
Experimental Framework for
Controller Area Network based on

a Multi-Processor-System-on-a-
Chip

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Walther Operenyi
Matrikelnummer 0407269

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer/in: Prof. Dipl.-Ing. Dr.techn. Roman Obermaisser
Mitwirkung: Univ.Ass. Dipl.-Ing. Roland Kammerer

Wien, 03.12.2012
(Unterschrift Verfasser) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

i

„Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
– einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.“

Wien am 03.12.2012

iii

Abstract

Controller Area Network (CAN) is used for sending and receiving short real-time mes-
sages up to 1 Mbit/s. CAN is mainly used in the car industry to interconnect Electronic
Control Units (ECUs) so that the ECUs communicate via messages. Each message has a
unique id and a payload. Furthermore, each message with a unique id is sent repeatedly on
demand to transport control information via its payload. The control information is gener-
ated and accepted by control tasks. Each task fulfills a well-defined operation purpose and
is executed by an ECU. Therefore the unique id of a message definitely tags the control
information in order to address tasks and ECUs. In addition, the message id determines the
priority of a message. Each CAN message that is ready for transmission starts to emit if no
message is in transmission. As multiple messages start to emit simultaneously the priority
of a message determines its transport so that the message with the highest priority transmits
and the remaining messages stop to emit. The remaining messages are sent afterwards.
Thus the transmission times (difference between message generation and reception) of each
message with a unique id vary.

Typically, many tasks in a CAN system have to concurrently exchange data and control
information in real-time. Low transmission latencies and a low variability of the transmis-
sion latencies are important to ensure high control performance. In this diploma thesis an
experimental evaluation technique is presented to determine statistical data of the transmis-
sion behaviour in CAN such as the maximum, minimum and average transmission laten-
cies. Therefore a hardware platform was developed that consists of processors that emulate
ECUs. Furthermore, tasks are simulated on each processor which generates messages of the
same unique id randomly but within limited time intervals. These messages are transmitted
via CAN and the transmission times are measured to derive statistical data. In addition,
auxiliary parameters are collected such as number of sent and received messages at each
particular processor. Furthermore, a complete toolchain is presented to design test configu-
rations and analyze statistical data.

CAN has a good average transmission time behaviour but the transmission times are
sometimes extremely delayed. In general, the transmission times are reduced if the collision
probability is decreased. The collision probability is determined by the number of messages
and by the send frequency of each message with a unique id. Thus the collision probability
determines the utilization of the transmission medium.

v

Kurzfassung

Controller Area Network (CAN) dient zum Senden und Empfangen von kurzen Echt-
zeitnachrichten bei einem Datendurchsatz von bis zu 1 Mbit/s. Die Automobilindustrie
setzt CAN für die Vernetzung von Electronic Control Units (ECUs) ein. Die Vernetzung
ist mittels Nachrichtenübertragung realisiert. Eine Nachricht besteht aus einer eindeutigen
Kennung und Nutzdaten. Eine Nachricht wird bei Bedarf instanziert und übertragen um
Kontrollinformation zu senden. Kontrollinformation wird von Prozessen generiert und ent-
gegengenommen und dient zum Regeln und Steuern. Ein Prozess erfüllt einen eindeutig
definierten Zweck und wird auf einer ECU ausgeführt. Hierbei bezeichnet die Kennung die
Nutzdaten um Prozesse und ECUs zu adressieren. Darüber hinaus bestimmt die Kennung
die Priorität einer Nachricht. Eine Nachrichtenübertragung beginnt falls keine Nachtrichten-
übertragung stattfindet. Falls mehrere Nachrichtenübertragungen gleichzeitig starten wird
ausschließlich die Nachricht mit der höchsten Priorität transportiert. Die restlichen Nach-
richten werden anschließend versandt. Aus den oben genannten Gründen fluktuieren die
Transportzeiten für den Nachrichtenversand. Die Transportzeit ist die Differenz zwischen
der Nachrichteninstanzierung und dem Empfang.

Prozesse müssen teilweise innerhalb einer Zeitschranke terminieren und daher muss
Kontrollinformation rechtzeitig zur Verfügung stehen. Darüber hinaus ist ein optimierter
mittlerer Datendurchsatz erforderlich da die Leistungsfähigkeit vieler Prozesse von der
mittleren Reaktionszeit abhängt. In dieser Diplomarbeit wird eine experimentelle Evalu-
ierungsmethode vorgestellt, welche statistische Daten betreffend des Transportverhaltens
ermittelt. Hierfür wurde eine Hardwareplattform entwickelt, welche aus Prozessoren be-
steht um ECUs zu emulieren. Des weiteren werden auf jedem Prozessor Prozesse simu-
liert, welche jeweils Nachrichten mit einer eindeutigen Kennung während eines zufälligen
und beschränkten Zeitintervalls generieren. Die instanzierten Nachrichten werden mittels
CAN verschickt und mit Hilfe der ermittelten Transportzeiten statistische Daten berech-
net. Darüber hinaus werden zusätzliche Parameter wie z.B. die Anzahl der versandten und
empfangen Nachrichten bei jedem Prozessor bestimmt. Des weiteren wird eine komplette
Toolchain vorgestellt, welche zum Entwurf von Testkonfigurationen und Auswertung von
ermittelten statistischen Daten dient.

CAN weist akzeptable durchschnittliche Transportzeiten für die Nachrichtenübertra-
gung auf. Jedoch treten sporadisch extremst verzögerte Transportzeiten auf. Die Transport-
zeiten sind bei einer geringeren Kollisionswahrscheinlichkeit reduziert. Die Kollisionswahr-
scheinlichkeit wird durch die Anzahl der Nachrichten sowie durch die Sendefrequenz jeder
einzelnen Nachricht bestimmt. Die Kollisionswahrscheinlichkeit bestimmt die Auslastung
des Transmissionsmedium.

vii

Danksagung

Diese Arbeit entstand am Institut für Technische Informatik, Abteilung Echtzeitsystem,
an der Technischen Universiät Wien.

Besonderen Dank richte ich an den Betreuer dieser Diplomarbeit, Prof. Dr. Roman
Obermaisser, der mir die Möglichkeit geboten hat dieses ansprechende Projekt zu realisie-
ren. Durch seine Denkanstöße und die Diskussion mit ihm entstanden zahlreiche elegante
Lösungsansätze. Darüber hinaus möchte ich mich bei Univ.Ass. Dipl.-Ing. Roland Kam-
merer für die hilfreiche Unterstützung, Diskussionen und Gegenlesen meiner Diplomarbeit
erkenntlich zeigen. Außerdem gilt mein Dank BSc Bernhard Frömel für die Unterstütung
bei der Implementierung.

Mein herzlichster Dank gilt meinem Freund Dr. Daniel Ambort für das Kontrolllesen
meiner Diplomarbeit und die aufheiternden Gespräche.

Außerdem bedanke ich mich für die konstruktiven Gespräche mit Prof. Dr. Herbert
Grünbacher, Dr. Christian Paukovits und Dipl.-Ing. Jakob Lechner.

Ich danke des weitern Ing. Leo Mayerhofer für die technische Projektunterstützung und
Maria Ochsenreiter für die administrative Hilfe.

Schließlich danke ich meiner Mutter, die mir dieses Studium ermöglicht hat.

Contents

Abstract iii

Kurzfassung v

Danksagung vii

Contents ix

List of Figures x

List of Tables xii

1 Introduction 1

2 Related Work 5
2.1 Multilevel Inspection of Multiple CAN-Networks 5
2.2 Emulation of CAN Networks . 7
2.3 Worst-Case Response Time Analysis . 9
2.4 Stochastic Analysis . 12

3 Basic Concepts 17
3.1 Controller Area Network . 17
3.2 Star Network . 30
3.3 Hardware in the Loop . 36
3.4 System on Chip . 39

4 System Model 47
4.1 System Structure . 47
4.2 Experimental Model . 54

5 Prototype Setup and Experiments 57
5.1 Explanation of Structure . 57
5.2 Explanation of Structure Elements . 59
5.3 Experimental Process . 66
5.4 Experiments . 68

ix

6 Results 71
6.1 4 CSDs - No Ramp MCE . 71
6.2 8 CSDs - No Ramp MCE . 73
6.3 4 CSDs - High Priority Ramp MCE . 76
6.4 8 CSDs - High Priority Ramp MCE . 84
6.5 4 CSDs - Low Priority Ramp MCE . 90
6.6 8 CSDs - Low Priority Ramp MCE . 96

7 Discussion 101
7.1 Test System . 101
7.2 Interpretation of Data . 103
7.3 Collision Probability . 106
7.4 Errors and Overload Frames . 107
7.5 Emission Rate and Utilization . 108
7.6 Future Work . 109
7.7 Conclusion . 110

List of Acronyms 111

Bibliography 113

List of Figures

2.1 OSI model . 5
2.2 System architecture of Multilevel Inspection[Nov09] 7
2.3 Convolution (WP

t ? fEi) and shrinking ofWP
t . 13

2.4 Calculation of a PMF for a characteristic message 14
2.5 End-to-end latency of a path Πo1,o7[ZNGSV09] 16

3.1 CAN Layers . 17
3.2 CAN Bus with 3 attached subscribers . 19
3.3 Data/Remote Frame . 21
3.4 Overload Frame . 25
3.5 CAN: bit time . 28
3.6 Principle layout of a CAN Transceiver . 29
3.7 CANcentrate architecture[BPA09] . 32
3.8 Architecture of the CAN router[KOF12] . 35
3.9 Real-time HIL testing . 36

x

3.10 Flow of the SystemC scheduler[FYS10] . 37

3.11 Architecture of a HIL and HW/SW co-design for real-time embedded systems[FYS10] 38

3.12 Layout of Altera Streaming Interface[Alt11a] . 42

3.13 Structure of the TTSoC architecture[Pau08] . 44

3.14 Simultaneous routes in a network-on-chip[Pau08] 45

4.1 Structure of the test platform . 47

4.2 Message Time Intervals of a Message (TMI) . 49

4.3 Transmission and Transmission Time of a Message 51

4.4 Block Diagram of a CAN Simulation Device . 52

5.1 Interfaces of the prototype . 58

6.1 Total sent TMIs and send omissions of MCE 0x1 in the test system with 4 CSDs
and a high priority Ramp MCE . 78

6.2 Total sent TMIs of MCEs 0x2, 0x3, 0x4, 0x1d, 0x1e, 0x1f in the test system with 4
CSDs and a high priority Ramp MCE . 79

6.3 Total maximum and average transmission times of MCE 0x1 and MCE 0x1f in the
test system with 4 CSDs and a high priority Ramp MCE 80

6.4 Measured variances of MCEs 0x1 and 0x1f in the test system with 4 CSDs and a
high priority Ramp MCE . 83

6.5 Total maximum and average transmission times of MCE 0x1 and MCE 0x46 in the
test system with 8 CSDs and a high priority Ramp MCE 87

6.6 Measured variances of MCEs 0x1 and 0x47 in the test system with 8 CSDs and a
high priority Ramp MCE . 90

6.7 Total maximum and average transmission times of MCE 0x1 and MCE 0x1e in the
test system with 4 CSDs and a low priority Ramp MCE 93

6.8 Measured variances of MCEs 0x1 and 0x1e in the test system with 4 CSDs and a
low priority Ramp MCE . 95

6.9 Total maximum and average transmission times of MCE 0x1 and MCE 0x46 in the
test system with 8 CSDs and a low priority Ramp MCE 97

6.10 Measured variances of MCEs 0x1 and 0x46 in the test system with 4 CSDs and a
low priority Ramp MCE . 99

7.1 Blocking of a triggered messages . 106

7.2 Delay of frames due to an erroneous frame . 108

xi

xii List of Tables

List of Tables

3.1 Length of the payload (data field) denoted by the Data Length Code 22
3.2 CAN: bit time . 28
3.3 Electrical specification of a CAN Transceiver by ISO 11898 30

4.1 Test run configurations . 56

6.1 Mean, minimum, maximum and standard deviation of the send behavior of a test
system with 4 CSDs and a RSTEP of zero . 72

6.2 Mean and maximum statistics of the transmission times of a test system with 4 CSDs
and a RSTEP of zero . 72

6.3 Total maximum transmission times of each CSD of a test system with 4 CSDs and
a RSTEP of zero . 73

6.4 Variance statistics of the transmission times of a test system with 4 CSDs and a
RSTEP of zero . 73

6.5 Mean, minimum, maximum and standard deviation of the send behavior of a test
system with 8 CSDs and a RSTEP of zero . 74

6.6 Mean and maximum statistics of the transmission times of a test system with 8 CSDs
and a RSTEP of zero . 75

6.7 Total maximum transmission times of each subscriber of a test system with 8 CSDs
and a RSTEP of zero . 75

6.8 Variance statistics of the transmission times of a test system with 8 CSDs and a
RSTEP of zero . 76

6.9 Mean, minimum, maximum and standard deviation of the send behavior of a test
system with 4 CSDs and a high priority Ramp MCE 79

6.10 Mean and maximum statistics of the transmission times of a test system with 4 CSDs
and a high priority MCE . 82

6.11 Total maximum transmission times of each CSD of a test system with 4 CSDs and
a high priority Ramp MCE . 82

6.12 Variance statistics of the transmission times of a test system with 4 CSDs and a high
priority Ramp MCE . 85

6.13 Mean, minimum, maximum and standard deviation of the send behavior of a test
system with 8 CSDs and a high priority Ramp MCE 86

6.14 Mean and maximum statistics of the transmission times of a test system with 8 CSDs
and a high priority MCE . 88

6.15 Total maximum transmission times of each CSD of a test system with 8 CSDs and
a high priority Ramp MCE . 89

6.16 Variance statistics of the transmission times of a test system with 8 CSDs and a high
priority Ramp MCE . 91

List of Tables xiii

6.17 Mean, minimum, maximum and standard deviation of the send behavior of a test
system with 4 CSDs and a low priority Ramp MCE 92

6.18 Mean statistics of the transmission times of a test system with 4 CSDs and a low
priority Ramp MCE . 94

6.19 Total maximum transmission times of each CSD of a test system with 4 CSDs and
a low priority Ramp MCE . 94

6.20 Variance statistics of the transmission times of a test system with 4 CSDs and a low
priority Ramp MCE . 95

6.21 Mean, minimum, maximum and standard deviation of the send behavior of a test
system with 8 CSDs and with a low priority Ramp MCE 96

6.22 Mean and maximum statistics of the transmission times of a test system with 8 CSDs
and with a low priority Ramp MCE . 98

6.23 Total maximum transmission times of each CSD of a test system with 8 CSDs and
a low priority Ramp MCE . 98

6.24 Variance statistics of the transmission times of a test system with 8 CSDs and a low
priority Ramp MCE . 100

CHAPTER 1
Introduction

A transmission is the transfer of structured information (data) over a distance. Transmissions
are mediated by physical carriers (transmission media) and regulated by subscribers that receive
or send transmissions. Furthermore, the transmission media and subscribers are interconnected
either directly from subscriber to transmission medium or indirectly via transmission media
themselves. One example of a direct interconnection is the Controller Area Network (CAN)
bus where the transmission medium is accessed by the CAN standard. CAN bus is used for
sending and receiving short real-time messages up to 1 Mbit/s[fS03]. Each message consists of
an identifier (id) for tagging and a payload for user data. Furthermore, each message can only
be sent if there is no message in transmission. Therefore an error-free message transmission
cannot be interrupted. Moreover, messages are related to priorities so that the unique priority
(id) of a message determines which message will be transmitted if multiple messages start to
transmit simultaneously (prioritization of messages). The prioritization of messages is a main
feature of CAN because collided messages (message collisions) will not cause the retransmis-
sion at arbitrary later time points. Each collision will be resolved (called arbitration) such that
the message with the highest priority will be transmitted and the remaining messages will be
transmitted afterwards. Therefore each subscriber has equal communication rights and hence
CAN is a multimaster system. The complete CAN standard is explicitly explained in Subsection
3.1.

There are about 800 million CAN Controllers (controller chip that handles the CAN com-
munication) sold per year and the sale volume is still increasing[Zel11]. Furthermore, CAN is
mainly used in the car industry[MMTS11]. In addition, the Society of Automotive Engineers
Vehicle Network Committee divided auto data transmission networks (a network consists of sub-
scribers which exchange information via physical carriers) into 3 types (A, B and C) according
to the SAE J2057 standard[LPL11]. Class A are low speed applications such as a power window
actuator, class B are medium speed applications that require fast reaction times and class C are
high speed applications. Applications based on CAN are in classes B and C. Furthermore, espe-
cially class C networks require predictable transmission times (time difference between message

1

2 Chapter 1. Introduction

generation and reception at a receiver) because CAN is used for embedded systems such as a
power-train control module. Such a power-train control module has to determine each result in
time and therefore it requires information transmitted via CAN in time (time-critical). Therefore
the longest transmission time is a main property in a communication system. Each commu-
nication system (communication network) consists of independent locations (called Electronic
Control Unit (ECU) in an automotive system) that executes processes (processes form together
applications) and the processes exchange information via messages. Furthermore, a commu-
nication system requires also a minimized average transmission time behaviour because many
applications are not time-critical but the performance of the controls depend on the average re-
sponse times[ZNGSV09]. Each response time is the difference between the time point of an
action and the time point to react with such a corresponding action.

The determination of the time behaviour of CAN is difficult for multiple reasons
(exemplarily)[PV03]:

• Messages can be generated at different locations (ECUs) without synchronization

• Message collisions

• An error management that is handled by the subscribers themselves (each CAN Controller
is responsible for the reduction of its communication privileges if it acts erroneously). The
error management influences the transmission behaviour of the erroneous CAN Controller

• Erroneously transmitted messages which delay all queued messages including the erro-
neous message due to retransmission and transmission of a part of the erroneous message

Furthermore, there are many techniques available to determine the time transmission be-
haviour of CAN. In Subsection 2.1 a hardware platform was developed to test CAN by explicit
test cases so that messages are triggered in time or by events so that message transmissions are
explicitly interrupted, etc. The advantages of such a test method are the following: 1) CAN
will be tested in real-time and 2) test cases can be explicitly forced. The disadvantage of such
a hardware platform is that test cases have to be defined. Therefore only defined test cases are
considered and unintended behaviour will not be unaccounted for.

In Subsection 2.2 CAN networks were emulated via simulation software. The advantages
of such methods are a fast implementation of a CAN network and that the simulation time
advances faster than in real-time. The disadvantages of such methods are that its hard to model
the complete CAN standard and that the test method is not fully adequate to a real CAN network.

There are formal methods available which are mainly base on a work from Tindell et
al.[TBW95] to determine the longest possible transmission time (worst-case transmission time)
for each CAN message (for each identifier). The worst-case transmission time is an important
property for applications which must finish within a certain time interval[Kop97]. Such a method
is exemplarily presented in Subsection 2.3. The advantages of such formal methods are that
the transmission time behaviour is obtained for the assumed worst-case and that any result is
obtained rapidly. The disadvantage of such methods is that the worst-case transmission time
appears with a very low possibility. Such a possibility of a worst-case transmission time can

3

be lower than a probability of a hardware failure[ZNGSV09]. Furthermore, it is not possible to
fully design the CAN system properties. Therefore many decisions have to be made that will
be detrimental or will not meet the bus properties due to of unintended behaviour. In addition,
such methods can be determined with more optimistic assumptions that are non-trivial to design.
One example of such an approach is presented in Subsection 2.3. Such methods produce more
optimistic particular assumptions but may lead to the global misses of deadlines.

There exists also stochastic methods to simulate the transmission time behaviour of CAN
which is exemplarily presented in Subsection 2.4. The advantage of such methods is that the
CAN network will be simulated by random functions and therefore the average transmission
time behaviour will be correctly determined. Furthermore, the simulation clock advances faster
than in real-time. The disadvantage of such methods is that the longest transmission times and
especially the worst-case transmission times are hard to detect. This is due to particular system
components such as processes that trigger messages that are not totally independent from each
other.

In general, the state-of-the-art works focus on an artificial approach so that CAN is not
evaluated under runtime conditions. Therefore several decisions have to be made for the overall
CAN network. Furthermore, A CAN system can be evaluated by simulating particular processes
which trigger particular messages at the end of their simulated execution time. In addition, mes-
sages can be used to transfer time points which are obtained at the simulated creation time of
the message. Moreover, a time point can be determined at the reception of such a message and
thus the transmission time can be determined by calculating the difference between the creation
time point and the reception time point. Furthermore, processors can be used to simulate the
process execution times. Therefore a system consisting of several processors (a CAN Controller
is attached to each processor) can be used to simulate a CAN network under runtime conditions.
Therefore each processor simulates defined processes and each process is periodically executed.
Furthermore, the execution times of a particular process can vary in time. Therefore the system
properties vary and thus the transmission times of messages will vary. Furthermore, such a sys-
tem can be evaluated for a defined period to calculate the average transmission times, variances
of transmission times, the longest transmission time, etc. In addition, a particular run that was
triggered in order to determine statistical data can be repeated to obtain more statistical data.
Therefore repetitive runs that were undertaken in order to determine statistical data have a high
significance for the description of the transmission time behaviour of CAN messages.

In a CAN bus system every message is broadcast to all subscribers except the sender (mul-
ticast reception). However there are abnormalities that cause an inconsistent reception of CAN
messages at the receivers[PV03]. Therefore in such a test system the number of sent and re-
ceived messages are determined at each subscriber. Furthermore, there are also proprietary star
architectures available. A star architecture indirectly interconnects subscribers for message ex-
change. These prototypes (called CAN star) can be evaluated by the presented technique for
their performance. Furthermore, it can also be checked if all subscribers except the sender re-
ceive all emitted messages in CAN star network.

This diploma thesis is organized into following chapters:

4 Chapter 1. Introduction

• Chapter 2: This chapter gives an exemplary overview of the state-of-the-art CAN perfor-
mance evaluation techniques.

• Chapter 3: It describes the CAN standard as well as two proprietary CAN star architec-
tures. Furthermore, the basic concepts for the prototype implementation to evaluate the
performance of CAN are provided.

• Chapter 4: This chapter describes the architecture of the system structure and the experi-
mental process of tests for a CAN based communication system evaluation.

• Chapter 5: Herein the structure of the prototype and the overall test system is described.
Furthermore, the toolchains to create the prototype and the configuration data are ex-
plained. In addition, the data preparation to show the transmission time behaviour is
described.

• Chapter 6: This chapter presents the results.

• Chapter 7: In this section the results and the properties of the prototype are discussed.

CHAPTER 2
Related Work

This chapter gives an overview of the state-of-the-art CAN performance evaluation techniques.
Note that the CAN standard is explicit described in Subsection 3.1.

2.1 Multilevel Inspection of Multiple CAN-Networks

Novak[Nov09] presents a framework which consists of hardware blocks that evaluate transmis-
sion times, the behaviour in error cases, etc. This framework consists of a set of basic blocks
that form a test system for multiple CAN networks. These basic blocks are implemented by
reusable units of logic (Intellectual Property (IP) cores - see Subsection 3.4) in a reconfigurable
integrated circuit called Field-Programmable Gate Array (FPGA). Each IP core of such a test
system accesses and/or monitors CAN buses at the so called Open System Interconnection (OSI)
layers 1 and 2. The OSI model divides the communication design into 7 layers such that each
layer fulfills a well-defined part[fS96].

Layer 1 interacts with a physical information carrier. Moreover, a layer i is related to

Figure 2.1: OSI model

layer i+1 but not layer 7 that provides a communication
interface for an application such as a monitor function.
All layers are stacked according to their numbers such
that each result from a layer between layer 1 and 7 is
processed by a related layer and forwarded. Therefore
it is possible to replace each layer without modifying
the remaining layers. Note that only layer 1 and 2 are
required for the formation of a minimal communica-
tion architecture. Also note that layers may be merged.

In Figure 2.1 the principle layout of the OSI model
is shown where two applications at different locations
are connected by a physical carrier.

Layer 1 prepares bit sequences for the specific
properties of a physical carrier (e.g. a physical carrier

5

6 Chapter 2. Related Work

can be a copper line) and forwards them to the physi-
cal carrier. Layer 1 also receives bit sequences that are emitted at different locations and inverts
the preparation for the physical carrier. Layer 2 stacks information (e.g. a message) into a frame
(defined as a delimited sequence of sequential emitted bits) and addresses remote stations that
are connected to the same physical carrier. In addition, layer 2 also transforms received frames
into information suited for layer 3 (e.g. a message). Layer 2 also assures the correct transmission
of these frames. The description of the other layers are not defined due to the lack of importance
in this diploma thesis. The OSI model is standardized by the International Organization for
Standardization (ISO).

The IP cores are related to a global 32-bit time base with a resolution of 1 µs that establishes
a global time view as well as compares and captures registers to trigger events. A comparison
register stores a number that is constantly compared to the global time base. If there is a match
an event will be triggered. Furthermore, the time points of asynchronous events from external
buses are stored in capture registers. There are three IP cores (also called IP function) that are
used as follows:

• A CAN Controller IP Function that provides the standard functions of a CAN Controller
and acts on OSI layer 2. In addition, it provides a transmission queue which stores ordered
message objects (a message object is the body of a message i.e. id and payload) for
transmission. In addition, each message from such a transmission queue is emitted upon
an external request. This request is either hardware-triggered or by the transmission queue
and can be described as follows: Each message located in the transmission queue is related
to an absolute time point and triggers for sending if a compare register matches the time
correlated to the message. Furthermore, received messages are related to their reception
times. Upon receipt of a message an output signal is triggered. Moreover, it is possible to
force the error state (the error state determines the communication privileges) of the CAN
Controller.

• A CAN Trigger IP Function analyzes the traffic at the physical carrier (therefore it acts
at OSI layer 1) to provide synchronization. In order to synchronize it is not adequate to
detect an already received message due to the need of acting while a message (frame) is
in transmission (e.g. to jam a frame that is in transmission). This unit analyzes the bit
sequence of a frame and detects patterns within a frame. A detected bit sequence leads to
the generation of a trigger signal.

• A CAN Generator IP Function emits predefined frames in such way that the emission of
each frame is independent of the requirements of the CAN standard at OSI layer 1 (e.g.
it is possible to transmit a complete frame that omitted the arbitration process). Frames
are emitted by the description of program sequences. A program sequence defines the
time point of the emission of a CAN frame, sequences of frames, build up of the events,
etc. Furthermore, it is possible to vary the length of each bit within a frame that is in
transmission.

In Figure 2.2 the test system architecture is shown. Furthermore, a test system can observe

2.2. Emulation of CAN Networks 7

Figure 2.2: System architecture of Multilevel Inspection[Nov09]

1 up to n CAN networks. Each CAN network is connected to at least one CAN Controller IP
Function, one CAN Trigger IP Function and one CAN Generator IP Function. All IP cores are
interconnected and therefore it is possible that e.g. the CAN Trigger IP Function detects a bit
sequence of a CAN frame that is in transmission and triggers the CAN Generator IP Function
to jam such a transmission. Furthermore, all IP cores are connected to a host interface that is
accessed by an external host. An external host manages the configuration of the IP cores via the
host interface.

2.2 Emulation of CAN Networks

Bago et al.[BMP07] evaluate simulation tools which emulate CAN networks for analysis of the
utilization of the CAN bus, error detection (transmissions can be erroneous which is traced by
the error management), etc. These simulation tools rely on the following parameters:

• Matrix Laboratory (MATLAB) is a mathematical software that can execute matrix opera-
tions, draw functions and data, implement algorithms, etc[HC10]. Algorithms are defined
by textual description (programming language) placed in a so called m-file and/or higher
programming languages such as C. Furthermore, MATLAB can also be extended by pack-
ages that provide symbolic computation to provide for example graphical multi-domain
simulation.

• Simulink is an extension package for MATLAB that is an environment for multi-domain
simulation as well as Model-Based Design for dynamic and embedded systems[Mat].

8 Chapter 2. Related Work

• Colored Petri Nets consist of place nodes (places), transition nodes (transitions) and di-
rected arcs that connect places to transitions and therefore a Petri net is a graph[JKW07].
The places represent the state of the graph (system) and can be marked by one or more
so called tokens. Each token has a data value (token color). Tokens at a certain place are
allowed to have a set of token colors (color set of a place). Tokens move from places to
connected transitions at other places. This is determined by arcs that connect the nodes.
Input arcs of a transition define which token colors are required for a relocation whereas
output arcs of a transition describe the modification of the token colors. Therefore a Col-
ored Petri Net characterizes a finite automaton such as a communication system.

TrueTime

TrueTime is a MATLAB/Simulink-based simulator for real-time control systems. TrueTime ker-
nels model nodes that send and/or receive messages. In addition, the behaviour of each node is
described by a code function. A code function is written in C++ or a MATLAB m-file and split
into segments that are executed sequentially. Each segment consists of an execution code and an
execution time that simulates the time consumption of the segment to compute (e.g. a segment
simulates the emission of a message and conserves an execution time of 200 µs. Therefore after
200 µs the message is sent and the next code segment starts). Furthermore, TrueTime Network
models a network and TrueTime kernels are connected to a TrueTime Network that is within the
Simulink environment.

The following CAN bus properties were simulated by TrueTime: prioritization of messages,
configuration flexibility (e.g. how easy can a new message be integrated in the system), mul-
timaster and error detection. The test system consists of a single TrueTime kernel connected
to a single TrueTime network. There exists sets of messages. Each set is defined by a number
of messages with the same send period. Hence there is a code segment for every set and the
messages within a set are ordered according to their priorities. In order to add a new node a
new TrueTime kernel has to be instanced and a corresponding code function has to be written.
Each TrueTime kernel has the same rights for bus access (multimaster). Errors can be simulated
by a TrueTime kernel that owns the highest priority message (the highest priority message will
simulate errors that cause delays).

TrueTime outputs the busy state of the bus relative to the simulation time and therefore the
utilization of the bus can be calculated.

CPN Tools

CPN Tools simulate and analyze Colored Petri Nets (CPN). The colors (properties) of a CPN
are described by a textual description called CPN Markup Language. One property of such
textual description is time. Each time property prevents one or even more transitions until the
simulation time reaches a specific time point. Each transition can be used to e.g. create a single
periodic message or to model transmission times.

2.3. Worst-Case Response Time Analysis 9

The following CAN bus properties were simulated by CPN Tools: prioritization of messages,
configuration flexibility, multimaster, error detection and automatic retransmission of erroneous
transmitted messages as soon as the bus is idle. The simulation consists of a CPN that emulates
the bus architecture and that connects via single places to other subnets that represent nodes.
Furthermore, each subnetwork that represents a node links to an additional subnet that simu-
lates the creation of messages. The bus simulation CPN models the prioritization of messages
at the bus level. In addition, it also forces the prioritization of messages at the subnets and
simulates the prioritization of messages at nodes. The bus simulation CPN has a single place
where it stores received messages in conjunction with the reception times (communication log)
and fulfills the multimaster property. In addition, errors are simulated by a place which blocks
the message transition with a defined probability. Furthermore, in case of an error the respective
message will be retransmitted. In order to add a new node a new subnet which represents the
node as well as the subnet which composes the message set of the node have to be generated and
attached to the bus simulation CPN.

From the above mentioned communication log it is possible to calculate the simulation time,
message size and utilization of the CAN bus.

2.3 Worst-Case Response Time Analysis

Bit stuffing avoids the occurrence of five consecutive bits with same polarity by inserting bits
with opposite polarity (stuff bit). Furthermore, bit stuffing is a CAN inherent system feature.
Nolte et al.[NHN03] use a worst-case response time analysis and extend it with a probability
distribution for stuff bits which determines the worst-case response time of CAN messages.

Traditional Schedulability Analysis of CAN Frames

The maximum send frequencies of all messages in a network are assumed to determine the
worst-case response time for message transmissions. The recurring generation of a particular
message can be seen as a traffic stream and therefore the generation of all particular messages is
defined as a set S of streams. In analogy to CPU scheduling the set S corresponds to the set of
CPU tasks and each Si ∈ S is a triple < Pi, Ti, Ci >, where Pi is the priority (defined by the
message identifier), Ti is the send period and Ci the worst-case transmission time of the frame
of a message on the bus of stream Si. As the minimum variation in queuing time relative to Ti
is 0 the worst-case latency Ri for a message i of Si can be defined by the following criteria:

Ri = Ji + qi + Ci (2.1)

where Ji is the maximum variation in the period Ti (relative to the start of Ti) and qi represents
the effective queuing time. The effective queuing time qi is defined as follows:

qni = Bi +
∑

j∈hp(i)

⌈
qn−1
i + Jj + τbit

Tj

⌉
(Cj + 3τbit) (2.2)

10 Chapter 2. Related Work

• Bi is the worst-case transmission time of all CAN frames that have a lower priority (in
CAN the priority of a frame that transports a message is determined by the priority of the
message) than a frame which was sent on Si. A frame which is in transmission is not
interruptible. This implies that a frame that is in a transmission queue has to wait until the
bus is idle.

• hp(i) is the set of streams with a higher priority than Si

• τbit is the bit time (duration of a single transmitted bit) on the bus that transmits a bit of a
frame. The bit time has to be considered due to the different start times of nodes located
at different locations reasoned by the propagation delay. The propagation delay is the
required time to propagate a signal.

• 3τbit represents the Intermission (also called Intermission space) defined as the minimum
time between frames sent on a bus to transmit messages.

Note that equation 2.2 is a recursion where (n + 1)th value is calculated by the nth value
and q0

i is 0.

Equation 2.2 and 2.1 can be rewritten as:

Rni = Ji +Bi + Ci +
∑

j∈hp(i)

Ij(R
n−1
i − Ji − Ci)(Cj + 3τbit) (2.3)

Ij(t) is the worst-case number of periodic message creations for a messages j in a time interval
of t:

Ij(t) =

⌈
t+ Jj + τbit

Tj

⌉
(2.4)

Jj is the worst-case creation jitter (difference between shortest and longest delay) in the message
period Tj .

Schedulability Analysis of CAN Frames with a Probability Distributions for Stuff
Bits

The worst-case transmission time Ci is based on the transmission speed of a bit at the bus, data
size, the identifier bits (CAN support two identifier formats with different lengths), overhead bits
and stuff bits. The number of stuff bits in the traditional schedulability analysis is assumed for
the worst-case and depends on the data transported by the frame in bytes (0 to 8 bytes, denoted
as Li). In addition, it also depends on the identifier format and a fixed number of overhead
bits which are adapted for bit stuffing (34 for standard frame format and 54 for extended frame
format, denoted as g). As 10 bits are not considered for bit stuffing and τbit is the worst-case
time for bit transport, the resulting worst-case time for a CAN frame transmission according to
the traditional approach can be formulated as follows:

Ci = (8Li + g + 10 +

⌊
g + 8Li − 1

4

⌋
)τbit (2.5)

2.3. Worst-Case Response Time Analysis 11

By using a probability distribution for stuff bits instead of the worst-case number a more ac-
curate probability-based response time is yielded. The distribution of stuff bits can be denoted as
follows: Υ that is a set of pairs defined as (x, P (x) ∈ Υ where x is the number of stuff bits and
P (x) is the probability of x stuff bits. Furthermore, if multiple frames are sent sequentially and
someone assumes that the frames are independent of each other, the resulting joint distribution∏
n

Υ is the combination of n distributions of stuff bits (
∏
n

Υ = Υ×Υ× ...×Υ︸ ︷︷ ︸
n

). Moreover,
−∏
n

is the joint distribution of frames with the same length. The calculation of the joint distribution
results in the combination of all probabilities e.g. (a, P (a)) ∗ (b, P (b)) = (a+ b, P (a) ∗ P (b))
where a, b ∈ {0, 1, ...}.

Therefore the transmission time of a single frame on the bus can be expressed as follows:

Ci(p) = ci + ΥLi(p)τbit (2.6)

ΥLi is the distribution of stuff bits in the message and ci the transmission time of the frame
without stuff bits:

ci = (8Li + g + 10)τbit (2.7)

Hence the worst-case blocking time by a single frame i is as follows:

Bi(p) = bi + Υ max
k∈lp(i)

(Lk)(p)τbit (2.8)

Υ max
k∈lp(i)

(Lk) is the distribution of stuff bits of the blocking frame i and bi is the worst-case

transmission time of the frame i without stuff bits i.e. the longest frame with a priority lower
than i:

bi = max
k∈lp(i)

(ck) + 3τbit (2.9)

Thus the response time of a message from the creation time until reception composes as
follows:

Rni (p) = Ji + bi + ci +
∑

j∈hp(i)

Ij(R
n−1
i (p)− Ji − ci)(cj + 3τbit) + Ψi(p)τbit (2.10)

The distribution of the total number of stuff bits Ψi is defined as follows:

Ψi = Υ max
k∈lp(i)

(Lk) ×ΥLi ×
∏

j∈hp(i)

−∏
Ij(Ri(p)−Ji−ci

ΥLi (2.11)

Υ max
k∈lp(i)

(Lk) is the distribution of stuff bits of the longest lower priority frame.

ΥLi is the distribution of stuff bits of the frame of the analyzed message.∏
j∈hp(i)

−∏
Ij(Ri(p)−Ji−ci

ΥLi is the distribution of stuff bits of all messages which have a higher

priority than the analyzed message.

12 Chapter 2. Related Work

2.4 Stochastic Analysis

Zeng et al.[ZNGSV09] introduce a stochastic method that determines response times within a
distributed system that consists of locally triggered ECUs that communicate with each other us-
ing CAN messages. Furthermore, each ECU uses processes (application tasks) to solve defined
problems. Messages and application tasks (tasks for short) are mapped to a Directed Acyclic
Graph (DAG), where vertexes correspond to tasks and messages and edges describe signals be-
tween vertexes. Furthermore, the computations in the DAG periodically proceed in discrete time
steps. A time step simulates the behavior of tasks and message transmissions for a time quan-
tum of a real system. Thus a sequence of computations characterizes message transmissions and
task executions. Hence this stochastic method determines end-to-end transmission times in a
distributed system with clock drifts (the ECUs are not synchronized) and offsets (the ECUs do
not start simultaneously).

Basic Definitions

Each ECU has a local clock that triggers computation steps in such a way that tasks are pe-
riodically activated, executed and scheduled by their priority. When activated a task reads its
input signals and when completed it writes its results into shared variables. A task τi can be
described by a quintuple (Υi, Ti, Oi, Ei, Pi), where Υi is the ECU on that τi executes, Ti its
period, Oi its initial phase, Ei, its execution time and Pi its priority. Each periodic activation
of a task is an instance (job) and the jth instance of τi is denoted as Γi,j with an arrival time
Ai,j = Oi + (j − 1)Ti which is the time Γi,j is ready for execution.

A middleware acts as the interface between tasks and the CAN bus and supports a special
task for this purpose. This task, called transmit task (TxTask), assembles messages periodically
from the shared variables and pushes them into a prioritized message queue that is ordered by
the id of each message. Messages in a prioritized message queue are transmitted to other ECUs.
A message mi can be described by a sextuple (Υi, ΥSRC

i , Ti, Oi, Ei, Pi), where Υi is the CAN
bus resource used to transmitmi, ΥSRC

i the emitting ECU ofmi, Ti its send period,Oi its initial
phase and Ei its transmission time. Pi is the CAN id of the messagemi and therefore its priority.
The jth instance (job) ofmi is denoted asMi,j with a queuing timeQi,j = Oi+(j−1)Ti which
is the time Mi,j is ready for transmission.

Ei is a discrete random variable with a distribution fEi that defines the probability for each
value within an interval [Emini , Emaxi]. This probability distribution is called probability mass
function (pmf). In a pmf each time value is a multiple of the granularity τ that represents a
time step in a discrete-time model and simulates the computations and communications in a
real system. Such computations and communications run on a system resource Υk where the
hyperperiod Hk is the least common multiple (lcm) of periods of all objects executed on Υk.
Furthermore, the system resources (ECUs) have independent clocks and therefore the clock dif-
ference OΥk,Υl

describes the clock difference between ECUs Υk and Υl.

A DAG consists of vertexes V and edges E. V represents the tasks and messages by a set
of objects {o1, ..., on} and an edge ei ∈ E connects two vertexes in the DAG that denotes a data

2.4. Stochastic Analysis 13

transfer. Furthermore, a path Πi,j is a sequence of objects such that there is an edge between any
two consecutive objects. Furthermore, the end-to-end latency Li,j of path Πi,j is the difference
between the activation of an instance at oi and the results produced at oj .

Task Response Time

The response time of a job depends on the jobs that are queued before. Therefore the P -level
backlog at time t WP

t is a pmf and defined as the sum of the remaining execution times of all
jobs that have a higher priority than P and are not completed until t. The P -level backlog at the
beginning of a hyperperiod GPk = WP

(k−1)H is a sequence of random variables {GP1 , ...GPk , ...}
and determined by a Markov chain. A Markov chain M is a triple (S, P, F) where S is a set
of states, P is a set of transition function that links all states in S by probabilities such that∑
s′∈S

P (s, s′) = 1 and F is the set of final states in S[AHM05].

After the calculation of GP , the job releases in order of its release times and modifies iter-
atively the backlog within the hyperperiod. Right after the release of a job convolution of the

backlog pmf with the job execution time pmf (WP
t ? fEi =

k∑
1
WP
t [m]Ei[n−m]) obtains the re-

maining P -level backlog pmf. Shrinking advances the time from t to t′ (time instant right before
the next release of a task) by shifting the backlog pmf by t′ − t units to the left and by summing
up all probabilities defined for non-positive values at the origin. In Figure 2.3 an example for
convolution and shrinking is shown.

Figure 2.3: Convolution (WP
t ? fEi) and shrinking ofWP

t

The convolution of the backlog pmf with the job response time pmf at the release time of the
job yields to the pmf of the job response time. The response time of a job prolongates if a higher
priority job arrives during its execution time. Hence the job response time pmf of a job Γi,j is

14 Chapter 2. Related Work

updated by a split up at the release time of the higher priority job. The convolution of the right
hand side with the execution time pmf of the higher priority job generates the actual response
time pmf. This is repeated iteratively for all higher priority jobs released after Γi,j .

Message Response Times

The P -level backlog WP
t is a pmf and defined as the sum of all remaining transmission times at

time t from queued message instances that are higher in priority than the analyzed one. Further-
more, the pmf of the message instance response time in the approximate system results from its
transmission time and the stationary distribution of the backlog at the beginning of the hyperpe-
riod that is adapted for each release of a message instance. In addition, a possible uninterrupted
transmission of lower priority job is considered to achieve the pmf of the total transmission time.

Characteristic Interference Message

The interference of messages from remote stations to an inspected message are summarized by
a characteristic interference message (characteristic message for short) for each remote station.
Therefore the characteristic message represents the load from the remote ECUs. The character-
istic message’s period Tc is the greatest common divisor (gcd) of the periods of messages at a
particular remote ECU that are higher in priority than the analyzed message. In order to obtain
the pmf of the characteristic message the following example can be considered. Someone may
assume three messages at a remote ECU that have a period that correlates to the transmission
time denoted as (period, transmission time): (60,2),(10,1),(20,1). Therefore Tc is 10 and hence
there are 6 time instants. At the beginning all messages are queued and so the transmission time
is 4 and the transmission times of the following time instants are 1, 2, 1, 2, 1. Thus from a remote
message mi point of view the probability to obtain the interference of 4 transmission time units
is 1/6 because there is only on possibility in 6 time instances to obtain this time inference, for 2
transmission time units it is 1/3 and for 1 transmission time units it is 1/2. This can be denoted
as P(1) = 1/2,P(2) = 1/3,P(4) = 1/6. This example is explained in Figure 2.4. Furthermore,

Figure 2.4: Calculation of a PMF for a characteristic message

the characteristic message has a fixed initial offset of −Tc/2 and in each hyperperiod a random
release jitter in [0, Tc) denoted as Jc. Both are caused by OΥk,Υl

. The higher priority mes-

2.4. Stochastic Analysis 15

sages that are located at the same ECU as the analyzed message mi are not summarized by a
characteristic message since they have known queuing instants.

Stationary Backlog Within the Hyperperiod

The backlog WP
t at the start of the hyperperiod consists of local higher priority messages and

characteristic messages. The backlog is adapted in time steps τ . The computation of WP
t at

time t from t − τ requires an intermediate step arbitrarily close to t and at this intermediate
step shrinking advances the time. Furthermore, the possible activation of message instances is
determined and the probability of a single activation can be easily computed by 1/nt where nt
is the number of steps from t to the latest possible queuing time. If no new message instance
triggers the backlog remains the same and so the intermediate time step transforms to t without
modification. Otherwise the transmission time Ep extends the backlog and so the intermediate
time step transforms to t.

Initial Blocking Time

A message that is in transmission can not be interrupted. Therefore even a low priority message
can block a message instance Mi,j . Mi,j has a blocking delay Bi,j (also denoted as b) and an
instance of a lower priority message mk,l causes a blocking time length b > 0 if mk,l has a
transmission time Ek > b and its transmission starts exactly at Ek − b units before the queuing
instant Mi,j . The probability that such an instance transmission starts exactly at Ek − b is τ/Tk.
Furthermore, by adding up all probabilities of all messages that have a lower priority than Mi,j

(lp(Pi) denotes the set of all messages with priority lower than mi) the following formula can
be assumed:

P(Bi,j = b) =
∑

mk∈lp(Pi)

P(Ek > b)
Tk
τ

(2.12)

The backlog time is added by convolution to the backlog at the message queuing time.

Message Response Time Calculation

The earliest possible start time for a message instance mi,j is at its queuing time (arrival time)
tq. Furthermore, the backlog computes as described above. An analyzed message instance is
queued as long as the backlog at t is not equal to zero. Someone may assume that it takes k steps
to obtain a backlog at t of zero. Hence the total queuing time tk for a message instance can be
expressed as follows:

tk = tq + kτ (2.13)

The total transmission time of a message instance is the sum of the transmission time Ei and the
queuing time tk.

Stochastic Analysis of End-To-End Latency

In Figure 2.5 an example of an end-to-end delay (Lo1,o7) is shown. Someone may assume that

16 Chapter 2. Related Work

Figure 2.5: End-to-end latency of a path Πo1,o7[ZNGSV09]

an external event (modeled as vertex o1) and a task τi (modeled as vertex o2) that reads the
data is generated by this event. Then the time between the occurrence of this event and the
activation of the corresponding task that reads the data is called sampling delay. Furthermore, τi
converts the data from this event to a result and stores it at the middleware. The corresponding
task response time is the difference between activation and response as explained in Subsection
2.4. The middleware provides this result to a task τj (modeled as vertex o3) that generates data
from the result τi and stores them at the middleware. The time between activation of a task
that produces a result for a following task and the activation of the following task that reads the
result is called local delay. Note that not all results from task instances are part of the end-to-end
propagation. The outcome from a job of a task τi can be overwritten by the next job of τi before
recognition at a vertex that follows τi. An overwritten value is not propagated and so the delay
is not considered for the end-to-end latency.

The TxTask (denoted as o4) of the middleware assembles the result from τj to a message
object mi. The transmission time of this message object is described in Subsection 2.4. Fur-
thermore, a receive task τr (denoted as o5) obtains mi,j and τr handles mi,j via the middleware
to task τk (denoted as as o6). The time difference between the activation of the TxTask which
produced a message instance mi,j and the activation of the receive task that reads mi,j is called
remote delay. Furthermore, τk computes a result and a task τl (denoted as 07) receives it via the
middleware. The task τl stimulates an activator. The time difference between activation by an
(external) event and completion (stimulation of an activator) is called response time. The path
Πo1,o7 determines the end-to-end latency Lo1,o7 by summing up all latencies.

CHAPTER 3
Basic Concepts

This chapter provides the basic concepts for the implementation of the prototype and also de-
scribes the CAN standard as well as CAN star implementations.

3.1 Controller Area Network

This subsection describes the CAN Specification 2.0 which consists of Part A that uses a so
called standard frame format and Part B that uses the standard and so called extended frame
format[Rob91]. In this diploma thesis we will discuss only the CAN standard for Part B.

Data Link Layer
LLC
Addressing of Units

Overload Notification

Recovery Management

MAC
Data Encapsulation/Decapsulation

Frame Coding

Medium Access Management

Error Detection/Signalling

Physical Layer
Bit Encoding/Decoding

Bit Timing

Synchronization

CAN Transceiver

Figure 3.1: CAN Layers

The subscribers in a CAN based communication
system interact by frames to transport messages and
each subscriber signals a frame in bits. Each bit that
is sent to the bus is characterized by a low state (called
recessive bit that represents a logical ’1’) or a high state
(called dominant bit that represents a logical ’0’). Fur-
thermore, a dominant bit signalled at the bus is always
read as ’0’ by all subscribers in the system even if a
recessive bit is emitted simultaneously. Furthermore,
each message that is ready for transmission is trans-
formed into a frame and the transmission of a frame
starts if the bus is not in use (bus idle denotes an un-
occupied bus). Each subscriber starts the transmission
of a frame by emitting a single dominant bit to indi-
cate that the bus is in use and continues by emitting the
priority of the frame that is the unique id of the corre-
sponding message. Moreover, each emitting subscriber
also determines the value at the bus for each bit that is
in transmission. The transmission of the priority of the

17

18 Chapter 3. Basic Concepts

frame (a priority is higher if its number is lower) must
be read back as emitted. Otherwise the corresponding
subscriber may stops the transmission of the frame (an other subscriber sends a frame with a
higher priority). The prioritization process that occurs at the emission to ensure the exclusive
emission of a single frame is called arbitration. Furthermore, the access technique multiple sub-
scribers apply to check for an idle bus followed by arbitration is called Carrier Sense Multiple
Access/Collision Resolution (CSMA/CR).

Figure 3.1 shows the structure of the CAN standard by its layers. Furthermore, the CAN
standard by Bosch defines parts of the physical layer (layer 1) as well as the Data Link Layer
(DLL) (layer 2) of the OSI reference model. The DLL consists of Medium Access Control
(MAC) and the Logical Link Control (LLC). The LLC provides the data transfer as well as
remote data request to a node. Each node performs computations and communicates via CAN
to other nodes. Moreover, the LLC also manages overload notifications (see Subsection 3.1)
and recovery (see Subsection 3.1). Furthermore, the LLC also filters received messages and
therefore the LLC is responsible for the addressing of units (see Subsection 3.1).

The MAC provides the data encapsulation/decapsulation (see Subsection 3.1), the frame
coding (see Subsection 3.1), medium access management (see Subsection 3.1) and the error
detection/signalling (see Subsection 3.1).

The sublayer Physical Signalling of the physical layer provides the bit encoding/decoding,
bit timing and synchronization (see Subsection 3.1). The above presented services (DLL and
Physical Layer) are provided by a independent unit called CAN Controller to a node.

CAN is defined by ISO 11898[fS03]. The ISO 11898 completely specifies the DLL and
the Physical Layer. The Physical Layer consists of the Physical Signalling sublayer, Physical
Medium Attachment (PMA) and the Medium Dependent Interface (MDI). The services of the
PMA and MDI are provided by a unit called CAN Transceiver. The CAN Transceivers are inter-
connected by wires and each CAN Transceiver is attached to a CAN Controller. The Subsection
3.1 describes the features of a CAN Transceiver.

The application field of CAN is the car industry but it is also often used in other areas like
medical devices, non-industrial machines, marine electronics, factory automation,
etc.[OAFAA06]. For example, a car consists of several ECUs such as engine control units,
sensors, anti-skid-systems, etc. and such devices are connected via CAN.

Basic Definitions

This Subsection provides some basic definitions for the CAN standard.

Bus and Bus Level - Recessive/ Dominant

A bus consists of 2 wires: CANH and CANL[Ric02] and these two lines are driven by a CAN
Transceiver. Each subscriber that is part of the CAN network is connected to CANH and CANL
via a CAN Transceiver. Each subscriber consists of the following parts:

3.1. Controller Area Network 19

• A node that performs algorithm described by an user.

• A CAN Controller that provide the communication services to the node. The CAN Con-
troller manages the Data Link Layer as well as the Physical Layer.

Figure 3.2 shows the CAN bus with 3 attached subscribers (the two 120 Ω resistors are ter-
minating resistors and their purpose is described in Subsection 3.1).

Figure 3.2: CAN Bus with 3 attached subscribers

CANH and CANL are driven by the CAN Transceivers to obtain two different bus levels.
The bus level represents the actual physical state of the bus and the differential signalling of
CANH and CANL determine the physical state:

• Dominant state (logic ’0’) if a threshold voltage between CANH and CANL exceeds a
defined maximum level. At a dominant state the positive supply voltage drives CANH
and the negative supply voltage drives CANL.

• Recessive state (logic ’1’) if a threshold voltage between CANH and CANL doesn’t ex-
ceed a defined minimum level. At a recessive state CANH and CANL are driven over a
pull-down resistor to ground.

This technique yields to a wired AND-conjunction and so a dominant bus level overwrites a
recessive bus level. Furthermore, an idle bus has a permanent recessive state.

Bit Times and Bit Rates

A bit propagated at the bus is a dominant or recessive state kept for a defined time interval at the
transmission of a frame and the duration of that time interval (called bit time) determines the bit
rate. The bit rate is the number of bits per seconds transmitted and so the relationship between
bit time (bit_time) and bit rate (bit_rate) is:

bit_time = 1/bit_rate (3.1)

20 Chapter 3. Basic Concepts

The bit rate of CAN is up to 1Mbit/s and at a bit rate of e.g. 1Mbit/s the duration of a single
bit is 1 µs.

Messages

A message transports information in a fixed format of different but limited length. A message
consists of an identifier (id) to definitely tag a message as well as defining its priority (lower
number has higher priority) and a payload to transport user data. In CAN there are two mes-
sages: Standard messages (to be compatible with Part A controllers) that have an id length of 11
bits and extended messages that have an id length of 29 bits. Both message formats provide a
payload length of 0 to 8 bytes.

Each node exchanges information by messages and therefore a node access the CAN Con-
troller and overhands the information to be transported in a message format. Vice versa received
messages can be read from a node by accessing the corresponding CAN Controller.

Transmitter and Receiver

A transmitter is a unit that currently emits a message. A receiver is a unit that is not a transmitter
if the corresponding bus is not idle. Note that each Transmitter also listens to the bus for e.g.
arbitration (see Subsection 3.1).

Frames

CAN provides the following frames: Error frames (see Subsection 3.1), overload frames (see
Subsection 3.1), data frames and remote frames (see Subsection 3.1). Data frames transport
messages and remote frames request messages. Data and remote frames refers in Part B to a
standard frame format and an extended frame format and therefore there exists standard data
frames, standard remote frames, extended data frames and extended remote frames. Further-
more, in Part A there are only standard frame formats and CAN Controllers specified by Part B
are compatible to Part A CAN Controllers and vice versa as long as only standard identifiers are
used.

Data Frames, Remote Frames and Arbitration

Data frames serve as carriers for messages to exchange information between nodes. Further-
more, remote frames are used to request data frames. Each data/remote frame consists of fields
and bits and a single transmitted bit of a frame is propagated for a single bit time at the bus.
Figure 3.3 shows the extended and standard frame format of a data/remote frame (the bits are
emitted from left to right).

Start of Frame

The transmission of a frame starts if the bus is idle and as the bus is idle the access by a subscriber
to transmit a data/remote frame is indicated by the so called Start of Frame (SOF). The SOF

3.1. Controller Area Network 21

Figure 3.3: Data/Remote Frame

transforms the recessive state of the idle bus into a dominant state for a single bit time and
therefore the bus is not idle any more.

Arbitration Field and Arbitration

After the SOF the emission of the Arbitration Field (denoted as Extended Identifier Arbitration
Field/Standard Identifier Arbitration Field) continues. The Arbitration Field consists of follow-
ing parts:

• Standard frames of Identifier A (the identifier of a standard message), the Remote Trans-
mission Request Bit (RTR) and Identifier Extension Bit (IDE). The IDE is merged with
the Reserved Bit 1 (RE1).

• Extended messages of Identifier A, the Substitute Remote Request Bit (SRR), IDE, Iden-
tifier B (the identifier of an extended identifier is split into Identifier A and Identifier B)
and the RTR.

The IDE denotes the transport of a standard frame (dominant) or an extended frame (reces-
sive). An extended frame has the advantage of possessing more identifiers whereas standard
frames are compatible to communication devices relayed on Part A and the advantage of having
faster transmission due to transport of less bits.

The difference between a remote frame and a data frame is the RTR. If it is set dominant the
frame is a data frame and if it is set recessive it is a remote frame. Remote frames are used to
request data frames of the same identifier. Moreover, the Substitute Remote Request Bit (SRR)
guarantees that the IDE is always a single bit time after Identifier A.

The forwarding of a data/remote frame interrupts if an emitted recessive bit at the Arbitration
Field is read back as dominant bit. This technique, called arbitration, prevents the simultaneous

22 Chapter 3. Basic Concepts

emission of data/remote frames. Arbitration proceeds bitwise and therefore an emission stops
directly at the detection of a lost arbitration. Thus an identifier with a lower number has a higher
priority

Control Field

After the emission of the Arbitration Field a so called Control Field follows. The Control Field
consists of two reserved bits (Reserved Bit 0 and Reserved Bit 1) and a Data Length Code
(DLC) that specifies the length of the payload in bytes. The DLC consists of 4 bits (DLC3,
DLC2, DLC1 and DLC0) used for numbering and a number greater than 8 specifies a payload
of 8 bytes. Furthermore, for remote frames the DLC denotes the payload length of a requested
data frame. Table 3.1 denotes the DLC coding for each byte length of the payload (’d’ denotes
dominant and ’r’ denotes recessive).

Number of data in bytes DLC3 DLC2 DLC1 DLC0
0 d d d d
1 d d d r
2 d d r d
3 d d r r
4 d r d d
5 d r d r
6 d r r d
7 d r r r
8 r d d d

Table 3.1: Length of the payload (data field) denoted by the Data Length Code

The reserved bits are used for further expansion and should be emitted as dominant bits but
the receivers accepts them as dominant and recessive. Moreover, the bit Reserved Bit 1 for the
standard frame format changed (from Part A) to IDE and therefore the IDE and Reserved Bit 1
are merged.

Data Field

User data are transported in the Data Field. The data field has a length of 0 to 8 bytes for data
frames and zero length for remote frames.

CRC Checksum

The CRC (Cyclic Redundancy Check) Checksum is derived by the division of a polynomial.
The coefficients of the polynomial are given by the bit stream of SOF, Arbitration Field, Control
Field, Data Field (if present), and for the 15 lowest coefficients, by 0. The coefficients are
calculated modulo-2 by the generator-polynomial:

x15 + x14 + x10 + x8 + x7 + x4 + x3 + 1 (3.2)

3.1. Controller Area Network 23

The following pseudo code shows the calculation of the CRC Checksum by a shift register
(NEXT_BIT denotes the next bit of the bit stream):

Listing 3.1: Algorithm to calculate CRC Checksum

CRC_REGISTER = 0 ;

REPEAT
CRC_NEXT = NEXT_BIT EXOR CRC_REGISTER (1 4) ;
CRC_REGISTER (1 4 : 1) = CRC_REGISTER (1 3 : 0) ;
CRC_REGISTER (0) = 0 ;
I f CRC_NEXT t h e n / / D i v i s i o n f i t s a t t h i s s t e p

CRC_REGISTER (1 4 : 0) =
CRC_REGISTER (1 4 : 0) EXOR 0 x4599

ENDIF
UNTIL (CRC Checksum s t a r t s o r t h e r e i s an E r r o r c o n d i t i o n)

Acknowledge Bit, CRC Delimiter Bit and ACK Delimiter Bit

The transmitter emits at the bit time between the recessive CRC Delimiter Bit and the recessive
Acknowledge Delimiter Bit (ACK Delimiter Bit) a recessive bit called Acknowledge Bit. The
Acknowledge Bit is transformed by any receiver that accepts the transmitted frame to a dominant
bit. This process is called acknowledge.

Two recessive bits (CRC Delimiter Bit And ACK Delimiter Bit) surround the ACK slot to
obtain a proper delimitation as the ACK bit is emitted by multiple subscribers.

End of Frame and Validation

The end delimitation of each data/remote is achieved by the emission of a sequence of 7 recessive
bits. These 7 recessive bits form a field that is called End of Frame (EOF). Furthermore, the
receivers and the transmitter accepts a frame or not at the field EOF as follows:

• Transmitter: The frame is valid for the transmitter and therefore the message is transmitted
if there is no error until the end of EOF. Each rejected frame has to be retransmitted as fast
as possible.

• Receivers: The frame is valid if there is no error until the last but one bit of EOF. Note that
it is therefore possible that some receivers accept a frame while others do not if the last
bit in the EOF is read different. Thus it is not guaranteed that a messages is broadcast to
all receivers. Furthermore, a rejected message is recent and such a recent message causes
duplicated messages at some receivers.

Intermission

The Intermission consists of 3 recessive bits. During the Intermission the emission of data or
remote frames is forbidden.

24 Chapter 3. Basic Concepts

Interframe Space

Data and remote frames are separated from preceding frames by a field called Interframe Space.
The Interframe Space consists of an Intermission field and an arbitrary long time of bus idle. As
data or remote frame are always separated by the Intermission space, it is assumed to be part of
a data/remote frame (see Subsection 3.1).

Coding and Bit Stuffing

The emission of each bit is coded by Non Return to Zero (NRZ) and so during each bit time the
corresponding bit is either recessive or dominant. Furthermore, after a sequence of 5 continues
bits of the same polarity at the emission of the SOF, Arbitration Field, Control Field, Data Field
and CRC Checksum, a bit of the complementary polarity is inserted. At the reception of a data
or remote frame these inserted bits are removed. This method is called bit stuffing.

Error Frame

An error frame consists of a superposition of error flags and an error delimiter. Furthermore, as
a subscriber detects an error it sends an error flag that consists of 6 consecutive dominant bits
which breaks the law of bit stuffing. Therefore all other subscribers detect the error flag and
also emit an error flag (if not already sent). Thus the emission of an data/remote frame stops
immediately. Moreover, all transmitted error flags form the superposition of error flags that has a
length from 6 up to 12 bit times. After the emission of the error flag the corresponding subscriber
sends recessive bits while reading back dominant bits. Afterwards it starts transmitting seven
more recessive bits. Hence an error frame has a length of 14 to 20 bit times.

Overload Frame

An overload frame consists of the superposition of overload flags and an overload delimiter.
Furthermore, a subscriber emits an overload flag, consisting of 6 consecutive dominant bits, as
follows:

• The internal state of a receiver. A receiver may require extra time to proceed the next
data/remote frame. In that case the start of an overload frame is only allowed at the first
bit of the expected Intermission.

• The detection of a dominating bit at position one or two during Intermission space. The
overload frame starts a single bit time after detection.

• The eight bit of an error or overload delimiter is dominant (a subscriber requires extra
time to proceed). The overload frame starts a single bit time after detection. This is not
interpreted as an error.

A subscriber that detects a dominant bit at the Interframe Space (position 1 or 2) starts the
emission of an overload frame (it detects the overload condition). Therefore all subscribers start
the emission of an overflow flag as the Intermission field of a data/remote frame is destroyed.

3.1. Controller Area Network 25

Note that a single dominant bit at position 3 at the intermission space is interpreted as SOF. Fur-
thermore, after the transmission of an overflow flag the corresponding subscriber emits recessive
bits until a recessive bit is read back. At this point the subscriber transmits 7 more recessive bits.
Furthermore, at most two overload frames are allowed to delay the next data/remote frame.
Note that in a CAN system it is not possible to prevent the emission of a sequence of more than
2 overload frames. Figure 3.4 describes the architecture of an overflow frame.

Figure 3.4: Overload Frame

Addressing of Units

Data and remote frames are broadcast to all receivers and at each receiver the frame is converted
to its correlated message. All incoming messages are filtered by their identifiers i.e. every bit of
a identifier must be either ’1’ or ’0’ at a defined position. Furthermore, it is voluntary to mask
bits of the identifier such that they are not compared.

Error Management

The error management consists of the detection of an error, the signalling of erroneous frames by
each active subscriber and the fault containment for each subscriber. Each subscriber is respon-
sible to detect errors and to report them via error frames to the other subscribers. Furthermore, a
subscriber that has a faulty behaviour is responsible to reduce its rights and this is a problematic
characteristic of the CAN standard. It is problematic because a faulty behaviour often results
from a faulty state of a subscriber and a faulty state may also concern the error containment
mechanism. Thus the error prevention and the cause of an error are not independent from each
other.

Error Detection

In CAN 5 different types of errors are defined and they are not mutually exclusive:

• Bit Error: Each emitting subscriber also monitors the bus at the current bit time. It is an
error if an emitting subscriber reads back a different value than forward but not during
arbitration or emission of the ACK slot.

26 Chapter 3. Basic Concepts

• Stuff Error: It is an error if 6 consecutive equal bits, that are not part of an error/overload
frame, are detected while emitting a data/remote frame.

• CRC Error: It is an error if the result of the CRC Checksum in a data/remote frame differs
from the result calculated by the receivers.

• Form Error: Some bits in a data/remote frame have a fixed form like the SRR and these
bits are called fixed-form bits (see Figure 3.3 - Known bit-values). It is an error if a
fixed-form bit has an illegal value but not the last bit in EOF (see Subsection 3.1).

• Acknowledgement Error: It is an error if the transmitter monitors a recessive bit during
the ACK slot.

Error Signalling

Each subscriber that detects an error condition signals it by an error frame. A subscriber that
detects a Bit Error, a Stuff Error, a Form Error or an Acknowledgement Error start the emission
of an error flag a single bit time afterwards. Furthermore, the emission of an error flag caused
by a CRC Error starts after the ACK Delimiter if no other error flag has been started before the
actual data/remote frame.

Fault Confinement

Each subscriber uses two error counters to determine its communication privileges: Transmit
Error Count and Receive Error Count. The Transmit Error Count increases at a subscriber for
errors while acting as transmitter and decrements by 1 for successful transmissions. The Receive
Error Count increases at a subscriber for errors while acting as receiver and decrements by 1 after
a successful reception. The values of these two error counters determines the following three
states of an subscriber:

• Error Active: There are no restrictions by the fault confinement. Furthermore, at the start
the error counters are reseted to 0 and a subscriber is in the state Error Active if both
counters are less than or equal to 127.

• Error Passive: A subscriber in the Error Passive state (error passive subscriber for short)
must not send error flags consisting of 6 consecutive dominant bits. Therefore an error
passive subscriber that detects an error tries to emit six consecutive recessive bits (called
passive error flag). After that process it emits the error delimiter as described in Subsection
3.1. Furthermore, each error passive subscriber has an extended Interframe Space. There
is a field called Suspend Transmission that follows the Intermission field. The Suspend
Transmission field consists of eight bit times and in that time the error passive subscriber
will not send data or remote frames but receives them. Furthermore, a subscriber is in the
Error Passive state if one of the error counters equals or exceeds 128 and the Transmit
Error Count is not greater than or equal to 256.

3.1. Controller Area Network 27

• Bus Off: A subscriber that is in the Bus Off state must not influence the bus in any way
(e.g. output drivers are switched off). A subscriber is in the Bus Off state if the Transmit
Error Count is greater than or equal to 256. A subscriber in the Bus Off state that detects
128 occurrences of 11 consecutive recessive bit transforms into the Error Active state. In
such a case both error counters are reseted to 0.

The error counters are increased as described as follows (more than one rule may apply
during a given message transfer):

• The Receive Error Count increments by 1 if a receiver detects an error and this error is not
a Bit Error caused by the emission of an error flag, consisting of 6 consecutive dominant
bits or by an overload flag.

• The Receive Error Count increments by 8 if a receiver detects a dominant bit directly after
sending an error flag.

• The Transmit Error Count increments by 8 if a transmitter sends an error flag but there are
two exceptions: Firstly for an error passive subscriber that detects an Acknowledgement
Error and does not detect dominant bits while emitting its error flag consisting of 6 reces-
sive bits. This is especially demanded during a start-up. During a start-up only a single
describer may be online and tries to emit a message. In this case the node only reaches
an Error Passive state. Secondly, if a Stuff Error occurs during arbitration caused by a
recessive bit that is read back as dominant.

• The Transmit Error Count increments by 8 if a transmitter detects a Bit Error while emit-
ting an overload flag or an error flag consisting of 6 consecutive dominant bits.

• The Receive Error Count increments by 8 if a a receiver detects a Bit Error while emitting
an overload flag or an error flag consisting of 6 consecutive dominant bits.

• The Receive Error Count increments by 8 if a receiver detects more than 7 consecutive
dominant bits after the emission of its error flag or overload flag.

• The Transmit Error Count increments by 8 if a transmitter detects more than 7 consecutive
dominant bits after the emission of its error flag or overload flag.

Physical Layer

The transmission speed as well as physical characteristics and bit representation are defined at
the physical layer.

Propagation Delay

CAN uses a shared medium and access it by CSMA/CR. Furthermore, each change of the volt-
age level at the bus is not instantly propagated to all subscribers. Therefore it must be enough
time to establish a common voltage level at the bus e.g. to ensure the correct arbitration process.

28 Chapter 3. Basic Concepts

The time required for propagation to fulfill this task is called propagation delay.

The propagation delay also limits the maximum network speed for CAN. For example, the
bus length can be at most 40m at a bit rate of 1 Mbit/s. 1 Mbit/s is the maximum network speed
for CAN.

Bit Time

Figure 3.5: CAN: bit time

A physical bit consists of four segments as
shown in Figure 3.5. Each segment con-
sists of a defined number of time quanta
to determine its length and a time quan-
tum is defined by the number of clock ticks.
Table 3.2 explains the usage of these seg-
ments. Furthermore, between PHASE_SEG1
and PHASE_SEG2 the bit value is deter-
mined and this point for sampling is called
Sample Point.

Name Propose Length in time quanta
SYNC_SEG Synchronization between subscribers. 1

Within this segment an edge is expected
PROP_SEG Compensation of propagation delay 1 - 8

PHASE_SEG1 Stretch bit length (synchronization) 1 - 8
PHASE_SEG2 Reduce bit length (synchronization) 1 - 8

Table 3.2: CAN: bit time

Bit Synchronization

The local clocks of all subscribers start up differently and drift to each other. Hence the sub-
scribers are not synchronized during bus idle. Therefore at the start of each data/remote frame
the bit timing is synchronized at each subscriber. This synchronization performs at the borders
from recessive to dominant at an idle bus and is called Hard Synchronization. During a Hard
Synchronization the internal bit time of each subscriber restarts with SYNC_SEG. Furthermore,
the bit timings are resynchronized at each flip of a bit value during the transmission of a frame.
Therefore the same technique as for Hard Synchronization is applied if the drift is less than or
equal to a defined limit (Resynchronization Jump Width). The Resynchronization Jump Width
is at least 1 and bounded by the PHASE_SEG1 but no longer than 4 time quanta. If the drift is
larger than the Resynchronization Jump Width the bit length will be modified as follows:

• If the detected edge at the bus is before the Sample Point at the corresponding sub-
scriber, PHASE_SEG1 is elongated by the Resynchronization Jump Width to stretch the
bit length.

3.1. Controller Area Network 29

• If the detected edge at the bus is after the Sample Point at the corresponding
subscriber, PHASE_SEG1 is shortened by the Resynchronization Jump Width to reduce
the bit length.

CAN Transceiver

This subsection describes the CAN Transceiver characteristics.

Principle Layout of a CAN Transceiver

Figure 3.6 shows the principle layout of a CAN Transceiver. The CAN Transceiver drives two

Figure 3.6: Principle layout of a CAN Transceiver

switches (S1 and S2) if a dominant bit shall be transmitted by the TX connector. Thus CANH
connects to the positive supply voltage level and CANL connects to the negative supply volt-
age. Vice versa S1 and S2 are switched off and the two CAN wires are driven to ground by
the pull-down resistors R1 and R2. Furthermore, if multiple sources drive two different states,
the dominant state is propagated at the bus because the positive and negative supply voltage
de-energize at the pull-down resistors. Thus CANH is driven to the positive supply voltage and
CANL is driven to the negative supply voltage.

Each CAN Transceiver also reads the bus level by a Receiver unit, shown as ’Receiver’ in
Figure 3.6. The Receiver compares the voltage level of CANH to CANL. If the voltage level
exceeds a defined voltage level the state is read as dominant and the Receiver signals a dominant
state (’0’) to the RX connector. Moreover, if the voltage level does not exceed another defined
voltage level the bit at the bus is read as recessive and the Receiver signals a recessive state (’1’)
to the RX connector.

Electrical Specifications and Robustness

The ISO 11898 defines electrical characteristics e.g. the Differential Dominant Output Voltage.
Table 3.3 shows the parameters that a CAN Transceiver must fulfill.

30 Chapter 3. Basic Concepts

Parameter min max Unit
DC Voltage on CANH and CANL -3 +32 V
Transient voltage on CANH and CANL -150 +100 V
Common Mode Bus Voltage -2 +7 V
Recessive Output Bus Voltage +2 +3 V
Recessive Differential Output Voltage -500 +50 mV
Differential Internal Resistance 10 100 kΩ

Common Mode Input Resistance 5 50 kΩ

Differential Dominant Output Voltage +1.5 +3 V
Dominant Output Voltage (CANH) +2.75 +4.50 V
Dominant Output Voltage (CANL) +0.50 +2.25 V

Table 3.3: Electrical specification of a CAN Transceiver by ISO 11898

The entry ’DC Voltage on CANH and CANL’ specifies the voltage level that a CAN
Transceiver must resist in the case of short cuts. Furthermore, ’Transient voltage on CANH
and CANL’ specifies the voltage level that a CAN Transceiver must resist in an error case.
Furthermore, the voltage levels for CANL and CANH are assumed for a ground voltage of 2.5
V .

Bus Termination

The CAN bus has at each end a termination as Figure 3.2 shows. This termination is required
to reduce signal reflections. Signal reflections disturb the proper propagation of dominant and
recessive bits. There are 3 possible terminations:

• Standard termination - A 120 Ω resistor connects at each end of the bus CANH to CANL
as shown in Figure 3.2.

• Split termination - The 120 Ω resistors are spitted into two 60 Ω resistors with a bypass
capacitor tied between the resistors to ground. Split termination reduces electrical emis-
sions.

• Bias split termination - Same as the split termination with a defined voltage level between
these two resistors. Bias split termination set a common recessive voltage level and reduce
electrical emissions.

3.2 Star Network

A bus is a single point of failure e.g. a subscriber who permanently emits a dominant level blocks
the whole bus for all subscribers (see Subsection 3.1). A star topology is a possible solution for
such a single point of failure. There exists active and passive CAN star topologies[BPA09]. A
passive star topology does not regenerate incoming signals from its subscribers and thus there are

3.2. Star Network 31

disadvantages concerning coupling losses, strong limitations on the star radius, etc. Furthermore,
there exists active stars that regenerate the incoming signals from the subscribers but do not
support fault containment. Thus passive stars and active stars that only regenerate incoming
signals have mostly the same limitation concerning single points of failure e.g. broken wires of
a CAN bus.

However there are active stars like CANcentrate (see Subsection 3.2) and the CAN router
from the Technical University of Vienna (see Subsection 3.2) which support fault containment.
CANcentrate acts at the physical and data link layer of CAN and therefore acts like a bus system
that is able to block faulty traffic at the OSI layer 2. Furthermore, the CAN router behaves
like multiple subscribers that internally distribute received messages to resend them. Therefore
this router acts on the OSI layers above 2 and so there are additional services such as routing
(e.g. a message is not forwarded to all ports). Routing improves the performance of the global
network as the utilization decreases in particular and thus the efficiency of the global bandwidth
increases.

However a single star is also a single point of failure but such a CAN star can be placed in a
protected area or be built up by high quality components[BRNPA04]. Furthermore, it is possible
to replicate a CAN star e.g. ReCANcentrate[BPA09].

CANcentrate

Barranco et al.[BRNPA04] present a CAN star, called CANcentrate, that deals with the CAN
traffic from subscribers at the physical and data link layer (see Subsection 3.1). CANcentrate
focus on the fault containment at each port and provide its service like a CAN bus with an AND-
circuit that interconnects all subscribers. Furthermore, by this AND-circuit the incoming signals
from the subscribers are regenerated and forwarded if the corresponding port is not switched off
due to errors by emission of a recessive state at the corresponding input of the AND-circuit.

Fault Model

The presented CAN star prevents component faults that may lead to a single point of failure. In
particular these faults are:

• Stuck-at node fault: A subscriber may get stuck at a bus level. Therefore a subscriber
constantly emits a dominant or recessive state. A permanent dominant state yields to a
unusable bus as detailed in Subsection 3.1.

• Shortened medium fault: A bus connected to a battery or to ground by a short cut is
deficient. Therefore any communication grinds to a halt.

• Medium partition fault: Each network can split into several subnetworks by a mechanical
break of the bus. Therefore the communication of a particular subscriber is not forwarded
to all others. In addition, the particular subnetworks may not be accessible at all due to
missing termination (see Subsection 3.1).

• Bit-flipping fault: An improperly functional subscriber may emit random bit values and
therefore disturb the communication in the network. Such faulty behaviour can occur for

32 Chapter 3. Basic Concepts

example when a subscriber emits a dominant bit while another subscriber sends a recessive
SRR (see Subsection 3.1).

Architecture

Each subscriber connects to the CAN star by two buses to realize a so called uplink to transmit
signals from the subscriber to the CAN star and a so called downlink to transmit signals from the
CAN star to the subscriber. Therefore two CAN Transceivers are required for each subscriber
and thus the uplink is independent of the downlink.
Figure 3.7 shows the principle architecture of the CANcentrate CAN star. CANcentrate con-

Figure 3.7: CANcentrate architecture[BPA09]

sists of three modules: Coupler module, Fault-treatment module and Input/output module. The
Input/output module connects the subscribers to the star coupler by so called ports. Each port
consists of an Uplink that connects to the uplink of the subscriber and a Downlink that connects
to the downlink of the subscriber.

The Coupler module interconnects the uplinks of the ports by an AND-circuit. An AND-
circuit models the AND-conjunction of a bus as explained in Subsection 3.1 and the output of
the AND-circuit is called global frame. Furthermore, each port does not directly connect to the
AND-conjunction due to an intercalated OR-circuit. The inputs of each OR-circuit consist of
the uplink from a port and a connection to the Fault-treatment module such that a port may be
deactivated by a logical ’1’ from the Fault-treatment module. As the Fault-treatment module
emits a logical ’1’ the corresponding subscriber behaves as unconnected due to a logical ’1’ that
is recessive (see Subsection 3.1).

The Fault-treatment module consists of a RX_CAN module and a set of Enabling/disabling
units that monitor the behavior of the correlated ports and can either well as to disable or enable

3.2. Star Network 33

each port separately. The RX_CAN module synchronizes the CAN star with the global frame
and generates information corresponding to the global frame.

Fault Detection and Isolation

The faults, described in Section 3.2, are diagnosed by the Fault-treatment module that can either
disable or enable ports. Each Enabling/Disabling unit consists of an error-detection manager
that can detect errors and a threshold control that can decide the activation/deactivation of a
port. The faults at each port are detected and handled as follows:

• Stuck-at node fault: The number of consecutive dominant bits are counted for the uplink
and the threshold control deactivates the port if that number exceeds a defined limit Tnskd.
Tnskd is adjustable by the user: Tnskd = (N + 1) ∗ 6. N defines the number of allowed
consecutive error flags (see Subsection 3.1).

• Shortened medium fault: Avoided due to the CAN star architecture.

• Medium partition fault: Avoided due to the CAN star architecture.

• Bit-flipping faults: As mentioned in Subsection 3.1 each CAN subscriber deactivates its
services after causing to many errors by its fault confinement and that this fault confine-
ment may be broken. Thus CANcentrate uses the following detection strategies to improve
the performance and reliability for bit-flipping faults:

– If an erroneous contribution of bits occurs at a port and does not result in an error
frame at the global frame an error counter called Bit-Flipping Counter (BFC) in-
creases at the error-detection manager for that port. The error-detection manager
assumes that the error was not detected by other subscribers.

– If the error-detection manager detects a global error frame and the corresponding
port does not emit an error frame (see Subsection 3.1) the BFC for that port increases.

– A subscriber that emits an error flag consisting of 6 consecutive dominant bits may
detect a Bit-Error (see Subsection 3.1) and therefore restarts the emission of the error
flag. This error can only be reasoned by the subscriber it self and therefore the BFC
increases if it detects a number of consecutive dominants bits that are not a multiple
of the length of an error flag.

– After the emission of an error flag the corresponding subscriber starts with an error
delimiter. The violation of this behaviour leads to an increase of the BFC.

If the BFC exceeds a defined limit the Threshold Control disables the corresponding port.
Furthermore, the BFC decreases for a defined proper performance in particular if the
global frame turns to bus idle. The extent of increase and decrease of the BFC has to
be defined by the user.

34 Chapter 3. Basic Concepts

Communication Privileges for each Port

A port starts in a state called idle. The idle state turns into a state called active if the connected
subscriber shows up a proper performance e.g. ACK signal (see Subsection 3.1). Furthermore,
in the idle state as well as the active state the corresponding subscriber has full communication
privileges and the idle state can be used for further improvements of CANcentrate. Furthermore,
if a Stuck-at node fault occurs or the BFC exceeds a defined limit the threshold control turns off
the port, resets the error-detection manager and therefore the port transforms into a state called
disabled. In a disabled state the threshold control monitors the uplink of the corresponding ports
and counts the number of times a subscriber sends recessive bits while the global frame is idle.
After an idle frame has been counted 127 times the corresponding threshold control transforms
the deactivated state into an idle state and therefore the port is active again.

CAN Router of Vienna University of Technology

Kammerer et al.[KOF12] present a CAN star that provides its services as a router. The router
provides several subnetworks (a subnetwork is a single bus with attached subscribers) and inter-
connects these subnetworks. Each subnetwork may introduce faults and therefore failures. The
router mediates these failures to the particular subnetwork. Furthermore, received messages are
only forwarded to ports defined in tables. Thus the utilization decreases at each subnetworks
that do not obtain a message.

Fault Model

In a specific subnetwork a failure (fault/error) may occur. Failure occurrence has to be restricted
for the corresponding subnetwork and therefore the router introduces failure modes. The failure
modes are in particular:

• Stuck-at node fault

• Crash/Omission Failures: As described in Subsection 3.1 an arbitrary subscriber may not
provide its services i.e. sending CAN messages. Thus a subnetwork may not provide a
specific service (sending CAN messages).

• Asymmetric Bit-Flip Failures: As described in Subsection 3.1 an atomic broadcast of a
message in a CAN bus is not guaranteed if a asymmetric bit-flip occurs at the last bit of
the EOF.

• Babbling Idiot Failures: A subscriber may flood the bus with (high priority) messages and
therefore disturb/block the communication of other subscribers.

• Masquerading Failures: A subscriber spuriously emits a message with an id that is used
by another subscriber located at a different subnetwork.

3.2. Star Network 35

Architecture

Figure 3.8 shows the router with attached subscribers (CAN nodes). Furthermore, at each port
of such a router a CAN bus can be attached via a CAN Transceiver and a particular bus in-
terconnects one or more subscribers. These subscribers, connected to a CAN bus at a port,
form a so called CAN segment. Each CAN segment is accessed by a so called CAN Inter-
face Subsystem (CIS) and hence each port is intercalated between a CAN segment and a CIS.

Figure 3.8: Architecture of the CAN router[KOF12]

Each CIS consists of a CPU, lo-
cal memory and a CAN Con-
troller. The CPU processes in-
coming and outcoming traffic e.g.
firstly, by receiving CAN messages
via the CAN Controller and for-
warding them to the other CISes
and secondly, by filtering received
messages from other CISes as de-
scribed in the local memory (rout-
ing configuration) and by emit-
ting passed messages to its CAN
segment. The CISes are inter-
connected by a Time-Triggered
Network-on-Chip (TTNoC) (see Subsection 3.4). The TTNoC conveys traffic in a time-triggered
manner i.e. in rounds. Thus there is no internal jitter at the router. Furthermore, each incoming
message from a CAN segment is forwarded to the TTNoC. Moreover, the CPU receives mes-
sages from the TTNoC. Thus disregarding message transfer each CAN segment is completely
separated from the other ports by the CAN Controllers because a particular CPU accesses the
CAN Controller and therefore it is not involved in any interaction reasoned by the internal states
of the CAN Controllers (see Subsection 3.1).

The time between the reception of messages with the same identifier is measured. If the
message interval between two messages with the same identifier is too small the corresponding
CPU filters the latest message out. Furthermore, the CPU secures that each specific message is in
time i.e. the interval between messages with the same identifier must not exceed a defined time
limit. Moreover, the CPU reports unintended behaviour such as a violation of the maximum time
between messages with the same identifier via the TTNoC to a unit that is called Management
Unit (MU). Therefore the MU has a global view of the system and thus can apply recovery
strategies in an error/failure case. Such a recovery strategy may include the reconfiguration
of the routing information of each CIS. In addition, the MU can be accessed by a so called
management port (Mgmt. Port) for e.g. maintenance.

Fault Detection and Isolation

This Subsection describes how the failure modes defined in Subsection 3.2 are detected and
maintained:

36 Chapter 3. Basic Concepts

• Stuck-at failure: Stuck-at dominant failures are restricted by the composition of the router
(star architecture) to the CIS of the particular CAN segment that causes the error. Thus the
communication services of the concerned subscribers at the erroneous CAN segment are
useless but not the remaining CAN segment because the corresponding CAN Controller
(CIS) does not forward stuck-at signals. Note that further consequence will lead to a report
of such failures in some way e.g. Messages are not transportable and therefore the CIS
will report the management unit of Crash/Omission Failures.

• Crash/Omission Failures: As the CIS secures that each specific message arrives in time
and a failure is reported to the management unit. The management unit may apply recov-
ery strategies in such a single case or count such errors over a time interval. Furthermore,
if such counts exceed a defined limit the management unit may also apply a recovery strat-
egy. A recovery strategy has to be defined by the user before the beginning of operations.
In addition, a recovery strategy is applied during by the reconfiguration of the CISes by
the management unit.

• Asymmetric Bit-Flip Failures: A message that was legally received by a CIS will be
broadcast to other CAN segments. Furthermore, messages that were retransmitted by a
subscriber will be filtered due to the violation of the minimum interval between messages
with the same id. Thus buggy atomic broadcasts that happened at a specific CAN segment
are not forwarded and thus limited to a CAN segment. However during the emission
of a message at the ports this atomic broadcast violation may also happen but they are
limited by a specific CAN segment. Moreover, such atomic broadcast violation during the
emission can be reduced to zero by limiting the number of attached subscribers to one for
each CAN segment.

• Babbling Idiot Failures: If the time interval between the reception of two messages with
the same id is too small the corresponding CIS blocks the latest message and reports such
violation to the management unit. Thus these errors/failures are limited to the correspond-
ing CAN segment. Therefore each error may be analyzed during maintenance.

• Masquerading Failures: The router has knowledge about the legal CAN identifiers that
are emitted at each CAN segment by the subscribers of a CAN segment. Furthermore,
the router does not forward illegal CAN identifiers from a CAN segment and reports
such violations to the management unit. Thus such errors are limited to a specific CAN
segment. Moreover, the impact can be even reduced to zero by using only a single CAN
subscriber at each CAN segment.

3.3 Hardware in the Loop

Figure 3.9: Real-time HIL testing

Hardware in the Loop (HIL) is a well known method
and used in the test of implemented embedded
system[Bac05]. Furthermore, an application for HIL is
the real hardware real-time testing[LWFM07]. There-
fore a controller model interacts with a real hardware

3.3. Hardware in the Loop 37

as shown in Figure 3.9. The real hardware can be of
any kind as for example a CAN bus. The controller
model can be a model of message emissions. Thus the model addresses the hardware and there-
fore the hardware responses to the model. Furthermore, the received data from the hardware
may be used to trigger the hardware more frequently. However such a test run for some defined
time and the test setup strongly depends on the application to be simulated.

An Example of HIL

Fennibay et al.[FYS10] present a HIL method to evaluate Hardware/Software Co-design sys-
tems. A Hardware/Software Co-design system consists of hardware and software. Furthermore,
the overall system consists of subsystems and each subsystem is either a virtual system or a real
system. These subsystems communicate with each other via channels. Thus real systems can
be combined with system models to evaluate one or several real subsystems and/or one or more
modeled subsystems in a loop.

SystemC

SystemC is a C++ framework and consists of a simulation kernel and a class library[BvL11].
The library consists of classes, macros and templates in order to model concurrent systems. Fur-
thermore, each SystemC model consists of modules and each module represents an encapsulated
part of a system. Modules exchange informations by channels and consist of processes. The pro-
cesses of a module define its behaviour. Each process is based on a C++ member function. Thus
SystemC models Hardware as well as Software.

Figure 3.10: Flow of the SystemC
scheduler[FYS10]

SystemC simulation kernel is a discrete event
simulator[GLMS02]. The event simulator con-
sists of an event queue, event handler and
a state. The state represents the actual sta-
tus of a simulated system and changes during
events. Each event occurs at a discrete time
point and is queued and ordered by a related
time stamp (a time stamp represents such a dis-
crete time point) in the event queue. Further-
more, the event handler processes events to pro-
ceed changes at the state and add/remove events
to/from the event queue. Thus the simulation
time proceeds due to the time stamps of the
events.

The performance of a SystemC kernel can be
divided into four main phases: 1) initialize, 2)
evaluate, 3) update and 4) time advance as shown
in Figure 3.10. The evaluate and update phases

38 Chapter 3. Basic Concepts

form a delta-cycle which represents an infinitesimal time amount to pass. In a delta cycle con-
current operations are performed in the evaluate phase and as soon as these concurrent operations
complete the update phase continues. This process persists as long as sequential performance of
concurrent operations are not completed yet. Furthermore, after the completion of all operations
the simulation advances in time and therefore continues with the next time stamp from the event
queue.

SystemC simulation kernel has no external interface for external events i.e. new data arriving
from outside will be handled at the next time stamp in the event queue even if they trigger
events. For example, someone may assume that the event queue contains the following events
with timestamps 00:02 and 00:06, respectively, and the data arrives at 00:04. In this case the
model will correct the simulation clock directly from 00:02 to 00:06 and thus the data will be
received at 00:06.

Architecture

Figure 3.11 shows the architecture of the HIL with SystemC. It consists of virtual subsystems

Figure 3.11: Architecture of a HIL and HW/SW co-design for real-time embedded
systems[FYS10]

and real subsystems. Each real subsystem can be any sort of an implemented system such as for
example a building automation station. The real subsystems can interact by an arbitrary existent
communication technique.

Furthermore, the virtual subsystems are modeled by SystemC and run on a simulation kernel.
The simulation kernel runs on general-purpose operating system which operates on a computer
hardware. The computer hardware plus the general-purpose operating system and the simulation
kernel form together the modeling platform. The modeling platform is trimmed to reduce jitter
and latency and therefore the e.g. power management and swap memory are disabled. Further-
more, the virtual subsystems communicate with the real subsystem by so called hybrid channels.
These hybrid channels abstract the communication of the I/O hardware which can be a Universal

3.4. System on Chip 39

Serial Bus (USB).

The hybrid channels are an extension of the SystemC channels and can carry digital or analog
data. Firstly, the data can be transferred from a virtual subsystem to a real subsystem in different
phases as follows:

• Evaluate phase: Produced data are instantly transfered.

• Update phase : Produced data are transferred after the completion of a delta cycle.

• Time advance phase: Produced data are transfered after the completion of all delta cycles.

Secondly, the data transfer from a real subsystem to a virtual subsystem is also characterized
by the following factors: There is a polling mechanism implemented in the system that peri-
odically checks an external interface for arrived traffic. Thus arrived data are forwarded to the
SystemC kernel with a small amount of latency.

3.4 System on Chip

A Multiprocessor System-on-Chip (MPSoC) (see Subsection 3.4) is a System on Chip (SoC)
(see Subsection 3.4) that contains multiple processors. A SoC is a complete system architecture
placed onto a single chip and not onto many separated subsystems. A SoC can be placed onto a
reconfigurable hardware such as a FPGA (see Subsection 3.4) and has a high system complex-
ity. In order to reduce complexity so called IP cores that require well-defined interfaces (see
Subsection 3.4) were incorporated into the SoC. Each IP core is a functional unit e.g. a proces-
sor. Furthermore, these IP cores are linked by interconnects such as the Altera Avalon Interface
(see Subsection 3.4) or by a Network-on-a-Chip (NoC) (see Subsection 3.4). An interconnect
system is best suited for direct connections whereas a NoC for a message based network topol-
ogy. Such a network topology can be further extended with features e.g. fault isolation. A NoC
together with its extended features and an attached component forms a system. This system can
be based on a time-triggered architecture. An example of such a time-triggered system is the
Time-Triggered System-on-Chip (TTSoC) (see Subsection 3.4)

Basic Definitions

This Subsection provides basic definitions as well as basic descriptions for SoCs.

System on Chip

Modern chips are highly integrated and still become more complex due to Moore’s law[Mol06].
Furthermore, divide and conquer is a method for simplifying complex systems i.e. to split a
system into modules. The modern state-of-the-art chip contains a multi-chip System on Board
(SoB) that supports all entire services such as digital logic[SWM+06]. Thus a SoC is a chip
consisting of blocks to offer all services of a complete system. The main advantages of a SoC are
flexibility (buildup of system components), (re)programmability and module re-use[OMFK08].

40 Chapter 3. Basic Concepts

Intellectual Property Core

An IP core is a reusable unit of logic e.g. a processors[KB02]. Furthermore, such IP cores
can be used in a SoC to design a system. A system, based on IP core technology, consists of
modules (IP cores) that communicate via an interconnect such as the Altera Avalon Interface (see
Subsection 3.4) or a NoC. Furthermore, the usage of IP cores yields to a plug and play integration
as each IP core provides a high level of abstraction and an exact and independent interface
specification[Alt11a]. Moreover, the design process consists of three stages: 1) specification
and documentation, 2) implementation and 3) verification.

On-Chip Networks

A SoC that consists of separated blocks such as IP cores demands a logical connection to enable
communication between them[HWC04]. This logical connection demands a physical wiring and
can be realized by a bus system. Furthermore, a well-defined communication architecture leads
to a clean separation of the connected subsystems. Thus each subsystem should interact with the
bus system by messages in order to separate data and control flow. A NoC transports messages
between connected communication partners. Furthermore, he wiring should be a mesh, like in
Figure 3.14, due to the optimization of the total jitter of every possible communication in the
network and the predictability of the transport times.

Multiprocessor and Reconfigurable System-on-Chip

A MPSoC is a SoC consisting of multiple programmable processors and each processor is a sys-
tem component[WWM08]. Each processor has a special purpose to fulfill unique requirements
of an embedded system and thus an application-driven design approach hardly influences the
system architecture. Hence standards have a key function because they yield to heterogeneous
systems which share definitions of applications. Furthermore, standards require a well-defined
interface specification that also reduces the effort to split complex and resource demanding pro-
grams on separate chips. Therefore a proper system design process derives and so multiple and
independent designers can act at random systems. Moreover, a weak design concept and poor
interface specification will yield to improvements of low impact and work steps that impair the
system performance in some ways. Thus a poorly conceived system design leads to a greater
chip area that profoundly affects the power consumption. Vice versa the chip area will scale
down and therefore a merged system reduces the power consumption dramatically[HWY+11].

A single threaded and sometimes complex reference implementation is often provided for
standards. Therefore such reference implementation can be oversized. Oversized software leads
to poorly conceived parallelization, time-consuming optimizations for hardware and increased
power consumption. Thus such standards have to be adopted for a MPSoC and optimized for
power and performance. Furthermore, a well-defined MPSoC platform supports different spe-
cialized processors which can be easily maintained, programmed and configured. Therefore
such systems meet the demands of an application much better than a general-purpose system.
Moreover, Hardware-Software Codesign is important because a processor in a SoC can be ad-

3.4. System on Chip 41

justed by extending its architecture or by using IP cores that provide complex operations within
a few computational steps. Reconfigurable hardware platforms (FPGAs) play a key role in the
MPSoC design[SBR+07]. Reconfigurable hardware provides the possibility for proper sepa-
ration of functional blocks such as e.g. IP cores and for early integration of these functional
blocks. Reconfigurable hardware can be efficiently validated as the integration of functional
blocks can be fulfilled in small steps. Each step can be validated and therefore each validation
is limited and reduced in complexity. Furthermore, the overall system can be adjusted during
the development process. System adjustment in small steps provides various possibilities for
hardware and software redesign or for removal of analyzing untis after the design process.

Avalon Interconnect

The Altera Avalon Interconnect interlinks IP cores or couples an IP core to the
environment[Alt11a]. There exists the following seven interfaces for different purposes:

• Avalon Streaming Interface that is unidirectional and used for high bandwidth data trans-
fers.

• Avalon Memory Mapped Interface that is a memory mapped master-slave system. Each
memory mapped master-slave system consists of a master-component that access and
control one ore more slave-components by addressing memory. Furthermore, a memory
mapped interface is used in order to tightly couple hardware.

• Avalon Conduit Interface for connections that do not support the Avalon Interconnect
standard.

• Avalon Tri-State Conduit Interface to connect off-chip resources.

• Avalon Interrupt Interface to provide event notifications (Interrupts).

• Avalon Clock Interface that provides or drives a system clock.

• Avalon Reset Interface that provides a reset signal.

An IP core can be connected with one or more Avalon Interfaces to other IP cores or to the
environment. Furthermore, each control signal can be logical low or logical high driven i.e. a
high state (’1’) or a low state (’0’).

Clock and Reset Interface

An IP core typically receives a system clock that defines the duration of a single cycle. During
each cycle the digital logic of an IP core has to make a decision such that the clock will provide
synchronization for the internal logic. For example, a single instruction of a processor placed
on a SoC takes one cycle (computational step) to complete. Thus a single hardware operation
takes one cycle of the given clock signal. Furthermore, a reset lane indicates a non-reset or reset
request that transforms the internal state of an IP core into a defined ground state.

42 Chapter 3. Basic Concepts

Memory Mapped Interface

A memory mapped master/slave communication couples tightly hardware for easy and fast con-
trol that can be used to e.g. couple memory to a processor. Furthermore, each slave requires a
connection to at least one master and a connection consists of at least a chipselect signal, a read
and/or write buses, a read and/or a write-signal and address lanes. Address lanes are required to
form a binary address to control a slave for e.g. address a memory area. An addressed memory
area can be used to read or write data and these data have to be transported by a read bus that
is used for reading and a write bus for writing. Furthermore, the write signal and read signal
decide the mode of operation e.g. the decision between writing (enabled write signal) and read-
ing (enables read signal). Furthermore, a master activates a particularly attached slave by the
chip-select lane of the slave to perform operations (reading or writing). Note that more interface
signals are described in the Altera Avalon manual.

Streaming Interface

A streaming Interface is not coupled to a system clock and used for transferring huge data
amount. Typical applications are multiplexed channels or packets which are send unidirection-
ally in blocks. Figure 3.12 shows the layout of the Altera Streaming Interface.

Figure 3.12: Layout of Altera Streaming Interface[Alt11a]

3.4. System on Chip 43

The Streaming Interface supports sideband signalling to indicate errors, backpressure to
regulate the data throughput at a receiver, start and end of packet delineation, data bursting and
multiple channels. Figure 3.12 shows 3 channels from a source interface that are managed by
a scheduler to multiplex them to a receiver interface. Therefore the channel lanes signal the
channel number. Moreover, a ready signal indicates backpressure from a receiver to a sender to
control the intermissions for reducing the data throughput. In addition, a valid signal subscribes
the integrity of transmitted data. Moreover, error lanes form a code word to message errors to
the receiver. Furthermore, the use of a packet based system requires a signal to mark the start
of a packet, a signal to inform the receiver of the end of a packet and a lane to identify empty
symbols in a packet.

A streaming interface is not suitable to transfer safety critical data because this interface is
not well-defined for multiple receivers. There is a mess between control and data information
and jitter. In general a streaming interface for multiple receivers results in high costs for the chip
area.

Interrupt Interface

Slaves (senders) can use an interrupt interface to indicate urgent events to a master (receiver)
e.g. a timer raises an interrupt for a processor to signal an overrun of its counter. Such a signal
from an interrupt interface is called Interrupt Request (IRQ). An IRQ, raised by a sender, has
to be asserted until a receiver handles a routine. This routine consists of accessing the slave
by a memory mapped interface to read the interrupt status register of the sender, some possible
additional steps depending on the application and the status of the interrupt service register and
acknowledge. Furthermore, a sender uses a single interrupt signal to connect to a receiver that
can be connected to multiple interrupt lanes from multiple slaves.

Conduit and Tri-State Conduit Interface

A conduit interface groups inputs, outputs and bidirectional signals which are not designed for
the above mentioned interfaces. The applications for the conduit interface are consisting of
tightly coupled hardware and make the connection to non-Altera-Interfaces possible.

A Tri-State Conduit interface drives off-chip components. Furthermore, the pin consump-
tion can be reduced by sharing data pins, address pins and control pins. In addition, the pin
consumption can be reduced by multiplexing off-chip elements and docking two or more master
nodes to an interface. Moreover, it is possible to tri-state a pin to switch off a physical connection
to an off-chip unit due to circuit requirements and multiplexing.

Time-Triggered System-on-Chip

The complexity of a system can be reduced by a high level abstraction[Kop08]. A high level
abstraction can be defined as a network that is accessed by its attached components. Thus it is
possible to place a complete system onto a single chip by putting a network and attaching compo-
nents. Furthermore, a proper delimitation between the components and the network is required
to increase the system reliability as well as the abstraction. Therefore a time-triggered approach

44 Chapter 3. Basic Concepts

that is a Time Division Multiplex Access (TDMA) technique can be used for this purpose. The
TDMA technique is a method to share a single network for multiple components[Kop97]. Each
component has a defined time quantum within a periodically repeated interval to use the single
shared network. Furthermore, the TTSoC is such a time-triggered network with a proper de-
limitation between components and network. It consists of an network (TTNoC), an interface
between each component and the network (TISS) and resource management (Resource Manage-
ment Authority and Trusted Network Authority)[Pau08]. Figure 3.13 shows the architecture of
the TTSoC.

Figure 3.13: Structure of the TTSoC architecture[Pau08]

TTNoC

The TTNoC routes stateless encapsulated channels from one endpoint to another. Furthermore,
the sender and the TNA (see Subsection 3.4) manage the state of the communication. Moreover,
the TTNoC consists of fragment switches consisting of four directions and which are placed in a
mesh. Each direction has a lane for outgoing data (32 bits wide) and a lane for incoming data (32
bits wide), a valid line to separate data frames and a header line to indicate routing information.
Furthermore, a frame consists of flits and each flit is a data burst that is transmitted within a
single clock cycle. Figure 3.14 shows a TTNoC architecture consisting of fragment switches.

In Figure 3.14 ’a’ there is a route from the top left fragment switch to the bottom middle
fragment switch. Each fragment switch requires control to connect a particular input to a partic-
ular output. Thus a fragment switch requires routing information to direct user data. The routing
information is conveyed by flits. Each flit that contains routing information is indicated by the
corresponding header line. Therefore the header lines is assigned to true at the corresponding
fragment switch. The fragment switch configures by taking the first 4 bits of the incoming data

3.4. System on Chip 45

Figure 3.14: Simultaneous routes in a network-on-chip[Pau08]

lane and each of these 4 bits substitutes a direction to north, south, west and east. Thus the port
that received the routing information connects to the outcoming ports which are indicated by the
4 bits e.g. the fragment switch located in the middle in Figure 3.14 ’a’ switches the incoming
data lane of the west direction to the outcoming data lane of the south direction when receiving
the routing information. Furthermore, after switching a particular fragment switch, the corre-
sponding routing information is shifted by 4 places to the left and forwarded to the following
fragment switch.

It is possible to route more than one channel through the network as well as multicasting as
long as a particular data lane is only used once. Figure 3.14 shows possible routing of 2 channels
at the same time.

46 Chapter 3. Basic Concepts

Trusted Interface Subsystem and Micro Component

A Trusted Interface Subsystem (TISS) is a network interface to connect an IP block to the
TTNoC for providing core services e.g. time stamps or a communication interface. Further-
more, the TISS guarantees the isolation of broken IP blocks by a TDMA technique. Moreover,
the TISS controls the fragment switching as described in Subsection 3.4 as a sender.

A TISS and a connected IP block form together a so called Micro Component. It is important
to mention that a TISS can also connect the RMA (see Subsection 3.4) to the TTNoC. Further-
more, each Micro Component is an independent system that may communicate with other Micro
Components or Input/Output (I/O) to other systems.

Resource Management Authority and Trusted Network Authority

The Resource Management Authority (RMA) manages the resource allocation for the applica-
tions located on Micro Components as well as the communication system e.g. reserve or cancel
encapsulated channels or inform a TISS of changed application constraints. Furthermore, Micro
Components access the RMA that is only allowed to change system configurations by accredi-
tation of the Trusted Network Authority (TNA).

The TNA audit changes made by the RMA and manages the TTNoC. Furthermore, the TNA
can not be accessed by any Micro Component.

Global Time Base

The TTSoC provides a synchronized global time base that is a sparse time base i.e. a time stamp
of a particular TISS is comparable to any time stamp of any TISS. The sparse time base is char-
acterized by the mapping of events to time points. Events are mapped to so called active time
intervals and any two active time intervals are separated by intervals of silence[Kop97]. Any
event occurring within an interval of silence has to be assigned to the neighboring active time
intervals.

The current implementation of the TTSoC architecture provides 64 bit wide time stamps,
based on the global time base. Furthermore, the time stamps are obtained by accessing the
TISS. Each TISS support the 64-bit time format by two 32 bit words. Furthermore, the accuracy
is up to 465.66 ps.

CHAPTER 4
System Model

This chapter describes the architecture of the system structure as well as the experimental process
of tests for a CAN based communication system evaluation.

4.1 System Structure

A subscriber in addition to a physical clock that triggers messages for sending communicates
by transmissions with other subscribers. The test system consists of such units that are inter-
connected via a network and linked to a consistent global time base for measuring transmission
times. Figure 4.1 shows the structure of the test system.

Figure 4.1: Structure of the test platform

Time Bases

A signal is the change of a magnitude over time and a periodic signal is a signal that is recurring
in time intervals. A physical oscillator is an instrument that generates a periodic signal that is
called clock signal and a physical clock consists of a physical oscillator and a counter that is
incremented at the end of the period of the clock signal. If the counter of a physical clock is

47

48 Chapter 4. System Model

incremented it is called microtick[Kop97]. Therefore a physical clock is a device for measuring
time in microticks.

A physical clock that is not synchronized with other physical clocks and locally used (i.e. at
a subscriber) is called local time base. A system of physical clocks that are synchronized with
themselves and are located at different locations (i.e. at different subscribers) in order to deter-
mine a consistent time assessment is called global time base. To adjust the local clocks of the
global time base a number of microticks are merged to a macrotick because it is not possible to
synchronize clocks perfectly[Kop97]. All subscribers use the same global time base and every
subscriber has its own local time base. Time bases use counters in order to take snapshots of
time points and each such snapshot represents a time stamp. Time stamps of local time bases
cannot be compared to each other because they are not synchronized. This is not the case for
time stamps that are taken at any locations from the global time base and time stamps of the
same local time base.

Messages and Triggering Messages

A message is named by the identifier of the message and the priority of a message is indicated by
the identifier such that a lower number is higher in priority. Messages are periodically created in
time intervals and each time interval in between two messages with the same identifier is called
Message Time Interval (MTI). Each MTI consists of a static period that is called Minimum
Interarrival Time (MINT) and a variable random time from 0 up to a predefined upper bound
called Random Send Time (RAND). The MINT and RAND are defined by a number of time
quanta and a time quantum is measured by the local time base. Therefore each MTI is coupled to
an identifier and named by its identifier. At the creation of a message i the MTI i is recalculated.

A Message Creation Entity (MCE) that consists of an identifier is a unique number from
1 up to the total number of MCEs of all subscribers and a MCE is named by the identifier of
the MCE. The MCE also includes a MINT, a RAND and a sequence number. In addition, a
MCE is always related to a MTI that is calculated by the MINT and RAND of the corresponding
MCE. Moreover, each subscriber has a bundle of MCEs. Furthermore, a Triggered Message
Instance (TMI) is a message that is derived from a MCE such that the identifier of the message
is the identifier of the corresponding MCE. The payload of the message consists of a time stamp
from the global time base that is obtained when the message is created. The time stamp that is
used as payload for a TMI is called Trigger Time of a Message (TTM) and consists of 8 bytes
in order to assess the accurate time point. The creation of TMIs are triggered by the local time
base in such a way that the local time base indicates the end of a time quantum and at the end
of each time quantum all MTIs are checked to be finished. A TMI is named by its identifier.
A TMI i In addition, with the next MTI i that triggers the next TMI i are created at the end of
the actual MTI i that is calculated by the RAND and MINT of the MCE i. At the creation of a
TMI i the sequence number of the MCE i is incremented. Figure 4.2 shows the periodic creation
behaviour of a MCE i after n-1 time intervals.

4.1. System Structure 49

Figure 4.2: Message Time Intervals of a Message (TMI)

The specification of an application defines the minimum time between messages of the same
identifier and the MINT stands for the minimum time. External influences and/or the state of the
system stochastically extend the minimum time between messages of the same identifier and the
RAND represent the random time. Thus the MTI simulates the time that is required by a specific
process to create a message that is ready for transmission. By assembling some MCEs with their
associated MINTs and RANDs the communication behaviour of a CAN node is simulated (see
Subsection 3.1). A TMI is then triggered by a local time base due to a node and therefore its
processes are independent from other locations and other clocks.

COM Interface and Communication Errors

Each TMI is transported via a data frame. All data frames are transported via a CAN Controller
(COM Interface). In CAN the COM Interface is switched off if an error counter for sending
of the COM Interface exceeds a allowed limit (see Subsection 3.1). In such a case this will
lead to an inconsistent reception of TMIs at the subscribers as well as to the absence of emitted
TMIs because each TMI is only sent/received if the COM Interface is active. Furthermore, the
COM Interface has reduced communication privileges if the error counter for sending or the
error counter for receiving exceeds a defined limit and the COM interface is not switched off.
Thus these error counters have to be checked periodically.

An inconsistent reception of TMIs also occurs by bit flipping faults at the arbitration field
such that an unused identifier will be emitted or an identifier of another TMI will be simulated.
Such simulated faults have to be detected in a post data evaluation process by comparison of
incoming TMIs at the subscribers to the sequence numbers as well as by the identifiers of the
corresponding MCEs. Bit flipping faults also effect the atomic broad cast of a message if the
last bit of a CAN frame is read differently by the receivers. In such an instance the message will
be accepted by some receivers and rejected by others[PV03] (see Subsection 3.1). In addition, a
CAN star may be erroneous and therefore not forwarding incoming traffic (beside routing) to all
corresponding ports. This types of error will also be detected by a post data evaluation process
of the sequence numbers from the MCEs.

Transmission and Transmission Times of Messages

A created TMI is placed into a Prioritized Send Queue (PSQ) that is a queue with entries for each
MCE. A PSQ is ordered in two ways; firstly according to the priority of the TMIs in the PSQ
(high priority before low priority) and secondly to the temporal order of the TTMs of the stored

50 Chapter 4. System Model

TMIs such that TMIs with the same identifier are sorted by their time stamps in ascending order.
The PSQ supports for every MCE entries up to a predefined limit and if the PSQ is completely
filled for a MCE each new TMI of that MCE is discarded and counted by a sequence number for
that MCE that is called MCE Omission Number (MON).

A PSQ that is located at the node and at the COM interface of a subscriber features a Single
Message Spot (SMS). Importantly, a SMS can be used to store a single TMI from the PSQ for
transmission. A free SMS is filled with the first entry of the associated nonempty PSQ and so the
TMI with the highest priority is moved from the node to the COM Interface in order to transmit
it to other subscribers as fast as possible.

For example, assume a number of TMIs (a TMI i created at time point ts is denoted as TMI
i,ts) placed in a PSQ with a limitation of 3 TMIs for each MCE in the following order: TMI
1,12; TMI 1,15; TMI 3,3; TMI 3,12; TMI 3,20. When a single TMI is moved to the SMS and
the TMI 2;30 and TMI 3;30 will be generated the PSQ changes as follows: TMI 1,15; TMI 2,30;
TMI 3,3; TMI 3,12; TMI 3,20.

A transmission in CAN may start if the (sub)network is idle and succeed if it achieves the
arbitration process (see Subsection 3.1). In this case the transmission is not rejected by any
receiver or sender. The COM Interfaces are configured in such way that they accept all iden-
tifiers and so any TMI (see Subsection 3.1). Therefore a TMI that is emitted by a SMS in a
network is received by all inactive COM Interfaces and a COM Interface supports a First In -
First Out (FIFO) queue to store received TMIs that is called Receive Message Queue (RMQ).
RMQs are periodically checked and if an incoming TMI is recognized it is moved to the node
and a time stamp from the global time base is taken. Such a global time stamp is called Message
Reception Time (MRT). At a subscriber the corresponding MRT is attached to the received TMI.
A TMI together with its coupled MRT is called Received Message Instance (RMI). A RMI is
named by its identifier. All subscribers act as receivers and so a TMI is converted to multiple
RMIs that consist of an identifier, a TTM and a MRT. However CAN star subscribers that are
not connected to the transmission medium of the sender but to a port of the CAN star may not
receive the message because the message is not forwarded to the port or dropped if the CAN star
is overloaded (see Subsection 3.2).

SMS processing includes the time for conversion of a message into a frame, the block time
of a TMI by a busy network and retransmissions due to errors. The reception time of a message
depends on two main issues; firstly, the conversion time from frame to message and secondly,
the access time to the COM Interface by the subscriber in order to catch the message. The
difference between MRT and TTM is called Total Transmission Time (TTT) of a RMI and rep-
resents the time for waiting in a PSQ, processing in the SMS, transmission from a sender to the
receivers and reception at a receiver. Furthermore, the transport of a TMI in a CAN star also
consists of the routing time and the possible retransmission at the ports to the subnetworks. This
corresponds therefore to an end-to-end transmission time. Figure 4.3 shows the transmission
process of a message from a sender to a single receiver. In a CAN bus the TTTs of RMIs from
a TMI regardless of a short time between the reception and recognition of a message are equal.
This can be assumed because each message is received simultaneously. Nevertheless, in CAN

4.1. System Structure 51

Figure 4.3: Transmission and Transmission Time of a Message

star the TTTs vary due to the repetition of message emission at the ports of the CAN star.

TMIs in the PSQ are prioritized by their identifiers such that a lower identifier has a higher
preference to provide an accurate simulation of a CAN system. This is because CAN uses
CSMA/CR that also priorities the lowest identifier of collided CAN frames at the transmission
medium.

The properties of the PSQ also imply that it is possible that TMIs of all MCEs can be pre-
sented in the system. If not, high priority TMIs can be blocked by low priority TMIs at a
subscriber because low priority TMIs can completely fill up the PSQ. Therefor the spots in the
PSQ are limiting each MCE to avoid starvation such that TMIs from all MCEs can be present in
the PSQs.

CAN Simulation Device

A subscriber that is attached to a communication medium (CAN star or CAN bus) and used as a
device to simulate a CAN subscriber is called CAN Simulation device (CSD). Figure 4.4 shows
a block diagram of a CSD. The Local Time Base unit triggers the TMI Trigger unit to generate
TMIs (see Subsection 4.1) that are moved to the Prioritized Send Queue unit. This Prioritized
Send Queue unit is used for queuing as explained in Section 4.1. The TMI to RMI Converter
unit catches incoming TMIs to convert them to RMIs as mentioned in Subsection 4.1. Such
objects are stored in the RMI Storage unit for further statistical evaluations. The COM Interface
is part of a CSD and the Error Check Unit observes the internal state of the COM Interface
to ensure the correct communication behaviour such that the CSD is an active member in the
CAN communication system (see Subsection 3.1) and no incoming TMIs are lost. The TX unit
converts TMIs from the SMS unit to frames and emits them to the communication medium. In
addition, the RX unit receives frames from the communication medium and converts them to
TMIs as exemplified in Section 4.1. The Receive Message Queue (RMQ) unit temporally stores
incoming TMIs from the RX unit until they are removed by the TMI to RMI Converter unit
as clearly described in Section 4.1. The Error Signalling unit detects errors upon transmission.
Furthermore, it also signals them to the transmission medium by error frames (see Subsection
3.1), turns off the communication (reduces communication privileges) as required by the CAN
standard, checks the RMQ for overruns and provides the internal state of the Communication
Interface to the Error Detection unit. The SMS unit stores a message to be transmitted via the

52 Chapter 4. System Model

Figure 4.4: Block Diagram of a CAN Simulation Device

communication medium.

The COM Interface provides communication services that are used in the CSD. The CSD
makes use of cycles to simulate a CAN device and each cycle is composed as follows:

• Error check phase to scan the Error Signalling unit for an erroneous state that is if the
COM Interface is switched off (has reduced communication privileges) due to errors or an
overflow at the RMQ at the COM Interface. If such an erroneous state is detected at the
Error Check unit the CSD has to stop its services and so the error check phase assures the
sound condition of a CSD as well as the not absent of incoming TMI in case of an overrun
at the RMQ.

• Listen phase to check the RMQ for incoming TMIs to empty the RMQ. TMIs from the
RMQ are converted to RMIs and placed in the RMI Storage by the TMI to RMI Converter.

• Sending phase to check the PSQ for TMIs. If the SMS is free and the PSQ is occupied the
TMI that was first in order in the PSQ will be moved to the SMS.

Each cycle starts with the error check phase, followed by the listen phase and continues with
the sending phase followed by the next cycle. Each cycle follows the same procedure. A cycle
is periodically interrupted by the local time base to determine TMIs that are placed to the PSQ
as described in Section 4.1. Therefore the generation of TMIs is independent from the emission
and reception behaviour of a CSD.

Test System

A test system consists of an arbitrary number of CSDs, a communication medium, a global
time base and a central unit. The central unit has a dual function, it evaluates statistical data

4.1. System Structure 53

and controls the behaviour of the CSDs and is therefore called Central Evaluation Unit (CEU).
The CSDs are attached to the communication medium and the global time base and the CEU
is connected to the CSDs. The test system simulates a CAN network by test rounds. The test
round is a process with a defined start and end and simulates a CAN network over time. The
CEU activates the CSDs at the start and monitors the sound condition of the system. Hence, the
CEU assures that each CSD ends a test round in time, that it starts simultaneously with other
CSDs, that it does not interrupt its services and that it is functioning properly. A test run consists
of a number of test rounds in order to evaluate a CAN network under different utilization or to
improve the statistical explanatory power of a test configuration. If the test system was impaired
during a test round a rerun has to be performed.

Statistical Data

The TTTs are fluctuating due to the internal states of the CSDs as well as the utilization of the
transmission medium. If there are queues in the PSQ the internal state of a CSD will be af-
fected in such a way that queuing results in jitter (the jitter is defined as the difference of the
total maximum transmission time and minimum transmission time) for the transmission times
of TMIs. The PSQ queues also interfere with the utilization of the communication medium and
other TMIs that were queued in other PSQs. If a TMI is emitted the communication medium
for all other TMIs that have to be sent off will be blocked and thus the TTTs for these TMIs
will increase. Furthermore, these TMIs that are waiting for transmissions reoccupy the commu-
nication medium. During the occupation of the communication medium TMIs can be triggered
that elongate the block time of the communication medium and so the TTTs will increase. In
contrast in a system without queued TMIs any single generated TMI will be delivered without
delay. Therefore the jitter can be dramatically increased even if the average system utilization
is low. In an Event-Triggered system these cases occur frequently because the communication
behaviour depends on statistical properties.

In addition, the TTTs of RMIs from each TMI can vary as the COM Interfaces are accessed
independently. Each TMI can be received differently in time at a particular CSD. Moreover, the
TTTs of RMIs of a TMI sent over a CAN star also vary due to reemissions. The fragmentation
of networks into subnetworks may also impact the internal states of all CSDs due to varying uti-
lization of the corresponding subnetworks. Therefore the following statistical data are evaluated
for each CSD in order to determine the timely behaviour during a test round as follows:

• Minimum transmission time for each MCE to determine the fastest transmission

• Maximum transmission time for each MCE to determine the slowest transmission

• Average transmission time for each MCE to determine the average transmission time

• Variance of the transmission time for each MCE to determine the distribution of transmis-
sion times for each message id

As mentioned in Section 4.1 TMIs may not be transmitted to all CSDs and so the number of
sent and received TMIs has to be counted to determine inconsistent broad casts and to determine

54 Chapter 4. System Model

the average utilization of the communication medium. The number of TMIs that are created but
not squeezed into a PSQ or that have not been sent off must be considered in order to detect
system overloads. Therefore the following statistical data are evaluated:

• The number of sent TMIs for each MCE

• The number of received TMIs at each CSD from each MCE

• The number of TMIs for each MCE that were created but not sent off (called send omis-
sions). Send omissions are defined as the sum of MONs and the number of TMIs that
were located in a PSQ at the end of a test round.

• The difference between the emitted TMIs and the received TMIs at each CSD (receive
omissions).

4.2 Experimental Model

In a test run MCEs are distributed over all CSDs and the behaviour of the test system is mainly
influenced by the ids of the MCEs. The reason for this is because the ids of the MCEs reflect the
priority of messages that are sent in a CAN network and send frequencies that are determined
by MINTs and RANDs of the MCEs. If nothing else is specified all times are indicated in µs.

Basic Definitions

There are n MCEs from 1 to n that are distributed over CSDs in such a way that a particular CSD
(Ramp CSD) owns a single MCE with the lowest or highest priority that is called Ramp MCE.
The remaining MCEs are evenly distributed over the remaining CSDs and therefore numbered
from 0 to m. In conclusion, in a test system m+1 CSDs exist and a CSD i has all MCEs with
identifiers (n-1)modulo i but not the Ramp MCE.

The MINT and RAND of a MCE i are marked by MINTi and the RANDi. A Start Min-
imum Interarrival Time (SMINT) that defines the MINT for the lowest priority MCE and a
Bandwidth Step (BSTEP) (difference between MINTs of MCE i and MCE i+1) generate the
MINTi of a MCE i for the first test round in a test run as follows:

MINTi = SMINT + (i− 1) ∗BSTEP (4.1)

In the following test rounds the MINTs of the MCEs are changed if the MINT is from the
Ramp MCE that is called Ramp Minimum Interarrival Time (RMINT). In this case the RMINT
of a test round j is denoted as RMINTj . The first test round in a test run obtains number 0. The
difference between RMINTj and RMINTj+1 is called Round Bandwidth Step (RSTEP) and
a RMINTj is defined for a test round j by the RSTEP as follows:

RMINTj = RMINT0 − j ∗RSTEP (4.2)

4.2. Experimental Model 55

A RANDi is defined by MINTi as follows:

RANDi = 2 ∗MINTi (4.3)

The average trigger time of a MCE i is called AV ERAGEi and corresponds to RANDi.
On average a TMI is triggered after the MINT that is half a RAND in addition to a stochastic
time quantum that is also half a RAND:

AV ERAGEi = MINTi +
RANDi

2
= RANDi (4.4)

To calculate the bandwidth consumption of a message the length of a data frame at the
transmission medium has to be estimated. In the test setup a payload of 8 byte is used. In
addition of the overhead in a CAN frame and the intermission time of 3 Bits that is required by
the CAN standard, a data frame consumes 131 Bits at OSI layer 2. Bit stuffing at OSI layer 1 can
be estimated to be 4 Bits and so the total CAN data frame requires 135 Bits at the transmission
medium. Therefore the bandwidth consumption in kbit/s for a TMI i (bandwidthi) is defined
as follows:

bandwidthi =

1
Averagei

∗ 135

1024
(4.5)

The bandwidth consumption of the entire CAN network is called
Total Bandwidth Consumption (TBAND) and is the sum of bandwidth consumption from all
TMIs:

TBAND =
n∑
i=1

bandwidthi (4.6)

Test Setups

To evaluate the properties of the CAN standard different configurations are chosen to compare
the behaviour of CAN networks under different conditions. The test setups consist of a CAN
bus that can be accessed by 4 or 8 CSDs at a network speed of 500 kbit/s. The granularity of
the local time base is 100 µs and of the global time base 0.0745 µs. The PSQ has a length of
32 entries for each MCE and a CSD i obtains 10 MCEs. Therefore in a test setup with 4 CSDs
there will be 31 MCEs and in analogy 71 MCES with 8 CSDs. Furthermore, each test round has
a duration of 10 s.

The basic utilization of each test run is 40 percent (determined by TBAND) and the test
systems are evaluated with a RSTEP of zero and a RSTEP of nonzero. A test run with a RSTEP
of zero evaluates a CAN network with a typical utilization of 40%[DBBL]. A number of test
rounds that are identically configured assures a significantly increased explanatory power. The
test run with a RSTEP of zero and 4 CSDs is called ’4 CSDs - No Ramp MCE’ and the test run

56 Chapter 4. System Model

Number of CSD Ramp MCE SMIN BSTEP RSTEP Test Rounds
4 0x1 8000 150 0 800
8 0x1 8000 600 0 800
4 0x1 8000 150 10 800
4 0x1f 8000 150 10 1250
8 0x1 8000 600 1 8000
8 0x47 8000 600 50 1000

Table 4.1: Test run configurations

with a RSTEP of zero and 8 CSDs is called ’8 CSDs - No Ramp MCE’. The variation in the
number of CSDs shows the impact of a different number of CAN devices on a communication
medium and a different number of messages (ids). Furthermore, a test run with a RSTEP of
nonzero simulates a CAN network under different utilizations. The test runs with RSTEP of
zero can then be compared with the test runs having a RSTEP of nonzero. Moreover, the test
run with the Ramp MCE with the highest priority and 4 CSDs is called ’4 CSDs - High Priority
Ramp MCE’ and the test run with the Ramp MCE with the highest priority and 8 CSDs is called
’8 CSDs - High Priority Ramp MCE’. In addition, the test run with the Ramp MCE with the
lowest priority and 4 CSDs is called ’4 CSDs - Low Priority Ramp MCE’ and the test run with
the Ramp MCE with the lowest priority and 8 CSDs is called ’8 CSDs - Low Priority Ramp
MCE’. The variation in the number of CSDs shows the impact of a different number of CAN
devices on a communication medium and a different number of messages (ids). Table 4.1 shows
all test runs and their specific configuration.

In all test runs the Ramp CSD only has a single MCE due to the architecture of the test
system. The Ramp CSD also eliminates the interconnections of the MCEs from a single CSD.
The Ramp MCE has the highest or lowest priority as CAN is a priority based system. The
increase in bandwidth of the Ramp MCE is correlated with to an elevated utilization that shows
the consequences of applying a CSMA/CR technique. A CAN star is not tested as this work
tries to focus on the CAN bus.

CHAPTER 5
Prototype Setup and Experiments

This chapter describes the structure of the prototype and the overall test system. In addition, the
design toolchain and the test system toolchain will be explained. Furthermore, the structure of
the timing model and experiments (test runs) will be outlined. Moreover, this chapter explains
the test data preparation that is used in Chapter 6.

5.1 Explanation of Structure

The evaluation of the CAN protocol is performed by a HIL-method (see Subsection 3.3). There-
fore the CAN bus including the CAN Transceivers (real hardware) interacts with the CSDs (con-
troller model) over time (see Figure 3.9). Note that the CAN Controllers are part of the CAN
bus/protocol and that they can be seen as part of the real hardware. Furthermore, the CEU con-
trols this process and evaluates the data (received from CSD) in order to generate statistical data
of the transmission time behaviour of CAN messages (see Subsection 4.1). The CSDs as well
as the CEU form a system that evaluates the CAN protocol. This system is placed onto a FPGA
(Altera Stratix III[Alt08]) and therefore this system is a SoC (see Subsection 3.4). Further-
more, the FPGA is part of the FPGA-prototype board that is a construction base for developing
FPGA projects. Each FPGA-prototype board provides additional hardware to the FPGA e.g.
I/O. In addition, each FPGA-prototype board provides a programming interface for the devel-
oper via a host computer. Thus a SoC that is placed onto the FPGA-prototype board to evaluate
the transmission time behaviour of the CAN protocol forms a prototype. Figure 5.1 shows the
architecture of the prototype and the overall test system. The prototype board communicates
via a High-Speed Mezzanine Cards (HSMC)-interface (an interface that supports signalling to
external devices[Alt08]) with the attached CAN Transceivers (Tr). The CAN Transceivers are
interconnected by two unshielded copper wires (bus) which are connected by two 120 Ω resis-
tors (see Subsection 3.1). Furthermore, the FPGA also communicates with a host computer via
a serial interface (an interface for a serial communication) in order to 1) setup the prototype, to
2) setup the configuration of each test round and to 3) store statistical data created by a run of a
test round.

57

58 Chapter 5. Prototype Setup and Experiments

Figure 5.1: Interfaces of the prototype

The SoC consists of IP cores (see Subsection 3.4) that implement the system features. The
system features are divided into blocks as follows:

• CAN Controllers (see Subsection 3.1) which are realized by IFI Avalon CAN
Modules[Ing09]. Each CAN Controller acts as a COM Interface.

• Message Buffers and each Message Buffer is realized as a self-developed IP core (written
in VHDL). Each Message Buffer also acts as a RMI Storage (see Subsection 4.1).

• TTSoC (see Subsection 3.4) that is placed on the FPGA. The TTSoC provides the global
time base (see Subsection 4.1) via its TISSes to the CPUs.

• CPUs which are realized by a Nios II/e CPU IP cores[Alt09]. Each CPU together with
its associated CAN Controller, Message Buffer, TISS and interrupt timer (local time base,
not shown in Figure 5.1, see Subsection 4.1) form a CSD (see Subsection 4.1). Each CSD
connects to a CAN Transceiver to interconnect the CSD with each other. Furthermore,
there are more IP cores connected to the CPUs (see Subsection 5.2).

• CEU (see Subsection 4.1) that is realized by a Nios II/f CPU IP core[Alt09]. The CEU
receives RMIs from the message buffers to calculate the statistical data of each test round.
Furthermore, the CEU controls each test round (not shown in Figure 5.1).

• Synch-Unit (not shown in Figure 5.1) that is memory to synchronize the CSDs by the
CEU. Each CSD does not act as an active communication member until the CEU writes
a code word into the Synch-Unit. The Synch-Unit is continuously read before the start

5.2. Explanation of Structure Elements 59

of each test round from all CSDs and a particular CSD starts to act as an active commu-
nication member if the codeword was read correctly. Thus from the point of view of a
particular CSD the test round starts by reading the correct codeword.

The IP cores are interconnected via the Avalon Interconnect (see Subsection 3.4). Further-
more, the CPUs (including the CEU) with their attached hardware (IP cores) form a Multipro-
cessor System-on-Chip. Furthermore, the prototype can be realized by an arbitrary number of
CSDs because the FPGA is reconfigurable (see Subsection 3.4). However the test runs always
use the same prototype configuration consisting of 8 CSDs. In test runs consisting of 4 CSDs
the remaining CSDs are switched off. Furthermore, the system frequency is set to 100 MHz.

5.2 Explanation of Structure Elements

This section describes the particular system components and the host computer in detail.

CAN Transceiver

A MCP2551-I/P[Mic03] is taken as a CAN Transceiver. The TX pin of the MCP2551-I/P con-
nects via a line of the HSMC-interface to the TX connector of the CAN Controller. The RX pin
of the MCP2551-I/P connects via a line of the HSMC-interface to the RX connector of the CAN
Controller. Note that this is not a direct wiring because there are two amplifier circuits between
the MCP2551-I/P and the connection to the HSMC-interface in order to obtain a proper voltage
level at the CAN Transceiver (5 V) and the HSMC-interface (2.5 V).

CAN Simulation Device

This Subsection describes the structure of the CSD for the prototype implementation. Each CSD
consists of a processor with attached IP cores.

Processor

The Nios II/e IP-Core processor is taken as a controller to perform the logical operations to
simulate the behaviour of a subscriber e.g. message generation. Furthermore, this processor
configuration was taken due the low consumption of logic. Each FPGA provides a limited
number of logic. Furthermore, the processor was extended by the IP cores beside the Message
Buffer, TISS, Interrupt Timer and CAN Controller as follows:

• JTAG UART that is communication interface to program the processor and for the infor-
mation exchange. Furthermore, the JTAG UART interacts with the serial interface such
that the JTAG UART is connected to a host computer (see Subsection 5.2). The JTAG
UART is used to program (the MCEs are configured during programming) the CSD.

• PLL to receive a proper system frequency.

• On-Chip memory to store the program of the processor and execution data.

60 Chapter 5. Prototype Setup and Experiments

• Synch-Unit (memory) to determine the start of each test round.

Message Buffer

The message buffer has two Avalon Memory Mapped Interfaces (see Subsection 3.4). The first
interface acts as a RMI storage of the CSD (access the interface to store RMIs) and the second
interface connects to the CEU in order to obtain the RMIs which were stored by the CEU in
the Message Buffer. The Message Buffer is realized as a ring buffer. Therefore the stored data
are placed in a queue and when the queue ends the following data is stored in first place of the
data queue. In addition, the CEU reads the data from the queue after the data was placed. Thus
data can be only overwritten if the corresponding data was loaded. Furthermore, the ring buffer
also acts for transmission of additional information about each MCE and for transferring control
information e.g. send number of each TMI.

TISS

A TTSoC (see Subsection 3.4) was placed onto the FPGA and each TISS of the TTSOC is
attached to the processor of each CSD. Each TISS is used to achieve time stamps from the
global time base for measuring time. At each creation of a message (TMI) a time stamp is taken
from the TISS of the sender. Upon at the reception of the message at a particular CSD (not the
sending CSD) a time stamp from the TISS of the corresponding receiver is taken. Hence the
transmission time can be calculated from the difference between these two time stamps.

Interrupt Timer

The interrupt timer is used to obtain the local time base.

CAN Controller

An IFI Avalon CAN Module was taken to serve as a CAN Controller. The CAN Controller is
the COM Interface (see Subsection 4.1) of the CSD and therefore it provides the SMS, RMQ
and Error Signalling (see Subsection 4.1). The SMS is realized by the FIFO transmission buffer
of the CAN Controller such that the FIFO transmission queue has a single entry. Moreover, the
RMQ is realized by the receive message queue of the CAN Controller. Furthermore, the CAN
Controller manages the CAN traffic as explained in Subsection 3.1. Moreover, the CAN Con-
troller accepts all received message. Therefore all received TMIs are accepted (see Subsection
3.1).

Behaviour of the CSD

The processor runs a main program (written in the C-programming language) and has additional
functions that enable it to act with its attached IP cores as CSD. Furthermore, the main program
starts with the configuration of the CAN Controller (COM Interface) with the desired speed. In
addition, the interrupt timer gets configured such that the local time base is adjusted. Moreover,
the first MTI of each CSD is calculated. The program continues with continuous reading of the

5.2. Explanation of Structure Elements 61

Synch-Unit and holds on until a desired code word is read. Furthermore, the CSD informs the
CEU via its message buffer about its start time (global time base) and starts the local time base.
At this time point the main loop starts.

The main loop runs as described in the Listing 5.1

Listing 5.1: Main loop of the CSD

s t a r t = g e t _ t i m e () ; /∗ g e t s t a r t ime of t e s t round
(g l o b a l t ime base) ∗ /

w h i l e (g e t _ t i m e ()− s t a r t <= TEST_ROUND_TIME) / / t e s t round d u r a t i o n
f o r (i = 0 ; i < MCE_ON_CSD; i ++) / / f o r each MCE i

i f (CAN_error ())
e r r o r _ h a n d l i n g (CAN_ERROR) ; / ∗
E r r o r check u n i t ∗ /

e l s e i f (TMI_ar r ived ()) { / / TMI a r r i v e d
r e c e i v e () ; /∗
r e c e i v e TMI and c r e a t e RMI∗ /
b r e a k ; / ∗ s t a r t w i th h i g h e s t p r i o r i t y
MCE∗ /

}
e l s e i f (SMS_ful l ()) / / Check SMS t o be f r e e

b r e a k ; / / s t a r t w i th h i g h e s t p r i o r i t y MCE
/∗ check PSQ f o r TMIs o f t h e a c t u a l MCE∗ /
e l s e (MCE[i] . r e a d e r != MCE[i] . w r i t e r) {

/∗ push TMI i n t o SMS∗ /
send_TMI (i ,MCE[i] . t ime_s t amp \
[MCE[i] . r e a d e r]) ;
MCE[i] . r e a d e r ++;
MCE[i] . r e a d e r%=QUEUE_LENGTH;
/∗ i n c r e m e n t send number o f
t h e a c t u a l MCE∗ /
MCE[i] . send_number++
b r e a k ; / / s t a r t w i th h i g h e s t p r i o r i t y MCE

}

The main loop starts at the beginning of the test round and finishes at the end of the test round.
MCEs are checked for triggered TMIs according to their priorities. Furthermore, each loop run
(MCE check) starts with a control of the CAN Interface to guarantee that the CAN Controller
is in the Error Active state (see Subsection 3.1). If the CAN Controller is not in the Error
Active state, the test round is aborted and the CEU is informed by the error_handling-function.
Therefore the error_handling-function realizes the Error Check unit of the CSD.

After a successful error check phase the RMQ is checked for received TMIs and if a TMI is
received, the receive-function (see Listing 5.3) transforms the TMI into a RMI, places it into its
message buffer (RMI Storage) and the main loop continues at the start.

62 Chapter 5. Prototype Setup and Experiments

If the RMQ was empty, the SMS will be checked for vacancy. If the SMS is not free, the
loop continues at the start.

In case that the SMS was empty the PSQ corresponding to the actual MCE is checked for
triggered TMIs. The PSQ it self is realized as numbers of ring buffers. Each MCE has its own
ring buffer and during the run of the loop coordinated by the priorities of the MCEs, the PSQ is
realized as explained in Subsection 4.1. Furthermore, the ring buffer itself consists of a number
of entries for time stamps from the global time base. At the generation of a TMI (see Listing
5.2) the current time stamp is moved into the ring buffer and the corresponding write counter
will be incremented or reset to the first position. If a time stamp is taken from the ring buffer,
the corresponding read counter will be incremented or reset to the first position. Furthermore,
the loop count (MCE number) implies the id of the TMI. If the PSQ is not empty for the corre-
sponding MCE (the MCE with lower priority was checked before) the first entry will be taken.
This process is determined by the read counter position. This entry will therefore be moved in
the SMS with the id of the TMI. Furthermore, the send number of the corresponding MCE is
incremented and the loop continues at the start.

After the end of the main loop the COM Interface is checked for TMIs which arrives after
the round end. These TMIs are also transformed into RMIs and placed into the Message Buffer
(RMI Storage) by the receive-function. Moreover, the send omissions and send numbers of the
MCEs of the particular CSD are submitted to the CEU. After this information transfer the CEU
is informed of the completion of the corresponding CSD. These informations are placed into the
message buffer.

The behaviour of the TMI trigger unit is shown in Listing 5.2. The TMI trigger unit is
realized as an interrupt service routine and raises as defined by the time quantum of the local time
base (interrupt interval). Furthermore, the MTI (see Subsection 4.1) is checked for each MCE. If
a particular MTI advances to zero, the PSQ is checked for an empty entry of the corresponding
MCE. If there is an empty entry, the TMI is moved into the PSQ. As mentioned above the PSQ
is realized by a number of ordered ring buffers. Each TMI is moved into the PSQ and therefore
in the corresponding ring buffer according to the storage of the actual time stamp of the global
time base at the first free entry. If it is free, the time stamp is copied into the ring buffer and the
corresponding write counter is incremented by 1 or reset to 0. The id of the TMI is implied by the
MCE (data structure). Furthermore, if the PSQ is full, the corresponding MON is incremented
and the latest time stamp is not taken into account. Furthermore, if the MTI is not zero, it gets
advanced in time by the time quantum of the local time base (subtraction).

5.2. Explanation of Structure Elements 63

Listing 5.2: IRQ of the CSD
f o r (i = 0 ; i < MCE_ON_CSD; i ++) / / f o r each MCE i

/∗ check MTI of each MCE∗ /
i f (MCE[i] . s e n d _ t i m e < = 0) { / / MTI advanced t o z e r o

/∗ c a l c u l a t e n e x t MTI∗ /
MCE[i] . s e n d _ t i m e = rand ()%MCE[i] .RAND;
MCE[i] . s e n d _ t i m e += MCE[i] . MINT ;
MCE[i] . s e n d _ t i m e −= TIME_QUANTUM ; / / advance t ime
/∗ push TMI i n t o PSQ∗ /
i f (MCE[i] . w r i t e r +1)%QUEUE_LENGTH != \

MCE[i] . r e a d e r) {
MCE[i] . t ime_s t amp [MCE[i] . w r i t e r] = \
g e t _ t i m e () ;
MCE[i] . w r i t e r ++;
MCE[i] . w r i t e r%=QUEUE_LENGTH;

}
e l s e

/∗PSQ f u l l f o r t h a t MCE∗ /
MCE[i] . s e n d _ o m i s s i o n s ++;

}
e l s e

MCE[i] . s e n d _ t i m e −= 1 0 0 ; / / advance MTI i n t ime

The behaviour of the TMI to RMI Converter unit (receive-function) is shown in Listing 5.3.

Listing 5.3: Receive function of the CSD
vo id r e c e i v e () {

/∗ g e t r e c e i v e t ime (g l o b a l t ime base) ∗ /
r e c e i v e _ t i m e = g e t _ t i m e () ;
rece ive_TMI (& i , s e n d _ t i m e) ; / / g e t TMI from RMQ

/∗ message b u f f e r check such t h a t t h e r e i s no d e l a y ∗ /
i f (f r e e _ m e s s a g e _ b u f f e r)

/∗ c r e a t e RMI and push i t i n t o RMI s t o r a g e ∗ /
w r i t e _ m e s s a g e _ b u f f e r (C0 , r e c e i v e _ t i m e , \
send_ t ime , i) ;

e l s e
/∗ i n fo rm CEU a b o u t e r r o r ∗ /
e r r o r _ h a n d l i n g (RMI_STORAGE_ERROR) ;

}

After the detection of a TMI in the RMQ the receive-function is called. The receive-function
takes the first TMI from the RMQ and attaches the actual time stamp of the global time base.
Therefore a RMI is created (see Subsection 4.1). Next, the message buffer is checked for ac-
cessibility. If this event does not occur, the error-handling-function will inform the CEU about

64 Chapter 5. Prototype Setup and Experiments

an error. This technique guarantees that the RMI Storage unit (CEU) does not affect the timing
behaviour of the CSD e.g. send and receive TMIs. If the check up of the accessibility of the
message buffer was successful, the corresponding RMI will be pushed into the message buffer
(RMI storage).

Central Evaluation Unit

This Subsection describes the structure of the CEU in the prototype implementation. The CEU
consists of a processor with attached IP cores.

Processor

The Nios II/f IP-Core processor is taken as a controller to perform logical operations in order to
1) receive RMIs from the CSDs, to 2) control the overall MPSoC system (see Subsection 3.4),
to 3) create the statistical data of the transmission time behaviour (see Subsection 4.1) and 4)
to send the statistical data to the host computer. Furthermore, this processor configuration was
taken because the Nios II/f is the fastest processor of the Nios II-Family. The CEU has to receive
RMIs from up to 8 CSDs and a message buffer overrun denotes an erroneous system. Thus the
CEU has to react fast and hence a fast CPU-type is required. In addition, the CEU evaluates the
statistical data and a fast CPU reduces the time for such computations and therefore the total test
run time. Furthermore, the processor was extended by the IP cores as follows:

• JTAG UART that is used to program the CEU with additional parameters. In addition, the
JTAG UART is used to transmit the calculated statistical data to the host computer.

• PLL to receive a proper system frequency.

• On-Chip memory to store the program of the processor and execution data.

• Synch-Unit to start the CSDs in parallel (synchronization of CSDs).

• Message Buffer to receive the RMIs from the CSDs, statistical send data of each MCE
and control information from each subscriber e.g. start time of the test round. Each CSD
connects to a separate message buffer that is connected to the CEU.

• DDR2-Memory (memory-controller) to store the received RMIs during the test round.

• Interrupt Timer to assure that each CSD completes (not stuck) in time.

Behaviour of the CEU

The processor runs a main program (written in the C-program language) and additional func-
tions in order to act with its attached IP cores as CEU. Furthermore, the main program starts
with the configuration of the interrupt timer. Moreover, the CEU activates all CSDs by writing a
code word into the Synch-Unit-unit and continues with the activation of the interrupt timer. At
this time point the main loop starts.

5.2. Explanation of Structure Elements 65

The main loop runs as described in the Listing 5.4. The main loop runs until each CSD sends
its finish signal. Furthermore, the message buffer is read by the read_message_buffer-function
in order to receive RMIs, statistical data and control signals. A specific signal is determined by
a code word, that is stored with the corresponding data in the message buffer e.g. C0 means,
that the corresponding data forms a RMI. Furthermore, the write_DDR2-function stores a RMI
in the DDR2-memory. In addition, the store_MCE_stat-function stores send omissions and send
number of each MCE. Moreover, the start_time-array is used to store the start time of each
CSD. Furthermore, the error_handling-function performs the exception handling to inform the
host computer about errors e.g. a CSD is not in the Error Active state.

Listing 5.4: Main loop of the CSD

run = 1 ; / / run p a r a m e t e r o f main loop
end_coun t = 0 ; / / how many CSD have comple t ed

w h i l e (run)
f o r (i =0 ; i < CSD_NUMBER; i + +) / / check each CSD

i f (m s g _ b u f f e r [i] . f i l l e d ()) { / / Data a v a i l a b l e
/∗ r e a d message b u f f e r ∗ /
r e a d _ m e s s a g e _ b u f f e r (w1 , w2 , w3 , w4) ;

i f (w1==C0) / / RMI
write_DDR2 (w2 , w3 , w4) ;

e l s e i f (w1 == C1) / ∗
send o m i s s i o n s , e t c . ∗ /

s t o r e _ M C E _ s t a t (w2 , i) ;
/∗ S t a r t t ime from each CSD∗ /
e l s e i f (w1 == C2)

s t a r t _ t i m e [i] = w2 ;
/∗ FIN s i g n a l from each CSD∗ /
e l s e i f (w1 == C3) {

end_coun t ++;
i f (end_coun t == CSD_NUMBER)

run = 0 ;
}
/∗CSD i n f o r m s CEU a b o u t an e r r o r ∗ /
e l s e i f (W1 == C4)

e r r o r _ h a n d l i n g (w2) ;
e l s e

/∗ some th ing u n e x p e c t e d ∗ /
e r r o r _ h a n d l i n g \
(UNEXP_MSG_FORMAT) ;

}

66 Chapter 5. Prototype Setup and Experiments

After the end of the main loop, the interrupt timer is turned off. If the main loop does not
interrupt, the interrupt timer does not get switched off. Therefore an IRQ raises such that the
host computer gets informed about the erroneous state (stuck CSD). Furthermore, the Synch-
Unit gets reset for the next test round. Next, the RMIs are checked for their identifiers such
that each identifier is a MCE id. In addition, all RMIs that were sent after the test round end
are removed. The test round end is the sum of the latest start time of the start_time-array (see
Listing 5.4) and the test round time. Furthermore, the statistical data are calculated as defined
in Subsection 4.1 and transmitted to the host computer. In addition, the CEU sends the start and
end times of the test round and the removed RMIs to the host computer.

Host Computer

The host computer in the actual implementation is a personal computer and uses a Unix operat-
ing system (Linux) to manage the whole design process as well as the experiments. Furthermore,
each test run is setup and managed by a host computer. Therefore the number of test rounds, def-
inition of the RAMP MCE, number and definition of MCEs, number of CSDs, SMINT, BSTEP
and RSTEP (configuration of all MINTs and RANDs for each test round - see Subsection 4.2),
definition of the granularity of the local time base and global time base, setup of the CAN Con-
troller (COM Interface) and test round time are defined via the host computer. Furthermore, the
host computer controls each test round. Therefore the host computer sets up each CSD (pro-
gramming) and the CEU (programming) and starts each CSD and the CEU according to the
serial interface. Therefore each test round gets configured and the particular test round starts
(the test round itself is managed by the CEU). After a test round is completed the host computer
receives the statistical data from the CEU by the serial interface. Furthermore, the host computer
prepares the statistical data from each test round and therefore for each test run for the user.

5.3 Experimental Process

The experimental process is split into a design process, generation phase, run phase and analysis.

Design Process

The hardware design process is managed by the ALTERA Quartus II software. The ALTERA
Quartus II software is a FPGA design software to create the hardware description from a textual
description (d hardware synthesis)[Alt12]). Furthermore, the ALTERA Quartus II software in-
cludes the Altera System on a Programmable Chip (SOPC) Builder software. The SOPC builder
is a software that provides the automatic connection of IP cores and the configuration of IP
cores[Alt11b]. Furthermore, the architecture of the test system is build up by the SOPC builder
e.g. configuration of IP core processors and connection of these processors to their associated IP
cores. In addition, the overall FPGA design is managed by Quartus II. In the design process the
system prototype is generated by Quartus II (hardware synthesis). Furthermore, in this phase the
granularity of the global time base is set. In addition, the frequency of the test system is defined.

5.3. Experimental Process 67

Generation Phase

When the hardware synthesis is completed the test runs can be performed on the hardware plat-
form. Each test run requires data such that the number of test rounds and CSDs are defined.
Each CSD has a number of MCEs in each test round and the configuration data of the CAN
Controller is provided. These test data are generated by a self-written JAVA program called
GEN_MSG_EXCELL that executes at the host computer. In this program the SMINT, BSTEP,
RSTEP, number of test rounds (if RSTEP is zero), number of CSDs, number of MCEs, id of the
RAMP MCE, location of the RAMP MCE (RAMP CSD), duration of the test round time and the
configuration data of the CAN Controller have to be set. The GEN_MSG_EXCELL program
generates a text file (called CAN_DATA.txt) that is used for each test round of a test run.

Run Phase

After the generation of the CAN_DATA.txt file the run phase can continue. Each run phase can
be repeated for multiple times but each test run will be configured with the same test run data.
Each test run is controlled by a script called linux_testrun_script.sh that executes at the host
computer. In the script the start test round and the end test round have to be defined in order
to determine the bandwidth interval of the test run. Furthermore, the assumed utilization of the
test system in each particular test round can be observed in two EXCEL-sheets (Excel is a table
calculation software) called 4nodes.xlsx (4 CSDs) and 8nodes.xlsx (8 CSDs). These two Excel
sheets calculate TBAND for each test round. Moreover, the script runs in the loop that starts at
the start of the test round and ends at the end of the test round.

In each test round a program called MSGATR_BUILDER executes at the host computer.
The MSGATR_BUILDER-program reads the CAN_DATA.txt file (overhanded by the script)
in order to chose the particular test round in the text file (the test round number is overhanded
by the script) and extracts these data into the header files of the main programs of each CSD
and the CEU. The header file of each CSD consists of the MCE data (id, MINT and RAND),
duration of the test round (in ticks of the global time base), definition of interrupt interval of
the local time base and configuration data of the CAN Controller (prescaler, PHASE_SEG1 and
PHASE_SEG2 - see Subsection 3.1). In addition, the header file of the CEU consists of the
time-out of the interrupt timer in order to detect stuck nodes, duration of the test round to detect
RMIs which were received after the test round end, ratio of the global time base in µs and num-
ber of CSDs (to switch off unused CSDs if a particular test run consists of 4 CSDs).

The script overhands the log-directory (directory where the statistical data from each test
round is stored) to the MSGATR_BUILDER-program that generates the startup-script (script
that runs after the call of the command line tool, called usherbash.rc) of the Nios II Command
Shell. The Nios II Command Shell is a shell that is used to manage the complete design process
of the FPGA-prototype board e.g. hardware synthesis and programming of processors placed
onto the FPGA[Alt11b]. Furthermore, the startup-script of the Nios II Command Shell consists
of the compile command and download of each program of the CSD and of the CEU. In addition,

68 Chapter 5. Prototype Setup and Experiments

the startup-script defines a call of a terminal in order to listen to the CEU via the serial interface
of the FPGA-prototype board to receive the statistical data of each test round. These data will
be stored in a log file (one log file for each test round) in the log directory. This terminal runs
for an intended time as defined in the startup-script (duration of the test round in addition to an
extra time budget for completion) e.g. to calculate the statistical data. After the completion of
the MSGATR_BUILDER-program the Nios II Command Shell is called by the script that runs
the main loop. Furthermore, the Nios II Command Shell executes as defined in the startup-script
and terminates after the reception of the statistical data (defined by the duration and the extra
time budget). After the termination of the Nios II Command Shell the main loops continues at
the start with the next test round or interrupts due to the end of the test run or test run interval.

Analysis

After the completion of a test run a Java program (called Preproc) is used to extract the statistical
data of the logging files into Excel sheets as follows:

• "bandwidth.csv" that lists the average utilization of the transmission medium for each test
round. Therefore the number of total sent TMIs are summed up, multiplied by the frame
length of a CAN frame and divided by the test round duration in seconds.

• "broken.csv" that lists all erroneous test rounds.

• "msg_atr.csv" that lists the MINT, RAND, send omissions and number of send TMIs of
each MCE.

• "rec_stat.csv" that lists the average transmission time, maximum transmission time, min-
imum transmission time, receive omissions and the variance of the transmission times of
each MCE for each test round. Furthermore, the MCEs are related to their CSD.

• "sen_id_list.csv" that lists all MCE ids in respect to the CSD that used the corresponding
MCE.

Furthermore, the sheets can be limited by the MCE ids as defined by the user.

5.4 Experiments

The timing model is based on event triggered messages which are periodically send in variable
intervals. The messages of the timing model are artificially created in order to simulate real
world applications (see Subsection 4.1). Furthermore, the transmission times of messages are
important as they are hardly influencing the dead lines of processes because processes require
information to fulfill[Kop97, P. 227 FF]). In general, it is impossible to model a CAN network
perfectly. There are many parameters such as overload frames, arbitration, process executions
that vary in time, etc. Furthermore, a test system that simulates processes which emit messages
via a (real) CAN network will give accurate timings due to statistical probability.

5.4. Experiments 69

The prototype provides the simulation of processes and each process emits a message at the
end of its duration. In addition, the change of the execution time of a task during the run time
is simulated by the RAND of a MCE that simulates such a process. Furthermore, the prototype
provides any timely behaviour of the simulated processes and the emission of messages but not
request messages. However in the current implementation the message priority is coupled to the
sending frequency and thus periodic messages are used. Though it is possible to emulate spo-
radic messages and a particular sporadic message can be created by a high MINT in combination
with a RAND that is one (n modulo 1 is always 0).

The test runs without a RAMP MCE are used to exploit the network with a typical utilization
of 40%. Furthermore, test runs with a high priority MCE are used to determine the impact of
overload conditions. In order to show the impact of a higher utilization the analysis of the test
runs with a high priority MCE is split into bandwidth intervals (200 - 230 kbit/s, 230 - 300 kbit/s
and 300 - 350 kbit/s). Furthermore, the test runs with a low priority MCE show the impact of
the uninterruptedness of message transmissions.

Each test run consists of many test rounds and at the end of each test round statistical data
are created (see Subsection 4.1). Thus the data volume has to be compressed to illustrate the
behaviour of the network. Therefore the statistical data of each round is used to create statistical
data (meta statistic) of the test run. The meta statistic constitutes as follows:

• Average send frequency of the TMIs: The emitted TMIs per MCE of each test round are
summed up and divided by the number of test rounds.

• Total minimum send frequency of the TMIs: The minimum number of sent TMIs of a
MCE during a test round. This attribute is determined for all test rounds.

• Total maximum send frequency of the TMIs: The maximum number of sent TMIs of a
MCE during a test round. This attribute is determined for all test rounds.

• Mean deviation of the send frequencies: The mean deviation is calculated for each MCE

and is made up by the following formula:
√

1
n−1 ∗

∑
(xi − x) where n is the number of

test rounds, xi is the number of sent TMIs of a MCE T in test round i and x is the average
send frequency of MCE T.

• Average transmission time: The average of the average transmission times of of a MCE
of all test rounds.

• Average maximum transmission time: The average of the maximum transmission times
of a MCE of all test rounds.

• Total maximum transmission time: The denotation of the longest maximum transmission
time of a MCE of all test rounds.

• Message transmission time jitter: The difference between the total maximum transmission
time and the total minimum transmission time. The total minimum transmission time is
the denotation of the fastest transmission time of a MCE of all test rounds.

70 Chapter 5. Prototype Setup and Experiments

• Total maximum transmission time of a CSD: The denotation for the longest transmission
of all total maximum transmission times of a CSD.

• Deviation of the average transmission times: The mean deviation is calculated for the av-

erage transmission time of each test round by the following formula:
√

1
n−1 ∗

∑
(xi − x)

where n is the number of test rounds, xi denotes the average transmission time of a MCE
T in test round i and x denotes the average transmission time of all test rounds of MCE T.

• Deviation of the maximum transmission times: The mean deviation is calculated for the
maximum transmission time by the following formula:

√
1

n−1 ∗
∑

(xi − x) where n is
the number of test rounds, xi denotes the maximum transmission time of a MCE T in test
round i and x denotes the average maximum transmission time of all test rounds of MCE
T.

• Measured average variance of the transmission times: The average of the variances of the
transmission times for each MCE of all test rounds.

• Deviation of the measured variances of the transmission times: The mean deviation is
calculated for the variances of the transmission times by the following formula:√

1
n−1 ∗

∑
(xi − x) where n is the number of test rounds, xi denotes the variance of the

transmission times of MCE T in test round i and x is the measured average variance of
the transmission times of MCE T.

CHAPTER 6
Results

This Chapter presents the results of the test runs. Furthermore, 1024 bits equals 1 kbit. Note
that the calculation of the bandwidth consumption is always based on a frame length of 131 bits
and that the utilization is always higher due to bit stuffing. Furthermore, there were not receive
omissions in any test run.

6.1 4 CSDs - No Ramp MCE

This Subsection presents the results obtained by the test run with 4 CSDs and a RSTEP of zero.

Network Utilization

Table 6.1 shows the average send frequency of the TMIs (mean), the total minimum send fre-
quency of the TMIs (min), the total maximum send frequency of the TMIs (max) and the mean
deviation of the send frequencies of the TMIs (deviation) of the highest and lowest priority MCE
of each CSD (the Ramp CSD has a single MCE) for the complete test run.

As defined in Chapter 4 the send frequencies correlate with the priorities of the MCEs.
In addition, the deviation is small and fits the value of the mean. Therefore the CAN network
demonstrates a good average send behaviour. Furthermore, on average 1533 TMIs/s were totally
send in each round and therefore the bandwidth utilization was 196 kbit/s. Thus the communi-
cation medium has an average load of 39.2%. Moreover, 12,261,320 TMIs were totally send
during the test run. Therefore in the average 15,326 TMIs were send during each test round.

Average Transmission Times

Table 6.2 shows the average transmission time (arithmetic mean), the average maximum trans-
mission time (average maximum), the total maximum transmission time (total maximum) and
the message transmission time jitter (jitter) of the highest and lowest priority MCE of each CSD
(the Ramp CSD has a single MCE).

71

72 Chapter 6. Results

id mean(messages/round) min max deviation(messages/round)
0x1 622.26 601 649 7.46
0x2 611.06 589 636 7.26
0x3 600.24 575 624 6.81
0x4 589.09 568 612 6.99

0x1d 408.73 386 430 5.86
0x1e 403.7 387 424 5.72
0x1f 398.73 381 415 5.67

Table 6.1: Mean, minimum, maximum and standard deviation of the send behavior of a test
system with 4 CSDs and a RSTEP of zero

id arithmetic mean(µs) average maximum(µs) total maximum(µs) jitter(µs)
0x1 495.12 852.8 991 686
0x2 538.67 1591.75 3051 2746
0x3 542.93 1668.11 3051 2746
0x4 544.52 1722.4 4119 3814

0x1d 655.44 2426.9 4043 3662
0x1e 661.43 2530.55 4119 3738
0x1f 669.44 2596.73 4348 4043

Table 6.2: Mean and maximum statistics of the transmission times of a test system with 4 CSDs
and a RSTEP of zero

The arithmetic mean and average maximum hardly correlate to the priority of the MCEs.
Therefore a lower priority leads to a longer average transmission time but a higher priority does
not guarantee that a MCE has a better total maximum and jitter than a lower priority MCE.
Moreover, the priority of a MCE does not exactly reflect the order of the total maximum and
jitter but a correlation exists. Furthermore, the jitter, total maximum and average maximum of
MCE 0x1 are limited compared to the other MCEs. Moreover, the arithmetic mean linearly in-
creases with the MCE priority and the average maximum raises also linearly (except MCE 0x1)
but with a higher gain.

Table 6.3 shows the total maximum transmission time for each CSD (CSDR denotes the
Ramp MCE) and the MCEs which generated the total maximum transmission times. The total
maximum transmission time over all MCEs (worst total maximum transmission time) is 4348
µs and the total maximum transmission times are similar. Furthermore, a higher MCE priority
does not guarantee a low total maximum transmission time. This is exemplified by the MCE
0x11 that has the slowest total transmission time of CSD 0. CSD 0 has 10 MCEs and MCE 0x11
has the 4th highest priority.

6.2. 8 CSDs - No Ramp MCE 73

CSDR CSD0 CSD1 CSD2
MCE 0x1 0x11 0x1b 0x1f

total maximum(µs) 991 4119 4272 4348

Table 6.3: Total maximum transmission times of each CSD of a test system with 4 CSDs and a
RSTEP of zero

id mean deviation(µs) max deviation(µs) average var(µs) var deviation(µs)
0x1 4.49 53.78 9751.5 594.38
0x2 5.67 313.47 18590.25 3122.31
0x3 5.93 346.62 20841.24 3698.65
0x4 6.28 389.9 22600.21 4320

0x1d 13.91 393.86 82050.13 13332.85
0x1e 14.75 415.05 90232.17 16035.4
0x1f 16.02 437.17 96308.23 17639.85

Table 6.4: Variance statistics of the transmission times of a test system with 4 CSDs and a
RSTEP of zero

Deviations of the Transmission Times

Table 6.4 shows the deviation of the average transmission times (mean deviation), the devia-
tion of the maximum transmission times (max deviation), the measured average variance of the
transmission times (average var) and the deviation of the measured variances of the transmission
times (var deviation) of the highest and lowest priority MCE of each CSD (the Ramp CSD has a
single MCE).

The MCE priority hardly correlates with each deviation and with the average variance of the
transmission times. Furthermore, a lower priority yields to a higher deviation/variance. More-
over, the max deviation of all MCEs except MCE 0x1 are close to each other. The dispersions
are hardly limited for MCE 0x1 and verify the small jitter of MCE 0x1 in Table 6.2. Moreover,
the dispersions of MCE 0x1 are very limited when compared to the other MCEs and the statis-
tical values. In contrast, the mean deviation of the other MCEs are significantly increased when
compared to MCE 0x1.

6.2 8 CSDs - No Ramp MCE

This Subsection presents the results obtained by the test run with 8 CSDs and a RSTEP of zero.

Network Utilization

Table 6.5 shows the average send frequency of the TMIs (mean), the total minimum send fre-
quency of the TMIs (min), the total maximum send frequency of the TMIs (max) and the mean
deviation of the send frequencies of the TMIs (deviation) of the highest and lowest priority MCE
of each CSD (the Ramp CSD has a single MCE) for the complete test run.

74 Chapter 6. Results

id mean(messages/round) min max deviation(messages/round)
0x1 621.96 599 645 7.22
0x2 579.04 561 599 6.71
0x3 541.48 518 560 6.73
0x4 508.38 488 531 6.31
0x5 479.09 462 506 6.12
0x6 452.89 432 473 6.27
0x7 429.58 414 447 5.81
0x8 408.26 389 428 5.78

0x41 107.13 98 115 2.88
0x42 105.88 96 118 3.06
0x43 104.32 96 112 2.94
0x44 103.23 94 112 2.97
0x45 101.88 93 110 2.86
0x46 100.57 92 110 2.91
0x47 99.55 90 110 3.06

Table 6.5: Mean, minimum, maximum and standard deviation of the send behavior of a test
system with 8 CSDs and a RSTEP of zero

As defined in Chapter 4 the send frequencies correlate with the priorities of the MCEs. In
addition, the deviation is small and fits the value of the mean. Therefore the CAN network shows
a good average send behaviour. Furthermore, on average 1557 TMIs/s were totally send in each
round and therefore the bandwidth utilization is 199.2 kbit/s. Thus the communication medium
has an average load of 39.8%. Moreover, 12,455,560 TMIs were totally send during the test run.
Therefore on average 15,569 TMIs were send in each test round.

Average Transmission Times

Table 6.6 shows the average transmission time (arithmetic mean), the average maximum trans-
mission time (average maximum), the total maximum transmission time (total maximum) and
the message transmission time jitter (jitter) of the highest and lowest priority MCE of each CSD
for the complete test run (the Ramp CSD has a single MCE).

The arithmetic mean and average maximum hardly correlate with the priority of the MCEs.
The arithmetic mean of MCE 0x41 is slightly increasing up MCE 0x42 and the average maxi-
mum of MCE 0x3 is marginally raising up MCE 0x4. The same is true for MCE 0x7 up to MCE
0x8. However a lower priority typically leads to a longer average transmission time and the gain
of the arithmetic means linearly increase with the priority of the MCEs.

Furthermore, the total maximum and therefore jitter of the MCEs are weakly correlating.
For example, the total maximum of MCE 0x3, that has the third highest priority, has about the
same total maximum as the lowest priority MCEs in the test run. However high priority MCEs
typically have lower total maximum transmissions in contrast to low priority MCEs. Further-
more, the jitter as well as the other statistical values except for the arithmetic mean of MCE

6.2. 8 CSDs - No Ramp MCE 75

id arithmetic mean(µs) average maximum(µs) total maximum(µs) jitter(µs)
0x1 497.59 843.74 991 686
0x2 535.25 1609.01 3966 3661
0x3 538.74 1629.32 5492 5187
0x4 539.42 1620.37 4577 4272
0x5 541.97 1639.13 3890 3585
0x6 544.55 1650.94 4806 4501
0x7 547.7 1685.78 4424 4119
0x8 549.97 1676.42 4348 4043

0x41 687.5 2456.45 4729 4348
0x42 687.09 2479.16 5950 5569
0x43 690.8 2515.57 5492 5111
0x44 692.76 2542.68 5492 5111
0x45 696.62 2558.96 5187 4806
0x46 699.32 2630.96 6789 6408
0x47 704.79 2664.9 6026 5645

Table 6.6: Mean and maximum statistics of the transmission times of a test system with 8 CSDs
and a RSTEP of zero

CSDR CSD0 CSD2 CSD3 CSD4 CSD5 CSD6 CSD7
MCE 0x1 0x25 0x42 0x43 0x3d 0x3e 0x46 0x47

total maximum(µs) 991 5340 5950 5492 6026 5645 6789 6026

Table 6.7: Total maximum transmission times of each subscriber of a test system with 8 CSDs
and a RSTEP of zero

0x1 are very limited when compared to the other MCEs and for the other MCEs these statistical
values are significantly increased when compared to MCE 0x1.

Table 6.7 shows the total maximum transmission time for each CSD (CSDR denotes the
Ramp CSD) and the MCEs which generated the total maximum transmission times. The worst
total maximum transmission time is 6789 µs and the total maximum transmission times are sim-
ilar. Furthermore, a higher MCE priority does not guarantee a low total maximum transmission
time. This is shown MCE 0x25 that has the slowest total transmission time of CSD 0. CSD 0
has 10 MCEs and MCE 0x25 has the 6th highest priority. However MCE 0x25 has the fastest
total maximum transmission times of all MCEs that generate the total maximum transmission
times for each CSD but not the Ramp MCE.

Deviations of the Transmission Times

Table 6.8 shows the deviation of the average transmission times (mean deviation), the devia-
tion of the maximum transmission times (max deviation), the measured average variance of the
transmissions times (average var) and the deviation of the measured variances of the transmis-

76 Chapter 6. Results

id mean deviation(µs) max deviation(µs) average var(µs) var deviation(µs)
0x1 4.2 52.35 9625.35 591.16
0x2 5.23 451.68 15912.26 3819.27
0x3 6.05 524.74 17237.32 4944.44
0x4 6.24 459.22 18177.68 4294.09
0x5 6.4 453.44 19475.28 4493.92
0x6 6.84 501.25 20780.73 5448.67
0x7 7.14 484.78 22309.52 5504.46
0x8 7.45 470.47 23859.65 6178.91

0x41 33.48 562 125588.6 46334.91
0x42 35.69 607 128565.76 51685.28
0x43 36.9 614 133120.8 51638.88
0x44 35.55 633.59 136989.19 54100.41
0x45 35.68 630.54 141722 54197.74
0x46 37.86 739.15 149165.64 64633.01
0x47 38.51 678.8 152279.21 61217.02

Table 6.8: Variance statistics of the transmission times of a test system with 8 CSDs and a
RSTEP of zero

sion times (var deviation) of the highest and lowest priority MCE of each CSD for the complete
test run (the Ramp CSD has a single MCE).

The MCE priority tightly correlates with the mean deviation. The mean deviation of MCE
0x42 is slightly increasing up to MCEs 0x44 and 0x45 and the mean deviation of MCE 0x43 is
lowly increasing up to MCEs 0x44 and 0x45. Furthermore, the mean deviation of low priority
MCEs are significantly increased when compared to high priority MCEs. In addition, the max
deviation exponentially increases with the MCE priority but not for MCE 0x1 that has a limited
max deviation. The max deviation weakly correlates with the MCE priority. For example, the
max deviation of MCE 0x3 is significantly increasing up to MCEs 0x4, 0x5, 0x6, 0x7 and 0x8
and close to the deviations of the low priority MCEs. However high priority MCEs have typically
a lower max deviation than low priority MCEs. The data from MCE 0x3 confirms the results of
the total maximum in Table 6.8.

The average variance as well as the var deviation hardly correlate with the priority of the
MCEs. Furthermore, the dispersions (average variance and var deviation) of MCE 0x1 are very
limited when compared to the other MCEs. The dispersions are hardly limited for the MCE 0x1
and verifies the small jitter of MCE 0x1 in Table 6.6. Furthermore, the average variance and
the var deviation of low priority MCEs are extremely increased when compared to high priority
MCEs.

6.3 4 CSDs - High Priority Ramp MCE

This Subsection presents the results obtained by the test run with 4 CSDs and with a high prior-
ity Ramp MCE.

6.3. 4 CSDs - High Priority Ramp MCE 77

The test run is split into intervals (bandwidth interval) and each interval has an individual
RSTEP. The first interval starts with a utilization of 40% of the communication medium and the
bandwidth increases for each test round with the individual RSTEP as described in Subsection
4.2. In addition, each interval ends at a defined bandwidth utilization and the next interval
continues. This tendency does not apply for the last interval. Furthermore, there are totally three
intervals from 200 kbit/s to 230 kbit/s (first interval), 230 kbit/s to 300 kbit/s (second interval)
and 300 kbit/s to 350 kbit/s (third interval). The RSTEP is 10 µs for the first interval, 3 µs
for the second interval and 1 µs for the third interval. The RSTEP for the first interval has
the lowest granularity and the RSTEP for the third interval has the highest granularity because
the bandwidth utilization increases exponentially. An exponential increased utilization leads in
conjunction with a high RSTEP to an improper analysis for higher test rounds. Therefore, an
exponentially increased utilization demands a low RSTEP for high test rounds but unnecessarily
raises the number of test rounds at low utilizations. Thus splitting up into intervals with suitable
individual RSTEPs yields to a detailed analysis and reduces the number of test rounds for the
total test run. Therefore the tables in this Subsection are divided into the three intervals (int 1,
int 2, int 3) such that each part refers to an interval.

Network Utilization

The first interval derives from a test run consisting of 800 test rounds with a RSTEP of 10 µs.
Figure 6.1 shows the increasing send behavior of the Ramp MCE (MCE 0x1) with the number
of sent TMIs and the send omissions of the Ramp MCE over the test rounds of the test run
consisting of 800 test rounds and a RSTEP of 10 µs. Furthermore, the x-axis shows the round
number and the y-axis shows the numbers of the send omissions (node_0_1_omissions) and sent
TMIs (node_0_1_send_total) for each test round with a duration of 10 seconds. The maximum
send capacity of the Ramp MCE is 3458 TMIs/s at test round 789 and at test round 789 all other
MCEs are blocked due to the Ramp MCE that has the highest priority. Thus the total maximum
bandwidth has 442.4 kbit/s (88.5% of 500 kbit/s). Note that the number of emitted TMIs fluc-
tuates with a full load of the communication medium. Furthermore, the send omissions for the
Ramp MCE is limited to 6552 messages per seconds due to the granularity of the local time base
that triggers the TMIs. Furthermore, single send omissions happen before the full load of the
communication medium.

Figure 6.2 shows the emission behaviour of the highest and lowest MCE of each CSD but
not the RAMP CSD with the number of sent TMIs over the test rounds of the test run consisting
of 800 test rounds and a RSTEP of 10 µs. Furthermore, the x-axis shows the round number
and the y-axis shows the numbers of the sent TMIs (node_x_p_send_total where x denotes the
CSD and by p the id of the MCE that is sent by CSD x) for each test round with a duration of
10 seconds. The send behavior of the CSDs are stable until the Ramp MCE cuts off (a cut off
means that all MCEs but not the Ramp MCE do not emit TMIs or at least limitedly emits TMIs)
all other MCEs. The send omissions of MCE 0x1f starts to raise at test round 777. At test run
777 the measured bandwidth consumption is 453 kbit/s or 90.6% of 500 kbit/s. Furthermore,
the MCE priority correlates with the send frequency as defined in Subsection 4.2. Moreover, a

78 Chapter 6. Results

0 100 200 300 400 500 600 700 800
0

10000

20000

30000

40000

50000

60000

70000

node_0_1_omissions
node_0_1_send_total

round

m
e
ss

a
g
e
s

Figure 6.1: Total sent TMIs and send omissions of MCE 0x1 in the test system with 4 CSDs and
a high priority Ramp MCE

high priority MCE will be cut off later than a low priority MCE. However in some test rounds
with high utilization of the communication medium there are high priority MCE cut offs and
low priority MCEs emissions.

Table 6.9 shows the average send frequency of the TMIs (mean), the total minimum send
frequency of the TMIs (min), the total maximum send frequency of the TMIs (max) and the
mean deviation of the send frequencies of the TMIs (deviation) with the highest and lowest
priority MCE of each CSD (the Ramp CSD has a single MCE) up to test round 777 of the test
run consisting of 800 test rounds with a RSTEP of 10 µs. The send statistics are calculated
up to test round 776 because at test round 777 the lowest priority MCE starts to produce send
omissions and send omissions denote an overloaded communication medium.

The Ramp MCE (MCE 0x1) has a high mean as well as a high max because the emission
of TMIs increases exponentially over the test rounds. Furthermore, as defined in Chapter 4 the
send frequencies correlate with the priority of the MCEs.

6.3. 4 CSDs - High Priority Ramp MCE 79

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

node_1_2_send_total
node_1_1d_send_total
node_2_3_send_total
node_2_1e_send_total
node_3_4_send_total
node_3_1f_send_total

round number

m
e

ss
a

g
e

s

Figure 6.2: Total sent TMIs of MCEs 0x2, 0x3, 0x4, 0x1d, 0x1e, 0x1f in the test system with 4
CSDs and a high priority Ramp MCE

id mean(messages/round) min max deviation(messages/round)
0x1 2206.56 614 18904 2667.94
0x2 610.88 589 633 7.47
0x3 599.69 580 620 6.71
0x4 589.32 571 609 6.8

0x1d 408.19 392 426 5.7
0x1e 403.26 386 421 6.16
0x1f 398.83 380 418 5.66

Table 6.9: Mean, minimum, maximum and standard deviation of the send behavior of a test
system with 4 CSDs and a high priority Ramp MCE

80 Chapter 6. Results

Average Transmission Times

In Figure 6.3 the total maximum and average transmission times of the highest (Ramp MCE)
and lowest (MCE 0x1f) priority MCE are compared during the test rounds of the test run con-
sisting of 800 test rounds and a RSTEP of 10 µs (test rounds 0 to 750). Furthermore, the x-axis
shows the round number. In addition, the y-axis shows the total maximum transmission times
of the RAMP MCE (node_1_1_max) as well as the MCE 0x1f (node_0_1f_max) in µs and the
averages transmission times for the RAMP MCE (node_1_1_average) as well as the MCE 0x1f
(node_0_1f_average) in µs. The total maximum and average transmission times of the Ramp

0 100 200 300 400 500 600 700
0

1000

2000

3000

4000

5000

6000

node_0_1f_average
node_0_1f_max
node_1_1_average
node_1_1_max

test round

tim
e

/µ
s

Figure 6.3: Total maximum and average transmission times of MCE 0x1 and MCE 0x1f in the
test system with 4 CSDs and a high priority Ramp MCE

MCE are smoothed. In contrast, the MCE 0x1f hardly fluctuates during the test rounds. Fur-
thermore, at test round 600 the total maximum transmission times of the MCE 0x1f increase
exponentially and the average transmission times of MCE 0x1f start to increase exponential at
test round 680. The total maximum transmission times as well as the average transmission times
of the Ramp MCE stay constant until test round 788 (test round 788 is not shown in the figure).
Moreover, the measured bandwidth consumption is 226 kbit/s in test round 600, 247 kbit/s in
test round 680 and 448 kbit/s in test round 788.

Table 6.10 shows the average transmission time of each interval (arithmetic mean), the av-

6.3. 4 CSDs - High Priority Ramp MCE 81

erage maximum transmission time of each interval (average maximum), the total maximum
transmission time of each interval (total maximum) and the message transmission time jitter of
each interval (jitter) with the highest and lowest priority MCE of each CSD (the Ramp CSD has
a single MCE). Table 6.10 is divided into the three intervals. Furthermore, the first interval starts
at 196 kbit/s and ends at 230 kbit/s. The second interval starts at 230 kbit/s and ends at 287
kbit/s. The third interval starts at 300 kbit/s and ends at 350 kbit/s.

The statistical data for each MCE but not for the Ramp MCE increases in each interval. The
arithmetic mean and average maximum increases linearly with the priority of the MCE up to 300
kbit/s. Furthermore, in the interval between 200 - 230 kbit/s the arithmetic mean as well as the
average maximum hardly correlate with the MCE priority. Moreover, the total maximum and
therefore the jitter have a weak correlation with the MCE priority. For example, MCE 0x3 has a
total maximum of 4500 µs and is therefore higher than the total maximum of 4272 µs of MCE
0x1d. Furthermore, the arithmetic mean as well as the average maximum in the interval between
230 - 300 kbit/s hardly correlate with the priority of the MCEs. The arithmetic mean and the
average maximum in these intervals are only slightly increasing up to the interval between 200
- 230 kbit/s. Moreover, the total maximum and therefore the jitter in the interval between 230
- 300 kbit/s correlate with the priority of the MCEs and are distinctly increasing up to the total
maximum of the interval between 200 - 230 kbit/s.

In the interval between 300 - 350 kbit/s the arithmetic mean as well as the average maximum
hardly correlate with the priority of the MCEs but they are hardly increased when compared to
the other intervals and especially to the interval between 200 - 230 kbit/s. For example, the
arithmetic mean of MCE 0x1f is increased by about 49% and the average maximum is increased
by about 80% to the MCE 0x1f in the interval between 200 - 230 kbit/s. Furthermore, total
maximum and therefore the jitter do not correlate with the MCE priority at all. In addition, the
total maximum transmission times when compared to the interval between 200 - 230 kbit/s is
highly increased e.g. the total maximum of MCE 0x2 is increased by about 120%.

Table 6.11 shows the total maximum transmission time for each CSD (CSDR denotes the
Ramp MCE) and the MCEs which generated the total maximum transmission times for each
interval. The worst total maximum transmission time is 5187 µs in interval 1, 6026 µs in
interval 2 and 9307 µs in interval 3. Furthermore, a higher MCE priority does not guarantee
a low total maximum transmission time. This is represented by MCE 0x9 that has the slowest
total transmission time of CSD 1 in interval 1. CSD 1 has 10 MCEs and MCE 0x11 has the 3rd
highest priority. Moreover, at higher load the low priority MCEs have the longest total maximum
transmission times.

Deviations of the Transmission Times

Figure 6.4 shows the measured variance of the Ramp MCE (MCE 0x1) and the MCE 0x1f dur-
ing the test rounds of the test run consisting of 800 test rounds and a RSTEP of 10 µs (test
rounds 0 to 750). Furthermore, the x-axis shows the round number and the y-axis shows the
measured variance of the RAMP MCE (node_1_1_variance) as well as the lowest priority MCE
0x1f (node_0_1f_variance) in µs. The variance of the Ramp MCE is stable and only fluctuating
within a very limited range. In contrast, the variance of MCE 0x1f increases exponentially after

82 Chapter 6. Results

id arithmetic mean(µs) average maximum(µs) total maximum(µs) jitter(µs)
int 1 200 - 230 kbit/s
0x1 495.56 874.43 991 686
0x2 546.52 1677.86 3356 3051
0x3 550.87 1737.08 4500 4195
0x4 552.98 1807.54 4195 3890

0x1d 670.81 2527.99 4272 3891
0x1e 676.09 2598.31 4958 4577
0x1f 687.04 2728.47 4806 4425
int 2 230 - 300 kbit/s
0x1 499.3 919.61 1068 763
0x2 590.35 2058.51 3585 3280
0x3 598.26 2212.14 4577 4272
0x4 600.1 2254.12 4577 4272

0x1d 764.78 3112.14 4882 4501
0x1e 772.91 3233.26 5797 5416
0x1f 788.43 3397.35 6026 5645
int 3 300 - 350 kbit/s
0x1 514.41 935.51 1068 763
0x2 690.04 3280.3 7399 7094
0x3 702.97 3413.58 6789 6484
0x4 718.65 3706.77 6408 6103

0x1d 1016.59 4626.03 7476 7171
0x1e 1046.98 5013.05 9307 9002
0x1f 1096.33 5379.56 8239 7858

Table 6.10: Mean and maximum statistics of the transmission times of a test system with 4 CSDs
and a high priority MCE

CSDR CSD0 CSD1 CSD2
int 1 200 - 230 kbit/s
MCE 0x1 0x1d 0x9 0x1f

total maximum(µs) 991 4272 5187 4806
int 2 230 - 300 kbit/s
MCE 0x1 0x1d 0x1e 0x1f

total maximum(µs) 1068 4882 5797 6026
int 3 300 - 350 kbit/s
MCE 0x1 0x1d 0x1e 0x1c

total maximum(µs) 1068 7476 9307 9078

Table 6.11: Total maximum transmission times of each CSD of a test system with 4 CSDs and a
high priority Ramp MCE

6.3. 4 CSDs - High Priority Ramp MCE 83

0 100 200 300 400 500 600 700
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

node_0_1f_variance
node_1_1_variance

test round

va
ri

a
n

ce
/µ

s

Figure 6.4: Measured variances of MCEs 0x1 and 0x1f in the test system with 4 CSDs and a
high priority Ramp MCE

test round 600 and has a high fluctuation. The variance of MCE 0x1f nearly doubles from test
round 600 to 700 and from test round 700 to 750. The measured bandwidth consumption is 226
kbit/s at test round 600, 258 kbit/s at test round 700 (14% higher than 226 kbit/s) and 319 kbit/s
at test round 750 (24% higher than 258 kbit/s).

Table 6.12 shows the deviation of the average transmission times of each interval (mean
deviation), the deviation of the maximum transmission times of each interval (max deviation),
the measured average variance of the transmission times of each interval (average var) and the
deviation of the measured variances of the transmission times of each interval (var deviation)
with the highest and lowest priority MCE of each CSD (the Ramp CSD has a single MCE).
Table 6.12 is divided into three intervals and relates to Table 6.10 (same bandwidth utilization).

The mean deviation of the RAMP MCE stays stable in all three intervals. Furthermore, the
max deviation of the RAMP MCE even reduces from interval 1 to intervals 2 and 3 and is stable
at the intervals 2 and 3. In addition, the average variance of the Ramp MCE slightly increases in
the intervals. Moreover, the var deviation decreases for the Ramp MCE.

The mean deviation hardly correlates with the priority of the MCEs and increases for each
MCE but not the RAMP MCE in the intervals. For example, the mean deviation of MCE 0x1f in-

84 Chapter 6. Results

creases from the first interval to the second interval by about 132% and from the second interval
to the third interval by about 124%.

The max deviation correlates with the MCE priority. There is a violation by MCE 0x1d in
interval 3 that has a lower max deviation than MCEs 0x4, 0x3 and 0x2. Furthermore, the increase
of the max deviation is increased for each MCE but not the Ramp MCE in each interval.

The average variance hardly correlates with the MCE priority and increases exponentially
with the priorities of the MCEs within each interval. Furthermore, the average variance hardly
increases with a higher utilization of the communication medium (but not for the Ramp MCE).
For example, the average variance of MCE 0x1f increases about 79% from interval 1 to 2 and
about 170% from interval 2 to 3.

The var deviation hardly correlates with the priority of the MCEs and increases exponentially
with the priorities of the MCEs within each interval. Furthermore, the var deviation hardly
increases with a higher utilization of the communication medium (but not for the Ramp MCE).
For example, the var deviation of MCE 0x1f increases about 157% from interval 1 to 2 and about
246% from interval 2 to 3.

6.4 8 CSDs - High Priority Ramp MCE

This Subsection presents the results obtained by the test run with 8 CSDs and with a high prior-
ity Ramp MCE.

The data evaluation of the test run is split into intervals. Furthermore, there are totally three
intervals from 200 kbit/s to 230 kbit/s (first interval), 230 kbit/s to 300 kbit/s (second interval)
and 300 kbit/s to 350 kbit/s (third interval). Therefore the tables in this Subsection are divided
into the three intervals such that each part refers to an interval.

Network Utilization

The maximum send capacity of the Ramp MCE (MCE 0x1) is about 3440 TMIs per second at
test round 7881 and at test round 7881 all other MCEs are cut off due to the Ramp MCE that
has the highest priority. Thus the total maximum bandwidth is about 440.1 kbit/s (88.0% of 500
kbit/s). Therefore the total maximum achievable bandwidth (payload only) is 220.2 kbit/s. Note
that the number of emitted TMIs fluctuates when the communication medium was fully loaded.
Furthermore, the send omissions for the Ramp MCE is limited to 6578 messages per seconds
due to the granularity of the local time base that triggers the TMIs. Furthermore, single send
omissions happen before the communication medium is fully loaded.

The send capacity of MCE 0x47 that has the lowest priority is firstly reduced at test round
7770 with a total network load of 450 kbit/s. Note that some single send omissions happens
before. In addition, the other MCEs are cut off by the Ramp MCE in further test rounds because
the Ramp MCE has the highest priority.

6.4. 8 CSDs - High Priority Ramp MCE 85

id mean deviation(µs) max deviation(µs) average var(µs) var deviation(µs)
int 1 200 - 230 kbit/s
0x1 3.31 47.82 9808.2 448.62
0x2 9.13 358.43 21367.53 4573.87
0x3 9.46 387.44 23445.11 5070.35
0x4 9.86 403.28 25955.68 5253.51

0x1d 20.64 392.74 93427.53 17805.07
0x1e 21.68 462.74 100401.32 20575.58
0x1f 21.24 483.03 110009.54 21725.43
int 2 230 - 300 kbit/s
0x1 2.96 33.36 9968.13 270.37
0x2 19.14 448.12 36556.5 9608.25
0x3 19.5 541.28 41863.44 11814.24
0x4 19.7 523.8 44769.06 11557.71

0x1d 43.29 537.78 163316.26 43810.84
0x1e 45.81 616.7 178139.72 50127.48
0x1f 49.18 681.96 197257.93 55918.92
int 3 300 - 350 kbit/s
0x1 3.92 36.66 10341.03 151.52
0x2 32.62 780.36 96033.5 31589.68
0x3 35.13 866.08 110520.12 37772.15
0x4 39.2 871.33 134685.38 46313.41

0x1d 90.53 767.71 456071.08 133900.66
0x1e 93.43 959.88 524870.3 152207.31
0x1f 110.35 936.63 629746.53 193623.65

Table 6.12: Variance statistics of the transmission times of a test system with 4 CSDs and a high
priority Ramp MCE

Table 6.13 shows the average send frequency of the TMIs (mean), the total minimum send
frequency of the TMIs (min), the total maximum send frequency of the TMIs (max) and the mean
deviation of the send frequencies of the TMIs (deviation) of the highest and lowest priority MCE
of each CSD up to test round 7769 (the Ramp CSD has a single MCE). The send statistics are
calculated up to test round 7769 as in test round 7770 the lowest MCE starts to produce send
omissions and send omissions denote an overloaded communication medium.

The Ramp MCE has a high mean as well as a high max as the emission of TMIs increases
exponentially in the test rounds. Furthermore, as defined in Chapter 4 the send frequencies
correlate with the priority of the MCEs.

Average Transmission Times

The total maximum and average transmission times of the highest (Ramp MCE) and lowest
(MCE 0x47) priority MCE are compared during the test rounds of the test run in Figure 6.5

86 Chapter 6. Results

id mean(messages/round) min max deviation(messages/round)
0x1 2218 605 19665 2699.24
0x2 579.02 555 605 6.96
0x3 541.37 518 566 6.75
0x4 508.29 484 533 6.44
0x5 478.89 456 502 6.34
0x6 452.81 426 474 6.12
0x7 429.44 407 453 6.03
0x8 408.36 386 430 5.89

0x41 107.26 97 119 3.03
0x42 105.88 94 120 3.06
0x43 104.48 93 116 2.96
0x44 103.17 93 114 2.93
0x45 101.91 91 114 2.98
0x46 100.69 89 113 2.91
0x47 99.45 89 111 2.88

Table 6.13: Mean, minimum, maximum and standard deviation of the send behavior of a test
system with 8 CSDs and a high priority Ramp MCE

(test rounds 0 to 7500). Furthermore, the x-axis shows the round number. In addition, the y-
axis shows the total maximum transmission times of the RAMP MCE (node_1_1_max) as well
as the MCE 0x47 (node_0_47_max) in µs and the averages transmission times for the RAMP
MCE (node_1_1_average) as well as the MCE 0x47 (node_0_47_average) in µs. The total max-
imum and average transmission times of the Ramp MCE are smoothed up to MCE 0x47 which
fluctuates during the test rounds. Furthermore, at about test round 6000 the total maximum
transmission times of the MCE 0x1f increases exponentially and the average transmission times
of MCE 0x1f starts to increase exponentially at test round 6800. The total maximum as well
as the average transmission times of the Ramp MCE stay constant until test round 7779 (test
round 7779 is not shown in the figure). Moreover, the measured bandwidth consumption is in
test round 6000 230 kbit/s, in test round 6800 251 kbit/s and in test round 7779 452 kbit/s.

Table 6.14 shows the average transmission time of each interval (arithmetic mean), the av-
erage maximum transmission time of each interval (average maximum), the total maximum
transmission time of each interval (total maximum) and the message transmission time jitter of
each interval (jitter) of the highest and lowest priority MCE of each CSD (the Ramp CSD has a
single MCE).

The transmission times for each MCE but not for the Ramp MCE increases in each interval.
The arithmetic mean and average maximum increases linearly up to 300 kbit/s. Furthermore, in
the interval between 200 - 230 kbit/s the arithmetic mean as well as the average maximum hardly
correlates with the MCE priority. Moreover, the total maximum and therefore the jitter do not
correlate with the MCE priority. Furthermore, the arithmetic mean as well as the average max-
imum in the interval between 230 - 300 kbit/s hardly correlates with the priority of the MCEs.

6.4. 8 CSDs - High Priority Ramp MCE 87

0 1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

node_0_47_average
node_0_47_max
node_1_1_average
node_1_1_max

test rounds

tim
e

/µ
s

Figure 6.5: Total maximum and average transmission times of MCE 0x1 and MCE 0x46 in the
test system with 8 CSDs and a high priority Ramp MCE

The arithmetic mean and the average maximum in this intervals are only slightly increased up
to the interval between 200 - 230 kbit/s. Moreover, the total maximum and therefore the jitter
in the interval between 230 - 300 kbit/s do not correlate with the priority of the MCEs and are
increased when compared to the total maximum of the interval between 200 - 230 kbit/s.

In the interval between 300 - 350 kbit/s the arithmetic mean as well as the average maximum
hardly correlate with the priority of the MCEs but they are hardly increased when compared to
the other intervals. For example, the arithmetic mean of MCE 0x1f is increased by about 60%
and the average maximum of MCE 0x1f is increased by about 116% to the MCE 0x1f in the
interval between 200 - 230 kbit/s. Furthermore, the total maximum and therefore the jitter do
not correlate with the MCE priority at all. In addition, the total maximum transmission times are
highly increased when compared to the interval between 200 - 230 kbit/s e.g. the total maximum
of MCE 0x2 is increased by about 69%.

Table 6.15 shows the total maximum transmission time for each CSD (CSDR denotes the
Ramp MCE) and the MCEs which generated the total maximum transmission times for each
interval. The total maximum transmission time in all MCEs is 8162 µs in interval 1, 9993 µs in
interval 2 and 17241 µs in interval 3. Furthermore, a higher MCE priority does not guarantee a

88 Chapter 6. Results

id arithmetic mean(µs) average maximum(µs) total maximum(µs) jitter(µs)
int 1 200-230 kbit/s
0x1 496.12 869.39 1068 763
0x2 540.01 1657.86 5950 5645
0x3 543.8 1665.07 4653 4348
0x4 544.78 1688.77 6560 6255
0x5 547.47 1701.64 5569 5264
0x6 550.18 1712.54 6103 5798
0x7 553.73 1738.14 4882 4577
0x8 555.44 1755.35 5416 5111

0x41 700.89 2547.89 6026 5721
0x42 700.92 2584.61 6637 6332
0x43 703.62 2610.38 6484 6179
0x44 707.45 2644.41 8162 7857
0x45 710.02 2672.96 6942 6637
0x46 712.08 2714.79 6560 6255
0x47 717.45 2731.28 7476 7171
int 2 230-300 kbit/s
0x1 498.28 913.58 1068 763
0x2 577.81 2136.67 6789 6484
0x3 583.7 2168.9 6255 5950
0x4 585.65 2205.95 6865 6560
0x5 589.86 2233.2 9993 9688
0x6 594.35 2206.51 8315 8010
0x7 598.38 2246.76 7933 7628
0x8 601.3 2334.86 6713 6408

0x41 816.15 3290.69 8239 7858
0x42 816.75 3324 7552 7247
0x43 824.72 3401.38 8315 8010
0x44 830.78 3457.09 9459 9154
0x45 836.39 3567.14 8849 8544
0x46 838.89 3519.97 8620 8315
0x47 848.09 3649.07 8315 8010
int 3 300-350 kbit/s
0x1 512.24 926.81 1068 763
0x2 659.07 3720.05 8773 8468
0x3 668.06 3775.52 7399 7094
0x4 674.71 3946.5 9612 9307
0x5 681.76 3848.13 11290 10985
0x6 693.25 4041.07 10298 9993
0x7 699.51 3944.04 8696 8391
0x8 707.66 4164.74 10604 10299

0x41 1166.74 5734.58 10832 10451
0x42 1186.68 5768.03 17241 16860
0x43 1200.83 5963.04 15028 14647
0x44 1209.77 6045.43 11672 11367
0x45 1218.03 6250.21 14113 13732
0x46 1247.91 6269.38 12434 12053
0x47 1266.89 6457.06 12358 11977

Table 6.14: Mean and maximum statistics of the transmission times of a test system with 8 CSDs
and a high priority MCE

6.4. 8 CSDs - High Priority Ramp MCE 89

CSDR CSD0 CSD1 CSD2 CSD3 CSD4 CSD5 CSD6
int 1
MCE 0x1 0x3a 0x42 0x3c 0x44 0x45 0x46 0x47

total maximum(µs) 1068 6103 6637 6713 8162 6942 6560 7476
int 2
MCE 0x1 0x41 0x42 0x43 0x5 0x29 0x46 0x47

total maximum(µs) 1068 8239 7552 8315 9993 9001 8620 8315
int 3
MCE 0x1 0x41 0x42 0x43 0x44 0x45 0x38 0x39

total maximum(µs) 1068 10832 17241 15028 11672 14113 13731 12434

Table 6.15: Total maximum transmission times of each CSD of a test system with 8 CSDs and a
high priority Ramp MCE

low total maximum transmission time.

Deviations of the Transmission Times

Figure 6.6 shows the measured variance of the Ramp MCE and the MCE 0x47 from test round
0 to 7500. Furthermore, the x-axis shows the round number and the y-axis shows the mea-
sured variance of the RAMP MCE (node_1_1_variance) as well as the lowest priority MCE
0x47 (node_0_47_variance) in µs. The variance of the Ramp MCE is stable and only fluctuat-
ing within a very limited range. Furthermore, the variance MCE 0x47 extremely fluctuates and
increases exponentially after test round 6200. The measured bandwidth consumption is at test
round 6200 233 kbit/s.

Table 6.16 shows the deviation of the average transmission times of each interval (mean
deviation), the deviation of the maximum transmission times of each interval (max deviation),
the measured average variance of each interval (average var) and the deviation of the measured
variances of the transmission times of each interval (var deviation) of the highest and lowest
priority MCE of each CSD (the Ramp CSD has a single MCE). Furthermore, the table is divided
into three intervals.

The mean deviation hardly correlates with the priority of the MCEs and increases for each
MCE but not the RAMP MCE in each interval. For example, the mean deviation of MCE 0x47
increases from the first interval to the second interval by about 93% and from the second interval
to the third interval by about 89%.

The max deviation correlates with the MCE priority. There are just few violations. The max
deviation is hardly increased for each MCE but not fir the Ramp MCE in each interval. For
example, MCE 0x47 has an increased max deviation of 42% from interval 1 to 2 and 65% from
interval 2 to 3. Furthermore, the max deviation decreases from interval 1 to intervals 2 and 3 by
67%.

The average variance hardly correlates with the MCE priority and exponentially increases
for the MCEs in each interval. Furthermore, the average variance hardly increases with a higher

90 Chapter 6. Results

0 1000 2000 3000 4000 5000 6000 7000
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

node_0_47_variance
node_1_1_variance

test rounds

va
ri

a
n

ce
/µ

s

Figure 6.6: Measured variances of MCEs 0x1 and 0x47 in the test system with 8 CSDs and a
high priority Ramp MCE

utilization of the communication medium (but not for the Ramp MCE). For example, the average
variance of MCE 0x47 increases about 80% from interval 1 to 2 and about 250% from interval
2 to 3. Furthermore, the average variance of the Ramp MCE only slightly increases within the
intervals.

The var deviation hardly correlates with the priority of the MCEs and exponentially increases
for the MCEs in each interval. Furthermore, the var deviation hardly increases with a higher
utilization of the communication medium (but not for the Ramp MCE). For example, the var
deviation of MCE 0x1f increases about 170% from interval 1 to 2 and about 200% from interval
2 to 3. Furthermore, the var deviation of the Ramp MCE decreases from interval 1 to 2 by 58%
and from interval 2 to 3 by 61%.

6.5 4 CSDs - Low Priority Ramp MCE

This Subsection presents the results obtained by the test run with 4 CSDs and with a low priority
Ramp MCE.

6.5. 4 CSDs - Low Priority Ramp MCE 91

id1 mean deviation(µs) max deviation(µs) average var(µs) var deviation(µs)
int 1 200-230 kbit/s
0x1 3.5 48.17 9565.88 441.43
0x2 7.76 486.08 17349.77 4505.99
0x3 8.26 476.18 18815.28 4721.24
0x4 8.57 493.99 20187.08 5348.47
0x5 9.03 506.83 21626.32 5979.19
0x6 9.53 497.95 23106.96 6307.48
0x7 9.96 494.18 24820.46 6731.68
0x8 10.36 499.7 26272.26 7219.88

0x41 39.51 632.94 138459.1 55309.18
0x42 39.99 645.26 143560.47 57094.25
0x43 40.81 655.08 148007.51 59600.23
0x44 41.33 660.64 153730.29 62472.1
0x45 42.55 685.85 158291.93 65506.36
0x46 43.54 702.02 162907.83 68076.58
0x47 45.02 716.66 167216.75 71000.64
int 2 230-300 kbit/s
0x1 4.28 30.51 9663.87 268.15
0x2 20.03 736.58 30703.17 12016.05
0x3 20.97 746.22 33355.48 12576.13
0x4 22.01 779.75 36297.51 14568.76
0x5 22.63 789.43 39031.16 16523.52
0x6 23.92 770.09 41607.98 16692.43
0x7 24.27 779.04 44148.23 17481.76
0x8 25.53 846.2 48010.12 20789.76

0x41 84.78 958.64 272065.11 139744.78
0x42 85.54 940.68 278413.86 139174.62
0x43 85.98 953.16 294672.76 144163.89
0x44 89.54 1001.44 305774.65 155856.35
0x45 94.19 1054.24 323810.09 171665.06
0x46 93.96 1021.65 327265.72 173775.68
0x47 97.12 1094.97 348035.48 191457.56
int 3 300-350 kbit/s
0x1 4.47 31.87 9992.36 172.02
0x2 27.91 1239.69 85786.24 39402.5
0x3 30.06 1124.67 91838.44 38496.61
0x4 34.13 1460.86 106219.11 58357.61
0x5 38.42 1445.43 110884.68 65212.29
0x6 38.04 1602.53 124688.31 65333.33
0x7 41 1520.56 131608.11 73334.22
0x8 43.14 1535.45 144161.8 73873.8

0x41 156.36 1518.91 949824.34 414966.4
0x42 170.72 1674.35 1014729.73 505315.69
0x43 183.68 1827.95 1093626.06 586314.8
0x44 189.48 1670.29 1102585.87 576198.34
0x45 188.35 1995.4 1186350.84 647885.09
0x46 187.95 1738.16 1230219.06 597459.44
0x47 198.82 1873.92 1314700.86 675626.24

Table 6.16: Variance statistics of the transmission times of a test system with 8 CSDs and a high
priority Ramp MCE

92 Chapter 6. Results

id mean(messages/round) min max deviation(messages/round)
0x1 621.91 591 644 7.37
0x2 610.97 584 632 7.33
0x3 599.77 574 623 7.18

0x1c 413.27 395 434 5.92
0x1d 408.25 388 428 5.82
0x1e 403.38 386 423 5.93
0x1f 1912.24 391 19850 3319.92

Table 6.17: Mean, minimum, maximum and standard deviation of the send behavior of a test
system with 4 CSDs and a low priority Ramp MCE

Network Utilization

The maximum send capacity of the Ramp MCE is 1982 TMIs per second and the communica-
tion medium has a full utilization starting at test round 1228. At test round 1228 the bandwidth
consumption is 457 kbit/s or 91.4% of 500 kbit/s. The send behaviour of the CSDs is stable
(excluding the Ramp MCE) during the complete test run and the Ramp MCE does not cut off
any MCE because the Ramp MCE has the lowest priority (0x1f). Furthermore, the send omis-
sions of the Ramp MCE 0x1f starts to raise at test round 1227. At test run 1227 the measured
bandwidth consumption is 455 kbit/s or 91.0% of 500 kbit/s.

Table 6.17 shows the average send frequency of the TMIs (mean), the total minimum send
frequency of the TMIs (min), the total maximum send frequency of the TMIs (max) and the mean
deviation of the send frequencies of the TMIs (deviation) of the highest and lowest priority MCE
of each CSD (the Ramp CSD 0 only has a single MCE) of the complete test run.

The Ramp MCE (MCE 0x1f) has a high mean as well as a high max because the emission of
TMIs increases exponentially during the test rounds. Furthermore, as defined in Chapter 4 the
send frequencies correlate with the priority of the MCEs.

Average Transmission Times

The total maximum and average transmission times of all MCEs are stable until the end of the
test run. Figure 6.7 shows the average as well as total maximum transmission times of the sec-
ond lowest (MCE 0x1e) and highest (MCE 0x1) priority MCE for the test rounds 1000 to 1250
in µs. Furthermore, the x-axis shows the round number. The y-axis shows the total maximum
transmission times of MCE 0x1 (node_0_1_max) as well as MCE 0x1e (node_0_1e_max) in
µs and the average transmission times of MCE 0x1 (node_0_1_average) as well as MCE 0x1e
(node_0_1e_average) in µs. The maximum and average transmission times of all MCEs are
solid until test round 1180. At test round 1180 the average and maximum transmission times
of MCEs but not the Ramp MCE slightly increases. This is shown by the average and total
transmission times of MCEs 0x1 and 0x1e in Figure 6.7. Furthermore, the transmission times
of the Ramp MCE raises extremely at the end of the test round due to the full utilization of
the communication medium and therefore a fully filled PSQ of the Ramp CSD. Moreover, the

6.5. 4 CSDs - Low Priority Ramp MCE 93

1000 1050 1100 1150 1200 1250 1300
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

node_0_1_average
node_0_1_max
node_0_1e_average
node_0_1e_max

test rounds

tim
e\

µ
s

Figure 6.7: Total maximum and average transmission times of MCE 0x1 and MCE 0x1e in the
test system with 4 CSDs and a low priority Ramp MCE

bandwidth consumption at test round 1180 is 287 kbit/s or 57.4% of 500 kbit/s.

Table 6.18 shows average transmission time (arithmetic mean), the average maximum trans-
mission time (average maximum), the total maximum transmission time (total maximum) and
the message transmission time jitter of each interval (jitter) of the highest and lowest priority
MCE of each CSD for the complete test run (the Ramp CSD has a single MCE).

The arithmetic mean hardly correlates with the priority of the MCEs and linearly increases
with the MCE priority but not for the Ramp MCE. The Ramp MCE has a clearly increased
arithmetic mean when compared to the others.

The average maximum hardly correlates with the priority of the MCEs and apparently in-
creases by the priority of the MCEs. The increase of the average maximum applies especially
only the Ramp MCE.

The total maximum and therefore the jitter weakly correlates with the priority of the MCEs.
Furthermore, the total maximum and jitter is extremely raised for the Ramp MCE due to the full
utilization of the communication medium at the end of the test run.

Table 6.19 shows the total maximum transmission time for each CSD (CSDR denotes the
Ramp MCE) and the MCEs which generates the total maximum transmission times. The worst
total maximum transmission time, excluding the Ramp MCE, is 5035 µs and the total maxi-

94 Chapter 6. Results

id arithmetic mean(µs) average maximum(µs) total maximum(µs) jitter(µs)
0x1 544.44 1587.46 3432 3127
0x2 547.84 1641.14 3738 3433
0x3 552.38 1727.59 3585 3280

0x1c 665 2379.73 4195 3890
0x1d 670.97 2485.75 4653 4272
0x1e 677.98 2571 4424 4119
0x1f 911.59 3958.95 23115 22810

Table 6.18: Mean statistics of the transmission times of a test system with 4 CSDs and a low
priority Ramp MCE

CSDR CSD0 CSD1 CSD2
MCE 0x1f 0x1c 0x17 0x1e

total maximum(µs) 23115 4195 5035 4424

Table 6.19: Total maximum transmission times of each CSD of a test system with 4 CSDs and a
low priority Ramp MCE

mum transmission times of each CSD are similar. Furthermore, a higher MCE priority does not
guarantee a low total maximum transmission time e.g. MCE 0x17 has the 7th highest priority.

Deviations of the Transmission Times

The measured variances of all MCEs are stable until the end of the test run. Figure 6.8 shows
measured variances of the second lowest (MCE 0x1e) and highest (MCE 0x1) priority MCE for
the test rounds 1000 to 1250 in µs. Furthermore, the x-axis shows the round number and the
y-axis shows the measured variances of MCE 0x1 (node_0_1_variance) as well as MCE 0x1e
(node_0_1e_variance). The measured variances of all MCEs are solid until test round 1180.
At test round 1180 the measured variance increases for all MCEs but not for MCE 0x1. The
increase for low priority MCEs is clearer than for high priority MCEs. This is shown by the
measured variances of MCEs 0x1 and 0x1e in Figure 6.8. Furthermore, the measured variances
of the Ramp MCE extremely raises at the end of the test round due to the full utilization of
the communication medium and therefore a fully filled PSQ of the Ramp CSD. Moreover, the
bandwidth consumption at test round 1180 is 287 kbit/s or 57.4% of 500 kbit/s.

Table 6.20 shows the deviation of the average transmission times (mean deviation), the devi-
ation of the maximum transmission times (max deviation), the measured average variance of the
transmission times (average var) and the deviation of the measured variances of the transmission
times (var deviation) of the highest and lowest priority MCE of each CSD for the complete test
run (the Ramp CSD has a single MCE).

The mean deviations hardly correlate with the priority of the MCEs and increase with the
priority of the MCEs but not the Ramp MCE.

6.5. 4 CSDs - Low Priority Ramp MCE 95

1000 1050 1100 1150 1200 1250 1300
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

node_0_1_variance
node_0_1e_variance

test rounds

va
ri
an
ce
\µ
s

Figure 6.8: Measured variances of MCEs 0x1 and 0x1e in the test system with 4 CSDs and a
low priority Ramp MCE

id mean deviation(µs) max deviation(µs) average var(µs) var deviation(µs)
0x1 17.15 324.04 17689.81 3169.77
0x2 17.65 343.13 19608.21 3646.06
0x3 18.66 369.87 21791.44 3967.8

0x1c 32.96 392.49 80622.77 14534.33
0x1d 34.3 419.43 87359.59 15886.31
0x1e 36.26 422.75 95346.38 18596.14
0x1f 2136.7 2567.8 195666.82 532328.66

Table 6.20: Variance statistics of the transmission times of a test system with 4 CSDs and a low
priority Ramp MCE

The max deviations hardly correlate with the priority of the MCEs and linearly raise with
the priority of the MCEs but not the Ramp MCE.

The measured average variances hardly correlate with the priority of the MCEs and increase
extremely in special compared to the Ramp MCE.

The var deviations hardly correlate with the priority of the MCEs and increase strongly.
Furthermore, the var deviation of the Ramp MCE is extremely increased when compared to the
other var deviations.

96 Chapter 6. Results

id mean(messages/round) min max deviation(messages/round)
0x1 622.18 601 644 7.2
0x2 578.7 554 599 7.02
0x3 541.34 518 563 6.75
0x4 508.4 487 527 6.47
0x5 479.05 456 499 6.38
0x6 452.97 434 472 6.09
0x7 429.17 413 450 5.89

0x40 108.7 100 119 3.17
0x41 107.3 97 118 2.98
0x42 105.97 96 117 3.01
0x43 104.47 95 114 2.97
0x44 103.32 92 113 3.05
0x45 101.79 93 112 2.94
0x46 100.77 92 111 2.9
0x47 606.02 96 19248 1758.52

Table 6.21: Mean, minimum, maximum and standard deviation of the send behavior of a test
system with 8 CSDs and with a low priority Ramp MCE

6.6 8 CSDs - Low Priority Ramp MCE

This Subsection presents the results obtained by the test run with 8 CSDs and with a low priority
Ramp MCE.

Network Utilization

The maximum send capacity of the Ramp MCE is 1921 TMIs per second and the communica-
tion medium has a full utilization starting at test round 996. At test round 996 the bandwidth
consumption is 456 kbit/s or 91.2% of 500 kbit/s. The send behaviour of the CSDs is stable
(except for the Ramp MCE) during the complete test run and the Ramp MCE does not cut off
the remaining MCE because the Ramp MCE has the lowest priority (0x47). Furthermore, the
send omissions of the Ramp MCE 0x47 starts to raise at test round 996.

Table 6.21 shows the average send frequency of the TMIs (mean), the total minimum send
frequency of the TMIs (min), the total maximum send frequency of the TMIs (max) and the mean
deviation of the send frequencies of the TMIs (deviation) of the highest and lowest priority MCE
of each CSD (the Ramp CSD 0 only has a single MCE) of the complete test run.

The Ramp MCE has a high mean as well as a high max because the emission of TMIs
increases exponentially during the test rounds. Furthermore, as defined in Chapter 4 the send
frequencies correlate with the priority of the MCEs.

6.6. 8 CSDs - Low Priority Ramp MCE 97

Average Transmission Times

The total maximum and average transmission times of all MCEs are stable until the end of the
test run. Figure 6.9 shows the average as well as total maximum transmission times of the sec-
ond lowest (MCE 0x46) and highest (MCE 0x1) priority MCE for the test rounds 800 to 1000
in µs. Furthermore, the x-axis shows the round number. The y-axis shows the total maximum
transmission times of MCE 0x1 (node_0_1_max) as well as of MCE 0x46 (node_0_46_max)
and the average transmission times of MCE 0x1 (node_0_1_average) as well as of MCE 0x46
(node_0_46_average) in µs. The maximum transmission times of all MCEs are solid until test

800 850 900 950 1000 1050
0

1000

2000

3000

4000

5000

6000

node_0_1_average
node_0_1_max
node_0_46_average
node_0_46_max

test round

tim
e\

µ
s

Figure 6.9: Total maximum and average transmission times of MCE 0x1 and MCE 0x46 in the
test system with 8 CSDs and a low priority Ramp MCE

round 970. Furthermore, the average transmission times of the MCEs but not the Ramp MCE
slightly increases at test round 970. This is shown by the average and total transmission times of
MCEs 0x1 and 0x46 in Figure 6.7. Furthermore, the transmission times of the Ramp MCE raises
extremely at the end of the test round due to the full utilization of the communication medium
and therefore a fully filled PSQ of the Ramp CSD. Moreover, the bandwidth consumption at test
round 970 is 247 kbit/s or 49.4% of 500 kbit/s.

Table 6.22 shows the average transmission time (arithmetic mean), the average maximum
transmission time (average maximum), the total maximum transmission time (total maximum)
and message transmission time jitter of each interval (jitter) of the highest and lowest priority

98 Chapter 6. Results

id arithmetic mean(µs) average maximum(µs) total maximum(µs) jitter(µs)
0x1 533.61 1601.5 4882 4577
0x2 536.33 1591.8 4958 4653
0x3 539.85 1632.01 3966 3661
0x4 540.66 1626.8 5950 5645
0x5 543.51 1638.12 4119 3814
0x6 545.95 1627.57 4577 4272
0x7 548.75 1664.42 5035 4730

0x40 686.9 2418.74 5187 4806
0x41 690.27 2426.14 4882 4501
0x42 688.92 2482.68 5569 5188
0x43 693.2 2506.19 6026 5645
0x44 696.33 2559.8 6560 6179
0x45 698.04 2596.88 5797 5416
0x46 700.49 2615.94 5721 5340
0x47 705.86 3464.72 26700 26395

Table 6.22: Mean and maximum statistics of the transmission times of a test system with 8 CSDs
and with a low priority Ramp MCE

CSDR CSD0 CSD1 CSD2 CSD3 CSD4 CSD5 CSD6
MCE 0x47 0x40 0x3a 0x3b 0x43 0x44 0x1b 0x46

total maximum(µs) 26700 5187 5340 5950 6026 6560 5950 5721

Table 6.23: Total maximum transmission times of each CSD of a test system with 8 CSDs and a
low priority Ramp MCE

MCE of each CSD for the complete test run (the Ramp CSD has a single MCE).
The arithmetic mean correlates with the priority of the MCEs and linearly increases with the

MCE priority.
The average maximum correlates with the priority of the MCEs (especially for low priority

MCEs) and apparently increases with the priority of the MCEs. The increase of the average
maximum applies in especially only to the Ramp MCE.

The total maximum and therefore the jitter does not correlate with the priority of the MCEs.
Furthermore, the total maximum and therefore jitter are extremely raised for the Ramp MCE
due to the full utilization of the communication medium at the end of the test run.

Table 6.23 shows the total maximum transmission time for each CSD (CSDR denotes the
Ramp MCE) and the MCEs which generated the total maximum transmission times. The worst
total maximum transmission time, excluding the Ramp MCE, is 6560 µs and the total maxi-
mum transmission times of each CSD are similar. Furthermore, a higher MCE priority does not
guarantee a low total maximum transmission time e.g. MCE 0x17 has the 4th highest priority of
CSD 5.

6.6. 8 CSDs - Low Priority Ramp MCE 99

Deviations of the Transmission Times

The measured variances of all MCEs are stable until the end of the test run. Figure 6.10 shows
the measured variances of the second lowest (MCE 0x46) and highest (MCE 0x1) priority MCE
for the test rounds 800 to 1000 in µs. Furthermore, the x-axis shows the round number and the
y-axis shows the measured variances of MCE 0x1 (node_0_1_variance) as well as MCE 0x46
(node_0_46_variance) in µs. The measured variances of all MCEs but not the Ramp MCE are

800 850 900 950 1000 1050
0

50000

100000

150000

200000

250000

300000

350000

400000

node_0_1_variance
node_0_46_variance

test rounds

va
ria
nc
e\
µ
s

Figure 6.10: Measured variances of MCEs 0x1 and 0x46 in the test system with 4 CSDs and a
low priority Ramp MCE

solid during the complete test run. At the very end of the test run the variances of the low priority
MCEs but not the Ramp MCE increases very little. This is shown by the measured variances
of MCEs 0x1 and 0x46 in Figure 6.9. Furthermore, the measured variances of the Ramp MCE
raises extremely at the end of the test round due to the full utilization of the communication
medium and therefore a fully filled PSQ of the Ramp CSD.

Table 6.24 shows the deviation of the average transmission times (mean deviation), the devi-
ation of the maximum transmission times (max deviation), the measured average variance of the
transmission times (average var) and the deviation of the measured variances of the transmission
time (var deviation) of the highest and lowest priority MCE of each CSD for the complete test
run (the Ramp CSD has a single MCE).

The mean deviations correlates to the priority of the MCEs and increases by the priority of

100 Chapter 6. Results

id mean deviation(µs) max deviation(µs) average var(µs) var deviation(µs)
0x1 9.51 473.63 14516.22 3732.78
0x2 10.19 470.27 15528.26 3953.54
0x3 10.45 496.52 17069.29 4368.74
0x4 10.78 492.71 18175.62 4833.24
0x5 11.38 478.64 19530.64 5069.18
0x6 11.55 450.26 20654.55 5284.34
0x7 11.93 476.16 22027.4 5641.11

0x40 39.76 585.97 120796.67 46707.53
0x41 41.27 571.54 125059.95 49514.9
0x42 39.25 607.78 129242.52 48746.21
0x43 42.51 624.43 134139.46 54390.44
0x44 43.19 663.45 140913.87 57442.46
0x45 42.3 673.15 144646.08 59640.54
0x46 44.23 667.26 146886.37 59663.16
0x47 1052.02 1702.48 192958.27 320803.63

Table 6.24: Variance statistics of the transmission times of a test system with 8 CSDs and a low
priority Ramp MCE

the MCEs. The Ramp MCE has extremely raised mean deviation.
The max deviations correlate with the priority of the MCEs and linearly raise for all MCEs

but not the Ramp MCE. The Ramp MCE has extremely raised max deviation.
The measured average variances hardly correlates with the priority of the MCEs and in-

creases extremely, in special for the Ramp MCE.
The var deviation hardly correlates with the priority of the MCEs and increases extremely.

Furthermore, the var deviation of the MCEs extremely increases compared to the var deviation
of the Ramp MCEs.

CHAPTER 7
Discussion

This Chapter discusses the results and the properties of the prototype.

7.1 Test System

This Subsection discusses the properties of the test setup.

Utilization of the Processors

The processors (CSDs) of the system have a high utilization in the test runs. Furthermore, the
granularity of the local time base that was 100 µs seems to be the maximum possible trigger
interval. A higher granularity yields to delays. During an interrupt interval that was 100 µs,
10,000 CPU cycles complete and during this time period a single run of the main loop must
complete. A shorter time period seems to interrupt a single loop run (the calculations of the
send times during the interrupt also have to complete during the 10,000 cycles). Therefore
it is possible that the high granularity of the local time base affect the measurement of the
transmission times.

Inaccuracy of the Global Time Base

The time stamps from the global time base show an unexpected behaviour. For example, the
minimum transmission time of all MCEs in the test runs without Ramp MCE have a duration of
305 µs, 381 µs or 457 µs. Furthermore, the total maximum transmission time of MCE 0x1 in
all test runs is either 991 µs or 1068 µs. It seems that the global time base has a granularity of 76
µs but all measured transmission times are calculated with factor of 0.0745 (1 tick correspond to
0.0745 microseconds). However this inaccuracy can be neglected as a CAN frame takes at least
281 µs for transmission (data Frame including bit stuffing - see Subsection 7.5) and the time
difference of 24 µs corresponds to 8.54% (under 10%). Thus the minimum transmission times
also have an adequate accuracy because of the an inaccuracy under 10%. Furthermore, the order

101

102 Chapter 7. Discussion

of the transmission times per message id is the main focus and therefore the average transmission
times, maximum transmission times and measured variance are acceptably accurate.

Data Acquisition

There are more data sets at low bandwidth utilization as the bandwidth of the Ramp MCE in-
creases exponentially (see Figure 6.1). However there are data sets with many values for a
bandwidth consumption of up to 230 kbit/s. For example, in the test run "8 CSDs - High Priority
Ramp MCE" there are in total 8000 test rounds and 230 test rounds are in the bandwidth cap
between 225 kbit/s and 230 kbit/s. In this bandwidth cap about 4 Million TMIs were send in
total. Furthermore, in the bandwidth cap between 230 - 300 kbit/s 21 Million TMIs were send
in total. However CAN shows an adequate transmission behaviour for speeds up to 230 kbit/s
and therefore higher bandwidth intervals are less interesting.

SMS

In the test setup, each message (TMI) is stored in the SMS until it is transmitted. Furthermore,
in real systems such messages are replaced by messages of higher priority that can be triggered
to be compatible with the CAN standard. Moreover, there were problems by the implementation
of such routine. It was possible to remove the pending message but not to detect it if the message
was successfully send or not (there is a small time cap between reading the status register and
writing the command to remove the pending message). The check for the ’Tra Buffer empty’
interrupt flag did not work properly. However on average the transmission times are less affected
and the worst total maximum transmission time in each test run has a high informative value even
if the total maximum transmission time can not be related to a special message id.

Transmission Errors

There are probably many transmission errors due to the settings of the bit rate that was set to 500
kbit/s and the usage of single unshielded wires that are used as an interconnection (CAN Bus)
between the subscribers (CSDs). The ISO 11898 requires a twisted pair for a network speed of
more than 125 kbit/s. Thus there are probably many transmission errors even if the wire lengths
are short and therefore the transmission times are increased.

Total Maximum Send Time of MCE 0x1

The total maximum send time of MCE 0x1 is in all test runs limited to 1068 µs or 991 µs.
It seems that there are constraints that yields to an accumulation of circumstances that delay
the transport of TMI 0x1 to the maximum limit. There is probably a combination of errors
including error frame emission, retransmissions and TMIs with lower priority that triggers at the
Interframe Space position 3 or Overload Frames. Furthermore, the error counters are checked
for determination of the Error Active state of the CSD and Overload Frames are not detectable.
Thus it is not possible to determine the exact reason for this behaviour. This behaviour should
be analyzed in future works.

7.2. Interpretation of Data 103

7.2 Interpretation of Data

This Subsection provides an analysis of the obtained results.

4 CSDs and 8 CSDs - No Ramp MCE

The test setups "4 CSDs - No Ramp MCE" and "8 CSDs - No Ramp MCE" have the same uti-
lization of 40% but in general, in the test setup with 8 CSDs, the transmission times are increased
and vary much more.

The total maximum transmission times are extensively increased in the test setup with 8
CSDs. For example, the worst total maximum transmission time of the test system with 8 CSDs
is increased by 56% when compared to the test system consisting of 4 CSDs.

Furthermore, the correlation of the total maximum transmission times with the priority of
the messages is influenced by the number of messages. There is a clearer correlation of the pri-
oritizes of the MCEs with the total maximum transmission times in the test setup with 4 CSDs.

The average transmission times as well as the average maximum transmission times of the
test system consisting of 4 CSDs are slightly smaller when compared to the test system with 8
CSDs. Furthermore, the measured average variance of the transmission times is smaller in the
test run consisting of 4 CSDs. For example, the measured average variance of the lowest priority
MCE in the test setup with 8 CSDs is increased by 58.1% when compared to the lowest priority
MCE in the test setup with 4 CSDs.

4 CSDs - High Priority Ramp MCE

The test setup "4 CSDs - High Priority Ramp MCE" has a stable transmission time behaviour
if the utilization does not exceed 230 kbit/s (see Figure 6.3 and Figure 6.4). There are similar
statistics for the transmission times in Table 6.10 (4 CSDs - High Priority Ramp MCE) and Table
6.2 (4 CSDs - No Ramp MCE). All statistical values are similar but not for the total maximum
transmission times. For example, the worst total maximum transmission time of the test system
with Ramp MCE is increased by 19.3% when compared to the test system without Ramp MCE.
In the test setup with Ramp MCE there is a weaker correlation of the total maximum transmission
times with the priorities of the MCEs.

The variances of both test setups are also similar as shown in Table 6.12 (4 CSDs - High Pri-
ority Ramp MCE) and Table 6.4 (4 CSDs - No Ramp MCE). This shows that the transmission
fulfills in a similar way e.g. the collisions at the bus.

The test setup "4 CSDs - No Ramp MCE" has a volatile transmission time behaviour if
the utilization is between 230 and 300 kbit/s. The average transmission times and the average
maximum transmission times are increased in the test setup with Ramp MCE when compared to
the test setup without Ramp MCE. For example, the average transmission time of MCE 0x1f in
test system with Ramp MCE is increased by 17.8% when compared to the test system without
Ramp MCE and the average total maximum transmission time of MCE 0x1f in test system

104 Chapter 7. Discussion

with Ramp MCE is increased by 30.8% when compared to the test system without Ramp MCE.
Though the total maximum transmission times are significant increased. For example, the worst
total maximum transmission time of the test system with Ramp MCE is increased by 38.6%
when compared to the test system without Ramp MCE.

The deviation of the average transmission times is increased for the test setup with Ramp
MCE. For example, the deviation of the average transmission time of MCE 0x1f of the test sys-
tem with Ramp MCE is increased by 207.0% when compared to the test system without Ramp
MCE. The deviation of the total maximum transmission times are increased. For example, the
deviation of the total maximum transmission time of MCE 0x1f of the test system with Ramp
MCE is increased by 56.0% when compared to the test system without Ramp MCE. Further-
more, the measured average variances and the deviations of the measured average variances are
extremely increased. For example, the measured average variance (deviation of the measured
average variances) of MCE 0x1f of the test system with Ramp MCE is increased by 104.8%
(217%) when compared to the test system without Ramp MCE. This shows that there are many
collisions at the emission of messages.

The test setup "4 CSDs - No Ramp MCE" has an odd transmission time behaviour if the uti-
lization is between 300 and 350 kbit/s. This can be seen in Figure 6.3 as explained in Subsection
6.3 as well as in Figure 6.4 as detailed in Subsection 6.3.

8 CSDs - High Priority Ramp MCE

The test setup "8 CSDs - High Priority Ramp MCE" has a stable transmission time behaviour
if the utilization does not exceed 230 kbit/s (see Figure 6.5 and Figure 6.6). There are similar
statistics for the transmission times in Table 6.14 (8 CSDs - High Priority Ramp MCE) and
Table 6.6 (8 CSDs - No Ramp MCE). Nearly all statistical values are similar except for the total
maximum transmission times. The total maximum transmission times are increased for the test
setup with Ramp MCE. For example, the worst total maximum transmission time of the test
system with Ramp MCE is increased by 20.2% when compared to the test system without Ramp
MCE. In the test setup with Ramp MCE there is a weaker correlation of the total maximum
transmission times with the priorities of the MCEs.

The variances of both test setups are also similar as shown in Table 6.16 (8 CSDs - High Pri-
ority Ramp MCE) and Table 6.8 (8 CSDs - No Ramp MCE). This shows that the transmission
fulfills in a similar way e.g. the collisions on the bus.

The test setup "8 CSDs with Ramp MCE" has an unacceptable transmission time behaviour
if the utilization is between 230 and 300 kbit/s. The average transmission times are increased in
the test setup with Ramp MCE when compared to the test setup without Ramp MCE. For exam-
ple, the average transmission time of MCE 0x47 in test system with Ramp MCE is increased by
20.3% when compared to the test system without Ramp MCE. Furthermore, the average max-
imum transmission times are increased. For example, the average total maximum transmission
time of MCE 0x47 in the test system with Ramp MCE is increased by 36.9% when compared
to the test system without Ramp MCE. Moreover, the worst maximum transmission time is

7.2. Interpretation of Data 105

increased by 47.2% in the test setup with a high priority Ramp MCE.
The deviation of the average transmission times (deviation of the total maximum transmis-

sion time) is highly increased for the test setup with Ramp MCE. For example, the deviation of
the average transmission time (deviation of the total maximum transmission time) of MCE 0x47
in the test setup with Ramp MCE is increased by 152.2% (61.3%) when compared to the test
setup without Ramp MCE.

Furthermore, the measured average variances of the test round are highly increased. For
example, the measured average variance (deviation of the measured average variances) of MCE
0x47 of the test system with Ramp MCE is increased by 128.6% (212.8%) when compared to
the test system without Ramp MCE. This shows that there are many collisions at the emission
of messages.

The test setup "8 CSDs - No Ramp MCE" has an odd transmission time behaviour if the uti-
lization is between 230 and 300 kbit/s. This can be seen in Figure 6.5 as explained in Subsection
6.4 as well as in Figure 6.6 as detailed in Subsection 6.4.

4 CSDs - Low Priority Ramp MCE

The test setups "4 CSDs - Low Priority Ramp MCE" has a basic utilization of 40%. Furthermore,
the lowest priority MCE (MCE 0x1f) is the Ramp MCE. Therefore the Ramp MCE disturbs the
communication of the CSDs and thus the transmission times of the Ramp MCE are excluded
from the analysis.

The average transmission times as well as the average total maximum transmission times are
similar when compared to the test setup 4 CSDs - No Ramp MCE. However at the end of the
test run the transmission times slightly increase as shown in Figure 6.7. Furthermore, the total
maximum transmission times are increased. For example, the worst total maximum transmission
time in test system with Ramp MCE is increased by 15.8% when compared to the test system
without Ramp MCE.

The deviations are also similar except for the deviations of the average transmission times
when compared to the test setup without Ramp MCE. The deviation of the average transmission
times are significantly increased. For example, the deviation of the average transmission time of
MCE 0x02 in the test setup with Ramp MCE is increased by 211.3% when compared to the test
setup without Ramp MCE. Furthermore, the measured average variances of the transmissions
times are increased starting at a utilization of 57% for low priority MCEs (see Figure 6.8).

8 CSDs - Low Priority Ramp MCE

The test setups "8 CSDs - Low Priority Ramp MCE" has a basic utilization of 40%. Furthermore,
the lowest priority MCE (MCE 0x47) is the Ramp MCE. Therefore the Ramp MCE disturbs the
communication of the CSDs and thus the transmission times of the Ramp MCE are excluded
from the analysis.

106 Chapter 7. Discussion

The average transmission times, average total maximum transmission times and total maxi-
mum transmission times are similar when compared to the test setup 8 CSDs - No Ramp MCE.
However at the end of the test run the average transmission times slightly increase as shown in
Figure 6.7.

The deviations and the average variances are also similar but not for the deviations of the
average transmission times to the test setup without Ramp MCE. The deviation of the average
transmission times are significantly increased for high priority MCEs. For example, the devia-
tion of the average transmission time of MCE 0x02 in the test setup with Ramp MCE is increased
by 94.8% when compared to the test setup without Ramp MCE.

7.3 Collision Probability

A collision happens if two messages are triggered for sending in a time interval that is shorter
than required to transmit all triggered messages. Furthermore, collided messages can be seen
as a single message emission and further collisions extend the emission time of such a merged
message. Figure 7.1 shows collisions. Assume a system with 3 CSDs (subscribers) and each

Figure 7.1: Blocking of a triggered messages

CSD has an empty PSQ and empty SMS. In addition, the CAN bus is not in use for any trans-
mission. Furthermore, TMI 0x2 triggers at CSD 2, is pushed into the SMS and emits. After the
start of the emission TMI 0x10 triggers at CSD 1 and is pushed into the SMS. Furthermore, TMI
0x3 triggers at CSD 3 and is pushed into the SMS. TMIs 0x3 and 0x10 can not be sent if the bus
is occupied by the emission of TMI 0x2. Furthermore, the transmission of TMI 0x2 completes
and therefore TMI 0x2 is converted into RMI 0x2. RMI 0x2 is stored in the RMI Storages of
CSD 1 and CSD 3. At the completion of TMI 0x2, TMI 0x3 starts to emit. Figure 7.1 shows a
snapshot of this time point. Using this constellation TMI 0x10 will be emitted at the end and all

7.4. Errors and Overload Frames 107

RMIs except RMI 0x2 will have an increased transmission time. Furthermore, if TMI 0x2 has
not been triggered, than TMI 0x10 would be emitted instantly without a queuing penalty.

There exits more complicated szenarios that are possible and therefore, depending on the
scenario, the transmission times fluctuate. This example shows how a collision influences the
average transmission times, total maximum transmission times and the dispersion of transmis-
sion times. The collision probability is higher if more messages can trigger during an interval.
As a consequence, higher collision probability leads to more collisions during the communica-
tion of CAN subscribers (CSDs).

The increased collision probability and therefore timing behaviour is shown in the test runs
without Ramp MCE (see Subsection 7.2). Even if the utilization is the same, the number of
CAN messages (MCEs) influences the message timing behaviour especially for low priority
CAN messages. Note that the emission rate is limited for each CAN message (MCE) and that
the total maximum transmission time is smaller than any MINT. Thus the number of the CAN
messages is an important dimension.

7.4 Errors and Overload Frames

In CAN errors influence the time required for the transmissions of messages (TMIs) because
each data frame that is rejected is always followed by an error frame and thus has to be retrans-
mitted. This may decrease the time required for transmission of a single prioritized message
that is waiting for transport but in contrast the time required for transmission of other messages
increase because of the delay at the communication medium by the erroneous frame. Further-
more, each erroneous frame also increase the utilization of the communication medium and so
the collision probability of additional frames. Such delay depends on the frame length (number
of bits) and the bit time. This elongation is caused by the transmission of the erroneous frame
until a receiver or sender will interfere and this interference causes an error frame consisting 14
- 20 bit times (see Subsection 3.1), followed by an Interframe Space of a 3 bit time size (see
Subsection 3.1).

This delay will also increase the chance of additional collisions which in turn lead to longer
transmission times because message transmissions are temporarily blocked. A single CAN bus
can only transport a single frame that consists of a single message.

For example, assume multiple subscribers that are attached to a single CAN bus and a data
frame that is in emission (frame with identifier 2). Furthermore, a data frame is ready for trans-
mission at a different subscriber (frame with identifiers 3). In this case the emission of frame 2
will be rejected by an error frame. During this time another frame with identifier 1 gets ready
for transmission and is emitted after the previous error frame. In analogy, after frame 1 had
been transmitted frame 2 will be retransmitted and frame 3 transmitted (see Figure 7.2, IS stands
for Interframe Space). Therefore the transfer of frame 1 will be completed earlier because the
erroneous frame 2 was rejected and so frame 1 was send off earlier. As a consequence frame 3
will be processed later due to the unsuccessful transmission. In addition, frame 1 will also in-
crease the delay for frame 2. This principle generally applies to all messages that are waiting for
transmission at their corresponding subscribers that forward frame 2 and 3 and may be extended

108 Chapter 7. Discussion

Figure 7.2: Delay of frames due to an erroneous frame

by triggering additional frames, etc.
Messages can also be delayed by overload frames. Overload frames are generated after the

transmission of a frame by overburdened CAN Controllers to block the traffic at the communi-
cation medium so that the corresponding CAN Controller has time to complete (see Subsection
3.1).

7.5 Emission Rate and Utilization

The utilization of the communication medium vitally influences the timing behaviour of mes-
sages. The transmission time behaviour is stable up to a bandwidth of 230 kbit/s that corresponds
to an utilization of 46% (see Subsection 7.2 and Subsection 7.2). Furthermore, the bandwidth
consumption is calculated without bit stuffing. For example, the data frame consisting of stuff
bits for TMI 0x1 was made up as follows (see Figure 3.3): 2 stuff bits for SOF and Identifier
A (identifier is 0x1), 3 stuff bits for Identifier B (identifier is 0x1) and 7 stuff bits for the DLC,
the Data Field and CRC Checksum by assuming 35% of the worst-case stuff bits (every 4th bit
is a stuff bit, see Subsection 2.3). Therefore a transmission frame consists of 143 bits and thus
by assuming a frame length of 143 bits the maximum utilization is 50%. However this limit is
an optimistic limit. Thus the bandwidth consumption should be chosen less optimistically. By
assuming a penalty of 20% the maximum utilization of a CAN bus is 40%.

A full utilization does not restrict the transmission of messages (TMIs) at all. For exam-
ple, as explained in Subsection 6.4 all messages are transported up to a bandwidth consumption
(assumed frame lengh is 131 bits) of 450 kbit/s (450 kbit/s is the maximum utilization). The
transport of all triggered messages, even at a full but not overloaded utilization, can be seen in
Figure 6.1 and Figure 6.2 (test run consisting of 800 test rounds, 4 CSDs - High Priority Ramp
MCE). The disadvantage of a high utilization is the increased transport time of messages. A
higher emission rate of TMIs leads to a higher possibility for collisions and thus to higher av-
erage transmission times. Collisions especially influence the timing behaviour of low priority
MCEs due to CSMA/CR (see Section 3.1). Furthermore, collisions also increase the average
transmission times of high priority messages as a transmission can not be aborted (see Subsec-
tion 7.2 and Subsection 7.2). This can be seen in Figure 6.7 and Figure 6.8. When a collision
occurs, all transmission times are increased for the following TMIs that trigger during the dura-
tion of the collision. In addition, the transmission times persist if many messages (TMIs) trigger
at the same time i.e. during an interval that is too short to schedule all transmissions without

7.6. Future Work 109

collision.

A higher emission rate also increases the total maximum transmission time and so the av-
erage transmission times in a CAN network. There are more collision possibilities and thus
messages are blocked for a longer time. If there is a collision the chance is increased that there
is another collision. For example, assume a data frame that is in emission. Furthermore, a mes-
sage (TMI 0x3) triggers for sending at the start of the frame that is in emission but can not be
transported when the communication medium is occupied. After that a message (TMI 0x2) trig-
gers at another subscriber at the end of the frame that is in transport and this message can also
not be transported. Therefore TMI 0x3 has a three times higher transport time than possible for
the best case (instantly transported). Such examples can be enhanced. The limitations of such
total maximum transmission times is the limitation of the emission rate of each message and the
number of messages. These two parameters determine the utilization of the CAN bus.

The fluctuation of the transmission times is also influenced by the collision probability. The
collision probability is the parameter for the dispersion of the transmission times. A high colli-
sion probability yields to a high variance of the transmission times. Furthermore, the emission
rate per message id and the number of messages are the main properties that influence the vari-
ances of the transmission times of messages. Moreover, the priority determines the parameter of
the variance. See Subsection 7.2 for the interpretation of data and Chapter 6 for details.

7.6 Future Work

The test system can be extended by a LAN interface to connect the CEU to a host computer. The
LAN connection can be used to transmit the received RMIs to the host computer upon receipt
from the CEU and therefore the statistical data can be calculated at the host computer. The data
evaluation at a host computer is more selective.

The distribution and number of messages can be varied in future test runs. Therefore, test
runs without RAM MCE with different utilizations can be generated to obtain more statistical
data. Furthermore, the test system can be combined with a fault injection system so that er-
ror/overload frames are emitted during a test round to obtain statistical data under erroneous
conditions. In addition, retransmission requests can be considered in the simulation model.
Therefore a CSD requests a message from another CSD and therefore the total end-to-end trans-
mission time is measured i.e. the difference between receipt of the requested message and the
generation of the request message. Furthermore, in a worst-case response time analysis (see
Subsection 2.3) it is assumed that all emitted messages collide most. Therefore it is assumed
that all messages are triggered at the start simultaneously and emitted during the shortest possi-
ble interval (MINT only). This is a very pessimistic model that is not well suited for the CAN
standard as CAN messages are not used for reliable communication. Moreover, in a CAN net-
work each subscriber is responsible for his error management and therefore error frames will
lead to a violation of assumptions made by the worst-case response time analysis. In addition,
the minimum send periods are not guaranteed. However the statistical data achieved from the

110 Chapter 7. Discussion

prototype can be used to derive a stochastic model that guarantees an in time message transmis-
sion with a certain probability (distribution). Furthermore, such a stochastic model can be used
in combination with the CAN Router of the Vienna University of Technology (see Subsection
3.2) to determine the minimum time of messages with the same identifier because the Router
has a global view of the communication.

CAN stars can be evaluated but the test system has to be adopted if the emitted messages
are not broadcast to all CSDs. Furthermore, in the current implementation each received RMI is
checked at the CEU for a legal identifier so that the identifier belongs to a MCE. Therefore there
exist RMIs that own an identifier from a MCE but are not generated from the MCE that relates
to them. In a CAN bus (or CAN Router that broadcasts to all subnetworks but not the emitting
subnetwork) such errors may be detected by the receive omissions. However such an error can
be checked by an emission log (log of each created TMI) of each MCE and by a comparison
with the received RMIs.

7.7 Conclusion

CAN has a good transmission time behaviour if the utilization does not exceed 40%. The average
transmission times and the variance of the transmission times are limited and especially for high
priority messages but the total maximum transmission times vary considerably. Thus CAN is
very well suited for unreliable systems or systems that have an independent backup system.

List of Acronyms

BSTEP Bandwidth Step
CAN Controller Area Network
CEU Central Evaluation Unit
CIS CAN Interface Subsystem
CPN Colored Petri Nets
CSD CAN Simulation device
CSMA/CR Carrier Sense Multiple Access/Collision Resolution
DAG Directed Acyclic Graph
DLL Data Link Layer
ECU Electronic Control Unit
FIFO First In - First Out
FPGA Field-Programmable Gate Array
gcd greatest common divisor
HIL Hardware in the Loop
HSMC High-Speed Mezzanine Cards
id identifier
I/O Input/Output
IP Intellectual Property
IRQ Interrupt Request
ISO International Organization for Standardization
lcm least common multiple
LLC Logical Link Control
MAC Medium Access Control
MATLAB Matrix Laboratory
MCE Message Creation Entity
MDI Medium Dependent Interface
MINT Minimum Interarrival Time
MPSoC Multiprocessor System-on-Chip
MRT Message Reception Time
MTI Message Time Interval
NoC Network-on-a-Chip
NRZ Non Return to Zero
OSI Open System Interconnection
PMA Physical Medium Attachment

111

112 List of Acronyms

pmf probability mass function
PSQ Prioritized Send Queue
RAND Random Send Time
RMA Resource Management Authority
RMI Received Message Instance
RMINT Ramp Minimum Interarrival Time
RMQ Receive Message Queue
RSTEP Round Bandwidth Step
SMINT Start Minimum Interarrival Time
SoB System on Board
SoC System on Chip
SOPC System on a Programmable Chip
TBAND Total Bandwidth Consumption
TDMA Time Division Multiplex Access
TISS Trusted Interface Subsystem
TMI Triggered Message Instance
TNA Trusted Network Authority
TTM Trigger Time of a Message
TTNoC Time-Triggered Network-on-Chip
TTSoC Time-Triggered System-on-Chip
TTT Total Transmission Time

Bibliography

[AHM05] Parosh Aziz Abdulla, Noomene Ben Henda, and Richard Mayr. Verifying Infinite
Markov Chains with a Finite Attractor or the Global Coarseness Property, 2005.

[Alt08] Altera, 101 Innovation Drive, San Jose, CA 95134. Stratix III Development Kit
Reference Manual, 1.2 edition, 2008.

[Alt09] Altera, 101 Innovation Drive, San Jose, CA 95134. Nios II Software Developer’s
Handbook, 2009.

[Alt11a] Altera, 101 Innovation Drive, San Jose, CA 95134, USA. Avalon Interface Speci-
fications, 11.0 edition, May 2011.

[Alt11b] Altera, 101 Innovation Drive, San Jose, CA 95134. Embedded Design Handbook,
2011. Description of the ALTERA embedded developing tools.

[Alt12] Altera, 101 Innovation Drive, San Jose, CA 95134. Quartus II Handbook, 12.0
edition, 2012. Description of the ALTERA Quartus II design software.

[Bac05] M. Bacic. On hardware-in-the-loop simulation. In Decision and Control, 2005
and 2005 European Control Conference. CDC-ECC ’05. 44th IEEE Conference
on, pages 3194 – 3198, dec. 2005.

[BMP07] Marko Bago, Sinisa Marijan, and Nedjeljko Peric. Modeling Controller Area Net-
work Communication, 2007.

[BPA09] M. Barranco, J. Proenza, and L. Almeida. Boosting the Robustness of Controller
Area Networks: CANcentrate and ReCANcentrate. Computer, 42(5):66 –73, may
2009.

[BRNPA04] Manuel Barranco, Guillermo Rodriguez-Navas, Julián Proenza, and Luís Almeida.
CANcentrate: An active star topology for CAN networks, 2004.

[BvL11] H. Broeders and R. van Leuken. Extracting behavior and dynamically generated
hierarchy from systemc models. In Design Automation Conference (DAC), 2011
48th ACM/EDAC/IEEE, pages 357 –362, june 2011.

[DBBL] Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. Controller
Area Network (CAN) Schedulability Analysis: Refuted, Revisited and Revised.

113

114 Bibliography

[fS96] International Organization for Standardization. Information technology - Open
Systems Interconnection - Basic Reference Model: The Basic Model, 1996. Ref-
erence number: ISO/IEC 7498-1:1994(E).

[fS03] International Organization for Standardization. Road vehicles – Controller area
network (CAN) – Part 1: Data link layer and physical signalling, 2003. Reference
number: ISO 11898-1:2003.

[FYS10] D. Fennibay, A. Yurdakul, and A. Sen. Introducing hardware-in-loop concept to
the hardware/software co-design of real-time embedded systems. In Computer
and Information Technology (CIT), 2010 IEEE 10th International Conference on,
pages 1902 –1909, 29 2010-july 1 2010.

[GLMS02] T. Groetker, S. Liao, G. Martin, and S. Swan. System design with SystemC. Kluwer
Academic Publishers, 2002.

[HC10] Luhe Hong and Jianli Cai. The Application Guide of Mixed Programming between
MATLAB and Other Programming Languages, 2010.

[HWC04] Jörg Henkel, Wayne Wolf, and Srimat Chakradhart. On-chip networks: A scalable,
communication-centric embedded system design paradigm, 2004.

[HWY+11] Chun-Ming Huang, Chien-Ming Wu, Chih-Chyau Yang, Shih-Lun Chen, Chi-Shi
Chen, Jiann-Jenn Wang, Kuen-Jong Lee, and Chin-Long Wey. Programmable
System-on-Chip for Silicon Prototyping. Technical Report 3, IEEE Transactions
on Industrial Elektronics, March 2011.

[Ing09] Ingenieurbüro für IC-Technologie, Kleiner Weg 3, 97877 Wertheim, Germany. IFI
NIOSII CAN Module, 2009.5 rev 9.0 edition, May 2009.

[JKW07] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured Petri Nets and
CPN Tools for Modelling and Validation of Concurrent Systems. Springer-Verlag,
2007.

[KB02] Michael Keating and Pierre Bricaud. Reuse Methodology Manual for System-on-
a-Chip Designs. Kluwer Academic Publishers, 3 edition, 2002.

[KOF12] Roland Kammerer, Roman Obermaisser, and Bernhard Frömel. A Router for the
Containment of Timing and Value Failures in CAN. EURASIP Journal on Em-
bedded Systems, 2012. note: accepted, to be published in EURASIP Journal on
Embedded Systems.

[Kop97] Hermann Kopetz. Design Principles for Distributed Embedded Applications.
Kluwer Academic Publishers, 7 edition, 1997.

[Kop08] Hermann Kopetz. The Complexity Challenge in Embedded System Design. In
11th IEEE Internation Symposium on Object/component/service-oriented Real-
time distributed Computing(ISORC), pages 3 – 12, Orlando, Florida, USA, 2008.

Bibliography 115

[LPL11] Bin Ling, Fengchao Peng, and Ailan Li. The car body control bus design based on
CAN/LIN bus, 2011.

[LWFM07] Bin Lu, Xin Wu, H. Figueroa, and A. Monti. A Low-Cost Real-Time Hardware-in-
the-Loop Testing Approach of Power Electronics Controls. Industrial Electronics,
IEEE Transactions on, 54(2):919 –931, april 2007.

[Mat] MathWork. SIMULINK - Simulation and Mopdel-Based Design. http://
www.mathworks.com/products/simulink/index.html. Accessed:
9/05/2012.

[Mic03] Microchip, 2355 West Chandler Blvd., Chandler, AZ 85224-6199. MCP2551 -
High-Speed CAN Transceiver, ds21667d edition, 2003.

[MMTS11] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. Extending Response-Time
Analysis of Controller Area Network (CAN) with FIFO Queues for Mixed Mes-
sages, 2011.

[Mol06] E. Mollick. Establishing Moore’s Law. Annals of the History of Computing, IEEE,
28(3):62 –75, july-sept. 2006.

[NHN03] Thomas Nolte, Hans Hansson, and Christer Norström. Probabilistic Worst-Case
Response-Time Analysis for the Controller Area Network, 2003.

[Nov09] Jiri Novak. Flexible approach to the controller area networks test and evaluation.
In IEEE International Workshop on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications, September 2009.

[OAFAA06] H. F. Othman, Y. R. Aji, F. T. Fakhreddin, and A. R. Al-Ali. Controller Area
Networks: Evolution and Applications. Technical report, Computer Engineering
Department American University of Sharjah, UAE, 2006. in IEEE data base.

[OMFK08] B. Osterloh, H. Michalik, B. Fiethe, and K. Kotarowski. SoCWire: A Network-on-
Chip approach for reconfigurable System-on-Chip Designs in Space Applications,
2008.

[Pau08] Christian Paukovits. The Time-Triggered System-on-Chip Architecture. PhD the-
sis, Vienna University of Technology, 2008.

[PV03] Luís Miguel Pinho and Francisco Vasques. Timing Analysis of Reliable Real-Time
Communication in CAN Networks, 2003.

[Ric02] Pat Richards. A CAN Physical Layer Discussion. Microchip Technology Inc.,
2002.

[Rob91] Robert Bosch GmbH, Postfach 30 02 40, D-70442 Stuttgart, Germany. CAN Spec-
ification Version 2.0, March 1997 edition, September 1991.

http://www.mathworks.com/products/simulink/index.html
http://www.mathworks.com/products/simulink/index.html

116 Bibliography

[SBR+07] Benaoumeur Senouci, Aimen Bouchhima, Frédéric Rousseau, , and Frédéric
Pétrot. Prototyping Multiprocessor System-on-Chip Applications: A Platform-
Based Approach. Technical Report 8, IEEE distributed systems, May 2007.

[SWM+06] Resve Saleh, Steve Wilton, Shahriar Mirabbasi, Alan Hu, Mark Greenstreet, Guy
Lemieux, Partha Pratim Pande, Cristian Grecu, and Andre Ivanov. System-on-
Chip: Reuse and Integration, June 2006.

[TBW95] K. Tindell, A. Burns, and A J . Wellings. CALCULATING CONTROLLER
AREA NETWORK MESSAGE RESPONSE TIMES. Control Eng. Practice, 3(8),
1995.

[WWM08] Ahmed Amine Jerraya Wayne Wolf and Grant Martin. Multiprocessor System-on-
Chip (MPSoC) Technology, 2008.

[Zel11] Holger Zeltwanger. Die Zukunft von CAN und CANopen. http://
www.anybus.de/technologie/canopen.shtml, July 2011. Accessed:
19/02/2012.

[ZNGSV09] Haibo Zeng, Marco Di Natale, Paolo Giusto, and Alberto Sangiovanni-Vincentelli.
Stochastic Analysis of CAN-Based Real-Time Automotive Systems, 2009.

http://www.anybus.de/technologie/canopen.shtml
http://www.anybus.de/technologie/canopen.shtml

	Abstract
	Kurzfassung
	Danksagung
	Contents
	List of Figures
	List of Tables
	Introduction
	Related Work
	Multilevel Inspection of Multiple CAN-Networks
	Emulation of CAN Networks
	Worst-Case Response Time Analysis
	Stochastic Analysis

	Basic Concepts
	Controller Area Network
	Star Network
	Hardware in the Loop
	System on Chip

	System Model
	System Structure
	Experimental Model

	Prototype Setup and Experiments
	Explanation of Structure
	Explanation of Structure Elements
	Experimental Process
	Experiments

	Results
	4 CSDs - No Ramp MCE
	8 CSDs - No Ramp MCE
	4 CSDs - High Priority Ramp MCE
	8 CSDs - High Priority Ramp MCE
	4 CSDs - Low Priority Ramp MCE
	8 CSDs - Low Priority Ramp MCE

	Discussion
	Test System
	Interpretation of Data
	Collision Probability
	Errors and Overload Frames
	Emission Rate and Utilization
	Future Work
	Conclusion

	List of Acronyms
	Bibliography

