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Kurzfassung

Einer der wichtigsten Schlüsselfaktoren menschlicher Kommunikation ist die Argumen-
tation, womit individuelle oder kollektive Entscheidungen zu komplexen Themen auch
in Anbetracht unvollständiger oder widersprüchlicher Informationen getroffen werden
können. Artifizielles und rechnergestütztes Argumentieren wird daher zu einer immer
bedeutungsvolleren Teildisziplin der Künstlichen Intelligenz, mit dem Ziel, menschliche
Argumentation zu unterstützen oder sogar zu automatisieren und Computersysteme so
zu verbessern, dass sie Argumente generieren und auswerten können.

Diese Arbeit beschäftigt sich mit der Implementierung allgemeiner formaler Modelle
grundlegender Argumentationssysteme. Ihnen gemeinsam ist die hohe Berechnungskom-
plexität - im Falle der Argumentationsprobleme, die wir untersuchen, können diese
von vollständig für die ersten Stufen der Polynomialzeithierarchie bis zu grundsätzlich
unentscheidbar reichen. Ein Standardverfahren zur Lösung solcher komplexen Rechen-
probleme ist es, Translationsmöglichkeiten in andere Formalismen, bei denen effiziente
Systeme existieren, zur Verfügung zu stellen. Aufgrund der Komplexität unserer Aufgabe
betrachten wir quantifizierte boolsche Formeln (QBF) und “Answer Set Programming”
(ASP) als Zielformalismen. Ersteres ist eine Verallgemeinerung von Aussagenlogik, welche
Unterklassen von Formeln hat, deren Komplexität vollständig für jede Stufe der Poly-
nomialzeithierarchie ist. “Answer Set Programming” ist ein Paradigma für deklarative
Problemlösung, die aus der Logikprogrammierung stammt und allgemein unentscheidbar
ist, jedoch wichtige entscheidbare Fragmente besitzt.

Konkret entwickeln wir Methoden zur Implementierung zentraler Argumentationsproble-
me für “abstract dialectical frameworks” und “defeasible theories”. “Abstract dialectical
frameworks” (ADFs) ist einer der umfassendsten graphischen Formalismen zur Evalu-
ierung von Argumentationsszenarien, wobei die Knoten Aussagen oder Behauptungen
repräsentieren und mit Akzeptanzkonditionen assoziiert sind, die komplexe Beziehungen
zwischen den Aussagen wie zum Beispiel Ablehnung oder Unterstützung repräsentieren.
Auf Basis solcher Repräsentationen liefern verschiedene Semantiken Konfliktlösungme-
chanismen. Andererseits erlauben “defeasible theories” Sammlungen von strikten und
annullierbaren Regeln erster Ordnung auszudrücken. Potentielle Widersprüche zwischen
den annullierbaren Regeln werden durch die “direct stable semantics” entschärft, wodurch
auch die Möglichkeit entsteht, Argumente für spezifische Aussagen auf Basis der durch
eine “defeasible theory” ausgedrückten Informationen zu generieren.
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Zu Beginn entwickeln wir in dieser Arbeit komplexitätsberücksichtigende QBF Kodie-
rungen für “stable semantics” für ADFs als auch verknüpfungs-informations-sensible
QBF-Kodierungen für alle der wichtigsten Semantiken für ADFs. Letztere profitieren
von der Information der Verknüpfungsarten (Beziehung zwischen den Netzknoten) der
ADFs wenn vorhanden; der Grund dafür ist, dass die QBF Solver in der Lage sind, diese
Information im gleichen Ausmaß zu nützen wie die Verfügbarkeit der Information die
Komplexität der Argumentationsaufgaben, die wir studieren, vereinfacht. Des Weiteren
entwickeln wir neue dynamische ASP Kodierungen für die wichtigsten Semantiken für
ADFs. Wir machen davon Gebrauch, dass die kombinierte Komplexität vom Schließen in
ASP Programmen mit Prädikaten mit beschränkter Stelligkeit genau mit der Komplexität
der Argumentationsaufgaben, die wir untersuchen, übereinstimmt.

Schließlich untersuchen wir die Implementierung des gesamten Prozesses von der Auswer-
tung von Sammlungen strikter und annullierbarer Regeln, ausgedrückt in einer promi-
nenten “Controlled Natural Language” (Kontrollierte Natürliche Sprache) (CNL), ACE,
bis hin zu der Translation solcher Regeln in “defeasible theories” und deren Evaluation
durch “direct stable semantics”. Dies beinhaltet das Studieren der Translation der in CNL
ausgedrückten Regeln zu “defeasible theories”; die Kodierung allgemeiner Regeln, die
existenzielle Quantifizierung beinhalten, in normale (ohne existenzielle Quantifizierung)
Regeln; als auch die Evaluation von “defeasible theories” durch ASP Kodierungen. Wir
haben Prototypsysteme für alle von uns entwickelten Strategien produziert und berichten
auch über vorläufige empirische Evaluationen.



Abstract

Argumentation is one of the key manners in which humans individually and collectively
make sense of complex scenarios about which the information that is available is incomplete
or even inconsistent. Computational or artificial argumentation is thus also an increasingly
important sub-field of AI aiming at supporting or even automating human argumentation
as well as enhancing computational systems with means of generating and evaluating
arguments.

This work is concerned with the implementation of general formal models underlying
computational argumentation systems. What most of such models have in common is
their high computational complexity; in the case of the reasoning problems we study,
these range from being complete for the first levels of the polynomial hierarchy to being
undecidable in general. A standard way of addressing computational problems with such
high complexity is by providing translations to other formalisms for which efficient systems
exist. Given the complexity of the tasks we address, in this work we consider quantified
boolean formulas (QBFs) and answer set programming (ASP) as target formalisms.
The first being a generalisation of propositional logic having sub-classes of formulas
whose complexity is complete for each level of the polynomial hierarchy. Answer set
programming, on the other hand, is a paradigm for declarative problem solving having
sprung out of logic programming and being undecidable in general, yet having important
decidable fragments.

Concretely, we develop means of implementing some of the main reasoning problems for
abstract dialectical frameworks and defeasible theories. Abstract dialectical frameworks
(ADFs) are one of the most comprehensive graphical formalisms for evaluating argumenta-
tion scenarios, with nodes representing statements or assertions and acceptance conditions
associated to the nodes specifying complex relations, such as attack and support, between
the statements. Different semantics provide conflict resolution mechanisms on the basis
of such an abstract representation. Defeasible theories, on the other hand, allow for
expressing collections of strict and defeasible first order rules. Potential conflicts between
the defeasible rules are resolved via the direct stable semantics, which also provides means
of generating arguments for particular claims on the basis of the information expressed
in a defeasible theory.

In this work we, first of all, develop complexity sensitive QBF encodings for the stable
semantics for ADFs as well as link information sensitive QBF encodings for all the major
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semantics for ADFs. The latter make use of information about the link (relationships
between the nodes) types of ADFs whenever available; the motivation being that solvers
for QBFs are able to make use of this information to the same degree as which availability
of the information can make the complexity of the reasoning tasks we study easier. We
secondly develop novel dynamic ASP encodings for the main semantics for ADFs. We
make use of the fact that the combined complexity of reasoning on ASP programs with
predicates of bounded arity size exactly matches the complexity of the reasoning tasks
we investigate for ADFs.

Finally, we study the implementation of the whole pipeline of evaluating collections of
strict and defeasible rules expressed in a prominent controlled natural language (CNL),
ACE, to the translation of such rules into defeasible theories and their evaluation via
the direct stable semantics. This involves studying the translation of the rules expressed
in the CNL into defeasible theories, the encoding of general rules involving existential
quantification into normal (i.e. not having existential quantification) rules, as well as
the evaluation of defeasible theories via the direct stable semantics using ASP encodings.
We have produced prototype systems for all of the implementation strategies we devise
in this work and also report on preliminary empirical evaluations.
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CHAPTER 1
Introduction

Argumentation and its implementation in AI systems Broadly construed the
study of argumentation is concerned with how assertions are (or should be) “proposed,
discussed, and resolved in the context of issues upon which several diverging opinions
may be held” [BD07]. It is today a multidisciplinary field involving especially philosophy,
law, and AI.

This work is more specifically concerned with the implementation of models of argumenta-
tion as developed in the subfield of AI dubbed “computational models of argumentation”
or more recently and somewhat paradoxically “formal argumentation”. Among the disci-
plines concerned with argumentation this is, perhaps, the most exciting due to its reliance
on precise concepts and theories on the one hand (often motivated by developments of
neighboring disciplines or applications) and their realisation in computational systems on
the other. The latter not only allow getting a handle on the computational and material
adequacy of the formal models, but also have the potential of directly influencing the
quality and expanding the reach of argumentation in the context of the increasingly
ubiquitous cyberspace. Promising application areas are e.g. in health-care, e-governance,
law, and the web (see [ABG+17] for an overview).

Formal argumentation takes up some of the preoccupations of the informal logic movement
initiated in the 1950’s in philosophy [Gro17]. Specifically, it acknowledges the limitations
of using the tools of modern formal logic as initiated with the work of Frege in 1879 [vH02],
with its focus on the notion of mathematical proof, to model everyday reasoning. Indeed,
classical deductive logic is pushed to its limits when used for capturing reasoning on the
basis of incomplete, uncertain, and conflicting information; a type of reasoning which must
be revisable. On the other hand, rather than abandoning formal tools altogether, formal
argumentation is an attempt at developing more adequate formal tools and theories
for the purpose of apprehending reasoning modes beyond those used in constructing

1



1. Introduction

mathematical proofs1. Also, computational concepts, techniques, and concerns play
an increasingly central role. See [vEV18] for a recent survey of the history of formal
argumentation in the broader context of argumentation theory and [Pra18] for a survey
more focused on the developments in AI.

Argumentation can be viewed statically in that all information relevant to argumentation
is fixed. For instance in a medical setting as in [HW12], when constructing arguments
for recommending one treatment over another to a specific patient, all the relevant
evidence regarding the effects of treatments and the information about the patient can
be fixed to that available at a specific time. In the same manner, when studying the
arguments contained in product reviews posted on a web-site of interest (see, for instance,
[WSAB12]), it is reasonable to focus on the arguments available at a certain date. In
static scenarios it is also typical to adopt the “third person view” of the analyst studying
a discussion and assume the analyst has access to all the relevant information available
at that time; i.e. the information is “global”.

The static perspective is the more usual analytical perspective in formal argumentation,
which usually focuses on argumentation as a form of “inference” [Pra18]. Much of its
impetus comes from developments, especially during the 80’s, in logic programming and
non-monotonic reasoning [BNT08]. We also take up this perspective in our work and
therefore henceforth, except if stated otherwise, when we refer to formal argumentation
we have this restricted viewpoint in mind. An alternative yet often complementary2

viewpoint is that taken up in dialogical models of argumentation (see e.g. [MP09] and
again [Pra18] for a historical overview), where information is dynamic and distributed
over agents.

Even within the study of argumentation as a form of inference there are meanwhile quite
diverse theoretical frameworks, with the main division being between structured and
abstract approaches to argumentation. Structured argumentation formalisms, as the name
suggests, offer means of modelling the structure of arguments; e.g. premisses, inference
rules, and claims. Usually this is done by assuming an underlying logic; for instance,
classical logic [BH01] or default logic [BDKT97]. Prominent examples of structured
argumentation formalisms are assumption based argumentation [CFST18], deductive
argumentation [BH18], defeasible logic programming [GS18], and ASPIC+ [MP18].

In abstract argumentation the notion of argument is usually taken as a primitive and
the focus is on the relationships, typically that of attack, between the arguments. The
insight of the landmark work of [Dun95], which initiated this line of research and also
marks the beginning of rise to prominence of formal argumentation within AI, is that the
acceptability of arguments (whether an argument is defeated or not) in the context of a
discussion can be decided solely on the basis of the relationships between the arguments in
the debate. More concretely, Dung defined several semantics formalising diverse criteria to

1And even in these, see e.g. [PLB+17].
2The state of a dialogue can be fixed at a certain time and hence the static perspective comes into

play.
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determine the acceptability of arguments based on their relationship with other arguments
in a discussion. Arguments that can be accepted together (w.r.t. a semantics) form so
called extensions. To date a plethora of semantics exist even for Dung’s argumentation
frameworks (see [BCG18]) and much research in formal argumentation is devoted to
studying properties [Bau18] and relationships between the semantics [vdTV18].

The exact relation between structured and abstract argumentation is somewhat of a
controversial issue. Since the work of Dung, who himself used abstract argumentation
to reconstruct and compare several then important non-monotonic logics and logic
programming formalisms, many researchers in structured argumentation have themselves
used abstract argumentation to define the semantics of their formalisms. This leads
to what is often referred to as the instantiation pipeline for evaluating structured
argumentation [CA07]. The pipeline in question starts of with a knowledge base with
formulas in some base logic. Arguments are constructed from the knowledge base and then
relationships (usually that of attack; e.g. one argument attacks another if its conclusion
is the negation of one of the premisses of the latter) between the arguments are defined.
This leads to an abstract representation of the arguments in the form of a graph: in
the context of Dung’s argumentation frameworks (AFs) the nodes are the arguments
and the directed edges the attacks. These argumentation graphs can be evaluated using
abstract argumentation semantics. An important issue in the study of the instantiation of
structured argumentation using abstract argumentation is that the instantiation satisfies
some basic criteria codified into so called rationality postulates [Cam18], e.g. that the
extensions obtained when evaluating the instantiated argumentation graph are consistent
(in terms of the base logic).

On the other hand, there are structured argumentation formalisms (most notably, defeasi-
ble logic programming as presented in e.g. [GS04]) which do not conform to any of Dung’s
semantics. Also, there are structured argumentation formalisms like assumption-based-
argumentation [CFST18] which can be evaluated in a direct approach that is equivalent
to the instantiation approach but does not require the construction of argument graphs.
More fundamentally, in the area of abstract argumentation there has been a surge of
proposals of extensions to Dung’s initial argument frameworks (composed of arguments
and attacks) which more often than not attempt to directly model natural language
arguments (rather than first resorting to structured argumentation) using graphical
formalisms. Some examples of elements that have been added to Dung’s argumentation
frameworks include preferences, values, the support relation, set-attacks, attacks on
attacks, weights on attacks, and constraints. See [BPW14] for a survey of extensions
of abstract argumentation formalisms, [PW18] for a recent critique of this line of work,
and [Mod13] for a plausible line of defense. Many systems for argumentation also use
abstract argumentation as a knowledge representation formalism; particularly notable is
that also research in argument mining [CV18] (mining of arguments from texts, e.g. on
social-media or elsewhere on the web), which is one of the current major driving forces
behind research in argumentation, often assumes some form of graphical representation
as its output.
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1. Introduction

What most formalisms in argumentation have in common is their high computational
complexity; see [DD18] for an overview. Indeed, structured argumentation includes
formalisms which can capture classical logic [BH01] and its consequence relation is, hence,
undecidable in general [Tur37]. But even the complexity of some of the basic decision
problems, e.g. deciding whether an argument is contained in one or all extensions (w.r.t.
a semantics), for abstract argumentation in Dung’s rather simple framework spans the
first two levels of the polynomial hierarchy [DD18]. It should thus come as no surprise
that much research has gone into computational techniques and systems for evaluating
argumentation formalisms. Dung’s argumentation frameworks (AFs) in particular have
received the most attention (see [CDG+15] for an early overview) as witnessed by the
fact that the second international competition on computational models of arguments
(ICCMA’17)3 featured 16 solvers for Dung’s AFs, with at least 9 solvers participating in
each of the 24 tasks resulting from the combination of considered semantics and reasoning
problems.

Implementation techniques can be broadly classified in direct and reduction based, where
the direct approach involves the development of native algorithms for the formalism
and reasoning problem of interest. The reduction approach is based on the translation
of the reasoning problem of interest to some formalism for which systems exist; most
notably SAT and QSAT [BHvMW09], constraint satisfaction problems [RvBW06], and
answer-set programming [SW18b]. For structured argumentation another difference is
whether the implementation makes use of the instantiation to abstract argumentation
(which allows making use of systems for abstract argumentation) or not. See [CGTW18]
for a recent survey on implementations of formal argumentation formalisms, including
also a review of some of the more important general purpose systems (e.g. for annotating
texts with argument components or providing support for critical thinking and debate)
available for argumentation.

Frameworks for argumentation and target formalisms for implementations
considered in this work In this study we investigate the issue of implementing
reasoning for two rather novel yet also quite general frameworks for abstract and struc-
tured argumentation respectively: abstract dialectical frameworks and the direct-stable-
semantics for defeasible theories. Moreover, in the latter case we consider the entire
pipeline from a knowledge base expressed in a controlled natural language to the eval-
uation of the knowledge base using the argumentation-based semantics. We present
reduction based implementation techniques based on quantified boolean formulas and
answer-set-programming.

Abstract dialectical frameworks (first defined in [BW10] and later refined in [BES+13])
or ADFs for short are one of the most comprehensive extensions of Dung’s abstract
argumentation frameworks, allowing complex relationships between nodes to be specified
by associating acceptance conditions in the form of propositional formulas to the nodes.
Depending on the level of abstraction, the nodes can represent arguments, statements, or

3See http://argumentationcompetition.org/index.html.
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even elements from other domains for which conflict-resolution using argumentation-based
semantics makes sense. ADFs allow representing several of the most important existing
extensions of Dung’s argumentation frameworks [Pol16, Pol17] and have originally been
conceived as a form of “argumentation middle-ware” [BES+13] but have also been used
directly for modelling e.g. in applications in argument-mining [CV16], law [AAB16],
and general purpose debating technology [Neu18]. The most important semantics for
Dung’s frameworks have been generalised to ADFs [BES+13], with the complexity of the
associated decision problems usually being one level higher in the polynomial hierarchy
than the same problems for Dung’s AFs [SW15]. I.e. complexity for ADFs spans the first
three levels of the polynomial hierarchy. We refer to [BES+18] for a thorough discussion
of the motivations and current theory built around ADFs.

The direct stable semantics for defeasible theories is the outcome of previous investigations
[WBDC15, Str18] on defining a semantics for knowledge bases consisting of propositional
strict and defeasible rules via abstract argumentation. The authors in [SW17] rather
opt for an approach, where arguments for particular claims are an optional by-product
rather than part of the semantics. The motivations behind the direct stable semantics
are thus, in the first place, to provide means of evaluating knowledge bases of strict and
defeasible rules inspired in developments in formal argumentation. Defeasible rules are
usually thought of as “normality assumptions” (i.e. as in the natural language expressions
“normally’, “it is typical that” or “usually”); moreover, there may be conflicts between
the defeasible rules. Crucially, the direct stable semantics satisfies some of the main
rationality postulates defined in the literature [CA07] by construction, while also avoids
several computational problems of evaluating knowledge bases via the instantiation
process. Finally, the semantics is also defined for defeasible theories having some first
order elements and thus more suitable for capturing arguments expressed using natural
language [WS17]. Already for propositional theories acceptance problems (i.e. deciding
whether an atom is contained in some/all stable set/s) are complete for the second level
of the polynomial hierarchy, while the complexity of first order defeasible reasoning,
although yet not made precise, can be expected to be much harder.

Turning to the formalisms which we use as target for the realisations we devise in this
work, quantified boolean formulas (QBFs) [KB09] are an extension of propositional logic
with subclasses of QBFs identifiable by their syntactic structure (their prefix when in the
prenex-normal-form) capturing each level of the polynomial hierarchy. More precisely,
for each level of the polynomial hierarchy there is a subclass of QBFs whose satisfiability
problem (QSAT) is complete for that level. Answer-set-programming (ASP) [SW18b] on
the other hand is an increasingly influential paradigm for declarative problem solving
having roots in logic programming. The main decision problems for propositional ASP
span the first two levels of the polynomial hierarchy, for first order ASP they are up to
NEXPTIMENP-complete, while allowing functional symbols in ASP programs gives ASP
the expressive power of classical logic. Beyond the facts that the expressive power of
QBFs and ASP is at the right level for capturing the decision problems we study in this
work, these formalisms are of interest to us because of the impressive reasoners that exist
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1. Introduction

for them. See, for instance, the webpages of the recent international competitions for
QBF4 and ASP5 solvers.

Contributions and structure of the thesis Concretely, in this work we first develop
novel QBF and ASP encodings for the main reasoning problems for ADFs. We start of
with QBF encodings in Section 3.1. First, in Section 3.1.2 we build on previous work of
ours [Dil14] to give complexity-sensitive QBF encodings for the main reasoning problems
for ADFs w.r.t. the stable semantics. Note that in [Dil14] we did not consider this more
complex semantics. Also, ours are the only QBF encodings for ADFs we are aware of to
date. We thus continue the tradition of developing QBF encodings for argumentation
problems initiated for AFs in [EW06] and [AC13] (although these have not produced
systems).

Links of ADFs (edges between nodes) can be either supporting, attacking, redundant
or dependent; with the complexity of reasoning for ADFs with a number of links that
are neither attacking nor supporting bounded by a fixed constant roughly dropping one
level of the polynomial hierarchy with respect to general ADFs [SW15]; in fact, this
result can be easily generalised to links that are neither attacking nor supporting or,
alternatively, whose type is unknown (determining the link-type is coNP-complete) as
we sketch in Section 3.1.3.1. We present link information sensitive QBF encodings for all
of the main semantics (admissible, complete, preferred, grounded, stable) and reasoning
problems (verification, as well as credulous and skeptical acceptance problems) for ADFs
in Section 3.1.3. The encodings we develop make use of additional information about
the link types of the ADFs, whenever this information is available. The motivation
behind the latter is that the additional information about the links may serve solvers for
QBFs being fed an implementation of our encodings to the same degree that the extra
information may make the reasoning tasks easier.

We present a re-implementation (with some improvements in the design for purposes
of inspection) and extension of our previous QBF-based system for ADFs from [Dil14,
DWW14], QADF6, in Section 3.1.4. The system now also produces link-information-
sensitive encodings for the admissible, preferred, and stable semantics. We also discuss
results of a preliminary investigation on the effect of using different QBF-solvers and
preprocessors on our link-information-sensitive encodings for the admissible and preferred
semantics.

While we are responsible for the only QBF-based system for ADFs we are aware of,
the first system for ADFs was the ASP-based system ADFSys [EW12] which lead to
the (likewise ASP-based) DIAMOND (DIAlectical FraMewOrks eNcoDings) family of
systems [ES14, ES16, SE17] (for AFs there are several ASP-based systems; see [DDP+18]).
These systems have in common that they rely on static encodings, i.e. the encoding
does not change for different framework instances; this approach is hence limited by

4http://www.qbflib.org/index_eval.php
5http://aspcomp2017.dibris.unige.it/
6https://www.dbai.tuwien.ac.at/proj/adf/qadf/
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the data complexity of ASP (which only reaches the second level of the polynomial
hierarchy [EG95, EGM97]). Therefore, preferred semantics in particular (which comprise
the hardest problems for ADFs) need a more complicated treatment involving two
consecutive calls to ASP solvers with a possibly exponential blowup for the input of the
second call.

In Section 3.2, we introduce a new method for implementing reasoning tasks for ADFs
(acceptance problems for the admissible, complete, preferred, grounded, and stable
semantics) such that even the hardest among the problems are treated with a single call
to an ASP solver. Our approach makes use of the fact that the combined complexity
of ASP for programs with predicates of bounded arity [EFFW07] exactly matches the
complexity of ADFs. This approach is called dynamic, because the encodings are
generated individually for every instance. This allows to generate rules of arbitrary
length that can take care of NP-hard subtasks themselves. This particular method has
been advocated in [BMW16b] in combination with tools that decompose such long rules
whenever possible in order to avoid huge groundings [BMW16a]. To the best of our
knowledge, our work is the first to apply this technique in the field of argumentation.

We discuss how to make use of our dynamic technique in the context of the encodings
developed for the DIAMOND systems in Section 3.2.6. In Section 3.2.7 we present an
implementation of the encodings (for the admissible, complete, preferred, and stable
semantics) in our system YADF7 and discuss experiments we carried out to compare the
performance of our implementation to some of the other main existing systems for ADFs.

A defining characteristic of argumentation is that it is expressed using natural language.
Much of current research in argument-mining focuses on extracting components (e.g.
claims, premisses) and relations between arguments (e.g. attack, support) using shallow
natural language processing techniques and disregarding reasoning on the basis of the
extracted elements. On the other hand, models of formal argumentation more often than
not ignore the issue of their applicability to information expressed in natural language.
Something of a middle ground is offered by tying a formal model for argumentation to
a controlled natural language (CNL) [Kuh14]8: a restricted subset of natural language
which can be evaluated semantically using the formal model in question. Along these
lines, in Section 4 we develop the rudiments of a CNL interface to defeasible theories,
which can be evaluated using the direct-stable-semantics.

Specifically, we motivate and show the design of an implementation of what co-authors
of ours have dubbed the EMIL (acronym for “Extracting Meaning from Inconsistent
Language”) pipeline [SWD]. The input of the pipeline in question are collections of
rules in an extension of an existing CNL, ACE [FKK08], allowing for the expression of
potentially conflicting defeasible rules in the form of normality assumptions in addition
to strict rules. Such rules are, whenever possible, translated into defeasible theories and
can, hence, be made sense of in terms of the direct stable semantics. Finally, stable

7https://www.dbai.tuwien.ac.at/proj/adf/yadf/
8See e.g. [CTO14] and particularly [WvEH16] for proposals in this direction.
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1. Introduction

sets (expressing different manners of resolving conflicts in the defeasible theories) are
verbalised using ACE.

The design of the system we develop here is based on our experience with an initial
experimental prototype implementing EMIL we developed relying heavily on an existing
interface to rule systems for ACE, ACERules [Kuh07]. The nature of this initial prototype
is sketched in Section 4.2.2. We encountered several issues with this system which led to
an in-depth investigation of the inner workings of ACERules; the results of which forms
a large part of Section 4. More to the point, in Section 4.1 we give a high level description
of the system ACERules, paying attention not only to features we have adopted in
our design but particularly to the sources of the problems we found. Note that such a
description is unavailable to date; the only publications on ACERules [Kuh07, Kuh10]
deal with so called grouping (see Section 4.1.3) and in a less detailed manner than we do.

The system ACERules basically works by filtering ACE texts corresponding to general
rules allowing, for instance, existentially quantified variables as well as conjunctions
of atoms in the heads and bodies of rules. In particular, these atoms can appear
negated (either via strong negation or negation-as-failure). A large part of the system
ACERules consists in several transformations attempting to make such general rules,
which we call ∃-rules [GGLS15], conform to the format of the rule systems it provides an
interface to; the most general of these are normal logic programs with strong as well as
negation-as-failure [GL90].

The issues we encountered when using the system ACERules are with these transfor-
mations. Summarising, the problem is that in some cases the transformations introduce
semantic errors in the interpretation of ACE texts. On the other hand, providing an
interface to rule systems while preserving the semantics, leads to many natural ACE
texts expressed as rules being filtered-out when they could be handled with modern-day
rule systems.

In Section 4.2 we outline the already alluded to alternative design for an implementation of
EMIL. The crucial aspect of this implementation is that we target ∃-rules, also including
defeasible in addition to strict ∃-rules, rather than normal rules. Our translation of such
∃-rules to normal rules, which we further discuss as well as sketch in Section 4.2.4.1, allows
us to circumvent the main problems we found with ACERules in a uniform manner.
We show encodings for evaluating defeasible theories via the direct stable semantics
using ASP in Section 4.2.4.2. In contrast to previous existing encodings [SW17], these
encodings are optimised for defeasible theories with variables as well as function symbols
(which we make use of in our translation of ∃-rules to normal rules).

In Section 4.3 we finally give an extended example of the use of the implementation of the
EMIL pipeline in the context of ACEWiki [Kuh09], a prototye of an online encyclopedia
expressed in ACE. In Section 4.4 we present the functioning of the system we implemented,
emil9, based on the ideas developed in Section 4 as well as the results of preliminary
experiments.

9https://www.dbai.tuwien.ac.at/proj/grappa/emil/
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Before presenting our contributions in Section 2 we present the formal background
required to follow our work. We assume, on the other hand, an understanding of basic
notions and notation of classical propositional as well as first order logic.

Publications Parts of the results in this thesis have been published or submitted for
publication. Our complexity-sensitive QBF encodings w.r.t. the stable semantics for
ADFs are a part of the following publication (which otherwise mainly includes results
from [Dil14]):

• Martin Diller, Johannes Peter Wallner, and Stefan Woltran. Reasoning in abstract
dialectical frameworks using quantified Boolean formulas. Argument & Computation,
6(2):149–177, 2015

We presented the results of our initial experiments in using different QBF solvers and
preprocessors on our link-information-sensitive QBF encodings for ADFs at the 2018
“International Workshop on Quantified Boolean Formulas and Beyond” (QBF’2018)
colocated with the Federated Logic Conference 2018 (FLoC) at Oxford, in the UK.

We first presented our work on dynamic ASP encodings for ADFs at AAAI’2017:

• Gerhard Brewka, Martin Diller, Georg Heissenberger, Thomas Linsbichler, and
Stefan Woltran. Solving Advanced Argumentation Problems with Answer-Set
Programming. In Satinder P. Singh and Shaul Markovitch, editors, Proceedings
of the 31rst Conference on Artificial Intelligence (AAAI 2017), pages 1077–1083.
AAAI Press, 2017

We later extended this work by also adding encodings for the grounded and stable
semantics as well as giving prototypical proofs in:

• Gerhard Brewka, Martin Diller, Georg Heissenberger, Thomas Linsbichler, and
Stefan Woltran. Solving Advanced Argumentation Problems with Answer-Set
Programming. Submitted to TPLP - Special issue on argumentation and logic
programming - frontiers and relations.

Regarding our work on the implementation of the EMIL pipeline, our first publication is
the result of a presentation at IWCS’17 (here we make use of the system built on top of
ACERules to motivate the EMIL pipeline with an extended example of its use in the
context of ACEWiki):

• Martin Diller, Adam Wyner, and Hannes Strass. Defeasible AceRules: A proto-
type. In Claire Gardent and Christian Retoré, editors, Proceedings of the 12th
International Conference on Computational Semantics (IWCS 2017), September
2017
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Our ideas for a novel implementation of EMIL first appear sketched in:

• Hannes Strass, Adam Wyner, and Martin Diller. EMIL: Extracting Meaning from
Inconsistent Language. Towards argumentation using a controlled natural language
interface. Submitted to International Journal of Approximate Reasoning

The following submission is more focused on the design of our new implementation, while
also providing more details on the motivations behind adopting a different strategy to
the transformations implemented in the system ACERules:

• Martin Diller, Adam Wyner, and Hannes Strass. Making sense of conflicting
(defeasible) rules in the controlled natural language ACE: design of a system with
support for existential quantification using skolemization. In Proceedings of the
13th International Conference on Computational Semantics (IWCS 2019), 2019.
To appear

Further articles co-authored by the author of this work in the context of the PhD which,
while being related to this work, do not contain results directly included here are listed
below:

• Martin Diller, Wolfgang Dv̌orák, Jörg Pührer, Johannes Peter Wallner, and Stefan
Woltran. Applications of ASP in Formal Argumentation. In Proceedings of the 2nd
Workshop on Trends and Applications of Answer Set Programming (TAASP 2018),
2018. Available online at http://www.kr.tuwien.ac.at/events/taasp18/
papers/TAASP_2018_paper_16.pdf

• Martin Diller, Atefeh Keshavarzi Zafarghandi, Thomas Linsbichler, and Stefan
Woltran. Investigating Subclasses of Abstract Dialectical Frameworks. In Proceed-
ings of the 7th International Conference on Computational Models of Argument
COMMA 2018, volume 305 of Frontiers in Artificial Intelligence and Applications,
pages 61–72. IOS Press, 2018

• Martin Diller, Adrian Haret, Thomas Linsbichler, Stefan Rümmele, and Stefan
Woltran. An Extension-Based Approach to Belief Revision in Abstract Argumenta-
tion. Int. J. Approx. Reasoning, 93:395–423, 2018

• Martin Diller and Anthony Hunter. Encoding monotonic multiset preferences using
CI-nets. In Bernhard Mitschang, Norbert Ritter, Holger Schwarz, Meike Klettke,
Andreas Thor, Oliver Kopp, and Matthias Wieland, editors, Proceedings of the 1rst
Workshop on Preferences and Personalisation in Informatics (PPI 2017) at the
17th International Conference on Database Systems for Business, Technology, and
Web of the German Informatics Society (BTW 2017), volume P-266 of LNI, pages
169–180. GI, 2017
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• Martin Diller and Anthony Hunter. Encoding monotonic multi-set preferences
using CI-nets: preliminary report. CoRR, abs/1611.02885, 2016

• Martin Diller, Adrian Haret, Thomas Linsbichler, Stefan Rümmele, and Stefan
Woltran. An Extension-Based Approach to Belief Revision in Abstract Argu-
mentation. In Qiang Yang and Michael Wooldridge, editors, Proceedings of the
24th International Joint Conference on Artificial Intelligence (IJCAI 2015), pages
2926–2932. AAAI Press, 2015

11





CHAPTER 2
Formal background

In this chapter we present the formal background necessary to follow our work. Specifically,
we detail the basics of quantified boolean formulas in Section 2.1, answer-set-programming
in Section 2.2, abstract dialectical frameworks in Section 2.3, and defeasible theories with
associated direct-stable-semantics in Section 2.4. An overview of the complexity classes
we make reference to in this work is provided in Section 2.5. As already mentioned in
the introduction, we assume basic familiarity with the notation and theory of classical
propositional and first order logic; see e.g. [End72].

2.1 Quantified Boolean Formulas (QBFs)

Quantified boolean logic is an extension of propositional logic. As has already been
hinted at in the introduction to this work, from a computational perspective, one of
the main reasons behind the importance of quantified boolean logic is its connection
with the complexity class PSPACE and the polynomial hierarchy (see Section 2.5 for an
overview of the complexity classes referred to in this work). The satisfiability problem
for quantified boolean formulas, QSAT, can be considered the “prototypical problem” for
the class PSPACE in the sense that this class can be defined as the set of problems that
can be expressed in terms of QSAT in an efficient manner. Moreover, there are subclasses
of quantified boolean formulas or QBFs whose satisfiability problem is prototypical for
each level of the polynomial hierarchy. For the theory of QBFs the standard overview is
still [KB09].

As we also referred to in the introduction to this work, quantified boolean logic is also
growing increasingly relevant to AI & computer science from a more practical perspective.
The reason for this are the increasing efforts (and several significant accomplishments)
in replicating the success of SAT solving in the development and application of QSAT
solvers to hard computational problems. See e.g. reports on previous international
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2. Formal background

competions for QSAT solvers as QBFEVAL or the QBF galleries [JJK+14, LSG16]; as
well as the dedicated webpage for the results of the latest editions1.

2.1.1 Syntax

The basis of propositional logic is a countable set of propositional variables P , to which we
also refer to as atoms. Propositional formulas are built recursively from the propositional
atoms and the connectives ∧, ∨, and ¬, denoting the logical conjunction, disjunction and
negation, respectively. We also allow the use of the truth constant >, allowing a direct
representation of the truth value true. Quantified boolean formulas, or QBFs for short,
additionally use the universal quantifier ∀ and the existential quantifier ∃.

Definition 1. The set of quantified boolean formulas (QBFs) is defined inductively as
follows:

• Any propositional variable p ∈ P is a QBF.

• The logical constant > is a QBF.

• If φ and ψ are QBFs, then so is (¬φ), (φ ∧ ψ), and (φ ∨ ψ).

• If p ∈ P is a propositional variable and φ is a QBF, then (∃pφ) and (∀pφ) are
QBFs.

• Nothing else is a QBF.

Any QBF without the quantifiers ∃ and ∀ is a propositional formula. We define shorthands
for the truth constant false, (material) implication, equivalence, and exclusive or. Given
QBFs φ and ψ, the respective definitions are as follows:

⊥ := ¬>
φ→ ψ := ¬φ ∨ ψ
φ↔ ψ := (φ→ ψ) ∧ (ψ → φ)
φ⊕ ψ := (φ ∨ ψ) ∧ ¬(φ ∧ ψ)

We also define shorthands for n-ary conjunctions and disjunctions. Given a set F =
{φ1, φ2, . . . , φn} of QBFs, these abbreviations are defined as follows:

∨
φ∈F

:=
n∨
i=1

φi := φ1 ∨ φ2 ∨ . . . ∨ φn

1http://www.qbflib.org/index_eval.php
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∧
φ∈F

:=
n∧
i=1

φi := φ1 ∧ φ2 ∧ . . . ∧ φn.

If F = ∅ (or n = 0), we stipulate the above abbreviations to simplify to ⊥ for the empty
disjunction and > for the empty conjunction.

For purposes of clarity, we will in this work often omit parentheses, for which we introduce
a ranking to the logical symbols we have presented above. We stipulate that ¬, ∃p, and
∀p have the same ranking. Also, these have a higher ranking than the connectives ∧,
∨, ⊕, →, and ↔ which again have the same ranking. When parentheses are omitted,
parentheses should be read into the formula according to this ranking (i.e. connectives
higher in the ranking “bind stronger”) to avoid ambiguity. We will further simplify our
rendering of formulas by assuming that binary connectives associate to the left (so, for
example, φ1 ∧ φ2 ∧ φ3 should be read as ((φ1 ∧ φ2) ∧ φ3))). Also, we will often not write
outermost parentheses of QBFs.

We also introduce some simplifications for writing out QBFs with quantifiers. Specifically,
if P = {p1, p2, . . . , pn} is a set of propositional variables and φ a QBF, then QPφ and
Qp1p2 . . . pnφ are to be read as (Qp1(Qp2(. . . (Qpn(φ))))) for anyQ ∈ {∃, ∀}. In particular,
if P = ∅ then QPφ is to be read as φ. Also, we will sometimes use QP1 . . . Pnφ for sets
of propositional variables P1, . . . , Pn (n > 1), as an abbreviation of Q(P1 ∪ . . . ∪ Pn)φ.
We call successive quantifiers of the same kind occurring in a certain formula a quantifier
block.

We assume the notions of subformula of a QBF as well as occurrence of one formula
(e.g. a propositional variable) in another to be clear. E.g. the subformulas of the
QBF ∀p∃q(p ∧ q) are ∀p∃q(p ∧ q), ∃q(p ∧ q), (p ∧ q), p, and q. Any of the subformulas
of ∀p∃q(p ∧ q) occurs in this QBF. Note that there may be multiple occurrences of a
subformula in a QBF; when this is the case, it should be clear from context to which
occurrence we are referring to and, hence, we do not define this concept formally here.

Further important syntactical notions regarding QBFs are the scope in which a quantifier
is applied and whether a variable appears bound by a quantifier or not in such a formula.

Definition 2. The scope of a quantifier Q ∈ {∀,∃} in a QBF of the form Qpφ is the
QBF φ. An occurrence of a variable p in a QBF φ is free if it does not occur in the scope
of a quantifier in the QBF, otherwise the occurrence of p is bound. If a QBF φ contains
no free variable occurrences, then φ is closed, otherwise φ is open. FREE(φ) denotes
the set of free variables of a QBF φ.

With these notions in hand, substitution of formulas for variables occurring in a QBF
can be defined:

Definition 3. Let φ be a QBF, {ψ1, . . . , ψn} a set of QBFs such that none of the
propositional variables in P = {p1, . . . , pn} occurs free in any of the ψis for 1 ≤ i ≤ n.
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Then, φ[p1/ψ1, . . . , pn/ψn] denotes the QBF which results by uniform substitution of all
free occurrences of the variables pi in φ by the corresponding ψi for 1 ≤ i ≤ n.

Rather than explicitly listing the substitutions as in the notation introduced in Definition
3, we will often describe them as in the alternative notation φ[pi/ψi | 1 ≤ i ≤ n] (in this
example, assuming pi and φi have been defined for each 1 ≤ i ≤ n).

2.1.2 Semantics

Semantics for QBFs are defined in terms of (two valued) interpretations of propositional
variables, an interpretation being a mapping v : P → {t, f} that defines for each
propositional variable a truth assignment. Here t stands for “true” and f for “false”. We
will sometimes explicitly highlight that an interpretation v is defined on a set P ⊆ P.

The extension of an interpretation on atoms to that of QBFs is given in Definition 4.

Definition 4. Given a QBF φ and an interpretation v, then φ evaluates to true under
v (v satisfies φ or v is a model of φ, denoted by v � φ or, simply, v(φ) = t) if one of the
following holds, with p ∈ P and QBFs ψ, ψ1 and ψ2.

• φ = p and v(p) = t;

• φ = >;

• φ = ¬ψ and ψ does not evaluate to true under v;

• φ = ψ1 ∧ ψ2 and both ψ1 and ψ2 evaluate to true under v;

• φ = ψ1 ∨ ψ2 and one of ψ1 and ψ2 evaluates to true under v;

• φ = ∃pψ and one of ψ[p/>] and ψ[p/⊥] evaluates to true under v;

• φ = ∀pψ and both ψ[p/>] and ψ[p/⊥] evaluate to true under v.

We say that a a QBF φ evaluates to false under an interpretation v if it does not evaluate
to true under v. We denote this as v(φ) = f or also v 2 φ. Now we have that a QBF φ is
satisfiable if there is an interpretation v s.t. v(φ) = t. It is unsatisfiable otherwise. A
QBF is valid if for every interpretation v, v(φ) = t. This is denoted as � φ. If φ is not
valid -,i.e. there is an interpretation v s.t. v(φ) = f,- this is denoted as 2 φ. For closed
QBFs the notions of satisfiability and validity are equivalent; hence, closed QBFs that are
satisfiable are often called “true” while those which are unsatisfiable are called “false”.

Two QBFs φ1 and φ2 are logically equivalent whenever v(φ1 ↔ φ2) = t for every
interpretation v. We write this as φ1 ≡ φ2. The truth value of a QBF is uniquely
determined by the truth values of its components; this is the “principle of extensionality”
(for QBFs). This fact has the important consequence that a subformula ψ of a QBF φ
can be replaced for another formula ψ′ that is logically equivalent to it (i.e. ψ ≡ ψ′),
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without altering the truth value of φ. The formal statement of this result is usually called
the “replacement theorem” and allows syntactical transforming QBFs while preserving
the semantics.

There are many well known semantic equivalences that are used for meaning preserving
syntactic transformations of QBFs. Although we make extensive use of them, we don’t
list any of the (many) important semantic equivalences that are known for propositional
logic and all generalise to QBFs, e.g. commutativity of ∧ and ∨ or De Morgan’s laws.
We do conclude this subsection by listing some equivalences that are specific to QBFs
and that are equally relevant to this work.

Proposition 1. Let φ and ψ be QBFs with p not occurring free in ψ. Also let Q ∈ {∃, ∀},
Q := ∀ if Q = ∃, and Q := ∃ if Q = ∀. The following equivalences then hold.

• (¬Qpφ) ≡ Qp(¬φ),

• (Qpφ ∧ ψ) ≡ Qp(φ ∧ ψ),

• (ψ ∧Qpφ) ≡ Qp(ψ ∧ φ),

• (Qpφ ∨ ψ) ≡ Qp(φ ∨ ψ),

• (ψ ∨Qpφ) ≡ Qp(ψ ∨ φ).

Note that a consequence of the definition of the connective “→” and Proposition 1 is
that also the following equivalences which we make extensive use of hold:

• (Qpφ→ ψ) ≡ Qp(φ→ ψ),

• (ψ → Qpφ) ≡ Qp(ψ → φ).

Here again Q ∈ {∃, ∀} and p does not occur free in ψ.

2.1.3 Relating syntax and semantics

The syntax and semantics of QBFs are closely related. We now state some elemental
lemmas which we make repeated use of in the proofs of Section 3.1 of this work and
which allow us to switch from writing about one to writing about the other.

We start of by defining a form of “substitution” for interpretations. Given two inter-
pretations v and w as well as a set of propositional variables P , v[P/w(P )] denotes the
interpretation v′ defined as:

• v′(p) := w(p) for p ∈ P .

• v′(q) := v(q) if q ∈ P and q 6∈ P .
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We will often use the simplified notation v[p/x] with x ∈ {t, f} in the case that P = {p}
and w(p) = x in the definition above.

Note that we use the same notational device - ,brackets, - both for substitution for
formulas as well as for substitution for interpretations. We trust that the place where
the brackets appear makes it clear to the reader whether we use brackets denoting the
first or the latter.

The following lemma and corollary are straightforward consequences of the semantics of
QBFs.

Lemma 1. Let ψ be a QBF, and P a set of propositional variables. If φ = ∃Pψ
(φ = ∀Pψ), then v |= φ if and only if v[P/w(P )] |= ψ for some (all) interpretation(s) w.

Corollary 1. Let ψ be a closed QBF, and P a set of propositional variables. If φ = ∃Pψ
(φ = ∀Pψ), then φ is true if and only if for some (all) interpretation(s) v, v |= ψ.

One final use of brackets as notational device we introduce for QBFs is φ[P/v(P )] to
denote the formula φ where every occurrence of any variable p ∈ P is replaced for >
in case that v(p) = t and replaced for ⊥ in the case that v(p) = f. For φ[{p}/v({p})]
we use the simplified notation φ[p/v(p)]. Another immediate result relating syntax and
semantics that we make repeated use of in this work is then the following.

Lemma 2. Let v be an interpretation, φ a QBF, and p ∈ P. Then v |= φ if and only if
v |= φ[p/v(p)]. Also, if P are all the free variables of φ, then v |= φ if and only if for all
interpretations w it is the case that w |= φ[P/v(P )].

2.1.4 Prenex normal forms and complexity

For computational purposes it is often useful to restrict attention on formulas with
a specific syntactic structure. Ideally, such a restriction should still allow to express
all possible QBFs. The prenex normal form as well as prenex conjunctive normal, are
two such normal forms. The first is particularly important since there is a one to one
correspondence between the complexity of reasoning for certain types of QBFs in prenex
normal form and the different levels of the polynomial hierarchy. The prenex conjunctive
normal form on the other hand imposes a further restriction on the prenex normal form
and generalises the conjunctive normal form for propositional formulas to QBFs. Its
importance is due to the fact that most QBF solvers expect the input QBFs to be in a
variant of this normal form (the QDIMACS format).

We first remind the reader that a clause is a disjunction of literals, literals being proposi-
tonal atoms or negations thereof. I.e. a literal is of the form p or ¬p with p ∈ P, the
first being called a positive literal, while the second is a negative literal. A formula is in
conjunctive normal form (CNF) if it is a conjunction of clauses. Formulas in conjunctive
normal form capture all propositional formulas, i.e. given a propositional formula φ there
is a formula φ′ in CNF such that φ ≡ φ′.
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It is well known, nevertheless, that transformation of an arbitrary propositional formula
to CNF can lead to an exponential explosion. A linear transformation to CNF form
is the so called “Tseitin encoding” first defined in [Tse68] which works by replacing
subformulas with new variables and then adding clauses to the original formula specifying
the relationship between the newly introduced variables and the subformulas. This results
in an equisatisfiable formula, i.e. if φ is the original formula and φ′ is the one obtained
via the Tseitin transformation then φ is satisfiable if and only if φ′ is satisfiable. When
satisfiability of the original formula is the issue of concern, as will mostly be the case in
this work, this is obviously not a disadvantage.

To introduce the notion of a QBF in prenex conjunctive normal form we first need to
introduce the notion of a QBF φ being “standarized apart”. This is the case when the
following conditions hold:

• no variable occurring in φ occurs both free and bound,

• for each Q1, Q2 ∈ {∃,∀}, if Q1p and Q2q are two distinct occurrences of quantifiers
in φ, then p and q are distinct variables.

• For each subformula Qpψ with Q ∈ {∃,∀} occurring in φ, p is a free variable in ψ.

An arbitrary QBF φ can be transformed in linear time into a φ′ which is equivalent to φ
and standarized apart by renaming variables which do not satisfy the first two conditions
above and removing Qp for Q ∈ {∃,∀} in Qpψ when p does not occur freely in ψ. That
the resulting formula φ′ is equivalent to φ is based on the fact that for a propositional
variable p not occurring freely in a QBF ψ and Q ∈ {∃,∀}, (Qqψ) ≡ (Qpψ[q/p]) and
(Qpψ) ≡ (ψ).

Now the definition of the prenex normal form as well as the prenex conjunctive normal
form can be given as follows:

Definition 5. A QBF φ is in prenex normal form (PNF) if it is standarized apart and
it is of the form Q1P1Q2P2 . . . QnPnψ where ψ is a propositional formula, Qi ∈ {∃, ∀}
for 1 ≤ i ≤ n, and the Pis are (mutually disjoint) sets of propositional variables. ψ is
called the matrix of φ and Q1P1Q2P2 . . . QnPn is the prefix of φ. Finally, φ is in prenex
conjunctive normal form (PCNF) if it is in prenex normal form and its matrix is in
conjunctive normal form.

Just as CNFs capture propositional formulas, there is an equivalent formula in PNF as
well as PCNF for every QBF. A standard procedure for transforming a QBF φ into an
equivalent formula φ′ in PNF is by first standarizing apart. Then, defined connectives are
eliminated in terms of their definitions and subformulas of the form ¬∀pψ are transformed
into ∃p¬ψ and ¬∃pψ into ∀p¬ψ in recursive manner. Subsequently, quantifiers are “pulled
out” by using the last four equivalences in Proposition 1 (from left to right).
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For transforming a QBF in PNF to PCNF, the matrix of the formula in prenex normal
form can be transformed into CNF. As already indicated, this last step can lead to an
exponential explosion, but the Tseitin procedure can be adapted to QBFs. Using the
(adapted) Tseitin procedure it is possible to achieve a linear transformation resulting in
an equivalent (since closed) formula.

The computational complexity of deciding whether a QBF φ in PNF is satisfiable depends
on the prefix type. Every propositional formula has the prefix type Σ0 = Π0. Let φ be a
closed QBF with prefix type Σi (respectively, Πi) and P a set of m > 0 propositional
variables. Then the formula ∀Pφ (respectively ∃Pφ) is of type Πi+1 (respectively Σi+1)
for i ≥ 0. Now deciding whether a QBF φ in PNF is satisfiable is ΣP

k complete if φ has
prefix type Σk and otherwise if φ has prefix type Πk, then the problem is ΠP

k complete
(k ≥ 1) [Sto76, Wra76] (see Section 2.5 for the definitions of the complexity classes ΣP

k

and ΠP
k for every k ≥ 1). Deciding whether an arbitrary QBF (i.e. not in any normal

form) is satisfiable is PSPACE-complete in general [SM73].

2.2 Answer Set Programming (ASP)
As indicated in the introduction to this work, answer set programming or ASP for short, is
a paradigm for declarative problem solving (first propounded in [MT99, Nie99]). Roughly,
in answer set programming search or optimisation problems are encoded using high level
logical rules which by means of a grounding procedure are turned in a more low level
propositional like format that is used by solvers to compute (optimal) solutions to the
problems of interest [SW18a]. The rules at the start of the answer set programming
workflow form “logical programs”, the solutions being the “answer sets”.

Having its roots in the development of the stable semantics for logic programs [GL88,
GL90, GL91] (see [MNT11] for an early historical overview also detailing influences from
knowledge representation and database theory), a large part of ASPs current success
lies in its increasingly rich high level modeling language [GS16], even being Turing
complete (i.e. as powerful as any programming language) in general (e.g. when function
symbols are allowed [AFL10]). Another reason for the success of ASP is the flourishing
of practical techniques and methodologies for ASP, starting with the generate & test
(or guess & check) methodology that is at the heart of the ASP paradigm [JN16]. Here
parts of a program delineate candidates for a solution to a problem and other parts
(the “constraints”) check whether the candidates are indeed solutions. Finally, powerful
systems (e.g. DLV [AAC+18] and the set of ASP tools developed at the University
of Potsdam [GKK+18]) exist today; these automate both the grounding of the logical
programs as well as the search for the answer sets.

In this section we mainly introduce the syntax and semantics of logical programs as we
make use of in this work (sections 2.2.1 and 2.2.2). This corresponds to a powerful yet
nevertheless restricted subset of the modeling languages supported by the most important
of todays existing ASP solvers. We refrain from attempting to explain here all the
intricacies of the ASP problem solving approach, but will rather spell out adopted ASP
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techniques such as the generate & test methodology, the saturation technique [EG95],
and encoding of existentially quantified variables by making use of function symbols
[GGLS15] in the relevant sections of this work. We refer to recent special editions of
important AI journals [BET16, SW18b] for introductions on all aspects of the ASP
paradigm from the foundations to grounding and solving techniques. There are also
excellent older short survey articles [BET11, EIK09] as well as a newer entire book on
practical ASP [GKKS12] available.

2.2.1 Syntax

From a formal perspective logic programs can be seen as being built from atoms and
terms constructed on the basis of a language L = (V, C,F ,P). Specifically, the language
L consists of disjoint countable sets of variables V , constant symbols C, function symbols
F , and predicate symbols P. Function and predicate symbols have associated arities
which are functions αF : F 7→ N>0 and αP : P 7→ N mapping function and predicate
symbols respectively to natural numbers (i.e. the numbers 0, 1, 2, 3, . . .). It is a common
convention that we will follow in this work to write constants, functions, and predicates
as strings starting with lower case letters and variables as strings starting with upper
case letters. Moreover, constants may be integers.

The set of terms of L, T (L) are defined recursively as follows:

• If v ∈ V then v ∈ T (L);

• if c ∈ C then c ∈ T (L);

• if f ∈ F , αF(f) = n with n > 0, and ti ∈ T (L) for 1 ≤ i ≤ n, then also
f(t1, . . . , tn) ∈ T (L);

• nothing else is in T (L).

The ground terms GT (L) are the terms with no occurrence of variables.

The set of atoms A(L) are defined making use of the terms as well as the predicate
symbols as detailed next:

• If a ∈ P and αP(a) = 0, then a ∈ A(L);

• if a ∈ P, αP(a) = n with n > 0, and ti ∈ T (L) for 1 ≤ i ≤ n, then p(t1, . . . , tn) ∈
A(L);

• nothing else is in A(L).

The ground atoms GA(L) are the atoms built using terms from GT (L) only (i.e. without
occurrence of variables).
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Logical programs, or simply programs for short, are sets of rules. A (disjunctive) rule r
with n ≥ 0, m ≥ k ≥ 0, n+m > 0 is of the form

a1 ∨ . . . ∨ an :- b1, . . . , bk, not bk+1, ..., not bm

where a1, . . . , an, b1, . . . , bm are atoms, and “not” stands for default negation or negation-
as-failure. An atom a is a positive literal, while not a is a default negated literal. The
head of r is the set H(r) := {a1, . . . , an} and the body of r is B(r) := B+(r) ∪ B−(r).
B+(r) = {b1, . . . , bk} is the positive body of r, while B−(r) = {bk+1, . . . , bm} is the
negative body. We will often represent bodies of rules or even just parts of bodies of rules
as sets of atoms rather than lists of atoms (atoms separated by a comma). Informally, a
rule r is a justification to “establish” or “derive” that at least one of the atoms a1, . . . , an
in the head is true, if all literals of the body of r are true in the following sense: a
non-negated literal bi is true if it has a derivation, while a negated one, not bj , is true if
the atom bj does not have a derivation [BET11].

The rule r is normal (or disjunction free) if n ≤ 1 and a constraint if n = 0. The rule r is
safe if each variable in r occurs in B+(r). We only allow safe rules in programs. The
rule r is function free if no function symbols occur in r. Moreover, the rule r is ground if
no variable occurs in r, i.e. for all atoms a in r it is the case that a ∈ GA(L).

A fact is a ground disjunction free rule with an empty body. If each rule in the program
is function free and normal, we call the program normal. If each rule in the program is
function free, then the program is function free. In the same manner, if each rule in the
program is ground, the program is a ground program.

2.2.2 Semantics

As our brief description of the ASP paradigm at the beginning of this section suggests,
the semantics of logical programs is typically defined in terms of the semantics of ground
programs. For any program π , let Uπ ⊆ GT (L) be the set of all ground terms that can
be constructed using constants and function symbols appearing in π , while Bπ ⊆ GA(L)
is the set of all ground atoms that can be constructed from predicates in π with elements
of Uπ. Also, Gr(π) is the set of rules σr obtained by applying, to each rule r ∈ π , all
possible substitutions σ from the variables in r to elements of Uπ. The latter are called
the ground rules or groundings of r (with respect to π).

An interpretation for a logical program π is a set I ⊆ Bπ. Such an interpretation I
satisfies a ground rule r iff H(r) ∩ I 6= ∅ whenever B+(r) ⊆ I and B−(r) ∩ I = ∅. A
non ground rule r on the other hand, is satisfied by an interpretation I, iff I satisfies all
groundings of r. As expected, an interpretation I satisfies a program π, if each r ∈ π is
satisfied by I.

Now, an interpretation I ⊆ Bπ is an answer set of the logical program π iff it is a subset
minimal set satisfying the Gelfond-Lifschitz reduct
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πI = {H(r) :- B+(r) | I ∩B−(r) = ∅, r ∈ Gr(π)},

i.e. the program obtained by essentially deleting from Gr(π) all the rules r such that
some body literal in B−(r) is in I . We denote the answer sets of π by AS(π).

Intuitively, an interpretation I ⊆ Bπ can be seen as an assumption about which negated
literals are true and which are false; the reduct πI then incorporates these assumptions.
The fact that I satisfies πI is then an indicator that I is not contradictory or “stable” w.r.t.
πI . Finally, minimality is a further constraint imposed in order to avoid interpretations
which convey more information than that what is strictly required by the program
πI [EIK09].

2.2.3 Arithmetic functions and comparison predicates

As hinted at previously, current ASP systems have many modelling resources beyond
those defined as part of the language in sections 2.2.1 and 2.2.2 (see [GS16] for an
overview). In this work we make use of a subset of two of these: arithmetic functions and
comparison predicates. Concretely, we make use of the arithmetic functions & (bitwise
AND), ? (bitwise OR), - (substraction), + (addition) and the comparison predicates for
equality = and disequality 6=. From a syntactic point of view these are simply special
reserved function and predicate symbols respectively. The arity associated to all of these
symbols is two. They are usually written in infix rather than prefix notation.

Semantics of logical programs having arithmetic functions and comparison predicates are
defined as for logical programs without these special function and predicate symbols. The
only differences are, first of all, that arithmetic functions are evaluated when grounding
rules. Thus, for example, possible groundings of the rule r1

result(X&Y ) :- num(X), num(Y ).

are the rules

result(1) :- num(0), num(1).

and

result(0) :- num(0), num(0).
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(assuming 0 and 1 are part of the constants appearing in the program of which r1 is part).
Groundings of rules with arithmetic functions are defined only for substitutions that are
meaningful for the arithmetic functions the rules contain. Thus, for instance, τr1 for the
substitution τ(X) = adam and τ(Y ) = eve is not a valid grounding since adam and eve
are not constants representing binary integers.

Grounding removes arithmetic functions; extending the notion of containment or satisfac-
tion of a ground atom a by an interpretation I (i.e. the notion a ∈ I) for the case that
a is a comparison predicate is the last step enabling the semantics of logical programs
as defined in Section 2.2.2 to be applicable also to logical programs with arithmetic
functions and comparison predicates. And this is simple to do: we say that a ∈ I for a
ground comparison predicate a when the comparison stated by a holds (in the “standard”
interpretation of the comparison predicates). E.g. 1 = 1 ∈ I and eve = eve ∈ I, while
1 = 2 6∈ I for any interpretation I. On the other hand, 1 6= 2 ∈ I, while eve 6= eve 6∈ I.
Note thus that the same ground comparison predicates are true for all interpretations.

2.2.4 Reasoning and complexity

The main decisions problem for answer-set-programming are first of all, that of deciding
whether a program has an answer-set: the existence problem. Also, given a program π
and atom a deciding whether there is a I ∈ AS(π) for which a ∈ I. In analogous manner,
deciding whether a ∈ I for every I ∈ AS(π). The latter are the problem of credulous
reasoning (or acceptance) and skeptical reasoning (or acceptance) respectively.

The existence problem is NEXPTIMENP-complete for arbitrary ASP programs without
function symbols [EGM97], while for programs with function symbols it is undecid-
able [AFL10]. The data-complexity (i.e. only the facts of the program change) of normal
programs is NP-complete, while the existence problem for programs with disjunction is
ΣP

2 -complete [EG95]. The combined complexity (i.e. also the rules of the program change)
of normal ASP programs with predicates of bounded arity (there is a k ≥ 0 s.t. such that
the arity of every predicate in the program is less than k) is ΣP

2 -complete, while for dis-
junctive ASP programs (with predicates of bounded arity) it is ΣP

3 -complete [EFFW07].
From these results the complexity of credulous and skeptical reasoning can also be
derived; e.g. and central for our work is that credulous reasoning for normal programs
with bounded predicate size is ΣP

2 -complete and skeptical reasoning ΠP
2 -complete. For

disjunctive ASP programs of bounded predicate size credulous reasoning is ΣP
3 -complete

and skeptical reasoning ΠP
3 -complete. See Section 2.5 for the definition of the complexity

classes.

2.3 Abstract Dialectical Frameworks (ADFs)

As indicated in the introduction to this work, Abstract Dialectical Frameworks or ADFs
for short, have been introduced as an attempt to unify several existing generalizations of
Dung’s Argumentation Frameworks (AFs) in a principled manner. Despite their relatively
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young age, there has been quite a substantial amount of theoretical development around
ADFs. This includes the development of several semantics specific to ADFs (e.g. [AF15]),
alternative approaches to define ADF semantics (e.g. [Pol14]), as well as generalizations
of ADFs (e.g. [PD14] and, more recently, [BSWW18]). In this work we follow the more
usual definition of ADFs and their semantics as introduced by [BW10] (and refined in
[BES+13]). We refer to [BES+18] for a quite recent more thorough discussion of the
motivations and current theory built around ADFs, in particular also for an account
of the semantics of ADFs (and their relationship with those of AFs) given in terms of
approximation fixpoint theory. The latter has been fleshed out in detail mainly in [Str13].

2.3.1 Syntax

We start of with the definition of ADFs that more clearly shows the connections of ADFs
with Dung’s AFs and was proposed in [BW10]. Here ADFs are directed graphs whose
vertices represent statements, positions or arguments. The links represent dependencies:
the acceptance status of a node s only depends on the acceptance status of its parents
(denoted parD(s))), that is, the nodes with a direct link to s. In addition, each node s
has an associated acceptance condition Cs specifying the conditions under which s can
be accepted. Cs is a function assigning to each subset of parD(s) one of the truth values
t, f.

Definition 6. An abstract dialectical framework (ADF) is a tuple D = (S,L,C) where

• S is a set of statements (positions, arguments, nodes),

• L ⊆ S × S is a set of links,

• C = {Cs}s∈S is a set of total functions Cs : 2parD(s) → {t, f}, one for each statement
s. Cs is called the acceptance condition of s.

We will most often use an alternative more economical way of representing ADFs. Here
the acceptance conditions are expressed as propositional formulas. The links are then
given implicitly by the atoms occurring in the acceptance conditions, i.e. whenever a
s′ ∈ S occurs in the acceptance condition of s ∈ S this means that the acceptance status
of s is linked to that of s′.

Definition 7. An abstract dialectical framework (ADF) is a tuple D = (S, {φs}s∈S)
where S is the set of statements and each s ∈ S has a propositional formula φs, the
acceptance condition of s, associated to it.

Although we do not make explicit the links of an ADF in the representation introduced
in Definition 7, we will still often refer to the link from a statement s to a statement t by
which we mean that s appears in the acceptance condition of t. Formally, given an ADF
D = (S, {φs}s∈S), we define LD := {(s, t) | s occurs in φt}.
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2.3.2 Semantics

A semantics σ assigns to an ADF D a collection of two or three valued interpretations
over the statements in the ADF, denoted by σ(D). The interpretations map statements
to truth values. We use {t, f,u} as truth values, denoting true, false and undecided
respectively. Three valued interpretations map statements to one of any of the latter
truth values, while two valued interpretations use only the truth values t and f.

The three truth values are partially ordered by ≤i according to their information content:
we have u <i t and u <i f and no other pair in <i. Then for truth values x and y, x ≤i y
iff x <i y or x = y. The information ordering ≤i extends in a straightforward way to
interpretations v1, v2 over a set of statements S in that v1 ≤i v2 iff v1(s) ≤i v2(s) for all
s ∈ S.

For a three valued interpretation v, we say that a two valued interpretation w extends or
completes v iff v ≤i w. This means that all statements mapped to u by v are mapped to
t or f by w. We will thus say that the two valued interpretation w is a completion of v.
The set of all completions of v are denoted by [v]2.

When evaluating an acceptance condition of a statement s of an ADF D by a completion
we will often treat the completion as if it were defined only on the parents of s in D,
although strictly speaking completions are always defined on all statements of ADFs.
The reason is that for purposes of evaluating an acceptance condition all that matters
is the assignments the completion gives to the statements appearing in the acceptance
condition.

Semantics of ADFs can be defined in terms of a characteristic operator, which generalizes
the characteristic function often used to define the semantics of Dung’s AFs [Dun95]. For
an ADF D = (S, {φs}s∈S), s ∈ S and a three valued interpretation v, the characteristic
operator ΓD(v) := v′ is given by

v′(s) :=


t if w(φs) = t for all w ∈ [v]2
f if w(φs) = f for all w ∈ [v]2
u otherwise

That is, the operator returns a three valued interpretation, mapping a statement s to
t, or respectively f, if all two-valued interpretations extending v evaluate φs to true,
respectively false. If there are w1, w2 ∈ [v]2, s.t. w1(φs) = t and w2(φs) = f, then the
result is u. Note that the characteristic function is defined on three-valued interpretations,
while we evaluate acceptance conditions under two-valued interpretations (two-valued
completions of three-valued interpretations).

In this work we consider all of the main semantics for ADFs, i.e. the generalizations of
the semantics for Dung’s AFs defined in [Dun95]. These can be classified in two types, ac-
cording to whether they return three valued interpretations or two-valued interpretations.
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For those returning three valued interpretations we consider the admissible, complete,
grounded, and preferred semantics denoted as adm, com, grd, prf respectively.

Definition 8. Let D be an ADF. A three valued interpretation v is

• in adm(D) if v ≤i ΓD(v);

• in com(D) if v = ΓD(v);

• in grd(D) if v ∈ com(D) and there is no w ∈ com(D) with w <i v;

• in prf(D) if v ∈ adm(D) and there is no w ∈ adm(D) with v <i w.

No other elements except those stipulated by the items above are in adm(D), com(D),
grd(D) and prf(D) respectively.

For any ADF one has that all preferred interpretations are complete and all complete
interpretations are admissible. In [BES+13] it is also shown that the operator ΓD is
monotonic for any ADF D. As a consequence, by the result in [Tar55], an interpretation
v is the grounded interpretation of an ADF D if and only if it is equal to the ≤i least
fixpoint (l.f.p.) of ΓD. The least fixpoint can be calculated by iteratively applying ΓD
starting with the interpretation US mapping all statements s ∈ S of D to u. Then
Γ0
D := US and Γi+1

D := ΓD(ΓiD) for i ≥ 0.

The model (mod) and stable (stb) semantics return two valued interpretations. A two
valued interpretation v is a model of an ADF D = (S, {φs}s∈S) if v(s) = v(φs) for all
s ∈ S. The definition of stable model semantics for ADFs is inspired by the stable
semantics for logic programs (see Section 2.2), its purpose being to disallow cyclic support
within a model. It is defined via the notion of a reduct that resembles the reduct used to
evaluate logic programs.

Definition 9. Let D = (S, {φs}s∈S) be an ADF. A two-valued model v of D is a
stable model of D iff Ev = {s ∈ S | v(s) = t} equals the statements set to true in
the grounded interpretation of the reduced ADF Dv = (Ev, {φvs}s∈Ev ), where for s ∈ Ev
we set φvs := φs[b/⊥ : v(b) = f]. If v �Ev is the interpretation v projected on Ev, i.e.
v �Ev (s) = v(s) for s ∈ Ev and undefined otherwise, then the latter can equivalently be
expressed as v �Ev∈ grd(Dv).

Note that by definition stable models are models, and since the only completion of a
two valued interpretation is itself, it is also easy to see that every model is a preferred
interpretation. We thus have the relationships between the semantics for ADFs depicted
in Figure 2.1.

Example 1. In Figure 2.2 we see an example ADF D = ({a, b, c}, C) with the acceptance
conditions C given by ϕa = b ∨ ¬b, ϕb = b and ϕc = c→ b. The acceptance conditions
are shown below the statements in the figure.
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stable model

model

preferred
interpretation

complete
interpretation

admissible
interpretation

grounded
interpretation

Figure 2.1: Relations between ADF semantics. An arrow from a semantics σ to another
semantics σ′ denotes that every σ-interpretation for an ADF D is also a σ′ interpretation
of D.

a

b ∨ ¬b
b

b

c

c→ b

Figure 2.2: ADF example

The admissible interpretations of D are shown in Table 2.1. Furthermore the right-
most column shows further semantics the interpretations belong to. For instance the
interpretation v8 mapping each statement to true is admissible, complete and preferred in
D and a model of D. This ADF has no stable models. The only model of D is v8, with
the reduct of this model being Dv8 = D. The grounded interpretation of D is v6, which is
different than v8. Therefore v8 is not a stable model.

2.3.3 Reasoning and complexity

There are several reasoning tasks that can be defined on ADFs. Several of these are decision
problems, i.e. problems with a yes/no answer. Some of the main decision problems, for
which we develop implementation strategies in this chapter, are the following:

• V erσ(D, v): Given an ADF D, a semantic σ, and an interpretation v, decide
whether v ∈ σ(D).

• Credσ(D, s): Given and ADF D and a statement s of D, decide whether there
exists a v ∈ σ(D) s.t. v(s) = t.
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a b c

v1 u u u adm
v2 u f u adm
v3 u t u adm
v4 t t u adm
v5 u t t adm
v6 t u u adm, com, grd
v7 t f u adm, com, prf
v8 t t t adm, com, prf , mod

Table 2.1: All admissible interpretations of the ADF from Figure 2.2. The right most
column shows further semantics the interpretations belong to.

σ adm com prf grd mod stb

Credσ ΣP
2 -c ΣP

2 -c ΣP
2 -c coNP-c NP-c ΣP

2 -c
Skeptσ trivial coNP-c ΠP

3 -c coNP-c coNP-c ΠP
2 -c

V erσ coNP-c DP-c ΠP
2 -c DP-c in P coNP-c

Table 2.2: Complexity results for semantics of ADFs. From [SW15].

• Skeptσ(D, s): Given and ADF D and a statement s of D, decide whether for all
v ∈ σ(D) it is the case that v(s) = t.

The computational complexity of reasoning in ADFs is summarized in Table 2.2 (see
Section 2.5 for an overview of the complexity classes relevant to this work). The results
are from [BES+13] and [SW15].

Example 2. Continuing Example 1 we can see that a is skeptically accepted w.r.t.
preferred semantics in the ADF D. (i.e. Skeptprf (a,D) is true). The statement b is
not skeptically accepted for the preferred semantics, however it is credulously accepted
under this semantics. In fact here all statements are credulously accepted under the
admissible, complete, preferred and model semantics. As on all ADFs, credulous and
skeptical acceptance coincide for the grounded semantics and in this example only a is
accepted w.r.t. the grounded semantics.

We will also in passing by in this work develop implementation strategies for the enu-
meration problem Enumσ(D), i.e. the problem of computing σ(D) for an ADF D and a
semantics σ.

To conclude this section, we define Dung’s AFs (see [Dun95]) as specific instances of
ADFs. In their original definition by Dung, AFs are directed graphs where nodes are
interpreted as arguments and links represent attacks between arguments. AFs can be
captured in a straightforward manner by ADFs as is also expressed in Definition 10.
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Definition 10. An argumentation framework (AF) is a pair F = (A,R) where A is a
set of arguments and R ⊆ A×A is a set of attacks. Given such an AF F , its associated
ADF is DF := (A, {φa}a∈A) with φa :=

∧
b∈A,(b,a)∈R ¬b.

ADFs generalize AFs in the specific sense that given an AF F and any semantics
σ ∈ {adm, com, prf, stb} (where the semantics for AFs are defined as in [Dun95]) one has
that σ(F ) = σ(DF ). Moreover, mod(DF ) = stb(DF ) for any ADF D which is associated
to an AF F . The reason for the latter is that ADFs associated to AFs lack support links
(see Definition 16 in Section 3.1.3.1) and, hence, the issue of circular supports that the
stable semantic is designed to avoid does not arise for them. As a consequence, models
as well as stable models for ADFs are proper generalizations of the stable semantics for
AFs as defined by Dung.

2.4 Direct stable semantics for defeasible theories

The direct stable semantics for defeasible theories is the outcome of previous investigations
[WBDC15, Str18] on defining a semantics for knowledge bases consisting of propositional
strict and defeasible rules via abstract argumentation. The authors in [SW17] rather opt
for an approach, where arguments for particular claims are an optional by-product rather
than part of the semantics (as is standard when evaluating knowledge bases via abstract
argumentation[CA07]).

The motivations behind the direct stable semantics are thus, in the first place, to
provide a means of evaluating knowledge bases of strict and defeasible rules where, in
particular, there may be conflicts between defeasible rules. Strict rules are interpreted as
holding without exception, while conflicting defeasible rules give rise to different possible
outcomes of the evaluation process. A further central motivation behind the direct stable
semantics is that the semantics satisfies some basic desiderata for evaluating knowledge
bases containing conflicting information, the so called rationality postulates [CA07], by
construction (while adding further desiderata: groundedness and defeasible closure; see
[SW17]).

Also, having arguments for particular claims as an optional by product, rather than
an explicit component of the semantics, allows circumventing several shortcomings
of evaluating knowledge bases via abstract argumentation. The main one being the
potential exponential explosion of arguments that need to be constructed even for
propositional knowledge bases in the more standard approaches. Related problems are
the opacity of attacks and need of regeneration of the arguments when the knowledge
base changes [SW17]. Finally, the direct stable semantics allows evaluating knowledge
bases of rules allowing some limited first order features: first order predicates, variables,
and constants (in this work we also add functions).

30



2.4. Direct stable semantics for defeasible theories

2.4.1 Syntax

As already indicated, the direct stable semantics is defined for defeasible theories or
programs of strict and defeasible rules. The syntax of such theories is similar to that of
logic programs as defined in Section 2.2.1. In particular, defeasible theories are also built
from atoms and terms constructed on the basis of a language L = (V, C,F ,P) consisting
of disjoint countable sets of variables V, constant symbols C, function symbols F , and
predicate symbols P as described in the latter section. Given the similarities between
logical programs as defined in Section 2.2.1 and defeasible theories, when appropriate we
will use terminology defined in the former section when referring to defeasible theories.

Rules of defeasible theories have the form

b1, . . . , bn B h

where h and each bi (1 ≤ i ≤ n) are positive literals of the form a or negative literals of the
form ¬a with a being an atom (as defined in Section 2.2.1). The connective “¬” stands
for strong negation rather than default or negation as failure. Also B∈ {→,⇒} with →
standing for “strict implication” (similar to the :- connective for logical programs) and
⇒ for “defeasible implication”. As for rules of logical programs, n ≥ 0; when n = 0 and
B is → the rule is called a fact, while if B is ⇒ the rule is an assumption. B(r) denotes
the set of (positive and negative) literals in the body of a rule r. Sπ denotes the strict
rules of π and Dπ denotes the defeasible rules of a defeasible theory π.

Differences with logical programs are mainly hence the lack of disjunction in the heads of
rules as well the use of strong negation instead of default negation. Crucially, defeasible
theories allow the use of defeasible rules in addition to strict rules. The inteded interpre-
tation of rules, similar as for logical programs, is as warranting inference of the atom
in the head whenever each of the atoms in the body is justified. For negative literals of
the form ¬a this now means that ¬a has been derived rather than a not having been
derived. Whenever each of the atoms in the body of a rule is justified, this makes the
rule applicable. Strict rules are to be applied without exception, while defeasible rules
are to be applied in all non-exceptional (i.e. not leading to contradictions) circumstances.

2.4.2 Semantics

The semantics of defeasible theories, as for logical programs considered in Section 2.2.1,
is defined in terms of the groundings of the theories. The grounding of a defeasible theory
π being the set of rules σr obtained from applying, to each rule r ∈ π , all possible
substitutions σ from the variables in r to elements of Uπ; Uπ being the set of all ground
terms that can be constructed using constants and function symbols appearing in π.

We note that we slightly deviate from the definitions of defeasible theories and their
semantics from [SW17] in that we allow function symbols and, hence, the possibility of
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infinite groundings of defeasible theories. Despite this crucial difference, we can make
use of the original definitions from [SW17] without much further ado.

An interpretation for a defeasible theory π is a set I ⊆ Lπ, Lπ being all the literals
that can be constructed from atoms appearing in π. Such an interpretation I satisfies a
ground rule r iff H(r) ∈ I whenever B(r) ⊆ I. Given a set of (strict and/or defeasible)
ground rules R, the closure of an interpretation I under R on the other hand includes all
the heads of rules which are applicable w.r.t. I, i.e.

R(I) := {H(r) | B(r) ⊆ I and r ∈ R}.

The interpretation I is closed under a set of rules R if R(I) = I.

The starting point of the definition of the direct stable semantics is the notion of “possible
sets”; these single out sets of literals to which defeasible rules of a program of interest
π are maximally applied while preserving consistency (this is the “defeasible closure”
postulate we mentioned in the introduction to this section). Formally:

Definition 11. Let π be a ground defeasible theory. A set of literals M ⊆ Lπ is a possible
set for π iff there is a set DM ⊆ Dπ such that:

1. M is consistent, i.e. for every atom a in M a ∈M iff ¬a 6∈M ;

2. M is closed under Sπ ∪DM ;

3. DM is maximal w.r.t. items 1-2, i.e. there is no D′M s.t. DM ⊂ D′M ⊆ Dπ and
(Sπ ∪D′M )(M) is consistent.

We will stick with using the notation DM for the set of defeasible rules “induced by” a
possible set M .

Stable sets are possible sets where the justification of all literals is grounded in facts and
assumptions (“groundedness postulate” mentioned in the introduction to this section).
This further constraint is in order to disallow unsupported literals or literals whose
justification status is cyclical, which can occur for possible sets. The notion of the
justification status of a literal being traceable back to facts and assumptions is cashed
out in term of the notion of a derivation or argument for the literal. For a set of (strict
or defeasible) rules R a derivation of a literal z w.r.t. R is a partial order ≤ on R and s.t.
first of all ≤ has a greatest element r with H(r) = z. Also, for each rule r ∈ R and each
b ∈ B(r) there is a r′ ∈ R s.t. r′ < r (< is the strict partial order contained in ≤) and
H(r′) = b.

Definition 12. Let π be a defeasible theory. A stable set for π is a possible set M s.t.
for every z ∈M there is a derivation of z w.r.t. Sπ ∪DM .
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2.4.3 Reasoning and complexity

The main reasoning tasks for defeasible theories when evaluated under the direct-stable-
semantics are analogous to the tasks defined for answer-set-programs (see Section 2.2.4).
The existence and credulous reasoning problems for propositional defeasible theories (w.r.t
direct stable sets) are ΣP

2 -complete, while skeptical reasoning is ΠP
2 -complete [SW17].

With respect to a specific stable set and literal, computing an argument (or derivation)
for the literal can be done in polynomial time. The complexity of first-order reasoning
for defeasible theories w.r.t. the direct-stable-semantics remains to be investigated but
the reduction we sketch in Section 4.2.4.2 gives a NEXPTIME upper-bound for theories
without function symbols.

2.5 Computational complexity

Complexity theory studies computational problems from the perspective of the resources
(running time, memory space) required to solve them. One of the main objectives has, in
particular, been to classify computational problems from this perspective. We simply
recall some basic notions of complexity theory we make use of in our work here and refer
to e.g. [Pap07] and [AB09] for detailed expositions.

The traditional focus of complexity theory is on decision problems; these are problems
that classify the input instances as either having a certain property (the “yes” instances)
or not (the “no” instances). Also, the difficulty of problems is studied in terms of the
worst-case behavior (in terms of running time, memory space) of algorithms that solve
them. Worst case behaviour is measured as a function of the input-size. Also, in order
to abstract from hardware specifics, algorithms are specified for Turing Machines, the
prominent model of computation introduced by Turing in [Tur37] to formalise the notion
of an “algorithm”. An important distinction for complexity theory concerns deterministic
and non-deterministic Turing machines. Though equally powerful from the perspective of
the algorithms they can implement, these are relevant when considering the complexity
of algorithms since to date no efficient (polynomial) simulation of non-determinism in a
deterministic Turing machine has been shown to exist and it is widely assumed that it in
fact does not.

The central theoretical tool in complexity theory is the notion of reduction. A reduction
from a problem P1 to a problem P2 is a function f from the instances of problem P1
to the instances of problem P2 which is efficiently computable (for the purposes of this
work: requires polynomial time) and which satisfies the following property: an instance i
of P1 has answer “yes” with respect to the problem P1 if and only if the instance f(i) of
P2 has answer “yes” with respect to the problem P2.

The notion of reduction allows to order decision problems as follows: P1 ≤R P2 if and
only if there exists a reduction from P1 to P2. The intuition behind this ordering is that
if there exists a reduction f from P1 to P2 then P1 is not more difficult than P2, since
one can solve an instance i of P1 by solving f(i) of P2. A problem P is called hard for a
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complexity class C if every problem in C can be reduced to P . It is complete for C (this
can be written: C-c) if it also belongs to C. Problems that are complete for a certain
class C can be considered “prototypical” for the class in the sense that any problem in C
can be efficiently reduced to the problem in question. The complement of a class C is
denoted co-C.

Some important complexity classes relevant for the present work are in the first place the
class P of problems that can be solved by a deterministic Turing machine in polynomial
time. The same definition for P but for non deterministic Turing machines leads to
the class NP. As has been hinted at in a previous paragraph, it is generally assumed
that P ⊂ NP. While problems in class P are considered tractable (“efficiently solvable”),
problems in NP are thus assumed to be intractable. The notion of NP-completeness
stems from [Coo71] and [Lev73], where it is also shown that (in the case of Levin,
a variant of) the satisfiability problem of propositional logic (SAT) is a prototypical
problem for NP. A prototypical problem for coNP is the unsatisfiability problem for
propositional logic, i.e. deciding for a propositional formula if it is unsatisfiable.

The class PSPACE is the set of problems that can be answered by a deterministic
Turing machine using polynomial space. It is an open question but usually assumed that
NP ⊂ PSPACE. As already indicated in Section 2.1.4, in [SM73] it is shown that QSAT
is PSPACE-complete. The polynomial hierarchy is a family of complexity classes within
PSPACE introduced in [SM73, Sto76]. It is defined as follows for k ≥ 0:

ΣP
0 = ΠP

0 := P

ΣP
k+1 := NPΣP

k ,ΠP
k+1 := co-ΣP

k+1

ΣP
k+1 is the class of all problems that can be decided non-deterministically in polynomial

time with the help of an oracle for a problem in ΣP
k . An oracle is a subroutine which

solves a problem in the complexity class ΣP
k in constant time. In particular, one has

that NP = ΣP
1 and coNP = ΠP

1 . The polynomial hierarchy PH is defined as the union
∪∞k=0ΣP

k . As also indicated in Section 2.1.4, for each level of the polynomial hierarchy
there is a class of QBFs (identified by their prefix type) whose satisfiability problem is
complete for that level of the polynomial hierarchy.

Other classes of problems referred to in this work are, first of all, the class DP of problems
that are in the intersection of NP and coNP. A prototypical problem for this class is
the problem of deciding for a pair of propositional formulas, whether one is satisfiable
and the other unsatisfiable (the SAT-UNSAT problem). The class EXPTIME is the
class of problems that can be decided in exponential time by a deterministic Turing
machine, while NEXPTIME is the class of problems that can be decided in exponential
time by a non-deterministic Turing machine. The class NEXPTIMENP is then the class
of problems that can be decided in NEXPTIME with an NP oracle. Finally, problems
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that are undecidable are those that cannot be decided by a Turing machine, i.e. for
which no Turing machine which can decide every instance of the problem exists. The
classical example of an undecidable problem is the satisfiability problem for first order
logic [Tur37].
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CHAPTER 3
Advanced QBF and ASP

encodings for ADFs

In this chapter we present complexity and link information sensitive QBF encodings for
ADFs in Section 3.1 before we turn to presenting dynamic ASP encodings for ADFs in
Section 3.2.

3.1 Complexity and link information sensitive QBF
encodings for ADFs

We start in this section by presenting encodings of reasoning tasks (verification, as well as
credulous and skeptical acceptance problems; see Section 2.3) for ADFs into QBFs. This
work extends that of [Dil14] in that we first present complexity sensitive encodings also
for the stable semantics. This means that the complexity of the satisfiability problem for
the QBFs that result from our encodings reflect the complexity of the several reasoning
tasks (for the stable semantics) we encode. The complexity sensitive encodings for the
stable semantics are presented in Section 3.1.2.

Secondly, in this section we present QBF encodings for the reasoning tasks for all main
semantics for ADFs (admissible, complete, preferred, grounded, stable) that are “link
information sensitive”. This means that our encodings make use of additional information
about the link types of the input ADF, whenever this information is available. The
motivation behind the latter is that the additional information about the links may serve
QSAT solvers being fed an implementation of our encodings to the same degree that the
extra information may make the reasoning tasks easier. The latter is explained in detail
in Section 3.1.3.1. The presentation of our novel link information sensitive encodings
makes up the largest part of this section (Section 3.1.2).
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For developing QBF encodings for the reasoning tasks we are interested in this work we
mostly follow the same methodology. For each semantics σ ∈ {adm, com, prf, grd, stb}
we first construct a defining encoding function, usually denoted by Eσ or some primed
version of Eσ (e.g. E ′σ or E ′′′σ ). Given an ADF D, the defining encoding function for σ
returns a QBF whose models correspond to the σ interpretations of D. Such defining
encoding functions return the encoding of the enumeration problem for the different
semantics and can be used in a generic fashion to provide encodings for the reasoning tasks
(/decision problems) we consider in this work. We describe how to do so in Proposition 2
at the end of Section 3.1.1.1.

The alluded to method for providing encodings has the advantage of being general in the
sense that the encodings of the reasoning tasks we provide via Proposition 2 for some
semantics σ remain correct if the defining encoding function is redefined. In fact, the
difference between many of the new link information sensitive encodings we present in
Section 3.1.3 and the encodings we provided in [Dil14] is, precisely, that the encoding
function is different. On the other hand, this method does not guarantee that we obtain
encodings for the reasoning tasks that structurally reflect the complexity of the tasks.

In fact, for a few of the reasoning tasks we consider in this work the defining encoding
functions we provide result in encodings that are not sensitive to the complexity of the
tasks. These cases either are equivalent to some other reasoning task for which we provide
encodings that are adequate with respect to the complexity, or otherwise we provide
alternative encodings that more accurately reflect the complexity of the tasks.

Before moving on to the complexity sensitive QBF encodings for the stable semantics
as well as our link information sensitive encodings we lay some common groundwork in
Section 3.1.1. Specifically, we deal with some technical preliminaries in Section 3.1.1.1
and define some basic modules that we make repeated use of in our encodings in Section
3.1.1.2.

3.1.1 Groundwork

3.1.1.1 Preliminaries

As already indicated, we begin with some technical preliminaries. First of all, in order to
avoid confusion, in this section of our work (Section 3.1) we distinguish between QBF and
ADF interpretations by using different notations. Thus, v̂ denotes a QBF interpretation,
i.e. a two-valued interpretation over the set of propositional atoms P as introduced in
Section 2.1. On the other hand, v (without the “hat”) denotes a (two valued or three
valued) interpretation over the set of statements of an ADF as explained in Section 2.3.

Turning to our encodings; in them we often need to introduce propositional variables
to refer to different objects of some set T , e.g. statements of an ADF. For this we use
indexed variables w.r.t. T . Given a set of propositional atoms P ⊂ P , the set of indexed
variables w.r.t. P and T is a mapping PT from P to T . We denote the variable p ∈ P
mapped to t ∈ T by pt and thus will often (somewhat abusing the notation) treat the

38



3.1. Complexity and link information sensitive QBF encodings for ADFs

mapping PT as a set; specifically, the set PT := {pt | t ∈ T}. Given a propositional
formula (e.g. an acceptance condition of an ADF) φ with variables occurring in T , we
then define φPT as the propositional formula φ[t/pt | t ∈ T ], i.e. the formula that results
from substituting each occurrence of t in φ by the corresponding pt ∈ PT .

To simplify the notation when referring to a set of indexed variables PT we use the same
letter-, in this case the letter “p”,- both to refer to the set of indexed variables (here
the “p” is in large case) as well as to refer to propositional atoms in PT (the atoms are
in small case, e.g. pt for some t ∈ T ). For instance AT is the set {at | a ∈ A, t ∈ T}
(here the small case “a” is used to denote the atoms and the large case “A” to denote
the set of indexed variables). We also sometimes use priming (also, multiple priming)
or other superscripts rather than different letters to represent different sets of signed
variables; e.g P ′T := {p′t | p′ ∈ P ′, t ∈ T} and P⊕T := {p⊕t | p⊕ ∈ P⊕, t ∈ T}. Except
if stated otherwise, in this work we will assume that indexed variables with different
representations are also disjoint. Thus, for instance, PT ∩QT = ∅ and also P ′T ∩P ′′T = ∅.
On the other hand, we will sometimes use the representation PR where R ⊆ T to refer
to the projection of the set of indexed variables PT to R, i.e. PR := {pt | p ∈ P, t ∈ R}.
From R ⊆ T it clearly follows that also PR ⊆ PT .

To encode expressions about two valued interpretations on a set of statements S of an
ADF within our QBF encodings, we will use indexed variables w.r.t. S. To encode
expressions about three valued interpretations on S we follow the procedure also used in
[AC13] and use signed indexed variables. These are two disjoint sets of signed variables
P⊕T and P	T indexed w.r.t T ; to simplify things we write the union of such disjoint sets
of signed variables as P 3

S := P⊕T ∪P	T = {ps⊕ | p ∈ P⊕, s ∈ S}∪{ps	 | p ∈ P	, s ∈ S}.
The intended meaning of the indexed atom ps

⊕ is that the statement s is accepted, while
the intended meaning of ps	 that s is rejected under some interpretation for ADFs. The
status of the statement s is undecided if both ps⊕ and ps	 are false.

ADF semantics are based on three or two truth values. Since there are four possible truth
value assignments for a statement s via the variables ps⊕ and ps	 we use in our QBF
encodings, we need to restrict attention to coherent interpretations for QBFs. These
exclude the possibility for a model to satisfy both ps⊕ and ps	.

Definition 13. Let P 3
S be a set of signed atoms indexed by a set (of ADF statements) S.

A two valued interpretation v̂ is coherent on P 3
S if there is no s ∈ S such that v̂(ps⊕) = t

and v̂(ps	) = t.

We now formally define the correspondence we require of the models of the QBFs returned
by a defining encoding Eσ for a semantics σ and the σ interpretations of the ADFs.

Definition 14. Let S be a set of statements and PS a set of propositional atoms indexed
by S. A two valued interpretation v̂ on PS corresponds to a two valued interpretation v on
S, denoted as v̂ ∼=PS

v if v(s) = v̂(ps) for all s ∈ S. A coherent two valued interpretation
v̂′ on a set P 3

S of signed atoms indexed by S corresponds to a three valued interpretation
v′ on S, denoted as v̂′ ∼=P 3

S
v′ if the following three conditions are met:
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• v′(s) = t if and only if v̂′(ps⊕) = t and v̂′(ps	) = f;

• v′(s) = f if and only if v̂′(ps⊕) = f and v̂′(ps	) = t; and

• v′(s) = u if and only if v̂′(ps⊕) = f and v̂′(ps	) = f.

The following lemma is a straightforward consequence of Definition 14 we make often use
of in the proofs of correctness of the encodings we provide in this section of our work.

Lemma 3. Let S be a set of statements, v̂1 and v̂2 two valued (QBF) interpretations,
and v1 and v2 three or two valued interpretations on S.

1. Assume that P 3
S and Q3

S are disjoint, v̂1 is coherent on P 3
S , v̂2 is coherent on Q3

S,
v̂1 ∼=P 3

S
v1 and v̂2 ∼=Q3

S
v2. Then v̂ := v̂1[Q3

S/v̂2(Q3
S)] is also coherent on each of P 3

S

and Q3
S, and it is also the case that v̂ ∼=P 3

S
v1 and v̂ ∼=Q3

S
v2.

2. Assume that v̂1 is coherent on P 3
S , v̂1 ∼=P 3

S
v1 and v̂2 ∼=PS

v2. Then v̂ :=
v̂1[PS/v̂2(PS)] is also coherent on P 3

S and it is also the case that v̂ ∼=P 3
S
v1 and

v̂ ∼=PS
v2.

3. Assume that v̂2 is coherent on P 3
S , v̂1 ∼=PS

v1 and v̂2 ∼=P 3
S
v2. Then v̂ :=

v̂1[P 3
S/v̂2(P 3

S)] is also coherent on P 3
S and it is also the case that v̂ ∼=PS

v1 and
v̂ ∼=P 3

S
v2.

4. Assume that PS and QS are disjoint, v̂1 ∼=PS
v1 and v̂2 ∼=QS

v2. Then for v̂ :=
v̂1[QS/v̂2(QS)] it is also the case that v̂ ∼=PS

v1 and v̂ ∼=QS
v2.

Proof. (sketch) Let T1 = P 3
S and T2 = Q3

S in item 1, T1 = P 3
S and T2 = PS in item 2,

T1 = PS and T2 = P 3
S in item 3 and T1 = PS and T2 = QS in item 4. Then all these items

follow from the fact that v̂ and v̂1 as defined in each of the items agree on the variables
in T1 while v̂ and v̂2 agree on the variables in T2 (and that T1 and T2 are disjoint).

We are now in a position to provide the formal definition of a defining encoding function
Eσ for a given semantics σ for ADFs. Given an ADF D = (S,C), Eσ(D) returns a
QBF whose every model corresponds (in the sense of Definition 14) to one of the σ
interpretations of D (“soundness”). In turn, every σ interpretation corresponds to a
model of φ (“completeness”). Given a set of propositional atoms P and depending on
whether σ returns two valued or three valued interpretations, Eσ returns a QBF with free
variables in a set of signed (P 3

S) or unsigned (PS) variables standing for the statements
of the ADFs respectively. We thus write Eσ[D,P 3

S , . . .] or Eσ[D,PS , . . .] respectively for
the application of the defining encoding function Eσ to the ADF D.

The dots in the notation Eσ[D,P 3
S , . . .] and Eσ[D,PS , . . .] stand for the remaining variables

on which the application of the defining encoding depends; for simplicity, we will often
leave these unspecified. In addition to soundness and completeness, when σ returns three
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valued interpretations (σ ∈ {adm, com, prf, grd}), Eσ[D,P 3
S , . . .] must also be a QBF

whose models are coherent on P 3
S in the sense of Definition 13.

Definition 15. Let σ ∈ {adm, com, prf, grd,mod, stb}1. A defining encoding function
for σ is a total function Eσ from ADFs to QBFs. Given an ADF D = (S,C) and
a set of atoms P ⊂ P it returns a QBF Eσ[D,Q, . . .] with free variables Q = P 3

S if
σ ∈ {adm, com, prf, grd} and Q = PS if σ ∈ {mod, stb}. Furthermore,

1. (Coherence) If σ ∈ {adm, com, prf, grd}, then any two valued interpretation v̂ such
that v̂ |= Eσ[D,P 3

S , . . .] is coherent on P 3
S .

2. (Soundness)

a) If σ ∈ {adm, com, prf, grd} and v̂ is a two valued interpretation such that
v̂ |= Eσ[D,P 3

S , . . .], then the three valued interpretation v on S such that
v̂ ∼=P 3

S
v is a σ interpretation of D.

b) If σ ∈ {mod, stb} and v̂ is a two valued interpretation s.t. v̂ |= Eσ[D,PS , . . .],
then the two valued interpretation v on S such that v̂ ∼=PS

v is a σ interpretation
of D.

3. (Completeness)

a) If σ ∈ {adm, com, prf, grd} and v is a three valued σ interpretation of D,
then for any two valued interpretation v̂ such that v̂ ∼=P 3

S
v, it holds that

v̂ |= Eσ[D,P 3
S , . . .].

b) If σ ∈ {mod, stb} and v is a two valued σ interpretation of D, then for any
two valued interpretation v̂ such that v̂ ∼=PS

v, it holds that v̂ |= Eσ[D,PS , . . .].

Having a defining encoding function Eσ for a semantics σ, one automatically obtains
encodings for all reasoning tasks for which we seek encodings in this work. This is
captured in Proposition 2 (proof in [Dil14, DWW15]).

In the encoding of the verification problem in Proposition 2 we use the notation ψ[T/v(S)]
for a QBF ψ with free variables in T = P 3

S or T = PS . This notation stands for the
replacement of these variables in ψ with the special logical constants > or ⊥ in accordance
to an ADF interpretation v on the statements S. Concretely, for T = P 3

S , each ps⊕ is
replaced with > if v(s) = t, with ⊥ if v(s) = f or v(s) = u. In the same manner, each
ps
	 is replaced with > if v(s) = f, yet replaced with ⊥ if v(s) = t or v(s) = u. On the

other hand, if T = PS , then each ps is replaced with > if v(s) = t, with ⊥ if v(s) = f or
v(s) = u.

1We also include the model semantics (“mdl”) in this discussion although we do not develop QBF
encodings for the model semantics in this work. The reason is that we do make use of a defining encoding
function for the model semantics from [Dil14] in some of our QBF encodings for the other semantics.
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Proposition 2. Let D = (S,C) be an ADF, s∗ ∈ S, σ ∈ {adm, com, prf, grd,mod, stb},
and v a three (or two) valued interpretation. If σ ∈ {adm, com, prf, grd}, then let
x = ps∗

⊕ and T = P 3
S . Otherwise if σ ∈ {mod, stb}, then let x = ps∗ and T = PS. Also,

let Eσ be a defining encoding function for σ with free variables in T . It holds that

• Credσ(D, s∗) = yes iff ∃T (Eσ[D,T, . . .] ∧ x) is true;

• Skeptσ(D, s∗) = yes iff ∀T (Eσ[D,T, . . .]→ x) is true; and

• V erσ(D, v) = yes iff Eσ[D,T, . . .][T/v(S)] is true.

3.1.1.2 Basic modules

When encoding the reasoning tasks associated to ADFs as QBFs we make repeated use
of some simple modules. We start by defining some basic modules (most of which are
from [Dil14]) that we make use of in this work.

In the first place, given a set of signed indexed variables P 3
S w.r.t. a set S of statements of

an ADF, the following formula “filters out” QBF interpretations which are not coherent
on P 3

S :

coh[P 3
S ] :=

∧
s∈S
¬(ps⊕ ∧ ps	).

Formally, this is expressed in the following Lemma (proof in [Dil14, DWW15]):

Lemma 4. Let P 3
S be a set of signed indexed variables for a set of statements S. A two

valued interpretation v̂ is coherent on P 3
S if and only if v̂ |= coh[P 3

S ].

In order to encode the definitions of ADF semantics as QBFs we often need to express
that v(s) ≤i v′(s) on all s ∈ S for two interpretations of an ADF D = (S,C). The
formula

≤i [P 3
S , P

′3
S ] :=

∧
s∈S

((ps⊕ → p′s
⊕) ∧ (ps	 → p′s

	))

does precisely that assuming both v and v′ are three valued and using the indexed signed
variables P 3

S and P ′3S to implicitly refer to the mappings to truth values of v and v′

respectively.

The formula

≤i [P 3
S , P

′
S ] :=

∧
s∈S

((ps⊕ → p′s) ∧ (ps	 → ¬p′s))
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encodes that v ≤i v′ in case v is a three valued interpretation on a set of statements S
and v′ is a two valued interpretation on S. Finally,

≤i [PS , P ′3S ] :=
∧
s∈S

((ps → p′s
⊕) ∧ (¬ps → p′s

	))

encodes that v ≤i v′ in case v is a two valued and v′ a three valued interpretation on S.

Lemma 5 formally expresses the fact that ≤i [P 3
S , P

′3
S ], ≤i [P 3

S , PS ], and ≤i [PS , P 3
S ] have

the intended meanings. Straightforward proofs for ≤i [P 3
S , P

′3
S ] as well as ≤i [P 3

S , PS ]
(albeit, separated in proofs of distinct lemmas) can, again, be found in [Dil14, DWW15].

Lemma 5. Let S be a set of statements, T = P 3
S and T ′ = P ′3S, T = P 3

S and T ′ = P ′S,
or T = PS and T ′ = P ′3S disjoint indexed variables.

1. Let v̂ be a two valued interpretation such that v̂ |=≤i [T, T ′]. Moreover, v̂ is also
coherent on P 3

S if T = P 3
S and coherent on P ′3S if T ′ = P ′3S. Then for interpretations

v, v′ on S such that v̂ ∼=T v and v̂ ∼=T ′ v
′ it is the case that v ≤i v′.

2. Let v and v′ both be interpretations on S such that v ≤i v′. Either both v and v′ are
three valued, or only one of v and v′ is two-valued. If v is two-valued then T = PS,
otherwise T = P 3

S . If v′ is two-valued then T ′ = P ′S, otherwise T ′ = P ′3S. Then
for any two valued interpretation v̂ such that v̂ ∼=T v and v̂ ∼=T ′ v

′, it is the case
that v̂ |=≤i [T, T ′].

Note that the reason Lemma 5 is split into two items instead of being written using
an “if and only if” is that, given a set S of statements and indexed variables T and T ′
(with T and T ′ defined as in the lemma), there exist exactly two ADF interpretations v
and v′ on S that correspond to a (coherent) two valued interpretation v̂ on T and T ′
respectively. On the other hand, for ADF interpretations v and v′ defined as in the second
item of Lemma 5, there exist (infinitely) many (coherent) two valued interpretations that
correspond to v and v′ (all variables that are not in T and T ′ can be assigned any truth
value).

To conclude this section, we define “projected” versions of the modules ≤i [P 3
S , P

′3
S ],

≤i [P 3
S , PS ], and ≤i [PS , P 3

S ]. Given some set Q ⊆ S e.g. ≤i [P 3
Q, P

′3
Q] is defined as

follows:

≤i [P 3
Q, P

′3
Q] :=

∧
s∈Q

((ps⊕ → p′s
⊕) ∧ (ps	 → p′s

	))

The definition of the projected versions of the modules ≤i [P 3
S , PS ] and ≤i [PS , P 3

S ] is
defined in analogous manner.
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3.1.2 Complexity sensitive encodings for the stable semantics

We turn now to the QBF encodings for the most important reasoning tasks w.r.t. ADFs.
Since we left this function undefined in our previous work [Dil14], we start of by giving a
complexity sensitive defining encoding function for the stable semantics. This function
will also serve as a basis for the definition of our link information sensitive encodings for
the stable semantics presented in Section 3.1.3.7.

Our defining encoding function for the stable semantics quite closely follows the definition
of the stable semantics (Definition 9; albeit, via a syntactical trick) and, hence, requires
defining encoding functions for the model and grounded semantics to be defined. Although
the defining encoding function for the stable semantics we present works with any defining
encoding functions for the model and grounded semantics, in order to obtain complexity
sensitive encodings for the reasoning tasks, we use specific (complexity sensitive) defining
encoding functions for both semantics from [Dil14].

The defining encoding function we make use of for the model semantics is the following:

Emod[D,PS ] :=
∧
s∈S

(ps ↔ φs
PS ).

This defining encoding function pretty much recasts the definition of the model semantics
(for an ADF D = (S, {φs}s∈S), v ∈ mod(D) if v(s) = v(φs) for all s ∈ S) in QBF terms.

As to the defining encoding function for the grounded semantics, the version we use is
based on the fact that (see [SW15]) v ∈ grd(D) for an interpretation v and an ADF
D = (S, {φs}s∈S) if v is the ≤i-minimal interpretation satisfying i) for each s ∈ S such
that v(s) = t there exists an interpretation w ∈ [v]2 for which w(φs) = t, ii) for each
s ∈ S such that v(s) = f there exists an interpretation w ∈ [v]2 for which w(φs) = f, and
finally iii) for each s ∈ S such that v(s) = u there exist interpretations w1 ∈ [v]2 and
w2 ∈ [v]2 such that w1(φs) = t and w2(φs) = f. We call an interpretation v for an ADF
D that satisfies properties i)-iii) a “candidate for being the grounded interpretation”.

The encoding for the grounded semantics from [Dil14] that uses the characterisation of
the grounded interpretation as the minimal candidate (w.r.t. ≤i) for being the grounded
interpretation is then as follows:

Egrd[D,P 3
S , P

′3
S , PS , P

′
S ] := coh[P 3

S ] ∧ prop[D,P 3
S , PS , P

′
S ] ∧

(
∀P ′3S ω

)
ω := ((coh[P ′3S ] ∧ prop[D,P ′3S , PS , P ′S ])→≤i [P 3

S , P
′3
S ])

The module prop[., ., ., .] encodes properties i)-iii) that candidates for being the grounded
interpretation need to satisfy. For the ADF D and indexed variables P 3

S , PS , and P ′S it
is defined as follows:
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prop[D,P 3
S , PS , P

′
S ] :=

∧
s∈S

(ψs ∧ ψ′s ∧ ψ′′s )

ψs := (ps⊕ → ∃PS(≤i [P 3
S , PS ] ∧ φsPS ))

ψ′s := (ps	 → ∃PS(≤i [P 3
S , PS ] ∧ ¬φsPS ))

ψ′′s := ((¬ps⊕ ∧ ¬ps	)→ ψ′′′s )
ψ′′′s := ∃PS ∪ P ′S(≤i [P 3

S , PS ]∧ ≤i [P 3
S , P

′
S ] ∧ φsPS ∧ ¬φsP

′
S )

Turning to our novel defining encoding function for the stable semantics; given an ADF
D = (S, {φs}s∈S) this function is defined as detailed next:

Estb[D,PS , P ′
3
S , P

′′3
S , P

′
S , P

′′
S ] := ψ ∧ ψ′

ψ := Emod[D,PS ] ∧
∧
s∈S

(ps ↔ p′s
⊕)

ψ′ := Egrd[(S, {φs ∧ ps}s∈S), P ′3S , P ′′
3
S , P

′
S , P

′′
S ]

The encoding function maps the ADF D to a QBF consisting of three conjuncts. We
first require that any model of the QBF correspond to a two valued (ADF-) model v of
D. For this we use the defining encoding function for the model semantics Emod[D,PS ].
The second conjunct encodes that the statements mapped to t by v coincide with those
mapped to t by the grounded interpretation of the reduct Dv as defined in Definition 9.

The last conjunct of Estb[D, ., ., ., ., .] applies the defining encoding function Egrd of the
grounded semantics to a modified version of D via a syntactic trick. The use of this
syntactic trick is made explicit by modifying D in the first argument of Egrd[., ., ., ., .],
giving us an (improper, as the acceptance conditions involve atoms which are not
statements of the ADF) “ADF” (S, {φs ∧ ps}s∈S). The meaning of this notation is that
every indexed version of a modified acceptance condition φs ∧ ps within the module
Egrd[., ., ., ., .] leaves the atom ps untouched; for instance (φs ∧ ps)P

′
S := φs

P ′S ∧ ps and
(φs ∧ ps)P

′′
S := φs

P ′′S ∧ ps.

Assume that we have a model of the QBF Estb[D,PS , P ′3S , P ′′
3
S , P

′
S , P

′′
S ] which, because

of the first conjunct of the QBF, corresponds to a two valued (ADF-) model v of D.
The mentioned syntactic trick then essentially boils down to computing the grounded
interpretation of the ADF Dv

∗ := (S,C∗ := {φ∗s}s∈S) with φ∗s := φs if v(s) = t and
φ∗s := ⊥ if v(s) = f. We prove in Lemma 6 below that the grounded interpretation of
Dv and Dv

∗ are equal when restricting attention to the assignments to the variables in
Ev = {s ∈ S | v(s) = t}.

Before proving Lemma 6 we first remind the reader that US is the interpretation on a
set of statements S, distinguished by the fact that it maps each s ∈ S to u. Secondly, we
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introduce some auxiliary notation. For an ADF D and a two or three valued interpretation
v, EDv := {s | s ∈ S and v(s) = t}. When it is clear from the context to which ADF D
we are referring we will more often than not drop the D from the notation EDv , i.e. write
Ev instead.

Also, let v and v′ be two or three valued interpretations on S ∪T1 and S ∪T2 respectively
for some sets S, T1, and T2. Then we define a form of projection on equality and
inequalities: (i) v =�S v′ if v(s) = v′(s) for every s ∈ S, (ii) v <i�S v′ if v(s) <i v′(s) for
every s ∈ S, and (iii) v ≤i�S v′ if v(s) ≤i v′(s) for every s ∈ S.

Lemma 6. Let D = (S,C = {φs}s∈S) be an ADF and v a two valued interpretation
on S. Then, grd(Dv

∗) =�Ev grd(Dv) where Dv
∗ := (S,C∗ := {φ∗s}s∈S) with φ∗s := φs if

v(s) = t and φ∗s := ⊥ if v(s) = f.

Proof. We prove by induction on n ≥ 0 that ΓnDv
∗
≤i�Ev ΓnDv and Γn+1

Dv
∗
≥i�Ev ΓnDv . From

this then the lemma follows since consider a k ≥ 0 such that ΓkDv
∗

= l.f.p. (ΓDv
∗ ) and

ΓkDv = l.f.p. (ΓDv ). In that case, one has that grd(Dv
∗) = l.f.p. (ΓDv

∗ ) = ΓkDv
∗
≤i�Ev

ΓkDv = l.f.p. (ΓDv ) = grd(Dv) and grd(Dv) = l.f.p. (ΓDv ) = ΓkDv ≤i�Ev Γk+1
Dv
∗

= ΓkDv
∗

=
l.f.p. (ΓDv

∗ ) = grd(Dv
∗). In other words, grd(Dv

∗) ≤i�Ev grd(Dv) and grd(Dv
∗) ≥i�Ev

grd(Dv), hence grd(Dv
∗) =�Ev grd(Dv).

The base case (n = 0) of the inductive proof holds trivially since Γ0
Dv
∗

= US =�Ev UEv =
Γ0
Dv and Γ1

Dv
∗
≥i�Ev Γ0

Dv = UEv since UEv is the ≤i least interpretation on EV .
Before proving the inductive step note first that Γ1

Dv
∗
(s) = f for every s ∈ S such that

v(s) = f (since for every w ∈ [US ]2 it is the case that w(φ∗s) = w(⊥) = f). Hence, since
the characteristic operator is monotonic in fact ΓnDv

∗
(s) = f and so also w(s) = f for every

w ∈ [ΓnDv
∗
]2 holds for every s ∈ S such that v(s) = f and each n > 0. A consequence of

this is

• Observation A: w(φs) = w(φs[b/⊥ : v(b) = f]) for every s ∈ Ev, w ∈ [ΓnDv
∗
]2 and

n > 0.

A second fact that will be of use in the proof of the inductive step is

• Observation B: if v and v′ are two interpretations, v ≤i�S′ v′ for some set S′, and
ψ is a propositional formula with all variables that occur in ψ being in S′, then
if for every w ∈ [v]2 it is the case that w(ψ) = x for x ∈ {t, f} then also for every
w′ ∈ [v′]2 it holds that w′(ψ) = x.

This is because if there exists some w′ ∈ [v′]2 such that w′(ψ) 6= x (x ∈ {t, f}), then, since
v ≤i�S′ v′ ≤i w′ there also exists a w ∈ [v]2 such that w =�S′ w′ and therefore w(ψ) 6= x
which is a contradiction.
Assume now (induction hypothesis) that ΓnDv

∗
≤i�Ev ΓnDv and Γn+1

Dv
∗
≥i�Ev ΓnDv for n > 0.

We first prove that then also Γn+1
Dv
∗
≤i�Ev Γn+1

Dv . For this consider first that for an arbitrary
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s ∈ Ev it is the case that Γn+1
Dv
∗

(s) = t. This means that for every w ∈ [ΓnDv
∗
]2 it holds

that w(φ∗s) = w(φs) = t. Because of Observation A this also means that for every
w ∈ [ΓnDv

∗
]2 it holds that w(φs[b/⊥ : v(b) = f]) = t. Now, since by induction hypothesis

ΓnDv
∗
≤i�Ev ΓnDv , by Observation B this implies that also for every w′ ∈ [ΓnDv ]2 it is the

case that w′(φs[b/⊥ : v(b) = f]) = t in which case Γn+1
Dv (s) = t. In the same manner

one can prove that if Γn+1
Dv
∗

(s) = f then also Γn+1
Dv (s) = f must be the case. Finally, if

Γn+1
Dv
∗

(s) = u then Γn+1
Dv
∗

(s) ≤i Γn+1
Dv (s) whatever the value of Γn+1

Dv (s). Since s ∈ Ev was
arbitrary one can conclude that Γn+1

Dv
∗
≤i�Ev Γn+1

Dv .
To prove that Γn+2

Dv
∗
≥i�Ev Γn+1

Dv from the induction hypothesis assume now that for an
arbitrary s ∈ Ev it is the case that Γn+1

Dv (s) = t. This means that for every w ∈ [ΓnDv ]2 it
holds that w(φs[b/⊥ : v(b) = f]) = t. By the induction hypothesis Γn+1

Dv
∗
≥i�Ev ΓnDv , hence

by Observation B also for every w′ ∈ [Γn+1
Dv
∗

]2 it holds that w′(φs[b/⊥ : v(b) = f]) = t.
Finally, by Observation A one has that in fact for every w′ ∈ [Γn+1

Dv
∗

]2 it is the case
that w′(φs) = w′(φ∗s) = t. Hence, Γn+2

Dv
∗

(s) = t. In the same manner one can prove
that if Γn+1

Dv (s) = f also Γn+2
Dv
∗

(s) = f. Finally, if Γn+1
Dv (s) = u then Γn+2

Dv
∗

(s) ≥i Γn+1
Dv (s)

whatever the value of Γn+2
Dv
∗

(s). Since s ∈ Ev was arbitrary one can conclude that
Γn+2
Dv
∗
≥i�Ev Γn+1

Dv .

We make use of Lemma 6 in the proof of Proposition 3, which states formally that
Estb[., ., ., ., ., .] as defined above is indeed a defining encoding function for the stable
semantics.

Proposition 3. Given an ADF D = (S, {φs}s∈S) and the indexed variables PS, P ′3S,
P ′′3S, P ′S, P ′′S, let Estb be the function returning the QBF with free variables in PS,
Estb[D,PS , P ′3S , P ′′

3
S , P

′
S , P

′′
S ]. Then Estb is a defining encoding function for the stable

semantics.

Proof. Let D = (S,C) be an ADF. In order to prove soundness consider a two valued
interpretation v̂ such that v̂ |= Estb[D,PS , P ′3S , P ′′

3
S , P

′
S , P

′′
S ]. Then v̂ |= Emod[D,PS ]

from which it follows via Lemma 3.2.4 in [Dil14] (Proposition 3.17 in [DWW15]) that
v ∈ mod(D) for the interpretation v such that v̂ ∼=PS

v. Now, it is also the case
that v̂ |= ψ′ for ψ′ = Egrd[(S, {φs ∧ ps}s∈S), P ′3S , P ′′

3
S , P

′
S , P

′′
S ] and hence by Lemma

2 v̂ |= ψ′[PS/v̂(PS)]. Since v̂(ps) = v(s) for all s ∈ S the latter is equivalent to
v̂ |= ψ′[PS/v(S)].

From Proposition 3.28 in [DWW15] (based on Lemma 3.6.3 from [Dil14]) it follows
that v′ = grd(D#) for the interpretation v′ such that v̂ ∼=P ′S v′ and the ADF D# =
(S, {φ#

s }s∈S) where φ#
s = φs ∧ > if v(s) = t and φ#

s = φs ∧ ⊥ if v(s) = f. Note that
since φs ∧ > ≡ φs and φs ∧ ⊥ ≡ ⊥ for any s ∈ S the ADF D# is equivalent to the ADF
Dv
∗ := (S,C∗ := {φ∗s}s∈S) defined as in Lemma 6. Hence, v′ = grd(Dv

∗). Finally, consider
an arbitrary s ∈ S such that v(s) = t, i.e. s ∈ Ev. Since v̂ |=

∧
s∈S(ps ↔ p′s

⊕), in
particular v̂ |= ps ↔ p′s

⊕. Hence, given that v̂ ∼=PS
v and therefore v̂(ps) = t, it must
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also be the case that v̂(p′s
⊕) = t. From this it follows that since v̂ ∼=P ′S v

′ also v′(s) = t
and since s ∈ Ev was arbitrary in fact Ev ⊆ Ev′ . In the same manner from the fact that
v̂ |=

∧
s∈S(ps ↔ p′s

⊕) one can also conclude that Ev′ ⊆ Ev and, hence, Ev = Ev′ . Since
v′ = grd(Dv

∗) from Lemma 6 it follows that EDv = ED
v

v′′ where v′′ = grd(Dv).
To prove completeness, let D = (S,C) be an ADF and v a two valued interpretation such
that v ∈ stb(D). Then v ∈ mod(D) and EDv = ED

v

v′′ for v′′ = grd(Dv). From Lemma 6
it follows that also EDv = E

Dv
∗

v′ for v′ = grd(Dv
∗). As has been argued for in the proof

of soundness, the ADF Dv
∗ is equivalent to the ADF D# defined as above and hence

v′ = grd(D#). Let v̂ be a two valued interpretation such that v̂ ∼=PS
v and v̂ ∼=P ′S v′.

Then since v ∈ mod(D) and v̂ ∼=PS
v it follows from Lemma 3.2.4 in [Dil14] that

v̂ |= Emod[D,PS ]. Also, since v′ = grd(D#), one has, via Proposition 3.28 in [DWW15],
that v̂ |= ψ′[PS/v(S)] = ψ′[PS/v̂(PS)] for ψ′ = Egrd[(S, {φs∧ps}s∈S), P ′3S , P ′′

3
S , P

′
S , P

′′
S ].

This by Lemma 2 is equivalent to v̂ |= ψ′. Finally, from the fact that EDv = E
Dv
∗

v′ , v̂ ∼=PS
v,

and v̂ ∼=P ′S v′ it is easy to show that v̂(ps) = t if and only if v̂(p′s
⊕) = t for each

s ∈ S and hence v̂ |=
∧
s∈S(ps ↔ p′s

⊕). In conclusion, v̂ satisfies all of the conjuncts of
Estb[D,PS , P ′3S , P ′′

3
S , P

′
S , P

′′
S ] and, hence, v̂ |= Estb[D,PS , P ′3S , P ′′

3
S , P

′
S , P

′′
S ].

Although in the definition of the defining encoding function Estb we defined above we
made use of the defining encoding functions Emod and Egrd, it is easy to adapt it to
make use of any other versions of the defining encoding functions for the model and
grounded semantics (note that in the proof of Proposition 3 we don’t make use of any
other property of Emod and Egrd other than they are defining encoding functions). On the
other hand, when making use of the specific defining encoding functions Emod and Egrd,
the encoding Estb[D,PS , P ′3S , P ′′

3
S , P

′
S , P

′′
S ] can be simplified as we spell out in detail

now.

Observe first of all that when we expand Egrd[(S, {φs∧ps}s∈S), P ′3S , P ′′
3
S , P

′
S , P

′′
S ] within

the definition of Estb[D,PS , P ′3S , P ′′
3
S , P

′
S , P

′′
S ] above we obtain

Estb[D,PS , P ′
3
S , P

′′3
S , P

′
S , P

′′
S ] = ψ ∧ ψ′1 ∧ ψ′2

ψ = Emod[D,PS ] ∧
∧
s∈S

(ps ↔ p′s
⊕)

ψ′1 = coh[P ′3S ] ∧ prop[(S, {φs ∧ ps}s∈S), P ′3S , P ′S , P ′′S ]

ψ′2 = ∀P ′′3S((coh[P ′′3S ] ∧ prop[(S, {φs ∧ ps}s∈S), P ′′3S , P ′S , P ′′S ])→≤i [P ′3S , P ′′
3
S ])

Now, we note that any v ∈ mod(D) is a candidate to being the grounded interpretation
of the ADF Dv

∗ = (S,C∗ := {φ∗s}s∈S) defined as in Lemma 6. In effect, if s is a statement
of Dv

∗ s.t. v(s) = t then there is an interpretation w = v ∈ [v]2 s.t. w(φ∗s) = w(φs) = t
(since v ∈ mod(D), v(s) = v(φs)). On the other hand, if s is a statement of Dv

∗ s.t.
v(s) = f then there is an interpretation w = v ∈ [v]2 s.t. w(φ∗s) = w(⊥) = f (w(⊥) = f by
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the semantics of ⊥). Also, for no statement s of Dv
∗ v(s) = u, since v is a two-valued

interpretation.

We have already argued that given an ADF model v corresponding to a QBF interpretation
satisfying Emod[D,PS ], applying the encoding for the grounded semantics Egrd on the
modified ADF (S, {φs ∧ ps}s∈S) essentially boils down to computing the grounded
interpretation of Dv

∗ (see the proof of Proposition 3). Together with the fact that
any v ∈ mod(D) is a candidate to being the grounded interpretation of the ADF
Dv
∗ = (S,C∗ := {φ∗s}s∈S), we have that the conjuncts

∧
s∈S(ps ↔ p′s

⊕) ∧ ψ′1 above are
redundant, i.e.

Emod[D,PS ] ∧
∧
s∈S

(ps ↔ p′s
⊕) ∧ ψ′1 ≡ Emod[D,PS ]

for

ψ′1 = coh[P ′3S ] ∧ prop[(S, {φs ∧ ps}s∈S), P ′3S , P ′S , P ′′S ].

We need to use fewer sets of indexed variables and use the module ≤i [PS , P ′3S ] rather
than ≤i [P ′3S , P ′′

3
S ] in

ψ′2 = ∀P ′′3S((coh[P ′′3S ] ∧ prop[(S, {φs ∧ ps}s∈S), P ′′3S , P ′S , P ′′S ])→≤i [P ′3S , P ′′
3
S ])

to obtain a simplified defining encoding function

E ′stb[D,PS , P ′
3
S , P

′
S , P

′′
S ] := Emod[D,PS ] ∧ ψ

ψ := ∀P ′3S((coh[P ′3S ] ∧ prop[(S, {φs ∧ ps}s∈S), P ′3S , P ′S , P ′′S ])→≤i [PS , P ′3S ]).

As a final simplification, note that we can streamline the module prop[., ., ., , ] within our
encoding by replacing the modules ≤i [., .] within prop[., ., ., , ] with projected versions as
explained in Section 3.1.1.2:

prop′[D,P 3
S , PS , P

′
S ] :=

∧
s∈S

(ψs ∧ ψ′s ∧ ψ′′s )

ψs := (ps⊕ → ∃PparD(s)(≤i [P 3
parD(s), PparD(s)] ∧ φsPparD(s)))

ψ′s := (ps	 → ∃PparD(s)(≤i [P 3
parD(s), PparD(s)] ∧ ¬φsPparD(s)))
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3. Advanced QBF and ASP encodings for ADFs

ψ′′s := ((¬ps⊕ ∧ ¬ps	)→ ψ′′′s )
ψ′′′s := ∃PparD(s) ∪ P ′parD(s)(ψ′′′′s ∧ ψ′′′′′s )
ψ′′′′s :=≤i [P 3

parD(s), PparD(s)] ∧ φsPparD(s)

ψ′′′′′s :=≤i [P 3
parD(s), P

′
parD(s)] ∧ ¬φsP

′
parD(s))

We thus obtain the final form of our abridged version of the encoding for the stable
semantics (here we simply replaced prop[, , ., ., .] with prop′[, , ., ., .]).

E ′′stb[D,PS , P ′
3
S , P

′
S , P

′′
S ] := Emod[D,PS ] ∧ ψ

ψ := ∀P ′3S((coh[P ′3S ] ∧ prop′[(S, {φs ∧ ps}s∈S), P ′3S , P ′S , P ′′S ])→≤i [PS , P ′3S ]).

It should be relatively easy to see that this function is equivalent to the initial defining
encoding function Estb.

Example 3. In the following we spell out the QBF that results from applying the defining
encoding function E ′′stb to the ADF D = (S, {φs}s∈S) from Example 1. In the example we
use the following sets of indexed variables:

PS ={pa, pb, pc}

P ′
3
S ={p′a

⊕
, p′a

	
, p′b

⊕
, p′b

	
, p′c

⊕
, p′c

	}
P ′S ={p′a, p′b, p′c}
P ′′S ={p′′a, p′′b, p′′c}

The encoding is:

E ′stb[D,PS , P ′
3
S , P

′
S , P

′′
S ] = Emod[D,PS ] ∧ ψ

ψ = ∀P ′3S((coh[P ′3S ] ∧ prop[(S, {φs ∧ ps}s∈S), P ′3S , P ′S , P ′′S ])→≤i [PS , P ′3S ])
Emod[D,PS ] = ((pa ↔ (pb ∨ ¬pb)) ∧ (pb ↔ pb) ∧ (pc ↔ (pc → pb)))

coh[P ′3S ] = ¬(p′a
⊕ ∧ p′a

	) ∧ ¬(p′b
⊕ ∧ p′b

	) ∧ ¬(p′c
⊕ ∧ p′c

	)

prop′[(S,{φs ∧ ps}s∈S), P ′3S , P ′S , P ′′S ]) = Ψa ∧Ψb ∧Ψc

Ψa = (ψa ∧ ψ′a ∧ ψ′′a)
ψa = (p′a

⊕ → ∃{p′b}(((p′b
⊕ → p′b) ∧ (p′b

	 → ¬p′b)) ∧ ((p′b ∨ ¬p′b) ∧ pa)))
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ψ′a = (p′a
	 → ∃{p′b}(((p′b

⊕ → p′b) ∧ (p′b
	 → ¬p′b)) ∧ ¬((p′b ∨ ¬p′b) ∧ pa)))

ψ′′a = ((¬p′a
⊕ ∧ ¬p′a

	)→ ψ′′′a )
ψ′′′a = ∃{p′b, p′′b}(ψ′′′′a ∧ ψ′′′′′a )
ψ′′′′a = (((p′b

⊕ → p′b) ∧ (p′b
	 → ¬p′b)) ∧ ((p′b ∨ ¬p′b) ∧ pa))

ψ′′′′′a = (((p′b
⊕ → p′′b) ∧ (p′b

	 → ¬p′′b)) ∧ ¬((p′′b ∨ ¬p′′b) ∧ pa))
Ψb = (ψb ∧ ψ′b ∧ ψ′′b )
ψb = (p′b

⊕ → ∃{p′b}(((p′b
⊕ → p′b) ∧ (p′b

	 → ¬p′b)) ∧ (p′b ∧ pb)))
ψ′b = (p′b

	 → ∃{p′b}(((p′b
⊕ → p′b) ∧ (p′b

	 → ¬p′b)) ∧ ¬(p′b ∧ pb)))
ψ′′b = ((¬p′b

⊕ ∧ ¬p′b
	)→ ψ′′′b )

ψ′′′b = ∃{p′b, p′′b}(ψ′′′′b ∧ ψ′′′′′b )
ψ′′′′b = (((p′b

⊕ → p′b) ∧ (p′b
	 → ¬p′b)) ∧ (p′b ∧ pb))

ψ′′′′′b = (((p′b
⊕ → p′′b) ∧ (p′b

	 → ¬p′′b)) ∧ ¬(p′′b ∧ pb))
Ψc = (ψc ∧ ψ′c ∧ ψ′′c )
ψc = (p′c

⊕ → ∃{p′b, p′c}((ψc,b ∧ ψc,c ∧ ((p′c → p′b) ∧ pc))))
ψc,b = (p′b

⊕ → p′b) ∧ (p′b
	 → ¬p′b))

ψc,c = (p′c
⊕ → p′c) ∧ (p′c

	 → ¬p′c))
ψ′c = (p′c

	 → ∃{p′b, p′c}((ψc,b ∧ ψc,c ∧ ¬((p′c → p′b) ∧ pc))))
ψ′′c = ((¬p′c

⊕ ∧ ¬p′c
	)→ ψ′′′c )

ψ′′′c = ∃{p′b, p′′b, p′c, p′′c}(ψ′′′′c ∧ ψ′′′′′c )
ψ′′′′c = ((ψc,b ∧ ψc,c ∧ ((p′c → p′b) ∧ pc)))
ψ′′′′′c = ((ψ′c,b ∧ ψ′c,c ∧ ¬((p′′c → p′′b) ∧ pc)))

ψ′c,b = (p′b
⊕ → p′′b) ∧ (p′b

	 → ¬p′′b))

ψ′c,c = (p′c
⊕ → p′′c) ∧ (p′c

	 → ¬p′′c))

≤i [PS , P ′3S ] = τa ∧ τb ∧ τc
τa = ((pa → p′a

⊕) ∧ (¬pa → p′a
	))

τb = ((pb → p′b
⊕) ∧ (¬pb → p′b

	))
τc = ((pc → p′c

⊕) ∧ (¬pc → p′c
	))

We turn now to the complexity sensitive encodings for the reasoning tasks that are of
interest to this work for the stable semantics. Just as for the remaining encodings of
reasoning tasks we give in this work, we will give the encodings in prenex normal form
(PNF); the main reason being that the complexity of the encodings can then be read of
the prefix of the encodings (see Section 2.1.4). Also, most of todays QSAT solvers expect
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3. Advanced QBF and ASP encodings for ADFs

the input QBFs to be in a variant of this format.

Most prenex normal form QBF encodings of reasoning tasks we give in this work are
obtained from a defining encoding function via Proposition 2 and the equivalences from
Proposition 1. As is to be expected, the encodings for the stable semantics we give now
are based on the defining encoding function E ′′stb.

To encode the reasoning tasks relevant to this work w.r.t the stable semantics in PNF,
we first of all need the quantifier free or matrix form of the module prop[., ., ., .] (actually,
we give the matrix form of the simplified version prop′[., ., ., .]). For the definition we
assume that the statements of the ADF D = (S, {φs}s∈S) of interest are numbered, i.e.
the statements are S = {s1, . . . , sn} (n > 0).

To simplify our rendering of QBF encodings throughout this work, we here also introduce
a notation that makes “lists” of sets of variables out of “blocks” of sets of variables. I.e.
given a block of variables V = V1 . . . Vm, V L := V1, . . . , Vm.

propM [D,P 3
S , V1

L, . . . , Vn
L] :=

∧
1≤i≤n

(ψsi ∧ ψ′si
∧ ψ′′si

)

Vi := P s
′
i parD(si) P

s′′i parD(si) P
s′′′i parD(si) P

s′′′′i parD(si) (1 ≤ i ≤ n)

ψsi := (psi
⊕ → (≤i [P 3

parD(si), P
s′i parD(si)] ∧ φs

P s′
i parD(si))) (1 ≤ i ≤ n)

ψ′si
:= (psi

	 → (≤i [P 3
parD(si), P

s′′i parD(si)] ∧ ¬φsi

P s′′
i parD(si))) (1 ≤ i ≤ n)

ψ′′si
:= ((¬psi

⊕ ∧ ¬psi
	)→ ψ′′′si

) (1 ≤ i ≤ n)
ψ′′′si

:= ψ′′′′si
∧ ψ′′′′′si

(1 ≤ i ≤ n)
ψ′′′′si

:= (≤i [P 3
parD(si), P

s′′′i parD(si)]∧ ≤i [P 3
parD(si), P

s′′′′i parD(si)] (1 ≤ i ≤ n)

ψ′′′′′si
:= φsi

P s′′′
i parD(si) ∧ ¬φsi

P s′′′′
i parD(si)) (1 ≤ i ≤ n)

For an ADF D = (S, {φs}s∈S) and an interpretation v, the verification problem w.r.t.
the stable semantics can now be encoded as follows:

V erstb(D, v) ≡ ∀V (Emod[D,PS ] ∧ ((coh[P ′3S ] ∧ ψ)→≤i [PS , P ′3S ]))[PS/v(S)]

V := P ′
3
S V1 . . . Vn

Vi := P s
′
i parD(si) P

s′′i parD(si) P
s′′′i parD(si) P

s′′′′i parD(si) (1 ≤ i ≤ n)

ψ := propM [(S, {φs ∧ ps}s∈S), P ′3S , V1
L, . . . , Vn

L].
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The encoding returns a Π1 QBF and thus matches the complexity of the verification
problem w.r.t. the stable semantics which is coNP-complete.

As to the acceptance problems, credulous reasoning w.r.t the stable semantics and for a
statement s∗ ∈ S can be encoded as

Credstb(D, s∗) ≡ ∃PS∀V (Emod[D,PS ] ∧ ((coh[P ′3S ] ∧ ψ)→≤i [PS , P ′3S ]) ∧ ps∗)

V := P ′
3
S V1 . . . Vn

Vi := P s
′
i parD(si) P

s′′i parD(si) P
s′′′i parD(si) P

s′′′′i parD(si) (1 ≤ i ≤ n)

ψ := propM [(S, {φs ∧ ps}s∈S), P ′3S , V1
L, . . . , Vn

L].

The encoding for credulous reasoning returns a Σ2 QBF again matching the complexity
of this decision problem w.r.t the stable semantics (ΣP

2 -complete). Finally, also the
following Π2 QBF encoding for skeptical reasoning w.r.t the stable semantics matches
the complexity of this decision problem (ΠP

2 -complete):

Skeptstb(D, s∗) ≡ ∀PS∃V
(
(Emod[D,PS ] ∧ ((coh[P ′3S ] ∧ ψ)→≤i [P 3

S , P
′3
S ]))→ ps∗

)
Vi := P ′

3
S V1 . . . Vn

Vi := P s
′
i parD(si) P

s′′i parD(si) P
s′′′i parD(si) P

s′′′′i parD(si) (1 ≤ i ≤ n)

ψ := propM [(S, {φs ∧ ps}s∈S), P ′3S , V1
L, . . . , Vn

L].

3.1.3 Link information sensitive encodings for ADFs

3.1.3.1 Link types and subclasses of ADFs

Links in ADFs can be classified as being either attacking, supporting, redundant or
dependent. The importance of this classification of links is, first of all, (roughly) their
correspondence with crucial notions in argumentation where e.g. one argument can be
said to be attacking another. Alternatively, a group of arguments can jointly support
another argument; the relation of one argument supporting another thus being dependent
on the acceptance status of further arguments2.

The classification of links is also important because the complexity of most reasoning
tasks for ADFs can be usefully parametrised by the number of links which are neither
attacking nor supporting (these are the dependent links) as well as the number of links

2See [BES+18] for further examples on the kinds of relationships between arguments (or, more
accurately, statements) that can be represented using ADFs.
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whose type is unknown. In particular, the complexity of most reasoning tasks for ADFs
drops one level of the polynomial hierarchy when the number of such links occurring in
an ADF is bounded by a fixed constant.

Subclasses of ADFs result when restrictions are put on the types of links that can appear
in an ADF or the number of links which are of a certain type. Two such subclasses
are Dung’s AFs, where all links are attacking, and bipolar ADFs or BADFs where
all links are required to be either attacking or supporting. Dung’s AFs are still the
most popular abstract argumentation formalism on which most other argumentation
formalisms, including ADFs, are based. The interest of BADFs on the other hand is that,
while being more general than AFs3, they nevertheless enjoy the same computational
complexity as AFs for many semantics. Moreover, several existing generalisations of AFs
can be translated to BADFs [Pol16].

BADFs can be generalised by allowing up to k links which are neither attacking nor
supporting for some fixed constant k ≥ 0; such ADFs have been called k-BADFs
[LMN+18a]. Adding an epistemic dimension, a further generalisation is to allow up to k
links which are neither attacking nor supporting or, alternatively, whose type is unknown.
For simplicity, we call such links “hard links”. As hinted at previously, the complexity of
reasoning also for ADFs with a number of hard links that is bound by a fixed constant
roughly drops one level of the polynomial hierarchy with respect to general ADFs.

Definition 16 makes the classification of links in ADFs according to whether they are
supporting, attacking, redundant, or dependent precise. The intuition behind a link
from a statement s to a statement t being supporting is that accepting s doesn’t make t
unaccepted if t was already accepted, given the acceptance status of the (other) parents of
t. Similarly, a link from a statement s to a statement t being attacking is that accepting
s doesn’t make t accepted if t was unaccepted before.

Links which are both supporting and attacking are called redundant, the reason being
that the acceptance status of a statement t that is connected to a statement s via a
redundant link is independent of the acceptance status of s (i.e. the acceptance status of
t does not change if the acceptance status of s changes). Dependent links are those which
are neither supporting nor attacking; intuitively this means that parents of a statement t
on such links are attacking or supporting depending on the acceptance status of other
parents of t.

Definition 16. Let D = (S, {φs}s∈S) be an ADF.

3This is especially clear from the perspective of realisability which is the study of the sets of
interpretations that can be realised by a given formalism under a semantics. A set of interpretations
V can be realised by a formalism F under a semantics σ whenever there is some element F ∈ F -,an
argumentation framework in the case of argumentation,- such that σ(F ) = V . BADFs are strictly
“in between” AFs and ADFs from the perspective of realisability, with some interpretation sets being
realisable by BADFs but not by AFs under the main semantics, while there are also interpretation sets
which are realisable by ADFs and not by BADFs[Str15a, Str15b, LPS16].

54



3.1. Complexity and link information sensitive QBF encodings for ADFs

• A link (s, t) ∈ LD is supporting (alternatively, s is a supporter of t) if for every
(two valued) interpretation v, if v(φt) = t, then also v[s/t](φt) = t.

• A link (s, t) ∈ LD is attacking (alternatively, s is an attacker of t) if for every (two
valued) interpretation v, if v(φt) = f, then also v[s/t](φt) = f.

• A link (s, t) ∈ LD is redundant if it is supporting and attacking.

• A link (s, t) ∈ LD is dependent if it is neither supporting nor attacking.

Example 4. Consider again the ADF from Example 1. Note first that the acceptance
condition of the statement a is a tautology and hence its truth value is independent of that
of b; therefore (b, a) is a redundant link. The link (b, b) on the other hand is supporting,
since whatever interpretation we start with (either that mapping b to t or that mapping
b to f), switching b to t clearly makes φb = b true. The link (b, b) is not attacking,
since there is an interpretation that makes φb false (namely that mapping b to f) and s.t.
switching b to t makes φb true.

The link (b, c) is supporting since φc = c→ b is true whenever b is mapped to true; it is
not attacking since the interpretation mapping c to t and b to f makes φc false, while
switching b from f to t makes φc true. The link (c, c) on the other hand is attacking since
the only interpretation that makes φc = c → b false is that mapping b to f and c to t;
hence switching c to t has no effect on the result. The link is not supporting since there is
an interpretation mapping φc to t (i.e. the one mapping b to f and c to f) s.t. switching
c to t makes φc false.

For an example of a dependent link, assume the acceptance condition φc associated to c
is b⊕ c rather than c→ b. Then the link (b, c) would not be supporting since switching b
to t for the interpretation mapping b to f and c to t would make the truth value of our
new φc switch from t to f. If the acceptance condition φc were b⊕ c, the link (b, c) would
also not be attacking since switching b to t for the interpretation mapping b to f and c to
f would make the truth value of φc go from f to t. For analogous reasons, the link (c, c)
for the new acceptance condition φc would also neither be attacking nor supporting.

Given an ADF D, we denote the supporting links by L+
D, the attacking links by L−D, and

those which are neither supporting nor attacking -, i.e. the dependent links,- as L×D.

Computing the type of a link of an ADF is coNP-complete in general. It hence makes sense
to further distinguish links according to whether their link type is known or unknown.
For an ADF D we thus denote the links whose type is unknown by L?

D, while those for
which the types are known are represented via L!

D (i.e. L!
D := LD \ L?

D). Therefore, for
instance, the attacking links whose link type is unknown are L?

D ∩ L
−
D; the dependent

links whose link type is known are L!
D ∩ L

×
D.

The complexity results mentioned at the beginning of the current section follow from the
fact that, as is expressed in Proposition 4, given an ADF D = (S, {φs}s∈S), a statement
s of the ADF, and a three valued interpretation v, the number of completions one needs
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to check in order to verify that w(φs) = x for all w ∈ [v]2 and some x ∈ {t, f} is actually
exponential in k+ l with k = |L×D| and l = |L?

D ∩ (L−D ∪L
+
D)|. This means that computing

the result of the characteristic operator ΓD(v)(s) is also exponential in k + l.

As a result, if one considers a fixed constant c ≥ 0 such that k + l ≤ c (k = |L×D|,
l = |L?

D ∩ (L−D ∪ L
+
D)|), the complexity of computing ΓD(v)(s) is polynomial in c. I.e. if

the number of links which are not known to be attacking and/or supporting is bounded
by a fixed constant, the complexity of computing the result of the characteristic operator
ΓD, and hence one dimension of the complexity of computing the result of the different
semantics, is reduced.

Proposition 4. (Generalisation of Lemma 4.1.18 in [Wal14]) Let D = (S, {φs}s∈S)
be an ADF, s ∈ S, and v a three valued interpretation. Let ct

D,v,s and cf
D,v,s be the

interpretations on parD(s) defined as

ct
D,v,s(s′) :=



t if v(s′) = t
f if v(s′) = f
t if v(s′) = u and (s′, s) ∈ L!

D ∩ L
−
D

f if v(s′) = u and (s′, s) ∈ L!
D ∩ L

+
D

u if v(s′) = u and (s′, s) ∈ L?
D ∪ L

×
D

cf
D,v,s(s

′) :=



t if v(s′) = t
f if v(s′) = f
f if v(s′) = u and (s′, s) ∈ L!

D ∩ L
−
D

t if v(s′) = u and (s′, s) ∈ L!
D ∩ L

+
D

u if v(s′) = u and (s′, s) ∈ L?
D ∪ L

×
D

Then

1. w(φs) = t for all w ∈ [v]2 iff w′(φs) = t for all w′ ∈ [ct
D,v,s]2;

2. w(φs) = f for all w ∈ [v]2 iff w′(φs) = f for all w′ ∈ [cf
D,v,s]2.

Proof. The “only if” direction of the both items follow from the fact that [ct
D,v,s]2 ⊆ [v]2

and [cf
D,v,s]2 ⊆ [v]2 respectively.

As to the “if” direction for the first item, let w be a two valued interpretation on parD(s)
and let [w]t∆ be the set of two valued interpretations on parD(s) that are different from w
only in that they either set attackers of s from false to true or supporters of s from true
to false. I.e. if w′ ∈ [w]t∆ and w′(s′) 6= w(s′) for some s′ ∈ parD(s), then either s′ ∈ L+

D

and w′(s′) = f, or (s′, s) ∈ L−D and w′(s′) = t. It is proven in Lemma 4.1.18 in [Wal14]
that
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• Property J: If w(φs) = f, then w′(φs) = f for any w′ ∈ [w]t∆4.

Now, the first item of Proposition 4 follows from Property J and the fact that for any
w ∈ [v]2, there is a w′ ∈ [w]t∆ s.t. also w′ ∈ [ct

D,v,s]2 (“Observation A”). Indeed, consider
w′′ defined as w′′(s′) = ct

D,v,s(s′) if s′ ∈ L!
D ∩ (L−D ∪ L

+
D), but w′′(s′) = w(s′) otherwise.

Then, by construction w′′ ∈ [w]t∆, but it is also easy to see that w′′ ∈ [ct
D,v,s]2. The

latter is because w′′ is (possibly) different from ct
D,v,s on the statements s′ ∈ parD(s)

s.t. v(s′) = u and (s′, s) ∈ L?
D ∪ L

×
D. And for such statements ct

D,v,s(s′) = u ≤i w′′(s′)
whatever the value of w′′(s′) = w(s′).

Putting all the above together, we have that if w(φs) = f for some w ∈ [v]2, then
by Property J w′(φs) = f for any w′ ∈ [w]t∆. Thus by Observation A there is a
w′ ∈ [w]t∆ ∩ [ct

D,v,s]2 s.t. w′(φs) = f. In conclusion, if w′′(φs) = t for all w′′ ∈ [ct
D,v,s]2,

then also w(φs) = t for all w ∈ [v]2 must be the case.

The “if direction” of the second item of Proposition 4 is proven in the same manner as
the “if direction” of the first item, using a variant of Property J (also stated in [Wal14])
adequate to this case.

We call the interpretations ct
D,v,s and cf

D,v,s from Proposition 4 the “canonical interpreta-
tions” (for D, s, and v). Proposition 4 is a (simple) generalisation of Lemma 4.1.18 in
[Wal14]; see also a similar result for k-BADFs in the form of Lemma 4.1. in [LMN+18a].
Corollary 2 is a straightforward consequence of Proposition 4.

Corollary 2. Let D = (S, {φs}s∈S) be an ADF, s ∈ S, and v a three valued interpretation.
Also, let ct

D,v,s and cf
D,v,s be the canonical interpretations on parD(s) defined as in

Proposition 4. Then

1. w(φs) = t for some w ∈ [v]2 iff w(φs) = t for some w ∈ [cf
D,v,s]2;

2. w(φs) = f for some w ∈ [v]2 iff w(φs) = f for some w ∈ [ct
D,v,s]2.

Proof. The first item follows from taking the contrapositive of both directions of the
biconditional in the second item in Proposition 4, while the second item follows from
taking the contrapositives of both directions of the first item in Proposition 4.

While in Dung’s AFs links between arguments represent attacks (as can be deduced from
the representation of AFs as ADFs expressed in Definition 10), BADFs generalise AFs in
allowing supporting as well as attacking links. The complexity of the reasoning tasks
that are of interest to this work for ADFs which like Dung’s AFs and BADFs have up
to k hard links (dependent links or links that are not dependent, but whose link type

4Among the assumptions of Lemma 4.1.18 from [Wal14] are that D is bipolar and that D has no
redundant links; but the proof of Property J does not make use of either of these assumptions.
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σ adm com prf grd mod stb

Credσ NP-c NP-c NP-c in P NP-c NP-c
Skeptσ trivial in P ΠP

2 -c in P coNP-c coNP-c
V erσ in P in P coNP-c in P in P in P

Table 3.1: Complexity results for ADFs such as AFs and BADFs, which have up to
k hard links for some fixed constant k ≥ 0. Follow from results in [LMN+18a] and
[Wal14, SW15].

is unknown) for some constant k ≥ 0 are summarised in Table 3.1. They are based on
Proposition 4 and are, again, generalisations of the results about k-BADFs and BADFs
from [LMN+18a] and [Wal14, SW15] respectively.

3.1.3.2 Encoding the types of the links of ADFs

In what remains of Section 3.1.3 we assume that an ADF is given together with a list
of the type of the links of the ADF for all those links whose type is known. There may
also be links whose type is unknown (see Section 3.1.3.1). Given such an ADF we will
now develop an encoding that specifies the type of the links for those links whose type is
known. Also, the module in question specifies how to determine the link types for those
links whose type is unknown. For the latter links, the encoding pretty much recasts the
definition of the various link types (Definition 16) in QBF terms.

To refer to attacking and supporting links within our encodings we will use (disjoint)
sets of indexed variables ALD

and OLD
indexed with the links of the ADF of interest

D (“A” for “attack” and “O” for “support”). We will also need variables PS and P ′S
indexed with the statements S of D in order to encode the definitions of attacking and
supporting links as given in Definition 16. We remind the reader of our notation for
propositional atoms indexed w.r.t. some set T1 “projected” on a set of indices T2 ⊆ T1.
Thus, for instance, PparD(s) = {ps′ | ps′ ∈ PS and s′ ∈ parD(s)} for any s ∈ S (we refrain
from further reminders about the notation for the projection on a subset of indices in
what remains of this work).

The module specifying the link types of an ADF D = (S, {φs}s∈S) (together with
information about the links of D) is as follows:

links[D,ALD
, OLD

, PS , P
′
S ] := χ1 ∧ χ2 ∧ χ3 ∧ χ4 ∧ χ5

χ1 :=
∧

(s1,s2)∈L!
D∩L

+
D

o(s1,s2)

χ2 :=
∧

(s1,s2)∈L!
D∩L

−
D

a(s1,s2)
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χ3 :=
∧

(s1,s2)∈L!
D∩L

×
D

(¬o(s1,s2) ∧ ¬a(s1,s2))

χ4 :=
∧

(s1,s2)∈L?
D

(o(s1,s2) ↔ ψ(s1,s2))

χ5 :=
∧

(s1,s2)∈L?
D

(a(s1,s2) ↔ ψ′(s1,s2))

ψ(s1,s2) := ∀PparD(s2) ∪ {p′s1}
(
(φs2

PparD(s2) ∧ p′s1)→ (φs2
PparD(s2) [ps1/p

′
s1 ])

)
ψ′(s1,s2) := ∀PparD(s2) ∪ {p′s1}

(
(¬φs2

PparD(s2) ∧ p′s1)→ (¬φs2
PparD(s2) [ps1/p

′
s1 ])

)

Lemma 7 states the meaning of the module links[., ., ., ., .] for our encodings in formal
terms.

Lemma 7. Let D = (S, {φs}s∈S) be an ADF, sa ∈ S, sb ∈ S, and ALD
, OLD

, PS, P ′S
indexed atoms. Also, let Ψ = links[D,ALD

, OLD
, PS , P

′
S ]. Then

1. v̂(o(sa,sb)) = t for any interpretation v̂ s.t. v̂ |= Ψ iff (sa, sb) ∈ L+
D,

2. v̂(a(sa,sb)) = t for any interpretation v̂ s.t. v̂ |= Ψ iff (sa, sb) ∈ L−D, and

3. v̂(o(sa,sb)) = v̂(a(sa,sb)) = f for any interpretation v̂ s.t. v̂ |= Ψ iff (sa, sb) ∈ L×D.

Proof. (sketch) The reason for the truth of the first item is that on the one hand for
any interpretation v̂ s.t. v̂ |= links[D,ALD

, OLD
, PS , P

′
S ] we have that, (roughly) since

v̂ |= (
∧

(s1,s2)∈L!
D∩L

+
D
o(s1,s2)), v̂(o(sa,sb)) = t for (sa, sb) ∈ L!

D iff (sa, sb) ∈ L+
D. On

the other hand, for any interpretation v̂ s.t. v̂ |= links[D,ALD
, OLD

, PS , P
′
S ] we have

that also v̂(o(sa,sb)) = t for (sa, sb) 6∈ L!
D (i.e. (sa, sb) ∈ L?

D) iff (sa, sb) ∈ L+
D. The

latter is due to the fact that if v̂ |= links[D,ALD
, OLD

, PS , P
′
S ], then v̂ |= o(sa,sb) ↔

∀PparD(sb)∪{p′sa
}
(
(φsb

PparD(sb)∧p′sa
)→ (φsb

PparD(sb) [psa/p
′
sa

]
))
. By Lemma 1 this means

that v̂ |= o(sa,sb) iff for all interpretations û it is the case that for v̂′ := v̂[(PparD(s2) ∪
{p′s1})/û(PparD(s2) ∪ {p′s1})], v̂

′ |=
(
(φsb

PparD(sb) ∧ p′sa
) → (φsb

PparD(sb) [psa/p
′
sa

]
)
. The

latter corresponds exactly to the requirement for (sa, sb) ∈ L+
D according to Definition

16. The proof of the second item is analogous to the proof of the first item. The third
item follows directly from the first two items and the definition of (sa, sb) ∈ L×D (again,
see Definition 16).

We will later need to remove the inner quantifiers of the module encoding the link types
of an ADF D, leaving us with the “matrix” of the module. For this we use extra variables
indexed w.r.t. several sets which we define now. In the first place we define the sets of
indices < L?

D, Q, 1 >:= {s, (s1, s2), Q, T | s ∈ parD(s2), (s1, s2) ∈ L?
D, T ∈ {O,A}} and

< L?
D, Q, 2 >:= {s1, (s1, s2), Q, T | (s1, s2) ∈ L?

D, T ∈ {O,A}} (the difference between
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the two sets of indices is in the first index). Here Q ∈ {∃, ∀}. We also define a form of
projection on the set of indices < L?

D, Q, 1 >: < L?
D, Q, 1 >�(sa,sb),T := {s, (sa, sb), Q, T |

s ∈ parD(sb)}. Here sa and sb are specific statements in S, Q ∈ {∃,∀}, and T ∈ {O,A}
(“O” once more stands for “support”, while “A” stands for “attack”).

The matrix of the module for the link types of an ADF D as considered all along is
given below. It is obtained from links[D,ALD

, OLD
, PS , P

′
S ] via the equivalences in

Proposition 1 (and the definition of the logical connective “↔” as well as removing
quantifiers).

linksM [D,ALD
,OLD

, P<L?
D,∃,1>

, P ′<L?
D,∃,2>

, P<L?
D,∀,1>

, P ′<L?
D,∀,2>

] := X

X := χ1 ∧ χ2 ∧ χ3 ∧ χ4

χ1 := (
∧

(s1,s2)∈L!
D∩L

+
D

o(s1,s2)) ∧ (
∧

(s1,s2)∈L!
D∩L

−
D

a(s1,s2))

χ2 :=
∧

(s1,s2)∈L!
D∩L

×
D

(¬o(s1,s2) ∧ ¬a(s1,s2))

χ3 := (
∧

(s1,s2)∈L?
D

(o(s1,s2) → ψ(s1,s2))) ∧ (
∧

(s1,s2)∈L?
D

(ψ′(s1,s2) → o(s1,s2)))

χ4 :=(
∧

(s1,s2)∈L?
D

(a(s1,s2) → ψ′′(s1,s2))) ∧ (
∧

(s1,s2)∈L?
D

(ψ′′′(s1,s2) → a(s1,s2)))

ψ(s1,s2) := τ1 → τ2

τ1 := (φs2

P
<L?

D
,∀,1>�(s1,s2),O ∧ p′s1,(s1,s2),∀,O)

τ2 := (φs2

P
<L?

D
,∀,1>�(s1,s2),O [ps1,(s1,s2),∀,O/p

′
s1,(s1,s2),∀,O]))

ψ′(s1,s2) := τ3 → τ4

τ3 := (φs2

P
<L?

D
,∃,1>�(s1,s2),O ∧ p′s1,(s1,s2),∃,O)

τ4 := (φs2

P
<L?

D
,∃,1>�(s1,s2),O [ps1,(s1,s2),∃,O/p

′
s1,(s1,s2),∃,O]

))
ψ′′(s1,s2) := τ5 → τ6

τ5 := (¬φs2

P
<L?

D
,∀,1>�(s1,s2),A ∧ p′s1,(s1,s2),∀,A)

τ6 := (¬φs2

P
<L?

D
,∀,1>�(s1,s2),A [ps1,(s1,s2),∀,A/p

′
s1,(s1,s2),∀,A])

ψ′′′(s1,s2) := τ7 → τ8

τ7 := (¬φs2

P
<L?

D
,∃,1>�(s1,s2),A ∧ p′s1,(s1,s2),∃,A)

τ8 := (¬φs2

P
<L?

D
,∃,1>�(s1,s2),A [ps1,(s1,s2),∃,A/p

′
s1,(s1,s2),∃,A])

Note that in the definition of the module linksM [., ., ., ., ., ., .] (periods are placeholders
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for parameters of the module) we stretched the Definition of our notation φPT for a
propositional formula φ and an indexed set of propositional atoms PT somewhat. E.g.
φs2

P
<L?

D
,∃,1>�(s1,s2),O means that every occurrence of a s ∈ S in φs2 is replaced by the

variable ps,(s1,s2),∃,O. Except if stated otherwise, in what remains of this chapter we stick
with this convention. In other words, for complex indices the replacement of propositional
atoms is always done considering the first element of the index.

3.1.3.3 Encodings for the admissible semantics

We now turn to the link information sensitive QBF encodings, starting with the encoding
for the admissible semantics. To begin, we recall the defining encoding function for
the admissible semantics from [Dil14], which quite closely follows the definition of this
semantics as expressed in Definition 8.

Specifically, the “non link information sensitive” encoding Eadm (see below) involves three
modules; the module coh[.] to refer to a candidate three valued interpretation, the module
≤i [., .] to refer to the completions of the candidate interpretation, and finally the module
eval[., ., .] to express the condition that a candidate interpretation needs to fulfill for
being admissible. The latter condition for an ADF D = (S, {φs}s∈S) and a candidate
interpretation v is that if v(s) = t then for every completion w ∈ [v]2 it must be the case
that w(φs) = t, while if v(s) = f then for every w ∈ [v]2, w(φs) = f must hold.

Eadm[D,P 3
S , PS ] := coh[P 3

S ] ∧ ∀PS
(
≤i [P 3

S , PS ]→ eval[D,P 3
S , PS ]

)
eval[D,P 3

S , PS ] :=
∧
s∈S

(
(ps⊕ → φs

PS ) ∧ (ps	 → ¬φsPS )
)

Example 5. The following is an encoding for credulous reasoning w.r.t. the admissible
semantics for the statement a and the ADF D from Example 1. It is based on the defining
encoding function Eadm from [Dil14] (and obtained via Proposition 2 and the equivalences
in Proposition 1). Here P 3

S = {pa⊕, pa	, pb⊕, pb	, pc⊕, pc	} and PS = {pa, pb, pc}.

Credadm(D, a) ≡ ∃P 3
S∀PS(ψ ∧ pa⊕)

ψ = coh[P 3
S ] ∧

(
≤i [P 3

S , PS ]→ eval[D,P 3
S , PS ]

)
coh[P 3

S ] = ¬(pa⊕ ∧ pa	) ∧ ¬(pb⊕ ∧ pb	) ∧ ¬(pc⊕ ∧ pc	)
≤i [P 3

S , PS ] = ψa ∧ ψb ∧ ψc
ψa = ((pa⊕ → pa) ∧ (pa	 → ¬pa))
ψb = ((pb⊕ → pb) ∧ (pb	 → ¬pb))
ψc = ((pc⊕ → pc) ∧ (pc	 → ¬pc))

eval[D,P 3
S , PS ] = ψ′a ∧ ψ′b ∧ ψ′c

ψ′a = ((pa⊕ → (pb ∨ ¬pb)) ∧ (pa	 → ¬(pb ∨ ¬pb)))
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ψ′b = ((pb⊕ → pb) ∧ (pb	 → ¬pb))
ψ′c = ((pc⊕ → (pc → pb)) ∧ (pc	 → ¬(pc → pb)))

The difference between the non link information sensitive defining encoding Eadm and the
new link information sensitive encoding E ′adm we present now is that the new encoding
reflects the fact that, as we explained in detail in Section 3.1.3.1, when information about
link types of an ADF is present computing the result of evaluating the different semantics
on ADFs can be simplified. Just as for the remaining semantics considered in this
work, also for the admissible semantics this concretely means that it is not necessary to
compute the result of evaluating each of the acceptance conditions under all completions
of a candidate ADF interpretation. Rather, “only” a number of completions that is
exponential in the number of links with dependent or unknown type (what we called
hard links in Section 3.1.3.1) need to be considered per statement of the ADF.

Thus, the link information sensitive encoding for the admissible semantics is structurally
very similar to the non link information sensitive encoding but now, first of all, includes
the links[., ., ., ., .] module we defined in Section 3.1.3.2. Secondly, the modules ≤i [., .]
and eval[., ., .] in the non link information sensitive encoding are replaced with modules
canon[., ., ., ., .] and evalCanon[., ., .], which make use of the link information captured via
the links[., ., ., ., .] module and reflect the need for evaluating the acceptance conditions
on the completions of the canonical completions only (see explanation in Section 3.1.3.1).
In order to capture the completions of the canonical completions needed per statement
for a set of statements S of an ADF D, we need atoms R<S,parD(S))>, indexed by the set
< S, parD(S)) >:= {s1, s2 | s1 ∈ S, s2 ∈ parD(s1)}, i.e. there is an atom for each parent
of every statement in the ADF. Again, we define a form of projection on the indices
< sa, parD(sa)) >:= {sa, sb | sb ∈ parD(sa)} for a specific sa ∈ S.

E ′adm[D,P 3
S , ALD

, OLD
, PS , P

′
S , R<S,parD(S))>] := ψ ∧ ψ′

ψ := coh[P 3
S ] ∧ links[D,ALD

, OLD
, PS , P

′
S ]

ψ′ := ∀R<S,parD(S))> ψ′′

ψ′′ :=
(
canon[D,ALD

, OLD
, P 3

S , R<S,parD(S))>]→ evalCanon[D,P 3
S , R<S,parD(S))>]

)
The module canon[., ., ., ., .] expresses the completions of the canonical interpretations
needed per statement as expressed in Proposition 4 and is defined as follows:

canon[D,ALD
, OLD

, P 3
S , R<S,parD(S))>] :=

∧
s1∈S,s2∈parD(s1)

(ψs1,s2 ∧ ψ′s1,s2)

ψs1,s2 := (ps2
⊕ → rs1,s2) ∧ (ps2

	 → ¬rs1,s2)
ψ′s1,s2 := ((¬ps2

⊕ ∧ ¬ps2
	)→ (χs1,s2 ∧ χ′s1,s2 ∧ χ

′′
s1,s2 ∧ χ

′′′
s1,s2))

62



3.1. Complexity and link information sensitive QBF encodings for ADFs

χs1,s2 := ((ps1
⊕ ∧ o(s2,s1))→ ¬rs1,s2)

χ′s1,s2 := ((ps1
⊕ ∧ ¬o(s2,s1) ∧ a(s2,s1))→ rs1,s2)

χ′′s1,s2 := ((ps1
	 ∧ o(s2,s1))→ rs1,s2)

χ′′′s1,s2 := ((ps1
	 ∧ ¬o(s2,s1) ∧ a(s2,s1))→ ¬rs1,s2)

Note that in the module canon[., ., ., ., .] completions of both canonical interpretations
ct
D,v,s1

and cf
D,v,s1

from Proposition 4 needed per statement s1 ∈ S (for a candidate
interpretation v for the ADF D) are specified. In effect, χs1,s2 and χ′s1,s2 are needed
for specifying the completions of the canonical interpretation ct

D,v,s1
(of a candidate

interpretation v for which v(s1) = t), while χ′′s1,s2 and χ′′s1,s2 are required for specifying
the completions of the canonical interpretation cf

D,v,s1
(here the assumption is that

v(s1) = f). For later encodings we will need to separate the specification of both
canonical completions, but not doing so for the admissible semantics allows for a slightly
more compact defining encoding function for this semantics.

The definition of the module evalCanon[., ., .], on the other hand, is:

evalCanon[D,P 3
S , R<S,parD(S))>] := ψ

ψ :=
∧
s∈S

(
(ps⊕ → φs

R<s,parD(s))>) ∧ (ps	 → ¬φsR<s,parD(s))>)
)

As hinted at previously, this module is very similar to the module eval[., ., .] used in
the non link information sensitive encoding but takes in account the completions of the
canonical interpretations (as computed by the module canon[., ., ., ., .]) only.

Proposition 5. Given an ADF D = (S, {φs}s∈S) and indexed variables P 3
S , ALD

,
OLD

,PS, P ′S, R<S,parD(S))>, let E ′adm be the function returning the QBF with free vari-
ables in P 3

S , E ′adm[D,P 3
S , ALD

, OLD
, PS , P

′
S , R<S,parD(S))>]. Then E ′adm is a defining

encoding function for the admissible semantics.

Proof. (sketch) Coherence of E ′adm follows from Lemma 4 and the fact that if v̂ |= ψ, where
ψ = E ′adm[D,P 3

S , ALD
, OLD

, PS , P
′
S , R<S,parD(S))>], it is also the case that v̂ |= coh[P 3

S ].

For soundness, assume that v̂ |= E ′adm[P 3
S , ALD

, OLD
, PS , P

′
S , R<S,parD(S))>] and let v be

a three valued interpretation s.t. v̂ ∼=P 3
S
v. In particular, v̂ |= links[D,ALD

, OLD
, PS , P

′
S ].

By Lemma 7 this means that the types of the links of D are correctly captured by the val-
uation of v̂ on the variables in ALD

∪OLD
. Also, v̂ |= ∀R<S,parD(S))>(ψ′ → ψ′′) with ψ′ =

canon[D,ALD
, OLD

, P 3
S , R<S,parD(S))>] and ψ′′ = evalCanon[D,P 3

S , R<S,parD(S))>]
)
. By

Lemma 1 this means that ẑ |= ψ′ → ψ′′ for ẑ := v̂[R<S,parD(S))>/ŵ(R<S,parD(S))>)]
where ŵ is any two valued interpretation . In particular, ẑ′ |= ψ′ → ψ′′ where
ẑ′ := v̂[R<S,parD(S))>/ŵ′(R<S,parD(S))>)] and ŵ′ coincides with a completion of the
canonical completion ct

D,v,s of v (see Proposition 4) on the variables R<s,parD(s))> for
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every statement s ∈ S if v(s) = t. On the other hand, ŵ′ coincides with a completion w′
of the canonical completion cf

D,v,s of v on the variables R<s,parD(s))> for every s ∈ S if
v(s) = f. Here, by ŵ′ “coinciding” with w′ on R<s,parD(s))> we mean that ŵ′(rs,s′) = t
iff w(s′) = t for every s′ ∈ parD(s). By construction we have that ẑ′ ∼=P 3

S
v, the types

of the links of D are also correctly captured by the valuation of ẑ′ on the variables in
ALD

∪OLD
and, finally, ẑ′ also coincides with the completion w′ of v for every s ∈ S. It

is also straightforward to prove that then ẑ′ |= canon[D,ALD
, OLD

, P 3
S , R<S,parD(S))>],

which implies that also ẑ′ |= evalCanon[D,P 3
S , R<S,parD(S))>]. It is also easy to prove

that from ẑ′ |= evalCanon[D,P 3
S , R<S,parD(S))>] it follows that v(s) ≤i w′(φs) for every

s ∈ S. Now, since the completion w′ was arbitrary we have that v(s) ≤i w′′(φs) for every
w′′ ∈ [ct

D,v,s]2 when v(s) = t, and v(s) ≤i w′′(φs) for every w′′ ∈ [cf
D,v,s]2 when v(s) = f.

Thus, by Proposition 4 and Definition 8, it follows that v ∈ adm(D).

The proof for completeness is analogous to soundness but starting with a three valued
interpretation v ∈ adm(D) and in inverse form to the proof of soundness (using the same
lemmas and propositions), constructing a two valued interpretation v̂ s.t. v̂ ∼=P 3

S
v and

v̂ |= E ′adm[D,P 3
S , ALD

, OLD
, PS , P

′
S , R<S,parD(S))>].

Turning to the encodings for the reasoning tasks for the admissible semantics, we start
by recalling that reasoning about the skeptical acceptance of a statement w.r.t. the
admissible semantics is trivial, the reason being that the interpretation mapping every
statement to the truth value u is always admissible. Hence, Skeptadm(D, s∗) ≡ ⊥ for any
ADF D and statement s∗. As to the encodings for the verification problem and credulous
reasoning, these will be based on our link information sensitive defining encoding function
E ′adm (via Proposition 2, the equivalences from Proposition 1, and the definition of the
logical connective “→”).

The verification problem for an ADF D, an interpretation v, and the admissible semantics
can be encoded as follows:

V eradm(D, v) ≡ ∃ V ∀ V ′(ψ ∧ ψ′)[P 3
S/v(S)]

V := ALD
OLD

P<L?
D,∃,1>

P ′<L?
D,∃,2>

V ′ := P<L?
D,∀,1>

P ′<L?
D,∀,2>

R<S,parD(S))>

ψ := coh[P 3
S ] ∧ linksM [D,ALD

, OLD
, P<L?

D,∃,1>
, P ′<L?

D,∃,2>
, P<L?

D,∀,1>
, P ′<L?

D,∀,2>
]

ψ′ :=
(
canon[D,ALD

, OLD
, P 3

S , R<S,parD(S))>]→ evalCanon[D,P 3
S , R<S,parD(S))>]

)

We note that when L?
D = ∅ (i.e. L!

D = LD), then the encoding is reduced to the following
form:

V eradm(D, v) ≡ ∃ALD
OLD
∀ R<S,parD(S))>(ψ ∧ ψ′)[P 3

S/v(S)]
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where ψ and ψ′ are defined as above. The crucial difference is that when L?
D = ∅

the sets of variables P<L?
D,∃,1>

, P ′
<L?

D,∃,2>
, P<L?

D,∀,1>
, and P ′

<L?
D,∀,2>

needed to com-
pute the link types for those links whose type is unknown are empty (see the def-
inition of the linksM [., ., ., ., ., ., .] module in Section 3.1.3.2) . The consequence is
that the quantifier blocks in the prefix of the encoding are simplified (V = ALD

OLD

and V ′ = R<S,parD(S))>, rather than V = ALD
OLD

P<L?
D,∃,1>

P ′
<L?

D,∃,2>
and V ′ =

P<L?
D,∀,1>

P ′
<L?

D,∀,2>
R<S,parD(S))>).

In fact, when L?
D = ∅ the encoding can be further simplified by replacing the variables in

ALD
∪OLD

with the truth constants ⊥ and > in accordance with what is known about the
link types of the ADF. To write this down we introduce the notation ψ[AL!

D
∪OL!

D
/ιD(LD)]

for a QBF ψ with free variables in AL!
D
∪ OL!

D
. Here each al ∈ AL!

D
in ψ is replaced

with > whenever l ∈ L!
D ∩ L

−
D and with ⊥ whenever l ∈ L!

D but l 6∈ L−D. In the same
manner, each ol ∈ OL!

D
in ψ is replaced with > whenever l ∈ L!

D ∩ L
+
D and with ⊥

whenever l ∈ L!
D but l 6∈ L+

D. Note that the replacement of the variables in ALD
∪OLD

within the QBF ψ is partial, depending on the information that is available about the
link types of the ADF. This information is represented symbolically by the function
ιD(LD) : (AL!

D
∪OL!

D
) 7→ {⊥,>}.

So, when L?
D = ∅ we have that

V eradm(D, v) ≡ ∀ R<S,parD(S))>(ψ ∧ ψ′)[AL!
D
∪OL!

D
/ιD(LD)][P 3

S/v(S)]

i.e. the first quantifier block has disappeared (since, now V = ∅). This leaves us with a
QBF of prefix type Π1, thus matching the complexity of the verification problem for the
admissible semantics (coNP-c).

Moreover, when L?
D = ∅ and, in addition, all links of the ADF are either attacking or

supporting (i.e. the ADF is a BADF), truth values for all the remaining variables in V ′ (i.e.
R<S,parD(S))>) can be derived from the truth values of the variables in AL!

D
∪OL!

D
and the

interpretation v. To denote this we extend the notation ψ[AL!
D
∪OL!

D
/ιD(LD)][P 3

S/v(S)]
for a QBF ψ with variables in P 3

S ∪ AL!
D
∪ OL!

D
to denote the “propagation” of the

information given by ιD(LD) and v also to a set of variables R<S,parD(S))> indexed by
< S, parD(S)) >.

The latter is denoted by ψ{{[AL!
D
∪OL!

D
/ιD(LD)][P 3

S/v(S)]}}R<S,parD(S))> . The meaning
of this notation is that every rs1,s2 ∈ R<S,parD(S))> within ψ is replaced with > whenever
either (i) v(s2) = t, (ii) v(s1) = t, v(s2) = u, (s2, s1) ∈ L!

D, (s2, s1) ∈ L−D, (s2, s1) 6∈ L+
D,
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or (iii) v(s1) = f, v(s2) = u, (s2, s1) ∈ L!
D, (s2, s1) ∈ L+

D. Analogously, every rs1,s2 ∈
R<S,parD(S))> is replaced with ⊥ whenever either (i) v(s2) = f, (ii) v(s1) = t, v(s2) = u,
(s2, s1) ∈ L!

D, (s2, s1) ∈ L+
D, or (iii) v(s1) = f, (s2, s1) ∈ L!

D, (s2, s1) ∈ L−D, (s2, s1) 6∈ L+
D.

In other words, ψ{{[AL!
D
∪OL!

D
/ιD(LD)][P 3

S/v(S)]}}R<S,parD(S))> replaces each variable
rs1,s2 ∈ R<S,parD(S))> for which (ss, s1) ∈ L!

D ∩ (L−D ∪ L
+
D) with ⊥ and > in accordance

with the truth value assigned to s2 by the canonical interpretations ct
D,v,s1

or cf
D,v,s1

from
Proposition 4 whenever v(s1) = t or v(s1) = f respectively.

In the situation that the ADF D is a BADF, applying the replacements defined by
{{[AL!

D
∪OL!

D
/ιD(LD)][P 3

S/v(S)]}}R<S,parD(S))> to our encoding results in all the variables
in R<S,parD(S))> to be replaced with the truth constants ⊥ and >. We thus have that

V eradm(D, v) ≡ (ψ ∧ ψ′){{[AL!
D
∪OL!

D
/ιD(LD)][P 3

S/v(S)]}}R<S,parD(S))>

i.e. we are left with a propositional formula without variables, only with truth constants.
Evaluating such a propositional formula can be done in polynomial time and thus matches
the complexity of the verification problem for the admissible semantics when the ADF is
bipolar. It is in the precise sense developed in this and the previous paragraphs that we
say that our encoding is link information sensitive (see Example 6 for further discussion
for the encoding for credulous reasoning w.r.t. the admissible semantics).

We turn now to encoding credulous reasoning for the admissible semantics in prenex
normal form. Given an ADF D and a statement s∗ of the ADF, it is as follows:

Credadm(D, s∗) ≡ ∃ V ∀ V ′(ψ ∧ ψ′ ∧ ps∗⊕)
V := ALD

OLD
P<L?

D,∃,1>
P ′<L?

D,∃,2>
P 3
S

V ′ := P<L?
D,∀,1>

P ′<L?
D,∀,2>

R<S,parD(S))>

ψ := coh[P 3
S ] ∧ linksM [D,ALD

, OLD
, P<L?

D,∃,1>
, P ′<L?

D,∃,2>
, P<L?

D,∀,1>
, P ′<L?

D,∀,2>
]

ψ′ :=
(
canon[D,ALD

, OLD
, P 3

S , R<S,parD(S))>]→ evalCanon[D,P 3
S , R<S,parD(S))>]

)

The encoding has prefix type Σ2, thus matching the complexity of credulous reasoning
w.r.t. the admissible semantics which is ΣP

2 -complete.

If the types of all of the links of the ADF D are known (i.e. L!
D = LD), then the encoding

can be simplified to

Credadm(D, s∗) ≡ ∃ ALD
OLD

P 3
S ∀ R<S,parD(S))>(ψ ∧ ψ′ ∧ ps∗⊕)
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i.e. the extra variables needed for computing the types of the links whose type is unknown
are not needed.

Even if the ADF D is bipolar (i.e. LD = L!
D ∩ (L−D ∪ L

+
D)), we cannot remove the first

quantifier block as the variables P 3
S are needed to compute a “candidate” interpretation

for being admissible. Nevertheless, given a guess v? for such a candidate interpretation
the whole encoding can be simplified to

Credadm(D, s∗) ≡ (ψ ∧ ψ′ ∧ ps∗⊕){{[AL!
D
∪OL!

D
/ιD(LD)][P 3

S/v
?(P 3

S)]}}R<S,parD(S))>

which is a propositional formula only having truth constants and whose satisfiability
can, therefore, be decided in polynomial time. In other words, having a guess for the
variables P 3

S (and known or “guessed” values for the variables in AL!
D
∪OL!

D
), also the

truth values for all variables R<S,parD(S))> are determined. This reflects the complexity
of credulous reasoning for an ADF D and statement s∗ w.r.t. the admissible semantics
for BADFs which is NP-complete, the main source of complexity coming from guessing
an interpretation v, with checking for admissibility of v and for v(s∗) = t being the easier
sub-tasks.

We give an example of the encoding for credulous reasoning for a specific ADF in Example
6. We also explore there in more detail the a-priori advantages and disadvantages of
the link information sensitive vs. the non link information sensitive encodings. The
results of an empirical evaluation on the extent to which the expected advantages and
disadvantages are reflected in the performance of an implementation of the encodings
can be found in Appendix A (discussion in Section 3.1.4).

Example 6. The following is an encoding for credulous reasoning w.r.t. the admissible
semantics for the statement a and the ADF D from Example 1. It is based on the link
information sensitive defining encoding function E ′adm. We assume here that the only
link whose type is unknown is (b, c) (i.e. L?

D = {(b, c)}), while L!
D = {(b, a), (b, b), (c, c)}).

For the encoding we use the following sets of indexed propositional atoms:

P 3
S = {pa⊕, pa	, pb⊕, pb	, pc⊕, pc	},

ALD
= {a(b,a), a(b,b), a(b,c), a(c,c)},

OLD
= {o(b,a), o(b,b), o(b,c), o(c,c)},

P<L?
D,∃,1>

= {pb,(b,c),∃,O, pc,(b,c),∃,O, pb,(b,c),∃,A, pc,(b,c),∃,A},

P<L?
D,∃,2>

= {p′b,(b,c),∃,O, p′b,(b,c),∃,A},

P<L?
D,∀,1>

= {pb,(b,c),∀,O, pc,(b,c),∀,O, pb,(b,c),∀,A, pc,(b,c),∀,A},
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P<L?
D,∀,2>

= {p′b,(b,c),∀,O, p′b,(b,c),∀,A},

R<S,parD(S))> = {ra,b, rb,b, rc,b, rc,c}.

The encoding then is as follows:

Credadm(D, a) ≡ ∃ V ∀ V ′(ψ ∧ ψ′ ∧ pa⊕)
V := ALD

OLD
P<L?

D,∃,1>
P ′<L?

D,∃,2>
P 3
S

V ′ := P<L?
D,∀,1>

P ′<L?
D,∀,2>

R<S,parD(S))>

ψ := coh[P 3
S ] ∧ linksM [D,ALD

, OLD
, P<L?

D,∃,1>
, P ′<L?

D,∃,2>
, P<L?

D,∀,1>
, P ′<L?

D,∀,2>
]

ψ′ :=
(
canon[D,ALD

, OLD
, P 3

S , R<S,parD(S))>]→ evalCanon[D,P 3
S , R<S,parD(S))>]

)

The modules used within the encoding are defined next:

coh[P 3
S ] = ¬(pa⊕ ∧ pa	) ∧ ¬(pb⊕ ∧ pb	) ∧ ¬(pc⊕ ∧ pc	)

linksM [D,ALD
,OLD

, P<L?
D,∃,1>

, P ′<L?
D,∃,2>

, P<L?
D,∀,1>

, P ′<L?
D,∀,2>

] = χ1 ∧ χ2

χ1 = (a(b,a) ∧ o(b,a) ∧ o(b,b) ∧ ¬a(b,b) ∧ ¬o(c,c) ∧ a(c,c))
χ2 = χ′2 ∧ χ′′2 ∧ χ′′′2 ∧ χ′′′′2

χ′2 = (o(b,c) → (τ1 → τ2))
χ′′2 = ((τ3 → τ4)→ o(b,c))
χ′′′2 = (a(b,c) → (τ5 → τ6))
χ′′′′2 = ((τ7 → τ8)→ a(b,c))
τ1 = ((pc,(b,c),∀,O → pb,(b,c),∀,O) ∧ p′b,(b,c),∀,O)
τ2 = (pc,(b,c),∀,O → p′b,(b,c),∀,O)
τ3 = ((pc,(b,c),∃,O → pb,(b,c),∃,O) ∧ p′b,(b,c),∃,O)
τ4 = (pc,(b,c),∃,O → p′b,(b,c),∃,O)
τ5 = (¬(pc,(b,c),∀,A → pb,(b,c),∀,A) ∧ p′b,(b,c),∀,A)
τ6 = ¬(pc,(b,c),∀,A → p′b,(b,c),∀,A)
τ7 = (¬(pc,(b,c),∃,A → pb,(b,c),∃,A) ∧ p′b,(b,c),∃,A)
τ8 = ¬(pc,(b,c),∃,A → p′b,(b,c),∃,A)

canon[D,ALD
,OLD

, P 3
S , R<S,parD(S))>] =

∧
s1∈S,s2∈parD(s1)

(ψs1,s2 ∧ ψ′s1,s2)
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ψa,b = (pb⊕ → ra,b) ∧ (pb	 → ¬ra,b)
ψ′a,b = ((¬pb⊕ ∧ ¬pb	)→ (ωa,b ∧ ω′a,b ∧ ω′′a,b ∧ ω′′′a,b))
ωa,b = ((pa⊕ ∧ o(b,a))→ ¬ra,b)
ω′a,b = ((pa⊕ ∧ ¬o(b,a) ∧ a(b,a))→ ra,b)
ω′′a,b = ((pa	 ∧ o(b,a))→ ra,b)
ω′′′a,b = ((pa	 ∧ ¬o(b,a) ∧ a(b,a))→ ¬ra,b)
ψb,b = (pb⊕ → rb,b) ∧ (pb	 → ¬rb,b)
ψ′b,b = ((¬pb⊕ ∧ ¬pb	)→ (ωb,b ∧ ω′b,b ∧ ω′′b,b ∧ ω′′′b,b))
ωb,b = ((pb⊕ ∧ o(b,b))→ ¬rb,b)
ω′b,b = ((pb⊕ ∧ ¬o(b,b) ∧ a(b,b))→ rb,b)
ω′′b,b = ((pb	 ∧ o(b,b))→ rb,b)
ω′′′b,b = ((pb	 ∧ ¬o(b,b) ∧ a(b,b))→ ¬rb,b)
ψc,b = (pb⊕ → rc,b) ∧ (pb	 → ¬rc,b)
ψ′c,b = ((¬pb⊕ ∧ ¬pb	)→ (ωc,b ∧ ω′c,b ∧ ω′′c,b ∧ ω′′′c,b))
ωc,b = ((pc⊕ ∧ o(b,c))→ ¬rc,b)
ω′c,b = ((pc⊕ ∧ ¬o(b,c) ∧ a(b,c))→ rc,b)
ω′′c,b = ((pc	 ∧ o(b,c))→ rc,b)
ω′′′c,b = ((pc	 ∧ ¬o(b,c) ∧ a(b,c))→ ¬rc,b)
ψc,c = (pc⊕ → rc,c) ∧ (pc	 → ¬rc,c)
ψ′c,c = ((¬pc⊕ ∧ ¬pc	)→ (ωc,c ∧ ω′c,c ∧ ω′′c,c ∧ ω′′′c,c))
ωc,c = ((pc⊕ ∧ o(c,c))→ ¬rc,c)
ω′c,c = ((pc⊕ ∧ ¬o(c,c) ∧ a(c,c))→ rc,c)
ω′′c,c = ((pc	 ∧ o(c,c))→ rc,c)
ω′′′c,c = ((pc	 ∧ ¬o(c,c) ∧ a(c,c))→ ¬rc,c)

evalCanon[D,P 3
S ,R<S,parD(S))>] = γ1 ∧ γ2 ∧ γ3

γ1 = (pa⊕ → (ra,b ∨ ¬ra,b)) ∧ (pa	 → ¬(ra,b ∨ ¬ra,b))
γ2 = (pb⊕ → rb,b) ∧ (pb	 → ¬rb,b)∧
γ3 = (pc⊕ → (rc,c → rc,b)) ∧ (pc	 → ¬(rc,c → rc,b))

Comparing the previous encoding with that from Example 5, we see that the link sensitive
encoding seems quite more complex than the non link sensitive encoding. The main reason
for this is the module encoding the link information which in matrix form introduces
O(|S| ∗ |L?

D|) variables. In the worst case, this means that a number of variables that
is cubic in the number of statements of the ADF may be required. Also, the module
canon[., ., ., ., .] is more complex than the corresponding module ≤i [., .] in the encoding
in Example 5, requiring up to a quadratic number of variables (in the number of the
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statements of the ADF) to encode the canonical models. The module ≤i [., .] only needs a
linear number of variables in the number of statements.

On the other hand, as can be seen from the current example, if the number of unknown
links is low the complexity of the module linksM [., ., ., ., ., ., .] is reasonable. Also, and
this is what has the most potential for boosting the performance of a link sensitive based
approach compared to the non link sensitive approach, given a guessed interpretation
v? for the statements S of the ADF D (and, hence, for the variables in P 3

S), as well
as information about the links, the truth values of many of the variables encoding the
canonical models should be easy to derive (depending on the availability of information
about the link types as well as the level of refinement of the guessed interpretation v?). In
particular, it is to be expected that these values should be easy to derive for a QSAT solver.
This is in contrast to the encoding in Example 5 where in principle all possible assignments
to the variables in PS must be considered when evaluating the module eval[., ., .], even
when truth assignments to the variables in P 3

S are given via a guess v? (except, that is,
for those statements for which v? = x for x ∈ {t, f}).

Concretely, for instance given the (unlucky) guess for an admissible interpretation v? =
{a 7→ f, b 7→ u, c 7→ f}, and the available information about the links (represented by the
function ιD(LD)) in our example we have that

Credadm(D, a) ≡ ∃ V ∀ V ′(ψ ∧ ψ′ ∧ pa⊕)Ξ
Ξ := {{[AL!

D
∪OL!

D
/ιD(LD)][P 3

S/v
?(P 3

S)]}}R<S,parD(S))>

V := {a(b,c), o(b,c)}P<L?
D,∃,1>

P ′<L?
D,∃,2>

V ′ := P<L?
D,∀,1>

P ′<L?
D,∀,2>

{rb,b, rc,b}

ψ := coh[P 3
S ] ∧ linksM [D,ALD

, OLD
, P<L?

D,∃,1>
, P ′<L?

D,∃,2>
, P<L?

D,∀,1>
, P ′<L?

D,∀,2>
]

ψ′ :=
(
canon[D,ALD

, OLD
, P 3

S , R<S,parD(S))>]→ evalCanon[D,P 3
S , R<S,parD(S))>]

)

(note the simplified versions of V and V ′), with the application of Ξ = {{[AL!
D
∪

OL!
D
/ιD(LD)][P 3

S/v
?(P 3

S)]}}R<S,parD(S))> on the modules giving us:

coh[P 3
S ]Ξ =¬(⊥ ∧>) ∧ ¬(⊥ ∧⊥) ∧ ¬(⊥ ∧>)

linksM [D,ALD
,OLD

, P<L?
D,∃,1>

, P ′<L?
D,∃,2>

, P<L?
D,∀,1>

, P ′<L?
D,∀,2>

]Ξ = χ1Ξ ∧ χ2

χ1Ξ = (> ∧> ∧> ∧ ¬⊥ ∧ ¬⊥ ∧ >)
χ2 = χ′2 ∧ χ′′2 ∧ χ′′′2 ∧ χ′′′′2

χ′2 = (o(b,c) → (τ1 → τ2))
χ′′2 = ((τ3 → τ4)→ o(b,c))
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χ′′′2 = (a(b,c) → (τ5 → τ6))
χ′′′′2 = ((τ7 → τ8)→ a(b,c))
τ1 = ((pc,(b,c),∀,O → pb,(b,c),∀,O) ∧ p′b,(b,c),∀,O)
τ2 = (pc,(b,c),∀,O → p′b,(b,c),∀,O)
τ3 = ((pc,(b,c),∃,O → pb,(b,c),∃,O) ∧ p′b,(b,c),∃,O)
τ4 = (pc,(b,c),∃,O → p′b,(b,c),∃,O)
τ5 = (¬(pc,(b,c),∀,A → pb,(b,c),∀,A) ∧ p′b,(b,c),∀,A)
τ6 = ¬(pc,(b,c),∀,A → p′b,(b,c),∀,A)
τ7 = (¬(pc,(b,c),∃,A → pb,(b,c),∃,A) ∧ p′b,(b,c),∃,A)
τ8 = ¬(pc,(b,c),∃,A → p′b,(b,c),∃,A)

canon[D,ALD
,OLD

, P 3
S , R<S,parD(S))>]Ξ =

∧
s1∈S,s2∈parD(s1)

(ψs1,s2Ξ ∧ ψ′s1,s2Ξ)

ψa,bΞ = (⊥ → >) ∧ (⊥ → ¬>)
ψ′a,bΞ = ((¬⊥ ∧ ¬⊥)→ (ωa,bΞ ∧ ω′a,bΞ ∧ ω′′a,bΞ ∧ ω′′′a,bΞ))
ωa,bΞ = ((⊥ ∧>)→ ¬>)
ω′a,bΞ = ((⊥ ∧ ¬> ∧ >)→ >)
ω′′a,bΞ = ((> ∧>)→ >)
ω′′′a,bΞ = ((> ∧ ¬> ∧ >)→ ¬>)
ψb,bΞ = (⊥ → rb,b) ∧ (⊥ → ¬rb,b)
ψ′b,bΞ = ((¬⊥ ∧ ¬⊥)→ (ωb,bΞ ∧ ω′b,bΞ ∧ ω′′b,bΞ ∧ ω′′′b,bΞ))
ωb,bΞ = ((⊥ ∧>)→ ¬rb,b)
ω′b,bΞ = ((⊥ ∧ ¬> ∧ ⊥)→ rb,b)
ω′′b,bΞ = ((⊥ ∧>)→ rb,b)
ω′′′b,bΞ = ((⊥ ∧ ¬> ∧ ⊥)→ ¬rb,b)
ψc,bΞ = (⊥ → rc,b) ∧ (⊥ → ¬rc,b)
ψ′c,bΞ = ((¬⊥ ∧ ¬⊥)→ (ωc,bΞ ∧ ω′c,bΞ ∧ ω′′c,bΞ ∧ ω′′′c,bΞ))
ωc,bΞ = ((⊥ ∧ o(b,c))→ ¬rc,b)
ω′c,bΞ = ((⊥ ∧ ¬o(b,c) ∧ a(b,c))→ rc,b)
ω′′c,bΞ = ((> ∧ o(b,c))→ rc,b)
ω′′′c,bΞ = ((> ∧ ¬o(b,c) ∧ a(b,c))→ ¬rc,b)
ψc,cΞ = (⊥ → ⊥) ∧ (> → ¬⊥)
ψ′c,cΞ = ((¬⊥ ∧ ¬>)→ (ωc,cΞ ∧ ω′c,cΞ ∧ ω′′c,cΞ ∧ ω′′′c,cΞ))
ωc,cΞ = ((⊥ ∧⊥)→ ¬⊥)
ω′c,cΞ = ((⊥ ∧ ¬⊥ ∧ >)→ ⊥)
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ω′′c,cΞ = ((> ∧⊥)→ ⊥)
ω′′′c,cΞ = ((> ∧ ¬⊥ ∧ >)→ ¬⊥)

evalCanon[D,P 3
S ,R<S,parD(S))>]Ξ = γ1Ξ ∧ γ2Ξ ∧ γ3Ξ

γ1Ξ = (⊥ → (> ∨ ¬>)) ∧ (> → ¬(> ∨ ¬>))
γ2Ξ = (⊥ → rb,b) ∧ (⊥ → ¬rb,b)∧
γ3Ξ = (⊥ → (⊥ → rc,b)) ∧ (> → ¬(⊥ → rc,b))

In other words, the semantic evaluation of the encoding can be simplified to the same
degree that solving credulous acceptance for the ADF may be easier because of what is
known about the link types of the ADF (as explained in Section 3.1.3.1). To repeat,
the motivation behind the link information sensitive encodings is that QSAT solvers are
also able to latch on to the extra information available in the link information sensitive
encodings, thus boosting performance of an implementation of our encodings.

We will later on need to refer to our encoding for the admissible semantics, yet without
the module specifying the link types. We thus conclude this section by giving its definition
(for an ADF D = (S, {φs}s∈S)):

E ′#adm[D,P 3
S , ALD

, OLD
, R<S,parD(S))>] := coh[P 3

S ] ∧ ∀R<S,parD(S))>ψ

ψ :=
(
canon[D,ALD

, OLD
, P 3

S , R<S,parD(S))>]→ evalCanon[D,P 3
S , R<S,parD(S))>]

)
.

Note the new notation E ′#adm vs. the notation E ′adm used for the encoding that includes
the module for the link types.

3.1.3.4 Encodings for the complete semantics

We turn now to the encoding of the complete semantics. For purposes of comparison, we
again start by recalling the encoding from [Dil14]. Here, once more, D = (S,C = {φs}s∈S)
is an ADF.

Ecom[D,P 3
S , PS , P

′
S , P

′′
S ] := Eadm[D,P 3

S , PS ] ∧
∧
s∈S

((¬ps⊕ ∧ ¬ps	)→ ψs)

ψs := ∃P ′S ∪ P ′′S(≤i [P 3
S , P

′
S ]∧ ≤i [P 3

S , P
′′
S ] ∧ φsP

′
S ∧ ¬φsP

′′
S )

The first conjunct of Ecom[D, ., ., ., .] ensures that any model of Ecom[D, ., ., ., .] corresponds
to an admissible interpretation v of D. The conjunct on the right is slightly more involved
and expresses that v is also complete if v(s) = u for some s ∈ S only if there exist
w,w′ ∈ [v]2 such that w(φs) = t and w′(φs) = f (see the proof sketch of Proposition 6).
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The link information sensitive encoding for the complete semantics is structurally similar
to the non link information sensitive encoding, the difference now being that first of
all we make use of the link information sensitive encoding of the admissible semantics
E ′adm[., ., ., ., ., ., .] from Section 3.1.3.3. Also, restating the properties used in the encoding
Ecom[., ., ., ., .] in accordance with Corollary 2, we encode the fact that an admissible
interpretation v is also complete if v(s) = u for some s ∈ S only if there exists a
w ∈ [cf

D,v,s]2 such that w(φs) = t as well as a w′ ∈ [ct
D,v,s]2 such that w′(φs) = f (cf

D,v,s

and ct
D,v,s being the canonical interpretations as defined in Proposition 4).

To encode the latter we now need a separate module for encoding (via the variables
R<s1,parD(s1))>), first of all, the completions of the canonical interpretation ct

D,v,s1
for an

ADF D, interpretation v, and a statement s1 of the ADF:

canont[D,ALD
, OLD

, P 3
S , R<s1,parD(s1))>] :=

∧
s2∈parD(s1)

(ψs2 ∧ ψ′s2 ∧ ψ
′′
s2)

ψs2 := (ps2
⊕ → rs1,s2)

ψ′s2 := (ps2
	 → ¬rs1,s2)

ψ′′s2 := ((¬ps2
⊕ ∧ ¬ps2

	)→ τs2)
τs2 := ((o(s2,s1) → ¬rs1,s2) ∧ ((¬o(s2,s1) ∧ a(s2,s1))→ rs1,s2))

Secondly, the following module encodes the completions of the canonical interpretation
cf
D,v,s1

:

canonf[D,ALD
, OLD

, P 3
S , R<s1,parD(s1))>] :=

∧
s2∈parD(s1)

(ψs2 ∧ ψ′s2 ∧ ψ
′′
s2)

ψs2 := (ps2
⊕ → rs1,s2)

ψ′s2 := (ps2
	 → ¬rs1,s2)

ψ′′s2 := ((¬ps2
⊕ ∧ ¬ps2

	)→ τs2)
τs2 := ((o(s2,s1) → rs1,s2) ∧ ((¬o(s2,s1) ∧ a(s2,s1))→ ¬rs1,s2)).

The following is our link information sensitive encoding for the complete semantics. This
is expressed formally in Proposition 6.

E ′com[D,P 3
S , ALD

, OLD
, PS , P

′
S , R<S,parD(S))>, R

′
<S,parD(S))>, R

′′
<S,parD(S))>] := ψ

ψ := E ′adm[D,P 3
S , ALD

, OLD
, PS , P

′
S , R<S,parD(S))>] ∧

∧
s∈S

((¬ps⊕ ∧ ¬ps	)→ ψs)

ψs := ∃R′<s,parD(s))> ∪R′′<s,parD(s))>(τs ∧ τ ′s)
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τs := canont[D,ALD
, OLD

, P 3
S , R

′
<s,parD(s))>] ∧ ¬φsR

′
<s,parD(s))>

τ ′s := canonf[D,ALD
, OLD

, P 3
S , R

′′
<s,parD(s))>] ∧ φsR

′′
<s,parD(s))>

Proposition 6. Given an ADF D = (S, {φs}s∈S) and the list of indexed variables
V = P 3

S , ALD
, OLD

, PS, P ′S, R<S,parD(S))>, R′<S,parD(S))>, R′′<S,parD(S))>, let E ′com be
the function returning the QBF E ′com[D,V ] having free variables in P 3

S . Then E ′com is a
defining encoding function for the complete semantics.

Proof. (sketch) Note first that for a three valued valuation v and an ADF D = (S,C =
{φs}s∈S), v ∈ com(D) if and only if (i) v ∈ adm(D) and (ii) v(s) = u is the case for
some s ∈ S only if there exist w,w′ ∈ [v]2 such that w(φs) = t and w′(φs) = f. That
v ∈ com(D) implies that v satisfies (i) and (ii) is immediate from the definition of
complete interpretations (Definition 8). For the converse, (i), i.e. v ≤i ΓD(v), implies
that v(s) = ΓD(v)(s) for s ∈ S such that v(s) = t and v(s) = f. On the other hand (ii),
which spells out the conditions under which ΓD(v)(s) = u for some s ∈ S, implies that
also v(s) = ΓD(v)(s) for s ∈ S such that v(s) = u.

Restating property (ii) in accordance with Corollary 2 we have that v ∈ com(D) if and
only if (i) v ∈ adm(D) and (ii)’ v(s) = u is the case for some s ∈ S only if there exist
w ∈ [cf

D,v,s]2 such that w(φs) = t as well as a w′ ∈ [ct
D,v,s]2 such that w′(φs) = f.

Coherence follows directly from Proposition 4 and the fact that for any two valued
interpretation v̂ such that v̂ |= E ′com[V ] for the list of parameters V = D, P 3

S , ALD
,

OLD
, PS , P ′S , R<S,parD(S))>, R′<S,parD(S))>, R′′<S,parD(S))> it is also the case that

v̂ |= coh[P 3
S ].

Proof of soundness and completeness involves showing that for a two valued interpretation
v̂, v̂ |= E ′com[V ] if and only if the three valued interpretation v such that v̂ ∼=P 3

S
v satisfies

(i) as defined above which is encoded via E ′adm[D,P 3
S , ALD

, OLD
, PS , P

′
S , R<S,parD(S))>]

and (ii)’ which is encoded via
∧
s∈S((¬ps⊕ ∧ ¬ps	)→ ψs) (where ψs is defined as in the

definition of E ′com). This is a technical but straightforward proof via lemmas 1 and 3, as
well as Proposition 5.

Turning to the encodings of the reasoning tasks, the following is the encoding of the
verification problem in prenex normal form based on our link information sensitive
defining encoding function E ′com. We here assume that the statements of the ADF D are
numbered, i.e. S = {s1, . . . , sn}

V ercom(D, v) ≡
(
∃ V ∀ V ′(ψ ∧ ψ′) ∧ ∃ V ′′ X

)
[P 3
S/v(S)]

V := ALD
OLD

P<L?
D,∃,1>

P ′<L?
D,∃,2>

V ′ := P<L?
D,∀,1>

P ′<L?
D,∀,2>

R<S,parD(S))>
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V ′′ := Rs
′
1
<s1,parD(s1))> Rs

′′
1
<s1,parD(s1))> . . . R

s′n
<sn,parD(sn))> Rs

′′
n
<sn,parD(sn))>

ψ := coh[P 3
S ] ∧ linksM [D,ALD

, OLD
, P<L?

D,∃,1>
, P ′<L?

D,∃,2>
, P<L?

D,∀,1>
, P ′<L?

D,∀,2>
]

ψ′ :=
(
canon[D,ALD

, OLD
, P 3

S , R<S,parD(S))>]→ evalCanon[D,P 3
S , R<S,parD(S))>]

)
X :=

∧
1≤i≤n

((¬psi
⊕ ∧ ¬psi

	)→ (χsi ∧ χ′si
))

χsi := canont[D,ALD
, OLD

, P 3
S , R

s′i<si,parD(si))>] ∧ ¬φsi

Rs′
i <si,parD(si))> (1 ≤ i ≤ n)

χ′si
:= canonf[D,ALD

, OLD
, P 3

S , R
s′′i <si,parD(si))>] ∧ φsi

Rs′′
i <si,parD(si))> (1 ≤ i ≤ n).

When L?
D = ∅ the encoding reduces to

V ercom(D, v) ≡
(
∀ V ′(ψ ∧ ψ′) ∧ ∃ V ′′ X

)
[AL!

D
∪OL!

D
/ιD(LD)][P 3

S/v(S)]

V ′ := R<S,parD(S))>

V ′′ := Rs
′
1
<s1,parD(s1))> Rs

′′
1
<s1,parD(s1))> . . . R

s′n
<sn,parD(sn))> Rs

′′
n
<sn,parD(sn))>,

which matches the complexity of verification for the complete semantics (DP- complete)
in the sense that the encoding mirrors the structure of the SAT-UNSAT problem.

Moreover, when the ADF D is a BADF the encoding can be further reduced to (here
we implicitly extend {{[AL!

D
∪OL!

D
/ιD(LD)][P 3

S/v(S)]}}R<S,parD(S))> to the variables in
Rs
′
1<s1,parD(s1))> ∪ . . . ∪Rs

′′
n
<sn,parD(sn))>

5 ):

V ercom(D, v) ≡ (Ψ ∧ X ′)
Ψ := (ψ ∧ ψ′){{[AL!

D
∪OL!

D
/ιD(LD)][P 3

S/v(S)]}}R<S,parD(S))>

X ′ := X{{[AL!
D
∪OL!

D
/ιD(LD)][P 3

S/v(S)]}}V ′′

V ′′ := Rs
′
1
<s1,parD(s1))> Rs

′′
1
<s1,parD(s1))> . . . R

s′n
<sn,parD(sn))> Rs

′′
n
<sn,parD(sn))>

i.e., the encoding returns a propositional formula with true constants only. This matches
the complexity of the verification problem for BADFs which is in P.

For credulous reasoning w.r.t. the complete semantics, we obtain link information
sensitive encodings via the encoding for the admissible semantics (Section 3.1.3.3) and

5Formally, {{[AL!
D

∪OL!
D
/ιD(LD)][P 3

S/v(S)]}}R
s′

1 <s1,parD(s1))>...Rs′′
n <sn,parD(sn))> := {{{{{{[AL!

D
∪

OL!
D
/ιD(LD)][P 3

S/v(S)]}}R
s′

1 <s1,parD(s1))> }}...}}Rs′′
n <sn,parD(sn))> .
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the fact that Credcom(D, s∗) = Credadm(D, s∗) for any ADFs D and statement s∗. This
follows from the fact that any complete interpretation is admissible and any admissible
interpretation v for which v(s∗) = t can be extended to a complete interpretation v′ for
which v′(s∗) = t.

Regarding skeptical reasoning, we obtain encodings via Skeptcom(D, s∗) = Skeptgrd(D, s∗)
and the encoding for skeptical reasoning for the grounded semantics we give in Section
3.1.3.6. The reason for Skeptcom(D, s∗) = Skeptgrd(D, s∗) is that the grounded interpre-
tation is the minimally informative (w.r.t. ≤i) complete interpretation.

As we will need it later on, we conclude this section by giving the defining encoding of
the complete semantics without making use of the module for encoding the link types.
This version simply makes use of the encoding of the admissible semantics without the
links module defined in Section 3.1.3.3 (E ′#adm):

E ′#com[D,P 3
S , ALD

, OLD
, PS , P

′
S , R<S,parD(S))>, R

′
<S,parD(S))>, R

′′
<S,parD(S))>] := ψ

ψ := E ′#adm[D,P 3
S , ALD

, OLD
, PS , P

′
S , R<S,parD(S))>] ∧

∧
s∈S

((¬ps⊕ ∧ ¬ps	)→ ψs)

ψs := ∃R′<s,parD(s))> ∪R′′<s,parD(s))>(τs ∧ τ ′s)

τs := canont[D,ALD
, OLD

, P 3
S , R

′
<s,parD(s))>] ∧ ¬φsR

′
<s,parD(s))>

τ ′s := canonf[D,ALD
, OLD

, P 3
S , R

′′
<s,parD(s))>] ∧ φsR

′′
<s,parD(s))> .

3.1.3.5 Encodings for the preferred semantics

As for the previous sections on link information encodings, we start this section about
encodings for the preferred semantics by recalling the defining encoding function from
[Dil14]:

Eprf [D,P 3
S , PS , P

′3
S , P

′
S ] := ψ ∧ ψ′

ψ := Eadm[D,P 3
S , PS ]

ψ′ := ∀P ′3S
(
Eadm[D,P ′3S , P ′S ]→ (≤i [P 3

S , P
′3
S ]→≤i [P ′3S , P 3

S ])
)

The defining encoding function returns a QBF that specifies that the result should
correspond to an admissible interpretation v and for any admissible interpretation v′
with greater or equal information content it must be the case that v(s) = v′(s) for all
s ∈ S, i.e. v is an admissible interpretation that is maximally informative with respect
to ≤i. Thus, the encoding pretty much reflects the definition of the preferred semantics
(Definition 8).

The only difference between the link information sensitive defining encoding function for
the preferred semantics and the non link information sensitive encoding is that, as is
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to be expected, for the link information sensitive encoding we use the link information
sensitive version of the defining encoding function for the admissible semantics (Section
3.1.3.3):

E ′prf [D,P 3
S , ALD

, OLD
, PS , P

′
S , R<S,parD(S))>, P

′3
S , R

′
<S,parD(S))>] := ψ ∧ ψ′

ψ := E ′adm[D,P 3
S , ALD

, OLD
, PS , P

′
S , R<S,parD(S))>]

ψ′ := ∀P ′3S
(
E ′#adm[D,P ′3S , ALD

, OLD
, R′<S,parD(S))>]→ (≤i [P 3

S , P
′3
S ]→≤i [P ′3S , P 3

S ])
)

Note that the first use of defining encoding function for the admissible semantics within
our link information sensitive encoding for the preferred semantics is the version with
the module for the link types, while the second use is without the module links[., ., ., ., .].
Proposition 7 more formally expresses the fact that E ′prf is a defining encoding function
for the preferred semantics.

Proposition 7. Given an ADF D = (S, {φs}s∈S) and the list of indexed variables
V = P 3

S , ALD
, OLD

, PS, P ′S, R<S,parD(S))>, P ′3S, R′<S,parD(S))>, let E ′prf be the function
returning the QBF with free variables in P 3

S , E ′prf [D,V ]. Then E ′prf is a defining encoding
function for the preferred semantics.

Proof. (sketch) The proof is almost identical to the proof about the defining encoding
function Eprf in [DWW15] (Proposition 3.14; in turn, a restatement of Lemma 3.5.2 in
[Dil14]). The main difference is in the use of Proposition 5 (together with lemmas 1, 3,
and 4). Also, the equivalence of using E ′#adm and (a second application of) E ′adm in the
second use of the module for the admissible semantics within the definition of E ′prf should
be easy to convince oneself of.

Moving on to the encodings of the reasoning tasks of interest to this work, the following
is the encoding of the verification problem for the preferred semantics in prenex normal
form:

V erprf (D, v) ≡ ∃V ∀V ′∃V ′′
(
ψ ∧ (χ→ ω)

)
[P 3
S/v(S)]

V := ALD
OLD

P<L?
D,∃,1>

P ′<L?
D,∃,2>

V ′ := P<L?
D,∀,1>

P ′<L?
D,∀,2>

R<S,parD(S))>P
′3
S

V ′′ := R′<S,parD(S))>

ψ := ψ1 ∧ ψ2

ψ1 := coh[P 3
S ] ∧ linksM [D,ALD

, OLD
, P<L?

D,∃,1>
, P ′<L?

D,∃,2>
, P<L?

D,∀,1>
, P ′<L?

D,∀,2>
]
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ψ2 :=
(
canon[D,ALD

, OLD
, P 3

S , R<S,parD(S))>]→ evalCanon[D,P 3
S , R<S,parD(S))>]

)
χ := coh[P ′3S ] ∧ χ′

χ′ :=
(
canon[D,ALD

, OLD
, P ′

3
S , R

′
<S,parD(S))>]→ evalCanon[D,P ′3S , R′<S,parD(S))>]

)
ω := (≤i [P 3

S , P
′3
S ]→≤i [P ′3S , P 3

S ])
)

If the types of all links are known, the encoding reduces to the following:

V erprf (D, v) ≡ ∀V ′∃V ′′
(
ψ ∧ (χ→ ω)

)
[AL!

D
∪OL!

D
/ιD(LD)][P 3

S/v(S)]

V ′ := R<S,parD(S))>P
′3
S

V ′′ := R′<S,parD(S))>

i.e. a Π2 QBF, thus matching the complexity of the verification problem for the preferred
semantics. (ΠP

2 -complete). Moreover, if the ADF is a BADF the encoding can be further
simplified to return a Π1 QBF, matching the complexity of the verification problem for
BADFs (coNP-complete):

V erprf (D, v) ≡ ∀P ′3S
(
ψ ∧ (χ→ ω)

)
{{[AL!

D
∪OL!

D
/ιD(LD)][P 3

S/v(S)]}}V ′′′′

V ′′′′ := R<S,parD(S))> ∪R′<S,parD(S))>

Here again we extend the notation {{[AL!
D
∪ OL!

D
/ιD(LD)][P 3

S/v(S)]}}R<S,parD(S))> to
also propagate the information given by the replacement [AL!

D
∪OL!

D
/ιD(LD)][P 3

S/v(S)]
to the variables R′<S,parD(S))> (in addition to the variables R<S,parD(S))>) in the obvious
manner (see Footnote 5).

Skeptical reasoning for the preferred semantics can be encoded in the following manner:

Skeptprf (D, s∗) ≡ ∀V ∃V ′∀V ′′
(
(ψ ∧ (χ→ ω))→ s∗⊕

)
V := P 3

SALD
OLD

P<L?
D,∃,1>

P ′<L?
D,∃,2>

V ′ := P<L?
D,∀,1>

P ′<L?
D,∀,2>

R<S,parD(S))>P
′3
S

V ′′ := R′<S,parD(S))>

ψ := ψ1 ∧ ψ2

ψ1 := coh[P 3
S ] ∧ linksM [D,ALD

, OLD
, P<L?

D,∃,1>
, P ′<L?

D,∃,2>
, P<L?

D,∀,1>
, P ′<L?

D,∀,2>
]
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ψ2 :=
(
canon[D,ALD

, OLD
, P 3

S , R<S,parD(S))>]→ evalCanon[D,P 3
S , R<S,parD(S))>]

)
χ := coh[P ′3S ] ∧ χ′

χ′ :=
(
canon[D,ALD

, OLD
, P ′

3
S , R

′
<S,parD(S))>]→ evalCanon[D,P ′3S , R′<S,parD(S))>]

)
ω := (≤i [P 3

S , P
′3
S ]→≤i [P ′3S , P 3

S ])
)
.

This is a Π3 QBF thus matching the complexity of skeptical reasoning for the preferred
semantics (ΠP

3 -complete), but can be further simplified when L?
D = ∅. In particular,

when the ADF D is a BADF, the encoding reduces to the Π2 QBF:

Skeptprf (D, s∗) ≡ ∀P 3
S∃P ′

3
S

(
(ψ ∧ (χ→ ω))→ s∗⊕

)
Ξ

Ξ :={{[AL!
D
∪OL!

D
/ιD(LD)][P 3

S/v(S)]}}V ′′′′

V ′′′′ := R<S,parD(S))> ∪R′<S,parD(S))>

This, once more, matches the complexity of skeptical reasoning for the preferred semantics
for BADFs (ΠP

2 -complete).

To conclude this subsection we remind the reader that Credprf (D, s∗) ≡ Credadm(D, s∗)
for any ADF D and statement s∗. The reason is that, on the one hand, any preferred
interpretation is an admissible interpretation. On the other hand, the fact that preferred
interpretations are the maximally informative admissible interpretations (w.r.t. ≤i),
implies that the existence of an admissible interpretation v s.t. v(s∗) = t means that
there must be a preferred interpretation v ≤i v′ and, thus, also v′(s∗) = t. Therefore,
the encoding for credulous reasoning w.r.t. the admissible semantics from Section 3.1.3.3
provides us with a link information sensitive encoding also for credulous reasoning for
the preferred semantics.

3.1.3.6 Encodings for the grounded semantics

A straightforward defining encoding function for the grounded semantics results from
making use of the encoding for the complete semantics and basically recasting the
definition of the grounded semantics (Definition 8)-, i.e. the fact that the (unique)
grounded interpretation is the minimally informative (w.r.t. ≤i) complete interpretation,-
in QBF terms. In the version of [Dil14] this encoding strategy results in the following
defining encoding function:

E ′grd[D,P 3
S , PS , P

′
S , P

′′
S , P

′3
S , P

′′′
S , P

′′′′
S , P

′′′′′
S ] := ψ

ψ :=Ecom[D,P 3
S , PS , P

′
S , P

′′
S ] ∧ ∀P ′3S(Ecom[D,P ′3S , P ′′′S , P ′′′′S , P ′′′′′S ]→≤i [P 3

S , P
′3
S ]).

A link information sensitive variant of this encoding results from making use of the link
information sensitive version of the defining encoding function for the complete semantics:
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E ′′grd[D,V L, V ′
L] := ψ

V :=P 3
S ALD

OLD
P ′S R<S,parD(S))> R′<S,parD(S))> R′′<S,parD(S))>

V ′ :=P ′3S ALD
OLD

P ′′S R
′′′
<S,parD(S))> R′′′′<S,parD(S))> R′′′′′<S,parD(S))>

ψ :=E ′com[D,P 3
S , ALD

, OLD
, P ′S , R<S,parD(S))>, R

′
<S,parD(S))>, R

′′
<S,parD(S))>] ∧ ψ′

ψ′ :=∀P ′3S(ψ′′ →≤i [P 3
S , P

′3
S ])

ψ′′ :=E ′#com[D,P ′3S , ALD
, OLD

, P ′′S , R
′′′
<S,parD(S))>, R

′′′′
<S,parD(S))>, R

′′′′′
<S,parD(S))>].

Note that the second use of the encoding for the complete semantics (E ′#com) in E ′′grd is
the version which does not include the module for specifying the link types of the ADF
(see Section 3.1.3.4). We remind the reader also of the notation V L := V1, . . . , Vm we
introduced in Section 3.1.2 for turning a “block” of sets of variables V = V1 . . . Vm into a
(comma separated) “list” of sets of variables.

Although the encodings E ′grd and E ′′grd are modular and directly reflect the definition of
the grounded semantics, both lead to non complexity sensitive encodings of the reasoning
tasks that are of interest to this work (when using the technique for making encodings of
the reasoning tasks out of the defining encoding functions described in Section 3.1.1.1).
For this reason, already in [Dil14] we gave an alternative complexity sensitive (yet, non
link information sensitive) version of the encoding for the grounded semantics.

We have already described the latter alternative complexity sensitive defining encoding
function for the grounded semantics Egrd in Section 3.1.2. We remind the reader that it
is based on the fact that (see [SW15]) v ∈ grd(D) for an interpretation v and an ADF
D = (S, {φs}s∈S) if v is the ≤i-minimal interpretation satisfying i) for each s ∈ S such
that v(s) = t there exists an interpretation w ∈ [v]2 for which w(φs) = t, ii) for each
s ∈ S such that v(s) = f there exists an interpretation w ∈ [v]2 for which w(φs) = f, and
finally iii) for each s ∈ S such that v(s) = u there exist interpretations w1 ∈ [v]2 and
w2 ∈ [v]2 such that w1(φs) = t and w2(φs) = f. We called an interpretation v for an
ADF D that satisfies properties i)-iii) a candidate for being the grounded interpretation.

Using Corollary 2, we can restate items i)-iii) that candidates for the grounded interpre-
tation need to satisfy as follows: i)’ for each s ∈ S such that v(s) = t there exists an
interpretation w ∈ [cf

D,v,s]2 for which w(φs) = t, ii) for each s ∈ S such that v(s) = f
there exists an interpretation w ∈ [ct

D,v,s]2 for which w(φs) = f, and iii) for each s ∈ S
such that v(s) = u there exist interpretations w1 ∈ [cf

D,v,s]2 and w2 ∈ [ct
D,v,s]2 such that

w1(φs) = t and w2(φs) = f. The following link information sensitive defining encoding
function for the grounded semantics makes direct use of the characterisation of the
grounded interpretation as the minimally informative (w.r.t. ≤i) of the candidates for
being the grounded interpretation as expressed via properties i)’-iii)’:

E ′′′grd[D,V ′′′
L] := coh[P 3

S ] ∧ ψ ∧
(
∀P ′3S ω

)
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V ′′′ := P 3
S P

′3
S ALD

OLD
PS P

′
S R<S,parD(S))> R′<S,parD(S))>

ψ := links[D,ALD
, OLD

, PS , P
′
S ] ∧ prop2[D,P 3

S , ALD
, OLD

, R<S,parD(S))>, R
′
<S,parD(S))>]

ω :=
(
(coh[P ′3S ] ∧ prop2[D,P ′3S , ALD

, OLD
, R<S,parD(S))>, R

′
<S,parD(S))>])→≤i [P 3

S , P
′3
S ]
)
.

Here, the module prop2[., ., ., ., ., .] is used to encode the properties i’)-iii’) and makes use
of the modules canont[., ., ., ., .] and canonf[., ., ., ., .] defined in Section 3.1.3.4:

prop2[D,P 3
S , ALD

, OLD
, R<S,parD(S))>, R

′
<S,parD(S))>] :=

∧
s∈S

(ψs ∧ ψ′s ∧ ψ′′s )

ψs := (ps⊕ → ∃R<s,parD(s))>(canonf[D,ALD
, OLD

, P 3
S , R<s,parD(s))>] ∧ φsR<s,parD(s))>))

ψ′s := (ps	 → ∃R<s,parD(s))>(canont[D,ALD
, OLD

, P 3
S , R<s,parD(s))>] ∧ ¬φsR<s,parD(s))>))

ψ′′s := ((¬ps⊕ ∧ ¬ps	)→ ψ′′′s )

ψ′′′s := ∃R<s,parD(s))> ∪R′<s,parD(s))>(ψ′′′′s ∧ φs
R<s,parD(s))> ∧ ¬φsR

′
<s,parD(s))>)

ψ′′′′s := canonf[D,ALD
, OLD

, P 3
S , R<s,parD(s))>] ∧ canont[D,ALD

, OLD
, P 3

S , R
′
<s,parD(s))>].

Proposition 8 states that E ′′grd as well as E ′′′grd are indeed defining encoding functions for
the grounded semantics.

Proposition 8. Let D = (S, {φs}s∈S) be an ADF with S = {s1, . . . , sn}. Also, let V be
the list of sets of indexed variables P 3

S , ALD
, OLD

, P ′S, R<S,parD(S))>, R′<S,parD(S))>,
R′′<S,parD(S))>. Moreover, V ′ is the list of sets of indexed variables P ′3S, ALD

, OLD
,

P ′′S, R′′′<S,parD(S))>, R′′′′<S,parD(S))>, R′′′′′<S,parD(S))>, P s
′
1S. Finally, V ′′′ is the list

of sets of indexed variables P 3
S , P ′

3
S, ALD

, OLD
, PS, P ′S, R<S,parD(S))>, R′<S,parD(S))>.

Then both the functions E ′′grd as well as E ′′′grd, returning the QBFs with free variables in
P 3
S E ′′grd[D,V, V ′] and E ′′′grd[D,V ′′′] respectively, are defining encoding functions for the

grounded semantics.

Proof. (sketch) The defining encoding function E ′′grd reflects the definition of the grounded
semantics (Definition 8), while E ′′′grd uses the characterisation of the grounded semantics
as the minimally informative (w.r.t. ≤i) candidate for being the grounded interpretation
([SW15]). The latter being characterised via properties i)’-iii)’ as detailed above. The
proof for E ′′grd requires the use of Proposition 6, while that for E ′′′grd requires the use of
lemmas 4 and 7. Both proofs carry through by additionally also making use of lemmas 1,
3, and 5.

For encoding the reasoning tasks for the grounded semantics in prenex normal form we
need the matrix form of the module prop2[D, ., ., ., ., .]. Assuming the statements S of the
ADF D are numbered -, i.e. S = {s1, . . . , sn},- the matrix form is defined as shown next:

81



3. Advanced QBF and ASP encodings for ADFs

prop2M [D,P 3
S , ALD

, OLD
, V1
L, . . . , Vn

L] :=
∧

1≤i≤n
(ψsi ∧ ψ′si

∧ ψ′′si
)

Vi := Rs
′
i<si,parD(si))> Rs

′′
i <si,parD(si))> Rs

′′′
i <si,parD(si))> Rs

′′′′
i <si,parD(si))> (1 ≤ i ≤ n)

ψsi :=(psi
⊕ → χi) (1 ≤ i ≤ n)

χi :=(canonf[D,ALD
, OLD

, P 3
S , R

s′i<si,parD(si))>] ∧ φsi

Rs′
i <si,parD(si))>) (1 ≤ i ≤ n)

ψ′si
:=(psi

	 → χ′i) (1 ≤ i ≤ n)

χ′i :=(canont[D,ALD
, OLD

, P 3
S , R

s′′i <si,parD(si))>] ∧ ¬φsi

Rs′′
i <si,parD(si))>) (1 ≤ i ≤ n)

ψ′′si
:=((¬psi

⊕ ∧ ¬psi
	)→ ψ′′′si

) (1 ≤ i ≤ n)

ψ′′′si
:=(ψ′′′′si

∧ ψ′′′′′si
∧ φsi

Rs′′′
i <si,parD(si))> ∧ ¬φsi

Rs′′′′
i <si,parD(si))>) (1 ≤ i ≤ n)

ψ′′′′si
:=canonf[D,ALD

, OLD
, P 3

S , R
s′′′i <si,parD(si))>] (1 ≤ i ≤ n)

ψ′′′′′si
:=canont[D,ALD

, OLD
, P 3

S , R
s′′′′i <si,parD(si))>] (1 ≤ i ≤ n).

The verification problem w.r.t. an ADF D, an interpretation v, and the grounded
semantics can then be encoded as follows:

V ergrd(D, v) ≡ (∃V ∀V ′′(ψ ∧ ψ′)) ∧ (∀V ′′′χ)[P 3
S/v(S)]

V := ALD
OLD

P<L?
D,∃,1>

P ′<L?
D,∃,2>

V1 . . . Vn

V ′′ := P<L?
D,∀,1>

P ′<L?
D,∀,2>

V ′′′ := P ′
3
S V

′
1 . . . V

′
n

Vi := Rs
′
i<si,parD(si))> Rs

′′
i <si,parD(si))> Rs

′′′
i <si,parD(si))> Rs

′′′′
i <si,parD(si))> (1 ≤ i ≤ n)

V ′i := T s
′
i<si,parD(si))> T s

′′
i <si,parD(si))> T s

′′′
i <si,parD(si))> T s

′′′′
i <si,parD(si))> (1 ≤ i ≤ n)

ψ := coh[P 3
S ] ∧ linksM [D,ALD

, OLD
, P<L?

D,∃,1>
, P ′<L?

D,∃,2>
, P<L?

D,∀,1>
, P ′<L?

D,∀,2>
]

ψ′ := prop2M [D,P 3
S , ALD

, OLD
, V1
L, . . . , Vn

L]

χ :=
(
(coh[P ′3S ] ∧ prop2M [D,P ′3S , ALD

, OLD
, V ′1
L
, . . . , V ′n

L])→≤i [P 3
S , P

′3
S ]
)
.

When the types of all of the links of the ADF D are known, the encoding can be simplified
to

V ergrd(D, v) ≡ (∃V (ψ ∧ ψ′)) ∧ (∀V ′′′χ)[AL!
D
∪OL!

D
/ιD(LD)][P 3

S/v(S)]
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V := V1 . . . Vn

V ′′′ := P ′
3
S V

′
1 . . . V

′
n

Vi := Rs
′
i<si,parD(si))> Rs

′′
i <si,parD(si))> Rs

′′′
i <si,parD(si))> Rs

′′′′
i <si,parD(si))> (1 ≤ i ≤ n)

V ′i := T s
′
i<si,parD(si))> T s

′′
i <si,parD(si))> T s

′′′
i <si,parD(si))> T s

′′′′
i <si,parD(si))> (1 ≤ i ≤ n)

which reflects the complexity of the SAT-UNSAT problem and thus matches the com-
plexity of the verification problem w.r.t. the grounded semantics which is DP-complete.

Given that the complexity of the verification problem for the grounded semantics is at
the door to the lowest levels of the polynomial hierarchy, we cannot hope to have an
encoding which nicely reflects the complexity of verification when D is a BADF in the
same sense that we have shown is the case for e.g. the encoding of credulous reasoning
for the admissible semantics (Section 3.1.3.3). Nevertheless, when D is a BADF the
encoding can indeed be further simplified giving us the Π1 QBF:

V ergrd(D, v) ≡ ∀V ′′′(Ψ ∧X)
Ψ :=(ψ ∧ ψ′){{[AL!

D
∪OL!

D
/ιD(LD)][P 3

S/v(S)]}}V )

X :=χ[AL!
D
∪OL!

D
/ιD(LD)][P 3

S/v(S)]

V := V1 . . . Vn

V ′′′ := P ′
3
S V

′
1 . . . V

′
n

Vi := Rs
′
i<si,parD(si))> Rs

′′
i <si,parD(si))> Rs

′′′
i <si,parD(si))>R

s′′′′i <si,parD(si))> (1 ≤ i ≤ n)

V ′i := T s
′
i<si,parD(si))> T s

′′
i <si,parD(si))> T s

′′′
i <si,parD(si))> T s

′′′′
i <si,parD(si))> (1 ≤ i ≤ n)

where ψ, ψ′, and χ are defined as in the original form of the encoding for V ergrd(D, v).

Turning to the encodings for credulous and skeptical acceptance w.r.t. the grounded
semantics, rather than making direct use of the defining encoding function E ′′′grd, we
make use of a simple consequence that follows from the characterisation of the grounded
semantics as the minimally-informative of the candidates for the grounded interpretation
as characterised by properties i)’-iii)’ detailed above. The fact in question is that when
v ∈ grd(D) for some ADF D and v(s) = x for some statement s of D and x ∈ {t, f},
then v′(s) = x has to be the case for any v′ that is a candidate for being the grounded
interpretation. The reason is simply that if v′(s) 6= x for some candidate for the grounded
interpretation v′, then it is not the case that v(s) ≤i v′(s) and, hence, v is not the
minimally informative candidate.

The fact we alluded means that whenever Credgrd(D, s∗) = Skeptgrd(D, s∗) = yes, it
must be the case that v′(s) = t for any v′ that is a candidate for being the grounded
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interpretation of D. Our encoding for credulous and skeptical acceptance expresses this
in QBF terms:

Credgrd(D, s∗) ≡ Skeptgrd(D, s∗) ≡ ψ ∧ χ
ψ := links[D,ALD

, OLD
, PS , P

′
S ]

χ :=∀P 3
S

(
(coh[P 3

S ] ∧ prop2[D,P 3
S , ALD

, OLD
, R<s,parD(s))>, R

′
<s,parD(s))>])→ ps∗

⊕).
In prenex normal form we obtain:

Credgrd(D, s∗) ≡ Skeptgrd(D, s∗) ≡ ∃V ∀V ′ (ψ ∧ χ)
V := ALD

OLD
P<L?

D,∃,1>
P ′<L?

D,∃,2>

V ′ := P<L?
D,∀,1>

P ′<L?
D,∀,2>

P 3
S V1 . . . Vn

Vi := Rs
′
i<si,parD(si))> Rs

′′
i <si,parD(si))> Rs

′′′
i <si,parD(si))> Rs

′′′′
i <si,parD(si))> (1 ≤ i ≤ n)

ψ := linksM [D,ALD
, OLD

, P<L?
D,∃,1>

, P ′<L?
D,∃,2>

, P<L?
D,∀,1>

, P ′<L?
D,∀,2>

]

χ :=
(
(coh[P 3

S ] ∧ prop2M [D,P 3
S , ALD

, OLD
, V1
L, . . . , Vn

L])→ ps∗
⊕).

When L!
D = LD, the encoding simplifies to the Π1 QBF

Credgrd(D, s∗) ≡ Skeptgrd(D, s∗) ≡ ∀V ′ (ψ ∧ χ)[AL!
D
∪OL!

D
/ιD(LD)]

V ′ := P 3
S V1 . . . Vn

Vi := Rs
′
i<si,parD(si))> Rs

′′
i <si,parD(si))> Rs

′′′
i <si,parD(si))> Rs

′′′′
i <si,parD(si))> (1 ≤ i ≤ n)

thus correctly capturing the complexity of credulous and skeptical acceptance for the
grounded semantics which is coNP-complete. Just as for the verification problem, we
already have a “too easy” encoding to be able to further capture at the QBF level the
complexity of ADF reasoning e.g. when D is a BADF; nevertheless, it should be easy for
the reader to see that if one has guessed an interpretation v? for the statements S of D,
then the whole encoding can be simplified (via propagation on the variables in the sets
V1 . . . Vn) to a formula where all variables have been replaced for the truth constants ⊥
and >.

3.1.3.7 Encodings for the stable semantics

We conclude our presentation of link information sensitive encodings for ADFs by giving
such an encoding also for the stable semantics. As hinted at in Section 3.1.2, our link
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information sensitive encoding follows the same pattern as the non link information
sensitive encoding E ′′stb we presented in that section.

The difference between the link information sensitive defining encoding function for the
stable semantics and the defining encoding function E ′′stb is, first of all, that the link
information sensitive encoding makes use of the module links[., ., ., ., .] (Section 3.1.3.2).
Secondly, the link information sensitive version makes use of the module prop2[., ., ., ., ., .]
rather than the module prop[., ., ., .] to encode the properties i)-iii) (equivalently, i’)-iii’);
see Section 3.1.3.6) that candidates for the grounded interpretation need to satisfy. We
thus arrive at the following defining encoding function:

E ′′′stb[D,PS ,ALD
, OLD

, P ′S , P
′′
S , R<S,parD(S))>, R

′
<S,parD(S))>] := ψ ∧ ψ′

ψ := Emod[D,PS ] ∧ links[D,ALD
, OLD

, P ′S , P
′′
S ]

ψ′ := ∀P ′3S((coh[P ′3S ] ∧ ψ′′)→≤i [PS , P ′3S ])

ψ′′ := prop2[(S, {φs ∧ ps}s∈S), P ′3S , ALD
, OLD

, R<S,parD(S))>, R
′
<S,parD(S))>]).

Proposition 9 states the fact that E ′′′stb-, just as its non link information sensitive counter-
part E ′′stb (derived from the defining encoding function Estb, see Section 3.1.2) ,- correctly
captures the stable semantics in QBF terms.

Proposition 9. Given an ADF D = (S, {φs}s∈S) and the indexed variables PS, ALD
,

OLD
, P ′S, P ′′S, R<S,parD(S))>, R′<S,parD(S))>, let E ′′′stb be the function returning the QBF

with free variables in PS, E ′′stb[D,PS , ALD
, OLD

, P ′S , P
′′
S , R<S,parD(S))>, R

′
<S,parD(S))>].

Then E ′′′stb is a defining encoding function for the stable semantics.

Proof. (sketch) The proof is similar to that of Proposition 3 in Section 3.1.2, the main
difference being that now also Proposition 7 needs to be used and the proof of Proposition 3
needs to be adapted to the use of the module prop2[., ., ., ., ., .] rather than prop[., ., ., .].

Turning to the encodings for the reasoning tasks, the link information sensitive encoding
for the verification problem based on the defining encoding function E ′′′stb is

V erstb(D, v) ≡ ∃V ∀V ′(ψ ∧ ψ′)[PS/v(PS)]
V := ALD

OLD
P<L?

D,∃,1>
P ′<L?

D,∃,2>

V ′ := P<L?
D,∀,1>

P ′<L?
D,∀,2>

P ′
3
S V

′
1 . . . V

′
n

V ′i := Rs
′
i<si,parD(si))> Rs

′′
i <si,parD(si))> Rs

′′′
i <si,parD(si))> Rs

′′′′
i <si,parD(si))> (1 ≤ i ≤ n)

ψ := Emod[D,PS ] ∧ linksM [D,ALD
, OLD

, P<L?
D,∃,1>

, P ′<L?
D,∃,2>

, P<L?
D,∀,1>

, P ′<L?
D,∀,2>

]

ψ′ := ((coh[P ′3S ] ∧ ψ′′)→≤i [PS , P ′3S ])
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ψ′′ := prop2M [(S, {φs ∧ ps}s∈S), P ′3S , ALD
, OLD

, V ′1
L
, . . . , V ′n

L].

When all of the types of the links of the ADF D are known, the encoding can be simplified

V erstb(D, v) ≡ ∀V ′(ψ ∧ ψ′)[AL!
D
∪OL!

D
/ιD(LD)][PS/v(S)]

V ′ := P ′
3
S V

′
1 . . . V

′
n

V ′i := Rs
′
i<si,parD(si))> Rs

′′
i <si,parD(si))> Rs

′′′
i <si,parD(si))> Rs

′′′′
i <si,parD(si))> (1 ≤ i ≤ n)

thus giving us a Π1 encoding that matches the complexity of the verification problem
for the stable semantics (coNP-complete). Furthermore, when D is a BADF, for the
negated dual version of the encoding,- propagation on the variables V ′1 . . . V ′n when given
a candidate for a counter-example v? showing that v 6∈ grd(Dv

∗) gives us

V erstb(D, v) ≡ Ψ{{[AL!
D
∪OL!

D
/ιD(LD)][P ′S/v?]}}V ′

Ψ := ¬(ψ ∨ ψ′)[AL!
D
∪OL!

D
/ιD(LD)][PS/v(S)]

V ′ := V ′1 . . . V
′
n

V ′i := Rs
′
i<si,parD(si))> Rs

′′
i <si,parD(si))> Rs

′′′
i <si,parD(si))> Rs

′′′′
i <si,parD(si))> (1 ≤ i ≤ n)

(here ψ and ψ′ are defined as above), i.e. an encoding where all variable have been
replaced with truth constants ⊥ and >. This reflects at the QBF level the complexity
for the verification problem for the stable semantics when D is a BADF. Specifically, in
that the complexity stems from guessing that a counterexample for showing v 6∈ grd(Dv

∗),
but not from checking that the counterexample is a candidate for being a grounded
interpretation.

Turning to credulous acceptance, an encoding based on the defining encoding function
E ′′′stb is

Credstb(D, s∗) ≡ ∃V ∀V ′(ψ ∧ ψ′ ∧ ps∗)
V := PSALD

OLD
P<L?

D,∃,1>
P ′<L?

D,∃,2>

V ′ := P<L?
D,∀,1>

P ′<L?
D,∀,2>

P ′
3
S V

′
1 . . . V

′
n

V ′i := Rs
′
i<si,parD(si))> Rs

′′
i <si,parD(si))> Rs

′′′
i <si,parD(si))> Rs

′′′′
i <si,parD(si))> (1 ≤ i ≤ n)

ψ := Emod[D,PS ] ∧ linksM [D,ALD
, OLD

, P<L?
D,∃,1>

, P ′<L?
D,∃,2>

, P<L?
D,∀,1>

, P ′<L?
D,∀,2>

]

ψ′ := ((coh[P ′3S ] ∧ ψ′′)→≤i [PS , P ′3S ])

ψ′′ := prop2M [(S, {φs ∧ ps}s∈S), P ′3S , ALD
, OLD

, V ′1
L
, . . . , V ′n

L].
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This encoding returns a Σ2 encoding, thus already matching the complexity of credulous
acceptance for ADFs (ΣP

2 -complete). When D is a BADF and we have a guess for the
stable semantics v?, the encoding can again be simplified giving us

Credstb(D, s∗) ≡ ∀V ′(ψ ∧ ψ′ ∧ ps∗)[AL!
D
∪OL!

D
/ιD(LD)][PS/v?(S)]

V := PS

V ′ := P ′
3
S V

′
1 . . . V

′
n

V ′i := Rs
′
i<si,parD(si))> Rs

′′
i <si,parD(si))> Rs

′′′
i <si,parD(si))> Rs

′′′′
i <si,parD(si))> (1 ≤ i ≤ n)

with the dual form, i.e.

∃V ′(¬ψ ∨ ¬ψ′ ∨ ¬ps∗)[AL!
D
∪OL!

D
/ιD(LD)][PS/v?(S)]

, being a Σ1-QBF, thus reflecting the complexity of credulous acceptance for a BADF
(NP-complete).

For skeptical acceptance w.r.t. the stable semantics, we can construct an encoding from
E ′′′stb as follows:

Skeptstb(D, s∗) ≡ ∀V ∃V ′((ψ ∧ ψ′)→ ps∗)
V := PSALD

OLD
P<L?

D,∃,1>
P ′<L?

D,∃,2>

V ′ := P<L?
D,∀,1>

P ′<L?
D,∀,2>

P ′
3
S V

′
1 . . . V

′
n

V ′i := Rs
′
i<si,parD(si))> Rs

′′
i <si,parD(si))> Rs

′′′
i <si,parD(si))> Rs

′′′′
i <si,parD(si))> (1 ≤ i ≤ n)

ψ := Emod[D,PS ] ∧ linksM [D,ALD
, OLD

, P<L?
D,∃,1>

, P ′<L?
D,∃,2>

, P<L?
D,∀,1>

, P ′<L?
D,∀,2>

]

ψ′ := ((coh[P ′3S ] ∧ ψ′′)→≤i [PS , P ′3S ])

ψ′′ := prop2M [(S, {φs ∧ ps}s∈S), P ′3S , ALD
, OLD

, V ′1
L
, . . . , V ′n

L].

This encoding returns a Π2 QBF, thus matching the complexity of skeptical reasoning for
the stable semantics (ΠP

2 -complete). A similar argument as that given for the encoding
for credulous acceptance, shows that also this final encoding we give in this section reflects
at the QBF level the complexity of the reasoning problem it encodes when information
about the link types is available.
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3.1.4 Implementation and experiments

We have initiated a re-implementation of our system QADF [Dil14, DWW14] in order to
make it more modular and easier to inspect. Thus, while the system QADF in the version
reported on in [DWW14] (version 0.1) directly produces the encodings in the QDIMACS6

format that most QBF solvers expect, the new version also produces an intermediate
representation in which the encoding is in prenex-normal-form but the matrix is not in
CNF. This allows for easier inspection of the encodings7 and also making use of QBF
solvers that do not require the matrix to be in CNF (in fact our implementation also
produces some of the encodings in the QCIR format [JKS16], but this is a feature which
remains to be more extensively tested).

Our current re-implementation of QADF (version 0.4.0) is publicly available8 and produces
encodings for the existence (and enumeration) problem as well as credulous and skeptical
acceptance for the admissible, preferred, and stable semantics. It also produces the
link-information-sensitive encodings for these problems. It is implemented in Scala9

and can, therefore, be run as a Java10 executable.

The input format for QADF is the input format that has become the standard for ADF
systems. Each statement x of the input ADF is encoded via the string s(x) (alternatively,
for legacy reasons, also statement(x) can be used). The acceptance condition F of x is
specified in prefix notation via ac(x, F ) as illustrated in Example 7. As is also shown in
the example, information about the links can be added to the specification of the input
using att and sup predicates.

Example 7. The ADF from Example 1, as input to QADF, is encoded as follows:

s(a).
s(b).
s(c).
ac(a,or(neg(b),b)).
ac(b,b).
ac(c,imp(c,b)).

Note the period at the end of each line. Here or, imp, neg stand for ∨, →, ¬ respectively.
On the other hand and, c(v), and c(f) can be used for ∧, >, and ⊥. The following shows
how to specify the attack and support relations for the ADF from Example 1. These are
added to the part of the input specifying the ADF.

6http://www.qbflib.org/qdimacs.html
7Potentially, at the cost of some loss in efficiency in producing the encodings. For this reason and the

fact that our previous system also suppports the model and complete (but not the stable) semantics we
have kept the older version on the website dedicate to QADF.

8https://www.dbai.tuwien.ac.at/proj/adf/qadf/
9https://www.scala-lang.org/

10https://www.java.com
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att(b,a).
sup(b,a).
sup(b,b).
sup(b,c).
att(c,c).

If for some link the relation is not specified, QADF treats the link type as unknown. Also
note that for redundant links that they are both attacking and supporting must be specified.
Dependent links can be specified using the binary predicate dep. For instance,

dep(b,a).

indicates that the link (b,a) is a dependent link.

A typical call of QADF (using a UNIX command line) looks as follows:

java -jar qadf_0.4.0.jar -adm -cred a -L -D filename | \
./path/to/bloqqer | ./path/to/depqbf

Here we ask for the encoding of credulous acceptance (of the statement “a”) w.r.t. the
admissible semantics for the ADF specified in the file “filename” and pipe the encoding (in
QDIMACS format) to the preprocessing tool Bloqqer11 and the QBF-solver DepQBF12.
Moreover, we ask for the link-information-sensitive version of the encoding and the dual
version. The dual version is the version which returns the dual answer to the original
encoding; for instance, it returns “UNSAT” when the original encoding is sastisfiable
(“SAT”). The reason this is useful is that the Tseitin transformation (see Section 2.1.4)
for converting the matrix of the encoding to CNF introduces a further block of (innermost
existentially) quantified variables which may make the prefix type of the resulting encoding
one level higher in the polynomial hierarchy in terms of its computational complexity.
Asking for the dual encoding allows to circumvent this issue.

We provide the complete usage (subject to change in future versions) of QADF:

usage: qadf [options] inputfile
with options:
-h display this help (also works with --h, \

-help, --help)
-version print version
-adm admissible
-prf preferred

11http://fmv.jku.at/bloqqer/
12http://lonsing.github.io/depqbf/
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-stb stable
-stb2 stable (using Dung’s 2018 characterisation)
-cred s check credulous acceptance of statement s
-scep s check skeptical acceptance of statement s
-O outputfile print output to outputfile
-D use dual encoding
-L use link information sensitive encoding
-noTransform do not apply any transformation to encoding
-Tseitin only apply tseitin transformation to encoding
-Circuit Output circuit representation
-QCIR Output circuit representation in QCIR 14 format
Default mode is print encoding of existence problem of \
selected semantics to standard output (in qdimacs format)

Note that there are several options for the output format and also the option for an
encoding for the stable semantics based on [DT18] which are tangential to this work.

For the 2018 “international workshop on quantified boolean formulas” (QBF’18) we
carried out an initial study on the effect of some of the top-ranked QBF solvers from
the QBF evaluation 2017 (QBFEval’17)13 as well as main preprocessing tools for QSAT
solving on our link-information-sensitive encodings. We also considered the version of
the solver DepQBF (developed at TU Wien) using heavy preprocessing first presented at
QBFEval’18 (therefore dubbed DepQBF’18). We considered credulous reasoning for the
admissible semantics and sceptical reasoning for the preferred semantics. Specifically,
in the study we included ADFs with different percentages (20% and 60%) of dependent
links as well as different percentages (0%, 25%, 50%, and 75%) of the link types to be
unknown. The ADFs are generated on the basis of graphs representing transportation
networks. We compared with the performance of the QSAT solvers and preprocessors we
considered on the non-link-information-sensitive encodings from [Dil14, DWW14].

For details and the results of our study see Appendix A. Confirming results in other stud-
ies [DWW14, BDH+17, Kes17, DKLW18, LMN+18a] in which the non-link-information-
sensitive encodings produced by our system QADF have been evaluated, the results for
the preferred semantics are rather disappointing. Thus, the best performing solver and
preprocessor combination (QADF with dynDepQBF + Bloqqer) solves around 24% of
the non-link-information-sensitive encodings and 21% of the link-information-sensitive
encodings (time-out of 1800 seconds). In general, the solvers perform somewhat worse on
the link-information-sensitive encodings; although the use of pre-processing levels-out
the performance in some cases (e.g. combination of either dynDepQBF or DepQBF with
the preprocessor HQSpre).

Also confirming other studies, the results for the admissible semantics are more promising.
Thus the best performing solver for this semantics (DepQBF’18; i.e. the version of

13http://www.qbflib.org/event_page.php?year=2017
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DepQBF submitted to QBFEval’18) solves around 99% of the non-link-information-
sensitive encodings and around 97% of the link-information-sensitive-encodings (with
average solving times under a minute and two minutes respectively). Interestingly, the
preprocessors we considered in the study (Bloqqer and HQSpre) seem to latch on to
the information provided by the links. Thus, for instance, Bloqqer used as a stand-
alone-tool is able to solve e.g. around 77% of the link-information-sensitive encodings (in
under 3 seconds) for ADFs with 20% dependent links vs. 67% of the non-link-information-
sensitive encodings. Although for the best performing tool (DepQBF’18) this is not the
case, for several of the solvers the use of preprocessing then improves their performance
on the link-information-sensitive vs. non-link-information sensitive encodings.

To conclude, at least on the ADFs we considered in our study for QBF’18, reasoning for
the preferred semantics does not seem to be eased by information about the structure of
ADFs. On the other hand, for the admissible semantics, such information does improve
the performance of some systems (when used with preprocessors). This is consistent
with studies on the performance of QADF (among other systems and considering only
the non-link-information-sensitive encodings) on acyclic (ADFs having an underlying
acyclic graph) vs. non acyclic ADFs carried out in [DKLW18], where there are gains
in performance on the acyclic instances for the admissible semantics but no such gains
in performance can be observed for the preferred semantics. On the other hand, the
impressive gains (also comparing to the best performing versions of DepQBF in previous
studies) obtained by the use of the best performing QSAT solver (DepQBF’18) on the
admissible semantics in our study for QBF’18, do not seem to arise from the information
about the links. We refer to Section B.3 in Appendix B for a survey of all recent empirical
evaluations of ADF systems (including the non-link-information-sensitive encodings
produced by QADF) and further discussion of the results of our evaluation for QBF’18 in
light thereof.

3.2 Dynamic ASP encodings for ADFs

In this section we demonstrate, for purposes of providing ASP encodings for ADF
reasoning, the use of a fact about the complexity of ASP programs. The fact in question
is that the combined complexity of ASP for programs with predicates of bounded arity
[EFFW07], just as the complexity of many of the acceptance problems for ADFs, occupies
the second and third level of the polynomial hierarchy (see sections 2.3.3 and 2.2.4).
This allows for dynamic yet single shot encodings to fragments of ASP with matching
complexity.

Similarly to our QBF encodings, we here construct ASP encodings πσ for the semantics
σ ∈ {adm, com, prf, grd, stb} such that there is a certain one to one correspondence
between the σ interpretations of an ADF D = (S, {φs}s∈S) and the answer sets of πσ(D)
(the encoding function πσ applied to D). More precisely, we will use atoms asg(s, x) with
s ∈ S, x ∈ {1, 0,u} to represent ADF interpretations in our encodings. Throughout this
section we represent the truth values true and false with 0 and 1 rather than f and t
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for technical reasons: in the encodings we make use of ASP built in binary arithmetic
functions and comparison predicates for evaluating propositional formulas such as ADF
acceptance conditions.

An interpretation v of D and a set of ground atoms (interpretation of an ASP program) I
correspond to each other, v ∼= I, whenever for every s ∈ S, v(s) = x iff asg(s, x) ∈ I. We
overload ∼= to get the correspondence between sets of interpretations and sets of answer
sets we aim for.

Definition 17. Given a set of (ADF) interpretations V and a collection of sets of ground
atoms (ASP interpretations) I, we say that V and I correspond, V ∼= I, if

1. for every v ∈ V there is an I ∈ I s.t. v ∼= I;

2. for every I ∈ I there is a v ∈ V s.t. v ∼= I.

Having encodings πσ for σ ∈ {adm, com, prf, grd, stb} for which σ(D) ∼= AS(πσ(D))
for any ADF D means we have encodings for the enumeration problem for the differ-
ent semantics. Encodings for credulous and skeptical reasoning are obtained via the
homonymous ASP reasoning tasks applied on the encodings for the enumeration problem.

3.2.1 Encodings for the admissible semantics

In the course of presenting our dynamic ASP encodings for the admissible semantics we
introduce several elements we will make use of throughout Section 3.2. Among these is
that all encodings will assume a simple set of facts indicating the statements of the input
ADF D = (S, {φs}s∈S):

πarg(D) := {arg(s). | s ∈ S}.

Also, several of the encodings will need facts for encoding the possible truth values that
can be assigned to a statement s by a completion of an interpretation mapping s to u, 1,
and 0, respectively:

πlt := {lt(u, 0). lt(u, 1). lt(1, 1). lt(0, 0).}.

All of our encodings, including the one for the admissible semantics, follow the guess &
check methodology that, as stated in Section 2.2, is at the heart of the ASP paradigm
[JN16]. Here parts of a program delineate candidates for a solution to a problem. These
are often referred to as “guesses”. Other parts of the program, the “constraints”, then
check whether the guessed candidates are indeed solutions. In the case of the encodings
for ADFs the guessing part of the programs outline possible assignments of truth values
to the statements, i.e. an ADF interpretation. For the three valued semantics, as the
admissible semantics, the rules are as follows:
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πguess := {asg(S, 0):-not asg(S, 1),not asg(S,u), arg(S).
asg(S, 1):-not asg(S,u),not asg(S, 0), arg(S).
asg(S,u):-not asg(S, 0),not asg(S, 1), arg(S).}.

In all our encodings we will need to encode the semantic evaluation of propositional
formulas; e.g. the evaluation of the acceptance conditions by completions of an inter-
pretation. Given a propositional formula φ, for this we introduce the function Ω. For
assignments of truth values (1 and 0) to the propositional variables in φ, Ω(φ) gives us a
set of atoms corresponding to the propagation of the truth values to the subformulas
of φ in accordance with the semantics of classical propositional logic. The atoms make
use of ASP variables Vψ where ψ is a subformula of φ. The variables Vp, where p is a
propositional variable occurring in φ, can be used by other parts of ASP rules employing
the atoms in Ω(φ) for purposes of assigning intended truth values to the propositional
variables in φ.

For the definition of the atoms Ω(φ) we rely on the ASP built in arithmetic functions &
(bitwise AND), ? (bitwise OR), and - (subtraction). We also use the built in comparison
predicate = (see Section 2.2.3). Let φ be a propositional formula over a set of propositional
variables P ; then the relevant set of atoms is defined as

Ω(φ) :=


Ω(φ1) ∪ Ω(φ2) ∪ {Vφ = Vφ1&Vφ2} if φ = φ1 ∧ φ2
Ω(φ1) ∪ Ω(φ2) ∪ {Vφ = Vφ1?Vφ2} if φ = φ1 ∨ φ2
Ω(ψ) ∪ {Vφ = 1-Vψ} if φ = ¬ψ
∅ if φ = p ∈ P

where Vφ, Vφ1 Vφ2 and Vψ are variables representing the subformulas of φ.

Our encoding for the admissible semantics, πadm, is based on the fact that an interpretation
v for an ADF D = (S, {φs}s∈S) is admissible iff for every s ∈ S it is the case that

• if v(s) = 1 then there is no w ∈ [v]2 s.t. w(φs) = 0,

• if v(s) = 0 then there is no w ∈ [v]2 s.t. w(φs) = 1.

This is a simple consequence of the definition of the admissible semantics (Definition 8).
Any w ∈ [v]2 which contradicts this simple observation (e.g. v(s) = 1 and w(φs) = 0) is
a “counter-model” to v being an admissible interpretation. The constraining part of our
encoding for the admissible semantics essentially disallows guessed assignments of truth
values to the statements of an ADF corresponding to ADF interpretations which have
counter-models to them being admissible.

To encode the constraints of our encoding we need auxiliary rules firing when the guessed
assignments have counter-models to them being admissible. These rules, two for each
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s ∈ S, make use of bodies ωs where Ω(φs) is employed to evaluate the acceptance
conditions by the completions. The latter are obtained by setting variables Vt for
t ∈ parD(s) with the adequate truth values by using the predicates asg and lt defined in
πguess and πlt respectively:

ωs := {asg(t, Yt), lt(Yt, Vt) | t ∈ parD(s)} ∪ Ω(φs).

The two rules for every statement s ∈ S have heads sat(s) and inv(s) that fire in case
there is some completion of the interpretation corresponding to the assignments guessed
in the program fragment πguess such that the acceptance condition φs evaluates to 1 and
0, respectively:

πsat(D) := {sat(s):-ωs, Vφs = 1.
inv(s):-ωs, Vφs = 0. | s ∈ S}.

The encoding for the admissible semantics now results from compounding the program
fragments πarg(D), πlt, πguess, and πsat(D) together with ASP constraints which filter
out assignments corresponding to interpretations of D having counter-models to being
admissible.

πadm(D) := πarg(D) ∪ πlt ∪ πguess ∪ πsat(D) ∪
{:-arg(S), asg(S, 1), inv(S). :-arg(S), asg(S, 0), sat(S).}.

Proposition 10 formally states that πadm is indeed an adequate encoding function. For
the proof, which is prototypical for most of the proofs of correctness in Section 3.2, we
use the notation

Ip := {p(t1, . . . , tn) ∈ I}.

For an ASP interpretation I (set of ground atoms), Ip represents I projected onto the
predicate p (with arity n).

Proposition 10. For every ADF D it holds that adm(D) ∼= AS(πadm(D)).

Proof. Let D = (S, {φs}s∈S) be an ADF and v ∈ adm(D). Let also

I :={arg(s) | s ∈ S} ∪
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{lt(u, 0), lt(u, 1), lt(1, 1), lt(0, 0)} ∪
{asg(s, x) | s ∈ S, v(s) = x} ∪
{sat(s) | if there is a w ∈ [v]2 s.t. w(φs) = 1} ∪
{inv(s) | if there is a w ∈ [v]2 s.t. w(φs) = 0}

be a set of ground atoms (such that v ∼= I). We prove now that I ∈ AS(πadm(D)).

We start by proving that I satisfies πadm(D)I . First note that I satisfies πarg(D)I =
πarg(D) as well as πIlt = πlt since all the atoms making up the facts in these two modules
are in I (first two lines of the definition of I). I also satisfies

πIguess ={asg(s, x) :- arg(s). | s ∈ S,
asg(s, y) 6∈ I, asg(s, z) 6∈ I, x ∈ {1, 0,u}, y, z ∈ ({1, 0,u} \ {x})}

since, first of all, arg(s) ∈ I iff s ∈ S by the first line of the definition of I (and
the fact that the predicate arg does not appear in the head of any rules other than
πarg(D)I = πarg(D)). Secondly, for any s ∈ S, asg(s, x) ∈ I whenever asg(s, y) 6∈ I and
asg(s, z) 6∈ I for x ∈ {1, 0,u} and y, z ∈ ({1, 0,u} \ {x}) by the fact that v ∼= I (third
line of the definition of I).

Now consider the rule r ∈ πsat(D) with H(r) = sat(S) and a substitution σ s.t. σr ∈
πsat(D)I . This means that σr is of the form

sat(s):-σωs, σ(Vφs = 1).

with

σωs = {asg(t, yt), lt(yt, vt) | t ∈ parD(s)} ∪ σΩ(φs)

and where σ(Yt) = yt, σ(Vt) = vt. If B(σr) ∈ I, it must be the case that yt ∈ {1, 0,u},
vt ∈ {0, 1} for t ∈ parD(s) and σΩ(φs) ∈ I. Now it should be easy for the reader to see
that from the fact that {asg(t, yt), lt(yt, vt) | t ∈ parD(s)} ⊆ I and v ∼= I it is the case
that w ∈ [v]2 for the ADF interpretation w defined as w(t) = vt for every t ∈ parD(s).
It is also simple to establish that σΩ(φs) ∈ I and σ(Vφs = 1) ∈ I imply that w(φs) = 1.
Hence, by the fourth line of the definition of I sat(s) ∈ I, i.e. I satisfies σr. In the same
manner, by the fifth line of the definition of I it follows that I satisfies any grounding
σr ∈ πsat(D)I for the rule r s.t. H(r) = inv(S). In conclusion, I satisfies πsat(D)I .
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Let us turn now to a ground instance r ∈ πadm(D)I

:- arg(s), asg(s, 0), sat(s).

of the constraint

:- arg(S), asg(S, 0), sat(S).

∈ πadm(D). By the fourth line of the definition of I sat(s) ∈ I iff there is a w ∈ [v]2 s.t.
w(φs) = 1. But then by the fact that v ∈ adm(D) and v ∼= I, asg(s, 0) 6∈ I, i.e. r can
not be satisfied by I. In the same manner also any ground instance in πadm(D)I of the
constraint

:- arg(S), asg(S, 1), inv(S).

can not be satisfied by I.

We have established that I satisfies πadm(D)I . We continue our proof of I ∈ AS(πadm(D))
by now showing that there is no I ′ ⊂ I that satisfies πadm(D)I .

In effect, consider any other I ′ that satisfies πadm(D)I . Note first of all that then
I ′arg ⊇ Iarg and I ′lt ⊇ Ilt because both I ′ and I satisfy πarg(D)I as well as πIlt. Hence
also I ′asg ⊇ Iasg because I ′ satisfies πIguess (see the proof of I satisfies πadm(D)I for the
structure of πIguess) and I ′arg ⊇ Iarg, i.e. B(r) ⊆ I ′ for every r ∈ πIguess. But then, since
I ′arg ⊇ Iarg and I ′asg ⊇ Iasg, and I ′ satisfies all the comparison predicates with arithmetic
functions that I does by definition, I ′ satisfies all the rules in πsat(D)I that I does (see
again the proof of I satisfies πadm(D)I for the form of such rules). Hence, also I ′sat ⊇ Isat
and I ′inv ⊇ Iinv. In conclusion, I ′ ⊇ I.

Since I ′ was general we derive that there is no I ′ ⊂ I that satisfies πadm(D)I . Together
with the fact that I satisfies πadm(D)I we have that I ∈ AS(πadm(D)).

We now turn to proving that for any I ∈ AS(πadm(D)) it holds that v ∈ adm(D) for
v ∼= I. Note first that for such an I, since I satisfies πarg(D)I = πarg(D) as well as

πIguess ={asg(s, x) :- arg(s). | s ∈ S,
asg(s, y) 6∈ I, asg(s, z) 6∈ I, x ∈ {1, 0,u}, y, z ∈ ({1, 0,u} \ {x})},

for every s ∈ S there is a x ∈ {1, 0,u} such that asg(s, x) ∈ I. Also, asg(s, x) ∈ I
whenever asg(s, y) 6∈ I and asg(s, z) 6∈ I for y, z ∈ ({1, 0,u} \ {x}). I.e. v s.t. v ∼= I is
well defined.
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Now assume that v 6∈ adm(D). Then there are s ∈ S, w ∈ [v]2 for which either i) v(s) = 1
and w(φs) = 0 or ii) v(s) = 0 and w(φs) = 1. Let us consider the case i). In that case
consider a substitution σ for the rule r ∈ πsat(D)

inv(s):-Ωs, Vφs = 0.

where

Ωs = {asg(t, Yt), lt(Yt, Vt) | t ∈ parD(s)} ∪ Ω(φs).

The substitution σ is defined as σ(Yt) = v(t) and σ(Vt) = w(t) for every t ∈ parD(s).
Since v ∼= I we have that asg(t, σ(Yt)) ∈ I for every t ∈ parD(s). Also lt(σ(Yt), σ(Vt)) ∈ I
since I satisfies πIlt.

Now, by definition σΩ(φs) ⊆ I and from w(φs) = 0 it is easy to see that it follows that
also σ(Vφs = 0) ∈ I, i.e. σr ∈ πsat(D)I and B(σr) ⊆ I. This means that also inv(s) ∈ I.
As a consequence we have that B(r′) ⊆ I for the constraint r′

:- arg(s), asg(s, 1), inv(s).

in πadm(D)I . This is a contradiction to I ∈ AS(πadm(D)). From the case ii) v(s) = 0
and w(φs) = 1 a contradiction can be derived in analogous manner. Hence, v ∈ adm(D)
must be the case.

Example 8. Considering the ADF D from Example 1, πadm(D) (as implemented by our
system YADF with minor formatting for purposes of readability; see Section 3.2.7) looks
as follows:

arg(a).
arg(b).
arg(c).
leq(u,0).
leq(u,1).
leq(0,0).
leq(1,1).
asg(S,u) :- arg(S),not asg(S,0),not asg(S,1).
asg(S,0) :- arg(S),not asg(S,1),not asg(S,u).
asg(S,1) :- arg(S),not asg(S,u),not asg(S,0).
sat(a) :- asg(b,Y0),leq(Y0,V0),V1=1-V0,V2=V1?V0,V2=1.
sat(b) :- asg(b,Y0),leq(Y0,V0),V0=1.
sat(c) :- asg(c,Y0),leq(Y0,V0),asg(b,Y1),leq(Y1,V1),
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V3=1,V3=V2?V1,V2=1-V0.
inv(a) :- asg(b,Y0),leq(Y0,V0),V1=1-V0,V2=V1?V0,V2=0.
inv(b) :- asg(b,Y0),leq(Y0,V0),V0=0.
inv(c) :- asg(c,Y0),leq(Y0,V0),asg(b,Y1),leq(Y1,V1),

V3=V2?V1,V3=0,V2=1-V0.
:- arg(S),asg(S,1),inv(S).
:- arg(S),asg(S,0),sat(S).

A possible output of an ASP solver (the current one is the simplified output of clingo
version 4.5.4) given this instance looks as follows (only showing asg, sat, and inv predi-
cates):

Answer: 1
asg(c,u) asg(b,0) asg(a,u) sat(c) sat(a) inv(c) inv(b)
Answer: 2
asg(c,u) asg(b,0) asg(a,1) sat(c) sat(a) inv(c) inv(b)
Answer: 3
asg(c,u) asg(b,1) asg(a,u) sat(b) sat(c) sat(a)
Answer: 4
asg(c,u) asg(b,1) asg(a,1) sat(b) sat(c) sat(a)
Answer: 5
asg(c,u) asg(b,u) asg(a,1) sat(b) sat(c) sat(a) inv(c) inv(b)
Answer: 6
asg(c,u) asg(b,u) asg(a,u) sat(b) sat(c) sat(a) inv(c) inv(b)
Answer: 7
asg(c,1) asg(b,1) asg(a,u) sat(b) sat(c) sat(a)
Answer: 8
asg(c,1) asg(b,1) asg(a,1) sat(b) sat(c) sat(a)
SATISFIABLE

The encoding πadm gives us an encoding of the enumeration (as well as existence) problem
for the admissible semantics. Skeptical reasoning for the admissible semantics is trivial
(as the interpretation mapping every statement to u is always admissible), but note
that via credulous reasoning for ASP programs we directly obtain an encoding for
credulous acceptance w.r.t. the admissible semantics from πadm. Moreover, the encoding
is adequate from the point of view of the complexity as πadm(D) is a normal logic program
for any ADF D. Also, given our recursive definition of the evaluation of the acceptance
conditions within ASP rules, the arity of predicates in our encodings are bounded (in
fact, the maximum arity of predicates is of size two). Credulous reasoning for normal
logic programs with predicates of bounded arity just as credulous acceptance w.r.t the
admissible semantics is ΣP

2 -complete.
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3.2.2 Encodings for the complete semantics

For the ASP encoding of the complete semantics we only need to add two constraints
to the encoding of the admissible semantics. These express a further condition that an
interpretation v for an ADF D = (S, {φs}s∈S) has to fulfill to be complete, in addition to
not having counter-models for being an admissible interpretation as expressed in Section
3.2.1. The condition in question is that for every s ∈ S:

• if v(s) = u then there are w1, w2 ∈ [v]2 s.t. w1(φs) = 0 and w2(φs) = 1

Expressing this condition in the form of constraints gives us the encoding

πcom(D) :=πadm(D) ∪
{:-arg(S), asg(S,u),not inv(S).
:-arg(S), asg(S,u),not sat(S).}

Proposition 11. For every ADF D it holds that com(D) ∼= AS(πcom(D)).

Proof. (sketch) The proof is similar to that of Proposition 10.

The encoding πcom(D) is of the enumeration (and existence) problem w.r.t. the complete
semantics. Note that since credulous acceptance for the complete semantics is equivalent
to credulous acceptance for the admissible semantics, we obtain complexity adequate
encodings for the complete semantics via the encoding presented in Section 3.2.1. Skeptical
acceptance, on the other hand, is equivalent to skeptical (= credulous) acceptance for
the grounded semantics; we therefore obtain encodings via the encoding for the grounded
semantics presented in sections 3.2.4 and 3.2.6.

3.2.3 Encodings for the preferred semantics

For the encoding of the preferred semantics we make use of the saturation technique
[EG95]; see [CDG+15] for its use in computing the preferred extensions of Dung AFs.
The saturation technique allows checking that a property holds for a set of guesses within
a disjunctive ASP program, by generating a unique “saturated” guess that “verifies” the
property for any such guess. Existence of a non-saturated guess hence implies that the
property of interest does not hold for the guess in question.

In the encoding of the preferred semantics for an ADF D we extend πadm(D) by making
use of the saturation technique to verify that all interpretations of D that are greater
w.r.t. ≤i than the interpretation determined by the assignments guessed in the program
fragment πguess are either identical to the interpretation in question or not admissible. As
a consequence, the relevant interpretation must be preferred according to the definition
of this semantics for ADFs.
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The module πguess2 amounts to “making a second guess” (indicated by the predicate
asg2) extending the “first guess” (asg) from πguess.

πguess2 := {asg2(S, 0):-asg(S, 0).
asg2(S, 1):-asg(S, 1).
asg2(S, 1) ∨ asg2(S, 0) ∨ asg2(S,u):-asg(S,u).}

The fragment πsat2(D) will allow us to check whether the second guess obtained from
πguess2 is admissible:

πsat2(D) := {sat2(s):-ω2s, Vφs = 1.
inv2(s):-ω2s, Vφs = 0. | s ∈ S}

with

ω2s := {asg2(t, Yt), lt(Yt, Vt) | t ∈ parD(s)} ∪ Ω(φs).

The only difference between the fragment πsat2(D) and πsat(D) is that we now evaluate
acceptance conditions w.r.t. completions of the second guess given via the predicate asg2.

The following program fragment guarantees that the atom saturate is derived whenever
the second guess (computed via πguess2) is either identical (first rule of πcheck(D)) to
the first guess (computed via the module πguess) or is not admissible (last two rules of
πcheck(D)). We will say that in this case the second guess is not a counter-example to
the first guess corresponding to a preferred interpretation of D. We here assume that
the statements S of D are numbered, i.e. S = {s1, . . . , sk}.

πcheck(D) := {saturate:-asg(s1, X1), asg2(s1, X1), . . .
asg(sk, Xk), asg2(sk, Xk).

saturate:-asg2(S, 1), inv2(S).
saturate:-asg2(S, 0), sat2(S).}

The module πsaturate now assures that whenever the atom saturate is derived, first of all
asg2(s, 0), asg2(s, 1), and asg2(s,u) are derived for every s ∈ S for which asg(s,u) has
been derived. Also, sat2(s) and inv2(s) are derived for every s ∈ S.

πsaturate := {asg2(S, 0):-asg(S,u), saturate.
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asg2(S, 1):-asg(S,u), saturate.
asg2(S,u):-asg(S,u), saturate.
sat2(S):-arg(S), saturate.
inv2(S):-arg(S), saturate.}

The effect of this fragment is that whenever all the “second guesses” (computed via
πguess2) are not counter-examples to the first guess (computed via πguess) corresponding to
a preferred interpretation of D, then all the answer sets will be saturated on the predicates
ass2, sat2, and inv2, i.e. the same ground instances of these predicates will be included
in any answer set. Thus, all answer-sets (corresponding to the ADF interpretation
determined by the first guess) will be indistinguishable on the new predicates used for
the encoding of the preferred interpretation; meaning: those not in πadm(D). On the
other hand, were there to be a counter-example to the first guess corresponding to an
interpretation of D, then a non-saturated and hence smaller (w.r.t ⊆) answer set could
be derived. We disallow the latter by adding to the program fragments πadm(D), πguess2,
πsat2(D), πcheck(D), πsaturate, a constraint filtering out precisely such answer sets. The
latter being those for which the atom saturate is not derived. We thus arrive at the
following encoding for the preferred semantics:

πprf (D) :=πadm(D) ∪ πguess2 ∪ πsat2(D) ∪
πcheck(D) ∪ πsaturate ∪ {:-not saturate.}

Proposition 12. For every ADF D it holds that prf(D) ∼= AS(πprf (D)),

Proof. Let D = (S, {φs}s∈S) be an ADF and v ∈ prf(D). Let also

I ′ :=I ∪ {asg2(s, 1) | s ∈ S, v(s) = 1} ∪ {asg2(s, 0) | s ∈ S, v(s) = 0} ∪ I4

be a set of ground atoms where I is defined as in the “only if” direction of the proof of
Proposition 10 (hence, v ∼= I ′). Moreover, I4 is the set of ground atoms forming the
“saturation” of the predicates asg2, sat2, inv2, saturate (asg2 is saturated only for s ∈ S
s.t. v(s) = u) defined as

I4 :={asg2(s, x) | s ∈ S, x ∈ {1, 0,u}, v(s) = u} ∪
{sat2(s) | s ∈ S} ∪
{inv2(s) | s ∈ S} ∪
{saturate}
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Note first that since none of the predicates occurring in I ′ \ I appear in πadm(D), we
have that πadm(D)I′ = πadm(D)I . As thus also all of the atoms appearing in πadm(D)I′

that are in I ′ are those which are in I, we have that I ′ and I satisfy the bodies and heads
of the same rules in πadm(D)I′ . By the proof of the “only if” direction of Proposition 10
(i.e. that I satisfies πadm(D)I = πadm(D)I′) it then follows that I ′ satisfies πadm(D)I′ .

I ′ also satisfies each of πsat2(D)I′ = Gr(πsat2(D)), πcheck(D)I′ = Gr(πcheck(D)) as the
heads of all possible ground instances of the rules of each of the modules πsat2(D) and
πcheck(D) is contained in I4 ⊂ I ′. Moreover, I ′ satisfies all groundings of the first two
rules of πguess2 (that are in πI′guess2 = Gr(πguess2)) as both asg(s, x) ∈ I ′ and asg2(s, x) ∈ I ′
whenever v(s) = x for x ∈ {1, 0}. I ′ also satisfies all groundings of the third rule of
πguess2 as whenever asg(s, u) ∈ I ′ this means that v(s) = u and then asg2(s, x) ∈ I4 ⊂ I ′
for every x ∈ {1, 0,u}. For the same reason I ′ also satisfies all possible groundings of
the first three rules of πsaturate (contained in πI′saturate = Gr(πsaturate)). Furthermore, I ′
satisfies all possible groundings of the last two rules of πsaturate since whenever arg(s) ∈ I ′
this means that s ∈ S and then sat2(s) ∈ I4 ⊂ I ′ as well as inv2(s) ∈ I4 ⊂ I ′. Finally,
since saturate ∈ I4 ⊂ I ′ the constraint

:-not saturate.

is deleted from πprf (D) when forming the reduct πprf (D)I′ . We thus have that I ′ satisfies
all of the rules in πprf (D)I′ ; hence, I ′ satisfies πprf (D)I′ .

Consider now that there is a I ′′ ⊂ I ′ that satisfies πprf (D)I′ . Since I ′′ satisfies
πadm(D)I′ = πadm(D)I , we have by the argument in the “only if” direction of the
proof of Proposition 10 that I ⊆ I ′′. Note that then asg(s, x) ∈ I ′′ for every s ∈ S s.t.
v(s) = x for x ∈ {1, 0}. On the other hand, I ′′ satisfies the groundings of the first two
rules in πguess2 (since πI′guess2 = Gr(πguess2)). It hence follows that also asg2(s, x) ∈ I ′′ for
every s ∈ S s.t. v(s) = x for x ∈ {1, 0}. Moreover, since I ′′ satisfies the groundings of
the last rule in πguess2 and {asg(s,u) | s ∈ S, v(s) = u} ⊂ I ⊂ I ′′ it must be the case that
there is some x ∈ {u, 1, 0} s.t. asg2(s, x) ∈ I ′′ for every s ∈ S s.t. v(s) = u. We thus
have that there is an ADF interpretation v′ ≥i v s.t. there is an atom asg2(s, x) ∈ I ′′
whenever v′(s) = x.

Assume now that saturate 6∈ I ′′. Since I ′′ satisfies πI′saturate = Gr(πsaturate) this means
that B(r) 6⊂ I ′′ for every r ∈ Gr(πsaturate). Hence, in particular, B(r) 6⊂ I ′′ for the rule r

saturate:-asg(s1, v(s1)), asg2(s1, v
′(s1)), . . .

asg(sk, v(sk)), asg2(sk, v′(sk)).

This amounts to v 6= v′ and, hence, v <i v′. Also, B(r) 6⊂ I ′′ for the rule r
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saturate:-asg2(s, 1), inv2(s).

for every s ∈ S. This amounts to (since I ′′ satisfies πsat2(D)I′ = Gr(πsat2(D)); see proof
of Proposition 10) there not being any s ∈ S and w ∈ [v′]2 for which v′(s) = 1 and
w(s) = 0. In the same manner the fact that B(r) 6⊂ I ′′ for the rule r

saturate:-asg2(s, 0), sat2(s).

for every s ∈ S, means that there is no s ∈ S and w ∈ [v′]2 for which v′(s) = 0 and
w(s) = 1. But then v′ ∈ adm(D) which, together with the fact that v <i v

′, is a
contradiction to v ∈ prf(D).

On the other hand if saturate ∈ I ′′, since I ′′ satisfies all possible groundings of the
first three rules of πsaturate (as πI′saturate = Gr(πsaturate)), it would be the case that
whenever asg(s,u) ∈ I ′′ and hence v(s) = u (since I ⊂ I ′′) also asg2(s, x) ∈ I ′′ for every
x ∈ {u, 0, 1}. Moreover, if saturate ∈ I ′′, since I ′′ satisfies all possible groundings of the
last two rules of πsaturate, it would also follow that sat(s) ∈ I ′′ as well as inv(s) ∈ I ′′ for
every s ∈ S. This means that if saturate ∈ I ′′, then I ′ ⊆ I ′′. This is a contradiction to
our assumption that I ′′ ⊂ I ′. In conclusion, there is no I ′′ ⊂ I ′ that satisfies πprf (D)I′ .
Therefore I ′ ∈ AS(πprf (D)).

We turn now to proving that for any I ∈ AS(πprf (D)) it holds that v ∈ prf(D) for
v ∼= I. Note first of all that since I satisfies πadm(D)I by the proof of the “if” direction
of Proposition 10 we obtain that v is well defined and, moreover, v ∈ adm(D).

Since v ∈ adm(D), v 6∈ prf(D) would mean that there is a v′ ∈ adm(D) s.t. v′ >i v.
Now, notice first of all that since I ∈ AS(πprf (D)), saturate ∈ I since otherwise the
constraint

:-not saturate.

would not be deleted from πprf (D) (as must be the case) when forming the reduct
πprf (D)I and hence πprf (D) would have no answer set. We know from the proof of the
“only if” direction of Proposition 12 that from saturate ∈ I it then follows that I4 ⊆ I
where

I4 ={asg2(s, x) | s ∈ S, x ∈ {1, 0,u}, v(s) = u} ∪
{sat2(s) | s ∈ S} ∪
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{inv2(s) | s ∈ S} ∪
{saturate}.

Now let us define

I ′ := ∪p∈{arg,lt,asg,sat,inv} Ip ∪ {asg2(s, v′(s)) | s ∈ S} ∪
{sat2(s) | s ∈ S, there is a w ∈ [v′]2 s.t. w(φs) = 1} ∪
{inv2(s) | s ∈ S, there is a w ∈ [v′]2 s.t. w(φs) = 1}

for which by construction (and v′ >i v) I ′ ⊂ I holds. Notice first of all that since all
negative atoms of πprf (D) occur in πadm(D) ∪ {:-not saturate.} we have that

πprf (D)I = πadm(D)I ∪Gr(πguess2) ∪Gr(πsat2(D)) ∪Gr(πcheck(D)) ∪Gr(πsaturate).

Now, since I and I ′ are the same when considering the atoms occurring in πadm(D)I
(∪p∈{arg,lt,asg,sat,inv}Ip ⊂ I ′) and I satisfies πadm(D)I so does I ′. Moreover, since v′ >i v
by construction asg2(s, x) ∈ I ′ whenever asg(s, x) ∈ I for x ∈ {1, 0} and there is
a y ∈ {u, 1, 0} s.t. asg2(s, y) ∈ I ′ whenever asg(s,u) ∈ I. Hence I ′ also satisfies
πIguess2 = Gr(πguess2).

Using analogous arguments as in the “only if” direction of the proof of Proposition 10, from
the fact that asg2(s, x) ∈ I ′ iff v′(s) = x (for s ∈ S and x ∈ {1, 0,u}) and the definition
for when sat2(s) and inv2(s) are in I ′, it follows that v′ satisfies πIsat2 = Gr(πsat2). We
have also seen in the proof of the “only if” direction of Proposition 12 that v′ 6= v
and v′ ∈ adm(D) implies that I ′ does not satisfy the body of any of the rules in
πcheck(D)I = Gr(πcheck(D)). Finally, since saturate 6∈ I ′ it is also the case that I ′ satisfies
πIsaturate = Gr(πsaturate). In conclusion, we have that I ′ satisfies πprf (D)I and I ′ ⊂ I
which contradicts I ∈ AS(πprf (D))). Hence, there cannot be a v′ >i v s.t. v′ ∈ adm(D)
and therefore v ∈ prf(D) must be the case.

Example 9. The encoding πprf (D) for the ADF D from Example 1 as implemented by
our system YADF looks as follows:

leq(u,0).
leq(u,1).
leq(0,0).
leq(1,1).
arg(a).
arg(b).
arg(c).
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asg(S,u) :- arg(S),not asg(S,0),not asg(S,1).
asg(S,0) :- arg(S),not asg(S,1),not asg(S,u).
asg(S,1) :- arg(S),not asg(S,u),not asg(S,0).
sat(a) :- asg(b,Y0),leq(Y0,V0),V1=1-V0,V2=V1?V0,V2=1.
sat(b) :- asg(b,Y0),leq(Y0,V0),V0=1.
sat(c) :- asg(c,Y0),leq(Y0,V0),asg(b,Y1),leq(Y1,V1),

V3=1,V3=V2?V1,V2=1-V0.
inv(a) :- asg(b,Y0),leq(Y0,V0),V1=1-V0,V2=V1?V0,V2=0.
inv(c) :- asg(c,Y0),leq(Y0,V0),asg(b,Y1),leq(Y1,V1),

V3=V2?V1,V3=0,V2=1-V0.
inv(b) :- asg(b,Y0),leq(Y0,V0),V0=0.
:- arg(S),asg(S,1),inv(S).
:- arg(S),asg(S,0),sat(S).
asg2(S,0) :- asg(S,0).
asg2(S,1) :- asg(S,1).
asg2(S,0)|asg2(S,1)|asg2(S,u) :- asg(S,u).
sat2(a) :- asg2(b,Y0),leq(Y0,V0),V1=1-V0,V2=V1?V0,V2=1.
sat2(b) :- asg2(b,Y0),leq(Y0,V0),V0=1.
sat2(c) :- asg2(c,Y0),leq(Y0,V0),asg2(b,Y1),leq(Y1,V1),

V3=1,V3=V2?V1,V2=1-V0.
inv2(b) :- asg2(b,Y0),leq(Y0,V0),V0=0.
inv2(c) :- asg2(c,Y0),leq(Y0,V0),asg2(b,Y1),leq(Y1,V1),

V3=V2?V1,V3=0,V2=1-V0.
inv2(a) :- asg2(b,Y0),leq(Y0,V0),V1=1-V0,V2=V1?V0,V2=0.
saturate :- asg(c,X0),asg2(c,X0),asg(b,X1),asg2(b,X1),

asg(a,X2),asg2(a,X2).
saturate :- arg(S),asg2(S,0),sat2(S).
saturate :- arg(S),asg2(S,1),inv2(S).
asg2(S,u) :- asg(S,u),saturate.
asg2(S,0) :- asg(S,u),saturate.
asg2(S,1) :- asg(S,u),saturate.
sat2(S) :- arg(S),saturate.
inv2(S) :- arg(S),saturate.
:- not saturate.

An output of an ASP solver given this instance looks as follows (only showing asg and
saturate predicates):

Answer: 1
asg(c,u) asg(b,0) asg(a,1) saturate
Answer: 2
asg(c,1) asg(b,1) asg(a,1) saturate
SATISFIABLE
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Note that πprf , in addition to providing an encoding of the enumeration problem for
the preferred semantics, gives us adequate encodings from the complexity point of
view for skeptical acceptance. The latter via skeptical acceptance of ASP disjunctive
programs with predicates of bounded arity. Existence and credulous acceptance for
the preferred semantics are equivalent to existence and credulous acceptance for the
admissible semantics; the encodings given in section 3.2.1 (and 3.2.6) hence provide
adequate encodings for these reasoning tasks.

3.2.4 Encodings for the grounded semantics

Our encoding for the grounded semantics is based on the fact that (see [SW15]) v ∈ grd(D)
for an interpretation v and an ADF D = (S, {φs}s∈S) if v is the ≤i-minimal interpretation
satisfying

• for each s ∈ S such that v(s) = 1 there exists an interpretation w ∈ [v]2 for which
w(φs) = 1,

• for each s ∈ S such that v(s) = 0 there exists an interpretation w ∈ [v]2 for which
w(φs) = 0, and

• for each s ∈ S such that v(s) = u there exist interpretations w1 ∈ [v]2 and w2 ∈ [v]2
such that w1(φs) = 1 and w2(φs) = 0.

We say that an interpretation v for the ADF D that satisfies one of the above for
s ∈ S, that it satisfies the properties for being a candidate for being the grounded
interpretation w.r.t. s. The completions w1 and w2 verify this fact for v and s. If v
satisfies the properties w.r.t. every s ∈ S then v is a candidate for being the grounded
interpretation of D. An interpretation v′ <i v that is also a candidate for being the
grounded interpretation is a counter-model (alternatively, counter-example) to v being
the right candidate (for being the grounded interpretation).

Our encoding for the grounded semantics essentially consists first of all, once more in the
guessing part πguess where we guess assignments of truth values to the statements of the
ADF of interest D. This corresponds to guessing an interpretation v for D. Constraints
in our encoding filter out guessed interpretations which either are not candidates to being
the grounded interpretation or which have counter-models to being the right candidate.
These constraints rely on the rules in πsat(D) and rules defining when an interpretation
has a counter-model to being the right candidate respectively.

We start of with a few facts needed for our encoding. First of all, we use different facts to
those in πlt for encoding the truth values a possible counter-model to the interpretation
guessed via πguess (being the right candidate for the grounded interpretation) can take.
The reason is we need an additional argument (the first argument of the predicate
lne) allowing us to check whether the interpretation in question is distinct to the one
determined by the predicate asg.
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πlne :={lne(1,u, 1). lne(1,u, 0).} ∪
{lne(0, 1, 1). lne(0, 0, 0). lne(0,u,u).}

Secondly, we need a set of facts for checking whether an interpretation satisfies the
properties required for candidates to being the grounded interpretation. Specifically,
given a statement s of the ADF D, prop(x, y, z) can be used to check whether the correct
relationship between v(s), w1(s), and w2(s) holds for an interpretation v for D, and
w1, w2 ∈ [v]2. In particular, note that w1 = w2 is possible and hence prop(x, y, z) can
also be used to check the properties for when v(s) = x and x ∈ {1, 0}.

πprop :={prop(1, 1, 1). prop(0, 0, 0). prop(u, 0, 1).}

The module consisting of constraints checking whether the interpretation corresponding
to the assignments guessed via πguess is a candidate for being the grounded interpretation
assumes, as we stated earlier, that the rules in πsat(D) are also a part of the encoding for
the grounded semantics.

πca(D) :={:-arg(S), asg(S, 1),not sat(S). :-arg(S), asg(S, 0),not inv(S).} ∪
{:-arg(S), asg(S,u),not inv(S). :-arg(S), asg(S,u),not sat(S).}

Now, note that the grounded interpretation can be obtained via choosing the minimal
interpretation w.r.t. ≤i from all interpretations that correspond to some answer set of
the encoding

πca-grd(D) := πarg(D) ∪ πlne ∪ πprop ∪ πguess ∪ πca(D);

i.e. what essentially boils down to a skeptical acceptance problem for πca-grd(D).

In order to obtain an encoding not requiring processing of all answer sets we need a rule
defining when an interpretation is a counter-model to the interpretation determined via
the predicate asg being the right candidate. For this we will need to make repeated use
of the function Ω within a single rule and therefore first of all make the symbol ranging
over the ASP-variables representing subformulas of a propositional formula φ within Ω(φ)
an explicit parameter of the function. This is straightforward, but for completeness we
give the full definition of our parametrised version of the function Ω. Here φ is once more
a propositional formula built from propositional variables in a set P , while now V is an
arbitrary (meta-) symbol used to refer to the variables introduced by the function:

107



3. Advanced QBF and ASP encodings for ADFs

ΩV (φ) :=


ΩV (φ1) ∪ ΩV (φ2) ∪ {Vφ = Vφ1&Vφ2} if φ = φ1 ∧ φ2
ΩV (φ1) ∪ ΩV (φ2) ∪ {Vφ = Vφ1?Vφ2} if φ = φ1 ∨ φ2
ΩV (ψ) ∪ {Vφ = 1-Vψ} if φ = ¬ψ
∅ if φ = p ∈ P

Again, Vφ, Vφ1 Vφ2 and Vψ are variables representing the subformulas of φ. From now
on, whenever we introduce sets ΩV1(φ1) and ΩV2(φ2) for possibly identical formulas
φ1 and φ2 but distinct symbols V1 and V2, we implicitly also assume that that then
ΩV1(φ1) ∩ ΩV2(φ2) = ∅.

Our rule for defining counter-models to an interpretation being the right candidate for
the grounded interpretation requires first of all a part for “generating” an interpretation
less informative (w.r.t ≤i) and distinct than the interpretation determined by πguess; i.e.
a candidate counter-model. For this we use the atoms

λD := {asg(s,Xs), lne(Es, Ys, Xs) | s ∈ S} ∪ ΩE(∨s∈Ss) ∪ {E∨s∈Ss = 1}.

On the other hand, we introduce the following set of atoms to check whether the candidate
counter-model is indeed a counter-model to the interpretation determined by asg being
the right candidate. We need to check the properties candidates for being the grounded
interpretation need to satisfy for each of the statements s of the ADF of interest D;
therefore the need for having sets of atoms κs,D defined for every statement s:

κs,D :={lt(Yt, V (t,s),1) | t ∈ parD(s)} ∪ ΩV (t,s),1(φs) ∪

{lt(Yt, V (t,s),2) | t ∈ parD(s)} ∪ ΩV (t,s),2(φs) ∪

{prop(Ys, V (t,s),1
φs

, V
(t,s),2
φs

)}}

Note here the use of the predicate lt (rather than lne) and hence the need for also having
the module πlt within the encoding for the grounded semantics. Putting all the above
together we have a quite large rule defining when a candidate counter-model is indeed
a counter-model to the interpretation given by πguess being the right candidate for the
grounded interpretation:

πcm(D) := {cm:-λD ∪ {κs,D | s ∈ S}.}

The following is then an encoding for the grounded interpretation for the ADF D; allowing
to compute this interpretation in one go:

πgrd(D) := πarg(D) ∪ πlt ∪ πlne ∪ πprop ∪ πguess ∪ πca(D) ∪ πcm(D) ∪ {:-cm.}
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Proposition 13. For every ADF D it holds that grd(D) ∼= AS(πgrd(D)),

Proof. The proof is similar to that of Proposition 14.

We do not obtain complexity sensitive encodings for credulous and skeptical reasoning
w.r.t. the grounded semantics via the encoding πgrd. Nevertheless, the encoding offers
an alternative strategy to obtaining the (unique) grounded interpretation of an ADF to
that of the static encodings at the basis of the DIAMOND family of systems mentioned
in the introduction to this work (Section 1). Also, the encoding forms the basis of the
complexity adequate encoding for the stable semantics we present in Section 3.2.5.

3.2.5 Encodings for the stable semantics

As already hinted at and is to be expected, given the definition of this semantics (Definition
9), our encoding for the stable semantics is based on the encoding for the grounded
semantics. Nevertheless, some modifications are required. First of all we need to guess
assignments to statements of an ADF D corresponding to a two valued rather than a
three valued interpretation v for D. Secondly, we need to check that v is a model of
D. Third, we need to ensure that v assigns the truth value 1 to the same statements
as the grounded interpretation of the reduct of Dv (i.e. v �Ev = grd(Dv)) rather than D
simpliciter.

To start we slightly modify some facts used in previous encodings. Our encoding once
more follows the guess & check methodology and there will therefore be a part used to
guess a candidate v for being the stable interpretation of our ADF of interest D. We
will then need a modified version of πlt to set the right truth values for completions
of a candidate counter-model v′ to v (actually, v �Ev) being the right candidate for
the grounded interpretation (as explained in Section 3.2.4) of the reduct Dv. Such
completions will therefore assign the truth value 0 to any statement s of D whenever
v(s) = 0 independently of the value of v′(s) (the first argument of the predicate lt2 is
used to refer to the value of v(s)).

π′lt :={lt2(1,u, 0). lt2(1,u, 1). lt2(1, 0, 0). lt2(1, 1, 1).} ∪
{lt2(0,u, 0). lt2(0, 0, 0). lt2(0, 1, 0).}

The module πlne also needs to be modified (by one fact) to account for the fact that a
counter-model v′ to v �Ev (where v is the interpretation guessed to be stable) must be
distinct on the statements assigned the truth value 1 (i.e. there must be at least one
statement s to which v assigns the truth value 1 and v′ the truth value u).

π′lne :={lne(1,u, 1). lne(0,u, 0).} ∪
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{lne(0, 1, 1). lne(0, 0, 0). lne(0,u,u).}

We also need to modify πprop adding an extra-argument (again, the first one) to indicate
whether the property required per statement of an ADF for candidates for the grounded
interpretation is verified or not.

π′prop :={prop2(1, 1, 1, 1). prop2(1, 0, 0, 0). prop2(1,u, 0, 1). prop2(1,u, 1, 0).} ∪
{prop2(0, 1, 0, 1). prop2(0, 1, 1, 0). prop2(0, 1, 0, 0).} ∪
{prop2(0, 0, 0, 1). prop2(0, 0, 1, 0). prop2(0, 0, 1, 1).} ∪
{prop2(0,u, 0, 0). prop2(0,u, 1, 1).}

As already indicated, also our encoding for the stable semantics builds on a module
guessing possible assignments to the statements of the ADF D. We only need to slightly
modify πguess to obtain a conjecture for the stable interpretation corresponding to a two
valued rather than three valued interpretation for D:

π′guess := {asg(S, 0):-not asg(S, 1), arg(S).
asg(S, 1):-not asg(S, 0), arg(S).}

In order to check that the guessed interpretation is a model of D we again need to
evaluate the acceptance conditions of D but this time by the guessed interpretation. For
this we make use of the following sets of atoms per statement s of D:

µs := {asg(t, Vt) | t ∈ parD(s)} ∪ Ω(φs).

The following are then constraints, one per statement, filtering out guesses that are not
models of D:

πmodel(D) := {:- asg(s, Vs), µs, Vs 6= Vφs . | s ∈ S}.

Now, note that for any v ∈ mod(D), v �Ev is a candidate to being the grounded
interpretation of the reduct Dv. The reason is first of all that [v �Ev ]2 = {v �Ev} and,
hence, for any w ∈ [v �Ev ]2, w(φ′s) = v �Ev (φ′s) = v(φs) for the modified acceptance
conditions φ′s = φs[b/⊥ : v(b) = 0] of Dv. As a consequence, clearly whenever v �Ev

(s) = x for x ∈ {1, 0} (in fact, x = 1) there is a w ∈ [v]2, namely w = v �Ev , for
which w(φs) = x. In effect, the latter is the case by virtue of v ∈ mod(D) and hence
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v(φs) = v �Ev (φ′s) = x whenever v(s) = x. Also, there are no statements for which
v �Ev (s) = u. The consequence for our encoding for the stable semantics is that πmodel(D)
suffices for checking whether our guessed interpretation, when projected on the statements
to which it assigns the truth value 1, is a candidate for being the grounded interpretation
of Dv.

All that remains for our encoding of the stable semantics is therefore, as we have for the
encoding of the grounded semantics, a constraint filtering out guessed interpretations
which have counter-models to being the right candidate for being the grounded interpreta-
tion of Dv. For this we introduce a slightly modified version of πcm(D) accounting for the
fact that we need to check for counter-models to v �Ev being the right candidate for the
reduct Dv rather than v and D. This means that completions of potential counter-models
need to set any statement set to the truth value 0 by v also to 0. To encode this we
use the predicate lt2 rather than lt in our modified version κ′s,D of the set of atoms κs,D.
Also, we need to check the properties that candidates of the grounded interpretation
need to satisfy only for statements s for which v(s) = 1. To encode this we make use of
the predicate prop2 rather than prop and add a corresponding check using ASP built in
boolean arithmetic functions.

κ′s,D :={lt2(Xt, Yt, V
(t,s),1) | t ∈ parD(s)} ∪ ΩV (t,s),1(φs) ∪

{lt2(Xt, Yt, V
(t,s),2) | t ∈ parD(s)} ∪ ΩV (t,s),2(φs) ∪

{prop2(Ps, Ys, V (t,s),1
φs

, V
(t,s),2
φs

)} ∪ {CXs = 1−Xs, Os = Ps?CXs, Os = 1}

Our modified module π′cm(D) of πcm(D) is then as follows:

π′cm(D) := {cm:-λD ∪ {κ′s,D | s ∈ S}.}

Note that we here make use of the set of atoms λD as defined in Section 3.2.4, yet
relying on the definition of the predicate lne as given by the module π′lne rather than πlne.
Putting everything together the encoding for the stable semantics has the following form:

πstb(D) :=πarg(D) ∪ π′lt ∪ π′lne ∪ π′prop ∪
π′guess ∪ πmodel(D) ∪ π′cm(D) ∪ {:-cm.}

Proposition 14. For every ADF D it holds that stb(D) ∼= AS(πstb(D)).

Proof. Let D = (S, {φs}s∈S) be an ADF and v ∈ stb(D). Let also

I :=πarg(D) ∪ π′lt ∪ π′lne ∪ π′prop ∪ {asg(s, x) | s ∈ S, v(s) = x}
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be a set of ground atoms (such that v ∼= I). (We slightly abuse the notation here by
using e.g. πarg(D) to refer to the set of atoms rather than the facts in the module.) We
prove now that I ∈ AS(πstb(D)).

We start by proving that I satisfies πstb(D)I . Note first that I satisfies each of πarg(D)I =
πarg(D), π′Ilt = π′lt, π′Ilne = π′lne, π′Iprop = π′prop since all of the facts in each of these modules
are in I. I also satisfies

π′Iguess = {asg(s, x):-arg(s). | s ∈ S, asg(s, y) 6∈ I, x ∈ {1, 0}, y ∈ ({1, 0} {x})}

by the fact that v ∼= I.

Assume now that I satisfies the body of some constraint in πmodel(D)I , i.e. there is a
s ∈ S and a substitution σ s.t. asg(s, σ(Vs)) ∈ I, asg(t, σ(Vt)) ∈ I for each t ∈ parD(s),
σ(Ω(φs)) ∈ I, and σ(Vs 6= Vφs) ∈ I. This translates to v(s) 6= v(φs) which means
v 6∈ mod(D) and contradicts v ∈ stb(D). Therefore I does not satisfy any of the
constraints in πmodel(D)I .

Consider on the other hand that I satisfies the body of some rule in π′cm(D)I . This
means that there is a substitution σ such that first of all asg(s, σ(Xs))) ∈ I as well as
lne(σ(Es), σ(Ys), σ(Xs)) ∈ I for every s ∈ S. Also σ(ΩE(∨s∈Ss)) ∈ I and σ(E∨s∈Ss =
1) ∈ I. All of this together means that v′(s) <i v(s) for the interpretation v′ defined
as v′(s) := σ(Ys). Moreover, since I satisfies π′lt, there is an s ∈ S s.t. v(s) = 1 and
v′(s) = u. This means that also Ev 6= ∅ and v′ �Ev (s) <i v �Ev (s) where v �Ev and
v′ �Ev are interpretations of the reduct Dv.

Secondly, for every s ∈ S we have that lt2(σ(Xt), σ(Yt), σ(V (t,s),1)) ∈ I and also
lt2(σ(Xt), σ(Yt), σ(V (t,s),2)) ∈ I for every t ∈ parD(s). Consider the interpretations
wi for i ∈ {1, 2} defined as wi(t) = σ(V (t,s),i) for every t ∈ parD(s). Then wi(t) ≥i v′(t)
whenever v(t) = 1, but wi(t) = v(t) = 0 if v(t) = 0. This means that wi(φs) = wi �Ev (φ′s)
for φ′s = φs[b/⊥ : v(b) = 0], and wi �Ev∈ [v′ �Ev ]2. Now from σ(ΩV (t,s),1(φs)) ∈ I

for every t ∈ parD(s), σ(ΩV (t,s),2(φs)) ∈ I for every t ∈ parD(s), and the fact that
prop2(σ(Ps), σ(Ys), σ(V (t,s),1

φs
), σ(V (t,s),2

φs
)) ∈ I we have that σ(Ps) = 1 whenever w1 �Ev

and w2 �Ev verify that v′ �Ev satisfies the properties for being a candidate for the
grounded interpretation of Dv w.r.t. s ∈ Ev. Otherwise σ(Ps) = 0. Moreover, from
σ(CXs = 1 −Xs) ∈ I, σ(Os = Ps?CXs) ∈ I, and σ(Os = 1) ∈ I it follows that either
σ(Ps) = 1 or σ(Xs) = v(s) = 0 for every s ∈ S.

In other words, whenever s ∈ Ev (remember: Ev 6= ∅) there are completions that verify
that v′ �Ev satisfies the properties for being a candidate for the grounded interpretation
of Dv w.r.t. s. This means that v′ �Ev is a counter-model to v �Ev being the grounded
interpretation of Dv. This is a contradiction to v ∈ stb(D). Therefore, I does not satisfy
the body of any rule in π′cm(D)I and, hence, satisfies π′cm(D)I . Finally, since cm 6∈ I, I
does not satisfy the body of the constraint {:-cm.} ∈ πstb(D)I . In conclusion, I satisfies
πstb(D)I .
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Now consider any other I ′ that satisfies πstb(D)I . Clearly, since I ′ satisfies all of the
facts in πstb(D)I , we have that πarg(D) ∪ π′lt ∪ π′lne ∪ π′prop ⊆ I ′. But also because of the
form of π′Iguess (see above) and the fact that I ′ satisfies πarg(D)I it must be the case that
{asg(s, x) | s ∈ S, v(s) = x} ⊂ I ′. This means that in addition to I satisfying πstb(D)I
there is also no I ′ ⊂ I that satisfies πstb(D)I ; i.e. we have that I ∈ AS(πstb(D)).

We now turn to proving that for any I ∈ AS(πstb(D)) it holds that v ∈ stb(D) for v ∼= I.
Note first that for any such I, since I satisfies πarg(D)I = πarg(D) and π′Iguess, v s.t.
v ∼= I is well defined. Now assume that v 6∈ stb(D). Then either i) v 6∈ mod(D) or ii)
v ∈ mod(D) but v �Ev 6∈ grd(Dv).

In the first case i) there must be a s ∈ S s.t. v(s) 6= v(φs). Consider hence the substitution
σ defined as σ(Vs) = v(s) and σ(Vt) = v(t) for t ∈ parD(s). This substitution is s.t.
σ(B(r)) ⊆ I for the constraint in πmodel(D) corresponding to s. This would mean that
I does not satisfy πstb(D)I which is a contradiction. Therefore v ∈ mod(D) which also
means that v �Ev is a candidate for the grounded interpretation of Dv (as we argued in
detail while explaining our encoding πstb(D)).

Consider now the case ii). Since v �Ev is a candidate for the grounded interpretation
of Dv but v �Ev 6∈ grd(Dv) this means there is a counter-model v′ �Ev for v �Ev being
the right candidate for the grounded interpretation of Dv. First define v′ to be s.t.
v′(s) = v′ �Ev (s) for s ∈ Ev while v′(s) = v(s) for s 6∈ Ev. Define then the substitution
σ for which σ(Xs) = v(s) and σ(Ys) = v′(s) for every s ∈ S. Since v′ 6= v (because
v′ �Ev 6= v �Ev) there must be an s ∈ Ev ⊆ S for which v(s) 6= v′(s). Set σ(Es) = 1 for all
such s ∈ S, but σ(Es) = 0 whenever v(s) = v′(s). We thus have that σ(ΩE(∨s∈Ss)) ∈ I
and E∨s∈Ss = 1 ∈ I. Hence, σ(λD) ∈ I.

Now, since v′ �Ev is a counter-model to v �Ev being the right candidate for the grounded
interpretation of Dv we have that for every s ∈ Ev there are completions ws,1 and ws,2 of
v′ �Ev that are witnesses for v′ �Ev satisfying the properties candidates for the grounded
interpretation need to satisfy w.r.t. s. Hence, we continue defining the substitution
σ s.t. σ(V (t,s),i) = ws,i(t) for every s ∈ Ev and t ∈ parD(s) ∩ Ev. On the other hand
σ(V (t,s),i) = 0 for t ∈ parD(s) \ Ev. Also, σ(Ps) = 1 for every s ∈ Ev.

For s 6∈ Ev we on the other hand define σ(V (t,s),i) = w(t) (i ∈ {1, 2}), t ∈ parD(s) ∩ Ev
for some arbitrary w ∈ [v′]2. On the other hand σ(V (t,s),i) = 0 for t ∈ parD(s) \ Ev.
Also, σ(Ps) = 1 whenever v′(s) = w(φ′s) (φ′s = φs[b/⊥ : v(b) = 0]) and σ(Ps) = 0
otherwise. Then we have that σ(ΩV (t,s),i(φs)) ∈ I for s ∈ S, t ∈ parD(s), (i ∈ {1, 2}).
Also, σ(CXs = 1 − Xs) ∈ I, σ(Os = Ps?CXs) ∈ I, and Os = 1 ∈ I for every s ∈ S
(σ(Ps) = 1 for s ∈ Ev, while σ(CXs) = 1 for s 6∈ Ev). I.e. σ(κ′s,D) ∈ I for every s ∈ S.
Hence, since also σ(λD) ∈ I, we have that the body of a rule in π′cm(D)I is satisfied by
I and, therefore, cm ∈ I. This means that the constraint :-cm ∈ πstb(D)I is satisfied
by I which contradicts I ∈ AS(πstb(D)). Therefore, the case ii) is also not possible and
v ∈ stb(D) must be the case.

Example 10. The encoding πstb(D) for the ADF D from Example 1 as implemented

113



3. Advanced QBF and ASP encodings for ADFs

by our system YADF (we slightly condense the encoding by generating some facts using
rules) looks as follows:

arg(a).
arg(b).
arg(c).
val(u).
val(0).
val(1).
lt2(1,u,1).
lt2(1,u,0).
lt2(1,0,0).
lt2(1,1,1).
lt2(0,X,0) :- val(X).
lne(1,u,1).
lne(0,u,0).
lne(0,X,X):- val(X).
prop(1,1,1,1).
prop(1,0,0,0).
prop(1,u,1,0).
prop(1,u,0,1).
prop(0,X1,X2,X3) :- val(X1),val(X2),val(X3),not prop(1,X1,X2,X3).
asg(S,1) :- arg(S),not asg(S,0).
asg(S,0) :- arg(S),not asg(S,1).
:- asg(b,V0),V0!=V0.
:- asg(a,V1),asg(b,V0),V3=V2?V0,V3!=V1,V2=1-V0.
:- asg(c,V0),asg(b,V1),V3=V2?V1,V3!=V0,V2=1-V0.
cm :- asg(c,X0),asg(b,X1),asg(a,X2),lne(E0,Y0,XO),lne(E1,Y1,X1),

lne(E2,Y2,X2),E20=E0?E1,E21=E2?E20,E21=1,lt2(X0,Y0,V1),
lt2(X1,Y1,V2),V4=V3?V2,V3=1-V1,lt2(X0,Y0,V5),lt2(X1,Y1,V6),
V7=1-V5,V8=V7?V6,prop(P0,Y0,V4,V8),CX0=1-X0,OR9=P0?CX0,OR9=1,
lt2(X1,Y1,V10),lt2(X1,Y1,V11),prop(P1,Y1,V10,V11),CX1=1-X1,
OR12=P1?CX1,OR12=1,lt2(X1,Y1,V13),V15=V14?V13,V14=1-V13,
lt2(X1,Y1,V16),V17=1-V16,V18=V17?V16,prop(P2,Y2,V15,V18),
CX2=1-X2,OR19=P2?CX2,OR19=1.

:- cm.

An output of an ASP solver given this instance looks as follows:

UNSATISFIABLE

We note that also πstb, in addition to giving us an encoding of the enumeration problem
for the stable semantics, provides us with complexity sensitive encodings for credulous as
well as skeptical reasoning via the corresponding ASP reasoning tasks.
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3.2.6 DIAMOND style encodings

ASP-based systems for ADFs are best represented by the DIAMOND family of systems[ES14,
ES16, SE17]. From the start the systems in the DIAMOND family support reasoning
with subclasses of ADFs with the last version of DIAMOND, goDIAMOND[SE17], allowing
ADFs with acceptance conditions expressed as propositional formulas and as boolean
functions, as well as bipolar ADFs and AFs (previous versions also included prioritized
ADFs). The encoding for the different semantics usually stays the same; what changes
for the different subclasses are the encodings for the computation of the consequence
operators (or characteristic operators) associated to the different formalisms to obtain
the semantics.

The different versions of DIAMOND typically rely on static encodings, i.e. the encodings
do not change for different ADF instances. This approach is hence limited by the data
complexity of ASP (which only reaches the second level of the polynomial hierarchy;
see Section 2.2.4). To handle reasoning problems going beyond the second level of the
polynomial hierarchy DIAMOND systems transform ADFs with acceptance conditions
expressed as propositional formulas to ADFs with boolean formulas; an operation which
may involve an exponential blowup.

While the encodings we presented in sections 3.2.1 to 3.2.5 avoid this last problem, an
argument can be made for dynamic encodings of the characteristic operator for ADFs;
thus keeping in line with the more modular style of the DIAMOND family and also enabling
making more or less direct use of the DIAMOND encodings for the different ADF semantics
(including semantics as the conflict-free, naive, and stage semantics for which we do
not provide encodings in this work). In any case, such alternative encodings are worth
having; we therefore give dynamic ASP encodings of the characteristic operator for ADFs
using the representation of acceptance conditions as propositional formulas here. The
encodings are based on those of goDIAMOND. We give examples of how to tie in this
encoding with DIAMOND (specifically, again goDIAMOND) style encodings of some of the
semantics and point out some possible advantages of the DIAMOND style encodings over
the encodings we presented in sections 3.2.1 to 3.2.5. For clarity we here use the symbol
ρ rather than π to distinguish the DIAMOND-style encodings to those presented in the
latter sections.

For the encoding of the characteristic operator ΓD for an ADF D = (S, {φs}s∈S), we
add a further parameter to several modules we have introduced before. The parameter
in question, which we represent with the variable I within our encodings, refers to an
application or step of the operator ΓD. In particular we add an argument to our predicate
asg (the last one) to be able to refer to the number of iterations of ΓD used to obtain
the ADF interpretation represented by ground atoms built using this predicate. A new
parametrised version of the module πguess is then obtained as follows:

ρguess(i) := {asg(S, 0, i):-not asg(S, 1, i),not asg(S,u, i), arg(S).
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asg(S, 1, i):-not asg(S,u, i),not asg(S, 0, i), arg(S).
asg(S,u, i):-not asg(S, 0, i),not asg(S, 1, i), arg(S).}

We here assume that the arguments of the ADF D are specified by a separate module
defined just as in previous encodings:

ρarg(D) := πarg(D) = {arg(s). | s ∈ S}

We also use parametrised versions of the predicates sat and inv to refer to the fact that
there are completions corresponding to the interpretation obtained via a number of
applications of ΓD of interest that evaluate the acceptance condition of the interpretation
in question to the truth value 1 and 0 respectively. For this we first of all define a modified
version of the set of atoms ωs introduced in Section 3.2.1 for a statement s of the ADF
D:

ωs(I) := {asg(t, Yt, I), lt(Yt, Vt) | t ∈ parD(s)} ∪ Ω(φs).

Our modified version of the module πsat(D) is then as follows. Here the predicate step is
used to refer to the number of iterations or steps the characteristic operator ΓD has been
applied.

ρsat(D) := {sat(s, I):-ωs(I), Vφs = 1, step(I).
inv(s, I):-ωs(I), Vφs = 0, step(I). | s ∈ S}.

The following module now provides shortcuts for when there, first of all, are completions
corresponding to the interpretation obtained via a number of iterations of ΓD of interest
evaluating the acceptance condition of a statement to the truth value 1 as well as
completions evaluating the acceptance condition to 0 (conti). Secondly, for when all
completions evaluate the acceptance condition to 1 (valid); finally for when all completions
evaluate the acceptance condition to 0 (unsat).

ρvalid(D) := {conti(S, I):-sat(S, I), inv(S, I).
valid(S, I):-sat(S, I),not inv(S, I).
unsat(S, I):-inv(S, I),not sat(S, I).}

Now computation of the admissible semantics for the ADF D corresponds to guessing
an interpretation (via ρguess(0)), applying the characteristic operator ΓD to the guessed
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interpretation once (this is indicated by the fact step(0)), and checking whether the
guessed interpretation is compatible with the application of ΓD to it (i.e. for the guessed
interpretation v, v(s) ≤i ΓD(v)(s) for every s ∈ S; equivalently if v(s) = x then there
is some w ∈ [v]2 s.t. w(φs) = x for x ∈ {1, 0}). Finally, the predicate asg with two
arguments rather than three is used to set the output of the program.

ρadm(D) :=πarg(D) ∪ {step(0).} ∪ ρguess(0) ∪ ρsat(D) ∪ ρvalid(D) ∪
{:-asg(S, 1, 0), inv(S, 0). :-asg(S, 0, 0), sat(S, 0).} ∪
{asg(S, 1):-asg(S, 1, 0). asg(S, 0):-asg(S, 0, 0). asg(S,u):-asg(S,u, 0).}

The resulting encoding is very similar and, in fact, slightly more cumbersome to the
encoding πadm(D) we presented in Section 3.2.1. More significant differences arise when
using the DIAMOND style encodings for semantics such as the grounded and stable for
which in sections 3.2.4 and 3.2.5 respectively we gave encodings more clearly deviating
from their definition in terms of the characteristic operator.

As an example, let us consider the encoding for the grounded semantics in the DIAMOND
style. The encoding is based on the incremental application of the characteristic operator
ΓD starting with the minimally informative interpretation (w.r.t ≤i) that assigns the
truth value u to all statements of the ADF D. So, in this case, rather than with a guess,
we start with assignments to statements corresponding to the minimally informative
interpretation:

ρu(D) := {asg(s,u, 0). | s ∈ S}

The predicate step needs to be initialised and a maximum number of applications of
the characteristic operator needs to be set to avoid infinite groundings of the encoding
for the grounded semantics. The latter is done by using the predicate maxit (|S| is the
maximum number of iterations needed to reach a fix point of ΓD)

ρi(D) := {step(0). maxit(|S|).}

The interpretation obtained by one step of the application of ΓD is computed using the
predicates defined in ρvalid(D):

ρnasgn := {asg(S, 1, I + 1):-valid(S, I).
asg(S, 0, I + 1):-unsat(S, I).
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asg(S,u, I + 1):-conti(S, I).}

The following program fragment then computes the steps required for computing the
minimal fixpoint of ΓD as well as when a fixpoint has been reached (the latter via the
predicate fp):

ρfp := {fp(I):-step(I), fp(S, I), arg(S).

fp(S, I + 1):-asg(S, 1, I + 1), asg(S, 1, I).
fp(S, I + 1):-asg(S, 0, I + 1), asg(S, 0, I).
fp(S, I + 1):-asg(S,u, I + 1), asg(S,u, I).

step(I + 1):-step(I),not fp(I),not maxit(I).

The grounded interpretation has been computed whenever a fixpoint has been reached;
alternatively, the maximum number of interpretations of ΓD has been reached. The
following program fragment thus sets the output predicates accordingly:

ρout := {asg(S, 1):-asg(S, 1, I), fp(I).
asg(S, 0):-asg(S, 0, I), fp(I).
asg(S,u):-asg(S,u, I), fp(I).

asg(S, 1):-asg(S, 1, I),maxit(I).
asg(S, 0):-asg(S, 0, I),maxit(I).
asg(S,u):-asg(S,u, I),maxit(I).}

The dynamic DIAMOND style encoding for the grounded semantics is thus as follows:

ρgrd(D) :=πarg(D) ∪ ρi(D) ∪ ρu(D) ∪ ρsat(D) ∪
ρvalid(D) ∪ ρnasgn ∪ ρfp ∪ ρout

While the encoding πgrd(D) is arguably more declarative and simpler, the encoding
ρgrd(D) more clearly follows the (standard) definition of the grounded semantics and
avoids the long rule in πcm(D) used to compute a counter-model to the guessed inter-
pretation being the right candidate for the grounded interpretation of the ADF D in
the encoding πgrd(D). In conclusion, both encoding styles have their a-priori advantages
and disadvantages; empirical studies may aid in further discriminating between them in
practice.
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3.2.7 Implementation and experiments

We have implemented a system which, given an ADF, generates the encodings for the
ADF presented in sections 3.2.1 to 3.2.5. The system, YADF (“Y” for “dynamic”), is
publicly available14 and currently (version 0.1.1) supports the admissible, complete,
preferred, and stable semantics. As is the case of our system QADF, it is implemented in
Scala15 and can, therefore, be run as a Java16 executable.

The input format for YADF is the input format that has become the standard for ADF
systems and has already been presented in Section 3.1.4 (minus the information about
the link types which YADF does not support). A typical call of YADF (using a UNIX
command line) looks as follows:

java -jar yadf_0.1.1.jar -adm -cred a filename | \
./path/to/lpopt | ./path/to/clingo

Here we ask YADF for the encoding of credulous reasoning w.r.t. the admissible semantics
for the ADF specified in the file specified via filename and the statement a. As hinted at
in the introduction to this work, using the rule decomposition tool lpopt17 [BMW16b]
is recommended for larger ADF instances. We have tested YADF using the ASP solver
clingo [GKK+18]18. We provide the complete usage (subject to change in future
versions) of YADF:

usage: yadf [options] inputfile
with options:
-h display this help
-adm compute the admissible interpretations
-com compute the complete interpretations
-prf compute the preferred interpretations
-stb compute the stable interpretations
-cred s check credulous acceptance of statement s
-scep s check sceptical acceptance of statement s

We have reported on an empirical evaluation of the performance of YADF w.r.t. some of
the main alternative ADF systems available: DIAMOND [ES14] (static ASP based system;
version 0.9) and QADF [DWW14] (QBF based system; version 0.3.2) in [BDH+17]. After
this work, there have been three further experimental evaluations of ADF systems
(including YADF) [Kes17, DKLW18, LMN+18a] (two in which we collaborated) largely

14https://www.dbai.tuwien.ac.at/proj/adf/yadf/
15https://www.scala-lang.org/
16https://www.java.com
17https://www.dbai.tuwien.ac.at/research/project/lpopt/
18https://potassco.org/clingo/
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based on the setup of our experiments for [BDH+17], but also considering newer systems:
the newest variant of DIAMOND, goDIAMOND [SE17], as well as the incremental SAT-
based system k++ADF [LMN+18a]. The setup and results of our study for [BDH+17] are
detailed in Appendix B. Moreover, in Section B.3 of Appendix B we survey all recent
empirical evaluations of ADF systems and reassess the results from [BDH+17] in light
thereof.

The general conclusion, as also expressed at the end of Appendix B, is that while
our experiments from [BDH+17] suggested YADF to be the better performing of the
then considered systems (DIAMOND 0.9 and QADF 0.3.2) this picture has changed with
subsequent experiments. In particular, the clearly overall best performing approach for
ADF systems seems to be, at current moment, the incremental SAT-based approach
implemented in the system k++ADF (despite the fact that even this system still has quite
a few time-outs when applied to dense ADFs for the preferred semantics). But even just
considering ASP-based systems, while competitive for the admissible semantics, YADF
is clearly behind in performance w.r.t. goDIAMOND on the ADFs considered in recent
investigations.

Some hope is provided by results on very dense ADFs considered in the experiments,
where the constraint built into goDIAMOND of not supporting ADFs with statements
having more than 31 parents (given the need for translating ADFs with propositional
acceptance conditions to acceptance conditions as boolean formulas) is reflected in the
constant number of time-outs on all reasoning tasks (admissible and preferred) as well
as on acyclic and non-acyclic instances. While YADF also has quite a few time-outs (in
fact, a few more than goDIAMOND), there is some increase in performance on the acyclic
instances (and better average run-times than for goDIAMOND) which suggests room for
improvement.
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CHAPTER 4
Towards an ASP based controlled

natural language interface to
argumentation

In this section we develop the design of a controlled natural language (CNL) [Kuh14]
based interface to argumentation, that ultimately relies on ASP. Specifically we motivate
and show the design of an implementation of what co-authors of ours have dubbed the
EMIL (acronym for “Extracting Meaning from Inconsistent Language”) pipeline [SWD].
The input of the pipeline in question are collections of rules in an extension of an existing
CNL, ACE [FKK08], allowing for the expression of potentially conflicting defeasible rules
in the form of normality assumptions in addition to strict rules. Such rules are, whenever
possible, translated into defeasible theories or programs as defined in Section 2.4 and
can, hence, be made sense of in terms of the direct stable semantics also defined in the
latter section. Finally, stable sets are verbalised using ACE.

The design of the system we develop here is based on our experience with an initial
experimental prototype implementing EMIL we developed relying heavily on an existing
interface to rule systems for ACE, ACERules [Kuh07]. The nature of this initial prototype
is sketched in Section 4.2.2. We encountered several issues with this system which led to
an in-depth investigation of the inner workings of ACERules; the results of which forms
a large part of this chapter. Specifically in Section 4.1 we give a high level description
of the system ACERules, paying attention not only to features we have adopted in
our design but particularly to the sources of the problems we found. Note that such a
description is unavailable to date; the only publications on ACERules [Kuh07, Kuh10]
deal with so called grouping (see Section 4.1.3) and in a less detailed manner than we
do here. Our description is, nevertheless, based on an analysis of the very transparent
and quite well documented (although the accompanying documentation is somewhat
outdated) source code of ACERules.
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The system ACERules basically works by filtering ACE texts corresponding to general
rules allowing, for instance, existentially quantified variables as well as conjunctions of
atoms in the heads and bodies of rules. In particular, these atoms can appear negated
(either via strong negation or negation-as-failure). A large part of the system ACERules
consists in several transformations attempting to make such general rules, which we call
∃-rules [GGLS15], conform to the format of the rule systems it provides an interface to
(e.g. normal logic programs as defined in Section 2.2). The issues we encountered when
using the system ACERules are with these transformations. Summarising, the problem
is that in some cases the transformations introduce semantic errors in the interpretation
of ACE texts. On the other hand, providing an interface to rule systems while preserving
the semantics, leads to many natural ACE texts expressed as rules being filtered-out
when they could be handled with modern-day rule systems (as we show in Section 4.2.4).

In Section 4.2 we outline the already alluded to alternative design for an implementation of
EMIL. The crucial aspect of this implementation is that we target ∃-rules, also including
defeasible in addition to strict ∃-rules, rather than normal rules. Our translation of such
∃-rules to normal rules, which we further discuss as well as sketch in Section 4.2.4.1,
allows us to circumvent the main problems we found with ACERules in a uniform
manner; on the other hand we adopt features of ACERules we found to be of benefit.
We show encodings for evaluating defeasible theories via the direct stable semantics
using ASP in Section 4.2.4.2. In contrast to previous existing encodings [SW17], these
encodings are optimised for defeasible theories with variables as well as function symbols
(which we make use of in our translation of ∃-rules to normal rules). In Section 4.3
we give an extended example of the use of an implementation of the EMIL pipeline in
motivating this pipeline in the context of ACEWiki [Kuh09], a prototype of a Wikipedia
style encyclopedia expressed in ACE.

Before turning to the description of the features and limitations of the system ACERules
and the design of our novel implementation of the EMIL pipeline we give a very brief
overview of the CNL ACE highlighting aspects important for our work (Section 4.0.1).
In Section 4.4 we present the functioning of an initial prototype, emil, we implemented
based on the ideas developed in this chapter as well as the results of some preliminary
experiments. Given the (practical) complexity of the tasks studied in this chapter and
the more exploratory nature of the work, we turn here to a more informal presentation
than in the previous chapters.

4.0.1 ACE: a brief overview

Attempto Controlled English or ACE for short, is a controlled natural language for
English with an unambiguous translation to first order logic[FKK08]. We here refer to
ACE version 6.7, the last version of ACE available at the time of writing this work. The
vocabulary of ACE is composed of a fixed set of function words (determiners, quantifiers,
coordinators, negation words, pronouns, query words, modal auxiliaries, copula be, and
Saxon genitive marker ’s) as well as a fixed set of predefined phrases (e.g. “there is”, “it
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is false that”). ACE content words, which are user defined and extendable, are nouns,
adjectives, adverbs, and prepositions.

Main building blocks for ACE texts are simple sentences having the structure: subject +
verb + complements + adjuncts. Complements (direct and indirect objects) are necessary
for transitive verbs (e.g. “insert something”) and ditransitive verbs (give something to
somebody, give somebody something). Adjuncts (adverbs, prepositional phrases), on the
other hand, are optional. Verb phrases are written in third person singular or plural,
present tense, and active or passive voice. Composite ACE sentences are recursively built
from the simple sentences using coordination (e.g. and/or), subordination (e.g. if/then
sentences, negation) , quantification (e.g. “there are”, “for each”), and negation. ACE
also includes constructs for expressing queries and commands. The construction rules for
ACE are detailed in [ace13a].

ACE texts (sequences of ACE sentences) are interpreted using a deterministic set of
interpretation rules; these are detailed in [ace13b]. E.g. the ACE sentence (example from
[ace13b])

A customer inserts a card that is valid and opens an account.

which in English is ambiguous between the customer or the card opening the account, in
ACE has the fixed meaning that the customer opens the account. In order to express
that the card opens the account the following alternative needs to be used (note the
“that” before “opens an account”):

A customer inserts a card that is valid and //
that opens an account.

As a further important example, also constructs involving anaphoric references are
interpreted in a uniform manner by the interpretation rules of ACE; more precisely, all
anaphoric references are identified with the most specific accessible noun phrase that
agrees in gender and number. E.g. given the sentence (again, the example is from
[ace13b])

A customer enters a red card and a blue card.

then

The card is correct.

refers to the blue card while
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The red card is correct.

refers to the red card.

Formally, the semantics of ACE texts is defined in terms of discourse representation
structures (DRSs)[BB05]. DRSs are constructed dynamically to support anaphora
resolution (e.g. associating pronouns with their referents), but once computed (i.e. all
anaphoric references are resolved) can be translated to first oder logical formulas. To
simplify matters we will, hence, in this work treat DRSs and their first order (FOL)
representations more or less synonymously, and only show the first order representation
of DRSs corresponding to ACE texts we consider.

The DRSs (or first order formulas) used to interpret ACE texts [FKK13] make use of a
reified or “flat notation” for logical atoms. E.g. a sentence such as “Mary gives John a
present” which in first order logic textbooks would customarily be represented more or
less as

∃A(present(A) ∧ give(mary,A, john))

is, rather represented as:

∃A,B
(
object(A, present, countable, na, eq, 1)
∧
predicate(B, give, named(Mary), A, named(John))

)
where nouns and verbs are “wrapped” into the special atoms “object” and “pred-
icate”; in particular with “object” including further semantic information (“count-
able”,”na”,”eq”,”1”) pertaining to the semantics of the noun phrase (“a present”) in
question (e.g. “countable” indicates that “present” is a countable rather than a mass
noun)1. Crucially, verb phrases are given a Neo-Davidsonian event-theoretic seman-
tics [Par90], thus introducing a referent (quantified variable; in the example “B”) allowing
to attach modifiers stemming from adverbs and prepositional phrases used in ACE texts
as for the simple ACE sentence “Mary reluctantly gives John a present” which has the
interpretation

∃A,B
(
object(A, present, countable, na, eq, 1)

1The parse of ACE texts given by the parser for ACE APE also includes additional elements to refer to
the position in the ACE text in which the different constituents of phrases are introduced. For simplicity,
we ignore these in what follows.
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∧
modifier_adv(B, reluctantly, pos)
∧
predicate(B, give, named(Mary), A, named(John))

)

Note, in particular, the logical atom “modifier_adv” used to attach the (non comparative,
i.e. positive) adverb “reluctantly” to the event of “giving” introduced by the sentence.
Specialised atoms are used for noun phrases (“object”), adjectives (“property”), relations
introduced by the of construct (“relation”), relations introduced by different forms of verbs
(“predicate”), modifiers introduced by adverbs (“modifier_adv”), modifiers introduced
by prepositional phrases (“modifier_pp”), for the distributive reading of plural noun
phrases (“has_part”), and queries (“query”). Critical for our purposes is that only
noun phrases and verb phrases introduce referents (quantified variables) in DRSs; the
remaining predicates make use of the referents introduced by noun and verb phrases.
Note also that named entities e.g. “Mary” are wrapped inside of the “named” function,
e.g. “named(Mary)”. For details on the form of the DRSs that underly the semantics of
ACE we refer to [FKK13].

Beyond the appropriateness of ACE for basic knowledge representation, a large part of
the attraction of ACE comes from the many open source tools that are available, also
in the form of web-services. The main workhorse for ACE is the parser APE, which
among many other things parses ACE texts into DRSs and also offers translations of the
DRSs into several other formats including FOL. It also offers paraphrasing of ACE texts
(which eases composing ACE texts with the intended meaning) as well as verbalisation
of DRSs into ACE, specifically Core ACE and NP ACE [Kal09]. APE comes bundled
together with a lexicon of around 100,000 entries for content words; it can also guess
the category of words not in the lexicon but as an alternative words can be preceded
with a label indicating the category. E.g. “a:extramundane n:eviternity” indicates that
“extramundane” is an adjective and “eviternity” a noun.

The main reasoning system available for ACE is RACE [Fuc10] which adapts the theorem
prover Satchmo [MB88] to check consistency, textual entailment and answer queries
for ACE texts. RACE supports all of ACE but is, therefore, also rather inefficient in
practice. The basis of our work, as already indicated, is the system ACERules [Kuh07]
which offers an ACE interface to rule systems. We will describe this system in detail in
Section 4.1. Most tools for ACE, including APE, RACE, and ACERules are implemented
in Prolog [Bra14]. The versions of APE and ACERules we refer to in this work are
versions 6.7-131003 and 2008-11-24 respectively. We also made use of the RACE web-
client2. We refer to the webpage of the Attempto project for further resources, tools, as
well as more detail on the tools available for ACE3.

2At http://attempto.ifi.uzh.ch/race/. Last accessed on 2019-01-08.
3http://attempto.ifi.uzh.ch/site/resources/
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4.1 Design, features, and limitations of the system
ACERules

AceRules builds on APE to provide an ACE-based interface to formal rule systems.
More specifically, the target formal rule systems are logic programs under the stable
[GL88] (section 2.2) as well as the courteous semantics [Gro97]. Thus, the rule systems
are as the logical programs described in Section 2.2; yet without function-symbols and
having strong negation, written with the symbol ¬, in addition to negation as failure.
Strong negation allows to express that some fact (written as an atom) is provably not
the case [GL91]. Evaluation via the courteous semantics also allows defining priorities
over rules but is, on the other hand, only defined for a subset of logical programs: acyclic
programs. AceRules relies on external solvers for evaluation via the stable semantics
and includes a native implementation of the courteous semantics. As already indicated,
AceRules is implemented in Prolog.

A large part of AceRules consists in taking the DRS output as given by APE and
applying a series of transformations with the goal of making this output conform to the
syntax of logical rules. We now describe in some detail each of these transformations
more or less in the order in which they take place in AceRules, also pointing out some
bugs and limitations we found. This section presents an attempt at “reverse-engineering”
a high level yet useful -, for analytical purposes,- description from the very well structured
and commented source code of AceRules. As we already indicated, grouping, which we
also describe in this section (Section 4.1.3), is considered (in less detail) in [Kuh07].

4.1.1 Filtering relevant DRSs

Whenever these appear in the input ACE text, ACERules starts by processing meta-
structures (labels and overrides statements) which can be used by the courteous semantics.
We don’t consider this step here as it is tangential to our work (although they play a role
in the prototype we implemented that is described in Section 4.2.2). Then the system
applies APE to obtain a DRS corresponding to the input text.

As a first step relevant for our work, AceRules checks that the DRS that results from
applying APE to the input ACE text has a syntactic structure amenable to further
transformations. The syntactic structure in question is that on the one hand the DRS
contains conditions which are “wide literals”. These correspond to either a conjunction
of atoms (including a single atom) or strict negation applied to a conjunction of atoms.
Wide literals can also contain “flat modality boxes” in the place of atoms. The latter,
whose further treatment we ignore in what remains for being extraneous to our work, are
modality operators applied to conjunctions of atoms.

On the other hand, the DRSs that result from applying APE to the input ACE text can
also contain conditions corresponding to implications B → H having exactly one wide
literal in the head H as well as several (possibly, just one) wide literals in the body B.
The wide literals in the body B can also appear nested within a negation as failure DRS.
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We call the latter “naf wide literals” (these hence include simple wide literals; i.e. those
which don’t appear nested within a negation as failure DRS). Implications of the form
((B1 → B2)→ H) with H corresponding to a single wide literal and B1 as well as B2 to
conjunctions of naf wide literals are transformed to conditions representing the equivalent
implications (B1 ∧B2)→ H.

In conclusion, ACE texts that survive the first check of the DRSs obtained from APE by
ACERules are those which (after transformation of rules with double implication) are
parsed as collections of rules having wide literals in the head and naf wide literals in the
body. The rules in question can also have empty bodies; these are simply wide literals.
We call such rules ∃-rules, since they have more or less the form of the rules of ∃-ASP
(excluding strong negation) as defined in [GGLS15].

4.1.2 Condensation and other transformations of the atoms of the
DRSs

4.1.2.1 Transformations of atoms introduced by nouns

Right after having filtered DRSs relevant for further transformation, ACERules applies
a series of transformations at the level of the predicates of the DRSs. First of all, APE
produces special atoms standing for indefinite pronouns. These are the predicate

object(A, somebody, countable, na, eq, 1)

for “someone/somebody” (negated for “no one/ nobody”) and the predicate

object(A, something, dom, na, na, na)

for “something” (negated for “nothing”). ACERules removes such predicates4, replacing
them with predicates standing for an “anonymous object”

object(A, V1, V2, V3, V4, V5)

and where each Vi (1 ≤ i ≤ 5) is a fresh variable not appearing elsewhere in the DRS.
Also, the Vis are quantified in accordance to where they appear in the DRS.

4Strictly speaking ACERules replaces any predicates of the form object(A, somebody,Q, na, eq, 1)
and object(A, something,Q, na, na, na) where Q can be any constant. We assume this is to also cover
the “named” class of objects which is introduced by ACERules to represent objects introduced by proper
names as we explain furtheron.
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Example 11. The sentence “Everybody loves something.” which by APE gets parsed as

∀A
(
object(A, somebody, countable, na, eq, 1)→

∃BC(object(B, something, dom, na, na, na) ∧ predicate(C, love,A,B))
)

is transformed (ignoring later transformations such as predicate condensation and skolemi-
sation which remove all existentially quantified variables) by ACERules into

∀ABCDEF
(
object(A,B,C,D,E, F )→

∃GHIJKLM(object(G,H, I, J,K,L) ∧ predicate(M, love,A,G))
)

This transformation has, on the one hand, the positive effect of making every statement
involving an indefinite for persons applicable to all persons; e.g. from the text

Mary is a person.
Everyone loves something.

it follows without further ado that “Mary loves something”. Also, every statement
involving an indefinite for things is applicable to things; e.g. from the text

There is a table.
Everything is physical.

it follows that “The table is physical”. The problem is clearly that the transformations of
ACERules blur the distinction between inanimate objects and persons. E.g. from the
text

There is a table.
Everybody likes Mary.

the current version of ACERules returns the result5 (under e.g. the courteous semantics):

There is a table X1.
The table X1 likes Mary.
Mary likes Mary.

5In defense of ACERules it should be mentioned that RACE suffers from a similar problem; thus
posing the query “Is there a table that likes Mary?” results in RACE answering yes.
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Related to the transformation of the predicates standing for “anonymous” objects, special
(skolem-) constants are introduced by APE when proper names are mentioned in a text.
E.g. “John waits” is represented as

∃A
(
predicate(A,wait, named(John))

)
where the constant named(John) stands for “John”. ACERules adds an object predicate
for any such constant standing for a proper name it finds. E.g. atoms standing for the
conjunction

object(named(John), John, named, na, eq, 1) ∧
object(named(Mary),Mary, named, na, eq, 1)

are added to the DRS for a text containing “John waits for Mary at the train-station”.
This allows e.g. the rule “everybody likes something”, in the transformed rendering given
by ACERules, to also be applicable to Mary and John. Note that here the class “named”
has been added to the possible classes for objects {dom,mass, countable} introduced by
APE [FKK13].

In conclusion, replacing predicates standing for indefinite pronouns with a predicate
standing for anonymous objects introduces errors. Although this is a “quick fix” for
dealing with many ACE texts, a cleaner solution seems to us to be to not modify the
predicates given by APE and rather introduce additional rules for specifying the desired
relations. These can be added either at system or user-level. E.g. the parse given by
APE for the sentences

Mary is a person.
Every person is somebody.
Everyone loves something.

introduces the right relations to allow the inference that “Mary loves something”. Intro-
duction of appropriate rules at system level would require further semantic information
about noun phrases than what is currently available as part of the output of APE6.

4.1.2.2 Predicate condensation

As we have explained in Section 4.0.1, APE produces reified or flat notations for logical
atoms. In particular, verbs and their modifiers (adverbs and prepositional phrases) are

6Note that, in particular, not all named objects are “somebodies” as, for instance, cities and dogs can
have names as well.
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given an event-theoretic semantics. I.e. verbs introduce referents standing for events and
modifiers are then predicated on such events in a manner very much resembling the way
adjectives are properties of objects introduced by noun phrases.

The problem for ACERules is, first of all, that this manner of handling verb phrases
introduces several atoms linked together by conjunction (i.e. wide literals rather than
literals as required by logical rules). A more serious issue is that the event-theoretic
semantics introduces referents or quantified variables (over events). Often these are
implicitly existentially quantified or are introduced within negations. This is in contrast
to the input languages of the rule systems ACERules links to which only allow a restricted
form of quantification: universal quantification over variables introduced by positive
atoms in the bodies of rules.

Predicate condensation is the solution implemented by the system ACERules to deal
with the aforementioned issues. Roughly, the solution is to aggregate atoms referring to
verbs with those of their modifiers while removing the variables introduced to refer to
the events denoted by verbs.

Example 12. The sentence "Brutus unhesitatingly stabs Caesar in the back with a knife."
(adapted from [Par90]) gets parsed by APE as

∃ABC
(
object(C, back, countable, na, eq, 1) ∧ object(A, knife, countable, na, eq, 1)
∧modifier_adv(B, unhesitatingly, pos)
∧ predicate(B, stab, named(Brutus), named(Caesar))
∧modifier_pp(B,with,A) ∧modifier_pp(B, in,C)

)
ACERules removes the variable B introduced for the verb “stab” and groups together
the predicates for the verb and its modifiers in a new predicate pred_mod, where the last
argument includes a list with the modifiers:

∃AC
(
object(C, back, countable, na, eq, 1) ∧ object(A, knife, countable, na, eq, 1)∧
pred_mod(stab, named(Brutus), named(Caesar),

[modifier_pp(in, C),modifier_pp(with,A),
modifier_adv(unhesitatingly, pos)])

)
The example is for a transitive verb (“stab”). Intransitive and ditransitive verbs are
treated in analogous fashion.

Clearly, predicate condensation also transforms the semantics associated with verb phrases
and their modifiers by APE. In particular, the “diamond inference pattern” that holds
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between a verb phrase plus modifiers and its components (see [Par90]) is broken. For
instance in the following group of sentences the first sentence implies all of the sentences
below it, the second sentence implies the last sentence, and each sentence from the third
onwards implies each sentence below it.

Brutus unhesitatingly stabs Caesar in the back with a knife.
Brutus unhesitatingly stabs Caesar.
Brutus stabs Caesar in the back with a knife.
Brutus stabs Caesar in the back.
Brutus stabs Caesar with a knife.
Brutus stabs Caesar.

This inferential pattern is captured by the reading of the first sentence given by APE but
not by ACERules (see Example 12). So, for example, the output given by ACERules
for the following text

Brutus unhesitatingly stabs Caesar in the back with a knife.
If Brutus stabs Caesar then Brutus is a traitor.

does not include the assertion that Brutus is a traitor7.

Another issue with predicate condensation which is more likely a bug than an intended
feature of ACERules is that modifiers in the pred_mod predicates are aggregated into
ordered lists, while their semantics (at least as given by the parse by APE) would require
them to be aggregated into sets. So, for instance, the output given by ACERules for the
following text

Brutus unhesitatingly and violently stabs Caesar.
If Brutus unhesitatingly and violently stabs Caesar

then he is a remorseless traitor.

is

Caesar is a:remorseless .
Caesar is a n:traitor .
Brutus v:stabs Caesar unhesitatingly and violently.

while the result for the equivalent text (note the re-ordering of the adverbs in the second
sentence)

7While, for instance, RACE finds a proof of “Brutus is a traitor” from the same text.
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Brutus unhesitatingly and violently stabs Caesar.
If Brutus violently and unhesitatingly stabs Caesar

then he is a remorseless traitor.

is

Brutus v:stabs Caesar unhesitatingly and violently.

I.e. the rule contained in the input text has not been applied.

4.1.2.3 Postprocessing of condensed predicates for the copula “be”

The copula “be”, being one of the most frequently used words in the English language8,
has several distinct uses. On the other hand APE leaves it underspecified; treating the
copula as just another verb.

According to [Fuc10] in ACE the copula “be” can be used in at least one of three
ways. First of all, to express identity as in “John is Harry”. Secondly, to express class
membership as in “Every cat is an animal”. Third, for predication as in “The cat is black”
or “John is in the garden.” ACERules transforms condensed predicates (as explained in
Section 4.1.2.2) involving the copula “be” in order to support reasoning in accordance
with some of the distinct uses of the copula.

In the first place, there is a transformation if the verb “be” is used in its transitive form,
without any modifiers (i.e. adverbs and prepositional phrases), and links a variable or
constant to a variable. In this case the copula is interpreted by ACERules as identity.
After predicate condensation in the detailed case the system produces a predicate of the
form

pred_mod(be, A,B, [])

(note the empty list in the fourth argument) where B is a variable and A is either a
variable or constant. ACERules replaces all occurrences of the variable “B” with “A”
(via Prolog unification) and removes the condensed version of the predicate representing
the copula. According to the (outdated) documentation accompanying ACERules this is
to treat sentences like “John is a customer”; i.e. instances where “be” is used to express
class membership. In reality the implementation extends beyond this use of the copula
“be”, covering any use where the copula is not modified by adverbs or prepositional
phrases except for the case where the copula links two proper names.

8See e.g. https://www.wordfrequency.info/free.asp?s=y (accessed 21.11.2018))
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Example 13. The sentence "John is a customer." gets parsed by APE as

∃AB
(
object(A, customer, countable, na, eq, 1) ∧ predicate(B, be, named(John), A)

)
ACERules transforms the parse into

object(named(John), customer, countable, na, eq, 1).

An example of class membership expressed as a rule is “Every cat is an animal” which
gets parsed by APE as

∀A
(
object(A, cat, countable, na, eq, 1)→
∃BC

(
object(B, animal, countable, na, eq, 1) ∧ predicate(C, be,A,B)

))
.

This is transformed by ACERules into

∀A
(
object(A, cat, countable, na, eq, 1)→ object(A, animal, countable, na, eq, 1)

)
.

Finally, for an example involving predication via adjectives consider the sentence “The
cat is black”. This sentence gets parsed by APE as

∃ABC
(
object(C, cat, countable, na, eq, 1) ∧ property(A, black, pos) ∧ predicate(B, be, C,A)

)
and gets transformed by ACERules into

∃A
(
object(A, cat, countable, na, eq, 1) ∧ property(A, black, pos)

)
.

ACERules disallows the use of the copula “be” to link two proper names as in “John is
Harry”9. An error message is displaced in such a case.

9This is in contrast to RACE which, although assumes that different names denote different individuals
(unique name assumption) by default, does allow the use of the copula “be” to state exceptions to this
default assumption. Note also that the vacuous sentence “John is John” easily could be allowed but is
not supported by ACERules.
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A further -, to us somewhat mysterious,- transformation that ACERules applies to con-
densed predicates involving the copula “be” is for when “be” has modifiers (prepositional
phrases and adverbs) and also involves adjectives. This is the case, for instance, when
after predicate condensation there are predicates of the form

pred_mod(be, A,B,Mods)
property(B,Adj,D)

in the conditions of the DRSs. Here Mods is a list of modifiers and Adj is a name of an
adjective. Such predicates are merged into a new predicate as follows:

be_adj(A,Adj,D,Mods).

Example 14. As already hinted at, the described transformation carried out by ACERules
is somewhat of a mystery to us since it doesn’t seem to cover nor capture any meaningful
class of statements. An example would be, for instance, the “The cat a:clearly is black."
(note the need for indicating to APE the class of the word “clearly”). For this sentence
APE produces the parse:

∃ABC
(
object(C, cat, countable, na, eq, 1)∧
modifier_adv(B, clearly, pos) ∧ property(A, black, pos)∧
predicate(B, be, C,A)

)
.

This parse gets transformed by ACERules to

∃A
(
be_adj(A,black, pos, [modifier_adv(clearly, pos)])∧

object(A, cat, countable, na, eq, 1)
)

Our suspicion is that the original intention was for the predicate be_adj, similarly to
what happens in RACE [Fuc10], to capture the use of “be” to link a proper name or a
noun phrase to an adjective10. Yet this is not the case in the current implementation of
the system (see the reading given by ACERules for the sentence involving “the cat is
black” in Example 13).

10Possibly this was modified later or a possible bug was not found given that the implementation
works well for the case when “be” links a proper name or a noun phrase to an adjective. These adjective
will, as far as we can tell, always be intersective; see discussion furtheron.
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It is indispensable, for purposes of automating reasoning from ACE texts, to distinguish
between the different uses of the copula “be”; in particular, those cases when the copula
is modified by adverbs or prepositional phrases, those where the copula links two noun
phrases, as well as the case where the copula is used for simple predication (linking a
noun phrase to an adjective). As far as we can tell, ACERules indirectly distinguishes
cases (such as “John is in the garden”) where the copula is solely modified by adverbs
or prepositional phrases indirectly by leaving these cases underspecified (i.e. giving “be”
the same treatment as other verbs). ACERules disallows the use of the copula “be” to
link two proper names. Finally, in practice ACERules (as indicated previously, this may
be unintended) treats most usual meaningful uses of the copula “be” to express class
membership and predication by the transformation illustrated in Example 13.

We note that the latter transformation implicitly amounts to an “intersective” reading
of adjectives and introduces errors in cases where adjectives are not intersective. As far
as we can tell use of the copula “be” for simple predication of a property of an object
can be argued to usually give an intersective reading. E.g. “Mary is beautiful” means
Mary is one of the “beautiful things” while “Mary is kind” means that Mary is one of
the “kind things” and hence, for instance, from

Mary is beautiful.
Mary is kind.
If Mary is beautiful and kind then she is popular.

it follows, as indicated by ACERules, that “Mary is popular”. ACE also implicitly
imposes an intersective reading of adjectives used in noun phrases (hence, without the
copula “be”), in particular allowing several adjectives to be conjoined only by “and”; e.g.
cumulative adjectives such as in “an unmarked police car patrols the area”11, which are
often not intersective, are disallowed.

Problems arise when adjectives are used in the context of expressing class membership.
Here APE correctly leaves the “logic” of adjectives underspecified (to a larger degree) while
the transformations carried out by ACERules force an intersective reading. Hence the
output of ACERules for the following text involving the intersective adjective “yellow”12

The n:company-car is a yellow bus.
The n:company-car is a n:Volkswagen.
If the n:company-car is a yellow n:Volkswagen then the employees

are happy.

11Example adapted from https://study.com/academy/lesson/
cumulative-adjectives-definition-order-examples.html. Accessed on 27.11.2018.

12All our examples involving different classes of adjectives are (adapted) from https://
www3.nd.edu/~jspeaks/courses/2012-13/43916/handouts/13-modifiers.pdf. Accessed
on 28.11.2018
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correctly includes (a paraphrase of) the sentence that “the employees are happy”. On the
other hand RACE, which follows the underspecified reading produced by APE, judges the
following related text to be consistent13:

The n:company-car is a yellow bus.
The n:company-car is a n:Volkswagen.
If the n:company-car is a yellow n:Volkswagen then the employees

are happy.
The employees are not happy.

Examples showing for where the intersective reading of ACERules produces wrong
results are e.g. the text

Ralph is a former basketball-player.
Ralph is a teacher.
If Ralph is a former teacher then he does not teach.

which involves the non-predicative adjective “former” and for which ACERules concludes
that “Ralph does not teach”. Also for the following text

Bob is a tall midget.
Bob is a basketball-player.
If Bob is a tall basketball-player then he plays for the NBA.

involving the subsective adjective “tall” ACERules generates incorrect inferences not
licensed by the parse given by APE (and adopted by RACE), concluding that Bob plays
for the NBA.

4.1.2.4 Condensation of atoms for the preposition “of”

As already hinted at in Section 4.0.1, a special atom standing for relations introduced
by of-constructs is introduced by APE. ACERules merges such predicates with those
referring to the “left hand side” object in the “of” relation.

Example 15. The sentence "John’s brother loves Mary." gets parsed by APE as

∃AB
(
relation(B, of, named(John))∧object(B, brother, countable, na, eq, 1)

∧ predicate(A, love,B, named(Mary))
)
.

13Illustrating the need for additional rules expressing the properties of intersective adjectives to produce
correct inferences.
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ACERules transforms (including the transformation of the predicate standing for the
verb “love”) the parse into

∃A
(
of_relation(object(A, brother, countable, na, eq, 1), named(John))

∧ pred_mod(love,A, named(Mary), [])
)
.

We conjecture the main reason for this transformation applied by ACERules is to further
reduce the number of predicates in the conditions of the DRSs, thus making the DRSs
more amenable to representation in the form of logical rules. E.g. the sentence “If
John is the brother of Paul then he is not the brother of Mary” can, after applying
the transformation for the copula “be” (Section 4.1.2.3) as well as the condensation of
predicates involving “of”, be represented as the logical rule:

of_relation(object(named(John), brother, countable, na, eq, 1), named(Paul))→
of_relation(object(named(Paul), brother, countable, na, eq, 1), named(Mary))

while this is not the case for the parse of the sentence given by APE.

4.1.3 Grouping

We now consider the first transformation carried out by ACERules that is not based
on semantical considerations pertaining to natural language, but rather on the logical
form of APE parses only. It is also the transformation described in [Kuh07], its main
purpose being to remove conjunctions of several atoms appearing in the heads of rules
as well as occurring negated in the bodies of rules; specifically, whenever there are such
conjunctions of atoms remaining after the transformations described in Section 4.1.2.
Secondly, and more fundamentally14, grouping removes existentially quantified variables
in the bodies and heads of rules (i.e. not in facts) whenever possible.

Grouping, as predicate condensation, hence amounts to aggregating predicates and
removing variables, but in contrast to predicate condensation, it is applied on groups of
atoms conjoined by conjunctions appearing in the heads of rules or negated (via strict
and/or negation-as-failure) in the bodies of rules. Also, certain restrictions apply. The
restrictions are first of all that the removed variables do not occur outside of the group
(these are either universally quantified or are existentially quantified and subject to
skolemisation later on; see Section 4.1.4). Secondly, there must not be any other group
of predicates in the program that match (or, in Prolog jargon, unify) the aggregated

14Only the occurrence of existentially quantified variables within atoms presents a serious problem for
rule systems since cases where this is not true can be handled by some rewriting of the relevant rules or
negative wide literals using several rules (as we show in Section 4.2.4.1). The use of grouping to also deal
with these latter cases therefore unnecessarily restricts the texts that AceRules can handle.
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predicates, but where the variable corresponding to the removed variable in the latter
set of predicates is referred to by some other predicate that is not part of the matching
group. This second restriction is because in order for grouping to succeed to aggregate
predicates, e.g. in the head of an implication, it must thereafter also be possible to
apply grouping on all groups of predicates occurring in the program that match with the
initially aggregated predicates.

Example 16. We consider the example from [Kuh07]:

John owns a car.
Bill does not own a car.
If someone does not own a car then he/she owns a house.

APE parses this text into the first order formula

∃A,B
(
object(A, car, countable, na, eq, 1) ∧ predicate(B, own, named(John), A)

)
∧

¬∃C,D
(
object(C, car, countable, na, eq, 1) ∧ predicate(D, own, named(Bill), C)

)
∧

∀E
((
object(E, somebody, countable, na, eq, 1) ∧

¬∃F,G
(
object(F, car, countable, na, eq, 1) ∧ predicate(G, own,E, F )

))
→

∃H, I
(
object(H,house, countable, na, eq, 1) ∧ predicate(I, own,E,H)

))
After the ACERules transformations described in sections 4.1.2.1 and 4.1.2.2 the parse
has the form:

object(named(Bill), Bill, named, na, eq, 1)
∧

object(named(John), John, named, na, eq, 1)
∧

∃A
(
pred_mod(own, named(John), A, []) ∧ object(A, car, countable, na, eq, 1)

)
∧

¬∃B
(
pred_mod(own, named(Bill), B, []) ∧ object(B, car, countable, na, eq, 1)

)
∧
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∀CDEFGH
((
object(C,D,E, F,G,H) ∧

¬∃I
(
pred_mod(own,C, I, []) ∧ object(I, car, countable, na, eq, 1)

))
→

∃J
(
pred_mod(own,C, J, []) ∧ object(J, house, countable, na, eq, 1)

))
Grouping constructs single “grouping” atoms for groups of predicates representing “owns
a car” appearing negated in the fourth conjunct as well as the body of the rule. Also,
single atoms are created for predicates representing “owns a house” in the head of the
rule (last conjunct). Then the groups of predicates subject to grouping are matched with
predicates appearing elsewhere in the program (third conjunct, representing “John owns
a car”), replacing these with the newly constructed grouping atoms. The result is the
following rewriting:

object(named(Bill), Bill, named, na, eq, 1)
∧

object(named(John), John, named, na, eq, 1)
∧

group([pred_mod(own, named(John), gv(0), []), object(gv(0), car, countable, na, eq, 1)])
∧

¬group([pred_mod(own, named(Bill), gv(0), []), object(gv(0), car, countable, na, eq, 1)])
∧

∀ABCDEF
((
object(A,B,C,D,E, F ) ∧

¬group([pred_mod(own,A, gv(0), []), object(gv(0), car, countable, na, eq, 1)])
)

→

group([pred_mod(own,A, gv(1), []), object(gv(1), house, countable, na, eq, 1)])
)

Note, in particular, the introduction of constants (“grouped variables”) gv(0) and gv(1)
standing for the previous variables A and B on the one hand I and J on the other.

An example where grouping, because of the restrictions built into ACERules, fails is on
the following text (slight modification of an example in [Kuh07]15):

15The original form of the example is: “Bill does not own a car. John owns a car X. Mary sees the
car X.” Although according to [Kuh07] grouping should fail on this example it does not in the current
version of ACERules. The reason is that, as we explain in more detail later on, the matching phase of
grouping in ACERules does not consider sub-groups; hence it is unable to relate the groups of predicates
for “Bill owns a car” with those of “John owns a car”.
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John owns a car.
Mary sees the car.
If someone does not own a car then he/she owns a house.

The problem here is the impossibility to group the predicates for “owning a car” appearing
negated in the body of the rule, because of the reference to a car independent of someone
owning it in the second sentence in the text. ACERules returns an error message (“the
program violates the atom-restriction”) in such cases.

We found a few shortcomings in the way grouping is currently implemented in ACERules.
In the first place, as is also documented in the ACERules source code and as occurs
with predicate condensation (Section 4.1.2.2), groups of predicates are implemented as
lists while they should be implemented as sets. E.g. for the following text

Bill does not own a car and a house.
If someone does not own a car and a house \\

then he/she owns a house and a car.

ACERules concludes that16

Bill owns a house and a car.
It is false that Bill owns a car and a house.

A second issue we found with the current implementation of grouping in ACERules is
that the matching phase only considers groups of atoms that match exactly, while also
sub-groups need to be considered, at least in many cases. As an example consider the
following text:

John owns a car.
Every car is an automobile.
John does not own an automobile.

Here ACERules groups together predicates for “John owns an automobile” and then is
unable to relate “owning a car” (which also includes the verb “owns”) with “owning an
automobile” and hence concludes that17

16Note that the construction rules of ACE determine that the scope of “owns” in both these sentences
is over a plural entity composed of a house and a car[ace13a].

17Reverting the order of the sentences in the text as in: “John does not own an automobile. John owns
a car. Every car is an automobile.” forces ACERules to match the group of predicates (of cardinality
1) for “an automobile” (stemming from the rule “Every car is an automobile”) first. In that case “an
automobile” from the first sentence is matched and then the predicates for “John does not own an
automobile” cannot be grouped. Thus, in this case, grouping fails.
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There is an automobile X1.
John owns the automobile X1.
The automobile X1 is a car.
It is false that John owns an automobile.

As an example where not considering sub-groups during matching leads to incomplete
inferences consider the following text:

Bill does not own a car.
If someone does not own a car then he/she owns a house.
Every house is a property.
If Bill owns a property then he is a proprietor.

Here ACERules is able to conclude that Bill owns a house, yet not that he owns a
property and hence is a proprietor.

A third shortcoming we found is that, in the current implementation of ACERules
the matching phase seems not to consider groups of atoms matching in the predicates
contained in them but differing in the degree of generality. As an example where this is
necessary consider the following text:

Bill does not own a vehicle.
If Bill does not own a vehicle then he does not own a car.
If someone does not own a car then he/she owns a motorcycle.
If someone owns a motorcycle then he/she owns a vehicle.

Here ACERules is unable to relate the group of predicates for “Bill does not own a
vehicle” and the more general “he/she owns a vehicle” and thus concludes that:

Bill owns a motorcycle.
Bill owns a vehicle.
It is false that Bill owns a vehicle.
It is false that Bill owns a car.

In conclusion, even with the current rather liberal implementation of grouping the
programs ACERules can transform to rule format are clearly limited. Were further
restrictions needed to be applied on grouping (as our study suggests may be necessary),
even less ACE texts would be amenable to treatment by ACERules. In Section 4.2.4.1
we will sketch an alternative form of defining grouping that avoids the problems sketched
above. Moreover, some form of existential quantification seems unavoidable except in
very simple rules. Therefore support of some form of existential quantification as is the
case in the approach described in Section 4.2.4.1 (ideally following ACERules in having
means of removing existentially quantified variables whenever possible) also is desirable.
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4.1.4 Top level skolemisation

A final and rather uncontroversial transformation carried out by ACERules we call
“top level skolemisation”. Constants (so called skolem constants) are introduced for
existentially quantified variables that do not appear nested (i.e. are at the “top level”).

Example 17. Consider the ACE text

There is a ball.
If Andrea passes the ball to Julia then Julia passes //

the ball to Mary.

After the transformations detailed in sections 4.1.2 and 4.1.3 the APE parse of this text
is as follows:

object(named(Mary),Mary, named, na, eq, 1)∧
object(named(Julia), Julia, named, na, eq, 1)∧
object(named(Andrea), Andrea, named, na, eq, 1)∧

∃A
((
object(A, ball, countable, na, eq, 1)∧

pred_mod(pass, named(Andrea), A, [modifier_pp(to, named(Julia))])
)

→

group([pred_mod(pass, named(Julia), A, [modifier_pp(to, named(Mary))])])
)

After top-level skolemisation the variable “A” is replaced with a constant “v(0)”:

object(named(Mary),Mary, named, na, eq, 1)∧
object(named(Julia), Julia, named, na, eq, 1)∧
object(named(Andrea), Andrea, named, na, eq, 1)∧((
object(v(0), ball, countable, na, eq, 1)∧

pred_mod(pass, named(Andrea), v(0), [modifier_pp(to, named(Julia))])
)

→

group([pred_mod(pass, named(Julia), v(0), [modifier_pp(to, named(Mary))])])
)

Thus, the text has been transformed into a format amenable to treatment by rule-systems
to which ACERules provides an interface to.
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4.2 A novel ACE interface to defeasible rules
We have in Section 4.1 given a detailed yet high level description of the main existing
open source interface to rule systems for ACE, ACERules. As already indicated in the
introduction to this chapter of our work (Section 4), reverse engineering such a description
was motivated by problems we encountered when building a simple experimental prototype
on top of ACERules to evaluate ACE texts extended with a construct for expressing
defeasible rules via the direct stable semantics (Section 2.4). As part of the description
of the system ACERules in Section 4.1 (see in particular sections 4.1.2.1, 4.1.2.2, 4.1.2.3,
and 4.1.3) we have now pinpointed the sources of the issues we found.

We turn to presenting an alternative design for implementing the EMIL pipeline, built
with the intention of overcoming some of the shortcomings we encountered with our
prototype built on top of ACERules (Section 4.2.3). We first nevertheless briefly detail
the minor modifications of the grammar of ACE as well as the system APE we carried
out to allow expressing defeasible rules using ACE (Section 4.2.1). Also, we give a
brief description (Section 4.2.2) of the prototype built on top of ACERules, dubbed
dACERules, experience with which led to the system design we detail in what remains
of this chapter.

4.2.1 Expressing defeasible rules in ACE

For adding means of expressing defeasible rules to ACE we focused on one of the
most common ways of expressing defeasible rules that is also the form of defeasible
implication considered when motivating the direct stable semantics [SW17, WS17]. This
is defeasibility introduced via normality or typicality assumptions.

To add normality assumptions to ACE we made use of the grammatical infrastructure
available in ACE to express modalities (such as “it is possible that” and “it is admissible
that”) in combination with complete sentences (see Section 3.4.4.4 of [ace13a]), i.e. as a
form of subordination. Specifically, we have added the construct “it is usual that” as a
further means of subordination. Thus, an example of an assumption written using our
simple extension of ACE is the following:

It is usual that Mary wakes-up early.

Its negation, on the other hand, is written as follows:

It is not usual that Mary wakes-up early.

Examples of defeasible rules are:

If Mary is happy then it is usual that she smiles.
If X is a bird then it is usual that X flies.
If someone owns a house then it is usual that he/she owns a car.
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To make APE “aware” of defeasible rules we have essentially added “usual” as a further
modal operator to the list of modal operators in the source code of APE and extended
the rules available for the modal operators to also encompass “usual”. Thus, the modified
version of APE returns DRSs with parses prefixed by a marker for defeasible rules for
sentences subordinated to the fixed phrases “it is usual that” / “it is not usual that”.

Note that we have not (yet) added support for constructs for “usual” analogous to modal
auxiliaries that can be used with verb phrases (Section 2.3.5 of [ace13a]). E.g. APE
identifies the use of “must” as a modal auxiliary in the sentence “John must wait” while
our modification of APE does not identify the use of “usually” as an analogous auxiliary
in “John usually waits”. Hence, “usually” in the latter sentence is, as was already the
case prior to our modifications, interpreted by APE as an adverb which modifies the verb
“waiting”.

4.2.2 A simple prototype on top of ACERules

As an initial testing-ground for the EMIL pipeline, we wrote a relatively simple script
that mutates AceRules into a CNL interface to defeasible theories evaluated under the
direct stable semantics. We reported on initial results in using this tool, dACERules, in
[DWS17]18.

For our script we separated the AceRules parser and verbaliser components (which in
turn, make use of the APE parser and verbalisation tools). The script then consists in a
interleaving of calls to the AceRules (+ APE) parser, existing ASP encodings for the
direct-stable semantics (from [SW17]) with an ASP solver (we used clingo), and finally
the AceRules (+ APE) verbaliser. Crucially, we pre-process the input text removing all
constructs indicating defeasibility and make use of the AceRules (+ APE) parser “as if”
all rules in the input were strict, but at the same time tracking which rules are defeasible
and which are not (for this we make use of labels that can be attached to rules when
using the courteous semantics in AceRules).

By differentiating the rules in this way, we are able to use the afore-mentioned encodings
for the direct-stable semantics (together with an ASP solver) later on in the pipeline. At
the level of the stable sets, the distinction between strict and defeasible rules is irrelevant;
and we are, hence, also able to make direct use of the AceRules (+ APE) verbaliser
component. We will refer to the ASP encodings for the direct stable semantics we made
use of at the back end of dACERules in some more detail in Section 4.2.4.2 as we also
devise an alternative ASP encoding strategy for the revamped implementation of the
EMIL pipeline we describe in Section 4.2.3.

18It is available online, packaged together with the source code of other systems it depends on, at
https://www.dbai.tuwien.ac.at/proj/adf/dAceRules/
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4.2.3 System design

We turn to describing our alternative (to the system dACERules described in Section
4.2.2) strategy for implementing the EMIL pipeline. The input to our novel system, which
we dub emil, is as with ACERules (and dACERules) an ACE text. We parse the
ACE text with the slightly modified version of APE described in Section 4.2.1. Just as
ACERules (Section 4.1.1), we have an initial stage filtering DRSs amenable to further
processing by our system.

It is also at this filtering stage that differences with ACERules emerge. Specifically, in
contrast to ACERules, we disallow negation as failure as well as modality constructs (the
interaction of these with constructs for expressing defeasibility remain to be investigated).
On the other hand, emil obviously accepts DRSs containing sub-DRSs (sub-formulas)
corresponding to assumptions and defeasible rules.

Modulo the mentioned constructs we nevertheless filter DRSs with exactly the same
structure as ACERules, i.e. DRSs corresponding (after transformation of double impli-
cation; see Section 4.1.1) to collections of (now, defeasible as well as strict) rules having
wide literals in the head as well as in the body (but no negation-as-failure). There is
indeed a good reason for ACERules attempting to make such more general rules, rules
with existentially quantified variables and wide literals or ∃-rules for short, conform to
the more restricted rule format of the rule systems it provides an interface to. The reason
being that rules expressed as ACE texts quite naturally correspond to ∃-rules, while very
few of them seem to correspond to the more restricted “normal” rule format of e.g. ASP
or defeasible programs19.

The central difference of emil with ACERules is that emil accepts all DRSs corre-
sponding to (strict and defeasible) ∃-rules, while ACERules ultimately only accepts
those (strict) ∃-rules (with negation-as-failure) that can be made to conform through
the several modifications detailed in Section 4.1. The central of these modifications
are “predicate condensation” and especially “grouping” which as currently implemented
in ACERules has a few significant shortcomings, as we detailed in Section 4.1.2.2 and
Section 4.1.3.

We devise a scheme for compiling ∃-rules into normal rules that can be seen as a form of
systematic meaning-preserving grouping for ∃-rules not having implicitly existentially
quantified variables. Rules having existentially quantified variables on the other hand
require a special treatment, which among other things requires making use of function
symbols and, thus, the expressive power of full first order defeasible theories (which,
given the possibility of infinite groundings can be expected to be, just as ASP programs
with function symbols, undecidable in general). We describe our translation of ∃-rules
into normal rules in Section 4.2.4.1. Moreover, we have an alternative encoding of the
evaluation of defeasible theories via the direct stable semantics optimised to theories with

19Although the expressivity of the rules and experience with the system ACERules give some indication,
to what extent rules expressed in natural language can be made to correspond to ∃-rules is ultimately an
empirical question that remains to be investigated.
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function symbols to ASP (also with function symbols) which we motivate and describe
in Section 4.2.4.2.

We hence have an interface to a more expressive rule language which we compile into
normal (strict and defeasible) rules (with function symbols) and, ultimately, normal ASP
programs with function symbols. As a consequence, reasoning becomes undecidable in
general but the rule language clearly subsumes normal (strict and defeasible) rules and,
therefore, mechanisms in particular for avoiding existentially quantified variables such
as e.g. grouping (improved to avoid the problems detailed in Section 4.1.3) can also be
ported to this setting. On the other hand, our implementation strategy also allows the
use of existentially quantified variables via function symbols (skolemisation) when such
quantification cannot be avoided (as will often be the case in natural language texts;
especially for expressing ontological knowledge). In particular, many subclasses of ASP
programs with function symbols are known to be decidable (see e.g. [AZZ17]) and there
are also solving strategies devised for ASP programs having infinite groundings (see e.g.
[LBSG17]).

The implementation strategy behind emil also has the additional merit that several of
the problems we identified in ACERules can be solved in a uniform manner. Specifically,
as have already hinted at a form of predicate condensation and grouping are carried out
in a uniform, systematic, and meaning-preserving manner via our rewriting of ∃ rules to
normal rules. We describe the translation in question in Section 4.2.4.1.

On the other hand, further transformations of DRSs, such as are also incorporated in
ACERules, either adding elements for facilitating natural language understanding or
simplifying the logical form of DRSs (in particular, removing existentially quantified
variables whenever possible) are desirable. Our current implementation is rather minimal
in this regard; clearly many more optimisations in particular for facilitating natural
language understanding (e.g. some of which, like inferences on the base of plural nouns,
which are incorporated into RACE but not ACERules; see [Fuc10]) would be possible. To
conclude our description of emil we detail our modifications as well as adoptions of
elements of ACERules detailed in sections 4.1.2.1, 4.1.2.3, 4.1.2.4, and 4.1.4. Some of
these are still planned, others already incorporated in our current implementation (see
Section 4.4).

First of all, we do not follow ACERules in replacing predicates standing for indefinite
pronouns with atoms standing for “anonymous objects”. As we argued in Section 4.1.2.1,
this modification introduces errors. A solution which does not lead to errors is to leave
the specification of which nouns refer to persons and which to inanimate objects to
the user. Ideally, this ontological knowledge would be built into emil in the form of
additional rules.

Regarding the processing of predicates standing for the copula “be”, we plan to carry
out the transformations we detailed for ACERules (removing the existentially quantified
variable introduced by the copula) only when the transformations do not lead to the
errors we detailed in Section 4.1.2.3. I.e. for when the copula links proper name or noun
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phrase to noun phrase; also a proper name or noun phrase to an adjective. We will leave
further uses of the copula underspecified for now. The latter is, in particular, the case for
when the copula links a proper name or noun phrase to a noun phrase with an adjective.

Features of ACERules we plan to incorporate are transformation of double implications
into normal implications (see Section 4.1.1). We also want to incorporate the strategy
for condensation of predicates involving the preposition “of” from ACERules (thus
removing the quantified variables introduced by the relation) as is (Section 4.1.2.4). In
our current implementation we already add “object” atoms for named entities (Section
4.1.2.1) Finally, we likewise implement top-level skolemisation (Section 4.1.4)).

4.2.4 ASP based encodings for evaluating conflicting existential
defeasible ACE rules

We turn now, first of all, to describe the more expressive rule language we use to represent
ACE texts (whenever possible). We consider, especially, the translation of such ∃ - (strict
and defeasible) rules into normal rules (with function symbols). This is the content of
Section 4.2.4.1. In Section 4.2.4.2 we then motivate and detail a dynamic approach to
encoding defeasible theories with function symbols to answer set programming (with
function symbols). Both the translation of ∃-rules to normal rules as well as of defeasible
theories to ASP programs is implemented in our system emil, whose functioning we
describe in Section 4.4.

4.2.4.1 Expressing existential defeasible rules with wide literals as normal
defeasible rules

As already indicated, the crucial difference between the system design outlined in Section
4.2.3 and that of ACERules (and dACERules) is that we support all ACE texts parsed
to DRSs that correspond to collections of strict and defeasible rules having wide literals
in the head and body (see Section 4.1.1). Concretely, such ∃-rules hence have the form

b1, . . . , bm,¬(n1
1, . . . , n

1
u1), . . . ,¬(ns1, . . . , nsus

) . H

where e.g. ¬(n1
1, . . . , n

1
u1) is a “wide literal”, . ∈ {→,⇒}, and H is of the form h1, . . . , ht

or ¬(h1, . . . , ht). Also, h1, . . . , ht, b1, . . . , bm, n1
1, . . . , n

1
u1 , . . . , n

s
1, . . . , n

s
us

are atoms as
defined in Section 2.2.1 and m, s ≥ 0, and t, u1, . . . , us ≥ 1. Variables occurring in the
negative atoms n1

1, . . . , n
1
u1 , . . . , n

s
1, . . . , n

s
us

but not in the positive atoms b1, . . . , bm are
interpreted as existentially quantified. The same holds for those variables occurring in
the head H but not in the positive atoms in the body b1, . . . , bm.

We provide meaning to such ∃-rules via encodings to defeasible theories in a way that is
quite similar to the encoding of ∃-ASP into ASP as defined by [GGLS15]. Namely, we
have a “normalization” phase to remove the conjunctions of atoms from negative parts
of the rules as well as remove existential variables from these negative parts. We also use
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skolemization to remove existential variables in the positive heads of rules. Moreover,
we have an “expansion” phase to remove conjunctions of atoms in positive heads of the
rules.

Crucial differences are due to the fact that our interpretation of negation is different
to that of ∃-ASP and that we can make use of defeasible implication. In particular
hence we allow negation over conjunctions of atoms in the heads of rules which we need
to treat. We also need to consider defeasible rules. Furthermore, our “normalization”
phase is different to that needed for ∃-ASP. Nevertheless, the technicalities are more or
less standard, and there are sufficient similarities that it is relatively straightforward
(although cumbersome) to translate the formal exposition of [GGLS15] to that of our
scenario, so we rather give an example-based explanation of our translation here.

To start, let us consider the ACE rule “If someone owns a car then he/she owns a house”;
i.e. an ACE rule corresponding to an ∃-rule having positive wide literals in the body as
well as in the head. The result of parsing this sentence using APE is the rule

∀A,B,C
((
object(A, somebody, countable, na, eq, 1) ∧

object(B, car, countable, na, eq, 1) ∧ predicate(C, own,A,B)
)

→

∃D,E
(
object(D,house, countable, na, eq, 1) ∧ predicate(E, own,A,D)

))
which, as an ∃-rule can be represented as follows:

object(A, somebody, countable, na, eq, 1), object(B, car, countable, na, eq, 1),
predicate(C, own,A,B)→

object(D,house, countable, na, eq, 1), predicate(E, own,A,D)

To ease the presentation in what follows we simplify the representation of the logical
atoms in rules obtained from ACE texts by ignoring parameters which do not directly
pertain to the logical form. For the rule in our example we thus have the following:

object(A, somebody),object(B, car), predicate(C, own,A,B)
→

object(D,house),predicate(E, own,A,D)

In our translation to normal rules we replace the atoms in the head of the rule with an
auxiliary atom:
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object(A, somebody), object(B, car), predicate(C, own,A,B)→ x_auxPH1(A,B,C)

and add the rules

x_auxPH1(A,B,C)→ object(x_sk1(A,B,C), house)
x_auxPH1(A,B,C)→ predicate(x_sk2(A,B,C), own,A, x_sk1(A,B,C))

encoding the meaning of the auxiliary predicate. Here the skolem function x_xk1(A,B,C)
is used to represent the house owned (by someone A who is in the relation C “owns”
with a car B). The skolem function x_sk2(A,B,C) is used to denote the owns relation
(introduced by someone owning a house).

Note that replacing the head of the rule representing our example sentence (“if someone
owns a car then he/she owns a house”) by an auxiliary atom can be seen as a form of
unrestricted grouping. Avoidance of the need to check for any further conditions for
grouping to succeed (as is necessary in grouping as defined in ACERules; see Section
4.1.3) is obtained by the additional rules and the use of skolemisation. Also note that
the skolem functions introduced by our translation are as “specific” (or “grounded”) as
the rules from which they are derived. As a further example, consider for instance the
second sentence in the following snippet of discourse:

There is a ball.
If Andrea passes the ball to Julia then Julia passes //

the ball to Mary.

which as an ∃ rule derived from the APE parse can be represented (in simplified form) as
follows:

object(B, ball), predicate(A, pass, andrea,B),modifier_pp(A, to, julia)
→

predicate(C, pass, julia,B),modifier_pp(C, to,mary)

After top-level skolemisation as is carried out in ACERules (Section 4.1.4) and which
we also implement (see Section 4.2.3) such a rule gets translated into the rule

object(x_c1, ball), predicate(A, pass, andrea, x_c1),modifier_pp(A, to, julia)
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→
x_auxPH1(A, x_c1)

with auxiliary rules

x_auxPH1(A, x_c1)→ predicate(x_sk(A, x_c1), pass, julia, x_c1)
x_auxPH1(A, x_c1)→ modifier_pp(x_sk(A, x_c1), to,mary)

Note in particular that the only remaining variable is for the event introduced by the
“passing” action. The example also shows how our form of grouping subsumes a form
of predicate condensation. Nevertheless, our treatment, in contrast to ACERules (see
Section 4.1.2.2), preserves the Neo-Davidsonian reading of verbs and their modifiers.
The reason is that rather than merging together verbs and their modifiers in a single
logical atom, we keep atoms for verbs and their modifiers separate and link them via an
auxiliary atom and making use of skolem functions. As a consequence, we also preserve
the “diamond inference pattern” for verbs and their modifiers which is not preserved by
ACERules (see, again, Section 4.1.2.2).

Turning to the translation of defeasible ∃-rules with positive wide literals to normal rules;
the translation is analogous to that of strict rules but there is the option of making
the rules for the auxiliary predicates introduced by our translation defeasible or not.
The issue at hand is deciding the scope of the defeasible implication “⇒”. Consider for
instance the following assumption:

It is usual that a ferry that starts in Vienna //
services Bratislava.

which written as an ∃-rule has the following parse:

⇒ object(A, ferry), predicate(B, start, A),
modifier_pp(B, in, vienna), predicate(C, service, A, bratislava)

In our translation the rule gets replaced by the unary assumption

⇒ x_auxPH1()

accompanied by the auxiliary rules
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x_auxPH1() .1 object(x_sk1(), ferry)
x_auxPH1() .2 predicate(x_sk2(), start, x_sk1())
x_auxPH1() .3 modifier_pp(x_sk2(), in, vienna)
x_auxPH1() .4 predicate(x_sk3(), service, x_sk1(), bratislava)

the question being whether each of the .i (1 ≤ i ≤ 4) should be either → or ⇒. Having
.i =→ for every i would amount to interpreting the scope of ⇒ to be over the entire
subordinate phrase “a ferry that starts in Vienna services Bratislava”. In particular, this
reading would be incompatible with either of the facts “the ferry does not start in Vienna”
or “the ferry does not service Bratislava”. I.e. from the text

It is usual that a ferry that starts in Vienna //
services Bratislava.

The ferry does not start in Vienna.

it would not follow that “there is a ferry that services Bratislava” (via the direct stable
semantics, see Section 2.4.2). On the other hand, interpreting .i =⇒ for every i would
allow for the conclusion that “there is a ferry that services Bratislava”, although the
ferry in question does not start in Vienna. Nevertheless, we note that having .i =⇒
for every i allows for breaking the connection between the atoms associated via skolem
constants; therefore a more correct encoding introduces further auxiliary atoms standing
for “there is a ferry that starts in Vienna” and “there is a ferry that services Bratislava”
respectively:

x_auxPH1()⇒ x_auxPH2()
x_auxPH1()⇒ x_auxPH3()
x_auxPH1()→ object(x_sk1(), ferry)
x_auxPH2()→ predicate(x_sk2(), start, x_sk1())
x_auxPH2()→ modifier_pp(x_sk2(), in, vienna)
x_auxPH3()→ predicate(x_sk3(), service, x_sk1(), bratislava)

For pragmatic reasons in our current implementation of emil we have implemented the
option amounting to .i =→ for every i (also because this option makes the link to the
verbalisation component of APE easier), although the alternative reading may be more
desirable in practice.
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Turning to ∃-rules with negative wide literals in the head, consider the sentence “if
someone owns a car then he/she does not own a house”. As an ∃-rule obtained from the
APE parse, this sentence is as follows:

object(A, somebody), object(B, car), predicate(C, own,A,B)
→

¬
(
object(D,house), predicate(E, own,A,D)

)
In our translation we once more replace the head of the rule with an auxiliary predicate:

object(A, somebody),object(B, car), predicate(C, own,A,B)
→

x_auxNH1(A,B,C)

and add rules giving the meaning of the auxiliary predicate:

object(D,house), x_auxNH1(A,B,C)→ ¬predicate(E, own,A,D)
predicate(E, own,A,D), x_auxNH1(A,B,C)→ ¬object(D,house)

If we need the first rule to be safe (i.e. all variables occurring in the head occur in the
body) we can e.g. collect all variables that stand for verbs in a special atom pName/1
and hence replace the rule with

object(D,house), x_auxNH1(A,B,C), pName(E)→ ¬predicate(E, own,A,D)

Note also that if we have more than two atoms appearing negated in the head of a rule
we need to apply the above illustrated translation recursively. E.g. for “if someone owns
a car then he/she does not own a big house” we use the (safe variant of the) auxiliary
rules:

object(D,house), x_auxNH1(A,B,C)→ x_auxNH2(A,B,C,D)
predicate(E, own,A,D), x_auxNH2(A,B,C,D)→ ¬property(D, big)
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property(D, big), x_auxNH2(A,B,C,D), pName(E)→ ¬predicate(E, own,A,D)
predicate(E, own,A,D), property(D, big)→ x_auxPH1(A,D,E)
x_auxPH1(A,D,E), x_auxNH1(A,B,C)→ ¬object(D,house)

In contrast to the situation with rules with positive wide literals in the head, for rules
with negative wide literals in the head the treatment of strict and defeasible rules is
exactly analogous. The reason is that ⇒ inherits the scope from ¬ in this case. I.e. the
only difference in the translation of e.g. “if someone owns a car then it is usual that
he/she does not own a house” w.r.t. the corresponding strict rule is that the main rule

object(A, somebody),object(B, car), predicate(C, own,A,B)
⇒

x_auxNH1(A,B,C)

is defeasible, while the auxiliary rules defining x_auxNH1/3 remain the same.

We consider now the conceptually slightly more intricate case in which negative wide
literals appear in the heads of rules, e.g. for the sentence “if someone does not own a car
then he/she owns a house”. Here there are several options. The most straightforward
(which we call option “E”), following more or less the treatment in [GGLS15], is to put
the burden of proof on the existential assertion; i.e. by default no one owns a car. This
option, which is the one implemented in the current version of emil (Section 4.4), can
be encoded as follows (omitting the auxiliary rules for x_auxPH1/1) :

object(A, somebody),¬x_auxPB1(A)→ x_auxPH1(A)

object(B, car), predicate(C, own,A,B)→ x_auxPB1(A)
object(A, somebody)⇒ ¬x_auxPB1(A)

An alternative is rather to put the burden of proof on the negation of the existential
assertion, i.e. by default everyone owns a car (option “N”). We give here an encoding
where all rules are safe (we use an additional atom oName/1 for collecting constants
standing for objects):

object(A, somebody),¬x_auxPB1(A)→ x_auxPH1(A)
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¬object(B, car),¬predicate(C, own,A,B)→ x_auxV NPB1(A,B,C)
¬object(B, car), predicate(C, own,A,B)→ x_auxV NPB1(A,B,C)
object(B, car),¬predicate(C, own,A,B)→ x_auxV NPB1(A,B,C)
object(A, somebody), oName(B), pName(C)⇒ ¬x_auxV NPB1(A,B,C)
¬x_auxV NPB1(A,B,C)→ x_auxPB1(A)
object(A, somebody)⇒ ¬x_auxPB1(A)

The atom x_auxVNPB1/3 is used here to “verify” for any “somebody” if the “somebody”
in question owns a car. By default this is not verified.

Finally, several combinations of options “E” and “N” are conceivable. In particular, there
is the safest but rather inefficient option to reason by cases, i.e. consider for everyone
both the possibility that the person in question owns a car as well as that he/she does
not own a car. One simple encoding of this option would be as follows:

object(A, somebody),¬x_auxPB1(A)→ x_auxPH1(A)

object(A, somebody)⇒ ¬x_auxPB1(A)
object(A, somebody)⇒ x_auxPB1(A)
x_auxPB1(A)→ object(x_sk1(A), house)
x_auxPB1(A)→ predicate(x_sk2(A), own,A, x_sk1(A))
¬x_auxPB1(A), predicate(C, own,A,B)→ ¬object(B, house)
¬x_auxPB1(A), object(B, house), pName(C)→ ¬predicate(C, own,A,B)

4.2.4.2 Dynamic ASP encoding for the direct stable semantics

As we already hinted at in Section 4.2.2, encodings to ASP for evaluating defeasible
theories via the direct stable semantics are reported on in [SW17] and publicly available20.
We have made use of these encodings in the prototype dACERules. We will call these
encodings to ASP “Strass’s encodings”. The encodings in question are static in the sense
that only the part of the encoding used for specifying the defeasible theory changes
with the input. The module encoding the semantic evaluation of defeasible theories uses
ASP-disjunction and remains fixed. Maximisation aspects (maximisation of defeasible
rules to be applied in a consistency preserving manner) are implemented using the
saturation technique [EG95] we also made use of in the encodings for ADFs presented in
Section 3.2.3.

For specifying input defeasible theories to Strass’s encodings, its constituent rules are
represented by ASP terms. The binary predicates head/2 and body/2 declare rule

20At https://github.com/hstrass/defeasible-rules.
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heads and bodies, respectively; predicate def/1 declares a rule to be defeasible. We give
an example of the specification of a variant of the classic “Tweety example” from [Rei78]
as a defeasible theory in Example 18.

Example 18. The following is a variant of the Tweety example specified as input to
Strass’s encodings for evaluating defeasible theories. Comments preceded by “%” detail
the rules being codified.

% constants
c(tweety).
c(tux).

%flies(C) <= bird(C)
def(bf(C)) :- c(C).
body(bf(C), bird(C)) :- c(C).
head(bf(C), flies(C)) :- c(C).

%flies(C) <- penguin(C)
body(pn(C), penguin(C)) :- c(C).
head(pn(C), neg(flies(C))) :- c(C).

%bird(tweety) <-
head(twb, bird(tweety)).
% penguin(tux) <-
head(tup, penguin(tux)).

Note, in particular, the use of the predicate c/1 for grounding the rules w.r.t. the
constants (tweety and tux) in the program.

Strass’s encodings have the agreeable property that, while also working for first order
defeasible theories, they are complexity sensitive for propositional defeasible theories;
this being because of the matching complexity of reasoning for propositional defeasible
theories and the data complexity of disjunctive ASP (the existence problem for both
formalisms is ΣP

2 -complete; see sections 2.2.4 and 2.4.3 ). Also, the encoding reflects the
definition of the semantics of first order defeasible theories in terms of separate grounding
and evaluation phases.

The latter nevertheless also points to a potential drawback of Strass’s encodings for
practical purposes; the problem being that, to preserve the distinction between the data
and the program, defeasible theories need to be specified essentially as facts and hence
the grounding needs to be generated explicitly (in most cases) while this is usually not
the case for first order ASP programs. Consider, for instance, the strict rule
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q(X), p(X1), . . . , p(Xn)→ p(X)

as an ASP rule, i.e.,

p(X) :- q(X), p(X1), ..., p(Xn).

and assume it needs to be grounded for two constants a and b. Naive grounding would
yield 2n ground instances of the rule (since for each Xi the grounding procedure can
choose between a and b), while most ASP grounders will realize that this rule actually
amounts to the rules [BET11]

p(a) :- q(a), p(b).
p(b) :- q(b), p(a).

whatever the size of n. Now consider the specification of the aforementioned rule in the
context of Strass’s encodings:

c(a). c(b).

head(p(X,X1,...,XN), p(X)) :- c(X),c(X1),...,c(XN).

body(p(X,X1,...,XN),q(X)) :- c(X),c(X1),...,c(XN).

body(p(X,X1,...,XN),p(X1)) :- c(X),c(X1),...,c(XN).

...

body(p(X,X1,...,XN),p(XN)) :- c(X),c(X_1),...,c(XN).

Here the structure of the original rule is broken and thus, for instance, the ASP solver
clingo (version 5.3.0) times out when using Strass’s encodings on this example together
with some facts (q(a), q(b), p(b)) for n = 1621, while is able to solve the equivalent ASP
version under 1 second (0.008 seconds).

The shortcomings of Strass’s encodings for defeasible theories with variables are particu-
larly evident when using skolemisation (as we need to make use of for the translation from

21Time out of ten minutes. On a 4 GB openSUSE (42.3) machine with 4 Intel Core processors (3.30
GHz)
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defeasible theories with existentially quantified variables to normal defeasible theories;
see Section 4.2.4.1). Consider for instance the simple ASP program with the function
symbol f and constant a:

o(a).
p(f(X)) :- o(X).
q(f(X)) :- p(X).

which has the unique answer set {a, p(f(a)), q(f(a))}, computed in under one second by
clingo. In order to be evaluated using Strass’s encodings we need to specify the ASP
program as follows:

c(a).
c(f(X)):-c(X).

head(r0,o(a)).

head(r1(X),p(f(X))):- c(X).
body(r1(X),o(X)):-c(X).

head(r2(X),q(f(X))):-c(X).
body(r2(X),p(X)):-c(X).

Note in particular the need of the rule

c(f(X)):-c(X).

for declaring all possible applications of the function symbols f as constants. When
feeding the program in question together with Strass’s encodings e.g. to clingo there
are memory errors (”std::bad_alloc”) after 48.566 seconds computing time.

In conclusion, Strass’s encodings for defeasible theories have the drawback that the
constituents of rules need to be specified essentially as facts. This breaks the structure of
the rules, frustrating built in strategies of ASP grounders to avoid an exponential or even
infinite blowup when grounding. This is not to say that a more intelligent grounding
mechanism could not also be devised for defeasible theories, rather that this would
basically amount to re-implementing the grounding mechanisms of a specific ASP-solver,
while encodings that preserve the structure of the rules in an input defeasible theory
would allow us to piggyback on the grounding developments for any ASP grounder
(+solver) we wish to experiment with. As we have seen, this is particularly desirable
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when making use of skolemisation, as naive grounding easily leads to infinite programs in
this case.

For the mentioned reason we sketch in what follows a dynamic (i.e. both the data and
program change with the input), yet structure-preserving alternative to Strass’s encodings
for defeasible theories with variables. Moreover, the encoding is to non-disjunctive ASP,
hence also indicating that, contrasting with the results for propositional theories (see
Section 2.4.3), the direct stable semantics for first order defeasible theories is not more
expressive than normal (i.e. non disjunctive) ASP with variables. In particular, the
encoding does not make use of the saturation technique and thus is, arguably, also simpler
than Strass’s encoding.

Our dynamic encoding of the evaluation of defeasible theories to ASP works by first
guessing what defeasible rules to apply (for each possible ground instance of the rules)
and then checking whether more defeasible rules could have been applied without making
the program inconsistent. It filters out those guesses for which the latter does not hold
(i.e. applying more defeasible rules would make the program inconsistent). We present
our encoding by example, showing the encoding of the evaluation of the Tweety example
(Example 18) as an ASP program.

As indicated, the encoding starts with an initial guess of the defeasible rules to apply. All
strict rules must be applied. The predicate holds/1 is used to compute the closure of
the defeasible theory w.r.t. all of the strict rules and the guess of defeasible rules. In the
Tweety example there is only one defeasible rule (flies(X) ⇐ bird(X)); the following
ASP rules thus suffice for encoding the choice of applying each possible ground instance
of the rule (labelled using the constant r1) for which the body of the rule holds (the
latter for avoiding unnecessary guesses):

apply(r1,X,y) :- not apply(r1,X,n),holds(bird(X)).
apply(r1,X,n) :- not apply(r1,X,y),holds(bird(X)).

The following ASP rules then compute the closure w.r.t. the strict rules and guess of
defeasible rules for the Tweety example:

holds(bird(tweety)).
holds(penguin(tux)).
holds(neg(flies(X))) :- holds(penguin(X)).
holds(bird(X)) :- holds(penguin(X)).
holds(flies(X)) :- apply(r1,X,y).

Note, in particular, that holds(flies(X)) is derived only for a ground substitution
of X for which the defeasible rule r1 is applied. To represent a stable set, the literals
that result from computing the closure w.r.t. the strict rules and guessed defeasible rules,
needs to be consistent. To check this our encoding uses a rule codifying consistency

158



4.2. A novel ACE interface to defeasible rules

(separate, because we need to check consistency also in other parts of the encoding)
and a constraint amounting to disallowing guesses of defeasible rules that result in an
inconsistent set of literals.

inconsistent :- holds(neg(X)),holds(X).
:- inconsistent.

We have, until now, shown how to codify a guess for defeasible rules to apply and the
computation of the closure w.r.t. the strict rules and guessed defeasible rules. Moreover,
our encoding disallows guesses of defeasible rules for which the closure is inconsistent.
Note also that the computation of the closure via ASP rules mirroring the strict and
defeasible rules guarantees that there is a derivation (as required by the definition of the
direct stable semantics; see Section 2.4.2) for each literal in the closure w.r.t. the strict
and defeasible rules in question. The reason is (the acyclic nature of) the order in which
ASP rules are applied to compute the minimal models of the reducts of programs w.r.t.
an ASP interpretation.

We now show how to also encode that the guessed defeasible rules to apply are maximal
w.r.t. consistency; i.e. that there is no ground instance of a defeasible rule that has not
been applied but could also have been applied while preserving consistency of the closure
w.r.t. the resulting rules. For this purpose we use a predicate holds/3 (note the arity 3),
to store the result of computing the closure w.r.t. any possible extension of the initial
guess of defeasible rules by exactly one ground instance of a defeasible rule. We thus
again need to duplicate the input defeasible theory in our ASP encoding; for the Tweety
example this results in the following rules:

holds(r1,Z,bird(tweety)) :- apply(r1,Z,n).
holds(r1,Z,penguin(tux)) :- apply(r1,Z,n).
holds(r1,Z,neg(flies(X))) :- holds(r1,Z,penguin(X)),//

apply(r1,Z,n).
holds(r1,Z,bird(X)) :- holds(r1,Z,penguin(X)),apply(r1,Z,n).
holds(r1,Z,flies(X)) :- apply(r1,X,y),apply(r1,Z,n).
holds(r1,Z,flies(Z)) :- apply(r1,Z,n).

The parameters r1 and Z of the holds/3 predicate here indicate that the closure is
being computed w.r.t. a particular extension of the initial guess of defeasible rules to
apply; i.e. the initial guess is expanded to also include the rule r1 for a specific ground
substitution of the variables in the body of r1 (indicated by Z). The following rules,
which complete the encoding, now disallow an initial guess for which there is a ground
instance of a defeasible rule (in our example r1) which could have been applied in a
consistency preserving manner:
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inconsistent(r1,Z) :- holds(r1,Z,neg(X)),holds(r1,Z,X).
:- not inconsistent(r1,Z),apply(r1,Z,n).

Example 19 shows all of our dynamic encoding for Example 18, yet written in a more
succinct manner. In the encoding we use use identifiers for guesses of defeasible rules to
apply (wrapped in the predicate relrid/1) and, hence, can merge the computation of
the closure as well as check for consistency w.r.t. the different guesses.

Example 19. The following shows a succinct version of our dynamic ASP encoding for
Example 18 with comments preceded by “%” to ease understanding.

%Identifiers for relevant guesses of defeasible rules
%"b" identifies the "base guess"

relrid(b).
relrid(I):- apply(I,n).

%Bodies and heads of defeasible rules

hbody(I,rid(r1,args(X))):-holds(I,bird(X)).
holds(I,flies(X)):-hhead(I,rid(r1,args(X))).

%The base guess:
%Choose whether to apply or not apply
%the defeasible rule + input identified by D

apply(D,y) :- not apply(D,n),hbody(b,D).
apply(D,n) :- not apply(D,y),hbody(b,D).

%Duplication of rules to compute closure
%w.r.t relevant guesses of defeasible (+ strict) rules

holds(I,bird(tweety)) :- relrid(I).
holds(I,penguin(tux)) :- relrid(I).
holds(I,neg(flies(X))) :- holds(I,penguin(X)),relrid(I).
holds(I,bird(X)) :- holds(I,penguin(X)),relrid(I).

hhead(I,D) :- apply(D,y),relrid(I).
hhead(I,I) :- relrid(I),I!=b.

%Closure w.r.t. guess with identiifer I is inconsistent
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inconsistent(I):- holds(I,neg(X)),holds(I,X).

%Constraints

:- inconsistent(b).
:- not inconsistent(I),relrid(I),I!=b.

%Output
holds(X):- holds(b,X).

4.3 An extended example
In this section we use our implementation of the EMIL pipeline to motivate the latter.
The results we refer to in this section have been obtained with the system described in
Section 4.2.2. We stick to the version that we report on in [DWS17] mainly because
our current implementation of emil still leaves the copula “be” underspecified and the
interaction with the verbalisation component of APE also still needs to be improved. In
any case, we make some comments about parts of the example that can be simplified by
using our current newer system (see also further discussion in Section 4.4).

We motivate EMIL in the context of AceWiki [Kuh09],22 a prototype of an encyclopedia
in the style of the popular Wikipedia,23 but where articles are written using ACE rather
than unrestricted natural language. The advantage to using ACE in a wiki is that
non-expert users can edit AceWiki entries, while at the same time users can use complex
question answering and draw inferences. As it currently stands, AceWiki can represent
a consistent KB about some domain and uses only strict rules. We base our example
on current entries in the AceWiki about geographical information,24 which have been
restricted to a variant of ACE that can be translated into the rule language OWL 2
RL[GHVD03] and thus also, in principle, into the fragment of ACE admitted by EMIL.

As a motivating example, thus consider the entry for island in the geographical AceWiki.
Some straight-forward statements pertaining to the definition of island appear, e.g. Every
island is a land-mass and Every island is surrounded by a body of water. Using ACE,
such statements can be written in a straightforward manner:

(1) Every island is a land-mass.
(2) If X is an island then a body-of-water surrounds X.

As already indicated in Section 4.0.1 APE enables the addition of lexical entries, such
as proper names Mainland-Shetland or St-Ninians-Isle. Moreover, APE is often able to

22AceWiki can be accessed at http://attempto.ifi.uzh.ch/acewiki/.
23https://www.wikipedia.org/
24http://attempto.ifi.uzh.ch/webapps/acewikigeo/
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deduce the word class for words that are not in its lexicon from the context. There are
some interactions in APE/AceRules in relation to the verb form, quantifier scope, and
the verbaliser (among other subtleties) such that, for example, we have represented (2) as
a rule; we suppress further such incidental comments. We do however further note that
rule (2) illustrates the situation where the input text introduces an implicitly existentially
quantified variable in the head of a rule (here, referring to a body-of-water).

The problem, which we develop, is to add a new entry for tied-island to this AceWiki.
However, as we show, this would lead to inconsistency were we to only have strict
rules. According to Wikipedia, tied islands “are landforms consisting of an island that is
connected to land only by a tombolo: a spit of beach materials connected to land at both
ends.”25 With slight simplification, this definition can be written into AceWiki as follows:

(3) Every tied-island is an island.
(4) Every tied-island attaches-to a land-mass.

A prominent example of a tied-island according to the Wikipedia entry is St. Ninian’s
Isle, which is attached to Mainland Shetland, the largest of the Shetland Islands off the
coast of Scotland. Thus, entries for St. Ninian’s Isle and Mainland Shetland in AceWiki
would be:

(5) Mainland-Shetland is an island.
(6) St-Ninians-Isle is a tied-island.
(7) St-Ninians-Isle is a part of the Shetland-Islands.

According to the Wikipedia entry for St. Ninian’s Isle, during the winter strong wave
action removes sand from the tombolo that connects St. Ninian to Mainland Shetland
such that the tombolo is usually covered at high tide and occasionally throughout the
tidal cycle. Hence, simply stating that St. Ninian’s Isle attaches to Mainland Shetland
would be incorrect. Spelling out the exact conditions under which St. Ninian’s Isle is
connected to Mainland-Shetland, which corresponds to using exceptions in strict rules,
seems quite difficult if even possible (or desirable) and would be rather uncommon for an
application like AceWiki. Rather, an easy solution is provided by the use of the predicate
it is usual that applied to a statement:

(8) It is usual that St-Ninians-Isle attaches-to //
Mainland-Shetland.

Let us now turn to a more fundamental reason for being able to distinguish between
defeasible and strict statements in a CNL. Consider now the result of having all of

25https://en.wikipedia.org/wiki/Tied_island (accessed on 4/4/2017)
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the above statements in the AceWiki together with the following fairly uncontroversial
statements referring to the meanings of being attached to a land mass, being surrounded
by water, and being a part of.

(9) If X attaches-to a land-mass then it is false that a //
body-of-water surrounds X.

(10) If a body-of-water surrounds X then it is false that X
attaches-to a land-mass.

(11) If St-Ninians-Isle attaches-to Mainland-Shetland then //
St-Ninians-Isle is a part of Mainland-Shetland.

(12) If St-Ninians-Isle attaches-to Mainland-Shetland then //
St-Ninians-Isle attaches-to a land-mass.

(13) If St-Ninians-Isle attaches-to a land-mass then //
St-Ninians-Isle attaches-to Mainland-Shetland.

Here we note that we retrospectively know that the statements (12) and (13) were needed
in our example because the grouping mechanism in ACERules (see Section 4.1.3) hinders
our system dACERules to derive that “St Ninian’s Isle attaches-to a land-mass” from
“St Ninian’s Isle attaches-to Mainland-Shetland”; in our current system (see Section4.4)
these rules are not needed.

Since according to (6) St. Ninian’s Isle is a tied island, and according to (3) every tied
island is an island, and both (3) as well as (6) are strict rules, the direct stable semantics
forces one to conclude that St. Ninian’s Isle is an island. Now, because St. Ninian’s Isle is
an island and following (2), we conclude that a body of water surrounds St. Ninian’s Isle.
But from the fact that St. Ninian’s is also a tied island and (4), St. Ninian’s Isle attaches
to a land mass. This leads to a contradiction according to statements (9) and (10).
Hence, the entire AceWiki is deemed inconsistent and further reasoning is invalidated.

Note that the AceWiki remains inconsistent even after removing statement (8); the reason
for the apparent contradiction in the Wiki is the fact, as is stated in the Wikipedia entry
referring to St. Ninian’s Isle,26 that “[d]epending on the definition used, St. Ninian’s is
[. . . ] either an island, or a peninsula.” This reveals that the definition for tied-island in
(3) should also be defeasible. However, in contrast to the reasons for the defeasiblity of
(8), this is now due to the fact that there is no consensus on the meaning of tied island.
Thus, we replace (3) with the more accurate statement:

(3’) If X is a tied-island then it is usual that X is an island.

The consequence is that there is now one stable set:
26https://en.wikipedia.org/wiki/St_Ninian’s_Isle (accessed on 4.4.2017)
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ANSWER-TEXT #1:

There is a body-of-water X1.
St-Ninians-Isle is a tied-island.
Mainland-Shetland is a land-mass.
Mainland-Shetland is an island.
St-Ninians-Isle is a part of Shetland-Islands.
St-Ninians-Isle is a part of Mainland-Shetland.
St-Ninians-Isle attaches-to a land-mass.
The body-of-water X1 surrounds Mainland-Shetland.
St-Ninians-Isle attaches-to Mainland-Shetland.
It is false that Mainland-Shetland attaches-to a land-mass.
It is false that a body-of-water surrounds St-Ninians-Isle.

Here the conclusion is that St. Ninian’s Isle is a tied island that is attached to Mainland
Shetland, while nothing can be said regarding whether St. Ninian’s is also an island or
not. The reason is that since statement (4) is strict, (8) is also effectively interpreted as
a strict rule; that is, (8) strictly holds. To make (4) consistent with the intended reading
of (8), (4) should be replaced with:

(4’) If X is a tied-island then it is usual that X attaches-to a
land-mass.

The result is that there are now two stable sets (answer-texts), which have in common
the statements:

There is a body-of-water X1.
St-Ninians-Isle is a tied-island.
Mainland-Shetland is a land-mass.
Mainland-Shetland is an island.
St-Ninians-Isle is a part of Shetland-Islands.
The body-of-water X1 surrounds Mainland-Shetland.
It is false that Mainland-Shetland attaches-to a land-mass.

One stable set contains the following statements in addition to the common statements:

St-Ninians-Isle is a part of Mainland-Shetland.
St-Ninians-Isle attaches-to a land-mass.
St-Ninians-Isle attaches-to Mainland-Shetland.
It is false that a body-of-water surrounds St-Ninians-Isle.
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The other stable set contains the following statements in addition to the common
statements:

There is a body-of-water X2.
St-Ninians-Isle is a land-mass.
St-Ninians-Isle is an island.
The body-of-water X2 surrounds St-Ninians-Isle.
It is false that St-Ninians-Isle attaches-to a land-mass.

The interpretation of the latter set of statements is that St. Ninian’s Isle is a tied island,
but can only be called an island when it is not attached to Mainland-Shetland. Also
relaxing the definition of island by changing (2) to

(2’) If X is an island then it is usual that a body-of-water
surrounds X.

has the consequence that St. Ninian’s Isle can also (always) be considered an island,
despite the fact that the isle is not always surrounded by water.

Summarizing, we have shown that by distinguishing between defeasible and strict state-
ments, we can resolve apparent inconsistencies such as might arise, in our example,
because of the use of generic statements that allow for exceptions or because different
meanings can be attached to certain words.

However, the EMIL pipeline does not require explicit statement of exceptions or alterna-
tives. Using non-artificial, specific exceptions together with negation-as-failure in strict
rules is often not feasible nor desirable. More fundamentally, using artificial exceptions,
e.g. abnormality predicates specific to each rule, will usually not lead to a satisfactory
result. Consider, for instance the effect of having the statement (8”) below rather than
the statement (8) mentioned previously, while replacing (3) with (3”) rather than (3’),
(4) with (4”) rather than (4’), as well as (2) with (2”) rather than (2’).

(8’’)If it is not provable that it is false that
St-Ninians-Isle attaches-to Mainland-Shetland //
then St-Ninians-Isle attaches-to Mainland-Shetland.

(3’’) If X is a tied-island and it is not provable that //
X is not an island then X is an island.

(4’’) If X is a tied-island and it is not provable that //
it is false that X attaches-to a land-mass then X //
attaches-to a land-mass.

(2’’) If X is an island and it is not provable that it //
is false that a body-of-water surrounds X then a //
body-of-water surrounds X.
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The resulting text does not have any answer set under the standard stable semantics for
logic programs.27 Interpreting the text under the courteous semantics is also unsatisfactory
in general. First, because the rules must be acyclic and second because the resulting
answer is often uninformative or somewhat arbitrary. In the current case, the rules are
in fact cyclic and hence no answer is produced.

4.4 Implementation and experiments

We have implemented the rudiments of the system emil as described in Section 4.2.
Specifically, we implemented the filtering of ACE texts corresponding to (strict and
defeasible) ∃-rules and the translation of such ∃-rules to normal defeasible rules as
described in Section 4.2.4.2. We also implemented the ASP encodings to evaluate
the defeasible rules via the direct-stable-semantics sketched in Section 4.2.4.1 and the
translation of answer-sets (generated by running the answer-set solver clingo28) into
DRSs that can be verbalised by APE. We also implemented some basic features such as
top-level skolemisation (Section 4.1.4) also present in ACERules. An upcoming version
of emil will include a corrected variant of processing of atoms corresponding to the
copula “be” as described at the end of Section 4.2 as well as the treatment of atoms
corresponding to the preposition “of” as is present in ACERules29. I.e., in the current
available version of emil the copula “be” and preposition “of” are yet underspecified.

Our system is publicly available30 and, as the other systems presented as part of this
work, implemented in Scala31 and can hence be run as a Java32 executable. A typical
call of emil (using a UNIX command line) looks as follows:

java -jar emil_0.0.0.jar -inFile infile -outFile outfile

Here “infile” is the name of the input file containing an ACE text and “outfile” is the
file where the output of emil will be printed. The system assumes SWI Prolog33

executables “./ape/ape.exe” which generates a DRS from an ACE text and “ape/apev.exe”
which verbalises DRSs (files and instructions on how to generate such executables are on
the webpage dedicated to emil). It also assumes the ASP solver clingo (tested with

27This is not to say that it is not possible to simulate the evaluation of ACE texts under the direct-
stable semantics by using logic programs without the defeasible conditional; in fact the encodings referred
to in sections 4.2.4.2 provide such a simulation. On the other hand, the complexity results from Section
2.4 also suggest that any such simulation via normal or extended logic programs will involve a worst-case
exponential blow-up in general (unless the polynomial hierarchy collapses to its first level), at least for
ACE texts which can be parsed as grounded defeasible theories.

28https://potassco.org/clingo/
29We have implemented this version (emil 0.0.1), but it remains to be more extensively tested.
30https://www.dbai.tuwien.ac.at/proj/grappa/emil/
31https://www.scala-lang.org/
32https://www.java.com
33http://www.swi-prolog.org/
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version 4.5.4) is installed (and on the PATH environment variable) as well as access to
the “/tmp” folder (for generating temporary files).

We provide the complete usage (subject to change in future versions) of emil:

usage: emil -inFile inFileName -outFile outFileName [options]
with options:
-h display this help
-version print version
-asperix use asperix instead of clingo
-e add some extra rules and ground rules for \

copula "be"
-d print debug info
warning: copula "be" and preposition "of" underspecified when \
not using option e; option e favours intersective reading of \
copula and blurs distinction between inanimate and animate \
objects

Here option “-asperix” uses the ASP solver ASPeRiX34 rather than clingo (yet not
extensively tested) and option “-d” shows details of the pipeline of the implementation.
The option “-e” adds some of the functionality of ACERules to our system. Specifically,
it adds extra rules for making all named entities in the program instances of “somebodies”
as well as all entities instances of “somethings” (see discussion in Section 4.1.2.1). While
this leads to incorrect inferences in general (as argued in Section 4.1.2.1), it is still useful
for some texts. Also, option “-e” specifies the meaning of the copula “be” by grounding
variables introduced by the copula. E.g. the rule corresponding to the sentence

Every child is happy.

gets replaced with rules representing

If Mary is a child then he/she is happy.
If John is a child then he/she is happy.

for an ACE text where the only entities referred to in the input ACE text are “Mary”
and “John”. Just as the treatment of the copula “be” by ACERules, this favours an
intersective reading of adjectives (see Section 4.1.2.3), but is useful for ACE texts where
this assumption holds. This is a remnant of a previous iteration of the implementation
which is still useful for some texts so we have decided to keep this option for running
emil until we make available the version of emil which implements treatment of the
copula “be” as detailed in Section 4.2.

34http://www.info.univ-angers.fr/pub/claire/asperix/
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4. Towards an ASP based controlled natural language interface to
argumentation

We have been able to successfully run our system emil on most test-cases (with some
modifications in case of there being negation as failure as well as priorities over rules)
available for AceRules. Concretely, we have been able to run emil on each of the
44 test cases in under one minute with option “e” and without. While without option
“e” emil returns incorrect answers on most texts having the copula “be” (as is to be
expected), with option “e” there are only errors (as far as we are able to tell) for 6 texts;
all of them also related to the treatment of the copula “be”. Otherwise, the interface with
APE’s verbalisation component needs to be improved (i.e. some atoms are not verbalised
at the moment); we note this is also something that ACERules has some issues with.

To conclude this section in Example 20 we give an example of the output of emil. Further
examples on which to run emil (including the extended example from Section 4.3) can
be found on the webpage dedicated to the system.

Example 20. For the input text

John drives in the countryside.
Mary drives in the countryside.
Suzy drives in the countryside.
There is a red car.
If John drives in the countryside then it is usual /

that John drives in the red car.
If Mary drives in the countryside then it is usual /

that Mary drives in the red car.
If Suzy drives in the countryside then it is usual /

that Suzy drives in the red car.
If John drives in the red car and Mary drives in the red car /

then Suzy does not drive in the red car.
If John drives in the red car and Suzy drives in the red car /

then Mary does not drive in the red car.
If Suzy drives in the red car and Mary drives in the red car /

then John does not drive in the red car.

the output of emil (both with and without option “e”) is:

Answer-text #1:

Suzy drives in a red car X1.
Mary drives in the red car X1.
Suzy drives in a countryside X2.
Mary drives in the countryside X2.
John drives in the countryside X2.
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Answer-text #2:

Mary drives in a red car X1.
John drives in the red car X1.
Suzy drives in a countryside X2.
Mary drives in the countryside X2.
John drives in the countryside X2.

Answer-text #3:

Suzy drives in a red car X1.
John drives in the red car X1.
Suzy drives in a countryside X2.
Mary drives in the countryside X2.
John drives in the countryside X2.
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CHAPTER 5
Conclusion

We conclude this work by summarising, once more, our main contributions. Then we
give some pointers on related and future work.

Summary In this study we presented realisation strategies for hard computational
problems in abstract and structured argumentation based on reductions to quantified
boolean formulas and answer-set programming. Specifically, we first of all developed
QBF and ASP encodings for one of the most comprehensive current formalisms for
abstract argumentation, ADFs [BES+13]. More to the point, we started by presenting
complexity-sensitive QBF encodings for verification as well as (credulous and skeptical)
acceptance problems for the stable semantics (Section 3.1.2). Then (Section 3.1.3) we
developed link-information-sensitive QBF encodings for the same reasoning problems for
all main semantics for ADFs (admissible, complete, preferred, grounded, stable). The
motivation behind the latter QBF encodings is that QBF solvers are able to latch on to
the information about the link types and that this boost the performance of such solvers
to the same degree that the reasoning tasks may become easier when the input ADFs are
“close to” being bipolar (see [Wal14, SW15] and Section 3.1.3.1).

We also developed dynamic ASP encodings for acceptance problems w.r.t. the main
semantics for ADFs (again: admissible, complete, preferred, grounded, stable) making use
of the fact that the combined complexity of ASP programs with predicates of bounded
arity, as is the case for the complexity of reasoning on ADFs, spans the first three levels
of the polynomial hierarchy [EFFW07]. This allows for dynamic yet single-shot and
complexity-sensitive ASP encodings.

Finally, we motivated and developed the design of the whole pipeline of evaluating
collections of strict and defeasible rules expressed in the controlled natural language
ACE [FKK08] via the argumentation-inspired direct-stable-semantics defined in [SW17]
(Section 4). We, first of all, presented the results of an in-depth investigation of the
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inner-workings of the main open-source interface to rule systems that exists for ACE,
ACERules [Kuh07], pinpointing the source of some limitations we found while also
highlighting useful features. We then developed an alternative approach that involves
simulating general rules also allowing existential quantification via normal rules. We also
developed novel dynamic ASP encodings for evaluating (normal) first order defeasible
theories via the direct-stable semantics.

We implemented systems that serve as proof-of-concept based on our encodings for ADFs
(sections 3.1.41 and 3.2.72). We also implemented the rudiments of the pipeline for
evaluating strict and defeasible ACE rules via the direct-stable-semantics (Section 4.4)3).
For our ADF systems we reported on experiments we carried out that complement
recent experiments by us that are not part of this work [DKLW18] as well as by other
authors [LMN+18a] (see also the discussion in the section on related work and our
in-depth survey of all recent empirical evaluations of ADF systems in Section B.3 of
Appendix B). For our system for evaluating ACE rules we also presented results on
some preliminary experiments that are promising given the complexity of the pipeline we
implement.

Related work As mentioned in the introduction to this work, there has been a
substantial amount of investigation in implementation strategies and development of
systems for abstract argumentation; in particular for Dung’s AFs. Thus, the second
international competition on computational models of arguments (ICCMA’17)4 featured
16 solvers for Dung’s AFs, with at least 9 solvers participating in each of the 24 tasks
resulting from the combination of considered semantics and reasoning problems [GLMW16,
AGLMW18]. The third ICCMA will be held this year (20195), the first was held in
2015 [TVC+16, TV17].

Implementation techniques for abstract argumentation can be broadly classified in direct
and reduction based, where the direct approach involves the development of native
algorithms for the formalism and reasoning problem of interest. The reduction approach
is based on the translation of the reasoning problem of interest to some formalism for
which systems exist; most notably SAT and QSAT, constraint satisfaction problems,
and answer-set programming. A recent survey is [CGTW18]; for an earlier survey more
focused on abstract argumentation we refer to [CDG+15].

Reductions to the satisfiability problem for propositional logic (SAT) have been first advo-
cated for Dung’s AFs in [DB02] and [DB03] and then further developed in [BD04]. Promi-
nent SAT-based systems that also participated at ICCMA’2017 include argmat-dvisat

1https://www.dbai.tuwien.ac.at/proj/adf/qadf/
2https://www.dbai.tuwien.ac.at/proj/adf/yadf/
3https://www.dbai.tuwien.ac.at/proj/grappa/emil/; see also our previous system

dACERules at https://www.dbai.tuwien.ac.at/proj/adf/dAceRules/
4See http://argumentationcompetition.org/index.html.
5http://www.iccma2019.dmi.unipg.it/index.html
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and argmat-sat6 [PLJ17], jArgSemSAT7 [CGV14, CVG16, CVG17], and cegartix8

[DJWW14]. QSAT encodings for Dung’s AFs have been proposed in [EW06] and [AC13],
but these have not materialised in QBF-based systems. Some of the first ASP encod-
ings for Dung’s AFs are presented in [NCO08] and [WN08] (see [TS11] for an early
and [DDP+18] for a more recent survey), prominent systems include several variants of
ASPARTIX [EGW10]9 as well as the system ASPrMin [FVCG18]10 which participated
at ICCMA’17.

For ADFs, as has already been mentioned, the first system was the ASP-based system
ADFSys [EW12] which lead to the DIAMOND11 family of systems [ES14, ES16]. What all
of these systems have in common is that they are based on static encodings and rely on
a representation of the acceptance conditions of ADFs as boolean functions. Thus, they
need to transform the acceptance conditions in the propositional representation to the
functional representation; an operation which may involve an exponential blowup. An
alternative approach to DIAMOND is using QBF encodings [Dil14] as we have implemented
in our system QADF [DWW14]. As already mentioned, versions of QADF previous to the
version 0.4.0 we present in this work do not include encodings for the stable semantics
nor allow for making use of information about the link types of ADFs.

A more recent approach for solving reasoning problems for ADFs is that presented
in [LMN+18a] and materialised in the system k++ADF12. This approach, similarly to
cegartix for AFs, relies on incremental calls to a SAT solver based on the fact that for
ADFs which are “close to” being an ADF of a subclass with lower complexity the number
of calls to an oracle of the problem of lower complexity can be bounded by a constant.
The current version of k++ADF in particular is able to detect whether the input ADF is
k-bipolar for a sufficiently low value of k. The motivation behind the work in [LMN+18a]
is thus similar to that behind the link-information-sensitive QBF encodings we present in
Section 3.1.3; the difference being that ours is a full-reduction based method in that we
rely also on the QSAT solvers to make use of the information provided by the links while
the approach in [LMN+18a] is somewhat of a hybrid in that the calls to the SAT solver
are managed directly by the reasoning algorithm. In any case, the experiments reported
on in [LMN+18a] suggest that this control over the calls and direct use of a SAT solver
allows k++ADF to currently outperform all other ADF systems including our own (at
least for the admissible and preferred semantics).

We should finally mention that also for the extension of ADFs to arbitrary labelled graphs,
GRAPPA [BW14], there has been some work on implementations. In particular, the
system reported on in [Ber16] which relies on a translation to ADFs (with a potential

6https://sites.google.com/site/argumatrix/
7https://sourceforge.net/projects/argsemsat/
8 http://www.dbai.tuwien.ac.at/proj/argumentation/cegartix/
9https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/

10https://helios.hud.ac.uk/scommv/storage/ASPrMin-v1.0.tar.gz
11http://diamond-adf.sourceforge.net/
12https://www.cs.helsinki.fi/group/coreo/k++adf/
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exponential blowup) and the ASP-based system GrappaVis [HW16]13 which is more
focused on the graphical representation of GRAPPA frameworks and their evaluation
but also uses static and dynamic ASP-based encodings for evaluating GRAPPA frame-
works [Hei16]. The latter, in particular, are based on the same idea as our dynamic ASP
encodings for ADFs; we have thus also presented (a somewhat improved version of) these
encodings for GRAPPA as part of our work in [BDH+17] and [BDH+].

Turning to work related to that we presented in Section 4, we refer once more to [CGTW18]
for an overview of the more heterogeneous landscape of development of implementation
strategies for structured argumentation formalisms. See also again [DDP+18] for an
overview of realisations of structured argumentation using ASP. The use of ASP in
computational linguistics, including for natural language understanding (see e.g. the
discussion in [LL13] about the relative merits of first order logic vs ASP for this task)
and reasoning on CNLs (as e.g. also in [EÖ15]), is surveyed in [Sch18a].

We have discussed the relationship between our ASP encoding strategy for the direct-
stable-semantics and that presented in [SW17]14 at length in Section 4.2.4.2. We have
also made detailed reference to alternative reasoners available for ACE, mainly the FOL
reasoner RACE [Fuc10] and the system ACERules [Kuh07] in Section 4; we refer to the
Attempto Project webpage for further resources and available tools for ACE15. We note
that the line of study of ACERules has been continued via the PENGASP system [GS17]16,
which as far as we are able to tell, inherits many of the features (while also improving on
several others, e.g. in one of the more recent iterations, using a bi-directional grammar
for specifying and verbalising ASP-programs [Sch18b]) of ACERules; in particular, that
it does not offer explicit support of existential quantification. Our reasons for initiating
our study with the system ACERules were mainly pragmatic: the system PENGASP is at
the time of writing this work not open-source nor publicly available for experimentation.

Future work The motivation behind our novel QBF and ASP encodings for ADFs
was to lay the groundwork for better performing ADF solvers. Current experimental
results (see discussions in Section 3.1.4 and Section 3.2.7; also, again, our survey in
Section B.3 of Appendix B for the details) suggest some potential for further boosting
the performance of our encodings on dense ADFs, but principally that our encodings
presently could be of more use as benchmarks driving further development of QSAT and
ASP solvers. In any case, more large scale experiments would be useful: considering more
benchmarks (ideally, also “real-life” data-sets e.g. ADFs generated from planned user
studies with the application reported on in [Neu18]), more solvers (and preprocessors),
different parameters in the input, and eventually more semantics as well as reasoning
problems.

13https://www.dbai.tuwien.ac.at/proj/adf/grappavis/
14https://github.com/hstrass/defeasible-rules
15http://attempto.ifi.uzh.ch/site/resources/
16http://web.science.mq.edu.au/~rolfs/PENG-Light-Answer-Set.html
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For our QBF encodings it would in particular also be of value to consider QSAT solvers
that do not assume QBFs with the matrix in conjunctive normal form. As detailed in
Section 3.1.4 we have already implemented the transformation of some of our encodings
generated by our system QADF to the QCIR format; it would be useful to hence include
solvers that use this input format in future experiments [JKS16]. Depending on results
obtained on boosting the performance of QADF when using our link-information-sensitive
encodings it may make sense to develop encodings similar to our link-information-
sensitive encodings but optimised to other subclasses of ADFs, e.g. acyclic and concise
ADFs [LMN+18a]. In a similar vein, the strategy behind our dynamic ASP-based
encodings could be used to provide encodings for alternative ADF semantics [Pol14] as
well as recent generalizations of ADFs (and GRAPPA) such as weighted ADFs [BSWW18]
(with finite values).

Regarding our work on realisation of the EMIL pipeline, a pressing issue is to make
available the version of our implementation incorporating treatment of the copula “be”
and preposition “of”. Also, adding support for generating arguments from defeasible
theories and experimenting with different ASP grounders and solvers are issues that
should be addressed. Other future work is incorporation of means of restricting existential
variables whenever possible (in the spirit of ACERules) and/or restrictions to ensure
finite groundability (see e.g. [AZZ17]). At a more theoretical level, investigating different
forms of adding defeasibility (e.g. distinguishing between defeasible rules as normality
assumptions and defeasibility introduced by naming conventions as present in the example
developed in Section 4.3) as well as negation-as-failure to the formalism of [SW17] (and
ACE) are intriguing issues to consider. More long term are investigations of alternative
means of supporting existential quantification as well as enhancing the natural language
understanding capabilities of our system.
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APPENDIX A
Report on QBF’18 workshop

study on the effect of different
QBF solvers and preprocessors on

link information sensitive QBF
encodings for ADFs

For the International Workshop on Quantified Boolean Formulas 2018 (QBF’18) we
presented the results of an initial empirical study comparing the performance of several
important QBF solvers and preprocessors on our link information sensitive QBF encodings
presented in Section 3.1.3 and our non link information sensitive encodings from [Dil14,
DWW14, DWW15]. We here present the experimental setup and results of this study
focusing on credulous reasoning w.r.t. the admissible semantics and skeptical reasoning
for the preferred semantics. In Appendix B (in particular Section B.3) we give an overview
of all recent empirical evaluations of ADF systems (including those we have contributed
to) [BDH+17, Kes17, DKLW18, LMN+18b] also again commenting on how the results
in this appendix fit into this larger landscape of empirical evaluations.

A.1 Experimental setup

For the study for QBF’18 we used a modification of the generator for ADFs we im-
plemented for our evaluation from [BDH+17] similar to that of our study comparing
performance of several ADF systems on acyclic vs. non acyclic ADFs reported on
in [DKLW18] (see also the previous experiments reported on in [Kes17]). We refer to
Appendix B for details but also mention the basic functioning of the generator here.
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and preprocessors on link information sensitive QBF encodings for ADFs

The generator takes an undirected graph as input and returns an ADF inheriting the
structure of the graph (edges become links and nodes result in statements of the ADF).
Each parent of a statement is assigned to one of 5 different groups (with some probability
that can be set by the user of the generator) determining whether the parent participates
in a subformula of the statements acceptance condition representing the notions of attack,
group-attack, support, or group-support familiar from argumentation (see Appendix B).
Also, the parents can appear as literals connected by the connective exclusive-or. Crucial
for our study for QBF’18 is that statements appearing in the exclusive-or groups form
(together with the statement having the acceptance condition thus formed) dependent
links, while statements appearing in the other groups form attacking or supporting links.
The type of the links of the generated ADFs can thus be easily extracted from the form
of the acceptance conditions.

In our experiments for QBF’18 the input graphs stem from a data-set used at the second
international competition on computational models of argumentation (ICCMA), namely
from (Dung) AFs generated from traffic networks [Dil17]. More specifically, based on
preliminary experiments, we selected 39 AFs at random from a subset of AFs having
up to 300 arguments. From the resulting 39 AFs (interpreted as undirected graphs),
we generated 39 ADFs with 20% and 39 ADFs with 60% of the parents assigned to the
exclusive-or groups (the other parents are assigned to the remaining groups with equal
probability). From each of these sets we then generated sets (of 39 ADFs each) with
0%, 25%, 50%, and 75% of the links to be unknown. We generated our link-sensitive
encodings for the resulting 312 ADFs both for the admissible and preferred semantics.
Finally, we also generated the encodings from [DWW14, DWW15] for the ADFs without
information about the links. We thus reach a total of 390 QBF encodings per semantics.

We focused on comparing the performance of several of the QBF solvers top-ranked in
the QBF competition QBFEVAL’171, together with the preprocessing tools HQSpre
[WRMB17] as well as Bloqqer [HJL+15]: RAReQS [JKMC16], CAQE [RT15, Ten18],
dynDepQBF [CW17], and DepQBF [LE17]. We also used DepQBF with heavy use of
preprocessing (Bloqqer, HQSpre, QRATPre+ [LE18b]) that was presented at QBFE-
VAL’18 (DepQBF’18). We also considered the outcome of HQSpre as well as Bloqqer
when running alone. Our time-out was 1800 seconds. We refer to Section 3 of [LE18a]
for further details on the solvers (and the versions, most of which are special versions
for QBFEVAL’17) we used, as the experimental setup is adapted from that used in the
study reported on there.

A.2 Results
Tables A.1 to A.5 show the results for different solver + preprocessor combinations for
the preferred semantics; tables A.6 to A.10 the results for the admissible semantics. The
tables show, for the indicated solver+preprocessor combination and set of QBFs, the
percent of instances solved (%S), number of instances solved (#S), number of which are

1http://www.qbflib.org/qbfeval17.php
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satisfiable (#SS) and unsatisfiable (#SU). Also, the total time taken by the solvers (TT),
average time (AT), and average time on solved instances (ATS). “O-Z%-X” stands for the
“original” (non-link-information-sensitive) encodings from [DWW14], generated based
on the ADFs with Z% parents in exclusive-or groups (i.e. dependent links). “N-Z%-X”
stands for the same, but with the “new” link-sensitive encodings. “N-Z%-U” stands for
the new encodings on the ADFs with Z% unknown link types. The highest percent of
instances solved for each data-set in a set of experiments (grouped in one table) is marked
in red.

Confirming results in other studies [DWW14, BDH+17, Kes17, DKLW18, LMN+18b]
the results for the preferred semantics are rather disappointing with the best perform-
ing solver and preprocessor combination (dynDepQBF + Bloqqer; see Table A.3)
solving around 24% of the non-link-information-sensitive encodings and 21% of the
link-information-sensitive encodings. In general, the solvers perform somewhat worse on
the link-information-sensitive encodings; although the use of pre-processing levels-out
the performance in some cases (combination of dynDepQBF with Bloqqer as well as
dynDepQBF or DepQBF with the preprocessor HQSpre; see tables A.3 and A.4). In
general, the solvers also seem rather unsensitive to the number of dependent and known
vs. unknown links when run on the link-information-sensitive encodings. Something
of an exception is dynDepQBF when used as a stand-alone solver as it performs better
when there are less unknown links (Table A.1).

Also confirming other studies, the results for the admissible semantics are more promising.
Thus the best performing solver for this semantics (DepQBF’18; i.e. the version of
DepQBF submitted to QBFEval’18) solves around 99% of the non-link-information-
sensitive encodings and around 97% of the link-information-sensitive-encodings (with
average solving times under a minute and two minutes respectively; see Table A.10).
Interestingly, the preprocessors we considered in the study (in particular Bloqqer but
also to some degree HQSpre) seem to latch on to the information provided by the
links (Table A.7). Thus, for instance, Bloqqer used as a stand-alone-tool is able to
solve e.g. around 77% of the link-information-sensitive encodings (in under 3 seconds
on average) for ADFs with 20% dependent links vs. 67% of the non-link-information-
sensitive encodings. Although for the best performing tool (DepQBF’18) this is not the
case, for several of the solvers the use of preprocessing (especially with HQSpre as can
be seen in Table A.7 but also particularly considering the mean running time on solved
instances when using Bloqqer; see Table A.8) then improves their performance on the
link-information-sensitive vs. non-link-information sensitive encodings.

To conclude, at least on the ADFs we considered in our study for QBF’18, reasoning for the
preferred semantics does not seem to be eased by information about the structure of the
ADFs. On the other hand, for the admissible semantics, such information does improve
the performance of some systems (when used with preprocessors). This is consistent with
studies on the performance of QADF (among other systems) on acyclic (ADFs having an
underlying acyclic graph) vs. non acyclic ADFs carried out in [DKLW18], where there
are gains of performance on the acyclic instances for the admissible semantics but no
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such gains in performance can be observed for the preferred semantics. On the other
hand, the impressive gains obtained by the best performing system on the admissible
semantics in the study which we refer to here (DepQBF’18), do not seem to arise from
the information about the links. Such gains are in fact also a novelty w.r.t. other studies
on ADF systems which have used (the non-link-information-sensitive encodings produced
by) QADF in combination with alternative versions of DepQBF and Bloqqer (Bloqqer
035 and DepQBF 4.0 in [DKLW18], while Bloqqer 037 and DepQBF 6.03 were used
in [LMN+18b]). E.g. QADF in the study of [DKLW18] had 25 of 100 time-outs (600
seconds) on a (larger non-acyclic) set of ADFs resulting from transportation networks for
the admissible semantics; in the study in [LMN+18b] there are 37 of 100 time-outs (1800
seconds). We refer again to Section B.3 in Appendix B for a survey of recent results
comparing performance of ADF systems and a brief discussion also of the results detailed
in this appendix in light thereof.

%S #S #SS #SU TT MT AT ATS
O-20%-X 0.00 0/39 0 0 70200.00 NaN 1800.00 NaN
O-60%-X 0.00 0/39 0 0 70200.00 NaN 1800.00 NaN
N-20%-X 0.00 0/156 0 0 280800.00 NaN 1800.00 NaN

CAQE N-60%-X 0.00 0/156 0 0 280800.00 NaN 1800.00 NaN
N-0%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN
N-25%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN
N-50%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN
N-75%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN

%S #S #SS #SU TT MT AT ATS
O-20%-X 10.26 4/39 2 2 64538.43 320.16 1654.83 384.61
O-60%-X 5.13 2/39 2 0 66605.60 2.80 1707.84 2.80
N-20%-X 5.13 8/156 0 8 266404.58 0.30 1707.72 0.57

DepQBF N-60%-X 5.13 8/156 8 0 266410.07 1.24 1707.76 1.26
N-0%-U 5.13 4/78 2 2 133203.29 0.90 1707.73 0.82
N-25%-U 5.13 4/78 2 2 133202.49 0.50 1707.72 0.62
N-50%-U 5.13 4/78 2 2 133204.18 0.89 1707.75 1.05
N-75%-U 5.13 4/78 2 2 133204.69 1.40 1707.75 1.17

%S #S #SS #SU TT MT AT ATS
O-20%-X 20.51 8/39 4 4 59011.06 70.20 1513.10 401.38
O-60%-X 20.51 8/39 7 1 56269.45 43.55 1442.81 58.68
N-20%-X 11.54 18/156 4 14 252260.99 62.32 1617.06 214.50

dynDepQBF N-60%-X 11.54 18/156 16 2 253361.14 43.22 1624.11 275.62
N-0%-U 17.95 14/78 9 5 119479.67 62.32 1531.79 305.69
N-25%-U 12.82 10/78 6 4 124926.34 50.85 1601.62 252.63
N-50%-U 7.69 6/78 2 4 130181.22 11.76 1668.99 96.87
N-75%-U 7.69 6/78 3 3 131034.90 72.84 1679.93 239.15

%S #S #SS #SU TT MT AT ATS
O-20%-X 0.00 0/39 0 0 70200.00 NaN 1800.00 NaN
O-60%-X 0.00 0/39 0 0 70200.00 NaN 1800.00 NaN
N-20%-X 0.00 0/156 0 0 280800.00 NaN 1800.00 NaN

RAReQS N-60%-X 0.00 0/156 0 0 280800.00 NaN 1800.00 NaN
N-0%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN
N-25%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN
N-50%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN
N-75%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN

Table A.1: Results for the preferred semantics. Stand-alone solvers from QBFEVAL’17.
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%S #S #SS #SU TT MT AT ATS
O-20%-X 5.13 2/39 0 2 66600.28 0.14 1707.70 0.14
O-60%-X 2.56 1/39 1 0 68400.09 0.09 1753.85 0.09
N-20%-X 0.00 0/156 0 0 280800.00 NaN 1800.00 NaN

Bloqqer N-60%-X 0.00 0/156 0 0 280800.00 NaN 1800.00 NaN
N-0%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN
N-25%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN
N-50%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN
N-75%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN

%S #S #SS #SU TT MT AT ATS
O-20%-X 0.00 0/39 0 0 70200.00 NaN 1800.00 NaN
O-60%-X 0.00 0/39 0 0 70200.00 NaN 1800.00 NaN
N-20%-X 0.00 0/156 0 0 280800.00 NaN 1800.00 NaN

HQSpre N-60%-X 0.00 0/156 0 0 280800.00 NaN 1800.00 NaN
N-0%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN
N-25%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN
N-50%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN
N-75%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN

Table A.2: Results for the preferred semantics. Stand-alone preprocessors.

%S #S #SS #SU TT MT AT ATS
O-20%-X 20.51 8/39 5 3 56056.77 1.93 1437.35 32.10
O-60%-X 20.51 8/39 8 0 56118.79 2.44 1438.94 39.85
N-20%-X 5.13 8/156 0 8 266431.93 4.29 1707.90 3.99

CAQE N-60%-X 5.13 8/156 8 0 266407.48 0.71 1707.74 0.94
N-0%-U 5.13 4/78 2 2 133210.37 2.85 1707.83 2.59
N-25%-U 5.13 4/78 2 2 133209.50 2.09 1707.81 2.38
N-50%-U 5.13 4/78 2 2 133208.85 1.74 1707.81 2.21
N-75%-U 5.13 4/78 2 2 133210.69 2.72 1707.83 2.67

%S #S #SS #SU TT MT AT ATS
O-20%-X 20.51 8/39 4 4 55816.24 0.39 1431.19 2.03
O-60%-X 23.08 9/39 8 1 54050.36 0.39 1385.91 5.60
N-20%-X 14.74 23/156 11 12 242258.47 49.09 1552.94 124.28

DepQBF N-60%-X 17.31 27/156 27 0 237515.34 23.39 1522.53 196.86
N-0%-U 14.10 11/78 8 3 121477.69 37.49 1557.41 79.79
N-25%-U 16.67 13/78 10 3 119880.92 34.29 1536.93 221.61
N-50%-U 16.67 13/78 10 3 119682.01 23.39 1534.38 206.31
N-75%-U 16.67 13/78 10 3 118733.19 64.20 1522.22 133.32

%S #S #SS #SU TT MT AT ATS
O-20%-X 25.64 10/39 6 4 52798.03 5.32 1353.80 59.80
O-60%-X 23.08 9/39 8 1 54249.00 3.21 1391.00 27.67
N-20%-X 20.51 32/156 16 16 224067.58 16.08 1436.33 27.11

dynDepQBF N-60%-X 20.51 32/156 28 4 223740.53 12.89 1434.23 16.89
N-0%-U 20.51 16/78 11 5 111912.43 11.21 1434.77 19.53
N-25%-U 20.51 16/78 11 5 111926.02 12.95 1434.95 20.38
N-50%-U 20.51 16/78 11 5 111908.16 18.51 1434.72 19.26
N-75%-U 20.51 16/78 11 5 112061.50 15.02 1436.69 28.84

%S #S #SS #SU TT MT AT ATS
O-20%-X 17.95 7/39 3 4 58551.78 9.30 1501.33 135.97
O-60%-X 15.38 6/39 6 0 59635.75 2.44 1529.12 39.29
N-20%-X 5.77 9/156 1 8 264934.74 0.69 1698.30 37.19

RAReQS N-60%-X 5.77 9/156 9 0 265977.39 0.09 1704.98 153.04
N-0%-U 5.13 4/78 2 2 133201.40 0.35 1707.71 0.35
N-25%-U 6.41 5/78 3 2 132777.98 0.59 1702.28 275.60
N-50%-U 5.13 4/78 2 2 133201.28 0.25 1707.71 0.32
N-75%-U 6.41 5/78 3 2 131731.47 0.69 1688.87 66.29

Table A.3: Results for the preferred semantics. Solvers from QBFEVAL’17 in combination
with Bloqqer.

181



A. Report on QBF’18 workshop study on the effect of different QBF solvers
and preprocessors on link information sensitive QBF encodings for ADFs

%S #S #SS #SU TT MT AT ATS
O-20%-X 15.38 6/39 4 2 60863.97 31.44 1560.61 243.99
O-60%-X 17.95 7/39 7 0 58522.20 1.44 1500.57 131.74
N-20%-X 5.13 8/156 0 8 266475.71 9.21 1708.18 9.46

CAQE N-60%-X 6.41 10/156 10 0 264349.10 1.11 1694.55 154.91
N-0%-U 6.41 5/78 3 2 132960.11 6.74 1704.62 312.02
N-25%-U 6.41 5/78 3 2 131423.10 3.27 1684.91 4.62
N-50%-U 5.13 4/78 2 2 133220.22 4.07 1707.95 5.05
N-75%-U 5.13 4/78 2 2 133221.38 5.51 1707.97 5.35

%S #S #SS #SU TT MT AT ATS
O-20%-X 20.51 8/39 4 4 56542.18 8.53 1449.80 92.77
O-60%-X 20.51 8/39 7 1 56573.91 5.79 1450.61 96.74
N-20%-X 18.59 29/156 13 16 234514.19 51.81 1503.30 203.94

DepQBF N-60%-X 19.23 30/156 28 2 232453.79 5.14 1490.09 188.46
N-0%-U 19.23 15/78 10 5 116617.41 29.20 1495.10 214.49
N-25%-U 17.95 14/78 10 4 118202.09 16.08 1515.41 214.44
N-50%-U 19.23 15/78 11 4 115140.95 10.78 1476.17 116.06
N-75%-U 19.23 15/78 10 5 117007.52 52.19 1500.10 240.50

%S #S #SS #SU TT MT AT ATS
O-20%-X 20.51 8/39 4 4 56207.99 8.56 1441.23 51.00
O-60%-X 20.51 8/39 7 1 55898.40 9.71 1433.29 12.30
N-20%-X 19.23 30/156 16 14 229755.60 8.01 1472.79 98.52

dynDepQBF N-60%-X 20.51 32/156 28 4 229983.55 38.12 1474.25 211.99
N-0%-U 20.51 16/78 11 5 113281.05 36.73 1452.32 105.07
N-25%-U 20.51 16/78 11 5 114036.23 26.68 1462.00 152.26
N-50%-U 19.23 15/78 11 4 116314.51 29.91 1491.21 194.30
N-75%-U 19.23 15/78 11 4 116107.36 19.44 1488.56 180.49

%S #S #SS #SU TT MT AT ATS
O-20%-X 10.26 4/39 2 2 63894.42 3.40 1638.32 223.61
O-60%-X 10.26 4/39 4 0 63000.83 0.12 1615.41 0.21
N-20%-X 5.13 8/156 0 8 266445.42 5.66 1707.98 5.68

RAReQS N-60%-X 5.13 8/156 8 0 266424.51 2.53 1707.85 3.06
N-0%-U 5.13 4/78 2 2 133217.19 4.48 1707.91 4.30
N-25%-U 5.13 4/78 2 2 133214.48 4.02 1707.88 3.62
N-50%-U 5.13 4/78 2 2 133219.46 5.88 1707.94 4.87
N-75%-U 5.13 4/78 2 2 133218.80 5.66 1707.93 4.70

Table A.4: Results for the preferred semantics. Solvers from QBFEVAL’17 in combination
with HQSpre.

%S #S #SS #SU TT MT AT ATS
O-20%-X 17.95 7/39 4 3 58880.61 39.51 1509.76 182.94
O-60%-X 23.08 9/39 8 1 55141.53 24.89 1413.89 126.84
N-20%-X 9.62 15/156 5 10 260077.86 12.13 1667.17 418.52

DepQBF’18 N-60%-X 15.38 24/156 24 0 247169.29 313.87 1584.42 398.72
N-0%-U 12.82 10/78 7 3 126868.14 308.60 1626.51 446.81
N-25%-U 11.54 9/78 7 2 126493.60 205.01 1621.71 254.84
N-50%-U 12.82 10/78 8 2 125651.11 284.02 1610.91 325.11
N-75%-U 12.82 10/78 7 3 128234.29 309.51 1644.03 583.43

%S #S #SS #SU TT MT AT ATS
O-20%-X 20.51 8/39 4 4 56137.79 61.26 1439.43 42.22
O-60%-X 23.08 9/39 8 1 54288.62 27.54 1392.02 32.07
N-20%-X 14.74 23/156 12 11 244774.24 82.25 1569.07 233.66

DepQBF’18 N-60%-X 16.67 26/156 26 0 241702.27 68.06 1549.37 296.24
+ Bloqqer N-0%-U 12.82 10/78 8 2 123945.38 27.44 1589.04 154.54

N-25%-U 16.67 13/78 10 3 120293.65 68.73 1542.23 253.36
N-50%-U 16.67 13/78 10 3 120801.93 67.38 1548.74 292.46
N-75%-U 16.67 13/78 10 3 121435.54 175.74 1556.87 341.20

Table A.5: Results for the preferred semantics. DepQBF’18 alone and in combination
with Bloqqer.
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%S #S #SS #SU TT MT AT ATS
O-20%-X 5.13 2/39 0 2 66721.34 60.67 1710.80 60.67
O-60%-X 5.13 2/39 2 0 67908.13 654.07 1741.23 654.07
N-20%-X 0.00 0/156 0 0 280800.00 NaN 1800.00 NaN

CAQE N-60%-X 0.00 0/156 0 0 280800.00 NaN 1800.00 NaN
N-0%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN
N-25%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN
N-50%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN
N-75%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN

%S #S #SS #SU TT MT AT ATS
O-20%-X 23.08 9/39 4 5 54596.86 4.59 1399.92 66.32
O-60%-X 20.51 8/39 6 2 56369.05 36.45 1445.36 71.13
N-20%-X 5.13 8/156 0 8 266419.19 1.70 1707.82 2.40

DepQBF N-60%-X 5.13 8/156 8 0 266700.42 12.87 1709.62 37.55
N-0%-U 5.13 4/78 2 2 133215.97 3.29 1707.90 3.99
N-25%-U 5.13 4/78 2 2 133220.71 4.75 1707.96 5.18
N-50%-U 5.13 4/78 2 2 133267.12 9.42 1708.55 16.78
N-75%-U 5.13 4/78 2 2 133415.81 21.50 1710.46 53.95

%S #S #SS #SU TT MT AT ATS
O-20%-X 41.03 16/39 8 8 47560.92 2.61 1219.51 385.06
O-60%-X 35.90 14/39 9 5 46507.24 0.76 1192.49 107.66
N-20%-X 26.28 41/156 21 20 211749.27 6.46 1357.37 115.84

dynDepQBF N-60%-X 23.72 37/156 26 11 219030.29 6.19 1404.04 130.55
N-0%-U 26.92 21/78 12 9 106006.43 4.86 1359.06 162.21
N-25%-U 26.92 21/78 13 8 105082.79 7.96 1347.22 118.23
N-50%-U 24.36 19/78 11 8 108112.60 6.26 1386.06 100.66
N-75%-U 21.79 17/78 11 6 111577.74 10.21 1430.48 104.57

%S #S #SS #SU TT MT AT ATS
O-20%-X 5.13 2/39 0 2 66602.90 1.45 1707.77 1.45
O-60%-X 5.13 2/39 2 0 66744.19 72.10 1711.39 72.10
N-20%-X 0.00 0/156 0 0 280800.00 NaN 1800.00 NaN

RAReQS N-60%-X 0.00 0/156 0 0 280800.00 NaN 1800.00 NaN
N-0%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN
N-25%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN
N-50%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN
N-75%-U 0.00 0/78 0 0 140400.00 NaN 1800.00 NaN

Table A.6: Results for the admissible semantics. Stand-alone solvers from QBFEVAL’17.

%S #S #SS #SU TT MT AT ATS
O-20%-X 66.67 26/39 17 9 23422.40 0.20 600.57 0.86
O-60%-X 66.67 26/39 20 6 23416.29 0.15 600.42 0.63
N-20%-X 76.92 120/156 60 60 65142.43 1.30 417.58 2.85

Bloqqer N-60%-X 67.95 106/156 81 25 90271.31 1.25 578.66 2.56
N-0%-U 75.64 59/78 36 23 34336.02 1.29 440.21 2.31
N-25%-U 71.79 56/78 35 21 39727.06 1.25 509.32 2.27
N-50%-U 71.79 56/78 35 21 39750.16 1.10 509.62 2.68
N-75%-U 70.51 55/78 35 20 41600.50 1.69 533.34 3.65

%S #S #SS #SU TT MT AT ATS
O-20%-X 2.56 1/39 0 1 68400.00 0.00 1753.85 0.00
O-60%-X 2.56 1/39 1 0 68400.00 0.00 1753.85 0.00
N-20%-X 16.67 26/156 22 4 234315.57 4.74 1502.02 12.14

HQSpre N-60%-X 4.49 7/156 7 0 268242.67 0.09 1719.50 6.10
N-0%-U 14.10 11/78 10 1 120730.22 4.29 1547.82 11.84
N-25%-U 8.97 7/78 6 1 127847.05 0.79 1639.06 6.72
N-50%-U 8.97 7/78 6 1 127854.34 0.99 1639.16 7.76
N-75%-U 10.26 8/78 7 1 126126.63 3.55 1617.01 15.83

Table A.7: Results for the admissible semantics. Stand-alone preprocessors.
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%S #S #SS #SU TT MT AT ATS
O-20%-X 79.49 31/39 17 14 14465.18 0.00 370.90 2.10
O-60%-X 79.49 31/39 21 10 16294.67 0.00 417.81 61.12
N-20%-X 80.77 126/156 60 66 54023.03 0.00 346.30 0.18

CAQE N-60%-X 73.72 115/156 84 31 73847.32 0.00 473.38 0.41
N-0%-U 79.49 62/78 37 25 28801.76 0.00 369.25 0.03
N-25%-U 78.21 61/78 37 24 30632.12 0.00 392.72 0.53
N-50%-U 76.92 60/78 35 25 32436.07 0.00 415.85 0.60
N-75%-U 74.36 58/78 35 23 36000.40 0.00 461.54 0.01

%S #S #SS #SU TT MT AT ATS
O-20%-X 79.49 31/39 17 14 14408.37 0.00 369.45 0.27
O-60%-X 69.23 27/39 21 6 23279.94 0.00 596.92 62.22
N-20%-X 80.13 125/156 60 65 55848.97 0.00 358.01 0.39

DepQBF N-60%-X 71.79 112/156 82 30 79956.33 0.00 512.54 6.75
N-0%-U 78.21 61/78 36 25 30604.69 0.00 392.37 0.08
N-25%-U 76.92 60/78 36 24 33188.91 0.00 425.50 13.15
N-50%-U 74.36 58/78 35 23 36000.10 0.00 461.54 0.00
N-75%-U 74.36 58/78 35 23 36011.60 0.00 461.69 0.20

%S #S #SS #SU TT MT AT ATS
O-20%-X 74.36 29/39 17 12 18195.86 0.00 466.56 6.75
O-60%-X 71.79 28/39 22 6 20042.72 0.00 513.92 8.67
N-20%-X 78.21 122/156 60 62 61475.70 0.00 394.08 2.26

dynDepQBF N-60%-X 73.08 114/156 83 31 76016.10 0.01 487.28 3.65
N-0%-U 76.92 60/78 36 24 32419.10 0.01 415.63 0.32
N-25%-U 75.64 59/78 36 23 34248.78 0.00 439.09 0.83
N-50%-U 76.92 60/78 36 24 32971.24 0.00 422.71 9.52
N-75%-U 73.08 57/78 35 22 37852.69 0.01 485.29 0.92

%S #S #SS #SU TT MT AT ATS
O-20%-X 89.74 35/39 17 18 7200.00 0.00 184.62 0.00
O-60%-X 82.05 32/39 21 11 12642.59 0.00 324.17 1.33
N-20%-X 82.05 128/156 60 68 50400.10 0.00 323.08 0.00

RAReQS N-60%-X 76.28 119/156 84 35 66624.80 0.00 427.08 0.21
N-0%-U 80.77 63/78 37 26 27004.20 0.00 346.21 0.07
N-25%-U 78.21 61/78 37 24 30615.60 0.00 392.51 0.26
N-50%-U 79.49 62/78 35 27 28802.70 0.00 369.27 0.04
N-75%-U 78.21 61/78 35 26 30602.40 0.00 392.34 0.04

Table A.8: Results for the admissible semantics. Solvers from QBFEVAL’17 in combina-
tion with Bloqqer.

%S #S #SS #SU TT MT AT ATS
O-20%-X 53.85 21/39 3 18 32937.62 4.87 844.55 25.60
O-60%-X 46.15 18/39 6 12 41391.19 17.14 1061.31 199.51
N-20%-X 58.33 91/156 25 66 135483.32 13.59 868.48 203.11

CAQE N-60%-X 44.87 70/156 40 30 160209.61 27.53 1026.98 77.28
N-0%-U 55.13 43/78 18 25 68883.59 13.59 883.12 136.83
N-25%-U 56.41 44/78 18 26 67624.37 17.02 866.98 146.01
N-50%-U 50.00 39/78 16 23 75892.68 30.36 972.98 145.97
N-75%-U 44.87 35/78 13 22 83292.30 38.01 1067.85 168.35

%S #S #SS #SU TT MT AT ATS
O-20%-X 20.51 8/39 4 4 55973.21 4.53 1435.21 21.65
O-60%-X 20.51 8/39 6 2 55846.89 2.07 1431.97 5.86
N-20%-X 31.41 49/156 29 20 196124.77 0.86 1257.21 71.93

DepQBF N-60%-X 27.56 43/156 35 8 204199.88 7.36 1308.97 18.60
N-0%-U 33.33 26/78 19 7 95120.25 4.20 1219.49 58.47
N-25%-U 33.33 26/78 19 7 94464.17 6.79 1211.08 33.24
N-50%-U 26.92 21/78 14 7 103990.99 4.68 1333.22 66.24
N-75%-U 24.36 19/78 12 7 106749.24 2.58 1368.58 28.91

%S #S #SS #SU TT MT AT ATS
O-20%-X 38.46 15/39 8 7 43681.18 1.26 1120.03 32.08
O-60%-X 33.33 13/39 8 5 48488.78 1.17 1243.30 129.91
N-20%-X 56.41 88/156 46 42 128790.40 3.56 825.58 72.62

dynDepQBF N-60%-X 51.28 80/156 56 24 141684.38 4.29 908.23 61.05
N-0%-U 53.85 42/78 26 16 66520.32 2.24 852.82 40.96
N-25%-U 56.41 44/78 27 17 63214.56 7.28 810.44 45.79
N-50%-U 56.41 44/78 27 17 66625.21 6.33 854.17 123.30
N-75%-U 48.72 38/78 22 16 74114.69 2.11 950.19 55.65

%S #S #SS #SU TT MT AT ATS
O-20%-X 51.28 20/39 4 16 36520.31 1.55 936.42 116.02
O-60%-X 35.90 14/39 6 8 45808.24 6.70 1174.57 57.73
N-20%-X 49.36 77/156 25 52 151597.11 8.48 971.78 122.04

RAReQS N-60%-X 42.31 66/156 39 27 166454.79 11.01 1067.02 67.50
N-0%-U 50.00 39/78 18 21 73347.30 9.20 940.35 80.70
N-25%-U 47.44 37/78 18 19 76586.13 9.66 981.87 75.30
N-50%-U 43.59 34/78 16 18 83612.33 10.33 1071.95 129.77
N-75%-U 42.31 33/78 12 21 84506.15 8.93 1083.41 106.25

Table A.9: Results for the admissible semantics. Solvers from QBFEVAL’17 in combina-
tion with HQSpre.
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%S #S #SS #SU TT MT AT ATS
O-20%-X 100.00 39/39 19 20 1487.59 3.89 38.14 38.14
O-60%-X 97.44 38/39 26 12 3597.13 8.97 92.23 47.29
N-20%-X 98.08 153/156 74 79 18481.91 14.32 118.47 85.50

DepQBF’18 N-60%-X 96.79 151/156 104 47 25083.97 12.57 160.79 106.52
N-0%-U 98.72 77/78 45 32 8365.77 10.62 107.25 85.27
N-25%-U 94.87 74/78 43 31 14651.92 12.62 187.85 100.70
N-50%-U 97.44 76/78 45 31 10952.71 13.84 140.42 96.75
N-75%-U 98.72 77/78 45 32 9595.47 13.82 123.02 101.24

%S #S #SS #SU TT MT AT ATS
O-20%-X 97.44 38/39 19 19 2690.10 0.06 68.98 23.42
O-60%-X 94.87 37/39 26 11 4842.12 0.06 124.16 33.57
N-20%-X 91.67 143/156 69 74 27051.03 0.06 173.40 25.53

DepQBF’18 N-60%-X 92.95 145/156 100 45 24754.97 0.06 158.69 34.17
+ Bloqqer N-0%-U 93.59 73/78 42 31 10465.57 0.05 134.17 20.08

N-25%-U 89.74 70/78 41 29 16196.03 0.06 207.64 25.66
N-50%-U 92.31 72/78 43 29 12963.08 0.06 166.19 30.04
N-75%-U 93.59 73/78 43 30 12181.31 0.06 156.17 43.58

Table A.10: Results for the admissible semantics. DepQBF’18 alone and in combination
with Bloqqer.
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APPENDIX B
Report on AAAI’17 study

comparing performance of main
ADF solvers with our dynamic

ASP encoding based system

For our work presented at the AAAI’17 conference [BDH+17] we carried out experiments
to compare the performance of our implementation of the dynamic ASP based solving
strategy for ADFs presented in Section 3.2 with the then existing systems for ADFs.
Specifically, we compared the performance of our prototype system, YADF (Section 3.2.7),
with that of the static ASP based system DIAMOND [ES14] and our QBF based system
QADF [DWW14]. We focused on credulous and skeptical reasoning for the admissible
and preferred semantics, respectively. We here, first of all, present the experimental
setup and results of the work we reported on at AAAI’17. We then survey subsequent
experimental evaluations of ADF systems with which we have collaborated as well as by
colleagues and discuss the results from AAAI’17 in light of these.

B.1 Experimental setup

To generate ADFs, in our study for AAAI’17 we first used a “grid-based” ADF generator
which has been employed in the then only evaluations of ADF systems known to us [Ell12,
Dil14, DWW14]. The basic idea behind this generator is that a predetermined number of
statements are placed on a grid with directed edges and a certain width, an outgoing edge
from one neighbor to the other indicating that the one neighbor has a certain probability
to appear in the acceptance condition of the other. Apart from this aspect, there are
probabilities assigned to the links in the grid governing whether both statements in a
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link appear in the acceptance condition of each other (“symmetric relation of attack or
support”), whether the statement is mutated into one of the truth constants ⊥ or >, and
whether each of the statements (or constant in case a statement has been mutated) in
question will appear negated or not in the relevant acceptance condition. Finally, for
constructing the acceptance conditions there is a probability that determines whether
the connective appearing between the part of the acceptance condition that has already
been constructed and a new statement that is added to the condition is a conjunction
(∧) or disjunction (∨).

Regarding the parameters governing the ADF generation process of the grid based
generator, for our experiments we used the default values of the generator: 7 for the
width of the grid1, 0.5 for the probability of symmetry in relation of attack or support, 0.2
for the probability of a variable being changed into a constant, and 0.5 for the probability
of a given connective being a conjunction or disjunction when constructing the acceptance
conditions. We produced 40 ADFs with 10, 20, 30, 40, 50, 60, 70, and up to 80 statements
with the grid based generator; i.e. 320 ADFs in total.

The grid-based generator has the drawback that the underlying grid structure is somewhat
arbitrary and the control over the form of the acceptance conditions generated rather
limited. For these reasons, we also wrote our own graph-based generator2. This generator
takes any desired directed graph as input and generates an ADF inheriting the structure
of the graph. This means that the edges of the graph become links and the nodes become
statements of the resulting ADF.

For constructing the acceptance conditions of the ADFs, the graph based generator assigns
each of the parents of a statement to one of 5 different groups (with equal probability
in our experiments). This assignment determines whether the parent participates in a
subformula of the statement’s acceptance condition representing the notions of attack,
group-attack, support, or group-support familiar from argumentation. Also, the parents
can appear as literals connected by the exclusive-or connective (⊕; this, in order to
capture the full complexity of ADFs). More precisely, if for a statement s0, the parents
s1, . . . , sn are assigned to the group for attack, the corresponding subformula for these
parents in the acceptance condition of s0 has the form:

¬s1 ∧ . . . ∧ ¬sn

The subformulas for group-attack, support, group-support, and the exclusive-or group on
the other hand have the form

¬s1 ∨ . . . ∨ ¬sn,
1This means a statement can have up to eight parents.
2This generator underlies the subsequent version available at https://www.dbai.tuwien.ac.at/

proj/grappa/subadfgen/.
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Cred-adm Skept-prf
DIAMOND QADF YADF DIAMOND QADF YADF

Gri-10 0.11 (0) 0.62 (0) 0.66 (0) 0.31 (0) 0.9 (0) 0.75 (0)
Gri-20 0.35 (0) 0.8 (0) 0.96 (0) 51.17 (20) 41.53 (0) 1.26 (0)
Gri-30 0.9 (0) 1.01 (0) 1.13 (0) 51.48 (38) 497.4 (39) 1.76 (0)
Gri-40 1.64 (0) 1.21 (0) 1.34 (0) - (40) - (40) 2.68 (0)
Gri-50 2.8 (0) 1.47 (0) 1.52 (0) - (40) - (40) 4.83 (0)
Gri-60 4.3 (0) 2.08 (0) 1.86 (0) - (40) - (40) 9.6 (0)
Gri-70 6.52 (0) 3.52 (0) 2.08 (0) - (40) - (40) 68.48 (1)
Gri-80 8.83 (0) 3.08 (1) 2.37 (0) - (40) - (40) 84.37 (6)
Metro 5.7 (0) 5.86 (7) 1.6 (0) - (40) - (40) 43.01 (11)

Table B.1: Mean running times in seconds for credulous reasoning under the admissible
(Cred-adm) and skeptical reasoning under the preferred (Skept-prf) semantics. On
ADF instances generated by the grid-based (Gri-X = ADFs with X statements) and
graph-based generator (5 ADFs per city). Number of time-outs (out of 40 instances; with
time-out of 600 seconds) in parentheses. Mean running times are computed disregarding
time-outs.

s1 ∨ . . . ∨ sn,
s1 ∧ . . . ∧ sn,

and

l1 ⊕ . . .⊕ ln

respectively. In the last suformula, li (1 ≤ i ≤ n) is either si or ¬si with equal probability.
Also, for groups to which no parents are assigned, the corresponding subformulas are >
or ⊥ with identical probability. To generate the final acceptance condition of a statement,
the subformulas for the different groups of parents of the statement are connected via ∧
or ∨; again, with equal probability.

In our experiments the input graphs we used for our graph based generator represent
public transport networks of 8 different cities: metro networks of Berlin, Beijing, London,
Munich, Shanghai, Singapore, and Vienna, as well as the tram network of Vienna. We
generated 5 ADFs per city. The motivation behind using metro networks is that these
may, to some extent, resemble the structure of more or less complex “real life” discussions,
where usually there are many claims but not as many relations between the claims. I.e.
discussions usually progress by considering a few claims at a time; then, newly expounded
claims are considered.

Experiments were carried out on a 48 GB Debian (8.5) machine with 8 Intel Xeon
processors (2.33 GHz). Due to known problems with the available versions of DIAMOND
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Figure B.1: Number of instances solved in running time less than x seconds for credulous
reasoning under the admissible and skeptical reasoning under the preferred semantics.
All grid-based and graph-based instances were considered (360 total).

at the time3, 2.0.2 and 2.0.0, we used version 0.9 (modified to support credulous and
skeptical reasoning). For QADF we used version 0.3.2 with the preprocessing tool bloqqer
035 [HJL+15]4 and the QSAT solver DepQBF 4.0 [LB10, LE17]5. This version of QADF
includes the (non-QDIMACS) intermediate representation of the QBF encodings as is also
included in the version described in Section 3.1.4 (version 0.4.0), but does not produce the
link-information-sensitive encodings. YADF is version 0.1.0 with the rule decomposition
tool lpopt version 2.0 [BMW16a]6 and the ASP solver clingo 4.4.0 [GKK+18]7.
Version 0.1.0 of YADF is identical to the version (0.1.1) presented in Section 3.2.7, except
that it does not generate the encodings for the stable semantics. We set the time-out for
our experiments to be of 600 seconds.

B.2 Results

Table B.1 and Figure B.1 summarise the results of our study for AAAI’17. As can
be seen from these, YADF (0.1.0) performed comparably, or even somewhat better, to
DIAMOND (0.9) and QADF (0.3.2; non-link-information-sensitive encodings) for credulous
reasoning under the admissible semantics. There is a clear advantage in the use of the
dynamic ASP-based encodings over DIAMOND and QADF for skeptical reasoning under
the preferred semantics, although there are 7 time-outs on the grid based instances with
70 and 80 statements as well as on 11 of the metro-based instances.

3See discussion in [SE17]. In particular, the version of DIAMOND reported there (goDIAMOND) was
not yet available at the time of submission of our work to AAAI’17.

4http://fmv.jku.at/bloqqer/
5http://lonsing.github.io/depqbf/
6https://www.dbai.tuwien.ac.at/research/project/lpopt/
7https://potassco.org/clingo/
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B.3 Survey of subsequent experimental evaluations of
ADF systems and assessment of AAAI’17 results in
light thereof

Since our experimental evaluation for AAAI’17, there have been three noteworthy
experimental evaluations of ADF systems including our system YADF. All of these
evaluations build on the experimental setup of our evaluation for AAAI’17; in particular
they also consider credulous reasoning for the admissible semantics as well as skeptical
reasoning for the preferred semantics. Yet, the experiments also include the most recent
version of DIAMOND as well as a novel system for ADFs based on incremental SAT solving;
we have collaborated with two of these evaluations [Kes17, DKLW18], while the other
has been carried out by colleagues of ours [LMN+18a]. We briefly summarise the setup
and results of the mentioned evaluations to then attempt to paint a general picture of
what is currently known about the performance of ADF systems, which includes those
we present in this work.

In [Kes17] the author compares the performance of ADF systems on acyclic, being those
whose underlying graph is acyclic, vs. non-acyclic ADFs (i.e. ADFs whose underlying
graph is not guaranteed to be acyclic). As is proven in [Kes17, DKLW18], for acyclic
ADFs, the grounded interpretations, complete interpretations, preferred interpretations,
(two-valued) models, and stable models coincide. It hence follows (from the results
in [SW15]) that acceptance problems can be decided in polynomial time for this subclass
of ADFs. Current ADF systems are not optimised for acyclic ADFs, the purpose of
comparing the performance of the systems on acyclic vs. non-acyclic ADFs thus being
to determine whether the systems used at the back-end of the ADF systems (QBF and
ASP solvers) are nevertheless able to use the acyclic nature of ADFs in their favour.

In the experimental setup of [Kes17] our generator used in the experiments in [BDH+17]
is modified to take undirected rather than directed graphs as input. For generating an
acyclic ADF a directed graph is hence first generated from the undirected graph by
choosing a total order on the vertices at random. This total order is used to determine
the direction of the links. For the non-acyclic ADFs, a probability controls whether an
edge in the input graph will result in a symmetric link in the ADF (in the experiments
reported on in [Kes17] a probability of 0.5 is used); in case of non-symmetric links the
direction of the link is chosen at random. ADFs were generated using the 8 metro
networks also used in [BDH+17] as input (now undirected) graphs. Ten different acyclic
ADFs, resp. non-acyclic ADFs, were generated for each input graph. Hence, in total 160
ADF instances were generated, 80 acyclic and 80 non-acyclic ADFs.

The combinations of ADF and back-end systems used in [Kes17] are as in [BDH+17],
except that now also the system goDIAMOND [SE17] (version 0.6.6)8 is considered. This
is the more recent9 variant of DIAMOND, which has also been submitted to the second

8https://sourceforge.net/p/diamond-adf/code/ci/go/tree/go/
9The reason for not using the other more recent versions of DIAMOND, versions 3.0.x implemented in
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international competition for computational models of argumentation (ICCMA 2017;
with some specialised encodings for Dung’s AFs). This system still relies on static
ASP encodings but is now implemented in the programming language Go. The system
goDIAMOND also translates ADFs with acceptance conditions as propositional formulas
to ADFs with acceptance conditions as boolean functions for most of the harder reasoning
problems; given the complexity of this task, the system (version 0.6.6) does not support
ADFs having statements with more than 31 parents.

The results obtained in the experiments in [Kes17] for non-acyclic ADFs, which we
concentrate on here, are consistent with those obtained in our experiments from [BDH+17].
Thus in general, the performance for credulous reasoning for the admissible semantics is
quite good for the ASP-based systems: YADF has mean running time of 2.1679 seconds
and DIAMOND (0.9) mean running time of 17.641 seconds. The system goDIAMOND
excels with a mean running time of 0.202 seconds. None of the ASP-based systems
has any time-outs (600 seconds). QADF, on the other hand, has quite a few time-outs
(35) and mean running time of 5.5060 seconds (disregarding instances on which there
were time-outs). All of the systems show improvement on the acyclic instances, the
improvement being most notable for QADF whose time-outs are reduced to 4 instances
(mean running time of 3.1635 seconds).

For the preferred semantics, as in the experiments in [BDH+17], both DIAMOND and QADF
time-out on all instances. Here the performance also of YADF is rather disappointing
with 40 time-outs and mean running time of 126.128 seconds. The system goDIAMOND,
on the other hand, has only 8 time-outs and mean running time of 1.2838 seconds. This
is also the only system which showed improvement on the acyclic instances, having 0
time-outs and 0.144 mean running time on these instances.

Turning to the experiments reported on in [DKLW18], here also the performance
of goDIAMOND (0.6.6), YADF (0.1.0), and QADF (0.3.2) (+ solver combinations as
in [BDH+17] and [Kes17]) are considered on acyclic vs non-acyclic ADFs produced
by the generator as modified for [Kes17]. The difference is that now the benchmark set
is generated from Dung argumentation frameworks interpreted as (undirected) graphs
obtained from benchmarks used at the second international competition of argumen-
tation (ICCMA’17) [AGLMW18]. These result from encoding assumption-based argu-
mentation problems into AFs (“ABA”) [LWJ17], encoding planning problems as AFs
(“Planning”) [CGV17], and a data-set of AFs generated from traffic networks (“Traffic”).
This last data-set has, in fact, been submitted to ICCMA’17 by us [Dil17] and has been
constructed using a larger set of traffic-networks from the same source we used for our
evaluations of ADF systems in [BDH+17]. Specifically, based on preliminary experiments,
for our experiments in [DKLW18] we selected 100 AFs at random from a subset of AFs
having up to 150 arguments in the very dense AFs in the “ABA” data-set, and 100 AFs
at random from a subset of AFs having up to 300 arguments in each of the “Planning”
and “Traffic” benchmarks. From the resulting 300 AFs interpreted as undirected graphs,
we generated 300 acyclic and 300 non-acyclic ADFs.
C++ [ES16], is the decrease of performance to previous versions of DIAMOND documented in [SE17].
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Concentrating again on the results on the non-acyclic ADF instances, the results of our
experiments for [DKLW18] are quite in line with those obtained in [Kes17] for credulous
reasoning w.r.t. the admissible semantics for the “Traffic” and “Planning” instances.
Nevertheless, all of the systems have somewhat more difficulty with the “Planning” (in
relation to the “Traffic”) instances; thus goDIAMOND and YADF have 0 time-outs (600
seconds) as well as 7.679 and 13.20 seconds mean running times respectively. QADF has
59 time-outs and 14.63 seconds mean running time on the instances on which it did not
time-out. More novel results are obtained on the “ABA” data-set where there are many
time-outs for all systems but, interestingly, QADF performs better with 30 time-outs and
mean running time of 8.15 seconds. On the other hand, goDIAMOND has 52 time-outs
and 22.64 seconds mean running time while YADF has 56 time-outs with 31.39 seconds
mean running time. For the ASP-based systems there is only a slight improvement on
their performance on the acyclic instances, while the increase in performance of QADF is
(again, in line with the experiments for [Kes17]) more significant (114 time-outs on all
non-acyclic vs 36 time-outs on all acyclic instances).

Also the results for the preferred semantics we report on in [DKLW18] are consistent with
those in [Kes17] for the “Traffic” and “Planning” instances. Thus, for the (non-acyclic)
“Traffic” instances YADF and QADF have 36 and 80 time-outs, while goDIAMOND has 3
time-outs and 11.12 seconds mean running time on the instances it did not time-out
on. For the “Planning” instances YADF and QADF have 71 and 100 (i.e. time-out on all
instances) time-outs, while goDIAMOND has 0 time-outs and 17.03 seconds mean running
time. Again for the “ABA” instances the results are more novel, with all systems having
many time-outs: 52, 57, and 81 for goDIAMOND, YADF, and QADF respectively. Although
there are some improvements for some data-sets (mainly in the running times), no system
performs much better (because no substantial improvement in the time-outs) on the
acyclic instances of any of the data-sets for the preferred semantics.

Finally, we turn to considering the experiments reported on in [LMN+18a]. In this
study, the authors generate reasoning problems from the same set of ADFs we used
for [DKLW18]10 but also consider a new ADF system they implement. Concretely, this
study incorporates the incremental SAT based system k++ADF11 which implements
several link information sensitive as well as non-link-information sensitive SAT-based
solving procedures for ADFs. This evaluation strategy is in line with our QBF encodings
presented in [DWW14, DWW15] (non link information sensitive) and Section 3.1.3 of
this work (link information sensitive) but where e.g. for the link information sensitive
procedure the computation of the link types and solving are handled by subsequent calls
to a SAT solver rather than in a monolithic encoding (as is the case for our encodings to
QBF presented in Section 3.1.3).

For the study reported on in [LMN+18a] the authors also make use of novel versions for
the back-end systems w.r.t. previous experiments. Thus for goDIAMOND version 0.6.6 is

10The exact encodings used always differ in the different studies we consider in this appendix, because
of the ways in which the statements whose acceptability is checked, is generated.

11https://www.cs.helsinki.fi/group/coreo/k++adf/
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still used but now with clingo 5.2.1. For QADF version 0.3.212 with bloqqer 037 and
DepQBF 6.03 is considered. Finally, for YADF version 0.1.0 is taken in account, but now
with lpopt 2.2 and clingo 5.2.1. The version of k++ADF was presumably13 version
2018-07-06; the SAT solver used is MiniSAT [ES03] version 2.2.0. For the experiments
reported on in [LMN+18a] the time-out is also larger than for previous experiments: 1800
seconds.

Considering the differences in solvers used at the back-end as well as larger time-outs
used in the study reported on in [LMN+18a] the results for goDIAMOND and QADF are
in line with those in [DKLW18], except that notably more time-outs are reported on for
QADF for the admissible semantics for the “ABA” and “Planning” data-sets (55 and 87
respectively vs 30 and 59 respectively in the experiments from [DKLW18]). For YADF on
the other hand there are discrepancies, in particular for the admissible semantics. E.g.
YADF has 47 and 21 time-outs on the “Traffic” and “Planning” data-sets, while in the
study we reported on in [DKLW18] the time-outs were 2 and 0 respectively. We have
determined14 the cause of this to be the use of lpopt version 2.2, which seems to have
problems in generating the rule-decompositions of some of the encodings obtained via
YADF in a timely-manner; while versions previous to 2.2. (we also tried 2.0 and 2.1) don’t
have this issue.

Otherwise, clearly the novelty of the study from [LMN+18a] are the promising results
for several variants of the incremental SAT-based approach. Thus, for the admissible
semantics the link information sensitive algorithm implemented as part of k++ADF
(ADM-K-BIP) has 0 time outs on the “Planning” and “Traffic” instances with 0.14 and
0.05 mean running times respectively. For the “ABA” data-set the non link information
approach (ADM-2) has slightly less time-outs (11 rather than 15) than the link information
sensitive approach and mean running time of 16.12 seconds. For the preferred semantics,
the best performing variant of the incremental SAT approaches included in k++ADF is
the link information sensitive procedure dubbed PRF-K-BIP-OPT which incorporates
use of credulous reasoning for the admissible semantics and computation of the grounded
interpretation as shortcuts to decide the skeptical acceptance problem. For the “Traffic”
data set PRF-K-BIP-OPT has 1 time-out and 17.18 seconds mean running time, for
the “Planning” data-set 3 time-outs and 11.14 seconds mean running time, while for the
“ABA” data-set there are 16 time-outs and 25.90 seconds mean running time.

We end our survey of recent evaluations of ADF systems, including our own, by giving a
bullet point summary of the results obtained so far. We focus on the experiments on
data-sets resulting from generating ADFs based on the ICCMA’17 benchmarks (using
the generator from [BDH+17] as later modified for [Kes17] and also taken up in later

12The paper mistakenly reports use of version 2.9.3 which does not exist (QADF version 0.3.2 is
implemented in version 2.9.3 of the programming language Scala).

13This is not reported in the paper.
14Via tests carried out using the different versions of lpopt on instances for which there were time-outs

in the study from [LMN+18a]. The instances were kindly made available to us by the authors of the
latter work.
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experiments) since, as we have detailed here, these expand while largely confirming
the results of more constrained previous experiments on which they build ([BDH+17]
and [Kes17]). In the summary, when mentioning results for a particular solver we use
the best of the results for that solver obtained in the different studies.

As a reminder to the reader, in this discussion when we refer to the solvers k++ADF,
goDIAMOND, YADF, and QADF, except if stated otherwise, these are versions 2018-07-06,
0.6.6, 0.1.0, and 0.3.2 respectively. In particular, we again note that YADF version 0.1.0
and QADF version 0.3.2 are identical to the newer versions detailed in this work (0.1.1
and 0.4.0; sections 3.2.7 and 3.1.4) for the encodings considered in the experiments we
allude to.

• For credulous reasoning w.r.t. the admissible semantics each of k++ADF (when
using the link information sensitive variant ADM-K-BIP, rather than ADM-2),
goDIAMOND, and YADF (making use of lpopt version 2.0 as in the experiments
from [BDH+17, Kes17, DKLW18]), have rather acceptable performance on the
“Traffic” and “Planning” data-sets. (The same holds for DIAMOND version 0.9 on a
small set of ADFs generated from metro-networks [BDH+17, Kes17].) The order
in which we mention the solvers reflects the improvement in performance, with
k++ADF being the clear “winner”. The system QADF (even in the configuration with
bloqqer version 035 and DepQBF version 4.0 from [BDH+17, Kes17, DKLW18])
on the other hand already has quite a few time-outs on the “Traffic” and “Planning”
instances. We remind the reader that the “Traffic” and “Planning” data-sets include
ADFs with 10 to 300 statements resulting from the underlying graphs obtained
from representing transportation-networks as AFs [Dil17] and encoding planning
problems into AFs [CGV17] respectively.

– Thus k++ADF (implementing ADM-K-BIP) had 0 time-outs (1800 seconds) and
0.05 seconds mean running time, goDIAMOND 0 time-outs and 6.42 seconds
mean running time in the experiments reported on in [LMN+18a] on the
“Traffic” data-set. YADF had 2 time-outs (600 seconds) and 5.68 seconds
mean running time in the experiments reported on in [DKLW18]. The system
k++ADF (implementing ADM-K-BIP) had 0 time-outs and 0.14 seconds mean
running time, goDIAMOND 0 time-outs and 6.72 seconds mean running time in
the experiments reported on in [LMN+18a] on the “Planning” data-set. YADF
had 0 time-outs and 13.20 seconds mean running time in the experiments
reported on in [DKLW18]. QADF had 25 time-outs and 2.15 seconds mean
running time on the “Traffic” instances and 59 time-outs and 14.63 seconds
mean running time on the “Planning” instances [DKLW18].

• For credulous reasoning w.r.t. the admissible semantics, but now on the “ABA”
data-set; here all ADF systems have some time-outs, yet again the results for
k++ADF are the most promising. We remind the reader that the “ABA” data set
consists in 100 very dense ADFs having between 10 to 150 statements resulting from
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the underlying graphs of encoding problems for assumption-based-argumentation
frameworks to AF reasoning problems [LWJ17].

– Thus k++ADF (now in the ADM-2 variant) had 12 time-outs (1800 seconds)
and mean running time of 16.12 seconds in the experiments of [LMN+18a].
Interestingly, for the “ABA” data-set QADF (with bloqqer version 035 and
DepQBF version 4.0) gets “second-place” having 30 time-outs (600 seconds)
and 8.15 seconds mean running time in the experiments from [DKLW18].
The system goDIAMOND has 52 time-outs and YADF 56 time-outs in the
experiments from [DKLW18].

• For the preferred semantics, the performance of our systems (as well as version 0.9
of DIAMOND on ADFs resulting from traffic networks [BDH+17, Kes17]) worsens
considerably on the “Traffic” and “Planning” problems (w.r.t. results for the
admissible semantics), while k++ADF (particularly in the variant PRF-K-BIB-OPT,
but not in the variant PRF-3) and goDIAMOND have much better performance.

– Thus YADF (lpopt version 2.0) has 36 time-outs on the “Traffic” instances
and 71 time-outs on the “Planning” instances in the study from [DKLW18].
QADF has 80 and 100 time-outs on the “Traffic” and “Planning” benchmarks
(again, study from [DKLW18]). On the other hand, goDIAMOND has 0 time-
outs on both data-sets with 28.42 seconds and 17.52 seconds mean running
times on the “Traffic” and “Planning” instances respectively [LMN+18a]. The
system k++ADF (in the PRF-K-BIB-OPT variant) manages having only 1
time-out on the “Traffic” instances and 3 on the “Planning” instances with
17.18 and 11.14 seconds mean running time respectively [LMN+18a].

• All ADF systems also have time-outs when solving skeptical acceptance w.r.t the
preferred semantics on the “ABA” data-set, with k++ADF in the PRF-K-BIB-OPT
variant having the least (16 time-outs [LMN+18a]) and QADF the most (81 time-
outs [DKLW18]).

– Thus k++ADF in the PRF-K-BIB-OPT variant has 16 time-outs and 25.90
seconds mean running time [LMN+18a], while QADF has 81 time-outs (with
32.73 seconds running time on the remaining instances) [DKLW18]. YADF has
57 time-outs and 39.46 seconds mean running time, while goDIAMOND has 52
time-outs and 27.67 seconds mean running time [DKLW18].

To conclude, while our experiments from [BDH+17] (on the instances obtained via the grid-
based generator first used in [Ell12] and ADFs constructed from a limited set of the traffic
networks used in subsequent experiments) suggested YADF to be the better performing of
the then considered systems (including DIAMOND version 0.9 and QADF 0.3.2), this picture
has changed with subsequent experiments ([Kes17, DKLW18, LMN+18a]) involving the
new systems goDIAMOND and k++ADF as well as more (and larger) data-sets. In
particular, the clearly overall best performing approach for ADF systems seems to be,
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at current moment, the incremental SAT-based approach implemented in the system
k++ADF (despite the fact that even this system still has quite a few time-outs for the
preferred semantics on the ABA data-set). But even just considering ASP-based systems,
while competitive for the admissible semantics, YADF is clearly behind in performance
w.r.t. goDIAMOND for the preferred semantics on the “Traffic” and “Planning” data-sets.

A glimmer of hope for our systems YADF and QADF is provided by the results on the
ABA data-set (in the configurations from [DKLW18]). For the ASP-based systems, here
the constraint built into goDIAMOND of not supporting ADFs with statements having
more than 31 parents is reflected in the constant number of time-outs on all reasoning
tasks (admissible and preferred) and for acyclic as well as non-acyclic instances (the latter
in the experiments from [DKLW18]). On the other hand, while YADF still has many
time-outs (in fact, a few more than goDIAMOND) there is some (slight) improvement on
the acyclic instances, which suggests room for improvement. Although QADF is quite
behind its natural competitor, the newer k++ADF (even in its non-link-information-
sensitive variants), the performance on the “ABA” data-set for the admissible semantics
is again noteworthy (in particular, the improvement for the acyclic instances shown
in [DKLW18]). More generally, comparing the results of QADF and the other ADF
systems on the different data-sets, may suggest that QADF is less affected by the density
of ADFs than the number of statements while this seems to be the other way around for
the alternative ADF systems. This suggests a potential niche that could be exploited in
further developing and evaluating also the system QADF.

Finally, we note that the experiments reported on in Appendix A comparing the perfor-
mance of several QSAT solvers and preprocessors on our link-information-sensitive QBF
encodings implemented in our new version of QADF (0.4.0; presented in Section 3.1.4) vs
the non-link-information-sensitive QBF encodings (also considering different subclasses of
ADFs) do not challenge our summary significantly. In particular, there is no substantial
improvement when using our link-information-sensitive encodings resulting from ADFs
generated on the base of traffic networks vs. the non-link-information-sensitive encodings,
except for some of the poorer performing QBF solvers when used on encodings for the
admissible semantics. On the other hand, the results obtained via the best performing
combination of QSAT and preprocessors (namely, the version of DepQBF presented at
QBFEVAL’18, also in combination with Bloqqer) when applied on the encodings (both
link information and non link information sensitive variants) for the admissible semantics
do improve on the results obtained in previous experimental evaluations. Thus, here
QADF has only 1 (out of 78) time-out on the non-link-information-sensitive encodings
with mean running time under 50 seconds, while 8 time-outs (out of 312) are obtained
on the link-information-sensitive encodings with mean running times under 110 seconds.
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