Intelligent Control Techniques for Humanoid Robots,
Springer Netherlands, pp. 117-141.

Kay, J. (2005), Introduction to Homogeneous Transformations and Robot Kinematic, Computer Science
Department, Rowan University, New Jersey, USA.

Kim, S. K., S. Hong, D. Kim (2009), A Walking Motion Imitation Framework of a Humanoid Robot by
Human Walking Recognition from IMU Motion Data, 9th IEEE-RAS International Conference on
Humanoid Robots, Paris, France.

Kopacek, P. (2002), Final Report of Research Project, MAS for manufacturing automation with
consideration of their application in small and medium-sized enterprises.

Landau, L., D. Lifschitz (1984), Electrodynamics of Continuous Media (2nd edition), Pergamon Press,
Oxford, England.

Marion, J., S. Thornton (1995), Classical Dynamics of Systems and Particles (4th edition), Thomson.

Marshall, I. J. (2002), Active Balance Control for a Humanoid Robot, Department of Information
Technology and Electrical Engineering, University of Queensland, Queensland, Australia.

Moreton, P. (1999), Industrial Brushless Servomotors, Newnes.

Moudgalya K. (2007), Digital Control, John Wiley and Sons Ltd.

Pickel, A. (2003), Control for a Biped Robot with Minimal Number of Actuator, Department of Electrical,
Engineering, University of Applied Science Koblenz, Germany.

Rotenberg, S. (2005), Homogeneous Transformations, Computer Graphics, UCSD.

 140

Rolf, C., F. Nikolaj, H. Rico (2007), Modeling and Control of a Biped Robot, Department of Control
Engineering, Aalborg University, Aalborg, Denmark.

Sandhu, H. S. (2008), Running Small Motors with PIC Microcontrollers, McGraw Hill.

Shlomi, D. (2000), Self-Stabilization, MIT Press.

Spong, M., M. Vidyasagar (1989), Robot Dynamics and Control, John Wiley and Sons.

Sukumar, G. (2007), Distributed Systems – An Algorithmic Approach, Chapman & Hall/CRC.

Tabaczynski, M. (2006), Jacobian Solution to the Inverse Kinematics Problem, Tufts University, Medford,
USA.

Takenaka, T. (2006), the control system for the Honda humanoid robot, Oxford University Press, Oxford,
England.

Tang, Z., C. Zhou, Z. Sun (2003), Trajectory Planning for Smooth Transition of a Biped Robot, Proceedings
of IEEE, International Conference on Robotics and Automation. Taipei, Taiwan.

Tolani, D., A. Goswami, N. Badler (2000), Real-Time Inverse Kinematics Techniques for Anthropomorphic
Limbs, Computer and Information Science Department, University of Pennsylvania, Pennsylvania, USA.

Vukosavic, S. N. (2007), Digital Control of Electrical Drives, University of Belgrade, Springer.

Welman, C. (1993), Inverse Kinematics and Geometric constraints for articulated figure manipulation,
Simon Fraser University, Vancouver, Canada.

Xie, M. (2003), Fundamentals of Robotics: Linking Perception to Action, World Scientific Publishing
Company.

Xue, D., Y. Chen, D. P. Atherton (2007), Linear Feedback Control: Analysis and Design with MATLAB,
Society of Industrial and Applied Mathematics, Philadelphia, USA.

Yaghmour, K., J. Masters, G. B. Yossef, P. Gerum (2008), Building Embedded Linux System (2nd edition),
O’Reilly Media Inc.

Younkin, G. W. (2002), Industrial Servo Control Systems: fundamentals and Applications (2nd edition),
Marcel Dekker.

Zelniker, E. (2001), Joint Control for an Autonomous Humanoid Robot, Department of information
Technology and Electrical Engineering, University of Queensland, Queensland, Australia.

 141

Appendix A

Matlab code for Trajectory planner, direct kinematics and Inverse Kinematics calculator for one leg:

-------------------- Trajectory planner (Elliptical trajectory) --------------------

Lp=20;
Hp=16;

for t=1:100
 x(t)=Lp*cos(pi+((t-1)*pi/99));
 y(t)=Hp*sin((t-1)*pi/99)-52.45;
end

plot(x,y);
xlabel('Y-Axis (cm)');
ylabel('Z-Axis (cm)');
title('Elliptical Ankle desired trajectory');

-------------------- Trajectory planner (Trapezoidal trajectory) --------------------

Lp=20;
Hp=16;
alpha=pi/6;
for t=1:100
 x(t)=t-1;
 if x(t) < Hp*cos(alpha)
 y(t)=x(t)*acot(alpha)-52.45;
 else
 if x(t) > 99-Hp*cos(alpha)
 y(t)=((99-x(t))*acot(alpha))-52.45;
 else
 y(t)=Hp-52.45;
 end
 end
end
x=(x*Lp*2/100)-Lp;
plot(x,y);
%legend('Desired Ankle trajectory');
xlabel('Y-Axis (cm)');
ylabel('Z-Axis (cm)');
title('Trapezoidal Ankle trajectory');

-------------------- Direct kinematics function --------------------

function [xe,ye] = endeffector(stheta1,stheta2)
TibiaLength = 26;
ThighLength = 31;

xe=(ThighLength*sin(stheta1))-(TibiaLength*sin(stheta2-stheta1));
ye=-1*((ThighLength*cos(stheta1))+(TibiaLength*cos(stheta2-stheta1)));

 142

-------------------- Inverse kinematics calculator --------------------

TibiaLength = 26;
ThighLength = 31;
theta1=[1:100];
theta2=[1:100];

for i=1:100
 theta1(i)=0;
 theta2(i)=0;
end

theta1(1)=-10*(pi/180);
theta2(1)=20*(pi/180);

for i=2:100
 theta1(i)=theta1(i-1);
 theta2(i)=theta2(i-1);
 J_a=ThighLength*cos(theta1(i))+TibiaLength*cos(theta1(i)-

theta2(i));
 J_b=-TibiaLength*cos(theta2(i)-theta1(i));
 J_c=-ThighLength*sin(theta1(i))-TibiaLength*sin(theta1(i)-

theta2(i));
 J_d=-TibiaLength*sin(theta2(i)-theta1(i));
 J=[J_a J_b;J_c J_d];
 J_inv=inv(J);
 delta_theta=[0 0]';
 delta_pos=[0 0]';
 [xef(i),yef(i)]=endeffector(theta1(i),theta2(i));
 delta_pos(1) = x(i)-xef(i);
 delta_pos(2) = yef(i)-y(i);
 delta_theta=J_inv*delta_pos;
 theta1(i)=theta1(i)+delta_theta(1);
 theta2(i)=theta2(i)+delta_theta(2);
end

for i= 1:100
 [xf(i),yf(i)]=endeffector(theta1(i),theta2(i));
 errx(i)=xf(i)-x(i);
 erry(i)=yf(i)-y(i);
 err(i)=sqrt((errx(i)^2)+(erry(i)^2));
end

ttt=0:.05:4.95;
plot(ttt,err);
ylabel('Trajectory error (cm)');
xlabel('Time (sec)');
title('Swinging Ankle Trajectory error');
%break

plot(ttt,theta1);
ylabel('Hip Lateral joint (rad)');
xlabel('Time (sec)');
title('Hip Lateral joint time trajectory');
%break

 143

plot(ttt,theta2);
ylabel('Swinging knee joint (rad)');
xlabel('Time (sec)');
title('Swinging joint time trajectory');
%break

plot(x,y,xf,yf,'r');
xlabel('Y-Axis (cm)');
ylabel('Z-Axis (cm)');
title('Desired and traversed trajectory');
legend('Desired Trajectory', 'Traversed Trajectory');

--

Image processing code used to track the patches (for finding the Traversed Trajectory) in Visual Studio

2008 and OpenCV 2.0 library:

#ifdef _CH_

#pragma package <opencv>

#endif

#ifndef _EiC

#include "cv.h"

#include "cxcore.h"

#include "highgui.h"

#include <ctype.h>

#include <stdio.h>

#include <math.h>

#endif

IplImage *gray=0,*img=0,*tra=0,*imgout=0;

CvMemStorage* storage;

IplImage *r_bin=0,*g_bin=0,*b_bin=0,*r_tr=0,*g_tr=0,*b_tr=0;

CvSeq* circles;

CvCapture *capture = 0;

CvVideoWriter *cvVideoWriter;

int temp[2][7];

int tempo[2][7];

int last_temp[2][7];

int dist,new_dist;

double fps;

int i,fl=1,ini=1,inw=1;

int main(int argc, char** argv)

{

 144

 capture = cvCaptureFromAVI("video.avi");

 if(!capture)

 {

 fprintf(stderr,"Could not initialize capturing...\n");

 return -1;

 }

 img = cvQueryFrame(capture);

 fps = cvGetCaptureProperty(capture, CV_CAP_PROP_FPS);

 cvVideoWriter =

cvCreateVideoWriter("out.avi",CV_FOURCC('I','Y','U','V')

,fps,cvSize(img->width,img->height),1);

 tra = cvCreateImage(cvSize(img->width,img->height), 8, 3);

 gray = cvCreateImage(cvSize(img->width,img->height), IPL_DEPTH_8U,

1);

 storage = cvCreateMemStorage(0);

 r_bin = cvCreateImage(cvSize(img->width,img->height),IPL_DEPTH_8U,

1);

 g_bin = cvCreateImage(cvSize(img->width,img->height),IPL_DEPTH_8U,

1);

 b_bin = cvCreateImage(cvSize(img->width,img->height),IPL_DEPTH_8U,

1);

 r_tr = cvCreateImage(cvSize(img->width,img->height),IPL_DEPTH_8U,

1);

 g_tr = cvCreateImage(cvSize(img->width,img->height),IPL_DEPTH_8U,

1);

 b_tr = cvCreateImage(cvSize(img->width,img->height),IPL_DEPTH_8U,

1);

 imgout = cvCreateImage(cvSize(img->width,img-

>height),IPL_DEPTH_8U, img->nChannels);

 cvSplit(tra,r_tr,g_tr,b_tr,0);

 cvThreshold(r_tr,r_tr,254,255,CV_THRESH_BINARY);

 cvThreshold(g_tr,g_tr,254,255,CV_THRESH_BINARY);

 cvThreshold(b_tr,b_tr,254,255,CV_THRESH_BINARY);

 cvMerge(r_tr,g_tr,b_tr,0,tra);

 145

for(;;)

{

 img = cvQueryFrame(capture);

 if(!img) break;

 cvCvtColor(img, imgout, CV_BGR2HSV);

 cvCvtColor(imgout, gray, CV_BGR2GRAY);

 cvThreshold(gray,gray,180,255,CV_THRESH_BINARY);

 cvSmooth(gray, gray, CV_GAUSSIAN, 9, 9, 0, 0);

 circles = cvHoughCircles(gray, storage, CV_HOUGH_GRADIENT, 1, 20,

200, 1, 10, 20);

 for (i = 0; i < circles->total; i++)

 {

 float* p = (float*)cvGetSeqElem(circles, i);

 cvCircle(img, cvPoint(cvRound(p[0]),cvRound(p[1])),

 3, CV_RGB(0,255,0), -1, 8, 0);

 cvCircle(tra, cvPoint(cvRound(p[0]),cvRound(p[1])),

 1, CV_RGB(0,255,0), -1, 8, 0);

 cvCircle(img, cvPoint(cvRound(p[0]),cvRound(p[1])),

 cvRound(p[2]), CV_RGB(255,255,0), 3, 8, 0);

 printf("%d,%d\n",cvRound(p[0]),cvRound(p[1]));

 }

 cvSplit(img,r_bin,g_bin,b_bin,0);

 cvSplit(tra,r_tr,g_tr,b_tr,0);

 cvOr(r_bin,r_tr,r_bin,0);

 cvOr(g_bin,g_tr,g_bin,0);

 cvOr(b_bin,b_tr,b_bin,0);

 cvMerge(r_bin,g_bin,b_bin,0,img);

 cvNamedWindow("Image", 1);

 cvShowImage("Image", img);

 cvWriteFrame(cvVideoWriter, img);

 146

 if(cvWaitKey(10) >= 0)

 break;

 }

 cvReleaseCapture(&capture);

 cvReleaseVideoWriter(&cvVideoWriter);

 return 0;

}

PowerPC startup code used to upload the Linux kernel to the RAM memory written in EDK 10.1.

#include "xparameters.h"

#include "stdio.h"

#include "xutil.h"

#include "xgpio.h"

#include "xuartns550_l.h"

#include "xuartns550.h"

#include "mmc-bitbang_ll.h"

#include "mmc_load_image.h"

#include "xexception_l.h"

#include "xintc.h"

#include "xtmrctr.h"

#include "mii-bitbang.h"

#include "marvell_88e1111.h"

#define PHY_ADDR 1

#define PHY_IDO_REG 0

#define PHY_ID1_REG 1

#define PHY_ID2_REG 2

#define PHY_ID3_REG 3

#define PHY_ID4_REG 4

 147

#define PHY_ID16_REG 16

#define UART_BASEADDR XPAR_UARTNS550_0_BASEADDR

#define UART_CLOCK XPAR_CPU_PPC405_CORE_CLOCK_FREQ_HZ

#define UART_BAUDRATE 19200 /* real hardware */

#define uOLED_DEVICE_ID XPAR_UOLED_BASEADDR

XGpio mii_gpio;

XUartNs550 uoled; /* The instance of the UART Driver */

typedef void (*void_fn)(void *);

void_fn kernel_start;

char cmdline[256];

#define TMRCTR_DEVICE_ID XPAR_TMRCTR_0_DEVICE_ID

#define TIMER_COUNTER_0 0

XTmrCtr TimerCounter; /* The instance of the timer counter */

void progress_bar(char left){

 XUartNs550_SendByte(uOLED_DEVICE_ID, 0x4c);

 XUartNs550_SendByte(uOLED_DEVICE_ID, 15+left);

 XUartNs550_SendByte(uOLED_DEVICE_ID, 75);

 XUartNs550_SendByte(uOLED_DEVICE_ID, 15+left);

 XUartNs550_SendByte(uOLED_DEVICE_ID, 105);

 XUartNs550_SendByte(uOLED_DEVICE_ID, 0);

 XUartNs550_SendByte(uOLED_DEVICE_ID, 0x1F);

// while(0x06==XUartLite_RecvByte(uOLED_DEVICE_ID));

// for (Delay = 0; Delay < 100000; Delay++);

}

void percent_bar(char val)

{

 uoled_send(0x73);

 if(val==100)

 uoled_send(8);

 else

 148

 uoled_send(9);

 uoled_send(7);

 uoled_send(2);

 uoled_send(0xBB);

 uoled_send(0xBB);

 if(val==100)

 uoled_send(49);

 if(val>9)

 uoled_send(48+((val/10)%10));

 uoled_send(48+(val%10));

 uoled_send('%');

 uoled_send(0x00);

}

#define XPAR_SDRAM_8MX32_1_BASEADDR 0x00400000

unsigned int *mem_start = (unsigned int *) 0x00400000;

void dump() {

 Xuint8 temp;

 Xuint32 temp32;

 int i,j,k;

 k = 0;

 for (i=0;i<16;i++) {

 for (j=0;j<8;j++) {

 temp32 = XIo_In32(XPAR_SDRAM_8MX32_1_BASEADDR+k+0x0000);

 k+=4;

 }

 }

}

int docrc(int n) {

 Xuint32 temp;

 unsigned int len;

 unsigned int *dst;

 unsigned int *src;

 149

 XTmrCtr *TmrCtrInstancePtr ;

 src = (unsigned int *)XPAR_SDRAM_8MX32_1_BASEADDR;

 temp = 0;

 len = n<<7;

 while(len--)

 {

 temp ^= *src++;

 }

 return temp;

}

void jump() {

 cmdline[0]='\0';

 kernel_start = (void_fn)mem_start;

 kernel_start(cmdline);

}

//void uoled_wait

//

void uoled_send(char uoled_dat){

 XUartNs550_SendByte(uOLED_DEVICE_ID, uoled_dat);

// while(0x06==XUartLite_RecvByte(uOLED_DEVICE_ID));

// for (Delay = 0; Delay < 100000; Delay++);

}

int main (void) {

 XStatus status;

 static XIntc intc;

 Xuint32 temp;

 Xuint32 temp2;

 u16 val, phy_id;

 XTmrCtr *TmrCtrInstancePtr = &TimerCounter;

 int i,j,k;

 150

 unsigned int arg32;

 unsigned int RCA;

 int p;

 volatile int Delay,d;

 XUartNs550_SetBaud(XPAR_RS232_BASEADDR, XPAR_UARTNS550_0_CLOCK_FREQ_HZ,

19200);

 XUartNs550_mSetLineControlReg(XPAR_RS232_BASEADDR, XUN_LCR_8_DATA_BITS);

 MiiGpio_Init(&mii_gpio);

 marvell_phy_setvectors((PhyRead_t*)MiiGpio_PhyRead,

 (PhyWrite_t*)MiiGpio_PhyWrite);

 XUartNs550_SetBaud(XPAR_IMU_UNIT_BASEADDR, XPAR_UARTNS550_0_CLOCK_FREQ_HZ,

115200);

 XUartNs550_mSetLineControlReg(XPAR_IMU_UNIT_BASEADDR, XUN_LCR_8_DATA_BITS);

 XUartNs550_SetBaud(uOLED_DEVICE_ID, XPAR_UARTNS550_0_CLOCK_FREQ_HZ, 115200);

 XUartNs550_mSetLineControlReg(uOLED_DEVICE_ID, XUN_LCR_8_DATA_BITS);

 status = XUartNs550_Initialize(&uoled, uOLED_DEVICE_ID);

 if (status != XST_SUCCESS)

 {

 xil_printf("\n\r uOLED Device Failed...\n\r");

 }

 XIo_Out32(uOLED_DEVICE_ID + 0x1010,XUN_OPTION_ASSERT_RTS);

 for(d=0;d<2;d++)

 {

 *((volatile unsigned int *) XPAR_LEDS_BASEADDR) = 0x00000001<<d;

 for (Delay = 0; Delay < 300000; Delay++);

 }

 XUartNs550_SendByte(uOLED_DEVICE_ID, 0x55);

 for (Delay = 0; Delay < 300000; Delay++);

 XUartNs550_SendByte(uOLED_DEVICE_ID, 0x45);

 for (Delay = 0; Delay < 300000; Delay++);

 151

 uoled_send(0x53);

 uoled_send(0x00);

 uoled_send(0x00);

 uoled_send(0x02);

 uoled_send(0xBB);

 uoled_send(0xBB);

 uoled_send(0x01);

 uoled_send(0x01);

 uoled_send('S');

 uoled_send('t');

 uoled_send('a');

 uoled_send('r');

 uoled_send('t');

 uoled_send('i');

 uoled_send('n');

 uoled_send('g');

 uoled_send('.');

 uoled_send('.');

 uoled_send('.');

 uoled_send(0x00);

 for (Delay = 0; Delay < 200000; Delay++);

 for(d=2;d<4;d++)

 {

 *((volatile unsigned int *) XPAR_LEDS_BASEADDR) = 0x00000001<<d;

 for (Delay = 0; Delay < 300000; Delay++);

 }

 xil_printf("\n\r ARCHIE O/S Loader v1.5\n\r");

 uoled_send(0x53);

 uoled_send(0x13);

 uoled_send(0x20);

 uoled_send(0x02);

 uoled_send(0xAB);

 uoled_send(0xAB);

 uoled_send(0x01);

 152

 uoled_send(0x02);

 uoled_send('A');

 uoled_send('r');

 uoled_send('c');

 uoled_send('h');

 uoled_send('i');

 uoled_send('e');

 uoled_send('L');

 uoled_send('i');

 uoled_send('n');

 uoled_send('u');

 uoled_send('x');

 uoled_send(' ');

 uoled_send('2');

 uoled_send('.');

 uoled_send('6');

 uoled_send(0x00);

 for (Delay = 0; Delay < 200000; Delay++);

 uoled_send(0x72);

 uoled_send(13);

 uoled_send(73);

 uoled_send(145);

 uoled_send(107);

 uoled_send(0xC8);

 uoled_send(0x00);

 for (Delay = 0; Delay < 2000; Delay++);

 uoled_send(0x4f);

 uoled_send(1);

 val = marvell_phy_detected(&mii_gpio, PHY_ADDR);

 if (val == XFALSE) {

 print("Mii Device not detected.\n\r");

 }

 153

 XIo_Out32(XPAR_LEDS_BASEADDR, 0x00000001); //init value for LED

 *((volatile unsigned int *) XPAR_LEDS_BASEADDR) = 0x00;

 while (1) {

 if (CardSense()) {

 print("\n\rCard inserted");

 mmc_init();

 load_boot_image(0, XPAR_SDRAM_8MX32_1_BASEADDR);

 dump();

 mmc_send_command(12, 0);

 Init_80_Clocks();

 print("\n\rStarting image from Memory\n\r");

 jump();

 print("PANIC: Kernel returned!");

 } else {

 print("Card missing...\n\r");

 while (!CardSense()) {}

 }

 }

 return 0;

}

The Embedded system developed for the central controller main processing system in EDK.

PARAMETER VERSION = 2.1.0

 PORT RXD_0 = fpga_0_RS232_sin, DIR = I

 PORT TXD_0 = fpga_0_RS232_sout, DIR = O

 PORT SD_IO = fpga_0_Generic_GPIO_GPIO_IO, DIR = IO, VEC = [0:3]

 PORT LEDs_pin = fpga_0_LEDS_GPIO_d_out, DIR = O, VEC = [0:3]

 PORT PHY_tx_clk = fpga_0_Generic_Ethernet_10_100_PHY_tx_clk, DIR = I

 PORT PHY_rx_clk = fpga_0_Generic_Ethernet_10_100_PHY_rx_clk, DIR = I

 PORT PHY_crs = fpga_0_Generic_Ethernet_10_100_PHY_crs, DIR = I

 PORT PHY_dv = fpga_0_Generic_Ethernet_10_100_PHY_dv, DIR = I

 154

 PORT PHY_rx_data = fpga_0_Generic_Ethernet_10_100_PHY_rx_data, DIR =

I, VEC = [3:0]

 PORT PHY_col = fpga_0_Generic_Ethernet_10_100_PHY_col, DIR = I

 PORT PHY_rx_er = fpga_0_Generic_Ethernet_10_100_PHY_rx_er, DIR = I

 PORT PHY_tx_en = fpga_0_Generic_Ethernet_10_100_PHY_tx_en, DIR = O

 PORT PHY_tx_data = fpga_0_Generic_Ethernet_10_100_PHY_tx_data, DIR =

O, VEC = [3:0]

 PORT PHY_rst_n = fpga_0_Generic_Ethernet_10_100_PHY_rst_n, DIR = O

 PORT I2C_SCL = fpga_0_Generic_IIC_Bus_Scl, DIR = IO

 PORT I2C_SDA = fpga_0_Generic_IIC_Bus_Sda, DIR = IO

 PORT SPI_FLASH_SCK = fpga_0_Generic_SPI_SCK, DIR = IO

 PORT SPI_FLASH_MOSI = fpga_0_Generic_SPI_MOSI, DIR = IO

 PORT SPI_FLASH_MISO = fpga_0_Generic_SPI_MISO, DIR = IO

 PORT SDRAM_A = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_Addr, DIR = O, VEC =

[11:0]

 PORT SDRAM_BA = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_BankAddr, DIR = O, VEC

= [1:0]

 PORT SDRAM_CASn = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_CAS_n, DIR = O

 PORT SDRAM_RASn = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_RAS_n, DIR = O

 PORT SDRAM_WEn = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_WE_n, DIR = O

 PORT SDRAM_CKE = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_CE, DIR = O

 PORT SDRAM_CSn = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_CS_n, DIR = O

 PORT SDRAM_Clk = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_Clk, DIR = O

 PORT SDRAM_DQM = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_DM, DIR = O, VEC =

[3:0]

 PORT SDRAM_DQ = SDRAM_DQ, DIR = IO, VEC = [31:0]

 PORT sys_clk = dcm_clk_s, DIR = I, SIGIS = CLK, CLK_FREQ = 12000000

 PORT sys_rst = sys_rst_s, DIR = I, RST_POLARITY = 0, SIGIS = RST

 PORT SDRAM_A12 = net_vcc, DIR = O

 PORT PBs = fpga_0_Push_Buttons_GPIO_in, DIR = I, VEC = [0:4]

 PORT MII_MDC_MDIO_PIN = MII_MDC_MDIO_GPIO_GPIO_IO, DIR = IO, VEC =

[0:1]

 PORT PHY_tx_er = net_gnd, DIR = O

 PORT TXOLED = uOLED_TX, DIR = O

 PORT RXOLED = uOLED_RX, DIR = I

 PORT MOSI1 = SPI_1_MOSI, DIR = IO

 PORT MISO1 = SPI_1_MISO, DIR = IO

 PORT SCLK1 = SPI_1_SCK, DIR = IO

 PORT MOSI2 = SPI_2_MOSI, DIR = IO

 PORT MISO2 = SPI_2_MISO, DIR = IO

 PORT SCLK2 = SPI_2_SCK, DIR = IO

 PORT MOSI3 = SPI_3_MOSI, DIR = IO

 PORT MISO3 = SPI_3_MISO, DIR = IO

 PORT SCLK3 = SPI_3_SCK, DIR = IO

 PORT IMU_sout = IMU_unit_sout, DIR = O

 PORT IMU_sin = IMU_unit_sin, DIR = I

 PORT uOLED_rts = not_gate_Res, DIR = O, VEC = [0:0]

BEGIN ppc405_virtex4

 PARAMETER INSTANCE = ppc405_0

 PARAMETER HW_VER = 2.01.a

 155

 PARAMETER C_FASTEST_PLB_CLOCK = DPLB1

 PARAMETER C_IDCR_BASEADDR = 0b0100000000

 PARAMETER C_IDCR_HIGHADDR = 0b0111111111

 BUS_INTERFACE JTAGPPC = jtagppc_0_0

 BUS_INTERFACE IPLB0 = plb

 BUS_INTERFACE DPLB0 = plb

 BUS_INTERFACE IPLB1 = ppc405_0_iplb1

 BUS_INTERFACE DPLB1 = ppc405_0_dplb1

 BUS_INTERFACE RESETPPC = ppc_reset_bus

 PORT CPMC405CLOCK = sys_clk_s

 PORT EICC405EXTINPUTIRQ = EICC405EXTINPUTIRQ

END

BEGIN jtagppc_cntlr

 PARAMETER INSTANCE = jtagppc_0

 PARAMETER HW_VER = 2.01.c

 BUS_INTERFACE JTAGPPC0 = jtagppc_0_0

END

BEGIN plb_v46

 PARAMETER INSTANCE = plb

 PARAMETER C_DCR_INTFCE = 0

 PARAMETER C_NUM_CLK_PLB2OPB_REARB = 100

 PARAMETER HW_VER = 1.03.a

 PORT PLB_Clk = sys_clk_s

 PORT SYS_Rst = sys_bus_reset

END

BEGIN xps_bram_if_cntlr

 PARAMETER INSTANCE = xps_bram_if_cntlr_1

 PARAMETER HW_VER = 1.00.a

 PARAMETER C_SPLB_NATIVE_DWIDTH = 64

 PARAMETER C_BASEADDR = 0xffff8000

 PARAMETER C_HIGHADDR = 0xffffffff

 BUS_INTERFACE SPLB = plb

 BUS_INTERFACE PORTA = xps_bram_if_cntlr_1_port

END

BEGIN bram_block

 PARAMETER INSTANCE = plb_bram_if_cntlr_1_bram

 PARAMETER HW_VER = 1.00.a

 BUS_INTERFACE PORTA = xps_bram_if_cntlr_1_port

END

BEGIN xps_ethernetlite

 PARAMETER INSTANCE = Generic_Ethernet_10_100

 PARAMETER HW_VER = 2.00.b

 PARAMETER C_SPLB_CLK_PERIOD_PS = 13888

 PARAMETER C_BASEADDR = 0x81000000

 PARAMETER C_HIGHADDR = 0x8100ffff

 BUS_INTERFACE SPLB = plb

 PORT PHY_tx_clk = fpga_0_Generic_Ethernet_10_100_PHY_tx_clk

 156

 PORT PHY_rx_clk = fpga_0_Generic_Ethernet_10_100_PHY_rx_clk

 PORT PHY_crs = fpga_0_Generic_Ethernet_10_100_PHY_crs

 PORT PHY_dv = fpga_0_Generic_Ethernet_10_100_PHY_dv

 PORT PHY_rx_data = fpga_0_Generic_Ethernet_10_100_PHY_rx_data

 PORT PHY_col = fpga_0_Generic_Ethernet_10_100_PHY_col

 PORT PHY_rx_er = fpga_0_Generic_Ethernet_10_100_PHY_rx_er

 PORT PHY_tx_en = fpga_0_Generic_Ethernet_10_100_PHY_tx_en

 PORT PHY_tx_data = fpga_0_Generic_Ethernet_10_100_PHY_tx_data

 PORT PHY_rst_n = fpga_0_Generic_Ethernet_10_100_PHY_rst_n

 PORT IP2INTC_Irpt = Generic_Ethernet_10_100_IP2INTC_Irpt

END

BEGIN xps_gpio

 PARAMETER INSTANCE = SD

 PARAMETER HW_VER = 1.00.a

 PARAMETER C_ALL_INPUTS = 0

 PARAMETER C_GPIO_WIDTH = 4

 PARAMETER C_IS_BIDIR = 1

 PARAMETER C_IS_DUAL = 0

 PARAMETER C_BASEADDR = 0x81400000

 PARAMETER C_HIGHADDR = 0x8140ffff

 BUS_INTERFACE SPLB = plb

 PORT GPIO_IO = fpga_0_Generic_GPIO_GPIO_IO

END

BEGIN xps_gpio

 PARAMETER INSTANCE = LEDS

 PARAMETER HW_VER = 1.00.a

 PARAMETER C_GPIO_WIDTH = 4

 PARAMETER C_IS_DUAL = 0

 PARAMETER C_ALL_INPUTS = 0

 PARAMETER C_IS_BIDIR = 0

 PARAMETER C_BASEADDR = 0x81460000

 PARAMETER C_HIGHADDR = 0x8146ffff

 BUS_INTERFACE SPLB = plb

 PORT GPIO_d_out = fpga_0_LEDS_GPIO_d_out

END

BEGIN xps_gpio

 PARAMETER INSTANCE = Push_Buttons

 PARAMETER HW_VER = 1.00.a

 PARAMETER C_GPIO_WIDTH = 5

 PARAMETER C_IS_DUAL = 0

 PARAMETER C_ALL_INPUTS = 1

 PARAMETER C_IS_BIDIR = 0

 PARAMETER C_BASEADDR = 0x81420000

 PARAMETER C_HIGHADDR = 0x8142ffff

 BUS_INTERFACE SPLB = plb

 PORT GPIO_in = fpga_0_Push_Buttons_GPIO_in

END

BEGIN xps_iic

 157

 PARAMETER INSTANCE = Generic_IIC_Bus

 PARAMETER HW_VER = 2.00.a

 PARAMETER C_CLK_FREQ = 72000000

 PARAMETER C_BASEADDR = 0x81600000

 PARAMETER C_HIGHADDR = 0x8160ffff

 BUS_INTERFACE SPLB = plb

 PORT Scl = fpga_0_Generic_IIC_Bus_Scl

 PORT Sda = fpga_0_Generic_IIC_Bus_Sda

 PORT IIC2INTC_Irpt = Generic_IIC_Bus_IIC2INTC_Irpt

END

BEGIN mpmc

 PARAMETER INSTANCE = SDR_SDRAM_CUSTOM

 PARAMETER HW_VER = 4.03.a

 PARAMETER C_NUM_PORTS = 2

 PARAMETER C_MEM_PARTNO = CUSTOM

 PARAMETER C_MEM_TYPE = SDRAM

 PARAMETER C_MEM_CE_WIDTH = 1

 PARAMETER C_MEM_CS_N_WIDTH = 1

 PARAMETER C_MEM_CLK_WIDTH = 1

 PARAMETER C_MEM_NUM_RANKS = 1

 PARAMETER C_MEM_DATA_WIDTH = 32

 PARAMETER C_PIM1_BASETYPE = 2

 PARAMETER C_MPMC_CLK0_PERIOD_PS = 13888

 PARAMETER C_MEM_PART_DATA_DEPTH = 128

 PARAMETER C_MEM_PART_DATA_WIDTH = 32

 PARAMETER C_MEM_PART_NUM_BANK_BITS = 2

 PARAMETER C_MEM_PART_NUM_ROW_BITS = 12

 PARAMETER C_MEM_PART_NUM_COL_BITS = 8

 PARAMETER C_MEM_PART_CAS_A_FMAX = 105

 PARAMETER C_MEM_PART_CAS_A = 3

 PARAMETER C_MEM_PART_TRAS = 60000

 PARAMETER C_MEM_PART_TRASMAX = 100000000

 PARAMETER C_MEM_PART_TRC = 84000

 PARAMETER C_MEM_PART_CAS_B_FMAX = 83

 PARAMETER C_MEM_PART_CAS_B = 2

 PARAMETER C_MEM_PART_TWR = 15000

 PARAMETER C_MEM_PART_CAS_C_FMAX = 35

 PARAMETER C_MEM_PART_CAS_C = 1

 PARAMETER C_MEM_PART_TRRD = 19000

 PARAMETER C_MEM_PART_TRCD = 24000

 PARAMETER C_MEM_PART_TREFI = 7800000

 PARAMETER C_MEM_PART_TRFC = 75000

 PARAMETER C_MEM_PART_TRP = 24000

 PARAMETER C_MPMC_BASEADDR = 0x00000000

 PARAMETER C_MPMC_HIGHADDR = 0x00ffffff

 BUS_INTERFACE SPLB0 = ppc405_0_iplb1

 BUS_INTERFACE SPLB1 = ppc405_0_dplb1

 PORT SDRAM_Addr = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_Addr

 PORT SDRAM_BankAddr = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_BankAddr

 PORT SDRAM_CAS_n = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_CAS_n

 PORT SDRAM_RAS_n = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_RAS_n

 158

 PORT SDRAM_WE_n = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_WE_n

 PORT SDRAM_CE = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_CE

 PORT SDRAM_CS_n = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_CS_n

 PORT SDRAM_Clk = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_Clk

 PORT SDRAM_DM = fpga_0_SDR_SDRAM_CUSTOM_SDRAM_DM

 PORT SDRAM_DQ = SDRAM_DQ

 PORT MPMC_Clk0 = sys_clk_s

 PORT MPMC_Clk90 = SDR_SDRAM_CUSTOM_mpmc_clk_90_s

 PORT MPMC_Rst = sys_periph_reset

END

BEGIN xps_spi

 PARAMETER INSTANCE = Generic_SPI

 PARAMETER HW_VER = 2.00.b

 PARAMETER C_FIFO_EXIST = 1

 PARAMETER C_NUM_SS_BITS = 1

 PARAMETER C_NUM_TRANSFER_BITS = 8

 PARAMETER C_SCK_RATIO = 128

 PARAMETER C_BASEADDR = 0x83c12000

 PARAMETER C_HIGHADDR = 0x83c1207f

 BUS_INTERFACE SPLB = plb

 PORT SCK = fpga_0_Generic_SPI_SCK

 PORT MOSI = fpga_0_Generic_SPI_MOSI

 PORT MISO = fpga_0_Generic_SPI_MISO

 PORT IP2INTC_Irpt = Generic_SPI_IP2INTC_Irpt

END

BEGIN xps_uart16550

 PARAMETER INSTANCE = RS232

 PARAMETER HW_VER = 2.00.b

 PARAMETER C_IS_A_16550 = 1

 PARAMETER C_BASEADDR = 0x83e20000

 PARAMETER C_HIGHADDR = 0x83e2ffff

 BUS_INTERFACE SPLB = plb

 PORT sin = fpga_0_RS232_sin

 PORT sout = fpga_0_RS232_sout

 PORT ctsN = net_gnd

 PORT IP2INTC_Irpt = RS232_IP2INTC_Irpt

END

BEGIN xps_timer

 PARAMETER INSTANCE = xps_timer_1

 PARAMETER HW_VER = 1.00.a

 PARAMETER C_COUNT_WIDTH = 32

 PARAMETER C_ONE_TIMER_ONLY = 1

 PARAMETER C_BASEADDR = 0x83c00000

 PARAMETER C_HIGHADDR = 0x83c0ffff

 BUS_INTERFACE SPLB = plb

 PORT Interrupt = xps_timer_1_Interrupt

END

BEGIN plb_v46

 159

 PARAMETER INSTANCE = ppc405_0_iplb1

 PARAMETER HW_VER = 1.03.a

 PORT PLB_Clk = sys_clk_s

 PORT SYS_Rst = sys_bus_reset

END

BEGIN plb_v46

 PARAMETER INSTANCE = ppc405_0_dplb1

 PARAMETER HW_VER = 1.03.a

 PORT PLB_Clk = sys_clk_s

 PORT SYS_Rst = sys_bus_reset

END

BEGIN proc_sys_reset

 PARAMETER INSTANCE = proc_sys_reset_0

 PARAMETER HW_VER = 2.00.a

 PARAMETER C_EXT_RESET_HIGH = 0

 BUS_INTERFACE RESETPPC0 = ppc_reset_bus

 PORT Slowest_sync_clk = sys_clk_s

 PORT Dcm_locked = net_vcc

 PORT Ext_Reset_In = sys_rst_s

 PORT Bus_Struct_Reset = sys_bus_reset

 PORT Peripheral_Reset = sys_periph_reset

END

BEGIN xps_intc

 PARAMETER INSTANCE = xps_intc_0

 PARAMETER HW_VER = 1.00.a

 PARAMETER C_BASEADDR = 0x81800000

 PARAMETER C_HIGHADDR = 0x8180ffff

 BUS_INTERFACE SPLB = plb

 PORT Irq = EICC405EXTINPUTIRQ

 PORT Intr =

xps_timer_1_Interrupt&Generic_Ethernet_10_100_IP2INTC_Irpt&RS232_IP2IN

TC_Irpt&SPI_1_IP2INTC_Irpt&SPI_2_IP2INTC_Irpt&SPI_3_IP2INTC_Irpt&IMU_u

nit_IP2INTC_Irpt&uOLED_IP2INTC_Irpt&Generic_IIC_Bus_IIC2INTC_Irpt&Gene

ric_SPI_IP2INTC_Irpt

END

BEGIN dcm_module

 PARAMETER INSTANCE = clock_72Mhz

 PARAMETER HW_VER = 1.00.d

 PARAMETER C_CLKOUT_PHASE_SHIFT = FIXED

 PARAMETER C_STARTUP_WAIT = TRUE

 PARAMETER C_CLKFX_MULTIPLY = 6

 PARAMETER C_CLKIN_PERIOD = 83.0

 PARAMETER C_EXT_RESET_HIGH = 0

 PORT CLKFX = sys_clk_s

 PORT RST = sys_rst_s

 PORT CLKIN = dcm_clk_s

 PORT CLKFB = clock_72Mhz_90ph_CLK270

END

 160

BEGIN dcm_module

 PARAMETER INSTANCE = clock_72Mhz_90ph

 PARAMETER HW_VER = 1.00.d

 PARAMETER C_CLKOUT_PHASE_SHIFT = FIXED

 PARAMETER C_STARTUP_WAIT = TRUE

 PARAMETER C_PHASE_SHIFT = 90

 PARAMETER C_CLKFX_MULTIPLY = 6

 PARAMETER C_CLKIN_PERIOD = 83.0

 PARAMETER C_EXT_RESET_HIGH = 0

 PORT RST = sys_rst_s

 PORT CLKIN = dcm_clk_s

 PORT CLK270 = clock_72Mhz_90ph_CLK270

 PORT CLKFX = SDR_SDRAM_CUSTOM_mpmc_clk_90_s

END

BEGIN xps_gpio

 PARAMETER INSTANCE = MII_MDC_MDIO_GPIO

 PARAMETER HW_VER = 1.00.a

 PARAMETER C_GPIO_WIDTH = 2

 PARAMETER C_BASEADDR = 0x81440000

 PARAMETER C_HIGHADDR = 0x8144ffff

 BUS_INTERFACE SPLB = plb

 PORT GPIO_IO = MII_MDC_MDIO_GPIO_GPIO_IO

END

BEGIN xps_spi

 PARAMETER INSTANCE = SPI_1

 PARAMETER HW_VER = 2.00.b

 PARAMETER C_NUM_TRANSFER_BITS = 16

 PARAMETER C_FIFO_EXIST = 0

 PARAMETER C_BASEADDR = 0x83c1c080

 PARAMETER C_HIGHADDR = 0x83c1c0ff

 BUS_INTERFACE SPLB = plb

 PORT MOSI = SPI_1_MOSI

 PORT MISO = SPI_1_MISO

 PORT SCK = SPI_1_SCK

 PORT IP2INTC_Irpt = SPI_1_IP2INTC_Irpt

END

BEGIN xps_spi

 PARAMETER INSTANCE = SPI_2

 PARAMETER HW_VER = 2.00.b

 PARAMETER C_NUM_TRANSFER_BITS = 16

 PARAMETER C_FIFO_EXIST = 0

 PARAMETER C_BASEADDR = 0x83c14000

 PARAMETER C_HIGHADDR = 0x83c1407f

 BUS_INTERFACE SPLB = plb

 PORT MOSI = SPI_2_MOSI

 PORT MISO = SPI_2_MISO

 PORT SCK = SPI_2_SCK

 PORT IP2INTC_Irpt = SPI_2_IP2INTC_Irpt

 161

END

BEGIN xps_spi

 PARAMETER INSTANCE = SPI_3

 PARAMETER HW_VER = 2.00.b

 PARAMETER C_NUM_TRANSFER_BITS = 16

 PARAMETER C_FIFO_EXIST = 0

 PARAMETER C_BASEADDR = 0x83c18000

 PARAMETER C_HIGHADDR = 0x83c1807f

 BUS_INTERFACE SPLB = plb

 PORT MOSI = SPI_3_MOSI

 PORT MISO = SPI_3_MISO

 PORT SCK = SPI_3_SCK

 PORT IP2INTC_Irpt = SPI_3_IP2INTC_Irpt

END

BEGIN xps_uart16550

 PARAMETER INSTANCE = IMU_unit

 PARAMETER HW_VER = 2.00.b

 PARAMETER C_BASEADDR = 0x83e40000

 PARAMETER C_HIGHADDR = 0x83e4ffff

 BUS_INTERFACE SPLB = plb

 PORT ctsN = net_gnd

 PORT IP2INTC_Irpt = IMU_unit_IP2INTC_Irpt

 PORT sout = IMU_unit_sout

 PORT sin = IMU_unit_sin

END

BEGIN xps_uart16550

 PARAMETER INSTANCE = uOLED

 PARAMETER HW_VER = 2.00.b

 PARAMETER C_BASEADDR = 0x83e00000

 PARAMETER C_HIGHADDR = 0x83e0ffff

 BUS_INTERFACE SPLB = plb

 PORT ctsN = net_gnd

 PORT sout = uOLED_TX

 PORT sin = uOLED_RX

 PORT IP2INTC_Irpt = uOLED_IP2INTC_Irpt

 PORT rtsN = uOLED_rtsN

END

BEGIN util_vector_logic

 PARAMETER INSTANCE = not_gate

 PARAMETER HW_VER = 1.00.a

 PARAMETER C_OPERATION = not

 PARAMETER C_SIZE = 1

 PORT Res = not_gate_Res

 PORT Op1 = uOLED_rtsN

END

 162

Appendix B
Schematic of the designed circuits in project

The main board’s schematic

 163

The Brushless motor controller’s schematic:

 164

The DC motor controller’s schematic:

